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ABSTRACT

OPTIMIZABLE MULTIRESOLUTION QUADRATIC VARIATION FILTER FOR
HIGH-FREQUENCY FINANCIAL DATA

Şen, Aykut

M.S., Department of Financial Mathematics

Supervisor : Prof. Dr. Ersan Akyıldız

Co-Supervisor : Assist.Prof.Dr.Kasırga Yıldırak

February 2009, 72 pages

As the tick-by-tick data of financial transactions become easier to reach, processing that

much of information in an efficient and correct way to estimate the integrated volatility gains

importance. However, empirical findings show that, this much of data may become unusable

due to microstructure effects. Most common way to get over this problem is to sample the data

in equidistant intervals of calendar, tick or business time scales. The comparative researches

on that subject generally assert that, the most successful sampling scheme is a calendar time

sampling which samples the data every 5 to 20 minutes. But this generally means throwing

out more than 99 percent of the data. So it is obvious that a more efficient sampling method

is needed. Although there are some researches on using alternative techniques, none of them

is proven to be the best.

Our study is concerned with a sampling scheme that uses the information in different scales

of frequency and is less prone to microstructure effects. We introduce a new concept of busi-

ness intensity, the sampler of which is named Optimizable Multiresolution Quadratic Vari-

ation Filter. Our filter uses multiresolution analysis techniques to decompose the data into

different scales and quadratic variation to build up the new business time scale. Our empiri-

cal findings show that our filter is clearly less prone to microstructure effects than any other
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common sampling method.

We use the classified tick-by-tick data for Turkish Interbank FX market. The market is

closed for nearly 14 hours of the day, so big jumps occur between closing and opening prices.

We also propose a new smoothing algorithm to reduce the effects of those jumps.

Keywords: Microstructure Effects, Integrated Volatility, Realized Variance, Multiresolution

Analysis, Wavelets, High-Frequency Finance, Seasonality, Data Smoothing, Turkish Foreign

Exchange Market
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ÖZ

YÜKSEK FREKANSLI FİNANSAL VERİ İÇİN OPTİMİZE EDİLEBİLİR ÇOK
ÇÖZÜNÜRLÜKLÜ KARESEL VARYASYON FİLTRESİ

Şen, Aykut

Yüksek Lisans, Finansal Matematik Bölümü

Tez Yöneticisi : Prof. Dr. Ersan Akyıldız

Ortak Tez Yöneticisi : Yrd.Doç.Dr.Kasırga Yıldırak

Şubat 2009, 72 sayfa

İşlem bazında finansal veriye daha kolay ulaşılabildikçe, anlık oynaklıg̃ın tahmin edilmesi

önem kazanan bir konu haline gelmiştir. Bunun için yüksek frekanslı verinin dog̃ru ve ver-

imli şekilde işlenmesi gerekmektedir. Ancak gözlemsel bulgular, yüksek frekanslı verinin,

mikroyapı etkileri nedeniyle kullanılamaz hale gelebileceg̃ini göstermektedir. Bu sorunun

üstesinden gelmek için en sık kullanılan yöntem, takvim, işlem veya işsel yog̃unluk ölçütlerinde

eşit aralıklı örnekleme yapmaktır. Bu konuda yapılmış karşılaştırmalı araştırmalar, en başarılı

örnekleme şemasının 5 ila 20 dakikada bir örnekleme yapan bir takvimsel örnekleme şeması

oldug̃unu ileri sürmektedir. Ancak bu, genelde verinin yüzde 99’unun kullanılamaması an-

lamına gelmektedir. Bu durumda, daha iyi bir örnekleme yöntemine ihtiyaç duyuldug̃u çok

açıktır. Deg̃işik araştırmalar alternatif örnekleme teknikleri önerse de, bunların hiçbiri en iyi

olarak sunulamamaktadır.

Çalışmamız, verinin deg̃işik frekanslarda taşıdıg̃ı bilgiyi kullanan ve mikro yapı etkilerine

daha az maruz kalan bir örnekleme şeması üzerinde yog̃unlaşmaktadır. Örnekleyicisine Op-

timize Edilebilir Karesel Varyasyon Filtresi adını verdig̃imiz yeni bir işsel yog̃unluk kavramı

sunmaktayız. Filtremiz Çoklu Çözünürlük Tekniklerini kullanarak veriyi deg̃işik frekanslara

ayrıştırmakta ve karesel varyasyon kullanarak yeni bir işsel zaman ölçütü yaratmaktadır.
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Gözlemsel bulgularımız, filtremizin, dig̃er sık kullanılan örnekleme yöntemlerine göre mikroyapı

etkilerine çok daha az maruz kaldıg̃ını göstermektedir.

Kullandıg̃ımız veri, Türkiye Bankalararası Döviz Piyasası’nın işlem bazında verileridir.

Bu piyasa günde yaklaşık 14 saat kapalı oldug̃undan, kapanış-açılış fiyatları arasında ciddi

oynamalar görülebilmektedir. Bu oynamaların etkilerini azaltmak için ayrıca bir yumuşatma

yöntemi önermekteyiz.

Anahtar Kelimeler: Mikroyapı Etkileri, Anlık Oynaklık, Gerçekleşmiş Varyans, Çoklu çözünürlük

Analizi, Yüksek Frekanslı Finansal Veri, Mevsimsellik, Veri Yumuşatma, Türkiye Bankalararası

Döviz Piyasası
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CHAPTER 1

INTRODUCTION

The most common approach in financial analysis is to assume that most of the pa-

rameters that effect the transactions are homogeneous. But in fact, there are a lot

of variables that effect prices and trade intensity. For instance, even the composi-

tion of the traders, their risk adverseness and the information they have change from

minute to minute. There are speculative trades as well as investment trades. Such

external effects over the prices that vary continuously on a time scale are called mi-

crostructure effects ( [Dacorogna 2001], [O’Hara 1997]). The impact of those mi-

crostructure effects may be negligible for macroeconomic analysis or VAR analysis

which use a spectrum of time series, varying from daily to annual data where in-

stantaneous or speculative trends are observed sparsely. However when analyzing the

high-frequency data, one cannot underestimate those microstructure effects since they

entangle the whole price information and threat the stylized facts.

So, when we enter the world of the high-frequency finance, we know that the

markets are not homogeneous and the best financial analysis should take those mi-

crostructure effects into consideration. They especially count when estimating the

integrated volatility. The most common but lazy way in literature to deal with those

effects is to sparsely sample the tick-by-tick data and waste much of it. Yet there

are some researches in the literature trying to develop ways to make use of all the

data available, like [Zhang 2005]. However, most of the high-frequency data anal-

yses still assume that the microstructure effects are not variant over time. So, such

researches try to find an optimal constant sampling interval dependent on calender,

tick or business time scale and assume the samples obtained via those treshold points

are homogeneous.
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As we stated earlier, microstructure effects are negligible when the transactions

are done for investment purposes (long term) and are apparent when the trading is

done for speculative purposes. So if we can seperate the investment trends from spec-

ulative trends, we may model those effects better. That’s the point, where wavelets

and multiresolution analysis (MRA) enters the scene.

Multiresolution analysis and wavelets, originating from Fourier analysis are in

fact used in signal processing to decompose signals into orthogonal components, then

clear distortions due to external effects and finally reconstruct. With an analogy to

signal processing, they are mostly used to clear noise from financial data by analyzing

the data both in time and frequency resolutions.

What we will present in our work is a new concept of optimizable business in-

tensity that is provided via multiresolution analysis. We decompose the data into its

resolutions of orthogonal components, evaluate new total business intensity and sam-

ple for different frequencies. With those samples, we evaluate the realized variance

and estimate integrated volatility. Then we iterate this procedure for all levels of res-

olution. For optimization, we assign a bias measure that we determine due to market

practice and evaluate the relative bias for each path. We name the whole procedure

as OPTIMIZABLE MULTIRESOLUTION QUADRATIC VARIATION FILTER FOR

HIGH-FREQUENCY DATA.

The research that inspired this work is the 2001 paper of Ramazan Gençay, Faruk

Selçuk and Brandon Whitcher, ’Differentiating intraday seasonalities through wavelet

multi-scaling’( [Gençay 2001]). In that research, the authors provide a model for re-

moving the seasonalities of high frequency data by using Discrete Wavelet Transform

and via this model obtain an ACF that is very close to the ACF of a long-memory

process that satisfies γ(k) ≈ λk−α where λ is the scaling parameter and α ∈ [0, 1].

This condition is asserted by [Hosking 1996].

The problem with the approach is that, it oversmooths the data at higher iterations,

so that the resulting series do not seem like the original data anymore. We will illus-

trate this with our data in Chapter 4. So researchers do not tend to use that procedure

much, because there is a possibility that the model throws away some useful infor-

mation. They still look for sampling schemes that sample from the original data with
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less bias. So we don’t use the oversmoothed data, but the orthogonal complement of

smoothed data in Hilbert Space in each scale to develop a sampling scheme.

We use the classified tick-by-tick data of USD-TL trades, obtained from the Cen-

tral Bank of Turkey, which take place in November and December of 2008. The

data is provided for internal use only, therefore we cannot publish so much detail in

tables. The nice thing about the data is that, it involves some of the trades during

the Global Crisis of 2008 and 2009. So the data is highly variant by means of fre-

quency and volatility, which is a desirable property for our analysis. To the best of our

knowledge, that kind of analysis is done for the very first time with Turkish Foreign

Exchange Market Data.

The outline of this work is as follows. In Chapter 2, we present the High Fre-

quency Data Dynamics. We give the basics about realized variance being an esti-

mator for integrated volatility and then present the common sampling schemes of

interest which are used to compute realized variance with minimum bias. We also

present the common seasonality removal and data smoothing approaches. In Chap-

ter 3, we present Wavelets and Multiresolution Analysis. We begin presenting the

subject with Fourier Analysis, then wavelet theory and finally Daubechies Family of

Wavelets. In Chapter 4, we present our model and obtain our relative bias measure.

And finally in Chapter 5, we present the empirical results of our work.
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CHAPTER 2

HIGH FREQUENCY DATA DYNAMICS

When analysing the high-frequency data, the risk parameter that researchers desper-

ately seek is the integrated volatility which is the instantaneous volatility of an in-

strument. The value of the parameter is not available in a direct manner, but can be

estimated by realized variance. However, when estimating the integrated volatility

they often run into a bunch of High Frequency Data Dynamics Problems that stand

on the way to a sound analysis. Microstructure effects such as the characteristics of

the traders and bid-ask spreads as well as the liquidity of the financal instruments and

intraday seasonality (i.e. effects of high trading volume at the beginning and end of a

trading session) are some of the issues that must be taken into consideration for they

all cause a bias in the analysis.

Empirically, more sparsely sampled data leads to a less biased analysis in terms

of High Frequency Data Dynamics (but at the same time it invokes some other macro

effects from some point on, which is not the concern of this work). However, more

sparsely sampled data means more information thrown out to trash, which is not de-

sired at all. So the main concern is to make use of as much data as possible. Therefore,

the high frequency data dynamics should be modeled carefully.

In this chapter, the first two sections give the basic concepts about realized vari-

ance being an estimator for integrated volatility. Doob-Meyer Decomposition The-

orem asserts that every submartingale can be decomposed into a martingale and an

increasing process in continuous time. We use this theorem to in another theorem

which asserts that the second variation of a square integrable process approaches the

increasing process quadratic variation in probability. And then, the second section
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makes use of this theorem to prove that realized variance can be used to estimate inte-

grated volatility. Section 2.3 defines the microstructure effects and common practice

that is used to minimize the bias caused by them. Then the last section gives some

general knowledge about saeasonality removal and data smoothing.

2.1 Doob-Meyer Decomposition, Continuous Square Integrable Martingales

and Quadratic Variation

In order to give a formal definiton for the realized volatility, we must do some pre-

liminary work. To begin with, we must first remark that every submartingale may be

decomposed into a martingale and an increasing process in continuous time. Then we

will give formal definitions for continuous square integrable martingales and their

quadratic variation, which is the submartingale we are going to decompose by using

Theorem 2.1.2. And then, we have to prove quadratic variation theorem for continu-

ous square-integrable martingales, which we will use in order to prove that realized

variance is an estimator for integrated volatility . We mainly follow [Karatzas 1991]

and assume that our filtration {Ft}, processes {At} and martingales {Mt} on the prob-

ability space (Ω,F ,P) will be defined in continuous time, i.e. t ∈ [0,∞), and we

assume, our filtration is right-continuous and F0 contains all the P-negligible events

in F .

Although we mainly follow [Karatzas 1991] for the argument, one may find

alternative methods in [Rogers 1994.v2] and [Delacherie 1982]. The interested

reader may find the basics of the concepts such as increasing processes, natural

processes, martingale transform, uniform integrability or Lebesgue Integration in

[Karatzas 1991], [Koralov 2007], [Rogers 1994.v2] and [Delacherie 1982].

We start by making a classification of the right-continuous adapted processes.

Definition 2.1.1 The right-continuous adapted process X = {Xt}t∈R+ is said to be,

• of class D, if the family {XT : T is a stopping time, where T ≤ ∞} is uniformly

integrable

• of class DL, if for every a > 0, the family {XT : T is a stopping time, where

T ≤ a} is uniformly integrable

5



Here, one may refer to [Koralov 2007] chapter 13 and [Rogers 1994.v1] chapter

II for the concept of uniform integrability as stated before. The Doob-Meyer De-

composition Theorem gives the conditions for the decomposition of those classes of

right-continuous adapted processes.

Theorem 2.1.2 (Doob-Meyer Decomposition Theorem) If X = Xt is a right- con-

tinuous submartingale of class DL, then there exists a right-continuous martingale

M = Mt and a right-continuous increasing process A = At, s.t. Xt = Mt + At,∀t ≥ 0

a.s. If A is natural, then this decomposition is unique. Also, if X is class D, then M

and A are uniformly integrable.

The proof of this theorem may be found in [Karatzas 1991]. Now we may give the

definitions for square integrable martingale and quadratic variation.

Definition 2.1.3 (Square-Integrable Martingale) A right-continuous martingale X =

{Xt}t≥0 is square-integrable if E
(
X2

t

)
< ∞ for every t ≥ 0. It is written as X ∈ M2. If

X is continuous, it is written as X ∈ Mc
2.

The function X2 of the right-continuous square-integrable martingale X = {Xt}t≥0

is a non-negative submartingale. The proof follows from Jensen’s Inequality. So X2

is of class DL (Definiton 2.1.1)and has a unique Doob-Meyer Decomposition,

X2
t = Mt + At, ∀t ≥ 0 (2.1)

where M and A are defined the same way as in Theroem 2.1.2.

Definition 2.1.4 (Quadratic Variation) The Quadratic Variation of a right-continuous

square-integrable martingale process X = {Xt}t≥0 is defined to be the process 〈X〉t =

At where A is a natural increasing process in the Doob-Meyer Decomposition of X2

as it is in 2.1.

Note that, from Theorem 2.1.2, we have 〈X〉 is a unique, adapted, natural increas-

ing process, for which 〈X〉0 = 0 a.s. and X2 − 〈X〉 is a martingale.

Definition 2.1.5 (pth Variation) Let X = {Xt}t≥0 be a process. For a fixed t > 0, let

Πm = {t0, t1 . . . , tm} where 0 = t0 ≤ t1 ≤ . . . tm = t be a partition of [0, t]. Then the p-th
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variation of X over the partition Πm is defined to be,

V p
t (Πm) =

m∑
k=1

∣∣∣Xtk − Xtk−1

∣∣∣p , p > 0

Now let us define the mesh, ‖Π‖ of the partition Πm in Definition 2.1.5 as ‖Π‖ =

max1≤k≤m |tk − tk−1|. Then the limit V2
t (Πm) converges as ‖Πm‖ → 0. Next theorem

(Theorem 2.1.6) asserts that this limit is what we call the quadratic variation of X over

[0, t] in Definition 2.1.4 and we will use this theorem to prove that realized variance

is an estimator for integrated volatility. What we claim here in fact is that we can

neglect the cross-product terms when we square the sums of martingale increments

and take expectation.

