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ABSTRACT

FLEXIBLE ASSEMBLY LINE DESIGN PROBLEM WITH FIXED
NUMBER OF WORKSTATIONS

Barutcuglu, Sirin
M.S. Department of Industrial Engineering
Supervisor: Prof. Dr. Meral Aziztu

July 2009, 70 pages

In this thesis, we study a Flexible Assembly Linesign problem. We assume
the task times and equipment costs are correlat#uei sense that for all tasks
the cheaper equipment gives no smaller task tiG@e/en the cycle time and

number of workstations we aim to find the assignnoériasks and equipments
to the workstations that minimizes the total equepincost. We study a special
case of the problem with identical task times. thergeneral case, we develop
a branch and bound algorithm that uses powerfuetdwounds and reduction
mechanisms. We test the performance of our brandhbaund algorithm on

randomly generated test problems. The results of experiments have

revealed that we are able to solve large-sizedl@nmolinstances in reasonable

times.

Keywords: Flexible Assembly Lines, Assembly Linel&w&ing, Branch and
Bound Algorithm



0z
SABIT SAYIDA IS ISTASYONUICEREN ESNEK MONTAJ HATTI
TASARIMI PROBLEMI

Barutcuglu, Sirin
Yuksek Lisans, Endistri Muhend@liBolumi
Tez Yoneticisi: Prof. Dr. Meral Azizgu

Temmuz 2009, 70 sayfa

Bu tezde Esnek Montaj Hatti Tasarimi problemini aleik. is streleri ve
ekipman maliyetlerinin dantih oldusu, islerin pahali ekipmanlarla, daha
ucuz ekipmanlarla yapilgindan daha uzun sirede yapilamagacarsayildi.
Cevrim zamani vesiistasyonu sayisi verilgiken, slerin ve ekipmanlarinsi
istasyonlarina toplam ekipman maliyetini en azareuwtk sekilde atanmasi
hedeflendi. Oncelikle problemin 6zdéleri varsayan 6zel durumu cald.
Genel problem igin, guclu alt limitler ve eleme raakemalari kullanan bir dal-
sinir algoritmasi gedtirildi. Dal-sinir algoritmasinin performansi ralsearak
yaratilan test problemleri Uzerindegaéelendirildi. Deneysel sonuglar, blyuk
Olcekli problemlerin 6nerilen algoritma ile makulirelerde co6zuilebildini

gostermgtir.

Anahtar Kelimeler: Esnek Montaj Hatlari, Montaj Hdbengeleme, Dal-Sinir

Algoritmasi
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CHAPTER 1

INTRODUCTION

An assembly line is a production system, in whiciffecent parts are
assembled on a product that flows through a seguehavorkstations. The
workstations are usually connected by a continunaterial handling system
and a set of assembly tasks is assigned to eadkstabon. These tasks are
indivisible and performed according to some prezBjgel restrictions. These
restrictions are generally of two types: precederglations and demand
satisfaction. The precedence relations define eébbriological order such that
some tasks can start only after the completioroofesother tasks. The demand
satisfaction constraint forces the assembly linddtiver a product at the end
of each pre-specified period. This period, i.ee, fime between two successive
product completions, is referred to as cycle tiniée cycle time is the
reciprocal of the production rate, hence minimizing cycle time is equivalent

to maximizing the production rate.

In Operations Research literature, the decisiorblpro of assigning the
assembly tasks to the workstations with respesbtoe pre-defined objective
is called Assembly Line Balancing (ALB) problem.thre literature, basically
two types of ALB problems, namely Type 1 and TypALB problems, are
studied. In Type 1 problems, the aim is to minimite number of
workstations given a pre-determined cycle time ¢leemproduction rate),
whereas in Type 2 problems, the aim is to minim@ele time (hence

maximize production rate) given a fixed number ofkstations.

Type 1 problems are usually observed when a neenddy line is to be
designed. The purpose is to satisfy the demand théhminimum number of

workstations. On the other hand, when the orgaoizavants to produce the



maximum number of products without investing on nemachines or

expanding the existing ones, Type 2 problems ggimfgant importance.

In assembly lines, workstations are the places avtiex resources are assigned
and consumed. In traditional assembly lines thera single resource in each
workstation and the resources are identical ovlewatkstations. The single
resource is usually represented by a worker togetiitd his/her equipment.
On the other hand, flexible assembly lines considtious resources as
alternatives for performing each task. The resaimay be labor (of different
skill) or machinery (of different speed). The resims are usually represented
by pieces of equipments where each equipment hapeaified cost of

assignment and a specified speed to perform eakh ta

Flexible Assembly Lines are gaining significantualdue to their practical
importance and theoretical challenge. In practicgemain competitive in the
market, the companies should use Flexible Asserhlrigs to achieve high
efficiency and respond ever changing customer ddmaithe automated
equipments such as robots or Computer Numericadyti@lled machines can
offer shorter task times as well as more complek@ecise assembly tasks.

Theoretically, the analysis of the Flexible Asseyriihes is challenging due to
the complexity brought by equipment alternativede Talternatives add
selection decisions to the task assignment deasbthe traditional lines. The
equipment selection decisions have long term ingast an equipment is
usually purchased at high prices. The associatedlgms are referred to as
Flexible Assembly Line Design problems and theyallguaim to minimize
total equipment cost.

Despite its practical and theoretical importandee tesearch on Flexible
Assembly Line Design problems is quite scarce. Exésting literature
assumes a limit on the cycle time, but not on tlmalver of workstations. Their



objective is to minimize the total equipment costich is equivalent to

minimizing the number of workstations when all guent costs are equal.

In this study, we consider a Flexible Assembly LiDesign problem with

specified cycle time and fixed number of workstasioThat is, we assume that
there is a target production rate and the workstatiof the line are already
located. In such an environment, we aim to minintieetotal equipment cost.
Moreover, we assume all the task times either dser®r remain same when
more advanced, hence expensive, equipment is Bee@xample, a Computer
Numerically Controlled machine is likely to perforthe tasks faster than a

conventional machine and it is much more expensive.

The rest of thesis is organized as follows: In Gaap, we define our problem,
introduce the notation and give the mathematicadlehoThe chapter reviews
the related literature and introduces a specia¢ eaith identical task times.
Chapter 3 presents our solution approach togetitbrreduction and bounding
mechanisms. In Chapter 4, we give the results of ocomputational

experiment. We conclude in Chapter 5 by pointing main conclusions and
suggestions for future research.



CHAPTER 2

THE PROBLEM DEFINITION

In this chapter we first define our problem and egithe mathematical
formulation of the problem with general task tim&ge then introduce and
give the mathematical model of the problem in whetk times are correlated
with the equipment costs. Next, we introduce a igppexase of the problem
with identical task times. Finally, we give a briedview of the related

literature.

2.1. PROBLEM STATEMENT

We consider a single product Assembly Line Desigsbm with equipment
decisions, specified minimum production rate andfied number of
workstations. Our aim is to minimize total equipmecost over all

workstations.

We suppose the processing times of the tasks nfégr diccording to their
equipments. We assume that each task requiresgée sgquipment and all

equipment alternatives are capable of performihtasks.

2.1.1. THE GENERAL TASK TIMES MODEL

In this section, we consider the Flexible Assemnibhe Design problem with
general task times. We state our assumptions,thez@otation and provide the
mixed integer programming model.
Our assumptions are;

* A single product is assembled on the line.

* The tasks are indivisible.



* There is a predetermined upper limit on the nunolb@&rorkstations.

» The cycle time of the line is given.

« All parameters, i.e., task times, equipment cogtecedence structure,
cycle time are known with certainty and are notjscibto change, i.e.,
the system is deterministic and static.

» The task times differ with respect to the equipreeliYe use the terms
task times and processing times interchangeabbygout the thesis.

» The task times do not vary according to the wotksta and/or the
precedence relations.

* The set of equipment types is given and each emnprtype has a
specific cost. This unit cost includes purchasing all operational costs.
We use the terms equipment types and equipmengscivangeably
throughout the thesis.

* The equipment costs do not change with respeetstct

* There is no set up time between different tasks.

* All tasks can be performed in all workstations atidequipment types
can be assigned to all workstations.

* The number of equipments that can be assigned wor&station is
limited.

* The number of tasks that can be assigned to a vebids is not limited.

Sets:

i: the set of tasks to be completed1,2,...N

I: the set of equipments (or tools) to perform #eks|=1,2,...L
k: the set of workstations that include the equiptsiek=1,2,...K

Parameters:

CT: cycle time, i.e., maximum time allowed in a wdgt®n

K: number of workstations on the line, i.e., maximoumber of workstations
that can be used

ty: task time of task i when performed with equipmient

EC: cost of equipment



CP¢: equipment capacity of workstatién

P={(ab) | a immediately precedeis}

Decision Variables:

1,if equipment isassignean workstéion k
Yk = ,
0,otherwise

_{1,if task i isassignedo equipment andworkstaton k

i 0,otherwise

Mathematical Model:

The objective function minimizes the total equipineost.

K
Min 32> EG i

[=1k=

—_

Constraint set (1) ensures that each task willdsegaed to one equipment type

and one workstation.

L K

szﬂk =1 i (1)

I=1k=1

Constraint set (2) makes sure that if a task iggasd to a workstation, its

equipment should also be assigned to that workstati
Xik < Yik 0i,Lk 2

Constraint set (3) makes sure that the minimumireduproduction rate is

satisfied, that is the cycle time limit is not eeded.



L N
Zzt” Xik < CT Ok (3)
I=1i=1

Constraint set (4), prevents precedence violatioguarantees that if task
immediately precedes tashk then taska cannot be assigned to a later

workstation than task.

L K L K
D kX 2. kX O(a,b)such thanimmediatey precedesr  (4)
1=1k=1 1=1k=1

Constraint set (5) limits the number of equipmerssigned to a workstation.
L

> Vi <CR Ok ()
1=1

Constraint sets (6) — (7) are the binary assignro@nstraints.

X 0{0,1} il k (6)

yik U{0,1} Olk (7)

2.1.2. THE CORRELATED TASK TIMES MODEL

In this section, we assume the task times and ewnpcosts are correlated in
the sense that for all tasks the cheaper equipgiees no smaller task time.
Hence we consider a special case of the modeldsiatSection 2.1.1. The
motivation behind this assumption is the fact tiisally more advanced and
faster equipments are more expensive. For exarfN€& machines are more
expensive than the conventional ones and they lyspakform the tasks

quicker, at least no slower.



According to our assumption, for two equipmeatandb, EC, >EC,, implies
tia < tip for all tasksi. We hereafter assume that the equipments are eddex

such thatEC, >EC, >....>EC__, i.e., the first equipment is the most

expensive, hence the fastest, equipment.
We now state an important theorem for all optinohlisons.

Theorem 1:In all optimal solutions, at most one equipmerdassigned to each

workstation.

Proof: Assume the condition stated in above property da¢dold and there

areR equipments assigned to a workstation, say woikstkt The total cost of

the equipments on workstatiénz, = z EC, whereSis the set of equipments
10S,

assigned to workstatiork. Assume equipment is the most expensive
equipment inS, As EC. > EGs impliest; <ti, it is always possible to process
all tasks with equipmemtand freed the othé®-1 equipments. This leads to an
equipment costZy’ =EC,. As Z/< Zy, the solution that contradicts with our

property cannot be optimal.
O

Theorem 1 implies that , constraint set (5) is gbkvaatisfied as long as the
equipment capacity of the workstations is gredtantor equal to 1. Hence, the
right hand side of constraint set (5) can be set.toThis setting reduces the
solution space, thus leads to a stronger formulatiMoreover constraint sets
(2) and (3) can be replaced by a single constraéttsince at most one

equipment exists in each workstation. The resultmigstraint becomes;

N
zt” Xilk <CT Dy”( Qi , k (8)
i=1



With these modifications, below is the statementhef model with correlated

task times.

L K
Min Zz EC| Yik

1=1k=1
s.to
L K

2.2 Xk =1 O (1)
1=1k=1

N

Zt” Xk <CT Dy”( Qi , k (8)
i=1

L K

K
D KX DD kx  O(a,b)such thaapreceded (4)
1k=1 I=1k=1

M-

L
D Vsl Dk 9)
=1
Xk D{O,l} Dl,l,k (6)
vk 0{0,1} alLk (7)

We hereafter refer to our Flexible Assembly Linesige problem with

correlated times and costs as P.

2.1.3. AN EXAMPLE PROBLEM

In this section we illustrate a feasible and arinogk solution of P via an 11
tasks and 5 equipments example. We assume theds&ur workstations and
the required cycle time is 30 time units. The pderee relations between

tasks are shown in the following figure.



:
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Figure 2.1 Precedence graph of the example problem

The task times depending on the equipment use@g@ug@ment costs are given
in Table 2.1.

Table 2.1 Task Times and Equipment Costs of trenigke Problem

Equipment:
Task 1 2 3 4 5
1 7 10 10 13 13
2 6 6 8 12 12
3 6 6 7 8 10
4 8 9 10 11 12
5 6 8 8 9 13
6 6 8 10 12 12
7 6 7 7 7 10
8 8 9 9 10 13
9 8 11 12 12 13
10 8 9 9 11 13
11 6 6 6 9 12
Equipment Costs 400 350 300 250 200

One feasible solution to P is shown in Figure 2.2 .

Workstation 1 Workstation 2 Workstation 3
Tasks: 1, 2, 3,4 Tasks: 5, 6, 7, 8 Tasks: 9, 10, 11
Equipment: 1 Equipment: 1 Equipment: 3

Figure 2.2 A feasible solution of the example peotl

Total equipment cost EC; + EC; + EC3 = 400 + 400 + 300 = 1100.

10



The cycle time constraints are satisfied. Spedifica
tll+t21+t31+t41 =7+6+6+8=27< 30,

t,, +t,, +t, +t;, =6+6+6+8=26<30 and

t93 +t10’3 +t11,3 =12+9+6=27<30.

The assignments are also precedence feasible.

The following configuration (depicted in Figure P.Bdicates an optimal

solution for P. The solution uses all four workisas.

Workstation 1 Workstation 2 Workstation 3 Workstation 4
Tasks: 2, 4 Tasks: 1, 3,6 Tasks: 5,7,9 Tasks: 8, 10, 11
Equipment: 5 Equipment: 3 Equipment: 4 Equipment: 4

Figure 2.3 An optimal solution of the example peotp

The solution is feasible as

te +yg = 12+12 = 24< 30,
tl3 +t33 +t63 =10+7+10=27< 30,
t54 +t74 +t94 =9+7+12=28< 30,

tgq +1104 +1114 =10+11+9=30< 30 and the precedence relations hold.

It is optimal with total equipment cost BCs + EC3+ EC,+ ECy
=200+300+250+250 = 1000.

2.2. COMPLEXITY OF THE PROBLEM

In this section we show that P is strongly NP-hi#wm@ugh a reduction to the
Type 1 ALB problem. Theorem 2 states this resaritrially.

