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ABSTRACT

DIFFERENTIAL EQUATIONS WITH DISCONTINUITIES AND POPULATION
DYNAMICS

Aruğaslan Çinçin, Duygu

Ph.D., Department of Mathematics

Supervisor : Prof. Dr. Marat Akhmet

Co-Supervisor : Prof. Dr. Meryem Beklioğlu

June 2009, 124 pages

In this thesis, both theoretical and application oriented results are obtained for differ-

ential equations with discontinuities of different types: impulsive differential equa-

tions, differential equations with piecewise constant argument of generalized type and

differential equations with discontinuous right-hand sides. Several qualitative prob-

lems such as stability, Hopf bifurcation, center manifold reduction, permanence and

persistence are addressed for these equations and also for Lotka-Volterra predator-

prey models with variable time of impulses, ratio-dependent predator-prey systems

and logistic equation with piecewise constant argument of generalized type.

For the first time, by means of Lyapunov functions coupled with the Razumikhin

method, sufficient conditions are established for stability of the trivial solution of dif-

ferential equations with piecewise constant argument of generalized type. Appropri-

ate examples are worked out to illustrate the applicabilityof the method. Moreover,

stability analysis is performed for the logistic equation,which is one of the most

widely used population dynamics models.
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The behaviour of solutions for a 2-dimensional system of differential equations with

discontinuous right-hand side, also called a Filippov system, is studied. Discontinuity

sets intersect at a vertex, and are of the quasilinear nature. Through theB−equivalence

of that system to an impulsive differential equation, Hopf bifurcation is investigated.

Finally, the obtained results are extended to a 3-dimensional discontinuous system of

Filippov type. After the existence of a center manifold is proved for the 3-dimensional

system, a theorem on the bifurcation of periodic solutions is provided in the critical

case. Illustrative examples and numerical simulations arepresented to verify the the-

oretical results.

Keywords: Differential equations with discontinuities, Hopf bifurcation, Lyapunov-

Razumikhin method, Center manifold theory, Population dynamics
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ÖZ

SÜREKṠIZL İKLERİ OLAN DİFERENṠIYEL DENKLEMLER VE
POPÜLASYON DİNAM İĞİ

Aruğaslan Çinçin, Duygu

Doktora, Matematik B̈olümü

Tez Yöneticisi : Prof. Dr. Marat Akhmet

Ortak Tez Ÿoneticisi : Prof. Dr. Meryem Bekliŏglu

Haziran 2009, 124 sayfa

Bu tezde, s̈ureksizlikleri olan farklı tipteki diferensiyel denklemler: impalsif dife-

rensiyel denklemler, genelleştirilmiş parçalı sabit argümanlı diferensiyel denklem-

ler ve săg tarafı s̈ureksiz diferensiyel denklemler için hem teorik hem de uygula-

maya ÿonelik sonuçlar elde edilmiştir. Bu denklemler ve değişken zamanlı impalsif

etkili Lotka-Volterra avcı-av modelleri, genelleştirilmiş parçalı sabit arg̈uman içeren

oran-băgımlı avcı-av sistemleri ve lojistik denklem için kararlılık, Hopf bifürkasyonu,

merkez manifolda indirgeme, devamlılık ve direngenlik gibi birçok kalitatif problem

ele alınmıştır.

Razumikhin metodu ile birleştirilen Lyapunov fonksiyonları, genelleştirilmiş parçalı

sabit arg̈uman içeren diferensiyel denklemlerde ilk kez kullanılarak aşikar ç̈ozümün

kararlılığı için yeter koşullar elde edilmiştir. Metodun uygulanabilirli ğini göstermek

amacıyla uygun̈ornekler sunulmuştur. Ayrıca, en çok kullanılan popülasyon dinamik

modellerinden biri olan lojistik denklem için kararlılıkanalizi yapılmıştır.
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Filippov sistemi diye de adlandırılan sağ tarafı s̈ureksiz iki boyutlu bir diferensiyel

denklemler sistemi için ç̈ozümlerin davranışları araştırılmıştır. Süreksizlik k̈umeleri

yarı dŏgrusal karakterde olup bir köşede kesişmektedirler. Bu sistemin impalsif dife-

rensiyel denkleme B-denkliğinden faydalanılarak, Hopf bifürkasyonu incelenmiştir.

Bulunan sonuçlar son olarak Filippov tipindekiüç boyutlu s̈ureksiz bir sistem için

genelleştirilmiştır. Üç boyutlu sistemde merkez manifoldun varlığı gösterildikten

sonra kritik durum için periyodik ç̈ozümlerin bifürkasyonuüzerine bir teorem elde

edilmiştir. Teorik bulguları dŏgrulamak adına açıklayıcı̈ornekler ile birlikte sayısal

simülasyonlar sunulmuştur.

Anahtar Kelimeler: S̈ureksizlikleri olan diferensiyel denklemler, Hopf bifürkasyonu,

Lyapunov-Razumikhin metodu, Merkez manifold teorisi, Popülasyon dinamĭgi
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care and intensive efforts during my research. I enjoyed learning more on the popu-

lation dynamics through the discussions with her.

I would like to extend my thanks to the members of the examining committee for

their valuable comments and feedback on the manuscipt of my thesis. I deeply thank

all members of the Department of Mathematics for the friendly atmosphere they pro-

vided. I am also grateful to my friends, especially to Rezan Sevinik, for their support,

suggestions and good will. Furthermore, I would like to express the pleasure of work-

ing in a cohesive team with my friends Cemil Büyükadalı, Mehmet Turan and Enes
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Çinçin, for his presence, understanding and belief in me during this long process.

ix



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
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CHAPTER 1

INTRODUCTION

Very few ordinary differential equations can be solved explicitly. Fortunately,in many

situations exact solutions are not necessary and only qualitative aspects of the solu-

tions are of interest. Even if an exact solution is obtainable, qualitative analysis can

provide a more comprehensive understanding of the situation than the solution itself.

That being the case, in the qualitative theory of differential equations, rather than

finding exact solutions, it is essential to study their certain characteristics. This the-

ory originated in the groundbreaking works of Lyapunov [122] and Poincaŕe [149],

and has been developed during the last several decades, proving to be extremely ef-

fective in the investigation of various physical and biological phenomena.

The principal results of the qualitative approach include existence and uniqueness of

solutions, stability of equilibrium points, existence andstability of periodic solutions,

bifurcation of equilibrium points, bifurcation of periodic solutions and so on. A so-

lution starting at a certain initial value may evolve towards an equilibrium point or a

periodic solution. Equilibrium points and periodic solutions can be stable or unstable,

thus attracting or repulsing neighbouring solutions, respectively. Number and stabil-

ity of equilibrium points or periodic solutions can change as parameters are varied.

This qualitative change in the structural behaviour of solutions is called bifurcation,

an originally French word introduced by Poincaré [149].

The qualitative theory of ordinary differential equations is rather well developed

[24, 48, 51, 53, 63, 64, 79, 82, 87, 88, 111, 136, 151, 172]. Recently, studies that

address the qualitative behaviour of systems with discontinuous characteristics have

received increasing attention as they naturally arise in real phenomena. In this thesis,
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we survey several results on differential equations with discontinuities and consider

their applications in population dynamics. Before defining the objective of the thesis

in detail, we shall describe different types of discontinuous systems and the related

problems.

1.1 General Description of Differential Equations with Discontinuities

The theory of differential equations with discontinuities plays an increasingly im-

portant role in applications. Many real processes which appear in various problems

of biology, chemistry, control theory, ecology, economics, electronics, mechanics,

medicine and physics are studied by means of mathematical models with some kind

of discontinuity [11, 12, 15, 31, 41, 55, 90, 91, 110, 119, 132]. This fact has increased

the need to establish a comprehensive theory for differential equations with disconti-

nuities [2, 8, 20, 22, 52, 69, 72, 83, 98, 105, 108, 113, 129, 134, 137, 140, 142, 152,

153, 157].

In what follows, it is sensible to distinguish between different types of discontinu-

ities that will be treated in this thesis. The first one is the discontinuous external

forces also called impulse effects [83, 113, 152]. Another type is the piecewise con-

stant arguments [52, 156, 170] of generalized type. The lastone is the case when

the right-hand sides of the equations depend discontinuously on the state variables

[22, 72, 108]. Containing impulsive differential equations, differential equations with

piecewise constant argument of generalized type and differential equations with dis-

continuous right-hand sides, the range of differential equations with discontinuities is

quite vast.

1.1.1 Impulsive Differential Equations

Evolution of a real process can be subject to short-term perturbations whose duration

is negligible compared to the duration of the process itself. These perturbations are

realized momentarily in the form of impulses causing an instantaneous change in the

state of the process. For example, when an oscillating string is struck by a hammer,

it experiences a sudden change of velocity; a pendulum of a clock undergoes a rapid

2



change of momentum when it crosses its equilibrium position; harvesting and epi-

demics lead to a significant decrease in the population density of a species, etc. In

order to explain such processes mathematically, it becomesnecessary to study im-

pulsive differential equations, also called differential equations with discontinuous

trajectories.

Particular examples such as mathematical model of clock [25, 105, 129] played a

leading role in the development of the mathematical theory of differential equations

with impulsive actions. However, general notions of impulsive differential equations

were introduced by Pavlidis [142]-[144]. The book of Samoilenko and Perestyuk

[152] is also a fundamental work in the area as it covers many theoretical problems

including the existence and uniqueness of solutions, stability, integral sets, periodic

and almost periodic solutions, etc.

The interest in the theory of systems with discontinuous trajectories has recently

grown due to the needs of modern science [32, 34, 79, 83, 113, 142, 152] and tech-

nology [25, 33, 35, 105, 129, 143, 144]. The theory is now being recognized to be

not only richer than the corresponding theory of differential equations without im-

pulses, but also represents a more natural framework for mathematical modeling of

real processes [99] investigated in various fields of physics, mechanics, economics,

population dynamics, ecology, biological systems and optimal control [34, 113].

There are two principally different types of impulsive differential equations: with

impulses at fixed times; and with impulsive action at variable times. The mathemat-

ical model of a process with impulse effects at fixed times can be described by the

following impulsive system [152]

dx
dt
= f (t, x), t , τi ,

∆x|t = τi = I i(x),
(1.1)

wherex ∈ R
n, n ∈ N, t ∈ R, {τi} is a given sequence of times indexed by a finite or

an infinite setJ, f and I i aren−dimensional vector-valued, continuous functions. A

phase point of (1.1) moves along one of the trajectories of the differential equation

x′ = f (t, x) for all t , τi. Whent = τi, the point has a jump∆x|t = τi = x(τ+i )−x(τ−i ) =

I i(x(τ−i )). Hence, a solutionx(t) of (1.1) is a piecewise continuous function that has

discontinuities of the first kind att = τi.

3



In the variable case, impulses occur when the phase point of asystem intersects the

prescribed surfaces in the phase space. It is well known thatsystems with impulses at

variable times generate more difficult theoretical challenges compared to the systems

which experience impulses at fixed times. They are mostly used to describe processes

in mechanics and electronics. Generally, these systems take the form

dx
dt
= f (t, x), t , τi(x),

∆x|t = τi(x) = I i(x),
(1.2)

whereτi(x), i ∈ J, stand for the surfaces of discontinuities. In opposition to the

system (1.1), points of discontinuity in (1.2) depend on thesolution, which results in

a more complicated situation.

Most of the mathematical problems encountered in the study of impulsive differ-

ential equations can not be treated by standard techniques developed for ordinary

differential equations, especially when the impulses take place at variable moments

[14, 20, 21, 145]. Effective methods for the investigation of systems with impulses at

variable times can be found in [58, 76, 113, 152].

There also exists an important class of impulsive differential equations that are known

as discontinuous dynamical systems. A discontinuous dynamical system [142, 152]

can be written as

dx
dt
= f (x), x < Γ,

∆x|x ∈ Γ = I (x).
(1.3)

A phase point of system (1.3) moves between two consecutive intersections with the

setΓ ⊂ R
n along one of the trajectories of the differential equationx′ = f (x), and

when the point, sayx, intersects withΓ it is mapped into the pointx+ I (x). Clearly,

for discontinuous dynamical systems moments of intersection with the setΓ depend

on the solution and hence they are of variable nature. The properties of such sys-

tems have not been thoroughly discussed so far. Since a wide range of applications

demonstrate the necessity of studying such systems, they attract the attention of many

researchers nowadays, see, for example, [2, 14] and the references therein. Hence, the

theory of discontinuous dynamical systems is a rapidly developing field at present.
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1.1.2 Differential Equations with Piecewise Constant

Argument of Generalized Type

Differential equations with delay provide very useful mathematical models for a vari-

ety of systems in which the rate of change of the system depends somehow on its past

history. It is recognized that differential equations with piecewise constant arguments

are closely related to delay differential equations [78, 80] as they contain arguments of

delayed or advanced type [5]. These equations have come intoexistence in an attempt

to extend the theory of functional differential equations with continuous arguments to

differential equations with discontinuous arguments [170].

The theory of differential equations with piecewise constant argument of theform

dx(t)
dt
= f (t, x(t), x([t])), (1.4)

wheret ∈ R, x ∈ R
n, and [·] denotes the greatest integer function, was initiated in

[52, 156] and has been intensively developed by many authorsin the last few decades

[1, 80, 141, 169, 170]. Studies of such equations were motivated by the fact that they

represent a hybrid of continuous and discrete systems and thus combine the properties

of both differential and difference equations.

There exists an extensive literature dealing with differential equations with piecewise

constant argument. Results concerning oscillatory behaviour of solutions are included

in [1, 55, 158], [169]-[171] and the references cited therein. Existence and uniqueness

of solutions, their backward continuation on (−∞,0] and asymptotic stability of the

trivial solution has been studied in [52, 170]. The problem of existence of periodic and

almost periodic solutions for differential equations with piecewise constant argument

has been considered in [1, 155, 165, 173] and the references therewith. Later, Cooke

and Wiener gathered all previous results including stability, oscillation properties and

existence of periodic solutions in their comprehensive survey paper [50]. A brief

summary of the theory can also be found in [170]. Other than mathematicians, this

class of differential equations has attracted the attention of many scientists due to their

wide range of applications in the fields of biology, control theory, neural networks,

biomedical models of disease, etc. [12, 41, 55, 77, 125, 132,155, 158, 167, 169, 177].
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Most of the results for differential equations with piecewise constant argument are

obtained by reducing them into discrete equations and by applying numerical meth-

ods [12, 41, 52, 55, 78, 81, 132, 156, 170]. The method of reduction to discrete

equations has been the main instrument of investigation. Asa consequence of the

existing method, initial value problems are considered only for the case when initial

moments are integers or their multiples. In addition, one can not study stability in

the complete form as only integers or their multiples are allowed to be discussed for

initial moments.

In [5], [8]-[10], the concept of differential equations with piecewise constant argu-

ment has been generalized by considering arbitrary piecewise constant functions as

arguments. It has been assumed that there is no restriction on the distance between

the switching moments of the argument. There, it has been proposed to investigate

differential equations of the form

dx(t)
dt
= A(t)x(t) + f (t, x(t), x(β(t))), (1.5)

wherex ∈ R
n, n ∈ N, t ∈ R, A(t) is a continuousn×n matrix,β(t) = θi if θi ≤ t < θi+1,

i ∈ Z, andθi is a strictly ordered sequence of real numbers with|θi | → ∞ as|i| → ∞.

Clearly, the greatest integer function [t] is a particular case of the functionβ(t). In-

deed, if we chooseθi = i, i ∈ Z, thenβ(t) = [t]. System (1.5) is called a differential

equation with piecewise constant argument of generalized type. For the investigation

of such systems [5]-[9], a new approach based on the construction of an equivalent

integral equation has been used. By means of this approach, itwas shown that the

definition of the initial value problem for differential equations with piecewise con-

stant argument of generalized type is similar to the one given for classical ordinary

differential equations. Results on the existence and uniquenessof solutions, continu-

ous dependence on the initial value imply that one can investigate stability by taking

any real number as an initial moment. Hence, definitions of stability for differential

equations with piecewise constant argument of generalizedtype coincide with the

definitions used for ordinary differential equations [88].
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1.1.3 Differential Equations with Discontinuous Right-Hand Sides

It is well known that systems modeled by ordinary differential equations can be writ-

ten in the vector formx′ = f (t, x), where t ∈ R, x ∈ R
n, n ∈ N, and f is an

n−dimensional vector-valued, continuous function. However, there exist many prac-

tical situations in which the function on the right-hand sides is discontinuous with

respect to the state variablex or to the time variablet, resulting in a differential equa-

tion with discontinuous right-hand sides.

The theory of differential equations with discontinuous right-hand sides has been to

a great extent developed by the needs of physical problems requiring automatic con-

trols such as relays and switches [72]. These equations are also specific for a wide

range of applications arising from mechanical systems withdry friction, electrical

circuits with small inductivities, systems with small inertia, dynamical systems with

non-differentiable potential, optimization problems with non-smooth data, electrical

networks with switches, oscillations in visco-elasticity, optimal control, etc. (see, for

example, [25, 72, 73] and the references therein). Mathematical modeling of such ap-

plications leads to discontinuous systems which switch between different states and

the vector field of each state is associated with a different set of differential equations

[31, 114].

Systems described by differential equations with a discontinuous right-hand sides are

also called Filippov systems. For these systems, dependingon the vector field, either

a transversal intersection or a sliding mode may appear. From the mathematical point

of view, several ways exist to handle such systems. For example, one way is to use

the theory of differential inclusions [72]. Systems with sliding mode are generally

extended to a set valued vector field, that is, to differential inclusions for investiga-

tional purposes. Another way is a continuous approximationof discontinuities to get

smooth differential equations [30]. Method ofB-equivalence [18, 19, 22] can also be

used effectively in the analysis of differential equations with discontinuous right-hand

sides, especially when the sets of discontinuities are of quasilinear nature.

Stimulated by the problems of applied nature, qualitative theory of classical differen-

tial equations including the notions of existence, uniqueness, continuous dependence,
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stability and bifurcation has been adapted for equations with discontinuous right-

hand sides. Hence, the amount of literature on the theory of differential equations

with discontinuous right-hand sides is vast. Different aspects of the modified the-

ory are elucidated in a variety of books and papers. The books[25, 35, 129] can be

considered as an important basis for the development of suchsystems. A nice intro-

duction can be found in [59, 72, 108]. The fundamental work ofFilippov extends

a discontinuous differential equation to a differential inclusion [72, 73]. In his book

[72] many results from the classical theory of differential equations were shown to

be valid for equations with discontinuous right-hand sidesas well, and rather than

applications, it presents the main trends of the theory of differential equations with

discontinuous right-hand sides such as existence and uniqueness, dependence on the

initial data, bounded and periodic solutions, stability and so on. Moreover, there exist

many publications that consider dry friction problems, existence and bifurcation of

periodic solutions for Filippov type systems by means of differential inclusions, see

for example [31, 49, 69, 109, 112, 114, 179, 180]. The description of bifurcations for

these systems can be found in [114].

In the literature, discontinuities on the right-hand sidesare mostly assumed to appear

on straight lines [49, 108, 112, 179, 180]. However, Akhmetov and Perestyuk [22]

and Akhmetov [18, 19] obtained several theoretical resultsfor such equations with

nonlinear sets of discontinuities. The main tool of investigation in these papers was

the B-equivalence method introduced by the authors. This methodwas firstly pro-

posed to reduce impulsive systems with variable time of impulses to the systems with

fixed moments of impulsive actions [20, 21]. Then it appearedthat the method is also

applicable to differential equations with discontinuous right-hand sides. That is, dif-

ferential equations with discontinuous vector fields with nonlinear discontinuity sets

can be reduced to impulsive differential equations with fixed moments of impulses.

Method ofB-equivalence will be thoroughly discussed in Chapter 4.

We provide general overviews of the Lyapunov-Razumikhin method, bifurcation phe-

nomena and center manifold theory with extensive literature in the next two sections.

These concepts will be treated in detail for differential equations with discontinuities

in the following chapters.
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1.2 A Brief History of the Lyapunov-Razumikhin Method

In his seminal thesis, Lyapunov [122] proposed two methods,named by himself the

first and second method, for stability analysis of motions. It is well known that Lya-

punov’s second method has proved to be an indispensable toolin the qualitative theory

of differential equations. It has been widely used in the investigation of stability of

various systems in mathematics and those considered as models in ecology, biology,

epidemiology, mechanics and economics [17, 29, 43, 47, 77, 82, 101, 103, 127, 128,

151, 174, 178]. The significance of the method stems from the facts that it enables one

to discuss qualitative properties of solutions of a system without solving the differ-

ential equation explicitly and that it can be utilized effectively to deal with nonlinear

systems.

Based on the Lyapunov’s second method, many results from the stability theory of

differential equations without delay have been successfully extended and adjusted to

systems with time delay. This extension has been carried outin two directions by

Krasovskii [104] and Razumikhin [150] individually. The first direction makes use

of Lyapunov functionals and is known as Lyapunov-Krasovskii method. On the other

hand, functions are much simpler to handle and more practical to determine sufficient

conditions for stability. Thus, in the second direction, Lyapunov functions are com-

bined with the Razumikhin technique, which is generally referred to as Lyapunov-

Razumikhin method.

Geometrically, Lyapunov function method involves finding asystem of closed sur-

faces that contain and approach the origin. The vector field of motion should be

directed inside the areas enclosed by these surfaces which form the level surfaces of

a Lyapunov function, sayV(t, x). If a solution enters such an area, then it will never

leave it again. For systems without deviating argument, thespeed vector on the level

surfaces is determined only by the present moment of time, i.e., by the point lying

on the given surface. However, the speed in systems with argument deviation de-

pends, in some way, also on the previous history which is usually hard to find. In

order to be able to estimate the full derivative of Lyapunov function along the so-

lutions, Razumikhin [150] proposed to consider a previous history to lie inside the

level surfaceV(t, x) = c, c ≥ 0. That is to say, the idea was to evaluate the derivative
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not for all curves that correspond to solutions of the system, but only for those that

leave areas enclosed by the level surfaces. The standard technique of proving Lya-

punov theorems on stability made such assumption both natural and logical. This led

to an additional Razumikhin condition for the Lyapunov theorems, which included

the estimation of the derivative of the Lyapunov function onthe curve that satisfies

V(s, x(s)) < V(t, x(t)), s< t [84, 101, 150].

There are many publications in which the Lyapunov function method together with

Razumikhin type techniques presents itself as the main and general approach used for

stability analysis of a variety of delay differential equations, e.g., see [44, 121, 159,

166] and the references therein.

1.3 An Overview of Bifurcation and Center Manifold Theories

Bifurcation theory is concerned with the topological changes in the qualitative nature

of solutions of a family of differential equations as parameters are varied. Bifurca-

tion appears when a small change made on the parameter valuesof a system causes

a sudden qualitative change in its behaviour, e.g., number and type of equilibrium

points and periodic solutions may change as parameters vary. Generally, equilibrium

solutions are stable to small perturbations if the parameter is in a certain range, and

become unstable when it passes through a critical value, called a bifurcation point.

Moreover, periodic solutions around equilibrium points may exist in a small neigh-

borhood of a bifurcation point. Bifurcations occur in many physical systems, exam-

ples of which can be found in morphodynamics (the forming of meanders in rivers),

structural mechanics (the buckling of an elastic beam), utter oscillation of suspension

bridges, biochemical reactions (reaction-diffusion models) and cardiac arrhythmias

in malfunctioning hearts. More examples of bifurcation canbe found in the mathe-

matical studies of physics, chemistry, biology, engineering and population ecology.

Since many practical problems in nature are influenced by discontinuous character-

istics of physical phenomena, it is desirable to know whether periodic solutions of a

system exist for a certain parameter set and how these periodic solutions can change

for a varying parameter of the system. The appearance of a newbranch of periodic
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solutions from a branch of equilibrium points is known as Hopf bifurcation, named

after Hopf [92]. The phenomenon of the Hopf bifurcation is local in the sense that all

events happen in a small neighborhood of the equilibrium point and the description

of the changes in amplitude and period of the oscillation is only correct nearby the

bifurcation point of the parameter at which the number of periodic solutions changes.

Geometrically, classical Hopf bifurcation for a smooth system means that an equilib-

rium solution changes its stability as a pair of complex conjugate eigenvalues of the

linearization around the equilibrium point cross the imaginary axis of the complex

plane. That is, stability changes from stable to unstable through a center type of equi-

librium point, or vice versa. In this way, bifurcating periodic orbits are generated by

nonlinear perturbation.

During the last decades many results about bifurcation theory have appeared and bi-

furcations of periodic solutions, i.e., Hopf bifurcation,in smooth vector fields are

well understood [79, 89, 111, 124]. Recently, bifurcation features of a system under

the influence of a discontinuity have received increasing attention as the variety of the

discontinuities leads to rich bifurcation phenomena not observed in smooth systems

[40, 57, 60, 62, 70, 114, 140].

The study and classification of various kinds of bifurcationphenomena for non-

smooth systems can be summarized as follows. Feigin [70] andDi Bernardo et

al. [60, 62] study non-conventional bifurcations, also called C-bifurcation, in Fil-

ippov systems. The C-bifurcation concept was first mentionedin [71] and later

accepted as a collective name for bifurcations caused by discontinuity [62]. Since

then many mathematicians, engineers, and physicists have paid attention to the study

and classification of different types of C-bifurcation in piecewise smooth systems.

Border-collision bifurcation of fixed points in maps explores the phenomena when

a family of fixed points transversely crosses the line of discontinuity as the para-

meter varies. This bifurcation phenomenon has been studiedin different applica-

tions [139, 140]. A special case is the corner-collision bifurcation in which some

solutions graze corners of the discontinuity sets, and thisimplies a border-collision

phenomenon [61]. Another type of non-conventional bifurcation is the grazing bi-

furcation which studies the corresponding properties whena periodic orbit intersects

the line of discontinuity tangentially [40]. This kind of bifurcation usually occurs in
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impacting systems [56, 137, 162]. Sliding bifurcation appears when part of a peri-

odic orbit coincides with the line of discontinuity, which has vast application back-

grounds [60, 108]. Dankowicz and Nordmark [57] study bifurcations of stick-slip

oscillations in a friction model, a non-smooth continuous system. Non-conventional

bifurcations of non-smooth discrete mappings are addressed by Nusse and Yorke

[138, 140]. Another type of C-bifurcation concerns the creation or disappearance

of a periodic orbit that is related to Hopf bifurcation or generalized Hopf bifurcation

[14, 49, 69, 108, 109, 112, 114, 116, 179, 180].

