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ABSTRACT

NEW CLASSES OF DIFFERENTIAL EQUATIONS AND BIFURCATION OF
DISCONTINUOUS CYCLES

Turan, Mehmet
Ph.D., Department of Mathematics

Supervisor : Prof. Dr. Marat Akhmet

July 2009, 91 pages

In this thesis, we introduce two new classes dfatential equations, which essen-
tially extend, in several directions, impulsivei@rential equations and equations on
time scales. Basics of the theory for quasilinear systemdiaceissed, and particular

results are obtained so that further investigations oftieerty are guaranteed.

Applications of the newly-introduced systems are showough a center manifold
theorem, and further, Hopf bifurcation Theorem is provedddhree-dimensional

discontinuous dynamical system.

Keywords: Periodic solution, stability, center manifatthpf bifurcation



Oz

YENI TUR DIFERANSYEL DENKLEMLER SINIFLARI VE SUREKSZ
DONGULERIN CATALLANMAS]

Turan, Mehmet
Doktora, Matematik BlUmu

Tez Yoneticisi : Prof. Dr. Marat Akhmet

Temmuz 2009, 91 sayfa

Bu tezde iki tir yeni diferansiyel denklem sinifi tanittik. Aslinda bunklem siniflar
impalsif diferansiyel denklemlerini ve zaman skalalaardiferansiyel denklemleri
cesitli acilardan genisletirler. Yari Jousal denklemlerin temel teorisi tartisiimis ve
teorinin daha ileri dzeyde incelenebilmesini garantilemek icin belirli solam elde

edilmistir.

Yeni tanitilan sistemlerin uygulamalari merkez ¢ok kizthremi aracifiyla gosteril-
mis ve birtic boyutlu $ireksiz dinamik sistem icin Hopf Catallanma Teoremi kani

lanmistir.

Anahtar Kelimeler: Periyodik@ziim, kararhlik, merkez cok katlisi, Hopf catallan-

masl
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CHAPTER 1

INTRODUCTION

Most of the real world processes are studied by meansfi@rdntial equations. The
invention of the theory of ordinary fierential equations dates back to the second half
of the Seventeenth Century. Newton (1642-1727) was the fargtop to consider
the diferential equations. He regarded this observation so irapbtthat he used the
phrase “...the laws of nature are expressed Kfgdintial equations...” to emphasize

the importance of his discovery.

A new era in the development of the theory offéiential equations starts with
Poincaé (1854-1912). Instead of traditional methods, he consitiaew topological
ideas. TheQualitative Theory of Dferential Equations or, as it is known nowa-
days,the theory of dynamical systems the starting point to discuss the nonlinear
differential equations. BirkhHb(1884-1944) understood the idea of Poiricand de-
veloped it at the beginning of the Twentieth Century. Russiathematicians have
taken an important role in the development of this subjesgjriming with the works
of Lyapunov (1857-1918) on the stability of motion, Andrend901-1952) on bi-
furcation theory, Krylov (1879-1955) and Bogolyubov (190992) on the theory of
averaging, Kolmogorov (1903-1987) on the theory of pertidns of conditionally

periodic motions.

In the last quarter of the last century, there has been amsrpl of interest in the
study of nonlinear dynamical systems; geometric and uisid techniques devel-
oped during this period makes it possible to better invagtignonlinear dynamical
systems. The theory of nonlinear dynamical systems is onleeofost developing

subjects of the theory of fierential equations since it is mostly applied in physics,



chemistry, biology, ecology, economics, mechanics, gtsgtand electronics, all of
which have yielded valuable results. In fact, the systemghvbeemed to be hard
to grasp from the analytical point of view are now easily ustendable from the

geometric or qualitative points of view.

The history of discontinuous dynamical systems is reltigaort. In [58], the first
investigation into the discontinuous dynamical systemlmseen. There, the authors
considered the model of a clock; a pendulum which expereacgrike when the an-
gle between the current position and the equilibrium pasiteaches a specific level
was taken into account. In that work, it was shown that the@pmation method
used in nonlinear mechanics can be applied for a studyftgrdntial equations with
impulse action. This has attracted the attention of s@enfrom other disciplines

since it made it possible to investigate the processes itingam oscillations.

With this accomplished, scientists became interested pulsive Diferential Equa-
tions (IDE’s). IDE’s characterize many real life evolutaoy processes whose state
experiences a change called the ‘impulse’. Impulses ang-gron perturbations of
the process. When the changes occur at the specified timea]lnabbut the IDE’s
with fixed moments of time. Generally, this is not the case, @tdimes, the im-
pulse actions take place depending on the state. These d&irgystems are called
IDE’s with variable moments of impulse actions. For longestists have consid-
ered merely those IDE’s with fixed moments of impulse actiand stayed away
from those with variable moments of impulse actions; thidus to the fact that they
did not have enough material to handle these problems whle. tfiuth is that, these
problems were not so easy to overcome. Many results comgethe IDE’s with
fixed moments of impulses have been provided ffedent references [60, 85]. These
also contain some results about the IDE’s with variable madmef impulses. Once
B-topology was introduced by Akhmetov and Perestyuk [5, §, k8ndling IDE’s
with variable moments of impulses became easier compari foast. The method
which is based on thB-topology enables us to deal with these kinds of systems Thi

method is our main tool in the investigation of the systensagred in this study.

The center manifold theory is another main tool used in tésis. In the literature

and among the firstfiorts regarding the subject of center manifold theory, orre ca



see the paper by Pliss [82]. Also, the book by Carr [30] pravide with useful in-
formation about the applications of center manifold. Hogrein neither one of these
works can one find the center manifold and its applicatioteged to discontinuous

dynamical systems.

The main point that we are going to utilize from regardingdbater manifold theory
is to apply it to discontinuous dynamical systems to proeeeistence of a periodic
solution in multi-dimensional discontinuous dynamicasteyns. In fact, this will be
a discontinuous limit cycle; that is, we shall prove the HBgfircation Theorem in

three-dimensional discontinuous dynamical systems.

While dealing with the Hopf Bifurcation Theorem, naturally @nclass of dteren-
tial equations arises (which we abbreviate asdijerential equations on time scales
with transition condition (DETQ) The concept of the time scale was first introduced
by Hilger [51]. In his work, the author tends to unify and exdehe diterential and
discrete equations. The DETC introduced here and the oqged by Hilger, have
both similarities and dierences.

1.1 Elements of Impulsive Dfferential Equations

Many evolutionary processes are subject to short-ternugmEtion whose duration
is negligible when compared to that of the whole processs Pphkrturbation results
in a change in the state of the process. For example, whenrecioguball strikes
against a fixed surface, then a change in the velocity of tileobaurs. Another
example is the pendulum of a clock showing a change in momemthen passing
through its equilibrium position. Models like these havayad a significant role
in the development of impulsive fiigrential equations. In [24, 25, 85, 86], many
theoretical results are given for impulsiveéfdrential equations such as the existence

and uniqgueness of solutions, stability, periodic solwion

In principle, there are two ferent kinds of impulsive dierential equations: the ones

with fixed moments of impulse actions and those with variabtenents of impulse
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actions. The former is a system of the form

dx

— =f(t,x), t#£6,

dt (t:%) (1.1)
AXli=g = 1i(X),

which is called an ‘IDE with fixed moments of pulse actionsh (IL.1),x € R"

is the state (phase) variable. The sequedgewherei is an index belonging to a
finite or infinite index set as a subset®f denotes the fixed moments at which the
impulse actions take place. The right-hand side functi@nx) is the continuous rate

of change of the phase variable, di(d) is the discrete (sudden) change of the phase
variable. MoreoverAxj-, = X(6) — x(¢;) denotes the jump in the phase point at
the timet = 6,. That is, a phase point of (1.1) moves along one of the trajestof

x = f(t, X) until the timet = ;. At the moment = 6, the phase point jumps to the
pointx(6) = x(6) + 1;(x(6)), and continues along a trajectoryxf= f(t, x) until the
next moment of impulse action, and so on. Therefore, a soiux(t), of (1.1) is a

piecewise continuous function with discontinuities of finst kind att = 6,.

In the latter one, however, impulse action takes place wherphase point meets
one of the prescribed surfaces in the phase space. Thesedisgistems are more
challenging to investigate when compared to the first cajegimce diferent solu-
tions possess flerent moments of impulses. Nevertheless, they arise moueatist
than the first kind. An impulsive fferential equation with variable (or non-fixed)

moments of impulses is a system of the following form

dx
i f(t,x), t+#7i(X), (1.2)

AXlt=r,x = 1i(X),

wherex, f(t, x) andl;(x) have been described before, and for eael(x) stands for
the surface of discontinuity. As it can be seen easily in)(1tf2e moments when
the impulse actions take place depend on the phase pingnd, hence, each solu-
tion will perform the jumps at dierent times. For this reason, system (1.2) is more

difficult than system (1.1) to investigate.

The systems in (1.1) and (1.2) are both non-autonomous eéxsts another impor-

tant class of dferential equations which is autonomous, also knowdiasontinuous
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Dynamical System®DS’s). A discontinuous dynamical system can be expreased

dx
i f(x), x¢T, 1.3)

AX|yer = 1(X),
wherel” denotes the set of discontinuity. A phase point of (1.3) ,s@aleng one of
the trajectories of the autonomoustdrential equatiox’ = f(x) until the time when
this solution, say(t), meets the sdt. After this meeting, the phase point is mapped
to the pointx + 1(X), if xis the phase point just before the meeting, and continues its
motion along the trajectory of = f(x) with the initial point atx + I(x), and so on.
It is clear that the discontinuities of a solution of (1.33@bdepend on the solution,
like in (1.2). This is one of the reasons why the theory ofeyst (1.2) and (1.3) have
not been addressed adequately until now. However, they stavied to be noticed
by many scientists since they have a wide range of applicatim [6, 13], a method
has been introduced and developed to handle these systeths. present study, we

intend to use these methods as well.

Here, our main system will be of the form (1.3). Needless tamtoe that while
studying this system, a new type off@rential equation came up, which we call as
differential equations on variable time scal@ETCV). In the next section, we shall
provide the conventional flerential equations on time scales as well as the DETC
(the ones that we introduced to deal with the DETCV).

1.2 An Overview of the Dfferential Equations on Time Scales

Some dynamic processes have been modeledftgreince equations or fierential

equations. As far as the modeling is concerned, the ideavtdvim both continuous
and discrete times to model a process is more realistic. H®réason, except for
impulsive diferential equations, there exist another class of systeheslaynamic

systems on time scales or measure chains [64]. The notiomefdcales was in-
troduced by Aulbach and Hilger back in the 80's [22, 51, 52Je tdea there was
to unify the discrete and continuous dynamics. Recently,ymasults in the the-
ory of discrete dynamics have been obtained as discretegsaf the corresponding

results of continuous dynamics. However, in the discrese cthere are some topo-
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logical deficiencies, including lack of connectedness. Sassumptions have been
made to overcome these topological deficiencies. For the gampose, we will be
using a special kind of time scale.

Any nonempty closed subset Bfis called a ‘time scale’, generally denoted ByA
differential equation of the form

XA = f(t,X), teT, (1.4)

where xA(t) denotes the\-derivative ofx at the pointt € T, is called a ‘dynamic
equation on the time scalg.

The theory of dynamic equations on time scales (DETS) has deeeloped in the
last couple of decades [2, 29, 64]. After a literature surabgut DETS, one can
conclude that there are not as many theoretical results @existence of periodic
solutions and almost periodic solutions. To this date, tivestigations concerning
linear DETS, integral manifolds, and the stability of eqolas have not been devel-
oped in full. 1t goes without saying that, such results nedokt obtained so as to able
us to benefit from the applications of the theory. We also psem method to obtain
such theoretical results, and to investigatéedential equations on certain time scales
with transition conditions (DETC) which are, in a way, moregel than DETS.

Here, dfort is made to expand our knowledge of these aspects of tloeytheend to
introduce a new class of fierential equations on time scales. In fact, this class of
equations arises naturally when we solve the problem of HWdpfcation, which is

our main goal in this study.
The time scale that we consider in this thesis is of the form
T. = U[tzi_l,tz], (1.5)
i€Z
wheret,, n € Z, is a strictly increasing sequence such that> +co asn — +co. On

atime scale as in (1.5), thefféirential equation with transition conditions (DETC) is
defined as a system of the form

y = f(t’y)’ teTe,
Y(toir1) = Y(tz) + Ji(y(t2)),

wheref : T.xR" — R", andJ; : R" — R" are continuous functions in their domains.

(1.6)

6



At the same time, we should recognize that significant theaderesults have been
achieved concerning oscillations, boundary value prob|giositive solutions, hybrid
systems, etc. [1, 2, 20, 28, 29, 34, 37, 38, 41, 64, 65, 91]. ¥e¢eme that our
proposals may initiate new ideas by which the theory can laésdeveloped, thus

adding to the previous significant achievements in thatdos.

The DETC will be discussed in the next chapter. The main ideélag investigation of
DETC is to apply the results of the theory of impulsiv&eliential equations (IDE’S),
the investigation of which started in the late sixties of k&t century [43, 60, 85].
We note that certain classes of DETC, concerned with timeescain be reduced to
IDE if we apply a special transformation [6] of the indepenid@rgument - the time
variable. This transformation allows the reduced IDE tcemthall similar properties
of the corresponding DETC. Then, the investigation of the B proceed using
the existing results. Finally, by taking into account theperties of the independent
argument transformation, we can have an interpretatiom@fobtained results for
the DETC. The approach we are using to connect the DETC witthandype of
differential equations is close to that in paper [65], where idyfystems on time
scales have been considered. Besides the DETC, in this stedginwduce the non-

linearity on time scales and consider, as we ttalvariable time scales

1.3 Basics of Center Manifold and Hopf Bifurcation

Roughly speaking, a bifurcation is a qualitative change imtractor’s structure as
a control parameter is varied smoothly. For example, a sireglilibrium or fixed

point attractor might give way to a periodic oscillation e stress on a system in-
creases. Similarly, a periodic attractor might becomeabistand be replaced by a

chaotic attractor.

The bifurcation theory is the mathematical study of chamgése qualitative or topo-
logical structure of a given family. Examples of such fagsliare the integral curves
of a family of vector fields or the solutions of a family offidirential equations. Most
commonly applied to the mathematical study of dynamicatesys, a bifurcation

occurs when a small smooth change made to the parametes \(#thaebifurcation

7



parameters) of a system causes a sudden “qualitative” oldgigal change in its be-
havior. Bifurcations occur in both continuous systems (dbed by ODE’s, DDE’s

or PDE’s) and discrete systems (described by maps).

At times, bifurcations are divided into two principle class The first one is local
bifurcations, which can be analyzed entirely through cleanig the local stability
properties of equilibria, periodic orbits or other invariasets as parameters cross
through critical thresholds. The second one is global b#tions, which often occur
when larger invariant sets of the system “collide” with eater, or with the equilib-
ria of the system; these cannot be detected purely by a ltadailisy analysis of the

equilibria (fixed points).

A local bifurcation occurs when a parameter change causest#ility of an equi-
librium (or fixed point) to change. In continuous systemss ttorresponds to the
real part of an eigenvalue of an equilibrium passing throogfo. In discrete sys-
tems (those described by maps rather than ODE’s), thissmorels to a fixed point
having a Floquet multiplier with modulus equal to one. Intboases, the equilib-
rium is non-hyperbolic at the bifurcation point. The topgital changes in the phase
portrait of the system can be confined to arbitrarily smaijhleorhoods of the bifur-
cating fixed points by moving the bifurcation parameter eltwsthe bifurcation point

(hence, ‘local’).

Global bifurcations occur when ‘larger’ invariant setsglsas periodic orbits, collide
with the equilibria. This causes changes in the topologyhefttajectories in the
phase space which cannot be confined to a small neighborhsad,the case with
local bifurcations. In fact, the changes in topology extentto an arbitrarily large

distance (hence, ‘global’).

Examples of global bifurcations include the following:

e Homoclinic bifurcation, in which a limit cycle collides wita saddle point;

e Heteroclinic bifurcation, in which a limit cycle collidesitl two or more saddle

points;

¢ Infinite-period bifurcation, in which a stable node and dagmbint simultane-

8



ously occur on a limit cycle; and

e Blue sky catastrophe, in which a limit cycle collides with anfloyperbolic

cycle.

