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Head of Department, Department of Scientific Computing

Prof. Dr. Gerhard Wilhelm Weber
Supervisor, Department of Scientific Computing, IAM, METU

Prof. Dr. John Shawe-Taylor
Co-supervisor, Department of Computer Science, UCL

Examining Committee Members:

Prof. Dr. Volkan Atalay
Department of Computer Engineering, METU

Prof. Dr. Gerhard Wilhelm Weber, Germany
Department of Scientific Computing, IAM, METU

Prof. Dr. John Shawe-Taylor, UK
Department of Computer Science, UCL

Assoc. Prof. İnci Batmaz
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ABSTRACT

A MATHEMATICAL CONTRIBUTION OF STATISTICAL LEARNING AND
CONTINUOUS OPTIMIZATION USING INFINITE AND SEMI-INFINITE

PROGRAMMING TO COMPUTATIONAL STATISTICS

Özöğür-Akyüz, Süreyya

Ph.D., Department of Scientific Computing

Supervisor : Prof. Dr. Gerhard Wilhelm Weber

Co-Supervisor : Prof. Dr. John Shawe-Taylor

February 2009, 135 pages

A subfield of artificial intelligence, machine learning (ML), is concerned with the develop-

ment of algorithms that allow computers to “learn”. ML is the process of training a system

with large number of examples, extracting rules and finding patterns in order to make pre-

dictions on new data points (examples). The most common machine learning schemes are

supervised, semi-supervised, unsupervised and reinforcement learning. These schemes apply

to natural language processing, search engines, medical diagnosis, bioinformatics, detecting

credit fraud, stock market analysis, classification of DNA sequences, speech and hand writing

recognition in computer vision, to encounter just a few. In this thesis, we focus on Support

Vector Machines (SVMs) which is one of the most powerful methods currently in machine

learning.

As a first motivation, we develop a model selection tool induced into SVM in order to solve

a particular problem of computational biology which is prediction of eukaryotic pro-peptide

cleavage site applied on the real data collected from NCBI data bank. Based on our biolog-

ical example, a generalized model selection method is employed as a generalization for all
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kinds of learning problems. In ML algorithms, one of the crucial issues is the representation

of the data. Discrete geometric structures and, especially, linear separability of the data play

an important role in ML. If the data is not linearly separable, a kernel function transforms

the nonlinear data into a higher-dimensional space in which the nonlinear data are linearly

separable. As the data become heterogeneous and large-scale, single kernel methods become

insufficient to classify nonlinear data. Convex combinations of kernels were developed to

classify this kind of data [8]. Nevertheless, selection of the finite combinations of kernels

are limited up to a finite choice. In order to overcome this discrepancy, we propose a novel

method of “infinite” kernel combinations for learning problems with the help of infinite and

semi-infinite programming regarding all elements in kernel space. This will provide to study

variations of combinations of kernels when considering heterogeneous data in real-world ap-

plications. Combination of kernels can be done, e.g., along a homotopy parameter or a more

specific parameter. Looking at all infinitesimally fine convex combinations of the kernels

from the infinite kernel set, the margin is maximized subject to an infinite number of con-

straints with a compact index set and an additional (Riemann-Stieltjes) integral constraint

due to the combinations. After a parametrization in the space of probability measures, it be-

comes semi-infinite. We analyze the regularity conditions which satisfy the Reduction Ansatz

and discuss the type of distribution functions within the structure of the constraints and our

bilevel optimization problem. Finally, we adapted well known numerical methods of semi-

infinite programming to our new kernel machine. We improved the discretization method

for our specific model and proposed two new algorithms. We proved the convergence of the

numerical methods and we analyzed the conditions and assumptions of these convergence

theorems such as optimality and convergence.

Keywords: Statistical Learning Theory, Support Vector Machines, Continuous Optimiza-

tion, Computational Biology, Infinite Programming, Semi-Infinite Programming, Reduction

Ansatz, Discretization, Exchange Methods, Numerical Optimization, Regularization, Data

Mining, Inverse Problems
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ÖZ

İSTATİSTİKSEL ÖĞRENME VE SÜREKLİ OPTİMİZASYON YÖNTEMLERİNİN
SONSUZ VE YARI SONSUZ PROGRAMLAMA KULLANILARAK HESAPLAMALI

İSTATİSTİĞE UYGULANMASI

Özöğür-Akyüz, Süreyya

Doktora, Bilimsel Hesaplama Bölümü

Tez Yöneticisi : Prof. Dr. Gerhard Wilhelm Weber

Ortak Tez Yöneticisi : Prof. Dr. John Shawe-Taylor

Şubat 2009, 135 sayfa

Makina öğrenimi, yapay zekanın bilgisayarların öğrenimini sağlayan algoritmaların geliştirilmesi

ile ilgilenen bir alt alanıdır. Bu yöntem, sisteme ait kuralları ve sablonları çok fazla sayıda

örnek ile eğiterek çıktısı bilinmeyen yeni veri noktalarını tahmin etme sürecidir. Yaygın

makine öğrenimi problemleri denetlenmiş öğrenim, denetlenmemiş öğrenim, yarı denetlenmiş

öğrenim ve desteklenmiş öğrenim vb. alt başlıklardan oluşur. Bu alan doğal dil işleme, arama

motorları, medikal diagnoz, bioinformatik, kredi kartı sahtekarlığı tespiti, borsa analizi, DNA

dizilerinin sınıflandırılması, konuşma ve el yazısı tanıma ve obje tanıma gibi pek çok uygu-

lamayı içermektedir. Bu tezde, makina ögrenimi alanları içerisinde en güçlü metodlardan biri

olan Destekçi Vektor Makinaları (DVM) üzerine yoğunlaşılacaktır.

İlk motivasyon olarak, NCBI veri bankasından derlenmiş gerçel veri üzerinde ökaryotik pro-

peptid kesim yerlerini sorgulayan biyoloji problemini çözmek için SVM metodunun iç erisinde

model seçimi yapan bir araç geliştirilmiştir. Biyolojik problem esas alınarak bulunan bir

önceki model seçimi yöntemi, çeşitli veri kümelerine de uygulanabilir halde genelleştirilmiştir.

Makine ögrenimi algoritmalarında önemli bir unsur da verinin ifade ya da gösterim biçimidir.
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Ayrık geometrik şekiller, özellikle verinin doğrusal olarak ayrilabilirliği makine ögrenimi

yöntemlerinde önemli rol oynamaktadır. Doğrusal olarak ayrılamayan veri kümelerinde,

çekirdek (kernel) fonksiyonu ile doğrusal olmayan veriler yüksek boyutlu uzaya taşınarak

lineer ayrılabilir hale getirilmektedir. Çok boyutlu ve heterojen kaynaklı veri kümelerinde

tek çekirdekli sınıflandırma algoritmaları doğrusal olmayan veriyi sınıflandırmakta yetersiz

kalmaktadır. Bu tür veriyi sınıflandırmak için çekirdeklerin (kernellerin) dısbükey kombi-

nasyonlarından oluşan çoklu çekirdek öğrenim yöntemi geliştirilmiştir [8]. Buna rağmen

çoklu çekirdek ögrenimindeki çekirdeklerin seçimi sınırlı sayı ile kısıtlıdır. Bu eksikliğin

giderilmesi için bu tezde çekirdek uzayının tüm elemanlarını kapsayan sonsuz ve yarısonsuz

programlama ile modellenen sonsuz çekirdek öğrenimi yöntemi önerilmiştir. Sonsuz çekirdek

ögrenimi sayesinde gerçel hayat problemlerinde karşımıza çıkan heterojen ve çok boyut-

taki veri kümelerinin sınıflandırıldığı durumlarda, olası bütün çeşitleri kapsayan çekirdeklerin

(kernel) kombinasyonları incelenmiş olacaktır. Çekirdeklerin kombinasyonları homotopi para-

metreleri sayesinde ifade edilmiştir. Sonsuz çekirdek uzayında Riemann-Stieltjes integrali

ile sonsuz sayıdakı çekirdeğin kombinasyonuna bakılarak, tıkız sonsuz indeks seti altında

iki sınıf arasındaki uzaklık maksimize edilmiştir. Sonsuz programlama olarak modellenen

sınıflandırma problemi, paramterizasyon ile yarı sonsuz programlamaya indirgenmiştir. İndir-

geme ansatz gerekliliklerini sağlayan, düzenlilik koşulları incelenerek, kısıt yapılarıve iki se-

viyeli optimizasyon problemi içerisinde çeşitli dağılım fonksiyonları analiz edilmiştir. Son

olarak yarısonsuz programlamaya uygulanan bilinen nümerik yöntemler önerdiğimiz çekirdek

makinasına uyarlanmıştır. Önerilen model için uyarlanan ayrıştırma yöntemini geliştirilip

iki ayrı algoritma geliştirilmiştir. Bu problemin nümerik yöntemler ile teorik bazlı analizi

yapılmış ve optimal sonucun varlığı ve yakınsaması için gerekli koşullar araştırılmıştır.

Anahtar Kelimeler: İstatistiksel Öğrenme, Destekçi Vektör Makinaları, Sürekli Optimiza-

syon, Sonsuz Programlama, Yarısonsuz Programlama,, Indirgeme Koşulları, Ayrıştırma, Deği-

şim Metodu, Numerik Optimizasyon, Düzenleştirme, Veri Madenciliği, Ters Problemler
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families for their endless supports. I am grateful that I have such great parents in my life and

I am thankful for their guidance and their life experience. I would like to special thanks to

my dad and mum for all kinds of supports and for the effort in providing the best conditions

anytime.

x



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
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CHAPTER 1

INTRODUCTION

This dissertation presents a new approach to model selection and kernel methods in machine

learning (ML), specifically for support vector machines (SVMs), by using infinite program-

ming (IP) and semi-infinite programming (SIP). Machine learning is a subfield of artificial

intelligence (AI) which deals with extracting rules and patterns from large data sets when

training points are provided at input, aiming at generating a prediction on new data sets.

The purpose of this chapter is: 1) to explain classification problems in literature; 2) to intro-

duce the problem addressed in this dissertation; 3) to summarize the current state of SVMs

and machine learning domains to discuss the needs for new kernel methods; as well as to

provide a concise description of the approach introduced in this work.

In the following section, we point out the main contributions and define the outline of the

dissertation.

1.1 CLASSIFICATION PROBLEM IN MACHINE LEARNING

The availability in recent years of large databases in biology, chemistry,engineering sciences

has posed new problems and challenges to the scientific community. In this context, classifi-

cation is still a major conundrum and central research topic [19, 52, 53, 54, 71]. Therefore,

it is very difficult to analyze and understand the behaviour or structure of the data by human

capability. Computers take place the human work load by artificial intelligence techniques.

Machine learning is a subfield of artificial intelligence which facilitates (or promotes) learning

rules that characterize input data, and provide a framework that allows for predictions when

new samples are tested. Classification problems belong to the major tasks in ML which has
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many application areas in real-world problems such as bioinformatics, biomedicine, cancer

research, image processing, computer vision, finance, marketing and business.

In this thesis, one of the most powerful methods, SVMs, is discussed for the classification

task. The target of an SVM is to classify the data by maximizing the margin (distance) be-

tween classes by a hyperplane. Mathematically, it corresponds to solve an (optimization)

problem which provides to find the best classifier on a given set of examples. The prediction

step is done by testing new samples on a best classifier function which has already been de-

rived from optimization problem before. The choose of the best classifier depends on model

parameters; this implies the model selection part of the classification problem. If the data are

not linearly separable, such a hyperplane cannot be found by the SVM problem. In such cases,

a transformation technique of the data points to the higher-dimensional space is given by the

so-called kernel methods, aiming classification of data linearly by using a nonlinear mapping

with a kernel function. As a result, there are two major problems when solving classification

problems: 1) model selection and 2) kernel learning. In real-world applications of heteroge-

neous source of data and large scale data, multiple kernel learning (MKL) has been developed

[8, 71]. MKL allows to enlarge the selection and use the facility of a combination of differ-

ent kernels for heterogeneous kinds of data. With the help of multiple kernels, the similarity

measurement becomes more effective if the data are generated from a heterogeneous source.

Detailed information can be found in [8] with real-world examples are also provided. We give

a brief introduction on MKL in Chapter 5.

One of the issues in the design of the SVMs application is the model selection phase, i.e., the

parameter selection for the best classifier. In statistical learning methods [30], cross validation

(CV) (see Chapter 2) or heuristic searches are used to find the optimum parameters. These

methods are computationally expensive when the search space is large and the dimension

of the data is high. The first contribution of this thesis is on the model selection phase of

the SVM which is specifically developed for a biological problem. We also generalize the

model selection phase to any kind of data. Our biological problem is to find pro-peptide

cleavage sites of fungi proteins for given amino acid sequences. Finding critical positions in

amino acid sequences has been studied for many years [7, 9, 12, 22, 23, 31, 48, 50] and still

preserves its importance in bioinformatics studies. We collected the data from NCBI1 protein

data bank specifically for fungi proteins (see Chapter 3) and developed a model selection

1 http://www.ncbi.nlm.nih.gov/

2



for the prediction of pro-peptide cleavage sites. Our model selection algorithm is based on

the predefined confidence level for the selection of the best classifier on the test phase. Let

us note that the classifiers which are provided from the training set are used to decide the

class of the new point by a predefined confidence level. Furthermore, the confidence level is

measured by using the value of the classifiers on the test points which is resembled by the

principle “The bigger the confidence level is, the better the classifier is”. The confidence level

enables us to choose classifiers which are specific to their own protein sequence. In other

words, each protein sequence has its own classifier for the prediction of pro-peptide region

and each protein sequence is window based analyzed. Training and testing sequences are

chosen by a fixed pre-chosen window of amino acids. In fact, the classifier is chosen on the

test phase with the confidence interval notion. This methodology saves a lot of training time,

and the results show a comparable accuracy when compared with cross validation and with

other classification methods (e.g., neural networks [23]).

The second contribution of this thesis is the generalization of the model selection to different

kinds of data sets. We generalized the model selection scheme as “classification on observed

margin”. Our method benefits from all the classifiers of the training process and selects the

best according to different norms defined on functional margin. We defined three kinds of Lp-

norms (p = 1, 2,∞) and compared the results with cross validation with respect to time and

also error percentages. With this new generalized model selection method, we saved a lot of

time in training when our method is compared with cross validation. Among these norms, L∞

presented the best error percentage. Furthermore, our new method gives good performance

(error rate) for the unbalanced data sets. We also applied our methodology to unbalanced data

sets and got meaningful results (see Chapter 4).

The third contribution of the thesis is related to the kernel selection for the SVM. In classical

kernel learning methods, a single kernel is used to map the input space to a higher dimensional

feature space. But for large scale and heterogeneous data in real-world applications, multi-

ple kernel learning is developed [8, 71]. The main intuition behind multiple kernel learning

is to combine finitely many pre-chosen kernels in a convex combination. However, this ap-

proach has some limitations on the kernel search space since the combination depends on the

problem and the selection of the user from a discrete set of kernels. In [8], a multiple kernel

reformulation is modeled by semi-definite programming for selecting the optimum weights of

corresponding kernels. This reformulation has some drawbacks in computation time because
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of semi-definite programming and this reformulation is developed in [71] by semi-infinite lin-

ear programming. We improved the multiple kernel learning and semi-infinite reformulation

by enlarging the kernel search space by constituting a continuous domain of kernels in which

infinitely many kernels play in a Riemann-Stieltjes integral form. By this new formulation, we

have the opportunity of recording (“scanning”) all possible choices of kernels from the kernel

space and, hence, the uniformity is also preserved. We proposed homotopy function to give

an idea of infinite combination of kernels. We model this idea by infinite programming which

has infinitely many constraints, and the problem variables are from an infinite dimensional

space which correspond to the kernel coefficients. Let us note that infinitely many kernels

correspond with infinitely many coefficients. We defined these kernel coefficient function as

an increasing monotonic function by means of positive measures and, we established Radon

measures and Prokhorov distance on these measures.

The regularity conditions are analyzed on the lower level problem of infinite programming.

Based on these conditions and some assumptions, we assured the point masses of these

infinitely many kernel coefficients. In other words, there exist finitely many active points

(finitely many kernels coefficients) because of the assumptions and the regularity conditions

(nondegeneracy) given in [88]. Hence, we “scan” all infinite possible kernels from the infinite

dimensional search space, and we assure to find the point masses (discrete active constraints)

which define the kernel combination under the above assumptions and conditions.

As an alternative way of solving an infinite programming problem, we propose a parametriza-

tion of positive measures by probability density functions. By this parametrization, our infinite

problem turns into a semi-infinite programming problem with infinitely many constraints and

having variables from a finite dimensional space. As our last contribution, we propose some

numerical methods to solve our parametrized problem. We proposed two new methodolo-

gies for the discretization of the infinite index set to be used in these numerical methods.

These two strategies are explained with examples and remarks in the last chapter of the thesis.

Furthermore, we give a proof of our concept, i.e, convergence of the numerical methods is

demonstrated based on some assumptions. These assumptions are analyzed for our problem

and the convergence is proved for each numerical method without giving numerical illustra-

tion.

We want to remind the scope the thesis: developing new model selection and kernel learning
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methods which are established on theoretical foundations, on a mathematical basis and on

continuous optimization. In this thesis, we demonstrate and illustrate the idea of our new

mathematical model (model selection method) which is applied on a bioinformatics problem

and we assure the convergence of the proposed numerical methods for the new infinite kernel

learning formulation (by using infinite programming). By this thesis, we introduce a new

scientific approach and methodology in statistical learning, and we propose and initialize

future research. We want to note that whenever we want to give detailed information we refer

“Closer Explanation” throughout the thesis.
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CHAPTER 2

BACKGROUND

2.1 INTRODUCTION

In this chapter, we will give brief and comprehensive background explanations on the mathe-

matical methods which we use to model our classification problem. The fundamental defini-

tions and theorems of three main mathematical and statistical approaches will be introduced

which are used in this thesis. We will start with section on Support Vector Machines (SVM)

and continue with Riemann-Stieltjes integrals. In the later sections of this chapter, we give the

principal theorems of Semi-Infinite Programming. Throughout this chapter, except Section 2,

we denote the vectors in bold, i.e., x,w and we denote the components by sub indices, i.e.,

xi,wi. In Section 2, xi will denote points on the real line.

2.2 SUPPORT VECTOR MACHINES

Data mining is the process of analyzing a massive amount of data and gathering useful infor-

mation or structure through the analysis. It is a highly demanding area because of the large

amount of experimental data in data bases. Various applications of data mining can be found

in medicine, finance, business and so forth. There are different types of data mining tools

such as statistical analysis, probabilistic methods and machine learning tools.

In recent years, learning methods are desirable because of their reliability and efficiency in

real-world problems. In such situations, for instance, in engineering or biological problems,

experiments can be very costly and time consuming. In situations like these, accurate and

predictive methods are in demand to overcome these difficulties. Furthermore, lots of data
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bases are freely accessible at the internet which contain huge data sets. It is important to

understand and analyze these data sets to make them beneficial. Different methodologies

have been developed to learn the system behaviour in a supervised or in an unsupervised way.

Supervised learning is a learning methodology where unseen data can be predicted with the

help of observations. Mathematically, for a given set of observations

S = {(x1, y1), (x2, y2), . . . , (xl, yl)}, the classification on new unseen data is performed by a

defined function from these observations, where xi ∈ Rn (i = 1, 2, . . . , l) are data points

(inputs) and yi ∈ {±1} are corresponding labels (outputs). Here, input vectors, xi’s are labeled

by yi = +1 if xi’s belong to the positive class, and input vectors, xi’s are labeled by yi = −1 if

xi’s belong to the negative class. Algorithms are developed based on training examples which

consist of input vectors, xi, and outputs, yi, given to the a learning system that subsequently

predicts the outputs for test examples. Training sets are the main resource of supervised

learning. Learning is enabled with a function defining a relation between input and output

with a functional mapping which is called a target function. Estimation of the target function

will give a solution of the learning problem which is also called a decision function. The

solution is selected from a set of candidate functions f ∈ F , where F is a set of functions

[19]:

f : input space −→ output domain,

and these candidate functions are referred to as hypotheses [19].

Binary classification is frequently performed using linear classification methods.

Definition 2.2.1 Let f be a real-valued function defined on a subset X ⊆ Rn,

f : X −→ R.

Then, x = (x1, x2, . . . , xn)T is assigned to the positive class if f (x) ≥ 0, otherwise it is assigned

to the negative class, i.e., if f (x) < 0. Here, n is the dimension of input space.

In our study, such a function f (x) is requested to be affinely linear, i.e., it can be expressed as
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f (x) = ⟨w, x⟩ + b

=

n∑
i=1

wixi + b,

where ⟨·, ·⟩ denotes the scalar product and (w, b) consists of the parameters that control the

function and decision rule given by sgn( f (x)),

where

sgn( f (x)) =

 1, if f (x) ≥ 0

−1, if f (x) < 0.
(2.1)

Here, the decision rule refers to the positive class or negative class of the points defined by

Definition 2.2.1, and w is referred to as the weight vector and b as the bias.

In linear binary classification, the two classes are discriminated by a hyperplane defined by

⟨w, x⟩ + b = 0.

Definition 2.2.2 We define the (functional) margin of the examples (xi, yi) (i = 1, 2, . . . , l)

with respect to a hyperplane (w, b) to be the quantity

γi := yi · (⟨w, xi⟩ + b) (i = 1, 2, . . . , l).

Let us note that if γi > 0, then the correct classification is achieved. We know that if xi is in

the positive class, then ⟨w, xi⟩ + b ≥ 0 and if xi is in the negative class, then ⟨w, xi⟩ + b < 0

by Definition 2.2.1. The product of ⟨w, xi⟩ + b with yi is positive if xi is in the positive class

since ⟨w, xi⟩ + b ≥ 0, and yi = 1. Similarly, the product of ⟨w, xi⟩ + b with yi is positive if xi

is in the negative class since ⟨w, xi⟩ + b < 0 and yi = −1. Hence, γi > 0 for both cases if the

correct classification is achieved.

Definition 2.2.3 The geometric margin is defined by γ
∥w∥ as the distance between the nearest

points to the hyperplane (see Figure 2.2).

Linear separability of the classes of data is one of the essential issues in SVM theory since

a hyperplane is a tool to discriminate the classes. The pattern of the data can be discretely

nonconvex or some part of the data can belong to one class or group of data, surrounded

by the data of the other class. In most of the real-world problems [53], data are not linearly
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Figure 2.1: Nonlinear mapping from input space to feature space [19].

separable. Thus, the data need to be mapped into another space in which they become linearly

separable, see Figure 2.1. The representation of nonlinear data is changed with a nonlinear

mapping ϕ which transforms the input space into a higher dimensional feature space such that

the data points are linearly separable. Then, f and w can be written as:

f (x) = ⟨w, ϕ(x)⟩ + b. (2.2)

w =
l∑

i=1

αiyiϕ(xi). (2.3)

In fact, we can compute f without the explicit feature vectors ϕ(x) if we have a direct method

for computing κ(x, z) := ⟨ϕ(x), ϕ(z)⟩, also referred to as the kernel function [19].

SVMs choose the linear classifier that maximizes the geometrical margin on the training data.

Since rescaling of (w, b) does not change classification, we can enforce the margin

yi · (⟨w, xi⟩ + b) ≥ 1. (2.4)

Then, the functional margin is 1 by normalizing the distance between hyperplane and the

points with Hessa normal form . The geometric margin is the distance between the two

supportive lines as in Figure 2.2 and it is calculated as γ = 1
||w||2 . Hence, to maximize the

margin, it is necessary to minimize ||w||22 (where ∥·∥2 is the Euclidean norm).

Now, we have a convex optimization problem to find the optimum classifier in the following

form:

min
w,b
⟨w,w⟩
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Figure 2.2: Geometric margin [19].

such that yi · (⟨w, ϕ(xi)⟩ + b) ≥ 1 (i = 1, 2, . . . , l).

Usually, the dual form of the problem is preferred because of the sparse structure of the dual

variable. The dual representation of the classification function can be derived by the help

of optimization theory. Using Lagrangian and its partial derivatives, with the Karush-Kuhn-

Tucker (KKT) conditions, the dual problem is given in the following form [19]:

max
α

l∑
i=1

αi −
1
2

l∑
i=1

yiy jαiα jκ(xi, x j)

subject to
l∑

i=1

yiαi = 0,

αi ≥ 0 (i = 1, 2, . . . , l),

where α = (α1, α2, . . . , αl)T . To solve complex classification problems, it is not enough to

apply strictly perfect maximal margin classifiers without any error tolerance. Therefore, new

variables are introduced which violates the maximal margin criterion. Then, this classifier is

called a soft margin classifier.

Soft Margin Classifier Problem

Here, a vector of some kind of slack variables ξ = (ξ1, ξ2, . . . , ξl)T is added to the objective

function with regularization constant C [19]:

minξ,w,b ||w||22 +C
∑l

i=1 ξi

subject to ξ ≥ 0 and yi · (⟨w, ϕ(xi)⟩ + b) ≥ 1 − ξi (i = 1, 2, . . . , l).
(2.5)

The corresponding dual form can be easily constructed in the same way setting the gradient

of the Lagrange function to be equal to zero and writing the KKT conditions [19]. Hence, one
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is faced with the following dual optimization problem:

maxα
∑l

i=1 αi − 1
2
∑l

i, j=1 yiy jαiα jκ(xi, x j),

subject to
∑l

i=1 yiαi = 0,

0 ≤ αi ≤ C, (i = 1, 2, . . . , l),

(2.6)

where αi’s are called support vector coefficients which are the coefficients of vectors lying

on supporting hyperplane. We shall be referring support vector machine (SVM) to problem

(2.6).

In the following section, we will introduce Riemann-Stieltjes integrals which are used for in-

finite combination of kernels. We will give the main theorems and definitions without further

proofs and details, and refer the reader to [70].

2.3 RIEMANN-STIELTJES INTEGRALS

2.3.1 INTRODUCTION

Calculus studies limits, integrals, derivatives and infinite series, it is historically referred to as

infinitesimals or infinitesimal calculus [39, 79]. It provides us to understand the collection of

data using small discrete increments. Calculus has wide applications in science and engineer-

ing to solve problems where algebra is insufficient. Calculus is developed by manipulating

small quantities. On a number line, these infinitesimal quantities correspond to locations

which are not zero but of a zero distance from zero. No nonzero number is infinitesimal since

its distance from zero is positive, and any multiple of an infinitesimal is still infinitely small.

From this point of view, calculus is a collection of techniques for manipulating infinitesi-

mals [39, 79]. From this aspect, the infinitesimal changes and infinite combinations of kernel

functions in classification problems are one of the main challenges in this thesis.

The idea of infinitesimal is changed by limits later in the 19th century. Limits describe the

value of a function at a certain input in terms of its values at a nearby input. As in infinites-

imals, limits capture the small changes but with ordinary numbers. Based on discrete points

and their limits, integral calculus is developed. It is established on Riemann sums which

represents a summation over the infinitesimal collection of intervals. Furthermore, limits pro-

vide to get a result of this infinitesimal collection by a number with the help of convergence
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analysis. Finally, we use the notion of the Riemann integral [4, 39] for the the limit of all

corresponding Riemann sums.

2.3.2 RIEMANN SUMS AND INTEGRABILITY

In this section, we will provide the key definitions which are necessary to understand the

notion of integration and, especially, Riemann-Stieltjes integration. Since the main approach

and a method of this thesis is to use Riemann-Stieltjes integral as a tool for our classification

model, we will not go into the details of the calculus of integration theory and Riemann-

Stieltjes integration. For further information on this subject, please read [4, 70].

We note that we build our model in Chapter 5 with the help of Riemann-Stieltjes integrals and

later on we further parametrized the model by probability density functions.

Definition 2.3.1 [70]. Given a closed interval I = [a, b], a partition of I is any finite strictly

increasing sequence of points P = {x0, x1, . . . , xn−1, xn}, x0 < x1 < . . . < xm−1 < xm, such

that a = x0 and b = xn. The mesh of the partition {x0, x1, . . . , xn−1, xn} is defined by

mesh P = max
1≤ j≤n

(x j − x j−1).

Each partition of I, P := {x0, x1, . . . , xn−1, xn} decomposes I into n subintervals I j = [x j−1, x j]

( j = 1, 2, . . . , n) such that

I j ∩ Ik =

 x j, if k = j + 1

∅, if k , j or k , (j + 1).
(2.7)

Each such decomposition of I into subintervals is called a subdivision of I.

If f is a function defined on the closed interval I and bounded on the interval I, then f has

both a least upper bound and a greatest lower bound on I which implies also the same result

for each interval of any subdivision of I.

