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ABSTRACT 
 

 

MULTI-CLASS CLASSIFICATION METHODS UTILIZING 
MAHALANOBIS TAGUCHI SYSTEM AND 

 A RE-SAMPLING APPROACH FOR IMBALANCED DATA SETS 
 

 

AYHAN, Dilber 

M.S., Department of Industrial Engineering 

Supervisor: Prof. Dr. Gülser KÖKSAL 

 

April 2009, 84 pages 

 

 

Classification approaches are used in many areas in order to identify or estimate classes, which 

different observations belong to. The classification approach, Mahalanobis Taguchi System 

(MTS) is analyzed and further improved for multi-class classification problems under the scope 

of this thesis study. MTS tries to explore significant variables and classify a new observation 

based on its Mahalanobis distance (MD). In this study, first, sample size problems, which are 

encountered mostly in small data sets, and multicollinearity problems, which constitute some 

limitations of MTS, are analyzed and a re-sampling approach is explored as a solution. Our re-

sampling approach, which only works for data sets with two classes, is a combination of over-

sampling and under-sampling. Over-sampling is based on SMOTE, which generates the 

synthetic observations between the nearest neighbors of observations in the minority class. In 

addition, MTS models are used to test the performance of several re-sampling parameters, for 

which the most appropriate values are sought specific to each case. In the second part, multi-

class classification methods with MTS are developed. An algorithm, namely Feature Weighted 

Multi-class MTS-I (FWMMTS-I), is inspired by the descent feature weighted MD. It relaxes 

adding up of the MDs for variables equally. This provides representations of noisy variables 

with weights close to zero so that they do not mask the other variables. As a second multi-class 

classification algorithm, the original MTS method is extended to multi-class problems, which is 

called Multi-class MTS (MMTS). In addition, a comparable approach to that of Su and Hsiao 
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(2009), which also considers weights of variables, is studied with a modification in MD 

calculation. It is named as Feature Weighted Multi-class MTS-II (FWMMTS-II). The methods 

are compared on eight different multi-class data sets using a 5-fold stratified cross validation 

approach. Results show that FWMMTS-I is as accurate as MMTS, and they are better than 

FWMMTS-II. Interestingly, the Mahalanobis Distance Classifier (MDC) using all the variables 

directly in the classification model has performed equally well on the studied data sets. 

 

 

Keywords: Classification, Multi-class Classification, Re-sampling, Mahalanobis Taguchi 

System (MTS), Feature Weighted Mahalanobis Distance. 
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ÖZ 
 

 

MAHALANOBIS TAGUCHI S ĐSTEMĐ ĐLE ÇOKLU SINIFLANDIRMA 
YÖNTEMLER Đ VE DENGEL Đ OLMAYAN VER Đ SETLERĐ ĐÇĐN BĐR 

YENĐDEN ÖRNEKLEME YAKLA ŞIMI 
 

 

AYHAN, Dilber 

Yüksek Lisans: Endüstri Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Gülser KÖKSAL 

 

Nisan 2009, 84 sayfa  

 

 

Sınıflandırma yaklaşımları farklı gözlemlere ait sınıfları tahmin etmek ya da belirlemek için 

birçok alanda kullanılmaktadır. Bu çalışma kapsamında, Mahalanobis Taguchi Sistem (MTS) 

sınıflandırma yaklaşımı incelenmiş ve bu yöntem çok sınıflı problemler için geliştirilmi ştir. 

MTS, önemli değişkenleri seçerek Mahalanobis uzaklığına (MU) göre yeni bir gözlemi 

sınıflandırmaya çalışır. Bu çalışmada, ilk olarak, MTS yönteminde çoklu bağlantı problemi ile 

küçük veri kümelerinde görülen örnek büyüklüğü sorunları incelenmiş ve çözüm olarak bir 

yeniden örnekleme yöntemi geliştirilmi ştir. Geliştirilen örnekleme yöntemi iki sınıflı problemler 

için çalışmakta olup, veri çoğaltma ve azaltma yöntemlerini içermektedir. Veri çoğaltma 

yöntemi, az sayılı sınıfın gözlemlerine ait yakın komşuluklarda sentetik gözlemler oluşturan 

SMOTE yöntemine dayanmaktadır. Örnekleme yönteminde, duruma göre en uygun değerleri 

değişen birkaç yeniden örnekleme parametresinin başarımını test etmek için MTS kullanılmıştır. 

Đkinci bölümde, MTS ile çok sınıflı problemleri çözen yeni sınıflandırma yöntemleri 

geliştirilmi ştir. Ağırlıklı MU yaklaşımı kullanılarak, Değişken Ağırlıklı Çoklu MTS-I 

(FWMMTS-I) geliştirilmi ştir. Bu yaklaşımda, MU’nun değişkenlere dayalı eşit ağırlıklı 

toplanması özelliği hafifletilmiştir. Gürültü değişkenlerin sıfıra yakın ağırlıklarla temsil edilmesi 

sağlanarak MU hesaplarken diğer değişkenleri gizlemesi engellenmiştir. Đkinci olarak, iki sınıflı 

problemleri çözen MTS’nin çok sınıflı probleme uyarlanmasıyla, Çok Sınıflı MTS (MMTS) 

geliştirilmi ştir. Ayrıca, Su ve Hsiao (2009) çalışmasında önerilen, diğer bir değişken ağırlıklı 



vii 

 

 

çoklu sınıflandırma yaklaşımında, MU hesaplaması değişikli ği yapılarak, Değişken Ağırlıklı 

Çoklu MTS-II (FWMMTS-II) yöntemi olarak isimlendirilmiştir. Tüm yöntemler tabakalı çapraz 

doğrulama yaklaşımı kullanılarak sekiz farklı çok sınıflı veri kümelesinde karşılaştırılmıştır. 

Sonuçlara göre, FWMMTS-I yöntemi MMTS ile aynı başarımı göstermiş ve bunlar ise 

FWMMTS-II yönteminden daha iyi başarım göstermiştir. Đlginç olarak, sınıflandırma modelinde 

tüm değişkenleri doğrudan kullanan MU Yaklaşımı (MDC) da, çalışılan veri kümelerinde aynı 

derecede başarım göstermiştir. 

 

 

Anahtar Kelimeler: Sınıflandırma, Çoklu sınıflandırma, Yeniden Örnekleme, Mahalanobis 

Taguchi Sistem (MTS), Değişken Ağırlıklı Mahalanobis Uzaklığı.  
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CHAPTER 1 

 

 

INTRODUCTION 
 

 

 

Multivariate data analysis refers to any statistical technique, which analyzes data having more 

than one variable. This essentially models real situations. Multi-class classification problems are 

a subset of multivariate problems. They are defined as finding a prediction model of the 

associated class of a new example on observed variables. Multivariate analysis becomes 

nontrivial when there are lots of variables. In particular, multi-class classification remains as a 

research area. 

  

Mahalanobis Taguchi System (MTS) is a multivariate classification technique with known 

labels. It is developed with a combination of MD to construct a multidimensional measurement 

scale from a set of observations to a reference point with the determination of the important 

variables (Taguchi, 2001). 

 

In particular, we study the effect of class imbalance problems on MTS. The motivation comes 

from problems due to limited number of observations. In fact, sample size problems can be 

classified in three types. In the first type, the fact that the number of observations may be large 

enough but less than the number of variables poses an obstacle to MTS, since MTS empirically 

requires that the number of samples is grater than the number of variables and collecting more 

data may be a solution to it. In the second type, number of observations in a class with respect to 

the other classes, over-represented or under-represented, may cause problems. In the third type, 

sample size and imbalanced data problem may happen at the same time. As a result, over-

sampling algorithms should consider the number of variables, as well. One of the objectives of 

this thesis study is to overcome the third type drawback.  
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In this study, we first develop a re-sampling algorithm working for two-class data sets, which is 

a combination of over-sampling and under-sampling. Over-sampling is done by SMOTE, which 

is an over-sampling method by generating the synthetic observations between the nearest 

neighbors of observations in the minority class (Chawla et al., 2002). MTS models are also used 

to handle several imbalanced data sets resized with under-sampling or over-sampling based on 

search space of class ratio, sample size and number of nearest neighbors. For the purpose of 

generating rules for suggested re-sampling parameters in the search space, a decision tree 

classifier is applied to the performance measures to relate data set characteristics with the 

performance of the models. 

 

In the second part of the study, several multi-class classification algorithms are developed. In the 

literature, we encounter one recent study on multi-class MTS, which belongs to Su and Hsiao 

(2009). The other objective of this study is developing multi-class classification methods. We 

first develop an algorithm called Feature Weighted Multi-class MTS-I (FWMMTS-I) for multi-

class classification problems. The descent feature weighted concept in the study of Wölfel and 

Ekenel (2005), which relax equal adding up of the variable distances in MD calculation is used 

in FWMMTS-I. In addition, we extend the original MTS algorithm to multi-class problems 

(MMTS method). . Su and Hsiao (2009) use a Gram-Schmidt (GS) algorithm, which is criticized 

in the literature since GS is found highly sensitive to data ordering since it depends on which 

variable is first selected in the order. Thus, a modification is made in MD calculation of Su and 

Hsiao (2009). We name the latter algorithm “Feature Weighted Multi-class MTS-II (FWMMTS-

II)”. Finally, performances of these algorithms are compared on eight different multi-class data 

sets. The results are also compared to those of Mahalanobis Distance Classifier (MDC) and 

Weighted Mahalanobis Distance Classifier (WMDC), which is developed by using the descent 

feature weighted MD calculation of Wölfel and Ekenel (2005). 

 

This thesis consists of four more chapters other than this first chapter of introduction. In the 

second chapter, some background information about the multivariate classification systems, MD 

and MTS are provided along with a comprehensive literature review on delimitations and some 

popular applications of MTS. Moreover, some of the recent literature on re-sampling is 

presented. In the third chapter, a new re-sampling algorithm with MTS is presented and its 

performance on different data sets is discussed. In the fourth chapter, the multi-class MTS 
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algorithms are presented and their performances are compared. In the last chapter, conclusions 

and further studies that can be done in the future are stated. 
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CHAPTER 2 

 

LITERATURE SURVEY AND BACKGROUND 
 

 

2.1 METHODOLOGY AND BACKGROUND 

2.1.1 Classification Problems and Methods   

Unlike the univariate analysis, multivariate data analysis refers to any statistical technique used 

to study data that contains more than one variable. This essentially models the reality since each 

situation, product, or decision mostly involves more than a single independent variable. The goal 

of the multi-class classification problems, which is also a subset of multivariate problems, is to 

find a mapping, a model or a function to predict the associated class of a new example. They 

assume the existence of a pre-defined set of classes. It is also known as a supervised learning in 

order to distinguish it from clustering (or unsupervised learning). 

 

The classification methods have their own advantages and disadvantages. To illustrate, while the 

discriminant analysis assumes that data comes from multivariate normal distribution, the 

Logistic Regression (LR) and Multivariate Adaptive Regression Splines (MARS) do not. In 

recent years, the structural models have also become popular. An Artificial Neural Network 

(ANN) is a mathematical or a computational model based on biological neural networks with a 

structure changing with respect to external or internal information. It can model nonlinearities 

similar to MARS. ANN and MARS are typically more successful in modeling high-dimensional 

problems. Unlike ANN and MARS, LR provides probabilistic statements. Unfortunately, LR 

may be difficult to use without data pre-processing since it may provide too large or infinite 

coefficient estimates. Besides, ANN cannot name the most important variables while LR and 

MARS can do. MARS automatically produces the results, while the ANN architecture should be 

determined by the user.  
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2.1.2 Performance Measures of Classification (Binary and Multi-class) 

The performance measures, which are taken from Weiss and Zhang (2003), can be listed as 
follows: 

2.1.2.1 Binary Classification Measures 

A coincidence (or confusion) matrix illustrates the accuracy of a solution for a classification 

problem.  

Table 2.1: A Simple Coincidence Matrix 

 

  Predicted class 

  Positive Negative 

Positive a (TP) b (FN) 
Actual class 

Negative c (FP) d  (TN) 

  

According to Table 2.1, while TP and TN denote the number of positive and negative 

observations which are classified correctly, FN and FP denote the number of misclassified 

positive and negative observations, respectively. 

Percentage of Correct Classification Rate (PCC): 

Percentage of correct classification rate (PCC) gives the proportion of true results (both TP and 

TN) in total observations. For a total number of observations, n, PCC equals to: 

n

TN)+(TP
 =PCC                  

Kappa: 

Kappa is the proportion of correctly classified observations after the probability of chance 

agreement has been removed. Kappa is always less than or equal to 1. A value of 1 implies 

perfect agreement and less than 1 implies less than perfect agreement. It is defined as follows:
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)θ/()θθ( 221  -1 -Kappa=  

 

n/)da(θ +=1  

 

22

2222

n

]/)db.(/)dc[(]/)ca.(/)ba[(
θ

+++++
=  

Where n is the total number of observations. 

Receiver Operating Characteristics (ROC) Curve: 

ROC is a two-dimensional graph, in which true positives (TP) rate is plotted on the y-axis, and 

false positives (FP) rate is plotted on the x-axis. The ideal point on the ROC curve would be [0, 

1], which means all positive observations are classified correctly and no negative observations 

are misclassified as positive.  

Area under ROC Curve (AUC): 

AUC measures the area under the ROC curve.   

Precision: 

Precision is an indicator of sharpness in identifying the class of interest. It is simply defined as: 

 

 

Recall (Sensitivity) and Specificity: 

The sensitivity (also called recall rate) measures the proportion of actual positives which are 

correctly identified. The specificity measures the proportion of actual negatives which are 

correctly identified. They are closely related to the concepts of type I and type II errors.

    
FPTP

TP
Precision

+
=
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Sensitivity=
FN+TP

TP
   Specificity=

FP+TN

TN
 

 

Specificity is sometimes confused with the precision. The distinction is critical when the classes 

are different sizes. A test with very high specificity can have very low precision if there are more 

true negatives than true positives, and vice versa. 

F measure: 

In general, there is a tradeoff between the precision and recall, which can be achieved. Thus, the 

F-measure is a convenient way of looking at the tradeoff between precision and recall in a single 

measure. In a sense, F-measure measures the balance between precision and recall.  The 

traditional F-measure is: 

 

  

 

Two other commonly used F-measures are the F2 measure, which weights recall twice as much 

as precision; and F0.5 measure, which weights precision twice as much as recall. 

)recall+precision(

recall)(precision )(
F

2 ⋅⋅⋅⋅
××××++++====

β
β

β

21
 

 

Geometric Mean of Sensitivity and Specificity 

The geometric mean of specificity and sensitivity (G-mean) gives the importance to the balance 

measurement of class accuracies.  G-mean is: 

 

G-mean= yspecificitysensitivit ××××

 

recall

1

precision

1
2

F
+

=
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Stability: 

A classification model is stable when it performs just as well on seen (training) and unseen (test) 

data sets. The stability can be measured as a number between 0 and 1, where 0 means 

completely stable and 1 means completely unstable. This measure can be calculated as the 

arithmetic difference divided by arithmetic sum of the training and test classification rates, CRTR 

and CRTE, respectively. 

