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ABSTRACT

COOPERATIVE INTERVAL GAMES

Alparslan Gk, Sirma Zeynep
Ph.D., Department of Scientific Computing
Supervisor . Prof. Dr. Gerhard Wilhelm Weber
Co-Supervisor : Prof. Dr. Stef Tijs

January 2009, 123 pages

Interval uncertainty éiects our decision making activities on a daily basis making the data
structure of intervals of real numbers more and more popular in theonetaxéls and related
software applications. Natural questions for people or businessdadkanterval uncertainty
in their data when dealing with cooperation are how to form the coalitions andddis-
tribute the collective gains or costs. The theory of cooperative inteasslleg is a suitable
tool for answering these questions. In this thesis, the classical the@gopkrative games
is extended to cooperative interval games. First, basic notions andractslassical coop-
erative game theory and interval calculus are given. Then, the modebpgcative interval
games is introduced and basic definitions are given. Solution concepteofisn-type and
interval-type for cooperative interval games are intensively studiedhé&iyrspecial classes
of cooperative interval games like convex interval games and big bosgsahgames are in-
troduced and various characterizations are given. Some economicpendtions Research
situations such as airport, bankruptcy and sequencing with interval ddteekated interval
games have been also studied. Finally, some algorithmic aspects related witketkial in

Shapley value and the interval core are considered.
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ISBIRLIGINE AIT ARALIK OYUNLARI

Alparslan Gk, Sirma Zeynep
Doktora, Bilimsel Hesaplama@imi
Tez Yoneticisi : Prof. Dr. Gerhard Wilhelm Weber
Ortak Tez Yoneticisi : Prof. Dr. Stef Tijs

Ocak 2009, 123 sayfa

Aralik belirsizligi, gunluk bazda reel sayi araliklarinin veri yapilarini olustururken teorik
modellerde ve alakall yazilim uygulamalarinda gitgideipepeserek karar alma aktiviteler-
imizi etkilemektedir. Isbirligi ile ilgilenirken verileri aralik belirsizijine dayanan sahislar
ve sirketler icin d@al sorular, koalisyonlarin nasil olus@care nmisterek kazan¢ veya mas-
raflarin nasil d@itilacagidir. isbirligine ait aralik oyunlarinin teorisi bu sorulari cevaplamak
icin uygun bir aractir. Bu tezde, klasik isbiilne ait oyun teorisi isbir§iine ait aralik oyun-
larina genisletilmistirOnce klasik isbirljine ait oyun teorisinin temel kavram ile unsurlari
ve aralik hesaplari verilmistir. Sonra isbgilne ait aralik oyunlarinin modeli tanitilmis ve
temel tanimlari verilmistirisbirligine ait aralik oyunlari icin secme tipli ve aralik tipbziim
yontemleritizerinde ygun olarak calisiimistir. Ayrica, isbi@line ait aralik oyunlarinin kon-
veks aralik oyunlari velyuk patron aralik oyunlari gitiizel siniflar tanitiimis ve cesitli nite-
lendirmeleri verilmistir. Bunlara ek olarak, aralik verili havaalani, iflas walama gibi bazi
ekonomik ve isletme @neylem) arastirmasi durumlari ve alakall aralik oyunlari calisiimistir.
Son olarak, aralik Shapley deri ve aralik ¢cekird@i ile ilgili bazi algoritmik bakis acilari ele

alinmistir.
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PREFACE

The answer to the questiaan Mathematics or Operations Research model the complexity
of nature and environment under the limitations of modern technologyretieé presence of
various societal problems3eems likely to be “yes”, but in the margins of our developing

understanding only, in this sense: approximately, dynamically and, nesigiag in a game.

Cooperative game theory in coalitional form is a popular research ateanany new de-
velopments in the last few years. In classical cooperative game thepoffp#o coalitions
of players are known with certainty. However, interval uncertaifitycs our decision mak-
ing activities on a daily basis making the data structure of intervals of real ensnmbore
and more popular in theoretical models and related software applicatiormse &e many
real-life situations where people or businesses face interval uncertaidgcision making
regarding cooperation, i.e., they only know the smallest and the biggesisvialupotential
rewardgcosts. In other words, the agents are uncertain about their coalitioffpagitua-
tions with uncertain pay@s in which the agents cannot await the realizations of their coali-
tion paydfs cannot be modeled according to classical game theory. A suitable gametitheo
model to support decision making under interval uncertainty of coalitioregakithat of co-
operative interval games. Cooperative interval games are an exterigstwat of cooperative
games in coalitional form in case the worth of coalitionsfigeeted by interval uncertainty.
The model of cooperative interval games, firstly introduced in Branzenittbv and Tijs
(2003) to handle bankruptcy situations where the estate is known with ¢gntdiile claims
belong to known intervals of real numbers, fits all the situations where ipantits consider
cooperation and know with certainty only the lower and upper bounds oftdhtial revenues

or costs generated via cooperation.

In this thesis we present our recent contributions to the theory of catpeinterval games

and its applications. The thesis is organized as follows.

Xi



In Chapter 1, first we motivate the model of cooperative interval gamerigl, basic notions
and facts from classical cooperative games that are used for thesiextexi cooperative in-
terval games are established. Finally, we recall basic notions from ihtateallus. Chapter

2 presents formally the model of cooperative interval games and gisasdifinitions. It in-
cludes selection-based solution concepts based on AlpardlariMiquel and Tijs (2009) and
interval solution concepts based on AlparslabkGBranzei and Tijs (2008a,b). Also, a ba-
sic guide for handling interval solution concepts is provided, which isbaseBranzei, Tijs

and Alparslan @k (2008b). In Chapters 3 and 4 interesting classes of cooperativgahte
games, namelyl -balanced interval games and size monotonic interval games are introduced
and studied. In Chapter 5, the focus is on convex interval games ancliaeacterizations,
which is based on Alparsland®, Branzei and Tijs (2008b) and Branzei, Tijs and Alparslan
Gok (2008a). Chapter 6 is based on Alparslabk@GBranzei and Tijs (2008c) and Branzei,
Tijs and Alparslan ®k (2008a). Here, we deal with another interesting class of cooperativ
interval games called big boss interval games. Chapter 7 discusses suivatEms of coop-
erative interval games in economic and Operations Research (OR) situdtiecomposed

of mainly three parts. Airport interval games and their Shapley value islb@sélparslan
Gok, Branzei and Tijs (2008d); Bankruptcy problems with interval utadety is based on
Branzei and Alparslan &k (2008) and Sequencing interval situations and related games is
based on Alparslan @& et al. (2008). Chapter 8 is devoted to some algorithmic aspects re-
lated with cooperative interval games. Finally, in Chapter 9 we concludesaggiest some

topics for further research.
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CHAPTER 1

INTRODUCTION

1.1 MOTIVATION

Classical cooperative game theory deals with coalitions that coordinatettieins and pool
their winnings. Natural questions for individuals or businesses whalimdewith cooperation
are: Which coalitions should form? How to distribute the collective gains ds@msong the
members of the formed coalition? Generally, the situations here are cowmsideme a de-
terministic point of view. However, in most economical situations potential résvar costs
are not known precisely, but often it is possible to estimate intervals to whighkiblong.
The theory of cooperative interval games can be a suitable tool foreaimgythese questions.
This thesis deals with this model of cooperative games. The model of coiwpdraerval
games is an extension of that of cooperative games in coalitional form éntisasvorth of
coalitions is #fected by interval uncertainty. Many real life situations can be modeled in a
natural way as cooperative interval games or extensions of them. &owpdx, Drechsel and
Kimms (2008) modeled as a cooperative interval game a lot sizing problem ng#rtain
demand. As in the classical model, the decision regarding players’ aiopeand the divi-
sion of the interval-type joint reward are based on solution concepts.

Cooperative interval games are introduced in Branzei, Dimitrov and Tij832t handle
bankruptcy situations where the estate is known with certainty while claims beldmpwn
bounded intervals of real numbers. They defined two Shapley-like vaaeh of which
associating with each game with interval data a vector of intervals, and sthdiednterre-
lations using the arithmetic of intervals (Moore (1966)), and inspired by trk wf Yager
and Kreinovich (2000). Methods of interval arithmetic and analysis (Md&©79)) have

played a key role for new models of games based on interval uncertaimbtp&rson zero-



sum non-cooperative games with interval strategies and intervalipfayation are studied
by Shashikhin (2004). Interval matrix games arising from situations wiherg@aydts vary
within closed intervals for fixed strategies are introduced in Collins and 18052 Car-
pente et al. (2008) considered games in strategic form and constretdedrcooperative
interval games similarly with the procedure used by von Neumann (1928)amieumann
and Morgenstern (1944). An interesting motivating example for the modeboperative
interval games can be found in Bauso and Timmer (2006): a joint replenistsiteation
where each retailer faces a demand bounded by a minimum and a maximum Ralidge,
Sanchez-Soriano and Llorca (2002) and Pulido et al. (2008) consjmmial interval coop-
erative games arising from bankruptcy-like situations. Throughoutdregbing literature
motivation from diferent points of view for studying interval games is provided.
Alparslan @k, Miquel and Tijs (2009) considered cooperative interval gamedanietd at
selections of such games which are classical cooperative games. @easkedsical solutions
on the selections such as the core and the Shapley value then they deftresdor the
interval cooperative games. Also, a bankruptcy situation where the clagtegain but the
available estate can vary within a closed and bounded interval is used tcaikustres for
two-person interval games. In Alparsla®k; Branzei and Tijs (2008a), another approach is
taken, where solutions are described with the aid of tuples of intervalsptius being on
interval cores and stable sets. Other interval solution concepts like tipdeghalue and the
Weber set are introduced on a special class of cooperative intemagin Alparslan 6k,
Branzei and Tijs (2008b). First, these solution concepts are suitabledmipport decision-
making regarding cooperation in situations with interval data. Second, thieerealization
of the worth of the grand coalition is known with certainty, an interval fiyector generated
by such solution concepts is transformed into a traditional flajgwtor. The essential issue
of the usefulness of interval solutions depending on how the vectorsesf/als can be han-
dled when the uncertainty regarding joint gdausts is removed is studied in Branzei, Tijs
and Alparslan Gk (2008b).

Classical convex games have many applications in economic and real-lifiositudt is well-
known that classical public good situations (Moulin (1988)), sequensitogtions (Curiel,
Pederzoli and Tijs (1989)) and bankruptcy situations (O’Neill (1982mann and Maschler
(1985), Curiel, Maschler and Tijs (1987)) lead to convex games. Hemvévere are many
real-life situations in which people or businesses are uncertain aboutdadition paydrs.

Situations with uncertain pasts in which the agents cannot await the realizations of their



coalition paydfs cannot be modeled according to classical game theory. Several madels th
are useful to handle uncertain pékgoexist in the game theory literature. We refer here to
chance-constrained games (Charnes and Granot (1973)), atiepayames with stochastic
paydfs (Suijs et al. (1999)), cooperative games with random fiay®immer, Borm and Tijs
(2005)). In all these models, probability theory plays an important role.cldss of classical
big boss games (Muto et al. (1988)) has received much attention in ativpegame theory
and various situations were modeled using such games. We refer herertnatibn mar-
ket situations (Muto, Potters and Tijs (1989)), information collecting situa{iBrenzei, Tijs
and Timmer (2001a,b), Tijs, Timmer and Branzei (2006)) and holding situsa(iGjs, Meca
and Lopez (2005)). In case such situations are described in terms of interteathe corre-
sponding cooperative games are under restricting conditions big bosalrgames. Convex
interval games and big boss interval games are introduced and studiedarslalp ®k,
Branzei and Tijs (2008b,c). In Branzei, Tijs and Alparslak@2008a) characterizations of
convex interval games using the notions of superadditivity and exacdnes®nsidered, and
characterizations of big boss interval games in terms of subadditivity aaxtresss are de-
rived.

Cooperative interval games are a useful tool for modeling variousoseicnand OR situa-
tions where payibs for people or businesses afteated by interval uncertainty. For example,
sealed bid second price auctions and flow situations with interval uncertamtyodeled by
interval peer group games in Branzei, Mallozzi and Tijs (2008). In sitciations decisions
regarding cooperation as well as estimations of potential shares of edhiellective gains
have to be made ex-ante, i.e., by taking into account all possible realizatincis belong to
intervals whose lower and upper bounds are known with certainty. We médrgi@ minimum
spanning tree networks (Montemanni (2006), Moretti et al. (2008))agement applications
such as funds’ allocation of firms among their divisions, cost allocatiofoasdrplus sharing
in joint projects, sequencing situations, conflict resolution and bankrigitizations, assign-
ment of taxes, when there is interval uncertainty regarding the homogemgeod at stake.
Other interesting applications for the model of cooperative interval gaarebe also found
in literature.

Before closing this section we notice that in this thesis the revi@rdis taken into account
are not random variables, but just closed and bounded intervalalafumbers with no prob-

ability distribution attached.



1.2 CLASSICAL COOPERATIVE GAME THEORY

In this section, we give some definitions and results concerning classioperative game
theory needed in the thesis. For an extensive description of classimal@zoperative theory
see Tijs (2003) and Branzei, Dimitrov and Tijs (2005, 2008).
A cooperative gam@n coalitional formis an ordered pai N,v >, whereN :={1,2,...,n} is
the set of players, and: 2N — R is a map, assigning to each coalitiBre 2\ a real number,
such thatv(@) = 0. Often, we also refer to such a game aBla(transferable utility) game
and identify a game N, v > with its characteristic function vin some situations, costs are
considered instead of rewards. A cost gamBl, ¢ > is a cooperative game, whekeis the
set of players, and: 2N — R is a function assigning to each coalitine 2\ a real number,
c¢(S), which is the cost of the coalitioB with c(@0) = 0. The seiGN of coalitional games
with player setN, equipped with the usual operators of addition and scalar multiplication of
functions, forms a (! — 1)-dimensional linear space. A basis of this space is supplied by the
unanimity gamesir (or < N,ur >), T € 2V \ {0}, which are defined by

(S { 1, fTcs

0, otherwise.

One can easily check that for eack GN we havev = ¥ rcon () Crur With
cr = Ys:scr(-1)THRIW(S).
The interpretation of the unanimity garog is that a gain (or cost savings) of 1 can be ob-
tained if and only if all players in coalitiom are involved in cooperation.

Thedual T-unanimity gamejuis defined by

. 1, TNS#0
0, otherwise.
A multi-solutionis a multi-function : GN — R" and aone-point solutioris a mapf :
GN - R".

A payaf vectorx € R" is called anmputationfor the game< N, v > if

() xisindividually rational i.e.,x > v({i}) foralli € N,

(i) xis efficient (Pareto optimal)i.e., ¥, ; i = V(N).

The set of imputations ok N,v > is denoted byl (v). Note thatl(v) = 0 if and only if
V(N) < Xien V({i}).



The core (Gillies (1959)) of a gameN, v > is the set

C(v) = {x e (V)| Z X > Vv(S) for all Se2V\ {(2)}}.
ies
Note that the core is a convex set.xlfe C(v), then no coalitiorS # N has any incentives
to split of from the grand coalition ik is the proposed reward allocation My because the
total amount};.s X allocated tdS is not smaller than the amouv(S) which the players can
obtain by forming the subcoalition. @(v) # 0, then elements dE(v) can easily be obtained,
because the core is defined with the aid of a finite system of linear inequalitiexore is a

polytopel. For a two-person game N, v >, 1(v) = C(v).

Amapa: 2N\ {0} - R, is called abalanced magif ¥scon g A(S)e® = €. Here,e5 is the

characteristic vectofor coalitonS with

1, ifiesS
0, ifieN\S

An n-person game N, v > is called éalanced gamé for each balanced map: 2N\ {0} —
R, we havey,scon gy A(S)V(S) < V(N).
The importance of this notion becomes clear by the following theorem prov@bbdareva

(1963) and Shapley (1967). This theorem characterizes games witir@nmgaty core.

Theorem 1.2.1Let< N,v > be an n-person game. Then the following two assertions are

equivalent:

(i) C(v) #0,

(i) < N,v>is abalanced game.

Now, we recall other subsets of imputations which are solution concepisdtitional games:

the dominance coreb-core) and stable sets. They are based on the dominance relation over
vectors inR".

Letv e GN, x,y € 1(v), andS € 2N\ {#}. We say thaix dominates y via coalition Sand
denote it byx dons y, if

! For details on polytope structure and convexity see Rockafellar (1970).



@) x >yiforalliesS,

(i) Zies Xi < V(S).

Note that if (i) holds, then the payb x is better than the payby for all members ofS;
condition(ii) guarantees that the pay« is reachable fos.

Letv € GN, x,y € I(v). We say thatx dominates yand denote it by domYy, if there
isanS e 2V \ {0} such thatx doms y. ForS e 2V \ {0} we denote byD(S) the set of
imputations which are dominated & note that players i& can successfully protest against
any imputation inD(S). An imputationx is calledundominatedf there does not exist and

a coalitionS such thaty doms x. The dominance core (D-core) D@) of a gamev € GN
consists of all undominated elementd (1), i.e., it is the set(v) \ Ugeony (g D(S).

Forv e GN andA c I(v) we denote by don#) the set consisting of all imputations that are
dominated by some element inhote thatDC(v) = 1(v) \ dom( (Vv)).

Forv e GN a subseK of |(v) is called astable setf the following conditions hold:

() (Internal stability) K n dom(K) = 0.

(i) (External stability I(v) \ K ¢ dom(K).

Letv € GN. For each € N and for eacts € 2N with i € S, the marginal contributionof
playeri to the coalitionS is M;(S, V) := v(S) — V(S \ {i}).

LetII(N) be the set of all permutatioras: N — N of N.

The setP’(i) := {r e Nlo™(r) < o-‘l(i)} consists of all predecessorsiofith respect to the
permutationr.

Letv e GN ando € II(N). Themarginal contribution vector f(v) € R" with respect tar
andv has the-th coordinate the valuet’ (v) := v(P“ (i) U {i}) — v(P’(i)) for eachi € N.

The Shapley valué¢Shapley (1953))(v) of a gamev € GN is the average of the marginal
vectors of the game, i.ap(V) := & 3,y M7 (V).

This value associates to eankperson game one (paffp vector inRR". It is proved that
the Shapley value is the unique solution satisfying the properties of additfitgiency,
anonymity and the dummy player property (see Theorem 61 in Branzei, DinatrdvTijs
(2008)).

A playeri is called adummyin the game< N, v > if (SU{i}) —w(S) = v({i}) for all S e 2N\,

A dummy playeiis a player whose marginal contribution to any coalition is always equal
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to the worth of higher own coalition. Higer Shapley value equals fier own worth. For
details about the properties of one-point solution concepts for cobgegames, we refer to
Driessen (1988).

The Shapley valug(u;) of thedual T-unanimity gamejuis defined by

. 1/[T], ieT
gi(ur) = { _
0, ieN\T.
Themarginal vectorf a two-person game N, v > arem12(v) = (v({1}), v({1, 2}) — v({1}))
andm®h(v) = (v({1, 2)) - V({2}), v({2})).
For a two-person game N, v > we have

(%) = V(i) + v({1,2}) —V(Z{l}) —V({2})’ ic(L2).

Note that for a two-person gameN, v >, the Shapley value is the standard solution which is
in the middle of the core and the marginal vectors are the extreme (or extremirah pf the
core whose average gives the Shapley value.

A gamev € GN is refered to asdditiveif (SU T) = W(S) + W(T) for all S, T € 2N with
SN T = 0. An additive games € GN is determined by the vectar= (v({1}),...,v(N)) € R"
sincev(S) = Yis @ forall S € 2N, Letvy, vo € GN. The gamay, is strategically equivalent to
the gamey; if there existk > 0 and an additive garmeesuch that/,(S) = kwvi(S) + > ics & for
all S € 2N\ {0}. The core is entitledelative invariant with respect to strategic equivalenife
Vo € GN is strategic equivalent ta, € GN, sayv, = kv + a, thenC(v,) = kC(v1) + a. A game
< N,v > is calledsuperadditivaf v(SU T) > v(S) + W(T) forall S,T e 2N with SN T = 0;

it is called subadditiveif (SUT) < W(S) + v(T) forall ST c NwithSNnT =0. Ina
superadditive game, it is advantageous for the players to cooperat@-petson cooperative
game< N,v > is superadditive if and only W({1}) + v({2}) < v({1,2}) holds. Note that a
two-person cooperative gameN, v > is superadditive if and only if the game is balanced.
A gamev € GN is calledconvex (or supermodulaij and only if (SUT) + (SN T) >
v(S) + (T) for eachS, T € 2V; it is calledconcave (or submodulaifand only if v(SU T) +
V(SN T) <VWS) +WT)forall S,T € 2V, The family of all convex games with player gét
is denoted byCGN. Each convex (concave) game is also superadditive (subadditivée |

following, we give characterizations of classical convex games.



Theorem 1.2.2 (Theorem 4.9 in Branzei, Dimitrov and Tijs (2005)) Let GN. The follow-

ing five assertions are equivalent:

(i) < N,v>is convex.
(i) Forall S1,S,,U € 2N with S; € S, € N\ U we have

V(S1UU) - Vv(S1) < V(S uU) —Vv(Sy).

(iii) ForallS1,S, e 2N andie N suchthat$c S, c N\ {i} we have

V(S1 U {i}) = V(S1) < U(S2 U {i}) — V(S2).

(iv) Each marginal vector fi(v) of the game v with respect to the permutatiobelongs to

the core Qv).

(v) W(v) = C(v), where Wv) is the Weber set (Weber (1988)) of v which is defined as the

convex hull of the marginal vectors of v.

Convex games are balanced games. Notice that Theorem 1.2.2 implies thaxt games
have a nonempty core. On the class of convex games, solution conceptsi¢eproperties.
We recall that the Shapley value of a convex (concave) game belongs ¢orth of the game
and the core is the unique stable set of the game. Also, the core is an addipven the class

of convex games (Dragan, Potters and Tijs (1989)).

For a games € GN and a coalitiorlT € 2N\ {0}, thesubgamavith player sefl, (T, vr), is the
gamevy defined byvr(S) := v(S) for all S € 2'. In the sequel, we denote such subgames by
<T,v>. ForT c N, themarginalgame ofv based ofT is defined by (S) := W(SUT)-w(T)

for eachS c N\T. A game< N,V > is calledexactif for eachS € 2N\ {0} there is anx € C(v)

with >ics X = W(S). Itis well-known that:
(i) subgames of convex games are also convex (and subgames of cgana® are also
concave);

(i) convex games are (total) exact games and total exact games (i.e., ganmss ailho

subgames are also exact) are convex (Biswas et al. (1999), Azriklietrer (2007));

(i) games whose marginal games are all superadditive are convex (Bfamgrov and

Tijs (2004), Martinez-Legaz (1997, 2006)).
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For a traditional cooperative game N,v >, Biswas et al. (1999) proved that the game is
convex if and only if each subgameS, v >, with S c N, is an exact game. In the sequel, we
prove in Theorem 5.2.10 that a similar characterization holds true in the ihtieasetting.

A gamev € GN is calledtotally balancedf all its subgames are balanced. Equivalently, the
gamev is totally balanced ifC(v) # 0 for all T € 2N\ {0}. The class of totally balanced
games includes the class of games withogulation monotonic allocation scheme (pmas)
(Sprumont (1990)).

Letve GN. A schemea = (@is)ies seanyjoy Of real numbers is a pmas woff
() Yiesas = V(S) forall S € 2\ {0},
(i) ais < a7 forall S,T € 2V \ {0} with S c T and for each € S.
It is known that forv € CGN the (total) Shapley value and (total) Dutta-Ray solution (Dutta
and Ray (1989)) generate population monotonic allocation schemes.
Letv e GN. Animputationb € |(v) is pmas extendabléthere exists a pmas = (&is)ies se2M\(0)
such thaty = b; for eachi € N.
A game< N,v > is calleda big boss game with n as a big badguto et al. (1988), Tijs
(1990)) if the following conditions are satisfied:
(i) v e GNis monotonic, i.e.y(S) < W(T) if for eachS, T e 2N with Sc T.
(i) V(S)=0ifn¢S.
(i) V(N) =V(S) > Yienys(M(N) = V(N '\ {i})) for all S, T withn e S.
Definition 1.2.1 Let ve GN and ne N. Then, this game is a total big boss game with n as a
big boss, if the following conditions are satisfied:
(i) ve GNis monotonic, i.e.,(8) <v(T)forall S, T e 2V withSc T;
(i) V(S)=0ifn¢S;
(i) V(T) =V(S) = Zier\s(UT) = W(T \ {i})) forall S,T withne Sc T.
Note that big boss games form a coneGN. Further, a game& N,v > is a total big boss
game with big boss if and only if < T, v > is a big boss game for eadhe 2N withne T.
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In this thesis, we only consider total big boss games and call them shortlyobgydames.
We denote byP, the set{S c N|n € S} of all coalitions containing the big boss.

Letv € GN be a big boss game witlhas a big boss. We call a scheme- (as)iessep, an
allocation schem#or vif (gjs)ics is a core element of the subgarmé, v > for each coalition
S € Pn. Such an allocation schenge= (ajs)ics sep, IS called abi-monotonic allocation
scheme (bi-magBranzei, Tijs and Timmer (2001b)) farif for all S, T € P, with S c T we
haveajs > gt foralli € S\ {n}, andass < anT.

