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ABSTRACT 

 

ACTIVE MICROWAVE REMOTE SENSING OF SOIL MOISTURE: 

A CASE STUDY IN KURUKAVAK BASIN 

 

 

YILMAZ, Musa 

Ph.D., Department of Civil Engineering 

Supervisor: Prof. Dr. Ali Ünal Şorman 

 

December 2008, 135 pages 

 

 

Soil moisture condition of a watershed plays a significant role in separation of 

rainfall into infiltration and surface runoff, and hence is a key parameter for the 

majority of physical hydrological models. Due to the large difference in dielectric 

constants of dry soil and water, microwave remote sensing and particularly the 

commonly available synthetic aperture radar is a potential tool for such studies. 

 

The main aim of this study is to produce the distributed soil moisture maps of a 

catchment from active microwave imagery. For this purpose, nine field trips are 

performed within a small basin in western Anatolia and point surface soil moisture 

values are collected with a Time Domain Reflectometer. The field studies are 

planned to match radar image acquisitions and accomplished over the water year of 

2004 - 2005. 

 

In this context, first, the Dubois Model, a semi-empirical backscatter model is 

utilized in the reverse order to develop radar backscatter – soil roughness 

relationship and soil roughness maps of the study area are obtained. Then another 
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relationship is built between radar backscatter and the three governing surface 

parameters: local incidence angle, soil moisture and soil roughness, which is later 

used in the soil moisture estimation methods. Depending on land use and 

vegetation cover condition, surface soil moisture maps of the catchment are 

produced by Backscatter Correction Factors, Water Cloud Model and Basin Indexes 

methods.  

 

In the last part of the study, the soil moisture maps of the basin are input to a semi-

distributed hydrological model, HEC-HMS, as the initial soil moisture condition of a 

flood event simulation. In order to investigate the contribution of distributed initial 

soil moisture data on model outputs, simulation of the same flood event is also 

performed with the lumped initial soil moisture condition. Finally, a comparison 

between both the distributed and lumped model simulation outputs and with the 

observed data is carried out. 

 

 

Keywords: Soil Moisture, Surface Roughness, Synthetic Aperture Radar, Kurukavak 

Basin, Turkey 
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ÖZ 

 

TOPRAK NEMİNİN AKTİF MİKRODALGA İLE UZAKTAN ALGILANMASI: 

KURUKAVAK HAVZASI UYGULAMASI 

 

 

YILMAZ, Musa 

Doktora, İnşaat Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Ali Ünal Şorman 

 

Aralık 2008, 135 sayfa 

 

 

Havzanın toprak nemi durumu, yağışın sızma ya da yüzey üstü akımına ayrışmasında 

önemli bir rol oynamaktadır, ve bu nedenle, fiziksel hidrolojik modellerin büyük 

çoğunluğunda anahtar bir değişkendir. Kuru toprak ve suyun dielektrik sabit 

değerleri arasında büyük fark bulunması sebebiyle mikrodalga uzaktan algılama 

(özellikle de yaygın olarak mevcut olan sentetik aperture radar) bu tür çalışmalar 

için oldukça önemli bir araçtır.  

 

Bu çalışmanın esas amacı, hidrolojik bir modele girdi olarak kullanılabilecek, dağılımlı 

havza toprak nemi haritalarının üretilmesidir. Bu amaçla, dokuz arazi çalışması 

gerçekleştirilmiş ve noktasal yüzey toprak nemi değerleri Time Domain Reflector 

cihazı ile toplanmıştır. Batı Anadolu’da küçük bir havzada gerçekleştirilmiş olan arazi 

çalışmaları, radar görüntü alımlarını yakalayacak şekilde planlanmış ve bir su yılı 

içinde tamamlanmıştır.  

 

Bu doğrultuda, öncelikle bir geri yansıma modeli olan Dubois Modeli, toprak yüzey 

pürüzlülüğü ile radar geri yansıma değerleri arasında bir ilişki oluşturmak amacı ile 
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tersine kullanılmış ve çalışma havzasının toprak pürüzlülüğü haritaları elde edilmiştir. 

Daha sonra radar geri yansıma değerleri ile en baskın üç yüzey parametresi; yüzey 

geri yansıma açısı, toprak nemi ve toprak pürüzlülüğü, arasında bir ilişki elde edilmiş 

ve yüzey toprak neminin hesaplanması yöntemlerinde kullanılmıştır. Çalışma 

bölgesinin dağılımlı toprak nemi haritalarının çıkartılmasında havzanın arazi kullanım 

ve bitki örtüsü yoğunluğuna bağlı olarak; Geri Yansıma Düzeltme Katsayıları, Su 

Bulutu Metodu ve Havza İndeksleri yöntemleri kullanılmıştır. 

 

Çalışmanın son aşamasında, elde edilen dağılımlı toprak nemi haritaları, havzada 

gözlemlenen bir taşkının simulasyonu amacıyla, yarı dağılımlı bir hidrolojik modele 

başlangıç yüzey toprak nemi durumu olarak girilmiştir. Dağılımlı yüzey toprak nemi 

girdisinin hidrolojik model sonuçları üzerindeki katkısını incelemek amacı ile aynı 

taşkın simülasyonu tüm havza için sabit kalan başlangıç yüzey toprak nemi değeri ile 

de gerçekleştirilmiştir. Son olarak, elde edilen simülasyon sonuçları birbirleri ve de 

gözlenen sonuçlar ile karşılaştırılmıştır.  

 

 

Anahtar Kelimeler: Toprak Nemi, Toprak Pürüzlülüğü, Sentetik Aperture Radar, 

Kurukavak Havzası, Türkiye 
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CHAPTER 1 

 

INTRODUCTION 

 

 

1.1. Introduction and Objectives 

 

Soil moisture is the water held in the upper soil layer. Despite the fact that it 

constitutes a very small portion of the global water resources, soil moisture is an 

important surface variable for meteorology, agriculture, hydrology etc. In the field 

of hydrology, soil moisture controls the separation of rainfall into infiltration and 

surface runoff, and excess soil moisture could lead to high floods, wheras deficiency 

of it could lead to droughts.  

 

Traditional methods of soil moisture measurements are limited to point values in 

which achieving higher temporal and spatial resolution of the variable could be labor 

intensive and costly. On the other hand, soil moisture maps of broader areas can be 

produced with remote sensing techniques at relatively lower costs. The remote 

sensing instruments which operate in the visible and infrared portions of the 

electromagnetic spectrum can provide limited information about variations in soil 

moisture. Due to the large difference in dielectric constants of dry soil and water, 

and sensitivity of the microwave region to surface dielectric properties, microwave 

remote sensing and particularly the commonly available synthetic aperture radar 

(SAR) is a potential tool for such studies. Moreover, microwave remote sensing has 

the advantages of penetrating clouds and independent of the sun as the source of 

illumination. 

 

The main objective of this study is to obtain distributed soil moisture maps of a 

catchment with microwave remote sensing. It is also aimed that these maps are 



 

2 
 

coupled with a hydrological model as the initial soil moisture condition of the study 

basin prior to a rainfall-runoff event simulation. For this purpose, a small catchment 

in western Anatolia, Kurukavak basin, is selected as the study area. During 2004 – 

2005 water year, nine field trips are performed within the basin and point soil 

moisture measurements are carried out on 68 locations with a Time Domain 

Reflectometer. The field studies are planned in advance to match radar image 

acquisitions.  

 

Radar remote sensing of soil moisture in the Kurukavak basin is achieved through a 

number of objectives which will be described in this section of the study.  

 

Since field measurements of soil surface roughness is not held during field studies, 

developing a relationship between radar backscatter and surface roughness is the 

first objective of this research. For this reason, the Dubois Model, a semi-empirical 

backscatter model is utilized in the reverse order to compute soil surface roughness 

values of the point soil moisture measurement locations. This is accomplished for 

the field study dates which have two radar image acquisitions and with sparse 

vegetation cover. Then, the developed relationship is used to compute roughness 

values of the catchment areas with similar surface conditions.  

 

The second objective of the study is to develop an algorithm for retrieval of soil 

moisture from radar imagery for bare soil surfaces. First, the wet soil backscatter 

relationship is established between radar backscatter and three governing surface 

parameters; local incidence angle, soil moisture and soil roughness. After computing 

the incidence angle maps of the study area, the wet soil backscatter relationship is 

successfully developed and later utilized in the soil moisture estimation methods.  

 

Depending on land use and vegetation cover condition, surface soil moisture 

distribution of the Kurukavak catchment is calculated by three methods. Similar to 

the analyses held with soil roughness, these methods are first developed with the 

point measurements of soil moisture and then applied to other areas of the study 

basin. 
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First, the Backscatter Correction Factors method, which does not include vegetation 

effect on radar backscatter, is built for bare or sparsely vegetated farmland and 

pasture fields of the basin. In this method, dry soil backscatter relationship, which is 

developed from the wet soil relationship with an assumption of dry soil condition, is 

utilized with a correction algorithm.  

 

The third objective of this research is to propose an algorithm that would be used 

for microwave remote sensing of soil moisture on vegetation covered areas of the 

Kurukavak basin. For this reason, the second method of soil moisture estimation, a 

delta index approach is utilized with the Water Cloud Model for the farmland and 

pasture land use classes under dense vegetation cover condition.  

 

Lastly, the third method of soil moisture estimation is developed and applied for the 

forested areas of the basin where radar remote sensing of soil moisture is 

impractical. The Basin Indexes method depends only on watershed terrain indexes 

of topographic index and solar radiation index. Finally, the three soil moisture 

estimation methods are used together to produce the soil moisture maps of the 

study catchment on four of the field study dates. 

 

The last objective of the study is to integrate the distributed soil moisture maps of 

the basin with a semi-distributed hydrological model. During the field studies held in 

the Kurukavak basin, a rainfall and runoff measuring station is installed at the basin 

outlet which recorded a major flood event on 01-Jun-2005 with a peak discharge of 

9.97 m3/s. In the last part of the study, semi-distributed rainfall-runoff model 

simulations of this flood event are carried out with Hydrologic Engineering Center – 

Hydrologic Modeling System (HEC-HMS). In these analyses, the soil moisture maps 

of the Kurukavak catchment are input to the HEC-HMS model as the initial soil 

moisture condition of the watershed at the beginning of the simulation period. In 

order to question the contribution of distributed initial soil moisture data on model 

results, simulation of the same flood event is also performed by assuming a lumped 

initial soil moisture condition for the entire basin. Finally, the distributed and lumped 

model simulation results are compared with the observed flood event. 
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1.2. Thesis Outline 

 

The structure of this thesis closely follows the order in which the work is undertaken 

in response to the objectives and consists of eight further chapters. 

 

Chapter 2 outlines the fundamental principles of microwave remote sensing and 

discusses the application of it for soil moisture retrieval. It also reviews the aspects 

and previous research on remote sensing of soil moisture. 

 

Chapter 3 introduces the field study catchment. It summarizes the soil moisture 

data collection with Time Domain Reflectometer and details the post processing 

analyses performed with the collected data. The permanent raster data model, 

which is used to integrate point measurements with raster data sets, is also outlined 

in this chapter. 

 

Chapter 4 describes the radar imagery utilized in this work. First, the geometrical 

and optical properties of the acquired images are presented. Then, details of 

producing radar backscatter coefficients and incidence angle maps from these 

images are discussed in detail. 

 

Chapter 5 details the application and results of the methodology carried out for soil 

surface roughness mapping of the study area. The semi-empirical Dubois model and 

inversion of the model is discussed in this chapter. Lastly, the relationship 

established between radar backscatter and soil surface roughness is outlined. 

 

Chapter 6 describes the three methodologies developed and used for surface soil 

moisture mapping of the Kurukavak catchment. First, background and application of 

the Backscatter Corrections Factors method, which is used for bare or sparsely 

vegetated farmland and pasture fields, is discussed. Then, theory and application of 

the Water Cloud Model that is applied for the densely vegetated farmland and 

pasture areas is detailed. The Basin Indexes method, which does not incorporate 

radar imagery, is the third method of the study and application details of it for the 

forest land use class of the catchment is presented as well. Finally, coupling of these 
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methods for producing surface soil moisture maps of the Kurukavak basin is 

discussed. 

 

Chapter 7 outlines the procedures carried out for the rainfall-runoff model 

simulation of the 01-June-2005 flood event. First, a detailed discussion about model 

parameters and calibration procedure is given in this chapter. Then, the simulations 

performed for distributed and lumped initial soil moisture conditions are presented 

with a comparison between the outcomes of the two conditions. 

 

Chapter 8 presents a detailed discussion about all aspects of the study. Finally, 

recommendations for future studies and concluding remarks are given in Chapter 9.  
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CHAPTER 2 

 

REMOTE SENSING OF SOIL MOISTURE 

 

 

2.1. Remote Sensing 

 

Remote sensing is the science of obtaining information about an object through the 

analysis of data acquired by a device that is not in contact with the object. Reading 

could be the best example for remote sensing, in which the object is the words on 

the paper, eyes are the device that determines the black and white areas of the 

page, and brain is processing this data to form knowledge (Lilesand and Kiefer, 

1999).  

 

According to this concept, many instruments and methods of observations could be 

accepted as remote sensing, but one of the major goals of this science is to 

investigate broader areas beyond the sight of human eye, which necessitates 

utilizing space satellites or planes for the process of sensing. Moreover, among 

many types of sensors collecting remote data, light or electromagnetic sensors are 

the key instruments of remote sensing. 

 

In remote sensing, electromagnetic waves are categorized by their wave lengths 

within the electromagnetic spectrum (Figure 2.1). Similar to the radio waves or X-

rays, the visible light is one of the forms of the electromagnetic energy. This energy 

radiates in accordance with the basic wave theory; traveling in a harmonic, 

sinusoidal way with the speed of light (Figure 2.2). Although certain regions of the 

spectrum are assigned with known names, there is no clear boundary between 

these regions.  
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Figure 2.1. The electromagnetic spectrum 

 

The basic characteristics of a digital remote sensing data are similar to photography. 

The data are actually a two dimensional array of discrete picture elements or pixels 

(Lilesand and Kiefer, 1999). The value of each pixel represents the average 

brightness or radiance measured over the ground area corresponding to that pixel. 

The pixel values, or Digital Numbers (DN), are positive integer values that result 

from quantizing the original electrical signal to numeric values. In a typical remote 

sensing image the DN values are recorded over such scales; 0 to 255, 0 to 511, etc. 

These ranges represent the set of integers that can be recorded using 8 and 9 bit 

computer scales, respectively.  

 

Figure 2.2. An electromagnetic wave 
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The sensors used in remote sensing of the earth can be categorized into two 

distinct groups according to their source of electromagnetic energy. The passive 

sensors require external energy sources, such as sun. Similar to the human eye or 

photographic films, these sensors generally record the reflected solar energy or the 

naturally available energy. On the other hand, active sensors have their own source 

of energy. Like a camera utilizing flash, these sensors transmit their own 

electromagnetic energy and hence record the reflected amount of the previously 

transmitted energy. 

 

First remote sensing satellite systems were generally designed to work within the 

visible band of the electromagnetic spectrum with a single sensor. Similar to major 

passive systems, these satellites were located on a sun-synchronous orbit, in which 

the satellite always passes over the sun-illuminated part of the earth. But in the last 

decades with the development in technology and increasing need for better imaging 

systems, today’s satellite platforms are occupied with more than one sensor, 

acquiring data on a wider range of the spectrum. 

 

2.2. Microwave Remote Sensing 

 

Remote sensing of the earth by utilizing the sensors working within the microwave 

portion of the electromagnetic spectrum is known as microwave (MW) remote 

sensing. This portion includes wavelengths within a range of 1 mm to 1 m 

approximately.  There are two distinct features of microwave remote sensing among 

the remote sensing point of view: 

 

• Microwaves can penetrate atmosphere under almost all conditions. Different 

from sensors working within the visible bands, images acquired by MW 

sensors are free of clouds, haze, smoke, etc. 

• Reflection and emission characteristics of the earth materials under MWs 

have no direct relationship to their similar characteristics under 

electromagnetic energy from thermal or visible bands (Lilesand and Kiefer, 

1999).  
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Similar to other remote sensing systems, MW sensors can be both airborne 

(mounted on a plane) and spaceborne (mounted on a satellite platform). Moreover 

the source of illumination is the main distinction for MW systems. Radar (Radio 

Detection and Ranging) is an example of the active MW systems, which have its 

own source of illumination (or energy).  On the other hand, the passive sensors, 

which are referred as microwave radiometers, respond to the low level of reflected 

and emitted MW energy originating from the object. For the radiometer, the 

transmission source is the target itself, and the radiometer acts passively as a 

receiver (Ulaby et al., 1981a). 

 

2.2.1. Side-Looking Radar 

 

Radar was first developed and used for detection of location and orientation (with 

respect to the radar) of objects by using radio waves. The working principles of all 

radar systems start with sending small pulses of electromagnetic energy in the 

direction of interest and then recording the strength and origin of the echoes 

(reflections) received from the objects (Lilesand and Kiefer, 1999). 

 

The most known radar systems are the ones used for air traffic and weather 

forecasting. These systems are called as plan position type, have a 360° rotating 

antenna and displaying the plan view (map like view) of the objects within the radar 

range. However, this type of radar systems is not suitable for common remote 

sensing applications due to their rather poor spatial resolution (Lilesand and Kiefer, 

1999). 

 

Radar systems used for remote sensing applications fall within three categories:  

imaging radars, scatterometers and altimeters. Majority of the remote sensing 

applications require imaging radars, but specialized applications use scatterometers 

and altimeters (Ulaby et al., 1981a).  

 

Most imaging radars used for remote sensing are Side-Looking Radars (SLR), which 

were first developed for military purposes in the late 1940s (Ulaby et al., 1981a). 

SLR (or SLAR) is a system that utilizes an antenna which is fixed below the aircraft 
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and pointed to the side. The basic operating principles of a SLR system are shown 

in Figure 2.3 (Lilesand and Kiefer, 1999). MW energy is transmitted from the radar 

antenna by means of small pulses which propagate in the air with the speed of light 

and according to the wave theory. As described in Figure 2.3, the pulse will reach to 

the house at the 7th time and reach to the tree at the 9th time, but return echoes will 

return to the antenna at the 13th and 17th times, respectively. Since the house is 

more reflective than the tree, a stronger response is recorded by the radar sensor. 

After processing of all sent and received signals, intensity of the response is 

reflected as the objects DN value and return time of pulse is reflected as the 

distance of the object from the sensor (Ulaby et al., 1981a).    

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3. Operating principle of SLR systems (Lilesand and Kiefer 1999) 

 

Due to their side looking nature, remote sensing radar systems have a totally 

different geometry from the other remote sensing systems. Figure 2.4 illustrates the 

system of names typically used for describing radar data acquisition. As shown in 

Figure 2.4, the incident angle (or its synonym incidence angle) is the angle between 

the radar beam and the normal to the earth surface at the point of incidence. In this 

figure, nadir refers to the point which is directly beneath the sensor. 

 

The ground resolution of a SLR system is defined by two parameters: pulse length 

and antenna beamwidth (β). The pulse length of the radar signal is determined by 
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the interval of the time that the antenna emits its electromagnetic energy and it 

defines the ground resolution in the range direction (perpendicular to flight 

direction). On the other hand, the width of the antenna beam determines the 

ground resolution in the flight (azimuth) direction (Lilesand and Kiefer, 1999). 

