
1

THE ORDER-PICKING PROBLEM IN PARALLEL-AISLE WAREHOUSES

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

MELİH ÇELİK

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

INDUSTRIAL ENGINEERING

JUNE 2009

Approval of the thesis:

THE ORDER-PICKING PROBLEM IN PARALLEL-AISLE WAREHOUSES

submitted by MELİH ÇELİK in partial fulfillment of the requirements for the degree of
Master of Science in Industrial Engineering Department, Middle East Technical Univer-
sity by,

Prof. Dr. Canan Özgen
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Nur Evin Özdemirel
Head of Department, Industrial Engineering

Assoc. Prof. Dr. Haldun Süral
Supervisor, Industrial Engineering Department, METU

Examining Committee Members:

Prof. Dr. Nur Evin Özdemirel
Industrial Engineering, METU

Assoc. Prof. Dr. Haldun Süral
Industrial Engineering, METU

Prof. Dr. M. Selim Aktürk
Industrial Engineering, Bilkent University

Asst. Prof. Dr. Serhan Duran
Industrial Engineering, METU

Prof. Dr. Ömer Kırca
Industrial Engineering, METU

Date:

I hereby declare that all information in this document has been obtained and presented
in accordance with academic rules and ethical conduct. I also declare that, as required
by these rules and conduct, I have fully cited and referenced all material and results that
are not original to this work.

Name, Last Name: MELİH ÇELİK

Signature :

iii

ABSTRACT

THE ORDER-PICKING PROBLEM IN PARALLEL-AISLE WAREHOUSES

Çelik, Melih

M.S., Department of Industrial Engineering

Supervisor : Assoc. Prof. Dr. Haldun Süral

June 2009, 183 pages

Order-picking operations constitute the costliest activities in a warehouse. The order-picking

problem (OPP) aims to determine the route of the picker(s) in such a way that the total order-

picking time, hence the order-picking costs are minimized. In this study, a warehouse that

consists of parallel pick aisles is assumed, and various versions of the OPP are considered.

Although the single-picker version of the problem has been well studied in the literature, the

multiple-picker version has not received much attention in terms of algorithmic approaches.

The literature also does not take into account the time taken by the number of turns during

the picking route. In this thesis, a detailed discussion is made regarding the computational

complexity of the OPP with a single picker. A heuristic procedure, which makes use of the

exact algorithm for the OPP with no middle aisles, is proposed for the single-picker OPP

with middle aisles, and computational results on randomly generated problems are given.

Additionally, an evolutionary algorithm that makes use of the cluster-first, route-second and

route-first, cluster-second heuristics for the VRP is provided. The parameters of the algorithm

are determined based on preliminary runs and the algorithm is also tested on randomly gen-

erated problems, with different weights given to the cluster-first, route-second and route-first,

cluster-second approaches. Lastly, a polynomial time algorithm is proposed for the problem

iv

of minimizing the number of turns in a parallel-aisle warehouse.

Keywords: Order-Picking Problem, Heuristics, Evolutionary Algorithms, Turn Penalties,

Computational Complexity

v

ÖZ

KORİDORLARI BİRBİRİNE PARALEL DİZİLMİŞ DEPOLARDA SİPARİŞ TOPLAMA
PROBLEMİ

Çelik, Melih

Yüksek Lisans, Endüstri Mühendisliği Bölümü

Tez Yöneticisi : Doç. Dr. Haldun Süral

Haziran 2009, 183 sayfa

Sipariş toplama işlemi, bir depodaki en yüksek maliyetli faaliyettir. Sipariş Toplama Prob-

lemi’nin (STP) amacı toplayıcıların rotasını toplam sipariş toplama zamanını, dolayısıyla da

sipariş toplama maliyetini minimize edecek şekilde belirlemektir. Bu çalışmada birbirine

paralel sipariş toplama koridorlarının bulunduğu bir depo düşünülerek STP’nin değişik ver-

siyonları ele alınmıştır. Literatürde bu problemin tek toplayıcılı versiyonu yaygın bir şekilde

çalışılmış olmasına rağmen, çok toplayıcılı versiyonu üzerinde algoritmik yaklaşımlar ba-

kımından yeterince durulmamıştır. Literatürde ayrıca, toplayıcının toplam dönüş sayısının

sipariş toplama zamanına etkisi de ihmal edilmektedir.

Bu tezde, tek toplayıcının bulunduğu STP’nin hesaplama karmaşıklığı üzerine detaylı bir

çalışma ortaya konmuştur. STP’nin ara koridor içermeyen durumları için öne sürülen algorit-

mayı kullanarak tek toplayıcılı ve ara koridorlu STP’yi çözmek için bir sezgisel prosedür öne

sürülmüş ve bu prosedür rasgele üretilmiş problemler üzerinde denenerek sonuçları verilmiştir.

Buna ek olarak, rotalama problemi için kullanılan “önce kümele, sonra rotala” ve “önce rotala,

sonra kümele” sezgisellerinden faydalanan bir evrimsel algoritma geliştirilmiştir. Algoritma

vi

“önce kümele, sonra rotala” ve “önce rotala, sonra kümele” yaklaşımlarına farklı ağırlıkların

verilmesiyle rasgele üretilmiş problem setleri üzerinde test edilmiştir. Son olarak, paralel ko-

ridorlu depolarda dönüş sayısını minimize etme problemi için bir polinom zamanlı algoritma

önerilmiştir.

Anahtar Kelimeler: Sipariş Toplama Problemi, Sezgiseller, Evrimsel Algoritmalar, Dönüş

Cezaları, Hesaplama Karmaşıklığı

vii

To Mom, Dad and Simi

viii

ACKNOWLEDGMENTS

This thesis work has been completed with the help and support of a considerable number of

people. It is a pleasure for me to have the opportunity to acknowledge their help and support

here. I apologize and express my gratitude to the ones whose names have not been mentioned

in this limited space.

My vocabulary of adjectives is not sufficient to describe the impact that Dr. Haldun Süral,

my supervisor, has had in my personality and my way of looking at academic life. It has

been indescribable to have him as a supervisor, as a colleague and as a friend ever since my

sophomore year. I can only say that his supervision in this thesis is a very small part of what

he has given to me both as an academician and as a person. It is unfortunate for me not to have

him as my supervisor for my doctoral study, but I will be led by his guidance all throughout

the rest of my life.

My last two years as a research assistant at the Industrial Engineering Department of the Mid-

dle East Technical University have shaped up my future career plans, and also my personality.

During these two years I have had the opportunity to work in a wonderful environment, for

which I am greatly indebted to all the academic staff of the department. Above all, I have

most felt the encouragement and support of my two office mates: Güvenç Değirmenci, who

has witnessed the beginning of my thesis work and has been very helpful with his experience

and Büşra Atamer, whose understanding, sympathy, encouragement and help I can never pay

back no matter what. I keep the hope of working together with them in my future career, and

wish them the best with theirs. I am also thankful to İbrahim and Nihan Görmez Karahan

for their help and advice during the first steps of this thesis, Aslı Gül Buğdacı for sharing the

evenings that followed long and tiring work hours, and Aras and Şirin Barutçuoğlu for their

lovely company, among all my other workmates.

This thesis would never be complete without the reviews and comments of the examining

committee, Dr. Nur Evin Özdemirel, Dr. Selim Aktürk, Dr. Serhan Duran and Dr. Ömer

Kırca. I appreciate the valuable feedback I have received from them. I feel privileged to have

ix

known and assisted Dr. Meral Azizoğlu. I will be following her valuable advices in my both

professional and personal life. I am also honored to have been enlightened by the great vision

of Dr. Sencer Yeralan, and to have shared his friendship.

Above all the experience I have gained throughout the last two years, it has been the students

I have assisted that led me to pursue an academic career. I owe a lot to the graduates of 2009

and prospective graduates of 2010 of the Industrial Engineering Department for the great

memories. I wish them the best of luck in their future careers and hope to keep in touch along

the way.

Having known him for more than thirteen years, it will be hard for me not to have Kıvanç

Tos around for some time. His great friendship is highly acknowledged. I am also indebted to

Esra Sarıarslan for her efforts in keeping my mind off the hard work during my spare time, and

for her valuable motivation. Without the help of Kerem Demirtaş, computer implementation

of the work in this thesis would never be that easy.

Last and the most, I would like to express my gratitude to the beloved members of my family.

My mother, Meral Çelik, and my father, Salih Çelik, have always given me the freedom to

choose the way I want to follow throughout my life and given me a hand when I need help.

Having Semih Çelik as my brother is probably the best thing about my life. I am ensured

that their love and support will be more than enough to put up with the distance we will

be separated with during the next few years. Every single achievement I gain throughout is

completely devoted to them.

x

TABLE OF CONTENTS

ABSTRACT . iv

ÖZ . vi

DEDICATION . viii

ACKNOWLEDGMENTS . ix

TABLE OF CONTENTS . xi

LIST OF TABLES . xv

LIST OF FIGURES . xvii

CHAPTERS

1 INTRODUCTION . 1

2 AN OVERVIEW OF WAREHOUSE DESIGN PROBLEMS 5

2.1 Strategic Level Problems . 5

2.1.1 Warehouse Functions and Flows 6

2.1.2 Process Flow Design and Systems Selection Problems . . 8

2.1.3 Storage Capacity Planning Problems 10

2.2 Tactical Level Problems . 11

2.2.1 Palletization and Block Stacking Problems 12

2.2.2 Layout Design Problems 13

2.2.3 Storage Assignment Problems 15

2.2.4 Zoning Problems . 18

2.3 Operational Level Problems . 20

2.3.1 Order Batching Problems 20

2.3.2 Picker Routing Problems 22

2.3.3 Order Accumulation and Sorting Problems 23

xi

2.4 Conclusion on Warehouse Design Problems 24

3 REVIEW ON THE COMPLEXITY OF THE ORDER-PICKING PROBLEM 26

3.1 Basic Definitions and Notation . 26

3.2 Polynomially Solvable Cases of the OPP and Heuristic Approaches . 30

3.2.1 The 1-OPP . 31

3.2.2 The 2-OPP . 31

3.2.3 The 3-OPP . 38

3.2.4 Heuristic Procedures for the k-OPP with k ≥ 3 44

3.3 Complexity of the k-OPP with k ≥ 4 48

3.3.1 The Traveling Salesman Problem 48

3.3.2 The Steiner Traveling Salesman Problem (StSP) 55

3.3.3 Conclusion on Complexity 58

4 THE ORDER-PICKING PROBLEM IN A PARALLEL-AISLE WAREHOUSE:
SINGLE-PICKER CASE . 62

4.1 Subroutines of the Algorithm . 63

4.1.1 Procedure merge . 64

4.1.2 Procedure reach . 69

4.1.3 Procedure invert . 70

4.1.4 Procedure improve . 70

4.2 The Merge-and-Reach Heuristic . 73

4.3 Two Example Problems . 73

4.4 Improvement: The Merge-and-Reach+ Heuristic 75

4.5 Computational Experiments . 81

4.5.1 Test Instances . 81

4.5.2 Computational Results of the Suggested Heuristics 82

5 THE ORDER-PICKING PROBLEM IN A PARALLEL-AISLE WAREHOUSE:
MULTIPLE-PICKER CASE . 89

5.1 Literature Survey . 90

5.1.1 Literature on k-OPP(s) 90

5.1.2 Literature on the Evolutionary Algorithms for VRP 92

xii

5.1.3 Literature on the Evolutionary Algorithms for the Steiner
Tree Problem . 96

5.2 An Evolutionary Algorithm for k-OPP(s) with Load Capacities and
Limits on Time . 98

5.2.1 A Cluster-First, Route-Second Approach for the Case with
Load Capacities . 99

5.2.2 A Route-First, Cluster-Second Approach for the Case with
Limits on Travel Time 103

5.2.3 General Parameter Settings 108

5.2.4 The Algorithm . 111

5.2.5 Computational Experiments 113

6 THE ORDER-PICKING PROBLEM IN A PARALLEL-AISLE WAREHOUSE
WITH TURN PENALTIES . 127

6.1 Literature Survey on Turn Minimization in General Graphs 127

6.2 A Turn Minimizing Algorithm for 2-OPP 130

6.2.1 Conversion to the Rural Postman Problem 131

6.2.2 The Algorithm . 137

6.2.3 Extensions . 138

6.3 A Turn Minimizing Algorithm for k-OPP with k ≥ 3 145

6.3.1 Conversion to the Rural Postman Problem 145

6.3.2 The Algorithm . 147

6.3.3 Extensions . 151

7 CONCLUSION AND FURTHER RESEARCH DIRECTIONS 159

REFERENCES . 163

APPENDICES

A ALTERNATIVE HEURISTIC SOLUTIONS TO THE PROBLEM IN FIG-
URE 3.1 . 169

A.1 Optimal Solution . 169

A.2 S-shape Heuristic Solution . 170

A.3 Largest Gap Heuristic Solution . 171

A.4 Aisle-by-Aisle Heuristic Solution 172

A.5 Combined Heuristic Solution . 173

xiii

B NP-COMPLETENESS OF THE TRAVELING SALESMAN PROBLEM . . 174

C COMPARISON OF HEURISTIC PROCEDURES FOR k-OPP 179

D APPLICATION OF THE 2-OPP ALGORITHM TO FIND THE TURN MIN-
IMIZING TOUR . 182

xiv

LIST OF TABLES

TABLES

Table 3.1 Resulting equivalence classes after adding the connection types in Figure 3.6

to each L+
j equivalence class, dashed lines indicating suboptimality or infeasibility 34

Table 3.2 Resulting equivalence classes after adding the connection types in Figure

3.5 to each L−j equivalence class, dashed lines indicating suboptimality 34

Table 3.3 Solution to the example problem in Figure 3.8, bold entries indicating part

of the optimal solution, dashed lines indicating infeasiblity or suboptimality . . . 36

Table 3.4 Resulting equivalence classes L+y
j after adding the connection types in Fig-

ure 3.5 to each L−j equivalence class, dashed lines indicating suboptimality 41

Table 3.5 Resulting equivalence classes L+x
j after adding the connection types in Fig-

ure 3.5 to each L+y
j equivalence class, dashed lines indicating suboptimality 42

Table 3.6 Resulting equivalence classes L−j+1 after adding the connection types in Fig-

ure 3.6 to each L+x
j equivalence class, dashed lines indicating infeasibility or sub-

optimality . 43

Table 4.1 Resulting average travel times (in seconds) by the merge-and-reach and

merge-and-reach+ heuristic procedures as well as the average optimal times for

our problem set, with the best heuristic results indicated in bold (2,000 instances

for each setting) . 83

Table 4.2 Percent deviations for the combined+ heuristic by Roodbergen and De Koster

[73], the merge-and-reach and merge-and-reach+ heuristics, with the best heuristic

performance indicated in bold (2,000 instances for each setting) 84

Table 4.3 The number of times each cut procedure gives the best solution for our

problem set, bold entries indicating statistical significance of that cut value on the

performance of the heuristic, α = 0.99 (2,000 instances for each setting) 85

xv

Table 4.4 Percent deviations of the 2-opt improvement procedure from the optimal

travel times, and the percent improvement of the 2-opt scheme over the merge-

and-reach solutions for the preliminary runs (200 instances for each setting) . . . 88

Table 5.1 Percent deviations from single picker optima and percent improvements

over random search solutions and initial population incumbents for the cases α =

0% and α = 100% (averages of 30 instances), bold entries indicating superiority

over the other method . 121

Table 5.2 Percent deviations from single picker optima and percent improvements

over random search solutions and initial population incumbents for the cases α =

25% and α = 75% (averages of 30 instances), bold entries indicating superiority

over the other method . 124

Table C.1 Resulting average travel times (in seconds) by the largest gap, S-shape

and aisle-by-aisle heuristic procedures for the problem set of Roodbergen and De

Koster [73], with the best heuristic results indicated in bold (2,000 instances for

each setting) . 180

Table C.2 Resulting average travel times (in seconds) by the combined, and combined+

heuristic procedures and average optimal times for the problem set of Roodbergen

and De Koster [73], with the best heuristic results indicated in bold (2,000 in-

stances for each setting) . 181

Table D.1 Resulting equivalence classes after adding the possible connection types in

Figure 3.6 to each L+
j equivalence class, dashed lines indicating suboptimality or

infeasibility . 183

Table D.2 Resulting equivalence classes after adding the possible connection types in

Figure 3.5 to each L−j equivalence class, dashed lines indicating suboptimality . . 183

xvi

LIST OF FIGURES

FIGURES

Figure 2.1 The functions and flows between them in a typical warehouse, where the

arrows represent the following: (1) direct putaway to reserve, (2.1) replenishment

to case picking, (2.2) replenishment to broken case picking, (3) direct putaway to

primary storage, (4) accumulation and sortation from primary storage, (5) ship-

ment and (6) cross-docking . 7

Figure 2.2 A summary of the warehouse design problems discussed in this chapter,

arrows indicating hierarchical effects . 25

Figure 3.1 A parallel-aisle warehouse with 2 middle aisles and 25 pick items 27

Figure 3.2 Graph representation of the warehouse in Figure 3.1 28

Figure 3.3 A general grid graph (a) and a solid grid graph (b) 30

Figure 3.4 Recursive definition of an S-P graph: If G in (a) is S-P, then by deleting

(uv) and adding either series (b) or parallel edges (c), we obtain G′ as an S-P graph 31

Figure 3.5 The six possible connection types within the aisles 33

Figure 3.6 The five possible connection types between the aisles 33

Figure 3.7 Procedure Ratli f f Rosenthal . 35

Figure 3.8 An example 2-OPP with 6 aisles and 8 items, where v0 corresponds to the

depot . 36

Figure 3.9 The optimal route for the problem given in Figure 3.8 37

Figure 3.10 Formation of an S-P graph for a 2-OPP with 4 aisles and 5 items: (a) The

initial graph, (b) Formation of the second aisle in Step 2 and the duplicated edge

in step 3, (c) End of Step 3, (d) Addition of items in Step 4 38

Figure 3.11 The fourteen possible connection types between the aisles 40

Figure 3.12 Summary of the procedure of Roodbergen and De Koster [72] for the 3-OPP 44

xvii

Figure 3.13 An example problem with a single middle aisle, 7 pick aisles and 15 items 45

Figure 3.14 Optimal solution of the problem in Figure 3.13 45

Figure 3.15 Odd (a) and even (b) alternating strips . 52

Figure 3.16 (a) R(10, 7) (b) η(4, 3) (c) ω(4, 3) . 53

Figure 3.17 Summary of the complexity of the OPP-related problems 61

Figure 4.1 Two overlapping partial solutions with no single vertical edge 65

Figure 4.2 The resulting merged solution for the subproblem in Figure 4.1 65

Figure 4.3 Two overlapping solutions with six single vertical edges 66

Figure 4.4 (a) The partial solution to the example subproblem in Figure 4.3 when edge

deletion is complete, (b) the resulting solution after matching 67

Figure 4.5 Procedure merge . 68

Figure 4.6 Procedure reach . 70

Figure 4.7 A pair of non-overlapping solutions . 71

Figure 4.8 Intermediate solution to the subproblem in Figure 4.7 after the reach move 71

Figure 4.9 The resulting reach solution to the subproblem in Figure 4.7 72

Figure 4.10 Procedure invert . 72

Figure 4.11 Procedure improve . 73

Figure 4.12 Heuristic merge and reach . 74

Figure 4.13 The set of 2-OPP solutions to each block of the problem in Figure 3.1 . . . 76

Figure 4.14 The merge-and-reach heuristic solution for the warehouse in Figure 3.1 . . 77

Figure 4.15 An example problem with 9 blocks, 7 aisles and 10 items 78

Figure 4.16 Intermediate solution to the problem in Figure 4.15 79

Figure 4.17 The merge-and-reach route for the problem in Figure 4.15, with a total

length of 207 units . 80

Figure 5.1 Procedure hill − climbing . 92

Figure 5.2 An example of order crossover (a) the parents and (b) the offspring 95

Figure 5.3 An example chromosome for the case with 10 items 100

Figure 5.4 Procedure cfrs fitness . 100

xviii

Figure 5.5 Procedure repair . 101

Figure 5.6 2-point crossover between parents including 10 items 102

Figure 5.7 An example swap operation with 10 items 103

Figure 5.8 An example of the encoding scheme with 10 items: (a) the tour, (b) the

corresponding individual . 103

Figure 5.9 (a) An example tour with 10 items and the depot, (b) The corresponding

order is represented as a graph whose shortest path problem solution gives the

assignment of the items to the pickers and their picking orders 104

Figure 5.10 An example nearest neighbor crossover: (a) the distance matrix with the

first row and column indicating the node index numbers (b) the two parents, (c)

the union graph G, (d) the resulting tour, (e) the offspring 106

Figure 5.11 An example for the displacement operator: (a) the individual, (b) the mu-

tated individual . 107

Figure 5.12 The steps of the combined evolutionary algorithm 112

Figure 5.13 The depot points for each of the block settings: (a) single block, (b) 2

blocks, (c) 4 blocks, (d) 8 blocks . 115

Figure 5.14 Taguchi analysis results for α = 100% . 117

Figure 5.15 Taguchi analysis results for α = 0% . 119

Figure 6.1 An illustration of Move Type 1 - Case 1, where no turn is incurred 132

Figure 6.2 An illustration of move Type 1 - Case 2: (i) with partial traversal, (ii) with

complete traversal. Both moves require 2 turns in total 133

Figure 6.3 An illustration of Move Type 2: (i) with partial traversal, incurring 4 turns,

(ii) with complete traversal, incurring 2 turns . 133

Figure 6.4 The only case when partial traversal can possibly perform better than com-

plete traversal: (a) partial traversal of aisle k followed by reaching the depot incurs

5 turns, (b) complete traversal of aisle k followed by reaching the depot also incurs

5 turns . 134

Figure 6.5 An illustration of Move Type 3 - Case 1: (i) with partial traversal, (ii) with

complete traversal, both cases incurring 3 turns 135

Figure 6.6 An illustration of Move Type 3 - Case 2, incurring 1 turn 136

xix

Figure 6.7 Algorithm turn 2-OPP . 138

Figure 6.8 When there are even non-empty aisles, complete traversal of aisle k is pos-

sible and performs better than partial traversal 140

Figure 6.9 When there are odd non-empty aisles and items on both sides of v0, a U-

turn at aisle k is an alternative optimal, (i) the U-turn with partial traversal, (ii) the

U-turn with complete traversal. Both incur 2 extra turns. 140

Figure 6.10 There are odd non-empty aisles and an item on only one side of v0, (i)

complete traversal results in 2 extra turns, (ii) partial traversal of k 141

Figure 6.11 Algorithm turn 2-OPP modified . 142

Figure 6.12 An example problem with 6 pick aisles, 5 non-empty aisles and 12 items . 143

Figure 6.13 Step-by-step solution to the problem in Figure 6.12, (i) required edges, (ii)

the subtours, (iii) the optimal solution with 10 turns 144

Figure 6.14 Algorithm turn k-OPP . 148

Figure 6.15 An example problem with 2 blocks, 5 non-empty pick aisles and 14 items,

with the required edges shown in bold and the unified edge shown in dashed lines 149

Figure 6.16 The optimal solution to the turn minimization problem given in Figure 6.15 150

Figure 6.17 Algorithm turn k − OPP modi f ied . 154

Figure 6.18 An example problem with 2 blocks, 5 non-empty pick aisles and 14 items,

with required edges shown in bold . 155

Figure 6.19 Optimal solution to the example problem in Figure 6.18, which incurs 10

turns . 156

Figure 6.20 An example problem with 2 blocks, 5 non-empty pick aisles and 14 items,

the required edges shown in bold . 157

Figure 6.21 Optimal solution to the problem in figure 6.20 with 12 turns 158

Figure A.1 Optimal solution of the example problem in Figure 3.1, with a total travel

distance of 164 units . 169

Figure A.2 S-shape heuristic solution to the example problem in Figure 3.1, with a

total travel distance of 192 units . 170

Figure A.3 Largest gap heuristic solution to the example problem in Figure 3.1, with a

total travel distance of 190 units . 171

xx

Figure A.4 Aisle-by-aisle heuristic solution for the problem in Figure 3.1, with a total

travel distance of 190 units . 172

Figure A.5 Combined heuristic solution for the example problem in Figure 3.1, with a

total travel distance of 182 units . 173

Figure B.1 Transformation from Hamiltonian Cycle for Grid Graphs to the General

TSP [52] . 177

xxi

CHAPTER 1

INTRODUCTION

Today’s competitive business environment puts great emphasis on the efficient and effective

management of supply chains. An important aspect regarding management of supply chains

is the management of warehouses, which, according to Bartholdi and Hackman [7], serve

three main purposes. First of all, they provide better matching of supply with demand by

allowing the space to build up inventories in order to buffer the supply chain against surges

in demand. Secondly, they provide an opportunity for consolidating products so that the fixed

cost of transporting the products to the customers is decreased. Lastly, an increasing num-

ber of warehouses serves the purpose of value-added processing, which allows for product

differentiation to serve the customers in a faster and less costly manner. Therefore better

management of warehouses not only contributes to faster response times to the demands of

the customers, but it also decreases overall costs in the supply chain.

A warehouse basically serves four main functions: receiving, storage, order-picking and ship-

ping. Receiving activities include orderly receipt of all the materials coming into the ware-

house, assuring the quality and quantity of the materials are as ordered, and transferring ma-

terials to storage. Storage activities consist of physical containment of merchandise awaiting

demand. Order-picking refers to the activity of collecting the items corresponding to an order

or a set of orders. Shipping activities may include control for completeness, packaging, ac-

cumulation and loading of the merchandise. Order-picking operations constitute the costliest

activities in a warehouse. When warehousing costs are broken down into components, Tomp-

kins et al. [79] have found out that 55% of all warehousing costs in the United States can be

attributed to the activities of order-picking. There are various decisions that have to be made

in order to perform efficient and effective order-picking. These include tactical decisions like

assignment of products to the storage areas and zoning of picking areas; as well as operational

1

decisions like batching of orders, routing of order-pickers, accumulation and sorting of orders.

Tompkins et al. [79] have analyzed the time spent by a picker and have found out that half

of the picking time is occupied by travelling. Therefore, providing efficient routing methods

can significantly improve the response time to an order, thereby decreasing the warehousing

costs.

The order-picking problem (OPP), which is the main problem discussed in this thesis, is the

problem of picking and preparation of the items corresponding to an order in the shortest

amount possible. The objective is to determine the route that minimizes the time required

for this operation. The problem is applicable for both conventional warehouses that em-

ploy off-the-shelf manual order-picking, and automated warehouses that employ automatic

storage/retrieval systems (AS/RS). Several approaches to tackle this problem exist in the lit-

erature, and almost all of these try to minimize the travel distance as the objective function.

In this study, we tackle the OPP in parallel-aisle warehouses, in which the items are located

on pick aisles that are parallel to each other. The warehouse might also include middle aisles,

which are orthogonal to the pick aisles, to better aid the crossing of the picker between the

pick aisles.

The OPP has received considerable amount of attention in the literature: There exists a poly-

nomial time algorithm for routing of the pickers in a warehouse with no middle aisle, due to

Ratliff and Rosenthal [71]; and another polynomial time algorithm for the case in which a

single middle aisle exists, due to Roodbergen and De Koster [72]. For the remaining cases,

various heuristic procedures have been proposed in the literature. Although some of these

heuristics are quite simple to implement, they obtain results which are not close to the opti-

mal. Those which provide good results do so for a certain set of problems. This motivates the

development of a more robust heuristic. Consequently, we propose a robust heuristic proce-

dure for the OPP in warehouses with middle aisles, and perform computational experiments

on randomly generated problems in order to test its performance and compare the results with

the alternative solution procedures in the literature.

The OPP with the objective of distance minimization is polynomially solvable for the cases

with no middle aisle, or a single middle aisle (due to [71] and [72]); but the complexity of

the general problem has not been discussed. In this thesis, we provide an extensive review of

the literature on the problems that are relevant to the order-picking problem in terms of the

2

complexity argument. These include the Traveling Salesman Problem, its special cases such

as the Steiner Traveling Salesman Problem, and the Graphical Steiner Traveling Salesman

Problem; as well as the Steiner Tree Problem.

There are cases in which employing a single picker to collect the items corresponding to an

order is not plausible. The main assumption in the single-picker OPP is that the picker is

uncapacitated. There might be cases in which the order size is too large to be handled by a

single picker. Another motivation that might trigger the need to employ multiple pickers is

that there might be limits on the lead time or shipment time of the products so that employing

a single picker cannot meet this limit. Lastly, the warehouse might be divided into zones,

each of which is assigned to a picker. Due to these reasons, it is worthwhile to consider the

order-picking problem involving multiple pickers. Unlike the single-picker case, this version

of the problem has not received much attention in the literature. The only algorithmic study,

to the best of our knowledge, is due to Geng et al. [37], who propose a very-large scale neigh-

borhood approach for the problem. For this problem, we propose an evolutionary algorithm

that makes use of the well-known cluster-first, route-second and route-first, cluster-second

approaches to the vehicle routing problem. Since the problem set of [37] is not available,

we generate a random set of problems and test the performance of various settings of the

evolutionary algorithm on these problems.

The picking time of an order depends on five main factors: the travel time of the picker,

the acceleration/deceleration of the picking vehicle, entering/leaving the aisles, picking the

items and turning the corners or making U-turns. The first of these factors is handled by

the procedures in the literature and in this study that try to minimize the travel time of the

picker. The acceleration/deceleration times, time required to enter/exit the aisles and to pick

the items is constant and independent of the route of the picker. However, the time required

to turn the corners and make U-turns takes up considerable amount of time, especially when

picking is performed using automated vehicles. For this end, one also needs to consider the

turns incurred by the order-picker. Despite the fact that distance minimization problems that

include turn penalties as well as turn minimization problems have been extensively studied

for general graphs in the literature, the OPP has never been studied considering the effects

of turns. In this study, we propose an algorithm for the problem of minimizing the number

of turns in a parallel-aisle warehouse. Although the turn minimization problems for general

graphs are generally NP-hard, our algorithm runs in polynomial time for the special case in

3

OPP graphs. The algorithm covers the cases where the middle aisles might or might not exist,

or where the depot might be at any point in the warehouse.

The outline of this thesis is as follows. We first discuss the warehouse design problems in

general in Chapter 2, in order to discover where the order-picking problem lies among these

and its relative importance. In Chapter 3, we give the basic definitions regarding the OPP

and the notation used throughout this study, followed by a review of the issues on the com-

putational complexity of the problem. Chapter 4 proposes a robust heuristic procedure for

the OPP with a single picker. The multiple-picker case is discussed and an evolutionary ap-

proach is proposed in Chapter 5, which is followed by the formulation of a polynomial time

turn-minimizing algorithm for the OPP in Chapter 6. We conclude the study in Chapter 7.

4

CHAPTER 2

AN OVERVIEW OF WAREHOUSE DESIGN PROBLEMS

The order-picking problem (OPP) lies among many other interdependent warehouse design

problems, and the aim of this chapter is to provide a summary of these warehouse design

problems, to discuss their connections with the OPP, and to provide results from the literature.

In discussing these problems, there are two different approaches. The first one, as employed

by Gu et al. [43], classifies the problems according to the warehouse functions they serve,

such as receiving, shipping, order-picking, etc. The second approach, as in Rouwenhorst

et al. [74], considers the problems according to the decision making levels they address:

strategic, tactical or operational. In this chapter, we take a similar approach to the one taken

by Rouwenhorst et al. [74], and classify the problems with regard to the decision levels they

correspond to: under either strategic, tactical or operational level problems.

The organization of the chapter is as follows. Section 2.1 deals with the strategic level ware-

house design problems, which mainly consist of equipment and systems selection among with

process flow design. Section 2.2 considers the tactical level problems, which mainly include

layout determination, forward and reserve storage area determination, and selection of the

storage concept (random, dedicated, class-based, etc.). In Section 2.3 we discuss the opera-

tional level problems, consisting of order batching, picker routing, order accumulation, and

sorting. Lastly, we derive conclusions on the literature overview in Section 2.4

2.1 Strategic Level Problems

Th strategic level problems address decisions that include high investments and that have im-

pact on the long term. Regarding strategic level decisions, Rouwenhorst et al. [74] discuss

5

two main groups of problems. These two problem types both address the selection of process

flow design and types of systems (storage system, sorting system, etc.), distinguished by their

main considerations. The first type of problem considers technical capabilities of the systems

and equipments while making the selection. The second one is concerned with economic

considerations, trying to minimize the investment and operational costs. Naturally, the two

criteria (technical capabilities and economic issues) are to be considered together when de-

signing a warehouse process flow and equipment system. Owing to this, we take these two

groups of problems together here, and try to take an overall view. In addition to these prob-

lems, we also discuss the storage capacity planning problem, which is also considered among

the strategic level problems by Cormier [19].

Before discussing the warehouse process flow and systems design problems, an introduction

to the warehouse processes is given. Then, the approaches to these problems are discussed.

Lastly, storage capacity planning problems are considered.

2.1.1 Warehouse Functions and Flows

As mentioned by Bartholdi and Hackman [7], warehouse processes can be classified into two

main headings: inbound processes and outbound processes. The inbound processes, which

refer to the activities that take place between the receipt of the product until an order arrives

for it, can further be broken down into the activities of receiving and put-away. The outbound

processes consist of the activities carried out from the time an order is received for the product

until its shipment out of the warehouse. These activities can also be broken down into order-

picking and checking, packing and shipping.

Figure 2.1, which has been adapted from Tompkins et al. [79], summarizes the functions of

a warehouse and illustrates the possible flows among these functions. In this setting, pallet

picking, case picking and broken case picking refer to the order-picking activities with respect

to the sizes of the items to be picked. In this sense, pallet picking involves a larger size and

amount of pick-items, and requires less labor, as material handling is reduced compared to

case and broken case picking. Due to this property of pallet picking, there is a greater oppor-

tunity for automation. Broken case picking requires handling the smallest units of measure in

the warehouse and because of the size and variety of the stock keeping units to be handled,

automation is almost impossible. Therefore this type of order-picking is performed manually

6

Figure 2.1: The functions and flows between them in a typical warehouse, where the arrows
represent the following: (1) direct putaway to reserve, (2.1) replenishment to case picking,
(2.2) replenishment to broken case picking, (3) direct putaway to primary storage, (4) accu-
mulation and sortation from primary storage, (5) shipment and (6) cross-docking

and requires a high amount of labor.

Another distinction that can be observed from Figure 2.1 is the one between reserve storage

and forward, i.e. primary storage. In the reserve storage, which is also called the bulk storage,

the products are stored in larger amounts, such as in pallet racks. Material handling is less

compared to the forward storage. The main concern here is storing the products in the most

economical way. On the other hand, the forward storage, also called the primary storage,

stores the products in smaller amounts, such as in shelves. The need for handling the products

in smaller amounts causes the requirement for more material handling. The main concern in

a forward storage area is to provide the order-pickers with easier access to the products for

retrieval.

The functions in a warehouse, adapted from [79] and summarized in Figure 2.1, can be listed

as follows:

1. Receiving includes the orderly receipt of materials into the warehouse, the assurance of

their quality and quantity, and disbursement of these to the functions that need them.

2. Putaway operations include the placement of the materials or products in the storage.

7

Material handling and placement are involved in this process. The putaway of an in-

coming item can be done in two ways. In putaway to reserve, the item is placed in the

reserve storage area, supposedly in larger amounts. In putaway to primary, the item is

placed in the forward storage area in smaller amounts.

3. Storage is the process that the product goes through between its putaway and arrival

of its demand. How an item is stored depends on the size and quantity of that item in

inventory, and the material handling characteristics of that item and its container.

4. Order-picking, as defined in the introduction, refers to the activity of collecting the

items corresponding to an order or a set of orders. This is basically the main service

given by the warehouse to its customer and the main motivation in how a warehouse is

designed.

5. Replenishment is the process of feeding the primary storage area from the reserve stor-

age. As the item undergoes replenishment from the first putaway until shipping, the size

of replenishment gets smaller, and the material handling effort increases. In Figure 2.1,

the arrows labeled 2.1 and 2.2 indicate such a case, where an item is stored in pallets in

the reserve area, replenished into a storage area where it is stored in cases, and further

replenished into a storage area where it is stored in broken cases.

6. When an order includes more than one item, the picked items must go through sorting

and the order must be accumulated. This process can be accomplished during or after

order-picking.

7. The shipping process may include checking the order for completeness, packaging,

accumulating orders and loading.

8. Cross-docking is a special operation where an item goes directly to shipping upon its

receipt, where it may possibly go through an accumulation process.

2.1.2 Process Flow Design and Systems Selection Problems

The process flow design and selection of the types of warehousing systems form the first class

of strategic level warehouse design problems. The overall problem consists of selecting and

sequencing a subset of the processes discussed in the preceding section so that the functions

8

that the warehouse is aimed to serve are accomplished. Several design problems can be clas-

sified under this type. These include whether or not to have a separate reserve storage area,

whether or not to allow different types of storage systems, whether or not to batch orders,

the type(s) of storage system(s) to employ, how many storage units to locate, the type(s) of

sorting system(s), if applied, and so on. Which processes of the warehouse to automate and

which to perform manually can also be considered as another problem.

In the literature, these problems have not received as much attention as the tactical and oper-

ational level warehouse design problems have. Due to the complexity of the overall problem,

most of the studies employ a hierarchical solution procedure. For instance, in Gray et al.

[41], a set of problems including the warehouse layout, equipment and technology selection,

item location, zoning, picker routing, pick list generation, and order batching is considered.

A hierarchical multi-stage solution approach is proposed employing a series of mathematical

models in order to reduce the solution space to a number of alternatives that dominate the

others. Then, simulation is applied to validate the solution process and to further fine-tune the

resulting policies. The procedure is employed on a real-life case in a spare-parts warehouse

and is observed to come up with significant savings and increased warehouse efficiency.

McGinnis et al. [62] aim to formalize the process flow design and appropriate warehous-

ing systems selection process by proposing a conceptual framework for warehouse design.

The conceptual design of a warehouse is represented using the notion of a function flow net-

work, which is basically a network consisting of nodes referring to warehouse functions such

as receiving, storage functions, pick-line, sorting, accumulation, etc. and the arrows repre-

senting the aggregate flow of material between the functions. It is stated that the first series

of decisions in warehouse design, being the architectural ones, consist of determining the

arcs and nodes of the functional flow network. The authors then go on to define the expert

warehouse design process, which starts by profiling, determining the requirements that the

warehouse must satisfy based on historical data. Then, functional requirements and costs are

determined, providing a basis for the architectural decisions. These decisions result in up-

dating the profiling process, and the design cycle goes on until a final decision on the design

process is reached by the procedure.

Bodner et al. [12] extend the solution approach by McGinnis et al. [62] into two phases.

In the first one, the design process in practice is studied using an ethnographic methodology

9

in order to formalize the design processes, information usage, decision making criteria and

evaluation procedures. The second phase tries to formalize the research results for formu-

lating a scientific warehouse design methodology and to implement computational tools to

aid designers in practice. Generally, the design process is initiated by gathering of the data

from the clients, which usually contains information on products (or SKUs), vendor shipment

history, inventory history and customer order history. The next phase is profiling, in which

the data are analyzed for certain patterns that can affect the design. The output of the process

is the architectural design. Finally, the focus shifts to the specification and optimization of

the systems that implement the functions. The general idea to formalize this process is us-

ing computational decision support tools, which will replace ad-hoc spreadsheet and database

tools. This is done using a web-based platform hosted on a central server, allowing higher

accessibility to expert designers. The user enters input data through queries, after which the

data are analyzed by the design decision support system through various design modules, MIP

solver and layout generators. Finally, possible alternatives and visualizations are returned to

the user. The approach is applied on a case study, in which design decisions were needed

in several areas, among which four are mentioned. The first decision is whether to redesign

all processes in the warehouse, or a subset of them. The second decision involves whether

to discontinue or make more efficient the use of trailers for storing inventories. Thirdly, a

decision of whether or not to use automated shipping/receiving and storage systems is to be

made. The last decision is on segmentation of the customers or eliminating broken case orders

from small customers. In the end, the following four decisions were made: Redesigning and

reconfiguring a subset of processes, redesigning the operation of trailers, limited automation

in the receiving process, and limited customer segmentation.