Definition 2.3.2 [70]. Given a bounded function f defined on the interval I, and a partition

P = {x0, x1, . . . , xn−1, xn} of I, let I j = [x j−1, x j]. M j := sup
x∈I j

f (x) and m j := inf
x∈I j

f (x) ( j =

1, 2, . . . , n). Then, the upper Riemann sum of f with respect to the partition P, denoted by
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U(P, f ), is defined by

U(P, f ) :=
n∑

j=1

M j∆x j,

and the lower Riemann sum of f with respect to the partition P, denoted by L(P, f ), is

defined by

L(P, f ) :=
n∑

j=1

m j∆x j,

where ∆x j := x j − x j−1 ( j = 1, 2, . . . , n).

Definition 2.3.3 [70]. Suppose that f is a function on R that is defined and bounded on

the interval I = [a, b] and P̃ = P̃[a, b] is the set of all partitions of [a, b]. Then the upper

Riemann integral and the lower Riemann integral are defined by

∫ b

a
f (x)dx := inf

P∈P̃
U(P, f ),

and ∫ b

a
f (x)dx := sup

P∈P̃
U(P, f ),

respectively. If
∫ b

a f (x)dx =
∫ b

a f (x)dx, then f is Riemann integrable, or just integrable, on I,

and the common value of the integral is denoted by
∫ b

a f (x)dx or
∫

[a,b] f (x)dx.

2.3.3 PROPERTIES OF RIEMANN-STIELTJES INTEGRALS

In the previous subsection, the key definitions were given to establish the Riemann-Stieltjes

integration based on similar definitions. Intuitively, the main difference between Riemann

integration and Riemann-Stieltjes integration is the difference between the lengths of the par-

titions. In Riemann-Stieltjes integration, the length of the intervals ∆x j depends on some

monotonically increasing function, whereas in Riemann integration, the length of the interval

for a given partition P does not depend on anything, i.e., intervals are solely the subtraction

of the numbers on a real line. Let us generalize this idea by the following definitions.

Definition 2.3.4 [70]. Given a bounded function f on a closed interval I = [a, b], a mono-

tonically increasing function β on I, and a partition P = {x0, x1, . . . , xn−1, xn} of I with cor-

responding subdivision ∆, let M j := sup
x∈I j

f (x) and m j := inf
x∈I j

f (x), for I j := [x j−1, x j] ( j =
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1, 2, . . . , n). Then, the upper Riemann-Stieltjes sum of f over β with respect to the partition

P, denoted by U(P, f , β) or U(∆, f , β), is defined by

U(P, f , β) :=
n∑

j=1

M j∆β j,

and the lower Riemann-Stieltjes sum of f over β with respect to the partition P, denoted by

L(P, f , β) or L(∆, f , β), is defined by

L(P, f , β) :=
n∑

j=1

m j∆β j,

where ∆β j := β(x j) − β(x j−1) ( j = 1, 2, . . . , n).

After giving definitions of upper and lower Riemann-Stieltjes sums, we will introduce the fol-

lowing upper and lower Riemann-Stieltjes integrals in a similar way as for Riemann integrals.

Definition 2.3.5 [70]. Suppose that f is a function on R that is defined and bounded on the

interval I = [a, b], P̂ = P̂[a, b] is the set of all partitions of [a, b], and β is a monotonically

increasing function on I. Then, the upper Riemann-Stieltjes integral and the lower Riemann-

Stieltjes integral are defined by

∫ b

a
f (x)dβ(x) := inf

P∈P̂
U(P, f , β),

and ∫ b

a
f (x)dβ(x) := sup

P∈P̂
L(P, f , β),

respectively. If
∫ b

a f (x)dβ(x) =
∫ b

a f (x)dβ(x), then f is Riemann-Stieltjes integrable or inte-

grable with respect to β in the Riemann sense, on I, and the common value of the integral is

denoted by ∫ b

a
f (x)dβ(x) (or

∫
[a,b]

f (x)dβ(x)) or
∫ b

a
f dβ

(
or

∫
[a,b]

f dβ
)
.

Throughout the thesis, we will denote the set of all functions that are Riemann-Stieltjes inte-

grable with respect to β byℜ(β). As Riemann-Stieltjes integrals are not the main concern of

the thesis, but a tool for the construction of our model, we will give some major theorems for

the Riemann-Stieltjes integrability; for the proofs and detailed explanation, we refer [4, 70].
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Theorem 2.3.6 [70]. Suppose that f is a bounded function on I = [a, b], β is a monotonically

increasing function on I, and m ≤ f (x) ≤ M for all x ∈ I. Then,

m · (β(b) − β(a)) ≤
∫ b

a
f dβ ≤

∫ b

a
f dβ ≤ M · (β(b) − β(a)). (2.8)

Furthermore, if f is Riemann-Stieltjes integrable on I, then

m · (β(b) − β(a)) ≤
∫ b

a
f (x)dβ(x) ≤ M · (β(b) − β(a)). (2.9)

Theorem 2.3.7 (Integrability Criterion) [70]. Suppose that f is a bounded function on I =

[a, b] and β is a monotonically increasing function on I. Then, f ∈ ℜ(β) on I if and only if

for every ϵ > 0 there exists a partition P of I such that

U(P, f , β) − L(P, f , β) < ϵ. (2.10)

The proof is based on Theorem 2.3.6 [70].

Corollary 2.3.8 [70]. If f is a continuous function on the interval I = [a, b], then f is

Riemann-Stieltjes integrable on [a, b].

Corollary 2.3.9 [70]. If f is a monotonic function on the interval I = [a, b] and β is a

continuous and monotonically increasing function on I, then f ∈ ℜ(β).

Theorem 2.3.10 (Algebraic Properties of Riemann-Stieltjes Integrals) [70].

Suppose that functions f , f1, f2 ∈ ℜ(β) are given on the interval I = [a, b], and let k ∈ R be

given too.

1. If g(x) = k f (x) for all x ∈ I, then g ∈ ℜ(β) and∫ b

a
g(x)dβ(x) = k

∫ b

a
f (x)dβ(x).

2. If h = f1 + f2, then f1 + f2 ∈ ℜ(β) and∫ b

a
h(x)dβ(x) =

∫ b

a
f1(x)dβ(x) +

∫ b

a
f2(x)dβ(x).

3. If f1(x) ≤ f2(x) for all x ∈ I, then∫ b

a
f1(x)dβ(x) ≤

∫ b

a
f2(x)dβ(x).
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4. If the function f ∈ ℜ(β) is also given on I∗ = [b, c], then f is Riemann-Stieltjes inte-

grable on I ∪ I∗ and∫ c

a
f (x)dβ(x) =

∫ b

a
f (x)dβ(x) +

∫ c

b
f (x)dβ(x).

5. If | f (x)| ≤ M for x ∈ I, then∣∣∣∣∣∣
∫ b

a
f (x)dβ(x)

∣∣∣∣∣∣ ≤ M · [β(b) − β(a)].

6. If f ∈ ℜ(β∗) on I, then f ∈ ℜ(β + β∗) and∫ b

a
f d(β + β∗) =

∫ b

a
f (x)dβ(x) +

∫ b

a
f (x)dβ∗(x).

7. If c is any positive real constant, i.e., c ∈ R and c > 0, then f ∈ ℜ(cβ) and∫ b

a
f d(cβ) = c

∫ b

a
f (x)dβ(x).

Theorem 2.3.11 [70]. If f ∈ ℜ(β) and g ∈ ℜ(β) on [a, b], then f g ∈ ℜ(β).

Theorem 2.3.12 [70]. If f ∈ ℜ(β) on [a, b], then | f | ∈ ℜ(β) and∣∣∣∣∣∣
∫ b

a
f (x)dβ(x)

∣∣∣∣∣∣ ≤
∫ b

a
| f (x)| dβ(x).

The above theorems and definitions are helpful to understand the model structure in this the-

sis. For detailed explanation and proofs, we refer the readers to [70]. In the following, we

will continue with one of the main optimization methods, semi-infinite programming, for our

infinitesimally defined model.

2.4 SEMI-INFINITE PROGRAMMING

2.4.1 INTRODUCTION

In this section, we introduce semi-infinite programming (SIP) and discuss the necessary the-

orems and definitions. SIP is a class of optimization problems which have infinitely many

constraints and finitely many variables, as the name “semi-infinite” actually says. SIP has

been studied and developed by researchers over the last 30 years [33, 34, 32, 77, 78, 84, 85,
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87, 88, 90]. More than 1000 papers have been published on the theory and the numerical

methods of SIP. SIP was originally related with Chebyshev approximation, see [34]. For an

excellent review, we refer to [33] and [57], for linear semi-infinite programming, we refer to

[27].

2.4.2 PROBLEM DEFINITION

Definition 2.4.1 A semi-infinite programming (SIP) is an optimization problem which has

finite dimensional variable x = (x1, x2, . . . , xn) ∈ Rn on a feasible set described by finitely

many equality constraints and infinitely many inequality constraints:

min
x

f (x)

hi(x) = 0 (i ∈ I),

g(x, y) ≥ 0 (y ∈ Y).

(2.11)

Here, I := {1, 2, . . . , s} is a finite index set, Y ⊆ Rm is an infinite index set and y :=

(y1, y2, . . . , ym)T .

Throughout this section,M will denote the feasible set, where

M := {x ∈ Rn | hi(x) = 0 (i ∈ I) and g(x, y) ≥ 0 (y ∈ Y) }. (2.12)

Let v := inf{ f (x) | x ∈ M} be the optimal value and S := {x̄ ∈ M | f (x̄) = v } be the set of

minimizers of the problem (2.11).

Assumptions: We assume that Y ⊂ Rm is compact, g(x, y) is C2. Now, we will consider the

Chebyshev approximation as an example for SIP where SIP is originally related with [78].

Example 2.4.2 (Chebyshev Approximation): Let a function f ∈ C(Rm,R) in the variable y

and a family of approximating functions f̃ (x, y), f̃ ∈ C(Rn ×Rm,R) parametrized by x ∈ Rn,

be given. The problem is to find a best approximation to f by our functions f̃ (x, ·) in the

max-norm (Chebyshev norm)

∥F ∥∞ := max
y∈Y
|F (y)| ,

on a compact set Y ⊂ Rm. Minimizing the approximation error ϵ motivated by ϵ =
∥∥∥ f − f̃

∥∥∥∞
is equivalent to the following optimization problem:

min
x,ϵ
ϵ

such that g±(x, y) = ±( f (y) − f̃ (x, y)) ≤ ϵ (y ∈ Y).
(2.13)
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The problem (2.13) is a semi-infinite problem since the constraint should be satisfied for all

y ∈ Y which makes the number of constraints infinite.

There are other real-world applications of SIP such as shape optimization problem [20],

robotics [28, 33], robust optimization models in economics [2, 10, 63, 72, 42], design center-

ing, gene-environment networks, optimal control [86].

2.4.3 CONSTRAINT QUALIFICATIONS

In this subsection, we will discuss the structure of the feasible setsM of finite, semi-infinite

programming and linear semi-infinite programming (LSIP). Furthermore, we will introduce

the constraint qualifications both for finitely constrained programming and semi-infinite pro-

gramming to emphasize the difference between them.

In semi-infinite programming (SIP),M is defined by

M = {x ∈ Rn | hi(x) = 0 (i ∈ I), g(x, y) ≥ 0 (y ∈ Y) }, (2.14)

where I is a finite index set, Y ⊂ Rm is an infinite index set, g : Rn ×Rn → R and h : Rn → R

are C2 functions.

In linear semi-infinite programming (LSIP) [27],M is defined by

M = {x ∈ Rm
∣∣∣aT

y x ≥ by (y ∈ Y) }, (2.15)

with functions y 7→ ay ∈ Rn and y 7→ by ∈ R, where I := {1, 2, . . . , s} is a finite index set, Y ⊂

Rm is an infinite index set. Here, we exclude the equality constraints in our problem definition

since we will not need the equality constraint after the parametrization by probability density

functions in Chapter 6.

In finite programming (FP),M is defined by

M = {x ∈ Rn
∣∣∣ hi(x) = 0 (i ∈ I), g j(x) ≥ 0 ( j ∈ J) }, (2.16)

where J = {1, 2, . . . ,m} and I = {1, 2, . . . , s} are finite index sets and hi (i ∈ I) and g j : Rn →

R ( j ∈ J) are C2 functions.

Throughout this subsection, we assume that hi, g j and g are C2-functions. Let us define con-

straint qualifications for finite and semi-infinite programming.
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Constraint Qualifications in FP:

The Linear Independence Constraint Qualification (LICQ) is said to hold at a feasible point

x̄ ∈ M if the vectors

∇hi(x̄) (i ∈ I),

∇g j(x̄) ( j ∈ J0(x̄)),

form a linearly independent family. Here,

J0(x̄) := { j ∈ J
∣∣∣ g j(x̄) = 0 } (2.17)

is the active index set.

The following constraint qualification is weaker than LICQ. In fact, Mangasarian Fromovitz

Constraint Qualification (MFCQ) is said to hold at x̄ ∈ M if there exists a vector d ∈ Rn

such that

∇T hi(x̄)d = 0 (i ∈ I) and g j(x̄)d > 0 ( j ∈ J0(x̄)).

In this thesis, MFCQ will not be the criterion for our analysis but we will use it in a theorem

in the next chapters.

Constraint Qualifications in SIP: The LICQ is said to hold at x̄ ∈ M if the vectors

∇hi(x̄) (i ∈ I),

∇xg(x̄, y) (y ∈ Y0(x̄)),

form a linearly independent family, where

Y0(x̄) := {y ∈ Y | g(x̄, y) = 0 }. (2.18)

We note that if LICQ holds at x̄, the active set Y0(x̄) cannot contain more than n elements,

where n is the dimension of the vector space Rn.

In the following, we continue with the definitions of local, global minimizer and theorem for

first-order optimality conditions for SIP without giving a proof. For further explanation, we

refer to [32, 33, 34, 78, 84].
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2.4.4 FIRST-ORDER OPTIMALITY CONDITIONS

Definition 2.4.3 [78]. A feasible point x̄ ∈ M is called a local minimizer of SIP if there is

some ϵ > 0 such that

f (x) − f (x̄) ≥ 0 for all x ∈ M with ∥x − x̄∥2 < ϵ, (2.19)

where ∥·∥2 is the Euclidean norm.

Definition 2.4.4 [78]. The minimizer x̄ is global if (2.19) holds for any ϵ > 0.

Definition 2.4.5 [78]. We call x̄ ∈ M a strict local minimizer of order p > 0 if there exist

some q > 0 and ϵ > 0 such that

f (x) − f (x̄) ≥ q ∥x − x̄∥p2 for all x ∈ M with ∥x − x̄∥2 ≤ ϵ.

Remark 1 It is obvious that around a point x̄ ∈ M, where the active index set Y0(x̄) is empty,

i.e., g(x̄, y) > 0 (y ∈ Y), the SIP problem locally refers to a common unconstrained problem.

Theorem 2.4.6 (First-Order Sufficient Condition) [33, 78, 88].

Let x̄ be feasible for (2.11). Suppose that there does not exist a vector 0 , d ∈ Rn satisfying

∇ f (x̄)d ≤ 0, ∇T
x hi(x̄)d = 0 (i ∈ I), ∇T

x g(x̄, y)d ≥ 0 (y ∈ Y0(x̄)).

Then, x̄ is a strict local minimizer of SIP of order p = 1.

We refer [78] for a proof of Theorem 2.4.6.

Theorem 2.4.7 (First-Order Necessary Condition) [78]. Let x̄ be a local minimizer of (2.11).

Then the following holds:

KKT Condition: If MFCQ holds at x̄, then there exist multipliers λ1, λ2, . . . , λs

∈ R and µ1, µ2, . . . , µk ≥ 0 and indices y1, y2, . . . , yk ∈ Y0(x̄), k ≤ n, such that

∇ f (x̄) −
s∑

i=1

λi∇T
x hi(x̄) −

k∑
j=1

µ j∇T
x g(x̄, y j) = 0. (2.20)
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The proof is omitted here; see [33, 78, 88].

We will represent the equation (2.20) as Lagrange functions later on in our problems. Since

the assumptions of Theorem 2.4.6 are rather strict, we need second-order information. Before

starting to introduce this information, let us briefly discuss a special cases of SIP where the

functions are convex and linear. For the detailed explanations, we refer to [10, 11, 27]. In

the following, we give definitions on convexity, convex programming, duality and feasibility

conditions for SILP cases.

2.4.5 CONVEX AND LINEAR SEMI-INFINITE PROGRAMMING

We start with definitions of a convex set and a convex function and we continue with theorems

used in this thesis.

Definition 2.4.8 [11]. A set C ⊆ Rm is convex if the line segment between any two points in

C also lies in C. Mathematically, for any x1, x2 ∈ C and any δ ∈ [0, 1], we have

δx1 + (1 − δ)x2 ∈ C.

Definition 2.4.9 [11]. A set C is called a cone, or nonnegative homogeneous, if for every

x ∈ C and δ ≥ 0 we have δx ∈ C.

A set C is a convex cone if it is convex and a cone, which means that for any x1, x2 ∈ C and

δ1, δ2 ≥ 0, we have

δ1x1 + δ2x2 ∈ C.

Definition 2.4.10 [11]. Suppose (l + 1) points x0, x1, . . . , xl ∈ Rn are affinely independent,

which means x1 − x0, x2 − x0, . . . , xl − x0 are linearly independent. The simplex determined

by them is given by

C = conv{x0, x1, . . . , xl} = {δ0x0 + δ1x1 + . . . + δlxl
∣∣∣ δ ≥ 0, 1Tδ = 1 },

where 1 denotes the vector with all entries one

We will use the simplex definition later in Section 6.2.
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Definition 2.4.11 [11]. A function f : Rn → R is convex if the domain of f , dom f , is a

convex set and if for all x, y ∈ dom f , and δ with 0 ≤ δ ≤ 1, we have

f (δx + (1 − δ)y) ≤ δ f (x) + (1 − δ) f (y).

Definition 2.4.12 [11]. A function f is concave if (− f ) is convex.

The semi-infinite program is convex if both the objective function f (x) and for the constraint

functions −g(·, y) (y ∈ Y) are convex.

Theorem 2.4.13 [78]. If x̄ is a feasible point of a convex SIP problem such that KKT condi-

tions given by (2.20) and nonnegativity of the Lagrange multipliers are satisfied, then x̄ is a

global minimizer of the convex SIP.

An important special case of convex SIP is given by the linear semi-infinite problem (LSIP)

[27], where the objective function f and the function g are linear in x:

(LS IP) : min
x

cT x

such that aT
y x ≥ by (y ∈ Y).

(2.21)

For the intensive analysis we refer to [27]. We don’t need to write equality constraints here,

i.e., I = ∅, since we will not need them in our infinite problem in further chapters. In this

section, we consider the strong duality results.

It is well known [11, 27] that any convex optimization problem

min
x

cT x

such that x ∈ M (M ⊂ Rn being a closed convex set),

can be written as a LSIP problem. If Y is compact and the functions y 7→ ay = a(y), y 7→

by = b(y) are continuous on Y , then (2.21) is continuous problem. Throughout the section, we

assume that (2.21) is continuous. In a more comprised way, (2.21) can be written as follows:

(LS IPprimal) min
x

cT x

such that Ax ≥ b,
(2.22)

where A is a generalized matrix with infinitely many rows aT
y (y ∈ Y) and b is a vector with

infinitely many components by (y ∈ Y). Let us define the dual of (2.22) as

(LS IPdual) max
u

bT u

such that AT u = c, u ≥ 0.
(2.23)
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Here, u = (uy)y∈Y is the dual variable and it is dual feasible if uy ≥ 0 (y ∈ Y) and uy > 0 for

only finitely many y ∈ Y . Hence, bT u =
∑
y∈Y

byuy and AT u =
∑
y∈Y

ayuy are finite sums.

Throughout the section, we denote the optimal function values of (2.22) and (2.23) by vPLS IP

and vDLS IP.

Definition 2.4.14 A set C is called a cone, or nonnegative homogeneous, if for every x ∈ C

and θ ≥ 0 we have θx ∈ C.

Remark 2 [78]. Recall from the definition of a cone that c is in the cone of ay, i.e., c ∈

cone{ay | y ∈ Y } if and only if (2.23) is feasible. Furthermore, from Caratheodory’s Lemma

[62], c =
∑
y∈Y

ayuy can be expressed as sums with at most n nonzero coefficients uy.

As in Linear Programming (LP) [45, 49], if x ∈ Rn and u = (uy)y∈Y are primal and dual

feasible, respectively, then

cT x − uT b = uT (Ax − b) =
∑
y∈Y

uy(aT
y x − by) ≥ 0.

Theorem 2.4.15 (Weak Duality, Complementary Slackness) [33, 78]. If x and u are primal

and dual feasible, respectively, then cT x ≥ bT u. If cT x = bT u, then x and u are optimal with

vPLS IP = vDLS IP.

Note that LSIP does not necessarily have the strong duality property (cf. [78]) unless ad-

ditional constraint qualifications hold (Slater constraint qualifications). Another important

property of LSIP is that the existence of the primal and dual feasible solutions need not imply

the optimality of these solutions. To guarantee the existence of an optimal solution of (2.22),

we may assume strict feasibility of the dual problem. Next, we give the definitions for Slater

constraint qualification for the primal and the dual LSIP and the strong duality result.

Definition 2.4.16 [27, 78]. The Slater constraint qualification for the primal LSIP, (2.22),

is said to hold if there exist some strictly feasible primal solution x̂ (Slater point), i.e., there

exist a certain x̂ ∈ Rn such that aT
y x̂ > by for all y ∈ Y, and the following relation holds

(S CPLS IP) There exists some x̂ ∈ Rn with Ax̂ > b. (2.24)
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Here, A is a generalized matrix having infinitely many rows which constitute a family of

infinitely many functions, and each member of this family, i.e., Ax̂, is strictly positive.

Definition 2.4.17 [27, 78]. Let the same assumptions hold in Definition 2.24 for the dual

LSIP problem (2.23). Then, the dual Slater constraint qualification holds if

(S CDLS IP) c ∈ int cone{ay | y ∈ Y }. (2.25)

Theorem 2.4.18 (Strong Duality) [27, 78]. Assume that the Slater conditions (2.24) and

(2.25) are satisfied, i.e., (2.22) and (2.23) are strictly feasible. Then optimal primal and the

dual solutions x̄ and ū exists with vPLS IP = vDLS IP.

Moreover, x̄ is an optimal solution if and only if x̄ is a KKT-point, i.e., there exists a dually

feasible ū satisfying ūy j ≥ 0 for y j ∈ Y0(x̄) ( j = 1, 2, . . . , k), k ≤ n, and ūy = 0 otherwise,

such that

c =
k∑

j=1

ūy jay j .

In particular, ūT (Ax̄ − b) = 0.

As we stated in Section 2.4.4 that the assumptions of Theorem 2.4.6 are rather strict, we need

second-order information for further ways of indicating a local minimizer. In the next section,

we will introduce those second-order optimality conditions.

2.4.6 SECOND-ORDER OPTIMALITY CONDITIONS

In this subsection, we introduce the second-order optimality conditions (SOC) for semi-

infinite problem given in (2.11) by applying the so-called reduction approach (see [90]).

(SOC) plays a big role in our solution scheme of Chapter 5 and Chapter 6. We will use the

same theorems which are adapted to our model later.

Let x̄ ∈ M be a feasible point of (2.11) and assume that u, v, f , g, h ∈ C2 and infinite index set

Y is defined as the solution set of equalities and inequalities with functions uk and vℓ:

Y = {y ∈ Rm | uk(y) = 0 (k ∈ K), vℓ(y) ≥ 0 (ℓ ∈ L) }, (2.26)

24



where K := {1, 2, . . . , r} and L := {1, 2, . . . , q} By definition, any active point ȳ from Y0(x̄) is

a (global) minimizer of the following parametric optimization problem:

Q(x̄) min
y

g(x̄, y)

such that uk(y) = 0 (k ∈ K) and vℓ(y) ≥ 0 (ℓ ∈ L).
(2.27)

The problem (2.27) is called the lower level problem; it depends on x̄ as a parameter. Active

index set is denoted by L0(ȳ) and defined as the set of indices of active constraints of (2.27),

i.e., L0(ȳ) = {ℓ ∈ L | vℓ(ȳ) = 0 }. Let us write the Lagrange function of Q(x̄) at any x̄ ∈

M and ȳ ∈ Y0(x̄) or ȳ being a local minimizer of our lower level problem:

L(x, y, ζ,γ) := g(x, y) −
∑
k∈K
ζkuk(y) −

∑
ℓ∈L0(ȳ)

γℓvℓ(y), (2.28)

where ζk (k ∈ K) and γl (l ∈ L0(ȳ)) are the Lagrange multiplier vectors.

Now, we define Reduction Ansatz which has crucial assumptions to have optimal and unique

solution.

Definition 2.4.19 (Reduction Ansatz) [32, 33, 34, 78, 88]. We say Reduction Ansatz holds,

if for any ȳ ∈ Y0(x̄) or ȳ being a local minimizer of Q(x̄), the following properties holds:

1. LICQ: ∇yuk(ȳ), ∇yvℓ(ȳ) (k ∈ K), ℓ ∈ L0(ȳ) are linearly independent family.

2. Under LICQ, there are unique multipliers ζ̄ and 0 ≤ γ̄ ∈ R|L0(ȳ)| satisfying

∇yL(x̄, ȳ, ζ̄, γ̄) = 0.

We assume γ̄ℓ > 0 (ℓ ∈ L0(ȳ)) (strict complementary slackness).

3. The second order condition (SOC): With γ̄ in 2.,

ηT∇2
yL(x̄, ȳ, ζ̄, γ̄)η > 0, for all η ∈ T (ȳ) \ {0},

where T (ȳ) is the tangent space at ȳ defined by

T (ȳ) = {γ ∈ Rm
∣∣∣ ∇T

y uk(ȳ)η = 0 (k ∈ K), ∇T
y vℓ(ȳ)η = 0 (ℓ ∈ L0(ȳ)) }.

Under the assumptions in Reduction Ansatz, the following theorem is proven in [32, 33, 34,

78, 88, 90].
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Theorem 2.4.20 [32, 33, 34, 78, 88, 90]. Let the Reduction ansatz at the active index set

Y0(x̄) or the set of local minimizers of Q(x̄) be satisfied at the feasible point x̄ for (2.11) and

infinite index set Y given by (2.26) be compact. Then the following holds:

1. The active index set Y0(x̄) := {ȳ1, ȳ2, . . . , ȳr} is finite and there exist neighborhoods

Ux̄ of x̄ and Vȳ j of ȳ j, corresponding Lagrange multipliers ζ̄ j and γ̄k and continuous

mappings

y j : Ux̄ → Vȳ j , with y j(x̄) = ȳ j,

ζk : Ux̄ → R, ζ j
k(x̄) = ζ̄k (k ∈ K) and

γ j : Ux̄ → R with γ j
l (x̄) = γ̄ j, (l ∈ L0(x̄))

( j = 1, 2, . . . , r) such that for every x ∈ Ux̄ the value y j(x) is the unique local minimizer

of Q(x) in Vȳ j with corresponding Lagrange multiplier vectors γ j
l (x) and ζ j

k(x).

2. With the functions in 1. the following finite reduction holds:

x ∈ Ux̄ ∩ M is a local solution of (2.11) if and only if x̄ is a local solution of the

so-called reduced problem

Pred(x̄) : min
x∈Ux̄

f (x)

such that hi(x) = 0 (i ∈ I),

g̃ j(x) := g(x, y j(x)) ≥ 0 ( j = 1, 2, . . . , r).

(2.29)

3. The functions hi(x) (i ∈ I) and g̃ j(x) = g(x, y j(x)) ( j = 1, 2, . . . , r) are C2-functions in

Ux̄.

We refer to [78] for the proof of the theorem.

Geometric Interpretation of Theorem 2.4.20

Theorem 2.4.20 obviously presents conditions of a reduction property. For a given feasible

point x̄, infinitely many constraints are reduced to finitely many constraints by solving the

lower level problem Q(x̄); see Figure 2.3. In Figure 2.3, x̃ represents the small perturbation

of x̄, i.e., x̄ → x̃. If the infinite index set is compact and the nondegeneracy and continuity

assumptions of our model defining functions hold, then by Theorem of Heine-Borel there are

finitely many local minima of the lower level problem Q(x̄) (for a careful argumentation see
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Figure 2.3: An example illustrating the minimizing constraint function, g(x̄, ·) and the Reduc-
tion Ansatz, an example.

