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ABSTRACT

PERIODIC SOLUTIONS AND STABILITY OF DIFFERENTIAL EQUATIONS
WITH PIECEWISE CONSTANT ARGUMENT OF GENERALIZED TYPE

Buyukadali, Cemil
Ph.D., Department of Mathematics
Supervisor : Prof. Dr. Marat Akhmet

July 2009, 87 pages

In this thesis, we study periodic solutions and stabilityldferential equations with
piecewise constant argument of generalized type. Thesatiega can be divided
into three main classes: fterential equations with retarded, alternately advanced-

retarded, and state-dependent piecewise constant argohgamneralized type.

First, using the method of small parameter due to Podhe existence and stability
of periodic solutions of quasilinearftiérential equations with retarded piecewise con-
stant argument of generalized type in noncritical case,ish#he unperturbed linear
ordinary diferential equation has not any nontrivial periodic solutiare investi-
gated. The continuous andi@rential dependence of the solutions on an initial value

and a parameter is considered. A new Gronwall-Bellmann tgperia is proved.

Next, quasilinear dierential equations with alternately advanced-retardedeuvise
constant argument of generalized type is addressed. Tieatdase, when associ-
ated linear homogeneous system admits nontrivial perigsaligtions, is considered.

Using the technique of Poin@&Malkin, criteria of existence of periodic solutions
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of such equations are obtained. One of the main auxilianyltes an analogue of
Gronwall-Bellmann Lemma for functions with alternately adeed-retarded piece-
wise constant argument. Dependence of solutions on aalingtiue and a parameter

is investigated.

Finally, a new class of ¢lierential equations with state-dependent piecewise cansta
argument is introduced. It is an extension of systems wigtgwise constant argu-
ment. Fundamental theoretical results for the equatiaristesce and uniqueness of
solutions, the existence of the periodic solutions, thbiltyaof the zero solution are

obtained. Appropriate examples are constructed.

Keywords: Dfferential equations with piecewise constant argument oéigdized
type, Differential equations with state-dependent piecewise canatgument, The

method of small parameter, Periodic solutions, Asympisitbility.



Oz

GENEL TIPTEKI 'PARCALI SABIT ARGUMANLI D IFERENSYEL
DENKLEMLERIN PERYODIK COZUMLERI VE KARARLILI GI

Buyukadali, Cemil
Doktora, Matematik BlIUmu
Tez Yoneticisi : Prof. Dr. Marat Akhmet

Temmuz 2009, 87 sayfa

Bu tezde, parcall sabit dighanli genel tipteki diferensiyel denklemlerin periyodik
coziimlerinin varlgi ve kararlilgi incelenmistir. Bu denklemlérg ana gruba ayrilabi-
lir: genel tipteki gecikmeli, dnisimliti ilerlemeli-gecikmeli, duruma l@amli parcal

sabit argimanl diferensiyel denklemler.

Ik olarak, Poinca’nin kiicik parametre metodu kullanilarak kritik olmayan du-
rumda, dger bir deyisle, petirbesiz dgrusal adi diferensiyel denklemin sifidzimi
haricinde periyodik ¢zimi olmadginda, hemen hemen gasal gecikmeli parcali
sabit argimanh diferensiyel denklemlerin periyodikziimlerinin varlgi ve kararlili-

g1 incelenmistir. @zumlerin baslangi¢ kosuluna ve parametreyeekli ve diferen-
siyel bagimhligr arastiriimistir. Yeni bir Gronwall-Bellmann tipi lenanspatlanmis-

tir.

Daha sonra, hemen hemengdoesal genel tipteki dnigimli ilerlemeli-gecikmeli
parcall sabit argmanli diferensiyel denklemlerdg oniine alinmistir. Kritik durum-

daki, ne zaman iliskili dgrusal denklem sifir@ziimi haricinde periyodik @ziimleri
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kabul ettjindeki durum incelenmistir. PoingaMalkin’in teknigi kullanilarak bu
tipteki denklemlerin periyodik @ziimlerinin varllg icin kosullar elde edilmistir.
Donagimlu ilerlemeli-gecikmeli parcall sabit dighanli fonksiyonlar icin Gronwall-
Bellmann benzeri lemmanemli sonuclardan biridir. @imlerin baslangi¢ kosuluna

ve parametreye l@amlihgi arastinimigtir.

Son olarak, duruma Igamh parcali sabit atigmanl diferensiyel denklemlerin yeni
bir sinifi tanimlanmistir.  Bunlar parcali sabit anganli sistemlerin genisgletiimis
halidir. Bu denklemler icin temel sonuclardziimlerin varlgi ve teklgi, periyo-
dik cozimlerin varlgi, sifir @zimunin kararhlgi, elde edilmistir. Uygurdrnekler

kurulmustur.

Anahtar Kelimeler: Genel tipteki parcali sabit &mganli diferensiyel denklemler,
Duruma bgimli parcall sabit aigmanl diferensiyel denklemler, i€k parametre

metodu, Periyodik @zimler, Asimptotik kararllik.
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CHAPTER 1

INTRODUCTION AND PRELIMINARIES

1.1 Introduction

Differential equations with delay (DDE) provide a mathematiwadiel for a physical,
mechanical or biological system in which the rate of charfgesystem depends upon
its past history. Although the general theory and fundaaleesults for DDE have
by now been thoroughly explored and are available in the ¢&%, 35, 45, 50] and
subsequent articles by many authors, the literature dévotthe theory and applica-
tions of DDE continues to grow very rapidly. Naturally, nawgortant problems and
directions arise continually in this intensively develapifield. In 1977, the article
by Myshkis [64], who observed that a substantial theory ditlaxist for diterential
equations with lagging arguments that are piecewise constacontinuous, pointed
out differential equations with piecewise constant arguments (BEP&lAce that time

many authors have investigated equations of this type.
A typical EPCA is of the form
X(t) = f(t, x(t), x(h(1))), (1.1)

where the argumeii(t) hasinterval of constancyFor example, equations witift) =
[t], [t — n], t — n[t] were investigated in [25], where is a positive integer and][
denotes the greatest integer function. Note tifgtis discontinuous, and although
the equation fits within the general structure of DDE, theagelare discontinuous
functions. Also note that the equation is nonautonomousesihe delays vary with
t. Moreover, a solution is defined as a continuous, sectiosatigoth function that

satisfies the equation in the interval of constancy. Hemmeesolutions are determined
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by a finite set of initial data, rather than by an initial fuoctas in the case of DDE.
In fact, EPCA have the structure of continuous dynamicalesgstwithin intervals

of nonzero lengths. Continuity of a solution at a point joqany two consecutive
intervals then implies recurrence relations for the solutif such points. Therefore,
EPCA represent a hybrid continuous and discrete dynamica¢sys and combine

the properties of both f@ierential and dference equations.

An equation in whichx'(t) is given by a functiorx evaluated at and at arguments
[t], ..., [t —n], wheren is a non-negative integer, is called of retarded or delag.typ
If the arguments areand f + 1], ..., [t + n], then the equation is of advanced type.
If both these types of arguments appear in the equation,cilled of mixed type.

If the argumenth(t) is between ] and |t + 1] for eacht, then the equation is of
alternately advanced-retarded type. The equations mainéarlor nonlinear. All
types of EPCA share similar characteristics. First of alis ihatural to present the
initial value problem for such equations not on an intergilreDDE but at a number
of individual points. Secondly, for ordinaryfterential equations with a continuous
vector field the solution exists to the right and left of thetiah value. For EPCA, in

general, two-sided solutions may not exist.

It is important to note that EPCA provide the simplest exaspledifferential equa-

tions capable of displaying chaotic behavior. Let us sedédth@ving example.

Example 1.1.1 Consider the initial value problem

(= D)X([t]) — px([t]),
Xo. (1.2)

X (t)
x(0)

One can see that for¢ [n, n + 1), the corresponding ordinary fferential equation

is of the form
X() = (u—21)x(n) - wx(n).
Then, by integrating the last equation from n te- 4, we obtain the relation
X(n+ 1) = ux(n)(1 - x(n)), n=0,1,....

which is the famous logistic map. Therefore, we conclude thaeichoose: > 4,

independent of choice ofxhe unique solution of E(1.2) exhibits chaos [33].
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Systematic study of theoretical and practical problemslinrg piecewise constant
arguments was initiated in the early 1980’s. Since theffieidintial equations with
piecewise constant arguments have obtained great atientim the researchers in
mathematics, biology, engineering and other fields. A nmatteal model including
piecewise constant argument was first considered by Busgmioer Cooke [23] in
1982. They constructed a first-order linear EPCA to inveggigartically transmitted
diseases. Following this work, using the method of redactodiscrete equations,

many authors have analyzed various types of EPCA.

The systems with first-order linear EPCA with constantfioents of retarded type,
of advanced type, and of alternately advanced-retardeel wgre first studied by
Cooke and Wiener [25-27], Aftabizadeh and Wiener [1-4] areh@md Wiener [77].
Existence and uniqueness of the solutions, their backwantirmation on {oo, 0]
were proved. Moreover, stability and asymptotic stabitifythe trivial solution and
oscillatory behavior of the corresponding solutions werayzed. Based on the stud-
ies given by Cooke and Wiener, Zhang and Parni [86] consideeefirst-order linear
EPCA with variable coficients and studied the oscillatory and nonoscillatory prop
erties of the solutions. Furthermore, Jayasree and Decept8blished existence and
uniqueness theorems, a variation of parameters formukgral inequalities, the os-
cillation property, and some applications. The brief sumynae theory can be found
in the book by Wiener [81].

From the current literature, one can see that the interestvastigation of EPCA is
continuously growing. Examples of research articles thselbeen done recently are
on the existence of almost periodic solutions of retarde@A&By Yuan [85], quasi-
periodic solutions of EPCA by #pper and Yuan [51], existence of periodic solutions
of retarded EPCA by Wang [79], Green’s function and comparigonciples for
first-order periodic EPCA by Cabada, Ferreiro and Nieto [24keB’s function for
second-order periodic boundary value problems with pigsmEwonstant arguments
by Nieto and Rodriguez-Lopez [66] and by Yang, Liu and Ge [Bé}iodic solutions
of a neutral EPCA by Wang [80], existence, unigueness and @syin behavior
of EPCA by Papaschinopoulos [71], stability of EPCA and theeissed discrete
equations using dichotomic map by Marconato [59].



Lakshmikhantham and Wiener [82] proved existence and @mgss theorems for the

initial value problem

X () = f(x(®), x(@®).  x0) = xo, (1.3)

where f is a continuous function, ang : [0, ) — [0, =), g(t) < t, is a step
function, that is, it is constant and equalg,) on each intervalt], t,.1), where{t,}

is a strictly increasing sequence of real numbers with ligt, = co.

The numerical approximation of fiierential equations is also one of the benefits
of EPCA. For example, the simple Euler scheme forféedential equation<(t) =
f(x(t)) has the formx,.; — X, = hf(x,), wherex, = x(nh) andh is the step size. This
is equivalent to EPCA of the formi (t) = f(x([t/h] h)). Gyori [42] realized that equa-
tions with piecewise constant arguments can be used toxprate delay dierential
equations that contain discrete delays, and proved sonierérations between the
solutions of delay dferential equations with continuous arguments and theisakit
of some retarded EPCA. The results were used to compute reahedlutions of
ordinary and delay dlierential equations. Later, @y, Hartung and Turi [43] gener-

alized the results to approximate DDE with state dependelalyd.

It is not surprising to expect that EPCA are used to construathamatical mod-
els for the problems of biology, economics, or engineeriagsthis was done using
DDE [50]. In the papers of Dai and Singh [29-31], a direct giiel and numerical
method independent of the existing classical methods teirgplinear and nonlinear
vibration problems was given with the introduction of a getse constant argument
[Nt]/N. A new numerical method which producedfstiently accurate results with
good convergence was introduced. Development of the faroulnumerical calcu-
lations was based on the original governinffetiential equations. For the details we
refer to the book by Dai [32].

Murat and Celeste [62] investigated the damped loading systéjected to a piece-
wise constant voltage described by the equation of charge:

L' () + Rel() + () = Aa( . (14)
which was compared with a similar linear loading system gose by the following
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equation of charge

Lg”(t) + R (t) + Clq(t) = Aq(t). (1.5)

They considered, through numerical simulation, the phesr@of sensitivity on the

initial data, stability and existence of oscillatory saduis.

The equations with piecewise constant arguments plays partamt role in mathe-
matical modeling of biological problems. Busenberg and Cdakg constructed a
first-order linear EPCA to investigate vertically transeuttiseases. The authors like
Gopalsamy, Ladas, Muroya, Seifert in several papers [38395, 76] investigated
different types of population models based on logistic equatiath piecewise con-
stant arguments and obtained mathematical results. In AKFAmet et al studied an
anticipatory extension of Malthusian model using firstesrtinear EPCA with con-
stant coéficients of advanced type. They have found conditions for thetisns to

be periodic, stable, or chaotic.

Lakshmikhantham and Wiener [83] studied the asymptotiabien of a second-order
EPCA of the form

X+ w?X(t) = —bX ([t - 1]), (1.6)

whereb andw are positive constants. They found that last equation magrgée
periodic or even unbounded solutions whereas all solutiétise corresponding or-

dinary diferential equatiorx” + bx (t) + w?x(t) = 0 tend to zero as— co.

Impulsive diferential equations and loaded equations of control thebwithiin the
general paradigm of EPCA. Another application of EPCA is tlabitzation of hy-
brid control systems with feedback delay. Some of thesesyshave been described
in [28]. Moreover, Magni and Scattolini [56, 57] considematently a new model
predictive control (MPC) algorithm for nonlinear systemséx@on EPCA. The plant
under control, the state and control constraints, and thfenpeance index to be min-
imized are described in continuous time, while the mantgualaariables are allowed
to change at fixed and uniformly distributed sampling timsso doing, the opti-
mization is performed with respect to sequences, as inatesd¢ime nonlinear MPC,
but the continuous-time evolution of the system is congidexs in continuous-time

nonlinear MPC.



X=t

x = B(1)

Figure 1.1: The graph of the argumei(t).

Consequently, from the above mentioned theoretical andipahcesults we see that
EPCA was generally investigated using the method of redudtialiscrete equation
by its founders and developers. This kind of investigatian be continued based on
the theory of diference equation. However, there are some lacks of this wheEay
example, continuous andftérential dependence, bifurcation theory, stability tigeor

mainly need a dferent kind of investigation.

In [7-9], Akhmet proposed to investigateffdirential equations with piecewise con-
stant argument of generalized type (EPCAG) of type

S0~ . x0. s, a7



x=t
x = Y(t)
. >3
o—
0 0 0
. i-2 , i-1 .I . |
I I I P 5 t
i+1 i+2
Figure 1.2: The graph of the argumeitt).
or
dx(t
D0 <t x0. x0)), (18)

wheres(t) = 6; (see Fig. 11) andy(t) = ¢ (see Fig. 12)if 6, <t < 6;,4, i are integers,
are piecewise constant functiong,} and{} are strictly increasing sequence of real
numbers, unbounded on the left and on the right such&hat; < 6,4 for all i. In
papers [7-9], methods of investigation by constructing\edent integral equations
rather than using the method of reduction to discrete egusitivere introduced, and
they have been applied for analysis of stability, existesfqeeriodic and almost peri-
odic solutions, integral manifolds in papers [10-12, 14-TGese equations provide

many opportunities for research of both theoretical andtpral problems.
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The problem of the existence of periodic solutions is onehef ihost interesting
topics for applications. Poincaf72] introduced the method of small parameter to
investigate the problem and it has been developed by mahgi@uisee, for example,
[58, 73], and the references cited there) and this methoaireas one of the most
effective methods for this problem. Forfidirential equations with discontinuities it
was developed by Akhmet in [20, 21]. We apply his approacthéodiscontinuous
processes in the investigation. It is important that thalte®btained in this field can
be extended to the bifurcation theory [22, 61].

In this thesis, we study periodic solutions and stabilitylidferential equations with
piecewise constant argument of generalized type by caststguan equivalent inte-
gral equations. These equations can be divided into three chesses: dierential
equations with retarded, alternately advanced-retarded, state-dependent piece-

wise constant argument of generalized type.
This thesis is organized as follows.