Theorem 2:P is NP-hard in the strong sense.
11



Proof. Assume a special case of P, in whigh t; for all equipment typek
I.e., the task times are independent of the equiprtypes. Moreover, assume
that EG = EC, i.e., the equipments are identical. This specade of the
problem reduces to the minimization of the numbé&morkstations, i.e.,
classical Type 1 assembly line balancing problehthé resulting optimal
number of workstations is greater than the avalahimber of workstations,
then P is infeasible, otherwise, the limit on thenber of workstations is not
restrictive. The Type 1 assembly line balancingopm is strongly NP-hard,
S0 is our problem with arbitrary task times andisg¢see Baybars (1986))

O

2.3. ASPECIAL CASE - IDENTICAL TASK TIMES

Supposet; = t; for all tasksi and for all equipment typés i.e., tasks are
identical in terms of task times, wheyes time required for equipment typéo

perform any task.

In such a casey, maximum number of tasks an equipment typan perform

in a workstation can be defined as= {gJ
|

Using this definition, we formulate a special caske P, which we call
Assembly Line Design Problem with Identical Tasksl &Correlated Task

Times ( we refer to this special case as Pl )olésws.

Parameters:

K: maximum number of workstations
EC: cost of equipment

N: number of tasks

n;: maximum number of tasks an equipment typan perform in a workstation

12



Decision Variables:

yi: number of equipments that will be used from emept typd

Mathematical Model:

Min ZL: ECy,
1=1

L

d.n =N @0
1=1

L

2 <K ()
1=1

y, integer ] a2

Constraint (10) makes sure that all tasks are pedd. Constraint (11) ensures
there are at mo¥t equipments, since there will be at most one eqgeigm a
workstation (see Theorem 1).

Precedence constraints are not included as we leaysadefine a feasible
sequence according to the precedence relationsy faftding the optimal

solution.

Note that the model has only two constraints irs tlirmulation. So, the
optimal LP relaxation of the problem has at most positive variables. This
also means that there can be at most two fractiar&bles, in the optimal LP

relaxed solution.
Below we state some properties of the optimal L&xeion of PI.

P1) In the optimal solution constraint (10) will be iséied as strict equality

L
due to the positive objective function coefficients; . Thus, Zn| Oy, =N.
1=1

13
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Note that,—— gives the cost of performing one task with equiptrtgpel.
n

Accordingly, the equipment giving’lim{ﬂ} will be favored in the optimal
ny

solution. We let be the equipment witMin {E} .

n

P2) If ﬁs K theny, N andy; = Ofor alli other thama, in the optimal

na a

solution.

P3) If N > K, then constraint (11) will be satisfied with strequality in
na

L
the optimal solution. Thusy y; =K .
I=1
. - . EC
P4) Let b be the equipment type givingMinggq———; Where
n
N , . : ,
B:{I |—s K}, l.e., the set of equipment types that can givieasible
n
solution alone.y, > 0in the optimal solution.
Using the results of P2, P3 and P4, we find thenadtrelaxed solution with at

mostL-1 trials (number ob-i pairs). We further reduce the number of trials by
P5 and P6.

14



P5) An equipment typé [0 Bis eliminated ifE >ﬂ. (As b exists in the
n N

. . . . : E
optimal solution together with an equipment havsrgaller—c' value to
ny

o : N
reach a smaller objective function value tHa@, 53—)
Ny

P6) If n, =ny4 and EC. 2 EC, for equipment types andd theny. cannot

take a positive value in the optimal solution.

We now discuss the way that we find the optimadetl solution. Using P4
we know,b, one of the two equipments that takes positiveevah the optimal
solution. From P1 and P3, we have the following teguations with two

unknowns. P3 implies that it is not feasible te wsly the equipment with
Min [ {5} .
n

mly +nly, =N
Y, +¥p =K

wherei is the other equipment that may take positive ealthe simultaneous
solution of the two equalities yields the followisglution values.
_ N - N; (K _ny (K -N

and y;

Yb ~ ~
Ny =N, Ny =N,

The objective function value with equipmehbtandi, Oy;, is found as,

O.. =ECbM+EC.an<—_N.
" Ny =N | Ny =N

Hence the optimal objective function value of thklaxed problem is

15



z=MiniDE{(ECb N=n X L Eq an(_Nj,Ecbn—'\:}

Ny =N N, =N

where E is the set of the remaining equipments.

If z= ECbnﬂ , I.e., a single equipment is used, then
b

yb* =ﬁ, yi* =0forallizb.
Np

Otherwise, i.e, if equipmentsandi are used together,

*_N_ni[l< *_an<_N
=, |

y; =0forall j#b,i.
Np =N, Ny =N,

Yb

We now focus on some cases where we find optintager solution for the

problem. These cases are discussed below.

Case 1If P6 leaves one equipment, say equipniettien the optimal cost is
N
z=EC,| —
Cb{”bw

Case 2 If P6 leaves two equipments, say equipmardand b such that
EC, <EC,. Thenn, <n.

N | . . .
Note that{—w Is a valid upper bound on the number of workstetidHence,
na

we updateK = Min{K , {ﬁ—l}
na
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Let r D[l K] be the number of equipments of type So, the number of

N [t .
#W to perform allN tasks on the line. Then

equipments of typ® is { -
b

r {ww should not exceed the available number of wotiosts.
b

Hence, the optimal number of equipments of typeand b and optimal

objective valuean be expressed with the following expressions.

+ | N- :
" { natyﬂ

Ny

2= Mingw o] EC. T+EG, [ﬁu] Hup
Ny Ny

2.4. LITERATURE REVIEW

In this section we give a literature review on TypAssembly Line Balancing
(ALB) problems in general and Assembly Line Desigroblems with

equipment decisions in particular.

Although Assembly Line Balancing (ALB) literature very rich, the research

on Flexible Assembly Line Design problem is quitarse.

Baybars (1986) surveys Type 1 and Type 2 ALB pnoisleHe describes
modifications and generalizations of the problemshronological order. He
gives different formulations and proposes exaaitgm approaches.

Some noteworthy Type 2 ALB problems are due Hackraaral. (1989),
Ugurdas et al. (1997), Rekiek et al. (1999) and Liu et(2D05). Hackman et
al. (1989) propose a heuristic for Type 1 ALB peyhl They develop a branch
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and bound algorithm that uses the heuristic boungirocedure. They also
describe iterative methods to solve Type 2 ALB peobusing known upper
and lower bounds on the cycle time. To solve TypALB problems they
iteratively solve Type 1 ALB problems. As they ment the number of
iterations can be as large as the difference betwgper bound and lower

bound on the cycle time.

Ugurdas et al. (1997) study a bi-criteria Type 2 ALB prefn. Their criteria

are minimizing the cycle time and balancing the kkiaad. They assume that
the processing times on different workstations egaal and the number of
workstations is fixed. To solve Type 2 ALB probldirey propose a direct
approach in place of a sequence of Type 1 ALB mmoisl They develop a
heuristic procedure to find an initial feasiblewgan and improve the heuristic

solution using a simplex-like algorithm.

Rekiek et al. (1999) study a Type 2 ALB problemtthalances the workload
between the workstations. They assume that progedsnes on different
workstations are equal. In addition to the precederelations, they include
some preference constraints to separate some &mkgroup some others.

They develop a genetic algorithm based on groujiea.

Liu et al. (2005) consider a stochastic Type 2 An®blem with normally
distributed and statistically independent task §im&hey aim to minimize
cycle time given a fixed number of workstations gumd-specified cycle time

reliability. They propose a heuristic solution pedare.

Rubinovitz and Bukchin (1993), Bukchin and Tzur @@J) Bukchin and
Rubinovitz (2002) and Pekin and Azjio (2008) study ALB problems with

equipment decisions.

Rubinovitz and Bukchin (1993study a Type 1 Robotic Assembly Line

Balancing Problem (RALB). They assume that eack taguires only single
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equipment and only one equipment can be assigneddo workstation. They
develop a branch and bound algorithm for smalldsfa®blem instances and a

heuristic method for large sized problem instances.

Bukchin and Tzur (2000) aim to minimize the totajugpment cost by
considering the pre-specified cycle time, a singggipment requirement for
each task and assignment of a single equipmentadh workstation. They
develop a Branch and Bound algorithm for moderetedsproblem instances.
In their algorithm, the workstations are openedusatjally, an equipment is
assigned once a workstation is opened and thetaske are selected. For each
partial solution a lower bound is computed, thafioisnd by relaxing some of
the model constraints. The node with the small@set bound is selected for
branching. They develop a Branch and Bound basadstie for large sized

problems by modifying their node selection rule.

Bukchin and Rubinovitz (2002) consider Flexible é&sdbly Line Design
problem with station paralleling. They show thatiad parallel stations is
equivalent to replacing the equipment with a faste®, hence their model is a
special case of Bukchin and Tzur (2000)’'s modekylradapt the branch and
bound algoritm developed by Buckchin and Tzur (3G00their problem.

Pekin and Azizglu (2008) study a bicriteria Flexible Assembly Libesign
problem with pre-specified cycle time. Their crigdeare the total equipment
cost and the number of workstations. They assunigpie equipments can be
assigned to each workstation and a single equipneguirement for each task.
They develop a branch and bound algorithm to gémexh efficient solutions

with respect to two criteria.
The most closely related study to ours is Bukcimid &zur (2000)’s study. Our

study differs from their study in the sense tha tlumber of workstations is

fixed and task times and equipment costs are abec|
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CHAPTER 3
OUR APPROACH

Recall that our problem P is NP-hard in the streegse. This justifies the use
of an implicit enumeration technique to arrive ata@ptimal solution. In this
study, we propose a branch and bound algorithm innd the optimal

assignment of tasks and equipments to the workgtati

The branching schemes designed for classical Adgdrmte Balancing (ALB)
Problems assign the tasks to the workstations,tirgjarffrom the first
workstation. For the current station, the assigrtsare considered among the
fittable tasks set. A task is called fittable if &b predecessors are assigned
either to the current workstation or one of thepworkstations. The current
workstation is closed whenever there is no fittgble that can be assigned

without exceeding the cycle time.

Our problem differs from the classical branchinhesnes designed for ALB

problems as it includes the equipment decisions.

Through the following theorem we show that the mjpli equipment

assignment for a given set of assigned tasksea@yravailable.

Theorem 3: Given a set of assigned tas&sto a workstation, the optimal

equipment is the cheapest equipmé&gthat satisfiesz‘,tiEC <CT.
i0S,

Proof:
Note from Theorem 1 that there is a single equigrimeaach workstation. This
equipment should be the cheapest one that resiidiesks without exceeding

the cycle time en route to minimizing our total gupent cost objective.

20



As the optimal equipment is available for a given of tasks, we design our
branch and bound algorithm based on task assigsniberitnot on equipment
assignments. We decide to close a workstation ortoalose it even when
there are fittable tasks, since the total task toh¢he tasks assigned to the
current workstation changes according to the eqermmassigned. When
closing the current workstation we determine thetinogl equipment

considering the set of tasks assigned to this watiks.

In generating the nodes we make use of the follgwnoperty.

Property 1: If there is a task that fits to the current worksta with the
cheapest equipmem;, then branching to a node that represents gadsia

current workstation cannot lead to a better sofutio

Proof:

Assume a new workstatida-1 is opened when there is a taskat fits to the
current workstatiork with equipment; . Assume is assigned to one of the
succeeding workstatiorista. ,i can be removed from workstatiok+a and
placed to workstatiok without violating the cycle time constraint (asfits
even with the cheapest equipment) and without asing the total equipment
cost ( as the other assignments are kept samegeHesolution in which is

placed at the current workstation, cannot be worse.

We use the result of the above property in desggour branching scheme. We
index the tasks based on the precedence struttudeing so, we give lower
numbers to the tasks that appears as predecessoi$taski is predecessor of
taskj, then i<j. Besides, among the tasks that appear as predesd¢se ones
with larger number of successors receive highaoripyi i.e., we assign lower
numbers to these tasks. In order to prevent théadtipn of the solutions we
always branch to a task with higher index once veeaading to the current

workstation. We always add to the current workstatf there is a fittable task
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with the cheapest equipment. If there is no figatdsk with the cheapest
equipment, then we consider the following two btreesc

Branch 1. Close the current workstation (Close Branh)
Assign the cheapest possible equipment (see TheB)eiret the equipment
assigned b&.

Branch 2. Not to close the current workstation (NoClose Branch)

Consider the equipments 1,R+m where equipment 1 is the most expensive
equipment andR+m is the cheapest equipment that has a fittable Hsbks,
when a not close branch is considered for the num@rkstation the optimal
equipment should always be more expensive thaogtimal equipment of the

corresponding close branch.

In our branch and bound algorithm we first evadu#&tlose” branch emanating
from a node and continue branching. “Not Closenbhais evaluated during
backtracking. We give priority to a “Close” branes it requires cheaper
equipment than “Not Close” branch, hence findingoad upper bound earlier

is more likely.

The following figure illustrates our branching soie
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Figure 2.4 The branch and bound tree

For both “Close” and “Not Close” branches, we fecheck the feasibility of the
partial solution in terms of the number of the wsidtions. In doing so, we use

lower bounds on the number of workstations.

* “Close” Branches :
Dty
iou

We define a lower bound on the number of the watlens, K= cT

where U is the set of unassigned tasks t@ani$ the time required to perform
taski with the most expensive, hence the fastest, eqnpm

If Knin + K1 > K, then the current partial solution that represesitsing

workstationK; cannot lead to a feasible solution.
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If the current solution close¥{1)st workstation, then the optimal equipment
for the next, hence the last, workstation is timgdat mthat satisfies

z tim

‘DCUT = 1. In such a case, we update the upper boundtheshest known
K-1
solution if ZECEk +EC, <UB, whereEx is the equipment assigned to
k=1

workstationk andr is the optimal equipment for the last workstation.
* “Not Close” Branches :

For a “Not Close” branch of workstatidfy a lower bound on the number of
the workstations is,

Dt

__|i0u
min CT

If Kmin + K2 > K, then the current partial solution cannot leadhtteasible

solution.
We use Property 2 whenever closing a workstation.

Property 2: If taski is assigned to the current workstation, but can b

replaced by task feasibly andt;,, <t for allm, then the current assignment

cannot lead to a unique optimal solution.

Proof:
Assumel is assigned to a later workstatikfa. Replacing the workstations of
i andj is feasible ag can be assigned to the current workstation whes

removed and can fit any workstation vacated pws ti, <t;, for allm

Moreover, such a replacement never increases timbemnof workstations and

24



the total equipment cost. This follows that theusoh in whichj is in the

current workstation cannot be worse.

While implementing Property 2, we adk;, <t;, at least for onen. This is
because iftj, =t for all m, and we fathom a partial solution that represents

closing the workstation that includesthen a partial solution that represents
closing the workstation that includesvill also be closed.