 

 

2.1.2.2 Multi-class Classification Measures 

Average of Class Accuracies:  

Class accuracy defines the number of correct classifications in each class. Su and Hsiao (2009) 

use “Balanced Class Accuracy (BCA)”, as an average of class averages since it computes 

accuracy independent from the size of each class.  

 

 

 

 

where ni is the size of class i  for L classes. 

Percentage of Correct Classification Rate (PCC): 

PCC is the ratio of true results (both TP and TN) to total observations, which is N for L classes.  

 

N

)TN(TP
PCC

∑
1

L

i
ii

=
+

=  

 

Stability can also be a measure of multiclass classification. 

)CR)/(CRCR -(CR Stability TETRTETR +=

[ ]
          

L

 /)TNTP
  =BCA
∑

1

L

i
iii n(

=
+
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2.1.3 Mahalanobis Distance  

Mahalanobis distance (MD) was first introduced by Prasanta Chandra Mahalanobis in 1936. 

Considering the correlations, it is a way of making a group of multivariate variables uniform. 

Classifiers based on MD are mostly used for statistical purposes. MD is also used for selection 

of outliers. MD can be perceived to be a constant multiple of Hotelling’s T2 (Hawkins, 2003, 

Abraham and Variyath, 2003).  

 

The covariance between two variables is simply the average product of the values of two 

variables Xi, Xj, which are expressed as deviations from their respective means, iµ  and jµ :  

 

[ ])µ)(µ),( jjiiji  -X -(XEXXCov =          (2.1) 

 

Given the covariance of Xi and Xj, correlation coefficient between variables Xi and Xj is 

obtained as:  
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Where σi and σj are the standard deviations of the variables Xi and Xj. 

MD is a squared distance (also denoted as D2)  , which is obtained by: 

 

                          (2.1) 

 

 

                                         (2.4) 

 

where: 

zi : standardized zi vector obtained by the standardized values of xi (i=1,…,k) 

k  : the number of variables. 
T  : transpose of the vector 

C-1: inverse of the correlation matrix 
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The mean of MD values is expected to be one since Equation (2.3) uses a normalized vector z 

and a normalizing factor 1/k. The main assumption of MD is that the variables are multivariate 

normal. Based on the central-limit theorem, many sampling distributions can be approximated to 

normal. In addition, this assumption may be relaxed in situations, where the number of 

observations becomes larger (Johnson and Wichern, 1998).  

 

In addition, when a mixture of continuous and discrete variables is present, MD could be 

generalized (Bar-Hen and Daudin, 1995).  Bar-Hen and Daudin (1995) (as cited in Leon and 

Carrière, 2005) apply the Kullback–Leibler divergence to the general location model and derive 

a distance that specializes to the MD in the absence of nominal variables. Afterwards, the 

distance is utilized for the mixed continuous and discrete data, which provides to use the 

qualitative as well as the quantitative data (Bedrick et al., 2000 as cited in De Leon and Carrière, 

2005). Finally, Leon and Carrière (2005) derive an MD which can be used with data mixed with 

nominal, ordinal and continuous variables.  

 

MD differs from the Euclidean distance in addressing correlations. Wölfel and Ekenel (2005) 

state that MD is a weighted Euclidean distance, where the weights are expressed by the 

covariance matrix. According to Srinivasaraghavan and Allada (2006), MD is superior to the 

other statistical approaches in the following ways; it considers the covariance and ranges of 

acceptability (variance) between variables; it compensates for interactions (covariance) between 

variables; it lacks dimension. It is an effective method since a lot of observations can be 

analyzed due to the matrix calculation (Riho et al., 2005).  

 

On the other hand, there are also some limitations of MD. MD assumes equal priorities in 

variables, as well as equal misclassification costs (Sharma, 1996). Moreover, MD does not 

consider the specific contribution of a variable. In addition, as a requirement of MD, the number 

of observations collected in the normal group should be larger than the number of variables 

(Srinivasaraghavan and Allada, 2006). In fact, generally the number of observations may not be 

enough, compared to its dimensionality. As a result, the covariance matrix usually cannot be 

estimated accurately. In addition, to calculate MD from an observation Y to X, X and Y must 

have the same number of columns due to the matrix operation (division), but may have different 

numbers of rows.  
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MTS method is based on MD and is explained in the following sections.  

2.1.4 Mahalanobis Taguchi System  

Mahalanobis Taguchi System (MTS) is a method of classification and selection of the 

significant variables. MTS, a combination of MD with Taguchi’s robust engineering, addresses a 

scale based on data input characteristics to measure the degree of abnormality. Consequently, an 

unknown observation is assigned to a class. Cudney et al. (2006) illuminate MTS for the 

statistical measure of how well an unknown observation matches a known observation. Since 

MTS is based on MD, its assumptions are similar to the assumptions of MD, which are given in 

the previous part.  

 

In MTS, every example outside the normal space (that is, abnormal example) is regarded as 

unique, which does not constitute a separate population. As a result, Taguchi and Jugulum 

(2000) do not accept MTS as a classification method. Taguchi and Jugulum (2000) also mention 

the usage of categorical data with MTS. Given m as the number of levels for a categorical 

variable, (m-1) columns are allocated for the categorical variable. If an observation has a level of 

one, then all the allocated variables apart from the first column is assigned to be zero. On the 

other hand, if the level of the categorical variable is 2, the second column corresponding to the 

given observation is assigned to 1, while the others are assigned to 0.  

 

Woodall et al. (2003) criticize MTS by stating that the other statistical methods are better 

designed to account for the sampling variation and the variation between two observations.  This 

lack of attention to variation between the observations is more evident in the MTS clinical trials 

which results to at least some classification errors. On the other hand, Srinivasaraghavan and 

Allada (2006) mention that MTS is a very effective technique for detection of complicated 

causes of failures due to its eligibility for the matrix calculation. 

 

The procedure of MTS is not much complicated. In the first stage, data pre-processing is 

performed. Data set is separated into a normal (“healthy”) group, which shows homogenous 

characteristics, and an abnormal (“unhealthy”) group. For example, for a cancer data, the healthy 

people constitute a normal group, whereas the people with cancer constitute an abnormal group. 
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MTS is a method of supervised learning in order to distinguish in which the classes (or 

labels) are known. Mean and standard deviation of the normal group are used in order to 

standardize the abnormal and normal groups. Normal group constitutes a Mahalanobis space 

(MS). MTS model tries to memorize the specifications of the normal group by including the 

inverse of the correlation matrix of the normal group. Data pre-processing is continued to check 

for detecting the normality of variables and outliers of MS scale.  

 

An outlier is defined as an observation that lies outside the overall pattern of a distribution 

(Moore and McCabe, 1999) as shown in Figure 2.1. In some of cases, the selection of an 

appropriate MS becomes nontrivial, although the detection of outliers can be done by means of 

several ways. Dot plots can be drawn but when the number of variables is large, they are not 

very visual. The other way is examining standardized normal observations on a Chi-square plot. 

MD is also used in outlier detection (Anderson and Schumacker, 2003). For example, it is used 

as an outlier detection method in the De Groot et al. (2001). A threshold value is utilized in 

detecting outliers via MD to omit the observations having higher MDs. After detecting the 

outliers, the MS scale is validated. If the MS scale is not validated, it cannot suitably represent 

the normal condition in reality and is necessary to be reconstructed with a new MS using the 

remaining normal observations until a suitable MS obtained (Taguchi and Jugulum, 2002). This 

is all for data pre-processing. 
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Figure 2.1: Outliers of a Mahalanobis Space (MS) (for the vehicle data) 

 

In the second stage, MD values of abnormal observations are calculated.  MD of a standardized 

zi vector is given in Equation (2.3). The MD values of abnormal group are expected to be higher 

than normal group, as shown in Figure 2.2.  

 

 

 

 

Figure 2.2: MD Values of Normal and Abnormal Group 
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Then, important variables are selected for the model by using signal-to-noise (S/N) ratios and 

orthogonal arrays (OAs) based on MD values. The normal or abnormal groups may not be 

distinguishable due to the improper selection of variables. Each variable in an OA is assigned to 

one of its column and set with two levels, using and not using the variable. There are three 

general forms of S/N ratios: (i) larger-the-better type, (ii) smaller-the-better type and (iii) 

nominal-the-best type. Taguchi and Jugulum (2000) encourage using larger-the-better S/N ratios 

instead of nominal-the-best type when the true levels of abnormal group are not known.  

 

)
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                    (2.5) 

 

The steps of the original MTS algorithm: 

 

1. Data pre-processing steps: 

 

a. Collect N observations with two-classes. MTS empirically requires that the 

number of observations in the normal class is greater than the number of 

variables, k.   

b. Let xij be the value of  ith observation for jth variable (i = 1, . . . , N, j = 1, . . . , k). 

The vector of variable values is xi = (xi1, . . . , xik)
T. 

c. Calculate the mean of variable values, µj, and the standard deviation, σj, for each 

variable xj in the normal group. 

d. Normalize or standardize observations xi = (xi1, . . . , xik)
T  with µj and σj as given 

in Equation (2.4). 

e. Use the square distance of MD given in Equation (2.3): 

 

 

 

f. Omit observations having MD values more than ( mdmd sX3X + ) as outliers. 

Here, mdX  is the average of and mdsX  is the standard deviation of observations 

in the normal group. MTS requires that the normal class has a high uniformity in 

terms of variable values.  We should keep the requirement in the step (a): N > k.  

k
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2. Model construction steps:  

 

a. Using S/N ratios and OA, the important variables are selected. The number of 

rows in an OA should be at least (k+2), where k denotes the number of 

variables. Furthermore, the number of columns in the OA must be equal to the 

number of variables. After S/N ratios are calculated, the gain of a variable is the 

difference of the average S/N ratio between the situations when the variable is 

used and not used in an OA. In particular, gain indicates the degree of 

effectiveness in the classification system after the inclusion of the variable. If 

the gain is positive, the variable is useful to be included in the model. Indeed, 

the gain of the variable is equivalent to an estimated the main effect of the 

variable in statistical design of experiments terminology. The presence and the 

absence of the variables are considered as the levels of an OA in the MTS 

method. Level-1 in the OA column represents the presence of a variable and 

Level-2 represents the absence of that variable. S/N ratios are calculated using 

the levels of OAs based on MD values. Considering the S/N ratios of presence 

and absence of a variable, if the difference is positive, the variable is included in 

the model. 

b. Calculate a threshold value, τ of MD for classifying classes. An appropriate 

threshold, which separates the abnormal observation from the normal group or 

MS, is found. Consequently, class assignments are done based on the threshold. 

 

3. Classifying a new data:  

 

a. If a new observation has an MD smaller than τ, it is assigned to the normal 

class. Otherwise, it is in the abnormal class. 

 

The procedure of the original MTS is given in Figure 2.3.  
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Figure 2.3: The Flowchart of the Original MTS Method
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2.1.5 Gram-Schmidt MTS 

The difference between Gram-Schmidt MTS (GSMTS) and the original MTS comes from the 

MD calculation. Gram-Schmidt (GS) process is especially used to obtain better MDs if the 

observation size is small, and there are multicollinear situations where the correlation matrix is 

singular. GS process is performed to make variables mutually orthogonal. This process 

eliminates their relationship (multicollinearity). This makes the covariance matrix almost 

singular and the inverse matrix invalid. The theoretical background of GSMTS is explained as 

below. 

 

Given linearly independent standardized vectors of iz  (i=1,…, k), there exist mutually 

perpendicular vectors such that: 

 

k... U,,U,U 21  

  

11 zU =                                                    (2.2) 

 

Let 1z  is the first standardized variable vector for observations, 2z  is the second and kz  is the 

last variable vector. Then, the orthogonal GS vectors of iU are: 
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For the perpendicular vector for the kth variable, Uk , there must be (k-1) GS vector coefficients, 

denoted as ui,  
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1-21 k, u,...,u,u  

 

Such that; 
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Then, the GS vector for the last variable is: 
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After the calculation of all GS vectors, MD is computed by using the following formula, which 

is derived from the original MD in Equation (2.3): 
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GSMTS method provides a clear direction of where the improvement efforts should be done. 

Using this purpose, Srinivasaraghavan and Allada (2006) apply GSMTS in order to evaluate a 

company’s status of lean implementation and success.  

 

Taguchi and Jugulum (2000) employ GSMTS in a medical case study. They prefer not to use 

principal components (PC), because each PC is a function of the others. However, Hawkins 

(2003) claims that GS also has the same characteristics since all the GS vectors are a function of 

the others beforeas it is given in Equation (2.7).  

 

Furthermore, GS is found highly sensitive to data ordering since it depends on which variable is 

first selected in the order (Woodall et al., 2003). Cudney (2006) finds that GSMTS is not 

effective because calculations of the S/N ratios are done based on the value of MD, which means 

the sampling variation is ignored. 
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In addition, threshold limits of orthogonal vectors corresponding to MD values are given linear; 

however, it should be in an ellipse form as represented in Figure 2.4.  

 

 

 

Figure 2.4:  Threshold Limits of GS and Ellipse Form of a MS. 

 

There is also modified GS algorithm. Persson (2007) claims that the modified GS (or 

QR decomposition) is more stable than GS numerically. That is, it is less sensitive to 

rounding errors. Decomposing a complex m×n matrix (X) (where m ≥ n) as the product 

of an m×n matrix, Q with orthogonal columns and an n×n upper triangular matrix, R. In 

order to find the orthogonal matrix Q, there are other methods such as Householder, 

Givens.  

2.1.6 Multi-class Classification with MTS  

There are different approaches in classification, especially for binary classification. However, 

multi-class classification is relatively less investigated (Hsu and Lin, 2002). In the literature, 

multi-class problems are solved differently, which can be categorized in three types (Su and 

Hsiao, 2009). The first approach does not need any modification in the two-class classification 

method to solve multi-class problems. This employs only one run to solve the problem, thus it is 

simple and time saving. However, this type of algorithm is not encountered much (i.e 

Mahalanobis Distance Classifier, Decision Tree). The second type is a modification of the 

original algorithm by considering it as if it is a two-class problem (i.e. some of researches in 

Support Vector Machines (SVM)). The problem is solved by one model as the first approach. 

However, in this case the algorithm is exposed to changes (Su and Hsiao, 2009). The last one is 
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algorithms that decompose the problem into a collection of two-class problems. This has three 

variations in itself, for each of which Ou et al. (2004) develop some algorithms using the neural 

networks: (i) “one-to-one”, which considers each pair of class. It needs L (L-1)/2 models to solve 

the problem, where L is the number of classes. This approach is used by Friedman (1996) on 

Support Vector Machine. He also proposes a method for making class assignment after 

modeling; (ii ) “one-to-all”, such a system that employs L number of models. This procedure is 

repeated for each of the L classes, leading to L two-way trained classifiers (Ding et al., 2001). 

Although it considers the data at once, an optimization is required for them since it requires 

more computational time than binary one. Based on this purpose, Hsu and Lin (2002) study a 

decomposition implementation for SVM algorithm with this approach. (iii ) “p-to-all” method, on 

which Ou et al. (2004) also study. For detailed comparisons, readers may refer to Chin (1998) 

(as cited in Hsu and Lin, 2004).  

 

MTS is originally designed for binary classification. How it can be effectively extended to multi-

class classification is still an ongoing research. In 2009, Su and Hsiao propose a MTS method 

for multi-class problems, namely Feature Weighted Multi-class MTS (FWMMTS) of Su and 

Hsiao (2009). GS process is employed for MD calculation.  

