
 

 

 

 

FLEXIBLE ASSEMBLY LINE DESIGN PROBLEM WITH FIXED 
NUMBER OF WORKSTATIONS 

 
 

 
 
 
 
 
 

A THESIS SUBMITTED TO 
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES 

OF  
MIDDLE EAST TECHNICAL UNIVERSITY 

 
 

 
 

 
BY 

 
 
 

ŞĐRĐN BARUTÇUOĞLU 
 
 
 

 
 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS  
FOR 

DEGREE OF MASTER OF SCIENCE 
IN 

INDUSTRIAL ENGINEERING  
 
 
 
 
 
 
 
 
 

JULY 2009 



 

  

 

 
 

Approval of the thesis: 
 

FLEXIBLE ASSEMBLY LINE DESIGN PROBLEM WITH FIXED 
NUMBER OF WORKSTATIONS 

 
 
 

submitted by ŞĐRĐN BARUTÇUOĞLU in partial fulfillment of requirements 
for the degree of Master of Science in Industrial Engineering Department, 
Middle East Technical University by, 
 
 
Prof. Dr. Canan Özgen                  _______________ 
Dean, Graduate School of Natural and Applied Sciences 
 
Prof. Dr. Nur Evin Özdemirel       _______________ 
Head of Department, Industrial Engineering 
 
Prof. Dr. Meral Azizoğlu        _______________ 
Supervisor, Industrial Engineering Dept., METU 
 
 
Examining Committee Members: 
 
 
Prof. Dr. Ömer Kırca         _______________ 
Industrial Engineering Dept, METU  
 
Prof. Dr. Meral Azizoğlu        _______________ 
Industrial Engineering Dept, METU  
 
Asst. Prof. Dr. Banu Yüksel Özkaya       _______________ 
Industrial Engineering Dept, Hacettepe University 
 
Assoc. Prof. Dr. Canan Sepil        _______________ 
Industrial Engineering Dept, METU  
 
Asst. Prof. Dr. Đsmail Serdar Bakal       _______________ 
Industrial Engineering Dept, METU  
 
       

Date:     _______________
  



 

 

iii

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

I hereby declare that all information in this document has been obtained 
and presented in accordance with academic rules and ethical conduct. I 
also declare that, as required by these rules and conduct, I have fully cited 
and referenced all material and results that are not original to this work. 
 
 
 

Name, Last name : 
 
 

Signature      : 
 

 



 

 

iv 

 

 

ABSTRACT 
 

FLEXIBLE ASSEMBLY LINE DESIGN PROBLEM WITH FIXED 

NUMBER OF WORKSTATIONS 

 
 
 

Barutçuoğlu, Şirin 

M.S. Department of Industrial Engineering 

Supervisor: Prof. Dr. Meral Azizoğlu 

 

July 2009, 70 pages 

 

 

 

In this thesis, we study a Flexible Assembly Line Design problem. We assume 

the task times and equipment costs are correlated in the sense that for all tasks 

the cheaper equipment gives no smaller task time.  Given the cycle time and 

number of workstations we aim to find the assignment of tasks and equipments 

to the workstations that minimizes the total equipment cost. We study a special 

case of the problem with identical task times.  For the general case, we develop 

a branch and bound algorithm that uses powerful lower bounds and reduction 

mechanisms. We test the performance of our branch and bound algorithm on 

randomly generated test problems. The results of our experiments have 

revealed that we are able to solve large-sized problem instances in reasonable 

times. 

 

 

Keywords: Flexible Assembly Lines, Assembly Line Balancing, Branch and 

Bound Algorithm 

 

 



 

 

v 

 

ÖZ 
 

SABĐT SAYIDA ĐŞ ĐSTASYONU ĐÇEREN ESNEK MONTAJ HATTI 

TASARIMI PROBLEMĐ 

 
 
 

Barutçuoğlu, Şirin 

Yüksek Lisans, Endüstri Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Meral Azizoğlu 

 

Temmuz 2009, 70 sayfa 

 

 

 

Bu tezde Esnek Montaj Hattı Tasarımı problemini ele aldık. Đş süreleri ve 

ekipman maliyetlerinin bağlantılı olduğu, işlerin pahalı ekipmanlarla, daha 

ucuz ekipmanlarla yapıldığından daha uzun sürede yapılamayacağı varsayıldı. 

Çevrim zamanı ve iş istasyonu sayısı verilmiş iken, işlerin ve ekipmanların iş 

istasyonlarına toplam ekipman maliyetini en aza indirecek şekilde atanması 

hedeflendi. Öncelikle problemin özdeş işleri varsayan özel durumu çalışıldı.  

Genel problem için, güçlü alt limitler ve eleme mekanizmaları kullanan bir dal-

sınır algoritması geliştirildi. Dal-sınır algoritmasının performansı rassal olarak 

yaratılan test problemleri üzerinde değerlendirildi. Deneysel sonuçlar, büyük 

ölçekli problemlerin önerilen algoritma ile makul sürelerde çözülebildiğini 

göstermiştir. 

 

 

 

Anahtar Kelimeler: Esnek Montaj Hatları, Montaj Hattı Dengeleme, Dal-Sınır 

Algoritması   

 

 
 

 



 

 

vi 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

To my mom 



 

 

vii  

 

  

ACKNOWLEDGMENTS 
 
 

First of all, I would like to express my gratitude to my supervisor, Prof. Meral 

Azizoğlu. She has been more than a supervisor for me. She was always very 

hearty and friendly as a sister. She did her best to encourage and guide me 

throughout this study. I would like to underline that she is an excellent person 

and very important for me. I am very happy that we will be able to work 

together in the coming years.  

 

I owe thanks to Prof. N. Evin Özdemirel for her sincere support at my hard 

times. In addition, I would like to thank Assoc. Prof. Canan Sepil for her 

valuable advices and smiling face. I would also like to thank my examining 

committee members Prof. Ömer Kırca, Asst. Prof. Banu Yüksel Özkaya, 

Assoc. Prof. Canan Sepil and Asst. Prof. Đsmail Serdar Bakal for their positive 

attitude and contributions to this study. 

 

I would like to thank my friends Banu Lokman, Büşra Atamer, Melih Çelik 

and Tülin Đnkaya for their warm interest and sympathy. Also, I would also like 

to thank all my professors for their important contributions. It is a great honor 

to be a part of METU-IE. 

 

I am grateful to my parents Gülnaz and Şuaip Öztürk for their endless care, 

support and altruism. I am proud of being their daughter. I would like to expess 

my love for my brother Göksel Öztürk. I feel very fortunate to have such a 

sweet brother. I would also like to thank Zeynep and Ömer Barutçuoğlu for 

their heartiness and goodwill. 

 

My love and my husband, Aras gave a novel touch to my life. I would like to 

send my deepest thanks to him for his endless love, patience and every thing he 

added to my life.  



 

 

viii

 

TABLE OF CONTENTS 
 
 
ABSTRACT ...................................................................................................... iv 

ÖZ....................................................................................................................... v 

ACKNOWLEDGMENTS................................................................................ vii 

TABLE OF CONTENTS ................................................................................ viii 

LIST OF TABLES ............................................................................................ ix 

LIST OF FIGURES........................................................................................... xi 

CHAPTER.......................................................................................................... 1 

1. INTRODUCTION...................................................................................... 1 

2. THE PROBLEM DEFINITION................................................................. 4 

2.1. Problem Statement .............................................................................. 4 

2.1.1. The General Task Times Model ................................................... 4 

2.1.2. The Correlated Task Times Model............................................... 7 

2.1.3. An Example Problem ................................................................... 9 

2.2. Complexity Of The Problem ............................................................. 11 

2.3. A Special Case – Identical Task Times............................................. 12 

2.4. Literature Review.............................................................................. 17 

3. OUR APPROACH ................................................................................... 20 

4. COMPUTATIONAL EXPERIMENTS ................................................... 40 

4.1. Statistics Used ................................................................................... 42 

4.2. Preliminary Runs............................................................................... 43 

4.3. Main Experiment............................................................................... 49 

5. CONCLUSIONS...................................................................................... 64 

REFERENCES................................................................................................. 66 

APPENDICES.................................................................................................. 68 

APPENDIX A .............................................................................................. 68 

 



 

 

ix 

 

 

LIST OF TABLES 
 
TABLES 
 
 
Table 2.1 Task Times and Equipment Costs of the Example Problem……....10 

Table 3.1 Task Times and Equipment Costs of the Example Problem 1……..30 

Table 3.2 Task Times and Equipment Costs of the Example Problem 2…….31 

Table 3.3 Task Times and Equipment Costs of the Example Problem 4…….37 

Table 3.4 Equipment Costs x Task Times for the Example Problem 4……....37 

Table 3.5 Task Times and Equipment Costs of the Example Problem 5…….38 

Table 3.6 Equipment Costs x Task Times for the Example Problem 5………39 

Table 4.1 The branch and bound performances with different lower bounds, 

     Set I...……………………………………………………………....44 

Table 4.2 The branch and bound performances with different lower bounds, 

                Set II………………………………………………………………..45 

Table 4.3 The effect of reduction mechanisms……………………………….48 

Table 4.4 The performance of our branch and bound algorithm, Set I and        

C1………………………………………………………………..….50 

Table 4.5 The performance of our branch and bound algorithm, Set II and     

C1…………………………………………………………………...51 

Table 4.6 The performance of our branch and bound algorithm, Set I and 

C2…………………………………………………………………...53 

Table 4.7 The performance of our branch and bound algorithm, Set II and 

C2…………………………………………………………………...54 

Table 4.8 The performance of our branch and bound algorithm, Set I and 

C3…………………………………………………………………...55 

Table 4.9 The performance of our branch and bound algorithm, Set II and       

C3…………………………………………………………………...56 

Table 4.10 The Flexibility Ratios of test problems…………………………...58 

Table 4.11 The lower bound performances, C1……………………….……...59 

Table 4.12 The lower bound performances, C2……………………………....60 



 

 

x 

 

Table 4.13 The lower bound performances, C3……………………………....61 

Table 4.14 The performance of our branch and bound algorithm for large-sized 

problems, C3……………………………..………………………....63 

Table A.1 The maximum number of nodes and CPU times of the branch and 

bound algorithm, Set I…………………………………………..…..68 

Table A.2 The maximum number of nodes and CPU times of the branch and 

bound algorithm, Set II …………………………………………….69 

Table A.3 The worst case performances with and without elimination 

rules……………………………………………………………...….70 

 



 

 

xi 

 

LIST OF FIGURES 

 
FIGURES 
 
Figure 2.1 Precedence graph of the example problem………………………..10 

Figure 2.2 A feasible solution of the example problem………………………10 

Figure 2.3 An optimal solution of the example problem……………………..11 

Figure 2.4 The branch and bound tree………………………………………..23 

 



 

1 

 

 

 

CHAPTER 1 
 
 

INTRODUCTION 
 
 

An assembly line is a production system, in which different parts are 

assembled on a product that flows through a sequence of workstations. The 

workstations are usually connected by a continuous material handling system 

and a set of assembly tasks is assigned to each workstation. These tasks are 

indivisible and performed according to some pre-specified restrictions. These 

restrictions are generally of two types: precedence relations and demand 

satisfaction. The precedence relations define the technological order such that 

some tasks can start only after the completion of some other tasks. The demand 

satisfaction constraint forces the assembly line to deliver a product at the end 

of each pre-specified period. This period, i.e., the time between two successive 

product completions, is referred to as cycle time. The cycle time is the 

reciprocal of the production rate, hence minimizing the cycle time is equivalent 

to maximizing the production rate. 

 

In Operations Research literature, the decision problem of assigning the 

assembly tasks to the workstations with respect to some pre-defined objective 

is called Assembly Line Balancing (ALB) problem. In the literature, basically 

two types of ALB problems, namely Type 1 and Type 2 ALB problems, are 

studied. In Type 1 problems, the aim is to minimize the number of 

workstations given a pre-determined cycle time (hence production rate), 

whereas in Type 2 problems, the aim is to minimize cycle time (hence 

maximize production rate) given a fixed number of workstations. 

 

Type 1 problems are usually observed when a new assembly line is to be 

designed. The purpose is to satisfy the demand with the minimum number of 

workstations. On the other hand, when the organization wants to produce the 



 

2 

 

 

maximum number of products without investing on new machines or 

expanding the existing ones, Type 2 problems gain significant importance. 

 

In assembly lines, workstations are the places where the resources are assigned 

and consumed. In traditional assembly lines there is a single resource in each 

workstation and the resources are identical over all workstations. The single 

resource is usually represented by a worker together with his/her equipment. 

On the other hand, flexible assembly lines consider various resources as 

alternatives for performing each task. The resources may be labor (of different 

skill) or machinery (of different speed). The resources are usually represented 

by pieces of equipments where each equipment has a specified cost of 

assignment and a specified speed to perform each task. 

 

Flexible Assembly Lines are gaining significant value due to their practical 

importance and theoretical challenge. In practice, to remain competitive in the 

market, the companies should use Flexible Assembly Lines to achieve high 

efficiency and respond ever changing customer demands. The automated 

equipments such as robots or Computer Numerically Controlled machines can 

offer shorter task times as well as more complex and precise assembly tasks. 

 

Theoretically, the analysis of the Flexible Assembly Lines is challenging due to 

the complexity brought by equipment alternatives. The alternatives add 

selection decisions to the task assignment decisions of the traditional lines. The 

equipment selection decisions have long term impacts as an equipment is 

usually purchased at high prices. The associated problems are referred to as 

Flexible Assembly Line Design problems and they usually aim to minimize 

total equipment cost. 

 

Despite its practical and theoretical importance, the research on Flexible 

Assembly Line Design problems is quite scarce. The existing literature 

assumes a limit on the cycle time, but not on the number of workstations. Their 



 

3 

 

 

objective is to minimize the total equipment cost, which is equivalent to 

minimizing the number of workstations when all equipment costs are equal. 

 

In this study, we consider a Flexible Assembly Line Design problem with 

specified cycle time and fixed number of workstations. That is, we assume that 

there is a target production rate and the workstations of the line are already 

located. In such an environment, we aim to minimize the total equipment cost. 

Moreover, we assume all the task times either decrease or remain same when 

more advanced, hence expensive, equipment is used. For example, a Computer 

Numerically Controlled machine is likely to perform the tasks faster than a 

conventional machine and it is much more expensive. 

 

The rest of thesis is organized as follows: In Chapter 2, we define our problem, 

introduce the notation and give the mathematical model. The chapter reviews 

the related literature and introduces a special case with identical task times. 

Chapter 3 presents our solution approach together with reduction and bounding 

mechanisms. In Chapter 4, we give the results of our computational 

experiment. We conclude in Chapter 5 by pointing out main conclusions and 

suggestions for future research. 

 



 

4 

 

 

 
CHAPTER 2 

 
 

THE PROBLEM DEFINITION 
 

 
In this chapter we first define our problem and give the mathematical 

formulation of the problem with general task times. We then introduce and 

give the mathematical model of the problem in which task times are correlated 

with the equipment costs. Next, we introduce a special case of the problem 

with identical task times. Finally, we give a brief review of the related 

literature. 

 
 
2.1. PROBLEM STATEMENT 
 
 
We consider a single product Assembly Line Design Problem with equipment 

decisions, specified minimum production rate and a fixed number of 

workstations. Our aim is to minimize total equipment cost over all 

workstations. 

 

We suppose the processing times of the tasks may differ according to their 

equipments. We assume that each task requires a single equipment and all 

equipment alternatives are capable of performing all tasks. 

 
 

2.1.1. THE GENERAL TASK TIMES MODEL 

 

In this section, we consider the Flexible Assembly Line Design problem with 

general task times. We state our assumptions, give the notation and provide the 

mixed integer programming model. 

Our assumptions are; 

•  A single product is assembled on the line. 

• The tasks are indivisible. 



 

5 

 

 

• There is a predetermined upper limit on the number of workstations. 

• The cycle time of the line is given. 

• All parameters, i.e., task times, equipment costs, precedence structure, 

cycle time are known with certainty and are not subject to change, i.e., 

the system is deterministic and static. 

• The task times differ with respect to the equipments. We use the terms 

task times and processing times interchangeably throughout the thesis. 

• The task times do not vary according to the workstations and/or the 

precedence relations. 

• The set of equipment types is given and each equipment type has a 

specific cost. This unit cost includes purchasing and all operational costs. 

We use the terms equipment types and equipments interchangeably 

throughout the thesis. 

• The equipment costs do not change with respect to tasks. 

• There is no set up time between different tasks. 

• All tasks can be performed in all workstations and all equipment types 

can be assigned to all workstations. 

• The number of equipments that can be assigned to a workstation is 

limited. 

• The number of tasks that can be assigned to a workstation is not limited. 

 

Sets: 

i: the set of tasks to be completed , i=1,2,…,N 

l: the set of equipments (or tools) to perform the tasks, l=1,2,…,L 

k: the set of workstations that include the equipments , k=1,2,…,K 

 

Parameters: 

CT: cycle time, i.e., maximum time allowed in a workstation 

K: number of workstations on the line, i.e., maximum number of workstations 

that can be used 

til: task time of task i when performed with equipment l 

ECl: cost of equipment l 



 

6 

 

 

CPk: equipment capacity of workstation k 

{ abaP ),(= immediately precedes }b  

 

Decision Variables: 

 





=
otherwise 0,

tion on worksta assigned is equipment  if 1, kl
ylk  

 





=
otherwise 0,

on   workstatiand equipment   toassigned is  i task  if 1, kl
xilk  

 

Mathematical Model: 

 

The objective function minimizes the total equipment cost. 