Theorem 2.1.6 Let X = {Xt}t≥0 be a continuous square-integrable martingale pro-

cess. Then considering the partitions Π of [0, t], for every ε > 0 and η > 0 there

exists δ > 0 s.t. if ‖Π‖ < δ then

P
(∣∣∣V2

t (Π) − 〈X〉t
∣∣∣ > ε) < η

In other words, lim‖Π‖→0V2
t (Π) = 〈Xt〉 in probability.

The proof of this theorem can also be found in [Karatzas 1991].

2.2 Realized Variance and Integrated Volatility

In this section we will introduce the terms realized volatility, and integrated volatility

and will use the facts that we have given in previous section to prove that realized

variance is an estimator for integrated volatility.

We need a model for describing continuous time price movements. So let S t

denote the price process of a financial instrument at time t and Xt = logS t. Let

instantaneous returns are generated by a continuous time martingale,

dXt = σtdWt (2.2)

where Wt is a standart Wiener process. Here, σ2
t denotes the instantaneous (spot)

variance .

What we are completely interested in finding is the conditional variance of re-

turns, which is the instantaneous variance of the upcoming instantaneous returns,
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given the information at time t. The quadratic variation of the returns in our continu-

ous case is equal to
∫ T

0
σ2

t dt, namely integrated volatility over the period [0..T].

For a fixed T, let Πm be a equipartition of [0,T ] with subintervals of size ∆t = T
m .

By definition, realized volatility (historical volatility), υ, for exponent p, is

υ(ti) =

 1
m

m∑
i=1

∣∣∣Xti − Xti−1

∣∣∣p1/p

(2.3)

where Xti follows 2.2.

Exponent p is often set to 2, so that υ2 is the variance of the returns about zero.

Changing the υ into scaled form by υscaled =

√
m∆t
∆t υ one gets the realized variance 1,

υ2 =

n∑
i=1

(
Xti+1 − Xti

)2 (2.4)

For a wider explanation, one may refer to [Hull 1987] or [Dacorogna 2001].

Carefully examining, one may see that 2.4 is analoguous to V2
t (Πm) defined in

2.1.5. So, as we have the quadratic variation 〈X〉t =
∫ T

0
σ2

t (integrated volatility)

and V2
t (Πm), we may make use of our former work. Since the sample path for σt is

continuous, it follows from Theorem 2.1.6 that, for every ε > 0, η > 0, there exists

δ > 0 such that ∆t < δ implies

P


∣∣∣∣∣∣∣
∫ T

0
σ2

t dt −
n∑

i=1

(
Xti+1 − Xti

)2

∣∣∣∣∣∣∣ > ε
 < η (2.5)

Therefore we get,

p lim
n→∞

∫ T

0
σ2

t dt −
n∑

i=1

(
Xti+1 − Xti

)2

 = 0 (2.6)

So, realized variance converges to integrated volatility in probability. Then we

may conclude that realized variance is an estimator for integrated volatility . More-

over, using 2.6 we may assert that our estimator is irrespective of the size of ∆t and

the size of the return intervals can be irregular (See [Dacorogna 2001]). Therefore,

we can use different time sampling schemes.

1 There is an ambiguity with the name realized volatility since [Andersen 2000] has given this name to υ2, so
one may see the terms realized volatility and realized variance can be used interchangeably
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2.3 Microstructure Effects and Time Sampling Schemes

One theoretical result of 2.6 is, when using realized variance as an estimator of inte-

grated volatility , sampling in higher frequencies should lead to a better estimation.

With our previous assertion that the return intervals can be irregular, one may expect

that using tick-by-tick data should lead to the best estimation. That’s because an in-

crease in sampling frequency leads to a reduction in the variance of the estimator. In

an ideal world, where prices are continuous and have no measurement error, it is the

ideal estimator (See [Merton 1980]). Nevertheless, empirical results of different re-

searches such as [Andreou 2002] show that, with tick-by-tick data, realized variance

suffers from bias problem.

The main reason for that phenomenon is the amplification caused by the serial cor-

relation of a bulk of noise sources which are called microstructure effects such as the

bid-ask spread, composition of the traders or transaction costs. Empirical results show

that, as the prices are sampled in finer intervals, the bias caused by those microstruc-

ture effects become more viable. We will not go into the details of the structure of

those effects too much, but there is a wide literature, for those, who are interested

in the subject, such as [O’Hara 1997], [Dacorogna 2001] and [Hasbrouck 2004].

Obviously the bias caused by those effects change from trading instrument to trading

instrument.

It is pretty much clear that we cannot use the tick-by-tick return data directly in

the realized variance equation. But it is also clear that throwing away a bulk of the

most valuable source for an analysis, the data, by sampling in low frequencies is not

appreciated. Therefore the aim is to find the optimal sampling frequency by making

use of as much data as possible. Of course, the best way is the way that uses all the

data with minimum bias. There are a lot of approaches to sampling in that manner but

the optimization is generally done by minimizing the mean squarred error (MSE) of

the volatility estimator, which will also be presented in our model in the next chapter.

Among different time sampling schemes, most remarkable ones are Calendar Time

Sampling (CTS) , Tick Time Sampling (TTS) and Business Time Sampling (BTS) .

Calendar Time Sampling (CTS) is the most widely used sampling scheme. It is

9



based on sampling the sequence of prices as,

Pcts =
{
P

(
tcts
i

)}
i∈{0,1,...,N} , tcts

i = i∆t = i
T
N

(2.7)

Since CTS samples the prices in regularly spaced points in time, an interpolation

method usually accompanies this scheme since the tick-by-tick time series are not

homogeneous, that means it is hardly the case that a transaction occurs right on i∆t,

and a theoretical price should be found. By utilizing an interpolation method, a homo-

geneous time series is constructed. One can refer to [Bandi 2003] or [Bandi 2003]

for a detailed research on finding the optimal data sampling frequency. Those re-

searches claim that the optimal sampling frequency should be somewhere between 5

minutes and 20 minutes.

The problem with CTS is that it throws away too much data. For example, consider

a tick-by-tick transactional data with one transaction per second on average. If we

sample the prices every 10 minutes, this means that 599 of every 600 data is thrown

away.

Tick Time Sampling (TTS) is a sampling scheme which is based on sampling the

sequence of prices as,

Ptts =
{
P

(
ttts
i
)}

i∈{0,1,...,N} , ttts
i = i

M
N

(2.8)

where M is the total number of transactions and M
N is integer valued. Interested reader

may refer to [Clark 1973] for a detailed coverage of the subject. The scheme is

sensitive to the trade intensity of transactions which can be an indicator of movements

and may be preferred to (CTS) in some cases. Because, when the transaction volume

is rather low, interpolation may itself be a source of bias.

Business Time Sampling (BTS) will be our main interest since we will extend

this scheme in our model. This scheme is based on sampling the sequence of prices

as,

Pbts =
{
P

(
tbts
i

)}
i∈{0,1,...,N}

, tbts
i = inf

0≤t≤T

{
λt ≥ i

λT

N

}
(2.9)

where λt is the business intensity at time t.We first evaluate the total business intensity,

then get equipartitions of the total business intensity and sample the price process ev-

ery time, the business intensity reaches the treshold of the partition. That approach has

some advantages since the sampling is done in finer intervals whenever the volatility
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is high and in wider intervals whenever the volatility is low. But this also causes some

latency problems.

In order to determine the best approach that minimizes the bias and makes use of

much of the data, several researches have been made. Among those, [Oomen 2005]

and [Zhang 2005] are among the most considerable ones. [Oomen 2005] finds that

among above three sampling schemes, (TTS) is generally superior to (CTS) when

the trade intensity pattern is volatile, while [Zhang 2005] first compares traditional

sampling schemes, then suggests a hybrid sampling scheme.

It can be understood from the literature that it is hard to determine the best ap-

proach for a sampling scheme since every sampling scheme has its advantages over

others in specific cases. However, in Chapter 4, we will develop a sampling scheme

which adapts itself to different conditions caused by the microstructure effects.

2.4 Seasonality Removal and Data Smoothing

In order to give the main concepts about seasonality removal, we will follow the

guidelines in [Dacorogna 2001]. The main reference for the seasonality is the market

activity. Markets are more active during some periods of the calendar time and less

active during other times. For instance, take a globally traded currency pair. It is

traded actively nearly 23 hours a day, beginning from Far East, then continuing with

Europe and ending the day in America. There are hours when the currency pair is

traded in two regions2 as well as there are hours when the currency pair is traded only

by the people on duty during the lunchtime3. Dacarogna et.al [Dacorogna 2001]

define the activity variable as

a1,2 =
ϑ2 − ϑ1

t2 − t1
(2.10)

where ϑ is the time scale by means of our recognition of activity. This could be

the number of ticks, volume of trades, or any other variable that can be considered

as activity. This approach of activity is called volatility based activity. Although

there are many other options, the basic approach is minimizing the weighted square

2 for instance late afternoon session for European market coincides with morning session of the USA market
3 for instance in Far East

11



deviation of the activity, which is

min(
[
astat,i − ai

]2

σ2
error,i

) where
1
n

n∑
i=1

astat,i = 1 (2.11)

The minimization of the deviation gives us the optimal activity scale, and therefore,

we may have our data more homogeneous. But there is still one thing left to fix: The

difference between the open and close prices.

There are several ways to deal with the price differences between consecutive

days. One is discarding them by only concentrating on the intraday returns. The

other way is using a filter in time domain. Discarding the price differences between

consecutive days is the simplest and most preferred way to deal with the problem.

Statistically, it also smooths the path. However it may not be desirable since it still

contains information: All the information between two days, while the markets are

closed. One may think that the global markets and the traded instruments nearly

never closed during the week. Yet there is a whole weekend of more than 1.5 days

still waiting for treatment. For locally traded instruments, the problem is even deeper.

For instance USD-TRY market is open only between 5:00AM GMT and 3:30PM

GMT. During 13,5 hours of no-trade time, all the information for America and Far

East information pass by. So we need to take this information into consideration for

a fair analysis. To deal with the statistical effects of this single price information is

generally smoothing the data around. Here, we will present the filters as they are

presented in [Gençay 2002].

We usually want to stay in the time domain to smooth price jumps since staying

in the frequency domain does not make much sense. Filters in the time domain take

some part of a series of observations (say xt−M to xt+N−1)

{xt}
∞
t=−∞ = (. . . , x−2, x−1, x0, x1, x2, . . .)

and transform this vector of size M+N into an output value yt by applying convolution

operation (See Section 3.1) with vector w of size M + N. The elements of this vector

(. . . ,w−2,w−1,w0,w1,w2, . . .) are called filter coefficients. If the values of the filter

does not change over time, we call those kinds of filters as time invariant filters. Given

a unit impulse signal, the output sequence of a filter is known as impulse response.

Practically, it is the sequence of the coefficients of a filter.
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We either use infinite impulse response (IIR) filters or noncausal finite impulse

response (FIR) filters in time domain. We will just give a brief explanation of those

kind of filters. One may refer to [Gençay 2002] for a wide coverage.

Infinite impulse response (IIR) filters are the filters of the form

yt =

L∑
i=1

aiyt−i +

M∑
i=1

wixt−i

where L lagged values of output yt and M lagged values of input xt, as well as the

current value of the input are employed to determine the current value of the output.

Noncausal finite impulse response (FIR) filters are preferred more in financial

applications. The general form of an FIR filter is

yt =

M∑
i=−N

wixt−i (2.12)

The most common filter in finance is the simple centered moving average, where all

the wi’s are the same ( 1
M+N+1 ). The centered moving average filters are symmetric

with M = N and wi = w−i, but the filter coefficients wi need not be equal to each

other. The centered average filters are preferred because they have a constant impulse

response and are easy to implement. We will come to this in section 4.2.
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CHAPTER 3

WAVELET THEORY AND MULTIRESOLUTION ANALYSIS

Although wavelets is a topic of a few decades in the literature, its origins go back to

early 1800’s when Joseph Fourier asserted that any 2π − periodic function may be

represented as a sum of sinusoidal functions with appropriate coefficients. Since In-

grid Daubechies’ research opened the way to construction of compactly supported or-

thonormal wavelets, the tool has become popular in signal processing and some other

areas. Only in the late 1990’s, like many other methods that are inherited from engi-

neering, when the computing abilites showed great development and high-frequency

data has become available, researchers started to use wavelets as a tool for financial

analysis.

So both Fourier analysis and wavelet analysis aim to decompose, signals 1 into

serial components, but some properties make wavelet analysis more appicable to fi-

nancial data.

Fourier series is a linear combination of sinusoidal functions whose components

(sines and cosines) are also periodic functions. So the bases, constructed in Fourier

analysis are useful when working with stationary time series. However, most financial

data show remarkable changes in pattern due to the effects mentioned in Chapters 1

and 2. Therefore its structural features make Fourier transform inefficient in capturing

those events. Those structural periodic features of basis functions also cause a lack

of information in time. But the wavelet transform utilizes a basic function (mother

wavelet) that can be stretched and shifted over time to intelligently adapt itself to

capture features that are local in time. For a deep coverage of the subject, one can

1 Throughout this chapter, we use the expression signal, literally where needed, as it is in signal processing
which is the original area of usage for Fourier analysis
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refer to [Boggess 2001], [Gençay 2002], [Wojtaszczyk 1997] or [Bachman 2000]

which we will also follow throughout this chapter. Moreover, the proofs given in this

chapter can also be found with a deep coverage in those references.

The composition of the chapter is as follows. In section 3.1, we present the main

features of Fourier analysis, then in section 3.2, we make our way through wavelets.

In section 3.3, we present Multiresolution Analysis, which we are going to implement

in our model. And then, in section 3.4, we will see how to constuct a basis in the

Daubechies Wavelet Family

3.1 Fourier Analysis

As stated before, Fourier series is used to decompose a periodic signal into a linear

combination of frequency components (sinusoidal functions). There are some practi-

cal reasons for using the trigonometric expansion of a function instead of the function

itself. For instance, using this representation gives the description of the component

frequencies and makes analyzes in different time scales possible. Let us give an ex-

ample at this point.

Example 3.1.1 Consider a signal, which is decomposed into the function,

f (t) = cos (t) +
1
2

sin (2t) + 5 cos (10t) −
1
5

sin (200t)

which is plotted in figure 3.1. We believe that the frequencies greater than 100 denote

the noise in the signal. So we eliminate the last component of the function, which has

a frequency of 200. So we now have a smoother function,

f
′

(t) = cos (t) +
1
2

sin (2t) + 5 cos (10t)

which is plotted in figure 3.2.

The components of the Fourier series are sin (kt)’s and cos (kt)’s which vibrate

at a frequency of k times per 2π interval and t is a variable of time. We call this

decomposition as trigonometric expansion. Let us formalize our statement. Note that

we assume that our definitions are on the interval −π ≤ x ≤ π for the time being.

