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ABSTRACT

COEVOLUTION BASED PREDICTION OF PROTEIN-PROTEIN INTERACTIONS
WITH REDUCED TRAINING DATA

Pamuk, Bahar

M.S., Department of Computer Engineering

Supervisor : Assist. Prof. Dr. Tolga CAN

February 2009, 60 pages

Protein-protein interactions are important for the prediction of protein functions since two

interacting proteins usually have similar functions in a cell. Available protein interaction

networks are incomplete; but, they can be used to predict newinteractions in a supervised

learning framework. However, in the case that the known protein network includes large

number of protein pairs, the training time of the machine learning algorithm becomes quite

long. In this thesis work, our aim is to predict protein-protein interactions with a known

portion of the interaction network. We used Support Vector Machines (SVM) as the machine

learning algoritm and used the already known protein pairs in the network. We chose to use

phylogenetic profiles of proteins to form the feature vectors required for the learner since

the similarity of two proteins in evolution gives a reasonable rating about whether the two

proteins interact or not. For large data sets, the training time of SVM becomes quite long,

therefore we reduced the data size in a sensible way while we keep approximately the same

prediction accuracy.

We applied a number of clustering techniques to extract the most representative data and fea-

tures in a two categorical framework. Knowing that the training data set is a two dimensional
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matrix, we applied data reduction methods in both dimensions, i.e., both in data size and in

feature vector size. We observed that the data clustered by the k-means clustering technique

gave superior results in prediction accuracies compared toanother data clustering algorithm

which was also developed for reducing data size for SVM training. Still the true positive

and false positive rates (TPR-FPR) of the training data setsconstructed by the two clustering

methods did not give satisfying results about which method outperforms the other. On the

other hand, we applied feature selection methods on the feature vectors of training data by

selecting the most representative features in biological and in statistical meaning. We used

phylogenetic tree of organisms to identify the organisms which are evolutionarily significant.

Additionally we applied Fisher’s test method to select the features which are most represen-

tative statistically. The accuracy and TPR-FPR values obtained by feature selection methods

could not provide to make a certain decision on the performance comparisons. However

it can be mentioned that phylogenetic tree method resulted in acceptable prediction values

when compared to Fisher’s test.

Keywords: Phylogenetic profiles, Support Vector Machines,K-means clustering, Phyloge-

netic tree, Protein interaction networks
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ÖZ

PROTĖIN-PROTĖIN ETKİLEŞİMLERİNİN KÜÇÜLTÜLMÜŞÖĞRENME VEṘISİ İLE
BİRLİKTE EVRİMLEŞMEYE DAYALI TAHM İNİ

Pamuk, Bahar

Yüksek Lisans, Bilgisayar Mühendisligi Bölümü

Tez Yöneticisi : Yard. Doç Tolga CAN

Şubat 2009, 60 sayfa

Bir hücre içerisinde aynı görevi gerçekleştiren proteinler çoğunlukla birbirleriyle etkileştikleri

için protein-protein etkileşim ağları proteinlerin fonksiyonlarının bulunmasında önemli rol

oynarlar. Protein çiftlerinin bir kısmı bilinen bir protein etkileşim ağında, henüz belirlenmemiş

protein çiftleri makina ögrenme algoritmaları vasıtasıyla bilinen kısım kullanılarak bulun-

abilir. Ancak protein ağlarının çok sayıda protein çifti içerdigi bir durumda makina ögrenme

algoritmasının ögrenme süresi oldukça uzun olacaktir.Bu tez çalışmasında etkileşimlerinin

bir kısmının bilindiği bir etkileşim ağının bilinmeyenkısmını bulmayı deneyler yoluyla gerçek-

leştirmeyi amaçladik. Makina öğrenme algoritması olarak Destek Vektör Makinalari (DVM)’nı

ve bir ağ içerisinde bilinen protein çiftlerini kullandik. Evrimsel açıdan iki proteinin bir-

birine yakın olması, bu iki proteinin etkileşimleri hakkında iyi bir değerlendirme vereceği

için, öğrenici için gerekli olan öznitelik vektörüolarak proteinlerin filogenetik profillerini

kullandık. Büyük boyuttaki veriler için Destek Vektor Makinalarının ögrenme süreleri uzun

olacağindan veriyi doğruluk oranlarını koruyarak makulbir şekilde küçülttük.

İki kategorili bir çati altında veriyi küçültmek amacıyla en sembolik veriyi seçmek için bazı

kümeleme tekniklerini uyguladık. Verinin iki boyutlu birmatris olduğunu göz önünde bu-
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lundurarak, veri küçültme metotlarını iki boyutta da uyguladık (hem verinin boyutunda hem

öznitelik vektörünün boyutunda). K-means tekniği ile kümelenen veri kümelerinin tahmin

doğruluklarında veriyi SVM ögrenmesi için küçültenbaşka bir kümeleme algoritmasına kıyasla

daha üstün sonuçlar verdiğini gözlemledik. Yine de iki algoritma tarafından da oluşturulan

öğrenme verisinin TPR-FPR değerleri, hangi metodun daha üstün olduğu konusunda tatmin

edici sonuçlar vermedi. Diğer yandan, ögrenme verilerinin özellik vektörleri üzerinde biyolo-

jik ya da istatistiksel anlamda en sembolik özellikleri seçmek için özellik seçme metotlarini

uyguladık. Evrimsel olarak en önemli olan organizmaları belirlemek için organizmaların filo-

genetik ağaçlarını kullandık. Ayrıca, istatistiksel olarak en sembolik özellikleri seçmek için

Fisher’s test metodunu uyguladık.Özellik seçme metotlarından elde edilen doğruluk ve TPR-

FPR değerleri performans kıyaslaması yapmak konusunda kesin bir ayrım yapmayi saglaya-

madı. Yine de, filogenetik ağaç metodunun Fisher’s test ile kiyaslandığında kabul edilebilir

tahmin değerleri verdiği söylenebilir.

Anahtar Kelimeler: Filogenetik profiller, Destek Vektör Makinaları, K-means kümeleme,

Filogenetik ağaçlar, Protein etkileşim ağları
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CHAPTER 1

INTRODUCTION

1.1 Problem Definition and Motivation

Protein-protein interaction is an important aspect in systems biology. A systems level under-

standing of the signaling pathways and molecular complexesin a cell provides more accurate

identification of cellular functions of proteins, better understanding of biological and patho-

logical processes, and more confident drug target identification. With the help of a protein-

protein interaction (PPI) network, one can select molecular compounds which specifically

disrupt certain protein-protein interactions that is related to the disease pathway.

In recent years, protein-protein interaction datasets foran increasing number of organisms

have been made publicly available with the help of high-throughput screening techniques.

Main experimental techniques for discovering protein-protein interactions are the yeast two-

hybrid (Y2H) and affinity purification with mass spectrometry (APMS). However, it is known

that these experimental techniques have high false-positive and false-negative rates; therefore,

in addition to these experimental techniques, computational techniques that use additional

biological information such as co-expression, co-localization, and co-evolution, have been

developed. The main challenge of a genome-wide prediction of protein-protein interactions

is that the protein pairs that do not interact outnumber interacting proteins significantly. For

example, there are 100,000 estimated interactions out of 18million possible in the yeast

organism. For a newly sequenced organism, the challenge is even bigger that little amount of

additional biological knowledge is available for such an organism. Therefore, it is important

to develop accuracte PPI prediction techniques that use protein sequence information only.

In this thesis, our goal is to develop a machine learning based technique for prediction of

1



protein-protein interactions based on co-evolution. Co-evolution can be inferred from phylo-

genetic profiles which can be derived from protein sequence information alone. We generate

phylogenetic profiles as high dimensional feature vectors by comparing each protein of the

organism to proteins of a number of other fully sequenced genomes. Given the phylogenetic

profiles of all the proteins of an organism, the problem can bestated as the classification of all

possible protein pairs as interacting or non-interacting.This is a binary classification problem.

We learn a discriminative model using Support Vector Machines to distinguish between these

two classes. In that sense, we provide a supervised solutionto this problem.

1.2 Related Work

1.2.1 Using Support Vector Machines (SVM) to infer Protein-Protein Interactions

There have been studies which use Support Vector Machines (SVM) to predict protein-protein

interactions. The AC method proposed by Guo et al. [27] uses the neighborhood of amino

acids in a protein sequence by means of Auto Covariance method to predict the protein-

protein interactions. We used the same data set and the same method as they used to produce

the training and test sets to evaluate our method. Another technique proposed by Bock et

al. [26] uses the primary structure of proteins together with the physicochemical properties

of a known database of protein interactions as training datafor SVM to make predictions on

protein-protein interactions. They used residue properties of amino acids such as charge, hy-

drophobicity and surface tension to construct feature vectors which is an independent knowl-

edge from coevolution which we made use of in our method. There is also another method by

Martin et al. [28] which solves the protein-protein interaction problem by training an SVM

with product descriptions of protein pairs. They encode thevariable length amino acids to

signatures by using their neighbors. All of these studies use the physical or chemical prop-

erties of proteins while we consider the coevolution knowledge of proteins by using their

phylogenetic profiles.

