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ABSTRACT

MULTI-CLASS CLASSIFICATION METHODS UTILIZING
MAHALANOBIS TAGUCHI SYSTEM AND
A RE-SAMPLING APPROACH FOR IMBALANCED DATA SETS

AYHAN, Dilber
M.S., Department of Industrial Engineering
Supervisor: Prof. Dr. Giilser KOKSAL

April 2009, 84 pages

Classification approaches are used in many areasdir to identify or estimate classes, which
different observations belong to. The classifiaat@mpproach, Mahalanobis Taguchi System
(MTS) is analyzed and further improved for multass$ classification problems under the scope
of this thesis study. MTS tries to explore sigrdfit variables and classify a new observation
based on its Mahalanobis distance (MD). In thiglgtdirst, sample size problems, which are
encountered mostly in small data sets, and mulitiealrity problems, which constitute some
limitations of MTS, are analyzed and a re-samplpgroach is explored as a solution. Our re-
sampling approach, which only works for data sath two classes, is a combination of over-
sampling and under-sampling. Over-sampling is basedSMOTE, which generates the
synthetic observations between the nearest neighifoobservations in the minority class. In
addition, MTS models are used to test the perfoomanf several re-sampling parameters, for
which the most appropriate values are sought spdcifeach case. In the second part, multi-
class classification methods with MTS are develogedalgorithm, namely Feature Weighted
Multi-class MTS-I (FWMMTS-I), is inspired by the sieent feature weighted MD. It relaxes
adding up of the MDs for variables equally. Thisyides representations of noisy variables
with weights close to zero so that they do not ntaskother variables. As a second multi-class
classification algorithm, the original MTS methadextended to multi-class problems, which is
called Multi-class MTS (MMTS). In addition, a comphle approach to that of Su and Hsiao



(2009), which also considers weights of variablissstudied with a modification in MD
calculation. It is named as Feature Weighted Muli#tss MTS-II (FWMMTS-II). The methods
are compared on eight different multi-class data seing a 5-fold stratified cross validation
approach. Results show that FWMMTS-I is as accuaatiMTS, and they are better than
FWMMTS-II. Interestingly, the Mahalanobis DistanCeassifier (MDC) using all the variables

directly in the classification model has perfornegghally well on the studied data sets.

Keywords Classification, Multi-class Classification, Re-sdimg, Mahalanobis Taguchi

System (MTS), Feature Weighted Mahalanobis Distance
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MAHALANOBIS TAGUCHI S ISTEMI ILE COKLU SINIFLANDIRMA
YONTEMLER 1 VE DENGELT OLMAYAN VER 1 SETLERI ICIN BIR
YENIDEN ORNEKLEME YAKLA SIMI

AYHAN, Dilber
Yuksek Lisans: Endustri Mihendi&liBolumu
Tez Yoneticisi: Prof. Dr. Gilser KOKSAL

Nisan 2009, 84 sayfa

Siniflandirma yaklgmlari farkli goézlemlere ait siniflari tahmin etmghk da belirlemek icin
bircok alanda kullaniimaktadir. Bu gaha kapsaminda, Mahalanobis Taguchi Sistem (MTS)
siniflandirma yaklami incelenmg ve bu yontem cok sinifli problemler igin guiliilmi stir.
MTS, 6nemli dgiskenleri secerek Mahalanobis uzgkha (MU) gbre yeni bir gdzlemi
siniflandirmaya cajir. Bu calsmada, ilk olarak, MTS ydnteminde coklugienti problemi ile
kicik veri kiimelerinde gorilen 6rnek buyiklisorunlari incelenmive ¢6zim olarak bir
yeniden 6rnekleme yontemi gelrilmi stir. Gelistirilen drnekleme yoéntemi iki sinifli problemler
icin calsmakta olup, veri ¢galtma ve azaltma yodntemlerini icermektedir. Verigaitma
yontemi, az sayili sinifin gézlemlerine ait yakiankuluklarda sentetik gézlemler ghuran
SMOTE yoéntemine dayanmaktadir. Ornekleme yontemiddeuma gore en uygun ghleri
degisen birkac yeniden érnekleme parametresingabanini test etmek icin MTS kullanilgtir.
Ikinci boluimde, MTS ile c¢ok sinifli problemleri ¢dzeyeni siniflandirma yontemleri
geligtirilmistir.  Agirhikh - MU yaklasimi  kullanilarak, Dgisken Agirlikli Coklu MTS-I
(FWMMTS-I) gelistirilmistir. Bu yaklgimda, MU’nun dgiskenlere dayali @t agirlikh
toplanmasi 6zelli hafifletiimistir. Gurllta dgiskenlerin sifira yakin @rliklarla temsil edilmesi
sazlanarak MU hesaplarkengir desiskenleri gizlemesi engellenstir. ikinci olarak, iki sinifli
problemleri ¢6zen MTS'nin ¢ok sinifli probleme ugamasiyla, Cok Sinifi MTS (MMTS)
gelistirilmi stir. Ayrica, Su ve Hsiao (2009) cahasinda Onerilen, ger bir dgisken airlikh

Vi



¢oklu siniflandirma yaklaminda, MU hesaplamasi gegkligi yapilarak, Dgisken Agirlikh
Coklu MTS-II (FWMMTS-II) yontemi olarak isimlendimistir. Tium yontemler tabakali ¢apraz
dogrulama yaklaimi kullanilarak sekiz farkli ¢ok sinifli veri kimesinde kagilastiriimistir.
Sonuglara gore, FWMMTS-I yontemi MMTS ile ayni skami gostermsi ve bunlar ise
FWMMTS-II yonteminden daha iyi karim gosternstir. ilging olarak, siniflandirma modelinde
tim deiskenleri dg@rudan kullanan MU Yakkami (MDC) da, cakilan veri kiimelerinde ayni
derecede barim gosternsiir.

Anahtar Kelimeler Siniflandirma, Coklu siniflandirma, Yeniden Ormeke, Mahalanobis
Taguchi Sistem (MTS), [Esken Agirlikll Mahalanobis Uzakdl.
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CHAPTER 1

INTRODUCTION

Multivariate data analysis refers to any statistteahnique, which analyzes data having more
than one variable. This essentially models reabsitns. Multi-class classification problems are
a subset of multivariate problems. They are defiasdfinding a prediction model of the

associated class of a new example on observedbiegiaMultivariate analysis becomes
nontrivial when there are lots of variables. Intatar, multi-class classification remains as a

research area.

Mahalanobis Taguchi System (MTS) is a multivariatassification technique with known
labels. It is developed with a combination of MDcinstruct a multidimensional measurement
scale from a set of observations to a referencat pith the determination of the important
variables (Taguchi, 2001).

In particular, we study the effect of class imbakproblems on MTS. The motivation comes
from problems due to limited number of observatidnsfact, sample size problems can be
classified in three types. In the first type, thetfthat the number of observations may be large
enough but less than the number of variables pamsexstacle to MTS, since MTS empirically
requires that the number of samples is grater themumber of variables and collecting more
data may be a solution to it. In the second typelier of observations in a class with respect to
the other classes, over-represented or under-eagises may cause problems. In the third type,
sample size and imbalanced data problem may happéme same time. As a result, over-
sampling algorithms should consider the numberasfables, as well. One of the objectives of

this thesis study is to overcome the third typewthack.



In this study, we first develop a re-sampling aipon working for two-class data sets, which is

a combination of over-sampling and under-sampldger-sampling is done by SMOTE, which

is an over-sampling method by generating the syicthebservations between the nearest
neighbors of observations in the minority classa@la et al., 2002). MTS models are also used
to handle several imbalanced data sets resizeduniler-sampling or over-sampling based on
search space of class ratio, sample size and nuofb@sarest neighbors. For the purpose of
generating rules for suggested re-sampling parametethe search space, a decision tree
classifier is applied to the performance measucesetate data set characteristics with the

performance of the models.

In the second part of the study, several multisidassification algorithms are developed. In the
literature, we encounter one recent study on noldss MTS, which belongs to Su and Hsiao
(2009). The other objective of this study is depélg multi-class classification methods. We
first develop an algorithm called Feature Weighthadti-class MTS-I (FWMMTS-I) for multi-
class classification problems. The descent featighted concept in the study of Wolfel and
Ekenel (2005), which relax equal adding up of tedable distances in MD calculation is used
in FWMMTS-I. In addition, we extend the original NTalgorithm to multi-class problems
(MMTS method). . Su and Hsiao (2009) use a Gram¥th(GS) algorithm, which is criticized
in the literature since GS is found highly sensitte data ordering since it depends on which
variable is first selected in the order. Thus, aification is made in MD calculation of Su and
Hsiao (2009). We name the latter algorithm “Feateighted Multi-class MTS-II (FWMMTS-
I)". Finally, performances of these algorithms ammpared on eight different multi-class data
sets. The results are also compared to those ofalslabbis Distance Classifier (MDC) and
Weighted Mahalanobis Distance Classifier (WMDC),iahhis developed by using the descent
feature weighted MD calculation of Wélfel and EKef#905).

This thesis consists of four more chapters othan tthis first chapter of introduction. In the
second chapter, some background information ateutiultivariate classification systems, MD
and MTS are provided along with a comprehensiegdture review on delimitations and some
popular applications of MTS. Moreover, some of tleeent literature on re-sampling is
presented. In the third chapter, a new re-sampdilggrithm with MTS is presented and its

performance on different data sets is discussedhdnfourth chapter, the multi-class MTS



algorithms are presented and their performances@rpared. In the last chapter, conclusions

and further studies that can be done in the fudteestated.



CHAPTER 2

LITERATURE SURVEY AND BACKGROUND

2.1 METHODOLOGY AND BACKGROUND

2.1.1 Classification Problems and Methods

Unlike the univariate analysis, multivariate datelgsis refers to any statistical technique used
to study data that contains more than one varidliiis. essentially models the reality since each
situation, product, or decision mostly involves mtran a single independent variable. The goal
of the multi-class classification problems, whishalso a subset of multivariate problems, is to
find a mapping, a model or a function to prediet #ssociated class of a new example. They
assume the existence of a pre-defined set of dlakss also known as a supervised learning in

order to distinguish it from clustering (or unsupsedlearning).

The classification methods have their own advarsage disadvantages. To illustrate, while the
discriminant analysis assumes that data comes fmmuttivariate normal distribution, the
Logistic Regression (LR) and Multivariate AdaptiRegression Splines (MARS) do not. In
recent years, the structural models have also beqoopular. An Artificial Neural Network
(ANN) is a mathematical or a computational modeddabon biological neural networks with a
structure changing with respect to external orrivdkeinformation. It can model nonlinearities
similar to MARS. ANN and MARS are typically morecaessful in modeling high-dimensional
problems. Unlike ANN and MARS, LR provides probait statements. Unfortunately, LR
may be difficult to use without data pre-processsimgce it may provide too large or infinite
coefficient estimates. Besides, ANN cannot namentiost important variables while LR and
MARS can do. MARS automatically produces the rassuihile the ANN architecture should be
determined by the user.



2.1.2 Performance Measures of Classification (Bingrand Multi-class)

The performance measures, which are taken fromd/Neid Zhang (2003), can be listed as
follows:

2.1.2.1 Binary Classification Measures

A coincidence (or confusion) matrix illustrates #eeuracy of a solution for a classification

problem.

Table 2.1: A Simple Coincidence Matrix

Predicted class
Positive Negative
Positive a(TP) b (FN)
Actual class
Negative c (FP) d (TN)

According to Table 2.1, while TP and TN denote thember of positive and negative
observations which are classified correctly, FN &®l denote the number of misclassified

positive and negative observations, respectively.
Percentage of Correct Classification Rate (PCC):

Percentage of correct classification rate (PCCggithe proportion of true results (both TP and

TN) in total observations. For a total number af@tyationsn, PCC equals to:

(TP+TN)
PCC="——

Kappa:

Kappa is the proportion of correctly classified elystions after the probability of chance
agreement has been removed. Kappa is always lassothequal to 1. A value of 1 implies
perfect agreement and less than 1 implies lessbeerct agreement. It is defined as follows:



Kappa= (6, -0,)/(1-0,)

0,=(a+d)/n

5 - L(arb)/2(a+c)/2] +[(c+d)/2(b+d)/2]
2= r]2

Wheren is the total number of observations.
Receiver Operating Characteristics (ROC) Curve:

ROC is a two-dimensional graph, in which true pes# (TP) rate is plotted on the y-axis, and
false positives (FP) rate is plotted on the x-aXtse ideal point on the ROC curve would be [0,
1], which means all positive observations are diaslscorrectly and no negative observations

are misclassified as positive.

Area under ROC Curve (AUC):

AUC measures the area under the ROC curve.
Precision:

Precision is an indicator of sharpness in identitfythe class of interest. It is simply defined as:

TP

Precision —————
TP+ FF

Recall (Sensitivity) and Specificity:

The sensitivity (also called recall rate) measuhes proportion of actual positives which are
correctly identified. The specificity measures thportion of actual negatives which are

correctly identified. They are closely related twe tconcepts of type | and type Il errors.



Sensitivit —L Specificity=
Y TP+ EN P y=

_ TN
TN + FF
Specificity is sometimes confused with the precisibhe distinction is critical when the classes

are different sizes. A test with very high spedfican have very low precision if there are more

true negatives than true positives, and vice versa.
F measure:

In general, there is a tradeoff between the pratiand recall, which can be achieved. Thus, the
F-measure is a convenient way of looking at theéetodf between precision and recall in a single
measure. In a sense, F-measure measures the bdlatweeen precision and recall. The
traditional F-measure is:

2
1 1

.+t
precision recall

Two other commonly used F-measures are theéasure, which weights recall twice as much
as precision; andyks measure, which weights precision twice as muaieeal.

_ (1+ B )(precisiorx recall)
(B? Dprecision+ recall)

B

Geometric Mean of Sensitivity and Specificity

The geometric mean of specificity and sensitivibyriean) gives the importance to the balance

measurement of class accuracies. G-mean is:

G-mean=,/sensitiviy x specificiy



Stability:

A classification model is stable when it performstjas well on seen (training) and unseen (test)
data sets. The stability can be measured as a mubdiereen 0 and 1, where 0 means
completely stable and 1 means completely unstafiies measure can be calculated as the
arithmetic difference divided by arithmetic suntloé training and test classification rates,:&R
and CRg respectively.