Definition 3.1.2 (Trigonometric Expansion) The trigonometric expansion of an in-

tegrable function f (x) defined on interval −π ≤ x ≤ π is the approximation of f (x)
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Figure 3.1: Plot of f (t) = cos (t) + 1
2 sin (2t) + 5 cos (10t) − 1

5 sin (200t)

Figure 3.2: Plot of f
′

(t) = cos (t) + 1
2 sin (2t) + 5 cos (10t)
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as a form of the Fourier series,

a0 +
∑
k∈N

ak cos (kx) +
∑
k∈N

bksin (kx) (3.1)

where this sum can be finite or infinite and the Fourier Coefficients are

a0 =
1

2π

∫ π

−π

f (x) dx (3.2)

ak =
1
π

∫ π

−π

f (x) cos (kx) dx =

〈
f ,

cos (kx)
π

〉
(3.3)

bk =
1
π

∫ π

−π

f (x) sin (kx) dx =

〈
f ,

sin (kx)
π

〉
(3.4)

The inner products in equations 3.3 and 3.4 clearly denote the projection of f on
cos(kx)
π

and sin(kx)
π

s. Since the sum of the projections of f on cos(kx)
π

s and cos(kx)
π

s give the

approximation to our function, the set
{
. . . , cos(2x)

√
π
, cos(x)
√
π
, 1
√

2π
, sin(x)
√
π
, sin(2x)
√
π
, . . .

}
should

be an orthonormal set of functions in L2 ([−π, π]). Next theorem asserts that property.

Theorem 3.1.3 On the interval −π ≤ x ≤ π, the following integral relations hold,

1
π

∫ π

−π

cos (nx) cos (kx) dx =


1 n = k ≥ 1

2 n = k = 0

0 otherwise

(3.5)

1
π

∫ π

−π

sin (nx) sin (kx) dx =

 1 if n = k ≥ 1

0 otherwise
(3.6)

1
π

∫ π

−π

cos (nx) sin (kx) dx = 0 for all integers n,k (3.7)

Proof. In order to prove the assertions 3.5 and 3.6, we use the following remark from

trigonometry,

cos ((n + k) x) = cos (nx) cos (kx) − sin (nx) sin (kx) (3.8)

By using this equality we have,∫ π

−π

cos (nx) cos (kx) dx =
1
2

∫ π

−π

[cos ((n + k) x) + cos ((n − k) x)] dx

So, for n , k, we have

1
π

∫ π

−π

cos (nx) cos (kx) dx =
1

2π

[
sin ((n + k) x)

n + k
+

sin ((n − k) x)
n − k

]∣∣∣∣∣∣π
−π

= 0

for n = k ≥ 1, we have

1
π

∫ π

−π

cos2 (nx) dx =
1
π

∫ π

−π

1
2

(1 + cos (2nx)) dx =
1

2π

[
x +

sin (2nx)
2n

]∣∣∣∣∣∣π
−π

=
2π
2π

= 1
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and for n = k = 0, we have

1
π

∫ π

−π

cos2 (0) dx =
1
π

∫ π

−π

1dx =
1
π

x|π−π =
2π
π

= 2

Next, we prove 3.6. Again, using 3.8, we have∫ π

−π

sin (nx) sin (kx) dx =
1
2

∫ π

−π

[cos ((n − k) x) − cos ((n + k) x)] dx

So, for n = k ≥ 1 , we have

1
π

∫ π

−π

sin2 (nx) dx =
1
π

∫ π

−π

1
2

(1 − cos (2nx)) dx =
1

2π

[
x −

sin (2nx)
2n

]∣∣∣∣∣∣π
−π

=
2π
2π

= 1

for n , k , we have

1
π

∫ π

−π

sin (nx) sin (kx) dx =
−1
2π

[
sin ((n + k) x)

n + k
−

sin ((n − k) x)
n − k

]∣∣∣∣∣∣π
−π

= 0

and for n = k = 0, we have

1
π

∫ π

−π

sin2 (0) dx =
1
π

∫ π

−π

0dx = 0

3.7 follows from the fact that 1
π

∫ π

−π
cos (nx) sin (kx) dx is an odd function and for an

odd function f , we know that
∫ a

−a
f (x) dx = 0. �

So we have proved that the basis for a Fourier series is orthonormal. Next, it

follows that the Definition 3.1.2 holds for any interval of general length, since any

interval can be represented in the form
[
−πa + c, πa + c

]
where c, a ∈ R. That’s because,

we set the building blocks as cos (c + nπx/a) and sin (c + nπx/a) which have a period

of 2a and Theorem 3.1.3 holds for the orthonormal building blocks.

An alternative way of representing the Fourier series in 3.1 is the exponential

form which is, ∑
k∈Z

αk
[
f
]
eikt (3.9)

where the kth Fourier Coefficient αk is defined to be,

αk =
1

2π

∫ π

−π

f (t) eiktdt, k ∈ Z (3.10)

Since the domain of integration is finite, we may consider Fk
[
f
]

as the finite Fourier

transform of f evaluated at k. If we extend our domain and generalize the basis func-

tions by an index parameter, w, then the continuous Fourier transform of f becomes

Fw
[
f
]

= f̂ (w) =

∫ +∞

−∞

f (t) e−iwtdt (3.11)
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and the inverse continuous Fourier transform becomes

f (t) =
1

2π

∫ +∞

−∞

f̂ (w)eiwtdw (3.12)

Note that the factor 1
2π may be bundled with the inversion formula as done in 3.12

or 1
√

2π
can appear in both transform and inverse transform equations to provide a

symmetric appearance. For a more detailed explanation of the exponential form, one

can refer to [Bachman 2000] section 5.4 or [Boggess 2001] section 1.2.

Since the Fourier transform takes the whole real line into consideration, as men-

tioned earlier, it fails to capture some events in non-stationary signals such as financial

time series. Therefore the concept of filtering is introduced for aid. In order to utilize

filters, the concept of convolution is used, which is

f ? g (t) =

∫ +∞

−∞

f (t − x) g (x) dx (3.13)

where f and g are both signals and g is a linear filter component in our case. The

continuous Fourier transform of a convolution has the nice property,

Fw
[
f ? g

]
=

∫ +∞

−∞

f ? g (t) e−iwtdt = f̂ (w)ĝ(w) (3.14)

so we may consider convolution as a linear filter. A good example is the frequency

response function (see [Gençay 2002] chapter 2) which is the Fourier transform of

the impulse response function, where the lagged values of output and the input are

employed to determine the current value of output. One who is interested in the filters

may refer to [Gençay 2002] for a wide coverage.

Continuous Fourier transform is a useful technique when analyzing continuous

signals but the signal is discrete most of the time. Therefore we need to employ a dis-

crete version of the Fourier Transform. We begin with approximating the coefficients

of a Fourier Series for a function f by using the trapezoidal rule for approximating

integrals.

Lemma 3.1.4 The kth complex Fourier coefficient αk of the Fourier series of a func-

tion f can be approximated by

αk ≈
1
n

n−1∑
j=0

f
(
2π j
n

)
e
−2πi jk

n

where n is the number of the partitions over the interval [0, 2π]
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Proof. We set the step size h = 2π
n and use the trapezoidal rule to approximate the

integral 1
2π

∫ 2π

0
g(t)dt for any 2π-periodic function g(t).

1
2π

∫ 2π

0
g(t)dt ≈

1
2π

2π
n

[Y0

2
+ Y1 + . . . + Yn−1 +

Yn

2

]
=

1
n

n−1∑
j=0

Y j

where Y j = g
(

2π j
n

)
for j = 0 . . . n. Note that, since the function g(t) is 2π-periodic, we

have Y(0) = Yn. Therefore, we have,

αk =
1

2π

∫ 2π

0
f (t) e−ikt ≈

1
n

n−1∑
j=0

f
(
2π j
n

)
e
−2πi jk

n

�

So, as we have the coefficients of the Fourier series, the discrete Fourier transform

of an n-periodic sequence of complex numbers, f , becomes,

Dk
[
f
]

=

n−1∑
t=0

f (t) e
−i2πtk

n (3.15)

and the inverse discrete Fourier transform becomes

ft =
1
n

n−1∑
k=0

Dk
[
f
]2 (3.16)

Again, when it comes to filtering, analoguous to continuous case, we introduce dis-

crete convolution , which is

f ? gt =

n−1∑
u=0

fugt−u (3.17)

where f and g are both discrete signals and g is a linear filter component in our case.

As it is in the coninuous case, convolution acts as a linear filter since we have,

Dk
[
f ? g

]
=

n−1∑
t=0

f ? gte
−i2πtk

n = Dk
[
f
]
Dk

[
g
]

As it is asserted in [Percival 2000], we have

f ? gt =

n−1∑
u=0

fugt−u mod n, t = 0, . . . , n − 1

since g must be periodic. The discrete convolution may also be written in the matrix

form as follows. 

f ? g0

f ? g1
...

f ? gn−1


=



g0 gn−1 gn−1 · · · g1

g1 g0 gn−2 · · · g2
...

...
...

. . .
...

gn−1 gn−2 gn−3 · · · g0





f0

f1
...

fn−1


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where the nxn matrix is the circularly shifted version of a single filtering vector. The

drawback of such an algorithm is the number of multiplications needed for computa-

tion, which is n2. However, for n = 2k, k ∈ N, the fast Fourier transform, which is a

modification of the Fourier transform, factorizes the square matrix and total cost of

the multiplication reduces to n log2 n.

We did not go in too much detail with the Fourier Transform, but made an overview

instead, since, this much detail is sufficient in order to construct a base for the funda-

mentals of wavelets and multiresolution analysis but the interested reader may refer

to [Boggess 2001], [Gençay 2002] or [Bachman 2000] as stated before.

3.2 Wavelet Theory

As we have mentioned previously, the main idea behind the introduction of wavelet

analysis is to make use of functions other than periodic sinusoidal functions to ap-

proximate a function, which has the drawback of being inefficient in capturing the

effects, that are mentioned in Chapters 1 and 2. We define wavelets as,

Definition 3.2.1 (Wavelet) A wavelet, ψ, is a function which satisfies the two condi-

tions ∫ ∞

−∞

ψ (t) dt = 0 (3.18)∫ ∞

−∞

|ψ (t)|2 dt = 1 (3.19)

which means that the wavelets have zero average and unit energy.

The above equations (3.18 and 3.19) quarantee that a wavelet has non-zero entries

which cancel out, which is a standard by [Morlet 1984] who also introduced a typical

example, Morlet wavelet . A bunch of wavelets in this manner has been introduced

since then. The morlet wavelet is defined as,

ψMorlet (t) =
1
√

2π
e−iwte−

t2
2

(See Figure 3.3 (a)). Another example of a typical wavelet is the Mexican hat wavelet

which is the negative normalized second derivative of a Gaussian function. The Mex-

ican hat wavelet is defined as,

ψMexicanHat (t) =
1

√
2πσ3

(
1 −

t2

σ2

)
e−

t2

2∗σ2
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Figure 3.3: (a) Real portion of the Morlet wavelet (b) Mexican hat wavelet

(See Figure 3.3 (b)).

Two very important concepts coming along with the concept of wavelets are dila-

tion and translation . That’s the way we stretch and shift a mother wavelet and make

it suit the approximated function.

Definition 3.2.2 (Translation) Let f (t) be a square-integrable function (See Defini-

tion 2.1.3). The translation of f (t) by k ∈ R

Tk ( f ) (t) = f (t − k) (3.20)

Definition 3.2.3 ((Dyadic) Dilation) Let f (t) be a square-integrable function. The

(dyadic) 2 dilation of f (t) by j ∈ Z is

J j ( f ) (t) = f
(
2 jt

)
(3.21)

The dilation and translation operators are invertible (i.e. We have T−1
k = T−k and

J−1
j = J− j). Moreover, for a square integrable function f (t) and integers k and j,

Tk ( f ) (t) and 2
j
2 J j ( f ) (t) are isometries since ‖ f (t)‖2 = ‖Tk ( f ) (t)‖2 and ‖ f (t)‖2 =∥∥∥∥2

j
2 J j ( f ) (t)

∥∥∥∥2
(i.e.they are energy preserving)(See also [Wojtaszczyk 1997] Chapter

2).

2 Apparently, as it is for the translation operator, the actual dilation operator is also valid for any r ∈ R.
But we will not need this, so for the sake of simplicity in formulation and calculation, we use a special form of
dilation, namely dyadic dilation
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So we use Tk ( f ) (t) and 2
j
2 J j ( f ) (t) and denote the jth level dilation and kth level

translation of f (t) as

f j,k (t) = 2−
j
2 f

(
2− jt − k

)
(3.22)

Now that we have defined our operators on wavelets we may define continuous

and discrete wavelet transforms. Being a well-localized tool, wavelet transform is

especially suited for the analysis of signals that show remarkable changes in pattern

on the contrary to the Fourier transform which extracts the global properties of a

signal.

The continuous wavelet transform is the projection of a square-integrable function

f onto a mother wavelet3, ψ (t). It is given by,(
Wψ f

)
( j, k) =

∫ ∞

−∞

f (t)ψ j,k (t)dt (3.23)

where

ψ j,k (t) =
1
√

j
ψ

(
t − k

j

)
(3.24)

is the dilated and translated version of the wavelet and ψ j,k (t) is the complex conju-

gate of ψ j,k (t) (See [Bachman 2000]).

The continuous wavelet transform takes a signal that varies with a single param-

eter, t and turns that signal into coefficients that depend on two parameters, j and k.

The parameter j is important in suiting the frequency domain because, as j increases,

the wavelet shows a low frequency behaviour and as j decreases, the wavelet shows

a high frequency behaviour. On the other hand, the parameter k is important in suit-

ing the time domain. In other words, parameter k, helps the wavelet slide over the

time scale. Therefore wavelets provide good localization both in time and frequency

domains.

The drawback of the transform is the load caused by a huge bunch of coefficients.

But if one remembers the Fourier Transform which depends only on one parameter,

k, and extracts only the global properties of a signal in time domain, it is obvious that

continuous wavelet transform suits the signal in a much better way.

The existance of the inverse continuous wavelet transform is quaranteed only if

the square-integrable wavelet, ψ, satisfies admissibility condition which is proposed

3 the term mother wavelet will be defined at the end of the section

23



by [Mallat 1998]. The condition is,

Cψ =

∫ ∞

0

Fw |ψ (t)|
w

dw < ∞ (3.25)

where Fw |ψ (t)| is the Fourier transform of the wavelet. Since there is w in the

lower part of the fraction, one may assert that Fw |ψ (0)| = 0 which also means

that,
∫ ∞
−∞
ψ (t) dt = 0. From the other direction, if 3.18 holds, and for some a < ∞,∫ ∞

−∞
(1 + |t|a) |ψ (t)| dt < ∞ holds, then the admissibility condition also holds. So, con-

tinuous wavelet transform becomes energy preserving, by∫ ∞

−∞

| f (t)|2 dt =
1

Cψ

∫ ∞

−∞

∫ ∞

−∞

∣∣∣∣(Wψ f
)

( j, k)
∣∣∣∣2 d j

j2 dk (3.26)

Therefore, inverse continuous wavelet transform becomes,

f (t) =
1

Cψ

∫ ∞

0

∫ ∞

−∞

∣∣∣∣(Wψ f
)

( j, k)
∣∣∣∣ψ j,k (t)

d j
j2 dk (3.27)

which means that, we can reconstruct f (t) from the corresponding wavelet coefficients

of
(
Wψ f

)
( j, k).

As we mentioned earlier, although continuous wavelet transform is highly redun-

dant, it comes with a heavy burden caused by a huge bulk of coefficients. However, by

a clever discretization of the continuous wavelet transform, one can reduce the num-

ber of coefficients, without loss of any information. Consider the continuous wavelet

transform (3.23). If we let j and k assume only the discrete values,

j = js
0, k = uk0 js

0, s, u ∈ Z (3.28)

we obtain the discrete wavelet transform(
Wψ f

)
( j, k) =

(
Wψ f

) (
js
0, uk0 js

0
)

= j−
s
2

0

∫ ∞

−∞

f (t)ψ
(

j−s
0 t − uk0

)
dt (3.29)

We are therefore considering the countable set of functions,

j−
s
2

0 ψ
(
j−s
0 t − ukψ0

)
, s, u ∈ Z (3.30)

One assertion which is known as the critical sampling rule suggests that we choose

j = 2−s and k = u2−s. Therefore 3.29 becomes,(
Wψ f

)
( j, k) = 2

s
2

∫ ∞

−∞

f (t)ψ (2st − u) dt (3.31)

In literature, the transform, j, k’s of which are determined according to the critical

sampling rule is generally named as the ordinary discrete wavelet transform. There
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are also other possibilities. For instance, the maximal overlap discrete wavelet trans-

form suggests that we choose j = 2−s and k = u. Apparently, the choice of j, k’s cause

structural changes in the transform. One may find more detail in [Gençay 2002].

