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ABSTRACT 

 

 

APPROACHES FOR AUTOMATIC URBAN BUILDING EXTRACTION 

AND UPDATING FROM HIGH RESOLUTION SATELLITE IMAGERY  

 

 

 

Koç San, Dilek 

Ph.D., Department of Geodetic and Geographic Information Technologies 

         Supervisor: Assoc. Prof. Dr. Mahmut Onur Karslıoğlu 

         Co-Supervisor: Assoc. Prof. Dr. Mustafa Türker 

 

March 2009, 228 pages 

 

 

 

Approaches were developed for building extraction and updating from high 

resolution satellite imagery. The developed approaches include two main stages: (i) 

detecting the building patches and (ii) delineating the building boundaries. The 

building patches are detected from high resolution satellite imagery using the 

Support Vector Machines (SVM) classification, which is performed for both the 

building extraction and updating approaches. In the building extraction part of the 

study, the previously detected building patches are delineated using the Hough 

transform and boundary tracing based techniques. In the Hough transform based 

technique, the boundary delineation is carried out using the processing operations of 

edge detection, Hough transformation, and perceptual grouping. In the boundary 

tracing based technique, the detected edges are vectorized using the boundary tracing 

algorithm. The results are then refined through line simplification and vector filters. 

In the building updating part of the study, the destroyed buildings are determined 

through analyzing the existing building boundaries and the previously detected 



 v 

building patches. The new buildings are delineated using the developed model based 

approach, in which the building models are selected from an existing building 

database by utilizing the shape parameters. 

 

The developed approaches were tested in the Batikent district of Ankara, Turkey, 

using the IKONOS panchromatic and pan-sharpened stereo images (2002) and 

existing vector database (1999). The results indicate that the proposed approaches are 

quite satisfactory with the accuracies computed in the range from 68.60% to 98.26% 

for building extraction, and from 82.44% to 88.95% for building updating. 

 

 

 

Keywords: Building Extraction, Building Updating, Support Vector Machines 

Classification, Hough Transformation, Model Based Approach. 
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ÖZ 

 

 

KENTSEL BİNALARIN YÜKSEK ÇÖZÜNÜRLÜKLÜ UYDU 

GÖRÜNTÜLERİNDEN OTOMATİK ÇIKARILMASI VE 

GÜNCELLENMESİ İÇİN YAKLAŞIMLAR 
 

 

 

Koç San, Dilek 

Doktora, Jeodezi ve Coğrafi Bilgi Teknolojileri Bölümü 

Tez Yöneticisi: Doç. Dr. Mahmut Onur Karslıoğlu 

Ortak Tez Yöneticisi: Doç. Dr. Mustafa Türker 

 

Mart 2009, 228 sayfa 

 

 

 

Yüksek çözünürlüklü uydu görüntülerinden bina çıkarımı ve güncellenmesi için 

yaklaşımlar geliştirilmiştir. Geliştirilen yaklaşımlar iki ana aşama içermektedir: (i) 

bina alanlarının bulunması ve bina sınırlarının bina belirlenmesi. Bina alanları 

yüksek çözünürlüklü uydu görüntülerinden, hem bina çıkarımı hem de güncellenmesi 

yaklaşımları için uygulanan, Destek Vektör Makineleri (DVM) sınıflandırması 

kullanılarak bulunmaktadır. Çalışmanın bina çıkarımı kısmında, önceden bulunan 

bina alanlarının sınırları geliştirilen Hough dönüşümüne ve sınır izlemeye dayalı 

teknikler kullanılarak belirlenmektedir. Hough dönüşümüne dayalı teknikte, bina 

sınırları kenar belirleme, Hough dönüşümü ve algısal gruplama işlemleri kullanılarak 

belirlenmektedir. Sınır izlemeye dayalı teknikte, elde edilen kenarlar sınır izleme 

algoritması kullanılarak vektör forma dönüştürülmektedir. Sonuçlar çizgi 

basitleştirme algoritması ve vektör filtreleri kullanılarak iyileştirilmektedir. 

Çalışmanın binaların güncellenmesi kısmında, yıkılmış binalar mevcut bina 

veritabanı ile bulunan bina alanları analiz edilerek belirlenmiştir. Yeni bina sınırları, 
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bina modellerinin mevcut bina veritabanından şekil parametreleri kullanılarak 

belirlendiği, geliştirilen modele dayalı yaklaşım kullanılarak belirlenmiştir.  

 

Yaklaşımlar Türkiye’de Ankara’nın Batıkent bölgesinde, IKONOS pankromatik ve 

keskinleştirilmiş renkli uydu görüntüleri (2002) ve mevcut vektör veritabanı (1999) 

kullanılarak test edilmiştir. Sonuçlar önerilen yaklaşımların, binaların belirlenmesi 

için %68.60 ile %98.26 aralığında ve binaların güncellenmesi için %82.44 ile 

%88.95 aralığında hesaplanan doğruluklarla, oldukça başarılı olduğunu 

göstermektedir.  

 

 

 

Keywords: Bina Çıkarma, Bina Güncelleme, Destek Vektör Makineleri 

Sınıflandırması, Hough Transformasyonu, Modele Dayalı Yaklaşım. 
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CHAPTER 1 
 

 

INTRODUCTION 
 

 

 

The collection and updating of geographic data in urban areas are very important for 

urban planning. The stability and maintenance of current land use information effect 

the success of urban plans. Geographic Information System (GIS) is a very useful 

tool for urban planning with its capability to store, retrieve, manipulate, analyze, and 

display huge amount of spatial and attribute data. However, lack of current land use 

information limits the efficiency of GIS in urban planning and management. Remote 

Sensing (RS) technologies are very important to extract geographic information and 

to update spatial databases.  

 

Automatic extraction of buildings is very important for data acquisition and updating 

GIS databases. Therefore, it is one of the most challenging tasks in digital 

photogrammetry and computer vision and has been the focus of intensive research 

for the last decades. Traditionally, the building boundaries are acquired through 

manual digitization from digital images in stereo view using the photogrammetric 

stereoplotters. However, this process is a tiresome and time-consuming task and 

requires qualified people and expensive equipments. For this reason, building 

extraction using the automatic techniques has a great potential and importance.  

 

High resolution satellite images provide a valuable new data source for geographic 

data acquisition, mapping applications and the preparation of the urban plans. During 

the last decade, spaceborne remote sensing experienced with a big technological 

development. The high resolution satellite images have been and are being used for 
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building extraction. On the other hand, the existing GIS databases, which include 

ground plans, are also available for most of the major cities. Therefore, in these cities 

instead of extracting all buildings, extracting new buildings and updating the GIS 

databases with the new building information would be more efficient.  

 

In this study, approaches are presented for building extraction and building updating 

from high resolution satellite imagery. In these approaches, there are basically two 

main steps, which are building detection and building delineation. The building 

detection procedure is common for both the extraction and updating parts of the 

study. In the building detection part, the Support Vector Machines (SVM) 

classification is used to detect the candidate building patches by incorporating 

additional bands. In the building delineation part of the study, different approaches 

are used for building extraction and updating. For building extraction, the delineation 

from the candidate building patches is performed using two different techniques that 

are (i) delineation based on Hough transform, and (ii) delineation based on Boundary 

tracing. To delineate the building boundaries using the Hough transform based 

approach, initially the edges are detected from the building patch image through an 

edge detection algorithm. Then, the Hough transform and the perceptual grouping 

operations are performed. In the Boundary tracing based approach, to delineate the 

building boundaries, the first step is to apply an edge detection operation. Then, the 

boundary tracing, line simplification and the vector filtering operations are carried 

out.  

 

For the building updating part of the study, a model-based approach was developed. 

In this approach, existing building database is used as ancillary information to 

facilitate the complex building extraction problem. In the developed approach, 

initially the destroyed buildings were determined by analyzing the existing building 

database and detected building patches. Then, the new buildings are delineated using 

the developed model based approach, which utilizes existing building database to 

determine the most proper building model for each candidate building patch. Then, 

the building boundaries are delineated by assigning the selected building model to 

the detected building patches.  
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The developed approaches were implemented in the selected study areas from the 

Batikent district of Ankara, Turkey, and the performances of the proposed building 

extraction and updating results were measured. 

 

In this thesis, the term “building extraction” means a process that consists of the 

detection and the delineation steps. “Building detection” means the classification of 

image pixels into building regions and “building delineation” means the placement of 

building boundaries of the detected building patches. 

 

1.1. Objectives of The Research 

 

The objectives of this study are as follows:  

 

• To develop approaches for automatic building extraction from high resolution 

satellite imagery.  

• To detect building patches through Support Vector Machines (SVM) 

classification of the high resolution satellite imagery using additional bands. 

• To assess the effect of using the normalized Digital Surface Model (nDSM), 

Normalized Difference Vegetation Index (NDVI) and Principal Component 

(PC) images as additional bands in the classification process. 

• To develop approaches for delineating rectangular and circular (circle, ring, 

C, and S) shaped buildings  

• To develop a method for automatically updating an existing building database 

by utilizing the integration of Geographic Information System (GIS) and 

Remote Sensing (RS). 

• To propose an approach that automatically selects building models from an 

existing building database by analyzing the shape properties. 

• To determine the potential of high resolution satellite imagery for building 

extraction and updating. 
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1.2. The Software Used in the Study 

 

In this study, different software was used to perform different implementations and 

processing. Digital image processing and analysis operations were carried out using 

PCI Geomatica and ENVI software. The Orthoengine Module of the PCI Geomatica 

software was used for generating the Digital Terrain Model from contour lines, for 

generating the Digital Surface Model from IKONOS stereo pairs and for the 

orthorectification of the images. The Focus Module of the PCI Geomatica software 

was used for generating Normalized Difference Vegetation Index (NDVI), for 

calculating normalized Digital Surface Model (nDSM) and for performing Principal 

Component Analysis (PCA). The candidate building patches were detected using the 

SVM classification of the ENVI software. The preparation of the existing building 

database and the editing of the vector data were carried out using the ArcGIS and 

TNTMips software.  

 

The proposed approaches were developed using the MATLAB 7 programming 

language. Initially, using this programming language, the morphological operations 

were carried out to remove the artefacts from the building patch image. Programs 

were also developed for the Hough transform and Boundary tracing based 

delineation from building patches. In the Hough transform based approach, the edge 

detection, Hough transform, and consequent perceptual grouping operations were 

performed. In the Boundary tracing based approach, the edge detection, Boundary 

tracing and line simplification operations were performed sequentially. In addition, a 

program was developed using MATLAB 7 programming language for updating the 

building boundaries. In this program, the shape parameters of the detected building 

patches and the existing building boundaries were calculated, the optimum building 

model was selected from the existing building database and this model was assigned 

to the building patch automatically.  
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1.3. Organization of the Thesis 

 

This thesis includes seven chapters. In the following chapter (chapter 2), an extensive 

literature review is given about building extraction and updating from digital images. 

The past studies are grouped according to the data sources used and the 

methodologies. 

 

In chapter 3, the study area is described and detailed information about the raster and 

vector data used in the study are provided.  

 

Chapter 4 provides the description of the building detection procedure using the 

SVM classification technique. First, the methodology of the proposed building 

detection is described. Then, the steps followed for the building detection approach 

are provided in detail. These steps are mainly the calculation of nDSM from high 

resolution satellite images, orthoimage generation, the calculation of NDVI and PCA 

analysis, SVM classification, and the determination of candidate building patches. 

Finally, the experimental results of the classification and building detection are 

given. 

 

In Chapter 5, the building boundary delineation procedure from candidate building 

patches is presented. To delineate the building boundaries, two approaches were 

developed, which are (i) delineation based on Hough transform and (ii) delineation 

based on Boundary tracing. First, the methodology of the Hough transform approach 

is described. The delineation of the rectangular and circular shape buildings using 

this approach are explained in detail. This is followed by giving the experimental 

results. After the first approach, the methodology developed based on Boundary 

tracing is given. Next, the steps followed in this approach and the results obtained are 

presented. Lastly, the results of both approaches are compared and discussed. 

 

In chapter 6, an approach, which was developed based on a model-based concept, is 

introduced for updating an existing building database from high resolution satellite 

images using. First, the methodology of the proposed approach is given. Then, the 
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preparation of the existing building database and the candidate building patches are 

described. This is followed by the explanation of the selection the building models 

from existing building database. After that, the steps to assign the building models to 

the candidate building patches are described. Finally, the experimental results are 

given and the results are discussed.  

 

The final chapter (Chapter 7) presents the conclusions reached during the study of 

the developed approaches and recommendations are given for future studies.  
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CHAPTER 2 
 

 

LITERATURE REVIEW 
 

 

 

In this chapter, the past studies conducted for building extraction from digital images 

are provided. The chapter contains two main sections that are (i) building extraction 

and (ii) building updating. In the first section, the past building extraction studies are 

grouped into four parts. In the first part, the past studies for building extraction, 

which were conducted using aerial images, are given. In the second part, the building 

extraction studies conducted using the satellite imagery are summarized. In the third 

part, the past studies for building extraction from Digital Elevation Models are given. 

In the last part, the former building extraction studies from multi-source data are 

presented. In the second section of this chapter, the past building extraction studies 

conducted for updating and detecting building changes are presented. 

 

2.1. Building Extraction  

 

Most of the automated building extraction methods are based on aerial photographs 

or satellite images. However, the recent studies have suggested that using multiple 

data sources and combining photogrammetric tools with the GIS data in building 

extraction studies can be advantageous. There are studies that integrate aerial and 

space images with additional data sources, such as ground plans, maps, GIS data, 

DSM, Laser/Lidar data or SAR images for building extraction. Recently, a number of 

techniques based on DEM and Laser/Lidar data have been developed.   
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Gruen (2000) stated that multi-image approaches, multi-cue algorithms, fusion of  

various information sources, DSM for detection and reconstruction, derivation of 

DSMs from laser scanners, generic roof modeling by decomposition into parts, use 

of a priori knowledge from maps and GIS, and semi automated reconstruction 

techniques were the current trends in building extraction studies. 

 

In the researches conducted by Mayer (1999), Sowmya and Trinder (2000), 

Baltsavias (2004), and Brenner (2005) the previous automatic and semi-automatic 

building extraction approaches were reviewed extensively. Besides, detailed 

literature review about building extraction from aerial images is provided by Shufelt 

(1999). On the other hand, the collection of the state-of-the art articles in man-made 

object extraction are given in the proceedings edited by Gruen et al. (1995), Gruen et 

al. (1997), and Baltsavias et al. (2001a). 

 

2.1.1 Building Extraction from Aerial Images 

 

A number of research studies to extract building boundaries from aerial imagery 

have used a single image (Huertas and Nevatia, 1988; Irving and McKeown, 1989; 

Liow and Pavlidis, 1990; Lin and Nevatia, 1998; Kim and Nevatia, 1999; Bellman 

and Shortis, 2000; Pal et al., 2001; Peng et al., 2005; Cha et al., 2006; Katartzis and 

Sahli, 2008), stereo images (Sahar and Krupnik, 1999; Ruether et al., 2002; 

Avrahami et al., 2007) or multiple images (Henricsson, 1998; Noronha and Nevatia, 

2001; Fradkin et al., 2001; Kim and Nevatia, 2004). Table 2.1, table 2.2, and table 

2.3 summarize the recent building extraction studies from mono, stereo, and multiple 

aerial images, respectively. Most of these methods are based on edge, line, corner 

analysis and grouping operations (Huertas and Nevatia, 1988; Lin and Nevatia, 1998; 

Kim and Nevatia, 1999; Sahar and Krupnik, 1999; Kim and Nevatia, 2004; Cha et 

al., 2006; Katartzis and Sahli, 2008).  
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Table 2. 1. The previous studies for building extraction from monocular aerial images 

 

Previous Research Data Source Used Methodology Results 

Huertas & Nevatia 

(1988) 

Monocular Aerial 

Image 

Edge and Corner Detection 

Boundary Tracing 

Shadow Information 

2D  

Detection 

Delineation 

Irving & McKeown 

(1989) 

Monocular Aerial 

Image 

Shadow Information 2D 

Detection 

Delineation 

Liow & Pavlidis 

(1990) 

Monocular Aerial 

Image 

Edge Detection  

Segmentation (Region 

Growing) 

Shadow Information 

2D  

Detection 

Delineation 

Lin & Nevatia (1998) Monocular Aerial 

Image 

Edge Detection  

Line Linking and 

Approximation Method 

Perceptual Grouping  

Shadow Information 

3D  

Detection 

Delineation 

Kim & Nevatia 

(1999) 

Monocular Aerial 

Image 

Edge Detection  

Perceptual Grouping  

Neural Network  

Bayesian Approach 

3D  

Detection 

Delineation 

Bellman & Shortis 

(2000) 

Monocular Aerial 

Image 

Wavelet Transform 

Support Vector Machines 

2D 

Detection 

Pal, Swayne,  & Frey 

(2001) 

Monocular Aerial 

Image 

Bayesian Networks 

Segmentation 

2D 

Detection 

Peng, Zhang, and Liu 

(2005) 

Monocular Aerial 

Image 

Snake Model 2D 

Detection 

Delineation 

Cha, Cofer, & 

Kozaitis (2006) 

Monocular Aerial 

Image 

Hough Transform 2D  

Detection 

Delineation 

Katartzis & Sahli 

(2008) 

Monocular Aerial 

Image 

Contextual Information 

Perceptual Grouping 

Bayesian Markov Random 

Field Model 

Shadow Information 

3D  

Detection 

Delineation 

 

 

 

Table 2. 2. The previous studies for building extraction from stereo aerial images 

 

Previous Research Data Source Used Methodology Results 

Sahar & Krupnik 

(1999) 

Stereo Aerial Images Edge Detection 

Shadow Information 

2D 

Detection 

Ruether, Martine, and 

Mtalo (2002) 

Stereo Aerial Image Snake Model 2D 

Detection 

Delineation 

Avrahami, Raizman, 

and Doytsher (2007) 

Stereo Aerial Images Region Growing 

Morphological Operations 

3D  

Detection 

Delineation 
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Table 2. 3. The previous studies for building extraction from multiple aerial images. 

 

Previous Research Data Source Used Methodology Results 

Henricsson (1998) Multiple Aerial 

Images 

Color Information 

Grouping 

3D  

Detection 

Delineation 

Noronha & Nevatia 

(2001) 

Multiple Aerial 

Images 

Perceptual Grouping  

Matching 

Shadow Information 

3D  

Detection 

Delineation 

Fradkin, Maitre, and 

Roux (2001) 

Multiple Aerial 

Images 

Image Segmentation 

Image Matching 

3D  

Detection 

Delineation 

Kim & Nevatia 

(2004) 

Multiple Aerial 

Images 

Edge Detection 

Perceptual Grouping 

Bayesian Networks 

3D  

Detection 

Delineation 

 

 

 

Ruether et al. (2002) and Peng et al. (2005) used a snake based approach to extract 

building boundaries. Bayesian / Neural Network Classification techniques were used 

in the studies conducted by Kim and Nevatia (1999), Pal et al. (2001), and Kim and 

Nevatia (2004). On the other hand, Bellman and Shortis (2000) used Support Vector 

Machines Classification technique and Wavelet Transform to detect building areas.  

 

In a number of studies conducted for delineating the building boundaries the shadow 

information was utilized (Huertas and Nevatia, 1988; Irving and McKeown, 1989; 

Liow and Pavlidis, 1990; Lin and Nevatia, 1998; Sahar and Krupnik, 1999; Noronha 

and Nevatia, 2001; Katartzis and Sahli, 2008). 

 

As another experience, various building models have been introduced to assist and 

automate the building extraction procedure in the last decade (Table 2.4). Building 

models are used to determine the building boundaries after building detection. In the 

model-based approaches, building extraction is achieved by first extracting object 

properties and then matching them to a model.  

 

 

 

 

 



 11 

Table 2. 4. The past studies for building extraction using the model-based approaches. 

 

Previous Research Data Source Used Methodology Results 

Croitoru & Doytsher 

(2003) 

Monocular Aerial 

Image 

Building Models 

Modified Pose Clustering 

2D 

Detection 

Delineation 

Croitoru & Doytsher 

(2004) 

Monocular Aerial 

Image 

Building Models 

Hough Transfrom 

Corner Detection 

2D 

Detection 

Delineation 

Rau & Chen (2003) Monocular Aerial 

Image 

Building Model 

Split-Merge Shape Method 

3D 

Detection 

Delineation 

Tseng & Wang 

(2003) 

Stereo Aerial Images Constructive Solid Geometry 

Least Squares Matching 

3D 

Detection 

Delineation 

Khoshelham & Li 

(2004) 

Monocular Aerial 

Image 

Building Models 

Canny Edge Detection 

Perceptual Grouping 

Least Squares Matching 

3D 

Detection 

Delineation 

Peng & Liu (2005) Monocular Aerial 

Image 

Building Model 

Shadow Information 

Snake Model 

2D 

Detection 

Delineation 

 

 

 

Croitoru and Doytsher (2003) described a model-based approach for building 

location hypothesis generation in regularized urban areas. In a study conducted by 

Croitoru and Doytsher (2004), the characteristics of the regularized urban areas were 

utilized to derive geometric constraints of the building model and then, these 

constraints were used for reducing the number of low-level features. To delineate 

building boundaries, the edge and corner detection algorithms and the subsequent 

perceptual grouping operations were used. Rau and Chen (2003) proposed a robust 

method for reconstructing building models semi-automatically from 3D line 

segments. In their method, the 3D line segments were manually measured from 

stereo aerial images and the region of interest areas were also determined manually. 

The Split and Merge process was used to generate enclosed regions and 3D buildings 

were reconstructed. In the method developed by Tseng and Wang (2003) a novel 

building extraction method was presented that uses the concept of fitting 

Constructive Solid Geometry (CSG) primitives to aerial imagery. Khoshelham and 

Li (2004) introduced an approach to reconstruct parametric building model from 

aerial images. The edges were detected from the image and the edge image was 

converted to line segments, which were then grouped using the perceptual grouping 
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technique. After that, a model matching process was used to match the building 

model selected from a library interactively with the grouped lines. Peng and Liu 

(2005) developed a methodology to extract buildings based on models and context 

from aerial images. Initially, the images were simplified and segmented as sunshine 

and shadow parts. Then, the directions of the cast shadows were estimated by a 

shadow context model. Finally, the extracted building boundaries were refined using 

a context and modified partial snake model. 

 

However, the model-based approaches have several disadvantages. These approaches 

are based on the assumption that there is full knowledge of the object structure 

(Shufelt, 1999). In addition, the detected building patches are enforced to fit the most 

suitable pre-defined building models. Therefore, the delineation accuracy depends on 

the success of the building model library. However, determining and defining all 

possible building models leads to a formidable model library compilation problem 

(Shufelt, 1999).  

 

2.1.2. Building Extraction from Space Imagery 

 

The high resolution satellite images are valuable data sources for geospatial data 

acquisition and GIS databases updating. High resolution satellite images can be 

preferred instead of aerial photographs, because they are cheaper and easier to 

access. Sunar Erbek et al. (2005) indicated that high resolution satellite images, 

which are alternative to aerial photography, can be used to produce land-use maps of 

the current status of the urban environment that can be used as base for the municipal 

GIS and can be used for updating existing topographic maps. There are researches 

that use high resolution satellite images to extract buildings. The methodologies and 

data used are summarized in table 2.5. 
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Table 2. 5. The past studies for building extraction from satellite images. 

 

Previous Research Data Source Used Methodology Results 

Fraser, Baltsavias & 

Gruen (2002) 

IKONOS MS (4m) 

IKONOS Pan (1m) 

IKONOS PSM (1m) 

Manual Extraction Delineation 

Sohn & Dowman 

(2001) 

IKONOS Pan (1m) Local Fourier Analysis 

Binary Space Partitioning  

Detection 

Delineation 

Lee, Shan & Bethel 

(2003) 

IKONOS MS (4m) 

IKONOS Pan (1m) 

Classification  

Building Squaring Approach 

based on Hough 

Transform 

Detection 

Delineation 

Shackelford & Davis 

(2003) 

IKONOS MS (4m) 

IKONOS Pan (1m) 

IKONOS PSM (1m) 

Fuzzy Classifier 

Segmentation (region 

merging) 

Object-Based Fuzzy class. 

Detection 

Benediktsson, 

Pesaresi & Arnason 

(2003) 

IKONOS Pan (1m) 

IRS 1C Pan 

Morphological Operations 

Neural Network Classification 

Detection 

Jin & Davis, 2005 IKONOS MS (4m) 

IKONOS Pan (1m) 

IKONOS PSM (1m) 

Morphological Operations 

Structural, Contextual and 

Spectral Information 

Detection 

Ünsalan & Boyer 

(2005) 

IKONOS MS (4m) K-means clustering  

Morphological Operations 

Detection 

Mayunga, Coleman 

and Zhang (2007) 

Quickbird Pan (0.61 

m) 

Snakes Algorithm 

Radial Casting Algorithm 

Detection 

Delineation 

 

 

 

Most of the studies conducted to extract buildings from high resolution satellite 

images have used spectral values of the images via classification approaches. Lee et 

al. (2003) proposed a classification based approach to extract building boundaries 

from IKONOS multispectral and panchromatic images. In their approach, initially 

the multispectral image was classified using ECHO classifier, which is a region-

based supervised classification technique. Then, the classification results were 

vectorized to define the working windows. After that, the panchromatic image was 

classified using an unsupervised classification technique to separate building from 

background. Lastly, the building boundaries were delineated using a building 

squaring approach which is based on Hough transform. A methodology that uses 

fuzzy pixel-based and object-based approach for classification of the pan-sharpened 

IKONOS images, was presented by Shackelford and Davis (2003). In their approach, 

first a fuzzy pixel-based classifier was performed. Then, the image was segmented 

and the features were derived from this segmented image. After that, to improve the 
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classification results, a fuzzy object-based classification, which utilizes the shape, 

spectral, and neighborhood features was performed using the segmented image. 

Benediktsson et al (2003) investigated the classification and feature extraction from 

panchromatic satellite images using the morphological and neural network 

classification approaches. Similarly, Jin and Davis (2005) presented a method based 

on differential morphological profile concept to extract buildings from high 

resolution panchromatic images. 

 

Sohn and Dowman (2001) developed an approach to extract building boundaries 

from IKONOS panchromatic images. Initially, the line segments were extracted. 

Then, a local Fourier analysis was used to do an analysis of the dominant orientation 

angle in a building cluster and the line segments were regularized using this 

information. Finally, the building boundaries were extracted based on a binary-space 

partitioning.  

 

Ünsalan and Boyer (2005) presented a novel system for automatic map generation 

from IKONOS multispectral images. First, multispectral image analyses were 

performed to detect cultural activity. Then, the images were segmented using K-

means clustering algorithm and a binary image, which contains possible street 

network and houses, was obtained. Next, the segmented images were decomposed 

using a balloon algorithm based on binary mathematical morphology. Finally, to 

extract street networks and houses, these decompositions were represented with a 

weighted graph. 

 

Mayunga et al. (2007) developed a semi-automatic method for extracting informal 

settlement buildings from QuickBird panchromatic images using the snakes and 

radial casting algorithms. The extracted buildings were compared with those 

extracted from aerial images. The results indicate that 15% of the buildings extracted 

from aerial image cannot be extracted from the QuickBird image. On the other hand, 

the mean coverage of the extracted buildings from the QuickBird image was 

calculated as 90.5%. 
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The studies conducted by Fraser et al. (2002) and Mayunga et al. (2007) indicate that 

15% of the buildings extracted from aerial image cannot be extracted from high 

resolution satellite images.  

 

2.1.3. Building Extraction from Laser/Lidar/DEM Data 

 

A number of past studies for extracting building boundaries are based solely on 

Laser/Lidar data. Recently Laser/Lidar has become an effective technique for 

extracting accurate surface models and thus offers possibilities for DEM creation and 

feature extraction. The production of DSM using the Lidar data is a quicker and more 

automated process, and the high density of point measurements can offer better 

definition of urban features (Priestnall et al., 2000). Therefore, these aspects are 

encouraging the feature extraction studies using the Laser/Lidar data. Table 2.6 

summarizes some of the building extraction studies in this field. 

 

 

Table 2. 6. The past studies for building extraction using Laser/Lidar/DEM data 

 

Previous Research Data Source Used Methodology Results 

Weidner & Forstner 

(1995) 

DEM Morphological Operations 

Thresholding  

Minimum description 

Length based approach 

3D 

Detection 

Delineation 

Sampath & Shan (2007) Raw Lidar Data Sets  Segmentation-Region 

growing  

Boundary Tracing 

Hierarchical Least Squares 

Solution 

2D 

Detection 

Delineation 

Dash, Steinle, Singh & 

Baehr (2004) 

Laser DEMs Segmentation 

Delanuay Triangulation 

Modified Standard 

Deviation 

3D 

Detection 

Delineation 

Ma (2005) Lidar Points 

Lidar DEM 

Segmentation 

Boundary Regularization 

2D 

Detection 

Delineation 

Forlani, Nardinocchi, 

Scaioni, Zingaretti (2006) 

Lidar Points 

 

Segmentation 

Rule Based Classification 

3D 

Detection 

Delineation 

Madhavan, Wang, 

Tanahashi, Hirayu, Niwa, 

Yamamoto, Tachibana, 

Sasagawa (2006) 

Laser DEMs Segmentation 

Edge Detection 

Hough Transform 

3D 

Detection 

Delineation 

Miliaresis & Kokkas 

(2007) 

Lidar DEMs Segmentation-Region 

growing  

K-Means Classification 

2D 

Detection 
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There are basically two groups of studies to extract buildings from Laser/Lidar/DEM 

data. In the first group, the building extraction is performed from the raw point 

clouds (Ma, 2005; Forlani et al., 2006; Sampath and Shan, 2007), while in the second 

group the buildings are extracted from the Laser/Lidar DEMs or DEMs generated 

from stereo image pairs (Dash et al., 2004; Madhavan et al., 2006; Miliaresis and 

Kokkas, 2007). Generally, the 3D buildings are extracted from the Laser/Lidar data 

because it provides comparatively more accurate elevation data. 

 

A new method was presented by Ma (2005) to extract ground points for DEM 

generation, to detect the building points, and to regularize the building boundaries. 

Forlani et al. (2006) introduced a methodology for the classification of Lidar data, 

which was followed by the 3D reconstruction of buildings. In their methodology, 

first, the raw Lidar data were filtered and interpolated over a grid. Then, 

segmentation was carried out and geometric and topological relationships between 

the segmented regions were computed and stored in a knowledge base. Finally, a rule 

based scheme was applied for the classification of the regions and polyhedral 

building models were reconstructed. The approach proposed by Sampath and Shan 

(2007) focused on building boundary tracing and regularization from raw Lidar point 

clouds. Initially, the raw Lidar points were separated as ground and non-ground 

points and the buildings were segmented using a moving window. Then, a modified 

convex hull formation algorithm was applied to trace the building boundaries. 

Finally, the building boundaries were regularized using a hierarchical least squares 

solution.   

 

To extract building boundaries from Laser/Lidar DEMs or DEMs generated from 

stereo image pairs, generally the initial step used in the previous studies are 

segmentation of the DEMs to obtain building patches/blobs. Weidner and Förstner 

(1995) attempted to extract buildings from high resolution DEMs. In their study, 

first, a DEM was generated and then, approximation of topographic surface was 

computed using the morphological operations. Next, the difference image (DEM – 

approximate topographic surface) was thresholded to detect the building patches and 

the buildings were reconstructed using the parametric and prismatic building models. 
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Finally, the extracted polygons were simplified using the Minimum Description 

Length based approach. Dash et al. (2004) proposed an algorithm to extract the 

building boundaries from Laser DEMs to be used as an input for disaster 

management. Their building extraction procedure includes segmentation, 

triangulation and modified standard deviation algorithms consecutively. In an 

approach developed by Madhavan et al. (2006), the DSM was robustly segmented 

into stable planar regions. Then, the edges were determined using the Sobel edge 

detector and a sequential Hough transformation was applied for extracting the 

building boundaries. In a recent study conducted by Miliaresis and Kokkas (2007), a 

segmentation-based method was presented for the extraction of building class from 

Lidar DEMs. 

 

2.1.4. Building Extraction from Multi-Source Data 

 

In a number of past studies conducted for building extraction, the integration of 

multi-source data was used. Combining aerial/space images with other data sources, 

such as DSMs, GIS data, ground plans/maps, or knowledge may become 

advantageous in the building extraction and reconstruction applications. Therefore, a 

large body of research appears to have focused on using additional data, such as 

ground plans, maps, GIS data, knowledge, etc. In table 2.7 the past studies that use 

multi-source data in building extraction process are summarized. 