Stability = (CRz -CR)/(CR, +CR,.)

2.1.2.2 Multi-class Classification Measures
Average of Class Accuracies:

Class accuracy defines the number of correct diessons in each class. Su and Hsiao (2009)
use “Balanced Class Accuracy (BCA)", as an averafjyelass averages since it computes

accuracy independent from the size of each class.

sferR + TN, /n]
BCA = = i

wheren; is the size of clagsfor L classes.

Percentage of Correct Classification Rate (PCC):

PCC is the ratio of true results (both TP and Td\iotal observations, which is N for L classes.

(TR +TN,)

PCC=

AN

N

Stability can also be a measure of multiclass iflaason.



2.1.3 Mahalanobis Distance

Mahalanobis distance (MD) was first introduced badanta Chandra Mahalanobis in 1936.
Considering the correlations, it is a way of makagroup of multivariate variables uniform.
Classifiers based on MD are mostly used for stedispurposes. MD is also used for selection
of outliers. MD can be perceived to be a constanitiple of Hotelling’s T (Hawkins, 2003,
Abraham and Variyath, 2003).

The covariance between two variables is simply dkerage product of the values of two

variables X X;, which are expressed as deviations from theire@sge meansy; and 4, :

Cov(xi’xj):El,(xi - 14 )(X | 'ﬂj)J (2.1)

Given the covariance of ;Xand X, correlation coefficient between variables ahd X is

obtained as:
__ Cov(X; X;)
Whereg; ando; are the standard deviations of the variableand X.
MD is a squared distance (also denoted 3s @hich is obtained by:
T~
Z Z
MD =D? = L (2.2)
k
z, = (Xil “H ’.",Xik ‘,Uk)
g, g, (2.4)

where:

z . standardized vector obtained by the standardized values (£1,... k)
k :the number of variables.

T : transpose of the vector

C™* inverse of the correlation matrix



The mean of MD values is expected to be one simgatton (2.3) uses a normalized vector
and a normalizing factor K/ The main assumption of MD is that the variablesraultivariate
normal. Based on the central-limit theorem, mamgang distributions can be approximated to
normal. In addition, this assumption may be relaxedsituations, where the number of

observations becomes larger (Johnson and Wich888)1

In addition, when a mixture of continuous and diservariables is present, MD could be
generalized (Bar-Hen and Daudin, 1995). Bar-Heth Baudin (1995) (as cited in Leon and
Carri¢re, 2005) apply the Kullback-Leibler divergencehe general location model and derive
a distance that specializes to the MD in the alesefcnominal variables. Afterwards, the
distance is utilized for the mixed continuous ariscgtte data, which provides to use the
gualitative as well as the quantitative data (Bedet al., 2000 as cited in De Leon afutriere,
2005). Finally, Leon an@arriére (2005) derive an MD which can be used with daiteed with
nominal, ordinal and continuous variables.

MD differs from the Euclidean distance in addregstorrelations. Wolfel and Ekenel (2005)
state that MD is a weighted Euclidean distance, resitbe weights are expressed by the
covariance matrix. According to Srinivasaraghavad allada (2006), MD is superior to the
other statistical approaches in the following waiys;onsiders the covariance and ranges of
acceptability (variance) between variables; it cengates for interactions (covariance) between
variables; it lacks dimension. It is an effectiveethod since a lot of observations can be
analyzed due to the matrix calculation (Riho et2005).

On the other hand, there are also some limitatmhMD. MD assumes equal priorities in
variables, as well as equal misclassification c¢Stsarma, 1996). Moreover, MD does not
consider the specific contribution of a variablealdition, as a requirement of MD, the number
of observations collected in the normal group stichg larger than the number of variables
(Srinivasaraghavan and Allada, 2006). In fact, galhethe number of observations may not be
enough, compared to its dimensionality. As a reshl# covariance matrix usually cannot be
estimated accurately. In addition, to calculate fi@n an observatiotY to X, X andY must
have the same number of columns due to the materation (division), but may have different

numbers of rows.
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MTS method is based on MD and is explained in tlewing sections.

2.1.4 Mahalanobis Taguchi System

Mahalanobis Taguchi SystemMTS) is a method of classification and selection tioé
significant variables. MTS, a combination of MD wifaguchi’s robust engineering, addresses a
scale based on data input characteristics to mediserdegree of abnormality. Consequently, an
unknown observation is assigned to a class. Cudtegl. (2006) illuminate MTS for the
statistical measure of how well an unknown obsé@wamatches a known observation. Since
MTS is based on MD, its assumptions are similgdh&oassumptions of MD, which are given in
the previous part.

In MTS, every example outside the normal spacet {#aabnormal example) is regarded as
unique, which does not constitute a separate ptpulaAs a result, Taguchi and Jugulum

(2000) do not accept MTS as a classification metfiaguchi and Jugulum (2000) also mention
the usage of categorical data with MTS. Givaras the number of levels for a categorical
variable,(m-1) columns are allocated for the categorical varialblen observation has a level of

one, then all the allocated variables apart froefttst column is assigned to be zero. On the
other hand, if the level of the categorical vamalsl 2, the second column corresponding to the

given observation is assigned to 1, while the athee assigned to 0.

Woodall et al. (2003) criticize MTS by stating thiie other statistical methods are better
designed to account for the sampling variation thedvariation between two observations. This
lack of attention to variation between the obséovestis more evident in the MTS clinical trials
which results to at least some classification str@n the other hand, Srinivasaraghavan and
Allada (2006) mention that MTS is a very effectitgchnique for detection of complicated
causes of failures due to its eligibility for thexmix calculation.

The procedure of MTS is not much complicated. |a flist stage, data pre-processing is
performed. Data set is separated into a normala{tiwg’) group, which shows homogenous

characteristics, and an abnormal (“unhealthy”) grator example, for a cancer data, the healthy
people constitute a normal group, whereas the peajph cancer constitute an abnormal group.

11



MTS is a method of supervised learning in ordedigtinguish in which the classes (or
labels) are knownMean and standard deviation of the normal groupumsexl in order to
standardize the abnormal and normal groups. Nogrmlp constitutes a Mahalanobis space
(MS). MTS model tries to memorize the specificasiaf the normal group by including the
inverse of the correlation matrix of the normalusoData pre-processing is continued to check

for detecting the normality of variables and outlief MS scale.

An outlier is defined as an observation that liessinle the overall pattern of a distribution
(Moore and McCabe, 1999) as shown in Figure 2.1sdme of cases, the selection of an
appropriate MS becomes nontrivial, although theddain of outliers can be done by means of
several ways. Dot plots can be drawn but when thmber of variables is large, they are not
very visual. The other way is examining standamiimermal observations on a Chi-square plot.
MD is also used in outlier detection (Anderson &uthumacker, 2003). For example, it is used
as an outlier detection method in the De Grootle{2001). A threshold value is utilized in
detecting outliers via MD to omit the observatidmsving higher MDs. After detecting the
outliers, the MS scale is validated. If the MS edal not validated, it cannot suitably represent
the normal condition in reality and is necessarypdoreconstructed with a new MS using the
remaining normal observations until a suitable MBamed (Taguchi and Jugulum, 2002). This
is all for data pre-processing.

12
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Figure 2.1: Outliers of a Mahalanobis Space (M8) fffie vehicle data)

In the second stage, MD values of abnormal obsensfre calculated. MD of a standardized

z; vector is given in Equation (2.3). The MD valuésbnormal group are expected to be higher
than normal group, as shown in Figure 2.2.

307

20

—_— —

T T
MD (normal group) MD (anormalVD)

Figure 2.2: MD Values of Normal and Abnormal Group
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Then, important variables are selected for the mbgeaising signal-to-noise (S/N) ratios and
orthogonal arrays (OAs) based on MD values. Thanabror abnormal groups may not be
distinguishable due to the improper selection afaldes. Each variable in an OA is assigned to
one of its column and set with two levels, usingl ot using the variable. There are three
general forms of S/N ratioqi) larger-the-better type(ii) smaller-the-better type angii)

nominal-the-best type. Taguchi and Jugulum (20@@perage using larger-the-better S/N ratios

instead of nominal-the-best type when the trueléeokabnormal group are not known.

1n 1
Larger- the- betterS/N ratio =-10log (— £

N i=1MDi2) (2.5)

The steps of the original MTS algorithm:

1. Data pre-processing steps:

a. Collect N observations with two-classes. MTS engpily requires that the

number of observations in the normal class is gredtan the number of

variablesk.
b. Letx; be the value of"iobservation forjvariable (i=1,... N,j=1,... k).
The vector of variable values3s= (X, . . . ,Xk) -

c. Calculate the mean of variable values and the standard deviatias, for each
variable xin the normal group.

d. Normalize or standardize observations (X, . . . ,Xik)T with p; ando; as given
in Equation (2.4).

e. Use the square distance of MD given in EquatioB)(2.

MD =D? =24 C"2
k

f.  Omit observations having MD values more tha)_ﬁ,r@ +3Syq) as outliers.

Here, X mg is the average of ansl 4 is the standard deviation of observations

in the normal group. MTS requires that the norntedé< has a high uniformity in

terms of variable values. We should keep the requént in the step (a): N > k.

14



2. Model construction steps:

a. Using S/N ratios and OA, the important variables selected. The number of
rows in an OA should be at leak+2), where k denotes the number of
variables. Furthermore, the number of columns e@@#A must be equal to the
number of variables. After S/N ratios are calcudatie gain of a variable is the
difference of the average S/N ratio between theasins when the variable is
used and not used in an OA. In particular, gainicetés the degree of
effectiveness in the classification system after iticlusion of the variable. If
the gain is positive, the variable is useful toil@uded in the model. Indeed,
the gain of the variable is equivalent to an edttiahe main effect of the
variable in statistical design of experiments tewiogy. The presence and the
absence of the variables are considered as théslefean OA in the MTS
method. Level-1 in the OA column represents thesgmmee of a variable and
Level-2 represents the absence of that variabM.r&fos are calculated using
the levels of OAs based on MD values. ConsiderireggS/N ratios of presence
and absence of a variable, if the difference istives the variable is included in
the model.

b. Calculate a threshold value,of MD for classifying classes. An appropriate
threshold, which separates the abnormal observétion the normal group or

MS, is found. Consequently, class assignmentsare dased on the threshold.

3. Classifying a new data:

a. If a new observation has an MD smaller tharit is assigned to the normal

class. Otherwise, it is in the abnormal class.

The procedure of the original MTS is given in Figar3.
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Figure 2.3: The Flowchart of the Original MTS Metho




2.1.5 Gram-Schmidt MTS

The difference betwee@ram-Schmidt MTSGSMTS) and the original MTS comes from the
MD calculation. Gram-Schmidt (GS) process is esgciused to obtain better MDs if the

observation size is small, and there are multicedlr situations where the correlation matrix is
singular. GS process is performed to make varialhegually orthogonal. This process

eliminates their relationship (multicollinearity)'his makes the covariance matrix almost
singular and the inverse matrix invalid. The théoet background of GSMTS is explained as
below.

Given linearly independent standardized vectors zof (i=1,..., k), there exist mutually

perpendicular vectors such that:

U,,U,,...U,

U =z (2.2)

Let z, is the first standardized variable vector for ebatons, z, is the second and, is the

last variable vector. Then, the orthogonal GS wsabb U, are:

z,' U
U,=z,- (21U
2 2 (Ullmjl) 1
z,'U,
U .=z, .. (k'—Ukl) U (2.3)
k-1 *~ k-1

For the perpendicular vector for tk8 variable,Uy , there must bék-1) GS vector coefficients,
denoted as,
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Uy Uy e Uy

Such that;
z,'\U,.
ki -Yka
Then, the GS vector for the last variable is:
u =z -uyU,-uU,-...-u U, (2.5)

After the calculation of all GS vectors, MD is comtgd by using the following formula, which

is derived from the original MD in Equation (2.3):

1 u.? u,? u,2
MD| = = (5 + 5 +...+ ) (2.6)
k's S S

GSMTS method provides a clear direction of whee ithprovement efforts should be done.
Using this purpose, Srinivasaraghavan and Allad®g2 apply GSMTS in order to evaluate a

company’s status of lean implementation and success

Taguchi and Jugulum (2000) employ GSMTS in a médiaae study. They prefer not to use
principal components (PC), because each PC is aidmnof the others. However, Hawkins
(2003) claims that GS also has the same charaaterisnce all the GS vectors are a function of

the others beforeas it is given in Equation (2.7).

Furthermore, GS is found highly sensitive to datéedng since it depends on which variable is
first selected in the order (Woodall et al., 2008udney (2006) finds that GSMTS is not
effective because calculations of the S/N ratiesdame based on the value of MD, which means

the sampling variation is ignored.
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In addition, threshold limits of orthogonal vectamresponding to MD values are given linear;

however, it should be in an ellipse form as reprasin Figure 2.4.

/ Threshold
-—

Figure 2.4: Threshold Limits of GS and Ellipse irarf a MS.

There is also modified GS algorithm. Persson (2@&ims that the modified GS (or
QR decomposition) is more stable than GS numeyicadhat is, it is less sensitive to
rounding errors. Decomposing a compiexn matrix (X) (wherem > n) as the product

of anmxn matrix, Q with orthogonal columns and a&xn upper triangular matrixg. In
order to find the orthogonal matriQ, there are other methods such as Householder,

Givens.

2.1.6 Multi-class Classification with MTS

There are different approaches in classificati@peeially for binary classification. However,
multi-class classification is relatively less intigated (Hsu and Lin, 2002). In the literature,
multi-class problems are solved differently, whicdin be categorized in three types (Su and
Hsiao, 2009). The first approach does not neednaogification in the two-class classification
method to solve multi-class problems. This emplayly one run to solve the problem, thus it is
simple and time saving. However, this type of althpon is not encountered much (i.e
Mahalanobis Distance Classifier, Decision Tree)e ®econd type is a modification of the
original algorithm by considering it as if it istavo-class problem (i.e. some of researches in
Support Vector Machines (SVM)). The problem is sdl\by one model as the first approach.
However, in this case the algorithm is exposedhgmges (Su and Hsiao, 2009). The last one is
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algorithms that decompose the problem into a cidlecof two-class problems. This has three
variations in itself, for each of which Ou et &004) develop some algorithms using the neural
networks:(i) “one-to-one”, which considers each pair of cldtsseedd. (L-1)/2 models to solve
the problem, wheré& is the number of classes. This approach is useBriegman (1996) on
Support Vector Machine. He also proposes a metlmdnfaking class assignment after
modeling; {i) “one-to-all”, such a system that empldysiumber of models. This procedure is
repeated for each of theclasses, leading to two-way trained classifiers (Ding et al., 2001).
Although it considers the data at once, an optitiumais required for them since it requires
more computational time than binary one. Basedhis gurpose, Hsu and Lin (2002) study a
decomposition implementation for SVM algorithm wittis approach.ii() “p-to-all” method, on
which Ou et al. (2004) also study. For detailed parisons, readers may refer to Chin (1998)
(as cited in Hsu and Lin, 2004).