 

In MW remote sensing systems the radar beamwidth is controlled by; 

 

a) The physical (actual) length of the antenna. This type of system is called as Real 

Aperture Radar and it is hard to obtain small β values. 

 

b) Synthesizing a virtual antenna length which makes it possible to have smaller 

beamwidths and it is called as Synthetic Aperture Radar (SAR) (Lilesand and Kiefer, 

1999). The SAR system has a major advantage over the real-aperture system that 

the resolution of the image in the flight direction is independent of the distance 

between the target and the radar (Ulaby et al., 1981a). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4. Geometry of radar data collection 

 

Although they have narrow effective antenna beamwidths (higher spatial 

resolution), the Synthetic Aperture Radars (SARs) has a physically short antenna. 
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However, by utilizing a modified data recording and processing technique, they 

synthesize the effect of a very long antenna. This is achieved by a method called as 

Doppler Beam Sharpening (Lilesand and Kiefer, 1999).   

 

2.2.2. Radar Signal Characteristics 

 

The two primary factors affecting the transmission characteristics of the signals 

from any radar system are the wavelength and the polarization of the energy pulse 

used in the system (Lilesand and Kiefer, 1999). During the early stages of radar 

development letter codes (K, X, L, etc) were assigned to certain bands of the 

microwave portion due to military security reasons. These arbitrarily assigned band 

names are continued to use as a matter of convenience. These representations of 

the MW bands with their respective wavelengths are given in Table 2.1.  

 

Table 2.1. Radar band designations (Lilesand and Kiefer, 1999) 

 

Band Name Wavelength (λ) (cm) 

Ka 0.75 - 1.1 

K 1.1 - 1.67 

Ku 1.67 - 2.4 

X 2.4 - 3.75 

C 3.75 - 7.5 

S 7.5 - 15 

L 15 - 30 

P 30 - 100 
 

In the electromagnetic wave theory, polarization describes the direction of light 

wave oscillations.  Independent of its wavelength, in MW systems radar signals can 

be transmitted and/or received in different modes of polarization. The signal can be 

filtered in such a way that its electrical wave vibrations are restricted to a single 

plane. A radar signal can be transmitted in either Horizontal (H) or Vertical (V) 

plane. Similarly, it can be received on either a horizontal or a vertical plane. As a 

result, there exist four different combinations of signal transmission and reception: 

H send H receive or HH, H send V receive or HV, VV and VH (Lilesand and Kiefer, 
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1999). Figure 2.5 illustrates the vertical and horizontal polarizations of 

electromagnetic waves. 

 

2.2.3. Radar Image Analysis 

 

Side-looking radar image analysis has been successful in many fields of applications: 

mapping geological structures and vegetations, determining sea ice types, etc. 

Because of its side-lighted characteristic, radar images resemble aerial photography 

taken under low sun angle conditions (Lilesand and Kiefer, 1999). In the radar 

terminology and MW literature, backscatter is frequently mentioned. From the 

physics point of view, backscatter is the reflection of waves, particles, or signals 

back to the direction where they came from. In other terms, it represents the 

amount of the returning radar pulses to the antenna. MW sensors measure the 

amount of backscatter as the intensity of the returning electromagnetic energy and 

it is commonly referred in the units of decibels (dB). 

 

 

 

Figure 2.5. Polarization modes 
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In radar imagery, intensity of backscatter depends on; 

 

a) target parameters: geometric and electrical characteristics of the surface; 

roughness, moisture, incidence angle. 

b) sensor parameters: wavelength, polarization, incidence angle (Sahebi et 

al., 2002). 

 

Soil Surface Roughness 

 

Soil surface roughness is one of the surface geometric characteristics which has a 

dominant effect on radar backscatter, intensity of the return signals. In general 

terms, roughness is a measurement of the small-scale variations in the height of a 

physical surface. From radar remote sensing point of view, a surface is called as 

rough if it scatters the incoming radar energy in all directions and returns a 

significant portion back to the antenna. Consequently, a surface is called as smooth 

if it reflects most of the energy away from the antenna (Lilesand and Kiefer, 1999). 

 

Surface roughness is usually described by two parameters: standard deviation of 

surface height (h) and correlation length (c) (Ulaby et al., 1981b). The first 

roughness parameter is also referred as root mean square height of surface 

variations (Sahebi et al., 2002) or simply root mean square roughness and 

represents the amount of deviations observed over the soil surface from the 

reference/mean surface. As illustrated in the Figure 2.6, the root mean square 

roughness, h, is obtained by measuring the surface variations (ri) from the 

reference/mean surface (shown with the dotted line) along a sampling length of L. 
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Figure 2.6. Root mean square roughness 
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The second roughness parameter, the correlation length (c) provides a reference for 

estimating the statistical independence of two points over a surface. If the two 

points are separated by a horizontal distance greater than c, then their heights may 

be considered to be statistically independent of one another (Ulaby et al., 1981b).  

 

In this study, since no field measurement of roughness parameters are available, 

inversion of the semi-empirical Dubois backscatter model (Dubois et. al., 1995), 

which has a single roughness parameter (root mean square of surface heights; h), 

is utilized for computation of soil surface roughness on bare fields of the study 

catchment. The detailed discussion about the Dubois model is given in Chapter 5 of 

this thesis. 

 

According to the incoming signal wavelength, the surface acts as rough or smooth. 

Since MW wavelengths vary from 1 cm to 100 cm approximately, a surface which 

acts as rough in L band may act as smooth in K band. Rayleigh criterion or its 

modified version (Table 2.2) is generally used to determine surface behavior (rough 

or smooth) for a specific MW sensor. 

 

Table 2.2. Rayleigh and Modified Rayleigh criterions (Sabins, 1997) 

 

Rayleigh Criteria Modified Rayleigh Criteria 

݄ ൐
ߣ
8ൗ

cosሺߠ௅ሻ
 Rough 

݄ ൐
ߣ
4ൗ

cosሺߠ௅ሻ
 Rough 

 Intermediate 

otherwise Smooth 
݄ ൏

ߣ
25ൗ

cosሺߠ௅ሻ
 Smooth 

 

λ: wavelength, θL: Local incidence angle 
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Vegetation 

 

Similar to soil surface roughness, vegetation cover of the target area has a 

significant effect on the radar backscatter. Similarly, as the density of the vegetation 

canopy increases, amount of scattering also increases. As a general rule, strong 

volume backscatter will be expected when mean vegetation size is equal to the 

radar wavelength. It is also possible to investigate vegetation by using radar 

imagery. For this purpose, using small wavelengths is more suitable for sensing 

crops and trees, on the other hand, larger wavelengths are used for sensing trunks 

and limbs. Moreover, vegetation with higher moisture content returns more signals 

than that with lower moisture content (Lilesand and Kiefer, 1999). 

 

Electrical Characteristics 

 

Similar to the geometric characteristics, the electrical characteristics of surface 

features have the same strong effect on radar backscatter. One of the measures of 

an object’s electrical characteristics is the complex dielectric constant (DC) which is 

a fundamental property that characterizes both the reflection and the attenuation 

properties of a wave interacting with that material (Ulaby et al., 1996). In the MW 

region of the electromagnetic spectrum, most natural materials have a dielectric 

constant within the range of 3 to 8 when dry. On the other hand, water has a 

dielectric constant of 80 and hence the presence of moisture in soil or vegetation 

increases the radar reflectivity significantly. In fact, a change in radar backscatter is 

often related to changes in moisture content much more than changes from one 

material to another. Since the dielectric constant of water is at least 10 times 

greater than that of dry soil, the presence of moisture in the top few centimeters of 

bare soil can be detected by radar imagery (Lilesand and Kiefer, 1999). 

 

2.3. Remote Sensing of Soil Moisture 

 

Soil moisture refers to the water stored in the pores of the soils. It is the key 

parameter controlling the separation of rainfall into infiltration and surface runoff. 

Soil moisture content also has a limiting effect on evaporation and transpiration and 
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no need to mention but it is crucial for plant growth (Wagner et al., 2003). 

Accordingly, several methodologies have been developed to generate soil moisture 

information. For small scale studies direct; such as neutron probes and Time 

Domain Reflectometer (TDR), and indirect measurements; such as gravimetric, are 

performed. However, methodologies involving remote sensing techniques are 

developed for local and regional scale studies (Ceballos et al., 2005). 

 

Initial soil moisture condition of a watershed is significant for almost all hydrological 

simulation models. Considering such watershed scale applications, obtaining point 

measurements of soil moisture would be sufficient only up to a certain level. On the 

other hand, remote sensing of soil moisture would enable us to estimate the initial 

wetness condition of the basin in a distributed manner. From this point forward, 

optical and microwave remote sensing of soil moisture is summarized with their 

advantages and limitations. 

 

Visible and InfraRed Reflectance 

 

The spectral information obtained from visible, near infrared and shortwave infrared 

wavelengths is related to soil moisture as a function of spectral absorption 

characteristic of the surface. For example, an increase in soil moisture generally 

leads to a decrease in soil reflectance for bare soils. Even if there are many sensors 

available for these wavelengths with fine spatial resolution, their relation to 

moisture content is weak. Moreover, inability to penetrate clouds and being strongly 

affected by vegetation are the other limitations (Moran et al., 2004). 

 

Thermal Infrared Radiation 

 

Estimation of soil moisture using remotely sensed thermal wavelengths is mainly 

related to the use of radiative temperature measurements. Available moisture in soil 

directly influences soil temperature by increasing both specific heat and thermal 

conductivity (Moran et al., 2004). As a result, variation in surface thermal radiation 

is primarily due to varying moisture content for bare soils (Friedl and Davis, 1994). 

Similar to visible bands, a number of sensor having high spatial resolution and broad 
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coverage are available, but studies utilizing these type of sensors also suffer from 

cloud and vegetation cover (Moran et al., 2004). 

 

Passive Microwave Radiation 

 

Due to the large differences in dielectric constant of dry soil and water, intensity of 

microwave radiation from soil is related to its moisture content for bare soils. 

Advantages of using these sensors are both their insensitiveness to cloud cover and 

their strong relationship to moisture content. On the other hand, strong influences 

of roughness and vegetation on these sensors are the major limitations (Moran et 

al., 2004). 

 

Active Microwave (Radar) 

 

Similar to passive MW sensors, the radar backscatter is highly correlated with the 

available soil moisture content. Moreover, they share the common advantages of 

cloud penetration and surface penetration up to almost 5 cm. Active MW imagery is 

also highly disturbed by surface roughness and vegetation cover. But major 

advantage of these sensors is that they acquire finer resolution imagery than 

passive microwave sensors (Moran et al., 2004). 

 

2.4. Soil Moisture Estimation Using SAR  

 

The only satellites that can currently meet the spatial resolution and coverage 

requirements of watershed scale applications are the active microwave sensors. 

Moreover, the most common active MW instrument is the Synthetic Aperture Radar 

(SAR) systems (Moran et al., 2004). This section of the study covers a brief review 

of the literature by grouping similar methodologies developed for soil moisture 

sensing with SAR. 
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Semi-empirical Approaches 

 

According to Ulaby et al. (1996) there are three major contributors of the radar 

backscatter from a vegetated surface (ߪ଴ሻ. 

 

଴ߪ ൌ ߬ଶߪ௦௢௜௟଴ ൅ ௩௘௚௘௧௔௧௜௢௡଴ߪ ൅ ௩௘௚ା௦௢௜௟଴ߪ  (2.1) 

 

in which; 

௦௢௜௟଴ߪ  is the backscatter contribution of the bare soil 

߬ଶ is the two-way attenuation of the vegetation layer 

௩௘௚௘௧௔௧௜௢௡଴ߪ  is the direct backscatter contribution of the vegetation layer 

௩௘௚ା௦௢௜௟଴ߪ  represents the multiple scattering involving the vegetation and 

ground surface  

 

For surfaces having high vegetation cover, ߬ଶ is almost 0 and hence backscatter is 

primarily determined by the scattering from the vegetation canopy. On the other 

hand, for sparsely vegetated areas, ߬ଶ is close to 1, and, the second and third terms 

of Equation 2.1 are negligible. In that case, radar backscatter is determined by soil 

roughness and moisture content (Engman and Chauhan, 1995). 

 

This method utilizes a two step algorithm; first vegetation backscatter is eliminated 

and then the relation between moisture content and backscatter is estimated by 

assuming a constant offset value due to roughness. Schneider and Oppelt (1998) 

have proposed the Equation 2.2, 

 

݉௦ ൌ ܽ ൅  ௦଴  (2.2)ߪܾ

 

in which; 

ms is the moisture content, 

a and b are constants, 

 .௦଴ is the radar backscatterߪ
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a and b in Equation 2.2 are linear regression coefficients determined primarily by 

field experiments. The major disadvantage of Equation 2.2 is that it is valid only for 

a certain type of sensor, land use and soil type, and, for areas when ߬ଶ, ௩௘௚௘௧௔௧௜௢௡଴ߪ  

and ߪ௩௘௚ା௦௢௜௟଴  are known or negligible (Moran et al., 2004).  

 

For a semiarid watershed in Arizona, the difference between dry and wet season 

SAR backscatter values are utilized to normalize the effects of roughness and 

topography. This method requires the images be acquired with exactly the same 

sensor type and configuration. In that study, effect of sparse vegetation is found to 

be negligible (Moran et al., 2000). 

 

An important disadvantage of semi empirical approaches is that sensitivity of radar 

backscatter to surface roughness can be much greater than the sensitivity of it to 

moisture content (Moran et al., 2004). 

 

SAR used for change detection 

 

This approach uses multipass SAR imagery to determine variations in the moisture 

content by assuming that the temporal variation of roughness and vegetation is at a 

larger scale than that of moisture content (Moran et al., 2004). During the time 

elapsed between two SAR images, it is assumed that there is relatively high change 

in moisture content but almost no change in roughness and vegetation conditions. 

It should be noted that this assumption is not valid for cultivated crops where 

roughness and vegetation changes significantly over short time periods (Moran et 

al., 2004). As a simple application, a normalized radar backscatter soil moisture 

index (NBMI) was derived over a site from two images acquired at two different 

times (t1 and t2) (Shoshany et al., 2000).  

 

ܫܯܤܰ ൌ
ఙ೟భ
బ ାఙ೟మ

బ

ఙ೟భ
బ ିఙ೟మ

బ   (2.3) 

 

Moreover, by using relatively long record of SAR images, it is also possible to 

correlate changes in backscatter with changes in moisture content. In a study by 
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Wickel et al. (2001), 10 radar scenes over a month period are acquired for an 

agricultural site in Oklahoma. After eliminating fields having high temporal variation 

of roughness, a strong correlation of 0.89 is calculated between backscatter and 

moisture content. 

 

SAR Data Fusion Approach 

 

This group of methods involves studies that integrate SAR images with other remote 

sensing images, such as optical and passive microwave. Majority of these 

techniques have addressed the information independency and interchangeability of 

integration of active and passive, and, active and optical remote sensing systems 

(Moran et al., 2004). 

 

The greatest advantage of active MW systems over passive sensors is the fine 

spatial resolution, where SAR resolution is in terms of tens of meters while passive 

MW resolution is in terms of tens of kilometers. However, both of them appear to 

have similar sensitiveness to soil moisture and near-similar sensitiveness to 

roughness (Chauhan et al., 1999, Du et al. 2000). Data fusion of passive and active 

MW sensing has a general form of using SAR backscatter for determining fine 

resolution vegetation and roughness parameters and then combining these with 

coarse resolution passive MW radiance for estimating soil moisture (Moran et al., 

2004). 

 

The methods of microwave and optical remote sensing have been separately used 

for the estimation of surface properties. There are several studies that have focused 

on the similarities between optical and SAR data. The SAR bands having longer 

wavelengths (> 6 cm) are being related to thermal measurements and for 

vegetated areas shorter SAR bands are related to optical vegetation indices (Moran 

et al., 1997).  
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SAR and Microwave Scattering Models 

 

The continuing researches on estimating the effects of roughness, vegetation and 

moisture content on radar backscatter have led to the use of physically based 

scattering models. These models generally predict the radar backscatter as a 

function of sensor and surface conditions, and hence can be used backwards to 

estimate soil moisture content. For this purpose, empirical, semi-empirical and 

theoretical models have been developed (Moran et al., 2004). 

 

Empirical models are usually based on experimental data and may only be 

applicable to the surface and sensor conditions of the experiment. In order to 

overcome this limitation, semi-empirical models, which have theoretical background 

and include model parameters obtained from experiments, have been developed. 

An example for this type is the Water Cloud Model (WCM) which represents the 

vegetation as a uniform cloud of spherical droplets (Attema and Ulaby, 1978).  

 

Moreover, the Integral Equation Model (IEM) (Fung et al., 1992) is a physically 

based radiative transfer model, which is developed for calculating radar backscatter 

from a randomly rough dielectric surface. Since IEM has combined Kirchhoff and 

small perturbation theories to address a wide range of roughness conditions, it is 

one of the most widely used scattering models (Moran et al. 2004). 

 

The parameters used in the IEM are; 

 

a) radar incidence angle (θ), 

b) surface roughness; 

i) standard deviation of surface heights (h) 

ii) surface correlation length (c) 

d) dielectric constant of the soil (ε), (Bindlish and Barros, 2000). 

 

The IEM has been found to be particularly suitable for retrieving soil moisture 

content from single type SAR backscatter values. Generally, for this type of 

application a prior knowledge of surface roughness is required to calculate moisture 
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values from the radar imagery. It also led to a number of methods for computation 

of distributed roughness parameters from orbiting SAR sensors (Moran et al., 2004). 

Known as IEM inversion algorithm, this technique requires the information of point 

moisture measurements and corresponding backscatter values for a number of 

locations, and is utilized to obtain point roughness values. One such methodology is 

developed by Bindlish and Barros (2000), where an iterative schema is applied to 

eliminate the two unknown surface roughness parameters from the observed 

backscatter values. After obtaining the surface parameters from the inversion 

algorithm, the IEM can be used in the forward direction to calculate the moisture 

values from radar backscatter. 

 

Baghdadi et al. (2002a) have improved moisture estimates through IEM inversion 

technique on multi incident angle SAR imagery. In another study, Baghdadi et al. 

(2002b) proposed empirical relations between several IEM parameters for the 

improvement of IEM inversion technique. In addition, Rahman et al. (2008) utilized 

multi-angle radar imagery for roughness and soil moisture estimation and found 

these parameters with good accuracy at the watershed scale. Moreover, Verhoest et 

al. (2000) used multi temporal data to determine an effective roughness parameter. 

In another study (Sahebi et al., 2002), an index very similar to Equation 2.3 is 

proposed as Normalized Radar Backscatter Roughness Index (NBRI). The NBRI is 

determined from Equation 2.4, in which subscripts 1 and 2 represent two different 

incidence angle conditions. This index is tested by comparing simulated (Geometric 

Optics Model) and observed (RADARSAT) data and correlation coefficients of 0.83 

and 0.95 were found, respectively. 

 

ܫܴܤܰ ൌ ఙభబାఙమబ

ఙభబିఙమబ
  (2.4) 

 

There have been several other improvements and additions to the IEM that would 

increase the use of it for moisture retrieval. In order to reduce the complexity of 

IEM, algorithms based on numerical simulation of IEM for a range of roughness and 

moisture conditions have been developed. Chen et al. (1995) have utilized the IEM 

to generate backscatter values for a range of incidence angle, roughness and 
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moisture conditions. Then these values are used as a look-up table of the IEM from 

which backscatter and moisture values are related to each other on a theoretical 

basis. Similar studies were also performed by Shi et al. (1997) and van Oevelen and 

Hoekman (1999). These simplified IEM algorithms require fewer parameters and are 

easier to use with remote sensing data (Moran et al., 2004). 