 

∑∑
= =

L

l

K

k
lkl yEC

1 1

 Min  

 

Constraint set (1) ensures that each task will be assigned to one equipment type 

and one workstation. 

 

(1) 1                i          x
L

1l

K

1k
ilk ∀=∑∑

= =
                     

 

Constraint set (2) makes sure that if a task is assigned to a workstation, its 

equipment should also be assigned to that workstation. 

 

)                                     (2i,l,k                                   yx lkilk ∀≤
 

Constraint set (3) makes sure that the minimum required production rate is 

satisfied, that is the cycle time limit is not exceeded.  



 

7 

 

 

(3)                                        k               CT        xt
L

1l

N

1i
ilkil ∀≤∑∑

= =
 

 

Constraint set (4), prevents precedence violation. It guarantees that if task a 

immediately precedes task b then task a cannot be assigned to a later 

workstation than task b.  

 

(4)    precedesy immediatel such that   b a(a,b)      k xk x
L

1l
blk

K

1k

L

1l
alk

K

1k

∀≤∑∑∑∑
= == =  

 

Constraint set (5) limits the number of equipments assigned to a workstation.  

 

(5)                                   k                                    CPy k

L

1l
lk ∀≤∑

=
 

 

Constraint sets (6) – (7) are the binary assignment constraints. 

 

(7) {0,1}

(6) {0,1}

                              

                                    

 l,k                                         y

i,l,k                                x

lk

ilk

∀∈

∀∈
 

 

 

2.1.2. THE CORRELATED TASK TIMES MODEL 

 

In this section, we assume the task times and equipment costs are correlated in 

the sense that for all tasks the cheaper equipment gives no smaller task time. 

Hence we consider a special case of the model stated in Section 2.1.1.  The 

motivation behind this assumption is the fact that usually more advanced and 

faster equipments are more expensive. For example, CNC machines are more 

expensive than the conventional ones and they usually perform the tasks 

quicker, at least no slower. 



 

8 

 

 

 

According to our assumption, for two equipments a and b, ECa >ECb,  implies 

tia ≤ tib  for all tasks i. We hereafter assume that the equipments are indexed 

such that LECECEC >>> .....21 , i.e., the first equipment is the most 

expensive, hence the fastest, equipment. 

 

We now state an important theorem for all optimal solutions. 

 

Theorem 1: In all optimal solutions, at most one equipment is assigned to each 

workstation. 

 

Proof: Assume the condition stated in above property does not hold and there 

are R equipments assigned to a workstation, say workstation k. The total cost of 

the equipments on workstation k, Zk = ∑
∈ kSl

lEC where Sk is the set of equipments 

assigned to workstation k. Assume equipment r is the most expensive 

equipment in Sk. As ECr >  ECs implies tir ≤ tis, it is always possible to process 

all tasks with equipment r and freed the other R-1 equipments. This leads to an 

equipment cost  Zk’ =EC r . As  Zk’< Z k , the solution that contradicts with our 

property cannot be optimal.    

                                                                                                                           □ 

Theorem 1 implies that , constraint set (5) is always satisfied as long as the 

equipment capacity of the workstations is greater than or equal to 1. Hence, the 

right hand side of constraint set (5) can be set to 1.  This setting reduces the 

solution space, thus leads to a stronger formulation.  Moreover constraint sets 

(2) and (3) can be replaced by a single constraint set since at most one 

equipment exists in each workstation. The resulting constraint becomes; 

 

(8) ,
1

                                  k l                      yCTxt lk

N

i
ilkil ∀⋅≤∑

=
 

 



 

9 

 

 

With these modifications, below is the statement of the model with correlated 

task times. 

 

(7) 

(6)

(9) 1

(4)  

(8) ,

(1) 1

s.to

Min

 b precedes asuch that 

1

                              

                                    

                                  

     

                                  

                       

 

 l,k                                    {0,1}     y

i,l,k                            {0,1}     x

k                                    y

       k xk x

k l                      yCTxt

                i          x

yEC

lk

ilk

L

1l
lk

L

1l
blk

K

1k

L

1l
alk

K

1k

lk

N

i
ilkil

L

1l

K

1k
ilk

L

1l

K

1k
lkl

(a,b) 

∀∈

∀∈

∀≤

∀≤

∀⋅≤

∀=

∑

∑∑∑∑

∑

∑∑

∑∑

=

= == =

=

= =

= =

 

 

We hereafter refer to our Flexible Assembly Line Design problem with 

correlated times and costs as P. 

 

 

2.1.3. AN EXAMPLE PROBLEM 

 

In this section we illustrate a feasible and an optimal solution of P via an 11 

tasks and 5 equipments example. We assume the line has four workstations and 

the required cycle time is 30 time units. The precedence relations between 

tasks are shown in the following figure. 

 

 



 

10 

 

 

           

Figure 2.1 Precedence graph of the example problem 

 

The task times depending on the equipment used and equipment costs are given 

in Table 2.1.   

 
 
 

Table 2.1  Task Times and Equipment Costs of the Example Problem 
 

                    Equipments                                                           
Tasks 1 2 3 4 5

1 7 10 10 13 13
2 6 6 8 12 12
3 6 6 7 8 10
4 8 9 10 11 12
5 6 8 8 9 13
6 6 8 10 12 12
7 6 7 7 7 10
8 8 9 9 10 13
9 8 11 12 12 13
10 8 9 9 11 13
11 6 6 6 9 12

Equipment Costs 400 350 300 250 200  

 
 
One feasible solution to P is shown in Figure 2.2 . 

 
 

       
 

Figure 2.2 A feasible solution of the example problem 
 

 

Total equipment cost = EC1 + EC1 + EC3 = 400 + 400 + 300 = 1100. 

 

Workstation 1 
Tasks: 1, 2, 3, 4 
Equipment: 1 

Workstation 2 
Tasks: 5, 6, 7, 8 
Equipment: 1 

Workstation 3 
Tasks: 9, 10, 11 
Equipment: 3 

1 2 

3 4 

5 

6 

7 

8 

9 

10 

11 



 

11 

 

 

The cycle time constraints are satisfied. Specifically,   

3027866741312111 ≤=+++=+++ tttt , 

3026866681716151 ≤=+++=+++ tttt  and 

302769123,113,1093 ≤=++=++ ttt .  

 

The assignments are also precedence feasible.  

 

The following configuration (depicted in Figure 2.3) indicates an optimal 

solution for P. The solution uses all four workstations. 

 

  
 Figure 2.3 An optimal solution of the example problem 

 

 

The solution is feasible as  

302412124525 ≤=+=+ tt , 

302710710633313 ≤=++=++ ttt ,  

30281279947454 ≤=++=++ ttt , 

3030911104,114,1084 ≤=++=++ ttt  and the precedence relations hold. 

 

It is optimal with total equipment cost of EC5 + EC3 + EC4 + EC4  

         = 200+300+250+250 = 1000. 

 

 

2.2. COMPLEXITY OF THE PROBLEM 
 

In this section we show that P is strongly NP-hard through a reduction to the 

Type 1 ALB problem.  Theorem 2 states this result formally. 

 

Theorem 2: P is NP-hard in the strong sense. 

Workstation 1 
Tasks: 2, 4 
Equipment: 5 

Workstation 2 
Tasks: 1, 3, 6 
Equipment: 3 

Workstation 3 
Tasks: 5, 7, 9 
Equipment: 4 

Workstation 4 
Tasks: 8, 10, 11 
Equipment: 4 



 

12 

 

 

 

Proof: Assume a special case of P, in which til =  ti  for all equipment types l, 

i.e., the task times are independent of the equipment types. Moreover, assume 

that  ECi = EC, i.e., the equipments are identical. This special case of the 

problem reduces to the minimization of the number of workstations, i.e., 

classical Type 1 assembly line balancing problem. If the resulting optimal 

number of workstations is greater than the available number of workstations, 

then P is infeasible, otherwise, the limit on the number of workstations is not 

restrictive. The Type 1 assembly line balancing problem is strongly NP-hard, 

so is our problem with arbitrary task times and costs.(see Baybars (1986)) 

□ 

 
2.3. A SPECIAL CASE – IDENTICAL TASK TIMES 
 
 

Suppose til  = t l  for all tasks i and for all equipment types l, i.e., tasks are 

identical in terms of task times, where tl is time required for equipment type l to 

perform any task.  

 

In such a case, nl, maximum number of tasks an equipment type l can perform 

in a workstation can be defined as 







=

l
l t

CT
n . 

 

Using this definition, we formulate a special case of P, which we call 

Assembly Line Design Problem with Identical Tasks and Correlated Task 

Times ( we refer to this special case as PI ) , as follows. 

 

Parameters: 

K: maximum number of workstations  

ECl: cost of equipment l 

N:  number of tasks  

nl: maximum number of tasks an equipment type l can perform in a workstation  

 



 

13 

 

 

Decision Variables: 

yl: number of equipments that will be used from equipment type l  

 

Mathematical Model: 

Min ∑
=

L

l
ll yEC

1

 

)12(                 integer   

)11(

)10(

1

1

ly

Ky

Nyn

l

L

l
l

L

l
ll

∀

≤

≥⋅

∑

∑

=

=

 

 

Constraint (10) makes sure that all tasks are performed. Constraint (11) ensures 

there are at most K equipments, since there will be at most one equipment in a 

workstation (see Theorem 1).  

 

Precedence constraints are not included as we can always define a feasible 

sequence according to the precedence relations, after finding the optimal 

solution.  

 

Note that the model has only two constraints in this formulation. So, the 

optimal LP relaxation of the problem has at most two positive variables. This 

also means that there can be at most two fractional variables, in the optimal LP 

relaxed solution. 

 

Below we state some properties of the optimal LP relaxation of PI.  

  

P1) In the optimal solution constraint (10) will be satisfied as strict equality  

due to the positive objective function coefficients of yl . Thus,  Nyn
L

l
ll =⋅∑

=1

. 



 

14 

 

 

 

Note that, 
l

l

n

EC
 gives the cost of performing one task with equipment type l. 

Accordingly, the equipment giving 








l

l
l n

EC
Min  will be favored in the optimal 

solution.  We let a be the equipment with 








l

l
l n

EC
Min . 

 

P2) If  K
n

N

a
≤  then 

a
a n

N
y =  and 0=iy  for all i other than a,  in the optimal 

solution. 

 

P3)  If  K
n

N

a
> , then  constraint (11) will be satisfied with strict equality in 

the optimal solution. Thus, Ky
L

l
l =∑

=1

. 

 

P4) Let b be the equipment type giving 








∈
l

l
Bl n

EC
Min  where 









≤= K
n

N
lB

l
, i.e., the set of equipment types that can give a feasible 

solution alone. 0>by   in the optimal solution. 

 

Using the results of P2, P3 and P4, we find the optimal relaxed solution with at 

most L-1 trials (number of b-i pairs). We further reduce the number of trials by 

P5 and P6. 

 



 

15 

 

 

P5) An equipment type Bl ∈ is eliminated if 
b

b

l

l

n

EC

n

EC
> . (As b exists in the 

optimal solution together with an equipment having smaller 
l

l

n

EC
 value to 

reach a smaller objective function value than 
b

b n

N
EC ⋅ ) 

 

P6)  If dc nn =  and dc ECEC ≥  for equipment types c and d  then cy  cannot 

take a positive value in the optimal solution. 

 

We now discuss the way that we find the optimal relaxed solution. Using P4 

we know, b, one of the two equipments that takes positive value in the optimal 

solution. From P1 and P3, we have the following two equations with two 

unknowns.  P3 implies that it is not feasible to use only the equipment with 









l

l
l n

EC
Min . 

 

Kyy

Nynyn

b

bbi

i

i

=+

=⋅+⋅
 

 

where i is the other equipment that may take positive value. The simultaneous 

solution of the two equalities yields the following solution values. 

ib

i
b nn

KnN
y

−
⋅−

=  and 
ib

b
i nn

NKn
y

−
−⋅

= . 

 

 The objective function value with equipments b and i, Obi, is found as, 

 

 
ib

b
i

ib

i
bbi nn

NKn
EC

nn

KnN
ECO

−
−⋅

+
−

⋅−
= . 

 

Hence the optimal objective function value of the relaxed problem is 



 

16 

 

 

  





















−
−⋅

+
−

⋅−
= ∈

b
b

ib

b
i

ib

i
bEi n

N
EC

nn

NKn
EC

nn

KnN
ECz ,Min  

where   E  is the set of the remaining equipments. 

 

 If  z = 
b

b n

N
EC  , i.e., a single equipment is used, then  

 
b

b n

N
y =* , 0* =iy for all bi ≠ .  

 

Otherwise, i.e, if equipments b and i are used together, 

 

ib

i
b nn

KnN
y

−
⋅−

=* ,    
ib

b
i nn

NKn
y

−
−⋅

=* ,    0* =jy  for all ibj ,≠ . 

 

 

We now focus on some cases where we find optimal integer solution for the 

problem. These cases are discussed below. 

 

Case 1. If  P6 leaves one equipment, say equipment b, then the optimal cost is 









=

b
b n

N
ECz  

 

Case 2. If  P6 leaves two equipments, say equipment a and b such that 

ba ECEC < . Then ba nn < . 

 

Note that 








an

N
 is a valid upper bound on the number of workstations. Hence, 

we update 




















=

an

N
KMinK , . 

 



 

17 

 

 

Let [ ]Kr ,1∈  be the number of equipments of type a. So, the number of 

equipments of type b is 






 ⋅−

b

a

n

rnN
 to perform all N tasks on the line. Then 








 ⋅−
+

b

a

n

rnN
r   should not exceed the available number of workstations. 

 

Hence, the optimal number of equipments of types a and b and optimal 

objective value can be expressed with the following expressions.  

   











 ⋅−
=

b

aa
b n

ynN
y

*
*  













≤






 ⋅−
+







 ⋅−
⋅+⋅= ≤≤ K

n

rnN
r

n

rnN
ECrECz

b

a

b

a
baKr0Min  

 

 

2.4. LITERATURE REVIEW  
 
 
In this section we give a literature review on Type 2 Assembly Line Balancing 

(ALB) problems in general and Assembly Line Design problems with 

equipment decisions  in particular.  

 

Although Assembly Line Balancing (ALB) literature is very rich, the research 

on Flexible Assembly Line Design problem is quite scarce.   

 

Baybars (1986) surveys Type 1 and Type 2 ALB problems. He describes 

modifications and generalizations of the problems in chronological order.  He 

gives different formulations and proposes exact solution approaches. 

 

Some noteworthy Type 2 ALB problems are due Hackman et al. (1989), 

Uğurdağ et al. (1997), Rekiek et al. (1999) and Liu et al. (2005). Hackman et 

al. (1989) propose a heuristic for Type 1 ALB problem. They develop a branch 



 

18 

 

 

and bound algorithm that uses the heuristic bounding procedure. They also 

describe iterative methods to solve Type 2 ALB problem using known upper 

and lower bounds on the cycle time. To solve Type 2 ALB problems they 

iteratively solve Type 1 ALB problems. As they mention, the number of 

iterations can be as large as the difference between upper bound and lower 

bound on the cycle time. 

 

Uğurdağ et al. (1997) study a bi-criteria Type 2 ALB problem. Their criteria 

are minimizing the cycle time and balancing the workload. They assume that 

the processing times on different workstations are equal and the number of 

workstations is fixed. To solve Type 2 ALB problem they propose a direct 

approach in place of a sequence of Type 1 ALB problems. They develop a 

heuristic procedure to find an initial feasible solution and improve the heuristic 

solution using a simplex-like algorithm. 

 

Rekiek et al. (1999) study a Type 2 ALB problem that balances the workload 

between the workstations. They assume that processing times on different 

workstations are equal. In addition to the precedence relations, they include 

some preference constraints to separate some tasks and group some others. 

They develop a genetic algorithm based on grouping idea. 

 

Liu et al. (2005) consider a stochastic Type 2 ALB problem with normally 

distributed and statistically independent task times. They aim to minimize 

cycle time given a fixed number of workstations and pre-specified cycle time 

reliability. They propose a heuristic solution procedure. 

 

Rubinovitz and Bukchin (1993), Bukchin and Tzur (2000), Bukchin and 

Rubinovitz (2002) and Pekin and Azizoğlu (2008) study ALB problems with 

equipment decisions. 

 

Rubinovitz and Bukchin (1993) study a Type 1 Robotic Assembly Line 

Balancing Problem (RALB). They assume that each task requires only single 



 

19 

 

 

equipment and only one equipment can be assigned to each workstation. They 

develop a branch and bound algorithm for small sized problem instances and a 

heuristic method for large sized problem instances. 

 

Bukchin and Tzur (2000) aim to minimize the total equipment cost by 

considering the pre-specified cycle time, a single equipment requirement for 

each task and assignment of a single equipment to each workstation. They 

develop a Branch and Bound algorithm for moderate sized problem instances. 

