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ABSTRACT

COEVOLUTION BASED PREDICTION OF PROTEIN-PROTEIN INTERAGDNS
WITH REDUCED TRAINING DATA

Pamuk, Bahar
M.S., Department of Computer Engineering

Supervisor : Assist. Prof. Dr. Tolga CAN

February 2009, 60 pages

Protein-protein interactions are important for the predic of protein functions since two
interacting proteins usually have similar functions in #.cévailable protein interaction

networks are incomplete; but, they can be used to predictinmsactions in a supervised
learning framework. However, in the case that the knowneamohetwork includes large

number of protein pairs, the training time of the machinereea algorithm becomes quite
long. In this thesis work, our aim is to predict protein-giatinteractions with a known

portion of the interaction network. We used Support Vectachines (SVM) as the machine
learning algoritm and used the already known protein paithé network. We chose to use
phylogenetic profiles of proteins to form the feature vextarquired for the learner since
the similarity of two proteins in evolution gives a reasdealating about whether the two
proteins interact or not. For large data sets, the trainimg bf SVM becomes quite long,
therefore we reduced the data size in a sensible way whilee@p &pproximately the same

prediction accuracy.

We applied a number of clustering techniques to extract thst nepresentative data and fea-

tures in a two categorical framework. Knowing that the tirmgndata set is a two dimensional

iv



matrix, we applied data reduction methods in both dimerssior., both in data size and in
feature vector size. We observed that the data clusterelebly-tneans clustering technique
gave superior results in prediction accuracies compareshother data clustering algorithm
which was also developed for reducing data size for SVM ingin Still the true positive
and false positive rates (TPR-FPR) of the training datac®istructed by the two clustering
methods did not give satisfying results about which methaigh@rforms the other. On the
other hand, we applied feature selection methods on thar&eaectors of training data by
selecting the most representative features in biologindlia statistical meaning. We used
phylogenetic tree of organisms to identify the organismgtviare evolutionarily significant.
Additionally we applied Fisher’s test method to select thatdres which are most represen-
tative statistically. The accuracy and TPR-FPR valuesioétbby feature selection methods
could not provide to make a certain decision on the perfoomatomparisons. However
it can be mentioned that phylogenetic tree method resufteatceptable prediction values

when compared to Fisher’s test.

Keywords: Phylogenetic profiles, Support Vector Machirtesneans clustering, Phyloge-

netic tree, Protein interaction networks
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PROTHN-PROTHN ETKILESIMLERININ KUCULTULM US OGRENME VERSI ILE
BIRLIKTE EVRIMLESMEYE DAYALI TAHM NI

Pamuk, Bahar
Yuksek Lisans, Bilgisayar Muhendisligi Bolimi
Tez Yoneticisi : Yard. Dog¢ Tolga CAN

Subat 2009, 60 sayfa

Bir hiicre icerisinde ayni gorevi gerceklestiren pioter cogunlukla birbirleriyle etkilestikleri
icin protein-protein etkilesim aglari proteinlerinrfiesiyonlarinin bulunmasinda énemli rol
oynarlar. Protein ciftlerinin bir kismi bilinen bir prateetkilesim aginda, heniiz belirlenmemis
protein ciftleri makina dgrenme algoritmalari vasideibilinen kisim kullanilarak bulun-
abilir. Ancak protein aglarinin cok sayida proteinidigerdigi bir durumda makina dgrenme
algoritmasinin dgrenme siresi olduk¢a uzun olacakir.tez calismasinda etkilesimlerinin
bir kisminin bilindigi bir etkilesim aginin bilinmeydasmini bulmayi deneyler yoluyla gercek-
lestirmeyi amacladik. Makina 6grenme algoritmasrakeDestek Vektor Makinalari (DVM)'ni
ve bir ag icerisinde bilinen protein ciftlerini kullaid Evrimsel agidan iki proteinin bir-
birine yakin olmasi, bu iki proteinin etkilesimleri hakkia iyi bir degerlendirme verecedgi
icin, 6grenici icin gerekli olan dznitelik vektordlarak proteinlerin filogenetik profillerini
kullandik. Buyuk boyuttaki veriler icin Destek Vektor &kinalarinin égrenme sureleri uzun

olacagindan veriyi dogruluk oranlarini koruyarak makiulsekilde kuculttik.

Iki kategorili bir cati altinda veriyi kiicuiltmek amada en sembolik veriyi secmek icin bazi

kiimeleme tekniklerini uyguladik. Verinin iki boyutlu bimatris oldugunu gdz dniinde bu-
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lundurarak, veri kiicultme metotlarini iki boyutta dagujyadik (hem verinin boyutunda hem
Oznitelik vektdrinin boyutunda). K-means tekni@ Kiimelenen veri kiimelerinin tahmin
dogruluklarinda veriyi SVM 6grenmesi icin kiicUltbaska bir kimeleme algoritmasina kiyasla
daha Ustiin sonuclar verdigini gozlemledik. Yine deallgoritma tarafindan da olusturulan
ogrenme verisinin TPR-FPR degerleri, hangi metoduradasiiin oldugu konusunda tatmin
edici sonuglar vermedi. Diger yandan, 6grenme venilarozellik vektdrleri tizerinde biyolo-

jik ya da istatistiksel anlamda en sembolik ozellikler¢isek icin 6zellik segme metotlarini
uyguladik. Evrimsel olarak en dnemli olan organizmalalirtemek icin organizmalarin filo-
genetik agaclarini kullandik. Ayrica, istatistikseti@k en sembolik ozellikleri segcmek igin
Fisher’s test metodunu uyguladi®zellik secme metotlarindan elde edilen dogruluk ve TPR-
FPR degerleri performans kiyaslamasi yapmak konusursla ké ayrim yapmayi saglaya-
madi. Yine de, filogenetik aga¢ metodunun Fisher’s teskijaslandiginda kabul edilebilir

tahmin degerleri verdigi sdylenebilir.

Anahtar Kelimeler: Filogenetik profiller, Destek Vektorakinalari, K-means kiimeleme,

Filogenetik agaclar, Protein etkilesim aglari
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CHAPTER 1

INTRODUCTION

1.1 Problem Definition and Motivation

Protein-protein interaction is an important aspect inayst biology. A systems level under-
standing of the signaling pathways and molecular complexasell provides more accurate
identification of cellular functions of proteins, betterdemstanding of biological and patho-
logical processes, and more confident drug target ideritditaWith the help of a protein-

protein interaction (PPI) network, one can select molecatanpounds which specifically

disrupt certain protein-protein interactions that is tedito the disease pathway.

In recent years, protein-protein interaction datasetsafoincreasing number of organisms
have been made publicly available with the help of highlgigput screening techniques.
Main experimental techniques for discovering proteintg@irointeractions are the yeast two-
hybrid (Y2H) and #inity purification with mass spectrometry (APMS). Howeveis known
that these experimental techniques have high false-pesitid false-negative rates; therefore,
in addition to these experimental techniques, computatitechniques that use additional
biological information such as co-expression, co-loedion, and co-evolution, have been
developed. The main challenge of a genome-wide predictigmatein-protein interactions
is that the protein pairs that do not interact outhumberaateng proteins significantly. For
example, there are 100,000 estimated interactions out ohilln possible in the yeast
organism. For a newly sequenced organism, the challengelistggger that little amount of
additional biological knowledge is available for such agamism. Therefore, it is important

to develop accuracte PPI prediction techniques that ugeipreequence information only.

In this thesis, our goal is to develop a machine learning d&sehnique for prediction of



protein-protein interactions based on co-evolution. @altgion can be inferred from phylo-

genetic profiles which can be derived from protein sequemnicgrnation alone. We generate
phylogenetic profiles as high dimensional feature vectgredmparing each protein of the
organism to proteins of a number of other fully sequencesges. Given the phylogenetic
profiles of all the proteins of an organism, the problem casthted as the classification of all
possible protein pairs as interacting or non-interactifigjs is a binary classification problem.
We learn a discriminative model using Support Vector Maekito distinguish between these

two classes. In that sense, we provide a supervised solatithis problem.

1.2 Related Work

1.2.1 Using Support Vector Machines (SVM) to infer ProteinProtein Interactions

There have been studies which use Support Vector Machindd)® predict protein-protein
interactions. The AC method proposed by Guo et al. [27] usesieighborhood of amino
acids in a protein sequence by means of Auto Covariance whdth@redict the protein-
protein interactions. We used the same data set and the sathedras they used to produce
the training and test sets to evaluate our method. Anotlubntgue proposed by Bock et
al. [26] uses the primary structure of proteins togethehlie physicochemical properties
of a known database of protein interactions as training fiet&VM to make predictions on
protein-protein interactions. They used residue propeidi amino acids such as charge, hy-
drophobicity and surface tension to construct featureorsavhich is an independent knowl-
edge from coevolution which we made use of in our method. &'sealso another method by
Martin et al. [28] which solves the protein-protein intdfao problem by training an SVM
with product descriptions of protein pairs. They encodevdgable length amino acids to
signatures by using their neighbors. All of these studiesthe physical or chemical prop-
erties of proteins while we consider the coevolution knalgke of proteins by using their

phylogenetic profiles.



1.2.2 Using Phylogenetic Profiles to Infer Protein-Proteinnteractions

In the study conducted to express the significance of phyletie profiles for discovering
the functional linkages among proteins by Juan et al. [13 inferred that proteins having
similar phylogenetic profiles are functionally linked assng it is likely that proteins in the
same metabolic pathway or cellular system are co-inhedtathg evolution. The idea of
coevolution using phylogenetic profiles has been used bymesearchers in the prediction
of protein-protein interactions. Pellegrini et al. [24]ndenstrates the value of phylogenetic
profiles of proteins in detecting their functions by simpbngaring the phylogenetic profiles
and counting the numbers of bits changed which is a basic agltulating the similarity
between two profiles. Wu et al. [23] uses the similarity of lplggnetic profiles by applying
a method to relax the restrictions that phylogenetic profikguire by a biological pressure
measure. They useftirent correlation measures between two vectors. Bowells §3
compute the probability of coevolution based on hypergaomdistribution. In other words,
given two phylogenetic profiles they convert it into a prabgbvalue that represents their
confidence on their coevolution. They use this probabilajug in an integrative framework
to derive functional association of proteins. Kim and Suaiam [14] use a mutual in-
formation function based on the Shannon entropy to indittedevel of similarity between
two phylogenetic profiles. Vert [15] developed a tree kewgich provided a better similarity
measure between two phylogenetic profiles. He used thigkerpredict the functional class
of a gene. Sato et al. [17] improve Pearson’s correlatioffictent by proposing partial cor-
relation codicient as a function of similarity between two profiles. Jutaale [18] analyze
the network of profile similarities to account for groups oéeolving proteins and reduce the
noise associated with various factors that make-up a pbyketic profile. Gonzales et al. [22]
include the phenotype knowledge to phylogenetic profilesder to extend the binary strings
to continuous phenotypes and develop scoring functionséotiiem in pairs . All of these
studies focus on providing a similarity measure that besturas the amount of co-evolution
between two proteins. However, in this thesis, instead ioiguan explicit similarity function,
we propose a machine learning approach which learns sucttadn implicitly on a training

dataset.

