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ABSTRACT

DIFFERENTIAL EQUATIONS WITH DISCONTINUITIES AND POPULATION
DYNAMICS

Arugaslan Cingin, Duygu
Ph.D., Department of Mathematics
Supervisor : Prof. Dr. Marat Akhmet
Co-Supervisor : Prof. Dr. Meryem Bekiitu

June 2009, 124 pages

In this thesis, both theoretical and application orientlilts are obtained for ftker-
ential equations with discontinuities offtérent types: impulsive fferential equa-
tions, diferential equations with piecewise constant argument céigdized type and
differential equations with discontinuous right-hand sidemsvefal qualitative prob-
lems such as stability, Hopf bifurcation, center manif@duction, permanence and
persistence are addressed for these equations and alsotka-\olterra predator-
prey models with variable time of impulses, ratio-depengeadator-prey systems

and logistic equation with piecewise constant argumeneokgalized type.

For the first time, by means of Lyapunov functions couplechwtite Razumikhin
method, sfficient conditions are established for stability of the &idolution of dif-

ferential equations with piecewise constant argument négdized type. Appropri-
ate examples are worked out to illustrate the applicabilitthe method. Moreover,
stability analysis is performed for the logistic equatievhich is one of the most

widely used population dynamics models.
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The behaviour of solutions for a 2-dimensional system fiedential equations with
discontinuous right-hand side, also called a Filippovesystis studied. Discontinuity
sets intersect at a vertex, and are of the quasilinear natbreugh theB—equivalence
of that system to an impulsiveftierential equation, Hopf bifurcation is investigated.
Finally, the obtained results are extended to a 3-dimeasaiscontinuous system of
Filippov type. After the existence of a center manifold isy&d for the 3-dimensional
system, a theorem on the bifurcation of periodic solutiengrovided in the critical
case. lllustrative examples and numerical simulationgpegsented to verify the the-
oretical results.

Keywords: Diterential equations with discontinuities, Hopf bifurcatidyapunov-

Razumikhin method, Center manifold theory, Population dyinam
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SUREKSIZLIKLERI OLAN DIFERENSYEL DENKLEMLER VE
PORJLASYON DINAM Gl

Arugaslan Cingin, Duygu
Doktora, Matematik BIUmu
Tez Yoneticisi . Prof. Dr. Marat Akhmet
Ortak Tez Yoneticisi : Prof. Dr. Meryem Bekliglu

Haziran 2009, 124 sayfa

Bu tezde, areksizlikleri olan farkl tipteki diferensiyel denkleptt impalsif dife-
rensiyel denklemler, genellestiriimis parcali sabijiananlh diferensiyel denklem-
ler ve s@ tarafi sireksiz diferensiyel denklemler icin hem teorik hem de ulgg
maya Yonelik sonuclar elde edilmistir. Bu denklemler vejdgken zamanlh impalsif
etkili Lotka-Volterra avci-av modelleri, genellestirils parcali sabit aigman iceren
oran-b@imli avci-av sistemleri ve lojistik denklem icin karity, Hopf bifirkasyonu,
merkez manifolda indirgeme, devamlilik ve direngenliki dpincok kalitatif problem

ele alinmigtir.

Razumikhin metodu ile birlestirilen Lyapunov fonksiyon|agenellestiriimis parcal
sabit argiman iceren diferensiyel denklemlerde ilk kez kullaralaasikar ¢zimin

kararhligi icin yeter kosullar elde edilmistir. Metodun uyguddnilirli gini gdstermek
amacilyla uygurdrnekler sunulmustur. Ayrica, en ¢ok kullanilan figsyon dinamik

modellerinden biri olan lojistik denklem igin kararlildnalizi yapilimistir.
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Filippov sistemi diye de adlandirilan@aarafi fireksiz iki boyutlu bir diferensiyel
denklemler sistemi icind@ziimlerin davranislari arastiriimistiri&ksizlik kimeleri
yari dgjrusal karakterde olup birdsede kesismektedirler. Bu sistemin impalsif dife-
rensiyel denkleme B-denkjinden faydalanilarak, Hopf hiifkasyonu incelenmistir.
Bulunan sonuclar son olarak Filippov tipindekg boyutlu $ireksiz bir sistem icin
genellestiriimistir. U¢ boyutlu sistemde merkez manifoldun vgrligosterildikten
sonra kritik durum icin periyodik @ziumlerin bifurkasyonutizerine bir teorem elde
edilmistir. Teorik bulgulari dgrulamak adina aciklayiérnekler ile birlikte sayisal

similasyonlar sunulmustur.

Anahtar Kelimeler: 8reksizlikleri olan diferensiyel denklemler, Hopf irkasyonu,

Lyapunov-Razumikhin metodu, Merkez manifold teorisi, Blagyon dinangi
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CHAPTER 1

INTRODUCTION

Very few ordinary diterential equations can be solved explicitly. Fortunatalypany
situations exact solutions are not necessary and onlytgtredi aspects of the solu-
tions are of interest. Even if an exact solution is obtaieaQualitative analysis can
provide a more comprehensive understanding of the situ#tian the solution itself.
That being the case, in the qualitative theory dfatiential equations, rather than
finding exact solutions, it is essential to study their dartdaracteristics. This the-
ory originated in the groundbreaking works of Lyapunov [[L2&d Poincag [149],
and has been developed during the last several decadesptowe extremely ef-

fective in the investigation of various physical and biotad phenomena.

The principal results of the qualitative approach includistence and uniqueness of
solutions, stability of equilibrium points, existence astdbility of periodic solutions,
bifurcation of equilibrium points, bifurcation of periadsolutions and so on. A so-
lution starting at a certain initial value may evolve towaeth equilibrium point or a
periodic solution. Equilibrium points and periodic sobrts can be stable or unstable,
thus attracting or repulsing neighbouring solutions, eetigely. Number and stabil-
ity of equilibrium points or periodic solutions can changeparameters are varied.
This qualitative change in the structural behaviour of Bonhs is called bifurcation,

an originally French word introduced by Poined149].

The qualitative theory of ordinary filerential equations is rather well developed
[24, 48, 51, 53, 63, 64, 79, 82, 87, 88, 111, 136, 151, 172]. Rbgestudies that
address the qualitative behaviour of systems with disnantis characteristics have

received increasing attention as they naturally ariseahpkenomena. In this thesis,



we survey several results onfldirential equations with discontinuities and consider
their applications in population dynamics. Before definimg dbjective of the thesis

in detail, we shall describe fllerent types of discontinuous systems and the related
problems.

1.1 General Description of Diferential Equations with Discontinuities

The theory of diferential equations with discontinuities plays an increglyi im-
portant role in applications. Many real processes whicleappn various problems
of biology, chemistry, control theory, ecology, economiekectronics, mechanics,
medicine and physics are studied by means of mathematiadlIsyavith some kind
of discontinuity [11, 12, 15, 31, 41, 55, 90, 91, 110, 119,]13Ais fact has increased
the need to establish a comprehensive theory fideintial equations with disconti-
nuities [2, 8, 20, 22, 52, 69, 72, 83, 98, 105, 108, 113, 129, 137, 140, 142, 152,
153, 157].

In what follows, it is sensible to distinguish betweeffelient types of discontinu-
ities that will be treated in this thesis. The first one is tiecdntinuous external
forces also called impulsedfects [83, 113, 152]. Another type is the piecewise con-
stant arguments [52, 156, 170] of generalized type. Thedastis the case when
the right-hand sides of the equations depend discontiy@usthe state variables
[22, 72, 108]. Containing impulsive filerential equations, fierential equations with
piecewise constant argument of generalized type affidrdntial equations with dis-
continuous right-hand sides, the range dfatiential equations with discontinuities is

quite vast.

1.1.1 Impulsive Dfferential Equations

Evolution of a real process can be subject to short-ternugstions whose duration
is negligible compared to the duration of the process itsEffese perturbations are
realized momentarily in the form of impulses causing ananttneous change in the
state of the process. For example, when an oscillatinggsisistruck by a hammer,

it experiences a sudden change of velocity; a pendulum aick elndergoes a rapid

2



change of momentum when it crosses its equilibrium positi@rvesting and epi-
demics lead to a significant decrease in the population yeofa species, etc. In
order to explain such processes mathematically, it becoreesssary to study im-
pulsive dtferential equations, also calledfférential equations with discontinuous

trajectories.

Particular examples such as mathematical model of clock 125, 129] played a
leading role in the development of the mathematical thedifberential equations
with impulsive actions. However, general notions of impuddifferential equations
were introduced by Pavlidis [142]-[144]. The book of Saranko and Perestyuk
[152] is also a fundamental work in the area as it covers mhaegretical problems
including the existence and uniqueness of solutions, I§tatntegral sets, periodic

and almost periodic solutions, etc.

The interest in the theory of systems with discontinuougettaries has recently
grown due to the needs of modern science [32, 34, 79, 83, ¥P3,162] and tech-
nology [25, 33, 35, 105, 129, 143, 144]. The theory is now ¢eacrognized to be
not only richer than the corresponding theory dffeliential equations without im-
pulses, but also represents a more natural framework fdnenatical modeling of
real processes [99] investigated in various fields of plsysitechanics, economics,

population dynamics, ecology, biological systems andnagitcontrol [34, 113].

There are two principally dierent types of impulsive fferential equations: with
impulses at fixed times; and with impulsive action at vaedithes. The mathemat-
ical model of a process with impulsdfects at fixed times can be described by the

following impulsive system [152]

dx
i ft,x), t=#m, (1.1)
AX|t =T = Ii(X)a

wherex € R", n e N, t € R, {r;} is a given sequence of times indexed by a finite or
an infinite set], f andl; aren—dimensional vector-valued, continuous functions. A
phase point of (1.1) moves along one of the trajectories efdifierential equation

X' = f(t,x) forallt # 7;. Whent = ;, the point has a jumaxjt = ¢, = X(7{")—X(77) =
li(x(r;)). Hence, a solutiox(t) of (1.1) is a piecewise continuous function that has

discontinuities of the first kind dt= ;.



In the variable case, impulses occur when the phase poinsp$tam intersects the
prescribed surfaces in the phase space. It is well knowrsyiséms with impulses at
variable times generate mordfdtult theoretical challenges compared to the systems
which experience impulses at fixed times. They are mostlg tesdescribe processes

in mechanics and electronics. Generally, these systeraghalform

dx
i ft,x), t#7i(X), (1.2)

AXlt = 7;(x) = li(%),

whereri(X), i € J, stand for the surfaces of discontinuities. In oppositiorthe
system (1.1), points of discontinuity in (1.2) depend ondblkition, which results in

a more complicated situation.

Most of the mathematical problems encountered in the stddynpulsive difer-
ential equations can not be treated by standard technigexesdoghed for ordinary
differential equations, especially when the impulses takeepawariable moments
[14, 20, 21, 145]. Hective methods for the investigation of systems with imesilat
variable times can be found in [58, 76, 113, 152].

There also exists an important class of impulsiféedéential equations that are known
as discontinuous dynamical systems. A discontinuous digarsystem [142, 152]

can be written as

dx
pri f(x), x¢T, (1.3)
AXy e = [(X).

A phase point of system (1.3) moves between two consecutigesections with the
setl’ c R" along one of the trajectories of theffdirential equationx’ = f(x), and
when the point, say, intersects with" it is mapped into the point + 1(x). Clearly,
for discontinuous dynamical systems moments of intergedtiith the sel” depend
on the solution and hence they are of variable nature. Theepties of such sys-
tems have not been thoroughly discussed so far. Since a adge rof applications
demonstrate the necessity of studying such systems, ttiagtahe attention of many
researchers nowadays, see, for example, [2, 14] and thhemetss therein. Hence, the
theory of discontinuous dynamical systems is a rapidly dgneg field at present.
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1.1.2 Dfferential Equations with Piecewise Constant

Argument of Generalized Type

Differential equations with delay provide very useful mathérabhmodels for a vari-

ety of systems in which the rate of change of the system desmmdehow on its past
history. It is recognized that filerential equations with piecewise constant arguments
are closely related to delayftirential equations [78, 80] as they contain arguments of
delayed or advanced type [5]. These equations have comexigi@nce in an attempt

to extend the theory of functionalftigrential equations with continuous arguments to

differential equations with discontinuous arguments [170].

The theory of diferential equations with piecewise constant argument oficime

S0 = . x. X1, 1.9

wheret € R, x € R", and [] denotes the greatest integer function, was initiated in
[52, 156] and has been intensively developed by many authdinge last few decades
[1, 80, 141, 169, 170]. Studies of such equations were ntetMay the fact that they
represent a hybrid of continuous and discrete systems asdatmbine the properties
of both diferential and dterence equations.

There exists an extensive literature dealing witfiedlential equations with piecewise
constant argument. Results concerning oscillatory behawicsolutions are included
in[1, 55, 158], [169]-[171] and the references cited ther&xistence and uniqueness
of solutions, their backward continuation orcf, 0] and asymptotic stability of the
trivial solution has been studied in [52, 170]. The probldmastence of periodic and
almost periodic solutions for fierential equations with piecewise constant argument
has been considered in [1, 155, 165, 173] and the referehes=ntith. Later, Cooke
and Wiener gathered all previous results including stgbiiscillation properties and
existence of periodic solutions in their comprehensivereyipaper [50]. A brief
summary of the theory can also be found in [170]. Other thathemaaticians, this
class of diterential equations has attracted the attention of manytsie due to their
wide range of applications in the fields of biology, conttoédry, neural networks,
biomedical models of disease, etc. [12, 41, 55, 77, 125,152,158, 167, 169, 177].



Most of the results for dierential equations with piecewise constant argument are
obtained by reducing them into discrete equations and blymgpnumerical meth-
ods [12, 41, 52, 55, 78, 81, 132, 156, 170]. The method of temlud¢o discrete
equations has been the main instrument of investigationa Asnsequence of the
existing method, initial value problems are considered éoi the case when initial
moments are integers or their multiples. In addition, one mat study stability in

the complete form as only integers or their multiples arevedid to be discussed for

initial moments.

In [5], [8]-[10], the concept of dferential equations with piecewise constant argu-
ment has been generalized by considering arbitrary piseeeonstant functions as
arguments. It has been assumed that there is no restriatitimeodistance between
the switching moments of the argument. There, it has begoogeal to investigate

differential equations of the form

% = A(t)x(t) + f(t, x(t), x(B(1))), (1.5)

wherex € R", ne N, t € R, A(t) is a continuous x n matrix,S(t) = 6, if 6, <t < 6,4,

I € Z, andg; is a strictly ordered sequence of real numbers Wjth— ~ as|i| —» oo.
Clearly, the greatest integer functioth s a particular case of the functiggt). In-
deed, if we choosé =i, i € Z, theng(t) = [t]. System (1.5) is called a fierential
equation with piecewise constant argument of generaligeel tFor the investigation
of such systems [5]-[9], a new approach based on the cotistnuaf an equivalent
integral equation has been used. By means of this approasfasishown that the
definition of the initial value problem for fferential equations with piecewise con-
stant argument of generalized type is similar to the onengfee classical ordinary
differential equations. Results on the existence and uniquehss&itions, continu-
ous dependence on the initial value imply that one can ifgegst stability by taking
any real number as an initial moment. Hence, definitionsatfibty for differential
equations with piecewise constant argument of generaligeel coincide with the
definitions used for ordinary fierential equations [88].

6



1.1.3 Dfferential Equations with Discontinuous Right-Hand Sides

It is well known that systems modeled by ordinarsfeliential equations can be writ-
ten in the vector fornx’ = f(t,x), wheret € R, x € R", n e N, andf is an
n—dimensional vector-valued, continuous function. Howgtlegre exist many prac-
tical situations in which the function on the right-handesids discontinuous with
respect to the state variabteor to the time variablé, resulting in a diterential equa-

tion with discontinuous right-hand sides.

The theory of diferential equations with discontinuous right-hand sidesleen to
a great extent developed by the needs of physical problegosriey automatic con-
trols such as relays and switches [72]. These equationdsoespecific for a wide
range of applications arising from mechanical systems w@ithfriction, electrical
circuits with small inductivities, systems with small itiar dynamical systems with
non-diferentiable potential, optimization problems with non-sihodata, electrical
networks with switches, oscillations in visco-elastictptimal control, etc. (see, for
example, [25, 72, 73] and the references therein). Mathealabtodeling of such ap-
plications leads to discontinuous systems which switckvéen diterent states and
the vector field of each state is associated withfgeent set of dferential equations
[31, 114].

Systems described byfterential equations with a discontinuous right-hand sides a
also called Filippov systems. For these systems, depedinige vector field, either
a transversal intersection or a sliding mode may appeam Ere mathematical point
of view, several ways exist to handle such systems. For elearope way is to use
the theory of diterential inclusions [72]. Systems with sliding mode areeyaly
extended to a set valued vector field, that is, tdedential inclusions for investiga-
tional purposes. Another way is a continuous approximatifaiscontinuities to get
smooth diferential equations [30]. Method &equivalence [18, 19, 22] can also be
used &ectively in the analysis of éierential equations with discontinuous right-hand

sides, especially when the sets of discontinuities are asijnear nature.

Stimulated by the problems of applied nature, qualitathety of classical dieren-
tial equations including the notions of existence, unicessn continuous dependence,
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stability and bifurcation has been adapted for equatiorik discontinuous right-
hand sides. Hence, the amount of literature on the theoryftdrdntial equations
with discontinuous right-hand sides is vast. ffBrent aspects of the modified the-
ory are elucidated in a variety of books and papers. The bfiks35, 129] can be
considered as an important basis for the development of sggtbms. A nice intro-
duction can be found in [59, 72, 108]. The fundamental worlEitibpov extends
a discontinuous dierential equation to a fierential inclusion [72, 73]. In his book
[72] many results from the classical theory offdrential equations were shown to
be valid for equations with discontinuous right-hand sideswell, and rather than
applications, it presents the main trends of the theory Héintial equations with
discontinuous right-hand sides such as existence and emégs, dependence on the
initial data, bounded and periodic solutions, stabilitd ao on. Moreover, there exist
many publications that consider dry friction problems,sexce and bifurcation of
periodic solutions for Filippov type systems by means dfedential inclusions, see
for example [31, 49, 69, 109, 112, 114, 179, 180]. The desoripf bifurcations for
these systems can be found in [114].

In the literature, discontinuities on the right-hand sidesmostly assumed to appear
on straight lines [49, 108, 112, 179, 180]. However, Akhmetnd Perestyuk [22]
and Akhmetov [18, 19] obtained several theoretical redoltsuch equations with
nonlinear sets of discontinuities. The main tool of invgastion in these papers was
the B-equivalence method introduced by the authors. This metvexifirstly pro-
posed to reduce impulsive systems with variable time of isgaito the systems with
fixed moments of impulsive actions [20, 21]. Then it appednatithe method is also
applicable to dierential equations with discontinuous right-hand siddsatTs, dif-
ferential equations with discontinuous vector fields witiminear discontinuity sets
can be reduced to impulsiveftirential equations with fixed moments of impulses.

Method ofB-equivalence will be thoroughly discussed in Chapter 4.

We provide general overviews of the Lyapunov-Razumikhinhoef bifurcation phe-
nomena and center manifold theory with extensive litegtaithe next two sections.
These concepts will be treated in detail foftdrential equations with discontinuities

in the following chapters.



1.2 A Brief History of the Lyapunov-Razumikhin Method

In his seminal thesis, Lyapunov [122] proposed two methodsjed by himself the
first and second method, for stability analysis of motionss Wwell known that Lya-
punov’s second method has proved to be an indispensablie tbelqualitative theory
of differential equations. It has been widely used in the investigaf stability of
various systems in mathematics and those considered adsmo@eology, biology,
epidemiology, mechanics and economics [17, 29, 43, 47,Z,71@&L, 103, 127, 128,
151, 174, 178]. The significance of the method stems fromdtis that it enables one
to discuss qualitative properties of solutions of a systathout solving the dter-
ential equation explicitly and that it can be utilizelestively to deal with nonlinear

systems.

Based on the Lyapunov’s second method, many results fromtahdity theory of
differential equations without delay have been successfulnebled and adjusted to
systems with time delay. This extension has been carriednowto directions by
Krasovskii [104] and Razumikhin [150] individually. The firdirection makes use
of Lyapunov functionals and is known as Lyapunov-Krasausigthod. On the other
hand, functions are much simpler to handle and more pratbicketermine sfiicient
conditions for stability. Thus, in the second directionapynov functions are com-
bined with the Razumikhin technique, which is generally mefe to as Lyapunov-
Razumikhin method.

Geometrically, Lyapunov function method involves findingystem of closed sur-
faces that contain and approach the origin. The vector fiElshation should be
directed inside the areas enclosed by these surfaces wdrithtlie level surfaces of
a Lyapunov function, saY/(t, x). If a solution enters such an area, then it will never
leave it again. For systems without deviating argumentsgeed vector on the level
surfaces is determined only by the present moment of tirag, by the point lying
on the given surface. However, the speed in systems withmagtdeviation de-
pends, in some way, also on the previous history which isllysbard to find. In
order to be able to estimate the full derivative of Lyapunomdtion along the so-
lutions, Razumikhin [150] proposed to consider a previowssony to lie inside the
level surfaceV/(t, X) = ¢, ¢ > 0. That is to say, the idea was to evaluate the derivative
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not for all curves that correspond to solutions of the systeut only for those that
leave areas enclosed by the level surfaces. The standdmidee of proving Lya-

punov theorems on stability made such assumption bothalatod logical. This led

to an additional Razumikhin condition for the Lyapunov tresos, which included
the estimation of the derivative of the Lyapunov functiontbe curve that satisfies
V(s x(9) < V(t, x(t)), s< t[84, 101, 150].

There are many publications in which the Lyapunov functicgthod together with
Razumikhin type techniques presents itself as the main amelgeapproach used for
stability analysis of a variety of delayftirential equations, e.g., see [44, 121, 159,

166] and the references therein.

1.3 An Overview of Bifurcation and Center Manifold Theories

Bifurcation theory is concerned with the topological chagethe qualitative nature
of solutions of a family of diferential equations as parameters are varied. Bifurca-
tion appears when a small change made on the parameter whlaesystem causes
a sudden qualitative change in its behaviour, e.g., numbertype of equilibrium
points and periodic solutions may change as parameters@anerally, equilibrium
solutions are stable to small perturbations if the paramet® a certain range, and
become unstable when it passes through a critical valukedcalbifurcation point.
Moreover, periodic solutions around equilibrium pointsynexist in a small neigh-
borhood of a bifurcation point. Bifurcations occur in manygpical systems, exam-
ples of which can be found in morphodynamics (the forming efinders in rivers),
structural mechanics (the buckling of an elastic beamgr wiscillation of suspension
bridges, biochemical reactions (reactioffasion models) and cardiac arrhythmias
in malfunctioning hearts. More examples of bifurcation t&ifound in the mathe-

matical studies of physics, chemistry, biology, enginggand population ecology.

