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ABSTRACT 

 
 

ONE-WAREHOUSE MULTI-RETAILER PROBLEM UNDER INVENTORY 
CONTROL AND TRANSPORTATION POLICIES 

 
 
 

Solyalı, Oğuz 

Ph.D., Department of Industrial Engineering 

Supervisor: Assoc. Prof. Dr. Haldun Süral 

 

December 2008, 164 pages 

 

 

We consider a one-warehouse multi-retailer system where the warehouse orders or 

receives from its supplier and replenishes multiple retailers with direct shipping or 

multi-stop routing over a finite time horizon. The warehouse has the knowledge of 

external (deterministic) demands at the retailers and manages their inventories while 

ensuring no stock-out. We consider two problems with direct shipping policy and 

two problems with routing policy. For the direct shipping policy, the problem is to 

determine the optimal replenishments for the warehouse and retailers such that the 

system-wide costs are minimized. In one problem, the warehouse decides about 

how much and when to ship to the retailers while in the other problem, inventory 

level of the retailer has to be raised up to a predetermined level whenever 

replenished. We propose strong mixed integer programming formulations for these 

problems. Computational experiments show that our formulations are better than 

their competitors and are very successful in solving the problems to optimality. For 

the routing policy, the problem is to decide on when and in what sequence to visit 

the retailers and how much to ship to a retailer so as to minimize system-wide costs. 

In one problem, the warehouse receives given amounts from its supplier while in the 

other the warehouse decides on its own replenishments. We propose branch-and-cut 
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algorithms and heuristics based on strong formulations for both problems. 

Computational results reveal that our procedures perform better than their 

competitors in the literature for both problems. 

 

Keywords: One-warehouse multi-retailer system, Lot sizing, Inventory-routing, 

Strong formulation, Branch-and-cut 
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ÖZ 

 
 

ENVANTER KONTROL VE ULAŞIM POLİTİKALARI ALTINDA BİR 

TEDARİKÇİ-ÇOKLU PERAKENDECİ PROBLEMİ  

 
 
 

Solyalı, Oğuz 

Doktora, Endüstri Mühendisliği Bölümü 

Tez Yöneticisi: Doç. Dr. Haldun Süral   

 

Aralık 2008, 164 sayfa 

 
 
 

Bu tezde, bir tedarikçinin çok sayıdaki perakendecinin envanterini bir planlama 

ufku boyunca yönetmesi işlenmiştir. Tedarikçi perakendecilerin tahminlerle 

belirlenmiş müşteri taleplerini bilmektedir; kendisinin ve perakendecilerin envanter 

seviyesinin sıfırın altına düşmesine izin vermeden sistemi yönetmektedir. Dağıtımın 

doğrudan sevkiyatla veya rota marifetiyle yapıldığı ikişer problem ele alınmıştır. 

Dağıtımın doğrudan sevkiyatla yapıldığı problemlerde, tedarikçinin ne zaman, ne 

kadar mal sipariş vereceğine ve eldeki miktarın kimlere dağıtılacağına sistemin 

toplam maliyetini enazlayacak şekilde karar verilmektedir. Doğrudan sevkiyat 

problemlerinin birinde, perakendecilere ne zaman ne kadar mal verileceğine 

tamamen tedarikçi karar verirken, diğerinde tedarikçi ziyaret ettiği perakendecinin 

elindeki envanterini tavan seviyesine çekecek şekilde mal verir. Bu problemler için 

güçlü karışık tam sayılı programlama formülasyonları geliştirilmiştir. Sayısal 

sonuçlar, önerilen formülasyonların literatürdeki rakiplerinden daha iyi olduğunu ve 

büyük ölçekli problemlerin en iyi çözümünü bulmada etkin olduğunu göstermiştir. 

Rotayla dağıtımın yapıldığı problemlerde, perakendecilerin ne zaman ve hangi sıra 

ile ziyaret edileceği ve ziyaret sırasında perakendecilere ne kadar mal verileceği 

kararları sistemdeki toplam maliyeti enazlayacak şekilde verilmektedir. Bu 
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problemlerin birinde tedarikçiye her dönemde sevkiyat yapılırken, diğerinde 

sevkiyatın sıklığına ve içeriğine tedarikçinin kendisi karar vermektedir. Bu 

problemler için güçlü formülasyonlara dayalı dal-kesi algoritmaları ve sezgiseller 

önerilmiştir. Sayısal deneyler, her iki problem için de dal-kesi algoritmasının ve 

sezgiselin literatürdeki rakiplerinden daha iyi çalıştığını göstermiştir. 

 

Anahtar Kelimeler: Bir tedarikçi-çoklu perakendeci sistemi, Kafile büyüklüğü 

problemi, Envanter-rotalama, Güçlü formülasyon, Dal-kesi 
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CHAPTER 1 

 

INTRODUCTION 

 

 

Supply chain management is a systems approach where different planning problems 

(inventory management, production planning, distribution planning, etc.) of several 

parties (suppliers, manufacturers, warehouses, retailers, etc.) can be integrated and 

viewed as a whole. Numerous studies such as Chandra (1993), Fumero and 

Vercellis (1999), and Boudia and Prins (2007) have investigated integration of 

different functions within the echelons of the system and have reported significant 

cost savings. Boudia and Prins (2007), for instance, report cost savings ranging 

from 15% to 30% achieved by an integrated production and distribution planning 

over an uncoordinated approach (where the output of production planning is the 

input for distribution planning, or vice versa). A review of such studies can be found 

in Thomas and Griffin (1996), Sarmiento and Nagi (1999) and Baita et al. (1998). 

Most of these studies have considered integration of inventory/production and 

transportation/distribution management issues, which is also the focus of this study.  

 

Traditionally, inventory and transportation management issues are treated separately 

(see Silver et al., 1998; Toth and Vigo, 2002). According to Timme and Williams-

Timme (2003), inventory accounts for around 37%, 56% and 62% of net operating 

assets in manufacturing, retail and distribution industries, respectively. 

Transportation sector, on the other hand, accounts for around 10% of gross domestic 

product (GDP) in European Union (Salani, 2006) and around 16% of GDP in 

Canada (Canada Research Chair in Distribution Management, 2008). Considering 

all these figures together, one can say that there is a huge opportunity to obtain 

significant cost savings by taking an integrated approach to inventory and 

transportation management since frequent (rare) inventory replenishment decreases 

(increases) the inventory carrying cost but increases (decreases) the transportation 

cost. Moreover, a recent survey conducted to analyze the role of inventories from 
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the manager’s point of view has revealed that an integrated approach with different 

functions of the companies is required for an efficient inventory management 

(Chikan, 2008). In the following, we present an integrated inventory/production and 

transportation/distribution management system that we address, our motivation and 

purpose in addressing such a system, and finally the outline of the thesis. 

 

 

1.1 System under study, motivation and purpose 

 

In this study, we consider a basic two-level supply chain structure, namely 

arborescent or distribution structure, composed of one warehouse and multiple 

retailers in which the warehouse orders or receives a single commodity from its 

supplier and replenishes multiple retailers with direct shipping (i.e. visiting a single 

retailer on a trip from the warehouse) or multi-stop routing (i.e. visiting several 

retailers on a trip from the warehouse) over a finite time horizon. Such a supply 

chain frequently occurs, for instance, when (i) the warehouse and retailers are 

different echelons of the same company or (ii) they do not belong to the same 

company but the warehouse (vendor) manages the inventories of the retailers in a 

vendor managed inventory (VMI) setting. VMI is different from the traditional 

customer (retailer) managed systems in that instead of customer orders in the 

traditional system, vendor (warehouse) decides on when and how much to replenish 

its customers’ inventories while guaranteeing no stock-out at its customers 

(assuming a deterministic setting). It provides several benefits to both vendors and 

customers. For example, customers do not have to allocate their resources to 

inventory management and would have improved service levels due to the vendor’s 

no stock-out guarantee. Vendor, on the other hand, is able to better utilize its own 

resources as it has the full authority over the system. To be able to manage the 

inventories of its customers, vendor needs timely information on the inventory 

status of its customers and it is met with the help of latest advances in information 

and communication technologies. Implementation of VMI systems has generated 

favorable results for the involved parties in areas such as industrial gas industry 
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(Campbell et al., 2002; Campbell and Savelsbergh, 2004), supermarket chains 

(Mongelluzo, 1998) and grocery industry (Ross, 1998). For detailed information on 

benefits of VMI systems and their application areas, we refer the reader to 

Çetinkaya and Lee (2000), and Campbell et al. (2002). Note that we do not deal 

with the allocation of (dis)benefits of VMI system to the involved parties and this 

issue is, therefore, out of scope of this thesis. In addition, even though we consider a 

single commodity in the system, it is also applicable to systems involving multiple 

commodities when those commodities do not create any resource conflicts, and thus 

can be aggregated and treated as a single commodity. 

 

We present an integrated view that simultaneously considers management of the 

shipments from the warehouse to the retailers and/or from the supplier to the 

warehouse in addition to inventory management at the system. We specifically 

address integrated inventory and transportation management problems in one 

warehouse multi-retailer systems where we assume a periodic review system in that 

all information and decisions occur in discrete points in time. In addition, we 

assume that the warehouse has the complete knowledge of time-varying external 

(deterministic) demand occurring at the retailers and manages the inventories of the 

retailers while ensuring no stock-out (i.e. backlogging is not allowed) both at the 

retailers and at itself. We consider two problems with direct shipping policy and two 

problems with multi-stop routing policy. 

 

Two problems with direct shipping policy 

In the problems with direct shipping policy, we consider a two-level production-

distribution system in which replenishment decisions are given for all the facilities 

(i.e. both warehouse and retailers) and there are no capacity restrictions on the 

replenishment quantities from the supplier to the warehouse as well as on the 

shipment quantities from the warehouse to the retailers. This fundamental structure 

is not only important in its own right but also arises as a subproblem in many more 

complex systems. For example, it arises in the one-warehouse multi-retailer systems 

with multi-stop routing of vehicles for the shipments from the warehouse to the 
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retailers instead of the direct shipping policy (e.g. Fumero and Vercellis, 1999; Bard 

and Nananukul, 2008). It also arises in one warehouse multi-retailer systems with 

capacity restrictions imposed on replenishment quantities to the warehouse and/or to 

the retailers (e.g. Robinson and Lawrence, 2004; Federgruen et al., 2007), or in 

multi-echelon systems involving production-distribution structure (e.g. Veinott, 

1969; Kalymon, 1972; Diaby and Martel, 1993). Thus, contributions to a relatively 

fundamental system will contribute to the more complex systems as well. Indeed, 

one-warehouse multi-retailer systems with direct shipping policy can be considered 

as a generalization of single-level lot sizing problems since production/order 

decisions at the warehouse level in the former should be given together with the 

replenishment decisions at the retailers level in the latter. The two problems with 

direct shipping policy differ from each other only in the inventory control policy at 

the retailers. 

 

Problem with endogenous policy 

In one problem, we consider an endogenously defined inventory control policy at 

the retailers so that the warehouse has the complete control on when and how much 

to ship to the retailers. The problem, referred to as the one-warehouse multi-retailer 

problem with endogenous policy, is to decide on how much and when to order for 

the warehouse as well as how much and when to ship to the retailers so that total 

system-wide costs composed of variable and fixed order costs, inventory holding 

costs, and transportation costs are minimized. The variable order cost incurred per 

unit can be considered as the purchasing cost and the fixed order cost paid whenever 

an order is placed for the warehouse can be considered as the order processing cost. 

The inventory holding cost is a linear function of the ending inventory levels, which 

is the most widely used measure in the literature. Transportation cost is a fixed cost 

incurred whenever a retailer is replenished and it can be considered as a cost paid to 

a third party logistics provider shipping the goods from the warehouse to the 

retailers. 
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Problem with order-up-to level policy 

In the other problem, however, we consider an exogenously defined inventory 

control policy at the retailers where the inventory level of the retailer has to be 

raised up to its prespecified maximum level whenever replenished by the warehouse 

(called order-up-to level policy). This problem, referred to as one-warehouse multi-

retailer problem with order-up-to level policy, is the same as the one with 

endogenous policy in other respects. The order-up-to level policy is a kind of 

deterministic application of the well-known stochastic (s, S) policy (see e.g. Silver 

et al., 1998) and it can be observed in practice in the replenishment of tanks of 

industrial gas dealers, shelf-spaces of supermarkets and vending machines where 

the tanks, shelf-spaces or vending machines are filled up to their capacities 

whenever replenished. While the order-up-to level policy is imposed by the retailers 

(customers) to the warehouse (vendor) in above-described contexts, the warehouse 

is free to choose the time and quantity of replenishments to the retailers as being in 

systems with endogenous policy when the retailers do not have an inventory holding 

capacity and they consent to such a policy. Obviously, the order-up-to level policy 

is a more restrictive policy than the endogenous policy and this may cause larger 

total system-wide costs in the former. 

 

Two problems with multi-stop routing policy 

In the problems with multi-stop routing policy, we address a two-level system in 

which the warehouse either receives given amounts from its supplier or decides on 

when and how much to order/produce, and then ships to the retailers using multi-

stop routes. Such systems with routing policy arise in the same contexts described 

above for the direct shipment problems but especially when less-than-truck-load 

shipments to the retailers are concerned. One-warehouse multi-retailer systems with 

multi-stop routing policy can also be considered as a generalization of classical 

vehicle routing problems (see e.g. Toth and Vigo, 2002) in that the two problems 

with routing policy considered in this thesis involve inventory management issues 

in addition to vehicle routing issues over a finite horizon. The two problems with 
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routing policy differ from each other in having production/order decisions at the 

warehouse or not. 

 

Problem with no order decision at the warehouse 

In one of the settings where a multi-stop routing is desirable, we consider the same 

problem of one-warehouse multi-retailer problem with order-up-to level policy with 

routing instead of the direct shipment policy. Also, different from the corresponding 

direct shipment problem, we consider capacity restrictions on the shipment 

quantities from the warehouse to the retailers due to vehicle capacity and a limited 

amount made available at the warehouse in each period. The problem, referred to as 

the inventory routing problem (i.e. no production/order decisions at the warehouse) 

with order-up-to level policy, is to decide on the delivery times and quantities to the 

retailers and routing of vehicles such that the total system-wide costs composed of 

inventory holding costs and transportation costs are minimized. The inventory 

holding cost is a linear function of ending inventory levels while the transportation 

cost is incurred based on the distance travelled by vehicles, which is the most 

widely used measure in the literature. 

 

Problem with order decision at the warehouse 

In the other problem, we consider the same problem except that an endogenous 

policy is allowed instead of the order-up-to level policy and there is a decision 

problem of how much and when to produce/order at the warehouse instead of a 

given amount made available at the warehouse in each period. The problem, 

referred to as the production-distribution-routing problem (i.e. production/order 

decisions should be given at the warehouse), is to determine how much and when to 

order for the warehouse, and the replenishment quantities, delivery times and 

vehicles’ routes to the retailers such that total costs comprised of inventory holding 

costs, order costs and transportation costs are minimized. Inventory holding and 

transportation costs are the same as described above while order cost is composed 

of a variable part incurred for each unit ordered for the warehouse (can be 

considered as the purchasing cost) and a fixed part incurred whenever an order is 
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placed for the warehouse (can be considered as the setup cost or order processing 

cost). Note that this problem is a generalization of the one-warehouse multi-retailer 

problem with endogenous policy in that it allows multi-stop routing and there are 

capacities over the replenishment quantities to retailers. 

 

In this thesis, our aim is to address the above-mentioned problems by proposing 

effective mathematical programming formulations and solution algorithms. We try 

to solve these problems to optimality because this not only yields the best solutions 

but also helps in gauging the quality of solutions attainable by heuristics if 

necessary. Instead of formulating the problems using standard (mostly weak) 

mathematical programming formulations, our approach is to develop their strong 

representations so that exact (i.e. optimal) solutions to the problems can be obtained 

efficiently. Strong formulations are vital in this regard since they lend themselves to 

exact solution even using an off-the-shelf optimization solver or they can be used 

within advanced decomposition/cutting plane algorithms due to their strong bounds. 

For the two-level problems considered in this thesis, there are very few to a certain 

extent or even no studies using strong formulations and attempting to obtain exact 

solutions to the problems. We first investigate the one-warehouse multi-retailer 

problems with direct shipping policy. We propose strong formulations for these 

problems which are both theoretically and empirically better than the existing ones. 

We show that those formulations can be used to solve medium/large size instances 

(in terms of number of retailers and length of planning horizon) to optimality in 

reasonable time using an off-the-shelf optimization solver. Second, we consider 

problems with multi-stop routing policy. Since these problems are much more 

difficult than their direct shipment counterparts, we propose strong formulations and 

embed them into advanced cutting plane based algorithms (called branch-and-cut), 

where some inequalities (cutting planes) are dynamically added to the formulations. 

Moreover, as multi-stop routing policy adds a significant complexity to the problem 

and these problems can only be solved exactly up to a certain size, we use our 

strong formulations in conjunction with an idea to get rid of the complexity due to 

routing so as to develop heuristics for these problems. 
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We assume that deterministic external demands occur at the retailers over a 

planning horizon or in other words, our models accept forecasted demand data as 

input. As the demand is mostly stochastic in real-life, such deterministic multi-

period models are mostly used within a rolling horizon framework (see e.g. Chand 

et al., 2002), which provide approximations to actual stochastic problems. Bitran 

and Leong (1992), for instance, have shown that the deterministic approximations 

under rolling horizon framework are quite satisfactory (3% error) in the context of a 

multi-period multi-item production planning problem. Dhaenens-Flipo and Finke 

(2001) have proposed a deterministic multi-period mathematical programming 

model for a real-life production-distribution problem and solved it to optimality 

with an off-the-shelf optimization solver. Usage of the model has improved the 

distribution and lead to the closing of some warehouses. Besides, the studies on 

one-warehouse multi-retailer systems with stochastic demand ignore many other 

aspects emerging as the features of real-life such as capacities, fixed (transportation) 

costs and multi-stop routing (see the references in Doğru, 2006). In this sense, our 

deterministic approximations via powerful mathematical programming seem 

promising to deal with real-life problems. Our models with direct shipping policy 

are for medium-term (tactical) planning and they can be used, for example, in 

constructing master production schedules while the models with routing policy are 

aimed at short-term (operational) planning and can be used in detailed production 

and distribution planning. 

 

Another important issue addressed in this study is about initial inventories at the 

warehouse. Almost all of the literature related to the problems considered in this 

thesis assumes zero initial inventories. We consider nonzero initial inventories as an 

important issue and explicitly incorporate them into our models because they cannot 

be treated as zero since the models proposed are mostly used within a rolling 

horizon framework, implying presence of initial inventories. Nonzero initial 

inventories may affect the complexity of the problem. For instance, the only known 

easy multi-level lot sizing problem, the one with a serial structure for which 

Zangwill (1969) proposed a polynomial time recursive algorithm (Pochet and 
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Wolsey, 2006) assumes zero initial inventories. It is shown that Zangwill’s 

recursion does not apply in the presence of initial inventories at echelons other than 

the retailer level and its adaptation accordingly results in an exponential time 

algorithm (van Hoesel at al., 2005). Therefore, we explicitly incorporate nonzero 

initial inventories into our models. 

 

 

1.2 Outline 

 

The rest of the thesis is organized as follows. In Chapter 2, we present some 

preliminaries and a literature review on studies related with the problems considered 

in this thesis to make it self-contained as much as possible. 

 

In Chapter 3, we consider the one-warehouse multi-retailer problem with 

endogenous inventory control policy at the retailers. We present two mixed integer 

programming (MIP) formulations from the literature and propose a new stronger 

formulation for the problem. We present theoretical and empirical results on the 

strength of those formulations both in the presence and absence of initial inventory 

at the warehouse. We also show important theoretical results about the following 

cases: (i) when there is a single retailer, (ii) when the warehouse does not keep 

inventory at all. For case (i), our new formulation is tight in that its linear 

programming (LP) relaxation yields integer optimal solutions. For case (ii), the new 

formulation and an existing one are LP equivalent. Furthermore, we perform an 

experimental analysis over a set of randomly generated instances to assess the 

performance of formulations against each other and to observe whether these 

formulations are able to solve large instances using an off-the-shelf optimization 

solver. 

 

Chapter 4 addresses the one-warehouse multi-retailer problem with order-up-to 

level inventory control policy at the retailers (exogenously defined policy). We 

show that the problem addressed is NP-hard and propose strong MIP formulations 
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for the problem under zero and nonzero initial inventory at the warehouse. For the 

case of zero initial inventory at the warehouse and a single retailer, we show that 

our formulation is tight. We test the performance of our formulations over a set of 

randomly generated instances against a standard formulation of the problem. We 

also computationally compare the VMI system (computed by solving MIPs) over 

the traditional retailer-managed system. 

 

Chapter 5 is devoted to the inventory routing problem with order-up-to level policy 

where shipments to retailers are performed by multi-stop routing instead of direct 

shipment. We show that even the feasibility problem is NP-complete in the strong 

sense. We propose a branch-and-cut algorithm based on a strong MIP formulation 

for the problem. We also develop a mathematical programming based heuristic 

algorithm using the strong MIP formulation. We perform benchmarking by 

comparing the performance of our algorithms (both branch-and-cut and heuristic) 

with their competitors in the literature over a set of test instances. We discuss how 

to extend our approach to the problems with different inventory control policies at 

the retailers. 

 

We consider the production-distribution-routing problem in Chapter 6. We propose 

a strong MIP formulation for the problem and develop a branch-and-cut algorithm 

based on the strong formulation. Also, we adapt the mathematical programming 

based heuristic in Chapter 5 to the production-distribution routing problem. We 

conduct experimental analysis over several test problems to evaluate the 

performance of our branch-and-cut and heuristic algorithms against their 

competitors in the literature. 

 

We conclude the study by briefly stating our contributions and giving future 

research directions in Chapter 7. 
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We should note that each chapter of this thesis is self-contained so that the indices, 

parameters and variables defined in a specific chapter are merely valid for that 

given chapter. 
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CHAPTER 2 

 

PRELIMINARIES AND LITERATURE REVIEW  

 

 

In this chapter, we first give some preliminaries necessary for the comprehension 

and completeness of the thesis. Then, we review the related literature on one-

warehouse multi-retailer problem with different inventory control policies, 

inventory routing problem and production-distribution-routing problem. In addition 

to these, we give information about some related problems such as single-level and 

multi-level lot sizing problems as well as vehicle routing problem. In the following 

chapters, we briefly cite the pertinent studies. We should mention that we use 

warehouse/supplier/plant as well as retailer/customers mostly interchangeably in the 

sequel. If they refer to the facilities at different levels, the distinction will be clear 

from its context. 

 

 

2.1 Preliminaries 

 

A mixed integer (linear) program (MIP) is a mathematical program composed of a 

linear objective function and linear constraint(s) where some or all of the decision 

variables are restricted to be integers. Although it is quite powerful in modeling 

various real-life problems, it is well-known that solving a MIP to optimality is 

difficult, namely an NP-hard problem. Nevertheless, in order to solve a MIP to 

optimality, a general implicit enumeration technique, called branch-and-bound, has 

been proposed. The branch-and-bound ensures optimality by actually enumerating 

all the possible solutions implicitly. Linear programming (LP), which can be solved 

to optimality efficiently, is an important component of general-purpose branch-and-

bound algorithms since LP is solved at each node of the branch-and-bound tree to 

obtain valid lower bounds (assuming a minimization problem throughout this 

chapter). 
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Since the lower bounds are crucial for the success of a branch-and-bound algorithm, 

one ideally desires to have a MIP formulation with an LP relaxation objective value 

close to or even equal to the optimal objective value of the MIP formulation. We 

call a MIP formulation as strong when its associated LP relaxation objective value 

is close to its optimal objective value. For a MIP formulation to be stronger than 

another one, the former should have an LP relaxation objective value closer to the 

optimal objective value than the latter. A formulation is called tight whenever the 

LP relaxation of that formulation guarantees an integer optimal solution. Whenever 

a formulation is tight, it means that that formulation defines the convex hull of 

feasible solutions of the corresponding problem or that formulation gives the 

complete linear description of the corresponding problem. 

 

One way to obtain a stronger formulation is to add valid inequalities (i.e. those 

inequalities that cut fractional solutions but not integer solutions) into the MIP 

formulation at hand. Assuming that there exist valid inequalities for a specific 

formulation, if these valid inequalities are polynomial in number then it is mostly 

better to add them to the formulation a priori, whereas if valid inequalities are 

exponential in number then it is better to add them dynamically which is actually 

referred to as branch-and-cut rather than branch-and-bound. Branch-and-cut 

algorithms are indeed branch-and-bound algorithms where valid inequalities are 

usually added dynamically in a cutting plane fashion to each node of the branch-

and-bound tree. In addition to the two main decisions in classical branch-and-bound 

algorithms, namely branching variable and node selection decisions, one has to 

decide on how often to look for violated inequalities and how to find violated 

inequalities, called separation problem, if there is any at all in branch-and-cut 

algorithms.  

 

Another way to obtain a stronger formulation is to try to better represent a problem 

utilizing its solution or structural features (e.g. knowing the optimality properties). 

This mostly requires defining new variables (variable redefinition) which are 

usually larger in number than variables needed in a standard formulation. Obtaining 
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a strong formulation via variable redefinition (also called strong extended 

formulation), however, has several advantages. First, certain sizes of such strong 

formulations are even solvable to optimality using off-the-shelf optimization solvers 

(i.e. MIP software systems) which does not require any advanced programming 

language knowledge. This also implies that one can easily add several side 

constraints to the strong formulations and solve a problem with additional issues to 

optimality by means of a solver. Second, even if it is not possible to obtain exact 

solutions in reasonable times, one can use these strong formulations within 

advanced customized cutting plane/decomposition algorithms since they provide 

lower bounds close to the optimal objective value. One possible disadvantage of 

strong formulations within a branch-and-bound algorithm may be larger number of 

variables (may be constraints as well) due to variable redefinition compared to a 

standard formulation since it will take longer time to solve LP relaxations in the 

tree.  

 

Although we describe above two ways of obtaining strong formulations, this does 

not mean that these two ways are mutually exclusive. Of course, one can add valid 

inequalities to a strong (extended) formulation as well. Branch-and-cut algorithms 

and strong formulations dominate the current MIP literature as they are very 

effective and useful in solving a MIP to optimality (Wolsey, 2003; Pochet and 

Wolsey, 2006). The focus of the book by Pochet and Wolsey (2006), for example, is 

on recognizing subproblems of production planning problems and better 

representing these subproblems via either a strong reformulation (variable 

redefinition) or strong valid inequalities so that the solution of the problem to 

optimality may be possible.   

 

In the last decade, MIP software systems have dramatically been improved (Bixby 

et al., 2000; Atamtürk and Savelsbergh, 2005) such that they become powerful tools 

for solving (mixed) integer programs to optimality. This is mainly due to the 

improvements in LP solvers and incorporation of effective cutting planes as well as 

primal heuristics, which significantly improve lower and upper bounds, 
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respectively. The state-of-the-art commercial MIP software systems, such as 

CPLEX, LINDO and Xpress-MP, are able to solve MIPs with thousands of integer 

variables within reasonable times (Atamtürk and Savelsbergh, 2005). Moreover, 

some of these software systems involve environments like Concert Technology and 

Xpress-Mosel that ease the development of models and algorithms. There are also 

noncommercial MIP software systems like ABACUS, GLPK, SYMPHONY, etc. 

but they are still behind the commercial ones with regard to speed and robustness. 

For a detailed overview on noncommercial MIP software systems, one can refer to 

Linderoth and Ralphs (2006). In the following, we give brief information about MIP 

solver of CPLEX 10.1 and Concert Technology in CPLEX, which we use in the 

succeeding chapters to solve MIPs. 

 

MIP solver of CPLEX 10.1 is basically a branch-and-cut algorithm, default version 

of which, automatically determines when and how often to look for adding a certain 

class of valid inequality. Available classes of inequalities in CPLEX 10.1 are clique, 

cover, disjunctive, flow cover, flow path, Gomory, GUB cover, implied bound and 

mixed integer rounding inequalities (see Atamtürk and Savelsbergh, 2005 for 

information on these inequalities), which proved to be effective for general (mixed) 

integer programs. Concert Technology 2.2 available in CPLEX 10.1 can be used by 

anyone with some knowledge on C++, C#, Java or Visual Basic to develop 

customized branch-and bound based algorithms easily. The advantages of using 

Concert Technology are the chance of rapidly developing an algorithm, not being 

having to code a branch-and-bound tree structure, which may be difficult, and the 

opportunity to use CPLEX’s inequalities with no coding effort.   

 

 

2.2 Literature review 

 

In the following, we make literature reviews in several areas related with the 

decision problems we encounter. However, the aim is not to give an exhaustive 
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review, instead we highlight major achievements and describe closely related 

studies in detail while briefly mentioning different approaches.   

 

 

2.2.1 Single-level lot sizing 

 

One-warehouse multi-retailer systems we consider involve lot sizing issues since 

there is an associated replenishment problem for each facility (warehouse and 

retailers). It requires a decision regarding when and how much to order (or ship in 

terms of transportation) to each facility. Thus, it is pertinent to start with briefly 

reviewing literature on single-level problems and then to extend the review to multi-

level problems, in particular one-warehouse multi-retailer problem. 

 

The most basic problem in the single-level lot sizing literature is the well-known 

single-item uncapacitated lot sizing problem (ULS) where the problem is to 

determine when and how much to produce (or order) so as to satisfy external 

deterministic dynamic demands over a finite time horizon. Since we will propose 

strong formulations in the following chapters, based on those formulations which 

are developed for ULS, we would like to give brief information on strong 

formulations developed for ULS. There are two fundamental strong formulations 

known for ULS: transportation formulation (TF) and shortest path formulation 

(SPF): Krarup and Bilde (1977) develop the TF (they called it plant location 

formulation) and show that it always gives integral solution when its linear 

programming relaxation is solved. Eppen and Martin (1987) develop SPF for a 

multi-item capacitated lot sizing problem and show that it describes the convex hull 

of feasible solutions of ULS. Below, we give TF and SPF formulations. 

