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ABSTRACT

PERIODIC SOLUTIONS AND STABILITY OF DIFFERENTIAL EQUATIONS
WITH PIECEWISE CONSTANT ARGUMENT OF GENERALIZED TYPE

Büyükadalı, Cemil

Ph.D., Department of Mathematics

Supervisor : Prof. Dr. Marat Akhmet

July 2009, 87 pages

In this thesis, we study periodic solutions and stability ofdifferential equations with

piecewise constant argument of generalized type. These equations can be divided

into three main classes: differential equations with retarded, alternately advanced-

retarded, and state-dependent piecewise constant argument of generalized type.

First, using the method of small parameter due to Poincaré, the existence and stability

of periodic solutions of quasilinear differential equations with retarded piecewise con-

stant argument of generalized type in noncritical case, that is, the unperturbed linear

ordinary differential equation has not any nontrivial periodic solution, are investi-

gated. The continuous and differential dependence of the solutions on an initial value

and a parameter is considered. A new Gronwall-Bellmann type lemma is proved.

Next, quasilinear differential equations with alternately advanced-retarded piecewise

constant argument of generalized type is addressed. The critical case, when associ-

ated linear homogeneous system admits nontrivial periodicsolutions, is considered.

Using the technique of Poincaré-Malkin, criteria of existence of periodic solutions
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of such equations are obtained. One of the main auxiliary results is an analogue of

Gronwall-Bellmann Lemma for functions with alternately advanced-retarded piece-

wise constant argument. Dependence of solutions on an initial value and a parameter

is investigated.

Finally, a new class of differential equations with state-dependent piecewise constant

argument is introduced. It is an extension of systems with piecewise constant argu-

ment. Fundamental theoretical results for the equations: existence and uniqueness of

solutions, the existence of the periodic solutions, the stability of the zero solution are

obtained. Appropriate examples are constructed.

Keywords: Differential equations with piecewise constant argument of generalized

type, Differential equations with state-dependent piecewise constant argument, The

method of small parameter, Periodic solutions, Asymptoticstability.
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ÖZ

GENEL ṪIPTEKİ PARÇALI SABİT ARGUMANLI D İFERENṠIYEL
DENKLEMLERİN PEṘIYODİK ÇÖZÜMLERİ VE KARARLILI ĞI

Büyükadalı, Cemil

Doktora, Matematik B̈olümü

Tez Yöneticisi : Prof. Dr. Marat Akhmet

Temmuz 2009, 87 sayfa

Bu tezde, parçalı sabit argümanlı genel tipteki diferensiyel denklemlerin periyodik

çözümlerinin varlı̆gı ve kararlılı̆gı incelenmiştir. Bu denklemler̈uç ana gruba ayrılabi-

lir: genel tipteki gecikmeli, d̈onüş̈umlü ilerlemeli-gecikmeli, duruma bağımlı parçalı

sabit arg̈umanlı diferensiyel denklemler.

İlk olarak, Poincaŕe’nin küçük parametre metodu kullanılarak kritik olmayan du-

rumda, dĭger bir deyişle, perẗurbesiz dŏgrusal adi diferensiyel denklemin sıfır çözümü

haricinde periyodik ç̈ozümü olmadı̆gında, hemen hemen doğrusal gecikmeli parçalı

sabit arg̈umanlı diferensiyel denklemlerin periyodik çözümlerinin varlı̆gı ve kararlılı-

ğı incelenmiştir. Ç̈ozümlerin başlangıç koşuluna ve parametreye sürekli ve diferen-

siyel băgımlılığı araştırılmıştır. Yeni bir Gronwall-Bellmann tipi lemma ispatlanmış-

tır.

Daha sonra, hemen hemen doğrusal genel tipteki d̈onüş̈umlü ilerlemeli-gecikmeli

parçalı sabit arg̈umanlı diferensiyel denklemler göz önüne alınmıştır. Kritik durum-

daki, ne zaman ilişkili dŏgrusal denklem sıfır ç̈ozümü haricinde periyodik ç̈ozümleri
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kabul ettĭgindeki durum incelenmiştir. Poincaré-Malkin’in tekniği kullanılarak bu

tipteki denklemlerin periyodik ç̈ozümlerinin varlılı̆gı için koşullar elde edilmiştir.

Dönüş̈umlü ilerlemeli-gecikmeli parçalı sabit argümanlı fonksiyonlar için Gronwall-

Bellmann benzeri lemmäonemli sonuçlardan biridir. Ç̈ozümlerin başlangıç koşuluna

ve parametreye bağımlılığı araştırılmıştır.

Son olarak, duruma bağımlı parçalı sabit arg̈umanlı diferensiyel denklemlerin yeni

bir sınıfı tanımlanmıştır. Bunlar parçalı sabit argümanlı sistemlerin genişletilmiş

halidir. Bu denklemler için temel sonuçlar: çözümlerin varlı̆gı ve teklĭgi, periyo-

dik çözümlerin varlı̆gı, sıfır ç̈ozümünün kararlılı̆gı, elde edilmiştir. Uygun̈ornekler

kurulmuştur.

Anahtar Kelimeler: Genel tipteki parçalı sabit argümanlı diferensiyel denklemler,

Duruma băgımlı parçalı sabit arg̈umanlı diferensiyel denklemler, K̈uçük parametre

metodu, Periyodik ç̈ozümler, Asimptotik kararlılık.
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CHAPTER 1

INTRODUCTION AND PRELIMINARIES

1.1 Introduction

Differential equations with delay (DDE) provide a mathematicalmodel for a physical,

mechanical or biological system in which the rate of change of a system depends upon

its past history. Although the general theory and fundamental results for DDE have

by now been thoroughly explored and are available in the books [34, 35, 45, 50] and

subsequent articles by many authors, the literature devoted to the theory and applica-

tions of DDE continues to grow very rapidly. Naturally, new important problems and

directions arise continually in this intensively developing field. In 1977, the article

by Myshkis [64], who observed that a substantial theory did not exist for differential

equations with lagging arguments that are piecewise constant or continuous, pointed

out differential equations with piecewise constant arguments (EPCA). Since that time

many authors have investigated equations of this type.

A typical EPCA is of the form

x′(t) = f (t, x(t), x(h(t))), (1.1)

where the argumenth(t) hasinterval of constancy. For example, equations withh(t) =

[t], [t − n], t − n[t] were investigated in [25], wheren is a positive integer and [.]

denotes the greatest integer function. Note thath(t) is discontinuous, and although

the equation fits within the general structure of DDE, the delays are discontinuous

functions. Also note that the equation is nonautonomous, since the delays vary with

t. Moreover, a solution is defined as a continuous, sectionallysmooth function that

satisfies the equation in the interval of constancy. Hence, the solutions are determined
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by a finite set of initial data, rather than by an initial function as in the case of DDE.

In fact, EPCA have the structure of continuous dynamical systems within intervals

of nonzero lengths. Continuity of a solution at a point joining any two consecutive

intervals then implies recurrence relations for the solution of such points. Therefore,

EPCA represent a hybrid continuous and discrete dynamical systems and combine

the properties of both differential and difference equations.

An equation in whichx′(t) is given by a functionx evaluated att and at arguments

[t], . . . , [t − n], wheren is a non-negative integer, is called of retarded or delay type.

If the arguments aret and [t + 1], . . . , [t + n], then the equation is of advanced type.

If both these types of arguments appear in the equation, it iscalled of mixed type.

If the argumenth(t) is between [t] and [t + 1] for eacht, then the equation is of

alternately advanced-retarded type. The equations may be linear or nonlinear. All

types of EPCA share similar characteristics. First of all, itis natural to present the

initial value problem for such equations not on an interval as in DDE but at a number

of individual points. Secondly, for ordinary differential equations with a continuous

vector field the solution exists to the right and left of the initial value. For EPCA, in

general, two-sided solutions may not exist.

It is important to note that EPCA provide the simplest examples of differential equa-

tions capable of displaying chaotic behavior. Let us see thefollowing example.

Example 1.1.1 Consider the initial value problem

x′(t) = (µ − 1)x([t]) − µx2([t]),

x(0) = x0. (1.2)

One can see that for t∈ [n, n+ 1), the corresponding ordinary differential equation

is of the form

x′(t) = (µ − 1)x(n) − µx2(n).

Then, by integrating the last equation from n to n+ 1, we obtain the relation

x(n+ 1) = µx(n)(1− x(n)), n = 0, 1, . . . .

which is the famous logistic map. Therefore, we conclude that if we chooseµ ≥ 4,

independent of choice of x0, the unique solution of Eq.(1.2) exhibits chaos [33].

2



Systematic study of theoretical and practical problems involving piecewise constant

arguments was initiated in the early 1980’s. Since then, differential equations with

piecewise constant arguments have obtained great attention from the researchers in

mathematics, biology, engineering and other fields. A mathematical model including

piecewise constant argument was first considered by Busenberg and Cooke [23] in

1982. They constructed a first-order linear EPCA to investigate vertically transmitted

diseases. Following this work, using the method of reduction to discrete equations,

many authors have analyzed various types of EPCA.

The systems with first-order linear EPCA with constant coefficients of retarded type,

of advanced type, and of alternately advanced-retarded type were first studied by

Cooke and Wiener [25–27], Aftabizadeh and Wiener [1–4] and Shah and Wiener [77].

Existence and uniqueness of the solutions, their backward continuation on (−∞, 0]

were proved. Moreover, stability and asymptotic stabilityof the trivial solution and

oscillatory behavior of the corresponding solutions were analyzed. Based on the stud-

ies given by Cooke and Wiener, Zhang and Parni [86] consideredthe first-order linear

EPCA with variable coefficients and studied the oscillatory and nonoscillatory prop-

erties of the solutions. Furthermore, Jayasree and Deo [48]established existence and

uniqueness theorems, a variation of parameters formula, integral inequalities, the os-

cillation property, and some applications. The brief summary on theory can be found

in the book by Wiener [81].

From the current literature, one can see that the interest oninvestigation of EPCA is

continuously growing. Examples of research articles that have been done recently are

on the existence of almost periodic solutions of retarded EPCA by Yuan [85], quasi-

periodic solutions of EPCA by K̈upper and Yuan [51], existence of periodic solutions

of retarded EPCA by Wang [79], Green’s function and comparison principles for

first-order periodic EPCA by Cabada, Ferreiro and Nieto [24], Green’s function for

second-order periodic boundary value problems with piecewise constant arguments

by Nieto and Rodriguez-Lopez [66] and by Yang, Liu and Ge [84],periodic solutions

of a neutral EPCA by Wang [80], existence, uniqueness and asymptotic behavior

of EPCA by Papaschinopoulos [71], stability of EPCA and the associated discrete

equations using dichotomic map by Marconato [59].
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Lakshmikhantham and Wiener [82] proved existence and uniqueness theorems for the

initial value problem

x′(t) = f (x(t), x(g(t))), x(0) = x0, (1.3)

where f is a continuous function, andg : [0, ∞) → [0, ∞), g(t) ≤ t, is a step

function, that is, it is constant and equal tog(tn) on each interval [tn, tn+1), where{tn}
is a strictly increasing sequence of real numbers with limn→∞ tn = ∞.

The numerical approximation of differential equations is also one of the benefits

of EPCA. For example, the simple Euler scheme for a differential equationx′(t) =

f (x(t)) has the formxn+1 − xn = h f(xn), wherexn = x(nh) andh is the step size. This

is equivalent to EPCA of the formx′(t) = f (x([t/h] h)). Györi [42] realized that equa-

tions with piecewise constant arguments can be used to approximate delay differential

equations that contain discrete delays, and proved some limit relations between the

solutions of delay differential equations with continuous arguments and the solutions

of some retarded EPCA. The results were used to compute numerical solutions of

ordinary and delay differential equations. Later, Györi, Hartung and Turi [43] gener-

alized the results to approximate DDE with state dependent delays.

It is not surprising to expect that EPCA are used to construct mathematical mod-

els for the problems of biology, economics, or engineerings, as this was done using

DDE [50]. In the papers of Dai and Singh [29–31], a direct analytical and numerical

method independent of the existing classical methods for solving linear and nonlinear

vibration problems was given with the introduction of a piecewise constant argument

[Nt]/N. A new numerical method which produces sufficiently accurate results with

good convergence was introduced. Development of the formula for numerical calcu-

lations was based on the original governing differential equations. For the details we

refer to the book by Dai [32].

Murat and Celeste [62] investigated the damped loading system subjected to a piece-

wise constant voltage described by the equation of charge:

Lq′′(t) + Rq′(t) +C−1q(t) = Aq

(

[Nt]
N

)

, (1.4)

which was compared with a similar linear loading system governed by the following
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equation of charge

Lq′′(t) + Rq′(t) +C−1q(t) = Aq(t). (1.5)

They considered, through numerical simulation, the phenomena of sensitivity on the

initial data, stability and existence of oscillatory solutions.

The equations with piecewise constant arguments plays an important role in mathe-

matical modeling of biological problems. Busenberg and Cooke[23] constructed a

first-order linear EPCA to investigate vertically transmitted diseases. The authors like

Gopalsamy, Ladas, Muroya, Seifert in several papers [38, 39, 63, 75, 76] investigated

different types of population models based on logistic equations with piecewise con-

stant arguments and obtained mathematical results. In [17], Akhmet et al studied an

anticipatory extension of Malthusian model using first-order linear EPCA with con-

stant coefficients of advanced type. They have found conditions for the solutions to

be periodic, stable, or chaotic.

Lakshmikhantham and Wiener [83] studied the asymptotic behavior of a second-order

EPCA of the form

x′′ + ω2x(t) = −bx′([t − 1]), (1.6)

whereb andω are positive constants. They found that last equation may generate

periodic or even unbounded solutions whereas all solutionsof the corresponding or-

dinary differential equationx′′ + bx′(t) + ω2x(t) = 0 tend to zero ast → ∞.

Impulsive differential equations and loaded equations of control theory fit within the

general paradigm of EPCA. Another application of EPCA is the stabilization of hy-

brid control systems with feedback delay. Some of these systems have been described

in [28]. Moreover, Magni and Scattolini [56, 57] consideredrecently a new model

predictive control (MPC) algorithm for nonlinear systems based on EPCA. The plant

under control, the state and control constraints, and the performance index to be min-

imized are described in continuous time, while the manipulated variables are allowed

to change at fixed and uniformly distributed sampling times.In so doing, the opti-

mization is performed with respect to sequences, as in discrete-time nonlinear MPC,

but the continuous-time evolution of the system is considered as in continuous-time

nonlinear MPC.
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Figure 1.1: The graph of the argumentβ(t).

Consequently, from the above mentioned theoretical and practical results we see that

EPCA was generally investigated using the method of reduction to discrete equation

by its founders and developers. This kind of investigation can be continued based on

the theory of difference equation. However, there are some lacks of this method. For

example, continuous and differential dependence, bifurcation theory, stability theory

mainly need a different kind of investigation.

In [7–9], Akhmet proposed to investigate differential equations with piecewise con-

stant argument of generalized type (EPCAG) of type

dx(t)
dt
= f (t, x(t), x(β(t))), (1.7)
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Figure 1.2: The graph of the argumentγ(t).

or

dx(t)
dt
= f (t, x(t), x(γ(t))), (1.8)

whereβ(t) = θi (see Fig. 1.1) andγ(t) = ζi (see Fig. 1.2) if θi ≤ t < θi+1, i are integers,

are piecewise constant functions,{θi} and{ζi} are strictly increasing sequence of real

numbers, unbounded on the left and on the right such thatθi ≤ ζi ≤ θi+1 for all i. In

papers [7–9], methods of investigation by constructing equivalent integral equations

rather than using the method of reduction to discrete equations were introduced, and

they have been applied for analysis of stability, existenceof periodic and almost peri-

odic solutions, integral manifolds in papers [10–12,14–16]. These equations provide

many opportunities for research of both theoretical and practical problems.
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The problem of the existence of periodic solutions is one of the most interesting

topics for applications. Poincaré [72] introduced the method of small parameter to

investigate the problem and it has been developed by many authors (see, for example,

[58, 73], and the references cited there) and this method remains as one of the most

effective methods for this problem. For differential equations with discontinuities it

was developed by Akhmet in [20, 21]. We apply his approach to the discontinuous

processes in the investigation. It is important that the results obtained in this field can

be extended to the bifurcation theory [22,61].

In this thesis, we study periodic solutions and stability ofdifferential equations with

piecewise constant argument of generalized type by constructing an equivalent inte-

gral equations. These equations can be divided into three main classes: differential

equations with retarded, alternately advanced-retarded,and state-dependent piece-

wise constant argument of generalized type.

This thesis is organized as follows.

In Chapter 2, using the method of small parameter, the existence and stability of

the periodic solutions of quasilinear differential equations with retarded piecewise

constant argument of generalized type in noncritical case,that is, when the unper-

turbed linear ordinary differential equations has not any nontrivial periodic solution,

are investigated. The continuous and differential dependence of the solutions on an

initial value and a parameter is considered. A new Gronwall-Bellmann type lemma is

proved.

In Chapter 3, quasilinear differential equations with alternately advanced-retarded

piecewise constant argument of generalized type and small parameter is addressed.

The critical case, when the associated linear homogeneous system admits nontrivial

periodic solutions, is considered. Using the technique of Poincaŕe-Malkin, criteria

of existence of periodic solutions of such equations are obtained. One of the main

auxiliary results is an analogue of Gronwall-Bellmann Lemmafor functions with

alternately advanced-retarded piecewise constant argument. Dependence of solutions

on an initial value and a parameter is investigated.

In Chapter 4, a new class of differential equations with state-dependent piecewise con-
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stant argument is introduced. It is an extension of systems with piecewise constant

argument. Fundamental theoretical results for the equations: existence and unique-

ness of the solutions, the existence of the periodic solutions, the stability of the zero

solution are obtained. Appropriate examples are constructed.

In Chapter 5, conclusion and future work topics are given.

The main parts of this thesis comes from the following papers:

M. U. Akhmet, C. B̈uyükadalı, Tanıl Ergenç,Periodic solutions of the hybrid systems

with small parameter, Nonlinear Anal.: Hybrid Systems2 (2008), 532-543.

M. Akhmet, C. B̈uyükadalı,On periodic solutions of differential equations with piece-

wise constant argument, Comput. Math. Appl.56 (2008), 2034-2042.

M. U. Akhmet, C. B̈uyükadalı,Differential equations with state-dependent piecewise

constant argument, Nonlinear Anal. TMA (Submitted).

1.2 Differential Equations with Piecewise Constant Arguments

Let R, N andZ be the sets of all real numbers, natural numbers and integers, respec-

tively. We will denote by‖ . ‖ the Euclidean norm for vectors inRn, n ∈ N, and the

uniform norm‖C‖ = sup{‖C x‖ | ‖x‖ = 1} for n× n matrices. LetI be ann× n identity

matrix.

We shall now see some of the significant results previously established for EPCA.

1.2.1 Linear retarded EPCA with constant coefficients

The following results due to Cooke and Wiener [25] obtained byusing the method of

reduction to discrete equations.