It deserves mentioning that global bifurcations can alsolie more complicated

sets such as chaotic attractors.

Named after Eberhard Hopf and Aleksandr Andronov, a Hopf ndrAnov-Hopf
bifurcation, is a local bifurcation. Here, a fixed point of yndmical system loses
stability as a pair of complex conjugate eigenvalues of theakization around the
fixed point cross the imaginary axis of the complex plane. &mdasonably generic
assumptions about the dynamical system, we can expect ta se®ll amplitude
limit cycle branching from the fixed point. This bifurcatiovas studied by Poincar
who, in his work on the gravitational three-body problemtanted certain periodic
solutions. Later, though, Andronov and Hopf provided a mexglicit discussion on

that issue.

One of the main methods of simplifying dynamical systems retluce the dimension
of the system. The center manifold theory is a rigorous nmattieal technique that
makes this reduction possible, at least near the equilildize to the power of this

theory in investigating systems, it became very populat atracted many scientists.

The history of center manifolds is very short, going back 6ds. The ideas for
center manifolds in finite dimensions have been develope#&dlly (1967), Carr
(1981), Guckenheimer and Holmes (1983), VanderbauwheiOjland others. For
recent developments in the approximation of center matsfasee Jolly and Rosa
(2005). Pages 1-5 of the book by Li and Wiggins (1997) proadextensive list of
the applications of center manifold theory to infinite dirsiemal problems. Mielke
(1996) developed center manifold theory for elliptic partiifferential equations, and
applied the theory to elasticity and hydrodynamical protdeHaken (2004), in turn,
investigated the applications to phase transitions irolgical, chemical and physical

systems.

When a system loses stability, the number of eigenvaluesigadwectors associated

with this change is typically small. Hence, bifurcation lplems usually involve sys-

9



tems where the linearization has a very large - and possifiljite - dimensional sta-
ble part and a small number of “critical” modes which chanmgenstable to unstable
as the bifurcation parameter exceeds a threshold. Theat@hda of the bifurcation

theory is that the dynamics of the system near the onset @fitisy is governed by

the evolution of these critical modes, while the stable nsdd#ow in a passive fash-
ion and become ‘enslaved’. The center manifold theoremeisijorous formulation

of this idea; it allows us to reduce a large problem to a small manageable one.
Therefore, after the reduction on the center manifold, dooees easier to investi-
gate the system since - in a local neighborhood of the fixedtpdhe quantitative

behavior of the reduced system is the same as that of the \whstiem.

In this study, we shall also utilize the center manifold tlyeto investigate the Hopf

bifurcation in a three-dimensional discontinuous dynaingystem.

1.4 Description of B-equivalence Method

A challenge in investigating systems with discontinuitb@snonlinear surfaces is that
each solution has fiferent moments of impulseffects, or discontinuities. In the
literature surrounding the object, many results can bedowalated to linear surfaces
of impulse actions [60, 63, 71, 84, 85, 86]. However, rarey one see the works
containing nonlinearities on the surfaces. Although theyraore realistic for real
world applications, many authors tend to avoid these syst@me to this dficulty.
In [6, 11], the authors have introduced a new method to hah@alifficulty. There,
the so-called B-equivalence and B-topology have been prdposéis method is
a powerful tool to deal with the variable moments of impulsicms. Here, we
shall apply the method proposed for impulsivéfetiential equations with variable
moments of impulses and, in Chapter 3, we will adopt this natbdhe diterential
equations on variable time scales. Subsequently in Chapti#isAmethod will be
applied to a system in three dimension and the Hopf bifunoatheorem will be

proved.
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Consider the systems

X =f(t,x), t=+7i(X),

1.7
AX|t:‘ri(x) = Ii(X)’ ( )

and

y =fty), t#6,

(1.8)
AYl=g, = Ji(Y),

where the hyper-surfacés= 7i(x) are small perturbations of the hyper-planesé;,
and the functiong; to be supplied in the thesis. Akhmet and Perestyuk [6, 11¢ hav
shown that, corresponding to each solutigtyto, Xo) of (1.7) satisfyingx(to, to, Xo) =

Xo, there exists a solutiog(t, to, Xo) of (1.8) satisfyingy(to, to, Xo) = Xo such that
these two solutions are the same fortailh their common domains except for the
e-neighborhoods of the discontinuity points, and vice vetsdact, a discontinuity
point of the solution of one system lies in ameighborhood of the corresponding
discontinuity point of the solution of the other system. Histstudy, we have adopted
this important technique to our system and, by means of tngpelling material, we

have successfully obtained the required results.

1.5 A Transformation of the Independent Variable: y-substitution

It is common to simplify a given equation by a proper transfation in the theory
of differential equations. Likewise in this study, we use a transétion introduced
by Akhmet in [6] and developed in [19]. This is a transforroatof the independent

variable and serves as a bridge in the passage from DETC, a6)ntp an IDE.

For a time scal&; as in (1.5), on the sét, = T¢ \ Ui-_.{tzi-1}, they-substitution is

defined as

w(t) — O<tpe<t (1 . 9)

t+ Z S, t<0

t<tox<0
wheredy, = ty,1 — tx. Notice that they-substitution is a one-to-one maf(0) = O,

and the structure of the sequentg implies thaty mapsT, onto R. The inverse

11



transformation is

yi(s) = 05 . (1.10)

Note that the inverse transformation is a piecewise coatisdunction with discon-
tinuity of the first kind at the points = s = y(ty), | € Z andy~(s+) — y1(s) = 6i.

The aim of they-substitution is to make the domain of the system (1.6) a ecteal
domain. Besides, it carries the significant properties offtinetion it is applied to.
For example, ifp(s) is a periodic function orR, then¢(4(t)) is a periodic function
on T, and vice versa. A number of properties of thesubstitution will be given

throughout the thesis when necessary.

1.6 Motivation for the Main Study

For a motivation, let us consider how the idea of variableetsnales emerged before
we begin with the main part of the thesis. The following plesystem was considered
in [6]

dx
— = Ax+ f(X), x¢T,
dt » # (1.12)

AXlxer = B(X)X,

wherel” = uip:lfi is a set of curves starting at the origin. Using polar coatéin, the

system is written in the form:

dr
o =Ar +P(r,¢), (r,¢)¢T,

" lepyea= ¢ + 6 + (1, §), (1.12)
M legee= 1+ K)r + w(r, ¢).

Denote by/ the image off; under the transition operat®k (¢, r) whereIl}(¢,r) =
¢+ 6, +y(r, ¢), andlI?(¢, 1) = (1 + k)r + w(r, ¢). Let D; be the set bounded kY and
ti+1. In [6], it is shown that this set is non-empty, af{ds betweert; and{;., if the

equation is considered in a small neighborhood of the arigin
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DenotingT(r) = U2, Di, we have the following DETCV:

d(; —w+P(Lg),  (6.1) € T(),

dop (1.13)
¢+ = H|l(¢’ r)’ re= H|2(¢’ r)’ (¢’ r) € fi'

This equation is an example of afféirential equation on a variable time scale. In
this study, we shall consider a generalization of this eqnaand prove the Hopf

Bifurcation Theorem for our system.

1.7 Organization of the Thesis

This dissertation has been arranged in the following way:

In Chapter 2, we introduce theftirential equation with transition conditions on time
scales (DETC) and investigate it on the basis of reductiohédrpulsive diferen-
tial equations. We give the basic definitions on time scafes @nsider the basic

properties of linear systems, the existence and stabilipedodic solutions.

Chapter 3 is devoted toftierential equations on variable time scales (DETCV), and
contains the definition of a variable time scale, existemzbumiqueness theorem for
DETCYV, the method used to investigate the DETCV, existencesabgic solutions,
stability of solutions and finally bounded solutions. Theulés given in that chapter

will be used in our main study.

In Chapter 4, we consider the Hopf Bifurcation Theorem whereillustrate the
bifurcation of three-dimensional discontinuous cycletso®roved in this chapter is
the existence of a center manifold. To demonstrate the worughout the thesis,

each chapter contains a number of examples.

Finally, the last chapter is devoted to a conclusion.
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CHAPTER 2

DIFFERENTIAL EQUATIONS WITH TRANSITION
CONDITION ON TIME SCALES

In this chapter we investigateftBrential equations on certain time scales with tran-
sition conditions (DETC) on the basis of a reduction to theutepe diferential
equations (IDE). DETC are in some sense more general thaamtgrequations on
time scales [29, 64]. Basic properties of linear systemsstemce and stability of
periodic solutions are considered. Appropriate examplesggaven to illustrate the
theory.

2.1 Introduction

The theory of dynamic equations on time scales (DETS) has deeeloped in the
last several decades [2, 29, 64]. After a literature sunmuaDETS, one can con-
clude that there are not so many results of the theory on tlsteexe of periodic
solutions. Up to this moment, the investigations conceyinear DETS, integral
manifolds and the stability of equations have not been fdéyeloped. Certainly,
these results should be obtained in order to benefit from pipécations of the the-
ory. In this chapter, we make an attempt to expand our knaydlexd these aspects
of the theory. We also propose a way to obtain these thealagsults. More-
over, we investigate éferential equations on certain time scales with transitimm c
ditions (DETC), which are in some sense more general than DBET$e same
time, we should recognize that significant theoretical lteszoncerning oscillations,

boundary value problems, positive solutions, hybrid systetc., have been achieved
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[1, 2, 20, 28, 29, 34, 37, 38, 41, 64, 65, 91]. We assume thapmposals may
stimulate new ideas by which the theory can also be develagéuhg to the previous
significant achievements in that direction. The main idethefchapter is to apply
the results of the theory of impulsiveftirential equations (IDE) the investigation of
which started in the last century in the late 1960s [6, 11,483,60, 85]. We note
that certain classes of DETC, particular with their time esatan be reduced to IDE,
if we apply a special transformation [6] of the independeguenent (the time vari-
able). This transformation allows the reduced IDE to inthalli similar properties
of the corresponding DETC. Then the investigation of the I2& proceed using the
known results. Finally, by taking the properties of the ipeledent argument transfor-
mation into account, we can make an interpretation of thainbd results for DETC.
The approach we are using to connect the DETC with another eyaifferential
equations is close to that in the paper [65], where hybritesys on time scales were

considered.

This chapter is organized as follows. In the next sectionithe scale with its specific
properties is considered. Moreover, the general form of ORES described. The
special transformation is given in Section 2.3. ReductioDBfTC to IDE is done
in Section 2.4. In Section 2.5, periodic solutions of linequations and elements of
Floquet's theory are considered also Massera theorem ve@ral he last section of
this chapter is devoted to the problem of existence andlgyabf almost periodic

solutions.

2.2 Description of the Dfferential Equations with Transition Condition on Time

Scales

Throughout this chapter we consider a specific time scalbeofdllowing type. Fix
a sequencg;} € R such that; < tj,4 for all i € Z, and|tj] — oo as|i| —» . Denote

0i = thi1 — by, kj = ty — ty_1 and assume that:

(CO) 3Nk =00, Y2 ki = oo, for anyn,me Z.

The time scalél'; = J;>_.[tzi-1, t2i], IS going to be considered throughout this study.
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Consider the following system offiierential equations

dy
a = f(t, y), te TC, (21)

Y(tzir1) = Ji(y(ta)) + Y(t),
where the derivative is one sided at the boundary point.off : T, x R" — R",
J : R" - R" for alli € Z. We assume that functions and J; are continuous
on their respective domains. Let us introduce the followthagsition operator[T; :
{tzi}XR" — {t5i,1}XR", i € Z, such thalli(ty, y) = (tzi.1, Ji(y)+Y). Thus the evolution
of the process is described by:

1. the system of diierential equations

Yoty tems 2.2)

2. the transition operatdi;, i € Z;

3. the sefl; x R".

We shall call equation (2.1) théifferential equation on time scales with transition
condition (DETC). Let us show how to construct a solution of (2.1). Dendty
o(t, «, 2), a solution of system (2.2) with an initial conditigtk) = z x € T, z€ R",
and, byy(t), a solution of system (2.1) with an initial conditigtt®) = y,. Fix t° € T,
such thatty_; < t° < ty for somek € Z. If t° <t < ty the solution is equal to
(1,10, o), andy(ta) = o(ta—, 1% yo), where the left limit is assumed to exist. Now,
applying the transition operator, we obtain thé, 1) = Jc(y(ta)) + Y(tok). Note that
the solution is not defined in the intervad( ta.1). Next, on the intervalthy, 1, tau.1))
the solution is equal t@(t, tx.1, Y(txs1)), andy(taus1)) = d(towe1)— toke1, Y(toks1)), and
so on. If solutiony(t) is defined on a sdtc T, then the sef(t,y) : y = y(t),t € I} is
called anintegral curveof the solution.

Let us start with the general information abouffeliential equations on time scales.
We provide only those facts of the theory which directly cenmcour needs in this
chapter. More detailed description on the subject can bedau|[2, 29, 64].

Any nonempty closed subsé€t, of R is called a time scale. For instande,(real

numbers)/Z (integers),N (natural numbers) aan : n € N} U {0} are examples of
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time scales whil&) (rational numbers)R \ Q (irrational numbers) and (@) are not

time scales [29, 64].

On a time scal€T, the functionso(t) := inf{s e T : s > t} andp(t) := sugs €

T : s < t} are called the forward and backward jump operators, reilspéctin case
when any of these sets is empty, that iS[ is bounded above (below), this definition
is supplemented by-(maxT) = maxT (o(minT) = minT). The pointt € T is
called right-scattered i#-(t) > t, and right-dense it-(t) = t. Similarly, it is called
left-scattered ifo(t) < t, and left-dense ip(t) = t. Note that on time scal&,, the
pointsty_q, I € Z, are left-scattered and right-dense, and the pdint$ € 7Z, are
right-scattered and left-dense. Moreover, it is worth nogmng thato(ty) = toi.1,
po(tois1) = ty, 1 € Z, ando(t) = p(t) = t for any othett € T..

The A-derivative of a continuous functioh at a right-scattered point is defined as

f(or (1)) — f(1)
oct)-t ’

and at a right-dense point it is defined as

(1) = fim 1D = 1)

st t—s

FA(D) =

9

if the limit exists.

Let T be an arbitrary time scale. A functign: T — R is called rd-continuous if :

() itis continuous at each right-dense or maxirnalT;

(i) the left sided limitp(t—) = é[lng (&) exists at each left-dense
Similarly, a functiony : T — R is called Id-continuous if :

() itis continuous at each left-dense or minimal T;
(i) the right sided limitp(t+) = é!mg (£) exists at each right-dense
An equation of the form

yAt) = f(ty), teT, (2.3)

is said to be a dierential equation on time scale [64], where functfonTxR" — R"

is assumed to be rd-continuous Brx R" .
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In our specific case we denote, By, the set of all functions which are rd-continuous
onT.. Moreover, we define a set of functioﬁ%1 C 7o which are continuously lier-
entiable orl,, assuming that the functions have a one-sided derivativeedtaund-
ary points ofT., that is if ¢ € 75, theng’ € T,

2.3 They-substitution

It is common to simplify a given equation by a proper transfation in every theory
of differential equations. Likewise, in this section, we intragactransformation

which plays the role of a bridge in the passage from DETC, a2.i),(to an IDE.

Without loss of generality, we assume that< 0 < to. They-substitution, on the set
T, = T\ U2 {tzi_1}, is defined as

t— Z Sk t>0

lﬁ(t) — O<tpy<t (24)
t+ > 6 t<0

t<tok<0

wheredy = tx1 — t. Notice that thaey-substitution is a one-to-one maf(0) = 0,

and the condition@O) implies thaty(T;) = R. The inverse transformation is

S+ Z ok, S>>0

9 = 03 . 2.5
v (9) = b s<0 (2.5)

s<s<0

Note that the inverse transformation is a piecewise coatisdunction with discon-
tinuity of the first kind at the points = s, i € Z, andy~(s+) — ¢y (s) = 6;.

Lemma 2.3.1y/(t) = 1if t € T.