 

Consider a finite time horizon T with discrete periods {1, 2,..., }t T= . Let tr  be the 

demand in period t, ft be the fixed order cost in period t, ht be the holding cost 

incurred for each unit held in stock at the end of period t, pt be the unit order cost in 

period t, and qtc  be the unit cost of ordering in period q to satisfy the demand in 
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period t. Defining qtW  as the quantity ordered in period q to satisfy the demand in 

period t, and tz  as 1 if an order occurs in a period t and 0 otherwise, the TF 

formulation is as follows. 

 

TF: Min 
1 1

T T T

qt qt t t
q t q t

c W f z
= = =

+∑∑ ∑              (2.1) 

s.t. 

1

t

qt t
q

W r
=

=∑    1 t T≤ ≤             (2.2) 

qt t qW r z≤    1 q t T≤ ≤ ≤             (2.3) 

0qtW ≥    1 q t T≤ ≤ ≤             (2.4) 

{0,1}tz ∈    1 t T≤ ≤             (2.5) 

where 1 .t
qt q rr q

c p h−

=
= + ∑  

 

Objective function (2.1) is the total of fixed and variable ordering costs and 

inventory holding cost. Constraints (2.2) ensure that the demand in period t is 

satisfied by ordering through the interval from period 1 to period t. Constraints (2.3) 

stipulate that a fixed order cost is incurred if an order is placed. Constraints (2.4) are 

for nonnegativity of variables while constraints (2.5) are for integrality of variables.  

 

Additional parameters and variables are defined for SPF as follows. Let tkR  be the 

demand from period t through period k, tke  be the cost of satisfying a fraction of 

demand from period t through k. Defining tkX  as the fraction of demand from 

period t through k that is satisfied in period t, SPF is as follows. 

 

SPF: Min 
1 1

T T T

tk tk t t
t k t t

e X f z
= = =

+∑∑ ∑                  (2.6) 

s.t. (2.5) and 
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T

tk tk t
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tk ii t
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k
tk t tk l l kl t
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1 if 0
0 otherwise.

tk
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R
a

>
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Objective function (2.6) is the same as (2.1). Constraint (2.7) and (2.8) are flow 

balance equations of the shortest path network. Constraints (2.9) stipulate that a 

fixed order cost is incurred if an order is placed. Constraints (2.10) are for 

nonnegativity of variables. It is shown by Denizel et al. (2008) that both 

formulations give the same LP relaxation objective values even if more complicated 

constraints are added to ULS. Thus, these formulations and their equivalence result 

in the single-level case enables us the opportunity to derive different formulations 

based on TF and/or SPF for the two-level one-warehouse multi-retailer problems.  

 

ULS and its variants have been extensively studied in the literature and one can 

refer to Pochet and Wolsey (2006) for a detailed analysis of these problems. 

 

 

2.2.2 Two-level lot sizing 

 

We now review one-warehouse multi-retailer (OWMR) problem with deterministic 

demand occurring at retailers and its two special cases. One of these special cases is 

the single retailer case, referred to as single-warehouse single retailer (SWSR) 

problem. The other is where the warehouse acts as a crossdocking or transshipment 

point (i.e. no inventory is kept at the warehouse), referred to as joint replenishment 

problem (JRP). 
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Review on the OWMR problem 

Studies on infinite horizon OWMR problems commonly assume a constant 

deterministic demand rate and try to minimize the long-run average cost of the 

system. They consider a specific policy (mainly stationary nested) to approximate 

the optimal policy. Examples to such studies are Schwarz (1973), Roundy (1985), 

Gallego and Simchi-Levi (1990), and Yao and Wang (2006). For a recent review on 

infinite horizon or continuous review OWMR problems, one may refer to Yao and 

Wang (2006). 

 

Federgruen and Tzur (1999) propose a time-partitioning heuristic for the multi-item 

OWMR problem, which can be designed to give a certain performance guarantee. 

The heuristic divides the problem into smaller interval problems that are modeled 

using echelon stock formulation and solved to optimality by a Lagrangian relaxation 

based branch-and-bound algorithm. The smaller problems are then merged into a 

solution to the original problem. Levi et al. (2008) formulate the OWMR problem 

with a general inventory holding cost structure and stationary fixed order cost at 

retailers as a MIP, whose LP relaxation is used to develop an approximation 

algorithm with worst case performance guarantee of 1.8 times the optimal objective 

value. Chan et al. (2002) address a variant of the OWMR problem where a 

piecewise linear concave order cost (modified all-units discount order cost) is 

incurred for the shipments to the warehouse (retailers) acting as a crossdocking 

point. They show that zero-inventory ordering (ZIO) policy has a worst case 

performance guarantee of 4/3 times the optimal objective value, and propose an LP-

based heuristic which finds a nearly-optimal ZIO policy as finding the optimal ZIO 

policy itself is an NP-hard problem. Jin and Muriel (2006) propose two Lagrangian 

decomposition algorithms based on a standard MIP formulation for a variant of the 

OWMR problem where all the cost parameters are constant over time and there are 

cargo constraints for the replenishment quantities to both the warehouse and the 

retailers requiring enough number of trucks to be dispatched.  
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Review on the JRP 

Contrary to the limited literature on the OWMR problem, there are a vast number of 

studies for the JRP. Note that the JRP is also called coordinated (replenishment) lot 

sizing problem or lot sizing with joint (or major) setups in the literature. Zangwill 

(1966) and Kao (1979) propose dynamic programming algorithms while Erengüç 

(1988) develops a hybrid algorithm composed of dynamic programming and 

branch-and-bound. Those mentioned studies, however, can only solve instances 

with a few number of periods and retailers (or items) to optimality. Remarkable 

progress in solving larger sized instances is achieved by developing algorithms 

based on strong mathematical programming formulations for the JRP, which 

capitalize on tight representations of the uncapacitated single-item lot sizing 

problem (Wagner and Whitin, 1958). Joneja (1990) is the first to formulate the JRP 

as a shortest path based formulation. Kırca (1995) proposes a dual ascent based 

branch-and-bound algorithm using this formulation. Robinson and Gao (1996) is the 

first to develop a transportation based formulation and propose another dual ascent 

based branch-and-bound algorithm to solve this formulation. Both algorithms are 

currently the best exact algorithms for the JRP (Gao et al., 2008). Several studies 

empirically compare the LP relaxation objective values of shortest path and 

transportation based formulations and find the same values on a wide set of test 

instances (Gao et al., 2008; Robinson et al., 2009). There are also several studies 

considering heuristic solution approaches (see e.g. Joneja, 1990; Boctor et al., 2004; 

Federgruen et al., 2007). Interested reader can refer to Robinson et al. (2009) for a 

recent review on the JRP. 

 

Review on the SWSR problem 

The SWSR problem is also the two-level case of the uncapacitated multi-level lot 

sizing problem in series (Zangwill, 1969). Zangwill (1969) proposes a DP algorithm 

that runs in 3( )O T  time for the SWSR problem with general concave costs where T 

is the horizon length. The DP algorithm of van Hoesel et al. (2005) for the two level 

case runs in 7( )O T  under general concave production, inventory and transportation 

costs with stationary (i.e. constant) production capacity at the warehouse level. Lee 
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et al. (2003) consider a variant of SWSR where a fixed cost plus fixed cost per 

vehicle dispatched (stepwise cargo cost structure) is associated with the shipments 

from the warehouse to the retailer. They develop a DP algorithm running in 6( )O T  

when backlogging is allowed and in 4( )O T  when backlogging is not allowed. Jin 

and Muriel (2006) propose a DP algorithm that runs in 3( )O T  time when there is a 

single retailer in their problem. Solyalı and Süral (2008a) consider a variant of 

SWSR where the retailer employs order-up-to level policy. They propose a DP 

algorithm running in 3( )O T  time for the problem. Also, they present a pseudo-

polynomial DP algorithm to determine the optimal order-up-to level besides the 

replenishment quantities to the warehouse and retailer. 

 

 

2.2.3 Multi-level lot sizing 

 

Based on the product structure, multi-level lot sizing problems can be classified into 

four groups: series structure (i.e. each node has only one predecessor and one 

successor), assembly structure (i.e. each node has only one successor), general 

structure and production-distribution/arborescent structure (i.e. each node has only 

one predecessor). Among these, only the uncapacitated multi-level lot sizing 

problem in series is solvable in polynomial time (Zangwill, 1969). On the other 

hand, the problem with assembly structure is still an open problem such that neither 

a polynomial time algorithm nor an NP-hardness result exists for it (Pochet and 

Wolsey, 2006). For detailed information on these problems, one can refer to 

Chapter 13 of Pochet and Wolsey (2006).  

  

Zangwill (1969) considers an uncapacitated multi-level (say, L levels) lot sizing 

problem in series and proposes a DP algorithm for solving the problem, which runs 

in 3 4( ( 2) )O T L T+ −  time (van Hoesel et al., 2005). van Hoesel et al. (2005) extend 

Zangwill’s work to a more general problem in which a stationary capacity on 

production is considered in the first level. To the best of our knowledge, van Hoesel 
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et al. (2005) is the only study that deals with initial inventories at levels other than 

last level (retailer level). 

 

For multi-level lot sizing problem with assembly or general structure, echelon stock 

concept plays an important role such that the strongest MIP formulations up to now 

are obtained using echelon stock concept. Echelon stock idea enables one to 

separate lot sizing problem of each item in the product structure and thus each of 

these lot sizing problems can be represented using transportation or shortest path 

formulations given in Section 2.2.1 which gives the strongest formulations (Stadtler, 

1996 and 1997). These formulations are related with the echelon stock formulation 

proposed for the OWMR problem by Federgruen and Tzur (1999). 

 

Our interest in multi-level lot sizing problem with arborescent structure is due to its 

being a generalization of the OWMR problem. For this problem, Veinott (1969) and 

Kalymon (1972) develop exact dynamic programming and implicit enumeration 

algorithms, respectively, which are exponential in running time. Diaby and Martel 

(1993) propose a Lagrangian relaxation algorithm based on a standard formulation 

to the problem where general piecewise linear costs are incurred for the shipments. 

 

 

2.2.4 Vehicle routing problem 

 

The problems with multi-stop routing policy involve decisions regarding the routing 

of vehicles such that the sequence of customers to be visited should be decided. The 

classical vehicle routing problem (VRP), a strongly NP-hard problem, is the 

problem of finding a collection of routes with each starting from the depot, visiting 

a subset of customers without exceeding vehicle capacity and returning back to the 

depot such that total distance is minimized. VRP has a close connection with 

inventory routing problem and production-distribution-routing problem in that they 

can be seen as a multi-period extension of VRP with some side constraints. Thus, it 

is pertinent to provide a review on VRP literature. 
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 VRP has been widely studied by researchers such that many exact and heuristic 

algorithms have been proposed (Laporte, 2007). The most successful exact 

algorithms proposed up to now are based on sophisticated branch-and-cut (Naddef 

and Rinaldi, 2002; Lysgaard et al., 2004; Baldacci et al., 2004) and branch-and-cut-

and-price algorithms (Fukasawa et al., 2006; Baldacci et al., 2008). Naddef and 

Rinaldi (2002) review the exact algorithms proposed in the VRP literature up to 

2002 and present the best algorithm using a two-index vehicle flow formulation 

which can solve instances up to 135 customers to optimality with a variable success 

rate. Lysgaard et al. (2004) improve the two-index flow formulation by adding 

effective inequalities such as framed capacity, strengthened comb, generalized 

multistar, etc. in a cutting plane fashion. Baldacci et al. (2004) propose an exact 

algorithm based on a two-index two-commodity flow formulation. Fukasawa et al. 

(2006) and Baldacci et al. (2008) propose a set partitioning formulation (STP) with 

additional inequalities. They dynamically generate routes (variables in STP) via a 

pricing problem and add valid inequalities to STP. Currently, the best exact 

algorithms are due to Fukasawa et al. (2006) and Baldacci et al. (2008), which can 

solve instances up to 135 customers to optimality with a constant success rate. In 

the following, we give the two-index vehicle flow formulation for the VRP with 

homogeneous fleet because we will use this formulation in Chapters 5 and 6. 

 

Let 0 denote the depot, M and M ′  be the set of customers and the set of facilities 

respectively where {0}U ,M M′ =  ijc  be the cost of traveling from facility i M ′∈  to 

j M ′∈ , di be the demand of customer i M∈ , V be the number of vehicles, Q be the 

capacity of each vehicle. Define ijy  as 1 if vehicle visits facility j M ′∈  

immediately after facility i M ′∈ , and 0 otherwise. Then the two-index vehicle flow 

formulation is as follows. 

 

VF: Min 
,

ij ij
i M j M i j

c y
′ ′∈ ∈ >

∑ ∑             (2.11) 

s.t. 



 24 

0 2j
j M

y V
∈

=∑               (2.12) 

, ,

2ij ji
j M j i j M j i

y y
′ ′∈ < ∈ >

+ =∑ ∑   i M∈           (2.13) 

, ,

2 ( )ij ij
i S j S j i i S j S j i

y y r S
∈ ∉ < ∉ ∈ <
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0 {0,1, 2}iy ∈     i M∈           (2.16) 

 

Objective function (2.11) is the total traveling cost. Constraints (2.12) stipulate that 

V vehicles depart and return back to the depot. Constraints (2.13) are degree 

constraints ensuring that two edges are incident to customer i. Constraints (2.14) 

ensure that subtours are eliminated and capacity of vehicles are not exceeded. In 

constraints (2.14), ( )r S  denotes the minimum number of vehicles required to 

satisfy demands of customers in S. Researchers use a lower bound value, 

/ii S
d Q

∈
  ∑ , instead of finding the exact value of ( )r S  which requires solving an 

NP-hard bin packing problem. Constraints (2.15) and (2.16) are for the integrality of 

variables. In constraints (2.16), 0iy  is allowed to take 2 to account for single retailer 

trip between customer i M∈ and depot. Note that constraints (2.14) can be 

equivalently rewritten as 

 

,

( )ij
i S j S j i

y S r S
∈ ∈ <

≤ −∑ ∑  , 2S M S⊆ ≥         (2.17) 

 

There is also a very rich literature on heuristic algorithms applied to VRP. For a 

recent review of exact and heuristic solution approaches to VRP, one can refer to 

Laporte (2007). VRP and its variants have been extensively studied in the literature 

and one can refer to Toth and Vigo (2002) as well as Golden et al. (2008) for a 

detailed treatment of those problems. 
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The well-studied traveling salesman problem (TSP) is a special case of the VRP 

where there is a single vehicle with enough capacity to visit all the customers. 

Although TSP is a strongly NP-hard problem, its solution is a success story in 

combinatorial optimization since instances with thousands of customers (up to 2500 

customers) can be solved to optimality within reasonable times (<1000 CPU 

seconds) by means of a solver, called CONCORDE. One can refer to Applegate et 

al. (2007) for a detailed treatment of TSP and an explanation of the theory and 

algorithms utilized to develop CONCORDE. We use CONCORDE to solve TSPs 

arising in inventory routing and production-distribution-routing problems in 

Chapters 5 and 6 to optimality. 

 

 

2.2.5 Inventory routing problems 

 

The inventory routing problem (IRP) can be defined as the problem of deciding on 

delivery times, quantities and routes to customers such that a criterion (cost or 

profit) is optimized. There are numerous studies on different variants of the IRP. 

Researchers have considered different characteristics such as planning horizon 

(finite, infinite) and demand process (deterministic, stochastic) under different cost 

structures or profit. In this subsection, we give brief information on related studies 

by mentioning the important aspects. We restrict ourselves to the deterministic cases 

and refer the interested reader to Hvattum and Lokketangen (2008) for stochastic 

cases. 

 

First studies on IRP appeared in 1980s and attempted to take into account inventory 

control in addition to vehicle routing on single period models. The seminal work by 

Federgruen and Zipkin (1984) considers distribution of a limited quantity of a single 

product available at a supplier to multiple retailers with stochastic demand using a 

fleet of capacitated vehicles. Their aim is to minimize the expected inventory 

holding and shortage costs as well as routing costs. Federgruen et al. (1986) extend 

the former work to the case of perishable products. Chien et al. (1989) address a 
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single period problem with deterministic demand at retailers where the aim is to 

maximize revenues less delivery costs. They formulate the problem as a MIP, which 

they use to develop a Lagrangian relaxation algorithm yielding good upper and 

lower bounds. 

 

Dror et al. (1985) and Dror and Ball (1987) are the first to study a multi-period IRP. 

They reflect the long-term effect of short-term decisions transforming the multi-

period problem into a single period problem where demands at customers are 

treated as deterministic. While the latter focuses on the analysis of transforming the 

multi-period problem into a single period problem, the former considers the solution 

of the single period problem. Campbell and Savelsbergh (2004) develop a two-

phase solution approach to the multi-period IRP with constant demand at customers. 

Delivery quantities and times are determined in the first-phase by solving an integer 

program, and delivery routes are obtained using heuristics in the second-phase. 

Bertazzi et al. (2002), Pınar and Süral (2006), and Archetti et al. (2007a) address the 

multi-period IRP with deterministic dynamic demand at customers. They employ a 

deterministic order-up-to level inventory control policy at customers (or retailers), 

which requires the supplier to raise each customer’s inventory level to its 

predetermined maximum level whenever visited. Bertazzi et al. (2002) develop an 

improvement heuristic to the problem and analyze the impact of different cost 

structures on the solution. Pınar and Süral (2006) propose a Lagrangian relaxation 

algorithm which yields upper and lower bounds to the problem. Archetti et al. 

(2007a), on the other hand, propose the only exact algorithm for the multi-period 

IRP and analyze the effect of relaxing the order-up-to policy at customers. In 

contrast to the Dror et al. (1985), Dror and Ball (1987) and Campbell et al. (2004) 

where a limitless amount of product is assumed to be available at the supplier 

whenever needed, Bertazzi et al. (2002), Pınar and Süral (2006), and Archetti et al. 

(2007a) assume that the supplier receives a given amount of product each period 

and supplier can only distribute the amount in its inventory. Abdelmaguid et al. 

(2008) consider a multi-period IRP with backlogging allowed at customers and 

propose construction and improvement heuristics to solve the problem. They also 
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provide a multi-commodity flow based MIP formulation which they use to obtain 

lower and upper bounds by solving with an off-the-shelf solver. Yugang et al. 

(2008) also study a multi-period IRP with dynamic demand at customers and bound 

constraints on the inventory levels at the customers. They propose two Lagrangian 

relaxation algorithms: one is based on an approximate MIP formulation that 

provides upper bound while the other is a complete formulation yielding lower 

bounds. 

 

Anily and Federgruen (1990), Anily (1994) and Viswanathan and Mathur (1997) 

consider infinite horizon IRPs with constant deterministic demand at customers 

where the aim is to minimize long-run average costs. Anily and Federgruen (1990) 

propose a heuristic, which is asymptotically optimal under certain conditions. Anily 

(1994) generalizes the work of Anily and Federgruen (1990) to the case of retailer-

dependent holding costs while the study of Viswanathan and Mathur (1997) 

generalizes that of Anily and Federgruen (1990) to the multiple products. 

 

Burns et al. (1985), Gallego and Simchi-Levi (1990), and Bertazzi (2008) analyze 

the performance of direct shipping policy and multi-stop routing policy on infinite 

horizon. Burns et al. (1985) neglect many details of the system (e.g. spatial density 

of customers is used instead of their precise locations) and obtain analytical 

formulas in terms of a few measurable parameters which enable one to make 

sensitivity analyses and cost trade-off easily and quickly. Their results reveal that 

optimal shipment size is given by the economic order quantity formula for direct 

shipping policy whereas it is the full truck for multi-stop routing policy. Gallego 

and Simchi-Levi (1990) show that direct shipping policy is at most 1.061 of the 

optimal policy when the minimal economic lot size over all retailers is at least 71% 

of the vehicle capacity. Bertazzi (2008) analyzes different direct shipping policies in 

terms of their worst case performance and their empirical performance (on 

randomly generated instances). In Gallego and Simchi-Levi (1990), shipments can 

be performed in continuous time whereas shipments can be performed in discrete 

time in Bertazzi (2008).  
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There are also some other studies that differ from the standard inventory routing 

problem in some aspects. Webb and Larson (1995) consider a strategic IRP in that 

they try to find the best fleet size. Bard et al. (1998) and Jaillet et al. (2002) consider 

IRP with satellite facilities where the vehicles can be reloaded. Savelsbergh and 

Song (2008) address an IRP with continuous moves in which customers cannot be 

served in a single period by out-and-back trips since delivery to customers spans 

more than a single period, and product pickups occur at different facilities. They 

develop an optimization algorithm for the problem. 

 

For detailed information on IRP, we refer the readers to the studies themselves or to 

review papers such as Campbell et al. (1998; 2002), Baita et al. (1998), Schwarz et 

al. (2004), and Moin and Salhi (2007). 

 

 

2.2.6 Production-distribution routing problem 

 

The Production-distribution-routing (PDR) problem is a generalization of the IRP in 

that production/order decisions should be given in addition to the IRP decisions. 

The PDR problem can also be seen as an integrated production planning (lot sizing) 

and distribution management (vehicle routing) problem. Although there is a vast 

amount of literature on the IRP, the literature on the PDR problem is rather limited. 

While the studies on the PDR problem consider different characteristics such as 

single/multiple items, no production/production capacity, not to/to split deliveries, 

etc., the majority of them propose two-phase heuristic methods where the solution 

of the production planning problem at the upper level (i.e. at the warehouse) is an 

input to the distribution management problem (as in the form of multi-period VRP 

or IRP) or vice versa. Those studies that develop two-phase heuristics mostly lack a 

lower bounding procedure. They mainly try to measure the cost savings attainable 

by a coupled approach over the decoupled/sequential approach. 
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Chandra (1993) addresses a system in which a warehouse orders multiple items and 

distributes to the retailers via capacitated vehicles over a finite horizon. The vehicle 

fleet is unrestricted in size and there is no production/order capacity at the 

warehouse. It is allowed to split deliveries (i.e. delivering to a retailer with more 

than one vehicle is possible in any period) which can reduce the routing costs 

significantly compared to the case where split delivery is not allowed (Archetti et 

al., 2008). The author investigates the savings obtained by the coupled approach 

over the decoupled one. Chandra and Fisher (1994) is an extension of Chandra 

(1993) which consider production capacities at the warehouse. Yugang et al. (2007) 

show that the MIP formulation proposed in Chandra and Fisher (1994) is not correct 

in that it may not yield the optimal solution but can be used to find lower bounds. 

Fumero and Vercellis (1999) consider the same problem as in Chandra and Fisher 

(1994) but with a restricted fleet size for vehicles and a quantity as well as distance 

based transportation cost instead of the distance based cost at Chandra and Fisher 

(1994). Fumero and Vercellis (1999) propose a multi-commodity flow based MIP 

formulation and develop a Lagrangian relaxation algorithm yielding upper and 

lower bounds to the problem. It is the first study to propose a lower bounding 

procedure in the PDR literature.  

 

Bertazzi et al. (2005) address a PDR problem with order-up-to level inventory 

policy at the retailers. They propose an improvement heuristic in which the initial 

solution is found by a decoupled approach and then improved by modifying 

replenishment decisions of retailers taking into account the impact of this 

modification on the corresponding routing costs and costs at the warehouse. They 

show that the vendor managed inventory policy (found by their improvement 

heuristic) reduces total cost significantly compared to the retailer managed policy 

(found by the decoupled approach). They also partially relax the order-up-to level 

policy and obtain reduction in the total cost. Solyalı and Süral (2008b) consider a 

PDR problem with order-up-to level inventory policy at the retailers but have some 

differences with Bertazzi et al. (2005) in the cost structure. They propose a multi-

commodity flow formulation for the problem, which is used to develop a 
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Lagrangian relaxation algorithm providing upper and lower bounds. The study of 

Solyalı and Süral (2008b) reveal that it is only possible to solve small instances (8 

retailers, 5 time periods and a single vehicle) to optimality with the multi-

commodity flow formulation due to its large number of binary variables and 

constraints.  

 

Lei et al. (2006) address a PDR problem motivated by a real-life problem where 

there are multi-plants producing a single product subject to production capacities. 

The product is distributed by heterogeneous vehicles. Each vehicle is allowed to 

make multiple trips in a period provided that the available time is not exceeded. 

Unlike Chandra (1993), Chandra and Fisher (1994), and Fumero and Vercellis 

(1999), Lei et al. (2006) consider inventory bound constraints on the level of 

inventory carried at the plants and customers. They propose a multi-commodity 

flow formulation for the problem and develop a two-phase algorithm. In the first 

phase, routing constraints are removed from the formulation (i.e. direct shipment is 

assumed between plants and customers) which is solved to give a feasible solution 

to the problem. Then, in the second phase, the feasible solution of the first phase is 

tried to be improved by consolidating the shipments into routes involving multiple 

customers. The algorithm is benchmarked against the best solution found by 

CPLEX using the complete formulation within 4-hour time limit on small instances 

(up to 12 customers, 4 time periods, 2 heterogeneous vehicles). Archetti et al. 

(2007b) consider a plant with no production capacity distributing a single product to 

multiple retailers with capacitated vehicles. They consider a fleet of homogeneous 

vehicles unrestricted in size and do not allow split deliveries. Like Lei et al. (2006), 

they have inventory bound constraints but only on the inventory levels of retailers. 

They refer to this PDR problem as the PDR with maximum level policy. For the 

single vehicle case, they propose a branch-and-cut algorithm using a standard 

formulation, which is the only exact algorithm for a PDR problem we are aware of. 

They also propose an improvement heuristic for the problem with multi-vehicles. 

They compare the best solutions found by their branch-and-cut and heuristic 

algorithms on a set of test problem instances (19 retailers, 6 time periods, single 
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vehicle). Furthermore, they compare the PDR problem with order-up-to level policy 

and maximum level policy and show that the solution found by order-up-to level 

policy can be arbitrarily worse than the relaxed one.  

 

Recently, a couple of studies, such as Boudia et al. (2007), Boudia and Prins (2007), 

Boudia et al. (2008), and Bard and Nananukul (2008), address a PDR problem 

where a plant produces a single product subject to production capacity and ships to 

multiple customers using a fleet of capacitated vehicles. They consider inventory 

bound constraints on the inventory levels of both the plant and customers. They do 

not allow split delivery. The distinguishing feature of those studies is that they do 

not consider inventory holding cost at the customers. Boudia and Prins (2007) 

propose a memetic algorithm combined with population management which 

outperforms their heuristics in Boudia et al. (2007; 2008). Bard and Nananukul 

(2008) develop a two-phase algorithm similar to that of Lei et al. (2006) such that in 

the first phase a standard MIP formulation without routing constraints (they called it 

as allocation model) is solved to obtain an initial solution and in the second phase, a 

reactive tabu search is developed that tries to improve the initial solution. Different 

from Boudia et al. (2007), Boudia and Prins (2007), and Boudia et al. (2008), Bard 

and Nananukul (2008) propose a lower bounding procedure based on a modification 

of the allocation model, though it is not so effective. 

 

While above mentioned studies consider dynamic deterministic demands at retailers 

over a finite horizon, there are also studies like Anily and Federgruen (1993) and 

Herer and Roundy (1997) that incorporate predictable vehicle routing costs to the 

basic infinite horizon OWMR problem. 
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CHAPTER 3 

 

THE ONE-WAREHOUSE MULTI-RETAILER PROBLEM WITH 

ENDOGENOUS POLICY 

 

 

In this chapter, we consider the one-warehouse multi-retailer (OWMR) problem 

with endogenous policy in which a warehouse places orders and decides on when 

and how much to ship to the retailers. OWMR problems have been widely studied 

in the literature under various settings, as discussed in Chapter 2. The OWMR 

problem considered here can be thought of as a two-level lot sizing problem 

generalizing the well-known uncapacitated single-level lot sizing problem (ULS). 

The OWMR problem also generalizes the joint replenishment problem (JRP) such 

that the former allows keeping inventory at the warehouse level whereas the latter 

does not (i.e. the warehouse acts as a crossdocking or transshipment point in JRP). 

Although there are various studies on strong mixed integer programming 

formulations and exact algorithms based on such formulations for ULS and JRP, 

there are only two studies considering strong MIP formulations in the OWMR 

literature. However, both studies use their strong formulations in developing 

heuristic algorithms with performance guarantees rather than using them in devising 

exact algorithms. 

 

One of our aims in this chapter is to devise a stronger formulation than the existing 

ones for the OWMR problem such that solving certain sizes of OWMR problems to 

optimality would be possible by means of an off-the-shelf optimization solver. We 

consider strong formulations as important because the OWMR problem is not only 

important in its own right, but also arises as a subproblem in many involved settings 

such as variants with capacities over replenishment quantities and variants with 

multi-stop routing policy. As the strong formulations lend themselves to an exact 

solution, they create an opportunity in solving such complex variants. Consider, for 
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instance, the OWMR problem with multi-stop routing policy (called production-

disribution routing problem in Chapter 1) where the problem is comprised of two 

parts: inventory replenishment part (i.e. OWMR problem) and routing part.  

Although the routing part is well-studied and its shortcomings are well-known, to 

the best of our knowledge, strong formulations of the inventory replenishment part 

have not been studied and implemented yet in the literature. For an evidence of the 

effectiveness of using a strong formulation in that context, one can refer to Chapter 

6. Another aim in this chapter is to analyze the impact of nonzero initial inventories 

at the warehouse, the importance of which is discussed in Chapter 1. Note that the 

amount of inventory initially available at the warehouse cannot be eliminated 

simply by deducing that amount from the beginning periods’ demands since how 

much each retailer will demand is not known a priori. 