 

In a considerable number of past studies for building extraction, the attempt was to 

combine aerial and satellite images with DEM data (Haala and Brenner, 1999; Fujii 

and Arikawa, 2002; Zhou et al. 2004; Khoshelham et al., 2005; Rottensteiner et al., 

2005, 2007; Hongjian and Shiqiang, 2006; Sohn and Dowman, 2007; Rottensteiner 

et al., 2007 and Lee et al., 2008). Of these studies, Haala and Brenner (1999), 

Rottensteiner et al., (2005, 2007) used classification, while Khoshelham et al. (2005), 

Lee et al. (2008) used segmentation to detect building patches. Haala and Brenner 

(1999) presented a method that combines aerial image and Laser altimeter data. They 

generated a DSM from Laser data and derived a DTM by applying morphological 

operations to DSM. Then, nDSM was generated by subtracting DTM from DSM. 
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The nDSM was then used as additional channel in combination with the three 

spectral bands (CIR aerial image) in the ISODATA unsupervised classification. In 

the studies conducted by Rottensteiner et al. (2005, 2007), a method was developed 

for detecting the buildings using the Dempster-Shafer fusion of the airborne Laser 

data and multispectral aerial images. This fusion technique handles incomplete 

information. Then each pixel is classified to the determined classes. To remove the 

small areas that are erroneously classified as building morphological operations were 

used. Finally, to eliminate spurious initial building regions second Dempster-Shafer 

fusion process were applied. The results indicate that the proposed classification 

approach is compatible for building detection.  

 

Table 2. 7. The past studies for building extraction from multi-source data 

 

Previous Research Data Source Used Methodology Results 

Haala & Brenner (1998) DSM 

Existing Ground Plans 

Planar Segmentation 

Algorithm 

3D 

Detection 

Delineation 

Haala & Brenner (1999) Multispectral Aerial 

Images  

Laser Data 

2D Ground Plan 

Unsupervised Classification 

(ISODATA) 

3D 

Detection 

Delineation  

Fujii & Arikawa (2002) Aerial Images 

Laser Data 

Vertical Geometric Pattern 

Analysis 

Object Modeling 

Texture-Mapping 

3D 

Detection 

Delineation 

Gamba & Houshmand 

(2002) 

SAR, Lidar  

Aerial Images 

Classification 3D 

Detection 

Delineation 

Zhou, Song, Simmers & 

Cheng (2004) 

Aerial Images 

Lidar Data 

Edge Detection 3D 

Detection 

Delineation 

Suveg & Vosselman 

(2004) 

Aerial Images 

Maps 

Constructive Solid Geometry 

Minimum Description Length 

3D 

Delineation 

Khoshelham, Li & King 

(2005) 

Color Aerial Images 

(Stereo) 

DSM  

Watershed Segmentation 

Split and Merge Technique 

Robust Regression Method 

3D 

Detection 

Delineation 

Rottensteiner, Trinder, 

Clode & Kubik (2005 and 

2007) 

Multi-spectral Aerial 

Images 

Lidar Data 

Morphological filtering 

Dempster-Shafer Method 

2D 

Detection  

Hongjian & Shiqiang 

(2006) 

Aerial Image 

Sparse Laser Sample 

Data 

Laplacian Sharpening  

Threshold Segmentation 

Line matching 

3D 

Detection 

Delineation 

Sohn & Dowman (2007) High Resolution 

Satellite Imagery 

Lidar Data 

Binary Space Partitioning 2D 

Detection 

Delineation 

Lee, Lee & Lee (2008) Lidar Data 

Aerial Images 

Segmentation (Mean-Shift) 

Line Segments Matching 

Perceptual Grouping 

2D 

Detection 

Delineation 
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Khoshelham et al. (2005) introduced a split and merge technique to fuse aerial image 

and DSM generated from stereo aerial image for building extraction. In their study, 

initially the gradient magnitude images were computed. Then, these images were 

segmented into homogenous regions using the Watershed Segmentation. After that, a 

Split and Merge technique, which uses the height data, was applied to the segmented 

images of the buildings. Finally, the buildings were reconstructed. Lee et al. (2008) 

proposed a new algorithm to extract building boundaries by combining Lidar and 

aerial imagery. First, the building regions were extracted from Lidar points. The 

vegetation areas were removed using the second order gradient. Next, coarse 

building regions were detected using the Mean-Shift segmentation procedure. A 

merging algorithm, which is based on preliminary detected building regions and their 

heights, were then applied to combine separate segments of a single building. 

Finally, the precise building boundaries were delineated using line segments 

matching and perceptual grouping. 

 

Sohn and Dowman (2007) presented a new approach to extract building footprints by 

fusing pan-sharpened high resolution satellite imagery and Lidar data. The technique 

is composed of two steps that are building detection, and building description. In the 

building detection step, the buildings are localized by subsequently removing urban 

features that are not buildings. In the building description step, the detected buildings 

are focused on. Then, based on the Binary Space Partitioning tree algorithm, the 

Building Unit Shape method was proposed for reconstructing building boundaries. 

An approach was proposed by Hongjian and Shiqiang (2006) for building 

reconstruction from aerial image and Laser data. To extract the edges from imagery 

the Laplacian sharpening operator and threshold segmentation were used. Then, pixel 

connectivity and subsequent bi-direction histogram and line matching were utilized 

to extract the building boundaries. Fujii and Arikawa (2002) presented a method for 

3D reconstruction of the buildings from airborne laser elevation data and aerial 

images using the vertical geometric analysis of the elevation data and texture 

mapping of the aerial images. 
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The existing GIS datasets can be used as additional information to extract building 

boundaries from images. Since the building outlines are difficult to be located 

precisely ground plans/maps are often used. Several studies have been performed to 

reconstruct the building boundaries with the help of building outlines derived from a 

2D GIS (Haala and Brenner, 1998; Haala and Brenner, 1999; Suveg and Vosselman, 

2004). In this way, the search problem and the building detection problem are 

eliminated. In a study conducted by Haala and Brenner (1998), an approach was 

developed that uses DSM and 2D ground plans to reconstruct 3D buildings. They 

used ground plans to support DSM segmentation and to derive hypotheses on the 

possible roof shapes. Suveg and Vosselman (2004) described a 3D building 

reconstruction method that integrates stereo aerial images with the information from 

2D GIS databases and domain knowledge. They suggest that map information should 

be considered imprecise and uncertain when used for image analysis. Therefore, they 

processed more accurate aerial images and used map data to help image 

interpretation. First, the buildings were localized in the images based on the 

information from the ground plans of the buildings contained in the GIS database. 

Then, a building library that contains building models was generated. Next, the 

complex buildings were described using the Constructive Solid Geometry (CSG) 

tree, in which the leaf nodes contain primitive building models. The results indicate 

that the system is able to reconstruct more than 75% of the buildings and the 

accuracy of the reconstruction is good enough for mapping purposes. 

 

Several researchers attempted to combine SAR and optical data to extract the 

buildings. Gamba and Houshmand (2002) used aerial SAR and Lidar data to extract 

land cover, DTM, and 3D building shape and they discriminate different objects 

using their 2D and 3D characteristics. Tupin and Roux (2003) proposed a method for 

extracting rectangular and complicated shapes. In this method, initially partial 

potential building footprints were extracted from optical images using the previously 

extracted primitives. 
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2.2. Building Extraction for Map Updating  

 

Fast urbanization necessitates extensive map updating of large urban areas. The 

extraction of buildings for map updating can be carried out either by extracting all 

buildings within the study area or by first determining the change areas and then, 

extracting the new buildings and/or deleting the destroyed ones. Today, most of the 

cities likely to have digital maps and GIS data sets, which would facilitate the 

automatic updating systems of the maps and databases. Using the existing data can 

greatly improve the efficiency of spatial databases updating and reduce the time 

needed. As Brenner (2005) indicated that instead of targeting at the first time 

acquisition of the city models, more and more effort must be put into updating and 

automatic change detection to keep existing models up-to-date at minimum costs. In 

table 2.8 the former building extraction studies for map updating and change 

detection are summarized. 

 

 

 

Table 2. 8. The past studies conducted for building extraction to update maps and detect changes  

 

Previous Research Data Source Used Methodology  

Murakami, Nakagawa, 

Hasegawa, Shibata & 

Iwanami (1999) 

Laser DEMs Change Detection 2D 

Huertas & Nevatia 

(2000) 

Aerial Images 

Site Models 

Change Detection 3D  

Detection 

Delineation 

Teng & Fairbairn (2002) Aerial Images 

 

Fuzzy Expert System 

Adaptive Neuro-Fuzzy 

System 

2D 

Detection 

Niederost (2002) Aerial Images 

Digitized 1:25000 map 

Classification 3D 

Detection 

Delineation 

Knudsen & Olsen (2003) Aerial Images 

National Topographic 

Map Database 

(TOP10DK) 

Unsupervised Spectral 

Classification 

Mahalanobis 

Classification 

2D 

Detection 

Jung (2004) Multitemporal Stereo 

Aerial Images 

 

Classification 2D 

Detection 

Delineation 

Holland, Boyd & 

Marshall (2006) 

High Resolution Satellite 

Images 

 2D 

Detection 

Delinetion 
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Murakami et al. (1999) presented a method to detect changes of the buildings and 

update the building database using the DSM data sets that were acquired at different 

times. They simply subtracted the DSM data sets from each other. In a study 

conducted by Huertas and Nevatia (2000), the aerial images and site models were 

used to detect the building changes. Their method basically contains four steps that 

are site model to image registration, site model validation, structural change 

detection, and site model updating. Teng and Fairbairn (2002) utilized a fuzzy expert 

system and an adaptive neuro-fuzzy system to train, adapt, and recognize objects in 

three complex aerial scenes. Niederost (2002) presented a methodology for map 

updating. This methodology consists of two steps which are vegetation separation 

from man-made objects using unsupervised isoclustering and blob detection from 

nDSM. In this study after detecting the building blobs, various approaches were 

developed for building reconstruction. Knudsen and Olsen (2003) proposed a method 

for building detection using vector and spectral data to update digital map databases. 

In their method, it was assumed that new buildings were spectrally similar to existing 

buildings in the same area. First, aerial photo and map data were fused. Then, 

building classes were divided into a number of spectrally more homogeneous clusters 

by using an unsupervised classification. The homogenous clusters were then used as 

training sets in the next step, Mahalanobis Classification. The results of the change 

detection tests showed that in most cases the changes were detected. Jung (2004) 

attempted to detect building changes from aerial stereopairs for geographic database 

updating. Initially, DEMs were generated from multitemporal stereo images, and 

region of interest areas were determined by comparing these DEMs. Then, the region 

of interest areas of four images (stereopairs images of two dates) was classified as 

building and non-building. Finally, the classification results of changes were 

compared and the building changes were determined. 

 

Holland et al. (2006) examined the potential of high resolution satellite sensor 

imagery for topographic map updating. They concluded that, high resolution satellite 

images with meter or sub-meter resolution can be used to update 1:6000 - 1:10000 

scaled maps and these images may have greater potential in change detection and 

existing map data examination. 
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In addition, building extraction for map updating is very important when extensive 

damage of buildings is the case after a disaster. There are studies conducted to 

resolve this problem. Turker and San (2004) and Turker and Sumer (2008) detected 

collapsed buildings utilizing the integrated processing and analysis of post-

earthquake aerial imagery and existing vector building boundaries. Turker and 

Cetinkaya (2005) detected the collapsed buildings using DEMs created from pre- and 

post-earthquake stereo aerial photographs.  
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CHAPTER 3 
 

 

THE STUDY AREA AND DATA SETS 

 

 

 

In this chapter first, the study area is described. Then, detailed information about the 

raster and vector data sets used in the study is provided.  

  

3.1. The Study Area 

 

The selected study area is located in the Batikent district of Ankara, the capital city 

of Turkey (Figure 3.1). Batikent is situated in north-west of Ankara. The northern 

parts of the study area are rugged and steep, while the middle and the southern parts, 

where the residential areas exist, are relatively flat. In the area, the height range is 

between 710m and 1140m. 

  

The Batikent Project, which was implemented in the area, is the biggest mass 

housing project through cooperatives in Turkey. The project covers 10 square 

kilometers and planned for 50000 housing units and 250000 people. The project was 

started in 1979 by Kent-Koop (Union of Batikent Housing Construction 

Cooperatives), which was constituted by associations and labor unions of artisans 

under the leadership of the Metropolitan Municipality of Ankara. This project was 

the first mass housing project that reveals the success of public and private 

partnerships in the housing field in Turkey (Batikent, Kent-Koop, 2007). Therefore, 

Batikent is a planned and regularly developed settlement, which includes buildings 

with different shapes and usage, such as the residential and industrial facilities. Thus, 

the area was suitable for implementing the developed building extraction and 

updating techniques from high resolution space imagery.  
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Figure 3. 1. The location of the study area: (a) The Batikent district of Ankara and (b) the false color 

composite of the IKONOS pan-sharpened image covering the study area. 

 

 

 

In the selected area of study, different types of buildings exist according to their 

usage, dwelling type, and storey. The photographs taken from the study area are 

given in Appendix A. The residential buildings are usually rectangular/square and 

the mutual lines are usually parallel to each other, while the angles between the 

adjacent lines are perpendicular. In addition to rectangular and right angle shaped 

buildings, the area also contains buildings with different shapes, such as circular, 

ring, C and S shapes (Figure 3.2). The roofs of most of the buildings are in brick 

color however, several exist in gray and white colors. In the area, there are low-rise 

(one or two storeys), middle-rise (three-to-five storeys) and high-rise (more than five 

storeys) residential buildings.  The area contains two industrial zones that are namely 

Ivedik and OSTIM. These industrial zones are specialized especially on machine and 

machine equipments, electric and electronics, metal and metal treatment, plastic 

rubber automotive, technical tools, benches and equipments. The industrial buildings 

are usually in rectangular shape and their roofs are in gray, white, and blue colors. 
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Almost all of the industrial buildings are two or three storeys buildings and compared 

with the residential buildings they have much larger sizes. In the present study, the 

buildings were classified as given in table 3.1.  

 

 

 

  
(a) (b) 

  
(c) (d) 

 
(e) 

 

Figure 3. 2. The false color composite of IKONOS pan-sharpened image of the circular buildings  

(a) the “circle” shape buildings, (b) the “ring” shape building, (c), (d) the “C” shape buildings and (e) 

the “S” shape buildings 
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Table 3. 1. The classification of the buildings  

 

I. Residential Buildings 

I.1. Rectangular 

 I.1.1. Detached  

I.1.1.1. Low-rise buildings 

I.1.1.2. Middle-rise buildings 

I.1.1.3. High-rise buildings 

I.1.2. Semi-Detached  

I.1.2.1. Low-rise buildings 

I.1.2.2. Middle-rise buildings 

I.1.2.3. High-rise buildings 

I.1.3. Terraced  

I.1.3.1. Low-rise buildings 

I.1.3.2. Middle-rise buildings 

I.1.3.3. High-rise buildings 

I.2. Circular 

I.2.1. “Circle” Shape  

I.2.2. “Ring” Shape  

I.2.3. “C” Shape  

I.2.4. “S” Shape  

 

 

II. Industrial Buildings 

II.1. Rectangular 

 

 

 

3.2. Data 

 

The data sets used include the IKONOS stereo panchromatic and pan-sharpened 

images, the existing digital vector database, and the development plans. In the 

building delineation part of the study, only the raster data sets were used. On the 

other hand, in the building database updating part of the study, both the raster and 

vector data sets were used. 

 

3.2.1. Raster Data 

 

The raster data used include the IKONOS Panchromatic and Pan-Sharpened Stereo 

Images. The IKONOS images were acquired on August 4, 2002. They were along 
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track stereo images and in “Geo” data format, which is the most economical product 

within all IKONOS products. Accuracy of the Geo product, specified pre-launch at 

250m CE90, turned out to be significantly better with an accuracy of 15m CE90 

exclusive of terrain displacement (Dial et al., 2003). The collection parameters of the 

IKONOS image pairs are given in table 3.2. 

 

 

 

 
Table 3. 2. The information about the IKONOS stereo image pairs used in the study. 

 

 Left Stereo  Right Stereo 

Date 2002-08-04 2002-08-04 

Time (local) 08:54 08:55 

Nominal Collection Azimuth (º) 3.8600 225.1120 

Nominal Collection Elevation (º) 64.82024 81.16643 

Sun Angle Azimuth (º) 145.1390 145.5635 

Sun Angle Elevation (º) 63.98285 64.07870 

 

 

 

At the time this study was started (2003), the high resolution space images had been 

collected using two satellites, which are IKONOS and QuickBird. Of these satellites, 

the IKONOS image was selected to be used in this study. There are two main reasons 

for selecting the IKONOS image. First, the studies have shown that the IKONOS 

Geo stereo imagery has higher geometric integrity and the potential to generate sub-

metre positioning accuracies (Baltsavias et al., 2001b). Second, the IKONOS images 

provide better matching than the QuickBird images and therefore, they provide better 

DSMs. Toutin (2004) compared the DSMs generated from IKONOS and QuickBird 

images and found that the DSM generated from IKONOS images gave slightly better 

results.  

 

3.2.2. Vector Data 

 

The vector data sets used include: 

 

• Existing Vector Database, 
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o Contour Lines and 3D Points, 

o Existing Building Database, 

• Reference Building Database, and 

• Development Plan. 

 

The Contour Lines and 3D points were used to generate the Digital Terrain Model 

(DTM).  The Existing Building Database was used for the updating part of the study 

and the Development Plans were used to determine the boundaries for building 

extraction. To assess the accuracies of the results, the existing building database was 

updated and the reference building database was generated.  

 

• Existing Vector Database 

 

The 1:1000-scale existing digital vector data with approximately 20cm accuracy both 

in planimetry and height were available. The database includes Contour Lines, 3D 

points, and Existing Digital Building Database. The vector data was referenced to 

Datum ED 50 and Transverse Mercator (Gauss - Krueger) projection. The 

parameters of the Transverse Mercator projection system are given in table 3.3. 

 

 

 

Table 3. 3. The parameters of the Transverse Mercator Projection System 

 

True Origin False 

Longitude Latitude Easting Northing Scale 

33º00'00.0000"E 0º00'00.0000"N 500000.000 0.000 1.0000000000 

 

 

 

o Contour Lines and 3D Points 

 

The 1:1000-scale contour lines and 3D points were available and these data sets were 

used for DTM generation. In turn, this DTM will be used as the reference data for 
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assessing the accuracy of the generated DSM. The 1:1000-scale contour lines were 

drawn with 50cm interval.  

 

o Existing Building Database 

 

The existing building database, which was generated in 1999 from stereo aerial 

images, was available in digital form. There was a three-year time lapse between the 

date of image acquisition (2002) and the date of existing vector building database 

(1999). The existing building database was used for selecting the building models for 

the database updating part of the study (Chapter 6).  

 

• Reference Building Database 

 

To evaluate the results of the proposed building extraction, the existing building 

database was updated and the reference building database was generated. To do that 

the disappeared and the new buildings were visually detected from the screen. Then, 

the reference building database was generated by deleting the disappeared buildings 

and manually delineating the boundaries of the new buildings.  

 

In the Existing Building Database, the building boundaries were delineated from the 

footprints of the buildings and not from the rooftops. However, in the present case, 

the buildings from high resolution satellite imagery will be delineated from their 

rooftops. Therefore, since the image used in this study is not a true orthoimage the 

delineated boundaries will not match with the footprints. Thus, the existing building 

boundaries were slightly shifted in order to precisely match them with the rooftops of 

the buildings. 

 

The height difference between rooftops and footprints of the buildings causes relief 

displacement in aerial/satellite images. The amount of displacement changes 

according to the heights of the buildings as well as the viewing angle. As can be seen 

in figure 3.3, the building with white roof has one storey. Therefore, no shift is 

necessary for this building, while for other buildings, which are much higher, a shift 

is needed. 
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(a) (b) 

 

Figure 3. 3. The reference building database (a) before and (b) after shifting the existing building 

boundaries. 

 

 

 

• Development Plan 

 

An implementary development plan shows the base for urban blocks, their density 

and arrangement, roads and the implementation stages, which are necessary for the 

implementation on a 1:1000 scale map and that control the development and the 

construction details within an urban zone.     

 

The existing development plans, obtained from the Metropolitan Municipality of 

Ankara, were in paper form. Therefore, these maps were first converted into raster 

form by scanning them and then, they were georeferenced. Next, the boundaries of 

the urban blocks were manually digitized from the georeferenced plans. The scanned 

paper maps and the digitized urban blocks are illustrated in figures 3.4 and 3.5, 

respectively. The boundaries of the digitized urban blocks were used to determine the 

boundaries for building extraction. 
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Figure 3. 4. The scanned development plans. 
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Figure 3. 5. The false color pan-sharpened IKONOS satellite image with the digitized urban block 

boundaries overlaid. 



 34 

CHAPTER 4 
 

 

BUILDING DETECTION THROUGH SUPPORT VECTOR MACHINES 

CLASSIFICATION 

 

 

 

In this chapter, the building detection part of the study is described. For three study 

areas, the Support Vector Machines (SVM) classification conducted using three 

different sample sizes (500, 1000 and 2000) and different band combinations are 

given and the accuracy assessment results are discussed. First, the methodology of 

the developed building detection procedure is described. Then, the preparations of 

the additional bands, which are used in the classification process, are explained. 

After that, the steps of the SVM classification are provided. Finally, the experimental 

results of the SVM classification are given.  

 

4.1. The Methodology 

 

In this study, before delineating the building boundaries and updating the existing 

building database, the candidate building patches are detected first. The steps 

followed in detecting the building patches are as follows; 

 

• Calculating the Normalized Digital Surface Model (nDSM),  

• Orthoimage Generation, 

• Calculating the Normalized Difference Vegetation Index (NDVI), 

• Principal Component Analysis (PCA), 

• Support Vector Machines (SVM) Classification, and 

• Determination of the Candidate Building Patches. 



 35 

The flowchart for detecting the candidate building patches is given in Figure 4.1. 

First, a Digital Terrain Model (DTM) is generated from existing vector data, which 

includes contour lines and 3D points. Then, a Digital Surface Model (DSM) is 

generated from high resolution stereo panchromatic image pairs. After generating the 

DTM and DSM, a normalized Digital Surface Model (nDSM) is calculated by 

subtracting DSM from DTM. This is followed by generating an orthoimage from the 

high resolution satellite images using the DSM. Next, a Normalized Difference 

Vegetation Index (NDVI) and the Principal Components (PC) (PC1, PC2, PC3 and 

PC4) are calculated. To detect the candidate building patches, the orthorectified pan-

sharpened image along with additional bands (nDSM, NDVI, PC1, PC2, PC3, and 

PC4) is classified using the SVM classifier. Finally, the artefacts are removed using 

the morphological operations. Through image classification procedure, the building 

and non-building patches are detected and the non-building patches are excluded 

from the further building delineation procedure.  

 

 

 

 

Figure 4. 1. The flowchart of the building detection procedure. 
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4.2. Test Areas 

 

In order to perform the classification, three sub-areas that show different 

characteristics (residential, industrial) were selected from the study area (Figure 4.2). 

The Sub-Area I covers the residential part of Batikent and includes buildings with 

different shapes, sizes, and dwelling types. In this area, the buildings have different 

colored roofs. The Sub-Area II was also selected from the residential part of 

Batikent, and compared with Sub-Area I this area includes more regular buildings. 

Sub-Area II also contains buildings with different colored roofs, shapes, and sizes. 

The Sub-Area III covers an industrial part of Batikent, where the roofs are usually in 

gray tones. The sizes of the industrial buildings are larger than the residential 

buildings located in Sub-Area I and Sub-Area II. 

 

 

 
 

 
(a) (b) (c) 

 

Figure 4. 2. The selected sub-areas: (a) Sub-Area I, (b) Sub-Area II, and (c) Sub-Area III. 

 

 

 

4.3. Calculating the Normalized Digital Surface Model 

 

In building extraction, the basic idea of using an nDSM is that the man-made objects 

with different heights above the terrain can be detected by applying a threshold to 

nDSM (Figure 4.3). To calculate nDSM, a DSM was generated from IKONOS stereo 

panchromatic images and a DTM was generated from contour lines. Then, an nDSM 

was calculated by subtracting DTM from DSM. 



 37 

 
(a) 

   

 

 

 

(b) 

 

Figure 4. 3. The schematic representations of (a) the DTM and DSM, and (b) the nDSM and the 

applied threshold. 

  

 

4.3.1. Calculating the Digital Surface Model  

 

A Digital Surface Model (DSM) includes objects with a height over ground as well 

as topography. Therefore, DSM is an important data source for the building 

extraction studies. A DSM can be derived by stereo matching from aerial/space 

images, measured directly by a laser/Lidar scanner system, or it can be generated 

from digitized topographic maps. In this study, the DSM was generated from high 

resolution panchromatic stereo satellite images. This is because it is cheaper and 

easier to access to stereo satellite images when compared with the aerial images and 

Lidar data. On the other hand, in Turkey, which is a developing country, it is rather 

difficult to get Lidar data because of the bureaucratic complexity and its relatively 

higher cost. 

    

Therefore, in the present case, a DSM was generated from the stereo pairs of the 

IKONOS panchromatic images using the OrthoEngine module of the PCI Geomatica 

software. From the IKONOS stereo images, it is possible to generate a DEM with 

nDSM 

Threshold 
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1.5m to 3m accuracy. In preparation for the launch of high resolution civilian 

satellites, it was demonstrated that IKONOS stereo images can have a potential for 

generating DEMs with about 2m (Ridley et al., 1997).  

 

The DSM generation using the OrthoEngine Module of the PCI Geomatica software 

contains the following four steps; 

(i)   GCP Collection, 

(ii)  DSM Generation, 

(iii) DSM Editing and Geocoding, and 

(iv) Accuracy Assessment.  

 

(i)  GCP Collection 

 

The Ground Control Points (GCPs), which are necessary to calculate the stereo 

model, were collected using Differential Global Positioning System (DGPS) and 

from existing 1:1000-scale digital orthophotos and maps. For both GCP collection 

methods, the GCPs were homogeneously distributed within the study area (Figure 

4.4).    

 

In the DGPS method, the double frequency sensor type Ashtech Z-Surveyor GPS 

receivers were used. A total of 48 GCPs were collected from open space that provide 

appropriate satellite viewing and usually from the corners of pavements and gardens 

and from road intersections (Figure 4.5). After the fieldwork, the row DGPS data 

were evaluated using the Astech Office Suite V2.0 software. At the end of these 

processes, the GCPs were acquired with approximately 1cm accuracy in Transverse 

Mercator (TM) projection and European Datum 1950 (ED 50). 

 

In addition, 48 points were also collected from existing digital orthophotos and 

digital maps. The GCPs were selected from those points that can be clearly seen in 

digital orthophotos and maps. The projection system and the datum of digital 

orthophotos and maps were also Transverse Mercator and European Datum 1950 

(ED50), respectively. 
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Figure 4. 4. The locations of the collected GCPs (white points) and ICPs (black points) on the 

IKONOS panchromatic image. 

 

 

 

  

(a) (b) 

 

Figure 4. 5. The location of a GCP (a) in the panchromatic satellite image (the red arrow indicates the 

direction of the photograph) and (b) in the field. 

 

GCP (Ground Control Point) 

ICP (Independent Check Point) 

GCP   
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(ii)  DSM Generation 

 

Three DSMs were generated from the IKONOS stereo panchromatic images. The 

first DSM was generated using the control points collected through DGPS. Of the 48 

DGPS points, 24 were used as GCPs, and the remaining 24 points were used as 

Independent Check Points (ICPs). The second DSM was generated using the control 

points collected from digital orthophotos and maps. Similar to the first DSM, for the 

generation of the second DSM, 24 points were used as GCPs and the remaining 24 

were used as ICPs. The third DSM was generated using the all collected points (96 

points in total). Of these points, 48 were used as GCPs and the remaining 48 were 

used as ICPs. 

 

The DSMs were generated using the OrthoEngine Module of the PCI Geomatica 

software, in which the Toutin’s rigorous mathematical model is used. This model 

was developed at the Canada Centre for Remote Sensing (CCRS), Natural Resources 

Canada. The model can be used for high and low resolution satellite imagery. The 

model has been adapted to the IKONOS images by considering the image 

characteristics and metadata file (Toutin and Cheng, 2001). It reflects the physical 

reality of the complete viewing geometry and reflects all the distortions generated 

during the image acquisition as follows (Toutin and Cheng, 2002):  

 

(1) Distortions due to the platform, 

(2) Distortions due to the sensor, 

(3) Distortions due to the earth, and 

(4) Deformations due to the cartographic projection. 

 

When generating the DSM using the OrthoEngine module of the PCI Geomatica 

software, the 3D stereo model computation is initialized with the approximate 

parameter values and then refined by an iterative least-squares bundle adjustment 

with the GCPs. After finding the optimum parameters, the next step is image 

matching. To increase the speed of the correlation process and reduce the possibility 

of incorrect matches during the image matching operation epipolar images are 
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generated from the stereo image pairs. Epipolar images are stereo pairs that are 

reprojected so that the left and right images have a common orientation (PCI 

Geomatics, 2006). The matching algorithm used generates correlation coefficient 

values between 0 and 1, where 0 represents a total mismatch and 1 represents a 

complete match. Then, a second-order surface is fitted around the maximum 

correlation coefficients to find the match position to sub-pixel accuracy. The 

difference in location between the images provides the disparity, or parallax, arising 

from the terrain relief. The parameters used in DSM generation are given in table 4.1. 

Pixel sampling interval controls the size of the pixel in the final DEM relative to 

input images. Erroneous pixel value is the value given to the failed pixels during 

DEM generation and the background pixel value is the value given to the background 

pixels. 

 

 

 

Table 4. 1. The parameters used in DSM generation. 

 

Pixel Sampling 

Interval 

Erroneous 

Pixel Value 

Background 

Pixel Value 

2 - 100 - 150 

 

 

 

(iii) DSM Editing and Geocoding 

 

The computed DSM is not georeferenced and it contains errors. Therefore, first the 

erroneous pixels must be removed and then, the DSM must be geoceoded. Due to the 

problems in correlation, the matching of some of the pixels failed and therefore, this 

caused erroneous pixels in the DSM. In the present case, the errors were due to the 

bright roofs (Figure 4.6 (a)) and the cloud shadows in the image. To remove 

erroneous pixels (Figure 4.6 (b)), the DSM was edited using the masking, 

interpolation, and the filtering operations of the OrthoEngine module of PCI 

Geomatica. The edited and filtered DSMs are illustrated in figures 4.6 (c) and 4.6 (d), 

respectively. Finally, the resulting DSM was geocoded (Figure 4.7).  
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(a) (b) 

  
(c) (d) 

Figure 4. 6. (a) A building with a bright roof in the IKONOS panchromatic satellite image and (b) the 

erroneous pixels in the DSM corresponding to this building. The DSM (c) after applying an editing 

process to remove the erroneous pixels and (d) after filtering the edited DSM. 

 

 

  
(a) (b) 

Figure 4. 7. (a) The DSM after the editing and geocoding operations and (b) a shaded relief of the 

surface. 

Erroneous 

pixels 

710  

1140 

Elev. (m) 
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(vi) Accuracy Assessment 

 

The generated DSMs were assessed using two methods. In the first method, the 

accuracy assessment was performed using the ICPs. In the second method, the 

accuracy assessment was performed by comparing the profiles that were taken from 

the generated DSM and the reference DTM. 

  

In the first evaluation method, the Root Mean Square Errors (RMSEs) were 

calculated for the generated three DSMs using both GCPs and ICPs (Table 4.2). In 

addition, for each DSM, the minimum, maximum, and mean Z errors were also 

calculated (Table 4.3). 

 

 

 

Table 4. 2. The RMSEs of the DSMs, which were generated using the GCPs collected through DGPS, 

from orthophotos and maps, and using all GCPs. 

 

RMSE (m) 

Ground Control Points (GCPs) Independent Check Points (ICPs) 
GPS Source Images No of 

GCPs 
XY X Y Z 

No of 

ICPs 
XY X Y Z 

Left 0,41 0,31 0,26 0,49 0,35 0,34 
DGPS 

Right 
24 

0,44 0,29 0,33 
0,7 24 

0,44 0,26 0,36 
0,5 

Left 0,47 0,28 0,38 0,65 0,44 0,48 Orthophoto 

and Maps Right 
24 

0,47 0,31 0,35 
0,6 24 

0,58 0,38 0,44 
0,7 

Left 0,45 0,31 0,32 0,55 0,36 0,42 
All points 

Right 
48 

0,49 0,33 0,36 
0,7 48 

0,65 0,37 0,53 
0,6 

 

 

 

Table 4. 3. The Z value errors of the DSMs, which were generated using the GCPs collected using 

DGPS, from orthophotos and maps, and all GCPs. 

 

GPS Source Z Value Errors 
No of 

GCPs 
GCP 

No of 

ICPs 
ICP 

Mean Error (m) 0,58 0,36 

Maximum Error (m) 1,80 1,00 
 

DGPS 
Minimum Error (m) 

24 

0 

24 

0 

Mean Error (m) 0,49 0,53 

Maximum Error (m) 1,50 1,20 Orthophoto and 

Maps Minimum Error (m) 

24 

0 

24 

0 

Mean Error (m) 0,56 0,46 

Maximum Error (m) 1,50 1,70 All points 
Minimum Error (m) 

48 

0 

48 

0 
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In the second evaluation method, the elevations from DSM and reference DTM were 

compared using the profiles taken in horizontal, vertical, and diagonal directions. For 

all profiles, the computed minimum, maximum, and the mean errors are illustrated in 

table 4.4. The reference DTM illustrates the topography and it does not include the 

heights of the objects, such as buildings and trees. Therefore, the 3D objects were 

masked out from the generated DSMs. An example profile and the comparison 

between DSM and DTM are given in figure 4.8. For the five transects, the elevation 

profiles of DSM, DTM and their locations are given in Appendix B.  