Let v € GN be a big boss game with as a big boss. An imputatiom € 1(v) is bi-mas
extendable if there exists a bi-mas- (ais)ies sep, Such thaty = b; for eachi € N.

The next proposition and the definition of suitable marginal games for big pases are
obtained from Propositions 2 and 3 in Branzei, Dimitrov and Tijs (2006) within the role

of C.
Proposition 1.2.3 Let< N,v >e MVN{"_ Then the following assertions are equivalent:

(i) < N,v>is a (total) big boss game with big boss n;
(i) < N\ {n},v'" > is a concave game;
(i) <N\ ({njuT), (\/”‘})T > is a subadditive game for eachd N \ {n};

(iv) <N\ ({njuT),vi"T > is a subadditive game for eachd N \ {n}.

Here, MVN{ is the set of all monotonic games dhsatisfying the big boss property with
respect to the big boss Given a game< N,v > MVN and a coalitionT € 2V\(" the

n-based T-marginal gam@™)™ : 2Y\T — R is defined by
(V™)T(S) =S U T U {n) = (T U {n))

foreachSc N\ T.

We notice that since here the set of players is very crucial, we refer waimev € GN as
< N,v > and to its subgames asT, v > for eachT c N. Moreover, we accordingly adjust
the notation for the used notions that were defined previously.

Letv e GN. For each e N, themarginal contribution of player i to the grand coalition i
Mi(N, V) := V(N) — V(N \ {i}).

The coreC(N, v) of a traditional big boss game is always nonempty and equal to

{xe I(N,v)|0 < x < Mj(N,v) foreachi e N\ {n}}.
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For a (big boss) subgameT, v > (with n as a big boss) of € GN two particular elements of

its core are théig boss point BT, v) defined by

0, if jeT\{n
Bij(T,v) := : iy
v(T), ifj=n,
and theunion point UT, v) defined by
M;(T,v), if jeT\({n}

Ui(T,v) =
J { W(T) = Zietym Mi(T, V), if j=n.

A gamev € GN is calledquasi-balancedf m(N,v) < M(N,v) and ¥, mi(N,v) < V(N) <

vy Mi(N, V), where for each e N we put
m(N, V) := max{R(S,i)li € S,S c N}

with
R(S,i) 1= V(S) - Z M;(N, V).

jes\ti)
The r-value or compromise valugTijs (1981)) is defined on the class of quasi-balanced

games. Specifically, for each quasi-balanced ganid,v > its r-value, (N, V), is a fea-
sible compromise between the upper vediN,v) := (Mi(N, v))icen and the lower vector
m(N, V) := (mi(N, v))ien Of a game satisfying icn 7i(N, V) = V(N).
For a big boss game withhas a big boss the-valueof v is given by
(N,V) := (%Ml(N,v), %MZ(N,V), SR (OEEY %Mi(N, V).
ieN\(n}
Now, leto = (o(1),0(2)...,0(K),o(k+ 1),...,0(n)) be an ordering of the players M =
{1,2,...,n}. Thelexicographic maximurof the coreC(N, V) of a balanced game N,v >
with respect toor is denoted byL”(N,Vv). Then, theaverage lexicographic value AN, V)
(Tijs (2005)) ofv € GN is the average of all lexicographically maximal vectors of the core
of the game, i.e AL(N, V) := n—l, Yoenny L7(N, V). For a big boss game witlhas a big boss,
L7(N, V) is equal to
My (N, V), i<k
Lg(i)(N, V) i=1: 0, i >k
V(N) = I M(N, ), i =k,
if (k) = n.
It is known that theAL-value coincides with the-value on the class of (total) big boss games

(Tijs (2005)).
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1.3 INTERVAL CALCULUS

In this thesis, tools of interval calculus play an important role. In this sect®igive some
notions that we have used along the thesis.

An intervalis a closed and bounded set of real numbfid)| = {x € R|l < x<T} for any
I,TeRwith| <T.

Let I (R) be the set of all closed and bounded intervalRiandI (R, ) be the set of all closed
and bounded intervals R, . We assume that O is an elemenifaf.

We define aradditionbetween (ordered) pairs which are element§(Bf, and amultiplica-
tion of an interval with a positive scalar. L&td € I(R) with | = [I_, T], J= [g, j], N=T-1

anda € R,. Then,

@) +: 1R) X I(R) = I(R)with | + 3 =[1 +3,T+7J];

(i) -1 Ry x I(R) - I(R) with ol =[al,el].

By (i) and(ii), I (R) has a cone structure.

Letl,J K € I(R) andA,u € R,. Then,

1.1+J3=J+1;

N

L+ D+ K=1+J+K);

w

.1 +[0,0] =1I;

4. Al is an interval;

5. ()l = Aul);
6. A+l =l +ul;
7. A1 +J) =2l +43;

8. 1-1=1I.

Let | andJ € I(R). Then, the subtraction operator (Moore (1979)) is defined byJ =
[I_ - ja I_ - g]
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Example 1.3.1[6,8]e[2,5] = [1,6] and [2,5] & [6, 8] = [-6, —1].

Along this thesis, in the context of vector notation we use a coordinate-uligastion opera-
tor (Alparslan @k, Branzei and Tijs (2008b)). In the sequel, we defisealatractionbetween
(ordered) pairsl( J) which are elements of the sBt:= {(I,J) € I(R) x I(R)||I| > |J|}. Let
(1,J) € D. Then,

— Do IR)withl =J=[1-J,1-1].

Notice that if we make a comparison with Example 1.3.1, then in our ca8¢{62, 5] is not
defined. But, [25] — [6, 8] is defined.

Note thatl —J € I(R) and that)+ (I - J) = |. Note also that—J < 1—J and|l + J| < || +|J.
We define anultiplication between (ordered) pairs which are element$(&f,). Letl,J €
I(R,). Then,

IR x I(Ry) = (R with 1-J3=[1J,17].

We define aivisionbetween (ordered) pairs which are elements of the set

Q:={(1.3) € I(R) x IR \ (OYIT < TI}.

Let(I,J) € Q. Then,

+:Q - I(R,) with § = [ﬁ, %].

Note that'j is defined if there is an intervé such that = J-K. Notice that% is undefined,
but 51 is defined.

Letl,JandK € I(R,). Then,

1.1-[1,1]=1

2.1-3=7J-1;

3. 1-[0,0] =[0,0];

4. (1-3)-K=1--K);

5 (1+J)-K=(-K)+(J-K).
Letl, J € I(R). We say that is left to J, denoted by <J, if for eacha € | and for eaclb € J,
a < b, and we say thalt is weakly bettethanJ, which we denote by >= J, if and only if
| > Jandl > J. Note that in casé = J, then for eacha € J there existd € | such that

a < b, and for eactb € | there exista € J such thata < b. We say that is betterthanJ,

which we denote by > J, if and only if| = J andl # J. We also use the reverse notation
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| < J,ifandonlyifl <J andl < J, and the notatioh < J, if and only if | < Jandl # J.
Note thatl > J does not implyl| > |J|; e.g., [1 1] = [O, 1].

Note also that = J, J »= K implies| = K (transitivity) and that = J, J = | implies| = J.
Letl,J € I(R). We say that andJ aredisjointif | N J = (. For example, the intervals [3]
and [4 7] are disjoint.

Letl,J € I(R). We define theminimumof the two intervals] A J, byl AJ=1if | 5 J, and
theirmaximuml v J, byl vJ=Jif | < J.

Note thatl A(J-K)=(1AJ)-(1 AK),IAJ<TAJ IAI<I<TandlAJ<J<J.

In general, lety,..., Ik € I(R). Suppose thaltj = I, for eachr € {1,...,k}. Then, we say
thatl; ;= max{ly,..., k). If Is < Iy foreachr € {1,...,k}, thenls ;= min{lq, ..., Iy}

For example, let; = [0,1], I, = [-1,2] andl3 = [3,5]. Then,l3 = max{l, I», I3}, whereas
max{ly, I2} does not exist. Similarlyt; = min{l, I3}, but min{ly, I, 13} does not exist.

In this thesis,n-tuples of intervald = (I4,12,...,1y) wherel; € I(R) for eachi € N =
{1,2,...,n}, will play a key role. For further use we denote b{R)N the set of alln-
dimensional vectors whose components are elementfRin Let!l = (I, 12,...,14), J =
(J1, J2,...,Jn) € IR)N anda € R,. Then,I(R)N has a cone structure with respect to addi-

tion and multiplication with a positive scalar:

B 1+I=>U1+ 12+ d2,....1In+ In);

(i) al = (al1,aly,...,aly).

In the following, some properties of intervals are introduced. The probtie relations

below are straightforward.

Letl,J e I(R)N. Thenl; = J impliesy, Ii = 0, Ji.

Let A/ B,C,D € I(R), |IB| < |A and|D| < |C|. Then,A—B < C - D if and only if
A+D<C+B.

Let A, B,C € I(R) with |B| < |Al and|C| < |Al. Then,B 3= CimpliesA-B x A-C.

Letl,Jel(R)andletl|>|J. Then| —J=1-Jandl -J=1-J.

Letl, J K € I(R) such that = J + K. Then,|I| = |J| + |K|.

14



Next we introduce thesquare operato(Alparslan @k, Branzei and Tijs (2008b)), which
assigns to each paia(®) € R" x R" with a < b an element of (R)N. For some classical
solutions for TU-games one can with the aid of this square operator defiogesponding
square solution on suitable classes of interval games.

Leta = (a1,...,ay) andb = (b, ..., by) with a < b. Then,a andb determine a hypercube
H ={xeR"g < x <bfor eachi € {1,...,n}}.

We denote byadb the vector (1,...,1,) € I(R)N generated by the paia(b) e R",a < b
with l; = [a;, bj] for eachi € {1,...,n}. LetA, B c R". Then, we denote b[1B the subset
of I(R)N defined byATIB := {alJblac A,b e B,a < b}.

To sum up, in this chapter, first, we have tried to give an answer to thdigue$§Vhy is
the class of cooperative interval games important? In this thesis, classafrative game
theory and the arithmetic of intervals play an important role since the modelopkcative
interval games is an extension of cooperative games in coalitional fornseSondly, basic
definitions and useful results from the theory of classical coopergsvees were given. Fi-
nally, preliminaries from basic interval calculus became established. lollbe/ing chapter,
we will intensively study the model and the solution concepts for the classagerative

interval games which is the skeleton of this pioneering work.
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CHAPTER 2

COOPERATIVE INTERVAL GAMES

2.1 MODEL, EXAMPLES, BASIC DEFINITIONS

In this section, the model of the cooperative interval games and basigidegwill be given.
A cooperative n-persoimterval game in coalitional form is an ordered pailN, w >, where
N ={1,2,...,n}is the set of players, and : N, I (R) is thecharacteristic functiorwhich
assigns to each coalitio® € 2N a closed intervaiv(S) e I(R), such thatw(®) = [0,0].
For eachS e 2N, the worth set(or worth interva) w(S) of the coalitionS in the interval
game< N,w > is of the form W(S), w(S)], wherew(S) is the lower bound and@(S) is the
upper bound ofv(S). In other wordsw(S) is the minimal reward which coalitio8 could
receive on its own an@(S) is the maximal reward which coalitidh could get. The family
of all interval games with player s&t is denoted byGN. Note that if all the worth intervals
aredegenerate intervajs.e., w(S) = W(S), then the interval game N,w > corresponds
to the classical cooperative gameN, v > wherev(S) = w(S). This means that traditional
cooperative games can in a natural way be embedded into the class efatapinterval
games. Given a ganwe € IGN and a coalitior(1, ...,k} c N, we will often writew(, . .., k)

instead ofw({i, ..., k}).

Example 2.1.1 (Interval glove game) Let N= {1, 2, 3} consisting of two disjoint subsets L
and R. The members of L possess each one left-hand glove, the mefReme right-hand
glove. A single glove is worth nothing, a right-left pair of gloves is worth betwi) and 20
Euros. In case L= {1, 2} this situation can be modeled as a three-person interval game with

w(1,3) =w(2,3) =w(1,2,3) = [10,20] and W(S) = [0, O], otherwise.
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Example 2.1.2 (Landlord peasants game) Let us consider a production economy with o
landlord and many peasants. LetN{l,2,...,n} be the player set, where n is the landlord
who cannot produce anything alone, ah®, ...,n - 1 are landless peasants.

Let f: [0,n- 1] — I(R) be the production function with interval data, wher&)fis the
interval reward[ f1(s), f2(s)] = [0, 0] if s peasants are hired by the landlord, wher®)f =
[0,0], f; and £ — f; are concave with,f— f; > 0. This situation corresponds to an interval

game< N,w >, where N= {1, 2, ..., n} and the characteristic function is given by

w(S) := { [0.0 nes
f(SI-1), nes.

In this thesis, some classicRlU-games associated with an interval game IGN will play a
key role, namely théordergames< N, w >, < N,w > and theengthgame< N, |w| >, where
W] (S) := W(S) — w(S) for eachS € 2N. Note thatw = w + |w.

Let J € I(R) with J = [0,0] and letT € 2V \ {0}. Theunanimity interval gaméased onJ
andT is defined by

J, TcS

ur,y(S) =
[0,0], otherwise

for eachS € 2N,

For a gamev € IGN and a coalitiors € 2N \ {0}, thesubgamavith player sefT is the game
wr defined bywr(S) := w(S) for all S € 2T. So,wy is the restriction ofv to the set 2. We
refer to such subgames kyT, w >.

We say that a game N, w > is supermodulaif

W(S) +W(T) xWSUT)+wW(SNT)for all S, T e 2V, (2.1.1)
and a game: N, w > is calledsubmodulaiif

W(S) +W(T) =WSUT)+W(SNnT)for all S,T e 2N. (2.1.2)

A gamew € IGN is said to besuperadditivef for all S, T ¢ N with SN T = 0 the following
two conditions hold:

WS UT) =wW(S) +w(T); (21.3)
W (SUT) =W (S)+ Iw(T);
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it is calledsubadditivef for all S, T c N with SN T = 0, the following two conditions are
satisfied:

WESUT) g W(S) +wW(T);
MW (SUT) < W(S)+ I (T).

Next we give the arithmetics of interval games.

Forwy, W, € IGN we say thatvy < W if wi(S) < wo(S), for eachS e 2N,

Forwg, w, € IGN anda € R, we define< N,w; + w, > and< N, Aw > by (w1 + w»)(S) =
w1(S) + Wx(S) and @w)(S) = 1 - w(S) for eachS e 2N. So, we conclude thaGN endowed
with < is apatrtially ordered setind has @one structuravith respect to addition and multipli-
cation with non-negative scalars, as described abovewEovw, € IGN with [wi(S)| > [wx(S)|

for eachS € 2V, < N, w; — w» > is defined by, — w2)(S) := wy(S) — wo(S).

2.2 SELECTION-BASED SOLUTION CONCEPTS

This section is based on the paper Alparslaik GMiquel and Tijs (2009). Here, the notion
of a selection of an interval game is the building block of the theory.

Let < N,w > be an interval game, then: 2N — R is called aselectionof w if v(S) € w(S)
for eachS e 2V. We denote the set of selectionswby S e[w).

Next we define solution concepts for interval games which are baseslaxtiens.

The imputation set of an interval gamaeN, w > is defined by

(W) := U{l(V)|v e Se(w)}.

Thecore setof an interval game: N, w > is defined by

C(w) := U{C(V)|v e Selw)}.

We see directly thaC(w) # 0 if and only if there exists & € S e(w) with C(v) # 0.

If all the worth intervals of an interval ganvee IGN are degenerate intervals, then

[(w) = I(w) = I (W) andC(w) = C(w) = C(W).

Note thatv(S) € w(S) is a real number, buw(S) = [w(S),w(S)] is a degenerate interval

which is a set consisting of one element.
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An interval game< N,w > is strongly balancedf for each balanced map it holds that
Ysean oy AS)W(S) < W(N). The family of all strongly balanced interval games with player

setN is denoted byBIGN,

Proposition 2.2.1 Let < N,w > be an interval game. Then, the following three statements

are equivalent:

(i) For each ve Se[w) the game< N, v > is balanced.
(i) For each ve Se(w), C(v) # 0.

(iii) The interval game: N, w > is strongly balanced.

Proof. (i) < (ii) follows from Theorem 1.2.1.
(i) & (iii) follows using the inequalities(N) < v(N) < w(N) and

ZSEZN\{(D} A(S)V_V(S) S ZSEZN\{Q)} /l(S)V(S) S ZSEZN\{(D] /I(S)V_V(S) fOI’ eaCh balanced malp .

It follows from Proposition 2.2.1 that for a strongly balanced gamié, w >, C(w) # 0 since
forall ve Se(w), C(v) # 0.
We call an interval game&: N,w > strongly unbalancedif there exists a balanced map
such thatyscony gy A(S)W(S) > W(N). Then,C(v) = 0 for all v € Se(w), which implies that
Cw) = 0.
If all the worth intervals of an interval game N, w > are degenerate intervals, then strongly
balancedness corresponds to balancedness and strongly unba&ssceorresponds to un-
balancedness in a classical cooperative gamgyv >.
Note that strongly balancedness means that for alf e(w), < N, v > has a nonempty core,
because for alk
DT asMES) < DL ASW(S) < WN) < V(N).

Se2N\(0) Se2N\(0}

Proposition 2.2.2 Let \P(S) = W(S) for all S € 2N\ {0}, VP(N) = w(N). Then, all selections

are balanced if and only if%is balanced.
Proof.

() Suppose that eache S e(w) is balanced. Then, trivially® is balanced.
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(i) Suppose that? is balanced. Take € S e[w) and a balanced map We have to prove

that 3 seony ) A(S)V(S) < V(N). Indeed, it holds

DT asME) < DT ASWVS) < VP(N) = w(N) < V(N),

Se2N\(0) Se2N\(0}
where the second inequality follows from the fact ttfais balanced. |

We callw e IGN weakly balancedf there is at least one selectione Se(w) which is
balanced. Let}(S) = w(S) andvi(N) = W(N). Then, it is obvious that N,w > is weakly
balanced if and only if! is balanced.
The rest of this section deals with two-person interval games. We start aldhdedness and
related topics.
Let < N,w > be a two-person interval game. Then, we define:

(i) thepre-imputation set

1*(w) := {x € R2|xq + %o € W(1, 2)},

(i) theimputation set
(W) := {x € R2xg = W(1), x2 = W(2), X1 + X2 € W(1, 2)},
(iii) themini-core set
MC(w) := {x € R2|xq = W(1), X2 = W(2), X1 + X2 € W(L, 2)},
(iv) thecore set
C(w) := {x € R2Ixg = w(1), X2 = W(2), X1 + X2 € W(1, 2)}.
Notice that for two-person interval games the imputation set and the caessqual. More-
over, if an interval game is strongly balanced, then its mini-core set is ndgeang it is a
subset of the core set of the game.
The next example is intended to give insight into the core set and mini-caréastto-person
(strongly balanced) game N, w >.
Example 2.2.1Let N = {1, 2}, we 1G> such that
w(0) = [0,0], w(1) = [1, 3], w(2) = [2,5], w(1,2) =[10, 12].
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Figure 2.1: The mini-core set and the core set of a strongly balanced game

In Figure 2.1, the mini-core set and the core set are depicted. This is agirdalanced

game sincév(1) + w(2) = 3+ 5 <w(1,2) = 10.

Now, we describe the core set and the mini-core set of a two-persomahggme in terms of
its selections.

Let us introduce names of elementsagtl), w(2) andw(1, 2) as follows:
s € W(1) = [W(1), W(1)], 52 € W(2) = [W(2), W(2)]. t € W(1, 2) = [w(1, 2),W(1, 2)]
and denote by®-%! the selectionof w corresponding t@, s, andt. Then,
Cw) = U {CW™2Y)|(s1, 52,1) € W(1) x W(2) x W(1, 2)}.
Furthermore,
MC(w) = U {C(w™=")|s; € [W(1), W(1)]. Sz € [W(2). W(2)]. t € W(L, 2)}.

So,

MC(w) c U {C(w™2Y)|s; € W(1). 2 € W(2),t € W(L, 2)},
i.e., MC(w) c C(w).
The mini-core seMC(w) is interesting because for eash s, andt, all points inMC(w) with
X1+ Xz = t are also irC(ws-%2'), Note that all points in the mini-core setwfare individually
rational points for each selectiov®-®!, and each selection®-%! can be written as a linear

combination of unanimity games in the following way:
W = s1Ugy + Sy + (t— S1— S)Ujn2).
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If w e IG!1? is a superadditive game, then for eaghs, andt we haves; + s, < t. So, each
selectionw®-2! of w is balanced. We conclude that if

W(1) + W(2) < w(1, 2) is satisfied, then each selectiaf*' of w is superadditive.

Hence, a two-person interval game N, w > is superadditive if and only ik N,w > is
strongly balanced. Here, optimism vectors will play a role.

Let @ = (a1, a2) € [0,1] x [0, 1], which we call theoptimism vectarandw e 1G%2, We

define:
S;' W) 1= aaW(1) + (1 - an)w(l), $*(W) := a2W(2) + (1 - a2)w(2).

We are interested in maps [a, b] — R?, where B, b] is a closed interval ifR with proper-
ties:

() foreacha < x; < X < b, k1(X1) < k1(X2), k2(X1) < k2(X2);

(i) for eachx € [a,b], k1(X) + k2(X) = X.
In the following, we call such magsonotonic curvesand we denote bK(R?) the set of all
monotonic curves ifR?.
A mapF : IG!? — K(R?) assigning to each interval gamea unique curve

F(w) : [W(L, 2),W(1,2)] — R?fort € [w(1, 2),W(1, 2)] in K(R?) is called asolution
We say thafF : 1IG%? — K(R?) has the property of

(i) efficiency (EFF)if for all w € IG%?, t € [w(1, 2), W(1, 2)]:
Yien F(W)(0)i = t.

(i) a-symmetry ¢-SYM) if for all w € IG'*? with sf*(w) = s52(w) and for allt €
[w(1,2), W(1, 2)] we haveF(w)(t)1 = F(w)(t)z;

(iii) covariance with respect to translations (CQ¥ffor all
we IG12 t e [w(1, 2),W(1, 2)] anda = (ay, &) € R?

we haveF(w + 8)(a; + ap +t) = F(W)(t) + a.

Here,d e IG!1? is defined by
a({1) :=[a1, a1], a({2}) :=[ag, a2], &({1,2}) :=[a1 + ap, &1 + &2],
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andw + a € 1G22 js defined by
W+ 8)(S) :=w(S) + &(S) for S € {{1},{2},{1,2}}.

For eachw € IG!12 andt e [w(1, 2),W(1, 2)] we define the map® : 1IG%? — K(R?) such
that

YrW(O) = (5P W) + B, 55*(W) + ),

whereg = B(t,w) := 3(t — s7* (W) — S52(W)).
The next example illustrates the solutigfi with « = (0,0) and its relations with the mini-

core set.

Example 2.2.2 (A bankruptcy situation with an uncertain estate) Consider a bankruptcy si-
tuation given by two claimants with demands=< 70 and & = 90 and (uncertain) estate
E =[100,120].

Then, the characteristic function of the interval game is as follows:

w(0) = [0,0], W(1) = [(E - da)+, (E —d2):] = [10,30],

w(2) = [(E - di)s, (E —di):] = [30,50], w(1,2) = [100, 120},

where % = max{x, 0}.

This is a strongly balanced game, singél) + w(2) = 30+ 50 < w(1, 2) = 100
Y COw)(t) = (10+ B, 30+ B) with 3 = %(t — 40)and te [100,120]

Figure 2.2 illustrates that for all t [100, 120], y©@O(w)(t) € MC(W2%D): in this figure L
denotes the ségCO(w)(t)|t € [100,120]. In the following, we show thg*-values for some

realizations t of WN):

t 100 106 110 114 120
B 30 33 35 37 40
grw)(t) | (40,60) (4363) (4565) (47.67) (5Q70)

Next, we give an axiomatic characterization of iffevalue fore € [0, 1] x [O, 1].
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Figure 2.2: The mini-core set and th&"-values of the game N, w >.
Proposition 2.2.3 They*-value satisfies the properties ERESYM and COV.

Proof.

(i) For allw e IG*? andt € [w(1, 2),W(1, 2)], the solutiony?® satisfies the ficiency

(EFF) property since
YW1+ ¢ W)z = s W) + (W) + 28 =t

(i) For allw € 1G'>? andt e [w(1,2),W(1, 2)], the solutiony® satisfies ther-symmetry

(a-SYM) property sinces*(w) = s;%(w) implies
YW1 = s*W) + B8 = s2(W) + 8 = ¢ (W)(b)2-

(i) Takew e IG!12 t e [w(1,2),W(1,2)] anda € R2. The solutiony® satisfies the

covariance with respect to translations (COV) property since
YU W+ 8)(ag + ap + 1) = (STH(W + &) + B, S (W + ) + ).
Then,

Yr(W+8)(ag + a2 +1) = (' (W) + B, 5*(W) + B) + (8w, 82) = y*(W)(t) + &

Note that
1. N n
E(t - s‘l’l(w+ a) — §Z(W+ a)),

wheref = a; + ap +t. [ ]

B=p=
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Theorem 2.2.4 The y*-value is the unique solution satisfying the ERFSYM and COV

properties.