 

In this chapter, we propose a new shortest path based strong formulation for the 

OWMR problem. Considering two other formulations, namely, echelon stock 

(Federgruen and Tzur, 1999) and transportation based (Levi et al., 2008) 

formulation, we analyze and demonstrate the relation among their LP relaxations. 

We show that the new formulation gives the complete linear description of the 

OWMR problem if there is a single retailer, referred to as single warehouse-single 

retailer (SWSR) problem, whereas the previously proposed formulations do not. As 

an important consequence of this, we reveal that the new formulation is stronger 

than the transportation based one which is stronger than the echelon stock 

formulation. It is contrary to the results in single-level lot sizing where shortest path 

and transportation based formulations are the LP equivalent (see Nemhauser and 

Wolsey, 1988 for ULS problem and Denizel et al., 2008 for the capacitated multi-

item lot sizing problem with setups). Besides, we resolve the question of whether 

the empirical results on the equivalence of LP relaxation solution values are valid 

for all instances of the JRP or are just due to a given sample of instances in the 

literature, and elucidate that both formulations of the JRP are theoretically 

equivalent. Also, we explicitly consider nonzero initial inventory at the warehouse, 

extend all formulations to the case of nonzero initial inventory at the warehouse and 
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present the relation among LP relaxations of those formulations. Finally, we test the 

computational performance of the MIP formulations on a set of test instances. 

Computational results reveal that our strong formulation is quite satisfactory to 

close the integrality gap and to solve large problem instances, using standard MIP 

solvers. 

 

The rest of this chapter is organized as follows. In Section 3.1, we present the MIP 

formulations for the OWMR problem and analyze the strength of their LP 

relaxations with respect to each other. We consider the SWSR problem and the JRP 

in Sections 3.2 and 3.3, respectively. In Section 3.4, we extend the reviewed 

formulations to the case of nonzero initial inventory at the warehouse and analyze 

the strength of their LP relaxations. Section 3.5 is devoted to the computational 

experiments. Note that the notation and abbreviations defined in this chapter is only 

valid in this chapter and in Appendix A. 

 

 

3.1 Problem definition and formulations 

 

The OWMR problem is defined as follows. A warehouse replenishes multiple 

retailers over a finite time horizon T. Retailer i (1 ≤ i ≤ N) faces external 

deterministic dynamic demand dit in period t (1 ≤ t ≤ T) and may keep inventory Iit 

at the end of period t to satisfy demands of future periods k, where t+1≤ k ≤ T. The 

warehouse (i=0) manages the entire inventories in the system and has to order from 

its supplier so as to be able to replenish the retailers. The warehouse may keep 

inventory I0t to satisfy future retailers’ demands. There are no capacities over the 

replenishment quantities in any level. The shipments to the warehouse incur a fixed 

order cost f0t, independent of the size of shipment, and a variable order cost p0t, 

which is charged for each unit ordered in t. A fixed order cost fit and a variable order 

cost pit are also incurred whenever retailer i (1 ≤ i ≤ N) receives a shipment in t (1 ≤ 

t ≤ T). Both parties incur a linear holding cost for each item carried at the end of a 

period, hit. All the parameters are assumed to be nonnegative. The OWMR problem 
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is to jointly determine lot sizing policy of the warehouse and the retailers such that 

the total of inventory holding costs and order costs at both levels is minimized. 

Arkin et al. (1989) show that the OWMR problem is NP-hard by reducing the JRP 

to it. 

 

We assume, without loss of generality, that there is no lead time for the shipments 

in and between levels. We also assume that there is no initial inventory in any level. 

Note that having initial inventory at retailers does not have any impact on the 

problem difficulty since one can simply deduce external demands at the retailers 

from their initial inventory levels and obtain an equivalent problem with zero initial 

inventories at the retailers. However, it is not the case when assuming initial 

inventories at the warehouse as we elaborate later. 

 

A standard formulation for the OWMR problem is given in Appendix A which has 

( )O NT  binary and continuous variables, and ( )O NT constraints. It is a small-size 

weak formulation and there is no study, to the best of our knowledge, which uses it 

for solving the problem to optimality. There are two alternative formulations 

proposed in the literature for the OWMR problem: echelon stock formulation and 

transportation type lot sizing formulation. Besides presenting them, we will propose 

a new formulation in this section. 

 

In addition to the notation defined before, we define several parameters and 

variables that will commonly be used in the subsequent subsections. Let itkD  be the 

total demand of facility i (0 ≤ i ≤ N) from period t through k, k
itk irr t

D d
=

= ∑ , and ity  

be 1 if an order for facility i ( 0 i N≤ ≤ ) is placed in period t and 0 otherwise. 
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3.1.1 Echelon stock formulation 

 

The echelon stock (ES) formulation given below is proposed by Federgruen and 

Tzur (1999). Let 0td  be the total external demand in period t, i.e. 0 1

N
t iti

d d
=

= ∑ . Let 

itQ  be the quantity ordered for facility i ( 0 i N≤ ≤ ) in period t. 

 

ES: Min  0 0 0
1 0 0 1

( )
T N N N

it it it it t t it t it
t i i i

f y p Q h I h h I
= = = =

 
+ + + − 

 
∑ ∑ ∑ ∑               (3.1) 

s.t. 

, 1i t it it itI Q d I− + = +   0 ,i N≤ ≤  1 t T≤ ≤               (3.2) 

it itT itQ D y≤    0 ,i N≤ ≤ 1 t T≤ ≤               (3.3) 

0
1 1 1

t N t

r ir
r i r

Q Q
= = =

≥∑ ∑∑   1 t T≤ ≤                 (3.4) 

{0,1}ity ∈    0 ,i N≤ ≤  1 t T≤ ≤               (3.5) 

0itQ ≥     0 ,i N≤ ≤  1 t T≤ ≤               (3.6) 

0itI ≥     0 ,i N≤ ≤  1 t T≤ ≤               (3.7) 

 

The objective function (3.1) of the model is the sum of fixed and variable order 

costs and inventory holding costs at the warehouse and retailers. Constraints (3.2) 

are the inventory balance constraints for the warehouse and retailers. Constraints 

(3.3) stipulate that a fixed order cost is incurred at facility i ( 0 i N≤ ≤ ) if an order is 

placed for i in a period. Constraints (3.4) ensure that the total amount ordered for 

the warehouse up to and including period t must be greater than or equal to the total 

amount ordered for all of the retailers up to and including t. Constraints (3.5) are for 

integrality of variables while (3.6) and (3.7) are for nonnegativity of variables. 

 

The ES separates the lot sizing decisions at the warehouse and retailers, and then 

associates those decisions via a linking constraint like constraints (3.4). Note that 

constraints (3.2), (3.3) and (3.5)–(3.7) can be decomposed into N+1 facilities, each 

of which defines an ULS problem, when constraints (3.4) are relaxed. Federgruen 
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and Tzur (1999) dualize constraints (3.4) into the objective function (3.1) to develop 

a Lagrangian relaxation based branch-and-bound algorithm so as to solve small-size 

OWMR problems as part of their heuristic. They solve N+1 ULS problems to 

optimality in each iteration of the relaxation. The Lagrangian relaxed problems do 

not have integrality property; therefore one can find better Lagrangian bound values 

than the LP relaxation solution values of the ES in this framework. 

 

We can obtain a stronger ES (SES) by replacing constraints (3.2), (3.3) and (3.5)–

(3.7) with their strong counterparts of the formulation giving the convex hull of 

feasible solutions of ULS. For this purpose, we use transportation formulation for 

developing strong counterparts, and thus show the relation among LP relaxation 

solution values of different formulations. 

 

Defining itkX  as the quantity ordered to facility i ( 0 i N≤ ≤ ) in period t to satisfy 

the demand of i in period k (1 t k T≤ ≤ ≤ ), a stronger formulation SES is obtained as 

follows. 

 

SES: Min  
0 1 0 1

N T N T T

it it itk itk
i t i t k t

f y H X
= = = = =

+∑∑ ∑∑∑                 (3.8) 

s.t. (3.5) and 

1

k

itk ik
t

X d
=

=∑    0 ,i N≤ ≤ 1 k T≤ ≤               (3.9) 

itk ik itX d y≤    0 ,i N≤ ≤ 1 t k T≤ ≤ ≤             (3.10) 

0
1 1 1

t T N t T

rk irk
r k r i r k r

X X
= = = = =

≥∑∑ ∑∑∑   1 t T≤ ≤               (3.11) 

0itkX ≥     0 ,i N≤ ≤ 1 t k T≤ ≤ ≤             (3.12) 

where 1
0( )k

itk it il ll t
H p h h−

=
= + −∑  for 1 ,i N≤ ≤  and 1

0 0 0 .k
tk t ll t

H p h−

=
= + ∑  

 

Objective function (3.8) is equivalent to (3.1) while constraints (3.10) and (3.11) are 

used in place of (3.3) and (3.4), respectively. Constraints (3.9) are for demand 
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satisfaction at the warehouse and retailers instead of balance equations (3.2). 

Constraints (3.12) are for nonnegativity of variables. Note that SES has ( )O NT  

binary variables and 2( )O NT constraints. 

 

SES is stronger than ES since the former describes the convex hull of feasible 

solutions of ULS problem for each facility i ( 0 i N≤ ≤ ) whereas the latter does not. 

One can show that the best Lagrangian bound value attainable in Federgruen and 

Tzur (1999) would not be better than the LP relaxation solution value of the SES. 

 

 

3.1.2 Transportation based formulation 

 

We refer to the next formulation as transportation based formulation (TP) since lot 

sizing problems of both the warehouse and the retailers are modeled using 

transportation type lot sizing formulation. Let itkH ′  ( 1k
it irr t

p h−

=
= + ∑ ) be the unit cost 

of satisfying demand of facility i ( 0 i N≤ ≤ ) in period k by placing an order in 

period t. Let iqtkW  be the quantity ordered by the warehouse in period q and sent to 

the retailer i in period t to satisfy the demand of i in period k (1 q t k T≤ ≤ ≤ ≤ ). 

 

TP: Min  0
0 1 1 1 1 1

N T N T T T N T T

it it qt iqtk itk itk
i t i q t q k t i t k t

f y H W H X
= = = = = = = = =

′ ′+ +∑∑ ∑∑∑∑ ∑∑∑             (3.13) 

s.t. (3.5) and 

1

t

iqtk itk
q

W X
=

=∑    1 ,i N≤ ≤ 1 t k T≤ ≤ ≤             (3.14) 

0

k

iqtk ik q
t q

W d y
=

≤∑    1 ,i N≤ ≤ 1 q k T≤ ≤ ≤             (3.15) 

1

k

itk ik
t

X d
=

=∑    1 ,1i N k T≤ ≤ ≤ ≤             (3.16) 

itk ik itX d y≤    1 ,i N≤ ≤ 1 t k T≤ ≤ ≤             (3.17) 

0itkX ≥     1 ,i N≤ ≤ 1 t k T≤ ≤ ≤             (3.18) 
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0iqtkW ≥     1 ,i N≤ ≤ 1 q t k T≤ ≤ ≤ ≤             (3.19) 

 

The objective function (3.13) is the sum of fixed and variable order costs and 

inventory holding costs at the warehouse and retailers. Constraints (3.14) ensure 

that if retailer i places an order in period t then it is satisfied by placing an order for 

the warehouse prior to or at t. Constraints (3.15) guarantee that a fixed order cost is 

incurred at the warehouse if an order is placed by the warehouse in a period. 

Constraints (3.16) ensure that the total amount received by the retailer i from period 

1 through k is equal to the demand of i in k. Constraints (3.17) stipulate that a fixed 

order cost is incurred at retailer i if i places an order in a period. Constraints (3.18) 

and (3.19) are for nonnegativity of variables. 

 

Note that all itkX  variables in TP can be eliminated using (3.14) so that the 

formulation becomes more compact. The resulting formulation, referred to as TP-c, 

is as follows. 

 

TP-c: Min  
0 1 1 1

ˆ
N T N T T T

it it iqtk iqtk
i t i q t q k t

f y H W
= = = = = =

+∑∑ ∑∑∑∑              (3.20) 

s.t. (3.5), (3.15), (3.19) and 

1 1

t k

iqtk ik
q t

W d
= =

=∑∑    1 ,1i N k T≤ ≤ ≤ ≤             (3.21) 

1

t

iqtk ik it
q

W d y
=

≤∑    1 ,i N≤ ≤ 1 t k T≤ ≤ ≤             (3.22) 

where 0
ˆ .iqtk qt itkH H H′ ′= +  

 

TP-c is the same as in Levi et al. (2008) except that they consider a more general 

cost term ˆ
iqtkH  than ours and use iqtkW ′  in place of iqtkW  variables where 

/iqtk iqtk ikW W d′ = . We next show that ity  variables (1 i N≤ ≤ ,1 t T≤ ≤ ) of TP-c can 

be treated as continuous variables. 
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Proposition 3.1. Given the integral values of 0ty  variables, the optimal solution of 

the TP-c formulation yields integral values of continuous ity  variables 

(1 i N≤ ≤ ,1 t T≤ ≤ ). 

Proof. Given the integral values of 0ty  variables, constraints (3.15) can be 

eliminated as follows. For 0ty  variables taking value ‘1’, corresponding constraints 

of (3.15) become redundant since left-hand side of (3.15) is contained by left-hand 

side of (3.21). For 0ty  variables taking value ‘0’, W variables in (3.15) take value 

‘0’ due to (3.15) and are removed from the formulation together with the 

corresponding constraints (3.15). Then, the remaining formulation with constraints 

(3.21) and (3.22) decomposes for each retailer, and each of the decomposed 

problems defines the convex hull of feasible solutions of an ULS problem. Hence, 

continuous ity  variables (1 i N≤ ≤ ,1 t T≤ ≤ ) naturally take integral values.       □ 

 

The number of binary variables in TP and TP-c is ( )O T  while the number of 

continuous variables and constraints are 3( )O NT  and 2( )O NT , respectively. 

 

 

3.1.3 A new combined transportation and shortest path based formulation 

 

In this section, we propose a new stronger formulation, referred to as the combined 

transportation and shortest path based formulation (SP) where we represent lot 

sizing problem of retailers using shortest path. Lot sizing problem of the warehouse 

is represented in the same manner as TP. Since timing and magnitude of demands 

realized at the warehouse (due to the replenishment of retailers) cannot be known in 

advance, which is necessary to compute the cost figures at the warehouse in a 

shortest path representation, using the shortest path type lot sizing representation for 

the warehouse (as it is) is not possible. 

 

Additional parameters and variables used in the SP formulation are as follows. Let 

itkG  be the total variable cost of satisfying total demand of retailer i from period t 
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through k, i.e. 1
, 1,

k
itk it itk il i l kl t

G p D h D−

+=
= + ∑ . Let itkZ  be the fraction of the total 

demand of retailer i from period t through k satisfied in t, and iqtkU  be the fraction of 

the quantity ordered by the warehouse in period q and sent to the retailer i in period 

t to satisfy the total demand of i from period t through k (1 q t k T≤ ≤ ≤ ≤ ). 

 

SP: Min  0
0 1 1 1 1 1 1

N T N t T T N T T

it it qt itk iqtk itk itk
i t i q t k t i t k t

f y H D U G Z
= = = = = = = = =

′+ +∑∑ ∑∑∑∑ ∑∑∑            (3.23) 

s.t. (3.5) and 

1

t

iqtk itk
q

U Z
=

=∑    1 ,i N≤ ≤ 1 t k T≤ ≤ ≤             (3.24) 

0

t T

ikr iqkr q
k q r t

a U y
= =

≤∑∑   1 ,i N≤ ≤ 1 q t T≤ ≤ ≤             (3.25) 

1
1

1
T

i t
t

Z
=

=∑    1 i N≤ ≤              (3.26) 

1

, 1
1

0
t T

ik t itk
k k t

Z Z
−

−
= =

− + =∑ ∑   1 ,i N≤ ≤ 2 t T≤ ≤             (3.27) 

T

itk itk it
k t

a Z y
=

≤∑    1 ,i N≤ ≤ 1 t T≤ ≤             (3.28) 

0itkZ ≥     1 ,i N≤ ≤ 1 t k T≤ ≤ ≤             (3.29) 

0iqtkU ≥     1 ,i N≤ ≤ 1 q t k T≤ ≤ ≤ ≤             (3.30) 

where 
1 if 0
0 otherwise.

itk
itk

D
a

>
= 


 

 

The objective function (3.23) is the sum of fixed costs, variable order costs and 

inventory holding costs at the warehouse and retailers. Constraints (3.24) ensure 

that if retailer i places an order in period t, then it is satisfied by placing an order for 

the warehouse prior to or at t. Constraints (3.25) guarantee that a fixed order cost is 

incurred at the warehouse if an order is placed by the warehouse in a period. 

Constraints (3.26) and (3.27) are the shortest path representation constraints for the 

retailers’ replenishment problems. Constraints (3.28) stipulate that a fixed order cost 
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is incurred at retailer i if i places an order in a period. Constraints (3.29) and (3.30) 

are for nonnegativity of variables. For having a more compact formulation, referred 

to as SP-c, itkZ  variables in SP can be eliminated using (3.24). 

 

SP-c: Min  0
0 1 1 1 1

( )
N T N t T T

it it qt itk itk iqtk
i t i q t k t

f y H D G U
= = = = = =

′+ +∑∑ ∑∑∑∑             (3.31) 

s.t. (3.5), (3.25), (3.30) and 

11
1

1
T

i t
t

U
=

=∑    1 i N≤ ≤              (3.32) 

1

, 1
1 1 1

0
t k T t

iqk t iqtk
k q k t q

U U
−

−
= = = =

− + =∑∑ ∑∑  1 ,i N≤ ≤ 2 t T≤ ≤             (3.33) 

1

T t

itk iqtk it
k t q

a U y
= =

≤∑∑   1 ,i N≤ ≤ 1 t T≤ ≤             (3.34) 

where 
1 if 0
0 otherwise.

itk
itk

D
a

>
= 


 

 

Similar to the case in TP-c, continuous ity  variables (1 i N≤ ≤ ,1 t T≤ ≤ ) in SP-c 

automatically take integral values provided that 0ty  variables are integral in any 

solution. 

 

Proposition 3.2. Given the integral values of 0ty  variables, the optimal solution of 

the SP-c formulation yields integral values of continuous ity  variables 

(1 i N≤ ≤ ,1 t T≤ ≤ ). 

Proof. Since 0itf ≥ , ity  variables will take the smallest possible value which 

means constraints (3.34) will be satisfied as equality in the optimal solution for that 

i and t. Thus, (3.34) can be eliminated by replacing ity  with the left-hand side of 

(3.34) in (3.31) for all i and t. Given the integral values of 0ty  variables, constraints 

(3.25) can be eliminated as follows. For 0ty  variables taking value ‘1’, 

corresponding constraints of (3.25) become redundant since left-hand side of (3.25) 
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cannot take a value greater than ‘1’ due to (3.32) and (3.33). For 0ty  variables 

taking value ‘0’, U variables take value ‘0’ due to (3.25) and are removed from the 

formulation together with the corresponding constraints (3.25). The remaining 

constraints (3.32) and (3.33) define a shortest path problem, which is known to have 

a totally unimodular coefficient matrix. Hence, U-variables take integral values, 

which imply integral ity  values (1 i N≤ ≤ ,1 t T≤ ≤ ).       □ 

 

As a result, the number of binary variables in SP and SP-c is ( )O T  while the 

number of continuous variables and constraints are 3( )O NT  and 2( )O NT , 

respectively. Table 3.1 summarizes the number of constraints, integer and 

continuous variables of formulations. 

 

 

Table 3.1 Number of constraints, integer and continuous variables in formulations 

Formulation Constraints Integer variables Continuous variables 
SES 2( )O NT  ( )O NT  2( )O NT  
TP-c 2( )O NT  ( )O T  3( )O NT  
SP-c 2( )O NT  ( )O T  3( )O NT  

 

 

3.1.4 Analysis of LP relaxations of formulations 

 

In this section, we study the strength of formulations in terms of their LP relaxation 

solution values. In the LP relaxations of SES, TP and SP, we replace their 

constraints (3.5) with the following constraints. 

0 1ity≤ ≤  0 ,i N≤ ≤  1 t T≤ ≤            (3.35) 

 

Define (.)v  as the optimal LP relaxation solution value and F(.) as the feasible 

solution space of LP relaxation of formulation (.). Then, we have 

( , )X y {( , ) 0 ,1 } ( ),itk itX y i N t k T F SES≡ ≤ ≤ ≤ ≤ ≤ ∈  
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( , , )W X y {( , , ) 1 ,0 ,1 }iqtk itk jtW X y i N j N q t k T≡ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ( ),F TP∈   and 

( , , )U Z y {( , , ) 1 ,0 ,1 }iqtk itk jtU Z y i N j N q t k T≡ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ( ).F SP∈  

 

Before showing the relations among LP relaxations of formulation, we present an 

example problem instance, which will help us in making the proofs. 

 

Example: Consider an instance of OWMR problem with T=4, N=1, 1 1td =  for 

1 t T≤ ≤ ; 0 1 0t tp p= =  for 1 t T≤ ≤ ;  01 022, 1,h h= =  03 041, 0,h h= =  11 124, 3,h h= =  

13 142, 0,h h= =  01 020, 4,f f= =  03 046, 2f f= =  and 11 120, 4,f f= =  13 144, 2f f= = . 

For this instance, the LP optimal solutions are as follows: 

§ SES: ( ) 14.33v SES =  with y01 = y11 = 1, y02 = y13 = 0.67, y04 = y12 = y14 = 

0.33, y03 = 0. 

§ TP: ( ) 14.5,v TP =  with y01 = y11 = 1, y02 = y04 = y12 = y13 = y14 = 0.5, y03 = 0. 

§ SP: ( ) 15v SP =  with y01 = y04 = y11 = y13 = y14 = 1. 

The SP gives the integer optimal. 

 

Theorem 3.1. ( ) ( )v SES v TP≤  

Proof. Let ( , )SES X yϕ  and ( , , )TP W X yϕ  be LP relaxation solution values of 

( , ) ( )X y F SES∈  and ( , , ) ( ),W X y F TP∈  respectively. To make the proof, it 

suffices to show F(TP) ⊆  F(SES) and give an instance for which ( ) ( )v SES v TP< . 

(i) To show F(TP) ⊆  F(SES), we take a feasible solution ( , , ) ( )W X y F TP∈  and 

construct a feasible solution ( , ) ( )X y F SES∈  with the same objective function 

value as follows. By convention, we have 

0
1

N k

qk iqtk
i t q

X W
= =

= ∑∑  for 1 q k T≤ ≤ ≤    (i.1) 

Note that since itkX  for 1 ,i N≤ ≤ 1 ,t k T≤ ≤ ≤  and ity  for 0 ,i N≤ ≤ 1 t T≤ ≤  are 

the same for both SES and TP, we directly map them. Now, we show that ( , )X y  

constructed using (i.1) is feasible to F(SES).   
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(a)  Constraints (3.9): For 1 i N≤ ≤ ,1 ,k T≤ ≤  constraints (3.16) are equivalent to 

(3.9). For i = 0, 1 ,k T≤ ≤  we sum (3.14) over all t and i which gives 

1 1 1 1 1

t N k N k

iqtk itk
q i t i t

W X
= = = = =

=∑∑∑ ∑∑   1 .k T≤ ≤  

 Since ,q t≤  we can modify the summation bounds above, which gives 

1 1 1 1

k N k N k

iqtk itk
q i t q i t

W X
= = = = =

=∑∑∑ ∑∑   1 .k T≤ ≤  

 The term in right-hand side above is equal to 0kd  (
1

N
iki

d
=

= ∑ ) due to (3.16). 

Substituting 0qkX  in place of 
1

N k
iqtki t q

W
= =∑ ∑  above due to (i.1) gives 

0 0
1

k

qk k
q

X d
=

=∑  1 ,k T≤ ≤  

which is equivalent to (3.9) for i = 0, 1 k T≤ ≤ . Thus, constraints (3.9) hold. 

 

(b)  Constraints (3.10): For 1 ,i N≤ ≤ 1 ,t k T≤ ≤ ≤  constraints (3.17) are equivalent 

to (3.10). For i = 0, 1 ,t k T≤ ≤ ≤  we sum (3.15) over all i, which gives 

   0 0 0
1 1

( )
N k N

iqtk ik q k q
i t q i

W d y d y
= = =

≤ =∑∑ ∑   1 .q k T≤ ≤ ≤  

 Substituting 0qkX  in place of 
1

N k
iqtki t q

W
= =∑ ∑  above due to (i.1) gives 

0 0 0qk k qX d y≤  1 ,q k T≤ ≤ ≤  

which is equivalent to (3.10) for i = 0, 1 q k T≤ ≤ ≤ . Thus, constraints (3.10) 

hold. 

 

(c)  Constraints (3.11): Summing constraints (3.14) over t (from r = 1 to t) and all i, 

k, we obtain 

1 1 1 1 1

N r t T N t T

iqrk irk
i q r k r i r k r

W X
= = = = = = =

=∑∑∑∑ ∑∑∑  1 .t T≤ ≤  

 Since q r≤ , we can rewrite the above equation as 

1 1 1 1

N t t T N t T

iqrk irk
i q r q k r i r k r

W X
= = = = = = =

=∑∑∑∑ ∑∑∑  1 .t T≤ ≤  
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 Adding the same term to both sides, we have 

1 1 1 1 1 1 1 1 1 1

.
N t t T N t T T N t T N t T T

iqrk iqrk irk iqrk
i q r q k r i q r t k r i r k r i q r t k r

W W X W
= = = = = = = + = = = = = = = + =

+ = +∑∑∑∑ ∑∑ ∑ ∑ ∑∑∑ ∑∑ ∑ ∑  

 The left-hand side of the above equation reduces to 
1 1

N t T T
iqrki q r q k r

W
= = = =∑ ∑ ∑ ∑  

which is indeed equal to 01

t T
rkr k r

X
= =∑ ∑  due to (i.1). Thus, it becomes  

0
1

t T

rk
r k r

X
= =

∑∑
1 1 1 1 1

N t T N t T T

irk iqrk
i r k r i q r t k r

X W
= = = = = = + =

= +∑∑∑ ∑∑ ∑ ∑  1 ,t T≤ ≤  

 which ensures that 

0
1

t T

rk
r k r

X
= =

∑∑
1 1

N t T

irk
i r k r

X
= = =

≥ ∑∑∑   1 .t T≤ ≤  

 Thus, constraints (3.11) hold. 

 

(d) To show that ( , )SES X yϕ  = ( , , )TP W X yϕ  for ( , ) ( )X y F SES∈  and 

( , , ) ( )W X y F TP∈ , we start with ( , , ),TP W X yϕ  which is equal to 

1 1

0 0
0 1 1 1 1 1

( ) ( ) .
N T N T T T t N T T k

it it q l iqtk it ir itk
i t i q t q k t l q i t k t r t

f y p h W p h X
− −

= = = = = = = = = = =

+ + + +∑∑ ∑∑∑∑ ∑ ∑∑∑ ∑  

 Let the second term of the right-hand side of above equation be equal to  
1 1

0 0 0
1 1 1 1

( ) ( ) .
N T T T k N T T T k

q l iqtk l iqtk
i q t q k t l q i q t q k t l t

p h W h W
− −

= = = = = = = = = =

+ −∑∑∑∑ ∑ ∑∑∑∑ ∑  

 Since q t k≤ ≤  we can modify the bounds in the summation signs and obtain 
1 1

0 0 0
1 1 1 1 1

( ) ( )
N T k T k N t T T k

q l iqtk l iqtk
i q t q k q l q i q t k t l t

p h W h W
− −

= = = = = = = = = =

+ −∑∑∑∑ ∑ ∑∑∑∑ ∑  

1 1

0 0 0
1 1 1 1 1

( ) ( ) .
T T k N k N T T k t

q l iqtk l iqtk
q k q l q i t q i t k t l t q

p h W h W
− −

= = = = = = = = = =

= + −∑∑ ∑ ∑∑ ∑∑∑ ∑ ∑  

 Using (i.1) for the first term and (3.14) for the second term above, we obtain 
1

0 0 0
1 1 1

( ) .
T T N T T k

qk qk l itk
q k q i t k t l t

H X h X
−

= = = = = =

−∑∑ ∑∑∑ ∑  

 Then, replacing the above with the second term of ( , , )TP W X yϕ , ( , , )TP W X yϕ  

becomes 
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1 1

0 0 0
0 1 1 1 1 1 1

( ) ( ) ,
N T T T N T T k N T T k

it it qk qk l itk it ir itk
i t q k q i t k t l t i t k t r t

f y H X h X p h X
− −

= = = = = = = = = = = =

+ − + +∑∑ ∑∑ ∑∑∑ ∑ ∑∑∑ ∑  

 which is equal to ( , )SES X yϕ . 

 

(ii) As presented in the example instance, ( ) ( ).v SES v TP<       □ 

 

Theorem 3.2. ( ) ( )v TP v SP≤  

Proof. Let ( , , )TP W X yϕ  and ( , , )SP U Z yϕ  be LP relaxation solution values of 

( , , ) ( )W X y F TP∈  and ( , , ) ( ),U Z y F SP∈  respectively. To make the proof, it 

suffices to show F(SP) ⊆  F(TP) and give an instance for which ( ) ( )v TP v SP< . 

(i) To show F(SP) ⊆  F(TP), we take a feasible solution ( , , ) ( )U Z y F SP∈  and 

construct a feasible solution ( , , ) ( )W X y F TP∈  with the same objective function 

value as follows. By definition, we have 
T

itk ik itj
j k

X d Z
=

= ∑   for 1 ,i N≤ ≤ 1 t k T≤ ≤ ≤   (i.1) 

T

iqtk ik iqtj
j k

W d U
=

= ∑   for 1 ,i N≤ ≤ 1 q t k T≤ ≤ ≤ ≤   (i.2) 

Note that since ity  ( 0 ,i N≤ ≤ 1 t T≤ ≤ ) are the same for both TP and SP, we 

directly map them. Now, we show that ( , , )W X y  constructed using (i.1) and (i.2) is 

feasible to F(TP). 