 

 

 
Table 4. 4. The Z value errors of the transects of DSMs, which were generated using the GCPs 

collected using DGPS, from orthophotos and maps, and all GCPs. 

 
Profiles 

GPS Source Error Vertical Horizontal1 Horizontal2 Diagonal1 Diagonal2 

Mean Error (m) 0,62 0,57 0,73 0,71 0,69 

Max. Error (m) 6,59 2,77 3,28 8,15 3,76 
 

DGPS 
Min. Error (m) 0 0 0 0 0 

Mean Error (m) 0,57 0,58 0,62 0,67 0,71 

Max. Error (m) 4,87 2,86 3,51 5,90 4,12 Orthophoto 

and Maps Min. Error (m) 0 0 0 0 0 

Mean Error (m) 0,57 0,53 0,65 0,64 0,62 

Max. Error (m) 6,88 2,90 4,45 5,88 3,80 All points 
Min. Error (m) 0 0 0 0 0 

 

 

 

 

   

  

 

(a) (b) 

 

Figure 4. 8. (a) A horizontal profile in the panchromatic IKONOS image and (b) the comparison 

between the generated DSM and the reference DTM along this profile. 
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The assessment results indicate that no significant difference exist between the three 

DSMs that were generated using different GCP sources. The accuracy of each DSM 

generated using the automatic image matching technique was computed to be 

approximately 0.7m. On the other hand, a significant difference was not observed 

between the DSMs generated using 48 and 96 control points. Therefore, it was found 

that increasing the number of control points too much do not necessarily increase the 

accuracy considerably.    

 

The results indicate that a RMSE between ±0.5m and ±0.7m can be achieved in 

DSMs generated from IKONOS panchromatic stereo images using the GCPs with 

high accuracy. It was found that the DSM generated using the DGPS points provided 

slightly better results. Therefore, in this study, the DSM generated using the DGPS 

points was used. 

 

4.3.2. Calculating the Digital Terrain Model  

 

A Digital Terrain Model (DTM) is the elevation model for landscape other than the 

altitude of the land surface and it does not include the above ground objects. A DTM 

can be generated from contour lines or from the ground points of Lidar/Laser data. In 

this study, DTM was calculated from existing digital vector database which includes 

contour lines and 3D points using the “Import and Build DEM” menu of the 

Orthoengine Module of PCI Geomatica (figure 4.9). For DTM generation, this 

module uses finite difference interpolation method and performs the interpolation in 

three steps. First, the vector elevation values are allocated into the corresponding 

pixels in the raster DEM. Then, the elevations of the remaining pixels are 

interpolated using the Distance Transform algorithm by estimating the values 

allocated in the first step. Finally, the raster DEM is smoothed iteratively using the 

Finite Difference algorithm. During the iterations, the pixels that are allocated in the 

first step are kept originally, while the interpolated pixel values are updated based on 

the neighborhood values (PCI Geomatics, 2006). 
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(a) (b) 

 

Figure 4. 9. (a) A subset from the contour lines and (b) the generated DTM. 

 

 

 

 

In the present case, the resolution of the DTM generated  was taken to be 1m and the 

DTM was referenced to Transverse Mercator (TM) projection and Datum 1950 (ED 

50). The generated DTM and the shaded relief of the terrain are illustrated in figures 

4.10 (a) and 4.10 (b), respectively. 

 

  
(a) (b) 

 

Figure 4. 10. (a) The DTM and (b) the shaded relief of the terrain. 

710  

1140 
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4.3.3. nDSM Calculation 

 

After computing the DTM and DSM, the nDSM was calculated by subtracting DTM 

from DSM (Equation 4.1). 

 

DN(nDSM) = DN(DSM) – DN(DTM)          (Equation 4.1) 

 

Next, a threshold was applied to nDSM for separating the above ground features 

from the terrain surface. In this study, the threshold value was determined to be 3m 

based on the assumption that the heights of the buildings cannot be below 3m. The 

calculated nDSM and the nDSM after applying the 3m threshold are illustrated in 

Figures 4.11 (a) and 4.11 (b), respectively. In figures 4.12, 4.13, and 4.14, the shaded 

relieves of DTM, DSM, and nDSM after thresholding are illustrated for the selected 

three sub-areas that have different characteristics. 

 

 

 

  
(a) (b) 

 

Figure 4. 11. (a) The calculated nDSM and (b) nDSM after applying a threshold. 
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(a) (b) 

  
(c) (d) 

 

Figure 4. 12. For Sub-Area I, (a) the DTM, (b) the DSM, (c) the nDSM, and (d) the thresholded 

nDSM images.   

 

 

 

  
(a) (b) 

  
(c) (d) 

 

Figure 4. 13. For Sub-Area II, the (a) the DTM, (b) the DSM, (c) the nDSM, and (d) the thresholded 

nDSM images. 
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(a) (b) 

  
(c) (d) 

 

Figure 4. 14. For Sub-Area III, (a) the DTM, (b) the DSM, (c) the nDSM  and (d) the thresholded 

nDSM  images. 

 

 

 

4.4. Orthorectification 

 

The topographic variations on earth surface and the tilt of the sensors affect the 

distance with which features on satellite or aerial images are displayed. Before 

rectification, the features in aerial or satellite images cannot be shown in their correct 

locations due to displacements caused by the terrain relief and the tilt of the sensor. 

The orthorectification process transforms the central projection of an image into an 

orthogonal view of the ground with uniform scale, thereby removing the distorting 

affects of terrain relief and tilt optical projection (Tao et al., 2004).  

 

To correct relief displacements for images with medium or low resolutions, a DTM 

is required. However, aerial photos and high resolution satellite images can provide a 

great deal of ground information including man-made structures. Thus, the surface 
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discontinuity caused by buildings should be taken into account during the 

orthorectification procedure. Under such circumstances, a DSM delineating the 

canopy of the object surface is preferable (Rau et.al., 2002). Therefore, in this study, 

to orthorectify the high resolution stereo satellite images the DSM was used.  

 

In this study, the IKONOS images used are Geo product with about 15m accuracy. 

Therefore, to remove geometric distortions including relief displacement, the 

orthoimages were generated. This was necessary to overlay the images with the 

existing GIS database accurately and use them as the base map for feature extraction. 

For orthorectifying the panchromatic and pan-sharpened IKONOS satellite images, 

the DSM generated from the IKONOS panchromatic stereo images was used. The 

IKONOS images before and after the orthorectification are illustrated in figures 4.15 

(a) and 4.15 (b), respectively. 

 

 

  
(a) (b) 

 

Figure 4. 15. The IKONOS pan sharpened image with the vector building boundaries overlaid  

(a) before orthorectification and (b) after orthorectification. 

 

 

 

4.5. Calculating the Normalized Difference Vegetation Index  

 

The Normalized NDVI is used to detect the vegetated areas in an image. The NDVI 

image was calculated using the red and near-infrared bands of the orthorectified 

IKONOS pan-sharpened images using the following equation (Equation 4.2); 
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3PSM4PSM

3PSM4PSM
NDVI

+

−
=                                             (Equation 4.2) 

 

where; PSM4 is the NIR band and PSM3 is the red band of the IKONOS pan-

sharpened satellite image. The values of the NDVI image range from -1 to 1. 

Therefore, these values were rescaled from 0 to 255 using the following equation 

(Equation 4.3): 

 

5.127128*
3PSM4PSM

3PSM4PSM
NDVI +

+

−
=                                       (Equation 4.3) 

 

The vegetated areas were separated from non-vegetated areas using an empirically 

determined threshold value of 145. The NDVI image and the segmented vegetation 

areas after applying a threshold are given in figures 4.16 (a) and 4.16 (b), 

respectively. For the selected three sub-areas, the generated NDVI images are 

illustrated in figure 4.17. 

 

 

 

  
(a) (b) 

 

Figure 4. 16. (a) The NDVI image and (b) bitmap after applying a threshold to NDVI image. 
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(a) (b) (c) 

 

Figure 4. 17. The calculated NDVI images for (a) Sub-Area I, (b) Sub-Area II, and (c) Sub-Area III. 

 

 

 

4.6. Principal Component Analysis 

 

Principal Component Analysis (PCA) is a technique designed to reduce redundancy 

in multispectral data (Lillesand and Kiefer, 1999).  It is mainly used to reduce the 

number of bands. Singh and Harrison (1985) claim that the results of PCA may be 

more interpretable than the original data. In the present case the PCA was performed 

using the IKONOS pan-sharpened image bands (red, green, blue and NIR). The 

principal components generated (four components) are illustrated in figure 4.18. In 

figure 4.19, the principal components of three sub-areas are given. It is evident that 

when compared with the other components, the buildings can be differentiated more 

clearly in the 2
nd

 and 3
rd

 components. The spectral statistics of the original IKONOS 

pan-sharpened images and the principal components are provided in tables 4.5 and 

4.6, respectively.  
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(a) (b) 

  
(c) (d) 

 

Figure 4. 18. The results of principal component analysis of the IKONOS Pan-Sharpened Image: (a) 

1st PC, (b) 2nd PC, (c) 3rd PC and (d) 4th PC. 
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Figure 4. 19. For three sub-areas, the principal components of the IKONOS Pan-Sharpened Image. 
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Table 4. 5. The spectral statistics of the IKONOS Pan-sharpened image. 

 
IKONOS PSM Bands 

Bands Mean Median Std. Dev. 

1 520.988 510 141.07 

2 660.998 650 200.671 

3 624.191 622 211.368 

4 666.643 670 199.85 

 

 

 
Table 4. 6. The spectral statistics of the principal components. 

 
Principal Components 

Eigen Channels Eigen Value Std. Dev. Variance (%) 

1 132476.100 363.888 91.45% 

2 10295.380 101.458 7.11% 

3 1942.119 44.083 1.34% 

4 151.115 12.283 0.10% 

 

 

 

4.7. The Support Vector Machines Classification 

 

SVM is a supervised classification technique derived from statistical learning theory. 

The fundamentals of SVM were developed by Vapnik (1995). There are basically 

three steps in SVM classification. First, the trainings of the classes are represented as 

feature vectors. Next, to perform the separation, these feature vectors are mapped 

into a feature space by using the kernel function. Finally, an n-dimensional 

hyperplane that optimally separates the classes are created. 

 

To classify the pixels accurately, SVM develops a model using the training data of 

two separable classes with i samples represented by (x1, r1), …, (xi, ri), where xi Є R
n
 

and r Є {1,-1}in the n dimensional space. Here, xi is the spectral value of the training 

data while ri is the class label for a training case.  

 

During the learning process, SVM optimizes the hyperplane position to have a 

maximum margin between the classes that are on different sides of the hyperplane. 

There may be many hyperplanes that separate the classes; however the aim is to find 

the optimum one and to maximize the margin (Figure 4.20). A hyperplane that 

separates the classes can be defined by the following equation (Equation 4.4): 
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w.x + b = 0                                  (Equation 4.4) 

where, w is the normal to the hyperplane, x is a point lying on the hyperplane, 

and b is the bias.  

 

 

 

 

(a) (b) 

 

Figure 4. 20. In the linear seperable case (a) the possible hyperplanes and (b) the optimum 

hyperplanes. 

 

 

 

For the linearly separable two class case, a hyperplane can be defined as  

 

w.xi + b ≥ +1  for all ri = +1,                       (Equation 4.5) 

w.xi + b ≤ +1  for all ri = −1.                     (Equation 4.6) 

 

The equations 4.5 and 4.6 can be combined into a single equation (Equation 

4.7); 

 

ri (w.xi + b) – 1 ≥ 0                      (Equation 4.7) 

 

The points on these hyperplanes are called the “support vectors”. These hyperplanes 

are used to define the optimal separating hyperplane. The optimal separating 

hyperplane is parallel to the hyperplanes and stays in the middle of them. The margin 

between these planes is 2/||w|| (||w|| is the Euclidean norm of w). The maximization 
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of this margin causes the optimization problem given below and equation 4.7 is the 

constraint:  

 

 min {1/2 ||w||
2
}                    (Equation 4.8) 

 

This problem can be defined by Lagrange multipliers: 
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i rα     and  αi ≥ 0,   i= 1,2, …,k                (Equation 4.10) 

 

The decision rule is then applied for classifying the data into two classes; +1 

indicating one class and -1 the other class. 
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If the classes in the dataset are mixed, the data may not be separated linearly. In the 

non-linear separable case, equation 4.9 cannot be fulfilled as constraint and therefore 

slack variable (ξ) and penalty parameter (C) are defined. With the addition of these 

parameters the optimization problem and the constraints becomes: 
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ri (w.xi + b) ≥ 1– ξi                    (Equation 4.13) 

 

The penalty parameter (C) value is a form of regularization parameter and defines the 

trade off between the number of noisy training samples and classifier complexity. 

The approach can be adapted to allow for non-linear surfaces by transferring the 

training data into a high dimensional (feature) space (Figure 4.21). 
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(a) (b) (c) 

 

Figure 4. 21. The processes of SVM classification (a) The feature vectors of two classes in input space 

(b) The feature vectors of two classes separated by a hyperplane in feature space (c) The separated 

two classes in input space. 

 

 

 

This time the problem can be defined by Lagrange multipliers using kernel function 

(K): 
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Using kernel function leads to change in decision rule as given below: 
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There are different types of kernel types for different applications. The most common 

kernel types are: 

Linear:  K(xi,xj) = xi
T
 xj  

Polynomial: K(xi,xj) = (γ xi
T
xj + r) d, γ > 0  

RBF: K(xi,xj) = exp(-γ ||xi - xj||
2
), γ > 0  

Sigmoid: K(xi,xj) = tanh (γ xi
T
xj + r)  

where:  

γ is the gamma term in the kernel function for all kernel types except linear. 

d is the polynomial degree term in the kernel function for the polynomial 

kernel. 
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r is the bias term in the kernel function for the polynomial and sigmoid 

kernels. 

 

Originally the SVMs were designed for binary classification and then extended for 

multi-class classification. In this study, to detect the building patches binary SVM 

classification was used because the interest was on a single class. Foody et al. (2006) 

claimed that one class SVM classification has a great potential in remote sensing. 

Boyd et al. (2006) used this classification technique for mapping a specific class for 

the priority habitats monitoring. Sanchez et al. (2007) used it for mapping a specific 

class from Landsat 7 ETM+ image. As is well known, in conventional supervised 

classification all classes must be defined and trained in detail.  But if the interest is to 

a single class, the use of a conventional supervised image classification technique 

may be inappropriate (Foody et al., 2006).  

 

The past studies have shown that the SVM concept has much promise in the 

classification of remote sensing images providing more accuracy than the standard 

parametric and popular alternatives (Huang et al, 2002; Zhu and Blumberg, 2002; Pal 

and Mather, 2005; Foody and Mathur, 2004). Watanachaturaporn et al. (2008) 

compared SVM classifier with Maximum Likelihood Classifier (MLC), 

Backpropagation Neural Network Classifier (BPNN), Radial Basis Function Neural 

Network Classifier (RBFNET) and Decision Tree Classifier (DTC) and found that 

SVM classifier produced significantly higher accuracy than the others. 

 

Thus, in the present case, the SVM classification was used for detecting the buildings 

and the above selected sub-areas were separated into building and non-building 

classes. As is well known, the incorporation of ancillary data in the classification 

process improves the results. Therefore, in addition to original four spectral bands 

(B1, B2, B3, and B4) of the IKONOS pan-sharpened image, the nDSM (BnDSM), NDVI 

(BNDVI), First Principal Component (BPC1), Second Principal Component (BPC2), 

Third Principal Component (BPC3) and Fourth Principal Component (BPC4) images 

were also used in the classification process. The inclusion of the nDSM band would 

be beneficial for the building extraction process because the buildings are clearly 
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separated from the terrain. Similarly, the use of NDVI image is expected to be 

beneficial to separate those buildings that are surrounded by the trees and green 

vegetated areas. In addition, the Principal Components were also used as additional 

bands as they may be more interpretable than the original data. It appears that 

industrial buildings with white or blue concrete roofs can be more clearly 

differentiated from the surrounding land/objects using the 2
nd

 Principal Component, 

while the residential buildings with tile-roofs can be more clearly differentiated using 

the 3
rd

 Principal Component. Therefore, the Principal Components may increase the 

classification accuracy. The bands used in the classification process were labeled as 

follows: 

 

B1 ⇒ Blue band of the IKONOS pan-sharpened image 

B2 ⇒ Green band of the IKONOS pan-sharpened image 

B3  ⇒ Red band of the IKONOS pan-sharpened image 

B4 ⇒ Near-infrared band of the IKONOS pan-sharpened image 

BnDSM ⇒ nDSM (after applying the threshold value of 3m) band 

BNDVI ⇒ The NDVI band 

BPC1  ⇒ 1
st
 Principal Component of the IKONOS pan-sharpened image 

BPC2  ⇒ 2
nd

 Principal Component of the IKONOS pan-sharpened image 

BPC3  ⇒ 3
rd

 Principal Component of the IKONOS pan-sharpened image 

BPC4  ⇒ 4
th
 Principal Component of the IKONOS pan-sharpened image 

 

By using the above given bands, fourteen image data sets were generated to perform 

the SVM classification (Table 4.7). Of these data sets, Data-Set 1 contains the 

original bands (B1, B2, B3 and B4) only. In addition to original bands, Data-Sets 2, 3, 

4, 5, 6, and 7 contain, respectively the bands BnDSM, BNDVI, BPC1, BPC2, BPC3, and 

BPC4. Each of the Data-Sets 8, 9, and 10 contains additional two bands as well as the 

original bands, which are BnDSM, BNDVI; BnDSM, BPC2; BnDSM, BPC3, respectively. 

Data-Sets 11 and 12 contain additional three bands in addition to the original bands. 

While the additional bands of Data-Set 11 are BnDSM, BNDVI and BPC2, Data-Set 12 

includes the additional bands of BnDSM, BNDVI and BPC3. Data-Set 13 contains all PCs 
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as additional bands. The final data set, Data-Set 14, includes all of the original and 

the derived bands.  

 

 
Table 4. 7. The data sets and their band combinations used in the SVM classification. 

 

Data-Sets Band Combinations 

Data-Set 1 B1, B2, B3, B4 

Data-Set 2 B1, B2, B3, B4, BnDSM 

Data-Set 3 B1, B2, B3, B4, BNDVI 

Data-Set 4 B1, B2, B3, B4, BPC1 

Data-Set 5 B1, B2, B3, B4, BPC2 

Data-Set 6 B1, B2, B3, B4, BPC3 

Data-Set 7 B1, B2, B3, B4, BPC4 

Data-Set 8 B1, B2, B3, B4, BnDSM, BNDVI 

Data-Set 9 B1, B2, B3, B4, BnDSM, BPC2 

Data-Set 10 B1, B2, B3, B4, BnDSM, BPC3 

Data-Set 11 B1, B2, B3, B4, BnDSM, BNDVI, BPC2 

Data-Set 12 B1, B2, B3, B4, BnDSM, BNDVI, BPC3 

Data-Set 13 B1, B2, B3, B4, BPC1, BPC2, BPC3, BPC4 

Data-Set 14 B1, B2, B3, B4, BnDSM, BNDVI, BPC1, BPC2, BPC3, BPC4 

 

 

 

In this study, the building class was the class of interest, while the other classes 

including vegetation, road, bareland, shadow, pavement, etc. composed the non-

building class. For both the building and the non-building classes, equal numbers of 

training pixels were collected. For non-building classes, the percentages of the 

training pixels were determined according to the distribution of these classes. 

Initially, the training areas were collected roughly. Then, from these areas, the 

determined numbers of pixels were selected randomly. While collecting the training 

samples, the focus was on the class of interest. For each class and sub-classes, the 

numbers of training pixels collected are illustrated in tables 4.8, 4.9, and 4.10. 

 

 

Table 4. 8. The number of training pixels collected for Sub-Area I. 

 

Classes Sub-Classes 
Training 

Pixel Size 

Training 

Pixel Size 

Training 

Pixel Size 

Building (50%) Building (50%) 250 500 1000 

Vegetation (20%) 100 200 400 

Road (14%) 70 140 280 

Bareland (12%) 60 120 240 

Shadow (2%) 10 20 40 

Non-Building (50%) 

Pavement (2%) 10 20 40 

Total (100%) Total (100%) 500 1000 2000 
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Table 4. 9. The number of training pixels collected for Sub-Area II. 

 

Classes Sub-Classes 
Training 

Pixel Size 

Training 

Pixel Size 

Training 

Pixel Size 

Building (50%) Building (50%) 250 500 1000 

Vegetation (20%) 100 200 400 

Road (20%) 100 200 400 

Bareland (5%) 25 50 100 

Shadow (3%) 15 30 60 

Non-Building (50%) 

Pavement (2%) 10 20 40 

Total (100%) Total (100%) 500 1000 2000 

 

 

 

Table 4. 10. The number of training pixels collected for Sub-Area III. 

 

Classes Sub-Classes 
Training 

Pixel Size 

Training 

Pixel Size 

Training 

Pixel Size 

Building (50%) Building (50%) 250 500 1000 

Bareland (26%) 130 260 520 

Road (16%) 80 160 320 

Vegetation (4%) 20 40 80 

Pavement (2%) 10 20 40 

Non-Building (50%) 

Shadow (2%) 10 20 40 

Total (100%) Total (100%) 500 1000 2000 

 

 

 

After collecting the training pixels, the test pixels were collected from different 

locations than the training pixels. To test the results of the classifications, which were 

performed using three different training sizes of 500, 1000, and 2000, the test pixels 

of three different sizes (2000, 4000 and 8000) were collected roughly. Then, from the 

roughly selected test areas, the determined numbers of pixels were selected 

randomly. These pixels were different from the training pixels because they must 

represent the unbiased reference information. For each class and sub-classes, the 

numbers of test pixels collected are illustrated in tables 4.11, 4.12, and 4.13. 
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Table 4. 11. The number of test pixels collected for Sub-Area I. 

 

Classes Sub-Classes 
Test Pixel 

Size 

Test Pixel 

Size 

Test Pixel 

Size 

Building (50%) Building (50%) 1000 2000 4000 

Vegetation (20%) 400 800 1600 

Road (14%) 280 560 1120 

Bareland (12%) 240 480 960 

Pavement (2%) 40 80 160 

Non-Building (50%) 

Shadow (2%) 40 80 160 

Total (100%) Total (100%) 2000 4000 8000 

 

 

 

Table 4. 12. The number of test pixels collected for Sub-Area II. 

 

Classes Sub-Classes 
Test Pixel 

Size 

Test Pixel 

Size 

Test Pixel 

Size 

Building (50%) Building (50%) 1000 2000 4000 

Vegetation (20%) 400 800 1600 

Road (20%) 400 800 1600 

Bareland (5%) 100 200 400 

Shadow (3%) 60 120 240 

Non-Building (50%) 

Pavement (2%) 40 80 160 

Total (100%) Total (100%) 2000 4000 8000 

 

 

 

Table 4. 13. The number of test pixels collected for Sub-Area III. 

 

Classes Sub-Classes 
Test Pixel 

Size 

Test Pixel 

Size 

Test Pixel 

Size 

Building (50%) Building (50%) 1000 2000 4000 

Bareland (24%) 520 1040 2080 

Road (12%) 320 640 1280 

Vegetation (10%) 80 160 320 

Pavement (2%) 40 80 160 

Non-Building (50%) 

Shadow (2%) 40 80 160 

Total (100%) Total (100%) 2000 4000 8000 

 

 

 

Next, for the above defined band combinations, the spectral separabilities were 

computed from the training areas using a statistical method based on Jeffries-

Matusita (Richards, 1999) to know the amount of class separability between the 

building and non-building classes. In the present case, the spectral separabilities were 

performed to evaluate the effect of the additional bands to the spectral separability.  

 

The Jeffries-Matusita distance is computed as follows: 
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i and j are the two signature (classes) being compared, 

µ is the mean vector of signature i. 

 

The separability values range from 0 to 2 and specify how well the selected training 

areas are statistically separable. The higher values indicate that the training areas are 

spectrally well separable. On the other hand, the lower values indicate that the 

classes spectrally overlap. For the selected three sub-areas and three different 

training sizes, the spectral separability values are given in tables 4.14, 4.15, and 4.16.  

 

 

 
Table 4. 14. For Sub-Area I, the spectral separability values of the data sets.  

 
Spectral Separability  

Sub-Area I Band Combinations 500  

Train 

1000 

Train 

2000 

Train 

Data-Set 1 B1, B2, B3, B4 1.78 1.76 1.75 

Data-Set 2 B1, B2, B3, B4, BnDSM 1.96 1.94 1.93 

Data-Set 3 B1, B2, B3, B4, BNDVI 1.88 1.86 1.86 

Data-Set 4 B1, B2, B3, B4, BPC1 1.78 1.76 1.75 

Data-Set 5 B1, B2, B3, B4, BPC2 1.79 1.76 1.75 

Data-Set 6 B1, B2, B3, B4, BPC3 1.79 1.76 1.75 

Data-Set 7 B1, B2, B3, B4, BPC4 1.79 1.76 1.75 

Data-Set 8 B1, B2, B3, B4, BnDSM, BNDVI 1.98 1.97 1.96 

Data-Set 9 B1, B2, B3, B4, BnDSM, BPC2 1.96 1.94 1.93 

Data-Set 10 B1, B2, B3, B4, BnDSM, BPC3 1.96 1.94 1.93 

Data-Set 11 B1, B2, B3, B4, BnDSM, BNDVI, BPC2 1.98 1.97 1.96 

Data-Set 12 B1, B2, B3, B4, BnDSM, BNDVI, BPC3 1.98 1.97 1.96 

Data-Set 13 B1, B2, B3, B4, BPC1, BPC2, BPC3, BPC4 1.79 1.76 1.75 

Data-Set 14 B1, B2, B3, B4, BnDSM, BNDVI, BPC1, BPC2, BPC3, BPC4 1.98 1.97 1.96 
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Table 4. 15. For Sub-Area II, the spectral separability values of the data sets.  

 

Spectral Separability  
Sub-Area II Band Combinations 500  

Train 

1000 

Train 

2000 

Train 

Data-Set 1 B1, B2, B3, B4 1.80 1.79 1.78 

Data-Set 2 B1, B2, B3, B4, BnDSM 1.91 1.88 1.88 

Data-Set 3 B1, B2, B3, B4, BNDVI 1.90 1.90 1.89 

Data-Set 4 B1, B2, B3, B4, BPC1 1.80 1.79 1.78 

Data-Set 5 B1, B2, B3, B4, BPC2 1.80 1.79 1.78 

Data-Set 6 B1, B2, B3, B4, BPC3 1.80 1.79 1.78 

Data-Set 7 B1, B2, B3, B4, BPC4 1.80 1.79 1.78 

Data-Set 8 B1, B2, B3, B4, BnDSM, BNDVI 1.96 1.94 1.94 

Data-Set 9 B1, B2, B3, B4, BnDSM, BPC2 1.91 1.88 1.88 

Data-Set 10 B1, B2, B3, B4, BnDSM, BPC3 1.91 1.88 1.88 

Data-Set 11 B1, B2, B3, B4, BnDSM, BNDVI, BPC2 1.96 1.94 1.94 

Data-Set 12 B1, B2, B3, B4, BnDSM, BNDVI, BPC3 1.96 1.94 1.94 

Data-Set 13 B1, B2, B3, B4, BPC1, BPC2, BPC3, BPC4 1.81 1.79 1.78 

Data-Set 14 B1, B2, B3, B4, BnDSM, BNDVI, BPC1, BPC2, BPC3, BPC4 1.96 1.94 1.94 

 

 

 

Table 4. 16. For Sub-Area III, the spectral separability values of the data sets.  

 

Spectral Separability  
Sub-Area III Band Combinations 500  

Train 

1000 

Train 

2000 

Train 

Data-Set 1 B1, B2, B3, B4 1.40 1.45 1.46 

Data-Set 2 B1, B2, B3, B4, BnDSM 1.85 1.89 1.89 

Data-Set 3 B1, B2, B3, B4, BNDVI 1.47 1.53 1.53 

Data-Set 4 B1, B2, B3, B4, BPC1 1.41 1.45 1.46 

Data-Set 5 B1, B2, B3, B4, BPC2 1.41 1.45 1.46 

Data-Set 6 B1, B2, B3, B4, BPC3 1.41 1.45 1.46 

Data-Set 7 B1, B2, B3, B4, BPC4 1.41 1.45 1.46 

Data-Set 8 B1, B2, B3, B4, BnDSM, BNDVI 1.88 1.91 1.91 

Data-Set 9 B1, B2, B3, B4, BnDSM, BPC2 1.85 1.89 1.89 

Data-Set 10 B1, B2, B3, B4, BnDSM, BPC3 1.85 1.89 1.89 

Data-Set 11 B1, B2, B3, B4, BnDSM, BNDVI, BPC2 1.88 1.91 1.91 

Data-Set 12 B1, B2, B3, B4, BnDSM, BNDVI, BPC3 1.88 1.91 1.91 

Data-Set 13 B1, B2, B3, B4, BPC1, BPC2, BPC3, BPC4 1.42 1.46 1.46 

Data-Set 14 B1, B2, B3, B4, BnDSM, BNDVI, BPC1, BPC2, BPC3, BPC4 1.88 1.92 1.91 

 

 

 

The computed spectral separability values indicate that using the first, second, third 

or fourth principal components as additional bands (Data-Set 4, Data-Set 5, Data-Set 

6 and Data-Set 7) do not increase the separabilities when compared with four original 

bands. On the other hand, using nDSM as an additional band appears to remarkably 

increase the class separability for all sub-areas. This was an expected result because 
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nDSM is directly related with the building heights. The use of NDVI image as an 

additional band increased the class separability for Sub-Area I and Sub-Area II. 

However, for Sub-Area III, the increase is rather low. This is due to the fact that in 

Sub-Area I and Sub-Area II the buildings are mostly surrounded by the green 

vegetated areas. But, when compared to Sub-Area I and Sub-Area II, Sub-Area III 

contains less vegetation. Therefore, the effect of NDVI image into the spectral 

seperability of Sub-Area III becomes less than expected. On the other hand, the use 

of PC images as additional bands do not increase the separability values remarkably. 

 

After evaluating the spectral separabilities of the data sets, it was observed that Data-

Set 8, Data-Set 11, Data-Set 12, and Data-Set 14 provide better separabilities than 

the other data sets. Data-Set 2, Data-Set 9, and Data-Set 10 also provide good 

separability but their separability values stayed lower than Data-Sets 8, 11, 12, and 

14. The data sets with the lowest separabilities are Data-Set 1, Data-Set 4, Data-Set 

5, Data-Set 6, Data-Set 7, and Data-Set 13. The results indicate that increasing the 

training size do not considerably affect the class separabilities. 

 

When performing the SVM classification, the selection of the kernel method, 

determination of the ‘C’ parameter, and the parameters related to the kernel are also 

important. In this study, the Radial Basis Function was selected as the kernel method. 

The Radial Basis Function (RBF), which can handle linearly non-separable 

problems, works well in most cases (ENVI Manual, 2006). The mathematical 

representation of RBF kernel is as follows: 

 

K(xi,xj) = exp(-γ||xi - xj||
2
), γ > 0        (Equation 4.19) 

where:  

γ is the gamma term in the RBF kernel function. 

 

In this study, γ was determined as the inverse of the number of bands in the input 

image and “C” was taken to be “1000”. 
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4.8. Determining the Candidate Building Patches  

 

After performing the one-class SVM classification, those areas classified as building 

represent the candidate building patches. However, due to the misclassification, the 

candidate building patches may contain artefacts. Therefore, these artefacts were 

removed using the morphological operations. The morphological operations are 

image processing operations which process images based on the shapes. In the 

present case, to eliminate specific image details smaller than the structuring element, 

the “opening” and “closing” operations, which are based on erosion and dilation 

operations, with an isotropic structuring element was used.  Therefore, the global 

shape of the objects was not distorted (Sonka et al, 1998).  

 

The erosion and dilation operations are fundamental to morphological image 

processing (Gonzales et al, 2004). The erosion creates an image that has thinner 

objects than the input image. The erosion of an image f by a structuring element k is 

symbolized as f Θ k. To calculate the erosion, the structuring element k is located as 

its origin on image pixel coordinates (x, y) and the following rule is applied to each 

pixel; 

f k fits f  

g (x, y) = 1 

Else  

g (x, y) = 0 

     

On the other hand, the dilation creates an image that has thicker objects than the 

input image. The dilation of an image f by a structuring element k is indicated as f ⊕  

k. To calculate the dilation, the structuring element k is located as its origin on image 

pixel coordinates (x, y) and the following rule is applied to each pixel; 

 

If k hits f  

g (x, y) = 1 

Else  

g (x, y) = 0 
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Erosion followed by dilation creates opening. The opening of image f by the 

structuring element k is denoted by “f ◦ k” and is defined as in equation 4.20. The 

dilation followed by erosion is called closing. The closing of image f by the 

structuring element k is denoted by “f • k” and is defined as in equation 4.21.   