Proof. Suppose the solutioR : 1G!1? — K(R?) satisfies the three properties above. We
show thatF = y“.

Takew € IG!*? and leta = (s;*(W), 52(w)). Then,s*(w - &) = (0,0).

By @-SYM and EFF, for each=t — a; — ap with t € [w(1, 2), W(1, 2)] we haveF (w - &)(t) =

(38, 28) = yo(w— 8)(f). Hence,F(w - 8) = y(w - 8).

By COV of F andy® we obtain

FW(®) = F(w-8)(f) +a=y*(w-8)®) +a=y (W)t

for eachw € 1G!%? andt e [w(1, 2), W(1, 2)].
From Proposition 2.2.3 it follows that* satisfies EFFg-SYM and COV.

So,y* is the only solution with these three properties. ]

Themarginal curvedor a two-person game N, w > are defined by

e (w) (WL 2), W(L, 2)] — RZ, where
2 @)() = (1), - 1), D) = (- (), ).
The Shapley-like solution® is equal to
) = S ) + 2D ),

Note that each point of the marginal cumé-2(w) : [w(1, 2),W(1,2)] — R? corresponds
to a marginal vector of a selection of, since for alla € [0,1] x [0, 1] and for allt €
[W(1, 2),W(1, 2)] we havem®2(w)(t) = m-2(v), wherev : 242 — R is the characteristic

function of the game with
V(0) := 0, V(1) == s{*(W)(1), V(2) := s;*(w)(t) andv(1,2) :=t.

Similarly, m@De(w)(t) = m2D(v) for all @ € [0, 1] x [0, 1] and for allt € [w(1, 2), W(1, 2)].
In case wherey(S) is a degenerate interval for eaBhe 2V, we havem®(w)(t) = n (v) for

all @ € [0,1] x [0, 1] and for allt € [w(1, 2), w(1, 2)] with
v(0) := 0,v(1) := w(1),v(2) := w(2) andv(1, 2) = w(1, 2).
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Let us consider th&hapley-like solutionsf the form

¢? : 1IGH2 - K(R?) defined by
QO(I(W) = %(m(l,Z),a/(W) + m(2,1),a/(W))

for eachw e IG!*? and for eachr € [0, 1] x [0, 1].
Then, for each € [w(1, 2), w(1, 2)] it holds thaty®(w)(t) = y*(W)(t). So,¢* coincides with
Y.

2.3 INTERVAL SOLUTION CONCEPTS

This section is based on Alparslak; Branzei and Tijs (2008a,b).

Recall that a solution concept for classiogberson cooperative games associates with each
such game a (possibly empty) setmeflimensional real-valued vectors whaosth component
indicates the payb for playeri when the worth of the grand coalition is distributed among
the n players. In case afi-person cooperative interval games the players have to cope with
the division of the worth of the grand coalition when they only know its lowet apper
bounds. As a consequence of the interval uncertainty regardingatleacvalue of the grand
coalition, before cooperation starts, players’ p@y@an be rather expressed as intervals of
real numbers than as real numbers, i.e. each player might know at thées@tgghigher
minimum and maximum potential paffe. Thus, an interval solution concept associates to

eachn-person cooperative interval game a (possibly empty) set of interyafipaectors.

Let|; be the interval paytd of playeri, and letl = (I1, 12,..., 1) be an interval pay vector.
Then, according to Moore (1979), we ha¥gs |i = [Sies | Sies 1i] € I(R) for eachS e
2N\ {0}. An interval solution concepf on IGN is a map assigning to each interval game
w e IGN a set ofn-dimensional vectors whose components belong[®). Here, we define
interval solution concepts for interval games IGN.

Theinterval imputation sef (w) of the interval gamev, is defined by

I(w):= {(Il, lo,...,In) € I(R)N|Z li = w(N),w(i) < I;, foralli e N}.
ieN
We note thatyicy I = W(N) is equivalent withicy i = W(N) and Yien |, = W(N), and

w(i) < |; is equivalent withw(i) < I; andw(i) < 1;, for eachi € N.
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Furthermoreyicy Ii = W(N) implies that for ali € N and for allt € w(N), there exist; € ;,

i € N, suchthaf .y % = t. Notice that the interval uncertainty of coalition values propagates
into the interval uncertainty of individual paffe and we obtain interval pagfovectors as
building blocks of interval solutions. The interval imputation set consists agdlinterval
paydt vectors which assure the distribution of the uncertain worth of the graaldioa such
that each player can expect a weakly better interval fiahat what hgshe can expect of

his’her own.

Proposition 2.3.1 Let w € IGN. The interval imputation sef(w) of w is nonempty if and

only if W(N) 3= ien W(I).

Proof. First, suppose that(w) # 0. Takel = (I1,12,...,15) € I(w). Thenl; = w(i) for
eachi € N. So,Yicn i = Xien W(i) by interval calculus. Now, we usgicy li = W(N). Next
suppose thaw(N) = Yy W(i). Then,l = (W(1),w(2),...,w(n-1),1,), wherel,, = [I_n,Tn] =
[w(n) +6, W(n) + €] with € = W(N) — X iy W(i) > 0 andd = W(N) — X ien W(I) > O, is an element

of the interval imputation set. |

Theinterval coreC(w) of the interval gamey, is defined by

Cc(w) := {(Il,...,ln) € |(R)N|Z li = W(N),Z li = w(S), forall S e 2V \ {@}}.

ieN ieS

The interval core consists of those interval piyeectors which assure the distribution of
the uncertain worth of the grand coalition such that each coalition of playgrsexpect a
weakly better interval paybthan what that group can expect on its own, implying that no
coalition has any incentives to spliffoHere, Y icn |i = W(N) is theefficiency conditiorand
Sies i =wW(S), S € 2N\ {0}, are thestability conditionsof the interval payf vectors. Clearly,
C(w) c I(w) for eachw e IGN. Notice that for two-person cooperative interval games the

interval imputation set coincides with the interval core.
Example 2.3.1Let< N,w > be a three-person interval game with

w(1,3) =w(2,3) =w(1,2,3)=J = [0,0] and WS) = [0, 0] otherwise

The interval core i€ (w) = {([0, 0], [0, 0], J)}.

Let< N,d > be an interval cost game. Then, tih&rval coreC(d) is defined by

c(d) := {(|1,...,|n) € I(]R)N|Z li = d(N),Z li < d(S),¥S e 2V \ {@}}.

ieN ieS
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The interval core€(d) consists of those interval paffawectors which assure the distribution of
the uncertain cost of the grand coaliti@iN), such that each coalition of playe3san expect
a weakly better interval cosk;ics I, than what that group can expect on its own, implying
that no coalition has any incentives to splf.oWWe refer to iy li = d(N) as theefficiency
conditionand toY}jcs Ii < d(S), S € 2V \ {0}, as thestability conditions of the interval payo

vectors

Remark 2.3.1 Elements of the interval coxg(w), can be computed by solving a system of
linear inequalities of the formy;cy I; = W(N); Yien i = W(N) and Sics |; = W(S); Sies i >
W(S), for each Se 2N\ {0}. We notice that the time complexity of the algorithm for computing
the interval coreC(w) for w € IGN is the same as the time compleXitgf the algorithm for

computing the core @) for v e GN,

Remark 2.3.2 We notice that the elements of the sea)Cand C(w) are of djferent types,
implying that we cannot compare the sets with respect to the inclusion rel&mecifically,
the elements of @) are vectors »x RN, whereas the elements@fw) are vectors le 1(R)N.
But, if all the worth intervals of the interval gameN, w > are degenerate intervals, then the
interval coreC(w) corresponds in a natural way to the coréw@, since([as, a1], - - -, [an, &)

is in the interval coreC(w) if and only if(as, ..., ay) is in the core Gw) for each a € R and

i € N. Furthermore, we could have situations in wh&fw) = 0 and Qw) # 0, as Example

2.3.2 illustrates.

Remark 2.3.3 Note also that if the worth of the grand coalition is given by a degenerate
interval then the elements of the interval core are tuples of degeneratedtge Under this
assumption, the necessary angisient condition for the nonemptiness of the interval core is

the balancedness of the upper game.

The interval core is defined as the set fifaentn-person interval pay®vectors that satisfy
coalitional rationality (or split-&f stability) in the interval setting. An algorithm for computing
elements of the interval core of a cooperative interval game based orrR2184. is provided
in Drechsel and Kimms (2008). There is a fundamentgietence between the interval core

C(w) and the cor€(w) as we emphasized in Remark 2.3.2. Now, we notice that the interval

! For details on complexity theory we refer to Garey and Johnson (1979).
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core of n-person cooperative interval games can generate via selecigns,(.., X,) €
(I, 12,...,15) € C(w) a set which has the same type of element€@g). The two sets do
not coincide for arbitrary cooperative interval games, but they cainicicase where all the

coalitional worth values are degenerate intervals.

Example 2.3.2Let < N,w > be a two-person interval game with(ly2) = [6, 8], w(1) =
[2,4], w(2) = [5, 6] and wW(0) = [0, 0]. For this gameC(w) = 0. But, Qw) # 0 since Qv) # 0

for some selections«& S e(w).

Proposition 2.3.2 Let we IGN. If the interval coreC(w) is nonempty, then the corg(@) is

nonempty.

Proof. Take (1, 12,...,1n) € C(W). Then,}ic\ li = W(N), meaning thad’icy I, = W(N) and
SienTi = W(N), andTics Iy = W(S), implying thatTics |; > W(S) and Ties Ty > W(S). Let
< N,v > be the selection ofv with \(S) = W(S), v(N) = w(N) and letx; = |,,i € S. Then,
Yies Xi = W(S) and Y icn Xi = W(N) which shows tha€(w) # 0 andC(w) # 0 implying that
C(w) is nonempty. [ |

Some basic properties of the interval core are straightforward extensfdhe correspond-
ing properties of the core of traditional cooperative games (Gillies (J%®)Proposition
2.3.3 and Proposition 2.3.4 illustrate. In Proposition 2.3.4, we extend to ingavads the
property of relative invariance with respect to strategic equivalencéhfo core. For this
extension, we need the notion of additive interval games. A gani¢a > is called an
additive interval gamef for eachS e 2N it holds a(S) = Y.sa({i}). For such a game,

C(@) = {(a({1}).a{2}), ..., a({n})}.

Proposition 2.3.3 Let we IGN. Then, the interval cor€(w) of w is a convex set.

Proposition 2.3.4 The interval coreC : IGN — I(R)N is relative invariant with respect to
strategic equivalence, i.e., for eachave IGN with a being an additive interval game, and

for each k> 0 we haveC(kw + a) = kC(w) + C(a).

Proposition 2.3.5 Let we IGN. Then the interval core corresponder@e IGN — I(R)N is

a superadditive map.
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Proof. We have to prove tha®(wy) + C(W>) ¢ C(wi + W») for eachwy, w»> € IGN. First,
we note that the inclusion holds @f(w;) = @ or C(wz) = 0. Otherwise, consider that;,
W, € IGN and take (1, 12, ..., In) € C(wi) and (1, Jo, . .., Jn) € C(w2). Then,

Dol > Je=wa(N) + Wa(N) = > (I + J) = Wy + Wo)(N),

keN keN keN
and, for eacls € 2N\ {0}, Yies Ik = Wa(S) and Yucs Jk = Wao(S), implying that Yycs Ik >
W1(S) and Y5 Jk = Wo(S). Then, for eacts € 2N \ {0},

DT+ > Tz Wa(S) + Wo(S) = (T + Ju) = (Wa + Wo)(S).

keS keS keS
Similarly, Yyes(l, +J,) = (w; + w,)(S). Hence, the interval core correspondence is a

superadditive map. [ ]

We call a gamav € IGN anexact interval gamé for eachS e 2V it holds:

() there exists ah = (I4,...,1n) € C(w) such that s li = W(S);

(i) there exists a € C(Jw]) such that ;s X = [wW| (S).

Note that(ii) expresses the exactness of the length garihe|w| >.

Other interesting interval type solution concepts for interval games like theahtminance
core and stable sets based on a dominance relation are introduced in thnfpllo
Letw e IGN, I = (I1,...,1n),d = (J1,..., ) € T(W) andS € 2V \ {0}. We say that

dominates J via coalition Sand denote it by domg J, if:

@) li> Jforallies,

(i) Zies li < W(S).

ForS € 2V \ {0} we denote byD(S) the set of those elements #tw) which are dominated
via S. Forl,J € I(w), we say thal dominates Jand denote it by dom J if there is an
S e 2V\ {0} such that domg J.

Furthermore| is calledundominatedf there does not exisi and a coalitionS such that
Jdong I.

Theinterval dominance cor®C(w) of an interval gamev € IGN consists of all undominated
elements i (w), i.e., it is the complement af {D(S)|S € 2V \ {0} in 7(w).

Forw € IGN a subsef of 7(w) is aninterval stable seif the following conditions hold:
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(i) (Internal stability) There do not exisk, J € A such that domJ or J doml.

(i) (External stability For eachl ¢ Athere exists d € A such that

Jdoml.

Next, we study relations between the interval core, interval dominaneeacat stable sets

for interval games.
Theorem 2.3.6 Let we IGN and let A be a stable set of w. Thel(w) c DC(W) c A.

Proof. In order to show tha®(w) c DC(w), let us assume that there is ba C(w) such that
| ¢ DC(W). Then, there are & € 7(w) and a coalitiors € 2V \ {9} such that] doms |. Thus,

I1(S) < J(S) = Yies Ji < W(S) andJ; > |; for all i € S implying thatl ¢ C(w). From this

contradiction it follows thaC(w) c DC(w).

To prove next thatOC(w) c A, it is suficient to showZ(w) \ A c 7(w) \ DC(w). Take

| € 7(w) \ A. By the external stability oA there is aJ € A with J dom|. The elements in
DC(w) are not dominated. Sb,¢ DC(w), i.e.,l € I(w) \ DC(w). |

The inclusions stated in the previous theorem may be strict. The following éeamgpired

by Tijs (2003), illustrates that the inclusion Gfw) in DC(w) might be strict.

Example 2.3.3 Let< N, w > be the three-person interval game witkdw2) = [2, 2], W(N) =
[1,1] and WS) = [0,0] if S # {{1,2},N}. Then,C(w) = 0 because the game is nét
balanced (note that {4, 2) + w(3) > W(N)). Further, (S) = 0 if S # {1,2} and D({1,2}) =
{l e Z(W)|l3 > [0,0]}. The elements | i (w) which are undominated satisfy = [0, 0].
Since the interval dominance core is the set of undominated elemefita/inthe interval

dominance core of this game is nonempty.

2.4 HANDLING INTERVAL SOLUTIONS

This section is based on Branzei, Tijs and Alparslé@k @2008b). Its goal is to provide a basic
guide for handling interval solution concepts. We want to make clear thavahtalocations
and protocols to handle them are interrelated and their choice has to be numtenierval
uncertainty of coalition values. First, the commonly chosen interval solutinoceg and pro-

tocol provide support for the players’ decision making regarding the swble coalition

31



to form under interval uncertainty of coalition values. Second, after thejgof cooperating
players is fixed, the same interval solution concept gavgsiori interval-type information
regarding the potential rewambst shares for cooperating individuald. posteriori when
uncertainty on the outcome(s) of cooperation is removed, the rangedesttipb individual
shares are processed according to the chosen protocol to deterroertaurty-free individ-
ual shares. We notice that usually only uncertainty about the outcome gfahd coalition

is removed. For this scenario we propose several procedureshorgthe dificult task of
distributing the &ective total profitcost among the cooperating players consistently with all
their previous decisions. We cope with two basic ways for evaluating thalamitcome of

the grand coalition:

(i) in one step, when the joint enterprise is finished,;

(i) in several steps, at a priori fixed moments of time when the progress ofithhefer-

prise is evaluated.

The suitability of a particular procedure relies on the nature of the situatiorelewds a
cooperative interval game and also on players’ joint decision about tey should receive
their uncertainty-free shares.

The players who like to cooperate in a situation with interval data can at atfugt consider
the corresponding cooperative interval game and a cooperativeahsatution. The interval
allocation obtained by the commonly agreed upon interval solution conceyattltlis stage

a two-fold use:

(a) to assist people or businesses in taking optimal decisions regardingrabopeainder

interval uncertainty;

(b) to prescribe before cooperation starts minimal and maximal values for indhdtiares
for cooperating players such that the interval rev@st of the grand coalition is

cleared.

We notice that once it was agreed upon which coalition to form, the jointly chivgerval
solution concept provides the ranges of potential individual shargs.nieans that before co-

operation starts the agents are uncertain about their rights or liabilitiegctasty. Clearly,
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the outcome of cooperation will be known with certainty at some future momern@)y-
ever, the agents have to sign at this stage a contingent contract, ratmevatiag until the
uncertainty on their joint rewargtsosts is removed. This contract should also specify the
protocol to handle the potential interval shares when the uncertainty asutbeme of the
grand coalition is removed. We notice that such a protocol should be jointlyechbefore
cooperation starts but used when the outcome of the grand coalition is kmitlvoertainty.
Depending on the dimension of the joint enterprise, the evaluation of thevadhpeofit or
cost, respectively, by the grand coalition and its distribution among plagarse&completely
done either in one step, after the joint enterprise is finished, or in sesteps corresponding
to commonly agreed upon mile stones during the carrying out process.

We focus first on the case when the evaluation of the achieved rewdiné @fhole cooper-
ating group takes place only once, after the joint enterprise is finisheddewete byR the
achieved joint financial outcome, and look at it as the realization of the we(d¢ of the
grand coalition in the cooperative interval gam®\, w >. Notice that in case the cooperating
group of agents is a proper subset of the initial set of people or besiaesnsidering coop-
eration under interval uncertainty, the interval gam@, w > is nothing else than a proper

subgame of the initial interval game arising from the analyzed situation with aitéata.

The problem which agents face when the uncertaintyf¥) is removed is how to allocate
this total payd R. At this stage, uncertainty on individual shares should be removedlgs we
i.e., uncertainty-free individual shares should be determined basedegordatocol and in
accordance with the individual interval shares specified in the bindintyax.

To be more concrete, let N,w > be the interval game, and lgtbe the solution concept on
which the decision to start cooperation of all playerdinvas based. Here, we suppose that
the interval game is of reward type. The final uncertainty-free individbares will depend
onJ; = ¢i(w) € I(R) for all i € N and on the rewar® € R achieved byN. The players have
to cope with the question: How to divideaccording to the gived = (J1, ..., Jn)? Thisissue

is solved using the protocol chosen before cooperation starts. In goelseve dfer some
possible candidates for such protocols.

First, sinceR appears as a realizationw{N), one can naturally expect that
W(N) < R<W(N). (2.4.1)
One idea is to determinge [0, 1] such that

R= aw(N) + (1 - DW(N), (2.4.2)
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and give to eache N the paydt x = 2J; + (1 - 2)J;.

Note thatJ, < x < J; and
Dox=a) 3+ @-2) > T = a(N) + (1- Hw(N) = R
ieN ieN ieN

So,x is a contract-consistent and affieéent paydr vector corresponding tB.

Now, note that we can also write = J + (1 - 2)(J — J). So, the payfi for playeri € N
can be given in the following manner: first (eventually even before e@djon starts), each
playeri € N is given the amoung;; later on (wherR is known), the amounR — icn J;

is distributed over the players proportionally with their residual contragtghts, J; — 3

i € N. This is equivalent with using the bankruptcy ridROPfor a standard bankruptcy
problem €, d), where the estatg equalsR - 3’icy J; and the claimsl with d; < ... < dy
are equal taJ; — J; for eachi € N. Note that (2.4.1) implies thd < ey di; SO, in this
case, we deal with a standard bankruptcy problem. Recall that th®R@Pis defined by
PROR(E,d) := Zjii‘ T E for each bankruptcy problent(d) and alli € N.

Furthermore, we can extend the previous bankruptcy approach bideoimg also other well-

known bankruptcy rules such as ttenstrained equal awards (CEA) ruded theconstrained
equal losses (CEL) ruleRecall that the bankruptcy rutleEAis defined byCEA(E, d) :=
min{d;, a}, wherea € [0,dy] is determined by} .y CEA(E,d) = E for each bankruptcy
problem E,d) and alli € N, while the bankruptcy rul€EL is defined byCEL(E,d) :=
max{d; — 3,0}, whereg € [0, dy] is determined by;.y CEL(E, d) = E, for each bankruptcy
problem E,d) and alli € N. For details about bankruptcy problems and rules we refer the
reader to Aumann and Maschler (1985), Curiel, Maschler and Tijs {18&minsky (2000),
O’Neill (1982) and Thomson (2003).

DenoteF := {CEA CEL PROR and letf € F. Then, we can divide the amouRtachieved
by N by handing out the amoudf + fi(E, d) to each player € N, whereE = R- }ic\ J; and
di = J - J, for eachi € N.

Next, we illustrate such one-step procedures.

Example 2.4.1 Let < N,w > be the three-person interval game witiSy = [0,0] if 3 ¢ S,
w(0) = w(3) = [0,0], Ww(1,3) = [20,30] and WN) = w(2,3) = [50,90]. We consider that
the interval Shapley value was chosen as an interval solution concdphardecision of full
cooperation was taken. The@(w) = ([3%, 5], [18%, 35],[282, 50]). Further, we assume that
the realization of WN) is R = 60. First, note that condition (2.4.1) is satisfied. From (2.4.2)
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we obtaind = 2 implying that the paygvector is x= (33,223, 333).
Now, we determine the individual uncertainty-free shares by using PREGR, and CEL to
distribute the amount R (J, + J, + J;) = 10among the three agents. Note that we deal here

with a classical bankruptcy proble(, d) with E = 10, d = (11, 163, 212). We obtain

PRORE, d) \ CEAE, d) \ CEL(E, d)
(541.58) | (12.43.43) | (0.23.7D)

Then, we can divide the amountR60achieved by N by handing out the p#¢33, 183, 281)+
f(10,(13,162,212)), f € F, shown in the next table:

f| PRORE.) | CEAE.) | CELE.Q)
X ‘ (32,223,333) | (5,22},323) ‘ (31,202, 352).

A comparison of the payfbvectors obtained using PROP, CEA and CEL can be useful in
practice to support the choice of the preferred bankruptcy rule to be imgrieed.

Next, we focus on the case when the evaluation of the achieved rew#nd afole group
takes place along the carrying out process of the joint enterprisel;l et , Tk be the time
moments when the financial progress is evaluated and, thus, the cuaheation of the joint
outcome is known with certainty. We denote By the realization ofv(N) at momentTy,
wherek € {1, 2, ..., K}, and focus on the situation whé < R, < ... < Rx. We notice that
w(N) can be viewed as the realizati&g of the grand coalitiorN at the initial momeniy,
i.e., before starting cooperation. Clearly, the uncertainty about the outcboo®peration is
reduced at each time momeng, k € {1, 2, ..., K — 1}, being completely removed at moment
Tk.

The problem here is to determine individual portiqu@, i € N, at each momeniy, k €
{1,2,...,K}, based on the history of the allocation process and on the financial fioctsia
of the joint outcome.

Thus, the participants face the problem of distributing among them at each timemtity
the amouniR¢ — R¢-1, whereRy = w(N), by taking into account their adjusted individual
entitlements at stek

We assume that participants receive individual portipl(ﬂ)s: J;,1 € N, at momenilo. Then,
the adjusted individual entitlements at mom@atared™ = J; - p for i € N. Now, we

describe our procedure more formally.
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Step 0. The portionpi(o) = J, is handed out to agenti € N, obtaining the individual portions
pi(l), ieN.

Step 1. The amounR; — Ry is distributed over agents M by taking into account their adjusted

rightsd™™), i € N.

Step k. The amounRx — Ry_1 is distributed over agents M according to adjusted righdék) =
d* — p*D/j e N, obtaining the individual portiong™, i € N.

Each playeri € N receives in total the amoun = J; + Zlf:l pi(k). We note that each
bankruptcy rulef in F can be used in our multi-step procedure if in each step the division
problem at stake is bankruptcy-like, i.e., for &lle {1,2,...,K} we haveRx — R«_1 > 0,

d® > o0 foralli € N andRx — Re1 < Yjen d.

Next, we illustrate our multi-step procedure using BRROPrule (which is one of the most

often used rule in real life).

Example 2.4.2 Consider the interval game and the Shapley value as in Example 2.4.1. But,
suppose there are 3 steps for evaluating the actual outcome of the goafitian and con-
sider a scenario with R= 60;R, = 65and R = 80 (Ry = 50). The reader can easily check
that for this scenario, in each step we deal with a classical bankruptdyl@mo, for which we

use the classical bankruptcy rule PROP.

Step 0. The portion ) = (33,183, 281) is handed out.

Step 1. The amount R— Ry = 10is distributed over agents in N by taking into account their

adjusted rights &) = (13,162, 212). Then, Y = (2, 4%,52).

Step 2. The amount R— R; = 5is distributed over agents in N according to the adjusted rights
d® = (11,121,163). Then, ) = (5, 25, 230).