In their algorithm, the workstations are opened sequentially, an equipment is 

assigned once a workstation is opened and then the tasks are selected.  For each 

partial solution a lower bound is computed, that is found by relaxing some of 

the model constraints. The node with the smallest lower bound is selected for 

branching. They develop a Branch and Bound based heuristic for large sized 

problems by modifying their node selection rule.  

 

Bukchin and Rubinovitz (2002) consider Flexible Assembly Line Design 

problem with station paralleling. They show that adding parallel stations is 

equivalent to replacing the equipment with a faster one, hence their model is a 

special case of Bukchin and Tzur (2000)’s model. They adapt the branch and 

bound algoritm developed by Buckchin and Tzur (2000) for their problem. 

 

Pekin and Azizoğlu (2008) study a bicriteria Flexible Assembly Line Design 

problem with pre-specified cycle time.  Their criteria are the total equipment 

cost and the number of workstations.  They assume multiple equipments can be 

assigned to each workstation and a single equipment requirement for each task. 

They develop a branch and bound algorithm to generate all efficient solutions 

with respect to two criteria. 

 

The most closely related study to ours is Bukchin and Tzur (2000)’s study. Our 

study differs from their study in the sense that the number of workstations is 

fixed and task times and equipment costs are correlated. 

 



 

20 

 

 

CHAPTER 3 
 
 

OUR APPROACH 
 

 
Recall that our problem P is NP-hard in the strong sense. This justifies the use 

of an implicit enumeration technique to arrive at an optimal solution. In this 

study, we propose a branch and bound algorithm to find the optimal 

assignment of tasks and equipments to the workstations. 

 

The branching schemes designed for classical Assembly Line Balancing (ALB) 

Problems assign the tasks to the workstations, starting from the first 

workstation. For the current station, the assignments are considered among the 

fittable tasks set. A task is called fittable if all its predecessors are assigned 

either to the current workstation or one of the prior workstations. The current 

workstation is closed whenever there is no fittable job that can be assigned 

without exceeding the cycle time. 

 

Our problem differs from the classical branching schemes designed for ALB 

problems as it includes the equipment decisions.  

 

Through the following theorem we show that the optimal equipment 

assignment for a given set of assigned tasks is already available. 

 

Theorem 3: Given a set of assigned tasks Sc to a workstation, the optimal 

equipment is the cheapest equipment, Ec that satisfies ∑
∈ c

c
Si

iEt   ≤ CT. 

 

Proof:  

Note from Theorem 1 that there is a single equipment in each workstation. This 

equipment should be the cheapest one that resides all tasks without exceeding 

the cycle time en route to minimizing our total equipment cost objective. 

□ 



 

21 

 

 

As the optimal equipment is available for a given set of tasks, we design our 

branch and bound algorithm based on task assignments but not on equipment 

assignments. We decide to close a workstation or not to close it even when 

there are fittable tasks, since the total task time of the tasks assigned to the 

current workstation changes according to the equipment assigned. When 

closing the current workstation we determine the optimal equipment 

considering the set of tasks assigned to this workstation. 

 

In generating the nodes we make use of the following property. 

 

Property 1: If there is a task that fits to the current workstation with the 

cheapest equipment Ec,  then  branching to a node that represents closing the 

current workstation cannot lead to a better solution. 

 

Proof: 

Assume a new workstation k+1 is opened when there is a task i that fits to the 

current workstation k with  equipment Ec . Assume i is assigned to one of the 

succeeding workstations k+a. ,i  can be removed from workstation  k+a and 

placed to workstation k without violating the cycle time constraint (as it fits 

even with the cheapest equipment) and without increasing the total equipment 

cost ( as the other assignments are kept same). Hence a solution in which i  is 

placed at the current workstation, cannot be worse. 

□ 

 

We use the result of the above property in designing our branching scheme. We 

index the tasks based on the precedence structure. In doing so, we give lower 

numbers to the tasks that appears as predecessors, i.e., if task i is predecessor of 

task j, then  i<j .  Besides, among the tasks that appear as predecessors the ones 

with larger number of successors receive higher priority, i.e., we assign lower 

numbers to these tasks. In order to prevent the duplication of the solutions we 

always branch to a task with higher index once we are adding to the current 

workstation. We always add to the current workstation if there is a fittable task 



 

22 

 

 

with the cheapest equipment. If there is no fittable task with the cheapest 

equipment, then we consider the following two branches. 

 

Branch 1. Close the current workstation (Close Branch) 

Assign the cheapest possible equipment (see Theorem 2). Let the equipment 

assigned be R. 

 

Branch 2. Not to close the current workstation (Not Close Branch) 

Consider the equipments 1,..., R+m  where equipment 1 is the most expensive 

equipment and  R+m is the cheapest equipment that has a  fittable task. Thus, 

when a not close branch is considered for the current workstation the optimal 

equipment should always be more expensive than the optimal equipment of the 

corresponding close branch. 

 

In our branch and bound algorithm  we first evaluate “Close” branch emanating 

from a node and continue branching. “Not Close” branch is evaluated during 

backtracking. We give priority to a “Close” branch as it requires cheaper 

equipment than “Not Close” branch, hence finding a good upper bound earlier 

is more likely. 

 

The following figure illustrates our branching scheme. 



 

23 

 

 

 
Figure 2.4 The branch and bound tree 

 

For both “Close” and “Not Close” branches, we first check the feasibility of the 

partial solution in terms of the number of the workstations. In doing so, we use  

lower bounds on the number of workstations. 

 

• “Close” Branches : 

 We define a lower bound on the number of the workstations, Kmin= 














∑
∈

CT

t
Ui

i1

 

where U is the set of unassigned tasks and ti1  is the time required to perform 

task i with the most expensive, hence the fastest,  equipment. 

 

If Kmin + K1 > K, then the current partial solution that represents closing 

workstation K1  cannot lead to a feasible solution. 

0 

T1 

T2 

Close Not 
close 

T4 

T2 

T2 T3 

Close 

T1 T3 T3 

Not 
close 

Close Not 
close 

Close Not 
close 

T4 T5 T4 T5 T3 T4 T3 T4 

Close Not 
close 

T1 T4 T4 

T5 T3 



 

24 

 

 

If the current solution closes (K-1)st workstation, then the optimal equipment 

for the next, hence the last, workstation is the largest  m that satisfies  

1=














 ∑
∈

CT

t
Ui

im

. In such a case, we update the upper bound, i.e., the best known 

solution if  UBECEC r

K

k
Ek

<+∑
−

=

1

1

, where Ek  is the equipment assigned to 

workstation k  and r is the optimal equipment for the last workstation. 

 

• “ Not Close” Branches : 

 

For a “Not Close” branch of workstation K2  a lower bound on the number of  

the workstations is, 

Kmin =














∑
∈

CT

t
Ui

i1

. 

If Kmin + K2 > K, then the current partial solution cannot lead to a feasible 

solution. 

 

We use Property 2 whenever closing a workstation. 

 

Property 2: If   task i  is assigned to the current workstation, but can be 

replaced by task j   feasibly and  jmim tt ≤  for all m, then the current assignment 

cannot lead to a unique optimal solution. 

 

Proof: 

Assume i is assigned to a later workstation k+a. Replacing the workstations of  

i  and j  is feasible as j can be assigned to the current workstation when i  is 

removed and i can fit any workstation vacated by j  as  jmim tt ≤   for all m. 

Moreover, such a replacement never increases the number of workstations and 



 

25 

 

 

the total equipment cost. This follows that the solution in which j   is in the 

current workstation cannot be worse.  

 □ 

 

While implementing Property 2, we ask: jmim tt <  at least for one m. This is 

because if  jmim tt =  for all  m, and we fathom a partial solution that represents 

closing the workstation that includes i, then a partial solution that represents 

closing the workstation that includes j   will also be closed.  

 

When closing a workstation, we eliminate some equipment(s) using the results 

of Properties 3 through 4 stated below. 

 

Property 3: If  UBECEC
CT

t

m
Ui

i

≥+×



















−














∑
∈

min

1

1 , where ECmin is the 

cheapest equipment in the set of remaining equipments, then any further 

assignment that resides equipment m cannot lead to a unique optimal solution. 

 

Proof: 

Note that














∑
∈

CT

t
Ui

i1

is a lower bound on the number of workstations. Assume the 

other workstations are opened with the cheapest equipments and only one 

workstation is opened with equipment m. Such an assignment would have the 

smallest cost if equipment m has to be used at least once. The associated cost is 

m
Ui

i

ECEC
CT

t

+×



















−














∑
∈

min

1

1 . If this cost is no smaller than the smallest 

known cost, a solution that uses equipment m cannot be unique optimal. 

□ 



 

26 

 

 

Property 3 is also used for “Not Close” branches by using














∑
∈

CT

t
Ui

i1

as a lower 

bound on the number of workstations. 

 

We use the below property in eliminating partial solutions and updating the 

best known solution, UB. 

 

Property 4: If  














∑
∈

CT

t
Ui

il

=1 then any further assignment that resides 

equipments 1,….,l-1 cannot be optimal. 

 

Proof:  

The minimum cost of completing the partial solution with a single workstation 

is ECl . As  ECl < ECl-m, a solution that resides equipments 1,….,l-1 cannot be 

optimal. 

□ 

 

If the condition stated by the above property holds then equipments 1,…,l-1 are 

eliminated. Moreover, UB is updated if it is greater than lECATC +)(  where 

)(ATC is the equipment cost for already closed workstations. 

 

Note that if l = L, i.e., the cheapest equipment justifies a single workstation, 

then the node is fathomed. This can be generalized if there is a feasible solution 

with 














∑
∉

CT

t
Ai

i1

 workstations, i.e., minimum number of workstations and 

cheapest equipment, then it is optimal.  

 



 

27 

 

 

The properties stated above are useful for eliminating relatively expensive 

equipments. Now we state the properties that enable the elimination of cheaper 

equipments. 

 

Property 5: If  lm ECEC >  for two equipments m and l,  and ilim tt =  for all 

Ui ∈ , then any future assignment with equipment m cannot be optimal. 

 

Proof:  

A solution that resides equipment m cannot be optimal as its cost can be 

reduced by lm ECEC − units simply by exchanging equipment m with 

equipment l. Note that such an exchange does not affect feasibility as ilim tt =  

for all unassigned tasks. 

□ 

Property 6: Assume Kleft and Nleft are number of workstations that are not yet 

used and number of unassigned tasks, respectively.  

If ( ) { } { } left
ilAiiAi

left N
tMin

CT

tMin

CT
K <








+








⋅−

∉∉ 1
1 , then any further assignment 

that resides equipments l,….,L  cannot be optimal. 

 

Proof: 

{ }







1ii tMin

CT
is the maximum number of tasks that the most expensive, hence the 

fastest equipment, can perform in a workstation when the precedence relations 

are relaxed. Hence, it is an upper bound on the number of tasks that can be 

performed in a workstation. Similarly, { }







ili tMin

CT
 is the maximum number of 

tasks that equipment l can perform in a workstation when the precedence 

relations are relaxed. Assume the other workstations are opened with the most 

expensive, hence fastest, equipment and only one workstation is opened with 



 

28 

 

 

equipment l. Then, ( ) { } { }






+








⋅−

iliii
left tMin

CT

tMin

CT
K

1
1  is an upper bound on 

the number of tasks that can be performed in Kleft workstations. If the upper 

bound on the number of tasks that can be performed is less than the number of 

unassigned tasks then a solution that resides equipment l cannot be feasible. If   

equipment l satisfies the condition stated in the property then equipments that 

are cheaper than l satisfy the condition since )( mliil tt +≤  for all tasks i. This 

follows that any assignment with equipments l,….,L  cannot be optimal. 

□ 

 

If the condition stated by the above property holds then equipments l,….,L are 

eliminated. The elimination of cheaper equipments is important since our first 

and second lower bounds use the cost of the cheapest equipment that is not 

eliminated. Eliminating cheaper equipments increases the cost of the cheapest 

remaining equipment, therefore improves our lower bounds’ performances. 

 

Whenever closing a workstation, we update K, i.e., the number of workstations 

to be used. Our initial experiments reveal that an increase in number of 

workstations significantly increases the solution times of our branch and bound 

algorithm and all workstations are not necessarily used in the optimal solution. 

So any reduction in the number of workstations would improve the 

performance of our branch and bound algorithm. 

 

We now describe the way that we update K. 

 

Note that, { }{ }






=

ilil
LB t

CT
n

MaxMax
 is a lower bound on the number of tasks 

that can be performed in a workstation since { }{ }ilil tMaxMax  is the 

maximum of all task times. This follows that 








LBn

N
 is an upper bound on the 

number of workstations required for a feasible solution.  



 

29 

 

 

Another valid upper bound on the number of workstations is 








LEC

UB
. We 

update K as follows: 

 

























=

LLB EC

UB

n

N
KK ,,Min . 

 

We calculate lower bounds for each node that cannot be fathomed by our 

properties. While computing the lower bounds we use the unassigned tasks, 

remaining equipments and updated K value. 

 

Lower Bound 1 

 

We consider the special case with identical task times (discussed in Section 

2.3) to find a lower bound for our problem P.  We let z be an optimal solution 

to the LP relaxed version of PI.  If we set task time lt on equipment l to 

{ }ili tMin ,  z gives a lower bound to our problem. We solve the LP relaxed 

version of PI with lt and let the associated objective function value, z, be LB1. 

 

We use LB1 for “Close” branches only. Note that each “Close” branch 

represents a partial solution with set of assigned tasks A. In this case, the 

identical tasks problem for tasks Ai ∉  is solved to find LB1. 

 

When variability of the task times is low, the optimal solution of P is likely to 

be close to the optimal solution of PI, hence the associated lower bound 

becomes closer to the optimal objective function value. We illustrate this by 

two examples given below. The first one exemplifies a case that is unfavorable 

for LB1 whereas the second example illustrates a case where LB1 works well. 

 



 

30 

 

 

Example 1: Our example problem has 11 tasks and 5 equipment types. The 

line has 3 workstations and the required cycle time of the line is 30 time units. 

The task times and equipment costs are given in Table 3.1.   

 

 

Table 3.1 Task Times and Equipment Costs of the Example Problem 1 

 
               Equipments                                                           
Tasks 1 2 3 4 5

1 7 10 10 13 13
2 6 6 8 12 12
3 6 6 7 8 10
4 8 9 10 11 12
5 6 8 8 9 13
6 6 8 10 12 12
7 6 7 7 7 10
8 8 9 9 10 13
9 8 11 12 12 13
10 8 9 9 11 13
11 6 6 7 9 12

Equipment Costs 400 350 300 250 200  

 

 

{ } { }10,7,7,6,6== ilil tMint  

{ }3,4,4,5,5
10

30
,

7

30
,

7

30
,

6

30
,

6

30 =





































=







=

l
l t

CT
n  

 

Equipments 1 and 3 are eliminated by P6. Equipments 2, 4, 5 are left. 

}4,2{=








≤= K
n

N
lB

l
 

5.62
4

250
,

5

350
Min,MinMin

4

4

2

2 =






=









=








∈ n

EC

n

EC

n

EC

l

l
Bl  

 

So, b=4. According to P5, there is no need to consider i =2, since
4
4

2

2

n

EC

n

EC
> . 

{ }





















−
−⋅

+
−

⋅−
= ∈

b
b

ib

b
i

ib

i
bi n

N
EC

nn

NKn
EC

nn

KnN
ECLB ,Min 51  



 

31 

 

 






















−
−⋅

+
−

⋅−
=

4
4

54

4
5

54

5
41 ,Min

n

N
EC

nn

NKn
EC

nn

KnN
ECLB  

{ } 5.6875.687,700Min
4

11
250,

34

1134
200

34

3311
250Min1 ==


















−
−⋅+

−
⋅−=LB  

 

Example 2: Our second example problem also has 11 tasks and 5 equipment 

types. The line has 2 workstations and the required cycle time is 40 time units. 

Task times and equipment costs are given in the table below. 

 

Table 3.2  Task Times and Equipment Costs of the Example Problem 2 

 
                 Equipments                                                           
Tasks 1 2 3 4 5

1 7 10 10 13 13
2 6 7 8 12 12
3 6 7 8 11 12
4 8 9 10 11 12
5 6 8 8 11 13
6 6 8 10 12 12
7 6 7 8 11 12
8 8 9 9 11 13
9 8 11 12 12 13
10 8 9 9 11 13
11 6 7 8 11 12

Equipment Costs 400 350 300 250 200  

 

{ } { }12,11,8,7,6== ilil tMint  

{ }3,3,5,5,6
12

40
,

11

40
,

8

40
,

7

40
,

6

40 =





































=







=

l
l t

CT
n  

 

Equipments 2 and 4 are eliminated by P6. Equipments 1, 3, 5 are left. 

}1{=








≤= K
n

N
lB

l
. So, b=1. 