 

The steps of multi-class MTS algorithm proposed by Su and Hsiao (2009): 

 

1. For each class, construct the original MTS model as given in Section 2.1.4. Normal 

group constructs a MS, for which the model is obtained. The other classes are left as 

abnormal. 

2. The GS orthogonal vectors of abnormal and normal groups are computed. By using 

GS vectors, MD of the abnormal group to the MS is calculated using Equation (2.8). 

3. OAs and S/N ratios are used to select the most important variables. Different from 

the original MTS, weights are calculated based on S/N ratio gains. Gains of the 

important variables show the degree of their effectiveness in the classification 

system with respect to its inclusion. The motivation to use the weights for variables 

comes from equal adding up of the variance normalized squared distance of the 

variables during the MD calculation.  

4. The MD is the sum of products of MD for each variable by its weights.  
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5. Up to this step, the process is done in the same way for each class. Finally, method 

is ready to accomplish the classification of the new data to the class of the minimum 

MD.  

 

Su and Hsiao (2009) compare their method with the other well-known methods using Balance 

Class Accuracy (BCA) as a performance measure given in Section 2.1.2.2. They find out that 

their proposed method is as accurate as the Support Vector Machine (SVM). 

2.1.7. Applications of MTS 

Using MTS, researchers have addressed some of problems such as diagnostic purposes, 

inspection, fire detection, sensor systems in manufacturing, patient monitoring, forecasting, 

weather forecasting, credit scoring, and voice recognition.  

 

Some popular applications in the literature of MTS are as follows: Taguchi and Jugulum (2000) 

utilize MTS to make classification in a medical case study. Additionally, Watabe et al. (2005) 

detect specific scene within a short time in the digital video storage by means of MTS. Riho et 

al. (2005) implement MTS for identification of the important parameters in the wafer failure 

process.  Moreover, Aman et al. (2006) try to control the maintenance cost by finding cost prone 

classes with MTS. In the meantime, forecasting of customer satisfaction ratings is done in a 

vehicle handling system by Cudney et al. (2006). Das and Datta (2007) ascertain effects of 

chemical composition of hot rolled steel product whether its quality is “ok” or “diverted”. 

2.2 DELIMITATIONS OF MTS  

Although MTS has used in various areas, Woodall et al. (2003) do not find MTS easy to 

implement. The major drawbacks of MTS are summarized as below: 

 

1. Distribution of Variables: MTS is applied on normal distributed data, so has MD. In 

addition, Woodall et al. (2003) also claim that in the study of Taguchi and Jugulum 

(2000), the impact of sampling on MTS is unclear. 
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2. Number of Classes: MTS is proposed for two-class problems. There is one recent study 

on multi-class problems, proposed by Su and Hsiao in 2009.  This study is mentioned in 

Section 2.1.6. We intend to fill this gap in Chapter 4. 

3. Sample Size and Multicollinearity: The number of normal observations should be large 

enough in order to run the MTS algorithm as an empirical requirement. This delimitation 

is the motivation of Chapter 3. In addition, variables of the normal group, which 

constitute a correlation matrix, should not be highly correlated between each other.  One 

solution to this is using statistically independent variables such as GS orthogonal 

vectors.  

4. Selection of Important Variables: OA and S/N ratios are used to find the significant 

variables. However, MTS solution changes according to allocations of variables in an 

OA. Thus, the variable selection procedure of the original MTS is problematic. 

5. Threshold Determination: Threshold determination is not clear. 

 

Discussions on these drawbacks are explained separately in the following sections.  

2.2.1 Distribution of Variables 

According to Taguchi and Jugulum (2000), the abnormal group does not constitute a separate 

population. In addition, Hawkins (2003) underlines that MTS approach may avoid distributional 

models. As a result, this may warrant the usage of MD as a nonparametric quantity in MTS. This 

subject is given in detail in Section 2.1.3. However, Woodall et al. (2003) find this unacceptable 

in the statistical terminology. Because, the main assumption of MD is that the variables are 

multivariate normal, the MS must be made of a normal group, variables of which follow a 

normal distribution (Abraham and Variyath, 2003).  

 

The normality of distributions can be evaluated by several ways, such as dot plots for smaller 

observations, histograms for n>25, where n denotes the number of observations, and also a Q-Q 

plot. As an alternative, symmetry of histograms or nearly straight line of Q-Q plots might 

indicate the data are normally distributed. When the normality assumption is not satisfied, one 

alternative is to continue as if it is normally distributed. However, Johnson and Wichern (1998) 

do not encourage this since it may lead to bad conclusions. The other strategy is making a 

transformation on data.  
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A major limitation inherent in MTS is that MD based boundary fails to discriminate data in 

cases, which mean points of classes stay close to each other (Aman et al., 2006; Abraham et al., 

2003). This prevents a clear separation of the two groups, which overlap with each other on a 

scatter diagram.  

2.2.2 Number of Classes  

In the literature, there is just one recent study on multi-class MTS, which belongs to Su and 

Hsiao (2009). This study is mentioned in Section 2.1.6. In this thesis, we also develop new 

multi-class classification algorithms in Chapter 4. 

2.2.3 Sample Size and Multicollinearity 

Sample size problems in MTS can be classified in three types. In the first type, the observation 

size is large enough, but less than the number of variables. As a result, it poses an obstacle to 

calculate MD. This problem can be solved by increasing the observation size in a homogeneous 

way. In the second type, data representation with respect to other classes causes problems, which 

are known as data imbalance problems. This may occur in two ways: an over-represented class, 

in which the number of observations in one class is much more than the other classes and an 

under-represented class, in which the number of observations in one class is very less than the 

other classes. Re-sampling procedures which are over-sampling or under-sampling are generally 

run for this problem. In the third type, both observation size and data imbalance problems may 

happen at the same time. As a result, the over-sampling algorithms should also consider the 

number of variables. This point imposes a new restriction for re-sampling issue in MTS, which 

we are intended to relax in Chapter 3. 

 

A small observation size may cause multicollinearity problems in MTS. MTS uses the 

correlation matrix of normal observations. Multicollinearity and singularity are the problems of 

the correlation matrix that occurs when variables are highly correlated. Correlation matrix is a 

symmetrical matrix, where each element represents the correlation between two variables. While 

analyzing the correlation matrices, variables whose correlations greater than 0.9 can be 

considered multicollinear and those correlation matrices, whose correlations are equal to 1.0, can 
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be considered singular (Tabachnick and Fidell, 1996). Multicollinearity implies that the 

variables are highly correlated, on the other hand, singularity indicates that the variables are 

combinations of each other and redundant. When these problems occur, a solution with MTS 

cannot be obtained. The main problem due to the singularity and multicollinearity is rank 

deficiency. It effects the matrix inversion, or division. In fact, when the matrix is singular, 

because the determinant of the matrix is zero, it prohibits the matrix inversion. When the matrix 

is multicollinear, the determinant is not exactly zero, but very close to it. As a result, the inverted 

matrix becomes unstable and fluctuates enormously with only the minor changes in the 

correlations of variables. An unstable inverted matrix causes unstable multivariate solutions 

because of the large error terms. Besides, if variables are highly correlated, the marginal 

contribution of variables cannot be analyzed. This is the case, which interpretations of variables 

are often not warranted. In order to prevent multicollinearity problems without any structural 

analysis (i.e. principal components, factor analysis), it is advisable to examine correlations 

between the variables before analyzing, since the redundant variables inflate the error terms by 

weakening the analysis as illustrated in Appendix A.1.  

 

Measures, which are widely used to detect multicollinearity in the statistics and in the numerical 

analysis, are “variance inflation factor (VIF)” and “condition number” (the ratio of the largest 

eigenvalue to the smallest eigenvalue). In addition to these detection methods, as a very simple 

way, if the determinant of the correlation matrix is very close to zero, it reflects 

multicollinearity. Another way to diagnose the multicollinearity is to regress each of the 

predictors, denoted as X j on all the others.  

 

Possible solutions to multicollinearity problems; 

 

1. Correlations between the variables and importance of the variables are analyzed to 

decide which variables to drop from the model. If all the independent variables are to be 

kept in the model, then, this avoids making inferences about relationships between 

response and variables (Mendenhall and Sincich, 2003). 

2. The impact of multicollinearity can be reduced by collecting more data or increasing the 

observation size.  

3. The factor analysis and principle components also reduce multicollinearity by centering 

the variables.  
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4. The variables can be centered by computing the mean of each independent variable, and 

then the difference of the observation from its mean is taken. Then, it is divided by the 

standard deviation of each independent variable.  

5. A final approach as a remedy for multicollinearity is to conduct ‘ridge regression’. 

Ridge regression involves transforming all variables in the model and adding a biasing 

constant to the XX'  matrix.  

 

In the literature, Taguchi and Jugulum (2000) propose GSMTS as a solution to multicollinear 

MTS problem. However, there are some critics on it, which are mentioned in Section 2.1.5. 

However, a modified GS algorithm, or QR decomposition, is considered more stable than GS. It 

is also used to prevent multicollinearity problems. As a second alternative for MTS, “adjoint 

matrix” method is proposed by Cudney et al. (2006) in order to calculate MD. This method uses 

the adjoint of the correlation matrix instead of the matrix division to address the issue of 

multicollinearity. Its formula is provided in the Appendix A.2. In addition, pseudo-inverse is 

advised for the cases, where it is not feasible to obtain more data, since then, the data contains a 

limited amount of information and one must simplify the model accordingly. Inversion of a 

noninvertible singular matrix (rectangular matrix) can be done with pseudo-inverse (or the 

Moore-Penrose generalized inverse) given in Appendix A.3. However, it does not provide the 

accurate solution.  

2.2.4 Selection of Important Variables (OAs and S/N ratios) 

Variable selection, which eliminates the number of variables, is an active research area in pattern 

recognition, statistics, and data mining. It can significantly improve the comprehensibility of the 

resulting models and often build a model that generalizes better in terms of accuracy and 

simplicity. This process is performed by means of OA and S/N ratios in the original MTS. 

 

OA is a table listing all the combinations of the variables. The presence and the absence of the 

variables are considered as two levels of the OA in the MTS method. An OA consists of 

orthogonal vectors.  These vectors exhibit the following properties: 

 

(1) They are perpendicular to each other and given a vector X, XTX=I where I denotes 

identity matrix. Thus, XT  is equal to X-1 
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(2) Since vectors are mutually perpendicular to each other, they are also statistically 

independent from each other. 

(3) Each vector conveys unique information, which avoids the redundancy. 

 

Although OAs are encouraged by Taguchi et al. (2003) because they can make predictions with 

a limited number of experiments and combinations of variables, the usage of OAs in variable 

selection is a bit puzzling. Hawkins (2003) states that when there are suppressor variables, the 

resolution of an OA becomes very important. Abraham and Variyath (2003) state that when 

allocations of variables in the OA change, different main effects of variables are obtained. In 

fact, Woodall et al. (2003) claim that OAs are not suitable in variable selection, since 

combinations of the variables in an array change the solution. OAs may not provide the exact 

optimal ordering of variables since they give only fractional factorial design (Woodall et al., 

2003). Thus, different statistical procedures are encouraged to find interaction effects. 

 

Selection of variables by statistical tests rather than by OAs is recommended in the literature. 

Abraham and Variyath (2003) apply the forward selection procedure with S/N ratios and get 

better results than OAs in terms of low variability and large S/N ratios. Furthermore, a stepwise 

procedure which is applied in the study of Mason et al. (1997) is encouraged by Hawkins (2003).  

 

Using gains of S/N ratios to detect the significant variables has also some drawbacks on it. In the 

original MTS, having a gain larger than zero is enough for the variable to be included in the 

model. However, a variable with a gain value very close to zero is not expected to be significant. 

Thus, it may not be include in the model. We try to include the significance of variables by using 

ANOVA, together with S/N ratios while developing the models in Chapters 3 and 4. 

2.2.5 Threshold Determination 

MD values are evaluated with a threshold, below which an acceptable MD value is required for 

an observation to classify in the normal group. Taguchi and Jugulum (2003) propose the 

calculation of quadratic loss function to find a threshold such that the losses due to two values of 

classification errors are balanced in some sense. However, Abraham et al. (2003) criticize it 

because there may be some difficulties in cost determination and misclassification. Furthermore, 
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Woodall et al. (2003) claim that there is no clear explanation about probabilities of 

misclassifications and the threshold determination in the study of Taguchi and Jugulum (2003). 

 

Su and Hsiao (2007) claim that an appropriate threshold is very remarkable for MTS to carry out 

the classification process effectively. They show that the selection of threshold also affects the 

class imbalance sensitivity. As a result, they propose the “probabilistic thresholding method” 

(PTM) by utilizing the Chebyshev’s theorem. The procedure is as follows: they find the 

percentage of normal group with MD smaller than the minimum MD of abnormal group 

including a parameter for omitted outliers of normal group. Thus, a parameter, which becomes 

the upper bound boundary to apply the Chebyshev’s theorem, achieves the maximum accuracy.  

 

Yenidünya (2009) also studies the threshold determination in MTS for two-class problems. In 

the study, several methods such as G-mean, PCC, recall, PTM, F measure, AUC are searched for 

the best threshold levels. A 3-fold and 3-replicated stratified cross validation (SCV) is used to 

compare the results of different methods. The results show that G-mean is better in balancing the 

accuracy of each class, whereas PTM predicts one of the two classes worse. Thus, G-mean is 

selected as the threshold method in terms of recall and sensitivity. This result is especially useful 

for imbalanced data sets. 

2.3 RE-SAMPLING  

A data set is considered imbalanced if classes are not (approximately) equally represented 

(Chawla et al., 2002). Imbalance problems occur when a classifier tries to detect a rare but an 

important case, such as fraudulent telephone calls, oil spills in satellite images, failures in a 

manufacturing process, or rare medical diagnoses (Barandela et al., 2003). In addition, in many 

real situations, obtaining observations of training set must be limited because of the cost of 

learning such as obtaining raw data, pre-processing data or storing data (Turney, 2000 as cited in 

Weiss et al., 2003). In fact, most quality data sets are described as small and imbalanced. By 

convention, for imbalanced data sets, the classes having more observations are the majority 

classes and the ones having fewer observations are the minority classes. 

 

Although some practitioners believe that the natural class distributions should be used for 

modeling, an imbalance situation makes typical classifiers difficult to optimize the overall 
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accuracy, when they mostly consider the relative distribution of each class. As a result, 

classifiers tend to ignore small classes while concentrating on classifying large ones accurately. 

High complexity, imbalance class, and small data set sizes give rise to some very small sub-

clusters; consequently, they cannot be classified accurately. In addition, the class imbalance 

problem causes a classifier to over-fit the data belonging to the class with the greatest number of 

training observations (Nickerson et al., 2001). 

 

Japkowicz and Stephen (2002) state that the class imbalance problem depends on i) the degree of 

class imbalance; ii)  the complexity of the concept represented by data; iii)  the overall size of the 

training set; and iv) the type of the classifier involved.  

 

If a re-sampling approach keeping the existing algorithm unmodified is used, the following 

alternatives are suggested (Estabrooks et al., 2004); (i) over-sampling which consists of copying 

existing training observations at random and adding them to the training set until a class balance 

is reached, (ii) under-sampling which consists of removing existing observations randomly until 

a class balance is reached, (iii)  a combination of over-sampling and under-sampling, which 

cause both increase and decrease in the data size.  