[88]). Furthermore, finitely many local minima of Q(x̄) lead to finitely many active inequality

constraints for the upper level problem. Solving the reduced problem is equivalent to solve

SIP locally. The drawback of Theorem 2.4.20 is that the indices implicitly depend on the

variable x. There are some numerical methods which combine the basic idea of the reduction

property and a discretization of the infinite index set. This will be explained in Chapter 6.
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CHAPTER 3

PATTERN ANALYSIS FOR THE PREDICTION OF FUNGAL

PRO-PEPTIDE CLEAVAGE SITES

3.1 INTRODUCTION

There is a growing interest in the application of machine learning techniques together with op-

timization to real-world applications such as biological problems [53], engineering problems

etc.. This chapter is devoted to solving one of the important problems in peptide biology,

namely predicting pro-peptide cleavage site for a given amino acid sequence of a protein

by using an SVM which is introduced by a novel confidence level model selection algo-

rithm. There have been many studies on predicting peptide regions such as signal peptide

[12, 13, 18, 22, 31, 48], pro-peptide [23] solved using neural networks with classical model

selection methods such as cross validation (CV) [30].

In this thesis, we have developed an efficient and novel model selection algorithm embedded

in a classical SVM to predict pro-peptide cleavage sites in filamentus fungi [53]. Prediction

results of the confidence level by an SVM are compared with the results achieved by the pro-

peptide prediction tool ProP1.0 [23]. ProP1.0 is a bioinformatics and computational biology

tool which predicts pro-peptide cleavage sites on a furin specific based network and a general

PC network separately by using a neural network. ProP1.0 consists of 227 proteins of all

eukaryotes including those of humans and animals. The data set is presented to the neural

network by sparsely encoded moving windows. The output of a neural network is assessed

by a threshold of 0.5 to determine the potential pro-peptide cleavage site.

This study concentrates more on fungal proteins due to the industrial importance of these

organisms in heterologous protein production, including those of humans. The data set is
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collected from largely non-homologous fungal proteins consisting of 72 sequences. Our pre-

diction tool, confidence level SVM is fed with both binary input vectors and the substitution

matrix PAM250 separately and results are reported for both. The sequences are given to the

learning machine by encoded sliding windows through each sequence. Each protein is tested

with different training sets. Rather than splitting the data set into groups, we have used a

different strategy that enables us to use the whole data for both training and testing. This is

explained in detail in the next section. The construction of the data set from non-homologous

sequences is justified by using ClustalW to construct a phylogenetic tree which is based on

multiple sequence alignment.

3.2 BIOLOGICAL BACKGROUND

Proteins are very important molecules for a cell because of their role in building cell struc-

tures. Moreover, they include enzymes as special proteins that catalyze many metabolic reac-

tions in a cell. Proteins are composed of small units called amino acids. They are specified in

a code of 20 different letters. The primal structure of proteins is specified by its amino acid

sequence that determines the structure of the protein and this structure determines its function.

Each amino acid is bind together with a peptide bond to form the amino acid sequence that

folds to a different specific structure.

3.2.1 PROTEIN SYNTHESIS

Cells produce new proteins either for reproduction or to replace a degraded one. Protein syn-

thesis is a process that occurs in a cell’s nucleus. It consists of two main stages, transcription

and translation. Transferring of genes from DNA into RNA is called transcription.

Transcription:

In each cell’s nucleus, the DNA strand carries information that controls protein synthesis.

In DNA, genes are embedded in chromosomes. During the transcription RNA synthesizes

mRNA from DNA. In eukaryotes, after mRNA is synthesized, it moves out of the cell’s nu-

cleus through the nuclear pores to the translation [16].
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Figure 3.1: RNA Translation process [16].

Translation:

After mRNA has been transported through the rough endoplasmic reticulum, it is fed into

the ribosomal translation machineries. Ribosomes start to read the mRNA sequence and to

convert mRNA into protein; tRNA is the responsible molecule to read the mRNA sequence,

3 nucleotides at a time.

Amino acids are represented by codons, which are 3-nucleotide RNA sequences. The mRNA

sequence matches three nucleotides at a time to a complementary set of three nucleotides in

the anticodon region of the corresponding tRNA molecule. An amino acid is attached to a site

opposite to the anticodon region of each tRNA, and as the mRNA is read off, the amino acids

on each tRNA are joined together through peptide bonds. Figure 3.1 illustrates how tRNA

molecules bind to mRNA [16].
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Figure 3.2: Illustration of pro-peptide cleavage sites [17].

Post Translational Processing:

Post translational processing is the stage of modification of inactive precursors into their ma-

ture and active forms. One such process involves the removal of signal and pro-peptide re-

gions. While signal peptides are required for the secretion of proteins, pro-peptides may have

various functions, such as acting as a chaperon and keeping the enzyme in an inactive state.

The proteolytic cleavage site is also one of the critical factors in Alzheimer’s’s disease [25].

The pro-peptide cleavage process is illustrated in Figure 3.2.

3.2.2 N-TERMINAL PRO-PEPTIDES OF FUNGAL SECRETED PROTEINS

There is a growing interest to the proteolytic processing events in cell biology due to recent

findings related to their critical functions in apoptosis [89], in triggering human diseases such

as Alzheimer’s [25] as well as their well-known role in cell trafficking [74]. Most of the pro-

teolytic processing events take place at the N-terminus of proteins. Among these processes,

signal peptide cleavage is perhaps the most well-known, and software programmes are estab-

lished by which eukaryotic and prokaryotic signal peptides and cleavage sites can be predicted

with high precision such as the SignalP Server [48]. Relatively less is known about the func-

tion and mechanism of the post-translational removal of pro-peptides which exist not only in

secreted proteins but also in some of the proteins that do not pass through the endoplasmic

reticulum.
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Fungi are ideal model systems for the study of eukaryotic molecular mechanisms due to their

relative simplicity. In general, filamentous fungi are more closely related to higher eukaryotes

than the yeasts. Filamentous fungi have also attracted much attention due to their importance

as heterologous expression systems [46] although some yeasts such as Pichia pastoris are also

promising as heterologous hosts. Particularly, Aspergillus and Trichoderma species find wide

use as industrial protein factories. While large amounts of fungal proteins are heterologously

produced in efficient and safe hosts such as Aspergillus sojae [59], still more progress is

necessary to enhance the heterologous production of mammalian proteins [36]. This requires

more in-depth understanding of the events taking place during the secretion process.

At the N-terminus, transient peptides may consist of only a signal peptide or may also contain

one or more additional peptides. Here, signal peptide sequences were not considered, how-

ever, only proteins with a predicted signal peptide were selected from the NCBI Genebank

database. In general, a single additional peptide is called a pro-peptide. If there are two

additional peptides, they are called pre-peptide and pro-peptide, respectively.

3.2.3 FUNCTIONS OF PRO-PEPTIDES

Pro-peptides have been implicated in a number of cellular processes including their role as an

intracellular chaperon [68], in proper folding, in subcellular sorting and in keeping proteins

in an inactive configuration. The pro-peptide is removed upon or before departure from the

secretory pathway by maturases [9] that reside either in the late stage of the Golgi, the secre-

tory vesicles or are extracellularly anchored to the cytoplasmic membrane with a GPI-anchor

[73]. The processing of most of the pro-peptides occurs at either a monobasic or a dibasic

cleavage site [9]. Dibasic cleavage is directed by the kexin family of endoproteases whereas

monobasic cleavage is conducted in yeast by the yapsin family of endoproteases [35] and by

the furin-type of proteases in Trichoderma [58]. A significant group of proteins, including

mainly the proteases, is processed by autocatalytic cleavage [50].

3.2.4 DIBASIC PROCESSING

Multiple Sequence Alignment results show that fungal pro-peptides of secreted proteins are

cleaved following a dibasic site. In the majority of dibasic processing sites, cleavage takes
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place following a “Lys-Arg” pair, whereas “Lys-Lys” and “Arg-Arg” pairs are less frequently

encountered [50].

3.2.5 MONOBASIC PROCESSING

A remarkable number of filamentous fungal extracellular proteins possess a monobasic cleav-

age site at their leader-mature protein junction. Considering the putative pro-peptides of pro-

teins that are subject to monobasic processing, a common sequence motif does not exist, with

the exception of a proline that is consistently present and frequently adjacent to a Leu or

Ile. The fact that the pro-peptides contain both hydrophilic and hydrophobic residues and the

absence of sequence homology could either indicate processing by different proteases or the

importance of conformational determinants for cleavage; in the latter case, the presence of a

proline may be highly significant. In filamentous fungi, there are no examples where proline

is present immediately before or after the basic residue at the cleavage site. Nevertheless,

since the role of proline is suggested to be at the level of a three-dimensional structure, rather

than the primary sequence [50], a similar function can still be attributed to the proline residues

within the structure of pro-peptides of filamentous fungi where monobasic processing takes

place.

3.3 MATERIALS AND METHODS

The data set is collected from the NCBI databank based on fungal proteins which are pub-

licly available1. 72 fungal sequences are selected among non-homologous protein families.

This is one of the reasons for the small number of sequences contained. To reduce further

redundancy in the data set and prevent the training and testing from being homologous, we

made a phylogenetic tree analysis based on multiple sequence alignment by ClustalW. There,

in a phylogenetic tree many individual main branches are resulted (data not shown) indicating

that the selected proteins are not homologous. In our learning process by SVM, we chose

symmetric windows around possible cleavage sites, where the window length varies between

11 to 21 and the results indicates that the optimum window length lies between 13 and 19.

The best accuracy results are found with window length chosen as 15. These parameters can

1 http://www3.iam.metu.edu.tr/iam/images/1/1a/Datasetsureyya.pdf
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vary according to the type of the data set and the kind of problem.

To see the discriminative motifs existing in the sequences, we used MEME software2. This

yielded the motif KR. To check this result, Multiple Sequence Alignment (MLA), with the

package ClustalW is applied to the data set which confirms this observation. The motif KR

gives us a clue for the preparation of the input sequences for the SVM. With MLA, most of

the cleavage site patterns are in the form of either K, R or KR. Therefore, it is sensible to

train the SVM restricted to inputs with K or R residues.

3.3.1 INPUT AND OUTPUT FOR THE SVM

There are different ways to represent text based data when introducing the data to a learning

algorithm. In bioinformatics, these data can be amino acid (a.a.) sequences, DNA sequences,

etc.. The most popular method of encoding amino acid sequences into numerical values is

given by binary vectors [7]. However, this ignores the context information. There has been a

lot of research on encoding amino acids to give each individual amino acid a numerical value

regarding the biochemical and physiochemical properties [38]. One of the most powerful

substitution matrices is PAM250 matrix due to its property of preserving mutations of the

sequences. In this study, two types of encoding are considered, namely, a binary encoding

matrix and the PAM250 substitution matrix. Please note that, encoding a.a. by substitution

matrices is needed for the input vectors for the SVM. Thus, the windows of a.a. sequences

are presented to the SVM with the numerical values corresponding to the input vectors.

There are many similarity matrices developed according to different similarity approaches

and gap penalties given between two amino acids. Dayhoff et al. [21] created a table where

they aligned the proteins in several families of proteins and constructed phylogenetic trees

for each family [21]. The resulting similarity table presents relative frequencies with which

amino acids replace each other in a short evolutionary period since each phylogenetic tree is

checked for the substitutions found on each branch. The traditional Dayhoff PAM250 matrix

assumes the occurrence of 250 point mutations per 100 amino acids or 300 nucleotides in the

gene [47].

PAM matrices are theoretically more advantageous than the others. They arise from Day-

2 http://meme.sdsc.edu/meme/meme-output-example.html
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hoff’s method [21] which is based on observed evolutionary mutations. Hence, they preserve

information given by the processes that generate the mutations. Statistically, PAM matrices

and other log-odds matrices are the most accurate description of the changes in the amino

acid composition after a given number of mutations. Details about the formulation of log

odds matrices and PAM matrices can be found in [1, 21].

Since we have 20 amino acids, we have entries in a 20×20 PAM250 matrix. Each amino

acid is represented by a 20 dimensional vector corresponding to the entries in a column of

the PAM250 matrix. If there is a sequence of n amino acids, then we will have an n × 20

dimensional real-valued vector as input.

3.3.2 SLIDING WINDOW APPROACH FOR CONSTRUCTING A TEST SET

The sliding window approach is a method to construct the training and test set with a pre-

viously chosen window size. Training windows are chosen from the neighbourhood of the

potential cleavage sites in such a way that the cleavage sites are at the center of the window.

For example, if we have a window size of 11, then the considered cleavage site is between the

5th and the 6th position of the window. In this way, each sequence contributes one positive

window. For the negative class, three windows are chosen from each sequence by selecting

positions which have residues K or R at their center. Here, windows are chosen as symmetric

in all cases. A test sequence is constructed by sliding the window through the whole sequence

as illustrated in Figure 3.3. In our case, all the sequences have at least one K or R which are

the motifs that we learned from ClustalW through multiple sequence alignment. Sliding win-

dows through the whole sequence generate many test windows, i.e., test inputs. Furthermore,

the cleavage window(s) in the test sequence are going to be labeled as a positive class from

the output of SVM and the others as a negative class. It is clear that restricting the windows

by including to those windows that have K or R at their center will decrease the number of

test examples and, hence, makes it easier to select the positive one(s) (cleavage window(s))

when compared to the high number of windows for a particular test sequence. In other words,

if we call the set of all sliding windows S and choose a special subset A ⊆ S which depends

on motifs known in advance from a bioinformatics tool, then searching a cleavage window(s)

among A will be easier than searching from the bigger set S for a particular test sequence. If

the set A is empty, i.e., A = ∅, the set S which contains all possible windows of the particular
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Figure 3.3: Black parts denote pro-peptide region and white parts stand for the mature part
of the protein [17]: (a) The window does not containing the cleavage site. (b) The window
contains the cleavage site at its center. (c) The window does not contain the cleavage site.

test sequence can be used as test examples. In our special data set on fungal proteins, the

subset A of S is nonempty, i.e., A , ∅. Moreover, the cardinality of A is always greater than

3, i.e., |A| ≥ 4.

Our data set comprises 72 proteins and, hence, 72 amino acid sequences, each giving rise to be

one positive window and three negative windows. So, 72 sequences are used for both training

and testing using the leave one out principle that leaves each sequence in turn as testing while

using the remaining 71 for training. In this way, we have trained using 71 sequences and have

tested 1 sequence 72 times. The accuracy is calculated as the percentage of the total number

of correct predictions over the 72 sequences.

3.3.3 KERNEL DEFINITIONS

For string data, an SVM can make use of string kernels which are described in [67]. These

types of kernels can be used in text mining, DNA sequences and protein sequences. Since
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measuring the similarity between the windows of sequences is one of the most crucial items,

a novel kernel function is defined with an explicit mapping Φ which measures the similarity

of windows by counting the number of matching sequences in a neighbourhood of the po-

tential cleavage site and it is shown to be a Gaussian kernel in Proposition 3.3.1. Thus, the

calculation of very high-dimensional vectors Φ, is avoided by the use of a Gaussian kernel.

In our first method, which is explained in Subsection 3.3.1 with PAM250 matrices, we choose

the Gaussian kernel while using the LibSVM package [14]. In order to motivate our second

choice of the kernel, we consider counting the number of matching sequences between two

windows.

Let us regard windows to be sequences of amino acids indexed by {1, 2, . . . , n}. Moreover,

let the feature space Fr be indexed by pairs (s, i), where s is a sequence of r amino acids

and i=(i1, i2, . . . , ir) a tuple of r distinct indices, i j ∈ {1, 2, . . . , n}. We define the mapping

Φ : w 7→ (ϕ1(w), ϕ2(w), . . . , ϕr(w), . . .) ∈∏
r≥1 Fr by

ϕr(w)(s,i) =

 α
r/2, if wi = s

0, otherwise,
(3.1)

where wi = s means wi j = s j ( j = 1, 2, . . . , r) and α ∈ R, α > 0.

The feature space in which the learning will be conducted is
∏

r≥1 Fr. It is worth noting that

this is a very high dimensional space. For example, F5 has dimension

205
(
n
5

)
,

though, clearly, for r > n all
(
n
r

)
become 0. So, for any fixed n, the effective dimension is

finite. The feature space makes it possible for the learning to assign weights for each pattern

of positions and corresponding choice of amino acids at those positions.

This choice of feature space ensures that the learning can readily identify the salient patterns

which indicate the presence of a cleavage site. Naturally, it will not be practical to compute

this feature vector explicitly. Now, we show in the next proposition that there is an efficient

method of computing the kernel corresponding to the feature map Φ. This opens the way for

us to learn in this feature space by using the kernel methods approach introduced above.

Let us consider (with a slight abuse of notation) the feature vector
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Ψ(w) = [uw1 , uw2 , . . . , uwn]T ,

where ua is defined as ua = [0 . . . 010 . . . 0]1×20 with the value 1 in the position corresponding

to the amino acids (a ∈ {w1,w2, . . . ,wn}).

Proposition 3.3.1 [53] . Using the defined notation above, we have for all windows v, w of

size n:

k(v,w) = ⟨Φ(v),Φ(w)⟩

= (1 + α)n exp
−∥Ψ(v) − Ψ(w)∥22 ln(1 + α)

2

 , (3.2)

where ⟨·, ·⟩ is an inner product.

Proof 1 If we fix a number r of matches, we compare two windows by counting the number

of r tuples of position that contain the identical set of amino acids. If the number of positions

where the sequences of two windows agree is m, then the number of r tuples is given by

the binomial coefficient
(
m
r

)
. This is the inner product associated with the high-dimensional

representation ϕr. Let us denote this kernel by kr(v,w) := αr ⟨ϕr(v), ϕr(w)⟩. Observe that by

using a combination of these kernels, we can create our measure of similarity:

k(v,w) =
∞∑

r=0

κr(v,w) =
∞∑

r=0

αr
(
m
r

)
= ⟨Φ(v),Φ(w)⟩ .

Here, m := #{i : vi = wi, i = 1, 2, . . . , l}, which we will denote by #[v == w], gives the number

of positions in which the two sequences agree.

Therefore, from the Binomial Theorem we learn

k(v,w) = (1 + α)#[v==w]. (3.3)

We note that ⟨Ψ(v),Ψ(w)⟩ = #[v == w], while ∥Ψ(v)∥22 = n.

Letting m = #[v == w], we have

k(v,w) = (1 + α)m

= exp
[
m ln(1 + α) − ∥Ψ(v)∥22 ln(1 + α)/2 − ∥Ψ(w)∥22 ln(1 + α)/2

]
(1 + α)n

= (1 + α)n exp
−∥Ψ(v) − Ψ(w)∥22 ln(1 + α)

2

 .
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Hence, the kernel turns out to be

k(v,w) = (1 + α)n exp
−∥Ψ(v) − Ψ(w)∥22 ln(1 + α)

2

 ,
as required.

Remark 3 We note that equation (3.2) is a scaled Gaussian kernel with kernel width σ =√
1

ln(1+α) by the definition of the Gaussian kernel over the features Ψ(·). We again consider

both normalized and unnormalized versions of the features Ψ(·), though this only affects the

scaling of the kernel width since ∥Ψ(v)∥22 = constant.

3.4 MODEL SELECTION PROCEDURE

The definition of the kernel and the SVM algorithm both involve an additional parameter

vector (C+,C−, σ), the parameters C+ and C− for the SVM and the kernel width σ for the

Gaussian kernels. The usual way to set these parameters is using cross-validation [30]. This

assesses the quality of different parameter settings by dividing the training data into m groups.

It then leaves out one group in turn to train the classifier with a range of possible values for the

parameters and uses the group left out as a test set. The average accuracy for each parameter

setting over all m test groups is then used to select the parameter settings. We employed this

approach where we took m = 71, i.e., we performed a subround of “leave one out” error

estimation on each training set in order to select the parameters to use training for the set of

71 sequences before testing on 72nd left out sequence. Note that this is the only leave one

out at the level of sequences, since each sequence corresponds to 4 windows, one of which is

positive.

Our second method of model selection is a novel approach for problems in which each test

involves multiple inputs, but with the additional information that only one is positive: in our

case, there are many windows, but only one is a cleavage site. Rather than to pre-select the

parameters, we train the SVM on all the training data (other than the single test sequence)

with all the parameter settings. For each SVM we compute the real-valued outputs, for all

the windows arising from the sequence. We define the confidence of the classifier as the

difference between the maximal output and the second largest; see Figure 3.4. Now, we

select the parameter settings for which the confidence is largest and identify the window with
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Figure 3.4: Different real-valued outputs from the SVM. The confidence level is the highest
difference between two maximum positive outputs.

maximal output as the cleavage site. It should be stated that not every test sequence has to

have a cleavage site. It corresponds to having all test window outputs being negative. In such

cases, our algorithm outputs that these sequences do not have a cleavage site.

The model selection method involves choosing among a number of support vector machines

with different parameter settings for the kernel and regularization. The question of consis-

tency of support vector machines has been studied by a number of authors. For example,

Steinwart [76] shows a dependence on the choice of kernel and regularization parameters, so

that a priori consistency is not guaranteed for a fixed value of the regularization parameter.

It is an interesting question whether our method can choose from an appropriate sequence

of regularization parameters to ensure consistency without the need for handcrafted choices.

This question is, however, beyond the scope of the thesis.

3.5 RESULTS AND DISCUSSION

Our data set consists of 72 sequences from fungal proteins selected among non-homologous

proteins with known pro-peptide regions, determined by N-terminal amino acid sequencing.

This has limited the number of available protein sequences but, is expected to have enhanced

accuracy. We initialize the parameter C+ from 0.5 and increased it by the factor of 2 for 6

iterations for both the confidence level method and cross validation. For each value of C+, C−
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was initialized to C+/4 and increased by a factor of 2 for 4 iterations. Likewise, we initialize

σ to 2−8 and multiply by a factor of 2 for 6 iterations. Accuracy results are given in Table

3.1. We compare our results with the ProP1.0 server [23] and the full 71 cross validation. As

it can be seen in Table 3.1, the best accuracy is achieved with the model selection method

proposed in this study by confidence level with SVM and our second approach with normal-

ized binary inputs. We test our data set on ProP1.0 server and it gave 61% accuracy on the

72 test sequences. Our novel approach improved on the accuracy of ProP1.0 server [23] by

15%, although our training data set is 3 times smaller than that used in the neural network

approach described in [23] which used 227 proteins. Furthermore, parameter selection with

the confidence level gives higher accuracy than cross validation.

When we compare our confidence level based approach with cross validation, we see from

Table 3.2 that the computational complexity of training times of the confidence level method

is significantly shorter than cross validation. Here, we show the average of the elapsed time

in training each leave one out phase, i.e., the results in Table 3.2 give the approximate time in

seconds per test sequence in training. As it can be seen from Table 3.1 and Table 3.2, the best

method both in training and accuracy is the confidence level with binary inputs.

Table 3.1: Accuracy results of SVM [53].

Input type Cross validation Confidence level
Normalized data encoded by binary vec. 44% 76%
Not normalized data encoded by binary vec. 47% 75%
Normalized data encoded by PAM250 37% 58%
Not normalized data encoded by PAM250 33% 56%

Table 3.2: Average training time for the SVM for one of the 72 test sequence [53].

Input type Cross Validation Confidence Level
Normalized data encoded by binary vec. 151 sec. 4 sec.
Not normalized data encoded by binary vec. 163 sec. 5 sec.
Normalized data encoded by PAM250 1312 sec. 23 sec.
Not normalized data encoded by PAM250 1924 sec. 34 sec.
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3.6 CONCLUSION AND PERSPECTIVES

Our paper has considered the problem of identifying the cleavage site for fungal pro-peptides

which can be extended in general to eukaryotic proteins. This task has previously been tack-

led by a neural network [23]. We presented a kernel-based solution with two novel features:

A kernel specifically defined for the task enabling the learning to take place using linear func-

tions in a very high-dimensional feature space; and the implementation of model selection

at the test point evaluation phase, rather than by cross validation. Both of these innovations

lead to a significant improvement in classification accuracy on a real-world data set as well

as giving results that are an improvement over the earlier approaches. It would be interesting

to apply the kernel introduced here to other sequence analysis tasks. The approach to model

selection is interesting in that it gives an improved performance with very significantly re-

duced training times. This approach should be evaluated more widely on standard evaluation

tasks and also using results similar to those of [65], the approach can be placed on a sound

theoretical footing.
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CHAPTER 4

MODEL SELECTION ALGORITHMS

4.1 INTRODUCTION

This chapter is devoted to the our model selection technique which is based on maximum mar-

gin principle of SVM [19, 30]. We generalize our confidence interval approach (see Chapter

3) with different Lp-norms (p = 1, 2,∞) in this chapter and we apply this generalized method-

ology to various data gathered from UCI machine learning repository1. This chapter explains

the second contribution of the thesis which is compared with well-known model selection al-

gorithm called cross validation [30]. We will start with explaining the cross validation method

in the first section and continue with our model selection method in the following sections.

Throughout this chapter, we will use k as the number of folds in cross validation method.

There should not be any confusion with the kernel functions as k is understood by in other

chapters.

4.2 CROSS VALIDATION

Cross validation is a method for choosing the best fitted model or function for a given data.

The main idea behind is partitioning of the data into subsets such that the analysis is initially

performed on a single subset, while the other subset(s) are saved for subsequent use in con-

firming and validating the initial analysis. The selection of the best model (or hypothesis)

depends on the error rates of the validation sets for each subset of the partitioned data. There

are three kinds of cross validation methods:

1 http://archive.ics.uci.edu/ml/
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1. hold-out cross validation,

2. k-fold cross validation, and

3. leave one-out cross validation.

Hold-out cross validation: Hold-out cross validation is not cross validation in a common

sense since the data is not crossed over: The data is splitted into two as training and testing and

the function approximator (hypothesis) fits a function using the training set only. Although it

does not spend too much time in training, evaluation can have a high variance since it depends

on the random selection of training and testing.

k-fold cross validation: k-fold cross validation is an improved way of hold out cross valida-

tion. It is based on splitting the data set into k-folds to minimize the high variance problem

in hold out cross validation. It repeatedly chooses one fold as validation and the remaining

(k−1)-fold for training k-times. The disadvantage of this method is that the training algorithm

has to be rerun k times, which means that it takes k times as much computation to make an

evaluation. The advantage of doing this is that we can independently choose how large each

validation set is and how many trials we average over.

Leave one-out cross validation: As from its name, leave one-out cross validation chooses

one single observation for validation and the remaining portion of the data for the training

process. Thus, it is an l-fold cross validation where l is the number of the data points (number

of observations) in the data set. The evaluation given by leave-one-out cross validation error

is good, but it is very expensive to compute.

As it is explained above, the main disadvantage of all the cross validation type is that the com-

putation is expensive as the number of folds increase. Note that there is a trade-off between

computation cost and the cross validation accuracy. As the cross validation accuracy increases

(number of folds increase), the computation costs increase. We develop a new model selection

method based on the maximum margin principle but on the test points. In other words, the

selection depends on the maximum distance of the test points to the classifiers on the training

points. By this way, we save a lot of training time when it is compared with cross validation.

In the following section, we explain our new model selection method with examples on real

data.
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4.3 SVM MODEL SELECTION BASED ON OBSERVED MARGIN

4.3.1 INTRODUCTION

Support vector machines (SVMs) carry out binary classification by maximizing the margin of

a hyperplane between the two classes of examples and then classifying test points according

to the half-spaces in which they reside (irrespective of the distances that may exist between

the test examples and the hyperplanes). In cross validation, the principle idea is to find the

one SVM model and its optimal parameters that help to achieve the smallest training error

amongst all of the models that can be constructed. In contrast, we collect all of the models

found in the model selection phase and produce predictions for test points by finding the

SVM models whose hyperplanes achieve the maximum distance from the test points. In this

setting, we avoid the complex and time consuming paradigm of model selection via cross

validation. Experimental results demonstrate the plausibility of the method proposed and

show a significant decrease in computational time as well as a competitive generalization

error.

For all kinds of data mining tools, parameter selection is one of the critical questions; it

determines the right model for data analysis and prediction. In this chapter, we mainly develop

a fast algorithm for model selection which uses the benefit of all hypothesis space by means

of functions or models [52]. We apply our model selection approach called maximum margin

to the binary classification problems by using support vector machines (SVMs) which, as we

recall, is one of the most efficient methods in machine learning.

4.4 METHODS

In this section, three different norms will be discussed for model selection at the testing phase.