Consider the scalar initial value problem

x′(t) = ax(t) + a0x([t]) + a1x([t − 1]),

x(−1) = c−1, x(0) = c0 (1.9)
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with constant coefficients. This equation is very closely related to impulsive and

loaded equations. Indeed, Eq. (1.11) can be written as

x′(t) = ax(t) +
+∞
∑

i=−∞
a0x(i) + a1x(i − 1))(H(t − i) − H(t − i − 1)),

whereH(t) = 1 for t > 0 andH(t) = 0 for t < 0. If distributional derivatives are

admitted, then by differentiating the last equation we have

x′′(t) = ax′ +
+∞
∑

i=−∞
a0x(i) + a1x(i − 1))(δ(t − i) − δ(t − i − 1)),

whereδ is the delta function. This impulsive equation contains thevalues of the un-

known solution for the integral values of t. Let us introducethe following definition.

Definition 1.2.1 A solution of Eq.(1.9) on [0, ∞) is a function x(t) that satisfies the

conditions:

(i) x(t) is continuous on[0, ∞).

(ii) The derivative x′(t) exists at each point t∈ [0, ∞), with the possible exception of

the points[t] ∈ [0, ∞) where the one sided derivative exists.

(iii) Eq. (1.9) is satisfied on each interval[n, n+1) ⊂ [0, ∞) with integral endpoints.

Let us consider Eq. (1.9).

Denote

b0 = ea
+ a−1a0(e

a − 1), b1 = a−1a1(e
a − 1), (1.10)

and letλ1 andλ2 be the roots of the equation

λ2 − b0λ − b1 = 0. (1.11)

Theorem 1.2.1 Problem(1.9) has on[0, ∞) a unique solution

x(t) = c[t]e
a(t−[t])

+ a−1(a0c[t] + a1c[t]−1)(e
a(t−[t]) − 1), (1.12)

where

c[t] = (λ[t]+1
1 (c0 − λ2c−1)) + (λ1c−1 − c0)λ

[t]+1
2 /(λ1 − λ2). (1.13)
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Corollary 1.2.1 The solution of(1.9) can not grow to infinity faster than exponen-

tially as t→ +∞.

Since the solution of (1.9) on [0, ∞) involves only the groupeat, it can be extended

backwards on (−∞, 0].

Theorem 1.2.2 If a1 , 0, the solution of(1.9) has a unique backward continuation

on (−∞, 0] given by the formulas(1.12)and(1.13).

If a1 = 0, it is formulated that

Theorem 1.2.3 The problem

x′(t) = ax(t) + a0x([t]), x(0) = c0, (1.14)

has on[0, ∞) a unique solution

x(t) = u(t − [t])u[t](1)c0, (1.15)

where

u(t) = 1+ a−1(eat − 1)(a+ a0). (1.16)

Theorem 1.2.4 If u(1) , 0, the solution of Eq.(1.14)has a unique backward contin-

uation on(−∞, 0] given by the formula(1.15).

Theorem 1.2.5 If u(1) , 0 and u(t0 − [t0]) , 0, then Eq. (1.14) with the initial

condition x(t0) = x0 has on(−∞, ∞) a unique solution

x(t) = u({t})u[t]−[t0](1)u−1({t0})x0, (1.17)

where{t} is the fractional part of t.

The last theorem establishes the fact that the initial valueproblem for Eq. (1.14) may

be presented at any point, not necessarily integral. A similar proposition is true also

for Eq. (1.9).
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Theorem 1.2.6 If a1 , 0 and

λie
a[t0]
+ a−1(ea[t0] − 1)(λia0 + a1) , 0, i = 1, 2 (1.18)

whereλi are the roots of(1.11), then the problem x(t0) = x0, x(t0 − 1) = x−1 for Eq.

(1.9) has a unique solution on(−∞, ∞).

Theorem 1.2.7 The solution x= 0 of Eq. (1.9) is asymptotically stable as t→ +∞ if

and only if the moduli of the roots of Eq.(1.11)satisfy the inequalities

|λ1| < 1, |λ2| < 1. (1.19)

Theorem 1.2.8 If the solution x= 0 of Eq. (1.9) is asymptotically stable as t→ +∞,
then

−a(2+ ea)/(ea − 1) < a0 < a(2− ea)/(ea − 1),

|a1| < a/(ea − 1). (1.20)

Theorem 1.2.9 The solution x= 0 of Eq. (1.9) is asymptotically stable as t→ +∞,
if and only if any one of the hypothesis is satisfied:

(i)

−a(2+ ea)/(ea − 1) < a0 < a(2− ea)/(ea − 1),

−a(ea
+ a−1(ea − 1)a0)2

4(ea − 1)
≤ a1 <

a(ea
+ 1)

ea − 1
+ a0;

(ii)

− aea

ea − 1
< a0 <

a(2− ea)
ea − 1

,

−a(ea
+ a−1(ea − 1)a0)2

4(ea − 1)
≤ a1 < −a− a0;

(iii)

−a(2+ ea)
ea − 1

< a0 <
a(2− ea)

ea − 1
,

− a
ea − 1

< a1 < −
a(ea
+ a−1(ea − 1)a0)2

4(ea − 1)
.
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1.2.2 Approximation of equations with discrete delay

Equations with piecewise constant arguments can be used to approximate delay dif-

ferential equations that contain discrete delays. In [42] some limit relations between

the solutions of delay differential equations with continuous arguments and the solu-

tions of some retarded EPCA have been proved. The results wereused to compute

numerical solutions of ordinary and delay differential equations. Let us see some of

these results.

Consider the delay differential equation

x′(t) + p0(t)x(t) +
m

∑

i=1

pi(t)x(t − τi) = 0, t ≥ 0, (1.21)

where

(H1′) for i = 1, . . . , m, τi are positive real numbers andτ = max1≤i≤mτi;

(H2′) for i = 0, 1, . . . , m, pi : [0, ∞)→ R are continuous functions;

(H3′) for a fixedk ∈ N, k ≥ 1, seth = τ/k.

Define delay differential equations with piecewise constant arguments as follows:

u′(t) + p0(t)u(t) +
m

∑

i=1

pi(t)u
([ t

h
−

[

τi

h

]]

h
)

= 0, t ≥ 0, (1.22)

and

v′(t) + p0(t)v([
t
h

]h) +
m

∑

i=1

pi(t)v
([ t

h
−

[

τi

h

]

h
])

= 0, t ≥ 0, (1.23)

and

w′(t) + p0

([ t
h

]

h
)

w
([ t

h

]

h
)

+

m
∑

i=1

pi

([ t
h

]

h
)

w
([ t

h
−

[

τi

h

]]

h
)

= 0, t ≥ 0. (1.24)

It is known [45] that Eq. (1.21) with the initial condition

x(s) = φ(s), −τ ≤ s≤ 0, φ ∈ C ≡ C([−τ, 0], R), (1.25)

has a unique solution on [−τ, ∞), which is continuous on [−τ, ∞) and continuously

differentiable on [0, ∞).
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With Eqs. (1.21)−(1.21), let us associate the following initial conditions, respectively:

u( jh) = φ( jh) for j = −k, . . . , 0 (1.26)

and

v( jh) = φ( jh) for j = −k, . . . , 0 (1.27)

and

w( jh) = φ( jh) for j = −k, . . . , 0. (1.28)

Definition 1.2.2 We say that a function u(t) is a solution of(1.22)and(1.26)defined

on the set{−k, . . . , 0} ∪ (0, ∞) if

(i) u(t) is continuous on[0, ∞);

(ii) the derivative u′(t) exists at each point t∈ [0, ∞) with the possible exception of

the points t= nh, n ∈ N, where finite one sided derivative exists;

(iii) the function u(t) satisfies Eq.(1.22)on each interval[nh, (n+ 1)h] for n ∈ N.

The definitions of the solutionsv(t) andw(t) of the initial value problems (1.23)−
(1.27) and (1.24)− (1.28), respectively, are analogues. The following lemma shows

the existence and uniqueness result.

Lemma 1.2.1 Assume that(H1′) − (H3′) hold. Then each one of the initial value

problem(1.22)− (1.26), (1.23)− (1.27)and(1.24)− (1.28)has a unique solution.

Let C1
0 be defined byC1

0 =
{

ψ ∈ C1 : ψ′(0−) + p0(0)ψ(0)+
∑m

i=1 pi(0)ψ(−τi) = 0
}

,

whereC1 denotes the set of continuously differentiable maps of [−τ, 0] into R.

The following theorem shows the convergence result.

Theorem 1.2.10Assume that(H1′) − (H3′) hold. Then the following statements are

valid:
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(a) the solutions x(t), u(t), v(t) and w(t) of the initial value problems(1.21)− (1.25),

(1.22) − (1.26), (1.23) − (1.27) and (1.24) − (1.28), respectively, satisfy the

following relations for all T> 0

lim
h→0

max
0≤t≤T
|x(t) − u(t)| = lim

h→0
max
0≤t≤T
|x(t) − v(t)|

= lim
h→0

max
0≤t≤T
|x(t) − w(t)| = 0. (1.29)

(b) If φ ∈ C1
0 then for all T > 0 there exist constants L0 = L0(T0, φ) and M0 =

M0(T0, φ) such that

‖x(t) − u(t)‖ ≤ L0h, 0 ≤ t ≤ T0, h > 0, (1.30)

and

‖x(t) − v(t)‖ ≤ M0h, 0 ≤ t ≤ T0, h > 0. (1.31)

(c) If for all i = 0, 1, . . . , n the functions pi(t) are Lipschitz-continuous on any

compact subinterval of[0, ∞) andφ ∈ C1
0, then there exists a constant N0 =

N0(T0, φ) such that

‖x(t) − w(t)‖ ≤ N0h, 0 ≤ t ≤ T0, h > 0. (1.32)

Remark 1.2.1 It is known from[41, Lemma 2.1]that C1
0 is a nonempty and dense set

in C.

In the next theorem a condition which guarantees that the first two approximations

are uniform on the half line [0, ∞).

Theorem 1.2.11Assume that(H1′) − (H3′) are satisfied and for all i= 0, 1, . . . , m
∫ ∞

0
|pi(t)|dt < ∞. (1.33)

Letφ ∈ C be a given function. Then the solutions x(t), u(t) and v(t) of Eqs.(1.21)−
(1.25), (1.22)− (1.26), and(1.23)− (1.27), respectively, satisfy the following relations

sup
t≥0
|x(t) − u(t)| → 0, as h→ 0, (1.34)

and

sup
t≥0
|x(t) − v(t)| → 0, as h→ 0. (1.35)
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The following results shows that Eqs. (1.22), (1.23), and (1.24) are strongly related

to some discrete difference equations. Let us denote the first forward difference of a

function f (n) by ∆ f (n) = f (n+ 1)− f (n).

Theorem 1.2.12Assume that(H1′) − (H3′) are satisfied and k≥ 1 is an integer. Set

h = τ/k and ki = [τi/h] for all i = 1, . . . , m. (1.36)

Then

(a) the solution u(t) of (1.22)− (1.26) is given by

u(t) = a(n)e−
∫ t
nh p0(s)ds− e−

∫ t
0 p0(s)ds

m
∑

i=1

∫ t

nh
pi(s)e

∫ s
0 p0(r)drds a(n− ki) (1.37)

for all nh ≤ t < (n+ 1)h and n≥ 0, where{a(n)} is a sequence which satisfies

the difference equation

a(n+ 1)− a(n)e−
∫ (n+1)h
nh p0(s)ds

+e−
∫ nh
0 p0(s)ds

m
∑

i=1

∫ (n+1)h

nh
pi(s)e

∫ s
0 p0(r)drds a(n− ki) = 0, n ≥ 0

a(n) = φ(nh), n = −k, . . . , 0 (1.38)

(b) the solution v(t) of (1.23)− (1.27) is given by

v(t) = (1−
∫ t

nh
p0(s)ds) b(n) +

m
∑

i=1

∫ t

nh
pi(s)ds b(n− ki) (1.39)

for all nh ≤ t < (n+ 1)h and n≥ 0, where{b(n)} is a sequence which satisfies

the difference equation

∆b(n) +
∫ (n+1)h

nh
p0(s)ds b(n) +

m
∑

i=1

∫ (n+1)h

nh
pi(s)ds b(n− ki) = 0, n ≥ 0

b(n) = φ(nh), n = −k, . . . , 0 (1.40)

(c) the solution w(t) of (1.24)− (1.28) is given by

w(t) = c(n) − (p0(nh)c(n) +
m

∑

i=1

pi(nh)c(n− ki))(t − nh) (1.41)

for all nh ≤ t < (n+ 1)h and n≥ 0, where c(n) is a sequence which satisfies the

difference equation

∆c(n) + hp0(nh)c(n) + h
m

∑

i=1

pi(nh)c(n− ki) = 0, n ≥ 0

c(n) = φ(nh), n = −k, . . . , 0. (1.42)
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Let us illustrate the result with the following scalar equation with one constant delay.

Example 1.2.1 Consider the equation

x′(t) = −p(t)x(t − τ), t ≥ 0 (1.43)

with the following initial condition

x(t) = φ(t), −τ ≤ t ≤ 0 (1.44)

whereφ is a given function in C. Let k be any positive integer and let h= τ/k. This

problem may be approximated by the EPCA

y′(t) = −p(t)y
([ t

h
−

[ t
h

]]

h
)

(1.45)

with the initial condition

y(nh) = φ(nh), n = −k, . . . , 0. (1.46)

Moreover, it can be found that y(nh) = an satisfies the difference equation

an+1 − an = −
∫ (n+1)h

nh
p(s)dsan−k (1.47)

an = φ(nh), n = −k, . . . , 0. (1.48)

Hence, using Theorem1.2.10 it is seen that the solution of(1.45), (1.46) provides

uniform approximation to the solution of the problem(1.43), (1.44) on any compact

interval [0, T0], T0 > 0.

1.2.3 Alternately advanced retarded EPCA

Differential equations of the form

x′(t) = f

(

x(t), x

([

t +
1
2

]))

(1.49)

have stimulated considerable interest and have studied by Aftabizadeh and Wiener [2,

4], Cooke and Wiener [27], Huang [47], Jayasree and Deo [48], Ladas, Partheniadas,

and Schinas [52]. In this equations, the argument deviationτ(t) = t −
[

t + 1
2

]

changes

its sign in each intervaln− 1
2 < t < n+ 1

2, n ∈ Z. Indeed,τ(t) < 0 for n− 1
2 < t < n, and
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τ(t) > 0 for n < t < n+ 1
2, which means that the equation is of alternately advanced-

retarded type. It is of advanced type on [n− 1
2, n) and of retarded type on (n, n+ 1

2).

Cooke and Wiener have studied in [27] the equation

x′(t) = ax(t) + a0x

(

2

[

t + 1
2

])

, x(0) = c0. (1.50)

The argument deviation

τ(t) = t − 2

[

t + 1
2

]

(1.51)

is negative for 2n− 1 ≤ t < 2n, and positive for 2n < t < 2n+ 1. Therefore Eq. (1.49)

is of advanced type on [2n− 1, 2n), and of retarded type on (2n, 2n+ 1).

Definition 1.2.3 [81] A solution of Eq.(1.49) on [0, ∞) is a function x(t) that satis-

fies the conditions:

(i) x(t) is continuous on[0, ∞);

(ii) the derivative x′(t) exists at each point t∈ [0, ∞), with the possible exception of

the points t= 2n− 1, n ∈ Z, n > 0, where one sided derivatives exist;

(iii) Eq. (1.49) is satisfied on each interval2n− 1 ≤ t < 2n+ 1.

The following results are from [27]. In that paper, it was shown that Eq. (1.50) has

a unique solution on [0, ∞) and a unique backward solution on (−∞, 0]. Also, it was

determined that the set of (a, a0) for which the zero solution is asymptotically stable

as t → +∞, and the set of (a, a0) such that all nontrivial solutions have no zeros

in (−∞, ∞). The set of bounded solutions is characterized. Furthermore, the same

equation with variable coefficientsa(t), a0(t) is examined, the condition for existence

of a unique solution on [0, ∞) is determined, and conditions are found under which

all solutions are oscillatory.

Let

λ(t) = eat
+ (eat − 1)a−1a0, λ−1 = λ(−1), λ1 = λ(1). (1.52)

Theorem 1.2.13Problem(1.50)has on[0, ∞) a unique solution

x(t) = λ(τ(t))

(

λ1

λ−1

)[(t+1)/2]

c0 (1.53)

if λ−1 , 0, whereτ(t) is given by(1.51).
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Theorem 1.2.14The solution of Eq.(1.50) has a unique backward continuation on

(−∞, 0] given by formula(1.53) if λ1 , 0.

Theorem 1.2.15The solution x= 0 of Eq. (1.50) is asymptotically stable as t→ +∞
if and only if |λ1/λ−1| < 1.

Theorem 1.2.16The solution x= 0 of Eq. (1.50) is asymptotically stable as t→ +∞
if and only if any one of the following hypothesis is satisfied:

(i) a < 0, a0 > −a(e2a
+1)

(ea−1)2 or a0 < −a;

(ii) a > 0, −a(e2a
+1)

(ea−1)2 < a0 < −a;

(iii) a = 0, a0 < 0.

Theorem 1.2.17All nontrivial solutions of Eq.(1.50) have no zeros in(−∞, ∞) if

and only if

− aea

ea − 1
< a0 <

a
ea − 1

. (1.54)

Theorem 1.2.18The problem

x′(t) = a(t)x(t) + a0(t)x

(

2

[

t + 1
2

])

, x(0) = c0 (1.55)

has a unique solution on[0, ∞) if a(t) and a0(t) are continuous for t≥ 0, and
∫ 2n

2n−1
U−1(s)a0(s)ds, U−1(2n), n ∈ N, n ≥ 1, (1.56)

where U−1 is the reciprocal of U and

U(t) = exp

(∫ t

0
a(s)ds

)

.

Theorem 1.2.19The differential inequality

x′(t) + p(t)x(t) + q(t)x

(

2

[

t + 1
2

])

≤ 0, (1.57)

with p(t) and q(t) continuous on[0, ∞), has no eventually positive solution if

lim
n→∞

sup
∫ 2n+1

2n
q(t) exp

(∫ t

2n
p(s)ds

)

dt > 1. (1.58)
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Theorem 1.2.20 If condition(1.58) is satisfied, the differential inequality

x′(t) + p(t)x(t) + q(t)x(2[(t + 1)/2]) ≥ 0 (1.59)

has no eventually negative solution.

From Theorem (1.2.19) and (1.2.20) it follows that subject to hypothesis (1.58), the

equation

x′(t) + p(t)x(t) + q(t)x(2[(t + 1)/2]) = 0 (1.60)

has no eventually negative solutions and therefore the following conclusion is valid.

Theorem 1.2.21Subject to condition(1.58), Eq. (1.60) has oscillatory solutions

only.

Corollary 1.2.2 Eq. (1.55)has only oscillatory solutions on[0, ∞) if

lim
n→∞

inf
∫ 2n+1

2n
a0(t) exp

(

−
∫ t

2n
a(s)ds

)

dt < −1. (1.61)

Remark 1.2.2 Condition(1.61) is sharp. For Eq.(1.50) with constant coefficients,

(1.61)becomes a0 < −aea/(ea − 1) which is according to(1.50), one of the two ”best

possible” conditions for oscillation.

Theorem 1.2.22 Inequality(1.57)has no eventually negative solution if

lim
n→∞

inf
∫ 2n+1

2n
q(t) exp

(∫ t

2n
p(s)ds

)

dt < −1. (1.62)

Theorem 1.2.23 If condition(1.62) is satisfied,(1.59) has no eventually positive so-

lution.

Theorem 1.2.24Subject to condition(1.62), Eq. (1.60) has oscillatory solutions

only.