 

These alternatives have their own advantages and disadvantages. The advantage of over-

sampling is that no information from the original training set is lost since all the original data is 

preserved. However, increasing the size of the training set also increases the training time and 

the amount of memory required holding the training set, which is a disadvantage.  

 

In addition, some over-sampling methods that duplicate observations of the minority class lead 

to over-fitting, while under-sampling methods eliminate a large amount of potentially useful 

information. Previous studies have not reached any conclusive result about which is best in 

classification performance (Liu et al., 2004). This proves that the choice of the re-sampling 

method is probably specific to data set and problem (Liu, 2004). 

 

Japkowicz and Stephen (2002) propose a re-sampling algorithm by considering the complexity 

while generating new observations. The procedure is as follows: given a complexity level, the 

range of the response is divided into some intervals. The generating points are then randomly 

selected from intervals.  
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Weiss et al. (2003) apply a new re-sampling methodology to detect the best class distribution, 

which also gives the relationship between the class distribution and the classifier performance on 

seven data sets. They perform the re-sampling with the ratio of class distribution before and 

after. They gain 10.6 % relative reduction in error rate.  Another result of the study indicates 

that, best class distribution depends on the performance measure. In fact, when AUC is selected 

as the measure, the best class distribution is found to be near to the balanced class distribution, 

whereas it is found the original distribution when the accuracy is selected as the measure. 

 

Training set size is also a factor in the classifier’s ability to deal with imbalanced data sets 

(Japkowicz and Stephen, 2002).  Similarly, Weiss et al. (2003) search for the best training set 

size, which gives the best performance. We also study the relation between the training set size 

and the performance of our re-sampling algorithm in the next chapter. 

 

The class imbalance problem affects the performance of the classifier (Estabrooks et al., 2004).  

Re-sampling is used for the class imbalance problems in order to increase the classification 

performance. Estabrooks et al. (2004) search for the rate of re-sampling. They try the under-

sampling of majority class, as well as the over-sampling of minority class on the imbalanced 

training data set. Then, the technique is tested by some learning classifiers on data sets with 

various degrees of class imbalances.  

 

As a different method, Chawla et al. (2002) attempt to solve the imbalance problem with 

SMOTE, an over-sampling method by generating the synthetic observations between the nearest 

neighbors of observations in the minority class. It generates synthetic examples by operating in a 

“variable space" rather than “data space". For every minority example, its nearest k neighbors of 

the same class are determined, and then some of k neighbors are randomly selected depending on 

the over-sampling rate. After that, new synthetic observations are generated along the line 

between the minority example and the selected nearest neighbors. Synthetic samples are 

generated in the following way: Take the difference between the variable vector under 

consideration and its nearest neighbor. Multiply this difference by a random number between 

zero and one, and add it to the variable vector under consideration..  
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Table 2.2: Example of Generation of Synthetic Examples (SMOTE). 

  

Consider (7, 4) is the observation for which k-nearest neighbors are being identified. 

(6, 5) is one of its k-nearest neighbors. 

 

Let vi,j denotes the jth variable of the ith observation: 

v1, 1 = 7   v2, 1 =6   v2, 1 -v1, 1 = -1 

v1, 2 = 4   v2, 2 =5   v2, 2 -v1, 2 = 1 

 

The new observations will be generated as: 

(v3, 1, v3, 2) = (7, 4) + rand (0-1) * (-1, 1) 

rand (0-1) generates a random number between 0 and 1. 

 

 

As an advantage of SMOTE, it makes the decision regions larger and less specific (Huang et al. 

2005). Furthermore, borderline observations are apt to be misclassified than the ones far from 

the borderline. Based on this analysis, Huang et al. (2005) develop an algorithm, namely 

Borderline SMOTE. Different from the other over-sampling methods, they over-sample only the 

borderline minority observations.  

 

In addition, Kubat and Matwin (1997) employ an under-sampling of the majority class while 

keeping the original population of the minority class constant. 

 

Re-sampling until the majority and minority classes have equal prior probability may not yield 

optimal results (Weiss et al., 2003). The amount of over-sampling is generally considered as a 

parameter of the system (Estabrooks et al., 2004; Weiss et. al. 2003). Furthermore, the best re-

sampling rate changes according to the data studied and the re-sampling type (over or under) 

(Estabrooks et al., 2004; Japkowicz, 2004 as cited in Liu, 2004). This makes difficult to find a 

rule for re-sampling. Liu (2004) obtains different results as the level of re-sampling changes. In 

particular, some re-sampling methods might perform better with a higher or lower amount of re-

sampling.  
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Weiss et al. (2003) state that before a re-sampling on a classifier, the sensitivity of the classifier 

should be checked. This can be checked with measures of sensitivity and specificity, which give 

opinions about the accuracy on the positive and negatives classes. For the case of MTS, 

sensitivity to class imbalance problems is just studied by Su and Hsiao (2007). They try to find a 

new threshold method for MTS, in which the classification performance is not influenced by an 

imbalanced data. MTS is expected to be sensitive to the number of data of each class. When the 

number of observations is not enough, there may be multicollinearity problems in MTS as 

explained in Section 2.2.3. A solution may be increasing the data size. Results of Su and Hsiao 

(2007) indicate that the selection of threshold eliminates the sensitivity of MTS to imbalanced 

data.  

 

The classification performance of an imbalanced data set should not be measured with accuracy 

since this parameter covers the accuracy of majority class excluding the overall accuracy of 

minority class. Thus, even if the algorithm classifies all the majority observations correctly and 

misclassifies all the minority observations, the accuracy of the method is still high because there 

are much more majority observations than minority observations (Huang et al., 2005). Thus, in 

this case, the classification performance of re-sampling algorithms is usually measured by 

precision and recall, or F measure that combines both of them (Barandela et al., 2003). 

Additionally, a ROC curve is mostly preferred due to its independence of the distribution of 

observations between classes (Kubat and Matwin, 1997). Su and Hsiao (2009) use geometric 

means of sensitivity and specificity. These measures are formulated in Section 2.1.2. As an 

alternative, the relative sensitivity (RS), which is the ratio of sensitivity and specificity, is also a 

measure (Su and Hsiao, 2009). 

 

In the literature, there are re-sampling studies focused on two-class problems. However, multiple 

class problems are solved by being simplified to two-class problem by using the minority class 

as a class and the others as a separate class (Weiss, 2004; Su and Hsiao, 2007; Chen et al., 2008).  
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CHAPTER 3 

 
 

HANDLING SMALL AND IMBALANCED DATA SETS 
 

 

 

In this chapter, the issue of re-sampling is studied in the context of MTS classification on two-

class imbalanced data sets. We develop a new re-sampling algorithm, jointly with Berna BAKIR 

and Barış YENĐDÜNYA, to detect the best class distribution and size, which also gives the 

relationship with the classifier performance on several benchmark data sets. 

3.1 THE METHOD 

A data set is imbalanced if the number of instances in one class is quite small compared to the 

other classes. This is the case for many real life problems such as product or process quality 

improvement, document filtering, gene profiling, and especially in most of real quality problems. 

For this case, it may be very time and cost expensive to collect data and construct a model on it. 

Therefore, re-sampling is commonly used as a solution to this problem. 

 

In this part of the study, we aim to develop a re-sampling method for two-class data sets and to 

relate re-sampling parameters (ratios of classes and data size after re-sampling) to performance 

measures by considering the initial data size and ratios of classes. Thus, applications are 

performed on small and imbalanced data sets, in which the classes having more observations are 

considered majority classes, whereas the ones having fewer observations are the minority 

classes. This means that the class ratio is a parameter for the degree of the class minority.  

 

Our re-sampling approach, which only works for data sets with two classes, is a combination of 

over-sampling and under-sampling. In this study, a SMOTE-based re-sampling approach is used 

for over-sampling. SMOTE (Chawla et al., 2002) is an over-sampling approach, in which the 

minority class is over-sampled by creating synthetic observations based on k-nearest minority 
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neighbors, where k denotes the number of nearest neighbors. Synthetic samples are generated in 

the following way: The difference between the variable vector under consideration and its 

nearest neighbor is taken. It is multiplied by a random number between zero and one, and added 

to the variable vector under consideration. The maximum k depends on the initial data size. For 

example, when there are not many observations in a class, k must be small. Thus, we also try to 

relate the number of the nearest neighbors used in SMOTE with the performance measures. In 

the literature, SMOTE is used to increase the data size in integer multiples. As a contribution, we 

oversample the data randomly from the k-nearest neighbors as much as required, until the 

desired class ratio is achieved. In addition, MTS models are used to test the performance of re-

sampling for which the most appropriate values are sought for specific to each case. 

 

Steps to develop the re-sampling algorithm: 

 

1. Set the initial parameters such as: 

N0         : initial number of observations 

r0          : initial ratio of the minority class 

Nmax  : the maximum number of training observations after re-sampled 

rmax   : the maximum ratio of the minority class after re-sampled 

kmax   : the maximum number of neighbors to generate the required data in the 

minority  class (depends on N0) 

Number of folds, number of replications 

             These values are parametric so that they can be changed. 

2. After partition data into folds and replications. For each and every fold and replication 

perform steps 3-10. 

3. Check for outliers, check for that the size of the normal group, N (it is required to be 

larger than the number of variables, m).  

4. Calculate the minority class ratio, r. 

5. Send the data to three “for” loops: 

1st Loop: Increase the minority class ratio, r, by an increment of 0.1 by under-sampling 

majority class or over-sampling minority class 

2nd Loop: Increase number of observations, N, by an increment of 50 by under-

sampling majority class or over-sampling minority or majority class 
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3rd Loop: Increase the nearest neighbors (k) in SMOTE as explained in 

Section 2.7, by 1 

Throughout these loops, data in minority or majority class can be over-sampled by using 

SMOTE according to the Table 2.2. In addition, data in majority class can be under-

sampled in order to increase the ratio of the minority class. 

6. Use re-sampled data in MTS modeling: The steps of the MTS model, which is mixed in 

the re-sampling algorithm, are explained in Section 2.3.1. It can be summarized as 

follows: after the data-preprocessing, data is divided into the normal and abnormal 

groups. Then, MDs of abnormal observations, which give the distance to the normal 

group, are calculated. Based on the MD values, S/N ratios are calculated with OAs. We 

normally write OAN(sk) to specify such an orthogonal array, which has an array 

of size N by k, with entries from 0 to s-1. We have used an OA specified as 

OA200(2
100) with strength three from the web-site of “A Library of Orthogonal Arrays”. 

In that stage, we use n-way ANOVA analysis along with using variable gains because of 

the reasons explained in Section 2.2.4. We search for the interval from 0.10 to 0.25 for 

α-levels because Costanza and Affifi (1979) recommend a significance level of 0.10 and 

0.25 as a cutoff value for the variable selection (Sharma, 1996). 

7. Calculate the threshold using geometric means of sensitivity and specificity (G-mean) 

(Yenidünya, 2009): Geometric mean of sensitivity and specificity, G-mean given in 

Section 2.1.2.1, is chosen for the threshold selection method, since it gives the best class 

accuracy in both balanced and imbalanced data sets (Yenidünya, 2009). 

8. Assign the observation to the abnormal class if its MD value is above of the determined 

threshold.  

9. Find the best N, r and k among all tested values for the highest average and the smallest 

standard deviation of the G-mean. 

 

Initially with m variables, the flowchart of the re-sampling algorithm is given in Figure 3.1. 

 

The re-sampling performances are calculated on the test data, which has the original class 

distribution, in terms of several performance measures listed in Section 2.1.2.1. G-mean is 

selected to analyze the results, since it is a combination of sensitivity and specificity. Decision 

tree classifier is applied to the results to generate rules that relate data set characteristics to the 

performance of the classifier. 
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Figure 3.1: The Flowchart of the Re-sampling Algorithm
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The model is coded by using Matlab 7.5. MD is easily calculated with the “mahal” command of 

Matlab 7.5.  

3.2 APPLICATIONS AND PERFORMANCE ANALYSIS 

Experiments are run to establish the relationship between class distribution, training set size and 

classifier performance. Data sets are taken from the web-site of the UCI Machine Learning Data 

Repository. Data sets with non-categorical attributes and high citation rate in scientific articles 

are tried to be selected.  

3.2.1 Applications 

The four data sets: blood transfusion, Pima Indian diabetes, magic gamma telescope and 

Wisconsin breast cancer diagnostic (WBCD) are selected for analysis. The original data set 

characteristics are summarized in Table 3.1. 

Table 3.1: Data Set Information 

 

Data Set Name 
Data Set 
Number 

(DS) 

Data 

Size 

Number of 

Variables 
Ratio of 

Minority Class 

Blood Transfusion 1 748 5 0.24 
Diabetes 2 768 8 0.35 

Telescope 3 19020 10 0.35 
WBCD 6 569 30 0.37 

 

 

The initial parameters of data sets given in Table 3.1 are prepared according to Table 3.2. Hence, 

the data sets are processed to the initial training data size (N0): 70, 200 and 500 and initial ratios 

(r0): 0.1, 0.2 and 0.3. The re-sampling algorithm is performed on all of the nine combinations of 

the N0 and r0 for each data set according to the re-sampling algorithm given in Figure 3.1.  

Table 3.2: Initial Parameters of Data Sets 

 

Overall Size of Training Observations 70  200  500 
Class Ratio of Minority Class 0.1  0.2  0.3 
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To compare the performance measures, which are selected to determine a re-sampling rule, a 3-

fold and 3-replicated stratified cross validation is used for each combination. Thus, each class 

has an equal chance of being one of in the nine folds.  

 

We normally write OAN (s
k) to specify such an orthogonal array, which has an array of 

size N by k, with entries from 0 to s-1. We have used an OA specified as OA200(2
100) 

with strength three from the web-site of “A Library of Orthogonal Arrays” 

(http://www.research.att.com/~njas/oadir/).  

 

The parameters of re-sampled data are the class ratio of minority class (r), overall training data 

size (N), and the number of neighbors (k).  

 

In order to evaluate this sampling algorithm, it is necessary to measure how each of these 

parameters affects the performance for each combination.  

 



38 

3.2.2. Performance Analysis 

Firstly, the results of re-sampling applications on four data sets are plotted to analyze the effect 

of N, r, k on the average G-mean of nine folds in Figures 3.2-3.7 for the data sets of. They are 

drawn for two data sets; Diabetes and Telescope, after the parameters of r and N are discretized 

according to Tables B.1 and B.2.   