Several approaches have been proposed in the literature to analyze the nature of Hopf

bifurcation including integral averaging [46], the Fredholm alternative [97], the im-

plicit function theorem [85], the method of multiple scales[135], and center-manifold

reduction [42, 89, 172]. The study of center manifolds formsone of the cornerstones

of the qualitative theory of differential equations.

The center manifold theory emerged in the sixties of the lastcentury [100, 148], and

soon became a very powerful tool for the investigation of stability and bifurcation of

various systems [42]. Due to the existence of such manifolds, the analysis of local

bifurcations (bifurcations of equilibrium points and periodic orbits) can be reduced to

the study of the systems on the center manifolds.

When the linearized system possesses a pair of purely imaginary eigenvalues as well

as a finite or infinite number of eigenvalues with negative real parts, center manifold

theory guarantees that there exists a two dimensional subspace, i.e., the center mani-

fold, which is tangent to the subspace spanned by the eigenvectors corresponding to

the eigenvalues with zero real part. This subspace is invariant under the flow gen-

erated by the nonlinear equations. Since the idea of center manifold analysis is to

reduce a system, which is high or infinite dimensional, to a two dimensional system

by projecting the original dynamics onto the eigenvectors corresponding to purely

imaginary eigenvalues, it provides a low dimensional picture of a high or infinite di-

mensional flow. Accordingly, after a reduction to the centermanifold, it becomes

easier to determine the quantitative behaviour on it, and inturn the behaviour of the

whole system locally. For instance, stability in the full nonlinear equations will be

the same as its stability in the flow on the center manifold. Besides, any bifurcations
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which occur in the neighborhood of the equilibrium point on the center manifold are

guaranteed to occur also in the full nonlinear system. In particular, if a limit cycle is

born in a Hopf bifurcation in the center manifold, then it will also be born in the full

high or infinite dimensional system.

In the last couple of decades many authors have contributed towards developing the

general theories of bifurcation and center manifold reduction. For much more detail,

we refer to the books [42, 45, 79, 172].

1.4 Models of Population Dynamics

Population dynamics is the branch of mathematical biology which uses mathematical

models as a tool to solve biological problems. It studies short and long term changes

in the size of populations, and in the meantime, describes the biological and environ-

mental factors leading to those changes. During the last twodecades, the growth of

population dynamics and the diversity of applications has been astonishing.

When species interact the population dynamics of each species is affected. An inter-

action between species can occur in several ways that can be classified as one of the

three:

(i) predator-prey situation (one benefits by eating the other): the growth rate of

one population is decreased and the other increased;

(ii) competition (both are mutually derogative): the growth rate of each population

is decreased;

(iii) mutualism or symbiosis (mutually beneficial): the growth rate of each popula-

tion is enhanced.

The increasing use of mathematics in population dynamics isinevitable as it requires

quantitative and qualitative measurements of several ecological activities. The theory

of differential equations has been extensively used for decades tostudy fluctuations

in the populations of species, interactions of species withthe environment, and com-

petition and mutualism between the species. Therefore, they play an important role
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for addressing many fundamental questions in population dynamics [126]. Various

mathematical models have been proposed in the study of population dynamics in the

literature [38, 133]. The dynamic relationship between predators and their prey has

long been and will continue to be one of the dominant themes inboth ecology and

mathematical ecology due to its universal existence and importance [38]. Although

these problems appear to be mathematically simple at first sight, they are very com-

plicated and challenging.

To obtain a better understanding of ecological communities, it is necessary to clarify

how density of species may change as members are included in or excluded from

communities. Mathematical models of many processes in population dynamics are

expressed by impulsive differential equations. These processes are characterized by

a sudden change in their state. For example, we can consider afish population in

a pool and suppose that some fish are taken out to be sold every week. This action

will affect not only the number of fish population in the pool, but it will also affect

the rate of change of the population, depending on the numberof male or female fish

remained within the pool for reproduction. In a predator-prey environment, predators

themselves can sometimes change instantaneously due to immigration. There are still

some other perturbations in ecology such as epidemics, harvesting, fires, floods, etc.

that are not suitable to be treated continually. These perturbations also bring sudden

changes to the systems. Recently, some impulsive equations have been introduced in

population dynamics in relation to population ecology [118, 119].

One of the common deficiences of population models, especially models of single

species, is that the birth rate is considered to act instantaneously whereas there may

be a time delay to take the time to reach maturity into account. In fact, time delays

occur in almost every situation that to neglect them is to ignore reality. More realistic

models thereby should include some of the past states of the systems, that is, a real

system should be modeled by differential equations with time delays. Time delays in

the dynamics of a single population or of a more interacting species can arise from

a great variety of causes. One frequently considered mechanism which introduces

delays into the dynamics of population growth is that of age structure. Other delay

mechanisms which have been mentioned in the literature include the feeding time,

hunger coefficients in predator-prey interactions, replenishment or regeneration time
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for resources. Time delay due to gestation is also a common example as the consump-

tion of prey by the predator throughout its past history governs the present birth rate

of the predator. On various time scales, further causes for delays in population dy-

namics are food storage of predators, gatherers, reaction times, threshold levels, etc.

[54, 123]. Recently, delayed biological systems have received much attention from

biologists and mathematicians [37, 54, 67, 68, 78, 107, 123,132, 160, 168, 175, 176].

In this thesis, we will deal with predator-prey systems involving two species: Lotka-

Volterra models with impulses and ratio-dependent models with piecewise constant

argument of generalized type in Chapter 2 and a system of one species: the logistic

equation again with piecewise constant argument of generalized type in Chapter 3.

Below, we briefly describe these models in their most familiarforms. More informa-

tion will be provided in the forthcoming chapters where we incorporate discontinu-

ities such as impulses and piecewise constant arguments into the models.

1.4.1 A Single Species Model: Logistic Equation

It is well known that the logistic equation of population growth plays an important

role in the development of ecological thinking. The classical logistic equation was

introduced by Verhulst [163] to describe the population growth in a limited environ-

ment. This model is formalized by the differential equation

N′(t) = rN(t)(1− N(t)
K

),

whereN(t) represents the number of individuals at timet, r > 0 is the intrinsic growth

rate andK > 0 is the carrying capacity or the maximum number of individuals that the

environment can support. The logistic equation constitutes a significant part of mod-

els involving more than one interacting population as well,since it is often assumed

that the growth rate of one or more of the populations satisfythe logistic equation in

the absence of the other populations, see for example [133].

It is well recognized that delays occur in a variety of biological processes, especially

in single population models as mentioned above. It was pointed out by Hutchinson

[96] that the logistic equation would be inappropriate for the description of popu-

lation growth when there is a delay in some of the processes involved. Since then
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Hutchinson’s equation, known as the delayed logistic equation has been investigated

in many papers [54, 78, 107, 133] and the references therein.There also exist several

results obtained for the logistic equation with piecewise constant arguments [23, 115,

125, 132, 167].

1.4.2 Predator-Prey Models: Lotka-Volterra Systems

The study of predator-prey systems began with the independent work of Lotka (a

physical chemist) [120] and Volterra (a mathematician) [164] in 1920s. Volterra

(1926) proposed a simple model to describe the interaction of two species. Since

the same system of equations was also derived by Lotka (1920,1925) from a chem-

ical reaction, it is known as the Lotka-Volterra system. It is still one of the most

famous models of predator-prey interactions in an ecosystem. If we let N(t) andP(t)

denote, respectively, the prey population and the predatorpopulation present at time

t, then the Lotka-Volterra model is described by

N′ = aN− bNP,

P′ = −cP+ dNP,
(1.6)

wherea, b, c andd are positive constants that stand for the natural growth rate of

the prey in the absence of predators, the rate at which predators consume prey, the

natural death rate of the predator in the absence of prey and the rate at which predators

increase by consuming prey, respectively.

The classical models that study the interaction of two or more species are mostly

variations of the Lotka-Volterra system. Owing to its theoretical and practical signif-

icances, it is commonly used for modeling predator-prey type of interactions [78, 99,

107, 118]. In recent years, Lotka-Volterra model has also been used in physics, chem-

istry, economics and other fields [126, 133]. The analysis ofqualitative behaviours

including stability, periodic oscillation, chaos and bifurcation plays a key role in the

studies of this model.

In general, an equilibrium point is said to be acenterif there exists a neighborhood

of the equilibrium where all trajectories are cycles containing it. Besides, if we can

find a neighborhood of the equilibrium such that all trajectories starting in it spiral
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to this equilibrium ast → ∞ (t → −∞), we call such an equilibrium as a stable

(unstable)focus. It is well known that system (1.6) possesses two equilibria: the

origin (0,0) as saddle, and the positive equilibrium (c/d,a/b) as center, i.e., a unique

closed trajectory passes through any point in the first quadrant containing (c/d,a/b)

in it (see Figure 1.1). Hence, except the positive equilibrium and the coordinate axes,

all solutions of the classical Lotka-Volterra system are periodic.
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Figure 1.1: A family of closed orbits around the equilibrium(c/d,a/b) = (1,1) for
the Lotka-Volterra system (1.6) witha = b = c = d = 1.

A major inadequacy of the Lotka-Volterra model is that solutions are not structurally

stable as a small perturbation can have a very marked effect. Although the Lotka-

Volterra model is unrealistic, it suggests that predator-prey interactions can show a

periodic behaviour. In fact, this is not an unexpected phenomena. Because if a prey

population increases, it enables the growth of its predator. As the predator population

increases, they consume more prey and reduce the prey population. With less food

available for the predator, the predator population declines and when it is low enough,

this allows the prey population to increase and the whole cycle starts over and over

again.

Based on the construction of the Lotka-Volterra system (1.6), if a number of prey

equal toc/d and of predator equal toa/b are put into an empty lake, there will be
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no biological fluctuations. If initial numbers are close to those values, there will be a

small fluctuation represented by a small closed curve aroundthe point (c/d,a/b). To

produce large fluctuations in the numbers of both species, itis sufficient to begin the

experiment with a few members (see Figure 1.1). However, this is not in accordance

with the observations and it is improbable that a few membersplaced in a lake would

give rise to large fluctuations. On the contrary, it seems more probable that by putting

a certain number of each species into an empty lake, a state ofequilibrium should be

reached after a certain time [129]. As a consequence, we understand that having the

equilibrium point as center the Lotka-Volterra system is not realistic for biological

applications. Later, this fact has been developed by modeling more general systems

of differential equations [102] or by introducing impulses and delays into the system

[99, 107, 118, 132, 160, 176], which give results different from those of (1.6). For ex-

ample, under certain conditions, instead of a center, equilibrium point may be either

a stable focus or a stable node. Moreover, this point may be anunstable focus sur-

rounded by a stable limit cycle [168], which is a closed trajectory in the predator-prey

space and not a member of a continuous family of closed trajectories. Limit cycles

exhibit a persistent pattern of regular fluctuations. However, it is different from the

fluctuations in the Lotka-Volterra system, where the amplitude of oscillation depends

entirely on the initial conditions whereas the amplitude ofa limit cycle is fixed by

intrinsic parameters of the model such as birth rates, predation rates, etc.

One of the other unrealistic assumptions in the Lotka-Volterra model is that the

prey growth is unbounded in the absence of predation. After the intensive study

of predator-prey systems through the Lotka-Volterra model, various complications

have been included to understand the dynamical behaviour ofpredator-prey systems

better [106]. One complication is that the per capita growthrate of predators should

be a function of the ratio of prey to predator abundance as suggested by the ratio-

dependent theory.

1.4.3 Ratio-Dependent Predator-Prey Models

Standard Lotka-Volterra type models, on which a large body of existing predator-prey

theory is built, assume that the per capita rate of predationdepends only on the prey
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number. Recently, there are growing explicit biological andphysiological evidences

[3], [26]-[28] that in many situations, especially when predators have to search for

food and therefore have to share or compete for food, a more suitable and general

predator-prey theory should be based on the so-called ratio-dependent theory. More-

over, when the number of predators changes slowly relative to prey number, there is

often competition among the predators, and the per capita rate of predation thereby

depends on the numbers of both prey and predator, most likelyand simply on their

ratio. These hypotheses are strongly supported by numerouslaboratory experiments

and observations [26]-[28] and for mathematicians, ratio-dependent theory seems to

be more realistic and capable of producing richer, more reasonable and acceptable dy-

namics [28, 37, 106] than the usual predator-prey models based on the prey-dependent

theory.

Generally, a ratio-dependent predator-prey model takes the form

x′ = x(a− bx) − cxy
my+ x

,

y′ = −dy+
f xy

my+ x
,

(1.7)

wherex andy denote, respectively, the densities of the prey and the predator;a, c, d,

f andmare the prey intrinsic growth rate, capture rate, death rateof the predator, the

conversion rate and the half saturation constant, respectively, a/b gives the carrying

capacity of the prey in the absence of predation. Since the model (1.7) contains

several parameters, it requires a more complex analysis. Although the idea of ratio-

dependent functional response has been in the literature since 1937 [161], the number

of publications that study ratio-dependent models is not solarge. However, they have

received increasing attention in the last couple of decades[3, 26, 27, 65, 66, 74, 94,

106].

We see that system (1.7) describes populations whose members can respond immedi-

ately to any change in the environment. However, in real populations both prey and

predator require reaction time delays and they can be subject to short term perturba-

tions. Being aware of these facts, several studies have appeared that deal with delayed

as well as impulsive ratio-dependent predator-prey models[11, 37, 67, 68, 95, 160,

175, 176].
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1.5 Objective of the Thesis

In this thesis, we deal with differential equations with discontinuities and obtain sev-

eral results on the qualitative properties of these equations. Moreover, we attempt to

establish a bridge between mathematics-oriented and application-oriented research in

this field.

Models of population dynamics under certain conditions do not satisfy realities. Nat-

urally, more realistic and interesting models of populations should take the impulsive

effects, the seasonality of the changing environment and the effects of time delays into

account. In this context, differential equations with discontinuities play an important

role in the improvement of these models.

Ecological systems are often perturbed by human exploit activities such as plant-

ing and harvesting. Such processes are modeled by impulsivedifferential equations.

From this point of view, we consider the classical Lotka-Volterra system (1.6), which

has the positive equilibrium point as center and thus ecologically undesirable, with

variable time of impulses. These impulses have an artificialcharacter and they occur

when the state of species satisfies prescribed conditions. Due to impulse effects, it is

possible to obtain the positive equilibrium point as a stable or an unstable focus un-

der the conditions formulated through the parameters of themodel. Further, having

the positive equilibrium as focus enables us to discuss the bifurcation of periodical

processes. We assume that two different types of impulse effects, called ‘vertical’

jumps in this thesis, appear in the model, i.e., the number ofprey remains unchanged

whereas predator number decreases (vertical jump going down) or increases (vertical

jump going up) abruptly.

Moreover, the ratio-dependent type predator-prey model (1.7) is extended by using

generalized piecewise constant delays. Then the problems such as permanence and

long term coexistence (or persistence) of species, which are among the most impor-

tant and ubiquitous concepts in the predator-prey theory, are addressed.

The amount of publications which deal with the stability analysis of differential equa-

tions with piecewise constant argument is vast. However, they generally use the

method of reduction to discrete equations. Consequently, the analysis of solutions
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starting at moments which are not integers or their multiples has been unattainable.

Particularly, one can not investigate the problem of stability completely, as only in-

tegers or their multiples are allowed to be discussed for initial moments. One of the

principal goals of this thesis is to meet these challenges byemploying the Lyapunov-

Razumikhin method for differential equations with piecewise constant argument of

generalized type.

In the literature, there are numerous papers in which Lyapunov-Razumikhin method

has been successfully utilized on the stability analysis ofdelay differential equations,

functional differential equations, impulsive delay differential equations and impulsive

functional differential equations [44, 84, 121, 159, 166]. However, this method has

not been used on the stability investigation of differential equations with piecewise

constant argument, although they are close to delay differential equations. In this

thesis, Lyapunov’s second method coupled with the Razumikhin technique is devel-

oped for differential equations with piecewise constant argument of generalized type.

The application range of the results is illustrated by discussing a logistic equation

with piecewise constant delay, and including a comparison with the earlier results

obtained by Gopalsamy and Liu in [77].

Bifurcation theory is one of the most developing fields of modern mathematics. Bi-

furcations in ordinary differential equations are well understood [45, 79, 86, 89, 97,

111, 124, 172]. However, appearance of discontinuities in real processes motivates

to improve the qualitative level of investigation and construct a similar theory for

differential equations with discontinuities. Thus, bifurcations in non-smooth sys-

tems of Filippov type have recently attracted the attentionof many mathematicians

[31, 49, 69, 109, 112, 114, 116, 179, 180]. We address bifurcation of periodic so-

lutions, i.e., Hopf bifurcation, for 2-dimensional and 3-dimensional systems with

discontinuous right-hand sides and try to provide a theoretical basis which can be

useful for practical investigations in other fields of the science. First, we consider

a planar non-smooth system of differential equations with discontinuous right-hand

sides and obtain sufficient conditions for the existence of focus, center and Hopfbi-

furcation. There are several papers in which Hopf bifurcation is considered for pla-

nar non-smooth systems. However, most of these papers consider the systems with

discontinuities on a single straight line. We attempt to generalize the bifurcation
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problem by considering discontinuities on nonlinear sets which consist of arbitrarily

finite number of curves intersecting at a vertex. We realize this idea by using the

results of the papers [18, 19, 22] which concern different qualitative aspects of differ-

ential equations with discontinuous right-hand sides by means of theB-equivalence

method [2, 14, 18, 21, 22]. These results, especially the ones on smoothness of so-

lutions lead us to investigate bifurcation problems for non-smooth planar systems of

differential equations with discontinuous right-hand sides. It is the advantage of the

B-equivalence method that we can analyze systems with nonlinear sets of discontinu-

ities. Second, we study the behaviour of solutions for a 3-dimensional non-smooth

system with discontinuities on nonlinear cylindrical surfaces. We show that all solu-

tions that remain sufficiently close to the origin can be captured on a two dimensional

invariant center manifold. This reduction allows us to extend the Hopf bifurcation

theorem obtained for the planar system to the 3-dimensionalsystem. The approach

used in the proof of existence of the center manifold could beconsidered classical,

and consists of using the differential equation to express the invariance of the cen-

ter manifold under the dynamics to conclude that it must be the graph of a function

satisfying a certain fixed point problem.

1.6 Structure of the Thesis

This thesis contains an introductory part which provides elementary notions and a

background for the theory of differential equations with discontinuities, their qualita-

tive properties and applications, especially in population dynamics.

In Chapter 2, we investigate the dynamics of Lotka-Volterra predator-prey models

influenced by variable time of impulse effects and nonautonomus ratio-dependent

systems with piecewise constant argument of generalized type. For the impulsive

Lotka-Volterra models, existence of focus and center is proved both in the noncritical

and critical cases. Bifurcation of periodic solutions is considered in the critical case.

As for the ratio-dependent systems, after constructing equivalent integral equations,

problems such as positive invariance, permanence and non-persistence are addressed.
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Chapter 3 presents the stability analysis for differential equations with piecewise con-

stant argument of generalized type. Some preliminary definitions and basic prob-

lems are discussed for the issue system. Based on the Lyapunov’s second method,

Razumikhin-type theorems are presented on stability, uniform stability and uniform

asymptotic stability. Appropriate examples, one of which contains the logistic equa-

tion, are worked out to illustrate the applicability of the results. The stability analysis

performed for the logistic equation is compared with the previous ones.

Chapter 4 deals with bifurcations of periodic solutions for 2-dimensional and 3-

dimensional non-smooth systems. The notion ofB-equivalent impulsive systems

is explained. For these systems, problems such as existenceof focus and center in

the noncritical case, distinguishing between the center and the focus in the critical

case and Hopf bifurcation are solved. The center manifold theory is given for the 3-

dimensional system. Appropriate examples together with numerical simulations are

presented to illustrate the findings.

Finally, in Chapter 5 a short overview and the contributions of the thesis are presented.

Some concluding remarks are also given in this chapter.
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CHAPTER 2

ANALYSIS OF PREDATOR-PREY MODELS WITH

DISCONTINUITIES

2.1 Dynamics of Lotka-Volterra Predator-Prey Models Effected by Impulses

The Lotka-Volterra system describes the interaction of twospecies in an ecosystem,

a prey and a predator. Since there are two species, this system involves two equations

x′ = ax− bxy,

y′ = −cy+ dxy,
(2.1)

wherex andy denote, respectively, the prey and predator population densities;a (the

growth rate of prey),b (the rate at which predators consume prey),c (the death rate of

predator) andd (the rate at which predators increase by consuming prey) arepositive

constants. The assumptions in the model (2.1) are as follows.

(i) The prey in the absence of any predation grows unboundedly, which is de-

scribed by the termax.

(ii) The effect of the predation is to reduce the prey’s per capita growthrate by a

term proportional to the prey and predator populations, this is the−bxyterm.

(iii) In the absence of any prey, for sustenance the death rate of predator results in

exponential decay, this is given by the−cy term.

(iv) Contribution of the prey to the growth rate of predators is proportional to the

available prey as well as to the size of the predator population, this is thedxy

term.
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The xy term can be thought of as representing the conversion of energy from one

source to another:bxy is taken from the prey anddxy is given to the predators. We

know that system (2.1) has only one positive equilibrium (c/d,a/b) as center. How-

ever, having the equilibrium as center, the system is considered to be ecologically

undesirable. In other words, the hypotheses of the model (2.1) do not seem to be in

accordance with the observations [129].

The Lotka-Volterra population growth model (2.1) does not assume human activities

at all. We aim to introduce human intervention by impulsive perturbation. In general,

the appearence of such discontinuities can be explained by the fact that development

of a biological system may have sudden changes. It is naturalthat the obtained sys-

tems can be written in the form of impulsive differential equations [113, 152]. In this

section, our idea is to perturb system (2.1) by impulses at variable moments of time.

These impulses, in particular, may include man-made controls which are introduced

when the state of species satisfies certain criteria. That is, we consider introducing

or removing some members as impulsive control. The approachof impulsive control

was also proposed by Liu in [117, 118] and in the paper [11]. However, the research

on the Lotka-Volterra system with impulses is not too much yet.

We mainly use the results which were obtained in [2, 14]. One can verify that our

sytems satisfy the properties of discontinuous dynamical systems described in [2],

that is, existence and uniqueness, continuation of solutions onR, the group property,

continuous dependence of solutions on initial value and differentiability of solutions

in initial value.

In Section 2.1.1, we formulate two problems: ProblemD and ProblemU. In the next

section, we investigate these problems. Lastly, the Hopf bifurcation for two systems

which are associated with ProblemsD andU is considered in Section 2.1.3.

2.1.1 Formulation of the Problems

In order to be more convenient, we first translate the equilibrium (c/d,a/b) to the

origin by the linear transformation
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This transformation takes system (2.1) into the following form

x′1 = −
√

ac x2 −
2d
√

ac
c

x1x2,

x′2 =
√

ac x1 + 2dx1x2.

(2.2)

We have new variablesx1 andx2 possibly with negative values. But, the positiveness

of the issue variablesx andy are certainly saved in a neighborhood of the equilib-

rium (c/d,a/b). Clearly, systems (2.1) and (2.2) are qualitatively equivalent. Since

(c/d,a/b) is a center of (2.1), the origin is a center of (2.2).

In what follows, we will consider how an impulsive perturbation may change the be-

haviour of the system (2.2) around the origin. We introduce impulses into the system

(2.2) with a careful assumption that they are considered as impulsive control and we

are sure that a more adequate explanation of discontinuous population dynamics is

a deal of future as well as a closer collaboration of mathematicians and biologists.

For that reason, we simply consider the impulsive control asthe ability to instantly

introduce or remove some members from the environment. It isacceptable and eas-

ily realizable as an ecological project. From this point of view, we formulate two

problems to investigate: ProblemD and ProblemU.

2.1.1.1 ProblemD: Downsizing the Predator Population as Impulsive Control

Our objective is to bioregulate the Lotka-Volterra system by impulsive perturbation.

Ecologically, it seems reasonable to control only the predator density. On the basis of

that idea, we consider the impulsive action by means of removing some members of

predators from the system. In other words, we downsize the predator population as

an impulsive control. For example, if we have fish as predator(and Daphnia as prey)
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in a lake, the decrease in its density can be expressed by harvesting for commercial

fishery. This type of dynamics can be modeled as follows

x′1 = −
√

acx2 −
2d
√

ac
c

x1x2,

x′2 =
√

acx1 + 2dx1x2, (x1, x2) < Γ1,

∆x1|(x1,x2)∈Γ1 = 0,

∆x2|(x1,x2)∈Γ1 = κx2,

(2.3)

whereκ < 0 andΓ1 is a half-straight line in the second quadrant defined by the

equationx2 = −
√

3x1 for x1 < 0. When the solution meets the setΓ1 at the timet1,

there exists a vertical jump,∆x2|t1 = κx2(t1) = x2(t1+) − x2(t1) goingdown. That is

why, we propose to call determining the behaviour of solutions of system (2.3) around

the origin as ProblemD.

Additionally, in Section 2.1.3 we will introduce a system with a small parameter

µ associated with (2.3) and the problem of Hopf bifurcation for that sytem will be

considered as ProblemDH.