{ }





















−
−⋅

+
−

⋅−
= ∈

b
b

ib

b
i

ib

i
bi n

N
EC

nn

NKn
EC

nn

KnN
ECLB ,Min 5,31  






















−
−⋅

+
−

⋅−









−
−⋅

+
−

⋅−
=

1
1

51

1
1

51
1

51

1
1

31
11 ,5,3Min

n

N
EC

nn

NKn
EC

nn

KnN
EC

nn

NKn
EC

nn

KnN
ECLB  



 

32 

 

 


















−
−⋅+

−
⋅−










−
−⋅+

−
⋅−=

6

11
400,

36

1126
200

36

2311
400,

56

1126
300

56

2511
400Min1LB  

{ } .70033.733,33.733,700Min1 ==LB  

 

Lower Bound 2 

 

Note that  














∑

CT

t
i

im

 is a valid lower bound on the number of workstations that 

use equipment m and the cheaper equipments m+1 , ... , L.  

We let  














∑

=
CT

i
imt

mL . 

This follows ( ) mLm ECECL +×−1  is a valid lower bound on the total cost 

when equipment m and the cheaper equipments are used. 

 

We let  ( ) mLmmTC ECECLLB +×−= 1, . 

 

An overall lower bound, LB2  is available by the following expression. 

{ }mTCLBMmLB ,Min2 ′∈= , where { }KLmM m ≤=′ , i.e., alternatives 

that produce feasible assignments with respect to the number of workstations. 

 

The following example illustrates LB2 computations. 

 

Example 3:  

 CT = 10       N = 10      K = 4      ECi = 6 - i      L = 5 

∑ =
i it 151 ,     ∑ =

i it 202 ,    ∑ =
i it 233 ,    ∑ =

i it 454 ,    ∑ =
i it 525 . 

 



 

33 

 

 

2
10

15
1 =




=L ,      41 <L    hence there may exist a feasible solution using  

             only equipment 1. 

,2
10

20
2 =




=L    42 <L  hence there may exist a feasible solution using  

              only equipment 2 and/or equipment 1.     

,3
10

23
3 =




=L     43 <L  hence there may exist a feasible solution using  

              only equipment 3 and/or equipments 1 and 2.                            

,5
10

45
4 =




=L       44 >L  hence there cannot exist a feasible solution using  

               equipment 4. 

,6
10

52
5 =




=L        45 >L  hence there cannot exist a feasible solution using  

               equipment 5. 

 

This follows, { }3,2,1=′M . 

( ) 6511 1511, =+=+×−= ECECLLBTC  

( ) 5411 2522, =+=+×−= ECECLLBTC  

( ) 5321 3533, =+=+×−= ECECLLBTC

{ } { } 55,5,6Min,Min2 ==′∈= mTCLBMmLB              

LB2 is used as a filtering mechanism as it runs quicker when compared to LB1 

and LB3. We first calculate LB2, if it cannot eliminate a partial solution, i.e., 

TCc + LB2 < UB, then we calculate LB1 or LB3. 

 

As LB2 is an easy-to-find lower bound, we use it for both “Close” and “Not 

close” branches.  

 



 

34 

 

 

For “Close” branches, the lower bound is found considering the unassigned 

tasks and remaining equipments (not eliminated by equipment elimination 

rules). 

Formally, 

















=
∑
∉

CT

t

L
Ai

im

m  where A is the set of assigned tasks. 









′′∈=
mTC

LB
Mm

ALB
,

Min)(
2

 where { }E kKALmM m ∈≤=′′  and)(   

and E  is the set of remaining equipments  

          

For “Not close” branches, the lower bound is again found considering the 

unassigned tasks and remaining equipments. Lower bound on the number of 

workstations to be used when equipment m and cheaper equipments becomes, 

















=
∑
∉

CT

t

L
Ai

im

m  where A is the set of assigned tasks.     

 

We calculate LB2(A) as in “Close” branches. 

{ }mTCLBMmALB ,Min)(2 ′′∈=   where { }E kKALmM m ∈≤=′′  and)(   

and E  is the set of remaining equipments. 

 

Lower Bound 3 

 

Recall that Bukchin and Tzur (2000) aim to minimize the total equipment cost 

by considering the cycle time and precedence relations. There is no restriction 

on the number of workstations used. Single equipment for each task is assumed 

and single equipment assignment to each workstation is allowed.  

 

Bukchin and Tzur (2000) propose a lower bound that is obtained by relaxing 

some of the constraints and surrogating some of them.  The relaxed constraints 



 

35 

 

 

are the precedence constraints. The surrogate constraint is due to the cycle 

time. They sum the cycle time constraints over all workstations for all 

equipment and obtain an aggregate cycle time constraint over all equipments. 

After the relaxations, the constraint set that ensures at most one equipment for 

each workstation becomes redundant. Hence all workstations are considered 

together. The resulting formulation and new decision variables are given 

below. 

 

∑
=

=
N

k
lkl yy

1

= total number of type l equipment. 





==∑
= otherwise.0

,equipment   toassigned is  task if1

1

li
xx

N

k
ilkil  

 

Min ∑
=

L

l
ll yEC

1

 

)16(                 integer   

)15(,

)14(

)13(1

1

1

ly

li{0,1}x

lyCTxt

ix

l

il

N

i
lilil

L

l
il

∀

∀∈

∀⋅≤

∀=

∑

∑

=

=

 

 

Constraint set (13) ensures that each task is assigned to one equipment. 

Constraint set (14) is the surrogate cycle time constraint. Constraint sets (15) 

and (16) are the integrality constraints. 

 

After relaxing constraint set (16), the solution for the resulting problem 

becomes available by the following expression. 

 



 

36 

 

 

{ }

j
CT

xt
y

i
tECtEC

x

N

i

ilil
l

ijjjill
il

∀
⋅

=

∀


 ⋅=⋅

=

∑
=1

otherwise.0

,min if1

 

 

Then a lower bound on the original problem is available through the following 

expression, 

∑
=

=
L

l
ll yECLB

1
3  

 

A lower bound on any relaxation of a minimization problem is a valid lower 

bound on the original problem. Bukchin and Tzur (2000)’s problem assumes 

no limit on the number of workstations; hence it is a relaxation to our problem. 

This follows; LB3 is a valid lower bound to our problem. 

 

We use LB3 for “Close” branches only. Note that each “Close” branch 

represents a partial solution with set of assigned tasks A. In this case, the 

relaxed problem for tasks Ai ∉  and remaining equipments is solved in order to 

find LB3. 

 

We illustrate the calculation of LB1  and LB3 on two simple examples. In the 

first one LB3 works better than LB1  whereas in the second one LB1  performs 

better. 

 

Example 4: Suppose there are 11 tasks and 5 equipments. The line has 3 

workstations and the required cycle time is 30 time units. Task times and 

equipment costs are given in table below. 

 

 
 

 
 



 

37 

 

 

 
Table 3.3  Task Times and Equipment Costs of the Example Problem 4 

 
                   Equipments                                                           
Tasks 1 2 3 4 5

1 7 10 10 13 13
2 6 6 8 12 12
3 6 6 7 8 10
4 8 9 10 11 12
5 6 8 8 9 13
6 6 8 10 12 12
7 6 7 7 7 10
8 8 9 9 10 13
9 8 11 12 12 13
10 8 9 9 11 13
11 6 6 7 9 12

Equipment Costs 400 350 300 250 200  

 

 

ijj tEC ⋅  values are shown in the table below. 

 
 

Table 3.4 Equipment Costs x Task Times for the Example Problem 4 

 
                   Equipments                                                           
Tasks 1 2 3 4 5

1 2800 3500 3000 3250 2600
2 2400 2100 2400 3000 2400
3 2400 2100 2100 2000 2000
4 3200 3150 3000 2750 2400
5 2400 2800 2400 2250 2600
6 2400 2800 3000 3000 2400
7 2400 2450 2100 1750 2000
8 3200 3150 2700 2500 2600
9 3200 3850 3600 3000 2600
10 3200 3150 2700 2750 2600
11 2400 2100 2100 2250 2400  

 

{ }

j
CT

xt
y

i
tECtEC

x

N

i

ilil
l

ijjjill
il

∀
⋅

=

∀


 ⋅=⋅

=

∑
=1

otherwise.0

,min if1

  

 

Using the equations above, we get: 

115 =x , 122 =x , 135 =x , 145 =x , 154 =x , 161 =x , 174 =x , 184 =x , 195 =x , 

15,10 =x , 13,11 =x . 



 

38 

 

 

2.0
30

66161
1 ==

⋅
=

CT

xt
y  

2.0
30

62222
2 ==⋅=

CT

xt
y  

2.0
30

63,113,11
3 ==

⋅
=

CT

xt
y  

86.0
30

1079848474745454
4 =++=

⋅
+

⋅
+

⋅
=

CT

xt

CT

xt

CT

xt
y  

CT

xt

CT

xt

CT

xt

CT

xt

CT

xt
y 5,105,109595454535351515

5
⋅

+
⋅

+
⋅

+
⋅

+
⋅

=  

033.2
30

1313121013
5 =++++=y  

033.220086.02502.03002.03502.0400
1

3 ⋅+⋅+⋅+⋅+⋅=











= ∑

=

L

l
ll yECLB  

8323 =LB  

 

Recall that for the same example problem LB1 is found to be 688. For this 

problem LB3 works better. 

 

Example 5: There are 11 tasks and 5 equipments. The line has 2 workstations 

and the required cycle time is 40 time units. Task times and equipment costs 

are given in the table below. 

 

Table 3.5  Task Times and Equipment Costs of the Example Problem 5 

 
                     Equipments                                                           
Tasks 1 2 3 4 5

1 7 10 10 13 13
2 6 7 8 12 12
3 6 7 8 11 12
4 8 9 10 11 12
5 6 8 8 11 13
6 6 8 10 12 12
7 6 7 8 11 12
8 8 9 9 11 13
9 8 11 12 12 13
10 8 9 9 11 13
11 6 7 8 11 12

Equipment Costs 400 350 300 250 200  

 



 

39 

 

 

ijj tEC ⋅  values are shown in the table below. 

 

Table 3.6 Equipment Costs x Task Times for the Example Problem 5 
 

                   Equipments                                                           
Tasks 1 2 3 4 5

1 2800 3500 3000 3250 2600
2 2400 2450 2400 3000 2400
3 2400 2450 2400 2750 2400
4 3200 3150 3000 2750 2400
5 2400 2800 2400 2750 2600
6 2400 2800 3000 3000 2400
7 2400 2450 2400 2750 2400
8 3200 3150 2700 2750 2600
9 3200 3850 3600 3000 2600
10 3200 3150 2700 2750 2600
11 2400 2450 2400 2750 2400  

 

Now we get: 

115 =x , 121 =x , 131 =x , 145 =x , 151 =x , 161 =x , 175 =x , 185 =x , 195 =x , 

15,10 =x , 13,11 =x . 

6.0
40

66666161515131312121
1 =+++=

⋅
+

⋅
+

⋅
+⋅=

CT

xt

CT

xt

CT

xt

CT

xt
y  

02 =y  

2.0
40

83,113,11
3 ==

⋅
=

CT

xt
y  

04 =y  

CT

xt

CT

xt

CT

xt

CT

xt

CT

xt

CT

xt
y 5,105,1095958585757545451515

5
⋅

+
⋅

+
⋅

+
⋅

+
⋅

+
⋅

=  

9.1
40

131313121213
5 =+++++=y  

9.120002502.030003506.0400
1

3 ⋅+⋅+⋅+⋅+⋅==∑
=

L

l
ll yECLB  

6803 =LB  

 

Recall that for the same example problem LB1 is found to be 700. For this 

problem LB1 works better. 

 



 

40 

 

 

CHAPTER 4 
 
 

COMPUTATIONAL EXPERIMENTS 
 

 

In this chapter we discuss the results of our experiment that is designed to test 

the performance of our branch and bound algorithm together with the reduction 

and bounding mechanisms. We take the precedence networks from open 

literature for varying sizes of tasks. We use precedence graphs included in the 

data sets of Scholl (1993) at the website http://www.assembly-line-

balancing.de/ 

 

We generate the task times as follows: The shortest task times, 1it , are 

generated randomly from discrete uniform distribution between 1 and 6.  Then 

the second shortest task times, i.e., the task times of the second expensive 

equipment, ti2, are generated randomly as 12 iii trt ×= , where ir  is uniform 

between 1 and 1.4. Similarly, we generate )1( +lit as ili tr × using ilt and ir  

values. Note that to find the task times on each equipment, we generate 

different ir  values. 

 

We set the number of equipments, L, to 5. Our initial experiments showed that 

the number of equipments does not have a significant effect on the 

performance of our algorithm. Hence we try a single value of 5 for L. We 

generate the following two sets of equipment costs. 

 

     Set I     EC1= 400     EC2=350     EC3=300     EC4=250    EC5=200 

     Set II    EC1= 400     EC2=375     EC3=350     EC4=325    EC5=300 

 

Note that Set I resides low equipment cost and Set II resides high equipment 

cost problem instances. Sets I and II also correspond to high and low cost 

variability cases, respectively. 

 



 

41 

 

 

We use three different sets for cycle times: namely C1, C2 and C3.  C1 resides 

the instances with small cycle time, C2 has cycle times that is 50 percent more 

than the cycle time of C1 and C3  has cycle times that is two times the cycle 

time of C1.  

We set the cycle time of C1 as 



















×

∑∑

KL

t
i l

il

, where L is the number of 

equipments and K is the number of workstations.  
L

t
i l

il∑∑
 is the expected 

total processing time and 



















×

∑∑

KL

t
i l

il

 gives the expected cycle time when all K 

workstations are used. 
 

Hence for each value of N and K we use six combinations of cycle times and 

equipment cost values. 

 

We vary the number of tasks, N, between 20 and 55, in increments of 5, i.e., we 

use 8 different N values for C1 and C2. For C3, We vary N between 20 and 55, 

in increments of 5 and between 60 and 80 in increments of 10, i.e., we use 11 

different N values  We vary the number of workstations, K, between 2 and 8, in 

increments of 2, i.e., we use 4  different K  values.  

 

Hence for C1 and C2, we have 64482 =×× each and for C3, we have 

884112 =××   combinations. For each combination we generate 10 problem 

instances. As a total, we solve 2160 problems. 

 

We code our algorithms in C programming language and implement on Intel 

Core 2 Duo, 2.33 GHz, 980 MB of RAM PC. 

 

For each problem instance, we set a termination limit of 2 hours. We terminate 

the execution of the branch and bound algorithm if it does not return a solution 



 

42 

 

 

in 2 hours. We record the number of nodes searched and best solution reached 

at termination. 

 

The rest of the chapter is organized as follows: In Section 4.1., we state the 

statistics we used to evaluate the performances of the lower bounds and branch 

and bound algorithm. In Section 4.2, we present our preliminary experiment for 

selecting the bounding mechanisms to be used in the main experiment. We also 

test the effectiveness of the reduction mechanisms, by comparing two branch 

and bound algorithms: one with reduction mechanisms and one without 

reduction mechanisms. The preliminary experiment includes small-sized 

problem instances and the main experiment includes large-sized problem 

instances. In the main experiment we use the bounding mechanisms that are 

returned as most efficient by the preliminary experiment. 

 

4.1. STATISTICS USED 
 

We use the following statistics to evaluate the performance of our branch and 

bound algorithm.  

 

• Average computation time in Central Processing Unit (CPU) seconds 

(Average CPU Time) 

• Maximum CPU Time 

• Average number of nodes searched 

• Maximum number of nodes searched 

• Average node number till the optimal solution is found (Average 

optimality node) 

• Maximum optimality node 

 

To evaluate the performance of the lower bounds we use average and 

maximum deviation of the lower bound from the optimal cost as a ratio of the 

optimal node. Formally, 

=DLBi Percent deviation of the lower bound at the root node 100×
−

=
OPT

LBOPT i , 



 

43 

 

 

where OPT is the total equipment cost and LBi is the total cost found by lower 

bound i at the root node. 

 

4.2. PRELIMINARY RUNS 
 

Our preliminary runs include the following problem combinations: 

 

N = 20, 25 and 30 

K = 2, 4, 6 and 8 

CT = C1 and C2 

EC = Set I and Set II 

 

We have  482243 =×××  combinations. We generate 10 problem instances 

for each combination. Hence a total of 480 problems are solved.  

 

The aim of these runs is to select the lower bound(s) to be used for larger sized 

problem instances. We let BABi be the branch and bound algorithm that uses 

only lower bound i. BABij is the branch and bound algorithm that uses first 

lower bound i and then lower bound j if lower bound i cannot fathom. We try 

BAB1, BAB2, BAB3, BAB21 and BAB23. We exclude BAB13 from even 

preliminary runs, as our limited runs had revealed that the reductions obtained 

in node eliminations could not lead to a reduction in CPU times. As LB2 is an 

easy-to-compute bound, it is used as a filtering mechanism before LB1 and LB3. 

 

We report the average number of nodes and CPU times for equipment cost sets 

Set I and Set II, in Table 4.1 and Table 4.2, respectively. The associated worst 

case, i.e., maximum, results are given in Appendix in Tables A.1 and A.2. The 

tables also include the results for a branch and bound algorithm that uses no 

lower bounds, namely BAB0.     

