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ABSTRACT

NEW CLASSES OF DIFFERENTIAL EQUATIONS AND BIFURCATION OF
DISCONTINUOUS CYCLES

Turan, Mehmet

Ph.D., Department of Mathematics

Supervisor : Prof. Dr. Marat Akhmet

July 2009, 91 pages

In this thesis, we introduce two new classes of differential equations, which essen-

tially extend, in several directions, impulsive differential equations and equations on

time scales. Basics of the theory for quasilinear systems arediscussed, and particular

results are obtained so that further investigations of the theory are guaranteed.

Applications of the newly-introduced systems are shown through a center manifold

theorem, and further, Hopf bifurcation Theorem is proved for a three-dimensional

discontinuous dynamical system.

Keywords: Periodic solution, stability, center manifold,Hopf bifurcation
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ÖZ

YENİ TÜR DİFERANṠIYEL DENKLEMLER SINIFLARI VE SÜREKṠIZ
DÖNGÜLERİN ÇATALLANMASI

Turan, Mehmet

Doktora, Matematik B̈olümü

Tez Yöneticisi : Prof. Dr. Marat Akhmet

Temmuz 2009, 91 sayfa

Bu tezde iki ẗur yeni diferansiyel denklem sınıfı tanıttık. Aslında bu denklem sınıfları

impalsif diferansiyel denklemlerini ve zaman skalalarında diferansiyel denklemleri

çeşitli açılardan genişletirler. Yarı doğrusal denklemlerin temel teorisi tartışılmış ve

teorinin daha ileri d̈uzeyde incelenebilmesini garantilemek için belirli sonuçlar elde

edilmiştir.

Yeni tanıtılan sistemlerin uygulamaları merkez çok katlıteoremi aracılı̆gıyla g̈osteril-

miş ve birüç boyutlu s̈ureksiz dinamik sistem için Hopf Çatallanma Teoremi kanıt-

lanmıştır.

Anahtar Kelimeler: Periyodik ç̈ozüm, kararlılık, merkez çok katlısı, Hopf çatallan-

ması
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CHAPTER 1

INTRODUCTION

Most of the real world processes are studied by means of differential equations. The

invention of the theory of ordinary differential equations dates back to the second half

of the Seventeenth Century. Newton (1642-1727) was the first person to consider

the differential equations. He regarded this observation so important that he used the

phrase “...the laws of nature are expressed by differential equations...” to emphasize

the importance of his discovery.

A new era in the development of the theory of differential equations starts with

Poincaŕe (1854-1912). Instead of traditional methods, he considered new topological

ideas. TheQualitative Theory of Differential Equations- or, as it is known nowa-

days,the theory of dynamical systems- is the starting point to discuss the nonlinear

differential equations. Birkhoff (1884-1944) understood the idea of Poincaré and de-

veloped it at the beginning of the Twentieth Century. Russian mathematicians have

taken an important role in the development of this subject, beginning with the works

of Lyapunov (1857-1918) on the stability of motion, Andronov (1901-1952) on bi-

furcation theory, Krylov (1879-1955) and Bogolyubov (1909-1992) on the theory of

averaging, Kolmogorov (1903-1987) on the theory of perturbations of conditionally

periodic motions.

In the last quarter of the last century, there has been an explosion of interest in the

study of nonlinear dynamical systems; geometric and qualitative techniques devel-

oped during this period makes it possible to better investigate nonlinear dynamical

systems. The theory of nonlinear dynamical systems is one ofthe most developing

subjects of the theory of differential equations since it is mostly applied in physics,

1



chemistry, biology, ecology, economics, mechanics, electrics, and electronics, all of

which have yielded valuable results. In fact, the systems which seemed to be hard

to grasp from the analytical point of view are now easily understandable from the

geometric or qualitative points of view.

The history of discontinuous dynamical systems is relatively short. In [58], the first

investigation into the discontinuous dynamical system canbe seen. There, the authors

considered the model of a clock; a pendulum which experiences a strike when the an-

gle between the current position and the equilibrium position reaches a specific level

was taken into account. In that work, it was shown that the approximation method

used in nonlinear mechanics can be applied for a study of differential equations with

impulse action. This has attracted the attention of scientists from other disciplines

since it made it possible to investigate the processes in nonlinear oscillations.

With this accomplished, scientists became interested in Impulsive Differential Equa-

tions (IDE’s). IDE’s characterize many real life evolutionary processes whose state

experiences a change called the ‘impulse’. Impulses are short-term perturbations of

the process. When the changes occur at the specified times, we talk about the IDE’s

with fixed moments of time. Generally, this is not the case and, at times, the im-

pulse actions take place depending on the state. These kindsof systems are called

IDE’s with variable moments of impulse actions. For long, scientists have consid-

ered merely those IDE’s with fixed moments of impulse actionsand stayed away

from those with variable moments of impulse actions; this isdue to the fact that they

did not have enough material to handle these problems with. The truth is that, these

problems were not so easy to overcome. Many results concerning the IDE’s with

fixed moments of impulses have been provided in different references [60, 85]. These

also contain some results about the IDE’s with variable moments of impulses. Once

B-topology was introduced by Akhmetov and Perestyuk [5, 6, 13], handling IDE’s

with variable moments of impulses became easier compared tothe past. The method

which is based on theB-topology enables us to deal with these kinds of systems. This

method is our main tool in the investigation of the system considered in this study.

The center manifold theory is another main tool used in this thesis. In the literature

and among the first efforts regarding the subject of center manifold theory, one can
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see the paper by Pliss [82]. Also, the book by Carr [30] provides us with useful in-

formation about the applications of center manifold. However, in neither one of these

works can one find the center manifold and its applications related to discontinuous

dynamical systems.

The main point that we are going to utilize from regarding thecenter manifold theory

is to apply it to discontinuous dynamical systems to prove the existence of a periodic

solution in multi-dimensional discontinuous dynamical systems. In fact, this will be

a discontinuous limit cycle; that is, we shall prove the HopfBifurcation Theorem in

three-dimensional discontinuous dynamical systems.

While dealing with the Hopf Bifurcation Theorem, naturally a new class of differen-

tial equations arises (which we abbreviate as thedifferential equations on time scales

with transition condition (DETC)). The concept of the time scale was first introduced

by Hilger [51]. In his work, the author tends to unify and extend the differential and

discrete equations. The DETC introduced here and the one proposed by Hilger, have

both similarities and differences.

1.1 Elements of Impulsive Differential Equations

Many evolutionary processes are subject to short-term perturbation whose duration

is negligible when compared to that of the whole process. This perturbation results

in a change in the state of the process. For example, when a bouncing ball strikes

against a fixed surface, then a change in the velocity of the ball occurs. Another

example is the pendulum of a clock showing a change in momentum when passing

through its equilibrium position. Models like these have played a significant role

in the development of impulsive differential equations. In [24, 25, 85, 86], many

theoretical results are given for impulsive differential equations such as the existence

and uniqueness of solutions, stability, periodic solutions.

In principle, there are two different kinds of impulsive differential equations: the ones

with fixed moments of impulse actions and those with variablemoments of impulse
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actions. The former is a system of the form

dx
dt
= f (t, x), t , θi ,

∆x|t=θi = I i(x),
(1.1)

which is called an ‘IDE with fixed moments of pulse actions’. In (1.1), x ∈ Rn

is the state (phase) variable. The sequence{θi}, wherei is an index belonging to a

finite or infinite index set as a subset ofZ, denotes the fixed moments at which the

impulse actions take place. The right-hand side functionf (t, x) is the continuous rate

of change of the phase variable, andI i(x) is the discrete (sudden) change of the phase

variable. Moreover,∆x|t=θi = x(θ+i ) − x(θi) denotes the jump in the phase point at

the timet = θi . That is, a phase point of (1.1) moves along one of the trajectories of

x′ = f (t, x) until the timet = θi . At the momentt = θi , the phase point jumps to the

point x(θ+i ) = x(θi)+ I i(x(θi)), and continues along a trajectory ofx′ = f (t, x) until the

next moment of impulse action, and so on. Therefore, a solution, x(t), of (1.1) is a

piecewise continuous function with discontinuities of thefirst kind att = θi .

In the latter one, however, impulse action takes place when the phase point meets

one of the prescribed surfaces in the phase space. These kinds of systems are more

challenging to investigate when compared to the first category since different solu-

tions possess different moments of impulses. Nevertheless, they arise more naturally

than the first kind. An impulsive differential equation with variable (or non-fixed)

moments of impulses is a system of the following form

dx
dt
= f (t, x), t , τi(x),

∆x|t=τi (x) = I i(x),
(1.2)

wherex, f (t, x) and I i(x) have been described before, and for eachi, τi(x) stands for

the surface of discontinuity. As it can be seen easily in (1.2), the moments when

the impulse actions take place depend on the phase point,x(t) and, hence, each solu-

tion will perform the jumps at different times. For this reason, system (1.2) is more

difficult than system (1.1) to investigate.

The systems in (1.1) and (1.2) are both non-autonomous. There exists another impor-

tant class of differential equations which is autonomous, also known asDiscontinuous
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Dynamical Systems(DDS’s). A discontinuous dynamical system can be expressedas

dx
dt
= f (x), x < Γ,

∆x|x∈Γ = I (x),
(1.3)

whereΓ denotes the set of discontinuity. A phase point of (1.3) moves along one of

the trajectories of the autonomous differential equationx′ = f (x) until the time when

this solution, sayx(t), meets the setΓ. After this meeting, the phase point is mapped

to the pointx+ I (x), if x is the phase point just before the meeting, and continues its

motion along the trajectory ofx′ = f (x) with the initial point atx + I (x), and so on.

It is clear that the discontinuities of a solution of (1.3) also depend on the solution,

like in (1.2). This is one of the reasons why the theory of systems (1.2) and (1.3) have

not been addressed adequately until now. However, they havestarted to be noticed

by many scientists since they have a wide range of applications. In [6, 13], a method

has been introduced and developed to handle these systems. In the present study, we

intend to use these methods as well.

Here, our main system will be of the form (1.3). Needless to mention that while

studying this system, a new type of differential equation came up, which we call as

differential equations on variable time scales(DETCV). In the next section, we shall

provide the conventional differential equations on time scales as well as the DETC

(the ones that we introduced to deal with the DETCV).

1.2 An Overview of the Differential Equations on Time Scales

Some dynamic processes have been modeled by difference equations or differential

equations. As far as the modeling is concerned, the idea to involve both continuous

and discrete times to model a process is more realistic. For this reason, except for

impulsive differential equations, there exist another class of systems called dynamic

systems on time scales or measure chains [64]. The notion of time scales was in-

troduced by Aulbach and Hilger back in the 80’s [22, 51, 52]: the idea there was

to unify the discrete and continuous dynamics. Recently, many results in the the-

ory of discrete dynamics have been obtained as discrete analogs of the corresponding

results of continuous dynamics. However, in the discrete case, there are some topo-
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logical deficiencies, including lack of connectedness. Some assumptions have been

made to overcome these topological deficiencies. For the same purpose, we will be

using a special kind of time scale.

Any nonempty closed subset ofR is called a ‘time scale’, generally denoted byT. A

differential equation of the form

x∆(t) = f (t, x), t ∈ T, (1.4)

wherex∆(t) denotes the∆-derivative ofx at the pointt ∈ T, is called a ‘dynamic

equation on the time scaleT’.

The theory of dynamic equations on time scales (DETS) has been developed in the

last couple of decades [2, 29, 64]. After a literature surveyabout DETS, one can

conclude that there are not as many theoretical results on the existence of periodic

solutions and almost periodic solutions. To this date, the investigations concerning

linear DETS, integral manifolds, and the stability of equations have not been devel-

oped in full. It goes without saying that, such results need to be obtained so as to able

us to benefit from the applications of the theory. We also propose a method to obtain

such theoretical results, and to investigate differential equations on certain time scales

with transition conditions (DETC) which are, in a way, more general than DETS.

Here, effort is made to expand our knowledge of these aspects of the theory, and to

introduce a new class of differential equations on time scales. In fact, this class of

equations arises naturally when we solve the problem of Hopfbifurcation, which is

our main goal in this study.

The time scale that we consider in this thesis is of the form

Tc =

⋃

i∈Z

[t2i−1, t2i], (1.5)

wheretn,n ∈ Z, is a strictly increasing sequence such thattn → ±∞ asn→ ±∞. On

a time scale as in (1.5), the differential equation with transition conditions (DETC) is

defined as a system of the form

y′ = f (t, y), t ∈ Tc,

y(t2i+1) = y(t2i) + Ji(y(t2i)),
(1.6)

where f : Tc×Rn→ Rn, andJi : Rn→ Rn are continuous functions in their domains.

6



At the same time, we should recognize that significant theoretical results have been

achieved concerning oscillations, boundary value problems, positive solutions, hybrid

systems, etc. [1, 2, 20, 28, 29, 34, 37, 38, 41, 64, 65, 91]. We assume that our

proposals may initiate new ideas by which the theory can alsobe developed, thus

adding to the previous significant achievements in that direction.

The DETC will be discussed in the next chapter. The main idea in the investigation of

DETC is to apply the results of the theory of impulsive differential equations (IDE’s),

the investigation of which started in the late sixties of thelast century [43, 60, 85].

We note that certain classes of DETC, concerned with time scales, can be reduced to

IDE if we apply a special transformation [6] of the independent argument - the time

variable. This transformation allows the reduced IDE to inherit all similar properties

of the corresponding DETC. Then, the investigation of the IDEcan proceed using

the existing results. Finally, by taking into account the properties of the independent

argument transformation, we can have an interpretation of the obtained results for

the DETC. The approach we are using to connect the DETC with another type of

differential equations is close to that in paper [65], where hybrid systems on time

scales have been considered. Besides the DETC, in this study, we introduce the non-

linearity on time scales and consider, as we callthe variable time scales.

1.3 Basics of Center Manifold and Hopf Bifurcation

Roughly speaking, a bifurcation is a qualitative change in anattractor’s structure as

a control parameter is varied smoothly. For example, a simple equilibrium or fixed

point attractor might give way to a periodic oscillation as the stress on a system in-

creases. Similarly, a periodic attractor might become unstable and be replaced by a

chaotic attractor.

The bifurcation theory is the mathematical study of changesin the qualitative or topo-

logical structure of a given family. Examples of such families are the integral curves

of a family of vector fields or the solutions of a family of differential equations. Most

commonly applied to the mathematical study of dynamical systems, a bifurcation

occurs when a small smooth change made to the parameter values (the bifurcation
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parameters) of a system causes a sudden “qualitative” or topological change in its be-

havior. Bifurcations occur in both continuous systems (described by ODE’s, DDE’s

or PDE’s) and discrete systems (described by maps).

At times, bifurcations are divided into two principle classes. The first one is local

bifurcations, which can be analyzed entirely through changes in the local stability

properties of equilibria, periodic orbits or other invariant sets as parameters cross

through critical thresholds. The second one is global bifurcations, which often occur

when larger invariant sets of the system “collide” with eachother, or with the equilib-

ria of the system; these cannot be detected purely by a local stability analysis of the

equilibria (fixed points).

A local bifurcation occurs when a parameter change causes the stability of an equi-

librium (or fixed point) to change. In continuous systems, this corresponds to the

real part of an eigenvalue of an equilibrium passing throughzero. In discrete sys-

tems (those described by maps rather than ODE’s), this corresponds to a fixed point

having a Floquet multiplier with modulus equal to one. In both cases, the equilib-

rium is non-hyperbolic at the bifurcation point. The topological changes in the phase

portrait of the system can be confined to arbitrarily small neighborhoods of the bifur-

cating fixed points by moving the bifurcation parameter close to the bifurcation point

(hence, ‘local’).

Global bifurcations occur when ‘larger’ invariant sets, such as periodic orbits, collide

with the equilibria. This causes changes in the topology of the trajectories in the

phase space which cannot be confined to a small neighborhood,as is the case with

local bifurcations. In fact, the changes in topology extendout to an arbitrarily large

distance (hence, ‘global’).

Examples of global bifurcations include the following:

• Homoclinic bifurcation, in which a limit cycle collides with a saddle point;

• Heteroclinic bifurcation, in which a limit cycle collides with two or more saddle

points;

• Infinite-period bifurcation, in which a stable node and saddle point simultane-
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ously occur on a limit cycle; and

• Blue sky catastrophe, in which a limit cycle collides with a non-hyperbolic

cycle.

It deserves mentioning that global bifurcations can also involve more complicated

sets such as chaotic attractors.

Named after Eberhard Hopf and Aleksandr Andronov, a Hopf or Andronov-Hopf

bifurcation, is a local bifurcation. Here, a fixed point of a dynamical system loses

stability as a pair of complex conjugate eigenvalues of the linearization around the

fixed point cross the imaginary axis of the complex plane. Under reasonably generic

assumptions about the dynamical system, we can expect to seea small amplitude

limit cycle branching from the fixed point. This bifurcationwas studied by Poincaré

who, in his work on the gravitational three-body problem, obtained certain periodic

solutions. Later, though, Andronov and Hopf provided a moreexplicit discussion on

that issue.

One of the main methods of simplifying dynamical systems is to reduce the dimension

of the system. The center manifold theory is a rigorous mathematical technique that

makes this reduction possible, at least near the equilibria. Due to the power of this

theory in investigating systems, it became very popular, and attracted many scientists.

The history of center manifolds is very short, going back to 1960’s. The ideas for

center manifolds in finite dimensions have been developed byKelly (1967), Carr

(1981), Guckenheimer and Holmes (1983), Vanderbauwhede (1989), and others. For

recent developments in the approximation of center manifolds, see Jolly and Rosa

(2005). Pages 1-5 of the book by Li and Wiggins (1997) providean extensive list of

the applications of center manifold theory to infinite dimensional problems. Mielke

(1996) developed center manifold theory for elliptic partial differential equations, and

applied the theory to elasticity and hydrodynamical problems. Haken (2004), in turn,

investigated the applications to phase transitions in biological, chemical and physical

systems.

When a system loses stability, the number of eigenvalues and eigenvectors associated

with this change is typically small. Hence, bifurcation problems usually involve sys-
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tems where the linearization has a very large - and possibly infinite - dimensional sta-

ble part and a small number of “critical” modes which change from stable to unstable

as the bifurcation parameter exceeds a threshold. The central idea of the bifurcation

theory is that the dynamics of the system near the onset of instability is governed by

the evolution of these critical modes, while the stable modes follow in a passive fash-

ion and become ‘enslaved’. The center manifold theorem is the rigorous formulation

of this idea; it allows us to reduce a large problem to a small and manageable one.

Therefore, after the reduction on the center manifold, it becomes easier to investi-

gate the system since - in a local neighborhood of the fixed point - the quantitative

behavior of the reduced system is the same as that of the wholesystem.

In this study, we shall also utilize the center manifold theory to investigate the Hopf

bifurcation in a three-dimensional discontinuous dynamical system.