In Chapter 2, using the method of small parameter, the existand stability of
the periodic solutions of quasilinearfidirential equations with retarded piecewise
constant argument of generalized type in noncritical css, is, when the unper-
turbed linear ordinary dierential equations has not any nontrivial periodic sohytio
are investigated. The continuous anéfefiential dependence of the solutions on an
initial value and a parameter is considered. A new GronBallmann type lemma is

proved.

In Chapter 3, quasilinear flierential equations with alternately advanced-retarded
piecewise constant argument of generalized type and smhpeter is addressed.
The critical case, when the associated linear homogenestsns admits nontrivial
periodic solutions, is considered. Using the technique mh&g-Malkin, criteria

of existence of periodic solutions of such equations arainobtl. One of the main
auxiliary results is an analogue of Gronwall-Bellmann Lemimafunctions with
alternately advanced-retarded piecewise constant argumependence of solutions

on an initial value and a parameter is investigated.

In Chapter 4, a new class offtBrential equations with state-dependent piecewise con-



stant argument is introduced. It is an extension of systeitis piecewise constant
argument. Fundamental theoretical results for the equsitiexistence and unique-
ness of the solutions, the existence of the periodic salgtithe stability of the zero

solution are obtained. Appropriate examples are constouct
In Chapter 5, conclusion and future work topics are given.
The main parts of this thesis comes from the following papers

M. U. Akhmet, C. Biyukadali, Tanil Ergengeriodic solutions of the hybrid systems
with small parameterNonlinear Anal.: Hybrid Systen&(2008), 532-543.

M. Akhmet, C. Biyiikadali,On periodic solutions of gierential equations with piece-
wise constant argumentomput. Math. Appl56 (2008), 2034-2042.

M. U. Akhmet, C. Biyukadal,Differential equations with state-dependent piecewise

constant argumeniNonlinear Anal. TMA (Submitted).

1.2 Differential Equations with Piecewise Constant Arguments

LetR, IN andZ be the sets of all real numbers, natural numbers and integsgzec-
tively. We will denote byj|. || the Euclidean norm for vectors IR", n € IN, and the
uniform norm||C|| = sug||C X|||IX|| = 1} for nx n matrices. Letl be ann x n identity

matrix.

We shall now see some of the significant results previousgbéshed for EPCA.

1.2.1 Linear retarded EPCA with constant codlicients

The following results due to Cooke and Wiener [25] obtainedisipng the method of

reduction to discrete equations.

Consider the scalar initial value problem

X (t) = ax(t) + aopx([t]) + arx([t — 1]),
X(-1)=c1, x0)=c (1.9)



with constant cofficients. This equation is very closely related to impulsinel a

loaded equations. Indeed, Eq.X1) can be written as

X (t) = ax(t) + i aoX(i) + ayx(i — 1))(H(t —i) — H(t — i - 1)),

|=—00

whereH(t) = 1 fort > 0 andH(t) = 0 fort < O. If distributional derivatives are

admitted, then by diierentiating the last equation we have

X'(t) = ax + i aox(i) + arx(i — 1))@(t — i) — 6(t — i — 1)),

|=—00

wheres is the delta function. This impulsive equation containsukies of the un-

known solution for the integral values of t. Let us introddice following definition.

Definition 1.2.1 A solution of Eq.(1.9) on [0, ) is a function Xt) that satisfies the
conditions:
(i) x(t) is continuous off0, o).

(i) The derivative %t) exists at each point¢ [0, o), with the possible exception of

the pointdt] € [0, o) where the one sided derivative exists.

(i) Eg.(1.9)is satisfied on each intervih, n+ 1) c [0, oo) with integral endpoints.

Let us consider Eq. (9).
Denote

by = € + atag(e? - 1), b, = atay(e* - 1), (1.10)
and let1; anda, be the roots of the equation

A2 —bod = Dby =0. (1.11)

Theorem 1.2.1 Problem(1.9) has on[0, ) a unique solution
X(t) = o€ + a(agey + arcy 1)€Y - 1), (1.12)
where

cy = (A1 (co — A2€1)) + (lac 1 — C) A/ (4 — 2y). (1.13)

10



Corollary 1.2.1 The solution 0f{1.9) can not grow to infinity faster than exponen-

tially ast — +oo.

Since the solution of (8) on [Q ) involves only the groug?®, it can be extended

backwards on<{co, 0].

Theorem 1.2.21f a; # 0, the solution 0f(1.9) has a unique backward continuation
on(—oo, 0] given by the formulagl.12) and(1.13).

If a; =0, itis formulated that

Theorem 1.2.3 The problem
X(t) = ax(t) + aox([t),  x(0) = co, (1.14)
has on[0, «) a unique solution
X(t) = u(t - [thu (L)co, (1.15)
where

ut) = 1+ a (e - 1)(a+ ap). (1.16)

Theorem 1.2.41f u(1) # O, the solution of Eq(1.14) has a unique backward contin-
uation on(—oo, 0] given by the formul#l.15).

Theorem 1.2.51f u(1) # 0 and Uty — [to]) # O, then Eq. (1.14) with the initial

condition Xtg) = Xo has on(—oo, o) a unique solution
X(t) = u(tHu el L )u (o)) %, (1.17)

where{t} is the fractional part of t

The last theorem establishes the fact that the initial vatoelem for Eq. (114) may
be presented at any point, not necessarily integral. A ampitoposition is true also
for Eq. (19).
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Theorem 1.2.6f a; # O and

el 4 ga7t(elll — 1) (13 + @) # 0, i=12 (1.18)
where; are the roots 0{1.11), then the problem (%) = Xg, X(to — 1) = x4 for Eq.
(1.9) has a unique solution oft-co, o).
Theorem 1.2.7 The solution x= 0 of Eq. (1.9) is asymptotically stable ast +o if
and only if the moduli of the roots of E¢L.11) satisfy the inequalities

|[A1] < 1, |Ao] < 1 (119)
Theorem 1.2.8If the solution x= 0 of Eq. (1.9) is asymptotically stable as+ +co,
then
—-a2+€)/(e8-1) < ayg < a(2-€Y/(e8 - 1),

la;] < a/(e*-1). (1.20)

Theorem 1.2.9 The solution x= 0 of EqQ. (1.9) is asymptotically stable as+ +co,

if and only if any one of the hypothesis is satisfied:

0)
—a2+ €)/(68 — 1) < a < a2 — ) /(e* - 1),
a(e® + a (e - 1ap)? a(e? + 1) _
D R
(i)
aet o< a(2 - €
o1 * a1
1A 2
(iii)

a2+e) __a@-e)
e_1 O T@_1-

a(e® + al(e? - 1ap)?
e_1 BT ae-)
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1.2.2 Approximation of equations with discrete delay

Equations with piecewise constant arguments can be usqiptoxamate delay dif-
ferential equations that contain discrete delays. In [42)& limit relations between
the solutions of delay étierential equations with continuous arguments and the solu-
tions of some retarded EPCA have been proved. The resultsugeckto compute
numerical solutions of ordinary and delayffdrential equations. Let us see some of

these results.

Consider the delay fferential equation

m
X (t) + po(t)x(t) + Z pix(t-1) =0, t>0, (1.21)
i=1
where
(HY) fori =1, ..., m 7; are positive real numbers amd= max<j<m 7i;
(H2) fori=0,1,..., m p : [0, ) — R are continuous functions;

(H3) for afixedk e IN, k > 1, seth = 7/k.

Define delay dierential equations with piecewise constant argumentsliasvia

, ol [T ) 2
U (t) + po(u(t) + .Z‘ p.(t)u([h [h” h) -0, tz0 (1.22)
and
V() + Do(t)V([%]h) T i pi(t)V([% - [TH] h]) 0, tx0 (1.23)
i=1
and

w0 (Ll [l=o. 120 aas

i=1
It is known [45] that Eq. (21) with the initial condition
X(s) =¢(9), -1<s<0, p € C=C(-1, 0], R), (1.25)

has a unique solution or-f, o), which is continuous on-r, o) and continuously

differentiable on [Dco).
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With Egs. (121)-(1.21), let us associate the following initial conditions, respey:

u(jh) = 4(jh)y  for  j=-k ..., 0 (1.26)
and

v(jh) = ¢(jn)  for  j=-k ...,0 (1.27)
and

w(jh) = ¢(jh)  for  j=-k ...,0. (1.28)

Definition 1.2.2 We say that a function(t) is a solution o0f(1.22) and (1.26) defined
on the set-k, ..., 0} U (0, o) if
(i) u(t) is continuous o0, co);

(i) the derivative ((t) exists at each point4 [0, o) with the possible exception of

the points t= nh, n € IN, where finite one sided derivative exists;

(i) the function () satisfies Eq(1.22) on each interva[nh, (n + 1)h] for n € IN.

The definitions of the solutiongt) andw(t) of the initial value problems (23) —
(1.27) and (124) — (1.28), respectively, are analogues. The following lemma shows

the existence and uniqueness result.

Lemma 1.2.1 Assume thatH1’) — (H3") hold. Then each one of the initial value
problem(1.22) - (1.26), (1.23) — (1.27)and (1.24) — (1.28) has a unique solution.

Let C} be defined byC} = {y e C' : y/(07) + po(0)w(0) + X%y pi(O)(-7) = 0},
whereC! denotes the set of continuouslyfdrentiable maps of{r, 0] into R.

The following theorem shows the convergence result.

Theorem 1.2.10Assume thatH1’) — (H3) hold. Then the following statements are
valid:

14



(a) the solutions &), u(t), v(t) and w(t) of the initial value problem§1.21) — (1.25),
(1.22) — (1.26), (1.23) — (1.27) and (1.24) — (1.28), respectively, satisfy the

following relations for all T> 0

i (0~ w0l = i i)~ vO)

= lim max|x(t) — w(t)| = O. (1.29)

h—00<t<T

(b) If ¢ € Cj then for all T > O there exist constantsoL= Lo(To, ¢) and My =
Mo(To, ¢) such that

[IX(t) — u(®)ll < Loh, 0<t<Toh>0, (1.30)
and
[IX(t) — v(t)Il < Mgh, 0<t<To h>0. (1.31)
(c) fforalli = 0,1,...,n the functions yft) are Lipschitz-continuous on any

compact subinterval db, «) and¢ € C!, then there exists a constany N
No(To, ¢) such that

X)) —w(Oll < Noh, 0<t<To h>O0. (1.32)

Remark 1.2.1 Itis known from[41, Lemma 2.1}hat G; is a nonempty and dense set
inC.

In the next theorem a condition which guarantees that thets approximations

are uniform on the half line [0).

Theorem 1.2.11Assume thatH1’) — (H3') are satisfied and forall£0, 1, ..., m

fo " I (Dldt < o, (1.33)

Let¢ € C be a given function. Then the solutior(§) xu(t) and \t) of Egs.(1.21) -
(1.25), (1.22)-(1.26), and(1.23)— (1.27), respectively, satisfy the following relations

sup|x(t) — u(t)| — O, as h-0, (1.34)
t>0
and

sup|x(t) — v(t)| — O, as h-0. (1.35)
20
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The following results shows that Egs..Z2), (1.23), and (124) are strongly related

to some discrete fference equations. Let us denote the first forwafiédgnce of a

function f(n) by Af(n) = f(n+ 1) — f(n).

Theorem 1.2.12 Assume thafH1’) — (H3') are satisfied and k 1is an integer. Set
h=1/k and ki = [7i/h] for all i=1...,m (1.36)

Then

(a) the solution (t) of (1.22) - (1.26) is given by
t t m t S
u(t) = a(n)e hnPeds _ e o Po(s)dSZf pi(9)eb PN gs gn—k) (1.37)
i=1 vnh

forallnh <t < (n+ 1)h and n> 0, where{a(n)} is a sequence which satisfies
the djference equation

a(n+ 1) — a(h)e” " po(sids

" m  ~(n+1)h .
+e b po<3>dsz f pi(s)eb P dsgn—k)=0,n> 0
i=1 nh
a(n) = ¢(nh), n=-k ...,0 (1.38)
(b) the solution \t) of (1.23) — (1.27)is given by

V) = @ [ pu(9dsbm+ Y] [ p(dstn-k)  (1.39)
n i1 vn

forallnh <t < (n+ 1)h and n> 0, where{b(n)} is a sequence which satisfies

the djference equation

(n+1)h m (n+1)h
Ab(n) + fnh Po(s)ds (n) + ; fnh pi(s)dskin-k)=0, n>0
b(n) = ¢(nh), n=-k ...,0 (1.40)

(c) the solution t) of (1.24) — (1.28)is given by
w(t) = c(n) — (po(nh)c(n) + Z pi(nhc(n —k))(t —nh)  (1.41)

for allnh <t < (n+ 1)h and n> 0, where ¢n) is a sequence which satisfies the

difference equation

Ac(n) + hpg(nh)c(n) + h Zm: pi(nh)c(n - k) = 0, n>0
i=1

c(n) = ¢(nh), n=-k, ...,0. (1.42)
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Let us illustrate the result with the following scalar eqoatwith one constant delay.

Example 1.2.1 Consider the equation
X (t) = —pt)x(t — 1), t>0 (1.43)
with the following initial condition
X(t) = ¢(t), -7<t<0 (1.44)

whereg is a given function in CLet k be any positive integer and let=hr/k. This

problem may be approximated by the EPCA

v =-poy([+ - || (1.45)

with the initial condition
y(nh) = ¢(nh), n=-k, ..., 0. (1.46)

Moreover, it can be found tha(iyh) = a, satisfies the dierence equation

(n+1)h
Be = 8 = — f p(9)dsan (1.47)
nh

an = ¢(nh), n=-k ..., 0. (1.48)

Hence, using Theorerh2.10 it is seen that the solution dfi..45), (1.46) provides
uniform approximation to the solution of the probléh3), (1.44) on any compact
interval [0, To], To > 0.

1.2.3 Alternately advanced retarded EPCA

Differential equations of the form

'[+1
2

X({t)=f (x(t), x(

)

have stimulated considerable interest and have studiedtbpizadeh and Wiener [2,
4], Cooke and Wiener [27], Huang [47], Jayasree and Deo [48]ak, Partheniadas,
and Schinas [52]. In this equations, the argument deviafin= t - [t + 3| changes

its sign in each interval— 1 <t < n+1, n€ Z. Indeedz(t) < 0 forn-1 <t < n,and

17



7(t) > 0 forn < t < n+ %, which means that the equation is of alternately advanced-
retarded type. It is of advanced type orH % n) and of retarded type om(n + %).
Cooke and Wiener have studied in [27] the equation

1
X(t) = axt) + aox(z HT ) X(0) = Co. (1.50)
The argument deviation
)=t-2 % (1.51)

is negative for 8 — 1 < t < 2n, and positive for & < t < 2n+ 1. Therefore Eq. (49)

is of advanced type on [P- 1, 2n), and of retarded type onii22n + 1).

Definition 1.2.3 [81] A solution of Eq(1.49)on [0, o) is a function Xt) that satis-
fies the conditions:

(i) x(t)is continuous o1f0, );

(i) the derivative Xt) exists at each point¢ [0, o), with the possible exception of

the points t= 2n— 1, n € Z, n > 0, where one sided derivatives exist;

(i) Eg.(1.49)is satisfied on eachinterv@h-1<t<2n+ 1

The following results are from [27]. In that paper, it waswhahat Eq. (150) has

a unique solution on [0) and a unique backward solution oncf, 0]. Also, it was
determined that the set dd,(ag) for which the zero solution is asymptotically stable
ast — +oo, and the set ofd, ag) such that all nontrivial solutions have no zeros
in (—o0, o). The set of bounded solutions is characterized. Furtherntbeessame
equation with variable cdicientsa(t), ag(t) is examined, the condition for existence
of a unique solution on [0x) is determined, and conditions are found under which

all solutions are oscillatory.

Let

At) = e + (e - 1)atay, A1 = A(=1), 1, = A(L). (1.52)

Theorem 1.2.13Problem(1.50) has on[0, o) a unique solution

A )[(t+1)/ 2]

e 1.53
™ Co (1.53)

X(t) = ﬂ(T(t))(
if 11 # 0, wherer(t) is given by(1.51).
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Theorem 1.2.14The solution of Eq(1.50) has a unique backward continuation on
(—o0, 0] given by formulg1.53)if 2, # 0.

Theorem 1.2.15The solution x= 0 of Eq. (1.50)is asymptotically stable ast +co
if and only if|A;/4_4] < 1.