When closing a workstation, we eliminate some emeipt(s) using the results

of Properties 3 through 4 stated below.

Dot
Property 3: If IDUC—T -1|xEC,, + EC,, 2UB , where ECqin IS the

cheapest equipment in the set of remaining equimndghen any further

assignment that resides equipmertannot lead to a unique optimal solution.

Proof:

Dty

Note tha i%T is a lower bound on the number of workstations.uAss the

other workstations are opened with the cheapesipegmts and only one
workstation is opened with equipmant Such an assignment would have the
smallest cost if equipment has to be used at least once. The associate@scost

Dty

EVR

ot 1|xEC,, + EC, - If this cost is no smaller than the smallest

known cost, a solution that uses equipmemannot be unique optimal.
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Dty
i

Property 3 is also used for “Not Close” branchesubin as a lower

bound on the number of workstations.

We use the below property in eliminating partialuons and updating the

best known solutiorl)B.

Dt

If i0u

Property 4: =1 then any further assignment that resides

equipments 1,..151 cannot be optimal.

Proof:
The minimum cost of completing the partial solutisith a single workstation
is EG. As EC < EC., a solution that resides equipments 1l-1.¢cannot be

optimal.

If the condition stated by the above property holash equipments 1,.1-1 are
eliminated. MoreoverUB is updated if it is greater thafC(A)+EC, where

TC(A) is the equipment cost for already closed workstatio

Note that ifl = L, i.e., the cheapest equipment justifies a singbekatation,

then the node is fathomed. This can be generallizbdre is a feasible solution

Dty
i0A

with workstations, i.e., minimum number of workstatioasd

cheapest equipment, then it is optimal.
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The properties stated above are useful for elinmgatelatively expensive
equipments. Now we state the properties that erthblelimination of cheaper

equipments.

Property 5: If EC,, > EC, for two equipmentsn andl, andt;,, =t; for all

i U , then any future assignment with equipmardannot be optimal.

Proof:
A solution that resides equipment cannot be optimal as its cost can be

reduced byEC,, - EC units simply by exchanging equipmemh with
equipment. Note that such an exchange does not affect fiisds t;,, = t;
for all unassigned tasks.

O

Property 6: AssumeKeand Nt are number of workstations that are not yet

used and number of unassigned tasks, respectively.

If (K|eft —1) ; T +| — T < Nieft» then any further assignment
Minioaftia} | | Minioafti }

that resides equipments...,L cannot be optimal.
Proof:

CT |. . .

{—J is the maximum number of tasks that the most expenksence the
Min {t;q}

fastest equipment, can perform in a workstationmiine precedence relations

are relaxed. Hence, it is an upper bound on thebeurof tasks that can be

performed in a workstation. Similarl% }J is the maximum number of

’Mini{t”
tasks that equipmert can perform in a workstation when the precedence

relations are relaxed. Assume the other workstatame opened with the most
expensive, hence fastest, equipment and only onkstation is opened with
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Min;{ti} | | Min{t; }

the number of tasks that can be performedi workstations. If the upper

equipmentl. Then,(K|eft —1)[F ct J{ cr J IS an upper bound on

bound on the number of tasks that can be perfoimbts than the number of
unassigned tasks then a solution that resides mgui) cannot be feasible. If
equipment satisfies the condition stated in the property tegqonipments that

are cheaper thahsatisfy the condition sincg <t for all tasksi. This

follows that any assignment with equipmelnts.,L cannot be optimal.

If the condition stated by the above property haldsh equipments.... L are
eliminated. The elimination of cheaper equipmestsriportant since our first
and second lower bounds use the cost of the cheapagpment that is not
eliminated. Eliminating cheaper equipments incredbe cost of the cheapest

remaining equipment, therefore improves our lowarras’ performances.

Whenever closing a workstation, we updite.e., the number of workstations
to be used. Our initial experiments reveal thatimrease in number of
workstations significantly increases the solutimmets of our branch and bound
algorithm and all workstations are not necessarsigd in the optimal solution.
So any reduction in the number of workstations wouinprove the

performance of our branch and bound algorithm.

We now describe the way that we updéte

CT
Max, { Max;{t;

Note that,n g :{ }}J is a lower bound on the number of tasks

that can be performed in a workstation sinktax {Max{t;}} is the

maximum of all task times. This follows th%{N—J is an upper bound on the
N

number of workstations required for a feasible sofu
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Another valid upper bound on the number of workstet is {%J We

L

updateK as follows:

el ez )}

We calculate lower bounds for each node that cabeotathomed by our

properties. While computing the lower bounds we tlee unassigned tasks,

remaining equipments and updatedalue.
Lower Bound 1

We consider the special caggth identical task times (discussed in Section
2.3) to find a lower bound for our problem P. ez be an optimal solution

to the LP relaxed version of Pl. If we set taskeit, on equipment to
Min {t,}, z gives a lower bound to our problem. We solve tP relaxed

version of PI witht; and let the associated objective function valuegt,B;.

We uselLB; for “Close” branches only. Note that each “Closearxh
represents a partial solution with set of assigteksA. In this case, the

identical tasks problem for task§l A is solved to find_B;.

When variability of the task times is low, the opél solution of P is likely to
be close to the optimal solution of PI, hence tlssoaiated lower bound
becomes closer to the optimal objective functiolu@aWe illustrate this by
two examples given below. The first one exempliiegsase that is unfavorable
for LB; whereas the second example illustrates a caseeWwBexvorks well.
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Example 1: Our example problem has 11 tasks and 5 equipmeestyThe
line has 3 workstations and the required cycle trhthe line is 30 time units.

The task times and equipment costs are given iteTab.

Table 3.1 Task Times and Equipment Costs of theripi@ Problem 1

Equipments
Task: 1 2 3 4 5
1 7 10 10 13 13
2 6 6 8 12 12
3 6 6 7 8 10
4 8 9 10 11 12
5 6 8 8 9 13
6 6 8 10 12 12
7 6 7 7 7 10
8 8 9 9 10 13
9 8 11 12 12 13
10 8 9 9 11 13
11 6 6 7 9 12
Equipment Costs 400 350 300 250 200

t, = Min{t; } ={ 6,6,7,7,10}
=S LRI ] = smaat

Equipments 1 and 3 are eliminated by P6. Equipnzns5 are left.

:{I |n—'\|'s K} ={2,4}

MinIDB{E}:Mm {ECZ EC, }:Min {350 250} 625
N N Ny 5 ' 4

E E
So,b=4. According to P5, there is no need to conside, smcei > — C4

n, n4
lezmmm{s}{Ecbm+Equ e, }

Ny =N, Ny =N,
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. N -ng [K -
LB, = Mln{[EC4L+ EC5M ,EC4E}
n4_n5 n4_n5 n4

|_B1=|\/|in{(250114 33[3 2004[3_11)250121} Min{700,6875} = 6875

Example 2: Our second example problem also has 11 tasks atiipment
types. The line has 2 workstations and the requiyete time is 40 time units.

Task times and equipment costs are given in the taddbw.

Table 3.2 Task Times and Equipment Costs of ttarifke Problem 2

Equipments
Task 1 2 3 4 5
1 7 10 10 13 13
2 6 7 8 12 12
3 6 7 8 11 12
4 8 9 10 11 12
5 6 8 8 11 13
6 6 8 10 12 12
7 6 7 8 11 12
8 8 9 9 11 13
9 8 11 12 12 13
10 8 9 9 11 13
11 6 7 8 11 12
Equipment Costs 400 350 300 250 200

t, =Min{t; } ={ 6,7,811123
|- ] s

t, 6 7 8 ||11]]12
Equipments 2 and 4 are eliminated by P6. Equipmerg8s3. are left.

= {| | %s K} ={1}. So,b=1.

LB, = Minm{&g,}{[lzcb N=m K ec mj N}

Ny =N Ny =N

LBl=Min{EClN_n3D<+Ec1nlEK_NJ’(EClN_n5EK ClnlEK NJ EC, }
- N

N —Ng N —Ng
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300 200 0—

11-5[2 6[2—11j’(40011—3m+ 6[?.—11)’40161}

LB, = Min{400
LB, = Min{700,73333 73333 = 700

Lower Bound 2

Ztim

Note that | — | is a valid lower bound on the number of workstasithat
use equipment m and the cheaper equipnmants, ... , L
iztim
Welet L =|——|.
m CT

This follows (L, ~1)xEC, + EC,, is a valid lower bound on the total cost

when equipment and the cheaper equipments are used.
We let LBrc m = (L ~1)XEC,_ +EC,,.

An overall lower bound,B; is available by the following expression.

LB, :MianM’{LBTC,m} , whereM' :{m|Lm < K}, i.e., alternatives

that produce feasible assignments with respettemumber of workstations.
The following example illustratdsB, computations.

Example 3:
CT=10 N=10 K=4 EGC=6-i L=5

Zitil:lS’ Zitiz :20, Ziti?’ :23, Zitm =45, ZitiS =52.
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L, = [—w =2, Ly <4 hence there may exist a feasible solution using

only equipment 1.

L, :[%—l: 2, L, <4 hence there may exist a feasible solution using
only equipment 2 and/or equipment 1.

L :ﬁ—ﬂ =3 L; < 4 hence there may exist a feasible solution using
only equipment 3 and/or equipmenésd 2.

Ly = H—(ﬂ =5 L, >4 hence there cannot exist a feasible solution using
equipment 4.

Ls = [%—‘ =6, Ls > 4 hence there cannot exist a feasible solution using
equipment 5.

This follows, M’ ={1,2,3}.
LBrcy = (L —~1)xEC5 +EC, =1+5=6
LBrc, =(L, ~1)XECs +EC, =1+4=5

LBrcs = (Lg ~1)xECs + EC; =2+3=5

LB, = Min .\ ,{LBTC,m}= Min{6,5,5} =5

LB, is used as a filtering mechanism as it runs quiekeen compared thB;
and LB;. We first calculatd B, if it cannot eliminate a partial solution, i.e.,

TC. + LB, < UB, then we calculateB; or LBs.

As LB, is an easy-to-find lower bound, we use it for bdfose” and “Not

close” branches.
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For “Close” branches, the lower bound is found atersng the unassigned

tasks and remaining equipments (not eliminateddoypenent elimination

rules).
Formally,
.Ztim
o= IDC?T whereA is the set of assigned tasks.
LB, (A)=Min { LBre } whereM" ={m|L,(A) < K andk OE |

and E is the set of remaining equipments

For “Not close” branches, the lower bound is ag@uand considering the

unassigned tasks and remaining equipments. Lowancbon the number of

workstations to be used when equipmargnd cheaper equipments becomes,
Ztim

_|ioa

molCT

whereA is the set of assigned tasks.

We calculatd_B,(A) as in “Close” branches.

LBy (A) =Min 1\ #{LBrc m ] whereM” ={m|Lm(A) < K andk DE}

and E is the set of remaining equipments.
Lower Bound 3

Recall that Bukchin and Tzur (2000) aim to minimihe total equipment cost
by considering the cycle time and precedence oglatiThere is no restriction
on the number of workstations used. Single equigrogreach task is assumed

and single equipment assignment to each workst&iatowed.

Bukchin and Tzur (2000) propose a lower bound thatbtained by relaxing

some of the constraints and surrogating some ofi th€he relaxed constraints

34



are the precedence constraints. The surrogateraonsis due to the cycle
time. They sum the cycle time constraints over \atirkstations for all

equipment and obtain an aggregate cycle time ainstover all equipments.
After the relaxations, the constraint set that eesat most one equipment for
each workstation becomes redundant. Hence all wair@ss are considered
together. The resulting formulation and new deadisi@riables are given

below.

N
Y| = Z Yk = total number of typeequipment.
k=1

y —%x _|1 if taski isassignedoequipment,
| =) k™0 otherwise.

L
Min > EQy,
1=1
L
Z X =1 Ui (13)
1=1
N
D tixy <CTO al a4
i=1
x; 0{0,1} i, @as
Y| integer al 16

Constraint set (13) ensures that each task is ressigo one equipment.
Constraint set (14) is the surrogate cycle timestramt. Constraint sets (15)

and (16) are the integrality constraints.

After relaxing constraint set (16), the solutionr fithe resulting problem

becomes available by the following expression.
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A |
A 0 otherwise.
N
ty LK .
y =l X Oj

o CT
Then a lower bound on the original problem is akdé through the following

expression,

L
LBy =Y ECy,
=1

A lower bound on any relaxation of a minimizatiorolplem is a valid lower
bound on the original problem. Bukchin and TzurO@Q0s problem assumes
no limit on the number of workstations; hence i&digelaxation to our problem.

This follows;LBgis a valid lower bound to our problem.

We use LB; for “Close” branches only. Note that each “Closefarizh
represents a partial solution with set of assigteksA. In this case, the
relaxed problem for tasks] A and remaining equipments is solved in order to
find LBs.

We illustrate the calculation dfB; and LBz on two simple examples. In the
first one LB3 works better thah.B; whereas in the second ohB; performs

better.
Example 4: Suppose there are 11 tasks and 5 equipments. fibehéis 3

workstations and the required cycle time is 30 tiométs. Task times and
equipment costs are given in table below.
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Table 3.3 Task Times and Equipment Costs of ttarigke Problem 4

Equipments
Task 1 2 3 4 5
1 7 10 10 13 13
2 6 6 8 12 12
3 6 6 7 8 10
4 8 9 10 11 12
5 6 8 8 9 13
6 6 8 10 12 12
7 6 7 7 7 10
8 8 9 9 10 13
9 8 11 12 12 13
10 8 9 9 11 13
11 6 6 7 9 12
Equipment Costs 400 350 300 250 200

EC; [f; values are shown in the table below.

Table 3.4 Equipment Costs x Task Times for the EparRroblem 4

Equipments
Tasks 1 2 3 4 5
1 2800 3500 3000 3250 2600
2 2400 2100 2400 3000 2400
3 2400 2100 2100 2000 2000
4 3200 3150 3000 2750 2400
5 2400 2800 2400 2250 2600
6 2400 2800 3000 3000 2400
7 2400 2450 2100 1750 2000
8 3200 3150 2700 2500 2600
9 3200 3850 3600 3000 2600
10 3200 3150 2700 2750 2600
11 2400 2100 2100 2250 2400

1 if EC @ =min,{EC; O },

X = . e O
0 otherwise.
N

Y] :z—' Oj

Using the equations above, we get:
X5 =1, X2 =1, X35 =1, X5 =1, X4 =1, Xg1 =1, X74 =1, Xg4 =1, Xg5 =1,

X1015 :1, Xll,3 =1.
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=61 %61 - 2 _ g5
CT 3C
_taDx _ 6 _ 5
CT 30
_tustais 6 _ o,
¢t 30
“TocT CT CT 3¢
Ve = tis 345 , t35 (X35, tas Bas  tos (ks |, tr0s (X105
> CT cT cT cT cT
Ve = 13+10+:1£+13+ 13 2033

L
LB, = {Z EGY, l = 400002 + 350(D.2 + 300[D.2 + 250086+ 200[2.033
=1

LB3 =832

Recall that for the same example proble is found to be 688. For this

problemLBs;works better.