The critical sampling yields the functions ψ j,k (t) = 2−
j
2ψ

(
2− jt − k

)
and the set of

discrete wavelet transform coefficients
(
Wψ f

)
( j, k) for a square-integrable function

f . The functions ψ j,k form an orthonormal system and such an orthonormal system is

called a wavelet basis . Now we can define the constructors of an orthonormal basis.

Definition 3.2.4 (Mother Wavelet) The function ψ whose dilations and transforma-

tions (wavelets) form an orthonormal basis is called the mother wavelet.In other

words, considering the critical sampling rule, if the family of the functions

ψ j,k (t) = 2
j
2ψ

(
2 jt − k

)
, j, k ∈ Z (3.32)

called wavelets , form an orthonormal basis, then the function ψ is called the mother

wavelet.

We will define what we mean by forming an orthonormal basis, widely at the

end of the section (See Theorem 3.2.5). Yet it is enough to continue, if it just makes

some sense. One classical example is the Haar basis . It is not only the oldest 4

wavelet basis, but it is also the simplest one. The functions that form the Haar basis

are constructed from the Haar wavelet , which is given by

ψHaar (t) =


1 on

[
0, 1

2

)
−1 on

[
1
2 , 1

)
0 otherwise

(3.33)

(See Figure 3.4 (a)).

If we make a wavelet analysis using the Haar basis as an example, the concept

might be easier to visualize. Sadly, we begin the construction by introducing some

more conceps. We will come back to the mother wavelet later.

If the mother of our orthonormal basis is the Haar Wavelet, ψHaar, then the father

is definitely the Haar scaling function 5, φHaar. From this point on, we will be using ψ

and φ instead. These two generate a family of functions that can be used to decompose
4 The Haar wavelet is discovered by Alfred Haar in the early 1900’s
5 It is indeed named as the father wavelet in some references
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Figure 3.4: (a) Haar wavelet (b) Haar scaling function

or reconstruct a signal. The Haar scaling function is given by

φHaar (t) =

 1 on [0, 1)

0 otherwise
(3.34)

(See Figure 3.4 (b)). Apparently, we may translate φ as we like. So, let V0 be a space

of all functions of the form ∑
k∈Z

akφ (t − k) , ak ∈ R (3.35)

where k can range over any finite set of positive or negative integers. A typical ele-

ment of V0 would be like,

f (t) = φ (t + 1) + 4φ (t) − 2φ (t − 1) − 2φ (t − 2) ∈ V0

whose graph is shown in Figure 3.5.

The function f (t) has discontinuities at t = -1,0,1 and 3. So a freguency of 1

fits this signal. But for analyzing the signals with higher frequency, we need smaller

building blocks. So we dilate our scaling function by j and step into V j, which is the

space of all functions of the form∑
k∈Z

akφ
(
2 jt − k

)
, ak ∈ R (3.36)

whose discontinuities are contained in the set
{
. . . ,− 2

2 j ,−
1
2 j , 0, 1

2 j ,
2
2 j , . . .

}
. Apparently,

any function contained in V0 is also contained in V j, which has smaller building

blocks. Therefore, we have

V0 ⊂ V1 ⊂ · · · ⊂ V j−1 ⊂ V j ⊂ V j+1 ⊂ · · · (3.37)
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Figure 3.5: Example of a typical element of V0

Theorem 3.2.5 The set of functions
{
2

j
2φ

(
2 jt − k

)}
k∈Z

is an orthonormal basis of V j.

Proof. Let f j (k) = 2
j
2φ

(
2 jt − k

)
, t ∈ R be a function. For s, u ∈ Z, we have

f j (s) = 2
j
2φ

(
2 jt − s

)
and f j (u) = 2

j
2φ

(
2 jt − u

)
So we have ∫ ∞

−∞

f j (s) f j (u) dt = 2 j
∫ ∞

−∞

φ
(
2 jt − s

)
φ
(
2 jt − u

)
dt = 0

Therefore any two elements of the set
{
2

j
2φ

(
2 jt − k

)
, k ∈ Z

}
is orthogonal. Next, we

have ∫ ∞

−∞

∣∣∣ f j (0)2
∣∣∣ dt = 2 j

∫ ∞

−∞

∣∣∣∣φ (
2 jt

)∣∣∣∣2 dt = 1

So the orthonormality is proved. �

At this point, we have building blocks of size 1
2 j which are orthogonal to any other

building block in their own space V j. But those building blocks are not necessarily

orthogonal to some member of another space Vk. However, in order to obtain a linear

decomposition of a signal, we need orthogonal building blocks of different spaces, so

that the projection of the signal onto those components mean anything. So we need

the orthogonal complement of some V j in V j+1, which we denote by W j.

Not surprisingly, the Haar wavelet is a member of, W1, the orthogonal comple-

ment of V0 in V1. Since it is also a member of the space V1, it can be constructed by
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akφ (2t − k)’s. Actually, the Haar wavelet can be redefined as,

ψHaar (t) = φHaar (2t) − φHaar (2t − 1) (3.38)

Moreover, next lemma asserts that, any function that is a member of W1 can be con-

structed by using the translations of the Haar Wavelet.

Lemma 3.2.6 Let f1 be any given function in V1.

f1 =
∑

k

akφ (2t − k) ∈ V1

f1 is orthogonal to V0 iff it can be represented as

f1 =
∑
k∈Z

a2kψ (t − k)

Proof. f1 is orthogonal to V0 means that it is orthogonal to each φ (t − l) , l ∈ Z. We

know that, any function in V j is contained in Vl, if l ≥ j. So, from orthogonality

condition we have,

0 = · · ·︸︷︷︸
0

+ φ (t − l) a2l−1φ (2t − 2l + 1)︸                            ︷︷                            ︸
0

+φ (t − l) a2lφ (2t − 2l)

+φ (t − l) a2l+1φ (2t − 2l − 1) + φ (t − l) a2l+2φ (2t − 2l − 2)︸                            ︷︷                            ︸
0

+ · · ·︸︷︷︸
0

= φ (t − l) a2lφ (2t − 2l) + φ (t − l) a2l+1φ (2t − 2l − 1)

which is only possible if a2l = −a2l+1. Then,

f1 =
∑
k∈Z

a2k (φ (2t − 2k) − φ (2t − 2k − 1)) =
∑
k∈Z

a2kψ (t − k)

�

Now that we have proved that the orthogonal complement of V0 can be constructed

by translations of the Haar Wavelet, we may define W0 as the space of all functions

of the form. ∑
k∈Z

akψ (t − k) , ak ∈ R (3.39)

Moreover, since W0 is the orthogonal complement of V0 in V1, we have V0 = V1 ⊕

W0, which means that any function in V0 can be constructed as a linear sum of its

projections over V1 and W1.
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In a similar manner, we may assert that

V j = W j−1 ⊕ V j−1

= W j−1 ⊕W j−2 ⊕ V j−2

= W j−1 ⊕W j−2 ⊕ · · · ⊕W1 ⊕W0 ⊕ V0 (3.40)

which also means that any f j in V j can be decomposed uniquely as a linear sum

f j = w j−1 + f j−1

f j = w j−1 + w j−2 + f j−2

f j = w j−1 + w j−2 + . . . + w1 + w0 + f0 (3.41)

where each function wl belongs to Wl where 0 ≤ l ≤ j − 1 (See [Boggess 2001]

Theorem 4.8). For Haar Decomposition and Haar Reconstruction algorithms, one

may see [Boggess 2001].

Now that we know what a mother wavelet, a scaling function and a wavelet basis

is, we may start explaining how to obtain it by multiresolution analysis.

3.3 Multiresolution Analysis

In the previous section, we have seen how the wavelets are used to decompose a finite

energy function (See 3.19) with respect to a resolution (time-scale). We have seen

wavelets, acting as linear filters. Throughout this section, we will be introducing

the key concepts of a multiresolution analysis, and make the fundamentals for going

in details with the construction of Daubechies wavelet family which are compactly

supported, in the next section. We will use this family also in our model.

The drawback with the Haar decomposition is that, both the mother wavelet,

ψ, and the scaling function, φ, are discontinuous. Therefore, it can only provide

crude approximations to a continuously varying signal. So we need a theory which is

similar to the one in the previous section, but with a continuous mother wavelet, ψ,

and a scaling function, φ. The resulting framework is presented by S.G.Mallat (See

[Mallat 1989] and [Mallat 1998]).

Definition 3.3.1 (Multiresolution Analysis) Let, V j, j ∈ Z be a sequence of sub-

spaces of square integrable functions. The collection of spaces
{
V j

}
j∈Z

is called a
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multiresolution analysis with scaling function, φ if the following conditions hold:

1. (nested) V j ⊂ V j+1

2. (density) ∪V j spans the space of square integrable functions

3. (seperation) ∩V j = {0}

4. (scaling) The function, f (t), belongs to V j if and only if the function f
(
2− jt

)
belongs to V0

5. (orthonormal basis) The scaling function, φ, belongs to V0 and the set {φ (t − k)}k∈Z

is an orthonormal basis for V j

We know what a V j is, from the previous section. Here, we name it as an approx-

imation space . Our choice of scaling function, φ, determines the structure of our

approximation spaces and therefore the multiresolution analysis. Since the decompo-

sition of the signal is unique (see 3.40), every single choice of φ leads to a completely

diferent multiresolution analysis. Most desirable scaling functions are the ones that

have compact support , which means that φ (t) is identically zero outside a finite in-

terval (See [Boggess 2001] Chapter 0). They are desirable because, they lower the

computation load pretty much and better fit the analyses.

Haar scaling function is a good example to a compactly supported scaling func-

tion (See Figure 3.4 (b)). But the drawback is, it is not continuous. The Daubechies

wavelet family , as we will see through the next section is not only compactly sup-

ported, but also continuous.

From Theorem 3.2.5, we know that the (dyadic) dilations and translations of the

scaling function, that is
{
φ jk (t) = 2

j
2φ

(
2 jt − k

)}
k∈Z

form an orthonormal basis of V j.

In the theorem, we define the constraints for the coefficients of the scaling relation

between V j’s.

Theorem 3.3.2 Let
{
V j

}
j∈Z

be a multiresolution analysis with scaling function, φ.

Then the following scaling relation holds:

φ (t) =
∑
k∈Z

pkφ (2t − k) , where pk = 2
∫ ∞

−∞

φ (t) φ (2t − k)dt

where φ (2t − k) is the complex conjugate of φ (2t − k). Moreover, we also have,

φ
(
2 j−1t − l

)
=

∑
k∈Z

pk−2lφ
(
2 jt − k

)
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or equivalently

φ j−1,l = 2−
1
2

∑
k

pk−2lφ j,k, where φ j,k = 2
j
2φ

(
2 jt − k

)
Proof. From 3.37, we have φ (t) ∈ V0 ⊂ V1, where V1 is a linear span of {φ1k}k∈Z.

Therefore, for some choice of p̃k, the equation φ (t) =
∑

p̃kφ1,k (t) must hold. From

the orthonormality condition, in the space of square integrable functions we have,

p̃k =
〈
φ, φ1,k

〉
= 2

1
2

∫ ∞

−∞

φ (t) φ (2t − k)dt

Therefore,

φ (t) =
∑
k∈Z

p̃kφ1,k (t) =
∑
k∈Z

p̃k2
1
2φ (2t − k)

If we let pk = 2
1
2 p̃k, then we have

φ (t) =
∑
k∈Z

pkφ (2t − k)

So first equation is proved. If we replace t by 2 j−1t − l in the equation, we get,

φ
(
2 j−1t − l

)
=

∑
k∈Z

pkφ
(
2 jt + 2l − k

)
and then rescale by setting k = k − 2l we get

φ
(
2 j−1t − l

)
=

∑
k∈Z

pk−2lφ
(
2 jt − k

)
and this proves the second equation simplified version of which (by multipliying by

2
j−1
2 ) is given in the third equation. �

So we have given our constraints. As an example, if we recall the orthonormal

Haar system, values of the pk’s are p0 = p1 = 1 and the rest of the pk’s are zero. The

results from this theorem even narrows our constraints, which are:

1.
∑

k∈Z pk−2l pk = 2δl0

2.
∑

k∈Z |pk|
2 = 2

3.
∑

k∈Z pk = 2

4.
∑

k∈Z p2k = 1 and
∑

k∈Z p2k+1 = 1

Recall that, for orthonormal bases,

δkl =

 1 k = l

0 otherwise
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So we have the relation between V j’s. So far, we have not mentioned about the

wavelets. But that’s the point, where the wavelets enter the picture. Recall from the

previous section that the V j’s are not orthonormal to each other. Instead, one with

bigger j is the superset of the one with smaller j. So we extracted the orthogonal

complement of V j in V j+1 and represented it with W j. Therefore we made it possible

to extract a signal into a linear combination of functions. Analoguously, next theorem

extracts, W j’s for a multiresolution analysis (One may also see [Boggess 2001]).

Theorem 3.3.3 Let
{
V j

}
j∈Z

be a multiresolution analysis with scaling function, φ (t) =∑
k pkφ (2t − k) , where the coefficients, pk, follow Theorem 3.3.2. Also let W j be the

span of
{
ψ

(
2 jt−k

)}
k∈Z

, where

ψ (t) =
∑
k∈Z

(−1)k p1−kφ (2t − k) (3.42)

Then W j ⊂ V j+1 is the orthogonal complement of V j in V j+1. Furthermore, we have,{
ψ j,k (t) = 2

j
2ψ

(
2 jt − k

)}
k∈Z

is an orthonormal basis for the W j.

Proof. We first begin with proving the theorem for j = 0. In order to show that the

set
{
ψ0,k (t) = ψ (t − k)

}
k∈Z is orthonormal, using the fact that the set

{
2

1
2φ (2t − k)

}
k∈Z

is orthonormal from Theorem 3.2.5, by changing the summation indices, we have〈
ψ0,m, ψ0,l

〉
=

1
2

∑
k∈Z

p1−k+2m p1−k+2l

If we make a change of index k̃ = 1 − k + 2m, by using the constraint 1 we get〈
ψ0,m, ψ0,l

〉
=

1
2

∑
k̃∈Z

pk̃ pk̃+2l−2m = δm−l,0 = δm,l

Therefore ψ0,m has to be orthonormal. Next, we show that
{
ψ0,m (t) = ψ (t − m)

}
m∈Z is

orthogonal to V0, which means that ψ (t − m) is orthogonal to φ (t − l) for all l ∈ Z

since {φ (t − l)}l∈Z spans V0. Again, by using Theorem 3.2.5 and changing the sum-

mation indices, we have〈
ψ0,m, ψ0,l

〉
=

1
2

∑
k∈Z

(−1)k p1−k+2m pk−2l

If we prove that the sum is equal to zero, we are done with V0. When l = m = 0 we

have, ∑
k∈Z

(−1)k p1−k pk = . . . − p2 p−1 + p1 p0 − p0 p1 + p−1 p2 − . . . = 0
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If j ≥ 0, we extend this to the general case by noticing that the term in the sum with

the index k = l + m− j, cancels out with the term with the index k = l + m + j + 1 since

(−1)l+m+ j+1 pm−l− j pm+ j+1−l = − (−1)l+m− j p1−l+m+ j pm−l− j

Therefore the sum is zero. So we have the set
{
ψ0,m (t) = ψ (t − m)

}
m∈Z is orthonormal.