MTS is originally designed for binary classificatidHow it can be effectively extended to multi-
class classification is still an ongoing reseatoh2009, Su and Hsiao propose a MTS method
for multi-class problems, namely Feature WeightedtiMlass MTS (FWMMTS) of Su and
Hsiao (2009). GS process is employed for MD cateuta

The steps of multi-class MTS algorithm proposedhyand Hsiao (2009):

1. For each class, construct the original MTS modediasn in Section 2.1.4. Normal
group constructs a MS, for which the model is atdi The other classes are left as
abnormal.

2. The GS orthogonal vectors of abnormal and normalgs are computed. By using
GS vectors, MD of the abnormal group to the MSaiswated using Equation (2.8).

3. OAs and S/N ratios are used to select the mostriimpiovariables. Different from
the original MTS, weights are calculated based 6 &tio gains. Gains of the
important variables show the degree of their efffeciess in the classification
system with respect to its inclusion. The motivatio use the weights for variables
comes from equal adding up of the variance normdligquared distance of the
variables during the MD calculation.

4. The MD is the sum of products of MD for each valeéay its weights.
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5. Up to this step, the process is done in the samyefaveeach class. Finally, method
is ready to accomplish the classification of they miata to the class of the minimum
MD.

Su and Hsiao (2009) compare their method with therowell-known methods using Balance
Class Accuracy (BCA) as a performance measure giveection 2.1.2.2. They find out that

their proposed method is as accurate as the Sugeordr Machine (SVM).

2.1.7. Applications of MTS

Using MTS, researchers have addressed some ofepnebkuch as diagnostic purposes,
inspection, fire detection, sensor systems in maatufing, patient monitoring, forecasting,
weather forecasting, credit scoring, and voice gai@mn.

Some popular applications in the literature of Marg as follows: Taguchi and Jugulum (2000)
utilize MTS to make classification in a medical eatudy. Additionally, Watabe et al. (2005)
detect specific scene within a short time in thgitdi video storage by means of MTS. Riho et
al. (2005) implement MTS for identification of thmportant parameters in the wafer failure
process. Moreover, Aman et al. (2006) try to adrtttie maintenance cost by finding cost prone
classes with MTS. In the meantime, forecasting udt@mer satisfaction ratings is done in a
vehicle handling system by Cudney et al. (2006)s @ad Datta (2007) ascertain effects of

chemical composition of hot rolled steel produckttier its quality is “ok” or “diverted”.

2.2 DELIMITATIONS OF MTS

Although MTS has used in various areas, Woodalalet(2003) do not find MTS easy to
implement. The major drawbacks of MTS are summédraebelow:

1. Distribution of Variables: MTS is applied on norndiktributed data, so has MD. In

addition, Woodall et al. (2003) also claim thattie study of Taguchi and Jugulum
(2000), the impact of sampling on MTS is unclear.
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2. Number of Classes: MTS is proposed for two-clasblems. There is one recent study
on multi-class problems, proposed by Su and Hsi&DD9. This study is mentioned in
Section 2.1.6. We intend to fill this gap in Chapte

3. Sample Size and Multicollinearity: The number ofmal observations should be large
enough in order to run the MTS algorithm as an eicgdirequirement. This delimitation
is the motivation of Chapter 3. In addition, vateh of the normal group, which
constitute a correlation matrix, should not be higlorrelated between each other. One
solution to this is using statistically independesatriables such as GS orthogonal
vectors.

4. Selection of Important Variables: OA and S/N rataoe used to find the significant
variables. However, MTS solution changes accordingllocations of variables in an
OA. Thus, the variable selection procedure of thgiral MTS is problematic.

5. Threshold Determination: Threshold determinationdgsclear.

Discussions on these drawbacks are explained selyarathe following sections.

2.2.1 Distribution of Variables

According to Taguchi and Jugulum (2000), the abrdrgnoup does not constitute a separate
population. In addition, Hawkins (2003) underlinkat MTS approach may avoid distributional
models. As a result, this may warrant the usadéd®fas a nonparametric quantity in MTS. This
subject is given in detail in Section 2.1.3. HoweWoodall et al. (2003) find this unacceptable
in the statistical terminology. Because, the masuaption of MD is that the variables are
multivariate normal, the MS must be made of a nérgraup, variables of which follow a
normal distribution (Abraham and Variyath, 2003).

The normality of distributions can be evaluatedskyeral ways, such as dot plots for smaller
observations, histograms for25, wheren denotes the number of observations, and also a Q-Q
plot. As an alternative, symmetry of histogramsnearly straight line of Q-Q plots might
indicate the data are normally distributed. Whes thrmality assumption is not satisfied, one
alternative is to continue as if it is normally tdisuted. However, Johnson and Wichern (1998)
do not encourage this since it may lead to bad losiums. The other strategy is making a
transformation on data.
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A major limitation inherent in MTS is that MD basédundary fails to discriminate data in
cases, which mean points of classes stay closacto @her (Aman et al., 2006; Abraham et al.,
2003). This prevents a clear separation of the dveaips, which overlap with each other on a

scatter diagram.

2.2.2 Number of Classes

In the literature, there is just one recent studynuulti-class MTS, which belongs to Su and
Hsiao (2009). This study is mentioned in Sectioh.®.In this thesis, we also develop new
multi-class classification algorithms in Chapter 4.

2.2.3 Sample Size and Multicollinearity

Sample size problems in MTS can be classified lieethtypes. In the first type, the observation
size is large enough, but less than the numbeanées. As a result, it poses an obstacle to
calculate MD. This problem can be solved by indrepghe observation size in a homogeneous
way. In the second type, data representation wiheact to other classes causes problems, which
are known as data imbalance problems. This mayrandwo ways: an over-represented class,
in which the number of observations in one classiigh more than the other classes and an
under-represented class, in which the number ofrghtions in one class is very less than the
other classes. Re-sampling procedures which anesawapling or under-sampling are generally
run for this problem. In the third type, both ohsgion size and data imbalance problems may
happen at the same time. As a result, the overdgagnalgorithms should also consider the
number of variables. This point imposes a new iigtn for re-sampling issue in MTS, which
we are intended to relax in Chapter 3.

A small observation size may cause multicollinganitroblems in MTS. MTS uses the

correlation matrix of normal observations. Multioebarity and singularity are the problems of
the correlation matrix that occurs when variables laghly correlated. Correlation matrix is a
symmetrical matrix, where each element represéetsarrelation between two variables. While
analyzing the correlation matrices, variables whaserelations greater than 0.9 can be

considered multicollinear and those correlationrives, whose correlations are equal to 1.0, can
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be considered singular (Tabachnick and Fidell, 19%ulticollinearity implies that the
variables are highly correlated, on the other haimgularity indicates that the variables are
combinations of each other and redundant. Wheretpesblems occur, a solution with MTS
cannot be obtained. The main problem due to thguanity and multicollinearity is rank
deficiency. It effects the matrix inversion, or idien. In fact, when the matrix is singular,
because the determinant of the matrix is zeraohipits the matrix inversion. When the matrix
is multicollinear, the determinant is not exacty@, but very close to it. As a result, the inverte
matrix becomes unstable and fluctuates enormoustii wnly the minor changes in the
correlations of variables. An unstable inverted riratauses unstable multivariate solutions
because of the large error terms. Besides, if brtaare highly correlated, the marginal
contribution of variables cannot be analyzed. Thithe case, which interpretations of variables
are often not warranted. In order to prevent malliicearity problems without any structural
analysis (i.e. principal components, factor analysit is advisable to examine correlations
between the variables before analyzing, since édandant variables inflate the error terms by

weakening the analysis as illustrated in Appendik A

Measures, which are widely used to detect muliioedrity in the statistics and in the numerical
analysis, are “variance inflation factor (VIF)” aficondition number” (the ratio of the largest
eigenvalue to the smallest eigenvalue). In additinthese detection methods, as a very simple
way, if the determinant of the correlation matris wvery close to zero, it reflects
multicollinearity. Another way to diagnose the nmdtlinearity is to regress each of the

predictors, denoted a§ on all the others.

Possible solutions to multicollinearity problems;

1. Correlations between the variables and importarfcéh@ variables are analyzed to
decide which variables to drop from the modelllliftze independent variables are to be
kept in the model, then, this avoids making infeemnabout relationships between
response and variables (Mendenhall and Sincict3)200

2. The impact of multicollinearity can be reduced lpjlecting more data or increasing the
observation size.

3. The factor analysis and principle components adsluce multicollinearity by centering

the variables.
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4. The variables can be centered by computing the mEaach independent variable, and
then the difference of the observation from its mesataken. Then, it is divided by the
standard deviation of each independent variable.

5. A final approach as a remedy for multicollinearigyto conduct ‘ridge regression’.
Ridge regression involves transforming all variakile the model and adding a biasing

constant to theX' X matrix.

In the literature, Taguchi and Jugulum (2000) pegpGSMTS as a solution to multicollinear
MTS problem. However, there are some critics orwhjch are mentioned in Section 2.1.5.
However, a modified GS algorithm, or QR decompositis considered more stable than GS. It
is also used to prevent multicollinearity problems. a second alternative for MTS, “adjoint
matrix” method is proposed by Cudney et al. (2d86&)rder to calculate MD. This method uses
the adjoint of the correlation matrix instead o€ tmatrix division to address the issue of
multicollinearity. Its formula is provided in thepfiendix A.2. In addition, pseudo-inverse is
advised for the cases, where it is not feasiblebtain more data, since then, the data contains a
limited amount of information and one must simpltfye model accordingly. Inversion of a
noninvertible singular matrix (rectangular matrican be done with pseudo-inverse (or the
Moore-Penrose generalized inverse) given in AppeAdB. However, it does not provide the

accurate solution.

2.2.4 Selection of Important Variables (OAs and S/Matios)

Variable selection, which eliminates the numbevarfables, is an active research area in pattern
recognition, statistics, and data mining. It cangicantly improve the comprehensibility of the
resulting models and often build a model that galims better in terms of accuracy and

simplicity. This process is performed by means Af@d S/N ratios in the original MTS.
OA is a table listing all the combinations of thariables. The presence and the absence of the
variables are considered as two levels of the OAhian MTS method. An OA consists of

orthogonal vectors. These vectors exhibit theofaihg properties:

(1) They are perpendicular to each other and givenctow&, X'X=I where | denotes

identity matrix. ThusX' is equal toX™
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(2) Since vectors are mutually perpendicular to eadtergtthey are also statistically
independent from each other.

(3) Each vector conveys unique information, which asdfe redundancy.

Although OAs are encouraged by Taguchi et al. (2@@8ause they can make predictions with
a limited number of experiments and combinationsarfables, the usage of OAs in variable
selection is a bit puzzling. Hawkins (2003) statest when there are suppressor variables, the
resolution of an OA becomes very important. Abraleamd Variyath (2003) state that when
allocations of variables in the OA change, difféarerain effects of variables are obtained. In
fact, Woodall et al. (2003) claim that OAs are mafitable in variable selection, since
combinations of the variables in an array changestiiution. OAs may not provide the exact
optimal ordering of variables since they give ofiigctional factorial design (Woodall et al.,

2003). Thus, different statistical procedures amearaged to find interaction effects.

Selection of variables by statistical tests rathan by OAs is recommended in the literature.
Abraham and Variyath (2003) apply the forward s@decprocedure with S/N ratios and get

better results than OAs in terms of low variabibityd large S/N ratios. Furthermore, a stepwise
procedure which is applied in the study of Masoal e{1997) is encouraged by Hawkins (2003).

Using gains of S/N ratios to detect the significaatiables has also some drawbacks on it. In the
original MTS, having a gain larger than zero is wgto for the variable to be included in the
model. However, a variable with a gain value vdoge to zero is not expected to be significant.
Thus, it may not be include in the model. We tryndude the significance of variables by using
ANOVA, together with S/N ratios while developingetmodels in Chapters 3 and 4.

2.2.5 Threshold Determination

MD values are evaluated with a threshold, belowcWign acceptable MD value is required for
an observation to classify in the normal group. utdg and Jugulum (2003) propose the
calculation of quadratic loss function to find aetbhold such that the losses due to two values of
classification errors are balanced in some senseeMer, Abraham et al. (2003) criticize it

because there may be some difficulties in costra@tation and misclassification. Furthermore,
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Woodall et al. (2003) claim that there is no clemxplanation about probabilities of

misclassifications and the threshold determinaiticthe study of Taguchi and Jugulum (2003).

Su and Hsiao (2007) claim that an appropriate biolesis very remarkable for MTS to carry out
the classification process effectively. They shbattthe selection of threshold also affects the
class imbalance sensitivity. As a result, they peapthe “probabilistic thresholding method”
(PTM) by utilizing the Chebyshev's theorem. The qadure is as follows: they find the
percentage of normal group with MD smaller than thmimum MD of abnormal group
including a parameter for omitted outliers of normeoup. Thus, a parameter, which becomes

the upper bound boundary to apply the Chebyshbesrem, achieves the maximum accuracy.

Yenidinya (2009) also studies the threshold detatitn in MTS for two-class problems. In
the study, several methods such as G-mean, PC4ll, €M, F measure, AUC are searched for
the best threshold levels. A 3-fold and 3-replidasératified cross validation (SCV) is used to
compare the results of different methods. The testlow that G-mean is better in balancing the
accuracy of each class, whereas PTM predicts orleeofwo classes worse. Thus, G-mean is
selected as the threshold method in terms of racallsensitivity. This result is especially useful
for imbalanced data sets.