2



1.2.2 Using Phylogenetic Profiles to Infer Protein-Proteininteractions

In the study conducted to express the significance of phylogenetic profiles for discovering

the functional linkages among proteins by Juan et al. [1] it is inferred that proteins having

similar phylogenetic profiles are functionally linked assuming it is likely that proteins in the

same metabolic pathway or cellular system are co-inheritedduring evolution. The idea of

coevolution using phylogenetic profiles has been used by many researchers in the prediction

of protein-protein interactions. Pellegrini et al. [24] demonstrates the value of phylogenetic

profiles of proteins in detecting their functions by simply comparing the phylogenetic profiles

and counting the numbers of bits changed which is a basic way to calculating the similarity

between two profiles. Wu et al. [23] uses the similarity of phylogenetic profiles by applying

a method to relax the restrictions that phylogenetic profiles require by a biological pressure

measure. They use different correlation measures between two vectors. Bowers et al. [13]

compute the probability of coevolution based on hypergeometric distribution. In other words,

given two phylogenetic profiles they convert it into a probability value that represents their

confidence on their coevolution. They use this probability value in an integrative framework

to derive functional association of proteins. Kim and Subramaniam [14] use a mutual in-

formation function based on the Shannon entropy to indicatethe level of similarity between

two phylogenetic profiles. Vert [15] developed a tree kernelwhich provided a better similarity

measure between two phylogenetic profiles. He used this kernel to predict the functional class

of a gene. Sato et al. [17] improve Pearson’s correlation coefficient by proposing partial cor-

relation coefficient as a function of similarity between two profiles. Juan et al. [18] analyze

the network of profile similarities to account for groups of coevolving proteins and reduce the

noise associated with various factors that make-up a phylogenetic profile. Gonzales et al. [22]

include the phenotype knowledge to phylogenetic profiles inorder to extend the binary strings

to continuous phenotypes and develop scoring functions to use them in pairs . All of these

studies focus on providing a similarity measure that best captures the amount of co-evolution

between two proteins. However, in this thesis, instead of using an explicit similarity function,

we propose a machine learning approach which learns such a function implicitly on a training

dataset.

Apart from defining a similarity function for phylogenetic profiles, there are some studies

which try to refine the organisms selected for phylogenetic profiling. Sun et al. [19, 20] pro-
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pose a phylogenetic approach to select representative organisms to construct a phylegenetic

profile. They, then, apply existing similarity measures on the reduced phylgenetic profiles.

We adopt their approach in this thesis. However, we do not usean explicit similarity function

as mentioned above, and retain the reduced phylogenetic profiles as high dimensional vectors.

1.2.3 Reducing Size of Training Data for Support Vector Machines

There have been studies to reduce the size of the training data set for supervised learning with

Support Vector Machines. Cervantes et al. [6] propose the ball-clustering technique to select

representative data points for SVM training. Their approach is based on the number of support

vectors in the original training set; therefore, reduces the number of training data points to a

fixed number. In our approach, we use k-means clustering, in which, the user controls the

number of representative data points by varyingk.

1.3 Contributions

Our contribution in this thesis are threefold.

1) By employing a machine learning framework we avoid using similarity functions to in-

dicate the level of co-evolution between two phylogenetic profiles. Previous studis focus

on developing biologically accurate functions to infer thelevel of co-evolution between two

phylogenetic profiles. However, we retain phylogenetic profiles as high dimensional vectors

and the Support Vector Machine approach implicitly learns adiscriminative function between

pairs of phylogenetic profiles.

2) We propose a clustering based technique to reduce the number of training protein pairs.

Compared to a previous techniqe, our method provides betteraccuracy when the number of

selected training proteins pairs are equal.

3) We propose a biologically inspired feature selection technique which outperforms a widely

adopted statistical feature selection technique. Our technique utilizes domain knowledge and

makes use of the fact the each feature dimension correspondsto an organism. By using a

phylogenetic tree of feature organisms to denote the relationships between them, we are able

to select a better representative subset of organisms.

4



1.4 Thesis Outline

This thesis is organized as follows. In Chapter 2, we give thenecessary background knowl-

edge to understand the problem domain and the solutions we provide. In Chapter 3, we

describe the datasets we have used and describe the technical details of the methods we pro-

pose. In Chapter 4, we give experimental results which demonstrate the utility of the proposed

methods. In Chapter 5, we conclude the thesis with a summary and future directions.
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CHAPTER 2

BACKGROUND

2.1 Proteins

Proteins are organic compounds which are constructed from amino acids and are responsible

for numerous functions in a living cell. In a protein there are about 200-300 amino acids which

are arranged in a linear chain and joined by peptide bonds. A peptide bond is formed when

two molecules react with particular groups of each other andreleaseH2O. Proteins function

via their three dimensional structures. The properties of proteins such as their structures, their

physiochemical properties, locations in the living cell and their relationships with each other

determine their functions and interactions with each other.

2.2 Amino Acid Sequences

The amino acid sequence of a protein is a string composed of the letters each representing one

of the 20 different kinds of amino acids. An amino acid sequence characterizes the arrange-

ment of amino acids in a protein and the structure of a protein. Also, the function of a protein

can be determined by making use of the arrangement of amino acid sequences. The func-

tional relationship between two proteins can be observed bymaking an alignment between

their amino acid sequences. A sequence alignment which gives scores about the similarity of

two proteins might give a rating about their functional closeness or whether the two proteins

can be homologous or not.

Amino acid sequences can be aligned in pairwise or in multiple. There are some methods for

the alignment of sequenes which are local alignment where only some portions in a sequence
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are used to score and global alignment where the whole sequence is used for the alignments.

There are online tools, which are the implementations of various alignment methods, available

for amino acid sequence alignments. For pairwise sequence alignment FASTA1 or BLAST 2

[29] can be used. For multiple alignment CLUSTALW3 [31], TCOFFEE4 [32] or Muscle5

[33] can be applied.

2.3 Protein-Protein Interaction Networks

Protein interactions are essential for making predictionsof functions of proteins. Protein inter-

actions are observed during signal transduction (i.e. the signals outside the cell are transferred

inside the cell), generating a protein complex or modifyinga protein.

Protein-protein interaction networks are graphs that represent the interaction involvement of

protein pairs. In a protein interaction network the proteinpairs that are connected by an edge

are perceived as interacting pairs and rest are the noninteracting ones. Below is a sample

interaction graph6 of yeast organism.

In a protein interaction network, the edges between the proteins might include weights where

these weights can be the functional correlation between theproteins or the level of confidence

assigned to that interaction [7].

There are numerous protein-protein interaction databaseswhich provide the protein interac-

tion data of various organisms and are mostly constituted byhand-made experiments done by

experts. The three protein interaction databases that we benefited from are:

• MIPS (Munich Information Center for Protein Sequences) Mammalian Protein-Protein

Interaction Database7 [36] which includes the physical interactions of proteins that are

determined only by hand made experiments since it is the mostreliable way to extract

the interaction knowledge.

1 http://www.ebi.ac.uk/Tools/fasta33/index.html
2 http://blast.ncbi.nlm.nih.gov/Blast.cgi
3 http://www.ebi.ac.uk/Tools/clustalw2/index.html
4 http://www.ch.embnet.org/software/TCoffee.html
5 http://www.ebi.ac.uk/Tools/muscle/index.html
6 http://www.math.cornell.edu/ durrett/RGD/RGD.html
7 http://mips.gsf.de/proj/ppi/
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Figure 2.1: Protein Interaction Network of yeast organism

• DIP 8 [37] (Database of Interacting Proteins) which includes theprotein-protein inter-

actions discovered by both hand-made experiments and computational approaches.

2.4 Phylogenetic Profiles

Phylogenetic profile of a protein is a string constituted by 1s and 0s that encodes the presence

or absence of homologs of a protein in other organisms. In construction of a phylogenetic

profile of a protein, the homologs of the protein are searchedagainst the other organisms. The

search of homologoues of a protein can be done by aligning thesequence of that protein with

proteins of others organisms.

The alignments can be done via any sequence alignment tool some of which are dictated in

Section 2.2 and each alignment of sequences are scored by thetool. If the alignment score of

a protein in a protein of another organism is above a predetermined cut-off value, it means the

protein has a homologue in that organism and the correspondant value in the profile becomes

8 http://dip.doe-mbi.ucla.edu/
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1, otherwise there is no homologue of that protein and the value is set to 0 in the string.

Figure 2.2: A portion of phylogenetic profiles of 3 proteins belonging to the yeast organism

In this thesis work, the phylogenetic profile data is constructed by calculating the sequence

alignment score by the help of the BLAST tool. Figure 2.2 is a data portion of phyloge-

netic profiles of 3 proteins of Saccharomyces cerevisiae yeast organism with homology search

against six other organisms that we used in our experiments.

2.5 Phylogenetic Trees

Phylogenetics is the study of evolutionary relatedness among various groups of organisms

which is discovered through molecular sequencing data. Evolution is a branching process

where populations alter by time, separate into branches or hybridize together or exposed to

extinction. This evolution process is used to construct a full tree. Evidence from morphologi-

cal, biochemical, and gene sequence data suggests that all organisms on Earth are genetically

related, and the genealogical relationships of living things can be represented by a vast evolu-

tionary tree, the Tree of Life9 which represents the phylogeny of organisms.

In phylogenetic studies, the most suitable way to visualizethe evolutionary relationships

among a group of organisms is by phylogenetic trees. Figure 2.3 is a sample phylogenetic

tree to present its components. In this figure, anode represents a taxonomic unit, i.e an ex-

isting species or an ancestor. They are usually referred to as Hypothetical Taxonomic Units

(HTUs) since they are not directly observed.Root is the common ancestor of all taxa. A

branch is an evolutionary relationship among taxonomic units. Thebranch length exhibits

the number of changes that have occurred in the branch. That is to say it represents the evo-

lutionary distance between taxonomic units. Hence, in a phylogenetic tree the species are

located at the leaves of the tree. A phylogenetic tree is constructed by the usage of multi-

ple sequence alignments whose scores represent the evolutionary distances. There are three

9 http://tolweb.org/tree/learn/concepts/whatisphylogeny.html
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Figure 2.3: A sample phylogenetic tree with its components

main methods of constructing phylogenetic trees: Distancebased methods such as Neighbour

Joining [12], parsimony based methods such as Maximum Parsimony, and character based

methods such as Maximum Likelihood or Bayesian Inference.