�

By this theorem (Theorem 3.3.3), the set
{
ψ j−1,k

}
k∈Z

is an orthonormal basis for the

space W j−1, which is the orthogonal complement of V j−1 in V j. Therefore, we have

V j = W j−1 ⊕ V j−1

= W j−1 ⊕W j−2 ⊕ V j−2

= W j−1 ⊕W j−2 ⊕ · · · ⊕W1 ⊕W0 ⊕ V0 (3.43)

and therefore

f j = w j−1 + f j−1

f j = w j−1 + w j−2 + f j−2

f j = w j−1 + w j−2 + . . . + w1 + w0 + f0 (3.44)

just like it is in the Haar system (See 3.40 and 3.41)

Decomposition and reconstruction of a signal

Now that we have constructed our basis for a multiresolution analysis, we can

continue with the decomposition and reconstruction algorithms of a multiresolution

analysis. Let f be a signal that is already contained in one of our approximation

spaces, V j. Apparently, if the signal has higher frequencies, j should be greater

as well. The reader would remember from the previous and current sections that,

in order to decompose the signal into its different resolution component, there are

two orthonormal bases regarding the approximation space V j, that are V j−1 and W j−1,

which is, the orthonormal complement of V j−1 in V j. So we have V j = W j−1 ⊕ V j−1 as

orthogonal direct sum of those bases.

So we have from Theorem 3.2.5 that f can be represented as the linear sum of

its projections over the orthonormal basis
{
φ j,k

}
k∈Z

that constructs the approximation
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space, V j.

f =
∑
k∈Z

〈
f , φ j,k

〉
φ j,k (3.45)

Also, as we know from Theorem 3.3.3 that, every item in the basis
{
φ j,k

}
k∈Z

can be

represented as a linear sum of the bases
{
φ j−1,k

}
k∈Z

and
{
ψ j−1,k

}
k∈Z

since they span V j−1

and W j−1 respectively. So we also have,

f =
∑
k∈Z

〈
f , φ j−1,k

〉
φ j−1,k︸                  ︷︷                  ︸

f j−1

+
∑
k∈Z

〈
f , ψ j−1,k

〉
ψ j−1,k︸                   ︷︷                   ︸

w j−1

(3.46)

as it is in 3.44. Our decomposition formula depends on those two processes. But

there is also one remark that is to be given before introducing the formula.

Remark 3.3.4 (Parseval’s Identity) Let {uk}k∈N be an orthonormal basis and V be

the complex iner product space that is spanned by {uk}k∈N. Then for any two functions

f , g ∈ V that have the expansions

f =

∞∑
k=1

akuk and g =

∞∑
k=1

bkuk

we have

〈 f , g〉 =

〈 ∞∑
k=1

akuk,

∞∑
n=1

bnun

〉
=

∞∑
k=1

∞∑
n=1

akbn 〈uk, un〉

=

∞∑
k=1

akbk

Apparently, we also have

〈 f , f 〉 =

〈 ∞∑
k=1

akuk,

∞∑
n=1

anun

〉
=

∞∑
k=1

akak = ‖ f ‖2

First we find the coefficients relative to the basis in 3.45 and then use them to

evaluate the coefficients relative to the basis in 3.46. By using the scaling relation

(Theorem 3.3.2), Theorem 3.3.3 and Remark 3.3.4, we have the decomposition for-

mula

Decomposition:


〈

f , φ j−1,l

〉
= 2−

1
2
∑

k∈Z pk−2l

〈
f , φ j,k

〉〈
f , ψ j−1,l

〉
= 2−

1
2
∑

k∈Z (−1)k p1−k+2l

〈
f , φ j,k

〉 (3.47)
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We made use of the scaling relation while constructing the decomposition for-

mula. So we need an inverse scaling relation for constructing the reconstruction

formula. From the decomposition formula, together with the orthonormality of the

basis
{
φ j,k

}
, we have

〈
φ j,k, φ j−1,l

〉
= 2−

1
2 pk−2l and

〈
φ j,k, ψ j−1,l

〉
= 2−

1
2 (−1)k p1−k+2l. So

our inverse scaling relation becomes

φ j,k =
∑
l∈Z

2−
1
2 pk−2lφ j−1,l +

∑
l∈Z

2−
1
2 (−1)k p1−k+2lψ j−1,l (3.48)

So if we apply the Remark 3.3.4 to 3.48 and 3.46, we obtain our reconstruction for-

mula.

Reconstruction:


〈

f , φ j,k

〉
= 2−

1
2
∑

l∈Z pk−2l

〈
f , φ j−1,l

〉
+2−

1
2
∑

l∈Z (−1)k p1−k+2l

〈
f , ψ j−1,l

〉 (3.49)

As the reader should have noticed, all of the formulas above are for the orthonor-

mal bases. For various reasons, one may need the orthogonal versions of the decom-

position and reconstruction formulas. In this case, our bases for V j and W j become{
φ
(
2 jt − k

)}
k∈Z

and
{
ψ

(
2 jt − k

)}
k∈Z

respectively (rather than
{
φ j,k (t) = 2 j/2φ

(
2 jt − k

)}
k∈Z

and
{
ψ

(
2 j/2t − k

)}
k∈Z

). So if we let a j
k = 2

j
2

〈
f , φ j,k

〉
, then 3.45 becomes

f =
∑
k∈Z

2
j
2
〈

f , φ j,k

〉︸      ︷︷      ︸
a j

k

2−
j
2φ j,k︸ ︷︷ ︸

φ(2 jt−k)

=
∑
k∈Z

a j
kφ

(
2 jt − k

)
(3.50)

Moreover, if we let b j
k = 2

j
2

〈
f , ψ j,k

〉
, this time, we have 3.46 rewritten

f =
∑
k∈Z

a j−1
k φ

(
2 j−1t − k

)
+

∑
k∈Z

b j−1
k ψ

(
2 j−1t − k

)
(3.51)

Here, a j
k is called the approximation coefficient and b j

k is called the detail coefficient.

Then our orthogonal decomposition and reconstuction formulas become

Decomposition :

 a j−1
l = 2−1 ∑

k∈Z pk−2la
j
l

b j−1
l = 2−1 ∑

k∈Z p1−k+2la
j
k

(3.52)

Reconstruction : a j
k =

∑
l∈Z

pk−2la
j−1
l +

∑
l∈Z

(−1)k p1−k+2lb
j−1
l (3.53)

Implementation
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The decomposition and reconstruction formulas are not as easy as they seem when

it comes to implementation. Actually we will need more theoretical help to im-

plement the formulas. Here, since reconstruction is not our concern in this work,

for minimalization purposes, we will only give the algorithm for decomposition.

One, who is interested in the reconstruction algorithm may refer to [Boggess 2001],

[Gençay 2002], [Wojtaszczyk 1997] or [Bachman 2000]. We will consider the de-

composition algorithm in three major steps: initialization, iteration and termination.

Initialization is, as it is in many other areas, the most important part of the algo-

rithm that breaks up a signal, f , into its W j components. First, we have to choose the

depth of our analysis, which is j. In other words, we choose the approximation space

that best fits the information avalable on f . Clearly, it depends on the frequency of

the signal and also on the choice of multiresolution analysis. Secondly we need to

choose f j ∈ V j to best fit the signal itself.

The best approximation to f from V j, in the sense of energy is the orthogonal

projection of the signal onto V j, P j f . Since, 2 j/2φ
(
2 jt − k

)
is orthonormal, we have,

P j f =
∑
k∈Z

a j
kφ

(
2 jt − k

)
, where a j

k = 2 j
∫ ∞

−∞

f (t) φ (2 jt − k)dt (3.54)

In reality, the information from discrete (or sampled) data is generally not sufficient

to determine the a j
k’s. Next theorem, gives a quadrature rule that does a better approx-

imation.

Theorem 3.3.5 Let
{
V j

}
j∈Z

be some multiresolution analysis with a compactly sup-

ported scaling function φ. If the square integrable function f is continuous, then, for

sufficiently large j, we have,

a j
k = 2 j

∫ ∞

−∞

f (t) φ (2 jt − k)dt ≈ m f
(

k
2 j

)
where m =

∫
φ (t)dt

Proof. Recall from the earlier pages of this section that a scaling function that

has compact support is defined to be non-zero only in a finite interval of the form

{t : |t| ≤ M}. Therefore, the interval of integration for a j
k in 3.54 is

{
t :

∣∣∣2 jt − k
∣∣∣ ≤ M

}
.

So, if we change the variable as t̃ = 2 jt − k, we get

a j
k =

∫ M

−M
f
(
2− jt̃ + 2− jk

)
φ
(
t̃
)
dt̃
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When j is sufficiently large, we have 2− jt̃ + 2− jk ≈ 2− jk for t̃ ∈ [−M,M]. Thus,

f
(
2− jt̃

)
+ f

(
2− jk

)
≈ f

(
2− jk

)
in the same interval. So we have the approximation,

a j
k =

∫ M

−M
f (2− jt̃ + 2− jk)φ

(
t̃
)
dt̃ ≈ f

(
2− jk

) ∫ M

−M
φ
(
t̃
)
dt̃

Since φ is compactly supported we have∫ M

−M
φ
(
t̃
)
dt̃ =

∫ ∞

−∞

φ
(
t̃
)
dt̃ = m

Therefore a j
k ≈ m f

(
k
2 j

)
�

There is no doubt that, if we construct the multiresolution analysis so that the

scaling function has the property m =
∫
φ = 1, this reduces our computational burden.

In that case, we have a j
k ≈ f

(
k
2 j

)
. Back to the general case, with a j

k ≈ m f
(

k
2 j

)
, the

projection of f over V j becomes

P j f (t) ≈ f j (t) = m
∑
k∈Z

f
(

k
2 j

)
φ
(
2 jt − k

)
(3.55)

The next step in our algorithm is the iteration. Now that we know, we can rep-

resent f j as the sum of some f j−1 ∈ V j and some w j−1 ∈ W j using decomposition

formula in 3.47. Once we have our components, we recursively do the same thing for

f j−1 ∈ V j, then for f j−2 ∈ V j and so on. The process can be illustrated as,

f ≈ f j → f j−1 → f j−2 · · · → f2 → f1 → f0

↘ w j−1 ↘ w j−2 · · · ↘ w2 ↘ w1 ↘ w0

Now, let us recall the convolution of two series x = (· · · , x−1, x0, x1, · · · ) and y =

(· · · , y−1, y0, y1, · · · ) from Section 3.1 (3.17) which is defined as

x ? yt =
∑
k∈Z

xkyt−k (3.56)

Now, let h and l be the sequences

hk =
1
2

(−1)k pk+1 (3.57)

lk =
1
2

p−k (3.58)

and H and L be two discrete filters which are defined as H (x) = h ? x and L (x) =

l ? x. If we let x = a j, then L (x) becomes L
(
a j

)
l
= 2−1 ∑

k∈Z pk−la
j
l . Similarly, H (x)

becomes H
(
a j

)
l
= 2−1 ∑

k∈Z p1−k+la
j
k. Thus we have a j−1

l = L
(
a j

)
2l

and b j−1
l = H

(
a j

)
2l

(See 3.52).
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There is one more concept that we have to mention about, which is indeed very

important. This concept is known as downsampling . In cases where we lie in the

boundaries of the critical sampling rule (See [Bachman 2000]), we may downsample

the data. That means, since we can decompose the function f j ∈ V j into f j−1 ∈

V j−1 and w j−1 ∈ W j that are orthogonal to each other, we may reduce the number of

samples by a factor of 1
2 by cleverly selecting the subsamples. Let us give an example

from the Haar System at this point.

Example 3.3.6 Let f j (t) =
∑

k akφ
(
2 jt − k

)
. If we divide the sum into its even and

odd terms, we get

f j (t) =
∑

k

a2kφ
(
2 jt − 2k

)
+

∑
k

a2k+1φ
(
2 jt − 2k − 1

)
(3.59)

Recall that, for the Haar System, we have,

φ
(
2 jt − 2k

)
=

(
φ
(
2 j−1t − k

)
+ ψ

(
2 j−1t − k

))
/2

φ
(
2 jt − 2k − 1

)
=

(
φ
(
2 j−1t − k

)
− ψ

(
2 j−1t − k

))
/2

So if we substitute those equations into 3.59, we get

f j (t) =
∑

k

a2k

(
φ
(
2 j−1t − k

)
+ ψ

(
2 j−1t − k

))
/2

+
∑

k

a2k+1

(
φ
(
2 j−1t − k

)
− ψ

(
2 j−1t − k

))
/2

=
∑
k∈Z

(a2k − a2k+1

2

)
ψ

(
2 j−1t − k

)
+

(a2k + a2k+1

2

)
φ
(
2 j−1t − k

)
= w j−1 + f j−1

As can be seen from the example, we may take only the even terms and discard

the odd terms. Such an operation is called downsampling and we denote it by,

(Dt)l = t2l l ∈ Z (3.60)

Sometimes the downsampling operator can be represented as 2 ↓ as well.

This completes, our iteration algorithm. The iterative step, using the linear filters

that we have just defined is as follows.

a j−1 = DL
(
a j

)
b j−1 = DH

(
a j

)
(3.61)

which is also illustraded in Figure 3.6
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a j -

-

- H

L -

- 2 ↓

2 ↓ -

-

a j−1

b j−1

Figure 3.6: Diagram of decomposition for multiresolution analyses

The only step left to complete a successful multiresolution analysis is the termi-

nation. This of course depends on our aim for making a multiresolution analysis.

For example for data compression purposes, one may decompose all the components

of a signal, then filter and transfer the data for reconstruction. But in our case, we

will decompose our signal to a level j and then stop, since our signal will be smooth

enough, and we will still have a signal f ∈ V j. And that concludes the section.

3.4 The Daubechies Wavelet Family

The decomposition algorithm discussed in section 3.3 makes multiresolution analysis

an easier process, provided that a set of sampling spaces is given. But as one expects

the worst case, the hardest thing is to find an appropriate scaling function that spans a

fine sampling space. If the given scaling function is discrete (as in Haar System), then

it does not provide an accurate approximation. If it is not compactly supported (has

finite support), it leads to an infinite number of coefficients. Therefore, once again,

we cook our own meal and develop our own sampling space that is spanned by a

compactly supported continuous scaling function. The recipé is by Ingrid Daubechies

who discovered the hierarchy of wavelets that are named after her. We will follow

mostly [Boggess 2001] througout this section but one may refer to [Gençay 2002]

as well.

As we said, our aim is to construct a multiresolution analysis that has a com-

pactly supported continuous scaling function, but instead of dealing with the sam-

pling spaces, we initially get direct help from Fourier transform and redefine the
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constraints for a scaling function. Recalling the Theorem 3.3.2 and the latter 4 results

derived from it, next theorem provides a formulation of those constraints in terms of

the scaling function, φ.

Theorem 3.4.1 Let φ be a compactly supported continuous function which satis-

fies the orthonormality condition:
∫
φ (t − k) φ (t − l) dt = δkl and let

{
φ
(
2 jt − k

)}
k∈Z

spans V j. Then the following conditions hold.

• The spaces V j satisfy the seperation condition (∩V j = {0})

• If additionally, the conditions for normalization (
∫
φ (t) dt = 1) and scaling

(φ (t) =
∑n

k=0 pkφ (2t − k), where n < ∞) hold, then some space, V j satisfies the

density condition, that is, any square integrable real function can be approxi-

mated by the functions of V j.

The proof of this theorem can be found in [Boggess 2001]. Please keep in mind

that, Theorem 3.4.1 plays a vital role in our multiresolution analysis construction. In

particular, the whole theorem asserts that, if the function φ is continuous with compact

support and satisfies the normalization, scaling and orthonormality conditions, then

the collection of spaces
{
V j

}
j∈Z

forms a multiresolution analysis.