Theorem 1.2.16 The solution x= 0 of Eq. (1.50) is asymptotically stable ast +oo

if and only if any one of the following hypothesis is satisfied:

()a<0, a>-%2 o a<-a
(i)a>0  -%Dca<-g

(i) a=0, a <0

Theorem 1.2.17 All nontrivial solutions of Eg.(1.50) have no zeros iff—co, o) if

and only if

ae’ a
ea_1<ao<m. (154)

Theorem 1.2.18 The problem

t+1

X (1) = a(t)x(t) + ao(t)x(Z[T

y x(0) = ¢ (1.55)

has a unique solution of), o) if a(t) and a(t) are continuous for & 0, and
2n
j‘ U (9)ag(s)ds= U™(2n), ne N, n> 1, (1.56)
2n-1

where U is the reciprocal of U and

u(t) = exp( j; t a(s)ds).

Theorem 1.2.19The dfferential inequality
t+1

KGNFMDMO+Q®X@

)so, (1.57)

with p(t) and (t) continuous o0, ), has no eventually positive solution if

2n+1 t
lim sup q(t) exp(f p(s)ds) dt> 1. (1.58)
n—eo 2n

2n
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Theorem 1.2.201f condition (1.58) is satisfied, the dierential inequality
X (1) + p(t)x(t) + qt)x(2[(t + 1)/2]) = O (1.59)

has no eventually negative solution.

From Theorem (2.19) and (12.20) it follows that subject to hypothesis.§B), the
equation

X (1) + pOX®) + aO)x(2[(t +1)/2]) = 0 (1.60)

has no eventually negative solutions and therefore theviimllg conclusion is valid.

Theorem 1.2.21 Subject to conditior(1.58), Eq. (1.60) has oscillatory solutions
only.

Corollary 1.2.2 Eq. (1.55) has only oscillatory solutions 0, o) if

2n+1 t
lim inf ao(t) exp(—f a(s)ds) dt< -1 (1.61)
n—oo 2n 2n

Remark 1.2.2 Condition(1.61) is sharp. For Eq.(1.50) with constant cogcients,
(1.61) becomes @< —a€e?/(e* — 1) which is according t¢1.50), one of the two "best

possible” conditions for oscillation.

Theorem 1.2.22Inequality(1.57) has no eventually negative solution if

2n+1 t
lim inf q(t) exp(f p(s)ds) dt< -1 (1.62)
2

n—oo on n

Theorem 1.2.23If condition (1.62) is satisfied(1.59) has no eventually positive so-

lution.

Theorem 1.2.24 Subject to conditior(1.62), Eq. (1.60) has oscillatory solutions

only.

Corollary 1.2.3 Eq. (1.55) has only oscillatory solutions g, oo) if

2n t
lim sup ap(t) exp(—f a(s)ds) dt> 1. (1.63)
N—o0 2

2n-1 n
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Theorem 1.2.25If ag > a/(e* — 1), then solution(1.53) with the condition {0) = ¢
has precisely one zero in each intenzZa — 1 < t < 2n with integral endpoints. If
a < —aé?/(e*-1), then(1.53) has precisely one zero in each inter2al< t < 2n+1.

Theorem 1.2.26 All solutions of Eq.(1.50) that are bounded orc <t < oo and
that do not tend to zero as+ +co are periodic. They exist only forpa= —a or

ap = —a(e®® + 1)/(e* — 1)2. In the first case, the solutions are constant; and in the
second case, they are of peridd

1.3 Differential Equations with Piecewise Constant Arguments of Gegralized

Type

In this section we shall see some of the definitions and furddah theorems es-
tablished previously for dierential equations with piecewise constant arguments of

generalized type.

1.3.1 Retarded EPCAG
The following results due to Akhmet [7] obtained by constiug an equivalent inte-
gral equations.
Consider the quasilinear system
y =A@y + f(t. y(t), y(3(1)), (1.64)

wherey e R, t e R, B(t) = 6, if 6 <t < 6,1, 1 € Z, is an identification function,
6,1 € Z, is a strictly ordered sequence of real numb@is,— oo asl|i| —» oo, and

there exist real numbessandd > 0 such that < 01— 0 < 9_ i €7Z.

Let us introduce the following assumptions.

(H1”) A(t) is a continuous x n matrix and supg [|A)|| = k < oo;

(H2”) f(t, x, 2) is continuous in the first argument(t, 0,0) = 0,t € R, and f is
Lipschitzian such thatf (t, y1, wi) — f(t, y2, W)l < lo(llyz = Yall + [lwy — Wa]);
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(H3”) there exists a projectioRy and positive constant§,; ando- such that
IX®)PoX ()l < Koexpi-o(t—s),  t>s

IX®)( = P)X ()l < Koexpr(s—1), t<s

whereX(t) is a fundamental matrix of the associated linear homogenegs-

tem.

Definition 1.3.1 A solution ¥t) = y(t, i, Yo), Y(6i) = Yo, | € Z, of (1.64) on [6;, o)

is a continuous function such that

(i) the derivative ¥(t) exists at each point¢ [6;, o), with the possible exception of
the pointsg;, j > i, where one-sided derivatives exist;

(i) equation(1) is satisfied by {t) at each interval[6;, 0j.1), ] > I.

Theorem 1.3.1 Suppose condition@1”) — (H3”) are fulfilled. Then for everygye

R" and i € Z, there exists a unique solutiorfty of (1.64) in the sense of Definition
1.3.1.

One can be easily shown that there exist positive constantd, such thatm <
IX(t, 9l < M, if [t — 5 < 6.

We need the assumptions:

(H4") 2Mlgf < 1;
(H5") MIof[1 + M(1 + 146) exp(MIo6)] < m.
Theorem 1.3.2 Assume that condition#11”) — (H5”) are fulfilled. Then, for every

Yo € R", tg € R, 6 <ty < 6,1, | € Z, there exists a unique solutioiit) = y(t, 6;, Yo)
of (1.64) in sense of Definitiod.3.1 such thaty(ty) = Yo.

Example 1.3.1 Consider

X (1) = 3x(t) — x(OX(B(D)), (1.65)
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wherep(t) = 6, if 6 <t < 0,1, 1 €Z, 0.1 = | — 2, 655 = | + £, ] € Z. The distance

61— 6i, i € Z,is equal eithert@) = £ orto 6 = 2.

Let us find conditions when a solutioft)xof (1.65) can be continued to the left from

t =061 Ift €[6;, 6;,1] for a fixed ie Z, then Xt) satisfies the following equation
X (t) = 3x(t) — x()x(6)).
Hence,

X(t) = x(6) exp((3— x(&))(t - 6)). (1.66)

From the last equality it implies that every nontrivial st of (1.65) are either
positive or negative. That is why, without loss of generatibnsider only positive

solutions. For a fixed B> 0 denote G = {x: 0 < x < H}.

If X1, X2, Y1, V2 € Gy, then|xyy: — XoV2| < H(X1 — Xo| + |y1 — Y2|). Moreover, we have
that

m= Itr_rgge exp(2€ — s)) = exp9/5), M = |trI]sia;)6§eXp(2¢ —9)) = exp(95).

Hence, conditior{H4") for continuation of solutions qf1.65) to the left in G has

the form

H < 5exp(9/5)/6. (1.67)

Let us consider another way to define valué$)»such that the solution(® can be

continued to the left from+ 6, .
Using(1.66) we find that

X(6i+1) = X(61) exp((3— x(6)))(6i+1 — ). (1.68)

Consider(1.68) as an equation with respect to x x(6;). Introduce the following
functions F(x) = xexp((3— X)8) and F(X) = xexp((3— x)d)). The critical values of
x for the functions are Ry = 671 = 3 < 3and ¥ = 67 = 3 < 3 respectively, and
maximal values of these functions are

FO = F10G)) = 5exp(¥5)/2,  FE@, = F(X2) = 5exp(45)/3.  (1.69)
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Denote Fax = Min(Fy, FE.
If X(6i,1) < Fmax then the solution can be continued te 6.

Comparing(1.67) and (1.69) we see that H< Fnqx That is, the evaluation of H by
(H4”) is reliable for equatiorn(1.65).

Let us introduce the following definition, which is a versioina definition from [69],
adapted for the general case.

Definition 1.3.2 A function ¥t) is a solution of(1.64) on R if:

() y(t) is continuous orR;

(i) the derivative ¥(t) exists at each point &€ R with the possible exception of the

pointsé;, i € Z, where one-sided derivatives exist;

(iii) equation(1.64)is satisfied on each interv@d, 6.,1), i € Z.

Theorem 1.3.3 Suppose that conditior{§11”) — (H5”) are fulfilled. Then, for every
(to, Yo) € R x R", there exists a unique solutiolfty = y(t, to, yo) of (1.64)in sense of
Definition 1.3.2 such that {to) = yo.

The last theorem is of major importance in [7]. It arranges ¢hrrespondence be-
tween pointstp, Yo) € R x R" and all solutions of (54), and there is not a solution
of the equation out of the correspondence. Using the assexie can say that defi-
nition of the IVP for the EPCAG is similar to the problem for amlimary diterential
equation, although the EPCAG is an equation with delay argame

1.3.2 Alternately advanced-retarded EPCAG

The following definitions and theorems due to Akhmet [10]eTasults are obtained

by constructing an equivalent integral equations.

Fix two real-valued sequencés &, i € Z, such tha¥, < 6;.1, 6; < ¢ < 6,4 for all

i € 7,6 = oo asli| = oo.
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Consider the following two equations
Z(t) = A1) + Au(t)z(¥(1)), (1.70)
and
Z(t) = Ao(D)(t) + A(DZ(y (1)) + (L, (1), Z(¥(D))), (1.71)
whereze R", t € R, y(t) = &, if t € [6;, 611), i € Z.

The following assumptions are needed:

(CT) Ao, A; € C(R) aren x nreal valued matrices;
(C2) f(t, x, ¥) € C(R x R"x R") is ann x 1 real valued function;
(C3) f(t, x, y) satisfies the condition
It X1, Y1) — F(t, X2, Y2)ll < Lo(llX1 — Xall + lys — ¥ll),  (1.72)
whereLy > 0 is a constant, and the condition
f(t,0,0)=0,teR. (1.73)
(C4) matricesA,, A; are uniformly bounded oR;
(CB) infrl|Ai(t)ll > O;
(CB) there exists a numbe@r> 0 such that, 1 — 6, < 9_, i €Z:;

(C7) there exists a numbér> 0 such that,.; — 6, > 6, i € Z.

One can easily see that equations (1.70) and (1.71) havertimeof functional difer-

ential equations

Z(t) = Ao(D)(t) + Au (%), (1.74)

Z(t) = Ao()z(t) + Ac(t) (i) + F(t, (1), Z(&)). (1.75)
respectively, ift € [6;, 6i,1), | € Z.

Let us introduce the following definition, which is a versioina definition from [69],

modified for the general case.
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Definition 1.3.3 A continuous function(d) is a solution of{1.70) ((171))onR if:

() the derivative 4t) exists at each point € R with the possible exception of the

pointsé;, i € Z, where the one-sided derivatives exist;

(i) the equation is satisfied fo(ty on each interval(é,, 6;,1), | € Z, and it holds for

the right derivative of ) at the points;, i € Z.

Let I be ann x n identity matrix. Denote byX(t, s), X(s, s) = I, t, s € R, the

fundamental matrix of solutions of the system
X (t) = Ao(t)x(t). (1.76)

which is associated with systems (1.70) and (1.71). Lettosdace a matrix-function
Mi(t)a i€ Z,

M) = X(t. £) + f X(t, 9Au(9) ds

g
useful in what follows. From now on we make the assumption:

(C8) For each fixed € Z, det[M;(t)] # O, for all t € [6;, 6;14].

Theorem 1.3.4 Assume that conditio(CY) is fulfilled. For every(ty, ) € R x R"
there exists a unique solutiorft = z(t, to, Zp) of (1.70) in the sense of Definition
1.3.3 such that(k) = z if and only if condition(C9) is valid.

The last theorem is of major importance for [10]. It arranges correspondence
between pointst, zp) € R x R" and the solutions of (1.70) in the sense of Definition
1.3.3, and there exists no solution of the equation out ottineespondence.

Theorem 1.3.5 Assume that conditio(CZ1) is fulfilled, and a numbente R, 6 <
to < 6,1, Is fixed. For everyge R" there exists a unique solutiofty= z(t, to, z,) of
(1.70) in the sense of Definition 1.3.3 such tH&f)z= z if and only ifdet[M;(ty)] # O
anddet[M;(t)] # Ofort = 6;, 6;.1, | € Z.
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Assume thattf, z) is fixed, and; < ty < 6,,, for a fixedi € Z. We suppose thdg #
Zi. The solution satisfies, on the intervél,[6;,1], the following functional diferential

equation

Z(t) = Ao(t)z+ Au(D)Z(Z)). (1.77)

Formally we need the pair of initial point&{ z) and ¢, z(¢;)) to proceed with the
solution, but sincey = M(tg)z(£), where matrixM;(to) is nonsingular, we can say

that the initial conditiorg(ty) = z, is suticient to define the solution.

Theorem 1.3.4 implies that the set of the solutions of (1i$n n-dimensional
linear space. Hence, for a fixégle R there exists a fundamental matrix of solutions
of (1.70),Z(t) = Z(t, to), Z(to, to) = | such that

dz

Tt = PoZ(®) + AZ((O).

Without loss of generality assume that< ty < ¢ for a fixedi € Z, and define the

matrix only for increasingd, as the construction is similar for decreastng

We haveZ(s) = M *(to)l = M, *(to). Hence, on the intervald], 6,.1], Z(t, to) =
Mi(t)M ™ (to). ThenZ(&i+1) = M4 (61:1)Z(6i41) = M3 (64) Mi(6i:1) M2 (to), and then
Z(t, to) = Mi1(DZ(G+1) = Mia(®ML(010)Mi(B )M (to) if t € [641, 6i12]. One
can continue by induction to obtain

i+1

2(t) = MO| [ | M (@IM1(89 M (1), (1.78)
k=l
if t €[6, 6,,1], for arbitraryl > i.

Similarly, if ; <t < 6,1 <... <6 <ty <64, then

i-1
Z(t) = MO | | M (01) M) | M7 (). (1.79)
k=]
One can easily see that
Z(t, 9 =Z()Z7Y(9), t, se R, (1.80)
and a solutiorz(t), z(ty) = z, (to, 20) € R x R", of (1.70) is equal to

2t) = Z(t, t)zo,  teR. (1.81)
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Let us consider system (1.71). One can easily see th&j {J€7) imply the exis-
tence of positive numbers,, M andM such thaimg < ||Z(t, S)|| < M, [IX(t, )| < M
if tf, se [Qi, 9i+1]’ i €Z.

We need the assumption
(CY) 2MLo(1 + M8 < 1.

Then, we can see thi(1 + M)LofeMe@M? < 1 and the expression
MeML0(1+M)H_

1 — M(1 + M)LoHeMLo(@+M)

can be introduced. The following assumption is also needed

k(Lo) =

(C10) 2MLok(Lo)(1 + M) < m.
The following lemma is the most important auxiliary resdltioat paper.

Lemma 1.3.1 Assume that conditiof€1’) — (C10) are fulfilled, and fix ie Z. Then,
for every(é, zo) € [6;, 6i.1] X R", there exists a unique solutiolft = z(t, &, zy) of
(175) on[Gi, ‘9i+1]-

Theorem 1.3.6 Assume that condition€1’) — (C10) are fulfilled. Then, for every
(to, 20) € R x R" there exists a unique solutioftk= z(t, to, zo) of (1.71) in the sense
of Definition 1.3.3 such tha(tg) = z,.

Lemma 1.3.2 Assume that condition(€1") — (C10) are fulfilled. Then, the solution
Z(t) = zt, to, 20), (to, 20) € R x R", of (1.71) is a solution orR of the following

integral equation

i
Z(t) = Z(t, to)[zo + ft X(to, 5)f(s, zs), 2(y(9))) dd +

k=j-1

=i (i1
Z(t, 6ra) f X0kt 9F(s 29, 21(9)) ds+
k=i &k

f X(t, 9(s %9, 2(9)) ds (1.82)

gj
whereg; <ty < 6i,1 andej <t< 9j+1, i <.
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CHAPTER 2

PERIODIC SOLUTIONS IN NONCRITICAL CASE

In this chapter, we investigate the existence and stallitperiodic solutions of
guasilinear system with a retarded piecewise constantragtiof generalized type
and a small parameter in noncritical case, when the cornepg linear ordinary
differential equations have not any nontrivial periodic solutiWe also prove theo-
rems on continuous dependence of solutions with respectitutal condition and a

parameters. An example illustrating the obtained ressiit®nstructed as well.