A rooted tree as in Figure 2.3, is a directed tree with a unique node corresponding to the

most recent common ancestor of all the entities at the leavesof the tree. Anunrooted tree

illustrates the relatedness of the leaf nodes without making assumptions about common an-

cestry. Unrooted trees can be obtained by omitting the root of a rooted tree. The root of an

unrooted tree can be obtained by various ways. The methods toconstruct a phylogenetic tree

emphasized above, may end up with unrooted trees. The adjacent taxa may not be closely

related to each other in an unrooted tree. To obtain a root foran unrooted tree, an outgroup

which is known to be branched before all other nodes in the tree can be included to the tree.

2.6 Fisher’s Exact Test

Fisher’s exact test is a statistical significance test used in the analysis of categorical data.

The test is usually used to examine the significance of the association between two variables

in a two by two contingency table. In a binary decision problem, the decision made by the
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classifer can be represented in a structure known as a confusion matrix or contingency table

[9]. Contingency tables are used to analyze the relationship between two variables. A sample

contingency table is given in Table 2.1:

Table 2.1: A sample contingency table

B1 B2 Totals
A1 a b a+b
A2 c d c+d

Totals a+c b+d n

The probability of obtaining those values in the table is calculated according to the following

hypergeometric distribution:

p =

(

a+b
a

)(

c+d
c

)

(

n
a+c

) =
(a + b)!(c + d)!(a + c!)(b + d)!

n!a!b!c!d!

wheren is a + b + c + d.

The p-value gives the exact probability of observing observing this particular arrangement of

the data.

Chi-Square Test

An altenative method for testing a statistical hypothesis is to use the Chi-Square Test. Fisher’s

exact test is applied to data with two by two contingency tables whereas a chi-square test is

used on tables with more rows and columns; i.e it is more suitable for the data with larger

number of categories. A chi-square test is not suitable for the situations where the expected

values in any of the cells of the contingency table is below 10.

Chi-square tests a null hypothesis that the frequency distribution of certain events observed in

a sample is consistent with a particular theoretical distribution. A chi-square statistic value is

calculated according to the below formula:

X2 =
∑n

i=1
(Oi − Ei)2

Ei
,

whereX2 is the test statistic value,Oi is the observed frequency of theith category andEi is

the theoretical frequency of theith category.

11



When analyzing contingency tables with two rows and two columns, either Fisher’s exact test

or the chi-square test could be chosen. The Fisher’s test is the best choice as it always gives

the exact P value. The chi-square test is simpler to calculate but yields only an approximate

P value. If the numbers in the contingency table are very small, the chi-square test should be

avoided. When the numbers are larger, the P values reported by the chi-square and Fisher’s

test will be very similar.

In our case the data includes two kinds of categories and the values in the contingency tables

were more suitable for using Fisher’s exact test. Thus, we preferred to use Fisher’s exact test

in feature vector selection which is described in detail in Chapter 3.

2.7 Data Classification

Data classification is the problem of detecting which class adata point belongs to when a

set of points are given as belonging to a class. Data classification is an essential component

in the scope of this thesis work. We preffered to apply Support Vector Machines as a data

classification algorithm in machine learning context wherethe domain of data is given to the

learner explicitly. Then we compared the results of SupportVector Machine with another ma-

chine learning algorithm, Bayesian learning, where the reduction of feature vectors to a scalar

causes some data loss, because the data can not be fed to the Bayesian learner completely.

2.7.1 Support Vector Machines

Support vector machines (SVMs) are a set of related supervised learning methods used for

classification and regression. In SVMs the data points are represented asp−dimensional

vectors where each data point belongs to one class. SVM maps the input vectors into a high

dimensional feature space by means of some non-linear mapping function [5]. The trick is to

find thep−1 dimensional hyperplane which seperates the data points with maximum margin.

Meaning that, the hyperplane which maximizes the distance between the nearest point to

the hyperplane is chosen as themaximum-margin hyperplane. In the data classification

problem dictated in this thesis work, we have 2 classes to seperate.

We have a set of pointsS with two classes of data. The dot product between two vectorsare re-
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quired for the linear classifiers where the data set is binarylabelled.S = {(xi, ci)|xiǫR
p, ciǫ{−1, 1}}ni=1

whereci represents which class the data belongs to, i.e. whether+1 or -1. Eachxi is a p−

dimensional vector. The maximum margin hyperplane we are looking for is represented as

the set of pointsx satisfying:

w · x − b = 0 (2.1)

So the equations can be rewritten asci(w · xi − b) ≥ 1, where 1≤ i ≤ n.

wherew andb should be chosen to minimize||w||.

Figure 2.4: Maximum margin hyperplane with two classes[8]

The data on the margins in Figure 2.4 are called thesupport vectors. The distance to maxi-

mize on the hyperplane is represented as a quadratic problem[5]:

ρ(w, b) =
2
|w| =

2
√

w · w
(2.2)

The transformation of the input vectors inn dimensions intop dimensions is done via ap

dimensional function:φRn → R
p φ(xi) = φ1(xi), φ2()xi, ..., φp(xi)

It is shown in Cortes et al. [5] that the vectorw can be written by the linear combination of

training vectors as:

w =
l
∑

i=1

yiα
0
i xi (2.3)
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wherexi are the support vectors andyi is the label of theith feature vector(either 1 or -1).

To classify an unknown vectorx , the vector is transformed into the feature space and then the

sign of the below function is taken:

f (x) = w · φ(x) + b =
l
∑

i=1

yiαiφ(x) · φ(xi) + b (2.4)

The mapping of points into a Hilbert space (a vector space closed under dot products) is

achieved by the kernel functions which matches the point pairs to their dot products in Hilber

space. A kernel function must be continuous, symmetric, andhave a positive definite gram

matrix10. If the classifier is linear then the kernel functions isK(xi, x j) = xT
i x j. Otherwise the

points are transformed to a higher dimensional space byΦ : x→ φ(x) and the kernel function

is K(xi, x j) = φ(xi)Tφ(x j).

The basic four types of kernels functions are as follows [SVM]:

• linear: K(xi, x j) = xT
i x j

• polynomial: K(xi, x j) = (γxT
i x j + r)d, γ > 0

• radial basis function (RBF):K(xi, x j) = exp(−γ‖xi − x j‖2), γ > 0

• sigmoid: K(xi, x j) = tanh(γxT
i x j + r).

2.7.1.1 Grid Search in SVMs

In SVM, C andγ parameters controls the trade-off between training error and generalization

ability [25]. In the RBF kernel, it is ciritical to choose theC andγ parameters of SVM to

extract the optimum model. A good selection ofC and γ pair leads to a good prediction

performance. Once theC parameter is selected high, the margin becomes softer and the

number of support vectors increase which may cause over-fitting of the data. It is better to

choose a smallC parameter as much as possible.

Cross-validation technique is made use for making experiments in order to select best param-

eter values in RBF kernel. Inv-fold cross-validation, the data set is seperated intov parts

equally where one part is used for testing and the restv − 1 parts are used for training. After

10 http://nlp.stanford.edu/IR-book/html/htmledition/nonlinear-svms-1.html
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the data is seperated, the training and prediction processes are applied forv times on the data

in order to be sure that all 1/v portion of the data is included in the test set. The aim ofv−fold

cross validation is to prevent the learner from overfitting.

The (C, γ) pairs are tried on the data set and after thev− fold cross validation experiments

done, the one with the best accuracy on avarage of thev experiments is picked. The search

is done with exponentially growing values. The start and endpoints with the step number

for incrementing the values are the inputs that are given to the grid search tool. For instance,

below call for the grid script included in the libsvm-2.8411 package, which is a commonly

used SVM package, tries the pairwise combinations ofC andγ values forstart andend

values of -1 and 2 respectively forC parameter with 1 as the inceremental step (the number

to increment to reach theend from start). Likewise it uses thestart andend values of 1

and 5 forγ parameter with 2 as the incremental step.

python grid.py -log2c -1,2,1 -log2g 1,5,2 dataset

2.8 K-means Clustering

K-means is a well-known data mining and unsupervised learning algorithm to classify or

to group objects based on attributes/features intok number of group wherek is a positive

integer. The grouping is done by minimizing the sum of squares of distances between data

and the corresponding cluster centroid. Thus the purpose ofk-means clustering is to classify

the data.

K-means clustersn objects intok clusters wherek < n in p dimensional vectorial space. The

aim in this algorithm is to minimize the intra-cluster distances, i.e minimize the squared error

function given by:

V =
∑k

i=1
∑

x jǫS i
(x j − µi)2

wherex j is a chosen point inith cluster andµi is the cluster center point of theithcluster

The algorithm works as follows:

• Begin with a decision on the value of k= number of clusters

11 http://www.csie.ntu.edu.tw/ cjlin/libsvm/
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• k cluster center points are randomly assigned among then data points;µ1, µ2, ..., µk

• Until there are no changes in the cluster centers, i.e no changes in the assignment of

data points

– The data points are assigned to the cluster whose centroid isthe nearest.

– Update the centroid of each cluster. The centroid of a cluster is the average of all

points in that cluster, i.e the arithmetic mean of all dimensions

Sometimes it can happen that the data set which is closest to acluster centerµi is empty. It

is ensured that no cluster pairs have common elements in thisalgorithm. Also, the number

of clusters,k in the algorithm, effects the results of the clustering so it should be carefully

chosen. The optimal number of clusters for a data set can not be determined beforehand. One

way is to run the algorithm for a number of times for differentk values and choose the one

which gives best results.

2.9 ROC (Receiver Operating Characteristic) Curves

For the performance of the methods that we experimented in the context of this thesis work,

we plotted the ROC Curves to interpret the results of the experiments. A ROC curve, is a

graphical plot of the sensitivity (True Positive Rate (TPR)) vs. 1 - specificity (False Positive

Rate (FPR)) for a binary classifier system as its discrimination threshold is varied.

Actual Pos. Actual Neg.