Remark 2.1.1 Writing (2.3) in x, y coordinates, we obtain the following system

x′ = ax− bxy,

y′ = −cy+ dxy, (x, y) < Γ̃1,

∆x|(x,y)∈Γ̃1
= 0,

∆y|(x,y)∈Γ̃1
= κ(y− a/b),

whereΓ̃1 is a half-line defined by the equation y− a/b = −d
√

3ac
bc

(x − c/d ) with

x < c/d. We note that the corresponding impulsive control is only applied to the

predator density in x, y coordinates as well.

2.1.1.2 ProblemU: Upsizing the Predator Population as Impulsive Control

Similar to the ProblemD, we can formulate ProblemU for the system

x′1 = −
√

acx2 −
2d
√

ac
c

x1x2,

x′2 =
√

acx1 + 2dx1x2, (x1, x2) < Γ2,

∆x1|(x1,x2)∈Γ2 = 0,

∆x2|(x1,x2)∈Γ2 = κx2,

(2.4)
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whereκ < 0 andΓ2 is a straight line which is placed in the fourth quadrant and de-

scribed byx2 = −
√

3x1, x1 > 0. In this sytem, we control the predator density by

introducing new members into the environment and thus we have a vertical jump go-

ing up. In other words, we consider upsizing the predator population as an impulsive

control. For the Hopf bifurcation, we shall define ProblemUH in a manner similar to

the ProblemDH, which will be presented later in the subsequent sections.

Remark 2.1.2 Since we aim to construct a method for investigation of impulsive con-

trol in the Lotka-Volterra model, we choose particular setsΓ1 andΓ2 in the systems

(2.3) and (2.4), respectively. Indeed, these systems can begeneralized by takingΓ1

andΓ2 as unions of arbitrary finite curves emanating from the origin as well as con-

sidering impulsive parts in a larger class [14], and by all means they can be analyzed

using a similar approach that will be constructed below.

2.1.2 Existence of Foci and Centers

2.1.2.1 Investigation of ProblemD

System (2.3) experiences discontinuities when (x1, x2) ∈ Γ1. Applying the polar trans-

formationx1 = r cosφ, x2 = r sinφ, time variablet is excluded and impulse effects

appear when the angle variableφ is equal to
2π
3
+2πn, n ∈ Z. In this thesis, every an-

gle for a point is considered with respect to the positive half-line of the first coordinate

axis.

We can rewrite (2.3) in polar coordinates (r, φ) in the following form

dr
dφ
= P(r, φ), φ ,

2π
3

(mod 2π),

∆r |φ= 2π
3 (mod 2π) = λr.

(2.5)

Here the independent variableφ is ranged over the set

∞
⋃

i=−∞
(2πi +

2π
3
+ θ,2π(i + 1)+

2π
3

],

whereθ = tan−1(
−
√

3κ
4+ 3κ

). The functionP(r, φ) and the constantλ are given by
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P(r, φ) =

r2(−2d
c

cosφ +
2d
√

ac
sinφ) cosφ sinφ

1+ r(
2d
√

ac
cosφ +

2d
c

sinφ) cosφ sinφ
, λ =

1
2

√

1+ 3(1+ κ)2 − 1.

Clearly,P is a 2π−periodic function inφ andP = o(r).

Since (2.5) is a 2π−periodic system, it is enough to consider it only for the interval

φ ∈ [0,2π]. That is, the system

dr
dφ
= P(r, φ), φ ,

2π
3
,

∆r |φ= 2π
3
= λr,

(2.6)

whereφ ∈ [0,2π] \ (
2π
3
,
2π
3
+ θ], is provided for investigation.

Indeed, system (2.6) is a “time-scale” differential equation. In order to obtain an

impulsive differential equation, we shall use theψ−substitution method which was

introduced in [14]. Theψ−substitution, on the setφ ∈ [0,2π] \ (
2π
3
,
2π
3
+ θ], is

defined by

ψ =























φ, if 0 ≤ φ ≤ 2π
3
,

φ − θ, if
2π
3
+ θ < φ ≤ 2π.

After the substitution, (2.6) reduces to the following impulsive system

dr
dψ
= P(r, ψ), ψ ,

2π
3
,

∆r |ψ= 2π
3
= λr,

(2.7)

whereψ ∈ [0,2π − θ]. If we solve (2.7) as an impulsive system [113, 152] and

use the backwardψ−substitution, we can see that the solutionr(φ, r0) of (2.6) with

r(0, r0) = r0 is of the form

r(φ, r0) =



































r0 +

∫ φ

0
Pds, if 0 ≤ φ ≤ 2π

3
,

(1+ λ)















r0 +

∫ 2π
3

0
Pds















+

∫ φ

2π
3 +θ

Pds, if
2π
3
+ θ < φ ≤ 2π,

whereP = P(r(s, r0), s). We can now construct the Poincaré return mapr(2π, r0) on

the positive half side of thex1−axis as follows

r(2π, r0) = (1+ λ)r0 + (1+ λ)
∫ 2π

3

0
Pdu+

∫ 2π

2π
3 +θ

Pdu.
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The last equation implies that the origin of (2.6) is a stablefocus ifλ < 0 and it is an

unstable focus ifλ > 0. As for (2.3), we reach the following conclusion regardingthe

noncritical case.

T 2.1.1 If

(i) −2 < κ < 0, then the origin is a stable focus;

(ii) κ < −2, then the origin is an unstable focus of system (2.3).
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Figure 2.1: A solution of (2.3) with initial condition (0.1,0), a = b = c = d = 0.5 and
κ = −1.25.

If we take, for example,κ = −1.25, we see from the Figure 2.1 that the origin is

a stable focus of (2.3) as stated in the last theorem. Forκ = −2.25, it becomes an

unstable focus as shown in the Figure 2.2.

However, ifλ = 0, equivalently ifκ = −2, we have the critical case in which the origin

is either a focus or a center. In what follows, we solve this problem of distinguishing

between the focus and the center.

We can easily see that the angleθ is equal to
2π
3

whenκ = −2. Results of the paper

[22] imply, for sufficiently smallr0, that solutionr(φ, r0) of (2.6), r(0, r0) = r0, has
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Figure 2.2: A solution of (2.3) with initial condition (0.1,0), a = b = c = d = 0.5 and
κ = −2.25.

the expansion

r(φ, r0) =
∞
∑

j=0

r j(φ)r j
0,

with φ ∈ [0,2π]\(2π
3
,
4π
3

], r0(φ) = 0, andr1(φ) = 1. Then, we can define the Poincaré

return map

r(2π, r0) =
∞
∑

j=1

ajr
j
0,

whereaj = r j(2π) anda1 = 1. The functionP can also be expanded in a series

P(r, φ) =
∞
∑

j=2

Pj(φ)r j , (2.8)

for sufficiently smallr. The functionsPj(φ) in the expansion (2.8) can be found using

the definition of the functionP. For example, the first two of them are given by

P2(φ) = (−2d
c

cosφ +
2d
√

ac
sinφ) cosφ sinφ,

P3(φ) = (
cos2 φ − sin2 φ

c
√

ac
+

cosφ sinφ
c2

− cosφ sinφ
ac

)4d2 cos2 φ sin2 φ,

and the functionsP j(φ), j = 4,5, . . ., can be evaluated in a similar manner.

31



From the differential part of (2.6) and the expansion (2.8), one can find that

dr j(φ)

dφ
= P̃j(φ), j ≥ 2,

where P̃2(φ) = P2(φ), P̃3(φ) = 2P2(φ)r2(φ) + P3(φ) and we can definẽPj(φ) for

j = 4,5, . . . similarly.

Since we consider the critical caseκ = −2, which implies thatλ = 0 in the second

equation of (2.6), we haver j(4π
3 ) − r j(2π

3 ) = 0 for all j = 2,3, . . .. Hence, the coeffi-

cientsr j(φ), j = 2,3, . . . with φ ∈ [0,2π] \ (
2π
3
,
4π
3

], r j(0) = 0, are solutions of the

system

dr
dφ
= P̃j(φ), φ ,

2π
3
,

∆r |φ= 2π
3
= 0.

As aj = r j(2π), we can now evaluateaj in the expansion ofr(2π, r0) :

aj =

∫ 2π
3

0
P̃j(φ)dφ +

∫ 2π

4π
3

P̃j(φ)dφ

for j = 2,3, . . ..

For the critical case, the sign of the first nonzero element ofthe sequenceaj, j =

2,3, . . ., determines what type of an equilibrium point the origin is.The origin is a

stable (unstable) focus if the first nonzero element is negative (positive). If allaj = 0,

j = 2,3, . . ., then the origin is a center [14]. That is why, in order to distinguish

between the center and the focus we first need the value ofa2:

a2 =

∫ 2π
3

0
P2(φ)dφ +

∫ 2π

4π
3

P2(φ)dφ =
d
√

3

2
√

ac
.

Sincea2 is positive, the following theorem holds.

T 2.1.2 If κ = −2 then the origin of system (2.6) is an unstable focus, which

implies in turn that the origin is an unstable focus for (2.3).

A simulation result for the critical caseκ = −2 can be seen in the Figure 2.3, which

shows that the origin is an unstable focus of (2.3).
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Figure 2.3: A solution of (2.3) with initial condition (0.1,0), a = b = c = d = 0.5 and
κ = −2.

2.1.2.2 Investigation of ProblemU

Introducing polar coordinates as well as taking the 2π−periodicity into account, sys-

tem (2.4) can be written in the following form

dr
dφ
= P(r, φ), φ ,

5π
3
,

∆r |φ= 5π
3
= λr,

(2.9)

for φ ∈ [π,3π] \ (
5π
3
,
5π
3
+ θ], whereP(r, φ), λ andθ are the same as described in the

investigation of ProblemD. For a solutionr(φ, r0), r(π, r0) = r0 of (2.9), the Poincaré

return map defined on the negative half side of thex1−axis is

r(3π, r0) = (1+ λ)r0 + (1+ λ)
∫ 5π

3

π

Pdu+
∫ 3π

5π
3 +θ

Pdu.

Clearly, the noncritical case, that is,λ < 0 or λ > 0, can be treated similarly as dis-

cussed for ProblemD. We shall consider the critical caseλ = 0 in the way described

hereinabove. We know that the following expansion

r(φ, r0) =
∞
∑

j=0

r j(φ)r j
0,
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exists withφ ∈ [π,3π] \ (
5π
3
,
7π
3

], r0(φ) = 0, andr1(φ) = 1. Then, we can define the

Poincaŕe return map:

r(3π, r0) =
∞
∑

j=1

kjr
j
0,

wherekj = r j(3π) andk1 = 1. Evaluating the elementk2, we obtain

k2 =

∫ 5π
3

π

P2(φ)dφ +
∫ 3π

7π
3

P2(φ)dφ = − d
√

3

2
√

ac
< 0.

It is seen that the critical case of ProblemU leads to a different result with regard

to the corresponding case of ProblemD. Combining the results obtained both in the

noncritical and critical cases, following assertion can beformulated.

T 2.1.3 If

(i) −2 ≤ κ < 0, then the origin is a stable focus;

(ii) κ < −2, then the origin is an unstable focus of system (2.4).

We can see from the figures below that the origin is a stable (unstable) focus of (2.4)

for κ = −1.25 (κ = −2.25). In the critical caseκ = −2, the origin is a stable focus (see

Figure 2.6).

2.1.3 Bifurcation of Periodic Solutions

It is always the case with realistic biological models that they involve parameters,

generally denoted byµ. In order to study existence of limit cycle solutions in such

models, Hopf bifurcation theory plays a crucial role. To putthe theory geometrically,

we can say that if an equilibrium solution changes its stability as a pair of com-

plex conjugate eigenvalues of the linearization around theequilibrium point cross the

imaginary axis of the complex plane at a bifurcation point, then at least one small am-

plitude limit cycle exists about the equilibrium solution and in a small neighborhood

of the bifurcation point.
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Figure 2.4: A solution of (2.4) with initial condition (−0.1,0), a = b = c = d = 0.5
andκ = −1.25.
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Figure 2.5: A solution of (2.4) with initial condition (−0.1,0), a = b = c = d = 0.5
andκ = −2.25.
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Figure 2.6: A solution of (2.4) with initial condition (−0.1,0), a = b = c = d = 0.5
andκ = −2.

Since the origin is a center, and not a focus, it is not possible to apply Hopf bifurcation

theory for system (2.2) which is the transformed Lotka-Volterra population growth

model in x1 , x2 coordinates. Nevertheless, one can obtain the origin as a stable or

an unstable focus through impulsive control so that it becomes possible to investigate

the problem of Hopf bifurcation, i.e., bifurcation of periodic solutions, for the Lotka-

Volterra system.

2.1.3.1 ProblemDH: Hopf Bifurcation Related to Problem D

We introduce the following discontinuous dynamical system

x′1 = µx1 −
√

acx2 −
2d
√

ac
c

x1x2,

x′2 =
√

acx1 + µx2 + 2dx1x2, (x1, x2) < Γ1(µ),

∆x1|(x1,x2)∈Γ1(µ) = 0,

∆x2|(x1,x2)∈Γ1(µ) = (κ + µ)x2,

(2.10)

whereΓ1(µ) is determined by the equationx2 = −
√

3x1 + µx1 for x1 < 0. Let γ(µ)

denote the angle of the points lying onΓ1(µ). In (2.10),µ appears to be an internal

control parameter of the populations. Whenµ = 0, (2.10) reduces to the system (2.3)
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described in Section 2.1.2. That is why, we say that system (2.10) is associated with

(2.3).

Using polar coordinates and keeping the 2π−periodicity in mind, (2.10) can be written

as follows

dr
dφ
=

µ
√

ac
r + P(r, φ, µ), φ , γ(µ),

∆r |φ=γ(µ) = λ(µ)r,
(2.11)

for φ ∈ [0,2π] \ (γ(µ), γ(µ) + θ(µ)], where

θ(µ) = tan−1













(−
√

3+ µ)(κ + µ)

1+ (1+ κ + µ)(−
√

3+ µ)2













,

P(r, φ, µ) =

r2

(

−2d
c

(1+
µ

a
) cosφ +

2d
√

ac
(1− µ

c
) sinφ

)

cosφ sinφ

1+ r(
2d
√

ac
cosφ +

2d
c

sinφ) cosφ sinφ
,

and

λ(µ) =

√

1+ (1+ κ + µ)2(−
√

3+ µ)2

1+ (−
√

3+ µ)2
− 1.

Let r(φ, r0, µ), r(0, r0, µ) = r0, be the solution of (2.11). On the interval [0, γ(µ)], we

have

r(φ, r0, µ) = exp(
µ
√

ac
φ)r0 +

∫ φ

0
exp(

µ
√

ac
(φ − s))Pds.

Next, the solutionr(φ, r0, µ) of (2.11) on (γ(µ) + θ(µ),2π] is given by

r(φ, r0, µ) = (1+ λ(µ)) exp(
µ
√

ac
(φ − θ(µ)))r0

+ (1+ λ(µ))
∫ γ(µ)

0
exp(

µ
√

ac
(φ − θ(µ) − s))Pds

+

∫ φ

γ(µ)+θ(µ)
exp(

µ
√

ac
(φ − s))Pds,

whereP = P(r(s, r0, µ), s, µ). We can evaluate the Poincaré mapr(2π, r0, µ) by means

of the last equation. Letq(µ) denote the coefficient ofr0 in r(2π, r0, µ). Then, we have

r(2π, r0, µ) = q(µ)r0 + o(r0),
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where

q(µ) = (1+ λ(µ)) exp(
µ
√

ac
(2π − θ(µ))).

Results from [14] imply that conditionsq(0) = 1 andq′(0) , 0 are sufficient for

the existence of periodical processes in system (2.11). It can be evaluated easily that

whenκ = −2, q(0) = 1 andq′(0) = −3
4
+

4π

3
√

ac
.

Applying the technique which is used in the paper [14], we canstate the following

theorem, which will be proven in Chapter 4 (see Theorem 4.1.4)for a more general

case.

T 2.1.4 If κ = −2 and
√

ac,
16π
9

then for sufficiently small r0, there exists a

functionµ = δ(r0), δ(0) = 0, such that the solution r(φ, r0, δ(r0)) of (2.11) is periodic

with period2π. Moreover, the closed trajectory is an unstable limit cycle. The period

of the corresponding periodic solution of (2.10) is T=
4π

3
√

ac
+ o(|µ|).

Simulated for two different initial values, it can be seen from Figure 2.7 that system

(2.10) admits an unstable periodic solution.
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Figure 2.7: The simulation result showing the existence of an unstable closed trajec-
tory of (2.10) witha = b = c = d = 0.5, µ = −0.03 andκ = −2.
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2.1.3.2 ProblemUH: Hopf Bifurcation Related to Problem U

We consider the system

x′1 = µx1 −
√

acx2 −
2d
√

ac
c

x1x2,

x′2 =
√

acx1 + µx2 + 2dx1x2, (x1, x2) < Γ2(µ),

∆x1|(x1,x2)∈Γ2(µ) = 0,

∆x2|(x1,x2)∈Γ2(µ) = (κ + µ)x2,

(2.12)

whereΓ2(µ) is a curve given byx2 = −
√

3x1 + µx1 with x1 > 0. We denote the angle

of the points onΓ2(µ) by ξ(µ). Clearly, system (2.12) is associated with (2.4). In polar

coordinates, this system can be written as

dr
dφ
=

µ
√

ac
r + P(r, φ, µ), φ , ξ(µ),

∆r |φ=ξ(µ) = λ(µ)r,
(2.13)

for φ ∈ [π,3π] \ (ξ(µ), ξ(µ) + θ(µ)], whereP(r, φ, µ), λ(µ) andθ(µ) are the same as

defined above. Using the similar discussions made in ProblemDH, we can conclude

the following result.

T 2.1.5 If κ = −2 and
√

ac,
16π
9

then for sufficiently small r0, there exists a

functionµ = δ(r0), δ(0) = 0, such that the solution r(φ, r0, δ(r0)) of (2.13) is periodic

with 2π. Moreover, the closed trajectory is a stable limit cycle. The period of the

corresponding periodic solution of (2.12) is T=
4π

3
√

ac
+ o(|µ|).

We can see from Figure 2.8 that system (2.12) admits a stable limit cycle. That is, two

different solutions of the system approach a periodic orbit frominside and outside.

2.1.4 Conclusion

Under the assumption that the coefficientsa,b, c,d of the Lotka-Volterra system are

positive, we may conclude that the complex behaviour of solutions depends on the

values of the coefficientκ which appears in the impulsive part of systems (2.3), (2.4),

(2.10) and (2.12). That is, the problem of controllability of the Lotka-Volterra system

by the proposed impulsive control is constructive.
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Figure 2.8: The simulation result showing the existence of astable closed trajectory
of (2.12) witha = b = c = d = 0.5, µ = 0.03 andκ = −2.

2.2 Dynamics of Ratio-Dependent Predator-Prey Systems with

Piecewise Constant Argument of Generalized Type

Predator-prey systems with functional response have received great attention in recent

years. Problems which appear in the analysis of such systemsare quite complicated

and challenging due to their complex dynamics. Predator-prey models with prey-

dependent functional response of the formp(x) =
x

m+ x
, wherem > 0 is the half

saturation constant, have been well studied (see, e.g., Freedman [75] and the refer-

ences cited therein). The traditional prey-dependent model is described by the system

x′ = x(a− bx) − cy
x

m+ x
,

y′ = y(−d + f
x

m+ x
),

(2.14)

where a prey populationx serves as food for a predator populationy. The model para-

metersa, b, c, d, f andm are assumed to be positive and they denote the growth rate

of prey, strength of competition among individuals of prey species, capturing rate,

death rate of the predator, conversion rate and the half saturation constant, respec-

tively. Here,a/b is the carrying capacity of the prey population which has a logistic

growth rate in the absence of predation.
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On the other hand, it was recently argued by many biologists that a more suitable

functional response should depend on the ratio of prey to predator abundance, partic-

ularly when predators have to search for food and hence, haveto share or compete for

food. Empirical evidence from field and experimental studies also shows that most

natural systems are closer to ratio dependence than to prey dependence [3], [26]-[28].

In this light, Arditi and Ginzburg [28], proposed a ratio-dependent response function

of the formp(x/y) =
x/y

m+ x/y
=

x
my+ x

and the following ratio-dependent predator-

prey model

x′ = x(a− bx) − cy
x

my+ x
,

y′ = y(−d + f
x

my+ x
).

(2.15)

Analyses of such ratio-dependent models show that they produce richer and more

admissible dynamics [74, 94, 106]. Most of these analyses assume the model para-

meters as constant. Ratio-dependent models have not been well studied yet in the

sense that most results are for models with constant environment. This means that

the models have been assumed to be autonomous where all biological or environmen-

tal parameters are constant in time. However, this is rarelythe case in real life as

many biological and environmental parameters do vary in time. For example, these

parameters can be variable due to seasonal fluctuations. Whenthis is taken into ac-

count, a model must be nonautonomous, which is, of course, more difficult to analyze

in general. Fan et al. [65] incorporate the varying propertyof the parameters into

the model and carry out systematic studies on the global dynamics of the following

ratio-dependent model, i.e., the nonautonomous version of(2.15)

x′ = x(a(t) − b(t)x) − c(t)xy
m(t)y+ x

,

y′ = y(−d(t) +
f (t)x

m(t)y+ x
),

(2.16)

where variable parametersa(t),b(t), c(t),d(t), f (t) andm(t) have the same biological

significances as described for system (2.14). Additionally, Fan and Wang [66] pro-

posed a discrete analogue of (2.16) by reducing the following system of differential

equations with piecewise constant argument
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1
x1(t)

dx1(t)
dt
= a([t]) − b([t])x1([t]) −

c([t])x2([t])
m([t])x2([t]) + x1([t])

,

1
x2(t)

dx2(t)
dt
= −d([t]) +

f ([t])x1([t])
m([t])x2([t]) + x1([t])

, t , 0,1,2, . . . ,
(2.17)

to discrete equations. Here, [t] denotes the maximal integer not greater thant.

The theory of differential equations with piecewise constant arguments was initiated

by Cooke and Wiener [52] and Shah and Wiener [156]. It is well recognized that

these equations are closely related to delay differential equations [78, 80] and that

predator-prey systems with time delays are more realistic and more relevant in ecol-

ogy. Regarding this approach, dynamics of populations modeled by differential equa-

tions with piecewise constant arguments have been studied quite extensively. Exam-

ples of the application of these equations to the problems ofbiology can be found in

[12, 23, 41, 78, 115, 125, 131, 132].

2.2.1 Descripton of the Models

The principal aim of this section is to incorporate piecewise constant (delayed) ar-

gument of generalized type [5, 8] into model (2.16). The existing method of inves-

tigation of differential equations with piecewise constant arguments is based on the

reduction to discrete equations. For example, in (2.17), the piecewise constant argu-

ment appears in all arguments on the right-hand side, allowing the reduction of this

system to discrete equations. However, we discuss the case when not all arguments

on the right-hand side are piecewise constant argument of generalized type and for

the equations that we shall propose below, it is not possibleto make the reduction to

discrete equations. That is why, our approach is interesting and valuable. We replace

different types of delayed arguments, which are introduced previously in some ratio-

dependent predator-prey models [37, 67, 68, 95, 160, 175, 176], by piecewise constant

argument of generalized type. First, following the logic of[67, 68, 95], we incorpo-

rate the piecewise constant argument of generalized type into the prey growth rate

response to resources limitations as well as into the positive feedback in the average

growth rate of the predator due, for example, to gestation ordigestion. Second, the ef-

fect of introducing a piecewise constant delay into the predator’s reaction to changes
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in the prey population will be considered. Hence, the piecewise constant argument of

generalized type will appear only in the predator equation [37, 160, 175, 176], which

requires more easily verifiable conditions. These ideas lead us, in turn, to consider

two models of the form

x′ = x (a(t) − b(t)x(β(t))) − c(t)xy
m(t)y+ x

,

y′ = y

(

−d(t) +
f (t)x(β(t))

m(t)y(β(t)) + x(β(t))

)

,
(2.18)

and

x′ = x (a(t) − b(t)x) − c(t)xy
m(t)y+ x

,

y′ = y

(

−d(t) +
f (t)x(β(t))

m(t)y(β(t)) + x(β(t))

)

,
(2.19)

wheret ∈ R, β(t) = θi if θi ≤ t < θi+1, i ∈ Z, is an identification function,{θi}, i ∈ Z,

is a strictly ordered sequence of real numbers,|θi | → ∞ as |i| → ∞. In the models

(2.18) and (2.19), both the fundamental information in memory and predecisions of

the present time drive the state.

In the present section, we shall obtain analogue of the results such as positive in-

variance, permanence and other related properties discussed in [65]. The proofs are

adapted to our case, taking the deviation of piecewise constant argument of general-

ized type into account.

Clearly, the greatest integer function [t] is a particular case of the identification func-

tion β(t). Indeed, if we takeθi = i, i ∈ Z, then we obtainβ(t) = [t]. Therefore, systems

(2.18) and (2.19) belong to the class of differential equations with piecewise constant

argument of generalized type [8].

In the rest of this section, following assumptions will be needed.

(B1) The model parametersa(t), b(t), c(t), d(t), f (t) and m(t) are continuous and

bounded from below and above by positive constants.

(B2) There exist a positive numberθ such thatθi+1 − θi ≤ θ, i ∈ Z.

Meanwhile, for convenience, we adopt the notations below throughout this section.

(N1) Fu
= sup

t∈R
F(t) andF l

= inf
t∈R

F(t) for a continuous bounded functionF(t) onR;
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(N2) xi = x(θi), yi = y(θi), i ∈ Z;

(N3) φ(t, x, y, z) = a(t) − b(t)z− c(t)y
m(t)y+ x

,

ψ(t, x, y) = −d(t) +
f (t)x

m(t)y+ x
,

ϕ(t, x, y) = a(t) − b(t)x− c(t)y
m(t)y+ x

.

Using the functionsφ, ψ andϕ introduced in (N3), systems (2.18) and (2.19) can be

represented simply as

x′(t) = x(t)φ(t, x(t), y(t), x(β(t))),

y′(t) = y(t)ψ(t, x(β(t)), y(β(t))),

and

x′(t) = x(t)ϕ(t, x(t), y(t)),

y′(t) = y(t)ψ(t, x(β(t)), y(β(t))),

respectively.