2.3 RE-SAMPLING

A data set is considered imbalanced if classesnate(approximately) equally represented
(Chawla et al., 2002). Imbalance problems occurnvhelassifier tries to detect a rare but an
important case, such as fraudulent telephone azillspills in satellite images, failures in a
manufacturing process, or rare medical diagnosasa®®lela et al., 2003). In addition, in many
real situations, obtaining observations of trainsal must be limited because of the cost of
learning such as obtaining raw data, pre-proceskita or storing data (Turney, 2000 as cited in
Weiss et al., 2003). In fact, most quality dates see described as small and imbalanced. By
convention, for imbalanced data sets, the classesdp more observations are the majority
classes and the ones having fewer observatiorte@rainority classes.

Although some practitioners believe that the natgfass distributions should be used for

modeling, an imbalance situation makes typical sifess difficult to optimize the overall
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accuracy, when they mostly consider the relativetrihiution of each class. As a result,

classifiers tend to ignore small classes while eotrating on classifying large ones accurately.
High complexity, imbalance class, and small datassss give rise to some very small sub-
clusters; consequently, they cannot be classifimlirately. In addition, the class imbalance
problem causes a classifier to over-fit the datariggng to the class with the greatest number of

training observations (Nickerson et al., 2001).

Japkowicz and Stephen (2002) state that the diasalance problem dependsiprthe degree of
class imbalancei) the complexity of the concept represented by diétahe overall size of the

training set; andv) the type of the classifier involved.

If a re-sampling approach keeping the existing rdtigm unmodified is used, the following
alternatives are suggested (Estabrooks et al.,)20Péver-sampling which consists of copying
existing training observations at random and adthegn to the training set until a class balance
is reached(ii) under-sampling which consists of removing existihgervations randomly until

a class balance is reachdidi) a combination of over-sampling and under-samplimbich
cause both increase and decrease in the data size.

These alternatives have their own advantages asaldvhintages. The advantage of over-
sampling is that no information from the originalibing set is lost since all the original data is
preserved. However, increasing the size of thaitrgiset also increases the training time and

the amount of memory required holding the trairgéegy which is a disadvantage.

In addition, some over-sampling methods that daptimbservations of the minority class lead
to over-fitting, while under-sampling methods elaie a large amount of potentially useful
information. Previous studies have not reached @mgclusive result about which is best in
classification performance (Liu et al., 2004). Thioves that the choice of the re-sampling

method is probably specific to data set and prolflam 2004).

Japkowicz and Stephen (2002) propose a re-samalgagithm by considering the complexity
while generating new observations. The procedugsifollows: given a complexity level, the
range of the response is divided into some intervehe generating points are then randomly

selected from intervals.
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Weiss et al. (2003) apply a new re-sampling metlomgoto detect the best class distribution,
which also gives the relationship between the alistsibution and the classifier performance on
seven data sets. They perform the re-sampling thighratio of class distribution before and
after. They gain 10.6 % relative reduction in emrate. Another result of the study indicates
that, best class distribution depends on the pmdaoce measure. In fact, when AUC is selected
as the measure, the best class distribution isdf@éarbe near to the balanced class distribution,

whereas it is found the original distribution whbe accuracy is selected as the measure.

Training set size is also a factor in the classdiability to deal with imbalanced data sets
(Japkowicz and Stephen, 2002). Similarly, Weisalet2003) search for the best training set
size, which gives the best performance. We alsdydiue relation between the training set size
and the performance of our re-sampling algorithth@nnext chapter.

The class imbalance problem affects the performafdtke classifier (Estabrooks et al., 2004).
Re-sampling is used for the class imbalance problemorder to increase the classification
performance. Estabrooks et al. (2004) search ferrdéite of re-sampling. They try the under-
sampling of majority class, as well as the overgarg of minority class on the imbalanced
training data set. Then, the technique is testeddige learning classifiers on data sets with
various degrees of class imbalances.

As a different method, Chawla et al. (2002) atterptsolve the imbalance problem with
SMOTE, an over-sampling method by generating tmthgtic observations between the nearest
neighbors of observations in the minority clasgelherates synthetic examples by operating in a
“variable space" rather than “data space". Foryem@nority example, its nearekineighbors of

the same class are determined, and then sokaeifhbors are randomly selected depending on
the over-sampling rate. After that, new synthetitsarvations are generated along the line
between the minority example and the selected seareighbors. Synthetic samples are
generated in the following way: Take the differenisetween the variable vector under
consideration and its nearest neighbor. Multiplig ttifference by a random number between
zero and one, and add it to the variable vectoeundnsideration..
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Table 2.2: Example of Generation of Synthetic EXa®SMOTE).

Consider (7, 4) is the observation for which k-esaneighbors are being identified.

(6, 5) is one of its k-nearest neighbors.

Let v; denotes the'jvariable of the't observation:
Vi1=7 %176 %1V =-1
V2= 4 %275 2V =1

The new observations will be generated as:
(v3, 1 V3, 2) = (71 4) + rand (0'1) * (_1’ 1)

rand (0-1) generates a random number between @0.and

As an advantage of SMOTE, it makes the decisioilonsgarger and less specific (Huang et al.
2005). Furthermore, borderline observations aret@fie misclassified than the ones far from
the borderline. Based on this analysis, Huang et(2005) develop an algorithm, namely
Borderline SMOTE. Different from the other over-gdimg methods, they over-sample only the
borderline minority observations.

In addition, Kubat and Matwin (1997) employ an uns@mpling of the majority class while
keeping the original population of the minoritysdaconstant.

Re-sampling until the majority and minority clas$ese equal prior probability may not yield
optimal results (Weiss et al., 2003). The amounv\ar-sampling is generally considered as a
parameter of the system (Estabrooks et al., 20Qs$\et. al. 2003). Furthermore, the best re-
sampling rate changes according to the data stuatiddthe re-sampling type (over or under)
(Estabrooks et al., 2004; Japkowicz, 2004 as ditddu, 2004). This makes difficult to find a
rule for re-sampling. Liu (2004) obtains differeatults as the level of re-sampling changes. In
particular, some re-sampling methods might perfbatter with a higher or lower amount of re-

sampling.
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Weiss et al. (2003) state that before a re-samplimg classifier, the sensitivity of the classifier
should be checked. This can be checked with measfirgensitivity and specificity, which give
opinions about the accuracy on the positive andatigs classes. For the case of MTS,
sensitivity to class imbalance problems is justligd by Su and Hsiao (2007). They try to find a
new threshold method for MTS, in which the classifion performance is not influenced by an
imbalanced data. MTS is expected to be sensitithemumber of data of each class. When the
number of observations is not enough, there maynbdicollinearity problems in MTS as
explained in Section 2.2.3. A solution may be iasieg the data size. Results of Su and Hsiao
(2007) indicate that the selection of thresholdh&lates the sensitivity of MTS to imbalanced
data.

The classification performance of an imbalance@ gat should not be measured with accuracy
since this parameter covers the accuracy of mgjatass excluding the overall accuracy of
minority class. Thus, even if the algorithm classifall the majority observations correctly and
misclassifies all the minority observations, thewaacy of the method is still high because there
are much more majority observations than minorligesvations (Huang et al., 2005). Thus, in
this case, the classification performance of repeg algorithms is usually measured by
precision and recall, or F measure that combing$ lod them (Barandela et al., 2003).
Additionally, a ROC curve is mostly preferred dueits independence of the distribution of
observations between classes (Kubat and Matwin7)19u and Hsiao (2009) use geometric
means of sensitivity and specificity. These measune formulated in Section 2.1.2. As an
alternative, the relative sensitivity (RS), whishtie ratio of sensitivity and specificity, is akso
measure (Su and Hsiao, 2009).

In the literature, there are re-sampling studiesi$ed on two-class problems. However, multiple

class problems are solved by being simplified to-thass problem by using the minority class

as a class and the others as a separate class(R@04; Su and Hsiao, 2007; Chen et al., 2008).
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CHAPTER 3

HANDLING SMALL AND IMBALANCED DATA SETS

In this chapter, the issue of re-sampling is stidiiethe context of MTS classification on two-
class imbalanced data sets. We develop a new relisgnalgorithm, jointly with Berna BAKIR
and Barg YENIDUNYA, to detect the best class distribution angesiwhich also gives the

relationship with the classifier performance onesal’/benchmark data sets.

3.1 THE METHOD

A data set is imbalanced if the number of instariceme class is quite small compared to the
other classes. This is the case for many realplifiblems such as product or process quality
improvement, document filtering, gene profilingdaspecially in most of real quality problems.
For this case, it may be very time and cost expensi collect data and construct a model on it.
Therefore, re-sampling is commonly used as a swiut this problem.

In this part of the study, we aim to develop aaeigling method for two-class data sets and to
relate re-sampling parameters (ratios of classdsdate size after re-sampling) to performance
measures by considering the initial data size aattbs of classes. Thus, applications are
performed on small and imbalanced data sets, ichwthie classes having more observations are
considered majority classes, whereas the ones dhdewer observations are the minority

classes. This means that the class ratio is a paeafior the degree of the class minority.

Our re-sampling approach, which only works for dsgts with two classes, is a combination of
over-sampling and under-sampling. In this studgMOTE-based re-sampling approach is used
for over-sampling. SMOTE (Chawla et al., 2002) isaver-sampling approach, in which the

minority class is over-sampled by creating synthetiservations based d&mearest minority
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neighbors, wher& denotes the number of nearest neighbors. Syntbatiples are generated in
the following way: The difference between the MValéavector under consideration and its
nearest neighbor is taken. It is multiplied by ad@m number between zero and one, and added
to the variable vector under consideration. Theimam k depends on the initial data size. For
example, when there are not many observationslass k must be small. Thus, we also try to
relate the number of the nearest neighbors us&MOTE with the performance measures. In
the literature, SMOTE is used to increase the siatin integer multiples. As a contribution, we
oversample the data randomly from tk@earest neighbors as much as required, until the
desired class ratio is achieved. In addition, MT&lels are used to test the performance of re-

sampling for which the most appropriate valuessarght for specific to each case.

Steps to develop the re-sampling algorithm:

1. Set the initial parameters such as:
No : initial number of observations
ro » initial ratio of the minority class
Nmax : the maximum number of training observationerafé-sampled
I max : the maximum ratio of the minority class aftersampled
Kimax : the maximum number of neighbors to generae¢huired data in the
minority class (depends onpN
Number of folds, number of replications
These values are parametric so tlegt ¢an be changed.
2. After partition data into folds and replication®rfeach and every fold and replication
perform steps 3-10.
3. Check for outliers, check for that the size of tteemal group, N (it is required to be
larger than the number of variables, m).
4. Calculate the minority class ratio, r.
Send the data to three “for” loops:
1* Loop: Increase the minority class ratio, r, byimerement of 0.1 by under-sampling
majority class or over-sampling minority class
2" Loop: Increase number of observations, N, by areiment of 50 by under-

sampling majority class or over-sampling minorityngajority class
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8.

3 Loop: Increase the nearest neighbdds it SMOTE as explained in
Section 2.7, by 1

Throughout these loops, data in minority or majociass can be over-sampled by using
SMOTE according to the Table 2.2. In addition, datanajority class can be under-
sampled in order to increase the ratio of the niyafass.
Use re-sampled data in MTS modeling: The steph@MTS model, which is mixed in
the re-sampling algorithm, are explained in Secto®.1. It can be summarized as
follows: after the data-preprocessing, data isddigi into the normal and abnormal
groups. Then, MDs of abnormal observations, whiske ghe distance to the normal
group, are calculated. Based on the MD values,r&tids are calculated with OAgVe
normally write OA(S") to specify such an orthogonal array, which hasrmay
of size N by k, with entries from 0 to s-1. We haweed an OA specified as
OA202*%9) with strength three from the web-site of “A LibrasfOrthogonal Arrays”.
In that stage, we use n-way ANOVA analysis alonthwsing variable gains because of
the reasons explained in Section 2.2.4. We searcthé interval from 0.10 to 0.25 for
a-levels because Costanza and Affifi (1979) reconmdreesignificance level of 0.10 and
0.25 as a cutoff value for the variable select®narma, 1996).
Calculate the threshold using geometric means mdigety and specificity (G-mean)
(Yenidiinya, 2009): Geometric mean of sensitivity apecificity, G-mean given in
Section 2.1.2.1, is chosen for the threshold delechethod, since it gives the best class
accuracy in both balanced and imbalanced datg$etsdiinya, 2009).
Assign the observation to the abnormal class M value is above of the determined
threshold.
Find the best N, r and k among all tested valueshi® highest average and the smallest

standard deviation of the G-mean.

Initially with mvariables, the flowchart of the re-sampling aldunitis given in Figure 3.1.

The re-sampling performances are calculated ontdbe data, which has the original class
distribution, in terms of several performance measdisted in Section 2.1.2.1. G-mean is
selected to analyze the results, since it is a auatibn of sensitivity and specificity. Decision
tree classifier is applied to the results to geteerales that relate data set characteristicsdo th
performance of the classifier.
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The model is coded by usifgatlab 7.5. MD is easily calculated with therfahal command of
Matlab 7.5.

3.2 APPLICATIONS AND PERFORMANCE ANALYSIS

Experiments are run to establish the relationsbkigvben class distribution, training set size and
classifier performance. Data sets are taken framtbb-site of the UCI Machine Learning Data
Repository. Data sets with non-categorical attébuand high citation rate in scientific articles

are tried to be selected.

3.2.1 Applications

The four data sets: blood transfusion, Pima Indigabetes, magic gamma telescope and
Wisconsin breast cancer diagnostic (WBCD) are sedeéor analysis. The original data set

characteristics are summarized in Table 3.1.

Table 3.1: Data Set Information

Data Set Data Number of Ratio of
Data Set Name NL(Jng)er Size Variables Minority Class
Blood Transfusion 1 748 5 0.24
Diabetes 2 768 8 0.35
Telescope 3 19020 10 0.35
WBCD 6 569 30 0.37

The initial parameters of data sets given in T@bleare prepared according to Table 3.2. Hence,
the data sets are processed to the initial traidatg size (B): 70, 200 and 500 and initial ratios
(ro): 0.1, 0.2 and 0.3. The re-sampling algorithmegfgrmed on all of the nine combinations of

the Ny and g for each data set according to the re-samplingribgm given in Figure 3.1.