Predicted Pos. TP FP

Predicted Neg. FN TN

According to the parameters in a confusion matrix of a classifier, the definitions of metrics

used in ROC curves are:

T PR =
T P

T P + FN
, FPR =

FP
FP + T N

A prediction with perfect seperation of data has a ROC plot that passes through the upper left

corner (100% sensitivity, 100% specificity) as in Figure 2.5. Therefore, the closer the ROC
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plot is to the upper left corner, the higher the accuracy of the test. The ROC curve in Figure

2.5 can be a sample for the output of a method with rather high accuracy performance due to

its tendency to upper left corner in the graph.

Figure 2.5: A sample ROC curve
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CHAPTER 3

MATERIALS AND METHODS

3.1 Data Sets

Below we present the data sources and tools that we used to measure the performance of the

data reduction methods which we applied on the data sets.

3.1.1 Phylogenetic Profiles

The phylogenetic profiles of proteins of Saccharomyces cerevisiae (yeast) organism was con-

structed via the BLAST tool as described in Chapter 2 over 450organisms. The phylogenetic

profile information of a protein is used as the feature vectorbelonging to that protein.The

value ”1” was assigned to the corresponding index in the profile if the e-value returned from

the BLAST tool is below 0.001, otherwise ”0” is given, so the feature vectors are composed

of binary values. The shortened names of organisms used in construction of the phylogenetic

profiles are listed in Appendix A.1.

3.1.2 Phylogenetic Tree Data

For feature vector selection, we used the phylogenetic treedata available in the Kyoto Ency-

clopedia of Genes and Genomes (KEGG)1 database since the phylogenetic tree data in KEGG

source includes all of the 450 organisms which were employedto generate the phylogenetic

profiles. The phylogenetic tree in the KEGG database was the most adequate one among the

other sources since it includes the most comprehensive dataon account of comprising all the

1 http://www.genome.jp/kegg/
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organisms that we used.

In KEGG database, the computer representation of various data sources are available together

with some tools that provide making search on the data sources, making analysis and drawing

structures. The phylogenetic tree data provided in the KEGGdatabase is not in a format

that can be easily parsed (i.e. any structure to make the extraction of the tree simpler is not

available), we directly used the taxonomy file in the ftp siteprovided2. This file includes

the categorization of organisms at each depth of the tree which are represented by the lines

starting by a ’#’ character. As usual, the organisms take place at the leaves with lines starting

with the PIR-PSD (International Protein Sequence Database) 3 id. PIR-PSD is the database

including the classified and functionally annotated protein sequences.

250 organisms selected by the phylogenetic tree method are represented in Appendix A.1.1.

3.1.3 Protein-protein Interaction Data

We used the same protein-protein interaction data as in the AC [27] method to make a fair

comparison of our method with the AC method. Furthermore we applied the same procedure

on the data set, to separate the data as training and test sets, as in AC method to carry out the

experiments. Additionally we conducted the experiments for a second data set which includes

a protein-protein interaction network with a larger numberof interacting and noninteracting

pairs of proteins.

3.1.3.1 First PPI Data

In AC method, Database of Interacting Proteins (DIP) was used to collect the PPI data of

Saccharomyces cerevisiae organism for experiments. They generated the positive data set by

getting rid of the proteins composed of less than 50 amino acids which resulted in 5943 pro-

teins. Since the PPI network data in our experiments are constructed using the phylogenetic

profiles of each protein, we made an extraction of each protein from the phylogenetic profiles

in our hand. However the phylogenetic profiles data does not include the complete data set,

that is to say not all of the proteins collected from DIP have the phylogenetic profile informa-

2 ftp://ftp.genome.jp/pub/kegg/genes/taxonomy
3 http://pir.georgetown.edu/pirwww/dbinfo/pir psd.shtml
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tion. Therefore the protein pairs including proteins without phylogenetic profile information

are also eliminated from the data used in the experiments of the AC method. At last 5825

protein pairs left for the positive data set.

The interacting protein pairs can be obtained from several sources having various reliability

measures, however the noninteracting pairs are not readilyavailable. In AC method, the

noninteracting pairs are obtained by 3 different ways and the performance of their methods

by executing the experiments with entire of the negative sets is observed. The methods to

generate the non interacting proteins data set are:

• Randomly pairing proteins from the positive data set. (The data generated by this

method is named Prcp.)

• Pairing proteins occurring in different subcellular localization information. (It is as-

sumed that the proteins that take place in different localizations in the cell do not in-

teract [27]. The subcellular localization information wastaken from the SwissProt4

database. The data generated by localization information is named Psub.)

• Shuffling the protein sequences in the positive set. (When the protein sequences of two

interacting proteins are shuffled it is be assumed that the two proteins do not interact

with each other.)

At the beginning we included all the negative data sets to thecore training data set and applied

random data selection method on them. We observed that except the Psub data the prediction

results of SVM with the training data including the other twonegative data sets were rather

inconsistent such that although the data size got linearly larger, the results were severely with

ups and downs. On the other hand, the training data includingthe Psub negative data set gave

reasonable results as we expected such that the prediction accuracies got linearly larger as the

data grew in the same form. That is why we chose to use the Psub negative data by excluding

the Prcp and the one generated by shuffling as the negative set.

In the AC method, the sizes of positive and negative data setsare kept the same. There-

fore they produced 5943 protein pairs that do not interact. As in the positive set case, we

searched for the phylogenetic profiles of the proteins in thenegative set. Again there were

4 http://www.expasy.org/sprot/
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some proteins in the negative set that do not have the phylogenetic profile information in the

phylogenetic profiles that we produced. After we eliminatedthe ones whose profiles were

absent, 5871 protein pairs for the negative set are left.

In our experiments the sizes of positive and negative set arenot exactly the same as they were

in AC method but the difference is so ignorable that it would not affect the prediction results

of SVM.

3.1.3.2 Second PPI Data

A second data set is generated to test the methods in a larger data set and observe how the

results will differ in a larger interval of data set sizes. The positive pairs for second data set

is constructed by making use of the interactions in the DIP database and the negative pairs

are obtained from the MIPS database by randomly selecting the negative pairs at different

subcellular localizations. This time the sizes of positiveand negative data are not the same,

instead the size of negative set is four times larger than thepositive data. There are 17514

positive and 71231 negative pairs were in the original dataset. After the extraction of the

phylogenetic profiles of proteins in each set and discardingthe proteins whose profiles are

absent we have 16987 positive and 67849 negative protein pairs in the second set of data.

3.1.4 Training and Test Data

We repeated the construction of the training and test set processes as done in the AC method.

The final set for the first data set includes 11814 protein pairs and for the second data set

88745 protein pairs in total. The training set is for SVM learner is constructed from the three

fifth of the whole data set. The remaining two fifth of the wholeset comprises the test set.

This operation is applied on the complete data set for five times and the separation of the data

set is conducted randomly. Therefore a five-fold cross validation is used to investigate the

training set [27] by applying the methods for each of the five samples. This process is pointed

out at the top of the flow in the Figure 3.7

The aim of sampling the training set for five times is to prevent that the results produced from

any method are particular to the characteristic of the training set it tested. By using 5 different

training and test sets we observe the results of the methods for the data inputs exhibiting
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different characteristics. Also the sampling of the data set is away to observe whether the

results of the methods exhibit the same characteristic for all samples. Therefore it would be

proven that the methods produce deterministic and reasonable results. At last, the average of

the five prediction results are calculated to represent the performance of the method.

The experiments aimed to compare the clustering methods areexperimented on a data set

whose training and testing subsets exhibit the same biological behaviour. By this way the

changing in performance of each method would be observed when the data size is incre-

mented linearly. For each sample in the first data set, the training data portion is sampled for

10, 20, ... 100% of the complete training set whereas the sizeof the test sets are kept the

same. The sampling of the data, i.e. the data reduction, is conducted by three methods which

are described in detail in Section 3.4. For the second data set, since the memory and hard

disk were insufficient for sampling not all of the 10 samples for each experiment could be

produced.

3.2 Learning and Making Prediction on Protein-Protein Interactions

A stated earlier, the protein-protein interaction prediction process is conducted by means of

an already constructed interaction network where the coevolutionary knowledge of proteins

are considered. SVM algorithm is selected for the aim of learning the known subset of the

protein interaction network in order to make use of the coevolutionary data as a whole, i.e.

avoiding to data loss. Because SVM is a method which providesa way to preserve the spe-

cialities of the data set. In the following subsections we present how we made use of SVM

and its parameters in our experiments. RBF kernel is chosen for some reasons one of which

is it maps the data into a higher dimensional space, so unlikelinear kernel it can predict the

class labels well when the relation between the class labelsand attributes are nonlinear [4].

Linear kernel is a special case in RBF kernel since as stated by Keerthi and Lin [16] linear

kernel with a penalty parameterC can achieve the same performance with RBF kernel with

someC, γ. Also sigmoid kernel also can give reach the same results by some parameters.

There are various kernel functions supplied, even the functions can be developed and fed by

the user in SVM. In our experiments we chose to use RBF kernel since it mostly adapts the

properties of our data. Problem of predicting protein-protein interactions fits cleanly into a

binary classification framework where SVMs discover whether a given pair of proteins inter-
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act or not. The essential question is how to represent the protein pairs [8]. The phylogenetic

profiles constitutes the feature vector supplied to SVM and since the interaction network does

not include any edge weight, the labels of the data are binary. The feature vector construction

will be mentioned in Section 3.3.

3.2.1 Parameter Selection in SVM

When running SVM, theC andγ parameters are significant to choose since different values

may effect the prediction accuracy values. That is why, it is essential to choose theC andγ

parameters which yields the optimum resulting values. The grid operation of libsvm is run

for the concatenated and ”exclusive or”ed profiles of the twodata sets in order to reach theC

andγ parameters that gives the most accurate predictions.