Step 3. The amount R— R, = 15is distributed over agents in N according to the adjusted

rights d® = (14,103, 1323). Then, ) = (3,63, 83).

Finally, x = (475,302, 44%).

Note that the assumptioR; < R, < ... < Rx corresponds to the case where the joint

outcomes have an increasing trend. However, it may happen to havendp$oans for

36



the joint outcomes along the sequeriaeTs..., Tk, implying that at a certain momeiy,
k=12,...,K, the amountto be distributed among participants might be negative. Moreover,
at anyTy some individual entitlements could be negative, implying a redistribution oftaigen
holdings. Theights-egalitarian rule(Herrero, Maschler and Villar (1999)) could be a good
candidate for solving the sequence of division problems obtained duningpualti-stage pro-
cedure in the general case. This rule is definedi'fﬁ(E, d:=d+ %(E — Yien Oi), for each
division problem E, d) and alli € N. The rights-egalitarian rule divides equally among the
agents the dierence between the total entittement and the available amount, being suitable for
all circumstances of division problems. In particular, the amount to beetividin be either
positive or negative, the rights may have negative components, and thmbiode divided

may exceed or fall short of the aggregate rights. For these reasangtttseegalitarian rule is
always applicable in the multi-stage procedure. A negative anRRunR_; to be distributed

in some stefk of our procedure means that a deficit has to be shared. A negati\tedi%h

for some player in some stefx of our procedure corresponds to a debt. If in some ke
amountRx — R¢_1 to be distributed is greater (respectively smaller) than the aggregate right
lieN di(k), we cope with a problem of distributing a surplus (respectively sharirgdieit). We

leave as an exercise for the reader to apply the rights-egalitarian rule 3astte@ procedure

of Example 2.4.2 as an alternative RROPR Next, we illustrate some shortcomings of the
rights-egalitarian rule by considering the scen&ic= 85;R, = 55 andRz = 60 (i.e., ups and
downs) for the interval game in Example 2.4.2 with the interval Shapley valueahtsen

solution concept.

Step 0. The portionp© = (33,183, 281) is handed out.

Step 1. The amounR; — Ry = 35 is distributed over agents M by taking into account their
adjusted rightsl® = (12, 162, 212). Then,p® = (0, 15, 20).

Step 2. The amounR, — Ry = —30 is distributed over agents ki according to adjusted rights

d® = (1%,14,12). Then,p® = (-10,-10, -10).

Step 3. The amounR3 — R, = 5 is distributed over agents N according to adjusted rights
d® = (112,112, 112). Then,p® = (13,12, 12).
Finally, x = (-5, 25, 40).
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Note that the final pay® for player 1 does not belong to %35]; moreover, it is negative.
The fact that individual shares obtained via the rights-egalitarian rulelimaytside of the
a priori intervals generated by the chosen solutiois a shortcoming of this rule. There is
a need to design division rules which are more suitable for our multi-stejeguoe than the
rights-egaliterian rule for the general case.

We conclude this section with some hints about how to handle abnormal easasling
the realization of the total outcome and briefly discuss rare cases wiadiratiens of more
coalition values are known a posteriori.

Occasionally,R might not belong to the interval(N). Even in these abnormal cases the
distribution of R among the players can be done consistently with the vektdrintervals
obtained by the jointly chosen interval solution concept and specified irindalg contract.

Our idea to handle interval solutions here is as follows:

e Suppose that the joint enterprise proved to be very profitable geneRating(N). In
this case, all agents benefit from the unexpected profit. Our profsakh player
i € N to receive the maximum expected from cooperatioMinJ;, and something
more which is calculated as equal share of the unexpected profit. Inrtheltg each
playeri € N will receive the amount); + %(R — W(N)). This is in the spirit of the
rights-egalitarian allocation rule from the classical division problems litezatider-
rero, Mascher and Villar (1999)) witR in the role ofE andd; = J; for eachi € N, in
casek > >N di.

e Suppose now that the joint enterprise was bankrupt and the amoumR, lefiess than
W(N). In this case, we have a division problem under interval uncertaintjaghs for
which rules in Branzei et al. (2004) can be helpful. We notice that thésrigalitarian
rule can also be applied to this case because agents hold collectivesiedjipifior the

losses; in formula, each playee N will receive the amound, + %(R— W(N)).

An alternative approach for designing one-step and multi-step protoctdsuse taxation
rules instead of bankruptcy rules by handing out fiksind, then take away with the aid of a

taxation rule the deficit = Y.y Ji — Rbased o = Jj — J; for eachi € N.

Now, we briefly discuss about how to handle interval solutions in raresoakere besides the
realization ofw(N) also realizations of/(S) for someS c N are known. Suppose first that the

uncertainty on all outcomes is removed, implying that a selection of the initial aitgame
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is available. Then, we can use for this selection a suitable classical solutitmicionine a
posteriori uncertainty-free individual shares. Now, suppose thigtthe uncertainty of the
outcomes of a few coalitions (including the total outcome) was removed. mstu@tions,

we deal with a classical cooperative game with restricted cooperation@ndmdetermine a
posteriori uncertainty-free individual shares by using for this ganugalde classical solution

concept.

Finally, in case the situation with interval data at stake is modeled as a costirgame,
any interval solution concept defined on suitable subclasses of so@sdaa candidate, and

similar procedures with those described in this section are applicable.

Briefly summarizing, in Chapter 2, the model of cooperative interval garagsden intro-
duced. Selection-type and interval-type solution concepts for coopematérval games were
intensively studied. We have also focussed on the essential issuedinigainterval solu-

tions. In the next chapter, we introduce the notiod dfalancedness and give some results.
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CHAPTER 3

7-BALANCED INTERVAL GAMES

An interval gamaw € IGN is calledZ-balanced if for each balanced map: 2V \ {0} — R,

we havey scon g A(S)W(S) < W(N). The class off -balanced interval games is denoted by
IBIGN and a gamev ¢ IGN for which all subgames arg-balanced is called totally 7-
balancedgame. The class of totallj-balanced games is denoted by BIGN. In the follow-
ing proposition, a relation between balancedness in terms of selectiodslzaldncedness is

given.

Proposition 3.1 Let < N,w > be a strongly balanced interval game; thenN,w > is 7-

balanced.

Proof. Take a balanced map: 2N \ {0} — R,. Then

wN) = w(N) > > ASWES) > . ASWS).

Se2N\ (0} Se2N\ (0}

S0, Y seony oy AS)W(S) < W(N). Hence < N, w > is 7-balanced. |

Note that the converse of the Proposition 3.1 is not true since there existS e(w) with
C(v) # 0, implying that the cor€(w) is nonempty, but the interval core may be empty as we
learn from Example 2.3.2.

In the next theorem, we extend to interval games the well-known result sdickd coop-
erative game theory that a gandes GN is balanced if and ony i€(v) is nonempty (see
Theorem 1.32 in Branzei, Dimitrov and Tijs (2005)) by using the duality thedrem linear

programming theory.
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Theorem 3.1 Let we IGN. Then the following two assertions are equivalent:

(i) C(w) # 0;

(i) The game w ig-balanced.

Proof. First, using Remark 2.3.1, we note tt@w) # 0 if and only if the following two

equalities hold simultaneously:

w(N) = min{z Ll Zl_i > w(S), for eachS e 2V \ {(Z)}}, (3.1)

ieN  ieS
W(N) = min{z Til T > W(S), for eachS}. (3.2)
ieN  ieS
We consider the matriA whose columns are the characteristic vec&StsS € 2V \ {0}, and
apply the duality theorem from linear programming theory (Dantzig (1968)e ,&uhn and
Tucker (1951)). Then, (3.1) holds true if and only if

Se2N\ (0} Se2N\ (0}

W(N) = max{ DaswE) D s =etaz 0}, (3.3)

and (3.2) is satisfied if and only if

W(N) = max{ D ASWE) Y A =M1z 0}. (3.4)

Se2N\ (0} Se2N\ (0}

Now, note that (3.3) holds if and only if

Z AS)W(S) < w(N), for eachi > 0 such that Z AS)e® = &N, (35)
SeaN\(0) Se2N\(0)

whereas (3.4) is guaranteed if and only if

Z A(S)W(S) < W(N), for eachd > 0 such that Z AS)e® = M. (3.6)
Se2N\(0) Se2m\(0)

Finally, we note that (3.5) and (3.6) together expresstialancedness of. |
Let us note that the interval game in Example 2.3.2 isfidialanced sincev(1) + w(2) =
w(1,2). According to Theorem 3.1 we conclude tlag) = 0.

Remark 3.1 If C(w) is not empty, then @v) and Qw) are both nonempty.
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We note that if all the worth intervals of the interval gaméN, w > are degenerate intervals,
then strongly balancedness aftalancedness of the game also correspond to the classical
balancedness.

The next proposition gives a description of the interval core of a unanintgyval game and
shows that on the class of unanimity games the interval core and the intermadahce core

coincide. We defin& as follows:

K = {(Il,...,ln) € I(R)N|Zh =J1,20,VieN,I =[0,0]forieN \T}.
ieN
Proposition 3.2 Let< N, urj > be the unanimity interval game based on the coalition T and

the paygfinterval J = [0, 0]. Then,DC(ur j) = C(ur,3) = K.

Proof. First, we prove that the interval core of ; can be described as the $ét In order to
show thatC(ur j) c K, let(l1,..., In) € C(ur.y). Clearly, for each € N we havd; = ut j({i})
andur s({i}) = [0,0Q]. So,l; > O for alli € N. Furthermorey’icy |i = ur 3(N) = J. Since also
Siet i = J, we conclude thal; = 0 fori e N\ T. So, (1,...,In) € K. In order to show that
K cClury), let(ly,...,lIh) € K. So,l; >0foralli e N, I; = [0,0]if i e N\T, Yien li = J.

Then (4,..., 1) € C(urj), because it also holds:

() Yiesli 7 [0,0]=urys(S)if T\ S #0,

(i) Yiesli = Zienli=ura(N) =J=urys(S)if T c S.
Next, we prove tha(ur j) = DC(ut j). Note first thaC(ur j) € DC(ur j) by Theorem 2.3.6.
We only have to prove thaC(ur ;) ¢ C(ur j) or we need to show that for eath C(ur j)

we havel ¢ DC(ut j). Takel ¢ C(urj). Then, thereis & € N\ T with I # [0,0]. Then,
I" domy I, wherel; = [0,0] fori e N\ T andl; = I; + %kaori eT.So,l ¢ DC(ury). M

Notice that Proposition 3.2 shows that unanimity interval gameg dralanced games.

Remark 3.2 From Proposition 3.2 we obtain that the caP¢ur [1 17) of the unanimity interval

game ¢ j with J=[1,1]is

C(ur i) = {I e I®M > 1 =[1,1],1;>0,¥i e N,I; =[0,0] fori e N \T}.
ieN
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We notice that the interval core of the unanimity interval game based oretfendrate inter-
val J = [1, 1] corresponds to the core of the unanimity game in the traditional case becau

all I; are degenerate for & C(ur [1,1))-

The next example illustrates the fact that the interval core might coincide watmtarval

dominance core also for games which are not unanimity interval games.

Example 3.1 Consider the game w in Example 2.3.1. We will show1b@atw) = C(w). Take
| = (I1,12,13) € I(w). Note thatif } # [0, 0] then([0, O], 12+ 311, I3+ 311) dompg (11, 12, I3).
So, ¢ DC(w). Similarly, if I, # [0, 0], then 1 ¢ DC(w). HenceDC(w) c {([0, 0],[0,0], J)} =
C(w) by Example 2.3.1. On the other hand we know, in view of Theorem 2.3.&;(thjpt
DC(w). So, we conclude thadC(w) = C(w).

In the next proposition, we connect tliebalancedness &f N, w > with the balancedness of

its border games.

Proposition 3.3 If < N,w > is 7-balanced, then the border gamesN,w > and< N,w >

are balanced.

Proof. Let < N,w > be 7-balanced. Then, for each balanced mageN \ {0} — R, we have
2sean oy ASIW(S) < W(N) implying that3 seon ) A(S)W(S) < w(N) and

Yisean o AS)W(S) < W(N), which express the balancedness of the border games of B

We define thesquare interval cor&™ : IGN — I(R)N by CH(w) := C(w)IC(W) for each
w € IGN. We notice that a necessary condition for the non-emptiness of the sqtemal

core is the balancedness of the border games.
Proposition 3.4 Let we Z7BIGN. Then,C(w) = CE(w).

Proof. (I1,...,1n) € C(W), if and only if (I,...,1,) € C(w) and (4,...,1n) € C(W), if and
only if (11,...,1n) = (g, -, 1, )01, . . ., Tn) € CH(w). [

We define thesquare Weber set™ : IGN — I(R)N by WE(w) := W(w)OW(W) for each

we IGN,
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Theorem 3.2 Let we IGN. ThenC(w) ¢ WH(w).

Proof. If C(w) = 0 the inclusion holds true. Suppo&éw) = 0@ and let (1,..., 1) € C(w).
Then, by Proposition 3.4 {,...,1,) € C(w) and (1,..., In) € C(W), and, sinceS(v) c W(V)
for eachv € GN, we obtain (,,...,1,) € WW) and (1,...,In) € W(W). Hence, we get

(I1,...,1n) € WEw). [ |

In the sequel, we introduce the notion of (interyadjpulation monotonic allocation scheme
(pmas)for totally 7-balanced interval games, which is a direct extension of pmas for classica
cooperative games (Sprumont (1990)).

We say that for a game € TZBIGN a schemeA = (Ais)ics.seon g With Ais € I(R)N is a

pmas ofw if

(i) Yies Ais = W(S) forall S € 2V \ {0},

(i) As < A forall ST e 2N\ {0} with S c T and for each € S.
As a conclusion in this chapter, we have put the emphasi&-balanced interval games. We
proved that the interval core of a cooperative interval game is nonempigt day if the game

is 7-balanced. The notion of population monotonic allocation scheme (pmas) inténeain

setting became introduced. The next chapter deals with size monotonic igames.
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CHAPTER 4

SIZE MONOTONIC INTERVAL GAMES

We call a game< N, w > size monotoni@ < N, |w| > is monotonic, i.e.w| (S) < |w| (T) for
allS,T e 2N with S c T. For further use we denote I&/MIGN the class of size monotonic
interval games with player sét.

We notice that size monotonic games may have an empty interval core. In thigGhee in-
troduce marginal operators on the class of size monotonic interval gaefes the Shapley
value and the Weber set on this class of games.

Denote byII(N) the set of permutations : N — N of N. Letw € SMIGY. We intro-
duce the notions oihterval marginal operatorcorresponding t@-, denoted by, and of
interval marginal vectorof w with respect too, denoted by’ (w). The marginal vector
" (w) corresponds to a situation, where the players enter a room one by dne arder
o(1),0(2),...,0(n), and each player is given the marginal contributiofshe creates by en-
tering. If we denote the set of predecessors$ iof o by P,(i) := {r e Nlo7(r) < o-‘l(i)},
whereo—1(i) denotes the entrance number of plaiymlnenrrf;(k)(w) = W(P,(o(K) U{o(K)}) -
W(P(co(K))) or in shortmt”(w) = w(P(i) U{i}) —wW(P(i)). We notice thatr” (w) is an dficient
interval paydf vector for eachr € TI(N). For size monotonic gamesN, w >, Ww(T) —wW(S) is
defined for aliS, T € 2N with S c T sincelw(T)| = [W| (T) > [w| (S) = IW(S)|. Now, we notice
that for eaclw € S MIGN the interval marginal vectors” (w) are defined for eactr € TI(N),
because the monotonicity ] impliesw(S U {i}) — w(S U {i}) > W(S) — w(S), which can be
rewritten asw(S U {i}) — W(S) > w(S U {i}) — w(S). So,w(S U {i}) — w(S) is defined for each
S c Nandi ¢ S. The following example illustrates that for interval games which are not size

monotonic it might happen that some interval marginal vectors do not exist.
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Example 4.1 Let< N, w > be the interval game with N {1, 2}, w(1) = [1, 3], w(2) = [0, 0]
and W(1,2) = [2,33]. This game is not size monotonic. Note th&t?w) is not defined
because {1, 2) — w(1) is undefined sincpv(1, 2)| < [w(1)|.

Now, we straightforwardly extend for size monotonic interval games two itapbsolution
concepts in cooperative game theory which are based on marginal veottirs. the Shapley
value (Shapley (1953)) and the Weber set (Weber (1988)).

Theinterval Weber seW’ on the class of size monotonic interval games is definetiifw) :=
conv{n (w)|o- € TI(N)} for eachw € S MIGN. We notice that for traditional TU-games we
haveW(v) # 0 for all v e GN, while for arbitrary interval games it might not exist (in case none
of the interval marginal vectons” (w) is defined). Clearly;W(w) # 0 for all w € SMIGVN,
Theinterval Shapley valu® : SMIGY — I(R)N is defined by

) :=n—1' Z " (w), for eachw e SMIGY. (4.1)

© oell(N)

We can write (41) as follows

B = = 3 WP U (i) - wPT(). (42)

" oell(N)

The terms after the summation sign in (4.2) are of the fa(@ U {i}) — W(S), whereS is a
subset ofN not containing.

Note that there are exactl|!(n— 1 - |S]|)! orderings for which one ha®” ({i}) = S. The first
factor,|S|!, corresponds to the number of orderingsSodind the second factom ¢ 1 — |S])!,

is just the number of orderings of \ (S U {i}). Using this, we can rewrite (4.2) as

o) = 5 B2 s Ui - ws). @49

|
S:i¢S n:

Note that
IS'(n-1-1|S])!
n!

=1 (4.4)
S:igS

Proposition 4.1 The interval Shapley valug : S MIGN — I(R)N is additive.

Proof. First, we show that for eaah e TI(N) the interval marginal operaton” : SMIGN —

I(R)N is additive, i.e., for alivy, wo € S MIGN, 7 (wy + W) = " (wy) + m7 (Ws).
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Leto € II(N) andk € N. Then,

MW +w2) = (Wi +Wo)(or(D),..., o (K)

- (W +wWo)(o(1),...,0(k—-1))

= wi(o(1),...,0(K) —wi(c(1),...,0(k-1))
+ Wo(o(1),...,0(K) —Wa(o(),...,o(k—1))

= nf,—(k) (wy) + nf;(k) (W2).

Now, using the additivity property of interval marginal operators we olitatd : S MIGN —

[(R)N is anadditivemap, i.e.,

1
O +wy) = > (W +wy)
n!
oell(N)
1 1
= = D, MWy D r(w)
oell(N) o€ll(N)
= D(wy) + d(wy),
for all wy,w, € S MIGN. [ ]

Letw € SMIGY andi, j € N. Then,i andj are callecsymmetric playersf w(SU{j})-w(S) =
w(S U {i}) —w(S), for eachS with i, j ¢ S. We leave the proof of the following proposition to

the reader.

Proposition 4.2 Let i, j € N be symmetric players in @S MIGN. Then,®;(w) = Dj(w).

Letw € SMIGN andi € N. Then,i is called adummy playeif w(S U {i}) = w(S) + w({i}),

for eachS e 2N\,

Proposition 4.3 The interval Shapley valu® : SMIGN — I(R)N has the dummy player

property, i.e.®;(w) = w({i}) for all w € S MIGN and for all dummy players i in w.

Proof. This follows from (4.3) by taking (4.4) into account. |
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Proposition 4.4 The interval Shapley value : SMIGY — |(R)N is gfficient, i.e..Yicy @i(W) =
W(N).

Proof. First, we show that for eaah € II(N) the interval marginal operaton” : SMIGN —
(R)N is efficient, i.e. 3cn M7 (W) = W(N).
Letw e SMIGN ando € ITI(N). Then,

N
Z”f(W) = ng(k)(W)
=

ieN
= We@)+ Y Wo(d),...,o() - Wo(d),...,ok-1))
k=2
= W((1) + W(o(), ..., (n)) — w(a(1)) = W(N).

Now, using the fiiciency of interval marginal operators, we obtain thatS MIGY — [(R)N

is an dficient map, i.e.,

Sow=13 Y W= S S ) = —niwN) = w(N),

ieN " ieN oell(N) " oell(N) ieN
for eachw € S MIGN. (]

Proposition 4.5 Letwe S MIGN and leto € II(N). Then, rfi(w) = [m(w), n?'(w)] for all
ieN.

Proof. By definition,

(W) = Wo(1)). W(o(1). 0(2)) - Wo(1)..... . W(c(D).. ..., o(n)) = W(o(1)...., (- 1)),
and

(W) = W(o (1)), W(o(1), 0(2)) - W (1)), ..., W(o (D), ...., () = W(o(1), ..., (n = 1))).

Now, we prove that”(w) — n¥(w) > 0. Sincelw| = W — w is a classical convex game, we

have for eaclk € N

M) = M@ = @= WD), o) - @-WeD).....ok-1)

W (L), ..., oK) — W (o (L), ..., o(k— 1)) > 0,

where the inequality follows from the monotonicity [of. So,m"(w) < mf"(w) for all i € N,

and

([ ). ¢ @)])._, = W), ... W (@)...... o) - We(L). ... o(n - 1)) = m (w).
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Proposition 4.6 Let w e SMIG and lete e TI(N). Then,@;(w) = [¢i(w), ¢i(W)] for all
i € N.

Proof. From (4.1) and Proposition 4.5 we have

o= > = > (e =

" oell(N) " oell(N)

LY W Y @) = [ew). e @]

" oell(N) " oell(N)

This chapter has been devoted to size monotonic games. The Weber get &hapley value
have been defined on this class, and their relations were studied. Tirehapter will conside

intensively an interesting class of cooperative interval games, callegxanterval games.
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CHAPTER 5

CONVEX INTERVAL GAMES

This chapter is based on Alparslarok; Branzei and Tijs (2008b) and Branzei, Tijs and
Alparslan Gk (2008a).

5.1 DEFINITION AND RELATIONS WITH OTHER CLASSES OF GAMES

We introduce the notion of convex interval game and denot€ N the class of convex
interval games with player sbt. We call a gamev € IGN convexf < N, w > is supermodular
and/w (S) + W (T) < W (SUT)+ W (SN T)forall S, T e 2N,

An interval game< N, w > is calledconcaveif < N, w > is submodular anfiv (S) + |w| (T) >
MW(SUT)+ W (SNT)forall S, T e 2V,

Next we give as a motivating example a situation with an economic flavour letméngpnvex

interval game.

Example 5.1.1LetN={1,2,...,n}andlet f: [0,n] — I(R) be suchthat ¢x) = [ f1(X), f2(X)]

for each xe [0,n] and f(0) = [0,0]. Suppose that;f: [0,n] - R, f, : [O,n] - R and

(f2 — f1) : [0,n] — R are convex monotonic increasing functions. Then, we can construct a
corresponding interval game w2N — [(R) such that WS) = f(|S|) = [f1(IS), f2(S|)] for

each Se 2N, It is easy to show that w is a convex interval game with the symmetryrpyope
w(S) = w(T) for each ST € 2N with S| = [T]|.

We can regarck N,w > as a production game if we interpre{d) for s € N as the interval

reward which s players in N can produce by working together.
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Convex games are useful for modeling economic and OR situations like pudit jtua-
tions (Moulin (1988)) and sequencing situations (Curiel, Pederzoli §aq1®89)). In case
where the parameters determining such situations are not numbers bualsjtender cer-
tain conditions also convex interval games may appear. Also, specialupok situations
(O’Neill (1982), Aumann and Maschler (1985) and Curiel, Maschlet @ijs (1987)) when
the estate of the bank and the claims are intervals give rise in a natural wayviexanterval
games. Some economic and OR situations with interval data lead to concavaligenes
instead of convex interval games.

Note that the nonempty s€tiGN is a subcone ofGN. The next proposition shows that tra-
ditional convex games can in a natural way be embedded into the classveixdoierval

games. The proof of the next proposition is straightforward.

Proposition 5.1.1 If v € GN is convex, then the corresponding gameswGN which is

defined by (8) := [V(S), v(S)] for each Se 2N is also convex.
Let us note the fact that N, |w| > is supermodular implies that N,|w| > is monotonic,
because for eacB, T € 2N with S c T we have

W (T) + W[ (@) > W (S) + W(T\'S),

and from this inequality followsw| (S) < [wi (T) sincew| (T \ S) > 0. So,CIGN c SMIGN,
Then we obtain from Proposition 4.5 thaf’ (w) = [r‘rf(v_v) r’rf(v_v)] for eachw e CIGN,

o € II(N) and for alli € N. From Proposition 4.6 we obtain that for eagle CIGN we have

@i(W) = [¢i(w). ¢i(W)] for all i € N.

5.2 CHARACTERIZATIONS OF CONVEX INTERVAL GAMES

Proposition 5.2.1 gives some characterizations of supermodular anexcgamesw € IGN

based on their related length gamge GN and border games, W € GN,

Proposition 5.2.1 Let w € IGN and its related gamesv|,w,Ww € GN. Then the following

assertions hold:

(i) Agame< N,w > is supermodular if and only if its border gamedN, w > and< N, w >

are convex.
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(i) A game< N,w > is convex if and only if its length game N, |w| > and its border

games< N,w >, < N, W > are convex.

(i) A game< N,w > is convex if and only if its border game N,w > and the game

< N,w—-w > are convex.

Proof.