Corollary 1.2.3 Eq. (1.55)has only oscillatory solutions on[0, ∞) if

lim
n→∞

sup
∫ 2n

2n−1
a0(t) exp

(

−
∫ t

2n
a(s)ds

)

dt > 1. (1.63)
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Theorem 1.2.25 If a0 > a/(ea − 1), then solution(1.53) with the condition x(0) = c0

has precisely one zero in each interval2n − 1 < t < 2n with integral endpoints. If

a0 < −aea/(ea−1), then(1.53)has precisely one zero in each interval2n < t < 2n+1.

Theorem 1.2.26All solutions of Eq.(1.50) that are bounded on−∞ < t < ∞ and

that do not tend to zero as t→ ±∞ are periodic. They exist only for a0 = −a or

a0 = −a(e2a
+ 1)/(ea − 1)2. In the first case, the solutions are constant; and in the

second case, they are of period4.

1.3 Differential Equations with Piecewise Constant Arguments of Generalized

Type

In this section we shall see some of the definitions and fundamental theorems es-

tablished previously for differential equations with piecewise constant arguments of

generalized type.

1.3.1 Retarded EPCAG

The following results due to Akhmet [7] obtained by constructing an equivalent inte-

gral equations.

Consider the quasilinear system

y′ = A(t)y+ f (t, y(t), y(β(t))), (1.64)

wherey ∈ R
n, t ∈ R, β(t) = θi if θi ≤ t < θi+1, i ∈ Z, is an identification function,

θi , i ∈ Z, is a strictly ordered sequence of real numbers,|θi | → ∞ as |i| → ∞, and

there exist real numbersθ andθ̄ > 0 such thatθ ≤ θi+1 − θi ≤ θ̄, i ∈ Z.

Let us introduce the following assumptions.

(H1′′) A(t) is a continuousn× n matrix and supt∈R ||A(t)|| = κ < ∞;

(H2′′) f (t, x, z) is continuous in the first argument,f (t, 0, 0) = 0, t ∈ R, and f is

Lipschitzian such that|| f (t, y1, w1) − f (t, y2, w2)|| ≤ l0(||y1 − y2|| + ||w1 − w2||);
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(H3′′) there exists a projectionP0 and positive constantsK0 andσ such that

||X(t)P0X−1(s)|| ≤ K0 exp(−σ(t − s)), t ≥ s,

||X(t)(I − P0)X
−1(s)|| ≤ K0 exp(σ(s− t)), t ≤ s,

whereX(t) is a fundamental matrix of the associated linear homogeneous sys-

tem.

Definition 1.3.1 A solution y(t) = y(t, θi , y0), y(θi) = y0, i ∈ Z, of (1.64) on [θi , ∞)

is a continuous function such that

(i) the derivative y′(t) exists at each point t∈ [θi , ∞), with the possible exception of

the pointsθ j , j ≥ i, where one-sided derivatives exist;

(ii) equation(1) is satisfied by y(t) at each interval[θ j , θ j+1), j ≥ i.

Theorem 1.3.1 Suppose conditions(H1′′) − (H3′′) are fulfilled. Then for every y0 ∈
R

n and i ∈ Z, there exists a unique solution y(t) of (1.64) in the sense of Definition

1.3.1.

One can be easily shown that there exist positive constantsm, M, such thatm ≤
||X(t, s)|| ≤ M, if |t − s| ≤ θ̄.

We need the assumptions:

(H4′′) 2Ml0θ̄ < 1;

(H5′′) Ml0θ̄[1 + M(1+ l0θ̄) exp(Ml0θ̄)] < m.

Theorem 1.3.2 Assume that conditions(H1′′) − (H5′′) are fulfilled. Then, for every

y0 ∈ R
n, t0 ∈ R, θi < t0 ≤ θi+1, i ∈ Z, there exists a unique solution̄y(t) = y(t, θi , ȳ0)

of (1.64) in sense of Definition1.3.1 such that̄y(t0) = y0.

Example 1.3.1 Consider

x′(t) = 3x(t) − x(t)x(β(t)), (1.65)
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whereβ(t) = θi if θi ≤ t < θi+1, i ∈ Z, θ2 j−1 = j − 1
5, θ2 j = j + 1

5, j ∈ Z. The distance

θi+1 − θi , i ∈ Z, is equal either toθ = 3
5 or to θ̄ = 2

5.

Let us find conditions when a solution x(t) of (1.65) can be continued to the left from

t = θi+1. If t ∈ [θi , θi+1] for a fixed i∈ Z, then x(t) satisfies the following equation

x′(t) = 3x(t) − x(t)x(θi).

Hence,

x(t) = x(θi) exp((3− x(θi))(t − θi)). (1.66)

From the last equality it implies that every nontrivial solution of (1.65) are either

positive or negative. That is why, without loss of generality,consider only positive

solutions. For a fixed H> 0 denote GH = {x : 0 < x < H}.

If x1, x2, y1, y2 ∈ GH, then|x1y1 − x2y2| ≤ H(|x1 − x2| + |y1 − y2|). Moreover, we have

that

m= min
|t−s|≤θ

exp(2(t − s)) = exp(−9/5), M = max
|t−s|≤θ

exp(2(t − s)) = exp(9/5).

Hence, condition(H4′′) for continuation of solutions of(1.65) to the left in GH has

the form

H < 5 exp(−9/5)/6. (1.67)

Let us consider another way to define values x(θi) such that the solution x(t) can be

continued to the left from t= θi+1.

Using(1.66)we find that

x(θi+1) = x(θi) exp((3− x(θi))(θi+1 − θi)). (1.68)

Consider(1.68) as an equation with respect to x= x(θi). Introduce the following

functions F1(x) = xexp((3− x)θ̄) and F2(x) = xexp((3− x)θ)). The critical values of

x for the functions are x(1)
max = θ̄

−1
=

5
2 < 3 and x(2)

max = θ
−1
=

5
3 < 3 respectively, and

maximal values of these functions are

F(1)
max= F1(x

(1)
max) = 5 exp(1/5)/2, F(2)

max= F2(x
(2)
max) = 5 exp(4/5)/3. (1.69)
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Denote Fmax= min(F(1)
max, F(2)

max).

If x(θi+1) ≤ Fmax, then the solution can be continued to t= θi .

Comparing(1.67) and (1.69) we see that H< Fmax. That is, the evaluation of H by

(H4′′) is reliable for equation(1.65).

Let us introduce the following definition, which is a versionof a definition from [69],

adapted for the general case.

Definition 1.3.2 A function y(t) is a solution of(1.64)onR if:

(i) y(t) is continuous onR;

(ii) the derivative y′(t) exists at each point t∈ R with the possible exception of the

pointsθi , i ∈ Z, where one-sided derivatives exist;

(iii) equation(1.64) is satisfied on each interval[θi , θi+1), i ∈ Z.

Theorem 1.3.3 Suppose that conditions(H1′′) − (H5′′) are fulfilled. Then, for every

(t0, y0) ∈ R ×R
n, there exists a unique solution y(t) = y(t, t0, y0) of (1.64) in sense of

Definition1.3.2 such that y(t0) = y0.

The last theorem is of major importance in [7]. It arranges the correspondence be-

tween points (t0, y0) ∈ R × R
n and all solutions of (1.64), and there is not a solution

of the equation out of the correspondence. Using the assertion we can say that defi-

nition of the IVP for the EPCAG is similar to the problem for an ordinary differential

equation, although the EPCAG is an equation with delay argument.

1.3.2 Alternately advanced-retarded EPCAG

The following definitions and theorems due to Akhmet [10]. The results are obtained

by constructing an equivalent integral equations.

Fix two real-valued sequencesθi , ζi , i ∈ Z, such thatθi < θi+1, θi ≤ ζi ≤ θi+1 for all

i ∈ Z, |θi | → ∞ as|i| → ∞.
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Consider the following two equations

z′(t) = A0(t)z(t) + A1(t)z(γ(t)), (1.70)

and

z′(t) = A0(t)z(t) + A1(t)z(γ(t)) + f (t, z(t), z(γ(t))), (1.71)

wherez ∈ R
n, t ∈ R, γ(t) = ζi , if t ∈ [θi , θi+1), i ∈ Z.

The following assumptions are needed:

(C1′) A0, A1 ∈ C(R) aren× n real valued matrices;

(C2′) f (t, x, y) ∈ C(R × R
n × R

n) is ann× 1 real valued function;

(C3′) f (t, x, y) satisfies the condition

|| f (t, x1, y1) − f (t, x2, y2)|| ≤ L0(||x1 − x2|| + ||y1 − y2||), (1.72)

whereL0 > 0 is a constant, and the condition

f (t, 0, 0) = 0, t ∈ R. (1.73)

(C4′) matricesA0, A1 are uniformly bounded onR;

(C5′) infR ||A1(t)|| > 0;

(C6′) there exists a number̄θ > 0 such thatθi+1 − θi ≤ θ̄, i ∈ Z;

(C7′) there exists a numberθ > 0 such thatθi+1 − θi ≥ θ, i ∈ Z.

One can easily see that equations (1.70) and (1.71) have the form of functional differ-

ential equations

z′(t) = A0(t)z(t) + A1(t)z(ζi), (1.74)

z′(t) = A0(t)z(t) + A1(t)z(ζi) + f (t, z(t), z(ζi)), (1.75)

respectively, ift ∈ [θi , θi+1), i ∈ Z.

Let us introduce the following definition, which is a versionof a definition from [69],

modified for the general case.
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Definition 1.3.3 A continuous function z(t) is a solution of(1.70) ((1.71))onR if:

(i) the derivative z′(t) exists at each point t∈ R with the possible exception of the

pointsθi , i ∈ Z, where the one-sided derivatives exist;

(ii) the equation is satisfied for z(t) on each interval(θi , θi+1), i ∈ Z, and it holds for

the right derivative of z(t) at the pointsθi , i ∈ Z.

Let I be ann × n identity matrix. Denote byX(t, s), X(s, s) = I , t, s ∈ R, the

fundamental matrix of solutions of the system

x′(t) = A0(t)x(t). (1.76)

which is associated with systems (1.70) and (1.71). Let us introduce a matrix-function

Mi(t), i ∈ Z,

Mi(t) = X(t, ζi) +
∫ t

ζi

X(t, s)A1(s) ds,

useful in what follows. From now on we make the assumption:

(C8′) For each fixedi ∈ Z, det[Mi(t)] , 0, for all t ∈ [θi , θi+1].

Theorem 1.3.4 Assume that condition(C1′) is fulfilled. For every(t0, z0) ∈ R × R
n

there exists a unique solution z(t) = z(t, t0, z0) of (1.70) in the sense of Definition

1.3.3 such that z(t0) = z0 if and only if condition(C9′) is valid.

The last theorem is of major importance for [10]. It arrangesthe correspondence

between points (t0, z0) ∈ R ×R
n and the solutions of (1.70) in the sense of Definition

1.3.3, and there exists no solution of the equation out of thecorrespondence.

Theorem 1.3.5 Assume that condition(C1′) is fulfilled, and a number t0 ∈ R, θi ≤
t0 < θi+1, is fixed. For every z0 ∈ R

n there exists a unique solution z(t) = z(t, t0, z0) of

(1.70) in the sense of Definition 1.3.3 such that z(t0) = z0 if and only ifdet[Mi(t0)] , 0

anddet[M j(t)] , 0 for t = θ j , θ j+1, j ∈ Z.
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Assume that (t0, z0) is fixed, andθi ≤ t0 < θi+1 for a fixedi ∈ Z. We suppose thatt0 ,

ζi . The solution satisfies, on the interval [θi , θi+1], the following functional differential

equation

z′(t) = A0(t)z+ A1(t)z(ζi). (1.77)

Formally we need the pair of initial points (t0, z0) and (ζi , z(ζi)) to proceed with the

solution, but sincez0 = Mi(t0)z(ζi), where matrixMi(t0) is nonsingular, we can say

that the initial conditionz(t0) = z0 is sufficient to define the solution.

Theorem 1.3.4 implies that the set of the solutions of (1.70)is an n−dimensional

linear space. Hence, for a fixedt0 ∈ R there exists a fundamental matrix of solutions

of (1.70),Z(t) = Z(t, t0), Z(t0, t0) = I such that

dZ
dt
= A0(t)Z(t) + A1(t)Z(γ(t)).

Without loss of generality assume thatθi < t0 < ζi for a fixed i ∈ Z, and define the

matrix only for increasingt, as the construction is similar for decreasingt.

We haveZ(ζi) = M−1
i (t0)I = M−1

i (t0). Hence, on the interval [θi , θi+1], Z(t, t0) =

Mi(t)M−1
i (t0). ThenZ(ζi+1) = M−1

i+1(θi+1)Z(θi+1) = M−1
i+1(θi+1)Mi(θi+1)M−1

i (t0), and then

Z(t, t0) = Mi+1(t)Z(ζi+1) = Mi+1(t)M−1
i+1(θi+1)Mi(θi+1)M−1

i (t0) if t ∈ [θi+1, θi+2]. One

can continue by induction to obtain

Z(t) = Ml(t)
[

i+1
∏

k=l

M−1
k (θk)Mk−1(θk)

]

M−1
i (t0), (1.78)

if t ∈ [θl , θl+1], for arbitraryl > i.

Similarly, if θ j ≤ t ≤ θ j+1 < . . . < θi ≤ t0 ≤ θi+1, then

Z(t) = M j(t)
[

i−1
∏

k= j

M−1
k (θk+1)Mk+1(θk+1)

]

M−1
i (t0). (1.79)

One can easily see that

Z(t, s) = Z(t)Z−1(s), t, s ∈ R, (1.80)

and a solutionz(t), z(t0) = z0, (t0, z0) ∈ R × R
n, of (1.70) is equal to

z(t) = Z(t, t0)z0, t ∈ R. (1.81)
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Let us consider system (1.71). One can easily see that (C4′) − (C7′) imply the exis-

tence of positive numbersm0, M andM̄ such thatm0 ≤ ||Z(t, s)|| ≤ M̄, ‖X(t, s)‖ ≤ M

if t, s ∈ [θi , θi+1], i ∈ Z.

We need the assumption

(C9′) 2ML0(1+ M̄)θ̄ < 1.

Then, we can see thatM(1+ M̄)L0θ̄eML0(1+M̄)θ̄ < 1, and the expression

κ(L0) =
M̄eML0(1+M̄)θ̄

1− M(1+ M̄)L0θ̄eML0(1+M̄)θ̄

can be introduced. The following assumption is also needed

(C10′) 2ML0θ̄κ(L0)(1+ M̄) < m0.

The following lemma is the most important auxiliary result of that paper.

Lemma 1.3.1 Assume that conditions(C1′) − (C10′) are fulfilled, and fix i∈ Z. Then,

for every(ξ, z0) ∈ [θi , θi+1] × R
n, there exists a unique solution z(t) = z(t, ξ, z0) of

(1.75) on[θi , θi+1].

Theorem 1.3.6 Assume that conditions(C1′) − (C10′) are fulfilled. Then, for every

(t0, z0) ∈ R × R
n there exists a unique solution z(t) = z(t, t0, z0) of (1.71) in the sense

of Definition 1.3.3 such that z(t0) = z0.

Lemma 1.3.2 Assume that conditions(C1′) − (C10′) are fulfilled. Then, the solution

z(t) = z(t, t0, z0), (t0, z0) ∈ R × R
n, of (1.71) is a solution onR of the following

integral equation

z(t) = Z(t, t0)[z0 +

∫ ζi

t0

X(t0, s) f (s, z(s), z(γ(s))) ds] +

k= j−1
∑

k=i

Z(t, θk+1)
∫ ζk+1

ζk

X(θk+1, s) f (s, z(s), z(γ(s))) ds+

∫ t

ζ j

X(t, s) f (s, z(s), z(γ(s))) ds, (1.82)

whereθi ≤ t0 ≤ θi+1 andθ j ≤ t ≤ θ j+1, i < j.
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CHAPTER 2

PERIODIC SOLUTIONS IN NONCRITICAL CASE

In this chapter, we investigate the existence and stabilityof periodic solutions of

quasilinear system with a retarded piecewise constant argument of generalized type

and a small parameter in noncritical case, when the corresponding linear ordinary

differential equations have not any nontrivial periodic solution. We also prove theo-

rems on continuous dependence of solutions with respect to an initial condition and a

parameters. An example illustrating the obtained results is constructed as well.

2.1 Introduction and Preliminaries

The main purpose of this chapter is to apply the method of small parameter to the

following quasilinear system

x′(t) = A(t)x(t) + f (t) + µg(t, x(t), x(β(t)), µ), (2.1)

wheret ∈ R, x ∈ R
n, andµ is a small parameter belonging to an intervalJ ⊂ R with

0 ∈ J; the functionsf (t), g(t, x, y, µ) aren−dimensional vectors,A(t) is ann × n

matrix for n ∈ N; the argumentβ(t) = θ j if θ j ≤ t < θ j+1, j ∈ Z, is the identification

function. Here,θ j , j ∈ Z, is a strictly ordered sequence of real numbers,|θi | → ∞ as

|i| → ∞, and there exist two positive real numbersθ, θ̄ such thatθ ≤ θ j+1− θ j ≤ θ̄, j ∈
Z.

In [8], it was proposed to investigate differential equations of type (2.1), that is

EPCAG, using a new method based on the construction of an equivalent integral

equation.
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We combine that method with the method of small parameter [58,61,72] to investigate

the problem of the existence of a periodic solution of (2.1) in so called non-critical

case, when the corresponding linear homogeneous system hasnot any nontrivial pe-

riodic solution.

The following assumptions for Eq. (2.1) will be needed throughout this chapter:

(H1) FunctionsA(t), f (t) andg(t, x, y, µ) are continuous in all of their arguments.

(H2) The functiong(t, x, y, µ) satisfies Lipschitz condition with a positive real con-

stantL such that

‖g(t, x̃, ỹ, µ) − g(t, x, y, µ)‖ ≤ L[‖x̃− x‖ + ‖ỹ− y‖],

for all t ∈ R, x̃, x, ỹ, y ∈ R
n, µ ∈ J.

This chapter is organized in the following way: In the next section, we consider the

existence and uniqueness of a global solution of the equations defined on the real

axis. In section three, continuous and differentiable dependence of the solutions on

an initial values and a parameter is considered. The main result of this chapter: the

existence of a unique periodic solution of the equations in noncritical case and its

stability are investigated in the last section. Furthermore, an appropriate example is

provided.

2.2 Existence and uniqueness of solutions

The following definitions are from [8]. They are similar to those in [68–70], adapted

to EPCAG. Let us first consider solutions defined on a half line beginning at some

memberθi of the sequence{θ j}, j ∈ Z.

Definition 2.2.1 We say that a function x(t) = x(t, θi , x0, µ), x(θi) = x0, i ∈ Z for

t ≥ θi , µ ∈ J, i ∈ Z, is a solution of the initial value problem(2.1) on [θi , ∞) if it is a

continuous function satisfying the conditions:

(i) the derivative x′(t) exists for all t∈ [θi , ∞) with the possible exception of points

θ j , j ≥ i, j ∈ Z, where one sided derivative exists;
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(ii) x(t) satisfies Eq.(2.1) for each interval[θ j , θ j+1), j ≥ i.

The following theorem is valid.

Theorem 2.2.1 Suppose that conditions(H1) and (H2) hold. Then, for all x0 ∈
R

n, µ ∈ J and i ∈ Z, there exists a unique solution x(t) of an initial value problem

(2.1) with x(θi) = x0 in the sense of Definition2.2.1.