Proof. Assume that > 0. Then,

i wEn) —y

(1)

h—0 h
1
= lim = [t+h— > 6k)—(t— > 5k]]
O<ty<t+h O<tok<t
= 1
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The assertion for < 0 can be proved similarly. |

Denotes = y(ty),1 € Z. To make the reduction of DETC to IDE, we also need the

following sets of functions. A functiop : R — R" is said to be iPCy if :

() ¢(9) is left continuous ofR and continuous of® \ J;>_.{s};

(i) ¢(s) has discontinuities of the first kind at the poists

Similarly, a functiony is said to be ifPC} if ¢ € PCq andy’ is in PC, where

@(s) - 90(3)_

‘(s) = lim
¢'(s) Mg

One can easily check that* € PC, andL(yY(9)) = 1if s# 5,1 € Z.

In the next lemma we show that the spaces of functiopsand £C, are closely
related. This relation is set up lysubstitution. In the same manner the relations

between7 andPCj are going to be constructed. In what follows assume shat
().

Lemma 2.3.2If ¢ € Totheng oyt € PCy, andy o ¢ € Ty if ¢ € PCy.

Proof. Sincey is a one-to-one transformation we see thatsfnot one of the points
ty, theny(t) is not one of the points. Now, the continuity off-substitution concludes
the proof. [

Corollary 2.3.3 If g € T2 theng oy~ € PC, andyp o y € T if ¢ € PCE.

2.4 The Reduction to an Impulsive Dfferential Equation

From the definition oA-derivative at a right-scattered point [64], we have

i1 —
and hence equation (2.3) can be written as

y(@)=fty), teT.

(2.6)
Y(tai1) = f(ta, y(t2))0i + Y(tz),
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wheres; =ty — ty.

We generalize the last equation if the specific tdt;, y(t;i))d; in (2.6) is replaced

by an expressiod;(y(tx)), whereJ; can be an arbitrary function.

Thus the following equation is considered

y@®=fty). teT.

2.7)
Y(tair1) = Ji(y(t)) + y(t2).

AY

>
/

Figure 2.1: A trajectory of (2.7)

We name (2.7) as differential equation on time scale with transition conditiamnd
we abbreviate its name as DETC. In Figure 2.1, a trajectoryhefsiystem (2.7) is
shown. There, a solution starting at the initial ponat the timet = t° is sketched.
The solution moves along one of the trajectoriey’of f(t,y) until the timet = t;
when it touches the next hyperplane at the point, Bait this moment a transition
is performed and the solution jumps to the pdinbn the hyperplané = t5,1. This
transition is performed by means of the functignin classical DETS, the transition
from the hyperplaneé = t; to the hyperplané = t,, is performed as follows: First,

the tangent line to the graph of the solution at the p&ns drawn, and then the
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intersection point of this tangent line with the hyperpldne t,,; is found. This
intersection is the point where the phase point will be dftertransition. However, in
practice, this is not the case and the transition is done bgra general function, a%

that we use in this study. Clearly, (2.6) is a specificatiorRof\with Ji(y) = f(t, y)d;.

A function ¢ € 7§ is a solution of (2.7) ify’(t) = f(t, ¢(t)) for t € T, ande(tz1) =
Ji(p(ta)) + ¢(tz) for t = tyi,q,1 € Z.

Let us now apply the transformation of the independent aequrto (2.7). Ifyis a
solution of (2.7), therx = y o ¢! is a solution of the equatiox = f(y1(s), x) for
s # s. Moreover, ift = 5,4, thens = y(t) = s, and hence, the second equation in
(2.7) leads to
X(s") = Ji(x(s)) + X(s),
which can be written as
AXls-s = Ji(X(s))

whereAx|s_s = X(S") — X(s). Thus,x is a solution of the following IDE

X =ty (9,%, s#s,

AXss = Ji(X(s))-
The connection between DETC (2.7) and IDE (2.8) is estadtishThe solution
X(9), X(s°) = xo, (S, Xo) € R x R", of (2.8) satisfies the following integral equation

(2.8)

K9 =0+ [ 10 HOXE Y IS, 2.9)
& d<s<s
if s> <, and
K9 =%+ [ 10X~ Y IS, (2.10)
& s<s <SP
if s< <.

Leta, b be inT; such that < b. We denote

p-1
Te(a,b) = [a, tom] U Z [tox-1, ta] U [tap-1, b],

k=m+1

wherem andp are integers which satisty, 1 <a <ty <--- <ty <t <ty and

for f € 7o we set

tom tomy2 b
f f(r)dr := f f(r)dr + f f(r)dr +--- + f f(r)dr.
Tc(a,b) a tome1 top-1
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Now, the solutiony(t), y(t°) = yo, of (2.7), where® = y~1(), satisfies

YO =yo+ [ fEydrs Y Holtaa) (2.11)
Tc(toat) toﬁtzi <t
if t > 1% and
WO =yo- [ fmydr- Y, 30t (2.12)
Te(t19) t<ty <t0
if t < 1O,

2.5 Linear Systems

In this section, we shall consider the lineafteliential equations with transition con-
ditions on time scales. The results of this section will bedssl in the next section

where we investigate the existence of periodic solutions.

2.5.1 A Homogeneous Linear System

Let f(t,y) = A(t)y andJi(y) = Biyin (2.1), whereA(t) e C(R, R™") andB; € R™".

Consider the linear time scalefidirential equation

y(®) = Alt)y. teTe.

(2.13)
Y(tzir1) = Biy(ta) + y(tz)-
By means ofy-substitution, system (2.13) turns out to be the IDE
X =A(S)X, S%S,
(9 . (2.14)

AX|s-g = BiX,

whereA(s) = A(y(s)). Since the solutions of system (2.14) form a linear space
of dimensionn [60, 85], andy-substitution transforms only the time variable, the

solutions of (2.13) also form a linear space of the same dsem.

Lete; = (0,---,0,1,0,---,0)" be then-tuple whosej — th component is 1 and all
others are 0 and assume thgts), x;(0) = e;, is a solution of (2.14) foj = 1,--- ,n.
Then [85] for any other solutior(s), x(0) = X, of (2.14) we have

X(9) = Y ¢ixi(9), (2.15)
=1
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where the cofficientsc; are uniquely determined fromy = ».7_; c;e;.

Now, forming the matriciank(s) = [X1(S) X2(S) --- Xn(9)] of system (2.14), equal-

ity (2.15) can be written as
X(s) = X(9)Xo.

If X(sr) = X(5)X~1(r) is a transition matrix ok’ = A(s)x then
[, s=0

1
X(s 5)(1 +By) [ [ X(s0 sca)( + Be)X(%,0),  s>0
k=p
-1

X(s9)(1 +B) [ | X(sc1, 81 + BYX(s1,0), s<0
k=1+1

X(s) =

where fors > 0 we have assumed that0sy < --- < S, < S< Sp;q and fors < 0 that

S.1<S<§<---<s1<0.

On the other handj-substitution yields that a solution(t), y;(0) = €, is determined
by

yi(t) = (¥ (1))
Hence, any solutioy(t), y(0) = yo, of (2.13) is given byy(t) = Y(t)yo where the
matriciantY(t) is defined and determined by

[, t=0

1
Y(t toper)(1 + Bp) | [ Ylta tacn)(l + Bien)¥(.0). £>0

Y(D) = ||

-1
Y(tta)(1 +B)* [ | Yltar, ta)(l + BY ™ Y(t1,0), t<0

k=I+1

in which Y(t,7) = Y(t)Y () is a transition matrix off = A(t)y and fort > 0 we
have assumed thatOtyp,1 <t < typ.1) and fort < 0 thatty_; <t <ty <O0.

2.5.2 A Non-homogeneous Linear System

Consider the system
y(t) = Ay +9(), teT,,

(2.16)
Y(tzii1) = Biy(ta) + Wi + y(tz),
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wherey € R", A(t), B; are as described for system (2.14)) € 7o and{W}, i € Z, is
a sequence af-vectors.

Applying the transformationg(t) = Y(t)u(t) ands = (t) one can obtain

Z=XY94(s), s#s,

AZgg = x—1(§+)vvi
wherez(s) = u(y(9)), §(s) = gy (s)). The solution of (2.17) satisfyings°) = z
is

(2.17)

29 =2+ [ XHOYAE+ ) X HS W, (2.18)
& P<s<s
if s> <, and .
29 -2+ [ XHOYAE- ) X HS W, (2.19)
& s<s<s?

if s< . Consequently, the general solution of (2.16) is

YO =Y+ [ YEng@dre Y YW, (2.20)
Tc(tost) tOStZi <t
if t > 19, and
y(t) =Y(t,t0)y0—f i Y(t, 7)g(r)dr — Z Y(t, ti:1) W, (2.21)
Te(t) t<ty<t0

if t <10,

2.5.3 Linear Systems with Constant Cofficients

Let A(t) = AandB; = B be constant matrices in (2.13) and consider the linearsyste
with constant coéicients

y, = Ay’ t € P]I‘C7
Y(tai+1) = BY(ta) + Y(t),

whereA, B e R™". The following assumptions, for system (2.22), are needed:

(2.22)

(C1) the matriceA andB commute AB = BA;
(C2) det( + B) # 0;
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(C3) the limits

vO-U©) _, IO

lim toeo t —t0

t—oo t — tO

exist, wherd(t°, t) is the number of gapsty, ta.1), in T, betweert® andt.

DenoteAy = (A + pin(l + B).

Theorem 2.5.1 Let conditiongCO0) — (C3) hold. Then the zero solution of (2.22) is

(a) asymptotically stable if the real parts of all eigenveduof the matrixAq are

negative;

(b) unstable if the real part of at least one eigenvalue ofrttarix A, is positive.

Proof. It is easily seen tha¥/(t,7) = "¢ and hence, if;n1 <10 <ty < --- <
tono1 <t < thy, we get

m+1
Y(t, tO) — eA(t—tzn-l)(| + B) n [eA(tzk—tzk-l)U + B)] eA(tzm—to).

k=n-1
Condition €C1) impliesY(t, t°) = evO-¥()](| + B)®®). Due to conditionC3) we can
write

w(t) — () = [+ a®)(t - t°), and i(t%t) = [p+ e®)](t - t°)

whereej(t) — 0 ast — oo, j = 1,2. In general the functions;(t), j = 1,2, are

piecewise continuous functions.

Now, the solutiony(t), y(t%) = yo, of (2.22) is written as/(t) = €Oy, where
A(t) = Ao + (A + () In(l + B) for t > t0.

Assume that mayRelj(Ao) = y < 0. The properties of functions;, j = 1,2, imply
that for a fixed positive there exists a sficiently largeT > 0 such that it > T then
M)l <€ j=12

Therefore,
lly(®Il < K(E)e"(‘)(t‘to)e(7+a(t—t°)’

wheres(e) = |l (t)A + &(t) In(l + B)||. Sincey < 0 ande, e can be chosen so small

thaty + € + s(€) < 0O, part (a) of the theorem is proved.
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Let 1, be the eigenvalue ofy, whose real part is positive, aryg be a corresponding
eigenvector in a small neighborhood of the origin. We camiolthat

Y]] > eI eRetot-)

Since, Rdy > 0 we can choose > 0 so small that->¢(e) + Relg > 0, and the last

inequality completes the proof. [ |

Example 2.5.2Lett =i + (-1)'x, 0 < « < %, and consider the system

Y1 = ay1 — By,

Y, =pyL+ay,, teT,,
Yi(tairn) = (1 + K)ya(ta),
Yo(tair1) = (1 + K)ya(ta),

(2.23)

whereg is a positive real number and k —1 is a constant. One can easily see

—B

that the matrices A= ¢ and B = commute with each other and
B« 0 k
€ =3+« p= 3. Therefore, we have
Agm (G +Ka+zIn(1+K —-(3 +K)B
(3 +x)8 (3 +K)a+3In(L+K)

which has eigenvalues,, = (3 + K)o + 3In(1 + K) + (3 + x)Bi. Hence, the zero
solution of (2.23) is asymptotically stable (£ + x)ao + 3 In(1 + k) < 0, unstable if

(G +xa+zIn(1+K > 0.

2.6 Periodic Solutions

2.6.1 Description of Periodic Time Scales

Definition 2.6.1 The time scalé€l, is said to have anw-property if there exists a
numberw € R* such that t+ w € T, whenever &€ T..

From this definition, by simply using mathematical induntiave prove the following

lemma.
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Lemma 2.6.2 If T has anw-property then # nw € T, forallt € T¢, n € Z.

Definition 2.6.3 A sequencéga} c R is said to satisfy arf{w, p)-property if there
exist numbers € R* and pe Nsuchthata, =a + wforalli € Z.

Lemma 2.6.4 If tis a right-dense (respectively, left-dense) pointlfwhich has an
w-property, then & nw is also a right-dense (respectively, left-dense) poinfTefor
allneZ.

Proof. We will prove the statement just for = 1, since the remaining part is an

obvious application of mathematical induction. téte a right-dense point. Then

o(t+ w) inf{s>t+w:seT=inf{s>t:seT}+w

o) +tw=t+w,

that is,t + w is a right-dense point. Similarly, one can prove the lemmaefib-dense

points. [ |

Corollary 2.6.5 If T, has anw-property, then there exists p N, such that the
sequences,} and{ty,,} satisfy(w, p)-property.

Corollary 2.6.6 If T, has anw-property, the sequendéy}, is p-periodic, that is,
Skep = Ok forall k e Z.

The next lemma assumes thatis the minimal of these numbepse N in Corollary
2.6.6.

Lemma 2.6.7 If T, has anw-property then the sequen¢s}, s = ¥(t), is (@, Po)-
periodic with

0=w- Z Ok = Y(w).

O<tok<w

Thatis, §.p, = s + @ foralli.
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Proof. Assume that > 0,i = npy+ jforsomene Z,0< j< ppand O<ty < --- <

t2(po—1) < w. Then

Sipe = Y(taiep) = Lpepo) — Z Ok
O<t2k<t2(i+p0)

i+po—1

= tLhi+tw- Z Ok — Z ok = y(ty) + w — Ok
O<to<ty tai <tak<ta(i+pg) k=i
j+po—1 j+po—1 -1
= S+tw-— Z6k+np0:3+w— 6k:3+w—26k
k=] k=] k=
= S+w- Z k=S +w,
O<tok<w

where we have used the fact that

j+po-1 Po-1 j+po-1 -1 j-1
Z(Sk = de+ Zékzzdk‘FZémm
k=i k= k=po k= k=0
po-1 j-1 Po-1
= Z Ok + Z Ok = Z Ok
k=] k=0 k=0
All other cases can be proved similarly. [ |

Corollary 2.6.8 If T, has anw-property, thens(t + w) = ¥(t) + ¥ (w).

Denote the set of all -periodic functions, defined on the sdtc R, by P1(A).

Lemma 2.6.9If ¢ € P,(T.) and T has anw-property, thenp o 4! € P5(R) with
W = Y(w).
Proof. By Corollary 2.6.8s+ @ = y(t + w). Then the equality

¢ (s+ @) = ¢t + w) = $(1) = p(Y(9)
completes the proof. [ |

Similar to the proof of the last lemma the following asserttan easily be proved.

Lemma 2.6.101f ¢ € P3(R), theng oy € P, (Ty).
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2.6.2 The Floquet Theory

Consider
y(@t) =Aly+ f(t), teT,,
Y(tai+1) = Biy(ta) + Ji + y(ta),

whereA, f € P,(T.), sequenceB; andJ; arep-periodic,T. has anw-property, and let

(2.24)

Y(t), Y(0) = I, be the fundamental matrix solution of the correspondingdgeneous

system
t) =Al)y, teT,
Y =AQ)y. teTe 225
Y(tzir1) = Biy(ta) + y(tz)-
Recall that a solutiog(t), y(t°) = yo, of (2.24) is given by
YO = YO+ [ YEOf@dr+ Y Yt
Tc(0t) O<tyi<t
Now, for this solution to bev-periodic, we neeg(w) = y(0) = yo, that is,
[I = Y()yo=b (2.26)
where
b= Y(w, ) f(r)dr + Z Y(w, tisn) . (2.27)

Tc(0.w) O<toi<w

Definition 2.6.11 The eigenvalueg;, of the matrix of monodromy, (%), are called

Floquet multipliers (or simply multipliers) of system (2)2

The following Theorems 16, 17, 18 can be proved as similagréess for ordinary

differential equations.