Example 5: There are 11 tasks and 5 equipments. The line hawkstations
and the required cycle time is 40 time units. Tasle$ and equipment costs

are given in the table below.

Table 3.5 Task Times and Equipment Costs of ttantpte Problem 5

Equipment
Task: 1 2 3 4 5
1 7 10 10 13 13
2 6 7 8 12 12
3 6 7 8 11 12
4 8 9 10 11 12
5 6 8 8 11 13
6 6 8 10 12 12
7 6 7 8 11 12
8 8 9 9 11 13
9 8 11 12 12 13
10 8 9 9 11 13
11 6 7 8 11 12
Equipment Costs 400 350 300 250 200
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EC; [f; values are shown in the table below.

Table 3.6 Equipment Costs x Task Times for the EptarRroblem 5

Equipments
Task: 1 2 3 4 5
1 2800 3500 3000 3250 2600
2 2400 2450 2400 3000 2400
3 2400 2450 2400 2750 2400
4 3200 3150 3000 2750 2400
5 2400 2800 2400 2750 2600
6 2400 2800 3000 3000 2400
7 2400 2450 2400 2750 2400
8 3200 3150 2700 2750 2600
9 3200 3850 3600 3000 2600
10 3200 3150 2700 2750 2600
11 2400 2450 2400 2750 2400

Now we get:
X5 =1, X1 =1, X31 =1, X45 =1, X571 =1, Xg1 =1, X75 =1, Xg5 =1, Xg5 =1,
X10’5 =1, Xll,3 =1

:t21D<21+t31[x31+t51[x51+t61[x61 _6+6+6+6 _

0.6
CT CT CT CT 40
y2 =0
tig (%13 _ 8
=18 A3 - © _ g
B= e T
Ya=0
_ 505 | tas Kas | tys Bkgs | tes Kgs | tos kos |, Lios [Xi0s
5 =
CT CT CT CT CT CT
13+12+12+13+13+13 _
Y5 = 40 =19

L
LB; = > ECy, =4000D.6+3500+300[D.2+ 2500 + 20019
=1

LB, =680

Recall that for the same example proble is found to be 700. For this

problemLB; works better.
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CHAPTER 4

COMPUTATIONAL EXPERIMENTS

In this chapter we discuss the results of our erpent that is designed to test
the performance of our branch and bound algoritbgether with the reduction
and bounding mechanisms. We take the precedenseonkst from open
literature for varying sizes of tasks. We use pieoee graphs included in the
data sets of Scholl (1993) at the website http:iwassembly-line-

balancing.de/

We generate the task times as follows: The shot&sit timest;;, are
generated randomly from discrete uniform distribntbetween 1 and 6. Then
the second shortest task times, i.e., the taskstiofethe second expensive

equipment,ti,, are generated randomly §s =r; xt;;, wherer; is uniform
between 1 and 1.4. Similarly, we genergtg, as r; xt; using t; and r;

values. Note that to find the task times on eachipsgent,we generate

differentr; values.

We set the number of equipmenitsto 5. Our initial experiments showed that
the number of equipments does not have a signtfieffect on the
performance of our algorithm. Hence we try a singidue of 5 forL. We
generate the following two sets of equipment costs.

Setl EC=400 EG=350 EGCs=300 EC,=250 EGCs=200
Setll EG=400 EG=375 EGCs=350 EC,=325 EGCs=300

Note that Set | resides low equipment cost andliSessides high equipment

cost problem instances. Sets | and Il also corm$go high and low cost

variability cases, respectively.
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We use three different sets for cycle times: namdlyC2 and 3. C1resides
the instances with small cycle tinf@2 has cycle times that is 50 percent more
than the cycle time of1 andC3 has cycle times that is two times the cycle
time of C1.

224

We set the cycle time of1l as IL '
X

., where L is the number of

2.2t
il
equipments an& is the number of Workstations% is the expected

2.2
il
total processing time a dﬁ gives the expected cycle time whenkall

workstations are used.

Hence for each value ®f andK we use six combinations of cycle times and

equipment cost values.

We vary the number of taskY, between 20 and 55, in increments of 5, i.e., we
use 8 differeniN values forC1 andC2. ForC3, We varyN between 20 and 55,
in increments of 5 and between 60 and 80 in incresnef 10, i.e., we use 11
differentN values We vary the number of workstatiddspetween 2 and 8, in

increments of 2, i.e., we use 4 differ&ntvalues.

Hence forC1l and C2, we have2x8x4=64each and forC3, we have
2x11x4 =88 combinations. For each combination we generat@rbblem

instances. As a total, we solve 2160 problems.

We code our algorithms in C programming language iamplement on Intel
Core 2 Duo, 2.33 GHz, 980 MB of RAM PC.

For each problem instance, we set a terminatiort 62 hours. We terminate
the execution of the branch and bound algorithindbes not return a solution
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in 2 hours. We record the number of nodes searahddest solution reached
at termination.

The rest of the chapter is organized as followsSéction 4.1., we state the
statistics we used to evaluate the performancésedbwer bounds and branch
and bound algorithm. In Section 4.2, we presentpoeiliminary experiment for
selecting the bounding mechanisms to be used im#ie experiment. We also
test the effectiveness of the reduction mechanisymssomparing two branch
and bound algorithms: one with reduction mechanisand one without
reduction mechanisms. The preliminary experimentluohes small-sized
problem instances and the main experiment includege-sized problem
instances. In the main experiment we use the bagnaiechanisms that are

returned as most efficient by the preliminary expent.

4.1. STATISTICS USED

We use the following statistics to evaluate theqrerance of our branch and
bound algorithm.

« Average computation time in Central Processing W@RU) seconds
(Average CPU Time)

e Maximum CPU Time

e Average number of nodes searched

e Maximum number of nodes searched

* Average node number till the optimal solution isurid (Average
optimality node)

e Maximum optimality node

To evaluate the performance of the lower bounds use average and
maximum deviation of the lower bound from the opiroost as a ratio of the

optimal node. Formally,

LB, D = Percent deviation of the lower bound at the romie&o(%xloo,
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whereOPT is the total equipment cost ah8;is the total cost found by lower

boundi at the root node.

4.2. PRELIMINARY RUNS

Our preliminary runs include the following problermmbinations:

N = 20, 25 and 30
K=2,4,6and 8
CT=ClandC2
EC=Setland Set Il

We have 3x4x2x2 =48 combinations. We generate 10 problem instances

for each combination. Hence a total of 480 problanessolved.

The aim of these runs is to select the lower bog)ntd( be used for larger sized
problem instances. We I&AB be the branch and bound algorithm that uses
only lower boundi. BAB; is the branch and bound algorithm that uses first
lower bound and then lower boungdif lower boundi cannot fathom. We try
BAB,, BAB, BAB, BAB; and BAB; We exclude BAB;3 from even
preliminary runs, as our limited runs had revedlet the reductions obtained
in node eliminations could not lead to a reduciICPU times. A4 By is an

easy-to-compute bound, it is used as a filteringhmaism befor&B; andLBs.

We report the average number of nodes and CPU fionesjuipment cost sets
Set | and Set Il, in Table 4.1 and Table 4.2, respely. The associated worst
case, i.e., maximum, results are given in Appemikables A.1 and A.2. The
tables also include the results for a branch anchédalgorithm that uses no

lower bounds, namelBAR,.
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Table 4.1 The branch and bound performances witéreint lower bounds, Set |

BAB; BAB, BAB; BAB,,; BAB,; BAB,
CT|N|[K
Average # of [ Average | Average # of| Average | Average#of | Average | Average#of | Average Average # of | Average Average # of | Average
nodes CPU time* nodes CPU time nodes CPU time nodes CPU time nodes CPU time nodes CPU time
2 184 0.007 18}t 0.04o 184 0.000 184 0.po0 184 0000 184 D.000
20 4 2,231 0.002 1,846 0.003 2,160 0.¢02 1,846 0]003 1,833 D.003 ,231§2 0.00
6 15,384 0.01y 11,514 0.01L3 11,957 0.p14 11|514 4.016 1p,096 .0140 15,384 0.014
8 53,93 0.06p 37,716 0.0p0 26,441 0.p36 37|716 (.052 2B,537 .0340 53,984 0.053
2 360 0.00 36p 0.04o 3¢0 0.000 360 0.poo 360 0000 360 D.002
1|25 4 6,711 0.006 5,713 0.005 6,67 0.¢06 513 0]006 4,713 D.006 71116 0.00
6 85,984 0.08p 61,441 0.0p7 56,147 0.p61 61]440 (.064 4p,424 .0530 86,01Y 0.077
8 553,351 0.60p 305,193 0.3p4 184,844 023 304,036 .370 ,1346 0.18 566,545 0.514
2 7,759 0.009 7,799 0.011 7,769 0.¢09 7,59 0]011 1,759 D.010 7597 0.009
30 4 1,804,28 1.98B3 1,460,6p7 1.473 1,635432 11828 1,46p,657 1.669 1,356,480 1.5¢7 1,804,485 1.850
6 77,409,182 101.643 46,191,921 65.189 24,784,193 3pb.778 ,191B2] 65.4HM 21,203,7B7 30.¢464 77,409]182 89.133
8| 1,582,440,56p 2144.9%6 745,667,886  1133]159 106,65H,761.79.806 745,667,846  1146.483 99,169)651 169.456 1,582%1) 1837.87b
2 249 0.00X 24p 0.04o 249 0.000 449 0.poo D49 0000 249 D.000
20 4 669 0.00 598 0.042 669 0.002 498 0.poo 598 0002 669 D.000
6 4,164 0.006 2,517 0.003 3,974 0.05 2p17 0]003 4,504 D.003 ,1644 0.00
8 11,844 0.01p 7,495 0.011 9,154 0.013 71455 0011 4,829 D.009 11,874 0.01
2 582 0.007 58p 0.04o 582 0.002 482 0.p02 532 0002 582 D.000
5 |25 4 1,302 0.002 1,239 0.002 1,302 0.¢02 1,39 0]002 1,239 D.003 ,3021 0.002
6 13,619 0.01y 8,693 0.011 13,495 0.914 8653 .011 ,623 1p.01 13,614 0.01¢
8 53,301 0.06L 28,141 0.0B4 37,498 0.p45 28|161 (.033 2p,300 .0330 53,428 0.052
2 7,964 0.009 7,964 0.0]1 7,9%4 0.011 7,064 0]011 1,964 D.011 ,9647 0.009
30 4 56,914 0.058 49,418 0.0p2 56,904 0.p58 491478 (.052 4p,478 .0520 56,918 0.056
6 2,558,254 3.35P 929,092 1.408 1,711,128 2|344 929,092 8|L.40 863,89 1.30p 2,558,2b4 3.4J05
8 34,816,002 47.613 16,899,066 26.411 12,034,730 18.603 899664 26.44p 9,495,0p8 14.967 34,816]002 41.595

* in seconds
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Table 4.2 The branch and bound performances witireint lower bounds, Set II

BAB, BAB, BAB, BAB,, BAB,, BAB,
CTIN|K
Average #of | Average | Average #of | Average Average #of | Average | Average#of | Average Average#of | Average | Average#of| Average
nodes CPU time nodes CPU time nodes CPU time nodes CPU time nodes CPU time nodes CPU time
2 184 0.000 181t 0.0do 184 0.000 184 0.p00 184 01000 184 D.000
20 4 1,448 0.002 1,393 0.0xo 1,442 0.102 1,98 0[003 1,394 D.002 4441 0.002
6 7,450 0.009 6,663 0.008 6,903 0.409 6,p88 0[008 4,104 D.008 5297 0.008
8 12,245 0.01f 11,033 0.016 9,419 0914 10458 J.016 ,545 110.0 12,82] 0.01p
2 360) 0.00 36p 0.0do 340 0.000 360 0.p02 360 01000 360 D.002
1|25 4 5,508 0.00 5,099 0.006 5,908 0.406 5,099 0[006 4,099 D.003 ,5085 0.00
6 40,251 0.04p 35,314 0.041 37,466 0.p41 34227 (.038 3,677 .03d40 41,43 0.039
8 120,314 0.14p 101,545 0.1p7 103,972 0J125 94,557 120 083,6 0.104 125,773 0.124
2 7,759 0.011 7,799 0.011 7,769 0.011 7159 0[010 1,759 D.011 1597 0.011
30 4 194,563 0.214 192,441 0.211 191,928 op11 197,461 D.211 ,1249 0.20% 194,543 0.210
6 15,494,408 17.016 12,498,357 14.192 8,3824070 1.092 98265 14.27y 6,196,5p1 8.q41 15,494 595 36,750
8 120,183,70p  193.230 91,603,131 150148 60,553,130 9p.895 91,020,559 151.396 44,241 921 73.458 120,781,008 296.797
2 200, 0.000 20p 0.04o 200 0.000 300 0.p00 P00 0{000 200 D.000
20 4 520) 0.00 51p 0.042 520 0.002 919 0.p02 519 0{000 520 D.000
6 1,897% 0.00 1,818 0.002 1,801 0.403 1,818 0[{000 1814 D.003 8971 0.002
8 5,661 0.00% 4,962 0.0$6 5,119 0.105 442 0}006 4497 D.006 ,6815 0.006
2 480) 0.00 48p 0.002 480 0.002 480 0.p00 180 01000 480 .000
5 | 25 4 1,174 0.00 1,176 0.002 1,176 0.902 1175 0[002 1175 D.002 1741 0.00f
6 7,290 0.00 6,800 0.008 7,262 0.406 6,800 0[008 4,762 D.006 ,2907 0.00
8 20,533 0.02 18,429 0.014 19,194 0.p20 18]349 (.017 17,656  .0190 20,618 0.019
2 6,930 0.00 6,930 0.008 6,930 0.906 6,p30 0[008 4,930 D.006 ,93(6 0.01
30 4 6,729 0.00 6,77 0.008 6,7R9 0]208 6,127 0[009 4,727 D.006 ,1296 0.01
6 228,674 0.25 227,449 0.249 224,184 o0ps4 221,449 .245 5293 0.244 228,616 0.4p2
8 2,967,334 4.0 2,858,2D6 3411 2,340p18 223 2,841,390 3.894 2,226,4 3.117 2,978,440 54185




As can be observed from the tablB&B, andBAB; perform better thaBAB;.
The poor performance @&AB; can be attributed to the high variability of the
task times where the minimum task time may be &drbm many task times.
In comparing the performances BAB andBAB,, we observe thdtB, cannot
lead to a significant reduction in the average nemnd nodes searched. When
LB, is used befor&B; only a slight reduction in the average number afa®o
is observed oveBAB; and the corresponding average CPU times are latlglig
higher. Hence, the savings in the number of nodesuitweighed by the

increased CPU times.