Proof: Let us fix x0 ∈ R
n, i ∈ Z, µ ∈ J. To use mathematical induction, let us start

with t ∈ [θi , θi+1]. The solutionx(t) of Eq. (2.1) satisfies the ordinary differential

equation

ψ′(t) = A(t)ψ(t) + f (t) + µg(t, ψ(t), x0, µ), (2.2)

ψ(θi) = x0, (2.3)

where the functionsA(t), f (t) andg(t, ψ(t), x0, µ) satisfy the conditions of the classi-

cal existence and uniqueness theorems of Peano and Picard-Lindelöf. Consequently,

x(t) exists uniquely on [θi , θi+1].

Suppose thatx(t) is a unique solution of (2.1) on the interval [θi , θk] for somek ∈
Z, k ≥ i + 1. If t ∈ [θk, θk+1], thenx(t) is a solution of the followingIVP:

ψ′(t) = A(t)ψ(t) + f (t) + µg(t, ψ(t), x(θk), µ), (2.4)

ψ(θk) = x(θk). (2.5)

For the same reason as that behind the existence and uniqueness of the solution of

(2.2) and (2.3), we conclude thatx(t) is uniquely defined on this interval, too. There-

fore, there exists a unique solutionx(t) of (2.1) for t ≥ θi , satisfyingx(θi) = x0 for

x0 ∈ R
n. The theorem is proved.�

Let X(t) be a fundamental matrix solution of the homogeneous system, corresponding

to Eq. (2.1),

x′(t) = A(t)x(t), (2.6)

such thatX(0) = I , where I is an n × n identity matrix. Denote byX(t, s) =

X(t)X−1(s), t, s ∈ R, the transition matrix of (2.6). Let κ = supt∈R ‖A(t)‖ < ∞.
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Lemma 2.2.1 [44] Assume (H1) is satisfied. Then, the inequality

‖X(t, s)‖ ≤ exp(κ|t − s|), t, s ∈ R, (2.7)

holds.

Lemma 2.2.2 Assume(H1) is satisfied. Then, the inequality

m≤ ‖X(t, s)‖ ≤ M,

where m= exp(−κθ̄), M = exp(κθ̄), holds for|t − s| ≤ θ̄.

Proof. Using (2.7) and the equalityX(t, s)X(s, t) = I , it can be found immediately

that the inequality

‖X(t, s)‖ ≥ exp(−κ|t − s|), t, s ∈ R, (2.8)

is satisfied. By combining (2.7) with (2.8), the lemma is proved.�

The following definition is similar to those in [8,68–70] adapted to EPCAG.

Definition 2.2.2 We say that x(t) is a solution of(2.1) on R if it satisfies the condi-

tions:

(i) x(t) is continuous onR;

(ii) the derivative x′(t) exists for all t∈ R with the possible exception of the points

θ j , j ∈ Z, where one sided derivative exists;

(iii) x(t) satisfies equation(2.1) for each interval[θ j , θ j+1), j ∈ Z.

Let us introduce the following two lemmas. We prove only the second of them, the

proof of the first one is very similar.

Lemma 2.2.3 Suppose(H1) is satisfied. A function x(t) = x(t, t0, x0, µ), where t0 is

a real fixed number, is a solution of(2.1) on R if and only if it is a solution onR of

the following integral equation

x(t) = X(t, t0)x0 +

∫ t

t0

X(t, s)[ f (s) + µg(s, x(s), x(β(s)), µ)] ds. (2.9)
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Lemma 2.2.4 Suppose(H1) is satisfied. A function x(t) = x(t, t0, x0, µ), where t0 is

a real fixed number, is a solution of(2.1) on R if and only if it is a solution onR of

the following integral equation

x(t) = x0 +

∫ t

t0

[A(s)x(s) + f (s) + µg(s, x(s), x(β(s)), µ)] ds. (2.10)

Proof: Necessity.Assume thatx(t) is a solution of (2.1) onR. Denote

φ(t) = x0 +

∫ t

t0

[A(s)x(s) + f (s) + µg(s, x(s), x(β(s)), µ)] ds.

By straightforward evaluation, we can see that the integral exists.

Supposet , θi , i ∈ Z. Then

φ′(t) = A(t)x(t) + f (t) + µg(t, x(t), x(β(t)), µ)

and

x′(t) = A(t)x(t) + f (t) + µg(t, x(t), x(β(t)), µ).

Hence,

[φ(t) − x(t)]′ = 0.

Calculating the limit values atθi , i ∈ Z, we find that

φ′(θi ± 0) = A(θi ± 0)x(θi ± 0)+ f (θi ± 0)+ µg(θi ± 0, x(θi ± 0), x(β(θi ± 0)), µ),

x′(θi ± 0) = A(θi ± 0)x(θi ± 0)+ f (θi ± 0)+ µg(θi ± 0, x(θi ± 0), x(β(θi ± 0)), µ).

Consequently,

[φ(t) − x(t)]′|t=θi+0 = [φ(t) − x(t)]′|t=θi−0.

Thus,φ(t)− x(t) is a continuously differentiable function onR satisfying the equation

[φ(t) − x(t)]′ = 0 (2.11)

with the initial conditionφ(t0) − x(t0) = 0. This proves thatφ(t) − x(t) = 0 onR.

Sufficiency.Suppose that (2.10) is valid. Fixi ∈ Z and consider the interval [θi , θi+1).

If t ∈ (θi , θi+1), then by differentiating (2.10) one can see thatx(t) satisfies (2.1).

33



Moreover, by consideringt → θi + 0, and taking into account thatx(β(t)) is a right

continuous function, we find thatx(t) satisfies (2.1) on [θi , θi+1). The lemma is proved.

�

The following simple example shows that while a solution of EPCAG with small

parameter exists in the sense of Definition 2.2.1, it may not exist in the sense of

Definition 2.2.2, that is, a solution may exist on a half-axis and not exist on the whole

real axis, unless we put some conditions.

Example 2.2.1 Consider the following differential equation:

x′(t) = αx(t) − µx2(β(t)), (2.12)

where x∈ R, t ∈ R, α is a real positive constant, andβ(t) = θ j if θ j ≤ t < θ j+1, j ∈
Z, θ2i−1 = 4i − 1, θ2i = 4i, i ∈ Z. The distanceθ j+1 − θ j , j ∈ Z, is either equal to

θ = 1 or to θ̄ = 3. Let us fix x0 ∈ R. We shall look for conditions onα andµ such

that a solution x(t) = x(t, θ0, x0, µ), x(θ0) = x0, x0 > 0, of (2.12) exists in the sense

of Definitions2.2.1 and2.2.2.

If µ = 0, it is easy to see that the solution x(t) of (2.12) exists uniquely, and it is

positive and not bounded onR.

Supposeµ > 0. Let us consider a transformation x(t) = y(t)/µ. Using this transfor-

mation, we obtain the following equation from(2.12)

y′(t) = αy(t) − y2(β(t)). (2.13)

Let y(t) = y(t, θ0, y0) be a solution of(2.13) with y(θ0) = y0, y0 > 0. Denote yk =

y(θk), k ∈ Z. We first consider the existence and uniqueness of the solution y(t). Let

us start with t∈ [θ0, ∞), that is, if time is increasing.

If t ∈ [θ0, θ1], then y(t) is a solution of the equation

y′(t) = αy(t) − y2
0,

which is a linear nonhomogeneous differential equation with a constant coefficient,

that is why the solution y(t) is uniquely defined on[θ0, θ1]. The rest can be deduced

from the arguments of mathematical induction. That is, the solution y(t) and the

corresponding solution x(t) exist uniquely on[θ0, ∞) in the sense of Definition2.2.1.
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Next, let us consider the solution for decreasing time. We willshow that if

y0 ≤
αexp(2α)

4[exp(α) − 1]
(2.14)

αexp(α)
exp(α) − 1

≤ αexp(6α)
4[exp(3α) − 1]

(2.15)

αexp(3α)
exp(3α) − 1

≤ αexp(2α)
4[exp(α) − 1]

(2.16)

are satisfied, then the solution y(t) = y(t, θ0, y0) exists on(−∞, θ0].

If t ∈ [θ−1, θ0], then y(t) coincides with the solution of the following ordinary differen-

tial equation

y′(t) = αy(t) − y2
−1. (2.17)

Using the equivalent integral equation of(2.17), it can be written that

y(t) = exp(α(t − θ−1))y−1 +
1
α

[1 − exp(α(t − θ−1))]y
2
−1. (2.18)

Denote z= y−1. It is easy to see that the solution y(t) exists on[θ−1, θ0], if the

quadratic equation for z, obtained from(2.18)with t = θ0,

z2 − αexp(α)
exp(α) − 1

z+
α

exp(α) − 1
y0 = 0 (2.19)

has a real root. The last equation has a real root, if inequality (2.14) is valid. Hence,

if inequality(2.14) is valid, then the solution y(t) exists on[θ−1, θ0], but is not neces-

sarily unique.

Suppose inequality(2.14) is valid. It is easy to check that the roots z1,2 of equation

(2.19)satisfy the inequality

0 ≤ z1,2 ≤
αexp(α)

exp(α) − 1
. (2.20)

Denote z= y−2. If t ∈ [θ−2, θ−1], one can similarly obtain that the solution y(t) exists

on [θ−2, θ−1], if the following quadratic equation

z2 − αexp(3α)
exp(3α) − 1

z+
α

exp(3α) − 1
y−1 = 0 (2.21)

has a real root. The last equation has a real root, if

y−1 ≤
αexp(6α)

4[exp(3α) − 1]
(2.22)

35



holds. Using inequalities(2.20)and(2.22), it is clear that if inequality(2.15) is valid,

then the solution y(t) exists on[θ−2, θ−1].

Suppose inequality(2.15) is valid. It is easy to see that the roots z3,4 of equation

(2.21)satisfy the inequality

0 ≤ z3,4 ≤
αexp(3α)

exp(3α) − 1
. (2.23)

If t ∈ [θ−3, θ−2], we then have a quadratic equation similar to(2.19), and

y−2 ≤
αexp(2α)

4[exp(α) − 1]
(2.24)

holds. Therefore, the solution y(t) exists on[θ−3, θ−2]. Finally, using inequalities

(2.16), (2.23)and(2.24)one can see that the solution y(t) exists on[θ−4, θ−3].

By using the arguments of mathematical induction, we can conclude that if inequali-

ties (2.14)− (2.16) are satisfied, then the solution y(t, θ0, y0) exists on(−∞, θ0], but

is not necessarily unique.

Consequently, if inequalities(2.15), (2.16)and the inequality

0 < µ ≤ αexp(2α)
4x0[exp(α) − 1]

, (2.25)

obtained from(2.14), are satisfied for x0 > 0, then the solution x(t) = x(t, θ0, x0, µ)

exists in the sense of Definition2.2.2. Moreover, if one of inequalities(2.15), (2.16)

or (2.25) is violated, then the solution x(t) exists in the sense of Definition2.2.1, but

it does not exist in the sense of Definition2.2.2.

From now on, we need the following assumptions:

(H3) |µ| < 1/(2MLθ̄);

(H4) |µ|MLθ̄[1 + M(1+ L|µ|θ̄) exp(ML|µ|θ̄)] < m.

The following theorem provides the existence of a unique solution to the left when

the initial momentξ is an arbitrary real number.

Theorem 2.2.2 Suppose that(H1)− (H4) hold. Then, for all x0 ∈ R
n, ξ ∈ R, θi <

ξ ≤ θi+1, i ∈ Z, there exists a unique solution̄x(t) = x(t, θi , x̄0, µ) of (2.1) in the sense

of Definition2.2.1 with x̄(ξ) = x0.
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Proof: Existence.Consider a solutionψ(t) = x(t, ξ, x0, µ) with ψ(ξ) = x0 of the

equation

x′(t) = A(t)x(t) + f (t) + µg(t, x(t), η, µ)

on [θi , ξ].

We need to prove that there is a vectorη ∈ R
n such that the equation

ψ(t) = X(t, ξ)x0 +

∫ t

ξ

X(t, s)[ f (s) + µg(s, ψ(s), η, µ)] ds (2.26)

has a solutionψ(t), defined on [θi , ξ], and satisfyingψ(θi) = η.

Construct a sequence{ψk(t)} ⊂ R
n, k ∈ N with ψ0(t) = X(t, ξ)x0 such that

ψk+1(t) = X(t, ξ)x0 +

∫ t

ξ

X(t, s)[ f (s) + µg(s, ψk(s), ψk(θi), µ)]ds, k ∈ N.

By simple calculation, it can be found that

max
[θi , ξ]
‖ψk+1(t) − ψk(t)‖ ≤ (2MLθ̄|µ|)kζ,

whereζ = Mθ̄max[θi , ξ] ‖ f (s) + µg(s, ψ0(s), ψ0(θi), µ)‖. That is, the sequenceψk(t)

is convergent, and its limitψ(t) satisfies (2.26) on [θi , ξ] with η = ψ(θi) whenever

|µ| < 1/(2MLθ̄). The existence is proved.

Uniqueness.It is sufficient to check that for eacht ∈ (θi , θi+1], andx1, x2 ∈ R
n, x1 ,

x2, conditionx(t, θi , x1, µ) , x(t, θi , x2, µ) is valid.

Let x1(t) = x(t, θi , x1, µ) andx2(t) = x(t, θi , x2, µ) be two solutions of (2.1) such that

x1 , x2. Suppose to the contrary that there existst̃ ∈ (θi , θi+1] such thatx1(t̃) = x2(t̃).

This implies the equation

X(t̃, θi)(x1 − x2) = −µ
∫ t̃

θi

X(t̃, s)[g(s, x1(s), x1(θi), µ) − g(s, x2(s), x2(θi), µ)]ds.

(2.27)

We have then inequalities

m‖x1 − x2‖ ≤ ‖X(t̃, θi)(x1 − x2)‖ (2.28)

and

‖x1(t) − x2(t)‖ ≤ M‖x1 − x2‖ +
∫ t

θi

ML |µ|[‖x1(s) − x2(s)‖ + ‖x1 − x2‖] ds (2.29)
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for t ∈ (θi , θi+1].

Hence, by applying Gronwall-Bellman Lemma to (2.29), we obtain

‖x1(t) − x2(t)‖ ≤ M(1+ L|µ|θ̄) exp(ML|µ|θ̄)‖x1 − x2‖,

which leads to the inequality

∥

∥

∥

∥

∥

∥

−µ
∫ t̃

θi

X(t̃, s)[g(s, x1(s), x1(θi), µ) − g(s, x2(s), x2(θi), µ)]ds

∥

∥

∥

∥

∥

∥

≤

|µ|MLθ̄[1 + M(1+ L|µ|θ̄) exp(ML|µ|θ̄)]‖x1 − x2‖. (2.30)

Therefore, condition (H4) and inequalities (2.28), (2.30) contradict (2.27). The theo-

rem is proved.�

Remark 2.2.1 The last theorem provides us conditions(H3) and (H4), of smallness

for the parameterµ such that the initial value problem has a unique solution defined

on [t0, ∞).

The following theorem is valid.

Theorem 2.2.3 Suppose that(H1)− (H4) hold. Then, for all(t0, x0) ∈ R ×R
n, there

exists a unique solution x(t) of (2.1) in the sense of Definition2.2.2 with x(t0) = x0.

Proof: Fix a momentt0 ∈ R. Then, there isi ∈ Z such thatθi < t0 ≤ θi+1.

By Theorem 2.2.2, there is a unique solutionx(t) = x(t, θi , x0
i , µ), x(θi) = xi

0 of

(2.1) with x(t0) = x0. Similarly, by Theorem 2.2.2, there is a unique solution ˜x(t) =

x(t, θi−1, xi−1
0 , µ), x̃(θi−1) = xi−1

0 with x̃(θi) = xi
0. Hence, ˜x(t0) = x0. We can complete

the proof by using mathematical induction.�

The last theorem is of major importance, since it supplies a one-to-one correspon-

dence between points (t0, x0) ∈ R×R
n and solutions of (2.1), and there is no solution

of (2.1) out of the correspondence. Although (2.1) is a delay differential equation, it

has the properties of ordinary differential equations. We will make use of this corre-

spondence in the rest of this chapter.
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2.3 Dependence of solutions on initial value and parameter

Let us fix t0 ∈ R, x0 ∈ R
n, andµ0 ∈ J. There existsj ∈ Z such thatθ j ≤ t0 < θ j+1.

We denote by‖ . ‖t a sup-norm,‖v(ξ)‖t = sup[θ j , t] ‖v(ξ)‖. The theorem sets continuous

dependence of solutions for (2.1) on an initial data. To prove the theorem, we consider

the following assertion.

Lemma 2.3.1 Let v(t) be a continuous function for t≥ θ j , satisfying the inequality

‖v(t)‖ ≤ η +
∫ t

θ j

[a1(s) ‖v(s)‖ + a2(s) ‖v(β(s))‖] ds, (2.31)

whereη ≥ 0 is a real scalar, and a1(t), a2(t) are nonnegative piecewise continuous

functions. Then,

‖v(ξ)‖t ≤ ηexp

(∫ t

θ j

[a1(s) + a2(s)]ds

)

, t ≥ θ j . (2.32)

Proof: Let us first show that

‖v(ξ)‖t ≤ η +
∫ t

θ j

[a1(s) + a2(s)] ‖v(ξ)‖sds, t ≥ θ j . (2.33)

Sinceθ j ≤ β(s)) ≤ s for s≥ θ j , we have that

‖v(β(ξ))‖t = sup
[θ j , t]
‖v(β(ξ))‖ = sup

[θ j , β(t)]
‖v(ξ)‖ ≤ sup

[θ j , t]
‖v(ξ)‖ = ‖v(ξ)‖t.

Hence,

‖v(t)‖ ≤ η +
∫ t

θ j

[a1(s) + a2(s)] ‖v(ξ)‖s ds

is satisfied.

If ‖v(t)‖ = ‖v(ξ)‖t for a givent ≥ θ j , then inequality (2.33) is valid. Suppose that

‖v(t)‖ < ‖v(ξ)‖t. By definition of sup-norm, there is a momentt̃ ∈ [θ j , t] such that

‖v(t̃)‖ = ‖v(ξ)‖t. Hence, we have

‖v(ξ)‖t = ‖v(t̃)‖

≤ η +

∫ t̃

θ j

[a1(s) + a2(s)]‖v(ξ)‖s ds

≤ η +

∫ t

θ j

[a1(s) + a2(s)]‖v(ξ)‖s ds,
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as t̃ ≤ t. So, (2.33) is valid. Now, settingψ(t) = ‖v(ξ)‖t and applying Gronwall-

Bellman Lemma to

ψ(t) ≤ η +
∫ t

θ j

[a1(s) + a2(s)]ψ(s) ds, t ≥ θ j ,

we complete the proof.�

Let us fix a positive real numberT.

Theorem 2.3.1 Suppose(H1)− (H4) are valid. If x(t) = x(t, t0, x0, µ0) and x̃(t) =

x(t, t0, x0 + ∆x, µ0) are solutions of(2.1), where∆x is an n-dimensional real vector,

then

‖x̃(ξ) − x(ξ)‖t ≤ M‖∆x‖exp(2|µ0|ML(t0 + T − θ j) (2.34)

is satisfied for all t∈ [t0, t0 + T].