 

( ) kkfkf ⊕Θ=o                                                      (Equation 4.20) 

 

( ) kkfkf Θ⊕=•                                                   (Equation 4.21) 

 

An opening filter removes thin protrusions, outward pointing boundary irregularities, 

thin joins, and small isolated objects. On the other hand, a closing filter removes the 

thin gulf, the inward-pointing boundary irregularities and small holes (Gonzales et al, 

2004). Therefore, combining a closing and an opening can be quite effective for 

removing the artefacts or noise. In the present case, those candidate building patches 

smaller than a threshold value were considered to be artefacts and therefore 

eliminated from further processes. The threshold value was determined to be 50 

pixels for the IKONOS panchromatic image (50m
2
) because it is assumed that 

objects smaller than 50m
2
 cannot be a building. For an urban block, the candidate 

building patches before and after removing the artefacts are illustrated in figure 4.22. 

 

  
(a) (b) 

 

Figure 4. 22. For an urban block, the candidate building patches (a) before and (b) after removing the 

artefacts. 
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After removing the artefacts, a binary building patch image was obtained. To get the 

panchromatic building patch image, the building patches were masked in the 

panchromatic image, the zero values were assigned to non-building areas, and further 

building extraction operations were carried out using these candidate building 

patches only. 

 

4.9. The Accuracy Assessment 

 

To compute the classification accuracies and to discover the best data set and best 

training sample size, initially a confusion matrix was generated using the previously 

collected test data. The classification results provide the locations of the candidate 

building patches. Therefore, in addition to the classification accuracy, the accuracies 

of the building patches were also calculated using the reference building boundaries. 

Then, these vector boundaries were rasterized to compare the results.  

  

4.9.1. Accuracy Assessment of the SVM Classification 

 

To assess the accuracy of the SVM classification for each data set, a confusion 

matrix, which shows the comparison of the classes with test data, was generated and 

the accuracy measures of Error of Omission, Error of Commission, Producer’s 

Accuracy, User’s Accuracy, Overall Accuracy, and Kappa Coefficient were 

calculated. The obtained confusion matrices are given in Appendix C. 

 

4.9.2. Accuracy Assessment of Building Detection 

 

In order to assess the accuracy of building detection, the pixels were classified into 

one of the below given four categories by comparing the detected building patches 

with the rasterized reference buildings (Figure 4.23). 
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 True Positive (TP): Both the automated and manual 

methods classify a pixel as building. 

 

True Negative (TN): Both the automated and manual 

methods classify a pixel as background. 

 

False Positive (FP): Only the automated method classify 

a pixel as building. 

 

False Negative (FN): Only the manual method classify a 

pixel as building. 
 

Figure 4. 23. Schematic representation of True Positive (TP), True Negative (TN), False Positive (FP) 

and False Negative (FN) areas. 

 

 

 

After counting the pixels that fall into above categories, the following summary 

statistics were computed (Shufelt and McKeown, 1993): 

 

Branching Factor (BF): FP / TP                                               (Equation 4.22) 

Miss Factor (MF): FN / TP                                                       (Equation 4.23) 

Building Detection Percentage (BDP): 100 x TP / (TP + FN) (Equation 4.24) 

Quality Percentage (QP): 100 x TP / (TP + FP + FN)             (Equation 4.25) 

 

These measurements give us an idea about the accuracy of the detected building 

patches. The ‘Branching Factor’ indicates the rate of incorrectly labeled building 

pixels. The ‘Miss Factor’ describes the rate of building pixels missed. The ‘Building 

Detection Percentage’ gives the percentage of building pixels correctly detected by 

the automatic process and the ‘Quality Percentage’ is the overall measure of 

performance, which accounts for all misclassifications and describes how likely a 

building pixel produced by the automatic detection is true.  

 

4.10. The Experimental Results 

 

In general, the SVM classifier gave quite accurate results for the proposed building 

detection. The use of ancillary data increased the accuracy of building detection 

considerably. The use of nDSM as an additional band in the classification process 

increased the accuracy significantly, while using the NDVI image increased the 

TP 

FP 

FN 

TN 

Reference 

Detected 
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accuracy slightly. On the other hand, using the Principal Component images did not 

have a remarkable effect in the accuracy. When the effect of the size of training 

samples on classification accuracy is evaluated it can be stated that, in general, 

increasing the training size did not affect the accuracy significantly. Therefore, it can 

be concluded that a small training size (i.e. 500 pixels) would be enough for 

performing the SVM classification. 

 

4.10.1. The Results of SVM  

 

4.10.1.1. Sub-Area I 

 

The accuracy assessment results of the SVM classification using 500, 1000 and 2000 

training samples are given in table 4.17. The graphical representation of overall 

accuracy and Kappa Coefficient values are provided in figures 4.24 and 4.25. For all 

data sets (14 in total) used, the outputs of the SVM classification using 500 training 

pixels are illustrated in figure 4.26 and using 1000 and 2000 training samples are 

given in Appendix D. 

 

 

 
Table 4. 17. For Sub-Area I, the Overall Accuracies and Kappa Coefficients. 

 
Sub-Area I Overall Accuracy (%) Kappa Coefficient 

 
Train 500/ 

Test 2000 

Train 1000/ 

Test 4000 

Train 2000/ 

Test 8000 

Train 500/ 

Test 2000 

Train 1000/ 

Test 4000 

Train 2000/ 

Test 8000 

Data-Set 1 95.55 96.03 95.35 0.9110 0.9205 0.9070 

Data-Set 2 98.70 98.48 98.65 0.9740 0.9695 0.9730 

Data-Set 3 95.45 95.78 95.69 0.9090 0.9155 0.9137 

Data-Set 4 95.25 95.75 95.31 0.9050 0.9150 0.9063 

Data-Set 5 95.50 96.13 95.63 0.9100 0.9225 0.9125 

Data-Set 6 95.80 96.05 95.60 0.9160 0.9210 0.9120 

Data-Set 7 95.75 95.83 95.54 0.9150 0.9165 0.9107 

Data-Set 8 98.60 98.43 98.60 0.9720 0.9685 0.9720 

Data-Set 9 98.65 98.40 98.66 0.9730 0.9680 0.9732 

Data-Set 10 98.85 98.73 98.64 0.9770 0.9745 0.9728 

Data-Set 11 98.65 98.43 98.59 0.9730 0.9685 0.9718 

Data-Set 12 98.70 98.73 98.68 0.9740 0.9745 0.9735 

Data-Set 13 96.50 96.03 95.94 0.9300 0.9205 0.9187 

Data-Set 14 98.65 98.35 98.71 0.9730 0.9670 0.9742 
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For Sub-Area I, the results of SVM classification using 500 training samples appear 

to be quite satisfactory with the overall accuracy and Kappa Coefficient values 

computed in the range of 95.25% – 98.85% and 0.9050 – 0.9770, respectively. For 

Data-Sets 2, 8, 9, 10, 11, 12, and 14, the overall accuracies were computed on the 

order of 98%, while the Kappa Coefficients were found to be on the order of 0.97. 

The other data-sets provided comparatively lower values with respect to these two 

measurements. 

 

The classification using 1000 training samples provided overall accuracies that range 

from 95.75% to 98.73% and Kappa Coefficients that range from 0.9150 to 0.9745. 

Similar to 500 training samples, Data-Sets 2, 8, 9, 10, 11, 12, and 14 provided the 

best results with the overall accuracies higher than 98% and Kappa Coefficients 

higher than 0.9670. However, for the other data-sets, these accuracy measurements 

provided relatively lower values.  

 

The SVM classification using 2000 training samples provided overall accuracies 

between 95.31% and 98.71%, while the Kappa Coefficients were computed between 

0.9063 and 0.9742. Similar to 500 and 1000 training samples, Data-Sets 2, 8, 9, 10, 

11, 12, and 14 provided the best results with the overall accuracies higher than 98% 

and the Kappa Coefficients higher than 0.97. Conversely, for the other data-sets, 

these measurements provided relatively lower values.  
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Figure 4. 24. For each data set, the overall accuracies computed using 500, 1000 and 2000 training 

samples in Sub-Area I. 

 



 73 

 

0.9000

0.9100

0.9200

0.9300

0.9400

0.9500

0.9600

0.9700

0.9800

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Data-Set

K
ap

p
a 

C
o
ef

fi
ci

en
t

Train 500

Train 1000

Train 2000

 
 

Figure 4. 25. For each data set, the kappa coefficients computed using 500, 1000 and 2000 training 

samples in Sub-Area I. 

 

 

 

When the effect of training sample size on the classification accuracy is evaluated it 

was observed that, increasing the sample size did not significantly affect the results 

(Figures 4.24 and 4.25). In SVM classification, the training samples near to the 

hyperplanes are most informative (Foody and Mathur, 2004). Therefore, the accuracy 

of SVM classification is affected by the location of the training samples in the 

feature space rather than the size of the input training samples (Mathur and Foody, 

2008). In addition, it can be seen in the spectral separabilities that, for this area, the 

separability values were the highest for 500 training samples, while they were 

computed to be the lowest for 2000 training samples.  

 

The results of SVM classification, which was conducted using different data sets, are 

illustrated in Figure 4.26. When these results are assessed visually it can be stated 

that, those data-sets that include nDSM as an additional band provided better results. 

This is because those buildings having similar reflectance values with the other 

classes can be detected successfully with the help of the height information.   
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Sub-Area I Data-Set 1 Data-Set 2 

   
Data-Set 3 Data-Set 4 Data-Set 5 

   
Data-Set 6 Data-Set 7 Data-Set 8 

   
Data-Set 9 Data-Set 10 Data-Set 11 

   
Data-Set 12 Data-Set 13 Data-Set 14 

 

Figure 4. 26. For Sub-Area I, the results of SVM classification using 14 Data-Sets and 500 training 

samples. 
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4.10.1.2. Sub-Area II 

 

For Sub-Area II, the accuracy assessment results of the SVM classification using 

500, 1000 and 2000 training samples are given in table 4.18. The graphical 

representations of the overall accuracies and Kappa Coefficients are provided in 

figures 4.27 and 4.28. For all data sets (14 in total) used, the outputs of the SVM 

classification using 500 training pixels are illustrated in figure 4.29 and using 1000 

and 2000 training samples are given in Appendix D. 

 

Table 4. 18. For Sub-Area II, the Overall Accuracies and Kappa Coefficients. 

 

Sub-Area II Overall Accuracy (%) Kappa Coefficient 

 
Train 500/ 

Test 2000 

Train 1000/ 

Test 4000 

Train 2000/ 

Test 8000 

Train 500/ 

Test 2000 

Train 1000/ 

Test 4000 

Train 2000/ 

Test 8000 

Data-Set 1 93.65 93.35 92.15 0.8730 0.8670 0.8430 

Data-Set 2 96.50 97.15 97.16 0.9300 0.9430 0.9433 

Data-Set 3 93.65 93.85 92.16 0.8730 0.8770 0.8433 

Data-Set 4 93.65 94.10 91.84 0.8730 0.8820 0.8367 

Data-Set 5 93.65 94.78 95.14 0.8730 0.8955 0.9028 

Data-Set 6 93.80 94.83 95.50 0.8760 0.8965 0.9100 

Data-Set 7 93.85 91.60 92.31 0.8770 0.8320 0.8462 

Data-Set 8 96.05 96.88 96.98 0.9210 0.9375 0.9395 

Data-Set 9 96.20 97.15 97.05 0.9240 0.9430 0.9410 

Data-Set 10 96.30 96.70 97.15 0.9260 0.9340 0.9430 

Data-Set 11 96.20 96.83 96.93 0.9240 0.9365 0.9385 

Data-Set 12 96.20 96.68 96.59 0.9240 0.9335 0.9317 

Data-Set 13 94.85 94.18 96.01 0.8970 0.8835 0.9203 

Data-Set 14 94.50 94.90 94.88 0.8900 0.8980 0.8975 

 

 

The results of SVM classification using 500 training samples appear to be quite 

satisfactory with the overall accuracies and Kappa Coefficients in the range of 

93.65% – 96.50% and 0.8730 – 0.9300, respectively. For Data-Sets 2, 8, 9, 10, 11, 

and 12, the overall accuracies were computed to be on the order of 96% and Kappa 

Coefficients were found to be on the order of 0.92. The other data-sets provided 

slightly lower values with respect to these two measurements. 

 

The SVM classification using 1000 training samples provided overall accuracies 

ranging from 91.60% to 97.15% and Kappa Coefficients ranging from 0.8320 to 

0.9430. Same as above, Data-Sets 2, 8, 9, 10, 11, and 12 provided the highest 

accuracies with the overall accuracies higher than 96% and Kappa Coefficients 
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higher than 0.9335. For the other data sets, these measurements gave relatively lower 

values.  

 

The SVM classification using 2000 training samples provided overall accuracies 

between 92.15% and 97.16%, while the Kappa Coefficients were computed to be 

between 0.8367 and 0.9433. In this case, Data-Sets 2, 8, 9, 10, 11, 12, and 13 

provided the best results with the overall accuracies higher than 96% and Kappa 

Coefficients higher than 0.92. Conversely, for the other data-sets, these 

measurements gave relatively lower values.  
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Figure 4. 27. For each data set, the overall accuracies computed using 500, 1000, and 2000 training 

samples in Sub-Area II. 
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Figure 4. 28. For each data set, the kappa coefficients computed using 500, 1000, and 2000 training 

samples in Sub-Area II. 
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For this sub-area, increasing the sample size did not affect the accuracy significantly 

(Figure 4.27 and 4.28). The results of SVM classification conducted using different 

data sets are illustrated in Figure 4.29. When the results are compared visually it can 

be stated that the data-sets that include nDSM as an additional band provides better 

results.  

 

   
Sub-Area II Data-Set 1 Data-Set 2 

   
Data-Set 3 Data-Set 4 Data-Set 5 

   
Data-Set 6 Data-Set 7 Data-Set 8 

   
Data-Set 9 Data-Set 10 Data-Set 11 

   
Data-Set 12 Data-Set 13 Data-Set 14 

 

Figure 4. 29. For Sub-Area II, the results of SVM classification using 14 Data-Sets and 500 samples.  
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4.10.1.3. Sub-Area III 

 

For Sub-Area III, the results of accuracy assessment of the SVM classification using 

500, 1000, and 2000 training samples are given in table 4.19. The graphical 

representation of overall accuracies and Kappa Coefficients are provided in figures 

4.30 and 4.31. For the 14 data sets, the outputs of the SVM classification conducted 

using 500 training pixels are illustrated in figure 4.32, and using 1000 and 2000 

training samples are given in Appendix D. 

 

 

 

Table 4. 19. For Sub-Area III, the Overall Accuracies and Kappa Coefficients. 

 
Sub-area III Overall Accuracy (%) Kappa Coefficient 

 
Train 500/ 

Test 2000 

Train 1000/ 

Test 4000 

Train 2000/ 

Test 8000 

Train 500/ 

Test 2000 

Train 1000/ 

Test 4000 

Train 2000/ 

Test 8000 

Data-Set 1 90.05 91.95 92.64 0.8010 0.8390 0.8528 

Data-Set 2 96.55 97.30 97.40 0.9310 0.9460 0.9480 

Data-Set 3 90.10 91.63 92.04 0.8020 0.8325 0.8408 

Data-Set 4 89.70 91.65 92.01 0.7940 0.8330 0.8403 

Data-Set 5 92.90 93.28 93.46 0.8580 0.8655 0.8692 

Data-Set 6 93.40 94.23 94.06 0.8680 0.8845 0.8812 

Data-Set 7 90.70 91.98 92.83 0.8140 0.8395 0.8565 

Data-Set 8 96.85 97.40 97.48 0.9370 0.9480 0.9495 

Data-Set 9 95.20 97.28 97.31 0.9040 0.9455 0.9463 

Data-Set 10 95.85 96.20 96.64 0.9170 0.9240 0.9327 

Data-Set 11 96.65 97.88 97.85 0.9130 0.9575 0.9570 

Data-Set 12 96.05 96.45 97.53 0.9210 0.9290 0.9505 

Data-Set 13 94.70 95.10 95.15 0.8940 0.9020 0.9030 

Data-Set 14 96.30 96.95 97.70 0.9260 0.9390 0.9540 

 

 

 

In this sub-area, the results of SVM classification, which was conducted using 500 

training samples, were found to be quite satisfactory with the overall accuracies and 

Kappa Coefficients in the range of 89.70% – 96.85% and 0.7940 – 0.9370, 

respectively. For Data-Sets 2, 8, 11, 12, and 14, the overall accuracies were 

computed on the order of 96% while Kappa Coefficients were computed on the order 

of 0.92. The other data-sets provided slightly lower values with respect to these two 

measurements. 
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With the use of 1000 training samples, the overall classification accuracies were 

computed in the range from 91.63% to 97.88% and Kappa Coefficients were 

computed in the range from 0.8325 to 0.9475. In this case, Data-Sets 2, 8, 9, 11, and 

14 provided the highest overall accuracy of 97% and the highest Kappa Coefficient 

of higher than 0.9390. On the other hand, for the other data-sets, these measurements 

gave relatively lower values.  

 

With the use of 2000 training samples, the SVM classification provided overall 

accuracies between 92.01% and 97.85%, while the Kappa Coefficients were 

computed between 0.8403 and 0.9570. In this case, Data-Sets 2, 8, 9, 11, 12, and 14 

provided the highest overall accuracy of higher than 97% and the highest Kappa 

Coefficient of higher than 0.94. Conversely, for the other data-sets, these 

measurements provided relatively lower values.  
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Figure 4. 30. For each data set, the overall accuracies computed using 500, 1000, and 2000 training 

samples in Sub-Area III. 
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Figure 4. 31. For each data set, the kappa coefficients computed using 500, 1000, and 2000 training 

samples in Sub-Area III. 

 

 

 

For this sub-area, if the effect of the size of training samples on classification 

accuracy is evaluated it can be stated that, in general, increasing the training size 

increased the accuracy. However, the increase was not observed to be more than 3% 

(Figure 4.30 and 4.31). 
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Sub-Area III Data-Set 1 Data-Set 2 

   
Data-Set 3 Data-Set 4 Data-Set 5 

   
Data-Set 6 Data-Set 7 Data-Set 8 

   
Data-Set 9 Data-Set 10 Data-Set 11 

   
Data-Set 12 Data-Set 13 Data-Set 14 

 

Figure 4. 32. For Sub-Area III, the results of SVM classification using 14 Data-Sets and 500 samples.  
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4.10.2. The Results of Building Detection  

 

4.10.2.1. Sub-Area I 

  

The accuracy assessment results of the detected building patches using the SVM 

classification with 500, 1000, and 2000 training samples are given in table 4.20. The 

graphical representation of the BDP and QP measurements are provided in figure 

4.33. 

 

 

 

 

Table 4. 20. For Sub-Area I, the quantitative evaluation of SVM classification using 500, 1000, and 

2000 training samples. 

 
Train 500 Train 1000 Train 2000 Data-

Set BF MF BDP QP BF MF BDP QP BF MF BDP QP 

1 0.44 0.20 83.02 60.93 0.35 0.24 80.73 63.01 0.38 0.23 81.39 62.02 

2 0.43 0.11 90.10 65.11 0.35 0.13 88.75 67.88 0.36 0.12 89.55 67.89 

3 0.50 0.19 83.82 59.03 0.39 0.23 81.24 61.74 0.39 0.22 81.96 62.14 

4 0.50 0.19 83.88 59.14 0.37 0.24 80.96 62.40 0.39 0.23 81.62 61.77 

5 0.40 0.21 82.53 61.91 0.35 0.23 81.39 63.52 0.35 0.23 81.57 63.43 

6 0.36 0.24 80.61 62.51 0.34 0.25 80.28 63.23 0.35 0.24 80.91 63.02 

7 0.48 0.20 83.40 59.68 0.42 0.22 81.66 60.62 0.40 0.23 81.21 61.45 

8 0.43 0.11 90.28 65.06 0.32 0.13 88.29 68.71 0.34 0.12 89.32 68.29 

9 0.45 0.10 90.60 64.48 0.35 0.13 88.79 67.96 0.36 0.12 89.65 67.73 

10 0.32 0.14 87.58 68.62 0.28 0.14 87.57 70.21 0.32 0.13 88.79 69.11 

11 0.47 0.10 91.18 63.85 0.33 0.13 88.63 68.57 0.34 0.12 89.34 68.70 

12 0.30 0.15 86.95 68.79 0.28 0.14 87.46 70.28 0.32 0.12 89.02 69.23 

13 0.37 0.22 81.73 62.56 0.36 0.24 80.70 62.54 0.37 0.23 81.52 62.70 

14 0.27 0.15 86.78 70.16 0.28 0.15 86.80 69.96 0.30 0.13 88.15 69.51 
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Figure 4. 33. For each data set, the BDP and QP measurements computed for the classifications 

conducted using 500, 1000, and 2000 training samples in Sub-Area I. 

 

 

 

For Data-Sets 2, 8, 9, 11, and 14, with the use of 500 training samples, the BDP 

values were computed to be higher than 90% providing the best building detection 

results. For Data-Sets 10 and 12, the BDP was computed to be approximately 87%. 

However, for Data-Sets 1, 3, 4, 5, 6, 7, and 13, the same evaluation factor resulted in 

relatively lower values on the order of about 83%. The SVM classification using 

Data-Sets 2, 8, 10, 12, and 14 provided the best QP values (higher than 67%), while 

for Data-Sets 9 and 11, the QP values were computed to be about 63%. On the other 

hand, for Data-Sets 1, 3, 4, 5, 6, 7, and 13, the QP values were relatively low.  

 

For the same sub-area, the results of building detection conducted using 1000 

training samples were found to be quite similar to the results of 500 training samples. 

For Data-Sets 2, 8, 9, and 11, the BDB values were computed to be higher than 88% 

and, for this case, these are the best results obtained for the building detection 

procedure. For Data-Sets 10, 12, and 14, the BDP was computed approximately as 

87%. However, for Data-Sets 1, 3, 4, 5, 6, 7, and 13, the same evaluation factor 

resulted in relatively lower values of about 80%. When the results are assessed using 

the accuracy measure of QP it can be said that Data-Sets 2, 8, 9, 10, 11, and 12 

provided the best results (higher than 67%), while Data-Sets 5 and 6 resulted in 
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lower values  of about 63%.  On the other hand, Data-Sets 1, 3, 4, 7, and 13 provided 

the lowest QP values. 

 

For the classification using 2000 training samples, the BDB values were computed to 

be quite high (higher than 89%) for Data-Sets 2, 8, 9, 11, and 12, which provided the 

best results. For Data-Sets 10 and 14, the BDP was computed approximately as 88%. 

However, for Data-Sets 1, 3, 4, 5, 6, 7, and 13, the same evaluation factor resulted in 

rather lower values of about 81%. When the results are assessed using the accuracy 

measure of QP it can be said that Data-Sets 8, 10, 11, 12, and 14 provided the best 

results with the accuracy measure of higher than 67%. While Data-Sets 2 and 9 

resulted in moderate QP values of about 63%, Data-Sets 1, 3, 4, 5, 6, 7, and 13 

provided the lowest QP accuracies. 

 

 The effect of the training sample sizes on the classification accuracy is represented 

graphically in figures 4.34 and 4.35. As can be seen in these figures, based on the 

results obtained from this sub-area, increasing the sample size does not necessarily 

increase the BDP and QP values. 
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Figure 4. 34. The comparison of BDP values using 500, 1000, and 2000 training samples  

for Sub-Area I. 
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Figure 4. 35. The comparison of QP values using 500, 1000, and 2000 training samples  

for Sub-Area I. 

 

 

 

4.10.2.2. Sub-Area II  

 

The accuracy assessment results of the detected building patches using the SVM 

classification with 500, 1000, and 2000 training samples are given in table 4.21. The 

graphical representation of BDP and QP measurements is provided in figure 4.36. 

 

 

 

Table 4. 21. For Sub-Area II, the quantitative evaluation of the SVM classification using 500, 1000, 

and 2000 training samples. 

 
Train 500 Train 1000 Train 2000 Data-

Set BF MF BDP QP BF MF BDP QP BF MF BDP QP 

1 0.58 0.14 87.34 58.06 0.54 0.15 86.84 59.01 0.68 0.19 84.26 53.44 

2 0.47 0.11 90.44 63.40 0.39 0.11 90.49 66.83 0.41 0.10 90.71 66.28 

3 0.58 0.15 87.19 57.82 0.56 0.16 86.13 58.08 0.66 0.18 84.66 54.25 

4 0.58 0.15 87.16 58.04 0.53 0.15 86.99 59.43 0.68 0.18 84.40 53.62 

5 0.57 0.17 85.13 57.18 0.60 0.18 84.94 56.41 0.63 0.21 82.73 54.35 

6 0.67 0.17 85.40 54.41 0.60 0.18 85.04 56.20 0.64 0.19 83.75 54.42 

7 0.55 0.13 88.42 59.51 0.50 0.19 84.07 59.05 0.60 0.19 84.11 55.96 

8 0.50 0.10 90.70 62.28 0.42 0.10 90.77 65.62 0.40 0.10 90.63 66.43 

9 0.51 0.11 90.17 61.74 0.41 0.11 90.31 65.71 0.43 0.11 90.31 65.19 

10 0.49 0.10 91.31 63.26 0.42 0.10 90.78 65.68 0.42 0.10 91.11 65.74 

11 0.52 0.11 90.43 61.61 0.47 0.10 90.79 63.78 0.43 0.11 90.47 65.02 

12 0.50 0.10 91.21 62.68 0.47 0.10 90.65 63.61 0.43 0.10 90.70 65.21 

13 0.54 0.17 85.18 58.49 0.56 0.18 84.54 57.26 0.58 0.19 84.05 56.46 

14 0.55 0.12 89.22 59.70 0.50 0.11 89.72 61.95 0.46 0.11 89.74 63.54 
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Figure 4. 36. For each data set, the BDP and QP measurements computed for the classifications 

conducted using 500, 1000, and 2000 training samples in Sub-Area II. 

 

 

 

For Data-Sets 2, 8, 9, 10, 11, and 12, with the use of 500 training samples, the BDP 

values were computed to be higher than %90 providing the best building detection 

results. For Data-Sets 7 and 14, the BDP was computed to be approximately 89%. 

However, for Data-Sets 1, 3, 4, 5, 6, and 13, the same evaluation factor resulted in 

slightly lower values of about 87%. For Data-Sets 2, 8, 10, and 12, the SVM 

classification provided the highest QP values (higher than 63%), while for Data-Sets 

7, 11, and 14, the QP values were computed to be about 59%. On the other hand, for 

Data-Sets 1, 3, 4, 5, 6, and 13, the QP values computed were relatively low. 

 

The results obtained using 1000 training samples were found to be quite similar to 

the results of 500 training samples. For Data-Sets 2, 8, 9, 10, 11, and 12, the BDP 

values were quite similar to the results of 500 training samples. For these data sets, 

the BDB values were computed to be higher than 90% and, for this case, these are 

the best building detection results. For Data-Set 14, the BDP was computed to be 

89.72%. However, for Data-Sets 1, 3, 4, 5, 7, and 13, the same evaluation factor 

resulted in relatively lower values. When the results are assessed using the accuracy 

measure of QP it can be said that Data-Sets 2, 8, 9, and 10 provided the best  results 
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(higher than 65%), while Data-Sets 11, 12, and 14 resulted in moderate (about 63%) 

values. Conversely, Data-Sets 1, 3, 4, 5, 6, 7, and 13 provided the lowest QP values. 

 

For the classification using 2000 training samples, the BDP values were computed to 

be quite high (higher than 89%) for Data-Sets 2, 8, 9, 10, 11, and 12, which provided 

the best building detection results. For Data-Set 14, the BDP was computed to be 

89.74%. However, for Data-Sets 1, 3, 4, 5, 6, 7, and 13, the same evaluation factor 

resulted in lower values. When the results are assessed using the accuracy measure of 

QP it can be said that Data-Sets 2, 8, 9, 10, 11, and 12 provided the best results with 

the accuracy measure of higher than 65%. While Data-Set 14 resulted in moderate 

QP values (63.54%), Data-Sets 1, 3, 4, 5, 6, 7, and 13 provided the lowest QP 

accuracies. 

 

In figures 4.37 and 4.38, the effect of the training sample sizes on the classification 

accuracy is represented. As can be seen in these figures, based on the results obtained 

from this sub-area, increasing the sample size does not increase the BDP and QP 

values. 
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Figure 4. 37. The comparison of BDP values using 500, 1000, and 2000 training samples  

for Sub-Area II. 
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Figure 4. 38. The comparison of QP values using 500, 1000, and 2000 training samples  

for Sub-Area II. 

 

 

 

4.10.2.3. Sub-Area III 

 

For sub-area III, the accuracy assessment results of the detected building patches 

using the SVM classification with 500, 1000 and 2000 training samples are given in 

table 4.22. The graphical representation of BDP and QP measurements using 14 data 

sets is provided in figure 4.39. 

 

 

 
Table 4. 22. For Sub-Area III, the quantitative evaluation of the SVM classification using 500, 1000, 

and 2000 training samples. 

 

Train 500 Train 1000 Train 2000 Data-

Set BF MF BDP QP BF MF BDP QP BF MF BDP QP 

1 0.46 0.10 91.07 64.09 0.42 0.09 91.39 65.84 0.41 0.08 92.29 67.14 

2 0.34 0.04 95.79 72.20 0.31 0.04 96.12 73.86 0.29 0.04 95.77 74.94 

3 0.48 0.09 91.54 63.42 0.44 0.09 91.55 65.16 0.41 0.09 91.80 66.66 

4 0.50 0.10 91.22 62.53 0.45 0.10 91.29 64.83 0.41 0.09 91.79 66.61 

5 0.39 0.09 92.11 67.88 0.39 0.08 92.32 67.70 0.39 0.08 92.69 68.03 

6 0.45 0.07 93.88 65.96 0.45 0.06 93.94 65.99 0.43 0.07 93.81 66.68 

7 0.52 0.09 92.15 62.32 0.44 0.09 91.58 65.12 0.41 0.08 92.64 67.26 

8 0.34 0.05 95.65 72.26 0.32 0.04 96.07 73.34 0.29 0.04 95.79 75.14 

9 0.33 0.05 95.50 72.39 0.34 0.03 96.81 73.08 0.29 0.04 96.14 75.25 

10 0.37 0.04 95.95 71.01 0.34 0.04 96.26 72.36 0.33 0.04 96.61 73.14 

11 0.32 0.05 95.27 72.82 0.31 0.04 96.61 74.10 0.28 0.04 96.20 75.89 

12 0.35 0.04 95.71 71.70 0.33 0.04 96.10 72.83 0.32 0.03 96.65 73.73 

13 0.40 0.07 93.72 68.21 0.43 0.06 94.22 66.93 0.42 0.06 94.38 67.68 

14 0.36 0.05 95.50 71.22 0.34 0.04 95.89 72.20 0.34 0.03 96.81 72.93 
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Figure 4. 39. For each data set, the BDP and QP measurements computed for the classifications 

conducted using 500, 1000, and 2000 training samples in Sub-Area III. 

 

 

 

For Data-Sets 2, 8, 9, 10, 11, 12, and 14, with the use of 500 training samples, the 

BDP values were computed to be higher than 95% providing the best results. For 

Data-Sets 6 and 13, the BDP values were computed to be approximately 94%. 

However, for Data-Sets 1, 3, 4, 5, and 7, the same evaluation factor resulted in 

relatively lower values of about 91%. The SVM classification conducted using Data-

Sets 2, 8, 9, and 11 provided the best QP values (higher than 72%), while for Data-

Sets 10, 12, and 14, the QP values were computed to be about 71%.  On the other 

hand, for Data-Sets 1, 3, 4, 5, 6, 7, and 13, the QP values computed were relatively 

low. 

 

The results of the building detection procedure performed through SVM 

classification using 1000 training samples were found to be quite similar to the 

results of using 500 training samples. For Data-Sets 2, 8, 9, 10, 11, and 12, the BDP 

values were computed to be higher than 96% providing, for this case, the best results. 

For Data-Sets 6, 13, and 14, the BDP values were computed to be about 94%. 

However, for Data-Sets 1, 3, 4, 5, and 7, the same evaluation factor resulted in 

relatively lower values. When the results are assessed using the accuracy measure of 
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QP it can be said that Data-Sets 2, 8, 9, and 11 provided the best results (higher than 

73%), while Data-Sets 10, 12, and 14 resulted in moderate QP values (about 72%).  

On the other hand, Data-Sets 1, 3, 4, 5, 6, and 7, provided the lowest (lower than 

68%) QP values. 

 

For the classification using 2000 training samples, the BDP values were computed to 

be remarkably high (higher than 95%) for Data-Sets 2, 8, 9, 10, 11, 12, and 14 

providing the best results for this case. For Data-Sets 6 and 13, the BDP values were 

computed to be about 94%. However, for Data-Sets 1, 3, 4, 5, and 7, the same 

evaluation factor resulted in slightly lower values of about 92%. When the results are 

assessed using the accuracy measure of QP it can be said that Data-Sets 2, 8, 9, and 

11 provided the best results with the accuracy measure of about 75%. While Data-

Sets 10, 12, and 14 resulted in moderate QP values of about 73%, Data-Sets 1, 3, 4, 

5, 6, 7, and 13 provided the lowest accuracies. 