 

  

Figure 3.2: Average of G-means versus Discretized N (Diabetes, N0: 70, 200, and 500) 

 a) r0: 0.1  b) r0: 0.2 c) r0: 0.3 

 

 

Figure 3.3: Average of G-means versus Discretized N (Telescope, N0: 70, 200, and 500)  

a) r0: 0.1 b) r0: 0.2 c) r0: 0.3 

 

According to Figures 3.2 and 3.3, G-means stay almost the same at a large value as N changes, 

although there is an increase at first. 
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Figure 3.4: Average of G-means versus Discretized Minority Class Ratio, r (Diabetes, r0: 0.1, 

0.2, and 0.3) a) N0: 70 b) N0: 200, 500    

 

 

 

Figure 3.5: Average of G-means versus Discretized Minority Class Ratio, r  

(Telescope, r0: 0.1, 0.2, and 0.3) a) N0: 70 b) N0: 200, 500   

 

According to Figures 3.4 and 3.5, it is difficult to achieve a concrete assessment. However, it is 

seen that when the initial data size is larger (N0: 200, 500), re-sampling increases performance at 

the first levels of discretized minority class ratios. Then, G-means stay almost constant. 
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Figure 3.6: Average of G-means versus Number of Nearest Neighbors, k (Diabetes, N0: 70, 200, 

and 500) r0: 0.1 b) r0: 0.2 c) r0: 0.3 
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Figure 3.7: Average of G-means versus Number of Nearest Neighbors, k (Telescope, N0: 70, 

200, and 500) a) r0: 0.1 b) r0: 0.2 c) r0: 0.3  

 

According to Figures 3.6 and 3.7, it is seen that k does not affect G-means, except for the case of 

N0: 70, for which k should be increased as well.  

 

The overall results of four data sets, given in Table 3.1, are used to achieve a rule for re-

sampling with the help of Decision Tree. A decision tree is obtained from SPSS Clementine 11.1 

and given in Figure B.1. According to Figure B.1, it is seen that the results are worse when the 

original data set is small than larger cases. When N0 is small, it is good to increase the data set 

size by over-sampling the data. In addition, the results are better when the over-sampling ratio is 

very close to the original minority class ratio, when the data is small. When the original data size 
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is large, the results are better as it is expected to be. In this case, since there are more original 

data to oversample, better results are seen as the class ratio, r increases. 

 

Based on our re-sampling approach, we can not achieve a rule for the relationship between the 

initial parameters and re-sampling parameters. Thus, given a case, only re-sampling parameters, 

which increase the initial performance, can be suggested. For the three data sets in our 

applications, these are given in Table 3.3. A decision tree based on the suggested parameters of 

the re-sampling application results is given in Figure B.2. In addition, a plot of parallel 

coordinates for the values of normalized suggested parameters is given in Figure B.3. It shows 

the situation of each suggested re-sampling parameter. According to Figures B.2 and B.3, it is 

seen that, there is no pattern of rule. In fact, the results are very data specific, which makes a rule 

generation difficult. As a result, for a given data set, suggested re-sampling parameters can be 

selected after searching for different values of r and N.  
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Table 3.3: Suggested Re-sampling Parameters for Data Sets; Diabetes, Telescope and WBCD  

 

 
Data Information Before Re-sampling 

 
Suggested Parameters (SP) of Re-sampling 

Data 
Set 

(DS) 
r0 N0 

Avr. of 
G-mean 

Std. of G-
mean 

 r N k 
Avr. of 

G-mean 

Std. of G-

mean 

SP1 0.1 196 2 0.5771 0.1147 

SP2 0.2 124 1 0.5757 0.0820 

SP3 0.1 296 1 0.5622 0.0841 
2 0.1 70 0.6873 0.0724 

SP4 0.1 396 1 0.5597 0.0785 

SP5 0.5 76 5 0.7530 0.0740 
2 0.1 200 0.6873 0.0724 

SP6 0.1 375 6 0.7295 0.0645 

2 0.2 70 0.6521 0.0896 SP7 0.3 32 1 0.6600 0.1157 

2 0.2 200 0.6420 0.0526 SP8 0.3 285 1 0.6903 0.0328 

SP9 0.2 24 1 0.6765 0.2069 
3 0.1 70 0.5881 0.2475 

SP10 0.2 74 3 0.6536 0.1393 

SP11 0.1 277 4 0.7615 0.0692 

SP12 0.1 277 2 0.7565 0.0587 3 0.1 200 0.7045 0.1105 

SP13 0.3 193 6 0.7511 0.0822 

3 0.2 70 0.6436 0.1089 SP14 0.2 198 5 0.7537 0.0865 

3 0.2 200 0.6664 0.0638 SP15 0.4 164 1 0.7011 0.0582 

SP16 0.3 444 1 0.9673 0.0302 
6 0.1 70 0.8749 0.0890 

SP17 0.5 212 1 0.9583 0.0498 

SP18 0.1 425 7 0.9509 0.0402 
6 0.1 200 0.9300 0.0423 

SP19 0.1 175 7 0.9462 0.0364 

SP20 0.5 310 6 0.9406 0.0535 
6 0.2 70 0.8018 0.1050 

SP21 0.3 344 7 0.9404 0.0552 

SP22 0.4 316 4 0.9786 0.0266 

SP23 0.4 466 2 0.9783 0.0277 

SP24 0.3 337 7 0.9781 0.0201 
6 0.2 200 0.9602 0.0207 

SP25 0.3 437 4 0.9766 0.0264 
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CHAPTER 4 

 

 

 

MULTI-CLASS MAHALANOBIS TAGUCHI SYSTEM METHODS 
 

 

 

In this chapter, original methods developed in the thesis for multi-class classification problems 

based on MTS are presented.   

4.1 THE METHODS 

The intuition behind the developed methods is explained in this section. Common points for all 

of the methods are; (i) the multi-class classification approach is same in all methods, which it 

uses “one-to-all” multi-class classification approach given in Section 2.1.6.; (ii ) data sets are pre-

processed in the same way; (iii ) S/N ratios and OAs are used for variable selection; (iv) the class 

assignment is done in the same way without using a threshold. 

 

As a first common point, the class, for which the one-to-all multi-class classification model is 

obtained, is selected as the normal group, which also constitutes a Mahalanobis space (MS), 

while all of the other classes are left as the abnormal one. Thus, giving a multi-class problem 

with L classes, L two-class problems are obtained by this approach after the original problem is 

partitioned into a two-class problem.  

 

As a second common point, data pre-processing is performed as the following. First, the 

variables and classes of the data set are defined and then, the data set is divided into normal and 

abnormal groups. The normal group represents the selected class for the model, while the 

abnormal group is composed of the other classes. Observations with missing values are omitted. 

The data pre-processing is continued with standardization of data with the specifications of the 

normal group. MS is expected to have homogenous characteristics. As a result, an acceptance 
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criterion is defined or calculated under which an observation is ensured to be considered in the 

MS. In fact, we preferred to omit observations having MD values larger than ( mdmd sX3X + ). 

Here, mdX  is the average and mdsX  is the standard deviation of MD values of the standardized 

normal group.  

 

As a third common point, in all the methods the S/N ratio corresponding to each run of the OA is 

computed using the concept of the larger-the-better type as defined in Equation (2.5). OA is a 

table listing all the combinations of the variables. The size of an OA depends on the number of 

characteristics and the levels it can take. However, the presence and the absence of the variables 

are considered as the levels in MTS method. Level-1 in the OA column represents the presence 

of a characteristic and Level-2 represents the absence of that variable. S/N ratios calculate the 

gain of a variable when it is included in the model using the levels of OAs. 

 

The last common point is about the way of class assignments. An observation is assigned to a 

class, which has the minimum MD among the entire MD’s calculated from the MTS models of 

the other classes. This eliminates threshold calculation step of original MTS given in Section 

2.1.4. The class assignment is illustrated in Table 4.1. 

 

Table 4.1: An Illustration of the Class Assignment Rule for all of the Methods 

 

Observation 
MD for 1st 

class 

MD for 2nd 

class 

MD for 3rd 

class 
Class Assignment 

A 2 1 4 2nd class 

B 3 5 6 1st class 

C 4 4 8 1st or 2nd class (randomly) 

 

 

All of the methods are coded by using Matlab 7.5, each of which is explained in the following 

sections. 
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4.1.1 Methods Based on the Original MTS  

a. Multi-class MTS Method (MMTS) 

 

The first method for multi-class MTS classification is an extension of the original MTS 

algorithm, which is explained in Section 2.1.4, for multiple class problems.  

 

The algorithm of the multi-class MTS method is given in Figure 4.1, for a given normal group of 

size n, number of variables k, and number of classes L. According to this algorithm, as a 

common point of methods, a classification model is developed for each class or MS separately. 

For this purpose, data is pre-processed for the class under consideration. The size of the normal 

group (n) should be larger than the number of variables (k). This limitation is considered after 

data with missing values and outliers are omitted.  
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Figure 4.1: The Flowchart of Multi-class MTS (MMTS) Method
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After the data pre-processing explained as a common point in the previous Section, MD from the 

abnormal observations to the normal group are calculated. Then, the calculated MD values are 

used in detection of important variables, together with OAs and larger-the better S/N ratios, 

which is given in Equation (2.5). This step is also explained as a common point in Section 4.1. 

To determine the important variables that should be included in the classification model, we 

have also used k-way ANOVA, which k denotes the number of variables changing for each 

design combination. For this purpose, the larger-the-better S/N ratios are calculated by using the 

MDs as explained in the previous Section. Then, for each row in the design matrix or OA matrix, 

they are analyzed in ANOVA to find whether the variable’s S/N ratio makes a significant 

difference. We search for the interval from 0.10 to 0.25 for α-levels since Costanza and Affifi 

(1979) recommend as a cutoff value for variable selection (cited as in Sharma, 1996).  After 

developing the MTS model for each MS corresponding to each normal class, the assignment of a 

new (or test) observation is done according to the rule illustrated in Table 4.1 by using the MTS 

model. 

 

b. Multi-class MTS Method Based on Gains of Signal-to-Noise Ratios (SNRMMTS) 

 

This method differs from the MMTS method in selection of important variables. Here, only 

gains of S/N ratios of variables are considered as in the original MTS method.  

4.1.2 Feature Weighted Multi-Class MTS-I (FWMMTS-I) 

This classification algorithm is developed for multi-class problems with the motivation of 

“Descent Feature Weighted Mahalanobis Distance” proposed by Wölfel and Ekenel (2005).  

This study tries to give weights to each variable in the MD calculation. Because the variables 

with large contributions to the MD can mask all the other variables, the classification considers 

only these noisy variables. Based on this idea, a new multi-class MTS classification algorithm, 

namely Feature Weighted Multi-class Mahalanobis Taguchi System (FWMMTS-I), is 

developed. 

 

In this method, a MS corresponding to each class is constructed and data pre-processing is done 

in the same way as before. Next, the weighted MD is computed for each given normal group j as 

follows: 
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1. Adopting the weighted MD formula for our algorithm, let us use i for the observation in 

the standardized abnormal group and j for the standardized normal group. [ ]cj,iD  denotes the 

distance of observation [ ]cxi  in the abnormal group, to the mean [ ]cjµ of the observations in 

the normal group j corresponding variable c.  

 

Let [ ]∑
−1

j
cc,  denote the inverse of the diagonal value corresponding to the variable c of the 

correlation matrix. Actually, it has a value of one. Then, 

 

[ ] [ ] [ ] [ ] [ ] [ ] .cµcxc,ccµcxcj,i,c jijjij,i )-()-(D:∀ ∑ 1-=                   (4.1) 

 

2. Since the goal is to choose weights such that all of the variables, especially noisy ones, 

have same influence on the MD value, the variables have to be normalized under the 

consideration of their average MD. Then, for a total of N observations in the abnormal group, an 

average MD to the standardized normal group, j, is calculated, which is denoted as[ ]cD : 

 

[ ] [ ]ccc
i

j,i
∑
N

1
D

N

1
D:∀

=
=  ,                (4.2a) 

 

Afterwards, weights are derived from the average MD corresponding to each variable, under two 

constraints as below.  

 

[ ] 0≥:∀ cwc       (4.2b) 

[ ] k∑
k

1
=

=c
cw ,      (4.2c) 

  

where k represents the number of variables. 

 

In order to satisfy the constraints, the distances are inverted and then normalized as in Equation 

(4.3a) for each variable c, by using variables a=1,…, k. 
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[ ]
[ ]

[ ]
,

a/

c/
cw:c

a
∑
k

1
D1

D1
k∀

=

=          (4.3a) 

where  

[ ] [ ] j,icwcw j,i ∀,= .          (4.3b) 

 

Weights of variables have to be recomputed for each MS or the standardized normal group under 

consideration for modeling. 

 

3. Lastly, weighted MD from observation i to class j, weighted
jiMD ,  is obtained by a sum of 

products of weight of each variable ( [ ]cw j,i ) and MD value ( [ ]cD j,i ): 

 

[ ] [ ]∑
k

1
)D . (wMD

=
=

c
j,ii

weighted
j,i cc  .        (4.4) 

 

The values of weighted
j,iMD   are used to calculate the important variables. For this purpose, as a 

third common point of the methods explained in Section 4.1, S/N ratios together with an OA are 

utilized. During the variable selection process, k-way ANOVA is used as explained in the 

previous Section. Consequently, the model based on the normal class is achieved. Up to these 

steps, the procedure is followed for each of the classes by considering each as a normal group 

under consideration. Finally, MTS model of each MS is used to calculate MD of a new (or test) 

observation. We prefer not to calculate the weighted MD in class assignments. In fact, we see 

that original MD gives a better performance than the weighted MD in class assignments. This 

means, weights are only considered in the modeling, in which the important variables are found. 

Finally, the observation is assigned to the class having the minimum MD.  

 

Our approach to calculation of weights in the FWMMTS-I differs from the calculation of 

weights in Su and Hsiao (2009). While they calculate the weights based on gains of S/N ratios, 

in our method, weights are calculated based on MD distances corresponding to variables. In 
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addition, our method utilizes weights in the selection of important variables, whereas Su and 

Hsiao (2009) utilize weights after the model construction.  

4.1.3 Feature Weighted Multi-Class MTS-II (FWMMTS-II) 

We use the feature weighted MTS approach of Su and Hsiao (2009), which is explained in 

Section 2.1.6. We prefer to modify it by using the original MD calculation instead of GS 

calculation due to drawbacks of GS given in Section 2.1.5 such as GS is found highly sensitive 

to data ordering since it depends on which variable is first selected in the order (Woodall et al., 

2003).  We name this algorithm Feature Weighted Multi-class MTS Method-II (FWMMTS-II). 

4.2 APPLICATIONS AND PERFORMANCE ANALYSIS 

In this section, the multi-class methods explained in Section 4.1 are applied on eight different 

data sets and compared. As a reminder, MMTS is an extension of the original MTS algorithm to 

multi-class problems; FWMMTS-I is the adaptation of feature weighted MD, which is proposed 

by Wölfel and Ekenel (2005), to the multi-class MTS problems; and lastly, FWMMTS-II is the 

modification of the method of Su and Hsiao (2009) in MD calculation by using the original MD 

instead of GS.  

 

In order to compare the results with those of Su and Hsiao (2009), we take the Mahalanobis 

Distance Classifier (MDC) method as a common point. MDC does not search for the important 

variables. MDC assigns a new observation to the class of the minimum MD. As a consequence, 

it allows us to see the effect of finding and using important variables on the multi-class 

classification results, instead of using all of the original variables in the distance calculation. 

 

After using the feature weighted MD in the FWMMTS-I method, a feature weighted 

modification of MDC, namely Weighted Mahalanobis Distance Classifier (WMDC), is also 

developed. First, the data is pre-processed as explained in Section 4.1. Next, a class is taken as a 

reference point, which is used as a normal group, while the other classes left in the abnormal 

group. WMDC uses the descent feature weighed MD given in Section 4.2.1. Thus, feature 

weighted MD values for the standardized abnormal observations are calculated by using 
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Equations from (4.1) to (4.4). Importantly, WMDC does not search for the significant variables 

similar to MDC. These steps are followed for each of the classes by considering each as a 

normal group under consideration. Thus, after MD calculation for each normal group, a 

standardized new or test observation is assigned to a class with minimum MD. 