In Section 2.2.2, equivalent integral equations are constructed for the issue systems.

Section 2.2.3 addresses properties such as positive invariance, permanence and per-

sistence for systems (2.18) and (2.19).

2.2.2 Construction of the Equivalent Integral Equations

We shall use the following definition, which is similar to theone in [141] and modified

for our general case as in [5, 8]. For the sake of simplicity, we consider solutions

starting at the momentθ0, which is the element of the sequence{θi}, i ∈ Z. But, it

does not reduce the generality of our results since they could be considered similarly

for an arbitrary initial moment [5].

D 2.2.1 A pair of functions(x(t), y(t)) is a solution of (2.18) on[θ0,∞) if it

satisfies the following conditions:

(i) the functions x(t) and y(t) are continuous on[θ0,∞);

(ii) the derivatives x′(t) and y′(t) exist for t∈ [θ0,∞) with the possible exception of

the pointsθi, i ≥ 0, where one-sided derivatives exist;
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(iii) (x(t), y(t)) satisfies (2.18) on each interval[θi , θi+1), i ≥ 0.

Since the first equation of (2.19) is an ordinary differential equation, it is convenient

to write the following definition.

D 2.2.2 A pair of functions(x(t), y(t)) is a solution of (2.19) on[θ0,∞) if it

satisfies the conditions:

(i) the functions x(t) and y(t) are continuous on[θ0,∞);

(ii) the derivative x′(t) exists for all t∈ [θ0,∞) whereas y′(t) exists for t∈ [θ0,∞)

with the possible exception of the pointsθi, i ≥ 0, where one-sided derivatives

exist;

(iii) x (t) satisfies the first equation in (2.19) for all t∈ [θ0,∞) whereas y(t) satisfies

the second equation in (2.19) on each interval[θi , θi+1), i ≥ 0.

In what follows, dealing with predator-prey models (2.18) and (2.19), we shall just

consider solutions (x(t), y(t)) with x(θ0) = x0 > 0, y(θ0) = y0 > 0. Moreover, it is

supposed that for any given (x0, y0), both (2.18) and (2.19) have unique solutions in

the sense of Definitions 2.2.1 and 2.2.2, respectively. We shall discuss the existence

and uniqueness theorem for differential equations with piecewise constant argument

of generalized type in Chapter 3 (see Lemma 3.1.2 and Theorem 3.1.1).

L 2.2.1 Suppose (B1) is satisfied. System (2.18) with x(θ0) = x0, y(θ0) = y0 is

equivalent to the following system of integral equations

x(t) = x0 exp

(∫ t

θ0

φ(s, x(s), y(s), x(β(s)))ds

)

,

y(t) = y0 exp

(∫ t

θ0

ψ(s, x(β(s)), y(β(s)))ds

)

.

(2.20)

Proof: Necessity. Let (x(t), y(t)) be the solution of (2.18) withx(θ0) = x0, y(θ0) = y0.

From the condition (iii ) of Definition 2.2.1, we know that this solution satisfies (2.18)

on each interval [θi , θi+1), i ≥ 0. Hence, fort ∈ [θ0, θ1), we have

x(t) = x0 exp

(∫ t

θ0

φ(s, x(s), y(s), x(β(s)))ds

)

,

y(t) = y0 exp

(∫ t

θ0

ψ(s, x(β(s)), y(β(s)))ds

)

.
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Letting t → θ1, it follows from the condition (i) of Definition 2.2.1 that

x1 = x0 exp

(∫ θ1

θ0

φ(s, x(s), y(s), x(β(s)))ds

)

,

y1 = y0 exp

(∫ θ1

θ0

ψ(s, x(β(s)), y(β(s)))ds

)

.

Hence, (2.20) holds on [θ0, θ1]. Suppose that (2.20) is valid on the interval [θ0, θk] for

somek ≥ 1. Then, fort ∈ [θk, θk+1)

x(t) = xk exp

(∫ t

θk

φ(s, x(s), y(s), x(β(s)))ds

)

= x0 exp

(∫ t

θ0

φ(s, x(s), y(s), x(β(s)))ds

)

,

and

y(t) = yk exp

(∫ t

θk

ψ(s, x(β(s)), y(β(s)))ds

)

= y0 exp

(∫ t

θ0

ψ(s, x(β(s)), y(β(s)))ds

)

.

As t → θk+1, we can observe that

xk+1 = x0 exp

(∫ θk+1

θ0

φ(s, x(s), y(s), x(β(s)))ds

)

,

yk+1 = y0 exp

(∫ θk+1

θ0

ψ(s, x(β(s)), y(β(s)))ds

)

.

Hence, (2.20) is satisfied on [θ0, θk+1]. By induction, this proves that it is valid for all

t ≥ θ0.

S u f f iciency. Let (x(t), y(t)) be a solution of (2.20). Fixi ≥ 0 and consider the interval

[θi , θi+1). Differentiating (2.20) on (θi , θi+1), we can see that (x(t), y(t)) satisfies (2.18).

Furthermore, lettingt → θi+ and taking into account that (x(β(t)), y(β(t))) is a pair of

right continuous functions, we obtain that (x(t), y(t)) satisfies (2.18) on [θi , θi+1). This

completes the proof.�

Predator equation in (2.19) coincides with the one in (2.18)and the prey equation

is nothing but an ordinary differential equation. Thus, system (2.19) is more easily

analyzable compared to (2.18). Using a similar method as in the proof of Lemma

2.2.1, one can prove the following result for (2.19).
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L 2.2.2 Suppose (B1) is satisfied. System (2.19) with x(θ0) = x0, y(θ0) = y0 is

equivalent to

x(t) = x0 exp

(∫ t

θ0

ϕ(s, x(s), y(s))ds

)

,

y(t) = y0 exp

(∫ t

θ0

ψ(s, x(β(s)), y(β(s)))ds

)

.

Lemma 2.2.1 (Lemma 2.2.2) implies immediately that the nextassertion is valid.

T 2.2.1 The positive quadrant int(R2
+
) = {(x, y) ∈ R

2 | x > 0, y > 0} is

positively invariant for systems (2.18) and (2.19).

In the subsequent section, it will be shown that the region ofinvariance can be signif-

icantly narrowed.

2.2.3 Positive Invariance, Permanence and Persistence

In this section, assuming that conditions (B1) and (B2) are fulfilled, the results con-

cerning positive invariance, permanence and related properties will be addressed.

T 2.2.2 If mlal > cu, f l > du, aubuθ < bl and fuθ < 4, then the set

Γ = {(x, y) ∈ R
2 | r1 ≤ x ≤ R1, r2 ≤ y ≤ R2} (2.21)

is positively invariant for system (2.18), where

r1 =
mlal − cu

mlbu
, R1 =

au

bl
,

r2 =
f l − du

mudu
r1 , R2 =

f u − dl

mldl
R1.

Proof: Let (x(t), y(t)) be the solution of (2.18) initiating at the point (x(θ0), y(θ0)) =

(x0, y0) with r1 ≤ x0 ≤ R1 andr2 ≤ y0 ≤ R2.

We first consider the prey equation in (2.18). It follows fromthe positivity of the

solutions of (2.18) that

x′(t) ≤ x(t)
(

au − bl x(β(t))
)

, t ≥ θ0.
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For t ∈ [θ0, θ1), we have

x′(t) ≤ x(t)
(

au − bl x0

)

= bl x(t)(R1 − x0),

which implies together with (B2) that

x(t) ≤ x0 exp(bl(R1 − x0)(t − θ0)) ≤ x0 exp(bl(R1 − x0)θ) ≡ G(x0).

We want to find the maximum value of the continuous functionG(x0) on the closed

interval [r1,R1]. The hypothesisaubuθ < bl shows thatG′(x0) > 0 on [r1,R1]. Hence,

G(x0) ≤ G(R1) = R1 on [r1,R1]. All these discussions result in

x(t) ≤ R1 for t ∈ [θ0, θ1) wheneverr1 ≤ x0 ≤ R1. (2.22)

From the prey equation in (2.18), we obtain fort ∈ [θ0, θ1)

x′(t) ≥ x(t)

(

al − bux0 −
cu

ml

)

= bux(t)(r1 − x0),

which clearly implies that

x(t) ≥ x0 exp(bu(r1 − x0)(t − θ0)) ≥ x0 exp(bu(r1 − x0)θ) ≡ g(x0).

Following the same way that we have used forG(x0), we find that the functiong(x0)

attains its minimum value atr1, i.e.,g(x0) ≥ g(r1) = r1 on [r1,R1]. Thus,

x(t) ≥ r1 for t ∈ [θ0, θ1) wheneverr1 ≤ x0 ≤ R1. (2.23)

Combining (2.22) and (2.23), we have

r1 ≤ x0 ≤ R1 ⇒ r1 ≤ x(t) ≤ R1 for t ∈ [θ0, θ1).

This, together with the continuity ofx(t), implies thatr1 ≤ x(θ1) = x1 ≤ R1. Hence,

when the same technique used for the interval [θ0, θ1) is repeated fort ∈ [θ1, θ2), it can

be easily seen that

r1 ≤ x1 ≤ R1 ⇒ r1 ≤ x(t) ≤ R1 for t ∈ [θ1, θ2),

which in turn implies thatr1 ≤ x(θ2) = x2 ≤ R1. Continuing the process on each

interval [θi , θi+1), i = 2,3,4, . . ., in a similar manner, we can conclude that

r1 ≤ x0 ≤ R1 ⇒ r1 ≤ x(t) ≤ R1 for all t ≥ θ0.
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From the predator equation in (2.18) and the positiveness ofy(t), we have

y′(t) ≤ y(t)

(

−dl
+

f ux(β(t))
mly(β(t)) + x(β(t))

)

, t ≥ θ0.

For t ∈ [θ0, θ1) this inequality takes the form

y′(t) ≤ y(t)

(

−dl
+

f ux0

mly0 + x0

)

≤ y(t)

(

−dl
+

f uR1

mly0 + R1

)

=
mldly(t)

mly0 + R1
(R2 − y0)

which produces

y(t) ≤ y0 exp((
mldl

mly0 + R1
)(R2 − y0)(t − θ0))

≤ y0 exp((
mldl

mly0 + R1
)(R2 − y0)θ) ≡ H(y0).

Using the hypothesisf uθ < 4, we find that the derivative of the functionH(y0) is

always positive. That being the case,H(y0) ≤ H(R2) = R2 on the interval [r2,R2].

Then,

y(t) ≤ R2 for t ∈ [θ0, θ1) wheneverr2 ≤ y0 ≤ R2. (2.24)

We now continue with the predator equation for the other direction on [θ0, θ1),

y′(t) ≥ y(t)

(

−du
+

f l x0

muy0 + x0

)

≥ y(t)

(

−du
+

f lr1

muy0 + r1

)

=
muduy(t)
muy0 + r1

(r2 − y0)

and these inequalities lead to

y(t) ≥ y0 exp((
mudu

muy0 + r1
)(r2 − y0)(t − θ0))

≥ y0 exp((
mudu

muy0 + r1
)(r2 − y0)θ) ≡ h(y0).

By straightforward evaluation ofh′(y0), we arrive ath(y0) ≥ h(r2) = r2 on [r2,R2] for

the reason thatf lθ ≤ f uθ < 4. Therefore, we have

y(t) ≥ r2 for t ∈ [θ0, θ1) wheneverr2 ≤ y0 ≤ R2. (2.25)

From (2.24) and (2.25), it follows that

r2 ≤ y0 ≤ R2 ⇒ r2 ≤ y(t) ≤ R2 for t ∈ [θ0, θ1).
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Sincey(t) is continuous, we can construct the desired result on each interval [θi , θi+1),

i = 1,2,3, . . ., following the same way discussed previously forx(t) . That is to say,

r2 ≤ y1 ≤ R2 ⇒ r2 ≤ y(t) ≤ R2 for all t ≥ θ0,

proving the theorem.�

T 2.2.3 Let the conditions mlal > cu, f l > du and fuθ < 4 be fulfilled. Then

the setΓ defined by (2.21) is positively invariant for system (2.19).

Proof: Let (x(t), y(t)) be the solution of (2.19) passing through (x0, y0) wherer1 ≤
x0 ≤ R1 and r2 ≤ y0 ≤ R2. In that case, the prey equation does not contain any

piecewise constant argument. That is why, it follows for allt ≥ θ0 that

bux(t) (r1 − x(t)) ≤ x′(t) ≤ bl x(t) (R1 − x(t)) , t ≥ θ0. (2.26)

Then,x(t) being differentiable for allt ≥ θ0, a standard comparison argument shows

that

r1 ≤ x0 ≤ R1 ⇒ r1 ≤ x(t) ≤ R1 for all t ≥ θ0.

As the predator equation in (2.19) coincides with the one in (2.18), we apply exactly

the same technique that is used fory(t) in the proof of Theorem 2.2.2 to reach the

desired conclusion.�

L 2.2.3 For system (2.18),lim sup
t→+∞

x(t) ≤ S1, where S1 =
au

bl
exp(auθ).

Proof: From the first equation of (2.18), we see thatx′(t) ≤ aux(t) for all t ≥ θ0. This

inequality leads to

x(t) ≤ x(θi) exp(au(t − θi)) ≤ x(β(t)) exp(auθ)

on each interval [θi , θi+1), i ≥ 0. In fact, using the continuity ofx(t), this result can be

generalized as

x(t) ≤ x(β(t)) exp(auθ) for all t ≥ θ0,
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which is equivalent tox(β(t)) ≥ x(t) exp(−auθ) for all t ≥ θ0. Therefore, the prey

equation satisfies

x′(t) ≤ x(t)
(

au − bl x(β(t))
)

≤ x(t)
(

au − bl exp(−auθ)x(t)
)

= bl exp(−auθ)x(t) (S1 − x(t)) , t ≥ θ0.

Sincex′(t) exists fort ∈ [θ0,∞) with the possible exception of the pointsθi, i ≥ 0,

where one-sided derivatives exist, we should modify the standard comparison argu-

ment. Consider the solution ˜x(t) of the following ordinary differential equation

x̃ ′(t) = bl exp(−auθ)x̃(t) (S1 − x̃(t)) ,

x̃(θ0) = x̃0,

where x̃0 ≥ x0. For t ∈ [θ0, θ1), we obtainx(t) ≤ x̃(t) by a standard comparison

argument. Since the solutionsx(t) and x̃(t) are continuous, one can conclude that

x(t) ≤ x̃(t) on each interval [θi , θi+1), i = 1,2,3, . . ., and hence,x(t) ≤ x̃(t) for all

t ≥ θ0. This clearly shows that

lim sup
t→+∞

x(t) ≤ lim sup
t→+∞

x̃(t) = lim
t→+∞

x̃(t) = S1,

proving the lemma.�

L 2.2.4 For system (2.18), if mlal > cu holds true, thenlim inf
t→+∞

x(t) ≥ s1, where

s1 =
mlal − cu

mlbu
exp((al − buS1 −

cu

ml
)θ).

Proof: Since lim sup
t→+∞

x(t) ≤ S1, for anyǫ > 1, there is someTǫ > θ0 such that for

t ≥ Tǫ, x(t) < ǫS1. Therefore,x(β(t)) < ǫS1 for t ≥ β(Tǫ) + θ. For t ≥ β(Tǫ) + θ, we

derive from the prey equation of (2.18)

x′(t) ≥ x(t)

(

al − bux(β(t)) − cu

ml

)

≥ x(t)

(

al − buǫS1 −
cu

ml

)

,

which, together with the same arguments used in the proof of Lemma 2.2.3, leads us

to

x(β(t)) ≤ x(t) exp(−(al − buǫS1 −
cu

ml
)θ), (2.27)
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for t ≥ β(Tǫ) + θ. From (2.27), it follows that

x′(t) ≥
(

al − bux(t) exp(−(al − buǫS1 −
cu

ml
)θ) − cu

ml

)

.

Using a comparison argument in a similar manner in the proof of Lemma 2.2.3 and

letting ǫ → 1, we see that lim inf
t→+∞

x(t) ≥ s1. �

L 2.2.5 Let fl > du and mlal > cu hold true. Thenlim sup
t→+∞

y(t) ≤ S2 and

lim inf
t→+∞

y(t) ≥ s2, where S2 =
f u − dl

mldl
S1 exp((f u − dl)θ) and s2 =

f l − du

mudu
s1 exp(−duθ)

for system (2.18).

Proof: We observed above that for anyǫ > 1, there exists aTǫ > θ0 such that

x(β(t)) < ǫS1 for t ≥ β(Tǫ) + θ. From the predator equation of (2.18), we have

−duy(t) ≤ y′(t) ≤ ( f u − dl)y(t).

Hence, by a similar argument used for the prey population, wederive that

y(β(t)) exp(−duθ) ≤ y(t) ≤ y(β(t)) exp((f u − dl)θ), t ≥ θ0. (2.28)

According to (2.28), we get fort ≥ β(Tǫ) + θ,

y′(t) ≤ y(t)

(

−dl
+

f uǫS1

mly(β(t)) + ǫS1

)

≤ y(t)

(

−dl
+

f uǫS1

mly(t) exp(−( f u − dl)θ) + ǫS1

)

= y(t)

(

( f u − dl)ǫS1 −mldly(t) exp(−( f u − dl)θ)
mly(t) exp(−( f u − dl)θ) + ǫS1

)

.

A standard comparison argument, as in the proof Lemma 2.2.3,shows that

lim sup
t→+∞

y(t) ≤ f u − dl

mldl
ǫS1 exp((f u − dl)θ)

and the conclusion lim sup
t→+∞

y(t) ≤ S2 holds by lettingǫ → 1.

On the other hand, it follows from Lemma 2.2.4 that for anyη > 1, there exists a

constantTη > β(Tǫ) + θ such that fort ≥ Tη, x(t) >
s1

η
. Then, x(β(t)) >

s1

η
for

t ≥ β(Tη) + θ. Now, using (2.28), it is easy to see that

y′(t) ≥ y(t)

(

−du
+

f l(s1/η)
muy(β(t)) + (s1/η)

)

y(t) ≥
(

−du
+

f l(s1/η)
muy(t) exp(duθ) + (s1/η)

)

= y(t)

(

( f l − du)s1/η −muduy(t) exp(duθ)
muy(t) exp(duθ) + (s1/η)

)

.
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Hence, by the comparison theorem and the arbitrariness ofη, we have

lim inf
t→+∞

y(t) ≥ f l − du

mudu
s1 exp(−du) = s2. �

We can also establish similar results for system (2.19). Theinequalities in (2.26)

imply by a comparison argument that the following lemma is valid [65].

L 2.2.6 For system (2.19),lim sup
t→+∞

x(t) ≤ R1. In particular, if mlal > cu then

lim inf
t→+∞

x(t) ≥ r1.

Moreover, similar to Lemma 2.2.5, following assertion can be easily verified.

L 2.2.7 For (2.19), if fl > du and mlal > cu are satisfied, thenlim sup
t→+∞

y(t) ≤ S̃2

andlim inf
t→+∞

y(t) ≥ s̃2, whereS̃2 =
f u − dl

mldl
R1 exp((f u−dl)θ), s̃2 =

f l − du

mudu
r1 exp(−duθ).

For the rest of the section, we need the following definitionsof the concepts; ultimate

boundedness, permanence and non-persistence.

D 2.2.3 The solution of (2.18) ((2.19)) is said to be ultimately bounded if

there exists a B> 0 such that for every solution(x(t), y(t)) of (2.18) ((2.19)), there

exists T> 0 such that‖(x(t), y(t))‖ ≤ B, for all t ≥ t0 + T, where B is independent of

the particular solution while T may depend on the solution.

D 2.2.4 System (2.18) ((2.19)) is said to be permanent if there existδ and∆

with 0 < δ < ∆ such that

min
{

lim inf
t→+∞

x(t), lim inf
t→+∞

y(t)
}

≥ δ,

and

max

{

lim sup
t→+∞

x(t), lim sup
t→+∞

y(t)

}

≤ ∆,

for all solutions of (2.18) ((2.19)) with positive initial values.

D 2.2.5 System (2.18) ((2.19)) is said to be non-persistent if thereexists a

positive solution(x(t), y(t)) of (2.18) ((2.19)) satisfying

min
{

lim inf
t→+∞

x(t), lim inf
t→+∞

y(t)
}

= 0.
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From the proofs of Lemma 2.2.3-2.2.5 for (2.18) (Lemma 2.2.6and 2.2.7 for (2.19)),

it is easy to conclude the following statement for ultimate boundedness.

T 2.2.4 If mlal > cu and fl > du, then the setΩ defined by

Ω = {(x, y) ∈ R
2 | s1 ≤ x ≤ S1, s2 ≤ y ≤ S2},

and the setΣ defined by

Σ = {(x, y) ∈ R
2 | r1 ≤ x ≤ R1, s̃2 ≤ y ≤ S̃2}

are ultimately bounded regions for systems (2.18) and (2.19), respectively.

Meanwhile, from Lemma 2.2.3-2.2.5 (Lemma 2.2.6 and 2.2.7) we have already shown

the following statement.

T 2.2.5 If mlal > cu and fl > du, then system (2.18) ((2.19)) is permanent.

T 2.2.6 If f u < dl or
cl

mu
> au
+du then system (2.18) ((2.19)) is not persistent.

Proof: If f u < dl is true, then the inequalityy′(t) ≤ ( f u − dl)y(t) implies that

lim
t→+∞

y(t) = 0. In this case, (2.18) ((2.19)) is not persistent by Definition 2.2.5.

If
cl

mu
> au
+ du, then there exists anα > 0 such that

cl

mu + α
= au
+ du. Let (x(t), y(t))

be the solution of (2.18) ((2.19)) with
x(θ0)
y(θ0)

< α. We claim that
x(t)
y(t)

< α for all t ≥ θ0

and lim
t→+∞

x(t) = 0. If not, there exists a first timet1 > θ0 such that

x(t1)
y(t1)

= α and
x(t)
y(t)

< α for t ∈ [θ0, t1).

Then, fort ∈ [θ0, t1], we have

x′(t) ≤ x(t)































au − cl

mu +
x(t)
y(t)































≤ x(t)

(

au − cl

mu + α

)

= −dux(t),

which implies thatx(t) ≤ x(θ0) exp(−du(t − θ0)). Moreover, for allt ≥ θ0, we have

y′(t) ≥ −duy(t) which leads toy(t) ≥ y(θ0) exp(−du(t − θ0)). All these discussions

show that

x(t)
y(t)
≤ x(θ0) exp(−du(t − θ0))

y(θ0) exp(−du(t − θ0))
=

x(θ0)
y(θ0)

< α for t ∈ [θ0, t1],
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which is a contradiction to the existence oft1, justifying our claim. This in turn

implies thatx(t) ≤ x(θ0) exp(−du(t − θ0)) for all t ≥ θ0. Therefore, lim
t→+∞

x(t) = 0,

which completes the proof.�

T 2.2.7 If
cl

mu
> au
+du and fu < dl(1+

ml

α
), whereα =

cl

au + du
−mu, then there

exist positive solutions(x(t), y(t)) of (2.18) ((2.19)) such thatlim
t→+∞

(x(t), y(t)) = (0,0).

Proof: From the proof of Theorem 2.2.6, we have
x(t)
y(t)

< α for all t ≥ θ0 and

lim
t→+∞

x(t) = 0 provided that
x(θ0)
y(θ0)

< α. These arguments imply directly that
x(β(t))
y(β(t))

<

α for t ≥ θ0. Then, fort ≥ θ0,

y′(t) ≤ y(t)































−dl
+

f u x(β(t))
y(β(t))

ml +
x(β(t))
y(β(t))































≤ y(t)

(

−dl
+

f uα

ml + α

)

≡ −λy(t),

whereλ < 0 by the hypothesisf u < dl(1 +
ml

α
). This immediately shows that

lim
t→+∞

y(t) = 0. The proof is completed.�
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CHAPTER 3

LYAPUNOV-RAZUMIKHIN METHOD FOR DIFFERENTIAL

EQUATIONS WITH PIECEWISE CONSTANT ARGUMENT

OF GENERALIZED TYPE

In [5, 8, 9], the concept of differential equations with piecewise constant argument

[52, 78, 80, 170] has been generalized by considering arbitrary piecewise constant

functions as arguments. In this chapter, using stability definitions from [5], we de-

velop the Lyapunov’s second method for stability of differential equations with piece-

wise constant argument of generalized type by employing theRazumikhin technique

[84, 150]. To the best of our knowledge, there have been no results on stability ob-

tained by Lyapunov-Razumikhin method for differential equations with piecewise

constant argument, despite the fact that they are delay differential equations.

Differential equations with piecewise constant arguments playan important role in

numerous applications [12, 41, 55, 77, 78, 125, 130, 132, 167, 177] as well as they

can be applied successfully to approximate solutions of delay differential equations

[55, 81]. There are many interesting results of the theory ofdifferential equations with

piecewise constant argument [155, 165, 173], which includecomplex behaviour of so-

lutions [78]. A great part of the theory has been summarized in [170]. The theoretical

depth of investigation of these equations was determined bythe papers [41, 52, 156],

where the reduction to discrete equations had been chosen asthe main instrument of

study. Consequently, analysis of solutions, starting at moments which are not integers

has been unattainable. Particularly, one can not investigate the problem of stability

completely, as only integers or their multiples are allowedto be discussed for initial

moments.
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The approach developed in [5, 8, 9] has a goal to meet the challenges mentioned

above. In fact, the detailed comparison of values of a solution at a point and at neigh-

bor moments, where the argument function has discontinuitities, helps to extend the

discussion. It embraces several results on the existence and uniqueness of solutions,

dependence on initial data, and exceptionally stability, which we intend to consider in

the present chapter. To give more sense to the last words, in Example 3.3.3 at the end

of this chapter, we will present additional stability analysis for the results obtained by

Gopalsamy and Liu [77] for the logistic type equation

N′(t) = rN(t)(1− aN(t) − bN([t])), t > 0, (3.1)

where [t] denotes the maximal integer not greater thant.