 

Integration of vegetation backscatter effect into the IEM inversion algorithm is 

another important improvement of the IEM methodology. Even if it has successful 

applications for sparsely vegetated areas, the original IEM algorithm was developed 

for bare soil conditions (Moran et al. 2004). Bindlish and Barros (2001) have 

formulated an IEM vegetation scattering method in the framework of water cloud 

model (WCM). They reported that the modified IEM algorithm led to a significant 

improvement in the correlation coefficients between ground measured and SAR 

derived moisture values. 
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CHAPTER 3 

 

STUDY AREA AND SOIL MOISTURE DATA 

 

 

3.1. Study Area 

 

Kurukavak basin, which is a small catchment located within the Bilecik province of 

Turkey, is selected as the study area of this research. The basin covers an area of 

4.73 km2 and it is one of the subbasins of the Sakarya River. The Digital Elevation 

Model (DEM), which is obtained from 1/25000 scaled contour maps of the area, and 

drainage network map of the basin are presented in Figure 3.1. The maximum and 

minimum elevations of the basin are 1080 m and 840 m, respectively. Kurukavak 

Basin is one of the pilot basins of General Directorate of Agricultural Research of 

Turkey. The directorate has been collecting rainfall and runoff data within the basin 

since 1984.    

 

Figure 3.1. Location, DEM and drainage network of the Kurukavak Basin 
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In order to obtain an up-to-date land use map and vegetation index of the study 

site, a high resolution satellite image of the area has been acquired by Quickbird 

satellite. This image is composed of four spectral bands, which are Blue (B: 450 – 

520 nm), Green (G: 520 – 600 nm), Red (R: 630 – 690 nm), and Near InfraRed 

(NIR: 760 – 900 nm), and has a ground resolution of 0.60 meters. The date of the 

acquisition is 6th of May of 2006 and the RGB composite of the image is presented in 

Figure 3.2. The land use map of the basin, which is digitized from the Quickbird 

image, is also shown in Figure 3.3.  

 
 

 

Figure 3.2. The RGB composite Quickbird image of the Kurukavak Basin 

 

After obtaining the land use map of the study site, areal distribution of the land use 

classes is computed in percentages and square kilometers (Table 3.1). It is 

observed from Table 3.1 that about half of the basin is covered with forest and the 

rest of the area is almost shared with two land use classes; farmland and pasture. 
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Figure 3.3. The land use map of the Kurukavak basin 

 

Table 3.1. Areal distribution of the land use classes within the basin 

 

 

 

 

 

 

 

3.2. Field Studies and Collection of Soil Moisture Data  

 

Between September 2004 and August 2005, a total of nine field trips were carried 

out within the basin for collecting soil moisture data. The volumetric soil moisture 

values were measured with a Time Domain Reflectometer at the previously selected 

68 stationary points which were grouped within 9 plots. Since radar waves could not 

penetrate through dense vegetation canopy such as forest, these measurement 

locations are selected over farmland and pasture fields of the basin. In addition to 

land use maps, the topographic index (discussed in Chapter 6.3) map of the basin is 

Land use Area (km2) Area (%) 

Farmland 1.12 23.6 

Pasture 1.03 21.9 

Forest 2.51 53.1 

Other 0.07 1.4 
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also considered in selection of the plot locations. The geographic locations of these 

measurement plots are presented in Figure 3.4, and, land use classes and number 

of measurement points within each plot is tabulated in Table 3.2. The selection 

criteria for location and number of points are discussed in section 3.3 of this 

chapter. 

 

 

Figure 3.4. Locations of soil moisture measurement plots within the basin 

 

The Time Domain Reflectometer (TDR) is an electronic tool, which is composed of 

two parts as shown in Figure 3.5: a display/computing unit and a measurement 

probe. As photographed in Figure 3.6, a typical volumetric soil moisture 

measurement is carried out by inserting the two probes of the instrument into the 

soil and reading the value from the display in the units of percentages (%). TDR 

measures the electrical conductivity of the soil between the probes and some of the 

device parameters are tabulated in Table 3.3. For all point soil moisture 

measurements, probes having a length of 16 cm are used in all field studies. 
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Table 3.2. Land use class and number of points within nine measurement plots 

 

Plot # Land use Number of Points 

P1 Farmland 6 

P2 Farmland 8 

P3 Farmland 9 

P4 Farmland 10 

P5 Pasture 8 

P6 Farmland 7 

P7 Farmland 9 

P8 Pasture 7 

P9 Pasture 4 

Total 6 Farmland + 3 Pasture 68 = 49 + 19 
 

 

Figure 3.5. Time Domain Reflectometer (TDR) 

 

Table 3.3. Technical specifications of the TDR instrument 

 

Measurement Time 10 -15 seconds 

Sensitivity 0.1 % 

Accuracy on Remeasurement  ± 0.3 % 

Range of Measurement 0-100 % 

Temperature Range -15 ºC  -  50 ºC 
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Figure 3.6. A typical measurement with a TDR 

 

The field studies are carried out for the water year 2004 – 2005. At each field trip, 

surface soil moisture values of the 68 previously selected locations are measured 

with the TDR. The field study dates are selected in advance to match the radar 

image acquisition dates, which will be discussed in Chapter 4 of the thesis. The 

dates and measured average soil moisture values on these field trips are tabulated 

in Table 3.4. It is observed from Table 3.4 that the highest average soil moisture is 

measured on 2-June-2005, just one day after a flood event occurred in the 

catchment.  

 

3.3. Resampling of Point Soil Moisture Measurements 

  

In the planning phase of the field studies, locations of the soil moisture 

measurement plots are selected from farmland and pasture areas of the basin. Each 

plot is homogenous for its land use class, and measurement points within the plot 

are determined in a grid manner (by taking regular interval points) to represent the 

whole plot. Depending on the size and orientation of the plot, the total number and 

distribution of the measurement points vary among these plots (Table 3.2). 
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Table 3.4. Field study dates and measured average  

volumetric soil moisture values (%) 

 

Date 
All 

n = 68 
Pasture 
n = 49 

Farmland 
n = 19 

09-Oct-2004 16.17 19.20 14.57 

13-Nov-2004 13.79 18.62 11.92 

15-Dec-2004 27.89 36.96 24.37 

18-Dec-2004 20.50 27.47 17.73 

28-Apr-2005 24.28 34.57 20.29 

07-May-2005 26.12 35.27 22.58 

02-Jun-2005 34.37 44.74 30.34 

11-Jun-2005 29.24 43.88 23.56 

20-Aug-2005 12.06 13.01 11.69 
n; number of point soil moisture measurements 

 

In Geographic Information System (GIS) terminology, grid or raster data model 

represents the geographic distribution of a single variable on an array of equally 

sized square cells arranged in rows and columns. Each grid cell is referenced by its 

geographic X, Y location. The Digital Elevation Model (DEM) of the study area 

shown in Figure 3.1 is an example of the grid/raster type data model, in which 

topographic elevation of the basin is represented by 30 m x 30 m grid cells each of 

which has an elevation value for the 900 m2 of the cell area. Moreover, both the 

radar and Quickbird images have raster type data models, with ground resolutions 

(square cell size/dimension) of 12.5 m and 0.60 m, respectively.  

 

In the analysis part of the study, while investigating relationships between the point 

moisture and radar backscatter values, one of the major problems faced is matching 

point moisture measurement locations with the grid cell representation of 

backscatter values. In order to derive similar relations effectively, it is concluded 

that coinciding point locations with the raster data cells is a necessity.  
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This is achieved by first selecting the raster type data having the highest ground 

resolution. Since radar images have a ground resolution of 12.5 m and the 

Quickbird image has a 0.6 m cell size, resolution of the DEM of the catchment, 30 m 

is the highest among the raster data sets and it is selected as the base resolution 

for the study. Then, soil moisture surfaces are computed from the point 

measurement locations. A single surface is derived for each plot on each field trip 

date by using Kriging interpolation technique (Stein, 1999). In this procedure, the 

Inverse Distance Weighted (IDW) and Spline surface interpolation techniques are 

also used. The decision in selection of the interpolation technique is based on by 

visual inspection of the soil moisture surfaces overlaid with the slope map of the 

respective plot. As a general rule, soil moisture values are expected to increase with 

the increasing slope. It is observed that the surfaces interpolated with the Kriging 

technique have better results than the other two interpolation techniques. 

 

After overlaying the interpolated surfaces with grid cell boundaries of the DEM, 

average moisture value within each cell boundary is computed from the interpolated 

surface and assigned to the point at the geometric center of the cell. As an 

example, the original TDR measurement points (indicated with a + sign) and the 

new resampled points (indicated with square dots) of the Plot 1 are presented in 

Figure 3.6. The square grid cells shown in Figure 3.7 have 30 m by 30 m 

dimensions and obtained from grid data model of the DEM. This interpolation 

technique is applied to all plots and the total number of points is increased to 126. 

The number of original and resampled points within each plot is tabulated in Table 

3.5.  

 

Finally, results of the interpolation method are analyzed by comparing average, 

maximum and minimum moisture values of the original TDR measurements          

(n = 68) in Table 3.6, with the similar values of the resampled points (n = 126) in 

Table 3.7. This is carried out by computing percent change in the volumetric soil 

moisture values with Equation 3.1. 

 

݄݁݃݊ܽܥ ݐ݊݁ܿݎ݁ܲ ൌ  ሺெ௢௜௦௧೅ವೃି ெ௢௜௦௧ೃ೐ೞೌ೘೛೗೐೏ሻ
ெ௢௜௦௧೅ವೃ

ൈ 100  (3.1) 
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Table 3.5. The number of original and resampled points for each plot 

 

Plot Land use 
Number of Points 

Original - TDR Resampled - Kriging

P1 Farmland 6 9 

P2 Farmland 8 9 

P3 Farmland 9 12 

P4 Farmland 10 24 

P5 Pasture 8 20 

P6 Farmland 7 12 

P7 Farmland 9 16 

P8 Pasture 7 15 

P9 Pasture 4 9 

Total 6 Farmland + 3 Pasture 68 = 49 + 19 126 = 82 + 44 
 

 

 
 

+ original TDR measurement location 

. new resampled point moisture location 
 

Figure 3.7. Original and resampled point soil moisture locations in Plot 1 

30 m 

30
 m
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Equation 3.1 is evaluated for all of the average, maximum and minimum moisture 

values of the original TDR and resampled points in Tables 3.6 and 3.7, and the 

computed percent changes are tabulated in Table 3.8. It is also calculated from 

Table 3.8 that the average percent change in daily average moisture values is         

-6.56 % for all farmland and pasture land use classes, -2.63 % for farmlands and    

-4.04 % for pasture areas. These estimates are found accurate enough and the 

analyses described in the next chapters of the thesis are continued with the new 

126 point locations.  

 

 

Table 3.6. Statistical parameters of the original TDR points  

(volumetric soil moisture values in %) 

 

% Farm and Pasture Farm Pasture 

n1 + n2 = 68 n1 = 49 n2 = 19 

Date Ave Min Max Ave Min Max Ave Min Max 

09-Oct-04 16.17 8.26 36.40 14.57 8.26 32.38 19.20 9.10 36.40

13-Nov-04 13.79 5.70 37.80 11.92 5.70 24.35 18.62 9.70 37.80

15-Dec-04 27.89 14.60 62.30 24.37 14.60 36.90 36.96 19.00 62.30

18-Dec-04 20.50 5.10 44.00 17.74 5.10 27.00 27.47 18.51 44.00

28-Apr-05 24.28 9.70 55.40 20.29 9.70 31.40 34.57 19.20 55.40

07-May-05 26.12 10.70 51.60 22.58 10.70 33.20 35.27 22.90 51.60

02-Jun-05 34.37 21.60 63.50 30.34 21.60 38.20 44.74 34.70 63.50

11-Jun-05 29.24 9.90 70.80 23.56 9.90 38.20 43.88 28.50 70.80

20-Aug-05 12.06 4.80 35.70 11.69 4.80 26.70 13.01 6.70 35.70
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Table 3.7. Statistical parameters of the resampled points  

(volumetric soil moisture values in %) 

 

% Farm and Pasture Farm Pasture 

n1 + n2 = 126 n1 = 82 n2 = 44 

Date Ave Min Max Ave Min Max Ave Min Max 

09-Oct-04 16.52 7.04 31.27 14.64 8.04 27.82 18.93 7.04 31.27

13-Nov-04 14.51 5.93 35.62 11.92 5.93 20.69 19.32 8.31 35.62

15-Dec-04 30.19 15.24 58.46 25.27 15.24 37.78 39.36 20.04 58.46

18-Dec-04 21.58 6.64 42.85 17.82 6.64 25.83 28.60 19.84 42.85

28-Apr-05 26.23 8.96 54.36 20.68 8.96 32.88 36.57 23.35 54.36

07-May-05 28.20 11.57 52.77 23.15 11.57 35.32 37.61 24.95 52.77

02-Jun-05 35.82 22.06 57.36 30.78 22.06 36.71 45.22 37.59 57.36

11-Jun-05 32.25 11.38 68.13 24.67 11.38 36.44 46.38 29.81 68.13

20-Aug-05 12.98 5.09 32.69 12.66 5.09 25.44 13.56 5.59 32.69
 

 

 

Table 3.8. Percent change between the average, minimum and maximum values of 

soil moisture for original TDR and resampled points 

 

% Farm and Pasture Farm Pasture 

Date Ave Min Max Ave Min Max Ave Min Max 

09-Oct-04 -2.13 14.74 14.09 -0.47 2.71 14.08 1.39 22.61 14.09

13-Nov-04 -5.17 -4.08 5.77 -0.02 -4.08 15.04 -3.76 14.33 5.77 

15-Dec-04 -8.26 -4.35 6.16 -3.70 -4.35 -2.39 -6.50 -5.45 6.16 

18-Dec-04 -5.32 -30.25 2.62 -0.49 -30.25 4.34 -4.11 -7.16 2.62 

28-Apr-05 -8.02 7.64 1.87 -1.91 7.64 -4.73 -5.79 -21.61 1.87 

07-May-05 -7.97 -8.14 -2.26 -2.57 -8.14 -6.38 -6.65 -8.95 -2.26 

02-Jun-05 -4.23 -2.15 9.67 -1.43 -2.15 3.89 -1.07 -8.32 9.67 

11-Jun-05 -10.30 -14.99 3.78 -4.71 -14.99 4.60 -5.69 -4.61 3.78 

20-Aug-05 -7.63 -6.06 8.42 -8.36 -6.06 4.72 -4.21 16.53 8.42 

Average ‐6.56  ‐5.29  5.57  ‐2.63  ‐6.63  3.69  ‐4.04  ‐0.29  5.57 
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CHAPTER 4 

 

POST-PROCESSING OF RADAR IMAGERY 

 

 

4.1. Synthetic Aperture Radar Data 

 

The European Space Agency (ESA), which is founded and financed by a number of 

European countries, is an international organization working for the commonwealth 

of Europe. In addition to other space missions, since 1991 ESA has orbited remote 

sensing satellites which are indeed satellite platforms including a number of sensors. 

The ESA satellite platforms of ERS-1 (not in operation), ERS-2 and ENVISAT-1 have 

an Active Microwave Instrument (AMI) which is used to acquire radar imagery.  

 

In this study, radar images that are acquired by the AMI of ERS-2 and ENVISAT-1 

satellites are used during the field campaign in the Kurukavak basin. Both of the 

AMIs on the two satellites work within the C band and have a frequency of 5.3 GHz. 

But they differ in other technical properties and capabilities, which are discussed 

briefly in this section of the study. 

 

The European Remote Sensing-2 (ERS-2) satellite, which is orbited on 21 April 

1995, is designed to be used for multidisciplinary earth observation studies. ERS-2 

has an altitude of 785 km and acquires images with a temporal resolution of 35 

days. The AMI on ERS-2 platform is composed of two sensors: SAR (Synthetic 

Aperture Radar) and Wind Scatterometer.  

 

The SAR of the ERS-2 platform is designed to look to the right of the platform 

(according to flight direction) with a constant angle of 20.3º from platform nadir. 

Hence, it obtains active microwave images with a certain angle of incidence at the 
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mid-span, which is about 23º. Moreover, the radar imagery acquired by ERS-2 SAR 

sensor has a constant swath width of 100 km and a single type of polarization of VV 

(Vertical Send – Vertical Receive). The basic operational geometry of the SAR 

instrument on ERS-2 is illustrated in Figure 4.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1. SAR image acquisition geometry of ERS-2 

 

The SAR images, which are acquired by ERS-2 satellite, are delivered to ESA ground 

stations (referred as PAFs: Processing and Archiving Facilities). The PAFs could 

perform predefined level of algorithms on the images depending on the user 

requirements. The ERS-2 SAR imagery acquired for the Kurukavak basin is Level 1 

products, referred as Precision Image Product (PRI). Level 1 products are calibrated 

and corrected for the SAR antenna pattern and range-spreading loss. Radar 

backscatter can be derived from the image for geophysical modeling, but no 

correction is applied for terrain-induced radiometric effects. The delivered image is 

not geocoded and terrain distortion has not been removed (Laur et al., 2004). The 

ground resolution of Level 1 PRI images used in this study is 12.5 meters and has 

unsigned DN values on 16 bit scale. 

 

The ENVISAT platform, which is launched on March of 2002, is designed to provide 

atmosphere, ocean, earth and glacier imaging for geoscientists. Similar to the other 

250 km

23°

Swath 
100 km 

Sub-satellite track 

ERS-2
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remote sensing platforms orbited in the last decade, the ENVISAT platform occupies 

a number and type of sensors. Of these sensors, the AMI includes a SAR antenna 

which is referred as Advanced Synthetic Aperture Radar (ASAR) instrument. 

 

As mentioned earlier, the ASAR instrument on the ENVISAT platform also works 

within the C band of microwave spectrum (5.3 GHz). Different from ERS-2 SAR 

images, the ASAR images could be acquired in one of the three polarization modes: 

HH, VV and VH, and, at a number of incident angles. As schematically represented 

in Figure 4.2, ASAR antenna is oriented on the right looking position of the platform 

but has the capability of acquiring images on seven different swaths, each having a 

different incident angle and swath width (Table 4.1). Moreover, the ASAR images 

could be obtained with alternative (dual) polarization, in which a single image can 

include two image layers of the same area having two different polarization types.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2. ASAR image acquisition geometry of ENVISAT 
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Table 4.1. ASAR image properties (ESA, 1998) 

 

Swath Swath 
Width (km)

Ground position 
from nadir (km) 

Incidence Angle 
Range (degree) 

IS 1 105 187 - 292 15.0 – 22.9 

IS 2 105 242 – 347 19.2 – 26.7 

IS 3 82 337 – 419 26.0 – 31.4 

IS 4 88 412 – 500 31.0 – 36.3 

IS 5 64 490 – 555 35.8 – 39.4 

IS 6 70 550 – 620 39.1 – 42.8 

IS 7 56 615 - 671 42.5 – 45.2 
 

 

The ASAR images acquired for the Kurukavak basin are also Level 1 type of 

products, which are referred as Image Mode Precision Image (IMP) products. 