4.2.1 Applications 

All of the methods are applied on some benchmark data sets having non-categorical input 

variables. They are taken from the web-site of the UCI Machine Learning Data Repository. Data 

sets are selected by considering their citation rate in articles. Also data sets used by Su and Hsiao 

(2009) are preferred in order to make comparisons. Observations with missing values are 

omitted during the data pre-processing. After pre-processing, the characteristics of eight 

different data sets are summarized in Table 4.2.  

Table 4.2: Data Set Information 

 

Data Set 

Number 

of 

Classes 

Data Size 

Number 

of 

Variables 

Ratios of 

Classes 

Balanced (B) 

/Imbalanced(IB) 

wine 3        178 13 33.158, 39.958, 26.884 B 

iris 3 150 4 33.378, 33.297, 33.325 B 

waveform 3 5000 21 33.14, 32.941, 33.919 B 

balance-scale 3 625 4 7.8387, 46.087, 46.074 IB 

vehicle 4 846 18 
25.052, 25.771, 23.52, 

25.657 
B 

abalone1 11 3842 8 
3.1, 6.7, 10.4, 14.4, 

18.4, 16.8, 12.3, 6.8 
IB 

yeast2 9 1479 6 

16.5, 29, 31.305, 

2.9748, 2.3692, 3.4498, 

11.018, 2.0298, 1.3532 

IB 

water-treat3 4 208 38 
43.913, 24.396, 16.552, 

15.14 
IB 

1
 only the classes 5,6,7,8,9,10,11,12,13,14,15 are used.  

2 variable 5 and 6 are omitted because these variables do not change in observations. 
3 only the classes 1, 5, 9, and 11 are used same as Hsiao (2009) and all of the missing observations are deleted.
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In order to compare the methods, a 5-fold stratified cross validation (SCV) is used for all data 

sets. This ensures a given fold contains all of the classes. For SCV, the original data is 

partitioned into the classes. The classes are then partitioned into 5 sub-samples (folds). Of these 

sub-samples, while a single sub-sample is retained as the data for testing the model, the 

remaining sub-samples are used as training data during the model development. This means a 

total of 45 runs are done for each method. 

 

We normally write OAN (s
k) to specify such an orthogonal array, which has an array of 

size N by k, with entries from 0 to s-1. We have used an OA specified as OA200(2
100) 

with strength three from the web-site of “A Library of Orthogonal Arrays” 

(http://www.research.att.com/~njas/oadir/).  

 

As a performance measure, we use BCA (given in Section 2.1.2.2). BCA is useful to consider 

the correct classification accuracy for each class since in some data sets (such as yeast, abalone, 

balance-scale and water-treat) there are classes in minority. We also consider the average and 

standard deviation of BCA values over all five folds. In addition to BCA, average percentage of 

correct classification (PCC) is also used to see the overall accuracy. Its formula is also given in 

Section 2.1.2.2. 

 

The average performance results of developed methods are given in Table 4.3. Along with the 

results of six classification algorithms, the results of MDC in Su and Hsiao (2009) and also 

results of their proposed FWMMTS (Su and Hsiao, 2009) method are written. 
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Table 4.3: Application Results of the Methods 

Data Set Measure MMTS SNRMMTS 
FWMMTS-

I 
FWMMTS-II 

FWMMTS 
(Su and 
Hsiao, 
2009) 

WMDC MDC 
MDC (Su 
and Hsiao, 

2009) 

Avr. BCA 0.9449 0.9449 0.9584 0.9465 0.9878 0.8557 0.9722 0.9817 

Std. BCA 0.0710 0.0710 0.0360 0.0444 0.0168 0.0761 0.0393 0.0168 

Avr. PCC 0.9627 0.9627 0.9641 0.9552 NS 0.8664 0.9818 NS 
iris 

Std. PCC 0.0390 0.0390 0.0291 0.0396 NS 0.0645 0.0257 NS 

Avr. BCA 0.8093 0.7639 0.8093 0.6589 NS 0.6511 0.8656 NS 

Std. BCA 0.1439 0.2146 0.1439 0.0061 NS 0.0446 0.0488 NS 

Avr. PCC 0.9166 0.6927 0.9166 0.9108 NS 0.5259 0.9091 NS 
balance-scale 

Std. PCC 0.0242 0.3155 0.0242 0.0267 NS 0.0771 0.0128 NS 

Avr. BCA 0.8603 0.8603 0.8577 0.3771 0.8352 0.4505 0.8111 0.8454 

Std. BCA 0.0060 0.0060 0.0073 0.0121 0.0307 0.0484 0.0338 0.0313 

Avr. PCC 0.8567 0.8567 0.8541 0.3677 NS 0.4494 0.8055 NS 
vehicle 

Std. PCC 0.0134 0.0134 0.0149 0.0317 NS 0.0499 0.0332 NS 

Avr. BCA 0.9628 0.9628 0.9686 0.9410 0.9793 0.9031 0.9628 0.9895 

Std. BCA 0.0526 0.0526 0.0460 0.0471 0.0206 0.0606 0.0526 0.0147 

Avr. PCC 0.9758 0.9758 0.9814 0.9458 NS 0.9062 0.9758 NS 
wine 

Std. PCC 0.0343 0.0343 0.0198 0.0413 NS 0.0564 0.0343 NS 

Avr. BCA 0.4261 0.4012 0.4323 0.4191 0.4793 0.4116 0.3961 0.4829 

Std. BCA 0.0410 0.0396 0.0487 0.0317 0.0309 0.0548 0.0674 0.0498 

Avr. PCC 0.4941 0.4471 0.4921 0.5011 NS 0.4014 0.4210 NS 
yeast 

Std. PCC 0.0317 0.0616 0.0311 0.0111 NS 0.0302 0.0503 NS 

Avr. BCA 0.8511 0.8511 0.8511 0.8108 0.8338 0.8454 0.8529 0.8513 

Std. BCA 0.0124 0.0124 0.0124 0.0113 0.0133 0.0071 0.0166 0.0137 

Avr. PCC 0.8510 0.8510 0.8510 0.8115 NS 0.8456 0.8530 NS 
waveform 

Std. PCC 0.0125 0.0125 0.0125 0.0147 NS 0.0092 0.0168 NS 

Avr. BCA 0.3143 0.3173 0.3592 0.2138 0.7732 0.6983 0.3416 0.4091 

Std. BCA 0.0767 0.0764 0.1468 0.0933 0.0189 0.0750 0.0942 0.0088 

Avr. PCC 0.3336 0.4717 0.4832 0.2638 NS 0.6024 0.4772 NS 
water-treat 

Std. PCC 0.1425 0.0524 0.0636 0.1567 NS 0.0813 0.0781 NS 

Avr. BCA 0.2332 0.2302 0.2332 0.2542 0.2683 0.2484 0.2163 0.2310 

Std. BCA 0.0114 0.0081 0.0114 0.0098 0.0132 0.0103 0.0152 0.0222 

Avr. PCC 0.2092 0.2041 0.2092 0.2389 NS 0.2552 0.1808 NS 
abalone 

Std. PCC 0.0106 0.0164 0.0106 0.0186 NS 0.0095 0.0107 NS 

*NS: Not Studied 
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Table 4.3 shows that there are some differences between our MDC results and those of Su and 

Hsiao (2009). Hsiao (2009) explains MDC procedure used in their article in short as following: 

An individual MS for each class using the training data is constructed, and an unknown example 

(including the test data) is classified into the class with the minimum MD.  We also follow this 

procedure, but we identifier observations with MD larger than ( mdmd sX3X + ) as outliers. Here, 

mdX  is the average of and mdsX  is the standard deviation of MD values. However, in Su and 

Hsiao (2009), there is no information about handling outliers in MDC. Additionally, we delete 

all the observations having missing values in “water-treat” data set, but there is no comment on 

this in Su and Hsiao (2009).  

 

It is proven that the results change, when allocations of variables in an OA are changed 

(Abraham and Variyath, 2003). Because there is no information about the OA used by Su and 

Hsiao (2009), one has to develop their model by the same OA, which is used in other methods to 

be compared.  

 

Moreover, we include the BCA and PCC values of each fold as replications in the statistical 

analysis. Since BCA value of each fold is not given in Su and Hsiao (2009), one has to run their 

model separately for each fold to collect the replication results. Because of complex calculation 

procedures of GS algorithm, this study has not been performed in this work. Due to these 

reasons, we have not included the results of Su and Hsiao (2009) in the statistical analysis 

performed in the next section. 

4.2.2 Performance Analysis 

In this part, we statistically compare the six developed algorithms. Minitab 15 is used for the 

statistical analysis. A two-way ANOVA with five replications (folds) is performed. BCA and 

PCC are taken as the “response” in each ANOVA study, separately. The methods are taken as a 

“factor”, while data sets are considered as a “blocking variable”. The assumptions of ANOVA, 

which primarily are constant variance and normality of residuals, are checked. The residual plots 

for BCA and PCC are given in Appendix C.1. The results of the two-way ANOVA are given in 

Table 4.4. 
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Table 4.4: ANOVA for overall BCA results (with each fold) 

 

Source          DF           SS         MS              F           P 
Data  set (block)              7   15.8384   2.26263   530.03   0.000 

Methods (factor)          5     0.3311    0.06622    15.51    0.000 

Interaction   35      1.9034   0.05438     12.74    0.000 

Error                    192      0.8196    0.00427 

Total                             239   18.8926 

 

 

Table 4.4 shows that, there are significant differences among the six multi-class MTS methods, 

even if α-level of 0.01 is chosen for the test. When the two-way ANOVA analysis is performed 

without replications, the result is changed to no difference among the methods, given as in Table 

4.5. 

 

Table 4.5: ANOVA for Average BCA results (with averages) 

 

Source      DF          SS         MS              F         P 
Data set           7    3.10089   0.442984   37.79   0.000 

Methods     5    0.08376   0.016751    1.43     0.238 

Error         35   0.41027  0.011722 

Total         47   3.59491 

 

 

The difference in p-values between Tables 4.4 and 4.5 is due to inclusion of standard deviations 

among BCA values in the analysis. When the two-way ANOVA for the PCC values is done, 

Table 4.6 is obtained. 
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Table 4.6: ANOVA for overall PCC results (with each fold) 

 

Source         DF           SS        MS           F              P 
Data set (block)   7  15.5045  2.21492  512.13    0.000 

Methods (factor) 5       0.4188  0.08376    19.37    0.000 

Interaction     35     2.0513  0.05861     13.55    0.000 

Error       192       0.8304  0.00432 

Total           239   18.8050 

 

 

Table 4.6 shows that, there are significant differences among the six multi-class MTS methods, 

even if α-level of 0.01 is chosen for the test.  
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Figure 4.2: 0.95 Confidence Interval of the Mean of the Average BCA Values  
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Figure 4.3: 0.95 Confidence Interval of the Mean of the Average PCC Values  

 

Figure 4.2 indicates that FWMMTS-I, MMTS, SNRMMTS and MDC are not significantly 

different from each other in average BCA performances, and they are better than FWMMTS-II 

and WMDC. Similarly, Figure 4.3 indicates that FWMMTS-I, MMTS and MDC show very 

similar performance in average PCC performances, and they might be better than the others. 

  

A detailed multiple comparison analysis can be used to support these observations. The methods 

are compared in pairs using Bonferroni and Tukey’s tests in “ANOVA with General Linear 

Model (GLM)” tool of Minitab 15. In Minitab analysis, data sets are added as a random “factor” 

and methods as a fixed “factor” into the model. Then, the “methods” factor is selected as the 

comparison term to conduct the comparison tests with a 95 percent confidence interval.  The 

analysis of variance table and multiple comparison results of Bonferroni and Tukey’s tests are 

obtained as shown in Appendix C.2. 

 

The Bonferroni's method can be used both to compare all possible pairs for the specified factors, 

and to compare each mean to the mean of a control group. Both Bonferroni and Tukey’s tests 

use a family error rate to control Type-I error, whereas a Fisher's Least Significant Difference 

(LSD) test only uses individual error rate. Since we want to compare all possible pairs of the six 

methods in terms of BCA and PCC, it is important to consider the family error rate, because 

chances of making a Type-I error for a series of comparisons will be greater than the error rate 
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for any one of the individual comparisons alone. The two methods adjust the error rate for 

individual pair-wise comparisons based on the family error rate chosen and the number of 

comparisons (Statguide of Minitab 15). These tests boil down to running a bunch of t tests 

and then adjusting the significance level to take the appropriate control of Type I errors. 

For example, the Bonferroni test uses a straight-forward t test but then evaluates that t at 

α-level of 0.05/c, where c is the number of comparisons, 0.05 is the family error rate. 

 

Six methods result in 15 pair-wise comparisons. If α-level of 0.05 is chosen family error rate, the 

corrected error rate is 0.05/15, which is probability of 0.0033 for significance. Thus, if the 

adjusted p-values for the difference between the mean for any pair is less than 0.0033, this 

indicates that the difference is significant. According to this probability of significance, p-values 

of multiple comparisons for BCA and PCC are analyzed in Tables 4.7-4.10, in which “<” 

indicates that the performance of the method in the row list is less than method compared.. 

Table 4.7: p-Values of Bonferroni Multiple Comparison Test for BCA results 

 

Methods MDC MMTS SNRMMTS WMDC FWMMTS-I 
FWMMTS-II 0.0010 (<) 0.0014 (<) 0.0054  0.3721 0.0003 (<) 
MDC  1 1 1 1 
MMTS   1 1 1 
SNRMMTS    1 1 
WMDC     0.5939 

               

Table 4.8:  p-Values of Tukey’s Multiple Comparison Test for BCA results  

 

Methods MDC MMTS SNRMMTS WMDC FWMMTS-I 

FWMMTS-II 0.0009 (<) 0.0013 <) 0.0048  0.2153 0.0003 (<) 

MDC  1 0.9978 0.4621 0.9998 

MMTS   0.9992 0.5175 0.9993 

SNRMMTS    0.7479 0.9812 

WMDC     0.3069 
 

 

Tables 4.7 and 4.8 indicate that MDC, MMTS and FWMMTS-I methods show better 

performances than FWMMTS-II in BCA since their pair-wise comparisons give p-values less 

than the probability of significance, which is 0.0033.  
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Table 4.9: p-Values of Bonferroni Multiple Comparison Test for PCC results  

 

Methods MDC MMTS SNRMMTS WMDC FWMMTS-I 
FWMMTS-II 0,0418 0,0448   0,3208 1 0,0033  (<) 
MDC  1 1 0,0036 (>) 1 
MMTS   1 0,0039 (>) 1 
SNRMMTS    0,0419  1 
WMDC     0,0002 (<) 

 

Table 4.10: p-Values of Tukey’s Multiple Comparison Test for PCC results  

 

Methods MDC MMTS SNRMMTS WMDC FWMMTS-I 

FWMMTS-II 0.0329  0.0350 0.1915 0.9811 0.0030  (<) 

MDC  1 0.9811 0.0033  (>) 0.9777 

MMTS   0.9835 0.0036  (>) 0.9746 

SNRMMTS    0.0329   0.7032 

WMDC     0.0002 (<) 
 

 

According to Tables 4.9 and 4.10, MDC, MMTS SNRMMTS and FWMMTS-I show similar 

performances in terms of PCC, which gives the overall accuracy. Although, FWMMTS-II shows 

a moderately similar performance with MDC, MMTS, and SNRMMTS, it gives a worse 

performance than FWMMTS-II, in overall accuracy. In addition, MDC, MMTS and FWMMTS-

I show better performances than WMDC in PCC.  