Since many practical problems in nature are influenced byodisnuous character-
istics of physical phenomena, it is desirable to know wheglegiodic solutions of a
system exist for a certain parameter set and how these pesolditions can change

for a varying parameter of the system. The appearance of @reavch of periodic
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solutions from a branch of equilibrium points is known as Hojfurcation, named
after Hopf [92]. The phenomenon of the Hopf bifurcation isdbin the sense that all
events happen in a small neighborhood of the equilibriunmtpand the description
of the changes in amplitude and period of the oscillationnly @orrect nearby the
bifurcation point of the parameter at which the number ofquic solutions changes.
Geometrically, classical Hopf bifurcation for a smoothteys means that an equilib-
rium solution changes its stability as a pair of complex agaje eigenvalues of the
linearization around the equilibrium point cross the inmagy axis of the complex
plane. That is, stability changes from stable to unstabtaudih a center type of equi-
librium point, or vice versa. In this way, bifurcating pedio orbits are generated by

nonlinear perturbation.

During the last decades many results about bifurcationryhieave appeared and bi-
furcations of periodic solutions, i.e., Hopf bifurcatian, smooth vector fields are
well understood [79, 89, 111, 124]. Recently, bifurcatioatfees of a system under
the influence of a discontinuity have received increasitenéibn as the variety of the
discontinuities leads to rich bifurcation phenomena naeoed in smooth systems
[40, 57, 60, 62, 70, 114, 140].

The study and classification of various kinds of bifurcatgmenomena for non-
smooth systems can be summarized as follows. Feigin [70]CinBernardo et
al. [60, 62] study non-conventional bifurcations, alsdexhlC-bifurcation, in Fil-
ippov systems. The C-bifurcation concept was first mentioimefr1] and later
accepted as a collective name for bifurcations caused lmpuwiisuity [62]. Since
then many mathematicians, engineers, and physicists lzgafiention to the study
and classification of diierent types of C-bifurcation in piecewise smooth systems.
Border-collision bifurcation of fixed points in maps explerie phenomena when
a family of fixed points transversely crosses the line of aisinuity as the para-
meter varies. This bifurcation phenomenon has been studiedferent applica-
tions [139, 140]. A special case is the corner-collisiorutwétion in which some
solutions graze corners of the discontinuity sets, andithgdies a border-collision
phenomenon [61]. Another type of non-conventional bifticcais the grazing bi-
furcation which studies the corresponding properties wanpariodic orbit intersects

the line of discontinuity tangentially [40]. This kind offbrcation usually occurs in
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impacting systems [56, 137, 162]. Sliding bifurcation aggewhen part of a peri-
odic orbit coincides with the line of discontinuity, whicla$vast application back-
grounds [60, 108]. Dankowicz and Nordmark [57] study biairens of stick-slip

oscillations in a friction model, a non-smooth continuoystesm. Non-conventional
bifurcations of non-smooth discrete mappings are adddebgeNusse and Yorke
[138, 140]. Another type of C-bifurcation concerns the dmrabr disappearance
of a periodic orbit that is related to Hopf bifurcation or gealized Hopf bifurcation

[14, 49, 69, 108, 109, 112, 114, 116, 179, 180].

Several approaches have been proposed in the literatunaleze the nature of Hopf
bifurcation including integral averaging [46], the Fretthalternative [97], the im-

plicit function theorem [85], the method of multiple scal&35], and center-manifold
reduction [42, 89, 172]. The study of center manifolds foone of the cornerstones

of the qualitative theory of dlierential equations.

The center manifold theory emerged in the sixties of thedastury [100, 148], and
soon became a very powerful tool for the investigation dbisitg and bifurcation of
various systems [42]. Due to the existence of such manif¢k#sanalysis of local
bifurcations (bifurcations of equilibrium points and petic orbits) can be reduced to

the study of the systems on the center manifolds.

When the linearized system possesses a pair of purely imggigenvalues as well
as a finite or infinite number of eigenvalues with negative peéts, center manifold
theory guarantees that there exists a two dimensional agbspe., the center mani-
fold, which is tangent to the subspace spanned by the eigemgecorresponding to
the eigenvalues with zero real part. This subspace is mwatinder the flow gen-
erated by the nonlinear equations. Since the idea of ceraeifoid analysis is to
reduce a system, which is high or infinite dimensional, to @ dimensional system
by projecting the original dynamics onto the eigenvectansesponding to purely
imaginary eigenvalues, it provides a low dimensional petf a high or infinite di-
mensional flow. Accordingly, after a reduction to the cemtemifold, it becomes
easier to determine the quantitative behaviour on it, artdrimthe behaviour of the
whole system locally. For instance, stability in the fullntioear equations will be

the same as its stability in the flow on the center manifold.id&ess any bifurcations
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which occur in the neighborhood of the equilibrium point be tenter manifold are
guaranteed to occur also in the full nonlinear system. Itiqadar, if a limit cycle is
born in a Hopf bifurcation in the center manifold, then itivalso be born in the full
high or infinite dimensional system.

In the last couple of decades many authors have contribaveartls developing the
general theories of bifurcation and center manifold reidactFor much more detail,
we refer to the books [42, 45, 79, 172].

1.4 Models of Population Dynamics

Population dynamics is the branch of mathematical biologictvuses mathematical
models as a tool to solve biological problems. It studiestsrad long term changes
in the size of populations, and in the meantime, describebitiiogical and environ-
mental factors leading to those changes. During the lastizeades, the growth of

population dynamics and the diversity of applications hesnbastonishing.

When species interact the population dynamics of each spisci#fected. An inter-
action between species can occur in several ways that cdassfied as one of the

three:

(i) predator-prey situation (one benefits by eating the Qthihe growth rate of

one population is decreased and the other increased;

(i) competition (both are mutually derogative): the grbwate of each population

is decreased;

(i) mutualism or symbiosis (mutually beneficial): the gri rate of each popula-

tion is enhanced.

The increasing use of mathematics in population dynamiceistable as it requires
guantitative and qualitative measurements of severabgaml activities. The theory
of differential equations has been extensively used for decadssdy fluctuations

in the populations of species, interactions of species thighenvironment, and com-

petition and mutualism between the species. Thereforg,dlay an important role
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for addressing many fundamental questions in populatiorachycs [126]. Various

mathematical models have been proposed in the study of gi@uidynamics in the

literature [38, 133]. The dynamic relationship betweerdpters and their prey has
long been and will continue to be one of the dominant themd®th ecology and

mathematical ecology due to its universal existence anaitapce [38]. Although

these problems appear to be mathematically simple at fgist,dhey are very com-
plicated and challenging.

To obtain a better understanding of ecological communities necessary to clarify
how density of species may change as members are includedexcluded from
communities. Mathematical models of many processes inlptpo dynamics are
expressed by impulsive fierential equations. These processes are characterized by
a sudden change in their state. For example, we can consitsr population in
a pool and suppose that some fish are taken out to be sold eeelk Whis action
will affect not only the number of fish population in the pool, but il aiso afect
the rate of change of the population, depending on the nuofbrale or female fish
remained within the pool for reproduction. In a predat@ypenvironment, predators
themselves can sometimes change instantaneously due tgration. There are still
some other perturbations in ecology such as epidemicsesiamg, fires, floods, etc.
that are not suitable to be treated continually. These getions also bring sudden
changes to the systems. Recently, some impulsive equatameddeen introduced in

population dynamics in relation to population ecology [,1189].

One of the common deficiences of population models, especraddels of single
species, is that the birth rate is considered to act ingtaniasly whereas there may
be a time delay to take the time to reach maturity into accolmfact, time delays
occur in almost every situation that to neglect them is torgmreality. More realistic
models thereby should include some of the past states ofy#terss, that is, a real
system should be modeled byfférential equations with time delays. Time delays in
the dynamics of a single population or of a more interactipecges can arise from
a great variety of causes. One frequently considered mexthamhich introduces
delays into the dynamics of population growth is that of amecture. Other delay
mechanisms which have been mentioned in the literatureidecthe feeding time,

hunger co#icients in predator-prey interactions, replenishment generation time

14



for resources. Time delay due to gestation is also a commampgbe as the consump-
tion of prey by the predator throughout its past history gosehe present birth rate
of the predator. On various time scales, further causesdiatyd in population dy-
namics are food storage of predators, gatherers, reaaties tthreshold levels, etc.
[54, 123]. Recently, delayed biological systems have recemuch attention from
biologists and mathematicians [37, 54, 67, 68, 78, 107,123,160, 168, 175, 176].

In this thesis, we will deal with predator-prey systems lawa two species: Lotka-
\olterra models with impulses and ratio-dependent modéis piecewise constant
argument of generalized type in Chapter 2 and a system of awesp the logistic
eguation again with piecewise constant argument of gamedatype in Chapter 3.
Below, we briefly describe these models in their most famibams. More informa-

tion will be provided in the forthcoming chapters where wearporate discontinu-

ities such as impulses and piecewise constant argumeatthmmodels.

1.4.1 A Single Species Model: Logistic Equation

It is well known that the logistic equation of population gitb plays an important
role in the development of ecological thinking. The clasklogistic equation was
introduced by Verhulst [163] to describe the populatiormghoin a limited environ-

ment. This model is formalized by theffiirential equation

N() = TN - )

whereN(t) represents the number of individuals at time> 0 is the intrinsic growth
rate anK > 0 is the carrying capacity or the maximum number of individdlat the
environment can support. The logistic equation consstatsignificant part of mod-
els involving more than one interacting population as wsfice it is often assumed
that the growth rate of one or more of the populations satlsfylogistic equation in

the absence of the other populations, see for example [133].

It is well recognized that delays occur in a variety of biotad processes, especially
in single population models as mentioned above. It was ediout by Hutchinson
[96] that the logistic equation would be inappropriate floe escription of popu-
lation growth when there is a delay in some of the processedvied. Since then
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Hutchinson’s equation, known as the delayed logistic equdtas been investigated
in many papers [54, 78, 107, 133] and the references therhgre also exist several
results obtained for the logistic equation with piecewisestant arguments [23, 115,
125, 132, 167].

1.4.2 Predator-Prey Models: Lotka-Volterra Systems

The study of predator-prey systems began with the indepgnderk of Lotka (a

physical chemist) [120] and Volterra (a mathematician)41® 1920s. \olterra
(1926) proposed a simple model to describe the interactidw® species. Since
the same system of equations was also derived by Lotka (1928) from a chem-
ical reaction, it is known as the Lotka-\Volterra system. slistill one of the most
famous models of predator-prey interactions in an ecosystiewe let N(t) and P(t)

denote, respectively, the prey population and the pregtpulation present at time

t, then the Lotka-Volterra model is described by

N’ =aN-DbNR

(1.6)
P’ = —cP+dNP

wherea, b, c andd are positive constants that stand for the natural growtn oat
the prey in the absence of predators, the rate at which pmedabnsume prey, the
natural death rate of the predator in the absence of preyharate at which predators

increase by consuming prey, respectively.

The classical models that study the interaction of two orerspecies are mostly
variations of the Lotka-Volterra system. Owing to its thetaral and practical signif-
icances, it is commonly used for modeling predator-preg typinteractions [78, 99,
107, 118]. In recent years, Lotka-Volterra model has alsmhesed in physics, chem-
istry, economics and other fields [126, 133]. The analysiguaiitative behaviours
including stability, periodic oscillation, chaos and fation plays a key role in the

studies of this model.

In general, an equilibrium point is said to beenterif there exists a neighborhood
of the equilibrium where all trajectories are cycles camitay it. Besides, if we can

find a neighborhood of the equilibrium such that all trajeiet® starting in it spiral
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to this equilibrium ag — o (t - —o), we call such an equilibrium as a stable
(unstable)focus It is well known that system (1.6) possesses two equilibtiee
origin (0, 0) as saddle, and the positive equilibriuaid, a/b) as center, i.e., a unique
closed trajectory passes through any point in the first quddrontaining ¢/d, a/b)
in it (see Figure 1.1). Hence, except the positive equiitorand the coordinate axes,

all solutions of the classical Lotka-\Volterra system argquic.

35

25

15F

0.5

Figure 1.1: A family of closed orbits around the equilibrioid, a/b) = (1,1) for
the Lotka-Volterra system (1.6) with=b=c=d = 1.

A major inadequacy of the Lotka-Volterra model is that solug are not structurally
stable as a small perturbation can have a very markiedte Although the Lotka-

Volterra model is unrealistic, it suggests that predatespnteractions can show a
periodic behaviour. In fact, this is not an unexpected phesa. Because if a prey
population increases, it enables the growth of its pred&®the predator population
increases, they consume more prey and reduce the prey gopulsVith less food

available for the predator, the predator population deslend when it is low enough,
this allows the prey population to increase and the wholdecstarts over and over

again.

Based on the construction of the Lotka-Volterra system (If& number of prey
equal toc/d and of predator equal ta/b are put into an empty lake, there will be
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no biological fluctuations. If initial numbers are close lhose values, there will be a
small fluctuation represented by a small closed curve arthumg@oint €/d, a/b). To
produce large fluctuations in the numbers of both speciessifficient to begin the
experiment with a few members (see Figure 1.1). Howeves,ishnot in accordance
with the observations and it is improbable that a few mempksed in a lake would
give rise to large fluctuations. On the contrary, it seemsempoobable that by putting
a certain number of each species into an empty lake, a statgudibrium should be
reached after a certain time [129]. As a consequence, weastadd that having the
equilibrium point as center the Lotka-\Volterra system i$ realistic for biological
applications. Later, this fact has been developed by magleliore general systems
of differential equations [102] or by introducing impulses anéygeinto the system
[99, 107, 118, 132, 160, 176], which give result§etient from those of (1.6). For ex-
ample, under certain conditions, instead of a center, ibguim point may be either
a stable focus or a stable node. Moreover, this point may henatable focus sur-
rounded by a stable limit cycle [168], which is a closed wtyey in the predator-prey
space and not a member of a continuous family of closed taajes. Limit cycles
exhibit a persistent pattern of regular fluctuations. Haveit is different from the
fluctuations in the Lotka-Volterra system, where the aragktof oscillation depends
entirely on the initial conditions whereas the amplitudeadimit cycle is fixed by

intrinsic parameters of the model such as birth rates, picedeates, etc.

One of the other unrealistic assumptions in the Lotka-Vidtanodel is that the
prey growth is unbounded in the absence of predation. AHRerimtensive study
of predator-prey systems through the Lotka-Volterra modatious complications
have been included to understand the dynamical behaviquiedator-prey systems
better [106]. One complication is that the per capita gromatie of predators should
be a function of the ratio of prey to predator abundance agesigd by the ratio-

dependent theory.

1.4.3 Ratio-Dependent Predator-Prey Models

Standard Lotka-Volterra type models, on which a large bddxisting predator-prey
theory is built, assume that the per capita rate of predatepends only on the prey
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number. Recently, there are growing explicit biological ahgsiological evidences
[3], [26]-[28] that in many situations, especially when gators have to search for
food and therefore have to share or compete for food, a matabseiand general
predator-prey theory should be based on the so-calleddapendent theory. More-
over, when the number of predators changes slowly relatiy@ey number, there is
often competition among the predators, and the per cagiaofgpredation thereby
depends on the numbers of both prey and predator, most kkelysimply on their
ratio. These hypotheses are strongly supported by numé&baogatory experiments
and observations [26]-[28] and for mathematicians, rdépendent theory seems to
be more realistic and capable of producing richer, moreorese and acceptable dy-
namics [28, 37, 106] than the usual predator-prey modekschas the prey-dependent
theory.

Generally, a ratio-dependent predator-prey model talefottm

X = X(@-bx) - mciyx’
L y (1.7)
y'=-dy my+ x’

wherex andy denote, respectively, the densities of the prey and theapoea, c, d,

f andm are the prey intrinsic growth rate, capture rate, deathafitiee predator, the

conversion rate and the half saturation constant, resgégta/b gives the carrying

capacity of the prey in the absence of predation. Since theéeimd.7) contains

several parameters, it requires a more complex analysthoégh the idea of ratio-
dependent functional response has been in the literatuce $937 [161], the number
of publications that study ratio-dependent models is ndage. However, they have
received increasing attention in the last couple of decf®ie26, 27, 65, 66, 74, 94,
106].

We see that system (1.7) describes populations whose meirdrerespond immedi-
ately to any change in the environment. However, in real @mns both prey and
predator require reaction time delays and they can be dutiojebort term perturba-
tions. Being aware of these facts, several studies have eguptteat deal with delayed
as well as impulsive ratio-dependent predator-prey mgdéls37, 67, 68, 95, 160,
175, 176].
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1.5 Objective of the Thesis

In this thesis, we deal with fferential equations with discontinuities and obtain sev-
eral results on the qualitative properties of these equstiMoreover, we attempt to
establish a bridge between mathematics-oriented andcapiph-oriented research in
this field.

Models of population dynamics under certain conditions oiosatisfy realities. Nat-
urally, more realistic and interesting models of populagishould take the impulsive
effects, the seasonality of the changing environment andiibete of time delays into
account. In this context, fierential equations with discontinuities play an important

role in the improvement of these models.

Ecological systems are often perturbed by human exploiviaes such as plant-
ing and harvesting. Such processes are modeled by impulsieeential equations.
From this point of view, we consider the classical Lotkat¥ala system (1.6), which
has the positive equilibrium point as center and thus eaoddly undesirable, with
variable time of impulses. These impulses have an artifatialacter and they occur
when the state of species satisfies prescribed conditioms t@impulse fects, it is
possible to obtain the positive equilibrium point as a stailan unstable focus un-
der the conditions formulated through the parameters oftbdel. Further, having
the positive equilibrium as focus enables us to discuss iflaechtion of periodical
processes. We assume that twfatient types of impulsefkects, called ‘vertical
jumps in this thesis, appear in the model, i.e., the numbpref remains unchanged
whereas predator number decreases (vertical jump going)dmwncreases (vertical

jump going up) abruptly.

Moreover, the ratio-dependent type predator-prey modé) (& extended by using
generalized piecewise constant delays. Then the problanisas permanence and
long term coexistence (or persistence) of species, whiglaarong the most impor-

tant and ubiquitous concepts in the predator-prey theogyaddressed.

The amount of publications which deal with the stability lgse of differential equa-
tions with piecewise constant argument is vast. Howeveay tenerally use the

method of reduction to discrete equations. Consequentyattalysis of solutions
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starting at moments which are not integers or their mulsiflas been unattainable.
Particularly, one can not investigate the problem of sitgbtiompletely, as only in-
tegers or their multiples are allowed to be discussed foiainhnoments. One of the
principal goals of this thesis is to meet these challengesniyyloying the Lyapunov-
Razumikhin method for dlierential equations with piecewise constant argument of

generalized type.

In the literature, there are numerous papers in which LyapdRazumikhin method
has been successfully utilized on the stability analysibetdy diferential equations,
functional diferential equations, impulsive delayfdrential equations and impulsive
functional diferential equations [44, 84, 121, 159, 166]. However, thishoe has
not been used on the stability investigation dfeliential equations with piecewise
constant argument, although they are close to delfigrdntial equations. In this
thesis, Lyapunov’s second method coupled with the Razumitddhnique is devel-
oped for diferential equations with piecewise constant argument oéigdized type.
The application range of the results is illustrated by dsstmg a logistic equation
with piecewise constant delay, and including a comparisah the earlier results

obtained by Gopalsamy and Liu in [77].

Bifurcation theory is one of the most developing fields of modaathematics. Bi-
furcations in ordinary dferential equations are well understood [45, 79, 86, 89, 97,
111, 124, 172]. However, appearance of discontinuitie®@t processes motivates
to improve the qualitative level of investigation and coust a similar theory for
differential equations with discontinuities. Thus, bifuroat in non-smooth sys-
tems of Filippov type have recently attracted the attentbmany mathematicians
[31, 49, 69, 109, 112, 114, 116, 179, 180]. We address bifiorcaf periodic so-
lutions, i.e., Hopf bifurcation, for 2-dimensional and Brénsional systems with
discontinuous right-hand sides and try to provide a thé&mkebasis which can be
useful for practical investigations in other fields of théesce. First, we consider
a planar non-smooth system offérential equations with discontinuous right-hand
sides and obtain skicient conditions for the existence of focus, center and Hhopf
furcation. There are several papers in which Hopf bifuorats considered for pla-
nar non-smooth systems. However, most of these papersdeoribe systems with

discontinuities on a single straight line. We attempt toegahize the bifurcation
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problem by considering discontinuities on nonlinear sdigctvconsist of arbitrarily
finite number of curves intersecting at a vertex. We realig idea by using the
results of the papers [18, 19, 22] which concefiedtent qualitative aspects offtér-
ential equations with discontinuous right-hand sides byamseof theB-equivalence
method [2, 14, 18, 21, 22]. These results, especially the onesmoothness of so-
lutions lead us to investigate bifurcation problems for+somooth planar systems of
differential equations with discontinuous right-hand sidéss the advantage of the
B-equivalence method that we can analyze systems with rearlsets of discontinu-
ities. Second, we study the behaviour of solutions for amegisional non-smooth
system with discontinuities on nonlinear cylindrical sweés. We show that all solu-
tions that remain diiciently close to the origin can be captured on a two dimeradion
invariant center manifold. This reduction allows us to extehe Hopf bifurcation
theorem obtained for the planar system to the 3-dimenssysiem. The approach
used in the proof of existence of the center manifold coulddresidered classical,
and consists of using theftirential equation to express the invariance of the cen-
ter manifold under the dynamics to conclude that it must leegitaph of a function

satisfying a certain fixed point problem.

1.6 Structure of the Thesis

This thesis contains an introductory part which providesrantary notions and a
background for the theory of flerential equations with discontinuities, their qualita-

tive properties and applications, especially in poputatdgnamics.

In Chapter 2, we investigate the dynamics of Lotka-Voltemadptor-prey models
influenced by variable time of impulsedfects and nonautonomus ratio-dependent
systems with piecewise constant argument of generalizeel tyor the impulsive
Lotka-Volterra models, existence of focus and center isguidoth in the noncritical
and critical cases. Bifurcation of periodic solutions issidered in the critical case.
As for the ratio-dependent systems, after constructingvatpnt integral equations,

problems such as positive invariance, permanence and esis{ence are addressed.
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Chapter 3 presents the stability analysis fdfediential equations with piecewise con-
stant argument of generalized type. Some preliminary diefivsé and basic prob-
lems are discussed for the issue system. Based on the Lydpweaond method,
Razumikhin-type theorems are presented on stability, tmifstability and uniform
asymptotic stability. Appropriate examples, one of whiohtains the logistic equa-
tion, are worked out to illustrate the applicability of thesults. The stability analysis
performed for the logistic equation is compared with thevianes ones.

Chapter 4 deals with bifurcations of periodic solutions fedihensional and 3-
dimensional non-smooth systems. The notionBe¢quivalent impulsive systems
is explained. For these systems, problems such as existérioceus and center in
the noncritical case, distinguishing between the centdrtha focus in the critical
case and Hopf bifurcation are solved. The center manif@dmhis given for the 3-
dimensional system. Appropriate examples together witharical simulations are

presented to illustrate the findings.

Finally, in Chapter 5 a short overview and the contributioithe thesis are presented.