2.1.3 Storage Capacity Planning Problems

The last group of strategic level warehouse design problems to be discussed are the storage

capacity planning problems. These problems are strategic in the sense that determination

of a capacity has a long term impact. The objective of these problems is to determine the

optimal capacity of the warehouse in each period of the planning horizon so that the total

relevant costs are minimized while satisfying the demand for products. The literature usually

considers developing mathematical models either for the storage capacity planning problem

alone or its combination with other strategic level problems.

10

Cormier and Gunn [20] consider the determination of the optimal warehouse capacity expan-

sion schedule and the underlying multi-item inventory policy in an environment where the

demands vary arbitrarily during a finite planning horizon, assuming dedicated storage policy,

uniform stock withdrawal within a period and instantaneous replenishment. The problem is

converted to the shortest path problem on a network and a dynamic programming approach is

developed, where the state variables correspond to the total capacity of the warehouse and the

stages correspond to time periods. For each period, the inventory amounts based on the capac-

ity and demand in that period are determined. The demand grows linearly or exponentially.

On the two sets of problems, the effects of annual demand growth and fixed and variable costs

of facility expansion on the optimal policies are discussed.

Aghezzaf [2] discusses the joint problem of capacity planning and warehouse location for a

supply chain, where the only cause of uncertainty is in demand. First, an integer program-

ming formulation for the case when demand is known with certainty, is proposed. The model

handles warehouse location and capacity expansion in an integrated manner, and assumes that

transfer of commodities between warehouses is possible for better capacity utilization. It is

shown that this deterministic problem is NP-hard by reduction to the single-source capacitated

lot-sizing problem. By taking into account the uncertainty in demand, a robust optimization

model is proposed. The model aims to come up with warehouse location and capacity expan-

sion policies that are robust under every scenario applied. In order to obtain robust solutions,

Lagrangian decomposition is applied.

2.2 Tactical Level Problems

The tactical level problems aim to come up with decisions that have a medium term effect and

require moderate investments. These problems take strategic level decisions as constraints and

impose further constraints on the operational level problems. Although some of the studies we

consider here may include partially strategic level or operational level problems as well, we

distinguish the tactical level problems based on the framework provided by Cormier [19] and

include palletization, block stacking, layout design, storage assignment and zoning problems

in the class of tactical level problems.

11

2.2.1 Palletization and Block Stacking Problems

Palletization can be defined to be the formation of a pallet load through a palletizer by stack-

ing the incoming boxes together. Various conventional methods can be used for the process.

Tompkins et al. [79] list these as the block pattern, row pattern, pinwheel pattern, honey-

comb pattern, split-row pattern, split-pinwheel pattern and brick pattern. Solutions to the

palletization problems try to achieve the objectives of maximum pallet volume utilization,

pallet loading time reduction, demand satisfaction, loading stability maximization and WIP

reduction. Block stacking is the procedure of storing large quantities of palletized or boxed

products on top of each other in stacks, without using racks. Usually, the main objective in

block stacking is space utilization.

Palletization problems have not received much attention in the literature. Yet the study by

Abdou and El-Masry [1] is worth citing. In this study, a three-dimensional palletization prob-

lem is considered where one pallet is loaded at a time, boxes arrive in random sequences, the

box types are predefined and random stacking is used to load the boxes on the pallet. The

objectives are listed as maximization of the volumetric pallet utilization, maximization of the

load stability, minimization of the work-in-process inventory, and minimization of the robotic

palletization time. The main contribution of the study is the inclusion of load stability as a

performance measure. Based on these, a heuristic procedure consisting of two parts is pro-

posed. The first part aims to build stable blocks out of the boxes in the WIP and those on

the conveyor, whereas the second part stacks the boxes on the pallet considering the demand

constraints. The heuristic procedure is applied on three case studies and the validation of the

procedure has been made using simulation. As a result, the heuristic procedure is observed to

outperform the existing ones in the literature in terms of all the performance measures.

For the block stacking problems, efficient algorithms are only available to compute the opti-

mal lane depth for a single product, assuming that all lanes have equal depths. Goetschalckx

and Ratliff [40] propose an algorithm to compute the optimal number of lanes and the optimal

lane depth for a single product, when the lanes are allowed to have different depths. It is

shown that the optimal lane depth follows a triangular pattern. The optimal lane depth pattern

is compared experimentally with several heuristic patterns. Several near-optimal and efficient

heuristics are identified. In most warehouses, the lane depth on each side of a single aisle is

kept constant for layout and material flow purposes. An optimal algorithm to assign a single

12

product to such limited number of lane depths is also derived. Based upon this algorithm, a

procedure for determining the lane depths and the number of lanes in a warehouse for storing

multiple products is developed. If the warehouse is perfectly balanced, then the procedure

minimizes the required warehouse area.

2.2.2 Layout Design Problems

As De Koster et al. [24] put it, the layout design problem can be classified into two parts with

respect to the order-picking problem. The first group of problems deal with the layout of the

facility containing the order-picking system. These types of problems are called as the facility

layout problems. The main decisions are where to locate the departments such as receiving,

picking, storage, sorting, shipping, etc. The second class considers the layout within the

order-picking system. These types of problems are referred to as the internal layout design

or aisle configuration problems. The main decision consists of determining the number of

blocks and the number, length and width of aisles in each block of the picking area.

A second classification of the layout design problems with respect to the order-picking op-

erations can be made in terms of the type of order-picking operations carried out within the

warehouse. Again, two classes can be mentioned. The first class is the layout design problem

for the manual order-picking systems, where human operators are employed for picking the

items. The second type is the layout design for automated storage/retrieval systems (AS/RS).

The studies regarding the layout design problem concerning the manual order-picking sys-

tems are not many. Among these, the study by Queirolo et al. [70] can be mentioned, where

the layout design of a warehouse is considered for a soft drink manufacturer, which includes

11 blocks with a total number of 4,408 storage cells. The total length of each block puts a

constraint on the number of pallets that can be used. The authors show that the corresponding

layout design problem is NP-hard. For the solution of this problem, a genetic algorithm that

makes use of a simulation procedure is proposed. Four parents are used to generate a single

offspring. The crossover operator, called the basic gene scanning operator, selects the mostly

occurring gene in the parents for each gene of the offspring and breaks ties randomly. Five

different heuristic procedures are applied as mutation operators. The fitness function evalua-

tion, which takes up considerable time if evaluated by the genetic algorithm, is approximated

using simulation. A manual fine tuning procedure is applied in the end.

13

Considering layout design problems for automated storage/retrieval systems (AS/RS), the lit-

erature is more abundant. An example that can be given is the study by Larson et al. [56], in

which the layout in a warehouse employing an AS/RS with class-based storage assignment

policy (the storage assignment policies will be discussed in the next section) is considered.

The overall objective is to come up with a layout design that most effectively allows the usage

of floor space and equipment. It is assumed that the material enters and exits the facility from

single input and output points (these input and output points are not necessarily identical),

each storage region consists of only one storage medium, and all primary aisles are parallel

and of the same length. A three-phase heuristic algorithm is proposed for the design of the

layout and assignment of the items to the storage points. In the first phase, the aisle layout

and dimensions are determined by first determining the path from the input point to the output

point and establishing an initial primary aisle, then determining the slot dimensions based on

the dimension requirements of the storage mediums and the storage zone length accordingly.

The second phase determines the storage medium using the necessary data for the items, com-

ing up with the number of storage locations needed for each item. The last phase determines

the allocation of storage space to the items by using a heuristic classification algorithm. The

three-phase algorithm is applied on a case study conducted for a manufacturer of personal hy-

giene products and a decrease of 17% in the storage area requirement is observed, compared

to the existing system.

A more recent layout design study concerning an AS/RS is by De Koster et al [25]. A 3-

dimensional compact AS/RS is considered, consisting of an automated crane guiding the hor-

izontal and vertical movements of the pallets and a gravity or powered conveying mechanism

to control the depth movement of the rack. The advantage of such a system is the ability to

conduct full automation, enabling storage and retrieval of items on a small area. The main

contribution of the study is in the sense that it provides both travel time estimation and system

dimensioning for a 3-dimensional storage system. In developing a closed form expression for

the expected travel time, first, a single-command cycle (where the crane can perform either

pick-up or drop-off of an item in one cycle) and random storage assignment policy (to be

discussed in the next section) is assumed. Based on the expected travel time, a mathematical

model for the dimensioning of the racks is formulated. It is then shown that when the racks

are square-in time (the length -in time- of the rack is equal to the height -in time- of the rack),

the expected travel time is minimized. Afterwards, this result is extended to the case of dual-

14

command cycles (where the crane can perform pick-up and drop-off of an item in the same

cycle), and it is shown that the square-in-time racks minimize the expected travel time for the

case of dual-command cycles as well.

2.2.3 Storage Assignment Problems

The storage operation takes place between the putting-away of an item to the stock point

until a demand arrives for it. The objectives in designing a storage system for a warehouse

include the maximization of space utilization, equipment utilization, labor utilization, material

accessibility and material protection while satisfying the customer demand at the same time.

We will discuss the storage assignment problems in two headings. First, we consider the

forward-reserve allocation problem and then, we investigate the storage assignment policies.

It is common for warehouses to have separate areas for the bulk stock (in the reserve area) and

the pick stock (in the forward area), as this distinction speeds up the order-picking process.

Yet such a separation brings about several issues to be considered. The first problem is to

determine how much of each item will be stored in the forward area and how much of it will

be stored in the reserve area. The demand frequencies and demand quantities of the items

can provide useful for the solution of this problem. The second problem is to determine the

overall sizes of the forward and reserve areas. The trade-off between the replenishment efforts

and order-picking time must be considered here. The smaller the forward area, the less time

it will take the order-pickers to pick the items on their lists, but the more will be the need

to replenish the stocks in the forward area more frequently. Basically, these two problems

constitute the forward-reserve allocation problem.

Van Den Berg et al. [81] consider the forward-reserve allocation problem in a warehouse

where the orders are picked in a certain period of time. The objective is to determine which

replenishments minimize the expected amount of time to replenish the forward area. It is

assumed that the storage capacities of the forward and reserve areas are known, picking of an

item from the reserve area is also possible, concurrent replenishment is possible with known

replenishment times, and the demand of each item follows normal distribution. A 0-1 integer

programming model is formulated for the case where there is no limit on the amount of

concurrent replenishment. The problem is shown to be NP-hard by reduction to the knapsack

problem. A greedy knapsack heuristic, which provides near-optimal solutions, is proposed for

15

the problem. A second 0-1 integer programming model is formulated for the case where there

is a limit on the amount of the concurrent replenishments, possibly due to a limit on personnel,

or to avoid congestion within the warehouse. A relaxation improvement heuristic, which

makes use of the rounding-down of the continuous solution values from the LP relaxation of

the problem. The algorithms are tested on a set of generated problems, and it is observed that

the algorithm comes up with good results in terms of the expected labor time.

Bartholdi and Hackman [7] devote a chapter of their book “Warehouse & Distribution Sci-

ence” to the forward-reserve allocation problem. Different from Van Den Berg et al. [81],

it is assumed that the entire replenishment quantity of a stock-keeping unit can be carried in

one trip. The question of how much of each stock-keeping unit to store in the forward area is

considered. It is shown that in order to minimize labor to maintain a forward area, each unit

of storage space must be replenished at the same frequency. Then, two widely-used strategies

in order to answer the same question are introduced, the first one being to allocate the same

amount of space to each stock-keeping unit and the second one being to store an equal time

supply of each stock-keeping unit. Contrary to the common belief that the second strategy is

superior over the first one, they prove that the two strategies require the same total amount of

replenishments. Then, the second question of which stock-keeping units to include in the for-

ward area is tried to be answered, providing expressions for the stock-keeping units to satisfy

in order to be included in the forward area if the objective is to minimized labor and equalize

space or replenishment frequency respectively. Also lower bounds on the amount of an item

to be included in the forward area are provided, if it is to be done so.

The second group of storage assignment problems arise considering the storage assignment

policies. Four main policies can be considered. Random storage lies at one end of the extreme.

In this case, every incoming pallet is stored in a location of the warehouse selected randomly

from the available ones. The main advantage of the random storage method is the need for

higher space utilization or lower space requirement. On the other hand, order-picking travel

distance will increase as a result. Another disadvantage is the fact that order-pickers cannot

get familiar with the places of the items within the warehouse, and therefore the need for a

computerized environment will increase. At the other extreme is the dedicated storage, which

requires storing of each item at a fixed location. Dedicated storage allows the order-pickers

to become familiar with the item locations at the expense of lower space utilization or higher

space requirement. Class-based storage combines the two methods mentioned. The items

16

are grouped in such a way that the fastest moving class contains a small percentage of the

products, but contributes to a high percentage of the turnover. The classes are assigned fixed

locations within the warehouse, but the storage assignment within each location is random.

One last policy to be considered is the concept of family grouping, in which the similarities

or relationships between the demands of the items are considered. The idea is to cluster the

items that are likely to be picked together. A vast amount of literature on storage assignment

policies is available, of which we summarize three.

In an earlier study, Malmborg and Krishnakumar [60] consider a storage assignment problem

in a warehouse employing palletized AS/RS with multiple-command cycles (multiple storage

and retrieval transactions can be performed by a picker in a cycle), with parallel-arranged

racks. No correlation between the orders of the items, stochastic and stationary storage trans-

actions, capacitated order-pickers and first come - first served servicing of the item orders

are assumed. Three problems are mainly tackled: item to location assignment, item to order-

picker assignment and picker routing. The total expected order-picking cost is calculated by

modelling the order arrival process as a queue and the expected travel distance for a picker

is found accordingly. The optimal storage assignment policy is determined depending on the

two statements proposed by the authors. The first statement is that when the order pickers are

equally efficient, equal work balancing minimizes the total idle time of the system. However,

it does not guarantee maximum throughput by itself, as it may lead to excessive travel times

for the order-pickers due to inefficient routing. The second statement is that the cube-per-order

index (COI) assignment policy, which consists of assigning items to pickers depending on the

ratio of the space occupied by the item to its turnover rate, yields a least cost solution for the

total order-picking cost of the system. These two statements provide useful rules-of-thumb

for storage assignment and picker routing.

Considering family grouping, Liu [58] discusses a clustering technique for a group of items

in the slots of gravity-flow racks and to sequence the picking lists of customers. In this

setting, the historical information on the previous orders is available, and based on this it is

possible to determine a similarity measure for both the items and the customers. The similarity

measure between two items is given as the ratio of their common orders to the maximal order

quantity on the order where the two items are listed. The similarity measure between two

customers is the ratio of their common item quantity to the maximal item quantity in which

the customers have ordered in the same time interval. A mixed integer programming model to

17

maximize the total similarity value is given, and the proposed solution procedure is by using

a primal-dual algorithm. The algorithm terminates when the required number of clusters is

obtained. The algorithm is applied for a low-volume, multi-item distribution center and the

results were compared with the existing stock location policy, showing a significant amount

of improvement.

Petersen and Aase [67] take a more overall view, and consider the storage assignment problem

along with order-batching and picker routing problems, with the following features: There

are 10 picking aisles with front and back cross aisles, the aisles are wide enough to allow

two-way travel, and narrow enough to allow picking from both sides, the demand for the

items follows Pareto’s principle, and picking is performed manually by a capacitated picker.

Simulation is used to compare combinations of various batching, storage allocation and picker

routing policies. Different policies are included in each of batching, storage assignment and

picker routing; namely, strict order, FCFS and bin-pack for batching; random, class-based,

and within-aisle volume-based for storage assignment; traversal, combined, and optimal for

routing. Seven different order sizes are considered. It has been shown that changing all three

of the existing policies (strict order batching, traversal routing and random storage) yields

average savings between 27% and 29%. Sensitivity analyses for each of the factors are made

in order to verify the results.

2.2.4 Zoning Problems

The problems we have discussed up to this point may either implicitly or explicitly assume

that each picker may traverse any part of the warehouse during the order-picking activities.

Especially in larger warehouses or when the items corresponding to an order are widely dis-

tributed throughout the warehouse, a need for assigning specific zones of the warehouse to

the pickers might be reasonable. The assignment is simply called zoning. The advantages

of zoning include reduced travel distances for the pickers, reduced traffic congestion and the

pickers becoming familiar with the item locations in their zones. However, since the items of

a single order are picked by multiple pickers, the orders must be consolidated before shipment

to the customer.

There are several strategies for zoning. In the first one, called progressive assembly or pick-

and-pass, an order-picker picks the items in the zone assigned to him and passes the pick list to

18

the next order-picker, who performs the same operations in his zone. The process continues

until the last order-picker picks the items in his zone. The main advantage of this method

is that order consolidation is made easier at the expense of higher order fulfillment time.

The second strategy is parallel or synchronized picking, where each picker simultaneously

picks the items on the pick list in his zone. In this way, orders are fulfilled in shorter time

but more effort for order consolidation is needed as a consequence. A third strategy is the

idea of bucket brigades, put forward by Bartholdi and Hackman [7]. In this case, no fixed

boundaries between the zones exist. A picker travels back to the previous picker or to the

starting point when he finishes picking the items assigned to him and restarts picking. This

method minimizes the idle times of the pickers but requires more training.

Although the literature on zoning is limited, there has been a significant increase in the studies

concerning zoning in the recent years. Petersen [66] considers a warehouse that uses zone

picking, and tries to determine the optimal sizing of the zones, along with the relationships

of zoning with storage policy and order size in terms of the route lengths. Manual order-

picking is assumed in a warehouse where the aisles are wide enough to allow a picker to

change direction within an aisle yet narrow enough to pick items from both sides and each

picking route starts and ends at a depot. An experimental design is made with four factors:

zone configuration (1, 2, 3 or 4 aisles), zone size (small, medium or large), storage policy

(random, within-aisle or across-aisle), and pick list size (1, 5, 10, 20 or 30 items). Simulation

is run for 50 replications of each factor combination, and the results are statistically analyzed.

It is observed that the size of the picking zone, the storage policy and the order size affect

the route length significantly. Large zones and small orders for zones of 3 and 4 aisles result

in significantly less travel length than the others. Additionally, within-aisle storage policy

dominates the other two.

Le-Duc and De Koster [57] provide a heuristic procedure to estimate the travel distance and

determine the zones in a 2-block warehouse operating manual order-picking. The warehouse

includes rectangular racks which can store more than one product type, items in the same

class are assumed to have the same order frequency, and no order batching is applied. First,

the average travel distance is estimated for a single aisle using a probabilistic model. The

error of probabilistic model is tested using simulation, assuming class-based or random stor-

age assignments. It is shown that the maximum error is around 2.5% (4.4%) for class-based

assignment (random assignment) for the largest order sizes, showing that the travel time ap-

19

proximation is valid. For the case with multiple aisles, simulation reveals approximate errors

of 7.3% and 7.9% for the two cases respectively. In order to determine the zoning, a mathe-

matical model with linear constraints and a nonlinear objective function is formulated. Due

to nonlinearity, the solution of the model needs considerable computational time. As a conse-

quence, a heuristic procedure is developed for zoning. Computational experiments show that

the procedure produces near-optimal results.

2.3 Operational Level Problems

The operational level problems are related to decisions that affect day-to-day transactions and

do not require substantial amounts of investments. These problems take strategic and tactical

level decisions as constraints and usually consider the assignment and control problems of

people and equipment. Taking a similar approach to that of De Koster et al. [24], we classify

the operational level problems under three main headings. The first of these are the order

batching problems, the second group consists of picker routing problems, and the last group

includes problems related to order accumulation and sorting.

2.3.1 Order Batching Problems

Single order picking, in which an order-picker picks items corresponding to a single order in

a single trip, is especially useful when the sizes of the orders are large, or the time between

two orders is large enough so that waiting for the orders to be accumulated increases the

order fulfillment time substantially, or when the capacities of the order-pickers do not allow

picking multiple orders in a single trip. When the sizes of the orders are small, and when the

capacities of the order-pickers allow picking multiple orders in a single trip, order batching

can be applied. There are two main methods for order batching. Proximity batching, in

which assignment of orders to the batches are made based on the proximities of their storage

locations, is the first of these. The main issue in this problem is to determine a proximity

measure for the orders. The second method is time window batching, which forms batches

from the orders that arrive in the same time interval, which is called a time window. The

orders are then picked in the same trip in the following stages.

Gademann and Ven De Velde [32] discuss proximity batching in a parallel aisle warehouse

20

that contains no middle aisle. A single input/output station exists, and travel time is assumed

to be linear in terms of the travel distance. There are n orders to be split into c batches, where

n is a multiple of c. The objective is to minimize the total travel time. The problem is shown

to be NP-complete in the strong sense by polynomial reduction from the partition into trian-

gles problem, and is shown to be polynomially solvable when there are 2 batches. Due to the

NP-completeness of the problem, a branch-and-price approximation algorithm is proposed.

The five-step algorithm initializes by the formulation of an integer linear program which has

exponential number of variables. A pricing algorithm follows the formulation procedure that

is used to verify the global optimality of the solution to the LP relaxation of the model. The

pricing algorithm uses a branch-and-bound procedure to find columns with minimum reduced

costs. If the pricing algorithm no longer returns a column with negative reduced cost, the LP

solution provides a lower bound on the optimal solution. A Lagrangian relaxation procedure

improves the lower bound found by the LP relaxation. A column generation algorithm itera-

tively uses the first three steps to solve the linear relaxation and a branch-and-price algorithm

uses the result by the column generation procedure to come up with a solution to the overall

problem. The algorithm is tested on several generated problems in a warehouse where class-

based storage is applied and observed to perform well both in terms of solution quality and

computation time.

Won and Olafsson [85] consider the order batching and order-picking problems together.

A warehouse is assumed where end-of-aisle order-picking is applied, the distance metric is

Tchebysheff and orders that cannot be split into multiple batches. First, an integer program-

ming formulation for the joint batching and picking problem is given. Ideas are borrowed

from the formulations of the bin packing problem for order batching and the travelling sales-

man problem for the order-picking parts. Due to the NP-completeness of the problem, the

required number of constraints for the proposed model is exponential. Therefore the authors

propose two heuristic procedures. The first procedure solves the order batching and order-

picking problems sequentially, that is, the solution to the batching problem is an input for the

order-picking problem. In developing the heuristic, the orders are treated on a first-come-first-

served basis, and the solution procedure is based on solving the traveling salesman problem

using a 2-opt heuristic procedure. When computational experiments are performed, it is ob-

served that the algorithm finds good quality solutions for small to medium sized problems,

but deviation from optimal is high for the large-sized problems. Therefore a second heuris-

21

tic is developed solving the batching and picking problems jointly. The algorithm provides

considerably more benefits than the sequential approach, as shown by computational results.

2.3.2 Picker Routing Problems

According to Tompkins et al. [79], around 55% of the warehouse operating expenses is caused

by the order-picking operations. Furthermore, when the distribution of the time spent by an

order picker is analyzed, it is observed that about 50% of the time is spent by travelling for

picking the items. Therefore picker routing aims to aid the costliest problem in warehouse

operations. The routing problem in a warehouse is a special case of the traveling salesman

problem, but due to the fact that not all the nodes in the corresponding graph of a warehouse

have to be visited, the problem takes the form of a Steiner traveling salesman problem. Since

the detailed survey on the literature of this problem is provided in the next two chapters, we

briefly summarize the related literature here.

For the warehouses containing no middle aisles, Ratliff and Rosenthal [71] propose an al-

gorithm linear in terms of the number of aisles in the warehouse. They make use of seven

equivalence classes and enumerate their combinations for each aisle starting with the left-

most one and obtain a dynamic programming-based algorithm. The enumerative procedure

of this algorithm makes it harder to implement an use in practice. Various heuristic proce-

dures have been defined to overcome this difficulty. Hall [45] summarizes the most widely

used ones such as the S-shape heuristic, the largest gap heuristic and the combined heuristic.

Makris and Giakoumakis [59] also propose a k-opt type heuristic procedure. De Koster and

Van Der Poort [26] extend the algorithm of Ratliff and Rosenthal [71] to the case where the

start and end nodes of the picker are different, i.e., an extension from the picker’s route to the

picker’s path. They call this case decentralized depositing. The algorithm simply consists of

assuming a dummy sink node that has zero distance to the corner points and solving the tour

problem.

For the case with middle aisles, the literature mostly consists of heuristic procedures. Rood-

bergen and De Koster [72] extend the work of Ratliff and Rosenthal [71] to the case with a

single middle aisle. In this case, the number of possible equivalence classes increases from

7 to 25. Vaughan and Petersen [82] propose an aisle-by-aisle heuristic, which is a DP-based

approach that seeks the best entrance and exit points of the aisles. The proposed heuristic

22

can handle the case where the widths of the cross aisles are non-negligible. It allows the pick

aisles to be visited only once, where each visit has to pick all the items in the aisle. However,

this approach may result in solutions of high optimality gap, especially when almost all the

items are located near the front and back cross aisles. Roodbergen and De Koster [73] sum-

marize the heuristic procedures developed for the case with middle aisles such as S-shape,

largest gap, aisle-by-aisle, and propose a DP-based combined heuristic, which combines the

procedures of S-shape and largest gap heuristics.

2.3.3 Order Accumulation and Sorting Problems

When zoning and/or batching is applied, that is, the items corresponding to a single order are

picked by multiple pickers and/or a single picker picks items corresponding to multiple orders,

these orders need to be accumulated and sorted before shipment to the customers. In a typical

accumulation/sorting (A/S) system, upon completion of the order-picking process, a picker

places all the items (which may correspond to different orders) to a transport-conveyor located

adjacent to the front or back cross aisle. The items then move on to a circulation conveyor

of the sorter and enter the assigned shipping lane as soon as the items of the preceding order

assigned to the same shipping lane have entered. Otherwise, the items keep on circulating

around the conveyor. On entering the shipping lane, the order is loaded onto the waiting truck

and the lane is made available for the next order assigned to it.

The literature on the A/S systems is limited. Meller [63] studies the A/S problem in a ware-

house with an A/S system as described previously. It is furthermore assumed that the loading

sequence of orders to the trucks is fixed, the items corresponding to an order can be loaded

to a truck in any sequence, each item occupies one unit of space on the lane, and multiple

orders from the same truck can be assigned to a lane. A mathematical model is developed

for the problem, and the solution procedure makes use of the minimum cardinality formula-

tion to determine the optimal number of lanes, providing a constraint for the lane assignment

problem, which determines the assignment of lanes to the orders. The solution procedure is

applied to ten small-sized and ten large-sized problems (the size of the problems is defined

by the maximum number of items that can be loaded onto a truck) and optimal solutions are

found for each. Although the large-sized problems differ significantly from the small-sized

problems in terms of solution time, all of the problems can be solved to optimality within

23

reasonable amount of time.

Johnson [51] discusses the impact of sorting strategies on the performance of A/S systems in

an A/S system described in this section. It is assumed that no blocking occurs between the

shipping lanes and the circulation conveyor (in other words, either processing at the shipping

lane is shorter than that of the sortation process or there is enough buffer space in the ship-

ping lane so that blocking is avoided). Two families of sorting strategies are considered for

comparison. The first family consists of fixed priority rules, where the priority rule does not

change during sorting. Smallest order first and Largest order first are two examples of fixed

priority rules. The second family consists of next available rules. Each time an order is sorted,

the next item to pass the bar code scanner at the shipping lane determines the next order to

be sorted. After coming up with the expected sorting times for each family of strategies, it

is shown that the next available rule dominates the fixed priority rules. The robustness of the

findings is shown using simulation.

2.4 Conclusion on Warehouse Design Problems

As can be observed throughout the chapter, the warehouse design problems discussed here

are interdependent on each other. Figure 2.2 summarizes the relationships between each type

of problem in each decision level. Each arrow indicates that the second problem takes the

results of the first as given. In other words, when these problems are considered together in

a warehouse environment, they are solved in sequence. As expected, most of the hierarchical

relations occur from a higher decision making level to the lower. However, there are also cases

where the problems on the same decision making level have such relations. For instance,

layout design problems, being one of the tactical level problems, take the results of process

flow design and systems selection problems and storage capacity planning problems, which

are strategic level problems, as inputs. The layout design of the warehouse is an input to the

storage assignment and zoning problems (tactical level) as well as order batching and picker

routing problems (operational level).

When the literature on the warehouse design problems is observed in general, there are a

number of remarks to make about the uniformity of the studies on the decision levels they aid

and the approaches they take. First of all, despite the fact that there is vast amount of litera-

24

Figure 2.2: A summary of the warehouse design problems discussed in this chapter, arrows
indicating hierarchical effects

ture on the tactical and operational level problems, strategic level problems have not received

the amount of attention they deserve, as they provide inputs to the problems in the tactical

and operational levels. This is due to the reason that most of the studies in the literature dis-

cuss problems that are well-defined in the sense that the performance measures are clearly

expressed and well-quantified, stochasticity is limited, and the interactions with the environ-

ment are almost always ignored. This drawback prevents the results from being applicable in

practice.

Another important issue that lacks the attention of the literature is the fact that the problems

are also isolated from each other. When a number of problems are considered together, the

solution approach is most of the time hierarchical. This causes suboptimalities in the overall

problem. Even though tackling the problems in an integrated manner is a difficult challenge,

ignoring this integrity widens the gap between the theoretical studies and the implementations

in practice.

25

CHAPTER 3

REVIEW ON THE COMPLEXITY OF THE ORDER-PICKING

PROBLEM

Having provided an overview of the warehouse design problems along with their connection

to the order-picking problem (OPP) in Chapter 2, we can now define the specifics of the OPP.

Note that throughout this thesis, the k-OPP refers to the OPP with k cross aisles. First, we

give the basic definitions and notation related to the OPP in Section 3.1, which will also be

used throughout this thesis. Then, we will discuss the complexity of the problem, which is

“open”. Even though a polynomial time algorithm exists for the 2-OPP due to Ratliff and

Rosenthal [71], and for the 3-OPP due to Roodbergen and De Koster [72], the complexity of

the OPP in terms of the number of cross aisles has not yet been determined. The complexity

discussion is divided mainly into two headings. Section 3.2 gives the polynomially solvable

special cases of the OPP and their algorithms. In Section 3.3, we discuss the complexity of

the problem with more than one middle aisle, with reference to the findings on the complexity

of related problems in the literature.

3.1 Basic Definitions and Notation

Whenever the OPP is mentioned, we are assuming a parallel-aisle warehouse, an example of

which is shown in Figure 3.1, consisting of pick aisles that contain the items to be picked

(shown as black squares in the figure). The warehouse also contains cross aisles, which are

orthogonal to the pick aisles. It is assumed that cross aisles do not contain any pick items.

The two cross aisles at the ends of the warehouse are named front and back cross aisles,

whereas the remaining cross aisles are named middle aisles. In the existence of middle aisles,

26

Figure 3.1: A parallel-aisle warehouse with 2 middle aisles and 25 pick items

27

Figure 3.2: Graph representation of the warehouse in Figure 3.1

pick aisles are divided into subaisles and the warehouse is divided into blocks. In a feasible

solution to the problem, the picker starts at the depot, picks all items and returns to the depot.

Unless otherwise stated, the depot is assumed to be at the left corner of the front cross aisle.

It is also assumed that the cross aisles have zero width.

We will denote the k-OPP as the order-picking problem in a warehouse with k cross aisles. As

a special case, the 1-OPP refers to the case with only the front cross aisle. It is obvious that the

solution to the 1-OPP is trivial; the optimal route starts at the depot, traverses all nonempty

pick aisles beginning with the leftmost one, picks all items and returns to the depot. Therefore

throughout the rest of the report it is assumed that k ≥ 2.

28

A graph G = (V, E) consists of a vertex or node set V and an edge set E. An edge is denoted

by its two end nodes u and v as (uv). Each edge e ∈ E has a distance or cost we associated

with it. The k-OPP can be defined as a graph problem as follows: Each item i is denoted as

vertex vi, where v0 denotes the depot. Corners of the back cross aisle with pick aisle i are

denoted by vertex ai, whereas corners of the front cross aisle with pick aisle i are denoted by

vertex bi. Corners of pick aisle i with middle aisle j (with j = 1 being the closest to the back

cross aisle and so on) are denoted by vertex mi j The edges represent the accessibility between

items, from a corner to an item and vice versa. Figure 3.2 shows the graph representation of

the warehouse shown in Figure 3.1.

Given a node subset W ⊆ V , G(W) denotes the subgraph of G induced by W and E(W) denotes

its edges. The degree of a vertex is the number of edges incident to it.

A path between two nodes u and v consists of a series of consecutive edges e1, e2, . . . , en with

e1 having u as a start node, en having v as an end node, and there is no repetition of edges.

Two nodes u and v are connected if there exists a path between them. A cycle is a path with

u = v. A tour 〈v1, v2, . . . , vn〉 is a cycle that contains all the nodes of G. A tree is a connected

subgraph of G that does not contain a cycle.

A graph G=(V, E) is said to be Eulerian if there exists a path that goes through all edges of

the graph. A Hamiltonian graph, on the other hand, has a cycle spanning all of its nodes. The

Chinese Postman Problem (CPP) consists of determining the least cost (or distance) traversal

of a Eulerian graph. On the other hand, the Rural Postman Problem (RPP) aims to find a least

cost (or distance) traversal of a subset R of the edges of a Eulerian graph.

A grid graph is a finite, vertex-induced subgraph of the infinite grid, which is the infinite

graph with set of vertices Z ×Z and set of edges {{(xy), (x′y′)} : |x − x′|+ |y − y′| = 1}. A solid

grid graph, on the other hand, is a grid graph with no “holes” in it, that is, all bounded faces

of the graph have area one. Figure 3.3 illustrates a general grid graph and a solid grid graph.

A rectangular solid grid graph is simply a solid grid graph with equal number of grids for

each row and each column.

Two edges e1 and e2 are in series if they are incident to a vertex of degree 2 and are parallel if

they join the same pair of distinct vertices. A series-parallel (S-P) graph is recursively defined

as follows:

29

Figure 3.3: A general grid graph (a) and a solid grid graph (b)

• A graph that simply consists of vertices v1 and v2 joined by two parallel edges e1 and

e2, each of which has end nodes as v1 and v2 is series-parallel.

• If G is a series-parallel graph, then a graph obtained from G by replacing any edge of

G by series or parallel edges is series-parallel.

Figure 3.4 illustrates the second part of the definition. If G containing (uv) is an S-P graph,

then by adding a series of edges (uu’),(u’v) after deleting (uv) or adding a duplicate of edge

(uv) creates another S-P graph G′.

3.2 Polynomially Solvable Cases of the OPP and Heuristic Approaches

In this section, we discuss the polynomially solvable cases of the order-picking problem, and

provide the polynomial-time algorithms and heuristic procedures. First, we discuss the case

of 1-OPP, in which only the front cross aisle exists. Then, we review the 2-OPP, which is the

smallest non-trivial case of the OPP. We give the polynomial time algorithm by Ratliff and

Rosenthal [71], as well as the heuristic procedures. Following this, we provide the polynomial

algorithm for 3-OPP, which is due to Roodbergen and De Koster [72]. Lastly, we discuss the

heuristic procedures for the case where middle aisles exist (k-OPP with k ≥ 3).

30

Figure 3.4: Recursive definition of an S-P graph: If G in (a) is S-P, then by deleting (uv) and
adding either series (b) or parallel edges (c), we obtain G′ as an S-P graph

3.2.1 The 1-OPP

The 1-OPP is the simplest of the order-picking problems. As discussed before, it consists of

the front cross aisle and the pick aisles connected to it. The solution to the 1-OPP is trivial.

The optimal route starts at the depot, which is on the intersection of the cross aisle and the

left-most pick aisle, then proceeds by collecting the items starting with the left-most non-

empty aisle. When the picker picks the last item in the right-mos aisle, he returns to the depot

using the front cross aisle.

3.2.2 The 2-OPP

The 2-OPP is the basic case of non-trivial order-picking problems. Ratliff and Rosenthal [71]

provide an efficient solution algorithm for the problem, solvable in linear time in terms of the

number of aisles.

The algorithm for the 2-OPP is a DP-based algorithm, which provides an aisle-by-aisle so-

lution procedure [71]. Here, the aisles constitute the stages and the states are the distances

31

needed to traverse all the aisles to the left of, and including that stage. The following defini-

tions are due to [71]:

Definition 3.1 A partial tour subgraph is a subgraph that spans a subset of the nodes of the

graph.

Definition 3.2 Let the aisles be numbered in increasing order starting from the left-most one

up to the right-most one (j = 1 for the left-most one, j = 2 for the one on its right, etc). A

partial tour subgraph L−j consists of the vertices a j and b j as well as all the vertices in aisles

up to (but not including) aisle j. Partial tour subgraph L+
j , on the other hand, consists of all

the vertices in aisles up to and including aisle j.

Definition 3.3 The equivalence class of a partial tour subgraph is defined by three param-

eters: the degrees of ai and bi and the number of components in the partial tour subgraph.

In the case of the 2-OPP, the first two parameters can be E (even), U (uneven) or 0 (zero),

and the third can be 0C (no component), 1C (a single connected component), or 2C (two

connected components).

Ratliff and Rosenthal [71] show that there are only seven equivalence classes for any par-

tial tour subgraph, namely (U,U,1C), (0,E,1C), (E,0,1C), (E,E,1C), (E,E,2C), (0,0,0C) and

(0,0,1C), six possible connection types as shown in Figure 3.5, and five different ways of

connecting the aisles as shown in Figure 3.6.

The algorithm starts by forming the L+
1 configurations for each of the seven equivalence

classes, using the six possible connection types described in Figure 3.5. Then, it goes on

to form the L−2 configurations by adding the between-aisle connections shown in Figure 3.6.

Table 3.1 shows the resulting equivalence classes when the between-aisle connections in Fig-

ure 3.6 are added to each equivalence class.

It can be observed from Table 3.1 that a number of solutions are obtained for each equiva-

lence class. For the next step, each equivalence class will have an associated unique solution,

which is the shortest of the obtained solutions in that equivalence class. Having formed the

L−2 solutions, the next step is to find the L+
2 solutions, which will be obtained by adding the

connection types shown in Figure 3.5 to each equivalence class. Table 3.2 shows the result-

32

Figure 3.5: The six possible connection types within the aisles

Figure 3.6: The five possible connection types between the aisles

33

Table 3.1: Resulting equivalence classes after adding the connection types in Figure 3.6 to
each L+

j equivalence class, dashed lines indicating suboptimality or infeasibility

L+
j equivalence Connection types in Figure 3.6

classes (1) (2) (3) (4) (5)

(U,U,1C) (U,U,1C) - - - -

(E,0,1C) - (E,0,1C) - (E,E,2C) (0,0,1C)

(0,E,1C) - - (0,E,1C) (E,E,2C) (0,0,1C)

(E,E,1C) - (E,0,1C) (0,E,1C) (E,E,1C) (0,0,1C)

(E,E,2C) - - - (E,E,2C) -

(0,0,0C) - - - - (0,0,0C)

(0,0,1C) - - - - (0,0,1C)

Table 3.2: Resulting equivalence classes after adding the connection types in Figure 3.5 to
each L−j equivalence class, dashed lines indicating suboptimality

L−j equivalence Connection types in Figure 3.5

classes (1) (2) (3) (4) (5) (6)

(U,U,1C) (E,E,1C) (U,U,1C) (U,U,1C) (U,U,1C) (U,U,1C) (U,U,1C)

(E,0,1C) (U,U,1C) (E,0,1C) (E,E,2C) (E,E,2C) (E,E,1C) (E,0,1C)

(0,E,1C) (U,U,1C) (E,E,2C) (0,E,1C) (E,E,2C) (E,E,1C) (0,E,1C)

(E,E,1C) (U,U,1C) (E,E,1C) (E,E,1C) (E,E,1C) (E,E,1C) (E,E,1C)

(E,E,2C) (U,U,1C) (E,E,2C) (E,E,2C) (E,E,2C) (E,E,1C) (E,E,2C)

(0,0,0C) (U,U,1C) (E,0,1C) (0,E,1C) (E,E,2C) (E,E,1C) (0,0,0C)

(0,0,1C) - - - - - (0,0,1C)

ing equivalence classes when the within-aisle connections in Figure 3.5 are added to each

equivalence class.