Table 3.2: Initial Parameters of Data Sets

Overall Size of Training Observations 70 200 500
Class Ratio of Minority Class 0.1 0.2 0.3

36



To compare the performance measures, which aretsglo determine a re-sampling rule, a 3-
fold and 3-replicated stratified cross validatienuised for each combination. Thus, each class

has an equal chance of being one of in the nirgks fol

We normally write OA (s°) to specify such an orthogonal array, which hasmay of
size N by k, with entries from 0 to s-1. We havedisn OA specified a®Az0(2'°%
with strength three from the web-site of “A Libranof Orthogonal Arrays”

(http://www.research.att.com/~njas/oadir/).

The parameters of re-sampled data are the cldesofamninority class (r), overall training data

size (N), and the number of neighbors (k).

In order to evaluate this sampling algorithm, itniecessary to measure how each of these
parameters affects the performance for each cortidiina
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3.2.2. Performance Analysis

Firstly, the results of re-sampling applicationsfoar data sets are plotted to analyze the effect
of N, r, k on the average G-mean of nine foldsiguFes 3.2-3.7 for the data sets of. They are

drawn for two data sets; Diabetes and Telescopey, e parameters of r and N are discretized

according to Tables B.1 and B.2.
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Figure 3.3: Average of G-means versus Discretizédéescope, b 70, 200, and 500)

According to Figures 3.2 and 3.3, G-means stay stiitie same at a large value as N changes,

a)h:0.1b)E 0.2¢)p: 0.3

although there is an increase at first.
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According to Figures 3.4 and 3.5, it is difficuit achieve a concrete assessment. However, it is
seen that when the initial data size is larger 890, 500), re-sampling increases performance at
the first levels of discretized minority class oatiThen, G-means stay almost constant.
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According to Figures 3.6 and 3.7, it is seen khdbes not affect G-means, except for the case of

No: 70, for whichk should be increased as well.

The overall results of four data sets, given inl&ab.1, are used to achieve a rule for re-
sampling with the help of Decision Tree. A decisiet is obtained frorBPSS Clementine 11.1

and given in Figure B.1. According to Figure Btlisiseen that the results are worse when the
original data set is small than larger cases. Whigis small, it is good to increase the data set
size by over-sampling the data. In addition, treults are better when the over-sampling ratio is

very close to the original minority class ratio,emthe data is small. When the original data size
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is large, the results are better as it is expetdduk. In this case, since there are more original

data to oversample, better results are seen adag®ratio, r increases.

Based on our re-sampling approach, we can not\keaule for the relationship between the
initial parameters and re-sampling parameters. ,Ttiuen a case, only re-sampling parameters,
which increase the initial performance, can be estggl. For the three data sets in our
applications, these are given in Table 3.3. A decitree based on the suggested parameters of
the re-sampling application results is given inufeg B.2. In addition, a plot of parallel
coordinates for the values of normalized suggeptgdmeters is given in Figure B.3. It shows
the situation of each suggested re-sampling paema&tcording to Figures B.2 and B.3, it is
seen that, there is no pattern of rule. In fa@,rdsults are very data specific, which makese rul
generation difficult. As a result, for a given dakt, suggested re-sampling parameters can be

selected after searching for different valuesarid N.
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Table 3.3: Suggested Re-sampling Parameters far Betss; Diabetes, Telescope and WBCD

Data Information Before Re-sampling Suggested Parameters (SP) of Re-sampling
Data Avr. of | Std. of G- Avr. of | Std. of G-
Set ro No r N k
G-mean mean G-mean mean
(DS)

SP1| 01| 196 2 0.5771 0.1147
SP2 0.5757 0.0820

2 0.1 70 0.6873 0.0724 02 124 1
’ SP3| 01| 296 1 0.5622 0.0841
SP4 | 01| 396 1 0.5597 0.0785
SP5 0.7530 0.0740

2 01 | 200 | 06873 | 0.0724 05] 76| 5
SP6 | 01| 375 6 0.7295 0.0645
2 0.2 70 0.6521 0.0896 SP1 0.3 32 1 0.6600 0.1157
2 0.2 200 0.6420 0.0526 SP§ 03| 285 1 0.6903 0.0328
SP9 0.6765 0.2069

3 o1 | 70 | 05881 | 0.2475 02| 24| 1
SP10| g2 74 3 0.6536 0.1393
SP11| g1 | 277 4 0.7615 0.0692
3 0.1 200 0.7045 0.1105 | SP12| g1 | 277 2 0.7565 0.0587
SP13| g3 193 6 0.7511 0.0822
0.2 70 0.6436 0.1089 SP14g2 | 198 5 0.7537 0.0865
3 0.2 200 0.6664 0.0638 SP1504 | 164 1 0.7011 0.0582
SP16 0.9673 0.0302

6 01 | 70 | 08749 | 0.0800 03] 444) 1
SP17| g5 | 212 1 0.9583 0.0498
SP18 0.9509 0.0402

6 01 | 200 | 09300 | 0.0423 01] 45| 7
SP19| g1 | 175 7 0.9462 0.0364
SP20 0.9406 0.0535

6 o2 | 70 | 08018 | o0.1050 05] 310) 6
’ SP21| 03| 344 7 0.9404 0.0552
SP22| 04 | 316 4 0.9786 0.0266
SP23 0.9783 0.0277

6 02 | 200 | 09602 | 0.0207 04| 466] 2
' SP24| 03| 337 7 0.9781 0.0201
SP25( g3 | 437 4 0.9766 0.0264
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CHAPTER 4

MULTI-CLASS MAHALANOBIS TAGUCHI SYSTEM METHODS

In this chapter, original methods developed inttiesis for multi-class classification problems

based on MTS are presented.

4.1 THE METHODS

The intuition behind the developed methods is eérpthiin this section. Common points for all
of the methods arej)(the multi-class classification approach is samali methods, which it
uses “one-to-all” multi-class classification apprbayiven in Section 2.1.6ij) data sets are pre-
processed in the same waiji;)(S/N ratios and OAs are used for variable selectig) the class
assignment is done in the same way without usitgesshold.

As a first common point, the class, for which theedo-all multi-class classification model is

obtained, is selected as the normal group, whish abnstitutes a Mahalanobis space (MS),
while all of the other classes are left as the afmabone. Thus, giving a multi-class problem
with L classes, L two-class problems are obtaingthis approach after the original problem is
partitioned into a two-class problem.

As a second common point, data pre-processing iiforpeed as the following. First, the
variables and classes of the data set are defimbthan, the data set is divided into normal and
abnormal groups. The normal group represents thexted class for the model, while the
abnormal group is composed of the other classesei®@tions with missing values are omitted.
The data pre-processing is continued with standatidin of data with the specifications of the
normal group. MS is expected to have homogenougctaistics. As a result, an acceptance
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criterion is defined or calculated under which &seryvation is ensured to be considered in the

MS. In fact, we preferred to omit observations hguMD values larger than%md +3Syma)-

Here,fmd is the average ang, 4 is the standard deviation of MD values of the dtadized

normal group.

As a third common point, in all the methods the &tib corresponding to each run of the OA is
computed using the concept of the larger-the-béfee as defined in Equation (2.5). OA is a
table listing all the combinations of the variabl€be size of an OA depends on the number of
characteristics and the levels it can take. Howeherpresence and the absence of the variables
are considered as the levels in MTS method. Levalthe OA column represents the presence
of a characteristic and Level-2 represents theralgsef that variable. S/N ratios calculate the
gain of a variable when it is included in the modgihg the levels of OAs.

The last common point is about the way of clasgyasgents. An observation is assigned to a
class, which has the minimum MD among the entire’'Mtalculated from the MTS models of
the other classes. This eliminates threshold catlicui step of original MTS given in Section

2.1.4. The class assignment is illustrated in Tdhle

Table 4.1: An lllustration of the Class AssignmBaile for all of the Methods

_ MD for 1% MD for 2@ | MD for 3 _
Observation Class Assignment
class class class
2 1 4 2" class
B 3 5 6 T'class
4 4 8 1* or 2% class (randomly

All of the methods are coded by usiktatlab 7.5, each of which is explained in the following

sections.
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4.1.1 Methods Based on the Original MTS

a. Multi-class MTS Method (MMTS)

The first method for multi-class MTS classificatios an extension of the original MTS
algorithm, which is explained in Section 2.1.4, fiaultiple class problems.

The algorithm of the multi-class MTS method is give Figure 4.1, for a given normal group of
size n, number of variables k, and number of ckdseAccording to this algorithm, as a
common point of methods, a classification modaleseloped for each class or MS separately.
For this purpose, data is pre-processed for thes alader consideration. The size of the normal
group (n) should be larger than the number of W (k). This limitation is considered after
data with missing values and outliers are omitted.
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Collect Data

Objective?

Model Operation Flow
(a new observation)

Standardize the data by
the mean and standard
deviation of normals.

D

Model
—
&)

Construction Flow

efine variables

Take a (new) class for

and classes (L)

Remove the
data

Yes

Use an appropriate OA and larger-the
better S/N ratios based on MD values.
k-way ANOVA can also be done.

modeling

!

Define modeling class as the
normal goup and others as
abnormal group

v

Omit the observations with
missing values

Yes
v

Calculate MD for the
standardized normal group.

!

Validate the MS
scale.

MD<umMp+3oMD

No
A 4

y

Determine the important variables

Calculate MD from the
standardized abnormal group to the
standardized normal group

v

|

Formulate MD for the best model
from the standardized abnormals to
normals .

Is there a class
left to develop the
model?

No
A 4

Calculate MD for a standardized
new (test) data based on the MTS
model corresponding each class.

Assign to the class with
the minimum MD

Figure 4.1: The Flowchart of Multi-class MTS (MMTBlethod
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After the data pre-processing explained as a conpoant in the previous Section, MD from the
abnormal observations to the normal group are Ekd Then, the calculated MD values are
used in detection of important variables, togetiwéh OAs and larger-the better S/N ratios,
which is given in Equation (2.5). This step is atsglained as a common point in Section 4.1.
To determine the important variables that shouldngduded in the classification model, we
have also used k-way ANOVA, whidkh denotes the number of variables changing for each
design combination. For this purpose, the largerltbtter S/N ratios are calculated by using the
MDs as explained in the previous Section. Thengfmh row in the design matrix or OA matrix,
they are analyzed in ANOVA to find whether the wahie’s S/N ratio makes a significant
difference. We search for the interval from 0.1@0tB5 fora-levels since Costanza and Affifi
(1979) recommend as a cutoff value for variabledaln (cited as in Sharma, 1996). After
developing the MTS model for each MS correspontlingach normal class, the assignment of a
new (or test) observation is done according tartiheillustrated in Table 4.1 by using the MTS

model.

b. Multi-class MTS Method Based on Gains of Signal-tdNoise Ratios (SNRMMTS)

This method differs from the MMTS method in seleotiof important variables. Here, only

gains of S/N ratios of variables are considereith &se original MTS method.

4.1.2 Feature Weighted Multi-Class MTS-I (FWMMTS-I)

This classification algorithm is developed for mwlass problems with the motivation of
“Descent Feature Weighted Mahalanobis Distance’p@sed by Wolfel and Ekenel (2005).
This study tries to give weights to each variablghie MD calculation. Because the variables
with large contributions to the MD can mask all tither variables, the classification considers
only these noisy variables. Based on this ideagva multi-class MTS classification algorithm,
namely Feature Weighted Multi-class Mahalanobis uthg System (FWMMTS-I), is

developed.
In this method, a MS corresponding to each classtistructed and data pre-processing is done

in the same way as before. Next, the weighted M&imputed for each given normal grguas

follows:
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1. Adopting the weighted MD formula for our algorithiet us use for the observation in

the standardized abnormal group arfdr the standardized normal group; j[c] denotes the

distance of observatiorxi[c] in the abnormal group, to the mem[c] of the observations in

the normal group corresponding variable

Let z;l[c, c] denote the inverse of the diagonal value corredipgnto the variable of the

correlation matrix. Actually, it has a value of ofiéen,
VCJ’ J : Di,j [C] = (Xi[d -,u]-[ d) Zj _1[C,C] (Xi [C] - ,u][d) . (4-1)

2. Since the goal is to choose weights such thatfalhevariables, especially noisy ones,
have same influence on the MD value, the varialilase to be normalized under the

consideration of their average MD. Then, for altofa\ observations in the abnormal group, an

average MD to the standardized normal grguig, calculated, which is denotedﬁ%c]:
— 1N
Vc: D[c= N > D, [d, (4.23)
i=1 ’

Afterwards, weights are derived from the average ddresponding to each variable, under two

constraints as below.

ve: wic] =0 (4.2b)
iil wc] =k, (4.2c)

wherek represents the number of variables.

In order to satisfy the constraints, the distararesinverted and then normalized as in Equation

(4.3a) for each variablg by using variablea=1,..., k

48



Ve V\,{c]=kk1/A , (4.3a)
> 1/ D[]

where

w j[c]=wld ,vi,j. (4.3)

Weights of variables have to be recomputed for é&Stor the standardized normal group under
consideration for modeling.

3. Lastly, weighted MD from observatidarto class, MDiWJ_e‘@”“ed

is obtained by a sum of

products of weight of each variable( [c]) and MD value D, [c]):

mpreeei= § w [ D, [d) . (4.4)

c=1

The values ofMDi"’”jEightEd are used to calculate the important variables.tRisrpurpose, as a

third common point of the methods explained in Bec#.1, S/N ratios together with an OA are
utilized. During the variable selection processydy ANOVA is used as explained in the
previous Section. Consequently, the model baseth@mormal class is achieved. Up to these
steps, the procedure is followed for each of tlass#s by considering each as a normal group
under consideration. Finally, MTS model of each ig8sed to calculate MD of a new (or test)
observation. We prefer not to calculate the weigh¥b in class assignments. In fact, we see
that original MD gives a better performance tham weighted MD in class assignments. This
means, weights are only considered in the modeiimghich the important variables are found.
Finally, the observation is assigned to the classrg the minimum MD.

Our approach to calculation of weights in the FWMBBT differs from the calculation of

weights in Su and Hsiao (2009). While they caleullie weights based on gains of S/N ratios,

in our method, weights are calculated based on Nifaklces corresponding to variables. In
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addition, our method utilizes weights in the setattof important variables, whereas Su and

Hsiao (2009) utilize weights after the model canstion.