Apart from defining a similarity function for phylogenetiediiles, there are some studies

which try to refine the organisms selected for phylogenatidiljng. Sun et al. [19, 20] pro-
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pose a phylogenetic approach to select representativaisngs to construct a phylegenetic
profile. They, then, apply existing similarity measures loa teduced phylgenetic profiles.
We adopt their approach in this thesis. However, we do noansexplicit similarity function

as mentioned above, and retain the reduced phylogenefitepras high dimensional vectors.

1.2.3 Reducing Size of Training Data for Support Vector Maclnes

There have been studies to reduce the size of the trainiagsdafor supervised learning with
Support Vector Machines. Cervantes et al. [6] propose thechstering technique to select
representative data points for SVM training. Their apphdadased on the number of support
vectors in the original training set; therefore, reducesrthmber of training data points to a
fixed number. In our approach, we use k-means clustering hichythe user controls the

number of representative data points by varnkng

1.3 Contributions

Our contribution in this thesis are threefold.

1) By employing a machine learning framework we avoid usimgilarity functions to in-

dicate the level of co-evolution between two phylogeneticfifes. Previous studis focus
on developing biologically accurate functions to infer tbeel of co-evolution between two
phylogenetic profiles. However, we retain phylogenetidif@®e as high dimensional vectors
and the Support Vector Machine approach implicitly leardssariminative function between

pairs of phylogenetic profiles.

2) We propose a clustering based technique to reduce theerunfiraining protein pairs.
Compared to a previous technige, our method provides batteiracy when the number of

selected training proteins pairs are equal.

3) We propose a biologically inspired feature selectiommégue which outperforms a widely
adopted statistical feature selection technique. Oumnigcle utilizes domain knowledge and
makes use of the fact the each feature dimension corresporals organism. By using a
phylogenetic tree of feature organisms to denote the oelstips between them, we are able

to select a better representative subset of organisms.
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1.4 Thesis Outline

This thesis is organized as follows. In Chapter 2, we givengeessary background knowl-
edge to understand the problem domain and the solutions @wedpr In Chapter 3, we

describe the datasets we have used and describe the tédwetaits of the methods we pro-
pose. In Chapter 4, we give experimental results which detnate the utility of the proposed

methods. In Chapter 5, we conclude the thesis with a sumnmarjudure directions.



CHAPTER 2

BACKGROUND

2.1 Proteins

Proteins are organic compounds which are constructed froimcaacids and are responsible
for numerous functions in a living cell. In a protein there about 200-300 amino acids which
are arranged in a linear chain and joined by peptide bondsepiige bond is formed when
two molecules react with particular groups of each otherratehseH,0. Proteins function
via their three dimensional structures. The propertiegatigins such as their structures, their
physiochemical properties, locations in the living celtldheir relationships with each other

determine their functions and interactions with each other

2.2  Amino Acid Sequences

The amino acid sequence of a protein is a string composeda ¢dtiers each representing one
of the 20 diferent kinds of amino acids. An amino acid sequence chaiaesethe arrange-
ment of amino acids in a protein and the structure of a pro#ligo, the function of a protein
can be determined by making use of the arrangement of amidosaquences. The func-
tional relationship between two proteins can be observethéking an alignment between
their amino acid sequences. A sequence alignment whicls go@es about the similarity of
two proteins might give a rating about their functional €losss or whether the two proteins

can be homologous or not.

Amino acid sequences can be aligned in pairwise or in maltiphere are some methods for

the alignment of sequenes which are local alignment whdsesmme portions in a sequence
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are used to score and global alignment where the whole seguensed for the alignments.
There are online tools, which are the implementations dabuaralignment methods, available
for amino acid sequence alignments. For pairwise sequdigrergent FASTA! or BLAST 2
[29] can be used. For multiple alignment CLUSTALY31], TCOFFEE* [32] or Muscle®
[33] can be applied.

2.3 Protein-Protein Interaction Networks

Protein interactions are essential for making predictafrianctions of proteins. Protein inter-
actions are observed during signal transduction (i.e.igmts outside the cell are transferred

inside the cell), generating a protein complex or modifyéngrotein.

Protein-protein interaction networks are graphs thatasgmt the interaction involvement of
protein pairs. In a protein interaction network the protedirs that are connected by an edge
are perceived as interacting pairs and rest are the noaatitegy ones. Below is a sample

interaction grapl of yeast organism.

In a protein interaction network, the edges between theepr®imight include weights where
these weights can be the functional correlation betweeprtteins or the level of confidence

assigned to that interaction [7].

There are numerous protein-protein interaction datababkésh provide the protein interac-
tion data of various organisms and are mostly constitutelddmgl-made experiments done by

experts. The three protein interaction databases that nefited from are:

e MIPS (Munich Information Center for Protein Sequences) Mwtian Protein-Protein
Interaction Databas€[36] which includes the physical interactions of proteinattare
determined only by hand made experiments since it is the retiable way to extract

the interaction knowledge.

httpy//www.ebi.ac.ukToolgfasta33index.html
httpy/blast.ncbi.nim.nih.ggBlast.cgi
httpy//www.ebi.ac.uKkToolgclustalwZindex.html
httpy//www.ch.embnet.orgoftwargT Coffee.html
httpy//www.ebi.ac.ukToolgmusclgindex.html
httpy/www.math.cornell.edidurretfRGD/RGD.html

httpy//mips.gsf.dgroj/ppi/
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Figure 2.1: Protein Interaction Network of yeast organism

o DIP 8 [37] (Database of Interacting Proteins) which includesptaein-protein inter-

actions discovered by both hand-made experiments and datignal approaches.

2.4 Phylogenetic Profiles

Phylogenetic profile of a protein is a string constituted bytd 0s that encodes the presence
or absence of homologs of a protein in other organisms. Iistoaction of a phylogenetic
profile of a protein, the homologs of the protein are seareyzinst the other organisms. The
search of homologoues of a protein can be done by aligningateence of that protein with

proteins of others organisms.

The alignments can be done via any sequence alignment tow sbwhich are dictated in
Section 2.2 and each alignment of sequences are scored tooth# the alignment score of
a protein in a protein of another organism is above a preahted cut-¢f value, it means the

protein has a homologue in that organism and the correspondhue in the profile becomes

8 httpy/dip.doe-mbi.ucla.egu



1, otherwise there is no homologue of that protein and theevisl set to O in the string.

| bgu cfa eba sme Ry dpyo ...
YORO70C 0 1 0 0 0 = e
YALOBTC 0 0 0 0 1 0 ..
YDR338C 0 1 1 1 a 1

Figure 2.2: A portion of phylogenetic profiles of 3 proteireddnging to the yeast organism

In this thesis work, the phylogenetic profile data is corgerd by calculating the sequence
alignment score by the help of the BLAST tool. Figure 2.2 isagadportion of phyloge-
netic profiles of 3 proteins of Saccharomyces cerevisiastymganism with homology search

against six other organisms that we used in our experiments.

2.5 Phylogenetic Trees

Phylogenetics is the study of evolutionary relatednessrgmarious groups of organisms
which is discovered through molecular sequencing data.luiga is a branching process
where populations alter by time, separate into brancheylmidize together or exposed to
extinction. This evolution process is used to constructldriee. Evidence from morphologi-
cal, biochemical, and gene sequence data suggests thejatisms on Earth are genetically
related, and the genealogical relationships of livingdkinan be represented by a vast evolu-

tionary tree, the Tree of Lifé which represents the phylogeny of organisms.

In phylogenetic studies, the most suitable way to visualie evolutionary relationships
among a group of organisms is by phylogenetic trees. Figilges2a sample phylogenetic
tree to present its components. In this figur@oae represents a taxonomic unit, i.e an ex-
isting species or an ancestor. They are usually referred tdypothetical Taxonomic Units
(HTUs) since they are not directly observeRoot is the common ancestor of all taxa. A
branch is an evolutionary relationship among taxonomic units. Branch length exhibits
the number of changes that have occurred in the branch. $hatsay it represents the evo-
lutionary distance between taxonomic units. Hence, in dggenetic tree the species are
located at the leaves of the tree. A phylogenetic tree istoaeied by the usage of multi-

ple sequence alignments whose scores represent the emalytidistances. There are three

9 httpy/tolweb.orgtreglearnconceptavhatisphylogeny.html
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Figure 2.3: A sample phylogenetic tree with its components

main methods of constructing phylogenetic trees: Distdased methods such as Neighbour
Joining [12], parsimony based methods such as Maximum Rarsi, and character based

methods such as Maximum Likelihood or Bayesian Inference.

A rooted tree as in Figure 2.3, is a directed tree with a unique nodeesponding to the
most recent common ancestor of all the entities at the leafvdee tree. Anunrooted tree
illustrates the relatedness of the leaf nodes without ngassumptions about common an-
cestry. Unrooted trees can be obtained by omitting the rbatrooted tree. The root of an
unrooted tree can be obtained by various ways. The methamgiruct a phylogenetic tree
emphasized above, may end up with unrooted trees. The atljgc& may not be closely
related to each other in an unrooted tree. To obtain a roadrfarnrooted tree, an outgroup

which is known to be branched before all other nodes in theedam be included to the tree.