As in the previous case, each equivalence class in L−j+1 will be the shortest of the solutions

obtained in that class.

After finding the solutions for each equivalence class for L+
2 , the algorithm then goes on to

find out each equivalence class solution for L−3 , L+
3 and so on. The optimal solution is the

shortest of the solutions associated with the equivalence classes (0,E,1C), (E,0,1C), (E,E,1C)

and (0,0,1C) for L+
n . Figure 3.7 summarizes Procedure Ratliff Rosenthal.

As an example, consider a 2-OPP with 8 items and 6 aisles illustrated in Figure 3.8. Table 3.3

summarizes the solution procedure for this example problem, whose optimal solution is 62,

and the optimal route is depicted in Figure 3.9.

The enumerative procedure of the algorithm by Ratliff and Rosenthal [71] makes it harder to

34

Figure 3.7: Procedure Ratli f f Rosenthal

35

Figure 3.8: An example 2-OPP with 6 aisles and 8 items, where v0 corresponds to the depot

Table 3.3: Solution to the example problem in Figure 3.8, bold entries indicating part of the
optimal solution, dashed lines indicating infeasiblity or suboptimality

L−1 L+
1 L−2 L+

2 L−3 L+
3

(1. U,U,1C) — 10, -, i 14, 1, i 18, 1, iii 22, 1, i 30, 1, iii

(2. E,0,1C) — 20, -, ii 24, 2, ii 40, 2, ii 28, 4, ii 40, 2, ii

(3. 0,E,1C) — 16, -, iii 20, 3, iii 24, 3, iii 28, 3, iii 36, 3, iii

(4. E,E,1C) — 20, -, v 28, 4, iv 24, 1, i 32, 4, iv 32, 1, i

(5. E,E,2C) — 10, -, iv 18, 5, iv 22, 5, iii 30, 5, iv 36, 2, iii

(6. 0,0,0C) — — — — — —

(7. 0,0,1C) — — 16, 3, v — 24, 3, v —

L−4 L+
4 L−5 L+

5 L−6 L+
6

(1. U,U,1C) 34, 1, i 34, 1, vi 38, 1, i 48, 1, iii 52, 1, i 60, 1, iv

(2. E,0,1C) 36, 4, ii 36, 2, vi 40, 2, ii 56, 2, ii 52, 4, ii 64, 2, ii

(3. 0,E,1C) 36, 4, iii 36, 3, vi 40, 3, iii 50, 3, iii 52, 4, iii 72, 3, iii

(4. E,E,1C) 40, 4, iv 40, 4, vi 48, 4, iv 48, 1, i 56, 4, iv 62, 1, i

(5. E,E,2C) 44, 3, iv 44, 5, vi 44, 2, iv 50, 2, iii 58, 3, iv 60, 2, iv

(6. 0,0,0C) — — — — — —

(7. 0,0,1C) 32, 4, v 32, 7, vi 32, 7, v — 48, 4, v —

36

Figure 3.9: The optimal route for the problem given in Figure 3.8

implement and use in practice. Various heuristic procedures have been defined to overcome

this difficulty. Hall [45] summarizes the most widely used ones such as the S-shaped heuris-

tic, the largest gap heuristic and the combined heuristic. Makris and Giakoumakis [59] also

propose a k-opt type heuristic procedure. Nevertheless, the study by Rosenthal and Ratliff

[71] proves that the 2-OPP is solvable in linear time, i.e. in O(n), where n is the number of

aisles. De Koster and Van Der Poort [26] extend the algorithm of [71] to the case where the

start and end nodes of the picker are different, i.e., an extension from the picker’s route to the

picker’s path. They call this case decentralized depositing. The algorithm simply consists of

assuming a dummy sink node that has zero distance to the corner points and solving the tour

problem.

A nice property of the 2-OPP is that its graphical representation is an S-P graph (see Figure

3.10). The S-P graph formation of the 2-OPP with n aisles is as follows:

1. Start with two vertices connected by two parallel edges.

2. Replace one of the two edges by a series of two edges, creating two more nodes, ending

up with an empty warehouse with 2 aisles.

3. Duplicate the edge corresponding to the right-most pick-aisle. Replace the duplicated

edge by a series of two edges, creating two more nodes. Repeat this step n-2 times to

37

Figure 3.10: Formation of an S-P graph for a 2-OPP with 4 aisles and 5 items: (a) The initial
graph, (b) Formation of the second aisle in Step 2 and the duplicated edge in step 3, (c) End
of Step 3, (d) Addition of items in Step 4

obtain an empty warehouse with n aisles.

4. Add each item by replacing edges corresponding to aisles by a series of two edges.

Repeat until all items are placed.

The property of the 2-OPP that it is actually an S-P graph has a nice implication on its

tractability. We will see later that the more general Graphical Steiner Traveling Salesman

Problem (GStSP) is polynomially solvable in S-P graphs.

3.2.3 The 3-OPP

The main difficulty in tackling the k-OPP with k ≥ 3 is that it becomes exponentially hard to

implement an extension of the algorithm by Ratliff and Rosenthal [71] as the number of cross

aisles increases. Roodbergen and De Koster [72] have provided such an extension for a single

middle aisle (k = 3). The procedure splits the problem into its two blocks. For each aisle, it

first enumerates the possible solutions for the lower block, and combines these solutions with

the upper solutions after enumeration. The following additional definitions are due to [72].

All other definitions are identical with those in Section 3.2.2.

Definition 3.4 Let j denote the aisle index. If Y j is the subgraph consisting of vertices m j1, b j

and the vertices between them, then L+y
j = L j ∪ Y j. Similarly, if X j is the subgraph consisting

of the vertices a j, m j1 and the vertices between them, then L+x
j = L+y

j ∪ X j.

Definition 3.5 The equivalence class of a partial tour subgraph for the 3-OPP is defined by

38

a quintuplet: the degrees of ai, m j1 and bi, and the number of components in the partial tour

subgraph and which two vertices are in the same component (only if there are two compo-

nents). The first three elements can be E (even), U (uneven) or 0 (zero), the fourth can be 0C

(no component), 1C (a single connected component), 2C (two connected components), or 3C

(three connected components) and the last can be a-mc, m-ac or c-am only if the fourth is 2C.

Otherwise it is empty.

It is shown by Roodbergen and De Koster [72] that the 25 possible equivalence classes are

(0,0,0,0C), (0,0,0,1C), (E,E,E,1C), (E,E,E,3C), (E,0,0,1C), (0,E,0,1C), (0,0,E,1C), (E,E,0,1C),

(E,0,E,1C), (0,E,E,1C), (U,U,0,1C), (U,0,U,1C), (0,U,U,1C), (E,U,U,1C), (U,E,U,1C), (U,U,

E,1C), (E,E,0,2C), (E,0,E,2C), (0,E,E,2C), (E,U,U,2C), (U,E,U,2C), (U,U,E,2C), (E,E,E,2C,

a-mc), (E,E,E,2C,m-ac), and (E,E,E,2C,c-am). Six different connection types within each

subaisle are as in the case of 2-OPP, but the number of different ways to connect the aisles

increases from 5 to 14. These are shown in Figure 3.11.

After initializing all the L−1 solutions to zero, the algorithm proceeds by enumerating the

L+y
1 solutions using the within-aisle connections in Figure 3.5. Then, it enumerates the L+x

1

solutions based on the ones in L+y
1 , again using the within-aisle connections in Figure 3.5.

Following these, L−2 solutions are enumerated using the between-aisle connections in Figure

3.11. Then L+y
2 solutions are enumerated, and so on. The procedure continues until L+x

n

solutions are obtained, and the optimal solution is the one having the shortest distance among

the equivalence classes (0,0,0,1C), (E,0,0,1C), (0,E,0,1C), (0,0,E,1C), (E,E,0,1C), (E,0,E,1C),

(0,E,E,1C), and (E,E,E,1C). Tables 3.4 and 3.5 show the resulting equivalence classes when

the within-aisle connections in Figure 3.5 are added to each equivalence class. Table 3.6

shows the resulting equivalence classes when the between-aisle connections in Figure 3.11

are added to each equivalence class.

39

Figure 3.11: The fourteen possible connection types between the aisles

40

Ta
bl

e
3.

4:
R

es
ul

tin
g

eq
ui

va
le

nc
e

cl
as

se
s

L+
y j

af
te

r
ad

di
ng

th
e

co
nn

ec
tio

n
ty

pe
s

in
Fi

gu
re

3.
5

to
ea

ch
L−

j
eq

ui
va

le
nc

e
cl

as
s,

da
sh

ed
lin

es
in

di
ca

tin
g

su
bo

pt
im

al
ity

L−
j

eq
ui

va
le

nc
e

C
on

ne
ct

io
n

ty
pe

s
in

Fi
gu

re
3.

5

cl
as

se
s

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

(0
,0

,0
,0

C
)

(0
,U

,U
,1

C
)

(0
,E

,0
,1

C
)

(0
,0

,E
,1

C
)

(0
,E

,E
,2

C
)

(0
,E

,E
,1

C
)

(0
,0

,0
,0

C
)

(0
,0

,0
,1

C
)

—
—

—
—

—
(0

,0
,0

,1
C

)

(E
,0

,0
,1

C
)

(E
,U

,U
,2

C
)

(E
,E

,0
,2

C
)

(E
,0

,E
,2

C
)

(E
,E

,E
,3

C
)

(E
,E

,E
,2

C
,a

-m
c)

(E
,0

,0
,1

C
)

(0
,E

,0
,1

C
)

(0
,U

,U
,1

C
)

(0
,E

,0
,1

C
)

(0
,E

,E
,2

C
)

(0
,E

,E
,2

C
)

(0
,E

,E
,1

C
)

(0
,E

,0
,1

C
)

(0
,0

,E
,1

C
)

(0
,U

,U
,1

C
)

(0
,E

,E
,2

C
)

(0
,0

,E
,1

C
)

(0
,E

,E
,2

C
)

(0
,E

,E
,1

C
)

(0
,0

,E
,1

C
)

(E
,E

,0
,1

C
)

(E
,U

,U
,1

C
)

(E
,E

,0
,1

C
)

(E
,E

,E
,2

C
,c

-a
m

)
(E

,E
,E

,2
C

,c
-a

m
)

(E
,E

,E
,1

C
)

(E
,E

,0
,1

C
)

(E
,0

,E
,1

C
)

(E
,U

,U
,1

C
)

(E
,E

,E
,2

C
,m

-a
c)

(E
,0

,E
,1

C
)

(E
,E

,E
,2

C
,m

-a
c)

(E
,E

,E
,1

C
)

(E
,0

,E
,1

C
)

(0
,E

,E
,1

C
)

(0
,U

,U
,1

C
)

(0
,E

,E
,1

C
)

(0
,E

,E
,1

C
)

(0
,E

,E
,1

C
)

—
(0

,E
,E

,1
C

)

(E
,E

,E
,1

C
)

(E
,U

,U
,1

C
)

(E
,E

,E
,1

C
)

(E
,E

,E
,1

C
)

(E
,E

,E
,1

C
)

—
(E

,E
,E

,1
C

)

(U
,U

,0
,1

C
)

(U
,E

,U
,1

C
)

(U
,U

,0
,1

C
)

(U
,U

,E
,2

C
)

(U
,U

,E
,2

C
)

(U
,U

,E
,1

C
)

(U
,U

,0
,1

C
)

(U
,0

,U
,1

C
)

(U
,U

,E
,1

C
)

(U
,E

,U
,2

C
)

(U
,0

,U
,1

C
)

(U
,E

,U
,2

C
)

(U
,E

,U
,1

C
)

(U
,0

,U
,1

C
)

(0
,U

,U
,1

C
)

(0
,E

,E
,1

C
)

(0
,U

,U
,1

C
)

(0
,U

,U
,1

C
)

(0
,U

,U
,1

C
)

—
(0

,U
,U

,1
C

)

(E
,U

,U
,1

C
)

(E
,E

,E
,1

C
)

(E
,U

,U
,1

C
)

(E
,U

,U
,1

C
)

(E
,U

,U
,1

C
)

—
(E

,U
,U

,1
C

)

(U
,E

,U
,1

C
)

(U
,U

,E
,1

C
)

(U
,E

,U
,1

C
)

(U
,E

,U
,1

C
)

(U
,E

,U
,1

C
)

—
(U

,E
,U

,1
C

)

(U
,U

,E
,1

C
)

(U
,E

,U
,1

C
)

(U
,U

,E
,1

C
)

(U
,U

,E
,1

C
)

(U
,U

,E
,1

C
)

—
(U

,U
,E

,1
C

)

(E
,E

,0
,2

C
)

(E
,U

,U
,2

C
)

(E
,E

,0
,2

C
)

(E
,E

,E
,3

C
)

(E
,E

,E
,3

C
)

(E
,E

,E
,2

C
,a

-m
c)

(E
,E

,0
,2

C
)

(E
,0

,E
,2

C
)

(E
,U

,U
,2

C
)

(E
,E

,E
,3

C
)

(E
,0

,E
,2

C
)

(E
,E

,E
,3

C
)

(E
,E

,E
,2

C
,a

-m
c)

(E
,0

,E
,2

C
)

(0
,E

,E
,2

C
)

(0
,U

,U
,1

C
)

(0
,E

,E
,2

C
)

(0
,E

,E
,2

C
)

(0
,E

,E
,2

C
)

(0
,E

,E
,1

C
)

(0
,E

,E
,2

C
)

(E
,E

,E
,2

C
,a

-m
c)

(E
,U

,U
,2

C
)

(E
,E

,E
,2

C
,a

-m
c)

(E
,E

,E
,2

C
,a

-m
c)

(E
,E

,E
,2

C
,a

-m
c)

—
(E

,E
,E

,2
C

,a
-m

c)

(E
,E

,E
,2

C
,m

-a
c)

(E
,U

,U
,1

C
)

(E
,E

,E
,2

C
,m

-a
c)

(E
,E

,E
,2

C
,m

-a
c)

(E
,E

,E
,2

C
,m

-a
c)

(E
,E

,E
,1

C
)

(E
,E

,E
,2

C
,m

-a
c)

(E
,E

,E
,2

C
,c

-a
m

)
(E

,U
,U

,1
C

)
(E

,E
,E

,2
C

,c
-a

m
)

(E
,E

,E
,2

C
,c

-a
m

)
(E

,E
,E

,2
C

,c
-a

m
)

(E
,E

,E
,1

C
)

(E
,E

,E
,2

C
,c

-a
m

)

(E
,U

,U
,2

C
)

(E
,E

,E
,1

C
,a

-m
c)

(E
,U

,U
,2

C
)

(E
,U

,U
,2

C
)

(E
,U

,U
,2

C
)

—
(E

,U
,U

,2
C

)

(U
,E

,U
,2

C
)

(U
,U

,E
,1

C
)

(U
,E

,U
,2

C
)

(U
,E

,U
,2

C
)

(U
,E

,U
,2

C
)

(U
,E

,U
,1

C
)

(U
,E

,U
,2

C
)

(U
,U

,E
,2

C
)

(U
,E

,U
,1

C
)

(U
,U

,E
,2

C
)

(U
,U

,E
,2

C
)

(U
,U

,E
,2

C
)

(U
,U

,E
,1

C
)

(U
,U

,E
,2

C
)

(E
,E

,E
,3

C
)

(E
,U

,U
,2

C
)

(E
,E

,E
,3

C
)

(E
,E

,E
,3

C
)

(E
,E

,E
,3

C
)

(E
,E

,E
,2

C
,a

-m
c)

(E
,E

,E
,3

C
)

41

Ta
bl

e
3.

5:
R

es
ul

tin
g

eq
ui

va
le

nc
e

cl
as

se
s

L+
x j

af
te

r
ad

di
ng

th
e

co
nn

ec
tio

n
ty

pe
s

in
Fi

gu
re

3.
5

to
ea

ch
L+

y j
eq

ui
va

le
nc

e
cl

as
s,

da
sh

ed
lin

es
in

di
ca

tin
g

su
bo

pt
im

al
ity

L−
j

eq
ui

va
le

nc
e

C
on

ne
ct

io
n

ty
pe

s
in

Fi
gu

re
3.

5

cl
as

se
s

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

(0
,0

,0
,0

C
)

(U
,U

,0
,1

C
)

(E
,0

,0
,1

C
)

(0
,E

,0
,1

C
)

(E
,E

,0
,2

C
)

(E
,E

,0
,1

C
)

(0
,0

,0
,0

C
)

(0
,0

,0
,1

C
)

—
—

—
—

—
(0

,0
,0

,1
C

)

(E
,0

,0
,1

C
)

(U
,U

,0
,1

C
)

(E
,0

,0
,1

C
)

(E
,E

,0
,2

C
)

(E
,E

,0
,2

C
)

(E
,E

,0
,1

C
)

(E
,0

,0
,1

C
)

(0
,E

,0
,1

C
)

(U
,U

,0
,1

C
)

(E
,E

,0
,2

C
)

(0
,E

,0
,1

C
)

(E
,E

,0
,2

C
)

(E
,E

,0
,1

C
)

(0
,E

,0
,1

C
)

(0
,0

,E
,1

C
)

(U
,U

,E
,2

C
)

(E
,0

,E
,2

C
)

(0
,E

,E
,2

C
)

(E
,E

,E
,3

C
)

(E
,E

,E
,2

C
,c

-a
m

)
(0

,0
,E

,1
C

)

(E
,E

,0
,1

C
)

(U
,U

,0
,1

C
)

(E
,E

,0
,1

C
)

(E
,E

,0
,1

C
)

(E
,E

,0
,1

C
)

—
(E

,E
,0

,1
C

)

(E
,0

,E
,1

C
)

(U
,U

,E
,1

C
)

(E
,0

,E
,1

C
(E

,E
,E

,2
C

,m
-a

c)
(E

,E
,E

,2
C

,m
-a

c)
(E

,E
,E

,1
C

)
(E

,0
,E

,1
C

)

(0
,E

,E
,1

C
)

(U
,U

,E
,1

C
)

(E
,E

,E
,2

C
,a

-m
c)

(0
,E

,E
,1

C
)

(E
,E

,E
,2

C
,a

-m
c)

(E
,E

,E
,1

C
)

(0
,E

,E
,1

C
)

(E
,E

,E
,1

C
)

(U
,U

,E
,1

C
)

(E
,E

,E
,1

C
)

(E
,E

,E
,1

C
)

(E
,E

,E
,1

C
)

—
(E

,E
,E

,1
C

)

(U
,U

,0
,1

C
)

(E
,E

,0
,1

C
)

(U
,U

,0
,1

C
)

(U
,U

,0
,1

C
)

(U
,U

,0
,1

C
)

—
(U

,U
,0

,1
C

)

(U
,0

,U
,1

C
)

(E
,U

,U
,1

C
)

(U
,0

,U
,1

C
)

(U
,E

,U
,2

C
)

(U
,E

,U
,2

C
)

(U
,E

,U
,1

C
)

(U
,0

,U
,1

C
)

(0
,U

,U
,1

C
)

(U
,E

,U
,1

C
)

(E
,U

,U
,2

C
)

(0
,U

,U
,1

C
)

(E
,U

,U
,2

C
)

(E
,U

,U
,1

C
)

(0
,U

,U
,1

C
)

(E
,U

,U
,1

C
)

(U
,E

,U
,1

C
)

(E
,U

,U
,1

C
)

(E
,U

,U
,1

C
)

(E
,U

,U
,1

C
)

—
(E

,U
,U

,1
C

)

(U
,E

,U
,1

C
)

(E
,U

,U
,1

C
)

(U
,E

,U
,1

C
)

(U
,E

,U
,1

C
)

(U
,E

,U
,1

C
)

—
(U

,E
,U

,1
C

)

(U
,U

,E
,1

C
)

(E
,E

,E
,1

C
)

(U
,U

,E
,1

C
)

(U
,U

,E
,1

C
)

(U
,U

,E
,1

C
)

—
(U

,U
,E

,1
C

)

(E
,E

,0
,2

C
)

(U
,U

,0
,1

C
)

(E
,E

,0
,2

C
)

(E
,E

,0
,2

C
)

(E
,E

,0
,2

C
)

(E
,E

,0
,1

C
)

(E
,E

,0
,2

C
)

(E
,0

,E
,2

C
)

(U
,U

,E
,2

C
)

(E
,0

,E
,2

C
)

(E
,E

,E
,3

C
)

(E
,E

,E
,3

C
)

(E
,E

,E
,2

C
,c

-a
m

)
(E

,0
,E

,2
C

)

(0
,E

,E
,2

C
)

(U
,U

,E
,2

C
)

(E
,E

,E
,3

C
)

(0
,E

,E
,2

C
)

(E
,E

,E
,3

C
)

(E
,E

,E
,2

C
,c

-a
m

)
(0

,E
,E

,2
C

)

(E
,E

,E
,2

C
,a

-m
c)

(U
,U

,E
,1

C
)

(E
,E

,E
,2

C
,a

-m
c)

(E
,E

,E
,2

C
,a

-m
c)

(E
,E

,E
,2

C
,a

-m
c)

(E
,E

,E
,1

C
)

(E
,E

,E
,2

C
,a

-m
c)

(E
,E

,E
,2

C
,m

-a
c)

(U
,U

,E
,1

C
)

(E
,E

,E
,2

C
,m

-a
c)

(E
,E

,E
,2

C
,m

-a
c)

(E
,E

,E
,2

C
,m

-a
c)

(E
,E

,E
,1

C
)

(E
,E

,E
,2

C
,m

-a
c)

(E
,E

,E
,2

C
,c

-a
m

)
(U

,U
,E

,2
C

)
(E

,E
,E

,2
C

,c
-a

m
)

(E
,E

,E
,2

C
,c

-a
m

)
(E

,E
,E

,2
C

,c
-a

m
)

—
(E

,E
,E

,2
C

,c
-a

m
)

(E
,U

,U
,2

C
)

(U
,E

,U
,1

C
)

(E
,U

,U
,2

C
)

(E
,U

,U
,2

C
)

(E
,U

,U
,2

C
)

(E
,U

,U
,1

C
)

(E
,U

,U
,2

C
)

(U
,E

,U
,2

C
)

(E
,U

,U
,1

C
)

(U
,E

,U
,2

C
)

(U
,E

,U
,2

C
)

(U
,E

,U
,2

C
)

(U
,E

,U
,1

C
)

(U
,E

,U
,2

C
)

(U
,U

,E
,2

C
)

(E
,E

,E
,2

C
,c

-a
m

)
(U

,U
,E

,2
C

)
(U

,U
,E

,2
C

)
(U

,U
,E

,2
C

)
—

(U
,U

,E
,2

C
)

(E
,E

,E
,3

C
)

(U
,U

,E
,2

C
)

(E
,E

,E
,3

C
)

(E
,E

,E
,3

C
)

(E
,E

,E
,3

C
)

(E
,E

,E
,2

C
,c

-a
m

)
(E

,E
,E

,3
C

)

42

Ta
bl

e
3.

6:
R

es
ul

tin
g

eq
ui

va
le

nc
e

cl
as

se
s

L−
j+

1
af

te
r

ad
di

ng
th

e
co

nn
ec

tio
n

ty
pe

s
in

Fi
gu

re
3.

6
to

ea
ch

L+
x j

eq
ui

va
le

nc
e

cl
as

s,
da

sh
ed

lin
es

in
di

ca
tin

g
in

fe
as

ib
ili

ty
or

su
bo

pt
im

al
ity

(1
)

(2
)

(3
)

(4
)

(7
)

(8
)

(9
)

(1
4)

(U
,U

,0
,1

C
)

(U
,U

,0
,1

C
)

—
—

—
—

—
—

—

(U
,0

,U
,1

C
)

—
(U

,0
,U

,1
C

)
—

—
—

—
—

—

(0
,U

,U
,1

C
)

—
—

(0
,U

,U
,1

C
)

—
—

—
—

—

(E
,0

,0
,1

C
)

—
—

—
(E

,0
,0

,1
C

)
—

—
—

(0
,0

,0
,1

C
)

(E
,U

,U
,1

C
)

—
—

(0
,U

,U
,1

C
)

—
(E

,U
,U

,1
C

)
—

—
—

(U
,E

,U
,1

C
)

—
(U

,0
,U

,1
C

)
—

—
—

(U
,E

,U
,1

C
)

—
—

(U
,U

,E
,1

C
)

(U
,U

,0
,1

C
)

—
—

—
—

—
(U

,U
,E

,1
C

)
—

(E
,U

,U
,2

C
)

—
—

—
—

(E
,U

,U
,2

C
)

—
—

—

(U
,E

,U
,2

C
)

—
—

—
—

—
(U

,E
,U

,2
C

)
—

—

(U
,U

,E
,2

C
)

—
—

—
—

—
—

(U
,U

,E
,2

C
)

—

(4
)

(5
)

(6
)

(1
0)

(1
1)

(1
2)

(1
3)

(1
4)

(0
,0

,0
,0

C
)

—
—

—
—

—
—

—
(0

,0
,0

,0
C

)

(0
,0

,0
,1

C
)

—
—

—
—

—
—

—
(0

,0
,0

,1
C

)

(0
,E

,0
,1

C
)

—
(0

,E
,0

,1
C

)
—

—
—

—
—

(0
,0

,0
,1

C
)

(0
,0

,E
,1

C
)

—
—

(0
,0

,E
,1

C
)

—
—

—
—

(0
,0

,0
,1

C
)

(E
,E

,0
,1

C
)

(E
,0

,0
,1

C
)

(0
,E

,0
,1

C
)

—
(E

,E
,0

,1
C

)
—

—
—

(0
,0

,0
,1

C
)

(E
,0

,E
,1

C
)

(E
,0

,0
,1

C
)

—
(0

,0
,E

,1
C

)
—

(E
,0

,E
,1

C
)

—
—

(0
,0

,0
,1

C
)

(0
,E

,E
,1

C
)

—
(0

,E
,0

,1
C

)
(0

,0
,E

,1
C

)
—

—
(0

,E
,E

,1
C

)
—

(0
,0

,0
,1

C
)

(E
,E

,E
,1

C
)

(E
,0

,0
,1

C
)

(0
,E

,0
,1

C
)

(0
,0

,E
,1

C
)

(E
,E

,0
,1

C
)

(E
,0

,E
,1

C
)

(0
,E

,E
,1

C
)

(E
,E

,E
,1

C
)

(0
,0

,0
,1

C
)

(E
,E

,0
,2

C
)

—
—

—
(E

,E
,0

,2
C

)
—

—
—

—

(E
,0

,E
,2

C
)

—
—

—
—

(E
,0

,E
,2

C
)

—
—

—

(0
,E

,E
,2

C
)

—
—

—
—

—
(0

,E
,E

,2
C

)
—

—

(E
,E

,E
,2

C
,a

-m
c)

—
—

—
(E

,E
,0

,2
C

)
(E

,0
,E

,2
C

)
—

(E
,E

,E
,2

C
,a

-m
c)

—

(E
,E

,E
,2

C
,m

-a
c)

—
—

—
(E

,E
,0

,2
C

)
—

(0
,E

,E
,2

C
)

(E
,E

,E
,2

C
,m

-a
c)

—

(E
,E

,E
,2

C
,c

-a
m

)
—

—
—

—
(E

,0
,E

,2
C

)
(0

,E
,E

,2
C

)
(E

,E
,E

,2
C

,c
-a

m
)

—

(E
,E

,E
,3

C
)

—
—

—
—

—
—

(E
,E

,E
,3

C
)

—

43

A summary of this procedure is provided in Figure 3.12. It can be observed that the complex-

ity of the algorithm is O(n), where n refers to the number of pick aisles. This is determined

by the while loop, called for each aisle. An example problem is illustrated in Figure 3.13. For

space saving reasons, the detailed solution procedure is not given, but the resulting optimal

solution, whose total distance is 106 units, is depicted in Figure 3.14.

Figure 3.12: Summary of the procedure of Roodbergen and De Koster [72] for the 3-OPP

3.2.4 Heuristic Procedures for the k-OPP with k ≥ 3

Although a polynomial time algorithm is provided for the 3-OPP, it can be observed that

even for a single middle aisle, the procedure is too complicated to implement in practice, let

alone the case with multiple middle aisles. Consequently, various heuristic procedures have

been developed and applied in practice for warehouses with middle aisles. These include

conventional heuristics such as S-shaped and largest gap, the DP-based aisle-by-aisle heuristic

due to Vaughan and Petersen [82], another DP-based heuristic called the combined heuristic

due to Roodbergen and De Koster [73], and the combined+ heuristic, which is an improvement

heuristic over combined and also due to Roodbergen and De Koster [73].

S-shape heuristic is the simplest of the heuristic procedures for the k-OPP with k ≥ 3 and

hence is the easiest to implement. The picker first moves to the left end of the middle aisle

which is nearest to the back cross aisle. Then, all the items in the upmost block are picked

using the S-shape procedure for a single block. When the front end of the last nonempty

aisle is reached, the picker checks the distance to the back ends of the leftmost and rightmost

44

Figure 3.13: An example problem with a single middle aisle, 7 pick aisles and 15 items

Figure 3.14: Optimal solution of the problem in Figure 3.13

45

nonempty subaisles having items not picked yet, and moves to the nearer one. Then, all the

items in that block are picked, and so on. When picking of the items in the downmost block is

finished using the same procedure, the picker moves to the depot, and the route is completed.

Figure A.2 in Appendix A shows the S-shape heuristic solution for the warehouse given in

Figure 3.1, whose optimal solution is shown in Figure A.1 in Appendix A. The optimal

solution has a total length of 164, whereas the resulting S-shape solution has a total travel

distance of 192, with an optimality gap of 17.1%.

Largest gap heuristic starts by moving to the left end of the middle aisle nearest to the back

cross aisle. Then, all the items in the upmost block are picked using the largest gap heuristic

for the 2-OPP. When the picking of all the items in the block is completed, the picker moves

to the back end of the leftmost subaisle of the next block with picks, and picks all the items

on that block using the largest gap heuristic for the 2-OPP, and so on. When picking of

items in the downmost block is completed, the picker completes the tour by returning to the

depot. Figure A.3 in Appendix A illustrates the resulting largest gap solution to the example

problem shown in Figure 3.1. The solution has a total travel distance of 190, which indicates

an optimality gap of 15.9%.

The largest gap heuristic, like the S-shape heuristic, is simple to implement in practice, but the

optimality gap is generally large. The heuristic fails to find good solutions especially when

the pick items are located near the middle of the subaisles. Additionally, due to excessive

travel on the middle aisles, solution quality is also bad when the relative length of the middle

aisles to the length of the subaisles gets larger.

Vaughan and Petersen [82] have proposed a DP-based heuristic that limits the number of visits

to each pick aisle to one. Pick aisles constitute the stages and in each stage of the algorithm,

for each cross aisle i, one needs to determine the distance required to start at the depot, pick

all the items in the pick aisles up to i, and exit aisle i from cross aisle j. The optimal solution

is the one that picks all the items and ends at the front end of the rightmost pick aisle. Figure

A.4 in Appendix A provides the resulting solution for the example problem given in Figure

3.1. Total distance is 190, with an optimality gap of 15.9%.

The main drawback of the procedure stems from the fact that all pick aisles can be visited ex-

actly once. This may decrease the quality of solutions especially when the items are located

near the front and back ends of the pick aisles only. This requires that all pick aisles be com-

46

pletely traversed (and most of the time, almost twice), resulting in excessive travel especially

when the relative length of the pick aises relative to the cross aisles is large.

Another DP-based heuristic has been proposed by Roodbergen and De Koster [73], called the

combined heuristic, and is based on dividing the problem into blocks (a horizontal division),

as opposed to dividing the problem into pick aisles (a vertical division) in the aisle-by-aisle

heuristic procedure. For each block, the solution procedure is similar to that of Ratliff and

Rosenthal [71] for 2-OPP. However, the main idea is whether to enter and exit each subaisle

from the front or back end. Additionally, similar to the idea of Vaughan and Petersen [82],

each subaisle (instead of a pick aisle) can only be visited once. Again, the solution procedure

starts by moving to the left end of the middle aisle nearest to the back cross aisle. Then,

the DP-based procedure is applied for the upmost block. When the front end of the last

nonempty aisle is reached, the picker checks the distance to the back ends of the leftmost

and rightmost nonempty subaisles having items not picked yet, and moves to the nearer one.

Items in the next blocks are picked in the same manner, and the picker moves to the depot to

complete the tour when all items are picked. Figure A.5 in Appendix A gives the combined

heuristic solution for the problem given in Figure 3.1, whose total travel distance is 182, with

an optimality gap of 11.0%.

A further improvement procedure on the combined heuristic has also been proposed by Rood-

bergen and De Koster [73]. Based on the drawbacks of the heuristic, two main improvements

are put forward. First, picking the items from left to right in the downmost block results in the

picker ending his route on the rightmost end of the block, requiring a considerable part of the

front cross aisle back to the depot. Consequently, the route is modified so that the downmost

block is traversed from right to left, which provides a solution not worse than the original

procedure. A second improvement considers traversal of the first pick aisle until reaching the

upmost block, which might require traversal of empty aisles. In order to avoid this, the route

is considered in two phases. Items on the first x aisles on the left are picked while moving

upward, and items on the remaining aisles are picked on the downward route. The value of x

is determined using dynamic programming, varying the value until the number of pick aisles.

This improved procedure is named the combined+ heuristic. For the example provided in

Figure 3.1, this procedure cannot improve the solution value of 182, which is obtained for x

values 1 and 3.

47

On average, the combined+ procedure performs better than its counterparts in the literature,

as will be discussed in Section 4.5. However, for certain problem types, namely when the

item density in the warehouse is large, the procedure is observed to come up with relatively

high optimality gaps. In these cases, the aisle-by-aisle and largest gap heuristics may provide

better solutions.

3.3 Complexity of the k-OPP with k ≥ 4

This section provides a summary for the literature survey conducted on the background and

complexity of the order-picking problem in parallel-aisle warehouses. Although it has been

proven two and a half decades ago by Ratliff and Rosenthal [71] that the problem with no

middle aisles is polynomially solvable, and by Roodbergen and De Koster [72] that the prob-

lem can be polynomially solved when a single middle aisle exists, the complexity of the case

with multiple middle aisles is still an open problem, as stated before.

The organization of this section is as follows: Section 3.3.1 gives computational complexity

results in the literature related to the Traveling Salesman Problem (TSP) and analyzes the

special cases of TSP on series-parallel and grid graphs, as well as mentioning the Graphical

Traveling Salesman Problem (GTSP). Section 3.3.2 discusses the literature on the more gen-

eral Steiner Traveling Salesman Problem (StSP), where the complete definition of the related

polyhedron by Baiou and Mahjoub [5] is given for the case of series-parallel graphs. The

section also includes the Steiner Tree Problem (STP), which is closely related to the StSP.

The last part of the section is on the Graphical Steiner Traveling Salesman Problem (GStSP),

which includes the OPP as a special case. The section is then concluded in Section 3.3.3.

3.3.1 The Traveling Salesman Problem

The Traveling Salesman Problem can simply be stated as follows:

PROBLEM: TSP

INSTANCE: Integer n ≥ 3 and n × n integer matrix C = (ci j), where each ci j ≥ 0. Let Π(i)

denote the integer following i in a permutation.

QUESTION: Which cyclic permutation Π of the integers from 1 to n minimizes the sum

48

∑n
i=1 ciπ(i)?

The relation of the TSP to the order-picking problem is as follows: the k-OPP is a generalized

version of the TSP on a specially structured graph, that is, the OPP allows for multiple visiting

of the nodes and not all the nodes have to be visited. If the TSP is NP-complete on this

specially structured graph, so is the k-OPP. The converse is not necessarily true: if the TSP is

polynomially solvable on the graph, we cannot draw any direct conclusion on the complexity

of the k-OPP.

Johnson and Papadimitriou [52] and Garey and Johnson [33] have shown that the problem

is NP-complete in general graphs. Their proofs of NP-completeness of the TSP have been

provided in Appendix B.

Although the TSP is NP-complete in general graphs, there are various special cases in which

the problem is polynomially solvable. Burkard et al. [13] provide a survey of polynomially

solvable cases of TSP and among these, related to the OPP is the case of k-line TSP in the

Euclidean plane. If n vertices of the graph lie on k lines parallel to each other, then for a fixed

value of k, there exists an O(nk) algorithm for finding the optimal tour. The difference of the

OPP from the k-line TSP in the Euclidean plane is that the OPP has vertices (denoting items)

on the lines parallel to each other as being in the k-line TSP, but is not in the Euclidean plane.

An even more related case in [13] to the OPP is the Graphical TSP, but this will be discussed

later in this section.

In Kabadi [53], more emphasis is given to the case of Gilmore-Gomory scheme, where the

optimal solution is found by applying the subtour patching algorithm discussed in [13] to a

patching pseudograph. An alternative definition of the Gilmore-Gomory TSP, which is called

the minimum cost connected directed pseudograph problem with node deficiency require-

ments (MCNDP), is given. A node deficiency function is defined as d : V → Z such that (i)∑
i∈V di = 0 and (ii) di = 0 for all arcs not incident to i. The 2-OPP is an undirected version

of this problem with no node deficiency requirements. Because of these restrictions, the two-

step algorithm presented for the general MCNDP reduces to a DP scheme with a complexity

of O(k), where k denotes the number of pick aisles. This is another path that leads to the

polynomially solvable status of 2-OPP. Since the k-OPP with k ≥ 3 cannot be reduced to the

MCNDP, there is no conclusion on the complexity of the general k-OPP depending on this

study.

49

The TSP on Specially Structured Graphs

The TSP on Series-Parallel Graphs

Our interest in the complexity of the TSP on series-parallel graphs stems from the fact that

the 2-OPP is a more generalized case of the TSP on a series-parallel graph.

Series-parallel graphs, due to their special structure, provide tractability opportunities for

some classes of combinatorial problems that are NP-complete for general graphs. Takamizawa

et al. [78] observe that three types of combinatorial problems are polynomially solvable on

S-P graphs:

• The decision problem with respect to a property characterized by a finite number of

induced or homeomorphic graphs, in which one would like to decide whether the input

graph satisfies the property

• The minimum edge deletion problem with respect to the same property as above

• The generalized matching problem

The minimum vertex cover problem consists of finding the set of edges with minimum weight

that cover all the vertices in a graph. Since the minimum vertex cover problem is a decision

problem satisfying the first property above, as the decision problem is to find whether there

exists a vertex cover of size less than some K for the graph, it is polynomially solvable on S-P

graphs. It has been shown in [33] that the vertex cover problem transforms to Hamiltonian

circuit and hence the TSP. Vertex cover being polynomially solvable in S-P graphs implies

that the TSP may not be NP-complete on S-P graphs. Indeed, we will see later in Section

5 that the more general Steiner Traveling Salesman Problem is polynomially solvable in S-P

graphs, leading to the conclusion that the TSP is also polynomially solvable in S-P graphs.

The TSP on Grid Graphs

The discussion of grid graphs relates to the k-OPP in the sense that the case of the k-OPP with

no items to be picked (or items on the corners of the sub-aisles) reduces to a more generalized

version of the TSP on a rectangular solid grid graph. If the TSP is NP-complete on such a

graph, then so is the k-OPP. Again, the converse is not necessarily true.

50

As discussed in Appendix B, the complexity of finding the optimal TSP route on a graph is

equivalent to finding whether there exists a Hamiltonian cycle on this graph. For the TSP on

grid graphs, three cases will be examined, from more general to more specific.

The initial study on the complexity of finding a Hamiltonian cycle on grid graphs is by Itai

et al. [49], in which they prove that finding such a cycle, hence solving the TSP on general

grid graphs is NP-complete. This immediately leads to the fact that the Euclidean TSP is also

NP-complete.

For the more restricted case of solid grid graphs, that is, grid graphs with no “holes”, Umans

and Lenhart [80] prove that the TSP is polynomially solvable. Before summarizing how the

procedure works, it will be useful to give some additional definitions:

Definition 3.6 A 2-factor of G is a spanning subgraph with all vertices having degree two.