 

The comparison of MDC with other methods indicates that there is no significant difference 

between multi-class MTS methods MMTS, FWMMTS-I, SNRMMTS and MDC. It is expected 

that, after finding important variables for multi-class MTS methods, unlike MDC, the models 

give better results than MDC. Possible reasons of the observation contrary to this expectation are 

explained below. 

 

The first reason may be the variable selection method. In fact, it is observed that the number of 

variables after the selection process with OA and S/N ratios does not decrease much for the 

methods: MMTS, FWMMTS-I, SNRMMTS especially for the studied data sets with more 

variables such as abalone, vehicle or water. Hence, it is not surprising to observe that 

MDC is performing equally well with the others MMTS, FWMMTS-I, SNRMMTS. In order to 

see if there exist advantages of the variable selection procedures of the methods, one should 
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study more data sets. This may be a reason for being the results very close to MDC. In addition, 

OA is preferred in the original MTS since it gives acceptable solutions while decreasing number 

of experiments to calculate S/R ratios (Taguchi et al., 2003). However, our results reveal that 

finding significant variables with OA does not make a significant improvement in performance 

results. Certain discussions on OA, (Hawkins, 2003; Woodall et al., 2003; Abraham and 

Variyath, 2003) are given in detail in Section 2.2.4. In fact, Nagao et al. (1999) encourage 

increasing the initial number of variables in the training set to make an improvement in the 

results. These opinions are supporting our results. 

 

The second reason may be the threshold selection method. Being a special characteristic of 

MTS, finding the best threshold is important for the accuracy of model (Su and Hsiao, 2007). 

However, in our multi-class MTS methods, a threshold does not exist. Instead, a new 

observation is assigned to the class of minimum MD. Therefore, our methods show similar 

performance to that of MDC.  

 

Su and Hsiao (2009) find that their proposed method gives a better performance than MDC. 

However, when the average BCA results are analyzed, only in two data sets (“water-treat” and 

“Mfeatures”) significant and in one data set (abalone) moderately difference are seen in total of 

12 data sets. We also apply MDC to “water-treat” data set. However, it does not give the same 

results as in Su and Hsiao (2009). The anticipated reasons are explained before in Section 4.2.1. 

In fact, there are missing values in this data set, which we have already omitted. However, there 

is no comment on this in Su and Hsiao (2009). In addition, an OA which is suitable for the 

“Mfeatures” data set is hard to find since the data set has 649 variables. The BCA performance 

comparison of MMTS with MDC is not appropriate in that situation, due to these reasons.  

 

The reasons for exclusion of the method proposed by Su and Hsiao (2009) in multiple 

comparisons are explained in Section 4.2.1. When a simple comparison is of the methods 

FWMMTS-I, FWMMTS-II, MMTS, SNRMMTS, MDC, WMDC and FWMMTS of Su and 

Hsiao (2009) done based on the average of the BCA values, the following ANOVA table is 

obtained by the two-way ANOVA study. 
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Table 4.11: ANOVA for Average of the BCA Values (Including FWMMTS method of Su and 
Hsiao (2009)) 

 

 

Source      DF           SS           MS       F       P 

Data set         7   2.63253   0.376076   9.06   0.000 

Methods    7   0.17778   0.025397   0.61  0.743 

Error       49   2.03357  0.041501 

Total       63   4.84388 

 
  
The results indicate that there is no evidence for significant difference among the all of the 

methods. However, this result may be regarded as “false” since Table 4.4 and 4.5 reveal that p-

values of the methods are changed, when folds are included as replications in the ANOVA 

study. 

 

Based on these results, we can claim that MMTS and FWMMTS-I and MDC produce similar 

results for the multi-class classification problems. We also further suggest testing of the 

proposed methods on more data sets, which have different characteristics of data size, number of 

classes and variables, to reach stronger conclusion about the superiority of any of the methods. 
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CHAPTER 5 

 
 

 

CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK 
 

 

In this study, we have developed several multi-class classification methods with MTS. We have 

also studied the sample size and class imbalance problems, which are encountered mostly in 

small data sets by developing a re-sampling algorithm as a solution.  

 

We have developed the following multi-class classification methods with Mahalanobis Taguchi 

System (MTS): MMTS, FWMMTS-I, FWMMTS-II, SNRMMTS. MMTS is an expansion of the 

original MTS algorithm for multiple class problems using ANOVA in variable selection process; 

SNRMMTS is an expansion of the original MTS algorithm for multiple class problems using 

only S/N ratios; FWMMTS-I is an adaptation of feature weighted MD, which is proposed by 

Wölfel and Ekenel (2005), to the multi-class MTS problems; and lastly FWMMTS-II is the 

modification of the method of Su and Hsiao (2009) in MD calculation by using the original MD 

instead of GS.  

 

The comparison of MDC, which uses all variables in the distance calculation, with other 

methods indicates that there is no significant difference between multi-class methods MMTS, 

FWMMTS-I, SNRMMTS and MDC. One may expect that, after selecting the important 

variables for multi-class MTS methods, unlike MDC, the models give better results than MDC. 

In fact, it is observed that the methods select almost the same variables. Hence, it is not 

surprising to observe that MDC is performing equally well with the others MMTS, FWMMTS-I, 

SNRMMTS. In order to see if there exist advantages of the variable selection procedures of the 

methods, one should study more data sets. This may be a reason for being their results very close 

to MDC. Another reason may be the effect of OA design and usage of OA instead of larger 

experimental designs. A possible future work is developing better variable selection methods in 

order to improve the results. 
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Another reason may be the threshold method. Actually, MTS is different than MDC in case of 

binary classification; also in the way it assigns new observations to classes.  MTS uses a 

threshold for this purpose. In the literature, it is shown that the threshold method affects the 

accuracy of the model significantly. However, in our multi-class classification methods, we do 

not use a threshold. We simply assign a new observation to the class of minimum MD. 

Therefore, our methods show similar performance to that of MDC. 

 

In addition, we have used the “one-to-all” multi-class approach. Instead, the “one-to-one” 

approach can be utilized, although it increases the number of models to solve the multi-class 

problem. We also further suggest testing of the proposed methods on more data sets, which have 

different characteristics of data size, number of classes and variables, to reach stronger 

conclusion about the superiority of any of the methods. 

 

Re-sampling, on the other hand, can be performed by over-sampling, which increases the data 

size; by under-sampling, which decreases the data size by removing existing observations 

randomly until a class balance is reached; or by a combination of over-sampling and under-

sampling. Our re-sampling approach, which only works for data sets with two classes, is a 

combination of over-sampling and under-sampling. The over-sampling is performed by SMOTE, 

which generates the synthetic observations between the nearest neighbors of observations in the 

minority class. In addition, MTS models are used to test the performance of several parameters 

of re-sampling, for which the most appropriate values are sought for specific to each case. 

 

Based on our re-sampling approach, we can not achieve a rule for the relationship between the 

initial parameters and re-sampling parameters since the decision tree based applications indicate 

that the results are changing according to the initial data characteristics. For a given data set, 

suggested re-sampling parameters can be selected after searching on different values of 

parameters. For a future work on our re-sampling method, a different classifier (such as Support 

Vector Machines, Neural Networks), which is sensitive to the imbalanced data, can be tested to 

demonstrate the effect of re-sampling. In addition, in SMOTE, different selection ways of 

nearest neighbours can be studied. This re-sampling algorithm can also be extended to multi-

class imbalance problems. Lastly, we let a large increase in the number of observations in the 

training set. It is also possible to modify the algorithm to put a limit on the final sample size, 

especially for the very small data sets. 
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APPENDIX A 

 

 

 MATHEMATICAL BACKGROUND  
 

A.1 Inflation of the Error Terms Due To Multicollin earity 

Theoretically the problem of multicollinearity can be revealed for a given function Y as 

follows: 

 

µXβXββY +++= 22110  

 

if 12 2XX = , 

 

then it becomes; 

 

µX)ββ(βY +++= 1210 2  

 

Thus, only the term of )ββ( 21 2+ can be estimated. It is not possible to get separate the 

estimates of 1β and 2β . 

 

A square matrix of order n is said to be nonsingular if there exists a matrix B, called the 

multiplicative inverse of A, such that BA ⋅⋅⋅⋅ = AB ⋅⋅⋅⋅ =In where I n is nxn identity matrix, then 

B=A-1. Any matrix that does not have an inverse is said to be singular. Recalling from the 

notes on matrix algebra, the inverse can be found using the determinant of a matrix. In 

addition, a square matrix A is nonsingular if 0XA ====⋅⋅⋅⋅  implies that X=0 or the columns of 

A are linearly independent (Johnson and Wichern, 1998). According to these definitions, 

every non-square matrix is singular. However, non-square matrices may have right and left 

inverses BA ⋅⋅⋅⋅ =I , then we say that B is right inverse of A and A is left inverse of B (Taguchi 

et al., 2001). 
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A.2 Adjoint Matrix Approach for MTS 

The adjoint CAdj of a square matrix C is formed by taking the transpose of it. MD, which is 

calculated by adjoint matrix approach, is obtained as: 

 

                        

 

 

 

      .                                 

 

where: 

zi : standardized zi vector obtained by the standardized values of xi (i=1,…,k) 

k  : the number of variables. 
T  : transpose of the vector 

 

The original MD can also be obtained from MDadj : 

adjMD
det

MD
C

1====  

A.3 Generalized Inverse Approach  

A generalized inverse is also sometimes referred to as the conditional inverse, pseudo 

inverse, and g-inverse. The importance of the generalized inverse matrix G is revealed in the 

theorem: G is a generalized inverse of A since AGA=A  (Moore, 1920 cited by Johnson and 

Wichern, 1998).  
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APPENDIX B 

 

 

RE-SAMPLING 
 

 

Figure B.1: A Decision Tree Based on Results of the Re-sampling Applications
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Table B.1: Discretization Rule of Overall Training Size after Re-sampling 

 

1: <25 

2: 25-49 

3: 50-74 

…
. 

27: 650-674 

28: 675-700 

 

 

Table B.2: Discretization Rule of the Minority Class Ratio after Re-sampling 

 

1: 0.091-0.149 

2: 0.149-0.199 

3: 0.199-0.249 

…
. 

8: 0.451-0.499 

9: 0.499-0.544 
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Figure B.2: A Decision Tree Based on Suggested Re-sampling Parameters of the 

Applications’ Results
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APPENDIX C 
 

 

PERFORMANCE ANALYSIS of MULTI-CLASS MTS METHODS 
 

C.1 Residual Plots of ANOVA Study 
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Figure C.1: Residual Plots for BCA 
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Figure C.2: Residual Plots for PCC 
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C.2 Multiple Comparisons of the Developed Methods  

 

General Linear Model: BCA versus Data; methods_1  
 
Factor     Type    Levels  Values 
Data       random       8  abalone; balance-scale; iris; vehicle; water-  
                           treat; waveform; wine; yeast 
methods_1  fixed        6  FWMMTS-I; FWMMTS-II; MDC; MMTS; SNRMMTS; WMDC 
 
 
Analysis of Variance for BCA, using Adjusted SS for Tests 
 
Source      DF   Seq SS   Adj SS  Adj MS       F      P 
Data         7  15,8384  15,8384  2,2626  188,62  0,000 
methods_1    5   0,3311   0,3311  0,0662    5,52  0,000 
Error      227   2,7230   2,7230  0,0120 
Total      239  18,8926 
 
 
S = 0,109525   R-Sq = 85,59%   R-Sq(adj) = 84,82% 
 
 
Bonferroni 95,0% Simultaneous Confidence Intervals 
Response Variable BCA 
All Pairwise Comparisons among Levels of methods_1 
methods_1 = FWMMTS-I  subtracted from: 
 
methods_1    Lower   Center     Upper  --------+---------+---------+-----
--- 
FWMMTS-II  -0,1787  -0,1060  -0,03337  (------*-------) 
MDC        -0,0790  -0,0064   0,06626            (------*-------) 
MMTS       -0,0811  -0,0085   0,06418            (------*------) 
SNRMMTS    -0,0899  -0,0173   0,05539           (------*-------) 
WMDC       -0,1233  -0,0507   0,02196        (------*------) 
                                       --------+---------+---------+-----
--- 
                                            -0,10      0,00      0,10 
 
 
methods_1 = FWMMTS-II  subtracted from: 
 
methods_1     Lower   Center   Upper  --------+---------+---------+------
-- 
MDC         0,02698  0,09964  0,1723                       (------*------
) 
MMTS        0,02490  0,09755  0,1702                      (-------*------
) 
SNRMMTS     0,01611  0,08876  0,1614                      (------*------) 
WMDC       -0,01732  0,05533  0,1280                  (-------*------) 
                                      --------+---------+---------+------
-- 
                                           -0,10      0,00      0,10 
 
 
methods_1 = MDC  subtracted from: 
 
methods_1    Lower    Center    Upper  --------+---------+---------+-----
--- 
MMTS       -0,0747  -0,00209  0,07057             (------*------) 
SNRMMTS    -0,0835  -0,01087  0,06178            (------*------) 
WMDC       -0,1170  -0,04430  0,02835        (-------*------) 
                                       --------+---------+---------+-----
--- 
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                                            -0,10      0,00      0,10 
 
 
methods_1 = MMTS  subtracted from: 
 
methods_1    Lower    Center    Upper  --------+---------+---------+-----
--- 
SNRMMTS    -0,0814  -0,00879  0,06386            (------*------) 
WMDC       -0,1149  -0,04222  0,03044         (------*------) 
                                       --------+---------+---------+-----
--- 
                                            -0,10      0,00      0,10 
 
 
methods_1 = SNRMMTS  subtracted from: 
 
methods_1    Lower    Center    Upper  --------+---------+---------+-----
--- 
WMDC       -0,1061  -0,03343  0,03923         (-------*------) 
                                       --------+---------+---------+-----
--- 
                                            -0,10      0,00      0,10 
 
 
Bonferroni Simultaneous Tests 
Response Variable BCA 
All Pairwise Comparisons among Levels of methods_1 
methods_1 = FWMMTS-I  subtracted from: 
 
           Difference       SE of           Adjusted 
methods_1    of Means  Difference  T-Value   P-Value 
FWMMTS-II     -0,1060     0,02449   -4,329    0,0003 
MDC           -0,0064     0,02449   -0,261    1,0000 
MMTS          -0,0085     0,02449   -0,346    1,0000 
SNRMMTS       -0,0173     0,02449   -0,705    1,0000 
WMDC          -0,0507     0,02449   -2,070    0,5939 
 
 
methods_1 = FWMMTS-II  subtracted from: 
 