3.1 Preliminaries

We fix a real-valued sequenceθi, i ∈ N0 such that 0= θ0 < θ1 < · · · < θi < · · · with

θi → ∞ asi → ∞.

In the present chapter, we shall consider the following equation [8]

x′(t) = f (t, x(t), x(β(t))), (3.2)

wherex ∈ S(ρ), S(ρ) = {x ∈ R
n : ‖x‖ < ρ}, t ∈ R

+, β(t) = θi if t ∈ [θi , θi+1), i ∈ N0.

System (3.2) on [θi , θi+1), i ∈ N0, has the form of a special functional differential

equation

x′(t) = f (t, x(t), x(θi)). (3.3)

Hence, we can see that (3.2) has the structure of a continuousdynamical system

within the intervals [θi , θi+1), i ∈ N0. We assume that the solutions of the equation

are continuous functions, but the deviating functionβ(t) is discontinuous. In general,

the right-hand side of (3.2) has discontinuities at the moments θi. In other words,

we consider the solutions of the equation as functions, which are continuous and

continuously differentiable within the intervals [θi , θi+1), i ∈ N0.
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The following assumptions will be needed throughout the chapter:

(C1) f (t, y, z) ∈ C(R+ × S(ρ) × S(ρ)) is ann× 1 real-valued function;

(C2) f (t,0,0) = 0 for all t ≥ 0;

(C3) f (t, y, z) satisfies the condition

‖ f (t, y1, z1) − f (t, y2, z2)‖ ≤ ℓ(‖y1 − y2‖ + ‖z1 − z2‖)

for all t ∈ R
+ andy1, y2, z1, z2 ∈ S(ρ), whereℓ > 0 is a Lipschitz constant;

(C4) there exists a positive numberθ such thatθi+1 − θi ≤ θ, i ∈ N0;

(C5) ℓθ[1 + (1+ ℓθ)eℓθ] < 1;

(C6) 3ℓθeℓθ < 1.

Let us use the following sets of functions:

K = {a ∈ C(R+,R+) : a is strictly increasing anda(0) = 0},

Ω = {b ∈ C(R+,R+) : b(0) = 0, b(s) > 0 for s> 0}.

D 3.1.1 [8] A function x(t) is a solution of (3.2) onR+ if

(i) x(t) is continuous onR+;

(ii) the derivative x′(t) exists for t∈ R
+ with the possible exception of the pointsθi,

i ∈ N0, where one-sided derivatives exist;

(iii) equation (3.2) is satisfied by x(t) on each interval(θi , θi+1), i ∈ N0, and it holds

for the right derivative of x(t) at the pointsθi, i ∈ N0.

Notation 3.1.1 K(ℓ) =
1

1− ℓθ[1 + (1+ ℓθ)eℓθ]
.

The following lemma is an important auxiliary result of the present chapter as it will

be used in the stability analysis.
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L 3.1.1 Let (C1)-(C5) be fulfilled. Then the following inequality

‖x(β(t))‖ ≤ K(ℓ) ‖x(t)‖ (3.4)

holds for all t≥ 0.

Proof: Let us fixt ∈ R
+. Then there existsk ∈ N0 such thatt ∈ [θk, θk+1). We have

x(t) = x(θk) +
∫ t

θk

f (s, x(s), x(θk))ds, t ∈ [θk, θk+1).

Hence,

‖x(t)‖ ≤ ‖x(θk)‖ + ℓ
∫ t

θk

(‖x(s)‖ + ‖x(θk)‖) ds

≤ (1+ ℓθ) ‖x(θk)‖ + ℓ
∫ t

θk

‖x(s)‖ ds.

The Gronwall-Bellman Lemma yields that‖x(t)‖ ≤ (1+ ℓθ)eℓθ ‖x(θk)‖. Moreover, for

t ∈ [θk, θk+1) we have

x(θk) = x(t) −
∫ t

θk

f (s, x(s), x(θk))ds.

Thus,

‖x(θk)‖ ≤ ‖x(t)‖ + ℓ
∫ t

θk

(‖x(s)‖ + ‖x(θk)‖) ds

≤ ‖x(t)‖ + ℓ
∫ t

θk

[

(1+ ℓθ)eℓθ + 1
]

‖x(θk)‖ ds

≤ ‖x(t)‖ + ℓθ
[

(1+ ℓθ)eℓθ + 1
]

‖x(θk)‖ .

It follows from condition (C5) that‖x(θk)‖ ≤ K(ℓ) ‖x(t)‖ for t ∈ [θk, θk+1). Hence,

(3.4) holds for allt ≥ 0. �

We give the following assertion which establishes the existence and uniqueness of

solutions of (3.3).

L 3.1.2 [9] Let (C1) and (C3)-(C6) be satisfied and i∈ N0 be fixed. Then for

every(ξ, x0) ∈ [θi , θi+1] × S(ρ), there exists a unique solution x(t) = x(t, ξ, x0) of (3.3)

on [θi , θi+1].
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Proof: Existence. Fix i ∈ N0 and assume without loss of generality thatθi ≤ ξ ≤ θi+1.

Define a norm‖x(t)‖0 = max
[θi ,ξ]
‖x(t)‖. Takex0(t) = x0 and a sequence

xm+1(t) = x0 +

∫ t

ξ

f (s, xm(s), xm(θi))ds, m≥ 0.

It can be easily checked that‖xm+1(t) − xm(t)‖0 ≤ (2lθ)m+1 ‖x0‖. Then condition (C6)

implies that the sequencexm(t) is convergent and its limitx(t) satisfies

x(t) = x0 +

∫ t

ξ

f (s, x(s), x(θi))ds

on [θi , ξ]. The existence is proved.

Uniqueness. Let xj(t) = x(t, ξ, x j
0), xj(ξ) = x j

0, j = 1,2, denote the solutions of (3.3)

whereθi ≤ ξ ≤ θi+1. It is sufficient to show thatx1
0 , x2

0 impliesx1(t) , x2(t) for every

t ∈ [θi , θi+1].

The solutionsx1(t) andx2(t) satisfy, respectively, the following integral equations

x1(t) = x1
0 +

∫ t

ξ

f (s, x1(s), x1(θi))ds,

x2(t) = x2
0 +

∫ t

ξ

f (s, x2(s), x2(θi))ds

for all t ∈ [θi , θi+1]. Subtracting we obtain that

‖x1(t) − x2(t)‖ ≤
∥

∥

∥x1
0 − x2

0

∥

∥

∥ + l
∫ t

ξ

(‖x1(s) − x2(s)‖ + ‖x1(θi) − x2(θi)‖) ds

≤
∥

∥

∥x1
0 − x2

0

∥

∥

∥ + lθ ‖x1(θi) − x2(θi)‖ + l|
∫ t

ξ

‖x1(s) − x2(s)‖ ds|.

It follows from the Gronwall-Bellman inequality that

‖x1(t) − x2(t)‖ ≤
(∥

∥

∥x1
0 − x2

0

∥

∥

∥ + lθ ‖x1(θi) − x2(θi)‖
)

elθ.

Particularly,

‖x1(θi) − x2(θi)‖ ≤
(∥

∥

∥x1
0 − x2

0

∥

∥

∥ + lθ ‖x1(θi) − x2(θi)‖
)

elθ.

Then,

‖x1(θi) − x2(θi)‖ ≤
elθ

1− lθelθ

∥

∥

∥x1
0 − x2

0

∥

∥

∥ .
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Hence,

‖x1(t) − x2(t)‖ ≤ elθ

(

1+ lθ
elθ

1− lθelθ

)

∥

∥

∥x1
0 − x2

0

∥

∥

∥ . (3.5)

If we assume on the contrary that there existst∗ ∈ [θi , θi+1] such thatx1(t∗) = x2(t∗),

then

x1
0 − x2

0 =

∫ t∗

ξ

( f (s, x2(s), x2(θi)) − f (s, x1(s), x1(θi))) ds.

The last expression, together with (3.5) and (C6), leads us to

∥

∥

∥x1
0 − x2

0

∥

∥

∥ ≤ l|
∫ t∗

ξ

(‖x2(s) − x1(s)‖ + ‖x2(θi) − x1(θi)‖) ds|

≤ 2lθelθ

1− lθelθ

∥

∥

∥x1
0 − x2

0

∥

∥

∥

<
∥

∥

∥x1
0 − x2

0

∥

∥

∥ ,

which is a contradiction. The theorem is proved.�

T 3.1.1 [9] Assume that conditions (C1) and (C3)-(C6) hold true. Then for

every(t0, x0) ∈ R
+ × S(ρ), there exists a unique solution x(t) = x(t, t0, x0) of (3.2) on

R
+ in the sense of Definition 3.1.1 such that x(t0) = x0.

Proof: Without loss of generality, assume thatθi ≤ t0 ≤ θi+1 for somei ∈ N0. By

Lemma 3.1.2 forξ = t0, there exists a unique solutionx(t) = x(t, t0, x0) of (3.2) on

[θi , θi+1] as a solution of (3.3). Using the lemma again, we can continue x(t) from

t = θi to t = θi−1. Clearly,x(t) can be continued tot = 0.

Similarly, for increasing t, one can easily see that the solution x(t) can be continued

from t = θi+1 to t = θi+2. Sinceθi → ∞ asi → ∞, we can complete the proof by using

induction.�

D 3.1.2 Let V : R
+ × S(ρ)→ R

+. Then, V is said to belong to the classϑ if

(i) V is continuous onR+ × S(ρ) and V(t,0) = 0 for all t ∈ R
+;

(ii) V (t, x) is continuously differentiable on(θi , θi+1) × S(ρ) and for each x∈ S(ρ),

the right derivative exists at t= θi, i ∈ N0.
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D 3.1.3 Given a function V∈ ϑ, the derivative of V with respect to system

(3.2) is defined by

V′(t, x, y) =
∂V(t, x)
∂t

+ 〈∇V(t, x), f (t, x, y)〉 ,

for all t , θi in R
+ and x, y ∈ S(ρ), where∇V denotes the gradient vector of V with

respect to x.

3.2 Stability Analysis

In this section, we assume that conditions (C1)-(C6) are satisfied and we will obtain

the stability of the zero solution of (3.2) based on the Lyapunov-Razumikhin method.

We can formulate the definitions of Lyapunov stability in thesame way as for ordinary

differential equations.

D 3.2.1 [5] The zero solution of (3.2) is said to be

(i) stable if for anyε > 0 and t0 ∈ R
+, there exists aδ = δ(t0, ε) > 0 such that

‖x0‖ < δ implies‖x(t, t0, x0)‖ < ε for all t ≥ t0;

(ii) uniformly stable ifδ is independent of t0.

D 3.2.2 [5] The zero solution of (3.2) is said to be uniformly asymptotically

stable if it is uniformly stable and there is aδ0 > 0 such that for everyε > 0 and

t0 ∈ R
+, there exists a T= T(ε) > 0 such that‖x(t, t0, x0)‖ < ε for all t > t0 + T

whenever‖x0‖ < δ0.

T 3.2.1 Assume that there exists a function V∈ ϑ such that

(i) u(‖x‖) ≤ V(t, x) onR
+ × S(ρ), where u∈ K ;

(ii) V ′(t, x, y) ≤ 0 for all t , θi in R
+ and x, y ∈ S(ρ) such that

V(β(t), y) ≤ V(t, x).

Then the zero solution of (3.2) is stable.
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Proof: At first, we show stability fort0 = θ j for some j ∈ N0. Then it will allow us

to prove stability for an arbitraryt0 ∈ R
+ due to Lemma 3.1.1.

Let ρ1 ∈ (0, ρ). Givenε ∈ (0, ρ1) andt0 = θ j, chooseδ1 > 0 sufficiently small that

V(θ j , x(θ j)) < u(ε) if
∥

∥

∥x(θ j)
∥

∥

∥ < δ1. Defineδ = δ1/K(ℓ). We noteδ < δ1 asK(ℓ) > 1

and show that thisδ is the needed one.

Let us fixk ∈ N0 and consider the interval [θk, θk+1). Using the condition (ii), we shall

show that

V(t, x(t)) ≤ V(θk, x(θk)) for t ∈ [θk, θk+1). (3.6)

SetV(t) = V(t, x(t)). If (3.6) is not true, then there exist pointsκ andτ, θk ≤ κ < τ <

θk+1, such that

V(κ) = V(θk) and V(t) > V(θk) for t ∈ (κ, τ].

By applying the Mean-Value Theorem to the functionV, we get

V(τ) − V(κ)
τ − κ = V′(ζ) > 0 (3.7)

for someζ ∈ (κ, τ). Indeed, beingV(ζ) > V(θk), it follows from the condition (ii) that

V′(ζ) ≤ 0, which contradicts (3.7). Hence, (3.6) is true. Using the continuity of V

andx(t), we can obtain by induction that

V(t, x(t)) ≤ V(θ j , x(θ j)) for all t ≥ θ j . (3.8)

If
∥

∥

∥x(θ j)
∥

∥

∥ < δ, we haveV(θ j , x(θ j)) < u(ε) sinceδ < δ1. This together with (3.8) leads

us to the inequalityV(t, x(t)) < u(ε) which implies immediately that‖x(t)‖ < ε for all

t ≥ θ j. Hence, stability for the caset0 = θ j, i ∈ N0 is proved.

Now let us consider the caset0 ∈ R
+, t0 , θi for all i ∈ N0. Then there isj ∈ N0

such thatθ j < t0 < θ j+1. Given ε > 0 (ε < ρ1), we chooseδ1 > 0 such that

V(θ j , x(θ j)) < u(ε) if
∥

∥

∥x(θ j)
∥

∥

∥ < δ1. Take a solutionx(t) of (3.2) such that‖x(t0)‖ < δ,

whereδ = δ1/K(ℓ). By Lemma 3.1.1,‖x(t0)‖ < δ results in
∥

∥

∥x(θ j)
∥

∥

∥ < δ1. Then by the

discussion used fort0 = θ j, we obtain that‖x(t)‖ < ε for all t ≥ θ j and hence for all

t ≥ t0, proving the stability of the zero solution.�
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T 3.2.2 Assume that there exists a function V∈ ϑ such that

(i) u(‖x‖) ≤ V(t, x) ≤ v(‖x‖) onR
+ × S(ρ), where u, v ∈ K ;

(ii) V ′(t, x, y) ≤ 0 for all t , θi in R
+ and x, y ∈ S(ρ) such that

V(β(t), y) ≤ V(t, x).

Then the zero solution of (3.2) is uniformly stable.

Proof: Let ρ1 ∈ (0, ρ). Fix ε > 0 in the range 0< ε < ρ1 and chooseδ1 > 0

such thatv(δ1) ≤ u(ε). Defineδ = δ1/K(ℓ). Similar to the previous discussion, we

consider two cases whent0 = θ j for some j ∈ N0 and another one whent0 , θi

for all i ∈ N0, to show that thisδ is the needed one. Ift0 = θ j, where j is a fixed

non-negative integer and
∥

∥

∥x(θ j)
∥

∥

∥ < δ, then as a consequence of the condition (i) we

haveV(θ j , x(θ j)) < v(δ) < v(δ1) ≤ u(ε). Using the same argument used in the proof

of Theorem 3.2.1, we get the inequalityV(t, x(t)) ≤ V(θ j , x(θ j)) for all t ≥ θ j and see

that V(t, x(t)) < u(ε) for all t ≥ θ j. Hence‖x(t)‖ < ε for all t ≥ θ j. We note that

evaluation ofδ does not depend on the choice ofj ∈ N0.

Now, taket0 ∈ R
+ with t0 , θi for all i ∈ N0. Then there existsj ∈ N0 such that

θ j < t0 < θ j+1. Take a solutionx(t) of (3.2) such that‖x(t0)‖ < δ. It follows by Lemma

3.1.1 that
∥

∥

∥x(θ j)
∥

∥

∥ < δ1. From a similar idea used for the caset0 = θ j, we conclude that

‖x(t)‖ < ε for t ≥ θ j and indeed for allt ≥ t0. Finally, one can see that the evaluation

is independent ofj ∈ N0 and correspondingly of allt0 ∈ R
+. �

T 3.2.3 Assume that all of the conditions in Theorem 3.2.2 are valid and there

exist a continuous nondecreasing functionψ such thatψ(s) > s for s > 0 and a

function w∈ Ω. If condition (ii) is replaced by

(iii) V ′(t, x, y) ≤ −w(‖x‖) for all t , θi in R
+ and x, y ∈ S(ρ) such that

V(β(t), y) < ψ(V(t, x)),

then the zero solution of (3.2) is uniformly asymptoticallystable.
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Proof: When V(β(t), y) ≤ V(t, x), we haveV(β(t), y) < ψ(V(t, x)). Then by the

condition (iii ), we haveV′(t, x, y) ≤ 0. From Theorem 3.2.2, it follows that the zero

solution of (3.2) is uniformly stable.

First, we show “uniform” asymptotic stability with respectto all elements of the se-

quenceθi, i ∈ N0.

Fix j ∈ N0 andρ1 ∈ (0, ρ). If t0 = θ j and δ > 0 is such thatv(K(ℓ)δ) = u(ρ1),

K(ℓ) > 1, arguments of Theorem 3.2.2 shows thatV(t, x(t)) < v(δ) < v(K(ℓ)δ) for all

t ≥ θ j and hence‖x(t)‖ < ρ1 if
∥

∥

∥x(θ j)
∥

∥

∥ < δ. In what follows, we shall present that this

δ can be taken asδ0 in the Definition 3.2.2 of uniform asymptotic stability. That is,

for arbitraryε, 0 < ε < ρ1, we need to show that there exists aT = T(ε) > 0 such that

‖x(t)‖ < ε for t > θ j + T if
∥

∥

∥x(θ j)
∥

∥

∥ < δ.

Setγ = inf {w(s) : v−1(u(ε)) ≤ s≤ ρ1}. We note that this set is not empty sinceε < ρ1

andu, v ∈ K implies thatu(ε) < v(ρ1), which, in turn, leads us to the inequality

v−1(u(ε)) < ρ1.

Denoteδ1 = K(ℓ)δ. From the properties of the functionψ(s), there is a numbera > 0

such thatψ(s) − s> a for u(ε) ≤ s≤ v(δ1).

Let N be the smallest positive integer such thatu(ε) + Na≥ v(δ1).

Choosetk = k(
v(δ1)
γ
+ θ) + θ j, k = 1,2, . . . ,N. We will prove that

V(t, x(t)) ≤ u(ε) + (N − k)a for t ≥ tk, k = 0,1,2, . . . ,N. (3.9)

We haveV(t, x(t)) < v(δ1) ≤ u(ε) + Na for t ≥ t0 = θ j. Hence, (3.9) holds fork = 0.

Now, we suppose that (3.9) holds true for some 0≤ k < N. Let us show that

V(t, x(t)) ≤ u(ε) + (N − k− 1)a for t ≥ tk+1. (3.10)

Let Ik = [β(tk) + θ, tk+1]. To prove (3.10), we first claim that there exists at∗ ∈ Ik such

that

V(t∗, x(t∗)) ≤ u(ε) + (N − k− 1)a. (3.11)

Otherwise,V(t, x(t)) > u(ε) + (N − k− 1)a for all t ∈ Ik.
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On the other side, we have

V(t, x(t)) ≤ u(ε) + (N − k)a for t ≥ tk,

which implies thatV(β(t), x(β(t))) ≤ u(ε) + (N − k)a for t ≥ β(tk) + θ.

Hence, fort ∈ Ik

ψ(V(t, x(t))) > V(t, x(t)) + a > u(ε) + (N − k)a ≥ V(β(t), x(β(t))).

Sincev−1(u(ǫ)) ≤ ‖x(t)‖ ≤ ρ1 for t ∈ Ik, it follows from the hypothesis (iii ) that

V′(t, x(t), x(β(t))) ≤ −w(‖x(t)‖) ≤ −γ for all t , θm in Ik, m ∈ N0.

Using the continuity of the functionV and the solutionx(t), we get

V(tk+1, x(tk+1)) ≤ V(β(tk) + θ, x(β(tk) + θ)) − γ(tk+1 − β(tk) − θ)

< v(δ1) − γ(tk+1 − tk − θ) = 0,

which is a contradiction. Thus (3.11) holds, that is, there exists at∗ ∈ Ik such that

V(t∗, x(t∗)) ≤ u(ε) + (N − k− 1)a.

Next, we show that

V(t, x(t)) ≤ u(ε) + (N − k− 1)a for all t ∈ [t∗,∞). (3.12)

If (3.12) does not hold, then there exists at̂ ∈ (t∗,∞) such that

V(t̂, x(t̂)) > u(ε) + (N − k− 1)a ≥ V(t∗, x(t∗)).

Thus, we can find ãt ∈ (t∗, t̂ ) such that̃t , θm, m ∈ N0, V′(t̃, x(t̃ ), x(β(t̃ ))) > 0 and

satisfyingV(t̃, x(t̃ )) > u(ε) + (N − k− 1)a. If there is no such̃t, then for allt ∈ (t∗, t̂ ),

t , θm, we haveV′(t, x(t), x(β(t))) ≤ 0 or V(t, x(t)) ≤ u(ε) + (N − k − 1)a. But,

V′(t, x(t), x(β(t))) ≤ 0 leads toV(t̂, x(t̂ )) ≤ V(t∗, x(t∗)), a contradiction. IfV(t, x(t)) ≤
u(ε) + (N − k − 1)a, thenV(t, x(t)) < V(t̂, x(t̂ )) for t ∈ (t∗, t̂ ), t , θm, also yields a

contradiction. Hence,̃t exists.

However,

ψ(V(t̃, x(t̃ ))) > V(t̃, x(t̃ )) + a > u(ε) + (N − k)a ≥ V(β(t̃ ), x(β(t̃ )))
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implies thatV′(t̃, x(t̃ ), x(β(t̃ ))) ≤ −γ < 0, a contradiction. Then, we conclude that

V(t, x(t)) ≤ u(ε) + (N − k − 1)a for all t ≥ t∗ and thus for allt ≥ tk+1. This completes

the induction and shows that (3.9) is valid. Fork = N, we have

V(t, x(t)) ≤ u(ε) , t ≥ tN = N(
v(δ1)
γ
+ θ) + t0.

Hence,‖x(t)‖ < ε for t > θ j + T whereT = N(
v(δ1)
γ
+ θ), proving the uniform

asymptotic stability fort0 = θ j, j ∈ N0.

Consider the caset0 , θi for all i ∈ N0. Thenθ j < t0 < θ j+1 for some j ∈ N0.

‖x(t0)‖ < δ implies by Lemma 3.1.1 that
∥

∥

∥x(θ j)
∥

∥

∥ < δ1. Hence, the argument used

above for the caset0 = θ j yields that‖x(t)‖ < ε for t > θ j + T and in turn for all

t > t0 + T. �

3.3 Examples and New Lights for the Logistic Equation

In the following examples, we assume that the sequenceθi, which is used for the

definition of the functionβ(t), satisfies the condition (C4). For the logistic equation

with piecewise constant argument of generalized type, we present stability results for

all possible initial moments onR+. Hence, these results are advantegous compared to

the previous ones which take integers as initial moments.

E 3.3.1 Consider the following linear equation

x′(t) = −a(t)x(t) − b(t)x(β(t)), (3.13)

where a and b are bounded continuous functions onR
+ such that|b(t)| ≤ a(t) for all

t ≥ 0. We can check that conditions (C1)-(C2) and (C3) with the Lipschitz constant

ℓ = sup
t∈R+

a(t) are fulfilled. Moreover, we assume that the sequenceθi andℓ satisfy (C5)

and (C6). Let V(x) =
x2

2
, then for t, θi, i ∈ N0,

V′(x(t)) = −a(t)x2(t) − b(t)x(t)x(β(t))

≤ −a(t)x2(t) + |b(t)| |x(t)| |x(β(t))|

≤ −[a(t) − |b(t)|]x2(t) ≤ 0
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whenever|x(β(t))| ≤ |x(t)|. Since V = x2/2, V(x(β(t))) ≤ V(x(t)) implies that

V′(x(t)) ≤ 0. Thus by Theorem 3.2.2, the trivial solution of (3.13) is uniformly stable.

Next, let us investigate uniform asymptotic stability. If there are constantsλ > 0,

ω ∈ [0,1) and q> 1 with λ ≤ a(t), |b(t)| ≤ ωλ and1− qω > 0, then forψ(s) = q2s,

w(s) = (1− qω)λs2 and V(x) =
x2

2
, we obtain that

V′(x(t)) ≤ −w(|x(t)|), t , θi ,

whenever V(x(β(t))) < ψ(V(x(t))). Theorem 3.2.3 implies that x= 0 is uniformly

asymptotically stable.

The following illustration is a development of an example from [150].

E 3.3.2 Let us now consider a nonlinear scalar equation

x′(t) = f (x(t), µx(β(t))), (3.14)

where f(x, y) is a continuous function with f(0,0) = 0,
f (x,0)

x
= −σ for someσ > 0

satisfyingσ ≥ ℓ|µ| and | f (x1, y1) − f (x2, y2)| ≤ ℓ(|x1− x2|+ |y1− y2|). Then conditions

(C1)-(C3) are valid. We consider a sequenceθi such that (C5)-(C6) hold true together

with the Lipschitz constantℓ.

Choosing V(x) = x2, we get for t, θi

V′(x(t)) = 2x(t) f (x(t), µx(β(t)))

= 2

[

f (x(t), µx(β(t))) − f (x(t),0)
x(t)

+
f (x(t),0)

x(t)

]

x2(t)

≤ 2

[

ℓ|µ||x(β(t))|
|x(t)| − σ

]

x2(t) ≤ 2(ℓ|µ| − σ)x2(t) ≤ 0

whenever V(x(β(t))) ≤ V(x(t)). It follows from Theorem 3.2.2 that the solution x= 0

of (3.14) is uniformly stable.