Given a set of functions in the variable x, f1, f2, . . . fℓ being the outputs by the SVM, with

ℓ = |C| · |σ| = ℓ1 · ℓ2, then being the number of models that can be constructed from the

set of parameter values C ∈ {C1,C2, . . . ,Cℓ1} and σ ∈ {σ1, σ2, . . . , σℓ2}, where C is the

error constant and σ is the Gaussian kernel width. We can use some or a combination of

models derived by these parameters in order to make predictions. The first approach which we

propose uses the L∞-norm for choosing which function to use. This is equivalent to evaluating
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the distance of a test point according to the function that achieves the largest (functional)

margin. For example, let us assume we have three values for C ∈ {C1,C2,C3} and two values

for σ ∈ {σ1, σ2}, respectively. Therefore, we have the following ℓ = 6 SVM models together

with their set of parameter values {C, σ}:

• f1 = SVM1: {C1, σ1},

• f2 = SVM2: {C1, σ2},

• f3 = SVM3: {C2, σ1},

• f4 = SVM4: {C2, σ2},

• f5 = SVM5: {C3, σ1},

• f6 = SVM6: {C4, σ4}.

Now, for the functional values, we would compute the functional margins at each test points.

For instance, given a test example x = x0 ∈ Xtest, where Xtest is a collection of data points to

be tested, let us assume the following six functional values:

• f1(x0) = 1.67,

• f2(x0) = 0.89,

• f3(x0) = −0.32,

• f4(x0) = −0.05,

• f5(x0) = 1.1,

• f6(x0) = 1.8.

We assume here, without loss of generality, that the functions f compute the functional mar-

gins and not the geometrical margins (hence, the reason that the example values we have

presented are not bounded by 1 and -1). Finally, we would predict the class of x0 by looking

for the maximal (positive) and the minimal (negative) value of all functions. This corresponds

to f6 and f3, respectively. However, the distance of the test example x0 from the hyperplane

is greater for the f6 =SVM6 function (model) and, therefore, this example can be predicted as
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positive. For this reason, the L∞ prediction function F∞(x) evaluated at our given example x0

can be defined in the following way:

F∞(x) := sgn
(
max{ fi(x)}ℓi=1 +min{ fi(x)}ℓi=1

)
, (4.1)

where sgn denotes the sign function, i.e., positivity or negativity of a function, as defined in

Section 2.2 in equation (2.1)

The L∞-norm approach is also illustrated in Figure 4.1 on a real-world data set which gives the

evaluations of 110 SVM models2 (i.e., functional margin values), sorted in ascending order,

for a particular test point. From Figure 4.1 the maximum positive margin (the far right most

bar) and minimum negative margin (the far left most bar) are shown in black. Hence, the sign

of the sum of these two function margin values will give us the prediction of the test point.

This test point is classified as in the positive class.

Figure 4.1: The graph of L∞-norm which predicts the example as +1 where actual class is +1.
Each bar corresponds to the functional margin value given for that particular SVM model f .
Bold bars corresponds to max{ fi(x)}ℓi=1 and min{ fi(x)}ℓi=1 [52].

The second approach which we introduce is for the L1-norm where the decision depends on

the sign of the Riemann sum of all outputs evaluated for a test point [52]. This results in the

2 There are 11 C values = {2−5, 2−3, 2−1, 2, 23, 25, 27, 29, 211, 213, 215}, and 10 σ values:
{2−15, 2−13, 2−11, 2−9, 2−7, 2−5, 2−3, 2−1, 2, 23}
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following L1-norm prediction function F1 given a test example x, e.g., x0:

F1(x) = sgn

 ℓ∑
i=1

fi(x)

 . (4.2)

This is illustrated in Figure 4.2. In the sense of Riemann sums it is obvious that the prediction

function looks at the integrals of the two areas (indicated in black) above and below the

threshold of 0. Essentially, this equates to summing the above and below bars. In Figure 4.2,

it is clear that the summation will be positive since the area of the positive values (above 0)

is bigger than the area of the negative values (below 0). This methodology corresponds to

summing the weighted average of all the prediction functions with a uniform weighting of 1.

Indeed, this is closely related to taking a weighted majority vote [60, 75].
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Figure 4.2: Illustration of L1−norm approach. Each bar corresponds to the functional margin
value given for that particular SVM model f . The L1-norm predicts +1, and the actual class
of the example is +1 [52].

Our final approach [52] corresponds to the L2-norm and is similar to the one with the L1-

norm discussed above, but with a down-weighting if the absolute values are less than 1 and

an up-weighting if they are above 1. This means that we are giving a greater confidence to

functions that predict functional values greater than 1 or less than -1 but less confidence to

those that are closer to the threshold of 0. Another way of thinking about this approach is

that it is equivalent to a weighted combination of functional margins with the absolute values

of themselves. Therefore, given a test example x, e.g., x0, we have the following L2-norm
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prediction function F2(x) defined by

F2(x) := sgn

 ℓ∑
i=1

fi(x)| fi(x)|
 . (4.3)

The plot of Figure 4.3 represents the L2-norm solution for the same test point predicted by

the L2-norm. As we can see, the yellow region corresponds to the original values of the func-

tions and the black bars are the down-weighted or up-weighted values of the 110 prediction

functions. The L2-norm corresponds to summing the weights of the black bars only. It can

be seen that the absolute values that are smaller than 1 are down-weighted (decreased) and

those greater than 1 are up-weighted (increased). Obviously, values that are close to 1 do not

change significantly.

Figure 4.3: Illustration of L2-norm approach. Each bar corresponds to the functional margin
value given for that particular SVM model f . The L2-norm predicts +1, where the actual class
of the example is +1 [52].

4.5 DATA SET DESCRIPTION

In this study, we used the well-known standard UCI machine learning repository3. From the

repository, we used the Votes, Glass, Haberman, Bupa, Credit, Pima, BreastW, Ionosphere,

3 http://archive.ics.uci.edu/ml/
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Australian Credit and the German Credit data sets. For the first seven data sets, we removed

examples containing unknown values and contradictory labels (this is why the votes data set

is considerably smaller than the one found at the UCI website). The number of examples,

attributes and class distributions of all the data sets are given in Table 4.1.

Table 4.1: Description of the data sets chosen from UCI machine learning repository. First
column represents the name of the data set, second column represents the number of data,
third column represents the number of features, the fourth and fifth columns represent the
numbers of the positive and the negative examples, respectively.

Data set # instances # attributes # pos # neg
Votes 52 16 18 34
Glass 163 9 87 76
Haberman 294 3 219 75
Bupa 345 6 145 200
Credit 653 15 296 357
Pima 768 8 269 499
BreastW 683 9 239 444
Ionosphere 351 34 225 126
Australian 690 14 307 383
German 1000 20 300 700

4.6 RESULTS

We call our methods the SVM-L∞, SVM-L1 and SVM-L2 [52] which correspond to using the

L∞-, L1- and L2-methods that we proposed in Section 4.4. We also test our methods against

the SVM with cross validation (CV), where we carry out 10-fold cross-validation to estimate

the optimal C and σ values. We note that in the methods which we propose, we do not need

to carry out this parameter tuning phase and, hence, achieve a 10 fold speed-up against the

SVM with CV.

Table 4.2 and 4.3 present the results, including the standard deviation (STD) of the error over

the 10-folds of cross-validation, the cumulative training and testing time (column “time”’) in

seconds for all folds of CV, the error as percentages (column “error %”), as numbers (column

“error # ”), the Area Under the Curve (column “AUC”) and the average over all data sets for

the entire 10-fold cross-validation process.

The results of the SVM-Lp where p = ∞, 2, 1, show a significant decrease in computational
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time when compared to the SVM with CV. For example, we can see that the German data set

takes approximately 4368 seconds to train and test and that our methods take between 544 and

597 seconds for training and testing purposes. This is approximately 8 times faster than using

cross-validation. We can also see from Table 4.2 and that the L∞-method seems to capture

better prediction models compared to the other two Lp-norm methods (p = 1, 2) given by

Table 4.3, but all three methods compare favorably with respect to test error against the SVM

with CV. Since several data sets are imbalanced (see Table 4.1), we also report AUC results in

Table 4.2 and Table 4.3. It is well known that as the AUC tends to 1, the better the prediction

accuracy becomes [26]. In Table 4.2, we can see that the L∞-norm has greater AUC values

than the other Lp- norm methods (p = 1, 2).

Finally, when comparing the three methods proposed it is clear that the most successful in

terms of speed and accuracy is the L∞-norm. This is perhaps less surprising when viewed

from the theoretical motivation of this work, as [65] has proposed a bound that gives higher

confidence of correct classification if the test point achieves a large separation from the hyper-

plane. This is exactly what the L∞-norm method does. The other Lp-norm methods (p = 1, 2)

do not have such a theoretical justifications.

4.7 CONCLUSION

We proposed a novel method for carrying out predictions with the SVM classifiers once they

had been constructed using the entire list of regularization parameters (chosen by the user).

We showed that we could apply the Lp-norms (p = 1, 2,∞) to help picking these classifier(s).

Moreover, we introduced the SVM-L∞, SVM-L1 and SVM-L2 strategies and discussed their

attributes with real-world examples [52]. We showed that the L∞-method would choose a

single classifier for prediction, the one that maximizes the distance of a test point from its

hyperplane. The L1- and L2-norms were similar to each other and gave predictions using

a (weighted) sum of the prediction functions constructed by each SVM function. Finally, in

Section 4.6 we gave experimental results that elucidated the methods described in this chapter.

The main benefit of the work proposed [52] can be for imbalanced data sets in which there

are great differences between the size of the classes. In such situations, e.g., fraud detection,

we may have a very large number of examples but only a small number of examples are fraud
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Table 4.2: L∞-norm results against SVM with Cross-Validation [52].
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Table 4.3: L1- and L2-norm results [52].
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cases (positive examples, i.e., f (x) = +1). In this case, using CV can be costly as we will tend

to use up these little amount of the fraud cases within a large proportion of non-fraud cases

and, hence, have a massive imbalance during training. However, in the models which we have

proposed, we can use all of the fraud cases and, hence, a larger proportion during training.

We have the opinion that this is an area which could greatly benefit from the work proposed

in this thesis. Also, removing the CV dependency for finding parameters greatly improves

training and testing times for the SVM algorithm.

A future research direction would be to use other methods for choosing the classifiers for

testing. Perhaps, a convex combination of the functions would yield better generalization

capabilities. Such a combination of functions could be weighted by a factor in the following

way:

Fβ(x) := sgn

 ℓ∑
i=1

βi fi(x)

 (4.4)

where
∑ℓ

i=1 βi = 1, β j ≥ 0 ( j = 1, 2, . . . , ℓ) and β = (β1, β2, . . . , βℓ)T .

Finally, we believe that tighter margin-based bounds could help to improve the selection of

the SVM functions at testing. The bound proposed by [65] suggests the L∞-method which we

proposed in this work [52]. However, from Section 4.6, it is clear that this does not always

create a smaller generalization error than the SVM with CV. Therefore, a future research

direction is to use a tighter bounding principle for the margin-based bound of [65], such as a

PAC-Bayes analysis (due to [44], and extended to margins by [41]). Therefore, we could use

the bounds to indicate which classifiers to use at testing. We think that a tighter estimate of

the bounds would yield an improved generalization.
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CHAPTER 5

INFINITE KERNEL LEARNING

5.1 INTRODUCTION

Real-world data can be supplied from heterogeneous kinds of sources. In such cases, multiple

kernels are more convenient to use for a good accuracy. Recent applications [40] showed the

need for a multiple kernel learning (MKL) because of its interpretability and efficiency. The

common approach to MKL is a convex combination of several kernels. Those kernels are se-

lected before and combined to serve well for the embedding into the feature space to do linear

separation there. In [8], the kernel-based SVM is formulated by a combination of multiple

kernels and solved by quadratically-constrained quadratic programming (QCQP) which is

applied to solve a dual conic optimization problem. Likewise, [71] uses adapted multiple ker-

nel learning to large-scale problems which applies the method to biological sequence analysis.

Since the biological sequences have different motifs inside and for each subsequence, differ-

ent types of kernels are used, and the combination is taken over the whole sequence. In [71],

kernel coefficients are maximized beyond a minimization with respect to the dual variables,

which is a max-min type of a problem. It can become canonically represented as a semi-

infinite problem [84, 85]. The classical SVM is solved iteratively with linear programming

and increasing the number of constraints iteratively in [71]. A different form of an objective

function is proposed in [61] for MKL by adapted weighted L2-norm regularization for each

function f induced by kernels kκ (κ = 1, 2, . . . ,K) instead of using the 1-norm block regular-

ization [71] (K denoting some finite number of kernels). Sparsity of linear combinations of

kernels is controlled by adding a 1-norm regularization term on these kernel weights.

Note (on Numerical Aspects:) In our previous studies [52, 53], data are classified regarding the
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margin of the test data points and using all classifiers in the hypothesis set. Thus, this benefits

from the information of all classifiers and also from the various kernels by different kernel

parameters, e.g., in case of Gaussian kernel, the kernel parameter is a Gaussian width. Hence,

using different classifiers in different ways, for example, by voting, by ensemble classifiers,

gives comparable accuracy results for each test data point and it also improves the speed

[52, 53]. In [52], the classification functions depend on one kernel only, but the classification

of the new data depends on the results of different combinations of these classifiers on the test

points. This improves the accuracy and the speed of the algorithm in the numerical results.

The finite combinations of kernels are limited up to a finite choice. This limitation does not

always allow to represent the similarity or dissimilarity of data points, specifically highly

nonlinearly distributed and large-scaled ones. A finite combination may fail, here. In order

to overcome this, with the motivation of previous studies [52, 53], we propose a combination

of infinitely many kernels in Riemann-Stieltjes integral form (on that form please cf. Section

2.3), for binary classification to allow an infinite wealth of possible choices of kernels in the

kernel space. This makes the problem infinite in both its dimension and its number of con-

straints; which is so-called infinite programming (IP). Our IP problem formulation consists, in

the limiting case of infinitely many kernel coefficients βκ where κ → ∞; this will become rep-

resented by a monotonically increasing function (or a probability measure) β, and an infinite

number of constraints coming from the maximal margin principle of SVM. Here, β is indeed a

monotonically increasing function, as in Section 2.3. Allowing infinitely many kernels might

make our problem ill-posed for real-world problems, because of the enormous complexity of

the model resulting which is also called overfitting. To penalize this curse of dimensionality,

we introduce regularization terms and approximate ”differentiability” in the penalizing term

by first- and second-order difference quotients. On the other hand, to solve IP more tractably,

we reduced the IP to a semi-infinite problem, by parametrizing infinite variables (measures)

by parametric probability density functions (pdfs). We will illustrate this parametrization with

examples for pdfs.

The organization of this chapter is as follows: In Section 5.2, we will motivate our approach

by giving a brief introduction to MKL. In Section 5.3, we will introduce our approach of

so-called infinite kernel learning (IKL) written by IP problems, we present optimality condi-

tions and find the regularity conditions of the reduction ansatz for the lower level problems

of both the primal and the dual problem. By the reduction ansatz, we get locally finitely con-
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strained problems at the place of IP. Regularity conditions of the reduction ansatz, but also

a neighbourhood notion of locally optimal solutions on the lower level need to be defined

since optimal points are implicitly depending on measures locally. Thus, we will discuss the

topology on parameters of the lower level problems, which are defined by measures in IP.

In Section 5.4, regularization of “infiniteness” will be discussed by means of adding a term

which penalizes complexity caused by infiniteness in the model. In Section 5.5, examples of

different parametrizations will be given to reduce the problems of IP. Finally, in Section 5.6,

summary of Infinite Kernel Learning and its advantages will be explained an we will give

conclusions of this chapter in Section 5.7.

5.2 MULTIPLE KERNEL LEARNING

In this section, we will provide an intuition of MKL and problem formulations. Hetero-

geneous kinds of data in real-world examples have let kernel learning algorithms become

generalized by the combination of kernels in a compact form [71]. A weighted combination

of kernels allows to define similarity measurement of heterogeneous data. Firstly, we regard

a convex combination of kernels kκ (κ = 1, 2, . . . ,K):

kβ(xi, x j) :=
K∑
κ=1

βκkκ(xi, x j), (5.1)

where βκ > 0 (κ = 1, 2, . . . ,K),
∑K
κ=1 βk = 1. Here, the input vectors xi (i = 1, 2, . . . , l)

are translated via K mappings ϕκ : x 7→ ϕκ(x) ∈ RDκ(κ = 1, 2, . . . ,K), from the input space

Rn into K feature spaces RDκ , Dκ being the dimension of the k-th feature space [71], and

kκ(xi, x j) =
⟨
ϕκ(xi), ϕκ(x j)

⟩
(κ = 1, 2, . . . ,K).

In [71], the following MKL problem is derived by using the convex combination of kernels

(5.1):

Primal Multiple min
wκ,ξ,b

1
2

 K∑
κ=1

∥wκ∥2


2

+C
l∑

i=1

ξi

Kernel Problem subject to (wκ ∈ RDκ (κ = (1, 2, . . . ,K)), ξ ∈ Rl, b ∈ R)

yi ·
(∑K
κ=1 ⟨wκ, ϕκ(xi)⟩ + b

)
> 1 − ξi (i = 1, 2, . . . , l) and ξi > 0,

(5.2)

In [8], the dual of the problem (5.2) is expressed with second-order cones as follows:
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Dual Multiple min
γ,α

1
2
γ2 −

l∑
i=1

αi (γ ∈ R,α ∈ Rl)

Kernel Problem subject to 0 6 αi 6 C,
∑l

i=1 αiyi = 0,∑l
i, j=1 αiα jyiy jkκ(xi, x j) 6 γ (κ = 1, 2, . . . ,K).

(5.3)

A numerical solution for large-scale problems is introduced in [71] by using a semi-infinite

linear programming (LSIP) [27] (cf. Subsection 2.4) at the place of (5.3) rather than solving

an SDP (semidefinitec programming) problem as done in [8]. Indeed, it can be written as

maxmin type of problem with respect to kernel coefficients β and dual variable α as follows

[71]:

max
β

min
α

K∑
κ=1

βκS κ(α) (α ∈ Rl, β ∈ RK)

subject to 0 6 αi 6 C, β > 0 (componentwise),∑l
i=1 αiyi = 0, and

∑K
k=1 βk = 1,

(5.4)

where S κ(α) := 1
2
∑l

i, j=1 αiα jyiy jkκ(xi, x j) −
∑l

i=1 αi. Let us denote S (α,β) :=
∑K
κ=1 βκS κ(α).

Problem (5.4) can be represented as an SIP (semi-infinite programming) problem by a stan-

dard “epigraph” argument [71]. Indeed, by maximizing the height variable θ under the graph

of min term, problem (5.4) reduces to the following smooth maximization problem of SILP

kind. Indeed, if we had turned from our max to a min term, then we would minimize our

height variable over the epigraph which is the area beyond the graph. Now, our SIP problem

looks as follows:

max
θ,β
θ (θ ∈ R,β ∈ RK)

subject to β > 0,
∑K
κ=1 βκ = 1∑K

κ=1 βκS κ(α) > θ ∀α ∈ Rl with 0 6 α 6 C1 and
∑l

i=1 yiαi = 0,

(5.5)

where, 1 = (1, 1, 1, . . . , 1)T ∈ Rl. Let us emphasize that the representation of our maxi-

mization problem in this way turned the feasible set of (5.4) to the index set of inequality

constraints of (5.5), constituting the SIP character of the new model representation. By a

mere epigraph argument (as for minimization problems), the FP character would have been

preserved, i.e., we would have remained in the case of finitely many constraints.
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5.3 LEARNING WITH INFINITE KERNELS

5.3.1 COMBINATION OF INFINITELY MANY KERNELS

Due to the limitation of the selection of multiple kernels from a discrete set of kernels as it is

discussed in Section 5.1, we propose a different formulation with the motivation of multiple

kernel learning. We introduce infinitely many kernels in the Riemann-Stieltjes integral form

[4, 70] which introduces us into an infinite dimensional kernel space. Mathematically, an

infinite combination will be represented by the following formula:

kβ(xi, x j) :=
∫
Ω

k(xi, x j, ω)dβ(ω), (5.6)

where ω ∈ Ω is a kernel parameter and β is a monotonically increasing function of inte-

gral 1, or just a probability measure on Ω. Furthermore, we assume that the kernel function

k(xi, x j, ω) is a twice continuously differentiable function with respect to ω, i.e., k(xi, x j, ·) ∈

C2. The infinite combination can be, e.g., a combination of Gaussian kernels with different

widths from a set Ω, i.e., κβ(xi, x j) =
∫
Ω

exp(−ω
∥∥∥xi − x j

∥∥∥2
2)dβ(ω). It is obvious that the Gaus-

sian kernel is from a family of twice continuously differentiable functions of the variable ω.

Hereby, we use the wealth of infinitely many kernels to overcome the limitation of the ker-

nel combination given by finitely pre-chosen kernels. The questions on which combination

of kernels and on the structure of the mixture of kernels could be considered and optimized,

and it may, e.g., be answered by homotopies. More formally, let us define a function which

provides the combination of kernels as follows:

Hxi,x j(ω) := k(xi, x j, ω) (ω ∈ [0, 1]). (5.7)

In short, we write H(ω) := Hxi,x j(ω), and we illustrate such a homotopy by an example.

Example 5.3.1 Given k(xi, x j, ω) = ω exp(−w∗
∥∥∥xi − x j

∥∥∥2
2) + (1 − ω)(1 + xT

i x j)d

with some Gaussian width w∗, then,

H(0) = (1 + xT
i x j)d = k1(xi, x j) (polynomial kernel),

H(1) = exp(−w∗
∥∥∥xi − x j

∥∥∥2
2) = k2(xi, x j) (Gaussian kernel).

Herewith,
∫
Ω

k(xi, x j, ω)dβ(ω) = kβ(xi, x j), where Ω = [0, 1].
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The intuition behind the above Example 5.3.1 is illustrated in Figure 5.1 and Figure 5.2.

We can go from “polynomial” to “Gaussian” via a defined homotopy while weighting with

infinitesimal coefficients dβ(ω).

Figure 5.1: On the homotopy between two kernels, example.

Figure 5.2: Homotopy function which starts at H(0) and combines kernels until H(1) is
reached (a symbolic illustration).

To come to infinitely many and infinitesimal coefficients, let us assume that (ηκ)κ∈N0 is a

monotonically increasing sequence in the bounded interval Ω := [0, 1] tending to 1 as κ → ∞

and, say, η0 = 0. Then,
∑∞
κ=1(ηκ − ηκ−1) = 1. We can refine the summation by a Riemann-

Stieltjes integral with any monotonically increasing function β : [0, 1] −→ R, as introduced

in Section 2.3, such that
∫ 1

0 dβ(ω) = 1. Here, we employ a relation of the kind eta = β(ω).

Indeed, we obtain an infinitesimal increment dβ(ω) after limit calculus with weights βκ =

β(ωκ) − β(ωκ−1), i.e., the incremental weights related to a convex combination β of kernels as

in the definition (5.1).
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Another form of a combination is having just one kernel with its specific (e.g., probabilistic)

parameter(s), and to regard it or them as a degree of freedom. More formally, this can be

written in the following way:

Example 5.3.2 Given a kernel k(xi, x j, ω) = exp (−ω
∥∥∥xi − x j

∥∥∥2
2), the infinite combination of

kernels in a Riemann-Stieltjes integral form is

kβ(xi, x j) =
∫
Ω

k(xi, x j, ω)dβ(ω)

=

∫
Ω

exp (−ω
∥∥∥xi − x j

∥∥∥2
2)dβ(ω),

whereΩ = [a, b] (0 ≤ a < b) is the set in whichω lies. Here, we allow a different combination

of Gaussian widths. We mostly prefer Ω = [0, 1] in later sections and chapters.

The difference between the Example 5.3.1 and Example 5.3.2 is that, in Example 5.3.1, the

Gaussian width is fixed and different types of kernels are combined by a homotopy. But, in

Example 5.3.2, the kernel parameter is allowed to be a specific nonlinearly implied variable.

After giving an information about the structure of the combination of infinitely many kernels,

we introduce these combinations in the form of Riemann-Stieltjes integrals into the prob-

lem (5.5) as follows:

max
θ,β
θ (θ ∈ R, β : [a, b]→ R, monotonically increasing function)

subject to
∫
Ω

(
1
2 S (ω,α) −∑l

i=1 αi
)

dβ(ω) > θ ∀α ∈ Rl with 0 6 α 6 C1,∑l
i=1 αiyi = 0,

∫
Ω

dβ(ω) = 1.

(5.8)

Here, S (ω,α) is defined by

S (ω,α) :=
1
2

l∑
i, j=1

αiα jyiy jk(xi, x j, ω). (5.9)

Let us introduce T (ω,α) := S (ω,α) − ∑l
i=1 αi, recall Ω = [0, 1] and for the index set of

inequality constraints we write

A :=

α ∈ Rl | 0 6 α 6 C1 and
l∑

i=1

αiyi = 0

 ,
61



where 1 = (1, 1, . . . , 1)T . Herewith, (5.8) turns into the following form with the above abbre-

viations:

max
θ,β
θ (θ ∈ R, β : a positive measure on Ω)

subject to θ −
∫
Ω

T (ω,α)dβ(ω) 6 0 (α ∈ A),
∫
Ω

dβ(ω) = 1.
(5.10)

Since there are infinitely many inequality constraints and the state variable β is from an infinite

dimensional space, our problem is one of infinite programming (IP) [3]. Now, we get a dual

of (5.10) as

min
σ,ρ
σ (σ ∈ R, ρ : a positive measure on A)

subject to σ −
∫

A T (ω,α)dρ(α) > 0, (ω ∈ Ω),
∫

A dρ(α) = 1.
(5.11)

Because of the conditions,
∫
Ω

dβ(ω) = 1 and
∫

A dρ(α) = 1, in latter sections (cf. Section

5.5), we define our positive measures β(or ρ) as probability measures and parametrize these

measures with probability density functions. Hence, there is indeed no need to write the last

equality constraints,
∫
Ω

dβ(ω) = 1 and
∫

A dρ(α) = 1, in primal problem, (5.10), and the dual

problem, (5.11), respectively, within further definitions or formulations.

Corollary 5.3.3 Let us assume that there exist (β, θ) and (ρ, σ) which are feasible for their

respective problems, and are complementary slack, i.e.,

σ =

∫
A

T (ω,α)dρ(α), θ =
∫

A
T (ω,α)dβ(ω) and σ = θ.

Then, β has measure only where σ =
∫

A T (ω,α)dρ(α) and ρ has measure only where θ =∫
Ω

T (ω,α)dβ(ω) which implies that both solutions are optimal for their respective problems.1

The interesting theoretical problem with this is to find conditions which ensure that solutions

are point masses (i.e., originally, the monotonic β is a step function). Under the nondegener-

acy assumptions of the Reduction Ansatz sinceΩ and A are compact, and with the Heine-Borel

theorem, we can assure that there are finitely many local minimizers at the lower levels and,

hence, finitely many active points (point masses) [88].

From now on, we will look at these conditions for the finitely many local minima. The first

conditions is the compactness of the infinite index set. Since the infinite index sets both for

the primal problem and the dual problem are compact, this condition is already satisfied. We

1 Communication with E.J. Anderson
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need to check the conditions for the nondegeneracy of the critical points and smoothness of

the inequality constraint function. Our constraint function g needs to be an element of the

C2-family of functions for a given continuous kernel function and the parametrization of the

probability measure by a probability density function needs to be done by an element of C2.

With these conditions, we can say that there are finitely many local minima of the problems on

the lower level sets and among these finite local minima, there are finitely many active ones

[88].

Problem (5.11) is a linear infinite one, i.e., from ILP (infinite linear programming), an SILP

(semi-infinite linear programming) one up to the infinite dimensions of ρ space. Because of

this insight and problem, and in view of the compactness of the feasible (index) sets at the

lower levels, A andΩ, we are interested in the nondegeneracy of the local minima of the lower

level problem to get finitely many local minimizers [84]. We note that on the lower levels, θ

and σ are just shift terms which do not affect the local solutions there.

For the sake of simplicity and to do real evaluations, from now on, a Gaussian kernel com-

bination will be used in the form given in Example 2. We emphasize that any other kinds of

kernels and their combinations could be regarded, too.

5.3.2 DUAL PROBLEM

In this section, regularity conditions which are introduced as reduction ansatz in Section 2.4.6

will be analyzed for the dual problem on its lower level. Let us focus on problem (5.11),

employ the language of bilevel programming known from SIP (semi-infinite programming),

and introduce the function

g((σ, ρ), ω) := σ −
∫
Ω

T (ω,α)dρ(α),

which is parametric in (σ, ρ).