Definition 3.7 If F is a 2-factor of G, an alternating cycle is a cycle whose edges are alter-

nately in F and not in F. Flipping an alternating cycle means removing the edges of the cycle

in F and adding the ones not in F.

Definition 3.8 An alternating strip is one of the subgraphs shown in Figure 3.15. The ones

in (a) are odd alternating strips, whereas the ones in (b) are even alternating strips.

Flipping an odd alternating strip reduces the number of components of the 2-factor by one,

while flipping an even alternating strip can in the best case keep the number of components

in the 2-factor constant.

Definition 3.9 A sequence of alternating strips is static if: 1) the strips do not share an area,

and 2) no two strips share an edge, except two consecutive ones.

The idea is as follows: Suppose we have a 2-factor of G. It is proven that if G is Hamiltonian,

then it contains an alternating strip sequence. Flipping an alternating strip sequence may

cause overlaps between the strips. However, it is also proven that if G is Hamiltonian, then it

contains a static alternating strip sequence, and flipping the strips in this type of strip sequence

does not cause overlaps. In order to decrease the number of components in the 2-factor, an odd

51

Figure 3.15: Odd (a) and even (b) alternating strips

alternating strip must be flipped. If the initial 2-factor does not contain any odd alternating

strips, then a sequence of flips is sure to end up with one. Therefore in each iteration, a static

alternating strip sequence is found and consecutive flips are performed. If G is Hamiltonian,

then the procedure ends up with a Hamiltonian tour. Otherwise, the procedure terminates

when no more static alternating strip sequences are found.

If G contains n vertices, then a static alternating strip can be found in O(n3) time. The pro-

cedure repeats at most n times, increasing the overall complexity to O(n4). Therefore finding

a Hamiltonian cycle in a solid grid graph takes polynomial time. However, the complexity

of finding a Hamiltonian cycle in solid grid graphs with holes of restricted form is an open

problem.

For the case of rectangular solid grid graphs R(m, n), the Hamiltonicity problem (which is

certainly polynomially solvable due to [80]) is much easier to solve. Salman et al. [76]

provide necessary and sufficient conditions for a rectangular solid, eta and omega grid graph.

The following definitions and theorems are due to [76].

Theorem 3.10 An R(m, n) grid graph is Hamiltonian only if m · n is even.

Definition 3.11 An eta grid graph η(s, t) is a subgraph of R(3s− 2, 3t− 2) induced by V(3s−

2, 3t − 2)\{(uv)|u = s + 1, s + 2, . . . , 2s − 2 and v = 1, 2, . . . , 2t − 2}.

52

Figure 3.16: (a) R(10, 7) (b) η(4, 3) (c) ω(4, 3)

Definition 3.12 An omega grid graph ω(s, t) is a subgraph of R(3s − 2, 3t − 2) induced by

V(3s − 2, 3t − 2)\{(uv)|u = s + 1, s + 2, . . . , 2s − 2 and v = t + 1, t + 2, . . . , 2t − 2}.

Figure 3.16 shows a rectangular solid grid graph R(10, 7), an eta grid graph η(4, 3) and an

omega grid graph ω(4, 3).

Theorem 3.13 An eta grid graph η(s, t) is Hamiltonian only if s · t is even. An omega grid

graph ω(s, t) is always Hamiltonian.

The k-OPP with k ≥ 3 contains the TSP on a rectangular solid grid graph as a special case.

Although the latter problem is polynomially solvable as shown by [76] and [80], we cannot

draw any conclusion about the complexity of k-OPP.

An interesting problem useful in the analysis of the complexity of the OPP is the center

cycle problem. The objective in this problem is to find a cycle that minimizes the maximum

distance of a vertex from the cycle. Foulds et al. [31] prove that the problem is NP-complete in

general graphs, as the decision problem of finding whether a graph contains a center cycle with

maximum distance 0 from all nodes is equivalent to finding out whether the graph contains a

Hamiltonian cycle, which is shown to be NP-complete by [33] and [52]. However, Foulds et

al. [31] also show that the problem is trivially solvable in rectangular solid grid graphs. The

problem is as follows: If the graph has a Hamiltonian cycle (trivially solvable due to [76]),

then the optimal solution is 0. Otherwise, it is always possible to construct a tour that misses

only one vertex. Therefore the optimal solution is 1 for this case.

The connection of the center cycle problem to the OPP is by the vertex cover problem. The

result in [31] indicates that the decision problem related to the vertex cover problem always

53

has the answer “yes” for rectangular solid grid graphs, hence is polynomially solvable. This

conclusion prevents us from arriving at a result on the complexity of the k-OPP using the

center cycle problem.

The Graphical TSP

The Graphical Traveling Salesman Problem (GTSP) can be defined as follows [30]: Find a

minimal tour in G = (V, E) in the form:

T = [v1, e1, . . . , vi, ei, ei+1, . . . , vp, ep, vp+1] such that:

1. The end nodes of ei are vi, vi+1 for i = 1, . . . , p.

2. v1 = vp+1.

3. Each node of V appears at least once in T.

It can be observed here that the only difference from the TSP is the chance of using every

node more than once. In this sense, the GTSP generalizes the TSP, implying that in every

case the TSP is NP-hard, so is the GTSP. This bears the immediate conclusion that the GTSP

is NP-hard on general graphs and general grid graphs.

The main motivation of studying the Graphical TSP is due to the fact that the k-OPP belongs

to this more general class of Traveling Salesman Problem, rather than the classical TSP itself.

This is caused by the availability of visiting each node in the warehouse graph more than

once, which is not allowed in the classical TSP. Therefore it is useful to go into detail for the

GTSP on specially structured graphs.

The GTSP on Series-Parallel Graphs

It has been discussed before that the graph for the 2-OPP has S-P graph property and the

TSP is polynomially solvable on series-parallel graphs. If GTSP is polynomially solvable on

series-parallel graphs, this implies that 2-OPP is also polynomially solvable.

Cornuejols et al. [21] try to define the polyhedron defined by the GTSP. They find facet-

defining inequalities, namely the path inequality, bicycle and wheelbarrow inequalities. Then

four different polyhedra are defined, for the last two of which the TSP polyhedron is included

as a face. An attempt to completely define the polyhedron in S-P graphs, in which the problem

54

is polynomially solvable, is made. However, a complete definition cannot be reached, and this

definition problem remains open up to now. Lastly, the DP-based algorithm by Ratliff and

Rosenthal [71] is extended to the case of S-P graphs. It is also stated that the algorithm can

be modified to solve the Steiner Tree Problem (which will be discussed in the next section) in

S-P graphs by disregarding some of the possible cases which would not occur in a tree.

Fonlupt and Nachef [30] study the cases where the GTSP is polynomially solvable. They first

define a generalized form of GTSP, which they call the GETSP. This problem assings costs

to edges depending on the number of times they are used in the tour. Note that the GTSP is

the special case of this, where the cost of using an edge is an n-multiple of the cost of using it

once if the edge is used n times. It is obvious that the GTSP is polynomially solvable in every

case the GETSP is also polynomially solvable. Then, they define deletion and contraction

operations, claiming that if the underlying graph is S-P, then solving the GTSP is equivalent to

solving the GETSP on the reduced graph. Consequently, a dynamic programming algorithm

is proposed, similar to that by [71].

As a consequence, the GTSP on S-P graphs is polynomially solvable, implying that 2-OPP is

also polynomially solvable. A complete polyhedral definition for this problem remains open.

3.3.2 The Steiner Traveling Salesman Problem (StSP)

The Steiner Traveling Salesman Problem (StSP) can be defined formally as follows:

PROBLEM: StSP

INSTANCE:

A set T = {1, 2, . . . ,m}, S = {m + 1,m + 2, . . . , n} and an n × n cost matrix C = (ci, j).

QUESTION:

Which cyclic partial permutation Π (with cardinality n(Π)) of the integers from 1 to n that

includes all the integers in T minimizes the sum
∑n(Π)

i=1 ciπ(i)?

The set T is the set of terminal nodes, which have to be visited, and set S is the set of Steiner

nodes, which do not necessarily have to be visited. The problem is to find a cycle spanning all

terminal nodes. It may or may not include all (or any) Steiner nodes. Obviously, the problem

is NP-complete, as with S = ∅, we have the classical Traveling Salesman Problem, which is

NP-complete.

55

The importance of StSP for the k-OPP is similar to the importance of TSP for GTSP. The k-

OPP is actually the graphical (and therefore more generalized) version of StSP on a specially

structured graph. If StSP is NP-complete on this class of graphs, then so is the k-OPP.

The StSP is closely related to the minimum-weight two-connected spanning network problem.

Monma et al. [65] characterize the optimal solution to this NP-hard problem when the graph

is complete and triangle inequalities are satisfied. The optimal solution has all vertices with

degree 2 or 3, and deleting any edge or pair of edges from the optimal solution leaves a bridge.

Note that the optimal solution to this problem need not be a tour, therefore the problem is

different from the Hamiltonian cycle problem. A further finding is that τ ≤ 4
3 Q2 when S = ∅,

where τ is the optimal solution to the Steiner tour and Q2 is the optimal solution to the 2-edge

connected subgraph.

Baiou and Mahjoub [5] prove that the problem is polynomially solvable for S-P graphs, and

also provide the associated polyhedron. For achieving this, they first define the problem of r-

TSP as follows: Given a root node r, weights we on edges and cv on vertices, find a cycle with

minimum cost that spans r. If xe = 1 if edge i is in the tour and 0 otherwise, yv = 1 if vertex

v is included in the tour and 0 otherwise, the integer formulation is given for the polytope.

After proving that the integer relaxation of this problem gives the convex hull for S-P graphs,

they project this polytope onto the edge variables, and selecting any arbitrary terminal node

as the root node gives the polytope for StSP. Naturally, integer relaxation of this formulation

gives integer results for S-P graphs.

The StSP being polynomially solvable in S-P graphs directly implies that the TSP is also

polynomially solvable in S-P graphs, as the first problem generalizes the latter. Yet there is

no direct conclusion on the k-OPP from this either, since the k-OPP allows multiple visits to

nodes and generalizes the StSP. In addition, for k ≥ 3, the S-P structure no longer exists.

The Steiner Tree Problem (STP)

Closely related to the StSP, the Steiner Tree Problem (STP) is the problem of finding the

minimum-weight tree that spans the subset T of terminal nodes of V. The problem is NP-

complete for general graphs [55], and the transformation providing NP-completeness comes

from Satisfiability → 3-Satisfiability → 3-Dimensional Matching → Exact Cover by 3-Sets

→ STP.

56

The problem is known to be NP-hard for general planar graphs due to [34], general bipartite

graphs and general grid graphs. It is also NP-complete for the problems when distances are

rectilinear. Aho et al. [3] provide a polynomial algorithm for a special case on a grid graph,

where the distance metric is rectilinear and the terminal nodes are on the edges of the graph.

Ho et al. [47] present a minimum spanning tree-based heuristic for the case with rectilinear

distances assuming an underlying grid graph. The heuristic runs O(n2) time. Grötschel et al.

[42] consider the more general case when N Steiner trees are to be constructed on a single

rectangular grid graph and the terminal nodes lie either on two opposite or all four sides of

the rectangle. After giving facet-defining inequalities, they propose a cutting-plane based

heuristic procedure that runs in polynomial time.

Chopra and Rao [15] present two integer programming formulations of the general problem,

the first being undirected and the second being directed. It is proven that the directed formu-

lation is tighter than the undirected one.

Chopra and Rao in [16] focus on the NP-hard special cases grid graphs and bipartite graphs.

They introduce the odd-wheel inequality, which is a facet-defining inequality on grid graphs.

Additionally, they show that for rectangular grid graphs, the polyhedron also has Steiner

partition and odd-hole facets. The bipartite inequalities are shown to be facet-defining for

bipartite graphs. It is conjectured that odd-hole and Steiner partition facets completely define

the tree polyhedron on a 2-tree. Margot et al. have given a complete description of the STP

polytope in 2-trees in [61], almost at the same the time the conjecture was made.

Goemans [39], in a similar study to [5], tries to characterize the polytope defined by the STP

on S-P graphs. As in [5], [39] formulates an r-tree problem, in which the tree only has to

span a root node r and by projecting the polytope onto the edge variables, a large (but not

complete) class of facet-defining inequalities is obtained. Yet a complete characterization of

the Steiner tree polyhedron on S-P graphs still remains open.

The path from the complexity of the STP to that of OPP is a long and complicated one. The

STP being NP-complete on general graphs, general grid graphs, general bipartite graphs im-

plies that the TSP, StSP and GStSP are also NP-complete on these graphs, yet all these have

been separately proven. However, the difficulty of the case with rectangular solid grid graphs

(recall that polynomial algorithms have been proposed only for the cases where terminal ver-

tices are on the edges of the rectangle) could be helpful for proving the NP-completeness of

57

the OPP, although this transformation is still “open”.

The Graphical Steiner TSP (GStSP)

The Graphical Steiner TSP combines the properties of StSP and GTSP into the same problem:

It is a Steiner problem in the sense that not all the vertices of the graph have to be visited. It is

also graphical owing to the fact that the vertices can be visited more than once. To the best of

our knowledge, the only problems studied that can be classified into the GStSP class are the

order-picking problems mentioned beforehand.

3.3.3 Conclusion on Complexity

In this section, we have tried to provide the computational complexity results of the problems

in the literature related to the order-picking problem. These include the traveling salesman

problem (TSP), the Steiner TSP (StSP), the Steiner tree problem (STP), the graphical TSP

(GTSP) and the Graphical Steiner TSP (GStSP). All of these problems are NP-complete in

general graphs and grid graphs. We have explored the special cases of solid grid graphs,

rectangular solid grid graphs and series-parallel graphs, in which some of these problems are

polynomially solvable. We have seen that the TSP and the STP are polynomially solvable

on solid grid graphs and rectangular solid grid graphs and all the problems mentioned are

polynomially solvable on S-P graphs. The 2-OPP shows the structure of S-P graphs, hence

is polynomially solvable. For the case of k-OPP with k ≥ 4, however, no direct result on

complexity can be obtained depending on the results in the literature. As a conjecture, we

claim that although a polynomial time algorithm for fixed k can be found by extending the

algorithm proposed in [71], the problem is NP-complete in terms of the number of cross

aisles.

Figure 3.17 summarizes the findings of the studies discussed in this section, along with the

studies that have come up with the corresponding complexity result. The open status of the

complexity of the k-OPP with k ≥ 4 can also be observed from this figure, as the problem

does not generalize an NP-complete problem or is not generalized by a tractable problem, no

direct conclusion can be drawn on its complexity.

Thick and thin solid lines in Figure 3.17 represent NP-complete and tractable problems re-

spectively. Thick dashed lines representing the problems whose NP-completeness can be

58

deduced from the ones in this figure and thin dashed lines representing the problems whose

tractability can be deduced from the ones in this figure. The k-OPP with k ≥ 4 is open.

In order to discuss the complexity results in Figure 3.17, we start with the NP-completeness

of the TSP on general graphs, due to Johnson and Papadimitriou [52] and Garey and Johnson

[33]. Since TSP is generalized by the StSP, the latter problem is also NP-complete on general

graphs [5]. However, Baiou and Mahjoub [5] have shown that the StSP is polynomially

solvable in series-parallel graphs. The TSP is also generalized by the GTSP and the GStSP,

implying the NP-completeness of the problems on general graphs [21]. The STP is shown

to be NP-complete on general graphs by Karp [55], . In turn, the RTSP is also shown to be

NP-complete by Garey and Johnson [34], implying the NP-completeness of the STP [34], the

TSP [49], the GTSP and the GStSP in grid graphs as well. Due to Cornuejols et al. [21], the

GTSP is polynomially solvable in solid grid graphs and rectangular solid grid graphs, which

brings about the tractability of the TSP [80], the STP and the RSTP on solid grid graphs and

rectangular solid grid graphs as well. Cornuejols et al. [21] also report that on series-parallel

graphs, the STP and the GTSP are polynomially solvable.

As for the complexity of the k-OPP is concerned, Ratliff and Rosenthal [71] have come up

with a polynomial algorithm for the 2-OPP. The tractability of 2-OPP can also be proven

by the fact that the GTSP, which generalizes the 2-OPP, is polynomially solvable on series-

parallel graphs. The 3-OPP is polynomially solvable due to Roodbergen and De Koster [72].

The complexity of the k-OPP with k ≥ 4 cannot be derived from these results, as we only know

that it generalizes the polynomially solvable 2-OPP, 3-OPP, the GStSP on solid rectangular

grid graphs, and the TSP in solid rectangular grid graphs.

In order to proceed with reaching a decision on complexity, one should either try to find an

algorithm that is polynomial in terms of both the cross aisles and the pick aisles, or to try

to show that solving the problem is as difficult as solving a known NP-complete problem.

Depending an all the results discussed in this chapter, we conjecture that although for a fixed

number of cross aisles the problem is polynomial, it is NP-complete in terms of the number

of cross aisles. However, trying to reduce the problem to known NP-complete problems does

not help to prove or disprove this.

The conjecture that the problem is NP-complete implies that unless P = NP, the problem

cannot be solved to optimality using a polynomial time algorithm, and motivates the usage of

59

heuristic procedures to come up with good solutions in polynomial time. In Chapter 4, we

propose such a heuristic procedure.

60

Fi
gu

re
3.

17
:S

um
m

ar
y

of
th

e
co

m
pl

ex
ity

of
th

e
O

PP
-r

el
at

ed
pr

ob
le

m
s

61

CHAPTER 4

THE ORDER-PICKING PROBLEM IN A PARALLEL-AISLE

WAREHOUSE: SINGLE-PICKER CASE

This chapter mainly deals with the routing problem of a single picker in a parallel aisle ware-

house where manual off-the-shelf order picking is employed, denoted as the k-OPP. For this

case, two heuristic procedures will be proposed. The first one, called the merge-and-reach

heuristic, makes use of the tractability of the 2-OPP. It is based on dividing the problem into

subproblems using random cuts, solving each subproblem resulting from these cuts by first

solving each block separately, then joining these to end up with a single tour for each subprob-

lem, and lastly joining these tours into a single tour for the whole problem. The second one,

called the merge-and-reach+ heuristic, is an improvement on the merge-and-reach heuristic

by applying 3-opt procedure.

The heuristics discussed in Section 3.2.4 work well for a set of problem parameters, yet all

of them end up with relatively worse solutions for a certain set of problem parameters. The

need for a more robust heuristic procedure which will retain its good performance for all set

of problems has motivated the development of the merge-and-reach heuristic, which will be

discussed throughout this section.

The main idea of the merge-and-reach heuristic bases itself on the tractability of 2-OPP. The

procedure can be summarized as follows: First, c cut aisles are selected randomly and the

problem is cut into c + 1 subproblems. Each subproblem is further divided into its blocks

and each of these k − 1 blocks is solved to optimality using the algorithm by [71]. The next

step is to bring together the solutions of each block in each subproblem to a single solution.

In order to achieve this, in each subproblem, starting from the downmost pair of blocks, it

checks whether the solutions to these two blocks overlap (share a common edge or vertex) or

62

not. If they do, then it “merges” the two solutions by deleting the unnecessary edges from

the union of the two solutions. Otherwise, it finds the shortest way of joining these disjoint

solutions, thereby making one “reach” the other. It proceeds until reaching the upmost block

of the subproblem. The procedure is then reversed and the same steps are taken starting

from the upmost pair of blocks, and ending with the downmost block. A solution starting

from the downmost block is called a bottom-up solution, whereas a solution starting from the

upmost block is called a top-down solution. The best of these solutions is then reported to

be the solution to the subproblem. The last step performs the same procedure for the whole

problem, treating solutions of the subproblems instead of solutions of the blocks. Again, the

best of the two solutions is reported to be the merge-and-reach solution to the problem.

As stated before, the merge-and-reach+ heuristic starts with a merge-and-reach solution and

applies 3-opt improvement scheme. In each step, the move that gives the best improvement

is selected as the next solution. The algorithm terminates when no further improvement is

possible. The organization of this chapter is as follows: In Section 4.1, we give the subroutines

used throughout the heuristic procedure; followed by Section 4.2, which defines the merge-

and-reach heuristic procedure in detail; Section 4.3 implements the heuristic procedure on

two example problems; Section 4.4 discusses the improvement procedures over the merge-

and-reach heuristic to define the merge-and-reach+ procedure; and lastly, Section 4.5 gives

the computational results in order to observe the performance of both merge-and-reach and

merge-and-reach+, and to compare them with their counterparts in the literature.

4.1 Subroutines of the Algorithm

The merge-and-reach heuristic requires that a number of subroutines be called throughout the

process. These include procedure Ratliff Rosenthal, which solves the blocks to optimality;

procedure merge, which joins two solutions when these solutions overlap (share a common

edge and/or vertex); procedure reach, which joins two non-overlapping solutions; procedure

invert, which converts a problem by inverting the blocks, so that a top-down solution can be

accomplished using the same procedure as the bottom-up solution; and procedure improve,

which is basically a 3-opt improvement procedure that is used when applying the merge-and-

reach+ heuristic.

63

The following definitions are used while explaining the subroutines throughout this section.

When two partial neighboring solutions are considered, the lower solution is denoted as A

and the upper one as B. VA j and VB j refer to the vertical edges (edges that correspond to the

pick aisles) incident to the node corresponding to the jth aisle of the lower and upper solutions

respectively. AB j simply denotes (VA j,VB j). Furthermore, A j and B j denote the number of

horizontal edges between the vertices corresponding to the jth and j+1st vertices of the lower

and upper solutions respectively.

4.1.1 Procedure merge

The merge procedure is called for a pair of overlapping solutions. When two partial solutions

overlap, there are two cases that might occur.

In the first case, there are no single vertical edges in any of the two solutions, that is, VA j , 1

and VB j , 1 for each j. This can be interpreted as follows: The lower block has a solution

that collects all the items from its back cross aisle, and the upper block has a solution that

collects all the items from its front cross aisle. In other words, these two partial solutions

are the solutions to 1-OPPs in their corresponding block, where the single cross aisle in each

problem refers to the back cross aisle of the lower block and the front cross aisle of the upper

block. It can be shown that the merging problem in such a case is equivalent to solving 1-

OPP on the lower (upper) block, where the “mirror images” of the items on the upper (lower)

block with respect to the cross aisle between the two blocks are taken to the lower (upper

block). The optimal sequence for this 1-OPP, which can easily be found, is also the optimal

sequence for the merging problem. It can also be shown that the resulting solution is the

optimal solution to the 3-OPP on these two blocks. Figure 4.1 illustrates such a case, where

two overlapping partial solutions do not include any single vertical edge. Figure 4.2 shows

the resulting merged solution.

In the second case, there exist single vertical edges in at least one of the partial solutions,

which indicates that some of the items are picked using the front cross aisle of the lower solu-

tion and/or the back cross aisle of the upper solution as well. Therefore, it can be shown that

the problem of merging the two partial solutions optimally is equivalent to solving the corre-

sponding OPP on these two partial solutions. Hence, we concentrate our effort on the middle

aisle, and assume that none of the vertical edges (either single or double) can be deleted. Un-

64

Figure 4.1: Two overlapping partial solutions with no single vertical edge

Figure 4.2: The resulting merged solution for the subproblem in Figure 4.1

65

Figure 4.3: Two overlapping solutions with six single vertical edges

der this assumption, the merging problem reduces to minimizing the distance travelled on the

middle aisle of the two blocks while keeping the Eulerian property of the graph correspond-

ing to the OPP tour on the two partial solutions. This problem can be interpreted in graphical

terms as minimizing the number of horizontal arcs on the middle aisle. Since the number of

arcs corresponding to the same vertex pair exceeding two results in excessive edges, we delete

a pair of edges when AB j = (2, 1) or AB j = (1, 2). We also know that if vertical edges cannot

be modified, the pairs AB j = (0, 1) and AB j = (1, 0) also have to exist in the final solution in

order to preserve the Eulerian property. Suppose that we delete all the remaining edge pairs

on the middle aisle. Then the problem becomes one of matching unconnected double vertical

edges to either connected double vertical edges or single vertical edges. It is possible that at

the end of this procedure, we might end up with a disconnected graph. In order to overcome

this, we use a greedy procedure that connects the unconnected subgraphs using double hor-

izontal edges. This procedure optimally merges the two partial solutions when the vertical

edges of the solutions cannot be deleted. In Figure 4.3, an example for this case is provided.

The partial solutions include six vertical edges in total. Figure 4.4(a) depicts the situation

when edge deletion is complete and (b) shows the resulting solution after matching.

Figure 4.5 summarizes the merge procedure. The i f statement checks whether the first case

66

Figure 4.4: (a) The partial solution to the example subproblem in Figure 4.3 when edge
deletion is complete, (b) the resulting solution after matching

67

is satisfied. If so, starting with the leftmost item(s), the picking process uses double vertical

edges and ends after picking the rightmost item(s). Otherwise, we delete all AB j pairs except

those with AB j = (1, 0) or AB j = (0, 1), and solve the matching problem. With n aisles, the

complexity of the merge procedure is O(n2), determined by the last while loop: k can be at

most n, and we have to search for connectedness of vertical double edges at most n times,

ending up with an overall complexity of O(n2).

Figure 4.5: Procedure merge

68

4.1.2 Procedure reach

The reach procedure is called when two partial solutions do not overlap, that is, they do not

share a common vertex or edge. Unlike the merge procedure, we allow modification of the

vertical edges in this situation. We have the following definition.

Definition 4.1 A boundary of an upper (lower) block to the lower (upper) block is the set of

downmost (upmost) vertices in each aisle. A boundary of a solution s is denoted by Bs. An

extended boundary EBs additionally consists of the first items on the edges corresponding to

the aisles adjacent to the boundary vertices. A portion Pvi,v j of an extended boundary with

end vertices vi and v j is defined such that deletion of the portion as a result of a 2-opt move

with the other solution does not break the tour into more than one component.

The idea is as follows: Without loss of generality, assume that the current solution procedure

is bottom-up. For each vertex of the boundary of the upper solution, we consider extending 2

edges from this vertex until the end vertices of a portion in the lower solution, and delete the

edge between the ends of the portion. In the case where an extension of the 2 edges creates

3 edges in total, we delete 2 of these as well. The vertex-portion pair that makes this move

by increasing the travel distance minimally is selected and the reach move is made between

this vertex-portion pair. In the case of ties, priority is given to the pair that deletes the longest

edge from the portion. In Figure 4.6, the reach procedure is summarized.

The complexity of this procedure is O(n3), as the boundary of the upper solution can contain

O(n) number of vertices for the first f or loop, and there can be O(n2) portions in the lower

block for the second loop, ending up with an overall complexity of O(n3).

As an example, consider the subproblem in Figure 4.7. Here, Bupper consists of a single

vertex, namely v5. The boundary Blower consists of m14, m24, m34, v3, m33, m43, m53, v4, m44,

m54, m64 and m74. The extended boundary also consists of v1 and v2. Here, the best reach

move is found to be from v5 to the ends of Pm34,m74 . The move results in the graph shown in

Figure 4.8. Then, we delete a pair of edges from the ones occurring thrice in the intermediate

solution, as well as deleting the path between m34 and m74. At the end of this procedure, we

get the solution in Figure 4.9.

69

Figure 4.6: Procedure reach

4.1.3 Procedure invert

The invert procedure aims to convert a problem (or subproblem) so that the top-down solution

procedure can be carried out in the same manner as the bottom-up procedure. The process

consists of redefining the locations of the items by taking their “mirror images” with respect

to both the x- and y-axes. Let each item i be defined by its aisle number ani and y-coordinate

yi. Then, in the inverted problem, the new aisle number is n − ani, where n is the number

of aisles and the new y-coordinate is aisle length ∗ blocks − yi, where aisle length denotes

the length of aisles and blocks denotes the number of blocks. Figure 4.10 summarizes this

procedure.

4.1.4 Procedure improve

Procedure improve is a 3-opt improvement procedure over the merge-and-reach heuristic.

Here, the nodes corresponding to the items are considered for exchange. In each step, the

70

Figure 4.7: A pair of non-overlapping solutions

Figure 4.8: Intermediate solution to the subproblem in Figure 4.7 after the reach move

71

Figure 4.9: The resulting reach solution to the subproblem in Figure 4.7

Figure 4.10: Procedure invert

exchange with the largest improvement is made. The procedure is terminated when there is no

further improvement. The improvement process together with the merge-and-reach heuristic

is called the merge-and-reach+ heuristic, and is discussed in Section 4.4. A summary of the

improvement procedure is given in Figure 4.11.

The complexity of the improve procedure is O(m3), where m corresponds to the number of

items. The complexity is determined by the number of possible ways to define 3-opt moves.

72

Figure 4.11: Procedure improve

4.2 The Merge-and-Reach Heuristic

Having defined the subroutines called throughout the heuristic procedure, the heuristic itself

can now be described. Figure 4.12 summarizes the merge-and-reach heuristic.

In the initialization part, random cuts are generated to break the problem into subproblems.

Following this, the first while loop solves the 2-OPP in each block using the polynomial time

algorithm. The first of the two nested while loops controls the subproblems, whereas the

second one joins the solutions to the blocks in each subproblem using both the top-down and

bottom-up approaches and reporting the best solution for each subproblem. The last while

loop joins the subproblems and ends up with a single solution for the problem.

The overall complexity is determined by the nested while loops. The first loop runs in O(c)

time, whereas the second one requires O(kn3) time: O(n3) coming from the reach procedure,

which might be called k times in the worst case, making the overall complexity O(ckn3)

4.3 Two Example Problems

In this section, we implement the merge-and-reach heuristic on two example problems. The

first problem is the one illustrated in Figure 3.1, which is a 4-OPP with 8 aisles and 25 items.

73

Figure 4.12: Heuristic merge and reach

74

This problem is a relatively “dense” problem, whose 2-OPP solutions tend to overlap and

require the merge procedure to be joined. The second problem is a 9-OPP with 10 items,

which indicates a relatively “loose” problem, with the requirement of the reach procedure to

join the solutions. For the first problem, we will assume that no cuts are used. For the second

problem, we will use a single cut to divide it into two subproblems.

The graphical representation of the first problem is shown in Figure 3.2. Figure 4.13 illustrates

the 2-OPP solutions to each of the four blocks of the problem, whereas Figure 4.14 shows the

resulting bottom-up solution, with a total travel distance of 172, and an optimality gap of

4.9%. With no cuts and only merge procedure required, the top-down solution also yields the

same result as the bottom-up solution.

The second example problem, whose graphical representation is given in Figures 4.15 through

4.17. In Figure 4.15 is randomly cut from the middle aisle separating the 4th and 5th blocks.

Figure 4.16 gives the resulting solutions for the two subproblems. Both of these solutions are

obtained by the bottom-up procedures. As a last step, these two partial solutions have to be

joined so that a single tour is obtained. Consequently, the route in Figure 4.17 is obtained.

The resulting solution has a total travel distance of 207, which coincidentally is the optimal

solution.

4.4 Improvement: The Merge-and-Reach+ Heuristic

The improved version of merge-and-reach, called the merge-and-reach+, applies a 3-opt im-

provement procedure over the merge-and-reach solution. The motivation behind this proce-

dure is that the node sequence of the merge-and-reach solutions tend to resemble the optimal

ones, with the exception of singular nodes or a sequence of nodes. Therefore in order to get

closer to the optimal solution, it becomes important to move these nodes or sequences to their

“closer to optimal” places on the route. Consequently, the procedure improve is called after

execution of merge-and-reach in order to get the merge-and-reach+ solution.

For the example given in Figure 3.1, the resulting merge-and-reach sequence is given as 0→

12→ 11→ 7→ 10→ 14→ 17→ 16→ 13→ 9→ 8→ 20→ 18→ 19→ 24→ 23→ 22

→ 21→ 25→ 15→ 6→ 1→ 2→ 3→ 4→ 5→ 0. The resulting travel distance is 172. The

first 3-opt iteration replaces node 7 between the nodes 8 and 20. This reduces the total travel

75

Figure 4.13: The set of 2-OPP solutions to each block of the problem in Figure 3.1

76

Figure 4.14: The merge-and-reach heuristic solution for the warehouse in Figure 3.1

77

Figure 4.15: An example problem with 9 blocks, 7 aisles and 10 items

78

Figure 4.16: Intermediate solution to the problem in Figure 4.15

79

Figure 4.17: The merge-and-reach route for the problem in Figure 4.15, with a total length of
207 units

80

distance to 170. The second 3-opt iteration replaces the sequence 13→ 9→ 8→ 7 between

the nodes 15 and 6, reducing the total distance to 164, which is the optimal solution.

4.5 Computational Experiments

This section includes the descriptions and results of various computational experiments in

order to test the performance of the merge-and-reach and merge-and-reach+ heuristic proce-

dures and to compare them with their counterparts in the literature.

4.5.1 Test Instances

The problem settings used in the computational experiments are in line with those of Rood-

bergen and De Koster [73], where it is stated that in order to estimate the mean travel time

within 1% relative error with a probability of 95%, a set of 2,000 instances for a setting is

sufficient. In all of the settings, the length between the centers of two neighboring pick aisles

is 2.5 m, the width of each cross aisle is 2.5 m, and the walking speed of each picker is as-

sumed to be 0.6 m/s. The problem settings are given as follows. The number of pick items

is set as 10 or 30, the length of the aisles can be 10 or 30 m, and the number of pick aisles is

set as 7 or 15. Each setting is solved for the number of blocks varying from 1 to 10. For each

cross aisle added in order to increase the number of blocks, the total vertical length of the

warehouse is increased by the width of the cross aisle. Random storage of items is assumed

and orders are generated according to uniform distribution throughout the warehouse. Note

that the generated problem instances are different from those of [73] because their instances

were generated on-the-fly and consequently, they are not available.

Roodbergen and De Koster [73] test the performances of their combined and combined+ on

the problem set as discussed above, and compare the results with those of the largest gap and

S-shape heuristic as well as the aisle-by-aisle heuristic by Vaughan and Petersen [82]. The

results are given in Tables C.1 and C.2 in Appendix C. Combined+ heuristic gives the best

performance in 74 of the 80 settings generated. Largest gap heuristic obtains better solution

quality in 5 of the remaining 6 settings, whereas for the remaining setting, aisle-by-aisle

performs the best. For the remainder of this chapter, we compare the performances of the

merge-and-reach and merge-and-reach+ heuristics with those of the combined+ heuristic, as

81

it performs significantly better than its counterparts. However, it should also be noted that our

heuristics outperform the largest gap, S-shape, aisle-by-aisle and combined heuristics in all

of the problem settings. Therefore, whenever our heuristics perform better than combined+,

they obtain the best performance among all these heuristics.

4.5.2 Computational Results of the Suggested Heuristics

The heuristic procedures proposed here have been run on a computer with an AMD Turion

64x2 1.9 GHz processor and 1 GB RAM. Table 4.1 gives the average travel times of the

merge-and-reach and merge-and-reach+ heuristic solutions as well as the averages of the op-

timal travel times. Each instance is solved for 0, 1 and 2 random cuts, and the best solution

is reported. It has been noted in [73] that the branch-and-bound algorithm takes a significant

amount of computational time for finding the optimal solutions. For this reason, we use Con-

corde, a specialized TSP solver [38] to find the optimal solutions. As in the case of [73], the

average run-time for each instance is less than 0.1 seconds for both heuristics. Additionally,

the optimal solution finding procedure for a single instance also lasts less than 0.1 seconds on

average.

There are several points to be noted on the performance of the merge-and-reach heuristic.

First of all, the procedure (as well as the merge-and-reach+ heuristic) yields the optimal so-

lution when there is a single block. This is because of the fact that at the beginning of the

process, each block is solved to optimality using the algorithm by Ratliff and Rosenthal [71].

Another aspect of the algorithm to be noted is that it is relatively robust when compared to

its counterparts in the literature. In the best case, when there are 7 pick aisles, aisle length is

10, the number of items to be picked is 30, and there are 3 blocks, the percent deviation from

optimal is 1.6%. In the worst case, when there are 15 pick aisles, aisle length is 30, with 10

pick items and 5 blocks, the percent deviation becomes 5.4%.

82

Ta
bl

e
4.

1:
R

es
ul

tin
g

av
er

ag
e

tr
av

el
tim

es
(i

n
se

co
nd

s)
by

th
e

m
er

ge
-a

nd
-r

ea
ch

an
d

m
er

ge
-a

nd
-r

ea
ch

+
he

ur
is

tic
pr

oc
ed

ur
es

as
w

el
la

s
th

e
av

er
ag

e
op

tim
al

tim
es

fo
ro

ur
pr

ob
le

m
se

t,
w

ith
th

e
be

st
he

ur
is

tic
re

su
lts

in
di

ca
te

d
in

bo
ld

(2
,0

00
in

st
an

ce
s

fo
re

ac
h

se
tti

ng
)

N
um

be
ro

fb
lo

ck
s

M
et

ho
d

N
o.

of
ai

sl
es

L
en

gt
h

N
o.

of
ite

m
s

1
2

3
4

5
6

7
8

9
10

M
er

ge
-a

nd
-r

ea
ch

7
10

10
13

9.
8

13
3.

0
13

5.
4

13
9.

3
14

5.
9

15
2.

5
16

0.
3

16
6.

7
17

5.
9

18
2.

6
7

10
30

18
7.

6
19

6.
3

20
3.

0
21

3.
6

22
3.

3
23

2.
1

24
2.

6
25

0.
7

25
9.

7
26

8.
0

15
10

10
22

3.
3

21
0.

3
21

2.
1

21
2.

9
22

2.
3

22
8.

4
23

9.
7

24
6.

3
25

4.
5

26
3.

9
15

10
30

34
0.

2
32

4.
4

32
2.

6
33

0.
6

33
9.

9
34

9.
7

36
2.

0
37

2.
9

38
4.

4
39

8.
6

7
30

10
26

9.
5

23
0.

4
21

9.
7

21
8.

0
22

1.
1

22
6.

1
23

1.
9

23
7.

5
24

4.
0

25
0.

3
7

30
30

39
7.

4
36

9.
9

35
3.

2
34

7.
8

34
6.

8
34

8.
6

34
8.

0
35

3.
2

35
5.

9
36

0.
0

15
30

10
37

9.
9

32
2.

8
30

7.
2

30
5.

2
31

0.
7

31
2.

8
31

7.
4

32
2.

0
32

8.
3

33
3.

3
15

30
30

66
7.

9
56

2.
6

52
1.

6
50

6.
9

50
1.

1
49

8.
5

50
3.

5
50

8.
4

51
3.

2
51

7.
3

M
er

ge
-a

nd
-r

ea
ch

+
7

10
10

13
9.

8
13

1.
4

13
4.

2
13

8.
0

14
4.

7
15

0.
6

15
7.

9
16

3.
9

17
3.

1
17

9.
6

7
10

30
18

7.
6

19
3.

8
20

1.
8

21
0.

3
21

9.
5

22
8.

8
23

7.
8

24
7.

3
25

6.
5

26
5.

2
15

10
10

22
3.

3
20

8.
3

20
7.

7
20

8.
9

21
7.

6
22

2.
3

23
3.

7
24

0.
0

24
8.

6
25

8.
1

15
10

30
34

0.
2

32
0.

0
31

7.
0

32
3.

1
33

2.
5

34
1.

3
35

5.
0

36
5.

4
37

5.
5

39
0.

5
7

30
10

26
9.

5
22

6.
4

21
4.

7
21

3.
5

21
6.

1
22

0.
2

22
5.

8
23

1.
4

23
7.

5
24

4.
0

7
30

30
39

7.
4

36
4.

0
34

6.
5

34
0.

3
33

8.
4

33
8.

8
34

0.
8

34
6.

2
34

7.
4

35
1.

7
15

30
10

37
9.

9
31

5.
5

29
9.

8
29

5.
8

30
0.

6
30

3.
5

30
9.

7
31

2.
4

31
8.

8
32

4.
8

15
30

30
66

7.
9

55
2.

9
50

9.
2

49
3.

7
48

8.
0

48
2.

7
48

9.
8

49
4.

5
49

9.
7

50
4.