2.1 Introduction and Preliminaries

The main purpose of this chapter is to apply the method of Ispaabmeter to the

following quasilinear system

X (1) = AX(t) + (1) + ug(t. x(©), x(B(1)), L), (2.1)

wheret € R, x € R", andu is a small parameter belonging to an interdat R with

0 € J; the functionsf(t), g(t, x, y, 4) aren—dimensional vectorsA(t) is ann x n

matrix forn € IN; the argumeng(t) = 6; if 6; <t < 6;.1, ] € Z, is the identification
function. Herepj, | € Z, is a strictly ordered sequence of real numbgs— oo as
il = oo, and there exist two positive real numbeér® such thay < Ojs1—0; < 0, j€

Z.

In [8], it was proposed to investigate fi#irential equations of type (@), that is
EPCAG, using a new method based on the construction of anagutvintegral

equation.
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We combine that method with the method of small paramete6[B&2] to investigate
the problem of the existence of a periodic solution ofL}2n so called non-critical
case, when the corresponding linear homogeneous systenohasy nontrivial pe-

riodic solution.

The following assumptions for Eq. .(® will be needed throughout this chapter:

(H1) FunctionsA(t), f(t) andg(t, X, y, u) are continuous in all of their arguments.

(H2) The functiong(t, x, y, u) satisfies Lipschitz condition with a positive real con-
stantL such that

l9(t, X, ¥, 1) — o(t, X, y, @Il < L[IK= X[+ 11§ =yl

forallteR, X, X, §,ye R", ueJ

This chapter is organized in the following way: In the nexttsm, we consider the
existence and uniqueness of a global solution of the equatiefined on the real
axis. In section three, continuous andfelientiable dependence of the solutions on
an initial values and a parameter is considered. The mauitrefsthis chapter: the
existence of a unique periodic solution of the equationsancnitical case and its
stability are investigated in the last section. Furthemmnan appropriate example is
provided.

2.2 Existence and unigueness of solutions

The following definitions are from [8]. They are similar tao#e in [68—70], adapted
to EPCAG. Let us first consider solutions defined on a half liegifining at some
membem; of the sequenc;}, j € Z.

Definition 2.2.1 We say that a function(® = x(t, 6;, %o, ), X(6)) = Xo, 1 € 7Z for
t>6,uedie’Z,is asolution of the initial value probleif2.1) on[6;, o) if it is a

continuous function satisfying the conditions:

() the derivative Xt) exists for all te [6,, o) with the possible exception of points

0;, j >, j € Z, where one sided derivative exists;
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(i) x(t) satisfies Eq(2.1) for each interval6;, 6;,1), j > .

The following theorem is valid.

Theorem 2.2.1 Suppose that condition@gd1) and (H2) hold. Then, for all ¥ €
R", u € J and i € Z, there exists a unique solutior{txof an initial value problem
(2.1) with x(6;) = Xo in the sense of Definitioa2.1.

Proof: Letus fixxy, € R", i € Z, u € J. To use mathematical induction, let us start
with t € [6;, 6,,1]. The solutionx(t) of Eq. (21) satisfies the ordinary fiierential

equation
¥ (t) = Ay (1) + (1) + pg(t, v (1), Xo, 1), (2.2)
Y(6) = Xo, (2.3)
where the functiong\(t), f(t) andg(t, ¥(t), Xo, u) satisfy the conditions of the classi-

cal existence and uniqueness theorems of Peano and Picatekif. Consequently,

X(t) exists uniquely ond, 6;.4].

Suppose thax(t) is a unique solution of (2) on the interval §;, 6,] for somek €
Z,k>1i+ 1 If te[6b O1], thenx(t) is a solution of the followingV P:

¥ (1) = Aw() + (1) +uat, y(t), X(), w), (2.4)
Y(0) = X(6)- (2.5)

For the same reason as that behind the existence and unsgueinthe solution of
(2.2) and (23), we conclude thax(t) is uniquely defined on this interval, too. There-
fore, there exists a unique solutioqt) of (2.1) fort > 6;, satisfyingx(6;) = X, for

Xo € R". The theorem is proved.

Let X(t) be a fundamental matrix solution of the homogeneous systerresponding
to Eq. (21),

X (t) = A)X(), (2.6)

such thatX(0) = I, wherel is ann x n identity matrix. Denote byX(t, s) =
X(t)X7Y(9), t, s€ R, the transition matrix of (B). Let k = supg [[AR)]| < 0.
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Lemma 2.2.1 [44] Assume (H1) is satisfied. Then, the inequality
IX(t, 9)ll < expllt — s), t, se R, (2.7)

holds.

Lemma 2.2.2 AssumdH1) is satisfied. Then, the inequality
m< [IX(t 9l < M,

where m= exp(«6), M = expd), holds for|t — § < 6.
Proof. Using (27) and the equalityX(t, s)X(s, t) = I, it can be found immediately
that the inequality

IIX(t, 9)I| = expE«lt—9), t, se R, (2.8)
is satisfied. By combining (2) with (2.8), the lemma is proved.]
The following definition is similar to those in [8,68—70] gudad to EPCAG.
Definition 2.2.2 We say that () is a solution of(2.1) on R if it satisfies the condi-
tions:
(i) x(t) is continuous orR;

(i) the derivative Xt) exists for all te R with the possible exception of the points

0;, ] € Z, where one sided derivative exists;
(iif) x(t) satisfies equatio(®.1) for each interval9;, 6;.1), | € Z.

Let us introduce the following two lemmas. We prove only teeand of them, the

proof of the first one is very similar.

Lemma 2.2.3 Suppos€H1) is satisfied. A function(¥ = x(t, to, X0, ), where ¢ is
a real fixed number, is a solution (.1) on R if and only if it is a solution oR of

the following integral equation

X(t) = X(t, to)xo + f X(t, 9)[f(s) + ng(s, x(s), X(B(9)), w)] ds (2.9)

to
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Lemma 2.2.4 Supposd€H1) is satisfied. A function(¥ = x(t, to, %o, ), where ¢ is
a real fixed number, is a solution @2.1) on R if and only if it is a solution orR of

the following integral equation

X(t) = %o + ft [A(9)X(s) + f(s) + 1g(s. X(s), X(B(9)), u)]ds (2.10)

Proof: NecessityAssume thak(t) is a solution of (21) onR. Denote
P(t) = Xo + fto t[A(S)X(S) + £(s) + ng(s x(s), X(8(9)), W)l ds
By straightforward evaluation, we can see that the integtiat®
Supposé # 6, i € Z. Then
¢'(t) = AMXE) + (1) +pg(t, x(1), x(B(1)), p)
and
X0 = AOx®) + (1) + pg(t, x(1), x(B(1), w).
Hence,
[¢() -x(®" = 0.
Calculating the limit values &, i € Z, we find that
¢'(6, £ 0) = A(G; = 0)x(6; = 0) + (6, £ 0) + ug(6; + 0, X(6; = 0), x(B(6; £ 0)), w),
X (6; £ 0) = A6 £ 0)x(6; = 0) + (6, £ 0) + ug(6; = 0, x(6; = 0), x(B(6; +0)), w).
Consequently,
[6(t) = X(O] l=6.+0 = [¢(t) = X(D)]'lt=4,-0-
Thus,(t) — x(t) is a continuously dferentiable function ofR satisfying the equation
[¢(t) - x(®]" =0 (2.11)
with the initial conditiong(tg) — X(tg) = 0. This proves tha#(t) — x(t) = 0 onR.

Syficiency.Suppose that (20) is valid. Fixi € Z and consider the intervad| 6;.1).
If t € (6, 6,1), then by diferentiating (2L0) one can see thait) satisfies (2L).
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Moreover, by considering — 6; + 0, and taking into account thaq3(t)) is a right
continuous function, we find thaft) satisfies (21) on [6;, 6,,1). The lemma is proved.
0

The following simple example shows that while a solution ZfGAG with small
parameter exists in the sense of Definitia@.2, it may not exist in the sense of
Definition 22.2, that is, a solution may exist on a half-axis and not exist @whole

real axis, unless we put some conditions.

Example 2.2.1 Consider the following dierential equation:

X (1) = ax(t) — (B(0). (2.12)

where xe R, t € R, « is a real positive constant, anglt) = 6; if 6; <t < .1, ] €
Z, 651 = 4i — 1, 05 = 4i, i € Z. The distancej,; — 0, | € Z, is either equal to
6 =1ortod = 3. Let us fix ¥ € R. We shall look for conditions oa andu such
that a solution %) = X(t, 6o, Xo, 1), X(6p) = Xo, Xo > 0, of (2.12) exists in the sense
of Definitions2.2.1 and2.2.2.

If « = 0, it is easy to see that the solutiorft)xof (2.12) exists uniquely, and it is

positive and not bounded dh

Suppose: > 0. Let us consider a transformatior(tx = y(t)/u. Using this transfor-
mation, we obtain the following equation frq12)

y (1) = ay(®) - Y(B(0)- (2.13)

Let \(t) = ¥(t, 6o, Yo) be a solution 0{2.13) with y(6p) = Yo, Yo > 0. Denote y =
y(6k), k € Z. We first consider the existence and uniqueness of the solytio Let

us start with te [0y, o), that is, if time is increasing.

If t € [0, 61], then ¥t) is a solution of the equation

y () = ay®) - Yo,

which is a linear nonhomogeneougfdrential equation with a constant cfieient,
that is why the solution(y) is uniquely defined of¥, 61]. The rest can be deduced
from the arguments of mathematical induction. That is, ti@ton yt) and the

corresponding solution(¥) exist uniquely oy, o) in the sense of Definitioa2.1.
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Next, let us consider the solution for decreasing time. Weshdlw that if
a exp(2)

Yo W (2.14)
aexp@) a exp(ay)

exp@) -1 ~ Aexp(@) - 1] &3

aexp(@) _ _aexp@) (2.16)

exp(3) -1 ~ 4[expe)-1]

are satisfied, then the solutiofty= y(t, 6o, Yo) exists on—co, 6o].

Ift € [6_1, 00], then \t) coincides with the solution of the following ordinaryfdren-

tial equation

y(t) = ay(t) - ;. (2.17)

Using the equivalent integral equation @17), it can be written that

VD) = eXple(t — 6-)y-r + T1 — exple(t — B (2.18)

Denote z= y_;. It is easy to see that the solutiorfty exists on[6_;, 6], if the
guadratic equation for,zobtained from(2.18) with t = 6,

B a exp) a
exp@) -1 exp@)-1

Yo =0 (2.19)

has a real root. The last equation has a real root, if ineqya2.14) is valid. Hence,
if inequality (2.14) s valid, then the solution(}) exists or{6_;, 6], but is not neces-

sarily unique.

Suppose inequalit{2.14) is valid. It is easy to check that the roots,zof equation
(2.19) satisfy the inequality

O<z,< a expe)

< o) -1 (2.20)

Denote z=y_,. If t € [0_,, 6_1], one can similarly obtain that the solutiorityexists
on[6_,, 6_4], if the following quadratic equation

a exp(3y) o'
- 1= 2.21
exp(Jy) — 1z+ exp(3y) — 1y 1=0 ( )
has a real root. The last equation has a real root, if
y, < 2exp(@) (2.22)

1= alexp(@) - 1]
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holds. Using inequalitie€.20)and(2.22), it is clear that if inequality(2.15) is valid,
then the solution (f) exists or6_,, 6_4].

Suppose inequalit{2.15) is valid. It is easy to see that the roots,zof equation
(2.21) satisfy the inequality

a exp(3y)
0< Z3 4 < eXp(QQ) 1 (223)
Ift € [6_3, 6_,], we then have a quadratic equation similar(®19), and
Y., < -2eXP(@) (2.24)

Alexp) - 1]
holds. Therefore, the solutiorn(ty exists on[6_s, 6_,]. Finally, using inequalities
(2.16), (2.23)and(2.24) one can see that the solutioft)yexists or6_4, 6_3].

By using the arguments of mathematical induction, we canladedhat if inequali-
ties(2.14) — (2.16) are satisfied, then the solutiofity8o, Yo) exists on(—oo, 6y], but

IS hot necessarily unique.

Consequently, if inequalitig®.15), (2.16) and the inequality
- a exp()

~ Axolexp) - 1T
obtained from(2.14), are satisfied for x > 0, then the solution @) = X(t, 6o, Xo, 1)

0<

(2.25)

exists in the sense of Definiti@R.2. Moreover, if one of inequalitie€.15), (2.16)
or (2.25) is violated, then the solution(ty exists in the sense of Definiti@®.1, but
it does not exist in the sense of Definitiaa.2.

From now on, we need the following assumptions:

(H3) |ul < 1/(2MLO);
(H4) |IMLO[1 + M(L + L|ul6) expMLI|ul6)] < m.

The following theorem provides the existence of a uniquetsm to the left when

the initial moment is an arbitrary real number.

Theorem 2.2.2 Suppose thatH1) — (H4) hold. Then, for all ¥ € R", £ € R, 6, <
& < 6,4, | € Z, there exists a unique solutiodt) = x(t, 6;, Xo, 1) of (2.1) in the sense
of Definition2.2.1 with X(£) = Xo.
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Proof: Existence.Consider a solutiom/(t) = X(t, & Xo, u) With ¢(£) = xo of the

equation
X (1) = A)X(®) + F(t) + ug(t. X(©), 7. 1)
on [@, £].
We need to prove that there is a vecjor R" such that the equation
w(t) = X(t, )% + L | X(t, 9[f(s) + (s, ¥(s), n, p)] ds (2.26)
has a solutiony(t), defined on Q, £, and satisfyings(6;) = n.
Construct a sequendg(t)} c R", k € IN with y(t) = X(t, £)Xo such that
Y (t) = X(, )Xo + L t X(t, 9)[f(s) + ng(s, ¥i(9), Yi(6), wlds ke NN.
By simple calculation, it can be found that
maiifca(t) = YOl < @MLO)'Y,

wherel = MOmaxy, ¢ [If(s) + 1a(s wo(9), wo(6). wll. That is, the sequenag(t)
is convergent, and its limiy(t) satisfies (26) on p,, £] with n = ¥(6,) whenever

lul < 1/(2ML6). The existence is proved.

Uniquenessilt is suficient to check that for eadhe (6, 6i,1], andxy, X, € R", X3 #

Xo, conditionX(t, 6, X1, u) # X(t, 6;, %o, u) is valid.

Let x(t) = x(t, 6;, xq, u) andxy(t) = X(t, 6;, %o, 1) be two solutions of (2) such that
X1 # Xo. Suppose to the contrary that there exists(6;, 6;,1] such thatx,(f) = x,(f).
This implies the equation

X(E 6)(xa - %) = —u fe X(E& 9[g(s xa(9), x1(6), 1) — (s %(9), %a(6h), w)]ds
(2.27)

We have then inequalities
milxz — Xl < [IX(E, 6)) (%2 — %)l (2.28)
and

[1X1(t) = X2(V)I] < MI[x1 = Xl +f9_ ML [u[lIX1(S) — %2(S)I| + 11 — X2l ds (2.29)
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fort e (Qi, 9i+1]-
Hence, by applying Gronwall-Bellman Lemma toZ2), we obtain
IX.(t) = X (Ol < M(L + Lixl6) expMLIl6) 1% — %l

which leads to the inequality

<

H—#L X(E 9[a(s, xa(9), x1(6), 1) — (S X2(S), %2(6), ,U)]d%
KIMLO[L + M(L + Liul6) expMLIlO)]lIx: — Xoll.  (2.30)

Therefore, condition (H4) and inequalitiesZ8), (2.30) contradict (27). The theo-

rem is proved[]

Remark 2.2.1 The last theorem provides us conditiqi3) and (H4), of smallness
for the parametep such that the initial value problem has a unique solutionrobi

on [to, OO)

The following theorem is valid.

Theorem 2.2.3 Suppose thaiH1) — (H4) hold. Then, for al(ty, o) € R x R", there
exists a unique solution(®y of (2.1) in the sense of DefinitioR 2.2 with x(tg) = Xo.