2.6 Fisher's Exact Test

Fisher's exacttest is a statistical significance test used in the analyfstategorical data.
The test is usually used to examine the significance of thecadion between two variables

in a two by two contingency table. In a binary decision prahblehe decision made by the
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classifer can be represented in a structure known as a confogtrix or contingency table
[9]. Contingency tables are used to analyze the relatiprizéiween two variables. A sample

contingency table is given in Table 2.1:

Table 2.1: A sample contingency table

B1 | B2 | Totals
Al a b at+b
A2 c d c+d

Totals | a+c | b+d n

The probability of obtaining those values in the table isgkdted according to the following

hypergeometric distribution:

() @+ byic+ dyi(a+ ct)(b + d
( n ) - nlalb!c!d!

a+c

p:
wherenisa+b+c+d.

The p-value gives the exact probability of observing observinig particular arrangement of

the data.
Chi-Square Test

An altenative method for testing a statistical hypothests use the Chi-Square Test. Fisher’s
exact test is applied to data with two by two contingencydablhereas a chi-square test is
used on tables with more rows and columns; i.e it is more Isleitbor the data with larger

number of categories. A chi-square test is not suitableHersituations where the expected

values in any of the cells of the contingency table is below 10

Chi-square tests a null hypothesis that the frequencyilaigion of certain events observed in
a sample is consistent with a particular theoretical distion. A chi-square statistic value is

calculated according to the below formula:

(Gi - E)?

2 _
Xe= F=1 Ei

whereX? is the test statistic valu€); is the observed frequency of tifé category and; is

the theoretical frequency of th& category.
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When analyzing contingency tables with two rows and tworcwis, either Fisher’s exact test
or the chi-square test could be chosen. The Fisher’s tes¢ibdst choice as it always gives
the exact P value. The chi-square test is simpler to cakllat yields only an approximate
P value. If the numbers in the contingency table are verylsthal chi-square test should be
avoided. When the numbers are larger, the P values repoytdtelrhi-square and Fisher’s

test will be very similar.

In our case the data includes two kinds of categories andalhey in the contingency tables
were more suitable for using Fisher's exact test. Thus, wéemed to use Fisher’s exact test

in feature vector selection which is described in detail ater 3.

2.7 Data Classification

Data classification is the problem of detecting which clask&@ point belongs to when a
set of points are given as belonging to a class. Data cleat#ificis an essential component
in the scope of this thesis work. We fliered to apply Support Vector Machines as a data
classification algorithm in machine learning context whtieedomain of data is given to the
learner explicitly. Then we compared the results of Supyector Machine with another ma-
chine learning algorithm, Bayesian learning, where thec#ddn of feature vectors to a scalar

causes some data loss, because the data can not be fed tyé&steBdearner completely.

2.7.1 Support Vector Machines

Support vector machines (SVMs) are a set of related supehl&arning methods used for
classification and regression. In SVMs the data points gieesented ap—dimensional
vectors where each data point belongs to one class. SVM rhapegut vectors into a high
dimensional feature space by means of some non-linear m@gfyoction [5]. The trick is to
find thep— 1 dimensional hyperplane which seperates the data poitligwaximum margin.
Meaning that, the hyperplane which maximizes the distaratevden the nearest point to
the hyperplane is chosen as thaximum-margin hyperplane. In the data classification

problem dictated in this thesis work, we have 2 classes teragp
We have a set of poinS with two classes of data. The dot product between two veeaterse-
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quired for the linear classifiers where the data set is bilzdiglled.S = {(x;, ¢)|xeRP, cie{—1, 1}}{‘=1
wherec; represents which class the data belongs to, i.e. whethar -1. Eachx; is a p—-
dimensional vector. The maximum margin hyperplane we askimhg for is represented as

the set of pointx satisfying:

w-X-b=0 (2.2)

So the equations can be rewrittencgsv- x; — b) > 1, where 1< i < n.
wherew andb should be chosen to minimiziev|.

X,

Figure 2.4: Maximum margin hyperplane with two classes[8]

The data on the margins in Figure 2.4 are calledsiingport vectors The distance to maxi-

mize on the hyperplane is represented as a quadratic prgblem

wh= 2= 2
PR =W T Vww

(2.2)

The transformation of the input vectors ndimensions intop dimensions is done via p

dimensional functionpR" — RP ¢(x;) = ¢1(X), #20%i, -... dp(X)

It is shown in Cortes et al. [5] that the vectarcan be written by the linear combination of

training vectors as:

I
w= ) vie'x (23)
i=1
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wherex; are the support vectors aggdis the label of theé™" feature vector(either 1 or -1).

To classify an unknown vector, the vector is transformed into the feature space and theen th

sign of the below function is taken:

|
) =w-9(x) + b= yieig(X) - $(x) + b (2.4)
i=1

The mapping of points into a Hilbert space (a vector spacsedainder dot products) is
achieved by the kernel functions which matches the poimspaitheir dot products in Hilber
space. A kernel function must be continuous, symmetric, e a positive definite gram
matrixC. If the classifier is linear then the kernel functionsié, x;) = x x;. Otherwise the

points are transformed to a higher dimensional spacé by — ¢(x) and the kernel function

is K(X, Xj) = ¢(x)Tp(Xj).

The basic four types of kernels functions are as follows [§VM

linear: K(x;, Xj) = X' x;

polynomial: K(x;, Xj) = (yx"x; + )%,y >0

radial basis function (RBFK (X, Xj) = exp(=ylIx — x,-||2),y >0

sigmoid: K(x;, xj) = tanh(yx' xj +r).

2.7.1.1 Grid Search in SVMs

In SVM, C andy parameters controls the tradé-between training error and generalization
ability [25]. In the RBF kernel, it is ciritical to choose tli& andy parameters of SVM to
extract the optimum model. A good selection @fand y pair leads to a good prediction
performance. Once th€ parameter is selected high, the margin becomes softer and th
number of support vectors increase which may cause oviegfitff the data. It is better to

choose a small parameter as much as possible.

Cross-validation technique is made use for making expetisne order to select best param-
eter values in RBF kernel. Ia#fold cross-validation, the data set is seperated inparts

equally where one part is used for testing and thewesl parts are used for training. After

10 httpy/nlp.stanford.ediiR-bookhtml/htmleditionfnonlinear-svms-1.html
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the data is seperated, the training and prediction prosesseapplied fov times on the data
in order to be sure that all/% portion of the data is included in the test set. The aim-dbld

cross validation is to prevent the learner from overfitting.

The C,y) pairs are tried on the data set and afterhefold cross validation experiments
done, the one with the best accuracy on avarage of theoeriments is picked. The search
is done with exponentially growing values. The start and poitits with the step number
for incrementing the values are the inputs that are givehdatid search tool. For instance,
below call for the grid script included in the libsvm-284ackage, which is a commonly
used SVM package, tries the pairwise combination€ @nd+y values forstart andend
values of -1 and 2 respectively f@ parameter with 1 as the inceremental step (the number
to increment to reach thend from start). Likewise it uses thatart andend values of 1

and 5 fory parameter with 2 as the incremental step.

python grid.py -log2c -1,2,1 -log2g 1,5,2 dataset

2.8 K-means Clustering

K-means is a well-known data mining and unsupervised lagraigorithm to classify or
to group objects based on attribyteatures intok number of group wher& is a positive
integer. The grouping is done by minimizing the sum of sgsiafedistances between data
and the corresponding cluster centroid. Thus the purpokex@ans clustering is to classify

the data.

K-means clusters objects intok clusters wheré < nin p dimensional vectorial space. The
aim in this algorithm is to minimize the intra-cluster distas, i.e minimize the squared error
function given by:

V= Z:(:]_ ZXJESi (X] _ﬂi)z
wherex; is a chosen point iy, cluster andy; is the cluster center point of thgcluster

The algorithm works as follows:

e Begin with a decision on the value ofknumber of clusters

11 httpy/www.csie.ntu.edu.tyjlin/libsviry
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e k cluster center points are randomly assigned among thea pointsj, uo, ..., ux

e Until there are no changes in the cluster centers, i.e noggsim the assignment of

data points

— The data points are assigned to the cluster whose centritid igearest.

— Update the centroid of each cluster. The centroid of a dlustie average of all

points in that cluster, i.e the arithmetic mean of all diniens

Sometimes it can happen that the data set which is closestltster centey; is empty. It

is ensured that no cluster pairs have common elements imlgusithm. Also, the number
of clusters,k in the algorithm, &ects the results of the clustering so it should be carefully
chosen. The optimal number of clusters for a data set canendétermined beforehand. One
way is to run the algorithm for a number of times foffdrentk values and choose the one

which gives best results.

2.9 ROC (Receiver Operating Characteristic) Curves

For the performance of the methods that we experimenteceindhtext of this thesis work,
we plotted the ROC Curves to interpret the results of the exymmts. A ROC curve, is a
graphical plot of the sensitivity (True Positive Rate (TIPR). 1 - specificity (False Positive

Rate (FPR)) for a binary classifier system as its discrinonahreshold is varied.

Actual Pos.| Actual Neg.

Predicted Pos TP FP

Predicted Neg FN TN

According to the parameters in a confusion matrix of a clegsithe definitions of metrics

used in ROC curves are:

TP FP
TPR= o e FPR= Fpr TN

A prediction with perfect seperation of data has a ROC plat prasses through the upper left
corner (100% sensitivity, 100% specificity) as in Figure. ZI'herefore, the closer the ROC
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plot is to the upper left corner, the higher the accuracy eftdst. The ROC curve in Figure

2.5 can be a sample for the output of a method with rather highracy performance due to
its tendency to upper left corner in the graph.

Sensitivity

1 - Specificity

Figure 2.5: A sample ROC curve
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CHAPTER 3

MATERIALS AND METHODS

3.1 Data Sets

Below we present the data sources and tools that we used surmeghie performance of the

data reduction methods which we applied on the data sets.

3.1.1 Phylogenetic Profiles

The phylogenetic profiles of proteins of Saccharomycesvigae (yeast) organism was con-
structed via the BLAST tool as described in Chapter 2 overatg@nisms. The phylogenetic
profile information of a protein is used as the feature veb&longing to that protein.The
value "1” was assigned to the corresponding index in the lprdfthe e-value returned from
the BLAST tool is below 0.001, otherwise "0” is given, so tleafure vectors are composed
of binary values. The shortened names of organisms useadhgtraation of the phylogenetic

profiles are listed in Appendix A.1.