Proof: If t ∈ [t0, t0 + T], then

‖x̃(t) − x(t)‖ ≤ X(t, t0)‖∆x‖ + |µ0|
∫ t

t0

X(t, s)‖g(s, x̃(s), x̃(β(s)), µ0)

−g(s, x(s), x(β(s)), µ0)‖ds,

Hence,

‖x̃(t) − x(t)‖ ≤ M‖∆x‖ + |µ0|ML
∫ t

θ j

[‖x̃(s) − x(s)‖ + ‖x̃(β(s)) − x(β(s))‖]ds.

Applying Lemma 2.3.1 to the last inequality, we proved that (2.34) is valid.�

The differential dependence of a solution of (2.1) on an initial value is established by

our next theorem. We need the following assumption:

(H5) The functiong(t, x, y, µ) has continuous first partial derivatives in all its argu-

mentst ∈ R, x, y ∈ R
n, µ ∈ J.

Let us introduce the following equations:

U′(t) = A(t)U(t) + µ0[A1(t)U(t) + A2(t)U(β(t))], (2.35)

U(t0) = I , (2.36)
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whereU ∈ R
n×n, and the functions

A1(t) =
∂g
∂x

(t, x(t), x(β(t)), µ0), A2(t) =
∂g
∂y

(t, x(t), x(β(t)), µ0)

aren× n matrices.

Theorem 2.3.2 Suppose(H1)− (H5) are valid. Let ei = (0, . . . , 0, 1, 0, . . . , 0)T be

the n-tuple whose i-th component is1 and all others are0 for i = 1, . . . , n, and δ

a real positive constant. If U(t) is the solution of(2.35) and (2.36) in the sense of

Definition 2.2.2, and x(t) = x(t, t0, x0, µ0) and x̃i(t) = x(t, t0, x0 + ∆xi , µ0) are the

solutions of(2.1), where∆xi = δei is an n-dimensional vector, then

x̃i(t) − x(t) − U(t)∆xi = o(∆xi) (2.37)

is satisfied for all t∈ [t0, t0 + T].

Proof: By the equivalence Lemma 2.2.4, x̃i(t), x(t) andU(t) satisfy the following

integral equations:

x̃i(t) = X(t, t0)(x0 + ∆xi) +
∫ t

t0

X(t, s)[ f (s) + µ0g(s, x̃i(s), x̃i(β(s)), µ0)]ds,

x(t) = X(t, t0)x0 +

∫ t

t0

X(t, s)[ f (s) + µ0g(s, x(s), x(β(s)), µ0)]ds,

U(t) = X(t, t0) + µ0

∫ t

t0

X(t, s)[A1(s)U(s) + A2(s)U(β(s))] ds,

respectively. An easy computation shows that, ift ∈ [t0, t0 + T],

x̃i(t) − x(t) − U(t)∆xi = µ0

∫ t

t0

X(t, s)[g(s, x̃i(s), x̃i(β(s)), µ0)

−g(s, x(s), x(β(s)), µ0) − A1(s)U(s)∆xi − A2(s)U(β(s))∆xi]ds.

By expandingg(s, x̃i(s), x̃i(β(s)), µ0) about (s, x(s), x(β(s)), µ0), we write

g(s, x̃i(s), x̃i(β(s)), µ0) = g(s, x(s), x(β(s)), µ0) + A1(s)[ x̃i(s) − x(s)]

+A2(s)[ x̃i(β(s)) − x(β(s))] + ξ(s),

whereξ(t) = o(∆xi). Hence,

‖x̃i(t) − x(t) − U(t)∆xi‖ ≤ ζ + |µ0|M
∫ t

θ j

[‖A1(s)‖ ‖x̃i(s) − x(s) − U(s)∆xi‖

+‖A2(s)‖ ‖x̃i(β(s)) − x(β(s)) − U(β(s))∆xi‖] ds,
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whereζ = |µ0|M
∫ t0+T

t0
‖ξ(s)‖ds. Consequently, by applying Lemma 2.3.1 to the last

inequality, we prove that (2.37) is valid.�

As a result of the last theorem, we have shown that the initialvalue problem (2.35)

and (2.36) is a variation of (2.1). Moreover, we note that continuous dependence of

solutions of (2.1) on a parameter follows from Theorem (2.3.1) and (H5) by adding

the parameterµ to Eq. (2.1) as a new dependent variable and requiring thatµ′(t) = 0

andµ(t0) = 0.

2.4 Existence and stability of the periodic solutions

In this section, we prove the main theorem of this chapter. Weneed the following

assumptions:

(H6) The functionsA(t), f (t) andg(t, x, y, µ) areω-periodic int, for some a positive

real numberω.

(H7) The sequence{θi} satisfies an (ω, p)-property, that is,θi+p = θi + ω, i ∈ Z, for

some positive integerp.

Let us consider the following version of the Poincaré criterion.

Lemma 2.4.1 Suppose that(H1)− (H4) and (H6), (H7) hold. Then, solution x(t) =

x(t, t0, x0, µ) of (2.1), with x(t0) = x0, isω-periodic if and only if

x(ω) = x(0). (2.38)

Proof. If x(t) is ω-periodic, then Eq. (2.38) is obviously satisfied. Suppose that

Eq. (2.38) holds. Lety(t) = x(t + ω) on R. Then, equation (2.38) can be written as

y(0) = x(0). One can show thatβ(t + ω) = β(t) + ω. Hence,

y′(t) = x′(t + ω)

= A(t + ω)x(t + ω) + f (t + ω) + µg(t + ω, x(t + ω), x(β(t + ω)), µ)

= A(t)y(t) + f (t) + µg(t, y(t), y(β(t)), µ).
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That is,y(t) is a solution of (2.1). By uniqueness of the solution,x(t) = y(t) onR. The

lemma is proved.�

The following theorem is a generalization of a classical theorem originally due to

Poincaŕe [72] for EPCAG.

Theorem 2.4.1 Assume that(H1)− (H7) hold, and

x′(t) = A(t)x(t) (2.39)

has no nontrivial periodic solution with periodω. Then, for sufficiently small|µ|,
equation(2.1) has a uniqueω-periodic solution, which tends to the unique periodic

solution with periodω of

x′(t) = A(t)x(t) + f (t), (2.40)

asµ→ 0.

Proof: Let x(t, ζ, µ) be a solution of equation (2.1), satisfying the initial condition

x(0, ζ, µ) = ζ, and letx0(t) = x(t, ζ0, 0) be a unique periodic solution of periodω

of equation (2.40). To show, using Lemma 2.4.1, that for a sufficiently smallµ the

ω-periodic solutionx(t, ζ, µ) exists, it is necessary and sufficient that the equation

x(ω, ζ, µ) − ζ = 0 (2.41)

be solvable with respect toζ.

Let P(ζ, µ) = x(ω, ζ, µ) − ζ. In order to apply the implicit function theorem, we will

show that the determinant ofPζ
′(ζ0, 0) exists and is different from zero.

Let Z(t, ζ, µ) = (∂xi/∂ζk), i, k = 1, . . . , n. Differentiating equation (2.1) with respect

to ζ, we can see thatZ(t, ζ0, 0) is the fundamental matrix of equation (2.39). On the

other hand,Pζ
′(ζ0, 0) = det(Z(ω, ζ0, 0)− I ) and, since the eigenvalues of the matrix

Z(ω, ζ0, 0) are different from unity, it follows thatPζ
′(ζ0, 0) , 0. Therefore, in a

sufficiently small neighborhood of the point (0, ζ0), equation (2.41) is solvable with

respect toζ. The existence and uniqueness of anω-periodic solution are proved. The

fact that the solutionx(t, ζ, µ) tends tox0(t), whenµ → 0, follows from Theorem

2.3.1. The theorem is proved.�

Let us demonstrate the last theorem by applying it to the following example.
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Example 2.4.1 Consider the following system of EPCAG

x′(t) =























α γ

−γ α























x(t) +























sin(πt)

cos(πt)























+ µg(t, x(t), x(β(t)), µ), (2.42)

where x ∈ R
2, α , 0, γ, µ ≥ 0, β(t) = θi if θi ≤ t < θi+1, i ∈ Z, with θi =

i + (−1)i/3, i ∈ Z; g(t, x, y, µ) is a 2−periodic in t, continuous function, having con-

tinuous first partials in all of its arguments, and satisfying Lipschitz continuity with a

constant L, that is,

‖g(t, x1, y1, µ) − g(t, x2, y2, µ)‖ ≤ L
[‖x1 − x2‖ + ‖y1 − y2‖

]

,

where x1, y1, x2, y2 ∈ R
2. One can see that the sequence{θi} fulfills θi+2 = θi + 2 for

all i ∈ Z. By fixing a sufficiently small|µ| satisfying the inequalities

|µ| < 1/(2MLθ̄),

|µ|MLθ̄[1 + M(1+ L|µ|θ̄) exp(ML|µ|θ̄)] < m,

whereθ̄ = 5/3, κ =
√

α2 + γ2, m = e−5κ/3, and M= e5κ/3, we conclude that assump-

tions (H1)− (H7) are fulfilled. Therefore, through every point(t0, ζ) of R
3, there

passes exactly one solution x(t, µ) = x(t, t0, ζ, µ), x(t0, µ) = ζ of (2.42) in the sense

of Definition2.2.2.

The monodromy matrix of(2.42) is

X(2) =























e2α cos(2γ) e2α sin(2γ)

−e2α sin(2γ) e2α cos(2γ)























,

and it has no unit multiplier forα , 0. Hence, there is a unique2-periodic solution

x0(t) of the system

x′(t) =























α γ

−γ α























x(t) +























sin(πt)

cos(πt)























,

with the initial value

x0(θ0) = (I − X(2))−1

∫ θ2

θ0

X(θ2 − s)























sin(πs)

cos(πs)























ds.

Therefore, by Theorem2.4.1, there is a unique2-periodic solution x(t, µ) of (2.42),

satisfying x(t, µ)→ x0(t) asµ→ 0.
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Definition 2.4.1 The solution x(t, x0) = x(t, t0, x0, µ), x(t0, x0) = x0 of (2.1) is said

to be uniformly stable if for everyǫ > 0, there exists a numberδ ∈ R, δ = δ(ǫ) > 0

such that‖x̄0 − x0‖ < δ implies‖x(t, x̄0) − x(t, x0)‖ < ǫ for every t≥ t0.

Definition 2.4.2 The solution x(t, x0) = x(t, t0, x0, µ), x(t0, x0) = x0 of (2.1) is said

to be uniformly asymptotically stable if it is uniformly stable and there is a real num-

ber b > 0 such that for everyζ > 0 there exists T(ζ) > 0 such that‖x̄0 − x0‖ < b

implies that‖x(t, x̄0) − x(t, x0)‖ < ζ if t > t0 + T(ζ).

Theorem 2.4.2 Suppose that(H1)− (H7) hold. Let x(t) = x(t, t0, x0, µ) be a solution

of (2.1). If all the characteristic multipliers of the equation

x′(t) = A(t)x(t) (2.43)

are less than unity in modulus, then for sufficiently small|µ|, the solution x(t) is uni-

formly asymptotically stable.

Proof. Let u(t) be a solution of (2.1) with the initial conditionu(t0) = x0 + η. Let us

definez(t) = u(t) − x(t). Since all the multipliers are less than unity in modulus,

‖X(t, s)‖ ≤ K exp(−α(t − s)), s≤ t,

whereK andα are positive constants. By using the equivalence Lemma 2.2.3, one

can find that

‖z(t)‖ ≤ ‖X(t, t0)‖‖η‖ +
∫ t

t0

‖X(t, s)‖|µ|[‖g(s, x(s) + z(s), x(β(s)) + z(β(s)), µ)

−g(s, x(s), x(β(s)), µ)‖]ds

and

‖z(t)‖ ≤ K exp(−α(t − t0))‖η‖ +
∫ t

t0

exp(−α(t − s))|µ|KL[‖z(s)‖ + ‖z(β(s))‖]ds.

Then,

exp(αt)‖z(t)‖ ≤ K exp(αt0)‖η‖ +
∫ t

θ j

exp(αs) |µ|KL[‖z(s)‖ + ‖z(β(s))‖]ds.

Applying Lemma 2.3.1 to the last inequality, we have

‖z(t)‖ ≤ K exp([−α + 2|µ|KL](t − θ j))‖η‖

Therefore, for|µ| < α/(2KL), the solutionx(t) is uniformly asymptotically stable.

The theorem is proved.�
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CHAPTER 3

PERIODIC SOLUTIONS IN CRITICAL CASE

In this chapter, conditions are found for the existence of periodic solutions for forced

weakly nonlinear ordinary differential equations with alternately advanced-retarded

piecewise constant argument of generalized type. The resonant case is studied, that

is, when the unperturbed linear ordinary differential equation has a nontrivial periodic

solution. The dependence of solutions on initial values andparameters is also studied.

3.1 Introduction

The problem of the existence of periodic solutions is one of the most interesting

topics for applications. Poincaré [72] introduced the method of small parameter to

investigate the problem and it has been developed by many authors (see, for example,

[58,73], and the references cited therein) and this method remains as one of the most

effective methods for this problem. It is important that the results obtained in this

field can be extended to the bifurcation theory [22,61].

Fix two real-valued sequencesθi , ζi , i ∈ Z, such thatθi < θi+1, θi ≤ ζi ≤ θi+1 for all

i ∈ Z, |θi | → ∞ as|i| → ∞.

In this chapter we shall consider the following equation

z′(t) = A(t)z(t) + f (t) + µg(t, z(t), z(γ(t)), µ), (3.1)

wherez ∈ R
n, t ∈ R, µ ∈ J ⊂ R, whereJ is an open interval containing 0, and

γ(t) = ζi , if t ∈ [θi , θi+1), i ∈ Z.

The following assumptions will be needed throughout the chapter:
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(C1) A : R → R
n×n, f : R → R

n andg : R × R
n × R

n × J → R
n are continuous

functions.

(C2) The functiong(t, x, y, µ) satisfies Lipschitz continuity in the second and third

arguments with a positive Lipschitz constantL such that

‖g(t, x1, y1, µ) − g(t, x2, y2, µ)‖ ≤ L(‖x1 − x2‖ + ‖y1 − y2‖)

for all t ∈ R, µ ∈ J andx1, x2, y1, y2 ∈ R
n.

(C3) The matrixA is uniformly bounded onR.

(C4) There exists a number̄θ > 0 such thatθi+1 − θi ≤ θ̄, i ∈ Z.

(C5) There exists a numberθ > 0 such thatθi+1 − θi ≥ θ, i ∈ Z.

In [8, 10], it was proposed to investigate differential equations of type (3.1), that

is, the differential equations with piecewise constant argument of generalized type

(EPCAG). Moreover, a new method based on the construction of an equivalent inte-

gral equation was used.

We combine that method with the method of small parameter [58,61,72] to investigate

the problem of the existence of periodic solutions of Eq. (3.1) in the so called critical

case, when the corresponding linear homogeneous system admits nontrivial periodic

solutions.

This chapter is organized in the following way. In the next section, we give known

definitions and results that will be needed further. Sectionthree considers continuous

and differentiable dependence of solutions on the initial value andthe parameter. The

main result of the chapter: the existence of periodic solutions of Eq. (3.1) is discussed

in section four. Appropriate examples are given to illustrate the theory in the last

section.

3.2 Preliminaries

In this section, we shall introduce some definitions and lemmas.
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Definition 3.2.1 [10] A continuous function z(t) is a solution of Eq.(3.1) onR if:

(i) The derivative z′(t) exists at each point t∈ R with the possible exception of the

pointsθi , i ∈ Z, where the one-sided derivatives exist.

(ii) The equation is satisfied for z(t) on each interval(θi , θi+1), i ∈ Z, and it holds for

the right derivative of z(t) at the pointsθi , i ∈ Z.

The following lemmas of this section are similar to the assertions from [10]. That is

why, we provide them without proof.

Let X(t) be the fundamental matrix solution of the homogeneous system, correspond-

ing to Eq. (3.1),

x′(t) = A(t)x(t), t ∈ R, (3.2)

such thatX(0) = I ,whereI is ann×n identity matrix. Denote byX(t, s) = X(t)X−1(s),

t, s ∈ R the transition matrix.

Let us now define the solutions of quasilinear system (3.1).

Lemma 3.2.1 Suppose that(C1) is satisfied. A function z(t) = z(t, t0, z0, µ), where t0

is a fixed real number, is a solution of(3.1) in the sense of Definition3.2.1 if and only

if it is a solution, onR, of the following integral equation

z(t) = X(t, t0)z0 +

∫ t

t0

X(t, s)[ f (s) + µg(s, z(s), z(γ(s)), µ)]ds. (3.3)

Denoteκ = sup
t∈R
‖A(t)‖ < ∞. For the transition matrix,X(t, s), one can obtain the

following inequality [8,44]:

m≤ ‖X(t, s)‖ ≤ M, (3.4)

wherem= exp(−κθ̄) andM = exp(κθ̄), if t, s ∈ [θi , θi+1] for all i ∈ Z.

From now on we make the following assumption:

(C6) 2|µ|MLθ̄ < 1, |µ|M2Lθ̄



















1+ |µ|MLθ̄ exp
(

|µ|MLθ̄
)

1− |µ|MLθ̄ exp
(

|µ|MLθ̄
) + exp

(

|µ|MLθ̄
)



















< m.

48



Lemma 3.2.2 [10] Assume that conditions(C1)− (C6) are fulfilled. Then for fixed

i ∈ Z and every(ξ, z0) ∈ [θi , θi+1]×R
n there exists unique solution z(t) = z(t, ξ, z0, µ)

of Eq. (3.1) on [θi , θi+1].

From Lemma 3.2.2, one can obtain the following assertion.

Lemma 3.2.3 [10] Assume that conditions(C1)− (C6) are fulfilled. Then for every

(t0, z0) ∈ R × R
n there exists a unique solution z(t) = z(t, t0, z0, µ) of Eq. (3.1) in the

sense of Definition3.2.1 such that z(t0) = z0.

3.3 Dependence of the solutions on initial value and parameter

Let us fixt0 ∈ R, z0 ∈ R
n andµ0 ∈ J. There existsj ∈ Z such thatθ j ≤ t0 < θ j+1. Let us

denote by‖ . ‖t a max-norm,‖v‖t = max
ξ∈[θ j , t]

‖v(ξ)‖. Define a functionχ(t) = max{t, γ(t)}.
The next theorem proves continuous dependence of solutionsof (3.1) on an initial

valuez0. To prove the theorems, we use the following assertion, whichis analogue of

Gronwall-Bellman Lemma.

Lemma 3.3.1 Let u(t) be continuous,η1(t) andη2(t) nonnegative piecewise continu-

ous scalar functions defined for t≥ θ j . Suppose thatα is a nonnegative real constant

and that u(t) satisfies the inequality

‖u(t)‖ ≤ α +
∫ t

θ j

[η1(s) ‖u(s)‖ + η2(s) ‖u(γ(s))‖] ds, (3.5)

for t ≥ θ j . Then the inequality

‖u‖χ(t) ≤ αexp

(∫ χ(t)

θ j

[η1(s) + η2(s)] ds

)

(3.6)

is satisfied for t≥ θ j .