Proof: Fix a momentty, € R. Then, there i3 € Z such thatg, < ty < 6i,1.
By Theorem 2.2, there is a unique solutior(t) = X(t, 6, X', ), X(6;) = X, of
(2.2) with x(tp) = %o. Similarly, by Theorem 2.2, there is a unique solutior(t) =
X(t, i1, X% 1), X(6i-1) = x5t with X(60) = X,. Hence X{to) = X. We can complete

the proof by using mathematical inductidn.

The last theorem is of major importance, since it supplieseto-one correspon-
dence between point{ ) € R x R" and solutions of (), and there is no solution
of (2.1) out of the correspondence. Althoughl(Ris a delay dierential equation, it
has the properties of ordinaryffirential equations. We will make use of this corre-

spondence in the rest of this chapter.
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2.3 Dependence of solutions on initial value and parameter

Let us fixty € R, X € R", anduo € J There exist§ € Z such tha®; < ty < 6;.1.
We denote by . [|; a sup-normjv(é)||; = SURy, 4 [IV(&)]l. The theorem sets continuous
dependence of solutions for.{3 on an initial data. To prove the theorem, we consider

the following assertion.

Lemma 2.3.1 Let \t) be a continuous function fort 6;, satisfying the inequality

VI < 7+ f [8u(9) IV + a0(9) IVE)I] ds (2.31)

wheren > 0 is a real scalar, and gt), a;(t) are nonnegative piecewise continuous

functions. Then,

IVl < neXD(L [as(s) + az(S)]dS), t>0;. (2.32)

Proof: Let us first show that
t
V@ <7 + f [as(9) + ax(9] IME)lsds t > 6, (2.33)
0]
Sinced; < B(s)) < sfor s> 6;, we have that

IVBENI = ;_Utl?llv(ﬂ(f))ll = U(IS] IV < SQUDIIV(f)II = [IV(E)l-

[6j.1]

[0;.8

Hence,
t
VOl < 7+ f [a(S) + ax(9] IV(@)llsds
b
is satisfied.

If IVl = [IV(E)ll: for a givent > 6, then inequality (33) is valid. Suppose that
IVl < [IV(€)Ilk. By definition of sup-norm, there is a moment [6;, t] such that

IVl = V@)l Hence, we have

VDI
nt f [as(9) + ax(SIVE) s ds

V(e

IA

IA

n+ f [as(9) + 2] IVE) s ds
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ast < t. So, (233) is valid. Now, settings(t) = |Iv(€)|l; and applying Gronwall-
Bellman Lemma to

t
vO<n+ [ a9+ a9l ds t20,
b
we complete the proof.]

Let us fix a positive real numbér.

Theorem 2.3.1 SupposéH1) — (H4) are valid. If Xt) = X(t, to, Xo, o) and X(t) =
X(t, to, Xo + AX, up) are solutions of2.1), whereAx is an n-dimensional real vector,
then

1X(£) = x()lle < MIIAX]| exp(duolML(to + T — 6;) (2.34)

is satisfied for all te [to, to + T].

Proof: If t € [to, to + T], then

IX(t) = xOI < X(t, )llAX] + Iﬂolj: X(t, 9)llg(s, X(s), X(B(9)), wo)
—g(S, X(S)’ X(B(S))’ IUO)”dS

Hence,
1X(t) = X(OIl < MIIAX]| + |/,¢0|MLf9t[||>”<(s) = X(9I + 1X(B(s)) — x(B(s))ll]ds
i
Applying Lemma 23.1 to the last inequality, we proved that32) is valid.[]
The diterential dependence of a solution ofl(Pon an initial value is established by

our next theorem. We need the following assumption:

(H5) The functiong(t, x, y, x) has continuous first partial derivatives in all its argu-
mentste R, X, ye R", u e J.

Let us introduce the following equations:

U’(t) = AQU(D) + uo[ A (DU (1) + A()U (BD))], (2.35)
U(to) = I, (2.36)
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whereU € R™" and the functions

) = ot X0 HEO). ). Aelt) = 520 X, XEBO). o

aren x n matrices.

Theorem 2.3.2 Supposé€H1) — (H5) are valid. Lete= (0, ..., 0,1, 0, ..., 0)" be
the n-tuple whose i-th componentlisand all others ared fori = 1, ..., n, andé
a real positive constant. If (@) is the solution 0{2.35) and (2.36) in the sense of
Definition 2.2.2, and Xt) = X(t, to, Xo, to) and Xi(t) = X(t, to, Xo + AX;, uo) are the

solutions of(2.1), whereAx; = 6 is an n-dimensional vector, then
Xi(t) — x(t) — U(t)Ax = o(Ax) (2.37)

is satisfied for all te [to, to + T].

Proof: By the equivalence Lemma24, X(t), x(t) andU(t) satisfy the following

integral equations:

%) = Xt to)(Xo + Ax) +f X(t, 9)[F(s) + 1og(s Xi(s), %i(B(3)), no)lds
X1 = X to)Xo + I X(t, 9)[f(S) + pog(s, X(s), X(B(8)), to)lds
U@ = X(t to) +uo ft X(t, 9[A(5)U(s) + Ax(s)U (B(9))] ds

respectively. An easy computation shows that gf[to, to + T],

%(t) — x(t) — Ut)AX = po f X(t, 9[a(s %(9). % (B(S). o)

to

—9(s. X(9), X(B(9)), Ho) — A(S)U(5)AX — Ax(5)U (B(8))AX]ds
By expandingy(s, X(s). %(B(5)). uo) about & X(s), X(5(s)), uo). we write

a(s. X(9). X(B(3)). mo) = (s, X(3), X(B(S)), to) + Au(9)[X(S) — X(9)]
+AA(S)[%(B(9)) — X(B()] + £(9),

whereé(t) = o(Ax). Hence,

1% (t) — X(t) — UOAX] < £+ |uolM f (1AL 1Xi() — X(5) — U(g)AX|

0

HIA(II1%(B(3)) — x(B(9)) — U(B(s)Axil] ds
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where/ = |ug|M ft:°+T I£(s)llds Consequently, by applying Lemma32l to the last
inequality, we prove that (37) is valid.[]

As a result of the last theorem, we have shown that the iniihle problem (B5)
and (236) is a variation of (4). Moreover, we note that continuous dependence of
solutions of (21) on a parameter follows from Theorem34) and (H5) by adding
the parametex to Eq. (21) as a new dependent variable and requiring i) = O
andu(ty) = 0.

2.4 Existence and stability of the periodic solutions

In this section, we prove the main theorem of this chapter. nd&d the following

assumptions:
(H6) The functiondA(t), f(t) andg(t, x, y, u) arew-periodic int, for some a positive
real numbew.
(H7) The sequenc@;} satisfies and, p)-property, that is¢i., = 6 + w, i € Z, for
some positive integep.
Let us consider the following version of the Poingariterion.
Lemma 2.4.1 Suppose thafH1) — (H4) and (H6), (H7) hold. Then, solution () =
X(t, to, Xo, p) Of (2.1), with X(tp) = Xo, is w-periodic if and only if
X(w) = x(0). (2.38)
Proof. If x(t) is w-periodic, then Eq. (38) is obviously satisfied. Suppose that

Eq. (238) holds. Lety(t) = x(t + w) onR. Then, equation (38) can be written as
y(0) = x(0). One can show tha(t + w) = B(t) + w. Hence,

y@t) = X(t+w)
Alt + W)Xt + w) + Tt + w) + ug(t + w, Xt + w), XB(t + w)), w)

ADY() + F(t) + ug(t, y(O). YBO). w)-
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That is,y(t) is a solution of (21). By uniqueness of the solutior(t) = y(t) onR. The

lemma is provedl]

The following theorem is a generalization of a classicabtkeen originally due to
Poincae [72] for EPCAG.

Theorem 2.4.1 Assume thatH1) — (H7) hold, and
X (t) = A(t)x(t) (2.39)

has no nontrivial periodic solution with perio@. Then, for sgficiently smallu|,
equation(2.1) has a uniquew-periodic solution, which tends to the unique periodic

solution with periodw of
X (t) = A{)x(t) + (1), (2.40)

asu — 0.

Proof: Let x(t, £, 1) be a solution of equation (), satisfying the initial condition
X(0, £, u) = £, and letxg(t) = x(t, £o, 0) be a unique periodic solution of periad
of equation (20). To show, using Lemma.2.1, that for a stficiently smallu the
w-periodic solutiorx(t, ¢, u) exists, it is necessary andfBaient that the equation

X(a)’ 47 ,Ll) - Z; =0 (241)

be solvable with respect to

Let P(Z, u) = X(w, £, u) — . In order to apply the implicit function theorem, we will

show that the determinant &'({o, 0) exists and is dierent from zero.

LetZ(t, Z, u) = (0%/94), 1, k=1, ..., n. Differentiating equation (2) with respect
to Z, we can see tha(t, Jy, 0) is the fundamental matrix of equation3Q). On the
other handP,’ (¢, 0) = detZ(w, &, 0) — I) and, since the eigenvalues of the matrix
Z(w, {o, 0) are diferent from unity, it follows thaP, ({o, 0) # 0. Therefore, in a
suficiently small neighborhood of the point, (&), equation (21) is solvable with
respect ta. The existence and uniqueness ofaperiodic solution are proved. The
fact that the solutiorx(t, £, u) tends toxy(t), whenu — 0, follows from Theorem

2.3.1. The theorem is proved.l
Let us demonstrate the last theorem by applying it to thefoig example.
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Example 2.4.1 Consider the following system of EPCAG

a y sin(rt)
X(t) = X(t) + +pg(t, X(1), X(3(1), w), (2.42)
-y « coqnt)

where xe€ R, @ # 0,y,u > 0,8(t) = 6, if 6 <t < 6,1,1 € Z, with 6, =
i +(=1)/3,i € Z; g(t, X, y, u) is a2-periodic in t continuous function, having con-
tinuous first partials in all of its arguments, and satistyibipschitz continuity with a

constant L that is,

lo(t, X1, Y1, 1) = O(t, X2, Yo, )l < L[IIX2 = Xoll + [ly1 = Yoll] ,

where X, y1, X, Y» € R? One can see that the sequenég fulfills 6,., = 6; + 2 for

alli € Z. By fixing a sificiently smallju| satisfying the inequalities

lul < 1/(2ML6),

WIMLO[L + M(L + L|ul6) expMLIul6)] < m,
whered = 5/3, k = yJa? +y2, m= e/ and M = €*/3, we conclude that assump-
tions (H1) — (H7) are fulfilled. Therefore, through every poith, ¢) of R3, there

passes exactly one solutioft,xu) = X(t, to, £, u), X(to, 1) = £ of (2.42) in the sense
of Definition2.2.2.

The monodromy matrix ¢R.42)is

€2 cos(2y) €*sin(2y)
X(2) =

b

—e2sin(2y) € cos(2y)

and it has no unit multiplier forr # 0. Hence, there is a uniqu2-periodic solution

a vy sin(nt)
X(t) = X(t) + )
[ -y « ] [ coqnt) ]

with the initial value

02 sin(rs)
Xo(6o) = (I = X(2))™* f X(92—S)[ i ]ds

bo coqrns)

Xo(t) of the system

Therefore, by Theorer24.1, there is a unique-periodic solution &, ) of (2.42),
satisfying Xt, u) — Xo(t) asu — O.
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Definition 2.4.1 The solution &, Xo) = X(t, to, X0, 1), X(tg, Xo) = Xo Of (2.1) is said
to be uniformly stable if for every > 0, there exists a numbere R, § = 6(e) > 0
such that|xg — Xoll < ¢ implies||x(t, Xo) — X(t, Xo)|| < € for every t> tq.

Definition 2.4.2 The solution &, Xp) = X(t, to, X0, 1), X(tg, Xo) = Xo Of (2.1) is said
to be uniformly asymptotically stable if it is uniformly bta and there is a real num-
ber b > 0 such that for every > 0 there exists T¢) > 0 such that/|X; — Xo|| < b
implies thati|x(t, Xo) — X(t, )|l < £ ift > to + T(2).

Theorem 2.4.2 Suppose thgH1) — (H7) hold. Let Xt) = x(t, to, X0, ) be a solution

of (2.1). If all the characteristic multipliers of the equation
X (t) = A(t)x(t) (2.43)

are less than unity in modulus, then forfatiently smalllu|, the solution &) is uni-

formly asymptotically stable.

Proof. Let u(t) be a solution of (2) with the initial conditionu(ty) = X, + 1. Let us

definez(t) = u(t) — x(t). Since all the multipliers are less than unity in modulus,
IX(t, 9)ll < Kexp(-a(t-9)), s<t,

whereK anda are positive constants. By using the equivalence Lemia8,2one

can find that
Iz < [IX(, to)llllnll + ft IX(E, Illligls, X(s) + z(s), x(B(s)) + z(B(9)), 1)
—d(s x(s), x(6(9), wllds

and

IZ(O)Il < K expa(t — to))linll +f expa(t — 9)lulKL[IZ(s)Il + [1z(B(s))ll]ds

o

Then,

t
expEOI0)] < K exp@toll + | expas) WIKLIAS + I2F()ds
0
Applying Lemma 23.1 to the last inequality, we have
izl < Kexp([-a + 2ulKL](t - 6;))linll

Therefore, forlu| < a/(2KL), the solutionx(t) is uniformly asymptotically stable.

The theorem is proved.]

45



CHAPTER 3

PERIODIC SOLUTIONS IN CRITICAL CASE

In this chapter, conditions are found for the existence oibpkc solutions for forced
weakly nonlinear ordinary étierential equations with alternately advanced-retarded
piecewise constant argument of generalized type. The ass@ase is studied, that
is, when the unperturbed linear ordinarytdrential equation has a nontrivial periodic
solution. The dependence of solutions on initial valuesgardmeters is also studied.

3.1 Introduction

The problem of the existence of periodic solutions is onehef ihost interesting
topics for applications. Poincaf72] introduced the method of small parameter to
investigate the problem and it has been developed by mahg@usee, for example,
[58, 73], and the references cited therein) and this metbodhins as one of the most
effective methods for this problem. It is important that theuhssobtained in this

field can be extended to the bifurcation theory [22, 61].

Fix two real-valued sequenceés ¢, i € Z, such tha¥, < 6;,1, 6; < { < 6,4 for all

i €7, |6i| = oo asli| — oo.

In this chapter we shall consider the following equation

Z(t) = A(z(t) + f(1) + pg(t, z(t), Z(¥(1)). p), 3.1
wherez € R",t € R, u € J c R, whereJ is an open interval containing @nd
’)/(t) = (i, ifte [Qi, 0i+1)’ i €Z.

The following assumptions will be needed throughout theptdra
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CHA:R->R™ f:R—- R"'andg: RxR"x R"x J — R" are continuous

functions.

(C2) The functiong(t, x, y, u) satisfies Lipschitz continuity in the second and third

arguments with a positive Lipschitz constanguch that

I9(t, X1, Y1, 1) = O(t, X2, Y2, Il < L(IIX1 = Xall + [ly1 — Yall)
forallte R, u € Jandxy, Xp, Y1, Y2 € R".
(C3) The matrixA is uniformly bounded ofR.
(C4) There exists a numbeér> 0 such that,,; — 6 < 6, i € Z.

(C5) There exists a numbér> 0 such that,; — 6, > 6, i € Z.

In [8, 10], it was proposed to investigatefferential equations of type (B, that
is, the diferential equations with piecewise constant argument oéigdized type
(EPCAG). Moreover, a new method based on the construction efjaivalent inte-

gral equation was used.

We combine that method with the method of small paramete6[582] to investigate
the problem of the existence of periodic solutions of EqLY8 the so called critical
case, when the corresponding linear homogeneous systeitsadmtrivial periodic

solutions.

This chapter is organized in the following way. In the nexttsm, we give known
definitions and results that will be needed further. Sedtiwee considers continuous
and diferentiable dependence of solutions on the initial valuethegharameter. The
main result of the chapter: the existence of periodic sohgtiof Eq. (31) is discussed
in section four. Appropriate examples are given to illustrdne theory in the last

section.

3.2 Preliminaries

In this section, we shall introduce some definitions and lasim
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Definition 3.2.1 [10] A continuous function(®) is a solution of Eq(3.1) onR if:
(i) The derivative '4t) exists at each point &€ R with the possible exception of the
pointsé,, i € Z, where the one-sided derivatives exist.