 

The effect of the training sample sizes on classification accuracy is represented in 

figures 4.40 and 4.41. As can be seen in these figures, for most of the data-sets used, 

increasing the sample size increases the BDP and QP accuracies slightly.  
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Figure 4. 40. The comparison of BDP values using 500, 1000, and 2000 training samples  

for Sub-Area III. 
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Figure 4. 41. The comparison of QP values using 500, 1000, and 2000 training samples  

for Sub-Area III. 

 

 

 

When the SVM classification accuracies computed for three sub-areas are evaluated 

it can be stated that, the BDP values were found to be considerably high staying 

between 80% and 97%. In SVM classification, the use of additional bands improves 

the results significantly. In this study, it was proven that the inclusion of an nDSM as 

ancillary data is very important. It was also found that in most cases, using an NDVI 

image as an additional band also increases the accuracy but not as high as nDSM. 

Using both the nDSM and NDVI images as additional bands in the classification 

process together with the original bands (B1, B2, B3 and B4) increases the BDP and 

QP values considerably. But, unexpectedly the inclusion of the 1
st
, 2

nd
, 3

rd
, and 4

th
 

Principal Components (BPC1, BPC2, BPC3, and BPC4) into the classification process did 

not lead to prominent difference in the accuracy level.  

 

Concerning the effect of training sample size on classification accuracy, it can be 

stated that generally increasing the training size increases the accuracy. However, in 

the present case the increase was not observed to be more than 3%. The results 

obtained in this study indicate that, for a high resolution image measuring about 2000 

pixels x 2000 lines, smaller training size (i.e. 500 pixels) appear to be enough to 

perform SVM classification. The SVM classification uses the training samples that 

lie at the edge of the class distributions in feature space. Therefore, when using SVM 

Classifier, providing complete description of the classes is not necessary and a small 

set of training samples would be enough. The accuracy of a SVM classification 
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depends not so much on the size of input training data but more on the location of 

training data in the feature space. 

 

 



 93 

CHAPTER 5 
 

 

BUILDING DELINEATION BASED ON HOUGH TRANSFORM AND 

BOUNDARY TRACING TECHNIQUES 

 

  

 

In this chapter, the building boundary delineation from the building patches is 

described. Two approaches were developed for delineating the building boundaries, 

which are based on (i) Hough transform and (ii) Boundary tracing. First, the 

methodology of the Hough transform based approach is given, the processing steps 

are described and the results of the delineation process are provided. Then, the 

methodology of the Boundary tracing based approach is given, the processes are 

explained and the results are presented. Finally, the results obtained from two 

approaches are compared and discussed in detail. 

 

After detecting the building patches (Chapter 4), the next step is the delineation of 

these patches to obtain the building boundaries. The building detection process 

described in the previous chapter provides the area of interest for delineating the 

buildings. Once the areas of interests are known the unnecessary edges that belong to 

objects other than buildings are excluded. The previously detected building patches 

are in raster form. To obtain the building boundaries, the detected building patches 

must be converted into vector form.  

 

The first approach starts with an edge detection which is followed by Hough 

transform and perceptual grouping. In the second approach, the previously detected 

edges are vectorized using the Boundary tracing algorithm and the results are refined 

using a line simplification algorithm and vector filters. The general flowchart that 
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shows the basic steps of the proposed building delineation from the high resolution 

satellite images is given in figure 5.1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. 1. The delineation of building boundaries. 

 

 

5.1. Building Delineation Based on Hough Transform 

 

The man-made objects usually have shapes with straight and circular edges that 

project to straight and elliptical boundaries in an image and therefore, using Hough 

transform may be effective to delineate the building boundaries. Thus, in this study, 

the previously detected building patches were applied a Hough transform for 

delineating the building boundaries.  

 

Although the predominant building shape is rectangular in the study area, there are 

also buildings with different shapes. Therefore, in the present study, the delineation 

process was carried out for the rectangular and circular shaped buildings.  
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Refinement 

Building 
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Figure 4.1 
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5.1.1. The Methodology 

 

The flowchart of the developed approach is given in figure 5.2. Initially the edges are 

detected using an edge detection algorithm. The resulting image is a binary image 

that shows the edges of the building patches. These edges that are in raster form are 

converted into vector form using a Hough transform, which is a widely used method 

to extract lines or curves that form the objects. After detecting the lines or curves in 

vector form, the next step is grouping them perceptually to obtain the building 

boundaries.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. 2. The flowchart of Hough transform based approach. 
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If the orientations of the objects are different, then the Hough transform may not 

provide good results. In addition, in the building delineation stage, especially for the 

complex buildings (such as “C” shape and “S” shape buildings), it becomes 

important to deal with each patch individually. Otherwise, the patches close to each 

other may not be delineated successfully. Therefore, to handle these problems, the 

patches were delineated sequentially one after the other. To do that each candidate 

building patch was labeled using the label matrix operation. The pixels that belong to 

separate building patches were assigned unique integers starting from 1 to the 

number of candidate building patches, and the background pixels were assigned the 

value of 0. This is a very useful tool because it allows objects to be separated and 

analysed individually. Then, each patch was delineated independently using a label 

matrix. The schematic representation of a label matrix generation is given in figure 

5.3. Next, the corresponding original values of the building patches are sequentially 

generated. After that, the developed Hough transform and Boundary tracing based 

approaches are applied to these candidate building patches for delineating the 

boundaries.  

 

 

 

  
(a) (b) 

 

Figure 5. 3. The schematic representation of (a) a binary image that includes separated components 

and (b) generated label matrix. 
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5.1.2. Delineation of the Rectangular Shape Buildings  

 

The shapes of the buildings are usually rectangle, the mutual lines are usually 

parallel to each other, and the adjacent lines intersect at right angles. To delineate the 

boundaries of the rectangular buildings, the edges were detected first using the 

Canny Edge Detection algorithm. Then, the Hough transform was used to vectorize 

the detected edges. Finally, the vector lines were grouped to generate the building 

boundaries. 

 

5.1.2.1. Edge Detection  

 

To extract the edges from the previously detected building patches, the Canny Edge 

Detection algorithm was used. The Canny Edge Detector produces one pixel wide 

edges and connects the broken lines that are important for further processing. The 

edges are the pixels, where there is an abrupt change in the intensity level of pixels 

and they are important sources for finding the object boundaries. In the proposed 

approach, the patches are processed one at a time. Therefore, processing the 

candidate building patches only decreases the number of unnecessary edges. The 

edge detection operation results in a binary image that contains the edge segments of 

the buildings.  

 

The Canny Edge Detector (Canny, 1983 and Canny, 1986) is a complicated approach 

for generating an edge map from an image. The steps followed for the Canny Edge 

Detection are as follows (Sonka et al., 1998): 

 

• Smoothing the image with a Gaussian filter, 

• Computing the gradient magnitude and orientation using finite-difference 

approximations for the partial derivatives, 

• Applying non-maxima suppression to the gradient magnitude, and 

• Using a hysteresis thresholding algorithm to detect and link edges. 
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Initially a Gaussian Filter (Equation 5.1) is applied to remove the noise and details in 

the image and also to smooth the image. The standard deviation (σ) determines the 

width of the filter. The larger σ removes the noise, while smoothes away the week 

edges. Then, to find the edge strength the gradient magnitude is computed (Equation 

5.2). 
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After computing the gradient, the locations of the edges are found by using non-

maximal suppression, which thins the wide edges in gradient magnitude to the one 

pixel wide edges.  

 

The algorithm for the Non-Maximal Suppression is as follows (Sonka et al., 1998): 

 

• Quantize edge directions eight ways according to the 8-connectivity, 

• For each pixel that is non-zero edge magnitude, inspect the two adjacent 

pixels indicated by the direction of its edge, 

• If the edge magnitude of either of these two exceeds that of the pixel under 

inspection, mark it for deletion, and 

• After inspecting all pixels, re-scan the image and delete the marked edges. 

 

Although the image is smoothed initially, the non-maxima suppressed magnitude 

image may include many false edges caused by noise and fine texture. To handle this 

problem, a threshold is applied to the image. In Canny Edge Detection, a more useful 

thresholding “hysteresis thresholding”, which uses two thresholds Tlow and Thigh, is 

used. Of these thresholds, Thigh is used to determine the definite edges. Then, these 

pixels are tried to grow by searching the surrounding pixels with gradient magnitudes 

higher than Tlow because if the weak pixels are connected to these edges, they are 

more likely to be true edges in the image. 
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5.1.2.2. Hough Transform 

 

The vectorization of the edge image was carried out using the Hough transform, 

through which the analytically defined shapes, such as lines, circles or ellipses in 

images can be detected. This is a strong method and can even be used successfully 

for the extraction of overlapping or semi-occluded objects in noisy images (Ecabert 

and Thiran, 2004). 

 

In Hough transform, a point (xi, yi) and all the lines that pass from it are considered. 

Infinitely many lines pass through (xi, yi), all of which satisfy the slope-intercept 

equation: 

 

yi = axi +b            (Equation 5. 3) 

 

where a is the slope of the line and b is the y intercept. For all lines that pass 

through a point (xi, yi), there is a unique value of b for a: 

 

b = − xi a + yi               (Equation 5. 4) 

 

A point in the xy-plane corresponds to a line in the ab-plane (Duda and Hart, 1972). 

Figure 5.4 provides these concepts. 
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Figure 5. 4. (a) A line in the xy-plane and (b) the corresponding lines to the points in the normal plane. 
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The difficulty in slope-intercept approach is that the slope of the line move towards 

to infinity when the line is about vertical and the slope is 0 when the line is 

horizontal. To handle this problem, in the Hough transform normal representation of 

a line can be used (Equation 5.5).  

 

r = x cos θ + y sin θ           (Equation 5. 5) 

  

where, r represent the length and θ is an angle from the origin of a normal to 

the line.  

 

In other words, a line is described as being at an angle 90° from θ, and being r units 

away from the origin at its closest point. In figure 5.5 the line in xy-plane and its 

transformation to the rθ-plane is illustrated. By transforming all the possible lines 

through a point into the rθ-plane a sinusoidal curve is created which is unique to that 

point. A point in the xy-plane corresponds to a sinusoidal curve in the rθ-plane (Duda 

and Hart, 1972).  
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Figure 5. 5. (a) r, θ parameterization of lines in the xy-plane and (b) the sinusoidal curves in the rθ 

plane. 

 

 

 

The computational attractiveness of the Hough transform arises from sub-dividing 
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transform is implemented by quantizing the Hough parameter space into accumulator 

cells. In the beginning, the accumulator cells are set to zero. As the algorithm runs, 

each (xi, yi) is transformed into a discretized (r, θ) curve and the accumulator cells 

that lie along this curve are incremented. Resulting peaks in the accumulator array 

represent strong evidence that a corresponding straight line exists in the image. 

 

The algorithm for the Hough transform is as follows (Morse, 2000); 

 

Find edges on the candidate building patch image 

For each feature point  

For each possibility i in the accumulator that passes through the feature 

point 

Increment that position in the accumulator  

Find local maxima in the accumulator 

If desired, map each maximum in the accumulator 

Back to the image space 

 

5.1.2.3. Perceptual Grouping 

 

After vectorizing the edges, the next step is to group the lines using perceptual 

grouping and to delineate building boundaries. The algorithm to delineate the 

building boundaries using the perceptual grouping procedure is as follows;  

 

For each candidate building patch 

 Find the centroid point of the candidate building patch 

Merge the collinear lines, unless the distances between them is smaller 

than the determined threshold 

Select the longest Hough line segment 

Select the longest Hough line segment that is perpendicular to the longest 

Hough line segment 

Find the intersection point between these two line segments 
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Compute the distance between the intersection point and the centroid of 

the building patch  

Calculate the coordinates of a new point, which has equal distance from 

the centroid of the building patch and in the opposite direction. 

Draw lines that are parallel to the above two longest Hough lines and 

cross over the new point 

Delineate the building boundary 

End for 

 

As explained in the above algorithm, for each building patch, the first step is finding 

the centroid of the patch. Next, the collinear Hough lines are merged together, unless 

the distance between the line segments are smaller than the minimum distance 

between the buildings (Figure 5.6 (a)). Then, the dominant line is found (Figure 5.6 

(c)). In this study, the longest Hough line is accepted to be the dominant line because 

it is most likely that the dominant line represents the true edge of the building. After 

detecting the longest line, the second longest line perpendicular (90° ± 10°) to the 

dominant line is selected from the remaining Hough line segments (Figure 5.6 (d)). 

The boundaries of the building are delineated based on these two lines. Next, the 

intersection point of these two lines is calculated and these lines are extended or 

shortened to end with this point (Figure 5.6 (e)). After that, the distance between the 

intersection point and the centroid of the building patch is calculated and a new 

point, which has an equal distance from the centroid of the building patch in the 

opposite direction, is generated (Figure 5.6 (f)). Next, two new lines are drawn 

passing through the new point and one parallel to the longest line and the other 

parallel to the longest perpendicular line (Figure 5.6 (g)). As a final step, these four 

lines are combined to generate the building boundary (Figure 5.6 (h)). In figure 5.7, 

the schematic representation of a building delineation is shown. 
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(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

 
Figure 5. 6. The stages of perceptual grouping.  

 

 

 

The developed algorithm for delineating the boundaries of the rectangular buildings 

was implemented in the residential and industrial areas. The residential areas were 

grouped according to dwelling types as explained in chapter 3. 

 

In this study, the parameters used to delineate the rectangular buildings were divided 

into three groups that are related to (i) canny edge detection (high threshold, low 

threshold and sigma), (ii) Hough transform (theta resolution, r resolution and 

minimum line), and (iii) perceptual grouping (gap range and theta range).  

 

High Threshold (Thigh): The higher threshold of the hysteresis thresholding. In this 

study, it was taken as 0.4. 

 

Low Threshold (Tlow): The lower threshold of the hysteresis thresholding. In this 

study, it was taken as 0.3. 

 

Sigma (σ): It is the standard deviation of the Gaussian filter. In this study, the sigma 

value was used to be “1”. 
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⇓ 

 

Figure 5. 7. The schematic representation of the algorithm. 
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Theta Resolution (θresolution): It denotes the spacing of the Hough transform bins along 

the theta axis in degrees and this value was taken to be “1” in this study.  

 

r Resolution (rresolution): It states the spacing of the Hough transform bins along the 

intervals in the r axis and this value was taken to be “1” in this study. 

 

Mininum Line (Lmin): This parameter is used to decide which Hough lines are 

discarded. The lines that are shorter than this value are deleted. In this study, it was 

determined to be “1”. 

 

Gap range (Lgap): It is used to merge the collinear Hough line segments, when the 

distance between them is less than the specified proximity value. This value is 

determined regarding to the minimum distances between the buildings. If the gap 

between the lines is smaller than this value, these lines are grouped. 

 

Theta range (θrange): It is the flexibility range for the perpendicularity between the 

Hough line segments. In this study, the lines that have 90° ± 10° angles were 

grouped together. 

 

 

5.1.3. Delineation of the Circular Buildings  

 

Before delineating the circular buildings, the buildings that have circular shapes are 

grouped as follows: 

• “Circle” Shape Buildings, 

• “Ring” Shape Buildings, 

• “C” Shape Buildings, and 

• “S” Shape Buildings. 

 

To delineate the “circle” and the “ring” shape buildings, applying the edge detection 

and Circular Hough transform algorithms sequentially to the building patches is 

enough. However, to delineate the “C” and “S” shape buildings, the results of 

Circular Hough transform should be refined, due to the complexity of these shapes. 
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5.1.3.1. Delineating the “Circle” and “Ring” Shape Buildings  

 

The delineation of the “circle” and “ring” shape buildings consists of the following 

steps: 

 

• Smoothing the building patch images, 

• Edge Detection, and 

• Circular Hough Transform. 

 

•••• Smoothing the building patch images 

 

The aim of the smoothing process is to suppress noise or other small variations in the 

image. Blurring can be done with a uniform or non-uniform kernel. The most 

common example of the latter is Gaussian filter, in which the coefficients are 

samples from a two dimensional Gaussian function (Efford, 2000). 
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                                    (Equation 5. 6) 

 

The filter coefficients decrease in size with the increasing distance from the filter’s 

centre. Hence, more weight is given to the central pixels than the edge pixels. Larger 

values of σ produce more blurred images. The Gaussian smoothing has several 

advantages (Efford, 2000). First, the filter is rotationally symmetric. Therefore, there 

will be no directional bias in the amount of smoothing. Second, the Gaussian filter is 

separable that allows for fast computation. Third, more weight is given to the central 

pixels than the edge pixels. 

 

•••• Edge Detection 

 

A variety of methods using gradient information have been developed to relax the 

workload as well as the storage requirements for the classical Circular Hough 

transform (Davies, 1987). In this study, gradient based edge detection was used to 

detect the edge pixels. Gradient operators are based on local derivatives of the image 
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function. The derivatives are bigger where there are sudden variations in the image 

and smaller where there is no variation in the image. The gradient vector of g at (x0, 

y0) is as follows; 
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             (Equation 5. 7) 

 

In the present case, a Circular Hough transform was applied on the gradient field of 

the image of the building patches.  

 

•••• The Circular Hough Transform 

 

The original Hough transform was designed to detect lines and curves (Hough, 

1962). However, it can be extended to detect analytic shapes. The Circular Hough 

transform is a modified version of curve detection. The aim of Circular Hough 

transform is to extract circular objects from digital images. It is similar to the Hough 

transform for lines, but uses the parametric form for a circle. Each edge point (xi, yi) 

generates a circle in a 3D parameter space with radius r and the circle can be 

expressed with equation 5.8. 

 

(x - a)
2
 + (y - b)

2
 = r

2
                    (Equations 5. 8) 

 

The parametric representation of the circle is as given in equations 5.9 and 5.10. 

 

x = a + r cos(θ)                   (Equations 5. 9) 

y = b + r sin(θ)                  (Equations 5. 10) 

 

Therefore, the accumulator space for Circular Hough transform must be three 

dimensional (Figure 5.8) 
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Figure 5. 8. The Circular Hough transform parameter space. 

 

 

 

To find the circles using Circular Hough transform, for each edge point, a circle is 

drawn in the parameter space with the desired radius. The accumulator array is 

incremented for the coordinates that belong to the perimeter of the drawn circle. This 

process is performed for all edges. At the end of this process the highest numbers in 

the accumulator space corresponds to the centers of the circles in the image space 

(Figure 5.9). 
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Figure 5. 9. A Circular Hough transform (a) in x-y space and (b) in parameter space. 
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The algorithm for the Circular Hough transform is as follows (Pedersen, 2007; 

Morse, 2000): 

 

Find edges on the candidate building patch image 

For each edge point  

Draw a circle with center in the edge point with radius r  

Increment all coordinates that the perimeter of the circle passes 

through in the accumulator 

Find local maxima in the accumulator  

Map the found parameters (r, a, b) corresponding to the maxima back to the 

original image 

 

The parameters used in the Circular Hough transform include Segment_no, Radius 

range, and Tolerance value for concentric circles. 

 

Segment_no: The number of segments (points on the detected circle) determines the 

number of sides the "polygon" will have. The more the number of segments the 

smoother the circle (Figure 5.10). Therefore, in this study the segment number was 

used as 32. 

 

 

 

Seg_no: 4  

Error area: 36.33% 

Seg_no: 8 

Error area: 9.97% 

Seg_no: 16 

Error area: 2.56% 

Seg_no: 32 

Error area: 0.65% 

 

Figure 5. 10. Reduction in the error area as “Seg_no” increases from an initial value of 4 up to a final 

value of 32. The error area is calculated dividing the circular area, π*r2, by the inscribed polygon area, 

seg_no*r2.sin * (π/seg_no) * cos(π/seg_no). The error (black area) is getting smaller while the seg_no 

increases and is almost negligible for seg_no = 32 (Ujaldon et al., 2008). 
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Radius range: In the developed algorithm, the possible radius ranges (minimum and 

maximum values) of the circular buildings are determined by the user. 

 

Tolerance value for concentric circles:  For “ring”, “C” and “S” shape buildings; it is 

the case that there is concentric circles/semi-circles. For these cases a tolerance value 

is determined to detect the multiple circles that have same center point.  

 

5.1.3.2. Delineating the “C” Shape Buildings  

 

The steps followed to delineate the “C” Shape Buildings are as follows: 

 

• Smoothing the building patch images, 

• Edge Detection, 

• Circular Hough transform, 

• Semi-circle generation by evaluating the pixels under the circle points, 

• Finding the start/end points of concentric semi circles, and 

• Grouping the points and delineating the building boundaries.  

 

The first three steps are same as the steps followed for the delineation of the “circle” 

and “ring” shaped buildings. To delineate the “C” shape buildings, the circles are 

converted to semi-circles. Next, the start and end points of the semi-circles are 

determined. Then, the points are grouped to delineate the buildings. The schematic 

representation of delineating a “C” Shape building is given in figure 5.11. The 

algorithm is as follows: 

 

For each candidate building patches  

 Apply Circular Hough transform 

 If the pixel value under the circle points is not zero 

  Keep the point 

  Else 

   Delete the point 

  End if 
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  Compute the distances between the sequential circle points 

  Determine the start and end points of semi-circles 

  Group the semi-circle points and delineate the building boundary 

End for 

 

 

After applying the Circular Hough transform, the semi-circles are generated by 

evaluating the building patch pixels that correspond to the circle points (Figure 5.11 

(a)). If the pixel under the circle point is not a building pixel then, the point is 

deleted. Otherwise, the point is preserved (Figure 5.11 (b)). Using this process 

therefore, the semi-circles are detected. Next, to find the start and end points of the 

semi-circles, the distances between the sequential points are calculated (Figure 5.11 

(c)). Those points, between which the distance is the maximum, are determined to be 

the start and end points of the semi-circles (Figure 5.11 (d)). The points 

corresponding to semi circles are grouped sequentially starting from the start point 

and finishing at the end point of the outside circle. Then, the similar grouping 

process is also carried out from the end point to starting point of the inside circle to 

form the “C” shape building (Figure 5.11 (e) and (f)). 

 

5.1.3.3. Delineating the “S” Shape Buildings  

 

The steps to delineate the “S” Shape Buildings are as follows: 

 

• Smoothing the building patch image, 

• Edge Detection, 

• Circular Hough transform, 

• Semi-circle generation by evaluating the pixels under the circle points, 

• Finding the start and end points of the semi-concentric circles, 

• Finding the nearest points of the outside and inside semi-circles that have 

different centroids, and 

• Grouping the points and delineating building boundaries.  
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(a) (b) 

 

 

 
(c) (d) 

 

 

 

(e) (f) 

 

Figure 5. 11. The steps of the algorithm to delineate the “C” shape buildings. (a) The detected circles 

with segment number of 24 (b) Semi-circle generation by deleting the circle points that have non-

building pixels under them (c) Calculating the distances between sequential semi-circle points to 

determine the start and end points of the semi-circles (d) Detecting the determined start and end points 

of the outside and inside circles: SOC – EOC & SIC – EIC (e) Overlaying the delineated “C” shape 

building boundary with the building patch and (f) the final delineated boundary of the “C” shape 

building. 

EOC 

EIC 

The distances between the points 

SIC 

SOC 

d 
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The first five steps of delineating the “S” shape buildings are same as for the “C” 

shape buildings. Therefore, after the first five steps, the nearest points of the outside 

and inside semi-circles, which have different centroids, are found. Then, these points 

are grouped to delineate the buildings. The schematic representation of delineating 

an “S” shape building is given in figure 5.12. The algorithm for delineating the “S” 

shape buildings is as follows: 

 

For each candidate building patches  

  Apply Circular Hough transform 

  If the pixel value under the circle points is not equal to the zero 

   Keep the point 

  Else 

   Delete the point 

  End if 

  Compute the distances between the sequential circle points 

  Determine the start and end points of semi-circles 

Find the nearest points of the outside and inside semi-circles that have 

different centroids. 

  Group the semi-circle points and delineate the building boundary 

End for 

 

After applying the Circular Hough transform, the semi-circles are generated and the 

start and end points (S1, S2, E1, E2) of the semi-circles are found as explained for 

the “C” shape building delineation process (Figure 5.12 (a)-(c)). Then, the points of 

the inside semi-circle 1 and outside semi-circle 2, which are closest to each other, are 

detected. Similarly, the points of the inside semi-circle 2 and outside semi-circle 1, 

which are closest to each other, are also detected (Figure 5.12 (d)). Next, for each 

semi-circle, starting from the above detected closest points, those points falling 

inside the building patch (shown in pink color in figure 5.12 (d)) are deleted in 

clockwise direction. Finally, the semi-circle points are grouped sequentially to form 

the “S” shape building (Figure 5.12 (e)). 
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(a)  

 

 

 

(b) 

 

 

(c)  
 

Figure 5. 12. The steps of the developed algorithm to delineate “S” shape buildings. (a) The detected 

circles with segment number of 24. (b) Semi-circle generation by deleting the circle points that have 

non-building pixels under them. (c) The determined start and end points of the outside and inside 

circles: S1OC – E1OC & S1IC – E1IC and S2OC – E2OC & S2IC – E2IC. (d) Finding the nearest points of 

the inside and outside semi-circles (e) The delineated “S” shape building boundary overlaid with 

building patch. 
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(d)  

 

 

 

 

 

 

(e)  

Figure 5.12. Continued 

 
 

5.1.4. The Experimental Results 

 

To assess the results of building delineation, the areas were classified into the 

categories TP, TN, FP, and FN, which were described in Chapter 4.9.2. Then, for 

each urban block, the overall quality measures of BF, MF, BDP, and QP were 

calculated (Chapter 4.9.2).  

 

The developed algorithm was tested in the residential and industrial urban areas that 

contain different shapes and dwelling types. In figure 5.13, the delineated building 

boundaries are illustrated for six urban blocks that contain the detached rectangular 

buildings. Of these urban blocks, Urban Block 1 includes the low-rise buildings (two 

storeys), Urban Block 6 contains high-rise buildings (eight storeys) and the 

remaining urban blocks (Urban Blocks 2, 3, 4, and5) contain middle-rise buildings 

(about four or five storeys).  
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(a) Urban Block 1 

  
(b) Urban Block 2 (c) Urban Block 3 

  

(d) Urban Block 4 (e) Urban Block 5 

 
(f) Urban Block 6 

 

Figure 5. 13. The delineated detached building boundaries using Hough transform based approach for 

urban blocks that contain (a) low-rise, (b - e) middle-rise, and (f) high-rise buildings. 
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By evaluating the results visually it can be stated that almost all buildings were 

delineated successfully. In the area there were a total of 107 detached buildings. Of 

these buildings, 105 were delineated successfully with the accuracy rate of 98.13% 

(Table 5.1). In Urban Block 3 and Urban Block 6, two buildings were not able to be 

delineated because these buildings were quite small and low.  

 

 

 
Table 5. 1. Error matrix of the delineated building boundaries using Hough transform based approach 

for the detached dwelling types. 

 

 Count % 

Delineated Buildings / 

Reference Buildings 

105 / 107 98,13 / 100 

 

 

 

The quality assessments for the selected six urban blocks are given in table 5.2. For 

all urban blocks, the delineation was observed to be quite accurate with the BDPs 

higher than 92.44% and QPs higher than 69.70%. The average BDP and QP values 

were computed to be 95.04% and 77.95%, respectively. On the other hand, the 

average BF, which gives the rate of false positive areas, and the average MF, which 

gives the rate of false negative areas, were computed to be 0.23 and 0.05, 

respectively.  

 

 

Table 5. 2. The quality assessment results of the urban blocks that contain detached buildings using 

Hough transform based approach. 

 

  TP FP FN BF MF BDP QP 

Urban Block 1 7700 1545 630 0.20 0.08 92.44 77.97 

Urban Block 2 6976 1655 262 0.24 0.04 96.38 78.44 

Urban Block 3 8704 1099 644 0.13 0.07 93.11 83.32 

Urban Block 4 7112 2080 203 0.29 0.03 97.22 75.70 

Urban Block 5 5800 1043 259 0.18 0.04 95.73 81.67 

Urban Block 6 5550 2229 184 0.40 0.03 96.79 69.70 

Average 41842 9651 2182 0.23 0.05 95.04 77.95 

 

 

The results of building delineation obtained for the semi-detached buildings are 

illustrated in figure 5.14. The Urban Blocks 1, 2, 3, and 4 contain middle-rise 

buildings and Urban Block 6 contains high-rise buildings.  
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(a) Urban Block 1  (b) Urban Block 2 

 

 

 

 
(c) Urban Block 3 (d) Urban Block 4 

 
(e) Urban Block 5 

 

Figure 5. 14. The delineated semi-detached building boundaries using Hough transform based 

approach for urban blocks that contain (a - d) middle-rise and (e) high-rise buildings. 

 

 

The visual assessment of the results indicate that, almost all buildings were 

delineated successfully (figure 5.14). Of the total 77 semi-detached buildings 
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contained in these urban blocks, 74 were delineated successfully providing an 

accuracy of 96.10% (table 5.3). As expected, the small buildings in Urban Blocks 2 

and 3 were not able to be delineated. In Urban Blocks 1, 2, and 5, several buildings 

have similar reflectance values with the other objects, such as pavements and roads. 

However, the developed algorithm was able to delineate these buildings.  

 

 

 
Table 5. 3. Error matrix of the delineated building boundaries using Hough transform based approach 

for the semi-detached dwelling types. 

 
 Count % 

Delineated Buildings / 

Reference Buildings 

74 / 77 96,10 / 100 

 

 

The results of the quality assessment for five urban blocks are given in table 5.4. The 

results indicate that the delineation process is quite satisfactory with the BDP values 

higher than 94.57% and the QP values higher than 74.57%. In addition, the BFs, 

which represent the rate of incorrectly labeled buildings, were measured lower than 

0.29; while the MFs, which represent the rate of missed buildings, were computed to 

be lower than 0.06. The average BDP and QP values were computed to be 95.86% 

and 81.63%, respectively. In addition, the average BF and MF values were found to 

be 0.18 and 0.04, respectively. 

 

 

Table 5. 4. The quality assessment results for urban blocks that contain semi-detached buildings using 

Hough transform based approach. 

 
  TP FP FN BF MF BDP QP 

Urban Block 1 10572 1466 607 0.14 0.06 94.57 83.61 

Urban Block 2 9066 1477 449 0.16 0.05 95.28 82.48 

Urban Block 3 5469 1607 258 0.29 0.05 95.50 74.57 

Urban Block 4 4936 1168 106 0.24 0.02 97.90 79.48 

Urban Block 5 7521 1112 204 0.15 0.03 97.36 85.11 

Average 37564 6830 1624 0.18 0.04 95.86 81.63 

 

 

For five urban blocks, the delineated building boundaries are illustrated in figure 

5.15.  
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(a) Urban Block 1 (b) Urban Block 2 

 

 

 
(c) Urban Block 3 (d) Urban Block 4 

 

 

 

 

(e) Urban Block 5 (f) Urban Block 6 

 
(g) Urban Block 7 

 

Figure 5. 15. The delineated terraced building boundaries using Hough transform based approach for 

urban blocks that contain (a - d) low-rise and (e - g) middle-rise buildings. 
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The visual assessment of the results indicate that the building boundaries were 

delineated successfully (figure 5.15). Of the total 123 buildings, 122 were delineated 

successfully (table 5.5). In Urban Block 7 the small, semi-occluded building was not 

able to be delineated. It was observed that buildings smaller than 50m
2
 were not able 

to be detected because when removing the artefacts in the building detection part of 

this study (Chapter 4), the patches smaller than a 50m
2
 were considered to be 

artefacts and therefore, they were eliminated from the building patch image. In 

addition, in Urban Block 1, two buildings, which are close to each other but not 

adjoined, were delineated erroneously as a joint one building. 

 

 
Table 5. 5. Error matrix of the delineated building boundaries using Hough transform based approach 

for terraced dwelling type. 

 
 Count % 

Delineated Buildings / 

Reference Buildings 

122 / 123 99,19 / 100 

 

 

 

The results of the quality assessment for the selected seven urban blocks are given in 

table 5.6. The average BDP and QP values were computed to be 95.21% and 

78.14%, respectively. In addition, the average BF and MF values were found to be 

0.23 and 0.05, respectively.  

 

 

 
Table 5. 6. The results of quality assessment for urban blocks that include the terraced buildings using 

Hough transform based approach. 

 

  TP FP FN BF MF BDP QP 

Urban Block 1 7402 2152 131 0.29 0.02 98.26 76.43 

Urban Block 2 6537 1920 240 0.29 0.04 96.46 75.16 

Urban Block 3 8795 1362 1155 0.15 0.13 88.39 77.75 

Urban Block 4 8909 1876 344 0.21 0.04 96.28 80.05 

Urban Block 5 8777 2455 318 0.28 0.04 96.50 75.99 

Urban Block 6 5866 1006 176 0.17 0.03 97.09 83.23 

Urban Block 7 5813 1180 259 0.20 0.04 95.73 80.16 

Average 52099 11951 2623 0.23 0.05 95.21 78.14 

 

 

For rectangular buildings, the average quality assessment results are given in table 

5.7. The results indicate that using the developed approach the building boundaries 

can be delineated quite successfully with the BDP and QP accuracies of 93.54% and 
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79.05%, respectively (Table 5.7). Of the total 307 buildings, 301 were delineated 

successfully providing the accuracy of 98.05%. 