E 3.3.3 (a logistic equation with harvesting)

In [77], stability of the positive equilibrium N∗ =
1

a+ b
of equation (3.1) has been

studied. Equation (3.1) models the dynamics of a logistically growing population sub-

jected to a density-dependent harvesting. There, N(t) denotes the population density

of a single species and the model parameters r,a and b are assumed to be positive.
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Gopalsamy and Liu showed that N∗ is globally asymptotically stable ifα ≥ 1 where

α = a/b. Particularly, it was shown that the equilibrium state is stable for integer-

valued initial moments. The restriction is caused by the method of investigation:

reduction to difference equations. Our results are for all initial moments fromR
+, not

only integers. Moreover, we consider uniform stability for the general caseβ(t). Con-

sequently, we may say that our approach allows to study stability of such equations

in the complete form.

We consider the biological sense of the insertion of piecewise constant delay [77, 78,

131, 132] into a population model as follows. The delay means that the rate of the

population depends both on the present size as well as the memorized values of the

population. To illustrate the dependence, one may think populations, which meet at

the beginning of a season, e.g., in springtime, with their instinctive evaluations of the

population state, environment and implicitly decide which living conditions to prefer

and where to go [12] in line with group hierarchy, communications, dynamics and

then adapt to those conditions.

Let us discuss the following equation

N′(t) = rN(t)(1− aN(t) − bN(β(t))), t > 0, (3.15)

which is a generalization of (3.1). One can see that (3.1) is oftype (3.15) when

β(t) = [t].

For our needs, we translate the equilibrium point N∗ to the origin by the transforma-

tion x= b(N − N∗), which takes (3.15) into the following form

x′(t) = −r[x(t) +
1

1+ α
][αx(t) + x(β(t))]. (3.16)

Note that f(x, y) := −r(x+
1

1+ α
)(αx+y) is a continuous function and has continuous

partial derivatives for x, y ∈ S(ρ). If we evaluate the first partial derivatives of the

function f(x, y), we see that

|∂ f /∂x| ≤ r(2αρ + ρ +
α

1+ α
),

|∂ f /∂y| ≤ r(ρ +
1

1+ α
),

for x , y ∈ S(ρ).
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If we chooseℓ = r(2αρ + 2ρ + 1) as a Lipschitz constant, one can see that the condi-

tions (C1)-(C3) are fulfilled for sufficiently small r. In addition, we assume thatℓ is

sufficiently small so that the conditions (C5) and (C6) are satisfied.

Suppose thatα ≥ 1 andρ < 1/(1+ α). Then for V(x) = x2, x ∈ S(ρ) and t, θi, we

have

V′(x(t), x(β(t))) = −2rx(t)(x(t) +
1

1+ α
)(αx(t) + x(β(t)))

≤ −2r(x(t) +
1

1+ α
)(αx2(t) − |x(t)||x(β(t))|)

≤ −2r(x(t) +
1

1+ α
)(α − 1)x2(t) ≤ 0

whenever V(x(β(t))) ≤ V(x(t)). Theorem 3.2.2 implies that the zero solution of (3.16)

is uniformly stable. This in turn leads to uniform stabilityof the positive equilibrium

N∗ of (3.15).

To prove uniform asymptotic stability, we need to satisfy thecondition (iii) in Theorem

3.2.3. In view of uniform stability, givenρ1 ∈ (0, ρ) we know that there exists aδ > 0

such that x(t) ∈ S(ρ1) for all t ≥ t0 whenever|x(t0)| < δ. Let us take a constant q such

that 1 < q < α, then forψ(s) = q2s, w(s) = 2r(α − q)ηs2, η = 1/(1 + α) − ρ1 and

V(x) = x2, we have

V′(x(t), x(β(t))) ≤ −2r(x(t) +
1

1+ α
)(α − q)x2(t) ≤ −w(|x(t)|), t , θi ,

whenever V(x(β(t))) < ψ(V(x(t))). Hence the solution x= 0 (N = N∗) of (3.16)

((3.15)) is uniformly asymptotically stable by Theorem 3.2.3.
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CHAPTER 4

BIFURCATION OF NON-SMOOTH LIMIT CYCLES

4.1 Bifurcation of a Non-Smooth Planar Limit Cycle from a Vertex

The theory of differential equations with discontinuous right-hand sides has been sub-

stantially developed through numerous applications. There are many problems from

mechanics, engineering sciences [25, 108, 109, 129], control theory [72] and eco-

nomics [90] that are modeled by dynamical systems with discontinuous vector fields.

Besides, the books [25, 35, 129], which concern mechanical systems with dry fric-

tion, periodic solutions of discontinuos systems and discontinuous oscillations, form

an important basis for the development of such discontinuous systems. Owing to the

problems of applied nature, qualitative theory of classical ordinary differential equa-

tions including the notions of existence, uniqueness, continuous dependence, stability

and bifurcation has been carefully adapted for equations with discontinuous right-

hand sides. The main trends of the theory can be found in [72].

Bifurcations in smooth systems are well understood [39, 45, 79, 124], but little is

known in discontinuous systems. Stimulated by non-smooth phenomena in the real

world, subject of Hopf bifurcation in discontinuous systems has received great at-

tention in recent years [49, 108, 109, 112, 116, 129, 138, 140, 179, 180]. Dankow-

icz and Nordmark [57] study bifurcations of stick-slip oscillations for the friction

model which leads to a non-smooth dynamical system having discontinuity at the first

derivative of the vector field. Feigin [70, 71] considersC−bifurcations, also known

as border-collision bifurcations, in Filippov systems being a subclass of discontinu-

ous systems described by differential equations with a discontinuous right-hand side
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[72]. Border-collision bifurcations for non-smooth discrete maps are also addressed

by Nusse and Yorke [138, 140].

Kunze [108] and K̈upper et al. [112, 179] address bifurcation of periodic solutions

for planar Filippov systems with discontinuities on a single straight line. In [179],

generalized Hopf bifurcation for a piecewise smooth planarsystem of the following

form


















x′

y′



















=



















f +(x, y, λ), x > 0,

f −(x, y, λ), x < 0,

where f ±(x, y, λ) = A±(λ)(x, y)T
+g±(x, y, λ), λ a real parameter, has been investigated

using differential inclusions. Eigenvalues of the matrixA±(λ) were assumed to be

complex conjugate, i.e.,α±(λ) ± iω±(λ). This system has been stimulated by a brake

system of the form

mu′′ + d1u′ + c1u = σ+(u,u′, λ), if u > 0,

mu′′ + (d1 + d2)u′ + (c1 + c2)u = σ−(u,u′, λ), if u < 0,

where a massm rests on a smooth surface and is connected to the walls by springs (c1

andc2) and dampers (d1 andd2). σ± denotes the external force and the parameterλ

controls its magnitude (see [179] for details).

In papers [14] and [180], possibly for the first time, a special structure of the domain

has been developed for planar differential equations with discontinuities. To say more

clearly, [14] treats bifurcation of periodic solutions forplanar discontinuous dynam-

ical systems where discontinuities in the state variable appear on countably many

curves intersecting at the origin, and [180] studies generalized Hopf bifurcation for

piecewise smooth planar systems with discontinuities on the right-hand side at several

straight lines emanating from the origin. We suppose that domains of this type can

be very useful in various mechanical and electrical models with discontinuities under

proper transformations.

Most of the papers in the literature assume that discontinuity sets of non-smooth

systems consist of a single surface, especially a straight line [49, 108, 112, 179].

However, due to exterior effects, discontinuities may appear on curves or surfaces

of nonlinear feature. Hence, it is reasonable to perturb thesets of discontinuities.

Differential equations whose right-hand sides are discontinuous on nonlinear surfaces
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were investigated in [18, 19, 22] by the method ofB-equivalence [2, 14, 18, 21, 22].

This method was first proposed to reduce impulsive systems with variable time of

impulses to the systems with fixed moments of impulse effects. It then turned out

that this method could be used for differential equations with discontinuous right-

hand sides as well [18, 22]. That is, through theB-equivalence method, differential

equations with discontinuous vector fields with nonlinear discontinuity sets can be

reduced to impulsive differential equations with fixed moments of impulses.

Our present work is an attempt to generalize the problem of Hopf bifurcation for a

planar non-smooth system by considering discontinuities on finitely many nonlinear

curves emanating from a vertex. We consider the domain in a neighborhood of a ver-

tex which unites several curves. That is, the phase space is divided into subdomains

and the system is described by a different set of differential equations in each domain.

We can say that the system considered in this section is more general than the one in

[180], where discontinuities occur at straight lines. We aim to give some theoretical

background rather than applications, which will be very useful in many problems in

the future. UsingB-equivalence of the issue systems to impulsive differential equa-

tions, we obtain corresponding qualitative properties. Itis the inherent advantage of

the B-equivalence method that we can study equations with nonlinear discontinuity

sets.

The section is organized in the following way. In Section 4.1.1, we introduce the

nonperturbed system and study existence of foci and centersfor that system. Section

4.1.2 presents the perturbed system and the notion ofB-equivalent impulsive systems.

The problem of distinguishing between the center and the focus is solved in Section

4.1.3. We investigate bifurcation of periodic solutions inthe next section. We use the

geometrical characterization given by the change from an unstable to a stable focus

through a center for the nonperturbed system. Afterwards, an appropriate example is

worked out to illustrate our results. Finally, we discuss the possible generalization of

the present results in Section 4.1.6.
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4.1.1 The Nonperturbed System

We consider every angle for a point with respect to the positive half-line of the first

coordinate axis. In the rest of the present section, following assumptions will be

needed.

(A1) Let {l i}pi=1, p ≥ 2, p ∈ N, be a set of half-lines starting at the origin and given by

the equationsΦi(x) = 0,Φi(x) =
〈

ai , x
〉

, i = 1,2, . . . , p, whereai
= (a1

i ,a2
i) ∈

R
2 are constant vectors (see Figure 4.1). Letγi, i = 1,2, . . . , p, denote the

angles of the linesl i such that

0 < γ1 < γ2 < · · · < γp < 2π.

(A2) There exist real-valued constant 2× 2 matricesAi defined byAi =



















αi −βi

βi αi



















with βi > 0 for eachi = 1,2, . . . , p.

Meanwhile, for convenience throughout this section, we adopt the notations below.

(N1) θ1 = (2π + γ1) − γp, θi = γi − γi−1, i = 2,3, . . . , p.

(N2) Let Di denote the region situated between the straight linesl i−1 and l i and de-

fined in polar coordinates (r, φ), wherex1 = r cosφ, x2 = r sinφ, as follows

D1 = {(r, φ) | r ≥ 0 andγp < φ ≤ γ1 + 2π},

Di = {(r, φ) | r ≥ 0 andγi−1 < φ ≤ γi}, i = 2,3, . . . , p.

Now we define a functionf such thatf (x) = Ai x for x ∈ Di, i = 1,2, . . . , p, and

consider a differential equation of the form

dx
dt
= f (x). (4.1)

According to the definition of the regionsDi, one can see that the functionf in system

(4.1) has discontinuities on the straight linesl i, i = 1,2, . . . , p.
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Figure 4.1: The domain of the nonperturbed system (4.1) witha vertex which unites
the straight linesl i, i = 1,2, . . . , p

x1

x2

l2

l1

lp

Remark 4.1.1 It follows from the assumptions (A1) and (A2) that

〈∂Φi(x)
∂x

, f (x)〉 , 0 for x ∈ l i , i = 1,2, . . . , p.

That is, the vector field is transversal at every point on li for each i.

If we use the polar transformation, we can write the system (4.1) in the following

form

dr
dφ
= g(r), (4.2)

where

g(r) =



















λ1r, if φ ∈ (γp + 2kπ, γ1 + 2(k+ 1)π],

λir, if φ ∈ (γi−1 + 2kπ, γi + 2kπ], i = 2,3, . . . , p,

with λi =
αi

βi
, i = 1,2, . . . , p, andk ∈ Z. Since equation (4.2) is 2π−periodic, it will

be enough to consider just the sectionφ ∈ [0,2π]. Thus, the functiong in (4.2) can be

75



defined shortly asg(r) = λir if ( r, φ) ∈ Di. Clearly, this function has discontinuities

whenφ = γi, i = 1,2, . . . , p.

The solutionr(φ, r0) of (4.2) starting at the point (0, r0) has the form

r(φ, r0) =































exp(λ1φ)r0, if 0 ≤ φ ≤ γ1,

exp(λ1γ1 + λ2θ2 + · · · + λi(φ − γi−1)) r0, if γi−1 < φ ≤ γi ,

exp
(

λ1

(

φ − (γp − γ1)
)

+
∑p

i=2 λiθi

)

r0, if γp < φ ≤ 2π,

wherei = 2,3, . . . , p.

If we construct the Poincaré return mapr(2π, r0) on the positive half-axisOx1, we can

see that

r(2π, r0) = exp(
p

∑

i=1

λiθi)r0.

Let us denoteq = exp(
∑p

i=1 λiθi). Sincer(2π, r0) = qr0, we obtain the following

theorem for the nonperturbed system.

T 4.1.1 If

(i) q = 1, then the origin is a center and all solutions are periodic with period

T =
p
∑

i=1

θi

βi
;

(ii) q < 1, then the origin is a stable focus;

(iii) q > 1, then the origin is an unstable focus of (4.1).

4.1.2 The Perturbed System

LetΩ ⊂ R
2 be a domain in the neighborhood of the origin. The following is the list

of conditions assumed for this section.

(P1) Let{ci}pi=1 be a set of curves inΩ which start at the origin and are determined

by the equations̃Φi(y) = 0, Φ̃i(y) =
〈

ai , y
〉

+ τi(y), i = 1,2, . . . , p, where

τi(y) = o(‖y‖) and for eachi, the constant vectorsai are the same as described

in (A1).
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We split the domainΩ into p−subdomains, which will be called̃Di and formulated

soon, by means of the curvesci, i = 1,2, . . . , p. We assume without loss of generality

thatγi ,
π

2
j, j = 1,3. Then for sufficiently smallr, equation of the curveci can be

written in polar coordinates as follows [14]

ci : φ = γi + ψi(r, φ), i = 1,2, . . . , p, (4.3)

whereψi is a 2π−periodic function inφ, continuously differentiable and moreover

ψi = O(r). Using this discussion which makes use of polar transformation, we get the

following description for the regions̃Di:

D̃1 = {(r, φ) | r ≥ 0 andγp + ψp(r, φ) < φ ≤ γ1 + 2π + ψ1(r, φ)},

D̃i = {(r, φ) | r ≥ 0 andγi−1 + ψi−1(r, φ) < φ ≤ γi + ψi(r, φ)}, i = 2,3, . . . , p.

Let ε be a positive number andNε(D̃i) denote theε−neighborhoods of the regions̃Di,

i = 1,2, . . . , p.

(P2) Let fi be a function defined onNε(D̃i) and fi ∈ C(2)(Nε(D̃i)) for each i =

1,2, . . . , p.

(P3) τi ∈ C(2)(Nε(D̃i)), i = 1,2, . . . , p.

(P4) fi(y) = o(‖y‖), i = 1,2, . . . , p.

We shall consider the functioñf (y) = Aiy + fi(y) for y ∈ D̃i, where the matrixAi is

as described in the assumption (A2). OnΩ, we now study the following differential

equation associated with (4.1)

dy
dt
= f̃ (y), (4.4)

where the functionf̃ (y) has discontinuities on the curvesci, i = 1,2, . . . , p. The

domain of the system (4.4) can be seen in Figure 4.2.
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Figure 4.2: The domain of the perturbed system (4.4) near a vertex which unites the
curvesci associated with the straight linesl i, i = 1,2, . . . , p
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cp

c2

lp

c1

If Ω is sufficiently small, then conditions (A1) and (P1) imply that curvesci intersect

each other only at the origin, none of them can intersect itself and 〈∂Φ̃i(y)
∂y

, f̃ (y)〉 , 0

for y ∈ ci, i = 1,2, . . . , p.

Further, for system (4.4) if a solution which starts sufficiently close to the origin on a

curveci with fixed i, then conditions mentioned above imply the continuation ofthe

solution to the curveci+1 or ci−1 depending on the direction of the time.

We can utilize polar coordinates and assume that system (4.4) transforms into an

equivalent system of the form

dr
dφ
= g̃(r, φ), (4.5)

whereg̃(r, φ) = λir + Pi(r, φ) for (r, φ) ∈ D̃i. The functionPi is 2π−periodic inφ,

continuously differentiable andPi = o(r), i = 1,2, . . . , p.

From the construction, we see that system (4.5) is a differential equation with discon-

tinuous right-hand side and the discontinuities occur on the curvesci, i = 1,2, . . . , p.

In almost every area of differential equations, it is common to reduce a given equation

into an equivalent form by proper methods. From this point ofview, we shall use the

B-equivalence method [18, 22] which plays the role of a bridgein the passage from
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differential equations with discontinuous right-hand sides toimpulsive differential

equations.

To reduce the system (4.5) with discontinuous vector fields into an impulsive differ-

ential equation, we redefine the function ˜g in the neighborhoods of the straight lines

l i, which contain the curveci. That is to say, we construct a new functiongN which

is continuous everywhere except possibly at the points (r, φ) ∈ l i. The redefinition

will be made at the points which lie betweenl i andci and belong to the regionsDi

or Di+1 for eachi. Therefore, the construction is performed with minimal possible

changes corresponding to theB-equivalence method, which is the main instrument of

our investigation.

It is clear from the context that ifi = p thenDp+1 = D1. Using the argument above,

we realize the following reconstruction of the domain. We consider the subregions of

Di andDi+1, which are placed between the straight linel i and the curveci. We refer

to the subregionsDi ∩ D̃i+1 (horizontally shaded regions in Figure 4.2) andDi+1 ∩ D̃i

(vertically shaded regions in Figure 4.2) for alli. We extend the function ˜g from

the regionDi ∩ D̃i+1 to Di and fromDi+1 ∩ D̃i to Di+1 so that the new functiongN

and its partial derivatives become continuous up to the angle φ = γi, i = 1,2, . . . , p.

According to all these discussions made for the definition ofgN, we conclude that

gN(r, φ) = λir + Pi(r, φ) for (r, φ) ∈ Di. Now we consider the following differential

equation

dr
dφ
= gN(r, φ). (4.6)

Fix i ∈ {1,2, . . . , p} and consider a neighborhood ofl i based on the description above.

We need to analyze the following three cases:

I . Assume that the point (r, γi) ∈ D̃i+1. Let r0(φ) = r(φ, γi , ρ) be a solution of (4.5)

satisfyingr0(γi) = ρ andξi be the angle where this solution crosses the curveci. We

denote a solution of (4.6) byr1(φ) = r(φ, ξi , r0(ξi)), r1(ξi) = r0(ξi), on the interval

[ξi , γi]. By the variation of constant formula, these solutions havethe form

r0(φ) = exp(λi+1(φ − γi))ρ +
∫ φ

γi

exp(λi+1(φ − s))Pi+1(r
0(s), s)ds,

r1(φ) = exp(λi(φ − ξi))r
0(ξi) +

∫ φ

ξi

exp(λi(φ − s))Pi(r
1(s), s)ds.
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Now, we define a mappingI i on the lineφ = γi into itself as follows

I i(ρ) = r1(γi) − ρ =
(

exp((λi − λi+1)(γi − ξi)) − 1
)

ρ

+ exp(λi(γi − ξi))
∫ ξi

γi

exp(λi+1(ξi − s))Pi+1ds

+

∫ γi

ξi

exp(λi(γi − s))Pids.

II . If the point (r, γi) ∈ D̃i, one can findI i in a similar manner:

I i(ρ) =
(

exp((λi − λi+1)(ξi − γi)) − 1
)

ρ

+ exp(λi+1(γi − ξi))
∫ ξi

γi

exp(λi(ξi − s))Pids

+

∫ γi

ξi

exp(λi+1(γi − s))Pi+1ds.

III . If (r, γi) ∈ ci, thenI i(ρ) = 0.

Results from [14] imply that the functionsI i, i = 1,2, . . . , p, are continuously differ-

entiable and the equation (4.3) leads us toI i = o(ρ).

Hereby we construct the following impulsive differential equation

dρ
dφ
= gN(ρ, φ), φ , γi ,

∆ρ|φ = γi
= I i(ρ).

(4.7)

Let r(φ, r0) be a solution of (4.5),r(0, r0) = r0, andξi be the meeting angle of this

solution with the curveci. Denote by ˆ(ξi , γi] the interval (ξi , γi] wheneverξi ≤ γi and

[γi , ξi) if γi < ξi.

D 4.1.1 We shall say that systems (4.5) and (4.7) are B-equivalent inΩ if for

every solution r(φ, r0) of (4.5) whose trajectory is inΩ for all φ ∈ [0,2π] there exists

a solutionρ(φ, r0) of (4.7) which satisfies the relation

r(φ, r0) = ρ(φ, r0), φ ∈ [0,2π] \
p

⋃

i=1

ˆ(ξi , γi], (4.8)

and, conversely, for every solutionρ(φ, r0) of (4.7) whose trajectory is inΩ, there

exists a solution r(φ, r0) of (4.5) which satisfies (4.8).
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From the discussion above and the construction of the impulsive system (4.7) with

impulse actions at fixed angles, it follows that for sufficiently smallΩ, solutionr(φ, r0)

of (4.5) whose trajectory is inΩ for all φ ∈ [0,2π] takes the same values with the

exception of the oriented intervals ˆ(ξi , γi] as the solutionρ(φ, r0), ρ(0, r0) = r0, of

(4.7). Hence, systems (4.5) and (4.7) areB-equivalent in the sense of the Definition

4.1.1. Moreover, solutions of (4.5) exist in the neighborhoodΩ, they are continuous

and have discontinuities in the derivative on the curvesci. Correspondingly, a solution

of system (4.4) for any initial value is continuous, continuously differentiable except

possibly at the moments when the trajectories intersect thecurvesci, and it is unique.

T 4.1.2 Suppose (A1)-(A2), (P1)-(P4) are satisfied and q< 1 (q > 1). Then

the origin is a stable (unstable) focus of (4.4).

Proof: Let r(φ, r0) be the solution of (4.5) withr(0, r0) = 0 andρ(φ, r0), ρ(0, r0) = r0,

be the solution of (4.7). For the sake of simplicity, we shalluse the notationsPi =

Pi(ρ(s, r0), s) andI i = I i(ρ(γi , r0)), i = 1,2, . . . , p.

On the intervalφ ∈ [0, γ1], we have

ρ(φ, r0) = exp(λ1φ)r0 +

∫ φ

0
exp(λ1(φ − s))P1ds.

For anyi, 2 ≤ i ≤ p, the solutionρ(φ, r0) of (4.7) on (γi−1, γi] is given by

ρ(φ, r0) = exp(λi(φ − γi−1) + λi−1θi−1 + · · · + λ2θ2 + λ1γ1) r0

+ exp(λi(φ − γi−1) + · · · + λ2θ2 + λ1γ1)
∫ γ1

0
exp(−λ1s)P1ds

+

i−1
∑

k=2

exp(λi(φ − γi−1) + · · · + λk+1θk+1 + λkγk)
∫ γk

γk−1

exp(−λks)Pkds

+

∫ φ

γi−1

exp(λi(φ − s)) Pids

+

i
∑

k=2

exp(λi(φ − γi−1) + λi−1θi−1 + · · · + λkθk) Ik−1.

Forφ ∈ (γp,2π], system (4.7) admits the solution

ρ(φ, r0) = exp
(

λ1(φ − γp)
) (

ρ(γp, r0) + Ip

)

+

∫ φ

γp

exp(λ1(φ − s)) P1ds.

81



Using the differentiable dependence of solutions of impulse systems on parameters

[21] and the results from [14], we can conclude that the solution ρ(φ, r0) is differen-

tiable in r0 and
∂ρ(φ, r0)
∂r0

|(φ,r0)=(2π,0) = q. Since systems (4.5) and (4.7), correspond-

ingly (4.4) and (4.7), areB-equivalent, we derive

∂r(φ, r0)
∂r0

|(φ,r0)=(2π,0) = q,

which completes the proof.�

4.1.3 The Problem of Distinguishing Between the Center and theFocus

If q = 1, then we have the critical case and the origin is either a focus or a center for

system (4.4). In what follows, we solve this problem of distinguishing between the

focus and the center.

We assume thatfi and τi, i = 1,2, . . . , p, are analytic functions inNε(D̃i). Then

for sufficiently smallρ, the solutionρ(φ, r0) of (4.7) satisfyingρ(0, r0) = r0 has the

expansion [22]

ρ(φ, r0) =
∞
∑

j=0
ρ j(φ)r j

0, (4.9)

for all φ ∈ [0,2π]. From the expansion (4.9), it can be easily seen thatρ1(0) = 1,

ρi(0) = 0 for all i = 0,2,3,4, . . ., andρ0(φ) = 0. The coefficientρ1(φ) with ρ1(0) = 1

is the solution of the system

dρ1

dφ
= g(ρ1),

whereg is the function defined in system (4.2). It is clear thatρ1(2π) = q = 1. We use

the notationkj = ρ j(2π), j = 2,3, . . .. For the solutionρ(φ, r0) of (4.7), we construct

the Poincaŕe return map

ρ(2π, r0) = qr0 +

∞
∑

j=2

kjr
j
0.

In the critical case, the sign of the first nonzero element of the sequencekj determines

what type of a singular point the origin is. Moreover, for alli = 1,2, . . . , p, we have

Pi(ρ, φ) =
∞
∑

j=2
Pi j (φ)ρ j , (4.10)
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and

I i(ρ) =
∞
∑

j=2
I i jρ

j . (4.11)

The existence of the expansions (4.10) and (4.11) has been proved in [22]. By means

of (4.10) and (4.11), one can derive that the coefficientsρ j(φ) with ρ j(0) = 0, j =

2,3, . . ., are solutions of the following impulsive system

dρ j

dφ
= h(ρ j , φ), φ , γi ,

∆ρ j |φ = γi
=Wi j ,

(4.12)

whereh(ρ j , φ) = λiρ j + Qi j (φ) if (ρ j , φ) ∈ Di, i = 1,2, . . . , p. From the differential

part of (4.7) and the expansion (4.10), one can evaluate for any i, 1 ≤ i ≤ p,

Qi2(φ) = Pi2(φ)ρ2
1(φ), Qi3(φ) = 2Pi2(φ)ρ1(φ)ρ2(φ) + Pi3(φ)ρ3

1(φ)

andQi j (φ) for j = 4,5, . . ., can be determined similarly. Further, the constantsWi j

in (4.12) can be found from the impulsive part of (4.7) and theexpansion (4.11). For

instance,

Wi2 = I i2ρ
2
1(γi), Wi3 = 2I i2ρ1(γi)ρ2(γi) + I i3ρ

3
1(γi),

andWi j can be evaluated, forj = 4,5, . . ., in the same manner.