3.1.2 Phylogenetic Tree Data

For feature vector selection, we used the phylogeneticda¢s available in the Kyoto Ency-
clopedia of Genes and Genomes (KEG@jtabase since the phylogenetic tree data in KEGG
source includes all of the 450 organisms which were emplégegnerate the phylogenetic
profiles. The phylogenetic tree in the KEGG database was tist atdlequate one among the

other sources since it includes the most comprehensiveodaaacount of comprising all the

1 httpy/www.genome.jtkegg
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organisms that we used.

In KEGG database, the computer representation of variciassdarces are available together
with some tools that provide making search on the data ssuncaking analysis and drawing
structures. The phylogenetic tree data provided in the KEa@base is not in a format
that can be easily parsed (i.e. any structure to make thaatixin of the tree simpler is not
available), we directly used the taxonomy file in the ftp sitevided. This file includes
the categorization of organisms at each depth of the treehadnie represented by the lines
starting by a '# character. As usual, the organisms takeepd the leaves with lines starting
with the PIR-PSD (International Protein Sequence Datjbase PIR-PSD is the database

including the classified and functionally annotated prossquences.

250 organisms selected by the phylogenetic tree methoagpresented in Appendix A.1.1.

3.1.3 Protein-protein Interaction Data

We used the same protein-protein interaction data as in ©¢2&] method to make a fair
comparison of our method with the AC method. Furthermore pgied the same procedure
on the data set, to separate the data as training and tesais@isAC method to carry out the
experiments. Additionally we conducted the experimentafsecond data set which includes
a protein-protein interaction network with a larger numbginteracting and noninteracting

pairs of proteins.

3.1.3.1 First PPI Data

In AC method, Database of Interacting Proteins (DIP) wasl usecollect the PPI data of
Saccharomyces cerevisiae organism for experiments. Tdwgrgted the positive data set by
getting rid of the proteins composed of less than 50 amindsaghich resulted in 5943 pro-
teins. Since the PPI network data in our experiments aretreaed using the phylogenetic
profiles of each protein, we made an extraction of each prdétein the phylogenetic profiles
in our hand. However the phylogenetic profiles data doesnuitide the complete data set,

that is to say not all of the proteins collected from DIP hadwephylogenetic profile informa-

2 ftp://ftp.genome.jfpulykegggenegaxonomy
3 httpy/pir.georgetown.edpirmww/dbinfo/pir_psd.shtml
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tion. Therefore the protein pairs including proteins withphylogenetic profile information
are also eliminated from the data used in the experimentaseoAC method. At last 5825

protein pairs left for the positive data set.

The interacting protein pairs can be obtained from sevenalces having various reliability
measures, however the noninteracting pairs are not readditable. In AC method, the
noninteracting pairs are obtained by 3feient ways and the performance of their methods
by executing the experiments with entire of the negative sebbserved. The methods to

generate the non interacting proteins data set are:

e Randomly pairing proteins from the positive data set. (Th&adyenerated by this

method is named Prcp.)

e Pairing proteins occurring in fierent subcellular localization information. (It is as-
sumed that the proteins that take place ifiadent localizations in the cell do not in-
teract [27]. The subcellular localization information wagen from the SwissProt

database. The data generated by localization informagioarned Psub.)

e Shufling the protein sequences in the positive set. (When theipreequences of two
interacting proteins are shled it is be assumed that the two proteins do not interact

with each other.)

At the beginning we included all the negative data sets tadhe training data set and applied
random data selection method on them. We observed thattekeePsub data the prediction

results of SVM with the training data including the other tnegative data sets were rather
inconsistent such that although the data size got lineartyet, the results were severely with
ups and downs. On the other hand, the training data inclutieésub negative data set gave
reasonable results as we expected such that the predictarazies got linearly larger as the
data grew in the same form. That is why we chose to use the Rg#tive data by excluding

the Prcp and the one generated byfBing as the negative set.

In the AC method, the sizes of positive and negative dataaetkept the same. There-
fore they produced 5943 protein pairs that do not interact.imthe positive set case, we

searched for the phylogenetic profiles of the proteins inniagative set. Again there were

4 httpy/www.expasy.orsprof
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some proteins in the negative set that do not have the phyébigeprofile information in the
phylogenetic profiles that we produced. After we eliminateel ones whose profiles were

absent, 5871 protein pairs for the negative set are left.

In our experiments the sizes of positive and negative set@rexactly the same as they were
in AC method but the diierence is so ignorable that it would ndfext the prediction results

of SVM.

3.1.3.2 Second PPI Data

A second data set is generated to test the methods in a laatgeset and observe how the
results will difer in a larger interval of data set sizes. The positive pairsécond data set
is constructed by making use of the interactions in the Ditaldese and the negative pairs
are obtained from the MIPS database by randomly selectiaqélgative pairs at fierent
subcellular localizations. This time the sizes of positwel negative data are not the same,
instead the size of negative set is four times larger tharptisitive data. There are 17514
positive and 71231 negative pairs were in the original datasfter the extraction of the
phylogenetic profiles of proteins in each set and discarttiegproteins whose profiles are

absent we have 16987 positive and 67849 negative protais ipghe second set of data.

3.1.4 Training and Test Data

We repeated the construction of the training and test seepses as done in the AC method.
The final set for the first data set includes 11814 proteinspaid for the second data set
88745 protein pairs in total. The training set is for SVM tearis constructed from the three
fifth of the whole data set. The remaining two fifth of the whelt comprises the test set.
This operation is applied on the complete data set for fivegiand the separation of the data
set is conducted randomly. Therefore a five-fold cross aéibd is used to investigate the
training set [27] by applying the methods for each of the famgles. This process is pointed

out at the top of the flow in the Figure 3.7

The aim of sampling the training set for five times is to prdévbat the results produced from
any method are particular to the characteristic of theitngiget it tested. By using 5fiierent

training and test sets we observe the results of the metloydhé data inputs exhibiting
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different characteristics. Also the sampling of the data semsyato observe whether the
results of the methods exhibit the same characteristiclfeaaples. Therefore it would be
proven that the methods produce deterministic and realonedults. At last, the average of

the five prediction results are calculated to represent ém@pnance of the method.

The experiments aimed to compare the clustering methodexgerimented on a data set
whose training and testing subsets exhibit the same bmdbdpehaviour. By this way the
changing in performance of each method would be observea e data size is incre-
mented linearly. For each sample in the first data set, tiwrigadata portion is sampled for
10, 20, ... 100% of the complete training set whereas thedizle test sets are kept the
same. The sampling of the data, i.e. the data reductionndumed by three methods which
are described in detail in Section 3.4. For the second datasisee the memory and hard
disk were instficient for sampling not all of the 10 samples for each expeninoeuld be

produced.

3.2 Learning and Making Prediction on Protein-Protein Interactions

A stated earlier, the protein-protein interaction pradiciprocess is conducted by means of
an already constructed interaction network where the dotwoary knowledge of proteins
are considered. SVM algorithm is selected for the aim ofrlieay the known subset of the
protein interaction network in order to make use of the chdiamary data as a whole, i.e.
avoiding to data loss. Because SVM is a method which provadesay to preserve the spe-
cialities of the data set. In the following subsections wespnt how we made use of SVM
and its parameters in our experiments. RBF kernel is chasesome reasons one of which
is it maps the data into a higher dimensional space, so ulitikar kernel it can predict the
class labels well when the relation between the class laralsattributes are nonlinear [4].
Linear kernel is a special case in RBF kernel since as statdebrthi and Lin [16] linear
kernel with a penalty paramet€r can achieve the same performance with RBF kernel with
someC,y. Also sigmoid kernel also can give reach the same resultobye gparameters.
There are various kernel functions supplied, even the fomstcan be developed and fed by
the user in SVM. In our experiments we chose to use RBF keimeé st mostly adapts the
properties of our data. Problem of predicting protein-girotinteractions fits cleanly into a

binary classification framework where SVMs discover whethgiven pair of proteins inter-
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act or not. The essential question is how to represent theiprpairs [8]. The phylogenetic
profiles constitutes the feature vector supplied to SVM amcksthe interaction network does
not include any edge weight, the labels of the data are hiffdry feature vector construction

will be mentioned in Section 3.3.

3.2.1 Parameter Selection in SVM

When running SVM, th&C andy parameters are significant to choose sindiedint values
may dfect the prediction accuracy values. That is why, it is essletat choose the€C andy

parameters which yields the optimum resulting values. T @peration of libsvm is run
for the concatenated and "exclusive or’ed profiles of the data sets in order to reach t@e

andy parameters that gives the most accurate predictions.

3.3 Integration of Pylogenetic Profiles for Feature Vector @nstruction

We applied two methods to integrate two phylogenetic prefite the aim of constructing
the feature vectors which are concatenating the profilesapptying exclusive or operation
on the profiles. The integration of phylogenetic profilesinaBigure 3.1, is achieved by first
extracting the phylogenetic profiles of proteins indivitipavhich are represented by their
ORF names, then applying concatenation or exclusive oratipas on the profile pairs both

for positive and negative interactions.
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Phylogenetic profiles
Protein pairs of proteins

YGRI7OW 0100 ...
YLROTIW 0001...

YCRO84C — YBR112C
YKROS9W - YDL106C

Feature Vector Construction method
(concatenation, bitwise xar)

Dala set

Figure 3.1: Construction of data sets by integrating phstagic profiles

3.3.1 Concatenation of Profiles

The phylogenetic profiles are concatenated by directlyragthe two profiles one after the
other. So in the concatenation of profiles method, the leofth feature vector becomes
2*number of organisms, i.e. 900 in our case. Therefore thefsgganisms are repeated after
the 450" index. This method is aimed to keep the values in the two gjeyletic profiles
without losing any information in the feature set. Thougé thnning time of training with
concatenated feature vectors is rather long, its predi@tzuracy performance is superior to

taking exclusive or (xor) of two profiles method which is désed below.