Theorem 2.6.121f p is a multiplier then there exists a nontrivial solution(t)y of
(2.25) such that + w) = py(t). Conversely, if there exists a nontrivial solutiofft)y
of (2.25) such thaty + w) = py(t) thenp is a multiplier.

Theorem 2.6.13System (2.25) has akperiodic solution if and only if there exists

a multiplier, p, such thaip* = 1.
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Now, if we havep # 1 for all multipliers, then the system in (2.26) has a unique

solution: this may be stated as a theorem.

Theorem 2.6.141f unity is not one of the multipliers, then (2.24) has a umiqu
periodic solution, {t), such that Y0) = yo = [I - Y(w)]*b.

Now, we can write the matricianY,(t), in the Floquet form
Y(t) = o(t)e™®
whered(t) = Y(t)e™™®, P = 2InY(w), & = ¢(w). Then
Dt+w) = Y(t+w)e ) = Y)Y (w)e Ve
Y(t)e ™0 = (1)

and hence(t) is w-periodic. From the definition ob(t) we see that it is continu-
ously diferentiable, bounded (because of its periodicity), and rssimgular for all
t € T.. One can easily verify that the transformatipr- ®(t)u, transforms system

(2.25) into a system with constant d¢beients

u=Pu teT,

2.28
u(tzis1) = u(tz), (2.26)

where we have used

lim y(t) = y(ta).

[t oY

Definition 2.6.15 The eigenvaluesi;, of the matrix, P= %In Y(w), are called the

Floquet exponents (or simply exponents).

Similar to ODE, and applying the Floquet theory for IDE, [86he can prove that
the following theorems are valid.

Theorem 2.6.16Let{1;} be the exponents. Then the solutions of (2.25) are

(a) asymptotically stable if and onlyie(;) < O for all j;
(b) stable ifRe(t;) < Ofor all jand 4; is simple wherRel; = 0;
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(c) unstable if there exists an exponansuch thatRe(t;) > 0.

Theorem 2.6.17 Let{p;} be the multipliers. Then the solutions of (2.25) are

(a) asymptotically stable if and only if all multipliers lisside the unit circle;
(b) stable ifip;| < 1 for all jand p; is simple wherp;| = 1;

(c) unstable if there exists a multipligs which lies outside the unit circle.

Example 2.6.18Let§ = ir + (—1)‘1;r and consider the system

y; = -Y2 + fa(t),

Y, =y1+ fo(t), teT,,
Yi(tair1) = (1 + K)ya(ta),
Ya(tair1) = (1 + K)ya(ta),

(2.29)

where f(t) = €21, fo(t) = sint — ty_1) for ty_; <t <ty and ke R is a constant. It
is easy to see that this systen®isperiodic and the matriciant of the corresponding

homogeneous system is

cost—7) —sint—1)
Y1) = _
sint—7) cost-1)
and hence the matrix of monodromy is
1+k O
Y@r) = Yer 50 + By 0= | .
4 4 0 1+k

Therefore, the multipliers arg;», = 1 + k. Now, if k# O then, by Theorem (2.6.14),
the system in (2.29) has a unige-periodic solution and, by Theorem (2.6.17), this
periodic solution is asymptotically stable fe2 < k < 0O, unstable for k< -2 or

k > 0, stable for k= -2.

2.6.3 The Massera Theorem

Let us consider the following analogue of the famous Mastberarem [68].
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Theorem 2.6.191f system (2.24) has a bounded solutié(tyon the seft € T : t >
0} then there exists a periodic solution of system (2.24).

Proof. Assume on the contrary that there exists no periodic salutiety*(t), y*(0) =
Yo, be a bounded solution of (2.24), then
VO =Yy + |

Te(0

YOY ' @f@dr+ ) YOY (ta1)d
)

O<tyi<t
andy*(w) = Y(w)yo + b wherebis as in (2.27). Nowx*(s) = y*(¢1(9)) is a solution
of

X = AW H9)x+f™(9), s#s

(2.30)
AXlsg = BiX+ J.

Sincex*(s+®) = Y (y1(s+®)), ® = Y(w), is also a solution of (2.30), it implies that

y‘(t + w) is also a solution of (2.24).

Thus, we have

y(t+ w)

Y(t+ w)yo + f Y(t + )Y () f(r)dr

Te(Ot+w)

+ Z Y(t+ w)Y H(tar)J

O<tyi<t+w

= YOy @+ [ YOO Y YOY a3

Te(0 O<tgi<t

and
V'(2w) = Y()Y (@) + b = Y2(w)yo + Y(w)b + b.
Continuing in this way, by mathematical induction, we se¢ tha
n-1
Y (nw) = Y'(@)yo + ) Y<()b.
k=0

If there is now-periodic solution, then the system+ Y(w)]yo = b has no solution.
However, this means that there is a solutionef the systemI[— Y(w)]"y = 0 such
that(b, c) # 0. Thus,

n-1
W (), ©) = (Y"(@)yo + ) Y(w)b, €) =
k=
n-1 i n-1
Yo, [Y'(@)]T0) + > (b, [YK(@)]T0) = (Y6, ©) + > (b,C) = (o, C) + (b, )
k=0 k=0
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which becomes unbounded as-» . On the other hand, singé(t) is bounded, we

have
Ky (nw), ©)| < |y*(nw)llcl < Mic|

which contradicts with the previous equality. Hence, th@opis completed. [ |

Corollary 2.6.20 If system (2.24) does not have arperiodic solution, then all so-
lutions of system (2.24) are unbounded on Hoth T, : t > O} and{t € T : t < O}.

2.7 Deduction

In this chapter, the connection between a specific type fééréintial equations on
time scales (DETC) and the impulsivefférential equations is established. Some
benefits of this established connection include knowledgriaproperties of linear
DETC, the investigation of existence of periodic and almesiqalic solutions and
their stability. We suppose that the problems of stabibsgillations, smoothness of
solutions, integral manifolds, theory of functionaffdrential equations can be inves-
tigated applying our results. Another interesting oppaitiuis to analyze equations

with more sophisticated time scales.
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CHAPTER 3

DIFFERENTIAL EQUATIONS ON VARIABLE TIME SCALES

In this chapter, we introduce a class oftdrential equations owariabletime scales
with a transition condition between two consecutive paftthe scale. Conditions
for existence and uniqueness of solutions are obtainediod?gty, boundedness,
stability of solutions are considered. The method of ingasion is by means of two
successive reductionB-equivalence of the system [4, 6, 11] on a variable time scale
to a system on a time scale, a reduction to an impulsifferéintial equation [6, 19].

Appropriate examples are constructed to illustrate therthe

3.1 Introduction

In the last several decades, the theory of dynamic equatinrisne scales (DETS)
has been developed very intensively. For a full descripbibiine equations we refer
to the nicely written books [29, 64] and papers [65, 88]. Thaeations have a very
special transition condition for adjoint elements of tingales. To enlarge the field of
applications of the DETS, and to have more theoretical dppdres we, in [19], pro-
posed to generalize the transition operator, correspghdia investigatedifferential

eqguations on time scales with the transition condiipTC).

In our recent investigations [6], it was found that the idédhe equations can be
extended, if one: 1) involves in the discussion of certailonf separated sets in
the ¢, X) space such that intersection of each bkneconstant with the union is a time
scale in the sense of Hilger (we call these separated setgetter as the variable

time scale); 2) introduces theffirential equations, the domain of which are variable
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time scales. We call the systems affatiential equations on variable time scales with
transition condition (DETCV). The present chapter is deddtethe development of
methods to study these systems, and some theoreticalraseilbbtained. To give an
outline of the way of the study, we can shortly say that twoseguent reductions are
in the base: (a) reduction of DETCV to DETC, usigquivalence method [4, 6, 11];
(b) the method ofy-substitution [8, 19] to reduce DETC to impulsiveffdrential

equations.

This chapter is organized as follows. The next section héaldd description of
variable time scales with examples. Section 3.3 descrheesliferential equations
on variable time scales. The existence and uniquenessutis andB-equivalence
and B-stability are considered in Sections 3.4 and 3.5. The gsgun of the reduc-
tion process is given in Section 3.6. In the last two sectia@sapply the procedure

to investigate periodic solutions and stability of an eipuilim position.

3.2 Description of a Variable Time Scale

In this section, we give, first, a general definition of a Vialéatime scale, and next,

we describe a specific variable time scale, which will be ueadtroduce DETCV.

Definition 3.2.1 A nonempty closed s&\{(x) in R x R" is said to be a variable time
scale if for any ¥ € R" the projection ofl'(xg) on time axis, that is the s¢t € R :
(t, o) € T(Xo)}, is a time scale in Hilger’'s sense.

To illustrate this definition let us consider the followingaenple.

Example 3.2.2 Let {r;};2, be an increasing sequence of positive real numbers such

thatr, — oo asi— oo, and
Di={tX) eRxR: 15 <t?+x*<r3}.

Then, we define the variable time scal€l{g) = (i, D; (See Figure 3.1).

For a fixed ¥ € R, there exists a smallest k such that ¥ |Xo|. Thus, we have

(o]

T(x0) = (it x0) 1 te 5, < +x5 <r3).
i=k
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Figure 3.1: An example of a variable time scale

The projection ofl'(x) on time axis is

o= (|- =%~y 8 vy % V1 %)),

i=k

which is a time scale in Hilger’'s sense.

The following variable time scale may be considered as amakample. However,
it is an essential element in the definition offdrential equations with transition
conditions on a variable time scale, discussed in this enapix a sequenci} c R
such that; < tj,; for all i € Z, andt; —» +co0 asi — +oo. Denotes; = tyi 1 — toi, k5 =

ty — tyi_1 and take a sequence of continuous functignsR" — R. Assume that:

(C4) for some positive numbers, 6 € R, we haved’ < tj,; —ti < Oforalli e Z,
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(C5) there existsy, 0 < 26y < ¢, such that|r;(X)|| < £, for all x e R",i € Z.

Denote
li = Inﬂ'{ {t + Ti(X)}, r = SUHti + Ti(X)}. (31)
XeRN XERN

From (C4) and (C5) it follows that there exist positive numiggende, such that
(C4) 6 <lija—ri <6,

We set

E={t,X) e RxR": ty + 15(X) <t < tyisq + 12i41(X)},
Si= {(t, X) eRxXR":t=t+ Ti(X)}, (32)
Di = {(t, X) eRxR": toi_1 + T2i_1(X) <t<ty+ Tzi(X)}.

Due to (C4), none ofD; is empty and we introduce the set

To(®) := | ] D. (3.3)

i=—c0
In the previous chapter, we considered a special time stale [J;®_[ti-1, ti];
however, now, we have the s&(x). It seems reasonable to call the latterths
variable time scalgand in our study we are going to use, for sets of t¥pehe term

non-variable time scale® emphasize the flerence.

For the convenience of the reader let us consider the fatigwkample.

Example 3.2.3Let § = 7i,7i(X) = ”)flil’;ﬂ'l’i‘l'fl where||X| = /X% +---+ X2 is the Eu-

clidean norm of ¥= (X, -+ , X,) € R". Then, we have
. 1 . 1
li = mi — , I=m+
V@ + il + 17 + 46 V@ + il + 17 + 467

where the number;c> 0 is the smallest real number which satisfies the equation
tan) = (¢? + il + 1)/(2c;). Thus, forg, = 5 andé, = &, we see that (C4) is satisfied
and

D ={t,X) e RxR": tyiq + 151(X) <t <ty + 12(X)}.

Then, the variable time scale could be established as ir).(3.3
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3.3 Differential Equations on Variable Time Scales

In what follows, we introduce a special operator which plapsimportant role in
describing the dferential equations on variable time scales as well as mstfad
investigation of these equations through the reductiomfauisive diterential equa-

tions.

Let us consider a transition operal@r: S, — Sii,1, foralli € Z, such thatli(t,y) =
(ITH(t, y), TT2(t, y)) wherelIl! : Sy — R andIl? : Sp — R", and
(L Y) = tiva + T2a(TIF(LY))  and TIE(LY) = li(y) +, (3.4)

wherel; : R"” — R" is a function. One can easily see thg{t, y) is the time coordi-
nate of ¢*,y") := IIi(t,y), the image of (,y) € S5 under the operatd;, andII?(t, y)

is the space coordinate of the image.

The diferential equation which we are going to deal with is:
y =F(y), (ty)eToy),
t=Ity). y =T7ty). (Ly)e€ S

where the derivative at the boundary points of the variabie scale in (3.5) is one-

(3.5)

sided derivative an& : To(y) — R" is assumed to be continuous on its domain.

We call (3.5)a differential equation on a variable time scale with transitiomddion
and abbreviate it as DETCV.

To describe the solutions offtierential equations with transition conditions on a vari-
able time scale carefully, we begin the definition wilile graphof a solution of (3.5).
Accordingly, we start with the following construction. Cahesr a piece-wise curvé
such that:

1. CliesinTy(y);

2. the part oC in each®;,i € Z, is a continuous arc;

3. if C has points inD; andDj., for some fixedj € Z, thenC intersects each of

the surfacesS,; andS,;., exactly once;

4. C intersects each hyperplahe 6,6 € R, at most at one point.
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The curve can be viewed as the graph of a piece-wise fungtierp(t). Lett = «;
andt = B; be the moments that the graphyof ¢(t) intersects the surface;_; and
S,i, respectively, where the surfaces are defined previouslynKC4) and (C5) or
(C4) itis easily seen that; < g; for all i € Z. Then, we set the non-variable time

scale

T¢ := O[ai’ﬁi],

i=—0c0
which is the domain op, and define the-derivative as given in the previous chapter.

That is, fort = 3, we have

Arpy _ Plaiva) — @(Bi)
v B = aia-Bi
and
Ay _ i £0S) — (1)
P = lm S

for any othert € Tg, whenever the limit exists.

Thus, to define a DETCV, we need:

1. the variable time scalBy(y) = Ui>_., Di;

2. the system of diierential equations

dy _

3. the transition operatdl; : Sy — Syiy1,i € Z.

SettingAt :=t* — t andAy := y* —y, we can rewrite (3.5) as

y =F(ty), (ty)e Toy),
Allyes, = IH(LY) - t, (3.7)
Mlyes, = TEEY) - Y.

The class of equations is important as it can be reduced fnendiscontinuous dy-
namics [6]. Particularly, they are needed to develop theecenanifold theory of
these equations, and, consequently, the Hopf bifurcatiearyy which will be cov-

ered in the next chapter.

39



Let us show how to construct a solution of (3.5), or equiviyeor (3.7). Denote by
#(t, k,n) a solution of the initial value problew(x) = n for system

dy
P F(t,y), (3.8)

andy = y(t,t° y,) a solution of the initial value problem(t®) = vy, for the sys-
tem (3.5). Assume that%( y,) is an interior point ofD, for somek € Z. We con-
struct the solution for increasing The process of definition of(t) goes as fol-
lows: starting from 1€, yo), the solution is equal tg(t) = ¢(t,t° yo) up to a point
Bk, Y(Bx)), wherepy is the first from the left solution of the equatiBn= ty+1x(Y(B)),
that is the first meeting point of the solutiett, t°, yo) with the surfaceSy, and
Vi := Y(B) = #(B. 1% Vo). Then, applying the transition operatbli, we obtain
B Yy = (Hﬁ(ﬁk, Yio), T2 (Bx, yk)). Denoteay,1 = IT(Bk Yk). After ay,1, there is no
meeting of the solution witlS,.;. (A sufficient condition which ensures this fact
will be given later.) The solution is not defined on the timeemal By, ax,1). Next,

on Dy,1 the solution is equal tg(t) = ¢(t, ax.1,Y;) and so on (See Figure 3.2).

The way of investigation of DETCV has not been consideredepatept for the short
episode in [6]. So, in what follows, we consider a quasilirgetem as it is conve-
nient to develop the methods of reductions proposed in [612]L That is, we shall
assumd-=(t,y) andl(y) in a special formF(t,y) = A{t)y + f(t,y), li(y) = By + Ji(y)
whereA(t) : R — R™" is ann x n continuous real valued matrix-functioB; is an
n x n matrix, functionsf(t,y) : To(y) — R" and Ji(y) : R" — R" are continuous.