As kj = ρ j(2π), by solving the system (4.12) one can evaluatekj, j = 2,3, . . ., which

are the coefficients in the expansion of the Poincaré return mapρ(2π, r0):

kj =

γ1
∫

0

exp(−λ1s)Q1 jds+
2π
∫

γp

exp(λ1(2π − s)) Q1 jds+

p
∑

i=2
exp

(

λ1(2π − γp) + · · · + λi+1θi+1 + λiγi

)

γi
∫

γi−1

exp(−λi s)Qi jds+

p
∑

i=2
exp

(

λ1(2π − γp) + λpθp + · · · + λiθi

)

Wi−1, j + exp
(

λ1(2π − γp)
)

Wp j.

(4.13)

From the expansion ofρ(2π, r0) and (4.13), it immediately follows that the following

assertion is valid.

L 4.1.1 Let q= 1 and the first nonzero element of the sequence kj, j = 2,3, . . .,

be negative (positive). Then the origin is a stable (unstable) focus of (4.7). If kj = 0

for all j ≥ 2, then the origin is a center for system (4.7).
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Since systems (4.5) and (4.7), correspondingly (4.4) and (4.7), areB-equivalent, we

have proved the following theorem.

T 4.1.3 Let q = 1 and the first nonzero element of the sequence kj, j =

2,3, . . ., be negative (positive). Then the origin is a stable (unstable) focus of (4.4). If

kj = 0 for all j ≥ 2, then the origin is a center for system (4.4).

4.1.4 Bifurcation of Periodic Solutions

In this section, we first introduce the system

dz
dt
= f̂ (z, µ), (4.14)

where f̂ (z, µ) = Aiz+ fi(z) + µFi(z, µ) for z ∈ D̃i(µ) ⊂ R
2 for analysis, and then we

will describe it in detail with the help of the following assumptions.

(H1) Let {ci(µ)}pi=1 be a collection of curves inΩ which start at the origin and are

given by the equations
〈

ai , z
〉

+ τi(z) + µκi(z, µ) = 0, i = 1,2, . . . , p.

(H2) Let {l i(µ)}pi=1 be a union of half-lines which start at the origin and are defined by

〈ai
+ µ

∂κi(0, µ)
∂z

, z〉 = 0, i = 1,2, . . . , p. Denote byγi(µ) the angles of the lines

l i(µ), i = 1,2, . . . , p.

Similar to the construction of the regionsDi and D̃i, we set forµ ∈ (−µ0, µ0) and

i = 2,3, . . . , p:

D̃1(µ) = {(r, φ, µ) | r ≥ 0, γp(µ) + Ψp < φ ≤ γ1(µ) + 2π + Ψ1},

D̃i(µ) = {(r, φ, µ) | r ≥ 0, γi−1(µ) + Ψi−1 < φ ≤ γi(µ) + Ψi},

D1(µ) = {(r, φ, µ) | r ≥ 0, γp(µ) < φ ≤ γ1(µ) + 2π},

Di(µ) = {(r, φ, µ) | r ≥ 0, γi−1(µ) < φ ≤ γi(µ)},
where functionsΨi = Ψi(r, φ, µ) are 2π−periodic inφ, continuously differentiable,

Ψi = O(r), i = 1,2, . . . , p, and they can be defined applying a similar technique used

in the construction of equation (4.3).
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(H3) Fi : Nε(D̃i(µ)) × (−µ0, µ0) → R
2 andκi are analytical functions both inz andµ

in theε−neighborhood of their domains.

(H4) Fi(0, µ) = 0 andκi(0, µ) = 0 hold uniformly for eachi andµ ∈ (−µ0, µ0).

(H5) The matricesAi, the functionsfi, τi and the constant vectorsai correspond to

the ones described in systems (4.1) and (4.4).

Besides the system (4.14), we need the equation

dz
dt
= f̂z(0, µ)z, (4.15)

where f̂z(0, µ) = Ai + µ
∂Fi(0, µ)

∂z
wheneverz ∈ Di(µ).

In polar coordinates, system (4.14) reduces to

dr
dφ
= ĝ(r, φ, µ), (4.16)

whereĝ(r, φ, µ) = λi(µ)r + Pi(r, φ, µ) if ( r, φ, µ) ∈ D̃i(µ).

Let the following impulse system

dρ
dφ
= ĝN(ρ, φ, µ), φ , γi(µ),

∆ρ|φ = γi(µ) = I i(ρ, µ)
(4.17)

be B-equivalent to (4.16), where ˆgN stands for the extension of ˆg as we described in

Section 4.1.2. That is, ˆgN(ρ, φ, µ) = λi(µ)ρ+Pi(ρ, φ, µ) for (ρ, φ, µ) ∈ Di(µ). We know

that the function ˆgN and its partial derivatives become continuous up to the angle

φ = γi(µ) for i = 1,2, . . . , p. The functionI i(ρ, µ), for eachi = 1,2, . . . , p can be

defined in the same way as done forI i(ρ).

Using a similar argument as in (4.1), we can obtain for system(4.15) that

q(µ) = exp(
p

∑

i=1

λi(µ)θi(µ)).

The last expression plays an important rule to establish thetheorem on the bifurcation

of periodic solutions as stated below.

85



T 4.1.4 Let q(0) = 1, q′(0) , 0 and the origin be a focus for (4.4). Then,

for sufficiently small r0, there exists a unique continuous functionµ = δ(r0), δ(0) = 0,

such that the solution r(φ, r0, δ(r0)) of (4.16) is periodic with period2π. Moreover, the

closed trajectory is stable (unstable) if the origin of (4.4) is a stable (unstable) focus.

The period of the corresponding periodic solution of (4.14)is T =
p
∑

i=1

θi

βi
+ o(|µ|).

Proof: Let ρ(φ, r0, µ) be the solution of (4.17) such thatρ(0, r0, µ) = r0. To exclude

the trivial solution, we considerr0 > 0. The theorem of analyticity of solutions [22]

imply that

ρ(2π, r0, µ) =
∞
∑

j=1

kj(µ)r j
0,

wherekj(µ) =
∞
∑

i=0
kjiµ

i. Sincek1(µ) = q(µ), we have by the hypotheses of the theorem

thatk10 = q(0) = 1 andk11 = q′(0) , 0. For the existence of a periodic solution we

require thatρ(2π, r0, µ) = r0. Now we defineF (r0, µ) = ρ(2π, r0, µ) − r0. Then, it can

be derived that

F (r0, µ) = q′(0)µr0 +

∞
∑

j=2

kj0r
j
0 +

∑

i+ j≥3

kjiµ
ir j

0,

where i, j ∈ N in the second summation. We callF (r0, µ) = 0 as the bifurcation

equation. If we cancel byr0, we obtain the equation

H(r0, µ) = 0, (4.18)

where

H(r0, µ) = q′(0)µ +
∞
∑

j=2

kj0r
j−1
0 +

∑

i+ j≥2

kj+1,iµ
ir j

0.

In the second summation of the last equation, we havei ∈ N and j ∈ N0. Since

H(0,0) = 0 and
∂H(0,0)

∂µ
= q′(0) , 0, one can say by the implicit function theorem

that for sufficiently smallr0 there exists a functionµ = δ(r0) such thatρ(φ, r0, δ(r0))

is a periodic solution.

We assume without loss of generality thatkj0 = 0 for j = 2,3, . . . , l − 1 andkl0 , 0.

Then we can obtain from (4.18) that

δ(r0) = −
kl0

q′(0)
r l−1

0 +

∞
∑

i=l

δir
i
0. (4.19)
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If we analyze the equation (4.19), we can conclude that the bifurcation of periodic

solutions exists if a stable (unstable) focus forµ = 0 becomes unstable (stable) for

µ , 0.

Let ρ(φ) = ρ(φ, r̄0, µ̄) be a periodic solution of (4.17). This periodic solution isa

stable limit cycle if
∂F (r̄0, µ̄)

∂r0
< 0. Assuming that the first nonzero elementkl0 of the

sequencekj0, j ≥ 2, is negative and using (4.19), we get

∂F (r̄0, µ̄)
∂r0

= (l − 1)kl0r̄0
l−1
+ G(r0),

whereG starts with a member whose order is not less thanl. Thus,
∂F (r̄0, µ̄)

∂r0
< 0.

Since (4.16) and (4.17) areB-equivalent systems, the proof is completed.�

4.1.5 An Example

To be convenient, in the following example we use the corresponding notations that

are adopted in Sections 4.1.1-4.1.4.

E 4.1.1 Let c1(µ) and c2(µ) be the curves defined by z2 =
1
√

3
z1 + (1 + µ)z3

1,

z1 > 0 and z2 =
√

3z1 + z5
1 + µz2

1, z1 < 0, respectively. We take

A1 =



















−0.7 −2

2 −0.7



















, f1(z) =





















z1

√

z2
1 + z2

2

z2

√

z2
1 + z2

2





















, F1(z, µ) =



















z1

z2



















,

and

A2 =



















0.5 −2

2 0.5



















, f2(z) =





















−2z1

√

z2
1 + z2

2

−2z2

√

z2
1 + z2

2





















, F2(z, µ) =



















−z1

−z2



















.

After these preparations, we consider the system

dz
dt
= f̂ (z, µ) (4.20)

where f̂ (z, µ) = Aiz+ fi(z)+µFi(z, µ) if z ∈ D̃i(µ), i = 1,2. HereD̃1(µ) denotes the re-

gion situated between the curves c1(µ) and c2(µ), which contains the fourth quadrant.

D̃2(µ) is the region between c1(µ) and c2(µ) containing the second quadrant.

Since q= 1, by Theorem 4.1.1 the origin is a center for the nonperturbedsystem

dx
dt
= f (x),
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where f(x) = Ai x whenever x∈ Di, i = 1,2 as shown in Figure 4.3. Here D1

and D2 are the regions between the half straight lines l1 : z2 =
1
√

3
z1, z1 > 0 and

l2 : z2 =
√

3z1, z1 < 0, which contain the fourth and second quadrants, respectively.

−2 −1.5 −1 −0.5 0 0.5 1 1.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

x
1

x 2

Figure 4.3: The simulation result showing the existence of acenter for the nonper-
turbed system

One can see that l1(µ) (l2(µ)) coincides with l1 (l2). Hence,γ1 = γ1(µ) =
π

6
and

γ2 = γ2(µ) =
4π
3

. Using the given informaton, we obtain

q(µ) = exp(−π
6
µ), q(0) = 1, q′(0) = −π

6
, 0.

Moreover, for the associated system

dy
dt
= f̃ (y),

where f̃ (y) = Aiy + fi(y) whenever y∈ D̃i, i = 1,2, it follows from Theorem 4.1.3

that the origin is a stable focus as k2 < 0 for the perturbed system (see Figure 4.4).

Here D̃1 and D̃2 are the regions between the curves c1 : z2 =
1
√

3
z1 + z3

1, z1 > 0

and c2 : z2 =
√

3z1 + z5
1, z1 < 0, which contain the fourth and second quadrants,

respectively.

From Figure 4.5, we see that the trajectories approach a periodic solution from inside

and outside. That is, system (4.20) has a stable limit cycle with period≈ π.
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−0.3
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−0.1
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0.1
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0.4
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y
1

y 2

Figure 4.4: The simulation result showing the existence of astable focus for the
perturbed system (µ = 0)

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

z
1

z 2

Figure 4.5: The simulation result withµ = −0.8 showing the existence of a limit cycle
for system (4.20)
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4.1.6 Conclusion

Hopf bifurcation for smooth systems is characterized by a pair of complex conjugate

eigenvalues of the linearized system. It is well known that it is not the case for sys-

tems of differential equations with discontinuities. Although the system specified in

(4.14) together with the assumption (A2) reflects a special class of such systems, it is

worthwhile to develop a technique for the investigation of bifurcation problem as it

exhibits complicated bifurcation phenomena. Further, theproblem can be generalized

by taking the matricesAi, i = 1,2, . . . , p, not only of focus type in all subregions but

also of another types, e.g., they may be hyperbolic with realeigenvalues. Clearly, this

problem can be analyzed in a similar way when it is required byconcrete applications

in mechanics, electronics, biology, etc.

4.2 Bifurcation of a Non-Smooth 3-Dimensional Limit Cycle

When we consider bifurcations of a given type in a neighborhood of the origin, the

center manifold theory appears as one of the most effective tools in the investigation.

The study of center manifolds can be traced back to the works of Pliss [147, 148]

and Kelley [100]. When such manifolds exist, the investigation of local behaviours

can be reduced to the study of the systems on the center manifolds. Any bifurcations

which occur in the neighborhood of the origin on the center manifold are guaranteed

to occur in the full nonlinear system as well. In particular,if a limit cycle exists on

the center manifold, then it will also appear in the full system.

Physical phenomena are often modeled by discontinuous dynamical systems which

switch between different vector fields in different modes. In the last several decades,

existence of non-smooth dynamics in the real world has stimulated the study of bi-

furcation of periodic solutions in discontinuous systems as mentioned in Section 4.1.

Furthermore, Bautin and Leontovich [35] and Küpper et al. [112, 179] have con-

sidered Hopf bifurcation for planar Filippov systems with discontinuities on a single

straight line. However, to the best of our knowledge, there have been no results con-

sidering bifurcation in three and more dimensions for equations with discontinuous

vector fields.
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In [14], Hopf bifurcation has been investigated for planar discontinuous dynamical

systems. Based on the method ofB-equivalence [2, 14, 18, 21, 22] to impulsive

differential equations and by using the projection on the centermanifold, we extend

the results of Section 4.1 to obtain qualitative propertiesfor three dimensional systems

with discontinuous right-hand sides. The present section deals with discontinuities on

arbitrarily finite nonlinear surfaces.

The structure of this section is as follows. Section 4.2.1 describes the nonperturbed

system and studies its qualitative properties. Section 4.2.2 is dedicated to the per-

turbed system and the notion ofB-equivalent impulsive systems. The center manifold

theory is given in Section 4.2.3. Our main results concerning the bifurcation of pe-

riodic solutions are formulated in Section 4.2.4. In the last section, we present an

appropriate example to illustrate our findings.

Remark 4.2.1 To make the analysis more understandable, we shall use similar nota-

tions as given in Section 4.1. We note that though some notations below coincide with

the ones used in Section 4.1, they all should be treated independently.

4.2.1 The Nonperturbed System

For the sake of brevity in the sequel, every angle for a point is considered with respect

to the positive half-line of the first coordinate axis inx1x2−plane. Moreover, it is im-

portant to note that we shall consider angle values only in the interval [0,2π] because

of the periodicity.

Before introducing the nonperturbed system, we give the following assumptions and

notations which will be needed throughout the section.

(A1) Let {Pi}pi=1, p ≥ 2, p ∈ N, be a set of half-planes starting at thez−axis, i.e.,

Pi = l i × R, wherel i are half-lines which start at the origin and are given by

ϕi(x) = 0, ϕi(x) =
〈

ai , x
〉

, x ∈ R
2 andai

= (a1
i ,a2

i) ∈ R
2 are constant vectors

(see Figure 4.6). Letγi denote the angle of the linel i for eachi = 1,2, . . . , p

such that

0 < γ1 < γ2 < · · · < γp < 2π.
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z

P

P P
1 2

p

Figure 4.6: Half-planesPi, i = 1,2, . . . , p, of discontinuities for the nonperturbed
system (4.21)

(A2) There exist constant, real-valued 2× 2 matricesAi defined byAi =



















αi −βi

βi αi



















whereβi > 0 and constantsbi ∈ R, i = 1,2, . . . , p.

(N1) θ1 = (2π + γ1) − γp andθi = γi − γi−1, i = 2,3, . . . , p.

(N2) LetDi denote the region situated between the planesPi−1 andPi and defined

in cylindrical coordinates (r, φ, z), wherex1 = r cosφ, x2 = r sinφ andz= z, by

D1 = {(r, φ, z) | r ≥ 0, γp < φ ≤ γ1 + 2π, z ∈ R},

Di = {(r, φ, z) | r ≥ 0, γi−1 < φ ≤ γi , z ∈ R}, i = 2,3, . . . , p.

Under the assumptions made above, we study inR
3 the following nonperturbed sys-

tem

dx
dt
= F(x),

dz
dt
= f (z),

(4.21)

whereF(x) = Ai x and f (z) = biz for (x, z) ∈ Di, i = 1,2, . . . , p.
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We note that the functionsF and f in system (4.21) are discontinuous on the planes

Pi, i = 1,2, . . . , p.

Remark 4.2.2 It follows from the assumptions(A1) and(A2) that

〈∂ϕi(x)
∂x

, F(x)〉 , 0 for x ∈ l i , i = 1,2, . . . , p.

That is, the vector field is transversal at every point onPi for each i.

Since the results can be most conveniently stated in terms ofcylindrical coordinates,

we use the transformationx1 = r cosφ, x2 = r sinφ, z = z so that system (4.21)

reduces to

dr
dφ
= G(r),

dz
dφ
= g(z),

(4.22)

whereG(r) = λir andg(z) = kiz if ( r, φ, z) ∈ Di, with λi =
αi

βi
andki =

bi

βi
, i =

1,2, . . . , p. We see that the functionsG andg given in (4.22) have discontinuities

whenφ = γi, i = 1,2, . . . , p.

The solution (r(φ, r0), z(φ, z0)) of (4.22) starting at the point (0, r0, z0) is given by

r(φ, r0) =































exp(λ1φ) r0, if 0 ≤ φ ≤ γ1,

exp{λ1γ1 + λ2θ2 + · · · + λi(φ − γi−1)}r0, if γi−1 < φ ≤ γi ,

exp{λ1[φ − (γp − γ1)] +
∑p

i=2 λiθi}r0, if γp < φ ≤ 2π,

z(φ, z0) =































exp(k1φ)z0, if 0 ≤ φ ≤ γ1,

exp{k1γ1 + k2θ2 + · · · + ki(φ − γi−1)}z0, if γi−1 < φ ≤ γi ,

exp{k1[φ − (γp − γ1)] +
∑p

i=2 kiθi}z0, if γp < φ ≤ 2π,

for i = 2,3, . . . , p.

Now, we define a sectionP = {(x1, x2, z) | x2 = 0, x1 > 0, z ∈ R}. Constructing the

Poincaŕe return map onP, we find that

(r(2π, r0), z(2π, z0)) = (exp(
p

∑

i=1

λiθi)r0,exp(
p

∑

i=1

kiθi)z0).

93



Let us denote

q1 = exp(
p

∑

i=1

λiθi), (4.23)

q2 = exp(
p

∑

i=1

kiθi). (4.24)

Sincer(2π, r0) = q1r0, z(2π, z0) = q2z0, we can establish the following assertions.

L 4.2.1 Assume that q1 = 1. If

(i) q2 = 1, then all solutions are periodic with period T=
p
∑

i=1

θi

βi
, i.e.,R3 is a center

manifold;

(ii) q2 < 1, then a solution that starts to its motion on x1x2−plane is T−periodic

and all other solutions lie on the surface of a cylinder and they move toward

the x1x2−plane, i.e., x1x2−plane is a center manifold and z−axis is a stable

manifold;

(iii) q2 > 1, then a solution that starts to its motion on x1x2−plane is T−periodic

and all other solutions lie on the surface of a cylinder and they move away

from the origin, i.e., x1x2−plane is a center manifold and z−axis is an unstable

manifold.

L 4.2.2 Assume that q1 < 1. If

(i) q2 = 1, then a solution that starts to its motion on z−axis is T−periodic and all

other solutions will approach the z−axis, i.e., x1x2−plane is a stable manifold

and z−axis is a center manifold;

(ii) q2 < 1, all solutions will spiral toward the origin, i.e., the originis asymptoti-

cally stable;

(iii) q2 > 1, a solution that starts to its motion on x1x2−plane spirals toward the

origin and a solution initiating on z−axis will move away from the origin, i.e.,

x1x2−plane is a stable manifold and z−axis is a center manifold.
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L 4.2.3 Assume that q1 > 1. If

(i) q2 = 1, then a solution that starts to its motion on z−axis is T−periodic and

all other solutions move away from the z−axis, i.e., x1x2−plane is an unstable

manifold and z−axis is a center manifold;

(ii) q2 < 1, a solution that starts to its motion on x1x2−plane moves away from

the origin and a solution initiating on z−axis spirals toward the origin, i.e.,

x1x2−plane is an unstable manifold and z−axis is a stable manifold;

(iii) q2 > 1, all solutions move away from the origin, i.e., the origin is unstable.

Remark 4.2.3 From now on, we assume that q1 = 1 and q2 < 1. In other words,

x1x2−plane is a center manifold and z−axis is a stable manifold.

4.2.2 The Perturbed System

LetΥ ⊂ R
3 be a domain in the neighborhood of the origin. The following conditions

are assumed to hold throughout the section.

(P1) Let {Si}pi=1, p ≥ 2, be a set of cylindrical surfaces which start at thez−axis, i.e.,

Si = ci × R, whereci are curves starting at the origin and determined by the

equations ˜ϕi(x) = 0, ϕ̃ =
〈

ai , x
〉

+ τi(x), x ∈ R
2, τi(x) = o(‖x‖) and the constant

vectorsai are the same as described in (A1).

Without loss of generality, we may assume thatγi ,
π

2
j, j = 1,3. Using the trans-

formation x1 = r cosφ, x2 = r sinφ, equation of the curveci can be written, for

sufficiently smallr, as follows [14]

ci : φ = γi + ψi(r, φ), i = 1,2, . . . , p, (4.25)

whereψi is a 2π−periodic function inφ, continuously differentiable andψi = O(r).

Then, we can define the region situated between the surfacesSi−1 andSi as follows:
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D̃1 = {(r, φ, z) | r ≥ 0, γp + ψp(r, φ) < φ ≤ γ1 + 2π + ψ1(r, φ), z ∈ R},

D̃i = {(r, φ, z) | r ≥ 0, γi−1 + ψi−1(r, φ) < φ ≤ γi + ψi(r, φ), z ∈ R},

wherei = 2,3, . . . , p.

Let ε be a positive number andNε(D̃i) denote theε−neighborhoods of the regions

D̃i, i = 1,2, . . . , p. In addition to (P1), we assume the following list of conditions.

(P2) Let the functionsfi, hi, i = 1,2, . . . , p, be defined on the setNε(D̃i) and satisfy

fi , hi ∈ C(2)(Nε(D̃i)).

(P3) τi ∈ C(2)(Nε(D̃i)), i = 1,2, . . . , p.

(P4) fi(x, z) = o(‖x, z‖), hi(x, z) = o(‖x, z‖), and fi(0, z) = 0, hi(0, z) = 0 for all z ∈ R,

i = 1,2, . . . , p.

We define for (x, z) ∈ D̃i, two functions byF̃(x, z) = Ai x + fi(x, z) and f̃ (x, z) =

biz+ hi(x, z), where the matrixAi and the constantbi are as defined in (A2) above. In

the neighborhoodΥ, we consider the following system

dx
dt
= F̃(x, z),

dz
dt
= f̃ (x, z).

(4.26)

Here, it can be easily seen that the functionsF̃(x, z) and f̃ (x, z) have discontinuities

on the surfacesSi, i = 1,2, . . . , p.

For sufficiently small neighborhoodΥ, it follows from the conditions (A1) and (P1)

that the surfacesSi intersect each other only atz−axis, none of them can intersect

itself and〈∂ϕ̃i(x)
∂x

, F̃(x,0)〉 , 0 for x ∈ ci, i = 1,2, . . . , p. The surfaces of discontinu-

ities,Si, associated with the planesPi can be seen in Figure 4.7.

If a solution of system (4.26) starts at a point, which is sufficiently close to the origin

and on the surfaceSi with fixed i, then this solution can be continued either to the

surfaceSi+1 orSi−1 depending on the direction of the time.
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Figure 4.7: SurfacesSi, i = 1,2, . . . , p, of discontinuities for the perturbed system
(4.26)
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We make use of cylindrical coordinates and rewrite the system (4.26) in the following

equivalent form

dr
dφ
= G̃(r, φ, z),

dz
dφ
= g̃(r, φ, z),

(4.27)

whereG̃(r, φ, z) = λir + Pi(r, φ, z) andg̃(r, φ, z) = kiz+ Qi(r, φ, z) whenever (r, φ, z) ∈
D̃i. The functionsPi and Qi are 2π−periodic inφ, continuously differentiable and

Pi = o(||(r, z)||), Qi = o(||(r, z)||), i = 1,2, . . . , p.

From the construction, we see that system (4.27) is a differential equation with dis-

continuous right-hand side. For our needs, we redefine the functionsG̃ andg̃ in the

neighborhoods of the planesPi, which contain the surfaceSi. In other words, we

construct new functionsGN andgN which are continuous everywhere except possibly

at the points (r, φ, z) ∈ Pi. The redefinition will be made exceptionally at the points

which lie betweenPi andSi and belong to the regionsDi orDi+1 for eachi. There-
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fore, this construction is performed with minimal possiblechanges corresponding to

theB-equivalence method [2], which is the main instrument of ourinvestigation.