The effort spent in calculating the lower boundssignificantly justified in
BAB, and BAB;. We can see that there is a considerable reduatiohe
average number of nodes and CPU times ®&B. These reductions are
more significant when the number of tasks and watlens are larger. For
example, for Set IC2, N=30 andK=8, whenBAB;is used the average number
of nodes and CPU time are reduced from 34,816,0061899,066 and from
41.595 seconds to 26.411 seconds, respectivelyeder, wherBAB; is used
the average number of nodes is reduced to 12,084ar® the resulting
average CPU time is 18.603 seconds. However thsultrecannot be
generalized and the branch and bound algorithmsotl@lominate each other.
For example, when Set G2, N=30 andK=6, the average number of nodes is
929,092 forBAB, and 1,711,128 foBAB;. The corresponding average CPU
times are 1.408 and 2.344 seconds.

The average number of nodes and CPU times arerhigien the equipment
costs are more variable and the cycle time is emdNote that Set | an@1
form the hardest combination. Furthermore, as thmeber of workstations and

number of tasks increase the average CPU timeddendrease exponentially.

Moreover, to see whether it is worth to use oumglation rules or not, we
perform an experiment usinBAB, and BAB,;. We design two branch and

bound algorithms: one using these mechanisms aadnotusing them. We
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report the average performances in Table 4.3. T¢socaated worst case

performances are reported in Appendix, Table A.3.

It can be observed from the tables that our rednatiechanisms improve the
performance of botBAB, andBAB,3 considerably. As the number of tasks and
workstations increase the reductions in the avenageber of nodes and CPU
times are more significant. For example, when S€R) N=30 andK=8, the
use of reduction mechanisms BAB, and BAB,; reduce average CPU times
from 108.027 seconds to 26.411 seconds and fron7025t0 14.967,

respectively.

As a result of our preliminary experiments we dw the branch and bound
algorithm, that uses our reduction mechanismsLagdbeforeLBz as a filtering

mechanism, i.eBAB,3, performs superior.
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Table 4.3 The effect of the reduction mechanisms

BAB, BAB,,
TC[CcT|N |K| WithReductions Without Reductions With Reductions Without Reductions
Average #of | Average | Average#of | Average | Average#of | Average | Average#of| Average
nodes CPU time nodes CPU time nodes CPU time nodes CPU time
2 184 0.000 3 0.040 184 0.0p0 J14 0.p00
2 4 1,844 0.00 3,858 0.0T12 1,883 O.FS 3p24 01002
6 11,514 0.018 39,417 0.02 10,096 0.p14 251899 (.030
8 37,714 0.05 167,341 0.1B3 23337 0.p34 53{786 ,069
2 360 0.000 9% 0.042 360 0.0p0 444 0.p00
12 4 5,713 0.00 17,012 0.017 5,13 0.006 164605 0.017
6 61,461 0.06y 307,892 0.3p6 46,424 0.p53 165841 178
8 305,19 0.36¢ 2, 119 9 0 2.209 146,151 0]186 614,154 D.689
2 7,759 0.011 0.011 7,769 0.910 8,158 0011
20 4 1,460,65 1678 37128 3 4,156 1,356 4489 567 3,14P,969 3.549
6 46,191,821 65.199 254,738,469  304.p61 21,203,737 3p.664 9,878,41 89.520
1 8 745,667,88p  1133.1%9 1,717,362,925 49941184 99,16p,651 65.43f 253,013,349 377.839
2 249 0.000 69 0.040 249 0.0p0 490 0.p00
20 4 598 0.00 1,4 0.013 598 0.4o2 1,486 04002
6 2,517 0.00 6,7 0.008 2,904 0.03 6,432 01008
8 7,455 0.011 27,991 0.084 6,829 0.009 211700 0.027
2 582 0.000 1,37B 0.012 582 O.TZ 1873 04002
2|25 4 1,239 0.00 4,649 0.006 1,289 0.03 4649 01006
6 8,653 0.011 43,963 0.0%0 8,623 0.011 421786 0.050
8 28,161 0.03 215,911 0.2p2 25,300 0.p33 158159 .186
2 7,964 0.01] 8.1k 0.011 7.964 0.011 814 0[009
20 4 49,474 0.05p 106,837 0.1p1 49,478 0.p52 106,857 141
6 929,097 1.40B 2,181,706 3.7 863,895 1{309 2,483,071 48.34
8 16,899,06 26.411 78,820,475  108.p27 9,495,028 14.967 118314 45,70p
2 184 0.00 31 0.040 184 0.0p0 J14 0.p02
2 4 1,399 0.00 2,791 0.012 1,304 O.IOZ 2726 01003
6 6,663 0.00 13,898 0.017 6,104 0.008 11{909 0013
8 11,033 0.01 32,348 0.0B8 8,945 0911 211243 1.028
2 360 0.000 94h 0.002 360 O.TO a4 0.p0o
1|25 4 5,099 0.00 14,705 0.017 5,099 0.003 141687 0.016
6 35,314 0.041 133,748 0.142 31,477 0.p36 104903 114
8 101,56! 0.12) 520,319 0.563 83,608 0J105 329,519 370
2 7,759 0.011 8,158 0.008 7,769 0.011 8,158 01009
20 4 192,46 0.21f 337,308 0.4¢5 189,127 008 330,113 435
6 12,498,351 14.192 38,916,261 53.594 6,196,521 041 9414 19.81
9 8 91,603,731  150.148 357,477,391 503863 44,241,521 7B.75828,657,38p 186.195
2 200 0.000 69 0.040 200 0.0p0 90 0.p02
20 4 519 0.00 1,43 0.0}2 519 0.4oo 1433 04002
6 1,814 0.00p 4478 0.003 1,814 0.03 4145 01006
8 4,967 0.00 11,696 0.016 4407 0.106 10843 0.014
2 480 0.00 1,37B 0.000 480 0.4oo 1873 04002
2|5 4 1,175 0.002 4110 0.005 1,175 0.002 4112 0[005
6 6,800 0.00 30,345 0.086 6,162 0.006 3011 0.034
8 18,429 0.0lﬁ 100,238 0.119 17,456 0.p19 90959 .108
2 6,930 0.00 8,1 0.006 6,980 0.906 8114 01011
20 4 6,721 0.00 1.7 0.009 6,797 0.906 7)63 0011
6 227,44 0.24 399,909 0.5¢9 223 %58 044 384,972 531
8 2,858,29% 39 7,184,9p2 9.995 2,226 443 117 5,00p,885 6.919
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4.3. MAIN EXPERIMENT

In this section we report on the performance of buwanch and bound
algorithm that is selected for larger sized problestances in the previous
section, i.e.BAB;. We present the results of our main runs in Taldlel
through 4.9. Specifically, we report the resultsSeft | andC1 in Table 4.4,
Set Il andC1 in Table 4.5, Set | an@2 in Table 4.6, Set Il an@2 in Table
4.7, Set | andC3in Table 4.8, Set Il an@3in Table 4.9.

As can be observed from the tables, as the numbewrodkstations, K,
increases, both the average and maximum numbevydefsnand the CPU times
increase significantly. The same result is true tfee number of nodes till
optimality. An increase in the average and maximdRU times are more
significant whenN > 30. For example, for 45 tasks problem, when eqaim
costs with high variability, i.e., Set | and lowcty time,C1 are used, we can
see from Table 4.4 that fdf= 2, the maximum CPU time is less than 2

seconds whereas f= 4 , 9 out of 10 instances cannot be solved in@$

When all other parameter combinations are fixed,gfuipment cost set with
higher variability, i.e., Set | is more difficulban the equipment cost set with
lower variability, i.e., Set Il. It can be obsedvifom Tables 4.4 and 4.5 that
almost all performance measures are better fol. S€br example in Table 4.4
(Set ') forN=30,K= 8, the average CPU time is about 165 secondseaken
Table 4.5 (Set IlI) the average CPU time is abouts@donds. Some larger
sized problems that could not be solved in 2 heutls equipment cost Set |,
can be solved with Set Il. The similar observatidwadd for the results in
Tables 4.6 and 4.7CQ) as well as Tables 4.8 and 4.
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Table 4.4 The performance of our branch and boigatithm, Set IC1

BAB 3
N K Average # of | Maximum # of # of
Average # of | Maximum # of nodes till nodes till Average | Maximum |unsolved
nodes nodes optimality optimality CPU time | CPU time |instances
2 184 206 4 10p 0.0qo0 0.0po
20 4 1,833 2,81¢ 1,301 2,498 0.0p3 0.916
6 10,096 17,05p 6,648 11,9B7 0.q14 0.p31
8 23,537 63,77 19,033 57,7119 0.434 0.p78
2 360 444 174 416 0.09o 0.0po
o5 4 5,713 10,61p 4,149 8,242 0.006 0.916
6 46,424 99,06p 34,615 98,275 0.¢453 0.L10
8 146,151 231,746 119,067 196,487 0..86 0[312
2 7,759 7,829 31p 9d9 0.010 0.q16
30 4 1,356,489 2,717,232 237,5P8 2,044,P75 11567 4.859
6 21,203,737 51,471,5%2 2,038,383 9,827}411 3d.664 6p.719
8 99,169,651 324,677,3p4 14,483,554 35,088]570 165.456 .15%46
2 4,185 4,426 17B 941 0.0p6 0.q16
35 4 481,00( 798,988 7,634 28,196 0.647 1pie6
6 8,133,208 16,478,5%4 1,871,469 15,580{849 14.505 2p.860
8 36,644,296 97,915,532 12,695,941 90,724|199 63.542 162.0
2 761,004 798,14 3,504 13,503 0.$83 0.p84
40 4 2,137,273,81B 4,102,512,134 115,304)039 1,052,033,14225.20% 4308.696
6 979,471,11y 2,305,192,5p2 522,514,603 1,448,706,608 -
45 2 1,220,10¢ 1,248,046 4,3p8 25,451 1.f34 1]922
4 1,276,412,241L 1,628,759,974 60,534,933 590,307,811 .Z482 7200.00p
2 12,714 12,73B 1,311 9,611 0.J31 0.932
50 4 1,059,097 1,767,846 78,8p5 263,317 2p98 3}719
6 18,961,02¢ 36,123,596 1,301,Jo4 5,338}409 44.708 10p.125
8 383,544,388 624,534,085 188,761,§163 583,394,763 95.861494.514
55 2 1,720,39¢ 1,721,338 5,21 26,307 3.L11 3|234
4 3,828,543,46]L 3,972,332,623 97,790,182 971,098,204 - -

o oo©
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Table 4.5 The performance of our branch and bo8ad]l , C1

BAB 3
N K Average # ol | Maximum # of # of
Average # of | Maximum # of nodes till nodes till Average | Maximum |unsolved
nodes nodes optimality optimality CPU time | CPU time |instances

2 184 206 4 109 D 0.000
20 4 1,394 1,918 1,101 1,640 0.00p2 0.¢15

6 6,104 10,59y 3,895 6,84 0.J08 0.016

8 8,544 17,598 7,444 17,083 0.d11 0.p31

2 360 4449 174 41pb 0.0¢o 0.0po
o5 4 5,099 9,54% 4,215 8,242 0.00p3 0.¢15

6 31,6771 73,708 25,991 73,1p0 0.936 0.p78

8 83,604 158,03 62,722 102,912 0.105 0po03

2 7,759 7,829 31p 9q9 0.011 0.d16
30 4 189,121 234,400 17,7¢4 88,458 0.208 0p66

6 6,196,521 20,307,181 909,11 2,415,602 8l041 23.218

8 44,241,522} 99,385,2%9 5,058,374 18,674]260 73.758 18[1.57

2 4,185 4,42¢ 17B 941 0.0p5 0.dq16
35 4 66,317 137,25k 8,831 28,1p6 0.¢989 0. 72

6 1,909,444 7,309,949 95,9b5 264,380 2§77 12234

8 14,106,53% 24,655,694 1,948,367 7,686}340 24.292 45.078

2 761,009 798,14p 3,504 13,5903 0.389 0.p85
40 4 198,493,18]L 277,048,4p1 5,357,191 27,562}308 218.286 .5@98

6 2,587,633,58B 3,587,212,164 226,690,328 903,030,968 7.4GH 7200.00p

8 1,915,553,73B 4,179,656,967 1,430,097]698 3,263,76) .42 - -

2 1,220,10 1,248,046 4,3p8 25,451 1.y47 11937
45 4 586,506,09p 700,091,6p6 42,635,635 338,824,864 76P.953 28.984

6 2,739,286,99y 4,244,660,542 762,6021196 3,106,564,45928.881 7200.0qo

2 12,714 12,73B 1,311 9,611 0.431 0.p32
50 4 275,771 411,597 86,740 206,384 0.567 0j859

6 3,652,641 10,183,714 673,134 1,415,891 9]511 28.859

8 20,257,15fY 28,199,411 9,084,404 21,410]298 53.514 8p.797

2 1,720,39 1,721,338 5,2B1 26,307 3.L09 3|234
55 4 294,225,898 438,528,4F2 3,150,300 28,5401014 538.163 .4887

6 2,377,720,41f 3,680,191,389 230,970)681 1,109,09 3,37(!590.82(13 7200.0qo




Another important conclusion from the tables isttltize cycle time has
significant influence on the difficulty of the pren. As the cycle time
increases, the number of nodes searched, CPU tmoesber of nodes till
optimality decrease considerably. This influencexpected since higher cycle
times enable optimal solutions with fewer workstasi and the reduction rules
for the number of workstations become more effectiWhen the cycle time is
higher we have fewer workstations as more taskditém a workstation. The
reduction in CPU times becomes more significantrwtiee number of tasks
and workstations are higher. Note from Tables 4.6, and 4.8 that when
N=50,K= 8 and Set |, foC1, C2andC3 the average CPU times are about
957, 22 and 4 seconds, respectively. Theoretictilly, generated cycle time
values may not return a feasible solution, howedwepur experiments we

always had feasible solutions.

Our experiments reveal that the most difficult comakion of equipment costs
and cycle time is Set | an@l (see Table 4.4) whereas the easiest combination
is Set Il andC3 (see Table 4.9). In the most difficult combinatset, none of
the instances with=40 andK=6 and 8 can be solved in 2 hours. On the other
hand, in the easiest combination set, all of th&ammces are solved with
average CPU times less than 4 secondKfoB and 218 seconds fa¢=8.
Moreover, forN=45 andK=4, 9 out of 10 instances cannot be solved in 2
hours in the most difficult combination. Howeven, the easiest combination
set, the average CPU time for instances Witi5 andK=8 is less than 779

seconds.