4.1.3 Feature Weighted Multi-Class MTS-Il (FWMMTS-II)

We use the feature weighted MTS approach of SuHsido (2009), which is explained in
Section 2.1.6. We prefer to modify it by using theginal MD calculation instead of GS
calculation due to drawbacks of GS given in SecBdn5 such as GS is found highly sensitive
to data ordering since it depends on which variébfgst selected in the order (Woodall et al.,
2003). We name this algorithm Feature WeightedtiMidss MTS Method-1l (FWMMTS-II).

4.2 APPLICATIONS AND PERFORMANCE ANALYSIS

In this section, the multi-class methods explaire&ection 4.1 are applied on eight different
data sets and compared. As a reminder, MMTS isceamsgion of the original MTS algorithm to
multi-class problems; FWMMTS-I is the adaptatiorfedture weighted MD, which is proposed
by Wolfel and Ekenel (2005), to the multi-class Mpi®blems; and lastly, FWMMTS-II is the
modification of the method of Su and Hsiao (2008MD calculation by using the original MD
instead of GS.

In order to compare the results with those of Sd Heiao (2009), we take the Mahalanobis
Distance Classifier (MDC) method as a common pdiDC does not search for the important
variables. MDC assigns a new observation to thesabdé the minimum MD. As a consequence,
it allows us to see the effect of finding and usingportant variables on the multi-class
classification results, instead of using all of tiniginal variables in the distance calculation.

After using the feature weighted MD in the FWMMTShlethod, a feature weighted
modification of MDC, namely Weighted Mahalanobissfaince Classifier (WMDC), is also
developed. First, the data is pre-processed asierpl in Section 4.1. Next, a class is taken as a
reference point, which is used as a normal grouplewthe other classes left in the abnormal
group. WMDC uses the descent feature weighed M2miin Section 4.2.1. Thus, feature

weighted MD values for the standardized abnormadeokations are calculated by using
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Equations from (4.1) to (4.4). Importantly, WMDCaeafonot search for the significant variables
similar to MDC. These steps are followed for eaéhthe classes by considering each as a
normal group under consideration. Thus, after MDcwdation for each normal group, a

standardized new or test observation is assignadlass with minimum MD.

4.2.1 Applications

All of the methods are applied on some benchmatik dats having non-categorical input
variables. They are taken from the web-site ofli# Machine Learning Data Repository. Data
sets are selected by considering their citatiomirafirticles. Also data sets used by Su and Hsiao
(2009) are preferred in order to make comparis@isservations with missing values are
omitted during the data pre-processing. After p@epssing, the characteristics of eight
different data sets are summarized in Table 4.2.

Table 4.2: Data Set Information

Number Number .
) Ratios of Balanced (B)
Data Set of Data Size of
) Classes /lmbalanced(IB)
Classes Variables
wine 3 178 13 33.158, 39.958, 26.884 B
iris 3 150 4 33.378, 33.297, 33.325 B
waveform 3 5000 21 33.14, 32.941, 33.919 B
balance-scale 3 625 4 7.8387, 46.087, 46.074 IB
25.052, 25.771, 23.52
vehicle 4 846 18 B
25.657
3.1,6.7,10.4, 14.4,
abaloné 11 3842 8 1B
18.4,16.8,12.3,6.8
16.5, 29, 31.305,
yeast 9 1479 6 2.9748, 2.3692, 3.4498, IB
11.018, 2.0298, 1.3532
43.913, 24.396, 16.552,
water-treat 4 208 38 IB
15.14

only the classes 5,6,7,8,9,10,11,12,13,14,15sed.u

2variable 5 and 6 are omitted because these vasidbl@ot change in observations.

Sonly the classes 1, 5, 9, and 11 are used samsias {2009) and all of the missing observationslateted.
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In order to compare the methods, a 5-fold stratifieoss validation (SCV) is used for all data
sets. This ensures a given fold contains all of ¢lesses. For SCV, the original data is
partitioned into the classes. The classes arephsditioned into 5 sub-samples (folds). Of these
sub-samples, while a single sub-sample is retas®dhe data for testing the model, the
remaining sub-samples are used as training datagdtire model development. This means a

total of 45 runs are done for each method.

We normally write OA (s°) to specify such an orthogonal array, which hasmay of
size N by k, with entries from 0 to s-1. We havedisn OA specified a®Axo(2*°%
with strength three from the web-site of “A Libranof Orthogonal Arrays”

(http://www.research.att.com/~njas/oadir/).

As a performance measure, we use BCA (given ini@e& 1.2.2). BCA is useful to consider
the correct classification accuracy for each ctiisse in some data sets (such as yeast, abalone,
balance-scale and water-treat) there are classesniority. We also consider the average and
standard deviation of BCA values over all five faldh addition to BCA, average percentage of
correct classification (PCC) is also used to seeotferall accuracy. Its formula is algiven in
Section 2.1.2.2.

The average performance results of developed methma given in Table 4.3. Along with the
results of six classification algorithms, the réswf MDC in Su and Hsiao (2009) and also

results of their proposed FWMMTS (Su and Hsiao,900ethod are written.
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Table 4.3: Application Results of the Methods

FWMMTS- F\(,étﬂganS MDC (Su
Data Set Measure MMTSNRMMTS | FWMMTS-II Hsiao WMDC MDC and Hsiao,
2000) 2009)
Avr. BCA 0.944S8 0.9449 0.9584 0.9465 0.9878 0.8557 0.9722 0.9817
. Std. BCA 0.0710 0.0710 0.0360 0.0444 0.0168 0.076@.0393 0.0168
e Avr. PCC 0.9627 0.9627 0.9641 0.9552 NS 0.8664.9818 NS
std. pcc 0.0390 0.0390 0.0291 0.0396 NS 0.0649.0257 NS
Avr. BCA 0.8093 0.7639 0.8093 0.6589 NS 0.6511 0.8656 NS
balance-scale td. BCA 0.1439 0.2146 0.1439 0.0061 NS 0.044©.0488 NS
Avr. PCC 0.9166 0.6927 0.9166 0.9108 NS 0.5259.9091 NS
std. Pcc 0.0242  0.3155 0.0242 0.0267 NS 0.0770.0128 NS
Avr. BCA 0.8603 0.8603 0.8577 0.3771 0.8352 0.4505 0.8111 0.8454
vehicle Std. BCA 0.0060 0.0060 0.0073 0.0121 0.0307 0.048a.0338 0.0313
Avr. PCC 0.8567 0.8567 0.8541 0.3677 NS 0.44940.8055 NS
std. pcc 0.0134 0.0134 0.0149 0.0317 NS 0.0499.0332 NS
Avr. BCA 0.9628 0.9628 0.9686 0.9410 0.9793 0.9031 0.9628 0.9895
. Std. BCA 0.0526 0.0526 0.0460 0.0471 0.0206  0.0606.0526 0.0147
wine Avr. PCC 0.9758 0.9758 0.9814 0.9458 NS 0.906D2.9758 NS
std. pcc 0.0343  0.0343 0.0198 0.0413 NS 0.05649.0343 NS
Avr. BCA 0.4261 0.4012 0.4323 0.4191 0.4793 0.4116 0.3961  0.4829
yeast Std. BCA 0.0410 0.0396 0.0487 0.0317 0.0309 0.0548.0674 0.0498
Avr. PCC 0.4941 0.4471 0.4921 0.5011 NS 0.40190.4210 NS
std. pcc 0.0317 0.0616 0.0311 0.0111 NS 0.030D.0503 NS
Avr. BCA 0.8511 0.8511 0.8511 0.8108 0.8338 0.8454 0.8529 0.8513
waveform Std. BCA 0.0124 0.0124 0.0124 0.0113 0.0133 0.007@.0166 0.0137
Avr. PCC 0.8510 0.8510 0.8510 0.8115 NS 0.84560.8530 NS
std. pcc 0.0125 0.0125 0.0125 0.0147 NS 0.009D.0168 NS
Avr. BCA 0.3143 0.3173 0.3592 0.2138 0.7732 0.6983 0.3416 0.4091
water-treat Std. BCA 0.0767 0.0764 0.1468 0.0933 0.0189 0.0750.0942 0.0088
Avr. PCC 0.3336 0.4717 0.4832 0.2638 NS 0.6029.4772 NS
std. Pcc 0.1425 0.0524 0.0636 0.1567 NS 0.0818.0781 NS
Avr. BCA 0.2332 0.2302 0.2332 0.2542 0.2683 0.2484 0.2163 0.2310
abalone Std. BCA 0.0114 0.0081 0.0114 0.0098 0.0132  0.0108.0152 0.0222
Avr. PCC 0.2092 0.2041 0.2092 0.2389 NS 0.255D.1808 NS
std. pcc 0.0106 0.0164 0.0106 0.0186 NS 0.0099.0107 NS

*NS: Not Studied
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Table 4.3 shows that there are some differencegeeet our MDC results and those of Su and
Hsiao (2009). Hsiao (2009) explains MDC procedwseduin their article in short as following:
An individual MS for each class using the traind®ga is constructed, and an unknown example

(including the test data) is classified into thassl with the minimum MD. We also follow this

procedure, but we identifier observations with Midger than Rmd +3s,,q) as outliers. Here,

imd is the average of ang, ., is the standard deviation of MD values. HoweverSu and

Hsiao (2009), there is no information about hargllinutliers in MDC. Additionally, we delete
all the observations having missing values in “wateat” data set, but there is no comment on
this in Su and Hsiao (2009).

It is proven that the results change, when alloaatiof variables in an OA are changed
(Abraham and Variyath, 2003). Because there isnfarrnation about the OA used by Su and
Hsiao (2009), one has to develop their model bysttree OA, which is used in other methods to

be compared.

Moreover, we include the BCA and PCC values of eadth as replications in the statistical
analysis. Since BCA value of each fold is not giwe®Su and Hsiao (2009), one has to run their
model separately for each fold to collect the ilon results. Because of complex calculation
procedures of GS algorithm, this study has not beeriormed in this work. Due to these
reasons, we have not included the results of SuHsido (2009) in the statistical analysis

performed in the next section.

4.2.2 Performance Analysis

In this part, we statistically compare the six deped algorithmsMinitab 15is used for the
statistical analysis. A two-way ANOVA with five rigations (folds) is performed. BCA and
PCC are taken as the “response” in each ANOVA stseparately. The methods are taken as a
“factor”, while data sets are considered as a ‘ilag variable”. The assumptions of ANOVA,
which primarily are constant variance and normadityesiduals, are checked. The residual plots
for BCA and PCC are given in Appendix C.1. The hssof the two-way ANOVA are given in
Table 4.4.
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Table 4.4: ANOVA for overall BCA results (with eafdid)

Source DF SS MS F P
Data set (block) 7 15.8384 2.2526 530.03 0.000
Methods (factor) 5 0.3311 0.06622 15.51 0.000
Interaction 35 1.9034 0.05438 12.71000
Error 192 0.8196 0.00427

Total 239 18.8926

Table 4.4 shows that, there are significant difieess among the six multi-class MTS methods,
even ifa-level of 0.01 is chosen for the test. When the two-wayOAM analysis is performed
without replications, the result is changed to iffetence among the methods, given as in Table
4.5.

Table 4.5: ANOVA for Average BCA results (with agges)

Source DF SS MS F P
Data set 7 3.10089 0.442984 37.79 0.000
Methods 5 0.08376 0.016751 1.43 38.2
Error 35 0.41027 0.011722

Total 47 3.59491

The difference in p-values between Tables 4.4 afds4due to inclusion of standard deviations
among BCA values in the analysis. When the two-WlOVA for the PCC values is done,
Table 4.6 is obtained.
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Table 4.6: ANOVA for overall PCC results (with edold)

Source DF SS MS F P
Data set (block) 7 15.5045 2.21492 512.13 .000
Methods (factor) 5 0.4188 0.08376 19.37 0.000
Interaction 35 2.0513 0.05861 13.55 0.000
Error 192 0.8304 0.00432

Total 239  18.8050

Table 4.6 shows that, there are significant difieess among the six multi-class MTS methods,

even ifa-level of 0.01 is chosen for the test.
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Figure 4.2: 0.95 Confidence Interval of the Mearhef Average BCA Values
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Averages of PCC Values
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Figure 4.3: 0.95 Confidence Interval of the Meamhef Average PCC Values

Figure 4.2 indicates that FWMMTS-I, MMTS, SNRMMTSicaMDC are not significantly
different from each other in average BCA perfornemand they are better than FWMMTS-II
and WMDC. Similarly, Figure 4.3 indicates that FWNMBH, MMTS and MDC show very

similar performance in average PCC performancasttay might be better than the others.

A detailed multiple comparison analysis can be usexlipport these observations. The methods
are compared in pairs using Bonferroni and Tukeg&sts in “ANOVA with General Linear
Model (GLM)” tool of Minitab 15. In Minitab analysis, data sets are added as a random “factor”
and methods as a fixed “factor” into the model. T,hthe “methods” factor is selected as the
comparison term to conduct the comparison tests wif5 percent confidence interval. The
analysis of variance table and multiple comparissults of Bonferroni and Tukey'’s tests are

obtained as shown in Appendix C.2.

The Bonferroni's method can be used both to comglapmssible pairs for the specified factors,
and to compare each mean to the mean of a comsapgBoth Bonferroni and Tukey’s tests
use a family error rate to control Type-| error,erdms a Fisher's Least Significant Difference
(LSD) test only uses individual error rate. Sinagewant to compare all possible pairs of the six
methods in terms of BCA and PCC, it is importantctmsider the family error rate, because
chances of making a Type-I| error for a series ofigarisons will be greater than the error rate
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for any one of the individual comparisons alonee Ttwo methods adjust the error rate for
individual pair-wise comparisons based on the famitror rate chosen and the number of
comparisons (Statguide of Minitab 19)hese tests boil down to running a bunch tdsts
and then adjusting the significance level to tdledppropriate control of Type | errors.
For example, the Bonferroni test uses a straightdadt test but then evaluates thatt

a-level of Q05/c, where c is the number of comparisons, GQbea family error rate.

Six methods result in 15 pair-wise comparisona:I#vel of 0.05 is chosen family error rate, the
corrected error rate is 0.05/15, which is probgbitif 0.0033 for significance. Thus, if the
adjustedp-valuesfor the difference between the mean for any pailess than 0.0033, this
indicates that the difference is significant. Aaling to this probability of significance;values

of multiple comparisons for BCA and PCC are analyhe Tables 4.7-4.10, in which “<”
indicates that the performance of the method irrdkelist is less than method compared..