Lower Level Problem (Dual): For a given parameter (σ, ρ) we consider

minω g((σ, ρ), ω)

subject to ω ∈ Ω.
(5.12)
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Indeed, we denote the defining inequality constraint functions of Ω by v1((σ, ρ), ω) := ω,

v2((σ, ρ), ω) := −ω + 1. We write L := {1, 2}, L0(ω) := {ℓ ∈ L |vℓ(ω) = 0 } and briefly denote

vℓ(ω) := vℓ((σ, ρ), ω) (ℓ = 1, 2). Consequently, for any critical (and feasible) point ω̄, the

Lagrange function reads

LD(σ, ρ;ω, γ) := g((σ, ρ), ω) −
∑
ℓ∈L0(ω̄)

γℓvℓ(ω).

Here, γ := (γℓ)ℓ∈L0(ω̄). We briefly write LD(ω, γ) := LD(σ, ρ;ω, γ). Since Ω is compact and

g is continuous, for any (σ, ρ), local (global) minimizer(s) of (5.12) exists. We analyze the

three conditions, of the nondegeneracy of a critical point ω̄ of the lower level problem (see

[32, 33, 34, 90]) which establish the reduction ansatz [33]. For any given (σ, ρ) and ω̄ ∈ Ω

we note:

1. LICQ: ∇vℓ(ω̄) (ℓ ∈ L0(ω̄)) is a family with not more than one element since an active

vℓ can either be ω or −ω + 1 in the interval [0, 1] and ∇v1(ω) = 1 and ∇v2(ω) = −1 do

not vanish, respectively. Since LICQ is satisfied, the Lagrange multipliers, referred to

in the subsequent points 2. and 3., are uniquely determined.

2. Karush Kuhn-Tucker (KKT) condition with strictly positive Lagrange multipliers: There

exists a multiplier γ̄ ∈ R|L0(ω̄)| such that ∇ωLD(ω̄, γ̄) = 0 and γ̄ℓ > 0 (ℓ ∈ L0(ω̄)). We

evaluate this subsequently. If we rewrite g((σ, ρ), ω), it will have the following form:

g((σ, ρ), ω) = σ −
∫

A
T (ω,α)dρ(α)

= σ −
l∑

i, j=1

k(xi, x j, ω)yiy j

∫
A
αiα jdρ(α) +

∫
A

l∑
i=1

αidρ(α).

Our Lagrange function is parametric in (σ, ρ) and, fully, it looks as follows:

LD(ω, γ) = σ − 1
2

l∑
i, j=1

k(xi, x j, ω)yiy j

∫
A
αiα jdρ(α) +

∫
A

l∑
i=1

αidρ(α) −
∑
ℓ∈L0(ω̄)

γℓvℓ(ω).

Let us find the conditions which satisfy the KKT condition with strictly positive La-

grange multipliers, to ensure the nondegeneracy:

∇ωLD(ω, γ) = ∇Z − ∇ω(
∑
ℓ∈L0(ω̄)

γℓvℓ(ω)),
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where, in this case, gradients are reals, and

Z := −1
2

l∑
i, j=1

k(xi, x j, ω)yiy j

∫
A
αiα jdρ(α),

⇒ ∇Z = −1
2

l∑
i, j=1

∇ωk(xi, x j, ω)yiy j

∫
A
αiα jdρ(α).

To closer illustrate this, as announced above, let us take a Gaussian kernel, i.e., k(xi, x j, ω) =

exp(−ω
∥∥∥xi − x j

∥∥∥2
2), and denote

I(ℓ ∈ L0(ω̄)) :=

 1, if ℓ ∈ L0(ω̄),

0, if ℓ < L0(ω̄),

at some critical point ω̄. Then, we get

∇Z =
1
2

l∑
i, j=1

∥∥∥xi − x j
∥∥∥2

2 exp(−ω
∥∥∥xi − x j

∥∥∥2
2)yiy j

∫
A
αiα jdρ(α)

and

∇ω

 ∑
ℓ∈L0(ω̄)

γℓvℓ(ω)

 = I(1 ∈ L0(ω̄)) · γ1 − I(2 ∈ L0(ω̄)) · γ2.

Now, we come back to our KKT conditions and evaluate

∇Z = −I(1 ∈ L0(ω̄)) · γ1 + I(2 ∈ L0(ω̄)) · γ2. (5.13)

There are three cases to be discussed to find strictly positive Lagrange multipliers as

given below:

Case 1: If v1(ω̄) = 0, i.e., 1 ∈ L0(ω̄), equation (5.13) will be

1
2

l∑
i, j=1

∥∥∥xi − x j
∥∥∥2

2 exp(−ω
∥∥∥xi − x j

∥∥∥2
2)yiy j

∫
A
αiα jdρ(α) = γ1,

γ1 > 0⇔
l∑

i, j=1

∥∥∥xi − x j
∥∥∥2

2 exp(−ω
∥∥∥xi − x j

∥∥∥2
2)yiy j

∫
A
αiα jdρ(α) > 0. (5.14)

Case 2: If v2(ω̄) = 0, i.e., 2 ∈ L0(ω̄), equation (5.13) will be

1
2

l∑
i, j=1

∥∥∥xi − x j
∥∥∥2

2 exp(−ω
∥∥∥xi − x j

∥∥∥2
2)yiy j

∫
A
αiα jdρ(α) = −γ2,
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γ2 > 0⇔
l∑

i, j=1

∥∥∥xi − x j
∥∥∥2

2 exp(−ω
∥∥∥xi − x j

∥∥∥2
2)yiy j

∫
A
αiα jdρ(α) < 0. (5.15)

Case 3: If L0(ω̄) = ∅, the solution lies in the interior of the feasible region and then the

necessary condition for optimality is: ∇ωg((σ, ρ), ω̄) = 0. This leads to solve ω̄ from

the following:

∇ω

σ − l∑
i, j=1

k(xi, x j, ω̄)yiy j

∫
A
αiα jdρ(α) +

∫
A

l∑
i=1

αidρ(α)

 = 0.

For the following, we introduce

γ̄ :=


γ1, if case 1 holds,

γ2, if case 2 holds,

0, if case 3 holds.

(5.16)

3. Second Order Condition (SOC): With our value γ̄ introduced it has to be fulfilled

ηT∇2
ωLD(σ, ρ; ω̄, γ̄)η > 0, for all η ∈ TD(ω̄) \ {0},

where TD(ω̄) := {η ∈ R | ∇T vℓ(ω̄)η = 0 (ℓ ∈ L0(ω̄)).

Let us find the tangent space TD(ω̄) for all cases, and evaluate (SOC) with respect to

them by the following cases. Here, we write LDj (ω̄, γ̄),TDj (ω̄) ( j = 1, 2, 3) according

to those cases. (The same later on for the dual case.)

Case 1: If v1(ω̄) = 0, then TD1 (ω̄) = {0}.

(SOC) ηT∇2
ωLD

1 (ω̄, γ̄)η > 0 ∀η ∈ TD1 (ω̄) \ {0}

is fulfilled, since ∀η ∈ ∅.

Case 2: If v2(ω̄) = 0, then TD2 (ω̄) = {0}

and, hence,

(SOC) ηT∇2
ωLD2 (ω̄, γ̄)η > 0 ∀η ∈ TD2 (ω̄) \ {0}

is fulfilled since TD2 (ω̄) \ {0} = ∅.

Case 3: L0(ω̄) = ∅ ⇒ TD3 (ω̄) = R.

Then, the Lagrange function consists only of the objective function g((σ, ρ), ω) which

gives

LD3 (ω) = σ −
l∑

i, j=1

k(xi, x j, ω)yiy j

∫
A
αiα jdρ(α) +

∫
A

l∑
i=1

αidρ(α).
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(S OC) − 1
2
∑l

i, j=1

∥∥∥xi − x j
∥∥∥4

2 exp
(
−ω̄

∥∥∥xi − x j
∥∥∥2

2

)
yiy j

∫
A αiα jdρ(α) > 0. (5.17)

Thus ω̄ is nondegenerate if and only if the sign conditions (on the multipliers) and, in

case 3,
l∑

i, j=1

∥∥∥xi − x j
∥∥∥4

2 exp
(
−ω̄

∥∥∥xi − x j
∥∥∥2

2

)
yiy j

∫
A
αiα jdρ(α) < 0

are fulfilled.

We observe and underline that this essentially depends on the data given. One of the impor-

tant differences between the dual and primal problem is that the dual problem (5.11) reduces

the dimension in the lower level from l to 1. Let us observe that the infinitely many inequality

constraints of the dual problem depend on the one-dimensional variable ω, whereas in the pri-

mal problem they depend on the l dimensional variable α. Hence, working with dual problem

is analytically more easy and computationally more tractable. However, the interpretation of

the classification function for SVM is difficult if we solve (5.11) because of the infinite di-

mension of the nonlinear mapping ϕ(x). This infinity is implicit and parametric in the sense of

definition (5.6). For example, even when we have one kernel, in particular, a Gaussian kernel,

k(xi, x j) =
⟨
ϕ(xi), ϕ(x j)

⟩
= exp(−ω

∥∥∥xi − x j
∥∥∥2

2),

and w =
∑l

i=1 αiyiϕ(xi), it is difficult to interpret f (x) = ⟨w, ϕ(x)⟩ + b since we do not know

the explicit form of ϕ(x) and its dimension is infinite [19]. Because of these reasons, we

propose to solve the primal problem to use kernel function implicitly without applying ϕ(x)

with primal variables αi in our problem.

5.3.3 PRIMAL PROBLEM

In this section, regularity conditions will be analyzed for the lower level of the primal problem

given as follows:

maxθ,β θ (θ ∈ R, β is a positive measure on Ω)

subject to θ −
∫
Ω

T (ω,α)dβ(ω) 6 0 (α ∈ A),∫
Ω

dβ(ω) = 1.

(5.18)

The standard form of (5.18) can be easily written by
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minθ,β (−θ) (θ ∈ R, β is a positive measure on Ω)

subject to
∫
Ω

T (ω,α)dβ(ω) − θ > 0 (α ∈ A),∫
Ω

dβ(ω) = 1.

(5.19)

Let us recall that the explicit statement of the equality constraint(s)
∫
Ω

dβ(ω) = 1 (and∫
A dρ(α)) is not needed, when that β (and ρ) are probability measures. Using the language

of bilevel programming of SIP, we introduce the function g((θ, β),α) :=
∫
Ω

T (ω,α)dβ(ω) − θ

which is parametric in (θ, β). We state the

Lower Level Problem (Primal): For a given (θ, β) we consider

min
α

g((θ, β),α) (5.20)

subject to α ∈ A.

We write the defining inequality constraint functions of A by vr((θ, β),α) := αi,

vs((θ, β),α) := −αl−s+C, where r ∈ {1, 2, . . . , l} and s ∈ {l+1, l+2, . . . , 2l}, and equality con-

straints by u((θ, β), α) :=
∑l

i=1 αiyi. Let us briefly denote vr((θ, β),α) =: vr(α), vs((θ, β),α) =:

vs(α) and u((θ, β),α) =: u(α), and L0(ᾱ) := {ℓ ∈ L |vℓ(ᾱ) = 0 }, where L := {1, 2, . . . , 2l}.

Consequently, for any critical point ᾱ, the Lagrange function reads

LP(θ, β;α, ζ,γ) := g((θ, β),α) − ζu(α) −
∑
ℓ∈L0(ᾱ)

γlvℓ(α).

Here, as in the dual case, we put γ := (γℓ)ℓ∈L0(ω̄). Let us shortly write Lp(α, ζ,γ) :=

Lp(θ, β;α, ζ,γ). Since A is compact and g is continuous (since g ∈ C2), for any local (θ, β),

(global) minimizer(s) of (5.20) exists. We analyze the conditions of the nondegeneracy and

reduction ansatz [32, 33, 34, 88, 90], at any such an α. For all (θ, β) and each candidate ᾱ ∈ A,

we evaluate:

1. LICQ: We have to check linear independence of ∇vr(α), ∇vs(α) and ∇u(α), where the

regarded r ∈ {1, 2, . . . , l} and s ∈ {l+1, l+2, . . . , 2l} are active. In other words, variables

α ∈ Rl can satisfy either vr(α) = αr or vs(α) = −αl−s +C. The Jacobian of the (active)

inequalities can be calculated simply as follows: ∇vr(ᾱ) = (0, . . . , 0, 1, 0, . . . , 0)T and

∇vs(ᾱ) = (0, . . . , 0,−1, 0, . . . , 0)T . For simplicity, we introduce A(α) as the vector of

68



all active constraints, the equality constraint included:

A(α) =



u(α)

vℓ1(α)

vℓ2(α)
...

vℓk (α)


, where L0(ᾱ) = {ℓ1, ℓ2, . . . , ℓk}, |L0(ᾱ)| = k.

Then, the Jacobi matrix is a (k + 1) × ł matrix and looks as follows:

DA(α) =



y1 y2 y3 . . . . . . . . . . . . yl

1 0 0 0 0 0 . . . 0

0 0 0 1 0 0 . . . 0

0 0 0 0 . . . 1 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . .

0 0 −1 0 0 0 . . . 0

0 0 0 0 −1 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 0 0 0 . . . −1



,

where yi ∈ {±1} (i = 1, 2, . . . , l) and k = |L0(ᾱ)| . On the right-hand side, we took

the example of some matrix for illustration. We directly understand that the last k rows

of DA(α) constitute a linearly independent family of vectors.

We observe that rank(DA(α)) = l if l < k + 1, which means then that the LICQ condi-

tion is violated since rank of DA is smaller than the number of rows (i.e., constraints

involved). This shows linear dependence of the row vectors, i.e., linear dependence of

gradients of (active) constraints. In fact, concerning linear independence (LICQ), the

first row of DA(α) (α = ᾱ) is the crucial issue, i.e., its possible (non-) representation

by the other k rows.

To overcome these pathological situations, let us geometrically analyze this condition in

2 dimensions, i.e., l = 2. In Figure 5.3, two different examples of nondegeneracy cases

are given such that at the origin and at the upper right corner, three active constraints

meet and these points (corners) are degenerate because of the linear dependencies. At
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Figure 5.3: Active constraints, the red dots are degenerate points; two examples.

these points, we have three equations in two dimensions.

Let us introduce a sequence ξν > 0 (ν ∈ N0) which is monotonically decreasing

to zero such that the inequalities −ξν 6 ∑l
i=1 αiyi 6 ξν are requested. Regarding

active inequality constraints as equality constraints will lead to lines which do not pass

through the origin and cannot produce a corner with threefold activity. This is shown

as two examples in Figure 5.3 and Figure 5.4. At the blue points which are feasible

points for our perturbed problem, the gradients of all the active constraints are linearly

independent. Thus, by decreasing ξν to zero, for nondegeneracy, LICQ can be enforced

by arbitrarily slight perturbations.

For the following points 2. and 3., we may assume now that LICQ is satisfied at the

point ᾱ. This implies uniqueness of the Lagrange multipliers.

2. Kuhn-Tucker condition with strictly positive Lagrange multipliers (for active inequali-

ties):

There has to exists a multiplier vector γ̄ ∈ R|L0(ᾱ)| such that

∇αLP(θ, β;α, ζ,γ) = 0 and γ̄ℓ > 0 (ℓ ∈ L0(ᾱ)).

Let us consider all cases which make Lagrange multiplier strictly positive:
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Figure 5.4: Active constraints with regular points in the perturbed problem; two examples.

Case 1: L0(ᾱ) , ∅. Let us rewrite g((θ, β),α), in the following form:

g((θ, β),α) =
∫
Ω

T (ω,α)dβ(ω) − θ

=
1
2

l∑
i, j=1

αiα jyiy j

∫
Ω

κ(xi, x j, ω)dβ(ω)︸                   ︷︷                   ︸
=:Mi, j

−
l∑

i=1

αi − θ

=
1
2

l∑
i, j=1

αiα jyiy jMi, j −
l∑

i=1

αi − θ.

Here, we used a special condition of a probability measure β:
∫
Ω

dβ(ω) = 1. Note that

Mi, j is independent of α and θ but dependent on β. If we substitute g((θ, β),α) into the

Lagrange function, we will get the following representation:

LP1 (α, ζ,γ) =
1
2

l∑
i, j=1

αiα jyiy jMi, j −
l∑

i=1

αi − θ − ζu(α) −
∑
ℓ∈L0(ᾱ)

γℓvℓ(α)

=
1
2

l∑
i=1

α2
i y2

i Mi,i −
1
2

l∑
i, j=1
i, j

αiα jyiy jMi, j −
l∑

i=1

αi − θ − ζu(α)

−
∑
ℓ∈L0(ᾱ)

γℓvℓ(α). (5.21)

In the second line, we used the assumption that our kernel function is a Gaussian kernel,

which is κ(xi, x j, ω) = exp(−ω
∥∥∥xi − x j

∥∥∥2
2). In fact, for i = j, we get κ(xi, xi, ω) = 1.
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To find KKT points (ᾱ, ζ̄, γ̄), we need to solve ∇αLP(α, ζ,γ) = 0, which is a system of

linear equations in (α, ζ,γ) with

∇αLP1 (α, ζ,γ) =
[
∂LP1 (α,ζ,γ)
∂α1

,
∂LP1 (α,ζ,γ)
∂α2

, . . . ,
∂LP1 (α,ζ,γ)
∂αl

]T
,

where for all i = 1, 2, . . . , l,

∂LP1 (α, ζ,γ)
∂αi

= αiy2
i Mi,i −

1
2

l∑
i, j=1

j,i

α jyiy jMi, j − 1 − ζ ∂u(α)
∂αi

−
∑
ℓ∈L0(ᾱ)

γl
∂vℓ(α)
∂αi

.

Let us for the sake of simplicity assume that L0(ᾱ) = {1, 2, . . . , k} (α = ᾱ), renumbering

the active inequalities otherwise. Then, from ∇αLp
1 (α, ζ,γ) = 0 we get the following

equations:

α1y2
1 −

1
2

l∑
i, j=1
j,1

α jyiy jMi, j − 1 = ζ
∂u(α)
∂α1

+

k∑
ℓ=1

γℓ
∂vℓ(α)
∂α1

,

α2y2
2 −

1
2

l∑
i, j=1
j,2

α jyiy jMi, j − 1 = ζ
∂u(α)
∂α2

+

k∑
ℓ=1

γℓ
∂vℓ(α)
∂α2

,

... (5.22)

αly2
l −

1
2

l∑
i, j=1

j,l

α jyiy jMi, j − 1 = ζ
∂u(α)
∂αl

+

k∑
ℓ=1

γℓ
∂vℓ(α)
∂αℓ

.

The systems of equations (5.22) can be written in the matrix-vector multiplication form

as follows:

D



α1

α2
...

αl


− B



ζ

γ1

γ2
...

γk


=



1

1
...

1


, (5.23)

where

B :=



∂u
∂α1

∂v1
∂α1

. . . ∂vk
∂α1

∂u
∂α2

∂v1
∂α2

. . . ∂vk
∂α2

...
...

...

∂u
∂αl

∂v1
∂αl

. . . ∂vk
∂αl


|α

, (5.24)
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and

D :=



y2
1 −1

2

∑
i, j=1
j,1

yiy jMi, j −1
2

∑
i, j=1
j,1

yiy jMi, j . . . − 1
2

∑
j=1
j,1

yiy jMi, j

−1
2

∑
i, j=1
j,2

yiy jMi, j y2
2 −1

2

∑
i, j=1
j,2

yiy jMi, j . . . −1
2

∑
i, j=1
j,2

yiy jMi, j

−1
2

∑
i, j=1
j,3

yiy jMi, j −1
2

∑
i, j=1
j,3

yiy jMi, j y2
3 . . . −1

2

∑
i, j=1
j,3

yiy jMi, j

...
. . .

−1
2

∑
i, j=1

j,l

yiy jMi, j −1
2

∑
i, j=1

j,l

yiy jMi, j −1
2

∑
i, j=1

j,l

yiy jMi, j . . . y2
l



.

(5.25)

We can write (5.23) in a more closed form as

[D | B]


α

ζ

γ

 = 1. (5.26)

If we solve (5.26) restricted to γℓ > 0 (ℓ = 1, 2, . . . , k), we can specify rank and

conditioning properties for α = ᾱ being a candidate of a locally optimal solution. If

the strict positivity of the corresponding Lagrange multiplier is satisfied, if second-

order conditions is fulfilled and we guaranteed LICQ (employing our perturbational

argument, if needed), such that we have nondegeneracy of the feasible point α = ᾱ,

then this point ᾱ is a candidate of a locally optimal solution on the lower level, provided

a feasible pair (σ, ρ) of the upper level problem.

We underline that the previous reflection holds true in the sense of two restrictions:

(i) The point α = ᾱ has to be feasible, i.e., ᾱ ∈ A, and

(ii) all the combinatorial possibilities of L0(ᾱ) have to be taken into account.

Here, we assumed L0(ᾱ) = {1, 2, . . . , k} for the active index set without loss of general-

ity. Note that the local optimality is provided by a use of Heine-Borel theorem. Since

our infinite index set is compact, there exist finite indices which corresponds to active

inequalities.

Case 2: L0(ᾱ) = ∅, i.e., the equality constraint is the only active constraint. Our
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Lagrangian will take the following form:

LP2 (α, ζ) =
1
2

l∑
i, j=1

αiα jyiy jMi, j −
l∑

i=1

αi − θ − ζu(α)

=
1
2

l∑
i=1

α2
i y2

i Mi,i −
1
2

l∑
i, j=1
i, j

αiα jyiy jMi, j −
l∑

i=1

αi − θ − ζu(α).

Here, to illustrate our Case 2, we assume that we have a Gaussian kernel, as in Case 1.

Let us find (α, ζ) which satisfies ∇αLP2 (α, ζ) = 0, i.e.,

∇αLP2 (α, ζ) =

∂LP2 (α, ζ)
∂α1

,
∂LP2 (α, ζ)
∂α2

, . . . ,
∂LP2 (α, ζ)
∂αl

T

= 0, (5.27)

where
∂LP2 (α,ζ)
∂αi

= αiy2
i Mi,i − 1

2
∑

i, j α jyiy jMi, j − 1 − ζ ∂u(α)
∂αi

and Mi,i = 1 as in previous

case.

If we expand (5.27), we get the following system of equations:

α1y2
1 −

1
2

l∑
i, j=1
j,1

α jyiy jMi, j − 1 = ζ
∂u(α)
∂α1

,

α2y2
2 −

1
2

l∑
i, j=1
j,2

α jyiy jMi, j − 1 = ζ
∂u(α)
∂α2

, (5.28)

...

αly2
l −

1
2

l∑
i, j=1

j,l

α jyiy jMi, j − 1 = ζ
∂u(α)
∂αl
.

The above system of equations (5.28) can be written in matrix-vector multiplication

form as follows:



∂u(α)
∂α1

∂u(α)
∂α2
...

∂u(α)
∂αl


ζ = D



α1

α2
...

αl


−



1

1
...

1


, (5.29)
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where ∂u(α)
∂αi
= yi (i = 1, 2, . . . , l). Hence, (5.29) becomes the following linear system:

D



α1

α2
...

αl


−



y1

y2
...

yl


ζ =



1

1
...

1


, (5.30)

where D is same with (5.25). We can rewrite (5.30) in the form of (5.26) where now,

however, all terms related with v and γ disappear. If we solve (5.30), we find the con-

ditions for α = ᾱ to be the optimal solution. Let us recall that the feasibility condition

(i) pointed out in Case 1 has to be fulfilled also here.

3. Second Order Condition (SOC): With our value γ̄ introduced, it has to be fulfilled:

ηT∇2
αLP(ᾱ, ζ̄, γ̄)η > 0 for all η ∈ TP(ᾱ) \ {0},

where TP(ᾱ) := {η ∈ Rl | ∇T u(ᾱ)η = 0, ∇T vl(ᾱ)η = 0 (l ∈ L0(ᾱ))}.

Now, let us more explicitly find tangent space and conditions for (SOC) to be satisfied

for all cases:

Case 1: If L0(ᾱ) , 0, then the tangent space of the form

TP1 (ᾱ) = {η ∈ Rl
∣∣∣DA(ᾱ)η = 0} , with the condition (written a bit like an example

again)



y1 y2 y3 . . . . . . . . . . . . yl

1 0 0 0 0 0 . . . 0

0 0 0 1 0 0 . . . 0

0 0 0 0 . . . 1 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . .

0 0 −1 0 0 0 . . . 0

0 0 0 0 −1 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 0 0 0 . . . −1





η1

η2

η3
...
...
...
...

ηl



=



0

0

0
...
...
...

0

0



. (5.31)

Here, as we know, ∇vℓ(α) = (0, . . . ,±1, 0, . . . , 0)T (l ∈ L0(ᾱ)) and k = |L0(ᾱ)|. Equa-

tion (5.31) yields the following condition:
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ηr = 0 ∀ r ∈ L0(ᾱ) ∩ {1, 2, . . . , l}, (5.32)

ηs = 0 ∀ l + s ∈ L0(ᾱ) ∩ {l + 1, l + 2, . . . , 2l}, (5.33)
l∑

i=1

ηiyi = 0. (5.34)

From (5.32)-(5.34), it follows that
l∑

i=1
i, l+i<L0(ᾱ)

yiηi = 0.

Let us note the form of ∇2
αLP1 (α, ζ,γ) explicitly:

∇2
αLP1 (α, ζ,γ) =



∂2LP1 (α,ζ,γ)
∂2α1

∂2LP1 (α,ζ,γ)
∂α1∂α2

. . .
∂2LP1 (α,ζ,γ)
∂α1∂αl

∂2LP1 (α,ζ,γ)
∂α2∂α1

∂2LP1 (α,ζ,γ)
∂2α2

. . .
∂2LP1 (α,ζ,γ)
∂α2∂αl

...
. . .

...

∂2LP1 (α,ζ,γ)
∂αl∂α1

∂2LP1 (α,ζ,γ)
∂αl∂α2

. . .
∂2LP1 (α,ζ,γ)
∂2αl


,

with
∂2LP1 (α, ζ,γ)

∂2αi
= y2

i = 1 > 0, (5.35)

and
∂2LP1 (α, ζ,γ)
∂αiα j

= −1
2

yiy jMi, j (i , j). (5.36)

Furthermore, let us state:

Theorem 5.3.4 [15]. A symmetric (n × n) matrix M is positive definite (or positive

semi-definite) if and only if any one of the following conditions holds:

(a) Every eigenvalue of M is positive (zero or positive, respectively).

(b) All the leading principal minors of M are positive definite (all the principal mi-

nors of M are positive semi-definite, respectively).

(c) There exists an n × n nonsingular matrix N (an n × n singular matrix N or an

(m × n)-matrix N with m < n, respectively) such that M = NT N.

Corollary 5.3.5 [83]. If A = (ai, j)i, j=1,2,...,n is symmetric (n × n) strictly diagonally

dominant matrix2 with positive real diagonal entries, then A is positive definite.

2 Strictly diagonally dominant matrix, A, has diagonal entries strictly bigger than the off diagonal ones, i.e.,
ai,i > ai, j (i, j = 1, 2, . . . , n)
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In particular, if any of the corresponding conditions given in Theorem 5.3.4 and Corol-

lary 5.3.5 is satisfied accordingly, then the Hessian is positive definite over the tangent

space: ηT∇2
αLP1 (ᾱ, ζ̄, γ̄)η > 0 for all η ∈ TP1 (ᾱ) \ {0}, so that (SOC) is satisfied. More

explicitly, the diagonal entries given by (5.35) need only to be diagonally dominant,

since by (5.35) the diagonal entries are strictly positive.

Case 2: L0(ᾱ) = ∅. Then,

TP2 (α) = {η ∈ Rl
∣∣∣ ∇T u(ᾱ)η = 0}

=

η ∈ Rl

∣∣∣∣∣∣∣
l∑

i=1

yiηi = 0

 .
The Hessian is the same as in Case 1, with the same entries as given in (5.35) and (5.36),

because of the linearity of the constraints. Furthermore, there are the same (SOC) con-

ditions, referring to TP2 (ᾱ) now.

Under these assumptions, the following theorem assures the optimal (local or global) solution

of the primal problem in a neighbourhood of the regarded optimal (local or global) solution

on the lower level. A corresponding theorem holds for the dual problem which will not be

given repeatedly. Indeed, our extensions of the results given in [32, 33] hold true where, now,

the parameter space is infinite dimensional.