Some concluding remarks are also given in this chapter.
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CHAPTER 2

ANALYSIS OF PREDATOR-PREY MODELS WITH
DISCONTINUITIES

2.1 Dynamics of Lotka-Volterra Predator-Prey Models Hfected by Impulses

The Lotka-Volterra system describes the interaction of $gecies in an ecosystem,

a prey and a predator. Since there are two species, thisisysielves two equations

X = ax—bxy,

y = —cy+dxy,

(2.1)

wherex andy denote, respectively, the prey and predator populatiosities;a (the
growth rate of prey)b (the rate at which predators consume preyjhe death rate of
predator) andl (the rate at which predators increase by consuming preypasitive

constants. The assumptions in the model (2.1) are as fallows

(i) The prey in the absence of any predation grows unbougdediich is de-

scribed by the termax

(i) The effect of the predation is to reduce the prey’s per capita groatid by a

term proportional to the prey and predator populations,ighthe—bxyterm.

(i) In the absence of any prey, for sustenance the dea¢hafgpredator results in

exponential decay, this is given by theyterm.

(iv) Contribution of the prey to the growth rate of predatagroportional to the
available prey as well as to the size of the predator pouriathis is thedxy

term.
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The xy term can be thought of as representing the conversion ofjygriesm one
source to anotherbxyis taken from the prey andxyis given to the predators. We
know that system (2.1) has only one positive equilibriwfd(a/b) as center. How-
ever, having the equilibrium as center, the system is cens@ito be ecologically
undesirable. In other words, the hypotheses of the modg) (& not seem to be in

accordance with the observations [129].

The Lotka-Volterra population growth model (2.1) does rsduame human activities
at all. We aim to introduce human intervention by impulsiegtprbation. In general,
the appearence of such discontinuities can be explaineleifatt that development
of a biological system may have sudden changes. It is natumtithe obtained sys-
tems can be written in the form of impulsive@irential equations [113, 152]. In this
section, our idea is to perturb system (2.1) by impulses @lbig moments of time.
These impulses, in particular, may include man-made clenivhich are introduced
when the state of species satisfies certain criteria. Thatd@sconsider introducing
or removing some members as impulsive control. The approgichpulsive control
was also proposed by Liu in [117, 118] and in the paper [11)weieer, the research

on the Lotka-Volterra system with impulses is not too much ye

We mainly use the results which were obtained in [2, 14]. Qe werify that our
sytems satisfy the properties of discontinuous dynamigsilesns described in [2],
that is, existence and uniqueness, continuation of solsittmR, the group property,
continuous dependence of solutions on initial value afiédintiability of solutions

in initial value.

In Section 2.1.1, we formulate two problems: ProblBrand ProblenU. In the next
section, we investigate these problems. Lastly, the Hdpfdation for two systems

which are associated with ProblemsandU is considered in Section 2.1.3.

2.1.1 Formulation of the Problems

In order to be more convenient, we first translate the equilib (c/d, a/b) to the
origin by the linear transformation
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x-c/d | 2 0 X
y-a/b| |0 Zdb‘éﬁ X |

This transformation takes system (2.1) into the followiag

2d+vac
C

X; = —+vacx —
X’2 = \/%X1+ 2dX1X2.

X1 X2,

(2.2)

We have new variableg andx, possibly with negative values. But, the positiveness
of the issue variableg andy are certainly saved in a neighborhood of the equilib-
rium (c/d, a/b). Clearly, systems (2.1) and (2.2) are qualitatively edena Since
(c/d,a/b) is a center of (2.1), the origin is a center of (2.2).

In what follows, we will consider how an impulsive perturiozit may change the be-
haviour of the system (2.2) around the origin. We introdupulses into the system
(2.2) with a careful assumption that they are consideredasisive control and we
are sure that a more adequate explanation of discontinugugation dynamics is
a deal of future as well as a closer collaboration of mathmmaats and biologists.
For that reason, we simply consider the impulsive contrahasability to instantly
introduce or remove some members from the environment.altéeptable and eas-
ily realizable as an ecological project. From this point @w we formulate two
problems to investigate: Probleinand ProblenU.

2.1.1.1 ProblemD: Downsizing the Predator Population as Impulsive Control

Our objective is to bioregulate the Lotka-Volterra systeyrirbpulsive perturbation.
Ecologically, it seems reasonable to control only the pi@d#ensity. On the basis of
that idea, we consider the impulsive action by means of remyosome members of
predators from the system. In other words, we downsize tedgtor population as

an impulsive control. For example, if we have fish as predaiod Daphnia as prey)

26



in a lake, the decrease in its density can be expressed bgdtisny for commercial

fishery. This type of dynamics can be modeled as follows

2d v/ac
X, = —yacx - ;/_X1X2,
X, = Vacx + 2dx X, (X1, Xo) € I'1, (2.3)

AX1|(xy,x5)er; = 0,

AXa|(x xp)ery = KXo,
wherex < 0 andI'; is a half-straight line in the second quadrant defined by the
equationx, = —V3x, for x; < 0. When the solution meets the $gtat the timet,,
there exists a vertical jum@\x,l;, = «X2(t1) = Xo(t1+) — Xo(t;) goingdown That is
why, we propose to call determining the behaviour of sohgiof system (2.3) around
the origin as ProblerD.

Additionally, in Section 2.1.3 we will introduce a systemthvia small parameter
u associated with (2.3) and the problem of Hopf bifurcationtfat sytem will be

considered as Proble®bH.

Remark 2.1.1 Writing (2.3) in,¥ coordinates, we obtain the following system
X' = ax— bxy,
y =-cy+dxy  (xy) el
AX|xy)ety = O,
AYlxye, = k(y —a/b),

d ) iac(x ~ ¢/d) with

X < c¢/d. We note that the corresponding impulsive control is omplied to the

wherel; is a half-line defined by the equation-ya/b = —

predator density in ¥y coordinates as well.

2.1.1.2 ProblemU: Upsizing the Predator Population as Impulsive Control

Similar to the Problen, we can formulate Probletd for the system
2d +/ac
X; = —vacx — vac

X'2 = \/a_CX1 + 2d% X, (X1, %) ¢ I'o,

X1 X2,

(2.4)
AXl'(X]_,Xz)EFz = O’

AXZl(Xl,Xz)EFZ = KXo,
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wherex < 0 andI’; is a straight line which is placed in the fourth quadrant aed d
scribed byx, = —V3xy, X, > 0. In this sytem, we control the predator density by
introducing new members into the environment and thus we haxertical jump go-
ing up. In other words, we consider upsizing the predator popurtedis an impulsive
control. For the Hopf bifurcation, we shall define Probleid in a manner similar to

the ProblenDH, which will be presented later in the subsequent sections.

Remark 2.1.2 Since we aim to construct a method for invegtigaf impulsive con-
trol in the Lotka-Volterra model, we choose particular sefsand I, in the systems
(2.3) and (2.4), respectively. Indeed, these systems cgeieralized by taking’,
andTI’; as unions of arbitrary finite curves emanating from the arigs well as con-
sidering impulsive parts in a larger class [14], and by all ams they can be analyzed

using a similar approach that will be constructed below.

2.1.2 Existence of Foci and Centers
2.1.2.1 Investigation of ProblemD

System (2.3) experiences discontinuities whanx,) € I';. Applying the polar trans-
formationx; = rcosg, X, = r sing, time variablet is excluded and impulseffects

appear when the angle varialglés equal to%r + 27N, n € Z. In this thesis, every an-
gle for a point is considered with respect to the positivé-ha¢ of the first coordinate

axis.

We can rewrite (2.3) in polar coordinatasd) in the following form

dr
do

Ar|¢:2€7r(mod ) = Ar.

2
P(r,¢), ¢+ E(mod 2n), 2.5)

Here the independent varialjds ranged over the set

(o)

. 2n . 2n
U(2”'+§+9’2”('+1)+§]’

i:—OO

\/_

wheref = tarrl(%). The functionP(r, ) and the constant are given by
K
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r2(—2—d COS¢ + 5—:_Csin¢) COS¢ Sing

C
P(r,¢) = 54 ,/12%\/1+3(1+K2—1.

1+r(—cos¢+2—dsin ) COS¢ Sin
7= - sing) cosg sing

Clearly, P is a 2Zr—periodic function inp andP = o(r).

Since (2.5) is a 2—periodic system, it is enough to consider it only for the v
¢ € [0, 2n]. That is, the system

dr 21

-, = P r9 5 * A

b (r.¢), ¢ 3 2.6)
Ar|¢:%n = Ar,

o 2x

whereg € [0, 21] \ ( 33 + 4], is provided for investigation.

Indeed, system (2.6) is a “time-scale’figrential equation. In order to obtain an
impulsive ditferential equation, we shall use tite-substitution method which was
introduced in [14]. They—substitution, on the set € [0, 2x] \ (%ﬂ%ﬂ + 6], is
defined by
o, if 0<¢< 2—”

o 3
¢—0, if §+9<¢>S2ﬂ'.

After the substitution, (2.6) reduces to the following ingive system

dr 2r

-, - P r7 s * A

dyr d). ¢ 3 (2.7)
AI’|¢:2§ = Ar,

wherey € [0,2r — 6]. If we solve (2.7) as an impulsive system [113, 152] and
use the backwarg—substitution, we can see that the solutida, ro) of (2.6) with
r(0,ro) = rois of the form
ro+fpds it 0<gp<Z
0 3

r(¢9r0): 2—?? 27T
(1+/l)(fo+f Pds)+f¢ Pds if —+0<¢<2n,
0 2—”+9 3

3

whereP = P(r(s,ro), s). We can now construct the Poinéareturn map (2, ro) on

the positive half side of the,; —axis as follows
z 2
r(2r,ro) = (1+/l)ro+(1+/l)f Pdu+f Pdu
0 Z10
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The last equation implies that the origin of (2.6) is a stdbtis if A < 0 and it is an
unstable focus ift > 0. As for (2.3), we reach the following conclusion regarding

noncritical case.

THeEOREM 2.1.1 If

() -2 <« < 0, then the origin is a stable focus;

(i) « < -2, then the origin is an unstable focus of system (2.3).

Figure 2.1: A solution of (2.3) with initial condition (0,0),a=b=c=d =0.5and
k = -1.25.

If we take, for examplex = —1.25, we see from the Figure 2.1 that the origin is
a stable focus of (2.3) as stated in the last theorem.xFer-2.25, it becomes an

unstable focus as shown in the Figure 2.2.

However, ifA = 0, equivalently ik = —2, we have the critical case in which the origin
is either a focus or a center. In what follows, we solve thabpgm of distinguishing

between the focus and the center.

: : 2n
We can easily see that the angles equal tog whenk = —2. Results of the paper
[22] imply, for suficiently smallrg, that solutionr (g, ro) of (2.6),r(0,rg) = ro, has
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0.5

041

0.3

-0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

Figure 2.2: A solution of (2.3) with initial condition (0,0),a=b=c=d = 0.5 and
Kk = —=2.25.

the expansion

[(g.10) = D (@)1,
i=0
. 2n 4n , -

with ¢ € [0, 27r]\(§, 3], ro(¢) = 0, andr,(¢) = 1. Then, we can define the Poinear
return map

r(2r,r0) = ) ayr,

j=1

wherea; = r;(2r) anda; = 1. The functionP can also be expanded in a series

P(r.¢) = D Pi(d)r, (2.8)
j=2

for sufficiently smallr. The functions;(¢) in the expansion (2.8) can be found using

the definition of the functiof?. For example, the first two of them are given by

2d 2d . .
P.(¢) = (—F COS¢ + ﬁ:smqb) COS¢ Sing,
cog ¢ — sirt ¢ . cos¢sing  cosgsing
c+ac c? ac

and the function®;(¢), j = 4,5, ..., can be evaluated in a similar manner.

Ps(¢) = ( )4d? cos ¢ sirt ¢,
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From the diterential part of (2.6) and the expansion (2.8), one can fiad th

dri(¢)
d¢

where Py(¢) = Pa(6), Pa(d) = 2Pa(¢)ra(¢) + Pa(¢) and we can defin®;(¢) for
j =4,5,...similarly.

=Pi(9), =2

Since we consider the critical case= —2, which implies thait = 0 in the second
equation of (2.6), we havg(%) —rj(%) = 0 for all j = 2,3,.... Hence, the cd@-
cientsrj(¢), j = 2,3,... with ¢ € [0, 21] \ (%ﬂ, 4—;], ri(0) = O, are solutions of the
system

dr = 2n
% - PJ(¢)’ ¢ * ?’
Ar|¢:%ﬂ =0.

As a; = rj(2r), we can now evaluate in the expansion of(2x, ro) :

3. 23
a= [ Bos+ [ B0
forj=23,....

For the critical case, the sign of the first nonzero elemernhefsequencea;, | =
2,3,..., determines what type of an equilibrium point the origin The origin is a
stable (unstable) focus if the first nonzero element is meggbositive). If alla; = 0,
j = 2,3,..., then the origin is a center [14]. That is why, in order to idgtish

between the center and the focus we first need the valag of

_(F z _dv3
2 = fo Po(6)dé + f_ Pa)ds = 5

Sincea, is positive, the following theorem holds.

Tueorem 2.1.2 If k = —2 then the origin of system (2.6) is an unstable focus, which

implies in turn that the origin is an unstable focus for (2.3)

A simulation result for the critical case= —2 can be seen in the Figure 2.3, which

shows that the origin is an unstable focus of (2.3).
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15 . . . . . .
-0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25

Figure 2.3: A solution of (2.3) with initial condition (0,0),a=b=c=d = 0.5 and
K= -2.

2.1.2.2 Investigation of ProblemU

Introducing polar coordinates as well as taking the2eriodicity into account, sys-

tem (2.4) can be written in the following form

dr 5n
-, = P r9 5 * A
b (r.¢). ¢#3 2.9)
Ar|¢:%,, = Ar,
5t 5rn . .
for ¢ € [x, 3n] \ (E’ 3 + 6], whereP(r, ¢), 1 andé are the same as described in the

investigation of ProblenD. For a solutiorr(¢, ro), r(m, o) = ro of (2.9), the Poincadr

return map defined on the negative half side oftheaxis is

‘%” 3
r(3m,ro) = (L+ Aro+ (1 + /l)f Pdu+ f Pdu
T %’W—H
Clearly, the noncritical case, that i,< 0 or A > 0, can be treated similarly as dis-
cussed for Probler®d. We shall consider the critical cage= 0 in the way described
hereinabove. We know that the following expansion

(o)

[(6,10) = ) 1@},

=0
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. . 7 .
exists withg € [, 31] \ (5—::, g], ro(¢) = 0, andry(¢) = 1. Then, we can define the

Poincaé return map:
r(3m,ro) = Z kird,
=1

wherek; = r;(37) andk; = 1. Evaluating the elemekg, we obtain

. &r dv3
o = f Po(6)dé + f_ P4 =~ <0

It is seen that the critical case of Probléinleads to a dferent result with regard
to the corresponding case of Probl&n Combining the results obtained both in the

noncritical and critical cases, following assertion caridrenulated.

THeOrREM 2.1.3 If

() —2 <« < 0, then the origin is a stable focus;

(i) « < -2, then the origin is an unstable focus of system (2.4).

We can see from the figures below that the origin is a stablstg¢ibie) focus of (2.4)
for k = —=1.25 (k = —2.25). In the critical case = -2, the origin is a stable focus (see
Figure 2.6).

2.1.3 Bifurcation of Periodic Solutions

It is always the case with realistic biological models tHagyt involve parameters,
generally denoted by. In order to study existence of limit cycle solutions in such
models, Hopf bifurcation theory plays a crucial role. To & theory geometrically,
we can say that if an equilibrium solution changes its sitgb#ls a pair of com-
plex conjugate eigenvalues of the linearization arounctthelibrium point cross the
imaginary axis of the complex plane at a bifurcation poim¢tat least one small am-
plitude limit cycle exists about the equilibrium solutiondain a small neighborhood
of the bifurcation point.
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-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06

Figure 2.4: A solution of (2.4) with initial condition-0.1,0),a=b=c=d = 0.5
andx = —1.25.

-0.15 -0.1 -0.05 0 0.05 0.1

Figure 2.5: A solution of (2.4) with initial condition-0.1,0),a=b=c=d = 0.5
andkx = -2.25.
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X

Figure 2.6: A solution of (2.4) with initial condition-0.1,0),a=b=c=d =05
andx = -2.

Since the origin is a center, and not a focus, it is not possidapply Hopf bifurcation
theory for system (2.2) which is the transformed Lotka-&foth population growth
model inXy, X, coordinates. Nevertheless, one can obtain the origin aghbdesor
an unstable focus through impulsive control so that it bezpossible to investigate
the problem of Hopf bifurcation, i.e., bifurcation of pedio solutions, for the Lotka-

\olterra system.

2.1.3.1 ProblemDH: Hopf Bifurcation Related to Problem D

We introduce the following discontinuous dynamical system

2d yac
C

X, = X — Vacx — X1 X2,
X, = Vacx + uxo + 2dx %y, (X1, X2) & T'1(u), (2.10)
AXll(Xl,Xz)Erl(/l) = 07

AX2|(X1,X2)€F1(/1) = (K + #)XZ’

wherel'; (1) is determined by the equatiog = — V3%, + ux; for x, < 0. Lety(u)
denote the angle of the points lying da(u). In (2.10),u appears to be an internal
control parameter of the populations. Wheg 0, (2.10) reduces to the system (2.3)
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described in Section 2.1.2. That is why, we say that systeh®)2s associated with
(2.3).

Using polar coordinates and keeping tlre-Reriodicity in mind, (2.10) can be written

as follows

dr u
— = —r +P(r,¢,u), ¢ # )
6~ vac +P(r, ¢, 1), ¢ # y(u) (2.11)

Al p=yuy = AT,

for ¢ € [0, 27] \ (y(w), y(u) + 6(w)], where

(- V3+ u)(x + 1) )

— 1
o) = tam (1+(1+/<+,u)(—\/§+,u)2

2(_2d(q 4 K 2 g By |
r( C(1+a)cos¢+ @(1 C)smqb COS¢ Sing

P ¢ 1) = 2d 2d .
1+ r(ﬁ COS¢ + = Sing) cosg sing

and

L+ @+ kP (V34
ﬂ(ﬂ)_\/ 1+ (- V3+pu)? -

Letr(g,ro,u), r(0,ro,u) = ro, be the solution of (2.11). On the interval {du)], we

have

— exp( H 6
f(</>,fo,u)—eXp(@¢)ro+f0¢eXp(\/%(¢ s))Pds

Next, the solution (¢, ro, 1) of (2.11) on ¢(u) + 6(u), 2] is given by

(o) = (1+A(u) exp(j‘fa_c(qs — O(u)))ro

+

¥(u) u
(L + (1) fo XPI(0 - 0) - )P

b
u
+ exp(—=(¢ - 9)Pds
fy(y)wm) vac

whereP = P(r(s, ro, 1), S, ). We can evaluate the Poinéamapr (2r, ro, 1) by means
of the last equation. Le&j(u) denote the cd@cient ofrq in r(2z, ro, ). Then, we have

r(2r,ro, 1) = q(u)ro + o(ro),
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where

_ Ko -
Q) = (1 + A(u)) exp( \/a_c(ZN 6(u)))-

Results from [14] imply that conditiong(0) = 1 andq’(0) # O are stficient for

the existence of periodical processes in system (2.11anlbe evaluated easily that

4
whenk = -2,q(0) = 1 andq'(0) = —Z + 3\/7;_0.

Applying the technique which is used in the paper [14], we siate the following

theorem, which will be proven in Chapter 4 (see Theorem 4fbrdd more general

case.

167 : .
Tueorem 2.1.4 If k = =2 and vac # 5 then for syficiently small g, there exists a

functionu = 6(rg), 6(0) = 0, such that the solution(®, ro, 5(ro)) of (2.11) is periodic
with period2z. Moreover, the closed trajectory is an unstable limit cydlbe period

. - . . 4,
of the corresponding periodic solution of (2.10) is=T- Al o(Jul).
3+ac

Simulated for two dierent initial values, it can be seen from Figure 2.7 thatesyst

(2.10) admits an unstable periodic solution.

-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

Figure 2.7: The simulation result showing the existencenafiastable closed trajec-
tory of (2.10) witha=b=c=d =0.5,u = -0.03 andk = -2.
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2.1.3.2 ProblemUH: Hopf Bifurcation Related to Problem U

We consider the system

X, = uXg — vVacx -
X, = Vacx +puxe + 2dx1X%e, (X1, Xo) & I2(u), (2.12)
AXl'(Xl,Xz)Grz(/l) = Oa

X1 X2,

2d yac
C

AXel(xgs)ers() = (K + ()X,

wherel',(i) is a curve given by, = — V3x, + ux, with x; > 0. We denote the angle
of the points or,(u) by £(u). Clearly, system (2.12) is associated with (2.4). In polar

coordinates, this system can be written as

dr u

e P s s s 5

T e P 04 €0 013
Al =gy = A,

for ¢ € [, 3n] \ (€(u), () + 6(u)], whereP(r, ¢, 1), A(u) andd(u) are the same as
defined above. Using the similar discussions made in ProBleiywe can conclude

the following result.

1 : .
Tueorem 2.1.5 If k = -2 and v/ac # %ﬂ then for syficiently small g, there exists a
functionu = 6(rg), 6(0) = 0, such that the solution(®, ro, 6(ro)) of (2.13) is periodic
with 27. Moreover, the closed trajectory is a stable limit cycle.eTperiod of the

A
3vac + o(|ul).

corresponding periodic solution of (2.12) is=

We can see from Figure 2.8 that system (2.12) admits a siabteycle. Thatis, two

different solutions of the system approach a periodic orbit frmide and outside.

2.1.4 Conclusion

Under the assumption that the ¢id@entsa, b, c, d of the Lotka-Volterra system are
positive, we may conclude that the complex behaviour oftsmig depends on the
values of the ca@cientk which appears in the impulsive part of systems (2.3), (2.4),
(2.10) and (2.12). That s, the problem of controllabilifytlee Lotka-\Volterra system
by the proposed impulsive control is constructive.
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Figure 2.8: The simulation result showing the existence sthhle closed trajectory
of (2.12) witha=b=c=d=0.5,u = 0.03 andk = -2.

2.2 Dynamics of Ratio-Dependent Predator-Prey Systems it

Piecewise Constant Argument of Generalized Type

Predator-prey systems with functional response havevedgreat attention in recent
years. Problems which appear in the analysis of such systesguite complicated
and challenging due to their complex dynamics. Predatey-pnodels with prey-
dependent functional response of the fopx) = %( wherem > 0 is the half
saturation constant, have been well studied (see, e.gedifr@n [75] and the refer-
ences cited therein). The traditional prey-dependent msdescribed by the system

X' = x(a-bx) —cy

m+ X’ (2.14)
y =y(-d+ f

),

m+ X

where a prey populatioxnserves as food for a predator populatjorhe model para-
metersa, b, ¢, d, f andmare assumed to be positive and they denote the growth rate
of prey, strength of competition among individuals of pregaes, capturing rate,
death rate of the predator, conversion rate and the halfageitn constant, respec-
tively. Here,a/b is the carrying capacity of the prey population which hasgaslic
growth rate in the absence of predation.
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On the other hand, it was recently argued by many biologisis @ more suitable
functional response should depend on the ratio of prey tgboe abundance, partic-
ularly when predators have to search for food and hence,tbabheare or compete for
food. Empirical evidence from field and experimental stadiéso shows that most
natural systems are closer to ratio dependence than to ppgndence [3], [26]-[28].