Thus, the system which we will consider is:
y = A(t)y+ f(t’ y)’ (t’ y) € To(y),

Mlyes, = T Y) - t, (3.9)
Mliyess = THEY) -V,

wherelT!(t, y) = toi1 + T2.1(IT2(L, y)) andTI2(t, y) = By + Ji(y) +V.

Example 3.3.1 The following planar system was consideredigh

dx
— = Ax+ f(xX), x¢T,
dt 9 # (3.10)

AXyer = B(X)X,
wherel = ", ¢ is a set of curves starting at the origin and which are definethey
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k+1

A

S Szk+1

2k

Figure 3.2: A solution of a dlierential equation on a variable time scale.

equationsa, x) + 7i(x) = 0,i = 1, p,

cosf + v(X) —sin@ + (X)) ] - [ 10 ]

=(k+«
B9 = (+400)Q sin@@ +v(x)  cosf + v(x)) ot

where the functions, k, v are smooth, {x) = o(||x|), k(xX) = o(||x]]), v(X) = o(||XI]),
7i(X) = o(lIX[), i = 1, p and Q is some nonsingular matrix. By using polar coordi-

nates, the system is written in the form:

r
% =Ar + P(r,¢), (r,¢) ¢ T,
¢+ |(ra¢)€|i: ¢ + 6 + Y(r’ ¢)’ (311)
re |(I’,¢)€|i: (1 + kl)r + C()(r, ¢)’
wherel is presented a§ : ¢ = yi + ryi(r, ¢), i = 1, p.

Denote by’ the image of; under the transition operatoll;(¢, r) whereIl(¢,r) =
¢+ 6 +y(r, ¢), andIT?(p,r) = (1 + k)r + w(r, ¢), LetD; be the set bounded yand
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ti+1. In [6], it is shown that this set is non-empty afids betweerf; and ¢, if the
equation is considered in a small neighborhood of the origin

DenotingT(r) = U2, D;, we have that one deals with the following DETCV:
dr

G - AT HPe. (@ eT0), (3.12)

¢t =TI, 1), " =T2(g,r), (¢.1) €.

Equations of the form (3.10) could bé&ectively applied as a model for the various
mechanical processes with impacts [31, 54, 56, 74, 94]. iShelty, the last example

could be considered as a goaubtivation to investigate DETCV.

We are going to develop the theory starting with the preseapter and discuss such
problems as center manifold theorem, multidimensionalfiddprcation, in the next
chapter. We intend to investigate the problems using ourcgah to discontinuous

dynamical systems [6].

Summarizing all the materials discussed above, we coulthsaéyhere is a demand to
develop the Hilger’s dierential equation on non-variable time scales to tiedn-
tial equations on variable time scales of general type, astecplar case of DETCV.

For this reason, let us specify the transition operator engdrevious part, assuming
I (Bk. Y(BK)) = F(Br. Y(B)) (a1 — Bi) + Y(Bx), then (3.9) has a specified form

Y =F(ty), (ty)e Toy). (3.13)

The last system could be consideredhasdjferential equation on variable time scale
(DEVTS). We suppose that the theory of DEVTS should be dpesias well as the
theory of DETS has been [29]. One can expect that many irieggsroblems con-
nected with topology of the variable time scale may appeamesof these problems

are going to be discussed in this chapter.

3.4 Existence and Unigueness of Solutions

Among the properties of aflierential equation, the problem of existence and unique-
ness of solutions has great importance. In this sectione/g@ng to investigate the

problem for (3.9) for increasing
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Remark 3.4.1 The continuation of the solution to the left can not be cogrgd yet,

since the invertibility of the transition operat®k; is not assumed.

Consider the following ordinary fferential equation

dy

ot Ay + f(t,y), (3.14)

where the matriXA(t) and the functiorf (t, y) are the same as in (3.9). We will assume
that the following Lipschitz condition holds uniformly vitespect td € R andi € Z,

for arbitraryx,y € R" :

(C6) 1ITi(¥) — i + 13 (X) = W + 11Tt x) = T W)l < £lIx = VI.
Moreover, we assume that

(C7) sup T, O)ll + sup., 1Ji(0) = M < co;
(C8) sup IIAM)I + sup; IIBill = N < oo;

(C9) M¢ < 1, whereM = sup, ycr,) IADY + F(t.Y)Il-
Then, we have the following theorem.
Theorem 3.4.2 Assume thafC4) — (C9) hold and the function f is continuous. Then

for any (t°, y) € To(y) the system

y =A@y + ft.y)., (ty) e To(y),
t+ = H|l(ta y)’ y+ = H|2(t’ y)a (tv y) € SZi’

with the initial condition yt°) = y,, has a unique solution,(it°, yo), which can be

(3.15)

continued to the right of’t to co.

Proof. For the following discussion, it is important that #,f/,) € To(y), then there
exists an index € Z such that{,y,) € O;, i € Z. And hence, because of (C6) and

(C8), there exists a unique solution of the ordinarfyedtential equation,

y =A@y + f(t.y),

(3.16)
y(y) = Yys
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which is continuable t&5;, the right boundary surface @, [35, 49].

Assume thattf, yo) € Dy for somek € Z. On Dy, we will consider (3.16) foy = t°,
Y, = Yo, Which has the unique solutigr(t) = 4(t, t°, yo) defined throughouby. Let 5«
be the first from left solution g8 = tx + 72«(Y(B)). Then, by means of jump operators

we obtainai.1 := ITE(Bk, Y(BK)) andy; := II2(Bk. Y(Bx))-

Next, onDy, 1, we consider the ordinary fierential equation (3.16) with the initial
conditiony(ax.1) = Yg, Which has the unique solutia#tt, a.1, y;). Thus, the solution

is not defined on the time intervady, ay,1).

Assume that the solution intersects the surf&gg. at any other point, say;,,,

which is going to be a solution of the equation

" = to1 + T (o(a”, aets YI))-

Clearly, we haver,, , > ax,1 and (C6) implies that

(@1 — @)1 =€ sup [JAD( s Vi) + (6 ¢ awen, YO < 0

te[ak+l’a;+1]

which yields a contradiction sindd¢ < 1. Therefore, the solution does not have any
other meeting point with the surfacex,;. Hence, onDy,,, the unique solution is

obtained a®(t, ax.1, Yi)- In this way, we can continue this solutionda [ |

3.5 B-Equivalence,B-Stability

A difficulty in investigating the system (3.9) is that the discauity moments of dis-
tinct solutions are not, in general, the same. To investitfa asymptotic properties

of solutions of (3.9), we introduce the following concepts.

In what follows, we are going to adopt, for DETCV, the techmgwfB- topology
andB-equivalence which were introduced and developed in [644157, 89, 93] for

equations with impulses at variable moments of time.

Let u(t) = y(t,t° yo) be a solution of (3.9) ant be a sificiently small positive real
number such that the open neighborhaBt°, y,), h), centered attf, y,) with radius

h belongs taDy for somek € Z. Let 8 be the moment when the solutiot) meets
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the surfaceS,, andet, ; = ITH(BY, y(B")), for i =k, k+ 1,--- . We set the non-variable
time scale

Ty =470 (e8]
i=k+1
Let v(t) = y(t, t*, y1) be another solution of (3.9) with*(y1) € B((t°, yo), h) and lets!
be the moment when the solutiot) meets the surfacsy, anda,, = TIX(AY, y(8)),

i+1

fori =k k+1,--- . We, similarly, define the non-variable time scale

T, = [t580 U | [e}.8].

i=k+1

Define the distance between two non-variable time scalgsndT};, by

t

d(T}, T},) = max{ suplal' — o], S.UkaBiu —,3;’|} ,

i>k+1
We say that two solutions andv are in ane-neighborhood of each other iy, and
T}, if:
() d(T4.T%) <€
(i) u(t) —v(t)l < eforallt e Ty N 'TY.
The topology defined by-neighborhoods of rd-continuous solutions will be called

B-topology. It is easily seen that it is a Hausfidopology. Topologies and metrics
for spaces of discontinuous functions were introduced &veldped in [6, 11, 57].

For anye, 8 € R we define the oriented intervt, 5] as

~ [a’ﬁ]’ If a< ﬁ
[a.B] = . (3.17)
[B,a], otherwise
Consider the non-variable time scale
TS = U [l2i-1, ra], (3.18)

i=—o0
wherel;, ri,i € Z, are as defined by (3.1) for the variable time sc&léy), and take
a continuationf : T? x R" — R" of f : To(y) — R" which is Lipschitzian with the

same Lipschitz constadit
SetT. := Uis_.[tai-1, ta]. We start with proving the following lemma.
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Lemma 3.5.1 There are mappings M¥) : R" — R",i € Z, such that, corresponding
to each solution {t) of (3.9), there is a solution(®) of the system

Z =Alt)z+ f(t,2), t#ty,

Z(ti+1) = Biz(ta) + Wi(z(ta)) + z(tz),

(3.19)

such that ¢t) = z(t) for all t € T, except possibly oftz_1, @i] and [Bi. tz]] wheree,
andg; are the moments tha{ty meets the surfaceS,_; andS,;, respectively.

The functions \\satisfy the inequality
IWi(2) — W1l < k(O)¢lIz - yll, (3.20)

uniformly with respect to € Z, for all z,y € R" such that|z| < h and]ly|| < h; here
k(¢) = k(¢, h) is a bounded function.

Remark 3.5.2 We say that systems (3.9) and (3.19) are B-equivalent.

Proof. Fix i € Z. Let z(t) be the solution of (3.9) such that,) = z and assume that
a; andg; are solutions ofr = ty_; + 15_1(z(@)), andpB = ty + 15(2(B)), respectively.
Let z,(t) be the solution of the system

dz ~
i Az + f(t,2 (3.21)

with the initial conditionz; (aj,1) = H?(Bi, z(B)).

We first note thaty (eir1) = (I + B)z(B;) + Ji(z(3)). Moreover, fort € [ty, B,

20 = 2ta) + [ [A929 + (s 29)]ds (3.22)

toi

and fort [a/i+1:t2i+1],

z(t)

z1(aiy1) + f [A(S)Zl(s) + fN(S, 21(5))] ds

Qi+l

1+ B)2s) + 3@ + [ [A92( + Fs ()] ds

Qj+1

Bi -
0+ 8 {at)+ [ [A99 + s 2] ds}

2i
t

L3N+ [ (A9 + T a(9)]ds (3.23)

Qi+l
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Thus, we set
W@ =(+8) [ [A9Y+ (s 29| ds+ I(a(p)

+f2i+1 [A(s)zl(s)+ f(s, 21(5))]d5 (3.24)

@i+1

Substituting (3.24) in (3.19), we see that(2) satisfies the first conclusion of the
lemma. Figure 3.3 illustrates the procedure of the constmiof W (2).

X

A
Bis1

%i \SZi+1

Figure 3.3: The construction &Y.

We next prove (3.20). Léfz(tx)|| < h. By employing integrals (3.22) and (3.23), we
find that the solutiong(t) andz(t) determined above satisfy the inequalitilg&)|| <

H and|iz(t)l < H on[B;,ta] and[ai 1, ta ], where
H=[M@+0)+(1+N+o(h+ MO eV,

Let y(t) be the solution of (3.9) such thgft;) = y, and assume that; éndﬁi are
solutions ofa = ty_1 + T2i1(Y(@)), andB = ty + 72(Y(B)), respectively. Let(t)
be the solution of (3.21) with the initial condition(ai,1) = I12(8;, y(8:)). Without
loss of any generality, we assume tﬁatz Bi andai,1 < ai,1. Application of the

Gronwall-Bellman lemma shows that, foe [B; :t2i],
l1z(t) - y)Il < MYz -y, (3.25)
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The equation,

Y(B) = Y(Bi) + f " |A(9)Y(s) + (s ¥(s))|ds

Bi
gives us

IVB) = YBI < (NH + ¢H + M)(Bi - ).

Thus, we obtain

12(8:) — y(Bi)ll < €N ||z~ yIl + (NH + £H + M)(B; — ).

Now, condition (C6) together with (3.28) leads to

IE—IB- g L£eN+0C
PP ¢(NH + ¢H + M)

lz=yll.

Hence (3.28) becomes

N+0)¢

T fNH+ H+ M)~

12(81) - y@B)Il < il

On the other hand,
Qj+1

aji+1

Yi(arnd) = Ya@er) + [
gives us

lIya(@iv1) = Ya(@ir)ll < (NH + H + M)(@iy1 — @isa).
Using the transition operators and (3.30) we get,

| ] (14N + e
lza(@ir1) — Ya(@isa)ll < 1-¢(NH + ¢H + M)

Condition (C6) and (3.33) imply that

€1+ N+ £)eN+0!
—¢(NH + ¢H + M)

From (3.32), (3.33) and (3.34) we obtain

llz=yll.

llz=yll.

Qi+l — Qi1 < 1

1z (is1) = Ya(@isa)ll < HieN )z -y

[AS)ya(s) + f(s ya(9))| ds

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)

whereH; = (L+ N+ 0)[1+ ¢(NH + ¢H + M)]/[1 - ¢(NH + ¢H + M)]. Solutionsz (t)

andy;,(t) on [a/i+1:t2i+1] satisfy the inequality
ze(t) — ya (Il < Hi M0z -y,
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Now, subtracting the expression

W) = (1 +B) [ [A9¥(9 + (s ()] ds+ (6

{2041 N
¢ [ A9 + flsy(o] ds (3.37)
from equation (3.24), and using equations (3.25), (3.2284) and (3.36), we con-
clude that equation (3.20) holds. This proves the lemma. [ |

Definition 3.5.3 A solution ¥t) is said to be B-stable, if for arbitrary > 0, there is
§ > 0 such that a solutior(t) for which||(t°) — y(t%)|| < ¢ is in thee-neighborhood
of y(t) on T}, and T,

Definition 3.5.4 A B-stable solution ) is called B-asymptotically stable, if there is
6 > 0 such that for arbitrarye > 0, there isf > t° such that a solutior(t) for which
le(t°) — y(t°)Il < 6 is in thee-neighborhood of t) on T and T?.

3.6 Reduction to an Impulsive Diferential Equation

Previously we have shown that afférential equation on a variable time scale is
B-equivalent to a correspondingfidirential equation on a non-variable time scale.
Now, we are going to reduce (3.19), whichBsequivalent to (3.9), into a system of

impulsive diferential equations.

Now, using the substitution of the independent variablat(i, they-substitution) in
(3.19) and letting«(s) = z(y(s)), we obtain, fort # t,;,

X = AW (9)x+ f(9). x(9)),

and, fort = t,;, we get

Z(tyi41)
(I + Bi)z(tz) + Wi(z(t2))
(I + B)x(s) + Wi(X(s)).

X(s")

Thus, the second equation in (3.19) leads to,
AX |s-s= BiX(s) + Wi(X(s)),
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whereAX |ss= X(S") — X(s). Hence,x(s) is a solution of the impulsive fferential

equation:

X = A (9)x+ (9, x(9), s#s,

(3.38)
AX 5= BiX(s) + Wi(X(s)).

It is known that, a solution of (3.38) satisfyings®) = xo, for s> 0 is given by

X9 = X(s )+ f X(s.8) f(0 (). x(©)de

<
+ D X(s SHW(S)), (3.39)

P<s<s

whereX(s, &) = X(s)X71(s”) andX(s) is defined by

l, s=0,

X(s) = 1
=) x(s )0 + By [ [1X(50 5001 + B X(50), 550,

k=p

in which X(s,r) = X(9)X7(r) is a transition matrix ofx = A(y~1(s))x and it is
assumedthat@ & < --- < S, < S< Sp1.