1.4 Description of B-equivalence Method

A challenge in investigating systems with discontinuitieson nonlinear surfaces is that

each solution has different moments of impulse effects, or discontinuities. In the

literature surrounding the object, many results can be found related to linear surfaces

of impulse actions [60, 63, 71, 84, 85, 86]. However, rarely can one see the works

containing nonlinearities on the surfaces. Although they are more realistic for real

world applications, many authors tend to avoid these systems due to this difficulty.

In [6, 11], the authors have introduced a new method to handlethis difficulty. There,

the so-called B-equivalence and B-topology have been proposed. This method is

a powerful tool to deal with the variable moments of impulse actions. Here, we

shall apply the method proposed for impulsive differential equations with variable

moments of impulses and, in Chapter 3, we will adopt this method to the differential

equations on variable time scales. Subsequently in Chapter 4, this method will be

applied to a system in three dimension and the Hopf bifurcation theorem will be

proved.
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Consider the systems

x′ = f (t, x), t , τi(x),

∆x|t=τi (x) = I i(x),
(1.7)

and

y′ = f (t, y), t , θi ,

∆y|t=θi = Ji(y),
(1.8)

where the hyper-surfacest = τi(x) are small perturbations of the hyper-planest = θi ,

and the functionsJi to be supplied in the thesis. Akhmet and Perestyuk [6, 11] have

shown that, corresponding to each solutionx(t, t0, x0) of (1.7) satisfyingx(t0, t0, x0) =

x0, there exists a solutiony(t, t0, x0) of (1.8) satisfyingy(t0, t0, x0) = x0 such that

these two solutions are the same for allt in their common domains except for the

ǫ-neighborhoods of the discontinuity points, and vice versa. In fact, a discontinuity

point of the solution of one system lies in anǫ-neighborhood of the corresponding

discontinuity point of the solution of the other system. In this study, we have adopted

this important technique to our system and, by means of this compelling material, we

have successfully obtained the required results.

1.5 A Transformation of the Independent Variable: ψ-substitution

It is common to simplify a given equation by a proper transformation in the theory

of differential equations. Likewise in this study, we use a transformation introduced

by Akhmet in [6] and developed in [19]. This is a transformation of the independent

variable and serves as a bridge in the passage from DETC, as in (1.6), to an IDE.

For a time scaleTc as in (1.5), on the setT′c = Tc \
⋃∞

i=−∞{t2i−1}, theψ-substitution is

defined as

ψ(t) =































t −
∑

0<t2k<t

δk, t ≥ 0

t +
∑

t≤t2k<0

δk, t < 0
, (1.9)

whereδk = t2k+1 − t2k. Notice that theψ-substitution is a one-to-one map,ψ(0) = 0,

and the structure of the sequence{tn} implies thatψ mapsT′c onto R. The inverse
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transformation is

ψ−1(s) =































s+
∑

0<sk<s

δk, s≥ 0

s−
∑

s≤sk<0

δk, s< 0
. (1.10)

Note that the inverse transformation is a piecewise continuous function with discon-

tinuity of the first kind at the pointss= si = ψ(t2i), i ∈ Z andψ−1(si+) − ψ−1(si) = δi .

The aim of theψ-substitution is to make the domain of the system (1.6) a connected

domain. Besides, it carries the significant properties of thefunction it is applied to.

For example, ifφ(s) is a periodic function onR, thenφ(ψ(t)) is a periodic function

on T′c, and vice versa. A number of properties of theψ-substitution will be given

throughout the thesis when necessary.

1.6 Motivation for the Main Study

For a motivation, let us consider how the idea of variable time scales emerged before

we begin with the main part of the thesis. The following planar system was considered

in [6]

dx
dt
= Ax+ f (x), x < Γ,

∆x|x∈Γ = B(x)x,
(1.11)

whereΓ = ∪p
i=1ℓi is a set of curves starting at the origin. Using polar coordinates, the

system is written in the form:

dr
dφ
= λr + P(r, φ), (r, φ) < Γ,

φ+ |(r,φ)∈ℓi= φ + θi + γ(r, φ),

r+ |(r,φ)∈ℓi= (1+ ki)r + ω(r, φ).

(1.12)

Denote byℓ′i the image ofℓi under the transition operatorΠi(φ, r) whereΠ1
i (φ, r) =

φ+ θi + γ(r, φ), andΠ2
i (φ, r) = (1+ ki)r +ω(r, φ). LetDi be the set bounded byℓ′i and

ℓi+1. In [6], it is shown that this set is non-empty, andℓ′i is betweenℓi andℓi+1 if the

equation is considered in a small neighborhood of the origin.
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DenotingT(r) =
⋃p

i=1Di , we have the following DETCV:

dr
dφ
= λr + P(r, φ), (φ, r) ∈ T(r),

φ+ = Π1
i (φ, r), r+ = Π2

i (φ, r), (φ, r) ∈ ℓi .

(1.13)

This equation is an example of a differential equation on a variable time scale. In

this study, we shall consider a generalization of this equation and prove the Hopf

Bifurcation Theorem for our system.

1.7 Organization of the Thesis

This dissertation has been arranged in the following way:

In Chapter 2, we introduce the differential equation with transition conditions on time

scales (DETC) and investigate it on the basis of reduction to the impulsive differen-

tial equations. We give the basic definitions on time scales and consider the basic

properties of linear systems, the existence and stability of periodic solutions.

Chapter 3 is devoted to differential equations on variable time scales (DETCV), and

contains the definition of a variable time scale, existence and uniqueness theorem for

DETCV, the method used to investigate the DETCV, existence of periodic solutions,

stability of solutions and finally bounded solutions. The results given in that chapter

will be used in our main study.

In Chapter 4, we consider the Hopf Bifurcation Theorem where weillustrate the

bifurcation of three-dimensional discontinuous cycles. Also proved in this chapter is

the existence of a center manifold. To demonstrate the work throughout the thesis,

each chapter contains a number of examples.

Finally, the last chapter is devoted to a conclusion.
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CHAPTER 2

DIFFERENTIAL EQUATIONS WITH TRANSITION

CONDITION ON TIME SCALES

In this chapter we investigate differential equations on certain time scales with tran-

sition conditions (DETC) on the basis of a reduction to the impulsive differential

equations (IDE). DETC are in some sense more general than dynamic equations on

time scales [29, 64]. Basic properties of linear systems, existence and stability of

periodic solutions are considered. Appropriate examples are given to illustrate the

theory.

2.1 Introduction

The theory of dynamic equations on time scales (DETS) has been developed in the

last several decades [2, 29, 64]. After a literature survey about DETS, one can con-

clude that there are not so many results of the theory on the existence of periodic

solutions. Up to this moment, the investigations concerning linear DETS, integral

manifolds and the stability of equations have not been fullydeveloped. Certainly,

these results should be obtained in order to benefit from the applications of the the-

ory. In this chapter, we make an attempt to expand our knowledge of these aspects

of the theory. We also propose a way to obtain these theoretical results. More-

over, we investigate differential equations on certain time scales with transition con-

ditions (DETC), which are in some sense more general than DETS. At the same

time, we should recognize that significant theoretical results concerning oscillations,

boundary value problems, positive solutions, hybrid systems etc., have been achieved
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[1, 2, 20, 28, 29, 34, 37, 38, 41, 64, 65, 91]. We assume that ourproposals may

stimulate new ideas by which the theory can also be developedadding to the previous

significant achievements in that direction. The main idea ofthe chapter is to apply

the results of the theory of impulsive differential equations (IDE) the investigation of

which started in the last century in the late 1960s [6, 11, 13,43, 60, 85]. We note

that certain classes of DETC, particular with their time scales, can be reduced to IDE,

if we apply a special transformation [6] of the independent argument (the time vari-

able). This transformation allows the reduced IDE to inherit all similar properties

of the corresponding DETC. Then the investigation of the IDE can proceed using the

known results. Finally, by taking the properties of the independent argument transfor-

mation into account, we can make an interpretation of the obtained results for DETC.

The approach we are using to connect the DETC with another type of differential

equations is close to that in the paper [65], where hybrid systems on time scales were

considered.

This chapter is organized as follows. In the next section thetime scale with its specific

properties is considered. Moreover, the general form of DETC is described. The

special transformation is given in Section 2.3. Reduction ofDETC to IDE is done

in Section 2.4. In Section 2.5, periodic solutions of linearequations and elements of

Floquet’s theory are considered also Massera theorem is proved. The last section of

this chapter is devoted to the problem of existence and stability of almost periodic

solutions.

2.2 Description of the Differential Equations with Transition Condition on Time

Scales

Throughout this chapter we consider a specific time scale of the following type. Fix

a sequence{ti} ∈ R such thatti < ti+1 for all i ∈ Z, and|ti | → ∞ as |i| → ∞. Denote

δi = t2i+1 − t2i , κi = t2i − t2i−1 and assume that:

(C0)
∑n

i=−∞ κi = ∞,
∑∞

i=m κi = ∞, for anyn,m ∈ Z.

The time scaleTc =
⋃∞

i=−∞[t2i−1, t2i], is going to be considered throughout this study.
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Consider the following system of differential equations

dy
dt
= f (t, y), t ∈ Tc,

y(t2i+1) = Ji(y(t2i)) + y(t2i),
(2.1)

where the derivative is one sided at the boundary points ofTc, f : Tc × Rn → Rn,

Ji : Rn → Rn, for all i ∈ Z. We assume that functionsf and Ji are continuous

on their respective domains. Let us introduce the followingtransition operator,Πi :

{t2i}×Rn→ {t2i+1}×Rn, i ∈ Z, such thatΠi(t2i , y) = (t2i+1, Ji(y)+y). Thus the evolution

of the process is described by:

1. the system of differential equations

dy
dt
= f (t, y), t ∈ Tc; (2.2)

2. the transition operatorΠi , i ∈ Z;

3. the setTc × Rn.

We shall call equation (2.1) thedifferential equation on time scales with transition

condition (DETC). Let us show how to construct a solution of (2.1). Denote, by

φ(t, κ, z), a solution of system (2.2) with an initial conditiony(κ) = z, κ ∈ Tc, z ∈ Rn,

and, byy(t), a solution of system (2.1) with an initial conditiony(t0) = y0. Fix t0 ∈ Tc

such thatt2k−1 < t0 < t2k for somek ∈ Z. If t0 ≤ t < t2k the solution is equal to

φ(t, t0, y0), andy(t2k) = φ(t2k−, t0, y0), where the left limit is assumed to exist. Now,

applying the transition operator, we obtain thaty(t2k+1) = Jk(y(t2k)) + y(t2k). Note that

the solution is not defined in the interval (t2k, t2k+1). Next, on the interval [t2k+1, t2(k+1))

the solution is equal toφ(t, t2k+1, y(t2k+1)), andy(t2(k+1)) = φ(t2(k+1)−, t2k+1, y(t2k+1)), and

so on. If solutiony(t) is defined on a setI ⊂ Tc, then the set{(t, y) : y = y(t), t ∈ I } is

called anintegral curveof the solution.

Let us start with the general information about differential equations on time scales.

We provide only those facts of the theory which directly concern our needs in this

chapter. More detailed description on the subject can be found in [2, 29, 64].

Any nonempty closed subset,T, of R is called a time scale. For instance,R (real

numbers),Z (integers),N (natural numbers) and{1n : n ∈ N} ∪ {0} are examples of
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time scales whileQ (rational numbers),R \Q (irrational numbers) and (0,1) are not

time scales [29, 64].

On a time scaleT, the functionsσ(t) := inf {s ∈ T : s > t} andρ(t) := sup{s ∈

T : s < t} are called the forward and backward jump operators, respectively. In case

when any of these sets is empty, that is, ifT is bounded above (below), this definition

is supplemented byσ(maxT) = maxT (ρ(minT) = minT). The point t ∈ T is

called right-scattered ifσ(t) > t, and right-dense ifσ(t) = t. Similarly, it is called

left-scattered ifρ(t) < t, and left-dense ifρ(t) = t. Note that on time scaleTc, the

points t2i−1, i ∈ Z, are left-scattered and right-dense, and the pointst2i , i ∈ Z, are

right-scattered and left-dense. Moreover, it is worth mentioning thatσ(t2i) = t2i+1,

ρ(t2i+1) = t2i , i ∈ Z, andσ(t) = ρ(t) = t for any othert ∈ Tc.

The∆-derivative of a continuous functionf , at a right-scattered point is defined as

f ∆(t) :=
f (σ(t)) − f (t)
σ(t) − t

,

and at a right-dense point it is defined as

f ∆(t) := lim
s→t

f (t) − f (s)
t − s

,

if the limit exists.

Let T be an arbitrary time scale. A functionϕ : T→ R is called rd-continuous if :

(i) it is continuous at each right-dense or maximalt ∈ T;

(ii) the left sided limitϕ(t−) = lim
ξ→t−

ϕ(ξ) exists at each left-denset.

Similarly, a functionϕ : T→ R is called ld-continuous if :

(i) it is continuous at each left-dense or minimalt ∈ T;

(ii) the right sided limitϕ(t+) = lim
ξ→t+

ϕ(ξ) exists at each right-denset.

An equation of the form

y∆(t) = f (t, y), t ∈ T, (2.3)

is said to be a differential equation on time scale [64], where functionf : T×Rn→ Rn

is assumed to be rd-continuous onT × Rn .
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In our specific case we denote, byT0, the set of all functions which are rd-continuous

onTc. Moreover, we define a set of functionsT 1
0 ⊂ T0 which are continuously differ-

entiable onTc, assuming that the functions have a one-sided derivative at the bound-

ary points ofTc, that is ifφ ∈ T 1
0, thenφ′ ∈ T 0.

2.3 Theψ-substitution

It is common to simplify a given equation by a proper transformation in every theory

of differential equations. Likewise, in this section, we introduce a transformation

which plays the role of a bridge in the passage from DETC, as in (2.1), to an IDE.

Without loss of generality, we assume thatt−1 < 0 < t0. Theψ-substitution, on the set

T′c = Tc \
⋃∞

i=−∞{t2i−1}, is defined as

ψ(t) =































t −
∑

0<t2k<t

δk, t ≥ 0

t +
∑

t≤t2k<0

δk, t < 0
(2.4)

whereδk = t2k+1 − t2k. Notice that theψ-substitution is a one-to-one map,ψ(0) = 0,

and the condition (C0) implies thatψ(T′c) = R. The inverse transformation is

ψ−1(s) =































s+
∑

0<sk<s

δk, s≥ 0

s−
∑

s≤sk<0

δk, s< 0
. (2.5)

Note that the inverse transformation is a piecewise continuous function with discon-

tinuity of the first kind at the pointss= si , i ∈ Z, andψ−1(si+) − ψ−1(si) = δi .

Lemma 2.3.1 ψ′(t) = 1 if t ∈ T′c.

Proof. Assume thatt ≥ 0. Then,

ψ′(t) = lim
h→0

ψ(t + h) − ψ(t)
h

= lim
h→0

1
h

































t + h−
∑

0<t2k<t+h

δk

















−

















t −
∑

0<t2k<t

δk

































= 1.
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The assertion fort < 0 can be proved similarly. �

Denotesi = ψ(t2i), i ∈ Z. To make the reduction of DETC to IDE, we also need the

following sets of functions. A functionϕ : R→ Rn is said to be inPC0 if :

(i) ϕ(s) is left continuous onR and continuous onR \
⋃∞

i=−∞{si};

(ii) ϕ(s) has discontinuities of the first kind at the pointssi .

Similarly, a functionϕ is said to be inPC1
0 if ϕ ∈ PC0 andϕ′ is inPC0 where

ϕ′(si) = lim
s→s−i

ϕ(s) − ϕ(si)
s− si

.

One can easily check thatψ−1 ∈ PC1
0, and d

ds(ψ
−1(s)) = 1 if s, si , i ∈ Z.

In the next lemma we show that the spaces of functionsT0 andPC0 are closely

related. This relation is set up byψ-substitution. In the same manner the relations

betweenT 1
0 andPC1

0 are going to be constructed. In what follows assume thats =

ψ(t).

Lemma 2.3.2 If ϕ ∈ T0 thenϕ ◦ ψ−1 ∈ PC0, andϕ ◦ ψ ∈ T0 if ϕ ∈ PC0.

Proof. Sinceψ is a one-to-one transformation we see that ift is not one of the points

tk, thenψ(t) is not one of the pointssi .Now, the continuity ofψ-substitution concludes

the proof. �

Corollary 2.3.3 If ϕ ∈ T 1
0 thenϕ ◦ ψ−1 ∈ PC1

0, andϕ ◦ ψ ∈ T 1
0 if ϕ ∈ PC1

0.

2.4 The Reduction to an Impulsive Differential Equation

From the definition of∆-derivative at a right-scattered point [64], we have

y∆(t2i) =
y(t2i+1) − y(t2i)

t2i+1 − t2i
, i ∈ Z,

and hence equation (2.3) can be written as

y′(t) = f (t, y), t ∈ Tc,

y(t2i+1) = f (t2i , y(t2i))δi + y(t2i),
(2.6)
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whereδi = t2i+1 − t2i .

We generalize the last equation if the specific termf (t2i , y(t2i))δi in (2.6) is replaced

by an expressionJi(y(t2i)), whereJi can be an arbitrary function.

Thus the following equation is considered

y′(t) = f (t, y), t ∈ Tc,

y(t2i+1) = Ji(y(t2i)) + y(t2i).
(2.7)

A

B C D

E

F
...

t
t

y

0

Figure 2.1: A trajectory of (2.7)

We name (2.7) as adifferential equation on time scale with transition conditionand

we abbreviate its name as DETC. In Figure 2.1, a trajectory of the system (2.7) is

shown. There, a solution starting at the initial pointA at the timet = t0 is sketched.

The solution moves along one of the trajectories ofy′ = f (t, y) until the timet = t2i

when it touches the next hyperplane at the point, sayB. At this moment a transition

is performed and the solution jumps to the pointC on the hyperplanet = t2i+1. This

transition is performed by means of the functionJi . In classical DETS, the transition

from the hyperplanet = t2i to the hyperplanet = t2i+1 is performed as follows: First,

the tangent line to the graph of the solution at the pointB is drawn, and then the

20



intersection point of this tangent line with the hyperplanet = t2i+1 is found. This

intersection is the point where the phase point will be afterthe transition. However, in

practice, this is not the case and the transition is done by a more general function, asJi

that we use in this study. Clearly, (2.6) is a specification of (2.7) withJi(y) = f (t, y)δi .

A functionϕ ∈ T 1
0 is a solution of (2.7) ifϕ′(t) = f (t, ϕ(t)) for t ∈ Tc, andϕ(t2i+1) =

Ji(ϕ(t2i)) + ϕ(t2i) for t = t2i+1, i ∈ Z.

Let us now apply the transformation of the independent argument to (2.7). Ify is a

solution of (2.7), thenx = y ◦ ψ−1 is a solution of the equationx′ = f (ψ−1(s), x) for

s , si . Moreover, if t = t2i+1, thens = ψ(t) = s+i , and hence, the second equation in

(2.7) leads to

x(s+i ) = Ji(x(si)) + x(si),

which can be written as

∆x|s=si
= Ji(x(si)),

where∆x|s=si
= x(s+i ) − x(si). Thus,x is a solution of the following IDE

x′ = f (ψ−1(s), x), s, si ,

∆x|s=si
= Ji(x(si)).