Theorem 5.3.6 Let at some feasible point (θ̄, β̄) of (5.10) the condition reduction ansatz be

satisfied, and the inequality constraint function of the (upper level) problem (5.19) be of class

C2 with respect to α. Then, the following statement holds true:

(a) The set of local minimizers of lower level problem at feasible point (θ̄, β̄) of (5.10) is finite

and, hence, active index set at (θ̄, β̄) is finite, in symbols: A0(θ̄, β̄) = {ᾱ1, ᾱ2, . . . , ᾱχ} in the

role of Y0(·) in Subsection 2.4.6, and there exist unique Lagrange multipliers ζ̄ and unique

Lagrange multiplier vectors γ̄ j ( j = 1, 2, . . . , χ), neighbourhoods U(θ̄,β̄) of (θ̄, β̄) and Vᾱ j of

ᾱ j, and continuous mappings

α j : U(θ̄,β̄) → Vᾱ j , with α j(θ̄, β̄) = ᾱ j,

ζ : U(θ̄,β̄) → R with ζ(θ̄, β̄) = ζ̄ and γ j : U(θ̄,β̄) → R|L0(ᾱ)|, with γ j(θ̄, β̄) = γ̄ j
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( j = 1, 2, . . . , χ) such that for every (θ, β) ∈ U(θ̄,β̄) the value α j(θ, β) is the unique local

minimizer of (5.20) in Vᾱ j ,with corresponding unique Lagrange multipliers ζ(θ, β) and unique

Lagrange multiplier vectors γ j(θ, β) ( j = 1, 2, . . . , χ).

(b) With the functions introduced in (a), the following finite reduction holds:

(θ, β) ∈ U(θ̄,β̄) ∩M, whereM is the feasible set of the upper level problem (5.10), is a local

solution of (5.10), if and only if (θ, β) is a local solution of the so-called reduced problem

Pred(θ, β) : min
(θ,β)∈U(θ̄,β̄)

(−θ)

such that G j(θ, β) := g((θ, β),α j(θ, β)) ≥ 0 ( j = 1, 2, . . . , χ).
(5.37)

We emphasize that this result is an extension to Theorem 2.4.20 into the presence of state

variables in an infinite dimensional space. Moreover, we note that in our cases of kernels and

of probability measures with density functions, the C2-property of the inequality constraints

are fulfilled.

Remark 4 An analogous theorem holds for the dual problem (5.11) under the reduction

ansatz and with respect to the dual variables. We underline that by this theorem the reduced

problem has (locally) finitely many constraints. Then, our task becomes a finitely constrained

optimization problem, locally around an optimal solution. This insight is based on Implicit

Function Theorem (IFT) and the neighbourhood notion defined by, e.g., the Prokhorov dis-

tance, introduced below.

We note that in our application of the Implicit Function Theorem, the variable from an infi-

nite dimensional space, β, is playing the role of a parameter, i.e., it is not involved into the

differentiation which is needed in the assumptions of the reduction ansatz. For very general

versions of Inverse and, hence, Implicit Function Theorem, we refer, e.g., to [29].

Let us start with some definitions which are necessary to define neighbourhood in terms of

measures, including the probability measures of our study.

Definition 5.3.7 [56]. Let (E, T ) be a Hausdorff topological space and let Σ be a σ-algebra

on E that contains the topology T (so that every open set is a measurable set, and Σ is at least

as fine as the Borel σ-algebra on E). A measure µ defined on Σ is called locally finite if, for

every point p of the space E, there is an open neighbourhood Np of p such that the measure

µ of Np is finite.
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In more condensed notation, µ is locally finite if and only if

∀p ∈ E,∃Np ∈ T such that p ∈ Np and
∣∣∣µ(Np)

∣∣∣ < +∞.
With the same assumptions, a measure µ on the measurable space (E,Σ) is called inner

regular if for every set A ∈ Σ it holds

µ(A) := sup{µ(K) | K ⊆ A compact}.

This property is sometimes referred to in words as approximation from within by compact

sets.

In this study, we restrict ourselves to probability measures, which constitute our subspace of

positive measures. It is clear that the probability measures satisfy the constraints
∫
Ω

dβ(ω) =

1 and
∫

A dρ(α) = 1. Hence, it is not necessary to write these constraints in our problem

definitions. We note that the probability measures are inner regular and locally finite which

satisfy the definition of Radon measure given by Definition 5.3.8. Next, we define a Radon

measure and the distance metric needed for neighbourhoods in Theorem 5.3.6:

Definition 5.3.8 [43]. Let (E, d) be the metric space. A Radon measure is a measure on the

σ-algebra of Borel sets of E that is locally finite and inner regular.

We denote the set of Radon measures on E by H(E). In our problems, we look at the sub-

spaces of all the probability measures ρ for the dual problem (5.11), and β for the primal

problem (5.18).

Definition 5.3.9 [43]. Let fi : E → R (i = 1, 2, . . . , q) be continuous bounded functions and

a metric space (E, d)), i.e., fi ∈ (H(E))′, where (H(E))′ is the dual space ofH(E). A base of

neighbourhood of some Radon measure µ0 ∈ H(E) can be defined as{
µ ∈ H(E)

∣∣∣∣∣ ∣∣∣∣∣∫
E

fidµ −
∫

E
fidµ0

∣∣∣∣∣ < ϵ (i = 1, 2, . . . , q)
}
.

In our problems, the elements in the dual space are probability density functions (pdfs). Now,

to represent our neighbourhood notion by a metric, let us define Prokhorov distance:
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Definition 5.3.10 [43]. Let (E, d) be a metric space, where d0 is a Prokhorov distance be-

tween any µ2, µ1 ∈ H(E) is defined by

d0(µ1, µ2) := inf {ϵ > 0 |µ2(A) 6 µ1(Aϵ) + ϵ and µ1(A) 6 µ2(Aϵ) + ϵ (A ⊆ E, closed)}

(5.38)

with Aϵ := {x ∈ E |d(x, A) < ϵ }. Then, the open δ-neighbourhood of µ1 is defined by Bδ(µ1) :=

{µ2 ∈ H(E) | d0(µ1, µ2) < δ} .

Remark 5 Definition 5.3.10 allows to define a neighbourhood of (σ, ρ) (or (θ, β)) in an ap-

propriate topological sense. By Theorem 5.3.6 and Definition 5.3.10 we specify the meaning

of reduction ansatz and of a local optimal solution, namely, in one of these neighbourhoods.

Remark 6 In the above definitions and theorems, the functions f are in same role of test

functions, and the mapping ( f , µ) 7→
∫

E f dµ can be regarded as a dual pairing.

A counterpart to the Prokhorov metric d0 is the bounded Lipschitz metric ~ (see, e.g., [24]).

It is defined in terms of functions instead of sets (as the Prokhorov distance) and, hence, fits

more consistently to the definition of the weak topology.3 The bounded Lipschitz metric is of

the form

~F(µ1, µ2) := sup f∈F |
∫

E f (x)(µ1 − µ2)(dx)|,

where F is a class of real-valued measurable functions defined on the metric space E. If

F corresponds to the unit ball in the Banach space of bounded and Lipschitz continuous

functions, one arrives at ~. It holds c~(µ1, µ2) ≤ d0(µ1, µ2) ≤ C~(µ1, µ2)1/2 for some constants

c,C > 0 and all probability measures µ1, µ2 on E. Hence, both metrics metricize the weak

topology.4

Note 5.3.11 (Complexity) Since our IP problem variables lie in an infinite dimensional space,

minimizing (or maximizing) our objective function with respect to this variable from infinite

dimension can cause a high model complexity. Thus, in the following section, we introduce a

regularization term which flatten the model having not high energy functionals.

3 Weak topology X is defined in its continuous dual space X∗ This dual space consists of all linear functions
from X into R or C which are continuous with respect to the strong topology.

4 Discussion with Prof. Werner Römisch
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5.4 REGULARIZATION OF INFINITE PROGRAMMING MODEL WITH

RESPECT TO KERNEL COEFFICIENTS

In the previous section, our classification problem is modelled and analyzed with infinitely

many kernels by infinite programming. “Infinity” of kernels may cause ill-posed problem,

which is called overfitting in regression problems. Here, we consider classification problems

which need to be regularized by penalizing overfitting caused by infinity in the model [30, 82].

Regularization is performed by adding penalization term to the objective function to reduce

the complexity of the problem. This could be the case if any positive multiple of a kernel

is also a kernel [5]. Argyriou et al. (2006) introduced a regularization term to prevent from

overfitting of data by the objective function [5]:

Q( f ) :=
l∑

j=1

q(y j, f (x j)) + λ ∥ f ∥2k , (5.39)

where q(·, ·) is a loss function and ∥.∥k is the norm induced by reproducing Kernel Hilbert

space. Here, f is represented by a combination of kernels as f =
∑l

j=1 c jk(x j, ·), which is

known as Representer Theorem [66], and the parameters c j ≥ 0 ( j = 1, 2, . . . , l) become

optimized [5].

Unlikely to problem (5.39), in our infinite kernel representation with Riemann-Stieltjes in-

tegrals or positively defined measures, we need to find a penalization function in terms of

measures β(ω) (or ρ(α)) since they represent our continuous convex coefficients for infinite

kernel combinations.

Closer Explanation 5.4.1 Since we have probability measures as state variables, we can

hardly use the theory of regularization, e.g., Tikhonov regularization, directly. Instead, it is

our proposal to measure the complexity of our model by “scanning” the integral terms via a

running upper integration boundary, and to take partial derivatives of first and second order

to record infinitesimal changes of those orders. By this and penalizing these kinds of change

rates, we are looking for a “flat” model or, in particular, a one with a not too high an energy

inscribed, respectively.

In fact, we aim at stabilizing of the model by penalizing high-second order derivatives since

they lead to too high energy, and hence, sensitivity, inscribed. In addition, besides of this

reference to (ν = ) 2nd order variations, we may also take into account (ν = ) 1st order infor-
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mation. In that case, we record and penalize higher first-order derivatives, i.e., we can foster

a flat model. We refer to [55, 80, 81] for closer information on these kinds of penalizations.

In our research, we introduced the new idea of the scanning, of moving upper integration

limits, herewith recording the “behaviour” of our measure β (or σ) in first- and second-order

senses.

Motivated by the theory of inverse problems [6, 81], our Closer Explanation 5.4.1 can for the

primal problem be elaborated as:

min
θ,β

(−θ) + λ sup
t∈[0,1]

∣∣∣∣∣∣ dν

dtν

∫ t

0
dβ(ω)

∣∣∣∣∣∣
subject to

∫
Ω

T (ω,α)dβ(ω) − θ > 0 (α ∈ A),
(5.40)

where the second term in the objective function is the regularization term, and λ ≥ 0 is a

regularization parameter. With ν = 1, 2, we express that we take into account and penalize

first- or second-order derivatives which we can interpret as steepness (or flatness) and energy

within of our models, respectively [6, 55, 80, 81].

Another formulation can be done by including the kernel combination kβ derived, e.g., by a

homotopy as discussed in Section 3.1, as follows:

min
θ, β

(−θ) + λ
l∑

i, j=1

sup
t∈[0,1]

∣∣∣∣∣∣ dν

dtν

∫ t

0
k(xi, x j, ω)dβ(ω)

∣∣∣∣∣∣
subject to

∫
Ω

T (ω,α)dβ(ω) − θ > 0 (α ∈ A),

(5.41)

where λ is a regularization parameter again.

Let us observe that our regularization term, t 7→ ∑l
i, j=1 supt∈[0,1]

∣∣∣∣ dν
dtν

∫ t
0 k(xi, x j, ω)dβ(ω)

∣∣∣∣,
highly depends on the parameter β and it usually needs to be twice continuously differen-

tiable to be well-defined. To weaken the need of differentiability, we replace the deriva-

tives by first- and second-order difference quotients, as offered in the example below, where

0 = t0 < t1 < . . . < tm = 1 is a discrete subdivision (one-dimensional mesh) of the interval

[0, 1].

Instead of introducing regularized problem in a measure theoretical setting, we look at shortly

a special case in which parameters of both (5.40) and (5.41) can be pdf functions f such

that dβ(ω) = f (ω)dω. If f ∈ L∞[0, 1] then our functions of the form t 7→
∫ t

0 δ(ω) f (ω)dω

are differentiable almost everywhere. But even if the derivatives exist everywhere, they may
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be hard to compute. For these reasons, we prefer to “discretize” the differential quotients by

difference quotients for primal and the dual problems as presented by the following examples.

Example 5.4.2 (primal case):

• First-order difference quotient:

d
dt

∫ t

0
dβ(ω)

∣∣∣t=tν ≈
∫ tν+1

0 dβ(ω) −
∫ tν

0 dβ(ω)

tν+1 − tν

=
1

tν+1 − tν

∫ tν+1

tν
dβ(ω) (ν ∈ {0, 1, . . . ,m − 1}).

• Second-order difference quotient:

d2

dt2

∫ t

0
dβ(ω)

∣∣∣t=tν ≈
1

tν+2−tν+1

∫ tν+2

tν+1
dβ(ω) − 1

tν+1−tν

∫ tν+1

tν
dβ(ω)

tν+1 − tν

(ν ∈ {0, 1, . . . ,m − 2}). Now, let us analyze the regularization of the dual problem as we did

in (5.40) and (5.41):

min
σ,ρ
σ + λ · sup

τ∈[0,C]l

l∑
ℓ=1

∣∣∣∣∣∣ dν

dtν
ℓ

∫
Qτ

dρ(α)

∣∣∣∣∣∣
subject to σ −

∫
A T (ω,α)dρ(α) > 0 (ω ∈ Ω),

(5.42)

and

min
σ,ρ
σ + λ ·

l∑
i, j=1

sup
τ∈[0,C]l

l∑
ℓ=1

∣∣∣∣∣∣ dν

dtν
ℓ

∫
Qτ
αiα jyiy jk(xi, x j, ω)dρ(α)

∣∣∣∣∣∣
subject to σ −

∫
A T (ω,α)dρ(α) > 0 (ω ∈ Ω),

(5.43)

where τ := (t1, t2, . . . , tl)T , Qτ :=
l∏

i=1

[0, ti] and ν = 1, 2, respectively.

Note 5.4.3 Alternatively, we might also integrate along the line segment [0, τ] ⊂ Rl. By

means of real analysis and the theory of functions, we could closer characterize, for which

functions integrated and which probability measures and densities, the integration does not

depend on the arc which may connect 0 and τ.

As in the previous (primal) case, we replace the need of differentiability and of differentiation

by first- and second-order quotients:
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Example 5.4.4 (dual case): In the above problems given by (5.42) and (5.43), we now as-

sume that the iterated integrals exist, e.g., by existence and continuity of density functions of ρ.

Instead of using the integration over [0,C]l by iterated integration, we present the following

approach and the integral evaluation with respect to a probability measure. Here, we refer to

grid points τν = (t1
ν , t

2
ν , . . . , t

l
ν)

T at the place of the subdivision points tν of the one-dimensional

(primal) case (ν ∈ {0, 1, . . . ,m}) with tµ0 := 0 and tµm := C (µ ∈ {1, 2, . . . , l}). For simplicity,

we may assume that we have the same number s of subintervals in all the dimensions i.e.,

m = (s + 1)l.

• First-order difference quotient:[
∂
∂t1

∫
Qτ dρ(α), ∂∂t2

∫
Qτ dρ(α), . . . , ∂∂tl

∫
Qτ dρ(α)

]T

|τ=(t1ν ,t2ν ,...,tlν)T

≈

∫

Qτ
1

dρ(α)−
∫

Qτ dρ(α)

t1ν+1−t1ν
,

∫
Qτ

2
dρ(α)−

∫
Qτ dρ(α)

t2ν+1−t2ν
, . . . ,

∫
Qτ

l
dρ(α)−

∫
Qτ dρ(α)

tlν+1−tlν

T

=

[
1

t1ν+1−t1ν

∫
∆Qτ

1
dρ(α), 1

t2ν+1−t2ν

∫
∆Qτ

2
dρ(α), . . . , 1

tlν+1−tlν

∫
∆Qτ

l
dρ(α)

]T
,

(5.44)

where Qτνµ := [0, t1
ν] × [0, t2

ν] × . . . × [0, tµ−1
ν ] × [0, tµν+µ] × [0, tµ+1

ν ] × . . . × [0, tl
ν]

and ∆Qτνµ := [0, t1
ν] × [0, t2

ν] × . . . × [0, tµ−1
ν ] × [tµν , t

µ
ν+µ] × [0, tµ+1

ν ] × . . . × [0, tl
ν], (µ ∈

{1, 2, . . . , l}), where µ and ν are elements in {1, 2, . . . , l} and {0, 1, . . . ,m}, respectively.

Here, we denote the l neighbours of τν (as far as they are lying in [0,C]l) accord-

ing to the l coordinates, where just one of them become increased respectively, by

τν+1, τν+2, . . . , τν+l (renumerating if needed).

• Second-order difference quotient:

The Hessian matrix

∂2

∂t21

∫
Qτ dρ(α) ∂2

∂t2∂t1

∫
Qτ dρ(α) . . . ∂2

∂tl∂t1

∫
Qτ dρ(α)

∂2

∂t1∂t2

∫
Qτ dρ(α) ∂2

∂t22

∫
Qτ dρ(α) . . . ∂2

∂tl∂t2

∫
Qτ dρ(α)

...
...

. . .
...

∂2

∂t1∂tl

∫
Qτ dρ(α) ∂2

∂t2∂tl

∫
Qτ dρ(α) . . . ∂2

∂t2l

∫
Qτ dρ(α)


|τ=(t1ν ,t2ν ,...,tlν)T

(5.45)

can be discretely approximated by employing the methodology presented for the first-

order difference quotients on the components of the approximate gradients which we

obtained there.
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In this section, we added a regularization term because of our state (decision) variable in

infinite dimensional space, and in order to reduce the complexity of the model. In the fol-

lowing section, we propose various probability density functions (since we study probability

measures now) for our SIP problem, instead of further addressing probability measures them-

selves. In the following, we will refer to our SIP problems, based on a parametrization by

these pdfs, for the rest of the thesis.

5.5 DIFFERENT PARAMETRIZATION FUNCTIONS FOR INFINITE PROB-

LEM

Until now, we have assumed that parameters (θ, β) and (σ, ρ) are given for both the primal

problem and the dual problem which are from infinite dimensional spaces. For the remain-

ing part of the thesis, we assume that we are given certain classes of probability measures

and, in fact, we parametrize probability density functions (pdfs). In closer detail, we consider

these positive measures β and ρ such that
∫ 1

0 dβ(ω) = 1 and
∫

A dρ(α) = 1, and we refer to

probability density functions f such that f (ω)dω and f (α)dα take the place of dβ(ω) and

dρ(α), respectively. For example, there are the pdfs of a normal, exponential, uniform, beta,

or a Poisson distribution [69, 30]. We note that we herewith reduce our IP problems into SIP

problems, since now our state (or decision) variables are from finite dimensional spaces by

the parametrization.

Normal Distribution: This distribution is also called Gaussian distribution; it is very appro-

priate for modelling of various continuous random variables. The sampling distribution of the

sample mean is approximately normal, even if the distribution of the population from which

the sample is taken is not normal [30, 69]. The pdf of a normal distribution is

f (x; (µ, σ2)) =
1

σ
√

2π
exp
−(x − µ)2

2σ2 , (5.46)

where x, µ, σ ∈ R. Here, µ is the expected value of the point x, σ ≥ 0 is the standard

deviation and σ2 is the variance. For simplicity, we denote the variable x := ω for our dual

problem, x := α for our primal problem. Since our primal variable α is multidimensional,

i.e., α = (α1, α2, . . . , αl)T , next, we define our pdf for the multivariate case:

f (x; (µ,Σ)) =
1

(2π)l/2det(Σ)1/2 exp(−1
2

(x − µ)TΣ−1(x − µ)). (5.47)
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Here, µ is the mean and Σ is a covariance matrix which is symmetric and requested to be

positive definite, i.e., Σ ≻ 0. In fact, Σ is defined in the group S +, which is the group of the

symmetric and positive definite matrices.

In the special case where the (random) variables xi (i = 1, 2, . . . , l) are uncorrelated and of the

same variance, we can take the covariance matrix as a scalar multiple of the identity matrix,

i.e., Σ = σ2I, where σ is the standard deviation and σ2 is the variance [6]. Then, pdf turns

into a function having two parameter, i.e., σ2 and µ:

f (x; (µ, σ2)) =
1

(2π)1/2σ
exp(−

∥x − µ∥22
2σ2 ). (5.48)

We can use the above formulas (5.46), (5.47) and (5.48) in our SIP reformulation problem,

with the parameters µ and σ2, or µ and Σ, respectively, as new state variables (see Chapter 6).

Exponential Distribution: This distribution is a class of continuous probability distributions

which is useful for modelling time between independent events of constant average rate [69].

The pdf of an exponential distribution looks as follows:

f (x; λ) =

 λ exp(−λx), x > 0,

0, x < 0.

Since x := ω ∈ [0, 1] in our problem, β(ω) = λ exp(−λω)dω, where λ ∈ R is a parameter of

rate. Of course, translations of the origin 0, e.g., delay, are possible.

Continuous Uniform Distribution: This is a family of probability distributions such that for

each member of the family, all intervals [a, b] of the same length on the distribution’s support

are equally probable. The pdf of a continuous uniform distribution looks as follows:

f (x; (a, b)) =


1

b−a , a 6 x 6 b,

0, x < a or x > b.

Here, x := ω, a, b ∈ R, a < b. We can enforce a ≤ b − ϵ with ϵ > 0 sufficiently small, to

insert it as a constraint into our SIP problem (see Chapter 6).

Beta Distribution: The Beta distribution is a family of continuous probability distributions

defined on the interval [0,1] parameterized by two positive shape parameters, typically de-

noted by α and β. (No confusion with the meaning of α and β in our paper needs to be
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expected.) The pdf of a Beta distribution looks as follows:

f (x; (α, β)) =
xα−1(1 − xβ−1)∫ 1

0 ω
α−1(1 − ω)β−1dω

.

5.6 SUMMARY OF INFINITE KERNEL LEARNING AND ITS ADVANTAGES

In this section, we compare our Infinite Kernel Learning (IKL) problem with Multiple Kernel

Learning (MKL) studied in [8, 71] and give advantages of our IP formulation both in theory

and computation.

A multiple combination of kernels limits our choice of kernels to a discrete search space

or it can lead to miss important kernel elements in this limited space. Making the search

space infinite dimensional enables the formerly discretely many kernels and their coefficients

to be in a continuous domain. We interpret this continuity by Riemann-Stieltjes integrals

(see Section 2.3). Among the infinitesimal coefficients, some of them are point masses, i.e.,

finitely many of the inequality constraints are active (see Remark 5.3.3). We guarantee this by

the reduction ansatz, by smoothness of the model functions, and by employing the Theorem of

Heine-Borel. Then, since our infinite index sets of inequality constraints are compact, there

are finitely many active constraints (point masses) in this compact domain (see Corollary

5.3.3).

When using a multiple kernel combination, practically, one needs to store all kernels in the

computer memory. Thus, it can be intractable, but this drawback can be overcome by parallel

algorithms or the chunking algorithm [71]. In our infinite kind of generalization, one may

have doubts about any storing infinitely many kernels in the memory. However, we do not

need to save infinitely many kernels, we only need to evaluate the Riemann-Stieltjes formu-

lation and record just the result of the integral. We believe that this will save training time

of the SVM. Continuity of the search space implies for us that we have one unique kernel by

integration. Hence, the classification function of our Infinite Kernel Learning SVM looks as

follows:

f IKL(x) =
l∑

i=1

αiyikβ(xi, x) + b, (5.49)

where kβ(xi, x) =
∫
Ω

k(xi, x, ω)dβ(ω) and b is the bias (see Section 2.2 and Section 5.3.1).

Our classifier of Infinite Kernel Learning (IKL), f IKL, differs from the classifier of Multiple
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Kernel Learning (MKL), f MKL (given by 5.50) only in kernel definitions (by integral implied):

f MKL(x) =
l∑

i=1

αiyikβ(xi, x) + b, (5.50)

where kβ(xi, x, ω) =
∑K
κ=1 βκkκ(xi, x) and b is the bias.

In order to find a combination of kernels in (5.50), one needs to store all kernels and also to

update the combination and solve SILP.

Again, we point out that the continuity of the combination will save memory and use the

benefit of all possibilities of kernels via the integration.

5.7 CONCLUSION

The method we proposed in this study leads to the selection of kernels from an infinite space

which enables us to enrich the learning process SVM through the range interval [0, 1] of the

integration of a specific or homotopy parameter of ω. Hence, we are not limited to choose

kernel parameter(s), Gaussian kernels in our special case, as discrete values with a cross val-

idation method, but that depending on the examples given beforehand we can learn from

data through this infinite process. Hence, we avoid model selection of kernels. By reduc-

tion ansatz, an infinite problem is turned into a locally finitely constrained problem where,

however, probability measures are our main state variables. By focusing on measures which

possess a Radon-Nikodym density, we turn to a space of density functions [92]. By looking at

parametric density functions, we get semi-infinite and, via reduction ansatz, a locally finitely

constrained and finite dimensional program indeed. Besides of that analytical ansatz which is

hard to implement because of IFT, discretization and exchange methods will be analyzed and

developed in the next chapter.

In this thesis, the classification problem by SVM is modeled with infinitely many kernels by

infinite programming. The proposed dimension is infinite, and our SVM has infinitely many

constraints which may cause ill-posedness. To overcome this, we introduced some regular-

ization terms into the objective function, where the derivative of the regularization term is

approximated by first- and second-order difference quotients. This kind of problems can be

useful for real-world data which are huge and heterogeneous, e.g., in bioinformatics and finan-
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cial applications. The proposed method is novel by its kernel definitions in Riemann-Stieltjes

or Lebesgue integral form. Our optimization problems become defined alternatively in prob-

ability measures as state variables, which are from an infinite dimensional space. Here, we

offered a parametrization of the probability measures via their probability distribution func-

tions. We gave some examples of pdfs to be applied. Another novelty of our approach is to

use Prokhorov distances between Radon measures in the weak topology to define neighbour-

hoods in the state space. Furthermore, we defined the bounded Lipschitz metric which better

fits to the definition of the weak topology. It enables us to define distance in terms of functions

rather than sets, where the space of functions is a class of real-valued measurable functions

defined on a metric space E. There, our probability measures, special Radon measures, are

defined on.
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CHAPTER 6

NUMERICAL TREATMENT OF INFINITE KERNEL

LEARNING PROBLEM

6.1 INTRODUCTION

In this chapter, existing numerical methods of SIP will be adapted to our infinite kernel learn-

ing problem. Since there are an infinite number of constraints both in the primal and the dual

problems, (5.18) and (5.11), and the variables β in the primal and ρ in the dual problem are

from infinite dimensional spaces, the infinite problems are reduced into or approximated by

semi-finite problems to be solvable in practice. Reducing the IP into SIP is an alternative way

to solve the problem. In this thesis, we checked the regularity conditions of our IP and, hence,

of our SIP problem on the lower level. On the other hand, we can check the optimality condi-

tions of IP for our primal and the dual IP problem. We note that our primal and dual IP tasks,

(5.18) and (5.11), respectively, are linear in the infinite dimensional variables β and ρ. Thus

Infinite Linear Programming (ILP) techniques and treatment by primal-dual methods [3] can

also be searched alternatively which, however, is not the main scope of this thesis. In Section

5.5, the parameters, i.e., measures, β in the primal and ρ in dual problem, were considered

by pdfs; different examples for pdfs have been given in order to reduce our IP to SIP. Thus,

given a pdf, it remains to solve an SIP problem in some neighbourhood of these parametrized

measures. In the following sections, given a pdf, different numerical methods will be adapted

to our reduced IP problem. In this chapter, we denote the iteration steps as k; there should not

be any confusion with the names of our kernel functions.
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6.2 DISCRETIZATION

In this section, we will adapt fundamental numerical methods to our reduced SIP problems.

In Section 5.5, we introduced different parametrization functions for the infinite dimensional

variables β and ρ to reduce our IP problems into SIP problems. Throughout this chapter, we

assume that we are given pdf functions fP(ω; ·) and fD(α; ·) for our primal and dual problems,

respectively. In this chapter, we do not need to write the equality constraint
∫
Ω

dβ(ω) =

1 (or
∫

A dρ(α) = 1), since we assume that our measures are probability measures. Then,

we parametrize these measures via pdfs fP = fP(ω;℘P) and fD = fD(α;℘D), taking the

place of positive measures β and ρ. Let us denote the parameters of these pdfs by ℘P =

(℘P1 , ℘
P
2 , . . . , ℘

P
ιP

)T and ℘D = (℘D1 , ℘
D
2 , . . . , ℘

D
ιD

)T for the primal and the dual SIP problems,

respectively. They are constrained and elements of suitable sets:

PP := {℘P ∈ Rι
P
∣∣∣∣ uPi (℘P) = 0 (i ∈ IP), vPj (℘P) ≥ 0 ( j ∈ JP) }

and

PD := {℘D ∈ Rι
D
∣∣∣∣ uDi (℘D) = 0 (i ∈ ID), vDj (℘D) ≥ 0 ( j ∈ JD) }.