3.3.1.1 SVM Parameters for Concatenated Profiles

A grid search tool which is provided by the libsvm-2.84 paykds employed to obtain the

optimumC andvy values which are used in the training phase of SVM. Below &guare the
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contours generated by the grid.py for each of the training danerated from the first data set
for the five experiments The center of the innermost framegjitie corresponding parameter

values:

alldataled.dat 79.5

lgdgammal

1gecy

Figure 3.2:C andy parameters for concatenated profiles of first experiment
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Figure 3.3:C andy parameters for concatenated profiles of two experiment
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Figure 3.4.C andy parameters for concatenated profiles of third experiment
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Figure 3.5:C andy parameters for concatenated profiles of fourth experiment
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Figure 3.6:C andy parameters for concatenated profiles of fifth experiment
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TheC andy values can be obtained from center of the innermost framtgeinontours, still
grid search tool provides the exact values in a source file tHeofirst four experiments we
obtained the same values which &e 64 andy = 0.015625 and for the last experiment the

C parameter took the value 16 and thetayed the same.

3.3.2 Applying Bitwise Exclusive Or (Xor) Operation on Profies

In bitwise xor operation method, the two profile values in faene index are xor'ed with
each other. Bitwise xor operation which gives 0 for the sanpaiti values (both 1 or both
0) and 1 to diferent input values, is a way to yield theffdrence of two profiles to SVM.
Hence the phylogenetic profile values possessing the salnesvaill acquire the value 0 in
the resulting profile and the ftierent ones will result in 1 which means the profile elements
having 1 and the ones having 0 as value will be treated the satine resulting feature vector.
The outcome vector after xor operation has the same lengfthting two profiles which is 450

in our case. The xor operation between two bits is repreders@s b = (a-b) + (- b) where

- and+ areand andor operations respectively a@andb are the inverses of a and b.

The training data constructed by the bitwise xor of the pesfitould provide information
about the resemblance of the two profiles, however since éighivof a feature vector mem-
ber constructed from two 1’s or two 0’s will be the same for SMNere might be some data

loss in the resulting feature vector.

3.3.2.1 SVM Parameters for Exclusive Or’ed Profiles

The parameter values for the first training data set cortstriuisy making xor operation be-
tween the two feature vectors of paired proteins obtainedrgpresented in the following

table.

The C andvy values for all the samples of the second data set are takeh asd30.015625
respectively since it takes too much time for the cross stilith process to end. These two

values were also used as the optimal values in the expesntentucted in the AC method.
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Table 3.1:C andy values for xor’ed profiles

C Y
1% [ 32 0.015625
2 | 8 0.015625
3d | 8 0.015625
4h | 64 0.015625
5th | 64 0.015625

3.4 Data Size Reduction

To reduce the training time of SVM while preserving the pecidn accuracies for the in-
teractions, two data clustering methods and a random s®latiodel are experimented and
compared. K-means clustering is one of the well-known ambkst clustering methods in
literature for obtaining a certain number of clusters in tadaet. On the other hand another
data clustering method, named as Minimum Enclosing Balsteling is developed with some

modifications for reducing the data by selecting the mostiaant subset for SVM training.

3.4.1 Random Data Selection

Random selection is applied as a baseline method to deratagtie significance of the other
clustering methods on the data in terms of accuracy. It ieebga that the accuracy perfor-
mance with the data set which is randomly selected, prodwoese results compared to the
other methods. We sample the training data sets of each &f#eheamples for the size of the

10,20..100% over the whole training set each of which arainétl randomly.

3.4.2 Data Selection by K-means clustering

There might be some elements in the data that are more repagge than the ones in the rest
of the data in that they can exhibit the characteristics efvthole data better than the others
or some elements can have the approximate significance wateems of their representa-
tiveness. In that case the elements have no benefit to be atddte training data, instead
adding the data which characterize the data no better tleanthers, increases the training
time. On the other hand some elements that mischaractegzagata set can exist. Discarding

the noisy data if there are any, is a considerable factorrfbaecing the accuracy.
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K-means clustering technique is applied on the training datgather more representative
elements from the data set. The experiments are done bynpitke data closest to the
centroids of the clusters to generate the training set slatzein the centroid is the one having
minimum distance to the other elements in the cluster anthgahe most representative
value among others. In k-means algorithm the distance lestw®o points are calculated
with Euclidean distance metric. The number of clusters (thberk in the algorithm) is

selected as the number of data desired to be generated,genévate the subsets with 10-

100% of the whole sek is picked as the data size for that run.

In the experiments for the first data set, the number of pesénd negative data are desired
to be kept equal to be consistent with the AC [27] method. Ehahy the k-means clustering
method is applied on the positive and negative data separtiten the centroid points from

the two sets are associated to construct the training data se

3.4.3 Data Selection by Minimum Enclosing Ball Clustering

A novel approach for the reduction of data size is developddEB clustering algorithm. We

then make a small modification in the algorithm and companegult to the other techniques.

3.4.3.1 MEB Clustering Algorithm

The data size reduction algorithm proposed by [27] finds thallest ball in a data set which
includes all the points and uses the core sets idea [10, bEjterate clusters in the data. Then
using Sequential Minimal Optimization(SMO) idea that tlmgposed, they add the support

vectors which are cluster centers also.

Below are some of the definitions used in the MEB clusteriggi@hm as stated in [6] :

B(c, r) is the ball with centec and radiug.

The MEB of the set of point§ = x, ..., Xm is the smalest ball that contains all the data in S
that is denoted aBIEB(S).

An approximation is applied since it isficult to calculateMEB(S) accurately. (1+ &)-
approximation oMEB(S) is the ball denoted aB(c, (1 + £)r), e > 0 withr > ryeg(s) where

S c B((1+ ¢g)c,r).

To approximateMEB(S) with (1 + ¢) factor, k balls By, By, ..., Bk are obtained wher& c
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B;UByU... U By
They make a guess about the number of clusters using the rswgiotor number of the set.
They propose that the optimal number of clusteris&a%sv. The steps of the MEB algorithm

are as follows:

e First of first, they pick thd ball centersC = cy, Cy, ..., ¢ randomly and they use the

same radius for all of the balls by a method that they proposed in theirgoap

e Calculate the Euclidean distance of each data point to thieicef the ball they belong
to. (%) = |IX — cl|> wherek = 1,2, ..., | and select the point with maximum distance

any cluster. If this point is not inside any cluster, thentoare with fourth step.
e Increase the radius of balls Bys = & +  until all the data is included in the balls

e Clustering is done witB = (¢, (1 + &)r)

After the first clustering step is ended the data set is segghmatol partitions. Then a binary
SVM classification follows to extract the support vectorsha data set. At this step the data
reduction process starts. After the SVM classification,ttadl points are assigned a label.
When the labels of data in a clusteftdrs, then only the center of the ball is included and
the rest of the cluster is ignored. If all the elements in &telupossess the same label, all
the elements in that cluster are included. So the new dats getnerated by* U C~ U

wm WhereC* andC~ are the centers of the clusters with all the elements havirgd —
labels respectively and, represents the elements in the clusters with mixed labedxt &l
declustering is applied by including the data points whighalso cluster centers. This step
raises the data size but enhances the accuracy of SVM. Ad Bstond stage SVM is applied

on the final training set.

3.4.3.2 Modified Minimum Enclosing Ball Clustering

Due to some uncertainties in the description of generatiobatls in the MEB clustering
algorithm, we made some changes in first stage of the algoritinstead of separating the
data by partitioning by balls, we applied k-means clusteon the data. We used the same
number of clusters as in the MEB algorithm, i%v and we applied the rest of the algorithm

as itis. So the steps that we performed are:
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Separate the data by k-means clustering \k{ith:%sv.

Apply SVM on the data set to assign labels to each element.

Include the the whole data in the clusters with elementsngasame labels and only

the elements in centroids of the clusters with mixed labels.

Include the support vectors which are also cluster cergroid

Apply the second stage SVM to the reduced data.

The Modified Ball Clustering method is applied on the whokring data set instead of
clustering the positive and negative sets separately &g ik-ineans case because it i§idult
to infer the number of data the MEB algorithm will return evean initial number of clusters

is given approximately at the beginning of the method.

3.5 Feature Selection

The data reduction is also applied on the feature vectorlsjizpicking the feature vector
elements wisely to preserve the same accuracies with therimgnts done by the complete
feature vectors. We experimented three data reductionadetivhere a random feature se-

lection is tested to monitor thefierences of other methods in performance.

3.5.1 Random Feature Selection

As in the case with random data selection, random featueetsah is applied on each feature
vector to observe thefectiveness of the other feature selection methods in tefiascoracy.

In feature selection using phylogenetic trees, approxaipa@s0 feature vectors were left after
the selection process. The same number of features withatitom selection were picked

among 450 organisms for a fair comparison of the methods.

3.5.2 Clustering Organisms by Phylogenetic Trees

The phylogenetic tree that we used to make a clustering arth@ngrganisms was composed

of four levels. We cut the tree from a designated level anceuredch node in the cut level
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there is a grouping of organisms which lay in the leaves. Vdkgul the organisms from
each group which have smallest distance to the other omgariisthat group. The organisms
that we selected are the most representative ones of thie ergianisms set genetically. We
experimented to cut the tree from each level and we obtaimedibst optimum results from

the third level. Table 3.2 represents the number of orgasigemerated for each cut level.

Table 3.2: The number of organisms for each cut level

cut level | Num. of organismg
1 60
2 85
3* 250
4 438

In first and second levels most of the organisms are eliminatdch causes some data loss,
while in the fourth level only a very small portion of the onijgms are eliminated which
causes the feature vector not to be decreased in siieisntly. After the most significant
elements under third level are accumulated together to ftherfeature vector, the feature

vector length becomes 250 which is an adequate decreasin si

3.5.3 Fisher’s Exact Test

We used Fisher’s exact test to assign p-values to each ok#taré vector elements. The
p-values of a feature vector element gives a measure abauihlecelement (i.e. the organism
corresponding to that element) classifies the data. We sgt-tlalues of the features in order
and pick the first 250 to construct the feature vectors whiging the length of the feature
vectors same with the random selection and phylogenete digstering methods. As an
example below are the contingency tables and the p-valuésmfeature vector elements

which are the 100 and 308" organisms respectively .