           Difference       SE of           Adjusted 
methods_1    of Means  Difference  T-Value   P-Value 
MDC           0,09964     0,02449    4,068    0,0010 
MMTS          0,09755     0,02449    3,983    0,0014 
SNRMMTS       0,08876     0,02449    3,624    0,0054 
WMDC          0,05533     0,02449    2,259    0,3721 
 
 
methods_1 = MDC  subtracted from: 
 
           Difference       SE of           Adjusted 
methods_1    of Means  Difference  T-Value   P-Value 
MMTS         -0,00209     0,02449   -0,085     1,000 
SNRMMTS      -0,01087     0,02449   -0,444     1,000 
WMDC         -0,04430     0,02449   -1,809     1,000 
 
 
methods_1 = MMTS  subtracted from: 
 
           Difference       SE of           Adjusted 
methods_1    of Means  Difference  T-Value   P-Value 
SNRMMTS      -0,00879     0,02449   -0,359     1,000 
WMDC         -0,04222     0,02449   -1,724     1,000 
 
 
methods_1 = SNRMMTS  subtracted from: 
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           Difference       SE of           Adjusted 
methods_1    of Means  Difference  T-Value   P-Value 
WMDC         -0,03343     0,02449   -1,365     1,000 
 
 
Tukey 95,0% Simultaneous Confidence Intervals 
Response Variable BCA 
All Pairwise Comparisons among Levels of methods_1 
methods_1 = FWMMTS-I  subtracted from: 
 
methods_1    Lower   Center     Upper  --------+---------+---------+-----
--- 
FWMMTS-II  -0,1763  -0,1060  -0,03572  (------*------) 
MDC        -0,0767  -0,0064   0,06392            (------*------) 
MMTS       -0,0788  -0,0085   0,06183            (------*------) 
SNRMMTS    -0,0876  -0,0173   0,05304           (------*------) 
WMDC       -0,1210  -0,0507   0,01962        (------*------) 
                                       --------+---------+---------+-----
--- 
                                            -0,10      0,00      0,10 
 
 
methods_1 = FWMMTS-II  subtracted from: 
 
methods_1     Lower   Center   Upper  --------+---------+---------+------
-- 
MDC         0,02933  0,09964  0,1699                       (------*------
) 
MMTS        0,02724  0,09755  0,1679                       (------*------
) 
SNRMMTS     0,01845  0,08876  0,1591                      (------*------) 
WMDC       -0,01497  0,05533  0,1256                   (------*------) 
                                      --------+---------+---------+------
-- 
                                           -0,10      0,00      0,10 
 
 
methods_1 = MDC  subtracted from: 
 
methods_1    Lower    Center    Upper  --------+---------+---------+-----
--- 
MMTS       -0,0724  -0,00209  0,06822             (------*------) 
SNRMMTS    -0,0812  -0,01087  0,05943            (------*------) 
WMDC       -0,1146  -0,04430  0,02601         (------*------) 
                                       --------+---------+---------+-----
--- 
                                            -0,10      0,00      0,10 
 
 
methods_1 = MMTS  subtracted from: 
 
methods_1    Lower    Center    Upper  --------+---------+---------+-----
--- 
SNRMMTS    -0,0791  -0,00879  0,06152            (------*------) 
WMDC       -0,1125  -0,04222  0,02809         (------*------) 
                                       --------+---------+---------+-----
--- 
                                            -0,10      0,00      0,10 
 
 
methods_1 = SNRMMTS  subtracted from: 
 
methods_1    Lower    Center    Upper  --------+---------+---------+-----
--- 
WMDC       -0,1037  -0,03343  0,03688          (------*------) 
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                                       --------+---------+---------+-----
--- 
                                            -0,10      0,00      0,10 
 
 
Tukey Simultaneous Tests 
Response Variable BCA 
All Pairwise Comparisons among Levels of methods_1 
methods_1 = FWMMTS-I  subtracted from: 
 
           Difference       SE of           Adjusted 
methods_1    of Means  Difference  T-Value   P-Value 
FWMMTS-II     -0,1060     0,02449   -4,329    0,0003 
MDC           -0,0064     0,02449   -0,261    0,9998 
MMTS          -0,0085     0,02449   -0,346    0,9993 
SNRMMTS       -0,0173     0,02449   -0,705    0,9812 
WMDC          -0,0507     0,02449   -2,070    0,3069 
 
 
methods_1 = FWMMTS-II  subtracted from: 
 
           Difference       SE of           Adjusted 
methods_1    of Means  Difference  T-Value   P-Value 
MDC           0,09964     0,02449    4,068    0,0009 
MMTS          0,09755     0,02449    3,983    0,0013 
SNRMMTS       0,08876     0,02449    3,624    0,0048 
WMDC          0,05533     0,02449    2,259    0,2153 
 
 
methods_1 = MDC  subtracted from: 
 
           Difference       SE of           Adjusted 
methods_1    of Means  Difference  T-Value   P-Value 
MMTS         -0,00209     0,02449   -0,085    1,0000 
SNRMMTS      -0,01087     0,02449   -0,444    0,9978 
WMDC         -0,04430     0,02449   -1,809    0,4621 
 
 
methods_1 = MMTS  subtracted from: 
 
           Difference       SE of           Adjusted 
methods_1    of Means  Difference  T-Value   P-Value 
SNRMMTS      -0,00879     0,02449   -0,359    0,9992 
WMDC         -0,04222     0,02449   -1,724    0,5175 
 
 
methods_1 = SNRMMTS  subtracted from: 
 
           Difference       SE of           Adjusted 
methods_1    of Means  Difference  T-Value   P-Value 
WMDC         -0,03343     0,02449   -1,365    0,7479 
 

 

 Figure C.3: General Linear Model: BCA versus methods and data sets 
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General Linear Model: PCC versus Data; methods_1  
 
Factor     Type    Levels  Values 
Data       random       8  abalone; balance-scale; iris; vehicle; water-
treat; 
                           waveform; wine; yeast 
methods_1  fixed        6  FWMMTS-I; FWMMTS-II; MDC; MMTS; SNRMMTS; WMDC 
 
 
Analysis of Variance for PCC, using Adjusted SS for Tests 
 
Source      DF   Seq SS   Adj SS  Adj MS       F      P 
Data         7  15,5045  15,5045  2,2149  174,47  0,000 
methods_1    5   0,4188   0,4188  0,0838    6,60  0,000 
Error      227   2,8817   2,8817  0,0127 
Total      239  18,8050 
 
 
S = 0,112671   R-Sq = 84,68%   R-Sq(adj) = 83,87% 
 
 
Bonferroni 95,0% Simultaneous Confidence Intervals 
Response Variable PCC 
All Pairwise Comparisons among Levels of methods_1 
methods_1 = FWMMTS-I  subtracted from: 
 
methods_1    Lower   Center     Upper  ---------+---------+---------+----
--- 
FWMMTS-II  -0,1694  -0,0946  -0,01989    (-------*------) 
MDC        -0,0932  -0,0185   0,05627            (------*-------) 
MMTS       -0,0937  -0,0190   0,05573            (------*-------) 
SNRMMTS    -0,1110  -0,0363   0,03849          (------*-------) 
WMDC       -0,1872  -0,1124  -0,03767  (-------*------) 
                                       ---------+---------+---------+----
--- 
                                             -0,10      0,00      0,10 
 
 
methods_1 = FWMMTS-II  subtracted from: 
 
methods_1     Lower    Center    Upper  ---------+---------+---------+---
---- 
MDC         0,00142   0,07616  0,15091                     (-------*-----
-) 
MMTS        0,00088   0,07562  0,15036                     (-------*-----
-) 
SNRMMTS    -0,01636   0,05838  0,13312                   (-------*------) 
WMDC       -0,09252  -0,01778  0,05696            (------*-------) 
                                        ---------+---------+---------+---
---- 
                                              -0,10      0,00      0,10 
 
 
methods_1 = MDC  subtracted from: 
 
methods_1    Lower    Center     Upper  ---------+---------+---------+---
---- 
MMTS       -0,0753  -0,00054   0,07420             (-------*------) 
SNRMMTS    -0,0925  -0,01779   0,05695            (------*-------) 
WMDC       -0,1687  -0,09394  -0,01920    (-------*------) 
                                        ---------+---------+---------+---
---- 
                                              -0,10      0,00      0,10 
 



83 

 
methods_1 = MMTS  subtracted from: 
 
methods_1    Lower    Center     Upper  ---------+---------+---------+---
---- 
SNRMMTS    -0,0920  -0,01725   0,05750            (------*-------) 
WMDC       -0,1681  -0,09340  -0,01866    (-------*------) 
                                        ---------+---------+---------+---
---- 
                                              -0,10      0,00      0,10 
 
 
methods_1 = SNRMMTS  subtracted from: 
 
methods_1    Lower    Center      Upper  ---------+---------+---------+--
----- 
WMDC       -0,1509  -0,07616  -0,001418      (------*-------) 
                                         ---------+---------+---------+--
----- 
                                               -0,10      0,00      0,10 
 
 
Bonferroni Simultaneous Tests 
Response Variable PCC 
All Pairwise Comparisons among Levels of methods_1 
methods_1 = FWMMTS-I  subtracted from: 
 
           Difference       SE of           Adjusted 
methods_1    of Means  Difference  T-Value   P-Value 
FWMMTS-II     -0,0946     0,02519   -3,756    0,0033 
MDC           -0,0185     0,02519   -0,733    1,0000 
MMTS          -0,0190     0,02519   -0,754    1,0000 
SNRMMTS       -0,0363     0,02519   -1,439    1,0000 
WMDC          -0,1124     0,02519   -4,462    0,0002 
 
 
methods_1 = FWMMTS-II  subtracted from: 
 
           Difference       SE of           Adjusted 
methods_1    of Means  Difference  T-Value   P-Value 
MDC           0,07616     0,02519   3,0231    0,0418 
MMTS          0,07562     0,02519   3,0017    0,0448 
SNRMMTS       0,05838     0,02519   2,3172    0,3208 
WMDC         -0,01778     0,02519  -0,7057    1,0000 
 
 
methods_1 = MDC  subtracted from: 
 
           Difference       SE of           Adjusted 
methods_1    of Means  Difference  T-Value   P-Value 
MMTS         -0,00054     0,02519   -0,021    1,0000 
SNRMMTS      -0,01779     0,02519   -0,706    1,0000 
WMDC         -0,09394     0,02519   -3,729    0,0036 
 
 
methods_1 = MMTS  subtracted from: 
 
           Difference       SE of           Adjusted 
methods_1    of Means  Difference  T-Value   P-Value 
SNRMMTS      -0,01725     0,02519   -0,684    1,0000 
WMDC         -0,09340     0,02519   -3,707    0,0039 
 
 
methods_1 = SNRMMTS  subtracted from: 
 
           Difference       SE of           Adjusted 
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methods_1    of Means  Difference  T-Value   P-Value 
WMDC         -0,07616     0,02519   -3,023    0,0419 
 
 
Tukey 95,0% Simultaneous Confidence Intervals 
Response Variable PCC 
All Pairwise Comparisons among Levels of methods_1 
methods_1 = FWMMTS-I  subtracted from: 
 
methods_1    Lower   Center     Upper  --------+---------+---------+-----
--- 
FWMMTS-II  -0,1670  -0,0946  -0,02230   (-------*------) 
MDC        -0,0908  -0,0185   0,05386           (------*------) 
MMTS       -0,0913  -0,0190   0,05332           (------*------) 
SNRMMTS    -0,1086  -0,0363   0,03608         (------*-------) 
WMDC       -0,1847  -0,1124  -0,04008  (------*------) 
                                       --------+---------+---------+-----
--- 
                                            -0,10      0,00      0,10 
 
 
methods_1 = FWMMTS-II  subtracted from: 
 
methods_1     Lower    Center    Upper  --------+---------+---------+----
---- 
MDC         0,00384   0,07616  0,14849                    (-------*------
) 
MMTS        0,00330   0,07562  0,14795                    (-------*------
) 
SNRMMTS    -0,01395   0,05838  0,13071                   (------*------) 
WMDC       -0,09011  -0,01778  0,05455           (------*------) 
                                        --------+---------+---------+----
---- 
                                             -0,10      0,00      0,10 
 
 
methods_1 = MDC  subtracted from: 
 
methods_1    Lower    Center     Upper  --------+---------+---------+----
---- 
MMTS       -0,0729  -0,00054   0,07179             (------*------) 
SNRMMTS    -0,0901  -0,01779   0,05454           (------*------) 
WMDC       -0,1663  -0,09394  -0,02162   (-------*------) 
                                        --------+---------+---------+----
---- 
                                             -0,10      0,00      0,10 
 
 
methods_1 = MMTS  subtracted from: 
 
methods_1    Lower    Center     Upper  --------+---------+---------+----
---- 
SNRMMTS    -0,0896  -0,01725   0,05508           (------*-------) 
WMDC       -0,1657  -0,09340  -0,02108   (-------*------) 
                                        --------+---------+---------+----
---- 
                                             -0,10      0,00      0,10 
 
 
methods_1 = SNRMMTS  subtracted from: 
 
methods_1    Lower    Center      Upper  --------+---------+---------+---
----- 
WMDC       -0,1485  -0,07616  -0,003830     (------*-------) 
                                         --------+---------+---------+---
----- 
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                                              -0,10      0,00      0,10 
 
 
Tukey Simultaneous Tests 
Response Variable PCC 
All Pairwise Comparisons among Levels of methods_1 
methods_1 = FWMMTS-I  subtracted from: 
 
           Difference       SE of           Adjusted 
methods_1    of Means  Difference  T-Value   P-Value 
FWMMTS-II     -0,0946     0,02519   -3,756    0,0030 
MDC           -0,0185     0,02519   -0,733    0,9777 
MMTS          -0,0190     0,02519   -0,754    0,9746 
SNRMMTS       -0,0363     0,02519   -1,439    0,7032 
WMDC          -0,1124     0,02519   -4,462    0,0002 
 
 
methods_1 = FWMMTS-II  subtracted from: 
 
           Difference       SE of           Adjusted 
methods_1    of Means  Difference  T-Value   P-Value 
MDC           0,07616     0,02519   3,0231    0,0329 
MMTS          0,07562     0,02519   3,0017    0,0350 
SNRMMTS       0,05838     0,02519   2,3172    0,1915 
WMDC         -0,01778     0,02519  -0,7057    0,9811 
 
 
methods_1 = MDC  subtracted from: 
 
           Difference       SE of           Adjusted 
methods_1    of Means  Difference  T-Value   P-Value 
MMTS         -0,00054     0,02519   -0,021    1,0000 
SNRMMTS      -0,01779     0,02519   -0,706    0,9811 
WMDC         -0,09394     0,02519   -3,729    0,0033 
 
 
methods_1 = MMTS  subtracted from: 
 
           Difference       SE of           Adjusted 
methods_1    of Means  Difference  T-Value   P-Value 
SNRMMTS      -0,01725     0,02519   -0,684    0,9835 
WMDC         -0,09340     0,02519   -3,707    0,0036 
 
 
methods_1 = SNRMMTS  subtracted from: 
 
           Difference       SE of           Adjusted 
methods_1    of Means  Difference  T-Value   P-Value 
WMDC         -0,07616     0,02519   -3,023    0,0329 

 

Figure C.4: General Linear Model: PCC versus methods and data  

 