(i) The equation is satisfied fo(tzon each interva(é;, 6,,1), | € Z, and it holds for
the right derivative of @) at the point®),, i € Z.

The following lemmas of this section are similar to the asses from [10]. That is
why, we provide them without proof.

Let X(t) be the fundamental matrix solution of the homogeneou®systorrespond-
ing to Eq. (31),

X (1) = A(D)X(), t € R, (3.2)

such thaX(0) = I, wherel is annxnidentity matrix. Denote by(t, s) = X(t)X(s),

t, s e R the transition matrix.
Let us now define the solutions of quasilinear systerh)(3
Lemma 3.2.1 Suppose thaiC1)is satisfied. A function(®) = z(t, to, 2o, ), where §

is a fixed real number, is a solution (8.1) in the sense of Definitio&2.1 if and only

if it is a solution, onR, of the following integral equation

A1) = X(t, to)zo + f X(t, 9)[f(s) + ua(s, «s), z(y(9), plds (3.3)

to

Denotex = sup||A(t)|| < 0. For the transition matrixX(t, s), one can obtain the

teR
following inequality [8, 44]:
m<[IX(t, s)ll < M, (3.4)
wherem = exp(«#) andM = exp®), if t, s € [6;, 6i,1] for all i € Z.

From now on we make the following assumption:

_ , - 1+ [u|MLO exp(|uIML)
(C6) QuMLO <1,  |u/M2LO _
1 - [ulML& exp(|juIML)

+ exp(l,u|ML§)} <m.
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Lemma 3.2.2 [10] Assume that condition1)— (C6) are fulfilled. Then for fixed
i € Z and every(¢, 2o) € [6;, 6i11] X R" there exists unique solutiolfty = z(t, &, z, )
of Eq.(3.1) on[#;, 6i,4].

From Lemma 2.2, one can obtain the following assertion.

Lemma 3.2.3 [10] Assume that condition€1) — (C6) are fulfilled. Then for every
(to, 20) € R x R" there exists a unique solutioftg= z(t, to, zy, u) of EqQ. (3.1) in the
sense of DefinitioB.2.1 such that @#,) = z,.

3.3 Dependence of the solutions on initial value and paramet

Letus fixty € R, zy € R"andu, € J There existg € Z suchthat; < t; < 6;,1. Letus
denote by .|| a max-norm||v||; = frer[ﬁ)é IIv(£)]]. Define a functiony(t) = maxt, y(t)}.
The next theorem proves continuous dependence of solutio(®&1) on an initial
valuez,. To prove the theorems, we use the following assertion, wisieimalogue of

Gronwall-Bellman Lemma.

Lemma 3.3.1 Let Uut) be continuousy,(t) andn,(t) nonnegative piecewise continu-
ous scalar functions defined foptd;. Suppose that is a nonnegative real constant

and that (t) satisfies the inequality
t
(Ol < o + f (91U + 72(9) UGS ds (3.5)
0;
fort > 6;. Then the inequality
(1)
il < aexp( [t + nato ds) (3.6)
0

is satisfied for & 6;.

Proof: Let us first show that

(1)
lull, @ < @+ f [171(8) + 72(9)]llullys S t > 6. (3.7)
b

As x(t) > 6, using (35), we have

()
UGl < o + fe [71(3) lu(S)Il + 72(3) llu(y(S)l] ds (3.8)

i
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Sinced; < y(s) < x(s) for all s> 6;, we have that

lu()llye = max |ju Il = max [[u@)ll < max [Ju@)Il = [lullys)-
Ol [65.x(9] ) (9] ©) [0 x(3)] ©) i)

Hence, using (B), the inequality

(t)
U < @ + f [11(9) + na(Nlulls ds

is satisfied.

If [JuGyM)II = Ilull,q is satisfied for a givert > 6;, then inequality (37) follows.
Suppose thatu(x(t))ll < [lull, holds. One can see that by the definition of max-
norm, there is a momen [6;, x(t)] such thatull,« = llu(®)ll.

Then, using (%), we have
o = M@
o+ f [73(9) U + 72(9) U1 ds

IA

IA

()
- f [7(9) + 12(9)]lully 9 IS
0;

w (t)
< o+ f [71(9) + 72(9lullyg ds
0

asy(f) < x(t). Hence, inequality (3) is valid. Now, set the functiofiull, = ¥(9),
and note tha/(s) = ¥(x(9)).

Thus we have the inequality

(1)
W®) <a+ f [7a() + 7(9W(x(9) ds

Applying Gronwall-Bellman Lemma to the last inequality, wengplete the proofl]

Let us fix a numbell > 0. Now, we set continuous dependence of solutions df)(3

on an initial valuezy by the following theorem.

Theorem 3.3.1 Suppose thgC1) — (C6)are valid. If Zt) = z(t, to, Yo, o) andZ(t) =
Z(t, to, 0+ Az uo) are the solutions of E((3.1), whereAz is an n-dimensional vector,

then the inequality

I12€) - 2&)llyy < MIIAZ exp(2uolML(x(to + T) — ;) (3.9)

is satisfied for t [to, to + T].
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The last theorem can be proved by applying Lemn8&13The diferential depen-
dence of a solution of Eq. (B) on an initial value is established by our next theorem,

which requires the following assumption:

(C7) a(t, x, y, u) has continuous first partial derivatives in all of its argntst €
R, X, yeR", ueld

Let us introduce the following equations

U’ (1) = AU(L) + po[ A (DU (1) + A()U (y (D)1, (3.10)
U(to) = I, (3.11)

whereU € R™" and the functions

M) = ot 20, 20O, ). Aalt) = S0 ). 2O o

aren x n matrices.

Theorem 3.3.2 Suppose thaiC1) — (C7)are valid. Lete= (0, ..., 0, 1,0, ..., 0)"
be the n-tuple whose i-th componentliand all others ared fori = 1, ..., n, and
¢ a real positive constant. If ({) is a solution 0f(3.10) and (3.11) on R, and Zt) =
Zt, to, 2o, no) andz(t) = 1, to, zo + Az, uo) are solutions of Eq(3.1), whereAz =

06 is an n-dimensional vector in the sense of DefiniBdhl, then
Z(t) — zt) - U()Az = o(Az) (3.12)

is satisfied on a sectiond [to, to + T], T > 0.

Proof: By Lemma 32.1, the functionsz(t), z(t) andU (t) satisfy the following inte-

gral equations:

z(t) = X, to)(zo + Az) +ft X(t, 9[F(s) + no9(s, z(9), Z(¥(9), no)l ds
Zt) = X to)zo + ft X(t, 9[F(s) +no9(s, A9), Z(¥(9)), no)l ds
U@ = X(t to) + o I X(t, 9)[A(U(s) + Ax(s)U (¥(9))] ds
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respectively. An easy computation shows that df[ty, to + T], we have

7(t) - 2(t) - U)AZ = o f X(t. 9[9(s %(9). Z((9). o)
(s, Z9). Z/(9). o)~ AU(AZ — Ay(JU((9)Az] ds

By expandingy(s, z;(s), Zj(y¥(s)), no) about the points, z(s), z(y(s)), uo), we write

a(s. Z(9), Z(¥(9)), mo) = (s, Z3), Z¥(9)). wo) + Au(S)[Z(S) — Z(3)]
+A2(9)[Z(¥(9)) — Z¥(9))] + £(9),

whereé(s) = 0o(Az). Hence, the inequality

1Z(t) — z(t) - U(DAZ]| < £ + |uolM t [1AL(91Z(s) — Z(s) — U(s)AZ]|
+HIA(S)IHIZ (v (9)) — Z¥(9)) - U(¥(9))Azll] ds

where? = |uo|M ftt°+T

0

the last inequality, we prove that.(2) is true.lJ

I€(s)llds is valid. Consequently, by applying Lemma&3 to

As a result of the last theorem, we have shown that the iniilale problem (3.0) and
(3.11) is a variation of equation (B). Moreover, we note that continuous dependence
of solutions of (31) on a parameter follows from Theorem33) and (C7) by adding
the parameter to Eq. (31) as a new dependent variable and requiring )t = 0
andu(to) = 0.

3.4 Existence of the periodic solutions

In this section, we prove the main result of this chapter.usantroduce the following

assumptions:
(C8) The functiondA(t), f(t) andg(t, x, y, u) are periodic it with a fixed positive
real periodw.

(C9) The sequences and (i, i € Z, satisfy an {, p)-property, that is there is a
positive integerp such that the equatiorts,, = 6, + w andi.p, = & + w hold
foralli € Z.

We consider the following version of Poinéacriterion.

52



Lemma 3.4.1 Suppose tha{C1)— (C6), (C8) and (C9) hold. Then, the solution
Z(t) = Z(t, to, Xo, 1) Of EQ.(3.1), is w-periodic if and only if

Z(w) = Z(0). (3.13)
Proof. If z(t) is w-periodic, then Eq. (33) is obviously satisfied. Suppose Eq.
(3.13) holds. Lety(t) = z(t + w) onR. Then, Eg. (3L3) can be written ag0) = z(0).

One can show that(t + w) = y(t) + w for all t € R. Hence,

y(®

Z(t + w)

Alt + w)z(t + w) + Tt + w) + ug(t + w, Z(t + w), Z(y(t + w)), p)
ADY() + (1) + pg(t, y(1), y(x(1), w).

That is, y(t) is a solution of Eq. (). By the uniqueness of the solution, we have
Z(t) = y(t) onR. The lemma is proved.]

In the previous chapter, we considered the noncritical .cis®v, we suppose that
the homogeneous equation, corresponding to EdL),(Bas a nontriviaku-periodic

solution.

Letg;, j =1, ..., k k < n, be the solutions of Eq. (3), which form a maximal set
of linearly independenb-periodic solutions. Then, the corresponding adjointesyst
of (3.2),

X (t) = —AT(t)x(t), (3.14)
has a maximal set of linearly independenperiodic solutionsy, j =1, ..., k.
We compose an x k matrix Ki(t), whose columns are solutiogig, j =1, ..., k.

Let us introduce the following condition:
(ClO)f K{(9)f(s)ds=0.
0

Theorem 3.4.1 [58, 73] Suppose thafC1)— (C3), (C8) and (C10) hold. Then, if
Eq. (3.2) admits k< n linearly independent-periodic solutions, then there exists a

family of k linearly independent-periodic solutions of the equation
Z(t) = A{t)z(t) + f(1), (3.15)
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of the form &, @) = a101(t) + ... + axdk(t) + Z(t), wherea = (ay, ..., a) is a real

constant vector ani(t) is a particularw-periodic solution of Eq(3.15).

Now let us investigate the question of existence of periediations of (31). The next
theorem is a generalization of a classical theorem due t&iME88] for EPCAG.

Theorem 3.4.2 Suppose thatC1) - (C10) hold and Eq. (3.15) admits a family of
w-periodic solutions @&, «). Lete® be a solution of the equatior(d) = 0, where the

function h is given by

h(a) = f KI(9Y(s s ). 2(9). @), 0)ds (3.16)

such that
oh
det((ﬂ a:ao) # 0.

Then for s@iciently smallu| Eq. (3.1) has anw-periodic solution that converges to

Z(t, a®) whenu — 0.

Proof. Let z(t) be a solution of () and let us complete the matt (t) by columns
¥i, ] = k+ 1, ..., n, which are solutions of (34) to obtain a fundamental matrix
of solutionsK (t). Performing the substitutiop(t) = KT(0)z(t) in (3.1), we obtain the

equation
y(®) = POY®) + r() + uF (€ yO, YO (1), p), (3.17)
where
P(t) = KT(0)AMKT (0™, r(t) = KT(0)f (1),
F(t y(0), y(r (). 1) = KT(0)g(t, KT(0)™ (1), KT(0)*2(y(1)), ).

Denotey(t, @) = KT(0)zt, @), B = (Bys, --.» Bn) and letv(t) = y(t, a, B) be a
solution of (317) with the initial conditionv(0) = y(0, @) + (0, B)". Further, let
L(t) = K HO)K(t), Li(t) = K X(0)Ky(t), Ly(t) be the matrix composed of the en-
tries of the lash—k columns anch— k rows of the matrix_(t), andLs(t) be the matrix

composed of the last— k rows of LT (t). Denote

fo " LIOF(s V(9 v(9). ds

U(a, B, )

V(a, B, 1) (L3 (@)~ B~ u fo La(s)F (s V(s), V(x(9)), p)ds
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Then thew-periodicity condition for the solutior(t) takes on the form of the equa-

tions
U(e, B, 1) = O, (3.18)
V(a, B, u) = 0. (3.19)
If, in (3.19), takingu = 0, we obtaing = 0, and then Eq. (38) has the form
U@ 0.0)= [ LI9F(s U a). (9. a). O)ds=0 (3.20)
Leta® = (), ..., a}) be a solution of (R0). Since the functiorU has continuous
partial derivatives with respect tg;, j = 1, ..., k, in a suficiently small neighbor-

hood of the pointdyo, O, 0), it follows that under the assumption
Y )
a=a®

det( —
the system of equations.(®) and (319) is solvable with respect @ andg so that

oa

the functionsaj(u) andgs(u), j = 1, ...,k s = k+ 1, ..., nare continuous and
@j(u) = af. s(u) — 0 asu — 0.

Thus, we establish that for Siciently small|u|, system (3L) admits anw-periodic
solution, which converges to the solutiafh, ) of (3.15) asu — 0. The theorem is
proved.J

3.5 lllustrative examples

We will introduce appropriate examples in this section. Sehexamples will show
the feasibility of our theory. The equations of fing type are widely investigated in
the field of nonlinear dynamics, and used to model many peasei®t mechanics and

electronics [40, 65]. We construct the examples withidg equations below.

Example 3.5.1 Let us consider the following EPCAG

q'(t) = —q(t) + 3 sirf(t) + (q(t) i q (27r [”7”]) cost) . (3.21)

The form of the perturbation of the last equation is chosebddinear since the
simulation of the solutions for the equation with advanced eatarded argument is

difficult in nonlinear case.
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We write the last equation in the system form

Z(t) = 01 Z(t) + 0 + 0 (3.22)
110 3sift | 21(t) + z(2r[22]) cost |’ '

Let us slightly generalize it as the following system

]+ [ az(2r[Z]) sint + b z(t)

J, (3.23)
czi(t) + d z(27[4Z]) cost

where a b, ¢ and d are real constants.

One can see that Eq3.22) is a particular case 0{3.23)whena=0,b=0,c =1,
andd= 1.

If u =0, EqQ. (3.23) takes the form

01 0
Z(t) = 2+ | (3.24)
[—1 o] [3aﬁt)

It is easy to findr-periodic solutionsy;, j =1, 2, as

cost sint
—sint cost

of the adjoint system of the last equation. Then, cond{i@t0)can be verified

27 coss —sins 0
f _ _ ds
o | sins coss || 3sits

0.

21
f K{(9)f(s)ds
0

Hence, the family a2r-periodic solutions 0{3.24)is given by

2

_ | (3.25)
—aq Sint + ax cost — sin 2

At, o) = [

@1 oSt + ap sint + 3 + %2 )

whereas, a, € R are parameters.
Next, let us show that E§3.23) has a2r-periodic solution.
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The function fw) in TheorenB.4.2 can be evaluated as

h()

21
fo KI(99(s. Zs. @), Z(9). @). 0)ds

B fz’f coss -sins |[ az(2r[3Z], a)sins+bz(s a) ds
0 sins  coss || ca(s a)+dz(21[ 7], a) coss

~ fz’f —CaySif s+ baycogs ]ds
0

(a(a1 + 2) — bay) sir’ s+ (Cay + day) cog s

(b - C)a,
m((@— b+ C)ay + day +2a) |

Suppose that = ¢ and a# b — c. By straight forward calculation one can see that

the zero of the equation(d) = 0is a® = (=2-, 0), and the determinant is

a-b+c’

) [ 0 (b - c) ]
= det
a=a® n(@a-b+c) d

-m*(b-c)(a-b+¢)
# 0.

oh
det( a—a

Hence, using Theore4.2, we can conclude that for giciently smalllu| equation
(3.23) has a2r-periodic solution and this solution tends tfi,zx°) asu — 0. Since
we know that the initial value of the solution is close to thigahvalue of the periodic
solution of equatiorf3.24), and there is continuous dependence on parametene

can make the following simulations with identical initial da{0) = (2, 0)". They

can be seen from Fid.1, where the solid lines are graphs of the periodic solution of

equation(3.24), and graphs of two coordinates of the periodic solution of eigpma

(3.23) are near the dashed lines.