As seen in the tables, the p-value of 808lement is fairly larger than the p-value of D0

element, therefore, 180organism is excluded from the feature vectors.

250 organisms obtained after feature selection by Fisleslscan be viewed in Appendix

A.1.2.
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Table 3.3: Contingency tables for the 308nd 108" elements respectively

Label | Avail. Unavalil. Label | Avail. Unavalil.
1 1130 4695 1 39 5768
0 1835 4038 0 39 5834
p-value=0.0902 p-value=6.1844E-50

3.6 Experimental Work

3.6.1 Data Size Reduction

The sequence of experiments for data size reduction teebsigre combined together in the
Figure 3.7. After the data set construction phase which wasribed in Figure 3.1, the whole
data set is separated into 2 parts to compose the traininggatidg partitions. The training

part is generated by randomly selecting the 60% of the wredlared rest of the data, 40% of
the whole set constitutes the testing part. This operaforpeated for five times to obtain 5

different training-testing sets.

For each training-testing sample, we applied the same iexpetal procedures. The train-
ing data is sampled into sets withffdirent sizes (10,20,30,...,100% for the first PPl and
10,50,100% for the second PPI data) using the two of the @ahaction techniques which
are random sampling and data selection by k-means clugteFiar modified MEB cluster-
ing, the sampling is conducted for once since the data siee thie reduction process can be
predetermined. SVM models for each training sample in egghing set are generated by
training SVM. At last, the same test set is used to make piied& using these models to see
the incremental changes in the prediction values fietint sized training sets. The accu-
racy, true positive rates (TPR) and false positive rate®R{FéPe calculated for each prediction

result.
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Figure 3.7: The flowchart to represent the sequence of methyggalied in the experiments for

data size reduction

3.6.2 Feature Selection

We applied the feature selection methods only on the trgisamples generated by the k-
means clustering. The same experimental procedures adected on every training-testing

sample as in the data sampling case. The flow diagram forréea@lection is represented in
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Figure 3.8 forn™ the training-testing sample whene= 1,2, ..,5. The feature vector sizes
in each data sample are reduced by performing three feaglgetion methods, i.e random
selection, selection by phylogenetic tree and selectiofribgher’s test, thus threeftérent
training sample sets are generated. The feature selest@dsoi carried out on the test set since
the training and testing sets must have the same featurdcsioake a proper prediction.
Although the feature vector sizes are the same for eachirtgggample after each feature
selection method (250 for each which is described in Chapt¢o select the same organisms
for the training-testing samples, the test set is sampleddoh method. After we obtain the
models for each training data, the prediction is done foctreesponding SVM model. Once

again the accuracy, TPR and FPR values are calculated fopeadiction result.
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CHAPTER 4

RESULTS

In this section we present the two data sets used in the expets then pointed out the
experimental results of our methods together with our contsiand explanations on the

results.

4.1 Data Size Reduction Results

For the first data set the data samples for the 10,20,..10@8¢€ @fhole training set are used for
training to compare the results of random sampling and kasiekustering methods. To make
the comparison between the performance of k-means and ewdfEB clustering methods
modified MEB clustering is run for once for the whole data sstduse the size of the training
set comprised by the ball clustering method can not be pusiyaletermined. Then k-means
is run once more for comparing the prediction accuracies-ofelans and modified MEB
clustering methods with same number of data. Kiparameter in k-means is picked as the
size of the data which is the output from the modified MEB @tisg method. The prediction
accuracies and the ROC curves indicate that the data simetied with k-means clustering
method exhibits higher performance than random selectimhraodified MEB clustering
methods. The modified MEB clustering technique is applielg on the complete training
data sets, i.e. the 100% of the training sets are sampledfon®£EB clustering since size
of the data generated by MEB clustering is not known befoeesttperiment even if we give
the number of clusters to generate in the algorithm. In tlersé stage of modified MEB
clustering, we observed that very few data was added to ttzesd#d generated by the first
stage. That is to say there are a few number support vecttus inaining sets which are also

cluster centers.
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Since the training and testing data belong to the same da&ctally, they represent the
same characteristic of data. Therefore, while there arsiderably large intervals among the

data sizes, the prediction accuracies do not exhibit a quiteh diference.

The points in the ROC curves are obtained by finding the TPRAFRRues of each data sample
which are 10-100% of the training data. As the data size grdkes TPR also increases
whereas the FPR decreases. In the graphs the data sizesaflessfor the rightmost points

and largest for the leftmost values.

The samplings for feature selection methods are done ogegatimples obtained by k-means

clustering by selecting 250 of the profiles.

The results of the second PPi data are given by tables insfegihphics. There are some
empty cells in the tables representing the results for thergkdata set. The empty cells are
because of the samples of the second data set which are whicptbdue to the memory or
space insfficiencies. The second PPI data can not be sampled for all thergage values
used in the first PPI because of some lack of space. Theré®random sampling is done for
10, 50% of the training data. On the other hand, 50% of the fdatsampling with k-means
clustering could not be obtained due to the lack of memory wadsettled for sampling
10% of the training data in k-means clustering. Note thatabee of this memory issue,
the modified MEB clustering samples are taken over the 50%eofraining data which we
obtained randomly. Due to the indigiency in memory for the experiments done by the
second PPl data, the comparison between k-means and madEBalustering methods are
done on the data samples constructed by randomly seled@®#tgob the whole training data.
Therefore the values for the comparison between the twderlng methods in the tables,

belong to the experiments applied on the 50% of the trainétg, s

4.1.1 First PPl Data

4.1.1.1 Xor'ed Profiles

The average of accuracy results for the five samples of thalfita set which are constructed
by applying xor operation on the profiles are as in Figure 4.1

It is rather clear that the average of the accuracies for Heeefkperiments of samples con-
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Figure 4.1: Accuracy results for the first PPI data consgedidty xor operation

structed by k-means clustering have higher values tharetihgles randomly generated. The
size of the data generated from modified MEB clustering is 67%e whole training set size.
Therefore, in order to make a fair comparison a k-meansegiugt is also applied to make a
sample of 77% of the training sets. It is seen in Figure 4.itti@maccuracies of k-means and
modified MEB clustering are very close to each other. Howewnet-means clustering there
are some empty clusters generated which causes the data beesmaller than the number
of clusters, i.e. thé& value. Therefore the accuracy values calculated for eatzhgilze are
actually belong to data samples with smaller data sizes.irstance 77% of the training
data includes 5424 elements, but when k-means is run for 8dggers, the resulting data set

includes 4984 elements which corresponds to 71% of thanmiet.

It is difficult to compare k-means clustering with modified MEB clustgwith exactly the
same sizes of data. Assuming that k-means gives at leasathe gccuracy with modified
MEB clustering, we can conclude that, when run with exadig/$ame number of elements,

k-means can give a higher accuracy than modified MEB clungjeriethod.

Below is the figure for the ROC curves of the data samples gé&ebiby applying xor oper-
ation on the profiles for the three sampling method. Accardinboth TPR and FPR values,
the training data sampled by k-means clustering exhibittebperformance, i.e higher TPR

and lower FPR. In comparison between the k-means and modlifiiets! clustering for sam-
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pling 77% of the whole training data, k-means results in &ighPR values whereas MEB
clustering has lower FPR values. So it is not definitely olesgrvhich clustering method has

better performance in TPR-FPR comparison.

sensitivity

Randon —+—
K-neans —#—
HEB Clustering #

0.64 L L L L L
8,24 8,26 8.28 8.3 a.32 8.34 8.36

1-specificity

Figure 4.2: ROC curves for the first PPl data constructed Ibyrgp

4.1.1.2 Concatenated Profiles

The average of accuracy results for the five samples of thialfita set which are constructed

by concatenating the profiles are as in Figure 4.3.

The accuracy values of k-means clustering is superior twasampling for each data sam-
ple as in the xor'ed case. Furthermore the performance oé&nm exceeds modified MEB
clustering for the data size which is 73% of the training ge&dain k-means is run for thk
value corresponding to 73% of the data which is 5123 cluskertsdue to the empty clusters
generated, 4920 elements are left from the k-means runitenaismaller training data size,

k-means algorithm achieved a higher performance than reddiEB in accuracy.

The ROC curves in Figure 4.4 clearly represents the achiememof k-means clustering
method over random data selection since as the data sizéaggs the points in the graph
gets higher TPR and lower FPR values which brings the poigleniging to k-means clus-
tering closer to left and upper corner of the graph when coatpto random data selection.

Likewise, k-means reaches a better TPR-FPR value than modifiEB clusering. So, accord-
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Figure 4.3: Accuracy results for the first PPI data conserdidty concatenation
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Figure 4.4: ROC curves for the first PPI data constructed bgatnating

ing to the experiments conducted by using the training deteiated by the concatenation of
profiles, the best performance is achieved with training daistered by k-means clustering

both in accuracy and in ROC curves.
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4.1.2 Second PPI Data

4.1.2.1 Xor'ed Profiles

The prediction accuracies for the training data constrlbiethe xor'ed profiles of second
data set are given in the below table. The k-means accuracjtsdor 10% of data have
higher values than the random case as expected. When madi&&dclustering is run on
the 50% of the training set, the resulting training data darmzludes 67% of the half of the

training data. K-means also reaches a higher accuracy f@ltiee 67% data sample.

Table 4.1: Accuracy results for the second PPI data coristiuny xor operation

% - Random | K-means | Mod. MEB CI.
10 78.4506 79.4018

50 80.5298

67 80.0104 79.9735
100 81.4616 81.4616 81.4616

K-means clustering algorithm shows lower TPR performahea tandom selection whereas
it has lower FPR values on 10% of the training set. While kimsesults in a lower FPR
value than modified MEB clustering, it exhibits a worse TPRigawith 67% of the half of
the data. Thus a definite comment can not be made accordirige tdRR-FPR values to
make a comparison between the two clustering techniquebetaegen random selection and
k-means selection.

Table 4.2: TPR-FPR Results for the second PPI data conestiibgt xor operation

' Random ' K-means ' Mod. MEB CI.
% TPR __FPR __TPR___FPR _ TPR FPR
10 0.2227 | 0.0748 | 0.2210 0.0625
50 0.2726 | 0.0613
67 0.2897 0.0710 0.3046 | 0.0763
100 0.2937 | 0.0549 0.2937 0.0549 | 0.2937 | 0.0549

4.1.2.2 Concatenated Profiles

The size of the data sample generated by the modified MEBeclngtof the randomly se-
lected half of the training set is the 67% of the half of theadas in the xor case above.