(a)  Constraints (3.14): Summing constraints (3.24) over k (from j=k to j=T) and 

multiplying both sides by ikd , we obtain 

1

t T T

ik iqtj ik itj
q j k j k

d U d Z
= = =

=∑ ∑ ∑  1 ,i N≤ ≤ 1 .t k T≤ ≤ ≤  

Substituting (i.1) and (i.2) into the above equation gives  

1

t

iqtk itk
q

W X
=

=∑  1 ,i N≤ ≤ 1 ,t k T≤ ≤ ≤  

which is equivalent to (3.14). Thus, constraints (3.14) hold. 
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(b)  Constraints (3.15): Note that (i.2) can be rewritten as T
iqtk ik itj iqtjj k

W d a U
=

= ∑  

since if 0ikd >  then 1itja =  for ,t k j T≤ ≤ ≤  else iqtkW  becomes zero. Then, 

we substitute /iqkt itW d  in place of T
ikr iqkrr t

a U
=∑  in (3.25), which gives 

0( / )
t

iqkt it q
k q

W d y
=

≤∑  1 ,i N≤ ≤ 1 .q t T≤ ≤ ≤  

 Thus, constraints (3.15) hold. 

 

(c) Constraints (3.16): Summing constraints (3.26) and (3.27) from t=2 to t=k, we 

obtain 

1

1
k T

irj
r j k

Z
= =

=∑∑  1 ,i N≤ ≤ 1 .k T≤ ≤  

 Substituting /irk ikX d  in place of T
irjj k

Z
=∑ due to (i.1) gives 

1
( / ) 1

k

irk ik
r

X d
=

=∑  1 ,i N≤ ≤ 1 ,k T≤ ≤  

 which is equivalent to (3.16). Thus, constraints (3.16) hold. 

 

(d)  Constraints (3.17): Note that (3.28) can be rewritten as  
T

itj itj it
j k

a Z y
=

≤∑  1 ,i N≤ ≤ 1 t k T≤ ≤ ≤  (3.28’) 

which actually encompasses (3.28). (i.1) can be rewritten as 
T

itk ik itj itjj k
X d a Z

=
= ∑ , as done for W variables in part (b). Substituting /itk ikX d  

in place of T
itj itjj k

a Z
=∑  in (3.28’) gives 

( / )itk it itX d y≤  1 ,i N≤ ≤ 1 ,t k T≤ ≤ ≤  

 which is equivalent to (3.17). Thus, constraints (3.17) hold. 

 

(e) To show that ( , , )TP W X yϕ  = ( , , )SP U Z yϕ  for ( , , ) ( )W X y F TP∈  and 

( , , ) ( ),U Z y F SP∈  we start with 
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( , , )TP W X yϕ  0
0 1 1 1 1 1

.
N T N T T T N T T

it it qt iqtk itk itk
i t i q t q k t i t k t

f y H W H X
= = = = = = = = =

′ ′= + +∑∑ ∑∑∑∑ ∑∑∑  

Substituting (i.1) and (i.2) into ( , , ),TP W X yϕ  we obtain 

0
0 1 1 1 1 1

N T N T T T T N T T T

it it qt ik iqtj itk ik itj
i t i q t q k t j k i t k t j k

f y H d U H d Z
= = = = = = = = = = =

   
′ ′+ +   

   
∑∑ ∑∑∑∑ ∑ ∑∑∑ ∑       (e.1) 

We can rewrite the second term in (e.1) as 

0 0 , 1
1 1 1 1

, 1 , 1

{ ...

                                                                               ...

N T T T T N T T

qt ik iqtj qt it iqtt it iqt t it iqtT
i q t q k t j k i q t q

i t iqt t i

H d U H d U d U d U

d U d

+
= = = = = = = =

+ +

 
′ ′= + + + 

 
+ + +

∑∑∑ ∑ ∑ ∑∑∑

, 1

                                                                                                       ...
                                                                                     

t iqtTU+

                    }.iT iqtTd U+

  

Thus, the second term in (e.1) can be rewritten as 

0
1 1

N T T T

qt itk iqtk
i q t q k t

H D U
= = = =

′∑∑∑∑    (e.2) 

We can rewrite the third term in (e.1) as 
1

1 1
( ) ,

N T T k T

it ik il ik itj
i t k t l t j k

p d h d Z
−

= = = = =

 
+ 

 
∑∑∑ ∑ ∑  which is equal to 

. 1
1 1

, 1 , 1 . 1 , 1 , 1

, 1

{ ...

   ( ) ... ( )
                                              ...
                 (

N T

it it itt it it it t it it itT
i t

it i t it i t it t it i t it i t itT

it iT it iT i t

p d Z p d Z p d Z

p d h d Z p d h d Z

p d h d h

+
= =

+ + + + +

+

+ + +

+ + + + +

+ + +

∑∑

, 1... ) }.iT i T iT itTd h d Z−+ +

 

Thus, the third term in (e.1) can be rewritten as 
1

, 1,
1 1

( )
N T T k

it itk il i l k itk
i t k t l t

p D h D Z
−

+
= = = =

+∑∑∑ ∑   (e.3) 

 Thus, summing the first term in (e.1), (e.2) and (e.3), we obtain 

0
0 1 1 1 1 1 1

,
N T N t T T N T T

it it qt itk iqtk itk itk
i t i q t k t i t k t

f y H D U G Z
= = = = = = = = =

′+ +∑∑ ∑∑∑∑ ∑∑∑  

which is equal to ( , , ).SP U Z yϕ  

 

(ii) As presented in the example instance, ( ) ( ).v TP v SP<            □ 
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3.2 Single warehouse-single retailer (SWSR) problem 

 

Except the echelon stock formulation, the two other formulations are based on the 

same principle: The warehouse is considered to be divided into N departments, each 

of which is responsible for replenishing a specific retailer. Thus, the OWMR 

problem is set as the assemblage of N many SWSR problems. All the SWSR 

problems are linked so that a fixed order cost at the warehouse is incurred whenever 

any department places an order. Therefore, the SWSR problem deserves a detailed 

analysis. The SWSR problem is also important since it is the two-level case of the 

multi-level problem in Zangwill (1969) and uncapacitated case of the two-level 

problem in van Hoesel et al. (2005). In the following we adapt the SP-c formulation 

to the SWSR problem, referred to as the SSP-c formulation, by dropping subscript i 

from the SP-c. 

 

SSP-c: Min  0 0 1 1 0
1 1 1

( ) ( )
T t T T

t t t t qt tk tk qtk
t q t k t

f y f y H D G U
= = = =

′+ + +∑ ∑∑∑             (3.36) 

s.t. 

11
1

1
T

t
t

U
=

=∑                  (3.37) 

1

, 1
1 1 1

0
t k T t

qk t qtk
k q k t q

U U
−

−
= = = =

− + =∑∑ ∑∑  2 t T≤ ≤              (3.38) 

1
1

T t

tk qtk t
k t q

a U y
= =

≤∑∑   1 t T≤ ≤               (3.39) 

0

t T

kr qkr q
k q r t

a U y
= =

≤∑∑   1 q T≤ ≤              (3.40) 

0qtkU ≥     1 q t k T≤ ≤ ≤ ≤              (3.41) 

0 1, {0,1}t ty y ∈    1 t T≤ ≤               (3.42) 

 

Below we slightly modify SSP-c before showing that it defines the convex hull of 

the feasible solutions of SWSR problem. 
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Lemma 3.1. The inequalities 

0

T

qr qqr q
r q

a U y
=

≤∑     1 q T≤ ≤           (3.43) 

1

, 1 , 1 0
t T

k t qk t tk qtk
k q k t

a U a U
−

− −
= =

− ≥∑ ∑   1 q t T≤ < ≤     (3.44) 

where , 1 0k ta − ≠  for at least one k ( 1q k t≤ ≤ − ) are valid for SSP-c. 

Proof. Inequalities (3.43) are valid for SSP-c since they correspond to constraints 

(3.40) when .t q=  Inequalities (3.44) are actually the simplified version of the 

following constraints (some terms appear on both sides of (3.45) and cancel each 

other): 
1

1

t T t T

kr qkr kr qkr
k q r t k q r t

a U a U
−

= = = = −

≤∑∑ ∑ ∑  1 q t T≤ < ≤            (3.45) 

where , 1 0k ta − ≠  for at least one k ( 1q k t≤ ≤ − ) to account for the zero demand 

case. As the optimal policy at the warehouse has the well-known Wagner-Whitin 

property (Federgruen and Tzur, 1999), if a quantity is ordered by the warehouse in 

period q to satisfy the demand of retailer i from period t through k ( t k T≤ ≤ ) then 

the demand of retailer i from period j ( q j t≤ < ) through t-1 must also be met by an 

order in period q by the warehouse. Since this is ensured by constraints (3.44), they 

are valid for SSP-c.          □ 

 

Since constraints (3.43) and (3.44) do not change the feasible region of SSP-c with 

regard to y variables, we use them in place of (3.39). Thus, in the sequel by SSP-c 

we mean the formulation: Min (3.36) s.t. (3.37)–(3.39) and (3.41)–(3.44).  

 

Theorem 3.3. SSP-c defines the convex hull of feasible solutions of the SWSR 

problem. 

Proof. We show that the associated constraint matrix of SSP-c is totally unimodular 

(TU) using the following well known rule: 

1 2

1 1ij ij
i C i C

c c
∈ ∈

− ≤ − ≤∑ ∑   for all j, 
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where j denotes the columns, and ijc  is the technological coefficient of jth column in 

ith row. For any subset C of constraints of SSP-c, C would be partitioned into two 

disjoint sets, C1 and C2 where 1C C= U 2C , such that the difference between the 

total of coefficients in C1 and C2 for each column equals to 0, 1 or -1. First note that 

constraints (3.39) and (3.43) can be eliminated in a similar manner of the proof of 

Proposition 3.2. Then, the constraint matrix of SSP-c is composed of constraints 

(3.37), (3.38) and (3.44). Note that each variable appears at most twice with 

coefficients -1 and 1 in (3.37) and (3.38). The same argument is valid for (3.44) as 

well. Thus, the TU rule is satisfied if C involves only rows from (3.37) and (3.38) or 

only from (3.44). On the other hand, if C involves rows from (3.37), (3.38) and 

(3.44) at the same time, we propose the following partitioning scheme: 

§ Assign all the rows in C from (3.37) and (3.38) into C1. 

§ Assign rows from (3.44) for a given period t in C into C1 if row from (3.38) 

for that t is in C, and into C2 otherwise. Note that row from (3.38) for a 

given period t contains all variables in constraints (3.44) for that t with just 

the opposite sign. 

Due to the TU property, U variables take integral values which in turn imply 

integral y variables.          □ 

 

To show that SES and TP formulations do not represent the convex hull of feasible 

solutions of the SWSR problem, we use the example already presented before 

Theorem 3.1. Indeed, this example has been used by Pochet and Wolsey (1994) to 

disprove the conjecture that the LP relaxation of multi-commodity formulation 

solves the uncapacitated multi-level lot sizing problem in series. To the best of our 

knowledge, SSP-c is the first formulation that defines the convex-hull of feasible 

solutions of the SWSR problem (see Solyalı and Süral, 2008a and Chapter 4 for a 

similar argument on a variant of the SWSR problem where retailers apply order-up-

to level inventory policy). 
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3.3 Joint replenishment problem 

 

In this subsection, using Theorem 3.2 we show that transportation and shortest path 

based formulations for the JRP yield the same objective value for the LP relaxation. 

 

We start with the TP for the OWMR problem and obtain the formulation for the 

JRP, referred to as TP-JRP. Note that W variables are not needed any more since 

whenever a retailer places an order, the warehouse also places an order in the same 

period. Thus, there is no need for constraints (3.14), and constraints (3.15) can be 

rewritten as 0itk ik tX d y≤ . Constraints (3.17) and 0itk ik tX d y≤  imply the following 

constraints. 

0it ty y≤   1 ,i N≤ ≤ 1 t T≤ ≤             (3.46) 

 

As a result, TP-JRP is as follows. 

 

TP-JRP: Min  
0 1 1 1

N T N T T

it it itk itk
i t i t k t

f y H X
= = = = =

′+∑∑ ∑∑∑                         (3.47) 

s.t. (3.5), (3.16)–(3.18), and (3.46) 

 

Next, we derive the SP formulation for JRP, referred to as SP-JRP. U variables in 

SP are not needed any more due to the same reason stated above as for the TP. 

There is no need for constraints (3.24), and constraints (3.25) can be rewritten as 

0
T

itr itr tr t
a Z y

=
≤∑ , which in turn imply constraints (3.46) due to (3.28). Thus, SP-

JRP is as follows. 

 

SP-JRP: Min  
0 1 1 1

N T N T T

it it itk itk
i t i t k t

f y G Z
= = = = =

+∑∑ ∑∑∑               (3.48) 

s.t. (3.5), (3.26)–(3.29), and (3.46) 
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In the following, we present the LP equivalence result of TP-JRP and SP-JRP. Note 

that we replace (3.5) in both formulations with (3.35). The solutions in F(TP-JRP) 

and F(SP-JRP) can be identified respectively as 

( , )X y {( , ) 1 ,0 ,1 } ( )itk jtX y i N j N t k T F TP JRP≡ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ∈ −  and 

( , )Z y {( , ) 1 ,0 ,1 } ( ).itk jtZ y i N j N t k T F SP JRP≡ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ∈ −  

 

Theorem 3.4. ( ) ( )v TP JRP v SP JRP− = −  

Proof. Let ( , )TP JRP X yϕ −  and ( , )SP JRP Z yϕ −  be LP relaxation solution values of 

( , ) ( )X y F TP JRP∈ −  and ( , ) ( )Z y F SP JRP∈ − . To make the proof, it suffices to 

show (i) F(SP-JRP) ⊆  F(TP-JRP), (ii) F(TP-JRP) ⊆  F(SP-JRP), and (iii) 

( , )TP JRP X yϕ −  = ( , )SP JRP Z yϕ −  for any ( , ) ( )X y F TP JRP∈ −  and its corresponding 

( , ) ( ),Z y F SP JRP∈ −  or vice versa. 

(i) As the JRP is a special case of the OWMR problem, it is immediate from 

Theorem 3.2 that the relation F(SP-JRP) ⊆  F(TP-JRP) holds. 

(ii) To show F(TP-JRP) ⊆  F(SP-JRP), we take a feasible solution ( , )X y  

( )F TP JRP∈ −  and construct an associated feasible solution 

( , ) ( )Z y F SP JRP∈ −  as follows. By definition, we have 

itT itTZ V=   for 1 ,i N≤ ≤ 1 t T≤ ≤   (ii.1) 

, 1itk itk it kZ V V += −   for 1 ,i N≤ ≤ 1 t k T≤ ≤ <   (ii.2) 

 where  
/  if 0

1 if 0 and 
0 otherwise.

itk ik ik

itk ik

X d d
V d t k

>
= = =



 

Since ity  variables ( 0 ,i N≤ ≤ 1 t T≤ ≤ ) are the same for both TP-JRP and SP-

JRP, we directly map them. The construction above is defined by Denizel et al. 

(2008) in the context of the capacitated multi-item lot sizing problem with setup 

times. Now, we should show that ( , )Z y  constructed using (ii.1) and (ii.2) is 

feasible to F(SP-JRP). Since constraints (3.26)–(3.29) have been shown to be 

feasible by Denizel et al. (2008) and constraints (3.46) are common to both 

formulations, feasibility of ( , )Z y  is proved. 
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(iii) To show ( , )TP JRP X yϕ −  = ( , )SP JRP Z yϕ −  for any ( , ) ( )X y F TP JRP∈ −  and the 

associated ( , ) ( )Z y F SP JRP∈ − or vice versa, we start with 

( , )TP JRP X yϕ −  
0 1 1 1

,
N T N T T

it it itk itk
i t i t k t

f y H X
= = = = =

′= +∑∑ ∑∑∑  

 which is equivalent to 
1

0 1 1 1 1
( / ) ( ) ( / ) .

N T N T T k

it it it it itt it it il ik itk ik
i t i t k t l t

f y p d X d p h d X d
−

= = = = = + =

 
+ + + 

 
∑∑ ∑∑ ∑ ∑  

We can safely insert itkV  in place of ( / )itk ikX d  above regardless of the value 

of ikd  since by definition /itk itk ikV X d=  if 0ikd > , and 0it it ittp d V =  or 

1( ) 0k
it il ik itkl t

p h d V−

=
+ =∑  if 0ikd = . So, we have 

1

0 1 1 1 1
( ) ( ) ( ) .

N T N T T k

it it it it itt it il ik itk
i t i t k t l t

f y p d V p h d V
−

= = = = = + =

 
+ + + 

 
∑∑ ∑∑ ∑ ∑  

Since , 1ik itk it kd D D −= −  for 1t k≤ − , 1

1
( ) ( )

T k
it il ik itkl t

k t
p h d V−

=
= +

+∑ ∑  equals to 

2

, 1 , 1, , 1, 1 , 1
1

( ) ( )
T k

it itk it k il i l k i l k i k ikk itk
k t l t

p D D h D D h D V
−

− + + − −
= + =

 
= − + − + 

 
∑ ∑  

1 2

, 1, , 1 , 1, 1
1

T k k

it itk il i l k it it k il i l k itk
k t l t l t

p D h D p D h D V
− −

+ − + −
= + = =

 
= + − − 

 
∑ ∑ ∑  

, 1
1

T

itk it k itk
k t

G G V−
= +

 = − ∑  

Thus, , 1
0 1 1 1 1

( , ) ( ) .
N T N T T

TP JRP it it itt itt itk it k itk
i t i t k t

X y f y G V G G Vϕ − −
= = = = = +

 
= + + − 

 
∑∑ ∑∑ ∑  

Rewriting the second term of the above relation, we obtain 
1

, 1
0 1 1 1

( ) .
N T N T T

it it itk itk it k itT itT
i t i t k t

f y G V V G V
−

+
= = = = =

 
+ − + 

 
∑∑ ∑∑ ∑  

Inserting Z variables using (ii.1) and (ii.2) to the above relation gives 

0 1 1 1
,

N T N T T

it it itk itk
i t i t k t

f y G Z
= = = = =

+∑∑ ∑∑∑  

which is ( , ).SP JRP Z yϕ −          □ 
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3.4 Extending formulations to initial inventory case 

 

Our theoretical results in Section 3.1 are extended to the case of nonzero initial 

inventory at the warehouse (i.e. 00 0I > ). We explicitly address nonzero initial 

inventories in contrast to the most of the studies in the multi-level lot sizing 

literature where initial inventories are usually ignored (see Zangwill, 1969; 

Federgruen and Tzur, 1999; Levi et al., 2008; Pochet and Wolsey, 2006). To the 

best of our knowledge, only van Hoesel et al. (2005) explicitly consider initial 

inventory issue. Although the models presented in Section 3.2 yield zero ending 

inventories at all facilities in optimality, such planning models are mostly used 

within a rolling horizon framework, which necessarily implies presence of initial 

inventories. Thus, initial inventory at the warehouse is an important issue and must 

be explicitly considered in the formulations. Note that it is not possible to simply 

deduce demands of retailers from the initial inventory of warehouse, I00, until I00 

becomes zero since the replenishment of retailers is not known in advance. An 

exception to this is the echelon stock case where the warehouse is supposed to face 

with the total system-wide demand d0t and one can deduce d0t values from I00 until 

I00 equal to zero. 

 

We should note that Stadtler (1996; 1997) consider nonzero initial inventories for a 

multi-level lot sizing problem with a general product structure, but use echelon 

stock type formulation, which can reduce initial inventories to zero. 

 

 

3.4.1 The SES formulation with nonzero initial inventory 

 

Now, we extend the SES formulation to the nonzero initial inventory case, referred 

to as SES-I. As lot sizing decisions at the warehouse are separated from lot sizing 

decisions of retailers in SES and the warehouse is faced with total system-wide 

demand d0t, one can deduce d0t values from I00 by finding a period j such that 

00 01 0,jI D− ≥  and 00 01, 1 0jI D +− < . Then, the total cost (IC) of satisfying demand by 
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the initial inventory at the warehouse is equal to 0 00 011
( )j

r rr
h I D

=
−∑ . Next, we 

should modify the total system-wide demand values as 0 0td =  for 1 t j≤ ≤  and 

0, 1 01, 1 00j jd D I+ += − . Then, 

 

SES-I: Min  
0 1 0 1

N T N T T

it it itk itk
i t i t k t

f y H X IC
= = = = =

+ +∑∑ ∑∑∑              (3.49) 

s.t. (3.5), (3.9), (3.10), (3.12) and 

0 00
1 1 1

t T N t T

rk irk
r k r i r k r

X I X
= = = = =

+ ≥∑∑ ∑∑∑  1 t T≤ ≤               (3.50) 

where 1
0 0 0

k
tk t ll t

H p h−

=
= + ∑ , 1

0( )k
itk it il ll t

H p h h−

=
= + −∑  for 1 ,i N≤ ≤ 1 ,t k T≤ ≤ ≤  

0 0td =  for 1 t j≤ ≤  and 0, 1 01, 1 00j jd D I+ += − . 

 

Objective function (3.49) involves a constant term IC that is the inventory holding 

cost due to the initial inventory at the warehouse in addition to the original objective 

function (3.8). Constraints (3.50) stipulate that the total amount ordered for the 

warehouse up to and including period t plus initial inventory at the warehouse must 

be greater than or equal to the total amount ordered for all of the retailers up to and 

including period t. Note that I00 appears only in constraints (3.50) and is used to 

modify original 0td  for 1 1t j≤ ≤ + . 

 

Although it could be conjectured that the demand quantities 0td  for 1 t j≤ ≤  and 

portion of 0, 1jd +  (i.e. 00 01 jI D− ) should be satisfied by the initial inventory available 

at the warehouse in an optimal solution of SES-I, this may not be the case. For 

example, we have 00 2600,I =  01 2464d =  and 02 2683d =  in one of the instances 

we addressed in Section 3.5. Note that j=1 in this instance and it could be expected 

that demand quantities 2464 ( 01d= ) for 1t =  and 136 ( 00 011I D= − ) for 2t =  would 

be satisfied by 00I  in the optimal solution. However, this is not true. At optimality, 

the retailers prefer to have an amount of 2598 units in period t=1, which is supplied 
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by 00I . The remaining 2 units of 00I  and an amount ordered in t=2 at the warehouse 

are used to satisfy the order of retailers in 2t ≥ . Thanks to the trick in itkH  term for 

retailers and constraints (3.50), SES-I is able to find the true optimum solution with 

the true optimum solution value. 

 

 

3.4.2 The TP formulation with nonzero initial inventory 

 

The TP formulation presented in Levi et al. (2008) does not consider initial 

inventories. Let 0i tkW  be fraction of the demand of retailer i in period k satisfied 

from the initial inventory of the warehouse in period t. We refer to TP with initial 

inventories at the warehouse as TP-I, which is given below. 

 

TP-I: Min  0
0 1 1 1 1 1

N T N T T T N T T

it it qt iqtk itk itk
i t i q t q k t i t k t

f y H W H X
= = = = = = = = =

′ ′+ +∑∑ ∑∑∑∑ ∑∑∑  

0 00 0 0
1 1 1

( )
T N T T T

r r i tk
r i t k t r t

h I h W
= = = = =

+ −∑ ∑∑∑ ∑                (3.51) 

s.t. (3.5), (3.15)–(3.19), 

0
1

t

iqtk i tk itk
q

W W X
=

+ =∑   1 ,i N≤ ≤ 1 t k T≤ ≤ ≤             (3.52) 

0 00
1 1

N T T

i tk
i t k t

W I
= = =

≤∑∑∑                 (3.53) 

0 0i tkW ≥     1 ,i N≤ ≤ 1 t k T≤ ≤ ≤             (3.54) 

where 1k
itk it irr t

H p h−

=
′ = + ∑  for 0 ,i N≤ ≤ 1 .t k T≤ ≤ ≤  

 

The objective function (3.51) consists of inventory holding cost due to the initial 

inventory at the warehouse besides the cost terms in (3.13). Constraints (3.52) 

ensure that if retailer i places an order in period t, then this order is either satisfied 

by the initial inventory available at the warehouse or by placing an order for the 

warehouse prior to or at period t. Constraint (3.53) assures that the total amount of 
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demand supplied by the initial inventory of the warehouse cannot exceed the 

available amount. Constraints (3.54) are for nonnegativity. As in Section 3.1, one 

can substitute the left-hand side of (3.52) in place of itkX  variables for 

1 ,i N≤ ≤ 1 t k T≤ ≤ ≤  and obtain a more compact formulation, referred to as TP-I-

c. 

 

 

3.4.3 The SP formulation with nonzero initial inventory 

 

Let 0i tkU  be the fraction of the quantity supplied by the initial inventory of 

warehouse to satisfy the total demand of retailer i from period t through k. Then, the 

SP formulation with initial inventories at the warehouse explicitly modeled, referred 

to as SP-I, is as follows. 

 

SP-I: Min  0
0 1 1 1 1 1 1

N T N t T T N T T

it it qt itk iqtk itk itk
i t i q t k t i t k t

f y H D U G Z
= = = = = = = = =

′+ +∑∑ ∑∑∑∑ ∑∑∑  

0 00 0 0
1 1 1

( )
T N T T T

r r itk i tk
r i t k t r t

h I h D U
= = = = =

+ −∑ ∑∑∑ ∑               (3.55) 

s.t. (3.5), (3.25)–(3.30),  

0
1

t

iqtk i tk itk
q

U U Z
=

+ =∑   1 ,i N≤ ≤ 1 t k T≤ ≤ ≤             (3.56) 

0 00
1 1

N T T

itk i tk
i t k t

D U I
= = =

≤∑∑∑                 (3.57) 

0 0i tkU ≥     1 ,i N≤ ≤ 1 t k T≤ ≤ ≤             (3.58) 

 

The objective function (3.55) is the total of inventory holding costs due to the initial 

inventory at the warehouse and cost terms in (3.23). Constraints (3.56) ensure that if 

retailer i places a positive order in period t, then this order is either satisfied by the 

initial inventory available at the warehouse or by placing an order for the warehouse 

prior to or at period t. Constraint (3.57) assures that the total amount of demand 

supplied by the initial inventory of the warehouse cannot exceed the available 
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amount. Constraints (3.58) are for nonnegativity of variables. Like in Section 3.1, 

one can substitute the left-hand side of (3.56) in place of itkZ  variables for 

1 ,i N≤ ≤ 1 t k T≤ ≤ ≤  and obtain a more compact formulation, referred to as SP-I-

c. 

 

Initial inventory at the warehouse actually acts as a capacitated source of alternative 

supply as opposed to the replenishment of warehouse using an uncapacitated source 

of supply. As a result, there exist both capacitated and uncapacitated sources of 

supplies in the presence of initial inventory at the warehouse, which decreases the 

strength of TP-I (and TP-I-c) as well as SP-I (and SP-I-c) formulations. 

 

 

3.4.4 Analysis of LP relaxations of formulations with I00 > 0 

 

In this subsection, we extend the analysis in Section 3.1.4 to the case with I00 > 0. 

Since the LP relaxations of formulations are concerned, constraints (3.5) are 

replaced with (3.35) in SES-I, TP-I, and SP-I. The solutions in F(SES-I), F(TP-I) 

and F(SP-I) can be identified respectively as 

( , )X y {( , ) 0 ,1 } ( ),itk itX y i N t k T F SES I≡ ≤ ≤ ≤ ≤ ≤ ∈ −  

( , , )W X y {( , , ) 1 ,0 ,0 }iqtk itk jtW X y i N j N q t k T≡ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ( ),F TP I∈ −  and 

( , , )U Z y {( , , ) 1 ,0 ,0 }iqtk itk jtU Z y i N j N q t k T≡ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ( ).F SP I∈ −  

 

Theorem 3.5. ( ) ( )v TP I v SP I− ≤ −  

Proof. Let ( , , )TP I W X yϕ −  and ( , , )SP I U Z yϕ −  be LP relaxation solution values of 

( , , ) ( )W X y F TP I∈ −  and ( , , ) ( ),U Z y F SP I∈ −  respectively. To make the proof, it 

suffices to show F(SP-I) ⊆  F(TP-I) and give an instance for which 

( ) ( )v TP I v SP I− < − . 
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(i) To show F(SP-I) ⊆  F(TP-I), we take a feasible solution ( , , ) ( )U Z y F SP I∈ −  

and construct a feasible solution ( , , ) ( )W X y F TP I∈ −  with the same objective 

function value as follows. By definition, we have 
T

itk ik itj
j k

X d Z
=

= ∑   for 1 ,i N≤ ≤ 1 t k T≤ ≤ ≤   (i.1) 

T

iqtk ik iqtj
j k

W d U
=

= ∑   for 1 ,i N≤ ≤ 0 q t k T≤ ≤ ≤ ≤   (i.2) 

Note that since ity  ( 0 ,i N≤ ≤ 1 t T≤ ≤ ) are the same for both TP-I and SP-I, we 

directly map them. Now, we should show that ( , , )W X y  constructed using (i.1) and 

(i.2) is feasible to F(TP-I). 

(a)  Constraints (3.15)–(3.17): These constraints have already been shown to be 

feasible in Theorem 3.2. 