Proof: Let us first show that

‖u‖χ(t) ≤ α +
∫ χ(t)

θ j

[η1(s) + η2(s)]‖u‖χ(s) ds, t ≥ θ j . (3.7)

As χ(t) ≥ θ j , using (3.5), we have

‖u(χ(t))‖ ≤ α +
∫ χ(t)

θ j

[η1(s) ‖u(s)‖ + η2(s) ‖u(γ(s))‖] ds. (3.8)
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Sinceθ j ≤ γ(s) ≤ χ(s) for all s≥ θ j , we have that

‖u(γ)‖χ(s) = max
[θ j , χ(s)]

‖u(γ(ξ))‖ = max
[ζ j , γ(s)]

‖u(ξ)‖ ≤ max
[θ j , χ(s)]

‖u(ξ)‖ = ‖u‖χ(s).

Hence, using (3.8), the inequality

‖u(χ(t))‖ ≤ α +
∫ χ(t)

θ j

[η1(s) + η2(s)]‖u‖χ(s) ds

is satisfied.

If ‖u(χ(t))‖ = ‖u‖χ(t) is satisfied for a givent ≥ θ j , then inequality (3.7) follows.

Suppose that‖u(χ(t))‖ < ‖u‖χ(t) holds. One can see that by the definition of max-

norm, there is a momentt̃ ∈ [θ j , χ(t)] such that‖u‖χ(t) = ‖u(t̃)‖.

Then, using (3.5), we have

‖u‖χ(t) = ‖u(t̃)‖

≤ α +

∫ t̃

θ j

[η1(s) ‖u(s)‖ + η2(s) ‖u(γ(s))‖] ds

≤ α +

∫ χ(t̃)

θ j

[η1(s) + η2(s)]‖u‖χ(s) ds

≤ α +

∫ χ(t)

θ j

[η1(s) + η2(s)]‖u‖χ(s) ds,

asχ(t̃) ≤ χ(t). Hence, inequality (3.7) is valid. Now, set the function‖u‖χ(s) = ψ(s),

and note thatψ(s) = ψ(χ(s)).

Thus we have the inequality

ψ(χ(t)) ≤ α +
∫ χ(t)

θ j

[η1(s) + η2(s)]ψ(χ(s)) ds.

Applying Gronwall-Bellman Lemma to the last inequality, we complete the proof.�

Let us fix a numberT > 0. Now, we set continuous dependence of solutions of (3.1)

on an initial valuez0 by the following theorem.

Theorem 3.3.1 Suppose that(C1)− (C6)are valid. If z(t) = z(t, t0, y0, µ0) andz̃(t) =

z(t, t0, z0+∆z, µ0) are the solutions of Eq.(3.1), where∆z is an n-dimensional vector,

then the inequality

‖z̃(ξ) − z(ξ)‖χ(t) ≤ M‖∆z‖exp
(

2|µ0|ML(χ(t0 + T) − θ j)
)

(3.9)

is satisfied for t∈ [t0, t0 + T].
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The last theorem can be proved by applying Lemma 3.3.1. The differential depen-

dence of a solution of Eq. (3.1) on an initial value is established by our next theorem,

which requires the following assumption:

(C7) g(t, x, y, µ) has continuous first partial derivatives in all of its argumentst ∈
R, x, y ∈ R

n, µ ∈ J.

Let us introduce the following equations

U′(t) = A(t)U(t) + µ0[A1(t)U(t) + A2(t)U(γ(t))], (3.10)

U(t0) = I , (3.11)

whereU ∈ R
n×n and the functions

A1(t) =
∂g
∂x

(t, z(t), z(γ(t)), µ0), A2(t) =
∂g
∂y

(t, z(t), z(γ(t)), µ0)

aren× n matrices.

Theorem 3.3.2 Suppose that(C1)− (C7)are valid. Let ei = (0, . . . , 0, 1, 0, . . . , 0)T

be the n-tuple whose i-th component is1 and all others are0 for i = 1, . . . , n, and

δ a real positive constant. If U(t) is a solution of(3.10) and (3.11) on R, and z(t) =

z(t, t0, z0, µ0) andz̃i(t) = z(t, t0, z0 + ∆zi , µ0) are solutions of Eq.(3.1), where∆zi =

δei is an n-dimensional vector in the sense of Definition3.2.1, then

z̃i(t) − z(t) − U(t)∆zi = o(∆zi) (3.12)

is satisfied on a section t∈ [t0, t0 + T], T > 0.

Proof: By Lemma 3.2.1, the functions ˜zi(t), z(t) andU(t) satisfy the following inte-

gral equations:

z̃i(t) = X(t, t0)(z0 + ∆zi) +
∫ t

t0

X(t, s)[ f (s) + µ0 g(s, z̃i(s), z̃i(γ(s)), µ0)] ds,

z(t) = X(t, t0)z0 +

∫ t

t0

X(t, s)[ f (s) + µ0 g(s, z(s), z(γ(s)), µ0)] ds,

U(t) = X(t, t0) + µ0

∫ t

t0

X(t, s)[A1(s)U(s) + A2(s)U(γ(s))] ds,
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respectively. An easy computation shows that, ift ∈ [t0, t0 + T], we have

z̃i(t) − z(t) − U(t)∆zi = µ0

∫ t

t0

X(t, s)[g(s, z̃i(s), z̃i(γ(s)), µ0)

−g(s, z(s), z(γ(s)), µ0) − A1(s)U(s)∆zi − A2(s)U(γ(s))∆zi] ds.

By expandingg(s, z̃j(s), z̃j(γ(s)), µ0) about the point (s, z(s), z(γ(s)), µ0), we write

g(s, z̃i(s), z̃i(γ(s)), µ0) = g(s, z(s), z(γ(s)), µ0) + A1(s)[z̃i(s) − z(s)]

+A2(s)[z̃i(γ(s)) − z(γ(s))] + ξ(s),

whereξ(s) = o(∆zi). Hence, the inequality

‖z̃i(t) − z(t) − U(t)∆zi‖ ≤ ζ + |µ0|M
∫ t

t0

[‖A1(s)‖ ‖z̃i(s) − z(s) − U(s)∆zi‖

+‖A2(s)‖ ‖z̃i(γ(s)) − z(γ(s)) − U(γ(s))∆zi‖] ds,

whereζ = |µ0|M
∫ t0+T

t0
‖ξ(s)‖ds, is valid. Consequently, by applying Lemma 3.3.1 to

the last inequality, we prove that (3.12) is true.�

As a result of the last theorem, we have shown that the initialvalue problem (3.10) and

(3.11) is a variation of equation (3.1). Moreover, we note that continuous dependence

of solutions of (3.1) on a parameter follows from Theorem (3.3.1) and (C7) by adding

the parameterµ to Eq. (3.1) as a new dependent variable and requiring thatµ′(t) = 0

andµ(t0) = 0.

3.4 Existence of the periodic solutions

In this section, we prove the main result of this chapter. Letus introduce the following

assumptions:

(C8) The functionsA(t), f (t) andg(t, x, y, µ) are periodic int with a fixed positive

real periodω.

(C9) The sequencesθi and ζi , i ∈ Z, satisfy an (ω, p)-property, that is there is a

positive integerp such that the equationsθi+p = θi + ω andζi+p = ζi + ω hold

for all i ∈ Z.

We consider the following version of Poincaré criterion.
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Lemma 3.4.1 Suppose that(C1)− (C6), (C8) and (C9) hold. Then, the solution

z(t) = z(t, t0, x0, µ) of Eq. (3.1), isω-periodic if and only if

z(ω) = z(0). (3.13)

Proof. If z(t) is ω-periodic, then Eq. (3.13) is obviously satisfied. Suppose Eq.

(3.13) holds. Lety(t) = z(t + ω) onR. Then, Eq. (3.13) can be written asy(0) = z(0).

One can show thatγ(t + ω) = γ(t) + ω for all t ∈ R. Hence,

y′(t) = z′(t + ω)

= A(t + ω)z(t + ω) + f (t + ω) + µg(t + ω, z(t + ω), z(γ(t + ω)), µ)

= A(t)y(t) + f (t) + µg(t, y(t), y(γ(t)), µ).

That is,y(t) is a solution of Eq. (3.1). By the uniqueness of the solution, we have

z(t) = y(t) onR. The lemma is proved.�

In the previous chapter, we considered the noncritical case. Now, we suppose that

the homogeneous equation, corresponding to Eq. (3.1), has a nontrivialω-periodic

solution.

Let φ j , j = 1, . . . , k, k ≤ n, be the solutions of Eq. (3.2), which form a maximal set

of linearly independentω-periodic solutions. Then, the corresponding adjoint system

of (3.2),

x′(t) = −AT(t)x(t), (3.14)

has a maximal set of linearly independentω-periodic solutions,ψ j , j = 1, . . . , k.

We compose ann× k matrix K1(t), whose columns are solutionsψ j , j = 1, . . . , k.

Let us introduce the following condition:

(C10)
∫ ω

0
KT

1 (s) f (s)ds= 0.

Theorem 3.4.1 [58, 73] Suppose that(C1)− (C3), (C8) and (C10) hold. Then, if

Eq. (3.2) admits k≤ n linearly independentω-periodic solutions, then there exists a

family of k linearly independentω-periodic solutions of the equation

z′(t) = A(t)z(t) + f (t), (3.15)
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of the form z(t, α) = α1φ1(t) + . . . + αkφk(t) + z̃(t), whereα = (α1, . . . , αk) is a real

constant vector and̃z(t) is a particularω-periodic solution of Eq.(3.15).

Now let us investigate the question of existence of periodicsolutions of (3.1). The next

theorem is a generalization of a classical theorem due to Malkin [58] for EPCAG.

Theorem 3.4.2 Suppose that(C1)− (C10) hold and Eq. (3.15) admits a family of

ω-periodic solutions z(t, α). Letα0 be a solution of the equation h(α) = 0, where the

function h is given by

h(α) =
∫ ω

0
KT

1 (s)g(s, z(s, α), z(γ(s), α), 0)ds, (3.16)

such that

det

(

∂h
∂α

∣

∣

∣

∣

∣

α=α0

)

, 0.

Then for sufficiently small|µ| Eq. (3.1) has anω-periodic solution that converges to

z(t, α0) whenµ→ 0.

Proof. Let z(t) be a solution of (3.1) and let us complete the matrixK1(t) by columns

ψ j , j = k + 1, . . . , n, which are solutions of (3.14) to obtain a fundamental matrix

of solutionsK(t). Performing the substitutiony(t) = KT(0)z(t) in (3.1), we obtain the

equation

y′(t) = P(t)y(t) + r(t) + µF(t, y(t), y(γ(t)), µ), (3.17)

where

P(t) = KT(0)A(t)KT(0)−1, r(t) = KT(0) f (t),

F(t, y(t), y(γ(t)), µ) = KT(0)g(t, KT(0)−1z(t), KT(0)−1z(γ(t)), µ).

Denotey(t, α) = KT(0)z(t, α), β = (βk+1, . . . , βn) and letv(t) = y(t, α, β) be a

solution of (3.17) with the initial conditionv(0) = y(0, α) + (0, β)T . Further, let

L(t) = K−1(0)K(t), L1(t) = K−1(0)K1(t), L2(t) be the matrix composed of the en-

tries of the lastn−k columns andn−k rows of the matrixL(t), andL3(t) be the matrix

composed of the lastn− k rows ofLT(t). Denote

U(α, β, µ) =
∫ ω

0
LT

1 (s)F(s, v(s), v(γ(s)), µ)ds,

V(α, β, µ) = (LT
2 (ω) − I )β − µ

∫ ω

0
L3(s)F(s, v(s), v(γ(s)), µ)ds.
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Then theω-periodicity condition for the solutionv(t) takes on the form of the equa-

tions

U(α, β, µ) = 0, (3.18)

V(α, β, µ) = 0. (3.19)

If, in (3.19), takingµ = 0, we obtainβ = 0, and then Eq. (3.18) has the form

U(α, 0, 0) =
∫ ω

0
LT

1 (s)F(s, y(s, α), y(γ(s), α), 0)ds= 0. (3.20)

Let α0
= (α0

1, . . . , α
0
k) be a solution of (3.20). Since the functionU has continuous

partial derivatives with respect toα j , j = 1, . . . , k, in a sufficiently small neighbor-

hood of the point (α0, 0, 0), it follows that under the assumption

det

(

∂U
∂α

∣

∣

∣

∣

∣

α=α0

)

, 0

the system of equations (3.18) and (3.19) is solvable with respect toα andβ so that

the functionsα j(µ) andβs(µ), j = 1, . . . , k, s = k + 1, . . . , n are continuous and

α j(µ)→ α0
j , βs(µ)→ 0 asµ→ 0.

Thus, we establish that for sufficiently small|µ|, system (3.1) admits anω-periodic

solution, which converges to the solutionz(t, α0) of (3.15) asµ → 0. The theorem is

proved.�

3.5 Illustrative examples

We will introduce appropriate examples in this section. These examples will show

the feasibility of our theory. The equations of Duffing type are widely investigated in

the field of nonlinear dynamics, and used to model many processes in mechanics and

electronics [40,65]. We construct the examples with Duffing equations below.

Example 3.5.1 Let us consider the following EPCAG

q′′(t) = −q(t) + 3 sin2(t) + µ
(

q(t) + q′
(

2π
[ t + π

2π

])

cost
)

. (3.21)

The form of the perturbation of the last equation is chosen tobe linear since the

simulation of the solutions for the equation with advanced and retarded argument is

difficult in nonlinear case.
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We write the last equation in the system form

z′(t) =



















0 1

−1 0



















z(t) +



















0

3 sin2 t



















+ µ



















0

z1(t) + z2(2π[ t+π
2π ]) cost



















. (3.22)

Let us slightly generalize it as the following system

z′(t) =



















0 1

−1 0



















z(t) +



















0

3 sin2 t



















+ µ



















a z1(2π[ t+π
2π ]) sin t + b z2(t)

c z1(t) + d z2(2π[ t+π
2π ]) cost



















, (3.23)

where a, b, c and d are real constants.

One can see that Eq.(3.22) is a particular case of(3.23) when a= 0, b = 0, c = 1,

and d= 1.

If µ = 0, Eq. (3.23) takes the form

z′(t) =



















0 1

−1 0



















z(t) +



















0

3 sin2 t



















. (3.24)

It is easy to find2π-periodic solutionsψ j , j = 1, 2, as

ψ1 =



















cost

− sint



















, ψ2 =



















sint

cost



















of the adjoint system of the last equation. Then, condition(C10)can be verified

∫ 2π

0
KT

1 (s) f (s)ds =
∫ 2π

0



















coss − sins

sins coss





































0

3 sin2 s



















ds

= 0.

Hence, the family of2π-periodic solutions of(3.24) is given by

z(t, α) =



















α1 cost + α2 sint + 3
2 +

cos 2t
2

−α1 sint + α2 cost − sin 2t



















, (3.25)

whereα1, α2 ∈ R are parameters.

Next, let us show that Eq.(3.23)has a2π-periodic solution.
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The function h(α) in Theorem3.4.2 can be evaluated as

h(α) =
∫ 2π

0
KT

1 (s)g(s, z(s, α), z(γ(s), α), 0)ds,

=

∫ 2π

0



















coss − sins

sins coss





































a z1(2π[ s+π
2π ], α) sins+ b z2(s, α)

c z1(s, α) + d z2(2π[ s+π
2π ], α) coss



















ds

=

∫ 2π

0



















−cα2 sin2 s+ bα2 cos2 s

(a (α1 + 2)− bα1) sin2 s+ (cα1 + dα2) cos2 s



















ds

=



















π(b− c)α2

π((a− b+ c)α1 + dα2 + 2a)



















.

Suppose that b, c and a, b − c. By straight forward calculation one can see that

the zero of the equation h(α) = 0 is α0
= ( −2a

a−b+c, 0), and the determinant is

det

(

∂h
∂α

∣

∣

∣

∣

∣

α=α0

)

= det



















0 π(b− c)

π(a− b+ c) d



















= −π2(b− c)(a− b+ c)

, 0.

Hence, using Theorem3.4.2, we can conclude that for sufficiently small|µ| equation

(3.23) has a2π-periodic solution and this solution tends to z(t, α0) asµ → 0. Since

we know that the initial value of the solution is close to the initial value of the periodic

solution of equation(3.24), and there is continuous dependence on parameterµ, one

can make the following simulations with identical initial data, z(0) = (2, 0)T . They

can be seen from Fig.3.1, where the solid lines are graphs of the periodic solution of

equation(3.24), and graphs of two coordinates of the periodic solution of equation

(3.23)are near the dashed lines.

Example 3.5.2 Let us consider another example when the perturbation is nonlinear.

In this case, we can not provide a numerical simulation, but we can show the existence

of periodic solutions following the result of this chapter.

Consider the equation

z′(t) =



















0 1

−1 0



















z(t) +



















0

3 sin2 t



















+ µ



















z1(2π[ t+π
2π ])2 sint + z2(t)

2z1(t) + z2(2π[ t+π
2π ])2 cost



















. (3.26)

57



0 2 4 6 8 10 12 14 16

1

1.5

2

2.5
← µ=0.15

z1

 t                
(a)               

← µ=0

0 2 4 6 8 10 12 14 16
−1.5

−1

−0.5

0

0.5

1

1.5

← µ=0.15

z2

 t       
(b)      

← µ=0

Figure 3.1: Simulation of the periodic solution of (3.24) (solid) and the solution of
(3.23) (dashed) which is near the periodic solution of the perturbed system ifa =
0, b = 0, c = 1, d = 1, with identical initial data,z(0) = (2, 0)T . In (a) the first
coordinates are shown, and second coordinates of the solutions are given in (b).

Similar to the previous example, one can see that conditions(C1)− (C10) hold. The

functionh(α) can be evaluated as

h(α) =
∫ 2π

0
KT

1 (s)g(s, z(s, α), z(γ(s), α), 0)ds,

=

∫ 2π

0



















coss − sins

sins coss





































z1(2π[ s+π
2π ], α)2 sins+ z2(s, α)

2z1(s, α) + z2(2π[ s+π
2π ], α)2 coss



















ds

=

∫ 2π

0



















−2α2 sin2 s+ α2 cos2 s

((α1 + 2)2 − α1) sin2 s+ (2α1 + α
2
2) cos2 s



















ds

=



















−πα2

π((α1 + 2)2 + α1 + α
2
2)



















.

Then, the zeros of the equationh(α) = 0 areα1
= (−1, 0) andα2

= (−4, 0). By

straightforward calculation one can see that the determinant

det

(

∂h
∂α

∣

∣

∣

∣

∣

α=αi

)

, 0, i = 1, 2.
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Hence, using Theorem 3.4.2, we conclude that for sufficiently small|µ| Eq. (3.26)

has two 2π-periodic solutions and these solutions tend toz(t, α1) andz(t, α2), respec-

tively, asµ→ 0.
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CHAPTER 4

DIFFERENTIAL EQUATIONS WITH STATE-DEPENDENT

PIECEWISE CONSTANT ARGUMENT

4.1 Introduction

In this chapter we generalize the mentioned equations in previous chapters to a new

type of systems. They are differential equations with state-dependent piecewise con-

stant argument (ESPA), where intervals of constancy of the independent argument

are not prescribed and they depend on the present state of a motion. The method

of analysis for equations was initiated in [7–11]. We are confident that introduc-

tion of these equations will provide new opportunities for the development of theory

of differential equations and for applications [29, 32, 42, 54–57]. One must say that

present results use the rich experience accumulated for dynamical systems with dis-

continuities [36,37,53,60,67,74,78] and strongly influenced by theoretical concepts

developed for different type of equations with discontinuities [5, 6, 18, 19].Since

the systems are to be introduced have a complicated structure: they involve variable,

state dependent delays, and discontinuities of the argument realized on certain sur-

faces, we call themconstancy switching surfaces, this chapter consists of two main

parts. In Section 4.2 we introduce the most general, for the present time, form of the

equations. Basic properties of ordinary differential equations, constancy switching

surfaces are defined, which give a start of investigation. One of them is calledexten-

sion property. The definition of solutions is given. In the rest part of the manuscript

we realize the general concepts for a particular type of equations, namely, quasilin-

ear systems. Existence and uniqueness theorem, periodicity, and stability of the zero

solution are discussed.
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4.2 Generalities

Let I = (a, b) ⊆ R andA = {p, p + 1, . . . , r} ⊆ Z be nonempty intervals of

real numbers, and integers, correspondingly. LetG ⊆ R
n be an open connected

region. Denote byC(G, I) andC1(G, I) the set of all continuous and continuously

differentiable functions fromG to I, respectively. Fix a sequence of real valued

functions{τi(x)} ⊂ C(G, I), wherei ∈ A.