In this light, Arditi and Ginzburg [28], proposed a ratiopddent response function
X/y

of the formp(x/y) = — x/y ~ my+x

and the following ratio-dependent predator-

prey model

X = X(a-bx) —cy

y = y(-d+f

m)y+ X (2.15)

my+ X

Analyses of such ratio-dependent models show that theyupedcher and more
admissible dynamics [74, 94, 106]. Most of these analyssgmas the model para-
meters as constant. Ratio-dependent models have not bekstubéd yet in the
sense that most results are for models with constant emaganh This means that
the models have been assumed to be autonomous where adfib&lor environmen-
tal parameters are constant in time. However, this is rdtedycase in real life as
many biological and environmental parameters do vary i tiffor example, these
parameters can be variable due to seasonal fluctuations. ises taken into ac-
count, a model must be nonautonomous, which is, of courses diticult to analyze
in general. Fan et al. [65] incorporate the varying propeftyhe parameters into
the model and carry out systematic studies on the globalrdigsaof the following

ratio-dependent model, i.e., the nonautonomous versi¢a. b5)

X = x(a(t) — b(t)x) - % ,
y = y(=d(t) + W),

where variable parameteat), b(t), c(t), d(t), f(t) andm(t) have the same biological
significances as described for system (2.14). Addition&an and Wang [66] pro-
posed a discrete analogue of (2.16) by reducing the follgwiystem of diterential

equations with piecewise constant argument
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1 dx(t)

= a([t]) — b([t]) Xl([t]) _ — C([t]) XZ([t])

t) dt (e =
0 ORI ) i D
(D) dt () () + () L2

to discrete equations. Herd] flenotes the maximal integer not greater than

The theory of diferential equations with piecewise constant arguments nvasted
by Cooke and Wiener [52] and Shah and Wiener [156]. It is walbgmized that
these equations are closely related to deldfetgntial equations [78, 80] and that
predator-prey systems with time delays are more realisticraore relevant in ecol-
ogy. Regarding this approach, dynamics of populations neoldey diferential equa-
tions with piecewise constant arguments have been studiéel extensively. Exam-
ples of the application of these equations to the problensabbgy can be found in
[12, 23, 41, 78, 115, 125, 131, 132].

2.2.1 Descripton of the Models

The principal aim of this section is to incorporate piecenm®nstant (delayed) ar-
gument of generalized type [5, 8] into model (2.16). The taxismethod of inves-
tigation of diferential equations with piecewise constant argumentsssdan the
reduction to discrete equations. For example, in (2.18) piecewise constant argu-
ment appears in all arguments on the right-hand side, allpwhie reduction of this
system to discrete equations. However, we discuss the daee mot all arguments
on the right-hand side are piecewise constant argumentredrgkzed type and for
the equations that we shall propose below, it is not possibieake the reduction to
discrete equations. That is why, our approach is intergstind valuable. We replace
different types of delayed arguments, which are introducedqarely in some ratio-
dependent predator-prey models [37, 67, 68, 95, 160, 1B, iy piecewise constant
argument of generalized type. First, following the logid®7, 68, 95], we incorpo-
rate the piecewise constant argument of generalized tytpethie prey growth rate
response to resources limitations as well as into the peditiedback in the average
growth rate of the predator due, for example, to gestatiahg@stion. Second, the ef-
fect of introducing a piecewise constant delay into the ateis reaction to changes

42



in the prey population will be considered. Hence, the piesewonstant argument of
generalized type will appear only in the predator equati 160, 175, 176], which
requires more easily verifiable conditions. These ideas lessa in turn, to consider
two models of the form

X = x(a(t) — b(t)x(@B())) - %
Y =y(-d0 + o ) o
mOYB®) + x(B©) )’
and o(t)xy
X = x(a(t) — b(t)x) — Moy + X
o s IOBO ) .
=Y mOY(B() + x(B(1) )

wheret € R, B(t) = 6, if 6 <t < 6,4, 1 € Z, is an identification function(g,}, i € Z,
is a strictly ordered sequence of real numb@&g,— o as|i| — oo. In the models
(2.18) and (2.19), both the fundamental information in mgnand predecisions of

the present time drive the state.

In the present section, we shall obtain analogue of the teesuch as positive in-
variance, permanence and other related properties dextus$65]. The proofs are
adapted to our case, taking the deviation of piecewise anhargument of general-

ized type into account.

Clearly, the greatest integer functiaiig a particular case of the identification func-
tionB(t). Indeed, if we tak®, = i, 1 € Z, then we obtai(t) = [t]. Therefore, systems
(2.18) and (2.19) belong to the class dffeiential equations with piecewise constant
argument of generalized type [8].

In the rest of this section, following assumptions will beeded.

(B1) The model parametext), b(t), c(t), d(t), f(t) and m(t) are continuous and
bounded from below and above by positive constants.

(B2) There exist a positive numbeésuch that,,; — 6, < 0,i € Z.

Meanwhile, for convenience, we adopt the notations beloautphout this section.

(N1) FY = supF(t) andF' = itnﬂg F(t) for a continuous bounded functidt(t) onR;
teR €
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(N2) x = x(6), yi = Y(6),1 € Z;

(N3) 6(t.x.y.2) = a(t) - b(t)z - ﬁ)yx ,
) F(t)x
Yt X, y) = =d(t) + Wéét)
oft, X,y) = a(t) — b(t)x — Wyix .

Using the functiong, ¢ andg introduced in (N3), systems (2.18) and (2.19) can be

represented simply as

X (1) = x(t)(t, X(1), y(1), X(B(1))),
y (1) = yOu(t, x(B(1), y(B(1)),
and
X (1) = x(V)e(t, X(1), y(1),
y'(t) = y(Ou(t, xB(1), y(B(1))),

respectively.

In Section 2.2.2, equivalent integral equations are cootgd for the issue systems.
Section 2.2.3 addresses properties such as positive aneay; permanence and per-

sistence for systems (2.18) and (2.19).

2.2.2 Construction of the Equivalent Integral Equations

We shall use the following definition, which is similar to thiee in [141] and modified
for our general case as in [5, 8]. For the sake of simplicitg,s@nsider solutions
starting at the momert, which is the element of the sequenég, i € Z. But, it

does not reduce the generality of our results since theyddeeiconsidered similarly

for an arbitrary initial moment [5].

Derinition 2.2.1 A pair of functions(x(t), y(t)) is a solution of (2.18) oifi6p, o) if it
satisfies the following conditions:

() the functions &) and y(t) are continuous 0¥, );

(i) the derivatives Xt) and y(t) exist for te [y, o0) with the possible exception of
the points;, i > 0, where one-sided derivatives exist;
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(i) (x(t), y(t)) satisfies (2.18) on each intervi@, 6,.1), 1 > 0.

Since the first equation of (2.19) is an ordinarsfeliential equation, it is convenient
to write the following definition.

DeriniTion 2.2.2 A pair of functions(x(t), y(t)) is a solution of (2.19) oifi6p, o) if it
satisfies the conditions:

(i) the functions &) and y(t) are continuous oWy, );

(i) the derivative X(t) exists for all te [6p, 00) whereas ¥(t) exists for te [0, =)
with the possible exception of the poistsi > 0, where one-sided derivatives

exist;

(i) x(t) satisfies the first equation in (2.19) for alEt[8y, o) whereas (t) satisfies
the second equation in (2.19) on each interj@l,,1), i > 0.

In what follows, dealing with predator-prey models (2.18542.19), we shall just
consider solutionsxX(t), y(t)) with x(6p) = %o > 0, y(6o) = Yo > 0. Moreover, it is
supposed that for any givem( Yo), both (2.18) and (2.19) have unique solutions in
the sense of Definitions 2.2.1 and 2.2.2, respectively. Vid discuss the existence
and uniqueness theorem foffférential equations with piecewise constant argument
of generalized type in Chapter 3 (see Lemma 3.1.2 and Theorkd).3

Lemma 2.2.1 Suppose (B1) is satisfied. System (2.18) w(th)>x= Xo, Y(6o) = Yo IS
equivalent to the following system of integral equations

X(t) = erxp( f #(5 X(9. (9. X(ﬂ(S)))dS)

(2.20)
(0 = Yo exp( f o(s X(B(S). y(,B(S)))dS)

Proof: NecessityLet (x(1), y(t)) be the solution of (2.18) with(6p) = Xo, Y(60) = Yo
From the conditioni{i ) of Definition 2.2.1, we know that this solution satisfiesl@®.

on each intervald, 6;,1), i > 0. Hence, fott € [6,, 61), we have
X(t) = % exp( #(5 X(9), Y(S), X(ﬁ(S)))dS),
%
(0 = Yo exp( s x(ﬁ(s)),yw<s)>)ds).
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Lettingt — 6,, it follows from the conditioni() of Definition 2.2.1 that

01

0(5. X(9).Y(9). X(B(S)))dS) |
o(s X)), y(ﬁ(S)))dS) .

X1 = Xo exp(
A

Y1=Yo eXp(
o

Hence, (2.20) holds o, 6;]. Suppose that (2.20) is valid on the interv@J,py] for

somek > 1. Then, fort € [0k, Ok.1)

#(s. X(s). ¥(s). x(B(9)))d S)

X(t) = X exp(
%
0(5.X(9). Y(9). xw(s»)ds),

oo

o

and

() = kexp( f (s XB(9). y(B(S)))dS)
Yo exp( f o(s XB(9), y@(s)))ds)

Ast — 6,1, We can observe that

Ok 1

o(s x(s),y(s),xw(s)»ds),
o(s X(B(S). y(,B(S)))dS) .

X1 = Xo exp(
o
Ok+1

Yk+1 = Yo exp(

o

Hence, (2.20) is satisfied ofg[ 6«,1]. By induction, this proves that it is valid for all
t > 6.

Suf ficiencyLet (x(t), y(t)) be a solution of (2.20). Fix> 0 and consider the interval
[6i, 6,1). Differentiating (2.20) or¢, 6;,1), we can see thak(t), y(t)) satisfies (2.18).
Furthermore, letting — 6,+ and taking into account thax(3(t)), y(8(t))) is a pair of
right continuous functions, we obtain tha(t), y(t)) satisfies (2.18) or9[, 6,,1). This
completes the proot]

Predator equation in (2.19) coincides with the one in (2dr8) the prey equation
is nothing but an ordinary flierential equation. Thus, system (2.19) is more easily
analyzable compared to (2.18). Using a similar method akenptoof of Lemma

2.2.1, one can prove the following result for (2.19).
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Lemma 2.2.2 Suppose (B1) is satisfied. System (2.19) w(th)>x= Xo, ¥(6o) = Yo IS

equivalent to

X(t) = XoeXp( [wts x(s),y(s))ds),
%
y0) = vo exp( s xw(s)),yws)»ds).

Lemma 2.2.1 (Lemma 2.2.2) implies immediately that the assertion is valid.

Tueorem 2.2.1 The positive quadrant ifiR?) = {(x,y) € R?|x > 0, y > O} is
positively invariant for systems (2.18) and (2.19).

In the subsequent section, it will be shown that the regianw@riance can be signif-

icantly narrowed.

2.2.3 Positive Invariance, Permanence and Persistence

In this section, assuming that conditions (B1) and (B2) ariéled, the results con-

cerning positive invariance, permanence and related piiepavill be addressed.

Tueorem 2.2.2 If mia > ¢¥, f' > d¥, a'b"9 < b' and U9 < 4, then the set
F={(xy)eR?|r;<x<Ry rn<y<Ry} (2.21)

is positively invariant for system (2.18), where

. _ma ¢ _a
:l._flrn|?iLLjJ s l_?lu’ dl
2= e T g

Proof: Let (x(t), y(t)) be the solution of (2.18) initiating at the point(¢o), y(6o)) =
(X0, Yo) With 11 < Xo < Ry andr, < yp < R,.

We first consider the prey equation in (2.18). It follows frohe positivity of the
solutions of (2.18) that

X () < x(t) (2" - b'x(B(1)) . t> 6.
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Fort € [6o, 61), we have
X(t) < x(t) (@' - b'xo) = BX(O(R: ~ %),
which implies together with (B2) that

X(t) < X0 expl'(Ry — Xo)(t — 60)) < X0 €xpl'(Ry — X0)8) = G(Xo)-

We want to find the maximum value of the continuous funct&ii,) on the closed
interval [r1, Ry]. The hypothesigb"d < b' shows thaG’(x;) > 0 on [r1, Ri]. Hence,
G(X%0) < G(Ry) = Ry on [r1, Ry]. All these discussions result in

X(t) < Ry for t € [6y,0:) wheneverr; < X, < Ry. (2.22)

From the prey equation in (2.18), we obtain e [0, 61)

u

X (t) > x(t) (a' —b'% — Cm) = b'X(t)(r1 — Xo),

which clearly implies that

X(t) > X0 exp"(r1 — Xo)(t - 60)) > %o eXpE"(r1 — X0)0) = g(Xo)-
Following the same way that we have used®fK,), we find that the functiowg(x)
attains its minimum value at, i.e.,g(Xp) > g(r1) = ry on [r1, Ry]. Thus,

X(t) > ry for te[6p,601) wheneverr; < Xg < Ry. (2.23)

Combining (2.22) and (2.23), we have
rn<X<R = rp<x({) <Ry for tel[6,0).

This, together with the continuity of(t), implies thatr; < x(6;) = x; < R;. Hence,
when the same technique used for the inter&gak}) is repeated for € [y, 6,), it can

be easily seen that
<X <R = ry<x{t) <R, for te[6,0,),

which in turn implies that; < x(6,) = X, < R;. Continuing the process on each

interval [6;,6,,1),1 = 2,3,4,...,in a similar manner, we can conclude that
rn<x<R = r<x) <R for all t> 6.
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From the predator equation in (2.18) and the positivenegé)pfve have

Fox(B()
My(BD) + X(ﬂ(t)))’ t= 0

y(®) < () (—d +

Fort € [0y, 61) this inequality takes the form

fu fu
Y(t)sy(t)(—d'+ . ) < y(D(—dWWTlRl)

myo + Xo
md'y(t)

m(Rz - Yo)

which produces
|

yi) < Yo eXp((m| L )(Rz Yo)(t — 60))

|
< Yoexpl(y (R ) = HOY)

Using the hypothesig'd < 4, we find that the derivative of the functidt(yo) is
always positive. That being the casé(yp) < H(R;) = R, on the interval iz, Ry].
Then,

y(t) < R, for t e [6y,0:) wheneverr, <y <R,. (2.24)

We now continue with the predator equation for the otheratioa on Py, 61),

! %o ! flry
y(t)zy(t)(—d +—muy0+XO) > y(t)(—d +—m“y0+r1)
mu u
s 2=y

and these inequalities lead to

VO = yoexp( )02 - Yot - )

u

> Yo exp(——)(r2 — Yo)6) = h(yo).

MUy + 11
By straightforward evaluation df (y), we arrive ath(yy) > h(rp) = r, on [r,, Ry] for

the reason that' < fU0 < 4. Therefore, we have

y(t) > r, for t e [6p,01) wheneverr, <yp < Ry. (2.25)
From (2.24) and (2.25), it follows that

r<Yo<R, = ry<yt) <R, for te[6,6).
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Sincey(t) is continuous, we can construct the desired result on eaehval B;, 6;,1),

i=123,..., following the same way discussed previously %) . That is to say,
r<y1<R = r,<ylt) <R, for all t> 6,
proving the theoreni.]

Turorem 2.2.3 Let the conditions ' > ¢, f' > d¥and %9 < 4 be fulfilled. Then
the sefl” defined by (2.21) is positively invariant for system (2.19).

Proof: Let (x(t), y(t)) be the solution of (2.19) passing througt, (/o) wherer; <
X < Ry andr, £ yp £ R,. In that case, the prey equation does not contain any

piecewise constant argument. That is why, it follows fott &l6, that
bUx(t) (r1 — X(t)) < X(t) < b'X(t) (Ry — x(1)), t = 6. (2.26)

Then, x(t) being diterentiable for alt > 6y, a standard comparison argument shows
that

rn<x<R = rp<xt) <R for all t> 6.

As the predator equation in (2.19) coincides with the onihg), we apply exactly
the same technique that is used ¥t) in the proof of Theorem 2.2.2 to reach the

desired conclusion]

u
Lemma 2.2.3 For system (2.18)im supx(t) < S;, where § = %exp(a“@).

t—+o00

Proof: From the first equation of (2.18), we see thdt) < a"x(t) for all t > 6,. This

inequality leads to

X(t) < x(65) exp@’(t - 6)) < X(B(t)) exp@’e)

on each intervald, 6;,1), i > 0. In fact, using the continuity of(t), this result can be

generalized as

X(t) < x(B(1)) exp@-‘0) for all t > 6,
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which is equivalent to(B(t)) > x(t) exp(a“6) for all t > 6y. Therefore, the prey

equation satisfies

X (1)

IA

X(t) (a" - b'x(8(1)))
X(t) (a" - b' exp-a“e)x(t))
b' expa’d)x(t) (S1 - x(1)), t > 6.

IA

SinceX (t) exists fort € [y, o) with the possible exception of the poirdsi > 0,
where one-sided derivatives exist, we should modify thedsied comparison argu-

ment. Consider the solutiox(t) of the following ordinary diferential equation

(1) = b expag)X(t) (S1 - K(1)

X(6o) = %o,
wherexXy > Xo. Fort € [6g,6,), we obtainx(t) < X(t) by a standard comparison
argument. Since the solutiongt) and X{t) are continuous, one can conclude that
X(t) < X(t) on each intervalq,6;,1), 1 = 1,2,3,..., and hencex(t) < X(t) for all
t > 6p. This clearly shows that

lim supx(t) < limsupX(t) = tIim X(t) = Sq,

t—+o00 t—+oc0

proving the lemmal]

Lemma 2.2.4 For system (2.18), if fa' > ¢¥ holds true, therim inf x(t) > s, where
ma - ¢!

ma - ¢ @ —b's, - &
= i exp(@ - b"S rﬁ)@).

Proof: Since limsup(t) < Sy, for anye > 1, there is somd&, > 6, such that for
t—+o00

t> T, X(t) < €S;. Thereforex(8(t)) < €S; fort > B(T,) + 6. Fort > B(T,) + 6, we

derive from the prey equation of (2.18)

u

<> X0 -0 - S = 50 a - s, - &),

which, together with the same arguments used in the prooéofrha 2.2.3, leads us
to

X(B(1)) < X(t) exp((a — bUeS; — %)9), (2.27)
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for t > B(T.) + 6. From (2.27), it follows that
c ct
X (t) > (a' — bUx(t) exp((a' — b¥eS; — m)e) - m).

Using a comparison argument in a similar manner in the prbdeoma 2.2.3 and

lettinge — 1, we see thattlim ink(t) > s;. O
—+00

Lemma 2.2.5 Let f > d" and mid > c¥ hold true. Thenlimsupy(t) < S, and

t—+o0
u | | u

liminf y(t) > s, where $ = uSl exp((f' - d)9) and s = —

(_Au
p—p T s, expd“o)

for system (2.18).

Proof: We observed above that for amy> 1, there exists &, > 6, such that
X(B(t)) < €S, fort > B(T,) + 6. From the predator equation of (2.18), we have

—dUy(t) < y(t) < (Y= d)y(t).

Hence, by a similar argument used for the prey populationjeveve that

Y(B(D) exp(-d“6) < y(t) < y(B(1)) exp((f* — d)6), t > bo. (2.28)

According to (2.28), we get far> B(T.) + 6,
VO < yof-d s )
my(3(t)) + €S1
fUeS,
YO -4+ e expe(re — ) + 681)
(fU - d")eS; — md'y(t) exp(fY - d"e)
= YO T T et - d)o) + €5y ) '
A standard comparison argument, as in the proof Lemma ZB®ys that

IA

IA

u |

: fu-d y ol
“[rliljpy(t) < Wesl exp((f" — d)o)

and the conclusion lim syft) < S, holds by lettinge — 1.

t—+oc0
On the other hand, it follows from Lemma 2.2.4 that for any 1, there exists a
constantT, > B(T.) + 6 such that fort > T,, x(t) > i. Then, x(B(t)) > 3 for
n n
t > B(T,) + 6. Now, using (2.28), it is easy to see that

" f'(si/n) )
y'(t) y(t)( d*+ miy(B(t)) + (s1/m)

(_du N f'(su/m) )
miy(t) exp@-o) + (s1/m)
(f' — d¥)sy/m — midUy(t) eXp(d“G))
mty(t) exp@“o) + (s1/m) '

vV

y(®)

- o
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Hence, by the comparison theorem and the arbitrarinegsveé have

| u

m-gy

Iitm inf y(t) > s expd’) = s,. O

We can also establish similar results for system (2.19). inkqualities in (2.26)

imply by a comparison argument that the following lemma isM&5].

Lemma 2.2.6 For system (2.19)lim supx(t) < Ry. In particular, if mMa > c¥ then

t—+00

liminf x(t) > ry.

t—+o0

Moreover, similar to Lemma 2.2.5, following assertion canelasily verified.

Lemma 2.2.7 For (2.19), if f > d¥ and ma > c are satisfied, thetim supy(t) < S,

t—+oc0
o N fu_ | |
andlltm inf y(t) > §,, whereS, = m'—d'de exp((fU—d)o), & =

u
py ry expdio).

For the rest of the section, we need the following definitiohihe concepts; ultimate

boundedness, permanence and non-persistence.

DerniTion 2.2.3 The solution of (2.18) ((2.19)) is said to be ultimately bded if
there exists a B> 0 such that for every solutiofx(t), y(t)) of (2.18) ((2.19)), there
exists T> 0 such that|(x(t), y(t))|| < B, for allt > to + T, where B is independent of

the particular solution while T may depend on the solution.

DeriniTiON 2.2.4 System (2.18) ((2.19)) is said to be permanent if there éxsd A
with 0 < § < A such that

min{litm inf x(t). liminf y(t)} > 6,
and

max{lim supx(t), lim supy(t)} <A,

t—+oc0 t—+oc0

for all solutions of (2.18) ((2.19)) with positive initial kges.

DeriniTion 2.2.5 System (2.18) ((2.19)) is said to be non-persistent if tlegists a
positive solution(x(t), y(t)) of (2.18) ((2.19)) satisfying

min{litm inf (o), lim inf y(t)} 0.
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From the proofs of Lemma 2.2.3-2.2.5 for (2.18) (Lemma 2ah@ 2.2.7 for (2.19)),

it is easy to conclude the following statement for ultimabeibhdedness.

Tueorem 2.2.4 If m'a > c¥and f > dY, then the sef defined by
Q={(xy)eR?| 5 <X<S;, $<Y<Sy,
and the sek defined by
T={(xy)eR?|r;<x<Ry, §<y<Sy

are ultimately bounded regions for systems (2.18) and §2r&Spectively.

Meanwhile, from Lemma 2.2.3-2.2.5 (Lemma 2.2.6 and 2.2&hawve already shown
the following statement.