(2.8)

The connection between DETC (2.7) and IDE (2.8) is established. The solution

x(s), x(s0) = x0, (s0, x0) ∈ R × Rn, of (2.8) satisfies the following integral equation

x(s) = x0 +

∫ s

s0
f (ψ−1(ξ), x(ξ))dξ +

∑

s0≤si<s

Ji(x(s+i )), (2.9)

if s≥ s0, and

x(s) = x0 +

∫ s

s0
f (ψ−1(ξ), x(ξ))dξ −

∑

s≤si<s0

Ji(x(s+i )), (2.10)

if s< s0.

Let a,b be inTc such thata ≤ b. We denote

Tc(a,b) = [a, t2m] ∪
p−1
∑

k=m+1

[t2k−1, t2k] ∪ [t2p−1,b],

wherem andp are integers which satisfyt2m−1 ≤ a ≤ t2m < · · · < t2p−1 ≤ t ≤ t2p, and

for f ∈ T0 we set
∫

Tc(a,b)
f (τ)dτ :=

∫ t2m

a
f (τ)dτ +

∫ t2m+2

t2m+1

f (τ)dτ + · · · +
∫ b

t2p−1

f (τ)dτ.
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Now, the solution,y(t), y(t0) = y0, of (2.7), wheret0 = ψ−1(s0), satisfies

y(t) = y0 +

∫

Tc(t0,t)
f (τ, y(τ))dτ +

∑

t0≤t2i<t

Ji(y(t2i+1)), (2.11)

if t ≥ t0, and

y(t) = y0 −

∫

Tc(t,t0)
f (τ, y(τ))dτ −

∑

t≤t2i<t0

Ji(y(t2i+1)). (2.12)

if t < t0.

2.5 Linear Systems

In this section, we shall consider the linear differential equations with transition con-

ditions on time scales. The results of this section will be needed in the next section

where we investigate the existence of periodic solutions.

2.5.1 A Homogeneous Linear System

Let f (t, y) = A(t)y andJi(y) = Biy in (2.1), whereA(t) ∈ C(R,Rn×n) andBi ∈ Rn×n.

Consider the linear time scale differential equation

y′(t) = A(t)y, t ∈ Tc,

y(t2i+1) = Biy(t2i) + y(t2i).
(2.13)

By means ofψ-substitution, system (2.13) turns out to be the IDE

x′ = Ã(s)x, s, si ,

∆x|s=si
= Bi x,

(2.14)

where Ã(s) = A(ψ−1(s)). Since the solutions of system (2.14) form a linear space

of dimensionn [60, 85], andψ-substitution transforms only the time variable, the

solutions of (2.13) also form a linear space of the same dimension,n.

Let ej = (0, · · · ,0,1,0, · · · ,0)T be then-tuple whosej − th component is 1 and all

others are 0 and assume thatxj(s), xj(0) = ej , is a solution of (2.14) forj = 1, · · · ,n.

Then [85] for any other solutionx(s), x(0) = x0, of (2.14) we have

x(s) =
n

∑

j=1

cj xj(s), (2.15)
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where the coefficientscj are uniquely determined fromx0 =
∑n

j=1 cjej .

Now, forming the matriciantX(s) = [x1(s) x2(s) · · · xn(s)] of system (2.14), equal-

ity (2.15) can be written as

x(s) = X(s)x0.

If X(s, r) = X(s)X−1(r) is a transition matrix ofx′ = Ã(s)x then

X(s) =























































I , s= 0

X(s, sp)(I + Bp)
1

∏

k=p

X(sk, sk−1)(I + Bk−1)X(s0,0), s> 0

X(s, sl)(I + Bl)−1
−1
∏

k=l+1

X(sk−1, sk)(I + Bk)
−1X(s−1,0), s< 0

where fors> 0 we have assumed that 0< s0 < · · · < sp < s< sp+1 and fors< 0 that

sl−1 < s< sl < · · · < s−1 < 0.

On the other hand,ψ-substitution yields that a solutionyj(t), yj(0) = ej , is determined

by

yj(t) = xj(ψ(t)).

Hence, any solutiony(t), y(0) = y0, of (2.13) is given byy(t) = Y(t)y0 where the

matriciantY(t) is defined and determined by

Y(t) =























































I , t = 0

Y(t, t2p+1)(I + Bp)
1

∏

k=p

Y(t2k, t2k−1)(I + Bk−1)Y(t1,0), t > 0

Y(t, t2l)(I + Bl)−1
−1
∏

k=l+1

Y(t2k−1, t2k)(I + Bk)
−1Y(t−1,0), t < 0

in whichY(t, τ) = Y(t)Y−1(τ) is a transition matrix ofy′ = A(t)y and fort > 0 we

have assumed that 0≤ t2p+1 < t < t2(p+1) and fort < 0 thatt2l−1 < t < t2l ≤ 0.

2.5.2 A Non-homogeneous Linear System

Consider the system

y′(t) = A(t)y+ g(t), t ∈ Tc,

y(t2i+1) = Biy(t2i) +Wi + y(t2i),
(2.16)
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wherey ∈ Rn, A(t), Bi are as described for system (2.13),g(t) ∈ T0 and{Wi}, i ∈ Z, is

a sequence ofn-vectors.

Applying the transformationsy(t) = Y(t)u(t) ands= ψ(t) one can obtain

z′ = X−1(s)g̃(s), s, si ,

∆z|s=si
= X−1(s+i )Wi

(2.17)

wherez(s) = u(ψ−1(s)), g̃(s) = g(ψ−1(s)). The solution of (2.17) satisfyingz(s0) = z0

is

z(s) = z0 +

∫ s

s0
X−1(ξ)g̃(ξ)dξ +

∑

s0≤si<s

X−1(s+i )Wi , (2.18)

if s≥ s0, and

z(s) = z0 +

∫ s

s0
X−1(ξ)g̃(ξ)dξ −

∑

s≤si<s0

X−1(s+i )Wi , (2.19)

if s< s0. Consequently, the general solution of (2.16) is

y(t) = Y(t, t0)y0 +

∫

Tc(t0,t)
Y(t, τ)g(τ)dτ +

∑

t0≤t2i<t

Y(t, t2i+1)Wi , (2.20)

if t ≥ t0, and

y(t) = Y(t, t0)y0 −

∫

Tc(t,t0)
Y(t, τ)g(τ)dτ −

∑

t<t2i≤t0

Y(t, t2i+1)Wi , (2.21)

if t < t0.

2.5.3 Linear Systems with Constant Coefficients

Let A(t) ≡ A andBi ≡ B be constant matrices in (2.13) and consider the linear system

with constant coefficients

y′ = Ay, t ∈ Tc,

y(t2i+1) = By(t2i) + y(t2i),
(2.22)

whereA, B ∈ Rn×n. The following assumptions, for system (2.22), are needed:

(C1) the matricesA andB commute,AB= BA;

(C2) det(I + B) , 0;
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(C3) the limits

lim
t→∞

ψ(t) − ψ(t0)
t − t0

= ℓ, lim
t→∞

i(t0, t)
t − t0

= p

exist, wherei(t0, t) is the number of gaps, (t2k, t2k+1), in Tc betweent0 andt.

DenoteΛ0 = ℓA+ p ln(I + B).

Theorem 2.5.1 Let conditions(C0)− (C3) hold. Then the zero solution of (2.22) is

(a) asymptotically stable if the real parts of all eigenvalues of the matrixΛ0 are

negative;

(b) unstable if the real part of at least one eigenvalue of thematrixΛ0 is positive.

Proof. It is easily seen thatY(t, τ) = eA(t−τ) and hence, ift2m−1 ≤ t0 ≤ t2m < · · · <

t2n−1 ≤ t ≤ t2n, we get

Y(t, t0) = eA(t−t2n−1)(I + B)
m+1
∏

k=n−1

[

eA(t2k−t2k−1)(I + B)
]

eA(t2m−t0).

Condition (C1) impliesY(t, t0) = eA[ψ(t)−ψ(t0)](I +B)i(t0,t). Due to condition (C3) we can

write

ψ(t) − ψ(t0) = [ℓ + ǫ1(t)](t − t0), and, i(t0, t) = [p+ ǫ2(t)](t − t0)

whereǫ j(t) → 0 ast → ∞, j = 1,2. In general the functionsǫ j(t), j = 1,2, are

piecewise continuous functions.

Now, the solutiony(t), y(t0) = y0, of (2.22) is written asy(t) = eΛ(t)(t−t0)y0, where

Λ(t) = Λ0 + ǫ1(t)A+ ǫ2(t) ln(I + B) for t ≥ t0.

Assume that maxj Reλ j(Λ0) = γ < 0. The properties of functionsǫ j , j = 1,2, imply

that for a fixed positiveǫ there exists a sufficiently largeT > 0 such that ift ≥ T then

|ǫ j(t)| < ǫ, j = 1,2.

Therefore,

||y(t)|| ≤ K(ǭ)eκ(ǫ)(t−t0)e(γ+ǭ)(t−t0),

whereκ(ǫ) = ||ǫ1(t)A+ ǫ2(t) ln(I + B)||. Sinceγ < 0 andǫ, ǭ can be chosen so small

thatγ + ǭ + κ(ǫ) < 0, part (a) of the theorem is proved.
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Let λ0 be the eigenvalue ofΛ0, whose real part is positive, andy0 be a corresponding

eigenvector in a small neighborhood of the origin. We can obtain that

||y(t)|| ≥ e−κ(ǫ)(t−t0)eReλ0(t−t0)||y0||.

Since, Reλ0 > 0 we can chooseǫ > 0 so small that−κ(ǫ) + Reλ0 > 0, and the last

inequality completes the proof. �

Example 2.5.2 Let ti = i + (−1)iκ, 0 < κ ≤ 1
3, and consider the system

y′1 = αy1 − βy2,

y′2 = βy1 + αy2, t ∈ Tc,

y1(t2i+1) = (1+ k)y1(t2i),

y2(t2i+1) = (1+ k)y2(t2i),

(2.23)

whereβ is a positive real number and k> −1 is a constant. One can easily see

that the matrices A=



















α −β

β α



















and B =



















k 0

0 k



















commute with each other and

ℓ = 1
2 + κ, p =

1
2. Therefore, we have

Λ0 =



















(1
2 + κ)α +

1
2 ln(1+ k) −(1

2 + κ)β

(1
2 + κ)β (1

2 + κ)α +
1
2 ln(1+ k)



















which has eigenvaluesλ1,2 = (1
2 + κ)α +

1
2 ln(1 + k) ± (1

2 + κ)βi. Hence, the zero

solution of (2.23) is asymptotically stable if(1
2 + κ)α +

1
2 ln(1 + k) < 0, unstable if

(1
2 + κ)α +

1
2 ln(1+ k) > 0.

2.6 Periodic Solutions

2.6.1 Description of Periodic Time Scales

Definition 2.6.1 The time scaleTc is said to have anω-property if there exists a

numberω ∈ R+ such that t+ ω ∈ Tc whenever t∈ Tc.

From this definition, by simply using mathematical induction, we prove the following

lemma.
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Lemma 2.6.2 If Tc has anω-property then t+ nω ∈ Tc for all t ∈ Tc, n ∈ Z.

Definition 2.6.3 A sequence{ai} ⊂ R is said to satisfy an(ω, p)-property if there

exist numbersω ∈ R+ and p∈ N such that ai+p = ai + ω for all i ∈ Z.

Lemma 2.6.4 If t is a right-dense (respectively, left-dense) point ofTc which has an

ω-property, then t+ nω is also a right-dense (respectively, left-dense) point ofTc for

all n ∈ Z.

Proof. We will prove the statement just forn = 1, since the remaining part is an

obvious application of mathematical induction. Lett be a right-dense point. Then

σ(t + ω) = inf {s> t + ω : s ∈ Tc} = inf {s> t : s ∈ Tc} + ω

= σ(t) + ω = t + ω,

that is,t +ω is a right-dense point. Similarly, one can prove the lemma for left-dense

points. �

Corollary 2.6.5 If Tc has anω-property, then there exists p∈ N, such that the

sequences{t2i} and{t2i+1} satisfy(ω, p)-property.

Corollary 2.6.6 If Tc has anω-property, the sequence{δk}, is p-periodic, that is,

δk+p = δk for all k ∈ Z.

The next lemma assumes thatp0 is the minimal of these numbersp ∈ N in Corollary

2.6.6.

Lemma 2.6.7 If Tc has anω-property then the sequence{si}, si = ψ(t2i), is (ω̃, p0)-

periodic with

ω̃ = ω −
∑

0<t2k<ω

δk = ψ(ω).

That is, si+p0 = si + ω̃ for all i .
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Proof. Assume thati ≥ 0, i = np0 + j for somen ∈ Z, 0 ≤ j < p0 and 0< t0 < · · · <

t2(p0−1) < ω. Then

si+p0 = ψ(t2(i+p0)) = t2(i+p0) −
∑

0<t2k<t2(i+p0)

δk

= t2i + ω −
∑

0<t2k<t2i

δk −
∑

t2i≤t2k<t2(i+p0)

δk = ψ(t2i) + ω −
i+p0−1
∑

k=i

δk

= si + ω −

j+p0−1
∑

k= j

δk+np0 = si + ω −

j+p0−1
∑

k= j

δk = si + ω −

p0−1
∑

k=0

δk

= si + ω −
∑

0<t2k<ω

δk = si + ω̃,

where we have used the fact that

j+p0−1
∑

k= j

δk =

p0−1
∑

k= j

δk +

j+p0−1
∑

k=p0

δk =

p0−1
∑

k= j

δk +

j−1
∑

k=0

δk+p0

=

p0−1
∑

k= j

δk +

j−1
∑

k=0

δk =

p0−1
∑

k=0

δk.

All other cases can be proved similarly. �

Corollary 2.6.8 If Tc has anω-property, thenψ(t + ω) = ψ(t) + ψ(ω).

Denote the set of allT-periodic functions, defined on the setA ⊂ R, byPT(A).

Lemma 2.6.9 If φ ∈ Pω(Tc) andTc has anω-property, thenφ ◦ ψ−1 ∈ Pω̃(R) with

ω̃ = ψ(ω).

Proof. By Corollary 2.6.8,s+ ω̃ = ψ(t + ω). Then the equality

φ(ψ−1(s+ ω̃)) = φ(t + ω) = φ(t) = φ(ψ−1(s))

completes the proof. �

Similar to the proof of the last lemma the following assertion can easily be proved.

Lemma 2.6.10 If φ ∈ Pω̃(R), thenφ ◦ ψ ∈ Pω(Tc).
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2.6.2 The Floquet Theory

Consider

y′(t) = A(t)y+ f (t), t ∈ Tc,

y(t2i+1) = Biy(t2i) + Ji + y(t2i),
(2.24)

whereA, f ∈ Pω(Tc), sequencesBi andJi arep-periodic,Tc has anω-property, and let

Y(t), Y(0) = I , be the fundamental matrix solution of the corresponding homogeneous

system

y′(t) = A(t)y, t ∈ Tc,

y(t2i+1) = Biy(t2i) + y(t2i).
(2.25)

Recall that a solutiony(t), y(t0) = y0, of (2.24) is given by

y(t) = Y(t)y0 +

∫

Tc(0,t)
Y(t, τ) f (τ)dτ +

∑

0<t2i<t

Y(t, t2i+1)Ji .

Now, for this solution to beω-periodic, we needy(ω) = y(0) = y0, that is,

[I − Y(ω)]y0 = b (2.26)

where

b =
∫

Tc(0,ω)
Y(ω, τ) f (τ)dτ +

∑

0<t2i<ω

Y(ω, t2i+1)Ji . (2.27)

Definition 2.6.11 The eigenvalues,ρ j , of the matrix of monodromy, Y(ω), are called

Floquet multipliers (or simply multipliers) of system (2.24).

The following Theorems 16, 17, 18 can be proved as similar assertions for ordinary

differential equations.

Theorem 2.6.12 If ρ is a multiplier then there exists a nontrivial solution, y(t), of

(2.25) such that y(t +ω) = ρy(t). Conversely, if there exists a nontrivial solution, y(t),

of (2.25) such that y(t + ω) = ρy(t) thenρ is a multiplier.

Theorem 2.6.13System (2.25) has a kω-periodic solution if and only if there exists

a multiplier,ρ, such thatρk
= 1.
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Now, if we haveρ , 1 for all multipliers, then the system in (2.26) has a unique

solution: this may be stated as a theorem.

Theorem 2.6.14 If unity is not one of the multipliers, then (2.24) has a unique ω-

periodic solution, y(t), such that y(0) = y0 = [I − Y(ω)]−1b.

Now, we can write the matriciant,Y(t), in the Floquet form

Y(t) = Φ(t)ePψ(t)

whereΦ(t) = Y(t)e−Pψ(t), P = 1
ω̃

ln Y(ω), ω̃ = ψ(ω). Then

Φ(t + ω) = Y(t + ω)e−Pψ(t+ω)
= Y(t)Y(ω)e−Pψ(ω)e−Pψ(t)

= Y(t)e−Pψ(t)
= Φ(t)

and hence,Φ(t) is ω-periodic. From the definition ofΦ(t) we see that it is continu-

ously differentiable, bounded (because of its periodicity), and is nonsingular for all

t ∈ Tc. One can easily verify that the transformationy = Φ(t)u, transforms system

(2.25) into a system with constant coefficients

u′ = Pu, t ∈ Tc

u(t2i+1) = u(t2i),
(2.28)

where we have used

lim
t→t+2i+1

ψ(t) = ψ(t2i).

Definition 2.6.15 The eigenvalues,λ j , of the matrix, P= 1
ω̃

ln Y(ω), are called the

Floquet exponents (or simply exponents).

Similar to ODE, and applying the Floquet theory for IDE, [85], one can prove that

the following theorems are valid.

Theorem 2.6.16Let {λ j} be the exponents. Then the solutions of (2.25) are

(a) asymptotically stable if and only ifRe(λ j) < 0 for all j;

(b) stable ifRe(λ j) ≤ 0 for all j and λ j is simple whenReλ j = 0;
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(c) unstable if there exists an exponentλ j such thatRe(λ j) > 0.

Theorem 2.6.17Let {ρ j} be the multipliers. Then the solutions of (2.25) are

(a) asymptotically stable if and only if all multipliers lieinside the unit circle;

(b) stable if|ρ j | ≤ 1 for all j and ρ j is simple when|ρ j | = 1;

(c) unstable if there exists a multiplierρ j which lies outside the unit circle.