Then, instead of optimizing with respect to measure β (or ρ), we minimize with respect to

the pdf parameter vector ℘P (or ℘D). Hence, our problems turn into the following SIP tasks

with additional constraint functions uPi (℘P), vPj (℘P), uDi (℘D) and vDj (℘P), coming from the

definition of the parameter sets related to the specific pdf functions of the primal and the dual

problems, respectively:

(Primal S IP) min
θ,℘P

(−θ)

such that
∫
Ω

T (ω,α) fP(ω;℘P)d(ω) − θ ≥ 0 (α ∈ A),

uPi (℘P) = 0 (i ∈ IP),

vPj (℘P) ≥ 0 ( j ∈ JP),

(6.1)

and
(Dual S IP) min

σ,℘D
σ

such that σ −
∫

A T (ω,α) fD(α;℘D)d(α) ≤ 0 (ω ∈ Ω),

uDi (℘D) = 0 (i ∈ ID),

vDj (℘D) ≥ 0 ( j ∈ JD).

(6.2)

One of the early methods mostly used to solve SIP problems in practice, e.g., in engineering

applications, is discretization [33]. It is based on a discretization of the infinite index set of
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inequality constraints. In our study, these infinite index sets are A and Ω for the primal and

the dual problems, respectively.

The discretized primal SIP and the discretized dual SIP problems of (6.1) and (6.2) can be

rewritten by the following formulations:

P(Ak) min
θ,℘P
−θ

subject to
∫
Ω

T (ω,α) fP(ω;℘P)dω − θ > 0 (α ∈ Ak),

uPi (℘P) = 0 (i ∈ IP),

vPj (℘P) ≥ 0 (ȷ ∈ JP),

(6.3)

and

D(Ωk) min
σ,℘D

σ

subject to σ −
∫

A T (ω,α) fD(α;℘D)dα 6 0 (ω ∈ Ωk),

uDi (℘D) = 0 (i ∈ ID),

vDj (℘D) ≥ 0 ( j ∈ JD).

(6.4)

Here, by the symbol P(·) we denote the primal and by D(·) the dual problems, k is the iteration

step, and the discretized set Ak will be discussed within Strategy I and Strategy II presented

later in this section. It is obvious that Ωk can be defined by a one-dimensional uniform grid1.

Let vP(Ak), MP(Ak) and GP(Ak) denote the minimal value, the feasible set and the set

of (global) minimizers of our primal problem (6.1) with A replaced by Ak. Furthermore,

vD(Ωk), M(Ωk) and GD(Ωk) be the corresponding ones for the dual problem, i.e., they de-

note the minimal value, the feasible set and the set of (global) minimizers of our dual problem

(6.2) with Ω replaced by Ωk. As discussed in Chapter 5, under suitable regularity conditions

(reduction ansatz), the optimal solutions of the lower level problems depend locally on the

parameters, i.e., measures, the Prokhorov distance has been introduced in the space of Radon

measures. Furthermore, the relation with the pdfs has been established with a dual pairing

and by the pdfs as test kind of functions from the dual space.

Let d1 be the Hausdorff distance d1(Ak, A) between A and Ak, which is given by

d1(Ak, A) := max
y∈A

min
y′∈Ak

∥∥∥y − y′
∥∥∥

2 .

1 A uniform grid is discretization of a considered set where all elements x = (x1, x2, . . . , xl)T have same
spacing with respect to their i-th coordinate (i = 1, 2, . . . , l). For example in R2, all rows have the same spacing
and all of the columns have the same spacing (but not necessarily the same as the row spacing).
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Now, with the Hausdorff distance, we will introduce the discretizability notion for our prob-

lems based on the definitions in [78]. In our problems, y = α and y′ = α′ for the primal and

y = ω, y′ = ω′ for the dual case. In the following definitions, the distance to the solutions

(θ∗,℘P∗) and (σ∗,℘D∗) of the primal and the dual SIP, respectively, will be defined with the

Hausdorff distance, too. We note that the optimal solution of the primal problem and of the

dual problem exist because of the continuity of the objective functions and inequality con-

straints, and compactness of the feasible sets proposed subsequently in Closer Explanation

6.2.5. Here, we employ Theorem of Weierstrass . We denote the distance functions d1 for the

dual problem and the primal problem as dD1 and dP1 , respectively.

Definition 6.2.1 The primal and the dual problems, (6.1), (6.2), respectively, are called finitely

reducible if there are finite sets Ak0 ⊂ A, Ωk0 ⊂ Ω for some k = k0, such that vP(Ak0) = vP(A),

vD(Ωk0) = vD(Ω), and (Ak)k∈N0 , (Ωk)k∈N0 strictly isotonically increase2 as k → ∞.

Definition 6.2.2 The primal and the dual problems, (6.1), (6.2), respectively, are called weakly

discretizable if there exist sequences of discretizations (Ak)k∈N0 and (Ωk)k∈N0 such that vP(Ak)→

vP(A) and vD(Ωk)→ vP(Ω) (k → ∞).

We note that we have vP(Ak1) ≤ vP(Ak2) if Ak1 ⊂ Ak2 for our primal problem, and vD(Ωk1) ≤

vD(Ωk2) if Ak1 ⊂ Ak2 for our dual problem. We recall that we consider the standard form

of primal SIP problems given by (5.19), i.e., minimization problems. In closer explanation,

as the infinite index set grows, the number of inequality constraints increases. This forces

the feasible set to become smaller at each iteration k. Thus, the minimum of the objective

function increases (see Figure 6.1). In Figure 6.1, Ak ⊂ Ak+1 is not the case, but obviously,

vP(Ak1) ≤ vP(Ak2).

Definition 6.2.3 The dual and the primal problems, (6.1), (6.2), respectively, are called dis-

cretizable if for each sequence of finite grids Ak ⊂ A (k ∈ N0) for the primal problem,

and Ωk ⊂ Ω (k ∈ N0) for the dual problem, satisfying dP1 (Ak, A) → 0 (k → ∞) and

dD1 (Ωk,Ω)→ 0 (k → ∞), where dP1 (Ak, A) =: max
α∈A

min
α′∈Ak

∥∥∥α − α′∥∥∥2, and

dD1 (Ωk,Ω) =: max
ω∈Ω

min
ω′∈Ωk

∥∥∥ω − ω′∥∥∥2, there exist solutions (θ̄k, ℘̄Pk )k∈N0 of the discretized primal

2 A sequence (Ak)k∈N0 is strictly isotonically increasing if Ak
⊂
,Ak+1 (k ∈ N0).
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Figure 6.1: Illustration of the minimum values with respect to different feasible sets corre-
sponding different discretizations; an example.

problems (6.3) and (σ̄k, ℘̄
D
k

)k∈N0 of the discretized dual problems (6.4) such that the following

relations

min
(θ,℘P)∈GP(A)

∥∥∥∥(θ̄k, ℘̄Pk ) − (θ,℘P)
∥∥∥∥

2
→ 0 (6.5)

and vP(Ak)→ vP(A) (k → ∞),

min
(σ,℘D)∈GD(Ω)

∥∥∥∥(σ̄k, ℘̄
D
k

) − (σ,℘D)
∥∥∥∥

2
→ 0 (6.6)

and vD(Ωk)→ vD(Ω) (k → ∞),

hold for each problem, respectively.

Corollary 6.2.4 If the primal and the dual problems, (6.1) and (6.2), respectively, are finitely

reducible, then both problems (6.1) and (6.2) are weakly discretizable.

Proof 2 Let us assume that (6.1) and (6.2) are finitely reducible. Then, by definition, there

exist a k0 ∈ N0 and finite sets Ak0 ⊂ A for the primal and Ωk0 ⊂ Ω for the dual such

that vP(Ak0) = vP(A) and vD(Ωk0) = vD(Ω). Then, it is obvious that vP(Ak) → vP(A) and

vD(Ωk)→ vD(Ω) (k → ∞).
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Under the discretizability notion established above, we introduce the conceptual discretization

algorithm in the following subsection.

6.2.1 CONCEPTUAL DISCRETIZATION METHOD

The conceptual discretization method is based on an update of the discretization according to

some stopping criterion for the convergence of the optimal solution. We adapt the conceptual

discretization method [33, 34, 78] to our primal and the dual problem in Algorithm 1 and

Algorithm 2.

Algorithm 1 Primal Conceptual Discretization Method (PCDM)
Input:
δ positive number, i.e., δ > 0

fP probability density function (pdf)

PP the set where pdf parameters lie
Output:
θ unknown variable for minimization, to be evaluated

℘P the parameter vector of the pdf

PCDM
(
θ,℘P, A, δ, fP, PP

)
1: k := 0

2: Initialize a discretization Ak ⊂ A.

3: DO Compute a solution (θk,℘Pk ) of

min
θ∈R,℘P

(−θ)

subject to gP((θ,℘P),α) :=
∫
Ω

T (ω,α) fP(ω;℘P)dω − θ > 0 (α ∈ Ak),

uPi (℘P) = 0 (i ∈ IP),

vPj (℘P) ≥ 0 ( j ∈ JP).

4: if gP((θk,℘Pk ),α) ≥ −δ (α ∈ A) then

5: STOP

6: else

7: Ak+1 := Ak ∪ {any new discretized points from A}

8: k := k + 1

9: end if

10: END DO
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Algorithm 2 Dual Conceptual Discretization Method (DCDM)
Input:
δ positive number, i.e., δ > 0

fD probability density function (pdf)

PD the set where pdf parameters lie
Output:
σ unknown variable for minimization, to be evaluated

℘D the parameter vector of the pdf

DCDM
(
σ,℘D,Ω, δ, fD, PD

)
1: k := 0

2: Initialize a discretization Ωk ⊂ Ω.

3: DO Compute a solution (σk,℘
D
k

) of

min
σ∈R;℘D

σ

subject to gD((σ,℘D), ω) := σ −
∫

A T (ω,α) fD(α;℘D)dα > 0 (ω ∈ Ωk),

uDi (℘D) = 0 (i ∈ ID),

vDj (℘D) ≥ 0 ( j ∈ JD).

4: if gD((σk,℘
D
k

), ω) ≥ −δ (ω ∈ Ω) then

5: STOP

6: else

7: Ωk+1 := Ωk ∪ {any new discretized points from Ω}

8: k := k + 1

9: end if

10: END DO
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In Algorithm 1 and Algorithm 2, stopping criteria are theoretically established since one needs

to check, e.g., g((σk,℘
D
k

), ω) ≥ −δ (ω ∈ Ω). Alternatively, we introduce some stopping

criterion based on the idea of a Cauchy sequence.

Generally speaking, in our problem and many real-world situations, an optimal solution is not

known. In order to stop at a sufficiently close approximately optimal solution, the increment

between the steps have to be small enough, i.e., ∥xk+1 − xk∥2 < ϵ0 for a fixed ϵ0 > 0 which

comes from the definition of “Cauchy sequence” evaluated at the k-th iteration for a fixed ϵ0 >

0. A second alternative stopping criterion is based on the idea of a Cauchy sequence again,

but on the value of the objective function, F; it is determined by looking at the decrement

of the objective function at iterations by (F(xk) − F(xk+1)) < ϵ1 for a fixed ϵ1 > 0. As a

third alternative, the first and the second criteria are both integrated in a single criterion by

(F(xk) − F(xk+1)) ∥xk − xk+1∥−1
2 < ϵ2 for a fixed ϵ2 > 0.

In our problems, the objective functions are FP(θ,℘P) := −θ and FD(σ,℘D) := σ for the pri-

mal and the dual problems, respectively. With this notion, we establish our stopping criteria

in different forms. In the following, we refer to one of the stopping criteria for the primal and

the dual problems, in the following ways:

Stopping Criteria for the Primal Problem:∥∥∥∥(θk+1,℘
P
k+1

) − (θk,℘Pk )
∥∥∥∥

2
< ϵ0 for a fixed ϵ0 > 0,

∥−θk − (−θk+1)∥2 < ϵ1 for a fixed ϵ1 > 0, (6.7)

(−θk − (−θk+1))
∥∥∥∥(θk,℘Pk ) − (θk+1,℘

P
k+1

)
∥∥∥∥−1

2
< ϵ2 for a fixed ϵ2 > 0.

Stopping Criteria for the Dual Problem:∥∥∥∥(σk+1,℘
D
k+1

) − (σk,℘
D
k

)
∥∥∥∥

2
< ϵ0 for a fixed ϵ0 > 0,

∥σk − (σk+1)∥2 < ϵ1 for a fixed ϵ1 > 0, (6.8)

(σk − (σk+1))
∥∥∥∥(σk,℘

D
k

) − (σk+1,℘
D
k+1

)
∥∥∥∥−1

2
< ϵ2 for a fixed ϵ2 > 0.

Next, we will give an important assumption for the following Theorem 6.2.6.

Assumption 1: The feasible setsMP(A) andMD(Ω) are compact.
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Closer Explanation 6.2.5 In fact, our (feasible) sets satisfy compactness on the lower level

but not on the upper level. Indeed, on the upper level, θ ∈ R and σ ∈ R are unbounded

for the primal problem (6.1) and the dual problem (6.2), respectively. Let us recall that we

parametrized β and ρ. We need compact feasible sets to have convergence of subsequences to-

wards the optimal solution guaranteed, and also for the discretizability given in the following

theorem. We encounter this problem by transversally intersecting the feasible set with suffi-

ciently large transversal families of elementary geometrical sets (squares, boxes, cylinders or

balls); this compactification is introduced in [64, 88].

In an implicitly defined way, this corresponds to the following feasible subset of the primal

SIP with some nonnegative (semi-continuous) functions GP:

MPcomp(A) := {(θ,℘P)
∣∣∣ θ ∈ R, gP((θ,℘P),α) ≥ 0 (α ∈ A),

(gP − GP)((θ,℘P),α) ≤ 0 (α ∈ A)}, (6.9)

and to the following feasible subset of the dual SIP with some nonnegative semi-continuous

function GD:

MDcomp(Ω) := {(σ,℘D)
∣∣∣ σ ∈ R, gD((σ,℘D), ω) ≥ 0 (ω ∈ Ω),

(gD − GD)((σ,℘D), ω) ≤ 0 (ω ∈ Ω)}, (6.10)

where gP((θ,℘P),α) and gD((σ,℘D), ω) denote the inequality constraint functions of the pri-

mal and the dual problems, respectively. We note that the latter functions may also be vector-

valued.

Besides of this theoretical approach by functions GP and GD, a more practical one consists

of the idea of transversally cutting with a cube. This can be geometrically illustrated by the

cube in Figure 6.2:

Remark 7 When performing the transversal sections, it is important to take into account any

given a priori information about where a possible global solution, minimizer or maximizer,

of our regarded optimization problem is located. Let us recall that we look at the primal

and dual problems after parametrization, such that the parameters themselves became new

decision variables. So we would choose the intersecting parallelpipe large enough in order
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Figure 6.2: Transversal intersection (excision) of the feasible set with box; an example taken
from [64, 88]. (The surface may come from an equality constraint; the figure implies pertur-
bational arguments of [88].)

to include such an expected global solution. Of course, to gain that a priori knowledge, a

careful analytical investigation may be helpful and should be done, e.g., in terms of growth

behaviour and convexity kind of properties. In fact, for the ease of exposition, we just think of

minimization rather than both minimization and maximization.

As a first, simple but important class of problems we mention such ones with a strictly con-

vex graph (given by the constraints), i.e., an epigraph with the form of a potential, e.g., a

paraboloid. In any such a case, we know that the lower level set with respect some arbitrary

and sufficiently large level is nonempty and compact. Then, we can choose and raise our

transversally cutting parallelpipe so that, in a projective sense, the lower level set and, hence,

as an element, the global minimizer is contained in the parallelpipe and, therefore, in the

excised subset of the epigraph.

This treatment and careful geometrical arrangement guarantees the equality of set of minimiz-

ers of the original problem,GP(A), and the set of minimizers after compactification,GPcomp(A),
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i.e., GP(A) = GPcomp(A) which is illustrated in Figure 6.3.

Let us underline that our strict convexity is not guaranteed in general. In fact, the fulfillment

of this property on the one hand depends on how the kernel functions were chosen and how the

kernel matrices, evaluated at the input data, are conditioned. On the other hand, it depends

on how the parameters are involved into the density functions, how the possible nonlinearity

can be characterized by convexity and growth kinds of conditions, e.g., in terms of Morse

indices [37].

We can adopt this idea to our problem to transversally cut around of our height function the

boundary of the epigraph with a cube as shown by Figure 6.3.

Figure 6.3: Illustration of the transversal cutting around the height function with a box; an
example.

Under our Closer Explanation 6.2.5, we obtain a general convergence result for this method

based on Theorem 13 in [78].

Theorem 6.2.6 Let Assumption 1, after the compactification introduced in Closer Explana-

tion 6.2.5 be satisfied for the dual, and let the primal problems and the sequences of dis-

cretizations (Ak)k∈N0 and (Ωk)k∈N0 satisfy

A0 ⊂ Ak (k ∈ N0) and dP1 (Ak, A)→ 0 for k → ∞
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and

Ω0 ⊂ Ωk (k ∈ N0) and dD1 (Ωk,Ω)→ 0 for k → ∞.

Based on possible compactifications, we may from now on suppose thatM(A0) andM(Ω0)

are compact. Then, the primal and the dual problems, (5.18), (5.11), respectively, are dis-

cretizable, i.e., the problems P(Ak) (k ∈ N0) and D(Ωk) (k ∈ N0) have solutions (θk,℘Pk ),

(σk,℘
D
k

) (k ∈ N0), respectively, and such sequences of iterative solutions satisfy

min
(θ∗,℘P∗)∈GP(A)

∥∥∥∥(θk,℘Pk ) − (θ∗,℘P
∗
)
∥∥∥∥

2
→ 0 (k → ∞) (6.11)

and

min
(σ∗,℘D∗)∈GD(Ω)

∥∥∥∥(σk,℘
D
k

) − (σ∗,℘D
∗
)
∥∥∥∥

2
→ 0 (k → ∞). (6.12)

We refer to [78] for the proof of Theorem 6.2.6. By Theorem 6.2.6, we guarantee the con-

vergence of approximate solutions to optimal solutions for sufficiently large k with (6.11) and

(6.12).

Closer Explanation 6.2.7 We note that the assumptions of the Theorem 6.2.6 must be sat-

isfied before we discretize our infinite index set. We know that our index sets A and Ω are

compact, and we assume that our sequences of discretized sets Ak and Ωk (k ∈ N0) converge

to A and Ω. Then, our semi-infinite problems are discretizable.

We also note that the minima which are stated in the theorem exist since the Euclidean norm is

continuous and bounded from below and, indeed, always nonnegative. Other properties used

here are the existence of optimal solutions (θ∗,℘P
∗
) and (σ∗,℘D

∗
), i.e., the sets of minimizers

GP(A) and GD(Ω) exist for the primal and the dual problems, respectively, since our feasible

sets are compact and the objective functions are continuous, that the sets GP and GD are

compact, too, and we use Theorem of Weierstrass (see [4]).

Next, we give the definition for the local primal and the local dual problems which are defined

around some open neighbourhoods of the local minimizers.

Definition 6.2.8 [78]. Given local minimizers (θ̄, ℘̄P), (σ̄, ℘̄D) of the primal and the dual

problems, (6.1) and (6.2), respectively, the primal and the dual SIP are called locally dis-

cretizable at (θ̄, ℘̄P) and (σ̄, ℘̄D) if the discretizability relation holds locally, i.e., if there
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exist neighbourhoods U(θ̄,℘̄P),V(θ̄,℘̄D) of (θ̄, ℘̄P) and (θ̄, ℘̄D), respectively, such that the locally

discretized problems Ploc(A) and Dloc(Ω) for the primal and the dual problem, respectively,

namely,

Ploc(A) : min
(θ,℘P)∈U(θ̄,℘̄P)

−θ

subject to
∫
Ω

T (ω,α) fP(ω,℘P)dω − θ > 0 (α ∈ A),

uPi (℘P) = 0 (i ∈ IP),

vPj (℘P) ≥ 0 ( j ∈ JP),

and

Dloc(Ω) : min
(σ,℘D)∈V(σ̄;℘̄D)

σ

subject to σ −
∫

A T (ω,α) fD(ω;℘D)dα 6 0 (ω ∈ Ω),

uDi (℘D) = 0 (i ∈ ID),

vDj (℘D) ≥ 0 ( j ∈ JD),

(6.13)

obtained as the restriction of P(A) and D(Ω) to open neighborhoods U(θ̄,℘̄P) and V(σ̄,℘̄D),

respectively, are discretizable.

The following Theorem 6.2.10 is based on [78], Theorem 15, and it gives a convergence result

for the discretization method applied to our problems. Let us recall the definition of a local

minimum of order p before giving the result.

Definition 6.2.9 A feasible point x̄ is called a local minimizer of order p > 0 of the problem

to minimize f (x) on a feasible set M ⊆ Rn if with suitable constants ϵ > 0, M > 0 the

following relation holds:

f (x) − f (x̄) ≥ M ∥x − x̄∥p2 for all x with ∥x − x̄∥2 < ϵ.

Theorem 6.2.10 Let (θ̄, ℘̄P) and (σ̄, ℘̄D) be a local minimizer of the primal problem (6.1)

and the dual problem (6.2), respectively, of order p, and let setsM(Ak),M(A),M(Ωk) and

M(Ω) be restricted to a compact subset K ⊂ Rn. We further suppose that MFCQ (see Section

2.4.3) holds at (θ̄, ℘̄P) and (σ̄, ℘̄D). Then (6.1) and (6.2) are locally discretizable at (θ̄, ℘̄P)

and (σ̄, ℘̄D), respectively. In closer detail: There are some ςP > 0 and ςD > 0 such that for

any sequences of grids (Ak)k∈N0 ⊂ A, (Ωk)k∈N0 ⊂ Ω with dP1 (Ak, A) → 0 and dD1 (Ωk,Ω) →
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0 (k → ∞), respectively, and for any sequences of solutions (θk,℘Pk )k∈N0 and (σk,℘
D
k

)k∈N0 of

the locally restricted problems Ploc(A) and Dloc(Ω), the following relations hold:

∥∥∥∥(θk,℘Pk ) − (θ̄, ℘̄P)
∥∥∥∥

2
≤ ςPdP1 (Ak)1/p (k → ∞)

and ∥∥∥∥(σk,℘
D
k

) − (σ̄, ℘̄D)
∥∥∥∥

2
≤ ςDdP1 (Ωk)1/p (k → ∞).

Closer Explanation 6.2.11 The result of Theorem 6.2.10 is true for the global minimization

problems (6.1) and (6.2) since the sets M(Ak), M(Ωk), M(A) and M(Ω) are restricted to

a compact subset [78]. We note that after compactification by transversally intersecting the

feasible set (see Closer Explanation 6.2.5) with sufficiently large transversal elementary geo-

metrical sets, we satisfy the compactness assumption for Theorem 6.2.10.

Let us observe that both sets A and Ω are compact. We recall that the discretization of Ω may

simply be a one-dimensional grid, and the elements of the discretized set of A may consist of

a combination of its corner points, which will be explained later in this section. All the dis-

cretized sets are further refined based on the previous sets, i.e., Ak ⊂ Ak+1 (k ∈ N0). The refine-

ment of the following iterations depends on the type and the dimension of the set. For example,

if the index set Y is an interval Ω := [a, b], then a one-dimensional grid Ŷ can be chosen such

that the distance between neighbouring grid points is defined by ∆yi := b−a
k0

(i = 0, 1, . . . , k0)

for some k0 ∈ N, and with the grid Ŷ := {yi ∈ [a, b] | yi = a + i∆y, i = 0, 1, . . . , k0 }. We can

refine Ŷ by updating k0 such that k1 = k0 + 1.

Until now, we have provided theorems which guarantee convergence of the discretization

method under some assumptions. If the dimension of the continuous index variable is larger

than 2, then the computational complexity of the discretization grows exponentially. In fact,

we need an (l − 1)-dimensional grid of the index set. For example, we use a grid of [0,C]l

for the vector α in our primal problem for the discretization of the index set A. The size of

the mesh grows fastly as the dimension, l, increases. In closer detail: For our primal problem

(6.1), the infinite index variable α is lying in an l-dimensional underlying space. Moreover,

the dimension of the elements in A is the same as the number of the training points used in our

SVM which forces the index variable to be in a high dimension as the number of the training

points increases. This makes the discretization algorithmically more difficult. Let us observe
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that the set A is an (l−1)-dimensional polytope, indeed, it is the intersection of the hyperplane∑l
i=1 αiyi = 0 with the box constraints 0 ≤ αi ≤ C (i = 1, 2, . . . , l), as we learn from the

definition of A.

We propose two strategies to find a discretization of the set A. The first Strategy I is based

on an interpretation of the set A by the combination of its corner points. In this way, we can

discretize the standard simplex instead of the set A directly. The second Strategy II is based

on the linearization of the set A, which is established on theoretical foundations [88].

Strategy I [51] (Triangulation):

In this first strategy, we use Lemma of Carathedory given to represent the elements of A by

its corner points. Furthermore, we apply a triangulation for some standard simplex ∆N and,

hence, a discretization of A will be inherited via ∆N . To do this, we transform the polytope A

to the standard simplex and doing a normalization by representing the coordinates of A with

its barycentric coordinates. After Example 6.2.14, we will explain how the triangulation is

refined stepwise in an algorithmic way. Let us define the standard simplex and the relation

with barycentric coordinates:

Definition 6.2.12 For any N ∈ N0, let the standard N-simplex (or unit N-simplex) is the

subset of RN+1 be given by

∆N :=

a ∈ RN+1

∣∣∣∣∣∣∣ ai ≥ 0 (i = 1, 2, . . . ,N + 1),
N+1∑
i=1

ai = 1

 .
The simplex ∆N is lying in the affine hyperplane obtained by removing the restrictions ai ≥

0 (i = 1, 2, . . . ,N + 1) in the above definition.

The vertices of the standard N-simplex are the standard unit-vectors (points)

e0 = (1, 0, 0, . . . , 0)T ,

e1 = (0, 1, 0, . . . , 0)T ,

...

eN = (0, 0, 0, . . . , 1)T .

There is a canonical map from the standard N-simplex to an arbitrary N-simplex (polytope)
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Figure 6.4: Illustration of the 2-simplex in R3.

∆̂N with vertices v1, v2, . . . , vN, given by

a 7→ â :=
N+1∑
i=1

aivi (a = (a1, a2, . . . , aN+1)T ∈ ∆N).

The coefficients ai are called the barycentric coordinates of a point â in the N-simplex ∆̂N (i =

1, 2, . . . ,N + 1). The standard 2-simplex in R3 is illustrated in Figure 6.4.

Closer Explanation 6.2.13 In order to apply the canonical mapping with barycentric coor-

dinates, we assume A = ∆̂N , N + 1 is the number of vertices of A and all vertices of A have

entries never different from 0 and 1. Then, we can benefit from representing the points α ∈ A

by its barycentric coordinates and by the vertices of standard simplex or, a bit weaker and as

we will use below, from that we may assume all components αi (i = 1, 2, . . . , l) to be 0 or 1,

respectively.

Let us fix yi ∈ {±1} (i = 1, 2, . . . , l) being the output data (labels) and recall the index set

A =
{
α ∈ Rl

∣∣∣ 0 ≤ αi ≤ C (i = 1, 2, . . . , l) and
∑l

i=1 αiyi = 0
}
.

Without loss of generality, we assume that there is some i0 ∈ {1, 2, . . . , l − 1} such that y1 =

. . . = yi0 = 1 and yi0+1 = . . . = yl = −1. Furthermore, as prepared in our Closer Explanation

6.2.13 for simplicity, we take C = 1 for this strategy. (We could also choose C different

than 1; in fact, we can apply the same procedure below.) Since
∑l

i=1 αiyi = 0, we have the

following equation from the definition of the set A:

α1 + . . . + αi0 = αi0+1 + . . . + αl, (6.14)
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where αi ∈ {0, 1} (i ∈ {1, 2, . . . , l}). Specifically, the trivial solution to the equation (6.14) is

a vertex of our polytope A. By this intuition, we will consider the elements of polytope A by

the combination of its binary vertices.

Remark 8 The polytope A has finitely many corner points. In particular, let r := min{i0, l −

i0}. Then, A has
∑r

i=0

(
i0
r

)(
l−i0

r

)
corner points.