 

(b)  Constraints (3.52): Summing constraints (3.56) over k (from j=k to j=T) and 

multiplying both sides of (3.56) by ,ikd  we obtain 

0
1

t T T T

ik iqtj ik i tj ik itj
q j k j k j k

d U d U d Z
= = = =

+ =∑ ∑ ∑ ∑  1 ,i N≤ ≤ 1 .t k T≤ ≤ ≤  

Substituting (i.1) and (i.2) into the above equation gives 

0
1

t

iqtk i tk itk
q

W W X
=

+ =∑  1 ,i N≤ ≤ 1 ,t k T≤ ≤ ≤  

which is (3.52). Thus, constraints (3.52) hold. 

 

(c) Constraints (3.53): Constraint (3.57) is 

0 , 1 0 00
1 1 1 1

( ... ) .
N T T N T T

itk i tk it i t ik i tk
i t k t i t k t

D U d d d U I+
= = = = = =

= + + + ≤∑∑∑ ∑∑∑  

The above inequality can be rewritten as 

0 , 1 0 , 1 , 1 0
1 1

( ) ... ( ... )
N T

it i tt it i t i t t it i t iT i tT
i t

d U d d U d d d U+ + +
= =

 + + + + + + + ∑∑  

0 , 1 0 0
1 1 1

...
N T T T T

it i tk i t i tk iT i tk
i t k t k t k T

d U d U d U+
= = = = + =

 
= + + +  

∑∑ ∑ ∑ ∑  
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0 00
1 1

.
N T T T

ik i tj
i t k t j k

d U I
= = = =

 
= ≤ 

 
∑∑∑ ∑  

 Substituting (i.2) for q=0 into above expression gives 

0 00
1 1

.
N T T

i tk
i t k t

W I
= = =

≤∑∑∑  

Thus, constraints (3.53) hold. 

 

(d) To show that ( , , )TP I W X yϕ − = ( , , )SP I U Z yϕ −  for ( , , ) ( )W X y F TP I∈ −  and 

( , , ) ( )U Z y F SP I∈ − , we start with ( , , ),TP I W X yϕ −  which is equal to  

( , , )TP W X yϕ 0 00 0 0
1 1 1

( ) .
T N T T T

r r i tk
r i t k t r t

h I h W
= = = = =

+ −∑ ∑∑∑ ∑  

 We have already shown in Theorem 3.2 that ( , , ) ( , , )TP SPW X y U Z yϕ ϕ= , i.e. 

0
0 1 1 1 1 1

N T N T T T N T T

it it qt iqtk itk itk
i t i q t q k t i t k t

f y H W H X
= = = = = = = = =

′ ′+ +∑∑ ∑∑∑∑ ∑∑∑  

0
0 1 1 1 1 1 1

.
N T N t T T N T T

it it qt itk iqtk itk itk
i t i q t k t i t k t

f y H D U G Z
= = = = = = = = =

′= + +∑∑ ∑∑∑∑ ∑∑∑  

 Since 0 0itk i tk i tkD U W=  as shown in part (c) above, ( , , )TP I W X yϕ −  can be 

rewritten as 

( , , )TP W X yϕ 0 00 0 0
1 1 1

( ) ,
T N T T T

r r itk i tk
r i t k t r t

h I h D U
= = = = =

+ −∑ ∑∑∑ ∑  

which is equal to ( , , ).SP I U Z yϕ −  

 

(ii) Consider an instance with T=4, N=2, 00 65I = , 0 1 0t tp p= = , 0 0.5th = , 

1 0.68th = , 2 0.58th =  for 1 t T≤ ≤ ; 01 02 0I I= = , 01 70,f =  02 60,f =  03 70,f =  

04 50f = , 11 40,f =  12 60,f =  13 20,f =  14 40f = , 21 20,f =  22 40,f =  23 50,f =  

24 40,f =  11 100,d =  12 77,d =  13 28,d =  14 66,d =  21 65,d =  22 89,d =  23 11,d =  

24 35d = . For this instance, ( ) 393.49v SP I− =  while ( ) 392.718.v TP I− =     □ 
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On the other hand, there is no dominance relation between ( )v SES I−  and 

( )v SP I−  (or ( )v TP I− ). In the following, we present the two instances that have 

( ) ( )v SES I v SP I− > −  and ( ) ( ),v SES I v SP I− < −  respectively. Our first instance 

is as follows: Consider an instance with T=4, N=2, 00 34;I =  0 1 0,t tp p= =  0 0.5,th =  

1 0.7,th =  2 0.5,th =  0 60,tf =  1 40,tf =  2 30tf =  for 1 t T≤ ≤ ; 01 02 0,I I= =  

11 100,d =  12 77,d =  13 28,d =  14 66,d =  21 65,d =  22 89,d =  23 11,d =  24 35d = . For 

this instance, ( ) ( ) 397.04v SP I v TP I− = − =  whereas ( ) 397.311v SES I− = . Our 

second instance is the same as the first instance except that 00 33.I =  For this 

instance, ( ) ( ) 397.38v SP I v TP I− = − =  whereas ( ) 397.311v SES I− = . 

 

 

3.5 Computational experiments 

 

We perform a set of computational experiments on randomly generated instances to 

assess the empirical performance of the formulations when the solution tool is a 

standard general purpose MIP solver. We generate our instances as follows. 

Number of retailers is set equal to 50. Two different horizon lengths are considered: 

T = 15 or 30. External demand at retailers itd  is generated as an integer for static 

demand case (i.e. it id d=  for 1 t T≤ ≤ ) and dynamic demand case from U[5,100]. 

Fixed cost at the warehouse 0tf  is either static (i.e. 0 0tf f=  for 1 t T≤ ≤ ) or 

dynamic over time and generated from U[1500,4500] as an integer. Fixed cost at the 

retailers itf  is generated as an integer from U[5,100]. Inventory holding cost at the 

warehouse is set equal to 0.5, while inventory holding cost at the retailers is static 

over time and generated from U[0.5,1]. Variable order cost at facility i ( 0 i N≤ ≤ ) 

itp  is equal to 0. For each combination of parameters, we generate 10 random 

instances; thus, we obtain 80 instances in total. Besides, two levels for initial 

inventory level 00I  are considered: zero and nonzero, where 00 1

N
ii

I d
=

= ∑  for static 
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demand case and 00 (5 100) / 2 *I N= +    for dynamic demand case. Thus, we solve 

160 instances in total. 

 

We use SES, TP-c, SP-c and their variants with 00I  (i.e. SES-I, TP-I-c and SP-I-c) in 

the computational experiments. All these formulations are solved using callable 

library of CPLEX 10.1 under a time limit of 7200 seconds on a Pentium IV 3.2 GHz 

PC with 1GB RAM running under Windows XP. We have tested some of the 

default features of CPLEX in our preliminary experiments, and decided not to allow 

CPLEX MIP cuts in our experiments and to set presolver and aggregator off in 

solving all formulations, except SES and SES-I. 

 

We present the average computational results over 10 instances with I00=0 in Table 

3.2. In the table, columns 1–3 show horizon length, type of demand (static or 

dynamic) and type of fixed cost at the warehouse (static or dynamic), respectively. 

Columns 4–6 indicate the integrality gap (%Gap) between the optimal objective 

value (z*) and the objective value in the LP relaxation for formulation (.), i.e. %Gap 

= 100*(z* - v(.))/v(.). Columns 7–9 and 10–12 show the elapsed time in seconds and 

the number of nodes explored in solving the corresponding formulation by CPLEX. 

The numbers in parenthesis in Column 7 indicate the number of instances that could 

not be solved within the time limit of two hours. 

 

Empirical results given in Table 3.2 are in accordance with the theoretical results in 

Section 3.1.4, as expected. Results reveal that SP-c and TP-c formulations perform 

significantly better than SES formulation. TP-c and SP-c achieve integrality gaps 

which are very close to zero whereas SES gives around 7.3% integrality gap on 

average. This success of TP-c and SP-c can be attributed to disaggregation of 

replenishment decisions at the warehouse into separate retailers, which is contrary 

to the SES. The integrality gap and elapsed time figures for SP-c and TP-c are quite 

close to each other. Regarding the integrality gaps, the largest integrality gap 

difference between SP-c and TP-c is 0.1% among the 80 instances generated. Note 

that this difference was around 3.4% for the example instance of the single retailer 
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case in Section 3.1.4. It seems that instances with dynamic fixed cost at the 

warehouse are relatively easier to solve for all formulations than those with static 

rates. Besides, instances with static demand and static fixed cost rate at the 

warehouse are the most challenging ones for all formulations. 

 

 

Table 3.2 Average results when I00=0 

T d it f 0t SES TP-c SP-c SES TP-c SP-c SES TP-c SP-c
S 8.310 0.013 0.013 13.6 1.2 0.7 326.6 0.0 0.0
D 5.731 0.000 0.000 5.7 0.5 0.3 88.5 0.0 0.0
S 7.485 0.003 0.003 10.3 1.1 0.6 221.5 0.0 0.0
D 5.864 0.000 0.000 5.5 0.5 0.4 103.7 0.0 0.0
S 9.511 0.044 0.030 5464.7 (4) 14.8 13.9 49253.6 1.3 0.9
D 6.313 0.001 0.000 479.5 4.4 4.6 3536.4 0.0 0.0
S 9.170 0.031 0.030 4765.4 (3) 11.0 9.5 43914.7 0.6 0.6
D 6.389 0.000 0.000 520.3 4.2 4.2 4594.7 0.0 0.0

7.347 0.012 0.010 1408.1 4.7 4.3 12755.0 0.2 0.2

D

%Gap

30 S

D

Average

NodesSeconds

15 S

 
  S: Static, D: Dynamic 

 

 

Average computational results over 10 instances with 00 0I >  are provided in Table 

3.3, which has the same format with Table 3.2. Results in Table 3.3 indicate that 

SP-I-c and TP-I-c still perform far better than the SES-I. However, SP-I-c and TP-I-

c yield results not as good as those results that are given for the case with 00 0I =  

while the impact on SES-I is not significant compared to the results for SES. 

Nevertheless, both SP-I-c and TP-I-c are quite successful in that they find the 

optimal solution within one minute on average and within three minutes in general. 

Note that SES-I needs around 25 minutes on average to solve the instances to 

optimality and it could not find the optimal solution in 10 out of 80 instances. 
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Table 3.3 Average results when I00>0 

T d it f 0t SES-I TP-I-c SP-I-c SES-I TP-I-c SP-I-c SES-I TP-I-c SP-I-c
S 8.935 0.910 0.894 22.0 13.5 11.2 304.1 0.7 1.4
D 6.760 1.558 1.558 6.8 4.0 4.4 113.2 0.3 1.3
S 7.445 1.667 1.653 10.3 17.7 15.4 218.9 27.0 21.1
D 6.259 2.529 2.528 6.3 5.8 6.9 137.1 24.6 26.9
S 10.029 0.635 0.589 6098.8 (6) 149.4 127.4 50693.5 16.4 3.4
D 6.657 0.713 0.711 606.6 34.7 28.0 4344.1 1.0 1.4
S 9.338 1.030 1.029 5268.1 (4) 92.9 87.2 48142.1 39.6 36.7
D 6.674 1.216 1.216 702.6 25.8 35.4 6687.8 20.7 23.2

7.762 1.282 1.272 1590.2 43.0 39.5 13830.1 16.3 14.4Average

15 S

D

%Gap Seconds Nodes

30 S

D

 
 S: Static, D: Dynamic 
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CHAPTER 4 

 

ONE-WAREHOUSE MULTI-RETAILER PROBLEM WITH ORDER-UP-

TO LEVEL POLICY 

 

 

In this chapter, we address the one-warehouse multi-retailer problem with order-up-

to level inventory control policy (OWMR-O) where the warehouse orders from a 

higher echelon (supplier) to be able to serve the retailers (endogenously defined 

inventory control policy). When a retailer is replenished by the warehouse, its 

inventory level has to be brought up to a predetermined maximum level 

(exogenously defined inventory control policy). This inventory policy is called 

deterministic order-up-to level inventory control policy and introduced in Bertazzi 

et al. (2002) for an inventory routing problem. The same policy is studied in 

Bertazzi et al. (2005), Pınar and Süral (2006), Archetti et al. (2007a), and Solyalı 

and Süral (2008a; 2008b). In practice, order-up-to level policy is frequently 

observed in distribution of industrial gases (Dror and Ball, 1987), in replenishment 

of vending machines and shelf-spaces of groceries where replenishment raises 

inventory up to the maximum level. Unlike Bertazzi et al. (2002; 2005), Pınar and 

Süral (2006), Solyalı and Süral (2008b), and Archetti et al. (2007a), we consider 

direct shipments in delivery to the retailers. Our problem, therefore, is closely 

related to the one-warehouse multi-retailer (OWMR) problem in that when we relax 

the order-up-to level control policy in OWMR-O, we obtain the OWMR problem 

(studied in Chapter 3) where the inventory control policies at both levels are 

endogenously defined. To the best of our knowledge, this is the first study 

considering the OWMR-O problem.  

 

As the echelon stock and transportation based formulations of the OWMR problem 

given in Chapter 3 cannot be adapted for the OWMR-O problem (reasons are given 

in Section 4.2) and the standard formulation of the OWMR-O problem cannot solve 
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large size instances to optimality (see Section 4.4), one of our aims in this chapter is 

to propose a strong formulation for the OWMR-O which can solve large size 

instances to optimality by means of an off-the-shelf MIP solver. The OWMR-O 

problem is not only important in its own right, but also arises as a subproblem in its 

variants with capacities over replenishment quantities and/or multi-stop routing. 

Therefore, introduction of a strong formulation for the OWMR-O problem is 

important since it creates an opportunity in solving such complex variants. As 

discussed in Chapter 1, nonzero initial inventories cannot be treated as zero and they 

may increase the complexity of the problem. In the current study, for instance, only 

( )O T  binary variables are needed in the formulation if no initial inventory exists at 

the warehouse in the OWMR-O problem whereas the presence of initial inventories 

increases the number to 2( ).O NT  Thus, analyzing the effect of nonzero initial 

inventories to the OWMR-O problem is another aim in this chapter. 

 

In this chapter, we show that the OMWR-O problem is NP-hard. We formulate the 

problem as a mixed integer program and the formulation is rather unique due to 

three reasons in comparison to its weak representations in Pınar and Süral (2006), 

Solyalı and Süral (2008b), and Archetti et al. (2007a). First, we provide a stronger 

formulation for the retailers’ replenishment problem using a shortest path network 

representation. Second, we decompose the warehouse’s replenishment problem into 

independent retailers and represent each with a novel set of constraints. Third, we 

show that the resulting formulation leads to the convex hull of the feasible region in 

the single retailer case of OMWR-O. Computational experiments reveal that our 

strong formulation is able to solve large-scale instances in reasonable time whereas 

the standard formulation does not. Through computational experiments, we also 

show that the vendor-managed approach (i.e. solving the MIPs) provides 

considerable savings compared to the traditional retailer-managed approach. 

 

The remainder of this chapter is organized as follows. We present the problem 

definition and the computational complexity of the problem in Section 4.1. In 

Section 4.2, we present strong mixed integer program formulations for the problem 
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and the convex hull proof for the single retailer case. We examine a greedy policy 

for controlling retailers’ inventories in Section 4.3. Its implementation reduces the 

OWMR-O problem into a set of single-level lot sizing problems. Section 4.4 is 

devoted to a computational study on randomly generated problem instances in order 

to find out the integrality gaps created by strong formulations. Note that the notation 

and abbreviations defined in this chapter is only valid in this chapter. 

 

 

4.1 Problem definition 

 

We consider a two-level vendor-managed system where a warehouse (vendor) 

replenishes multiple retailers with direct shipments over a finite time horizon. 

Retailer i (1 ≤ i ≤ N) faces external deterministic dynamic demand dit in period t (1 

≤ t ≤ T) and may keep inventory, Iit, at the end of period t to satisfy demands of 

future periods k, where t+1≤ k ≤ T. Retailer i employs an order-up-to level inventory 

control policy such that its inventory level is brought up to a maximum level Si 

whenever it is replenished by an amount of Qit by the warehouse. The warehouse 

(i=0) manages the entire inventories in the system and has to order an amount of Q0t 

from its supplier to replenish the retailers. The warehouse like retailers may keep 

inventory, I0t, to satisfy future demands. It uses a direct shipment transportation 

policy to replenish each retailer and ships an amount equal to the maximum 

inventory level of the retailer less its inventory level at the end of the previous 

period (Si-Ii,t-1) whenever a replenishment is made. Figure 4.1 clarifies the order of 

events occurring in retailers.  

 

We assume, without loss of generality, that there is no lead time for the shipments 

between the warehouse and the retailers and between the supplier and the 

warehouse. The shipments to the warehouse incur a fixed order cost, f0t, 

independent of the size of shipment and a variable purchasing cost pt, which is 

charged for each unit purchased in t. A fixed order cost, fit, is also incurred 

whenever retailer i receives a shipment in t. Both the warehouse and the retailers 
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incur a linear holding cost for each item carried at the end of a period, hit. We 

assume that all parameters are nonnegative. In addition, we assume that initial 

inventory level at retailer i, Ii0, is less than total demand of retailer i over the 

planning horizon so that at least one replenishment is required for retailer i; 

otherwise, retailer i can trivially be eliminated from the problem. The problem is to 

simultaneously determine lot sizing decisions of the warehouse and replenishment 

decisions of the retailers such that the total of inventory holding costs and fixed 

order costs at the warehouse and at the retailers, and the purchasing costs are 

minimized. We provide a standard MIP formulation of the problem in the following. 

 

 

t-1 t

Amount
delivered,

Si-Ii,t-1

Amount
demanded,

dit

Inventory level
at the end of t-1,

Ii,t-1

Inventory level
at the end of t,

Si-dit

 
Figure 4.1 Order of events at the retailers 

 

 

P: Min  0
0 1 1

( )
N T T

it it it it t t
i t t

f y h I p Q
= = =

+ +∑∑ ∑             (4.1) 

s.t. 

0, 1 0 0
1

N

t t it t
i

I Q Q I−
=

+ = +∑  1 t T≤ ≤             (4.2) 

, 1i t it it itI Q d I− + = +   1 ,i N≤ ≤  1 t T≤ ≤                       (4.3) 

0 0t tQ My≤    1 t T≤ ≤                        (4.4) 

it i itQ S y≤    1 i N≤ ≤ , 1 t T≤ ≤                       (4.5) 
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, 1it i i tQ S I −≤ −    1 i N≤ ≤ , 1 t T≤ ≤                       (4.6) 

, 1it i it i tQ S y I −≥ −   1 i N≤ ≤ , 1 t T≤ ≤                       (4.7) 

, 0it itQ I ≥     0 ,i N≤ ≤  1 t T≤ ≤                       (4.8) 

{0,1}ity ∈    0 ,i N≤ ≤  1 t T≤ ≤                       (4.9) 

where M is a large number, and ity  is equal to 1 if an order for facility i ( 0 i N≤ ≤ ) 

is placed in period t and 0 otherwise. 

 

Objective function (4.1) is the total of fixed order and inventory holding costs at the 

warehouse and retailers as well as per-unit order costs at the warehouse. Constraints 

(4.2) and (4.3) are the inventory balance equations for the warehouse and retailers 

respectively. Constraints (4.4) ensure that a fixed order cost is incurred if warehouse 

places an order in a period. Constraints (4.5)-(4.7) are the either-or type constraints 

ensuring order-up-to level policy at the retailers. Constraints (4.8) are for 

nonnegativity of variables while (4.9) are for integrality of variables. 

 

Theorem 4.1. The OWMR-O problem is NP-hard. 

Proof. We prove by reducing the NP-hard uncapacitated facility location problem 

(UFLP) (Cornuejols et al., 1990) to the OWMR-O problem. Consider a simple 

instance of the OWMR-O problem: for every retailer i, 0itd =  for 1 1t T≤ ≤ − and 

diT = Si; hit = 0 for all i and t; and 0th M=  and pt =0 for 1 t T≤ ≤  where M is a very 

large number. All shipments incur fixed order costs f0t (fit) for the warehouse (the 

retailers) in t. There are no initial inventories in the system. This instance suggests 

the following optimal policy. 

• Each retailer i makes a single replenishment Si throughout the entire 

horizon. 

• Warehouse does not keep inventory at all, and in any period it orders from 

its supplier an amount just enough to ship to the retailers.  

This optimal policy is equivalent to solving an instance of the NP-hard UFLP where 

there are T alternative sites to locate facilities with a fixed establishment cost 0tf  for 
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each 1 t T≤ ≤ , a service cost from facility t to retailer i being equal to fit, and the 

problem is to decide the number of facilities to establish (total number of 

orders/shipments), their sites (their periods) and their service regions (the retailers to 

be served in these periods). Thus, solving the described instance of the OWMR-O 

problem will also solve the above instance of UFLP.    □ 

 

 

4.2 Strong formulations for the OWMR-O problem 

 

Due to the fixed-charge cost structure at the warehouse and order-up-to level 

policies of the retailers, formulation P provides a weak LP relaxation solution value 

(see Section 4.4), which makes solving even small-size problems to optimality 

difficult. In this section, we propose a strong formulation for the OWMR-O 

problem, which enables us to solve reasonable sized problems to optimality using 

an off-the-shelf solver. 

 

The MIP formulated below includes integration of two components: replenishment 

problem of retailers and lot sizing problem of the warehouse. All of the previous 

studies in the literature (Archetti et al., 2007a; Pınar and Süral, 2006; Solyalı and 

Süral, 2008b) have modeled the retailer’s replenishment problem using either-or 

type (weak) constraints (see constraints (4.5)–(4.7) in P formulation) as a retailer i 

receives either nothing or a quantity raising its inventory to Si at any period. We use 

the shortest path network representation of the retailer’s replenishment problem that 

gives the convex hull of a single retailer’s replenishment problem (see Bertazzi et 

al., 2002; Solyalı and Süral, 2008a for usages of network representation in different 

contexts). The lot sizing problem of the warehouse, on the other hand, is different 

from the single-level problem because its decisions regarding how much to ship to 

the retailers are endogenously specified here (note that, unlike the OWMR problem, 

the total amount ordered from the warehouse in the OWMR-O problem may be 

greater than or equal to the total external demand). We therefore redefine the 

variables related with the warehouse in P formulation and model the entire problem 
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as a set of combined N single warehouse-single retailer problems. Additional 

parameters and decision variables used in the formulation are as follows. 

 

Parameters 

:iktH  Cost of serving retailer i in period t when the last replenishment has 

occurred in period k. 

:iktb  Quantity shipped to retailer i in period t when the last replenishment has 

occurred in period k. 

:iktD  Demand of retailer i from period k to period t, i.e. t
ikt irr k

D d
=

= ∑ . 

0 :iI  Level of initial inventory at facility i ( 0 i N≤ ≤ ). 

( , ) :i tπ The earliest period starting from which retailer i does not stock out until 

replenished in period t, that is ( ,1) 0iπ =  for 1 ,i N≤ ≤  

0 1, 1( , ) min{(0 | 0),i i ti t I Dπ −= − ≥ , 1( | 0)}i ir tr S D −− ≥  where 1 1r t≤ ≤ −  for 

all 1 ,i N≤ ≤ 2 1t T≤ ≤ + . 

( , ) :i tµ The latest period that retailer i can be replenished before being stocked out 

when the previous replenishment has occurred in period t, i.e., 

0 1, 1( ,0) max{1, ( | 0)}i i ri r I Dµ −= − ≥  where 2 r T≤ ≤  for all 1 i N≤ ≤ , 

, 1( , ) max( | 0)i it ri t r S Dµ −= − ≥  where 1 1t r T+ ≤ ≤ +  for all 

1 ,i N≤ ≤ 1 .t T≤ ≤  

 

Variables 

:iktX  1 if retailer i is replenished in period t (1 t T≤ ≤ ) when the last 

replenishment has occurred in period k ( ( , )i t k tπ ≤ < ), 0 otherwise. 

, 1 :ik TX + 1 if the last replenishment to the retailer has occurred in period k 

( ( , 1) 1i T k Tπ + ≤ < + ) and no replenishments occur until the end of the 

horizon, 0 otherwise. 

:ty   1 if an order for warehouse is placed in period t and 0 otherwise. 
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:iqktU  Quantity the warehouse orders in period q to serve retailer i in period t when 

the last replenishment to i has occurred in period k. 

:iktV  Quantity supplied from the initial inventory at the warehouse to serve 

retailer i in period t when the last replenishment to i has occurred in period k. 

 

F(I): Min
1

0
1 1 1 ( , ) 1

T N t t T

t t qt iqkt
t i q k i t t

f y g U
π

−

= = = = =

+∑ ∑∑ ∑ ∑
1

0 00
1 1 ( , ) 1

( )
T N t r

r ikt
r i k i t t

h I V
π

−

= = = =

+ −∑ ∑ ∑ ∑  

                
1 1

1 ( , ) 1

N t T

ikt ikt
i k i t t

H X
π

− +

= = =

+∑ ∑ ∑            (4.10) 

s.t. 

1

t

iqkt ikt ikt ikt
q

U V b X
=

+ =∑   1 ,i N≤ ≤ ( , )i t k tπ ≤ < ,1 t T≤ ≤        (4.11) 

iqkt ikt qU b y≤    1 ,i N≤ ≤ ( , ) ,i t k tπ ≤ < 1 q t T≤ ≤ ≤        (4.12) 

( ,0)

0
1

1
i

i t
t

X
µ

=

=∑    1 i N≤ ≤           (4.13) 

( , ) 1

1 ( , )

0
i t t

itk ikt
k t k i t

X X
µ

π

−

= + =

− =∑ ∑  1 ,i N≤ ≤ 1 t T≤ ≤           (4.14) 

, 1
( , 1)

1
T

ik T
k i T

X
π

+
= +

− = −∑   1 i N≤ ≤           (4.15) 

1

00
1 ( , ) 1

N t T

ikt
i k i t t

V I
π

−

= = =

≤∑ ∑ ∑              (4.16) 

{ }0,1iktX ∈    1 ,i N≤ ≤ ( , )i t k tπ ≤ < ,1 1t T≤ ≤ +        (4.17) 

{ }0,1ty ∈    1 t T≤ ≤           (4.18) 

0iqktU ≥    1 ,i N≤ ≤ ( , ) ,i t k tπ ≤ < 1 q t T≤ ≤ ≤        (4.19) 

0iktV ≥    1 ,i N≤ ≤ ( , )i t k tπ ≤ < ,1 t T≤ ≤        (4.20) 

where 
1

0

t

qt q r
r q

g p h
−

=

= + ∑  for 1 ,q t T≤ ≤ ≤  
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0 1, 1

, 1

 if 0,1 ( ,0)
               if 1 , ( , ), 1

0                      otherwise,

i i i t

ikt ik t

S I D k t i
b D k T k t i k t T

µ

µ
−

−

− + = ≤ ≤
= ≤ ≤ < ≤ ≠ +



 

1

0 1
1

1

1

1

( ) ( )  if 0,1 ( ,0)

( ) ( )  if ( , ) ,1 , 0

( )                              if ( , 1) , 1

0       

t

it il i i l it i it
l
t
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The objective function (4.10) of the model consists of fixed order, purchasing and 

inventory holding costs at the warehouse, and fixed order as well as inventory 

holding costs at the retailers. Constraints (4.11) ensure that the sum of the quantity 

supplied from initial inventory at the warehouse and the quantity ordered from the 

supplier from period 1 through period t for retailer i is equal to the quantity shipped 

to i in t when the last replenishment has occurred in period k. Constraints (4.12) 

guarantee that a fixed order cost is incurred if the warehouse places an order in a 

period. Constraints (4.13)–(4.15) are flow conservation constraints on the shortest 

path network problem accounting for the replenishment decisions of retailers over 

the horizon. They ensure that the inventory level at a retailer is brought up to the 

maximum level if a delivery is made. Note that ( , )i tπ  and ( , )i tµ  are used to define 

feasible replenishment periods. That is, by the use of ( , )i tπ  and ( , ),i tµ  infeasible 

arcs (variables) representing stock out cases are never generated. For instance, if a 

retailer i is replenished in period t then it has to be replenished no later than period k 

( t k T< ≤ ) when , 1 0i it kS D −− ≥  and 0i itkS D− <  in order not to stock out. Then, in 

this specific example, feasibility is ensured by setting ( , )i tµ  equal to k. Similarly, 

for example, if a retailer i is replenished in period 2t >  then it can satisfy external 

demands from period k+1 through t-1 from its inventory at the end of period k 

( 2 1k t≤ ≤ − ) without being stocked out when , 1 0i ik tS D −− ≥  and , 1, 1 0i i k tS D − −− < . 

Then, in this specific example, feasibility is ensured by setting ( , )i tπ  equal to k. An 
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example shortest path network for the replenishment problem of a single retailer for 

a three-period planning horizon where (0) 3,µ =  (1) (2) (3) 4µ µ µ= = = , 

(1) (2) (3) 0π π π= = =  and (4) 1π =  is depicted in Figure 4.2. 

 

 

0 4321
X01

X02

X03

X24

X12 X23 X34

X13

X14

 
Figure 4.2 Shortest path network representation of the single retailer replenishment 

problem for T=3 

 

 

In the network, nodes except first and last represent time periods while arcs 

represent the replenishment decisions. Constraint (4.16) assures that the amount 

shipped from initial inventory is not more than the available amount. Constraints 

(4.17) and (4.18) assure the integrality of variables while constraints (4.19) and 

(4.20) are for the nonnegativity of variables. 