                             

 



 

 

 

Table 4.1 The branch and bound performances with different lower bounds, Set I 

 Average # of 
nodes  

Average 
CPU time*

 Average # of 
nodes  

Average 
CPU time

 Average # of 
nodes 

Average 
CPU time

 Average # of 
nodes 

Average 
CPU time

 Average # of 
nodes 

Average 
CPU time

 Average # of 
nodes 

Average 
CPU time

2 184 0.002 184 0.000 184 0.000 184 0.000 184 0.000 184 0.000
4 2,231 0.002 1,846 0.003 2,160 0.002 1,846 0.003 1,833 0.003 2,231 0.003
6 15,384 0.017 11,514 0.013 11,957 0.014 11,514 0.016 10,096 0.014 15,384 0.014
8 53,935 0.069 37,716 0.050 26,841 0.036 37,716 0.052 23,537 0.034 53,984 0.053
2 360 0.000 360 0.000 360 0.000 360 0.000 360 0.000 360 0.002
4 6,711 0.006 5,713 0.005 6,657 0.006 5,713 0.006 5,713 0.006 6,711 0.006
6 85,982 0.089 61,461 0.067 56,147 0.061 61,440 0.064 46,424 0.053 86,017 0.077
8 553,353 0.606 305,193 0.364 184,844 0.223 304,036 0.370 146,151 0.186 566,545 0.514
2 7,759 0.009 7,759 0.011 7,759 0.009 7,759 0.011 7,759 0.010 7,759 0.009
4 1,804,285 1.983 1,460,657 1.673 1,635,432 1.828 1,460,657 1.669 1,356,489 1.567 1,804,285 1.850
6 77,409,182 101.663 46,191,821 65.189 24,782,193 35.778 46,191,821 65.494 21,203,737 30.664 77,409,182 89.133
8 1,582,440,566 2144.956 745,667,886 1133.159 106,654,761179.806 745,667,886 1146.683 99,169,651 165.456 1,583,406,291 1837.875
2 249 0.000 249 0.000 249 0.000 249 0.000 249 0.000 249 0.000
4 669 0.000 598 0.002 669 0.002 598 0.000 598 0.002 669 0.000
6 4,164 0.006 2,517 0.003 3,874 0.005 2,517 0.003 2,504 0.003 4,164 0.005
8 11,846 0.016 7,455 0.011 9,154 0.013 7,455 0.011 6,829 0.009 11,875 0.011
2 582 0.002 582 0.000 582 0.002 582 0.002 582 0.002 582 0.000
4 1,302 0.002 1,239 0.002 1,302 0.002 1,239 0.002 1,239 0.003 1,302 0.002
6 13,619 0.017 8,653 0.011 13,195 0.014 8,653 0.011 8,623 0.011 13,619 0.014
8 53,301 0.061 28,161 0.034 37,698 0.045 28,161 0.033 25,300 0.033 53,423 0.052
2 7,964 0.009 7,964 0.011 7,964 0.011 7,964 0.011 7,964 0.011 7,964 0.009
4 56,918 0.058 49,478 0.052 56,904 0.058 49,478 0.052 49,478 0.052 56,918 0.056
6 2,558,254 3.352 929,092 1.408 1,711,128 2.344 929,092 1.408 863,895 1.309 2,558,254 3.005
8 34,816,002 47.613 16,899,066 26.411 12,034,730 18.603 16,899,066 26.445 9,495,028 14.967 34,816,002 41.595

BAB0

30

K

BAB23BAB1 BAB21BAB3BAB2

20

25

20

25

30

N

2

1

CT

 

 * in seconds  

44 



 

 

 

Table 4.2 The branch and bound performances with different lower bounds, Set II 

 Average # of 
nodes  

Average 
CPU time

 Average # of 
nodes  

Average 
CPU time

 Average # of 
nodes 

Average 
CPU time

 Average # of 
nodes 

Average 
CPU time

 Average # of 
nodes 

Average 
CPU time

 Average # of 
nodes 

Average 
CPU time

2 184 0.000 184 0.000 184 0.000 184 0.000 184 0.000 184 0.000
4 1,448 0.002 1,398 0.000 1,442 0.002 1,398 0.003 1,394 0.002 1,448 0.002
6 7,450 0.009 6,663 0.008 6,903 0.009 6,588 0.008 6,104 0.008 7,525 0.008
8 12,245 0.017 11,033 0.016 9,619 0.014 10,458 0.016 8,545 0.011 12,822 0.016
2 360 0.000 360 0.000 360 0.000 360 0.002 360 0.000 360 0.002
4 5,508 0.006 5,099 0.006 5,508 0.006 5,099 0.006 5,099 0.003 5,508 0.005
6 40,251 0.045 35,314 0.041 37,466 0.041 34,227 0.038 31,677 0.036 41,430 0.039
8 120,315 0.145 101,565 0.127 103,972 0.125 96,557 0.120 83,608 0.105 125,773 0.124
2 7,759 0.011 7,759 0.011 7,759 0.011 7,759 0.010 7,759 0.011 7,759 0.011
4 194,563 0.214 192,461 0.211 191,228 0.211 192,461 0.211 189,127 0.208 194,563 0.210
6 15,494,403 17.016 12,498,357 14.192 8,382,070 10.092 12,498,165 14.277 6,196,521 8.041 15,494,595 36.750
8 120,183,700 193.230 91,603,731 150.148 60,553,130 96.895 91,020,559 151.356 44,241,521 73.758 120,787,008 296.797
2 200 0.000 200 0.000 200 0.000 200 0.000 200 0.000 200 0.000
4 520 0.002 519 0.002 520 0.002 519 0.002 519 0.000 520 0.000
6 1,897 0.003 1,818 0.002 1,891 0.003 1,818 0.000 1,814 0.003 1,897 0.002
8 5,661 0.006 4,962 0.006 5,149 0.005 4,942 0.006 4,497 0.006 5,681 0.006
2 480 0.000 480 0.002 480 0.002 480 0.000 480 0.000 480 0.000
4 1,176 0.000 1,175 0.002 1,176 0.002 1,175 0.002 1,175 0.002 1,176 0.000
6 7,290 0.008 6,800 0.008 7,252 0.006 6,800 0.008 6,762 0.006 7,290 0.006
8 20,533 0.020 18,429 0.014 19,794 0.020 18,349 0.017 17,656 0.019 20,613 0.019
2 6,930 0.008 6,930 0.008 6,930 0.006 6,930 0.008 6,930 0.006 6,930 0.016
4 6,729 0.008 6,727 0.008 6,729 0.008 6,727 0.009 6,727 0.006 6,729 0.016
6 228,676 0.252 227,449 0.249 224,784 0.244 227,449 0.245 223,558 0.244 228,676 0.422
8 2,967,334 4.033 2,858,296 3.911 2,340,918 3.223 2,847,390 3.898 2,226,443 3.117 2,978,240 5.485

30

BAB3BAB2

20

BAB1

252

1

20

25

30

BAB23BAB21

CT N K

BAB0

 

45 



 

 

46 

 

As can be observed from the tables, BAB2 and BAB3 perform better than BAB1. 

The poor performance of BAB1 can be attributed to the high variability of the 

task times where the minimum task time may be too far from many task times. 

In comparing the performances of BAB0 and BAB1, we observe that LB1 cannot 

lead to a significant reduction in the average number of nodes searched.  When 

LB2 is used before LB1 only a slight reduction in the average number of nodes 

is observed over BAB2 and the corresponding average CPU times are a slightly 

higher. Hence, the savings in the number of nodes is outweighed by the 

increased CPU times. 

 

The effort spent in calculating the lower bounds is significantly justified in 

BAB2 and BAB3. We can see that there is a considerable reduction in the 

average number of nodes and CPU times over BAB0. These reductions are 

more significant when the number of tasks and workstations are larger. For 

example, for Set I, C2, N=30 and K=8, when BAB2 is used the average number 

of nodes and CPU time are reduced from 34,816,002 to 16,899,066 and from 

41.595 seconds to 26.411 seconds, respectively. Moreover, when BAB3 is used 

the average number of nodes is reduced to 12,034,730 and the resulting 

average CPU time is 18.603 seconds. However this result cannot be 

generalized and the branch and bound algorithms do not dominate each other. 

For example, when Set I, C2, N=30 and K=6, the average number of nodes is 

929,092 for BAB2 and 1,711,128 for BAB3. The corresponding average CPU 

times are 1.408 and 2.344 seconds.  

 

The average number of nodes and CPU times are higher when the equipment 

costs are more variable and the cycle time is smaller. Note that Set I and C1 

form the hardest combination. Furthermore, as the number of workstations and 

number of tasks increase the average CPU times tend to increase exponentially.   

 

Moreover, to see whether it is worth to use our elimination rules or not, we 

perform an experiment using BAB2 and BAB23. We design two branch and 

bound algorithms: one using these mechanisms and one not using them. We 



 

 

47 

 

report the average performances in Table 4.3. The associated worst case 

performances are reported in Appendix, Table A.3. 

 

It can be observed from the tables that our reduction mechanisms improve the 

performance of both BAB2 and BAB23 considerably. As the number of tasks and 

workstations increase the reductions in the average number of nodes and CPU 

times are more significant. For example, when Set I, C2, N=30 and K=8,  the 

use of reduction mechanisms in BAB2 and BAB23 reduce average CPU times 

from 108.027 seconds to 26.411 seconds and from 45.702 to 14.967, 

respectively. 

 

As a result of our preliminary experiments we see that the branch and bound 

algorithm, that uses our reduction mechanisms and LB2 before LB3 as a filtering 

mechanism, i.e., BAB23 , performs superior. 



 

 

48 

 

Table 4.3 The effect of the reduction mechanisms 

 Average # of 
nodes  

Average 
CPU time

 Average # of 
nodes 

Average 
CPU time

 Average # of 
nodes 

Average 
CPU time

 Average # of 
nodes 

Average 
CPU time

2 184 0.000 314 0.000 184 0.000 314 0.000
4 1,846 0.003 3,858 0.002 1,833 0.003 3,624 0.002
6 11,514 0.013 39,417 0.042 10,096 0.014 25,899 0.030
8 37,716 0.050 167,381 0.183 23,537 0.034 53,786 0.069
2 360 0.000 944 0.002 360 0.000 944 0.000
4 5,713 0.005 17,012 0.017 5,713 0.006 16,605 0.017
6 61,461 0.067 307,892 0.306 46,424 0.053 165,841 0.178
8 305,193 0.364 2,119,970 2.209 146,151 0.186 616,154 0.689
2 7,759 0.011 8,158 0.011 7,759 0.010 8,158 0.011
4 1,460,657 1.673 3,712,838 4.156 1,356,489 1.567 3,140,969 3.545
6 46,191,821 65.189 254,738,869 304.061 21,203,737 30.664 69,873,414 89.520
8 745,667,886 1133.159 1,717,362,925 4994.184 99,169,651 165.456 253,013,359 377.839
2 249 0.000 690 0.000 249 0.000 690 0.000
4 598 0.002 1,486 0.003 598 0.002 1,486 0.002
6 2,517 0.003 6,734 0.008 2,504 0.003 6,432 0.008
8 7,455 0.011 27,981 0.034 6,829 0.009 21,700 0.027
2 582 0.000 1,373 0.002 582 0.002 1,373 0.002
4 1,239 0.002 4,649 0.006 1,239 0.003 4,649 0.006
6 8,653 0.011 43,963 0.050 8,623 0.011 42,786 0.050
8 28,161 0.034 215,971 0.252 25,300 0.033 158,159 0.186
2 7,964 0.011 8,114 0.011 7,964 0.011 8,114 0.009
4 49,478 0.052 106,857 0.141 49,478 0.052 106,857 0.141
6 929,092 1.408 2,781,706 3.747 863,895 1.309 2,483,071 3.344
8 16,899,066 26.411 78,820,775 108.027 9,495,028 14.967 33,119,115 45.702
2 184 0.000 314 0.000 184 0.000 314 0.002
4 1,398 0.000 2,751 0.002 1,394 0.002 2,726 0.003
6 6,663 0.008 13,898 0.017 6,104 0.008 11,909 0.013
8 11,033 0.016 32,388 0.038 8,545 0.011 21,243 0.028
2 360 0.000 944 0.002 360 0.000 944 0.000
4 5,099 0.006 14,705 0.017 5,099 0.003 14,687 0.016
6 35,314 0.041 133,748 0.142 31,677 0.036 104,903 0.114
8 101,565 0.127 520,319 0.563 83,608 0.105 329,519 0.370
2 7,759 0.011 8,158 0.008 7,759 0.011 8,158 0.009
4 192,461 0.211 337,308 0.445 189,127 0.208 330,113 0.435
6 12,498,357 14.192 38,916,261 53.594 6,196,521 8.041 14,139,610 19.819
8 91,603,731 150.148 357,477,391 503.363 44,241,521 73.758128,657,389 186.195
2 200 0.000 690 0.000 200 0.000 690 0.002
4 519 0.002 1,433 0.002 519 0.000 1,433 0.002
6 1,818 0.002 4,478 0.003 1,814 0.003 4,445 0.006
8 4,962 0.006 11,656 0.016 4,497 0.006 10,843 0.014
2 480 0.002 1,373 0.000 480 0.000 1,373 0.002
4 1,175 0.002 4,112 0.005 1,175 0.002 4,112 0.005
6 6,800 0.008 30,345 0.036 6,762 0.006 30,211 0.034
8 18,429 0.014 100,238 0.119 17,656 0.019 90,959 0.108
2 6,930 0.008 8,114 0.006 6,930 0.006 8,114 0.011
4 6,727 0.008 7,763 0.009 6,727 0.006 7,763 0.011
6 227,449 0.249 399,909 0.549 223,558 0.244 388,972 0.531
8 2,858,296 3.911 7,184,902 9.895 2,226,443 3.117 5,002,885 6.919

BAB2 BAB23

TC CT N K With Reductions Without Reductions

30

25

2

20

25

30

20

20

25

30

30

Without ReductionsWith Reductions

1

2

2

1

1

20

25

 



 

 

49 

 

 
4.3. MAIN EXPERIMENT 
 

In this section we report on the performance of our branch and bound 

algorithm that is selected for larger sized problem instances in the previous 

section, i.e., BAB23.  We present the results of our main runs in Tables 4.4 

through 4.9. Specifically, we report the results of Set I and C1 in Table 4.4,  

Set II and C1 in Table 4.5, Set I and C2 in Table 4.6, Set II and C2 in Table 

4.7,  Set I and C3 in Table 4.8, Set II and C3 in Table 4.9.  

 

As can be observed from the tables, as the number of workstations, K, 

increases, both the average and maximum number of nodes and the CPU times 

increase significantly. The same result is true for the number of nodes till 

optimality. An increase in the average and maximum CPU times are more 

significant when N ≥ 30. For example, for 45 tasks problem, when equipment 

costs with high variability, i.e., Set I and low cycle time, C1 are used, we can 

see from Table 4.4 that for K= 2, the maximum CPU time is less than 2 

seconds whereas for K= 4 , 9 out of 10 instances cannot be solved in 2 hours. 

 

When all other parameter combinations are fixed, the equipment cost set with 

higher variability, i.e., Set I is more difficult than the equipment cost set with 

lower variability, i.e., Set II.  It can be observed from Tables 4.4 and 4.5 that 

almost all performance measures are better for Set II.  For example in Table 4.4 

(Set I ) for N=30, K= 8, the average CPU time is about 165 seconds whereas in 

Table 4.5 (Set II) the average CPU time is about 74 seconds.  Some larger 

sized problems that could not be solved in 2 hours with equipment cost Set I, 

can be solved with Set II. The similar observations hold for the results in 

Tables 4.6 and 4.7 (C1) as well as Tables 4.8 and 4.9 (C2). 