Moreover, the obtained ASAR imagery has VV type of polarization with a ground 

resolution of 12.5 meters and a pixel depth of 16 bits. Since the images are 

acquired on Swath 2 (IS 2 in Table 4.1), the mid-span incidence angle of ASAR 

images is about 23º.  

 

Between October 2004 and August 2005, a total of nine field studies are performed 

(Table 3.3) and a total of 16 SAR and ASAR images are acquired (Table 4.2). 

Among these field trips and images, four of them; 09-Oct-2004, 18-Dec-2004, 

07-May-2005 and 20-Aug-2005, are selected for mapping surface soil moisture 

condition of the basin. The time of image acquisitions are also given in Table 4.1 in 

Coordinated Universal Time (UTC); 8:00 UTC time corresponds to 10:00 local time 

in Turkey. The selection is based on the vegetation condition of the study fields and 

the number of images acquired on that day. As tabulated in Table 4.2, on the 

selected field study dates two radar images, SAR and ASAR, are available for 

analysis. Even if two radar images are available, 11-Jun-2005 is not selected for 

moisture mapping due to lack of information about vegetation index on that day. 

The selection criteria will be also discussed in detail in the Chapters 5 and 6 of this 

study. 
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In the post-processing of radar images, first the product header files and then the 

image DN values are extracted. Since Level 1 products are not georeferenced, SAR 

and ASAR images are geocoded by using 1/25000 and 1/100000 scaled topographic 

maps of the region. For this purpose, a number of ground control points: like dam 

crest, roadway, airport runway, etc., are identified and used in georeferencing of 

radar images. The geocoded ERS-2 SAR image of 09-Oct-2004 is shown in Figure 

4.3, in which the İznik Lake can be identified as the large black area on the north of 

the image. 

 

Table 4.2. Radar imagery acquired for the study area 

 

Date ERS-2 / 
ENVISAT 

Time of 
Acquisition 
SAR/ASAR 

UTC 

Vegetation 
Condition for 
Farmland & 

Pasture Fields 

Average 
Soil 

Moisture 
(%) 

09-Oct-2004 SAR/ASAR 8:44/8:16 Sparse 16.17 

13-Nov-2004 SAR 8:44 Sparse 13.79 

15-Dec-2004 - - Almost Bare 27.90 

18-Dec-2004 SAR/ASAR 8:44/8:16 Almost Bare 20.50 

28-Apr-2005 ASAR 7:59 Dense 24.30 

07-May-2005 SAR/ASAR 8:44/8:16 Dense 26.12 

02-Jun-2005 ASAR 7:59 Dense 34.40 

11-Jun-2005 SAR/ASAR 8:44/8:16 Dense 29.24 

20-Aug-2005 SAR/ASAR 8:44/8:16 Sparse 12.06 

 

4.2. Computation of Incidence and Local Incidence Angles 

  

As schematically represented in Figure 2.4, incidence angle is the angle between the 

radar beam and the normal to the earth surface at the point of incidence. In 

derivation of radar backscatter values from image DN values, an incidence angle 

map of the image is required. The details of backscatter computation will be 

discussed in the section 4.3 of the study. 

 

In the post-processing of radar imagery, two incidence angle maps are computed 

for each radar image: incidence angle and local incidence angle. The former one, 

incidence angle, is computed for the whole swath (100 – 105 km) of SAR/ASAR 
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image and by assuming a flat terrain for the area. It is the incidence angle utilized 

in the derivation of backscatter values. The latter one, local incidence angle, is 

computed for the study catchment area and by utilizing topography of the basin. It 

is one of the parameters used to derive radar backscatter relationships in the 

Chapters 5 and 6 of the study. 

 

 

 

Figure 4.3. Georeferenced SAR image for 09-October-2004 

 

Different from airborne systems, incidence angle depends significantly on the earth 

curvature for spaceborne radar images. In this study, the reference ellipsoid 

(Goddard Earth Model 6: GEM6), which is used to represent the earth surface by 

ERS-2 and ENVISAT satellites, is utilized for the computations (Laur et al., 2004). 

 

The incidence angle (α) is computed by the procedure, which is described by ESA 

(Laur et al., 2004) and summarized below from Equation 4.1 to Equation 4.6. The 

schematic representation of the geometric and ellipsoid parameters used in the 

procedure is given in Figure 4.4.   
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Figure 4.4. The schematic representation of the parameters used in the  

computation of the incidence angle at the ith coordinate (αi) 

 

The Earth radius RT, is calculated using: 

[ ] [ ] 2/1222242 sin)/(cossin)/(cos −
×+××+= λλλλ ababaRT  (4.1) 

where; 

a is the equatorial Earth radius (6378.144 km) 

b is the polar Earth radius (6356.759 km) 

a and b values correspond to the ERS reference ellipsoid: GEM6 

λ is the geodetic latitude of image centre (obtain from product header file) 

 

From the ERS reference geometry, the ERS altitude (H) is given by:  

[ ] 2/1

11
2

1
2 cos2 α×××++=+ RRRRHR TTT  (4.2)  
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where; 

α1 is the near range incidence angle, (obtain from product header file) 

R1 is the slant range distance to the first range pixel = c x t1 / 2 

t1 is the zero Doppler range time of the first range pixel (obtain from product 

header file) 

c is the velocity of light 

 

The near range look angle (θ1) is given by: 

)/()cos(cos 111 HRRR TT +×+= αθ  (4.3) 

 

The Earth angle for the pixels in ith column of the image (ψi) is: 

Tii Rri /)1()( 11 Δ×−+=Δ+= ψψψψ  (4.4) 

Ψ1 = α1 – θ1 (Τhe Earth angle for first range pixel) 

Δr is the swath width 

 

The slant range to a pixel at ith column of the image (Ri) is given by: 

[ ] 2/122 cos)(2)( iTTTTi HRRHRRR ψ+××−++=  (4.5) 

 

The incidence (αi) angle at pixel coordinate i is given by: 

[ ] ( )TiTiTi RRRRHR ××−−+= 2/)(cos 222α  (4.6) 

 

The incidence angle grids are computed separately for the SAR and ASAR images of 

the dates: 09-Oct-2004, 18-Dec-2004, 07-May-2005 and 20-Aug-2005, with the 

same resolution of the actual images, 12.5 m. Even if they both acquire radar 

imagery of the same region on the same date, the ERS-2 and ENVISAT satellites 

pass through different tracks, and hence images obtained from these platforms 

have different incidence angle values for the same locations. As a result, two 

incidence angle grids are computed for each field study date. The incidence angle 

grid, evaluated for the SAR image of 09-Oct-2004 is shown in Figure 4.5. 
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Figure 4.5. Incidence Angle (α) grid of the 09-October-2004 dated SAR image 

 

In the computation of the local incidence angle (θL) of the Kurukavak basin, 

topographic characteristics of the study area are utilized. For this purpose, first the 

slope and aspect maps of the basin are derived from Digital Elevation Model (DEM) 

of the catchment. The schematic representation of the Equation 4.7 (Su et al., 

1997), which is then used to compute the local incidence angle (θL), is presented in 

Figure 4.6. 

 

Similar to the computation of incidence angle grids, local incidence angle grids are 

calculated separately for the SAR and ASAR images of the dates: 09-Oct-2004, 18-

Dec-2004, 07-May-2005 and 20-Aug-2005. Since the computation requires 

topography, these grids are evaluated within the basin boundary and with the same 

resolution of Kurukavak DEM, 30 meters. Moreover, two local incidence angle grids 
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are computed for each field study date and the local incidence angle grid, evaluated 

for SAR image of 09-Oct-2004, is shown in Figure 4.7. 

 

cos θL =  cos (s) x cos (α) + sin (s) x sin (α) x cos ( φ – a) (4.7) 

 

where: 

s is surface slope (radians)  

a is surface aspect (radians, with geometric north equal to 0) 

α is incidence angle (computed for GEM6 ellipsoid) 

φ is flight track angle: angle between the satellite track and the geometric 

north (radians: obtained from product header file) 

 

 

Figure 4.6. The schematic representation of the parameters used  

in the computation of the local incidence angle (θL) 

 

4.3. Derivation of Radar Backscatter Coefficients 

 

Depending on the source of electromagnetic energy, microwave sensors are 

categorized in two groups: active and passive sensors. Passive sensors, commonly 

called as Radiometers, record the electromagnetic energy emitted by the target 

itself and output of these systems are referred as Brightness or Brightness 

Temperature. On the other hand, active systems, known as Radars, transmit their 
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own source of energy and record the portion of the transmitted energy which is 

“scattered” by the target and reflected “back” to the sensor. Hence, output of radar 

systems is called as Backscatter. 

 

 

 
 

Figure 4.7. The Local Incidence Angle (θL) grid of  

the 09-October-2004 dated SAR image 

 

The radar backscatter values are computed from the DN (Digital Number) values of 

the acquired SAR and ASAR images. The computation is carried out by using 

Equations 4.8 and 4.9 (Laur et al., 2004; Rosich and Meadows, 2004) on a pixel by 

pixel basis. Similar to the derivation of incidence angle grids, backscatter values are 

computed for the whole swath width of the radar imagery. First, the backscatter 

values are derived in amplitude, and then these values are converted to decibel (dB) 

units. 
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ܵܤ ൌ ଶܰܦ  ൈ ଵ
௄

ൈ ୱ୧୬ሺןሻ
ୱ୧୬ሺןೝ೐೑ሻ

  (4.8) 

where: 

BS is radar backscatter (amplitude: m2/m2) 

DN is digital number 

K is calibration coefficient 

α is incidence angle (radians) 

αref is incidence angle at the center of the image (radians) 

 

BS (dB) = 10 x Log10(BS) (4.9) 

 

In the last part of post-processing of radar imagery, backscatter grids of the 

Kurukavak basin for the selected field study dates are extracted by overlaying basin 

boundary with the SAR and ASAR images.  

 

The interaction of radar beams with rough surface objects results in addition or 

cancellation of recorded waves, causing random return backscatter values for 

similar adjacent surfaces, which is known as speckle (Henderson and Lewis, 1998). 

Removal of speckle is necessary for quantitative analysis of radar imagery (Thoma 

et al., 2006). In this study, a 3 x 3 mean low pass filter, which calculates the 

average (mean) value of the 3 x 3 neighborhood and assigns this value to the 

center cell of the neighborhood, is used for speckle removal of the backscatter 

grids. 

 

Finally, the filtered backscatter grids, which have the same resolution of raw radar 

images (12.5 m), are resampled to the general working resolution of the study (30 

m). Moreover, resampling process is carried out to match exactly the same cell 

locations of the DEM, and hence to match the soil moisture measurement locations. 

The radar backscatter grids are computed for both of the SAR and ASAR images of 

09-Oct-2004, 18-Dec-2004, 07-May-2005 and 20-Aug-2005 dates. Among them the 

backscatter grid, derived for the SAR image of 09-Oct-2004 with a range of 

backscatter values from -17.43 dB to 3.67 dB, is represented in Figure 4.8. 
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Figure 4.8. The Backscatter grid of the 09-October-2004 dated SAR image 
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CHAPTER 5 

 

SOIL SURFACE ROUGHNESS 

 

 

Radar backscatter, which depends on sensor parameters of incidence angle, 

frequency and polarization, is also correlated with soil surface roughness and 

moisture for bare soil fields (Leconte et al., 2004). As a result, estimation of surface 

roughness (either by experimental observations or analytical methods) became an 

essential part of radar remote sensing of soil moisture studies (Baghdadi et al., 

2002c; Neusch and Sties, 1999; Sahebi et al., 2002).  

 

One of the major goals of this study is to establish an accurate relationship between 

radar backscatter and surface roughness for bare or sparsely vegetated areas of the 

Kurukavak basin. For this purpose, a semi-empirical backscatter model, Dubois 

Model, is utilized for the SAR and ASAR images of 09-Oct-2004, 18-Dec-2004 and 

20-Aug-2005 dates. Due to dense vegetation cover condition of the study 

catchment on 07-May-2005 (Table 4.2); this field study date is not included in 

roughness estimation.  

 

5.1. Inversion of Dubois Model 

 

One of the methods, commonly applied in radar remote sensing of soil moisture and 

surface roughness, is using a semi-empirical or a physical backscatter model. 

Among the many semi-empirical backscatter models, the most popular ones are 

those developed by Oh (Oh et al., 1992) and Dubois (Dubois et al., 1995) from 

scatterometer measurements and airborne SAR observations over bare soil surfaces. 

In addition, the Integral Equation Model (IEM) (Fung et al., 1992) is the most 
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commonly used physical backscatter model. IEM is generally used for inversion of 

soil moisture and roughness from radar data (Baghdadi and Zribi, 2006). 

 

Dubois et al. (1995) proposed a semi-empirical approach for modeling of radar 

backscatter values for bare surfaces, by using scatterometer data. The model 

relates the HH or VV polarization to the soil’s dielectric constant, surface roughness, 

incidence angle and radar frequency. Basically, for a given radar configuration and 

soil roughness, this model explicitly relates the dielectric constant of a soil to the 

backscattering coefficient, which is expressed in decibel (dB). The two equations of 

the model, for HH and VV radar polarizations, are given in Equations 5.1 and 5.2, 

respectively.  

 

ுுߪ
଴ ൌ 10ିଶ.଻ହ ቂୡ୭ୱభ.ఱ ఏ

ୱ୧୬ఱ ఏ
ቃ 10଴.଴ଶ଼ ఌ ୲ୟ୬ ఏ ሺ݇ ݄ sin ௅ሻଵ.ସߠ  ଴.଻  (5.1)ߣ 

௏௏ߪ
଴ ൌ 10ିଶ.ଷହ ቂୡ୭ୱయ ఏ

ୱ୧୬య ఏ
ቃ 10଴.଴ସ଺ ఌ ୲ୟ୬ ఏ ሺ݇ ݄ sin ௅ሻଵ.ଵߠ  ଴.଻ (5.2)ߣ 

where; 

σHH is radar backscatter for HH polarization (dB) 

σVV is radar backscatter for VV polarization (dB) 

θL is local incidence angle (radian) 

ε is dielectric constant of the surface 

h is root mean square height of surface; surface roughness (cm) 

λ is radar wavelength (cm) 

k = 2π / λ 

 

Since all of the radar images, which are acquired for the study area, have VV 

polarization and the Dubois model propose an explicit relationship as in Equation 

5.2, inversion of the model is used in this study for soil surface roughness 

estimation. The model has been derived for bare soil surfaces, but Dubois et al. 

(1995) also state that it can be applied to moderately dense vegetation cover with a 

Normalized Difference Vegetation Index (NDVI) as high as 0.4. As a result, inversion 

of the model is applied for sparsely vegetated farmland and pasture fields of the 

study basin for the 09-Oct-2004, 18-Dec-2004 and 20-Aug-2005 dates. 
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Dielectric constant (ε) of a material is a fundamental property which characterizes 

both the reflection and attenuation properties of an electromagnetic wave 

interacting with that material (Ulaby et al., 1996). The sensitivity of dielectric 

constant to water is the basis for estimation of soil moisture with microwave 

sensors. It can range from 2.5 for very dry soil to 25 for very moist soil depending 

on soil composition and radar frequency (Ulaby et al., 1978). In this study, Equation 

5.3, which is experimentally developed by Topp et al. (1980), is used to convert 

volumetric soil moisture values to dielectric constants. During this experimental 

study it is found that dielectric constant of soil is not strongly sensitive to 

temperature (10 – 36 °C), soil texture (clay to sandy loam), bulk density of soil 

(1.14–1.44 mg m−3, for non-swelling soils) and soluble salt content (Noborio, 2001). 

Considering the three major soil types within the Kurukavak basin; loam, sandy 

loam and sandy clay loam, it is concluded that Equation 5.3 could be used for 

inversion of soil dielectric values through the farmland and pasture fields of the 

basin. 

 

mv = [ -530 + 292 (ε) – 5.5 (ε)2 + 0.043 (ε)3 ] x 10 -4 (5.3) 

 

where: 

mv is soil moisture content (Volumetric: m3 m-3) 

ε is soil dielectric constant 

 

The procedure for estimating surface roughness values is described in four steps: 

 

i) Volumetric soil moisture (mv) values, which are measured with TDR, are 

converted to dielectric constants (ε) using Equation 5.3, 

ii) Radar backscatter (σVV) and local incidence (θL) angle values are extracted by 

overlaying soil moisture measurement points with the respective grids, 

iii) Since ERS-2 and ENVISAT active microwave sensors work at 5.3 GHz, radar 

wavelength (λ) is 5.66 cm, and the wave number (k) is computed as 1.11, 

iv) Soil surface roughness (h) values are computed from the inversion of Equation 

5.2 of the Dubois model. 
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This procedure is used to compute roughness values of the 126 point soil moisture 

measurement locations. Since, 3 field study dates are considered, a total of 378 

roughness values are obtained. In order to verify the accuracy of the applied 

procedure, two roughness values are computed for each point; one from the SAR 

and one from the ASAR images. This is achieved by preparing two data sets and 

Table 5.1 summarizes the source of parameters used in these data sets.   

  

• Set I – SAR: 378 soil roughness values, computed using the SAR images of 

09-Oct-2004, 18-Dec-2004 and 20-Aug-2005 dates. 

• Set II – ASAR: 378 soil roughness values, computed using the ASAR 

images of 09-Oct-2004, 18-Dec-2004 and 20-Aug-2005 dates. 

 

Table 5.1. Summary of parameters used in the roughness computation data sets 

 

Parameter Set I – SAR Set II – ASAR 

Dates 09-Oct-2004, 18-Dec-2004 and 20-Aug-2005 

Backscatter 
From SAR imagery 

(Equation 4.8 and 4.9) 
From ASAR imagery 

(Equation 4.8 and 4.9) 

Local Incidence Angle Topography and SAR 
imagery (Equation 4.7) 

Topography and ASAR 
imagery (Equation 4.7) 

Wavelength 5.66 cm 

k 1.11 

Dielectric Constant 
From point soil moisture measurements 

(Equation 5.3) 
 

5.2. Analysis of Computed Roughness Values 

 

In the analysis of the calculated roughness values from both of the data sets, a 

procedure including two levels of reduction is carried out for eliminating some of the 

computed values. The first level of reduction is based on the Dubois model 

limitations and the second level is based on the assumption that SAR and ASAR 

datasets result in similar roughness values for the same locations. For this purpose, 

first the frequency histograms of the obtained values are plotted separately for each 

data set (Figure 5.1). The x-axis in Figure 5.1 represents the computed roughness 
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values in equal bins with axis values as the upper bound of each bin. It is also 

observed that, about 92 % of the values are obtained below 3 cm, and about 86 % 

of them are below 2 cm. Since the Dubois model is developed by experimental 

studies, it is optimized for roughness values below 2.5 cm (Baghdadi and Zribi, 

2006). After considering the computed roughness values (Figure 5.1) and the model 

recommendation, a maximum roughness value of 3.0 cm is selected. 

 

 

 

Figure 5.1. Frequency histogram of the computed roughness values (n = 378) 

 

For the 378 points, the Root Mean Square Error (RMSE) between the computed 

roughness values of Set I and Set II is evaluated as 1.32 cm. After eliminating the 

points having roughness values greater than 3.0 cm, about 90 % of the points are 

left and the RMSE value is reduced to 0.49 cm. This is referred as the first level of 

reduction in Table 5.2. 