Tueorem 2.2.5 If m'a > c¥and f > dY, then system (2.18) ((2.19)) is permanent.

|
Tueorem 2.2.6 If fU < d' or % > a'+d" then system (2.18) ((2.19)) is not persistent.

Proof: If fU < d'is true, then the inequality’(t) < (fY — d"y(t) implies that
lim y(t) = 0. In this case, (2.18) ((2.19)) is not persistent by Defnit2.2.5.

t—+o00

I I
If = > al+ d", then there exists am > 0 such that—— = a+d". Let (x(t), y(1)
mu mv + «

be the solution of (2.18) ((2.19)) Witiégz—oi < a. We claim that% < aforallt > 6,
0

andt lim x(t) = 0. If not, there exists a first timig > 6y such that
—+00

X(tl) _ X(t)
m =a and @ < a for te[6,11).

Then, fort € [6o, t1], we have

X(t)
m+ ==
y(t)
which implies thatx(t) < x(6p) expEd!(t — 6p)). Moreover, for allt > 6,5, we have

y'(t) > —d'y(t) which leads toy(t) > y(6p) expd'(t — 6p)). All these discussions

show that

X(1) < x(t)|a -

< x(t) (a“ - mi a) = —dUx(1),

X0 _ X0 expdt=60) X0 _ (o

y(t) = Y(6o) expdi(t — 6o))  Y(bo)
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which is a contradiction to the existence tof justifying our claim. This in turn

implies thatx(t) < x(6o) expdi(t — 6p)) for all t > 6. Therefore,t limx(t) = 0,
—+00

which completes the proot.]

I rnl |
TueoreM 2.2.7 If L. a'+d"and f < d'(1+—), wherex = —m", then there
m a al+av

exist positive solutiong(t), y(t)) of (2.18) ((2.19)) such th?ETm(X(t)’Y(t)) = (0,0).

Proof: From the proof of Theorem 2.2.6, we ha% < aforallt > 6, and

tirpw x(t) = 0 provided that)% < a. These arguments imply directly t ;( 8; <
a fort > 6. Then, fort > 6y,
o X6)
V) = y|-d + % <300 (~d + ] = -4y
" YE)

wherel < 0 by the hypothesid! < d'(1 + ﬁ). This immediately shows that
(07
tIim y(t) = 0. The proof is completed]
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CHAPTER 3

LYAPUNOV-RAZUMIKHIN METHOD FOR DIFFERENTIAL
EQUATIONS WITH PIECEWISE CONSTANT ARGUMENT
OF GENERALIZED TYPE

In [5, 8, 9], the concept of dlierential equations with piecewise constant argument
[52, 78, 80, 170] has been generalized by considering arpipiecewise constant
functions as arguments. In this chapter, using stabilifjnd®ns from [5], we de-
velop the Lyapunov’s second method for stability dfeliential equations with piece-
wise constant argument of generalized type by employindgrémumikhin technique
[84, 150]. To the best of our knowledge, there have been ndtsesn stability ob-
tained by Lyapunov-Razumikhin method forfférential equations with piecewise

constant argument, despite the fact that they are defegrelntial equations.

Differential equations with piecewise constant arguments gutaynportant role in
numerous applications [12, 41, 55, 77, 78, 125, 130, 132, 167] as well as they
can be applied successfully to approximate solutions ayddifferential equations
[55, 81]. There are many interesting results of the theodiféérential equations with
piecewise constant argument[155, 165, 173], which incaasheplex behaviour of so-
lutions [78]. A great part of the theory has been summarirngd40]. The theoretical
depth of investigation of these equations was determindtidopapers [41, 52, 156],
where the reduction to discrete equations had been chogba asin instrument of
study. Consequently, analysis of solutions, starting at emaswhich are not integers
has been unattainable. Particularly, one can not invdstitp@ problem of stability
completely, as only integers or their multiples are allow@te discussed for initial

moments.
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The approach developed in [5, 8, 9] has a goal to meet theectggds mentioned
above. In fact, the detailed comparison of values of a smiudt a point and at neigh-
bor moments, where the argument function has discontimagifihelps to extend the
discussion. It embraces several results on the existerttaraqueness of solutions,
dependence on initial data, and exceptionally stabilityiclv we intend to consider in
the present chapter. To give more sense to the last wordsaimple 3.3.3 at the end
of this chapter, we will present additional stability ars$yfor the results obtained by
Gopalsamy and Liu [77] for the logistic type equation

N’(t) = rN(t)(1 — aN(t) — bN([t])), t >0, (3.1)

where [] denotes the maximal integer not greater than

3.1 Preliminaries

We fix a real-valued sequenégi € Ngsuchthat 0= 60y < 6; < --- < 6; < --- with

g, — oo asi — oo,
In the present chapter, we shall consider the following 8qug8]

X (t) = f(t, x(), x(5(1))), (3.2)
wherex € S(p), S(p) = {xe R": |[X|| < p}, t e R*, B(t) = 6, if t € [6;,6,,1),1 € Np.

System (3.2) ond,6,,1), i € Ny, has the form of a special functionalfidrential
equation

X (t) = f(t, x(t), X(6)). (3.3)

Hence, we can see that (3.2) has the structure of a contirdynemical system
within the intervals ¢, 6,,1), i € No. We assume that the solutions of the equation
are continuous functions, but the deviating funciiit) is discontinuous. In general,
the right-hand side of (3.2) has discontinuities at the mus. In other words,
we consider the solutions of the equation as functions, hi@ continuous and

continuously diferentiable within the interval®[ 6;.1), i € Np.
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The following assumptions will be needed throughout theptdra

(C1) f(t,y,2 € C(R* x S(p) x S(p)) is ann x 1 real-valued function;
(C2) f(t,0,0)=0forallt > 0;
(C3) f(t,y, 2) satisfies the condition
1 (t, y1, z1) = £t Y2, 22)Il < €(lly1 = Yall + 122 — 22[)
forallt € R* andyy, Y, z1, 2z € S(p), wheret > 0 is a Lipschitz constant;
(C4) there exists a positive numbesuch that;,; — 6, < 6,1 € No;
(C5) to[1 + (1 + t0)€] < 1;

(C6) e < 1.

Let us use the following sets of functions:

K ={ae C(R*,R") : ais strictly increasing and(0) = 0},

Q={beC(R",R*) : b(0)=0, b(s) >0 fors> 0}.
Dermnition 3.1.1 [8] A function Xt) is a solution of (3.2) ofR" if

(i) x(t) is continuous oiR*;

(if) the derivative X(t) exists for te R* with the possible exception of the poifits

i € Ny, where one-sided derivatives exist;

(i) equation (3.2) is satisfied by(®) on each interval6;, 6i.1), i € Ny, and it holds
for the right derivative of §&) at the points);, i € No.

1

Notation 3.1.1 K¢) = 1—C6[L+ (L+ (0)&]

The following lemma is an important auxiliary result of thegent chapter as it will

be used in the stability analysis.
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Lemma 3.1.1 Let (C1)-(C5) be fulfilled. Then the following inequality

IXBO) < K@) IxO!l (3.4)

holds for all t> O.

Proof: Let us fixt € R*. Then there existk € Ny such that € [6, 6k.1). We have

X(t) = x(6k) + f f(s X(9), x(6k)ds t e [6, Oks1).

Hence,

X

IA

IX(@ + ¢ f (XS + IIX(@JI) ds

IA

(1+ €6) [X@I + ¢ f IX(9llds

The Gronwall-Bellman Lemma yields thigt(t)|| < (1 + €6)€” ||x(6y)ll. Moreover, for
t € [0k, Ok:1) we have

X(6) = X(t) — f (s X(9). x(6))ds
Thus,

IX@JI < (IxOl + ¢ ) (IX(s)Il + Ix(@ll) d's

< ||x(t)||+ff9[(1+f9)e59+1]||x(9k)||ds
< Xl + 0] (1 + 0)e” + 1] Ix@I

It follows from condition (C5) that|x(6)ll < K(¢)||x(t)|| for t € [6k, 6k;1). Hence,
(3.4) holds for allt > 0. [

We give the following assertion which establishes the eris¢ and uniqueness of

solutions of (3.3).

Lemma 3.1.2 [9] Let (C1) and (C3)-(C6) be satisfied andei Ny be fixed. Then for
every(é, Xo) € [6i, 6i41] X S(p), there exists a unique solutioritk= X(t, &, Xo) of (3.3)
on[6;, 6i.1].
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Proof: ExistenceFixi € Ngand assume without loss of generality that & < 6.

Define a norm|x(t)|ly = r[g?]xllx(t)ll. Takexo(t) = X and a sequence
t
i =30+ [ F(3Xe(9 xn(@)ds M0
£

It can be easily checked thity,,1(t) — Xm(t)llo < (216)™1||xoll. Then condition (C6)
implies that the sequencg(t) is convergent and its limix(t) satisfies

t
K =%+ [ Fsx(9.xe)ds
3
on [6;, £]. The existence is proved.

UniquenessLet x;(t) = x(t, ¢, xé), X&) = x(’) j = 1,2, denote the solutions of (3.3)
wheref; < ¢ < 6,,1. Itis sufficient to show thati # x3 impliesxy(t) # x(t) for every
t € [6:,61.4].

The solutions (t) andx(t) satisfy, respectively, the following integral equations

Xi(t) = X + f (s x(9). x(0))ds
3

Xo(t) = ¢ + fg (S XS, Xe(6))ds

for all t € [6;, 6,,1]. Subtracting we obtain that
t
IX(t) = %Il < [|x5—x3| + f (1%1(8) = X2l + [1%2(65) — X2(61)II) d's
3
t
< | = x| + 1011%(6) — Xe(B0)I] + f 1%(S) — X2(9)ll ds.
3

It follows from the Gronwall-Bellman inequality that

IXa(t) = eIl < (|6 = 35| + 16 11xa(6r) — xe(60)11) €.
Particularly,
1Xa(6) = Xa() < (||x5 — 5[] + 101106 — xa(60)IT) €.

Then, oo
1¥(6) = X6l < g5 [1%6 = %3]
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Hence,

Ixa(t) - x2(t)||<é9(1+le émé@)llxo x| (3.5)

If we assume on the contrary that there exists [6,, 6,,1] such thatx;(t*) = xo(t*),

then

- f (f(s %2(9), %(6) — f(s x1(9), x1(61))) ds
3

The last expression, together with (3.5) and (C6), leads us to

X%
|
S
IA

I f (1%(9) — a9 + 1%:(8) — % (O] A

2I9e' .
i e

A

which is a contradiction. The theorem is provéed.

Tueorem 3.1.1 [9] Assume that conditions (C1) and (C3)-(C6) hold true. Then fo
every(ty, Xo) € R* x S(p), there exists a unique solutiorftk= x(t, to, Xo) of (3.2) on
R* in the sense of Definition 3.1.1 such théihx= X,.

Proof: Without loss of generality, assume that< ty < 6,,; for somei € Ny. By
Lemma 3.1.2 fo& = ty, there exists a unique solutiodt) = x(t, to, Xp) of (3.2) on
[6;,6i.1] as a solution of (3.3). Using the lemma again, we can coeti{t) from

t =6, tot = 6_;. Clearly,x(t) can be continued tb= 0.

Similarly, for increasing t, one can easily see that thetgmux(t) can be continued
fromt =6, tot = 6;,,. Sinced, — oo asi — oo, we can complete the proof by using

induction.[d

DermniTion 3.1.2 Let V. R* x S(p) — R*. Then, V is said to belong to the cla$#

(i) V is continuous oR* x S(p) and t,0) = Ofor all t € R*;

(i) V(t, x) is continuously dferentiable on;, 6;,1) x S(p) and for each x S(p),

the right derivative exists at+ 6;, i € Ng.
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Dernition 3.1.3 Given a function Ve ¢, the derivative of V with respect to system
(3.2) is defined by

vitxy) = P89 v, fie .

forallt # 6, in R* and x,y € S(p), whereVV denotes the gradient vector of V with

respect to x.

3.2 Stability Analysis

In this section, we assume that conditions (C1)-(C6) arefsatiand we will obtain
the stability of the zero solution of (3.2) based on the LyapuiRazumikhin method.
We can formulate the definitions of Lyapunov stability in #aene way as for ordinary

differential equations.

Dermnition 3.2.1 [5] The zero solution of (3.2) is said to be
(i) stable if for anye > 0 and € R*, there exists & = 6(tp, £) > 0 such that
%ol < & implies||x(t, to, Xo)|| < & for all t > to;

(ii) uniformly stable ifs is independent oft

DeriniTion 3.2.2 [5] The zero solution of (3.2) is said to be uniformly asynticely
stable if it is uniformly stable and there is® > 0 such that for every > 0 and
to € R, there exists a T= T(g) > 0 such that||x(t, to, Xo)|| < e forallt > to+ T

whenevei|Xol| < do.

Tueorem 3.2.1 Assume that there exists a functiore\? such that

(i) u(Ixl) < V(t,x) onR* x S(p), where ue K;
(i) V'(t,x,y) <Oforallt # 6 in R* and x y € S(p) such that
V(B(1).y) < V(L ).
Then the zero solution of (3.2) is stable.
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Proof: At first, we show stability foty = 6; for somej € Ny. Then it will allow us

to prove stability for an arbitrariy € R* due to Lemma 3.1.1.

Letps € (0,p). Givene € (0,p1) andty = 6;, choosey; > 0 suficiently small that
V(0;, X(9;)) < u(e) if || x(8))|| < 61. Defines = 6:/K(£). We notes < §; asK(¢) > 1
and show that thig is the needed one.

Let us fixk € Ny and consider the intervady, 6y,1). Using the condition (ii), we shall

show that

V(t, X(t)) < V(6k, X(6k)) for t e [6k, k1) (3.6)

SetV(t) = V(t, x(t)). If (3.6) is not true, then there exist pointandr, 6k < k < T <
6.1, such that
V(x) = V(6k) and V(t) > V(6) for t e (x,1].

By applying the Mean-Value Theorem to the functdywe get

V@) -V V() >0 (3.7)
T—K

for somel € (x, 7). Indeed, being/ () > V(6y), it follows from the condition (i) that
V’(¢) < 0, which contradicts (3.7). Hence, (3.6) is true. Using tbetimuity of V
andx(t), we can obtain by induction that

V(t, x(t)) < V(0;, x(0;)) for all t>6;. (3.8)

If ||x(9))|| < 6, we havev(9;, x(8))) < u(e) sinces < 6;. This together with (3.8) leads
us to the inequality/(t, x(t)) < u(e) which implies immediately thaix(t)|| <  for all
t > ;. Hence, stability for the cadg = 6;, i € Ny is proved.

Now let us consider the casg € R*, ty # 6; for all i € No. Then there ig € Ny
such thatg; < ty < 60j,1. Givene > 0 (¢ < p;1), we choose’; > O such that
V(8;, X(9))) < u(e) if ||x(@))|| < 61. Take a solutiorx(t) of (3.2) such thalix(to)ll < ,
wheres = §1/K(¢). By Lemma 3.1.1||x(to)|| < 6 results in||x(9;)|| < 61. Then by the
discussion used fdp = 6}, we obtain thaf|x(t)|| < ¢ for all t > 6; and hence for all
t > to, proving the stability of the zero solutionl
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TaeoreMm 3.2.2 Assume that there exists a functiore\d such that

() u(IX) < V(t,x) < v(Ixl]) onR* x S(p), where uv € K;

(i) V'(t,x,y) <Oforallt # 6 in R* and x y € S(p) such that
V(B(t),y) < V(t, X).

Then the zero solution of (3.2) is uniformly stable.

Proof: Letp; € (0,p). Fixe > 0 in the range O< ¢ < p; and choos&; > 0
such thatv(d;) < u(e). Defines = 6;/K(¢). Similar to the previous discussion, we
consider two cases whdp = 6; for somej € Ny and another one whetg # 6;

for all i € Ny, to show that this is the needed one. th = 6;, wherej is a fixed
non-negative integer arltk(6;)|| < 6, then as a consequence of the condition (i) we
haveV(6;, x(0;)) < v(6) < V(1) < u(e). Using the same argument used in the proof
of Theorem 3.2.1, we get the inequalifyt, x(t)) < V(6;, x(¢;)) for all t > 6; and see
that V(t, x(t)) < u(e) for all t > 6;. Hence||x(t)|| < ¢ for all t > ;. We note that

evaluation ol does not depend on the choicejaf No.

Now, takety € R* with to # 6; for all i € No. Then there exist$ € Ny such that
0; <ty < 0j41. Take a solutiorx(t) of (3.2) such thalix(to)|| < ¢. It follows by Lemma
3.1.1tha{|x(6;)|| < 6. From a similar idea used for the cage= ¢;, we conclude that
IX(Y)]l < € fort > 6; and indeed for alt > t,. Finally, one can see that the evaluation

is independent of € Ny and correspondingly of alh € R*. [

Tueorem 3.2.3 Assume that all of the conditions in Theorem 3.2.2 are valiithere
exist a continuous nondecreasing functigrsuch thaty(s) > s for s> 0 and a

function we Q. If condition (ii) is replaced by

@ii) V'(t,x,y) < —w(||x||) for all't # 6, in R* and X y € S(p) such that
V(B(1),y) < v (V(L X)),

then the zero solution of (3.2) is uniformly asymptoticatible.
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Proof: WhenV(s(t),y) < V(t,x), we haveV(B(t),y) < ¢(V(t,x)). Then by the
condition {ii), we haveV'(t, x,y) < 0. From Theorem 3.2.2, it follows that the zero

solution of (3.2) is uniformly stable.

First, we show “uniform” asymptotic stability with respdotall elements of the se-

quenced);, i € Ng.

Fix j € Noandp, € (0,p). If to = 6; andé > 0 is such thav(K(£)d) = u(pq),
K(¢) > 1, arguments of Theorem 3.2.2 shows tét x(t)) < v(6) < V(K (¢)o) for all

t > 6; and hencéx(t)l < p1 if ||x(8;)|| < 6. In what follows, we shall present that this
6 can be taken a& in the Definition 3.2.2 of uniform asymptotic stability. Ttha,
for arbitrarye, 0 < € < p1, we need to show that there exist$ & T(g) > 0 such that
IX(ONl < & fort > 6 + T if ||x(6))|| < 5.

Sety = inf{w(s) : v'}(u(e)) < s < p1}. We note that this set is not empty since p;
andu, v € K implies thatu(e) < Vv(p1), which, in turn, leads us to the inequality

v iu(e)) < p1.

Denotes; = K(£)s. From the properties of the functian(s), there is a numbea > 0
such thaty(s) — s> afor u(e) < s < V(61).

Let N be the smallest positive integer such tia) + Na > v(61).

Choosey = k(

V(9 +0)+0;,k=12...,N. We will prove that
Y

V(t, x(t) <u(e)+(N-Ka for t>t, k=0,1,2,...,N. (3.9)

We haveV(t, x()) < v(61) < u(e) + Nafort >ty = 6;. Hence, (3.9) holds fok = 0.
Now, we suppose that (3.9) holds true for some K< N. Let us show that

V(t, X(t)) <u(e) + (N—k-121)a for t > ty,s. (3.10)
Let Iy = [B(tk) + 6, t,1]. To prove (3.10), we first claim that there exists & I, such

that

V(t, x(t)) < u(e) + (N — k- 1)a. (3.11)

Otherwise V(t, x(t)) > u(e) + (N -k —21)afor all t € .
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On the other side, we have

V(t, x(1) <u(e) + (N-Ka for t >t
which implies that/ (8(t), x(B(t))) < u(e) + (N — K)afor t > B(t) + 6.
Hence, fort € Iy

YV, X)) > V([ X)) + a> u(e) + (N — K)a > V(B(t), x(8(t))).

Sincev-1(u(e)) < Ix(t)|| < p1 for t € 1y, it follows from the hypothesisi{) that

V' (t, X(t), X(B(1))) < —w(|Ix(t)|]) < —y for all t # O, in Iy, me No.

Using the continuity of the functiow and the solutiorx(t), we get

V(i1 X(te1)) < V(B(t) + 6, X(B(t) + 6)) — y(trr — B(tk) — 6)
< V(01) = Y(ts1 —tk — 6) = 0,

which is a contradiction. Thus (3.11) holds, that is, thediste at* € I, such that
V(5 x(t) < u(e) + (N-k-1)a.

Next, we show that

V(t, X(t)) <u(e) + (N—k-21)a for all te [t*, ). (3.12)

If (3.12) does not hold, then there existEa (t*, o) such that
V(E x(®) > u(e) + (N - k- 1)a > V(t*, x(t")).

Thus, we can find & € (t*,f) such thaf # 6,,, m € No, V'(, x(f), x(8(f))) > 0 and
satisfyingV(t, x(f)) > u(e) + (N — k — 1)a. If there is no suclh, then for allt € (t*, {),

t # 6m, we haveV'(t, x(t), x(B(t))) < 0 or V(t, x(t)) < u(e) + (N - k- 1)a. But,

V' (t, X(t), X(B(t))) < 0 leads tov(f, x(f)) < V(t*, x(t*)), a contradiction. IV(t, x(t)) <

u(e) + (N — k = 1a, thenV(t, x(t)) < V(t, x(t)) for t € (t*,f), t # 6, also yields a
contradiction. Hencd, exists.

However,

Y(V(EX(D) > VE X)) +a> ule) + (N - Ka > V(). x(B()))
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implies thatV’(, x(f), x(3(f))) < -y < 0, a contradiction. Then, we conclude that
V(t, x(t)) < u(e) + (N-k—-121)aforallt > t* and thus for alt > t,;. This completes
the induction and shows that (3.9) is valid. kot N, we have

V(61)
Y

V(L x() < U(e), t2ty = N(—2 +6) + to.

V(61)

Hence,|[x(t)l < e fort > 6; + T whereT = N( + 6), proving the uniform

asymptotic stability foty = 6, | € No.

Consider the casi # 6; for all i € No. Then6; < ty < 6,1 for somej € No.
IX(t)ll < ¢ implies by Lemma 3.1.1 thax(9)|| < 1. Hence, the argument used
above for the cas = 6; yields that||x(t)]| < ¢ fort > 6; + T and in turn for all
t>t+T.0

3.3 Examples and New Lights for the Logistic Equation

In the following examples, we assume that the sequéncehich is used for the
definition of the functiors(t), satisfies the condition (C4). For the logistic equation
with piecewise constant argument of generalized type, wsegut stability results for

all possible initial moments oR*. Hence, these results are advantegous compared to

the previous ones which take integers as initial moments.

ExampLe 3.3.1 Consider the following linear equation

X (1) = —a(t)x(t) - b()x(3(1)). (3.13)

where a and b are bounded continuous function®érsuch thatb(t)| < a(t) for all
t > 0. We can check that conditions (C1)-(C2) and (C3) with the Ligsaunstant

¢ = supa(t) are fulfilled. Moreover, we assume that the sequéheaad¢ satisfy (C5)

teR*
2

and (C6). Let ({x) = XE then for t+ 6;, i € No,

V(X(t) = -—a(t)(t) — bt)X(t)x((t))
< —a(t)xé(t) + b X! 1XE0)]
< —[a(t) - b)) < 0
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whenever|x(3(t))] < [x(t)]. Since V = x%/2, V(X(B(t)) < V(x(t)) implies that
V’(x(t)) < 0. Thus by Theorem 3.2.2, the trivial solution of (3.13) iSammnly stable.