As represented in Table 4.3 the samples of second data ¢gshéraconcatenation gives the
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higher prediction accuracy values in k-means clusteringntompared with both random
selection method for 10% sized data and modified MEB clusgefior 67% of the data.

Table 4.3: Accuracy results for the second PPI data cortetiumy concatenation

% | Random | K-means | Mod. MEB CI.
10 78.8401 79.9045

50 81.7757

67 80.8487 80.5452
100 83.1861 83.1861 83.1861

K-means outperforms random data selection in both TPR aRiMaRies calculated by using
the 10% of the training data. However, in comparison of thestelring algorithm perfor-
mances, k-means has a better FPR performance and modifieccM&Bring shows a better
TPR value which means it can not be figured out which clusgenrethod outperforms the
other by looking at the TPR-FPR values for the 67% of the hatfie training set.

Table 4.4: TPR-FPR results for the second PPI data consttingt concatenation

 Random | K-means ' Mod. MEB Cl.
% TPR___FPR__TPR___FPR___ TPR__ FPR
10 0.2654 | 0.0806 |0.2775 0.0703
50 0.3645 | 0.0687
67 0.3271 0.0710 0.3729 0.086
100 0.3712 | 0.1023 |0.3712 0.1023 0.3712 | 0.1023

4.2 Feature Selection Results

The prediction accuracies of the feature selection methodil not be superior to the data
reduction methods, furthermore the accuracy values in réaiaction techniques can not be
reached in feature selection but still we made the compargsoong the feature selection
methods. As expected random feature selection repres#medorst performance among
the three feature selection techniques. The phylogenetcrhethod gave higher accuracy
results in some of the experiments compared to the Fisheatst éest method. The reason of
this difference can be interpreted that phylogenetic tree methald=as the coevolutionary

characteristic in the data while Fisher’s exact test sgldwt feature elements according to
only statistical measures. However, those overtakingeghf phylogenetic tree method can
not be protected in some of the experiments. Hence an ietetjgn on the comparison of

the feature selection methods can not be definitely made.
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4.2.1 First PPl Data

4.2.1.1 Xor'ed Profiles

The Figure 4.5 represents that Fisher’'s test method stattstine worst accuracy for the
smallest data, but as the data size grows, its accuracyegdohhigher values. Still, the
prediction accuracies of Fisher’s test and phylogenetie imethods are close to each other
for xor'ed data sets. On the other hand, the training datwshbse features are randomly

selected, gives the worst accuracy results when compatée tther two methods.
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Figure 4.5: Accuracy results for the first PPl data conséaidiy xor'ing and with feature
selection

For the ROC curves, it can be observed that Fisher’s test hyldgenetic tree methods ex-
hibits higher TPR and FPR performances especially for ldeda sizes compared to random
sampling. Butin general while the TPR values of Fisher'sdesl phylogenetic tree seems to
be higher than those of random sampling the case is revers&PR values. Specifically for
smaller training data sizes, FPR values of phylogenete& itmethod represents higher values
than those of others. The training data whose features &retag randomly results in the

lowest FPR values except for the experiments done by the 1@B& training data.

According to the TPR-FPR values in the Figure 4.6 any speicifarpretation to decide the

best method can not be made. For TPR values of Fisher’s tégitafogenetic tree methods
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Figure 4.6: ROC curves for the first PPl data constructed byngpand with feature selection

are close to each other for the average case while randonrdeselection have the lowest

FPR values.

4.2.1.2 Concatenated Profiles

According to Figure 4.7 the prediction accuracies of Fishest and phylogenetic tree meth-
ods are very close to each other for all of the data sizes. dieerly observed that random
feature selection represents the lowest accuracy perfaesafor all of the data sizes except
for the 10% case. Therefore, phylogenetic tree and Fistestsmethods exhibit very close

accuracy performances so that none is superior to the other.

In Figure 4.8, the Fisher’s test represents the highest Tahres for the last 5 training data
samples (i.e. 60, 70,..., 100%) whereas the TPR values dbrarfeature selection reach
the highest for the first 5 experiments compared to thoseeobther methods. The training
data whose features are selected by the phylogenetic trdednbas the lowest TPR val-
ues whereas, it has the highest performance in FPR valueain Alge ROC curves of the
three feature selection methods can not provide making aitdefinterpretation but we can
only make comments about the performances of the methodgtmie TPR and FPR values

individually.
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4.2.2 Second PPI Data

4.2.2.1 Xor'ed Profiles

The prediction accuracies in Table 4.5 represent that rafydeelected feature vectors of 10%

of the the training data outperforms the other methods inracy. When trained by the whole
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data set, the features selected by phylogenetic tree meities the highest accuracy value
among other methods and also Fisher’s test method outpesfandom feature selection for

100% of the training data.

Table 4.5: Accuracy results for the second PPI data constiuzy xor operation and with
feature selection

% | Random | Fisher's Test| Phyl. Tree
10 79.1743 78.9362 79.1142
100 81.1144 81.2606 81.2701

Random selection method is superior to other feature sehetetichniques for the FPR values
obtained by training both of the data samples. Training % D the data set whose features
are selected by Fisher’s test results in higher TPR valuetti@others whereas phylogenetic
tree method applied on the whole training set produces higR&k. We can not make an

inference from the values in Table 4.6 to decide on the bethadesince the results do not

provide a consistency with each other.

Table 4.6: TPR-FPR values for the second PPI data condtriostexor operation and with
feature selection

. Random | Fisher's Test = Phyl. Tree
% TPR FPR TPR FPR TPR FPR
10 0.1615 | 0.0504 | 0.1752 0.0568 0.1729  0.0540
100 0.2103 | 0.0384 | 0.2258  0.0404 | 0.2275 | 0.0407

4.2.2.2 Concatenated Profiles

The accuracy values in Table 4.7 obtained from the trainetg which are formed by con-
catenation of profiles of proteins in second PPI data reptedbat phylogenetic tree method

outperforms the other methods for both of the data sizes.

Table 4.7: Accuracy results for the second PPI data coristiuzy concatenation and with
feature selection

% | Random | Fisher's Test  Phyl. Tree
10 79.4148 79.4383 79.5567
100 82.3619 82.6403 82.7947

The TPR values obtained from training by the data set whagarkes are selected by phyloge-

netic tree method exhibits the highest values among TPResatiother methods. However,
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for the FPR values, as in the xor'ed profiles of second datalserandom feature selection
method provides the best results. On the hand, the comparfdePR values of phylogenetic
tree and Fisher’s test methods points out that phylogemeté has lower FPR for 10% of
sample and Fisher’s test has lower FPR values for the whailgrig data set. In spite that the
accuracy and TPR values of phylogenetic tree outperformsiseFs test, the case is reversed
for FPR values.

Table 4.8: TPR-FPR values for the second PPI data condtribgteoncatenation and with
feature selection

| Random | Fisher's Test | Phyl. Tree
% TPR FPR TPR FPR TPR FPR
10 0.2161 | 0.0611 0.1839 | 0.0643 | 0.2312  0.0631
100 | 0.3148 | 0.0490 | 0.3300 | 0.0493 | 0.3380 0.0494

4.3 Prediction by Bayesian Learning

Bayesian Learning method is applied on the two PPI data tcemaagomparison with the
predictions of SVM learning. In Bayesian learning the featuectors are converted into
a scalar value by applying a similarity measure on the psofilé/e expect that this con-
version causes some data loss in the training data since M ®8aining we protect the

co-evolutionary knowledge by keeping the profiles valueber€&fore the prediction values

obtained by Bayesian learning are expected to be lower tiwsetobtained from SVM learn-

ing.

The similarity of two phylogenetic profiles are calculatgd3methods; match count, mutual
information, and hypergeometric distribution. First okfithe similarity measures for the
protein pairs in both the training and test sets are cakedlaihe protein pairs in training

set are sorted according to these similarity scores. Walleddcthe positive and negative
likelihoods for the predetermined intervals in the soriet I.e. the likelihood of interacting

for each interval is calculated. The interval which resiitshe highest accuracy value is
decided to be the decision threshold. Then the decisiostibié is performed on the test set

to obtain the accuracy values.
Below are the prediction accuracy results of Bayesian legrfor the two PPI data.
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4.3.1 First PPl Data

The prediction accuracies generated by the Bayesian tearasults in lower values com-
pared to prediction accuracies of SVM learning in the firgtd®®a considering both data and

feature selection methods:

e match count; 0.58

o mutual information: 0.62

e hypergeometric distribution: 0.57

4.3.2 Second PPI Data

The second PPI data denotes approximate accuracy valuesSWN learning except the
experiment conducted by the similarities calculated byelngpometric distribution measure.
Furthermore, the accuracy values are superior to the vgkrerated by training data obtained
from the feature selection in SVM learning. Still it can becluded that SVM learning using
all the organisms to construct the feature vectors, i.ehawit feature selection, reaches higher

prediction values compared to those obtained from Bayds@ning.

e match count: 0.80

¢ mutual information: 0.80

e hypergeometric distribution: 0.53

4.4 Training Times for Data Sets Sampled from First PPI Data

Figure 4.4 includes the training times for théfdient sized training data which are sampled
from some of the sampling methods described. The trainmggifor the data samples gen-
erated by concatenation of profiles, xor of the profiles amdufe selection by Fisher’s test
on concatenated profiles and feature selection by Fislestoh xor'ed profiles are recorded.
There is no specific reason for choosing the data sampledHigitier's test method since the

data sizes generated by feature selection method are the Sgme aim here is to measure
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the training times for various sizes of training data. Thenhar of training data, that is to
say the number of interactions do not change for each samtie d¢ methods. Each sample
constitutes the 10,20, ..., 100% of the training data set ddta size changes with the fea-
ture vector size which alsdtacts the training time of SVM. The training data generated by
the concatenated profiles is composed of feature vectorssige 900, whereas the feature
vectors of the training data generated by xor'ed profilescaraposed of 450 features. On
the other hand, the training data with concatenated prafifésh are seleced by Fisher's test
include 500 features and the training data with xor'ed peefdnd sampled with Fisher’s test
are composed of 250 features. As the interval between tlaesiads grow, the training time
of SVM also increases with larger intervals. Although tnagndata with concatenated pro-
files exhibits the worst performance in training time, it i@ crowning prediction accuracy

values.