 

The second level of reduction is carried out by computing the absolute difference 

between the calculated roughness values of the two data sets. As given by Equation 

5.4, a delta (Δ) value is calculated for each of the 378 points and the frequency 

histogram of all delta values is shown in Figure 5.2. The x-axis in Figure 5.2 

represents the computed delta values in equally spaced bins with axis values as the 

upper bound of the bin. 
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Δ = | Roughness (Set I-SAR) – Roughness (Set II-ASAR) | (5.4) 

 

Table 5.2. Summary of data reduction for roughness values 

 

 Original Data 1st Reduction 2nd Reduction 

Number of points 378 338 258 

% of total points 100 89.4 68.3 

RMSE between 
Set I and II 
roughness values 
(cm) 

1.32 0.49 0.23 

Coefficient of 
Correlation between 
Set I and II 
roughness values 

0.70 0.60 0.87 

 

 

 

 

Figure 5.2. Frequency histogram of the computed delta values (n = 378) 

 

It is observed from Figure 5.2 that, for 68.8 % of the measurement points the 

difference between the computed roughness values from the SAR and ASAR images 

is less than 0.5 cm and for 52 % of them delta is less than 0.3 cm. The second level 

of reduction is carried out by eliminating the points having a delta value higher than 
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the selected threshold value, which is 0.5 cm. For this purpose, a number of 

different threshold values are investigated as tabulated in Table 5.3 and the 

threshold value giving the highest correlation coefficient with the maximum number 

of points (after 2nd level of reduction) is selected. The total number of points after 

the second level of reduction is 258 (Table 5.2) with a correlation coefficient of 0.87 

between the Data Set I-SAR and Data Set II-ASAR roughness values (Figure 5.3). It 

is concluded from Figure 5.3 that for the 258 points the computed roughness values 

from the SAR and ASAR images are close enough and a relationship between radar 

backscatter and soil surface roughness can be investigated. 

 

Table 5.3. Selection of the threshold value for second level of reduction 

 

Delta 
(cm) 

% of total 
points left after 

2nd level of 
reduction 

RMSE between 
Set I and II 

roughness values 
(cm) 

Coefficient of 
Correlation between 

Set I and II 
roughness values 

1.0 84.9 0.37 0.73 

0.7 77.9 0.30 0.81 

0.5 68.8 0.23 0.87 
0.3 52.0 0.15 0.94 

 

5.3. Backscatter – Soil Surface Roughness Relationship 

 

After reducing the total number of points to 258 with the two levels of reduction 

procedure, an average roughness value is computed for each point using Equation 

5.5. Arithmetic mean of the two roughness values (hSAR and hASAR), calculated from 

Data Set I-SAR and Data Set II-ASAR, is computed and utilized for the derivation of 

backscatter – soil surface roughness relationship. Even if similar roughness values 

are computed for the 258 points, soil surface roughness is a physical parameter and 

each point should be represented with a single value. As a result, arithmetic mean 

of the computed roughness values is calculated.  

 

݄஺௩௘௥௔௚௘ ൌ ௛ೄಲೃ ା ௛ಲೄಲೃ
ଶ

  (5.5) 
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Then, the relationship between the observed radar backscatter coefficients and 

computed mean roughness values (Equation 5.5) is investigated by plotting them 

with respect to each other. The Figures 5.4 and 5.5 represents this relationship for 

Data Set I-SAR and Data Set II-ASAR, respectively.  

 

 

 

Figure 5.3. Comparison of the soil surface roughness values obtained from  

the Data Sets I and II after 2nd level of reduction 

 

From Figures 5.4 and 5.5, it is examined that the observed backscatter coefficients 

have a logarithmic relationship with the computed roughness values. After taking 

natural base logarithms of roughness values and performing a linear regression 

analysis, Equations 5.6 and 5.7 are evaluated for backscatter – roughness 

relationships of the SAR and ASAR images with high coefficient of correlation values 

of 0.72 and 0.77, respectively. Similar relationships are also developed by Leconte 

et al. (2004) and Zribi and Dechambre (2002). Moreover, since both the SAR and 

ASAR images are acquired with a 5.3 GHz frequency and have similar incidence 

angles, the computed regression equations are almost identical. 

 

ௌ஺ோߪ ൌ െ9.21 ൅ 2.89 ln ሺ݄ሻ    [r = 0.72] (5.6) 

஺ௌ஺ோߪ ൌ െ9.11 ൅ 2.84 ln ሺ݄ሻ   [r = 0.77] (5.7) 
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where: 

 σ is radar backscatter (dB) 

 h is soil surface roughness (cm) 

 

 

 

Figure 5.4. Backscatter – Roughness relationship for the Data Set I - SAR 
 

Finally, the radar backscatter – soil roughness relationships (Equations 5.6 and 5.7) 

are used in the inverse order to compute soil surface roughness values of the 

Kurukavak catchment. This procedure is carried out for bare soil and/or sparsely 

vegetated farmland and pasture fields of the basin for 09-Oct-2004, 18-Dec-2004 

and 20-Aug-2005 field study dates.  

 

Due to dense vegetation condition of the basin on 07-May-2005, the roughness 

values computed for 18-Dec-2004 and 20-Aug-2005 field study dates are employed 

depending on the land use type;  

 

• Farmland; by assuming no plowing (no change in roughness value) during 

spring, the roughness values computed for farmland land use class on 18-

Dec-2004 are used, 
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• Pasture: by assuming no change in roughness values during summer, the 

roughness values computed for pasture land use class on 20-Aug-2005 are 

used. 
 

 

 

Figure 5.5. Backscatter – Roughness relationship for the Data Set II - ASAR 

 

During the computation of surface roughness values, the limitations of the 

developed technique are also considered by eliminating farm and pasture areas 

which have;  
 

i) computed roughness values greater than Dubois model range (h > 3.0 

cm) and/or   

ii) difference in the computed roughness values from the SAR and ASAR 

images are greater than the selected threshold value (Δh > 0.5 cm). 
 

Since the computed roughness values of the basin are utilized by the first and the 

second soil moisture estimation methods, which are discussed in Chapter 6 of the 

study, the third method of soil moisture estimation is used for the areas where 

roughness values are not calculated during this analysis. 
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CHAPTER 6 

 

 

SURFACE SOIL MOISTURE 

 

 

Surface soil moisture condition of a watershed plays a significant role in separation 

of infiltration and surface runoff, and hence is a key parameter for the majority of 

physical hydrological models. Due to the sensitivity of dielectric constant of soil to 

water, microwave remote sensing (particularly the commonly available synthetic 

aperture radar) is a very potential tool for such studies. One of the major goals of 

this study is to obtain distributed surface soil moisture maps of the Kurukavak 

catchment, which can be further used as an input to a hydrological model. This is 

achieved for the field study dates of 09-Oct-2004, 18-Dec-2004, 07-May-2005 and 

20-Aug-2005, and two soil moisture maps are obtained for each day, from the SAR 

and ASAR images of the basin, respectively. 

 

The development and application steps of three different methodologies, which are 

used to derive distributed soil moisture grids, are discussed in this chapter of the 

study. These methods are utilized depending on the land use class and vegetation 

cover condition of the basin; 

 

Method I – Backscatter Correction Factors, is used for the farmland and 

pasture fields of the basin for 09-Oct-2004, 18-Dec-2004, and 20-Aug-2005 dates 

when these areas have almost no vegetation cover. First, a nonlinear model relating 

radar backscatter with roughness, moisture and local incidence angle is developed 

with the point soil moisture measurements, which is then used to compute 

backscatter correction factors that are applied to the other farmland and pasture 

fields of the basin. 
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Method II – Water Cloud Model, is used for the farmland and pasture fields of 

the basin for 07-May-2005 when these areas are under dense vegetation cover. In 

this method, a semi-empirical backscatter model, the Water Cloud Model, is used in 

conjunction with the relationships developed for the first methodology. 

 

Method III – Basin Indexes, is used for the forested areas of the basin for the 

field study dates of 09-Oct-2004, 18-Dec-2004, 07-May-2005 and 20-Aug-2005. 

Since radar waves could not penetrate through dense forest cover, radar images are 

impractical for moisture estimation in these areas. Hence, topographic index and 

solar radiation index of the basin are used to develop a relationship between soil 

moisture and these two basin indexes. 

 

6.1. Method I – Backscatter Correction Factors 

 

This method is applied to the farmland and pasture fields of the basin, for the field 

study dates of 09-Oct-2004, 18-Dec-2004, and 20-Aug-2005, when these areas 

have bare or sparsely vegetated land cover. As a result, since effect of vegetation is 

eliminated, radar backscatter depends only on the incidence angle, surface 

roughness and soil moisture. Considering the fact that wavelength of radar beams 

and polarization property of the acquired images are identical, and radar 

backscatter (σ); 

 

• is directly correlated with surface soil moisture (mV) (Quensay et al., 2000; 

Haider et al., 2004) 

• is correlated with square root of local incidence angle (θL) (Goyal et al., 

1999) 

• is correlated with logarithm of surface roughness (h) (Leconte et al., 2004; 

Zribi and Dechambre, 2002) as obtained in the fifth chapter of this study, 

 

a non-linear relationship is proposed as in Equation 6.1. 
 

ߪ ൌ ܽ ൅ ܾ ݉௩ ൅ ܿඥߠ௅ ൅ ݀ ln ݄  (6.1) 
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where; 

a, b, c, d are constants 

 ݉௩ is volumetric soil moisture (m3 m-3) 

 ௅ is local incidence angle (radian)ߠ

݄ is soil surface roughness (cm) 

     

In the non-linear regression analysis of Equation 6.1, data from the 258 point soil 

moisture measurement locations (reduced by two levels as discussed in Chapter 

5.2) for the 09-Oct-2004, 18-Dec-2004, and 20-Aug-2005 field study dates are 

used. Similar to the procedure handled for roughness analysis, two separate 

regression analyses are performed; for Data Set I-SAR and Data Set II-ASAR. 

Summary of source of the parameters used in the two data sets are tabulated in 

Table 6.1. 

 

Table 6.1. Summary of parameters used in the regression analysis 

 

Parameter Data Set I-SAR Data Set II-ASAR 

Number of points 258 

Dates 09-Oct-2004, 18-Dec-2004 and 20-Aug-2005 

Radar Backscatter 
(dB) 

From SAR imagery 
(Equation 4.8 and 4.9) 

From ASAR imagery 
(Equation 4.8 and 4.9) 

Local Incidence 
Angle (radian) 

Topography and SAR 
imagery (Equation 4.7) 

Topography and ASAR 
imagery (Equation 4.7) 

Surface Soil 
Moisture (m3 m-3) From point soil moisture measurements 

Soil Surface 
Roughness (cm) From inversion of Dubois Model (Equation 5.5) 

 

In this part of the study, two versions of the proposed Equation 6.1 are analyzed; 

 

i) wet soil backscatter relationship, σbare-soil wet = f(mV,θL, h); is developed by 

assuming that radar backscatter (σ) is correlated with: roughness (h), moisture (mV) 

and local incidence angle (θL). Two separate relationships are derived; Equation 6.2 
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for Data Set I-SAR and Equation 6.3 for Data Set II-ASAR with both having a high 

correlation coefficient value of 0.93. 

 

[SAR] σbare-soil wet = 5.72 + 11.16 mV – 26.78 √ θL + 4.92 ln(h) (6.2) 

[ASAR] σbare-soil wet = 6.21 + 8.39 mV – 26.87 √ θL + 4.70 ln(h) (6.3) 

 

The graphical representations of the Equations 6.2 and 6.3, on which the observed 

backscatter values are plotted with respect to the computed ones using the derived 

relationships, are given in the Figures 6.1 and 6.2 for the SAR and ASAR images, 

respectively. The bare soil backscatter relationship is also employed in the second 

methodology of soil moisture estimation, in the Water Cloud Model.  

 

 

 

Figure 6.1. Computed vs. observed backscatter values for the Data Set I-SAR 

 

ii) dry soil backscatter relationship, σbare-soil dry = f(θL, h); is developed by 

assuming that radar backscatter (σ) is correlated only with: roughness (h) and local 

incidence angle (θL), and, it is independent of soil moisture (mV). Similar to the wet 

soil case, two separate relationships are derived; Equation 6.4 for Data Set I-SAR 
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and Equation 6.5 for Data Set II-ASAR, with correlation coefficient values of 0.87 

and 0.89, respectively. 

 

[SAR] σbare-soil dry = 7.40 – 26.48 √ θL + 4.81 ln(h) (6.4) 

[ASAR] σbare-soil dry = 7.42 – 26.27 √ θL + 4.62 ln(h) (6.5) 

 

 

 

Figure 6.2. Computed vs. observed backscatter values for the Data Set II-ASAR 

 

In the computation of backscatter correction factors (C) Equation 6.6, which is 

proposed by Goyal et al. (1999), is used on a pixel by pixel basis. 

 

ܥ ൌ  ఙೝ೐೑೐ೝ೐೙೎೐

ఙೌ೎೟ೠೌ೗
  (6.6) 

where; 

σreference is the reference backscatter value (dB) computed by using dry soil 

backscatter relationship (Equation 6.4 or 6.5) and by assuming flat and 

smooth surface (h =0 and incidence angle, θ, is used instead of local 

incidence angle, θL) 
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σactual is the actual backscatter value (dB) computed for that pixel using dry 

soil backscatter relationship (Equation 6.4 or 6.5) but with the actual surface 

roughness (h ≠0) and local incidence angle (θL) values 

 

The correction factors, which are computed for each pixel, are then used to 

calculate the corrected backscatter values (σcorrected) with Equation 6.7.  

 

σcorrected = σobserved x C (6.7) 

where; 

σobserved is the observed backscatter value in radar image (dB) 

σcorrected is the corrected backscatter value (dB),  

C  is the correction factor obtained from Equation 6.6 

 

Since the dry soil backscatter relationship is used in Equation 6.6, the correction 

factors remove only the effects of topography and surface roughness. As a result, 

the corrected backscatter coefficients (σcorrected) are highly correlated with the 

observed soil moisture (mV) values (Figures 6.3 and 6.4). 
 

 
 

Figure 6.3. Corrected backscatter – observed soil moisture relationship  

for the Data Set I - SAR 
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For each data set, a relationship between the corrected backscatter (σcorrected) and 

the observed soil moisture (mV) values is obtained with linear regression analysis. 

Equations 6.8 and 6.9 represent these relationships for Data Set I-SAR and Data Set 

II-ASAR, with correlation coefficients of 0.69 and 0.62, respectively. 

 

[SAR] σCorrected = - 10.74 + 10.29 mV   [r=0.69] (6.8) 

[ASAR] σCorrected = - 10.24 + 7.87 mV  [r=0.62] (6.9) 

 

 

 

Figure 6.4. Corrected backscatter – observed soil moisture relationship  

for the Data Set II - ASAR 

 

6.2. Method II – Water Cloud Model 

 

Attema and Ulaby (1978) proposed a rather simple approach for modeling of 

backscatter from a vegetation canopy, known as the Water Cloud Model (WCM). 

Basic assumptions of this model are (Ulaby et al., 1981b; Bindlish and Barros, 2001) 
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• The vegetation is represented by a horizontal cloud of water spheres, which 

are uniformly distributed over the soil surface with the height of vegetation 

canopy. 

 

• Multiple scattering between soil and vegetation, ߪ௩௘௚ା௦௢௜௟
଴  in Equation 2.1, is 

neglected. As a result, the general equation of the Water Cloud Model is 

reduced to Equation 6.10. 

 

σcan = τ2 σbare-soil + σvegetation  (6.10) 

 

where; 

σcan is the backscatter from the vegetation canopy (m2/m2) 

σbare-soil is the backscatter contribution of the bare soil under the vegetation 

canopy (m2/m2) 

τ2 is the two-way attenuation of the vegetation layer (effect of vegetation 

on bare soil backscatter values) 

σvegetation is the direct backscatter contribution of the vegetation layer 

(m2/m2) 

 

τ2 = exp ( - 2 B WC secθL) (6.11) 

σvegetation = A Wc cosθL (1- τ2) (6.12) 

 

where;  

A, B are parameters depending on vegetation type 

WC is the vegetation water content (kg/m3) 

θL is the local incidence angle (radian) 

 

The Normalized Difference Vegetation Index (NDVI) is a commonly used vegetation 

index, representing the vegetation condition of an area on a scale from 0 (no 

vegetation) to 1 (dense vegetation). In the computation of vegetation water content 
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(WC) of the study basin, the relationship between WC and NDVI, which is proposed 

by Jackson et al. (1999), is used.   

 

WC = 1.9134 (NDVI)2 – 0.3215 (NDVI)  (6.13) 

 

The NDVI is calculated as a ratio between measured reflectivity in the red and near 

infrared portions of the electromagnetic spectrum (Equation 6.14). These two 

spectral bands are chosen because they are most affected by the absorption of 

chlorophyll in leafy green vegetation and by the density of green vegetation on the 

surface. Also, in red and near-infrared bands, the contrast between vegetation and 

soil is at a maximum (Lilesand and Kiefer, 1999). 

 

NDVI = (NIR – Red) / (NIR + Red)   (6.14) 

 

where; 

NIR = Near Infra-Red Band (Quickbird Band 4: 760 – 900 nm) 

Red = Red Band (Quickbird Band 3: 630 – 690 nm) 

 

The high resolution Quickbird image of the Kurukavak basin (Figure 3.2), acquired 

on 06-May-2006 is used to compute the distributed NDVI values of the study site. 

Similar to the other grid based data used in this study, the NDVI grid, which is 

computed for 0.60 m resolution, is resampled to 30 m and presented in Figure 6.5.  

 

Even if there exists a one year period between the Quickbird image on 06-May-2006 

and the SAR and ASAR imagery on 07-May-2005, the calculated NDVI map is used 

in the modeling of radar backscatter – soil moisture relationship for 07-May-2005 

field study date. This is based on the assumption that vegetation cover/growth 

within the basin depends only on the day of the year and variations from one year 

to another year are negligible. Moreover, from field studies performed in the 

catchment, a significant change in the vegetation cover is observed from 07-May-

2005 to 11-Jun-2005. As a result, among the field study dates (Table 4.2), on which 

both the SAR and ASAR images are acquired, only radar imagery from 07-May-2005 

is used in the second methodology of surface soil moisture estimation. 
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In this part of the study a procedure, which utilizes the Water Cloud Model with a 

delta index approach, is applied to the farm and pasture areas of the Kurukavak 

basin for the 07-May-2005 dated SAR and ASAR images. The procedure is discussed 

in a stepwise manner below: 

 

 

 

Figure 6.5. The Normalized Difference Vegetation Index grid of the Kurukavak basin 

 

i) First, the unknown parameters A and B in the Water Cloud Model are estimated. 

Similar to the previous analyses, two separate data sets are prepared for the SAR 

and ASAR images, respectively. Each data set includes 94 point soil moisture 

measurement locations of 07-May-2005 field study date, which is reduced from 

initial 126 points as discussed in Chapter 5.2 of the study.  

 

Then, bare-soil backscatter (σbare-soil) value in Equation 6.10 of WCM is computed 

using the wet soil backscatter relationship obtained in the first methodology; 

Equations 6.2 and 6.3 derived for σbare-soil wet = f(mV,θL, h) relationship.  
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For the two data sets, two non-linear regression analyses are performed and similar 

A and B values are obtained for both of them. Since A and B parameters represent 

the geometrical properties of the scattering elements in the vegetation canopy 

(Ulaby et al., 1981b), these values are independent from radar sensor 

characteristics. Hence, for both of the radar images; SAR and ASAR, A and B values 

are calculated as 0.284 and 0.109, respectively. On a mix of land use classes: 

rangeland, wheat and pasture, Bindlish and Barros (2001) have determined the 

same values as 0.0012 and 0.091. Moreover, Moran et al. (1998) have calculated 

the A and B values on agricultural fields as 0 and 0.09 

 

ii) Secondly, in order to investigate the accuracy of the WCM, the modeled canopy 

backscatter (σcan) values of the 94 points are computed by using the WCM. In these 

computations, the A and B values estimated in the first step and the wet soil 

backscatter relationship are employed; A = 0.284, B = 0.109 and                    

σbare-soil wet = f(mV,θL, h).   