1
O

pt
im

al
7

10
10

13
9.

8
13

0.
3

13
3.

1
13

7.
0

14
3.

3
14

9.
5

15
6.

9
16

2.
8

17
1.

1
17

8.
2

7
10

30
18

7.
6

19
2.

1
19

9.
8

20
8.

5
21

7.
2

22
5.

6
23

6.
0

24
4.

1
25

3.
5

26
2.

3
15

10
10

22
3.

3
20

5.
6

20
4.

8
20

5.
4

21
3.

7
21

9.
1

22
9.

4
23

6.
6

24
5.

0
25

4.
3

15
10

30
34

0.
2

31
6.

9
31

3.
2

31
9.

0
32

7.
0

33
6.

2
34

8.
7

35
9.

1
37

1.
4

38
5.

6
7

30
10

26
9.

5
22

3.
2

21
1.

6
20

9.
8

21
2.

0
21

6.
4

22
1.

8
22

8.
0

23
4.

5
24

0.
9

7
30

30
39

7.
4

35
9.

8
34

1.
8

33
5.

0
33

2.
6

33
3.

3
33

3.
5

33
9.

7
34

3.
2

34
7.

6
15

30
10

37
9.

9
31

1.
4

29
5.

3
29

0.
1

29
4.

9
29

7.
0

30
2.

4
30

7.
6

31
4.

3
32

0.
0

15
30

30
66

7.
9

54
6.

9
50

1.
2

48
5.

5
47

8.
1

47
5.

6
48

1.
0

48
6.

7
49

2.
2

49
6.

7

83

Ta
bl

e
4.

2:
Pe

rc
en

td
ev

ia
tio

ns
fo

rt
he

co
m

bi
ne

d+
he

ur
is

tic
by

R
oo

db
er

ge
n

an
d

D
e

K
os

te
r[

73
],

th
e

m
er

ge
-a

nd
-r

ea
ch

an
d

m
er

ge
-a

nd
-r

ea
ch

+
he

ur
is

tic
s,

w
ith

th
e

be
st

he
ur

is
tic

pe
rf

or
m

an
ce

in
di

ca
te

d
in

bo
ld

(2
,0

00
in

st
an

ce
s

fo
re

ac
h

se
tti

ng
)

N
um

be
ro

fb
lo

ck
s

M
et

ho
d

N
o.

of
ai

sl
es

L
en

gt
h

N
o.

of
ite

m
s

1
2

3
4

5
6

7
8

9
10

C
om

bi
ne

d+
[7

3]
7

10
10

7.
1

2.
7

3.
6

3.
3

3.
0

2.
8

2.
5

2.
4

2.
2

2.
0

7
10

30
2.

9
2.

4
13

.2
12

.0
12

.9
12

.6
10

.9
10

.6
9.

4
8.

5
15

10
10

7.
1

2.
5

6.
5

7.
6

7.
7

7.
4

6.
8

6.
6

6.
1

5.
5

15
10

30
5.

7
2.

9
19

.8
20

.2
23

.7
24

.6
22

.9
22

.9
21

.4
19

.9
7

30
10

13
.0

5.
6

3.
9

2.
8

2.
2

1.
9

1.
8

1.
5

1.
4

1.
4

7
30

30
5.

2
5.

7
10

.6
8.

7
8.

6
7.

9
7.

3
6.

7
6.

3
6.

0
15

30
10

13
.2

4.
9

4.
9

4.
5

4.
1

3.
7

3.
6

3.
4

3.
2

3.
2

15
30

30
10

.1
6.

8
14

.5
12

.5
13

.8
13

.5
13

.0
12

.7
12

.2
12

.0
M

er
ge

-a
nd

-r
ea

ch
7

10
10

0.
0

2.
1

1.
7

1.
7

1.
8

2.
0

2.
2

2.
4

2.
8

2.
5

7
10

30
0.

0
2.

2
1.

6
2.

4
2.

8
2.

9
2.

8
2.

7
2.

4
2.

2
15

10
10

0.
0

2.
3

3.
6

3.
7

4.
0

4.
2

4.
5

4.
1

3.
9

3.
8

15
10

30
0.

0
2.

4
3.

0
3.

6
3.

9
4.

0
3.

8
3.

8
3.

5
3.

4
7

30
10

0.
0

3.
2

3.
8

3.
9

4.
3

4.
5

4.
6

4.
2

4.
1

3.
9

7
30

30
0.

0
2.

8
3.

3
3.

8
4.

3
4.

6
4.

3
4.

0
3.

7
3.

6
15

30
10

0.
0

3.
7

4.
0

5.
2

5.
4

5.
3

5.
0

4.
7

4.
5

4.
2

15
30

30
0.

0
2.

9
4.

1
4.

4
4.

8
4.

8
4.

7
4.

5
4.

3
4.

1
M

er
ge

-a
nd

-r
ea

ch
+

7
10

10
0.

0
0.

8
0.

8
0.

7
1.

0
0.

7
0.

7
0.

7
1.

0
0.

8
7

10
30

0.
0

0.
9

1.
0

0.
8

1.
1

1.
4

0.
8

1.
3

1.
2

1.
1

15
10

10
0.

0
1.

3
1.

4
1.

7
1.

8
1.

5
1.

9
1.

4
1.

5
1.

5
15

10
30

0.
0

1.
0

1.
2

1.
3

1.
7

1.
5

1.
8

1.
7

1.
1

1.
3

7
30

10
0.

0
1.

4
1.

5
1.

8
1.

9
1.

8
1.

8
1.

5
1.

3
1.

3
7

30
30

0.
0

1.
2

1.
4

1.
6

1.
7

1.
6

2.
2

1.
9

1.
2

1.
2

15
30

10
0.

0
1.

3
1.

5
1.

9
1.

9
2.

2
2.

4
1.

5
1.

4
1.

5
15

30
30

0.
0

1.
1

1.
6

1.
7

2.
1

1.
5

1.
8

1.
6

1.
5

1.
5

84

Ta
bl

e
4.

3:
T

he
nu

m
be

r
of

tim
es

ea
ch

cu
tp

ro
ce

du
re

gi
ve

s
th

e
be

st
so

lu
tio

n
fo

r
ou

r
pr

ob
le

m
se

t,
bo

ld
en

tr
ie

s
in

di
ca

tin
g

st
at

is
tic

al
si

gn
ifi

ca
nc

e
of

th
at

cu
t

va
lu

e
on

th
e

pe
rf

or
m

an
ce

of
th

e
he

ur
is

tic
,α

=
0.

99
(2

,0
00

in
st

an
ce

s
fo

re
ac

h
se

tti
ng

)

N
um

be
ro

fb
lo

ck
s

3
4

5
6

N
o.

of
ai

sl
es

L
en

gt
h

N
o.

of
ite

m
s

c
=

0
c

=
1

c
=

0
c

=
1

c
=

2
c

=
0

c
=

1
c

=
2

c
=

0
c

=
1

c
=

2
7

10
10

91
8

1,
07

2
32

3
82

1
85

6
34

1
78

1
87

8
33

2
75

1
91

7
7

10
30

62
3

1,
37

7
51

0
77

8
71

2
36

6
84

3
79

1
38

2
75

6
86

2
15

10
10

56
1

1,
43

9
19

4
78

2
1,

02
4

32
6

74
4

93
0

25
6

83
5

90
9

15
10

30
70

1
1,

29
9

48
2

71
5

80
3

40
8

76
8

82
4

29
0

83
4

87
6

7
30

10
58

9
1,

41
1

33
6

67
8

98
6

33
0

76
5

90
5

23
4

72
1

1,
04

5
7

30
30

66
1

1,
33

9
46

4
74

6
79

0
47

2
74

2
78

6
33

0
77

6
89

4
15

30
10

42
2

1,
57

8
23

6
71

1
1,

05
3

20
0

79
2

1,
00

8
14

4
76

7
1,

08
9

15
30

30
49

8
1,

50
2

30
5

80
3

89
2

25
2

83
7

91
1

19
8

85
6

94
6

A
ve

ra
ge

s
62

1.
6

1,
37

7.
1

35
6.

3
75

4.
3

88
9.

5
33

6.
9

78
4.

0
87

9.
1

27
0.

8
78

7.
0

94
2.

3

N
um

be
ro

fb
lo

ck
s

7
8

9
10

N
o.

of
ai

sl
es

L
en

gt
h

N
o.

of
ite

m
s

c
=

0
c

=
1

c
=

2
c

=
0

c
=

1
c

=
2

c
=

0
c

=
1

c
=

2
c

=
0

c
=

1
c

=
2

7
10

10
27

7
77

7
94

6
20

0
82

4
97

6
13

1
86

7
1,

00
2

10
1

90
2

99
7

7
10

30
34

6
85

1
80

3
28

5
80

3
91

2
21

7
83

2
95

1
18

1
86

5
95

4
15

10
10

23
6

85
2

91
2

18
1

76
5

1,
05

4
12

6
83

8
1,

03
6

78
87

6
1,

04
6

15
10

30
25

6
81

8
92

6
24

9
90

5
84

6
20

1
85

6
94

3
15

5
90

0
94

5
7

30
10

18
6

74
7

1,
06

7
15

3
79

2
1,

05
5

99
79

9
1,

10
2

89
82

2
1,

08
9

7
30

30
28

9
82

3
88

8
22

2
86

2
91

6
20

2
87

6
92

2
19

3
87

7
93

0
15

30
10

12
9

77
1

1,
10

0
11

1
79

3
1,

09
6

93
79

3
1,

11
4

52
84

3
1,

10
5

15
30

30
19

0
92

9
88

1
16

6
87

8
95

6
14

3
95

4
90

3
11

6
88

6
99

8
A

ve
ra

ge
s

23
8.

6
82

1.
0

94
0.

4
19

5.
9

82
7.

8
97

6.
4

15
1.

5
85

1.
9

99
6.

6
12

0.
6

87
1.

4
1,

00
8.

0

85

When the number of blocks is increased, the quality of the solution tends to decrease to

some extent. This can be attributed to the following: In dense problems (such as those with

fewer blocks), the merge procedure finds good solutions; whereas for sparse problems (such

as the ones with many blocks), it is the good performance of the reach procedure that leads

to better solutions. When the number of blocks is at a mediocre level so that the merge

and reach procedures must work together, the quality of the solution diminishes to a certain

extent, although not very significantly. Furthermore, the merge-and-reach heuristic tends to

find marginally better solutions when the number of items is larger, aisle length is shorter and

the number of aisles is smaller. This is due to the slightly better performance of the merge

procedure over the reach procedure.

In order to investigate the effect of the number of cuts on the performance of the merge-and-

reach heuristic, the results in Table 4.3 are provided. The first thing to be noted here is that

when the number of blocks is 1 or 2, the application of cuts is not possible, as there is no

middle aisle to cut for a single block, and cutting from the middle aisle in the 3-OPP does

not change the solution procedure. Additionally, when there are 3 blocks, the application of

at most a single cut is possible, due to the same reasons. The table gives the number of times

each cut gives the best solution out of the 2,000 problem instances for each setting. The effect

of the number of cuts on the performance of the heuristic procedure has been examined using

Wilcoxon Signed Rank Test with α = 0.99, and the number of cuts with significant effect on

performance have been shown in bold in Table 4.3.

Table 4.3 indicates that of all the cases given, using no cuts significantly affects the perfor-

mance of the heuristic procedure for only one setting (7 aisles, 10 items, aisle length 10 meters

and 3 blocks). This justifies the usage of cuts, instead of simply solving the whole problem

using the bottom-up and top-down approaches. Furthermore, in every case it can be applied,

usage of two cut aisles significantly improves the performance of the heuristic. Usage of the

cuts performs significantly better than using one especially when the problems are “loose”,

that is, the items are farther apart from each other. In all other cases, the application of 1 and

2 cuts together has significant effect on the performance. This is due to the fact that applying

both cuts means applying two solution procedures.

In order to justify the usage of the 3-opt procedure as the improvement step for the merge-and-

reach+ heuristic instead of a simpler procedure like the 2-opt, the performance of the 2-opt

86

heuristic has been tested in preliminary runs, where 200 random instances from each problem

setting were solved. Table 4.4 shows the results. The first part shows deviations of the 2-opt

improvement procedure from the optimal, and the second part shows the percent improvement

of the 2-opt scheme on the merge-and-reach results. When the deviation values are compared

to those of the merge-and-reach procedure, it can be observed that the improvement is about

0.1% on average. This is due to the high disruption caused by the 2-opt procedure, where the

structure of the route is significantly altered by each 2-opt move. Hence for the merge-and-

reach+ procedure, 3-opt moves are used as improvement moves.

Table 4.2 gives the performance of the combined+, merge-and-reach and merge-and-reach+

heuristics. When the performance of the merge-and-reach+ procedure is analyzed, it is clearly

observed that the performance of merge-and-reach is significantly improved by the 3-opt pro-

cedure. In the worst case, where there are 15 aisles, aisle length is 30, the number of items is

10 and the number of blocks is 7, the average deviation from optimal is 2.4%. In the best case,

this deviation can be as low as 0.7%, excluding the 2-OPP, where optimal solutions are found.

Hence the improvement procedure not only increases the performance of the heuristic, but it

also increases the robustness of merge-and-reach, that is, the effect of problem parameters on

the heuristic performance is insignificant. The optimality gaps for the combined+ heuristic

can be quite different under different settings of the problem parameters. In some cases, es-

pecially when the number of items is low, aisle length is high and the number of aisles is low,

the optimality gap can get as low as 1.4%. However, when the number of aisles increases, the

aisle length decreases and the number of pick items increases, the deviation from optimal can

increase up to 24.6%.

When the performance of merge-and-reach+ is compared to that of combined+, merge-and-

reach+ is seen to dominate the combined+ heuristic in all of the 80 problem settings. The

closest gap between the procedures, which is within a thousandth, occurs when there are

7 aisles, aisle length is 30, number of items is 10 and there are 10 blocks. This coincides

with the best performance of the combined+ heuristic. Due to the robustness of the merge-

and-reach+ heuristic, the relative performance of merge-and-reach+ over combined+ is high

when the performance of combined+ is low, which especially occurs in “dense” problems, as

discussed before. In “sparse” problems, where combined+ works well, the performances get

closer to each other.

87

Ta
bl

e
4.

4:
Pe

rc
en

td
ev

ia
tio

ns
of

th
e

2-
op

ti
m

pr
ov

em
en

tp
ro

ce
du

re
fr

om
th

e
op

tim
al

tr
av

el
tim

es
,a

nd
th

e
pe

rc
en

ti
m

pr
ov

em
en

to
f

th
e

2-
op

ts
ch

em
e

ov
er

th
e

m
er

ge
-a

nd
-r

ea
ch

so
lu

tio
ns

fo
rt

he
pr

el
im

in
ar

y
ru

ns
(2

00
in

st
an

ce
s

fo
re

ac
h

se
tti

ng
)

N
um

be
ro

fb
lo

ck
s

M
et

ho
d

N
o.

of
ai

sl
es

L
en

gt
h

N
o.

of
ite

m
s

1
2

3
4

5
6

7
8

9
10

D
ev

ia
tio

n
(%

)
7

10
10

0.
0

2.
0

1.
6

1.
6

1.
7

2.
0

2.
1

2.
3

2.
8

2.
4

fo
r2

-o
pt

7
10

30
0.

0
2.

1
1.

5
2.

4
2.

8
2.

8
2.

8
2.

6
2.

4
2.

1
fr

om
op

tim
al

15
10

10
0.

0
2.

2
3.

5
3.

6
4.

0
4.

2
4.

4
4.

1
3.

8
3.

7
15

10
30

0.
0

2.
3

3.
0

3.
6

3.
9

3.
9

3.
8

3.
8

3.
4

3.
4

7
30

10
0.

0
3.

1
3.

8
3.

9
4.

2
4.

4
4.

5
4.

1
4.

0
3.

8
7

30
30

0.
0

2.
8

3.
2

3.
7

4.
2

4.
6

4.
3

3.
9

3.
6

3.
5

15
30

10
0.

0
3.

6
4.

0
5.

1
5.

3
5.

3
4.

9
4.

6
4.

4
4.

1
15

30
30

0.
0

2.
8

4.
1

4.
3

4.
8

4.
8

4.
6

4.
4

4.
2

4.
1

Im
pr

ov
em

en
t(

%
)

7
10

10
0.

0
0.

0
0.

1
0.

1
0.

1
0.

0
0.

1
0.

1
0.

0
0.

1
of

2-
op

to
n

7
10

30
0.

0
0.

1
0.

1
0.

0
0.

0
0.

1
0.

0
0.

1
0.

0
0.

1
m

er
ge

-a
nd

-r
ea

ch
15

10
10

0.
0

0.
1

0.
1

0.
1

0.
0

0.
0

0.
1

0.
0

0.
1

0.
1

15
10

30
0.

0
0.

1
0.

0
0.

0
0.

1
0.

0
0.

0
0.

1
0.

1
0.

0
7

30
10

0.
0

0.
1

0.
1

0.
1

0.
2

0.
1

0.
1

0.
1

0.
0

0.
1

7
30

30
0.

0
0.

0
0.

1
0.

1
0.

1
0.

1
0.

0
0.

1
0.

1
0.

1
15

30
10

0.
0

0.
1

0.
1

0.
1

0.
2

0.
1

0.
0

0.
1

0.
0

0.
0

15
30

30
0.

0
0.

0
0.

0
0.

1
0.

1
0.

1
0.

1
0.

1
0.

0
0.

1

88

CHAPTER 5

THE ORDER-PICKING PROBLEM IN A PARALLEL-AISLE

WAREHOUSE: MULTIPLE-PICKER CASE

In this chapter, we mainly discuss the multiple-picker version of the order-picking problem

discussed in Chapter 4, which we denote as k-OPP(s), where s represents the number of

pickers. These types of problems mostly arise in situations where an order is too large to be

picked by a single picker. Usage of multiple pickers can also be motivated by the warehouse

being too large for a single picker to complete the picking of an order (as in the example given

in Figure 4.15) or when the warehouse is divided into zones. In any case, the picked items

have to go through an accumulation process when picking is completed. It may be common

for warehouses employing multiple pickers to have multiple number of depot points, which

is also the case throughout this chapter. As in Chapter 4, we assume manual off-the-shelf

order-picking.

The problems we deal with in this chapter can be distinguished into three cases. In the first

case, there is a capacity limit for each picker on the amount of items that can be picked in a

single sequence. For this case, we develop a cluster-first, route-second evolutionary algorithm.

As a second case, the pickers have capacities on the time they can travel in a single picking

sequence. This is a common case especially when there are due times on the deliveries of the

orders to the customers. This can also happen in storage areas that feed the production lines.

In these cases, there are cycle times of the production line, which limit the total time to pick

the orders. In these cases, employing a single picker may not be enough to satisfy the cycle

time constraint. We develop a route-first, cluster-second evolutionary approach for tackling

such problems. The last case includes capacities on both the loads and the travel times of

the pickers. We use a combined approach using the cluster-first, route-second and route-first,

89

cluster-second approaches developed for the first two cases for these types of problems.

The outline of this chapter is as follows: Section 5.1 is devoted to the relevant literature on the

algorithmic approaches to the order-picking problem with multiple pickers, as well as relevant

problems. In Section 5.1.1, we discuss the relevant literature on k-OPP(s), whereas in Sections

5.1.2 and 5.1.3, we make references to the relevant literature on the evolutionary algorithms

for the Vehicle Routing Problem (VRP) and the Steiner Tree Problem (STP). Section 5.2

puts forward an evolutionary approach for k-OPP(s) with load capacities and limits on travel

time. The algorithm makes use of two different evolutionary approaches. In Section 5.2.1,

a cluster-first, route-second evolutionary algorithm for the case with load capacities is given,

whereas in Section 5.2.2 a route-first, cluster-second evolutionary algorithm for the case with

time capacities is discussed. Section 5.2.3 gives the parameter settings that are used in both

of the evolutionary approaches. The steps and procedures of the evolutionary algorithm are

explained Section 5.2.4, and computational results are provided in Sectioncomputational.

5.1 Literature Survey

The literature on the order-picking problem with multiple pickers is very limited when com-

pared to the single-picker case. The first part of this section deals with the studies on k-

OPP(s). It has been mentioned in Chapter 3 that the OPP resembles a special type of the

Traveling Salesman Problem, called the Steiner Traveling Salesman Problem. Analogously,

the multiple-picker case resembles the Vehicle Routing Problem (VRP), with the relaxation

that each node can be visited more than once and there are nodes that do not have to be visited.

As we will discuss evolutionary algorithms for the solution of various versions of k-OPP(s) in

the following sections, we also review the literature on the evolutionary algorithms for VRP.

It has also been noted in Chapter 3 that there is a strong connection between the Steiner Tree

Problem (STP) and the OPP. As a consequence, we review the literature on the evolutionary

algorithms for STP as well.

5.1.1 Literature on k-OPP(s)

The only algorithmic study on k-OPP(s), to the best of our knowledge, is due to Geng et al.

[37], who name the problem as the capacitated warehouse routing problem. It is assumed that

90

a single depot exists, where s pickers have to start their routes from. After completing their

routes, they return to the depot. The problem is shown to be strongly NP-hard, by reduction

to the strongly NP-hard 3-partitioning problem.

Geng et al. [37] propose a neighborhood search approach, called the very large-scale neigh-

borhood search (VLSN) approach, to the problem. For a problem with m items, a neighbor-

hood structure is said to be very large if the size of the neighborhood increases exponentially

as m increases, or if the neighborhood is too large to search in practice, even if the increase is

polynomial (e.g. O(m3) with m greater than a million).

The neighborhood of a solution is defined as the exchange of a single item to be picked by

a picker to another picker. Since the neighborhood size is too large to explore completely,

a heuristic method to explore a sufficiently high portion of the neighborhood is proposed.

There are two possibilities of exchanges in the neighborhood: A path exchange considers the

exchange of the item from picker i to i + 1, from i + 1 to i + 2, . . ., and from i − 2 to i − 1. A

cyclic exchange also considers the exchange from i − 1 to i. The idea of an efficient search

of the neighborhood lies in the notion of an improvement graph. Given a solution graph

G(V, A) for the current solution, an improvement graph G1(V ′, A′) is defined in a manner

such that it is identical to G, only with the condition that the original each cyclic or path

exchange in the current solution defines a cycle in G1. Therefore in the improvement graph,

each cycle corresponds to a move in the neighborhood. Since the total arc weight of each

cycle determines the cost of making that move, we are interested in making a move if the

corresponding cycle has a negative total arc weight (in which case the cycle is called to be

valid). A hill-climbing procedure is proposed as a result, and is given in Figure 5.1.

The authors test their algorithm on randomly generated test problems. They generate loose

problems, where the capacity of a picker is much larger than the number of pick-items, tight

problems on the contrary; uniform problems, where the distribution of pick-items in the ware-

house is uniform, non-uniform problems on the contrary; and additional antiS problems with

items that fulfill exactly one picker, but located at farther aisles to accommodate neighborhood

search opportunities. Their problem set contains problems with no or one middle aisle, aisle

length as 50 meters, the number of aisles as 40 and vehicle capacity as 100 items. Since no

other solution approach to the problem exists, the results obtained are compared with those ob-

tained from a branch-and-price algorithm that is developed by the authors (yet not discussed)

91

Figure 5.1: Procedure hill − climbing

and guarantees an optimality gap of at least 1%, and a naı̈ve simulated annealing algorithm

with a 2-opt-like neighborhood definition. For about 60% of the cases, VLSN hill-climbing

produces results within 1% of the branch-and-price algorithm and is found to be superior to

the simulated annealing algorithm.

The VLSN hill climbing algorithm proposed in [37] is the only comparable heuristic proce-

dure to the ones proposed in Section 5.2.1. However, the results given in the study are the

ones associated with single experiments of each parameter (number of middle aisles, aisle

length, number of aisles, vehicle capacity and number of pick-items). Owing to this, exactly

the same problems in the set have to be solved to provide a statistically justifiable comparison.

Unfortunately, the problem set is not available; hence no such comparison can be made.

To the best of our knowledge, no algorithmic study exists on the multiple-picker case with

capacities on the time that the pickers travel nor on the case with limits on both time travelled

and loads.

5.1.2 Literature on the Evolutionary Algorithms for VRP

The Vehicle Routing Problem (VRP), first put forward by Dantzig and Ramser [22], consists

of finding a route for a fleet of capacitated vehicles starting from a depot such that all the de-

mand of the customers is satisfied, demand of a single customer is served by a single vehicle,

and a certain cost measure (the total distance travelled by the vehicles, the maximum distance

92

travelled by a single vehicle, etc.) is minimized.

The k-OPP(s) can be stated as a modified version of the VRP in the sense that the nodes of

the corresponding graph can be travelled more than once and by more than a single vehicle

(picker). Additionally, not all the nodes have to be visited on the corresponding graph. For

the case discussed in this chapter, we also assume that multiple depot nodes exist. In any case,

there is a strong resemblance between the VRP and the k-OPP(s), which makes it worthwhile

to analyze the relevant literature on the evolutionary algorithms for VRP.

Gendreau et al. [35] provide the most up-to-date review of the literature on the metaheuristics

for the VRP. Although the literature on the metaheuristic procedures for the vehicle routing

problem is vast, the development of evolutionary algorithms for the VRP is rather new. Tabu

search has been the dominant metaheuristic method for the problem and due to both the effi-

ciency of the procedure and interest in its application to VRP; it has come up with very good

results. For a more extensive review on the evolutionary algorithms on the VRP, the reader is

referred to Demir [27].

Evolutionary algorithms have first been proposed by Holland [48], and the first study of

an evolutionary algorithm for the capacitated VRP is suggested by Baker and Ayechew [6],

whose main aim is to define a framework and a rather straightforward approach for an evo-

lutionary algorithm to the VRP. The coding scheme consists of the index number of vehicle

assigned to each item. The fitness value of the individual is determined by solving all the

TSPs, each of which corresponds to the customers assigned to a single vehicle. As infeasi-

bility is allowed, an unfitness measure is defined for each individual as the total amount of

capacity (on the distance travelled by the vehicles) exceeded by the vehicles. Population size

is 30 for small-sized problems and 50 for large-sized ones. Initial population is generated ei-

ther randomly or using a structured approach. For the parent selection process, a tournament

selection approach is applied. Two individuals are randomly selected from the population,

and the better of these is selected as the first parent. The procedure is repeated for the second

parent. For reproduction, a 2-point crossover is used. As a mutation operator, the swap of two

genes is applied. A steady-state replacement scheme is employed, in which the two offspring

replace the two most inferior solutions in the population. The algorithm terminates when a

certain number of generations (depending on the problem size) is reached.

Berger and Barkaoui [10] use an ordered list of customers as the coding scheme, and use

93

the total travel distance as a fitness value. Infeasibility is not allowed, therefore whenever a

crossover or mutation operation ends up with an infeasible individual, it is applied again until

a feasible individual is obtained. Two populations are used, each of size 15, but 5 individuals

from each population are allowed to migrate between these populations. Initial populations

are generated using sequential insertion. Parent selection is made using a roulette-wheel based

scheme, that is, the parents are selected in such a way that individuals with higher fitness

values have higher probability of being selected. An insertion-based crossover operator and

a neighborhood search-based mutation operator are employed. A steady-state replacement

method with migration is applied for replacement. Stopping conditions are based on either

number of generations or convergence (depending on problem size).

Jaszkiewicz and Kominek [50], as in Berger and Barkaoui [10], employ an ordered list of

customers as an encoder, whereas the total distance travelled is used as the fitness function.

Infeasibility is not allowed, and the population size is 50. Initial population consists of struc-

tured individuals, each generated using randomized heuristic procedure solutions. In each

generation, parents are selected using a roulette-wheel based scheme and with probability

0.95, a distance preserving recombination operator is applied as a crossover operator. The

authors propose no mutation operator. For replacing the parents, steady-state replacement

method is used, and the stopping condition is based on the convergence criterion, in which

the population is said to converge if all the individuals are identical.

Prins [69] takes a closer approach to the evolutionary algorithms for the TSP, and applies a

route-first, cluster-second evolutionary approach to the VRP using the route obtained by the

crossover and mutation operators. Therefore, the encoding of the chromosome consists of

the ordered list of the customers resulting from the TSP tour. Fitness function is based on the

total distance travelled by the vehicles, and is calculated using the approach due to Beasley [8].

The idea in this approach is to formulate a shortest-path problem for the initial tour in order

to determine the assignments of the customers to the vehicles. Given a tour of the customers,

the shortest-path graph is constructed in such a way that the order of the customers in the

tour is preserved. The distance corresponding to the arc between two customers is calculated

as the total distance required to move from the depot to the customer at the beginning of

the arc, then travel the customers in the given tour until the customer at the end of the arc

is reached. The distance to reach the depot from the latter customer is added to obtain the

weight of the arc. The solution of the shortest path problem gives the fitness of the individual.

94

The algorithm does not allow infeasibility. For small-sized problems, a population size of 25

has been found sufficient, and for large-sized problems, the population size is increased to 50.

Initial population is generated randomly and parent selection is made by binary tournament

selection. The crossover operator is the widely-used order crossover (OX) operator in the

evolutionary approaches for the TSP. The operator is given in Figure 5.2.

Figure 5.2: An example of order crossover (a) the parents and (b) the offspring

The order crossover operator works as follows: Given two individuals and two random cut

points, the genes between these two cut points are preserved in the two offspring that corre-

spond to each of the two parents. Starting with the next gene following the second cut point,

the order in the other parent is tried to be preserved. For the example in Figure 5.2, the se-

quence (6,4,5) is preserved for the first parent. Then, starting with the 7th gene of the second

parent, the customers are inserted to the first offspring. 2 is inserted without problem. The 8th

and 9th genes, which are 5 and 6 are already used in the first offspring, so they are skipped.

The insertion proceeds with the first gene of the second parent, which is 3. The remaining

genes of the first offspring are inserted in this manner until all genes are filled. The same

procedure is applied for the second offspring. The mutation operator in [69] depends on the

swap of customers on the route. The replacement method is steady-state, and the stopping

condition is based on the number of iterations.

Mester and Bräysy [64] use an active-guided evolution strategy in order to solve the VRP, and

employ an evolutionary approach during the solution process. The coding scheme consists of

the ordered list of customers for each vehicle. As in all studies discussed in this section, the

fitness of each individual is based on the total distance travelled by the vehicles. Infeasibility

is not allowed, and the population size is set as 100. The initial population is generated on

a random basis. The parents are selected using the roulette-wheel method, and an insertion-

95

based crossover operator is employed. Steady-state replacement is applied and the algorithm

stops after reaching a fixed number of iterations.

When the evolutionary algorithms for the VRP are investigated in terms of the parameter and

algorithm settings they use, it can be observed that encoding consists either of an ordered list

of customers, or the indices of vehicles assigned to the items. Fitness function consists of the

total travel distance, the population size varies between 25 and 100, initial population is either

generated randomly, or partially using heuristic procedures. Parent selection is either by tour-

nament selection, or by roulette-wheel. Crossover operators widely vary, as do the mutation

operators. An important note here is that all the studies use steady-state replacement, hence a

crossover probability of 1. Mutation probability is less than 5%, and stopping conditions are

based on convergence or number of iterations.

5.1.3 Literature on the Evolutionary Algorithms for the Steiner Tree Problem

The connection between the OPP and the STP has been discussed in Section 3.3.2. Because

of the similarity of problems and their solution approaches, it will be of use to provide a brief

review of the literature on the evolutionary approaches for solving the Steiner Tree Problem.

As opposed to the evolutionary algorithms for the Vehicle Routing Problem, the Steiner Tree

Problem has been more widely studied and solved using evolutionary algorithms. Due to

this reason, it should be noted here that the review provided in this section is not exhaustive.

The main aim, as in Section 5.1.2, is to investigate, and if possible, borrow the ideas used in

solving the Steiner Tree Problems using evolutionary algorithms.

To the best of our knowledge, the first evolutionary algorithm for the Steiner Tree Problem has

been put forward by Kapsalis et al. [54], who propose an algorithm that allows infeasibility,

and uses different parameter settings for different instances of the problem. The study by

Esbensen [29] is motivated by the study by Kapsalis et al. [54], and aims to come up with

an algorithm that uses deterministic parameters for each problem instance tackled. In the

first phase of the algorithm, the size of the graph is reduced using four different reduction

techniques, due to Winter [83] and Winter and Smith [84] in sequence. The genotype consists

of the x- and y- coordinates of the selected Steiner nodes in the solution and the fitness of each

individual is determined using a distance network heuristic, which is based on the construction

of a minimum spanning tree. Population size is 200, and the initial population consists of

96

solutions that include randomly selected Steiner points. Parent selection is roulette-wheel

based. A special crossover operator is employed, in which one of the parents is chosen at

random, the other is reordered so that it becomes homologous to the former one, and the

standard 1-point crossover is applied. Mutation consists of simple change on a gene, and

an invertion operator is also used for further exploration. Replacement is steady-state. The

algorithm terminates when there is no improvement on the average and best fitness values for

a certain number of iterations. Computational results reveal that the algorithm is superior to

the one by Kapsalis et al. [54], and is compatible with the existing heuristics at the time.

The Steiner Tree Problem is widely considered in the area of electronics. As an application

of evolutionary algorithms to these problems in this field, Haghighat et al. [44] use the idea

of Prüfer numbers in order to encode the genotypes of the solutions. A Prüfer number P(T)

is defined as follows: Let i be the lowest numbered leaf in the graph and j be the predecessor

of i. The Prüfer number is built up by appending j to the right of P(T) and removing i and the

edge (i j) from the graph, continuing in this manner until all nodes are considered. The edges

that do not satisfy the bandwidth requirement are immediately removed from the graph in the

preprocessing phase. For generating the initial population, a modified randomized depth-first

search algorithm is applied. For this purpose, a linked list is constructed from the source node

s to one of the destination nodes. Then, selecting one of the unvisited nodes at random, the

algorithm proceeds until all the remaining nodes in the subtree is visited. The procedure is

repeated for all subtrees. A special penalty function is used as the fitness function, and the

parent selection is made by spinning a roulette-wheel. Two new crossover schemes are put

forward, the first of which works using a local search algorithm that finds the bes improvement

among the neigboring solutions, and the second of which repairs the two solutions generated

by the traditional 1-point crossover. As in the crossover case, two operators are proposed for

mutation: the first one randomly breaks the tree into subtrees and applies a repair algorithm

to come up with a new tree, whereas the second one selects an infeasible chromosome among

three classes, and repairs the chromosome. Mutation probability is set as 1%, steady-state

replacement is used and the algorithm terminates on convergence.

A more recent study, specific to the case of the Rectilinear Steiner Tree Problem (RSTP), is

due to Yang [86], and depends on the construction of minimum spanning trees. The algo-

rithm is based on the theorem by Hanan [46], which states that for any RSTP instance, an

optimal tree exists in which every Steiner node lies at the intersection of two orthogonal lines

97

that contain terminal nodes. The encoding of the individual consists of the Steiner nodes on

Hanan’s grid. The first gene stores the number of such Steiner nodes, and the remaining pairs

represent the x- and y- coordinates of the Steiner nodes. The fitness function on such a set

of Steiner nodes and the terminal nodes is calculated by solving the minimum spanning tree

on these nodes using the algorithm by Prim [68]. The crossover operation simply consists of

the random exchange of two Steiner points in the two parent individuals. The mutation oper-

ator randomly changes the coordinates of a number of Steiner points. As a further mutation

operator, the insertion of new Steiner points to a randomly selected individual is considered.

In this way, reachability of all the solutions in the solution space is guaranteed. For parent

selection, the k-tournament selection method is used, in which k individuals are selected from

the population, and pairwise comparisons are made between the selected individuals until two

remain for the crossover. A population size of 200 is applied, and the initial population is gen-

erated using a randomized version of the minimum spanning tree algorithm. The crossover

rate is given as 9%, the mutation probability as 1%, and the insertion probability as 31%.

Replacement and termination strategies are not discussed.

The ideas used in the evolutionary algorithms for the STP are rarely directly applicable to

the case of k-OPP(s) in terms of encoding, fitness function evaluation, mutation or crossover.

All in all, they provide a framework especially for the mutation and crossover probabilities,

parent selection, replacement and termination strategies.

5.2 An Evolutionary Algorithm for k-OPP(s) with Load Capacities and Limits

on Time

It has been discussed in Section 5.1.1 that there exists a single algorithmic study on the k-

OPP(s), which employs a very-large scale neighborhood search approach and assumes ca-

pacities only on the travel times of the pickers. Despite the quality of the solutions obtained

(more than 60% of the solutions are within 1% of their corresponding optimal solutions), the

computational time requirements are fairly large. The need to adapt a more comprehensive

algorithm that also considers capacities on the loads that the pickers can carry and that incurs

shorter computation times provides the motivation for the formulation of the evolutionary

algorithm discussed in this section.

98

Before discussing the main aspects of the algorithm, it might be useful to state the main

assumptions made throughout the section. It is first assumed that, as stated before, the ware-

house can have multiple depot points. A picker can use any of these depot points as the

starting point, but must return to the same depot point to complete the tour. As in the single

picker case in Chapter 4, demands of unit loads are assumed.

The algorithm makes use of two well-known heuristic approaches to the VRP. The first one,

called the cluster-first, route-second approach, first determines the assignments of the cus-

tomers to the vehicles, then determines the route of each vehicle taking these assignments as

given. The second approach, called the route-first, cluster-second approach, first comes up

with a TSP tour for the whole customers, and then tries to break the tour into subtours so

that the assignments of the customers to the vehicles are determined, hence the routes of the

vehicles.

The idea used in the evolutionary approach is as follows. In each generation of the algorithm,

one of the cluster-first, route-second or the route-first, cluster-second approaches is employed.

Furthermore, the algorithm takes into account the specifics of the order-picking problem and

determines the routes and/or assignments accordingly.

5.2.1 A Cluster-First, Route-Second Approach for the Case with Load Capacities

The main idea in the cluster-first, route-second approach is to determine the assignments of the

items to the pickers using the crossover and mutation operators of the evolutionary algorithm,

and to determine the routes of each picker using the merge-and-reach heuristic proposed in

Chapter 4. Throughout the following of this section, the settings specific to the cluster-first,

route-second approach are discussed.

Encoding Scheme

A chromosome used in the cluster-first, route-second approach consists of m genes, each

representing the index number of the picker that is assigned to that item. Figure 5.3 shows an

example chromosome for the case with 10 items.

The encoding scheme is valid as long as the demands are in terms of unit loads. When there

is demand of more than a single load for the items, the encoding scheme must include the

99

Figure 5.3: An example chromosome for the case with 10 items

amount of the item carried by each of the pickers. In the case of non-unit loads, the encoding

scheme has to be modified, but the remaining aspects of the algorithm are still valid for the

non-unit load assumption in that case.

Fitness Function

The fitness of each individual is given as the total travel time of all the pickers, as is the case

in all the evolutionary approaches discussed in Section 5.1.2. The calculation of the fitness

function for each individual is made using the merge-and-reach heuristic in the following

manner: For each picker, the merge-and-reach heuristic calculates the travel time of the picker.

The travel times obtained are then added up to obtain the total travel time of the pickers.

Figure 5.4 summarizes the procedure cfrs fitness.

Figure 5.4: Procedure cfrs fitness

Handling of Infeasibility

Since the encoding of the solution is made up of the assignments of the pickers to the items

and since there are load capacities on the amounts of the items each picker can carry, there

is a possibility that a given solution can be infeasible. In order to handle the possibility of

infeasibility, we take the following two options.

1. Infeasibility is completely prohibited. In such a case, a repair procedure is applied to

100

each infeasible individual whenever encountered. Figure 5.5 summarizes procedure

repair.

Figure 5.5: Procedure repair

2. Infeasibility is allowed with penalty. Whenever this is valid, the encoding of the in-

dividual does not change, but the fitness value is calculated using procedure repair in

Figure 5.5. This policy brings about the risk of cases where infeasibility is too high.

In order to avoid going too deep into the infeasible region, we prohibit exceeding the

capacities of the pickers by more than 50%. Whenever this amount is exceeded, the

procedure repair is called with the capacity value 50% more than the original.