Running tines for different data sizes

300 ] 0
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HOP —3—
sor with FI —%—
concatenation with FI —5—
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Figure 4.9: Running times for filerent sized data sampled from first PPI data
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

Prediction of protein-protein interaction problems irwing supervised learning may require
the training time to be long. Since SVM solves the learnirmpfem in quadratic time, as the
data size grows it needs vast amount of time for traininghis thesis work, we proposed to
use data reduction techniques to select the most reprégerdata from the training set and
compared prediction accuracy performances of these tgabsi The phylogenetic profiles
of the proteins, which incorporated the coevolution knagk in the learning, constituted
the feature vectors. For the construction of protein-pnoiigteractions various data sources
which are publicly available are exploited. The experirseare conducted for two data sets
one of which is the same data set as generated in the AC métfadds another method using
SVMs to predict protein interactions, and the other datéhsgtwe constructed having a larger
size . We separated the data as the training and testing esimgame way described in the
AC method to conduct the experiments. For all training d&ess the prediction accuracy
values generated by the training data with concatenatdigsrachieves higher values than

training data with xor’ed profiles.

For data reduction we applied k-means clustering and a nedditirsion of MEB clustering
techniques together with random data selection. In therarpats it was clearly seen that
k-means clustering resulted in higher performance valuesduracy than the other two data
reductions. But the TPR-FPR values did not give definitelte$a prove the dominance of

one method over the other.
We applied the data reduction in the second dimension of &t& loly reducing the feature
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vector size. We made a grouping among 450 organisms acgdalihe third cut level of the

phylogenetic tree that we used. In each group the organiswiadithe smallest distance to
other organisms are selected and 250 organisms constiheegw feature vectors in the end.
To make the comparison of the feature selection techniquistine same sizes, we applied
the other methods on the training data, Fisher’s test ardbrarselection, by selecting 250
organisms. We observed that when feature selection appfigtie training data, the same
prediction accuracy values could not be kept as in the algraining data which means even
though the most significant features are tried to be pickat, lbss could not be avoided. But
when the feature selection methods are compared among gmchrandom feature selection
displayed the worst accuracy values in most of the expeitsnient this is not valid for the

TPR-FPR values, since random selection could outperforttmeadther methods in some of
the experiments. A clear distinction between phylogentée and Fisher’s test methods,
to decide on which one is superior, could not be made acaprirthe the accuracy and
TPR-FPR values since the experimental results are notstenswith each other most of the

time.

5.2 Future Work

In the k-means algorithm, the resulting clusters changedoh run since the results depend
on the initial distribution of the centroids. It minimizestia-cluster variance but does not
ensure a global minimum of variance. In order to get bettsults, the initial distributions
can be arranged systematically instead of randomly sefecfAnother alternative is that the

algorithm can be run for several times until satisfying tessare obtained.

Although k-means obtained relatively good results, to coere the weaknesses of k-means
other alternatives of k-means could also be tried such agdeids, fuzzy c-mean and k-
mode. Apart from these other clustering methods could astried on the same data sets
considering that other methods might discover the chatatitss of the data sets better. These
methods could be Self Organized Maps (SOM), hierarchiagteling, Gaussian Mixture or
Learning Vector Quantization (LVQ).

In construction of the feature vectors 1 and 0 were used tatdithe availability of homology

between two organisms. Instead of using binary numbergjritpaoint numbers could be
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preferred to make use of homology by value instead of itdatvidity. In this case the feature
vectors would include multiple values which may cause thener to run in longer time but

may give more accurate results.

The prediction accuracies can be increased by includingsaditional data, i.e GO annota-
tions of proteins, to the training data set. To achieve thisesnew feature vector construction

techniques can be applied to manage to include multiple data

Finally utilization of a protein-protein interaction neivk where the edges include weights

can provide more detailed knowledge and enhance the pdresults.
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APPENDIX A

ORGANISMS

A.1 Organisms Used for Constructing the Phylogenetic Profds

Below are the shortened names for the 450 organisms whichsato generate the phylo-

genetic profiles of the proteins of yeast organism.

bqu cfa eba sme rxy dpyo tan sma dcbr nme reh cyb cya nma jamiacd ttj tth tte Ipp cef
Ipn dbmo Ipl vpa pho mxa xla bps ilo Ipf hdu bpn bpm rde pha bpe digx cdi aha rco osa
hwa pgi ccr ddha ago hch mca erw dkwa eru cch wbr pfu wbm ccapfpfcerg mbo afu
cbu rbe dtni pfa rba afm ayw sit sil Imo pen bms rty Imf Ime ypg lima gme ypn mtu ypm
ypk hal bmf bme mtp mac bmb ype bma cal aeh hac ypa ctr mth shoatpeab mtc wsu she
blo cte sha llc ctc dyli lla cta rsp nha msu bli rso bld hso pce sgl pcr ngo ooe hsa rru csa
xft pca gka sfx sfv dge sfu dncr sfr aci ace crp syw ljo sfl xfa sym dfru ava syg nfa syf sye
syd abo syc bja ser neu sep pub net pau pat neq par lin tma alshdildet dcnb sec pai lic
ptr rpr pae pto mpu pac fal pab hpy sdy deh ftu mpn atu cpv cptpgeps ftl aae sdn cpr rpc
rpb rpa mpe hpj fth cpn ftf mpa cpj ath sde swo eli hpa cpf pstatpgsp cpa wol xcv ddi
nwi tko bhe dde bha sco psb xcc xcb Iga rno dvu gga bga art vii gbdfs hne bfr fra cne
mmy bfl mmu mmr mmp sav mmo sau sat sas sar cmu rme sao san seymairoih sal sak
Ixx sai stt mmc xac mma sag sto sac dar ppu hma sab stm stl cnpprssth ste stc mlo ppe
dcin rle bxe mle dame poy aph ssp sso ehi ape ssn dspd Idb dsydtgsc Iwe vvy nse vwu
aor dkla vch bcz sru mka dpkn ben dmgr tfu bel Ica bei beh fnutboegvi degr bea bu lbr
cjr dre Ibl bbu mja zmo Ibj cjk ani dra bbr pmu pmt cje ana gbe gerrpmm efa bur pmi tel
hit bba spz hin pma spy buc spt sps bat spr bas bar dsmi spotspit ppbm ban mhy lac spk
bam ama spj spi sph spg baf dps spd nph tdn spb spa chy bab baautitks bth tde rha bte

cho xo0 bta xom hhe twh son tcx gsu bsu tcr mgm noc ecv ecu tvogesecp eco ecn cgl
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mga ecj eci ech ece rfr cgb ecc tbr eca mfl rfe tbd smu daga nnrecfet

A.1.1 The Organism Selected by Phylogenetic Tree

Below are the shortened organism names which are selectiba Imhylogenetic tree method

used for feature selection.

cfa rxy tan sma cyb cya tac dme cel ttj tth Ipp cef Ipn Ipl vpa gbdpf hdu pha cdi aha osa
hwa pgi ago hch mca dkwa cch pfu cca pfo pfl mbo afu cbu pfa rbapgywime tpv Ima mtu
hal mtp mac cal aeh ctr mth shm tpa cab mtc she blo cte llc llanstahso pcu pcr ooe hsa
csa xft dge sfr aci ace crp syw ljo xfa uur syn ava syg nfa syfsyygkeabo syc pau pat neq par
tma aba lil dsba det pai lic ptr pae pto mpu pac fal pab deh fto omgv cpt cps ftl aae sdn
mpe fth cpn ftf mpa cpj sde swo pst psp cpa xcv ddi tko sco pskxzlbdga rno bga art vfi
sus bfs bfr fra cne mmy mmu mmp mmo cmu san sak Ixx sai mmc xac sagato ppu hma
stl cme ppr sth ste stc ppe dcin mle poy sso ehi ape dspd Idbvgso/u veh sru mka dpkn
tfu Ica bci fnu gvi Ibu lbr Ibl bbu mja Ibj cjk dra pmu pmt ana prter pmm efa pmi tel hit
spz hin pma spy sps spr dsmi spn plt spm mhy lac spk spj spi gpbadspd nph spb spa chu

tws bth tde rha cho xoo bta xom twh son tcx tcr noc ecu tvo mgenggl cgb tbr mfl smu cfe

A.1.2 The Organisms Selected by Fisher's Test

Below are the shortened organism names which are selectbe Bysher’s Test method used

for feature selection.

dspd dsmi ago dkwa neq osa dcgr dsba dkla ssc cal ddha pha #to s8a ecu mka pab baf
pfu mac ser mmp bbu afu bga crp spa ooe mge sso mma ape mgadjsslgapu hpj pai twh
sep ppe pto ctc ayw spm spi tel bci tvo tma cac spk spg sph spj twsspy cfe spz ter uur
mpn Ibr sha spb hpy poy tde mtp mpe hpa hac tac rba fnu cpt lptplmfl bcc mhy cpa lac
ani tpa det cta san blo Idb mmy Ibu cab cpn ctr cte bas sak afrstcmjpe sag ava cyb cch
Ime cpf mth hwa cmu dsy fth tte pac stl cbu Ica bca efa ste dylilpoa ftu aor ftf Imo bab
lla cya pgi lwe chy xtr deh ssp sus chu nph Ixx aba ftl tfu sabbeferwhbr sco Ipf swo cho gvi
ana dncr dpyo lin art bcz rbe lic smu hal mle hhe gme sau sawagpfkaae Ipp mxa baa Imf
sfu bce dpkn bth bar Ipn bpn wol bsu sar sao fra sam spn cdi egadg sas dar ehi bfl bqu
mbo saa mtu bfs bfr cme bat ban tbr cjk bld pfa mtc bhe gox fehuma dde rfe cpv btk cps
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dvu spd spr bcl psp sgl xfa pau syc dmgr pae dcnb gka oih cnefyfnoe sat pmt tpv sde
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