So let’s see how we can represent these constraints in the language of Fourier

Transform. Recall from 3.11 that the Fourier Transform of a function, f is given by

Fξ
[
f
]

= f̂ (ξ) =
1
√

2π

∫ +∞

−∞

f (t) e−itξdt6 (3.62)

Normalization condition (
∫
φ = 1) is rather easy to represent. Since we have

φ̂(0) = 1
√

2π

∫ +∞

−∞
f (t) e−it{0}dt = 1

√
2π

∫ +∞

−∞
φ (t) dt, Normalization condition becomes

φ̂(0) =
1
√

2π
(3.63)

Orthonormality condition needs a little more work and a theorem proof.

Theorem 3.4.2 A function φ satisfies the orthonormality condition iff

F(ξ) = 2π
∑
k∈Z

∣∣∣φ̂(ξ + 2πk)
∣∣∣2 = 1, ∀ξ ∈ R

6 Recall that that the factor 1
2π may be bundled with the inversion formula or 1

√
2π

can appear in both transform
and inverse transform equations to provide a symmetric appearance
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In addition, a function ψ(t) is orthogonal to {φ(t − l)}l∈Z iff∑
k∈Z

φ̂(ξ + 2πk)ψ̂(ξ + 2πk) = 0, ∀ξ ∈ R

The proof of this theorem can be found in [Boggess 2001]. In particular, since F is

periodic, it has a Fourier series,
∑
αne−int, where the Fourier coefficients are given

by αn = 1
2π

∫ 2π

0
F(ξ)e−inξdξ. Thus, by simplification, our orthonormality condition

becomes

−αn = δn0 (3.64)

Next theorem recasts the scaling condition φ(t) =
∑

k pkφ(2t − k) in terms of the

Fourier transform. But first, we have to give a remark from Fourier transform.

Remark 3.4.3 The Fourier transform of the translated and dilated form of a scaling

function, φ(bt − a) can be evaluated as follows:

Fξ
[
φ(bt − a)

]
=

1
√

2π

∫ +∞

−∞

φ(bt − a)e−itξdt =
1
√

2π

∫ +∞

−∞

φ(s)e−i( s+a
b )ξ ds

b

=
1
√

2π

∫ +∞

−∞

φ(s)e−
iaξ
b e−

isξ
b

ds
b

= e−
iaξ
b

1
√

2π

∫ +∞

−∞

φ(s)e−
isξ
b

ds
b

= e−
iaξ
b

1
b
Fξ/2

[
φ
]

Theorem 3.4.4 The scaling condition, φ(t) =
∑

k pkφ(2t − k) is equivalent to

φ̂(ξ) = φ̂(
ξ

2
)P(e−

iξ
2 )

where the polynonmial P is given by

P(z) =
1
2

∑
k∈Z

pkzk

Moreover, we have

φ̂(ξ) =
1
√

2π

∞∏
j=1

P(e−
iξ
2 j )

Proof. If we take the Fourier transform of both sides of the scaling condition, by

using Remark 3.4.3, we get,

φ̂(ξ) =
1
2

∑
k∈Z

φ̂(ξ/2)pkeik( ξ2 ) = φ̂(
ξ

2
)P(e−

iξ
2 )
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where P(z) = 1
2

∑
k pkzk, as asserted in the first part. If we continue iteratively, we get

φ̂(ξ) = P(e−
iξ
2 ) . . . P(e−

iξ
2n )φ̂(

ξ

2n )

=

 n∏
j=1

P(e−
iξ
2 j )

 φ̂(
ξ

2n )

Therefore, as n→ ∞ we have

φ̂(ξ) =

 ∞∏
j=1

P(e−
iξ
2 j )

 φ̂(0)︸︷︷︸
= 1√

2π

=
1
√

2π

∞∏
j=1

P(e−
iξ
2 j ) (3.65)

�

Although this theorem has no practical use (because of the infinite product), it will

theoretically help us on our way as we will see later. For example, if we recall The-

orem 3.3.3, and let Q(z) = −zP(−z), for |z| = 1, we have, Q(z) = (1
2 )

∑
k (−1)k p1−kz

k.

So we can use the same arguments in Theorem 3.4.4 to show that

ψ̂(ξ) = φ̂(
ξ

2
)Q(e−

iξ
2 ) (3.66)

Now we combine the latter two theorems (3.4.2 and 3.4.4) to give a necessary

condition on P(z) for the existence of a multiresolution analysis.

Theorem 3.4.5 Let φ satisfy the orthonormality (
∫
φ(t − k)φ(t − l)dt = δkl) and the

scaling (φ(t) =
∑

k pkφ(2t − k)) conditions. Then for {|z| = 1}z∈C, P(z) =
∑

kpkzk

satisfies

|P(z)|2 + |P(−z)|2 = 1

or, equivalently, for 0 ≤ t ≤ 2π,

|P(e−it)|2 + |P(e−i(t+π))|2 = 1

Proof. From Theorem 3.4.2, orthonormality condition implies∑
k∈Z
|φ̂(ξ + 2πk)|2 =

1
2π

and from 3.4.4, scaling condition implies

φ̂(ξ) = φ̂(
ξ

2
)P(e−

iξ
2 )
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Now, if we repeat the procedure of dividing the orthonormality condition into even

and odd terms, as we did in Example 3.3.6, and then using the scaling condition we

have,

1
2π

=
∑
k∈Z
|φ̂(ξ + 2πk)|2 =

∑
l∈Z
|φ̂(ξ + (2l)2π)|2 +

∑
l∈Z
|φ̂(ξ + (2l + 1)2π)|2

=
∑
l∈Z

(
|P(e−i( ξ2 +2lπ))|2|φ̂(

ξ

2
+ (2l)π)|2 + |P(e−i( ξ2 +(2l+1)π))|2|φ̂(

ξ

2
+ (2l + 1)π)|2

)
= |P(e−i ξ2 )|2

∑
l∈Z
|φ̂(
ξ

2
+ 2πl)|2︸              ︷︷              ︸

1
2π

+|P(−e−i ξ2 )|2
∑
l∈Z
|φ̂((

ξ

2
l) + 2πl)|2︸                  ︷︷                  ︸
1

2π

⇒ 1 = |P(e−i ξ2 )|2 + |P(−e−i ξ2 )|2

Since this equation holds for all ξ ∈ R, we may conclude that |P(z)|2 + |P(−z)|2 = 1

for all {|z| = 1}z∈C with �

Since we have given the necessary condition on P(Z), one thing left is giving the

necessary condition on Q(Z), the scaling relation for ψ̂(ξ). Next theorem states those

conditions.

Theorem 3.4.6 Let φ satisfy the orthonormality (
∫
φ(t − k)φ(t − l)dt = δkl) and the

scaling (φ(t) =
∑

k pkφ(2t − k)) conditions. Now suppose ψ̂(t) =
∑

k qkφ(2t − k) and

let Q(z) =
∑

k qkzk. Then we have,∫
ψ(t − k)φ(t − l)dt = 0 ∀k, l ∈ Z

or equivalently

P(z)Q(z) + P(−z)Q(−z) = 0

Proof. The proof has the same steps as the proof of Theorem 3.4.5. We prefer a more

direct proof. We know that Q(z) = −zP(−z), for |z| = 1. Then we have,

P(z)Q(z) + P(−z)Q(−z) = −zP(z)P(−z) + zP(−z)P(z) = 0

�

Iterative Procedure

Now that we have our constraints for the polynomials P(z) and Q(z), we may

develop a procedure to construct a scaling function. We will prefer constructing a
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polynomial that satisfies |P(e−it)|2 + |P(e−i(t+π))|2 = 1 and then construct the function

φ(t) that satisfies the scaling condition. Now let’s skip the construction of the polyno-

mial and consider it is constructed. How we construct the scaling function by iteration

is asserted in the next theorem.

Theorem 3.4.7 Let P(z) = 1
2

∑
k pkzk satisfies the following conditions,

• P(1) = 1

• |P(z)|2 + |P(−z)|2 = 1 for |z| = 1

• |P(eit)| > 0 for |t| ≤ π
2

Let φ0 be the Haar scaling function and let φn(t) =
∑

k pkφn−1(2t − k) for n ≥ 1. Then

in the space of square integrable functions, the sequence, φn converges pointwise to a

function φ which satisfies the orthonormality (
∫ ∞
−∞
φ(t − n)φ(t − m)dt = δnm) and the

scaling (φ(t) =
∑

k pkφ(2t − k)) conditions.

The proof of this theorem can be found in [Boggess 2001].

In practice, Theorem 3.4.7 means a lot for our purpose. Now we have a sequence

inherited from an initial scaling function that converges to a scaling function which

satisfies the orthonormality and scaling conditions. However, one must have noticed

that the initial scaling function, φ0is the Haar scaling function and we don’t employ

this scaling function much because of the continuity problems. So we have to gen-

eralize this theorem to some extent. So we define p(ξ) = P(e−iξ) and redefine the

conditions in Theorem 3.4.7 as

p(0) = 1 (3.67)

|p(ξ)|2 + |p(ξ + π)|2 = 1 (3.68)

|p(ξ)| > 0 f or − π
2 ≤ ξ ≤

π
2 (3.69)

Now what we have to do is to find a p(ξ) that satisfies all of the above conditions

which is, of course, a difficult task. But Daubechies framework, makes it easier. Let

us consider the trigonometric equation cos2 ξ

2 + sin2 ξ

2 = 1. If we can decompose

some power of left side of the equation into the form |p(ξ)|2 + |p(ξ+π)|2, then we have

our p(ξ). Let’s consider n = 3 for instance. Recalling the trigonometric expansions
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cos(u) = sin(u + π
2 ) and sin(u) = −cos(u + π

2 ), our trigonometric equation becomes,

13 = 1 =

(
cos2

(
ξ

2

)
+ sin2

(
ξ

2

))3

= cos6
(
ξ

2

)
+ 3 cos4

(
ξ

2

)
sin2

(
ξ

2

)
+ 3 cos2

(
ξ

2

)
sin4

(
ξ

2

)
+ sin6

(
ξ

2

)
= cos6

(
ξ

2

)
+ 3 cos4

(
ξ

2

)
sin2

(
ξ

2

)
+3 cos4

(
ξ + π

2

)
sin2

(
ξ + π

2

)
+ cos6

(
ξ + π

2

)
With |p(ξ)|2 = cos6

(
ξ

2

)
+ 3 cos4

(
ξ

2

)
sin2

(
ξ

2

)
, we have

1 = |p(ξ)|2 + |p(ξ + π)|2

Therefore, constraint 3.68 is satisfied. Constraints 3.67 and 3.69 are already satisfied

with our choice of |p(ξ)|2 since |p(0)|2 = cos6
(

0
2

)
+3 cos4

(
0
2

)
sin2

(
0
2

)
= 1 and cos

(
ξ

2

)
≥

1
√

2
for |ξ| ≤ π

2 . So in order to pull out p from the equation, we rewrite our definition

as,

|p(ξ)|2 = cos4
(
ξ

2

) (
cos2

(
ξ

2

)
+ 3 sin2

(
ξ

2

))
= cos4

(
ξ

2

) ∣∣∣∣∣cos
(
ξ

2

)
+
√

3i sin
(
ξ

2

)∣∣∣∣∣2
⇒ p(ξ) = cos2

(
ξ

2

) ∣∣∣∣∣cos
(
ξ

2

)
+
√

3i sin
(
ξ

2

)∣∣∣∣∣α(ξ)

where α(ξ) is a complex-valued function having |α(ξ)| = 1 that is to be chosen for our

purposes later. If we use the trigonometric decompositions

cos
(
ξ

2

)
=

e
iξ
2 + e−

iξ
2

2
sin

(
ξ

2

)
=

e
iξ
2 − e−

iξ
2

2i

we get

p(ξ) =
1
8

(
eiξ + 2 + e−iξ

) (
e

iξ
2 + e−

iξ
2
√

3e
iξ
2 −
√

3e−
iξ
2

)
α(ξ)

Now we choose α(ξ) = e−
3iξ
2 that clears all positive and fractional powers of the

exponent. Then p(ξ) becomes

p(ξ) =

1 +
√

3
8

 + e−iξ

3 +
√

3
8

 + e−2iξ

3 −
√

3
8

 + e−3iξ

1 +
√

3
8


Recall that p(ξ) = P(e−iξ) = 1

2

∑
k pke−ikξ which is the form of our equation. So we

evaluated our pk’s.

p0 =
1 +
√

3
4

, p1 =
3 +
√

3
4

, p2 =
3 −
√

3
4

, p3 =
1 −
√

3
4

(3.70)
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(a) φ0 (b) φ1

(c) φ2 (d) φ4

(e) φ6 (f) φ8

Figure 3.7: Plot of the iteration steps of Daubechies Scaling Function (N = 2)

Since we have our pk’s, at last, we can evaluate the scaling function, using the

iteration procedure asserted in Theorem 3.4.7. The plot of the pk’s after j iterations

(φ j’s) are given in Figure 3.7. As can be seen from (f), after 8 iterations, φ8 almost

converges its limit.

The rest is even easier now. Once we have identified φ and evaluated the pk’s, we

may indentify our wavelet, ψ which is given by the formula

ψ(t) =
∑
k∈Z

(−1)k p1−kφ(2t − k)

The plot of the wavelet function extracted from φ8 is shown in Figure 3.8. Since j is
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Figure 3.8: Plot of the Daubechies Wavelet Function Extracted from φ8 (N = 2)

large enough, the limit of the function (actual wavelet) should be very similar to the

plot.

Now that we have our scaling function and wavelet coefficients, we may apply the

decomposition algorithm in Section 3.3 and finalize the multiresolution analysis.

As one may have noticed, we tripled the trigonometric equation cos2 ξ

2 +sin2 ξ

2 = 1

and then extracted a p(ξ) = P(e−iξ). However, we have other alternatives. For every

odd power {n = 2N − 1}N∈{1,2,3..}, we have the decomposition P(z) = 1
2

∑
k pkzk. So the

pk’s of the order N form our φN
0 of the iterative procedure. There are 2 ∗ N pk’s for

φN
0 .

So we conclude the chapter on Wavelet Theory and Multiresolution Analysis. In

our work, we will use Daubechies family of scaling functions of order 2, for sim-

plicity. Nevertheless, one may prefer higher orders of Daubechies family (D(N))

of scaling functions or different wavelet families such as Least Asymmetric Family

(LA(i)) of scaling functions. The interested reader may refer to [Gençay 2002] for

more information about those families.
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CHAPTER 4

NEW MODEL FOR HIGH FREQUENCY DATA SAMPLING

4.1 Introduction

As we have stated in the introduction chapter, the starting point of this work is the

research of [Gençay 2001] which uses the approximation spaces, V j’s as the desea-

sonalized components of a signal. Recall from Chapter 3, there are two orthonormal

bases regarding the approximation space V j+1 , that are V j and W j, which is the or-

thogonal complement of V j+1. So f j ∈ V j is the residual after the j’th level wavelet

space component, w j ∈ W j of the function f j+1 is extracted from the signal.

Although the method of Gençay et al. turns the ACF into a long memory function

ACF, there is a problem with this approach. It oversmooths the signal, so that the

new plot of the data does not seem like the original one, so there is a good chance

of throwing some useful information out as well as the seasonal components. This

can be seen from the f j ∈ V j plots of our data (Figure 4.1). One may see the full

scatter of the data in Figure 5.1. Although the plot of f15 ∈ V15 (frequency is 1
215 of the

original domain) is very much alike to the plot of original data, the ACF of f15 ∈ V15

is not as good as it is expected. However, when the data is smoothed down to f4 ∈ V4

(frequency is 1
16 of the original domain), the ACF is almost perfect, but the smoothed

function is not much like our original function. Besides, it is difficult to decompose

the marks 1 on ticks. Because of those reasons, researchers do not tend to use this

decomposition much, and sampling is still preferred.