3.3 Integration of Pylogenetic Profiles for Feature Vector Construction

We applied two methods to integrate two phylogenetic profiles for the aim of constructing

the feature vectors which are concatenating the profiles andapplying exclusive or operation

on the profiles. The integration of phylogenetic profiles, asin Figure 3.1, is achieved by first

extracting the phylogenetic profiles of proteins individually which are represented by their

ORF names, then applying concatenation or exclusive or operations on the profile pairs both

for positive and negative interactions.
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Figure 3.1: Construction of data sets by integrating phylogenetic profiles

3.3.1 Concatenation of Profiles

The phylogenetic profiles are concatenated by directly adding the two profiles one after the

other. So in the concatenation of profiles method, the lengthof a feature vector becomes

2*number of organisms, i.e. 900 in our case. Therefore the set of organisms are repeated after

the 450th index. This method is aimed to keep the values in the two phylogenetic profiles

without losing any information in the feature set. Though the running time of training with

concatenated feature vectors is rather long, its prediction accuracy performance is superior to

taking exclusive or (xor) of two profiles method which is described below.

3.3.1.1 SVM Parameters for Concatenated Profiles

A grid search tool which is provided by the libsvm-2.84 package is employed to obtain the

optimumC andγ values which are used in the training phase of SVM. Below figures are the
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contours generated by the grid.py for each of the training data generated from the first data set

for the five experiments The center of the innermost frame gives the corresponding parameter

values:

Figure 3.2:C andγ parameters for concatenated profiles of first experiment
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Figure 3.3:C andγ parameters for concatenated profiles of two experiment

Figure 3.4:C andγ parameters for concatenated profiles of third experiment
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Figure 3.5:C andγ parameters for concatenated profiles of fourth experiment

Figure 3.6:C andγ parameters for concatenated profiles of fifth experiment
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TheC andγ values can be obtained from center of the innermost frames inthe contours, still

grid search tool provides the exact values in a source file. For the first four experiments we

obtained the same values which areC = 64 andγ = 0.015625 and for the last experiment the

C parameter took the value 16 and theγ stayed the same.

3.3.2 Applying Bitwise Exclusive Or (Xor) Operation on Profiles

In bitwise xor operation method, the two profile values in thesame index are xor’ed with

each other. Bitwise xor operation which gives 0 for the same input values (both 1 or both

0) and 1 to different input values, is a way to yield the difference of two profiles to SVM.

Hence the phylogenetic profile values possessing the same values will acquire the value 0 in

the resulting profile and the different ones will result in 1 which means the profile elements

having 1 and the ones having 0 as value will be treated the samein the resulting feature vector.

The outcome vector after xor operation has the same length with the two profiles which is 450

in our case. The xor operation between two bits is represented asa⊕ b = (a · b)+ (a · b) where

· and+ areand andor operations respectively anda andb are the inverses of a and b.

The training data constructed by the bitwise xor of the profiles could provide information

about the resemblance of the two profiles, however since the weight of a feature vector mem-

ber constructed from two 1’s or two 0’s will be the same for SVM, there might be some data

loss in the resulting feature vector.

3.3.2.1 SVM Parameters for Exclusive Or’ed Profiles

The parameter values for the first training data set constructed by making xor operation be-

tween the two feature vectors of paired proteins obtained are represented in the following

table.

TheC andγ values for all the samples of the second data set are taken as 32 and 0.015625

respectively since it takes too much time for the cross validation process to end. These two

values were also used as the optimal values in the experiments conducted in the AC method.
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Table 3.1:C andγ values for xor’ed profiles

C γ

1st 32 0.015625
2nd 8 0.015625
3rd 8 0.015625
4th 64 0.015625
5th 64 0.015625

3.4 Data Size Reduction

To reduce the training time of SVM while preserving the prediction accuracies for the in-

teractions, two data clustering methods and a random selection model are experimented and

compared. K-means clustering is one of the well-known and simplest clustering methods in

literature for obtaining a certain number of clusters in a data set. On the other hand another

data clustering method, named as Minimum Enclosing Ball Clustering is developed with some

modifications for reducing the data by selecting the most significant subset for SVM training.

3.4.1 Random Data Selection

Random selection is applied as a baseline method to demonstrate the significance of the other

clustering methods on the data in terms of accuracy. It is expected that the accuracy perfor-

mance with the data set which is randomly selected, producesworse results compared to the

other methods. We sample the training data sets of each of thefive samples for the size of the

10,20..100% over the whole training set each of which are obtained randomly.

3.4.2 Data Selection by K-means clustering

There might be some elements in the data that are more representative than the ones in the rest

of the data in that they can exhibit the characteristics of the whole data better than the others

or some elements can have the approximate significance valuein terms of their representa-

tiveness. In that case the elements have no benefit to be addedinto the training data, instead

adding the data which characterize the data no better than the others, increases the training

time. On the other hand some elements that mischaracterize the data set can exist. Discarding

the noisy data if there are any, is a considerable factor for enhancing the accuracy.
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K-means clustering technique is applied on the training data to gather more representative

elements from the data set. The experiments are done by picking the data closest to the

centroids of the clusters to generate the training set sincedata in the centroid is the one having

minimum distance to the other elements in the cluster and having the most representative

value among others. In k-means algorithm the distance between two points are calculated

with Euclidean distance metric. The number of clusters (thenumberk in the algorithm) is

selected as the number of data desired to be generated, i.e togenerate the subsets with 10-

100% of the whole set,k is picked as the data size for that run.

In the experiments for the first data set, the number of positive and negative data are desired

to be kept equal to be consistent with the AC [27] method. Thatis why the k-means clustering

method is applied on the positive and negative data separately, then the centroid points from

the two sets are associated to construct the training data set.

3.4.3 Data Selection by Minimum Enclosing Ball Clustering

A novel approach for the reduction of data size is developed in MEB clustering algorithm. We

then make a small modification in the algorithm and compare its result to the other techniques.

3.4.3.1 MEB Clustering Algorithm

The data size reduction algorithm proposed by [27] finds the smallest ball in a data set which

includes all the points and uses the core sets idea [10, 11] togenerate clusters in the data. Then

using Sequential Minimal Optimization(SMO) idea that theyproposed, they add the support

vectors which are cluster centers also.

Below are some of the definitions used in the MEB clustering algorithm as stated in [6] :

B(c, r) is the ball with centerc and radiusr.

The MEB of the set of pointsS = xi, ..., xm is the smalest ball that contains all the data in S

that is denoted asMEB(S ).

An approximation is applied since it is difficult to calculateMEB(S ) accurately. (1+ ε)-

approximation ofMEB(S ) is the ball denoted asB(c, (1+ ε)r), ε > 0 with r ≥ rMEB(S ) where

S ⊂ B((1+ ε)c, r).

To approximateMEB(S ) with (1 + ε) factor, k balls B1, B2, ..., Bk are obtained whereS ⊂
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B1 ∪ B2 ∪ ... ∪ Bk.

They make a guess about the number of clusters using the support vector number of the set.

They propose that the optimal number of clusters isl = 2
3 sv. The steps of the MEB algorithm

are as follows:

• First of first, they pick thel ball centersC = c1, c2, ..., cl randomly and they use the

same radiusr for all of the balls by a method that they proposed in their paper.

• Calculate the Euclidean distance of each data point to the center of the ball they belong

to. ϕ(xi) = ||xi − ck ||2 wherek = 1, 2, ..., l and select the point with maximum distance

any cluster. If this point is not inside any cluster, then continue with fourth step.

• Increase the radius of balls byδ, ε = ε + r
δ

until all the data is included in the balls

• Clustering is done withB = (ck, (1+ ε)r)

After the first clustering step is ended the data set is separated intol partitions. Then a binary

SVM classification follows to extract the support vectors inthe data set. At this step the data

reduction process starts. After the SVM classification, allthe points are assigned a label.

When the labels of data in a cluster differs, then only the center of the ball is included and

the rest of the cluster is ignored. If all the elements in a cluster possess the same label, all

the elements in that cluster are included. So the new data setis generated byC+ ∪ C− ∪

ωm whereC+ andC− are the centers of the clusters with all the elements having+ and−

labels respectively andωm represents the elements in the clusters with mixed labels. Next a

declustering is applied by including the data points which are also cluster centers. This step

raises the data size but enhances the accuracy of SVM. At lasta second stage SVM is applied

on the final training set.

3.4.3.2 Modified Minimum Enclosing Ball Clustering

Due to some uncertainties in the description of generation of balls in the MEB clustering

algorithm, we made some changes in first stage of the algorithm. Instead of separating the

data by partitioning by balls, we applied k-means clustering on the data. We used the same

number of clusters as in the MEB algorithm, i.e.2
3 sv and we applied the rest of the algorithm

as it is. So the steps that we performed are:
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• Separate the data by k-means clustering withk = 2
3 sv.

• Apply SVM on the data set to assign labels to each element.

• Include the the whole data in the clusters with elements having same labels and only

the elements in centroids of the clusters with mixed labels.

• Include the support vectors which are also cluster centroids.

• Apply the second stage SVM to the reduced data.

The Modified Ball Clustering method is applied on the whole training data set instead of

clustering the positive and negative sets separately as in the k-means case because it is difficult

to infer the number of data the MEB algorithm will return evenif an initial number of clusters

is given approximately at the beginning of the method.

3.5 Feature Selection

The data reduction is also applied on the feature vector sizeby picking the feature vector

elements wisely to preserve the same accuracies with the experiments done by the complete

feature vectors. We experimented three data reduction methods where a random feature se-

lection is tested to monitor the differences of other methods in performance.

3.5.1 Random Feature Selection

As in the case with random data selection, random feature selection is applied on each feature

vector to observe the effectiveness of the other feature selection methods in terms of accuracy.

In feature selection using phylogenetic trees, approximately 250 feature vectors were left after

the selection process. The same number of features with the random selection were picked

among 450 organisms for a fair comparison of the methods.