Table 4.7p-Valuesof Bonferroni Multiple Comparison Test for BCA s

Methods MDC MMTS SNRMMTS WMDC  FWMMTS-|
FWMMTS-II | 0.0010 (<) 0.0014 (<) 0.0054 0.3721  MGBQ<)
MDC 1 1 1 1

MMTS 1 1 1
SNRMMTS 1 1

WMDC 0.5939

Table 4.8:p-Valuesof Tukey’s Multiple Comparison Test for BCA result

Methods MDC MMTS  SNRMMTS WMDC  FWMMTS-
FWMMTS-II | 0.0009 (<) 0.0013<) 0.0048 0.2153 0.8G8)
MDC 1 0.9978 0.4621 0.9998
MMTS 0.9992 0.5175 0.9993
SNRMMTS 0.7479 0.9812
WMDC 0.3069

Tables 4.7 and 4.8 indicate that MDC, MMTS and FWWMBA methods show better
performances than FWMMTS-II in BCA since their paise comparisons give p-values less
than the probability of significance, which is
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Table 4.9p-Valuesof Bonferroni Multiple Comparison Test for PCCukts

Methods MDC MMTS SNRMMTS WMDC FWMMTS-|
FWMMTS-II | 0,0418 0,0448 0,3208 1 0,0033 (<)
MDC 1 1 0,0036 (>) 1

MMTS 1 0,0039 (>) 1
SNRMMTS 0,0419 1

WMDC 0,0002 (<)

Table 4.10p-Valuesof Tukey's Multiple Comparison Test for PCC result

Methods MDC MMTS SNRMMTS WMDC FWMMTS-|
FWMMTS-Il | 0.0329 0.0350 0.1915 0.9811 0.0030 (<)
MDC 1 0.9811 0.0033 (>) 0.9777
MMTS 0.9835 0.0036 (>) 0.9746
SNRMMTS 0.0329 0.7032
WMDC 0.0002 (<)

According to Tables 4.9 and 4.10, MDC, MMTS SNRMMasd FWMMTS-I show similar
performances in terms of PCC, which gives the dvacauracy. Although, FWMMTS-II shows
a moderately similar performance with MDC, MMTS,daSNRMMTS, it gives a worse
performance than FWMMTS-II, in overall accuracyakidition, MDC, MMTS and FWMMTS-
| show better performances than WMDC in PCC.

The comparison of MDC with other methods indicatest there is no significant difference
between multi-class MTS methods MMTS, FWMMTS-I, SNRTS and MDC. It is expected
that, after finding important variables for multass MTS methods, unlike MDC, the models
give better results than MDC. Possible reasonk@bbservation contrary to this expectation are

explained below.

The first reason may be the variable selection gukthn fact, it is observed that the number of
variables after the selection process with OA afd 1&tios does not decrease much for the
methods: MMTS, FWMMTS-I, SNRMMTS especially for tletudied data sets with more
variables such as abalone, vehicle or water. Heiicés not surprising to observe that
MDC is performing equally well with the others MMTBWMMTS-I, SNRMMTS. In order to
see if there exist advantages of the variable seteprocedures of the methods, one should
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study more data sets. This may be a reason fog lieeresults very close to MDC. In addition,
OA is preferred in the original MTS since it givasceptable solutions while decreasing number
of experiments to calculate S/R ratios (Taguchalget2003). However, our results reveal that
finding significant variables with OA does not makesignificant improvement in performance
results. Certain discussions on OA, (Hawkins, 20@&odall et al., 2003; Abraham and
Variyath, 2003) are given in detail in Section 2.2n fact, Nagao et al. (1999) encourage
increasing the initial number of variables in thairting set to make an improvement in the

results. These opinions are supporting our results.

The second reason may be the threshold selectidhotheBeing a special characteristic of
MTS, finding the best threshold is important foe thiccuracy of model (Su and Hsiao, 2007).
However, in our multi-class MTS methods, a thredhdbes not exist. Instead, a new
observation is assigned to the class of minimum MBerefore, our methods show similar

performance to that of MDC.

Su and Hsiao (2009) find that their proposed methivds a better performance than MDC.
However, when the average BCA results are analyaelg,in two data sets (“water-treat” and
“Mfeatures”) significant and in one data set (abalomoderately difference are seen in total of
12 data sets. We also apply MDC to “water-treatadset. However, it does not give the same
results as in Su and Hsiao (2009). The anticipegadons are explained before in Section 4.2.1.
In fact, there are missing values in this datawhich we have already omitted. However, there
is no comment on this in Su and Hsiao (2009). Iditawh, an OA which is suitable for the
“Mfeatures” data set is hard to find since the detthas 649 variables. The BCA performance

comparison of MMTS with MDC is not appropriate ivat situation, due to these reasons.

The reasons for exclusion of the method proposedSbyand Hsiao (2009) in multiple
comparisons are explained in Section 4.2.1. Whesinple comparison is of the methods
FWMMTS-I, FWMMTS-Il, MMTS, SNRMMTS, MDC, WMDC and WMMTS of Su and
Hsiao (2009) done based on the average of the B&ldes, the following ANOVA table is
obtained by the two-way ANOVA study.
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Table 4.11:;

ANOVA for Average of the BCA Valuesdlading FWMMTS method of Su and

Hsiao (2009))

Source DF SS MS F P
Data set 7 2.63253 0.376076 9.06 00@.
Methods 7 0.17778 0.025397 0.61 0.743
Error 49 2.03357 0.041501

Total 63 4.84388

The results indicate that there is no evidencesfgnificant difference among the all of the

methods. However, this result may be regardedase‘f since Table 4.4 and 4.5 reveal that

valuesof the methods are changed, when folds are indluereplications in the ANOVA

study.

Based on these results, we can claim that MMTSFRW#MMTS-I and MDC produce similar

results for the multi-class classification problenv§e also further suggest testing of the

proposed methods on more data sets, which haeretitf characteristics of data size, number of

classes and variables, to reach stronger conclagiont the superiority of any of the methods.
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CHAPTER 5

CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK

In this study, we have developed several multiscldassification methods with MTS. We have
also studied the sample size and class imbalara@epns, which are encountered mostly in

small data sets by developing a re-sampling alyorés a solution.

We have developed the following multi-class clasatfon methods with Mahalanobis Taguchi
System (MTS): MMTS, FWMMTS-I, FWMMTS-II, SNRMMTS. MTS is an expansion of the

original MTS algorithm for multiple class problemsing ANOVA in variable selection process;
SNRMMTS is an expansion of the original MTS algamit for multiple class problems using
only S/N ratios; FWMMTS-I is an adaptation of fe@uweighted MD, which is proposed by
Wodlfel and Ekenel (2005), to the multi-class MTS®kgems; and lastly FWMMTS-II is the

modification of the method of Su and Hsiao (2008MD calculation by using the original MD

instead of GS.

The comparison of MDC, which uses all variablesthe distance calculation, with other
methods indicates that there is no significantedéhce between multi-class methods MMTS,
FWMMTS-I, SNRMMTS and MDC. One may expect that,eaftselecting the important
variables for multi-class MTS methods, unlike MOBe models give better results than MDC.
In fact, it is observed that the methods selectoatnthe same variables. Hence, it is not
surprising to observe that MDC is performing equeléll with the others MMTS, FWMMTS-,
SNRMMTS. In order to see if there exist advantagfethe variable selection procedures of the
methods, one should study more data sets. Thisomayreason for being their results very close
to MDC. Another reason may be the effect of OA gesand usage of OA instead of larger
experimental designs. A possible future work isaligping better variable selection methods in

order to improve the results.
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Another reason may be the threshold method. ActullrS is different than MDC in case of
binary classification; also in the way it assigrewvnobservations to classes. MTS uses a
threshold for this purpose. In the literature,sitshown that the threshold method affects the
accuracy of the model significantly. However, irr ooulti-class classification methods, we do
not use a threshold. We simply assign a new obSemnvdo the class of minimum MD.

Therefore, our methods show similar performanaaab of MDC.

In addition, we have used the “one-to-all’ multag$ approach. Instead, the “one-to-one”
approach can be utilized, although it increasesntimaber of models to solve the multi-class
problem. We also further suggest testing of thegppsed methods on more data sets, which have
different characteristics of data size, number lHsses and variables, to reach stronger
conclusion about the superiority of any of the rodh

Re-sampling, on the other hand, can be performedviy-sampling, which increases the data
size; by under-sampling, which decreases the data lsy removing existing observations
randomly until a class balance is reached; or lyprabination of over-sampling and under-
sampling. Our re-sampling approach, which only woftar data sets with two classes, is a
combination of over-sampling and under-samplinge dter-sampling is performed by SMOTE,
which generates the synthetic observations betweenearest neighbors of observations in the
minority class. In addition, MTS models are usedetst the performance of several parameters

of re-sampling, for which the most appropriate ealare sought for specific to each case.

Based on our re-sampling approach, we can not\akeaule for the relationship between the
initial parameters and re-sampling parameters simeelecision tree based applications indicate
that the results are changing according to thdalnitata characteristics. For a given data set,
suggested re-sampling parameters can be selected sdarching on different values of
parameters. For a future work on our re-samplinthot a different classifier (such as Support
Vector Machines, Neural Networks), which is sewmsitio the imbalanced data, can be tested to
demonstrate the effect of re-sampling. In addition,SMOTE, different selection ways of
nearest neighbours can be studied. This re-samplggrithm can also be extended to multi-
class imbalance problems. Lastly, we let a largeeise in the number of observations in the
training set. It is also possible to modify theaalthm to put a limit on the final sample size,

especially for the very small data sets.
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APPENDIX A

MATHEMATICAL BACKGROUND

A.1 Inflation of the Error Terms Due To Multicollin earity

Theoretically the problem of multicollinearity cdone revealed for a given function Y as

follows:

Y= Bot+ BiXo* B Xy

then it becomes;

Y =Bo+(BL+2B,)X + 1

Thus, only the term of 8, + 2/, )can be estimated. It is not possible to get sepatet

estimates of3,and, .

A square matrix of order n is said to be nonsingiflahere exists a matri®, called the
multiplicative inverse ofA, such thatA [B =B [ A =I, wherel, is nxn identity matrix, then
B=A". Any matrix that does not have an inverse is saitle singular. Recalling from the
notes on matrix algebra, the inverse can be fowidguthe determinant of a matrix. In
addition, a square matri is nonsingular ifA [ X =0 implies thatX=0 or the columns of
A are linearly independent (Johnson and Wichern819According to these definitions,
every non-square matrix is singular. However, ngmase matrices may have right and left
inversesA [B =I, then we say that B is right inversefofandA is left inverse oB (Taguchi

et al., 2001).
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A.2 Adjoint Matrix Approach for MTS

The adjointC,q of a square matri€ is formed by taking the transpose of it. MD, whish

calculated by adjoint matrix approach, is obtaiasd

T -1
z C_ .7z
MQM=D2=—Li?—L,

7, = (Xil “H ,”-’Xik ',Uk)
g, Oy

where:
z : standardized; vector obtained by the standardized values 6£1,...K)
k :the number of variables.

T : transpose of the vector

The original MD can also be obtained from MD

1

MD = MD,,
deiC :

A.3 Generalized Inverse Approach

A generalized inverse is also sometimes referredgathe conditional inverse, pseudo
inverse, and g-inverse. The importance of the gdized inverse matri is revealed in the
theorem:G is a generalized inverse AfsinceAGA=A (Moore, 1920 cited by Johnson and
Wichern, 1998).
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APPENDIX B

RE-SAMPLING

$R-g-mean
i Made 0 |
In EVILI I
1% 100.000 |
1| Predicted 0.727 |
___________________ T
initial_MN
70.000 200.000; 500.000
Mode 1 Mode 8
h 14243 h 27916
% 33.784 % f6.216
Predicted 0.659 Predicted 0.762
| U |
N initial_M
<= 72.000 = 72.000 200.000 A00.000
Mode 2 Mode 3 Mode 8 Mode 12
n 1084 n 131489 n 16149 n 11767
% 2571 % N3 % 38.305 % 2791
Predicted 0518 Predicted 0.671 Predicted 0.7349 Predicted 0.793
. El 5
initial_ratio initial_ratio Ratio
0100 0.200;0.300 0.200 0.100; 0.300 «=0.220 =0.220
Mode 4 Mode & MNode 10 Mode 11 Mode 13 Mode 14
n 2412 n 10747 n 5596 n 10553 n 1761 n 10008
% 571 % 25482 % 13.274 % 2501 % 4177 % 23734
Predicted 0e18 Predicted 0.683 Predicted 0.697 Predicted 0.761 Predicted 0714 Predicted 0.207
=
Ratio
==0.298 =0.299
Mode 6 Maode 7
n 2510 n 8237
% 7.954 % 19.538
Predicted 0722 Predicted 0.671

Figure B.1: A Decision Tree Based on Results ofRhesampling Applications
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Table B.1: Discretization Rule of Overall TrainiSige after Re-sampling

1: <25
2: 25-49
3:50-74

27:650-674
28: 675-700

Table B.2: Discretization Rule of the Minority C$éaRatio after Re-sampling

1: 0.091-0.149
2:0.149-0.199
3: 0.199-0.249

8: 0.451-0.499
9: 0.499-0.544
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FR-Average of g-mean

{  Nodeo :
In a0 :
% 100.000 |
| Predicted  0.781 |-
__________ [I:
data
2.000; 3.000 f.000
Mode 1 MWode 12
h 12 h a
% 60.000 % 40.000
Predicted  0.673 Predicted 0,958
| =
init_M
Fo.000 200.000
Mode 2 Mode 9
n 7 h ]
% 345,000 % 25.000
Predicted 0637 Predicted  0.738
| B | B
data init_ratio
2.000 3000 0100 0.200
Mode 3 Mode B Mode 10 Mode 11
h 4 n 3 n 4 il 1
% 20,000 % 15.000 % 20,000 % 5.000
Predicted  0.594 Predicted 0695 Predicted  0.740 Predicted  0.690
= =]
init_ratia init_ratio
0.100 0.200 0100 0.200
Mode 4 Node & Mode 7 Mode 8
n 3 il 1 h 2 h 1
% 15.000 % 5.000 % 10.000 % 4.000
Predicted 0572 Predicted 0660 Predicted  0.665 Predicted  0.744