 

Table 5. 7. The average quality assessment results for the rectangular residential buildings using 

Hough transform based approach. 

 
  TP FP FN BF MF BDP QP 

Residential Rectangular  

Buildings 

131505 

 

28432 

 

6429 

 

0.22 

 

0.05 

 

95.34 

 

79.05 

 

 

 

The results of the delineated circular buildings are shown in figure 5.16. The quality 

assessment results are provided in table 5.8. The visual assessments of the results 

indicate that the circular buildings, even the complex ones, can be delineated 

successfully with the developed approach. The results also indicate that the accuracy 

of delineation is quite high, 78.74% for BDP and 66.81% for QP. 

 

 

 

 

(a) (b) 

  
(c) (d) 

Figure 5. 16. The delineated circular building boundaries using Hough transform approach: (a) the 

circle shape buildings, (b) the ring shape buildings, (c) the C shape buildings, and (d) the S shape 

buildings. 
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Table 5. 8. The quality assessment results for the circular buildings using Hough transform based 

approach. 

 
  TP FP FN BF MF BDP QP 

Circle Shape 582 318 62 0.55 0.11 90.37 60.50 

Ring Shape 312 15 38 0.05 0.12 89.14 85.48 

C Shape 1051  190  480  0.19  1.47  68.50 61.00 

S Shape 1691 253 598 0.15 0.35 73.88 66.52 

Average 2585 586 698 0.23 0.27 78.74 66.81 

 

 

The developed algorithm was also tested in industrial areas, where the delineated 

boundaries are illustrated in figure 5.17. The visual assessments of the results 

indicate that the delineation process was quite satisfactory. 

 

  
(a)  (b)  

 

Figure 5. 17. The delineated rectangular building boundaries using Hough transform based approach 

for industrial areas; (a) industrial area 1 and (b) industrial area 2. 

 

 

For the industrial areas, the quality assessment results are given in table 5.9. The 

average BDP and QP values were computed to be 93.45% and 79.51%, respectively. 

On the other hand, the average BF and MF values were found to be 0.19 and 0.07, 

respectively.  

 

Table 5. 9. The quality assessment results for industrial buildings using Hough transform based 

approach. 

 
  TP FP FN BF MF BDP QP 

Industrial Area 1 217364 31439 13458 0.14 0.06 94.17 82.88 

Industrial Area 2 93955 26981 8354 0.29 0.09 91.83 72.67 

Average 311319 58420 21812 0.19 0.07 93.45 79.51 
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5.2. Building Delineation Based on Boundary Tracing  

 

In this part of the study, a method is presented for automatic building delineation 

from the previously detected building patches using the Boundary tracing algorithm. 

The boundary delineation process includes, Canny edge detection, Boundary tracing, 

Douglas Peucker line simplification, and vector filters.  

 

5.2.1. The Methodology 

 

The developed approach consists of four steps (Figure 5.18), which are (i) edge 

detection, (ii) Boundary tracing, (iii) line simplification and (iv) filtering the vector 

line segments. First, the edges of the previously detected building patches are 

detected using the Canny edge detection algorithm. Then, these edges are vectorized 

using the Boundary tracing algorithm and they are simplified to remove the 

undulations. Finally, the topological errors are removed using the vector filters to 

obtain the regularized boundaries.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. 18. The flowchart of the Boundary tracing based approach.  
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5.2.2. Edge Detection:  

 

To extract the edges, the “Canny Edge Detection” algorithm was used. The 

description of the Canny Edge Detection algorithm is provided in Chapter 5.1.2.1. 

 

5.2.3. Boundary Tracing 

 

 
After performing the edge detection operation, the edge segments were vectorized 

using the Boundary tracing algorithm, which detects the boundaries of the objects in 

the binary image. Therefore, the input data should be a binary image, in which 

nonzero pixels represent an object while the pixels with zero values correspond to the 

background. In the vectorization algorithm used, initially the starting point and the 

direction are determined and the row and column coordinates of the starting point are 

recorded (figure 5.19). Then, the coordinates of the next object pixel connecting to 

the starting point are detected in the search direction. For each pixel belonging to the 

object considered, the row and column coordinates are determined in the binary 

image by following the specified direction. During the Boundary tracing process, the 

boundary pixels of the buildings are analysed and the vector line segments are 

generated from the input binary image. The vector lines are then generated by 

connecting the coordinates of the detected object pixels. To trace the boundaries 

accurately, the method analyzes the shape, width, and the intersections of the 

boundaries. 

 

 

 

 
 

 

 

First Step: North 

 

Direction: Clockwise 

 

         Boundary Pixel 

 

         Starting Point 

 
Figure 5. 19. The first step and the direction parameters used for the Boundary tracing algorithm 
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5.2.4. Line Simplification  

 

There will be undulations on the generated vector boundaries and therefore, they 

should be removed using a line simplification algorithm. In the present case, the 

simplifications of the lines were carried out using the well known Douglas-Peucker 

algorithm, which is one of the most widely used line simplification algorithms. This 

algorithm uses the closeness of a vertex to an edge segment to simplify the lines 

(Sunday, 2007). This method recursively subdivides a polygon until the vertexes can 

be replaced by a straight line segment, within the tolerance. The algorithm starts with 

a coarse initial estimation, which is an edge.  Then, the distance between this edge 

and vertices are calculated. If there are vertices that have distance more than a 

specified tolerance, ε > 0, then the vertex that is farthest from the edge is added to the 

simplification. In this way, a new estimation for the simplified polygon is created. 

This process continues recursively for each edge of the building boundaries until all 

vertices of the original polygon are within the tolerance of the simplification.  

 

In the present case, the unimportant geometric details in the polygonal objects were 

eliminated using the “reducem” function of the Mapping Toolbox of Matlab. This 

function utilizes the Douglas-Peucker algorithm (Matlab 7 Manual, 2005).  

 

5.2.5. Vector Filtering 

 

 
After simplifying the line segments using the “Douglas Peucker” algorithm, the 

topological errors were removed using the vector filters of the TNT image 

processing/analysis software. The vector filters used in this study include Sliver 

Polygons, Dangling Lines, Remove Bubbles, Undershoots, Remove Islands, and 

Dissolve Polygons (TNTmips Manual, 2002). The ‘Sliver Polygons’ function 

removes thin or small areal polygons that commonly occur along the borders of the 

polygons. The “Dangling Lines” filter removes the small lines that are not attached 

to other elements or only one end attached to another element. The small polygons 

that are usually artefacts were removed using the “Remove Bubles” function. The 

“Undershoots” filter closes gaps by extending the line within the specified snap 

distance. The “Remove Islands” filter removes the island polygons (polygon lie 
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entirely within other polygon) and the “Dissolve Polygons” filter generates a new 

vector object removing lines between adjacent polygons that share the specified 

attribute. The building boundaries obtained after the vector filtering operation 

became the final building boundaries of the Boundary tracing based approach. 

 

5.2.6. The Experimental Results 

 

The developed algorithm was tested using the residential and industrial urban areas 

that contain different shapes and dwelling types. In figure 5.20, the delineated 

building boundaries for detached rectangular buildings are given. The results indicate 

that almost all buildings were delineated successfully. Of the total 107 detached 

buildings located in these blocks, 105 were successfully delineated providing an 

accuracy of 98.13% (table 5.10). Unfortunately, the approach was not successful for 

delineating the small buildings.  

 

 

 

Table 5. 10. Error matrix of the delineated building boundaries using Boundary tracing based 

approach for detached dwelling type. 

 
 Count % 

Delineated Buildings / 

Reference Buildings 

105 / 107 98,13 / 100 

 

 

 

For the six urban blocks tested, the quality assessment results are provided in table 

5.11. The average building detection (BDP) and quality (QP) percentages were 

computed to be 86.97% and 78.86%, respectively. On the other hand, the average 

branching factor (BF) and the miss factor (MF) values were found to be 0.12 and 

0.15, respectively.  
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(a) Urban Block 1 

  
(b) Urban Block 2 (c) Urban Block 3 

  
(d) Urban Block 4 (e) Urban Block 5 

 
(f) Urban Block 6 

 

Figure 5. 20. The delineated detached building boundaries using Boundary tracing approach for urban 

blocks that contain (a) low-rise, (b - e) middle-rise, and (f) high-rise buildings. 
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Table 5. 11. The quality assessment results for six urban blocks that contain detached buildings using 

Boundary tracing based approach. 

 
  TP FP FN BF MF BDP QP 

Urban Block 1 6766 397 1564 0.06 0.23 81.22 77.53 

Urban Block 2 6872 1113 366 0.16 0.05 94.94 82.29 

Urban Block 3 7839 557 1509 0.07 0.19 83.86 79.14 

Urban Block 4 6451 812 864 0.13 0.13 88.19 79.38 

Urban Block 5 5019 305 1040 0.06 0.21 82.84 78.87 

Urban Block 6 5342 1343 392 0.25 0.07 93.16 75.48 

Average 38289 4527 5735 0.12 0.15 86.97 78.86 

 

 

The results of building delineation obtained for the semi-detached buildings are 

illustrated in figure 5.21. Of the total 77 semi-detached buildings contained within 

these urban blocks, 74 were delineated successfully providing an accuracy of 96.10% 

(Table 5.12). In Urban Blocks 2 and 3, the small buildings were not able to be 

delineated. However, the buildings that have similar reflectance values with other 

classes were able to be delineated in building blocks 1, 2, and 5.  

 

 

Table 5. 12. Error matrix of the delineated building boundaries using Boundary tracing based 

approach for the semi-detached dwelling type 

 

 Count % 

Delineated Buildings / 

Reference Buildings 

74 / 77 96,10 / 100 

 

 

 

The results of the quality assessment for the selected five urban blocks are given in 

table 5.13. The average building detection percentage (BDP) and the average quality 

percentages (QP) were computed as 91.10% and 82.10%, respectively. On the other 

hand, the average branching factor (BF) and the average miss factor (MF) values 

were found to be 0.12 and 0.10, respectively.  
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(a) Urban Block 1 (b) Urban Block 2 

 

 

 
 

 
(c) Urban Block 3 (d) Urban Block 4 

 
(e) Urban Block 5 

 

Figure 5. 21. The delineated semi-detached building boundaries using Boundary tracing approach for 

urban blocks that contain (a - d) middle-rise and (e) high-rise buildings. 
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Table 5. 13. The quality assessment results for urban blocks that contain semi-detached buildings 

using Boundary tracing based approach. 

 
  TP FP FN BF MF BDP QP 

Urban Block 1 9818 751 1361 0.08 0.14 87.83 82.30 

Urban Block 2 8981 1350 534 0.15 0.06 94.39 82.66 

Urban Block 3 5104 784 623 0.15 0.12 89.12 78.39 

Urban Block 4 4808 986 234 0.21 0.05 95.36 79.76 

Urban Block 5 6988 421 737 0.06 0.11 90.46 85.78 

Average 35699 4292 3489 0.12 0.10 91.10 82.10 

 

 

 

 
The building delineation results of the terraced buildings are illustrated in figure 

5.22. The results indicate that the building boundaries were delineated successfully. 

Of the total 123 buildings, 122 were delineated correctly representing a high 

percentage of accuracy (table 5.14). However, in Urban Block 7, one of the buildings 

was not able to be delineated because it is small and its roof is occluded by the trees. 

In addition, the buildings that are very close to each other but not adjoined were 

delineated erroneously as a joined building. 

 

 

 

Table 5. 14. Error matrix of the delineated building boundaries using Boundary tracing based 

approach for the terraced dwelling type. 

 
 Count % 

Delineated Buildings / 

Reference Buildings 

122 / 123 99,19 / 100 

 

 

 

For these seven blocks, the results of the quality assessment are given in table 5.15. 

The average building detection percentage (BDP) and the average quality percentage 

(QP) values were computed as 92.81% and 76.42%, respectively. In addition, the 

average branching factor (BF) and the average miss factor (MF) values were found to 

be 0.23 and 0.08, respectively.  
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(a) Urban Block 1 (b) Urban Block 2 

  
(c) Urban Block 3 (d) Urban Block 4 

 

 

 

 

(e) Urban Block 5 (f) Urban Block 6 

 
(g) Urban Block 7 

 

Figure 5. 22. The delineated terraced building boundaries using Boundary tracing approach for urban 

blocks that contain (a - d) low-rise and (e - g) middle-rise buildings. 
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Table 5. 15. The quality assessment results for the urban blocks that contain terraced buildings using 

Boundary tracing based approach. 

 
  TP FP FN BF MF BDP QP 

Urban Block 1 7283 2372 250 0.33 0.03 96.68 73.53 

Urban Block 2 6353 1742 424 0.27 0.07 93.74 74.57 

Urban Block 3 8706 1383 1244 0.16 0.14 87.50 76.82 

Urban Block 4 8732 2176 521 0.25 0.06 94.37 76.40 

Urban Block 5 8707 2200 388 0.25 0.04 95.73 77.09 

Urban Block 6 5781 1377 261 0.24 0.05 95.68 77.92 

Urban Block 7 5224 487 848 0.09 0.16 86.03 79.65 

Average 50786 11737 3936 0.23 0.08 92.81 76.42 

 

 

 

 
The average quality assessment results for the rectangular buildings are given in 

table 5.16. The results indicate that the developed approach was quite successful for 

delineating the boundaries of rectangular buildings. Of the total 307 buildings, 301 

were delineated correctly providing 98.05% accuracy. 

 

 

 
Table 5. 16. The average quality assessment results for the rectangular residential buildings using 

Boundary tracing based approach. 

 

  TP FP FN BF MF BDP QP 

Residential Rectangular 

Buildings 

124774 

 

20556 

 

13160 

 

0.16 

 

0.11 

 

90.46 

 

78.73 

 

 

 

 

The delineated circular buildings using the developed approach are given in figure 

5.23. Although all the buildings were delineated, a large amount of undulations are 

evident in the boundaries of several buildings. The quality assessment results for 

circular buildings are given in table 5.17.   
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(a) (b) 

  
(c) (d) 

 

Figure 5. 23. The delineated circular building boundaries using Boundary tracing approach: (a) the 

circle shape buildings, (b) the ring shape buildings, (c) the C shape buildings, and (d) the S shape 

buildings. 

 

 

 
Table 5. 17. The quality assessment results for circular buildings using Boundary tracing based 

approach. 

 
  TP FP FN BF MF BDP QP 

Circle Shape 576 430 68 0.75 0.12 89.44 53.63 

Ring Shape 335 47 15 0.14 0.04 95.71 84.38 

C Shape 1051 188 481 0.18 0.46 68.60 61.10 

S Shape 1784 352 505 0.20 0.28 77.94 67.55 

Average 3746 1017 1069 0.27 0.29 77.80 64.23 

 

 

 

As can be seen from the results, for all types of circular buildings, the BDPs stayed 

higher than 68%, while the QPs were computed to be above 53%. On the other hand, 

the average BF, MF, BDP, and QP values were computed to be 0.27, 0.29, 77.80, 

and 64.23, respectively.  
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The delineated industrial buildings using the developed approach are illustrated in 

figure 5.24. For the industrial buildings, the results of the quality assessment are 

given in table 5.18. For Industrial Area 1 and Industrial Area 2, the delineation 

results were quite successful with the BDP value on the order of 93% and the QP 

values above 75%. The average BDPs and the average QPs were computed as 

93.59% and 80.39%, respectively. On the other hand, the average branching and miss 

factor values were found to be 0.18 and 0.07, respectively. 

 

 

  
(a)  (b)  

 

Figure 5. 24. The delineated rectangular building boundaries using Boundary tracing based approach 

for industrial areas; (a) industrial area 1 and (b) industrial area 2. 

 

 

Table 5. 18. The quality assessment results for the industrial buildings using Boundary tracing based 

approach. 

 
  TP FP FN BF MF BDP QP 

Industrial Area 1 216719 30559 14103 0.14 0.07 93.89 82.91 

Industrial Area 2 95056 24135 7253 0.25 0.08 92.91 75.18 

Average 311775 54694 21356 0.18 0.07 93.59 80.39 

 

 

5.3. Discussions of the Results 

 

The delineation results of the residential areas, which contain different dwelling 

types, indicate that for almost all cases the BDP and QP values were computed to be 

higher for the Hough transform approach than the Boundary tracing approach. 
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For detached dwelling types, the average BDP values were computed as 95.04% and 

86.07%, respectively for the Hough transform and Boundary tracing approaches, 

while the QP values were found to be 77.95% and 78.86%, respectively. As can be 

seen, the Hough transform approach provided about 9% higher BDP value than the 

Boundary tracing approach. On the other hand, no difference was observed in the 

accuracy measure of QP between two approaches.  

 

For semi-detached dwelling types, the average BDP were computed to be 95.86% 

and 91.10%, respectively for the Hough transform and Boundary tracing approaches, 

while the QP values were found to be 81.63% and 82.10%, respectively. Similar to 

detached dwelling types, the BDP value for the Hough transform approach was about 

5% higher than the Boundary tracing approach while no difference was observed in 

the QP values between two approaches.  

 

For the terraced dwelling types, the average BDP values were computed to be 

95.21% and 92.81%, respectively for the Hough transform and Boundary tracing 

approaches, while the average QP values were 78.14% and 76.42%, respectively. In 

this case, both the BDP and QP accuracy measures stayed slightly higher for the 

Hough transform approach than the Boundary tracing approach. 

 

For residential (rectangular and circular) and industrial areas, the average accuracies 

computed for both the Hough transform and Boundary tracing approaches are given 

in table 5.19.  

 

 

Table 5. 19. The comparison of the results of the Hough transform and Boundary tracing approaches. 

 
Approach Usage / Shape BF MF BDP QP 

Residential /Rectangular 0.22 0.05 95.34 79.05 

 Residential/ Circular  0.23 0.27 78.74 66.81 

Hough 

Transform 

Industrial 0.19 0.07 93.45 79.51 

Residential /Rectangular 0.16 0.11 90.46 78.73 

 Residential /Circular  0.27 0.29 77.80 64.23 

Boundary 

Tracing 

Industrial 0.18 0.07 93.59 80.39 
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As can be seen in table 5.19, the BDP and the QP values were computed to be quite 

high using both approaches. However, in general, the Hough transform approach 

appears to have provided better results for building delineation. For rectangular 

buildings, the BDP values were computed to be about 5% higher for the Hough 

transform approach than the Boundary tracing approach, while the QP values showed 

no significant difference. For the delineation of the circular buildings, the results 

obtained for both approaches were quite similar. While the BDP and QP values were 

computed to be 78.74% and 66.81%, respectively for the Hough transform approach, 

the same accuracy measures were found to be 77.80% and 64.23% for the Boundary 

tracing approach. 

 

For industrial buildings, the delineation accuracies were found to be quite similar for 

both approaches. While the BDP and QP accuracy measures were computed to be 

93.45% and 79.51% for the Hough transform approach, the same accuracy measures 

were found to be 93.59% and 80.39% for the Boundary tracing approach. 

 

When the results are compared visually it can be stated that the Hough transform can 

said to perform better if the mutual lines of the buildings are parallel and the angles 

between the adjacent lines are perpendicular. However, in the reverse case, the 

Boundary tracing algorithm appears to provide better results (Figure 5.25). 

 

 

  
(a) (b) 

 

Figure 5. 25. The results of delineating a building using (a) the Hough transform based approach and 

(b) the Boundary tracing based approach. 
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It was observed that the Boundary tracing based approach is more dependent on the 

detected building patches than the Hough transform approach. This is because in the 

Boundary tracing based approach the edges of the building patches are directly 

converted into vector form whereas, in the Hough transform approach, the 

transformation is applied to detected edges. On the other hand, the Hough transform 

based approach is also successful for delineating the semi-occluded and the overlaid 

objects (Figure 5.26). 

 

  
(a) (b) (c) 

 

Figure 5. 26. (a) A detected building patch and the results of delineating the circular buildings using 

(b) the Hough transform approach and (c) the Boundary tracing approach. 

 

The developed approaches are quite successful to delineate the rectangular and 

circular buildings. However, in several cases the proposed approaches may fail in 

delineating the boundaries of the buildings: 

 

• Small Buildings: In the developed approach the building delineation is 

performed to the detected building patches. The buildings that are small in 

size may not be detected as building patches, because after detecting the 

patches through SVM classification, to remove the artefacts morphological 

operations (opening, closing) were performed and the patches that are 

smaller than 50m
2
 were removed as explained in Chapter 4.8. Therefore, 

the small size building patches were eliminated from the building patch 

image while removing the artefacts and could not be delineated. The small 

sized two buildings from the study area are illustrated in Figure 5.27 (a) 
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and the detected building patches before and after removing the artefacts 

are given in figures 5.27 (b) and (c), respectively. 

 

 

 
 

  

   
(a) (b) (c) 

 

Figure 5. 27. (a) The small buildings overlaid with the reference building boundaries, (b) the detected 

building patches, (c) the detected building patches after removing the artefacts. 

 

 

 

• Semi-Occluded Buildings: The Hough transform approach appears to be 

successful for delineating the occluded objects. However, if the object is 

quite small and the occlusion is high as shown in figure 5.28, the 

delineation process may very well fail. 

 

 

 

Figure 5. 28. An occluded small building overlaid with the reference building boundary. 
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• Buildings that are close to each other: If the buildings are located close 

to each other as in figure 5.29 then, these buildings may not be delineated 

separately. This is of course directly related with the spatial resolution of 

the image used, which imposes restrictions on the separability of the 

closely located buildings.  

 

 

 
 

(a) (b) 

 

Figure 5. 29. The closely located buildings overlaid with the reference building boundaries. 

 

 

 

• Buildings that have roofs with different reflectance values: In the 

present case, most of the buildings, which have different reflectance 

values, were successfully extracted using both approaches. For example, 

the buildings shown in figure 5.30 were delineated successfully despite 

having different spectral reflectances. However in some cases, the 

extraction of the buildings was not possible due to the spectral reflectances 

of the roofs. For example, in figure 5.31 (a) the building was not able to be 

delineated due to its different reflectance values as well as its height which 

is quite low. Similarly, the terraced buildings shown in figure 5.31 (b) were 

delineated as two separate buildings due to the variation of the spectral 

reflectance on the roof of the building. 
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Figure 5. 30. Buildings with different roof materials illustrating different reflectance values  

 

 

 

  
(a) (b) 

 

Figure 5. 31. Buildings showing different spectral reflectance values and spectral heterogeneity.  

 

 

 

• Adjoining Buildings: Due to the limitation of the developed approaches, 

the adjoining buildings cannot be delineated separately. The semi-detached 

and terraced buildings that are shown in figures 5.32 (a) and (b), 

respectively can be given as the examples for this case. 
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(a) (b) 

 

Figure 5. 32. The adjoining buildings that cannot be delineated separately using the developed 

approaches. 

 

 

 

• Buildings having similar reflectance values with the surrounding 

areas: If the pixels outside and inside a building have similar reflectance 

values then, it becomes quite difficult to detect and delineate this building. 

In figure 5.33, an example is shown for this case. 

 

 

  
 

Figure 5. 33. Buildings having similar reflectance values with the surrounding areas.  
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CHAPTER 6 
 

 

UPDATING AN EXISTING BUILDING DATABASE USING A MODEL 

BASED APPROACH 

 

 

 

Nowadays, almost all cities have 2D GIS databases or maps. Although these 

databases are usually not up to date, due to rapid urban growth particularly in 

developing countries, they are still important data sources for urban object extraction. 

The difficulties in building delineation from remote sensing imagery may be reduced 

using existing building boundaries as a priori information stored in a GIS. Thus, 

updating building databases from remote sensing images is a challenging and an 

important task. In building extraction studies, ignoring the evidence of existing 

building boundaries may lead to repetition of the same processes and redundancy.  

 

Therefore, in this part of the study, an approach is presented for updating an existing 

building database from high resolution satellite images. First, the developed 

methodology is explained. In the second and third sections, respectively the 

preparation of a building database and the building patches are described. In section 

6.4 the shape characterization parameters are explained. In section 6.5, the selection 

process of the building models is described. The procedures to assign building 

models to building patches are given in section 6.6. In section 6.7 the results are 

presented and finally in section 6.8, the discussions are given.  

 

6.1. The Methodology 

 

Updating existing GIS databases with continuous changes is an important task. An 

approach was developed to update existing building boundary database. In the 
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approach, the building models are determined from the existing building database. 

As is well known, within mass housing areas monotone ordering is predominant with 

respect to floor, location, orientation and relation with each other (Keles, 1967). 

Therefore, within an urban block of a mass housing area the types and the shapes of 

the buildings are usually similar. This is due to the fact that, within an urban block, 

the structuring criteria, such as dwelling types and the number of floors determined 

in the development plans are usually similar. In addition, the buildings falling within 

an urban block are usually constructed by a housing cooperative and therefore, the 

settlements developed by the cooperatives become regular settlements. This 

regularization is because of the acceleration and simplification of the construction 

and planning (Croitoru and Doytsher, 2003).  Thus, it becomes possible to detect 

new buildings by first determining the building models from an existing building 

database and then matching them to previously detected building patches. 

 

The main steps followed in the developed approach to update an existing building 

database are given in figure 6.1. These steps can be summarized as follows: 

 

• Preparing the Existing Building Database, 

• Preparing the Candidate Building Patches, 

• Shape Characterization 

• Selecting the Building Models, and 

• Testing the Building Models against the Candidate Building Patches. 

 

To test and demonstrate the developed concept, the building patches previously 

detected using the SVM classifier and an existing building database are used. 

Initially, the database is analyzed using the previously classified image in order to 

detect the destroyed buildings. If the percentages of the pixels classified as building 

stay higher than the preset threshold, the building is considered to exist. Otherwise, 

the building is accepted to be destroyed and therefore, the building polygon is 

removed from the database.  
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To delineate those buildings constructed after the compilation of the vector database, 

a model-based approach, which utilizes the existing building database, was 

developed. Building patches that correspond to existing building polygons are 

masked out from the building patch image and therefore, an image that includes only 

the new building patches are generated. Then, for each building patch, to select the 

most proper building model the shape parameters were calculated for both building 

patch and existing building polygons. The building polygon which most closely 

resembles to the building patch based on the size and shape parameters is selected as 

building model from existing building database. After that, the selected building 

model is rotated with specified angle intervals and assigned to the building patch to 

obtain optimum rotation of the building by calculating the matching areas. These 

processing steps are repeated for all building patches. The algorithm was developed 

for updating an existing building database. Therefore, the procedure is valid for the 

structured residential areas only. 

 

 
 

Figure 6. 1. The flowchart of the existing building database update method. 
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6.2. Preparing the Existing Building Database 

 

As mentioned earlier, the available existing vector building database used in this 

study was compiled in 1999. On the other hand, the images covering the study area 

were acquired in 2002. Therefore, there is a three-year time lapse between the date of 

image acquisition and the date of existing vector building database. Thus, for 

updating a building database, the following three conditions were considered:  

 

• The building exists both in vector database and in the image, 

• The building exists in vector database but it disappears in the image, and 

• The building exists in the image but disappears in the vector database. 

 

In the first condition, the building exists both in vector building database and in the 

image. In this case, the existing building must be preserved in the vector database 

and no update is necessary. In the second condition, the building is not seen in the 

image. In this case, the building must be removed from the existing building database 

since the building must have been destroyed between the time of vector data 

compilation and the time of image acquisition. The third condition corresponds to 

new buildings constructed after the compilation of the existing building database. 

Therefore, the boundaries of the new buildings must be extracted and the existing 

database must be updated with the detected new buildings. 

 

In the proposed approach, an existing building database was utilized for detecting the 

buildings by means of analyzing the above given three cases. In the first and second 

cases, the attribute tables of the vector database were updated by analyzing the 

classified image within the boundaries of each building. The pixels that fall within 

each building boundary were counted and they were inserted into the attribute 

database as new data values. Then, those pixels labeled as building in the classified 

image were counted and their percentage was computed. After updating the attribute 

table of the vector data, the buildings that still exist and the once destroyed were 

detected by invoking the following query. 
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If %building_class > 70  

Vector = “building” 

Else Vector <> “building” 

 

where; %building_class represents the building class percentage within the 

building boundary. 

  

For a building polygon analyzed, if the ratio between the pixels classified as building 

and the total number of pixels is higher than 70%, this building was preserved. 

Otherwise, the vector polygon was removed. In figure 6.2, the red and blue colored 

polygons indicate the destroyed and the standing buildings, respectively. 

 

 

 

Figure 6. 2. The boundaries of destroyed and existing buildings are represented in red and blue colors, 

respectively. 

 

 

 

6.3. Preparing the Building Patches 

 

The building patches detected previously using the SVM classification include both 

the existing and new buildings. To update the existing building database with the 

new building boundaries, the building patch image, which include solely the new 

buildings, should be generated by removing the patches corresponding to existing 
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buildings. To do that, the existing buildings were rasterized and masked out from the 

building patch image. After this processing, a new building patch image that includes 

the new buildings only was generated. However, because of the differences between 

the detected building patches that belong to existing buildings and the rasterized 

existing building polygons, the image may include artefacts. Therefore, these 

artefacts were removed using morphological operations that were explained in 

Chapter 4.8. For a selected test area, the steps used for detecting new candidate 

building patches are illustrated in figure 6.3. 

 

6.4. Shape Characterization 

 

Shape is an important object property and the shape parameters are crucial resources 

for comparing and classifying the objects. In the present case, in order to select the 

most proper building models from existing building boundaries, the shape descriptor 

parameters were used.  For each building patch, a building model was selected from 

the existing building database by analyzing and comparing the shape parameters of 

the building patches and existing buildings. Therefore, all existing buildings that fall 

within the test area were evaluated as the building models. The parameters used to 

describe the shape of building polygons and each of the building patch include area, 

perimeter, major axes length, minor axes length, elongation, compactness, and 

solidity.  

 

The area of an object measures the size of a region enclosed by a polygon or the 

actual number of pixels in the region. Area is an important parameter to define the 

shapes.  

 

The perimeter of a polygon is the sum of the lengths of all its sides, or the perimeter 

of a patch is the number of pixels around the boundary. Perimeter is another 

important parameter to define the shapes of objects. 
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(a) (b) 

  
(c)  (d) 

  
(e) (f) 

 

Figure 6. 3. For a test area, the preparation of new candidate building patches. (a) Panchromatic 

image, (b) detected building patches, (c) existing building boundaries overlaid with the building 

patches, (d) the rasterized existing building boundaries overlaid with the candidate building patches, 

(e) candidate building patches after masking the existing building boundaries, and (f) the candidate 

building patches after removing the artefacts. 
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The major and minor axes are important parameters to extract shape properties. The 

longest axis within a shape is known as major axis and the minor axis is 

perpendicular to the major axis. Assuming each shape (S) is represented by a set of 

points (S = (x1, y1), (x2, y2),…, (xn, yn)) and C is the covariance matrix. The 

eigenaxes of S are defined as the eigenvectors of C. The large and small eigenvalues 

of C are associated with major and minor axes lengths respectively. The algorithm 

that calculates the major and minor axes of the shape represented in g(p, q)  is as 

follows (Costa and Cesar, 2000) 

 

1. Calculate the edges of g; 

2. Store the coordinates of the edge points into the vectors b and c; 

 

n = length (b); 

For i = 1 to n do 

X (i, 1) = b (i); 

X (i, 2) = c (i); 

End 

 

3. Calculate the covariance matrix C of X; 

4. Calculate the eigenvectors and the eigenvalues of C and store them into array 

evectors and into the vector evalues 

 

The elongation (aspect ratio) is the ratio between the major and minor axes’ lengths. 

This parameter is calculated using equation 6.1.  

 

LengthAxisMinor

LengthAxisMajor
Elongation=             (Equation 6.1) 

 

The shapes that have higher elongation value indicate more elongated objects.  

 

The compactness parameter describes the surface irregularities and this parameter is 

calculated as follows: 
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2Perimeter

Area4
sCompactnes

×
=

π
           (Equation 6.2) 

 

The compactness parameter takes a value between 0 and 1. While the higher values 

indicate more compact shaped objects, the lower values indicate incompact shaped 

objects.  

 

The solidity is defined as the proportion of the area of a region to the area in the 

convex hull. It can be computed using the following equation (Equation 6.3): 

 

ConvexArea

Area
Solidity =           (Equation 6.3) 

 

where; Convex Area is the area of convex hull, which is the smallest convex 

polygon that can contain the area. 

 

For the selected test area, the building patches and their Building IDs are illustrated 

in figure 6.4, while the existing building boundaries and their Building IDs are 

shown in figure 6.5. For each of the candidate building patches, the above mentioned 

shape parameters were computed (table 6.1). Similarly, the shape parameters were 

computed for the existing buildings and these values are provided in table 6.2. 
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Figure 6. 4. The candidate building patches. 

 

 

 
Table 6. 1. The shape parameters computed for the building patches. 