Example 2.6.18Let ti = iπ + (−1)i π4 and consider the system

y′1 = −y2 + f1(t),

y′2 = y1 + f2(t), t ∈ Tc,

y1(t2i+1) = (1+ k)y1(t2i),

y2(t2i+1) = (1+ k)y2(t2i),

(2.29)

where f1(t) = et−t2i−1, f2(t) = sin(t − t2i−1) for t2i−1 < t ≤ t2i and k∈ R is a constant. It

is easy to see that this system is2π-periodic and the matriciant of the corresponding

homogeneous system is

Y(t, τ) =



















cos(t − τ) − sin(t − τ)

sin(t − τ) cos(t − τ)



















and hence the matrix of monodromy is

Y(2π) = Y(2π,
3π
4

)(I + B)Y(
π

4
,0) =



















1+ k 0

0 1+ k



















.

Therefore, the multipliers areρ1,2 = 1 + k. Now, if k, 0 then, by Theorem (2.6.14),

the system in (2.29) has a unique2π-periodic solution and, by Theorem (2.6.17), this

periodic solution is asymptotically stable for−2 < k < 0, unstable for k< −2 or

k > 0, stable for k= −2.

2.6.3 The Massera Theorem

Let us consider the following analogue of the famous Masseratheorem [68].
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Theorem 2.6.19 If system (2.24) has a bounded solution y∗(t) on the set{t ∈ Tc : t ≥

0} then there exists a periodic solution of system (2.24).

Proof. Assume on the contrary that there exists no periodic solution. Lety∗(t), y∗(0) =

y0, be a bounded solution of (2.24), then

y∗(t) = Y(t)y0 +

∫

Tc(0,t)
Y(t)Y−1(τ) f (τ)dτ +

∑

0<t2i<t

Y(t)Y−1(t2i+1)Ji

andy∗(ω) = Y(ω)y0 + b whereb is as in (2.27). Now,x∗(s) = y∗(ψ−1(s)) is a solution

of

x′ = A(ψ−1(s))x+ f (ψ−1(s)), s, si

∆x|s=si
= Bi x+ Ji .

(2.30)

Sincex∗(s+ ω̃) = y∗(ψ−1(s+ ω̃)), ω̃ = ψ(ω), is also a solution of (2.30), it implies that

y∗(t + ω) is also a solution of (2.24).

Thus, we have

y∗(t + ω) = Y(t + ω)y0 +

∫

Tc(0,t+ω)
Y(t + ω)Y−1(τ) f (τ)dτ

+

∑

0<t2i<t+ω

Y(t + ω)Y−1(t2i+1)Ji

= Y(t)y∗(ω) +
∫

Tc(0,t)
Y(t)Y−1(τ) f (τ)dτ +

∑

0<t2i<t

Y(t)Y−1(t2i+1)Ji

and

y∗(2ω) = Y(ω)y∗(ω) + b = Y2(ω)y0 + Y(ω)b+ b.

Continuing in this way, by mathematical induction, we see that

y∗(nω) = Yn(ω)y0 +

n−1
∑

k=0

Yk(ω)b.

If there is noω-periodic solution, then the system [I − Y(ω)]y0 = b has no solution.

However, this means that there is a solution,c, of the system [I − Y(ω)]Ty = 0 such

that〈b, c〉 , 0. Thus,

〈y∗(nω), c〉 = 〈Yn(ω)y0 +

n−1
∑

k=0

Yk(ω)b, c〉 =

〈y0, [Y
n(ω)]Tc〉 +

n−1
∑

k=0

〈b, [Yk(ω)]Tc〉 = 〈y0, c〉 +
n−1
∑

k=0

〈b, c〉 = 〈y0, c〉 + n〈b, c〉
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which becomes unbounded asn→ ∞. On the other hand, sincey∗(t) is bounded, we

have

|〈y∗(nω), c〉| ≤ |y∗(nω)||c| ≤ M|c|

which contradicts with the previous equality. Hence, the proof is completed. �

Corollary 2.6.20 If system (2.24) does not have anω-periodic solution, then all so-

lutions of system (2.24) are unbounded on both{t ∈ Tc : t ≥ 0} and{t ∈ Tc : t < 0}.

2.7 Deduction

In this chapter, the connection between a specific type of differential equations on

time scales (DETC) and the impulsive differential equations is established. Some

benefits of this established connection include knowledge about properties of linear

DETC, the investigation of existence of periodic and almost periodic solutions and

their stability. We suppose that the problems of stability,oscillations, smoothness of

solutions, integral manifolds, theory of functional differential equations can be inves-

tigated applying our results. Another interesting opportunity is to analyze equations

with more sophisticated time scales.
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CHAPTER 3

DIFFERENTIAL EQUATIONS ON VARIABLE TIME SCALES

In this chapter, we introduce a class of differential equations onvariable time scales

with a transition condition between two consecutive parts of the scale. Conditions

for existence and uniqueness of solutions are obtained. Periodicity, boundedness,

stability of solutions are considered. The method of investigation is by means of two

successive reductions:B-equivalence of the system [4, 6, 11] on a variable time scale

to a system on a time scale, a reduction to an impulsive differential equation [6, 19].

Appropriate examples are constructed to illustrate the theory.

3.1 Introduction

In the last several decades, the theory of dynamic equationson time scales (DETS)

has been developed very intensively. For a full descriptionof the equations we refer

to the nicely written books [29, 64] and papers [65, 88]. The equations have a very

special transition condition for adjoint elements of time scales. To enlarge the field of

applications of the DETS, and to have more theoretical opportunities we, in [19], pro-

posed to generalize the transition operator, correspondingly to investigatedifferential

equations on time scales with the transition condition(DETC).

In our recent investigations [6], it was found that the idea of the equations can be

extended, if one: 1) involves in the discussion of certain union of separated sets in

the (t, x) space such that intersection of each linex =constant with the union is a time

scale in the sense of Hilger (we call these separated sets altogether as the variable

time scale); 2) introduces the differential equations, the domain of which are variable
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time scales. We call the systems as differential equations on variable time scales with

transition condition (DETCV). The present chapter is devoted to the development of

methods to study these systems, and some theoretical results are obtained. To give an

outline of the way of the study, we can shortly say that two consequent reductions are

in the base: (a) reduction of DETCV to DETC, usingB-equivalence method [4, 6, 11];

(b) the method ofψ-substitution [8, 19] to reduce DETC to impulsive differential

equations.

This chapter is organized as follows. The next section has detailed description of

variable time scales with examples. Section 3.3 describes the differential equations

on variable time scales. The existence and uniqueness of solutions andB-equivalence

andB-stability are considered in Sections 3.4 and 3.5. The description of the reduc-

tion process is given in Section 3.6. In the last two sections, we apply the procedure

to investigate periodic solutions and stability of an equilibrium position.

3.2 Description of a Variable Time Scale

In this section, we give, first, a general definition of a variable time scale, and next,

we describe a specific variable time scale, which will be usedto introduce DETCV.

Definition 3.2.1 A nonempty closed setT(x) in R × Rn is said to be a variable time

scale if for any x0 ∈ Rn the projection ofT(x0) on time axis, that is the set{t ∈ R :

(t, x0) ∈ T(x0)}, is a time scale in Hilger’s sense.

To illustrate this definition let us consider the following example.

Example 3.2.2 Let {r i}
∞
i=1 be an increasing sequence of positive real numbers such

that ri → ∞ as i→ ∞, and

Di = {(t, x) ∈ R × R : r2
2i−1 ≤ t2 + x2 ≤ r2

2i}.

Then, we define the variable time scale asT(x) =
⋃∞

i=1Di (See Figure 3.1).

For a fixed x0 ∈ R, there exists a smallest k such that r2k ≥ |x0|. Thus, we have

T(x0) =
∞
⋃

i=k

{(t, x0) : t ∈ R, r2
2i−1 ≤ t2 + x2

0 ≤ r2
2i}.
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Figure 3.1: An example of a variable time scale

The projection ofT(x0) on time axis is

Tc =

∞
⋃

i=k

([

−

√

r2
2i − x2

0,−

√

r2
2i−1 − x2

0

]

∪

[√

r2
2i−1 − x2

0,

√

r2
2i − x2

0

])

,

which is a time scale in Hilger’s sense.

The following variable time scale may be considered as another example. However,

it is an essential element in the definition of differential equations with transition

conditions on a variable time scale, discussed in this chapter. Fix a sequence{ti} ⊂ R

such thatti < ti+1 for all i ∈ Z, andti → ±∞ asi → ±∞. Denoteδi = t2i+1 − t2i , κi =

t2i − t2i−1 and take a sequence of continuous functionsτi : Rn→ R. Assume that:

(C4) for some positive numbersθ′, θ ∈ R, we haveθ′ ≤ ti+1 − ti ≤ θ for all i ∈ Z;
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(C5) there existsℓ0,0 < 2ℓ0 < θ
′, such that‖τi(x)‖ ≤ ℓ0 for all x ∈ Rn, i ∈ Z.

Denote

l i := inf
x∈Rn
{ti + τi(x)}, r i := sup

x∈Rn
{ti + τi(x)}. (3.1)

From (C4) and (C5) it follows that there exist positive numbersθl andθr such that

(C4′) θl ≤ l i+1 − r i ≤ θr , i ∈ Z.

We set

Ei = {(t, x) ∈ R × Rn : t2i + τ2i(x) < t < t2i+1 + τ2i+1(x)},

Si = {(t, x) ∈ R × Rn : t = ti + τi(x)},

Di = {(t, x) ∈ R × Rn : t2i−1 + τ2i−1(x) ≤ t ≤ t2i + τ2i(x)}.

(3.2)

Due to (C4′), none ofDi is empty and we introduce the set

T0(x) :=
∞
⋃

i=−∞

Di . (3.3)

In the previous chapter, we considered a special time scaleTc =
⋃∞

i=−∞[t2i−1, t2i];

however, now, we have the setT0(x). It seems reasonable to call the latter asthe

variable time scale, and in our study we are going to use, for sets of typeTc, the term

non-variable time scalesto emphasize the difference.

For the convenience of the reader let us consider the following example.

Example 3.2.3 Let ti = πi, τi(x) = sin(‖x‖)
‖x‖2+|i|+1 where‖x‖ =

√

x2
1 + · · · + x2

n is the Eu-

clidean norm of x= (x1, · · · , xn) ∈ Rn. Then, we have

l i = πi −
1

√

(c2
i + |i| + 1)2 + 4c2

i

, r i = πi +
1

√

(c2
i + |i| + 1)2 + 4c2

i

where the number ci > 0 is the smallest real number which satisfies the equation

tan(ci) = (c2
i + |i| + 1)/(2ci). Thus, forθl =

π
2 andθr = π, we see that (C4) is satisfied

and

Di = {(t, x) ∈ R × Rn : t2i−1 + τ2i−1(x) ≤ t ≤ t2i + τ2i(x)} .

Then, the variable time scale could be established as in (3.3).
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3.3 Differential Equations on Variable Time Scales

In what follows, we introduce a special operator which playsan important role in

describing the differential equations on variable time scales as well as methods for

investigation of these equations through the reduction to impulsive differential equa-

tions.

Let us consider a transition operatorΠi : S2i → S2i+1, for all i ∈ Z, such thatΠi(t, y) =

(Π1
i (t, y),Π2

i (t, y)) whereΠ1
i : S2i → R andΠ2

i : S2i → Rn, and

Π
1
i (t, y) = t2i+1 + τ2i+1(Π

2
i (t, y)) and Π

2
i (t, y) = I i(y) + y, (3.4)

whereI i : Rn → Rn is a function. One can easily see thatΠ1
i (t, y) is the time coordi-

nate of (t+, y+) := Πi(t, y), the image of (t, y) ∈ S2i under the operatorΠi , andΠ2
i (t, y)

is the space coordinate of the image.

The differential equation which we are going to deal with is:

y′ = F(t, y), (t, y) ∈ T0(y),

t+ = Π1
i (t, y), y+ = Π2

i (t, y), (t, y) ∈ S2i ,
(3.5)

where the derivative at the boundary points of the variable time scale in (3.5) is one-

sided derivative andF : T0(y)→ Rn is assumed to be continuous on its domain.

We call (3.5)a differential equation on a variable time scale with transition condition

and abbreviate it as DETCV.

To describe the solutions of differential equations with transition conditions on a vari-

able time scale carefully, we begin the definition withthe graphof a solution of (3.5).

Accordingly, we start with the following construction. Consider a piece-wise curveC

such that:

1. C lies inT0(y);

2. the part ofC in eachDi , i ∈ Z, is a continuous arc;

3. if C has points inD j andD j+1 for some fixedj ∈ Z, thenC intersects each of

the surfacesS2 j andS2 j+1 exactly once;

4. C intersects each hyperplanet = θ, θ ∈ R, at most at one point.
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The curve can be viewed as the graph of a piece-wise functiony = ϕ(t). Let t = αi

andt = βi be the moments that the graph ofy = ϕ(t) intersects the surfacesS2i−1 and

S2i , respectively, where the surfaces are defined previously. From (C4) and (C5) or

(C4’) it is easily seen thatαi < βi for all i ∈ Z. Then, we set the non-variable time

scale

Tϕ
c :=

∞
⋃

i=−∞

[αi , βi],

which is the domain ofϕ, and define the∆-derivative as given in the previous chapter.

That is, fort = βi , we have

ϕ∆(βi) =
ϕ(αi+1) − ϕ(βi)

αi+1 − βi
,

and

ϕ∆(t) = lim
s→t

ϕ(s) − ϕ(t)
s− t

,

for any othert ∈ T
ϕ
c , whenever the limit exists.

Thus, to define a DETCV, we need:

1. the variable time scaleT0(y) =
⋃∞

i=−∞Di;

2. the system of differential equations

dy
dt
= F(t, y), (t, y) ∈ T0(y); (3.6)

3. the transition operatorΠi : S2i → S2i+1, i ∈ Z.

Setting∆t := t+ − t and∆y := y+ − y, we can rewrite (3.5) as

y′ = F(t, y), (t, y) ∈ T0(y),

∆t|(t,y)∈S2i
= Π

1
i (t, y) − t,

∆y|(t,y)∈S2i
= Π

2
i (t, y) − y.

(3.7)

The class of equations is important as it can be reduced from the discontinuous dy-

namics [6]. Particularly, they are needed to develop the center manifold theory of

these equations, and, consequently, the Hopf bifurcation theory which will be cov-

ered in the next chapter.
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Let us show how to construct a solution of (3.5), or equivalently of (3.7). Denote by

φ(t, κ, η) a solution of the initial value problemy(κ) = η for system

dy
dt
= F(t, y), (3.8)

and y = y(t, t0, y0) a solution of the initial value problemy(t0) = y0 for the sys-

tem (3.5). Assume that (t0, y0) is an interior point ofDk for somek ∈ Z. We con-

struct the solution for increasingt. The process of definition ofy(t) goes as fol-

lows: starting from (t0, y0), the solution is equal toy(t) = φ(t, t0, y0) up to a point

(βk, y(βk)),whereβk is the first from the left solution of the equationβ = t2k+τ2k(y(β)),

that is the first meeting point of the solutionφ(t, t0, y0) with the surfaceS2k, and

yk := y(βk) = φ(βk, t0, y0). Then, applying the transition operatorΠk, we obtain

(β+k , y
+

k ) =
(

Π
1
k(βk, yk),Π2

k(βk, yk)
)

. Denoteαk+1 = Π
1
k(βk, yk). After αk+1, there is no

meeting of the solution withS2k+1. (A sufficient condition which ensures this fact

will be given later.) The solution is not defined on the time interval (βk, αk+1). Next,

onDk+1 the solution is equal toy(t) = φ(t, αk+1, y+k ) and so on (See Figure 3.2).

The way of investigation of DETCV has not been considered yet,except for the short

episode in [6]. So, in what follows, we consider a quasilinear system as it is conve-

nient to develop the methods of reductions proposed in [6, 11, 19]. That is, we shall

assumeF(t, y) andI i(y) in a special form:F(t, y) = A(t)y+ f (t, y), I i(y) = Biy+ Ji(y)

whereA(t) : R → Rn×n is ann × n continuous real valued matrix-function,Bi is an

n × n matrix, functionsf (t, y) : T0(y) → Rn and Ji(y) : Rn → Rn are continuous.

Thus, the system which we will consider is:

y′ = A(t)y+ f (t, y), (t, y) ∈ T0(y),

∆t|(t,y)∈S2i
= Π

1
i (t, y) − t,

∆y|(t,y)∈S2i
= Π

2
i (t, y) − y,

(3.9)

whereΠ1
i (t, y) = t2i+1 + τ2i+1(Π2

i (t, y)) andΠ2
i (t, y) = Biy+ Ji(y) + y.

Example 3.3.1 The following planar system was considered in[6]:

dx
dt
= Ax+ f (x), x < Γ,

∆x|x∈Γ = B(x)x,
(3.10)

whereΓ =
⋃p

i=1 ℓi is a set of curves starting at the origin and which are defined bythe
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Figure 3.2: A solution of a differential equation on a variable time scale.

equations〈ai , x〉 + τi(x) = 0, i = 1, p,

B(x) = (k+ κ(x))Q
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,

where the functions f, k, v are smooth, f(x) = o(‖x‖), κ(x) = o(‖x‖), υ(x) = o(‖x‖),

τi(x) = o(‖x‖2), i = 1, p and Q is some nonsingular matrix. By using polar coordi-

nates, the system is written in the form:

dr
dφ
= λr + P(r, φ), (r, φ) < Γ,

φ+ |(r,φ)∈l i= φ + θi + γ(r, φ),

r+ |(r,φ)∈l i= (1+ ki)r + ω(r, φ),

(3.11)

whereΓ is presented asℓi : φ = γi + rψi(r, φ), i = 1, p.

Denote byℓ′i the image ofℓi under the transition operatorΠi(φ, r) whereΠ1
i (φ, r) =

φ+ θi + γ(r, φ), andΠ2
i (φ, r) = (1+ ki)r +ω(r, φ), LetDi be the set bounded byℓ′i and
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ℓi+1. In [6], it is shown that this set is non-empty andℓ′i is betweenℓi and ℓi+1 if the

equation is considered in a small neighborhood of the origin.

DenotingT(r) =
⋃p

i=1Di , we have that one deals with the following DETCV:

dr
dφ
= λr + P(r, φ), (φ, r) ∈ T(r),

φ+ = Π1
i (φ, r), r+ = Π2

i (φ, r), (φ, r) ∈ ℓi .

(3.12)

Equations of the form (3.10) could be effectively applied as a model for the various

mechanical processes with impacts [31, 54, 56, 74, 94]. Thatis why, the last example

could be considered as a goodmotivation to investigate DETCV.

We are going to develop the theory starting with the present chapter and discuss such

problems as center manifold theorem, multidimensional Hopf bifurcation, in the next

chapter. We intend to investigate the problems using our approach to discontinuous

dynamical systems [6].

Summarizing all the materials discussed above, we could saythat there is a demand to

develop the Hilger’s differential equation on non-variable time scales to the differen-

tial equations on variable time scales of general type, as a particular case of DETCV.

For this reason, let us specify the transition operator in the previous part, assuming

Π
2
k(βk, y(βk)) = F(βk, y(βk))(αk+1 − βk) + y(βk), then (3.9) has a specified form

y∆ = F(t, y), (t, y) ∈ T0(y). (3.13)

The last system could be considered asthe differential equation on variable time scale

(DEVTS). We suppose that the theory of DEVTS should be developed as well as the

theory of DETS has been [29]. One can expect that many interesting problems con-

nected with topology of the variable time scale may appear. Some of these problems

are going to be discussed in this chapter.