 

A stronger representation of OWMR-O 

Formulation F(I) can be further strengthened by the following variable 

redefinitions. Let iqktW  ( /iqkt iktU b= ) be the fraction of the quantity ordered at the 

warehouse in period q to serve retailer i in period t when the last replenishment to i 

has occurred in period k, and iktZ  ( /ikt iktV b= ) be the fraction of the quantity 

supplied by the initial inventory of warehouse to serve retailer i in period t when the 

last replenishment to i has occurred in period k. Then, constraints (4.11), (4.12) and 

(4.16) can be rewritten respectively as 
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1

t

iqkt ikt ikt
q

W Z X
=

+ =∑   1 ,i N≤ ≤ ( , )i t k tπ ≤ < ,1 t T≤ ≤        (4.21) 

iqkt qW y≤    1 ,i N≤ ≤ ( , ) ,i t k tπ ≤ < 1 q t T≤ ≤ ≤        (4.22) 

1

00
1 ( , ) 1

N t T

ikt ikt
i k i t t

b Z I
π

−

= = =

≤∑ ∑ ∑             (4.23) 

 

Constraints (4.21)–(4.23) are the results of straightforward conversion of variables 

and affect neither the total number of constraints nor the strength of the formulation. 

However, variable redefinition enables us to derive a stronger and reduced-size 

formulation as we show below. Theorem 4.2 is based on the fact that the warehouse 

must incur a fixed cost in period q if an order is placed in period q to replenish 

retailer i in period t when the last replenishment to the retailer might have occurred 

in any period k ( ( , )i t k tπ ≤ < ). Therefore, left hand side of (4.22) can be summed 

over k. 

 

Theorem 4.2. The inequalities 
1

( , )

t

iqkt q
k i t

W y
π

−

=

≤∑  1 ,i N≤ ≤ 1 q t T≤ ≤ ≤             (4.24) 

are valid for the OWMR-O problem and they are tighter than constraints (4.12) and 

(4.22). 

Proof.  Because of the flow conservation constraints (4.13)–(4.15), the relation 
1

( , )
1t

iktk i t
X

π

−

=
≤∑  holds. Due to (4.21) and 1

( , )
1t

iktk i t
X

π

−

=
≤∑ , 1

( , )

t
iqktk i t

W
π

−

=∑  cannot be 

greater than 1. Thus, constraints (4.24) are valid inequalities for the OWMR-O 

problem. Since (4.12) are equivalent to (4.22) and left-hand side of (4.24) is greater 

than or equal to that of (4.22), (4.24) are tighter than both (4.12) and (4.22). □ 

 

Note that contrary to (4.22), it is not possible to sum left-hand side of (4.12) over k. 

Constraints (4.24) not only reduce the total number of constraints from 3( )O NT  to 
2( )O NT  but also tighten the formulation. However, there is still room for 

improvement as shown in the following theorem. Theorem 4.3 is based on the fact 
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that the warehouse must incur a fixed cost in period q if an order is placed in period 

q to replenish retailer i for any period t or later when the last replenishment to the 

retailer might have occurred in any period k ( 0 k t≤ < ). Thus, left hand side of 

(4.24) can be summed over r t≥ . 

 

Theorem 4.3. The inequalities 
min{ ( , ), }1

0

i k Tt

iqkr q
k r t

W y
µ−

= =

≤∑ ∑   1 ,i N≤ ≤ 1 q t T≤ ≤ ≤      (4.25) 

are valid for the OWMR-O problem and they are tighter than constraints (4.24). 

Proof. Consider the shortest path network representation of the replenishment 

problem for each retailer by replacing X variables with W variables as suggested by 

(4.21). Now consider the partial networks involving only those arcs defined by 

(4.25). Each such partial network contains nodes only with either outgoing or 

incoming arcs with W variables but not both. Because there is unit flow over the 

network and no node has both incoming and outgoing arcs with positive W 

variables, the left-hand side of (4.25) cannot be greater than one (see Figure 4.3 as 

an illustrative example for (4.25) with q = 1 and t = 1, 2 and 3 on a partial network 

assuming (0) (1) (2) 3µ µ µ= = = ). Thus, (4.25) constitute valid inequalities for the 

OWMR-O problem. 

 

We rewrite left-hand side of (4.25) separately for r t=  and 1r t≥ +  as  
min{ ( , ), }1 1

( , ) 0 1

i k Tt t

iqkt iqkr
k i t k r t

W W
µ

π

− −

= = = +

+∑ ∑ ∑        (4.25’) 

Recall that feasible variables (arcs) are assured by either π  or µ . While µ  is used 

to define feasible variables in the left-hand side of (4.25), k is set to ( , )i tπ  instead 

of 0 in the first term of (4.25’), since r is set equal to t and only feasible arcs 

incoming to period t should be defined. Constraints (4.25) are tighter than (4.24) 

since 
min{ ( , ), }1

0

i k Tt

iqkr
k r t

W
µ−

= =

=∑ ∑  
min{ ( , ), }1 1

( , ) 0 1

i k Tt t

iqkt iqkr
k i t k r t

W W
µ

π

− −

= = = +

+∑ ∑ ∑  
1

( , )

t

iqkt
k i t

W
π

−

=

≥ ∑ .  □ 
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The stronger formulation is given as follows. 

 

SF(I): Min
1

0
1 1 1 ( , ) 1

T N t t T

t t qt ikt iqkt
t i q k i t t

f y g b W
π

−

= = = = =

+∑ ∑∑ ∑ ∑
1

0 00
1 1 ( , ) 1

( )
T N t r

r ikt ikt
r i k i t t

h I b Z
π

−

= = = =

+ −∑ ∑ ∑ ∑  

           
1 1

1 ( , ) 1

N t T

ikt ikt
i k i t t

H X
π

− +

= = =

+∑ ∑ ∑             (4.26) 

s.t. (4.13)–(4.15), (4.17), (4.18), (4.21), (4.23), (4.25) 

0iqktW ≥    1 ,i N≤ ≤ ( , ) ,i t k tπ ≤ < 1 q t T≤ ≤ ≤        (4.27) 

0iktZ ≥    1 ,i N≤ ≤ ( , )i t k tπ ≤ < ,1 t T≤ ≤        (4.28) 
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Figure 4.3 An illustrative example for constraints (4.25) for q=1 when T=3 
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Note that SF(I) has 2( )O NT  constraints and 3( )O NT  variables, 2( )O NT  of which 

are binary. We should note that in the OWMR problem, the optimal replenishment 

policy at retailers is of Wagner-Whitin type, and the warehouse orders a quantity 

equal to the total external demand of retailers over the entire horizon. The echelon 

stock formulation for the OWMR problem cannot simply be extended to model the 

OWMR-O problem since the observation of demand at the warehouse in a period 

being equal to total external demand of retailers in that period (Federgruen and 

Tzur, 1999) is not valid for the OWMR-O problem. Similarly, the formulation 

proposed in Levi et al. (2008) cannot be directly used since it is based on 

replenishing the warehouse according to the retailers’ given external demands in a 

period, which is non-germane to the OWMR-O problem. 

 

A special case: OWMR-O with I00 = 0 

In the absence of initial inventory at the warehouse, all iktZ  variables and 

constraints (4.23) would be removed from the formulation SF(I). For 

1 ,i N≤ ≤ ( , )i t k tπ ≤ < ,1 t T≤ ≤ , letting iktX  = 
1

t

iqkt
q

W
=

∑  due to (4.21), the 

formulation for the OWMR-O problem with 00 0I = , referred to as the formulation 

SF, can be written as 

 

SF: Min
1

0
1 1 1 ( , ) 1

( )
T N t t T

t t ikt qt ikt iqkt
t i q k i t t

f y H g b W
π

−

= = = = =

+ +∑ ∑∑ ∑ ∑ , 1 , 1
1 ( , 1)

N T

ik T ik T
i k i T

H X
π

+ +
= = +

+∑ ∑   (4.29) 

s.t. (4.18), (4.25), (4.27) and 
( ,0)

0
1 1

1
it

iq t
q t

W
µ

= =

=∑ ∑    1 i N≤ ≤          (4.30) 

, 1it it Ta X + +
min{ ( , ), } 1

1 1 ( , ) 1

0
i t T k t t

iqtk iqkt
k t q k i t q

W W
µ

π

−

= + = = =

− =∑ ∑ ∑ ∑  1 ,i N≤ ≤ 1 t T≤ ≤       (4.31) 

, 1
1

1
T

it it T
t

a X +
=

− = −∑    1 i N≤ ≤          (4.32) 

, 1 0it TX + ≥     1 ,i N≤ ≤ ( , 1)i T t Tπ + ≤ ≤        (4.33) 
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where 
1 if ( , 1)
0 otherwise.it

i T t
a

π + ≤
= 


  

 

Note that X’s are set as nonnegative continuous variables and its legitimacy is 

proven below. Hence, SF has only O(T) binary variables. 

 

Theorem 4.4. The formulation SF has an optimal solution with integral values for 

X. 

Proof. Consider a partial solution for SF in which all y-variables are known. To 

reach a complete solution, set 0iqktW = , 1 ,i N≤ ≤ ( , ) ,i t k tπ ≤ < 1 t T≤ ≤ , for those 

q’s with 0qy = , in (4.25). For those q’s with yq=1, eliminate the associated (4.25), 

since, due to constraints (4.30)–(4.32), 1 min{ ( , ), }

0
1t i k T

iqkrk r t
Wµ−

= =
≤∑ ∑  becomes 

redundant.  Simplify the objective function (4.29) by letting the first term be 

constant. This reduces SF to a formulation of a collection of N replenishment 

problems, one for each retailer, whose constraint matrix (defined by constraints 

(4.30)–(4.32)) is totally unimodular since all coefficients are elements of {0, -1, 

+1}, each W and X variable appear twice with coefficients -1 and +1, and there 

exists a partition 1 2( , )R R R= = ∅  of the set R of rows such that the difference 

between summation of coefficients in R1 and summation of coefficients in R2 is zero 

for each variable. Thus, W-variables and X-variables take integral values in an 

optimal solution to the formulation SF.      □ 

 

Below we show that SF describes the convex-hull of feasible solutions of the 

OWMR-O problem with 00 0I =  when there is a single retailer. For this purpose, we 

remove i subscript representing retailer from SF since N = 1, and refer to the 

resulting single retailer SF formulation as SF-SR.  

 

Lemma 4.1. Let FeasibleSR be the set of feasible solutions to the single retailer 

variant of the OWMR-O problem with I00 = 0. The following inequalities  
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min{ ( ), } min{ ( ), } min{ ( ), } 1 min{ ( ), }1 2

0 0 1 0 1 0
...

k T k T q k T q k TT T

qkr qkr qkr qkr q
k r T k r T k r q k r q

W W W W y
µ µ µ µ−− −

= = = = − = = + = =

≤ ≤ ≤ ≤ ≤∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑  

for 1 q T≤ ≤     (4.34) 

are valid for FeasibleSR. 

Proof. Inequalities (4.34) can equivalently be represented as 
1 min{ ( ), }

0
0

q k T

q qkr
k r q

y W
µ−

= =

− ≥∑ ∑    1 q T≤ ≤         (4.35) 

min{ ( ), } min{ ( ), }1

0 0 1
0

k T k Tt t

qkr qkr
k r t k r t

W W
µ µ−

= = = = +

− ≥∑ ∑ ∑ ∑   1 1q t T≤ ≤ ≤ −        (4.36) 

Validity of constraints (4.35) has already been shown in Theorem 4.3. Inequalities 

(4.36) can be simplified and rewritten as 
min{ ( ), }1

( ) 1
0

t Tt

qkt qtk
k t k t

W W
µ

π

−

= = +

− ≥∑ ∑    1 1q t T≤ ≤ ≤ −        (4.37) 

Note that first term of (4.37) denotes the replenishment of retailer in period t 

realized by the quantity ordered at the warehouse in period q while second term of 

(4.37) denotes the replenishment of retailer in any period s ( s t> ) where the 

previous replenishment has occurred in period t by the quantity ordered at the 

warehouse in period q. Since the optimal replenishment policy at the warehouse has 

the well-known Wagner-Whitin property (Solyalı and Süral, 2008a), if the quantity 

shipped to retailer in period s is ordered to the warehouse in period q, then the 

quantity shipped to retailer in period t ( q t s≤ < ) must also be ordered to the 

warehouse in period q. As this is ensured by (4.37), (4.37) are valid.  □ 

 

Thus, the modified but equivalent SF-SR is as follows. 

 

SF-SR: Min  
1

0
1 1 ( ) 1

( )
T t t T

t t kt qt kt qkt
t q k t t

f y H g b W
π

−

= = = =

+ +∑ ∑ ∑ ∑ , 1 , 1
( 1)

T

k T k T
k T

H X
π

+ +
= +

+ ∑       (4.38) 

s.t. (4.18), (4.35), (4.37) and 
(0)

0
1 1

1
t

q t
q t

W
µ

= =

=∑ ∑               (4.39) 
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, 1t t Ta X + +
min{ ( ), } 1

1 1 ( ) 1

0
t T k t t

qtk qkt
k t q k t q

W W
µ

π

−

= + = = =

− =∑ ∑ ∑ ∑  1 t T≤ ≤         (4.40) 

, 1
1

1
T

t t T
t

a X +
=

− = −∑              (4.41) 

0qktW ≥      ( ) ,t k tπ ≤ < 1 q t T≤ ≤ ≤       (4.42) 

, 1 0t TX + ≥      ( 1)T t Tπ + ≤ ≤        (4.43) 

 

Theorem 4.5. The LP relaxation of the SF-SR formulation has an optimal solution 

with integral y, W and X. 

Proof. As 0 0qf ≥ , (4.35) will be satisfied as equality in the optimal LP relaxation 

solution of SF-SR and qy can be eliminated by substituting 1 min{ ( ), }

0

q k T
qkrk r q

Wµ−

= =∑ ∑  in 

place of qy  in (4.38). Let R denote the constraint matrix composed of the remaining 

constraints (4.37) and (4.39)–(4.41), and Rs denote the subset of rows of R. We will 

show that R is totally unimodular by using the following sufficient condition: For 

any Rs, there exists a partition of Rs into 1R  and 2R  such that 

1 2
| | 1ij iji R i R

r r
∈ ∈

− ≤∑ ∑  for all columns (variables)      (4.44) 

where ijr  denotes the technological coefficient of jth variable in ith row. Note that 

{0, 1, 1}ijr ∈ − +  for all i, j. Our partitioning scheme is as follows: We assign all rows 

of Rs corresponding to constraints (4.39)–(4.41) into 1R . We assign the rows of Rs 

corresponding to constraint (4.37) for q, t (1 1q t T≤ ≤ ≤ − ) into 1R  if the row 

corresponding to constraint (4.40) for t (1 t T≤ ≤ ) exists in Rs, otherwise into 2R .  

 

With this partitioning scheme it is obvious that condition (4.44) holds for the 

columns corresponding to each kTX  variable for ( )T k Tπ ≤ <  and each qkTW  

variable for ( ) ,T k Tπ ≤ < 1 q T≤ ≤  where k q<  since those variables appear twice 

in each column with coefficients -1 and +1 due to constraints (4.39)–(4.41) (i.e. 

1 2,sR R R= = ∅ ). Also, if Rs involves only the rows corresponding to constraints 

(4.39)–(4.41), then (4.44) holds due to the same reason. Similarly, if Rs involves 
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only the rows corresponding to (4.37), (4.44) holds since each variable appears 

either two times with coefficients -1 and +1 or only once with coefficient -1 or +1 

due to (4.37) (i.e. 2 1,sR R R= = ∅ ). If Rs involves the rows corresponding to both 

constraints (4.39)–(4.41) and (4.37), then there are two cases to consider. 

 

Case 1. For any t (1 t T≤ ≤ ), Rs involves (4.37) for q, t (1 1q t T≤ ≤ ≤ − ) and (4.40) 

for t: Note that variables in (4.37) for q, t (1 1q t T≤ ≤ ≤ − ) are all involved in (4.40) 

for t (1 t T≤ ≤ ) with just the opposite coefficient signs. Thus, those opposite signs 

cancel each other since all those rows are assigned to 1R  according to the proposed 

partitioning scheme. 

 

Case 2. For any t (1 t T≤ ≤ ), Rs involves (4.37) for q, t (1 1q t T≤ ≤ ≤ − ) but not 

(4.40) for t: Note that variables in (4.37) for q, t (1 1q t T≤ ≤ ≤ − ) also exist in 

(4.40) for some k t≠  (1 k T≤ ≤ ) with the same coefficient sign. Thus, those same 

signs cancel each other since rows corresponding to (4.40) are assigned to 1R  

whereas rows corresponding to (4.37) are assigned to 2R  according to the proposed 

partitioning scheme. 

 

Due to cancellations of nonzero coefficients as depicted by case 1 and case 2, left-

hand side of (4.44) takes values 0 or +1 for all columns which means (4.44) holds 

for Rs involving rows corresponding to both constraints (4.39)–(4.41) and (4.37). 

Since the constraint matrix is totally unimodular, the proof is done.   □ 

 

 

4.3 Vendor-managed approach versus retailer-managed approach 

 

In contrast to the above vendor-managed inventory system, suppose that the supply 

chain operates under a retailer-managed inventory system so that each retailer 

wishes to replenish its own stock just prior to the period in which it stocks out and 

dictates this to the warehouse. This replenishment policy is a deterministic variant 
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of the classical (s, S) policy, which we call latest ordering up-to level policy, 

determined in ( )O T time for a single retailer. Given all retailers’ replenishment 

schedules, the optimal replenishment decisions at the warehouse are found in 

( log )O T T  time by solving a single-item uncapacitated lot sizing problem in which 

demands to the warehouse are specified as the sum of individual retailer’s 

replenishment quantities in every period of the schedule. Thus, such a retailer-

managed approach requires ( log )O NT T T+  time, which is quite efficient 

compared to the vendor-managed approach in Sections 4.1 and 4.2. Below we 

analyze the structural properties of the latest ordering up-to level policy. In the 

following theorem, we first show that the latest ordering up-to level policy is 

optimal for the single retailer replenishment problem when three major problem 

parameters are constant. 

 

Theorem 4.6. The latest ordering up-to level policy is optimal for the single retailer 

problem with order-up-to policy if order cost, holding cost, and external demand are 

all constant over the planning horizon. 

Proof. Under the latest ordering up-to level policy, we can define at most three 

successive stages over the planning horizon regarding the replenishment process, 

assuming at least one replenishment is needed during the horizon. Stage 1 starts 

with the very first period where the demand is satisfied from initial inventory and 

lasts until the first replenishment is inevitably done. Stage 2 is the one in between 

two consecutive replenishment periods k and t, k<t such that ( ) 0S t k d− − ≥  and 

( 1) 0S t k d− − + < . Stage 3 starts with the last replenishment period and ends with 

T. Note that stages 1 and 3 can be equivalent to stage 2 when 0I S d= −  and when 

the difference between the last replenishment period and T is equal to t k− , 

respectively. It is easy to see that any other replenishment cannot reduce the 

inventory holding cost components associated with stage 1 and stage 2(s). The 

number of replenishments specified by the latest ordering up-to level policy cannot 

be decreased either. Only, the cost associated with stage 3 may lead to a higher cost 

because of the possibility of a leftover stock after T. Although a replenishment 

before the last possible moment (period in which stock-out occurs) may eliminate 
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stage 3, the resulting cost of such a policy is at least equal to the cost incurred by the 

latest ordering up-to level policy.       □ 

 

We next illustrate by counter-examples how optimality of the latest ordering up-to 

level policy vanishes even if only one of these three parameters changes 

dynamically. Below we assume that 4T = , 75S =  and 0 50I = . 

i. Demand is dynamic: Let th h=  and tf f=  for 1 4t≤ ≤ , and 1 40d = , 

2 15d = , 3 50d = , 4 11d = . Optimal policy sends 25 and 55 units in periods 1 and 

3, respectively, yielding a total cost of 2f + 94h, whereas the latest ordering up-to 

level policy sends 65 units in periods 2 and 4, and its associated cost is 2f +144h. 

ii. Unit holding cost changes over time: Suppose that th h=  for 1 3t≤ ≤ , *
4h h=  

where *h h>> , and tf f=  and 15td =  for 1 4t≤ ≤ . The optimal solution is to 

make a replenishment of 25 units in period 1 with a total cost of f +135h+15h* 

whereas the cost of the latest ordering up-to level policy is f +60h+60h*. 

iii. Fixed order cost changes over time: Consider an instance with the following 

data: tf f= for 1 3t≤ ≤ , *
4f f=  where *f f>> , and th h=  and 15td =  for 

1 4t≤ ≤ . The optimal solution is to make a replenishment of 25 units in period 1 

with a total cost of 150f h+  whereas the cost of the latest ordering up-to level 

policy is * 120f h+ . 

 

 

4.4 Computational experiments 

 

We performed computational experiments on randomly generated instances to test 

the computational performance of our MIP formulations. In this section we present 

our results. We compare the results obtained under the vendor-managed inventory 

approach using MIPs with those of the retailer-managed approach implementing 

latest ordering policy. MIPs were solved using callable library of CPLEX 10.1 and 

latest ordering up-to level policy is coded in C within MS Visual C++ 6.0. All the 
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computational experiments were done on an Intel Pentium IV 3.2 GHz PC with 1 

GB RAM. Instances are generated with the following settings. 

 

 

Table 4.1 Results for N = 50, T = 15 and 00 0I =  

d it p t f 0t h 0t %Gap CPU %LD WC TC RC WC TC RC
0.3 0.00 0.90 15.26 24.16 12.30 63.54 32.76 11.30 55.94
0.8 0.01 1.18 17.93 27.16 12.82 60.02 41.22 10.29 48.49
0.3 0.02 1.53 14.95 17.19 13.55 69.26 23.36 13.33 63.31
0.8 0.06 2.47 15.73 19.54 14.94 65.52 29.80 13.28 56.92
0.3 0.00 0.80 15.75 34.01 12.66 53.33 44.20 11.13 44.67
0.8 0.02 1.72 17.57 36.19 11.38 52.44 51.66 8.29 40.05

0.02 1.43 16.20 26.37 12.94 60.69 37.17 11.27 51.56
0.3 0.08 0.85 13.77 22.45 12.26 65.30 32.76 11.30 55.94
0.8 0.34 1.82 23.07 24.30 12.91 62.78 41.22 10.29 48.49
0.3 0.63 3.72 9.99 16.49 13.37 70.14 23.36 13.33 63.31
0.8 2.36 4.84 14.05 18.78 14.18 67.04 29.80 13.28 56.92
0.3 0.10 1.57 16.70 33.84 12.29 53.87 44.20 11.13 44.67
0.8 0.89 4.18 28.12 34.60 11.22 54.18 51.66 8.29 40.05

0.73 2.83 17.62 25.08 12.71 62.22 37.17 11.27 51.56
0.3 0.00 0.64 11.13 26.00 14.58 59.42 32.96 13.89 53.16
0.8 0.01 1.03 11.16 28.85 13.84 57.32 41.10 11.82 47.09
0.3 0.05 1.79 10.59 19.32 16.40 64.28 23.39 16.73 59.88
0.8 0.04 1.76 12.40 22.49 15.71 61.80 28.45 15.33 56.21
0.3 0.01 1.18 10.41 34.78 13.27 51.95 41.24 12.57 46.19
0.8 0.06 2.66 12.84 38.77 11.91 49.32 50.60 9.95 39.45

0.03 1.51 11.42 28.37 14.28 57.35 36.29 13.38 50.33
0.3 0.04 0.86 10.76 25.96 14.59 59.45 32.96 13.89 53.16
0.8 0.22 1.63 15.37 27.70 14.03 58.26 41.10 11.82 47.09
0.3 0.53 3.05 7.60 19.33 16.51 64.16 23.39 16.73 59.88
0.8 1.64 2.82 9.88 21.28 16.08 62.64 28.45 15.33 56.21
0.3 0.16 2.12 10.20 34.18 13.29 52.52 41.24 12.57 46.19
0.8 0.91 4.45 18.53 36.68 12.46 50.86 50.60 9.95 39.45

0.58 2.49 12.06 27.52 14.50 57.98 36.29 13.38 50.33
0.34 2.06 14.32 26.84 13.61 59.56 36.73 12.33 50.95

Optimal Latest

SD > 0

D

L

H

Average

SD 0

D

L

H

Average

DD > 0

D

L

H

Average
Overall average

Average

DD 0

D

L

H

 
 

 

The number of retailers, N, is set to 50 whereas the number of time periods, T, is set 

equal to 15 and 30. External demands are considered either constant (SD) or 

dynamic (DD), which are randomly generated as integers from U[5,100]. Maximum 

inventory level at retailer i, iS , is set equal to its mean demand*g, where 
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mean_demand = di (mean demand (5 100) / 2= +   ) if demands are constant 

(dynamic), and g is randomly generated as an integer from U[2,8] if T = 15 and 

from U[2,15] if T = 30. Retailer inventory holding costs are generated for each i and 

t from U[0.05,1.00]. Retailers’ fixed cost for each t is randomly generated as an 

integer from U[5,100]. We test the warehouse’s fixed costs under three settings: two 

different levels, 1500 (L) and 6000 (H), are tried for constant fixed cost, whereas 

dynamic fixed costs (D) are randomly generated as integers from U[1500,6000]. 

 

 

Table 4.2 Results for N = 50, T = 30 and 00 0I =  

d it p t f 0t h 0t %Gap CPU %LD WC TC RC WC TC RC
0.3 0.02 12.57 15.05 13.79 5.90 80.31 22.55 5.48 71.97
0.8 0.02 23.73 15.41 16.57 6.39 77.04 29.20 5.27 65.54
0.3 0.09 66.59 13.91 10.29 6.34 83.37 15.15 6.39 78.46
0.8 0.08 70.76 13.72 12.69 6.80 80.52 19.97 6.43 73.61
0.3 0.12 80.14 13.05 22.44 6.18 71.38 32.27 5.63 62.11
0.8 0.14 106.89 14.62 23.29 5.72 70.99 38.57 4.23 57.20

0.08 60.11 14.29 16.51 6.22 77.27 26.28 5.57 68.15
0.3 0.15 30.68 10.60 12.78 5.83 81.39 22.55 5.48 71.97
0.8 0.34 62.40 16.78 14.48 6.49 79.03 29.20 5.27 65.54
0.3 0.89 173.16 6.77 9.64 6.21 84.14 15.15 6.39 78.46
0.8 1.76 305.16 9.35 11.52 6.84 81.65 19.97 6.43 73.61
0.3 1.39 188.80 12.87 21.52 6.09 72.38 32.27 5.63 62.11
0.8 2.35 268.59 21.28 21.53 5.72 72.75 38.57 4.23 57.20

1.15 171.46 12.94 15.25 6.20 78.56 26.28 5.57 68.15
0.3 0.01 14.89 10.93 16.37 7.23 76.39 22.70 6.93 70.37
0.8 0.02 24.42 12.61 18.47 6.97 74.56 29.93 5.96 64.12
0.3 0.09 57.01 11.02 12.31 7.75 79.94 15.95 7.71 76.34
0.8 0.06 36.05 12.43 13.62 7.67 78.70 19.46 7.15 73.40
0.3 0.12 73.01 11.05 23.41 6.92 69.67 30.50 6.54 62.97
0.8 0.12 91.70 12.48 26.34 6.85 66.81 40.23 5.38 54.40

0.07 49.51 11.75 18.42 7.23 74.35 26.46 6.61 66.93
0.3 0.09 22.97 9.16 16.07 7.31 76.62 22.70 6.93 70.37
0.8 0.59 63.73 14.86 17.05 7.05 75.90 29.93 5.96 64.12
0.3 0.77 128.03 6.78 12.16 7.76 80.08 15.95 7.71 76.34
0.8 1.25 110.06 8.84 13.20 7.71 79.10 19.46 7.15 73.40
0.3 0.94 148.70 9.80 22.82 7.05 70.12 30.50 6.54 62.97
0.8 2.04 225.25 18.13 25.84 6.76 67.41 40.23 5.38 54.40

0.95 116.45 11.26 17.86 7.27 74.87 26.46 6.61 66.93
0.56 99.39 12.56 17.01 6.73 76.26 26.37 6.09 67.54

Optimal Latest

SD > 0

D

L

H

Average

SD 0

D

L

H

Average

DD > 0

D

L

H

Average
Overall average

Average

DD 0

D

L

H
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Warehouse’s holding costs, h0t, are set at two levels, 0.3 and 0.8. Purchasing costs, 

pt, are set at two levels: either to 0 or 10 when h0t=0.3 and 30 when h0t=0.8. If the 

warehouse has nonzero initial inventory, then its level is taken as 
1

N
ii

d
=∑  if 

demands are constant and * (5 100) / 2N +    if demands are dynamic. Retailers’ 

initial inventory is taken as 0 *i iI r S=     where r is randomly generated from 

U[0.01,0.99]. Both for the zero and nonzero initial inventory cases, we generate 10 

random instances for each combination of the parameters, thus we have 960 

instances in total. 

 

Computational results on instances with T = 15 and 30 in the absence of initial 

inventory at the warehouse are presented in Tables 4.1 and 4.2, respectively. Results 

for which the initial inventory at the warehouse is nonzero are given in Tables 4.3 

and 4.4 for T = 15 and 30, respectively. In Tables 4.1–4.4, columns 1–4 show the 

type of demand pattern, unit purchasing cost, fixed order cost at the warehouse and 

unit inventory holding cost at the warehouse, respectively. Column 5 shows the 

percentage gap (%Gap) between the optimal solution value (Opt) of a MIP 

formulation (SF in Tables 4.1–4.2 and SF(I) in Tables 4.3–4.4) and the LP 

relaxation solution value (LP) of the MIP formulation, i.e. %Gap=100*(Opt – 

LP)/LP. Column 6 lists the time elapsed in seconds to obtain the optimal solution 

(CPU). Column 7 gives the percentage deviation (%LD) of the solution value found 

by latest ordering up-to level policy (Latest) from the optimal solution value, i.e. 