The other side of the picture is not so bright as well. As we have stated in Chapter

2, sampling in higher frequencies ends up with more bias caused by the microstruc-

1 information on trades such as volume, etc.
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(a) f20 (b) ACF of f20

(c) f15 (d) ACF of f15

(e) f10 (f) ACF of f10

(g) f7 (f) ACF of f7

(i) f4 (j) ACF of f4

Figure 4.1: Plot of the iteration steps of the smoothing in [Gençay 2001] with USD-TRY
transactional data of our research
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ture effects and the ACF’s are not smooth. So generally a sampling scheme is used

to reduce this effect. In the rest of the sections, we will introduce a sampling scheme

model that reduces the bias compared to classical sampling schemes that are men-

tioned in Section 2.3. When we need illustrations, we will generally apply it to our

data set, the 37 day tick-by-tick USD-TRY transactions, as we did in Figure 4.1.

As we have mentioned earlier, we will develop a version of the Business Time

Sampling (BST) . Recall that the scheme is based on sampling the sequence of prices

as,

Pbts =
{
P

(
tbts
i

)}
i∈{0,1,...,N}

, tbts
i = inf

0≤t≤T

{
λt ≥ i

λT

N

}
(4.1)

where λt is the business intensity at time t. The varible used as the business intensity

varies since the recognition of the term business intensity changes from person to

person. Some use the volume of the trades while others use lags between the trades.

Our scale of business intensity will be the quadratic variation of the projection of the

signal f onto each resolution of wavelet space, (w j ∈ W j).

4.2 Rescaling and Smoothing

If we look at the histogram of our data (Figure 4.2), we see that there is a huge season-

ality with the morning trades. Here, we follow the guidelines in [Dacorogna 2001]

roughly. In order to remove this seasonality, as described in Section 2.4, we must

choose an activity variable a. We choose it to be the average tick size and minimize

the normalized standart deviation. Here, we use the flexibility in choosing of activity

variable in our favor, for simplicity reasons. Our method is simple and is not the best

for sure, but deseasonalizing the data may be the topic of another paper.

Since we do not use Maximum Overlap Discrete Wavelet Transform in order not

to give up from orthogonality, we use the ordinary Discrete Wavelet Transform which

uses Daubechies Wavelet Family as one may remember from Chapter 3 (Also see

[Gençay 2002]). This means that the size of our domain may be 2k where k is a

positive integer. For this necessity, we do some manual work first and decide on the

size of each day. For instance, in our case, we have 37 days of data spread over 10,5

calendar hours a day, which makes a total of 1,398,600 seconds of trading time. Since

our data show few seasonality nearly for 7 consecutive intraday calendar hours, and
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Figure 4.2: Histogram (X-axis in seconds)

this makes a total of 932,400 seconds, we decide on using 220 = 1, 048, 576 seconds

as the size of our total domain. So we have to squeeze or enlarge the hours that show

high seasonality and obtain a domain of size close to 1, 048, 576.

In order to apply rescaling to our business day, we first determine the optimal par-

titions. We systematically divide our target day into n equally sized periods where n

is sufficiently large and then create a window equal to the size of n − 1 periods. The

outliers of the window is treated as the nth slice. We calculate the number of trades

in each of the n slices and then evaluate the normalized standart deviation for this

choice of partition. Next, we slide this window programatically over the day. The

new outliers as we slide the n − 1periodsized window are still treated as the nth slice.

As we slide the window, we keep on evaluating the normalized standart deviation.

When we finish sliding the window, we store the partition with minimum normalized

standart deviation. Then we decrease the number of partitions n and repeat the same

procedure. We repeat this procedure programatically until we end up with n’s. The

partition in all of these partitions which has the minimum normalized standart devi-

ation is chosen to be the final partition. Next we rescale the nth partition to have the

same size with other slices by using 2.11 and therefore we get our new time scale.

As one may have noticed, in order to find the partition with the miminumum
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0 . . .

� -b ticks

t − 1 t

a1 ticks

. . . t + 1
n 28672

a2 ticks

. . . t + 2
n 28672

a3 ticks

. . .
total of n − 1
equally sized

periods

size = 1
n 28672

t + n−3
n 28672

an−2 ticks

. . . t + n−2
n 28672

an−1 ticks

. . . t + n−1
n 28672

� -an - b ticks

. . . 37800

�outliers-� sliding window of size n−1
n 28672 -� outliers -

We minimize the normalized standart deviation of {ai}
n
i=1 by sliding the window in the domain and then repeating

this procedure for each n. When the optimal window is obtained, we rescale the outliers to size 1
n 28672 and obtain

new time scale of 28672 seconds

Figure 4.3: The rescaling algorithm

normalized standart deviation, we iterated the same procedure over and over again

with different n’s. So when applying this procedure, we must choose the target size

that has many divisors as possible. For instance we choose the target size to be 28, 672

seconds for our domain. We illustrate the process in Figure 4.3. Also the empirical

results of the procedure are shown in Chapter 5.

Now that we have rescaled our data which show high seasonality, our next task

becomes smoothing the data. As one can see from Figure 4.1, there are a lot of

jumps in our data. That’s due to the fact that the market is closed for nearly 13.5

hours and during this time, both American and Far East markets are open. This price

jump contains a lot of information. Therefore we have to smooth the data instead of

neglecting it.

Although many ways of smoothing, some of which are mentioned in Section 2.4

are available, we will propose a new FIR filter for seasonality removal, which is

better for fixed domains. This procedure also can be used for connecting two non-

consecutive days with minimum bias from the total intraday realized variance.

Let X = {xt+i}
M
i=−N be a fixed vector of observations in a larger vector of observa-

tions XX = {xt+i}
MM
i=−NN and {wi}

m
i=−n be the coefficients of an FIR filter. Recalling 2.12,

to smooth X, we apply the filter to XX to give an output vector

Y = yt =


∑m

k=−n wkxt−k if t in [−N,M]

xt otherwise

This procedure is illustrated in Figure 4.4.

Note that, outside of the domain of X, which is [−N,M] (the dashed box in Figure
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Figure 4.4: A classical FIR filter for fixed intervals

4.4), the filter vector w is defined to be the unit impulse signal, which is

wi =

 1 i = t

0 otherwise

That means, outside of this interval, we have yt = xt. Now let us analyze the overall

output vector Y = {yt+i}
MM
i=−NN . We assume that the sum of the impulse response 2

of w is equal to one, which means
∑m

i=−n wi = 1. Therefore, our total output vector

becomes

Y = ( X−NN , X−NN+1, . . .

, . . . , X−N−m−1, (1 +

−m∑
i=−m

w−i)X−N−m, (1 +

−m+1∑
i=−m

w−i)X−N−m+1, (1 +

−m+2∑
i=−m

w−i)X−N−m+2, . . . ,

, . . . , (1 +

−1∑
i=−m

w−i)X−N−1, (
n−1∑

i=−m

w−i)X−N , (
1∑

i=−m

w−i)X−N+1, . . . ,

, . . . , (
n−1∑

i=−m

w−i)X−N+n−1, X−N+n, X−N+n+1, . . . ,

, . . . , XM−m, (
n∑

i=−m+1

w−i)XM−m+1, (
n∑

i=−m+2

w−i)XM−m+2, . . . ,

, . . . , (
n∑

i=−1

w−i)XM−1, (
n∑

i=0

w−i)XM, (1 +

n∑
i=1

w−i)XM+1, . . .

, . . . , (
n∑

i=n

w−i)XM+n, XM+n+1, . . . , XMM−1, XMM)

which means that, if we think of the filter as a whole, impulse response becomes

inconsistent. It overweights the input signals near (outside) filter domain while it

2 See Section 2.4
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underweights the input signals on the two edges of the filter domain. Let us see it in

an example:

Example 4.2.1 Suppose our input vector is XX = {xi}
7
i=1 and the portion of the vector

which shows seasonality and must be smoothed be X = {xi}
5
i=3. Let our filter be a

simple centered average filter w = (0.25, 0.5, 0.25). Then our total output becomes,

Y = (x1, x2, 0.25x2+0.5x3+0.25x4, 0.25x3+0.5x4+0.25x5, 0.25x4+0.5x5+0.25x6, x6, x7)

which means that the weight of our inputs on the total output becomes

(1, 1.25, 0.75, 1, 0.75, 1.25, 1)

respectively. For an ideal impulse response filter, this should be

(1, 1, 1, 1, 1, 1, 1)

If we want to smooth big jumps, we should be using wider filter vectors, which

means that the imbalance spreads over a wider domain and this means that the weights

of the first and last elements of X may decrease down to 0.5.

We propose a filter that changes continuously and only stays in the domain to be

smoothed. The filter coefficients are determined according to the order of filtering.

Let S be the size of the domain X ∈ XX to be smoothed where x1 is the first and xS is

the last elements of the domain X. We determine the filter coefficients applied to the

domain, to yield the ath output element of the output vector to be the coefficients of

(
a − 1
S − 1

+
S − a
S − 1

x)S−1

which means that for the components of ath filter vector is

wa
i =

(
S − 1
i − 1

) (
a − 1
S − 1

)S−i (S − a + 1
S − 1

)i−1

Since a−1
S−1 + S−a

S−1 = 1, our filter satisfies the condition
∑

i wt
i = 1. Moreover, it does

not involve the elements of XX that are not the elements of X, into calculations. The

procedure is illustrated in 4.5. Let us give an example at this point.

Example 4.2.2 Suppose X = (x1, x2, x3, x4). Then the filter vectors to yield y1, y2, y3, y4
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Figure 4.5: The smoothing filter in this research

are respectively

w1 = (
(
3
0

)
0310,

(
3
1

)
0211,

(
3
2

)
0112,

(
3
3

)
0013) = (0, 0, 0, 1)

w2 = (
(
3
0

)
0.3330.660,

(
3
1

)
0.3320.661,

(
3
2

)
0.3310.662,

(
3
3

)
0.3300.663) = (0.04, 0.22, 0.44, 0.3)

w3 = (
(
3
0

)
0.6630.330,

(
3
1

)
0.6620.331,

(
3
2

)
0.6610.332,

(
3
3

)
0.6600.333) = (0.3, 0.44, 0.22, 0.04)

w4 = (
(
3
0

)
1300,

(
3
1

)
1201,

(
3
2

)
1102,

(
3
3

)
1003) = (1, 0, 0, 0)

so the output vectors become

y1 = X ? w1 = x1

y2 = X ? w2 = 0.04x4 + 0.22x3 + 0.44x2 + 0.3x1

y3 = X ? w3 = 0.3x4 + 0.44x3 + 0.22x2 + 0.04x1

y4 = X ? w4 = x4

Notice that, in our example, the weight of the inputs on the total output is (1.34,

0.66, 0.66, 1.34) respectively, and this is not ideal. This is because, the weights tend

to 1 as the domain size increases. In other words, this approach is suitable when the

smoothed domain is large. This is because

lim
S→∞

S−2∑
i=2

(
S − 1
a − 1

) (
i − 1
S − 1

)S−a (
S − i + 1

S − 1

)a−1

= 1

and can be seen from Figure 4.4. The empirically found advantages of this filter will

be presented in detail in Chapter 5.
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(a) S ize = 5 (b) Size = 10

(c) S ize = 100

Figure 4.6: Plot of the weight of input vector items on output vector

4.3 Multiscale Quadratic Variation Filter

Once we have our data rescaled and smoothed, we may apply our sampling scheme.

As we have considered the 2n condition when rescaling, we have a domain of size,

very close to 2n. In our case, this is 220 = 1, 048, 576. Since we had determined the

size of a business day to be 28, 6723 seconds, we have a total of 1, 060, 864 seconds

of data. So we have to throw the first 12, 288 seconds of data out, to fit it into our

decomposition algorithm4.

In order to apply the decomposition described in Chapter 3, we first construct

our basis. As we have stated, we will construct Daubechies(2) scaling function and

use the decomposition algorithm associated with the multiresolution analysis to de-

compose our data. Recalling the details of this decomposition from Section 3.3 we

have

a j
k ≈ m f

(
k
2 j

)
(See Theorem 3.3.5 and 3.55)

for the initial case. And also recall from section 3.4 that

m =

∫
φ = 1

3 As one would remember from the prior section, to find the optimal window, we took divisibility into con-
sideration. 28, 672 is divisable by 212, so we tried as much n’s as possible in order to find the optimal window

4 Note that, we have the option to use other enhanced wavelets in order not to throw out any data
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for Daubechies Wavelet Family. So we have

a j
k ≈ f

(
k
2 j

)
for our initial case. Since j is 20 for our analysis, we have f20 ∈ V20 is f itself. Recall

from 3.52 that in order to decompose f20 ∈ V20 into f19 ∈ V19 and w19 ∈ W19, we have

to evaluate the a19
k ’s and b19

k ’s. Our pk’s to evaluate a j−1
k ’s and b j−1

k ’s are the pk’s of

Daubechies(2) scaling function which are (from 3.70),

p0 =
1 +
√

3
4

, p1 =
3 +
√

3
4

, p2 =
3 −
√

3
4

, p3 =
1 −
√

3
4

initially.

Now, recall Figure 3.6 and equation. Since f j ∈ V j can be decomposed into

orthogonal components

f ≈ f j → f j−1 → f j−2 · · · → f2 → f1 → f0

↘ w j−1 ↘ w j−2 · · · ↘ w2 ↘ w1 ↘ w0

We may treat wi’s as the increments to the signal in ith resolution. Therefore the

changes in wi’s act like returns. So for each wi, ri
k becomes,

ri
k = log(

( f i
k + wi

k)

( f i
k−1 + wi

k−1)
), k ∈

{
2, . . . , 2i

}
(4.2)

From that point on, we use the aggregate squared returns at the resolution i, up to

coefficient k, which is
∑k

t=2 ri
t as the business intensity λ in the equation 4.1. This is

equal to the quadratic variation of the returns up to coefficient k and we will use it as

the new business intensity scale.

So, as in BTS (see Section 2.3), we calculate the total quadratic variation of wi in

each resolution i, determine equidistant tresholds, and take a sample from the original

signal, each time a treshold is exceeded. Since wi is the best component that repre-

sents the activity in ith resolution, we believe that the least biased realized variation of

a signal sampled at a frequency λ should be the one yielded by the resolution that is

closest to λ. That means, since our initial resolution is 1/1, 048, 576, if we are sam-

pling at a frequency of 1/512, w9 should yield the best result since 29 = 512. Actually,

this is the farthest resolution for this algorithm, since w8 has only 256 components and

we cannot make 512 sampling from this resolution.

There is also a fine tuning we can adapt to the analysis. Let us recall Figure 3.7.

The Daubechies(2) scaling function gets smoother as we apply the iteration steps in
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Theorem 3.4.7. That means, it fits the data better with each iteration. So we may

expect that our wi fits the ith resolution of the signal better with each iteration as well.

But we have a limitation with that approach. This is due to padding we need to make,

in order to apply decomposition algorithm.

If we recall equations 3.56, 3.57, 3.58 and 3.61, we apply a low pass filter, l to

obtain the coeficients a j−1
k and a high pass filter, l to obtain the coeficients b j−1

k ’s.

a j−1
k = D(l ? a j)k

b j−1
k+1 = D(h ? a j)k

Therefore if the number of pk’s are z for the Daubechies scaling function after some

iterations, we should have z − 1 more elements than the size of f j, in order to com-

pute a j−1
k ’s and b j−1

k ’s for last k. But we don’t have them. So we apply padding. In

other words append extra elements that were not there. There are a lot of padding

techniques, such as zero padding (all the added elements are zero), periodic extension

(copy elements of the original set beginning from the first element), smooth padding

(extrapolate elements) and symmetric extension (copy elements of the original set

backwards beginning from the last element). For Daubechies (2) scaling function, we

have 4 pk’s for the first iteration. But the number increases with (z1−1)∗(2.(level−1))

at each iteration. This is like doubling the old number of coefficients for our analysis.