Crossover Operator

The main goal of the crossover operator is to come up with a new offspring that has an encod-

ing which resembles those of its parents. Since the coding involves only assignments of the

pickers to the items, we stick with the traditional crossover operators of 1-point, 2-point and

uniform crossover, which are well applicable to this case. Another observation to make here

is that since the items are not ordered in terms of their closeness to each other or the depot,

the traditional crossover operators do not stand a great deal of difference among themselves.

Based on this fact, we select the 2-point crossover operator to perform the crossovers and do

not consider any other crossover type. An example 2-point crossover operation is shown in

Figure 5.6.

As can also be observed from Figure 5.6, the 2-point crossover first generates two random

cuts. Offspring 1 inherits the genes outside the cuts from Parent 1, and the remaining from

101

Figure 5.6: 2-point crossover between parents including 10 items

Parent 2. Offspring 2, on the other hand, inherits the genes outside the cuts from Parent 2, and

the remaining from Parent 1.

Mutation Operator

The main aim of the mutation operator is to provide exploration opportunities and also to en-

sure reachability of the entire solution space. Actually, whenever infeasibility is not allowed,

the repair operator, which allows a local search procedure to re-assign a picker to the items

of the picker with excess capacity, in itself provides exploration opportunities. However, it

does this in a more systematic manner, considering also exploitation of the solution space.

As a mutation operator, two items are selected at random and their picker assignments are

swapped. This operator, unlike the repair operation, does not consider changes in the fitness

value resulting from this re-assignment and hence provides a better form of exploration. In

Figure 5.7, an example swap operation is illustrated. In this example, the pickers assigned to

items 3 and 10, which are 1 and 3 respectively, are swapped.

It might be useful to note here that reachability of solutions with the crossover and mutation

operators is maintained in the procedure. The reachability condition for the evolutionary

algorithm requires that every item can be assigned to every picker, which can be satisfied

even by the mutation operator alone.

102

Figure 5.7: An example swap operation with 10 items

Figure 5.8: An example of the encoding scheme with 10 items: (a) the tour, (b) the corre-
sponding individual

5.2.2 A Route-First, Cluster-Second Approach for the Case with Limits on Travel Time

The route-first, cluster-second evolutionary approach mainly aims to determine the main TSP

route using the crossover and mutation operators of the evolutionary algorithm, and the as-

signment of pickers to the items is carried out using a modified approach of Beasley [8], who

proposes a route-first, cluster-second approach for the Vehicle Routing Problem. The remain-

ing of this section provides the settings specific to the route-first, cluster-second evolutionary

approach.

Encoding Scheme

Since the aim of this approach is to come up with a TSP tour that provides a basis for the

assignments of the pickers to the items, the encoding schemes specific to the TSP are applica-

ble for encoding the individuals in this approach. Among various schemes such as adjacency

representation, ordinal representation and path representation, which is the most natural rep-

resentation of a tour. Simply put, the path representation gives the list of cities visited in

the tour as a list, preserving the order in which they are visited. Figure 5.8 gives the path

representation of an example tour with 10 items.

103

Figure 5.9: (a) An example tour with 10 items and the depot, (b) The corresponding order is
represented as a graph whose shortest path problem solution gives the assignment of the items
to the pickers and their picking orders

Contrary to the case in the cluster-first, route-second approach, the unit load assumption is not

needed for such a representation scheme. This is due to the fact that the route-first, cluster-

second approach does not consider the capacity on loads, therefore a single picker can pick

up as many items as needed at a single visit to that item.

Fitness Function

As natural to the evolutionary algorithms for the routing problems, the fitness function of

an individual is the total travel time (or distance) incurred by the pickers. In the route-first,

cluster-second approach, once the main route is determined by the crossover and mutation

operators, the fitness function then depends on the assignment of the items to the pickers.

As mentioned before, the assignment is determined by a modified approach to the heuristic

procedure by Beasley [8]. Before discussing the modifications to the algorithm, it is more

useful to give the procedure due to Beasley [8].

The heuristic approach initializes by solving the TSP for the nodes of the graph that represents

the problem. Then, the nodes are ordered in the same manner as they are in the given TSP

tour, starting with the depot node to come up with a graph whose each arc represents the

assignment of the ordered items to a picker. In Figure 5.9, such an ordering procedure and its

graph representation are depicted for an example with 10 items and the depot.

Following the ordering procedure, the shortest path between the depot node and the last node

in the graph is tried to be found. The weight ci j on an arc (i j) is given by the total travel time

required to start at the depot, visit the item i, then all the items in the TSP tour between i and

104

j, then item j and to return to the depot. The Shortest Path Problem is polynomially solvable,

for instance with a dynamic programming approach. The number of arcs in the solution to

the Shortest Path Problem gives the required number of pickers. Their corresponding routes

are given by the order of items they visit on the graph for the Shortest Path Problem, starting

with the depot node.

In order to improve the performance of the route-first, cluster-second heuristic, De Boer [23]

proposes modification of the routes corresponding to the given assignments. This could be

done using two methods. The first one finds the weight of each arc (i j) by solving the TSP

corresponding to the depot node, nodes i and j, and the nodes between i and j on the TSP

solution. The second method finds the optimal TSP tour for each picker, considering only the

items assigned to that picker.

Our fitness function evaluation is similar to the procedure given by De Boer [23], with two

modifications. First, the initial route is not found by solving a TSP on the VRP graph, but is

rather determined by the encoding of the individual in consideration. Secondly, the weights

of the arcs are not determined by solving the TSP on the subgraph corresponding to the items

contained by the arc, but rather by applying the merge-and-reach heuristic approach, which

is more efficient than solving the TSP optimally, and whose performance is near-optimal as

discussed in Section 4.5.

Handling of Infeasibility

When the route-first, cluster-second approach is applied, as there are limits on the travel times

of the pickers, the only possibility of infeasibility arises when the assignment of items to a

picker brings about a required travel time which is more than the limit. In other words, this

means that the weight of the arc is more than the time limit given. We simply reject such

possibilities and impose that the weight of an arc is infinite when it exceeds the time limit.

Crossover Operator

Usually, the crossover operators for the encoding schemes specific to the TSP depend on

which encoding scheme is used. For the path representation scheme, there are various crossover

operators such as the partially mapped crossover (PMX), order crossover (OX) and cycle

crossover (CX). In the route-first, cluster-second approach, we employ the nearest neighbor

crossover (NNX), which is independent of the encoding scheme, and which ends up with a

105

Figure 5.10: An example nearest neighbor crossover: (a) the distance matrix with the first
row and column indicating the node index numbers (b) the two parents, (c) the union graph
G, (d) the resulting tour, (e) the offspring

single offspring rather than two. It allows more than two parents to be used in the crossover

operation, but here we stick with the traditional 2-parent approach.

NNX initializes by unifying the graphs corresponding to the tours given by the two parents,

say G′ and G′′, into a single graph G. Then, it starts with an arbitrary node, say i, finds its

nearest neighbor on G, say j, and adds edge (i j) to the solution. Then it looks for the nearest

node k to j in G such that (jk) ∈ G and addition of (jk) does not create a cycle. If such k

exists, it becomes the next node for consideration and (jk) is added to the solution. If it does

not, the nearest neighbor l < G to j is found such that addition of (jl) does not create a cycle.

The procedure proceeds in this manner until all nodes are in G. As a final step, the edge

between the last and first nodes added to the solution is inserted and the tour is complete. The

offspring is the path representation of the tour given by the solution. Figure 5.10 illustrates a

case with 6 items and the depot, labeled as node 0.

Figure 5.10(a) tabulates the distance matrix for the example problem with seven nodes. In

(b), the two parents selected for reproduction are given, with respective fitness values of 30

and 49. (c) illustrates the union graph G for the two parents. Arbitrarily starting with node

2, the nearest node to 2 in G is 1, hence (21) is added. The nearest node to 1 in G that does

not create a cycle is 5, and (15) is added. The nearest nodes to 5 in G not creating a cycle

106

Figure 5.11: An example for the displacement operator: (a) the individual, (b) the mutated
individual

are 0 and 3, selecting arbitrarily 0 as the next node, (50) is added. The nearest node to 0 in G

that does not create a cycle is 3, and (03) is added. The nearest node to 3 in G not creating

a cycle is 4, hence (34) is added. The nearest node to 4 in G that does not create a cycle is

6, and (46) is added. The tour is finally completed by adding the edge (62), so that a cyclic

graph is obtained. The resulting tour is shown in (d), and the offspring, whose fitness is 32 is

given in (e). The individual is not only better than one of the parents in terms of fitness, but it

is also close in fitness to the other parent, and also its edges are completely inherited from at

least one of the parents, which is a desirable feature of the crossover operators for TSP when

the main concern is exploitation. The crossover operator also allows for the edges from the

general graph to be added to the solution, which is desirable in terms of exploration of the

solution space.

Mutation Operator

For the route-first, cluster-second approach, the displacement operator is selected as the muta-

tion operator. The displacement operator simply selects a random portion of an individual and

moves the portion to another randomly selected point in the individual. Figure 5.11 illustrates

such an example.

In Figure 5.11(a), the sequence (2,6,7) is randomly selected to be replaced at the 7th position

of the chromosome, which yields the mutated individual in (b).

107

5.2.3 General Parameter Settings

Having defined the parameter settings that are specific to each of the cluster-first, route-second

and route-first, cluster-second approaches, the parameter settings that are common for both

approaches can now be given. It should be noted here that these common settings are bor-

rowed mostly from the literature on the evolutionary algorithms for the VRP in the literature,

which has also been discussed in Section 5.1.2.

Population Size

In selecting the population size, we have gone through the literature survey on evolutionary

algorithms for the VRP and have found out that the size ranges from 30 to 100. After our

preliminary runs, small population size of 30 has ended up with premature convergence and

high variations of solutions when the same problem was tried to be solved for a set of repli-

cations. The population sizes of 50 and 100 seemed to produce reasonable convergence and

we have also decided to use an even higher size of 200 to provide better exploration. Hence

the population sizes that were tried were 50, 100 and 200.

Generation of Initial Population

As can also be observed from the studies in Section 5.1.2, there are two main approaches

to generate the initial population. The first approach is to generate the population randomly,

whereas the second approach generates structured solutions as the initial population, usually

by means of heuristic procedures. The advantage with the first approach is that the initial

population tends to cover a more diverse region of the solution space, which allows better

exploration. Furthermore, it takes less computational effort to generate the initial solutions

randomly, when compared to generating structured solutions. However, it might take longer

time for the algorithm to converge to a solution compared to the second approach. The ad-

vantage of the second approach is faster convergence, but with the higher risk of converging

to a local optimum.

In our approach, we use both approaches for generating the initial population. The procedure

is as follows: We generate solutions using the merge-and-reach heuristic (using all possible

number of cuts and all possible upward and downward move combinations) until either all

such solutions are generated or half of the population size is reached. Then, the remaining

108

solutions are generated at random.

Naturally, there are differences between the representations of the solutions for the cluster-

first, route-second and route-first, cluster-second approaches. If the former approach is ap-

plied, the structured tours are represented by dividing the tour of the single picker into s

subtours of equal size (in terms of the number of items), and a depot is assigned to each sub-

tour in such a way that the assignment creates the cheapest insertion. If the latter approach

is taken, the structured tours are represented by the given merge-and-reach tour. The random

solutions are generated for the first approach by randomly assigning pickers to the items (and

repairing if needed) and finding the subtours using the merge-and reach heuristic. For the

second approach, the assignments are made using the approach in Section 5.2.2. The random

solutions of the second approach are based on generating random routes and making the as-

signments using the modified shortest path algorithm by Beasley [8]. The fitness functions

for the two approaches are then calculated accordingly.

Parent Selection

Basically, there are two main approaches for the selection of the parents for the reproduction

process. The first of these is the roulette-wheel based method, in which the individuals are

given weights that are determined by their fitness values, and the selection of the parents is

made probabilistically, based on these weights: the higher the weight given to the individual,

the higher the probability of selection. The second approach, called the tournament selection,

generally selects two pairs of individuals from the population, applies pairwise comparison

for both pairs and selects the better individuals for reproduction. The choice between the

two methods again depends on the trade-off between exploration and exploitation. Solutions

with better fitness function values generally have a higher probability of being selected with

the roulette-wheel based method, which indicates that this method favors exploitation of the

solution space. In tournament selection, a more random selection process is applied, therefore

exploration is favored more.

As in the case of initial population generation, we try to find a compromise between the two

approaches. Our parent selection approach is similar to the one applied by Yang [86], where

the k-tournament selection approach is used. The approach, as discussed before, consists of

selecting k individuals from the population and applying pairwise comparisons until two of

them remain for reproduction. We have selected k to be eight for our approach. Since these

109

eight individuals are randomly selected from the population, this approach allows exploration

to some extent. The pairwise comparisons allow for exploitation among the eight individuals,

since better fitness values are favored.

Replacement Strategy

The replacement strategy used in the algorithm is the steady-state replacement strategy. This

strategy has been found to be very successful when applied on the combinatorial problems,

and is the only strategy used by the studies on developing evolutionary algorithms for the

vehicle routing problem.

The replacement strategy to be used in the experiments is as follows: In each generation, only

two parents are selected for reproduction. If 2-point crossover is applied, the two children

replace the two worst individuals in the population. If NNX is applied, the offspring replaces

the worst member of the population.

Crossover and Mutation Probabilities

Since the replacement system is steady-state, the crossover rate is selected to be 1, as the

possibility of making no crossover does not create any change in the whole population in that

iteration.

For the mutation probability, the two most widely used mutation probabilities in the literature

on the evolutionary algorithms for the VRP, which are 1% and 5%, are tried.

Stopping Condition

The studies in the literature mainly use two different approaches for the stopping condition:

the first one is based on the number of generations, where the algorithm is stopped when a

certain number of reproductions are made; whereas the second one is based on convergence,

where the algorithm stops when all (or a certain percentage) of the individuals in the popu-

lation are identical. The first approach has the disadvantage of stopping before convergence,

whereas the second approach has the risk of too long computational times, or not stopping at

all due to lack of convergence.

For our parameter settings, the algorithm has never failed to converge to a solution. There-

fore we have employed convergence as the stopping condition of the algorithm. In order to

110

avoid too long computational times while seeking complete convergence, we have set the

convergence rate to be 95%.

5.2.4 The Algorithm

The evolutionary algorithm proposed here is a combined approach making use of both the

cluster-first, route-second and route-first, cluster-second approaches. The algorithm basically

proceeds in the following manner: During the generations, with probability α, the cluster-first,

route-second approach is applied. With the remaining probability, the route-first, cluster-

second approach is applied. Figure 5.12 illustrates the steps of the algorithm.

As can also be seen in Figure 5.12, the algorithm initializes with the generation of the initial

population. Here, the following approach is used: If α ≤ 50%, the initial population that

is generated consists completely of cluster-first, route-second individuals. Otherwise, the

population completely consists of route-first, cluster-second individuals. As the second step,

in order to decide which of the evolutionary approaches to use in the current generation,

a random number is generated. If the random number is less than α, the cluster-first, route-

second approach is employed. Otherwise, the algorithm proceeds using the route-first, cluster-

second approach in the current iteration. Depending on the evolutionary approach employed,

the individuals may or may not be converted into the encoding scheme and fitness values of

the current approach, if it is different from the approach used in the previous generation.

Once the evolutionary scheme is determined, the parents are selected for reproduction using

the 8-tournament selection method discussed in the preceding section. The comparisons are

made using the current fitness values and the parents are determined. Then, if the current

scheme is cluster-first, route-second, 2-point crossover is applied to the parents, and two

offspring are generated. The offspring replace the two worst individuals in the population. For

the route-first, cluster-second approach, nearest neighbor crossover is applied to the parents

to generate a single offspring. The offspring replaces the worst member of the population.

Following the crossover procedure, a new random number is generated in order to determine

whether mutation is to be made. If the random number is greater than pm, the mutation step is

skipped and the algorithm proceeds to the convergence checking step. If the random number

is less than pm, swap mutation is applied if the current method is cluster-first, route-second

111

Figure 5.12: The steps of the combined evolutionary algorithm

112

and displacement mutation is applied if the current method is route-first, cluster-second.

Since the generation is complete after the crossover and (possibly) mutation steps, the algo-

rithm has to check whether the stopping condition is reached by checking whether 95% of the

individuals in the population are identical. If convergence holds, the algorithm is terminated

and the incumbent solution throughout the procedure is given as the output. Otherwise, an-

other random number is generated in order to determine the evolutionary method to be used

in the next generation, and the algorithm proceeds in the manner discussed above.

5.2.5 Computational Experiments

As discussed in Section 5.1.1, the only algorithmic study comparable to the evolutionary

approach proposed in this chapter is due to Geng et al. [37], which is a very large-scale

neighborhood search algorithm. However, there are several drawbacks of the computational

experiments in [37]: First of all, the problem instances are not available for common use;

secondly, the results are given for single instances for each problem setting; thirdly, important

details on the problem instances, such as how many pickers are employed for each case and

whether the number of pickers are exogenously or endogenously determined are not specified;

and lastly, the authors assume only limits on time, disregarding the load capacities of the

pickers. Due to these reasons, the computational experiments have been made on a randomly

generated set of problems.

Test Instances

The random problem set used for the computational experiments is a subset of the one given in

Section 4.5. The subset consists of larger problems (with more items and aisle lengths) so that

the usage of multiple pickers is justified. It consists of the number of blocks set as 1, 2, 4 and 8.

As in Section 4.5, the number of blocks is increased for each problem instance by increasing

the total vertical length of the warehouse by the width of the cross aisle. Therefore each

instance with multiple blocks is obtained by adding cross aisles to the single-block instance.

Number of aisles are set as 7 or 15, pick-aisle length is 30 m, number of items is 30, and the

length between two neighboring aisles is 2.5 m, as is the width of the cross aisles. We again

assume that the walking speed of each picker is 0.6 m/s. Random storage of items is assumed

and orders are generated according to uniform distribution throughout the warehouse, as is

113

also the case in Section 4.5.

The number of pickers is set as 2 for a single block; 2 or 3 pickers are employed for the cases

with 2 or 4 blocks; and 3 or 4 pickers are assumed for the 8-block case. As was stated before,

we assume a multiple-depot warehouse for the k-OPP(s). In Figure 5.13, the locations of the

depot points within the warehouse for each block setting are depicted.

As can be observed from Figure 5.13(a-d), when a single block exists, the depot points are

at the left and right ends of the front cross aisle. With the case of 2 blocks, the depots are

on both ends of the middle aisle. For the case with 4 blocks, the depots are on both ends

of the middle-most middle aisle and for 8 blocks, the first 2 depots are on both ends of the

2nd middle aisle, whereas the remaining 2 depots are on both ends of the 6th middle aisle. In

the cases with 2 depots, we assume that there are doors on both sides of the warehouse, one

across the other, so that a vehicle, such as a truck, can enter from one door, collect the items

in the depot on that side, and exit from the one across after collecting the items in the depot

on this side. For the case with 8 blocks, we assume that the same case happens with 2 doors

on each side of the warehouse, one across the other.

It is assumed that the pickers are homogeneous, that is, they have identical load capacities,

and identical limits on their travel times. This is applicable especially when the pickers have

identical picking carts, which is not an unusual case. The load capacities of the pickers are as-

sumed to be tight, that is, the capacity of the pickers is calculated by the function
⌈

no o f items
no o f pickers

⌉
.

In this case, the number of pickers is automatically imposed on the algorithm.

The situation is a little more difficult for the limit on travel time. The approach to this situation

in the literature is using a multiplier larger than 1 for the single vehicle optimal and then

dividing this value by the number of vehicles. Determination of the multiplier is the crucial

part in this step. Setting it too low may end up with infeasibility, whereas setting it too high

may lead the solution to end up with fewer pickers than desired. Following a set of preliminary

runs, we have observed that a multiplier of 1.20 avoids both possibilities for our problem set.

Consequently, we use the function 1.20zMR

s to evaluate the capacities for each picker in each

problem instance. Here, zMR corresponds to the merge-and-reach solution value to the single-

picker version of the problem, which is already known from the computational experiments

in Section 4.5.

114

Figure 5.13: The depot points for each of the block settings: (a) single block, (b) 2 blocks, (c)
4 blocks, (d) 8 blocks

115

Implementation Issues

Having defined the problem parameters, it might be of use to recall the parameter settings of

the algorithm: For the cluster-first, route-second approach, we try prohibition of infeasibility

or penalizing it with penalty. Three different population sizes of 50, 100 and 200 are tested.

Two possible probabilities of mutation are set as 1% and 5%.

For each problem setting, we solve 30 instances. The number of instances for each setting is

lower compared to the single-picker problem set, due to the reasons on computational time.

However, selection of 30 theoretically justifies the normality of the data due to the Central

Limit Theorem, hence statistical comparisons are valid. Throughout the following of this

section, the computational runs were made on a computer with an AMD Turion 64x2 1.9

GHz processor and 1 GB RAM.

The rest of this section is organized as follows: First, we try the pure cluster-first, route-

second (α = 100%) and pure route-first, cluster-second (α = 0%) approaches in order to see

their own performances. Then, we try the values α = 75% and α = 25% to see how different

settings of the combined approach behave.

Computational Results with α = 100% and α = 0%

In this part, we aim to assess how the two evolutionary approaches individually behave to see

how the cluster-first, route-second and route-first, cluster-second approaches perform on their

own.

For the pure cluster-first, route-second approach (α = 100%), we assume for the time being

that there are no limits on travel time. With the given alternative settings in the preceding part

of this section, we solve 5,040 problem instances in total. These runs aim to serve the purpose

of fine-tuning the cluster-first, route-second algorithm parameters. A Taguchi analysis is made

on the results of the computational experiments, and the results are shown in Figure 5.14.

In Figure 5.14, factor A corresponds to the number of blocks and pickers, factor B represents

the number of aisles, factor C corresponds to the population size, factor D represents infeasi-

bility, and factor E corresponds to the mutation probability. It can be observed from Figure

5.14 that all the problem parameters (number of blocks, aisles and pickers) significantly af-

fect the quality of the solutions. This is nothing but expected, and can also be observed

116

Figure 5.14: Taguchi analysis results for α = 100%

117

for the single-picker case in Section 4.5. The figures also show that the effects of the algo-

rithm parameters (population size, handling of infeasibility and probability of mutation) do

not significantly affect the solution quality, when compared to the problem parameters. This

is also expected, as the solution values depend mostly on the problem parameters. When

the algorithm parameters are compared within themselves, it can be seen that the handling

of infeasibility and mutation probability have a more significant effect than the size of the

population.

Based on the fine-tuning experiments, we finalize the parameters of the cluster-first, route-

second algorithm as follows: Population size is set at 200, infeasibility is allowed with penalty

and mutation probability is determined as 5%.

Next, the pure route-first, cluster-second approach (α = 0%), as opposed to the previous

case, it is assumed for the time being that pickers are uncapacitated in terms of the loads

they can carry. Since there is no issue of infeasibility for this case, we solve half the number

of instances of the cluster-first, route-second problem set, which gives 2,520 instances in

total. As in the previous case, a Taguchi analysis is made on the results of the computational

experiments, with the results shown in Figure 5.15.

In Figure 5.15, factor A corresponds to the number of blocks and pickers, factor B corresponds

to the number of aisles, factor C represents population size, and factor D corresponds to the

mutation probability. Figure 5.15 reveals that, as in the cluster-first, route-second case and

as expected, the problem parameters (number of blocks, aisles and pickers) have significant

effects on the solution quality. When the parameters related to the algorithm are considered,

it is observed that the probability of mutation and population size have comparable effect on

the solution quality. Hence we assume that they are both significant.

Since increasing the mutation probability and population size increases solution quality, we

set the probability of mutation for the route-first, cluster-second setting at 5%, and the popu-

lation size is set at 200.

In order to justify the usage of the two evolutionary algorithms, the results will also be com-

pared with those of an exhaustive random search for each evolutionary approach. In each

instance of the cluster-first, route-second case, 2xno o f generations random assignments are

generated and the routes of each solution are determined by the merge-and-reach heuristic

118

Figure 5.15: Taguchi analysis results for α = 0%

119

procedure. In each instance of the route-first, cluster-second approach, no o f generations

random tours are generated and this procedure is repeated 30 times in order to get more

reasonable results for comparison. The assignments related to the tours are found by the as-

signment procedure given in Section 5.2.2. The main aim in these random search operations

is to create as many individuals as generated by the evolutionary algorithms, although the

second random search approach is favored more for comparability.

Table 5.1 compares the two pure approaches in terms of three different measures: The first

one measures the deviation from the average single picker optimal. As there are multiple

depot points, it may be the case that the k-OPP(s) solution is better than the single picker ver-

sion, in which case the deviation becomes negative. A negative value of the deviation justifies

the usage of multiple pickers in that case. The second measure is the improvement over the

average random search solution. The larger the improvement, the more is the justification

in using the two approaches over random search. The last measure indicates how much im-

provement has been made over the best solution in the initial population. If this value is large,

the evolutionary algorithms are successful in improving the initial solutions generated by the

merge-and-reach heuristic.

Before interpreting the results, it might be useful to keep in mind that the deviations and

improvements given in Table 5.1 are not directly comparable. In terms of the first measure, the

two problems are different from each other because the capacity constraints are not identical.

For improvement over random search, an exact comparison is not possible because the random

search procedures for the two cases are different (in addition to the difference in capacity

constraints). All in all, the deviations and improvements more or less indicate the performance

of the procedures to a certain extent.

Table 5.1 indicates a significant dominance of the route-first, cluster-second approach over

the cluster-first, route-second procedure. For all settings, the former approach is better than

the latter both in terms of the deviation from the single picker optima and improvement over

the random search solutions. In only one case, where there is a single block with 7 aisles and

2 pickers, the improvement of the latter approach over the initial population best is better than

that of the former. Yet in all the other cases, the route-first, cluster-second approach better

improves the initial population best.

120

Ta
bl

e
5.

1:
Pe

rc
en

td
ev

ia
tio

ns
fr

om
si

ng
le

pi
ck

er
op

tim
a

an
d

pe
rc

en
ti

m
pr

ov
em

en
ts

ov
er

ra
nd

om
se

ar
ch

so
lu

tio
ns

an
d

in
iti

al
po

pu
la

tio
n

in
cu

m
be

nt
s

fo
r

th
e

ca
se

s
α

=
0%

an
d
α

=
10

0%
(a

ve
ra

ge
s

of
30

in
st

an
ce

s)
,b

ol
d

en
tr

ie
s

in
di

ca
tin

g
su

pe
ri

or
ity

ov
er

th
e

ot
he

rm
et

ho
d

%
D

ev
ia

tio
n

fr
om

%
Im

pr
ov

em
en

to
ve

r
%

Im
pr

ov
em

en
to

ve
r

si
ng

le
pi

ck
er

op
tim

al
ra

nd
om

se
ar

ch
in

it
po

p
be

st
B

lo
ck

s
Pi

ck
er

s
A

is
le

s
α

=
0%

α
=

10
0%

α
=

0%
α

=
10

0%
α

=
0%

α
=

10
0%

1
2

7
-0

.5
1

-0
.1

6
35

.4
27

.0
0.

52
1.

11
15

-2
.8

5
2.

00
42

.8
25

.7
2.

97
1.

40
2

2
7

-4
.4

8
0.

34
42

.1
28

.8
7.

34
3.

50
15

-4
.4

3
2.

08
41

.9
25

.7
7.

28
1.

31
3

7
-1

.2
9

2.
22

37
.8

23
.2

3.
85

1.
38

15
-2

.0
2

1.
74

39
.2

26
.7

4.
76

1.
76

4
2

7
-4

.8
3

4.
69

42
.2

25
.0

9.
04

2.
09

15
-6

.0
9

6.
97

44
.9

23
.3

11
.3

7
2.

29
3

7
-6

.7
8

7.
97

46
.0

23
.5

11
.4

3
1.

88
15

-6
.7

6
9.

35
45

.3
24

.1
12

.2
1

3.
36

8
2

7
-4

.4
1

4.
68

40
.4

24
.9

8.
58

1.
07

15
-5

.2
6

7.
33

41
.5

23
.5

10
.6

4
1.

28
4

7
-7

.5
4

9.
32

46
.7

24
.0

12
.4

2
2.

02
15

-5
.6

4
7.

04
45

.6
23

.0
11

.2
5

1.
68

121

When the individual performance of the route-first, cluster-second approach is considered, it

can be observed that as the problem size increases, the improvement of the procedure over the

single picker solution also increases, up to a 7.54% improvement in the best case. This is due

to the fact that this approach makes better use of multiple depots and the good performance

of the merge-and-reach heuristic in order to avoid large detours when the problem size gets

larger. The only exception is the case with 2 blocks and 3 pickers, where 3 pickers have

to share 2 depots, which can end up with higher detours when compared to other problem

settings. The improvement over the initial population best tends to go in parallel with the

deviation from the single picker optima, which is expected. The amount of improvement over

the random search seems to be indifferent as the problem size changes.

As for the individual performance of the cluster-first, route-second approach is concerned, we

see an opposite trend. As the problem size increases, the deviation of this approach from the

single picker optima increases as problem size increases. This is because the evolutionary

approach actually solves the assignment problem, and therefore cannot make use of the per-

formance of the merge-and-reach heuristic in order to avoid detours as problem size increases.

The improvements over the best solutions in the initial population are also not promising, with

no better result than 3.50%. As in the former approach, the improvement over random search

solutions are fairly stable.

Computational Results with α = 75% and α = 25%

In this part, we impose both load capacity constraints and travel time limits on the pickers,

and try a combined approach that employs both the cluster-first, route-second and route-first,

cluster-second approaches.

In the preceding part, the route-first, cluster-second algorithm was observed to dominate

the cluster-first, route-second algorithm significantly. However, when using a combined ap-

proach, we have to keep in mind the exploitation and exploration opportunities gained by

using each of the algorithms. The algorithm settings are as follows: population size is 200,

probability of mutation is 5% and infeasibility is allowed with penalty for the cluster-first,

route-second approach.

Throughout this part, two combined approaches are considered: In the first one, we set

α = 25% and start with a set of route-first, cluster-second solutions. In each generation,

122

we apply route-first, cluster-second approach with probability 75% and cluster-first, route-

second approach with probability 25%. The main idea here is to make better use of good

exploitation when α = 0%, and use exploration opportunities of the cluster-first, route-second

approach to a certain extent.

As the second approach, we consider setting α = 75% and start with a set of cluster-first,

route-second solutions. In each generation, we apply cluster-first, route-second approach with

probability 75% and route-first, cluster-second approach with probability 25%. As opposed to

the first combined approach discussed, the idea is to make better use of good exploration when

α = 100%, and use exploitation opportunities of the route-first, cluster-second approach.

For the computational experiments of the combined approach, we use a modified form of

the random search procedure applied in the previous part. For the case with α = 75%, we

record the number of individuals created during the reproduction processes of each instance,

and generate that many cluster-first, route-second random search solutions. We then compare

the result with the best of these solutions. Similarly, for α = 25%, we record the number of

individuals created during the reproduction processes, and generate that many random route-

first, cluster-second random individuals. We apply this procedure 30 times in order for the

random search results to become comparable with those from the evolutionary algorithm.

The experiments are made using the problem settings and algorithm parameters discussed

in the previous part. Table 5.2 shows the computational results for the experiments carried

out for the cases with α = 25% and α = 75%. As has been the case in the previous part,

the comparisons are made in terms of the deviations from the single picker optima and the

improvements over the random search and best initial population results.

When the individual performance of α = 25%, that is, the approach with 75% route-first,

cluster second and 25% with cluster-first, route-second is considered in terms of the deviation

from the single picker optima, it can be seen that the performance of the procedure increases

with increasing problem size until 4 blocks except the case with 2 blocks and 3 pickers, then

tends to stabilize around 10% improvement. As in the case of pure route-first, cluster-second

approach, the improvement over the random search solutions are more or less independent of

the problem parameters, with an average improvement around 52%. The improvements over

the best initial population solutions are again parallel with the improvements over the single

picker optima.

123

Ta
bl

e
5.

2:
Pe

rc
en

td
ev

ia
tio

ns
fr

om
si

ng
le

pi
ck

er
op

tim
a

an
d

pe
rc

en
ti

m
pr

ov
em

en
ts

ov
er

ra
nd

om
se

ar
ch

so
lu

tio
ns

an
d

in
iti

al
po

pu
la

tio
n

in
cu

m
be

nt
s

fo
r

th
e

ca
se

s
α

=
25

%
an

d
α

=
75

%
(a

ve
ra

ge
s

of
30

in
st

an
ce

s)
,b

ol
d

en
tr

ie
s

in
di

ca
tin

g
su

pe
ri

or
ity

ov
er

th
e

ot
he

rm
et

ho
d

%
D

ev
ia

tio
n

fr
om

%
Im

pr
ov

em
en

to
ve

r
%

Im
pr

ov
em

en
to

ve
r

si
ng

le
pi

ck
er

op
tim

al
ra

nd
om

se
ar

ch
in

it
po

p
be

st
B

lo
ck

s
Pi

ck
er

s
A

is
le

s
α

=
25

%
α

=
75

%
α

=
25

%
α

=
75

%
α

=
25

%
α

=
75

%
1

2
7

-0
.8

4
-1

.2
4

41
.9

31
.5

0.
86

2.
93

15
-3

.3
0

-3
.9

0
51

.4
34

.7
3.

46
2.

97
2

2
7

-6
.7

6
-7

.8
6

51
.7

44
.4

10
.1

6
7.

18
15

-6
.2

6
-8

.8
2

51
.6

39
.3

9.
50

3.
27

3
7

-2
.7

3
-4

.9
7

46
.8

32
.2

3.
36

3.
49

15
-3

.7
7

-4
.9

8
46

.6
34

.9
6.

58
3.

75
4

2
7

-8
.9

7
-8

.5
5

54
.9

39
.1

13
.7

3
7.

21
15

-9
.9

8
-9

.5
0

59
.0

40
.0

15
.9

6
8.

66
3

7
-1

2.
51

-9
.9

6
56

.5
45

.2
15

.7
1

11
.3

8
15

-1
2.

64
-9

.5
4

55
.8

45
.0

15
.9

3
12

.5
9

8
2

7
-7

.3
1

-7
.0

4
52

.6
36

.4
12

.4
1

7.
74

15
-9

.2
1

-7
.8

5
53

.0
38

.9
15

.9
4

8.
28

4
7

-1
1.

60
-9

.3
9

59
.8

41
.6

17
.5

4
9.

02
15

-8
.8

0
-7

.6
8

58
.0

36
.4

15
.3

1
8.

27

124

Considering the performance of α = 75%, that is, the approach with 25% route-first, cluster

second and 75% with cluster-first, route-second procedures, the results are similar to those of

the case with α = 25% in terms of the improvement over the single picker optima, random

search solutions and the best members of the initial population. For improvement over the sin-

gle picker optima, the results tend to get better until 4 blocks with the same exception stated

before, then tend to get stable. The improvement over random search is again almost inde-

pendent of the problem settings, whereas improvement over initial population best increases

with increasing problem size.

The most significant findings are obtained when the results are compared to the pure route-

first, cluster second and cluster-first, route-second approaches. When the results in Tables 5.1

and 5.2 are compared, it is first seen that the combined approach with α = 25% improves

the solutions of the pure route-first, cluster-second approach in terms of improvements over

the single picker optima, random search solutions and initial population best; hence the usage

of exploration in this procedure is justified. What is more remarkable in this comparison

is the performance of the approach with α = 75%. Although the pure cluster-first, route-

second approach cannot improve on the single picker optima except one case, the approach

with α = 75% provides a significant amount of improvement over the single picker optima,

which emphasizes the fact that using even a small amount of exploitation may significantly

increase the solution quality. For both approaches, the improvements over the random search

and initial population best are significantly better than those of the pure approaches.

When the performances of α = 25% and α = 75% are compared, noticeable results are

observed. Although the pure route-first, cluster-second approach dominates the cluster-first,

route-second approach in terms of the improvement over the single picker optima, for the

combined approach, the case with α = 75%, which employs more cluster-first, route-second

approach, performs better than the case with α = 25% for especially the smaller sized prob-

lems. However, starting with the instances with 4 blocks, the α = 75% approach starts to

perform better than the other, which is again due to better avoiding of the detours by the

route-first, cluster-second approach.

In short, our computational experiments show that with the problem settings given, the usage

of multiple pickers is justified by the improvements over the single picker optima, the usage

of an evolutionary approach is justified by the improvements over the random search solution

125

and initial population best, and usage of a combined approach making use of cluster-first,

route-second and route-first, cluster-second approaches is justified by the improvements it

makes over the pure approaches.

126

CHAPTER 6

THE ORDER-PICKING PROBLEM IN A PARALLEL-AISLE

WAREHOUSE WITH TURN PENALTIES

In the preceding chapters, the order-picking problem (OPP) has been studied for the single

and multiple picker cases by taking into account the total travel time (or distance) as the

objective function. When the travel time is further divided into its components, one observes

the time spent while travelling, entering and leaving the aisles, acceleration/deceleration of

the picking vehicle, picking the items, and turning the corners or taking U-turns. The time

spent while travelling is handled by the algorithms proposed in Chapters 4 and 5 for the

single picker and multiple picker cases respectively. The time spent while entering/leaving

the aisles, acceleration/deceleration of the picking vehicle, and picking the items is constant

and unavoidable. Yet the time spent while corner turning or taking U-turns depends on the

route of the picker. This is mostly applicable for warehouses where AS/RS are employed,

unlike the manual order-picking assumption in Chapters 4 and 5.

In this chapter, we consider the effect of the turns in the travel time of the picker. We assume

throughout the chapter that each right and left turn incurs 1 turn, whereas a U-turn incurs 2

turns. We first review the literature on turn minimization in general graphs in Section 6.1

and propose a polynomial time algorithm, linear in terms of the number of pick aisles for the

2-OPP graphs and k-OPP graphs with k ≥ 3 in Sections 6.2 and 6.3 respectively.

6.1 Literature Survey on Turn Minimization in General Graphs

Despite the fact that the turn minimization problem has never been studied for the OPP, the

problem has received considerable attention for various types of problems, due to its applica-

127

bility in many practical situations such as snow removal, street cleaning, garbage collection,

mail delivery, etc.

To the best of our knowledge, the first study on turn minimization in a graph is due to Caldwell

[14], who discusses the problem of finding the shortest route between two points in a street

and freeway network of a city, such that a function of time and distance is minimized. The

algorithm simply consists of modifying the travel distances (or times) between each pair of

nodes and solving the shortest path problem, which can be done in polynomial time, between

the origin and destination nodes.

Bodin and Kursh [11] discuss an application of turn and distance minimization for the routing

and scheduling of street sweepers in a city road network. It is assumed that there are certain

pickup points, and the objective is to complete the pickup operations of the sweepers in the

shortest amount of time possible. The time incurred by the turns is embedded into the model

by modifying the time required to travel between each pair of nodes. It is assumed that

the sweeping operations can only be performed during time periods during which parking is

prohibited on a street. Since this requirement differs among the streets of the city, the problem

resembles the VRP with time windows. Consequently, a combined heuristic approach that

makes use of both the cluster-first, route second and route-first-cluster-second is proposed.

The algorithm is applied on a district of New York City and critical roads in Washington,

D.C.

Roy and Rousseau [75] consider the Capacitated Chinese Postman Problem with the addi-

tional assumption that the depots are also to be located. The right, left and U-turns are

penalized along with the travel distances and street crossings. The tour with turn penalties

is transformed into a TSP by first transforming the arc routing problem into a node routing

problem, then adding arcs to the new network to represent the penalty of changing arcs. The

resulting problem on the given network with new arcs is solved using an allocation-routing-

location based heuristic approach. The solution approach is applied for two different postal

stations in the Canadian Postal Service network.