 

Then the observed backscatter values from the 07-May-2005 SAR and ASAR images 

are compared with the computed canopy backscatter values (σcan) from WCM. The 

plots of observed versus computed backscatter values for Data Set I-SAR and Data 

Set II-ASAR are given in Figures 6.6 and 6.7, and the correlation coefficient values 

of these relationships are calculated as 0.64 and 0.63, respectively. 

 

iii) Prior to applying the delta index approach, dry soil canopy backscatter (σcan-dry) 

values, by assuming dry soil surface condition under the same vegetation canopy, 

are calculated for the 94 points by using the WCM. In the computation of σcan-dry; 

 

• Similar to the computation of σcan in the second step; A and B values, which 

are estimated in the first step (A =0.284 and B=0.109), are employed. 

 

• Different from the computation of σcan in the second step; the dry soil 

backscatter relationship, which does not take account of soil moisture, is 

used. Hence, Equations 6.4 and 6.5 from the first method, are utilized for 

the σbare-soil dry = f(θL, h) relationship.  
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Figure 6.6. Observed vs. computed (σcan) canopy backscatter values  

from the WCM for the Data Set I-SAR 

 

 

 

Figure 6.7. Observed vs. computed (σcan) canopy backscatter values  

from the WCM for the Data Set II-ASAR 
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iv) Finally, a delta index (Δσ) value is calculated for the 94 point soil moisture 

measurement locations by computing the difference between the observed 

backscatter (σobserved  from the SAR and ASAR images of 07-May-2005) and the 

computed dry soil canopy backscatter values (σcan-dry from step 3), as in Equation 

6.15. 

 

Δσ = σobserved - σcan-dry (6.15) 

 

Since the only difference between the observed backscatter and the dry soil canopy 

backscatter values is soil moisture, the calculated delta values are expected to be 

correlated with surface soil moisture. This approach is examined by plotting the 

computed delta values (Δσ) with respect to the observed volumetric soil moisture 

values (mV). The plots for the Data Set I-SAR and Data Set II-ASAR are given in 

Figures 6.8 and 6.9, respectively. 

 

 

 

Figure 6.8. Relationship between delta (Δσ) and soil moisture (mV) 

for the Data Set I-SAR 

 

In order to obtain a relationship between the computed delta values (Δσ) and the 

observed soil moisture values (mV), simple linear regression analyses are carried out 
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for the values presented in Figures 6.8 and 6.9, for SAR and ASAR data sets. The 

computed relationships are given in Equations 6.16 and 6.17, and the correlation 

coefficient values of these relationships are calculated as 0.42 and 0.45, 

respectively. 

 

ΔσSAR = - 0.0511 + 0.3197 mV    [r=0.42]     (6.16) 

ΔσASAR=  0.2191 + 0.2418 mV     [r=0.45]       (6.17) 

 

 

 

Figure 6.9. Relationship between delta (Δσ) and soil moisture (mV) 

for the Data Set II-ASAR 

 

6.3. Method III – Basin Indexes 

 

The third method of the study is developed by using the point soil moisture 

measurements collected during all nine field studies, and it is utilized for the soil 

moisture mapping of the forested areas of the Kurukavak basin. In microwave 

remote sensing studies, forests are represented by a much thicker and denser 

vegetation canopy than farmland and pasture fields, and, rather than the physical 

properties of the soil surface, observed backscatter is dominated by the canopy 
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itself. As a result, radar images are impractical for surface soil moisture estimation 

in these areas.  

 

Other than radar backscatter, soil moisture can be correlated to certain 

characteristics of the basin, such as terrain. Developing such a relationship can be 

used in spatial scaling of soil moisture. Terrain data is generally used to calculate 

patterns of substitute variables, like wetness and radiation indexes, which are used 

to estimate spatial pattern of soil moisture (Western et al., 2002). Moreover, 

Western et al. (1999) analyzed the spatial variations of soil moisture in Tarrawarra 

catchment of Australia, and found that the highest correlation (r2=0.61) is observed 

when wetness index is combined with a radiation index.   

 

The most commonly used terrain index is the topographic wetness index, proposed 

by Beven and Kirkby (1979). The Topographic Index grid of the study area is 

calculated from the Digital Elevation Model (DEM) of the Kurukavak basin (Figure 

3.1) on a cell by cell basis by using Equation 6.18, and presented in Figure 6.10. 

 

[Topographic Index]  ܶܫ ൌ  ln ∑ ஺೔
୲ୟ୬ ఉ೔

 (6.18) 

 

where; 

ΣAi is the upstream drainage area of the ith cell 

βi is the surface slope at the ith cell 

 

The potential solar radiation, RO, is the radiation received at a sloping surface in the 

absence of the atmosphere. It is expressed by Equation 6.19, which can be 

numerically integrated over any period of time to estimate the solar radiation 

potential of that period. The variation of potential solar radiation over a catchment 

depends only on the slope, aspect and the time of the year (Moore et al., 1993). 

 

ܴை ൌ ଶସ ூ
గ ௥మ  cos cos ׎ ሺsin ߜ ߟ െ ߟ   sin  ሻ  (6.19)ߟ
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where; 

I is the solar constant, which is the average radiation flux on a plane 

perpendicular to the solar beam at the upper surface of the atmosphere, 

1367 W m-2 (Dingman, 2002) 

δ is the solar declination, which is the latitude at which the sun is directly 

overhead at noon, due to the 23.5° tilt of the earth’s rotational axis. This 

value changes regularly from +23.5° to -23.5° as the earth rotates around 

the sun (Dingman, 2002) 

r is the ratio of earth sun distance to its mean 

Φ, η are functions of the terrestrial latitude and topographic attributes 

(slope and aspect) 

 

 

 

Figure 6.10. Topographic Index (TI) grid of the Kurukavak basin 

 

The potential Solar Radiation Index (SRI) is defined as the ratio of radiation 

received on a sloping surface (RO) to that received on a horizontal surface (ROH) in 

the absence of atmospheric effects and calculated using Equation 6.20. It is a 
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measure of the spatial variation in solar radiation due to the effect of slope and 

aspect (Western et al., 2004). 

 

[Solar Radiation Index] ܴܵܫ ൌ  ோೀ
ோೀಹ

  (6.20) 

 

In this study, daily total solar radiation (RO) grids of the study catchment are 

calculated for all (9) field study dates (Table 3.3). The grids are determined by 

utilizing the slope map of the basin and total radiation received by each cell is 

computed for the 24 hour period of the day. For this purpose, hourly solar radiation 

values are computed with Equation 6.19 which are then integrated over time. Then, 

daily total solar radiation values are recomputed by assuming the whole basin as 

flat -slope is equal to 0- (ROH). Finally, the solar radiation index (SRI) grids are 

obtained using Equation 6.20. As an example, the SRI grid derived for 09-Oct-2004 

is shown in Figure 6.11.   

 

Between the soil moisture (mV) and the two basin indexes (TI and SRI) a linear 

relationship is proposed as in Equation 6.21. 

 

mV = a + b SRI + c TI      (6.21) 

 

where; a, b and c are constants 

 

In the linear regression analysis of Equation 6.21, the 126 point soil moisture 

measurement locations are employed. Since this method does not depend on radar 

imagery, a total of 9 field study dates and 1134 measurement values are used. The 

topographic index and solar radiation index values are extracted from the computed 

grids, and the linear relationship given in Equation 6.22 is obtained with a 

coefficient of correlation value of 0.79. The observed and computed soil moisture 

values are plotted with respect to each other in Figure 6.12. It is observed from the 

figure that Equation 6.22 results in higher moisture values for dry soil condition and 

lower moisture values for wet soil condition. 
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mV = 0.048 + 0.185 SRI + 0.014 TI    [r=0.79]  (6.22) 

 

6.4. Mapping Surface Soil Moisture 

 

The land use map of the Kurukavak basin (Figure 3.3) is digitized from the 

Quickbird image of the area with five land use classes; forest, farmland, pasture, 

road and urban, among which forest areas constitute 53.1 %, farmland and pasture 

fields cover 23.6 % and 21.9 % of the basin, respectively. For the three methods 

developed for soil moisture estimation, only Method II-WCM depends on vegetation 

by means of NDVI. However, it is also found out that the land use class (farm or 

pasture) has no significant effect on the vegetation parameters (A and B) of the 

WCM. Moreover, the land use classes of urban and road cover a very small 

percentage of the basin and areas within these classes are considered with the 

forest class. As a result, land use classes of the basin are grouped under two major 

classes; i) Forest and Other, ii) Farmland and Pasture, for surface soil moisture 

mapping. 

 
 

Figure 6.11. Solar Radiation Index (SRI) grid of the Kurukavak basin for  

09-Oct-2004 
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points and cells shown in Figure 3.7 for Plot 1 are obtained from the pre-defined 

permanent raster model of the study area. In addition, Figure 6.14 indicates a small 

portion of the land use raster where cell center locations are shown with points over 

the permanent raster model.  

 

 

 

Figure 6.13. Land use map of the Kurukavak basin with major classes (vector) 

 

Surface soil moisture mapping of the Kurukavak catchment is performed for the 

whole basin area and on a cell by cell basis. The permanent raster data model, 

having unique IDs, is utilized for this purpose. The cell IDs are used to extract 

necessary information; backscatter coefficients, incidence and local incidence 

angles, DEM, slope, aspect, NDVI, topographic index, solar radiation index etc., 

from the geo-database.   
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Figure 6.14. Land use map of the Kurukavak basin in permanent raster data model  

with cell centers as points 

 

In the computation of surface soil moisture values of the Kurukavak catchment, the 

aforementioned three methods are used depending on the land use class and 

vegetation cover conditions of the area, which is summarized in Table 6.2. 

Moreover, computation of surface roughness values for the farmland and pasture 

areas of the basin; for 09-Oct-2004, 18-Dec-2004, 07-May-2005 and 20-Aug-2005 

field study dates, is discussed in section 5.3 of this study. 

 

The procedure applied for distributed soil moisture mapping of the catchment: 

 

Method I – Backscatter Correction Factors: 

 

• Dry soil backscatter relationship (Equation 6.4 and 6.5) is used to compute; 

actual (σactual) and reference (σreference) (assuming flat and smooth surface) 

backscatter values, 
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• Backscatter correction factors (C) are calculated for each raster cell by using 

Equation 6.6,  

• Corrected radar backscatter (σcorrected) values are obtained from Equation 

6.7, 

• Equations 6.8 and 6.9 are used to estimate surface soil moisture (mV) value 

of each raster cell from the corrected backscatter values. 

 

Table 6.2. Summary of the application of the soil moisture estimation methods 

 

Date Farmland & Pasture Forest & Other 
Figure 

Number 
SAR / ASAR 

09-Oct-2004 
Method I 

BS Correction 
Method III 

Basin Indexes 
B.1 / B.2 

18-Dec-2004 
Method I 

BS Correction 
Method III 

Basin Indexes 
B.3 / B.4 

07-May-2005 
Method II 

WCM 
Method III 

Basin Indexes 
B.5 / B.6 

20-Aug-2005 
Method I 

BS Correction 
Method III 

Basin Indexes 
B.7 / B.8 

  

Method II – Water Cloud Model: 

 

• Dry soil backscatter relationship (Equation 6.4 and 6.5) is used to compute 

the bare-soil backscatter (σbare-soil) values, which are then used in Equation 

6.10 of WCM, 

• Dry soil canopy backscatter (σcan-dry) values are computed from WCM, 

• Delta backscatter (Δσ) value of each raster cell is calculated by taking the 

difference between the observed (σobserved) and the computed (σcan-dry) 

backscatter values (Equation 6.15),    

• Equations 6.16 and 6.17 are used to estimate surface soil moisture (mV) 

value of each raster cell from the computed difference in backscatter (Δσ) 

values. 
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Method III – Basin Indexes: 

 

• Equation 6.22 is employed to compute surface soil moisture (mV) value of 

each raster cell from topographic index (TI) and solar radiation index (SRI) 

values.  

 

The estimated surface soil moisture distributions of the Kurukavak catchment are 

presented from Figure B.1 to Figure B.8; for 09-Oct-2004, 18-Dec-2004, 07-May-

2005 and 20-Aug-2005 field study dates and for the SAR and ASAR images. 

Throughout Chapter 6, the volumetric soil moisture values (mv values in both the 

graphs and equations) are given in m3 m-3 units (on a range from 0 to 1), but in 

order to have better graphical representation in mapping of soil moisture, these 

values are multiplied by 100 and given in units of percentages (%) which is on a 

range from 0 to 100. 

 

Moreover, frequency histograms of the computed soil moisture distributions are 

calculated for:  

 

i) the whole basin,  

ii) the farmland and pasture fields of the basin, where soil moisture values 

are calculated with Method I and II, 

iii) the forest and other land use types, where soil moisture values are 

computed with Method III. 

 

which are then compared with the frequency histogram of the observed soil 

moisture measurements of the same day (from Figure C.1 to Figure C.8). Similar to 

the soil moisture distribution maps, the frequency histograms are calculated for the 

volumetric soil moisture values in the units of percentages (%).  

 

In the computation of the frequency histograms, equal bins of 1 % length are 

selected from 0 % to 60 % for volumetric soil moisture. After calculating the 

number of points within each bin, frequency of the bin is evaluated by dividing this 

bin value with the total number of points. It is then multiplied with 100 to obtain the 
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frequency value in percentages. For the point soil moisture measurements, the total 

number of points, which is used in this computation, is 126. On the other hand, the 

total number of points used in the frequency analysis of the entire catchment is 

5258; 2392 points from farmland and pasture, 2866 points from forest and other 

land use classes. As mentioned previously, these points refer to the cell center 

locations of the permanent raster data model (Figure 6.14), which has a ground 

resolution of 30 m. 

 

Finally, statistical parameters; such as mean, standard deviation etc., of the 

volumetric soil moisture distributions are calculated for:  

 

i) the entire basin,  

ii) the farmland and pasture fields of the basin, where soil moisture values 

are calculated with Method I and II, 

iii) the forest and other land use types, where soil moisture values are 

computed with Method III. 

 

which are also compared with the calculated statistical parameters of the observed 

soil moisture measurements of the same day (Tables C.1, C.2, C.3 and C.4). Similar 

to the soil moisture distribution maps, these statistical parameters are calculated for 

the volumetric soil moisture values in the units of percentages (%). 
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CHAPTER 7 

 

LUMPED AND SEMI-DISTRIBUTED  

HYDROLOGICAL MODEL SIMULATION 

 

 

In addition to the point rainfall measurements, the General Directorate of 

Agricultural Research of Turkey has been measuring runoff at the Kurukavak basin 

outlet. For this purpose, a V-notch weir was built at the basin outlet and discharge 

measurements have been carried out with a float-type stage gage. The runoff data 

recorded by this gage and the rainfall data collected by the Directorate for the 

Kurukavak basin are not evaluated within the scope of this study.  

 

During the field studies in the Kurukavak basin, a rainfall and runoff measuring 

station is installed at the basin outlet on 28-Apr-2005. The station is composed of 

three major parts which are assembled on a single pole;  

 

• A tipping bucket type rainfall gage, 

• A pressure sensor, installed behind the weir for measuring water stage, 

• A data logger. 

 

From 28 April to 11 June of 2005, the station collected rainfall and stage data with 

5-minute time increments. The rainfall gage records the total amount of 

precipitation and the pressure sensor records the average stage value within each 

time step. Then, by visiting the station during field studies, the collected data are 

downloaded from the data logger. During this period, a major flood event on 1st of 

June 2005 is recorded with a peak discharge value of 9.97 m3/s. 
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The third major goal of this study is to perform a semi-distributed hydrological 

analysis with a distributed input of surface soil moisture. For this reason, a 

hydrological model, which has the capabilities of: 

 

i) accepting distributed input parameters  

ii) performing distributed (cell by cell) hydrological analysis, 

 

Hydrologic Engineering Center – Hydrologic Modeling System (HEC-HMS) is 

selected. The Hydrologic Modeling System is designed to simulate the precipitation-

runoff processes of watershed systems. It is also designed to be applicable in a 

wide range of geographic locations for solving different water related problems. This 

includes large river basin water supply and flood hydrology, and small urban or 

natural watershed runoff (HEC, 2008). 

 

The flood event on 1-Jun-2005 is simulated with the HMS model by considering a 

time window of one month; 

 

i) starting from 07-May-2005 at 10:00; the actual time of SAR and ASAR 

image acquisitions, hence the time of computed soil moisture distributions of 

the basin, 

ii) ending at 06-Jun-2005 at 10:00; when the flood recession is completed. 

 

First, the distributed soil moisture grids of the Kurukavak basin are used as an input 

parameter of the HEC-HMS model. The soil moisture values computed from the 07-

May-2005 SAR image are used in the calibration of undetermined HMS parameters. 

Then the calibrated parameters are utilized to simulate the same flood event; first 

by using the soil moisture distribution calculated from the 07-May-2005 ASAR 

image, and then by accepting an average (lumped) soil moisture value for the 

whole basin on 07-May-2005, which is the average of field soil moisture 

measurements. In other words, three different model simulations of the 1-Jun-2005 

flood event, which are listed below, are carried out. 
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I) Distributed SAR: with initial soil moisture from the SAR image of 07-

May-2005, also used for calibration of model parameters, 

II) Distributed ASAR: with initial soil moisture from the ASAR image of 

07-May-2005, 

III) Lumped: with initial soil moisture from field measurements, a single 

value is accepted for the whole basin. 

 

7.1. Calibration of Model Parameters 

 

Developed by United States’ Army, the HMS model is designed to be used with the 

national grid standards of the United States, and the model only accepts grids 

having ground resolution of 10 m, 20 m, 50 m, 100 m, 200 m, 500 m, 1000 m etc. 

In order to comply with these requirements, the ground resolution of all distributed 

(gridded) datasets of the study are set to 50 m, which is the nearest higher ground 

resolution to the 30 m base resolution used throughout the study. Prior to model 

simulation with HMS, the computed soil moisture grids are resampled to 50 m. After 

building the HEC-HMS model with the initial assumption of parameters and the 

rainfall-runoff data, model parameter calibration is carried out by; 

 

i) performing the sensitivity analysis of undetermined model parameters; by 

keeping all other parameters constant and observing the effect of change 

in the selected parameter on the model outcomes, 

ii) estimation of undetermined parameters by trial and error procedures.   

 

Similar to other physical models, HEC-HMS is a component based model, in which 

the actual hydrological processes within the study area are represented by a 

number of interacting components. Each component is responsible for a single 

hydrological process; infiltration, evaporation etc., and the HMS components which 

are utilized in this study are discussed below. 