It goes like 4, 10, 22, 46, 94, 190, ... and so on.

We will use symmetric extension in our analysis. So if we iterate the scaling 5

times, we will have 94 elements padded to our coefficients. This much padding may

not effect quadratic variation of a dataset of size 524, 288 (w19), but it surely effects if

the size is 1024 (w10) or 256(w8). So padding causes bias, and this totally depends on

the structure of data (we may not be foreseeing it). Therefore there is a limit to our

fine tuning, bu it still works fine. We will show it empirically in the next chapter.

4.4 Measuring The Performance

The bias estimation methods for the integrated volatility is rather heuristic. That’s

because there is actually no possible way to measure the the real integrated volatility

since it’s extracted from a theoretical price. However, there are still ways to measure
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the performance of a sampling scheme.

As we stated before, empirical results show that bias that is caused by the mi-

crostructure effects increase with sampling in higher frequencies. So [Dacorogna 2001]

suggests to use bias factor to measure the performance of a sampling scheme at time

ti which is,

B(ti) =

√ ∑mq
j=1 r∆t(ti−mq+ j)∑m

j=1 r∆tre f (ti−m+ j)
(4.3)

where r is the log return of the price samples in the period, ∆tre f is the time interval

between the samples of reference sampling scheme and ∆t is the time interval between

the samples of new sampling scheme. Note that ∆tre f = m∆t here. In practice the

bias factor is the ratio of new sampling realized volatility to the reference sampling

realized volatility. The reference interval is usually chosen to be sufficiently big to

reduce bias of microstructure effects, 2-4 hours or 1 day depending on the structure of

data. We choose it to be 1 day, which makes 37 observations. Please note that ∆t may

not necessarily be the calendar time. In our case, our scale is the quadratic variations

of jth resolution component of f .

Next chapter demonstrates our empirical findings.
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CHAPTER 5

EMPIRICAL RESULTS AND CONCLUSION

5.1 Structure Of The Data And Rescaling

In this research, we used the classified tick-by-tick data of US D − TRY interbank

transactions, that had taken place between Nov 14th 2008 and Jan 6th 2009. Our data

covers 37 consecutive days and has never been inspected in a research. The trading

hours of the market is between 05:00 GMT and 15:30 GMT and that makes 10.5

hours of trading. Our tick size is 104868, which makes 2834 ticks per day and 1 tick

per 13 seconds on average. 37 days cover a total of 1, 398, 600 seconds of trading

hours and the scatter diagram of the ticks on a scale of seconds is given in Figure 5.1.

We first applied the rescaling algorithm that is described in Section 4.2. We de-

termined the size of the day to be 28, 672 when we consider the described reasons.

When we applied the rescaling algorithm, with slide size of 128 (27)seconds, we got

the following results:

Table 5.1: Resulting optimized window for rescaling

START (SECS) END (SECS) AVG TICKS
Outlier 0 11943 424
Slice 1 11944 16039 428
Slice 2 16040 20135 361
Slice 3 20136 24231 306
Slice 4 24232 28327 447
Slice 5 28328 32423 422
Slice 6 32424 36519 420
Outlier 36520 37800 115
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A total of 104868 trades in 37 consecutive business days are scattered wrt trade timestamps (in seconds).
The trading hours is between 05:00 GMT and 15:30 GMT which makes 37800 seconds per day.

Figure 5.1: Scatter diagram of the raw data

Figure 5.2: Histograms of the data before and after the scaling algorithm is applied
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The histograms before and after the scaling algorithm is applied is shown in Figure

5.2. Note that we did not deal with lunch time seasonality in order to keep simplicity

but a multi-windowed algorithm could also rescale the period of lunch-time.

5.2 Smoothing

After rescaling, we applied the smoothing algorithm to the outliers of window for full

size (539), 1
2 size (270), 1

4 size (135) and 1
8 size (62) to smooth the jumps. We also

applied centered average FIR filters with respective size, to our data and included it

for comparison. The difference between two series can be seen in Figure 5.3. The

total realized variance for the scattered interval are as follows:

Table 5.2: Comparison of several centered FIR filters with our filter

Realized Variance Regarding Figure
When jump is ignored 0.01191 Figure 5.3 (a)
When jump is not ignored 0.01323 Figure 5.3 (a)
Centered FIR (n=270) 0.01139 Figure 5.3 (b)
Our Filter (n=270) 0.01141 Figure 5.3 (b)
Centered FIR (n=135) 0.01165 Figure 5.3 (c)
Our Filter (n=135) 0.01167 Figure 5.3 (c)
Centered FIR (n=67) 0.01183 Figure 5.3 (d)
Our Filter (n=67) 0.01187 Figure 5.3 (d)
Centered FIR (n=33) 0.01204 Figure 5.3 (e)
Our Filter (n=33) 0.01226 Figure 5.3 (e)

As can be seen from the table, the quadratic variations of our filter yield better

than of centered FIR. Moreover, the scatter of the smoothing for big jumps show that

FIR filter oversmooths the data (See Figure 5.3).

After we have our data rescaled and smoothed, the scatter becomes as it is shown

in Figure 5.4.

5.3 Results

Once we finished our work with rescaling and smoothing, we applied our filter to the

data as it is described in Section 4.3. Note that we initially applied the filter without
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(a) Without smoothing

(b) (n = 270) Centered FIR and Our Filter (c) (n = 135) Centered FIR and Our Filter

(d) (n = 67) Centered FIR and Our Filter (e) (n = 33) Centered FIR and Our Filter

Figure 5.3: Compared scatter diagram of the smoothing process
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Figure 5.4: Scatter diagram of the data after rescaling and smoothing
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fine tuning. In order to compare the results in different sampling frequencies, we

chose the sample sizes, which are equivalent to 30 seconds, 1 minute, 2 minutes, 5

minutes, 10 minutes, 15 minutes, 20 minutes, 30 minutes, 40 minutes, 50 minutes,

60 minutes in calendar time. This equivalent to 34953, 17476, 8738, 3495, 1748,

1165, 873, 582, 437, 350 and 291 samples respectively. Here we were expecting to

get the best results at the resolution which has a number of coefficients that is closest

to the regarding sample size. The relative bias (See 4.3) values of CTS, TTS and our

sampling scheme of relative w j are presented in Table 5.3.

Table 5.3: Relative Bias values for CTS, TTS and our sampling scheme

Sample Size 34953 17476 8738 3495 1748 1165 873 582 437 350 291
CTS 2.82 2.19 1.73 1.40 1.31 1.24 1.25 1.20 1.23 1.14 1.17
TTS 3.46 2.48 1.88 1.43 1.24 1.27 1.23 1.19 1.18 1.15 1.19
w19 3.99 3.32 2.62 1.89 1.50 1.39 1.26 1.25 1.23 1.24 1.23
w18 3.40 2.95 2.48 1.81 1.49 1.34 1.29 1.26 1.18 1.15 1.18
w17 2.97 2.61 2.21 1.73 1.47 1.31 1.20 1.16 1.20 1.18 1.14
w16 2.56 2.30 1.98 1.64 1.37 1.31 1.25 1.16 1.13 1.13 1.13
w15 2.00 1.79 1.51 1.33 1.25 1.19 1.21 1.13 1.10 1.10
w14 1.56 1.41 1.29 1.26 1.17 1.12 1.13 1.14 1.10
w13 1.33 1.28 1.16 1.15 1.14 1.11 1.09 1.09
w12 1.24 1.18 1.20 1.12 1.16 1.21 1.15 1.15
w11 1.12 1.12 1.14 1.11 1.08 1.06 1.08
w10 1.03 1.03 1.02 1.07 0.97
w09 1.01 1.00 1.01

The result of the resolution that gives the best performance is colored with red

and the best of CTS-TTS pair is colored with blue in Table 5.3. At higher sampling

frequency levels, the relative bias values are generally minimized when the frequency

is near regarding resolution, as we have expected. For instance, 34953 (30 seconds

in regarding CTS) samples give the best result for w16 since the nearest upper reso-

lution is w16 (65516). Note that, at w15 we only have 215 = 32768 components in

wavelet space and therefore cannot sample for 65516 any further. At lower sampling

frequency levels (starting from 873 samples which corresponds to 20 minutes in cal-

endar time sampling), the relative bias results begins fluctuating from some point on

and our sampling scheme is not robust anymore. This may be due to the oversmooth-

ing caused by the structure of our scaling function, which is highly discrete at that
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Figure 5.5: Performances (relative bias) of CTS, TTS and our filter over regarding sampling
periods (in seconds)

point. But since our design is for high frequencies, we mostly concentrate on higher

frequencies and therefore, for lower frequencies, we choose the point where fluctu-

ation begins as the intuitive best level. Those intuitive best level performances are

underlined in Table 5.3. The resulting performances of CTS, TTS and our sampling

scheme is shown in Figure 5.5.

Now that we have our first results, we may continue with the fine tuning process

that is described in Section 4.3. Note that the orthogonal components of the reso-

lutions were initally decomposed with Figure 3.7 (b) (φ1) which is a highly discrete

scaling function. So we kept on with the scaling function iteration procedure. While

applying the iteration procedure, our expectation was getting better results with the

algorithm, as the scaling function fits the resolution better. The results of the iteration

procedure are shown in Table 5.4.

In compliance with our expectations, when we apply the iterative steps to the scal-

ing function (fine tuning), our results even get better. The result of the iteration that

gives the best performance is colored with red and the best of CTS-TTS pair is col-
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Table 5.4: Relative Bias values for CTS, TTS and the scaling function iterations for best
intuitive w j

Sample Size 34953 17476 8738 3495 1748 1165 873 582 437 350 291
CTS 2.82 2.19 1.73 1.40 1.31 1.24 1.25 1.20 1.23 1.14 1.17
TTS 3.46 2.48 1.88 1.43 1.24 1.27 1.23 1.19 1.18 1.15 1.19
Best w j 16 15 14 12 11 11 10 10 9 9 10
Best Int.w j 16 15 14 12 11 11 12 14 13 13 13
Iteration 1 2.56 2.00 1.56 1.24 1.12 1.12 1.11 1.11 1.21 1.15 1.15
Iteration 2 2.48 1.92 1.60 1.21 1.09 1.07 1.12 1.07 1.06 1.06 1.09
Iteration 3 2.42 1.91 1.54 1.20 1.10 1.10 1.16 1.15 1.16 1.11 1.14
Iteration 4 2.39 1.86 1.49 1.26 1.13 1.12 1.10 1.18 1.15 1.07 1.11
Iteration 5 2.32 1.77 1.40 1.23 1.15 1.15 1.12 1.21 1.12 1.15 1.17
Iteration 6 2.20 1.70 1.42 1.22 1.13 1.08 1.14 1.18 1.18 1.19 1.14
Iteration 7 2.06 1.76 1.46 1.22 1.14 1.20 1.12 1.10 1.11 1.11 1.09
Iteration 8 2.14 1.79 1.50 1.24 1.14 1.13 1.27 1.17 1.10 1.13 1.07

ored with blue in Table 5.4. Again we see that, after some iteration level, the results

begin to fluctuate. This is due to the increase in number of the coefficients of the

scaling function, when iteration is performed and the padding needed for decomposi-

tion (See Section 4.3). So again we choose the point where fluctuation begins as the

intuitive best level. The overall results of the comparison is presented in 5.5 and also

plotted in Figure 5.6.

Table 5.5: Final comparison of the models

Sample Size 34953 17476 8738 3495 1748 1165 873 582 437 350 291
CTS 2.82 2.19 1.73 1.40 1.31 1.24 1.25 1.20 1.23 1.14 1.17
TTS 3.46 2.48 1.88 1.43 1.24 1.27 1.23 1.19 1.18 1.15 1.19
Best Int.w j 16 15 14 12 11 11 12 14 13 13 13
Best Int.SF Iter. 7 6 5 3 2 2 1 2 2 2 2
Value 2.06 1.70 1.40 1.20 1.09 1.07 1.10 1.07 1.06 1.06 1.09

It can be seen clearly from Figure 5.6 that our filter, both with and without scaling

function iteration, performs better that CTS and TTS for our data. Some plots of the

decompositions and iterative procedures are given in the Appendix.
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Figure 5.6: Performances (relative bias) of CTS, TTS, our filter w/o sf iteration and our filter
with sf iteration over regarding sampling periods (in seconds)

5.4 Conclusion And Further Research Topics

In this research, we tried to create a new sampling scheme to estimate the integrated

volatility by realized variance with a minimal bias caused by the microstructure ef-

fects. We applied the multiscaling properties of wavelets to our high-frequency (tick-

by-tick) data and created a new sampling scheme by creating a new business time

scale depending on the quadratic variation of the orthogonal wavelet space projec-

tions of the data to each resolution. The motivation of this approach was the thought

that the best representation of the characteristics of the data sampled at a resolution

should be the projection of the data to the orthogonal components at this resolution

level.

The common practice in the market was to use Calendar Time Sampling (CST)

with a ∆t between 5 minutes and 20 minutes. Tick Time Sampling (TTS) was also

recommended for some cases. So we used CST and TTS for comparison. We used

the realized variance of daily returns as reference and compared the relative bias of

our sampling scheme and the others. The result of the comparison was always in
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favour of our sampling scheme. After optimization, our sampling scheme yielded

more half the bias of the better of CTS and TTS at lower frequencies. It also yielded

significantly better in every frequency.

So we conclude that our sampling scheme may be used for sampling, instead of

CTS and TTS for it gives the relative bias that CTS gives at 5 minutes at a frequency

equal to sampling every 2 minutes in calendar time.

As we have stated in this work, our model is optimizable since we can make fine

tuning by a better approximation of the scaling function that spans the basis for de-

composing the signal into orthogonal components. But this procedure suffers from

another source of bias, after some number of iterations. This is due to padding neces-

sity regarding the decomposition procedure. Padding of 46 data points (4th iteration)

may not cause that much of a bias for a total of 219 data points, but it causes a lot of

bias for a total of 512 datapoints. So, further researches may focus on this bias that is

caused by padding and provide a better fine tuning.
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APPENDIX A

DECOMPOSITION

(1-a) V19 and w19 with no iterations on scaling function

(1-b) V18 and w18 with no iterations on scaling function

(1-c) V17 and w17 with no iterations on scaling function
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(1-d) V16 and w16 with no iterations on scaling function

(1-e) V15 and w15 with no iterations on scaling function

(1-f) V14 and w14 with no iterations on scaling function

(1-g) V13 and w13 with no iterations on scaling function
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(1-h) V12 and w12 with no iterations on scaling function

(1-i) V11 and w11 with no iterations on scaling function

(1-j) V10 and w10 with no iterations on scaling function

(1-k) V9 and w9 with no iterations on scaling function
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(2-a) V19 and w19 with 7 iterations on scaling function

(2-b) V18 and w18 with 7 iterations on scaling function

(2-c) V17 and w17 with 7 iterations on scaling function

(2-d) V16 and w16 with 7 iterations on scaling function
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(2-e) V15 and w15 with 7 iterations on scaling function

(2-f) V14 and w14 with 7 iterations on scaling function

(2-g) V13 and w13 with 7 iterations on scaling function

(2-h) V12 and w12 with 7 iterations on scaling function
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(2-i) V11 and w11 with 7 iterations on scaling function

(2-j) V10 and w10 with 7 iterations on scaling function

(2-k) V9 and w9 with 7 iterations on scaling function
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