In Gendreau et al. [36], a transformation of the problem of distance minimization with turn

penalties to a distance minimization problem is proposed. The transformation is made using

artificial edges in order to represent the left, right and U-turns. The problem is then solved

using the GENIUS heuristic for the TSP, which starts with a tour of three arbitrary vertices,

128

and iteratively adds the non-inserted nodes to the tour by inserting them between two of their

closest neighbors on the tour. The algorithm is applied for 30 street networks in the Montreal

suburbs, with consideration given to the deadheadings, left turns, U-turns, street crossings and

street changes. Right turns are not considered, as they are complementary to the left turns,

U-turns and street crossings.

Benavent and Soler [9] consider the case of a street network where some turns are prohibited,

whereas others are allowed with penalty. In such a situation, the problem transforms into a

directed rural postman problem with turn penalties. The problem is shown to be NP-hard

by polynomial transformation to the strongly NP-hard directed Hamiltonian circuit problem,

which tries to find the existence of a circuit which traverses every node of a graph exactly

once. The algorithm they propose is an improvement heuristic over the construction heuristic

in [11]. The procedure starts by polynomially transforming the rural postman problem to

an asymmetric TSP. The construction heuristic by Bodin and Kursh [11] constructs a route

that disregards the forbidden turns constraint. The improvement heuristic that follows the

construction depends on two operations. The first one substitutes a non-required section of

the tour by the appropriate shortest feasible chain. The second approach consists of crossing

three appropriate turns made by the tour at the same node to obtain a new tour that differs

from the original only by the turns made at this node.

Clossey et al. [17] propose an alternative transformation method for handling the turn penal-

ties in directed graphs. Rather than transforming the problem into an asymmetric TSP, they

propose an approach in which the graph is first transformed into an Eulerian graph. Follow-

ing this, the Eulerian graph is traversed using the polynomial time algorithm by Edmonds and

Johnson [28] with modifications that try to keep the turn penalties low. In all, the authors

test six different strategies on random problems and observe that two of these perform signif-

icantly better than the others. These two strategies are compared against an exact algorithm

and a patching heuristic. They are observed to perform faster than the exact algorithm and to

have a better performance than the patching heuristic.

Arkin et al. [4] discuss a modified version of the problem, called the minimum-turn milling

problem, in which the aim is to find a polygonal tour for a cutter so that it sweeps out a

specified region (called the pocket), and the total number of turns is minimized. They consider

several versions of the problem, which are called the discrete milling problem, the thin discrete

129

milling problem, the orthogonal milling problem, the thin orthogonal milling problem and the

integral orthogonal milling problem. The NP-hardness of the minimum-turn milling problem

is proven with reduction to the problem of finding Hamiltonian tours on grid graphs. Several

heuristic procedures are proposed for both the minimum-turn milling problem as well as its

versions, and the corresponding worst-case performances are given.

A further extension of the rural postman problem with turn penalties, which is its application

on mixed graphs, is discussed in Corberan et al [18], who propose an algorithm for transform-

ing this version of the problem into an asymmetric TSP. The transformation is a modification

over the version in directed graphs. It is shown that such a transformation decreases the quality

of the solutions for the problem. Consequently, a three-step heuristic procedure is proposed.

In the first step, several feasible solutions are generated using a heuristic procedure for the

mixed rural postman problem. The second step involves modifications on the solutions so

that turn costs are decreased, and the third step tries to provide improvement on the solutions

obtained by the second step. The procedure is tested on randomly generated problems and

compared against exact and heuristic procedures.

As can be seen from the studies in the literature, the turn minimization is usually considered

along with the distance minimization objective, and the problem is converted into a single

objective problem. Additionally, the problems discussed throughout this section are usually

more general, hence they are NP-hard. For the case of the OPP with turn penalties, the

problem is polynomially solvable, as we will show in the next sections.

6.2 A Turn Minimizing Algorithm for 2-OPP

In this section, we propose a polynomial-time algorithm, which is linear in terms of the num-

ber of aisles, for the turn minimization problem with no middle aisles. First, it is proven that

when the depot is on a cross aisle, the problem of minimizing the number of turns in a 2-OPP

is equivalent to solving the Rural Postman Problem (RPP), with the required edges being the

non-empty pick aisles. It is also shown that the solution of this problem is easy, and we pro-

pose a simple algorithm. Then we discuss several exceptional cases where this algorithm is

not applicable. Considering the additional possible move types, the turn minimizing algo-

rithm, which depends on the solution of the RPP, is modified so that the exceptional cases are

130

also handled.

Unless otherwise stated, it is assumed that the depot is on a cross aisle, and the picker starts

the route without incurring any turns when starting from the depot, and ends the route without

incurring any extra turns upon arriving at the depot. An upward move is defined to be a

full traversal of a subaisle from its front end to the back end and a downward move is a full

traversal of a subaisle from its back end to the front end.

6.2.1 Conversion to the Rural Postman Problem

In order to convert the turn minimization problem in a 2-OPP graph into the Rural Postman

Problem, we first consider all possible move types (of which there are three), and prove that

complete traversal of an aisle dominates partial traversal, thereby justifying the required edges

in the Rural Postman Problem to be the edges corresponding to the non-empty aisles.

Assume that on an optimal route, the next vertex to be visited is vi, which is on aisle k. Assume

also that the route has entered aisle k from one of either of its ends (front or back). The purpose

of defining these move types is to show that traversing a non-empty aisle performs at least as

good as traversing it partially, that is, for any given route with partial aisle traversal, there

exists an alternative route with complete traversal of that aisle which performs at least as

good as the given tour.

Move Type 1 Consider vertex vi and its adjacent vertex v j, on aisle k. Suppose that vi has

been visited and v j is the next vertex to be visited after vi.

Observation 6.1 When Move Type 1 applies, full traversal of aisle k performs as well as its

partial traversal.

Proof. There are two cases. Assume, without loss of generality, that the picker enters aisle k

from the back end.

1. vi is nearer to the back end than v j. Then, v j is simply reached after visiting vi without

incurring any turns and ending up facing bk. Any other strategy ends up with more

turns and end up bk. Figure 6.1 depicts such a case.

131

Figure 6.1: An illustration of Move Type 1 - Case 1, where no turn is incurred

2. v j is nearer to the back end than vi. Then, there are two possible moves: The first visits

vi, makes a U-turn, then visits v j. The second visits vi, traverses the aisle until bk, then

makes a U-turn and visits v j. Both moves incur 2 turns after visiting vi and both end up

facing ak. Such a case is illustrated in Figure 6.2.

The first case does not consider full or partial traversal of the aisle, whereas the second case

indicates that there is no difference in applying any of the two strategies. �

Move Type 2 Consider vertex vi on aisle k and vertex v j on aisle l. Suppose that vi has been

visited and v j is the next vertex to be visited after vi.

Observation 6.2 When Move Type 2 applies, full traversal of aisle k performs as well as its

partial traversal.

Proof. Assume, without loss of generality, that the picker enters aisle k from the back end.

There are two options: The first one completely traverses aisle k, then makes a turn at bk,

enters aisle l from bl and reaches v j. This incurs 2 turns in total. The second option makes a

U-turn after visiting vi, makes a turn at ak, enters aisle l from al and reaches v j. This incurs a

total of 4 turns. Figure 6.3 illustrates the two options.

It should be noted here that although complete traversal performs better than partial traversal

in a single move, since the moves end up facing different ends of aisle l, the moves following

132

Figure 6.2: An illustration of move Type 1 - Case 2: (i) with partial traversal, (ii) with com-
plete traversal. Both moves require 2 turns in total

Figure 6.3: An illustration of Move Type 2: (i) with partial traversal, incurring 4 turns, (ii)
with complete traversal, incurring 2 turns

133

Figure 6.4: The only case when partial traversal can possibly perform better than complete
traversal: (a) partial traversal of aisle k followed by reaching the depot incurs 5 turns, (b)
complete traversal of aisle k followed by reaching the depot also incurs 5 turns

partial traversal may incur less turns than the ones following complete traversal. In fact, this

is the only possibility of violation to the optimization of the complete route by optimizing

the moves between the items. It can easily be shown that the only case when partial traversal

can outperform complete traversal in the complete route is when the depot is on a cross aisle.

This can occur when vi is visited followed by a full traversal, then v j is visited from aisle l

and move type 3(i) (to be shown later) occurs, compared to visiting vi followed by a partial

traversal, then v j is visited and move type 3(ii) (also to be shown later) occurs. However,

both of these cases incur 5 turns in total, implying that partial traversal cannot outperform

complete traversal in this case as well. Figure 6.4 summarizes the two possibilities. �

Move Type 3 Consider vertex vi on aisle k and vertex v0, which is the depot node. Suppose

that vi has been visited and v0 is the next vertex to be visited after vi.

Observation 6.3 When Move Type 3 applies, full traversal of aisle k performs as well as its

partial traversal.

Proof. There are two cases to be considered. Assume, without loss of generality, that the

picker enters aisle k from the back end.

1. If the depot is on the back cross aisle, there are two options to traverse aisle k. The first

one performs partial traversal, performs a U-turn after visiting vi, exits aisle k using ak

and reaches the depot. This option incurs 3 turns. The second one performs complete

134

Figure 6.5: An illustration of Move Type 3 - Case 1: (i) with partial traversal, (ii) with
complete traversal, both cases incurring 3 turns

traversal, visits bk after visiting vi, performs a U-turn at bk and follows the same path

as the first option. This also incurs 3 turns. Figure 6.5 illustrates such a case.

2. If the depot is on the front cross aisle, then exiting aisle k using bk and reaching the

depot incurs 1 turn. Any other strategy would end up with more turns. Figure 6.6 gives

an example of this case.

�

Having defined all the applicable move types, we now give an important proposition.

Proposition 6.4 A turn minimizing route for 2-OPP traverses all the non-empty pick aisles

completely.

Proof. Assume that at some point on the optimal route, the picker visits vi on aisle k, and the

next node to be visited is v j on aisle l. Assume also that the picker enters aisle k from ak.

1. If l = k and j , 0, then by Observation 6.1, complete traversal of aisle k performs as

well as its partial traversal.

2. If l , k and j , 0, then by observation 6.2, complete traversal of aisle k performs better

than its partial traversal.

135

Figure 6.6: An illustration of Move Type 3 - Case 2, incurring 1 turn

3. If j = 0, then by Observation 6.3, complete traversal of aisle k performs better than its

partial traversal.

Since we know that optimizing each single move leads to the optimization of the complete

route, complete traversal of each aisle that contains items leads to the optimal tour that mini-

mizes the number of turns. �

The following theorem is due to Proposition 6.4.

Theorem 6.5 The problem of minimizing the number of turns on a 2-OPP graph is equivalent

to solving the Rural Postman Problem (RPP) with the objective of distance minimization, and

the required edges as the ones corresponding to the non-empty aisles.

Proof. Full traversal of the edges is justified by Proposition 6.4. Since the route starts and

ends at the depot, we need to have: number of upward moves = number of downward moves.

If the number of required edges is even, there is no need to duplicate any of them or add any

new vertical edge. If the number of edges is odd, then certainly one of the required edges

should be duplicated or a new edge is to be added. In any case, the number of vertical edges

in the optimal solution to the RPP is fixed. Thus, since the RPP minimizes the total distance

to be travelled, in this case, it tries to find the minimum number of horizontal edges that will

136

end up with a feasible Eulerian tour, when combined with the vertical edges.

Assume that a feasible RPP solution, i.e., a Eulerian tour with minimum number of horizontal

edges, is found. If any new vertical edges are added to this solution without destroying the

Eulerian property, the total number of turns obviously increases. If new horizontal edges are

added without destroying the Eulerian property, the number of turns will not decrease, which

is obvious. Therefore the solution with fixed required number of vertical edges and minimum

number of horizontal edges is the one with minimum number of turns. �

6.2.2 The Algorithm

The Rural Postman Problem has been known to be NP-hard on general graphs. However, due

to the special structure of the OPP graph, we propose a polynomial time algorithm for the

problem on the OPP graphs, which is of linear complexity in terms of the number of pick

aisles. We make use of the following facts:

• The number of vertical edges in the optimal solution equals the number of non-empty

aisles, if there is an even number of them. In the case when their number is odd, one of

the vertical edges should be duplicated.

• If none of the left-most and right-most required edges is duplicated, then in the optimal

solution, the degrees of the vertices incident to them will be 2 each. For the vertices

incident to empty aisles, the sum of the degrees totals 4 (2 for the forward route, 2 for

the backward route of the picker). For the vertices incident to the edges in between, the

sum of the degrees is 6. This is due to the fact that a total of 2 degrees (1 for each) is

added by the required edge; 2 degrees will be added to one for the forward route of the

picker, whereas 2 more will be added to one for the picker‘s route back to the depot.

For the aisle where there is duplication, total number of degrees increases by 2, which

is obvious.

• If the depot is on a cross aisle to the left of the left-most nonempty aisle or to the right

of the right-most nonempty aisle, it can be moved to the nearest corner of the nonempty

aisle, as the total number of turns will not change.

137

Figure 6.7: Algorithm turn 2-OPP

Based on the given facts, we propose the algorithm given as Algorithm turn 2-OPP in Figure

6.7.

The algorithm initializes by moving the depot to the corner of the nearest non-empty pick

aisle if necessary. Then, the required edges are formed and numbered. The first while loop

forms subtours by joining the required edges using horizontal edges. The second while loop

joins these subtours using double horizontal edges from arbitrarily selected cross aisles. The

complexity of the algorithm is O(m), where m is the number of pick aisles, due to the fact

that there can be at most m non-empty pick aisles and each of the while loops can be called at

most m
2 times.

6.2.3 Extensions

So far it has been assumed that the depot is at one of the front or back cross aisles, which is

a very common assumption in the OPP. However, in the OPP with turn penalties, one cannot

138

assume it without loss of generality. For this purpose, we now show that if the depot is at one

of the aisles, the algorithm given in the preceding section needs to be modified for this case.

As in the previous case, it is shown that the problem of minimizing turns in a 2-OPP graph

where the depot is on an aisle is equivalent to solving a Rural Postman Problem. In order to

achieve this end, a fourth move type is defined.

Move Type 4 Consider vertex v0 (the depot node) on aisle k and vertex vi. Suppose that v0

has been visited and vi is the next vertex to be visited after v0.

Observation 6.6 Proposition 6.4 still holds for the case when the depot is on one of the aisles

except for the special case in which there are odd number of non-empty pick aisles and there

are items on both sides of the depot.

Proof. For all cases, we need to keep in mind that the number of upward moves must be equal

to the number of downward moves so that the tour ends at the depot. There are three possible

cases. The first two prove that when the exceptional case is not valid, Proposition 6.4 still

holds. The last case discusses why Proposition 6.4 does not hold for the exceptional case.

Assume, without loss of generality, that the picker exits aisle k from ak.

1. When there are even non-empty aisles, since the number of upward moves equals the

number of downward moves, there always exists a route that visits all the required nodes

by complete traversal of their pick aisles and re-enters aisle k using bk before returning

to the depot. Figure 6.8 depicts such a case.

2. When there are odd non-empty aisles but there exists at least one vi, i , 0 on both sides

of v0, then due to the equality of upward and downward moves, the tour requires that

there be a U-turn at one of the aisles, or the tour traverse one of the empty pick aisles

completely. If there is a U-turn at one of the pick aisles, say l, (the U-turn can be made

at al without extra turns), or if the tour uses an empty aisle, the case is converted into the

first case of this move type, where complete traversal is justified. Figure 6.9 illustrates

a case where the U-turn is made on aisle k.

3. When there are odd non-empty aisles and there exists at least one vi, i , 0 on at most

one side of v0, then due to the assumption of not incurring extra turns for entering and

exiting the depot, complete traversal of k as in (2) is not justified. When the aisle is

139

Figure 6.8: When there are even non-empty aisles, complete traversal of aisle k is possible
and performs better than partial traversal

Figure 6.9: When there are odd non-empty aisles and items on both sides of v0, a U-turn
at aisle k is an alternative optimal, (i) the U-turn with partial traversal, (ii) the U-turn with
complete traversal. Both incur 2 extra turns.

140

Figure 6.10: There are odd non-empty aisles and an item on only one side of v0, (i) complete
traversal results in 2 extra turns, (ii) partial traversal of k

exited and entered from the same end (the one between which and the depot there are

items) incurs 2 less turns than (2). Figure 6.10 illustrates the case. In (i), complete

traversal incurs an extra U-turn at bk, whereas in (ii) partial traversal does not.

�

The Modified Algorithm

The algorithm for turn minimization in 2-OPP graphs can be modified so that the exceptional

case in Move Type 4 - Case 3 can be handled. For this, when there are odd non-empty aisles

and items on at most one side of v0, we only need to duplicate aisle k, which contains v0

partially between the depot until ak or bk (between whichever and v0 there exists at least an

item). Figure 6.11 shows the modified version of Algorithm turn 2-OPP, called Algorithm

turn 2-OPP modified.

An Example Problem

The complexity of the algorithm is again O(n), due to the fact that Algorithm turn 2-OPP is

called at most once.

In order to illustrate the usage of Algorithm turn 2-OPP modified, we discuss it on a small

141

Figure 6.11: Algorithm turn 2-OPP modified

142

Figure 6.12: An example problem with 6 pick aisles, 5 non-empty aisles and 12 items

example problem consisting of 6 pick aisles, 5 non-empty aisles and 12 items. The example

problem is depicted in Figure 6.12.

At the initialization step, we first check the position of the depot node, and see that it is

between the left-most and right-most non-empty aisles, therefore no modification is made.

Due to the fact that there are 5 non-empty aisles and there is an item (namely v5) between v0

and b2, the edge (v5 b2) is a required edge which is duplicated. For all the other non-empty

aisles k, the edges (ak bk) are set as required edges, as shown in Figure 6.13(i). Then, the

edges corresponding to pick aisles 1-3 and 5-6 are joined together to form subtours so that

all the degrees of the vertices in the graph are even. The resulting situation is given in Figure

6.13(ii). Lastly, the subtours are joined by double horizontal edges from arbitrary cross aisles.

The solution is depicted in 6.13(iii). The resulting optimal solution has 10 turns.

Before closing this section, we propose an observation and a theorem.

Observation 6.7 An optimal solution to the turn minimization problem on a 2-OPP graph

can be found using a “reduced” form of the algorithm proposed by Ratliff and Rosenthal [71]

for distance minimization in an order picking tour, where the connection types (1), (2), (3),

(5) and (6) in Figure 3.5 are used for within-aisle connections, and the connection types (1),

143

Figure 6.13: Step-by-step solution to the problem in Figure 6.12, (i) required edges, (ii) the
subtours, (iii) the optimal solution with 10 turns

144

(2), (3) and (5) in Figure 3.6 are used for connecting the aisles.

The details of the algorithm and the solution to the example problem are given in Appendix

D.

Theorem 6.8 When the depot is on one end of the front or back cross aisle, the optimal solu-

tion to the turn minimization problem can be found by the S-shape heuristic for the distance

minimization version of the 2-OPP.

Proof. In tour formation step of Algorithm turn 2-OPP, if subtours are all connected from

the same cross aisle (one that includes the depot), one obtains a route constructed using the

S-shape heuristic. �

6.3 A Turn Minimizing Algorithm for k-OPP with k ≥ 3

The main complication when middle aisles are included in the turn minimization problem on

a k-OPP graph is the fact that it may become plausible to use the middle aisles in certain cases.

In the cases in which using the middle aisles is not plausible, the problem becomes equivalent

to solving the turn minimization problem on a 2-OPP graph. In this section, we first show that

when the depot is on one of the front or back cross aisles, the problem can be converted into

the Rural Postman Problem, with the required edges being the non-empty subaisles. Then, we

propose a linear-time tour construction algorithm that finds the turn minimizing route. Lastly,

we consider the extensions where the depot is either on a pick aisle or on one of the middle

aisles. We extend the algorithm to include these extensions as well.

6.3.1 Conversion to the Rural Postman Problem

Throughout this section, we make use of the following observation.

Observation 6.9 For the cases where the depot is on the front or back cross aisle and lies on

the corner of one of the non-empty pick aisles, the optimal number of turns is at least 2 j − 1,

where j corresponds to the number of non-empty pick aisles.

145

Proof. The proof is straightforward: For each non-empty pick aisle, we need one turn to enter

the aisle, and one turn to exit it. Since the depot is adjacent to one of the non-empty pick

aisles, that specific aisle does not require any turns for entering. Since there are j non-empty

pick aisles, the total number of required turns is at least 2 j − 1. �

It follows directly from Observation 6.9 that when the depot is not on the corner of a non-

empty aisle, we need at least 2 j turns to complete the tour. The following theorem is directly

proven by the observation.

Theorem 6.10 For the turn minimization problem on a k-OPP graph with k ≥ 3, when the

depot is on the front or back cross aisle and there are even non-empty pick aisles, Algorithm

turn 2-OPP finds the optimal solution.

Proof. The algorithm ends up with 2 j−1 turns when the depot is on the corner of a non-empty

aisle, and with 2 j turns when it is not. By Observation 6.9, the solution is optimal. �

Since the problem can be solved by Algorithm turn 2-OPP, the following observation directly

follows.

Observation 6.11 When there are even non-empty pick aisles, the turn minimizing tour on a

k-OPP graph with k ≥ 3 traverses all the non-empty pick aisles completely, and the problem

of minimizing turns on the graph is equivalent to solving the Rural Postman Problem on the

same graph with the objective of distance minimization, and with the required edges as the

non-empty pick aisles.

For the case with odd non-empty pick aisles, the situation is a little more complicated, as it

might become plausible to traverse the middle aisles to end up with the optimal solution. In

the following theorem, we present the only case where such a traversal is plausible.

Theorem 6.12 Suppose we number the blocks, starting with the front-most one, from 1 up to

k−1; while denoting the cross aisles in the same manner from 1 to k. Suppose we also number

the pick aisles, starting with the left-most one, from 1 to j − 1, and we denote the subaisles as

(a, b), where a refers to the block and b refers to the pick aisle it belongs to. If there exists a

cross aisle, say n, such that for some pick aisle p1, all the subaisles (1, p1), . . . , (n− 1, p1) are

146

all empty, and for some other pick aisle p2, all the subaisles (n, p2), . . . , (k, p2) are all empty;

then it becomes plausible to traverse cross aisle n between the pick aisles p1 and p2.

Proof. It is easy to see that when we apply Algorithm turn 2-OPP with the required edges

as all the non-empty pick aisles other than p1 and p2, as well as the edge that is formed by

joining the edges corresponding to subaisles (n, p1), . . . , (k, p1) and (1, p2), . . . , (n − 1, p2) by

the cross aisle n between pick aisles p1 and p2, then the algorithm comes up with a solution

of 2 j − 1 turns when the depot is on the corner of a non-empy pick aisle, whereas it finds a

solution of 2 j when such a case does not hold. �

We will see an example that illustrates the situation described in Theorem 6.12 in the next

section. It should be noted here that the algorithm joins two pairs of unions of subaisles, and

treats them as a single pick aisle. When this situation does not hold, crossing of middle aisles

never improves the solution. Due to this, we have the following observation.

Observation 6.13 When the special case in Theorem 6.12 does not hold, the turn minimizing

tour on a k-OPP graph with k ≥ 3 traverses each non-empty pick aisle completely, and the

problem becomes equivalent to solving the RPP on the same graph with distance minimiza-

tion objective, and with the required edges as the non-empty pick aisles. When the special

case does hold, then the turn minimizing tour traverses each non-empty subaisle completely,

and the problem becomes equivalent to solving the RPP on the same graph with distance

minimization objective, and with the required edges as the non-empty subaisles.

6.3.2 The Algorithm

Again, despite the fact that the RPP is NP-hard on general graphs, we take into account the

special structures of the OPP graph to propose a polynomial-time algorithm, which is linear in

terms of the number of pick aisles, and which is a simple extension of Algorithm turn 2-OPP.

The following facts are useful in developing the algorithm.

• When there are even non-empty pick aisles, or there are odd non-empty pick aisles and

the special case in Theorem 6.12 does not hold, then Algorithm turn 2-OPP finds the

optimal solution.

147

• When there are odd non-empty pick aisles and the special case in Theorem 6.12, the

algorithm can be modified to include the union of non-empty subaisles of the pick aisles

p1 and p2 by cross aisle n so that the union is assumed as a single required edge in the

algorithm.

Based on these facts, we propose the algorithm in Figure 6.14, given as Algorithm turn k-

OPP.

Figure 6.14: Algorithm turn k-OPP

The i f statement checks whether the special case in Theorem 6.12 holds. If it does, it modifies

the required edges and applies Algorithm turn k-OPP; otherwise, it applies Algorithm turn k-

OPP directly. The complexity is O(n), as Algorithm turn 2-OPP is called once.

An Example Problem

The application of the algorithm to the cases where the special case does not hold is more

or less straightforward. Therefore, the algorithm is illustrated on an example problem that

includes the special case given in Theorem 6.12. The graphical representation of the example

problem, which consists of 2 blocks, 5 pick aisles and 14 items, is given in Figure 6.15. The

148

Figure 6.15: An example problem with 2 blocks, 5 non-empty pick aisles and 14 items, with
the required edges shown in bold and the unified edge shown in dashed lines

required edges are shown in bold, and the unified edge is shown in dashed lines.

From Figure 6.15, one can observe that for n = 2, we have subaisles (1, 2) and (2, 4) empty,

which satisfies the condition in Theorem 6.12. Thus we unify the subaisles (2, 2) and (1, 4)

using the middle aisle between pick aisles 2 and 4, and set it as a required edge along with

pick aisles 1, 3 and 5, as also shown in Figure 6.15. In Figure 6.16, the solution of the

problem in Figure 6.15 is depicted. Figure 6.16 shows the subtour formation step, where the

first required edge is joined with the dashed edge, and the remaining two edges are joined to

form the second subtour. Since the subtour formation step ends up with a Eulerian tour, there

is no need for the tour formation step. The optimal solution has 9 turns.

149

Figure 6.16: The optimal solution to the turn minimization problem given in Figure 6.15

150

6.3.3 Extensions

As in the case without middle aisles, it is useful to extend the solution approach to the cases

where the depot lies on a pick aisle or a middle aisle. Again, we modify our algorithm to

include these extensions as well. We show that when the depot is on a pick aisle, Algorithm

turn 2-OPP modified is still applicable, whereas for the depot on the middle aisle, we show

that Algorithm turn k-OPP is applicable except one special case, and we modify the algorithm

to include that special case as well.

First, consider the case where the depot is on a pick aisle. As in the previous part, we make

use of the following theorem.

Theorem 6.14 When the depot is on a pick aisle, Algorithm turn 2-OPP modified solves the

turn minimization problem to optimality.

Proof. For the case with even non-empty pick aisles, this holds due to the fact that Algorithm

turn 2-OPP modified ends up with 2 j turns. For each non-empty aisle (including the one that

includes the depot), we need one turn for entering the aisle and one for exitting it. Hence 2 j

turns are optimal.

For the case with odd non-empty pick aisles, when the special case in Theorem 6.12 does not

hold, due to the fact that crossing the middle aisles does not improve the solution, we need at

least 2 j + 2 turns. Since Algorithm turn 2-OPP modified finds exactly that many turns in this

case, the optimal solution can be found using the algorithm.

For the case with odd non-empty pick aisles, suppose that the special case in Theorem 6.12

holds, and the depot is on a subaisle (1, p) or (k − 1, p) for some p, then applying Algorithm

turn 2-OPP modified comes up with 2 j turns, hence is optimal. �

The following observation directly follows.

Observation 6.15 When the depot is on a pick aisle, complete traversal of subaisles is still

justified with the exception of the case with odd pick aisles, the depot on a subaisle (1, p) or

(k − 1, p) for some p, and there are items on at most one side of the depot. Disregarding the

exception, the problem is equivalent to solving the RPP on the corresponding OPP graph with

the required edges as non-empty subaisles.

151

Next, consider the case where the depot is on a middle aisle. Since we need additional two

turns, one to enter and one to exit the middle aisle, the lower bound on the minimum number

of turns becomes 2 j + 2 for j non-empty pick aisles. Based on this, we have the following

theorem.

As in the case with the depot on the front or back cross aisle, the complication of the problem

is the fact that it may be desirable to use the middle aisles on the optimal route. The following

theorem presents the case where such crossings are desirable.

Theorem 6.16 Suppose that the numbering of blocks, pick aisles and subaisles as in Theorem

6.12. If there are even (odd) cross aisles, and there exists a cross aisle, say n, such that for

a pair of pick aisles p1 and p2 (a pick aisle p1), all the subaisles (1, p1), . . . , (n − 1, p1)

and (1, p2), . . . , (n − 1, p2) (only (1, p1), . . . , (n − 1, p1) for odd) are empty (case 1), or all the

subaisles (n, p1), . . . , (k−1, p1) and (n, p2), . . . , (k−1, p2) (only (n, p1), . . . , (k−1, p1) for odd)

are empty (case 2). For case 1, setting subaisles (n, p1), . . . , (k − 1, p1) and (n, p2), . . . , (k −

1, p2) (only (n, p1), . . . , (k − 1, p1) for odd) as required edges along with the remaining non-

empty pick aisles; for case 2, setting subaisles (1, p1), . . . , (n−1, p1) and (1, p2), . . . , (n−1, p2)

(only (1, p1), . . . , (n − 1, p1) for odd) as required edges along with the remaining non-empty

pick aisles, followed by application of Algorithm turn k-OPP (with joining the subaisles to

form a subtour), joined to the depot node, finds the minimum number of turns.

Proof. Again, it is easy to see that the number of turns is equal to 2 j for even non-empty pick

aisles and 2 j + 2 for odd non-empty pick aisles, equal to the lower bound on the minimum

number, indicating optimality. �

Observation 6.17 When the depot is on a middle aisle, and the special case in Theorem 6.16

does not hold, Algorithm turn 2-OPP solves the problem to optimality.

In the next section, two examples, each including the special cases discussed in this section,

will be given. As a consequence to this section, we have the following observation.

Observation 6.18 With the exception of the special case in Observation 6.15, the optimal

solution to the turn minimization problem traverses each non-empty subaisle completely. Ad-

ditionally, the problem is equivalent to solving the RPP on the corresponding OPP graph,

with the required edges as the non-empty subaisles.

152

The Modified Algorithm

In order to handle the special cases discussed here, the Algorithm turn k-OPP can be modified

so that optimal solutions are found for all settings. There are two exceptions that we need to

consider. First, when the depot is on a pick aisle and the special case in Observation 6.15

occurs, then we need to include the pick aisle until the depot node and duplicate the edge

corresponding to this specific aisle, before solving the RPP. Secondly, when the depot is on

a middle aisle and the special case in Observation 6.16 occurs, we need to form a subtour

between the remaining subaisles of the pick aisles p1 and p2. Figure 6.17 summarizes the

modified version of Algorithm turn k-OPP, called Algorithm turn k-OPP modified.

The first i f statement checks whether the special case in Theorem 6.12 occurs. If it does, a

required edge E′ is formed and Algorithm turn 2-OPP is called. The second i f statement

checks if Move Type 4 - Case 3 (discussed in Observation 6.15) occurs, in which case Algo-

rithm turn 2-OPP modified is called. Lastly, the third i f statement checks whether the special

case in Theorem 6.16 occurs. In such a case, necessary modifications are made and Algorithm

turn k-OPP is called. If none of the special cases occurs, the algorithm calls turn 2-OPP and

connects the depot node to the resulting tour if necessary.

The complexity is O(n), as either Algorithm turn 2-OPP, or Algorithm turn 2-OPP modified,

or Algorithm turn k-OPP is called once.

Two Example Problems

We now illustrate Algorithm turn k-OPP modified on two example problems. In the first

example, the special case in Observation 6.15 is examplified. The second example illustrates

the special case in Theorem 6.16.

The first example problem is depicted in Figure 6.18, with the required edges shown in bold.

The problem has 2 blocks, 5 non-empty pick aisles, and 14 items. Due to the fact that there

are 5 (odd) non-empty pick aisles, the depot node is on the up-most block and there are no

items between v0 and a2, the special case in Observation 6.15 is evident here. Therefore we

partially select the edge between v0 and b2 as a required edge and duplicate it, whereas the

remaining non-empty pick aisles are also required edges.

After forming to subtours between non-duplicated required edges and forming the tours by

153

Figure 6.17: Algorithm turn k − OPP modi f ied

154

Figure 6.18: An example problem with 2 blocks, 5 non-empty pick aisles and 14 items, with
required edges shown in bold

155

Figure 6.19: Optimal solution to the example problem in Figure 6.18, which incurs 10 turns

joining the subtours using double horizontal edges from arbitrary sides, we obtain the optimal

solution in Figure 6.19. The solution has 10 turns.

The second example is illustrated in Figure 6.20, with the required edges shown in bold. As

in the previous example, there are 2 blocks, 5 non-empty pick aisles, and 14 items. Since the

depot is on a middle aisle, there are 5 (odd) non-empty pick aisles and subaisle (1,4) is empty,

the special case in Theorem 6.16 holds. Hence we set subaisle (2,4) as a required edge along

with the remaining non-empty pick aisles.

When Algorithm turn k-OPP is applied to the problem, the optimal solution in Figure 6.21 is

obtained. The optimal solution has 12 turns.

156

Figure 6.20: An example problem with 2 blocks, 5 non-empty pick aisles and 14 items, the
required edges shown in bold

157

Figure 6.21: Optimal solution to the problem in figure 6.20 with 12 turns

158

CHAPTER 7

CONCLUSION AND FURTHER RESEARCH DIRECTIONS

The order-picking problem, due to the importance of its contribution to the overall ware-

housing costs, is one of the critical problems of the supply chain in the sense that providing

efficient and effective solutions to it not only decreases the costs, but also the response times

to the customer demands. In this study, we have considered various aspects of this problem

with different assumptions, objective functions and constraints in each case.

First, we have given an overview of the problems encountered in warehouse design. We have

divided these problems into three groups as strategic, tactical and operational level problems,

depending on the decision level that they affect. In doing this, our aim is to provide a frame-

work on where the order-picking problem lies among these problems. We have observed

that there exists a high level of interdependency between the problems, and the order-picking

problem takes up a very important part in creating the interdependencies. We have also seen

that despite this strong connection among the problems, the solution approaches usually take

a hierarchical approach, aiming to solve the problems in a sequential manner, and we have

emphasized the need to take a more overall approach by considering the problems in a more

integrated manner. The problems that are studied in the literature have also been observed to

be isolated from their environment. Additionally, the strategic problems were seen to lack the

level of attention they receive in the literature that they deserve.

To the best of our knowledge, there exists no discussion on the complexity of the OPP in

the literature so far. Motivated by this, we have provided a detailed discussion regarding

the complexity of the problem. We have surveyed the literature on the complexity of rele-

vant problems such as the Traveling Salesman Problem, its special cases on grid graphs and

series-parallel graphs as well as its different versions such as the Graphical Traveling Sales-

159

man Problem, Steiner Traveling Salesman Problem, the Graphical Steiner Traveling Salesman

Problem, and the Steiner Tree Problem. We have distinguished the polynomially solvable

cases and also given the cases where conclusions exist on their NP-completeness. For the

OPP, we have given the polynomial algorithms in detail for the cases for which they exist, and

we have also reviewed the heuristic procedures for the cases for which no conclusion on their

complexity exists. We have conjectured that although the problem is polynomial for a fixed

number of cross aisles, it is NP-hard in terms of the number of cross aisles.

The conjecture of NP-hardness implies that no polynomial algorithm solves the OPP to op-

timality unless P = NP, therefore the only way to find near-optimal solutions this problem

in polynomial time is to use heuristic procedures. In the literature, heuristic procedures lack

the property of robustness. In other words, although they perform well for a set of prob-

lems, their performances may worsen significantly for certain problem sets. We propose the

merge-and-reach heuristic procedure in order to provide a more robust approach. The heuris-

tic depends on using random cuts to break the OPP into subproblems, then solve the OPP

corresponding to each block using the algorithm by Ratliff and Rosenthal [71]. We combine

the solutions to these blocks together using the merge or reach procedures to obtain a solution

for each subproblem, and combine the solutions to the subproblems, again using the merge

or reach procedures, to come up with a solution for the problem. We have also proposed a 3-

opt improvement over the merge-and-reach procedure and called this improvement procedure

merge-and-reach+.

To test the performance of the merge-and-reach and merge-and-reach+ procedures, and to

compare the results of the procedures with the ones in the literature, we have generated a set

of random problems in line with those of Roodbergen and De Koster [73]. The procedures

have come up with good results: the merge-and-reach heuristic deviates no more than 5.4%

on average from the optimal in the worst case, whereas for the merge-and-reach+ heuristic

the maximum deviation is 2.4% on average in the worst case. When the performances of

these heuristics are compared with those in the literature, the merge-and-reach heuristic has

been observed to dominate the others in 64 of the 80 cases. The merge-and-reach+ procedure

dominates the best results in the literature, to the best of our knowledge.

For the case of the OPP with multiple pickers, we have assumed that there exist load capacities

and time limits on each picker. For this problem, we have proposed an evolutionary approach

160

that makes use of the cluster-first, route-second and route-first, cluster-second approaches for

the routing problem. In each generation, the algorithm applies the former approach α percent

of the time and the latter otherwise. We have made preliminary runs on a subset of the

random problems generated for the single-picker case for the two extreme cases of α = 0%

and α = 100% to fine-tune the algorithm parameters, and compared the results. We have

observed that the first setting performs better than the latter in almost all problem settings.

Following this, we have combined the two approaches and tested the combined evolutionary

algorithm with values of α = 25% and α = 75%. In this case, the algorithms have come up

with comparable results to each other, but the main thing to note here is that they both perform

better than the extreme approaches, justifying the usage of the combined approach.

The literature on the OPP mainly focuses on minimizing the travel distance to minimize the

total order-picking time. We have noted that there are other factors than travel time that

contribute to the total picking time, and stated that among these, the turns (right, left or U-

turns) are the ones that depend on the route on the picker. We have considered the objective of

minimizing the total number of turns in an OPP, and have provided a polynomial algorithm for

the case with no middle aisle and with middle aisles respectively. We have also considered the

cases where the depot can be on a pick aisle or on one of the middle aisles. We have extended

the algorithm to these to cases as well.

There are a number of future research directions on the problems discussed in this study. First

of all, the complexity of the order-picking problem in terms of the number of cross aisles is

still “open”. Either a polynomial algorithm that is polynomial in terms of the number of cross

aisles is to be found, or a proof of NP-completeness is required.

The merge-and-reach and the merge-and-reach+ come up with near-optimal solutions for the

single-picker case. The reasons of their suboptimality can be explored, which might lead

to a polynomial algorithm for the OPP, or an explanation of why it is NP-complete, if it is.

Additionally, the robustness of the algorithms can be tested for various positions of the depot

in the warehouse, as well as non-uniform item distribution.

Due to the lack of benchmark problems for the evolutionary approach proposed for the multi-

ple picker case, the optimal solutions or at least good lower bounds are yet to be found out to

compare the performance of the algorithm with the optimal solutions or lower bounds. The

computational experiments were made on instances with tight capacities and uniform item

161

distribution. How the results change under loose capacities and non-uniform item distribution

is another research question. In addition to this, the pickers were obliged to start and end at

the same depot. It is possible to find better solutions when the pickers are allowed to start and

end at different depots, as detours will be avoided.

For the turn minimization problem, the effect of travel times caused by the turns can be incor-

porated into the problem and a solution procedure can be found for the travel time minimiza-

tion problem that takes into account both the travel time and time lost due to turns.

162

REFERENCES

[1] Abdou, G. and El-Masry, M., Three-dimensional random stacking of weakly hetero-
geneous palletization with demand requirements and stability measures, International
Journal of Production Research 38-14 (2000), 3149-3164.

[2] Aghezzaf, E., Capacity planning and warehouse location in supply chains with uncer-
tain demands, Journal of the Operational Research Society 56 (2005), 453-462.

[3] Aho, A. V., Garey, M. R. and Hwang, P.K., Rectilinear Steiner trees: Efficient special-
case algorithm, Networks 7 (1977), 37-58.

[4] Arkin, E. M., Bender, M. A., Demaine, E. D., Fekete, S. P., Mitchell, J. S. B. and Sethia,
S., Optimal covering tours with turn costs, Proceedings of the Twelfth Annual ACM-
SIAM Symposium on Discrete Algorithms (2001), 138-147.