Next, let us investigate uniform asymptotic stability. Hrthare constantd > 0,

w € [0,1)and g> 1with A < a(tg, Ib(t)] < wd and1 - qw > 0, then fory(s) = s,

W(9) = (1 - qw)As? and V(x) = XE we obtain that

V(X)) < -w(Ix(®)l), t# 6,
whenever ¥X(B(t))) < v (V(x(t))). Theorem 3.2.3 implies that % 0 is uniformly

asymptotically stable.

The following illustration is a development of an examplenfr[150].

ExampLE 3.3.2 Let us now consider a nonlinear scalar equation

X (1) = T(x(1), ux(B(D))), (3.14)

f(x, 0)
X

where {(x,y) is a continuous function with(®, 0) = 0, = —¢ for someo > 0

satisfyingo > flul and|f (X1, y1) — f(X2, ¥2)I < {(Ix1 — X2l + ly1 — Y2I). Then conditions
(C1)-(C3) are valid. We consider a sequencsuch that (C5)-(C6) hold true together

with the Lipschitz constargt

Choosing \(X) = X2, we get for t 6;

VXD) = 260 F (. ux(B(D)
OB — Fx(0.0) F(x(1).0)
- 2[ (0 o KO
(ulXBO)

< [ X0 0'] X2(t) < 2(€lul — o)X3(t) < 0

whenever {x(8(t))) < V(x(t)). It follows from Theorem 3.2.2 that the solutios>0
of (3.14) is uniformly stable.

ExampLE 3.3.3 (a logistic equation with harvesting)

In [77], stability of the positive equilibrium N= a%) of equation (3.1) has been
studied. Equation (3.1) models the dynamics of a logidticabwing population sub-
jected to a density-dependent harvesting. The(#) denotes the population density
of a single species and the model paramete s and b are assumed to be positive.
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Gopalsamy and Liu showed that ¢ globally asymptotically stable if > 1 where
a = a/b. Particularly, it was shown that the equilibrium state istdtafor integer-
valued initial moments. The restriction is caused by thehoetof investigation:
reduction to diference equations. Our results are for all initial momentsiR*, not
only integers. Moreover, we consider uniform stability fog general casg(t). Con-
sequently, we may say that our approach allows to study stabilisuch equations
in the complete form.

We consider the biological sense of the insertion of piecewasistant delay [77, 78,
131, 132] into a population model as follows. The delay mehasthe rate of the
population depends both on the present size as well as the mzech@alues of the
population. To illustrate the dependence, one may thinlujadions, which meet at
the beginning of a season, e.g., in springtime, with theitimesive evaluations of the
population state, environment and implicitly decide whiging conditions to prefer
and where to go [12] in line with group hierarchy, communicagp dynamics and
then adapt to those conditions.

Let us discuss the following equation
N’(t) = rN(t)(1 — aN(t) - bN(B(1))), t> 0, (3.15)

which is a generalization of (3.1). One can see that (3.1) isypé (3.15) when
B) = [t].

For our needs, we translate the equilibrium point fd the origin by the transforma-
tion x = b(N — N*), which takes (3.15) into the following form

1
1+«

X (t) = —r[x(t) + 1[ax(t) + x(B(1))]. (3.16)

Note that {x,y) := —r(x+ )(ax+Y) is a continuous function and has continuous

l+a
partial derivatives for xy € S(p). If we evaluate the first partial derivatives of the
function f(x,y), we see that

«
1+«

),

0fJOX| < r(2ap +p +

),
0F /0yl < r(p +

1
l+a
for x,y € S(p).
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If we choos€ = r(2ap + 20 + 1) as a Lipschitz constant, one can see that the condi-
tions (C1)-(C3) are fulfilled for sficiently small r. In addition, we assume thais
syficiently small so that the conditions (C5) and (C6) are satisfied

Suppose that > 1 andp < 1/(1 + @). Then for (X) = X2, x € S(p) and t# 6;, we
have

1
1+«

V' (X(1), x(B(1))

=2rx(8)(x(t) + )(ex(t) + x(B(1)))

< =200 + =)@ — IXOIXB))
< =2r(x(t) + T i a)(a ~1)X%(t) <0

whenever Yx(B8(t))) < V(x(t)). Theorem 3.2.2 implies that the zero solution of (3.16)
is uniformly stable. This in turn leads to uniform stabildf/the positive equilibrium
N* of (3.15).

To prove uniform asymptotic stability, we need to satisfyctvelition (iii) in Theorem
3.2.3. In view of uniform stability, givem < (0, p) we know that there existséa> 0
such that ) € S(p,) for all t > to wheneverx(tp)| < §. Let us take a constant g such
that 1 < q < a, then fory(s) = ¢?s, W) = 2r(e - g)ns%, n = 1/(1 + @) — p1 and
V(X) = x?, we have

VI(X(0), x(B(1)) < —2r(x(t) + )@ = a)x°(t) < ~w(x()), t# 6,

1+«

whenever X(B(t))) < ¢ (V(x(t))). Hence the solution = 0 (N = N*) of (3.16)
((3.15)) is uniformly asymptotically stable by Theorem3.2
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CHAPTER 4

BIFURCATION OF NON-SMOQOTH LIMIT CYCLES

4.1 Bifurcation of a Non-Smooth Planar Limit Cycle from a Vertex

The theory of diferential equations with discontinuous right-hand sidedde®n sub-
stantially developed through numerous applications. &lage many problems from
mechanics, engineering sciences [25, 108, 109, 129], dateory [72] and eco-
nomics [90] that are modeled by dynamical systems with discoous vector fields.
Besides, the books [25, 35, 129], which concern mechanicaésys with dry fric-
tion, periodic solutions of discontinuos systems and diioaous oscillations, form
an important basis for the development of such discontiagystems. Owing to the
problems of applied nature, qualitative theory of cladsacdinary diterential equa-
tions including the notions of existence, uniqueness,isoaus dependence, stability
and bifurcation has been carefully adapted for equationls discontinuous right-

hand sides. The main trends of the theory can be found in [72].

Bifurcations in smooth systems are well understood [39, 45,124], but little is
known in discontinuous systems. Stimulated by non-smob#npmena in the real
world, subject of Hopf bifurcation in discontinuous systeimas received great at-
tention in recent years [49, 108, 109, 112, 116, 129, 138, 149, 180]. Dankow-
icz and Nordmark [57] study bifurcations of stick-slip didions for the friction
model which leads to a non-smooth dynamical system havswpdtinuity at the first
derivative of the vector field. Feigin [70, 71] consid€sbifurcations, also known
as border-collision bifurcations, in Filippov systemsrgea subclass of discontinu-

ous systems described byfférential equations with a discontinuous right-hand side
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[72]. Border-collision bifurcations for non-smooth disierénaps are also addressed
by Nusse and Yorke [138, 140].

Kunze [108] and Kipper et al. [112, 179] address bifurcation of periodic sohs
for planar Filippov systems with discontinuities on a sengtraight line. In [179],

generalized Hopf bifurcation for a piecewise smooth playstem of the following

X | f*(x,y,14), x>0,
y f=(x,y,1), x< 0,

wheref=(x,y, 1) = A*(2)(x,y)"T +g*(x, Y, 1), 1 a real parameter, has been investigated

form

using dtferential inclusions. Eigenvalues of the matAx(1) were assumed to be
complex conjugate, i.eq*(1) + iw*(1). This system has been stimulated by a brake

system of the form

mu’ + diu’ + cu = ot (U, U, 2), if u>0,

mu’ + (d; + do)u’ + (cL + U= 0" (u, U, 1), If u<O,
where a masmirests on a smooth surface and is connected to the walls bygspti
andc,) and dampersdg andd,). o* denotes the external force and the parameter

controls its magnitude (see [179] for details).

In papers [14] and [180], possibly for the first time, a spkstiaicture of the domain
has been developed for planaftdrential equations with discontinuities. To say more
clearly, [14] treats bifurcation of periodic solutions falanar discontinuous dynam-
ical systems where discontinuities in the state variablgeap on countably many
curves intersecting at the origin, and [180] studies gdizex Hopf bifurcation for
piecewise smooth planar systems with discontinuities emitfht-hand side at several
straight lines emanating from the origin. We suppose thataios of this type can
be very useful in various mechanical and electrical modéls eéscontinuities under

proper transformations.

Most of the papers in the literature assume that discortyiraets of non-smooth
systems consist of a single surface, especially a straight[49, 108, 112, 179].
However, due to exteriorfiects, discontinuities may appear on curves or surfaces
of nonlinear feature. Hence, it is reasonable to perturbstfie of discontinuities.

Differential equations whose right-hand sides are disconigan nonlinear surfaces
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were investigated in [18, 19, 22] by the methodBséquivalence [2, 14, 18, 21, 22].
This method was first proposed to reduce impulsive systertts wairiable time of
impulses to the systems with fixed moments of impuleats. It then turned out
that this method could be used forfférential equations with discontinuous right-
hand sides as well [18, 22]. That is, through Bxequivalence method, fllierential
equations with discontinuous vector fields with nonlinesicdntinuity sets can be

reduced to impulsive dierential equations with fixed moments of impulses.

Our present work is an attempt to generalize the problem qif Bdurcation for a
planar non-smooth system by considering discontinuitrefrotely many nonlinear
curves emanating from a vertex. We consider the domain inglhberhood of a ver-
tex which unites several curves. That is, the phase spade@ded into subdomains
and the system is described by &elient set of dferential equations in each domain.
We can say that the system considered in this section is nesrergl than the one in
[180], where discontinuities occur at straight lines. Wa & give some theoretical
background rather than applications, which will be veryfulse& many problems in
the future. UsingB-equivalence of the issue systems to impulsiéedential equa-
tions, we obtain corresponding qualitative propertiess the inherent advantage of
the B-equivalence method that we can study equations with neatidiscontinuity

sets.

The section is organized in the following way. In Section.®,. e introduce the
nonperturbed system and study existence of foci and cefatetisat system. Section
4.1.2 presents the perturbed system and the noti@rezfuivalent impulsive systems.
The problem of distinguishing between the center and thesfag solved in Section
4.1.3. We investigate bifurcation of periodic solutionghie next section. We use the
geometrical characterization given by the change from atalnte to a stable focus
through a center for the nonperturbed system. Afterwardsppropriate example is
worked out to illustrate our results. Finally, we discuss plossible generalization of

the present results in Section 4.1.6.
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4.1.1 The Nonperturbed System

We consider every angle for a point with respect to the pastialf-line of the first
coordinate axis. In the rest of the present section, folkgnassumptions will be

needed.

(Al) Let {Ii}ipzl, p > 2,peN, be aset of half-lines starting at the origin and given by
the equation®;(x) = 0, ®;(X) = (a‘,x>, i=12,...,p, whered = (a,,a,)) €
R? are constant vectors (see Figure 4.1). deti = 1,2,...,p, denote the

angles of the lineg such that

O<y1<y2<---<yp<2n

(A2) There exist real-valued constank2 matricesA; defined byA; =

withg; > Oforeach =1,2,...,p.
Meanwhile, for convenience throughout this section, wepatite notations below.

(N1) 61=2r+y1) —yp 6 =vi—7vic1, 1 =2,3,...,p.

(N2) Let D; denote the region situated between the straight lingsindl; and de-

fined in polar coordinates,(p), wherex; = r cosg, X, = r sing, as follows
Di={(r.¢) | r >0 andy, < ¢ <y + 2r},

Di={(r,¢)Ir>0andyi.1<¢ <y}, i=23,...,p.

Now we define a functiorf such thatf(x) = Axforx e D;,i = 1,2,...,p, and
consider a dferential equation of the form

dx
i f(x). (4.1)

According to the definition of the regior3;, one can see that the functidénn system
(4.1) has discontinuities on the straight lings=1,2,..., p.
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X2

Figure 4.1: The domain of the nonperturbed system (4.1) avitertex which unites
the straight lines,i=1,2,...,p

Remark 4.1.1 It follows from the assumptions (Al) and (A2) tha

0D;(X)

(o

f(X))#0 forxeli,i=212,...,p.

That is, the vector field is transversal at every pointdiod each i.

If we use the polar transformation, we can write the systerh) (h the following
form

dr

- g(r), (4.2)

where

Aar, if ¢ e (yp+ 2k, y1 + 2(K+ 1)n],

g(r) = _ .
Air, it e (yiir+ 2km,yi + 2kn], 1=2,3,...,p,

with A = ﬁ i=12,...,p, andk € Z. Since equation (4.2) ist2periodic, it will
be enoughlto consider just the sectipa [0, 27]. Thus, the functiorg in (4.2) can be
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defined shortly ag(r) = Ajr if (r,¢) € D;. Clearly, this function has discontinuities

wheng =vy;,i=21,2,...,p.
The solutiorr (¢, ro) of (4.2) starting at the point (@) has the form

expig)ro, if 0<¢<y,
r(@.10) =1 exp(Aiyr + 202+ -+ + Ai(d — yic)) ro, if yiig <o < i,
eXp(/ll (¢ —(yp— 7’1)) + 30, /1i9i) ro, if yp<¢<2n,

wherei =2,3,...,p.

If we construct the Poincareturn map(2r, ro) on the positive half-axi®x;, we can

see that )
r(2m,ro) = eXP(Z Aib)ro.
i=1

Let us denotg = exp(zipzl/liei). Sincer(2r,rg) = Qro, we obtain the following

theorem for the nonperturbed system.

Tueorem 4.1.1 If
() g = 1, then the origin is a center and all solutions are periodichwieriod
p
_\ b
(i) g < 1, then the origin is a stable focus;
(i) g > 1, then the origin is an unstable focus of (4.1).

4.1.2 The Perturbed System

Let Q c R? be a domain in the neighborhood of the origin. The followiagtie list

of conditions assumed for this section.

(P1) Let{c:i}ip=1 be a set of curves i@ which start at the origin and are determined
by the equationsb;(y) = 0, ®;(y) = <a‘,y> +1i(y), i = 1,2,...,p, where
7i(y) = o(llyll) and for each, the constant vectoi® are the same as described
in (Al).
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We split the domair into p—subdomains, which will be calleB; and formulated
soon, by means of the curvesi = 1,2,..., p. We assume without loss of generality
thaty, # 7—2rj, j = 1,3. Then for sticiently smallr, equation of the curve; can be
written in polar coordinates as follows [14]

q:¢:7i+wi(r’¢)’ i:1’2""’p’ (43)

wherey; is a 2r—periodic function ing, continuously dierentiable and moreover
Wi = O(r). Using this discussion which makes use of polar transftonawe get the
following description for the regions;:

Ijl = {(r’ ¢) | r>0 and?’p + l/’p(r, ¢) < ¢ <yit 21 + lr[/l(r’ ¢)}!
Iji = {(r, ¢) |[r>0 andyi_l + ¢i_1(r,¢) <¢<v +lﬂi(r,¢)}, 1=23,..., P-

Let e be a positive number ard,(D;) denote the—neighborhoods of the regioi,
i=12,...,p.

(P2) Let f; be a function defined ot,(D;) and fi € C@A(N,(D))) for eachi =
1,2,...,p.

(P3) 7; € CAO(N(Dy)), i = 1,2,...,p.
(P4) fi(y) = o(liyll), i =1,2,....p.
We shall consider the functiof(y) = Ay + fi(y) for y € D;, where the matri is

as described in the assumption (A2). Qnwe now study the following diierential

equation associated with (4.1)

dy -~

— = 4.4

rrial i\ (4.4)
where the functionf(y) has discontinuities on the curves i = 1,2,...,p. The

domain of the system (4.4) can be seen in Figure 4.2.
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X2

Figure 4.2: The domain of the perturbed system (4.4) neartexehich unites the
curvesc; associated with the straight lingsi = 1,2,...,p

If Qis suficiently small, then conditions (A1) and (P1) imply that cesyg; intersect

each other only at the origin, none of them can intersedt asel (M;;;y), fy)) #0

foryec,i=12...,p.
Further, for system (4.4) if a solution which startsisiiently close to the origin on a
curvec; with fixedi, then conditions mentioned above imply the continuatiothef

solution to the curve;,, or ¢;_; depending on the direction of the time.

We can utilize polar coordinates and assume that systen tfédsforms into an

equivalent system of the form

dr
- a(r, ¢), (4.5)
wheredr, ¢) = Ar + Pi(r, ¢) for (r,¢) € Di. The functionP,; is 2r—periodic in¢,

continuously diferentiable and?; = o(r),i = 1,2,..., p.

From the construction, we see that system (4.5) isfardintial equation with discon-
tinuous right-hand side and the discontinuities occur enctirvess;, i = 1,2,...,p.

In almost every area of flerential equations, it is common to reduce a given equation
into an equivalent form by proper methods. From this pointiefv, we shall use the
B-equivalence method [18, 22] which plays the role of a brinigihe passage from
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differential equations with discontinuous right-hand sidesrtpulsive diferential

equations.

To reduce the system (4.5) with discontinuous vector figitis an impulsive dter-
ential equation, we redefine the functigimnthe neighborhoods of the straight lines
li, which contain the curve;,. That is to say, we construct a new functigy which

is continuous everywhere except possibly at the point) (€ |;. The redefinition
will be made at the points which lie betwegrandc; and belong to the regiori3;

or Dj,; for eachi. Therefore, the construction is performed with minimal bk
changes corresponding to tBeequivalence method, which is the main instrument of

our investigation.

It is clear from the context that if= p thenD,,; = D;. Using the argument above,
we realize the following reconstruction of the domain. Wasider the subregions of
D; andD;, 1, which are placed between the straight linand the curves;. We refer
to the subregion®; N Diy (horizontally shaded regions in Figure 4.2) dxd; N D,
(vertically shaded regions in Figure 4.2) for all We extend the functiog from
the regionD; N Di.; to D; and fromD;,; N D; to Di.; so that the new functiogy
and its partial derivatives become continuous up to theeapg vi, i = 1,2,...,p.
According to all these discussions made for the definitiogygfwe conclude that
on(r, @) = Air + Pi(r, ¢) for (r,¢) € D;. Now we consider the following fierential

equation

dr
s = on(r, ¢). (4.6)

Fixi e {1,2,..., p}and consider a neighborhoodlpbased on the description above.

We need to analyze the following three cases:

|. Assume that the point,(y;) € Di;1. Letr%(¢) = r(¢,vi,p) be a solution of (4.5)
satisfyingr(y;) = p andé be the angle where this solution crosses the carvév/e

denote a solution of (4.6) by(¢) = r(e,&,r%&)), ri&) = r°&), on the interval
[£i,7i]. By the variation of constant formula, these solutions héeésform

3
() = eXpQura(@d — o + f exp(la(6 — 9)PLa(r(9), 9ds

i

]
() = expQ(6 — ENI°E) + f exp((é — HP,((9). 9ds

gi
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Now, we define a mappinig on the lineg = v; into itself as follows

lip) = r'()-p= (eXp(Qi - Ai)(i - &) - Dp
+ expli(yi — &)) fl expli;1(& — 9)Pi1ds
’ i(yi — 9))Pd
+\£ exp(i(y - 9)Pds

Il . If the point ¢, ;) € Di, one can find; in a similar manner:

li() = (exp(i— A1) — }4)) -Dp
+ explialy - &)) fl exp@i(& — ))Pids

+ f7i exp@ii(yi — 9)Pi1ds

gi

[l . If (r,v) € ¢, thenli(p) = O.

Results from [14] imply that the functiodg i = 1,2,..., p, are continuously dier-

entiable and the equation (4.3) leads u§ te o(p).

Hereby we construct the following impulsivefidirential equation

do _
d¢ - gN(p’ ¢)a ¢ # Yi, (47)
Ap|¢:’yl = Il(p)

Letr(¢,ro) be a solution of (4.5);(0,rg) = ro, andé be the meeting angle of this

solution with the curve;,. Denote by(gi:yi] the interval €, vi] wheneverg < y; and
[vi. &) if yi < &

Deriniion 4.1.1 We shall say that systems (4.5) and (4.7) are B-equivaletifrfior
every solution €, ro) of (4.5) whose trajectory is if for all ¢ € [0, 2x] there exists
a solutionp(¢, ro) of (4.7) which satisfies the relation

p
r(¢,10) = p(g.10), ¢ €0, 2x]\ | )&l (4.8)
i=1

and, conversely, for every solutigrig, ro) of (4.7) whose trajectory is iQ, there
exists a solution (@, ro) of (4.5) which satisfies (4.8).
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From the discussion above and the construction of the inyauss/stem (4.7) with
impulse actions at fixed angles, it follows that foffisziently smallQ, solutionr (¢, ro)

of (4.5) whose trajectory is i@ for all ¢ € [0, 2x] takes the same values with the
exception of the oriented intervalg,. yi] as the solutiorp(g, ro), p(0,ro) = ro, of
(4.7). Hence, systems (4.5) and (4.7) Brequivalent in the sense of the Definition
4.1.1. Moreover, solutions of (4.5) exist in the neighbarth@, they are continuous
and have discontinuities in the derivative on the cunye€orrespondingly, a solution
of system (4.4) for any initial value is continuous, contnsly diferentiable except

possibly at the moments when the trajectories interseatuheesc, and it is unique.

Tueorem 4.1.2 Suppose (A1)-(A2), (P1)-(P4) are satisfied and ¢ (g > 1). Then

the origin is a stable (unstable) focus of (4.4).

Proof: Letr(¢, ro) be the solution of (4.5) with(0, ro) = 0 ando(¢, ro), p(0, o) = ro,

be the solution of (4.7). For the sake of simplicity, we sheié the notation®;, =
Pi(o(s, ro), s) andl; = li(o(yi, ro)), i = 1,2,...,p.

On the interval € [0, y1], we have

b
p(.10) = expQud)ro + fo exp(u(é - 9)Pyds

For anyi, 2 <i < p, the solutionp(g, ro) of (4.7) on {i_1,vi] is given by

exp(Ai(¢ — yi—1) + Aicabi-1 + -+ + 2202 + A1y1) o

Y1
+ exp(Ai(¢ —yi1) + -+ A2b2 + /ll')’l)f expA1;:8)P.ds
0

p(¢’ rO)

Ay

Yk

exp(Ai(¢ — yi-1) + -+ + Aks16ks1 + AYk) expAxs)Pds

Yk-1

+
NG

+ exp(di(¢ - 9)) Pids

i-1

=

i
+ exp(/li(¢ - ')’i—l) + /li—lgi—l + -+ /lkek) Ik—l-
k=2

For¢ € (yp, 2n], system (4.7) admits the solution

¢
p(®,10) = exp(a(d = ¥p)) (p(vp: To) + 1) + f exp(Ai(¢ — 9)) P1ds

Yp
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Using the diferentiable dependence of solutions of impulse systems @neders
[21] and the results from [14], we can conclude that the smhyi(e, ro) is differen-

. . op(¢, .

tiable inro and p(aqi ro)l((p,ro):(zﬂ,o) = . Since systems (4.5) and (4.7), correspond-
0

ingly (4.4) and (4.7), ar8-equivalent, we derive

or (o, ro)| _q
aro (¢.ro)=(27,0) >

which completes the proof.