Figure B.2: A Decision Tree Based on SuggesteddrReping Parameters of the

Applications’ Results
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APPENDIX C

PERFORMANCE ANALYSIS of MULTI-CLASS MTS METHODS

C.1 Residual Plots of ANOVA Study

Residual

Normal Probability Plot Versus Fits
99,9 0,30+
° )
99 o .
90 0,15' .. °
£ E s 3 82
o 50 2 0,009 °
g g . e e
10 -0,151 °s
01 L% .’ -0,301 °
" 0,30 -0,15 0,00 0,15 0,4 0,6 0,8 1,0
Residual Fitted Value
Histogram Versus Order
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g 5
T 40 a
g g
. ﬂﬂ{
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Figure C.1: Residual Plots for BCA
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Figure C.2: Residual Plots for PCC
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C.2 Multiple Comparisons of the Developed Methods

General Linear Model: BCA versus Data; methods_1

Fact or Type Level s Val ues

Dat a random 8 abal one; bal ance-scale; iris; vehicle; water-
treat; waveform w ne; yeast

met hods_1 fixed 6 PFWWMIS-I; FWWIS-11; MDC, MMIS; SNRWMIS; WWVDC

Anal ysis of Variance for BCA, using Adjusted SS for Tests

Sour ce DF Seq SS Adj SS Adj M F P
Dat a 7 15,8384 15,8384 2,2626 188,62 0,000
nmet hods_1 5 0,3311 0,3311 0,0662 5,52 0,000
Error 227 2,7230 2,7230 0,0120

Tot al 239 18,8926

S = 0,109525 R Sq = 85,59% R-Sq(adj) = 84, 82%

Bonferroni 95, 0% Si nul t aneous Confi dence Intervals
Response Vari abl e BCA

Al'l Pairw se Conparisons anong Levels of nethods_1
met hods_1 = FWWIS-1 subtracted from

nmet hods_1 Lower Cent er Upper -------- Fome e S O
FWWTS-11 -0,1787 -0,1060 -0,03337 (------ W )
MDC -0,0790 -0,0064 0,06626 (------ oo )
MMTS -0,0811 -0,0085 0,06418 (------ Yoo )
SNRWMT'S -0,0899 -0,0173 0,05539 (------ oo )
WVDC -0,1233 -0,0507 0,02196 (------ Yoo )
-------- B L i Sy
-0, 10 0, 00 0, 10
met hods_1 = FWWMIS-11 subtracted from
nmet hods_1 Lower Cent er Upper -------- R Fome e S
MDC 0, 02698 0,09964 0,1723 (-=---- oo
)
MMTS 0, 02490 0,09755 0,1702 (m=-v--- oo
)
SNRWMT'S 0,01611 0,08876 0, 1614 (------ oo )
WVDC -0,01732 0,05533 0,1280 (------- *ooo )
-------- B e ey
-0,10 0, 00 0, 10

met hods_1 = MDC subtracted from

met hods_1 Lower Cent er Upper -------- Fommee o e e e o oo -
MMTS -0, 0747 -0,00209 0, 07057 (------ o )
SNRVMI'S -0,0835 -0,01087 0,06178 (------ [ — )
VWWDC -0,1170 -0,04430 0,02835 (------- [ )
-------- B L i Sy
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met hods_1 = MMIS subtracted from

met hods_1 Lower Cent er Upper ----
SNRWMMTS -0,0814 -0,00879 0,06386

WvDC -0,1149 -0,04222 0,03044

met hods_1 = SNRMMTS subtracted from

met hods_1 Lower Cent er Upper ----
WvDC -0,1061 -0,03343 0,03923
Bonferroni Sinultaneous Tests

Response Vari abl e BCA

-0, 10

Al'l Pairw se Conparisons anong Levels of nethods_1

met hods_1 = FWWIS-1 subtracted from

Di fference SE of
met hods_1 of Means Difference T-Value
FWWMTS- | | -0, 1060 0, 02449 -4,329
MDC -0, 0064 0,02449 -0,261
MMTS -0, 0085 0, 02449 -0, 346
SNRWMMTS -0,0173 0,02449 -0,705
WDC -0, 0507 0, 02449 -2,070
met hods_1 = FWWMIS-11 subtracted from

Di fference SE of
met hods_1 of Means Difference T-Value
MDC 0, 09964 0, 02449 4,068
MMTS 0, 09755 0, 02449 3,983
SNRWMMTS 0, 08876 0, 02449 3,624
WvDC 0, 05533 0, 02449 2,259
met hods_1 = MDC subtracted from

Di fference SE of
met hods_1 of Means Difference T-Value
MMTS -0, 00209 0, 02449 -0,085
SNRWMMT'S -0, 01087 0, 02449 -0,444
WWDC -0, 04430 0,02449 -1,809
met hods_1 = MMITS subtracted from

Di fference SE of
met hods_1 of Means Difference T-Value
SNRWMMTS -0, 00879 0, 02449 -0, 359
WvDC -0, 04222 0,02449 -1,724
met hods_1 = SNRMMIS subtracted from

Adj ust ed
P- Val ue
0, 0003

1, 0000

1, 0000

1, 0000

0, 5939

Adj ust ed
P- Val ue
0, 0010
0, 0014
0, 0054
0, 3721

Adj ust ed
P- Val ue
1, 000

1, 000

1, 000

Adj ust ed
P- Val ue
1, 000

1, 000

0, 00

0, 10
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Di fference SE of Adj ust ed
met hods_1 of Means Difference T-Value P- Val ue
WVDC -0, 03343 0,02449 -1,365 1, 000

Tukey 95, 0% Si mul t aneous Confidence Intervals
Response Vari abl e BCA

Al'l Pairw se Conparisons anong Levels of nethods_1
met hods_1 = FWWIS-1 subtracted from
met hods_1 Lower Cent er Upper -------- Fome e S S TR
FWWTS-11 -0,1763 -0,1060 -0,03572 (------ MR )
MDC -0,0767 -0,0064 0,06392 (------*------ )
MMTS -0,0788 -0,0085 0,06183 (-----¥ e - )
SNRWT'S -0,0876 -0,0173 0,05304 (------ R )
WVDC -0,1210 -0,0507 0,01962 (------ MR )
-------- B L i Sy
-0, 10 0, 00 0, 10
met hods_1 = FWWIS-11 subtracted from
met hods_1 Lower Cent er Upper -------- R Fomeemaaas Fomenn-
MDC 0, 02933 0,09964 0, 1699 (------ MEEEEE
)
MMTS 0,02724 0,09755 0, 1679 (------ MR
)
SNRWMT'S 0,01845 0,08876 0, 1591 (------ R )
WVDC -0,01497 0,05533 0, 1256 (------ MR )
-------- B e ey
-0,10 0, 00 0, 10
met hods_1 = MDC subtracted from
met hods_1 Lower Cent er Upper -------- Fome e S S TR
MMTS -0,0724 -0,00209 0,06822 (------ oo )
SNRWMT'S -0,0812 -0,01087 0,05943 (------ REEEEE )
WVDC -0,1146 -0,04430 0,02601 (------ R )
-------- B L i Sy
-0, 10 0, 00 0, 10
met hods_1 = MMTS subtracted from
met hods_1 Lower Cent er Upper -------- Fome e S S TR
SNRWMT'S -0,0791 -0,00879 0,06152 (------ MR )
WVDC -0,1125 -0,04222 0,02809 (------ R )
-------- B L i Sy
-0, 10 0, 00 0, 10
met hods_1 = SNRMMIS subtracted from
met hods_1 Lower Cent er Upper -------- Fome e S S TR
WVDC -0,1037 -0,03343 0,03688 (------ REEEEE )
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Tukey Si nul taneous Tests

Response Vari abl e BCA

Al'l Pairw se Conparisons anong Levels of nethods_1
met hods_1 = FWWIS-1 subtracted from

Di fference SE of Adj ust ed
met hods_1 of Means Difference T-Value P- Val ue
FWWMTS- | | -0, 1060 0, 02449 -4,329 0, 0003
MDC -0, 0064 0,02449 -0, 261 0, 9998
MMTS -0, 0085 0,02449 -0, 346 0, 9993
SNRWMT'S -0,0173 0,02449 -0,705 0, 9812
WVDC -0, 0507 0,02449 -2,070 0, 3069
met hods_1 = FWWIS-11 subtracted from

Di fference SE of Adj ust ed
met hods_1 of Means Difference T-Value P- Val ue
MDC 0, 09964 0, 02449 4,068 0, 0009
MMTS 0, 09755 0, 02449 3,983 0, 0013
SNRWMT'S 0, 08876 0, 02449 3,624 0, 0048
WVDC 0, 05533 0, 02449 2,259 0, 2153

met hods_1 = MDC subtracted from

Di fference SE of Adj ust ed
met hods_1 of Means Difference T-Value P- Val ue
MMTS -0, 00209 0,02449 -0,085 1, 0000
SNRWMT'S -0, 01087 0,02449 -0,444 0, 9978
WVDC -0, 04430 0,02449 -1,809 0, 4621

met hods_1 = MMIS subtracted from

Di fference SE of Adj ust ed
met hods_1 of Means Difference T-Value P- Val ue
SNRWMMTS -0, 00879 0, 02449 -0, 359 0, 9992
WvDC -0, 04222 0,02449 -1,724 0, 5175

met hods_1 = SNRMMTS subtracted from

Di fference SE of Adj ust ed
met hods_1 of Means Difference T-Value P- Val ue
WvDC -0, 03343 0,02449 -1, 365 0, 7479

Figure C.3: General Linear Model: BCA versus methadd data sets
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General Linear Model: PCC versus Data; methods_1

Fact or Type Level s Val ues
Dat a random 8 abal one; bal ance-scale; iris; vehicle;, water-
treat;
waveform wi ne; yeast
nethods_1 fixed 6 FWWMIS-1; FWWIS-11; MDC, MMIS; SNRWMTS; WWDC
Anal ysis of Variance for PCC, using Adjusted SS for Tests
Sour ce DF Seq SS Adj SS Adj M F P
Dat a 7 15,5045 15,5045 2,2149 174,47 0,000
nmet hods_1 5 0,4188 0,4188 0,0838 6,60 0,000
Error 227 2,8817 2,8817 0,0127
Tot al 239 18, 8050
S = 0,112671 R-Sq = 84,68% R-Sq(adj) = 83,87%
Bonferroni 95, 0% Si nul t aneous Confi dence Intervals
Response Vari abl e PCC
Al'l Pairw se Conparisons anong Levels of nethods_1
nmet hods_1 = FWWMIS-1 subtracted from
nmet hods_1 Lower Cent er Upper --------- e D +----
FWWTS-11 -0,1694 -0,0946 -0,01989 (------- R )
MDC -0,0932 -0,0185 0,05627 (------ WEEEEEE )
MMTS -0,0937 -0,0190 0,05573 (------ REEEEEE )
SNRWMT'S -0,1110 -0,0363 0,03849 (------ WEEEEEE )
WVDC -0,1872 -0,1124 -0,03767 (------- R )
--------- e L T LT T LT s e
-0,10 0, 00 0, 10
met hods_1 = FWWMIS-11 subtracted from
met hods_1 Lower Cent er Upper --------- Fomme e S +---
MDC 0,00142 0,07616 0, 15091 (------- W
-)
MMTS 0,00088 0,07562 0, 15036 (------- W
-)
SNRWMT'S -0,01636 0,05838 0, 13312 (------- R )
WVDC -0,09252 -0,01778 0, 05696 (------ REEEEEEE )
--------- R
-0, 10 0, 00 0, 10
met hods_1 = MDC subtracted from
nmet hods_1 Lower Cent er Upper --------- A Foeo- - +---
MMTS -0,0753 -0,00054 0,07420 (------- R )
SNRWMT'S -0,0925 -0,01779 0, 05695 (------ R )
WVDC -0,1687 -0,09394 -0,01920 (------- MR )
--------- B
-0, 10 0, 00 0, 10
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met hods_1 =
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MDC

MMI'S
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met hods_1 =
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MVITS
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0, 0448
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1, 0000
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P- Val ue
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T- Val ue
-3,023
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-0,10 0, 00 0, 10

Tukey Si nul taneous Tests

Response Vari abl e PCC

Al'l Pairw se Conparisons anong Levels of nethods_1
subtracted from

met hods_1 = FWWMIS- |

Di fference SE of Adj ust ed
met hods_1 of Means Difference T-Value P- Val ue
FWWMTS- | | -0, 0946 0,02519 -3,756 0, 0030
MDC -0, 0185 0,02519 -0,733 0, 9777
MMTS -0, 0190 0,02519 -0, 754 0, 9746
SNRWMT'S -0, 0363 0,02519 -1,439 0, 7032
WVDC -0,1124 0, 02519 -4, 462 0, 0002
met hods_1 = FWWMIS-11 subtracted from

Di fference SE of Adj ust ed
met hods_1 of Means Difference T-Value P- Val ue
MDC 0, 07616 0,02519  3,0231 0, 0329
MMTS 0, 07562 0, 02519 3, 0017 0, 0350
SNRWMT'S 0, 05838 0,02519 2,3172 0, 1915
WVDC -0,01778 0, 02519 -0, 7057 0, 9811
met hods_1 = MDC subtracted from

Di fference SE of Adj ust ed
met hods_1 of Means Difference T-Value P- Val ue
MMTS -0, 00054 0,02519 -0,021 1, 0000
SNRWMT'S -0,01779 0,02519 -0, 706 0, 9811
WVDC -0, 09394 0,02519 -3,729 0, 0033
met hods_1 = MMTS subtracted from

Di fference SE of Adj ust ed
met hods_1 of Means Difference T-Value P- Val ue
SNRWMT'S -0,01725 0,02519 -0,684 0, 9835
WVDC -0, 09340 0, 02519 -3, 707 0, 0036
nmet hods_1 = SNRMMIS subtracted from

Di fference SE of Adj ust ed
met hods_1 of Means Difference T-Value P- Val ue
WVDC -0,07616 0,02519 -3,023 0, 0329

Figure C.4: General Linear Model: PCC versus metteodl data
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