 

 

 

 



86 
 

Deficit and Constant Loss: 

 

The deficit and constant loss method is used to take account of changes in soil 

moisture content with a single soil layer. Since the study is based on the field soil 

moisture measurements with the Time Domain Reflectometer (TDR), depth of soil 

layer is taken as the length of TDR probes; 160 mm. Due to lack of temperature 

and evaporation measurements within the Kurukavak basin, this method could not 

be integrated with an evapotranspiration method. The required parameters of the 

method are (HEC, 2008): 

 

Maximum Deficit: specifies the maximum water storage capacity of the soil layer in 

units of depth. From previous studies (Tombul et. al., 2008) in the study area, 

average porosity of the soils is measured as 47.7 %. As a result, the maximum 

water storage capacity of the soil layer is computed by multiplying the depth of soil 

layer with the soil porosity (Equation 7.1). This value is assumed to be constant 

throughout the basin and used in three of the model simulations. 

 

MaxDef = 0.477 x 160 = 76.32 mm (7.1) 

 

Initial Deficit: represents the initial soil moisture condition of the basin. It is the total 

depth of water which is required for a grid cell to reach the maximum deficit value. 

In other words, initial deficit indicates the difference between the maximum storage 

capacity and the available moisture content of a grid cell. Initial Deficit is calculated 

using the available/calculated volumetric moisture content of the soil and the 

previously computed maximum deficit with Equation 7.2. 

 

IniDef = MaxDef – (mV x 160) (7.2) 

 

where mV is the volumetric soil moisture content of the grid cell (m3 m-3) 

 

Initial Deficit is the only model parameter which varies among the three model 

simulations. For the Distributed SAR and Distributed ASAR simulations, it is 

evaluated from the volumetric soil moisture grids of the Kurukavak basin for 07-
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May-2005 (Figures B.5 and B.6). After resampling these grids to 50 m ground 

resolution, initial deficit value of each grid cell is calculated by using Equation 7.2. 

On the other hand, average value of TDR based soil moisture measurements at the 

07-May-2005 dated field study is 0.2612 m3 m-3, which gives an initial deficit value 

of 34.53 mm with Equation 7.3. This value is assumed to be constant for all grid 

cells for the Lumped event simulation.   

 

Lumped (IniDef) = 76.32 – (0.2612 x 160) = 34.53 mm (7.3) 

 

Constant Rate: is the rate of infiltration of soil layer when it is fully saturated. As 

expected, it is a significant parameter for separation of the excess precipitation. 

From previous field sampling studies (Tombul et. al., 2008) held within the 

Kurukavak basin, saturated hydraulic conductivity of the basin soils range from       

9 mm/h to 11 mm/h. In calibration of the model, this parameter is estimated as        

8 mm/h.   

 

Impervious: represents the percentage of the grid cell which has no contribution to 

the groundwater. In calibration of the model this parameter is estimated as 2 %. 

 

Recession Baseflow: 

 

The recession baseflow method is used to approximate the typical behavior of a 

watershed when channel flow recedes exponentially after a flood event (HEC, 

2008). It defines the relationship of baseflow (Q) at time t with the initial baseflow 

at time t0 (Q0) as an exponential recession (Equation 7.4) (HEC, 2000). 

 

Q = Q0 kt   (7.4) 

 

where k is the exponential baseflow decay constant. 

 

Figure 7.1 illustrates the computed baseflow with this method during a flood event, 

where the shaded region represents the exponential decay of baseflow from the 

start of flow. After the peak of direct runoff, a user defined threshold value is 
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described to indicate the start of the baseflow recession (Figure 7.2). The required 

parameters of the baseflow recession method are (HEC, 2008): 

 

Initial Discharge: is the amount of baseflow at the beginning of the simulation, 

which is selected as the observed initial discharge at the basin outlet on 07-May-

2005 at 10:00 (0.0016 m3/s). 

 

Recession Constant: represents the rate of baseflow recession between storm 

events. It is defined as the ratio of baseflow at the current time to the baseflow one 

day earlier. In calibration of the model this parameter is estimated as 0.001. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.1. Illustration of exponential baseflow recession (HEC, 2000) 

 

Ratio to Peak: defines the ratio of current flow to the peak flow and it is utilized 

during the falling limb of the hydrograph. The baseflow is reset when the current 

flow divided by the peak flow falls below this value. In calibration of the model this 

parameter is estimated as 0.4. 

 

ModClark Transformation: 

 

The ModClark method is a linear semi-distributed transform method which is based 

on the conceptual Clark unit hydrograph (UH) method (HEC, 2008). In Clark model, 

Discharge 
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Direct 
Surface 
Runoff 
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UH of the basin is derived by using two important processes in the transformation of 

excess precipitation to runoff (HEC, 2000): 

 

Translation: is the movement of excess water from its source to the 

watershed outlet, 

Attenuation: is the reduction of magnitude of the discharge as the excess 

water is stored throughout the basin. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.2. Illustration of baseflow recession after peak (HEC, 2000) 

 

The Clark method uses a time-area curve and time of concentration to develop a 

translation hydrograph. On the other hand, after representing the basin as a 

collection of grid cells, the ModClark method eliminates the time-area curve and 

instead it uses a separate travel-time index for each grid cell.  

 

This is achieved by calculating the travel distance of each cell to the watershed 

outlet. In the grid representation of the topography, each grid cell has 8 

neighboring cells, and depending on the slope, surface flow originating in the center 

cell would flow to one of its 8 neighbors. Figure 7.3 illustrates a hypothetical basin 

which has a 3 by 3 grid cell representation. Direction of surface flow from each cell 

to one of its neighboring cells is shown with arrows. 
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Figure 7.3. Schematic representation of flow direction 

 

After determining the direction of flow of all grid cells, the flow travel length of each 

cell is calculated by tracing the flow from cell to cell; from the center of the 

originating cell to the outlet. For the most upstream cell of the hypothetical basin 

given in Figure 7.3, this process is also described schematically in Figure 7.4, in 

which cell size of the hypothetical basin is assumed as 10 m. 

 

 

41.2 m 
 

Figure 7.4. Schematic computation of flow travel length for 10 m cell size 

 

Then, the flow travel length of each cell is scaled by the overall time of 

concentration to obtain travel-time index of each grid cell (Equation 7.5) (HEC, 

2000).  

Outlet 

Outlet 
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௖௘௟௟ݐ ൌ ௖ݐ
ௗ೎೐೗೗
ௗ೘ೌೣ

  (7.5) 

 

where; 

tcell is the travel time of the cell, 

tc is the time of concentration of the basin, 

dcell is the travel distance of flow from the cell to the outlet, 

dmax is the travel distance of flow from the farthest cell to the outlet. 

 

In the ModClark transformation method, the volume of inflow from each grid cell to 

the linear reservoir is computed as the product of cell area and excess precipitation 

calculated at that cell. The computed inflows are first lagged by the scaled travel-

time index and then routed through a linear reservoir which yields an outflow 

hydrograph for that cell. HMS combines these cell outflow hydrographs to calculate 

the direct runoff hydrograph of the watershed (HEC, 2000; HEC, 2008). The 

required parameters of the ModClark transformation method are: 

 

Time of Concentration: is the travel time required for the flow that is originating 

from the farthest point on the basin boundary, to reach to the outlet. The grid cell 

in the basin which has the largest flow travel length value will have exactly this 

specified time of concentration value as its travel-time index. In order to estimate 

the time of concentration value of a watershed, a number of empirical equations, 

utilizing morphological basin parameters, are available in the literature (ASCE, 

1996). The time of concentration of the Kurukavak basin is calculated by using 

Kirpich and Bransby Williams equations; 0.4 and 1.2 hours respectively. In 

calibration of the model, this parameter is estimated as 0.5 hours. 

  

Storage Coefficient: is used in the linear reservoir routing process of ModClark 

method and the same value is given to all grid cells. In calibration of the model this 

parameter is estimated as 1.2 hours.  
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Initial Abstraction Loss: 

 

Initial abstraction represents the amount of water which is held by interception and 

depression storages and overland flow starts after it is satisfied. Even if the HMS 

model does not have a specified parameter for defining initial abstraction, it is 

included in the calibration part by extracting a certain depth of water from the 

recorded precipitation data prior to the start of surface runoff. In calibration of the 

model initial abstraction is estimated for this event as 43.9 mm.  

 

Gridded Precipitation: 

 

The gridded precipitation method is one of the meteorological models available in 

HMS. It is specifically designed to work with the ModClark transformation and 

preferably to be used with a radar-based precipitation data (HEC, 2008). Since radar 

rainfall data is not available for the study catchment, the rainfall data collected by 

the station at the basin outlet is the only precipitation gage utilized in this study. 

Hence, the observed precipitation in this gage is assumed to be distributed 

uniformly to all grid cells within the basin. As a result, a separate precipitation grid, 

covering the whole basin, is prepared for each time step (5 min) of the model and 

used as the rainfall input to the HMS.  

 

Discharge Gage: 

 

The Kurukavak basin, covering an area of 4.73 km2, is considered as a small 

catchment and it is not further divided into smaller subbasins. Consequently, the 

catchment is modeled with two physical components: the basin and the outlet. The 

observed flow data at the basin outlet are input to the HMS model as a discharge 

gage and it is used to compare with the simulation outflows. 

 

7.2. Simulation Results 

 

As previously mentioned, three different model simulations of the 1-Jun-2005 flood 

event are carried out with HEC-HMS. Among the model parameters detailed in the 
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previous section, Initial Deficit is the only parameter that differs among the 

simulations. A summary of model parameters used in the HMS event simulations is 

presented in Table 7.1. In addition, numerical values such as peak flow, time of 

peak flow, total flow etc. which are representing the computed flow hydrographs 

are tabulated in Table 7.2. The percent change between the total flows and peak 

flows of the observed and simulated hydrographs are also calculated (Table 7.2). 

Moreover, the root mean square error (RMSE) between the computed and observed 

flow values is calculated using Equation 7.6. Lastly, graphical outputs of the 

simulations are presented in Figures 7.5, 7.6 and 7.7.  

 

ܧܵܯܴ ൌ ට∑ሺொ೚್ೞ೐ೝೡ೐೏ିொ೎೚೘೛ೠ೟೐೏ሻ
௡ିଵ

  (7.6) 

 

where; 

Qobserved is the observed discharge at time t 

Qcomputed is the computed discharge at time t  

n is the total number of discharge observations 

 

After obtaining the simulation results, a graphical comparison between the 

computed and observed flood hydrographs is done. Since the Distributed SAR 

simulation parameters are obtained through calibration, the computed flood 

hydrograph with this simulation clearly represents the shape of the observed one 

(Figure 7.6). Moreover, the Distributed ASAR simulation output (Figure 7.7) is 

almost identical to the one calculated with the Distributed SAR simulation, and 

hence close to the observed flood hydrograph. 

 

Then, the third model simulation, Lumped, is analyzed to differentiate the effects of 

using distributed and lumped initial soil moisture conditions. In the Lumped model 

simulation, since a constant initial soil moisture value is accepted for the whole 

basin, all basin cells reach to the maximum deficit value at the same time, and 

hence, overland flow on each cell starts at the same time, which results in a higher 

peak discharge value than the observed one (Figure 7.5).  
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Table 7.1. Summary of the parameters used in the model simulations 

 

 
Model Simulations 

Distributed 
SAR 

Distributed 
ASAR Lumped 

D
ef

ic
it

 &
 C

on
st

an
t 

Lo
ss

 

Initial Deficit 
(mm) 

From  
07-May-2005 
SAR image: 
Figure B.5 

From  
07-May-2005 
ASAR image: 
Figure B.6 

Average TDR 
measurement 

on  
07-May-2005: 

34.53 
Maximum Deficit

(mm) 
76.32 

Constant Loss 
(mm/h) 

8 

Impervious 
(%) 

2 

B
as

ef
lo

w
 Initial Discharge

(m3/s) 
0.0016 

Recession 
Constant 0.001 

Ratio to Peak 0.4 

M
od

C
la

rk
 Time of 

Concentration 
(h) 

0.5 

Storage 
Coefficient (h) 1.2 

Initial Abstraction 
(mm) 

43.9 

Precipitation 
Gridded precipitation from the observed rainfall  

data at the basin outlet 

Discharge Observed flow at the catchment outlet 
 

This physical process is more significant in the computed excess precipitation values 

and can be easily observed by comparing the simulation hyetographs of 01-Jun-

2005 event (Figures 7.5, 7.6 and 7.7). For the Lumped simulation case, a sudden 

drop in the infiltration rate is computed which is then continued as a constant 

infiltration rate at 8 mm/h (Figure 7.5). On the other hand, the Distributed SAR and 

Distributed ASAR simulation outputs indicate a more accurate (close to nature) 
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infiltration process. From Figures 7.6 and 7.7, behavior of an exponential decay 

function is observed for the infiltration rate, which asymptotically approaches to the 

constant value of 8 mm/h after the flood peak.  

 

Table 7.2. Comparison of simulation results with the observed values 

 

 Observed 
Model Simulations 

Lumped Distributed 
SAR 

Distributed 
ASAR 

Peak Discharge 
(m3/s) 9.97 10.89 9.77 9.90 

Time of Peak 
1-Jun-2005 

07:20 
1-Jun-2005 

07:20 
1-Jun-2005 

07:20 
1-Jun-2005 

07:20 

Total Flow 
(x 1000 m3) 

118.10 118.29 109.23 109.89 

% Difference in Peak Flows 9.2 2.0 0.7 

% Difference in Total Flows 0.2 7.5 7.0 

RMSE (Equation 7.5) 0.430 0.351 0.349 

Figure Number 7.5 7.6 7.7 
 

Lastly, the computed RMSE (Equation 7.6), between the observed and simulated 

discharge values of the Distributed and Lumped model simulations are compared. 

The RMSE value of the Distributed SAR and Distributed ASAR simulations are both 

calculated as 0.35. On the other hand, the same value is computed as 0.43 for the 

Lumped model simulation. 
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Figure 7.5. Results of the Lumped model simulation 

 

 

 

Figure 7.6. Results of the Distributed SAR model simulation 
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Figure 7.7. Results of the Distributed ASAR model simulation 

 



98 
 

 

 

 

 

CHAPTER 8 

 

DISCUSSION OF RESULTS  

 

 

Field measurement of soil moisture is limited to point records. On the other hand, 

with the development of new sensors and algorithms, remote sensing is a promising 

field of study for obtaining surface soil moisture at watershed and regional scales. 

In this research, outcomes of a case study on microwave remote sensing of surface 

soil moisture are presented. Extracting the soil moisture distribution of the study 

catchment from active microwave data, and then implementing these results with a 

semi-distributed hydrological model are the major accomplishments of this study. 

This chapter covers the detailed discussion regarding all aspects of this work.   

 

The Study Basin is a micro catchment, which is located in the western Anatolia 

with an area of 4.73 km2. Due to its small size, the Kurukavak watershed is very 

suitable for a pioneering study on microwave remote sensing of soil moisture in 

Turkey. On the other hand, among the three land use types of the basin, densely 

forested areas are not suitable for derivation of soil moisture – radar backscatter 

relationship. As a result, a method independent of radar imagery is developed for 

soil moisture estimation within these areas.  

 

Point Soil Moisture Data Collection is achieved with a Time Domain 

Reflectomer (TDR). Field data collection is carried out on farmland and pasture land 

use classes of the basin; with 68 points within 9 plots for 9 field study dates of 

2004-2005 water year. In selection of point locations, it is aimed to measure soil 

moisture on a wide range of values. In addition to land use, these locations are 

selected with a consideration in topography, and especially according to topographic 

index values of the points. It is observed from the collected moisture data that 
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farmland areas indicate a relatively better uniformity in moisture values than the 

pasture fields (Table 3.3). At the beginning of the study, Plot 10, which has a 

pasture land use class, has been selected on a remote part of the basin. Different 

from the other three pasture plots (P5, P8 and P9), P10 is located on a higher 

altitude with points having lower topographic index values. Unfortunately, due to its 

remote location, among the nine field studies, soil moisture data are collected only 

on 09-Oct-2004 for P10. As a result, the points within pasture fields have a higher 

mean topographic index value; 9.0, than that of farmland points; 6.5.  

 

SAR/ASAR Images of the Kurukavak basin are the source of active microwave 

data. The acquired images have a fine ground resolution of 12.5 m, which is very 

appropriate considering the small size of the study catchment. On the other hand, 

ERS-2 and ENVISAT satellites have a high temporal resolution of 35 days, which 

makes it inadequate for investigating the seasonal variations in surface soil 

moisture.   

 

Implementing a Permanent Raster Data Model; with a constant ground 

resolution, predefined cell locations and unique cell IDs, is the first successful 

accomplishment of the study. The only disadvantage of this method is the amount 

of error inserted in the datasets upon resampling of them to the constant cell size 

and location of the permanent raster model. On the other hand, using such a well 

defined geo-database is the key part of integrating point soil moisture 

measurements with the gridded datasets; radar imagery, slope, topographic index 

etc., of the study.  

 

Dubois Model is a semi-empirical backscatter model, which is utilized for inversion 

of soil surface roughness values. The model is selected primarily for its simplicity 

and requirement for single roughness parameter. In building soil moisture – 

backscatter relationship, soil roughness is one of the key parameters. Since no field 

measurement of the soil roughness is carried out during field studies, inversion of 

the Dubois model is utilized to estimate the roughness values for the point soil 

moisture measurement locations. About 68 % of these values are found within the 

limits of both the Dubois model and the proposed threshold, and hence used to 



100 
 

derive soil roughness – radar backscatter relationships. For SAR and ASAR datasets, 

two non-linear equations (Equations 5.6 and 5.7) are obtained with high correlation 

coefficients of 0.72 and 0.77, respectively. Moreover, implementation of these 

equations on the other bare soil or sparsely vegetated fields of the Kurukavak basin 

is carried out successfully for soil surface roughness mapping. The proposed 

methodology requires two radar images of the same area with the same 

polarization; both are VV. On the other hand, the applied method could be 

simplified by utilizing two radar images having different polarizations; HH and VV.  

 

The Wet Soil Backscatter Relationship (Equation 6.1), representing radar 

backscatter as a function of soil moisture, incidence angle and surface roughness, is 

the most significant accomplishment of this research. Two non-linear equations 

(Equation 6.1 and 6.2) are derived for SAR and ASAR datasets with a very high 

correlation value of 0.93, and hence found to be successful. Moreover, this 

relationship is open for further research on different basins with other radar sensor 

types and properties. 

 

The Dry Soil Backscatter Relationship is the hypothetical variation of the wet 

soil relationship with an assumption of dry soil condition; the radar backscatter is 

independent of soil moisture. Due to the dominating effect of soil roughness on 

radar backscatter, the derived equations (Equation 6.4 and 6.5) have good 

correlation values of 0.87 and 0.89 for SAR and ASAR datasets, respectively. 

Moreover, the dry soil backscatter relationship is the key component of the first 

(Backscatter Correction Factors) and second (Water Cloud Model) methods used for 

soil moisture estimation in this study.  

   

Backscatter Correction Factors is the first method used for computation of 

surface soil moisture distribution on bare or sparsely vegetated areas of the study 

catchment. The corrected backscatter values are found to be well correlated (0.69 

for SAR and 0.62 for ASAR) with the surface soil moisture measurements. Among 

the three soil moisture methods utilized in this study, it is the most successful one 

and can be easily implemented for basins having similar conditions.   

   



101 
 

Water Cloud Model (WCM), which is applied to the vegetated fields of the basin 

other than forested areas, is the second method of the study for surface soil 

moisture estimation. Ulaby et al. (1981b) remarks that the Water Cloud Model is not 

an exact or perfect model and it should be regarded as a general first-order model. 