Now, using back substitution, we see that a solui(h, y(t°) = vy, of (3.19), for
t > 1%, is given by,

YO = YO+ f

T(tO,t

+ Z Y(t, toi 1) Wi(tzisa), (3.40)

t0<tyi<t

Y(t, 7)f(z, y(r))dr
)

whereY(t,t%) = Y(t)Y1(t°) andY(t), for 0 < t® < - -+ < topi1 < t < tops2, is defined
by

l, t=0,
Y(t) = !
Y(t, tpe1)(1 + Bp) | | [Y (o tac )1 + Bac )] Y(1,0), t>0,

k=p

in which Y(t,7) = Y(t)¥'(r) is a transition matrix of/ = A(t)y. The notation
f??(ab) f(r)dr was introduced in the previous chapter, [19].

Thus, instead of investigating system (3.9), we are goingeia with (3.19) which

turns out to an IDE, as in (3.38), aftgrsubstitution.
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On the bases of the discussion in Sections 3.5 and 3.6, onecomjude that the
method of investigation of DETCV may be realized as conseeugductions: a)
using aB-equivalence method to get a DETC; and b) applyingu#ksubstitution to
DETC to obtain an IDE. We finalize the reductions with the liptetation of results
for the issue DETCV. Figure 3.4 illustrates the method.

DETCV

Interpretation Reduction

IDE < DETC

Reduction
(Y-Substitution)

Figure 3.4: The investigation method of DETCV

3.7 Periodic Systems

The variable time scal&@y(y) is said to satisfy and, p)-property if ¢ + w,y) is in
To(y) whenevert,y) is. In this case, one can easily see that, there egistiN such
that the sequencety;_1} and{ty} satisfy the @, p)-property, [19], ancti,p(y) = 7i(y)
foralli e Z.

Suppose now that (3.9) is-periodic, i.e.Ty(y) satisfies thed, p)-property,A(t) and
f(t,y) are w-periodic functions ot, and B;., = B;, Ji.p(y) = Ji(y) uniformly with
respect ta € 7Z.

Since (3.9) satisfies the conditions for the uniqueness ofuign, and is periodic it
can be shown that the following result holds.
Lemma 3.7.11f (3.9) is periodic, then the sequence(¥Yis p-periodic uniformly

with respect to # R".
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Hence (3.19) is also periodic.
Lemma 3.7.2 [19] If Ty(y) satisfies arfw, p)-property, theny(t + w) = ¥(t) + ¥ (w).

Consider theyv-periodic system
dz

gt = Az+ 1O, t# (3.41)

Ztpi1) = Biz(tz) + Wi + (1),
and letZ(t) be the fundamental matrix of the corresponding homogensgstem,
dz

=AMtz t#ty,

Ztrir1) = Biz(ty) + ().

Usingy-substitution, systems (3.41) and (3.42) reduce to
du

du _ 1 -1 .
gz = AU+ (), s#s, (3.43)

AU [s-s= Blu+ W,

and

du 1 _
P Ay (9)u, s+ S, (3.44)

respectively, where(s) = z(y1(9)).

According to [14], there is a piece-wise continuous Floguetpunov transformation
u = ®(s)v reducing (3.43) to a system with a constant matrix. Therthesefore, a
constant nonsingular matri® such that the transformation, = ®(s)Sw reduces
(3.43) to

d—W =AW+g(s), S#S
ds a9 ’ (3.45)
Aw |s=s: li,

whereA = diag(A,, A_) is a constant matrix with Rg(A,) >0forj=1,2---,m,

and Relj(A-) <Oforj=mm+1,---,n,

da(s)

A =S () |AWTH(9) - s

9(s) = ST HYF (Y H(9),
I, = S to (s )W.

O 1(9)| d(9)S,
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It is natural to calll; = 1j(A) the characteristic indices apgl = e'i the characteristic
multipliers of (3.45), respectively [19, 85]. Similarly,ercall the numbers; andp;

the characteristic indices and characteristic multipl@r(3.42).

Lemma 3.7.3 If the real parts of the characteristic indices of (3.42) dat ranish,
then (3.41) has a unique-periodic solution, which will be B-asymptotically stable

when all characteristic indices of (3.42) have negative rais.

Proof. Let

a9 = diaglexp(A,s),0), for s<0O,
diag(0, —exp(A_9g)), for s>0,

and leta = 1rn,in IRet;(A)l + e wheree is an arbitrary positive number. In this case, it
<j<n

is known that there exists a number= K(e) > 1, such that
IG(s—r1)|| < Kexplals—r]), sreR.

By using this inequality, it was shown in [11] that

Wo(S) = f G(s—r)g(r)dr + Z G(s-s)l
is anw-periodic solution of (3.45), for which

() < 2Km(a) max{maxig(s)l maxil}.

1 exp@o)
M) = &+ T expCad)

Hence uy(s) = ®(s)Swy(s) is a periodic solution of (3.43) and, fare R, we have

Iuo($) < 2Kmum() max{max| f(w~ (), maxill}

wherem, = max ||®(s)S||. Therefore zy(t) = ug(y(t)) is a periodic solution of (3.41)

which satisfies the inequality,

zo(t)ll < 2Kmym(a) maX{rgggxllf(t)ll, miaxlllill},
fort € T.. This proves the lemma. [ |
Now, letC = 2Kmym(a) and fixy > 1. Let k(¢) = Kk(¢, h) be the function defined in
Lemma 3.5.1, foh = yCM. By applying Lemmas 3.7.1 and 3.7.3 and the successive-

approximation method, exactly as it was done in [11], we cave the following

lemma.
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Lemma 3.7.4 Suppose thaf(t, 2), W,(2) and 7i(2) in (3.19) satisfy conditions (C6),
(C7) and (3.20). If all characteristic indices of system @3.have non-vanishing real
parts, then, whediC max1, k(¢)} < (y — 1)/y, system (3.19) has a uniqueperiodic
solution 2(t) such that|z(t)l| < h forte T..

The solutionzy(t) is B-asymptotically stable, if the real parts of all charactciin-

dices of system (3.42) are negative.

On the bases dB-equivalence, Lemmas 3.5.1, 3.7.4 and continuous depeads#n
solution on initial data for ordinary tferential equation, one can prove the following

theorem.

Theorem 3.7.5 Suppose that system (3.9) satisfies conditions (C4)-(C8) sand i
periodic. If the characteristic indices of system (3.42yédaon-vanishing real parts,
then for a syficiently small lipschitz constart system (3.9) has a uniqueperiodic

solution, which is B-asymptotically stable when all charastec indices of system

(3.42) have negative real parts.

Example 3.7.6 Let us consider the variable time scdlg(y) constructed by;t= i,

7i(y) = (=1)'¢sinfy), where ye R, 0 < £ < % and consider the 2-periodic system

y =ky+cos@t), (t.y) € To(y),
yr=(p+1ly+I, (3.46)
tt =2 + 1-¢sinfy),

with k p,I € R, I > 0. The system which is B-equivalent to (3.46) is

Z = kz+ cos@t), t+ 2i,

(3.47)
Z(2i +1) = (p+ 1)z(2)) + W(2),
where
Gi 2i+1
W@ = (1+p) [kZ(s) + cos@s)|ds+ | +f [kZ(s) + cosfrs)]ds
2i i1
= asp) [ ka9dss f o k(S)ds+ | + L P SINGS) — sinfrai.)
2i @iy T

where #t) is a solution of (3.46) satisfying2) = z anda; andg; are solutions of

a =2 —1-¢sinz(@) andp = 2i + £sin(z(B)), respectively.

54



The homogeneous system corresponding to (3.47) is

Z=kz t#2i,
Z(2i + 1) = (p + 1)z(2i).

(3.48)

It is easily seen that for (3.46), the conditions (C4)-(C8) saisfied and
Z(2) = [(p+ 1)

is the matrix of monodromy ant= In(p+ 1) + k is the characteristic index of (3.48).
By Theorem 3.7.5, ifn(p + 1) + k # 0, then system (3.46) has a unique 2-periodic

solution which is B-asymptotically stable whep + 1) + k < O.

3.8 Stability of an Equilibrium

In this part, we are again going to consider the quasilingstesn
y =AMy + f(t.y), (ty)eToly),
th = H|l(t’ y)’ y+ = H|2(t’ y)’ (t’ y) € SZi’

on the variable time scalgq(y). However, this time, the condition for existence of a

(3.49)

Green’s function is replaced by a more general one, namgbgreential dichotomy,
[39]. Let

y =A@y, t#t,
Y(tzi11) = Biy(ta) + y(t2),
be the homogeneous system corresponding to (3.49). Mareswppose that the

(3.50)

system which i$B-equivalent to (3.49) is:

Z =Alt)z+ f(t,2), t#ty,

Z(tzi+1) = Biz(ta) + Wi(z(ta1)) + z(ta).
Suppose that there ame- and @ — m)-dimensional hyperplane¥, (t) and Y_(t) in
T, x R" such that ify(t) is a solution of (3.50) ang(t) € Y.(t), then|y(t)| <
ally(m)llexp(=ya(t - 7)), —o < 7 < t < +oo and, ify(t) € Y_(t) thenlly(t)ll >

(3.51)

ally(r)llexp(y2(t — 7)), —o < 7 <t < +c0. Here,a;,y;, | = 1,2 are positive con-
stants. If (3.50) satisfies these conditions, then we say(880) isexponentially

dichotomous
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In this case, using the inequaligyt) — ¥(7) < t — r whent < t, one can show that,

for the reduced impulsive linear system

X =AW (9)x, S#s,

(3.52)
AX |s=s= BiX(s),

wherex(s) = (¥ 1(9)), s = ¢(ta), there arean- and 1 — m)-dimensional hyperplanes
X.(s) and X_(s) in R x R" such that ifx(s) is a solution of (3.52) and(s) € X,(9),
then||x(s)|| < ag||x(r)|lexp(—y1(s—r)),—c0 < r < S< +oo and, ifx(s) € X_(9), then
IX(S)Il = azlIx(r)ll exp(y2(s—r)),—o0 < r < S < +oo. Then, the linear system (3.52)

with impulse action is said to bexponentially dichotomoug.d.) [39].

If (3.52) is e.d., then by applying the orthogonalizationtiogl to a given set of
linearly independent solutiong(s), x2(S), - - - , X,(S), we can construct a piecewise-
continuous Lyapunov-Schmidt transformatiwe= L(s)w reducing (3.52) to a block-

diagonal system [11], i.e., a system splitting into two eyss:

d
and
d77 _ _ 2
de= Pa(S)n, s#S, Anlss= Qn, (3.54)

wherew = (&, n), with £ anmrvector and; an (1—m)-vector. Corresponding to funda-
mental matriceX;(s,r) andX,(s,r) of (3.53) and (3.54), there are positive constants

aandy such that

IXy(s 1)l < aexp(-y(s—r1)), s=r,

and

IXo(s 1)l < aexp(y(s—r)), s<r.

Similarly, (3.49) can be reduced to the system

d—é; =Py(9)¢ + fi(sw), s#s,

]7 ~
L _p f -
Js 2(9n + f(sw), s#s,

A‘f |s=s: Q.l‘f(S) + \Nil(W(S)),
An |s-s= Qn(S) + WA(W(S)),

(3.55)
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after applyingy-substitution and Lyapunov-Schmidt transformation, sssosely.

Besides the conditions imposed before, suppose that (atiSies
f(t,0)=J(0)=0 (3.56)
uniformly with respect td € T, andi € Z.

We investigate the stability of an equilibrium position 8149), first noting that (3.56)
impliesW;(0) = 0 fori € Z.

It follows from Lemma 3.5.1B-equivalence, and the continuous dependence of so-
lutions of (3.49) on initial data, that the following analofjthe Lyapunov-Perron

theorem holds.

Theorem 3.8.1 Suppose that system (3.49) satisfies conditions (C4)-(C7(35d),
and system (3.50) is e.d. Then, for gf®iently small Lipschitz constaidf the equi-
librium position of (3.49) is conditionally asymptoticalstable with respect to an
m-dimensional manifold of initial values containing thegam. If m = n, then the

zero solution of (3.49) is asymptotically stable.

Proof. By virtue of the reasoning given above, we consider the sy$8efi) which
can be reduced to the form (3.55). We assume that the furlsatiorthe right side of
(3.55) satisfy conditions analogous to (C6), (C7) and (3.2@) the same constants.
Then, the integral-equation system

£=X(s e+ [ X(anfEwdr+ Y (s WG,
%0 3 §=s (3.57)
1= [ Xa(a - ) (s )W)

$>8

under the conditions

afllcll(a+ e€)

2
y? —o0? 1o expEo(y - 0))] =€

and

1 1

2a +
y-o l-expE#(y-o))

]<1,
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wheree ando are arbitrary fixed constants such tlkat 0 and O< o < y, has a

solutionw(s) = w(s, &, ) for which
(3l < (a+ e)licll exp(-o (s — ). (3.58)
If s=<2in (3.57), then

&L, L0 =c
W90 == [ X DR D Xl IWEWE)

5>

(3.59)

By using the customary method [85], we can easily showl{g) is also a solution

of (3.55). Hence, by virtue of (3.57) and (3.58), we concltigd (3.59) determines a
set of initial values of solutions of (3.55) tending to an éitium state whers — oco.
Since,B-equivalence ang-substitution do not change the dimension of the manifold,

the theorem is proved. [ |

3.9 Bounded Solutions

Theorem 3.9.1If conditions (C4)-(C8) are satisfied for system (3.49) an8(Bis
e.d., then for a gfiiciently small Lipschitz constart system (3.49) has a unique

solution, continuable ta-co and —oo, uniformly bounded for all.t(t, y(t)) € To(y).

Proof. System (3.51) which iB-equivalent to (3.49) can be reduced to

X = A @O)x+ fu (9%, s#s,

(3.60)
AX |s=s= Bix(s) + Wi(X(s)),

by means ofy-substitution, wherex(s) = z(y~(s)). In [11], it was shown that for
h=vaM{1/y + [exp(0)/(1 - exp(y#)]}, wherey > 1 is fixed, under the condition

1 k(6)explo) Y- 1

ral =
a v * 1—expye) y

)

the system (3.60) has a unique bounded soluxfs). Using the inverse substitu-
tion, we see thayy(t) = xo(¥(t)) is a bounded solution of (3.51), aldequivalence
between (3.51) and (3.49) proves the theorem. [ |

58



3.10 Deduction

In this chapter, we have introduced a new class fiedential equations, fierential
equations on variable time scales with transition condgiolrhese systems naturally
appear when we investigate discontinuous dynamics withfixed moments of im-
pulses. Consequently, our results will be needed to devekthads of investigation
of mechanical models with impacts. Particularly, interesproblems are related to
bifurcations [31, 54, 56, 94], chaos [54], etc. We are gomdevelop the theory of

introduced equations according to these demands.
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CHAPTER 4

BIFURCATION OF THREE-DIMENSIONAL
DISCONTINUOUS CYCLES

In this chapter, we consider three-dimensional discootiswdynamical systems with
non-fixed moments of impacts. Existence of the center mihifoproved for the
system. The result is applied for the extension of the platogaf bifurcation theorem

[6]. lllustrative examples are constructed for the theory.

4.1 Introduction

Dynamical systems are used to describe real world motiang dgferential (contin-
uous time) or dierence (discrete time) equations. In the last several @scéte need
for discontinuous dynamical systems has been increasedibethey, often, describe
the model better when the discontinuous and continuousometre mingled. This
need has made scientists to improve and develop the thetingsdé systems. Many
new results have arised. One must mention that namely sgstétim not prescribed
time of discontinuities were apparently first introduced ifovestigation of the real
world [58, 78], and this fact emphasizes very much the prat8ense of the the-
ory. The problem is one of the mosfidltult and interesting subjects of investigations
[36, 40, 61, 62, 63, 72, 84]. It was emphasized in early statfeeory’s development,
[71].

In [6], the Hopf bifurcation for the planar discontinuousndynical system has been
studied. Here, we extend this result to three-dimensigpate based on the center

manifold. The advantage is that we use the methoB-eéquivalence [5, 6, 19] as
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well as the results of time scales which are developed ingp, 1

This chapter is organized as follows. In the next sectionstag to analyze the non-
perturbed system. Section 4.3 describes the perturbeehsy3ihe center manifold is
given in Section 4.4. In Section 4.5, the bifurcation of pdit solutions is studied.
Seciton 4.6 is devoted to examples in order to illustrataghkery. In the last section

a brief conclusion is given.