[5] Baiou, M. and Mahjoub, A. R., The Steiner traveling salesman polytope and related
polyhedra, SIAM Journal of Optimization 13-2 (2002), 498-507.

[6] Baker, B. M. and Ayechew, M. A., A genetic algorithm for the vehicle routing problem,
Computers & Operations Research 30 (2003), 787-800.

[7] Bartholdi III, J. J. and Hackman, S. T., Warehouse & Distribution Science, available
online at http://www2.isye.gatech.edu/˜jjb/wh/ book/editions/wh-sci-0.89.pdf (accessed
January 2009).

[8] Beasley, J. A., Route-first cluster second methods for vehicle routing, Omega 11 (1983),
403-408.

[9] Benavent, E. and Soler, D., The directed rural postman problem with turn penalties,
Transportation Science, 33-4 (1999), 408-418.

[10] Berger, J. and Barkaoui, M. A., New hybrid genetic algorithm for the capacitated vehicle
routing problem, Journal of the Operational Research Society 54 (2003), 1254-1262.

[11] Bodin, L. and Kursh, S., A detailed description of a computer system for the routing and
scheduling of street sweepers, Computers & Operations Research 6 (1978), 181-198.

[12] Bodner, D. A., Govindaraj, T., Karathur K. N., Zerangue, N. F. and McGinnis, L. F., A
process model and support tools for warehouse design, Proceedings of the 2002 Indus-
trial Engineering Reseach Conference (2002).

[13] Burkard, R. E., Deineko, V. G., Van Dal, R., Van Der Veen, J. A. A. and Woeginger, G.
J., Well-solvable special cases of the traveling salesman problem: a survey, Society of
Industrial and Applied Mathematics Rev. 40-3 (1998), 496-546.

[14] Caldwell, T., On finding minimal routes in a network with turn penalties, Communica-
tions of the ACM 4-2 (1961), 107-108.

163

[15] Chopra, S. and Rao, M. R., The Steiner tree problem I: Formulations, compositions and
extension of facets, Mathematical Programming 64 (1994), 209-229.

[16] Chopra, S. and Rao, M. R., The Steiner tree problem II: Properties and classes of facets,
Mathematical Programming 64 (1994), 231-246.

[17] Clossey, J., Laporte, G. and Soriano, P., Solving arc routing problems with turn penalties,
Journal of the Operational Research Society 52 (2001), 433-439.

[18] Corberan, A., Marti, R., Martinez, E. and Soler, D., The rural postman problem on mixed
graphs with turn penalties, Computers & Operations Research 29 (2002), 887-903.

[19] Cormier, G., Operational Research Methods for Efficient Warehousing, in Logistics Sys-
tems (ed.s Langevin, A. and Riopel, D.) (2005), Springer Science + Business Media,
Inc., 93-122.

[20] Cormier, G. and Gunn, E. A., Modelling and analysis of capacity expansion planning in
warehousing, Journal of the Operational Research Society 50-1 (1999), 52-59.

[21] Cornuejols, G., Fonlupt, J. and Naddef, D., The traveling salesman on a graph and some
integer related polyhedra, Mathematical Programming 33 (1985), 1-27.

[22] Dantzig, G. B. and Ramser, J. H., The truck dispatching problem, Management Science
6-1 (1959), 80-91.

[23] De Boer, J. W., Approximate models and solution approaches for the vehicle routing
problem with multiple use of vehicles and time windows, MSc. Thesis, 2008, METU -
Ankara.

[24] De Koster, R., Le-Duc, T. and Roodbergen, K. J., Design and control of warehouse order
picking: a literature review, European Journal of Operational Research 182 (2007), 481-
501.

[25] De Koster, R., Le-Duc, T. and Yugang, Y., Optimal storage rack design for a 3-
dimensional compact AS/RS, International Journal of Production Research 46-6 (2008),
1495-1514.

[26] De Koster, R. and Van Der Poort, E., Routing orderpickers in a warehouse: a compari-
son between optimal and heuristic solutions, IIE Transactions 30 (1998), 469-480.

[27] Demir, E., Analysis of evolutionary algorithms for constrained routing problems, MSc.
Thesis, 2004, METU - Ankara.

[28] Edmonds, J. and Johnson, E. L., Matching, Euler tours and the Chinese postman prob-
lem, Mathematical Programming 5 (1973), 88-124.

[29] Esbensen, H., Computing near-optimal solutions to the Steiner problem in a graph using
a genetic algorithm, Networks 26-4 (1995), 173-186.

[30] Fonlupt, J. and Nachef, A., Dynamic programming and the graphical traveling salesman
problem, Journal of the Association for Computing Machinery 40-5 (1993), 1165-1187.

[31] Foulds, L. R., Hamacher, H. W., Schöbel, A. and Yamaguchi, T., On center cycles in
grid graphs, Annals of Operations Research 122 (2003), 163-175.

164

[32] Gademann, N. and Van De Velde, S., Order batching to minimize total travel time in a
parallel-aisle warehouse, IIE Transactions 37 (2005), 63-75.

[33] Garey, M. R. and Johnson, D. S., Computers and Intractability: A Guide to the Theory
of NP-Completeness, (1979), W. H. Freeman and Company.

[34] Garey, M. R. and Johnson, D. S., The rectilinear Steiner tree problem is NP-complete,
SIAM Journal of Applied Mathematics 32-4 (1977), 826-834.

[35] Gendreau M., Potvin, J. Y., Bräysy, O., Hasle, G. and Lokketangen, A., Metaheuristics
for the vehicle routing problem and its extensions: A categorized bibliography, in The
Vehicle Routing Problem, (eds. B. Golden et al.) (2008), Springer Science + Business
Media.

[36] Gendreau, M., Laporte, G. and Yelle, S., Efficient routing of service vehicles, Engineer-
ing Optimization 28 (1997), 263-271.

[37] Geng, Y., Li, Y. and Lim, A., A very large-scale neighborhood search approach to the
capacitated warehouse routing problem, Proceedings of the 17th IEEE International
Conference on Tools with Artificial Intelligence (2005).

[38] Georgia Institute of Technology, Concorde TSP Solver (2009).
http://www.tsp.gatech.edu/concorde.html (last accessed June 12, 2009).

[39] Goemans, M. X., The Steiner tree polytope and related polyhedra, Mathematical Pro-
gramming 63 (1994), 157-182.

[40] Goetschalckx, M. and Ratliff, H. D., Optimal lane depths for single and multiple prod-
ucts in block stacking storage systems, IIE Transactions 23 (1991), 245-258.

[41] Gray, A. E., Karmakar, U. S. and Seidmann, A., Design and operation of an order-
consolidation warehouse: models and application, European Journal of Operational
Research 58 (1992), 14-36.

[42] Grötschel, M., Martin, A. and Weismantel, R., Routing in grid graphs by cutting planes,
Mathematical Methods of Operations Research 41 (1995), 255-275.

[43] Gu, J., Goetschalckx M. and McGinnis, L. F., Research on warehouse operation: a
comprehensive review, European Journal of Operational Research 177 (2007), 1-21.

[44] Haghighat, A. T., Faez, K., Dehghan, M., Mowlaei. and Ghahremani, Y., A genetic
algorithm for Steiner tree optimization with multiple constraints using Prüfer number,
EurAsia-ICT 2002 (2002), 272-280.

[45] Hall, R. W. H., Distance approximations for routing manual pickers in a warehouse, IIE
Transactions 25 (1993), 76-87.

[46] Hanan, M., On Steiner’s problem with rectilinear distance, SIAM Journal on Applied
Mathematics 14 (1966), 255-265.

[47] Ho, J. M., Vijayan, G. and Wong, C. K., New algorithms for the rectilinear Steiner tree
problem, IEEE Transactions on Computer-Aided Design 9-2 (1990), 185-193.

[48] Holland, J. H., Adaptation in natural and artificial systems, (1975), The University of
Michigan Press, Ann Arbor, MI.

165

[49] Itai, A., Papadimitriou, C. H. and Szwarcfiter, J. L., Hamilton paths in grid graphs,
SIAM Journal of Computing 11-4 (1982), 676-686.

[50] Jaszkiewicz, A. and Kominek, P., Genetic local search with distance preserving recom-
bination operator for a vehicle routing problem, European Journal of Operational Re-
search 151 (2003), 352-364.

[51] Johnson, M. E., The impact of sorting strategies on automated sortation system perfor-
mance, IIE Transactions 30 (1998), 67-77.

[52] Johnson, D. S. and Papadimitriou, C. H., Computational Complexity, in The Travel-
ing Salesman Problem (ed.s Lawler, E. L., Lenstra, J. K., Rinnooy Kan, A. H. G. and
Shmoys, D. B.) (1985), John Wiley & Sons Ltd., 37-85.

[53] Kabadi, S. N., Polynomially Solvable Cases of the TSP in The Traveling Salesman Prob-
lem and Its Variations, (ed.s Gutin, G. and Punnen A. P.) (2002), Kluwer Academic
Publishers, 489-583.

[54] Kapsalis, A., Rayward-Smith, V. J. and Smith, G. D., Solving the graphical Steiner tree
problem using genetic algorithms, Journal of the Operational Research Society 44-4
(1993), 397-406.

[55] Karp, R. M., Reducibility among combinatorial problems, in Complexity of Computer
Calculations (ed.s Miller, R. E. and Thatcher, J. W.) (1972), Plenum Press, 85-103.

[56] Larson, T. N., March, H. and Kusiak, A., A heuristic approach to warehouse layout with
class-based storage, IIE Transactions 29 (1997), 337-348.

[57] Le-Duc, T. and De Koster, R., Travel distance estimation and storage zone optimization
in a 2-block class-based storage strategy warehouse, International Journal of Production
Research 43-17 (2005), 3561-3581.

[58] Liu, C. M., Clustering techniques for stock location and order-picking in a distribution
center, Computers & Operations Research 26 (1999), 989-1002.

[59] Makris, P. A. and Giakoumakis, I. G., k-Interchange heuristic as an optimization pro-
cedure for material handling applications, Applied Mathematical Modelling 27 (2003),
345-358.

[60] Malmborg, C. J. and Krishnakumar, B., Optimal storage assignment policies for multi-
address warehousing systems, IEEE Transactions on Systems Management and Cyber-
netics 19-1 (1989), 197-204.

[61] Margot, F., Prodon, A. and Liebling, T. M., Tree polytope on 2-trees, Mathematical
Programming 63 (1994), 183-191.

[62] McGinnis, L. F., Goetschalckx, M., Sharp, G., Bodner, D. and Govindaraj, T., Rethink-
ing warehouse design research, Proceedings of the 2000 International Material Handling
Research Colloquium (2000).

[63] Meller, R. D., Optimal order-to-lane assignments in an order accumulation/sortation
system, IIE Transactions 29, 293-301.

[64] Mester, D. and Bräysy, O., Active guided evolution strategies for the large-scale capac-
itated vehicle routing problems, Computers & Operations Research 34 (2007), 508-517.

166

[65] Monma, C. L., Munson, B. S. and Pulleyblank, W. R., Minimum-weight two-connected
spanning networks, Mathematical Programming 46 (1990), 153-171.

[66] Petersen, C. G., Considerations in order picking zone configuration, International Jour-
nal of Operations & Production Management 22-7 (2002), 793-805.

[67] Petersen, C. G. and Aase, G., A comparison of picking, storage and routing policies in
manual order picking, International Journal of Production Economics 92 (2004), 11-19.

[68] Prim, R. C., Shortest connection networks and some generalizations, The Bell System
Technical Journal 36 (1957), 1389-1401.

[69] Prins, C., A simple and effective evolutionary algorithm for the vehicle routing problem,
Computers & Operations Research 31 (2004), 1985-2002.

[70] Queirolo, F., Tonelli, F., Schenone, M., Nan, P. and Zunino, I., Warehouse layout design:
minimizing travel time with a genetic and simulative approach - methodology and case
study, Proceedings of the 14th European Simulation Symposium (2002).

[71] Ratliff, H. D. and Rosenthal, A. S., Order-picking in a rectangular warehouse: a solv-
able case of the traveling salesman problem, Operations Research 31 (1983), 507-521.

[72] Roodbergen, K. J. and De Koster, R., Routing order-pickers in a warehouse with a mid-
dle aisle, European Journal of Operations Research 133 (2001), 32-43.

[73] Roodbergen, K. J. and De Koster, R., Routing methods for warehouses with multiple
cross aisles, International Journal of Production Research 39-9 (2001), 1865-1883.

[74] Rouwenhorst, B., Reuter, B., Stockrahm, V., Van Houtum, G. J., Mantel, R. J. and Zijm,
W. H. M., Warehouse design and control: framework and literature review, European
Journal of Operational Research 122 (2000), 515-533.

[75] Roy, S. and Rousseau, J. M., The capacitated Canadian postman problem, Information
Systems and Operational Research 27 (1989), 58-73.

[76] Salman, A. N. M., Baskoro, E. T. and Broersma, H. J., A note concerning Hamilton
cycles in some classes of grid graphs, Proceedings ITB Sains dan Teknologi 35A-1
(2003), 65-70.

[77] Sönmez, M., An evolutionary approach to TSP: Crossover with conventional heuristics,
MSc. Thesis, 2003, METU - Ankara.

[78] Takamizawa, K., Nishizeki, T. and Saito, N., Linear-Time Computability of Combina-
torial Problems Series-Parallel Graphs, Journal of the Association for Computing Ma-
chinery 29-3 (1982), 623-641.

[79] Tompkins J. A., White, J. A., Bozer, Y. A. and Tanchoco, J. M. A., Facilities Planning
(2003), John Wiley & Sons, NJ.

[80] Umans, C. and Lenhart, W., Hamiltonian cycles in solid grid graphs, Proceedings of the
Annual Symposium on Foundations of Computer Science (1997), 496-505.

[81] Van Den Berg, J. P., Sharp, G. P., Gademann, A. J. R. M. and Pochet, Y., Forward-
reserve allocation in a warehouse with unit-load replenishments, European Journal of
Operational Research 111 (1998), 98-113.

167

[82] Vaughan, T. S. and Petersen, C. G., The effect of warehouse cross aisles on order picking
efficiency, International Journal of Production Research 37-4 (1999), 881-897.

[83] Winter, P., Steiner problem in networks: a survey, Networks 17 (1987), 129-167.

[84] Winter, P. and Smith, J. M., Path-distance heuristics for the Steiner problem in undi-
rected networks, Algorithmica 7 (1992), 309-327.

[85] Won, J. and Olafsson, S., Joint order batching and order picking in warehouse opera-
tions, International Journal of Production Research 43-7 (2005), 1427-1442.

[86] Yang, B., An evolution algorithm for the rectilinear Steiner tree problem, ICCSA 2005
(2005), 241-249.

168

APPENDIX A

ALTERNATIVE HEURISTIC SOLUTIONS TO THE

PROBLEM IN FIGURE 3.1

A.1 Optimal Solution

Figure A.1 illustrates the optimal route to the problem given in Figure 3.1. The total length of

the optimal solution is 164 units.

Figure A.1: Optimal solution of the example problem in Figure 3.1, with a total travel distance
of 164 units

169

A.2 S-shape Heuristic Solution

Figure A.2 shows the resulting route from the S-shape heuristic to the problem given in Figure

3.1. The total length of the optimal solution is 192 units.

Figure A.2: S-shape heuristic solution to the example problem in Figure 3.1, with a total
travel distance of 192 units

170

A.3 Largest Gap Heuristic Solution

Figure A.3 illustrates the resulting route from the largest gap heuristic to the problem given

in Figure 3.1. The total length of the optimal solution is 190 units.

Figure A.3: Largest gap heuristic solution to the example problem in Figure 3.1, with a total
travel distance of 190 units

171

A.4 Aisle-by-Aisle Heuristic Solution

Figure A.4 illustrates the resulting route from the aisle-by-aisle heuristic (due to Vaughan and

Petersen [82]) to the problem given in Figure 3.1. The total length of the optimal solution is

190 units.

Figure A.4: Aisle-by-aisle heuristic solution for the problem in Figure 3.1, with a total travel
distance of 190 units

172

A.5 Combined Heuristic Solution

Figure A.5 depicts the resulting route from the combined heuristic (due to Roodbergen and

De Koster [73]) to the problem given in Figure 3.1. The total length of the optimal solution is

182 units.

Figure A.5: Combined heuristic solution for the example problem in Figure 3.1, with a total
travel distance of 182 units

173

APPENDIX B

NP-COMPLETENESS OF THE TRAVELING SALESMAN

PROBLEM

Johnson and Papadimitriou [52] start their proof of NP-completeness of the TSP with the

following fact: In order for the TSP to be polynomially solvable, its corresponding decision

problem TSP DECISION should be polynomially solvable as well. The converse is also true,

that is, if the decision problem is NP-complete, so is the original problem. TSP DECISION

can be defined as follows.

PROBLEM: TSP DECISION

INSTANCE: Integer n ≥ 3 and n × n integer matrix C = (ci j), where each ci j ≥ 0, and an

integer B ≥ 0.

QUESTION: Is there a cyclic permutation Π of the integers from 1 to n such that
n∑

i=1

ciπ(i) ≤ B?

The proof begins with a polynomial transformation of the NP-complete INTEGER PRO-

GRAMMING to the problem of 0-1 PROGRAMMING. The following definitions of both

problems are from [52].

PROBLEM: INTEGER PROGRAMMING

INSTANCE: An m × n integer matrix A = (ai j), an m-vector b = (b1, . . . , bm) of integers.

QUESTION: Is there an n-vector x with x j ≥ 0 such that Ax = b, i.e.
∑n

j=1 ai jx j = bi, 1 ≤ i ≤

m?

PROBLEM: 0-1 PROGRAMMING

INSTANCE: An m × n integer matrix A = (ai j), an m-vector b = (b1, . . . , bm) of integers.

QUESTION: Is there an n-vector x with x j ∈ {0, 1} such that Ax = b, i.e.
∑n

j=1 ai jx j = bi, 1 ≤

174

i ≤ m?

The transformation by [52] of the instance I of INTEGER PROGRAMMING to an instance

Z(I) of 0-1 PROGRAMMING is is as follows: Each variable x of I is transformed into p j

0-1 variables x0, x1, . . . , xp j−1, where x =
∑p j−1

k=0 xk. Since every integer can be written in

this form, I and Z(I) are equivalent. That is, INTEGER PROGRAMMING has a solution

only if 0-1 PROGRAMMING does. Since the first problem is NP-complete, so is the second

one. The second transformation by [52] is from 0-1 PROGRAMMING to EXACT COVER.

Before proceeding, the problem of EXACT COVER can be stated as follows:

PROBLEM: EXACT COVER

INSTANCE: A family F = {S 1, S 2, . . . , S n} of subsets of a set U = {u1, u2, . . . , um} corre-

sponding to the rows of matrix A and the columns of A are the characteristic vectors of S j.

QUESTION: Is there a subfamily C ⊆ F such that each ui ∈ U is in exactly one of the subsets

S j ∈ C? C corresponds to a 0-1 solution x for Ax = b.

The latter problem is a special case of the first in that A is a 0-1 matrix and the vector b is

all ones. By transformation of the A matrix, variable re-definition and transformation of the

b values, Johnson and Papadimitriou show that 0-1 PROGRAMMING is a special case of

EXACT COVER, implying that EXACT COVER is also NP-complete.

The problem of HAMILTONIAN CYCLE asks whether the graph G is Hamiltonian. By

constructing an instance of this problem that has a solution only if the corresponding EXACT

COVER has, one transforms EXACT COVER into HAMILTONIAN CYCLE. This implies

that answering the question of whether a general graph contains a Hamiltonian cycle is NP-

complete. The last problem, HAMILTONIAN CYCLE FOR GRID GRAPHS, tries to find a

Hamiltonian cycle on a general grid graph. It is shown in [52] that every general graph can

be transformed into a grid graph by an embedding procedure, meaning that HAMILTONIAN

CYCLE FOR GRID GRAPHS generalizes the problem HAMILTONIAN CYCLE and hence

is NP-complete. This last problem is a special case of TSP, leading to the conclusion that the

TSP is NP-complete.

The path of transformation from HAMILTONIAN CYCLE FOR GRID GRAPHS to TSP is

shown in Figure B.1, borrowed from [52]. In the figure, each arrow denotes that the first prob-

lem generalizes the second. The fact that HAMILTONIAN CYCLE FOR GRID GRAPHS

175

is NP-complete in general graphs implies that all the problems in Figure B.1 are also NP-

complete for general graphs. The figure can be traced as follows: The problem of Hamilto-

nian Cycle in Grid Graphs is generalized by Rectilinear TSP and Euclidean TSP, which are

special cases of the TSP in the plane, using rectilinear and Euclidean distance metrics between

the nodes of the graph G respectively. These two problems are planar, therefore satisfy the

triangle inequality property and the distance metrics are symmetric. In other words, for each

pair of nodes i and j, di j = d ji. This implies that the more generalized problem of Symmetric

Triangle Inequality TSP, where the symmetric distance metric and triangle inequality hold re-

gardless of the distance metric. This leads us to the more general problem of Symmetric TSP,

where the triangle inequality does not necessarily hold, which generalizes Symmetric Triangle

Inequality TSP, and is NP-complete. The General Asymmetric TSP generalizes Symmetric

TSP in the sense that the symmetric distance property may not hold. This concludes the proof,

as General Asymmetric TSP is also NP-complete.

Another path in Figure B.1 that proves NP-completeness of the problem TSP starts from

the problem of Hamiltonian Cycle in Bipartite Planar Graphs, which seeks whether a planar

and bipartite graph G contains a Hamiltonian cycle. As grid graphs are bipartite and planar,

the problem generalizes Hamiltonian Cycle in Grid Graphs, and is NP-complete. The more

general problem of Hamiltonian Cycle, which was defined previously, generalizes Hamil-

tonian Cycle in Bipartite Planar Graphs and is also NP-complete. The directed version of

this problem, Directed Hamiltonian Cycle, which tries to find whether a directed graph has a

Hamiltonian cycle, is a more generalized version, implying that Directed Hamiltonian Cycle

is NP-complete. The Asymmetric Triangle Inequality TSP tries to find whether a Hamilto-

nian cycle exists in a directed graph satisfying triangle inequality. This problem generalizes

the problems of Directed Hamiltonian Cycle and Symmetric Triangular Inequality TSP, lead-

ing to the conclusion that the Asymmetric Triangle Inequality TSP is also NP-complete. If

the triangle inequality does not necessarily hold for this problem, we end up with the general

TSP, providing another proof that it is NP-complete.

Garey and Johnson [33], on the other hand, prove the NP-completeness of the problem TSP

starting with the problem SATISFIABILITY, stated below.

PROBLEM: SATISFIABILITY

INSTANCE: A set U of variables and a collection C of clauses over U.

176

Figure B.1: Transformation from Hamiltonian Cycle for Grid Graphs to the General TSP [52]

177

QUESTION: Is there a satisfying truth assignment for C?

This problem is the basic NP-complete problem, and Garey and Johnson [33] transform it to

the following 3-SATISFIABILITY problem.

PROBLEM: 3-SATISFIABILITY

INSTANCE: Collection C = {c1, . . . , cm} of clauses on a set U of variables such that |ci| = 3

for 1 ≤ i ≤ m.

QUESTION: Is there a truth assignment for U that satisfies all the clauses in C?

The transformation in [33] is by expanding the variable set U, defining literals from the vari-

ables in U and redefining the clauses. A further transformation in [33] is made from 3-

SATISFIABILITY to VERTEX COVER. The latter problem can be stated verbally as finding

a subset of vertices on a graph so that each vertex not in the subset can be reached from those

in the subset by using at most a single edge. More formally,

PROBLEM: VERTEX COVER

INSTANCE: A graph G=(V,E) and a positive integer K ≤ |V |.

QUESTION: Is there a vertex cover of size K or less for G, that is, a subset V ′ ⊆ V such that

V ′ ≤ |K| and, for each edge (uv) ∈ E, at least one of u and v belongs to V ′?

The vertex cover instance is given in [33] with variables and clauses as nodes and edges be-

tween corresponding variables and clauses. It is shown that there is a vertex cover of this graph

only if the 3-SATISFIABILITY problem has a solution. The transformation to the HAMIL-

TONIAN CIRCUIT problem is by using so-called cover-testing components in the graph.

since HAMILTONIAN CIRCUIT can be polynomially transformed into the TSP, which im-

plies that the TSP is NP-complete. The left part of Figure B.1 shows the transformation

provided by [33], from Satisfiability to the General Asymmetric TSP.

178

APPENDIX C

COMPARISON OF HEURISTIC PROCEDURES FOR k-OPP

Table C.1, borrowed from [73] gives the resulting average travel times by the largest gap,

S-shape and aisle-by-aisle heuristic procedures, whereas Table C.2, also borrowed from [73],

presents the average travel times by the combined and combined+ heuristics as well as the

average optimal travel times. The optimal travel times are obtained using a branch-and-bound

algorithm for the Traveling Salesman Problem. It is reported in [73] that for each instance,

average calculation time is less than 0.1 seconds on a 350 MHz computer.

It can be observed from Tables C.1 and C.2 that in 74 of the 80 problem settings, the combined+

heuristic gives the best average results. It has already been observed by Roodbergen and De

Koster [73] that the combined heuristic performs better than the S-shape heuristic, as the set of

solutions for the S-shape heuristic is a subset of those of the combined heuristic. Additionally,

the percentage difference between the S-shape and combined solutions decreases as the cross

aisles or the number of items are increased, owing to the fact that in both cases, complete

traversal of the subaisles becomes desirable compared to partial traversal, which increases the

performance of the S-shape heuristic.

Roodbergen and De Koster [73] also indicate that in warehouses with a single block, the aisle-

by-aisle, combined and combined+ heuristics give identical results, as the main idea in each

of the combined and combined+ heuristics is that the aisle-by-aisle heuristic is applied to each

block in a problem. Therefore, with a single block, the same solutions are obtained. As the

number of blocks are increased, the total length of the route decreases to some extent, but

after some point, the total travel distance starts to increase. This is because traversal of the

cross aisles starts to contribute significantly to the overall length of the tour, and is in line with

the findings of Vaughan and Petersen [82].

179

Ta
bl

e
C

.1
:R

es
ul

tin
g

av
er

ag
e

tr
av

el
tim

es
(i

n
se

co
nd

s)
by

th
e

la
rg

es
tg

ap
,S

-s
ha

pe
an

d
ai

sl
e-

by
-a

is
le

he
ur

is
tic

pr
oc

ed
ur

es
fo

rt
he

pr
ob

le
m

se
to

fR
oo

db
er

ge
n

an
d

D
e

K
os

te
r[

73
],

w
ith

th
e

be
st

he
ur

is
tic

re
su

lts
in

di
ca

te
d

in
bo

ld
(2

,0
00

in
st

an
ce

s
fo

re
ac

h
se

tti
ng

)

N
um

be
ro

fb
lo

ck
s

M
et

ho
d

N
o.

of
ai

sl
es

L
en

gt
h

N
o.

of
ite

m
s

1
2

3
4

5
6

7
8

9
10

L
ar

ge
st

ga
p

7
10

10
14

6.
6

15
6.

9
16

4.
6

16
9.

3
17

6.
3

18
1.

9
18

7.
4

19
4.

7
20

1.
9

20
9.

3
7

10
30

20
8.

6
24

0.
9

27
3.

9
30

3.
5

33
0.

3
34

8.
6

36
3.

4
37

9.
6

39
4.

4
40

8.
4

15
10

10
22

7.
3

26
5.

2
28

7.
2

29
6.

2
30

5.
7

31
2.

2
31

7.
1

32
4.

6
33

1.
4

33
8.

4
15

10
30

35
7.

5
41

3.
5

48
4.

5
55

2.
1

61
4.

6
66

0.
1

69
2.

3
72

4.
7

75
0.

1
77

6.
3

7
30

10
29

5.
1

25
9.

9
25

0.
7

24
6.

3
24

7.
4

25
0.

3
25

4.
5

25
9.

7
26

4.
9

27
0.

6
7

30
30

45
1.

7
42

4.
7

42
5.

7
43

5.
9

44
6.

9
45

6.
1

46
4.

1
47

2.
2

47
8.

4
48

8.
7

15
30

10
40

1.
0

37
7.

6
37

9.
1

37
7.

2
37

9.
5

38
2.

4
38

6.
6

39
0.

6
39

5.
2

40
0.

6
15

30
30

71
5.

6
64

6.
0

66
5.

4
70

5.
2

74
6.

3
77

9.
9

80
5.

0
82

6.
5

84
2.

8
86

3.
7

S-
sh

ap
e

7
10

10
16

5.
1

14
5.

7
15

2.
6

15
5.

7
16

1.
4

16
7.

7
17

4.
6

18
1.

8
18

8.
6

19
6.

4
7

10
30

20
3.

5
21

0.
3

25
0.

1
25

3.
4

27
8.

3
28

7.
8

30
1.

0
31

1.
9

32
2.

3
33

2.
4

15
10

10
26

6.
2

22
4.

6
24

5.
0

25
2.

6
26

1.
2

27
0.

2
27

8.
9

28
8.

3
29

5.
5

30
4.

6
15

10
30

39
1.

3
35

9.
5

43
1.

1
42

2.
8

47
8.

3
49

1.
1

51
8.

4
53

9.
0

55
7.

8
57

6.
0

7
30

10
35

3.
1

27
6.

2
25

6.
5

24
5.

0
24

2.
5

24
3.

4
24

7.
1

25
1.

7
25

7.
1

26
2.

5
7

30
30

45
2.

0
42

6.
8

43
8.

2
42

0.
1

42
7.

7
42

3.
4

42
7.

0
42

9.
7

43
2.

9
43

7.
1

15
30

10
51

7.
6

37
6.

9
36

1.
0

34
9.

4
34

7.
6

35
0.

1
35

4.
7

36
0.

4
36

6.
4

37
2.

7
15

30
30

83
3.

3
68

6.
0

68
8.

2
63

6.
4

66
3.

4
65

3.
6

66
6.

5
67

5.
2

68
4.

4
69

5.
1

A
is

le
-b

y-
ai

sl
e

7
10

10
14

8.
5

14
4.

3
15

3.
7

16
4.

6
17

7.
5

18
9.

9
20

5.
4

21
6.

4
23

0.
3

24
5.

6
7

10
30

19
2.

1
20

7.
2

22
7.

0
24

6.
7

26
8.

5
28

9.
5

31
5.

7
33

3.
6

35
7.

6
38

3.
8

15
10

10
23

5.
2

22
0.

7
22

9.
4

24
1.

0
25

5.
1

26
8.

9
28

6.
3

29
8.

4
31

3.
6

33
0.

9
15

10
30

35
6.

7
34

9.
3

36
9.

1
39

2.
5

42
1.

3
44

9.
8

48
6.

3
50

9.
8

54
2.

1
57

8.
6

7
30

10
30

4.
7

26
8.

0
26

8.
4

27
6.

5
28

7.
5

29
9.

6
31

3.
0

32
5.

7
33

9.
0

35
1.

8
7

30
30

41
8.

8
41

3.
9

42
2.

8
43

8.
5

45
7.

2
47

7.
7

50
0.

4
52

2.
5

54
4.

1
56

5.
8

15
30

10
42

7.
2

36
2.

0
35

8.
6

36
6.

8
37

8.
3

39
1.

7
40

6.
6

42
0.

6
43

5.
3

44
9.

7
15

30
30

73
2.

7
64

8.
8

64
2.

8
65

8.
6

68
2.

0
70

9.
1

73
9.

7
76

9.
4

79
8.

9
82

8.
9

180

Ta
bl

e
C

.2
:

R
es

ul
tin

g
av

er
ag

e
tr

av
el

tim
es

(i
n

se
co

nd
s)

by
th

e
co

m
bi

ne
d,

an
d

co
m

bi
ne

d+
he

ur
is

tic
pr

oc
ed

ur
es

an
d

av
er

ag
e

op
tim

al
tim

es
fo

rt
he

pr
ob

le
m

se
to

fR
oo

db
er

ge
n

an
d

D
e

K
os

te
r[

73
],

w
ith

th
e

be
st

he
ur

is
tic

re
su

lts
in

di
ca

te
d

in
bo

ld
(2

,0
00

in
st

an
ce

s
fo

re
ac

h
se

tti
ng

)

N
um

be
ro

fb
lo

ck
s

M
et

ho
d

N
o.

of
ai

sl
es

L
en

gt
h

N
o.

of
ite

m
s

1
2

3
4

5
6

7
8

9
10

C
om

bi
ne

d
7

10
10

14
8.

5
13

4.
6

14
5.

4
15

1.
2

15
8.

2
16

5.
5

17
2.

9
18

0.
4

18
7.

5
19

5.
6

7
10

30
19

2.
1

19
6.

5
23

6.
1

24
0.

4
26

7.
0

27
7.

7
29

2.
2

30
4.

2
31

5.
4

32
6.

3
15

10
10

23
5.

2
20

8.
6

23
5.

3
24

6.
7

25
7.

1
26

7.
2

27
6.

6
28

6.
6

29
4.

1
30

3.
6

15
10

30
35

6.
7

32
4.

6
40

2.
5

39
9.

5
45

9.
0

47
4.

8
50

4.
2

52
6.

8
54

7.
1

56
6.

7
7

30
10

30
4.

7
24

3.
4

23
5.

1
23

1.
2

23
2.

5
23

6.
1

24
1.

5
24

7.
4

25
3.

5
25

9.
7

7
30

30
41

8.
8

38
6.

2
39

7.
4

38
2.

2
39

4.
9

39
4.

7
40

1.
7

40
7.

5
41

3.
8

42
0.

7
15

30
10

42
7.

2
33

0.
1

33
2.

5
33

1.
8

33
4.

8
34

0.
8

34
7.

6
35

5.
0

36
2.

0
36

9.
2

15
30

30
73

2.
7

58
4.

6
60

5.
6

56
9.

7
60

9.
2

60
8.

6
62

8.
2

64
2.

5
65

6.
5

67
1.

3
C

om
bi

ne
d+

7
10

10
14

8.
5

13
3.

2
13

6.
2

14
0.

2
14

6.
0

15
2.

1
15

9.
4

16
5.

9
17

3.
3

18
0.

8
7

10
30

19
2.

1
19

6.
0

22
4.

7
23

2.
0

24
4.

2
25

3.
2

26
0.

7
26

8.
9

27
6.

6
28

3.
9

15
10

10
23

5.
2

20
7.

0
21

4.
5

22
0.

8
22

7.
6

23
4.

3
24

2.
0

24
9.

3
25

7.
0

26
4.

7
15

10
30

35
6.

7
32

3.
6

37
3.

3
37

9.
6

40
1.

4
41

5.
3

42
5.

5
43

7.
2

44
7.

6
45

7.
2

7
30

10
30

4.
7

23
5.

4
21

9.
3

21
4.

9
21

6.
2

21
9.

8
22

5.
2

23
0.

8
23

7.
2

24
3.

4
7

30
30

41
8.

8
38

1.
7

37
9.

3
36

5.
8

36
2.

7
36

0.
6

36
1.

6
36

3.
6

36
6.

6
37

0.
6

15
30

10
42

7.
2

32
3.

1
30

5.
3

30
0.

5
30

1.
0

30
4.

3
31

0.
1

31
5.

7
32

2.
0

32
8.

5
15

30
30

73
2.

7
57

7.
6

56
7.

6
53

9.
8

53
8.

5
53

6.
7

53
7.

8
54

1.
6

54
5.

2
55

0.
7

O
pt

im
al

7
10

10
13

8.
7

12
9.

7
13

1.
5

13
5.

7
14

1.
7

14
8.

0
15

5.
5

16
2.

0
16

9.
6

17
7.

4
7

10
30

18
6.

6
19

1.
4

19
8.

6
20

7.
1

21
6.

3
22

4.
9

23
5.

0
24

3.
2

25
2.

8
26

1.
6

15
10

10
21

9.
6

20
2.

0
20

1.
4

20
5.

2
21

1.
4

21
8.

2
22

6.
7

23
3.

8
24

2.
2

25
1.

0
15

10
30

33
7.

5
31

4.
3

31
1.

6
31

5.
7

32
4.

5
33

3.
4

34
6.

1
35

5.
6

36
8.

7
38

1.
4

7
30

10
26

9.
6

22
2.

9
21

1.
1

20
9.

0
21

1.
4

21
5.

8
22

1.
3

22
7.

4
23

3.
9

24
0.

2
7

30
30

39
8.

3
36

1.
1

34
2.

9
33

6.
5

33
3.

8
33

4.
2

33
7.

0
34

0.
8

34
5.

0
34

9.
7

15
30

10
37

7.
3

30
8.

0
29

0.
9

28
7.

7
28

9.
3

29
3.

5
29

9.
2

30
5.

4
31

2.
0

31
8.

5
15

30
30

66
5.

5
54

0.
6

49
5.

9
47

9.
8

47
3.

3
47

2.
8

47
5.

9
48

0.
7

48
6.

0
49

1.
7

181

APPENDIX D

APPLICATION OF THE 2-OPP ALGORITHM TO FIND THE

TURN MINIMIZING TOUR

In this part, we use a “reduced” form of the distance minimization algorithm proposed by

Ratliff and Rosenthal [71] in order to find a turn minimizing tour in a 2-OPP graph. In coming

up with the following observation, we are assuming that only the aisles between the left-most

and right-most non-empty aisles are considered.

Observation D.1 The only equivalence classes that are applicable are (U,U,1C), (0,E,1C),

(E,0,1C), (E,E,1C) and (0,0,1C).

(E,E,2C) is not applicable because partial traversal of an aisle from both sides is suboptimal,

whereas (0,0,0C) is not applicable because we are assuming that only the aisles between the

left-most and right-most non-empty aisles are considered.

Observation D.2 Possible arc configurations within the aisles in an optimal tour subgraph

are the ones labeled as (1), (2), (3), (5) and (6) in Figure 3.5.

However, the arc configurations in Figure 3.5 will be used by guiding some insight. We know

that (2) and (3) are applicable only if the depot is on that aisle, the number of nonempty aisles

is odd and there is no item on one side of the depot on the aisle but items on the other side. If

there are no items on the aisle, then any of (2) and (3) can be arbitrarily used. Furthermore,

(5) is used when the number of nonempty aisles is odd and when (2) and (3) are not needed.

It is also known that (5) is used exactly once when needed, so there is no need to consider it

more than once. Lastly, (6) is used for empty aisles.

We have the following observation for the arc configurations between the aisles.

182

Table D.1: Resulting equivalence classes after adding the possible connection types in Figure
3.6 to each L+

j equivalence class, dashed lines indicating suboptimality or infeasibility

L+
j equivalence Connection types in Figure 3.6

classes (1) (2) (3)

(U,U,1C) (U,U,1C) - -

(E,0,1C) - (E,0,1C) -

(0,E,1C) - - (0,E,1C)

(E,E,1C) - (E,0,1C) (0,E,1C)

Table D.2: Resulting equivalence classes after adding the possible connection types in Figure
3.5 to each L−j equivalence class, dashed lines indicating suboptimality

L−j equivalence Connection types in Figure 3.5

classes (1) (2) (3) (5) (6)

(U,U,1C) (E,E,1C) (U,U,1C) (U,U,1C) (U,U,1C) (U,U,1C)

(E,0,1C) (U,U,1C) (E,0,1C) - (E,E,1C) (E,0,1C)

(0,E,1C) (U,U,1C) - (0,E,1C) (E,E,1C) (0,E,1C)

(E,E,1C) (U,U,1C) (E,E,1C) (E,E,1C) (E,E,1C) (E,E,1C)

(0,0,1C) (U,U,1C) (E,0,1C) (0,E,1C) (E,E,1C) (0,0,1C)

Observation D.3 Possible arc configurations between the aisles in an optimal tour subgraph

are the ones labeled as (1), (2) and (3) in Figure 3.6.

Table D.1 summarizes the resulting equivalence classes when the between-aisle connections

in Figure 3.6 are added to each equivalence class, whereas Table D.2 gives the resulting equiv-

alence classes when the within-aisle connections in Figure 3.5 are added to each equivalence

class.

183