We introduce the following assumption.

(A1) There exist two positive real numbersθ andθ̄ such thatθ ≤ τi+1(x) − τi(y) ≤ θ̄
for all x, y ∈ G andi ∈ A.

Set the surfacesSi = {(t, x) ∈ I × G : t = τi(x)}, i ∈ A, in I × G, and define the

regionsDi = {(t, x) ∈ I × G : τi(x) ≤ t < τi+1(x)}, i ∈ A, andDr = {(t, x) ∈ I × G :

τr(x) ≤ t} if maxA = r < ∞. Because of (A1), one can see thatDi ’s, i ∈ A are

nonempty disjoint sets.

We consider the equation

dx(t)
dt
= f (t, x(t), x(β(t, x))), (4.1)

where t ∈ I, x ∈ G, and β(t, x) is a functional such that ifx(t) : I → G is a

continuous function, and (t, x(t)) ∈ Di for somei ∈ A, thenβ(t, x) = ηi , whereηi

satisfies the equationη = τi(x(η)). From the description made for role of functionsτ, it

implies that one can call surfacest = τi(x) asconstancy switching surfaces,since the

solution’s piecewise constant argument changes its value at the moment of meeting

one of the surfaces.

We call system (4.1) asa system of differential equations with state-dependent piece-

wise constant argument, ESPA.

Let us define the following conditions, which are necessary to define a solution of Eq.

(4.1) onI.

(A2) For a given (t0, x0) ∈ I × G, there is an integerj ∈ A such thatt0 ≥ τ j(x0), and

j ≥ k if t0 ≥ τk(x0), k ∈ A.
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One can see that the functionalβ(t, x) ≤ t for all t ∈ I, x ∈ G. Indeed, to define

system (4.1), the point (t, x) must be inD j for somej ∈ A.

Consider the ordinary differential equation

dy(t)
dt
= f (t, y(t), z), (4.2)

wherez is a constant vector inG.

We impose the following assumption.

(B0) For a given (t0, x0) ∈ I × G, solutiony(t) = y(t, t0, x0) of Eq. (4.2) exists and

is unique in any interval of existence, and it has an open maximal interval of

existence such that any limit point of the set (t, y(t)), ast tends to the endpoints

of the maximal interval of existence, is a boundary point ofI × G.

Let us remind that condition (B0) is valid, if, for example, the functionf is continuous

in t, and satisfies the local Lipschitz condition iny.

We shall need the following conditions:

(A3) for a given (t0, x0) ∈ I × G satisfying (A2), there exists a solutiony(t) =

y(t, t0, x0) of Eq. (4.2) such thatη j = τ j(y(η j)) for someη j ≤ t0;

(A4) for eachz ∈ G and j ∈ A solutiony(t, τ j(z), z) of Eq. (4.2) does not meet the

surfaceS j if t > τ j(z).

(A5) for a given (t0, x0) ∈ I×G belonging toS j , j ∈ A, there exist a surfaceS j−1 ⊂
I × G, a solutiony(t) = y(t, t0, x0) of Eq. (4.2) such thatη j−1 = τ j−1(y(η j−1))

for someη j−1 < t0.

If a point (t0, x0) ∈ I × G satisfies (A2) and (A3), then we say that this point has

extension property.

Fix (t0, x0) ∈ I × G. Assume that it has extension property. We consider the problem

of global existence of solutionx(t) = x(t, t0, x0) of (4.1).

Let us investigate the problem for increasingt. The point (t0, x0) is either inS j , or

there is a ballB((t0, x0); ǫ) ⊂ D j for some real numberǫ > 0, and j ∈ A. The solution
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Figure 4.1: A solution of differential equations with state-dependent argument.

x(t) is defined on an interval [η j , t0], η j ≤ t0 by extension property, and satisfies the

initial value problem (IVP)

y′(t) = f (t, y(t), y(ηi)),

y(ηi) = x(ηi), (4.3)

such thatηi = τi(x(ηi)) for i = j (see Fig. 4.1). By using (A4) and (B0), there

exists a solutionψ(t) = ψ(t, η j , x(η j)) of (4.3) defined on the right maximal interval

of existence, [t0, β). If ψ(t) does not intersectS j+1, or the constancy switching surface

S j+1 does not exist, then the right maximal interval ofx(t) is [t0, β), β > t0.Otherwise,

there is someξ ∈ I such thatt0 < ξ < β, andξ = τ j+1(ψ(ξ)). Then by denoting

η j+1 = ξ, we define the solutionx(t) asψ(t) on [t0, η j+1]. Now, one can apply the

above discussion for (t0, x0) to the point (η j+1, x(η j+1)).

Proceeding in this way, we shall come either to the case when for somek ∈ A, k > j,

solutionψ(t) = ψ(t, ηk, x(ηk)) has a right maximal interval [ηk, γ) and this solution

does not meetSk+1, and then [t0, γ), γ > ηk, is the right maximal interval of existence

of x(t). If there is no suchk, then eitherx(t) is continuable to+∞ if the setA is
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unbounded from above, or the solution achieves the point (ηr , x(ηr)), ηr = τr(x(ηr))

and thenx(t) has the right maximal interval [t0, κ), κ > ηr where [ηr , κ) is the right

maximal interval of solutionψ(t) of Eq. (4.3) for i = r.

On the basis of the above discussion we can conclude that if extension property for

(t0, x0) and conditions (A4) and (B0) are valid, then solutionx(t, t0, x0) of Eq. (4.1)

has a right maximal interval of existence, and it is open fromthe right.

Now consider decreasingt. Assume, again, that (t0, x0) satisfies extension property.

Let us consider first for (t0, x0) ∈ S j . If condition (A5) is not valid, then the solution

x(t, t0, x0) does not exist fort ≤ t0.Otherwise, it is continuable toη j−1 such thatη j−1 =

τ j−1(x(η j−1)), and satisfies Eq. (4.3) for i = j − 1. Then, again, as for (η j , x(η j)), we

may make the same discussion for the point (η j−1, x(η j−1)). Finally, we may conclude

that either there existsηk, k ≤ j such that the left maximal interval ofx(t) is [ηk, t0]

(It is true also if there existsk = minA), or the solution is continuable to−∞. Let us

now consider the case when (t0, x0) is an interior point ofD j , and satisfies extension

property. Then, it is continuable to the left tillS j , and then, we can repeat the above

made discussion. So, we can make a conclusion that the left maximal interval of

existence ofx(t) is either a closed interval [ηk, t0], k ∈ A, or an infinite interval

(−∞, t0]. By combining the left and right maximal intervals, we define the solution

x(t) on the maximal interval of existence.

Now, we can introduce the definition of a solution of (4.1).

Definition 4.2.1 A function x(t) is said to be a solution of Eq.(4.1) on an interval

J ⊆ I if:

(i) it is continuous onJ ,

(ii) the derivative x′(t) exists at each point t∈ J with the possible exception of the

pointsηi , i ∈ A, for which the equationη = τi(x(η)) is satisfied, where the one

sided derivatives exist.

(iii) the function x(t) satisfies Eq.(4.1) on each interval(ηi , ηi+1), i ∈ A, and it holds

for the right derivative of x(t) at the pointsηi .
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4.3 Quasilinear systems

In this section, we investigate the existence and uniqueness of solutions of quasilinear

ESPA.

LetI = R, G = R
n andA = Z. Fix a sequence of real numbers{θi} ⊂ R such thatθi <

θi+1 for all i ∈ Z. Take a sequence of functionsξi(x) ∈ C(Rn, R). Setτi(x) = θi + ξi(x).

Define the constancy switching surfacesSi = {(t, x) ∈ R×R
n : t = θi + ξi(x)}, i ∈ Z,

and the regionsDi = {(t, x) ∈ R × R
n : θi + ξi(x) ≤ t < θi+1 + ξi+1(x)}, i ∈ Z.

Let us now consider the following quasilinear differential equation

x′(t) = A(t)x(t) + F(t, x(t), x(β(t, x))), (4.4)

wheret ∈ R, x ∈ R
n, andβ(t, x) is a functional such that ifx(t) : R → R

n is a

continuous function, and (t, x(t)) ∈ Di for somei ∈ Z, thenβ(t, x) = ηi , whereηi

satisfies the equationη = θi + ξi(x(η)).

Fix H ∈ R, H > 0, and denoteKH = {x ∈ R
n : ‖x‖ < H}. We introduce the following

assumptions:

(Q1) there exist positive real numbersc, d such thatc ≤ θi+1 − θi ≤ d, i ∈ Z;

(Q2) there existsl ∈ R, 0 ≤ 2l < c, such that|ξi(x)| ≤ l, i ∈ Z, for all x ∈ KH.

(Q3) the functionsA : R→ R
n×n andF : R × R

n × R
n→ R

n are continuous;

(Q4) there exists a Lipschitz constantL1 > 0 such that

‖F(t, x1, y1) − F(t, x2, y2)‖ ≤ L1
[‖x1 − x2‖ + ‖y1 − y2‖

]

for t ∈ R andx1, y1, x2, y2 ∈ KH;

(Q5) supt∈R ‖A(t)‖ = κ < ∞;

(Q6) supt∈R ‖F(t, 0, 0)‖ = N < ∞;

(Q7) there exists a Lipschitz constantL2 > 0 such that

|ξi(x) − ξi(y)| ≤ L2‖x− y‖

for all x, y ∈ KH andi ∈ Z.
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One can see that conditions (Q1) and (Q2) imply (A1) withθ = c− 2l andθ̄ = d+ 2l.

Also, Eq. (4.2) for system (4.4) has the form

y′(t) = A(t)y(t) + F(t, y(t), z), (4.5)

wherez ∈ R
n is a constant vector. Hence, under conditions (Q1)-(Q4), itis not

difficult to see that (A2) and (B0) are valid for the last equation.

Let X(t) be a fundamental matrix solution of the homogeneous system, corresponding

to Eq. (4.5),

x′(t) = A(t)x(t), (4.6)

such thatX(0) = I , where I is an n × n identity matrix. Denote byX(t, s) =

X(t)X−1(s), t, s ∈ R, the transition matrix of (4.6). For the transition matrixX(t, s),

one can obtain the following inequalities:

m≤ X(t, s) ≤ M, (4.7)

‖X(t, s) − X(t̄, s)‖ ≤ κM|t − t̄|, (4.8)

wherem= exp(−κθ̄) andM = exp(κθ̄) if t, t̄, s ∈ [θ j − l, θ j+1 + l] for some j ∈ Z.

Let us fix (t0, x0) ∈ R×R
n. The following lemma is an auxiliary result of this chapter.

Lemma 4.3.1 Suppose that(Q1)− (Q3) are fulfilled. Then, x(t) is a solution of Eq.

(4.4) with x(t0) = x0 for t ≥ t0, if and only if it satisfies the equation

x(t) = X(t, t0)x0 +

∫ t

t0

X(t, s)F(s, x(s), x(β(s, x)))ds. (4.9)

Proof. Necessity. Assume thatx(t) is a solution of Eq. (4.4) such thatx(t0) =

x0, (t0, x0) ∈ D j for somej ∈ Z. Denote

φ(t) = X(t, t0)x0 +

∫ t

t0

X(t, s)F(s, x(s), x(β(s, x)))ds. (4.10)

Assume that (t, x(t)) ∈ D j\S j . Then, there exists a momentη j ∈ R such thatβ(s, x) =

η j for all (s, x(s)) ∈ D j . Also, we have

φ′(t) = A(t)φ(t) + F(t, x(t), x(η j)),
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and

x′(t) = A(t)x(t) + F(t, x(t), x(η j)).

Hence,

[φ(t) − x(t)]′ = A(t)[φ(t) − x(t)].

Calculating the limit values atη j , j ∈ Z, we can find that

φ′(η j ± 0) = A(η j ± 0)φ(η j ± 0)+ F(η j ± 0, x(η j ± 0), x(β(η j ± 0, x(η j ± 0)))),

x′(η j ± 0) = A(η j ± 0)x(η j ± 0)+ F(η j ± 0, x(η j ± 0), x(β(η j ± 0, x(η j ± 0)))).

Consequently,

[φ(t) − x(t)]′|t=η j+0 = [φ(t) − x(t)]′|t=η j−0 .

Thus, [φ(t)−x(t)] is a continuously differentiable function defined fort ≥ t0 satisfying

(4.6) with the initial conditionφ(t0) − x(t0) = 0. Using uniqueness of solutions of Eq.

(4.6) we conclude thatφ(t) − x(t) ≡ 0 for t ≥ t0.

Sufficiency.Suppose thatx(t) is a solution of (4.9) for t ≥ t0. Fix j ∈ Z and consider

the regionD j . If ( t, x(t)) ∈ D j\S j , then by differentiating (4.9) one can see thatx(t)

satisfies Eq. (4.4). Moreover, considering (t, x(t))→ S j , and taking into account that

x(β(t, x)) is a right-continuous function, we find thatx(t) satisfies Eq. (4.4) in D j . The

lemma is proved.�

The following example shows that for even simple linear ESPAwe have difficulties

with uniqueness of solutions.

Example 4.3.1 Consider the equation

x′(t) = −2x(β(t, x)), (4.11)

whereβ(t, x) is defined by using the sequencesθ j = 2 j and ξ j(x) = cosx/4, j ∈ Z.

Fix (t0, x0) ∈ R × R
n, that satisfies the equation t= (cosx)/4. Then solution x(t) of

(4.11) with x(t0) = x0, is of the form x(t) = (1 − 2(t − cosx0/4))x0 for t ∈ [t0, 5/4).

Particularly, for (t0, x0) = (1/4, 0)and(1/4, 2π), the correspond solutions are x1(t) =

0 and x2(t) = π(3− 4t), each of which passes through the point(3/4, 0). Hence, the

uniqueness is not the case.
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DenoteM̃ = 2L1H + N. From now on we need the following assumption:

(Q8) 2Mθ̄L1 < min{1− 2(κH + MM̃)L2, 1− Nθ̄M/H}.

Let h ∈ R, 0 < h <
(

1−2ML1θ̄

M H − Nθ̄
)

. The following lemma impose sufficient condi-

tions for Eq. (4.4) to satisfy extension property.

Lemma 4.3.2 Suppose that conditions(Q1)− (Q8) are fulfilled, and(t0, x0) ∈ D j

for some j∈ Z such that‖x0‖ < h. Then there exists a solution y(t) = y(t, t0, x0)

of Eq. (4.4) such thatη j = θ j + ξ j(y(η j)) for someη j ≤ t0, and y(t) ∈ KH for all

t ∈ [θ j − l, θ j+1 + l].

Proof. If ( t0, x0) ∈ S j , then by takingη j = t0 we can conclude the result directly.

Suppose that (t0, x0) ∈ D j\S j . Let us construct the following sequences. Takeη0
=

θ j , y0(t) = X(t, t0)x0, and define

ηk+1
= θ j + ξ j(yk(η

k)), (4.12)

yk+1(t) = X(t, t0)x0 +

∫ t

t0

X(t, s)F(s, yk(s), yk(η
k))ds (4.13)

for all k ∈ Z, k ≥ 0.

Let ‖ . ‖0 = maxt∈[θ j−l, θ j+1+l] ‖ . ‖. It is straightforward to see that

‖yk+1‖0 ≤ M‖x0‖ +
∥

∥

∥

∥

∥

∥

∫ t

t0

‖X(t, s)‖‖F(s, yk(s), yk(η
k))‖ds

∥

∥

∥

∥

∥

∥

0

≤ Mh+ NMθ̄ + 2ML1θ̄‖yk‖0

≤ 1− (2ML1θ̄)k+2

1− 2ML1θ̄
(Mh+ NMθ̄).

Using (Q8), we seeyk(t) ∈ KH for all t ∈ [θ j − l, θ j+1 + l], k ∈ Z, k ≥ 0.

Now, we will show that the sequence{yk(t)} is uniformly convergent. Eqs. (4.12) and

(4.13) imply that

|ηk+1 − ηk| = |ξ j(yk(η
k)) − ξ j(yk−1(η

k−1))|

≤ L2‖yk(η
k) − yk−1(η

k−1)‖,

‖yk+1 − yk‖0 ≤ max
t∈[θ j−l, θ j+1+l]

∣

∣

∣

∣

∣

∣

∫ t

t0

M‖F(s, yk(s), yk(η
k))

−F(s, yk−1(s), yk−1(η
k−1))‖ds

∣

∣

∣

∣

≤ ML1θ̄
[

‖yk − yk−1‖0 + ‖yk(η
k) − yk−1(η

k−1)‖
]

,
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‖yk+1(η
k+1) − yk(η

k)‖ ≤
∥

∥

∥X(ηk+1, t0) − X(ηk, t0)
∥

∥

∥ ‖x0‖

+

∣

∣

∣

∣

∣

∣

∫ ηk+1

ηk

‖X(ηk+1, s)F(s, yk(s), yk(η
k))‖ds

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∫ ηk

t0

‖X(ηk+1, s)F(s, yk(s), yk(η
k))

−X(ηk, s)F(s, yk−1(s), yk−1(η
k−1))

∥

∥

∥ ds
∣

∣

∣

∣

≤ (κh+ M̃(1+ κθ̄))M|ηk+1 − ηk|

+ML1θ̄
[‖yk − yk−1‖0 + ‖yk(η

k) − yk−1(η
k−1)‖]

≤ M
(

L2(κh+ M̃(1+ κθ̄))

+L1θ̄
)

[‖yk − yk−1‖0 + ‖yk(η
k) − yk−1(η

k−1)‖]

≤ (

L2(κH + MM̃) + ML1θ̄
)

[‖yk − yk−1‖0

+‖yk(η
k) − yk−1(η

k−1)‖].

Then,

|ηk+1 − ηk| ≤
[

2
(

L2(κH + MM̃) + ML1θ̄
)

]k−1
θ̄MM̃, (4.14)

‖yk+1(η
k+1) − yk(η

k)‖ ≤
[

2
(

L2(κH + MM̃) + ML1θ̄
)

]k
θ̄MM̃, (4.15)

‖yk+1 − yk‖0 ≤
[

2
(

L2(κH + MM̃) + ML1θ̄
)

]k
θ̄MM̃. (4.16)

Thus, there exist a unique momentη j , and a solutiony(t) of Eq. (4.4) with y(t0) = x0

such thatη j = θ j + ξ j(y(η j)), andηk andyk converge ask → ∞, respectively. The

lemma is proved.�

In what follows, we will consider the differential equations of type (4.4) such that

the solutions intersect each constancy switching surface not more than once. In the

previous section this assumption coincides with (A4). The following lemma defines

the sufficient condition for this property.