3.5.2 Clustering Organisms by Phylogenetic Trees

The phylogenetic tree that we used to make a clustering amongthe organisms was composed

of four levels. We cut the tree from a designated level and under each node in the cut level
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there is a grouping of organisms which lay in the leaves. We picked the organisms from

each group which have smallest distance to the other organisms in that group. The organisms

that we selected are the most representative ones of the entire organisms set genetically. We

experimented to cut the tree from each level and we obtained the most optimum results from

the third level. Table 3.2 represents the number of organisms generated for each cut level.

Table 3.2: The number of organisms for each cut level

cut level Num. of organisms
1 60
2 85
3* 250
4 438

In first and second levels most of the organisms are eliminated which causes some data loss,

while in the fourth level only a very small portion of the organisms are eliminated which

causes the feature vector not to be decreased in size sufficiently. After the most significant

elements under third level are accumulated together to formthe feature vector, the feature

vector length becomes 250 which is an adequate decrease in size.

3.5.3 Fisher’s Exact Test

We used Fisher’s exact test to assign p-values to each of the feature vector elements. The

p-values of a feature vector element gives a measure about how the element (i.e. the organism

corresponding to that element) classifies the data. We set the p-values of the features in order

and pick the first 250 to construct the feature vectors while making the length of the feature

vectors same with the random selection and phylogenetic tree clustering methods. As an

example below are the contingency tables and the p-values oftwo feature vector elements

which are the 100th and 308th organisms respectively .

As seen in the tables, the p-value of 308th element is fairly larger than the p-value of 100th

element, therefore, 100th organism is excluded from the feature vectors.

250 organisms obtained after feature selection by Fisher’stest can be viewed in Appendix

A.1.2.
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Table 3.3: Contingency tables for the 308th and 100th elements respectively

Label Avail. Unavail.

1 1130 4695
0 1835 4038

p-value=0.0902

Label Avail. Unavail.

1 39 5768
0 39 5834

p-value=6.1844E-50

3.6 Experimental Work

3.6.1 Data Size Reduction

The sequence of experiments for data size reduction techniques are combined together in the

Figure 3.7. After the data set construction phase which was described in Figure 3.1, the whole

data set is separated into 2 parts to compose the training andtesting partitions. The training

part is generated by randomly selecting the 60% of the whole set and rest of the data, 40% of

the whole set constitutes the testing part. This operation is repeated for five times to obtain 5

different training-testing sets.

For each training-testing sample, we applied the same experimental procedures. The train-

ing data is sampled into sets with different sizes (10,20,30,...,100% for the first PPI and

10,50,100% for the second PPI data) using the two of the data reduction techniques which

are random sampling and data selection by k-means clustering. For modified MEB cluster-

ing, the sampling is conducted for once since the data size after the reduction process can be

predetermined. SVM models for each training sample in each training set are generated by

training SVM. At last, the same test set is used to make predictions using these models to see

the incremental changes in the prediction values for different sized training sets. The accu-

racy, true positive rates (TPR) and false positive rates (FPR) are calculated for each prediction

result.
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Figure 3.7: The flowchart to represent the sequence of methods applied in the experiments for
data size reduction

3.6.2 Feature Selection

We applied the feature selection methods only on the training samples generated by the k-

means clustering. The same experimental procedures are conducted on every training-testing

sample as in the data sampling case. The flow diagram for feature selection is represented in
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Figure 3.8 fornth the training-testing sample wheren = 1, 2, .., 5. The feature vector sizes

in each data sample are reduced by performing three feature selection methods, i.e random

selection, selection by phylogenetic tree and selection byFischer’s test, thus three different

training sample sets are generated. The feature selection is also carried out on the test set since

the training and testing sets must have the same feature sizeto make a proper prediction.

Although the feature vector sizes are the same for each training sample after each feature

selection method (250 for each which is described in Chapter4), to select the same organisms

for the training-testing samples, the test set is sampled for each method. After we obtain the

models for each training data, the prediction is done for thecorresponding SVM model. Once

again the accuracy, TPR and FPR values are calculated for each prediction result.
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Figure 3.8: The flowchart to represent the sequence of methods applied in the experiments for
feature selection
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CHAPTER 4

RESULTS

In this section we present the two data sets used in the experiments then pointed out the

experimental results of our methods together with our comments and explanations on the

results.

4.1 Data Size Reduction Results

For the first data set the data samples for the 10,20,..100% ofthe whole training set are used for

training to compare the results of random sampling and k-means clustering methods. To make

the comparison between the performance of k-means and modified MEB clustering methods

modified MEB clustering is run for once for the whole data set because the size of the training

set comprised by the ball clustering method can not be previously determined. Then k-means

is run once more for comparing the prediction accuracies of k-means and modified MEB

clustering methods with same number of data. Thek parameter in k-means is picked as the

size of the data which is the output from the modified MEB clustering method. The prediction

accuracies and the ROC curves indicate that the data size reduction with k-means clustering

method exhibits higher performance than random selection and modified MEB clustering

methods. The modified MEB clustering technique is applied only on the complete training

data sets, i.e. the 100% of the training sets are sampled oncefor MEB clustering since size

of the data generated by MEB clustering is not known before the experiment even if we give

the number of clusters to generate in the algorithm. In the second stage of modified MEB

clustering, we observed that very few data was added to the data set generated by the first

stage. That is to say there are a few number support vectors inthe training sets which are also

cluster centers.
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Since the training and testing data belong to the same data set actually, they represent the

same characteristic of data. Therefore, while there are considerably large intervals among the

data sizes, the prediction accuracies do not exhibit a quitemuch difference.

The points in the ROC curves are obtained by finding the TPR-FPR values of each data sample

which are 10-100% of the training data. As the data size grows, the TPR also increases

whereas the FPR decreases. In the graphs the data sizes are smallest for the rightmost points

and largest for the leftmost values.

The samplings for feature selection methods are done over the samples obtained by k-means

clustering by selecting 250 of the profiles.

The results of the second PPi data are given by tables insteadof graphics. There are some

empty cells in the tables representing the results for the second data set. The empty cells are

because of the samples of the second data set which are not produced due to the memory or

space insufficiencies. The second PPI data can not be sampled for all the percentage values

used in the first PPI because of some lack of space. Therefore the random sampling is done for

10, 50% of the training data. On the other hand, 50% of the datafor sampling with k-means

clustering could not be obtained due to the lack of memory andwe settled for sampling

10% of the training data in k-means clustering. Note that, because of this memory issue,

the modified MEB clustering samples are taken over the 50% of the training data which we

obtained randomly. Due to the insufficiency in memory for the experiments done by the

second PPI data, the comparison between k-means and modifiedMEB clustering methods are

done on the data samples constructed by randomly selecting 50% of the whole training data.

Therefore the values for the comparison between the two clustering methods in the tables,

belong to the experiments applied on the 50% of the training sets.

4.1.1 First PPI Data

4.1.1.1 Xor’ed Profiles

The average of accuracy results for the five samples of the first data set which are constructed

by applying xor operation on the profiles are as in Figure 4.1

It is rather clear that the average of the accuracies for the five experiments of samples con-
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Figure 4.1: Accuracy results for the first PPI data constructed by xor operation

structed by k-means clustering have higher values than the samples randomly generated. The

size of the data generated from modified MEB clustering is 77%of the whole training set size.

Therefore, in order to make a fair comparison a k-means clustering is also applied to make a

sample of 77% of the training sets. It is seen in Figure 4.1 that the accuracies of k-means and

modified MEB clustering are very close to each other. However, in k-means clustering there

are some empty clusters generated which causes the data sizeto be smaller than the number

of clusters, i.e. thek value. Therefore the accuracy values calculated for each data size are

actually belong to data samples with smaller data sizes. Forinstance 77% of the training

data includes 5424 elements, but when k-means is run for 5425clusters, the resulting data set

includes 4984 elements which corresponds to 71% of the training set.

It is difficult to compare k-means clustering with modified MEB clustering with exactly the

same sizes of data. Assuming that k-means gives at least the same accuracy with modified

MEB clustering, we can conclude that, when run with exactly the same number of elements,

k-means can give a higher accuracy than modified MEB clustering method.

Below is the figure for the ROC curves of the data samples generated by applying xor oper-

ation on the profiles for the three sampling method. According to both TPR and FPR values,

the training data sampled by k-means clustering exhibits better performance, i.e higher TPR

and lower FPR. In comparison between the k-means and modifiedMEB clustering for sam-
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pling 77% of the whole training data, k-means results in higher TPR values whereas MEB

clustering has lower FPR values. So it is not definitely observed which clustering method has

better performance in TPR-FPR comparison.

Figure 4.2: ROC curves for the first PPI data constructed by xor’ing

4.1.1.2 Concatenated Profiles

The average of accuracy results for the five samples of the first data set which are constructed

by concatenating the profiles are as in Figure 4.3.

The accuracy values of k-means clustering is superior to random sampling for each data sam-

ple as in the xor’ed case. Furthermore the performance of k-means exceeds modified MEB

clustering for the data size which is 73% of the training set.Again k-means is run for thek

value corresponding to 73% of the data which is 5123 clusters, but due to the empty clusters

generated, 4920 elements are left from the k-means run. In spite of smaller training data size,

k-means algorithm achieved a higher performance than modified MEB in accuracy.

The ROC curves in Figure 4.4 clearly represents the achievement of k-means clustering

method over random data selection since as the data size getslarger, the points in the graph

gets higher TPR and lower FPR values which brings the points belonging to k-means clus-

tering closer to left and upper corner of the graph when compared to random data selection.

Likewise, k-means reaches a better TPR-FPR value than modified MEB clusering. So, accord-
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Figure 4.3: Accuracy results for the first PPI data constructed by concatenation

Figure 4.4: ROC curves for the first PPI data constructed by concatenating

ing to the experiments conducted by using the training data generated by the concatenation of

profiles, the best performance is achieved with training data clustered by k-means clustering

both in accuracy and in ROC curves.
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4.1.2 Second PPI Data

4.1.2.1 Xor’ed Profiles

The prediction accuracies for the training data constructed by the xor’ed profiles of second

data set are given in the below table. The k-means accuracy results for 10% of data have

higher values than the random case as expected. When modifiedMEB clustering is run on

the 50% of the training set, the resulting training data sample includes 67% of the half of the

training data. K-means also reaches a higher accuracy valuefor the 67% data sample.