Example 6.2.14 Let l = 6, y1 = y2 = 1, y3 = . . . = y6 = −1. Then,

α1 + α2 = α3 + α4 + α5 + α6. (6.15)

There are 15 different corner points. The trivial one is (0, 0, . . . , 0)T , which corresponds to

the number
(
2
0

)(
4
0

)
= 1.

We observe that we must have corner points with 2 nonzero elements or 4 nonzero elements

to satisfy equation (6.15). Let us start with the corners having 2 nonzero elements:

(1, 0, 1, 0, 0, 0), (1, 0, 0, 1, 0, 0), (6.16)

(1, 0, 0, 0, 1, 0), (1, 0, 0, 0, 0, 1), (6.17)

(0, 1, 1, 0, 0, 0), . . . , (0, 1, 0, 0, 0, 1), (6.18)

(1, 1, 1, 1, 0, 0), . . . , (1, 1, 0, 0, 1, 1), (6.19)

where (6.16), (6.17) and (6.18) represent
(
2
1

)(
4
1

)
= 8 many points, and (6.19) corresponds to(

2
2

)(
4
2

)
= 6 many ones. Then, the total number of corner points is 1 + 2 · 4 + 1 · 6 = 15.

Algorithmic Way to Find all Vertices (or Corner Points) of A:

Let p ∈ A be any point. Indeed, for the ease and completeness of explanation, we may assume

that p is an interior point of A, especially, not a corner point. Now, we choose a line d through

p in A. We take two points q1 and q2 on d which lie on the opposite sides of p and maximize

the distance to p. Then, q1 and q2 must be on some hypersurfaces (hyperfaces) bounding the

convex region A. Next, choose a line d2 through q1 which lies in the hypersurface containing

q1. This line will intersect this face into two parts. The face has one more codimension (one

less dimension). The point q1 is a convex combination of the two new intersection points.

Continuing this way finishes the construction principle.
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Figure 6.5: Illustration of the algorithmic way of finding corner points of A; an easy example
for l = 3 (in R3).

We illustrate the intuition of this algorithmic way of finding corners of polytope A with Figure

6.5. Obviously, p is a convex combination of q3, q4 and q5, the vertices of A.

Now, let N :=
∑r

i=0

(
i0
r

)(
l−i0

r

)
. Then, we can discretize the standard simplex in RN+1 and finally

map it onto A to discretize A. More formally, we firstly recall Definition 6.2.12,

∆N =

a ∈ RN+1

∣∣∣∣∣∣∣ ai ≥ 0 (i = 1, 2, . . . ,N + 1),
N+1∑
i=1

ai = 1

 . (6.20)

Let us define a mapping

T : ∆N −→ A with T (a) :=
N+1∑
i=1

aivi ∈ A (a = (a1, a2, . . . , aN+1)T ∈ ∆N),

where the set {v1, v2, . . . , vN+1} consists of the vertices of A. By this methodology, we can find

the elements of this discretization Ak of A which are represented by a combination of vertices

of the simplex. This can be mathematically formulated as follows. Any point p ∈ A can be

represented by

p =
N+1∑
i=1

aivi, (6.21)

where the set {v1, v2, . . . , vN+1} is the set of vertices of A and ai (i = 1, 2, . . . ,N + 1) are the

barycentric coordinates for A (see Definition 6.2.12). To be able to write a point p from A as

in (6.21), we need to find the coordinates ai (i = 1, 2, . . . ,N+1) from the standard N-simplex.

Hence, the simplex ∆N has to be discretized.

One of the main advantages of this strategy consists in working with the standard simplex and
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its vertices. However, the discretization of the simplex is not uniform because of the unsym-

metries of the grid points. As it is clear from Figure 6.6, the distances of the neighbouring

mesh points are nonuniform, i.e., ∆1 , ∆2 , ∆3 , ∆4.

Figure 6.6: Nonuniform sampling of a standard simplex ∆N , an example in R3, ∆1 , ∆2 ,
∆3 , ∆4.

In order to overcome nonuniformity, we propose a method which transforms the barycentric

coordinates of polytopes to a sphere as shown by Figure 6.7 (for closer information, see [91]).

Let us consider a particular face F of some polytope and its corresponding spherical face F′

as shown in Figure 6.7. Each point in F can be described by barycentric coordinate systems

induced by vertices of F after the triangulation as given above. Let us assume that we create

a distribution of points inside F. We can obtain each of the points in this distribution by a

linear interpolation between the vertices of our barycentric coordinates system. Similarly, the

distribution on F′ can be obtained through the same steps of interpolation between the vertices

of barycentric coordinate systems on the sphere [91]. Since we have a uniform sampling over

a sphere (see Figure 6.8), we achieve a uniformly discretized points of our polytope A.

Figure 6.7: Transformation of the barycentric coordinates of a polytope to a sphere [91].
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Figure 6.8: Discretization of the sphere; an example [91].

Remark 9 It is important to observe the computational intractability of Strategy I because

of the exponential growth of the corner points, as the dimension of α, i.e., the number of

data points, increases. It is clear from the example that the number of binary vectors grows

exponentially, namely, in the way of 2l which makes the algorithm impractical. We offer a

theoretically prepared second strategy below which is based on a linearization procedure.

Next, we propose a second strategy which is more theoretical.

Strategy II (Linearization):

The second strategy is based on the linearization of A in some neighbourhood U(θ̄,℘̄P), locally

around a given point ᾱ ∈ A, e.g., a vertex of A. [88]. Mathematically, we define z = T̂ (α) as

follows:

T̂ :



z1 := u(α),

z2 := vℓ1(α),
...

zk+1 := vℓk (α),

zk+2 := ζ1T (α − ᾱ),
...

zl := ζl−1−k
T (α − ᾱ),

(6.22)

where k is the cardinality |L0(ᾱ)| of L0(ᾱ) = {ℓ1, ℓ2, . . . , ℓk} and the vectors ζν ∈ Rl (ν =

1, 2, . . . , l − 1 − k) complete the set {∇u(ᾱ)} ∪ {∇vℓ(ᾱ) | ℓ ∈ L0(ᾱ)} to a basis of Rl.

Now, let us assume that the LICQ condition is satisfied for the lower level problem of (6.1).

Here, we refer to our analysis from Subsection 5.3.3, including the perturbation theory (if
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needed) as being presented there. Then, by means of Inverse Function Theorem applied at

ᾱ on T̂ , we conclude that there exist open and bounded neighbourhoods U1 ⊆ Rι, U2 ⊆ Rl

around ((θ̄, ℘̄P), ᾱ) such that T := T̂|U1×U2 : U1 × U2 → W := T̂ (U1 × U2) is a C1-

diffeomorphism. Shrinking U1, we can guarantee thatW is an axis parallel open box around

((θ̄, ℘̄P), 0l) ∈ Rι×Rl. Then, for each (θ,℘P) ∈ U1, the mappingΦ(θ,℘P) :=
(
T̂ ((θ,℘P), ·)

)
|U2 :

U2 → S 2 is a C1-diffeomorphism which transforms the (relative) neighbourhood A ∩ U2 of

ᾱ on the (relative) neighbourhood

({0} ×Hk × Rl−1−k) ∩ S 2 ⊆ Rl

of 0, where S 2 = S (0, δ) stands for the open square around 0 = 0l with a half side of length δ.

Here, Hk denotes the nonnegative orthant of Rk:

Hk := {z ∈ Rk | zℓ ≥ 0 (ℓ ∈ {1, 2, . . . , k) }.

We callΦ(θ,℘P) a canonical local change of coordinates of α. By this strategy, we transformed

A into a locally rectangular manifold with corners and edges where the discretization will

takes place in. More generally, a discretization point z from the discretized set (regular grid)

Hk corresponds to a discretization point

α = T̂−1(z) (6.23)

from the set A by the back transformation T̂−1, implicitly represented in (6.24):

T̂−1 :



α1

α2
...

αk+1

αk+2
...

αl



:= T̂−1



z1

z2
...

zk+1

zk+2
...

zl



. (6.24)

The geometric illustration is shown in Figure 6.9. The details of this method can be found in

[88].

In the case of our problem, A is already given by linear equalities and inequalities. For this

reason, we can perform the linearization more easily. Indeed, we go from any vertex ᾱ to
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Figure 6.9: Illustration of the local discretization in Hk, P( f , g0,ν, uP, vP) is the discretized
problem and P( f , gP, uP, vP, u, v) is the primal SIP problem, where ν is the number of grid
points, f is the objective function and gP is the inequality constraint of the SIP problem; an
example [88].

the neighbouring vertices and, by this, find a relative neighbourhood of α in A of “triangular”

shape (cf. Figure 6.10). Herewith, we obtained a linearization, but we do not have guaranteed

900 inscribed at ᾱ which, however, could be achieved by the transformation described above

(if being wished).

Note 6.2.15 Strategy II is more theoretical, but we can perform it more practically: it aims at

finding how to compute “local” (neighbourhoods). In our problems, u and v are linear, so that

the transformation T̂ is linear and that inverse transformation, T̂−1 is linear, too. However,

since A has the special form of a polytope, one can use the neighbourhoods by the (relative)

interiors of sub-polytopes (generated by neigbouring vertices), as being shown in Figure 6.10.

If we do that for all vertices ᾱ, then only interior points remain, which constitute an (interior

sub-) polyhedron which is often relatively small, especially, if the number of vertices is not

too high. This interior sub-polyhedron is shown by the shaded region in Figure 6.10. With

this sub-polyhedron, we could proceed in our way again, and we continue, until the sub-

polyhedron remaining is small enough, indeed. Now, all subdividing sets can be discretized

by some scheme (e.g., by some canonical grids in them or by a uniform sampling on a sphere

after transforming barycentric coordinates inside of the sub-polyhedron).
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Figure 6.10: Illustration of the (local) linearization of A, with linear u and v.

6.3 EXCHANGE METHOD

Another concept which is more powerful than discretization is the exchange method. It is, in

terms of refinement and complexity of the algorithm, located between discretization and the

reduction ansatz. Given a discretization, the reduced problem (5.20) of SIP is solved, and in a

next iteration, discretization points become updated, until the algorithm terminates according

to some stopping criterion. The adapted exchange algorithm to our primal problem is given

by Algorithm 3.

As it is discussed in Subsection 6.2.1 by given stopping criteria (6.7) and (6.8) for the primal

and the dual problems, respectively, we can use anyone of our alternative stopping criteria.

In this section, we apply an exchange algorithm to our SIP problem which is parametrized

by uniform continuous density function. Before giving our algorithm “parametrized” by a

uniform continuous density function, we analyze the continuity of uniform continuous density

function in the following example.

Example 6.3.1 As it is assumed in the previous chapters (see Chapter 2), the objective and

the constraint functions, f , h, g, u, v, respectively, are two-times continuously differentiable

(C2-) functions. Now, the global continuity can fail for our function g, depending on the

parametrization of the corresponding pdf. As an example, we choose a uniform continuous
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Algorithm 3 Primal Exchange Method (PEM)
Input:
δ positive number, i.e., δ > 0

fP probability density function (pdf)

PP the set where pdf parameters lie
Output:
θk unknown variable for minimization, to be evaluated

℘P
k

the parameter vector of the pdf

αk dual variable of SVM (support vectors)

PEM
(
θk,℘

P
k
,αk, A, δ, fP, PP

)
1: k := 0

2: Initialize a discretization Ak ⊂ Ω.

3: DO Compute a solution (θk,℘Pk ) of

min
θ∈R,℘P

−θ

subject to gP((θ,℘P),α) :=
∫
Ω

T (ω,α) fP(ω;℘P)dω − θ > 0 (α ∈ Ak),

uPi (℘P) = 0 (i ∈ IP),

vPj (℘P) ≥ 0 ( j ∈ JP).

4: Compute local solutions αi
k

(i = 1, 2, . . . , ik) of the reduced problem such that one of

them, say αi0
k

, is a global solution, i.e.,

gP((θk,℘Pk ),αi0
k

) = min
α∈A

gP((θk,℘Pk ),α).

5: if gP((θk,℘Pk ),αi0
k

) ≥ −δ with a solution (θ̄, ℘̄P) ≈ (θk,℘Pk ), then

6: STOP

7: else

8: Ak+1 := Ak ∪
{
αi

k | i = 1, 2, . . . , ik
}

9: k := k + 1

10: end if

11: END DO
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density function with parameter vector ℘P = (a, b) (a ≤ b). Let us recall that the pdf of the

uniform continuous density is

fP(ω; (a, b)) =


1

b−a , a 6 ω 6 b,

0, ω < a or ω > b.

We observe that the term 1
b−a makes the function g (cf. (6.1)) discontinuous, actually, unde-

fined at a = b. On the other hand, we need an inequality constraint, e.g., of the form “≤”,

such as in a ≤ b. To encounter this, let us introduce a sufficiently small positive number ϵ > 0

such that the following relation is requested:

a + ϵ ≤ b.

Then, we prevent from equality of a and b with this small positive number and, hence, from

discontinuity. In the following, the algorithm of exchange method (PEM) for solving our

primal problem parametrized by a uniform continuous density function is presented.
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Algorithm 4 Primal Exchange Method (PEM) for Uniform Continuous Probability func-

tion
Input:

A an infinite index set

δ positive number, i.e., δ > 0

ϵ positive number, i.e., ϵ > 0
Output:
θk unknown variable for minimization, to be evaluated

ak a parameter of the pdf

bk a parameter of the pdf

αk dual variable of SVM (support vectors)
PEM(θk, ak, bk,αk, A, δ, ϵ)

1: k := 0

2: Initialize a discretization Ak ⊂ A.

3: DO Compute a solution (θk, ak, bk) of

min
θ∈R,a∈R,b∈R

−θ

subject to gP((θ, a, b),α) :=
∫
Ω

T (ω,α) fP(ω; a, b)dω − θ > 0 (α ∈ Ak),

a + ϵ ≤ b.

4: Compute local solutions αi
k

(i = 1, 2, . . . , ik) of the reduced problem such that one of

them, say αi0
k

, is global solution, i.e.,

gP((θk, ak, bk),αi0
k

) = min
α∈A

gP((θk, ak, bk),α).

5: if gP((θk, ak, bk),αi0
k

) ≥ −δ with a solution (θ̄, ā, b̄) ≈ (θk, ak, bk), then

6: STOP

7: else

8: Ak+1 := Ak ∪
{
αi

k
| i = 1, 2, . . . , ik

}
.

9: k := k + 1

10: end if

11: END DO

The convergence of the exchange method applied on our primal problem by Algorithm 4 is

presented with the following theorem [78].

Theorem 6.3.2 [78]. We refer toMPcomp(A) which is obtained by the compactification of fea-

115



sible setMP(A), by transversally intersection of original feasible set with simple geometrical

bodies (e.g., parallelpipes) provided by Closer Explanation 6.2.5. Then, the exchange method

(with δ = 0) either stops at some iteration k0 ∈ N0 with a solution (θ̄, ℘̄P) = (θk0 ,℘
P
k0

) of (6.1)

or the sequence (θk,℘Pk )k∈N0 of solutions of (6.3) satisfies

min
(θ,℘P)∈GP(A)

∥∥∥∥(θk,℘Pk ) − (θ,℘P)
∥∥∥∥

2
→ 0 (k → ∞).

Proof 3 We prove the theorem by contradiction. Let us assume that the algorithm does not

stop with a minimizer of (6.1). As in the proof of Theorem 6.2.6 given in [78], by our assump-

tions, a solution (θk,℘Pk ) of (6.1) exists, (θ̄k, ℘̄Pk ) ∈ MPcomp(A0), and with a suitable, existing

subsequence (θkν ,℘
P
kν

)ν∈N0 and a vector (θ̄, ℘̄P) such that (θkν ,℘
P
kν

) → (θ̄, ℘̄P) (ν → ∞),

where the solution is in the compact elementary geometrical body (e.g., parallelpipe) C (see

Closer Explanation 6.2.5), (θ̄, ℘̄P) ∈ C and ℘̄P ∈ PP, and we find

−θ̄ ≤ v(A).

Again, we must show (θ̄, ℘̄P) ∈ MPcomp(A) or, equivalently, φ(θ̄, ℘̄P) ≥ 0 (α ∈ A) for the

value function φ(θ,℘P) of lower level problem, i.e., φ(θ,℘P) = min
α∈A

g((θ,℘P),α). In view of

φ(θk,℘Pk ) = g((θk,℘Pk ),α1
k
), we can write

φ(θ̄) = φ(θk,℘Pk ) + φ(θ̄, ℘̄P) − φ(θk,℘Pk ) = g((θk,℘Pk ),α1
k
) + φ(θ̄, ℘̄P) − φ(θk,℘Pk ).

Since α1
k
∈ Ak+1, we have g((θk+1,℘

P
k+1

),α1
k
) ≥ 0 and by continuity of g and φ, we find

φ(θ̄, ℘̄P) ≥
(
g((θk,℘Pk ),α1

k
) − g((θk+1,℘

P
k+1

),α1
k+1)

)
+

(
φ(θ̄, ℘̄P) − φ(θk,℘Pk )

)
→ 0

for k → ∞, which concludes the proof.

We refer to [33] for detailed explanation.

6.3.1 CONCEPTUAL REDUCTION METHOD

The conceptual reduction method is based on local reduction which starts with an arbitrary

point, x∗ (not necessarily feasible) for the SIP problem (2.11) and solves the lower level

problem at that point, i.e., it solves Q(x∗) to find all the local minima y1, y2, . . . , yr of Q(x∗)

(see Section 2.4.6, equation (2.27)). It finds the optimal solution for the reduced finite problem
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which has r many constraints, and the iteration continues until the stopping criterion given by

the Algorithm 5 in line 4 is fulfilled. Alternatively, one can choose one of the stopping criteria

from (6.7) and (6.8) for the primal and the dual problems, respectively. In the following

algorithms, we presented the conceptual reduction method, adapted to the primal and dual

problems (6.1) and (6.2) based on [33].

Algorithm 5 Primal Conceptual Reduction Method (PCRM)
Input:

(θ0,℘P0 ) initial guess for the optimal solution which is not necessarily feasible

ϵ sufficiently small positive number to be used for one of the stopping criteria given by (6.7)

fP probability density function (pdf)

PP the set where the pdf parameters lie
Output:
θk unknown variable for minimization, to be evaluated

℘P
k

the parameter vector of the pdf

αk dual variable of SVM (support vectors) (i = 1, 2, . . . , r)

PCRM
(
θk,℘

P
k
,αk, θ0,℘

P
0
, δ, fP, PP

)
1: k := 0

2: Determine all local minima α1
k
,α2

k
, . . . ,αr

k
of

min
α∈A

gP((θk,℘Pk ),α)

3: DO Compute a solution (θ∗,℘P∗) of

min
θ∈R,℘P

−θ

subject to gP((θ,℘P),αl
k
) :=

∫
Ω

T (ω,α) fP(ω;℘P)dω − θ > 0 (l = 1, 2, . . . , r),

uPi (℘P) = 0 (i ∈ IP),

vPj (℘P) ≥ 0 ( j ∈ JP).

4: if One of the stopping criteria given by (6.7) is satisfied, then

5: STOP

6: else

7: (θk+1,℘
P
k+1

) := (θ∗,℘P∗)

8: k := k + 1

9: end if

10: END DO
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Algorithm 6 Dual Conceptual Reduction Method (DCRM)
Input:

(σ0,℘
D
0

) initial guess for the optimal solution which is not necessarily feasible

ϵ sufficiently small positive number to be used for one of the stopping criteria given by (6.8)

fD probability density function (pdf)

PD the set where probability density function (pdf) parameters lie
Output:
σk unknown variable for minimization, to be evaluated

℘D
k

the parameter vector of the pdf

ωi
k primal variable of our (SIP) problem (Gaussian width in our case) (i = 1, 2, . . . , r)

DCRM
(
σk,℘

D
k
, ωi

k, σ0,℘
D
0
, δ, fD, PD

)
1: k := 0

2: Determine all local minima ω1
k , ω

2
k , . . . , ω

r
k of

min
ω∈Ω

gD((σk,℘
P
k

), ω).

3: DO Compute a solution (σ∗,℘D∗) of

min
σ∈R,℘D

σ

subject to gD((θ,℘P), ωl
k) := σ −

∫
Ω

T (ω,α) fP(α;℘P)dα > 0 (l = 1, 2, . . . , r),

uDi (℘D) = 0 (i ∈ ID),

vDj (℘D) ≥ 0 ( j ∈ JD).

4: if One of the stopping criteria is satisfied given by (6.8), then

5: STOP

6: else

7: (σk+1,℘
D
k+1

) := (σ∗,℘D∗).

8: k := k + 1

9: end if

10: END DO
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We observe that the substeps 2 in Algorithm 5 and Algorithm 6 are very costly as they require

a global search for minima of g((θk,℘Pk ),α) or g((σk,℘
D
k

), ω) on A or Ω, respectively. We

must avoid an execution of this step in the overall process as much as possible. Substep 2

assumes that there are only finitely many minima of the lower level problem for the primal

and the dual case. If it does not hold, another method, e.g., discretization, should be used. Let

us note that substep 3 solves a finite constrained optimization problem which requires only

local searches and can be efficiently performed, e.g., by Newton’s method.

Remark 10 The only difference between the exchange method and the conceptual reduction

method is the starting point of the iteration. In the exchange method, we start with an initial

feasible (discretized) index set. But, on the other hand, in the conceptual reduction method,

we do not need to find a discretized set but an initial guess of the optimal solution of the upper

level problem which does not need to be feasible. In our primal problem, as it is discussed

in Section 6.2, we have difficulties in computing the discretization of the set A. We proposed

different strategies to discretize the set A. Alternatively, to solve our primal and the dual

problems, we can use the conceptual reduction method without any need of a discretization

step.
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CHAPTER 7

CONCLUSION

We have developed three new methods of classification and we analyzed our mathematical

model under regularity conditions of continuous optimization. The first two methods repre-

sent contributions to model selection. The first method is a contribution in Bioinformatics,

specifically to biological sequence analysis. The second one targets general model selection

in classification and includes modifications in the confidence level approach (in comparison

to the first method) which has different kinds of applications. The third method focuses on

infinite kernel learning, using infinite and semi-infinite programming and represents a con-

tribution in Applied Mathematics and Continuous Optimization. These three methods also

represent contributions to the general field of Machine Learning. Next, we summarize the

contributions of each of the developed methods.

1. Bioinformatics problem: We developed a new model selection method which is based

on the notion of a confidence interval [53]. We applied this new methodology to solve a

bioinformatics problem. The biological problem we solved was to find the pro-peptide

cleavage site of the proteins in fungi. Recognizing the critical positions of protein

sequences consisting of a large amounts of amino acid sequences is a very exhaustive

and time consuming process. Machine learning methods have been used to solve such a

kind of problems. However, the model selection phase of the machine learning methods

can also be time consuming. In this thesis, we established new methods and models for

Support Vector Machines.

We collected our data from NCBI database1 specifically for fungi proteins. We applied

some data mining algorithms, e.g., phylogenetic tree analysis, and used a bioinformat-

1 http://www.ncbi.nlm.nih.gov/

120



ics tool such as ClustalW2 to the raw data before carrying out classification. Since the

amino acid sequences are consisted of letters, we transformed these letters using PAM

and binary matrices with accordance to the evolutionary criteria of the proteins. Win-

dow based scanning of the amino acids is used for the input and output pairs for the

classifier. We tested different window sizes as a parameter and chose the one having

the best error rate.

We established our classification model by defining a new kernel function which is

based on the occurrence of the same letters of amino acid sequences. The occurrence

of the amino acid sequences are determined by scanning the windows through the pro-

tein sequence. This new kernel function is then proved to be the Gaussian kernel with

a special Gaussian width [53]. One of the main contributions of this study is the se-

lection of the classifiers (model selection) by “confidence intervals”, which is based on

functional margins on the test window sequences. Our new model selection method is

compared with one of the well known model selection methods known as called cross

validation. We pointed out the accuracy rate and training time of our new model se-

lection algorithm in Chapter 3. We achieved a faster method and highly comparable

accuracy rate when compared with cross validation.

2. Development in Model Selection: Our second contribution is in the field of machine

learning (support vector machines). We generalize our confidence interval approach by

a new model selection method, based on the observed margin [65]. In this context, three

different norms are defined for the test point margins [52]. We tested our new method on

different kinds of data collected from UCI machine learning repository3. We succeded

to reduce the training time of the SVM with our new model selection method based on

“observed margin” and “maximum margin principle” [52]. Furthermore, AUC results

showed that our model selection method is also successfull in the class imbalance case.

3. Development of Kernel Learning by Semi-infinite and Infinite Programming: We

also introduce the use of infinite and semi-infinite programming in order to model our

new classifier with infinitely many kernels. Since the real world data can be hetero-

geneous and large scale, combinations of multiple kernels are helpful to classify such

data, e.g. splice cite recognition [71]. Multiple kernel learning has been developed and

2 http://www.ebi.ac.uk/Tools/clustalw2/index.html
3 http://archive.ics.uci.edu/ml/
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tackled in [71] by using semi-infinite programming. Convex combinations of the ker-

nels are fitted to the model using positive kernel coefficients. Note that choosing finitely

many kernels from the kernel space is parametric on the kernel choice and highly de-

pendent on our selection of these finitely many kernels. This dependence can limit our

selection and may lead to the choice of a poor kernel. We improved the idea of multiple

kernel learning by enlarging the selection to infinitely many and calculating our new

classifier via infinite programming [54]. This allows us to smooth the discrete set of

kernels to a continuous range of kernels in an infinite-dimensional space. We define the

combination of infinitely many kernels by Riemann-Stieltjes integrals and the mono-

tonic increasing function as positive measures. After some assumptions and by using

Theorem 5.3.6, we defined neighborhoods of these measures on Radon measures by

Prokhorov distances, allowing us to define our neighborhoods of implicit functions.

The constitution by infinitely many kernels allows us to check all possibilities of ker-

nels in a continuous domain and it also avoids the model selection for kernel in cross

validation. In other words, we reduce the search domain by including kernel param-

eter, e.g., ω, into our infinite programming model, and hence, only the error constant

term, C, is left as a parameter. We model our classification problem by infinite pro-

gramming since we have infinite dimensions in the kernel coefficients and infinitely

many constraints. The regularity conditions are analyzed on our lower level problem

and optimality conditions are discussed by theorems. One of the important theoreti-

cal problem is to find conditions which makes monotonic function (kernel coefficient

function, β) point masses. By these conditions, we can guarantee that there are finitely

many active points, i.e., finitely many kernel coefficients. In other words, we ensure

that searching through the infinite dimensional space allows us to find the active ones

under some assumptions and regularity conditions.

One of the advantage of infinite kernel learning is saving memory when using our

method as compared to multiple kernel learning. In multiple kernel learning, in order

to compute a convex combination, one needs to save n-kernels in computer memory,

however, in our case, we need to compute only the integration result as a new kernel

and we do not need to save infinitely many kernels.

Another development in the model is the reduction of infinite programming into semi-

infinite programming by parametrization using probability density functions. Note that,
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probability measures are the subspace of positive measures so that the construction of

infinitely kernel coefficients by positive measures are still hold.

Infinite dimensions can lead the problem of curse of dimensionality (increase the model

complexity) and it may result in ill-posedness. In order to overcome this discrepancy,

we propose a regularization term to our objective function. Since we have probability

measures as state variables, we can not use the theory of regularization, e.g., Tikhonov

regularization. Instead, it is our proposal to measure the complexity of our model by

“scanning” the integral terms via a running upper integration boundary, and taking par-

tial derivatives of first and second order to record infinitesimal changes of these orders.

By this and penalizing these kinds of change rates, we are looking for a “flat” model or

one with not too high energy, respectively. We refer to [55, 80, 81] for more informa-

tion on these kinds of penalizations. In our research, we introduced the new idea of the

scanning, of moving upper integration limits.

Finally, by means of new ideas, we developed well-known numerical methods of semi-

infinite programming for our new kernel machine in Chapter 6. We improved the dis-

cretization method for our specific model and proposed two new algorithms (see Strat-

egy I and Strategy II in Chapter 6). The advantages of these methods are discussed and

the intuition behind these algorithms are visualized by figures and examples. We stated

convergence of the numerical methods with theorems and we analyzed the conditions

and assumptions of these theorems such as optimality and convergence.

As a future study, we will apply and compare with other numerical methods and illustrate

these methods on real-world data. In addition, we intend to study infinite programming and

investigate primal-dual methods instead of reducing the infinite problem into semi-infinite

programming. Furthermore, we will study our works with MFCQ and strong stability of all

KKT points will be studied further instead of nondegeneracy.
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