(i) This assertion follows from formula (2.1.1).

(i) By definition < N,w > is convex if and only if< N,w > and< N,|w| > are both
supermodular. Byi), < N,w > is supermodular if and only if its border games are
convex. Now, since supermodularity ©fN, |w| > is equivalent with its convexity, we
conclude thak N,w > is convex if and only it N,w >, < N,w > and< N, |w| > are

convex.

(i) This assertion follows easily froiii) by noting that< N, |w| >, < N,w > and< N,w >

are convex if and only ik N,w — w > and< N,w > are convex because= w + |w|.

Remark 5.2.1 First, we note that (2.1.3) is equivalent to the superadditivity of the lower
game and the upper game. Additionally, notice that, by Proposition 5.2.1¢ iOWGN, then

< N, w > is superadditive; furtherx N,|w| >, < N,w > and< N, w > are superadditive.

Proposition 5.2.2 gives some characterizations of submodular and eogamesv € IGN

based on their related length gamie GN and border games, W € GN.

Proposition 5.2.2 Let< N,w > be an interval game. Then the following assertions hold:

(i) A game< N,w > is submodular if and only i N,w > and< N,w > are concave (or

submodular).

(i) A game< N,w > is concave if and only ik N,w| > and< N,w >, < N,w > are

concave (or submodular).
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(i) A game< N,w > is concave if and only ik N,w > and< N,|w| > are concave (or

submodular).
Proof.

(i) This assertion follows from formula (2.1.2).

(i) By definition< N,w > is concave if and only ik N,w > and< N,|w| > are both
submodular. By(i), < N, w > is submodular if and only if its border games are concave
(or submodular). Now, since submodularity<oiN, |w| > is the same with its concavity,
we conclude tha& N, w > is concave if and only ik N,w >, < N,w > and< N, |w| >

are concave (or submodular).

(iii) This assertion follows easily froffii) by noting that< N, \w| >, < N,w > and< N,w >
are concave (or submodular) if and only<ifN, |w| > and< N,w > are concave (or

submodular) because= w + |w.

The next example shows that a supermodular interval game is not nelgessavex.

Example 5.2.1Let < N,w > be the two-person interval game witH@y = [0, 0], w(1) =
w(2) = [0,1] and W(1, 2) = [3, 4]. Here,< N,w > is supermodular and the border games are

convex, bupw| (1) + W] (2) = 2 > 1 = |w| (1, 2) + |w| (0). Hence< N, w > is not convex.

The next example shows that an interval game whose length game is sup&mscot

necessarily convex.

Example 5.2.2Let < N,w > be the three-person interval game witlfiw= [1, 1] for each
i e N,WwN) =w(,3)=w(1,2) =w?23) =[2,2] and W) = [0,0]. Here,< N,w > is not

convex, buk N, |w| > is supermodular, sincv (S) = 0, for each Se 2N.

Interesting examples of convex interval games are unanimity interval gé&itezsly,

< N, |ur,s| > is supermodular.
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The supermodularity of N, ur ; > can be checked by considering the following case study:

ura(AuB) urs(AnB) urs(A) uri(B)

TcATCcB J J J J
TcAT¢B J [0,0] J [0,0]
T¢ATCB J [0,0] [0,0] J

T¢AT¢B Jor[0,0] [0,0] [0,0] [0,0].

Theorem 5.2.3Let w e IGN be such thatw] € GN is supermodular. Then, the following

three assertions are equivalent:

(i) we IGN is convex.
(i) Forall S, S,, U € 2V with S; ¢ S, © N\ U we have

W(S1UU) —wW(S1) < WS uU) —w(Sy). (5.2.1)

(iii) Forall S,S, e 2N andie N suchthat$c S, c N\ {i} we have

W(S1 U {i}) = W(S1) < W(S2 U {i}) — W(S2).

Proof. We show {) = (ii), (i) = (iii), (iii) = (i). Suppose that) holds. To provei{) take
S1,S5,U € 2V with S; ¢ S, ¢ N\ U. From (21.1) with S; U U in the role ofS andS, in
the role of T we obtain (52.1) by notingthaSUT = S, UU,SNT = S;. Hence, i) implies
(ii).

That (i) implies (ii) is straightforward (tak& = {i}).

Now, suppose thaiii) holds. To proveif takeS,T € 2N. Clearly, (21.1) holds ifS c T.
Suppose thal \ S consists of the elements,...,ix and letD = SN T. Then, from {ii)

follows that

W(S)-w(SnNnT) w(D U {i1}) —w(D)

k
+ ZW(DU{il,...,is})—w(Du{il,...,iyl})
s=2

A

W(T Uiz}) —wW(T)

k
+ ZW(T Ulity...,ig) = W(T U {i1,...,is1))
s=2

= WSUT)-w(T),
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for eachS e 2N, [ ]

We notice that the characterizations of convex interval games in Thea&ghdre inspired
by Shapley (1971). The next proposition provides additional charaatens of concave

interval games.

Proposition 5.2.4 Let w € IGN be such thafw| € GN is submodular. Then, the following

three assertions are equivalent:

(i) we IGN is concave.
(ii) Forall S;,S,,U e 2N with S; ¢ S, c N\ U we have

W(S1 U U) —wW(S1) = W(S2 U U) —wW(Sy).

(iii) Forall S1,S, e 2V andie N suchthat$ c S, c N\ {i} we have

W(S1 U {i}) = W(S1) = W(S2 U {i}) — W(S2).

Proof. To prove () = (ii), (ii) = (iii), (i) = (i) we simply replace the inequality sigg in

the proof of Theorem 5.2.3 by the inequality sign |

A characterization of convex interval games with the aid of interval margietbrs is given

in the next theorem.

Theorem 5.2.5 Let we IGN. Then, the following assertions are equivalent:

(i) wis convex.

(i) |w| is supermodular and fi{w) € C(w) for all o € TI(N).

Proof. (i) = (i) Letw € CIGN, leto € TI(N) and takem? (w). Clearly, Y en mg(w) = W(N).
To prove thant (w) € C(w) we have to show that f@® € 2N, 3, .s mg(w) = wW(S).
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LetS = {o(i1), o(i2), ..., (i)} with i1 < iz < ... <ix. Then,

W(S)

W(o(i1)) — w(0)
k
+ Z(W(G(i 1),0(i2), ..., o(ir)) —W(o(in), o(i2), ..., o7(ir-1)))
r=2
W(o (1), ..., o(i1)) - W (L), . ..,o(1 - 1)
k

+ Z(W(o-(l), 0(2),....0(r) —Wo(1),0(2),...,0(r — 1))

I

r=2
k
= > M) = > W),
r=1 keS

where the inequality follows from Theorem 5.Zii§ applied toi = o(i;) and
S1:={o(i1),0(i2),...,0(i-1)} € Sz :={o(1),5(2),...,0( — 1)}

forr € {1,2,...,k}. Further, by convexity ofv, |w| is supermodular.

(i) = (i) Fromnm”(w) € C(w) for all o € TI(N) it follows thatm”(w) € C(w) andn¥ (w) e
C(w) for all o € TI(N). Now, by Theorem 1.2.2 we obtain thatN,w > and< N,w > are
convex games. Since N, |w| > is convex by hypothesis, we learn from Proposition 5(&)1

that< N, w > is convex. [ ]

However, the well-known result in Theorem 1.2v2 can not be extended to convex interval

games as we prove in the following proposition.
Proposition 5.2.6 Let we CIGN. Then,W(w) c C(w).

Proof. By Theorem 5.2.5 we havet”(w) € C(w) for eacho € TI(N). Now, we use the

convexity ofC(w). [ |

The following example shows that the inclusion in Proposition 5.2.6 might be $tei¢twith

#, different from Theorem 1.2 @).

Example 5.2.3Let N = {1,2} and let w: 2N — I(R) be defined by @) = w(2) = [0, 1]
and w1, 2) = [2,4]. This game is convex. Further®(w) = ([0, 1], [2, 3]) and mZD(w) =
(12.3].[0. 1)), belong to the interval corg(w) andW(w) = conv{m2)(w), m>1(w)}. Notice
that([2, 13],[13, 22]) € C(w) and there is na € [0, 1] such that

am®2(w) + (1 - o)m®D(w) = ([%, 12], [1%, 2%1]).
Hence/W(w) c C(w) andW(w) # C(w).

56



Since®(w) € ‘W(w) for eachw € SMIGY, by Proposition 5.2.6 we haw(w) € C(w) for
eachw e CIGN.

From Theorem 3.2 and Proposition 5.2.6 we obtain#w) c ‘W5 (w) for eachw e CIGN.
This inclusion might be strict as Example 5.2.3 illustrates.

Given a game< N, w > and a coalitionT c N, theT-marginal interval game W: 2N\T —

I(R) is defined byw' (S) := w(S U T) — w(T) foreachS c N\ T.

Proposition 5.2.7 Let < N,w > be a convex game and & N. Then,< N\ T,w" > (see

Section 2.1) is a convex game.

Proof. Letw € CIGN. Then,< N,w > and< N, |w| > are supermodular. From this we obtain

the supermodularity of N\ T, w' > as follows. TakeS1,S, c N\ T. Then,

WH(S1US) +W (S1n'Sy)

WS1USUT)-W(T)+W(S1NS)UT)—w(T)
= W(S1UT)U(S2UT))—w(T)

+ W(S1UT)N(S2UT))—wW(T)

s

W(S1UT)=W(T) +W(S2UT)—w(T)
= W' (S1) +W'(S).

Similarly, the supermodularity (convexity) ef N\ T, |WT| > follows from the supermodular-

ity (convexity) of< N, |w| >. Hencew' € CIGN'T, [ |

Theorem 5.2.8 Let we IGN. Then, the following assertions are equivalent:

(i) we CIGN.

(i) <N\ T,w" > is superadditive for each & N.

Proof. First, we notice that by Proposition 5.2xe CIGN if and only if < N,w >, < N,w >

and< N, |w| > are convex games. Now, using the characterization of classical cgamegs
based on the superadditivity of marginal games (Branzei, Dimitrov and T2 Martinez-
Legaz (1997, 2006)), we obtain thatN,w >, < N,w > and< N, |w| > are convex if and
only if for eachT ¢ N, < N\ T,W' >, < N\ T,w" > and< N\ T, |w'| > are superadditive
games. Further, by Proposition 5.2.1 and Remark 5.2.1 this is equivalenstgpéradditivity
of < N\ T,w' > for eachT c N. [ ]
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Proposition 5.2.9 Each convex interval game &vIGN is an exact interval game.

Proof. First, the convexity ofv € IGN implies by Theorem 5.2.5 thaw| is supermodular
(and consequently monotonic) amfl (w) € C(w) for eacho € TI(N). So, letS = {sy,..., %}

ando € II(N) be such thatr(r) = s forr = 1,...,k. Then,}cs M’ (W) = W(S). Further,
the convexity ofw € IGN implies that< N, |w| > is convex and, consequently, it is aract

game, i.e., for eacB e 2\ there existx € C(Jwi) such thatyjcs X = [W| (S). ]

Remark 5.2.2 Foragiven Se 2N and | = (I1,...,1,) € C(W), Jics |; = W(S) also delivers
(s s ) €CW), (In,...,1n) e C@W) and(I1=14,...,In=1,) € C(IW), with Sics I, = W(S),
Sies Ii = W(S) and Y5 (1 —1;) = Wl (S). This can be used for extending the characterization

of Biswas et al. (1999) to interval games.

Theorem 5.2.10Let we IGN. Then, the following assertions are equivalent:

(i) we CIGN.

(i) < T,wr > is exact for each Tc N.

Proof. (i) = (ii) follows from Proposition 5.2.9 because each subgame of a convexahterv
game is convex and, hence, exact.

(i) = (i) From the exactness of each interval subgamke wr > we obtain thak N, Wwr >,

< N,w; > and< N, |w|r > are exact games for eadhc N. Now, we use the result of Biswas
et al. (1999) and obtain that the game®\,w >, < N,w > and< N, |w| > are all convex. By

Proposition 5.2.1 we obtain thate CIGN, [ ]

Now, we notice tha€IGN c 7BIGN and obtain that(w) = CH(w) for eachw € CIGN.

The two theorems in the next section are very interesting because they datenterval
games, with the square interval Weber set in the role of the Weber set, iHaeen results

of classical cooperative game theory tlgt) c W(v) for eachv € GN (Weber (1988)) and
C(v) = W(v) if and only if v is convex (Ichiishi (1981)). We cope with similar issues in the

interval setting. Note that“(w) = WH(w) if w e CIGN.
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5.3 PROPERTIES OF INTERVAL SOLUTION CONCEPTS

Theorem 5.3.1 Let we 7BIGN. Then, the following assertions are equivalent:

(i) wis convex.

(i) |w| is supermodular an@(w) = WH(w).

Proof. By Proposition 5.2.1w is convex if and only ifw|, w andw are convex. Clearly, the
convexity ofjw| is equivalent with its supermodularity. Furtherandw are convex if and only
if W(w) = C(w) andW(W) = C(W). These equalities are equivalent with“(w) = CH(w).
Finally, sincewis 7-balanced by hypothesis, we have by Proposition 3.4t} = “W-(w).

Now, we define thequare interval dominance co@C™ : IGN — [(R)N by
DCH(w) := DC(W)TIDC(W)
for eachw e IGN and notice that for convex interval games we have
DCH(w) = DC(W)OIDC(W) = C(W)OC(W) = CP(w) = C(w),

where the second equality follows from the well-known result in the thebiyusgames that
for convex games the core and the dominance core coincide, and theadityefollows
from Proposition 3.4. FromDCP(w) = C(w) for eachw € CIGN andC(w) ¢ DC(w) for each
w e IGN we obtainDC(w) > DC(w) for eachw € CIGN. We notice that this inclusion
might be strict (see Example 2.3.3).

Finally, we will show that the interval core is additive on the class of coimnttval games

with the aid of Theorem 5.3.1, which is inspired by Dragan, Potters and Bi9j1

Proposition 5.3.2 The interval coreC : CIGN — I(R)N is an additive map.

Proof. The interval core is a superadditive solution concept for all intervalega(Proposition
2.3.5). Therefore, we need to show the subadditivity of the interval ddeehave to prove

thatC(wy + Wo) C C(wq) + C(ws). Note thatm? (w; + wp) = m?(wy) + P (wy) for each
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wi, W, € CIGN. By definition of the square interval Weber set we ha¥&(w; + w») =

W(w; + w,)EO0OW(W, + W»). By Theorem 5.3.1, we therefore learn:

C(W1 + W) = W Wy + w2) € WEWy) + WEWs) = Cwy) + C(ws).

5.4 POPULATION INTERVAL MONOTONIC ALLOCATION SCHEMES

In this section, we focus on pmas on the class of convex interval gaméselat the total -
balancedness of an interval game is a necessary condition for the egisfeanpmas for that
game. A sfficient condition is the convexity of the interval game. Recall that all subgames
of a convex interval game are also convex, and that for a ggneeCIGN an imputation

I = (I1,...,In) € Z(w) is calledpmas extendabl there exists a pmas = (Ais)ics se2n\(0)

such thatAyy = |j for eachi € N (see Chapter 3). In the sequel, we show that the interval
Shapley value has the population monotonicity property and, consequiergbnerates a

pmas.

Proposition 5.4.1 The interval Shapley value has the population monotonicity property on

the class of convex interval games.

Proof. Letw € CIGN. We have to prove that for a®, T € 2N such thatS c T and for
eachi € N the relation®;(S,ws) < @;(T,wr) holds, where $,ws) and (T,wy) are the
corresponding subgames. We know tfhgfw) = [¢i(w), ¢;i(W)] for eachw € CIGN and for
all i € N. Further, the fact that the classical Shapley vallms the population monotonicity
property onCGN implies that for eacls, T € 2N such thatS ¢ T and for eachi € N,
#i(S, Wg) < ¢i(T, w;) andg;i(S, Ws) < i(T, Wr), from which follows

[¢i(S, W), ¢i(S. Ws)] = @i(S, ws) < i(T, wr) = [¢i(T, wy), ¢i(T, Wr)].
|

Now, sinced(w) of w e CIGN is an element of the interval Weber set and is pmas extendable,
the question arises whether each element of the interval Weber set is pimadable. The

next theorem clarifies this issue.
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Theorem 5.4.2 Let we CIGN. Then, each element | 6 (w) is extendable to a pmas of w.

Proof. Letw e CIGN. First, we show that for each € ITI(N), m(w) is extendable to a
pmas. We know that the interval marginal operatér: SMIGN — I(R)N is efficient for
eacho e TI(N). Then, for eacts € 2N, Yics M7 (W) = Yies m‘;(k)(w) = w(S) holds, where
(S, ws) is the corresponding (convex) subgame. Further, by convexitfws) < m” (wr) for
eachi e Sc T c N, where §,ws) and (T, wr) are the corresponding subgames.

Second, each e W(w) is a convex combination aff”(w), o € TI(N), i.e.,

I = 3 peni(ny @M (W) with o, € [0, 1] and ¥ ey @0 = 1.

Now, since alin’” (w) are pmas extendable, we obtain thi& pmas extendable as well. B

From Theorem 5.4.2 we obtain that ttigal interval Shapley valye.e., the interval Shapley
value applied to the game itself and all its subgames, generates a pmas faoeeek in-
terval game. We illustrate this in the following example, where the calculationsaaex on

Proposition 4.6.

Example 5.4.1Let w e CIGN with w(0) = [0, 0], W(1) = w(2) = w(3) = [0,0], W(1,2) =
w(1,3) = w(2,3) = [2,4] and W(1, 2, 3) = [9,15]. It is easy to check that for this game the

interval Shapley value generates the pmas depicted as

1 2 3
N [3,5 [3,5] [3.5]
12y | [L2] [L2] =
1,3 | L2l o+ [L2]
23 | + [L2 [L2]
1 | [00 = *
(2) «  [0,0] =
@ | s +  [0,0]

We refer the reader to Yanovskaya, Branzei and Tijs (2008) fortarmative proof of the
population monotonicity of the interval Shapley value on the class of converval games

and for other monotonicity properties of value-type interval solutions orcthgs of games.
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To summarize in this chapter, convex (concave) interval games haveitftegtiuced and
characterizations were given. The relations of the Weber set with theahtmre for con-
vex interval games were established. It was proved that each eleminat Bieber set of a
convex interval game is extendable to such a pmas. In the next chapfetredrice another

interesting class of cooperative interval games, called big boss intemwsg
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CHAPTER 6

BIG BOSS INTERVAL GAMES

This chapter is based on Alparslardok; Branzei and Tijs (2008c) and Branzei, Tijs and
Alparslan @k (2008a). We notice that because here sets of players have an inipotéa
we refer to the gamev € IGN as< N,w > and to its subgames as T,w > for each
T < N. Moreover, we adjust accordingly the notation for the used notions thi defined

previously.

6.1 DEFINITION AND RELATIONS WITH OTHER CLASSES OF GAMES

Letw e IGN and let< N,w| > be the corresponding length game. Then, we call a game
< N,w > abig boss interval gam# its border game< N, w > and the game: N, |w| > are
classical (total) big boss games. We denoteBBIGN the set of all big boss interval games
with player seiN (without loss of generality we denote the big bossipyNote thatBBIGN

is a subcone ofGN.

The interval game in the next example is not a big boss interval game sinaddtedrlength

game is not a big boss game.

Example 6.1.1Let < N,w > be a three-person interval game wit{dy = w(2) = w(3) =
w(1,2) = [0,0],w(2,3) = [5,6],w(1,3) = [6,6] and W(N) = [9, 11]. Here,< N,w > is a big
boss game, but the length game\, |w| > is not because it does not satisfy the condifjiah

for classical big boss games (see Chapter 1.2, take{$}).

Next we notice that the Example 2.1.2 leads to a big boss interval game.
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6.2 CHARACTERIZATIONS OF BIG BISS INTERVAL GAMES

In the following propositions and theorems, characterizations for bigihtaval games are

given.

Proposition 6.2.1 Let we IGN and its related gamelsv, w,w € GN. Then, we BBIGN if
and only if its length game N, |w| > and its border games N,w >, < N,W > are big boss

games.

Proof. The proof is straightforward. Note that= w+|w] is a big boss game because classical

big boss games form a cone. [ ]

Theorem 6.2.2 Let we S MIGY. Then, the following two assertions are equivalent:

(i) we BBIGN.
(i) < N,w > satisfies:
(a) Big boss property:
w(S) = [0, 0] for each Se 2N withn¢ S;
(b) Monotonicity property:
W(S) < W(T) foreach ST e 2N withne S c T;
(c) Union property:

W(T) —wW(S) = Z (W(T) —w(T \ {i})) forall S, T withne ScT.
i€T\S

Proof. By Proposition 6.2.1w € BBIGN if and only if < N,w >, < N,w - w > and< N, W >
are classical big boss games. Now, using Definition 1124 BBIGN if and only if < N, w >

satisfieqa), (b) and(c). [ ]

In the following, we use the marginal contributions of a plaiyer N to coalitionsT, with
T c N, inthe game< T, w > given by M;(T,w) := w(T) — wW(T \ {i}).

Further, we give a concavity property for big boss interval gamesmth a big boss:

(d) n-concavity property: {8 U {i}) = W(S) = W(T U {i}) - w(T), for all S,T € 2\ with
neScTcN\{i}
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The following theorem which is inspired by Branzei, Tijs and Timmer (200hbjhs that(c)
and(d) are equivalent ifa) and(b) hold.

Theorem 6.2.3 Let we IGN and let(a) and(b) hold. Then(c) implies(d), and conversely.

Proof.
(i) Suppose thai) holds. LetS, T be suchthah € S c T. Supposd \ S = {iy,..., i}
Then,
W(T) -w(S) = w(SU{i}) -w(S)

h

+ > (WS Ulis,....iIr)) = WS Ufi1,....ir-1}))
r=2
h

= Z M; (SuUfig,..., ir},w)
r=1
h

= D M (Mw) = > Mi(T,w),
r=1 ieT\S

where “the inequality” follows fron{d). So,(d) implies(c).
(i) Suppose thak) holds. Then,
W(U U {j}) =w(U \ {i}) = Mj(U U {j},w) + Mi(U U {j}.w). (6.21)
But,

wW(U U {j}) = w(U \ {i}) = w(U U {j}) - w(U) + w(U) - w(U \ {i})

= M;U U {j},w) + Mi(U,w). (6.2.2)
From (6.2.1) and (6.2.2) we obtain
Mi(U,w) >= Mi(U U {j},w) (6.2.3)

forallU c N andi, j € N\ {n} such thafi,n} c U c N\ {j}. Now, takeS, T c N with
{i,n} ¢ S cTandsuppose that \ S = {i1,...,in}. If we apply (6.2.3h times, then

we haveM;(S,w) = Mi(S U {i1},w) = Mi(S U {i1, iz}, W) = ... = Mi(T,w).
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So,(c) implies(d). [ ]

In the sequel, we use the two characterizations of convex interval ganonvded by Theo-
rems 5.2.8 and 5.2.10 to derive new characterizations of big boss intamalsghased on the

notions of subadditivity and exactness.

Remark 6.2.1 In view of Theorem 5.2.8, we obtain that a game WGN is concave if and

only if for each Te 2\ the marginal interval game N\ T,w" > is subadditive.

Remark 6.2.2 In view of Theorem 5.2.10, a gameawGN is concave if and only i T, wr >

is exact for each Tc N.

We denote byMIGN{" the set of all size monotonic interval gamesMrthat satisfy the big

boss property with respect to(the big boss player).

Proposition 6.2.4 Let we MIGN™. Then, we BBIGN if and only if the marginal interval

game< N\ {n},w" > is a concave interval game.

Proof. Letw € BBIGN. By Proposition 6.2.1 this is equivalent toN,w >, < N,w > and

< N,|w| > being (total) big boss games withas a big boss, which implies thatN,w >,

< N,w > and< N,jw| >¢ MVN", Now, by Proposition 1.2.3 we obtain thatN,w >,

< N,W > and< N, |w| > are (total) big boss games, if and onlyifN \ {n},w{" >,

< N\ {n},w" > and< N\ {n}, ™ > are concave, which is equivalent with the marginal

game< N\ {n},w" > being a concave interval game. |

Proposition 6.2.5 Let we MIGN{", Then, the following assertions are equivalent:

() we BBIGY,
(i) Each marginal interval game af N\ {n},w™ > is subadditive.

(iii) Each (interval) subgame ef N \ {n}, w!" > is exact.

Proof. (i)  (ii) follows from Proposition 6.2.4 and Remark 6.2.1.

(i) & (iii) follows from Proposition 6.2.4 and Remark 6.2.2. |
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Now, in the context of cooperative interval games, we extend the defirdfidime n-based
T-marginal gamey™)T, whereT e 2N\ et < N,w >e MIGN™ andT € 2N\, The

n-based T-marginal interval gan@a™)" : 2N\T — | (R) is defined by
W™MT(S) :=wSUT U {n}) - wW(T U {n})

foreachSc N\ T.
Based on the characterization of big boss interval games using its bodliemgth games, we
can easily extend Proposition 1.2.3 from classical cooperative gamesperedive interval

games.
Proposition 6.2.6 Let< N,w >e MIGN™, Then, the following assertions are equivalent:

(i) < N,w > is a big boss interval game with big boss n.
(i) <N\ {n},w!" > is a concave game.
(i) <N\ ({njuT), (W{”})T > is a subadditive game for eachd N \ {n}.