4.1.3 The Problem of Distinguishing Between the Center and thEocus

If g =1, then we have the critical case and the origin is either adac a center for
system (4.4). In what follows, we solve this problem of digtiishing between the

focus and the center.

We assume thaf; andr, i = 1,2,...,p, are analytic functions imxlg(f)i). Then
for suficiently smallp, the solutiono(¢, ro) of (4.7) satisfyingo(0,rg) = ro has the

expansion [22]
p6.10) = 3 pi(@)r 4.9)

for all ¢ € [0,27]. From the expansion (4.9), it can be easily seen phéd) = 1,
pi(0)=0foralli =0,23,4,..., andog(¢) = 0. The coéficientp,(¢) with p1(0) = 1

is the solution of the system

dos _
w = g(o1),

whereg is the function defined in system (4.2). Itis clear thg®r) = g = 1. We use
the notatiork; = p;(2r), j = 2,3, .... For the solutiomp(¢, ro) of (4.7), we construct

the Poinca& return map

0(27,10) = qro + Z kir).

=2

In the critical case, the sign of the first nonzero elementheBequenclk; determines

what type of a singular point the origin is. Moreover, forial 1,2,. .., p, we have
Pilo.9) = 2, Pi (@), (4.10)
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and

(o) = 22 ljp). (4.11)

The existence of the expansions (4.10) and (4.11) has begagm [22]. By means
of (4.10) and (4.11), one can derive that thefoeentsp;(¢) with p;(0) = 0, | =
2,3,..., are solutions of the following impulsive system
dp;
a6 hloj,4), & # i,

Apj|¢ =Y = VV”,

(4.12)

whereh(pj, ¢) = Aipj + Qij(¢) if (pj,¢) € Di, i = 1,2,..., p. From the diferential
part of (4.7) and the expansion (4.10), one can evaluatafor,d <i < p,

Qi2(¢) = Pia(¢)p7(#). Qis(¢) = 2Pia(d)p1(¢)p2(9) + Pis(#)p3(4)

andQ;j(¢) for j = 4,5,..., can be determined similarly. Further, the constaMts
in (4.12) can be found from the impulsive part of (4.7) anddgkpansion (4.11). For
instance,

Wiz = lizpd(1), Wia = 2li201(3)o2001) + liaos (),

andW; can be evaluated, fgr= 4,5, ..., in the same manner.
As Kj = pj(2r), by solving the system (4.12) one can evalugtg = 2,3,..., which
are the cofficients in the expansion of the Poineaeturn map(2xr, ro):

71 2r
ki = [ expCA19)Quids+ [ exp(d:(2r — 5)) Qudst
0

Yp

Mo

1
)

Yi
eXp(/ll(Zﬂ —Yp) + o+ Apabia + /ln’i) [ expE2i9)Q;ds+ (4.13)

Yi-1

Mo

0
N

exp(Aa(2m = yp) + Apfp + -+ + 4ih) Wiy j + exp(Ax(2r — yp)) Wp.

From the expansion qf(2r, ro) and (4.13), it immediately follows that the following

assertion is valid.

Lemma 4.1.1 Let = 1 and the first nonzero element of the sequence¢  2,3,. ..,
be negative (positive). Then the origin is a stable (unstpfucus of (4.7). If k=0
for all j > 2, then the origin is a center for system (4.7).
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Since systems (4.5) and (4.7), correspondingly (4.4) art),(dreB-equivalent, we

have proved the following theorem.

Tueorem 4.1.3 Let g = 1 and the first nonzero element of the sequencej k=
2,3,..., be negative (positive). Then the origin is a stable (urisfeflocus of (4.4). If

k; = Ofor all j > 2, then the origin is a center for system (4.4).

4.1.4 Bifurcation of Periodic Solutions

In this section, we first introduce the system

dz

5 = f@n. (4.14)

wheref(z u) = Az+ fi(2) + uFi(z w) for z € Di(u) c R2 for analysis, and then we

will describe it in detail with the help of the following assptions.

(H1) Let{ci(u)}", be a collection of curves i@ which start at the origin and are
given by the equationga’, z) + 7i(2) + uki(z ) = 0,i = 1,2,.... p.

(H2) Let{li(,u)}ip: be a union of half-lines which start at the origin and are definy
(@ +uakigz”u),z> =0,i=12,...,p. Denote byy;(u) the angles of the lines

i), i=12....p.

Similar to the construction of the regiofs and D;, we set foru € (—uo, o) and
i=23...,p:

Di(u) = {(r, ¢, 1) | T 2 0, yp(e) + ¥p < ¢ < y1(w) + 27 + P4},
Di(u) = {(r, ¢, 12) | 1 =0, yiia(u) + Wii1 < ¢ < yi(w) + i},
Dl(/'l) = {(r’ (]5,'[1) | r= O’ YP(/l) < ¢ < 7’1(#) + 27T};

Di(w) = {(r,¢, ) | T >0, yia(p) < ¢ < yi(W)},

where functions?t; = Y¥(r, ¢, u) are Zr—periodic in¢, continuously dferentiable,

Y, =0(r),i=12,...,p, and they can be defined applying a similar technique used
in the construction of equation (4.3).
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(H3) F; : No(Di(u)) % (—uo, o) — R? andx; are analytical functions both inand

in thee—neighborhood of their domains.
(H4) Fi(0, ) = 0 andk;(0, u) = 0 hold uniformly for each andu € (—uo, to)-

(H5) The matrices\, the functionsf;, 7; and the constant vectoss correspond to

the ones described in systems (4.1) and (4.4).

Besides the system (4.14), we need the equation

dz .
== 4.15
wheref,(0, u) = A +M6Fi(§(z),,u) whenevez € D;(u).

In polar coordinates, system (4.14) reduces to

dr
% = g(r’ ¢,,U), (416)

whereg(r, ¢, ) = Li(u)r + Pi(r, ¢, 1) if (1,6, 1) € Di(w).

Let the following impulse system

[ .
dg = -0 8 En. (4.17)
Alg = () = 1o 1)

be B-equivalent to (4.16), wherg\"stands for the extension gfds we described in

Section 4.1.2. That ign{o, ¢, 1) = Ai(w)pe + Pi(o, ¢, u) for (o, ¢, u) € Di(u). We know
that the functiongy and its partial derivatives become continuous up to theeangl
¢ = yi(w) fori = 1,2,...,p. The functionl;(o,u), for eachi = 1,2,..., p can be

defined in the same way as done fdp).

Using a similar argument as in (4.1), we can obtain for sygtedb) that

p
A() = exp(> ()6 (u)).
i=1

The last expression plays an important rule to establisthé@em on the bifurcation

of periodic solutions as stated below.
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Tueorem 4.1.4 Let 0) = 1, g'(0) # 0 and the origin be a focus for (4.4). Then,
for syficiently small g, there exists a unique continuous functiog (ro), 6(0) = 0
such that the solution(s, ro, 5(ro)) of (4.16) is periodic with perio@r. Moreover, the
closed trajectory is stable (unstable) if the origin of (digla stable (unstable) focus.
The period of the corresponding periodic solution of (4.64) = inlg + o(Jul).

Proof: Let p(¢,ro, 1) be the solution of (4.17) such thafO, ro, u) = ro. To exclude
the trivial solution, we considag > 0. The theorem of analyticity of solutions [22]

imply that
p(2r,ro, ) = > Ki()r,

j=1
wherek;(u) = Z ki . Sinceks (i) = q(u), we have by the hypotheses of the theorem
thatkyo = q(O) =1 andk;; = q'(0) # 0. For the existence of a periodic solution we
require thap(2n, ro, 1) = ro. Now we definef (ro, 1) = p(2r, ro, 1) — ro. Then, it can
be derived that
F (ro. 1) = o (O)uro + ijor + ) k't
i+j>3

wherei, j € N in the second summation. We cdll(ro, u) = 0 as the bifurcation

equation. If we cancel bgy, we obtain the equation
H(ro, 1) =0, (4.18)

where
H(ro, 1) = ¢ (O + Z Kjori ™ + Z K nip'r),

i+j>2

In the second summation of the last equation, we hageN and ] € Ny. Since
H(0.0) = 0 87{(0 0)

that for sdficiently smallro there exists a functiop = 6(rp) such thajp(e, ro, 5(ro))

g'(0) # 0, one can say by the implicit function theorem

is a periodic solution.

We assume without loss of generality that = 0 for j = 2,3,...,1 — 1 andky # O.

Then we can obtain from (4.18) that

6(ro) =

(0) o (4.19)
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If we analyze the equation (4.19), we can conclude that thedation of periodic
solutions exists if a stable (unstable) focus ot 0 becomes unstable (stable) for
u#0.

Let p(¢) = p(¢,ro.u) be a periodic solution of (4.17). This periodic solutionais

. .0 , : ,
stable limit cycle |f%0ﬁ) < 0. Assuming that the first nonzero elemé&gtof the
0
sequencé;o, ] > 2, is negative and using (4.19), we get
oF (o, —
(g—rzﬁ) = (I - Dkol'o ™ + G(ro),

9 (1o, 1) < 0.

whereg starts with a member whose order is not less thdrus, P
0

Since (4.16) and (4.17) aiequivalent systems, the proof is completed.

4.1.5 An Example

To be convenient, in the following example we use the coordmg notations that

are adopted in Sections 4.1.1-4.1.4.

ExamprLE 4.1.1 Let ¢ (u) and ¢(u) be the curves defined by 2 i21 +(1+ w2z,

V3
z7>0andz = V3z + é + ,uzf, z < 0, respectively. We take
-07 -2 L7+ Z
A = , 129 = Ava Rz =| T,
2 -0.7 Z Z% + Z% Z
and
05 -2 221 \|Z+ 2 -7
A = , f(2 = , Fa(z p) = .
2 05 -2, \|Z2+ 2 -2
After these preparations, we consider the system
dz .
T f 4.20
5 = f@n (4.20)

wheref(z u) = Aiz+ fi(2) + uFi(z ) if z € Di(w), i = 1, 2. HereD; (1) denotes the re-
gion situated between the curve$ and 6(u), which contains the fourth quadrant.
D,(u) is the region between, () and 6(u) containing the second quadrant.
Since g= 1, by Theorem 4.1.1 the origin is a center for the nonperturbgstem

dx
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where f(x) = Ax whenever xe D, i = 1,2 as shown in Figure 4.3. Here D

. . . 1
and D, are the regions between the half straight lines Iz, = %zl, z > 0and

I, : z = V3z, z < 0, which contain the fourth and second quadrants, respegtivel

15

I I I I I I
-2 -15 -1 -0.5 0 0.5 1 15

Figure 4.3: The simulation result showing the existence oérter for the nonper-
turbed system

One can see that(u) (I2(«)) coincides with { (I,). Hence,y: = yi(u) = % and

4 . . . :
v = yo(u) = ?ﬂ Using the given informaton, we obtain

Q) = exp(-g). A(0) =1, q(0)= ¢ #0

Moreover, for the associated system

dy ~

where f(y) = Ay + fi(y) whenever ye D, i = 1,2, it follows from Theorem 4.1.3
that the origin is a stable focus as k 0 for the perturbed system (see Figure 4.4).

Here D; and D, are the regions between the curves:cz, = %zl + zﬁ z >0

and g : 2 = V3z + zf z; < 0, which contain the fourth and second quadrants,

respectively.

From Figure 4.5, we see that the trajectories approach a mkcisolution from inside
and outside. That is, system (4.20) has a stable limit cydle p@riod~ .
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0.5

Figure 4.4: The simulation result showing the existence stable focus for the
perturbed systenmu(= 0)

0.4

Figure 4.5: The simulation result with= —0.8 showing the existence of a limit cycle
for system (4.20)
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4.1.6 Conclusion

Hopf bifurcation for smooth systems is characterized byiagifacomplex conjugate
eigenvalues of the linearized system. It is well known th& hot the case for sys-
tems of diferential equations with discontinuities. Although theteys specified in
(4.14) together with the assumption (A2) reflects a spetaaiscof such systems, it is
worthwhile to develop a technique for the investigation bitzation problem as it
exhibits complicated bifurcation phenomena. Furtherptioblem can be generalized
by taking the matrice#y, i = 1,2,..., p, not only of focus type in all subregions but
also of another types, e.g., they may be hyperbolic withe®gnvalues. Clearly, this
problem can be analyzed in a similar way when it is requireddncrete applications

in mechanics, electronics, biology, etc.

4.2 Bifurcation of a Non-Smooth 3-Dimensional Limit Cycle

When we consider bifurcations of a given type in a neighbodhaicthe origin, the
center manifold theory appears as one of the mffistve tools in the investigation.
The study of center manifolds can be traced back to the wdrliss [147, 148]
and Kelley [100]. When such manifolds exist, the investatf local behaviours
can be reduced to the study of the systems on the center rasnifny bifurcations
which occur in the neighborhood of the origin on the centenifioéd are guaranteed
to occur in the full nonlinear system as well. In particuifa limit cycle exists on

the center manifold, then it will also appear in the full gyst

Physical phenomena are often modeled by discontinuousnuigahsystems which
switch between dierent vector fields in dierent modes. In the last several decades,
existence of non-smooth dynamics in the real world has $ated the study of bi-
furcation of periodic solutions in discontinuous systemseentioned in Section 4.1.
Furthermore, Bautin and Leontovich [35] andifpper et al. [112, 179] have con-
sidered Hopf bifurcation for planar Filippov systems wiikabntinuities on a single
straight line. However, to the best of our knowledge, thereehbeen no results con-
sidering bifurcation in three and more dimensions for eignatwith discontinuous

vector fields.
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In [14], Hopf bifurcation has been investigated for planacdntinuous dynamical
systems. Based on the method B¥equivalence [2, 14, 18, 21, 22] to impulsive
differential equations and by using the projection on the cenéanifold, we extend
the results of Section 4.1 to obtain qualitative propefbeshree dimensional systems
with discontinuous right-hand sides. The present sectatsdvith discontinuities on

arbitrarily finite nonlinear surfaces.

The structure of this section is as follows. Section 4.2 4cdbes the nonperturbed
system and studies its qualitative properties. SectiorR42dedicated to the per-
turbed system and the notionBfequivalent impulsive systems. The center manifold
theory is given in Section 4.2.3. Our main results concertine bifurcation of pe-
riodic solutions are formulated in Section 4.2.4. In thed kection, we present an

appropriate example to illustrate our findings.

Remark 4.2.1 To make the analysis more understandable, Wieishaimilar nota-
tions as given in Section 4.1. We note that though some oogatielow coincide with
the ones used in Section 4.1, they all should be treated eraEmtly.

4.2.1 The Nonperturbed System

For the sake of brevity in the sequel, every angle for a psinbnsidered with respect
to the positive half-line of the first coordinate axisxfx,—plane. Moreover, it is im-
portant to note that we shall consider angle values onlyaririterval [Q 27] because
of the periodicity.

Before introducing the nonperturbed system, we give thevetig assumptions and

notations which will be needed throughout the section.

(AL) Let {Pi}ip:l, p > 2, p e N, be a set of half-planes starting at theaxis, i.e.,
P = l; x R, wherel; are half-lines which start at the origin and are given by
@i(¥) = 0,¢i(x) = (d,x), x e R?anda = (a/', a') € R? are constant vectors
(see Figure 4.6). Leg; denote the angle of the linefor eachi = 1,2,...,p

such that
O<y1<y2<---<yp<2n
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[
)X
/ ’
P
p
A #
Xl !
Figure 4.6: Half-plane®;, i = 1,2,...,p, of discontinuities for the nonperturbed

system (4.21)

(A2) There exist constant, real-valueck2 matricesA; defined byA =

whereg; > 0 and constantl e R, i =1,2,...,p.

(Nl) 912(27T+')’1)_7pand9| :Vi_yi—lyi :2’3""’p'

(N2) Let D; denote the region situated between the plaesand®; and defined

in cylindrical coordinatesr(¢, z), wherex; = r cosg, X, = r sing andz = z, by
D1={(r.¢,2) [T >0, yp<p <y1+2r1, ze R},

Di={(r,9,2) | r =0, yiii<odp<v, zeR}, 1=23,...,p.

Under the assumptions made above, we studgfithe following nonperturbed sys-

tem
.
i (4.21)
G- @

whereF(x) = Axandf(z) = bizfor(x,2 € D;,i=1,2,...,p.
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We note that the functions and f in system (4.21) are discontinuous on the planes

Pi=12...,p.

Remark 4.2.2 It follows from the assumptid¢iel) and (A2) that

<390i (X)
0X

,F(X)#0 forxel,,i=12...,p.

That is, the vector field is transversal at every point/®rior each i.

Since the results can be most conveniently stated in terrogliofirical coordinates,

we use the transformatioxy = r cos¢, X, = rsing, z = z so that system (4.21)

reduces to
dr
% = G(r),
dz e
dp 92

whereG(r) = Ar andg(2) = kzif (r,¢,2 € D;, with 4; =

(4.22)

b .
—, 1 =

adl andk =

i i
1,2,...,p. We see that the functiorS andg given in (4.22) have discontinuities

wheng =vy;,i=212,...,p.

The solution £(¢, ro), Z(¢, 2o)) of (4.22) starting at the point (&, z) is given by

exp(19) ro,
r(#.r0) = expidrys + A2b2 + -+ + Ai(¢ — vi-1) 0.
expllil¢ — (vp — )] + X2, Aii o,
expki¢)zo,
2p,20) = | explkyyr + Ko + - -+ + Ki(¢ — ¥i-1)} 20,
expikil¢ — (vp — y1)] + X2, kibi)zo,
fori=23,...,p.

if 0<¢<vyg,

if yie1 <o <y,
if yp<¢<2n,

if 0<¢<yi,

if viii <o <,
if yp<¢<2n,

Now, we define a sectioR = {(X1, X, 2) | X = 0,%; > 0,z € R}. Constructing the

Poincaé return map o, we find that

p p
(r(2r.1o), 227, 20)) = (€XPQY | o, €XP() | kifh)2).
i=1 i=1
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Let us denote

P

0 = eXp(Z/liHi), (4.23)
i=1
P

@ = exp(> k). (4.24)
i=1

Sincer(2r, o) = tro, Z(21, Zp) = 0229, We can establish the following assertions.
Lemma 4.2.1 Assume thatg= 1. If

P
() g2 = 1, then all solutions are periodic with period ¥ }’ Z— i.e.,R%is a center
i=1"
manifold;

(i) g2 < 1, then a solution that starts to its motion opxx—plane is T-periodic
and all other solutions lie on the surface of a cylinder andytmove toward

the xx;—plane, i.e., xx;—plane is a center manifold and-axis is a stable
manifold;

(i) g2 > 1, then a solution that starts to its motion opxx—plane is T-periodic
and all other solutions lie on the surface of a cylinder andytmove away

from the origin, i.e., x—plane is a center manifold and-axis is an unstable
manifold.

Lemma 4.2.2 Assume thatg< 1. If

() g2 = 1, then a solution that starts to its motion onaxis is T-periodic and all
other solutions will approach the-axis, i.e., xx,—plane is a stable manifold
and z-axis is a center manifold;

(i) g2 < 1, all solutions will spiral toward the origin, i.e., the origils asymptoti-
cally stable;

(i) g2 > 1, a solution that starts to its motion on»—plane spirals toward the
origin and a solution initiating on zaxis will move away from the origin, i.e.,

X1 Xo—plane is a stable manifold and-axis is a center manifold.
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Lemma 4.2.3 Assume thatg> 1. If

() g2 = 1, then a solution that starts to its motion oraxis is T-periodic and
all other solutions move away from theauis, i.e., xX,—plane is an unstable

manifold and zaxis is a center manifold;

(i) g2 < 1, a solution that starts to its motion on»—plane moves away from
the origin and a solution initiating on-zaxis spirals toward the origin, i.e.,

X1Xo—plane is an unstable manifold andaxis is a stable manifold;

(i) g2 > 1, all solutions move away from the origin, i.e., the origin rstable.

Remark 4.2.3 From now on, we assume thatql and ¢ < 1. In other words,

X1 X%—plane is a center manifold and-axis is a stable manifold.

4.2.2 The Perturbed System

Let T c R® be a domain in the neighborhood of the origin. The followiogditions

are assumed to hold throughout the section.

(P1) Let{Si},, p> 2, be a set of cylindrical surfaces which start atzhexis, i.e.,
Si = ¢ X R, wherec; are curves starting at the origin and determined by the
equationsy(x) = 0,¢ = <ai, x> +7i(X), X € R?, 7i(X) = o(||x||) and the constant

vectorsa are the same as described jfl).

Without loss of generality, we may assume that: gj, j = 1,3. Using the trans-
formationx; = rcosg, X, = rsing, equation of the curve;, can be written, for

suficiently smallr, as follows [14]

C:o=yi+uilr,g), i=12...,p, (4.25)

wherey; is a 2r—periodic function ing, continuously diferentiable and; = O(r).

Then, we can define the region situated between the surceandsS; as follows:
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ZS]_Z{(I‘,(ﬁ,Z) | r ZO’ 7p+lpp(r’¢)<¢£71+27T+¢’1(r’¢)’ ZGR},

D~i = {(r’ ¢7 Z) | r= 0’ Yi-1t wi—l(r’ ¢) < ¢ <7+ l//i(r’ ¢)’ VAS R}a

wherei = 2,3,...,p.

Let £ be a positive number and,(9;) denote thes—neighborhoods of the regions

D;,i=1,2,...,p. Inaddition to 1), we assume the following list of conditions.

(2) Let the functionsf;, hy,i = 1,2, ..., p, be defined on the s&t.(9,) and satisfy
fi, by € CA(NL(D)).

(P3) i € C(Z)(Ns(f)i)), i=12...,p.

(P4) fi(x,2) = o(]|x, 2l), hi(x,2) = o(]|x, Z[), andf;(0,2) = 0,h;(0,2 =0 forallze R,
i=12...,p.

We define for k,2) € 9, two functions byF(x,2) = Ax + fi(x,2) and f(x,2) =
biz+ hi(x, 2), where the matri¥y and the constar, are as defined inf2) above. In

the neighborhood’, we consider the following system

(4.26)

Here, it can be easily seen that the functiéi{g, z) and f(x, 2) have discontinuities
on the surfaces;,i=12,...,p.

For suficiently small neighborhootl', it follows from the conditionsfi1) and 1)

that the surfaces; intersect each other only ataxis, none of them can intersect
0gi(X)

ox ’
ities, S;, associated with the plan@% can be seen in Figure 4.7.

itself and( F(x,0)) # 0forxec,i=12,...,p. The surfaces of discontinu-

If a solution of system (4.26) starts at a point, which iffisiently close to the origin
and on the surfac&; with fixed i, then this solution can be continued either to the

surfaceS;,; or S;_; depending on the direction of the time.
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Figure 4.7: Surfaces;, i = 1,2,..., p, of discontinuities for the perturbed system
(4.26)

We make use of cylindrical coordinates and rewrite the sy$te26) in the following

equivalent form

? = G(r,¢,2),
id - (4.27)
% - g(r, ¢7 Z)’

whereG(r, ¢,2) = Air + Pi(r, ¢, 2) anddr, ¢, 2) = kiz+ Qi(r, ¢, 2) whenever, ¢,2) €
Di. The functionsP; andQ are Z—periodic in¢, continuously diferentiable and
Pi = o(lI(r, 2I), Q = o(li(r,2I), i =1,2,...,p.