In general, the average and maximum number of noll@ptimality is very
low compared to number of nodes searched espeémllgrgerK andN. For
example forN=40, K=6, TC=Set Il andCT=C2 (Table 4.7), the average
number of nodes till optimality is 4,918,229 altigbuthe average number of
nodes searched is 196,985,643. Hence, the proltkethsannot be solved until
our termination limit of 2 hours are likely to bptonal.
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Table 4.6 The performance of our branch and bolgatithm, Set I, C2

BAB 3
N K Average # ol | Maximum # of # of
Average # of | Maximum # of nodes till nodes till Average | Maximum Junsolved
nodes nodes optimality optimality CPU time | CPU time Jinstances

2 249 264 2% 3p 0.0dqo 0.090 (6]
20 4 594 1,160 431 640 0.0¢2 0.01L.6 (o]

6 2,504 4,414 2,018 2,851 0.0p3 0.9016 (o]

8 6,829 15,21¢ 4,710 9,864 0.009 0.916 (o]

2 582 594 34 4p 0.0g2 0.0}16 (o]
o5 4 1,239 2,254 93p 2,243 0.0p3 0.q16 (o]

6 8,623 15,80p 6,144 11,4p7 0.d11 0.916 (o]

8 25,30( 51,73B 18,432 37,1B0 0.933 0.p63 (o]

2 7,964 7,984 an 59 0.011 0.0[L6 (o]
30 4 49,474 90,95p 1,140 7,9p8 0.d52 0.994 (o]

6 863,891 1,469,142 162,0p3 618,985 1.809 2]o94 (o]

8 9,495,028 27,119,290 1,290,452 3,968 546 14.967 39.984 (0]

2 4,564 4,574 5p 69 0.008 0.0]L6 (]
35 4 22,134 31,451 191 662 0.0p7 0.q47 0]

6 458,911 982,150 7,1%0 25,955 0.733 1422 (o]

8 5,214,71% 10,414,948 461,573 2,754,p00 8]516 1%.610 0

2 835,41( 835,533 q1 19 0.9p8 1.932 (o]
40 4 14,129,24% 34,128,526 988,117 5,762 p98 12888 39.672 (o]

6 2,019,244,71p 3,361,388,127 32,387,p61 252,382,236 .B282 7200.00p il

8 1,011,080,57f 2,992,833,274 578,651 838 3,566,45p,19866.607 7200.0q0 <]

2 1,253,13t 1,253,144 16 B9 1.485 1.Y97 0
45 4 72,044,24 151,505,592 28,429 75,¥87 81|994 16%.234 (0]

6 1,289,842,08) 4,076,657,1)66 9,549,p11 55,964,939 66826.0 7200.009

2 12,954 12,96p g3 99 0.0B0 0.4g32 (0]
50 4 45,964 73,75B 6,145 17,0[L9 0.q97 0.jl41 0

6 1,170,74 2,432,740 72,2116 313,713 2B22 5750 (6]

8 8,273,82 13,979,789 792,628 4,525,178 211955 3%.687 (o]

2 1,722,10 1,722,136 (o] 1po 3.481 3.L09 (o]
55 4 177,501,01 462,548,0Y4 2,968 7,29 314|906 809%.437 (0]

6 3,213,007,17| 3,395,145,272 103,172p72 971,289,432 . -




4]

Table 4.7 The performance of our branch and bolgatithm, Set Il , C2

BAB 3
N K Average # of | Maximum # of # of
Average # of | Maximum # of nodes till nodes till Average | Maximum Junsolved
nodes nodes optimality optimality CPU time | CPU time |instances
2 200 206 3 3p 0.0qdo 0.090
20 4 519 686 44 6217 0.0Qq0 0.0po
6 1,814 3,012 1,5 2,7%4 0.0p3 0.9016
8 4,497 10,098 3,842 9,547 0.(06 O.$16
2 480 484 40 4p 0.0do 0.090
o5 4 1,175 2,254 1,092 2,243 0.0p2 0.9015
6 6,763 12,76p 5,899 11,5p9 0.qoe 0.p16
8 17,654 36,45p 13,733 32,1p4 0.919 0.p32
2 6,930 6,939 5p 59 0.096 0.0[L.6
30 4 6,727 7,76Y 67p 1,984 0.0p6 0.916
6 223,559 379,64b 50,533 166,318 0.p44 0ja22
8 2,226,44 4,025,639 664,545 1,937,B99 3|117 H.406
2 3,84(0 3,840 6p 9 0.093 0.0[L6
35 4 3,007 3,798 40P 1,695 0.0p3 0.916
6 72,974 137,37p 8,378 28,318 0.9q97 0.L.56
8 602,487 1,239,346 38,4P6 158,703 0.p38 11938
2 626,17( 626,174 10 19 0.6p3 0.425
40 4 437,554 516,820 71,9%2 319,440 0.467 0J531
6 196,985,648 256,604,3p0 4,918,229 22,377}380 219.964 .5@R7 g
8 2,189,208,11p 3,148,503,241 131,737 )543 655,28%,641 E - E
2 939,85( 939,859 s (0] 39 1.2h7 1.450
a5 4 896,47 953,604 46,672 75,987 1.}134 11312
6 581,596,47p 700,091,6p6 44,825,425 338,823,864 75p.877 25.594 q
8 2,512,110,23]L 3,235,124,939 155,674 335 915,894,201 E - E
2 10,08( 10,08p 90 99 0.0p5 0.431
50 4 16,357 21,974 5,842 16,7p9 0.438 0.p62
6 274,32( 464,098 79,746 248,420 0.p63 0J953
8 1,571,207 2,720,340 410,240 875,902 31852 5718
2 1,396,84 1,396,846 190 1p9 2.481 2.p88
55 4 1,712,74 1,730,518 531 23,157 2.yY78 21813
6 277,655,23 370,626,8p6 3,049,650 28,540,014 511.747 .0B83 g
8 3,123,214,46 3,824,320,1184 85,005,832 757,549,547 : - E
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Table 4.8 The performance of our branch and bolgatithm, Set I, C3

BAB 3
N K Average # of | Maximum # # of
Average # of | Maximum # of nodes till of nodes till | Average | Maximum |unsolved
nodes nodes optimality optimality CPU time | CPU time |instances
2 200 204 3 3p 0.0do 0.090
20 4 461 584 32y 4211 0.0¢o 0.0po
6 938 1,87¢ 75B 1,716 0.0p2 0.q15
8 2,494 4,406 1,813 2,843 0.0p3 0.916
2 480 484 49 4p 0.042 0.015
o5 4 1,093 1,749 87p 1,736 0.0p2 0.q16
6 1,844 4,11% 1,538 4,0%3 0.0p3 0.¢16
8 7,004 15,97p 5,414 14,755 0.J08 0.016
2 6,930 6,937 5p 59 0.0¢8 0.0L6
30 4 7,704 7,838 28p 9q9 0.0}1 0.d16
6 97,334 177,12B 1,297 7,3p4 0.138 0.p50
8 864,444 1,598,246 42,242 177,379 1.B27 2|704
2 3,84( 3,840 6p (S &) 0.0¢6 0.0JL6
35 4 4,079 4,426 29p 1,035 0.0p6 0.Q16
6 37,139 55,83p 1,442 10,72 0.458 0.p78
8 479,704 855,452 125,419 782,41 0.f80 11468
2 626,17( 626,174 10 1o 0.6p7 0.441
40 4 760,494 800,884 2,8%6 13,5993 0.889 0.p85
6 24,705,053 39,201,548 265,497 2,443 )723 301805 51.219
8 1,828,664,13p 3,339,303,773 36,452 24 252,382,236 2432.555 49p4.7
2 939,85( 939,859 qo 39 1.2B6 1.350
45 4 1,219,35 1,248,046 4,1B5 25,451 1.§33 1]921
6 99,648,079 179,414,684 50,380 185,96 14717 28Y.344
8 1,549,548,02) 4,069,278,376 14,657 |720 62,14Q,847 6598.592 7@p0.00
2 10,08( 10,08p 9P 99 0.0p5 0.g31
50 4 15,484 19,41p 3,4Q3 8,0B1 0.436 0.9p47
6 94,144 326,851 30,3¢7 140,934 0.p17 0§734
8 1,032,151 1,865,148 128,088 313,13 2516 4500
2 1,396,844 1,396,846 190 1p9 2.473 2.p88
55 4 1,720,164 1,721,042 5,1p4 24,495 3.L14 3]250
6 361,073,469 725,119,6f0 6,318,679 58,140}304 753.792 14%5.781
8 3,255,425,40) 3,402,780,884 118,665pP37 971,289,432 E -
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Table 4.9 The performance of our branch and bolgatithm, Set I, C3

BAB,;
N K Average # of] Maximum # # of
Average # of | Maximum # of nodes till of nodes till] Average | Maximum Junsolved
nodes nodes optimality optimality CPU time ] CPU time |instances

2 200 206 3( 3 0,00D o
20 4 467 584 32Y 425 0,0(IO 0,0po (0]

6 664 1.02] 51p 854 0,092 0,01L6 0

8 1.904 3.01p 1.596 2.7%4 0,0p3 0,916 0

2 480 484 4 4p 0,0qo 0,090 0
o5 4 1.094 1.74 87pb 1.736 0,0p3 0,q16 0

6 1.514 3.13 1.36¢4 3.0%0 0,0p2 0,916 0

8 6.289 14.44D 5.378 13.4f1 0,Jo6 0,916 0

2 6.93( 6.93% 5p 59 0,0¢8 0,0L6 (o]
30 4 7.76( 7.85;E 28p 9q9 0,011 0,16 0

6 59.784 135.96) 4.698 25.7p6 0,366 0,lL56 0

8 226.584 379.6 33.738 154.417 0,p47 ou37 0

2 3.84( 3.849 6p [ 2] 0,05 0,0jL6 0
35 4 4.199 4.42 31p 1.145 0,0p6 0,q16 0

6 17.117% 49.96p 4.344 30.6L4 0,425 0,p78 (]

8 78.60¢ 137.37¢ 13.82( 35.78¢ 0,106€ 0,17% 0

2 626.17 626.174 710 19 0,6B1 0,441 (o]
40 4 760.49 800.884 2.8%46 13.5993 0,392 1,p00 0

6 3.470.31 18.323.548 285.911 2.427.§¥75 31447 14,563

8 203.499.27 270.437.42 5.609.97/ 27.562.30 217,06¢ 275,67 0

2 939.85( 939.859 g0 9 1,2p5 1,350 0
45 4 1.219.35 1.248.046 4.1B5 25.451 1,542 11937 0

6 30.678.45 142.104.5%0 5.474.471 45.2211490 34,845 aep.1 o

8 599.496.46 736.277.59 42.074.07] 338.822.86 778,81’ 926,70 0

2 10.08( 10.08p 9P 99 0,03 0,932 0
50 4 15.614 19.41p 3.443 8.0B1 0,38 0,947 0

6 70.354 276.591 23.539 144.38 0,145 0p62 0

8 294.17¢ 464.09¢ 103.13: 248.62( 0,60¢ 0,957 0

2 1.396.84 1.396.846 190 1p9 2,484 2,p88 0
55 4 1.720.30 1.721.3314 5.2p4 25.469 3,27 3266 0

6 103.358.42 733.836.4p4 7.968.953 57.6411562 181,973 2,12 q

8 298.004.31 438.529.21 5.900.57; 28.540.01, 550,57 811,60 0




The average performances of the majority of théamses are close to their
maximums. This reveals the consistent behavior wf lwranch and bound
algorithm over all instances. However there is aception in Table 4.9 for
N=55 andK=6 where the average CPU time is about 182 secohdseas the
maximum CPU time is about 1282 seconds. We se&€tbhll0 instances have
CPU times of 516 and 1282 seconds and the remasigig instances are

solved in about 2.7 seconds.

Generally, as the number of tasks increases, theg® and maximum number
of nodes searched, CPU times and number of nolesptimality increase.

This is expected since the number of tasks affdwsnumber of branches,
hence the depth of the tree. However, we obsenve xceptions in our tables
betweenN=30 andN=35, and betweeN=45 andN=50. This may be due to
random effect or the precedence structure. Whegedence relations are

fewer, more branches become feasible, hence tliepnagets harder.
The flexibility of the precedence graphs is meadimgflexibility ratio, FR.

_ Numberof zerodn the precedencaetwork
N x (N -1)
2
precedence network is 1 if taskprecedes task and O otherwise. Note that

W gives the total number of entries in the precederatwork. As FR

FR , Where an entryi, j) of the

increases problem becomes less restricted, henazdifbicult to solve.

We calculate FR ratios for our test problems atdiltte the results in Table
4.10.
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Table 4.10 The Flexibility Ratios of test problems

N FR
20 0.2300
25 0.2833
30 0.5517
35 0.405(
40 0.643%
45 0.554%
50 0.181%
55 0.4471
60 0.3379
70 0.405%
80 0.439%

We find that folN=30 andN=35, FR is 0.5517 and 0.4050, respectively. Thus,
when N=35 the instances are more flexible which can erplaé exception.
Moreover, note that foN=45 andN=50, FR values are 0.5545 and 0.1812,
respectively. Hence, we can explain the lower Cirlgs returned by the larger
size problems by their lower flexibility ratios.

In practice, the flexibility ratios of the assemlilyes are generally lower. Note
from Table 4.10 that all the precedence networksusee have relatively high
ratios. Bukchin and Tzur (2000) us® values that are around 0.1 and 0.4.