(iv) <N\ ({nyuT), w7 > s a subadditive game for eachd N \ {n}.

Proof. (i) < (ii) follows from Proposition 6.2.4;
(i) & (iii) holds by Remark 6.2.2;

(iii) & (iv) follows from the definition of the-basedrl -marginal interval game. |

6.3 THE CORE OF BIG BOSS INTERVAL GAMES

We define the sdi(T, w) for each subgame T,w > of < N,w > by
I(mw) :={(l,...,1n) € Z(T,W) | [0,0] X | < M;i(T,w) for eachi e T \ {n}}.

The next proposition gives a characterization of the interval core af hdss interval game

by using marginal contributions of the players.
Proposition 6.3.1 Let we BBIGN. Then,

C(T,w) = I[(T,w). (6.3.1)
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Proof. It is suficient to showC(T,w) = I'(T,w) for T = N.

(i)

(ii)

Suppose that = (I4,..., 1) € C(N,w).
Then,W(N) = Yien li @and X jenyiy Ij = WIN\ {i}), for alli € N\ {n}. Further,
=D 1= D) =wiN) = D 1) < w(N) — w(N\ (i) = Mi(N,w)
jeN jeN\(i) jeN\(i)
where the second equality follows fronffieiency and “the inequality” follows from
stability (see Section 2.3). Clearly, = [0,0] = w(i) fori € N\ {n}. So,l € T'(N,w).
Therefore C(N, w) c I'(N, w) holds.

Suppose thalt = (11, ..., 1n) € T(N,w). Then, for a coalitior which does not contain
n, one finds tha}’.s Ii = [0, 0] = w(S). To prove that;.s li >= W(S) for S such that
n e S, we first show thatv(N) — W(S) = Yienys Mi(N,w). LetN\' S = {iy,..., ik}
Then, in a similar way as in the proof of Theorem 6.@)3vith N in the role ofT, we

have

W(N) —wW(S)

W(S U {i1}) - W(S)

k
+ > (WS Ulin,....Is)) WS Ui1,....is1}))
s=2
k
= > M (SUlis,....is},w)
s=1

o~ Zk:MiS(N,W)z Z Mi(N, w),
=1

ieN\S
where “the inequality” follows from th@-concavity property. Then, using the defini-
tion of I'(N, w) we have

w(S) < w(N) = >° Mi(N.w) < wN) = > li= " Ii.

ieN\S ieN\S ieS

So,l € C(N,w). ThereforeI'(N, w) c C(N, w) holds. ]

Next, we define for a (big boss) subgameT,w > (with n as a big boss) ofv € BBIGN

two particular elements of its interval core, which we call the big boss intpoiat and the

union interval point. These points will play an important role regarding tisergaion of the

interval core. Thédig boss interval poinB(T, w) is defined by

[0,0], if jeT\({n}

Bj(T,w) ::{
w(T), if j=n,
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and theunion interval pointZ{(T, w) is defined by

M; (T, w), if jeT\(n
W(T) = Yierym Mi(T,w), if j=n.

Ui(T,w) =

Theorem 6.3.2Let w € IGN be such that if propertya) in Theorem 6.2.2 holds. Then,
w e BBIGN if and only if for each Tc N with ne T the big boss interval poir8(T, w) and

the union interval poin?/(T, w) belong to the interval core 6f T, w >.

Proof. If w e BBIGV, then by Proposition 6.3.1, it is clear tH{T, w) and2/(T,w) € C(T,w)
foreachT c Nwithne T.
Conversely, assume that for eathc N with n € T the pointsB(T, w) and (T, w) belong
to the interval core. Since by hypothesid, w > satisfieqa), we only need to show thé#b)
and(c) hold.
First, taken € T. SinceB(T,w) € C(T,w), we have

WS) < Y Bi(T.W) = By(T,W) + > Bi(T,w) = W(T) +[0,0] = w(T).

ieS ieS\(n)

So,(b) is satisfied.
Second, tak& suchthan € S c T. SinceU(T,w) € C(T,w) we have

WS) < > U(T,W) = Un(T W) + > U(T, W) =

ieS ieS\{n}
W)= > MTw)+ > M(T,w) =w(T) - > M(T,w).
ieT\{n} ieS\{n} i€T\S
So,(c) is satisfied. |

From the above theorem we learn that big boss interval games are tbiia#lianced games.

Note thatB : BBIGN — I(R)N and U : BBIGN — I(R)N are additive maps.

6.4 BI-MONOTONIC INTERVAL ALLOCATION SCHEMES OF BIG BOSS
INTERVAL GAMES

In this section, we introduce bi-monotonic allocation schemes (bi-mas) fordsig ibterval
games. We denote B, the set{S c Nin € S} of all coalitions containing the big boss.

Take a gamav € BBIGN with n as a big boss. We call a scherBe:= (Bis)ics.scp, an
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(interval) allocation schemfor w if ( Bis)ics is an interval core element of the subgame

< S,w > for each coalitior5 € P,. Such an allocation schen= (Bjs)ies scp, IS called a
bi-monotonic (interval) allocation scheme (bi-még) wif forall S, T € P,withS c T we
haveBijs = Bir foralli € S\ {n}, andB,s < Bnt. In a bi-mas the big boss is weakly better
off in larger coalitions, while the other players are weakly woi§e o

We say that for a game € BBIGN with n as a big boss, an imputatidr= (I, ..., 1) € 7(w)

is bi-mas extendablé there exists a bi-ma8 = (Bjs)ics sep, such thatBjy = [; for each

i € N. The next theorem is inspired by Voorneveld, Tijs and Grahn (2003).

Theorem 6.4.1 Let w e BBIGN with n as a big boss and letd C(N,w). Then, | is bi-mas

extendable.

Proof. Sincel € C(N,w), by (6.3.1), we can find for eache N\ {n} anq; € [0,1],
such thatl; = «iM;(N,w), and thenl, = W(N) — 3ienyny @i Mi(N,w). We will show that
(Bis)iessep,, defined byBis = @iM;(S,w) for eachS andi such thai € S\ {n}, andBs =
W(S) — Yies\in @i Mi(S,w) is a bi-mas.

TakeS, T € P,with S c T andi € S\ {n}. We have to prove thds = Bt fori € N\ {n}
andBps < Byt. First, Bis := aiM;i(S, W) = a;M;(T,w) = Bit, where “the inequality” follows

from (d). Second,

Bir = w(T)- ) aiM(T,w)
ieT\{n}
= W)+ D MI(TwW)— > aiMi(T,w)
ieT\S ieT\{n}
= WS)- ) aM(T,w)+ > (1-a)Mi(T,w)
ieS\{n} ieT\S
= WES) - Y aMES W)+ > (1-a)M(T.w)
ieS\{n} i€eT\S
= Bus+ ) (1-)M(T,w) = Bys,
ieT\S

where the first follows fronfc), the second follows frorfd), and the third follows frona; < 1

and the nonincreasing of the interval marginal contribution vectors B§o;= Bps. [ |

Example 6.4.1 Consider the interval game in Example 2.1.2. We illustrate Theorem 6.4.1 by
using the special interval core eleme®§T, w) and U(T,w). For each i n and for each

ScT,8B(Sw) =8i(T,w) =[0,0]; fori =nandforeach Sc T, B,(S,w) = f(IS|-1) <
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f(IT| - 1) = Bn(T,w). Foreach i nand foreach S T,
U(S,w) = Mi(S,w) =W(S) —W(S\ {i}) = W(T) —W(T \ {i}) = Mi(T, w) = Ui(T, w);
fori=nandforeach & T,

Un(S,W) =WS) = > Mi(S,W) S WT) = > M(T, W) = Un(T,W).
ieS\{n} i€T\{n}

6.5 THE 7-VALUE AND THE INTERVAL AL-VALUE OF BIG BOSS IN-
TERVAL GAMES

Now, we introduce on the class of big boss interval games an interval comge-like solu-
tion concept, called th&-value, and the intervaAL-value inspired by Tijs (2005), and show
that the7 -value equals the intervalL-value.

Letw € BBIGN. The7 -valueof wis defined by

T (N,w) := %((LI(N,W) + B(N, w)).

Note that7 : BBIGN — I(R)N has some tradefiflavour, becaus@ (N, w) is the average of
the union point{/(N, w) and the big boss interval poifi(N, w) for eachw € BBIGV,

Next, we consider a holding situation with interval data and construct a lgpldierval game
which turns out to be a big boss interval game. Player 3 is the owner of Bgdiduse which
has capacity for one container. Players 1 and 2 have each one conthiok they want to
store. If player 1 is allowed to store ffier container, then the benefit belongs to, R
and if player 2 is allowed to store Hier container then the benefit belongs to,[Bl. The
situation described above corresponds to an interval game which is sindhezlfollowing

example.

Example 6.5.1 (A big boss interval game) The interval gaméN, w > with N = {1, 2, 3} and
w(S) = [0,0]if 3¢ S, w0) = w(3) = [0,0], w(1, 3) = [10, 30], and WN) = w(2, 3) = [50, 70]
is a big boss interval game with player 3 as big boss, because the prag@itiéh) and(c) in
Theorem 6.2.2 are satisfied. Tfievalue, in case of full cooperation, generates the interval
allocation 7(N,w) = ([0, 0],[20, 20], [30, 50]), which indicates sharp shares for players 1
and 2 equal td0 and 20, respectively. The payfofor player 3 depends, in this case, only
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on the realization R of {iN). Assuming that R= 60 player 3 will receive a payfequal to
40. However, in general, the actual players’ shares when R is knowargepot only R, but
also on the vector allocation agreed upon before starting cooperationd&tails regarding
the use of interval solutions for determining the distribution of achieved aomgains see

Section 2.4. Finally, the total-value generates a bi-mas represented by the following matrix:

1 2 3
N [0,0] [20,20] [30,50]
1,3 | 515 +  [515
(2,3} x  [25,35 [25,35
@ | * [0,0]

Such a bi-mas extension of the interval core elerfigiN, w) might be helpful in the decision
making process regarding which coalitions should form and how to distritngteollective

gains among the participants.

Given a gamav € BBIGN and an ordering
o=(Q),02)...,00),0k+1),...,0(n)),

with o-(k) = n of the players ilN = {1, 2,..., n}, thelexicographic maximurof the interval
coreC(N,w) of < N,w > with respect too, which we denote by.“(N,w), is defined as

follows:

Me-(y(N, W), if i<k
Low(N.w) == 1 [0,0], if i>k (65.1)

w(N) - S M(Nw), i i =k

We notice that.“ is additive onBBIGN.

Theinterval average lexicographic valuef w € BBIGN is defined by
AL(N,w) := 1 >0 LN w),

nt oel(N)
wherell(N) is the set of permutations: N — N.

Applying (6.5.1) we obtain

n-1
AL(N,w) = (%Ml(N, W, ..., %Mn_l(N, w), W(N) — %Z Mi (N, w)).
i=1

So, we havéAL(N,w) = 7(N,w). Summarizing, we give the following theorem:
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Theorem 6.5.1 Let we BBIGN with n as a big boss. Thefi;(N,w) = AL(N,w) € C(N, w)

and the (total) AL-value generates a bi-mas foevBBIGN.

To sum up this chapter, big boss interval games have been introducedaods charac-
terizations were given. We related big boss interval games with concaveaihgames and
obtained characterizations of big boss interval games in terms of subéygditid exactness.
The structure of the core of a big boss interval game was explicitly desdcaite we showed
that it plays an important role relative to interval-type bi-monotonic allocatibwerses for
such games. Specifically, each element of the interval core of a big lhesgilngame is ex-
tendable to a bi-monotonic allocation scheme. Furthermore, on the class adsignterval
games two interval solution concepts of value type were defined whichecaedn as exten-
sions to the interval setting of the compromise value andAihwalue for classical games. It
turns out that these interval solutions coincide and generate bi-monotoratadlo schemes
for each big boss interval game. A small but interesting class of coogeiaterval games
is that of interval peer group games (Branzei, Mallozzi and Tijs (20@8)¢h is a subclass
of CIGN and has nonempty intersection wBBIGN. In the next chapter, we continue with

applications of cooperative interval games.
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CHAPTER 7

ECONOMIC AND OR SITUATIONS AND RELATED
COOPERATIVE INTERVAL GAMES

7.1 AIRPORT INTERVAL GAMES AND THEIR SHAPLEY VALUE

This section is based on Alparslardoks Branzei and Tijs (2008d). The major topic is to
present and identify thieterval Baker-Thompson rule

In literature much attention is paid to airport situations and related games. ¥ehere

to Littlechild and Owen (1973), Littlechild and Thompson (1977) and Drie$%888). In
the sequel, we summarize the classical airport situation, its classical aigstrjame and
the Baker-Thompson rule. Consider the aircraft fee problem of aorawgth one runway.
Suppose that the planes which are to land are classifiedritypes. For each k¥ j < m,
denote the set of landings of planes of tyjd®y N; and its cardinality by;. ThenN = U?lle
represents the set of all landings. logtrepresent the cost of a runway adequate for planes
of type j. We assume that the types are ordered such thatdg < ¢; < ... < cm. We
consider the runway divided intm consecutive pieceB;, 1 < j < m, whereP; is adequate
for landings of planes of type B; andP, together for landings of planes of type 2, and so
on. The cost of piec®j, 1 < j < m, is the marginal costj — cj_1. The economists Baker
(1965) and Thompson (1971) proposed an appealing rule now calld8iatter-Thompson
rule, given byg; = le(:l[Z{“:k n]~1(ck — ck_1) Wheneveii e Nj. That is, every landing of
planes of typg contributes to the cost of the piecBg 1 < k < j, equally allocated among
its usersu!, N;. We denote the marginal costs — cc-1 by ty, 1 < k < m. The classical
airport TU game< N, ¢ > is given byc(S) := max{cll <k <m,SnN Nk # 0} forall S c N.

It is well-known that airport games are concave and the Shapley vahapl&y (1953)) of a

concave game belongs to the core of the game. Littlechild and Owen (19X8¢dlthat for
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this game the Shapley value agrees with the Baker-Thompson rule.

In this section, we consider airport situations where cost of pieces ofitiveay are intervals.
Then, we associate as in the classical case to such a situation an intetwgdime and extend
to airport interval games the results presented above.

Letl € I(Ry), T € 2N\ 0, and letu; : 2V — R be the classical dual unanimity game based
onT. Here, the interval game N, Iu; > defined by (u7)(S) := u;(S)I for eachS e 2N will
play an important role. We notice that tti¢lu’) for the interval game: N, lu; > is related

with the Shapley valug(u;) of the classical game N, u; > as follows:

{ /[T, ieT

i(luf) = gi(up)! = (7.1.1)

[0,0], ieN\T.

Consider the aircraft fee problem of an airport with one runway. Bs@phat the planes
which are to land are classified intotypes. For each ¥ j < m, denote the set of landings
of planes of typg by N;j and its cardinality byr;. ThenN = U’j‘lle represents the set of all
landings. Consider that the runway is divided im@onsecutive piece;, 1 < j < m, where
P, is sufficient for landings of planes of type P; andP, together for landings of planes of
type 2, and so on. Let the interv@| with non-negative finite bounds represent the interval
cost of piecePj, 1< j<m.

Next we propose an interval cost allocation ryjevhich we call thenterval Baker-Thompson

rule. For a given airport interval situatiotN((Ty)k=1....m) the Baker-Thompson allocation for

.....

each player € N;j is given by:

j m
=0 )M (7.1.2)

k=1 r=k

Note that for the piec® of the runway the users atg, N, i.e., there ar&., n; users.
So, &, n,)~1Tk is the equal cost share of each user of the pigge This means that a
playeri € N; contributes to the cost of the pieces ..., P;. The characteristic cost function
d (see Section 1.2) of the airport interval gameN,d > is given byd(®) := [0,0] and
d(s) = le(zl Tk for all coalitionsS < N satisfyingS N Nj # 0 andS n Nx = 0 for all
j+1 < k< m(since such coalitios needs the piecd?, 1 < k < j of the runway). Now, we

give the description of the airport interval game as follows:

m
d= ) Taip - (713)
k=1
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In the following proposition, we show that the interval Baker-Thompsortation for the air-
port situation with interval data coincides with the interval Shapley value afahesponding

airport interval game.

Proposition 7.1.1 Let< N,d > be an airport interval game. Then, the interval allocatign

of (7.1.2) agrees with the interval Shapley vaibigl).

Proof. Fori € N; we have

m m
o) = B Tm ) = D DT )
k=1 k=1

j m

Z(Z ) Tk = i,

k=1 r=k

where the equalities follow from (7.1.3), the additivity of the interval Shapédyed, (7.1.1)

and (7.1.2) respectively. |
Note that if we consider the special cade = {1},N> = {2},...,Ny = {n}. Then,y =
(B, 1+ 2 B4 T2+ + In) Here, each piece of the runway is completely paid by

the users and all users of the same piece contribute equally.

Example 7.1.1Let< N,d > be a three-person airport interval game corresponding to the
airport interval situation depicted in Figure 7.1. The interval costs of thegseare given
by T1 = [30,45], T, = [20,40] and Tz = [100,120]. Then, ¢0) = [0,0], d(1) = [30,45],
d(2) = d(1,2) = [50,85] and d3) = d(1, 3) = d(2, 3) = d(N) = [150, 205].

3045 [2040]  ]100,120]
pife

Figure 7.1: An airport situation with interval data
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The following table shows the interval marginal vectors of the game, whem®ws

correspond to orderings of the players and the columns correspotietplayers

123 [ [30,45 [20,40] [10012 |
132 | [30,45 [0,0] [120 160
213 | [0,0] [50.85 [10012q
231 | [0,0] [50.85 [10012q
312 | [0,0] [0,0] [150209
321 | [0.0] [0.0] [150209 |

Note that d= [30, 45]u

(123 + [20,40]up, 5 +[100, 120}u;5 and

{3}
@(d) = ([10,159],[20,35],[120,155).

Notice also that

3
o(d) = d)(Z Tkui‘J3 kNr) = ®(T1u;‘1,2,3}) + <I>(T2u;‘2’3}) + d)(T3u{*3})
k=1 =

111 11

=, =, =)[30,45] + (0, =, =)[20,40] + (0,0, 1)[10Q 120] = .
(37333)[ b ]+(’292)[ ” ]+(7 ’ )[ Q ] y
In the following proposition, we show that airport interval games are aogc
Proposition 7.1.2 Let< N, d > be an airport interval game. Ther, N, d > is concave.

Proof. It is well-known that non-negative multiples of classical dual unanimity gaanes
concave (or submodular). By (7.1.3) we hages >;', T,u; - andid| = X1, [Tyl u; , are

concave, becausgg, > 0 and|Ti| > O for eachk. By Proposition 5.2.2< N,d > is concave.
[ |

Note that the interval game N, d > in Example 7.1.1 is concave by Proposition 7.1.2.

Proposition 7.1.3 Let(N, (Tk)k=1..._m) be an airport situation with interval data and N, d >

,,,,,

be the related airport interval game. Then, the interval Baker-Thampsle applied to this

airport situation provides an allocation which belongs(d).

Proof. First, by Proposition 7.1.2 the airport gameN,d > is concave. We prove that

P’ (d) € C(d) forall o € TI(N). Leto € II(N) and taker’(d). Clearly, we have .y m (d) =
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d(N). To prove that(d) € C(d) we have to show that fd € 2N, 3.5 my(d) < d(S). Let

S = {o(i1), o(i2), . . ., (i)} With i1 < i2 < ... < ix. Then,

d(S)

d(o(i1)) — d(0)
k
+ Z(d(cr(i 1),0(i2), ..., 0(ir)) — d(o(in), o(i2), .. ., o (ir-1)))
r=2
d(c(1),...,o(i1) - d(e(),...,o(i1 — 1))

k
+ D (de@),0@)....ali) - de@), o)., ol - 1))
r=2

S\

k
= > ) = > ),
r=1

keS
where the inequality follows from Proposition 5.Zi#) applied toi = o-(i;) and

Sy = {O—(|1)7 O_(iZ)’ ) O_(il'—l)} CSy= {0—(1)’ 0-(2)’ ) O_(II' - 1)}

forre{l,2,...,k.

Further, since the interval Shapley valueddé the average of all marginal interval vectors of

d and by convexity o(d) we obtain®(d) € C(d). Now, we apply Proposition 7.1.1. R

An alternative proof of Proposition 7.1.3- By Proposition 7.1.1 the Baker-Thompson al-
location is dficient. We need only to check the stability conditions for the interval Baker-
Thompson allocation. Consider the airport interval gamél,d > and any coalitiorS c
N,S # 0. Sayd(S) = Zﬂler, thatis,SNN; #0andSNNp =0forall j < p<m. Then,
we obtain, fori € Ng, yi = XX nr+T—r+nm Thus,
Sn=d[sn NHiL] - i(Lifsm N .
= — A+ 4Ny N+ ...+ Nm &
Note thatzlj(:r ISANkl <N +...+nj <N +...+nm. From this, we conclude thatics i <

2221 T, = d(S) by taking care of the ordering of intervals through their lower and upper

borders. B

We notice that the interval Baker-Thompson rule is useful at an ex-tage 0 inform users
about what they can expect to pay, between two bounds, for the gotisitr of the runway.
At an ex-post stage when all costs are known with certainty, the clag¢ar-Thompson
rule can be applied to pick ugdfective costsg € y; for eachi € N such thaty;cy X equals
the realizatiord e [d(N), d(N)].

1 This direct proof was provided by one of the anonymous refereesiparslan Gk, Branzei and Tijs
(2008d).
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7.2 BANKRUPTCY PROBLEMS WITH INTERVAL UNCERTAINTY

This section is based on Branzei and Alparslabk@2008). It focuses on bank-
ruptcy situations with interval data and related cooperative interval gamees@nsiders
bankruptcy situations where the estate and (some of the) claims vary withiedcéosl
bounded intervals, which we call bankruptcy interval situations.

Classical bankruptcy problems and bankruptcy games have beenvetgssidied. We refer
here to O'Neill (1982), Aumann and Maschler (1985), Herrero, Mbsscand Villar (1999)
and Young (1987). In a classical bankruptcy situation, a certain anodumbney (estate) has
to be divided among some people (claimants) who have individual claims orstidte eand
the total claim is weakly larger than the estate.

A bankruptcy situation with set of claimanitéis a pair €, d), whereE > 0 is the estate to
be divided andd € RY is the vector of claims such thati.y di > E. We assume without
loss of generality thad; < dy < ... < dy, and denote b8R" the set of bankruptcy situations
with player seiN. The total claim is denoted 0y = Yy di. A bankruptcy rule is a function
f : BRN — RN which assigns to each bankruptcy situatihd) € BRY a paydf vector
f(E,d) € RN such that 0< f(E,d) < d (reasonability and iy fi(E,d) = E (efficiency).
Here, we are interested in bankruptcy rules that are coordinate-wesklyy increasing in
E. The proportional ruleRROB (see Chapter 2.4) is one of the most often used in real-life.
Another interesting bankruptcy rule is the rights-egalitarian rule as a divisie for all cir-
cumstances of division problems.

To each bankruptcy situatiofie(d) € BRN one can associate a pessimistic bankruptcy game
Ve g defined bwe ¢(S) = (E - Xienys di)+ for eachS e 2N, wherex, = max{0, x}. The game
VE g iS convex and the bankruptcy ruleROPand fRE provide allocations in the core of the
game.

Cooperative interval games arising from bankruptcy situations whereldims can vary
within closed intervals are introduced and analyzed in Branzei, Dimitrov §8d2D03). A
bankruptcy situation where the claims are certain but the available estatargawithin a
closed interval is used in Example 2.2.2 to illustrate cores for two-personahtgames.

It is important to consider interval claims because in various disputes inclirthegitance
(O’'Neill (1982)) claimants face uncertainty regarding thdteetive rights and, as a result,
individual claims can be expressed in the form of closed intervals withogpeobability

distributions attached to them. In such situations, our model based on irtkivas fits bet-
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ter than the more standard claims approach with reality and, additionfiflys dlexibility in
conflict resolution under interval uncertainty of the estate at stake.d&giocrapplications of
our approach include funds’ allocation of a firm among its divisions (Puéachez-Soriano
and Llorca (2002), Pulido et al. (2008)), priority problems (Moulin @Q0distribution of
penalty costs in delayed projects (Branzei et al. (2002)) and displ#ded to cooperation in
joint projects where agents have restricted willingness to pay (Tijs andz8iré2004)).

A bankruptcy interval situatiowith a fixed set of claimantsl = {1,2,...,n}isa pair €,d) €
I(R) x I(R)N, whereE = [E, E] := [0,0] is the estate to be divided ands the vector of in-
terval claims withi-th coordinated; = [gi,ai], ieN,suchthat[00] x dj < do < ... <X dy
andE < 3", d.. We note that all selection&(d), whereE < E < E andd. < d; < d;, for all

i € N, are traditional bankruptcy situations. We denotedfiy) the total lower claim and by
d(N) the total upper claim. We also use the notatid(8) := Y;cs d andd(S) := Yics d; for
S c N. By BRIN we denote the family of bankruptcy interval situations with set of claimants
N.