3.4 Existence and Uniqueness of Solutions

Among the properties of a differential equation, the problem of existence and unique-

ness of solutions has great importance. In this section, we are going to investigate the

problem for (3.9) for increasingt.
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Remark 3.4.1 The continuation of the solution to the left can not be considered yet,

since the invertibility of the transition operatorΠi is not assumed.

Consider the following ordinary differential equation

dy
dt
= A(t)y+ f (t, y), (3.14)

where the matrixA(t) and the functionf (t, y) are the same as in (3.9). We will assume

that the following Lipschitz condition holds uniformly with respect tot ∈ R andi ∈ Z,

for arbitraryx, y ∈ Rn :

(C6) ‖τi(x) − τi(y)‖ + ‖Ji(x) − Ji(y)‖ + ‖ f (t, x) − f (t, y)‖ ≤ ℓ‖x− y‖.

Moreover, we assume that

(C7) supt∈R ‖ f (t,0)‖ + supi∈Z ‖Ji(0)‖ = M < ∞;

(C8) supt∈R ‖A(t)‖ + supi∈Z ‖Bi‖ = N < ∞;

(C9) M̃ℓ < 1, whereM̃ = sup(t,y)∈T0(y) ‖A(t)y+ f (t, y)‖.

Then, we have the following theorem.

Theorem 3.4.2 Assume that(C4)− (C9) hold and the function f is continuous. Then

for any(t0, y0) ∈ T0(y) the system

y′ = A(t)y+ f (t, y), (t, y) ∈ T0(y),

t+ = Π1
i (t, y), y+ = Π2

i (t, y), (t, y) ∈ S2i ,
(3.15)

with the initial condition y(t0) = y0, has a unique solution, y(t, t0, y0), which can be

continued to the right of t0, to∞.

Proof. For the following discussion, it is important that if (γ, yγ) ∈ T0(y), then there

exists an indexi ∈ Z such that (γ, yγ) ∈ Di , i ∈ Z. And hence, because of (C6) and

(C8), there exists a unique solution of the ordinary differential equation,

y′ = A(t)y+ f (t, y),

y(γ) = yγ,
(3.16)
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which is continuable toS2i , the right boundary surface ofDi [35, 49].

Assume that (t0, y0) ∈ Dk for somek ∈ Z. OnDk, we will consider (3.16) forγ = t0,

yγ = y0, which has the unique solutiony(t) = φ(t, t0, y0) defined throughoutDk. Let βk

be the first from left solution ofβ = t2k+ τ2k(y(β)). Then, by means of jump operators

we obtainαk+1 := Π1
k(βk, y(βk)) andy+k := Π2

k(βk, y(βk)).

Next, onDk+1, we consider the ordinary differential equation (3.16) with the initial

conditiony(αk+1) = y+k ,which has the unique solutionφ(t, αk+1, y+k ). Thus, the solution

is not defined on the time interval (βk, αk+1).

Assume that the solution intersects the surfaceS2k+1 at any other point, sayα∗k+1,

which is going to be a solution of the equation

α∗ = t2k+1 + τ2k+1(φ(α∗, αk+1, y
+

k )).

Clearly, we haveα∗k+1 > αk+1 and (C6) implies that

(α∗k+1 − αk+1)(1− ℓ sup
t∈[αk+1,α

∗
k+1]
‖A(t)φ(t, αk+1, y

+

k ) + f (t, φ(t, αk+1, y
+

k ))‖) ≤ 0

which yields a contradiction sincẽMℓ < 1. Therefore, the solution does not have any

other meeting point with the surfaceS2k+1. Hence, onDk+1, the unique solution is

obtained asφ(t, αk+1, y+k ). In this way, we can continue this solution to∞. �

3.5 B-Equivalence,B-Stability

A difficulty in investigating the system (3.9) is that the discontinuity moments of dis-

tinct solutions are not, in general, the same. To investigate the asymptotic properties

of solutions of (3.9), we introduce the following concepts.

In what follows, we are going to adopt, for DETCV, the techniques ofB- topology

andB-equivalence which were introduced and developed in [6, 11,44, 57, 89, 93] for

equations with impulses at variable moments of time.

Let u(t) = y(t, t0, y0) be a solution of (3.9) andh be a sufficiently small positive real

number such that the open neighborhood,B((t0, y0),h), centered at (t0, y0) with radius

h belongs toDk for somek ∈ Z. Let βu
i be the moment when the solutionu(t) meets
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the surfaceS2i , andαu
i+1 = Π

1
i (β

u
i , y(βu

i )), for i = k, k+ 1, · · · . We set the non-variable

time scale

Tu
t0 := [t0, βu

k] ∪
∞
⋃

i=k+1

[αu
i , β

u
i ].

Let v(t) = y(t, t1, y1) be another solution of (3.9) with (t1, y1) ∈ B((t0, y0),h) and letβv
i

be the moment when the solutionv(t) meets the surfaceS2i , andαv
i+1 = Π

1
i (β

v
i , y(βv

i )),

for i = k, k+ 1, · · · . We, similarly, define the non-variable time scale

Tv
t1 := [t1, βv

k] ∪
∞
⋃

i=k+1

[αv
i , β

v
i ].

Define the distance between two non-variable time scales,Tu
t0

andTv
t1
, by

d(Tu
t0,T

v
t1) = max

{

sup
i≥k+1
|αu

i − α
v
i |, sup

i≥k
|βu

i − β
v
i |

}

.

We say that two solutionsu andv are in anǫ-neighborhood of each other onTu
t0

and

Tv
t1

if:

(i) d(Tu
t0
,Tv

t1
) < ǫ;

(ii) |u(t) − v(t)| < ǫ for all t ∈ Tu
t0
∩ Tv

t1
.

The topology defined byǫ-neighborhoods of rd-continuous solutions will be called

B-topology. It is easily seen that it is a Hausdorff topology. Topologies and metrics

for spaces of discontinuous functions were introduced and developed in [6, 11, 57].

For anyα, β ∈ R we define the oriented interval ˆ[α, β] as

ˆ[α, β] =



















[α, β], if α ≤ β

[β, α], otherwise
. (3.17)

Consider the non-variable time scale

T0
c =

∞
⋃

i=−∞

[l2i−1, r2i], (3.18)

wherel i , r i , i ∈ Z, are as defined by (3.1) for the variable time scaleT0(y), and take

a continuationf̃ : T0
c × Rn → Rn of f : T0(y) → Rn which is Lipschitzian with the

same Lipschitz constantℓ.

SetTc :=
⋃∞

i=−∞[t2i−1, t2i]. We start with proving the following lemma.
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Lemma 3.5.1 There are mappings Wi(z) : Rn → Rn, i ∈ Z, such that, corresponding

to each solution y(t) of (3.9), there is a solution z(t) of the system

z′ = A(t)z+ f̃ (t, z), t , t2i ,

z(t2i+1) = Biz(t2i) +Wi(z(t2i)) + z(t2i),
(3.19)

such that y(t) = z(t) for all t ∈ Tc except possibly on ˆ[t2i−1, αi] and ˆ[βi , t2i] whereαi

andβi are the moments that y(t) meets the surfacesS2i−1 andS2i , respectively.

The functions Wi satisfy the inequality

‖Wi(z) −Wi(y)‖ ≤ k(ℓ)ℓ‖z− y‖, (3.20)

uniformly with respect to i∈ Z, for all z, y ∈ Rn such that‖z‖ ≤ h and‖y‖ ≤ h; here

k(ℓ) = k(ℓ,h) is a bounded function.

Remark 3.5.2 We say that systems (3.9) and (3.19) are B-equivalent.

Proof. Fix i ∈ Z. Let z(t) be the solution of (3.9) such thatz(t2i) = z, and assume that

αi andβi are solutions ofα = t2i−1 + τ2i−1(z(α)), andβ = t2i + τ2i(z(β)), respectively.

Let z1(t) be the solution of the system

dz
dt
= A(t)z+ f̃ (t, z) (3.21)

with the initial conditionz1(αi+1) = Π2
i (βi , z(βi)).

We first note thatz1(αi+1) = (I + Bi)z(βi) + Ji(z(βi)). Moreover, fort ∈ ˆ[t2i , βi],

z(t) = z(t2i) +
∫ t

t2i

[

A(s)z(s) + f̃ (s, z(s))
]

ds, (3.22)

and fort ∈ ˆ[αi+1, t2i+1],

z1(t) = z1(αi+1) +
∫ t

αi+1

[

A(s)z1(s) + f̃ (s, z1(s))
]

ds

= (I + Bi)z(βi) + Ji(z(βi)) +
∫ t

αi+1

[

A(s)z1(s) + f̃ (s, z1(s))
]

ds

= (I + Bi)

{

z(t2i) +
∫ βi

t2i

[

A(s)z(s) + f̃ (s, z(s))
]

ds

}

+Ji(z(βi)) +
∫ t

αi+1

[

A(s)z1(s) + f̃ (s, z1(s))
]

ds. (3.23)
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Thus, we set

Wi(z) = (I + Bi)
∫ βi

t2i

[

A(s)z(s) + f̃ (s, z(s))
]

ds+ Ji(z(βi))

+

∫ t2i+1

αi+1

[

A(s)z1(s) + f̃ (s, z1(s))
]

ds. (3.24)

Substituting (3.24) in (3.19), we see thatWi(z) satisfies the first conclusion of the

lemma. Figure 3.3 illustrates the procedure of the construction of Wi(z).

t

x

t t2i 2i+1

D D2i 2i+1

S S
2i 2i+1

z

Wi (z)

αβ i i+1

Figure 3.3: The construction ofWi .

We next prove (3.20). Let‖z(t2i)‖ ≤ h. By employing integrals (3.22) and (3.23), we

find that the solutionsz(t) andz1(t) determined above satisfy the inequalities‖z(t)‖ ≤

H and‖z1(t)‖ ≤ H on ˆ[βi , t2i] and ˆ[αi+1, t2i+1], where

H =
[

M(1+ ℓ) + (1+ N + ℓ)(h+ Mℓ)eNℓ+ℓ2]

eNℓ+ℓ2
.

Let y(t) be the solution of (3.9) such thaty(t2i) = y, and assume that ¯αi and β̄i are

solutions ofᾱ = t2i−1 + τ2i−1(y(ᾱ)), and β̄ = t2i + τ2i(y(β̄)), respectively. Lety1(t)

be the solution of (3.21) with the initial conditiony1(ᾱi+1) = Π2
i (β̄i , y(β̄i)). Without

loss of any generality, we assume thatβ̄i ≥ βi and ᾱi+1 ≤ αi+1. Application of the

Gronwall-Bellman lemma shows that, fort ∈ ˆ[βi , t2i],

‖z(t) − y(t)‖ ≤ e(N+ℓ)ℓ‖z− y‖. (3.25)
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The equation,

y(β̄i) = y(βi) +
∫ β̄i

βi

[

A(s)y(s) + f̃ (s, y(s))
]

ds (3.26)

gives us

‖y(β̄i) − y(βi)‖ ≤ (NH + ℓH + M)(β̄i − βi). (3.27)

Thus, we obtain

‖z(βi) − y(β̄i)‖ ≤ e(N+ℓ)ℓ‖z− y‖ + (NH + ℓH + M)(β̄i − βi). (3.28)

Now, condition (C6) together with (3.28) leads to

β̄i − βi ≤
ℓe(N+ℓ)ℓ

1− ℓ(NH + ℓH + M)
‖z− y‖. (3.29)

Hence (3.28) becomes

‖z(βi) − y(β̄i)‖ ≤
e(N+ℓ)ℓ

1− ℓ(NH + ℓH + M)
‖z− y‖. (3.30)

On the other hand,

y1(αi+1) = y1(ᾱi+1) +
∫ αi+1

ᾱi+1

[

A(s)y1(s) + f̃ (s, y1(s))
]

ds (3.31)

gives us

‖y1(αi+1) − y1(ᾱi+1)‖ ≤ (NH + ℓH + M)(αi+1 − ᾱi+1). (3.32)

Using the transition operators and (3.30) we get,

‖z1(αi+1) − y1(ᾱi+1)‖ ≤
(1+ N + ℓ)e(N+ℓ)ℓ

1− ℓ(NH + ℓH + M)
‖z− y‖. (3.33)

Condition (C6) and (3.33) imply that

αi+1 − ᾱi+1 ≤
ℓ(1+ N + ℓ)e(N+ℓ)ℓ

1− ℓ(NH + ℓH + M)
‖z− y‖. (3.34)

From (3.32), (3.33) and (3.34) we obtain

‖z1(αi+1) − y1(αi+1)‖ ≤ H1e
(N+ℓ)ℓ‖z− y‖. (3.35)

whereH1 = (1+N+ ℓ)[1+ ℓ(NH+ ℓH +M)]/[1− ℓ(NH+ ℓH +M)]. Solutionsz1(t)

andy1(t) on ˆ[αi+1, t2i+1] satisfy the inequality

‖z1(t) − y1(t)‖ ≤ H1e
2(N+ℓ)ℓ‖z− y‖. (3.36)
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Now, subtracting the expression

Wi(y) = (I + Bi)
∫ β̄i

t2i

[

A(s)y(s) + f̃ (s, y(s))
]

ds+ Ji(y(β̄i))

+

∫ t2i+1

ᾱi+1

[

A(s)y1(s) + f̃ (s, y1(s))
]

ds. (3.37)

from equation (3.24), and using equations (3.25), (3.29), (3.34) and (3.36), we con-

clude that equation (3.20) holds. This proves the lemma. �

Definition 3.5.3 A solution y(t) is said to be B-stable, if for arbitraryǫ > 0, there is

δ > 0 such that a solutionϕ(t) for which‖ϕ(t0) − y(t0)‖ < δ is in theǫ-neighborhood

of y(t) onT
y
t0

andT
ϕ

t0
.

Definition 3.5.4 A B-stable solution y(t) is called B-asymptotically stable, if there is

δ > 0 such that for arbitraryǫ > 0, there isθ > t0 such that a solutionϕ(t) for which

‖ϕ(t0) − y(t0)‖ < δ is in theǫ-neighborhood of y(t) onT
y
θ

andT
ϕ

θ
.

3.6 Reduction to an Impulsive Differential Equation

Previously we have shown that a differential equation on a variable time scale is

B-equivalent to a corresponding differential equation on a non-variable time scale.

Now, we are going to reduce (3.19), which isB-equivalent to (3.9), into a system of

impulsive differential equations.

Now, using the substitution of the independent variable (that is, theψ-substitution) in

(3.19) and lettingx(s) = z(ψ−1(s)), we obtain, fort , t2i ,

x′ = A(ψ−1(s))x+ f̃ (ψ−1(s), x(s)),

and, fort = t2i , we get

x(s+i ) = z(t2i+1)

= (I + Bi)z(t2i) +Wi(z(t2i))

= (I + Bi)x(si) +Wi(x(si)).

Thus, the second equation in (3.19) leads to,

∆x |s=si= Bi x(si) +Wi(x(si)),
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where∆x |s=si= x(s+i ) − x(si). Hence,x(s) is a solution of the impulsive differential

equation:

x′ = A(ψ−1(s))x+ f̃ (ψ−1(s), x(s)), s, si ,

∆x |s=si= Bi x(si) +Wi(x(si)).
(3.38)

It is known that, a solution of (3.38) satisfyingx(s0) = x0, for s≥ 0 is given by

x(s) = X(s, s0)x0 +

∫ s

s0
X(s, ξ) f̃ (ψ−1(ξ), x(ξ)dξ

+

∑

s0≤si<s

X(s, s+i )Wi(x(s+i )), (3.39)

whereX(s, s0) = X(s)X−1(s0) andX(s) is defined by

X(s) =































I , s= 0,

X(s, sp)(I + Bp)
1

∏

k=p

[X(sk, sk−1)(I + Bk−1)] X(s,0), s> 0,

in which X(s, r) = X(s)X−1(r) is a transition matrix ofx′ = A(ψ−1(s))x and it is

assumed that 0< s0 < · · · < sp < s< sp+1.

Now, using back substitution, we see that a solutiony(t), y(t0) = y0, of (3.19), for

t ≥ t0, is given by,

y(t) = Y(t, t0)t0 +
∫

T(t0,t)
Y(t, τ) f (τ, y(τ))dτ

+

∑

t0≤t2i<t

Y(t, t2i+1)Wi(t2i+1), (3.40)

whereY(t, t0) = Y(t)Y−1(t0) andY(t), for 0 < t0 < · · · < t2p+1 < t < t2p+2, is defined

by

Y(t) =































I , t = 0,

Y(t, t2p+1)(I + Bp)
1

∏

k=p

[

Y(t2k, t2k−1)(I + B2k−1)
]

Y(t,0), t > 0,

in which Y(t, τ) = Y(t)Y−1(τ) is a transition matrix ofy′ = A(t)y. The notation
∫

T(a,b)
f (τ)dτ was introduced in the previous chapter, [19].

Thus, instead of investigating system (3.9), we are going todeal with (3.19) which

turns out to an IDE, as in (3.38), afterψ-substitution.
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On the bases of the discussion in Sections 3.5 and 3.6, one mayconclude that the

method of investigation of DETCV may be realized as consecutive reductions: a)

using aB-equivalence method to get a DETC; and b) applying theψ-substitution to

DETC to obtain an IDE. We finalize the reductions with the interpretation of results

for the issue DETCV. Figure 3.4 illustrates the method.

DETCV

DETCIDE

Reduction

Reduction

Interpretation
(B-Equivalence)

(   -Substitution)y

Figure 3.4: The investigation method of DETCV

ψ

3.7 Periodic Systems

The variable time scaleT0(y) is said to satisfy an (ω, p)-property if (t ± ω, y) is in

T0(y) whenever (t, y) is. In this case, one can easily see that, there existsp ∈ N such

that the sequences{t2i−1} and{t2i} satisfy the (ω, p)-property, [19], andτi+p(y) = τi(y)

for all i ∈ Z.

Suppose now that (3.9) isω-periodic, i.e.T0(y) satisfies the (ω, p)-property,A(t) and

f (t, y) areω-periodic functions oft, and Bi+p = Bi , Ji+p(y) = Ji(y) uniformly with

respect toi ∈ Z.

Since (3.9) satisfies the conditions for the uniqueness of a solution, and is periodic it

can be shown that the following result holds.

Lemma 3.7.1 If (3.9) is periodic, then the sequence Wi(z) is p-periodic uniformly

with respect to z∈ Rn.

51



Hence (3.19) is also periodic.

Lemma 3.7.2 [19] If T0(y) satisfies an(ω, p)-property, thenψ(t +ω) = ψ(t) + ψ(ω).