4.2 The Non-perturbed System

We shall consider ifR® the following dynamical system:

8'

AX |(x,z)ero— BOX’
Az |(x,z)ero: CoZ

z
- bZ, (X, Z) ¢ FO9 (41)

whereA By € R¥>2 b,cy € R, Iy is a subset ofk3 and will be described below.
The phase point of (4.1) moves between two consecutivesgtéons with the sdt,
along one of the trajectories of the systam= Ax,Z = bz When the solution meets
the setl’, at the moment, the pointx(t) has a jumpAXx |.:= X(r+) — X(r) and the
pointz(t) has a jump\z |,:= z(t+) — z(7). Thus, we suppose that the solutions are left
continuous functions.

From now onG denotes a neighborhood of the origin.

The following assumptions will be needed throughout thispthr:

(C10) I'p = i":l?’i, p € N, where®; = ¢, x R, ¢; are half-lines starting at the origin

defined by, xy = 0 fori = 1,--- , p, @ = (a, &,) € R? are constant vectors;

(C11) A= |, whereg # 0;

a

(C12) there exists a regular matr@ € R>? and nonnegative real numbeegndé
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such that

01

cos# —sing | | 10
sing  cosd '

Bosz[

For the sake of brevity, in what follows, every angle for ayair a line is considered
with respect to the half-line of the first coordinate axisxiaplane. Denote] =
(I + Bp)ti,i = 1,---,p. Lety; and¢; be the angles of; and ¢/ fori = 1,---,p,
respectively, and

By =

bll b12
bZl b22

(C13) 0<y1 <& <y2 <+ <7vyp<{p< 2t and P11+ 1)cosy + biosiny; # 0 for
i=1...,p

In Figure 4.1, the discontinuity set and a trajectory of thistem (4.1) are shown.
The planeg’; form the sel’y and eaclf] is the image of’; under the transformation
(I + B)x

The system (4.1) is said to beébg — systemf conditions (C10)-(C13) hold. It is easy

to see that the origin is a unique singular poinDgf- systenand (4.1) is not linear.

Let us subject (4.1) to the transformatian = r cos¢, X, = rsing,z = z and ex-
clude the time variable The solution {(¢, ro, 2), Z(¢, o, Zp)) Which starts at the point
(O, ro, 2o) satisfies the following system in cylindrical coordinates

g = Ar
%¢ N
z
e bz ¢ # vy (mod ), (4.2)

Al 4=y, (mod 20= Kir',
AZ | 5=y, (mod 2)= CoZ

whered = a/B, b = b/B, the variablep is ranged over the time scale

© P
Ry =R\ U U(Zyri +yj, 2ni + ]
i=—co j=1
and

k = [ ((b12 + 1) cosy; + byasiny;)* + (b21COSY; + (b2 + 1) sim/i)z]l/2 -1
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Figure 4.1: The discontinuity set and a trajectory of (4.1)

Equation (4.2) is 2—periodic, so, in what follows we shall consider just the mect

[0, 27]. That is, the system

ﬂ = Ar,
gfﬁ
VA
Ar = Kir,
AZ|y—y,= CoZ

is provided for discussion, whege € [0,2r], = [0,2r] \ UY, (¥, &]. System (4.3)
is a sample of time-scaleftigrential equation. Let us use tiie- substitution ¢ =
Y(9) = ¢ — Xoey,<0 9. 0; = {j — v}, Which was introduced and developed in [6, 19].

The range of this new variable is,Pr — 3.7, 4,].
It is easy to check that upaf-substitution (4.3) reduces to the following impulsive
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equations:

I

dy ’

9 b ¢ *¢i

de " (4.4)
Al |p=g= Kir,

AZ|p=y= CoZ,

whereg; = ¥(y;). Solving (4.4) as an impulsive system [60, 86] and ugirgsubsti-

tution one can obtain that a solution of (4.3) is of the form

JORE exp(a [¢ -, ei]] [ ]a+k|r. (4.5)
O<yi<¢ | O<yi<¢
Ap) = eXp(b(cb - Hi}] [] @+ (4.6)
0<yi<¢ [0<yi<¢
for ¢ € [0, 2n],. Denote
p p
G = exp[/l (271 - ei]] [ ]a+x, (4.7)
i=1 i=1
p p
@ = exp[b [271 - Z Hi]) l_[(l + Co). (4.8)
i=1 i=1

Depending org; andg, we may see that the following lemmas are valid.

Lemma 4.2.1 Assume thatg= 1. Then, if

(i) g2 = 1then all solutions are periodic with periad = (27 - £, 6) 87%;

(i) g2 = —1then a solution that starts to its motion oaxx-plane isw-periodic

and all other solutions ar@w-periodic;

(i) gzl > 1 then a solution that starts to its motion oaxx-plane isw-periodic
and all other solutions lie on the surface of a cylinder aneytmove away the

origin (i.e. zero solution is unstable);

(iv) |0zl < 1then a solution that starts to its motion opxx-plane isw-periodic and
all other solutions lie on the surface of a cylinder and theyveatoward the

X1Xz-plane (i.e. zero solution is stable).
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Lemma 4.2.2 Assume thatg< 1. Then, if

() gzl < 1 all solutions will spiral toward the origin, i.e., origin is aasymptoti-
cally stable fixed point;

(i) |gz] > 1 a solution that starts to its motion on x-plane spirals towtrd origin
and a solution that starts to its motion on z-axis will move aWwam the origin.

In this case the origin is half stable (or conditionally skaj

(i) g2 = 1(g. = —1) then a solution that starts to its motion on z-axis is perodi

with periodw(2w) and all other solutions will approach to z-axis.

Lemma 4.2.3 Assume thatg> 1. Then, if

() 19zl < 1then origin is a stable focus;

(i) |gz| > 1then origin is an unstable focus;

(i) g2 = 1(g2 = —1) then a solution that starts to its motion on z-axis is pemodi
with periodw(2w) and all other solutions will approach to z-axis.

We note that wheg, = -1, (this meangz may be negative, too) the solutions start-
ing their motion out ofx; X-plane, will move above and below tixgx,-plane. More
explicitly, if a solution starts to its motion above tReplane, then after the time cor-
responding taw, it will be below thex-plane, and in the next duration corresponding
to w, it will try to move abovex-plane and at the end of that duration it will be above

the x-plane, and so on.
From now on, we assume that= 1 and|qp| < 1.
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4.3 The Perturbed System

Let G denote a sfiiciently small neighborhood of the origin and consider thetemy
dx

Z PN
gt - Pzraxd, (x7 el (4.9)

Axl(x,z)el" = B(X)X’
Azl(x,z)el“ = C(Z)Z,

where the following assumptions are assumed to be true:

(C14) I = U, Si, whereS; = s x R and the equation of is given bys : (@, x) +
7i(X)=0,fori=1,---,p;

(C15)

B(x) = (k+ k()| COSU T O —sin€+6()
sin@+06(x))  cosp + O(x))

L 1o
F

andc(2) = ¢y + €(2);
(C16) functionsf, g, x, ¢ and® are inC! andz; is in C?;

(C17) f(x.2) = O(I(x% 2IP). 9(x.2) = O(lI(x. 2)IPP). «(x) = O(IIX|l), B(X) = O(lIX]),
&2 = 0(2), i(X) = O(Ix?),i = 1,---,p,and f(0,2) = 0, g(0,2) = O for all
ze R.

Moreover, it is supposed that the matrige), the vectorsd',i = 1,--- , p, constants

k, 6 are the same as for (4.1), i.e.,

(C18) the associated with (4.9) 3, system.

Remark 4.3.1 Conditions (C14) and (C15) imply that surfac8sdo not intersect

each other except on-axis and neither of them intersects itself.

The system (4.9) is said to beDa— systenif the conditions (C10)-(C17) hold.
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In what follows we assume without loss of generality that 7j, j = 1,2,3. Then
one can transform the equation in (C14) to the polar coorelgnsa thas : a'r cosg+

a’r sing + 7i(r cosg, r sing) = 0 and, hence

7i(r cose, r sing)
a’r cosg '

¢ = tan(tany; —

Using Taylor expansion gives that the previous equationbmmvritten, for sii-

ciently smallr, as
s:¢=yi+Yi(r¢), i=1---,p
where functionst; are 2r—periodic ing, continuously diferentiable an®; = O(r).

If the phase pointX(t), Xo(t), z(t)) meets the discontinuity surfacg at the angle
6, then after the jump, the poink{(6+), X2(6+), z(6+)) will be on the surfaceS =

{(u,v) e R®:u=(l + B(X))x,v=(1+co)z+ c(2), (X, 2) € S;}. For the remaining part
of the paper the following assertion is very important are ghoof can be found in

[6].

Lemma 4.3.2 If the conditions (C16) and (C17) are valid then the surfaeis
placed between the surfac8sandS;,; for every i if G is syiciently small.

Using the cylindrical coordinates = r cose, x, = r sing, z = z one can find that the

differential part of (4.9) has the following form:

ﬂ =Ar + P(r, ¢, 2),

dg (4.10)
— =bz+ Q(ra ¢’ Z)a

de

where, as is known [87], the functior(r, ¢,2) and Q(r, ¢,2) are Zr—periodic in
¢, continuously diferentiable in all variables and = O(r,2), Q = O(r, 2), with
P(0,¢,2) = 0, Q(0,¢,2) = 0, for all ¢, z€ R. Denotex™ = (x7, x5) = (I + B(X))X, X" =
re(cosg*,sing*), X" = (X7, %) = (I + B(0))x, wherex = (X1, %) € s,i = 1,---,p.
The inequalityl|x* — X*|| < |IB(x) — B(O)|| - [|x|| implies thatr* = (1 + k)r + w(r, ¢).
Moreover, using the relatio% and% and condition (C14) one can conclude that

¢t = ¢p+6;+vy(r, $). Functionsw andy are Zr—periodic ing andw = O(r?),y = O(r).
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Finally, the transformed system is of the following form:

dr
d_¢ = Ar + P(r, ¢, 2),

dz _

b bz+Q(r.¢.2), (r.¢.2) ¢T,

Al ges = Kl + w(r, ¢),
A¢|(I’,¢)ES = Hl + y(ra ¢)7
AZ; pes = CoZ+ C(2).

(4.11)

Let us introduce the following system besides (4.11):

d—p = Ap + P(o, ¢, 2),

do
bz+ Q(p’ ¢7 Z)’ (p * Yi,

dz_
d¢

Aply=y, = kip + Wi (o, 2),
A¢|¢:yi =6,

AZy-,, = coz+ W (p, 2),

(4.12)

where all elements, except foV, = (V\/il, V\/iz),i =1,---,p, are the same as in (4.11)
and the domain of (4.12) is [@r],. We shall define the functions/ below.

Let (r(¢,ro, %), zZ(¢, 1o, 20)) be a solution of (4.11y; be the angle where the phase
point intersectsS;. Denote also by = ¢; + 6, + y(r(¢i, ro, 20), ¢;) the angle where the
phase point has to be after the jump.

Further(e, 8], {@, B} c R denotes the oriented inetrval, that is

(@, 8] =

(8,a] otherwise

. {(a,ﬁ] if o <p,

Definition 4.3.3 We shall say that systems (4.11) and (4.12) aredivalent in G
if for every solution(r (¢, ro, 20), Z(¢, o, Z)) of (4.11) whose trajectory is in G for all
¢ € [0, 2n], there exists a solutio((¢, ro, 20), Z(¢, I'o, Z)) of (4.12) which satisfies the

relation
p
r(¢,ro, 20) = p(¢,r0.20), ¢ €[0,27]4\ U{(¢i,7’i] U (&, xill, (4.13)
i=1

and, conversely, for every soluti§m(e, ro, 2o), Z(¢, ro, Zo)) of (4.12) whose trajectory
is in G, there exists a solutio(r (¢, ro, 20), Z(@, o, Z)) Of (4.11) which satisfies (4.13).
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Fixi=1,---,p. Let (ru(e), (), (r1(vi), z2(yi)) = (o, 2), be a solution of
d—(; = Ar + P(r, ¢, 2),

dg (4.14)

% =bz+ Q(r, ¢, 2),

and let¢ = n; be the meeting angle of the solution with Then
T
i) =" p+ [ e 9P(y(9. 5 2(9)ds
Yi
1i
2(n) = @0 z+ [ 079Q0:(9. 5 2(9)ds
Yi

Setn| = ni +6 +y(ri(m),m) and p’, Z) = (1 +k)ra(m) + w(r1(7), m), (1 + Co)ze(mi) +
c(zi(m))). Let (r2(#), z2(¢)). (r2(m). z2(n)) = (o', Z), be a solution of (4.14). Then,

i
@) = e p' + [ e IR((9. s 2(9)ds
n

2,(¢) = €607 + f ‘ 49Q(ra(9), s. 2(9))ds

We define that

Wi(o, 2) ra(4i) — (1 + ke

e‘(é“i-ﬂo[(l + Iq)(eﬂ@i—%)p + f " -9 P(r1(s). s zi(s))d S)

i
rorsmn)]|+ [ e IPi9. s a9 L+ K

i

or, if simplified
Wio.2) = (1+Kk)(eO0 — 1)
+(1+ k) f " lati-sy ) P(ry(s), s, z(9))ds
%
o [ e 9. s 2E@)ss Pt (415)
U
We, similarly, define

We(p. 2) 2(4i) — (1+ o)z

| (L + co) 70z + f " 09Q(ry (9, 8 2(9)ds

(i
+e@m)| + f EIQ(r4(9), 5 z(9)ds— (L+ o)z
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or,

V\/iz(p, 2 = (1+ ki)(e—by(rl(m),m) — 1)z
T
1+ ) f it M Q(ry(s), s, z2())ds
Yi

+ ’ Pi-9Q(ry(9), s, (9))ds+ Mgz ().  (4.16)

i

We note that there exists a Lipschitz constaand a bounded functiam(¢) such that

IW (01, 21) — W) (02, 22)II < M(€)¢(llo1 — pall + I1z1 — ), (4.17)

for all p1,0,,21,2 € R, | = 1, 2. For detailed proof and explanation about (4.17) we
refer to [6, 19].

4.4 Center Manifold

Now, usingy—substitution (4.12) becomes:
d
ﬁ = Ap + F(p, ¢, 2),
dz
o =bz+G(o,¢.2), ¢# @i (4.18)
Aply=y = kip + W(p, 2),
Azlgazgoi = CoZ+ Vviz(p’ Z)’

wherep = y(¢), ¢i = ¥(%), Flo, 9.2 = Plo,y*(¢), 2, Glp. ¢.2) = Qlo, ¥ (), 2.
FunctionsF andG areT — periodic ing, with T = y(2r), and satisfy

IF(o,¢.2) = Fo', ¢, Z)Il < L(llo = p'll + 12— Z])), (4.19)
IG(p, ¢.2) = G(o", 0. Z)II < Lllo = p'll + llz = Z1)), (4.20)
for some Lipschitz constaht

Following the methods given in [5], one can see that systefBjsas two integral

manifolds whose equations are given by:

Dolp.p) = f 7o, 9GS ¢.). . 25 . p))ds

+ > mole 6 WEo(el ¢, ), 2l 0. ), (4.21)

gi<e
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and

o0 = - [ 1 (6, IF(0(s 6.2, 8 %5 0, D)ds
+Z<n_(so, e W (e, ¢, 2), 2pt ¢, 2), (4.22)
where -
mo(p, 8) = €9 | | (1+co)
-

(g9 =@ ] @+k).