Example 3.5.2 Let us consider another example when the perturbation isimeat.
In this case, we can not provide a numerical simulation, butaveshow the existence

of periodic solutions following the result of this chapter.

Consider the equation

Z(t) = 01 Z(t) + c_) +u a(rlZED*sint+ (0 ) (3.26)
-1 0 3sirft 271(t) + z(2n[%Z])? cost
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,+— H=0.15

Figure 3.1: Simulation of the periodic solution 0fZ3) (solid) and the solution of
(3.23) (dashed) which is near the periodic solution of the pbed system ifa =
0,b =0,c =1, d = 1, with identical initial data,z(0) = (2, 0)". In (a) the first
coordinates are shown, and second coordinates of the@wwdie given in (b).

Similar to the previous example, one can see that condi{iGf$— (C10) hold. The

functionh(a) can be evaluated as

h(a)

21
fo KI(99(s s a). 2(9). @), 0)ds

~ fzﬂ COoSS —sins)[ z(27[ %21, a)?sins+ zy(s, @) ]ds
0

sins  coss || 2z(s @) + z(2r[ 5], @)? coss

fZ” —2a,SiIf s+ a,Ccogs ds
o | ((@1+20-ay)sis+(2a; +a?)coss

-T2
m((ar + 2 + a1 + a3 .
Then, the zeros of the equatitie) = 0 area® = (-1, 0) ande? = (-4, 0). By
straightforward calculation one can see that the detemmina

det( a—h

0,i=12
aaa_ai) * 9| 9
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Hence, using Theorem42, we conclude that for gficiently small|u| Eq. (326)
has two Z-periodic solutions and these solutions tend(toa?) andz(t, a?), respec-

tively, asu — 0.
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CHAPTER 4

DIFFERENTIAL EQUATIONS WITH STATE-DEPENDENT
PIECEWISE CONSTANT ARGUMENT

4.1 Introduction

In this chapter we generalize the mentioned equations wiqure chapters to a new
type of systems. They areftbrential equations with state-dependent piecewise con-
stant argument (ESPA), where intervals of constancy of nidependent argument
are not prescribed and they depend on the present state ofienmdhe method
of analysis for equations was initiated in [7-11]. We arefant that introduc-
tion of these equations will provide new opportunities fog tievelopment of theory
of differential equations and for applications [29, 32, 42, 54-8fe must say that
present results use the rich experience accumulated f@anaigal systems with dis-
continuities [36, 37,53, 60,67, 74, 78] and strongly inficesh by theoretical concepts
developed for dterent type of equations with discontinuities [5, 6, 18, 19ince
the systems are to be introduced have a complicated steuc¢hey involve variable,
state dependent delays, and discontinuities of the arguraalized on certain sur-
faces, we call thensonstancy switching surfacethis chapter consists of two main
parts. In Section 4.2 we introduce the most general, for thegnt time, form of the
equations. Basic properties of ordinanffdrential equations, constancy switching
surfaces are defined, which give a start of investigatiore Qfrthem is calleexten-
sion property The definition of solutions is given. In the rest part of thenuascript
we realize the general concepts for a particular type of #apus namely, quasilin-
ear systems. Existence and uniqueness theorem, penpdiad stability of the zero

solution are discussed.
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4.2 Generalities

Let7 = (aab) c RandA = {p,p+ 1, ...,r} € Z be nonempty intervals of
real numbers, and integers, correspondingly. &et R" be an open connected
region. Denote byC(G, 7) andC(g, 1) the set of all continuous and continuously
differentiable functions frong to 7, respectively. Fix a sequence of real valued
functions{r;(X)} c C(G, I), wherei € A.

We introduce the following assumption.

(A1) There exist two positive real numbersindé such tha¥ < 7i,1(X) — 7i(y) < 6

forall x, ye G andi € A.

Set the surfaceS; = {(t, X) e T X G : t = 1i(X)}, 1 € A, in I x G, and define the
regionsD; = {(t, X) e I X G : 7i(X) <t < 1,1(X)}, 1 € A,andD, ={(t, ) € I X G :
7(X) < t}if maxA = r < c. Because of (Al), one can see thats, i € A are
nonempty disjoint sets.

We consider the equation

DO = 10 x0. 6. 0. (4.1)

wheret € 7, x € G, andp(t, X) is a functional such that ik(t) : 7 —» Gis a
continuous function, and,(x(t)) € D; for somei € A, thenp(t, X) = n;, wheren;
satisfies the equation= 7;(x(n)). From the description made for role of functiong
implies that one can call surfaces 7;(x) asconstancy switching surfacesnce the
solution’s piecewise constant argument changes its vdltieeamoment of meeting

one of the surfaces.

We call system (4) asa system of gferential equations with state-dependent piece-

wise constant argument, ESPA.

Let us define the following conditions, which are necessadetine a solution of Eq.
(4.1)on7.

(A2) Foragiventy, X) € I X G, there is an integej € A such that, > 7j(Xp), and
j = Kif tg > 1¢(X0), k € A.
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One can see that the functiorg(t, x) < tforallt € 7, x € G. Indeed, to define

system (41), the point {, X) must be inD; for somej € A.

Consider the ordinary fierential equation

dyt) _
gt = TEy(), 2), (4.2)

wherezis a constant vector ig.

We impose the following assumption.

(BO) For a giventp, xo) € I x G, solutiony(t) = y(t, ty, Xo) of Eq. (42) exists and
is unique in any interval of existence, and it has an open malxinterval of
existence such that any limit point of the sety(t)), ast tends to the endpoints

of the maximal interval of existence, is a boundary poinf of G.

Let us remind that condition (BO) is valid, if, for exampleetlunctionf is continuous

in t, and satisfies the local Lipschitz conditionyin

We shall need the following conditions:

(A3) for a given {o, X0) € I x G satisfying (A2), there exists a solutiofft) =
y(t, to, Xo) of EQ. (42) such thaty; = 7;(y(;)) for somen; < to;

(A4) for eachz € G andj € A solutiony(t, 7j(2), 2) of Eq. (42) does not meet the
surfaceS; if t > 7{(2).

(A5) foragiven {o, Xo) € 7 x G belonging tdS;, j € A, there exist a surfacg;_; c
I x G, a solutiony(t) = y(t, to, Xo) of Eq. (42) such thatyj_1 = 7j_1(Y(1j-1))
for somen;_1 < to.

If a point (o, Xo) € I x G satisfies (A2) and (A3), then we say that this point has
extension property.

Fix (tg, Xo) € 7 x G. Assume that it has extension property. We consider the gnobl
of global existence of solutior(t) = x(t, tg, Xo) of (4.1).

Let us investigate the problem for increasinghe point ¢, Xo) is either inS;, or

there is a balB((to, Xo); €) ¢ D; for some real number> 0, andj € A. The solution
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Figure 4.1: A solution of dferential equations with state-dependent argument.

X(t) is defined on an intervah|, to], n; < to by extension property, and satisfies the

initial value problem (IVP)

y'®) = f(t, y(©), y(m)),
y(mi) = X(mi)s (4.3)

such thaty; = 7i(x(n;)) fori = | (see Fig. 41). By using (A4) and (BO), there
exists a solutiony(t) = ¥(t, n;, X(n7;)) of (4.3) defined on the right maximal interval
of existence,tp, B). If y(t) does not interse@;. 4, or the constancy switching surface
Sj.1 does not exist, then the right maximal intervakd is [to, ), 8 > to. Otherwise,
there is som& e I such thatty < ¢ < 8, and¢ = 1j.1(¢(¢)). Then by denoting
ni+1 = &, we define the solutiox(t) asy(t) on [to, n;.1]. Now, one can apply the

above discussion fotd, Xo) to the point .1, X(17;+1)).

Proceeding in this way, we shall come either to the case wiresoinek € A, k > |,
solutiony(t) = ¥(t, n, X(n¢)) has a right maximal intervahjf, v) and this solution
does not meeby, 1, and thenty, y), y > nx, is the right maximal interval of existence

of x(t). If there is no sucltk, then eitherx(t) is continuable tot+co if the setA is
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unbounded from above, or the solution achieves the pgintx(n,)), n, = 7.(X(1;))
and thenx(t) has the right maximal intervatd, «), k > n, where |, «) is the right

maximal interval of solutiony(t) of Eq. (43) fori =r.

On the basis of the above discussion we can conclude thateihgon property for
(to, Xo) and conditions (A4) and (B0) are valid, then solutiity ty, Xo) of Eq. (41)

has a right maximal interval of existence, and it is open ftharight.

Now consider decreasintg Assume, again, thaty( X,) satisfies extension property.
Let us consider first fort§, Xo) € S;. If condition (A5) is not valid, then the solution
X(t, to, Xo) does not exist for < t,. Otherwise, itis continuable tp_; such thai;_; =
7j-1(X(7;-1)), and satisfies Eq. (8) fori = j — 1. Then, again, as fom(, x(i7;)), we
may make the same discussion for the paifti( X(17;-1)). Finally, we may conclude
that either there existg, k < j such that the left maximal interval o{t) is [rx, to]
(Itis true also if there existe = min A), or the solution is continuable teco. Let us
now consider the case whetg, (X) is an interior point oD}, and satisfies extension
property. Then, it is continuable to the left #8l;, and then, we can repeat the above
made discussion. So, we can make a conclusion that the ledhmahinterval of
existence ofx(t) is either a closed intervakli, to], k € A, or an infinite interval
(=00, tog]. By combining the left and right maximal intervals, we define Holution

X(t) on the maximal interval of existence.

Now, we can introduce the definition of a solution ofl(#

Definition 4.2.1 A function Xt) is said to be a solution of Eq(4.1) on an interval
g CTIif:
(i) itis continuous ony7,

(i) the derivative Xt) exists at each point¢ 7 with the possible exception of the
pointsn;, i1 € A, for which the equatiol = 7;(x(n)) is satisfied, where the one

sided derivatives exist.

(ii) the function k) satisfies Eq(4.1) on each interva(ni, 1i;1), | € A, and it holds
for the right derivative of §&) at the pointsy;.
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4.3 Quasilinear systems

In this section, we investigate the existence and uniquesiesolutions of quasilinear
ESPA.

Let7 =R, G = R"andA = Z. Fix a sequence of real numbéég c R such that; <
;.1 for alli € Z. Take a sequence of functio&igx) € C(R", R). Setri(X) = 6, + &(X).
Define the constancy switching surfads= {(t, X) e RxR" : t =6, + &(X)}, | € Z,
and the region®; = {(t, X) e RxR" : 6 + &(X) <t < 041 + &1(X)}, 1 € Z.

Let us now consider the following quasilineaftfdrential equation
X (t) = A)X(t) + F(t, x(t), x(B(t, X))), (4.4)

wheret € R, x € R", andp(t, x) is a functional such that ik(tf) : R - R"is a
continuous function, and,(x(t)) € D; for somei € Z, theng(t, X) = n;j, wheren;

satisfies the equatiop= 6, + &(x(n)).
FixH € R, H > 0, and denot&Ky = {x € R" : ||x]| < H}. We introduce the following
assumptions:
(Q1) there exist positive real numbexsd such that < 6,,, — 6 <d, i € Z;
(Q2) there exists € R, 0 < 2l < ¢, such that&(x)| < I, i € Z, for all x € Ky.
(Q3) the functionsA: R — R™" andF : R x R" x R" — R" are continuous;
(Q4) there exists a Lipschitz constdnt> 0 such that
IF(t, X1, Y1) = F(t, X2, Y2)ll < La[lIXe = Xoll + [ly2 — Yall]

fort e R andxy, yi, X2, V2 € Ky;
(Q5) supg IAMI = k < oo;
(Q6) supg lIF(t, 0, O)l = N < eo;
(Q7) there exists a Lipschitz constdnt> 0 such that

6 () — &Yl < Lallx =yl

forall x, y € Ky andi € Z.
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One can see that conditions (Q1) and (Q2) imply (A1) witac— 2l andd = d + 2l.
Also, Eq. (42) for system (4) has the form

y(® = Ay + F(t. y(), 2, (4.5)

wherez € R" is a constant vector. Hence, under conditions (Q1)-(Q4is ot
difficult to see that (A2) and (BO) are valid for the last equation.

Let X(t) be a fundamental matrix solution of the homogeneous systerresponding
to Eq. (45),

X (t) = A)X(), (4.6)

such thatX(0) = I, wherel is ann x n identity matrix. Denote byX(t, s) =
X(t)X7(s), t, s € R, the transition matrix of (4). For the transition matrix(t, s),
one can obtain the following inequalities:

m< X(t, s) < M, (4.7)
IX(t, ) = X(t, 9)ll < kMt - 1], (4.8)

wherem = exp(-«f) andM = expb) if t, t, s€ [6; — |, ;.1 + 1] for somej € Z.
Let us fix o, X) € RxR". The following lemma is an auxiliary result of this chapter.

Lemma 4.3.1 Suppose thatQ1) — (Q3) are fulfilled. Then, &) is a solution of Eq.
(4.4) with X(to) = %o for t > to, if and only if it satisfies the equation

X(t) = X(t, to)% + f X(t, 9F (s X(9). X(B(s x))ds (4.9)

to

Proof. Necessity. Assume thatx(t) is a solution of Eq. (4) such thatx(ty) =
Xo, (to, Xo) € Dj for somej € Z. Denote

8(t) = X(t. to)xo + f X(t, 9F(s, X(9). X(B(s. ¥))ds (4.10)

to

Assume thatt( x(t)) € D;\S;. Then, there exists a momepte R such tha(s, X) =

n; for all (s, x(s)) € D;. Also, we have

¢'(t) = Ale(t) + F (. x(1). X(n))),
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and

X (1) = AlX(E) + F(t. x(1), x(75))-

Hence,

[(1) = x(®]" = A1) — x(D)].

Calculating the limit values at;, j € Z, we can find that
¢'(nj £ 0) = Alnj = 0)p(n; + 0) + F(n; £ 0, X(n; = 0), X(B(n; = 0, X(n; = 0)))).

X (nj £ 0) = Alnj = 0)X(n; £ 0) + F(n; £ 0, X(n7; = 0), X(B(n; + 0, X(n; + 0)))).

Consequently,

[6(1) = X(OI k=y; 0 = [6(1) = X(O ey 0 -

Thus, p(t)—x(t)] is a continuously dterentiable function defined for> ty satisfying
(4.6) with the initial conditiong(tp) — X(tg) = 0. Using uniqueness of solutions of Eq.
(4.6) we conclude thap(t) — x(t) = 0 fort > to.

Syficiency. Suppose thax(t) is a solution of (8) fort > to. Fix j € Z and consider
the regionD;. If (t, x(t)) € D;\S;, then by diferentiating (49) one can see tha(t)
satisfies Eq. (4). Moreover, considering( X(t)) — S;, and taking into account that
X(B(t, X)) is a right-continuous function, we find the(t) satisfies Eq. (4) in D;. The

lemma is proved]

The following example shows that for even simple linear ESRAhave dificulties

with uniqueness of solutions.

Example 4.3.1 Consider the equation
X (t) = =2x(B(t, X)), (4.11)

whereg(t, x) is defined by using the sequenégs= 2j and &(X) = cosx/4, | € Z.
Fix (to, X0) € R x R", that satisfies the equation=t (cosx)/4. Then solution &) of
(4.11) with x(tg) = Xo, is of the form &) = (1 — 2(t — cosxy/4))xo for t € [to, 5/4).
Particularly, for (to, Xo) = (1/4, 0)and(1/4, 2r), the correspond solutions are(x) =
0 and %(t) = n(3 — 4t), each of which passes through the p8t4, 0). Hence, the

uniqueness is not the case.
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DenoteM = 2L;H + N. From now on we need the following assumption:
(Q8) 2M6L; < min{1 — 2(kH + MM)L,, 1 — NOM/H}.

LetheR,0< h< (%@H - Né). The following lemma impose sficient condi-
tions for EqQ. (44) to satisfy extension property.