Table 4.1: Accuracy results for the second PPI data constructed by xor operation

K-means clustering algorithm shows lower TPR performance than random selection whereas

it has lower FPR values on 10% of the training set. While k-means results in a lower FPR

value than modified MEB clustering, it exhibits a worse TPR value with 67% of the half of

the data. Thus a definite comment can not be made according to the TPR-FPR values to

make a comparison between the two clustering techniques andbetween random selection and

k-means selection.

Table 4.2: TPR-FPR Results for the second PPI data constructed by xor operation

4.1.2.2 Concatenated Profiles

The size of the data sample generated by the modified MEB clustering of the randomly se-

lected half of the training set is the 67% of the half of the data as in the xor case above.

As represented in Table 4.3 the samples of second data generated by concatenation gives the
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higher prediction accuracy values in k-means clustering when compared with both random

selection method for 10% sized data and modified MEB clustering for 67% of the data.

Table 4.3: Accuracy results for the second PPI data constructed by concatenation

K-means outperforms random data selection in both TPR and FPR values calculated by using

the 10% of the training data. However, in comparison of the clustering algorithm perfor-

mances, k-means has a better FPR performance and modified MEBclustering shows a better

TPR value which means it can not be figured out which clustering method outperforms the

other by looking at the TPR-FPR values for the 67% of the half of the training set.

Table 4.4: TPR-FPR results for the second PPI data constructed by concatenation

4.2 Feature Selection Results

The prediction accuracies of the feature selection methodscould not be superior to the data

reduction methods, furthermore the accuracy values in datareduction techniques can not be

reached in feature selection but still we made the comparison among the feature selection

methods. As expected random feature selection representedthe worst performance among

the three feature selection techniques. The phylogenetic tree method gave higher accuracy

results in some of the experiments compared to the Fisher’s exact test method. The reason of

this difference can be interpreted that phylogenetic tree method considers the coevolutionary

characteristic in the data while Fisher’s exact test selects the feature elements according to

only statistical measures. However, those overtaking values of phylogenetic tree method can

not be protected in some of the experiments. Hence an interpretation on the comparison of

the feature selection methods can not be definitely made.
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4.2.1 First PPI Data

4.2.1.1 Xor’ed Profiles

The Figure 4.5 represents that Fisher’s test method starts with the worst accuracy for the

smallest data, but as the data size grows, its accuracy reaches to higher values. Still, the

prediction accuracies of Fisher’s test and phylogenetic tree methods are close to each other

for xor’ed data sets. On the other hand, the training data sets whose features are randomly

selected, gives the worst accuracy results when compared tothe other two methods.

Figure 4.5: Accuracy results for the first PPI data constructed by xor’ing and with feature
selection

For the ROC curves, it can be observed that Fisher’s test and phylogenetic tree methods ex-

hibits higher TPR and FPR performances especially for largedata sizes compared to random

sampling. But in general while the TPR values of Fisher’s test and phylogenetic tree seems to

be higher than those of random sampling the case is reversed for FPR values. Specifically for

smaller training data sizes, FPR values of phylogenetic tree method represents higher values

than those of others. The training data whose features are selected randomly results in the

lowest FPR values except for the experiments done by the 100%of the training data.

According to the TPR-FPR values in the Figure 4.6 any specificinterpretation to decide the

best method can not be made. For TPR values of Fisher’s test and phylogenetic tree methods

45



Figure 4.6: ROC curves for the first PPI data constructed by xor’ing and with feature selection

are close to each other for the average case while random feature selection have the lowest

FPR values.

4.2.1.2 Concatenated Profiles

According to Figure 4.7 the prediction accuracies of Fisher’s test and phylogenetic tree meth-

ods are very close to each other for all of the data sizes. It isclearly observed that random

feature selection represents the lowest accuracy performances for all of the data sizes except

for the 10% case. Therefore, phylogenetic tree and Fisher’stest methods exhibit very close

accuracy performances so that none is superior to the other.

In Figure 4.8, the Fisher’s test represents the highest TPR values for the last 5 training data

samples (i.e. 60, 70,..., 100%) whereas the TPR values of random feature selection reach

the highest for the first 5 experiments compared to those of the other methods. The training

data whose features are selected by the phylogenetic tree method has the lowest TPR val-

ues whereas, it has the highest performance in FPR values. Again the ROC curves of the

three feature selection methods can not provide making a definite interpretation but we can

only make comments about the performances of the methods over their TPR and FPR values

individually.
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Figure 4.7: Accuracy results for the first PPI data constructed by concatenating and with
feature selection

Figure 4.8: ROC curves for the first PPI data constructed by concatenating and with feature
selection

4.2.2 Second PPI Data

4.2.2.1 Xor’ed Profiles

The prediction accuracies in Table 4.5 represent that randomly selected feature vectors of 10%

of the the training data outperforms the other methods in accuracy. When trained by the whole
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data set, the features selected by phylogenetic tree methodgives the highest accuracy value

among other methods and also Fisher’s test method outperforms random feature selection for

100% of the training data.

Table 4.5: Accuracy results for the second PPI data constructed by xor operation and with
feature selection

Random selection method is superior to other feature selection techniques for the FPR values

obtained by training both of the data samples. Training by 10% of the data set whose features

are selected by Fisher’s test results in higher TPR value than the others whereas phylogenetic

tree method applied on the whole training set produces higher TPR. We can not make an

inference from the values in Table 4.6 to decide on the best method since the results do not

provide a consistency with each other.

Table 4.6: TPR-FPR values for the second PPI data constructed by xor operation and with
feature selection

4.2.2.2 Concatenated Profiles

The accuracy values in Table 4.7 obtained from the training sets which are formed by con-

catenation of profiles of proteins in second PPI data represents that phylogenetic tree method

outperforms the other methods for both of the data sizes.

Table 4.7: Accuracy results for the second PPI data constructed by concatenation and with
feature selection

The TPR values obtained from training by the data set whose features are selected by phyloge-

netic tree method exhibits the highest values among TPR values of other methods. However,
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for the FPR values, as in the xor’ed profiles of second data set, the random feature selection

method provides the best results. On the hand, the comparison of FPR values of phylogenetic

tree and Fisher’s test methods points out that phylogenetictree has lower FPR for 10% of

sample and Fisher’s test has lower FPR values for the whole training data set. In spite that the

accuracy and TPR values of phylogenetic tree outperforms Fisher’s test, the case is reversed

for FPR values.

Table 4.8: TPR-FPR values for the second PPI data constructed by concatenation and with
feature selection

4.3 Prediction by Bayesian Learning

Bayesian Learning method is applied on the two PPI data to make a comparison with the

predictions of SVM learning. In Bayesian learning the feature vectors are converted into

a scalar value by applying a similarity measure on the profiles. We expect that this con-

version causes some data loss in the training data since in SVM training we protect the

co-evolutionary knowledge by keeping the profiles values. Therefore the prediction values

obtained by Bayesian learning are expected to be lower than those obtained from SVM learn-

ing.

The similarity of two phylogenetic profiles are calculated by 3 methods; match count, mutual

information, and hypergeometric distribution. First of first the similarity measures for the

protein pairs in both the training and test sets are calculated. The protein pairs in training

set are sorted according to these similarity scores. We calculate the positive and negative

likelihoods for the predetermined intervals in the sorted list, i.e. the likelihood of interacting

for each interval is calculated. The interval which resultsin the highest accuracy value is

decided to be the decision threshold. Then the decision threshold is performed on the test set

to obtain the accuracy values.

Below are the prediction accuracy results of Bayesian learning for the two PPI data.
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4.3.1 First PPI Data

The prediction accuracies generated by the Bayesian learning results in lower values com-

pared to prediction accuracies of SVM learning in the first PPI data considering both data and

feature selection methods:

• match count: 0.58

• mutual information: 0.62

• hypergeometric distribution: 0.57

4.3.2 Second PPI Data

The second PPI data denotes approximate accuracy values with SVM learning except the

experiment conducted by the similarities calculated by hypergeometric distribution measure.

Furthermore, the accuracy values are superior to the valuesgenerated by training data obtained

from the feature selection in SVM learning. Still it can be concluded that SVM learning using

all the organisms to construct the feature vectors, i.e. without feature selection, reaches higher

prediction values compared to those obtained from Bayesianlearning.

• match count: 0.80

• mutual information: 0.80

• hypergeometric distribution: 0.53

4.4 Training Times for Data Sets Sampled from First PPI Data

Figure 4.4 includes the training times for the different sized training data which are sampled

from some of the sampling methods described. The training times for the data samples gen-

erated by concatenation of profiles, xor of the profiles and feature selection by Fisher’s test

on concatenated profiles and feature selection by Fisher’s test on xor’ed profiles are recorded.

There is no specific reason for choosing the data samples withFisher’s test method since the

data sizes generated by feature selection method are the same. The aim here is to measure
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the training times for various sizes of training data. The number of training data, that is to

say the number of interactions do not change for each sample of the 4 methods. Each sample

constitutes the 10,20, ..., 100% of the training data set. The data size changes with the fea-

ture vector size which also affects the training time of SVM. The training data generated by

the concatenated profiles is composed of feature vectors with size 900, whereas the feature

vectors of the training data generated by xor’ed profiles arecomposed of 450 features. On

the other hand, the training data with concatenated profileswhich are seleced by Fisher’s test

include 500 features and the training data with xor’ed profiles and sampled with Fisher’s test

are composed of 250 features. As the interval between the data sizes grow, the training time

of SVM also increases with larger intervals. Although training data with concatenated pro-

files exhibits the worst performance in training time, it hasthe crowning prediction accuracy

values.