A bankruptcy interval rulefor bankruptcy interval situations is a functiofl : BRIN —
I(R)N assigning to each bankruptcy interval situatighd) € BRIN a vector7 (E,d) =
(F1(E.d),...,Fn(E.d)) € I(R)N, such that

@) [0,0] < Fi(E,d) < d; for eachi € N (reasonability;

(i) X, Fi(E,d) = E (efficiency.

Now, we look at the bankruptcy rulé&ROPand fRE and extend them to the interval setting.
By BRIlN we denote the family of all bankruptcy situatior @) € BRIN which satisfy the
condition

E/d(N) < E/d(N), (7.2.1)
and byBRI2N the family of all bankruptcy situation&( d) € BRIN which satisfy the condition
|[E| > |d(N)|. (7.2.2)

Condition (7.2.1) can be read as follows: The available amount per-utiiner-estate is
weakly smaller than the available amount per-unit of upper estate. Condit@2) can be
read so: The spread of uncertainty regarding the estate is weakly {hagethe total spread
of uncertainty regarding the claims. Note that the conditions (7.2.1) and &2 2atisfied

for any bankruptcy interval situations where all the claim intervalslageneratgi.e.,d; = d
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for all i € N. Bankruptcy interval situations where the estate is a nondegeneratalntery
E < E, and all claims are uncertainty-free are studied in Branzei and Dal’ABDog).

The inclusionBRIY c BRIN might be strict as the following example illustrates.

Example 7.2.1 Let(E, d) be a three-person bankruptcy situation. We suppose that the claims
of the players are closed intervals with & [10,20], d» = [30,50] and &4 = [30,70],
respectively, and the estate is60, 100]. Then, we obtain Fi(N) = 6/7 > 5/7 = E/d(N).

The incIusionBng' c BRIN might also be strict as we can see from Example 7.2.1, where
|[E| = 40 < 70 = |d(N)|. In the following, we extend the proportional rule and the rights-
egalitarian rule to the interval setting.

First, note that
PROR(E. d) = (d;/d(N))E < (d,/d(N))E < (di/d(N))E = PROR(E, d)

for eachi € N, where the first inequality follows from condition (7.2.1) and the second
inequality follows from ﬁi,ai] € I(R).
We define theproportional interval rulePROP : BRI — I(R)N by

PROP;(E, d) := [PROR(E, d), PROR(E, d)],
for each E, d) € BRI and alli € N. Second, note that
RE 1 1= = = 1= - RE[E §
fF(E.d)=d + ﬁ@ —-d(N)) <d + H(E —-d(N)) <d + H(E - d(N)) = f=(E, d)

for eachi € N, where the first inequality follows from condition (7.2.2) and the second
inequality follows from ﬁi,ai] € I(R).
We define theights-egalitarian interval rule RE : BRIY — I(R)N by

FREE, d) = [{FEE. o), TREE.d),

for each E,d) € BRI and alli € N. The next proposition shows th®ROP andFRE are

bankruptcy interval rules.

Proposition 7.2.1 Let 8 = {SDROSD, TRE}. Then, each interval rul¢ e 8 is gficient and

reasonable.
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Proof. The dficiency ofF follows from the éficiency of corresponding classical bankruptcy
rule f € {PRORRE} i.e., Yicy fi(E. d) = E andycy fi(E. d) = E. Further, the reasonability

of F results from
0< fi(E,d) < d and O< f(E,d) < d; for eachi € N.
[ |

Subsequently, we define a subclas88fN, denoted bys BRI, consisting of all bankruptcy

interval situations such that
for eachS € 2N with d(N \ S) < E it holds [d(N \ S)| < |E|. (7.2.3)

We call a bankruptcy interval situation ®BRN a strong bankruptcy interval situation
With each E,d) € SBRN we associate a cooperative interval gagméN, wg 4 > defined
by Wg 4(S) := [VE,Q(S),VEH(S)] for eachS c N.

Note that (7.2.3) impliegg 4(S) < Vg 5(S) for eachs € 2". We denote bys BRIG!' the family

of all bankruptcy interval gamese 4 with (E, d) € S BRIN. We notice thaive g € SBRIG is
supermodular becausg g andan e GN are convex (see Proposition 5.2.1). The following

example illustrates thate 4 € S BRIG'is supermodular but not necessarily convex.

Example 7.2.2 Let (E, d) be a two-person bankruptcy situation. We suppose that the claims
of the players are closed intervals & [70, 70] and & = [80, 80], respectively and the estate

is E = [100,140]. Then, for each i 1,2 the corresponding game N,wg 4 > is given by

we 4(0) = [0,0], wegq(1) = [20,60], weq(2) = [30,70] and we 4(1,2) = [100,140]. This

game is supermodular, but is not convex becz*ws_@ﬂ e GN is not convex.

In the following, we consider the restriction of the interval ri#®OP to SBR[ = BRI n
SBRN, and the restriction of the interval riJe"F to S BRL = BRIY n SBRN. In the next
proposition, we consideE( d) € SBR[ if 7 is PROP, and €, d) € SBRY if 7 is FRE.

Proposition 7.2.2 LetF € 8. Then, 7 (E, d) € C(weq) for each w4 € SBRIG'.

Proof. First, we have

anfi(E, d=E=E- Z di = wea(N),
i-1

ied
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where the first equality follows fromfigciency of the bankruptcy interval rules.
Second, tak& c N. Then,
D FEd) =weg(N) - ) Fi(E.d)=E- > d,
i€S ieN\S ieN\S
where the equality follows fromficiency and the inequality follows from reasonability of the
bankruptcy interval rules. Als@;i.s Fi(E, d) = [0, 0] by reasonability. Soyi.s 7i(E, d) =
We d(S). Hence,7 (E, d) € C(wg g). [ |

The use of the allocations generated by the r#@O® and #RE in practical bankruptcy-
like situations with interval uncertainty is two-fold. Firstly, these interval aliioces are used
to inform claimants about what they can expect, between two boundanes ttie division
problem at stake. Secondly, when the realization of the estate occyrsrthased to obtain
standard allocations. We refer the reader to Section 2.4 for ways todremsectors of
intervals into vectors of real numbers. Further, in Branzei, Dall’Aglio @ijgl(2008) interval
bankruptcy rules which are interesting from the game-theoretic point wf are introduced

and studied.

7.3 SEQUENCING INTERVAL SITUATIONS AND RELATED GAMES

This section is based on Alparslardkset al. (2008). We consider one-machine sequencing
situations with interval data. We presentfdient possible scenarios and extend classical

results on well-known rules and on sequencing games to the interval setting.

Sequencing situations arise in several instances of real-life. Heregfereto the classical
scheduling of a sequence of jobs and the waiting line in front of a couiite. use of an
optimal ordering may reduce the cost connected with the time spent in the sgatkis
particularly interesting in sequencing situations where several agentsvaheed. In such
situations, the optimal order is good for the agents as a whole (becausesdns the ef-
ficiency of the system), but since agents are basically interesting in theitdadl benefit,
an agreement is equally important. The agreement includes how to compisategents
that are required to spend more time in the system and how to share the joisavings. In
the classical approach to the problem, the processing time of each job aoaisthger unit
of time associated with it are supposed to be known with certainty. It shouddehe that

the optimality of an ordering may befacted when the actual processing times/anthe

83



unitary costs are flierent from the forecasted ones. Here, we simply require an estimation
of intervals of values for the processing times /andinitary costs, avoiding the ftliculties

of associating a reasonable probability distribution. In this setting, the optial may be
difficult to reach, but the agents may accept to switch their position in the queharige of

an adequate compensation. Depending on the agents’ attitude towardsurigids possibil-

ities could be considered to settle the agreement, both for improving the ar¢eith more
switches) and for sharing the joint cost savings.

First we recall that a one-machine sequencing situation arises whewfaosdéred jobs has

to be processed sequentially on a machine. The basic issue is to determipértred order

of the jobs to be processed taking into account the individual processieg and the costs

per unit of time. Formally, a sequencing situation is a 4-tuples@, a, p) where:

e N={1,2,...,n}is the set of jobs;
e 0p:N—{1,2,...,n}is a permutation that defines the initial order of the jobs;

e o = ()ien € R is a non-negative real vector, wheregis the cost per unit of time of

jobi;

e p=(p)ien € RY is a positive real vector, whemg is the processing time of jab

Given a sequencing situation and an ordewngf the jobs, we can associate to it the cost
C, defined by the sum of the costs of the jobs, where the cost of N is given by the
product of its unitary cost; and the time that it spends in the system, i.e., its processing
time p; plus the waiting time for completing all the jobs precedirig the queue. In formula,

Co = DlieN @i (Zjep(a,i) pj + pi), whereP(c, 1) is the set of jobs precedirigaccording to the

ordero.

The optimal order of the jobs* produces the minimum cost

Co :=Zai[ R pi]

ieN jeP(o,i)
or the maximum cost saving,, — C,-. Smith (1956) proved that an optimal order can be
obtained reordering the jobs according to decreasing urgency indibess the urgency index
Q

of jobi € N is defined as); = pf (of course, if this condition holds for the initial order, no

reordering of jobs is necessary).
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If the jobs belong to the same agent, he will agree to reorder them optimalby;dirg to
Smith’s result. The situation is completelyfidirent when each job belongs to dfdient
agent. In this case, a reordering requires that at least the agenthdmagectheir position
agree on the new order. So, we can say that a switch among two jobs issglassible if
they are consecutive in the current order or if all the agents that oeoftthe jobs in between

the two that are switched agree.

The following question arises: Is it possible to share this cost saGpgs- C,- among the
agents in such a way that the new order results to be stable? In other, werdant to find
fair shares of the overall cost savings to be given to tlfemint agents, in such a way that all
of them agree on the optimal order and have no incentive to recede feoagthement. This

question finds its natural habitat in cooperative game theory.

In 1989, Curiel, Pederzoli and Tijs introduced the class of sequeneinteg. An updated
survey on these games can be found in Curiel, Hamers and Klijn (2002)aIS@the survey

on Operations Research Games (Borm, Hamers and Hendricks (28089§juencing game

is a pair< N,v > whereN is the set of players, that coincides with the set of jobs, and the
characteristic function assigns to coalitio® the maximal cost savings that the members of
S can obtain by reordering only their jobs. We say that a set of Jolssconnected according

toanorderoifforall i, j € T andk € N, o (i) < o(k) < o(j) impliesk € T.

Switching two connected jobis j, the cost associated to the ordering varies by the value
a;jpi —aipj. The variation is positive if and only if the urgency indices vetify< u;. Clearly,
if ajpi — aipj is negative it is not beneficial farand j to switch their positions. We denote

the gain of the switch as

gij = (ajpi — @ipj)+ = max0,a;jpi - aipj}

and, consequently, the gain of a connected coalifi@according to an order is defined by

v(T):=%» ¥ g

j€T ieP(oj)nT
If Sis not a connected coalition, the ordeinduces a partition into connected components,
denoted byS/o. In view of this, the characteristic functionof the sequencing game can be

defined as/(S) := 3 V(T) for eachS c N or, equivalently, a¥ = 3 gijui jj, Where
TeS/o i,jeN:i<j
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ui,j) is the unanimity game defined as:

1, if{i,i+L...j-1jlcS
U[i,j](S) ZZ{

0, otherwise

Curiel, Pederzoli and Tijs (1989) show that sequencing games arexgawmes and, conse-
guently, their core is nonempty. Moreover, it is possible to determine a tocaton without
computing the characteristic function of the game. They propose to shaatydoetween the
players, j the gaing;; produced by the switch, and they call this rule Bwial Gain Splitting
(EGS) rule It can be computed bgGS = %Zkep(mi) Oki + %Zj:iep(mj) gij for eachi € N.
There exist two other simple allocation rules, denoted”gndS, respectively. According
to the first rule, the gain of each switch is assigned to the predecessor imttakeorder,
while the second rule assigns the gain to the successor. We carfvriey. j.icp(. j) gij and
Si '= Y jep(oi) 9ji for eachi € N, and it is easy to see thBGS = %(SD+S), understood in the

vectorial sense based on these members.

In a similar way, we can define th&G S° solutionfor eache € [0, 1]asEG S := eP+(1-¢)S.

Clearly, fore = 0 we getS, for e = % we getEGS and fore = 1 we getP.

In this section, we drop the hypothesis of complete knowledge of the panranétesequenc-
ing situation, in order to better fit the real-world situations. In particular, wppese that the
processing time aridr the cost per unit of time of each job are represented by intervals.
fact, each agent may have som#idulties in evaluating the actual duration of /isr job and
the unitary cost. On the other hand, it is often possible to assign minimal and mazilnes
for both elements. We consider three scenarioes: In the first one,dbegsing time of each
job is a positive real number but its unitary cost is an interval of positigevaues. In the
second one, the unitary costs are positive real numbers and thegingcéses are intervals

of positive real values. In the last one, both elements are intervals ivpagal values.

1. The first scenario:
A one-machine sequencing situation with interval-uncertain costs per uiib@fcan
be described as a 4-tupld, (oo, @, p), whereN, oo andp are the same as in the classical
case andr = ([a;, @i])ien € (RN is a vector of intervals. Herey, is the minimal

unitary cost and; is the maximal unitary cost of job
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In this situation, the arithmetics of intervals allows us to computauthency indeof
the jobsy = & = |2, 2] ieN.

To useSmith’s resulffor finding the optimal order we need not only to comparand

uj to check ifu; < uj for any two possible candidatésand j to a neighbor switch,
but also that these intervals are disjoint, i§.< yj This setting corresponds to the
maximal risk aversion of the agents that agree on a switch of their job only Bitredy

profitable.

Example 7.3.1 Consider the sequencing interval situation with=N1, 2}, oo = {1, 2},
p = (2 3)anda = ([2,4],[12, 21]). The urgency indices arq & [1,2]and b = [4,7];

so the two jobs may be switched.

Now, the question is how to share among the switching ageantd j the gain arising
from their switch. We consider two possible approaches.

First, the agentsand j may agree on the dictatorial solution for aggnte., the com-
pensation corresponds to the upper boa; this means that agenasks to be fully
compensated referring to his maximal unitary cost, plus the possibility of aa gxin

if the actual cost per unit of time is lower.

Second, the agentsind j could determine the individual compensation when the jobs
are performed and realizations of the unitary costs are available. This teadclas-
sical sequencing situation and the agents may agree on one of the existoeagiatio

rules, e.g., th&GS-rule.

Example 7.3.2 Referring to the situation in Example 7.3.1, the dictatorial approach
assigns to agent 1 a compensatigrp; = 21x 2 = 42and0to agent 2. The realization
approach may be performed only when the two jobs are processego&uphat the
realization of the unitary cost is 4 for agent 1 and 16 for agent 2. The E@&for the

resulting classical sequencing situation assigns to both agents a contipens&L0.

. The second scenario:

We describe a one-machine sequencing situation with interval-uncertaiegsing
time as a 4-tupleN, oo, a, p), whereN, o and a are as in the classical case and
p= ([Ei,Toi])ieN e I(R)N is the vector of intervals Wherg is the minimal processing

time andp; is the maximal processing time of job
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In this situation, the arithmetics of intervals does not allow us to compute theayrgen
index of a job, as we cannot divide a real number by an interval, so wedunte the
notion ofrelaxation index of job,idefined byr; := o *pi = [5 g] foralli e N.

We notice that the relaxation index is the inverse of the urgency index in theichh
case, so we may reformulate for this scenario the rule of Smith saying thattio ain
optimal order, the jobs have to be ordered according to increasing tielaxadices.

Two jobsi, j € N may be switched only if; >= r; and the intervals are disjoint, i.e.,

We can consider the same sharing approaches of the first scenarispitathie modi-

fication.

. The third scenario:

Here, a one-machine sequencing interval situation is described as e 4Nupo, a, p),
whereN ando are as usual, whereas= ([¢;, @i])ien € I(R:)N andp = ([;_)i,f)i])ieN €
I(R,)N are the vectors of intervals witl, @; representing the minimal and maximal
unitary cost of johi, respectively. HereEi, P; representing the minimal and maximal
processing time of jol, respectively.

To handle such sequencing situations we propose to use either the@ppesd on
urgency indices or the approach based on relaxation indices. Thise®gdo be able
to compute either; = [%%] foralli e Norr; = [%%] foralli € N, i.e., for
each such an index the_iower bound has to be less than or equal to tireboppe.
Example 7.3.5 shows that this could be impossible. When all indices of a cenpain ty
can be calculated, they are useful to find an optimal order only in casectirepe
ordered properly and are also disjoint. Example 7.3.3 illustrates a sugloessfof the
urgency indices, while Example 7.3.4 shows that although the relaxation $nchoebe
computed and compared, they are not useful to find an optimal ordenseetizey are

not disjoint.

Example 7.3.3 Consider the two-agent situation with, p= [1,4], p2 = [6,8],a1 =
[5,25], > = [10,30]. We can computeiu= [5, 275],u2 = [%175] and use them to

reorder the jobs as the intervals are disjoint.

Example 7.3.4 Consider the two-agent situation with, p= [1,3], p2 = [4,6],a1 =
[5,6], 2 = [11,12]. Here, we can compute r= |4, 3].r2 = [}, 3|, but we cannot

reorder the jobs as the intervals are not disjoint.
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Example 7.3.5 Consider the two-agent situation with p= [1,3], p2 = [56,8],a1 =
[5,6],a2 = [10,30]. Now, ry is defined but # is undefined; on the other hand; u

is undefined and wis defined, so ho comparison is possible and, consequently, the

reordering cannot take place.

If two jobs may be switched, we can use the sharing approaches intcbeboge. In
particular, we may have no total order, as some pairs of jobs cannoinyeaced, but

we may reach just a partial optimal order and share the associated gains.

Remark 7.3.1 Allowing degenerate intervalga,a] € I(R,) leads to the possibility
of a unique game-theoretic treatment of all three scenarios of semgesituations
with interval data, based on the third scenario. In fact, in the first scenagomay

consider the vector of real numbers=p (pi)ien as a vector of degenerate intervals

p = ([pi, piDien. Analogously, in the second scenario we may consider the vector of

real numbersy = (ai)ien @s a vector of degenerate intervals= ([aj, ai])ien-

Next we introduce the class of cooperative sequencing interval gaimagew of Remark
7.3.1, we refer to the general situation presented in the third scenario.

Leti, j € N. We define thénterval gain of the switch of jobsand j by

G - ajpi —a;ip; Iifjobsiandj switch
ij =
[0,0] otherwise.

The sequencing interval game associated to a one-machine sequendtigrsit\i o, @, p)

is defined by
wi= ) Gijj,
i,jeN:i<j
provided thatG;; € I(R) for all switching jobs, j € N.

Remark 7.3.2 The condition G € I(R) is equivalent to q < GJ Note that for the first two

scenarioes this condition may be written'ad < 121 i1 g P Pl
Pi p] a’l T oaj

conditions may not be satisfied. Consider the sequencing interval situaitioN = {1, 2},

oo0=1{12}, p=([2,2],[3,3]) anda = ([2,4],[12, 13]). The urgency indices are = [1, 2]

, respectively, and such

andyp = [4 ] so the switch is profitable, since is larger than y = [1, 2]. Moreover, the

laa|

1. . S
intervals are disjoint buJ— 1>— 5 3 implying that G, = [18,14], i.e., itis not an
2

interval.
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In the following, we show that each sequencing interval game is convex.
Proposition 7.3.1 Let< N, w > be a sequencing interval game. Thenl\, w > is convex.

Proof. By definitionG;j; = [0,0]. S0,G;; >0 and’Gijﬂ > O for all (i, j). It is well known that

i]

classical unanimity games are convex. Thers >, G.upqandw = 3, |Gi,-|u .
= ikt i ijeNi<j [i-1]
are convex games, in the classical sensewse, Y G Y] is convex (see Proposition
i,jeNii<j ’
5.2.1 (iii)). [ |

Theinterval equal gain splitting rulés defined by

1 1
IEGS; = Z Gij+5 Z G
jeN:i<]j jeN:i>]

for eachi € N.
Proposition 7.3.2 Let< N, w > be a sequencing interval game. Then,

) IEGSMW) = J(m®2-M(w) + mnr-L-D(w)),
i) 1EGS(W) € C(w).

Proof.

i) If o=(1,2,...,n), then
m&2-M(w) = ([0, 0], G12, G13 + G23,G14 + Goa + Gag, ..., Gin + ... + Gn_1p).

If o=(,n-1,...,1), then

i) In Proposition 5.2.5, it is proved that the interval marginal vectors areviateore
elements for convex interval games. The proof follows immediately as theseiqg
interval games are convex by Proposition 7.3.1 and the interval core i/exceet (see

Proposition 2.3.3).

Example 7.3.6 Referring to the situation in Example 7.3.1, the interval gainis 6 [18, 30],
the sequencing interval game N,w > is w(1) = w(2) = [0,0], w(1,2) = [18,30] and
IEGS(W) = ([9, 15],]9, 15]).
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As we have already seen, for some sequencing interval situations weavayficulties in
ordering the jobs using only the urgency indices or the relaxation indinesudh situations,
we can (partially) reorder the jobs using a mixed approach: We can evrsithially adjacent
pairs of jobs andj for which bothu; andu; or bothr; andr; are defined, and decide if they
may be switched, i.e., if all the required conditions are satisfied. Considesetiieencing
interval situation withN = {1,2, 3,4}, 0o = {1,2,3,4}, p = ([1,6],[8, 15],[2, 3],[2, 7]) and

a = ([1,3],[2,3],[6,12],[6,8]). We may compute; = [1,2], up = [4,5], r3 = [3,4] and
= [% % , While the other indices are undefined. We can observe that jobs 1 avthj@es 3
and 4 may be switched, but we can say nothing about jobs 1 and 4, tleméedjacent after
the first two switches, as we have no common index. But we can go furttoer ianalysis.
In fact, it is easy to realize that the urgency of job 1 is a number in the intgr\2{l while the
relaxation of job 4 is a number in the inter\[éL %] So, in any realization, the urgency of job

4 is a number in the interval [3] and, apparently, the switch is surely profitable.

In this chapter, we studied some economic and OR situations, and extenslgidatleesults
on well-known rules to the interval setting. We have shown that some of #itesgtions are
modeled as cooperative interval games. Motivating examples for the mbdebperative
interval games and discussions about potential applications can alsarzkifothe papers
listed in references and in further publications. In the next chapter, Wenmsent some

algorithmic results for cooperative interval games.
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CHAPTER 8

ALGORITHMIC ASPECTS

In this chapter, we give some numerical results that we have obtained gy Msittab. All

the m-files used in this chapter are given in the Appendix.

We start with some examples related with the interval Shapley value introdudgdaip-
ter 4 with two, three and four players. We use the m-fikapley2 for two-person case,
shapley3 for three-person case, astlapley4 for four-person case. For these examples,
we work on the class of size monotonic interval games, where the interapl&hvalue is

defined.

Example 8.1 Let< N, w > be a two-person cooperative interval game with
w(1) = [5, 9], w(2) = [7,13],w(N) = [20, 32].
Then, the algorithm gives the numerical req{#000Q 14.0000][11.000Q 18.0000])
and draws the interval Shapley value of the game depicted in Figure 8.1.
Example 8.2 Let< N, w > be a two-person cooperative interval game with
w(1) = [0, 1], w(2) = [0, 2], w(N) = [4, 8].

Then, the algorithm gives the numerical req{£000Q 3.5000] [2.000Q 4.5000])

and draws the interval Shapley value of the game depicted in Figure 8.2.
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Figure 8.1: The interval Shapley value of the two-person cooperatieesal game in
Example 8.1.

Example 8.3 Let< N, w > be a three-person cooperative interval game with

w(1) = [0, 0], w(2) = [0, 0], w(3) = [0, 0], w(L, 2) = [0, 0], w(L, 3) = [60, 75],

w(2, 3) = [40,55] and W(N) = [100, 120]. Then, the algorithm gives the numerical result

([30.000Q 34.1667] [20.000Q 24.1667} [50.000Q 61.6667])

and draws the interval Shapley value of the game depicted in Figure 8.3.

Example 8.4 Let< N, w > be a three-person cooperative interval game with

w(1) = [0, 0], w(2) = [0, 0], w(3) = [0, 0], w(L, 2) = [0, 0], w(L, 3) = [, 2],

w(2,3) =[1,2] and WN) = [1, 2]. Then, the algorithm gives the numerical result

([0.1667,0.3333] [0.1667,0.3333] [0.6667, 1.3333))

and draws the interval Shapley value of the game depicted in Figure 8.4.
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Figure 8.2: The interval Shapley value of the two-person cooperatieesal game in
Example 8.2.