%LD=100*(Latest – Opt)/Opt. WC, TC and RC in columns 8–10 (for MIPs) and in 

columns 11–13 (for latest ordering up-to level policy) denote percentages of the 

warehouse’s cost (fixed order plus inventory holding costs at warehouse), 

transportation cost (fixed cost of shipments from warehouse to retailers) and 

retailers’ cost (inventory holding cost at retailers), respectively, over the total cost 

less purchasing cost. Purchasing cost is disregarded because it is assumed to be a 

system cost shared by all parties. Each entry of Tables 4.1–4.4 is the average results 

of 10 instances. 
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In the absence of initial inventories at the warehouse, all instances with T = 15 are 

solved less than five seconds and integrality gaps are quite small, about 0.3% on 

average. When T increases to 30, integrality gaps are still about 0.6% on average 

and CPU times increase from seconds to 1.7 minutes. This can be explained by the 

fact that as the number of time periods increases, the number of continuous 

variables and constraints increase in cubic and quadratic terms, respectively.  

 

 

Table 4.3 Results for N = 50, T = 15 and 00 0I >  

d it p t f 0t h 0t %Gap CPU %LD WC TC RC WC TC RC
0.3 0.24 14.77 16.37 23.14 12.46 64.40 31.87 11.43 56.70
0.8 0.14 23.99 19.35 26.67 12.81 60.51 39.96 10.50 49.54
0.3 0.14 31.92 16.01 16.48 13.59 69.93 22.38 13.51 64.11
0.8 0.10 42.58 17.08 19.32 14.58 66.10 28.51 13.53 57.97
0.3 0.26 32.51 16.80 33.13 12.66 54.21 42.80 11.41 45.79
0.8 0.23 60.10 18.88 35.49 11.46 53.05 50.59 8.47 40.94

0.18 34.31 17.42 25.71 12.93 61.37 36.02 11.48 52.51
0.3 1.36 17.28 13.63 21.56 12.30 66.15 31.87 11.43 56.70
0.8 2.23 35.62 22.54 23.78 12.90 63.32 39.96 10.50 49.54
0.3 1.40 71.50 9.98 15.41 13.63 70.96 22.38 13.51 64.11
0.8 2.88 138.89 15.11 17.06 14.51 68.42 28.51 13.53 57.97
0.3 1.79 61.95 16.88 32.39 12.57 55.04 42.80 11.41 45.79
0.8 3.58 122.31 27.67 33.69 11.29 55.02 50.59 8.47 40.94

2.21 74.59 17.63 23.98 12.87 63.15 36.02 11.48 52.51
0.3 0.18 9.02 11.91 24.95 14.70 60.36 31.77 14.14 54.09
0.8 0.09 19.21 11.99 27.91 14.06 58.03 39.64 12.11 48.25
0.3 0.14 26.41 11.37 18.70 16.47 64.83 22.63 16.90 60.48
0.8 0.09 22.11 13.34 21.81 15.88 62.31 27.78 15.48 56.73
0.3 0.25 27.49 11.11 33.84 13.52 52.64 40.24 12.79 46.98
0.8 0.15 43.84 13.88 37.33 12.34 50.33 49.35 10.20 40.45

0.15 24.68 12.27 27.42 14.49 58.08 35.23 13.60 51.16
0.3 0.98 18.79 11.01 24.66 14.80 60.54 31.77 14.14 54.09
0.8 1.38 27.75 15.29 27.18 14.18 58.64 39.64 12.11 48.25
0.3 1.17 49.34 7.84 18.84 16.37 64.79 22.63 16.90 60.48
0.8 2.40 36.75 9.98 20.70 16.27 63.02 27.78 15.48 56.73
0.3 1.46 65.66 10.48 33.26 13.51 53.23 40.24 12.79 46.98
0.8 2.30 87.80 19.12 35.58 12.76 51.66 49.35 10.20 40.45

1.61 47.68 12.29 26.70 14.65 58.65 35.23 13.60 51.16
1.04 45.32 14.90 25.95 13.73 60.31 35.63 12.54 51.83

Optimal Latest

SD > 0

D

L

H

Average

SD 0

D

L

H

Average

DD > 0

D

L

H

Average
Overall average

Average

DD 0

D

L
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Nevertheless, all of the 480 instances are solved to optimality in less than five 

minutes when 00 0I = . When the initial inventory at the warehouse is nonzero 

( 00 0I > ), all of the 240 instances are solved to optimality within three minutes for 

T=15. For T=30, 47 out of 240 instances could not be solved to optimality within a 

2 hour time limit and the number of those instances is indicated in CPU column 

within parenthesis in Table 4.4. Although average integrality gaps in the experiment 

are about 1%, it is evident that presence of initial inventories at the warehouse 

significantly increases the computational requirements for solving the problem. 

 

Tables 4.1–4.4 indicate that the instances with zero purchasing cost are “difficult” 

compared to those with nonzero purchasing cost, independently from initial 

inventory status. Especially, those with static demand at retailers and static fixed 

cost at the warehouse require more computational effort. Besides, the amount 

shipped to the retailers tends to deviate from the exact required amount at the 

retailers (i.e., 1 01
( )N

i T ii
D I

=
−∑ ), as expected. 

 

Either 00 0I =  or 00 0I > , the total cost values by the latest ordering up-to level 

policy are 14% worse than the optimal total cost values on average, ranging from 

4% to 32%. This policy is most successful when the setting involves no purchasing 

cost, static low fixed cost at the warehouse, and low inventory holding cost rates at 

the warehouse. This is because myopic decisions can be penalized only up to a 

certain degree when cost parameters at the warehouse are low. Composition of total 

costs for the two approaches is considerably different: retailers’ costs are lower but 

warehouse’s costs are higher for the latest ordering up-to level policy, it is just the 

opposite as for the optimal policy. Transportation cost figures are similar for both 

policies. As expected vendor-managed inventory approach coordinates 

replenishments better than the retailer-managed inventory approach leading to 

significant reductions in cost. 
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Table 4.4 Results for N = 50, T = 30 and 00 0I >  

d it p t f 0t h 0t %Gap CPU %LD WC TC RC WC TC RC
0.3 0.08 161.19 15.51 13.35 5.90 80.75 22.01 5.51 72.48
0.8 0.08 253.61 15.98 16.25 6.41 77.34 28.89 5.29 65.83
0.3 0.17 1067.31 14.33 10.05 6.33 83.62 14.90 6.41 78.69
0.8 0.10 1109.17 14.25 12.43 6.80 80.77 19.56 6.46 73.98
0.3 0.30 2645.34 (1) 13.42 21.77 6.27 71.96 31.67 5.68 62.65
0.8 0.19 3206.09 (2) 15.14 22.85 5.69 71.46 37.79 4.29 57.92

0.15 1407.12 14.77 16.12 6.23 77.65 25.80 5.61 68.59
0.3 0.50 423.97 10.56 12.25 5.87 81.88 22.01 5.51 72.48
0.8 1.00 868.90 16.87 14.04 6.52 79.44 28.89 5.29 65.83
0.3 1.29 4340.24 (3) 6.67 9.51 6.22 84.27 14.90 6.41 78.69
0.8 2.16 4787.76 (4) 9.46 11.22 6.88 81.90 19.56 6.46 73.98
0.3 2.54 7114.62 (9) 12.42 20.86 6.22 72.92 31.67 5.68 62.65
0.8 3.44 6521.43 (9) 20.72 21.37 5.66 72.98 37.79 4.29 57.92

1.82 4009.49 12.78 14.87 6.23 78.90 25.80 5.61 68.59
0.3 0.12 130.50 11.25 16.03 7.29 76.68 22.29 6.97 70.74
0.8 0.07 355.63 13.07 17.87 7.01 75.12 29.25 6.02 64.73
0.3 0.14 607.98 11.39 11.92 7.78 80.30 15.60 7.74 76.66
0.8 0.09 589.10 12.87 13.50 7.64 78.86 19.08 7.18 73.74
0.3 0.25 1969.71 11.41 22.55 7.00 70.44 29.85 6.60 63.55
0.8 0.17 3062.10 (2) 12.91 25.84 6.85 67.30 39.34 5.46 55.21

0.14 1119.17 12.15 17.95 7.26 74.79 25.90 6.66 67.44
0.3 0.52 174.92 9.14 15.73 7.37 76.90 22.29 6.97 70.74
0.8 0.96 1596.40 (1) 15.04 16.64 7.07 76.29 29.25 6.02 64.73
0.3 1.03 2889.54 6.87 11.89 7.77 80.34 15.60 7.74 76.66
0.8 1.58 2769.73 (1) 8.88 13.00 7.64 79.36 19.08 7.18 73.74
0.3 1.55 6524.60 (6) 9.80 22.36 7.08 70.55 29.85 6.60 63.55
0.8 2.94 6975.46 (9) 17.74 24.91 6.92 68.17 39.34 5.46 55.21

1.43 3488.44 11.24 17.42 7.31 75.27 25.90 6.66 67.44
0.89 2506.05 12.74 16.59 6.76 76.65 25.85 6.13 68.01

Optimal* Latest

SD > 0

D

L

H

Average

SD 0

D

L

H

Average

DD > 0

D

L

H

Average
Overall average

Average

DD 0

D

L

H

 
*Some instances could not be solved to optimality due to a 2 hour time limit. %GAP for such 

instances is computed by using the best integer feasible solution value found within the limit instead 

of Opt. 
 

 

We also attempt to solve the instances using the standard (weak) MIP formulation 

(P).  We set the M value in constraints (4.4) of P equal to 1

1 ( , )

N T
iki k i t

d
π

−

= =∑ ∑  for each 

t (1 t T≤ ≤ ) where 0 0i i id S I= −  so that constraints (4.4) are as tight as possible 

using information regarding the total requirements of retailers in period t and 

afterwards. We use P to solve the first ten instances generated (first row of Table 
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4.1) which corresponds to instances with N=50, T=15, static demand at retailers, 

nonzero production cost, low inventory holding cost rate for warehouse, dynamic 

fixed cost and zero initial inventory at the warehouse. Computational results with a 

2 hour time limit are given in Table 4.5. In Table 4.5, column 1 lists the instances. 

Column 2 is the same as column 5 in Tables 4.1–4.4. Column 3 shows the 

percentage gap (%BO) between the best solution value found by P and the optimal 

solution value, i.e. %BO = 100 * (Best – Opt) / Opt. Column 4 shows the remaining 

percentage gap (%Rgap) between the best solution value found by P (Best) and the 

minimum of the objective function values of unexplored nodes (BestNode), i.e. 

%Rgap = 100 * (Best – BestNode) / BestNode. 

 

Table 4.5 indicates that none of the instances are solved to optimality by using P: 

Seven of them due to lack of memory and the rest due to time limit. On average, 

there is still 2% remaining gap (%Rgap) between the best solution and best lower 

bound when CPLEX terminated. Integrality gaps (%Gap) are on average 15.9% for 

P whereas it is almost zero for SF for the same group of instances. Although the 

best solution values found by P are quite close to the optimal solution values, note 

that SF finds those values and proves that they are optimal within a few seconds. 

 

 

Table 4.5 Results using P with a 2-hour time limit 

Instance %Gap %BO %Rgap 
1 15.33 0.00 1.87 
2 15.63 0.81 2.61 
3 12.37 0.13 1.11 
4 14.27 0.43 1.94 
5 16.88 0.36 2.98 
6 19.68 0.68 3.00 
7 16.49 0.44 1.93 
8 15.54 0.35 2.13 
9 16.06 0.00 1.78 

10 16.27 0.00 1.62 
Average 15.85 0.32 2.10 
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CHAPTER 5 

 

THE INVENTORY ROUTING PROBLEM WITH ORDER-UP-TO LEVEL 

POLICY 

 

 

In this chapter, we consider the inventory routing problem with order-up-to level 

policy, the same problem as in Bertazzi et al. (2002), Pınar and Süral (2006), and 

Archetti et al. (2007a). A supplier (vendor) receives a given amount of a single 

product each period and distributes to multiple retailers controlled by order-up-to 

level policy in a vendor-managed inventory (VMI) setting over a finite time horizon 

using a capacitated vehicle. It is called deterministic VMI routing with order-up-to 

level (VMIR-OU) problem in Archetti et al. (2007a). This policy is also considered 

in production-distribution routing problems (Bertazzi et al., 2005; Solyalı and Süral, 

2008b) and production-distribution problems with direct shipments (Chapter 4; 

Solyalı and Süral, 2008a). 

 

The inventory routing problem (IRP) has been widely studied in the literature under 

various settings, as discussed in Chapter 2. Recently, Archetti et al. (2007a), 

Abdelmaguid et al. (2008), Yugang et al. (2008), and Savelsbergh and Song (2008) 

try to find the optimal solution or a lower bound for their multi-period (finite) IRPs 

using mathematical programming formulations. The common feature of all these 

studies is that they use weak representations for the inventory replenishment 

problem of retailers. Since strong formulations lend themselves to an exact solution, 

their use in IRPs seems promising. To the best of our knowledge, this study is the 

first to consider strong formulations for inventory routing problems in developing 

solution algorithms. 

 

We view the VMIR-OU problem as an integration of vehicle routing problem and 

inventory replenishment problems, and model the problem by using a strong 
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formulation for its replenishment decisions and a computationally attractive 

formulation for routing decisions. We develop a branch-and-cut algorithm and an a 

priori tour heuristic, both based on the strong formulation proposed. Computational 

results reveal that our algorithms perform better than their competitors in the 

literature. We also discuss how to implement our approach to the two related 

problems in which order-up-to level policy is relaxed. 

 

The rest of the chapter is organized as follows. We give a formal problem definition 

in Section 5.1. The notation and description of the problem draw on Archetti et al. 

(2007a). In Section 5.2, we present the strong formulation for the problem. Section 

5.3 describes the branch-and-cut and the heuristic algorithms in detail. In Section 

5.4, we provide a computational study on randomly generated instances to test the 

performance of algorithms and compare them with those available in the literature. 

Also, we discuss how to extend our approach to the two related VMI routing 

problems. Note that the notation and abbreviations defined in this chapter is only 

valid in this chapter and Appendices B, C, and D. 

 

 

5.1 Problem definition 

 

We consider a distribution system in which a supplier distributes a single product to 

n retailers over a finite time horizon H with a vehicle of capacity C. Retailer 

{1, 2,..., }i M n∈ =  faces external demand itr  in each discrete time period 

{1, 2,..., }t Hτ∈ =  and keeps inventory itI  to meet the demand without backlogging. 

Besides, retailer i M∈  is controlled by an order-up-to level inventory, and in any 

period t τ∈  it receives either no replenishment or a quantity i itU I−  raising its 

inventory level itI  to its maximum level iU  whenever replenished by the supplier. 

The supplier, denoted by i = 0, manages the inventories at the retailers by deciding 

on when and how much to ship to each retailer i M∈ , and guarantees that no 

retailers will stock-out (i.e. 0itI ≥ ) in any period .t τ∈  The supplier receives a 
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quantity 0tr  in every period t τ∈  and may ship to the retailers immediately or keep 

inventory 0tI  for replenishing retailers in later periods. 0tI  and itI  respectively 

denote inventory levels of the supplier and retailers at the beginning of period .t τ∈  

H+1 accounts for the impact of decisions given in the last period H. Each unit kept 

at inventory in t τ ′∈ , τ τ′ = U{ 1}H + , incurs a holding cost ih  at facility i M ′∈  

where M M′ = U{0}. The vehicle can visit several retailers in a multi-stop route, 

departing from and returning back to the supplier’s depot, without exceeding the 

vehicle capacity. A visit from facility i M ′∈  to facility j M ′∈  incurs a 

transportation cost ijc . We assume that the vehicle performs at most a single tour in 

every period. The VMIR-OU problem is to decide on when and in what sequence to 

visit retailers and how much to ship to each retailer in a trip such that the sum of 

transportation costs and inventory carrying costs at the supplier and retailers is 

minimized. The VMIR-OU problem is known to be a strongly NP-hard problem 

(Bertazzi et al., 2002). In the following theorem, we show that even the feasibility 

problem of the VMIR-OU problem is NP-complete in the strong sense. 

 

Theorem 5.1. The feasibility problem of the VMIR-OU problem is strongly NP-

complete. 

Proof. Let Feas denote the associated feasibility problem of the (optimization) 

VMIR-OU problem. Feas is obviously in NP. We prove by reducing the strongly 

NP-complete 3-partition problem (Garey and Johnson, 1979) to the Feas. The 3-

partition problem can be described as follows. Given a finite set A of 3q elements, a 

bound B Z +∈  and a “size” 0kd ≥  satisfying 1 1
4 2kB d B< <  for each k A∈  such 

that kk A
d qB

∈
=∑ , can A be partitioned into q disjoint sets, i.e. 1 2, ,..., ,...,s qA A A A  

such that each set s (1 s q≤ ≤ ) satisfy ?
s

kk A
d B

∈
=∑   

Consider the following instance of the Feas: Let 3 ,n q=  ;H q=  for each 

,i M∈ ,i iU d=  0itr =  for \{ }t Hτ∈  and iH ir d= . Let 01 1
,n

ii
r d

=
= ∑  0 0tr =  for 
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\{1}t τ∈ , ,C B=  3

1 1

q q
iti t

r qB
= =

=∑ ∑  and 1 1
4 2iB d B< <  for each .i M∈  Note that 

solving the above instance of Feas will also solve the 3-partition problem.    □ 

 

The VMIR-OU problem is formulated as a mixed integer program (MIP) by Pınar 

and Süral (2006) and Archetti et al. (2007a). The main difference between two 

MIPs is their way of modeling routing part of the problem. The former uses a 

Miller-Tucker-Zemlin based formulation to model routing decision while the latter 

uses a two-index vehicle flow based formulation. We present the latter formulation, 

referred to as formulation F, in Appendix B. 

 

 

5.2 Strong formulation for the VMIR-OU problem 

 

A two-index vehicle flow representation of routing problem in F is one of few 

effective representations for the symmetric vehicle routing problem in the literature 

(Laporte, 2007). Inventory replenishment problem of retailers in F, on the other 

hand, is formulated using either-or type constraints (see constraints (B.5)–(B.7) in 

Appendix B), later strengthened with some valid inequalities (see constraints 

(B.15)–(B.17) in Appendix B). However, such a representation is not tight as it is 

shown by an example below. Apparently, the replenishment problem of a single 

retailer can be represented as a shortest path problem, which can be solved in 
2( )O H  time (see Bertazzi et al., 2002, and Solyalı and Süral, 2008a for alternative 

shortest path representations). We reformulate the VMIR-OU problem so that the 

routing uses the two-index vehicle flow representation and the convex-hull of 

inventory replenishment problem is represented using the shortest path problem. 

Additional parameters and variables needed in the strong formulation are as follows. 

 

Define iktb  as the quantity shipped to retailer i in period t when the last 

replenishment has occurred in period k and iktR  as the sum of demand between 
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periods k and t to retailer i, i.e. .t
ikt ijj k

R r
=

= ∑  ( , )i tπ  denotes the earliest period 

starting from which retailer i does not stock out until replenished in period t, where 

( ,1) 0iπ =  for ,i M∈  0 1, 1( , ) min{(0 | 0),i i ti t I Rπ −= − ≥ , 1( | 0)}i ik tk U R −− ≥  for all 

,i M∈ 1 1k t≤ ≤ − , \{1}t τ ′∈ . ( , )i tµ  indicates the latest period that retailer i can be 

replenished before being stock out when the previous replenishment has occurred in 

period t, where 0 1, 1( ,0) max{1, ( | 0)}i i ki k I Rµ −= − ≥  for all ,i M∈ 2 k H≤ ≤  and 

, 1( , ) max{( | 0)}i it ki t k U Rµ −= − ≥  for all ,i M∈ 1 1,t k H+ ≤ ≤ + .t τ∈  Let iktw  be 1 

if retailer i is replenished in period t (1 t H≤ ≤ ) when the last replenishment has 

occurred in period k ( ( , )i t k tπ ≤ < ) and 0 otherwise; , 1ik Hw +  be 1 if the final 

replenishment to the retailer has occurred in period k ( ( , 1) 1i H k Hπ + ≤ < + ) and 

no replenishment occurs any more, and 0 otherwise; itz  be 1 if retailer i M∈  is 

replenished in period t τ∈  and 0 otherwise; 0tz  be 1 if vehicle departs from the 

supplier in period t τ∈  and 0 otherwise; and t
jiy  be 1 if vehicle visits facility 

i M ′∈  immediately after facility j M ′∈  in period t τ∈  and 0 otherwise. Then, the 

strong formulation we propose is as follows. 

 

SF: Min  i it
i M t

h I
τ′ ′∈ ∈

∑ ∑
,

t
ij ij

i M j M j i t
c y

τ′ ′∈ ∈ < ∈

+∑ ∑ ∑                 (5.1) 

s.t.  
2

0 0, 1 0, 1 , 1 , 1
( , 1)

t

t t t ik t ik t
i M k i t

I I r b w
π

−

− − − −
∈ = −

= + − ∑ ∑  t τ ′∈                (5.2) 

1

0
( , )

t

t ikt ikt
i M k i t

I b w
π

−

∈ =

≥ ∑ ∑    t τ∈                (5.3) 

2

, 1 , 1 , 1 , 1
( , 1)

t

it i t ik t ik t i t
k i t

I I b w r
π

−

− − − −
= −

= + −∑   ,i M t τ ′∈ ∈               (5.4) 

( ,0)

0
1

1
i

i k
k

w
µ

=

=∑     i M∈                (5.5) 

( , ) 1

1 ( , )
0

i t t

itk ikt
k t k i t

w w
µ

π

−

= + =

− =∑ ∑    ,i M t τ∈ ∈               (5.6) 
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, 1
( , 1)

1
H

ik H
k i H

w
π

+
= +

− = −∑    i M∈                (5.7) 

1

0
( , )

t

ikt ikt t
i M k i t

b w Cz
π

−

∈ =

≤∑ ∑    t τ∈                (5.8) 

1

( , )

t

ikt it
k i t

w z
π

−

=

=∑     ,i M t τ∈ ∈               (5.9) 

, ,

2t t
ij ji it

j M j i j M j i
y y z

′ ′∈ < ∈ >

+ =∑ ∑    ,i M t τ′∈ ∈             (5.10) 

,

t
ij it kt

i S j S j i i S
y z z

∈ ∈ < ∈

≤ −∑ ∑ ∑    , , some S M t k Sτ⊆ ∈ ∈            (5.11) 

0it tz z≤      ,i M t τ∈ ∈             (5.12) 

t
ij ity z≤      , ,i M j M t τ∈ ∈ ∈            (5.13) 

{0,1}t
ijy ∈     , , ,i M j M j i t τ∈ ∈ < ∈            (5.14) 

0 {0,1, 2}t
iy ∈     ,i M t τ∈ ∈             (5.15) 

{0,1}itz ∈     ,i M t τ′∈ ∈             (5.16) 

0 0tI ≥      t τ ′∈              (5.17) 

0iktw ≥      , ( , ) ,i M i t k t tπ τ ′∈ ≤ < ∈            (5.18) 

where 0 0 0ik iw r= =  for i M∈  and 

0 1, 1

, 1

 if 0,1 ( ,0)
 if 1 , ( , ), 1

0        otherwise.

i i i t

ikt ik t

U I R k t i
b R k H k t i k t H

µ

µ
−

−

− + = ≤ ≤
= ≤ ≤ < ≤ ≠ +



 

 

Objective function (5.1) is the sum of inventory holding costs at the supplier and 

retailers as well as transportation costs, respectively. Constraints (5.2) are inventory 

balance equations for the supplier. Constraints (5.3) ensure that the total amount 

shipped to the retailers in a period cannot exceed the available amount at the 

supplier in the beginning of that period. Constraints (5.4) are inventory balance 

equations for retailers. Constraints (5.5)–(5.7) define the shortest path network 

representation of order-up-to level policy at each retailer .i M∈  Its network consists 

of nodes for each time period 't τ∈  and a dummy node 0. An arc from node k to t 
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( 1t H≠ + ) represents that a quantity iktb  is shipped to retailer i in period t where the 

last replenishment has occurred in k. An arc from any k to H+1 represents that the 

final replenishment to retailer i has occurred in k and no replenishments occur any 

more. It is well known that the associated matrix of the shortest path problem 

formulation is totally unimodular and such a formulation describes the convex hull 

of the single retailer replenishment problem with order-up-to level policy (see 

Chapter 4). Note that ( , )i tπ  and ( , )i tµ  define arcs corresponding to feasible 

replenishment policies on the network (i.e. arcs representing occurrences of stock-

out are cancelled out). An example network for H = 4 where all possible arcs are 

assumed to be feasible is shown in Figure 5.1. Constraints (5.8) stipulate that the 

total amount shipped to the retailers in a period cannot exceed the capacity of the 

vehicle. Constraints (5.9) assure that if retailer i M∈  is replenished in t τ∈  then 

that retailer must be replenished prior to t. Constraints (5.10) are degree constraints 

ensuring that two edges are incident to node (retailer) i in a period if i is visited in 

that period. Constraints (5.11) are generalized subtour elimination constraints. 

Constraints (5.12) and (5.13) are actually not needed in formulating the VMIR-OU 

problem but added a priori as being in Archetti et al. (2007a) to strengthen SF. 

Constraints (5.14)–(5.16) are for integrality. Note that 0
t
iy  can take 2 to account for 

a single stop (at retailer i) tour from supplier. Constraints (5.17) and (5.18) are for 

nonnegativity. Note that w must take a binary value for which the order-up-to level 

policy restriction holds at the retailers. However, due to (5.9), imposing integrality 

on z variables is sufficient and the optimal solution of SF always gives integral w 

variables. Actually, constraints (5.2) and (5.4) are not necessary in SF and they are 

just needed to keep track of cost accounts. Instead, one can represent those costs in 

terms of w variables in (5.1). 
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Figure 5.1 An example network with H=4 for the single retailer replenishment 

problem 

 

 

We have now a few remarks about the formulation F given in Appendix B. We start 

with an example showing that the representation of the single retailer inventory 

replenishment problems in F is not tight. For instance, consider a single retailer i 

(i.e. | | 1M = ) with 1,ith =  5,iU = 0 3, 2i itI r= =  for all t τ∈  where H = 4. The 

corresponding formulation F for retailer i is 

Min  1 2 3 4 5i i i i iI I I I I+ + + +  

s.t. (B.4)–(B.7), (B.15)–(B.17), and (B.20)–(B.22) 

The optimal solution has an objective function value of 11 whereas its linear 

programming (LP) relaxation yields a value of 5.92 with a fractional solution 

composed of zi1 = 0, zi2 = 0.5, zi3 = 0.64 and zi4 = 0.4. Note that the duality gap is 

about 86%. However, the LP relaxation of the formulation SF (i.e. Min  

1 2 3 4 5i i i i iI I I I I+ + + +  s.t. (5.4)–(5.7), (5.9), (5.16) and (5.18)) would have an 

integral optimal solution, as clarified before. 

 

The second remark is about an extension of F. Archetti et al. (2007a) consider two 

related problems in which order-up-to level policy is relaxed. First is vendor-

managed inventory routing with maximum level (VMIR-ML) problem where the 

amount shipped to a retailer in a period plus inventory carried from the previous 
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period cannot exceed retailer’s maximum level, and the second is vendor-managed 

inventory routing (VMIR) problem where any amount can be shipped to a retailer in 

a period. Archetti et al. (2007a) claim that by eliminating constraints (B.5) and (B.7) 

from F one can model the VMIR-ML problem, and by eliminating (B.5)–(B.7) from 

F one can model the VMIR problem. However, the resulting reduced formulations 

cannot have the true link between x and z variables, where the first one denotes the 

amount shipped to retailer i M∈  in t τ∈  and the second indicates whether retailer 

i M∈  has received a shipment or not in t τ∈ . Therefore, the given formulations in 

their article need to be revised with adding the following constraints. 

it itx Cz≤  ,i M t τ∈ ∈             (5.19) 

 

As a final remark, we will show that constraints (B.8), (B.14) and (B.15) of F are 

indeed dominated by other constraints in F. It is clear that 0tCz C≤  so constraints 

(B.9) dominate (B.8). Constraints (B.10) can be rewritten as 2 itz =  

, ,
t t
ij jij M j i j M j i

y y
′ ′∈ < ∈ >

+∑ ∑ 0 0, ,
t t t t
i ij ji ij M j i j M j i

y y y y
′∈ < ∈ >

= + + ≥∑ ∑ . Thus, constraints 

(B.14) are dominated by (B.10). When k=0, constraints (B.16) become 

( )1it it itI r z≥ −  for ,i M t τ∈ ∈  which are equivalent to (B.15). Thus, constraints 

(B.15) are encompassed by (B.16). 

 

 

5.3 Solution algorithms for the VMIR-OU problem 

 

 

5.3.1 Branch-and-cut algorithm 

 

In the branch-and-cut algorithm, we consider all constraints in SF except (5.11) and 

all integralities, so that (5.11) would be added dynamically in a cutting plane 

fashion if it is violated. Whenever a violated constraint has been found, it would be 

added to the LP relaxation on hand and we reoptimize it until no constraint of (5.11) 

is violated. We use the separation algorithm of Padberg and Rinaldi (1991) to find 
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violated constraints of (5.11). This separation algorithm is for classical traveling 

salesman problem (TSP) subtour elimination constraints whose right-hand side is 

|S|-1. Right-hand side of (5.11) is tighter than |S|-1 since it depends on whether the 

retailers in S are visited or not. In constraints (5.11), we select ktz  variable with 

largest value in that iteration, i.e. arg max { }i itk z= , to subtract from summation of z 

variables in S. This cutting plane generation procedure is repeated in each node of 

the branch-and-bound tree. For branching variable selection, we first branch on itz  

and then on t
ijy  variables. We use a best-node-first strategy (i.e. the node with the 

best objective function value is selected) as a node selection rule. An initial upper 

bound is found by a heuristic which is described in detail in the next section. For a 

detailed explanation of the branch-and-cut algorithm proposed, we refer the reader 

to Appendix C. Note that our branch-and-cut principle is almost the same as that of 

Archetti et al. (2007a) except that we use SF formulation within our branch-and-cut 

algorithm and a new heuristic to find an initial upper bound. Archetti et al. (2007a) 

use F formulation within their branch-and-cut algorithm and a heuristic proposed in 

Bertazzi et al. (2002), referred to as BPS, to find an initial upper bound. In the rest 

of the chapter, we will refer to our branch-and-cut algorithm as BC(SF) whereas 

that of Archetti et al. (2007a) will be referred to as BC(F). 