Consider theω-periodic system

dz
dt
= A(t)z+ f (t), t , t2i ,

z(t2i+1) = Biz(t2i) +Wi + z(t2i),
(3.41)

and letZ(t) be the fundamental matrix of the corresponding homogeneous system,

dz
dt
= A(t)z, t , t2i ,

z(t2i+1) = Biz(t2i) + z(t2i).
(3.42)

Usingψ-substitution, systems (3.41) and (3.42) reduce to

du
ds
= A(ψ−1(s))u+ f (ψ−1(s)), s, si ,

∆u |s=si= Biu+Wi ,
(3.43)

and

du
ds
= A(ψ−1(s))u, s, si ,

∆u |s=si= Biu,
(3.44)

respectively, whereu(s) = z(ψ−1(s)).

According to [14], there is a piece-wise continuous Floquet-Lyapunov transformation

u = Φ(s)v reducing (3.43) to a system with a constant matrix. There is,therefore, a

constant nonsingular matrixS such that the transformation,u = Φ(s)S w, reduces

(3.43) to

dw
ds
= Λw+ g(s), s, si ,

∆w |s=si= I i ,
(3.45)

whereΛ = diag(Λ+,Λ−) is a constant matrix with Reλ j(Λ+) > 0 for j = 1,2, · · · ,m,

and Reλ j(Λ−) < 0 for j = m,m+ 1, · · · ,n,

Λ = S−1
Φ
−1(s)

[

A(ψ−1(s)) −
dΦ(s)

ds
Φ
−1(s)

]

Φ(s)S,

g(s) = S−1
Φ
−1(s) f (ψ−1(s)),

I i = S−1
Φ
−1(s+i )Wi .
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It is natural to callλ j = λ j(Λ) the characteristic indices andρ j = eλ j the characteristic

multipliers of (3.45), respectively [19, 85]. Similarly, we call the numbersλ j andρ j

the characteristic indices and characteristic multipliers of (3.42).

Lemma 3.7.3 If the real parts of the characteristic indices of (3.42) do not vanish,

then (3.41) has a uniqueω-periodic solution, which will be B-asymptotically stable

when all characteristic indices of (3.42) have negative realparts.

Proof. Let

G(s) =



















diag(exp(Λ+s),0), for s< 0,

diag(0,−exp(Λ−s)), for s> 0,

and letα = min
1≤ j≤n
|Reλ j(Λ)| + ǫ whereǫ is an arbitrary positive number. In this case, it

is known that there exists a numberK = K(ǫ) > 1, such that

‖G(s− r)‖ ≤ K exp(−α|s− r |), s, r ∈ R.

By using this inequality, it was shown in [11] that

w0(s) =
∫ ∞

−∞

G(s− r)g(r)dr +
∞
∑

−∞

G(s− si)I i

is anω̃-periodic solution of (3.45), for which

‖w0(s)‖ ≤ 2Km(α) max
{

max
s
‖g(s)‖,max

i
‖I i‖

}

,

m(α) =
1
α
+

exp(αθ)
1− exp(−αθ′)

.

Hence,u0(s) = Φ(s)S w0(s) is a periodic solution of (3.43) and, fors ∈ R, we have

‖u0(s)‖ ≤ 2Km1m(α) max
{

max
s
‖ f (ψ−1(s))‖,max

i
‖I i‖

}

,

wherem1 = maxs ‖Φ(s)S‖. Therefore,z0(t) = u0(ψ(t)) is a periodic solution of (3.41)

which satisfies the inequality,

‖z0(t)‖ ≤ 2Km1m(α) max

{

max
t∈Tc

‖ f (t)‖,max
i
‖I i‖

}

,

for t ∈ Tc. This proves the lemma. �

Now, letC = 2Km1m(α) and fixγ > 1. Let k(ℓ) = k(ℓ,h) be the function defined in

Lemma 3.5.1, forh = γCM. By applying Lemmas 3.7.1 and 3.7.3 and the successive-

approximation method, exactly as it was done in [11], we can prove the following

lemma.
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Lemma 3.7.4 Suppose that̃f (t, z),Wi(z) and τi(z) in (3.19) satisfy conditions (C6),

(C7) and (3.20). If all characteristic indices of system (3.42) have non-vanishing real

parts, then, whenℓC max{1, k(ℓ)} < (γ − 1)/γ, system (3.19) has a uniqueω-periodic

solution z0(t) such that‖z0(t)‖ ≤ h for t ∈ Tc.

The solutionz0(t) is B-asymptotically stable, if the real parts of all characteristic in-

dices of system (3.42) are negative.

On the bases ofB-equivalence, Lemmas 3.5.1, 3.7.4 and continuous dependence of

solution on initial data for ordinary differential equation, one can prove the following

theorem.

Theorem 3.7.5 Suppose that system (3.9) satisfies conditions (C4)-(C8) and is ω-

periodic. If the characteristic indices of system (3.42) have non-vanishing real parts,

then for a sufficiently small lipschitz constantℓ, system (3.9) has a uniqueω-periodic

solution, which is B-asymptotically stable when all characteristic indices of system

(3.42) have negative real parts.

Example 3.7.6 Let us consider the variable time scaleT0(y) constructed by ti = i,

τi(y) = (−1)iℓ sin(y), where y∈ R, 0 < ℓ < 1
2, and consider the 2-periodic system

y′ = ky+ cos(πt), (t, y) ∈ T0(y),

y+ = (p+ 1)y+ I ,

t+ = 2i + 1− ℓ sin(y),

(3.46)

with k, p, I ∈ R, I > 0. The system which is B-equivalent to (3.46) is

z′ = kz+ cos(πt), t , 2i,

z(2i + 1) = (p+ 1)z(2i) +Wi(z),
(3.47)

where

Wi(z) = (1+ p)
∫ βi

2i
[kz(s) + cos(πs)]ds+ I +

∫ 2i+1

αi+1

[kz(s) + cos(πs)]ds

= (1+ p)
∫ βi

2i
kz(s)ds+

∫ 2i+1

αi+1

kz(s)ds+ I +
(1+ p) sin(πβi) − sin(παi+1)

π

where z(t) is a solution of (3.46) satisfying z(2i) = z andαi and βi are solutions of

α = 2i − 1− ℓ sin(z(α)) andβ = 2i + ℓ sin(z(β)), respectively.
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The homogeneous system corresponding to (3.47) is

z′ = kz, t , 2i,

z(2i + 1) = (p+ 1)z(2i).
(3.48)

It is easily seen that for (3.46), the conditions (C4)-(C8) aresatisfied and

Z(2) = [(p+ 1)ek]

is the matrix of monodromy andλ = ln(p+1)+ k is the characteristic index of (3.48).

By Theorem 3.7.5, ifln(p + 1) + k , 0, then system (3.46) has a unique 2-periodic

solution which is B-asymptotically stable whenln(p+ 1)+ k < 0.

3.8 Stability of an Equilibrium

In this part, we are again going to consider the quasilinear system

y′ = A(t)y+ f (t, y), (t, y) ∈ T0(y),

t+ = Π1
i (t, y), y+ = Π2

i (t, y), (t, y) ∈ S2i ,
(3.49)

on the variable time scaleT0(y). However, this time, the condition for existence of a

Green’s function is replaced by a more general one, namely, exponential dichotomy,

[39]. Let

y′ = A(t)y, t , t2i ,

y(t2i+1) = Biy(t2i) + y(t2i),
(3.50)

be the homogeneous system corresponding to (3.49). Moreover, suppose that the

system which isB-equivalent to (3.49) is:

z′ = A(t)z+ f̃ (t, z), t , t2i ,

z(t2i+1) = Biz(t2i) +Wi(z(t2i)) + z(t2i).
(3.51)

Suppose that there arem- and (n − m)-dimensional hyperplanesY+(t) andY−(t) in

Tc × Rn such that ify(t) is a solution of (3.50) andy(t) ∈ Y+(t), then ‖y(t)‖ ≤

a1‖y(τ)‖exp(−γ1(t − τ)) , −∞ < τ ≤ t < +∞ and, if y(t) ∈ Y−(t) then ‖y(t)‖ ≥

a2‖y(τ)‖exp(γ2(t − τ)) , −∞ < τ ≤ t < +∞. Here,aj , γ j , j = 1,2 are positive con-

stants. If (3.50) satisfies these conditions, then we say that (3.50) isexponentially

dichotomous.
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In this case, using the inequalityψ(t) − ψ(τ) ≤ t − τ whenτ ≤ t, one can show that,

for the reduced impulsive linear system

x′ = A(ψ−1(s))x, s, si ,

∆x |s=si= Bi x(si),
(3.52)

wherex(s) = y(ψ−1(s)), si = ψ(t2i), there arem- and (n−m)-dimensional hyperplanes

X+(s) andX−(s) in R × Rn such that ifx(s) is a solution of (3.52) andx(s) ∈ X+(s),

then‖x(s)‖ ≤ a1‖x(r)‖exp(−γ1(s− r)) ,−∞ < r ≤ s < +∞ and, if x(s) ∈ X−(s), then

‖x(s)‖ ≥ a2‖x(r)‖exp(γ2(s− r)) ,−∞ < r ≤ s < +∞. Then, the linear system (3.52)

with impulse action is said to beexponentially dichotomous(e.d.) [39].

If (3.52) is e.d., then by applying the orthogonalization method to a given set of

linearly independent solutionsx1(s), x2(s), · · · , xn(s), we can construct a piecewise-

continuous Lyapunov-Schmidt transformationx = L(s)w reducing (3.52) to a block-

diagonal system [11], i.e., a system splitting into two systems:

dξ
ds
= P1(s)ξ, s, si , ∆ξ |s=si= Q1

i ξ, (3.53)

and

dη
ds
= P2(s)η, s, si , ∆η |s=si= Q2

i η, (3.54)

wherew = (ξ, η),with ξ anm-vector andη an (n−m)-vector. Corresponding to funda-

mental matricesX1(s, r) andX2(s, r) of (3.53) and (3.54), there are positive constants

a andγ such that

‖X1(s, r)‖ ≤ aexp(−γ(s− r)) , s≥ r,

and

‖X2(s, r)‖ ≤ aexp(γ(s− r)) , s≤ r.

Similarly, (3.49) can be reduced to the system

dξ
ds
= P1(s)ξ + f̃1(s,w), s, si ,

dη
ds
= P2(s)η + f̃2(s,w), s, si ,

∆ξ |s=si= Q1
i ξ(si) +W1

i (w(si)),

∆η |s=si= Q2
i η(si) +W2

i (w(si)),

(3.55)
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after applyingψ-substitution and Lyapunov-Schmidt transformation, successively.

Besides the conditions imposed before, suppose that (3.49) satisfies

f (t,0) = Ji(0) = 0 (3.56)

uniformly with respect tot ∈ Tc andi ∈ Z.

We investigate the stability of an equilibrium position of (3.49), first noting that (3.56)

impliesWi(0) = 0 for i ∈ Z.

It follows from Lemma 3.5.1,B-equivalence, and the continuous dependence of so-

lutions of (3.49) on initial data, that the following analogof the Lyapunov-Perron

theorem holds.

Theorem 3.8.1 Suppose that system (3.49) satisfies conditions (C4)-(C7) and(3.56),

and system (3.50) is e.d. Then, for a sufficiently small Lipschitz constantℓ, the equi-

librium position of (3.49) is conditionally asymptotically stable with respect to an

m-dimensional manifold of initial values containing the origin. If m = n, then the

zero solution of (3.49) is asymptotically stable.

Proof. By virtue of the reasoning given above, we consider the system(3.51) which

can be reduced to the form (3.55). We assume that the functions on the right side of

(3.55) satisfy conditions analogous to (C6), (C7) and (3.20) with the same constants.

Then, the integral-equation system

ξ = X1(s, s0)c+
∫ s

s0
X1(s, r) f̃1(r,w)dr +

∑

si<s

X1(s, si)W
1
i (w),

η = −

∫ ∞

s
X2(s, r) f̃2(r,w)dr −

∑

si>s

X2(s, si)W
2
i (w),

(3.57)

under the conditions

aℓ‖c‖(a+ ǫ)

[

2
γ2 − σ2

+
2

1− exp(−θ′(γ − σ))

]

< ǫ

and

2a

[

1
γ − σ

+
1

1− exp(−θ′(γ − σ))

]

< 1,
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whereǫ andσ are arbitrary fixed constants such thatǫ > 0 and 0< σ < γ, has a

solutionw(s) = w(s, s0, c) for which

‖w(s)‖ ≤ (a+ ǫ)‖c‖exp
(

−σ
(

s− s0
))

. (3.58)

If s= s0 in (3.57), then

ξ(s0, s0, c) = c

η(s0, s0, c) = −
∫ ∞

s0
X2(s

0, r) f̃2(r,w)dr −
∑

si>s0

X2(s
0, si)W

2
i (w(si)).

(3.59)

By using the customary method [85], we can easily show thatw(s) is also a solution

of (3.55). Hence, by virtue of (3.57) and (3.58), we concludethat (3.59) determines a

set of initial values of solutions of (3.55) tending to an equilibrium state whens→ ∞.

Since,B-equivalence andψ-substitution do not change the dimension of the manifold,

the theorem is proved. �

3.9 Bounded Solutions

Theorem 3.9.1 If conditions (C4)-(C8) are satisfied for system (3.49) and (3.50) is

e.d., then for a sufficiently small Lipschitz constantℓ, system (3.49) has a unique

solution, continuable to+∞ and−∞, uniformly bounded for all t, (t, y(t)) ∈ T0(y).

Proof. System (3.51) which isB-equivalent to (3.49) can be reduced to

x′ = A(ψ−1(s))x+ f̃ (ψ−1(s), x), s, si ,

∆x |s=si= Bi x(si) +Wi(x(si)),
(3.60)

by means ofψ-substitution, wherex(s) = z(ψ−1(s)). In [11], it was shown that for

h = νaM
{

1/γ +
[

exp(γθ)/(1− exp(−γθ′)
]}

, whereν > 1 is fixed, under the condition

ℓa

(

1
γ
+

k(ℓ) exp(γθ)
1− exp(−γθ′)

)

<
ν − 1
ν

,

the system (3.60) has a unique bounded solutionx0(s). Using the inverse substitu-

tion, we see thaty0(t) = x0(ψ(t)) is a bounded solution of (3.51), andB-equivalence

between (3.51) and (3.49) proves the theorem. �
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3.10 Deduction

In this chapter, we have introduced a new class of differential equations, differential

equations on variable time scales with transition conditions. These systems naturally

appear when we investigate discontinuous dynamics with non-fixed moments of im-

pulses. Consequently, our results will be needed to develop methods of investigation

of mechanical models with impacts. Particularly, interesting problems are related to

bifurcations [31, 54, 56, 94], chaos [54], etc. We are going to develop the theory of

introduced equations according to these demands.
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CHAPTER 4

BIFURCATION OF THREE-DIMENSIONAL

DISCONTINUOUS CYCLES

In this chapter, we consider three-dimensional discontinuous dynamical systems with

non-fixed moments of impacts. Existence of the center manifold is proved for the

system. The result is applied for the extension of the planarHopf bifurcation theorem

[6]. Illustrative examples are constructed for the theory.

4.1 Introduction

Dynamical systems are used to describe real world motions using differential (contin-

uous time) or difference (discrete time) equations. In the last several decades, the need

for discontinuous dynamical systems has been increased because they, often, describe

the model better when the discontinuous and continuous motions are mingled. This

need has made scientists to improve and develop the theory ofthese systems. Many

new results have arised. One must mention that namely systems with not prescribed

time of discontinuities were apparently first introduced for investigation of the real

world [58, 78], and this fact emphasizes very much the practical sense of the the-

ory. The problem is one of the most difficult and interesting subjects of investigations

[36, 40, 61, 62, 63, 72, 84]. It was emphasized in early stage of theory’s development,

[71].

In [6], the Hopf bifurcation for the planar discontinuous dynamical system has been

studied. Here, we extend this result to three-dimensional space based on the center

manifold. The advantage is that we use the method ofB−equivalence [5, 6, 19] as
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well as the results of time scales which are developed in [6, 19].

This chapter is organized as follows. In the next section, westart to analyze the non-

perturbed system. Section 4.3 describes the perturbed system. The center manifold is

given in Section 4.4. In Section 4.5, the bifurcation of periodic solutions is studied.

Seciton 4.6 is devoted to examples in order to illustrate thetheory. In the last section

a brief conclusion is given.

4.2 The Non-perturbed System

We shall consider inR3 the following dynamical system:

dx
dt
= Ax,

dz
dt
= b̂z, (x, z) < Γ0,

∆x |(x,z)∈Γ0= B0x,

∆z |(x,z)∈Γ0= c0z,

(4.1)

whereA, B0 ∈ R2×2, b̂, c0 ∈ R, Γ0 is a subset ofR3 and will be described below.

The phase point of (4.1) moves between two consecutive intersections with the setΓ0

along one of the trajectories of the systemx′ = Ax, z′ = b̂z. When the solution meets

the setΓ0 at the momentτ, the pointx(t) has a jump∆x |τ:= x(τ+) − x(τ) and the

pointz(t) has a jump∆z |τ:= z(τ+)− z(τ). Thus, we suppose that the solutions are left

continuous functions.

From now on,G denotes a neighborhood of the origin.

The following assumptions will be needed throughout this chapter:

(C10) Γ0 =
⋃p

i=1Pi , p ∈ N, wherePi = ℓi × R, ℓi are half-lines starting at the origin

defined by〈ai , x〉 = 0 for i = 1, · · · , p, ai
= (ai

1,a
i
2) ∈ R2 are constant vectors;

(C11) A =



















α −β

β α



















, whereβ , 0;

(C12) there exists a regular matrixQ ∈ R2×2 and nonnegative real numbersk andθ
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such that

B0 = kQ



















cosθ − sinθ

sinθ cosθ



















Q−1 −



















1 0

0 1



















.

For the sake of brevity, in what follows, every angle for a point or a line is considered

with respect to the half-line of the first coordinate axis inx−plane. Denoteℓ′i =

(I + B0)ℓi , i = 1, · · · , p. Let γi and ζi be the angles ofℓi and ℓ′i for i = 1, · · · , p,

respectively, and

B0 =



















b11 b12

b21 b22



















;

(C13) 0 < γ1 < ζ1 < γ2 < · · · < γp < ζp < 2π, and (b11+ 1) cosγi + b12 sinγi , 0 for

i = 1, . . . , p.

In Figure 4.1, the discontinuity set and a trajectory of the system (4.1) are shown.

The planesPi form the setΓ0 and eachP′i is the image ofPi under the transformation

(I + B)x.

The system (4.1) is said to be aD0− systemif conditions (C10)-(C13) hold. It is easy

to see that the origin is a unique singular point ofD0 − systemand (4.1) is not linear.