 

 

 

Table 4.4 The performance of our branch and bound algorithm, Set I, C1 
 

 Average # of 
nodes  

Maximum  # of 
nodes  

 Average # of 
nodes  till 
optimality

Maximum  # of 
nodes  till 
optimality 

Average 
CPU time

Maximum 
CPU time

# of 
unsolved 
instances

2 184 206 40 109 0.000 0.000 0
4 1,833 2,816 1,301 2,498 0.003 0.016 0
6 10,096 17,052 6,698 11,937 0.014 0.031 0
8 23,537 63,774 19,023 57,719 0.034 0.078 0
2 360 449 174 416 0.000 0.000 0
4 5,713 10,615 4,149 8,242 0.006 0.016 0
6 46,424 99,060 34,615 98,275 0.053 0.110 0
8 146,151 231,745 119,067 196,787 0.186 0.312 0
2 7,759 7,829 312 909 0.010 0.016 0
4 1,356,489 2,717,212 237,528 2,044,275 1.567 2.859 0
6 21,203,737 51,471,522 2,038,283 9,827,411 30.664 69.719 0
8 99,169,651 324,677,324 14,483,554 35,088,570 165.456 526.157 0
2 4,185 4,426 178 981 0.006 0.016 0
4 481,000 798,988 7,634 28,196 0.647 1.016 0
6 8,133,208 16,478,554 1,871,569 15,580,849 12.505 22.860 0
8 36,644,296 97,915,532 12,695,941 90,724,199 63.542 162.016 0
2 761,008 798,142 3,504 13,593 0.883 0.984 0
4 2,137,273,813 4,102,512,134 115,304,039 1,052,036,141 2225.503 4308.656 0
6 979,471,117 2,305,192,522 522,514,603 1,448,706,608 - - -
2 1,220,106 1,248,056 4,308 25,851 1.734 1.922 0
4 1,276,412,241 1,628,759,874 60,534,933 590,307,811 7122.458 7200.000 9
2 12,715 12,738 1,311 9,611 0.031 0.032 0
4 1,059,097 1,767,876 78,865 263,317 2.298 3.719 0
6 18,961,026 36,123,596 1,301,004 5,338,409 48.708 100.125 0
8 383,544,388 624,534,035 188,761,463 583,395,763 956.8611494.516 0
2 1,720,396 1,721,338 5,281 26,307 3.111 3.234 0
4 3,828,543,461 3,972,332,623 97,790,182 971,098,204 - - -

55

BAB23

20

25

30

35

40

45

50

N K

 

50 



 

 

 

Table 4.5 The performance of our branch and bound, Set II , C1 
 

 Average # of 
nodes  

Maximum  # of 
nodes  

 Average # of 
nodes  till 
optimality

Maximum  # of 
nodes  till 
optimality 

Average 
CPU time

Maximum 
CPU time

# of 
unsolved 
instances

2 184 206 40 109 0 0.000 0
4 1,394 1,918 1,101 1,660 0.002 0.015 0
6 6,104 10,597 3,855 6,824 0.008 0.016 0
8 8,545 17,598 7,464 17,033 0.011 0.031 0
2 360 449 174 416 0.000 0.000 0
4 5,099 9,545 4,215 8,242 0.003 0.015 0
6 31,677 73,703 25,991 73,120 0.036 0.078 0
8 83,608 158,033 62,722 102,912 0.105 0.203 0
2 7,759 7,829 312 909 0.011 0.016 0
4 189,127 234,400 17,764 88,458 0.208 0.266 0
6 6,196,521 20,307,181 909,211 2,415,602 8.041 23.218 0
8 44,241,521 99,385,259 5,058,174 18,674,260 73.758 161.578 0
2 4,185 4,426 178 981 0.005 0.016 0
4 66,312 137,254 8,831 28,196 0.089 0.172 0
6 1,909,444 7,309,969 95,955 264,380 2.777 12.234 0
8 14,106,535 24,655,694 1,948,367 7,686,340 24.292 45.078 0
2 761,008 798,142 3,504 13,593 0.889 0.985 0
4 198,493,181 277,048,491 5,357,191 27,562,308 213.286 298.562 0
6 2,587,633,583 3,587,212,164 226,690,328 903,030,968 4707.408 7200.000 2
8 1,915,553,738 4,179,656,967 1,430,097,698 3,263,767,420 - - -
2 1,220,106 1,248,056 4,308 25,851 1.747 1.937 0
4 586,506,096 700,091,696 42,635,635 338,822,864 769.953 928.984 0
6 2,739,286,997 4,244,660,542 762,602,196 3,106,564,459 6728.281 7200.000 9
2 12,715 12,738 1,311 9,611 0.031 0.032 0
4 275,773 411,557 86,740 206,384 0.567 0.859 0
6 3,652,641 10,183,714 673,134 1,415,391 9.511 28.859 0
8 20,257,157 28,199,471 9,084,204 21,410,298 53.514 86.797 0
2 1,720,396 1,721,338 5,281 26,307 3.109 3.234 0
4 294,225,893 438,528,472 3,150,300 28,540,014 538.163 807.453 0
6 2,377,720,417 3,680,191,389 230,970,681 1,109,098,371 5690.820 7200.000 5

N K

BAB23

35

20

25

30

40

45

50

55

 

51 



 

 

52 

 

Another important conclusion from the tables is that the cycle time has 

significant influence on the difficulty of the problem. As the cycle time 

increases, the number of nodes searched, CPU times, number of nodes till 

optimality decrease considerably. This influence is expected since higher cycle 

times enable optimal solutions with fewer workstations and the reduction rules 

for the number of workstations become more effective. When the cycle time is 

higher we have fewer workstations as more tasks can fit to a workstation. The 

reduction in CPU times becomes more significant when the number of tasks 

and workstations are higher. Note from Tables 4.4, 4.6 and 4.8 that when 

N=50, K= 8 and Set I , for C1, C2 and C3  the average CPU times are about 

957, 22 and 4 seconds, respectively. Theoretically, the generated cycle time 

values may not return a feasible solution, however in our experiments we 

always had feasible solutions. 

 

Our experiments reveal that the most difficult combination of equipment costs 

and cycle time is Set I and C1 (see Table 4.4) whereas the easiest combination 

is Set II and C3 (see Table 4.9). In the most difficult combination set, none of 

the instances with N=40 and K=6 and 8 can be solved in 2 hours. On the other 

hand, in the easiest combination set, all of the instances are solved with 

average CPU times less than 4 seconds for K=6 and 218 seconds for K=8. 

Moreover, for N=45 and K=4, 9 out of 10 instances cannot be solved in 2 

hours in the most difficult combination. However, in the easiest combination 

set, the average CPU time for instances with N=45 and K=8 is less than 779 

seconds. 

 

In general, the average and maximum number of nodes till optimality is very 

low compared to number of nodes searched especially for larger K and N. For 

example for N=40, K=6, TC=Set II and CT=C2 (Table 4.7), the average 

number of nodes till optimality is 4,918,229 although the average number of 

nodes searched is 196,985,643. Hence, the problems that cannot be solved until 

our termination limit of 2 hours are likely to be optimal. 

  



 

 

 

Table 4.6 The performance of our branch and bound algorithm, Set I, C2 
 

 Average # of 
nodes  

Maximum  # of 
nodes  

 Average # of 
nodes  till 
optimality

Maximum  # of 
nodes  till 
optimality 

Average 
CPU time

Maximum 
CPU time

# of 
unsolved 
instances

2 249 265 22 39 0.000 0.000 0
4 598 1,160 434 640 0.002 0.016 0
6 2,504 4,414 2,018 2,851 0.003 0.016 0
8 6,829 15,216 4,710 9,864 0.009 0.016 0
2 582 595 34 49 0.002 0.016 0
4 1,239 2,254 936 2,243 0.003 0.016 0
6 8,623 15,802 6,184 11,427 0.011 0.016 0
8 25,300 51,733 18,422 37,180 0.033 0.063 0
2 7,964 7,984 41 59 0.011 0.016 0
4 49,478 90,950 1,180 7,908 0.052 0.094 0
6 863,895 1,469,142 162,093 618,985 1.309 2.094 0
8 9,495,028 27,119,290 1,290,652 3,968,546 14.967 39.984 0
2 4,562 4,574 54 69 0.008 0.016 0
4 22,134 31,454 151 662 0.027 0.047 0
6 458,913 982,150 7,150 25,955 0.733 1.422 0
8 5,214,712 10,414,948 461,573 2,754,600 8.516 15.610 0
2 835,410 835,533 61 79 0.928 1.032 0
4 14,129,245 34,128,526 988,717 5,762,298 12.888 30.672 0
6 2,019,244,712 3,361,388,127 32,387,561 252,382,236 3252.142 7200.000 1
8 1,011,080,577 2,992,833,274 578,651,838 3,566,455,191 6866.002 7200.000 9
2 1,253,130 1,253,144 76 89 1.685 1.797 0
4 72,044,248 151,505,592 28,029 75,787 81.994 165.234 0
6 1,289,842,087 4,076,657,166 9,549,611 55,967,939 6826.067 7200.000 9
2 12,954 12,966 83 99 0.030 0.032 0
4 45,963 73,758 6,125 17,019 0.097 0.141 0
6 1,170,743 2,432,750 72,216 313,713 2.822 5.750 0
8 8,273,826 13,979,789 792,628 4,525,178 21.955 35.687 0
2 1,722,108 1,722,126 80 109 3.081 3.109 0
4 177,501,018 462,548,074 2,568 7,729 314.906 809.437 0
6 3,213,007,172 3,395,145,272 103,172,272 971,289,432 - - -

N K

BAB23

20

25

30

35

40

45

50

55

 

53 



 

 

 

Table 4.7 The performance of our branch and bound algorithm, Set II , C2 
 

 Average # of 
nodes  

Maximum  # of 
nodes  

 Average # of 
nodes  till 
optimality

Maximum  # of 
nodes  till 
optimality 

Average 
CPU time

Maximum 
CPU time

# of 
unsolved 
instances

2 200 206 30 39 0.000 0.000 0
4 519 686 447 627 0.000 0.000 0
6 1,814 3,012 1,533 2,754 0.003 0.016 0
8 4,497 10,098 3,842 9,547 0.006 0.016 0
2 480 485 40 49 0.000 0.000 0
4 1,175 2,254 1,092 2,243 0.002 0.015 0
6 6,762 12,769 5,859 11,559 0.006 0.016 0
8 17,656 36,450 13,723 32,104 0.019 0.032 0
2 6,930 6,932 50 59 0.006 0.016 0
4 6,727 7,767 679 1,984 0.006 0.016 0
6 223,558 379,645 50,533 166,118 0.244 0.422 0
8 2,226,443 4,025,629 664,545 1,937,899 3.117 5.406 0
2 3,840 3,840 60 69 0.003 0.016 0
4 3,007 3,798 400 1,605 0.003 0.016 0
6 72,974 137,376 8,378 28,318 0.097 0.156 0
8 602,487 1,239,386 38,406 158,703 0.938 1.938 0
2 626,170 626,174 70 79 0.623 0.625 0
4 437,555 516,820 71,952 319,440 0.467 0.531 0
6 196,985,643 256,604,300 4,918,229 22,377,380 210.964 267.562 0
8 2,189,208,116 3,148,503,241 131,737,543 655,282,641 - - -
2 939,850 939,859 80 89 1.247 1.250 0
4 896,472 953,604 46,672 75,987 1.134 1.312 0
6 581,596,476 700,091,696 44,825,425 338,822,864 759.877 925.515 0
8 2,512,110,231 3,235,124,539 155,674,335 915,894,201 - - -
2 10,080 10,080 90 99 0.025 0.031 0
4 16,357 21,974 5,862 16,759 0.038 0.062 0
6 274,320 464,098 79,746 248,620 0.563 0.953 0
8 1,571,207 2,720,300 410,240 875,902 3.852 5.718 0
2 1,396,840 1,396,846 100 109 2.681 2.688 0
4 1,712,744 1,730,518 5,311 23,157 2.778 2.813 0
6 277,655,237 370,626,826 3,049,650 28,540,014 511.747 683.078 0
8 3,123,214,463 3,824,320,184 85,005,832 757,549,547 - - -

N K

BAB23

40

45

50

55

20

25

30

35

 

54 



 

 

 

Table 4.8 The performance of our branch and bound algorithm, Set I, C3 
 

 Average # of 
nodes  

Maximum  # of 
nodes  

 Average # of 
nodes  till 
optimality

Maximum  # 
of nodes  till 
optimality 

Average 
CPU time

Maximum 
CPU time

# of 
unsolved 
instances

2 200 206 30 39 0.000 0.000 0
4 461 589 327 421 0.000 0.000 0
6 938 1,870 753 1,716 0.002 0.015 0
8 2,494 4,406 1,813 2,843 0.003 0.016 0
2 480 485 40 49 0.002 0.015 0
4 1,092 1,749 875 1,736 0.002 0.016 0
6 1,846 4,112 1,538 4,053 0.003 0.016 0
8 7,006 15,970 5,414 14,755 0.008 0.016 0
2 6,930 6,932 50 59 0.008 0.016 0
4 7,706 7,838 286 909 0.011 0.016 0
6 97,338 177,128 1,297 7,304 0.138 0.250 0
8 864,446 1,598,226 42,242 177,379 1.327 2.704 0
2 3,840 3,840 60 69 0.006 0.016 0
4 4,079 4,426 296 1,025 0.006 0.016 0
6 37,133 55,836 1,422 10,722 0.058 0.078 0
8 479,706 855,452 125,419 782,041 0.780 1.468 0
2 626,170 626,174 70 79 0.627 0.641 0
4 760,494 800,884 2,856 13,593 0.889 0.985 0
6 24,705,053 39,201,548 265,497 2,443,723 30.805 51.219 0
8 1,828,664,136 3,339,303,773 36,452,624 252,382,236 2432.555 4454.719 0
2 939,850 939,859 80 89 1.236 1.250 0
4 1,219,353 1,248,056 4,135 25,851 1.733 1.921 0
6 99,648,079 179,414,684 50,380 185,596 145.717 287.344 0
8 1,549,548,027 4,069,278,376 14,657,720 62,140,847 6558.592 7200.000 9
2 10,080 10,080 90 99 0.025 0.031 0
4 15,485 19,416 3,403 8,031 0.036 0.047 0
6 94,148 326,854 30,307 140,834 0.217 0.734 0
8 1,032,151 1,865,188 128,088 313,713 2.516 4.500 0
2 1,396,840 1,396,846 100 109 2.673 2.688 0
4 1,720,165 1,721,082 5,124 24,895 3.114 3.250 0
6 361,073,469 725,119,670 6,318,679 58,140,304 753.792 1455.781 0
8 3,255,425,407 3,402,780,884 118,665,237 971,289,432 - - -

55

BAB23

20

25

30

35

40

45

50

N K

 

55 



 

 

 

Table 4.9 The performance of our branch and bound algorithm, Set II, C3 
 

 Average # of 
nodes  

Maximum  # of 
nodes  

 Average # of 
nodes  till 
optimality

Maximum  # 
of nodes  till 
optimality 

Average 
CPU time

Maximum 
CPU time

# of 
unsolved 
instances

2 200 206 30 39 0 0,000 0
4 467 589 327 421 0,000 0,000 0
6 666 1.022 516 854 0,002 0,016 0
8 1.904 3.012 1.556 2.754 0,003 0,016 0
2 480 485 40 49 0,000 0,000 0
4 1.092 1.749 875 1.736 0,003 0,016 0
6 1.515 3.139 1.364 3.080 0,002 0,016 0
8 6.289 14.440 5.378 13.471 0,006 0,016 0
2 6.930 6.932 50 59 0,008 0,016 0
4 7.760 7.838 286 909 0,011 0,016 0
6 59.783 135.964 4.678 25.796 0,066 0,156 0
8 226.586 379.645 33.728 154.017 0,247 0,437 0
2 3.840 3.840 60 69 0,005 0,016 0
4 4.199 4.426 312 1.185 0,006 0,016 0
6 17.117 49.960 4.364 30.614 0,025 0,078 0
8 78.608 137.376 13.820 35.784 0,106 0,172 0

2 626.170 626.174 70 79 0,631 0,641 0
4 760.494 800.884 2.856 13.593 0,892 1,000 0
6 3.470.317 18.323.548 285.911 2.427.775 3,447 18,563 0
8 203.499.272 270.437.421 5.609.979 27.562.308 217,066 275,672 0

2 939.850 939.859 80 89 1,245 1,250 0
4 1.219.353 1.248.056 4.135 25.851 1,742 1,937 0
6 30.678.455 142.104.550 5.474.671 45.221.490 35,845 162,141 0
8 599.496.467 736.277.596 42.074.076 338.822.864 778,811 926,703 0
2 10.080 10.080 90 99 0,023 0,032 0
4 15.612 19.416 3.403 8.031 0,038 0,047 0
6 70.359 276.594 23.539 144.038 0,145 0,562 0
8 294.179 464.098 103.131 248.620 0,608 0,953 0
2 1.396.840 1.396.846 100 109 2,684 2,688 0
4 1.720.307 1.721.314 5.224 25.469 3,127 3,266 0
6 103.358.423 733.836.494 7.968.953 57.641.562 181,973 1282,141 0
8 298.004.317 438.529.212 5.900.574 28.540.014 550,572 811,609 0

45

50

55

20

25

30

35

N K

BAB23

40

 

56 



 

  

57 

 

The average performances of the majority of the instances are close to their 

maximums. This reveals the consistent behavior of our branch and bound 

algorithm over all instances. However there is an exception in Table 4.9 for 

N=55 and K=6 where the average CPU time is about 182 seconds whereas the 

maximum CPU time is about 1282 seconds. We see that 2 of 10 instances have 

CPU times of 516 and 1282 seconds and the remaining eight instances are 

solved in about 2.7 seconds. 

 

Generally, as the number of tasks increases, the average and maximum number 

of nodes searched, CPU times and number of nodes till optimality increase. 

This is expected since the number of tasks affects the number of branches, 

hence the depth of the tree. However, we observe some exceptions in our tables 

between N=30 and N=35, and between N=45 and N=50. This may be due to 

random effect or the precedence structure. When precedence relations are 

fewer, more branches become feasible, hence the problem gets harder.  

 

The flexibility of the precedence graphs is measured by flexibility ratio, FR.  

 

2

)1( −×
=

NN
networkprecedencetheinzerosofNumber

FR , where an entry ),( ji of the 

precedence network is 1 if task i precedes task j and 0 otherwise. Note that 

2

)1( −× NN
 gives the total number of entries in the precedence network. As FR 

increases problem becomes less restricted, hence more difficult to solve. 

 

We calculate FR ratios for our test problems and tabulate the results in Table 

4.10.  