Among the three soil moisture methods, the WCM outputs present the smallest 

correlation; 0.42 for SAR and 0.45 for ASAR datasets. On the other hand, the 

proposed delta index method, which is discussed in section 6.2, is a new approach 

to the cloud model, and it is certainly open to further development and research.  

 

Basin Indexes is the third and final method of soil moisture computation. Since 

this approach is applied to the forested areas of the basin, it is the only method in 

which radar imagery is not utilized. The derived relationship (Equation 6.22) 

indicates a high correlation value (0.79) between the observed and computed 

moisture values. However, plot of these values (Figure 6.12) represents that this 

relation yields slightly higher moisture values for drier soil condition and slightly 

lower moisture values for wet soils. This can be also visualized from the computed 

frequency histograms of the soil moisture distributions (Figure C.1 to C.8) where 

higher than observed mean moisture values can be seen in the histograms of 20-

Aug-2005 and 09-Oct-2004 both of which have dry soil conditions. 

 

Soil Moisture Distributions of the Kurukavak watershed are calculated for 09-

Oct-2004 (Figures B.1 and B.2), 18-Dec-2004 (Figures B.3 and B.4), 07-May-2005 

(Figures B.5 and B.6) and 20-Aug-2005 (Figures B.7 and B.8) field study dates. A 

better understanding about the computed soil moisture values can be observed by 

comparing the frequency histograms of the computed soil moisture distributions 

and observed soil moisture values given in Appendix C. 

 

• 09-Oct-2004; it is observed from Figures C.1 and C.2 that both of the soil 

moisture estimation methods (Backscatter Correction and Basin Indexes) 

result in a similar pattern with the observed one. But it is also seen from the 

histograms that computed values are slightly higher than the observed ones. 

Moreover, average observed moisture is 16.5 %, whereas an average 
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moisture value around 20 % is computed from both of the models (Table 

C.1). 

 

• 18-Dec-2004; from Figures C.3 and C.4, a very similar pattern is seen for 

the computed and observed soil moisture distributions obtained from both of 

the methods (Backscatter Correction and Basin Indexes). The tabulated 

average moisture values (Table C.2) are around 20 % for both of the 

observed and computed moisture distributions. 

 

• 07-May-2005; is the only date where Water Cloud Model is used for soil 

moisture estimation. Even if the outcomes of the cloud model are not found 

as successful as the other two methods, frequency histograms of the 

computed and observed soil moisture distributions (Figures C.5 and C.6, and 

Table C.3) indicate a good similarity.  

 

• 20-Aug-2005; histograms of computed soil moisture distributions, with 

Backscatter Correction and Basin Indexes methods, do not indicate a similar 

pattern with the histogram of the observed values. In addition, since 20-

Aug-2005 has the driest soil condition among the nine field studies, similar 

to 09-Oct-2004, both of the methods result in higher mean moisture values 

than the observed one (Figures C.7 and C.8, and Table C.4).   

 
• SAR/ASAR; the frequency histograms of the computed soil moisture 

distributions from the SAR and ASAR datasets are almost identical for 

Backscatter Correction method. A significant difference in patterns is 

observed with the Water Cloud Model between Figures C.5 and C.6. Since 

the third methodology, the Basin Indexes, is independent of radar imagery 

no variations between the histograms of the SAR and ASAR images is 

expected. 

 

HEC-HMS; is the semi-distributed hydrological model used for simulation of the 01-

Jun-2005 flood event which is recorded at the outlet of the Kurukavak basin. For 

this purpose, three different simulations, with each one having different initial soil 
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moisture conditions, are carried out. For the Distributed SAR and Distributed ASAR 

simulations, the initial soil moisture condition is obtained from the soil moisture 

distributions of the 07-May-2005 field study date, from the SAR and ASAR images, 

respectively. On the other hand, for the Lumped simulation, the average TDR 

measurement observed at the field study on 07-May-2005 is assumed to be uniform 

over the entire catchment. Implementing the distributed soil moisture estimates of 

the study with a hydrological model is the last important accomplishment of this 

thesis. 

 

• Distributed SAR & Distributed ASAR; simulations output almost identical 

flood hydrographs which are also very close to the observed hydrograph in 

shape, peak discharge and total volume of flood (Figures 7.6 and 7.7; Table 

7.2). The computed root mean square error between the observed and 

simulated flow values, ordinate values of the hydrographs, is 0.35 for both of 

the simulations.  

 

• Lumped; simulation results in a higher peak than the observed one, with a 

computed root mean square error value of 0.43 between the observed and 

simulated discharge values. The major difference between the Lumped and 

Distributed simulations is observed from the computed precipitation losses 

with the model; a sudden drop continued with a constant rate of infiltration 

is observed for the Lumped case in Figure 7.5. On the other hand, even if a 

constant value is defined for the model, an exponential decay in the 

infiltration rate, which is close to the actual behavior, is observed for the 

distributed cases in Figures 7.6 and 7.7.  

 

The main aim of the hydrological model simulations is to perform a semi-distributed 

analysis with a distributed soil moisture input. Due to the lack of hydrological data 

for the study watershed, the model runs are carried out with the minimum number 

of model components. But the outcomes of integrating distributed soil moisture with 

a hydrological model are very promising and it should be further investigated with 

more model components and/or by other hydrological models. 
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CHAPTER 9 

 

RECOMMENDATIONS AND CONCLUSIONS 

 

 

9.1. Recommendations 

 

This thesis work covers a case study on microwave remote sensing of soil moisture. 

Both of the applied techniques and the developed relationships within the scope of 

this work are open to further discussion and development. A list of 

recommendations for future studies sharing similar research objectives is given 

below. 

 

• The study basin is a small catchment and hence it is very suitable for a case 

study application. For future studies it is recommended to implement and 

investigate the proposed techniques of this research on basins larger in size. 

 

• A major problem in radar remote sensing of soil moisture within the 

Kurukavak basin is the densely forested areas, which constitute about half of 

the basin area. A better understanding about the Backscatter Correction and 

the Water Cloud Model soil moisture estimation methods would be obtained 

with the application of these techniques on a watershed without dense 

vegetation cover.  

 

• Prior to the field studies, the point soil moisture measurement locations are 

selected at the office with a consideration in a number of topographic 

parameters. Since unexpected problems could be faced during field studies, 

it is also recommended that alternative locations should be selected as well. 
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• Even if the TDR is a powerful and easy to operate instrument, the total 

number of point measurements that can be obtained at a single field study 

depends on the field conditions and the operator. Moreover, it is also 

observed during field data collection that surface soil moisture varies 

considerably within a day depending on the weather conditions. 

Consequently, installation of permanent soil moisture sensors within the 

study area to continuously collect soil moisture data should also be 

considered. 

 

• The temporal resolution of the acquired active microwave images, 35 day 

cycles of the satellites, is not suitable for time series analysis of soil 

moisture. But these sensors have the fine resolution to carry out analysis for 

watershed scale applications. For basins larger in size, coarse resolution 

scatterometer data with smaller repeat cycles could also be integrated with 

fine resolution active microwave data. 

 

• Due to its ease of use and flexibility, implementation of a permanent raster 

data model could be used on various remote sensing applications where 

ground measurements are to be integrated with raster data sets of different 

resolutions. 

 

• The Dubois model includes two relationships, for VV and HH polarized 

images separately. Since all radar imagery utilized in this study are VV 

polarized; only one of the two model equations can be implemented with an 

inversion and comparison algorithm. On the other hand, roughness 

parameter can be extracted directly with both of the equations by using two 

radar images of the same area with different polarizations.    

 

• The computed radar backscatter – soil surface roughness relationships can 

be further used for similar basins where no field roughness measurements 

are accomplished. Unfortunately, accuracy of the derived relationships 

cannot be validated with field measurements. The validation of computed 
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roughness values with ground measurements is also recommended as a 

future work. 

 

• The wet soil backscatter relationship and the Backscatter Correction Factors 

method are the most promising outcomes of this research and they should 

be further tested on different fields and under other sensor types. In 

addition, the delta index approach used with the Water Cloud Model has a 

considerable potential for remote sensing of soil moisture on vegetated 

areas. 

 

• The HEC-HMS model, which is used for the simulation of 1-June-2005 flood 

event, has the advantages of public availability and capability of performing 

distributed analyses. But the distributed components of the model are 

designed to work within the continental United States and hence it is not 

easy to implement basins outside North America. As a result, the semi-

distributed event analysis could be carried out with other rainfall – runoff 

models having similar capabilities. 

 

• As detailed in the Chapter 7 of the study, the flood event simulations are 

performed with the minimum number of model components that is required 

to run the HMS model. A major recommendation at this point should be 

utilization of other model components which could increase the accuracy of 

model outcomes. In addition to including an evapotranspiration component, 

such as Gridded Priestley Taylor, using a different soil model, which 

represents the soil in more than one layer like Gridded Soil Moisture 

Accounting method, is recommended for future studies. 

 

• Since precipitation data from a single rain gage are only available, uniform 

distribution of the precipitation is assumed throughout the entire catchment. 

A better representation of the flood event can be obtained with records from 

more than one rainfall measurement station. 
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9.2. Conclusions 

 

Soil moisture is an important variable that controls various land surface processes 

and it is essential to weather forecasting, climate modeling and flood simulation. In 

spite of its importance to several disciplines, soil moisture information is not widely 

available on watershed and regional scales. Consequently, development of better 

estimation techniques for soil moisture, especially with the integration of remote 

sensing imagery, is a challenging but promising field of study.  

 

The main objective of this study is to retrieve soil moisture information from active 

microwave remote sensing which is achieved through development and application 

of a number of relationships and techniques as outlined in Chapter 1 of the thesis. 

In this respect, a micro catchment in western Anatolia is selected as a case study, 

and a number of field studies are carried out for collection of point soil moisture 

data. In addition, active microwave images of the basin for these dates are also 

acquired from European Space Agency (ESA).  

 

First objective of the study is to develop a methodology for soil roughness mapping 

of the study basin, which is achieved with the inversion of the Dubois backscatter 

model. Despite the fact that the method is successfully applied to the bare or 

sparsely vegetated surfaces of the basin, it has limitations from both the Dubois 

model and initial assumption of the applied technique. As a result, surfaces from 

smooth to medium level of roughness can only be extracted from remote sensing 

data. 

 

The second objective of the study is to propose an algorithm for reliable estimation 

of soil moisture from radar imagery on bare or sparsely vegetated surface 

conditions. In this respect, the wet soil backscatter relationship is developed and 

further used within the soil moisture estimation methods. A variation of this 

relationship is utilized within the Backscatter Correction Factors method, which is 

the first method used for producing soil moisture maps of the study catchment. 

Both of the developed backscatter relationships and the applied method are found 

very promising that they could be easily implemented for future studies.  
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Extracting soil moisture distribution of the study basin under dense vegetation cover 

condition is the third objective of the study. It is accomplished with an 

implementation of delta index algorithm with the Water Cloud Model, which is also 

the second method used for soil moisture mapping of the Kurukavak catchment. 

Even if the outcomes of this technique are found to be relatively successful, it has 

certain drawbacks due to the limitations of the Water Cloud Model in describing the 

complexity of the actual physical condition. 

 

Basin Indexes is the third method used for soil moisture mapping of the Kurukavak 

basin. Topographic and solar radiation indexes are utilized to build a linear 

relationship between these watershed indexes and point soil moisture 

measurements. This relationship is then applied to the forest land use class of the 

catchment, where microwave remote sensing of soil parameters is not possible. A 

major question in this method is the applicability of the soil moisture measurement 

locations, which are not selected within forested areas of the basin. Since the 

method is solely developed on terrain indexes, the relationship is independent of 

land use conditions. On the other hand, it should be noted that this method has a 

general tendency to overestimate dry soil condition and underestimate the wet soil 

condition.     

 

Finally, soil moisture maps of the Kurukavak basin are produced with the three 

methods; Backscatter Correction Factors method is applied for bare or sparsely 

vegetated, Water Cloud Model is used for densely vegetated and Basin Indexes 

method is applied for forested land use conditions of the watershed.  

 

In the last part of the study, the computed soil moisture distribution maps are input 

to a semi-distributed hydrological model as an initial soil moisture condition of a 

flood event simulation. In order to investigate the contribution of distributed initial 

soil moisture data on hydrological model outputs, simulation of the same event is 

also performed with the lumped initial moisture condition. A major difference in the 

decay of computed infiltration rates is observed between these conditions. Even if a 

constant value is defined for the model, an exponential decay in the infiltration rate, 

which is similar to the actual behavior, is observed for the distributed condition. 
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SURFACE SOIL MOISTURE MAPS 

 

 

 

 

 

 

 

Figure B.1. Soil moisture distribution of the Kurukavak basin for 09-Oct-2004 (SAR) 
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Figure B.2. Soil moisture distribution of the Kurukavak basin for 09-Oct-2004 (ASAR) 

 

 

 

Figure B.3. Soil moisture distribution of the Kurukavak basin for 18-Dec-2004 (SAR) 
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Figure B.4. Soil moisture distribution of the Kurukavak basin for 18-Dec-2004 (ASAR) 

 

 

 

Figure B.5. Soil moisture distribution of the Kurukavak basin for 07-May-05 (SAR) 
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Figure B.6. Soil moisture distribution of the Kurukavak basin for 07-May-05 (ASAR) 

 

 

 

Figure B.7. Soil moisture distribution of the Kurukavak basin for 20-Aug-2005 (SAR) 
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Figure B.8. Soil moisture distribution of the Kurukavak basin for 20-Aug-2005 (ASAR) 
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APPENDIX C 

 

OBSERVED VERSUS COMPUTED 

SURFACE SOIL MOISTURE VALUES 

 

 

Table C.1. Statistical parameters of the computed and observed soil moisture  

values for 09-Oct-2004 (Volumetric soil moisture values in %) 

 

 
09-Oct-2004 

SAR ASAR 

Entire Basin 
Methods  
I and III 
(n = 5258) 

Mean 20.93 21.00 

Std. Dev. 6.57 6.57 

Max 47.09 48.33 

Min 0.02 0.04 

 

Farmland and 
Pasture 
Method I 
(n = 2392) 

Mean 20.57 20.73 

Std. Dev. 8.31 8.38 

Max 47.09 48.33 

Min 0.02 0.04 

 

Forest and 
Other 
Method III 
(n = 2866) 

Mean 21.17 21.18 

Std. Dev. 5.06 5.04 

Max 36.80 36.80 

Min 4.33 4.33 

 

Point Soil 
Moisture 
Measurements
(n = 126) 

Mean 16.52 

Std. Dev. 5.27 

Max 31.27 

Min 7.04 
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Point Soil Moisture 

Measurements 

(n = 126) 

 

Entire Basin 

Methods I and III  

(n = 5258) 

 

Farmland and 

Pasture 

Method I 

(n = 2392) 

 

Forest and Other 

Method III 

(n = 2866) 

 

 

Figure C.1. Frequency histograms of the computed and observed soil moisture 

values for the 09-Oct-2004 SAR image 
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Point Soil Moisture 

Measurements 

(n = 126) 

 

Entire Basin 

Methods I and III 

(n = 5258)  

 

Farmland and 

Pasture 

Method I 

(n = 2392) 

 

Forest and Other 

Method III 

(n = 2866) 

 

 

Figure C.2. Frequency histograms of the computed and observed soil moisture 

values for the 09-Oct-2004 ASAR image 
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Table C.2. Statistical parameters of the computed and observed soil moisture  

values for 18-Dec-2004 (Volumetric soil moisture values in %) 

 

 
18-Dec-2004 

SAR ASAR 

Entire Basin 
Methods  
I and III 
(n = 5258) 

Mean 20.18 20.23 

Std. Dev. 7.81 7.82 

Max 44.61 44.94 

Min 0.04 0.16 

 

Farmland and 
Pasture 
Method I 
(n = 2392) 

Mean 19.36 19.46 

Std. Dev. 7.81 7.86 

Max 44.61 44.94 

Min 0.04 0.16 

 

Forest and 
Other 
Method III 
(n = 2866) 

Mean 20.77 20.77 

Std. Dev. 7.75 7.74 

Max 41.56 41.56 

Min 1.02 1.02 

 

Point Soil 
Moisture 
Measurements
(n = 126) 

Mean 21.58 

Std. Dev. 7.63 

Max 42.85 

Min 6.64 
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Measurements 
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Figure C.3. Frequency histograms of the computed and observed soil moisture 

values for the 18-Dec-2004 SAR image 

 

0

5

10

15

20

0 10 20 30 40 50 60

Fr
eq

u
en

cy
 (

%
)

Soil Moisture (%)

0

5

10

15

20

0 10 20 30 40 50 60

Fr
eq

u
en

cy
 (

%
)

Soil Moisture (%)

0

5

10

15

20

0 10 20 30 40 50 60

Fr
eq

u
en

cy
 (

%
)

Soil Moisture (%)

0

5

10

15

20

0 10 20 30 40 50 60

Fr
eq

u
en

cy
 (

%
)

Soil Moisture (%)



128 
 

Point Soil Moisture 
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Figure C.4. Frequency histograms of the computed and observed soil moisture 

values for the 18-Dec-2004 ASAR image 
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Table C.3. Statistical parameters of the computed and observed soil moisture  

values for 07-May-2005 (Volumetric soil moisture values in %) 

 

 
07-May-2005 

SAR ASAR 

Entire Basin 
Methods  
II and III 
(n = 5258) 

Mean 26.21 26.12 

Std. Dev. 6.51 5.86 

Max 58.61 58.03 

Min 0.68 0.68 

 

Farmland and 
Pasture 
Method II 
(n = 2392) 

Mean 29.13 28.91 

Std. Dev. 5.88 4.21 

Max 58.61 58.03 

Min 3.30 0.97 

 

Forest and 
Other 
Method III 
(n = 2866) 

Mean 23.87 23.86 

Std. Dev. 6.02 6.03 

Max 40.14 40.14 

Min 0.68 0.68 

 

Point Soil 
Moisture 
Measurements
(n = 126) 

Mean 28.20 

Std. Dev. 9.18 

Max 52.77 

Min 11.57 
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Figure C.5. Frequency histograms of the computed and observed soil moisture 

values for the 07-May-2005 SAR image 
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Figure C.6. Frequency histograms of the computed and observed soil moisture 

values for the 07-May-2005 ASAR image 
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Table C.4. Statistical parameters of the computed and observed soil moisture  

values for 20-Aug-2005 (Volumetric soil moisture values in %) 

 

 
20-Aug-2005 

SAR ASAR 

Entire Basin 
Methods  
I and III 
(n = 5258) 

Mean 20.45 20.70 

Std. Dev. 5.58 5.67 

Max 42.34 45.27 

Min 0.02 0.03 

 

Farmland and 
Pasture 
Method I 
(n = 2392) 

Mean 18.90 19.46 

Std. Dev. 7.29 7.60 

Max 42.34 45.27 

Min 0.02 0.03 

 

Forest and 
Other 
Method III 
(n = 2866) 

Mean 21.58 21.58 

Std. Dev. 3.47 3.45 

Max 35.11 35.11 

Min 11.44 11.44 

 

Point Soil 
Moisture 
Measurements
(n = 126) 

Mean 12.98 

Std. Dev. 5.85 

Max 32.69 

Min 5.09 
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Figure C.7. Frequency histograms of the computed and observed soil moisture 

values for the 20-Aug-2005 SAR image 
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Figure C.8. Frequency histograms of the computed and observed soil moisture 

values for the 20-Aug-2005 ASAR image 
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