Lemma 4.3.2 Suppose that condition®1) - (Q8) are fulfilled, and(to, X) € D;
for some je 7Z such that||x|| < h. Then there exists a solutiorfty = y(t, to, Xo)
of Eq. (4.4) such thatp; = 6; + &;(y(n;)) for somen; < ty, and Yt) € Ky for all
telf; -1, 0.1 +1].

Proof. If (to, Xo) € Sj, then by takingy; = t, we can conclude the result directly.
Suppose thattd, Xo) € D;\S;. Let us construct the following sequences. TaRe=
0, Yo(t) = X(t, to)Xo, and define
7 = 0+ &), (4.12)
t
Xt [ X IFG WO NS (@413)

to

yk+1(t)
forallke Z, k > 0.

Let|l.llo = MaXefg,-1.6,.,+1 Il - . It is straightforward to see that

Yieallo < MiXoll +

f IX(E, 9IF(s, yu(s), Yk(flk))lld%

< Mh+NM8 + 2ML;6llyillo
1 - (2ML6)*+?
1-2ML,0
Using (Q8), we seg(t) € Ky forallt € [0; - I, 6,1 + 1], ke Z, k> 0.

0

(Mh + N M9).

Now, we will show that the sequengg(t)} is uniformly convergent. Eqgs. (82) and
(4.13) imply that

k+l kl

=M = 1) = E K D)
< Lally(7*) = Yica (I,
t
IVie1 — Yillo < max f MIIF (S, Y(9), V(7))
tE[Hj—|,€j+1+|] to

~F(S Yea(9): YeaOr )l
ML16 | llyk = Yic-allo + lIyk(r*) = Yiea G 1|

IA
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IA

Wi () = Y@ < [ X to) = XK, to)]] 1%oll

f " X0, 9)F (s, V(9 yk(nk))nd%

k

+

+

ft " IXGHL 9F (S (S, )

=X 9F(S Yier(9), yia ()] dg
(ch+ M(L+ k6)) Mins =

IA

+ML16[ 11k — Yi1llo + k(@) = Vs ()11
M(La(kh + M(1 + «6))

IA

+L10) 1Yk — Yieallo + Vi) = Yiea (7 DI
(La(kH + MN) + ML16)[llyk — Yi1llo

IA

HIyi(r) = Yiea (7 DI

Then,
Pt —nf < [2ALaH + MN) + ML) OMNL (4.14)
~ —qk =  ~
V2 (1Y) = Yl < [2(La(kH + MM) + ML16)| MM, (4.15)
~ — 1k =  ~
Ve —Ydlo < [2(La(kH + MM) + ML;6)| 6MM. (4.16)

Thus, there exist a unique momeptand a solutiory(t) of Eq. (44) with y(to) = Xo
such thaty; = 6; + &;(y(n;)), and* andyy converge ak — oo, respectively. The

lemma is proved]

In what follows, we will consider the flierential equations of type @) such that

the solutions intersect each constancy switching surfatenore than once. In the
previous section this assumption coincides with (A4). TdlWwing lemma defines
the suficient condition for this property.

From now on we shall need the following condition.

(Q9) Lz [«MH + MN| < 1.

Lemma 4.3.3 Suppose thafQ1) - (Q7), (Q9) hold. Then every solution(t} € Ky

of Eqg. (4.4) meets any constancy switching surface not more than once.
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Proof. Suppose the contrary. Then, there exist a soluk@h € Ky of (4.4) and

a surfaceS;, | € Z such thatx(t) meets this surface more than once. Let the first
intersection be at = ty and another intersection at= t* so that we have, =

0; + &j(X(to)) andt* = 6; + &;(x(t)) for tp < t*. Then, we have

" — tol

IA

LIX(E . to)x(to) + f X(t, 9F (s (9. X(B(s x))ds— x(o)]

to

IA

Lo [«MH + MMt - to],
which contradicts (Q9). The lemma is proved.
From the above lemmas we conclude the following theorem.

Theorem 4.3.1 Assume that condition®1) — (Q9) are fulfilled, and(ty, Xo) € D;

for some je Z such that||xg]| < h. Then there exists a unique solutioft)x=
X(t, to, Xo) of Eq. (4.4) on [n;, nj«1] such thaty; = 0; + &(X(n;)), nj+1 = Oj+1 +
Eiv1(X(mj41)), and Xt) € Ky.

4.4 Periodic solutions

In this section, we investigate periodic solutions of glimesar ESPA of type (4}).

Letw andp be fixed positive real number and integer, respectively. Ngd ;itroduce

the following assumptions:

(Q10) the function#\(t) andF(t, X, y) arew-periodic int;

(Q11) the sequendk+&i(X) satisfies ¢, p)-periodicity, i.€.6i.p = 6 +w andéi, p(x) =
&i(x) foralli € Z andx € R,

(Q12) det{ — X(w)) # 0; that is, system (&) does not have any-periodic solution.

We define, if (Q12) is fulfilled, the function

o 9 - X - X(@) XY, O0<s<t<w, @17
X(t + w)(I = X(w))2XK9), 0<t<s<w,

which is known asGreen’s functiorf46]. Let max s . IG(t, 9)Il = K.
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We need the following lemma to prove the main theorem. ThisWa can be proved

using Lemma 8.1.

Lemma 4.4.1 Suppose thafQ1) — (Q12) are fulfilled. Then the solution(®y of Eq.
(4.4) is w-periodic if and only if it satisfies the integral equation

X(t) = fo "Gt 9F(s X(9), x(B(s N)ds (4.18)

Let]|.[l, = maXepo, |l . l. Denote byd the set of all continuous and piecewise contin-
uously diferentiablav—periodic functions orfR such that ifp € @, then||¢(t)]l, < H,
and|| %4, < N + (2L + ©H.

We introduce the following assumption to prove the next theo

(Q13) (KLiw - 1)H + NKw < 0;
Lo(N + (2L, + OH) < 1:
KL]_(Z - Lz(N + (2L1 + K)H))(,() + 2KHL1L2p + L2(N + (2L1 + K)H) <L

Theorem 4.4.1 Suppose tha(Q1) - (Q13) hold. Then Eq.(4.4) has a uniquew-
periodic solutiony(t) such thaip(t) € Ky.

Proof. Suppose that for alkk € Ky andk = |, ..., j + p— 1, for somej € Z and
p > 1, we have O< 6 + &(X) < w. The other cases are similar. Define an operéator

on® as

Tlo] = fo " G(t 9F (s #(9). #(B(s #))ds (4.19)

Using (Q13), it is easy to see thg[¢]ll, < H and[| <534, < N + (2L + k)H. That
is, T[4] € .

Now, we will show that the operatdr is contractive onb. Let ¢4, ¢, € ®. One can
see that using (Q13), the functigk(t) intersects any constancy switching surf&ge
exactly once at = n| foralli = 1, 2 andk = |, ..., j + p— 1. Without loss of
generality suppose tha} < 7.

Also, one can show that using Mean Value Theorem and (Q18)n#dquality

1
1 2
llp1(7) — P2l < 1o LN+ @l K)H)||¢1 — ¢2llw (4.20)
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is satisfied.

Using (419) and (Q11), we write

Tla )] = f Gt IF(s (9. 4107, )dS

0

j+p_2 }7;(+1 )
+ 3 [ et 9F(s a9 s
k=) Y7k
g G(t, 9F(s i(9), ¢i(77ij+p_1))ds
T]j+p—l

fori =1, 2.

Then, using (£0), we obtain

ITed - Tloadl < K| f U IF(S 649 17t p ) ~ F(S 9209 20, D)l
j+p-2

+ kZ::‘ fn:m IF (s, ¢1(9), d1(nd)) — F (s, ¢2(9), d2(72))llds

k

+ ) IR 009, dalatp ) - F(s 02(9). 0ol s

77j+p—1
j+p-1 2

+ 30 [ IR (s 919, 41(68(s 90)

k=j “k

~F(s ¢2(9). g2((s ¢2)))]lds]
< KLiw(2 — Lo(N + (2L + k)H)) + 2KHL 1 L,p
- [ 1 - Ly(N + (2Ly + ©)H)

Hence, T is contractive. Because of Lemmad4, we see that the fixed point is

]”¢1 = ¢2llo-

w—periodic solution of Eq. (4)). The theorem is proved.]

Let us illustrate the last theorem by the following example.

Example 4.4.1 Consider the equation

X (t) = =x(t) — asin(2rt + y(B(t, X, ¥)))
y'(t) = =2y(t) + asin(2tt + x(B(t, X, ¥))),

where t X, y € R, and a is a positive real number. Heg(t, x, y) is defined by, =

(4.21)

J, §j(X, y) = —acosf + y). The corresponding parameters in conditions of Theorem
441arely=av2 Ly=a 6=1+2a k=2 N=av2, M =& M = (2H +
1av2, w=1 p=1, K =¢e(1-eb One can show that conditiof®1) - (Q13)
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are satisfied for a= €4, H = 1. Hence, by Theorem.4.1, we ensure that there is
an 1-periodic asymptotically stable solution ¢£.21). Figure 4.2 shows a solution
(x(t), y(t)) of (4.21) with an initial condition(x(—e %), y(-e %)) = (0.02, —0.02) that
approaches this periodic solution.

0.02

0.01r

-0.01
0

—

0.01

-0.01

-0.02 | | | | | | | | | |

Figure 4.2: A solutionX(t), y(t)) of ESPA that approaches thederiodic solution as
time increases.

4.5 Stability of the zero solution

In this section we give gficient conditions for stability of the zero solution.

Let us introduce the following conditions:

(Q14) F(t, 0, 0) = Oforallt e R;

(Q15) M|(1+OLy) (" - 1)+ Ly0] < 1.

Define

M

K(Ly, 6) = - _ .
(L) =17 M [(L+L1) ("7 — 1) + L]
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The following lemma plays a significant role in this chaptélsing the technique
in [8] and similar to [13, Lemma 1.2], the following lemma da@ proved.

Lemma 4.5.1 Suppose thatQ1) — (Q9), (Q14), (Q15)are fulfilled. Then, every so-
lution x(t) of Eq. (4.4) satisfies the inequality

IX(B(t, ) < K(L, OIXR)I (4.22)
forallt € R.

Proof. Fix t € R. Let x(t) be a solution of (4). Then, there ar& € Z, andn, € R
such thatt x(t)) € Dy, andg(t, X) = nx. Using Lemma 4.1, we have

X(t) = X(t. 7)X(1) + f X(t, 9F (s X(9. x(p0)ds

Tk

Then,
XOI < M@l + MLy f (X + Xl ds
< M(L+6L)IXmll + MLy [ [Ix(s)llds

Tk

Hence, using Gronwall-Bellman Lemma, we obtain

X < M(L + 6L)eM &) x(m)]l.

Moreover,
) = X 930 - [ Xl IF(s X9, xn)ds
Then, '
ol < MIKQI+ ML [ I + Il
< MIX®I+M|@ ZkeTLl)(eM“@ — 1)+ La6] IX(pl-

Thus, for ¢, x(t)) € Dy, we have|x(m)ll < K(Ly, 6)[Ix(t)|l. The lemma is proved.

Definition 4.5.1 The zero solution of4.4) is said to be uniformly stable if for any
e > 0and ¢ € R, there exists @ = 6(e) > 0 such that|x(t, to, Xo)|l < € whenever

lIXoll < 6 fort > to.
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Definition 4.5.2 The zero solution g#.4) is said to be uniformly asymptotically sta-
ble if it is uniformly stable, and there is ab 0 such that for every > 0 there exists
T(£) > 0 such that|x|| < b implies that|x(t, to, Xo)ll < £ ift > tg + T(J).

Theorem 4.5.1 Suppose tha(Q1) - (Q9), (Q14) (Q15) hold. If the zero solution
of Eq. (4.6) is uniformly asymptotically stable, then forfgciently small Lipschitz

constant L, the zero solution of Eq4.4) is uniformly asymptotically stable.

Proof. Suppose that the zero solution of Eq.6)is uniformly asymptotically stable.

Then, there exist positive real numberando such that fot > s,

IX(t, 9)ll < ae ), (4.23)

Let x(t) be a solution of (4) with the initial conditionx(ty) = Xo such that|x|| < h.

We have fort > to,

I = [X(t to)xtto) + f Xt 9F (s X(9). x(6(s )

IA

t _
oo Ol [ 06 KL 9IS

fo

Then,

_ t
e XM < ae|Ixoll + Ly (1 + K(Ly, 9))f e "Ix(s)llds
to

Hence, using Gronwall-Bellman Lemma, we have

Xl < agl KL D).

Since for stficiently smallL;, we haveal;(1 + K(L4, 0_)) — o < 0, the theorem is

proved.[]

The following example validates the last result.

Example 4.5.1 Consider the equation

X (1) = —x(t) - asir(y(B(t, x ¥)))

_ (4.24)
y (1) = —2y(t) + asir(x(B(t, x, ¥)).
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Figure 4.3: A solutionX(t), y(t)) of ESPA that approaches the zero solution as time
increases.

wheret x, y € R, and a is a positive real number. Heggt, x, y) is defined by, = j
andéj(x, y) = —acosi + y). The corresponding parameters in conditions of Theo-
rem45larely =2V2a, L, =a 6 =1+2ak=2N=0M =& M =
4+/2aH. One can show that condition(®1) — (Q9), (Q14) (Q15) are satisfied for
a=e* H = 1. Hence, by Theorem.5.1, the zero solution is uniformly asymptot-
ically stable. Figure4.3 shows a solutiorfx(t), y(t)) of (4.24) with initial condition
(x(—e), y(-e %)) = (0.02 -0.02) that approaches the zero solution.
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CHAPTER 5

CONCLUSION AND FUTURE WORKS

This thesis studies periodic solutions and stability fiiesiential equations with piece-
wise constant argument of generalized type. We divide tlegsations into three
main parts: dierential equations with piecewise constant argument afdet, alter-

nately retarded-advanced, and state-dependent pieceansgant argument of gen-
eralized type. The investigation is carried out by consingcequivalent integral

equations rather than using the method of reduction toelis@quations, which was
employed by the founders and developers of systems witleywise constant argu-

ments. The results are new and better than the existing ones.

Chapter 2 analyzes, using the method of small parametergetihedpc solutions and
stability of quasilinear dierential equations with retarded piecewise constant argu-
ment of generalized type in noncritical case, when the spording linear ordinary
differential equations have no nontrivial periodic solutiorheTsmoothness of the

solutions with respect to initial value and parameter was@nted as well.

In Chapter 3, conditions are found for the existence of perisedlutions for forced
weakly nonlinear ordinary éierential equations with alternately retarded-advanced
piecewise constant argument of generalized type. The ass@ase is studied, that
is, when the unperturbed linear ordinaryfdrential equation has a nontrivial periodic
solution. The dependence of solutions on initial valuesgardmeters is also studied.

Examples with Dffing equations show the feasibility of our theory.

Chapter 4 generalizes the mentioned equations in the preglmapters to a new type
of systems, dferential equations with state-dependent piecewise cangtgument,

where intervals of constancy of the independent argumematrprescribed and they

s



depend on the present state of a motion. The general corfoeptparticular type of
equations, namely, quasilinear systems: Existence amngieness theorem, periodic-

ity, and stability of the zero solution, are discussed.

Some future works can be summarized as follows:

e The results obtained in Chapter 2 and 3 can be extended to filrediion
theory [22,61], in particular, when Eq..@2) does not satisfy the conditions of
implicit function theorem. Moreover, averaging in resonease [65] will be

the next step of our results in Chapter 3.

e The stability of periodic solutions of systems with stasgpendent piecewise
constant argument is deserved to be analyzed as the neigidabsolutions
have dfferent meeting moments with the constancy switching susfdeéined
in Chapter 4.

e It is interesting to study impulsive fierential equations with piecewise con-
stant arguments of generalized type. The method of corigruof integral
equations needs the knowledge of theory of both impulsifferdintial equa-
tions and diferential equations with piecewise constant argument. @tigeo
results that shows the existence of oscillatory and perisdiutions of a class
of first order scalar impulsive delayftkrential equations with piecewise con-
stant argument was reported in [49]. The investigation ohgystems leads to
the modeling some engineering problems, such as disclgazgipacitor, driven
Froude pendulum, Work-piece cutter system, as it was dang ggstems with
piecewise constant argument [29-32, 62]. Moreover, thelpnoes of optimal
control for the process with piecewise constant argumembeeof great inter-
est [55, 87, 88].
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