From the construction, we see that system (4.27) idtaréntial equation with dis-
continuous right-hand side. For our needs, we redefine hetitinsG anddin the
neighborhoods of the plang¥, which contain the surfac§;. In other words, we
construct new functionGy andgy which are continuous everywhere except possibly
at the pointsi( ¢, 2) € #;. The redefinition will be made exceptionally at the points
which lie betweer; andS; and belong to the regior®; or D;; for eachi. There-
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fore, this construction is performed with minimal possibl&nges corresponding to

the B-equivalence method [2], which is the main instrument ofiauestigation.

It is clear from the context that if= p thenD,.1 = D,. Using the argument above,
we realize the following reconstruction of the domain. Wasider the subregions of
D; andD;, 1, which are placed between the plafeand the surface;. We refer to
the subregion®; N i)i+1 (light coloured closed regions in Figure 4.7) abgd, N f)i
(dark coloured closed regions in Figure 4.7) forialVe extend the functior andg
from the regiornD; N Dj,; to D; and fromD;,, N D; to D4 so that the new functions
Gy andgy and their partial derivatives become continuous up to tlgdean = v,

i =1,2...,p. According to all these discussions for the definition&safandgy,
we conclude thaGy(r, ¢,2) = Air + Pi(r,¢,2) andgn(r, ¢,2) = kz+ Qi(r, ¢, 2) for

(r, ¢, 2) € Di. Now, we consider the following fferential equation

d
- =Gn(r.4.2,

id (4.28)
s (r’ ¢’ Z)'

dé On

Letusfixi € {1,2,..., p} and consider a neighborhood®fbased on the description

above. We shall investigate the following three cases.

|. Assume that the point,(y,2) € Di1. Let (%), (Z(4)) be a solution of (4.27)
satisfying (°(y;), (Z2(1)) = (o, w) andé&; be the angle where this solution crosses the
surfaceS;. We denote a solution of (4.28) on the intenval §i] by (r'(¢), Z(¢)) with

(r'(&). 2(&)) = (r°(€), 2(¢))- Then

1
() = eXpQura(@d — o + f expia(® — )P, s 2(9)ds

Yi

0]
2(8) = expla(d — Y)W + f expl1(6 — 9)Qu1(r(9), s 2(9)ds

Yi

and

b
r'(¢) = expQi(p — &))ro&) + f expQli(¢ — 9)Pi(r'(s), s Z'(9)ds

gi

b
2(9) = expli(é - £)r(E) + f expl(® - 9)Q(r(9). s 2(9)ds

gi
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Define a mappingV; = (W, W?) on the planep = y; into itself as follows

Wio.w) = ri(y) - p = [exp(hi - i) (vi = &) - 1lp

expi(yi — &)) fi expli;1(& — 9)Pi1ds

+

+

L_ " expl(yi - 9)Pds

Wo,w) = Z'(y) - w = [exp(ki — ki) (i — &) — 1w

expki(vi — &) f | expkis1(§i — 9)Qids

+

+ f " expl(n - 9)Qids

&i

Il . If the point ¢, i, 2) € D, we can evaluaté, in the same way:

W (o, w) [exp((i — Ai,1)(& — 7)) — 1o

explia(yi — &)) f\,l exp@i(& — 9))Pids

—+

=+

f " explla(ys — 9)Praads

&i

W2 (o, W) [exp(ki — kiz1)(& — 7)) — L]w

expki1(yi — &)) fi expki(é& - 9)Qds

+

+ f " explla(yi — 9)Quads

gi
. 1f(r, 1,2 € S, thenWi(p, w) = 0.
Results from [14] imply that the functiond andW?, i = 1,2,..., p, are continu-
ously diferentiable and we haw&/* = o(||(o, W)I), W2 = o(]|(o, W)I[), which follows

from the equation (4.25). In addition, we note that therstexa Lipschitz constart
and a bounded functiom(¢) [2, 14] such that

W (01, W) — W (02, Wo)l| < £m(€)(llox — pall + llw — wall), (4.29)

for all pq, 00, Wi, Wo € R, j =1, 2.
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Consider the following impulsive fferential equation

d

ﬁ = GN(p9 ¢9W)’

dw _

% - gN(P, ¢’ W)a ¢ * ’)/Ia (430)

Ap|¢ =i = Vvil(p’ W)’
AW = 5, = W2(p, w).

Let (r(¢, ro), Z(¢, 2)) be a solution of (4.27) with(0, rq) = rq, Z(0, Z) = z5 andé; be
the meeting angle of this solution with the surfaei = 1,2,..., p.

Dermnition 4.2.1 We shall say that systems (4.27) and (4.30) are B-equivaleiit
if for every solution(r(¢, ro), z(¢, o)) of (4.27) whose trajectory is iff for all ¢ €
[0, 27] there exists a solutiofp(g, ro), W(¢, Zo)) of (4.30) which satisfies the relation

p
(r(9.10). Z¢, ) = (p(¢. T0), W( %)), pe[0.27\| J&ml, (43D
i=1

and, conversely, for every solutign(¢, ro), w(¢, o)) of (4.30) whose trajectory is in
T there exists a solutio(r (¢, ro), (¢, zo)) of (4.27) which satisfies (4.31).

For sdticiently smallY, the solution (¢, ro), Z(#, zo)), whose trajectory is iff’ for all

¢ € [0, 2], takes the same values with the exception of the orientedvials(&;, yi] as
the solution g(¢, ro), W(¢, Z)) with p(0, rg) = ro, W(0, zy) = z, of the impulsive difer-
ential equation (4.30). That is, systems (4.27) and (4.89%aid to beB-equivalent
in the sense of the Definition 4.2.1. From the discussion haaonstruction above,
it implies that solutions of (4.27) exist in the neighbortdd®, they are continuous
and have discontinuities in the derivative on the surfSicir eachi. Accordingly, a
solution of system (4.26) starting at any initial point isxdauous, continuously dif-
ferentiable except possibly at the moments when the t@jestintersect the surface

Si and is unique.

4.2.3 Center Manifold Reduction

In this section, we establish a center manifold theoremufitcsently small solutions
to (4.30), that is, we show that these solutions can be ceghton a 2-dimensional
invariant manifold and we explicitly describe the dynanmoasthis manifold.
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The function$Gy andgy in (4.30) have been defined @g (o, ¢, W) = Aip+ Pi(o, ¢, W)
andgn(o, o, W) = kw + Qi(o, ¢, W), where p,p,w) € D;. FunctionsP; andQ; are
2r—periodic ing, and satisfy in a neighborhood of the origin

IPi(o1, ¢, W1) = Pi(o2, ¢, Wo)|| < L(llo1 — p2ll + [Iwy — Wa[),
1Qi(o1, ¢, W1) — Qi(o2, ¢, Wo)[l < L(llox — pa2ll + [Iwy — Wal]),
for suficiently small positive constarit, i = 1,2,..., p. Applying the methods of

the paper [9], we can conclude that system (4.30) has twgriatenanifolds whose

equations are given by

¢
Do6.) = [ €9 IQ(s6.0) 5 W(s b.p)ds
+ 3 ECTIW (i, 6, 0), Wi, 6.0)), (4.32)

Yi<¢

and

O_(o.W) = - f¢ T e 9P(p(s, 6. W), S W(s. ¢, W))ds

+ Z e(li(¢_Yi)\A/il(p(7i » b, W), W(Yl , 0, W)), (433)

Yi<¢
wherek = k;, 1 = 4;, P = P, andQ = Q; whenever §, -, ) € D;. We note that the pair
(o(s, ¢, p), W(S, ¢, p)) in (4.32) denotes a solution of (4.30) satisfyip@, ¢,p) = p
and p(s, ¢, W), W(s, ¢, w)) in (4.33) is a solution of (4.30) wittw(¢, ¢, W) = w.

It is also shown in [9] that there exist positive constafgsMy, oo such that

Dy(¢,0) = 0, (4.34)

1Po(0, p1) — Po(d, p2)Il < Kolllo1 — p2ll, (4.35)

for all p1, p2, where a solutiom(¢) = (o(¢), W(¢)) of impulsive system (4.30) with
n(¢o) = (00, Do(o, 00)), o = 0, is defined oR and has the following property

(@)l < Mopoe™ @™, ¢ > ¢, (4.36)

Furthermore, it is shown that there exist positive const&nt M_, o-_ such thatd_

satisfies

®_(¢,0) = 0, (4.37)
1D_(, Wi) — D_(¢, W2)Il < K_{]|wy — Wal|, (4.38)
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for all wy, w,, where a solutiom(¢) = (o(¢), W(¢)) of the system (4.30) with(¢o) =

(D_(¢bo, Wo), Wo), Wo € R, is defined orR and satisfies

(@)l < M_[lwolle™™-@=) ¢ < ¢. (4.39)

DenoteSy = {(0, ¢, W) : W = Do, p)} andS_ = {(o, d, W) : p = P_(¢,W)}. Here,Sg

is said to be theenter manifoldandS._ is said to be thstable manifold

The following lemmas can be proven in a similar manner to tiesson [9] with slight

changes.

Lemma 4.2.4 If the Lipschitz constant is syficiently small, then for every solution
(o) = (o(¢), Ww(¢)) of (4.30) there exists a solutiqr(¢) = (u(¢), v(¢)) on the center

manifold, S, such that

llo(#) = U@l < 2Mollo(o) — u(go)lle™ o),
I(8) — V(@) < Mollw(do) — V(go)lle™™@—40), ¢ > g,

where My ando are the constants used in (4.36).

Lemma 4.2.5 For syficiently small Lipschitz constart the surface $is stable in

large.

The dynamics reduced to the local center manifgds governed by an impulsive
differential equation that is satisfied by the first coordinattefsolutions of (4.30)
and has the form

dp

% = GN(p, o, (D0(¢,p))a ¢ # vis (440)

Aplqj:yi = VVil(P, (I)O(¢9p))

The following theorem follows from the reduction principle

Tueorem 4.2.1 The trivial solution of (4.30) is stable, asymptoticallgliste or unsta-
ble if the trivial solution of (4.40) is stable, asymptoligastable or unstable, respec-

tively.
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Using B-equivalence, one can see that the following theorem holds.

Tueorem 4.2.2 Assume that the conditions given above are fulfilled. Thertritial
solution of (4.26) is stable, asymptotically stable or abét if the trivial solution of

(4.40) is stable, asymptotically stable or unstable, resipely.

4.2.4 Bifurcation of Periodic Solutions

The center manifold reduction in the previous section adlaw to establish a Hopf
bifurcation theorem, yielding a very powerful tool to perfoa bifurcation analysis
on parameter dependent versions of the considered systBusng the last two

decades, many authors have contributed towards develdprgeneral theory.

In order to state the Hopf bifurcation theorem, we includepeeter dependence into
our framework. In particular, the bifurcation of periodawtions under the influence

of a single parameter, u € (—uo, o), 1o @ positive constant, is considered for the

system
dx -
- F(X9 Za/'t)’
o (4.41)
. = f(xa Zs/‘l)’
dt

whereF(x,z u) = Ax+ fi(x 2 +uFi(x, z 1) and f(x, z p) = biz+hi(x, 2) +uHi(x, 2 1)
wheneverx, 2) € D;(x) c R3, which will be defined below. We will need the follow-

ing assumptions on the system (4.41).

(H1) Let{Si(u)}", be a collection of surfaces iif which start at thez-axis, i.e.,
Si(u) = ci(u) xR, wherec;(u) are curves given b{/ai, x> + 7i(X) + uki(X, 1) = 0,
xeR%i=12...,p.

(H2) Let {?’i(,u)}f’=l be a union of half-planes which start at theaxis, i.e.,P;(u) =
li(u) x R, wherel;(u) is defined by(a +yw,x) =0,i=12,...,p.
Denote byy;(u) the angle of the ling(u),1 =1,2,...,p.

Like the construction of the regior®; and D;, we define foru € (—uo, o), i =
2,3,...,p, the ones associated to the system (4.41):
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D) = ((r. ¢, 2p1) | T 2 0, yp(u) + ¥p < ¢ < ya(u) + 27 + P2, Z€ R},
Di(u) = {(r, .2 0) | 120, yia(u) + Wirs < ¢ < yi(w) + Wi, Z€ R},
D) ={(r, ¢, zp) | 1 20, ypu) < ¢ < ya(w) + 27, z€ R},

Di() ={(r,¢,zp) |1 20, yiau) < ¢ <»i(w), ze R}

Here the function¥; = ¥(r, ¢, 1) are zr—periodic in¢g, continuously dferentiable,
¥, =0(r),i=12,...,pand can defined in a similar mannentoin (4.25).
To establish the Hopf bifurcation theorem, we also needdhewing assumptions:
(H3) The functionsF; : N.(Di(u)) — R? andx; are analytical functions iw, zandy

in thee—neighbourhood of their domains;
(H4) Fi(0,0,u) = 0 andk;(0, 1) = 0 hold uniformly foru € (—uo, to);
(H5) The matriceg\, the constantl;, the functionsf; g;, r; and the constant vectors

a correspond to the ones described in systems (4.21) and)(4.26

In cylindrical coordinates, system (4.41) reduces to
dr

-, = é(ra ¢a Za/‘l)a

dg (4.42)
- = A(ra ¢7 Za IJ),

dp 9

é(r’ ¢’ Z,/J) = /li(/-‘)r"'Pi(r’ ¢’ Z,/J) andg’(r’ ¢a Z,,u) = ki(ﬂ)Z+Qi(r’ ¢’ Z,/J) if (r’ ¢a Z,,u) €
Di(w).

Let the following impulsive system

d o

£ = GN(p’ ¢’ W’l'l)’

dw

i On(o. b W, 1), & # viu), (4.43)

Aplp = () = Wi (o W 1)
AWl = () = Wio, W, 1)
be B-equivalent to (4.42), wher€y anddy stand, respectively, for the extensions

of G andg. That is,Gn(p, ¢, W, 1) = Ai(w)p + Pi(o, 6, W, 1) and gi(o, ¢, W, ) =
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ki()W+ Qi (o, ¢, W, ) for (o, ¢, W, 1) € D;(w). Then the function&y andgdy and their
partial derivatives become continuous up to the awgte y;(u) fori = 1,2,...,p.
The functionsW(p, w, ) andW?(p, w, 1) can be defined in the same manner as in
Section 4.2.2.

Following the same methods which are used to obtain (4.32)4u33), we can say
that system (4.43) has two integral manifolds whose equatioe given by

¢
Do(¢, p, 1) = f eWO=9Q(p(s, ¢, p, 1), S, W(S, ¢, p, 1), )d's

(o)

+ ) TN (i), 6. o, ). W), 6 ., ) ), (4.44)
Yi(u)<¢

and

O () = - [ @ IPl(s . p). S (s 6. s
¢
+ Z e/li g (#))Vvll(p(yl (ﬂ)a o, W, ,Ll), W(’}/| (,U), b, W, #)’ ,U), (445)
Yilw)<¢

wherek(u) = ki(u), A(u) = A4(u),P = P, andQ = Q, whenever §,-,-,-) € D;(u).
In (4.44), the pair (s, ¢, p, 1), W(S, ¢, p, 1)) denotes a solution of (4.43) satisfying
o(p, 0, 0,1) = p. Similarly, (o(s, ¢, w, u), W(s, ¢, w, 1)), in (4.45), is a solution of
(4.43) withw(e, ¢, W, u) = w.

Now, we setSo(u) = {(0, ¢, W, 1) : W = Do(¢, p, )} andS_(u) = {(o,$, W, 1) : p =
®_(¢,w, u)}. The reduced system on the center manifd¢) is given by

do 4
_:G ) ’(D s Mo s ) i >
a6 NG, &, Do(d, o, 1), 1), & # i) (4.46)

AP ls=g,49= W, Do(¢h, o, 1), ).

Similar to (4.23) and (4.24) we can define the functions

P

() = exp()_ L), (4.47)
i=1
p

() = exp()_ k(hw)). (4.48)
i=1

System (4.46) is a system of the type studied in [14] and theseshown that this
system, for sfiiciently smallu, has a periodic solution with period2For our needs,
we shall show that if the first coordinate of a solution of @&.% 2r—periodic, then
so is the second one.
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Now, since

p(s+2m, ¢ + 21, p, 1) = p(S, ¢, 0, 1),
W(s+ 2, ¢ + 2m, p, ) = W(S, ¢, p, 1),

and eaclQ; is 2r—periodic ing, we have

(1)0(¢ + 27T’ P> /'l)
P+27

= W@Z9Q(o(s, ¢ + 27, p, 1), SW(S, ¢ + 21, p, ), 1)dS

—00

N Z @+ 2x-7i0) 5
vi(u)<¢+2r
x W2(o(yi(w), ¢ + 2, p, 1), Wi (1), ¢ + 27, p, 1), 1)

¢
| €9 0QU( 4.ttt s e
£y SOETOW (31, 6, p, 1), W (L), 6, 1), 1)

Yil<g
(I)O((p’ P> ,Lt),

where the substitutions= t + 27 andy;(u) = yi(u) + 27 are used for the integral and

summation in the second equality.

Then, we obtain the following theorem whose proof can edslyadapted from the

two dimensional case given in Theorem 4.1.4 of Section 4.1.

Tueorem 4.2.3 Assume that (0) = 1, g;(0) # 0,,(0) < 1, and the origin is a focus
for (4.26). Then, for gfiiciently small § and 2, there exists a unique continuous
functionu = §(ro, 2), 6(0,0) = 0 such that the solutiofr (¢, 5(ro, o)), z(¢, 5(ro, 20)))

of (4.42), with the initial conditior{r (0, 6(ro, ), z(0, 6(ro, Z0)) = (ro, 2), IS periodic
with period2z. The period of the corresponding periodic solution of (4}.i«$li§lf;ii +
o(|ul)-

4.2.5 An Example

For convenience in this section, we shall use the correspgnbtations that are
adopted through Sections 4.2.1-4.2.4.
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: 1
Examrie 4.2.1 Let ¢ (1) and ¢(u) denote the curves determined Qy:x%xl +(1+

WX, % >0and % = V3x + x5 + uxZ, X, < 0, respectively. We choose

07 -2 X1Z /X2 + X2 X1 (1 + 2)
Al = , fi(x,2) = LT Rz =] ;
2 -07 X2 \[ X2 + X5 X2

by =2, hi(x2=xz Hi(xzp) =2

05 -2 —2% 7 \[X2 + %2
, fa(x,2) =

2 —2% /X2 + 32

by = =15, hy(X,2) = %12 Ha(X,z ) = [1 — (¢ + X3)]z

A = > FZ(X’ Z’/J) =

X1
Xo(1 + X12) ’

Now, we consider the system

dx

X Exzp).
el G240 (4.49)

whereF(x, z ) = Ax+ fi(x, 2 +uFi(x z u) and f (x, z ) = biz+hi(x, 2) +uHi (% Z )
whenevelx, 2) € D ().

Since {(u) (1>(u)) coincides with{ (15), y1 = yi(u) = % andy, = y(u) = 4—:: Now,
we can evaluate§u) and g (u) as follows

Q1)
Oo(u)

expiru), (4.50)
expr(u — 2i4)). (4.51)

From (4.50) and (4.51), we can see tha(® = 1, ¢;(0) > O and ¢(0) < 1. There-
fore, by Theorem 4.2.3, system (4.49) has a periodic solwtath period~ 7. One
can see from the Figures 4.8 and 4.9 below, which are obtaioethé same initial
conditions and: = 0.1, that the trajectories approach a periodic solution fronoab
and below. In other words, system (4.49) admits a stable Gydile.
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Figure 4.8: The simulation result showing the existence ptaodic solution for
(4.49)

04 04

Figure 4.9: A diferent viewpoint of the Figure 4.8
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CHAPTER 5

CONCLUSION

This thesis is devoted to theffirential equations with discontinuities off@irent
types: impulsive dierential equations, ffierential equations with piecewise constant
argument, dtferential equations with discontinuous right-hand sidés [[13, 152,

52] and also to their applications in population dynamics.

In the last four decades, there has been a boom in the thediff@ential equations
with discontinuities. The importance of these equationsaigsed by the needs of
modern science and technology as discontinuous chastaterare very often ob-
served in the evolution of real processes in biology, chegisontrol theory, ecol-
ogy, economics, electronics, mechanics, medicine andigys he theory is not
only richer than the corresponding theory of classiciedential equations, but also
represents a more natural framework for mathematical nvaglef real world prob-
lems. Hence, we find it worthwhile to discuss several qualggoroblems related to
differential equations with some kind of discontinuity in thedis.

It is well recognized that models of population dynamicsrasesuitable to be con-
sidered continually and thus not realistic when the sedsgpmd the changing en-
vironment, impulse and delayffects are not taken into account. In order to obtain
more accurate results, it is desirable to study populatyorachics models under these
effects. In this context, we have improved the Lotka-Voltemd gatio-dependent
predator-prey models with the help offfdirential equations with discontinuities in
Chapter 2.

The subject of Chapter 3 is very new. We should emphasize itfiatehtial equations

with piecewise constant arguments of generalized type bega very recently intro-
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duced by Akhmet [5], [8]-[10] and the novelty of those eqaas has been recognized
in [146]. Through the Lyapunov-Razumikhin method, we haweetigped the previ-
ous results obtained on the stability offdrential equations with piecewise constant
arguments by considering the argument function in the gérierm and by taking
any non-negative real number as an initial moment in Chapté&/eBimprove the de-
ficiencies arising from the classical method of reductiodiserete equations, which

has been used as a main tool of investigation in the earlieksvo

The last two problems considered in Chapter 4 have been igagsi by using the
B-equivalence method, which has been developed in papersiohét [2, 14, 18, 21,
22]. The significance of the method stems from the fact thenidibles us to consider
discontinuity sets of nonlinear feature. The power and ffezgveness of this method
for the analysis of problems of nonlinear feature have beewgal once again. We
can see that the method presents itself in the most comgdigalces of nonlinear

problems such as bifurcation and center manifold reduction

In the formulation of our problems, we have been motivatethieypractical signifi-
cances and challenges in population dynamics and mechswghdry friction. We
are sure that the theoretical basis established in thissth@sbe useful for practical
investigations in other fields of the science and will leaduovey application prob-
lems including collision bifurcation theory, oscillatiommechanisms with vibration,
neural networks, etc. more deeply compared to the previoas.dvioreover, we be-
lieve that the concept of nonlinearities can be signifigainttreased using the results
of the thesis. The results of Chapter 3 can be used in theistaihlysis of many real
systems with piecewise constant arguments. We know tiatelntial equations with
discontinuous right-hand sides are also specific for a vadge of applications aris-
ing from mechanical systems with dry friction, electricataits with small inductiv-
ities, systems with small inertia, dynamical systems wah-differentiable potential,
optimization problems with non-smooth data, electricalvoeks with switches, os-
cillations in visco-elasticity and optimal control. Thusyther investigations could
be concentrated on the creation or disappearance of a peoddlt in real world
problems through the results of Chapter 4.
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