S<pj<g

In (4.21), the pair 4(s, ¢, p), Z(S, ¢, p)) denotes a solution of (4.18) which satisfies
o(e, 0,p) = p. Similarly, (o(s, ¢, 2),2(s, ¢, 2)), in (4.22), is solution of (4.18) with
Ae,p.2) =2

In [5], it was shown that there exist constaKis Mg, o9 such thatb, satisfies:
Do(p,0) =0, (4.23)
IPo(e, p1) — Pole, p2)Il < Kolllp1 — po2ll, (4.24)

for all p1, o, such that a solutiow(y) = (o(¢), z(¢)) of (4.18) with the initial condition
W(o) = (po, Po(o. P0)). po = 0, is defined orR and satisfies

W)l < Mgpoe™ ¥, ¢ > ¢ (4.25)
Similarly, it was shown that there exist constaiits M_, o_ such thatd_ satisfies:

D_(,0)=0, (4.26)
1P_(¢,z1) = D_(p, 2)Il < KLz - 2], (4.27)

for all z;, z, such that a solutiom(¢) = (o(¢), Z(¢)) of (4.18) with the initial condition
W(o) = (D_(¢o, 20), Z0), Zo € R, is defined orR and satisfies

IW(@)Il < M_]|Z]le™- ¥ < g, (4.28)
SetSy = {(0,9,2) : z = Do(p,p)} andS_ = {(0,¢,2) : p = O_(p,2)}. Here, Sy

is called thecenter manifoldand S_ is called thestable manifold A sketch of an

arbitrary center manifold is shown in Figure 4.2.
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Figure 4.2: A discontinuous center manifold

The analogues of the following two Lemma'’s together withrtpeoofs can be found
in [5].

Lemma 4.4.1 If the Lipschitz constant is syficiently small, then for every solution

w(p) = (o(p), Z(¢)) of (4.18) there exists a solutigr{y) = (u(e), V(¢)) on the center
manifold, S, such that

llo(e) — u(@)ll < 2Mollo(wo) — U(go)lle~o~#),

(4.29)
1z(¢) = V()Il < Mollz(go) — V(go)lle™70@90) o > oo,

where My and o are the constants used in (4.25).

Lemma 4.4.2 For syficiently small Lipschitz constartthe surface g is stable in

large.
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On the local center manifolf,, the first coordinate of the solutions of (4.18) satisfies

the following system:

dp
R :/l +F E 7(1) ’ k) i i
do o+ F(o,0,Do(p.0), ¢ #¢ (4.30)

A,O|¢:¢i = kuO + Vvil(p’ CDO(QD’.D))

Now, it is time to consider the reduction principle:

Theorem 4.4.3 Assume that conditions (C10)-(C19) are fulfilled. Then thedti
solution of (4.18) is stable, asymptotically stable or abét if the trivial solution of
(4.30) is stable, asymptotically stable or unstable, resipely.

Using inverse ofy—substitution andB—-equivalence, one can see that the following

theorem holds:
Theorem 4.4.4 Assume that conditions (C10)-(C19) are fulfilled. Then thedti

solution of (4.9) is stable, asymptotically stable or ubaf the trivial solution of
(4.30) is stable, asymptotically stable or unstable, retipely.

4.5 Bifurcation of Periodic Solutions

This section is devoted to the bifurcation of a periodic 8otufor the discontinuous

dynamical system. Let us consider the system,

d_)t( = Ax+ f(x 2) + uf(x z ),
Z - ~
gt = Pz 9D+ ud(xz ), (%2) € T(u), (4.31)

AX|(x2er(y = B(X, )X,
AZxgerg) = C(Z 1)z

Assume that the following conditions are satisfied:

(C18) the sefl'(u) = i":lSi(u), whereS;(u) = s(u) X R and the equation of (u) is
given bys(u) : (@, x) + 7i(X) + uv(x,u) =0, fori =1,--- , p;
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(C19) there exists a matriQ(u) € R?? Q(0) = Q, analytic in (uo, io), and real
numbersy, y such thaQ*(u)B(x, 1) Qi) =
10
01

cos@ + uy + O(X)) —sin@ + uy + O(X))

k K
A sin@+ uy + ©(x))  cos@ + uy + (X))

andc(z i) = ¢ + &(2) + ud(z p);

(C20) associated with (4.31) systems

8'

Z
- bZ, (X’ Z) ¢ FO’

(4.32)
AX|(x,z)»el"o - BOX’
Azl(x,z)ero = CoZ
and
gt = Ax+ (X, 2),
=bz+9(x2, (x2 ¢I(0), (4.33)

AXl(x,z)er(O) = B(x, 0)x,
AZ|(xpero) = C(z 0)z

areDg — systemandD - systenrespectively;
(C21) functionsf andy are analytic in their all arguments;

(C22) (0,0, ) = 0, (0, ) = 0, uniformly for u € (—uq, o).

We, first of all, linearize system (4.31) around origin. Nttat the eigenvalues of
the linearized system are continuously depeng.cand hence for diiciently small
values ofu, the eigenvalues of the cficient matrix in the linearized system will be
in a similar form with the eigenvalues of the d¢bheient matrix in (4.1). Thus, by
means of a regular transformation, one can show that themayid side of (4.31) is
like the right hand side of (4.9) with the onlyftBrence that all cd&cients depend on
u. This is why, without loss of any generality, we assume tha&1}lis in linearized
form.
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Using polar coordinates one can write system (4.31) in theviing form:

Let the system

wherey;(u),1 =

A A + P 6,210,

d¢
d
d—; = b)z+ Q¢ 2p), (1 6.2) ¢ T(w),
(4.34)
Al e = Ki@)r + o(r, ¢, 1),
A¢|(r,¢)€fi(ﬂ) =6 (ﬂ) + Y(r’ (P, /l)’
AZ ¢ pyeai(n) = Co(u)Z+ E(zZ p).
do
@ Au)p + Plp, ¢,z 1),
d
d—; = b()z+ Qo d.zp). b %K),
(4.35)

Aply=yi) = K)o + Wi(o, Z p),
APlo=yiw) = Oi(0).
AZy=y(u) = Co()Z + VViZ(P, Z ),

1,---,p, are angles oim(u), be B—equivalent to (4.34). Here,

for eachi, the line m(u) is obtained by linearizings (1) around the origin. That
is, we havem(u) : (&, %) +u282 = 0. The functionsW(p, z ) and W2(p, 1)
can be defined in the same manner as in (4.15) and (4.16)cteghe Appyling
Yy—substitution to (4.35) we get,

d
& = Awp + Flo.p. 2.4,
@

dz

g, = PWz+Clop.zp). ¢ # k). (4.36)

Apltﬁ:tﬁi(ﬂ) = ki(ﬂ)p + VVil(p, Z’/J)’
Azlcp=cpi(/1) = CO(/J)Z + VViZ(Pa Z,/J)

Following the methods, as we did to obtain (4.21) and (4.22) can see that system

(4.36) has two integral manifolds whose equations are diyen

P
Qo(p, o, 1t) = f mo(e, S, 1)G(o(S ¢, p, 1), S S, ¢, p, 1), )d's

and

+ ) mole. ol WIWE(E] 0.0, 10) 2 0, 10)), (4.37)
pil)<e

D (p,zp) = —fwﬂ—(so,Su)F(p(S,so,Z,u),S,Z(S,so,z,u),ﬂ)ds

+ Y w e ol WO, 6.2 1), Al 0 2 p)), (4.38)
wi(w)<e
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where

molp. s ) = €79 | | (1+ colu)),

s<pj(u)<g

and

rpsp) =€ [] @+k().

s<ej(u)<y
In (4.37), the pair (s, ¢, p, n), Z(S, ¢, p, 1)) denotes a solution of (4.36) satisfying
P, @,p, 1) = p. Similarly, (o(s, ¢, z 1), Z(S, ¢, Z 1)), in (4.38), is a solution of (4.36)
with Z(¢, ¢,z 1) = z

SetSo(u) = {(0, ¢, 2) : 2= Do(p, p, )} ANAS_() = {(0, ¢, 2) 1 p = P_(p, Z W)}

On the local center manifolds(u), the first coordinate of the solutions of (4.36)

satisfies the following system:

d
a; = WP+ .0 Dolp.p.0). 0% aw) .39
Aply=gi(y = ki(wp + W (o, @o(e, p, 11))-
Similar to (4.7) and (4.8) one can define the functions
p P
() = exp[ﬂ(u) (2n - (,,)]] [ ]@+k), (4.40)
i=1 i=
and
P P
Gp(i) = exp[b(u) [Zn ->a (u))) [ T+ cotwy). (4.42)
i=1 i=1

System (4.39) is the system studied in [6] and there it wasgvsltbat this system,
for suficiently smallu, has a periodic solution with period = y/(2r). Here we will
show that if the first coordinate of a solution of (4.36)Tis periodic, then so is the

second coordinate.

Now, since
7T0(()0 + T’ S+ T’M) = 7T0(‘10’ S’/J)’
p(s+T,o+T,p,u) = p(S ¢,p,Hu),
As+T,o+T,p,p) = S ¢,p,u),
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andG is T—periodic ing, we have,

Do+ T,p, 1)

o+ T
f mole + T, s u)G(o(s, ¢ + T, p, 1), S Z(S, ¢ + T, p, u), p)ds

o0

+ ) mole+ Ton WW2o(e s ¢ + T.p, 1), Al ¢ + T,p, 1)
Gilu)<p+T

14
f 7T+(()0’ t’ #)G(p(t’ ‘10’ ,0, ,Lt), t7 Z(t’ ‘107 p’ ,Lt), ,Lt)dt

+ Y e @ WG 6. 1) ZG T 6.0 1)
wi(w)<e
(DO(QD’ P ,Ll),

where in the second equation we have used the substitudiens+ T andy;(u) =
¢i(u) + T. Now, we have the following theorem which, in case of two disien, can
be found in [6].

Theorem 4.5.1 Assume that {0) = 1,07(0) # 0,|02(0)] < 1, and the origin is
a focus for (4.33). Then, for giciently small g and 2, there exists a function
u = 6(ro, Zo) such that the solutior (¢, 6(ro, 20)), Z(¢, 6(ro, Zp))) of (4.34), with the
initial condition r(0, 6(ro, Z0)) = ro, 2(0,6(ro,20)) = zy, IS periodic with a period,
T = (21— %P, 6)87 + o).

4.6 Examples

Example 4.6.1 Consider the following dynamical system:

Xy = (0.1 = p)Xg — 20% + 2X1 Xo,

X, = 20% + (0.1 — )%, + 3%3z,

Z = (-03+u)z+ 1%z, (X1, %,2) ¢ S,

AXloq 68 = ((Kl + 11°) cOS@) — 1) X1 = (k1 + %) SiN(E) %,
AXolpy x5 = (k1 + p2%) SIN(G)Xq + ((Kl + u®) cos) — 1) X2,

AZl(xl,X2,z)ES = (K2 +u - 1)2,

(4.42)
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wherex; = exp(-15g), k2 = €Xp-350). S = SX R, the curve s is given by the equation

X = X5 + ux3, X > 0. Using (4.40) and (4.41), one can define

ulk) = (1 + ) xP(@1 — ) o).

and
Qolu) = (k2 + 1) €XP(-03 + ) 20)

It is easily seen that §0) = kiexp(Z) = 1, (0) = -5 # 0, and ¢(0) =

12
) < 1. Therefore, by Theorem 4.5.1, system (4.42) has a periodlitico

with period~ 2—3 if |u| is syficiently small.

exp-

Figure 4.3 shows the trajectory of (4.42) with the parameter 0.05 and the initial
value (Xq0, %20, Z0) = (0.02 0,0.05). Since there is an asymptotically stable center
manifold, no matter which initial condition is taken, thejaetory will get closer and

closer to the center manifold as time increases.

0.1

0.08

Figure 4.3: A trajectory of (4.42)

In Figure 4.4, the existence of a discontinuous limit cyslédustrated. There an outer

and an inner solution are shown which spiral to a trajectorytybetween these two.
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Since the exact value of the initial point for the periodidusion is not known we
have shown two trajectories of (4.42).

Starting point of an
0.055 94—~ < “outer solution"

Vs —
@ ==
0.045 \ /
004

Starting point of an
§\§/ “inner solution"

Figure 4.4: There must exist a discontinuous limit cycle4oé @)

Example 4.6.2 Consider the following dynamical system:

X, = (=2 + W)X — X + p,

X5 = X + (=2 + ()Xo,

Z = (-1+w)z+ Xz, (X1, %,2) ¢ S,

Al e = ((k1 = 3¢ = 38) cOSE) — 1) x4 — (k1 — X2 — X3) SiN() .,
AXolixsx2es = (k1 — X2 — X3) sin(3)x. + ((Kl - X2 - X3) cos@) — 1) X2,

AZl(xl,xz,z)es = (Kz -1- zz)z,

(4.43)

wherek; = exp(%),Kz = exp(%”),S = Sx R, s is a curve given by the equation

Xo = X1 + u2x3, X, > 0. Using (4.40) and (4.41), one can define

(k) = 1 XP(-2+ 1)),

and

olk) = ko XP(C1 4 10 5).

Now, q(0) = kiexpiF) = 1, g;(0) = ¥ # 0, 0p(0) = koexpE) = exp).
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Moreover, associated Bsystem is:

X] = =2X1 — Xo,

X, = X1 — 2X%a,

Z=-2 (X.%2¢P,

AXl(xq, 0,20 = ((Kl — X§ — X5) COSE) — 1) X1 — (k1 — X§ — X5) sin(§) X,
AXol(x xo2)ep = (k1 — X§ — X5) SiN(E) Xy + ((Kl — X4 — X5) COSE) — 1) X2,
A x0ep = (ko = 1= 2)Z,

(4.44)

where® = ¢ x R, ¢ is given by the equationx= X1, X; > 0, and the origin is stable

focus. Indeed, using cylindrical coordinates, denote thlat®n of (4.44) starting at
the anglep = 7 by (r(¢, ro, 2). Z¢, ro, 20)).

We obtain

107
M= (k1 —r2 o1 expi-—-);

and
5
Zn = (k2 — Zoy)Zn1 eXp(—g)’

where | = r(7 + 27N, 1o, 2) and z = z(j + 27N, 1o, 2). It is easily seen that the
sequencesyrand z are monotonically decreasing for gigiently small(ro, z5), and
there exists a limit ofry,, z,). Assume that this limit i&, ) # (0,0). Then it implies
that there exists a periodic solution of (4.44) afid= (k1 — £2)¢ exp(—%) andn =
(ko —1)n exp(—%”) which give us a contradiction. Thug, ) = (0, 0). Consequently,
the origin is a stable focus of (4.44) and by Theorem 4.5.1s{fs¢em (4.43) has a
limit cycle with periodx %” if |u| is syficiently small.

4.7 Deduction

In this chapter, we have studied the existence of a centeifolchand the Hopf bifur-

cation for a certain three dimensional discontinuous dyoahsystem. The bifurca-
tion of discontinuous cycle is observed by means ofBrequivalence method and
its consequences. These results will be extended to asbdranension for a more

general type of equations.
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CHAPTER 5

CONCLUSION

In this thesis, we have introduced two new classesféédintial equations: tferen-

tial equations with transition conditions on time scaled differential equations on
variable time scales. It is necessary to introduce thessetaof equations for the in-
vestigation of the main results: Hopf-Bifurcation in thréieaensional discontinuous

dynamical systems.

The first class of the systems that we introduce in this theglse DETC. We make
a connection between this class of equations and impulsiterential equations.
This connection is given by means of a specific transformatiothe independent
variable called they-substitution [6]. Some benefits of the established comnmect
include knowledge about properties of linear DETC, the itigation of existence
of periodic and almost periodic solutions and their stabiliWe suppose that the
problems of stability, oscillations, smoothness of solusi, integral manifolds, theory
of functional diferential equations can be investigated applying our resAhother

interesting opportunity is to analyze equations with mayghssticated time scales.

The second class of the introduced systems is tfierdntial equations on variable
time scales. These systems naturally appear when we igagstiliscontinuous dy-
namics with non-fixed moments of impulses. Consequenthsethresults will be
needed to develop methods of investigation of mechanicdefsavith impacts. Par-
ticularly, interesting problems are related to bifurcat$31, 54, 56, 94], chaos [54].
In this thesis, the theory of this class of equations thatnduce are developed
according to these demands.

After introducing these new classes offdrential equations, we study the existence
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of a center manifold and the Hopf bifurcation for a certairedidimensional discon-
tinuous dynamical system. The bifurcation of discontirsioycles is observed by
means of thd-equivalence method and its consequences [5, 6]. Thesksresilbe

extended to arbitrary dimension for a more general type oaggns.

We expect that these results will be helpful for further stigation of multi di-
mensional discontinuous dynamical systems. In fact, aystethted to a three-

dimensional hybrid system has been submitted as an invéperp
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