Let us subject (4.1) to the transformationx1 = r cosφ, x2 = r sinφ, z = z and ex-

clude the time variablet. The solution (r(φ, r0, z0), z(φ, r0, z0)) which starts at the point

(0, r0, z0) satisfies the following system in cylindrical coordinates:

dr
dφ
= λr,

dz
dφ
= bz, φ , γi (mod 2π),

∆r |φ=γi (mod 2π)= kir,

∆z |φ=γi (mod 2π)= c0z,

(4.2)

whereλ = α/β,b = b̂/β, the variableφ is ranged over the time scale

Rφ = R \

∞
⋃

i=−∞

p
⋃

j=1

(2πi + γ j ,2πi + ζ j]

and

ki =

[

((b11+ 1) cosγi + b12 sinγi)
2
+ (b21 cosγi + (b22+ 1) sinγi)

2
]1/2
− 1.
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Figure 4.1: The discontinuity set and a trajectory of (4.1)

Equation (4.2) is 2π−periodic, so, in what follows we shall consider just the section

[0,2π]. That is, the system

dr
dφ
= λr,

dz
dφ
= bz, φ , γi ,

∆r |φ=γi= kir,

∆z |φ=γi= c0z,

(4.3)

is provided for discussion, whereφ ∈ [0,2π]φ = [0,2π] \ ∪p
i=1(γi , ζi]. System (4.3)

is a sample of time-scale differential equation. Let us use theψ − substitution, ϕ =

ψ(φ) = φ −
∑

0<γ j<φ
θ j , θ j = ζ j − γ j , which was introduced and developed in [6, 19].

The range of this new variable is [0,2π −
∑p

i=1 θi].

It is easy to check that uponψ−substitution (4.3) reduces to the following impulsive
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equations:

dr
dϕ
= λr,

dz
dϕ
= bz, ϕ , ϕi ,

∆r |ϕ=ϕi= kir,

∆z |ϕ=ϕi= c0z,

(4.4)

whereϕi = ψ(γi). Solving (4.4) as an impulsive system [60, 86] and usingψ− substi-

tution one can obtain that a solution of (4.3) is of the form

r(φ) = exp

















λ

















φ −
∑

0<γi<φ

θi

















































∏

0<γi<φ

(1+ ki)

















r0, (4.5)

z(φ) = exp

















b

















φ −
∑

0<γi<φ

θi

















































∏

0<γi<φ

(1+ c0)

















z0, (4.6)

for φ ∈ [0,2π]φ. Denote

q1 = exp















λ















2π −
p

∑

i=1

θi





























p
∏

i=1

(1+ ki), (4.7)

q2 = exp















b















2π −
p

∑

i=1

θi





























p
∏

i=1

(1+ c0). (4.8)

Depending onq1 andq2 we may see that the following lemmas are valid.

Lemma 4.2.1 Assume that q1 = 1. Then, if

(i) q2 = 1 then all solutions are periodic with periodω =
(

2π −
∑p

i=1 θi

)

β−1;

(ii) q2 = −1 then a solution that starts to its motion on x1x2-plane isω-periodic

and all other solutions are2ω-periodic;

(iii) |q2| > 1 then a solution that starts to its motion on x1x2-plane isω-periodic

and all other solutions lie on the surface of a cylinder and they move away the

origin (i.e. zero solution is unstable);

(iv) |q2| < 1 then a solution that starts to its motion on x1x2-plane isω-periodic and

all other solutions lie on the surface of a cylinder and they move toward the

x1x2-plane (i.e. zero solution is stable).
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Lemma 4.2.2 Assume that q1 < 1. Then, if

(i) |q2| < 1 all solutions will spiral toward the origin, i.e., origin is anasymptoti-

cally stable fixed point;

(ii) |q2| > 1 a solution that starts to its motion on x-plane spirals towardthe origin

and a solution that starts to its motion on z-axis will move awayfrom the origin.

In this case the origin is half stable (or conditionally stable);

(iii) q2 = 1(q2 = −1) then a solution that starts to its motion on z-axis is periodic

with periodω(2ω) and all other solutions will approach to z-axis.

Lemma 4.2.3 Assume that q1 > 1. Then, if

(i) |q2| < 1 then origin is a stable focus;

(ii) |q2| > 1 then origin is an unstable focus;

(iii) q2 = 1(q2 = −1) then a solution that starts to its motion on z-axis is periodic

with periodω(2ω) and all other solutions will approach to z-axis.

We note that whenq2 = −1, (this meansz may be negative, too) the solutions start-

ing their motion out ofx1x2-plane, will move above and below thex1x2-plane. More

explicitly, if a solution starts to its motion above thex-plane, then after the time cor-

responding toω, it will be below thex-plane, and in the next duration corresponding

toω, it will try to move abovex-plane and at the end of that duration it will be above

thex-plane, and so on.

From now on, we assume thatq1 = 1 and|q2| < 1.
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4.3 The Perturbed System

Let G denote a sufficiently small neighborhood of the origin and consider the system

dx
dt
= Ax+ f (x, z),

dz
dt
= b̂z+ g(x, z), (x, z) < Γ,

∆x|(x,z)∈Γ = B(x)x,

∆z|(x,z)∈Γ = c(z)z,

(4.9)

where the following assumptions are assumed to be true:

(C14) Γ =
⋃p

i=1Si , whereSi = si × R and the equation ofsi is given bysi : 〈ai , x〉 +

τi(x) = 0, for i = 1, · · · , p;

(C15)

B(x) = (k+ κ(x))Q



















cos(θ + Θ(x)) − sin(θ + Θ(x))

sin(θ + Θ(x)) cos(θ + Θ(x))



















Q−1 −



















1 0

0 1



















andc(z) = c0 + c̃(z);

(C16) functions f ,g, κ, c̃ andΘ are inC1 andτi is in C2;

(C17) f (x, z) = O(‖(x, z)‖2), g(x, z) = O(‖(x, z)‖2), κ(x) = O(‖x‖), Θ(x) = O(‖x‖),

c̃(z) = O(z), τi(x) = O(‖x‖2), i = 1, · · · , p, and f (0, z) = 0, g(0, z) = 0 for all

z ∈ R.

Moreover, it is supposed that the matricesA,Q, the vectorsai , i = 1, · · · , p, constants

k, θ are the same as for (4.1), i.e.,

(C18) the associated with (4.9) isD0 system.

Remark 4.3.1 Conditions (C14) and (C15) imply that surfacesSi do not intersect

each other except on z−axis and neither of them intersects itself.

The system (4.9) is said to be aD − systemif the conditions (C10)-(C17) hold.
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In what follows we assume without loss of generality thatγi ,
π
2 j, j = 1,2,3. Then

one can transform the equation in (C14) to the polar coordinates so thatsi : a1
i r cosφ+

a2
i r sinφ + τi(r cosφ, r sinφ) = 0 and, hence

φ = tan−1

(

tanγi −
τi(r cosφ, r sinφ)

a2
i r cosφ

)

.

Using Taylor expansion gives that the previous equation canbe written, for suffi-

ciently smallr, as

si : φ = γi + Ψi(r, φ), i = 1, · · · , p

where functionsΨi are 2π−periodic inφ, continuously differentiable andΨi = O(r).

If the phase point (x1(t), x2(t), z(t)) meets the discontinuity surfaceSi at the angle

θ, then after the jump, the point (x1(θ+), x2(θ+), z(θ+)) will be on the surfaceS′i =

{(u, v) ∈ R3 : u = (I + B(x))x, v = (1+ c0)z+ c(z), (x, z) ∈ Si}. For the remaining part

of the paper the following assertion is very important and the proof can be found in

[6].

Lemma 4.3.2 If the conditions (C16) and (C17) are valid then the surfaceS′i is

placed between the surfacesSi andSi+1 for every i if G is sufficiently small.

Using the cylindrical coordinatesx1 = r cosφ, x2 = r sinφ, z= z, one can find that the

differential part of (4.9) has the following form:

dr
dφ
= λr + P(r, φ, z),

dz
dφ
= bz+ Q(r, φ, z),

(4.10)

where, as is known [87], the functionsP(r, φ, z) and Q(r, φ, z) are 2π−periodic in

φ, continuously differentiable in all variables andP = O(r, z), Q = O(r, z), with

P(0, φ, z) = 0, Q(0, φ, z) = 0, for all φ, z ∈ R. Denotex+ = (x+1 , x
+

2) = (I +B(x))x, x+ =

r+(cosφ+, sinφ+), x̃+ = (x̃+1 , x̃
+

2) = (I + B(0))x, wherex = (x1, x2) ∈ si , i = 1, · · · , p.

The inequality‖x+ − x̃+‖ ≤ ‖B(x) − B(0)‖ · ‖x‖ implies thatr+ = (1 + ki)r + ω(r, φ).

Moreover, using the relation
x+2
x+1

and
x̃+2
x̃+1

and condition (C14) one can conclude that

φ+ = φ+θi +γ(r, φ). Functionsω andγ are 2π−periodic inφ andω = O(r2), γ = O(r).
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Finally, the transformed system is of the following form:

dr
dφ
= λr + P(r, φ, z),

dz
dφ
= bz+ Q(r, φ, z), (r, φ, z) < Γ,

∆r |(r,φ)∈si = kir + ω(r, φ),

∆φ|(r,φ)∈si = θi + γ(r, φ),

∆z|(r,φ)∈si = c0z+ c̃(z).

(4.11)

Let us introduce the following system besides (4.11):

dρ
dφ
= λρ + P(ρ, φ, z),

dz
dφ
= bz+ Q(ρ, φ, z), φ , γi ,

∆ρ|φ=γi = kiρ +W1
i (ρ, z),

∆φ|φ=γi = θi ,

∆z|φ=γi = c0z+W2
i (ρ, z),

(4.12)

where all elements, except forWi = (W1
i ,W

2
i ), i = 1, · · · , p, are the same as in (4.11)

and the domain of (4.12) is [0,2π]φ. We shall define the functionsWi below.

Let (r(φ, r0, z0), z(φ, r0, z0)) be a solution of (4.11)φi be the angle where the phase

point intersectsSi . Denote also byχi = φi + θi + γ(r(φi , r0, z0), φi) the angle where the

phase point has to be after the jump.

Further ˆ(α, β], {α, β} ⊂ R denotes the oriented inetrval, that is

ˆ(α, β] =



















(α, β] if α ≤ β,

(β, α] otherwise.

Definition 4.3.3 We shall say that systems (4.11) and (4.12) are B−equivalent in G

if for every solution(r(φ, r0, z0), z(φ, r0, z0)) of (4.11) whose trajectory is in G for all

φ ∈ [0,2π]φ there exists a solution(ρ(φ, r0, z0), z(φ, r0, z0)) of (4.12) which satisfies the

relation

r(φ, r0, z0) = ρ(φ, r0, z0), φ ∈ [0,2π]φ \
p

⋃

i=1

{ ˆ(φi , γi] ∪ ˆ(ζi , χi]}, (4.13)

and, conversely, for every solution(ρ(φ, r0, z0), z(φ, r0, z0)) of (4.12) whose trajectory

is in G, there exists a solution(r(φ, r0, z0), z(φ, r0, z0)) of (4.11) which satisfies (4.13).
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Fix i = 1, · · · , p. Let (r1(φ), z1(φ)), (r1(γi), z1(γi)) = (ρ, z), be a solution of

dr
dφ
= λr + P(r, φ, z),

dz
dφ
= bz+ Q(r, φ, z),

(4.14)

and letφ = ηi be the meeting angle of the solution withPi . Then

r1(ηi) = eλ(ηi−γi )ρ +

∫ ηi

γi

eλ(ηi−s)P(r1(s), s, z1(s))ds,

z1(ηi) = eb(ηi−γi )z+
∫ ηi

γi

eb(ηi−s)Q(r1(s), s, z1(s))ds.

Setη′i = ηi + θi +γ(r1(ηi), ηi) and (ρ′, z′) = ((1+ki)r1(ηi)+ω(r1(ηi), ηi), (1+c0)z1(ηi)+

c(z1(ηi))). Let (r2(φ), z2(φ)), (r2(η′i ), z2(η′i )) = (ρ′, z′), be a solution of (4.14). Then,

r2(ζi) = eλ(ζi−η
′
i )ρ′ +

∫ ζi

η′i

eλ(ζi−s)P(r2(s), s, z2(s))ds,

z2(ζi) = eb(ζi−η
′
i )z′ +

∫ ζi

η′i

eb(ζi−s)Q(r2(s), s, z2(s))ds.

We define that

W1
i (ρ, z) = r2(ζi) − (1+ ki)ρ

= eλ(ζi−η
′
i )
[

(1+ ki)
(

eλ(ηi−γi )ρ +

∫ ηi

γi

eλ(ηi−s)P(r1(s), s, z1(s))ds
)

+ω(r1(ηi), ηi)
]

+

∫ ζi

η′i

eλ(ζi−s)P(r1(s), s, z1(s))ds− (1+ ki)ρ,

or, if simplified

W1
i (ρ, z) = (1+ ki)(e

−λγ(r1(ηi ),ηi ) − 1)ρ

+(1+ ki)
∫ ηi

γi

eλ(ζi−θi−s−γ(r1(ηi ),ηi ))P(r1(s), s, z1(s))ds

+

∫ ζi

η′i

eλ(ζi−s)P(r2(s), s, z2(s))ds+ eλ(ζi−η
′
i )ω(r1(ηi), ηi). (4.15)

We, similarly, define

W2
i (ρ, z) = z2(ζi) − (1+ c0)z

= eb(ζi−η
′
i )
[

(1+ c0)
(

eb(ηi−γi )z+
∫ ηi

γi

eb(ηi−s)Q(r1(s), s, z1(s))ds
)

+c̃(z1(ηi))
]

+

∫ ζi

η′i

eb(ζi−s)Q(r1(s), s, z1(s))ds− (1+ c0)z,
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or,

W2
i (ρ, z) = (1+ ki)(e

−bγ(r1(ηi ),ηi ) − 1)z

+(1+ c0)
∫ ηi

γi

e(ζi−θi−s−γ(r1(ηi ),ηi ))Q(r1(s), s, z1(s))ds

+

∫ ζi

η′i

eb(ζi−s)Q(r2(s), s, z2(s))ds+ eb(ζi−η
′
i )c̃(z1(ηi)). (4.16)

We note that there exists a Lipschitz constantℓ and a bounded functionm(ℓ) such that

‖W j
i (ρ1, z1) −W j

i (ρ2, z2)‖ ≤ m(ℓ)ℓ(‖ρ1 − ρ2‖ + ‖z1 − z2‖), (4.17)

for all ρ1, ρ2, z1, z2 ∈ R, j = 1,2. For detailed proof and explanation about (4.17) we

refer to [6, 19].

4.4 Center Manifold

Now, usingψ−substitution (4.12) becomes:

dρ
dϕ
= λρ + F(ρ, ϕ, z),

dz
dϕ
= bz+G(ρ, ϕ, z), ϕ , ϕi ,

∆ρ|ϕ=ϕi = kiρ +W1
i (ρ, z),

∆z|ϕ=ϕi = c0z+W2
i (ρ, z),

(4.18)

whereϕ = ψ(φ), ϕi = ψ(γi), F(ρ, ϕ, z) = P(ρ, ψ−1(ϕ), z), G(ρ, ϕ, z) = Q(ρ, ψ−1(ϕ), z).

FunctionsF andG areT− periodic inϕ, with T = ψ(2π), and satisfy

‖F(ρ, ϕ, z) − F(ρ′, ϕ, z′)‖ ≤ L(‖ρ − ρ′‖ + ‖z− z′‖), (4.19)

‖G(ρ, ϕ, z) −G(ρ′, ϕ, z′)‖ ≤ L(‖ρ − ρ′‖ + ‖z− z′‖), (4.20)

for some Lipschitz constantL.

Following the methods given in [5], one can see that system (4.18) has two integral

manifolds whose equations are given by:

Φ0(ϕ, ρ) =
∫ ϕ

−∞

π0(ϕ, s)G(ρ(s, ϕ, ρ), s, z(s, ϕ, ρ))ds

+

∑

ϕi<ϕ

π0(ϕ, ϕ
+

i )W2
i (ρ(ϕ+i , ϕ, ρ), z(ϕ+i , ϕ, ρ)), (4.21)
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and

Φ−(ϕ, z) = −
∫ ∞

ϕ

π−(ϕ, s)F(ρ(s, ϕ, z), s, z(s, ϕ, z))ds

+

∑

ϕi<ϕ

π−(ϕ, ϕ
+

i )W1
i (ρ(ϕ+i , ϕ, z), z(ϕ

+

i , ϕ, z)), (4.22)

where

π0(ϕ, s) = eb(ϕ−s)
∏

s≤ϕ j<ϕ

(1+ c0)

and

π−(ϕ, s) = eλ(ϕ−s)
∏

s≤ϕ j<ϕ

(1+ kj).

In (4.21), the pair (ρ(s, ϕ, ρ), z(s, ϕ, ρ)) denotes a solution of (4.18) which satisfies

ρ(ϕ, ϕ, ρ) = ρ. Similarly, (ρ(s, ϕ, z), z(s, ϕ, z)), in (4.22), is solution of (4.18) with

z(ϕ, ϕ, z) = z.

In [5], it was shown that there exist constantsK0,M0, σ0 such thatΦ0 satisfies:

Φ0(ϕ,0) = 0, (4.23)

‖Φ0(ϕ, ρ1) − Φ0(ϕ, ρ2)‖ ≤ K0ℓ‖ρ1 − ρ2‖, (4.24)

for all ρ1, ρ2 such that a solutionw(ϕ) = (ρ(ϕ), z(ϕ)) of (4.18) with the initial condition

w(ϕ0) = (ρ0,Φ0(ϕ0, ρ0)), ρ0 ≥ 0, is defined onR and satisfies

‖w(ϕ)‖ ≤ M0ρ0e
−σ0(ϕ−ϕ0), ϕ ≥ ϕ0. (4.25)

Similarly, it was shown that there exist constantsK−,M−, σ− such thatΦ− satisfies:

Φ−(ϕ,0) = 0, (4.26)

‖Φ−(ϕ, z1) − Φ−(ϕ, z2)‖ ≤ K−ℓ‖z1 − z2‖, (4.27)

for all z1, z2 such that a solutionw(ϕ) = (ρ(ϕ), z(ϕ)) of (4.18) with the initial condition

w(ϕ0) = (Φ−(ϕ0, z0), z0), z0 ∈ R, is defined onR and satisfies

‖w(ϕ)‖ ≤ M−‖z0‖e
−σ−(ϕ−ϕ0), ϕ ≤ ϕ0. (4.28)

Set S0 = {(ρ, ϕ, z) : z = Φ0(ϕ, ρ)} and S− = {(ρ, ϕ, z) : ρ = Φ−(ϕ, z)}. Here, S0

is called thecenter manifoldandS− is called thestable manifold. A sketch of an

arbitrary center manifold is shown in Figure 4.2.
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Figure 4.2: A discontinuous center manifold

The analogues of the following two Lemma’s together with their proofs can be found

in [5].

Lemma 4.4.1 If the Lipschitz constantℓ is sufficiently small, then for every solution

w(ϕ) = (ρ(ϕ), z(ϕ)) of (4.18) there exists a solutionµ(ϕ) = (u(ϕ), v(ϕ)) on the center

manifold, S0, such that

‖ρ(ϕ) − u(ϕ)‖ ≤ 2M0‖ρ(ϕ0) − u(ϕ0)‖e−σ0(ϕ−ϕ0),

‖z(ϕ) − v(ϕ)‖ ≤ M0‖z(ϕ0) − v(ϕ0)‖e−σ0(ϕ−ϕ0), ϕ ≥ ϕ0,
(4.29)

where M0 andσ0 are the constants used in (4.25).