Hence our experiments consider relatively diffi¢alsolve ones.
We next investigate root node lower bound perforrean Tables 4.11, 4.12

and 4.13 report the average and maximum deviatdh8,, LB, andLBsfrom

the optimal forC1, C2andC3, respectively
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Table 4.11 The lower bound performances, C1

%DEV LB ; %DEV LB , %DEV LB 4
TC| N |K

Average| Maximum | Average| Maximum | Average| Maximum
2 64.24 66.67 10.41 16.¢7 1477 22
20 4 67.33 80.9% 23.49 28.%7 9.L9 13
6 66.65 75.0 32.06 37.%0 iop4 12
8 68.83 80.9% 32.39 34.$8 8.p4 12
2 64.24 66.67 10.41 16.¢7 136 21
25 4 64.14 80.9% 24.50 27.27 9.p1 12
6 64.4(0 75.0 34.92 37.%0 8.p4 10
8 67.55 79.49 32.7 38.46 7.1 11
2 64.24 66.6Y1 10.1 16.¢7 1360 19
30 4 67.84 81.8% 24.50 27.27 8.B0 11
6 64.71 74.19 30.00 35.48 713 9
8 68.19 80.49 30.32 31.11 5.8 7
2 64.24 66.6Y1 10.1 16.¢7 1208 19
1 35 4 66.75 80.9% 25.89 27.27 10.p4 12
6 65.15 74.19 31.93 35.48 7.B4 9
8 66.79 80.9% 31.68 33.33 6.46 8
2 63.64 63.64 9.0p 9.9 12.p1 14
401 4 67.67 80.9% 23.91 23.31 8.p7 10
6 65.04 74.19 33.35 35.48 7.6 8
45 2 63.64 63.64 9.0p 9.9 12.47 13
4 71.69 81.8% 24.50 27.37 9.45 12
2 64.24 66.6Y1 10.1 16.¢7 133 18
50 4 70.65 81.8% 27.06 28.%7 1163 13
6 67.09 75.7¢ 32.19 37.%0 9.p5 10
8 72.94 80.9% 32.76 34.15 7.A5 9
55 2 63.64 63.64 9.0p 9.9 11.p5 13
4 75.33 81.8% 24.16 27.37 8.p0 10
2 55.8% 57.14 4.3P 7.14 23.p7 27
20 4 54.71 73.33 11.31 13.33 8.1L9 12
6 53.9¢ 66.6Y1 17.21 26.16 9.8 15
8 57.04 73.33 15.21 17.39 8.p6 11
2 55.8% 57.14 4.3P 7.14 23.Y4 27
25 4 49.69 73.33 11.69 13.}4 9.p5 10
6 50.50 66.6Y1 20.92 27.18 9.p6 14
8 55.52 72.41 15.99 26.44 9.B9 10
2 55.87 57.14 4.3P 7.14 22.y8 24
30 4 55.13 73.91 12.08 13.14 7.B1 9
6 51.09 66.2 13.96 17.46 7.p2 11
8 56.79 73.03 14.41 16.48 7.5 10
2 55.87 57.14 4.3P 7.14 22.p8 25
35 4 52.7¢ 73.33 12.47 1314 7.p8 10
> 6 51.31 61.99 15.24 18.15 6.1 11
8 54.38 73.33 14.98 16.48 7.B4 8
2 55.54 55.5¢6 3.7p 3.10 23.43 24
40 4 54.79 73.3p 11.30 1314 8.B5 10
6 49.84 61.99 16.21 17.46 4.B6 11
8 56.64 72.73 14.02 15.%6 8.1L9 9
2 55.54 55.5¢6 3.7p 3.10 23.1L5 24
451 4 60.23 73.3p 11.50 13.04 8.p0 9
6 54.40 66.2¢ 16.1)0 18.15 5B1 13
2 55.87 57.14 4.3P 7.14 22.87 25
50 4 58.14 74.4Y 13.06 14.19 9.p2 11
6 53.64 67.1% 15.49 18.15 7.9 13
8 62.61 73.63 15.57 16.48 7.B8 10
2 55.56 55.5¢ 3.7p 3.90 22.p2 24
55| 4 65.39 73.91 11.30 13.04 7.69 9
6 59.43 66.61 17.1)2 18.715 4. A6 11
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41
94
30
98
99
67
48
20
19
67
26
70
91
81
25
27
15
13
69
30
64
50
71
57
04
38
82
03
43
19
84
43
92
14
99
98
97
74
12
43
04
60
67
89
83
92
67
62
70
33
38
11
51
11
27
13
63



Table 4.12 The lower bound performances, C2

%DEV LB , %DEV LB , %DEV LB ,
TC| N |K
Average | Maximum | Average| Maximum | Average Maximum
2 49.29 50.090 0.0p 0.4qo 19.L7 22
20 4 59.24 73.38 19.00 21.43 1399 17
6 67.2] 81.8p 23.95 28.%7 948 13
8 64.00 72.41 29.10 31.03 96 13
2 50.00¢ 50.090 0.0p 0.4qo 19.47 21
25 4 62.1( 73.38 18.96 20.90 1333 17
6 64.94 81.8p 26.2B 27.27 1069 12
8 65.29 71.48 27.98 29.¢3 8p7 10
2 50.00¢ 50.090 0.0p 0.4qo 19.B2 20
30 4 59.24 73.3B 18.20 20%0 1171 15
6 67.05 80.9% 23.47 25.00 78 10
8 65.29 85.19 27.91 28.%7 7.p0 8
2 50.00¢ 50.090 0.0p 0.4qo 18.B2 20
35 4 57.33 73.3B 20.00 20.¢0 13p7 17
1 6 66.41) 80.9% 25.10 27.27 10p1 11
8 64.14 86.21 28.92 31.03 8.1L4 9
2 50.0( 50.09 0.0p 0.10 19.B7 21
40 4 61.57 73.33 17. 4 20.90 1186 15|
6 67.60 80.9% 23. 797 27.27 8.5 10
8 72.23 85.19 26.72 28.%7 6.63 8
2 50.0( 50.09 0.0p 0.qo 19.p7 20
45| 4 62.1( 73.38 18.96 20.90 1349 15
6 71.77 80.9% 24.90 27.37 9.B3 12
2 50.00¢ 50.09 0.0p 0.4qo 19.p4 21
50 4 67.81 73.38 20.14 21.43 1371 15
6 70.74 81.8p 26.98 27.27 1190 13
8 69.04 72.41 30.146 31.3 9p7 11
2 33.33 33.38 0.0p 0.4qo 19.p1 20
55] 4 63.64 63.64 9.00 9.49 11.p6 13
6 70.00 75.09 22.90 25.00 945 11
2 24.5( 25.00 0.0p 0.qo 12.p2 16
20 4 41.47 61.29 9.1 10.¢0 9.p2 12
6 54.53 73.91 11.33 13.33 8.B0 13
8 50.17 61.99 14.08 17.46 8.B4 12
2 25.0( 25.00 0.0p 0.qo 13.B2 16
25 4 45.42 61.29 9.0B 9.48 10.B9 13
6 50.09 73.91 12.46 13.04 8J2 10
8 51.83 60.0 13.06 14.75 of1 11
2 25.00 25.00 0.0p 0.4qo 12.p4 15
30 4 41.42 61.29 8.7 9.48 8.83 11
6 54.71 73.91 11.92 13.04 8.L.7 10
8 51.94 80.09 13.947 16.13 7.p2 9
2 25.00 25.00 0.0p 0.4qo 12.B3 14
35 4 38.04 61.29 9.6B 9.48 9.86 11
6 52.59 73.38 12.08 13.04 8.9 10
2 8 50.13 80.3B 13.41 14.75 73 9
2 25.00¢ 25.00 0.0p 0.4qo 13.p9 15
40 4 45.03 61.29 8.47 9.48 10.p4 12
6 54.79 73.38 11.30 13.04 8.p6 10
8 61.64 79.66 12.45 14.15 84 11
2 25.00¢ 25.00 0.0p 0.4qo 13.44 15
45 4 45.47 61.29 9.0 9.48 10.[L6 12
6 60.23 73.38 11.90 13.04 8.B7 10
8 65.33 78.64 12.596 14.47 6.p5 8
2 25.0( 25.00 0.0p 0.qo 12.17 15
50 4 53.43 61.29 9.7h 10.¢0 9.B2 11
6 58.2( 74.4Y 13.04 14.89 9.p8 10
8 56.39 61.29 14.36 16.13 793 9
2 14.29 14.29 0.0p 0.qo 25.B8 26
55 4 55.54 55.5¢ 3.7p 3.410 22.po 24
6 56.50 70.00 11.0 12.%0 6.6 21
8 65.33 73.3B 11.11 11.11 8.p8 9

60



Table 4.13 The lower bound performances, C3

41
12

51

57
69
83
70

31
75

37

04
93
71
11

81
06

%DEV LB ; %DEV LB , %DEV LB 3
TC| N |K

Average | Maximum | Average| Maximum | Average| Maximum
2 33.33 333 0.0p 0.qQo0 20.p6 22
20 4 63.94 66.67 9.8p 16.67 14.p0 22
6 59.81 76.4Y 20.01 25.¢00 12834 17|
8 67.27 80.9% 24.08 28.%7 9.B0 13
2 33.33 33.38 0.0p 0.Q0 19.f2 21
o5 4 64.24 66.67 10.41 16.67 1464 21
6 55.29 75.0 23.01 25.90 100 15
8 63.27 80.9% 23.13 27.%7 9.b3 15
2 33.33 333 0.0p 0.qQo0 19.B6 20
30 4 64.24 66.67 10.41 16.¢7 1361 19
6 57.17 75.0 18.26 25.¢0 1033 12
8 67.09 80.9% 22.97 23.31 81 10
2 33.33 33.38 0.0p 0.Q0 18.B8 21
35 4 63.94 66.67 9.8p 16.¢7 12.p2 19
6 57.5( 75.0 20.00 25.¢00 10p3 13
1 8 66.06 80.9% 24.50 27.37 9.3 12
2 33.33 333 0.0p 0.qQo0 19.p3 21
40 4 63.64 63.64 9.0p 9.Q9 12.f2 14
6 57.5( 75.0 22.590 25.90 1045 13
8 67.14 80.9% 22.97 23.31 8.2 10
2 33.33 333 0.0p 0.qQo0 19.F6 20
a5 4 63.64 63.64 9.0p 9.99 12.f6 14
6 62.5( 75.0 21.25 25.900 1038 12
8 71.14 80.9% 23.05 23.31 8.p4 10
2 33.33 33.38 0.0p 0.Q0 19.B7 21
50 4 64.24 66.67 10.41 16.67 1393 18
6 60.29 76.4Y 19.78 25.90 1098 15
8 70.56 81.8% 26.71 28.%7 1148 13
2 50.0( 50.0 0.0p 0.qQo0 18.p1 20
55 4 72.74 73.3 18.29 20.90 1190 15
6 75.37 81.8% 24.16 27.27 7.p3 9
8 75.59 85.71 28.02 31.93 733 11
2 14.29 14.2 0.0p 0.Q0 2548 29
20 4 55.71 57.14 4.0b 7.34 23.y6 27
6 45.15 70.78 11.43 30.¢0 1399 24
8 54.53 73.3 11.36 13.33 8.B6 12
2 14.29 14.29 0.0p 0.9qo 25.p3 28
25 4 55.87 57.14 4.38 7.14 24 42 27
6 34.97 70.78 11.46 12.%0 707 23
8 49.09 73.38 10.93 13.04 1009 11
2 14.29 14.2 0.0p 0.Q0 24.p8 27
30 4 55.87 57.14 4.38 7.34 22.B8 24
6 42.07% 70.0 8.4 12.%0 12.p6 21
8 54.47 73.3 10.70 13.04 8.p8 10
2 14.29 14.29 0.0p 0.9qo 24.p1 26
35 4 55.71 57.14 4.0b 7.34 22.p7 25
6 42.25 62.5 9.5p 12.%0 10.p5 21
> 3] 52.44 73.38 11.88 13.04 8f)7 10
2 14.29 14.29 0.0p 0.9qo 26.JL7 27
40 4 55.56 55.5 3.7p 3.0 23.B8 25
6 39.29 62.5 11.00 12.%0 8.p9 21
8 54.49 73.3 10.70 13.04 9.p2 10
2 14.29 14.2 0.0p 0.Q0 25.B9 27
a5 4 55.56 55.5 3.7p 3.40 23.41 24
6 47.50 70.0 10.25 12.%0 9.B5 21
8 59.87 73.38 10.71 11.11 8p1l 10
2 14.29 14.29 0.0p 0.9qo 25.p9 28
50 4 55.87 57.14 4.38 7.14 23.p3 25
6 45.40Q 70.7 9.2)1 12.%0 12.p1 22
8 58.14 74.4Y 13.06 14.89 9.po9 11
2 25.0( 25.0 0.0p 0.Q0 12.B4 14
55 4 60.99 61.2 8.7 9.48 9.§7 12
6 65.45 73.91 11.50 13.04 7p1 9
8 65.9(0 80.0 13.04 13.33 743 9

13
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Recall thatBAB, and BAB; perform better thaBAB;. It can be observed from
Tables 4.11, 4.12 and 4.13 that the average andmmuax deviations oLB;

and LBs are very low compared to deviations ld8;,. This verifies that the
performance of the branch and bound algorithm®ig much influenced from

the quality of the lower bounds.

We observe from the tables tHaB, andLB; do not consistently outperform
each other. The average and maximum deviationEBpf decrease as the
equipment cost variability, i.e., difference betweguipment costs, decreases.
This is due to the fact that the cheapest equiproestt is used in calculating
LB,. Note that,LB; finds the optimal solution at root node #=2 when the

cycle time is larger@G2 andC3).

Recall thatLB; is designed when there is no limit on the number of
workstations. So, we expect thaB; works better in instances with higher
number of workstations. It can be observed fromtéies that the average and

maximum deviations dfB; decrease as the number of workstations increases.

To set the limit of our branch and bound algoritimrierms of the number of
tasks and number of workstations we design a sexgleriment with 60, 70
and 80 tasks problem instances@®. The results are tabulated in Table 4.16.
Note thatC3 is relatively easier tha®l and C2. The results of our main
experiment indicate that these problem sizes coatdoe solved in two hours
with ClandC2,
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Table 4.14 The performance of our branch and baigtithm for large-sized

problems, C3
BAB,;
TclInN K Average # of | Maximum # of # of
Average # of | Maximum #of | nodes till nodes till Average | Maximum |unsolved
nodes nodes optimality optimality CPU time | CPU time |instances
2 51,16( 51,16p 110 119 0.0p2 0.¢62 0
60 4 38,032 49,711 6,243 19,8p1 0.455 0.p79
6 579,924 868,846 19,841 36,123 0.950 1J828
8 25,950,91f 69,475,848 511,442 3,303 529 46913  10p.422
2 3,143,10 3,143,146 130 1B9 2.966 2.p69
1 70 4 2,470,85 3,621,008 400,377 1,506,592 3|567 4.532
6 158,830,518 408,046,3f5 47,641,085 232,691,893  23].66325.264 (
8| 119597854 4,178,395,065 220,114)509 1,472,61],086 - -
2 12,098,70 12,098,707 1p0 159 39.997 40]062
80| 4 32,628,38p 43,228,566 21,562,473 38,449|1919  11%.231 4890. g
6| 1946,247,75B 2,018,767,841 161,306j402  1,612,925,079 - -
2 5116( 51,16p 110 119 0 0.0p2 0
60 4 38,032 49,711 6,243 19,8p1 0.452 0.p78 0
6 367,831 2,064,644 32,97 94,907 0.475 2|672
8 1,446,85 4,893,711 413,938 3,269,869 2|356 9.547
2 3,143,10 3,143,146 130 1B9 2.967 2.p69
2 70 4 2,470,85 3,621,048 400,377 1,506,592 3566 4.516
6 100,805,77p 375,881,2f3 23,010,840 114,880,705  14B.94289.83¢ (
8 423,122,28p 1,544,933 5.6 194,024p13  1,177,72¢,182 .5B47 2413.95B D
2 12,098,70 12,098,707 1p0 159 39.981 40]000
80| 4 32,902,36 43,228,566 21,812,{18 40,943|361  11¢.319 1448. g
6| 1,081,40380F 2,129,167,830 13,375451 24,004,720 38€l. 7200.00p §

As can be observed from the table for 60 all the instances are solved in two
hours. WherN = 70, for Set | up to 6 workstations are solved nghe for Set

Il up to 8 workstations are solved. FNr= 80, when Set | is used, the
instances up to 4 workstations are solved wherdesget Il is used ard is
setto 6, 3 out of 10 instances remain unschfest two hours.
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CHAPTER 5

CONCLUSIONS

In this study, we develop an exact algorithm foFlaxible Assembly Line
Design problem with fixed number of workstationse \Assume the task times
and equipment costs are correlated in the sensetitbacheaper equipment
gives no smaller task times. Given the cycle timeefind the assignment of
tasks and equipments to the workstations with mimmiotal equipment cost.
In doing so, we develop a branch and bound algurithat uses powerful
lower bounds and reduction mechanisms. We alsoy siuspecial case of the
problem with identical task times and discuss tley we benefit from this

case in developing a lower bound.