Example 8.5 Let< N, w > be a three-person cooperative interval game with
w(1) = [0, 0], w(2) = [0, 0], w(3) = [0, 0], w(1, 2) = [0, 0], w(L, 3) = [10, 30],
w(2, 3) =[50, 70] and WN) = [50, 70]. Then, the interval Shapley value of the game is
([1.6667,5.0000] [21.6667, 25.0000] [26.6667, 40.0000])
See Figure 8.5.
Example 8.6 Let< N, w > be a four-person cooperative interval game witfi)w= [0, O]
foreachi=1,2,...,4,
w(1,2) =[0,0],w(1,3) =[1,2],w(1,4) =[1,2],w(2,3) = [1,2],w(2,4) = [1, 2],

w(3,4) =[1,2],w(1,2,3) =[1,2],w(1,2,4) = [1,2],w(1,3,4) = [1, 2],

w(2,3,4)=[1,2]and W1, 2, 3,4) = [2, 3]. Then, the algorithm gives the numerical result
([0.4167,0.5833] [0.4167,0.5833] [0.5833 0.9167] [0.5833 0.9167])

which is the interval Shapley value of the interval game.
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Figure 8.3: The interval Shapley value of the three-person coopeiat&rval game in
Example 8.3.

Example 8.7 Let< N, w > be a four-person cooperative interval game witfi)w [0, O]

foreachi=1,2,...,4,
w(1,2) =[0,0],w(1,3) = [6.5,8],w(1,4) =[6.5,8],w(2,3) =[6.5,8],w(2,4) =[6.5,8],

w(3,4) =[0,0],w(1, 2,3) = [10, 20], w(1, 2, 4) = [10, 20], w(1, 3, 4) = [10, 20],
w(2,3,4) = [10,20] and wW(1, 2,3, 4) = [13, 34].
Then, the algorithm gives the numerical result

([3.250Q 8.5000] [3.250Q 8.5000] [3.250Q 8.5000} [3.250Q 8.5000])

which is the interval Shapley value of the interval game.

Our examples continue with the calculation of interval core elements for twsmpeand

three-person cooperative interval games. The notion of the inter@almnoduced in Section
2.3 is one of the more interesting solution concepts on the class of coopenatisval games.
Here, the nearest interval core element is obtained according to the iniis$ ghat we have
chosen. We use the m-filegore2 for the two-person case ardore3 for the three-person

case.
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Figure 8.4: The interval Shapley value of the three-person coopeiat&rval game in
Example 8.4.
Example 8.8 Let< N,w > be a two-person cooperative interval game with
w(1) = [0, 0], w(2) = [0, 0], w(1, 2) = [18, 30].
Then, the algorithm gives the numerical result
([9.000Q 15.0000] [9.000Q 15.0000])

obtained by choosing the initial gueli5; 8.5] for the lower game anfil4.5; 14.5]

for the upper game.

Example 8.9 Let< N, w > be a three-person cooperative interval game with
w(1) = [0, 0], w(2) = [0, 0], w(3) = [0, 0], w(1, 2) = [0, 0], w(1, 3) = [10, 30],
w(2, 3) = [50, 70] and WN) = [50, 70]. Then, the algorithm gives the numerical result
([0.000Q 0.0000} [25.000Q 35.0000] [25.000Q 35.0000])

obtained by choosing the initial guef¥ 10; 10] for the lower game anD; 10; 10] for the
upper game. Another result obtaining by choosing the initial gue§3;a%; 25]for the lower

game andO0; 15; 45]for the upper game is

([0.000Q 0.0000] [20.000Q 20.0000} [30.000Q 50.0000])
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Figure 8.5: The interval Shapley value of the three-person coopeiat&rval game in
Example 8.5.

By choosing djerent initial guesses we can obtainfdrent interval core elements.

Example 8.10 Let< N, w > be a three-person cooperative interval game with
w(1) = [0, 0], w(2) = [0, 0], w(3) = [0, 0], w(1, 2) = [0,0],w(1, 3) = [1, 2],
w(2,3) = [1,2] and WN) = [1, 2]. Then, the algorithm gives the numerical result
([0.000Q 0.0000} [0.000Q 0.0000] [1.000Q 2.0000])
obtained by choosing the initial gue§s 1; 1] for the lower game anflL; 0; 2]

for the upper game. Note that this game has only one element in the intereal c

In this chapter, we intended to give a flavour of some numerical resultedeidth the interval
Shapley value and the interval core. In the next chapter, we shallutEnour studies by

mentioning some open problems and future work for the class of coopenatiirval games.
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CHAPTER 9

CONCLUSION

In this thesis, we have developed the theory of cooperative intervalgjamgch is a new
area in cooperative game theory. We also aim to intensively present teeosthe-art in
this booming field of research and its applications. The reader is referi@&menzei, Tijs and
Alparslan @k (2008c) for a brief survey on cooperative interval games andviitsplution
concepts. This is a pioneering work on a promising topic, and there are styl imizresting

guestions to be solved by further research such as the following ones.

A difficult topic might be to analyze under which conditions the set of fiasgtors gener-
ated by the interval core of a cooperative interval game coincides wittotieeof the game in
terms of selections (of the interval game). The interval core is an appeslingion concept
both from the theoretical point of view and from the respect of computalticomplexity.
However, the use of elements of the interval core in practical situationgresdo transform
such an interval paybvector into a traditional paybvector. This can be done as in Chapter
2 where the reader can find a basic guide for handling interval solutiocepts. A straight-
forward interpretation of interval core elements is questionable as destus®rechsel and
Kimms (2008). The fact that there are interesting classes of coopeirattveal games with
nonempty interval cores like convex interval games and big boss inteanagincreases the

interest in this solution concept.

A dominance relation in the interval setting is used to define the interval dongrcame and
interval stable sets for cooperative interval games. Relations betwedmntehel core, the
interval dominance core and interval stable sets of a cooperative ihjenvee are studied. It
is interesting to find sficient conditions for the equality of the interval core and the interval

dominance core, and to investigate whether for each interval game its intervénance
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core is a convex set. Moreover, studying stable sets of a cooperatveahgame in terms
of selections of the game seems to be a valuable topic for the extension of tmg die

cooperative interval games.

Further interesting questions are to study whether one can extend to igemes the well-
known result of the traditional cooperative game theory that the corecohaex game is
the unique stable set (Shapley (1971)) and to find an axiomatization of tineain8hapley
value on the class of convex interval games. Other topics could be relatettdducing
new models in cooperative game theory by generalizing cooperative ahigames. For
example, the concepts and results on (convex) cooperative intemaisgeould be extended
to cooperative games in which the coalition valwg$) are ordered intervals of the form
[u, V] of an (infinite dimensional) ordered vector space. Such generalizatigd give more
applications to the interval game theory. Also to establish relations betwegexcimerval

games and convex games in other existing models of cooperative gameseanddresting.

We notice that other OR situations and combinatorial optimization problems with ahterv
data among which are flow situations, linear production situations and holdiragiens
also could give rise to interesting interval games. The existing literaturelatedeclassi-
cal games can be an inspiration source for further research (Bormetdaand Hendrickx
(2001), Curiel (1997), Kalai and Zemel (1982), Owen (1975), TNeca and lbpez (2005).
Weber, Alparslan @k and Syler (2007), Weber et al. (2008) and Weber, Alparsldrk @nd
Dikmen (2008) considered gene-network problems and environmentalkepns such as car-
bon dioxide emission reduction and fish quota with interval uncertainty. ¥V&bepat and
Alparslan @Gk (2008) show how advanced methods of continuous optimization conttibute
modeling, learning and problem solution in areas of environmental proteatiedicine and
development under various kinds of uncertainty. It is a topic for funtegearch to associate

cooperative interval games with such situations.

For sequencing interval situations and related games, the approacibaginggency indices
and relaxation indices when dealing with sequencing interval situations iscafoofurther
research. Other approaches for sharing the gain generated by h svaijcbe investigated.
For example, it is possible to assign to each job its minimal compensation obtappazkswy
that its unitary cost and the processing time of the jobs involved in the switcihesgae with

the lower bound. After a realization, theffidirence between the actual cost savings and the
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sum of the shares already distributed over the switched jobs, can beedl@zaording to a

fair division procedure or a bankruptcy rule.

In this thesis, we define two bankruptcy interval rules by extending theoptional rule and
the rights-egalitarian rule to bankruptcy interval situations (see ChapteArT)nteresting
topic is to extend to the interval setting the axiomatic characterizatioR&afPand fRF and
to compare them in the spirit of Herrero, Maschler and Villar (1999). Nadétthcompare
PROP with FRE we need to consider the restricted cl&RI n BRIY. The use of the
allocations generated by the rule®O# and7 RE in practical bankruptcy-like situations with
interval uncertainty is two-fold. Firstly, these interval allocations are ts@dorm claimants
about what they can expect, between two boundaries, from the diisairiem at stake.
Secondly, when the realization of the estate occurs, they are used tosibtadard allocations

(see Chapter 2 for ways to transform vectors of intervals in vectomabfiumbers).

Finally, Moretti et al. (2008) cope with uncertainty in cost allocation problerizing from
connection configurations. Basically, they deal with minimum cost spanrgegsituations
where the costs are intervals and the agents may act optimistically or pessimistically
the sequel, they briefly introduce a more complex problem as a possible twpigrther
research: how to deal with minimum interval cost spanning tree situationsewlot all the
agents follow the same (pessimistic or optimistic) approach to make the decisiohicim w

spanning tree must be realized.

Consequently, cooperative interval games that we have developedtimdsisare a very valu-
able tool for modeling various economic and OR situations. The readerrchimfBranzei,

Tijs and Alparslan @k (2008b) several protocols specifying how a certain interval solution
chosen for a specific situation to support decision making regardingcaiign might be used
when uncertainty on payks is removed. The recent developments in the field of cooperative

interval games fber new opportunities for game practice.
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APPENDIX

First, we present the Matlab m-files inspired from &rCalvo and 8hchez Rodriguez (2006)

which are used to obtain Interval Shapley value.

shapley2.m

Interval Shapley value of a two-person cooperative interval game

function [sU,sL,mU,mL]=shapley2(vL1,vL2,vL12,vUl,vU2,vU12)

%shapley2 calculates and draws the interval Shapley value of a
%two-person cooperative interval game.

%The algorithm only works on the class of size monotonic interval
%games .

%The inputs vL1, vL2, vL12 are the lower bounds; vUl, vU2, vU12
%are the upper bounds of the characteristic function of the
%two-person cooperative interval game.

%From the outputs sL represents the lower bound, sU represents the
%upper bound of the Interval Shapley value and mL is the interval
%marginal vector of the lower game, mU is the interval marginal
%vector of the upper game.

%Here, X is the vector which is used to obtain the figure.

mL(1,:)=[vL1 vL12-vL1];
mL(2,:)=[vL12-vL2 vL2];
mU(l,:)=[vUl vU12-vUl];
mU(2, :)=[vU12-vU2 vU2];
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tL1=0;
tL2=0;
tU1=0;
tU2=0;

for i=1:2
tL1=mL(i,1)+tL1;
tL2=mL(i,2)+tL2;
sL=[tL1;tL2]*(1/2)
tUl=mU(i, 1)+tU1;
tU2=mU(i,2)+tU2;
sU=[tU1;tU2]*(1/2)

end

Sh=[sL sU];

fprintf(’ IntervalShapley=([%6.4f,%6.4f],[%6.4f,%6.4f])\n’ ,sL(1,1),
su(1,1),sL(2,1),sU(2,1))

X=[sL(1) sL(2); sU(1l) sL(2); sU(1) sU(2); sL(1) sU(2);
sL(1) sL(2)]

£i11(X(:,1),X(:,2),°y")

axis([0 20 ® 20])

xlabel(’x’)
ylabel(C’y’)
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shapley3.m

Interval Shapley value of a three-person cooperative interval game

function [sU,sL,mU,mL]=shapley3(vL1l,vL2,vL3,vL12,vL13,vL23,vL123,
vU1l,vU2,vU3,vU12,vU13,vU23,vU123)

%shapley3 calculates and draws the interval Shapley value of a th-
%ree-person cooperative interval game. The algorithm only works on
%the class of size monotonic interval games.

%The inputs vL1,vL2,vL3,vL12,vL13,vL23,vL123 are the lower bounds;
%vU1,vU2,vU3,vU12,vU13,vU23,vU123 are the upper bounds of the
%characteristic function of the three-person cooperative interval
%game .

%From the outputs sL represents the lower bound, sU represents the
%upper bound of the Interval Shapley value and mL is the interval
%marginal vector of the lower game, mU is the interval marginal
%vector of the upper game.

%Here, X is the vector which is used to obtain the figure.

mL(1,:)=[vL1 vL12-vL1 vL123-vL12];
mL(2,:)=[vLl1 vL123-vL13 vL13-vL1l];
mL(3,:)=[vL12-vL2 vL2 vL123-vL12];
mL(4,:)=[vL123-vL23 vL2 vL23-vL2];
mL(5,:)=[vL13-vL3 vL123-vL13 vL3];
mL(6,:)=[vL123-vL23 vL23-vL3 vL3];

mU(1, :)=[vU1l vU12-vU1l vU123-vU1l2];
mU(2,:)=[vUl +vU123-vU13 vU13-vUl];
mU(3,:)=[vU12-vU2 vU2 vU123-vU1l2];
mU(4, :)=[vU123-vU23 vU2 vU23-vU2];
mU(5, :)=[vU13-vU3 vU123-vU13 vU3];
mU(6, :)=[vU123-vU23 vU23-vU3 vU3];
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tU=[0;0;0];
tL=[0;0;0];

for i=1:6
tL(1)=mL(i, 1)+tL(1);
tL(2)=mL(i,2)+tL(2);
tL(3)=mL(i,3)+tL(3)
sL=[tL(1);tL(2);tL(3)]1*(1/6)
tU(1)=mU(i,1)+tU(1);
tU(2)=mU(i,2)+tU(2);
tU(3)=mU(i, 3)+tU(3)
sU=[tU(1);tU(2);tU(3)]1*(1/6)

end

Sh=[sL sU];

fprintf(’ IntervalShapley=([%6.4f,%6.4f],[%6.4f,%6.4£f],[%6.4f,%6.4£f])
\n’, sL(1,1),sU(1,1), sL(2,1),sU0(2,1),sL(3,1),sU(3,1))

X=[sL(1) sL(2) ®; sU(1) sL(2) 0; sU(1l) sU(2) 0®; sL(1) sU(2) O;
sL(1) sL(2) 0; sL(1) sL(2) sL(3); sU(1) sL(2) sU(3); sU(1)
sU(2) sU(3); sL(1) sU(C2) sL(3); sL(1) sL(2) sL(3); sU(1) sL(2)
sU(C3); sU(1) sL(2) 0; sU(1) sU(C2) 0®; sU(1) sU(2) sU(3); sL(1)
sU(2) sL(3); sL(1) sU(2) 0]

axis([0® 40 0 40 0 40])

hold on
plot3(X(:,1),X(:,2),X(:,3),’'m’)
xlabel(’'x’)

ylabel(C’y’)

zlabel('z’)
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shapley4.m

Interval Shapley value of a four-person cooperative interval game

function [sU,sL,mU,mL]=shapley4(vL1l,vL2,vL3,vL4,vL12,vL13,vL14,
vL23,vL24,vL34,vL123,vL124,vL134,vL234,vL1234,vU1,vU2,vU3,vU4,
vU12,vU13,vU14,vU23,vU24,vU34,vU123,vU124,vU134,vU234,vU1234)

%shapley4 calculates the interval Shapley value of a four-person
%cooperative interval game. The algorithm only works on the
%class of size monotonic interval games.

%The inputs vL1, vL2,vL3,vL4,vL12,vL13,vL14,vL23,vL24,vL34,vL123,
%vL124,vL134,%v01234,vL1234 are the lower bounds; vU1l,vU2,vU3,vU4,
%vU12,vU13,vU14,vU23,vU24,vU34,vU123,vU124,vU134,vU234,vU1234
%are the upper bounds of the characteristic function of the
%four-person cooperative interval game.

%From the outputs sL represents the lower bound, sU represents
%the upper bound of the Interval Shapley value and mL is the
%interval marginal vector of the lower game, mU is the interval

%marginal vector of the upper game.

mL(1,:)=[vL1 vL12-vL1 vL123-vL12 vL1234-vL123];
mL(2,:)=[vL1 vL12-vL1 vL1234-vL124 vL124-vL12];
mL(3,:)=[vL1 vL123-vL13 vL13-vL1 vL1234-vL123];
mL(4,:)=[vL1 vL1234-vL134 vL13-vL1 vL134-vL13];
mL(5,:)=[vL1 vL124-vL14 vL1234-vL124 vL14-vL1];
mL(6,:)=[vL1 vL1234-vL134 vL134-vL14 vL14-vL1];

mL(7,:)=[vL12-vL2 vL2 vL123-vL12 vL1234-vL123];
mL(8,:)=[vL12-vL2 vL2 vL1234-vL124 vL124-vL12];
mL (9, :)=[vL123-vL23 vL2 vL23-vL2 vL1234-vL123];
mL (10, :)=[vL1234-vL234 vL2 vL23-vL2 vL234-vL23];
mL(11,:)=[vL124-vL24 vL2 vL1234-vL124 vL24-vL2];
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mL(12,:)=[vL1234-vL234 vL2 vL234-vL24 vL24-vL2];

mL(13,:)=[vL13-vL3 vL123-vL13 vL3 vL1234-vL123];
mL(14,:)=[vL13-vL3 vL1234-vL134 vL3 vL134-vL13];
mL (15, :)=[vL123-vL23 vL23-vL3 vL3 vL1234-vL123];
mL(16, :)=[vL1234-vL234 vL23-vL3 vL3 vL234-vL23];
mL(17,:)=[vL134-vL34 vL1234-vL134 vL3 vL34-vL3];
mL(18,:)=[vL1234-vL234 vL234-vL34 vL3 vL34-vL3];

mL (19, :)=[vL14-vL4 vL124-vL14 vL1234-vL124 vlL4];
mL (20, :)=[vL14-vL4 vL1234-vL134 vL134-vL14 vL4];
mL(21,:)=[vL124-vL24 vL24-vL4 vL1234-vL124 vL4];
mL(22,:)=[vL1234-vL234 vL24-vL4 vL234-vL24 vlL4];
mL(23,:)=[vL134-vL34 vL1234-vL134 vL34-vL4 vL4];
mL(24,:)=[vL1234-vL234 vL234-vL34 vL34-vL4 vL4];

mU(l,:)=[vUl vU12-vUl vU123-vU12 vU1234-vU123];
mU(2, :)=[vUl vU12-vU1l vU1234-vU124 vU124-vU12];
mU(3, :)=[vUl vU123-vU13 vU13-vU1l vU1234-vU123];
mU(4, :)=[vUl vU1234-vU134 vU13-vUl vU134-vU13];
mU(5, :)=[vUl vU124-vUl4 +vU1234-vU124 vU14-vUl];
mU(6, :)=[vUl vU1234-vU134 vU134-vU14 vU14-vUl];

mU(7, :)=[vU12-vU2 vU2 vU123-vU1l2 vU1234-vU123];
mU(8, :)=[vU12-vU2 vU2 vU1234-vU124 vU124-vU12];
mU(9, :)=[vU123-vU23 vU2 vU23-vU2 vU1234-vU123];
mU(10, :)=[vU1234-vU234 vU2 vU23-vU2 vU234-vU23];
mU(C11, :)=[vU124-vU24 vU2 vU1234-vU124 vU24-vU2];
mU(12,:)=[vU1234-vU234 vU2 vU234-vU24 vU24-vU2];

mU(13, :)=[vU13-vU3 vU123-vU1l3 vU3 vU1234-vU123];
mU(C14, :)=[vU13-vU3 vU1234-vU134 vU3 vU134-vU13];
mU(15, :)=[vU123-vU23 vU23-vU3 vU3 vU1234-vU123];
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mU(16, :)=[vU1234-vU234 vU23-vU3 vU3 vU234-vU23];
mU(17, :)=[vU134-vU34 vU1234-vU134 vU3 vU34-vU3];
mU(18, :)=[vU1234-vU234 vU234-vU34 vU3 vU34-vU3];

mU(19, :)=[vU14-vU4 vU124-vUl4 vU1234-vU124 vU4];
mU(20, :)=[vU14-vU4 vU1234-vU134 vU134-vU1l4 vU4];
mU(21,:)=[vU124-vU24 vU24-vU4 vU1234-vU124 vU4];
mU(22, :)=[vU1234-vU234 vU24-vU4 vU234-vU24 vU4];
mU(23, :)=[vU134-vU34 vU1234-vU134 vU34-vU4 vU4];
mU(24, :)=[vU1234-vU234 vU234-vU34 vU34-vU4 vU4];

tU=[0;0;0;0]1;
tL=[0;0;0;0];

for i=1:24
tL(1)=mL(i,1)+tL(1);
tL(2)=mL(i,2)+tL(2);
tL(3)=mL(i,3)+tL(3)
tL(4)=mL(i,4)+tL(4)
sL=[tL(1);tL(2);tL(3);tL(4)]1*(1/24)
tU(1)=mU(i, 1)+tU(1);
tU(2)=mU(i,2)+tU(2);
tU(3)=mU(i,3)+tU(3);
tU(4)=mU(i,4)+tU(4);
sU=[tU(1);tU(2);tU(3);tUu(4)]1*(1/24)

end

Sh=[sL sU];

fprintf(’ IntervalShapley=([%6.4f,%6.4f],[%6.4f,%6.4f],[%6.4f,%6.4£],

[%6.4f,%6.4f1)\n’, sL(1,1),sU(1,1),sL(2,1),sU(2,1),sL(3,1),
sU(3,1),sL(4,1),sU(4,1))

113



Second, we present the Matlab m-files which find the nearest intenektement according

to the initial guess chosen.

icore2.m

The interval core element of a two-person cooperative interval game

function[xL,xU]=icore2(vL1,vL2,vL12,xL0O,vU1,vU2,vU12,xU®)

%icore2 finds an interval core element of a two-person coopera-
%tive interval game which is the nearest to the initial guess
%chosen.

%The inputs vL1, vL2, vL12 are the lower bounds; vUl, vU2, vU12
%are the upper bounds of the characteristic function of the
%two-person cooperative interval game.

%xL0® is the initial guess for the lower game and xU® is the
%initial guess for the upper game.

%The output xL is the lower bound and the output xU is the
%upper bound of the interval core element.

%For the lower game [xL,fval]=fsolve(@coremyfunL,xL®) returns
%the value of the objective function coremyfunlL at the solution
%xL, i.e., the algorithm starts at xLO and tries to find a zero
%of fL.

%For the upper game the procedure is similar as above.

%For details on fsolve we refer to Matlab Optimization Toolbox.

global vL12
global vU12

[xL, fval]=fsolve(@coremyfunL, xL0O)

if xL(1)>=vL1 & xL(2)>=vL2
solution=xL

else
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fprintf(’Change your initial guess’)

end

[xU, fval]=fsolve(@coremyfunU, xU0)

if xU(1)>=vUl & xL(2)>=vU2
solution=xU

else
fprintf(’Change your initial guess’)

end

fprintf(’Intervalcore element=([%6.4f,%6.4f],[%6.4f,%6.4f]1)\n’,
xL(1,1),x0(1,1),xL(2,1),xU(2,1))

function fL =coremyfunL (x)

global vL12

fL =x(1)+x(2)-vL12

function fU=coremyfunU(x)

global vU12

fU=x(1)+x(2)-vU12

icore3.m

The interval core element of a three-person cooperative intervakgam

function[xL,xU]= icore3(vL1l,vL2,vL3,vL12,vL13,vL23,vL123,xL0O,vU1,

vU2,vU3,vU12,vU13,vU23,vU123,xU00)

%icore3 finds an interval core element of a three-person

%cooperative interval game which is the nearest to the
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%initial guess chosen.

%The inputs vL1,vL2,vL3,vL12,vL13,vL23,vL123 are the lower bounds;
%vU1l,vU2,vU3,vU12,vU13,vU23,vU123 are the upper bounds of the
%characteristic function of the three-person cooperative interval
%game .

%xL0 is the initial guess for the lower game and xU® is the
%initial guess for the upper game.

%The output xL is the lower bound and the output xU is the upper
%bound of the interval core element.

%For the lower game [xL,fvallL]=fmincon(@coremyfunL,xL0®,A,bL,[],[],
%1bL) starts at xLO®, attempts to find a minimum xL to the function
%described in coremyfunl subject to the linear inequalities AxL<=b
%and defines a set of upper bounds on the design variables in xL,
%so that the solution always satisfies 1lbL<=xL.

%For the upper game the procedure is similar as above.

%For details on fmincon we refer to Matlab Optimization Toolbox.

global vL123
global vU123

A=[-1 -1 0;-1 0 -1;0 -1 -1]
bL=[-vL12;-vL13;-vL23]
1bL=[vL1;vL2;VvL3]
bU=[-vU12;-vU13;-vU23]
1bU=[vU1;vU2;vU3]

[xL,fvalL]=fmincon(@coremyfunL,xL0®,A,bL,[],[],1bL)
[xU, fvalU]=fmincon(@coremyfunU,xU0,A,bU, [1, []1,1bU)

fprintf(’Intervalcore element=([%6.4f,%6.4f],[%6.4f,%6.4£f],
[%6.4f,%6.4f1)\n’ ,xL(1,1),xU(1,1),xL(2,1),xU0(2,1),xL(3,1),xU0(3,1))
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function fL=coremyfunL (x)

global vL123

fL =x(1)+x(2)+x(3)-vL123

function fU=coremyfunU(x)

global vU123

fU=x(1)+x(2)+x(3)-vU123
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