 
 
 
 
 
 
 



 

  

58 

 

Table 4.10 The Flexibility Ratios of test problems 
 

N FR
20 0.2300
25 0.2833
30 0.5517
35 0.4050
40 0.6435
45 0.5545
50 0.1812
55 0.4471
60 0.3379
70 0.4058
80 0.4399 

 

 
We find that for N=30 and N=35, FR is 0.5517 and 0.4050, respectively. Thus, 

when N=35 the instances are more flexible which can explain the exception. 

Moreover, note that for N=45 and N=50, FR values are 0.5545 and 0.1812, 

respectively. Hence, we can explain the lower CPU times returned by the larger 

size problems by their lower flexibility ratios. 

 

In practice, the flexibility ratios of the assembly lines are generally lower. Note 

from Table 4.10 that all the precedence networks we use have relatively high 

ratios. Bukchin and Tzur (2000) use FR values that are around 0.1 and 0.4. 

Hence our experiments consider relatively difficult to solve ones. 

 

We next investigate root node lower bound performances. Tables 4.11, 4.12 

and 4.13 report the average and maximum deviations of LB1, LB2 and LB3 from 

the optimal for C1, C2 and C3, respectively.  

 

 

 

 

 

 

 



 

  

59 

 

 

Table 4.11 The lower bound performances, C1 
 

Average Maximum Average Maximum Average Maximum

2 64.24 66.67 10.61 16.67 14.77 22.41
4 67.32 80.95 23.49 28.57 9.19 13.94
6 66.65 75.00 32.06 37.50 10.14 12.30
8 68.83 80.95 32.39 34.88 8.94 12.98
2 64.24 66.67 10.61 16.67 13.86 21.99
4 64.16 80.95 24.50 27.27 9.91 12.67
6 64.40 75.00 34.62 37.50 8.54 10.48
8 67.55 79.49 32.27 38.46 7.81 11.20
2 64.24 66.67 10.61 16.67 13.50 19.19
4 67.88 81.82 24.50 27.27 8.80 11.67
6 64.77 74.19 30.00 35.48 7.13 9.26
8 68.19 80.49 30.32 31.71 5.58 7.70
2 64.24 66.67 10.61 16.67 12.98 19.91
4 66.75 80.95 25.89 27.27 10.04 12.81
6 65.15 74.19 31.63 35.48 7.34 9.25
8 66.79 80.95 31.68 33.33 6.46 8.27
2 63.64 63.64 9.09 9.09 12.21 14.15
4 67.62 80.95 23.81 23.81 8.57 10.13
6 65.02 74.19 33.35 35.48 7.26 8.69
2 63.64 63.64 9.09 9.09 12.47 13.30
4 71.69 81.82 24.50 27.27 9.45 12.64
2 64.24 66.67 10.61 16.67 13.53 18.50
4 70.65 81.82 27.06 28.57 11.63 13.71
6 67.09 75.76 32.19 37.50 9.05 10.57
8 72.96 80.95 32.76 34.15 7.45 9.04
2 63.64 63.64 9.09 9.09 11.65 13.38
4 75.32 81.82 24.16 27.27 8.20 10.82
2 55.87 57.14 4.39 7.14 23.27 27.03
4 54.71 73.33 11.31 13.33 8.19 12.43
6 53.90 66.67 17.21 26.76 9.68 15.19
8 57.04 73.33 15.21 17.39 8.56 11.84
2 55.87 57.14 4.39 7.14 23.74 27.43
4 49.68 73.33 11.69 13.04 9.25 10.92
6 50.50 66.67 20.62 27.78 9.06 14.14
8 55.52 72.41 15.99 26.44 9.39 10.99
2 55.87 57.14 4.39 7.14 22.78 24.98
4 55.13 73.91 12.08 13.04 7.81 9.97
6 51.09 66.20 13.96 17.46 7.02 11.74
8 56.79 73.03 14.41 16.48 7.25 10.12
2 55.87 57.14 4.39 7.14 22.68 25.43
4 52.70 73.33 12.27 13.04 7.98 10.04
6 51.31 61.90 15.24 18.75 6.31 11.60
8 54.38 73.33 14.98 16.48 7.34 8.67
2 55.56 55.56 3.70 3.70 23.43 24.89
4 54.78 73.33 11.30 13.04 8.85 10.83
6 49.84 61.90 16.21 17.46 4.86 11.92
8 56.62 72.73 14.02 15.56 8.19 9.67
2 55.56 55.56 3.70 3.70 23.15 24.62
4 60.23 73.33 11.50 13.04 8.50 9.70
6 54.40 66.20 16.10 18.75 5.81 13.33
2 55.87 57.14 4.39 7.14 22.87 25.38
4 58.14 74.47 13.06 14.89 9.02 11.11
6 53.64 67.12 15.49 18.75 7.69 13.51
8 62.61 73.63 15.57 16.48 7.38 10.11
2 55.56 55.56 3.70 3.70 22.62 24.27
4 65.39 73.91 11.30 13.04 7.69 9.13
6 59.42 66.67 17.12 18.75 4.46 11.63

TC N K

1

20

25

30

35

40

45

50

2

20

25

30

35

40

45

50

55

%DEV LB 3%DEV LB 1 %DEV LB 2

55

 



 

  

60 

 

 

Table 4.12 The lower bound performances, C2 
 

Average Maximum Average Maximum Average Maximum

2 49.29 50.00 0.00 0.00 19.17 22.74
4 59.24 73.33 19.00 21.43 13.99 17.04
6 67.21 81.82 23.95 28.57 9.48 13.94
8 64.00 72.41 29.10 31.03 9.76 13.79
2 50.00 50.00 0.00 0.00 19.47 21.99
4 62.10 73.33 18.86 20.00 13.33 17.78
6 64.94 81.82 26.23 27.27 10.69 12.67
8 65.29 71.43 27.88 29.63 8.67 10.85
2 50.00 50.00 0.00 0.00 19.32 20.71
4 59.24 73.33 18.29 20.00 11.71 15.42
6 67.05 80.95 23.17 25.00 7.78 10.01
8 65.29 85.19 27.51 28.57 7.00 8.86
2 50.00 50.00 0.00 0.00 18.82 20.87
4 57.33 73.33 20.00 20.00 13.27 17.00
6 66.41 80.95 25.19 27.27 10.01 11.82
8 64.16 86.21 28.52 31.03 8.14 9.69
2 50.00 50.00 0.00 0.00 19.37 21.31
4 61.52 73.33 17.71 20.00 11.86 15.47
6 67.60 80.95 23.77 27.27 8.65 10.14
8 72.22 85.19 26.72 28.57 6.63 8.74
2 50.00 50.00 0.00 0.00 19.67 20.50
4 62.10 73.33 18.86 20.00 13.19 15.47
6 71.77 80.95 24.50 27.27 9.33 12.64
2 50.00 50.00 0.00 0.00 19.24 21.53
4 67.81 73.33 20.14 21.43 13.71 15.77
6 70.74 81.82 26.93 27.27 11.90 13.71
8 69.06 72.41 30.16 31.03 9.67 11.88
2 33.33 33.33 0.00 0.00 19.01 20.60
4 63.64 63.64 9.09 9.09 11.96 13.64
6 70.00 75.00 22.50 25.00 9.45 11.30
2 24.50 25.00 0.00 0.00 12.22 16.75
4 41.42 61.29 9.11 10.00 9.92 12.54
6 54.53 73.91 11.33 13.33 8.30 13.15
8 50.11 61.90 14.08 17.46 8.84 12.34
2 25.00 25.00 0.00 0.00 13.32 16.46
4 45.42 61.29 9.08 9.68 10.39 13.19
6 50.09 73.91 12.46 13.04 8.72 10.89
8 51.83 60.00 13.06 14.75 9.11 11.93
2 25.00 25.00 0.00 0.00 12.44 15.60
4 41.42 61.29 8.77 9.68 8.33 11.20
6 54.71 73.91 11.51 13.04 8.17 10.12
8 51.96 80.00 13.17 16.13 7.02 9.19
2 25.00 25.00 0.00 0.00 12.33 14.15
4 38.06 61.29 9.68 9.68 9.36 11.94
6 52.58 73.33 12.08 13.04 8.59 10.11
8 50.13 80.33 13.61 14.75 7.73 9.68
2 25.00 25.00 0.00 0.00 13.69 15.37
4 45.03 61.29 8.47 9.68 10.04 12.54
6 54.78 73.33 11.30 13.04 8.96 10.70
8 61.66 79.66 12.45 14.75 8.14 11.21
2 25.00 25.00 0.00 0.00 13.44 15.19
4 45.42 61.29 9.08 9.68 10.16 12.61
6 60.23 73.33 11.50 13.04 8.37 10.72
8 65.33 78.64 12.56 14.47 6.25 8.60
2 25.00 25.00 0.00 0.00 12.47 15.84
4 53.42 61.29 9.71 10.00 9.82 11.29
6 58.20 74.47 13.04 14.89 9.08 10.33
8 56.39 61.29 14.35 16.13 7.93 9.60
2 14.29 14.29 0.00 0.00 25.38 26.98
4 55.56 55.56 3.70 3.70 22.90 24.27
6 56.50 70.00 11.00 12.50 6.66 21.57
8 65.33 73.33 11.11 11.11 8.08 9.55

%DEV LB 3%DEV LB 1 %DEV LB 2

55

40

45

50

55

20

25

30

35

1

20

25

30

35

40

45

50

2

TC N K

 



 

  

61 

 

 
Table 4.13 The lower bound performances, C3 

 

Average Maximum Average Maximum Average Maximum

2 33.33 33.33 0.00 0.00 20.56 22.74
4 63.94 66.67 9.85 16.67 14.90 22.05
6 59.81 76.47 20.01 25.00 12.34 17.84
8 67.22 80.95 24.08 28.57 9.80 13.94
2 33.33 33.33 0.00 0.00 19.72 21.99
4 64.24 66.67 10.61 16.67 14.64 21.99
6 55.29 75.00 23.01 25.00 10.50 15.24
8 63.22 80.95 23.13 27.27 9.53 15.24
2 33.33 33.33 0.00 0.00 19.36 20.71
4 64.24 66.67 10.61 16.67 13.61 19.19
6 57.17 75.00 18.25 25.00 10.33 12.61
8 67.05 80.95 22.67 23.81 8.31 10.12
2 33.33 33.33 0.00 0.00 18.88 21.20
4 63.94 66.67 9.85 16.67 12.42 19.91
6 57.50 75.00 20.00 25.00 10.23 13.54
8 66.06 80.95 24.50 27.27 9.53 12.81
2 33.33 33.33 0.00 0.00 19.53 21.31
4 63.64 63.64 9.09 9.09 12.72 14.22
6 57.50 75.00 22.50 25.00 10.45 13.11
8 67.14 80.95 22.67 23.81 8.42 10.14
2 33.33 33.33 0.00 0.00 19.76 20.52
4 63.64 63.64 9.09 9.09 12.76 14.01
6 62.50 75.00 21.25 25.00 10.38 12.32
8 71.14 80.95 23.05 23.81 8.64 10.63
2 33.33 33.33 0.00 0.00 19.37 21.73
4 64.24 66.67 10.61 16.67 13.93 18.50
6 60.29 76.47 19.78 25.00 10.98 15.44
8 70.56 81.82 26.71 28.57 11.48 13.71
2 50.00 50.00 0.00 0.00 18.91 20.60
4 72.76 73.33 18.29 20.00 11.90 15.30
6 75.32 81.82 24.16 27.27 7.93 9.55
8 75.55 85.71 28.02 31.03 7.33 11.54
2 14.29 14.29 0.00 0.00 25.48 29.63
4 55.71 57.14 4.05 7.14 23.76 27.08
6 45.15 70.73 11.43 30.00 13.99 24.31
8 54.53 73.33 11.36 13.33 8.86 12.43
2 14.29 14.29 0.00 0.00 25.93 28.39
4 55.87 57.14 4.39 7.14 24.42 27.43
6 34.97 70.73 11.46 12.50 7.47 23.49
8 49.09 73.33 10.93 13.04 10.09 11.70
2 14.29 14.29 0.00 0.00 24.98 27.66
4 55.87 57.14 4.39 7.14 22.88 24.98
6 42.01 70.00 8.47 12.50 12.96 21.67
8 54.42 73.33 10.70 13.04 8.08 10.12
2 14.29 14.29 0.00 0.00 24.91 26.41
4 55.71 57.14 4.05 7.14 22.57 25.12
6 42.25 62.50 9.50 12.50 10.95 21.54
8 52.46 73.33 11.88 13.04 8.77 10.51
2 14.29 14.29 0.00 0.00 26.17 27.57
4 55.56 55.56 3.70 3.70 23.88 25.69
6 39.25 62.50 11.00 12.50 8.09 21.83
8 54.48 73.33 10.70 13.04 9.42 10.70
2 14.29 14.29 0.00 0.00 25.89 27.31
4 55.56 55.56 3.70 3.70 23.41 24.75
6 47.50 70.00 10.25 12.50 9.35 21.99
8 59.82 73.33 10.71 11.11 8.61 10.37
2 14.29 14.29 0.00 0.00 25.09 28.04
4 55.87 57.14 4.39 7.14 23.23 25.93
6 45.40 70.73 9.21 12.50 12.61 22.71
8 58.14 74.47 13.06 14.89 9.29 11.11
2 25.00 25.00 0.00 0.00 12.84 14.81
4 60.90 61.29 8.77 9.68 9.37 12.06
6 65.45 73.91 11.50 13.04 7.61 9.41
8 65.90 80.00 13.04 13.33 7.43 9.13

%DEV LB 3%DEV LB 1 %DEV LB 2

55

40

45

50

55

20

25

30

35

1

20

25

30

35

40

45

50

2

TC N K

 



 

  

62 

 

Recall that BAB2 and BAB3 perform better than BAB1. It can be observed from 

Tables 4.11, 4.12 and 4.13 that the average and maximum deviations of LB2 

and LB3 are very low compared to deviations of LB1.  This verifies that the 

performance of the branch and bound algorithms is very much influenced from 

the quality of the lower bounds. 

 

We observe from the tables that LB2 and LB3 do not consistently outperform 

each other. The average and maximum deviations of LB2 decrease as the 

equipment cost variability, i.e., difference between equipment costs, decreases. 

This is due to the fact that the cheapest equipment cost is used in calculating 

LB2. Note that, LB2 finds the optimal solution at root node for K=2 when the 

cycle time is larger (C2 and C3). 

 

Recall that LB3 is designed when there is no limit on the number of 

workstations.  So, we expect that LB3 works better in instances with higher 

number of workstations. It can be observed from the tables that the average and 

maximum deviations of LB3 decrease as the number of workstations increases. 

 

To set the limit of our branch and bound algorithm in terms of the number of 

tasks and number of workstations we design a small experiment with 60, 70 

and 80 tasks problem instances for C3.  The results are tabulated in Table 4.16.  

Note that C3 is relatively easier than C1 and C2. The results of our main 

experiment indicate that these problem sizes could not be solved in two hours 

with C1 and C2.  

 

 
 
 
 
 
 
 

 
 



 

  

63 

 

Table 4.14 The performance of our branch and bound algorithm for large-sized 
problems, C3 

 

 Average # of 
nodes  

Maximum  # of 
nodes  

 Average # of 
nodes  till 
optimality

Maximum  # of 
nodes  till 
optimality 

Average 
CPU time

Maximum 
CPU time

# of 
unsolved 
instances

2 51,160 51,162 110 119 0.052 0.062 0
4 38,032 49,711 6,283 19,801 0.055 0.079 0
6 579,929 868,846 19,841 36,123 0.950 1.828 0
8 25,950,917 69,475,888 511,642 3,303,529 46.913 109.422 0
2 3,143,100 3,143,106 130 139 2.966 2.969 0
4 2,470,855 3,621,008 400,377 1,506,692 3.567 6.532 0
6 158,830,518 408,046,375 47,641,085 232,697,893 231.663 625.265 0
8 1,195,978,548 4,178,395,055 220,114,509 1,472,611,086 - - -
2 12,098,700 12,098,707 150 159 39.997 40.062 0
4 32,628,382 43,228,566 21,562,873 38,449,919 115.231 150.469 0
6 1,946,247,758 2,018,767,841 161,306,402 1,612,925,079 - - -
2 51160 51,162 110 119 0 0.062 0
4 38,032 49,711 6,283 19,801 0.052 0.078 0
6 367,831 2,064,664 32,987 94,907 0.475 2.672 0
8 1,446,850 4,893,711 413,938 3,269,869 2.356 9.547 0
2 3,143,100 3,143,106 130 139 2.967 2.969 0
4 2,470,855 3,621,008 400,377 1,506,692 3.566 6.516 0
6 100,805,770 375,881,273 23,010,840 114,880,705 148.942 589.828 0
8 423,122,289 1,544,933,516 194,024,013 1,177,726,182 627.524 2413.953 0
2 12,098,700 12,098,707 150 159 39.981 40.000 0
4 32,902,363 43,228,566 21,812,218 40,943,361 116.319 158.140 0
6 1,081,403,807 2,129,167,830 13,375,451 24,005,720 3661.496 7200.000 3

K

BAB23

1

60

70

80

TC N

2

60

70

80

 

 

As can be observed from the table for N = 60 all the instances are solved in two 

hours.  When N = 70, for Set I up to 6 workstations are solved whereas for Set 

II up to 8 workstations are solved.  For N = 80,  when Set I is used, the 

instances up to 4 workstations are solved whereas when Set II is used and K is 

set to 6,  3 out of 10  instances  remain unsolved after two hours. 