We design an experiment to test the performanceuofbranch and bound
algorithm together with the reduction and boundimgchanisms. The number
of tasks and number of workstations are the magtofa that affect the
difficulty of the problem. Generally, as the numlmértasks and number of
workstations increase, the solution times increa®¥ée also observe that as the
cycle time increases, the complexity of the sohgidecreases. The results of
our computational experiments reveal that in otmieation limit of two hours
up to 80 tasks with 6 workstations and 70 taskh ®itvorkstations are solved
when cycle time is large. When medium cycle timaded, up to 55 tasks and
6 workstations are solved, when cycle time is smgllto 50 tasks and 8

workstations can be solved.

Other important factors that affect problem diffiguare the equipment costs
and the flexibility ratio of the precedence relaBoAs the variability between
the equipment costs decreases, the solution tireesease considerably. We
observe the most difficult combination when theleyttme is low and the
variability between equipment costs is high. Moesowe find that as an

increase in the flexibility ratio adds to the diffity of the solutions.
64



In general, the average and maximum number of noll@gptimality is very

low compared to the number of nodes searched,aiiticplar whenK andN

are large. Hence, one can use our branch and baigndthm as a truncated
approach if the guarantee of optimality is not aseatial. In most of the
instances the average performances are close tmdkamums indicating the
consistent behavior of our branch and bound algwritMoreover, our lower
bounding procedures and reduction mechanisms arelfto be very effective

in reducing the size of the search.

To the best of our knowledge our study is the ats¢mpt to solve the Flexible
Line Design problem with fixed number of workstaiso We hope our study
helps to open new research areas most noteworthwhath are discussed
below:
* In this study, we considered correlated task tiares equipment costs.
General task times and equipment costs may be #hstudying

extension.

 We used deterministic task times. Using stochdask times may be

considered as a future study.

* We assume all tasks are performed by a single swrp Multiple

equipments (tools) per task case can be a chatigmgsearch area.

* We take the cycle time as a constraint. The cygie may be treated as

a decision variable.

e Heuristic procedures —using our reduction and bmgnchechanisms--
may be developed to solve larger sized problenantsts.

 We assume all equipments can perform all tasksasonable extension
may be to assume each equipment is eligible toparbnly a subset
of tasks.
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APPENDIX A

Table A.1 The maximum number of nodes and CPU tiofi¢ise branch and bound algorithm, Set |

BAB; BAB, BAB; BAB, BAB 3 BAB,
CT|N|K
Maximum # of | Maximum Maximum # of | Maximum | Maximum # of [ Maximum | Maximum # of | Maximum | Maximum # of | Maximum | Maximum # of | Maximum
nodes CPU time nodes CPU time nodes CPU time nodes CPU time nodes CPU time nodes CPU time
2 206 0.014 20p 0.0do 206 0.0p0 406 0.poo D06 01000 206 D.000
20 4 3,884 0.01 2,8]%6 0.016 3,880 0.¢15 2,B16 01016 4,816 D.016 ,8843 0.01
6 23,264 0.03p 17,330 0.0.6 20,146 0.p31 17320 (.031 17,052 .0310 23,26 0.032
8 116,859 0.15p 80,716 0.1p9 71,092 0.po4 801716 (.125 63,774 0.079 116,85B 0.135
2 449 0.00 44 0.0do 449 0.0p0 449 0.poo 449 01000 449 D.016
1|25 4 12,08( 0.01p 10,6{5 0.01.6 12,480 0.p16 10l615 q.016 1p,615 .0140 12,08¢ 0.016
6 198,14( 0.18f 155,825 0.1p7 111,925 0125 154,651 D.171 06909, 0.11 198,329 0.1%7
8 988,36( 1.15p 631,780 0.7B1 337,250 0j406 62(,305 781 7831 0.31 1,044,047 1.0p0
2 7,829 0.01 7,829 0.016 7,829 0.¢16 7,829 01016 1,829 D.016 ,8297 0.01
30 4 3,239,88 3.32B 2,717,212 2.459 3,237614 3313 2,711,212 2.86( 2,717,21p 2.8%9 3,239,486 3.157
6 120,078,338 145.344 85,216,403 108719 56,876,108 77.578 85,216,508 109.516 51,471,922 69.f19 120,074,338 12}7.438
8| 3,037,907,08p 4049.016 1,509,342,161 2227187 343493,3 565.25 1,509,342,4p1  2248.%31 324,677,324 526.157 37307,42p  3461.7§2
2 265 0.00 26p 0.0do 265 0.0p0 465 0.poo D65 01000 265 D.000
20 4 1,234 0.00 1,160 0.016 1,286 0.915 1,160 0[000 1,160 D.016 2341 0.00
6 8,534 0.01 4,414 0.016 8,376 0.¢16 4414 01016 4414 D.016 ,5368 0.01
8 25,693 0.03p 16,442 0.081 20,456 0.p31 16]462 Q.031 1p,216 .0140 25,699 0.016
2 595 0.014 59p 0.0d4o 595 0.015 495 0.p16 595 1016 595 D.000
5 | 25 4 2,284 0.01% 2,294 0.016 2,282 0.¢16 2,p54 01016 4,254 D.016 ,2862 0.01
6 27,856 0.03L 16,146 0.016 25,114 0.p31 16]106 Q.016 15,802 .0140 27,85 0.016
8 141,127 0.15p 62,2943 0.0y8 73,209 0.p78 62]253 (.078 511,733 0.063 142,15B 0.135
2 7,984 0.01 7,984 0.016 7,984 0.¢16 7,084 01016 1,984 D.016 ,9847 0.01
30 4 98,464 0.09¢ 90,950 0.0p3 98,468 0.p94 90]|950 Q.093 9p,950 .0940 98,46 0.094
6 3,526,98 4.32B 1,470,8p4 2.109 3,191570 4063 1,47p,864 2.094 1,469,14p 2.094 3,526,989 3.891
8 61,011,70 78.718 32,641,929 48.422 34,477,867 49.360 643324 48.43B 27,119,2p0 39.984 61,011/706 64.719
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Table A.2 The maximum number of nodes and CPU tiofi¢lse branch and bound algorithm, Set I

BAB; BAB, BAB, BAB, BAB ), BAB,
CT|N|[K
Maximum # of | Maximum | Maximum # of | Maximum | Maximum # of | Maximum | Maximum # of | Maximum | Maximum# of | Maximum | Maximum # of| Maximum
nodes CPU time nodes CPU time nodes CPU time nodes CPU time nodes CPU time nodes CPU time
2 206 0.00 20p 0.0qo 206 0.0p0 406 0.p00 D06 000 206 D.000
20 4 1,924 0.01p 1,918 0.000 1,918 0.916 1,p18 0]016 1,918 D.015 9221 0.01
6 13,366 0.01p 11,942 0.0L6 12,471 0.p16 11(942 (.016 1p,597 .0140 13,36 0.01l6
8 29,584 0.04y 25,841 0.0p2 19,462 0.p31 25|851 (.047 17,598  .031j0 29,58 0.032
2 449 0.00 44p 0.0qo 449 0.0p0 449 0.p15 449 000 449 D.016
1|25 4 10,231 0.01p 9,545 0.016 10,431 0.916 9545 0.016 ,545 5p.01 10,231 0.01p
6 82,754 0.09% 78,847 0.0y8 77,182 0.p79 78|663 (.078 7B,703  .0790 82,92 0.078
8 222,504 0.25p 178,017 0.260 211,841 0250 173,421 ).234 ,0338 0.20 222,504 0.204
2 7,829 0.01 7,820 0.016 7,829 0.016 7,829 01016 1,829 D.016 ,8297 0.01
30 4 239,65 0.26p 234,400 0.2p5 234,400 0ps1 234,400 ).281 4034 0.26 239,696 0.265
6 38,020,862 39.5(0 33,161,767 34.Y66 23,666,230 26.344 158831 35.10p 20,307,1B1 23.318 38,022|782 36.750
8 222,487,60p 352.594 177,229,128 286062 137,899,093  4244. 177,229,728 290.484 99,385,959 161|578  222,48f,606 6.7%4
2 206 0.009 20p 0.04o 21:6 0.0p0 406 0.p00 006 (1000 206 D.000
20 4 690 0.01 68p 0.016 690 0.015 486 0.p16 536 (1000 690 D.000
6 3,050 0.01 3,01 0.016 3,046 0.016 3,p12 01000 3,012 D.016 ,0503 0.01
8 16,519 0.01p 13,034 0.0L6 13,490 0.p16 13|034 (.016 10,098 .0140 16,51 0.01l6
2 485 0.00 48p 0.016 485 0.015 485 0.p00 185 (000 485 D.000
2 |25 4 2,260 0.00 2,29 0.015 2,260 0.016 2,54 01015 4,254 D.015 ,2602 0.00
6 13,881 0.01p 12,997 0.0L6 13,129 0.p16 12(927 (.016 1p,769  .0140 13,88Y 0.016
8 41,604 0.04y 36,440 0.047 41,404 0.p47 36{450 (.032 3p,450 .03720 41,604 0.047
2 6,937 0.01 6,93 0.016 6,932 0.016 6,032 01016 4,932 D.016 ,9326 0.01
30 4 7,773 0.01 7,797 0.016 7,773 0.016 767 01016 1,767 D.016 J737 0.01
6 392,031 0.43B 389,919 0.438 381,161 0j22 389,919 438 ,6849 0.42 392,035 0.4p2
8 4,623,32 6.290 4,529,413 6.340 4,1195p41 5500 4,52p,413 6.144 4,025,62P 5.4046 4,623,325 5.485




Table A.3 The worst case performances with andowitielimination rules

BAB, BAB,;
N K With Reductions Without Reductions With Reductions Without Reductions
Maximum # of | Maximum | Maximum# of [Maximum CPU| Maximum #of | Maximum | Maximum # of| Maximum
nodes CPU time nodes time nodes CPU time nodes CPU time
2 204 0.01 38y 0.040 206 0.0p0 387 0.p00
20 4 3,884 0.01 5,730 0.015 2,416 0.016 5,p54 0{015
6 23,264 0.03p 113,319 0.1p5 17,052 0.p31 52|654 078
8 116,85 0.15p 522,303 0.978 63,174 0§78 154,266 187
2 449 0.00¢ 1,32p 0.015 449 0.000 1,822 0J000
% 4 12,08 0.01 23,706 0.0p1 10,415 0.p16 20[677 0.032
6 198,14 0.18f 511,390 0.5p0 99,060 0[L10 323232 344
8 988,36} 1.15p 5,287,0p3 5.410 231,745 0[312 2,462,116 3.7
2 7,821 0.01 8,690 0.016 7,829 0.016 8,650 0{016
20 4 3,239,88 3.328 8,761,5p0 9.187 2,7117p12 2859 8,71f,258 9.157
6 120,078,338  145.344 515,772,243 571610 51,471,522 80.71188,267,82f 226.741
8| 3,037,907,08p 4049.006 4,022,593 885 -(5 unsolved) 6324324 526.197 872,298,032  1262.859
2 265 0.001 84p 0.040 265 0.0p0 q49 0.p00
2 4 1,236 0.00 2,193 0.016 1,160 0.016 21193 0{016
6 8,536 0.01 8,546 0.016 4,414 0.016 8,27 0{016
8 25,693 0.03p 54,496 0.0p2 15,416 0.p16 441918 047
2 595 0.01 1,757 0.015 595 0.016 1,157 0015
25 4 2,286 0.01 5,913 0.016 2,264 0.016 5p13 0{016
6 27,85 0.03) 83,235 0.0p4 15,402 0.p16 76{162 0.094
8 141,12 0.15p 347 469 0.301 51,133 0§63 244,321 297
2 7,984 0.01 8,268 0.016 7,984 0.016 8,68 0{016
20 4 98,464 0.0S%E 177,719 0.2B5 90,950 0.p94 1771719 234
6 3,526,989 43 5,850,9p2 7922 1,469{142 21094 5,60f,896 7.61(
8 61,011,70p 78.718 178,869,162 241125 27,119,290 3p.98428,874,074 174.245
2 206 0.00 38y 0.040 206 0.0p0 387 0.p16
2 4 1,919 0.00 4,002 0.015 1,918 0.015 4,002 0{016
6 11,947 0.01 25,015 0.0p2 10,497 0.p16 23[203 0.032
8 25,85 0.03 80,710 0.0E3 17,498 0.p31 46/360 063
2 449 0.00¢ 1,32p 0.016 419 0.000 1,822 0000
25 4 9,545 0.01 20,314 0.081 9,945 0.015 20374 0032
6 78,831 0.078 247,192 0.2p6 73,103 0.p78 166431 204
8 178,01 0.25p 1,423,5p9 1.409 158,33 0[203 809,912 0.938
2 7,829 0.01 8,650 0.016 7,829 0.016 8,650 0{016
20 4 234,400 0.26p 563,248 0.781 234,400 066 561I,7984 766
6 33,161,751 34.766 102,267,130 13775 20,301,181 2B.218 6,633,39 64.266
8 177,229,728 286.062  1,256,143,$70 1790|797 99,38p,259 615194 395,404,570 579.313
2 206 0.00¢ 84p 0.040 206 0.0p0 49 0.p16
2 4 686 0.01 1,97p 0.016 646 0.000 1,970 0)016
6 3,012 0.01 6,011 0.015 3,002 0.016 6,p11 0{016
8 13,034 0.01p 20,532 0.0p1 10,098 0.p16 191930 031
2 485 0.01 1,757 0.040 485 0.000 1,157 0J015
25 4 2,254 0.01 4,964 0.016 2,264 0.015 4064 0{016
6 12,921 0.01f 51,637 0.0p3 12,169 0.p16 50[817 0.063
8 36,45 0.04f 156,815 0.1p7 36,450 032 142,661 156
2 6,932 0.01 8,268 0.016 6,932 0.016 8,68 0{016
20 4 7,767 0.01 10,154 0.016 7,167 0.016 10154 0016
6 389,91 0.43B 739,690 1.0B2 379,§45 0422 739,690 1.016
8 4,529,41 6.140 11,988,561 16.906 4,025/629 4.406 ®099, 12.62
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