It is clear from the context that ifi = p thenDp+1 = D1. Using the argument above,

we realize the following reconstruction of the domain. We consider the subregions of

Di andDi+1, which are placed between the planePi and the surfaceSi. We refer to

the subregionsDi ∩ D̃i+1 (light coloured closed regions in Figure 4.7) andDi+1 ∩ D̃i

(dark coloured closed regions in Figure 4.7) for alli. We extend the functions̃G andg̃

from the regionDi ∩ D̃i+1 toDi and fromDi+1∩ D̃i toDi+1 so that the new functions

GN andgN and their partial derivatives become continuous up to the angle φ = γi,

i = 1,2, . . . , p. According to all these discussions for the definitions ofGN andgN,

we conclude thatGN(r, φ, z) = λir + Pi(r, φ, z) andgN(r, φ, z) = kiz+ Qi(r, φ, z) for

(r, φ, z) ∈ Di. Now, we consider the following differential equation

dr
dφ
= GN(r, φ, z),

dz
dφ
= gN(r, φ, z).

(4.28)

Let us fixi ∈ {1,2, . . . , p} and consider a neighborhood ofPi based on the description

above. We shall investigate the following three cases.

I . Assume that the point (r, γi , z) ∈ D̃i+1. Let (r0(φ), (z0(φ)) be a solution of (4.27)

satisfying (r0(γi), (z0(γi)) = (ρ,w) andξi be the angle where this solution crosses the

surfaceSi. We denote a solution of (4.28) on the interval [ξi , γi] by (r1(φ), z1(φ)) with

(r1(ξi), z1(ξi)) = (r0(ξi), z0(ξi)). Then

r0(φ) = exp(λi+1(φ − γi))ρ +
∫ φ

γi

exp(λi+1(φ − s))Pi+1(r
0(s), s, z0(s))ds,

z0(φ) = exp(ki+1(φ − γi))w+
∫ φ

γi

exp(ki+1(φ − s))Qi+1(r
0(s), s, z0(s))ds,

and

r1(φ) = exp(λi(φ − ξi))r
0(ξi) +

∫ φ

ξi

exp(λi(φ − s))Pi(r
1(s), s, z1(s))ds,

z1(φ) = exp(ki(φ − ξi))r
0(ξi) +

∫ φ

ξi

exp(ki(φ − s))Qi(r
1(s), s, z1(s))ds.
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Define a mappingWi = (W1
i ,W

2
i ) on the planeφ = γi into itself as follows

W1
i (ρ,w) = r1(γi) − ρ = [exp((λi − λi+1)(γi − ξi)) − 1]ρ

+ exp(λi(γi − ξi))
∫ ξi

γi

exp(λi+1(ξi − s))Pi+1ds

+

∫ γi

ξi

exp(λi(γi − s))Pids,

W2
i (ρ,w) = z1(γi) − w = [exp((ki − ki+1)(γi − ξi)) − 1]w

+ exp(ki(γi − ξi))
∫ ξi

γi

exp(ki+1(ξi − s))Qi+1ds

+

∫ γi

ξi

exp(ki(γi − s))Qids.

II . If the point (r, γi , z) ∈ D̃i, we can evaluateWi in the same way:

W1
i (ρ,w) = [exp((λi − λi+1)(ξi − γi)) − 1]ρ

+ exp(λi+1(γi − ξi))
∫ ξi

γi

exp(λi(ξi − s))Pids

+

∫ γi

ξi

exp(λi+1(γi − s))Pi+1ds,

W2
i (ρ,w) = [exp((ki − ki+1)(ξi − γi)) − 1]w

+ exp(ki+1(γi − ξi))
∫ ξi

γi

exp(ki(ξi − s))Qids

+

∫ γi

ξi

exp(λi+1(γi − s))Qi+1ds.

III . If (r, γi , z) ∈ Si, thenWi(ρ,w) = 0.

Results from [14] imply that the functionsW1
i andW2

i , i = 1,2, . . . , p, are continu-

ously differentiable and we haveW1
i = o(||(ρ,w)||), W2

i = o(||(ρ,w)||), which follows

from the equation (4.25). In addition, we note that there exists a Lipschitz constantℓ

and a bounded functionm(ℓ) [2, 14] such that

‖W j
i (ρ1,w1) −W j

i (ρ2,w2)‖ ≤ ℓm(ℓ)(‖ρ1 − ρ2‖ + ‖w1 − w2‖), (4.29)

for all ρ1, ρ2,w1,w2 ∈ R, j = 1,2.
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Consider the following impulsive differential equation

dρ
dφ
= GN(ρ, φ,w),

dw
dφ
= gN(ρ, φ,w), φ , γi ,

∆ρ|φ = γi
=W1

i (ρ,w),

∆w|φ = γi
=W2

i (ρ,w).

(4.30)

Let (r(φ, r0), z(φ, z0)) be a solution of (4.27) withr(0, r0) = r0, z(0, z0) = z0 andξi be

the meeting angle of this solution with the surfaceSi, i = 1,2, . . . , p.

D 4.2.1 We shall say that systems (4.27) and (4.30) are B-equivalentin Υ

if for every solution(r(φ, r0), z(φ, z0)) of (4.27) whose trajectory is inΥ for all φ ∈
[0,2π] there exists a solution(ρ(φ, r0),w(φ, z0)) of (4.30) which satisfies the relation

(r(φ, r0), z(φ, z0)) = (ρ(φ, r0),w(φ, z0)), φ ∈ [0,2π] \
p

⋃

i=1

ˆ(ξi , γi], (4.31)

and, conversely, for every solution(ρ(φ, r0),w(φ, z0)) of (4.30) whose trajectory is in

Υ there exists a solution(r(φ, r0), z(φ, z0)) of (4.27) which satisfies (4.31).

For sufficiently smallΥ, the solution (r(φ, r0), z(φ, z0)), whose trajectory is inΥ for all

φ ∈ [0,2π], takes the same values with the exception of the oriented intervals ˆ(ξi , γi] as

the solution (ρ(φ, r0),w(φ, z0)) with ρ(0, r0) = r0, w(0, z0) = z0 of the impulsive differ-

ential equation (4.30). That is, systems (4.27) and (4.30) are said to beB-equivalent

in the sense of the Definition 4.2.1. From the discussion and the construction above,

it implies that solutions of (4.27) exist in the neighborhood Υ, they are continuous

and have discontinuities in the derivative on the surfaceSi for eachi. Accordingly, a

solution of system (4.26) starting at any initial point is continuous, continuously dif-

ferentiable except possibly at the moments when the trajectories intersect the surface

Si and is unique.

4.2.3 Center Manifold Reduction

In this section, we establish a center manifold theorem for sufficiently small solutions

to (4.30), that is, we show that these solutions can be captured on a 2-dimensional

invariant manifold and we explicitly describe the dynamicson this manifold.
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The functionsGN andgN in (4.30) have been defined asGN(ρ, φ,w) = λiρ+Pi(ρ, φ,w)

andgN(ρ, φ,w) = kiw + Qi(ρ, φ,w), where (ρ, φ,w) ∈ Di. FunctionsPi andQi are

2π−periodic inφ, and satisfy in a neighborhood of the origin

‖Pi(ρ1, φ,w1) − Pi(ρ2, φ,w2)‖ ≤ L(‖ρ1 − ρ2‖ + ‖w1 − w2‖),

‖Qi(ρ1, φ,w1) − Qi(ρ2, φ,w2)‖ ≤ L(‖ρ1 − ρ2‖ + ‖w1 − w2‖),

for sufficiently small positive constantL, i = 1,2, . . . , p. Applying the methods of

the paper [9], we can conclude that system (4.30) has two integral manifolds whose

equations are given by

Φ0(φ, ρ) =
∫ φ

−∞
ek(φ−s)Q(ρ(s, φ, ρ), s,w(s, φ, ρ))ds

+

∑

γi<φ

eki (φ−γi )W2
i (ρ(γi , φ, ρ),w(γi , φ, ρ)), (4.32)

and

Φ−(φ,w) = −
∫ ∞

φ

eλ(φ−s)P(ρ(s, φ,w), s,w(s, φ,w))ds

+

∑

γi<φ

eλi (φ−γi )W1
i (ρ(γi , φ,w),w(γi , φ,w)), (4.33)

wherek = ki , λ = λi ,P = Pi andQ = Qi whenever (s, ·, ·) ∈ Di. We note that the pair

(ρ(s, φ, ρ),w(s, φ, ρ)) in (4.32) denotes a solution of (4.30) satisfyingρ(φ, φ, ρ) = ρ

and (ρ(s, φ,w),w(s, φ,w)) in (4.33) is a solution of (4.30) withw(φ, φ,w) = w.

It is also shown in [9] that there exist positive constantsK0,M0, σ0 such that

Φ0(φ,0) = 0, (4.34)

‖Φ0(φ, ρ1) − Φ0(φ, ρ2)‖ ≤ K0ℓ‖ρ1 − ρ2‖, (4.35)

for all ρ1, ρ2, where a solutionη(φ) = (ρ(φ),w(φ)) of impulsive system (4.30) with

η(φ0) = (ρ0,Φ0(φ0, ρ0)), ρ0 ≥ 0, is defined onR and has the following property

‖η(φ)‖ ≤ M0ρ0e
−σ0(φ−φ0), φ ≥ φ0. (4.36)

Furthermore, it is shown that there exist positive constants K−,M−, σ− such thatΦ−

satisfies

Φ−(φ,0) = 0, (4.37)

‖Φ−(φ,w1) − Φ−(φ,w2)‖ ≤ K−ℓ‖w1 − w2‖, (4.38)

101



for all w1,w2, where a solutionη(φ) = (ρ(φ),w(φ)) of the system (4.30) withη(φ0) =

(Φ−(φ0,w0),w0), w0 ∈ R, is defined onR and satisfies

‖η(φ)‖ ≤ M−‖w0‖e−σ−(φ−φ0), φ ≤ φ0. (4.39)

DenoteS0 = {(ρ, φ,w) : w = Φ0(φ, ρ)} andS− = {(ρ, φ,w) : ρ = Φ−(φ,w)}. Here,S0

is said to be thecenter manifoldandS− is said to be thestable manifold.

The following lemmas can be proven in a similar manner to the ones in [9] with slight

changes.

L 4.2.4 If the Lipschitz constantℓ is sufficiently small, then for every solution

η(φ) = (ρ(φ),w(φ)) of (4.30) there exists a solutionµ(φ) = (u(φ), v(φ)) on the center

manifold, S0, such that

‖ρ(φ) − u(φ)‖ ≤ 2M0‖ρ(φ0) − u(φ0)‖e−σ0(φ−φ0),

‖w(φ) − v(φ)‖ ≤ M0‖w(φ0) − v(φ0)‖e−σ0(φ−φ0), φ ≥ φ0,

where M0 andσ0 are the constants used in (4.36).

L 4.2.5 For sufficiently small Lipschitz constantℓ, the surface S0 is stable in

large.

The dynamics reduced to the local center manifoldS0 is governed by an impulsive

differential equation that is satisfied by the first coordinate ofthe solutions of (4.30)

and has the form

dρ
dφ
= GN(ρ, φ,Φ0(φ, ρ)), φ , γi ,

∆ρ|φ=γi =W1
i (ρ,Φ0(φ, ρ)).

(4.40)

The following theorem follows from the reduction principle.

T 4.2.1 The trivial solution of (4.30) is stable, asymptotically stable or unsta-

ble if the trivial solution of (4.40) is stable, asymptotically stable or unstable, respec-

tively.
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UsingB-equivalence, one can see that the following theorem holds.

T 4.2.2 Assume that the conditions given above are fulfilled. Then the trivial

solution of (4.26) is stable, asymptotically stable or unstable if the trivial solution of

(4.40) is stable, asymptotically stable or unstable, respectively.

4.2.4 Bifurcation of Periodic Solutions

The center manifold reduction in the previous section allows us to establish a Hopf

bifurcation theorem, yielding a very powerful tool to perform a bifurcation analysis

on parameter dependent versions of the considered systems.During the last two

decades, many authors have contributed towards developingthe general theory.

In order to state the Hopf bifurcation theorem, we include parameter dependence into

our framework. In particular, the bifurcation of periodic solutions under the influence

of a single parameterµ, µ ∈ (−µ0, µ0), µ0 a positive constant, is considered for the

system

dx
dt
= F̂(x, z, µ),

dz
dt
= f̂ (x, z, µ),

(4.41)

whereF̂(x, z, µ) = Ai x+ fi(x, z)+µFi(x, z, µ) and f̂ (x, z, µ) = biz+hi(x, z)+µHi(x, z, µ)

whenever (x, z) ∈ D̃i(µ) ⊂ R
3, which will be defined below. We will need the follow-

ing assumptions on the system (4.41).

(H1) Let {Si(µ)}pi=1 be a collection of surfaces inΥ which start at thez-axis, i.e.,

Si(µ) = ci(µ)×R, whereci(µ) are curves given by
〈

ai , x
〉

+ τi(x)+µκi(x, µ) = 0,

x ∈ R
2, i = 1,2, . . . , p.

(H2) Let {Pi(µ)}pi=1 be a union of half-planes which start at thez−axis, i.e.,Pi(µ) =

l i(µ) × R, wherel i(µ) is defined by〈ai
+ µ

∂κi(0, µ)
∂x

, x〉 = 0, i = 1,2, . . . , p.

Denote byγi(µ) the angle of the linel i(µ), i = 1,2, . . . , p.

Like the construction of the regionsDi and D̃i, we define forµ ∈ (−µ0, µ0), i =

2,3, . . . , p, the ones associated to the system (4.41):
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D̃1(µ) = {(r, φ, z, µ) | r ≥ 0, γp(µ) + Ψp < φ ≤ γ1(µ) + 2π + Ψ1, z ∈ R},

D̃i(µ) = {(r, φ, z, µ) | r ≥ 0, γi−1(µ) + Ψi−1 < φ ≤ γi(µ) + Ψi , z ∈ R},

D1(µ) = {(r, φ, z, µ) | r ≥ 0, γp(µ) < φ ≤ γ1(µ) + 2π, z ∈ R},

Di(µ) = {(r, φ, z, µ) | r ≥ 0, γi−1(µ) < φ ≤ γi(µ), z ∈ R}.

Here the functionsΨi = Ψi(r, φ, µ) are 2π−periodic inφ, continuously differentiable,

Ψi = O(r), i = 1,2, . . . , p and can defined in a similar manner toψi in (4.25).

To establish the Hopf bifurcation theorem, we also need the following assumptions:

(H3) The functionsFi : Nε(D̃i(µ))→ R
2 andκi are analytical functions inx, z andµ

in theε−neighbourhood of their domains;

(H4) Fi(0,0, µ) = 0 andκi(0, µ) = 0 hold uniformly forµ ∈ (−µ0, µ0);

(H5) The matricesAi, the constantsbi, the functionsfi gi, τi and the constant vectors

ai correspond to the ones described in systems (4.21) and (4.26).

In cylindrical coordinates, system (4.41) reduces to

dr
dφ
= Ĝ(r, φ, z, µ),

dz
dφ
= ĝ(r, φ, z, µ),

(4.42)

Ĝ(r, φ, z, µ) = λi(µ)r+Pi(r, φ, z, µ) andĝ(r, φ, z, µ) = ki(µ)z+Qi(r, φ, z, µ) if ( r, φ, z, µ) ∈
D̃i(µ).

Let the following impulsive system

dρ
dφ
= ĜN(ρ, φ,w, µ),

dw
dφ
= ĝN(ρ, φ,w, µ), φ , γi(µ),

∆ρ|φ = γi(µ) =W1
i (ρ,w, µ)

∆w|φ = γi(µ) =W2
i (ρ,w, µ)

(4.43)

be B-equivalent to (4.42), wherêGN and ĝN stand, respectively, for the extensions

of Ĝ and ĝ. That is, ĜN(ρ, φ,w, µ) = λi(µ)ρ + Pi(ρ, φ,w, µ) and ĝN(ρ, φ,w, µ) =
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ki(µ)w+Qi(ρ, φ,w, µ) for (ρ, φ,w, µ) ∈ Di(µ). Then the functionŝGN andĝN and their

partial derivatives become continuous up to the angleφ = γi(µ) for i = 1,2, . . . , p.

The functionsW1
i (ρ,w, µ) andW2

i (ρ,w, µ) can be defined in the same manner as in

Section 4.2.2.

Following the same methods which are used to obtain (4.32) and (4.33), we can say

that system (4.43) has two integral manifolds whose equations are given by

Φ0(φ, ρ, µ) =
∫ φ

−∞
ek(µ)(φ−s)Q(ρ(s, φ, ρ, µ), s,w(s, φ, ρ, µ), µ)ds

+

∑

γi (µ)<φ

eki (µ)(φ−γi (µ))W2
i (ρ(γi(µ), φ, ρ, µ),w(γi(µ), φ, ρ, µ), µ), (4.44)

and

Φ−(φ,w, µ) = −
∫ ∞

φ

eλ(µ)(φ−s)P(ρ(s, φ,w, µ), s,w(s, φ,w, µ), µ)ds

+

∑

γi (µ)<φ

eλi (µ)(φ−γi (µ))W1
i (ρ(γi(µ), φ,w, µ),w(γi(µ), φ,w, µ), µ), (4.45)

wherek(µ) = ki(µ), λ(µ) = λi(µ),P = Pi and Q = Qi whenever (s, ·, ·, ·) ∈ Di(µ).

In (4.44), the pair (ρ(s, φ, ρ, µ),w(s, φ, ρ, µ)) denotes a solution of (4.43) satisfying

ρ(φ, φ, ρ, µ) = ρ. Similarly, (ρ(s, φ,w, µ),w(s, φ,w, µ)), in (4.45), is a solution of

(4.43) withw(φ, φ,w, µ) = w.

Now, we setS0(µ) = {(ρ, φ,w, µ) : w = Φ0(φ, ρ, µ)} andS−(µ) = {(ρ, φ,w, µ) : ρ =

Φ−(φ,w, µ)}. The reduced system on the center manifoldS0(µ) is given by

dρ
dφ
= ĜN(ρ, φ,Φ0(φ, ρ, µ), µ), φ , γi(µ),

∆ρ |φ=φi (µ)=W1
i (ρ,Φ0(φ, ρ, µ), µ).

(4.46)

Similar to (4.23) and (4.24) we can define the functions

q1(µ) = exp(
p

∑

i=1

λi(µ)θi(µ)), (4.47)

q2(µ) = exp(
p

∑

i=1

ki(µ)θi(µ)). (4.48)

System (4.46) is a system of the type studied in [14] and thereit is shown that this

system, for sufficiently smallµ, has a periodic solution with period 2π. For our needs,

we shall show that if the first coordinate of a solution of (4.43) is 2π−periodic, then

so is the second one.
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Now, since

ρ(s+ 2π, φ + 2π, ρ, µ) = ρ(s, φ, ρ, µ),

w(s+ 2π, φ + 2π, ρ, µ) = w(s, φ, ρ, µ),

and eachQi is 2π−periodic inφ, we have

Φ0(φ + 2π, ρ, µ)

=

∫ φ+2π

−∞
ek(µ)(φ+2π−s)Q(ρ(s, φ + 2π, ρ, µ), s,w(s, φ + 2π, ρ, µ), µ)ds

+

∑

γi (µ)<φ+2π

eki (µ)(φ+2π−γi (µ)) ×

× W2
i (ρ(γi(µ), φ + 2π, ρ, µ),w(γi(µ), φ + 2π, ρ, µ), µ)

=

∫ φ

−∞
ek(µ)(φ−t)Q(ρ(t, φ, ρ, µ), t,w(t, φ, ρ, µ), µ)dt

+

∑

γ̄i (µ)<φ

eki (µ)(φ−γ̄i (µ))W2
i (ρ(γ̄i(µ), φ, ρ, µ),w(γ̄i(µ), φ, ρ, µ), µ)

= Φ0(φ, ρ, µ),

where the substitutionss= t + 2π andγi(µ) = γ̄i(µ) + 2π are used for the integral and

summation in the second equality.

Then, we obtain the following theorem whose proof can easilybe adapted from the

two dimensional case given in Theorem 4.1.4 of Section 4.1.

T 4.2.3 Assume that q1(0) = 1,q′1(0) , 0,q2(0) < 1, and the origin is a focus

for (4.26). Then, for sufficiently small r0 and z0, there exists a unique continuous

functionµ = δ(r0, z0), δ(0,0) = 0 such that the solution(r(φ, δ(r0, z0)), z(φ, δ(r0, z0)))

of (4.42), with the initial condition(r(0, δ(r0, z0), z(0, δ(r0, z0)) = (r0, z0), is periodic

with period2π. The period of the corresponding periodic solution of (4.41) is
p
∑

i=1

θi

βi
+

o(|µ|).

4.2.5 An Example

For convenience in this section, we shall use the corresponding notations that are

adopted through Sections 4.2.1-4.2.4.
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E 4.2.1 Let c1(µ) and c2(µ) denote the curves determined by x2 =
1
√

3
x1+ (1+

µ)x3
1, x1 > 0 and x2 =

√
3x1 + x5

1 + µx2
1, x1 < 0, respectively. We choose

A1 =



















−0.7 −2

2 −0.7



















, f1(x, z) =





















x1z
√

x2
1 + x2

2

x2z2
√

x2
1 + x2

2





















, F1(x, z, µ) =



















x1(1+ z)

x2



















,

b1 = 2, h1(x, z) = x2
1z, H1(x, z, µ) = z,

A2 =



















0.5 −2

2 0.5



















, f2(x, z) =





















−2x1z2
√

x2
1 + x2

2

−2x2

√

x2
1 + x2

2





















, F2(x, z, µ) =



















x1

x2(1+ x1z)



















,

b2 = −1.5, h2(x, z) = x1z, H2(x, z, µ) = [1 − (x2
1 + x2

2)]z.

Now, we consider the system

dx
dt
= F̂(x, z, µ),

dz
dt
= f̂ (x, z, µ),

(4.49)

whereF̂(x, z, µ) = Ai x+ fi(x, z)+µFi(x, z, µ) and f̂ (x, z, µ) = biz+hi(x, z)+µHi(x, z, µ)

whenever(x, z) ∈ D̃i(µ).

Since l1(µ) (l2(µ)) coincides with l1 (l2), γ1 = γ1(µ) =
π

6
andγ2 = γ2(µ) =

4π
3

. Now,

we can evaluate q1(µ) and q2(µ) as follows

q1(µ) = exp(πµ), (4.50)

q2(µ) = exp(π(µ − 1
24

)). (4.51)

From (4.50) and (4.51), we can see that q1(0) = 1, q′1(0) > 0 and q2(0) < 1. There-

fore, by Theorem 4.2.3, system (4.49) has a periodic solution with period≈ π. One

can see from the Figures 4.8 and 4.9 below, which are obtained for the same initial

conditions andµ = 0.1, that the trajectories approach a periodic solution from above

and below. In other words, system (4.49) admits a stable limitcycle.
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Figure 4.8: The simulation result showing the existence of aperiodic solution for
(4.49)
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Figure 4.9: A different viewpoint of the Figure 4.8
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CHAPTER 5

CONCLUSION

This thesis is devoted to the differential equations with discontinuities of different

types: impulsive differential equations, differential equations with piecewise constant

argument, differential equations with discontinuous right-hand sides [72, 113, 152,

52] and also to their applications in population dynamics.

In the last four decades, there has been a boom in the theory ofdifferential equations

with discontinuities. The importance of these equations iscaused by the needs of

modern science and technology as discontinuous characteristics are very often ob-

served in the evolution of real processes in biology, chemistry, control theory, ecol-

ogy, economics, electronics, mechanics, medicine and physics. The theory is not

only richer than the corresponding theory of classical differential equations, but also

represents a more natural framework for mathematical modeling of real world prob-

lems. Hence, we find it worthwhile to discuss several qualitative problems related to

differential equations with some kind of discontinuity in the thesis.

It is well recognized that models of population dynamics arenot suitable to be con-

sidered continually and thus not realistic when the seasonality of the changing en-

vironment, impulse and delay effects are not taken into account. In order to obtain

more accurate results, it is desirable to study population dynamics models under these

effects. In this context, we have improved the Lotka-Volterra and ratio-dependent

predator-prey models with the help of differential equations with discontinuities in

Chapter 2.

The subject of Chapter 3 is very new. We should emphasize that differential equations

with piecewise constant arguments of generalized type havebeen very recently intro-
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duced by Akhmet [5], [8]-[10] and the novelty of those equations has been recognized

in [146]. Through the Lyapunov-Razumikhin method, we have developed the previ-

ous results obtained on the stability of differential equations with piecewise constant

arguments by considering the argument function in the general form and by taking

any non-negative real number as an initial moment in Chapter 3. We improve the de-

ficiencies arising from the classical method of reduction todiscrete equations, which

has been used as a main tool of investigation in the earlier works.

The last two problems considered in Chapter 4 have been investigated by using the

B-equivalence method, which has been developed in papers of Akhmet [2, 14, 18, 21,

22]. The significance of the method stems from the fact that itenables us to consider

discontinuity sets of nonlinear feature. The power and the effectiveness of this method

for the analysis of problems of nonlinear feature have been proved once again. We

can see that the method presents itself in the most complicated places of nonlinear

problems such as bifurcation and center manifold reduction.

In the formulation of our problems, we have been motivated bythe practical signifi-

cances and challenges in population dynamics and mechanisms with dry friction. We

are sure that the theoretical basis established in this thesis will be useful for practical

investigations in other fields of the science and will lead tosurvey application prob-

lems including collision bifurcation theory, oscillationin mechanisms with vibration,

neural networks, etc. more deeply compared to the previous ones. Moreover, we be-

lieve that the concept of nonlinearities can be significantly increased using the results

of the thesis. The results of Chapter 3 can be used in the stability analysis of many real

systems with piecewise constant arguments. We know that differential equations with

discontinuous right-hand sides are also specific for a wide range of applications aris-

ing from mechanical systems with dry friction, electrical circuits with small inductiv-

ities, systems with small inertia, dynamical systems with non-differentiable potential,

optimization problems with non-smooth data, electrical networks with switches, os-

cillations in visco-elasticity and optimal control. Thus,further investigations could

be concentrated on the creation or disappearance of a periodic orbit in real world

problems through the results of Chapter 4.
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