 

ID Area Perimeter MajorA MinorA Elongation Compactness Solidity 

1 636.00 101.74 124.01 78.64 1.58 0.77 0.92 

2 791.00 149.84 396.09 32.33 12.25 0.44 0.86 

3 603.00 93.80 96.52 87.04 1.11 0.86 0.96 

4 782.00 152.33 377.23 33.30 11.33 0.42 0.84 

5 611.00 96.87 97.23 88.17 1.10 0.82 0.94 

6 1090.00 197.64 655.93 36.11 18.17 0.35 0.83 

7 250.00 59.11 51.21 26.77 1.91 0.90 0.95 

8 500.00 106.57 184.16 29.22 6.30 0.55 0.84 

9 722.00 195.54 204.24 65.58 3.11 0.24 0.64 

10 1002.00 169.60 482.14 44.41 10.86 0.44 0.85 

11 212.00 65.21 57.33 17.64 3.25 0.63 0.82 

12 538.00 109.40 205.91 31.06 6.63 0.56 0.87 

13 339.00 101.60 75.95 41.87 0.81 0.41 0.69 

14 325.00 99.60 78.44 40.58 1.93 0.41 0.69 
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Figure 6. 5. The existing buildings 

           

Table 6. 2. The shape parameters computed for the existing building boundaries. 

  
ID Area Perimeter MajorA MinorA Elongation Compactness Solidity 

1 787.83 172.58 385.99 37.25 10.36 0.33 0.89 

2 607.78 109.40 153.25 71.96 2.13 0.64 0.92 

3 790.98 171.93 368.95 38.75 9.52 0.34 0.88 

4 567.22 104.21 157.71 42.11 3.75 0.66 0.97 

5 560.93 104.06 154.55 47.28 3.27 0.65 0.97 

6 560.99 103.61 155.01 47.15 3.29 0.66 0.97 

7 777.78 168.97 352.50 37.28 9.46 0.34 0.88 

8 560.10 103.35 154.53 47.07 3.28 0.66 0.97 

9 1053.25 221.38 625.22 38.39 16.29 0.27 0.87 

10 555.27 103.47 153.35 46.54 3.29 0.65 0.97 

11 563.05 104.22 154.98 47.23 3.28 0.65 0.97 

12 503.84 112.73 205.11 33.80 6.07 0.50 0.95 

13 533.19 135.77 195.96 29.57 6.63 0.36 0.90 

14 532.79 135.12 178.65 29.89 5.98 0.37 0.90 

15 79.64 39.00 51.87 15.55 3.34 0.66 0.35 

16 263.56 80.11 52.05 27.66 1.88 0.52 0.91 

17 498.83 112.97 204.08 33.25 6.14 0.49 0.95 

18 255.84 67.28 75.12 34.70 2.17 0.71 0.97 

19 265.16 82.61 59.89 24.27 2.47 0.49 0.89 

20 771.47 222.88 207.49 73.05 2.84 0.20 0.66 

21 269.14 80.94 49.58 28.20 1.76 0.52 0.91 

22 766.19 221.80 201.39 74.18 2.71 0.20 0.66 

23 258.84 84.69 89.08 24.51 3.64 0.45 0.78 

24 534.58 136.35 196.70 29.43 6.68 0.36 0.90 

25 249.45 66.99 74.05 33.27 2.23 0.70 0.97 

26 528.07 134.23 196.06 27.78 7.06 0.37 0.90 

27 512.77 113.25 192.78 35.27 5.47 0.50 0.95 

28 255.37 84.65 88.87 24.88 3.57 0.45 0.78 

29 383.08 118.95 89.65 54.28 1.65 0.34 0.66 

30 386.34 119.34 92.18 54.00 1.71 0.34 0.66 
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6.5. Selecting the Building Models 

 

In order to define the most suitable building model, each of the building polygons in 

the database was tested against each building patch. To do that an automatic 

selection procedure was developed. The algorithm for the developed procedure is as 

follows:  

 

1. For each building patch, calculating the difference of the shape parameter 

between the building patch and all of the existing building polygons, 

2. Determining the minimum and maximum values of these differences, 

3. Rescaling these differences between 0 and 1, 

4. Calculating the total difference values by adding all rescaled shape parameter 

differences, 

5. For each candidate building patch, determining the minimum difference value 

in order to select the optimum building model, 

6. From the existing building database, selecting the building model based on 

the minimum difference value between the existing building polygon and the 

building patch.  

 

The source code of this algorithm is given in Appendix E. The attributes of the 

existing building database are illustrated in table 6.3.  For each building patch, the 

selected building model was saved as a new shape file to be used as a building model 

for further processing.  

 

Table 6. 3. The fields of the existing building database 

 

FIELD 

BuildID 

IGDS_Color 

IGDS_Graph 

IGDS_Level 

Address_No 

Build_No 

Name 

Z 

Area 

Perimeter 
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In the selected test area, the existing buildings and a building selected as a model are 

illustrated in figures 6.6 (a) and 6.6 (b), respectively. 

 

 

 

 

 

 

 

 

(a) (b) 

 

Figure 6. 6. (a) An existing building database and (b) a building selected as a model for the first 

candidate building patch. 

 

 

 

6.6. Testing the Building Models against the Candidate Building Patches 

 

After selecting the building model for each building patch, the model was analyzed 

against the patch. This procedure consists of five main steps: (i) finding the centroid 

of the building patch being processed, (ii) finding the centroid of the building model, 

(iii) rotating the building model with a specified angle, and (iv) testing the rotated 

building models against the candidate building patch by computing the overlapping 

area between the building model and the building patch for each rotation.   
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(i) Finding the centroid of the candidate building patch 

 

The centroid of the building patch being processed was computed using the 

“centroid” property of “regionprops” function of Matlab. “Regionprops” is a tool to 

measure the properties of image regions and the “centroid” is 1*2 vector; the center 

of mass of the region (Matlab 7 Manual, 2007). The first and second elements of the 

“centroid” are the x and y coordinates of the centroid of the mass, respectively. 

Therefore, using this property, for each candidate building patch, the x and y 

coordinates of the centroid were determined. The centroids of building patches of an 

urban block are illustrated in figure 6.7. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. 7. The centroids of building patches of an urban block. 

 

 

 

(ii) Finding the centroid of the Building Model 

 

The centroid of a building model was computed by using its corner coordinates. To 

find the centroid of a building model, the average value of the X and Y coordinates 

were calculated (Equations 6.4, 6.5, and 6.6). The centroid of a selected building 

model is illustrated in figure 6.8. 

 

The centroids of the 

building patches 
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Centroid = Average_X, Average_Y                                (Equation 6.4) 

Average_X =  X1 + X2 +…+ Xn / n               (Equation 6.5) 

Average_Y  =  Y1 + Y2 +…+ Yn / n                          (Equation 6.6) 

 where ; n is the number of the corner points of the selected building model. 

 

 

 

 

 

 

 

 

 

    
 

 

Figure 6. 8. The centroid of a selected building model. 

 

 

 

(iii) Rotating the Building Model  

 

To find the largest overlap between the building model selected and the building 

patches analyzed, the building model was rotated with the specified angle intervals. 

The rotations of a building model per 60°, 45°, 30°, 15°, 10°, and 5° from 0° to 360° 

are shown in figure 6.9. Rotating the building model with smaller angles may 

provide better results. This is because rotation with smaller angles generates more 

cases for defining the building orientation providing a higher accuracy to measure 

the overlapping area between the model and the patch. On the other hand, in the case 

of very coarse orientation, the overlapping area will be computed for less number of 

cases. Thus in this study, the rotation angle of the building model was selected as 1º. 

The centroid of a 

building model 
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(a) (b) (c) 

   
(d) (e) (f) 

 

Figure 6. 9. The rotation of a building model over a building patch (white area) per (a) 60°, (b) 45°, 

(c) 30°, (d) 15°, (e) 10° and (f) 5° from 0° to 360°. 

 

 

 

To rotate the building model selected with a specified angle, a “rotation matrix” was 

calculated (Equation 6.7) and the coordinates of the building model was multiplied 

with the rotation matrix (Equation 6.8). The rotation of a building model with a 

specified angle is illustrated in figure 6.10. 

 

RM = [cos(θ) -sin(θ); sin(θ) cos(θ)];                                          (Equation 6.7) 

RBM = RM * BM2;                                                                      (Equation 6.8)   

 

where; RM = Rotation Matrix  

            RBM = Rotated Building Model 

          BM2 = [BM.X; BM.Y] (X and Y values of the Building Model) 

           θ = Angle 
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Figure 6. 10. The rotation of a polygon with a specified angle. 

 

 

 

(iv) Testing the rotated building models against the building patches   

 

Before starting to rotate the building model, the centroids of the building model and 

the patch being analyzed must coincide. To do that it is necessary to know the 

amount of shift between their centroids.  Therefore, the differences in X and Y 

between the centroids of the building model and the building patch were computed 

using the equations 6.9 and 6.10.  

 

DeltaX (i) = ( C ( i, 1 ) – Average_X );                                      (Equation 6.9) 

DeltaY (i) = ( C ( i, 2 ) – Average_Y );                                      (Equation 6.10) 

where; i is the number of the centroids of the building areas. 

 

Then, the computed differences were added to the corner coordinates of the building 

model. The next step was to determine the true orientation of the building model. To 

do this, for each rotation, the overlapping area between the building model and the 

vectorized building patch being analyzed was calculated and the rotation angle that 

provides the largest overlap was selected to be the true orientation of the building 

model (figure 6.11). 

θ 

C 
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a b 

 

Figure 6. 11. (a) The rotation of a building model over a candidate building patch (white area) and (b) 

the true orientation of the building model found based on the intersection between the building model 

and the building patch. 

 

 

 

 

 

6.7. The Experimental Results 

 

The proposed algorithm was tested in the selected two test areas that contain 

buildings of different shapes. For these test areas, the updated building boundaries 

are given in figure 6.12. In figure 6.13, the overlay of the delineated building 

boundaries and the reference building boundaries are illustrated. 
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Figure 6. 12. The updated building boundaries. The blue polygons represent the existing building 

boundaries, while the red polygons illustrate the updated building boundaries. 
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Figure 6. 13. The delineated new buildings and the reference buildings. The blue polygons represent 

the reference buildings, while the red polygons illustrate the delineated new buildings. 
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To assess the results of building delineation, the areas were classified into True 

Positive, False Positive, True Negative and False Negative categories by comparing 

the delineated building boundaries with the reference building boundaries (Shufelt 

and McKeown, 1993). Then, for each urban block, the Branching Factor (BF), Miss 

Factor (MF), Building Detection Percentage (BDP), and the Quality Percentage (QP) 

values were calculated. The descriptions of these accuracy measures are given in 

Chapter 4.9.2. For two test areas, the obtained quality assessment results are given in 

table 6.4. 

 

 

Table 6. 4. The quality assessment results for two urban blocks. 

 

Test Area BF MF BDP QP 

1 0.14 0.12 88.95 79.04 

2 0.24 0.21 82.44 68.53 

 

 

 

 

For the first area, the BF, MF, BDP, and QP values were found to be 0.14, 0.12, 

88.95 and 79.04, respectively. For the second urban block, these values were 

computed to be 0.24, 0.21, 82.44, and 68.53, respectively. The difference in the 

computed accuracies is believed to be due to the previously detected building 

patches. In addition, due to the resolution restriction of the satellite image, the 

detected building patch may not provide small protrusions and details. Therefore, if 

the shape of a building model is rather complex and has thin protrusions, there may 

be shifts in the matching process 

 

6.8. Discussion of the Results 

 

Both the visual and quantitative analyses of the results obtained indicate that the 

proposed approach is quite promising for delineating building boundaries from high 

resolution satellite images by utilizing the existing building boundaries that are 

stored in a GIS as a priori information. In conventional building model-based 

approaches, all the possible building shapes must be determined and pre-defined as 
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building models. Therefore, the conventional approaches have a disadvantage that 

the shapes and the types of the buildings can be numerous. In addition, the 

compilation of a building-model library may become rather a difficult and 

formidable task (Shufelt, 1999). On the other hand, in conventional model-based 

approaches, the building models are usually defined as primitive shapes, such as 

square, rectangle, etc. or the combination of these shapes, such as “L” shape and “H” 

shape.  

 

In the proposed approach, the building model is selected from an existing GIS 

database that includes building boundaries. Therefore, using the developed approach 

the buildings having very different and/or complicated shapes such as, “S” shape, 

“C” shape, etc. can be successfully delineated. It was observed that by utilizing an 

existing building boundary database as a model library appears to be quite effective 

for map updating with respect to buildings.   

 

In several cases, the proposed approach may fail, however. These limitations and 

special cases can be summarized as follows: 

 

1. If the area contains no buildings, it may be problematic to apply the proposed 

approach. This case may be faced at urban fringes. In order to delineate building 

patches that are located at an urban fringe (figure 6.14), the building models may 

be selected from the existing buildings located in the neighboring urban areas. 

But, the shapes of the new buildings to be extracted may become completely 

different from the existing buildings and therefore, no match can be found 

between the building patches and the model selected. 
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Figure 6. 14. The buildings in an urban fringe. Existing buildings and the development plan overlaid 

with the IKONOS false color image. 

 

 

 

2. If the patches of new buildings are not similar to buildings in the existing 

building database, the existing buildings that have the most similar shape 

parameters to these building patches are selected as the building models from the 

existing building database. This case may result in erroneously delineated 

building boundaries. 

 

3. The accuracy of delineation is directly affected by the detected building patches 

in such there may not be similarity between the building patch being analyzed 

and the reference buildings. For example, because of the resolution restriction of 

the satellite image the detected candidate building patches may not contain small 

protrusions of the buildings. On the other hand, those buildings that are quite 

close to each other may be detected as a joined one building. In addition, due to 

the surrounding objects of the buildings the building patch being analyzed may 

include artefacts. Due to these problems therefore, the delineated boundaries may 

not correctly represent the building boundaries (Figure 6.15).  
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Figure 6. 15. The delineated building boundaries. Because of the artefacts on the building patches the 

delineated building boundaries do not correctly represent the boundaries of the buildings.  The blue 

polygons represent the existing building boundaries, while the red polygons represent the delineated 

building boundaries. 

 

 

 

4. If the buildings with different shapes that are contained within an existing 

database have similar shape parameters then, the building models can be selected 

erroneously (Figure 6.16). 

 

 

  

 

Figure 6. 16. The delineated building boundaries. Because of the similar shape parameters the 

building models can be selected erroneously. 
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CHAPTER 7 
 

 

CONCLUSIONS AND RECOMMENDATIONS 
 

 

 

In this chapter, the conclusions reached for the developed approaches are described 

and the recommendations regarding to further studies are made. This chapter 

contains four sections. In the first section, the conclusions of the building detection 

procedure are provided. In the second section, the conclusions reached for the 

building delineation part of the study are given. In the third section, the conclusions 

of the existing building database updating procedure are presented. Finally, in section 

four, the recommendations are expressed. 

 

7.1. Building Detection 

 

The following conclusions were reached for the SVM classification and building 

detection: 

 

7.1.1. SVM Classification 

 

• The classification accuracies obtained indicate that, for building detection, the 

binary SVM classification provides quite accurate results. For all test areas, 

the overall accuracy and kappa coefficient values were computed to be 

noticeably high staying between 90% – 99% and 0.80 – 0.98, respectively. 

 

o For “Sub-area I”, the results of SVM classification appear to be quite 

satisfactory with the overall accuracies and Kappa Coefficients in the 

range of 95% – 99% and 0.90 – 0.98, respectively. 
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o For “Sub-area II”, the overall accuracies of the SVM classification 

were computed to be in the range of 92% - 97%, while the Kappa 

Coefficients were found to be in the range of 0.86 - 0.94. 

 

o For “Sub-area III”, the results of SVM classification appear to be 

quite satisfactory with the overall accuracies and Kappa Coefficients 

in the range of 90% - 97% and 0.80 - 0.96, respectively.  

 

• If there are spectral overlaps between the classes, using the spectral bands 

only may result in lower classification accuracy. However, in the proposed 

building detection procedure, additional data sources were used as ancillary 

data during the classification procedure. Thus, with the use of ancillary data it 

was possible to detect the buildings even though they have similar reflectance 

values with the other classes, such as the pavements, roads, and bare lands. 

 

• The inclusion of ancillary data in the classification process has a significant 

effect in the accuracy of the SVM classifier. After using additional bands, the 

overall classification accuracy increased about 7%, while the Kappa 

Coefficient values increased about 0.13.  

 

• Including the individual Principal Component (PC) images as additional 

bands in the classification process do not lead to significant difference. 

However, it was found that using the 2
nd

 or 3
rd

 Principal Component images 

relatively increases the classification accuracy. On the other hand, including 

all PC images in the classification process as additional bands improves the 

overall accuracies up to 4%. 

 

• Using nDSM as an additional band increases the classification accuracy from 

2.5% to 6.5%. On the other hand, using the NDVI image as an additional 

band do not increase the classification accuracy significantly.  
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• In general, increasing the number of training samples increases the accuracy 

of SVM classification. However, the increase was not observed to be more 

than 2%. Therefore, the results obtained in this study indicate that small 

training size (i.e. 500 pixels for a high resolution image measuring about 

2000 pixels x 2000 lines) appears to be enough. 

 

7.1.2. Building Detection 

 

• The building detection process provides the approximate locations of the 

buildings and therefore, this processing step significantly reduces the search 

area, within which the building delineation process to be carried out. 

 

• When the accuracies of the detected building patches are evaluated it can be 

stated that the BDP and QP values were computed to be considerably high 

staying in the range of 80% - 97% and 53% - 76%, respectively. 

 

o For sub-area I, the BDP values were computed to be in the range of 

80% - 91%, while the QP values were found to be in the range of 59% 

- 70%.  

 

o For sub-area II, the BDP values stayed between 83% and 91%, while 

the QP values were in the range of 53% - 66%. 

 

o For sub-area III, the BDP values were quite high staying between 

91% and 97%, while the QP values were computed in the range of 

62% - 76%. 

 

• The results obtained in this study have proven that, for building detection 

from high resolution space images, the inclusion of an nDSM as ancillary 

data is very important. It was also found that in most cases, using an NDVI 

image as an additional band also increases the accuracy but not as effective as 

nDSM. After including the nDSM and NDVI images as additional bands in 
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the classification process, the BDP values increased about 7%, while the 

increase in the QP values were in the range of 4% - 8%.  

 

• The accuracy of the DSM generated from IKONOS panchromatic stereo 

images was computed to be ±0.7m, which is accurate enough to be used in 

the building detection procedure. 

 

• After using nDSM as an additional band in the classification process, the 

building detection errors due to the spectral similarities between the classes 

were compensated. However, the nDSM inaccuracies, which are due to the 

errors in the matching process and the interpolation during the DSM 

generation, may lead to errors in the detection of the building patches.  

 

• Buildings that are closer than 3m to each other may be detected as a joined 

building. This is basically because of the resolution restriction of the image, 

the spectral similarities between building roofs and the surrounding objects, 

and the inaccuracies of nDSM. If the contrast between closely located 

buildings is high due to land cover types, such as the cast shadows or green 

vegetation, these buildings can be detected separately from each other.  

 

7.2. Building Delineation 

 

The following conclusions were made for the building delineation part of the study: 

 

• In the proposed approach, to delineate the building boundaries, a 

panchromatic building patch image, which is generated by masking the 

classified building areas, is used. Therefore, by confining the search area over 

the candidate building patches, the building delineation process becomes 

easier because the unnecessary edges are not included in the process and 

therefore, the processing operations are carried out over the building areas 

only.  
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• The results obtained using the developed Hough transform and the Boundary 

tracing based approaches indicate that high resolution satellite imagery has a 

great potential in building delineation. 

 

• The results show that the proposed approaches are quite successful for 

delineating buildings from high resolution satellite images with the average 

BDP values higher than 90% and the QP values higher than 78%.  

 

o For the residential rectangular buildings, the Hough transform based 

approach provided quite satisfactory results with the average BDP and 

QP values of 95.34% and 79.05%, respectively. On the other hand, 

the Boundary tracing based approach was slightly less successful than 

the Hough transform based approach providing the average BDP and 

QP values of 90.46% and 78.73%, respectively. 

 

o For the residential circular buildings, the Hough transform based 

approach provided the average BDP and QP values of 78.74% and 

66.81%, respectively. On the other hand, for the Boundary tracing 

based approach, the average BDP and QP values were computed to be 

77.80% and 64.23%, respectively. 

 

o For the industrial buildings, both approaches provided similar results. 

While the Hough transform based approach provided the average 

BDP and QP values of 93.45% and 79.51%, respectively, the 

Boundary tracing based approach provided the average BDP and QP 

values of 93.59 and 80.39, respectively. 

 

• The results obtained in this study indicate that the Hough transform based 

building delineation procedure can be effectively used to delineate the 

rectangular shaped buildings. 
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• The results prove that the Circular Hough transform is a useful tool for the 

extraction of circular buildings. 

 

• The developed algorithm to delineate the “C” and “S” shape buildings is 

quite successful and efficient.  

 

• The building boundaries, delineated using the Boundary tracing based 

approach, are patch dependent. The building patch image may contain 

artefacts or the building details may be missing. Since the detected building 

patches are in raster form, the delineated building boundaries may have 

irregular shapes. Therefore, the delineated building boundaries using the 

boundary tracing based approach may need refinement process. For this 

purpose, line simplification and the consequent topological filters were used. 

However, further refinement may still be needed to shape the final building 

boundary. This is not the case in the Hough transform based approach 

because in this approach the edges are forced to generate regular shaped 

buildings based on the assumptions made for the perceptual organization. 

 

• When the two approaches are compared, in general, the Hough transform 

based approach provides slightly better results than the Boundary tracing 

based approach. If the mutual lines of the buildings are parallel and the angles 

between the adjacent lines are perpendicular, and if the buildings are circular 

or curved shape, such as the “circle”, “ring”, “C”, and “S” shape, the Hough 

transform based approach provides better results both visually and 

quantitatively.  

 

• The success of the developed building delineation approaches is dependent 

on the success of the detected building patches:  

 

o The adjoining buildings (semi-detached and terraced) were detected 

as one building. As well, the detection of the boundaries between the 

adjoining buildings was not possible from high resolution satellite 
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images. Therefore, the adjoining buildings were not able to be 

delineated separately.   

 

o If the building patches are not detected accurately due to the 

surrounding land use classes that have similar reflectance values, the 

buildings cannot be delineated correctly.  

 

o The buildings that are closer than 3m to each other were detected as a 

single joined building.  

 

• On maps, the boundaries of the buildings represent the footprints rather than 

the rooftops. However, from space imagery, the buildings can be delineated 

from their rooftops. If the image is not a true orthoimage and the hangovers 

are not removed, the delineated boundaries do not represent the footprints, 

therefore.  

 

7.3. Updating an Existing Building Database  

 

The following conclusions were reached from the existing database update part of 

the study: 

 

• It was found that the high resolution satellite images have a great potential for 

updating the buildings in existing building databases. 

 

• Using the proposed model-based approach, the boundaries of new buildings 

were delineated quite successfully with the BDP values ranging from 82.44% 

to 88.95% and the QP values ranging from 68.53% to 79.04%. 

 

• For updating an existing building database, the integration of remote sensing 

imagery and GIS data is quite functional and efficient. Ignoring the evidence 

of existing building boundaries lead to repetition and redundancy. In addition, 
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using the existing building boundaries as a priori information will reduce the 

difficulties in building extraction procedure.  

 

• The major advantage of the developed model-based approach is that there is 

no need to create a building model library.  

 

• As is well known, in conventional building-model based approaches, all the 

possible building shapes must be pre-defined as the building models. The 

disadvantage of these approaches is that there may be a significant number of 

different shapes and types of buildings, which leads to difficulties in the 

creation of a building model library. However, in the developed approach it is 

assumed that the shapes of new buildings are similar to existing buildings 

located in the area. Therefore, with the proposed technique, the difficulties of 

the conventional approaches are handled by means of utilizing the existing 

buildings stored in a GIS. 

 

• In conventional model-based approaches, the shapes of the building models 

in a building model library are usually limited to primitive shapes, such as 

square, rectangle, etc. or the combination of these shapes, such as ‘L’ shape, 

‘H’ shape, etc. However, in the proposed approach, the number of building-

models to be selected can be as many as the number of building shapes stored 

in a GIS database. Therefore, with the developed approach, the buildings 

having very different and/or complicated shapes, such as ‘S’ shape, ‘C’ 

shape, etc. can also be successfully delineated. 

 

• For each building patch, the most proper building model is selected by 

computing and comparing the shape parameters of the building patch (in 

raster form) and the existing buildings (in vector form). It was found that 

using the shape parameters to define the optimum building model is quite 

helpful and efficient. 
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• If the buildings constructed after the compilation of the existing building 

database have different shapes from the buildings in the existing building 

database, the proposed approach may fail for detecting these buildings. This 

is because in this study an assumption was made that the shapes of new 

buildings are similar to the shapes of existing buildings in the same area. In 

this case, the building boundary with the most similar shape is selected as the 

building model from the existing building database. 

 

• In the existing database, there may be more than one building with the similar 

shape parameters to the building patch being analyzed. In this case, the 

selection of the building model can be made wrongly. 

 

• The success of the developed approach depends on the accuracy of the 

previously detected building patches.  

 

7.4. The Recommendations 

 

• The proposed approach can be applied using higher resolution satellite 

images such as Quickbird, GeoEye1, or high resolution digital aerial images.  

 

• The DSM, which was generated in this study from high resolution satellite 

images, can be generated from Laser/Lidar or from aerial images.  

 

• Textural bands can be used as additional bands in the classification for 

building detection and the resultant classified image may increase the 

building detection accuracy. 

 

• The building delineation using Hough transform algorithm can be extended 

for delineating different shapes of buildings such as “L” shape, “H” shape, 

etc. 
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APPENDIX A 
 

 

PHOTOGRAPHS FROM THE STUDY AREA 

 

 

 

 

 

 
 

Figure A. 1. Photographs taken from the study area 
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Figure A. 1. Continued 
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Figure A. 2. Photographs of detached rectangular shaped residential buildings from the study area 
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Figure A. 3. Photographs of semi-detached rectangular shaped residential buildings from the study 

area 
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Figure A. 4. Photographs of terraced rectangular shaped residential buildings from the study area 
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Figure A. 5. Photographs of “circle”, “C” and “S” shaped residential buildings from the study area 
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Figure A. 6. Photographs of rectangular shaped industrial buildings from the study area 
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APPENDIX B 
 

 

EVALUATION OF THE DIGITAL SURFACE MODEL  

 

 

 

 

 

Figure B. 1. The panchromatic IKONOS image and five profiles 
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Figure B. 2. The graphic of the vertical profile. 

 

 

 

 

 

Figure B. 3. The graphic of the horizontal profile. 
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Figure B. 4. The graphic of the horizontal profile 2. 

 

 

 

 

 

Figure B. 5. The graphic of the diagonal profile. 
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Figure B. 6. The graphic of the diagonal profile 2. 
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APPENDIX C 
 

 

ACCURACY ASSESSMENT RESULTS OF THE SVM CLASSIFICATION  
 

 

 

Table C. 1. For the data-sets (14 in total) of Sub-Area I, the SVM classification accuracies computed 

using 2000 test pixels. 

 
 

Ground Truth  
Data-Set 1 

B NB Total 

B 952 41 993 

NB 48 959 1007 

Total 1000 1000 2000 
    

PA 95.20 95.87  

UA 95.90 95.23  

OA 95.55   

KC 0.9110   

 

Ground Truth  
Data-Set 2 

B NB Total 

B 981 7 988 

NB 19 933 1012 

Total 1000 1000 2000 
    

PA 98.10 99.30  

UA 99.29 98.12  

OA 98.70   

KC 0.9740   

B: Building 

NB: Non-Building 

PA: Producer’s Accuracy 

UA: User’s Accuracy 

OA: Overall Accuracy 

KC: Kappa Coefficient 

 

 

Ground Truth  
Data-Set 3 

B NB Total 

B 957 48 1005 

NB 43 952 995 

Total 1000 1000 2000 
    

PA 95.70 95.20  

UA 95.22 95.68  

OA 95.45   

KC 0.9090   

 

Ground Truth  
Data-Set 4 

B NB Total 

B 953 48 1001 

NB 47 952 999 

Total 1000 1000 2000 
    

PA 95.30 95.20  

UA 95.20 95.30  

OA 95.25   

KC 0.9050   

   

Ground Truth  
Data-Set 5 

B NB Total 

B 947 37 984 

NB 53 963 1016 

Total 1000 1000 2000 
    

PA 94.70 96.30  

UA 96.24 94.78  

OA 95.50   

KC 0.9100   

 

Ground Truth  
Data-Set 6 

B NB Total 

B 944 28 972 

NB 56 972 1028 

Total 1000 1000 2000 
    

PA 94.40 97.20  

UA 97.12 94.55  

OA 95.80   

KC 0.9160   
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Table C. 1. Continued 

  

Ground Truth  
Data-Set 7 

B NB Total 

B 952 37 989 

NB 48 963 1011 

Total 1000 1000 2000 
    

PA 95.20 96.30  

UA 96.26 95.25  

OA 95.75   

KC 0.9150   

 

Ground Truth  
Data-Set 8 

B NB Total 

B 981 9 990 

NB 19 991 1010 

Total 1000 1000 2000 
    

PA 98.10 99.10  

UA 99.09 98.12  

OA 98.60   

KC 0.9720   

   

Ground Truth  
Data-Set 9 

B NB Total 

B 982 9 991 

NB 18 991 1009 

Total 1000 1000 2000 
    

PA 98.20 99.10  

UA 99.09 98.22  

OA 98.65   

KC 0.9730   

 

Ground Truth  
Data-Set 10 

B NB Total 

B 983 6 989 

NB 17 994 1011 

Total 1000 1000 2000 
    

PA 98.30 99.40  

UA 99.39 98.32  

OA 98.85   

KC 0.9770   

   

Ground Truth  
Data-Set 11 

B NB Total 

B 982 9 991 

NB 18 991 1009 

Total 1000 1000 2000 
    

PA 98.20 99.10  

UA 99.09 98.22  

OA 98.65   

KC 0.9730   

 

Ground Truth  
Data-Set 12 

B NB Total 

B 979 5 984 

NB 21 995 1016 

Total 1000 1000 2000 
    

PA 97.90 99.50  

UA 99.49 97.93  

OA 98.70   

KC 0.9740   

   

Ground Truth  
Data-Set 13 

B NB Total 

B 956 26 982 

NB 44 974 1018 

Total 1000 1000 2000 
    

PA 95.60 97.40  

UA 97.35 95.68  

OA 96.50   

KC 0.9300   

 

Ground Truth  
Data-Set 14 

B NB Total 

B 974 1 975 

NB 26 999 1025 

Total 1000 1000 2000 
    

PA 97.40 99.70  

UA 99.90 97.46  

OA 98.65   

KC 0.9730   
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Table C. 2. For the data-sets (14 in total) of Sub-Area I, the SVM classification accuracies computed 

using 4000 test pixels. 

 
 

Ground Truth  
Data-Set 1 

B NB Total 

B 1904 41 993 

NB 96 959 1007 

Total 2000 2000 4000 
    

PA 95.20 96.85  

UA 96.80 95.28  

OA 96.03   

KC 0.9205   

 

Ground Truth  
Data-Set 2 

B NB Total 

B 1944 5 1949 

NB 56 1995 2051 

Total 2000 2000 4000 
    

PA 97.20 99.75  

UA 99.74 97.27  

OA 98.48   

KC 0.9695   

   

Ground Truth  
Data-Set 3 

B NB Total 

B 1902 71 1973 

NB 98 1929 2027 

Total 2000 2000 4000 
    

PA 95.10 96.45  

UA 96.40 95.17  

OA 95.78   

KC 0.9155   

 

Ground Truth  
Data-Set 4 

B NB Total 

B 1908 78 1986 

NB 92 1922 2014 

Total 2000 2000 4000 
    

PA 95.40 96.10  

UA 96.07 95.43  

OA 95.75   

KC 0.9150   

   

Ground Truth  
Data-Set 5 

B NB Total 

B 1903 58 1961 

NB 97 1942 2039 

Total 2000 2000 4000 
    

PA 95.15 97.10  

UA 97.04 95.24  

OA 96.13   

KC 0.9225   

 

Ground Truth  
Data-Set 6 

B NB Total 

B 1898 56 1954 

NB 102 1944 2046 

Total 2000 2000 4000 
    

PA 94.90 97.20  

UA 97.13 95.01  

OA 96.05   

KC 0.9210   

   

Ground Truth  
Data-Set 7 

B NB Total 

B 1901 68 1969 

NB 99 1932 2031 

Total 2000 2000 4000 
    

PA 95.05 96.60  

UA 96.55 95.13  

OA 95.83   

KC 0.9165   

 

Ground Truth  
Data-Set 8 

B NB Total 

B 1950 13 1963 

NB 50 1987 2037 

Total 2000 2000 4000 
    

PA 97.50 99.35  

UA 99.34 97.55  

OA 98.43   

KC 0.9685   
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Table C. 2. Continued 

  

Ground Truth  
Data-Set 9 

B NB Total 

B 1943 7 1950 

NB 57 1993 2050 

Total 2000 2000 4000 
    

PA 97.15 99.65  

UA 99.64 97.22  

OA 98.40   

KC 0.9680   

 

Ground Truth  
Data-Set 10 

B NB Total 

B 1949 0 1949 

NB 51 2000 2051 

Total 2000 2000 4000 
    

PA 97.45 100.0  

UA 100.0 97.51  

OA 98.73   

KC 0.9745   

  
 

Ground Truth  
Data-Set 11 

B NB Total 

B 1950 13 1963 

NB 50 1987 2037 

Total 2000 2000 4000 
    

PA 97.50 99.35  

UA 99.34 97.55  

OA 98.43   

KC 0.9685   

 

Ground Truth  
Data-Set 12 

B NB Total 

B 1953 4 1957 

NB 47 1996 2043 

Total 2000 2000 4000 
    

PA 97.65 99.80  

UA 99.80 97.70  

OA 98.73   

KC 0.9745   

   

Ground Truth  
Data-Set 13 

B NB Total 

B 1899 58 1957 

NB 101 1942 2043 

Total 2000 2000 4000 
    

PA 94.95 97.10  

UA 97.04 95.06  

OA 96.03   

KC 0.9205   

 

Ground Truth  
Data-Set 14 

B NB Total 

B 1936 2 1938 

NB 64 1998 2062 

Total 2000 2000 4000 
    

PA 96.80 99.90  

UA 99.90 96.90  

OA 98.35   

KC 0.9670   
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Table C. 3. For the data-sets (14 in total) of Sub-Area I, the SVM classification accuracies computed 

using 8000 test pixels. 