 

  

64 

 

 

CHAPTER 5  

 

CONCLUSIONS 
 
 

In this study, we develop an exact algorithm for a Flexible Assembly Line 

Design problem with fixed number of workstations. We assume the task times 

and equipment costs are correlated in the sense that the cheaper equipment 

gives no smaller task times.  Given the cycle time we find the assignment of 

tasks and equipments to the workstations with minimum total equipment cost. 

In doing so, we develop a branch and bound algorithm that uses powerful 

lower bounds and reduction mechanisms. We also study a special case of the 

problem with identical task times and discuss the way we benefit from this  

case in developing a lower bound. 

 

We design an experiment to test the performance of our branch and bound 

algorithm together with the reduction and bounding mechanisms.  The number 

of tasks and number of workstations are the main factors that affect the 

difficulty of the problem. Generally, as the number of tasks and number of 

workstations increase, the solution times increase.   We also observe that as the 

cycle time increases, the complexity of the solutions decreases.  The results of 

our computational experiments reveal that in our termination limit of two hours 

up to 80 tasks with 6 workstations and 70 tasks with 8 workstations are solved 

when cycle time is large. When medium cycle time is used, up to 55 tasks and 

6 workstations are solved, when cycle time is small up to 50 tasks and 8 

workstations can be solved. 

 
Other important factors that affect problem difficulty are the equipment costs 

and the flexibility ratio of the precedence relations. As the variability between 

the equipment costs decreases, the solution times decrease considerably. We 

observe the most difficult combination when the cycle time is low and the 

variability between equipment costs is high. Moreover we find that as an 

increase in the flexibility ratio adds to the difficulty of the solutions. 



 

  

65 

 

 
In general, the average and maximum number of nodes till optimality is very 

low compared to the number of nodes searched,  in particular when K and N 

are large. Hence, one can use our branch and bound algorithm as a truncated 

approach if the guarantee of optimality is not as essential. In most of the 

instances the average performances are close to the maximums indicating the 

consistent behavior of our branch and bound algorithm. Moreover, our lower 

bounding procedures and reduction mechanisms are found to be very effective 

in reducing the size of the search. 

 
To the best of our knowledge our study is the first attempt to solve the Flexible 

Line Design problem with fixed number of workstations. We hope our study 

helps to open new research areas most noteworthy of which are discussed 

below: 

• In this study, we considered correlated task times and equipment costs. 

General task times and equipment costs may be a worth-studying 

extension. 

 

• We used deterministic task times. Using stochastic task times may be 

considered as a future study. 

 

• We assume all tasks are performed by a single equipment. Multiple 

equipments (tools) per task case can be a challenging research area.  

 

• We take the cycle time as a constraint. The cycle time may be treated as 

a decision variable. 

 

• Heuristic procedures –using our reduction and bounding mechanisms--

may be developed to solve larger sized problem instances.   

 

• We assume all equipments can perform all tasks, a reasonable extension 

may be to assume each equipment is eligible to perform only a subset 

of tasks. 



 

  

66 

 

 

REFERENCES 
 

 
Baybars, I., 1986. ‘A Survey of Exact Algorithms for the Simple Assembly 

Line Balancing Problem’, Management Science, 32, 8, 909-932. 

 

Bukchin, J. and Tzur, M., 2000. ‘Design of Flexible Assembly Line to 

Minimize Equipment Cost’, IIE Transactions, 32, 585-598. 

 

Bukchin, J.; Rubinovitz, J. 2003. ‘A Weighted Approach for Assembly Line 

Design with Station Paralleling and Equipment Selection’, IIE Transactions 35, 

73 - 85. 

 

Hackman, S.T., Magazine, M.J. and Wee, T.S., 1989. ‘Fast, Effective 

Algorithms for Simple Assembly Line Balancing Problems’, Operations 

Research, 37, 916-924. 

 

Liu S.B., Ong H.L., Huang H.C., 2005. ‘A Bi-directional Heuristic for 

Stochastic Assembly Line Balancing Problems’ Int J Adv Manuf Technol, 25, 

71-77.  

 

Pekin, N. Azizoğlu, M., 2008, ‘Bi-criteria Flexible Assembly Line Design 

Problem with Equipment Decisions’, International Journal of Production 

Research, 46, 6323 – 6343. 

 

Rekiek B., De Lit P., Pellichero F., Falkenauer E.,. Delchambre A., 1999a. 

'Applying the Equal. Piles Problem to Balance Assembly Lines', Proceedings 

of the 1999 IEEE International Symposium on Assembly and Task Planning. 

 

Rubinovitz, J. and Bukchin, J., 1993. ‘RALB - A Heuristic Algorithm for 

Design and Balancing of Robotic Assembly Lines’, Annals of the CIRP, 42, 

497-500. 



 

  

67 

 

Scholl A., 1993, ‘Data of Assembly Line Balancing Problems’, 

http://www.assembly-line-balancing.de/ 

 

Ugurdag, H.F., Rachamadugu, R., Papachristou, C.A., 1997. “Designing Paced 

Assembly Lines with Fixed Number of Stations”, European Journal of 

Operational Research,102, 488-501. 

 

 

 

 



 

 

 

APPENDIX A 
 

Table A.1 The maximum number of nodes and CPU times of the branch and bound algorithm, Set I 
 

 Maximum # of 
nodes  

Maximum 
CPU time

 Maximum # of 
nodes  

Maximum 
CPU time

 Maximum # of 
nodes  

Maximum 
CPU time

 Maximum # of 
nodes  

Maximum 
CPU time

 Maximum # of 
nodes  

Maximum 
CPU time

 Maximum # of 
nodes  

Maximum 
CPU time

2 206 0.016 206 0.000 206 0.000 206 0.000 206 0.000 206 0.000
4 3,884 0.016 2,816 0.016 3,880 0.015 2,816 0.016 2,816 0.016 3,884 0.016
6 23,265 0.032 17,320 0.016 20,146 0.031 17,320 0.031 17,052 0.031 23,265 0.032
8 116,853 0.156 80,716 0.109 71,092 0.094 80,716 0.125 63,774 0.078 116,853 0.125
2 449 0.000 449 0.000 449 0.000 449 0.000 449 0.000 449 0.016
4 12,080 0.016 10,615 0.016 12,080 0.016 10,615 0.016 10,615 0.016 12,080 0.016
6 198,140 0.187 155,825 0.157 111,925 0.125 155,651 0.171 99,060 0.110 198,329 0.157
8 988,360 1.156 631,780 0.781 337,250 0.406 620,305 0.781 231,745 0.312 1,044,087 1.000
2 7,829 0.016 7,829 0.016 7,829 0.016 7,829 0.016 7,829 0.016 7,829 0.016
4 3,239,886 3.328 2,717,212 2.859 3,237,614 3.313 2,717,212 2.860 2,717,212 2.859 3,239,886 3.157
6 120,078,338 145.344 85,216,503 108.719 56,876,108 77.578 85,216,503 109.516 51,471,522 69.719 120,078,338 127.438
8 3,037,907,082 4049.016 1,509,342,461 2227.187 343,188,357 565.250 1,509,342,461 2248.531 324,677,324 526.157 3,037,907,422 3461.782
2 265 0.000 265 0.000 265 0.000 265 0.000 265 0.000 265 0.000
4 1,236 0.000 1,160 0.016 1,236 0.015 1,160 0.000 1,160 0.016 1,236 0.000
6 8,536 0.016 4,414 0.016 8,376 0.016 4,414 0.016 4,414 0.016 8,536 0.016
8 25,692 0.032 16,462 0.031 20,656 0.031 16,462 0.031 15,216 0.016 25,692 0.016
2 595 0.016 595 0.000 595 0.015 595 0.016 595 0.016 595 0.000
4 2,286 0.015 2,254 0.016 2,282 0.016 2,254 0.016 2,254 0.016 2,286 0.016
6 27,856 0.031 16,106 0.016 25,114 0.031 16,106 0.016 15,802 0.016 27,856 0.016
8 141,127 0.156 62,253 0.078 73,209 0.078 62,253 0.078 51,733 0.063 142,153 0.125
2 7,984 0.016 7,984 0.016 7,984 0.016 7,984 0.016 7,984 0.016 7,984 0.016
4 98,468 0.094 90,950 0.093 98,468 0.094 90,950 0.093 90,950 0.094 98,468 0.094
6 3,526,989 4.328 1,470,864 2.109 3,191,570 4.063 1,470,864 2.094 1,469,142 2.094 3,526,989 3.891
8 61,011,706 78.718 32,641,829 48.422 34,477,867 49.360 32,641,829 48.438 27,119,290 39.984 61,011,706 68.719

BAB23BAB1 BAB12 BAB0BAB3BAB2

K

20

25

30

NCT

30

2

1

20

25

 

68 



 

 

 

Table A.2 The maximum number of nodes and CPU times of the branch and bound algorithm, Set II 
 

 Maximum # of 
nodes  

Maximum 
CPU time

 Maximum # of 
nodes  

Maximum 
CPU time

 Maximum # of 
nodes  

Maximum 
CPU time

 Maximum # of 
nodes  

Maximum 
CPU time

 Maximum # of 
nodes  

Maximum 
CPU time

 Maximum # of 
nodes  

Maximum 
CPU time

2 206 0.000 206 0.000 206 0.000 206 0.000 206 0.000 206 0.000
4 1,922 0.015 1,918 0.000 1,918 0.016 1,918 0.016 1,918 0.015 1,922 0.016
6 13,366 0.016 11,942 0.016 12,071 0.016 11,942 0.016 10,597 0.016 13,366 0.016
8 29,586 0.047 25,851 0.032 19,662 0.031 25,851 0.047 17,598 0.031 29,586 0.032
2 449 0.000 449 0.000 449 0.000 449 0.015 449 0.000 449 0.016
4 10,231 0.016 9,545 0.016 10,231 0.016 9,545 0.016 9,545 0.015 10,231 0.016
6 82,754 0.094 78,837 0.078 77,782 0.079 78,663 0.078 73,703 0.078 82,928 0.078
8 222,504 0.250 178,017 0.250 211,841 0.250 173,421 0.234 158,033 0.203 222,504 0.204
2 7,829 0.016 7,829 0.016 7,829 0.016 7,829 0.016 7,829 0.016 7,829 0.016
4 239,656 0.266 234,400 0.265 234,400 0.281 234,400 0.281 234,400 0.266 239,656 0.265
6 38,020,862 39.500 33,161,757 34.766 23,666,230 26.344 33,159,837 35.109 20,307,181 23.218 38,022,782 36.750
8 222,487,606 352.594 177,229,728 286.062 137,899,093 214.484 177,229,728 290.484 99,385,259 161.578 222,487,606 296.797
2 206 0.000 206 0.000 206 0.000 206 0.000 206 0.000 206 0.000
4 690 0.015 686 0.016 690 0.015 686 0.016 686 0.000 690 0.000
6 3,050 0.016 3,012 0.016 3,046 0.016 3,012 0.000 3,012 0.016 3,050 0.015
8 16,518 0.016 13,034 0.016 13,490 0.016 13,034 0.016 10,098 0.016 16,518 0.016
2 485 0.000 485 0.016 485 0.015 485 0.000 485 0.000 485 0.000
4 2,260 0.000 2,254 0.015 2,260 0.016 2,254 0.015 2,254 0.015 2,260 0.000
6 13,887 0.016 12,927 0.016 13,729 0.016 12,927 0.016 12,769 0.016 13,887 0.016
8 41,604 0.047 36,450 0.047 41,604 0.047 36,450 0.032 36,450 0.032 41,604 0.047
2 6,932 0.016 6,932 0.016 6,932 0.016 6,932 0.016 6,932 0.016 6,932 0.016
4 7,773 0.016 7,767 0.016 7,773 0.016 7,767 0.016 7,767 0.016 7,773 0.016
6 392,035 0.438 389,919 0.438 381,761 0.422 389,919 0.438 379,645 0.422 392,035 0.422
8 4,623,325 6.250 4,529,413 6.140 4,119,541 5.500 4,529,413 6.140 4,025,629 5.406 4,623,325 5.485

CT N K

BAB0

20

25

30

BAB3BAB2

25

20

BAB23BAB1 BAB12

2

1

30

69 



 

 

70 

 

 
Table A.3 The worst case performances with and without elimination rules 

 

 Maximum # of 
nodes  

Maximum 
CPU time

 Maximum # of 
nodes  

Maximum CPU 
time

 Maximum # of 
nodes  

Maximum 
CPU time

 Maximum # of 
nodes  

Maximum 
CPU time

2 206 0.016 387 0.000 206 0.000 387 0.000
4 3,884 0.016 5,730 0.015 2,816 0.016 5,654 0.015
6 23,265 0.032 113,329 0.125 17,052 0.031 52,654 0.078
8 116,853 0.156 522,303 0.578 63,774 0.078 155,266 0.187
2 449 0.000 1,322 0.015 449 0.000 1,322 0.000
4 12,080 0.016 23,706 0.031 10,615 0.016 20,677 0.032
6 198,140 0.187 511,390 0.500 99,060 0.110 323,232 0.344
8 988,360 1.156 5,287,023 5.610 231,745 0.312 2,462,116 2.735
2 7,829 0.016 8,650 0.016 7,829 0.016 8,650 0.016
4 3,239,886 3.328 8,761,500 9.187 2,717,212 2.859 8,717,258 9.157
6 120,078,338 145.344 515,772,243 571.610 51,471,522 69.719 188,267,827 226.781
8 3,037,907,082 4049.016 4,022,593,885 -(5 unsolved) 324,677,324 526.157 872,298,032 1262.859
2 265 0.000 849 0.000 265 0.000 849 0.000
4 1,236 0.000 2,193 0.016 1,160 0.016 2,193 0.016
6 8,536 0.016 8,546 0.016 4,414 0.016 8,227 0.016
8 25,692 0.032 54,496 0.062 15,216 0.016 44,918 0.047
2 595 0.016 1,757 0.015 595 0.016 1,757 0.015
4 2,286 0.015 5,913 0.016 2,254 0.016 5,913 0.016
6 27,856 0.031 83,235 0.094 15,802 0.016 76,162 0.094
8 141,127 0.156 347,469 0.391 51,733 0.063 248,321 0.297
2 7,984 0.016 8,268 0.016 7,984 0.016 8,268 0.016
4 98,468 0.094 177,719 0.235 90,950 0.094 177,719 0.234
6 3,526,989 4.328 5,850,952 7.922 1,469,142 2.094 5,607,896 7.610
8 61,011,706 78.718 178,869,762 241.125 27,119,290 39.984128,874,074 174.265
2 206 0.000 387 0.000 206 0.000 387 0.016
4 1,918 0.000 4,002 0.015 1,918 0.015 4,002 0.016
6 11,942 0.016 25,075 0.032 10,597 0.016 23,203 0.032
8 25,851 0.032 80,710 0.093 17,598 0.031 46,360 0.063
2 449 0.000 1,322 0.016 449 0.000 1,322 0.000
4 9,545 0.016 20,374 0.031 9,545 0.015 20,374 0.032
6 78,837 0.078 247,192 0.266 73,703 0.078 166,431 0.204
8 178,017 0.250 1,423,529 1.609 158,033 0.203 809,912 0.938
2 7,829 0.016 8,650 0.016 7,829 0.016 8,650 0.016
4 234,400 0.265 563,248 0.781 234,400 0.266 561,984 0.766
6 33,161,757 34.766 102,267,730 137.875 20,307,181 23.218 46,633,390 64.266
8 177,229,728 286.062 1,256,143,870 1790.797 99,385,259 161.578 395,404,570 579.313
2 206 0.000 849 0.000 206 0.000 849 0.016
4 686 0.016 1,970 0.016 686 0.000 1,970 0.016
6 3,012 0.016 6,011 0.015 3,012 0.016 6,011 0.016
8 13,034 0.016 20,522 0.031 10,098 0.016 19,930 0.031
2 485 0.016 1,757 0.000 485 0.000 1,757 0.015
4 2,254 0.015 4,964 0.016 2,254 0.015 4,964 0.016
6 12,927 0.016 51,637 0.063 12,769 0.016 50,817 0.063
8 36,450 0.047 156,815 0.187 36,450 0.032 142,661 0.156
2 6,932 0.016 8,268 0.016 6,932 0.016 8,268 0.016
4 7,767 0.016 10,154 0.016 7,767 0.016 10,154 0.016
6 389,919 0.438 739,690 1.032 379,645 0.422 739,690 1.016
8 4,529,413 6.140 11,988,561 16.906 4,025,629 5.406 9,129,805 12.625

1

20

1

20

2

Without Reductions

20

25

30

30

Without ReductionsWith Reductions

2

1

25

2

20

25

30

25

30

BAB2 BAB23

With ReductionsTC CT N K

      

   