From now on we shall need the following condition.

(Q9) L2

[

κMH + MM̃
]

< 1.

Lemma 4.3.3 Suppose that(Q1)− (Q7), (Q9) hold. Then every solution x(t) ∈ KH

of Eq. (4.4) meets any constancy switching surface not more than once.
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Proof. Suppose the contrary. Then, there exist a solutionx(t) ∈ KH of (4.4) and

a surfaceS j , j ∈ Z such thatx(t) meets this surface more than once. Let the first

intersection be att = t0 and another intersection att = t∗ so that we havet0 =

θ j + ξ j(x(t0)) andt∗ = θ j + ξ j(x(t∗)) for t0 < t∗. Then, we have

|t∗ − t0| ≤ L2‖X(t∗, t0)x(t0) +
∫ t∗

t0

X(t, s)F(s, x(s), x(β(s, x)))ds− x(t0)‖

≤ L2

[

κMH + MM̃
]

|t∗ − t0|,

which contradicts (Q9). The lemma is proved.�

From the above lemmas we conclude the following theorem.

Theorem 4.3.1 Assume that conditions(Q1)− (Q9) are fulfilled, and(t0, x0) ∈ D j

for some j ∈ Z such that‖x0‖ < h. Then there exists a unique solution x(t) =

x(t, t0, x0) of Eq. (4.4) on [η j , η j+1] such thatη j = θ j + ξ j(x(η j)), η j+1 = θ j+1 +

ξ j+1(x(η j+1)), and x(t) ∈ KH.

4.4 Periodic solutions

In this section, we investigate periodic solutions of quasilinear ESPA of type (4.4).

Letω andp be fixed positive real number and integer, respectively. We shall introduce

the following assumptions:

(Q10) the functionsA(t) andF(t, x, y) areω-periodic int;

(Q11) the sequenceθi+ξi(x) satisfies (ω, p)-periodicity, i.e.θi+p = θi+ω andξi+p(x) =

ξi(x) for all i ∈ Z andx ∈ R
n;

(Q12) det(I − X(ω)) , 0; that is, system (4.6) does not have anyw-periodic solution.

We define, if (Q12) is fulfilled, the function

G(t, s) =



















X(t)(I − X(ω))−1X−1(s), 0 ≤ s≤ t ≤ ω,
X(t + ω)(I − X(ω))−1X−1(s), 0 ≤ t < s≤ ω,

(4.17)

which is known asGreen’s function[46]. Let maxt, s∈[0, ω] ‖G(t, s)‖ = K.
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We need the following lemma to prove the main theorem. This lemma can be proved

using Lemma 4.3.1.

Lemma 4.4.1 Suppose that(Q1)− (Q12)are fulfilled. Then the solution x(t) of Eq.

(4.4) is w-periodic if and only if it satisfies the integral equation

x(t) =
∫ ω

0
G(t, s)F(s, x(s), x(β(s, x)))ds. (4.18)

Let ‖ . ‖ω = maxt∈[0, ω] ‖ . ‖.Denote byΦ the set of all continuous and piecewise contin-

uously differentiableω−periodic functions onR such that ifφ ∈ Φ, then‖φ(t)‖ω < H,

and‖dφ(t)
dt ‖ω < N + (2L1 + κ)H.

We introduce the following assumption to prove the next theorem.

(Q13) (2KL1ω − 1)H + NKω < 0;

L2(N + (2L1 + κ)H) < 1;

KL1(2− L2(N + (2L1 + κ)H))ω + 2KHL1L2p+ L2(N + (2L1 + κ)H) < 1.

Theorem 4.4.1 Suppose that(Q1)− (Q13) hold. Then Eq.(4.4) has a uniqueω-

periodic solutionφ(t) such thatφ(t) ∈ KH.

Proof. Suppose that for allx ∈ KH andk = j, . . . , j + p − 1, for some j ∈ Z and

p > 1, we have 0≤ θk + ξk(x) ≤ ω. The other cases are similar. Define an operatorT

onΦ as

T[φ] =
∫ ω

0
G(t, s)F(s, φ(s), φ(β(s, φ)))ds. (4.19)

Using (Q13), it is easy to see that‖T[φ]‖ω < H and‖dT[φ]
dt ‖ω < N + (2L1 + κ)H. That

is, T[φ] ∈ Φ.

Now, we will show that the operatorT is contractive onΦ. Let φ1, φ2 ∈ Φ. One can

see that using (Q13), the functionφi(t) intersects any constancy switching surfaceSk

exactly once att = ηi
k for all i = 1, 2 andk = j, . . . , j + p − 1. Without loss of

generality suppose thatη1
k ≤ η2

k.

Also, one can show that using Mean Value Theorem and (Q13), the inequality

‖φ1(η
1
k) − φ2(η

2
k)‖ ≤

1
1− L2(N + (2L1 + κ)H)

‖φ1 − φ2‖ω (4.20)
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is satisfied.

Using (4.19) and (Q11), we write

T[φi(t)] =
∫ ηi

j

0
G(t, s)F(s, φi(s), φi(η

i
j+p−1))ds

+

j+p−2
∑

k= j

∫ ηi
k+1

ηi
k

G(t, s)F(s, φi(s), φi(η
i
k))ds

+

∫ ω

ηi
j+p−1

G(t, s)F(s, φi(s), φi(η
i
j+p−1))ds

for i = 1, 2.

Then, using (4.20), we obtain

‖T[φ1] − T[φ2]‖ω ≤ K
[

∫ η1
j

0
‖F(s, φ1(s), φ1(η

1
j+p−1)) − F(s, φ2(s), φ2(η

2
j+p−1))‖ds

+

j+p−2
∑

k= j

∫ η1
k+1

η2
k

‖F(s, φ1(s), φ1(η
1
k)) − F(s, φ2(s), φ2(η

2
k))‖ds

+

∫ ω

η2
j+p−1

‖F(s, φ1(s), φ1(η
1
j+p−1)) − F(s, φ2(s), φ2(η

2
j+p−1))‖ds

+

j+p−1
∑

k= j

∫ η2
k

η1
k

‖F(s, φ1(s), φ1(β(s, φ1)))

−F(s, φ2(s), φ2(β(s, φ2)))‖ds
]

≤
[

KL1ω(2− L2(N + (2L1 + κ)H)) + 2KHL1L2p
1− L2(N + (2L1 + κ)H)

]

‖φ1 − φ2‖ω.

Hence,T is contractive. Because of Lemma 4.4.1, we see that the fixed point is

ω−periodic solution of Eq. (4.4). The theorem is proved.�

Let us illustrate the last theorem by the following example.

Example 4.4.1 Consider the equation

x′(t) = −x(t) − asin(2πt + y(β(t, x, y)))

y′(t) = −2y(t) + asin(2πt + x(β(t, x, y))),
(4.21)

where t, x, y ∈ R, and a is a positive real number. Here,β(t, x, y) is defined byθ j =

j, ξ j(x, y) = −acos(x + y). The corresponding parameters in conditions of Theorem

4.4.1 are L1 = a
√

2, L2 = a, θ̄ = 1 + 2a, κ = 2, N = a
√

2, M = e2+4a, M̃ = (2H +

1)a
√

2, ω = 1, p = 1, K = e2(1−e−1)−1. One can show that conditions(Q1)− (Q13)
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are satisfied for a= e−4, H = 1. Hence, by Theorem4.4.1, we ensure that there is

an 1−periodic asymptotically stable solution of(4.21). Figure 4.2 shows a solution

(x(t), y(t)) of (4.21) with an initial condition(x(−e−4), y(−e−4)) = (0.02, −0.02) that

approaches this periodic solution.

0 1 2 3 4 5 6 7 8 9 10
−0.01

0

0.01

0.02

t

x

0 1 2 3 4 5 6 7 8 9 10
−0.02

−0.01

0

0.01

t

y

Figure 4.2: A solution (x(t), y(t)) of ESPA that approaches the 1−periodic solution as
time increases.

4.5 Stability of the zero solution

In this section we give sufficient conditions for stability of the zero solution.

Let us introduce the following conditions:

(Q14) F(t, 0, 0) = 0 for all t ∈ R;

(Q15) M
[

(1+ θ̄L1)(eML1θ̄ − 1)+ L1θ̄
]

< 1.

Define

K(L1, θ̄) =
M

1− M
[

(1+ θ̄L1)(eML1θ̄ − 1)+ L1θ̄
] .
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The following lemma plays a significant role in this chapter.Using the technique

in [8] and similar to [13, Lemma 1.2], the following lemma canbe proved.

Lemma 4.5.1 Suppose that(Q1)− (Q9), (Q14), (Q15)are fulfilled. Then, every so-

lution x(t) of Eq. (4.4) satisfies the inequality

‖x(β(t, x))‖ ≤ K(L1, θ̄)‖x(t)‖ (4.22)

for all t ∈ R.

Proof. Fix t ∈ R. Let x(t) be a solution of (4.4). Then, there arek ∈ Z, andηk ∈ R

such that (t, x(t)) ∈ Dk, andβ(t, x) = ηk. Using Lemma 4.3.1, we have

x(t) = X(t, ηk)x(ηk) +
∫ t

ηk

X(t, s)F(s, x(s), x(ηk))ds.

Then,

‖x(t)‖ ≤ M‖x(ηk)‖ + ML1

∫ t

ηk

(‖x(s)‖ + ‖x(ηk)‖) ds

≤ M(1+ θ̄L1)‖x(ηk)‖ + ML1

∫ t

ηk

‖x(s)‖ds.

Hence, using Gronwall-Bellman Lemma, we obtain

‖x(t)‖ ≤ M(1+ θ̄L1)e
ML1(t−ηk)‖x(ηk)‖.

Moreover,

x(ηk) = X(ηk, t)x(t) −
∫ t

ηk

X(ηk, s)F(s, x(s), x(ηk))ds.

Then,

‖x(ηk)‖ ≤ M‖x(t)‖ + ML1

∫ t

ηk

(‖x(s)‖ + ‖x(ηk)‖)ds

≤ M‖x(t)‖ + M
[

(1+ θ̄L1)(e
ML1θ̄ − 1)+ L1θ̄

]

‖x(ηk)‖.

Thus, for (t, x(t)) ∈ Dk, we have‖x(ηk)‖ ≤ K(L1, θ̄)‖x(t)‖. The lemma is proved.�

Definition 4.5.1 The zero solution of(4.4) is said to be uniformly stable if for any

ǫ > 0 and t0 ∈ R, there exists aδ = δ(ǫ) > 0 such that‖x(t, t0, x0)‖ < ǫ whenever

‖x0‖ < δ for t ≥ t0.
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Definition 4.5.2 The zero solution of(4.4) is said to be uniformly asymptotically sta-

ble if it is uniformly stable, and there is a b> 0 such that for everyζ > 0 there exists

T(ζ) > 0 such that‖x0‖ < b implies that‖x(t, t0, x0)‖ < ζ if t > t0 + T(ζ).

Theorem 4.5.1 Suppose that(Q1)− (Q9), (Q14), (Q15) hold. If the zero solution

of Eq. (4.6) is uniformly asymptotically stable, then for sufficiently small Lipschitz

constant L1, the zero solution of Eq.(4.4) is uniformly asymptotically stable.

Proof. Suppose that the zero solution of Eq. (4.6) is uniformly asymptotically stable.

Then, there exist positive real numbersα andσ such that fort > s,

‖X(t, s)‖ ≤ αe−σ(t−s). (4.23)

Let x(t) be a solution of (4.4) with the initial conditionx(t0) = x0 such that‖x0‖ ≤ h.

We have fort ≥ t0,

‖x(t)‖ =
∥

∥

∥

∥

X(t, t0)x(t0) +
∫ t

t0

X(t, s)F(s, x(s), x(β(s, x)))ds
∥

∥

∥

∥

≤ αe−σ(t−t0)‖x0‖ + L1

∫ t

t0

αe−σ(t−s)(1+ K(L1, θ̄))‖x(s)‖ds.

Then,

e−σt‖x(t)‖ ≤ αe−σt0‖x0‖ + αL1(1+ K(L1, θ̄))
∫ t

t0

e−σs‖x(s)‖ds.

Hence, using Gronwall-Bellman Lemma, we have

‖x(t)‖ ≤ αe(αL1(1+K(L1, θ̄))−σ)(t−t0)‖x0‖.

Since for sufficiently smallL1, we haveαL1(1 + K(L1, θ̄)) − σ < 0, the theorem is

proved.�

The following example validates the last result.

Example 4.5.1 Consider the equation

x′(t) = −x(t) − asin2(y(β(t, x, y)))

y′(t) = −2y(t) + asin2(x(β(t, x, y))).
(4.24)
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Figure 4.3: A solution (x(t), y(t)) of ESPA that approaches the zero solution as time
increases.

where t, x, y ∈ R, and a is a positive real number. Here,β(t, x, y) is defined byθ j = j

and ξ j(x, y) = −acos(x + y). The corresponding parameters in conditions of Theo-

rem 4.5.1 are L1 = 2
√

2a, L2 = a, θ̄ = 1 + 2a, κ = 2, N = 0, M = e2+4a, M̃ =

4
√

2aH. One can show that conditions(Q1)− (Q9), (Q14), (Q15) are satisfied for

a = e−4, H = 1. Hence, by Theorem4.5.1, the zero solution is uniformly asymptot-

ically stable. Figure4.3 shows a solution(x(t), y(t)) of (4.24) with initial condition

(x(−e−4), y(−e−4)) = (0.02, −0.02) that approaches the zero solution.
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CHAPTER 5

CONCLUSION AND FUTURE WORKS

This thesis studies periodic solutions and stability of differential equations with piece-

wise constant argument of generalized type. We divide theseequations into three

main parts: differential equations with piecewise constant argument of retarded, alter-

nately retarded-advanced, and state-dependent piecewiseconstant argument of gen-

eralized type. The investigation is carried out by constructing equivalent integral

equations rather than using the method of reduction to discrete equations, which was

employed by the founders and developers of systems with piecewise constant argu-

ments. The results are new and better than the existing ones.

Chapter 2 analyzes, using the method of small parameter, the periodic solutions and

stability of quasilinear differential equations with retarded piecewise constant argu-

ment of generalized type in noncritical case, when the corresponding linear ordinary

differential equations have no nontrivial periodic solution. The smoothness of the

solutions with respect to initial value and parameter was presented as well.

In Chapter 3, conditions are found for the existence of periodic solutions for forced

weakly nonlinear ordinary differential equations with alternately retarded-advanced

piecewise constant argument of generalized type. The resonant case is studied, that

is, when the unperturbed linear ordinary differential equation has a nontrivial periodic

solution. The dependence of solutions on initial values andparameters is also studied.

Examples with Duffing equations show the feasibility of our theory.

Chapter 4 generalizes the mentioned equations in the previous chapters to a new type

of systems, differential equations with state-dependent piecewise constant argument,

where intervals of constancy of the independent argument are not prescribed and they
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depend on the present state of a motion. The general conceptsfor a particular type of

equations, namely, quasilinear systems: Existence and uniqueness theorem, periodic-

ity, and stability of the zero solution, are discussed.

Some future works can be summarized as follows:

• The results obtained in Chapter 2 and 3 can be extended to the bifurcation

theory [22,61], in particular, when Eq. (2.41) does not satisfy the conditions of

implicit function theorem. Moreover, averaging in resonant case [65] will be

the next step of our results in Chapter 3.

• The stability of periodic solutions of systems with state-dependent piecewise

constant argument is deserved to be analyzed as the neighborhood solutions

have different meeting moments with the constancy switching surfaces defined

in Chapter 4.

• It is interesting to study impulsive differential equations with piecewise con-

stant arguments of generalized type. The method of construction of integral

equations needs the knowledge of theory of both impulsive differential equa-

tions and differential equations with piecewise constant argument. One of the

results that shows the existence of oscillatory and periodic solutions of a class

of first order scalar impulsive delay differential equations with piecewise con-

stant argument was reported in [49]. The investigation of such systems leads to

the modeling some engineering problems, such as discharging capacitor, driven

Froude pendulum, Work-piece cutter system, as it was done using systems with

piecewise constant argument [29–32, 62]. Moreover, the problems of optimal

control for the process with piecewise constant argument can be of great inter-

est [55,87,88].

78



REFERENCES

[1] A.R. Aftabizadeh, J. Wiener,Oscillatory properties of first order linear func-
tional differential equations, J. Appl. Anal.20 (1985), 165-187.

[2] A.R. Aftabizadeh, J. Wiener,Oscillatory and periodic solutions of an equation
alternately of retarded and advanced type, Applicable Anal.23(1986), 219-231.

[3] A.R. Aftabizadeh, J. Wiener, J.M. Xu,Oscillatory and periodic solutions of de-
lay differential equations with piecewise constant argument, Proc. Amer. Math.
Soc.99 (1987), 673-679.

[4] A.R. Aftabizadeh, J. Wiener,Oscillatory and periodic solutions for systems of
two first order linear differential equations with piecewise constant argument,
Applicable Anal.26 (1988), 327-333.

[5] E. Akalın, M.U. Akhmet,The principles of B-smooth discontinuous flows, Com-
put. Math. Appl.49 (2005), 981-995.

[6] M.U. Akhmet, On the general problem of stability for impulsive differential
equations, J. Math. Anal. Appl.288(2003), 182-196.

[7] M.U. Akhmet,On the integral manifolds of the differential equations with piece-
wise constant argument of generalized type, Proceedings of the Conference on
Differential and Difference Equations at the Florida Institute of Technology, Au-
gust 1-5, 2005, Melbourne, Florida, Editors: R.P. Agarwal and K. Perera, Hin-
dawi Publishing Corporation, 2006, 11-20.

[8] M.U. Akhmet, Integral manifolds of differential equations with piecewise con-
stant argument of generalized type, Nonlinear Anal. TMA66 (2007), 367-383.

[9] M.U. Akhmet,On the reduction principle for differential equations with piece-
wise constant argument of generalized type, J. Math. Anal. Appl.336 (2007),
646-663.

[10] M.U. Akhmet, Stability of differential equations with piecewise argument of
generalized type, Nonlinear Anal. TMA68 (2008), 794-803.

[11] M.U. Akhmet,Almost periodic solutions of differential equations with piecewise
constant argument of generalized type, Nonlinear Anal.: Hybrid Syst.2 (2008),
456-467.

[12] M.U. Akhmet, Asymptotic behavior of solutions of differential equations with
piecewise constant arguments, Appl. Math. Lett.21 (2008), 951-956.
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systems with small parameter, Nonlinear Anal.: Hybrid Systems2 (2008), 532-

543.

CONFERENCE PRESENTATIONS

• M. U. Akhmet, C. B̈uyükadalı,On periodic solutions of quasilinear differen-

tial equations with piecewise constant argument of generalized type in criti-

cal case, Joint Annual Mathematics Meeting, January 5-8, 2009, Washington,

D.C., USA.

• M. U. Akhmet, C. B̈uyükadalı,On periodic solutions of differential equations

with piecewise constant argument, III. Ankara Matematik G̈unleri, Ankara Uni-

versity, May 25-28, 2008, Ankara, Turkey.

• M. U. Akhmet, C. B̈uyükadalı, T. Ergenç,Periodic solutions of differential
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