 
 

Ground Truth  
Data-Set 1 

B NB Total 

B 3776 148 3924 

NB 224 3852 4076 

Total 4000 4000 8000 
    

PA 94.40 96.30  

UA 96.23 94.50  

OA 95.35   

KC 0.9070   

 

Ground Truth  
Data-Set 2 

B NB Total 

B 3894 2 3896 

NB 106 3998 4104 

Total 4000 4000 8000 
    

PA 97.35 99.95  

UA 99.95 97.42  

OA 98.65   

KC 0.9730   

   

Ground Truth  
Data-Set 3 

B NB Total 

B 3789 134 3923 

NB 211 3866 4077 

Total 4000 4000 8000 
    

PA 94.72 96.65  

UA 96.58 94.82  

OA 95.69   

KC 0.9137   

 

Ground Truth  
Data-Set 4 

B NB Total 

B 3777 152 3929 

NB 223 3848 4071 

Total 4000 4000 8000 
    

PA 94.42 96.20  

UA 96.13 94.52  

OA 95.31   

KC 0.9063   

   

Ground Truth  
Data-Set 5 

B NB Total 

B 3769 119 3888 

NB 231 3881 4112 

Total 4000 4000 8000 
    

PA 94.22 97.03  

UA 96.94 94.38  

OA 95.63   

KC 0.9125   

 

Ground Truth  
Data-Set 6 

B NB Total 

B 3770 122 3892 

NB 230 3878 4108 

Total 4000 4000 8000 
    

PA 94.25 96.95  

UA 96.87 94.40  

OA 95.60   

KC 0.9120   

   

Ground Truth  
Data-Set 7 

B NB Total 

B 3757 114 3871 

NB 243 3886 4129 

Total 4000 4000 8000 
    

PA 93.92 97.15  

UA 97.06 94.11  

OA 95.54   

KC 0.9107   

 

Ground Truth  
Data-Set 8 

B NB Total 

B 3894 6 3900 

NB 106 3994 4100 

Total 4000 4000 8000 
    

PA 97.35 99.85  

UA 99.85 97.41  

OA 98.60   

KC 0.9720   
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Table C. 3. Continued 

  

Ground Truth  
Data-Set 9 

B NB Total 

B 3895 2 3897 

NB 105 3998 4103 

Total 4000 4000 8000 
    

PA 97.38 99.95  

UA 99.95 97.44  

OA 98.66   

KC 0.9732   

 

Ground Truth  
Data-Set 10 

B NB Total 

B 3893 2 3895 

NB 107 3998 4105 

Total 4000 4000 8000 
    

PA 97.33 99.95  

UA 99.95 97.39  

OA 98.64   

KC 0.9728   

   

Ground Truth  
Data-Set 11 

B NB Total 

B 3892 5 3897 

NB 108 3995 4103 

Total 4000 4000 8000 
    

PA 97.30 99.88  

UA 99.87 97.37  

OA 98.59   

KC 0.9718   

 

Ground Truth  
Data-Set 12 

B NB Total 

B 3897 3 3900 

NB 103 3997 4100 

Total 4000 4000 8000 
    

PA 97.42 99.92  

UA 99.92 97.49  

OA 98.68   

KC 0.9735   

   

Ground Truth  
Data-Set 13 

B NB Total 

B 3780 105 3885 

NB 220 3895 4115 

Total 4000 4000 8000 
    

PA 94.50 97.38  

UA 97.30 94.65  

OA 95.94   

KC 0.9187   

 

Ground Truth  
Data-Set 14 

B NB Total 

B 3900 3 3903 

NB 100 3997 4097 

Total 4000 4000 8000 
    

PA 97.50 99.92  

UA 99.92 97.56  

OA 98.71   

KC 0.9742   
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Table C. 4. For the data-sets (14 in total) of Sub-Area II, the SVM classification accuracies computed 

using 2000 test pixels. 

 
 

Ground Truth  
Data-Set 1 

B NB Total 

B 966 93 1059 

NB 34 907 941 

Total 1000 1000 2000 
    

PA 96.60 90.70  

UA 91.22 96.39  

OA 93.65   

KC 0.8730   

 

Ground Truth  
Data-Set 2 

B NB Total 

B 976 46 1022 

NB 24 954 978 

Total 1000 1000 2000 
    

PA 97.60 95.40  

UA 95.50 97.55  

OA 96.50   

KC 0.9300   

   

Ground Truth  
Data-Set 3 

B NB Total 

B 967 94 1061 

NB 33 906 939 

Total 1000 1000 2000 
    

PA 96.70 90.60  

UA 91.14 96.49  

OA 93.65   

KC 0.8730   

 

Ground Truth  
Data-Set 4 

B NB Total 

B 967 94 1061 

NB 33 906 939 

Total 1000 1000 2000 
    

PA 96.70 90.60  

UA 91.14 96.49  

OA 93.65   

KC 0.8730   

   

Ground Truth  
Data-Set 5 

B NB Total 

B 965 92 1057 

NB 35 908 943 

Total 1000 1000 2000 
    

PA 96.50 90.80  

UA 91.30 96.29  

OA 93.65   

KC 0.8730   

 

Ground Truth  
Data-Set 6 

B NB Total 

B 970 94 1064 

NB 30 906 936 

Total 1000 1000 2000 
    

PA 97.00 90.60  

UA 91.17 96.79  

OA 93.80   

KC 0.8760   

   

Ground Truth  
Data-Set 7 

B NB Total 

B 969 92 1061 

NB 31 908 939 

Total 1000 1000 2000 
    

PA 96.90 90.80  

UA 91.33 96.70  

OA 93.85   

KC 0.8770   

 

Ground Truth  
Data-Set 8 

B NB Total 

B 972 51 1023 

NB 28 949 977 

Total 1000 1000 2000 
    

PA 97.20 94.90  

UA 95.01 97.13  

OA 96.05   

KC 0.9210   
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Table C. 4. Continued 

  

Ground Truth  
Data-Set 9 

B NB Total 

B 976 52 1028 

NB 24 948 972 

Total 1000 1000 2000 
    

PA 97.60 94.80  

UA 94.94 97.53  

OA 96.20   

KC 0.9240   

 

Ground Truth  
Data-Set 10 

B NB Total 

B 974 48 1022 

NB 26 952 978 

Total 1000 1000 2000 
    

PA 97.40 95.20  

UA 95.30 97.34  

OA 96.30   

KC 0.9260   

   

Ground Truth  
Data-Set 11 

B NB Total 

B 977 53 1030 

NB 23 947 970 

Total 1000 1000 2000 
    

PA 97.70 94.70  

UA 94.85 97.63  

OA 96.20   

KC 0.9240   

 

Ground Truth  
Data-Set 12 

B NB Total 

B 978 54 1032 

NB 22 946 968 

Total 1000 1000 2000 
    

PA 97.80 94.60  

UA 94.77 97.73  

OA 96.20   

KC 0.9240   

   

Ground Truth  
Data-Set 13 

B NB Total 

B 969 72 1041 

NB 31 928 959 

Total 1000 1000 2000 
    

PA 96.90 92.80  

UA 93.08 96.77  

OA 94.85   

KC 0.8970   

 

Ground Truth  
Data-Set 14 

B NB Total 

B 922 32 954 

NB 78 968 1046 

Total 1000 1000 2000 
    

PA 92.20 96.80  

UA 96.65 92.54  

OA 94.50   

KC 0.8900   
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Table C. 5. For the data-sets (14 in total) of Sub-Area II, the SVM classification accuracies computed 

using 4000 test pixels. 

 
 

Ground Truth  
Data-Set 1 

B NB Total 

B 1893 159 2052 

NB 107 1841 1948 

Total 2000 2000 4000 
    

PA 94.65 92.05  

UA 92.25 94.51  

OA 93.35   

KC 0.8670   

 

Ground Truth  
Data-Set 2 

B NB Total 

B 1956 70 2026 

NB 44 1930 1974 

Total 2000 2000 4000 
    

PA 97.80 96.50  

UA 96.54 97.77  

OA 97.15   

KC 0.9430   

   

Ground Truth  
Data-Set 3 

B NB Total 

B 1932 178 2110 

NB 68 1822 1890 

Total 2000 2000 4000 
    

PA 96.60 91.10  

UA 91.56 96.40  

OA 93.85   

KC 0.8770   

 

Ground Truth  
Data-Set 4 

B NB Total 

B 1931 167 2098 

NB 69 1833 1902 

Total 2000 2000 4000 
    

PA 96.55 91.65  

UA 92.04 96.37  

OA 94.10   

KC 0.8820   

   

Ground Truth  
Data-Set 5 

B NB Total 

B 1953 162 2115 

NB 47 1838 1885 

Total 2000 2000 4000 
    

PA 97.65 91.90  

UA 92.34 97.51  

OA 94.78   

KC 0.8955   

 

Ground Truth  
Data-Set 6 

B NB Total 

B 1952 159 2111 

NB 48 1841 1889 

Total 2000 2000 4000 
    

PA 97.60 92.05  

UA 92.47 97.46  

OA 94.83   

KC 0.8965   

   

Ground Truth  
Data-Set 7 

B NB Total 

B 1788 124 1912 

NB 212 1876 2088 

Total 2000 2000 4000 
    

PA 89.40 93.80  

UA 93.51 89.85  

OA 91.60   

KC 0.8320   

 

Ground Truth  
Data-Set 8 

B NB Total 

B 1960 85 2045 

NB 40 1915 1955 

Total 2000 2000 4000 
    

PA 98.00 95.75  

UA 95.84 97.95  

OA 96.88   

KC 0.9375   
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Table C. 5. Continued 

  

Ground Truth  
Data-Set 9 

B NB Total 

B 1968 82 2050 

NB 32 1918 1950 

Total 2000 2000 4000 
    

PA 98.40 95.90  

UA 96.00 98.36  

OA 97.15   

KC 0.9430   

 

Ground Truth  
Data-Set 10 

B NB Total 

B 1923 55 1978 

NB 77 1945 2022 

Total 2000 2000 4000 
    

PA 96.15 97.25  

UA 97.22 96.19  

OA 96.70   

KC 0.9340   

   

Ground Truth  
Data-Set 11 

B NB Total 

B 1965 92 2057 

NB 35 1908 1943 

Total 2000 2000 4000 
    

PA 98.25 95.40  

UA 95.53 98.20  

OA 96.83   

KC 0.9365   

 

Ground Truth  
Data-Set 12 

B NB Total 

B 1952 85 2037 

NB 48 1915 1963 

Total 2000 2000 4000 
    

PA 97.60 95.75  

UA 95.83 97.55  

OA 96.68   

KC 0.9335   

   

Ground Truth  
Data-Set 13 

B NB Total 

B 1892 125 2017 

NB 108 1875 1983 

Total 2000 2000 4000 
    

PA 94.60 93.75  

UA 93.80 94.55  

OA 94.18   

KC 0.8835   

 

Ground Truth  
Data-Set 14 

B NB Total 

B 1847 51 1898 

NB 153 1949 2102 

Total 2000 2000 4000 
    

PA 92.35 97.45  

UA 97.31 97.72  

OA 94.90   

KC 0.8980   
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Table C. 6. For the data-sets (14 in total) of Sub-Area II, the SVM classification accuracies computed 

using 8000 test pixels. 

 
 

Ground Truth  
Data-Set 1 

B NB Total 

B 3679 307 3986 

NB 321 3693 4014 

Total 4000 4000 8000 
    

PA 91.97 92.33  

UA 92.30 92.00  

OA 92.15   

KC 0.8430   

 

Ground Truth  
Data-Set 2 

B NB Total 

B 3909 136 4045 

NB 91 3864 3955 

Total 4000 4000 8000 
    

PA 97.72 96.60  

UA 96.64 97.70  

OA 97.16   

KC 0.9433   

   

Ground Truth  
Data-Set 3 

B NB Total 

B 3718 345 4063 

NB 282 3655 3937 

Total 4000 4000 8000 
    

PA 92.95 91.38  

UA 91.51 92.84  

OA 92.16   

KC 0.8433   

 

Ground Truth  
Data-Set 4 

B NB Total 

B 3667 320 3987 

NB 333 3680 4013 

Total 4000 4000 8000 
    

PA 91.67 92.00  

UA 91.97 91.70  

OA 91.84   

KC 0.8367   

   

Ground Truth  
Data-Set 5 

B NB Total 

B 3907 296 4203 

NB 93 3704 3797 

Total 4000 4000 8000 
    

PA 97.67 92.60  

UA 92.96 97.55  

OA 95.14   

KC 0.9028   

 

Ground Truth  
Data-Set 6 

B NB Total 

B 3904 264 4168 

NB 96 3736 3832 

Total 4000 4000 8000 
    

PA 97.60 93.40  

UA 93.67 97.49  

OA 95.50   

KC 0.9100   

   

Ground Truth  
Data-Set 7 

B NB Total 

B 3656 271 3927 

NB 344 3729 4073 

Total 4000 4000 8000 
    

PA 91.40 93.22  

UA 93.10 91.55  

OA 92.31   

KC 0.8462   

 

Ground Truth  
Data-Set 8 

B NB Total 

B 3908 150 4058 

NB 92 3850 3942 

Total 4000 4000 8000 
    

PA 97.70 96.25  

UA 96.30 97.67  

OA 96.98   

KC 0.9395   
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Table C. 6. Continued 

  

Ground Truth  
Data-Set 9 

B NB Total 

B 3929 165 4094 

NB 71 3835 3906 

Total 4000 4000 8000 
    

PA 98.22 95.88  

UA 95.97 98.18  

OA 97.05   

KC 0.9410   

 

Ground Truth  
Data-Set 10 

B NB Total 

B 3900 128 4028 

NB 100 3872 3972 

Total 4000 4000 8000 
    

PA 97.50 96.80  

UA 96.82 97.48  

OA 97.15   

KC 0.9430   

   

Ground Truth  
Data-Set 11 

B NB Total 

B 3920 166 4086 

NB 80 3834 3914 

Total 4000 4000 8000 
    

PA 98.00 95.85  

UA 95.94 97.96  

OA 96.93   

KC 0.9385   

 

Ground Truth  
Data-Set 12 

B NB Total 

B 3885 158 4043 

NB 115 3842 3957 

Total 4000 4000 8000 
    

PA 97.13 96.05  

UA 96.09 97.09  

OA 96.59   

KC 0.9317   

   

Ground Truth  
Data-Set 13 

B NB Total 

B 3908 227 4135 

NB 92 3773 3865 

Total 4000 4000 8000 
    

PA 97.70 94.33  

UA 94.51 97.62  

OA 96.01   

KC 0.9203   

 

Ground Truth  
Data-Set 14 

B NB Total 

B 3681 91 3772 

NB 319 3909 4228 

Total 4000 4000 8000 
    

PA 92.03 97.72  

UA 97.59 92.46  

OA 94.88   

KC 0.8975   
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Table C. 7. For the data-sets (14 in total) of Sub-Area III, the SVM classification accuracies computed 

using 2000 test pixels. 

 
 

Ground Truth  
Data-Set 1 

B NB Total 

B 874 73 947 

NB 126 927 1053 

Total 1000 1000 2000 
    

PA 87.40 92.70  

UA 92.29 88.03  

OA 90.05   

KC 0.8010   

 

Ground Truth  
Data-Set 2 

B NB Total 

B 949 18 967 

NB 51 982 1033 

Total 1000 1000 2000 
    

PA 94.90 98.20  

UA 98.14 95.06  

OA 96.55   

KC 0.9310   

   

Ground Truth  
Data-Set 3 

B NB Total 

B 882 80 962 

NB 118 920 1038 

Total 1000 1000 2000 
    

PA 88.20 92.00  

UA 91.68 88.63  

OA 90.10   

KC 0.8020   

 

Ground Truth  
Data-Set 4 

B NB Total 

B 876 82 958 

NB 124 918 1042 

Total 1000 1000 2000 
    

PA 87.60 91.80  

UA 91.44 88.10  

OA 89.70   

KC 0.7940   

   

Ground Truth  
Data-Set 5 

B NB Total 

B 893 35 928 

NB 107 965 1072 

Total 1000 1000 2000 
    

PA 89.30 96.50  

UA 96.23 90.02  

OA 92.90   

KC 0.8580   

 

Ground Truth  
Data-Set 6 

B NB Total 

B 922 54 976 

NB 78 946 1024 

Total 1000 1000 2000 
    

PA 92.20 94.60  

UA 94.47 92.38  

OA 93.40   

KC 0.8680   

   

Ground Truth  
Data-Set 7 

B NB Total 

B 900 86 986 

NB 100 914 1014 

Total 1000 1000 2000 
    

PA 90.00 91.40  

UA 91.28 90.14  

OA 90.70   

KC 0.8140   

 

Ground Truth  
Data-Set 8 

B NB Total 

B 954 17 971 

NB 46 983 1029 

Total 1000 1000 2000 
    

PA 95.40 98.30  

UA 98.25 95.53  

OA 96.85   

KC 0.9370   
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Table C. 7. Continued 

  

Ground Truth  
Data-Set 9 

B NB Total 

B 921 17 938 

NB 79 983 1062 

Total 1000 1000 2000 
    

PA 92.10 98.30  

UA 98.19 92.56  

OA 95.20   

KC 0.9040   

 

Ground Truth  
Data-Set 10 

B NB Total 

B 944 27 971 

NB 56 973 1029 

Total 1000 1000 2000 
    

PA 94.40 97.30  

UA 97.22 94.56  

OA 95.85   

KC 0.9170   

   

Ground Truth  
Data-Set 11 

B NB Total 

B 927 14 941 

NB 73 986 1059 

Total 1000 1000 2000 
    

PA 92.70 98.60  

UA 98.51 93.11  

OA 95.65   

KC 0.9130   

 

Ground Truth  
Data-Set 12 

B NB Total 

B 942 21 963 

NB 58 979 1037 

Total 1000 1000 2000 
    

PA 94.20 97.90  

UA 97.82 94.41  

OA 96.05   

KC 0.9210   

   

Ground Truth  
Data-Set 13 

B NB Total 

B 928 34 962 

NB 72 966 1038 

Total 1000 1000 2000 
    

PA 92.80 96.60  

UA 96.47 93.06  

OA 94.70   

KC 0.8940   

 

Ground Truth  
Data-Set 14 

B NB Total 

B 946 20 966 

NB 54 980 1034 

Total 1000 1000 2000 
    

PA 94.60 98.00  

UA 97.93 94.78  

OA 96.30   

KC 0.9260   
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Table C. 8. For the data-sets (14 in total) of Sub-Area III, the SVM classification accuracies computed 

using 4000 test pixels. 

 
 

Ground Truth  
Data-Set 1 

B NB Total 

B 1787 109 1896 

NB 213 1891 2104 

Total 2000 2000 4000 
    

PA 89.35 94.55  

UA 94.25 89.88  

OA 91.95   

KC 0.8390   

 

Ground Truth  
Data-Set 2 

B NB Total 

B 1942 50 1992 

NB 58 1950 2008 

Total 2000 2000 4000 
    

PA 97.10 97.50  

UA 97.49 97.11  

OA 97.30   

KC 0.9460   

   

Ground Truth  
Data-Set 3 

B NB Total 

B 1793 128 1921 

NB 207 1872 2079 

Total 2000 2000 4000 
    

PA 89.65 93.60  

UA 93.34 90.04  

OA 91.63   

KC 0.8325   

 

Ground Truth  
Data-Set 4 

B NB Total 

B 1790 124 1914 

NB 210 1876 2086 

Total 2000 2000 4000 
    

PA 89.50 93.80  

UA 93.52 89.93  

OA 91.65   

KC 0.8330   

   

Ground Truth  
Data-Set 5 

B NB Total 

B 1792 61 1853 

NB 208 1939 2147 

Total 2000 2000 4000 
    

PA 89.60 96.95  

UA 96.71 90.31  

OA 93.28   

KC 0.8655   

 

Ground Truth  
Data-Set 6 

B NB Total 

B 1866 97 1963 

NB 134 1903 2037 

Total 2000 2000 4000 
    

PA 93.30 95.15  

UA 95.06 93.42  

OA 94.23   

KC 0.8845   

   

Ground Truth  
Data-Set 7 

B NB Total 

B 1796 117 1913 

NB 204 1883 2087 

Total 2000 2000 4000 
    

PA 89.80 94.15  

UA 93.88 90.23  

OA 91.98   

KC 0.8395   

 

Ground Truth  
Data-Set 8 

B NB Total 

B 1942 46 1988 

NB 58 1954 2012 

Total 2000 2000 4000 
    

PA 97.10 97.70  

UA 97.69 97.12  

OA 97.40   

KC 0.9480   
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Table C. 8. Continued 

  

Ground Truth  
Data-Set 9 

B NB Total 

B 1947 56 2003 

NB 53 1944 1997 

Total 2000 2000 4000 
    

PA 97.35 97.20  

UA 97.20 97.35  

OA 97.28   

KC 0.9455   

 

Ground Truth  
Data-Set 10 

B NB Total 

B 1893 45 1938 

NB 107 1955 2062 

Total 2000 2000 4000 
    

PA 94.66 97.75  

UA 97.68 94.81  

OA 96.20   

KC 0.9240   

   

Ground Truth  
Data-Set 11 

B NB Total 

B 1949 34 1983 

NB 51 1966 2017 

Total 2000 2000 4000 
    

PA 97.45 98.30  

UA 98.29 97.47  

OA 97.88   

KC 0.9575   

 

Ground Truth  
Data-Set 12 

B NB Total 

B 1893 35 1928 

NB 107 1965 2072 

Total 2000 2000 4000 
    

PA 94.65 98.25  

UA 98.18 94.84  

OA 96.45   

KC 0.9290   

   

Ground Truth  
Data-Set 13 

B NB Total 

B 1874 70 1944 

NB 126 1930 2056 

Total 2000 2000 4000 
    

PA 93.70 96.50  

UA 96.40 93.87  

OA 95.10   

KC 0.9020   

 

Ground Truth  
Data-Set 14 

B NB Total 

B 1905 27 1932 

NB 95 1973 2068 

Total 2000 2000 4000 
    

PA 95.25 98.65  

UA 98.60 95.41  

OA 96.95   

KC 0.9390   
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Table C. 9. For the data-sets (14 in total) of Sub-Area III, the SVM classification accuracies computed 

using 8000 test pixels. 

 
 

Ground Truth  
Data-Set 1 

B NB Total 

B 3595 184 3779 

NB 405 3816 4221 

Total 4000 4000 8000 
    

PA 89.88 95.40  

UA 95.13 90.41  

OA 92.64   

KC 0.8528   

 

Ground Truth  
Data-Set 2 

B NB Total 

B 3894 102 3996 

NB 106 3898 4004 

Total 4000 4000 8000 
    

PA 97.35 97.45  

UA 97.45 97.35  

OA 97.40   

KC 0.9480   

   

Ground Truth  
Data-Set 3 

B NB Total 

B 3591 228 3819 

NB 409 3772 4181 

Total 4000 4000 8000 
    

PA 89.78 94.30  

UA 94.03 90.22  

OA 92.04   

KC 0.8408   

 

Ground Truth  
Data-Set 4 

B NB Total 

B 3590 229 3819 

NB 410 3771 4181 

Total 4000 4000 8000 
    

PA 89.75 94.28  

UA 94.00 90.19  

OA 92.01   

KC 0.8403   

   

Ground Truth  
Data-Set 5 

B NB Total 

B 3600 123 3723 

NB 400 3877 4277 

Total 4000 4000 8000 
    

PA 90.00 96.92  

UA 96.70 90.65  

OA 93.46   

KC 0.8692   

 

Ground Truth  
Data-Set 6 

B NB Total 

B 3736 211 3947 

NB 264 3789 4053 

Total 4000 4000 8000 
    

PA 93.40 94.72  

UA 94.65 93.49  

OA 94.06   

KC 0.8812   

   

Ground Truth  
Data-Set 7 

B NB Total 

B 3615 189 3804 

NB 385 3811 4196 

Total 4000 4000 8000 
    

PA 90.38 95.28  

UA 95.03 90.82  

OA 92.83   

KC 0.8565   

 

Ground Truth  
Data-Set 8 

B NB Total 

B 3894 96 3990 

NB 106 3904 4010 

Total 4000 4000 8000 
    

PA 97.35 97.60  

UA 97.59 97.36  

OA 97.48   

KC 0.9495   
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Table C. 9. Continued 

  

Ground Truth  
Data-Set 9 

B NB Total 

B 3896 111 4007 

NB 104 3889 3993 

Total 4000 4000 8000 
    

PA 97.40 97.22  

UA 97.23 97.40  

OA 97.31   

KC 0.9463   

 

Ground Truth  
Data-Set 10 

B NB Total 

B 3846 115 3961 

NB 154 3885 4039 

Total 4000 4000 8000 
    

PA 96.15 97.13  

UA 97.10 96.19  

OA 96.64   

KC 0.9327   

   

Ground Truth  
Data-Set 11 

B NB Total 

B 3898 70 3968 

NB 102 3930 4032 

Total 4000 4000 8000 
    

PA 97.45 98.25  

UA 98.24 97.47  

OA 97.85   

KC 0.9570   

 

Ground Truth  
Data-Set 12 

B NB Total 

B 3884 82 3966 

NB 116 3918 4034 

Total 4000 4000 8000 
    

PA 97.10 97.95  

UA 97.93 97.12  

OA 97.53   

KC 0.9505   

   

Ground Truth  
Data-Set 13 

B NB Total 

B 3759 147 3906 

NB 241 3853 4094 

Total 4000 4000 8000 
    

PA 93.97 96.33  

UA 96.24 94.11  

OA 95.15   

KC 0.9030   

 

Ground Truth  
Data-Set 14 

B NB Total 

B 3889 73 3962 

NB 111 3927 4038 

Total 4000 4000 8000 
    

PA 97.22 98.17  

UA 98.16 97.25  

OA 97.70   

KC 0.9540   
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APPENDIX D 
 

 

THE RESULTS OF THE SVM CLASSIFICATION  
 

 

 

    
Sub-Area I Data-Set 1 Data-Set 2 Data-Set 3 

    
Data-Set 4 Data-Set 5 Data-Set 6 Data-Set 7 

    
Data-Set 8 Data-Set 9 Data-Set 10 Data-Set 11 

   

 

Data-Set 12 Data-Set 13 Data-Set 14  

 

Figure D. 1. For Sub-Area I, the results of SVM classification performed using 14 Data-Sets and 1000 

samples 
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Sub-Area I Data-Set 1 Data-Set 2 

   
Data-Set 3 Data-Set 4 Data-Set 5 

   
Data-Set 6 Data-Set 7 Data-Set 8 

   
Data-Set 9 Data-Set 10 Data-Set 11 

   
Data-Set 12 Data-Set 13 Data-Set 14 

 

Figure D. 2. For Sub-Area I, the results of SVM classification performed using 14 Data-Sets and 2000 

samples 
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Sub-Area II Data-Set 1 Data-Set 2 

   
Data-Set 3 Data-Set 4 Data-Set 5 

   
Data-Set 6 Data-Set 7 Data-Set 8 

   
Data-Set 9 Data-Set 10 Data-Set 11 

   
Data-Set 12 Data-Set 13 Data-Set 14 

 

Figure D. 3. For Sub-Area II, the results of SVM classification performed using 14 Data-Sets and 

1000 samples 
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Sub-Area II Data-Set 1 Data-Set 2 

   
Data-Set 3 Data-Set 4 Data-Set 5 

   
Data-Set 6 Data-Set 7 Data-Set 8 

   
Data-Set 9 Data-Set 10 Data-Set 11 

   
Data-Set 12 Data-Set 13 Data-Set 14 

 

Figure D. 4. For Sub-Area II, the results of SVM classification performed using 14 Data-Sets and 

2000 samples 
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Sub-Area III Data-Set 1 Data-Set 2 

   
Data-Set 3 Data-Set 4 Data-Set 5 

   
Data-Set 6 Data-Set 7 Data-Set 8 

   
Data-Set 9 Data-Set 10 Data-Set 11 

   
Data-Set 12 Data-Set 13 Data-Set 14 

 

Figure D. 5. For Sub-Area III, the results of SVM classification performed using 14 Data-Sets and 

1000 samples 
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Sub-Area III Data-Set 1 Data-Set 2 

   
Data-Set 3 Data-Set 4 Data-Set 5 

   
Data-Set 6 Data-Set 7 Data-Set 8 

   
Data-Set 9 Data-Set 10 Data-Set 11 

   
Data-Set 12 Data-Set 13 Data-Set 14 

 

Figure D. 6. For Sub-Area III, the results of SVM classification performed using 14 Data-Sets and 

2000 samples 
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APPENDIX E 
 

 

SOURCE CODE FOR BUILDING MODEL SELECTION  
 

 

 

% For each building patch, the differences of the shape parameters between the 

building patch and all of the existing building boundaries are calculated as follows: 

area_dif(e)= abs (area_eb (1,e) – area_bp); 

per_dif(e)= abs(per_eb (1,e) - per_bp); 

major_dif(e)= abs(major_eb (1,e) - major_bp); 

minor_dif(e)= abs(minor_eb (1,e) - minor_bp); 

elong_dif(e)= abs(elongation_eb (1,e) - elongation_bp); 

comp_dif(e)= abs(comp_eb (1,e) - comp_bp); 

solid_dif(e)= abs(solid_eb (1,e) - solid_bp); 

 

 

% The minimum and maximum values of these differences are found as follows: 

area_dif_min = min(area_dif(1,:)); 

area_dif_max = max(area_dif(1,:)); 

 

per_dif_min = min(per_dif(1,:)); 

per_dif_max = max(per_dif(1,:)); 

 

major_dif_min = min(major_dif(1,:)); 

major_dif_max = max(major_dif(1,:)); 

 

minor_dif_min = min(minor_dif(1,:)); 

minor_dif_max = max(minor_dif(1,:)); 

 

elong_dif_min = min(elongation_dif(1,:)); 

elong_dif_max = max(elongation_dif(1,:)); 

 

comp_dif_min = min(comp_dif(1,:)); 

comp_dif_max = max(comp_dif(1,:)); 

 

solid_dif_min = min(solid_dif(1,:)); 

solid_dif_max = max(solid_dif(1,:)); 
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% These differences are rescaled between 0  and 1; 

area_delta = area_dif_max - area_dif_min; 

area_sc(e)= (area_dif(e) - area_dif_min)/area_delta; 

     

per_delta = per_dif_max - per_dif_min; 

per_sc(e)= (per_dif(e) - per_dif_min)/per_delta; 

     

major_delta = major_dif_max - major_dif_min; 

major_sc(e)= (major_dif(e) - major_dif_min)/major_delta; 

     

minor_delta = minor_dif_max - minor_dif_min; 

minor_sc(e)= (minor_dif(e) - minor_dif_min)/minor_delta; 

  

elong_delta = elongation_dif_max - elongation_dif_min; 

elong_sc(e)=(elongation_dif(e)-elongation_dif_min)/elongation_delta; 

      

comp_delta = comp_dif_max - comp_dif_min; 

comp_sc(e)= (comp_dif(e) - comp_dif_min)/comp_delta; 

     

solid_delta = solid_dif_max - solid_dif_min; 

solid_sc(e)= (solid_dif(e) - solid_dif_min)/solid_delta; 

     

% The total differences are calculated by adding all shape parameter differences; 

total_dif (e) = area_sc(e) + per_sc(e)+ major_sc(e)+ minor_sc(e)+ comp_sc(e) +… 

           … + solid_sc(e) + elongation_sc(e); 

 

% To select the optimum building model for each candidate building patch, the 

minimum total difference value between the shape parameters of candidate building 

patch and the existing building boundaries is determined 

MIN_DIFF = min(total_dif(1,:)); 
  

% To select the optimum building model the below given query is performed: 

 b=size(E); 

    for a=1:b 

        if MIN_DIFF == total_dif(1,a) 

          BM = shaperead('exist_build.shp', 'Selector',{@(v1) (v1 == E(a,1).BuildID),   

          'BuildID'}); 

            shapewrite(BM, 'selected_building.shp') 

        end 

    end 
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