Figure 4.9: Running times for different sized data sampled from first PPI data
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

Prediction of protein-protein interaction problems involving supervised learning may require

the training time to be long. Since SVM solves the learning problem in quadratic time, as the

data size grows it needs vast amount of time for training. In this thesis work, we proposed to

use data reduction techniques to select the most representative data from the training set and

compared prediction accuracy performances of these techniques. The phylogenetic profiles

of the proteins, which incorporated the coevolution knowledge in the learning, constituted

the feature vectors. For the construction of protein-protein interactions various data sources

which are publicly available are exploited. The experiments are conducted for two data sets

one of which is the same data set as generated in the AC method,that is another method using

SVMs to predict protein interactions, and the other data setthat we constructed having a larger

size . We separated the data as the training and testing samples in same way described in the

AC method to conduct the experiments. For all training data sizes, the prediction accuracy

values generated by the training data with concatenated profiles achieves higher values than

training data with xor’ed profiles.

For data reduction we applied k-means clustering and a modified version of MEB clustering

techniques together with random data selection. In the experiments it was clearly seen that

k-means clustering resulted in higher performance values in accuracy than the other two data

reductions. But the TPR-FPR values did not give definite results to prove the dominance of

one method over the other.

We applied the data reduction in the second dimension of the data by reducing the feature
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vector size. We made a grouping among 450 organisms according to the third cut level of the

phylogenetic tree that we used. In each group the organisms having the smallest distance to

other organisms are selected and 250 organisms constitutedthe new feature vectors in the end.

To make the comparison of the feature selection techniques with the same sizes, we applied

the other methods on the training data, Fisher’s test and random selection, by selecting 250

organisms. We observed that when feature selection appliedon the training data, the same

prediction accuracy values could not be kept as in the original training data which means even

though the most significant features are tried to be picked, data loss could not be avoided. But

when the feature selection methods are compared among each other, random feature selection

displayed the worst accuracy values in most of the experiments but this is not valid for the

TPR-FPR values, since random selection could outperformedthe other methods in some of

the experiments. A clear distinction between phylogenetictree and Fisher’s test methods,

to decide on which one is superior, could not be made according to the the accuracy and

TPR-FPR values since the experimental results are not consistent with each other most of the

time.

5.2 Future Work

In the k-means algorithm, the resulting clusters change foreach run since the results depend

on the initial distribution of the centroids. It minimizes intra-cluster variance but does not

ensure a global minimum of variance. In order to get better results, the initial distributions

can be arranged systematically instead of randomly selection. Another alternative is that the

algorithm can be run for several times until satisfying results are obtained.

Although k-means obtained relatively good results, to overcome the weaknesses of k-means

other alternatives of k-means could also be tried such as k-medoids, fuzzy c-mean and k-

mode. Apart from these other clustering methods could also be tried on the same data sets

considering that other methods might discover the characteristics of the data sets better. These

methods could be Self Organized Maps (SOM), hierarchical clustering, Gaussian Mixture or

Learning Vector Quantization (LVQ).

In construction of the feature vectors 1 and 0 were used to dictate the availability of homology

between two organisms. Instead of using binary numbers, floating point numbers could be
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preferred to make use of homology by value instead of its availability. In this case the feature

vectors would include multiple values which may cause the learner to run in longer time but

may give more accurate results.

The prediction accuracies can be increased by including some additional data, i.e GO annota-

tions of proteins, to the training data set. To achieve this some new feature vector construction

techniques can be applied to manage to include multiple data.

Finally utilization of a protein-protein interaction network where the edges include weights

can provide more detailed knowledge and enhance the prediction results.
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APPENDIX A

ORGANISMS

A.1 Organisms Used for Constructing the Phylogenetic Profiles

Below are the shortened names for the 450 organisms which areused to generate the phylo-

genetic profiles of the proteins of yeast organism.

bqu cfa eba sme rxy dpyo tan sma dcbr nme reh cyb cya nma jan tac dme cel ttj tth tte lpp cef

lpn dbmo lpl vpa pho mxa xla bps ilo lpf hdu bpn bpm rde pha bpe bpa gox cdi aha rco osa

hwa pgi ccr ddha ago hch mca erw dkwa eru cch wbr pfu wbm cca pfo cvi pfl erg mbo afu

cbu rbe dtni pfa rba afm ayw sit sil lmo pen bms rty lmf lme yps tpv lma gme ypn mtu ypm

ypk hal bmf bme mtp mac bmb ype bma cal aeh hac ypa ctr mth shm tpacac cab mtc wsu she

blo cte sha llc ctc dyli lla cta rsp nha msu bli rso bld hso pcu ade sgl pcr ngo ooe hsa rru csa

xft pca gka sfx sfv dge sfu dncr sfr aci ace crp syw ljo sfl xfa uursyn dfru ava syg nfa syf sye

syd abo syc bja ser neu sep pub net pau pat neq par lin tma aba lildsba det dcnb sec pai lic

ptr rpr pae pto mpu pac fal pab hpy sdy deh ftu mpn atu cpv cpt rperpd cps ftl aae sdn cpr rpc

rpb rpa mpe hpj fth cpn ftf mpa cpj ath sde swo eli hpa cpf pst cpeatc psp cpa wol xcv ddi

nwi tko bhe dde bha sco psb xcc xcb lga rno dvu gga bga art vfi sbo sus bfs hne bfr fra cne

mmy bfl mmu mmr mmp sav mmo sau sat sas sar cmu rme sao san sty nar sam xtr oih sal sak

lxx sai stt mmc xac mma sag sto sac dar ppu hma sab stm stl cme saappr sth ste stc mlo ppe

dcin rle bxe mle dame poy aph ssp sso ehi ape ssn dspd ldb dsy ddpo pol ssc lwe vvy nse vvu

aor dkla vch bcz sru mka dpkn bcn dmgr tfu bcl lca bci bch fnu bcebcc gvi dcgr bca lbu lbr

cjr dre lbl bbu mja zmo lbj cjk ani dra bbr pmu pmt cje ana gbe pmnter pmm efa bur pmi tel

hit bba spz hin pma spy buc spt sps bat spr bas bar dsmi spo spn plu plt spm ban mhy lac spk

bam ama spj spi sph spg baf dps spd nph tdn spb spa chy bab baa btkchu tws bth tde rha bte

cho xoo bta xom hhe twh son tcx gsu bsu tcr mgm noc ecv ecu tvo ecsmge ecp eco ecn cgl
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mga ecj eci ech ece rfr cgb ecc tbr eca mfl rfe tbd smu daga nmu cfereu ret

A.1.1 The Organism Selected by Phylogenetic Tree

Below are the shortened organism names which are selected bythe phylogenetic tree method

used for feature selection.

cfa rxy tan sma cyb cya tac dme cel ttj tth lpp cef lpn lpl vpa phoilo lpf hdu pha cdi aha osa

hwa pgi ago hch mca dkwa cch pfu cca pfo pfl mbo afu cbu pfa rba aywpen lme tpv lma mtu

hal mtp mac cal aeh ctr mth shm tpa cab mtc she blo cte llc lla ctamsu hso pcu pcr ooe hsa

csa xft dge sfr aci ace crp syw ljo xfa uur syn ava syg nfa syf syesyd abo syc pau pat neq par

tma aba lil dsba det pai lic ptr pae pto mpu pac fal pab deh ftu mpn cpv cpt cps ftl aae sdn

mpe fth cpn ftf mpa cpj sde swo pst psp cpa xcv ddi tko sco psb xccxcb lga rno bga art vfi

sus bfs bfr fra cne mmy mmu mmp mmo cmu san sak lxx sai mmc xac mmasag sto ppu hma

stl cme ppr sth ste stc ppe dcin mle poy sso ehi ape dspd ldb ssc vvy vvu vch sru mka dpkn

tfu lca bci fnu gvi lbu lbr lbl bbu mja lbj cjk dra pmu pmt ana pmnter pmm efa pmi tel hit

spz hin pma spy sps spr dsmi spn plt spm mhy lac spk spj spi sph spg baf spd nph spb spa chu

tws bth tde rha cho xoo bta xom twh son tcx tcr noc ecu tvo mge cglmga cgb tbr mfl smu cfe

A.1.2 The Organisms Selected by Fisher’s Test

Below are the shortened organism names which are selected bythe Fisher’s Test method used

for feature selection.

dspd dsmi ago dkwa neq osa dcgr dsba dkla ssc cal ddha pho sto sai tko mja ecu mka pab baf

pfu mac ser mmp bbu afu bga crp spa ooe mge sso mma ape mga ljo lgasps mpu hpj pai twh

sep ppe pto ctc ayw spm spi tel bci tvo tma cac spk spg sph spj mmotws spy cfe spz ter uur

mpn lbr sha spb hpy poy tde mtp mpe hpa hac tac rba fnu cpt lpl pltcca mfl bcc mhy cpa lac

ani tpa det cta san blo ldb mmy lbu cab cpn ctr cte bas sak afm cpjstc cpe sag ava cyb cch

lme cpf mth hwa cmu dsy fth tte pac stl cbu lca bca efa ste dyli pcu hma ftu aor ftf lmo bab

lla cya pgi lwe chy xtr deh ssp sus chu nph lxx aba ftl tfu sab cprbuc wbr sco lpf swo cho gvi

ana dncr dpyo lin art bcz rbe llc smu hal mle hhe gme sau sav cgb syn pfl aae lpp mxa baa lmf

sfu bce dpkn bth bar lpn bpn wol bsu sar sao fra sam spn cdi cgl dge ade sas dar ehi bfl bqu

mbo saa mtu bfs bfr cme bat ban tbr cjk bld pfa mtc bhe gox fal bliama dde rfe cpv btk cps
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dvu spd spr bcl psp sgl xfa pau syc dmgr pae dcnb gka oih cne vfi cef pmn sat pmt tpv sde
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