Lemma 4.4.2 For sufficiently small Lipschitz constantℓ the surface S0 is stable in

large.
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On the local center manifoldS0, the first coordinate of the solutions of (4.18) satisfies

the following system:

dρ
dϕ
= λρ + F(ρ, ϕ,Φ0(ϕ, ρ)), ϕ , ϕi ,

∆ρ|ϕ=ϕi = kiρ +W1
i (ρ,Φ0(ϕ, ρ)).

(4.30)

Now, it is time to consider the reduction principle:

Theorem 4.4.3 Assume that conditions (C10)-(C19) are fulfilled. Then the trivial

solution of (4.18) is stable, asymptotically stable or unstable if the trivial solution of

(4.30) is stable, asymptotically stable or unstable, respectively.

Using inverse ofψ−substitution andB−equivalence, one can see that the following

theorem holds:

Theorem 4.4.4 Assume that conditions (C10)-(C19) are fulfilled. Then the trivial

solution of (4.9) is stable, asymptotically stable or unstable if the trivial solution of

(4.30) is stable, asymptotically stable or unstable, respectively.

4.5 Bifurcation of Periodic Solutions

This section is devoted to the bifurcation of a periodic solution for the discontinuous

dynamical system. Let us consider the system,

dx
dt
= Ax+ f (x, z) + µ f̃ (x, z, µ),

dz
dt
= b̂z+ g(x, z) + µg̃(x, z, µ), (x, z) < Γ(µ),

∆x|(x,z)∈Γ(µ) = B(x, µ)x,

∆z|(x,z)∈Γ(µ) = c(z, µ)z.

(4.31)

Assume that the following conditions are satisfied:

(C18) the setΓ(µ) =
⋃p

i=1Si(µ), whereSi(µ) = si(µ) × R and the equation ofsi(µ) is

given bysi(µ) : 〈ai , x〉 + τi(x) + µν(x, µ) = 0, for i = 1, · · · , p;
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(C19) there exists a matrixQ(µ) ∈ R2×2,Q(0) = Q, analytic in (−µ0, µ0), and real

numbersγ, χ such thatQ−1(µ)B(x, µ)Q(µ) =

(k+ µγ + κ(x))



















cos(θ + µχ + Θ(x)) − sin(θ + µχ + Θ(x))

sin(θ + µχ + Θ(x)) cos(θ + µχ + Θ(x))



















−



















1 0

0 1



















andc(z, µ) = c0 + c̃(z) + µd(z, µ);

(C20) associated with (4.31) systems

dx
dt
= Ax,

dz
dt
= b̂z, (x, z) < Γ0,

∆x|(x,z)∈Γ0 = B0x,

∆z|(x,z)∈Γ0 = c0z.

(4.32)

and

dx
dt
= Ax+ f (x, z),

dz
dt
= b̂z+ g(x, z), (x, z) < Γ(0),

∆x|(x,z)∈Γ(0) = B(x,0)x,

∆z|(x,z)∈Γ(0) = c(z,0)z.

(4.33)

areD0 − systemandD − systemrespectively;

(C21) functions f̃ andν are analytic in their all arguments;

(C22) f̃ (0,0, µ) = 0, ν(0, µ) = 0, uniformly for µ ∈ (−µ0, µ0).

We, first of all, linearize system (4.31) around origin. Notethat the eigenvalues of

the linearized system are continuously depend onµ, and hence for sufficiently small

values ofµ, the eigenvalues of the coefficient matrix in the linearized system will be

in a similar form with the eigenvalues of the coefficient matrix in (4.1). Thus, by

means of a regular transformation, one can show that the right hand side of (4.31) is

like the right hand side of (4.9) with the only difference that all coefficients depend on

µ. This is why, without loss of any generality, we assume that (4.31) is in linearized

form.

74



Using polar coordinates one can write system (4.31) in the following form:

dr
dφ
= λ(µ)r + P(r, φ, z, µ),

dz
dφ
= b(µ)z+ Q(r, φ, z, µ), (r, φ, z) < Γ(µ),

∆r |(r,φ)∈ℓi (µ) = ki(µ)r + ω(r, φ, µ),

∆φ|(r,φ)∈ℓi (µ) = θi(µ) + γ(r, φ, µ),

∆z|(r,φ)∈ℓi (µ) = c0(µ)z+ c̃(z, µ).

(4.34)

Let the system

dρ
dφ
= λ(µ)ρ + P(ρ, φ, z, µ),

dz
dφ
= b(µ)z+ Q(ρ, φ, z, µ), φ , γi(µ),

∆ρ|φ=γi (µ) = ki(µ)ρ +W1
i (ρ, z, µ),

∆φ|φ=γi (µ) = θi(µ),

∆z|φ=γi (µ) = c0(µ)z+W2
i (ρ, z, µ),

(4.35)

whereγi(µ), i = 1, · · · , p, are angles ofmi(µ), be B−equivalent to (4.34). Here,

for eachi, the line mi(µ) is obtained by linearizingsi(µ) around the origin. That

is, we havemi(µ) : 〈ai , x〉 + µ∂ν(0,µ)
∂x = 0. The functionsW1

i (ρ, z, µ) andW2
i (ρ, z, µ)

can be defined in the same manner as in (4.15) and (4.16), respectively. Appyling

ψ−substitution to (4.35) we get,

dρ
dϕ
= λ(µ)ρ + F(ρ, ϕ, z, µ),

dz
dϕ
= b(µ)z+G(ρ, ϕ, z, µ), ϕ , ϕi(µ),

∆ρ|ϕ=ϕi (µ) = ki(µ)ρ +W1
i (ρ, z, µ),

∆z|ϕ=ϕi (µ) = c0(µ)z+W2
i (ρ, z, µ).

(4.36)

Following the methods, as we did to obtain (4.21) and (4.22) one can see that system

(4.36) has two integral manifolds whose equations are givenby:

Φ0(ϕ, ρ, µ) =
∫ ϕ

−∞

π0(ϕ, s, µ)G(ρ(s, ϕ, ρ, µ), s, z(s, ϕ, ρ, µ), µ)ds

+

∑

ϕi (µ)<ϕ

π0(ϕ, ϕ
+

i , µ)W2
i (ρ(ϕ+i , ϕ, ρ, µ), z(ϕ+i , ϕ, ρ, µ)), (4.37)

and

Φ−(ϕ, z, µ) = −
∫ ∞

ϕ

π−(ϕ, s, µ)F(ρ(s, ϕ, z, µ), s, z(s, ϕ, z, µ), µ)ds

+

∑

ϕi (µ)<ϕ

π−(ϕ, ϕ
+

i , µ)W1
i (ρ(ϕ+i , ϕ, z, µ), z(ϕ+i , ϕ, z, µ)), (4.38)

75



where

π0(ϕ, s, µ) = eb(ϕ−s)
∏

s≤ϕ j (µ)<ϕ

(1+ c0(µ)),

and

π−(ϕ, s, µ) = eλ(ϕ−s)
∏

s≤ϕ j (µ)<ϕ

(1+ kj(µ)).

In (4.37), the pair (ρ(s, ϕ, ρ, µ), z(s, ϕ, ρ, µ)) denotes a solution of (4.36) satisfying

ρ(ϕ, ϕ, ρ, µ) = ρ. Similarly, (ρ(s, ϕ, z, µ), z(s, ϕ, z, µ)), in (4.38), is a solution of (4.36)

with z(ϕ, ϕ, z, µ) = z.

SetS0(µ) = {(ρ, ϕ, z) : z= Φ0(ϕ, ρ, µ)} andS−(µ) = {(ρ, ϕ, z) : ρ = Φ−(ϕ, z, µ)}.

On the local center manifold,S0(µ), the first coordinate of the solutions of (4.36)

satisfies the following system:

dρ
dϕ
= λ(µ)ρ + F(ρ, ϕ,Φ0(ϕ, ρ, µ)), ϕ , ϕi(µ),

∆ρ|ϕ=ϕi (µ) = ki(µ)ρ +W1
i (ρ,Φ0(ϕ, ρ, µ)).

(4.39)

Similar to (4.7) and (4.8) one can define the functions

q1(µ) = exp















λ(µ)















2π −
p

∑

i=1

θi(µ)





























p
∏

i=1

(1+ ki(µ)), (4.40)

and

q2(µ) = exp















b(µ)















2π −
p

∑

i=1

θi(µ)





























p
∏

i=1

(1+ c0(µ)). (4.41)

System (4.39) is the system studied in [6] and there it was shown that this system,

for sufficiently smallµ, has a periodic solution with periodT = ψ(2π). Here we will

show that if the first coordinate of a solution of (4.36) isT− periodic, then so is the

second coordinate.

Now, since

π0(ϕ + T, s+ T, µ) = π0(ϕ, s, µ),

ρ(s+ T, ϕ + T, ρ, µ) = ρ(s, ϕ, ρ, µ),

z(s+ T, ϕ + T, ρ, µ) = z(s, ϕ, ρ, µ),
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andG is T−periodic inϕ, we have,

Φ0(ϕ + T, ρ, µ)

=

∫ ϕ+T

−∞

π0(ϕ + T, s, µ)G(ρ(s, ϕ + T, ρ, µ), s, z(s, ϕ + T, ρ, µ), µ)ds

+

∑

ϕi (µ)<ϕ+T

π0(ϕ + T, ϕ+i , µ)W2
i (ρ(ϕ+i , ϕ + T, ρ, µ), z(ϕ+i , ϕ + T, ρ, µ))

=

∫ ϕ

−∞

π+(ϕ, t, µ)G(ρ(t, ϕ, ρ, µ), t, z(t, ϕ, ρ, µ), µ)dt

+

∑

ϕ̄i (µ)<ϕ

π+(ϕ, ϕ̄i
+, µ)W2

i (ρ(ϕ̄i
+, ϕ, ρ, µ), z(ϕ̄i

+, ϕ, ρ, µ))

= Φ0(ϕ, ρ, µ),

where in the second equation we have used the substitutionss = t + T andϕi(µ) =

ϕ̄i(µ) + T. Now, we have the following theorem which, in case of two dimension, can

be found in [6].

Theorem 4.5.1 Assume that q1(0) = 1,q′1(0) , 0, |q2(0)| < 1, and the origin is

a focus for (4.33). Then, for sufficiently small r0 and z0, there exists a function

µ = δ(r0, z0) such that the solution(r(φ, δ(r0, z0)), z(φ, δ(r0, z0))) of (4.34), with the

initial condition r(0, δ(r0, z0)) = r0, z(0, δ(r0, z0)) = z0, is periodic with a period,

T′ =
(

2π −
∑p

i=1 θi

)

β−1
+ o(|µ|).

4.6 Examples

Example 4.6.1 Consider the following dynamical system:

x′1 = (0.1− µ)x1 − 20x2 + 2x1x2,

x′2 = 20x1 + (0.1− µ)x2 + 3x2
1z,

z′ = (−0.3+ µ)z+ µ2x1z, (x1, x2, z) < S,

∆x1|(x1,x2,z)∈S =
(

(κ1 + µ
3) cos(π3) − 1

)

x1 − (κ1 + µ
3) sin(π3)x2,

∆x2|(x1,x2,z)∈S = (κ1 + µ
3) sin(π3)x1 +

(

(κ1 + µ
3) cos(π3) − 1

)

x2,

∆z|(x1,x2,z)∈S = (κ2 + µ − 1)z,

(4.42)
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whereκ1 = exp(− π
120), κ2 = exp(− π

400), S = s×R, the curve s is given by the equation

x2 = x2
1 + µx3

1, x1 > 0. Using (4.40) and (4.41), one can define

q1(µ) = (κ1 + µ
3) exp((0.1− µ)

5π
60

),

and

q2(µ) = (κ2 + µ) exp((−0.3+ µ)
5π
60

).

It is easily seen that q1(0) = κ1 exp( π
120) = 1, q′1(0) = − π

12 , 0, and q2(0) =

exp(−11π
200) < 1. Therefore, by Theorem 4.5.1, system (4.42) has a periodic solution

with period≈ 5π
60 if |µ| is sufficiently small.

Figure 4.3 shows the trajectory of (4.42) with the parameterµ = 0.05 and the initial

value (x10, x20, z0) = (0.02,0,0.05). Since there is an asymptotically stable center

manifold, no matter which initial condition is taken, the trajectory will get closer and

closer to the center manifold as time increases.

−0.03
−0.02

−0.01
0

0.01
0.02

−0.02

0

0.02

0

0.02

0.04

0.06

0.08

0.1

Figure 4.3: A trajectory of (4.42)

In Figure 4.4, the existence of a discontinuous limit cycle is illustrated. There an outer

and an inner solution are shown which spiral to a trajectory lying between these two.
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Since the exact value of the initial point for the periodic solution is not known we

have shown two trajectories of (4.42).

−0.2
−0.1

0
0.1

0.2
0.3

−0.2
−0.1

0
0.1

0.2
0.3

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06
Starting point of an

"outer solution"

Starting point of an
"inner solution"

Figure 4.4: There must exist a discontinuous limit cycle of (4.42)

Example 4.6.2 Consider the following dynamical system:

x′1 = (−2+ µ)x1 − x2 + µz2,

x′2 = x1 + (−2+ µ)x2,

z′ = (−1+ µ)z+ µ2x1z, (x1, x2, z) < S,

∆x1|(x1,x2,z)∈S =
(

(κ1 − x2
1 − x2

2) cos(π3) − 1
)

x1 − (κ1 − x2
1 − x2

2) sin(π3)x2,

∆x2|(x1,x2,z)∈S = (κ1 − x2
1 − x2

2) sin(π3)x1 +
(

(κ1 − x2
1 − x2

2) cos(π3) − 1
)

x2,

∆z|(x1,x2,z)∈S = (κ2 − 1− z2)z,

(4.43)

whereκ1 = exp(10π
3 ), κ2 = exp(5π6 ),S = s× R, s is a curve given by the equation

x2 = x1 + µ
2x3

1, x1 > 0. Using (4.40) and (4.41), one can define

q1(µ) = κ1 exp((−2+ µ)
5π
3

),

and

q2(µ) = κ2 exp((−1+ µ)
5π
3

).

Now, q1(0) = κ1 exp(−10π
3 ) = 1, q′1(0) = 5π

3 , 0, q2(0) = κ2 exp(5π3 ) = exp(−5π
6 ).
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Moreover, associated D−system is:

x′1 = −2x1 − x2,

x′2 = x1 − 2x2,

z′ = −z, (x1, x2, z) < P,

∆x1|(x1,x2,z)∈P =
(

(κ1 − x2
1 − x2

2) cos(π3) − 1
)

x1 − (κ1 − x2
1 − x2

2) sin(π3)x2,

∆x2|(x1,x2,z)∈P = (κ1 − x2
1 − x2

2) sin(π3)x1 +
(

(κ1 − x2
1 − x2

2) cos(π3) − 1
)

x2,

∆z|(x1,x2,z)∈P = (κ2 − 1− z2)z,

(4.44)

whereP = ℓ × R, ℓ is given by the equation x2 = x1, x1 > 0, and the origin is stable

focus. Indeed, using cylindrical coordinates, denote the solution of (4.44) starting at

the angleφ = π
4 by (r(φ, r0, z0), z(φ, r0, z0)).

We obtain

rn = (κ1 − r2
n−1)rn−1 exp(−

10π
3

),

and

zn = (κ2 − z2
n−1)zn−1 exp(−

5π
3

),

where rn = r(π4 + 2πn, r0, z0) and zn = z(π4 + 2πn, r0, z0). It is easily seen that the

sequences rn and zn are monotonically decreasing for sufficiently small(r0, z0), and

there exists a limit of(rn, zn). Assume that this limit is(ξ, η) , (0,0). Then it implies

that there exists a periodic solution of (4.44) andξ = (κ1 − ξ
2)ξ exp(−10π

3 ) andη =

(κ2−η
2)ηexp(−5π

3 ) which give us a contradiction. Thus,(ξ, η) = (0,0). Consequently,

the origin is a stable focus of (4.44) and by Theorem 4.5.1 thesystem (4.43) has a

limit cycle with period≈ 5π
3 if |µ| is sufficiently small.

4.7 Deduction

In this chapter, we have studied the existence of a center manifold and the Hopf bifur-

cation for a certain three dimensional discontinuous dynamical system. The bifurca-

tion of discontinuous cycle is observed by means of theB−equivalence method and

its consequences. These results will be extended to arbitrary dimension for a more

general type of equations.
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CHAPTER 5

CONCLUSION

In this thesis, we have introduced two new classes of differential equations: differen-

tial equations with transition conditions on time scales and differential equations on

variable time scales. It is necessary to introduce these classes of equations for the in-

vestigation of the main results: Hopf-Bifurcation in three-dimensional discontinuous

dynamical systems.

The first class of the systems that we introduce in this thesisis the DETC. We make

a connection between this class of equations and impulsive differential equations.

This connection is given by means of a specific transformation of the independent

variable called theψ-substitution [6]. Some benefits of the established connection

include knowledge about properties of linear DETC, the investigation of existence

of periodic and almost periodic solutions and their stability. We suppose that the

problems of stability, oscillations, smoothness of solutions, integral manifolds, theory

of functional differential equations can be investigated applying our results. Another

interesting opportunity is to analyze equations with more sophisticated time scales.

The second class of the introduced systems is the differential equations on variable

time scales. These systems naturally appear when we investigate discontinuous dy-

namics with non-fixed moments of impulses. Consequently, these results will be

needed to develop methods of investigation of mechanical models with impacts. Par-

ticularly, interesting problems are related to bifurcations [31, 54, 56, 94], chaos [54].

In this thesis, the theory of this class of equations that we introduce are developed

according to these demands.

After introducing these new classes of differential equations, we study the existence
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of a center manifold and the Hopf bifurcation for a certain three-dimensional discon-

tinuous dynamical system. The bifurcation of discontinuous cycles is observed by

means of theB-equivalence method and its consequences [5, 6]. These results will be

extended to arbitrary dimension for a more general type of equations.

We expect that these results will be helpful for further investigation of multi di-

mensional discontinuous dynamical systems. In fact, a study related to a three-

dimensional hybrid system has been submitted as an invited paper.
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[47] J. K. Hale and H. Koçak,Dynamics and bifurcations, Springer-Verlag Press,
New York, 1991.

[48] J. K. Hale and J. P. LaSalle,Differential Equation and Dynamical systems, Ace-
demic Press, 1967.

[49] P. Hartman,Ordinary differential equations, Wiley, New York, 1964.

[50] B. D. Hassard, N. D. Kazarinoff and Y. H. Wan,Theory and Applications of
Hopf Bifurcations, Cambridge University Press, Cambridge, 1981.

[51] S. Hilger,Ein Maßkettenkalkül mit Anvendung auf Zentrums, PhD thesis, Uni-
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