 

 

5.3.2 A priori tour based heuristic 

 

The main idea of our heuristic is to replace routing decision problem with a simple 

sequencing decision problem so that the vehicle following a priori route always 

skips the retailers that would not be visited on the route, but is being loyal to the 

predetermined visiting order of retailers that would be visited. In other words, given 

a TSP tour (optimal or not) involving the supplier and all retailers (i.e. all facilities), 

the precedence order of the facilities on the tour is fixed to determine facilities 

j M ′∈  that can be visited before visiting facility i (denoted by set iβ ) and facilities 

j M ′∈  that can be visited after visiting facility i (denoted by set iα ), for each 
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facility i M ′∈ . Note that sets iβ  and iα  for i M∈  always involve supplier, and 0β  

and 0α  cover all the retailers. Imposing a predetermined tour into SF eliminates the 

need to solve inherent H many TSPs and significantly simplifies the routing 

decision. This idea is firstly introduced by Pınar and Süral (2006) for the VMIR-OU 

problem. The strong formulation we propose for the VMIR-OU problem with a 

priori tour, called APF, is as follows. 

 

APF: Min  i it
i M t

h I
τ′ ′∈ ∈

∑ ∑
,

t
ij ij

i M j M i j t
c y

τ′ ′∈ ∈ ≠ ∈

+∑ ∑ ∑               (5.20) 

s.t. (5.2)–(5.9), (5.12), (5.16)–(5.18), 

i

t
ij it

j
y z

α∈

=∑    ,i M t τ′∈ ∈              (5.21) 

i

t
ji it

j
y z

β∈

=∑    ,i M t τ′∈ ∈              (5.22) 

{0,1}t
ijy ∈    , , ,i M j M i j t τ′ ′∈ ∈ ≠ ∈             (5.23) 

 

Objective function (5.20) is the same as (5.1). Constraints (5.21) and (5.22) are the 

assignment constraints which ensure that if facility i M ′∈  is visited in any period 

t τ∈  then it will be visited in the order imposed by a priori tour. Note that non-

visited retailers will be skipped. Since a priori tour imposed is indeed a directed 

tour, it necessitates the definition of y variables in (5.23) to be based on arcs rather 

than on edges in (5.14) and (5.15). 

 

A complete presentation of the relaxation heuristic, referred to as a priori tour 

heuristic, is as follows. 

 

A priori tour heuristic: 

S1: Solve a TSP instance with all i M ′∈  and store the (optimal) solution denoted 

by ( )s TSP  

S2: Use ( )s TSP  to find iβ  and iα  for all i M ′∈ : 

 { :  is visited before  in ( ), },i j j i s TSP j Mβ ′= ∈  
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{ :  is visited after  in ( ), }i j j i s TSP j Mα ′= ∈  

S3: Construct APF using iβ  and iα  for all i M ′∈ , solve it to optimality and store 

the optimal solution ( )s APF  and the optimal objective value ( )z APF . 

( )z APF  is a valid upper bound for the VMIR-OU problem 

S4: (Improvement step) ( )z APF  may be further improved: 

 Set ( ) : i iti M t
z APF h I

τ′ ′∈ ∈
′ = ∑ ∑  where ( )itI s APF∈  

 for t:=1 to H do 

Solve a TSP over all i M ′∈ ∋ 1itz =  in ( )s APF  and store the optimal 

objective value ( )tz TSP  

  Set ( ) : ( ) ( )tz APF z APF z TSP′ ′= +  

 end 

 ( )z APF′  is a valid upper bound for the VMIR-OU problem 

 

We refer to a priori tour heuristic without the improvement step S4 as APT whereas 

we refer to the complete procedure from S1 to S4 as APT+. APT+ requires to solve 

H many TSPs in addition to computational requirements of APT. Computational 

effectiveness of the heuristic depends on the solvers used for solving APF and 

TSPs. Note that any feasible solution to the APF formulation yields an upper bound 

to the VMIR-OU problem. In Appendix D, a small example is given so as to explain 

how a priori tour heuristic works.   

 

 

5.4 Computational experiments 

 

We perform computational experiments on instances generated by Archetti et al. 

(2007a) as well as a set of new instances introduced by us for assessment of the 

performance of the algorithms. The computational platform used is a Pentium IV 

3.2GHz PC with 1GB RAM running under Windows XP. We code all the 

algorithms in C++ on MS Visual Studio.NET 2005 using Concert Technology 2.2 
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and CPLEX 10.1. We use CPLEX 10.1 to solve APF, and CONCORDE (Applegate 

et al., 2007) to solve TSPs to optimality. Below we present the properties of 

instances in Archetti et al. (2007a).  

 

Two different horizon lengths (H = 3 or 6) are considered. When H = 3 (H = 6), 

instances with up to 50 (30) retailers are generated. External demands itr  are 

considered constant over time (i.e. it ir r= ) and generated as integers from 

U[10,100]. The quantity received by the supplier 0tr  is set equal to ii M
r

∈∑ . 

Maximum inventory level at retailers iU  is set equal to i ig r  where ig  is randomly 

selected from the set {2, 3} and denotes the number of periods needed to consume 

inventory at retailers. Initial inventory level at the supplier 00I  is set equal to 

ii M
U

∈∑  while initial inventory level at retailers 0iI  is set equal to i iU r− . 

Inventory carrying cost rate at retailers ih  is generated from U[0.01,0.05] and 

U[0.1,0.5] while inventory carrying cost rate at the supplier 0h  is set equal to 0.03 if 

ih  is generated from U[0.01,0.05] and 0.3 if ih  is generated from U[0.1,0.5]. 

Vehicle’s capacity C is set equal to 3
2 ii M

r
∈∑ . Transportation cost ijc  is set equal to 

2 2( ) ( )i j i jX X Y Y − + −   where , ,i j iX X Y  and jY  are generated as integers from 

U[0,500]. Five random instances are generated for each combination of the 

parameters. 

 

Using the above generation scheme, we generate new larger instances for H = 3 and 

H = 6 with up to 65 and 45 retailers, respectively. We also generate new larger 

instances with up to 35 retailers for H = 9 and up to 25 retailers for H = 12. ig  is 

selected from the set {2, 3, 4} for H = 9 and from the set {2, 3, 4, 5} for H = 12, 

respectively. In the sequel, abls refers to the instances generated by Archetti et al. 

(2007a) while ss refers to the new instances. 
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Table 5.1 Average results on abls instances with and without CPLEX cuts† 

n H h i  & h 0 %LP Seconds Nodes Seconds Nodes Seconds Nodes Seconds Nodes
5 3 low 52.1 0.1 2.8 0.1 4.0 0.1 2.4 0.1 9.4

10 3 low 42.9 0.6 44.2 0.5 37.8 0.6 43.4 0.5 35.4
15 3 low 35.0 2.0 63.0 2.9 95.2 2.4 75.0 2.2 70.0
20 3 low 26.7 8.3 103.4 11.1 156.4 12.3 181.8 10.1 143.4
25 3 low 35.7 30.4 185.8 27.9 190.0 43.1 238.0 32.6 202.8
30 3 low 36.0 74.1 254.6 74.3 250.4 117.0 444.0 93.8 336.6
35 3 low 33.6 170.0 338.6 195.3 400.6 338.2 576.4 206.8 444.8
40 3 low 32.9 565.3 701.8 642.7 796.8 678.2 879.4 565.0 696.8
45 3 low 30.8 1267.4 838.8 1099.9 940.2 1683.7 1077.2 1132.4 776.4
50 3 low 28.4 3424.5 (1) 1347.8 2937.7 1505.0 4812.6 (1) 1932.4 2105.0 1215.0

35.4 554.3 388.1 499.2 437.6 768.8 545.0 414.8 393.1
5 3 high 21.6 0.1 3.2 0.1 4.4 0.1 6.4 0.1 7.4

10 3 high 14.2 0.5 38.8 0.6 42.0 0.5 43.4 0.5 41.0
15 3 high 10.3 2.1 72.4 2.4 87.2 2.6 88.0 1.9 68.8
20 3 high 7.4 8.3 120.0 8.4 115.2 13.9 184.4 7.7 113.2
25 3 high 8.8 22.5 125.2 24.4 132.8 37.4 242.2 39.7 247.6
30 3 high 8.5 94.3 351.6 83.9 283.6 122.2 459.2 83.1 336.0
35 3 high 7.9 234.5 509.2 197.1 454.8 286.5 546.4 213.0 455.8
40 3 high 7.6 431.5 449.4 551.1 600.0 899.5 937.6 516.2 575.0
45 3 high 7.2 738.3 496.8 965.6 737.2 1601.3 1025.0 1146.0 878.6
50 3 high 6.8 3783.6 (1) 1801.0 2712.7 1283.2 3693.5 (1) 1853.4 3012.5 1701.8

10.0 531.6 396.8 454.6 374.0 665.8 538.6 502.1 442.5
5 6 low 23.5 0.5 51.6 0.4 43.6 0.5 150.6 0.3 64.6

10 6 low 21.9 5.1 157.2 3.8 127.0 11.9 731.8 3.6 127.8
15 6 low 20.9 23.6 214.8 19.3 223.8 87.1 1677.2 15.4 149.8
20 6 low 19.5 266.0 1572.2 198.2 996.6 2396.3 20278.8 207.7 1096.4
25 6 low 21.4 395.3 602.2 322.1 458.8 4420.4 (2) 10805.0 470.4 653.6
30 6 low 21.3 2076.1 2088.8 1687.7 1614.0 7200.1 (5) 6658.0 1606.3 1410.8

21.4 461.1 781.1 371.9 577.3 2352.7 6716.9 383.9 583.8
5 6 high 11.7 0.4 44.4 0.3 47.0 0.5 137.0 0.3 59.2

10 6 high 10.0 5.7 186.0 3.9 133.0 12.9 869.6 3.9 133.2
15 6 high 8.3 20.2 187.4 14.6 125.8 91.9 1987.4 16.5 153.2
20 6 high 7.4 319.3 2084.2 200.8 1071.4 3326.6 (1) 25166.8 222.3 1155.2
25 6 high 7.7 482.3 841.8 307.4 467.0 4685.2 (3) 11089.2 316.7 430.6
30 6 high 7.3 2096.6 2095.6 1503.3 1455.8 7200.2 (5) 6735.6 1785.2 1757.4

8.7 487.4 906.6 338.4 550.0 2552.9 7664.3 390.8 614.8
19.8 517.2 561.7 431.3 465.0 1368.1 3035.1 431.8 485.9

With Cplex Cuts Without Cplex Cuts
BC(F )- BC(SF )- BC(F )- BC(SF )-

Overall average

Average

Average

Average

Average
 

†low: ih  = [0.01, 0.05] and 0h  = 0.03; high: ih  = [0.1, 0.5] and 0h  = 0.3. The numbers in 

parentheses on columns 5 and 9 represent the number of instances that could not be solved to 

optimality within 2 hour-time limit. 
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We compare the LP relaxation solution values of F and SF without constraints 

(5.11) on abls instances to see the strength of formulations relative to each other. 

Also, in order to fairly compare branch-and-cut algorithms BC(F) and BC(SF), we 

test them on abls instances without using any initial upper bound. We refer to those 

branch-and-cut algorithms without their initial upper bounding heuristics as 

BC(SF)- and BC(F)-, respectively. Furthermore, we conduct computational 

experiments to see the impact of CPLEX’s cuts such as clique inequalities, cover 

inequalities, mixed integer rounding cuts, etc. (for a detailed information on 

available cuts see the User Manual of CPLEX 10.1) on the performance of BC(F)- 

and BC(SF)-. By default, CPLEX 10.1 automatically decides on whether generating 

a class of cuts or not. Average computational results (over five instances) using 

branch-and-cut algorithms with and without CPLEX’s cuts on abls instances are 

given in Table 5.1. In the table, columns 1–3 show the number of retailers, horizon 

length and inventory carrying cost rates for retailers and supplier, respectively. 

Column 4 shows the percentage gap between the LP relaxation solution values of 

the formulations, computed as the difference between the LP relaxation solution 

values of the formulations divided by the LP relaxation solution values of F. 

Columns titled as “Seconds” and “Nodes” show elapsed time in seconds and the 

number of nodes explored in the branch-and-bound tree for the algorithm with and 

without CPLEX’s cuts, respectively. 

 

In Table 5.1, %LP column ranging from 7 to 52 indicates that the LP relaxation 

solution value of SF is better than that of F, as expected. In particular, the lower the 

inventory carrying cost rate is, the larger the gap is. Results reveal that the 

performance of BC(F)- depends on CPLEX’s cuts whereas BC(SF)- performs well 

even in the absence of those cuts. Without cuts, BC(SF)- outperforms BC(F)- in that 

the former is more than 3 times faster than BC(F)-, and the latter explores 6 times 

more nodes than the former. Besides, BC(SF)- solved all instances to optimality 

while BC(F)- could not solve 16 out of 60 instances to optimality when H = 6. 

When CPLEX cuts are allowed, BC(SF)- is on average 17% faster than BC(F)-, and 
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BC(SF)- is able to solve all instances well under 2 hour-time limit whereas BC(F)- 

could not solve the two larger instances within the time limit. 

 

We also test our heuristics (APT and APT+) on abls instances and compare them 

with the BPS heuristic. Average computational results are given in Table 5.2. 

Column 4 shows the elapsed time in seconds for APT+ to run. Columns 5–7 

designate the percent deviation (%Dev) of solution values found by the heuristics 

APT+, APT and BPS respectively from the optimal solution value, i.e. %Dev = 100 

* (Heur – Opt) / Opt where Heur represents the solution value found by the 

corresponding heuristic and Opt denotes the optimal solution value. 

 

All heuristics perform well. Especially, APT+ heuristic yields higher quality 

solutions within a few seconds (on average 0.6% deviation from the optimal 

solution value) and has found the optimal solution in 73 out of 160 instances. We 

should also note that time required to solve TSPs for APT+ heuristic at the outset is 

negligible (not greater than 3 seconds even for the largest ss instances solved) 

compared to the time required to solve APF formulation. It seems that instances 

with low inventory carrying cost rates are more difficult to solve for all than those 

with high rates. More success on instances with high inventory carrying cost rates 

can be related with the fact that transportation cost constitutes a smaller percentage 

of the total cost in these instances compared to the instances with low rates. 

 

To see whether using APT+ as an initial upper bound has a significant effect on the 

performance of BC(SF), we test BC(SF) on abls instances. In these experiments, we 

use the solution value obtained by APT+ as an initial upper bound within BC(SF) 

and allow CPLEX to add its cuts. Average computational results (over five 

instances) on abls instances are given in Table 5.3. Columns 6 and 7 list the 

percentage reduction achieved in elapsed time of the algorithm (%Rsec) and the 

number of nodes explored by the algorithm (%Rnode), where %Rsec (%Rnode) is 

found as the percentage of the difference between values in column 7 (8) of Table 

5.1 and column 4 (5) of Table 5.3 divided by values of column 7 (8) of Table 5.1. 
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Table 5.2 Average results for heuristics on abls instances† 

n H h i  & h 0 Seconds APT + APT BPS
5 3 low 0.61 0.00 0.09 2.88

10 3 low 0.81 0.95 0.95 0.78
15 3 low 1.01 0.21 0.35 2.56
20 3 low 1.28 0.43 1.00 3.83
25 3 low 1.46 1.03 1.98 2.99
30 3 low 1.97 2.20 3.26 3.60
35 3 low 1.85 0.55 1.10 4.46
40 3 low 2.72 1.15 1.94 6.46
45 3 low 3.16 2.60 3.51 7.60
50 3 low 3.72 0.88 2.22 5.81

1.86 1.00 1.64 4.10
5 3 high 0.58 0.00 0.06 1.31

10 3 high 0.80 0.36 0.36 1.74
15 3 high 1.00 0.07 0.13 2.18
20 3 high 1.19 0.12 0.36 3.30
25 3 high 1.56 0.43 0.78 1.06
30 3 high 1.88 0.65 0.95 1.21
35 3 high 1.98 0.22 0.39 2.25
40 3 high 2.80 0.23 0.63 2.26
45 3 high 3.41 0.52 1.08 2.49
50 3 high 3.57 0.16 0.66 1.57

1.88 0.28 0.54 1.94
5 6 low 1.24 0.03 0.13 1.64

10 6 low 1.62 0.35 0.55 1.36
15 6 low 2.32 0.89 1.19 4.27
20 6 low 3.30 0.31 0.89 2.95
25 6 low 3.65 0.59 1.22 6.19
30 6 low 5.43 1.94 4.23 4.64

2.93 0.68 1.37 3.51
5 6 high 1.07 0.04 0.11 0.34

10 6 high 1.63 0.17 0.31 1.87
15 6 high 2.29 0.42 0.58 1.20
20 6 high 3.53 0.16 0.42 2.09
25 6 high 4.00 0.20 0.70 2.12
30 6 high 5.16 0.87 1.56 2.56

2.95 0.31 0.61 1.70
2.27 0.59 1.05 2.86

%Dev

Average

Average

Average

Average
Overall average  

                              †low: ih  = [0.01, 0.05] and 0h  = 0.03; high: ih  = [0.1, 0.5] and 0h  = 0.3. 
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Table 5.3 Average results on abls instances for BC(SF)† 

n H h i  & h 0 Seconds Nodes %Rsec %Rnode
5 3 low 0.1 1.0 0.0 75.0

10 3 low 0.4 25.8 18.9 31.7
15 3 low 1.6 59.8 45.2 37.2
20 3 low 6.0 82.0 46.5 47.6
25 3 low 22.6 135.2 19.1 28.8
30 3 low 62.5 227.2 15.9 9.3
35 3 low 163.0 370.8 16.6 7.4
40 3 low 409.3 581.6 36.3 27.0
45 3 low 618.3 453.0 43.8 51.8
50 3 low 1593.6 901.6 45.8 40.1

287.7 283.8 28.8 35.6
5 3 high 0.1 2.0 8.5 54.5

10 3 high 0.4 35.6 32.2 15.2
15 3 high 1.6 50.0 33.9 42.7
20 3 high 5.9 79.6 29.7 30.9
25 3 high 19.1 131.4 22.0 1.1
30 3 high 70.3 272.8 16.3 3.8
35 3 high 140.1 275.6 28.9 39.4
40 3 high 323.1 385.0 41.4 35.8
45 3 high 596.2 471.8 38.3 36.0
50 3 high 1883.2 1179.6 30.6 8.1

304.0 288.3 28.2 26.8
5 6 low 0.3 30.4 19.1 30.3

10 6 low 2.7 88.4 27.7 30.4
15 6 low 11.3 99.4 41.5 55.6
20 6 low 120.4 626.6 39.3 37.1
25 6 low 218.8 384.6 32.1 16.2
30 6 low 1065.3 1129.6 36.9 30.0

236.5 393.2 32.8 33.3
5 6 high 0.3 33.8 16.0 28.1

10 6 high 2.8 91.8 27.3 31.0
15 6 high 10.4 93.8 28.9 25.4
20 6 high 124.4 643.0 38.0 40.0
25 6 high 220.9 329.0 28.1 29.6
30 6 high 1090.4 1037.4 27.5 28.7

241.5 371.5 27.6 30.5
274.5 322.2 29.1 31.4

Average

Average

Average

Average
Overall average  

                    †low: ih  = [0.01, 0.05] and 0h  = 0.03; high: ih  = [0.1, 0.5] and 0h  = 0.3. 
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Results indicate that using APT+ as an initial upper bound enhances the performance 

of BC(SF). On average, there exist 30% reduction in both the elapsed time and 

number of nodes explored regardless of the horizon length and level of inventory 

carrying cost rates. 

 

In all experiments on larger ss instances, we allow APT+ to find an initial bound and 

CPLEX cuts within BC(SF). Average computational results (over five instances) are 

reported in Table 5.4 for the first group of ss instances. Those largest ss instances 

(i.e. the second group of ss instances) that could not be solved to optimality in 

reasonable times are solved with a time limit of 4 hours and results for each instance 

are reported in Tables 5.5 and 5.6. In Table 5.4, column 6 shows the elapsed time in 

seconds for APT+ to run, and column 7 indicates the percentage deviation (%Dev) 

of the upper bound found by APT+ from the optimal solution value. In Tables 5.5 

and 5.6, columns 1 refers to test instance number, and column 6 shows the 

remaining percentage gap (%Gap) between the best upper bound (UB*) and lower 

bound (LB*) found (i.e. %Gap = 100 * (UB* – LB*) / LB*) by BC(SF). A “─” sign 

in %Gap column means that the optimal solution of the corresponding instance is 

proved. Columns 8 is the same as column 7 in Table 5.4 but note that column 8 

indicates the percentage deviation of the upper bound found by APT+ from the 

optimal or the best available lower bound solution value. 

 

As seen in Table 5.4, BC(SF) is consistently able to solve to optimality instances 

containing up to 60, 35, 25 and 15 retailers with horizon length of 3, 6, 9 and 12, 

respectively under both low and high inventory carrying cost rates within 

reasonable times (less than 2.5 hours). Also, APT+ finds high quality solutions 

within a few minutes. Similar to the results on abls instances, APT+ is more 

successful (with regard to the deviation from optimal solution value) on ss instances 

with high inventory carrying cost rates. Results on Tables 5.5 and 5.6 indicate that 

BC(SF) has found the optimal solution in 18 (15) out of 35 (35) instances with low 

(high) inventory carrying cost rates for the largest ss instances. Furthermore, 

BC(SF) has succeeded in finding a small gap between the best upper bound and 
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lower bound for those instances that could not be solved to optimality within limited 

time. Except six out of 70 instances, all %Gaps are less than 2.7%. Results with 

APT+ are in accordance with previous comments. 

 

 

Table 5.4 Average results on “optimally solvable” ss instances† 

n H h i  & h 0 Seconds Nodes Seconds %Dev
55 3 low 6669.4 3683.4 5.1 0.93
60 3 low 7080.5 2762.8 5.7 1.34
55 3 high 5034.7 2350.0 4.6 0.28
60 3 high 8621.0 3370.4 6.9 0.45
35 6 low 5207.5 3949.6 8.6 1.03
35 6 high 3494.9 2129.2 7.3 0.49
5 9 low 1.7 264.0 2.2 0.00
10 9 low 16.4 402.4 3.9 0.15
15 9 low 197.4 1424.0 12.5 0.23
20 9 low 450.4 958.8 11.1 0.95
25 9 low 3903.0 4105.0 29.1 0.40
5 9 high 1.4 213.8 1.9 0.00
10 9 high 13.4 327.4 3.0 0.24
15 9 high 135.0 971.4 8.7 0.05
20 9 high 995.9 2689.2 19.1 0.07
25 9 high 6240.6 6403.4 25.6 0.20
5 12 low 8.8 1214.2 5.2 0.00
10 12 low 181.4 3486.2 23.2 0.25
15 12 low 2253.2 9033.4 55.8 1.04
5 12 high 24.0 3150.2 6.7 0.00
10 12 high 119.4 1723.2 24.2 0.13
15 12 high 962.5 4550.2 33.2 0.11

BC(SF ) APT +

 
                     †low: ih  = [0.01, 0.05] and 0h  = 0.03; high: ih  = [0.1, 0.5]  and 0h  = 0.3. 
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Table 5.5 Results on low-cost ss instances 

# n H Seconds Nodes %Gap Seconds %Dev
1 65 3 12172.3 3542 ─ 5.9 0.55
2 65 3 14541.3 2324 4.41 8.1 4.41
3 65 3 10544.7 3340 ─ 5.8 1.56
4 65 3 3197.7 921 ─ 5.0 0.85
5 65 3 14435.9 3345 1.35 7.4 1.85
1 40 6 5231.8 2472 ─ 6.8 0.66
2 40 6 6387.7 2021 ─ 8.6 1.02
3 40 6 14400.9 4428 2.54 15.3 2.54
4 40 6 4903.2 1930 ─ 9.5 1.37
5 40 6 8519.9 3413 ─ 11.8 1.90
1 45 6 14402.1 2389 2.68 10.3 3.30
2 45 6 14401.6 2831 0.85 13.7 1.49
3 45 6 14400.1 2771 1.26 17.4 2.29
4 45 6 14400.1 1683 0.89 18.4 4.32
5 45 6 10221.0 2574 ─ 9.5 1.46
1 30 9 5634.3 2966 ─ 60.0 1.28
2 30 9 10523.8 5837 ─ 25.1 0.81
3 30 9 5174.6 1681 ─ 79.4 4.06
4 30 9 10808.9 5700 ─ 53.9 2.37
5 30 9 11718.0 6959 ─ 42.0 1.69
1 35 9 14400.4 2585 2.03 30.9 4.12
2 35 9 14400.1 2279 3.33 106.6 3.33
3 35 9 14400.0 1678 3.90 45.1 4.44
4 35 9 14400.3 2198 8.04 47.3 8.04
5 35 9 4365.1 962 ─ 44.0 0.00
1 20 12 9301.3 13947 ─ 96.3 0.21
2 20 12 2840.3 3143 ─ 94.9 0.80
3 20 12 14400.8 13209 4.15 1046.5 4.15
4 20 12 2747.8 4185 ─ 69.3 0.00
5 20 12 3867.5 6324 ─ 154.5 0.03
1 25 12 14400.7 4765 2.05 191.3 2.05
2 25 12 14400.2 5927 1.16 260.2 1.16
3 25 12 14400.4 3893 1.95 181.7 2.26
4 25 12 14401.3 4101 1.69 180.3 1.69
5 25 12 14400.3 4062 7.23 1309.0 7.23

BC(SF ) APT +
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Table 5.6 Results on high-cost ss instances 

# n H Seconds Nodes %Gap Seconds %Dev
1 65 3 7786.2 1322 ─ 7.4 1.00
2 65 3 3785.6 1131 ─ 5.6 0.07
3 65 3 11543.0 3181 ─ 7.7 0.11
4 65 3 7504.2 2115 ─ 7.7 0.40
5 65 3 5810.8 1527 ─ 6.1 0.05
1 40 6 5281.3 1763 ─ 9.3 0.35
2 40 6 14400.7 4818 0.07 18.7 1.23
3 40 6 2236.2 626 ─ 7.9 0.38
4 40 6 4359.2 1470 ─ 8.9 0.40
5 40 6 5850.8 3361 ─ 8.3 0.18
1 45 6 5835.4 1123 ─ 9.4 0.51
2 45 6 14401.0 3229 0.07 13.2 0.16
3 45 6 14400.8 1986 0.74 10.3 1.00
4 45 6 14410.9 1756 1.71 7.4 2.12
5 45 6 7906.4 1463 ─ 8.2 0.62
1 30 9 14401.2 5741 0.21 59.6 0.90
2 30 9 14400.7 5430 0.26 39.7 1.19
3 30 9 14400.1 5580 0.74 14.8 0.74
4 30 9 14404.3 4851 0.62 21.6 0.82
5 30 9 6404.2 3699 ─ 20.7 0.20
1 35 9 14400.9 3216 0.21 18.8 0.21
2 35 9 14401.6 2721 2.43 132.9 2.43
3 35 9 14400.0 2300 1.91 72.1 1.91
4 35 9 14400.5 2998 0.28 65.8 0.28
5 35 9 14400.1 2641 0.50 32.5 1.96
1 20 12 4850.8 4420 ─ 19.5 0.06
2 20 12 5312.4 7267 ─ 71.7 0.13
3 20 12 14400.2 11126 0.24 106.2 0.35
4 20 12 5767.5 8693 ─ 243.7 0.03
5 20 12 14400.2 20939 0.11 52.7 0.32
1 25 12 14401.3 3861 0.73 277.1 0.98
2 25 12 14400.4 5794 0.66 248.2 0.94
3 25 12 14400.9 4074 1.58 279.4 1.58
4 25 12 14400.1 7282 0.25 57.1 0.25
5 25 12 14400.1 4759 0.32 25.0 1.23

BC(SF ) APT +
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Our approach in strong formulations can also be extended to the two related 

inventory routing problems, namely VMIR-ML and VMIR problems. Retailers’ 

inventory replenishment problem in VMIR-ML problem is a lot-sizing problem 

with bounds on inventory (Love, 1973), which can be solved polynomially in 
2( )O H  by a dynamic programming (DP) algorithm (see Atamtürk and 

Küçükyavuz, 2008). Similarly, the retailers’ inventory replenishment problem in 

VMIR problem is an uncapacitated lot-sizing problem (Wagner and Whitin, 1958) 

which can be solved polynomially in ( log )O H H  by a DP algorithm (Federgruen 

and Tzur, 1991). Using DP recursions, one can construct shortest path formulations 

for the replenishment problems. Another direction might be to study inventory 

routing problems with multiple vehicles. However, exact solution of such problems 

will be quite challenging since the known valid inequalities for the vehicle routing 

problem (VRP) cannot be trivially adapted here due to not knowing how much a 

retailer will receive in each period. Let alone the additional valid inequalities, even 

the so called rounded capacity inequalities in VRP cannot be used because of the 

same reason and one has to resort to fractional capacity inequalities which are not 

strong enough. 
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CHAPTER 6 

 

A PRODUCTION-DISTRIBUTION-ROUTING PROBLEM WITH 

ENDOGENOUS POLICY 

 

 

In this chapter, we consider a production-distribution-routing problem with 

endogenous inventory control policy (PDR) where a supplier (vendor) decides when 

and how much to order/produce a single product and distributes to multiple retailers 

in a VMI setting over a finite time horizon using a capacitated vehicle. 

 

Although production-distribution problems arise in many settings, there are very 

few studies in the literature that consider production-distribution-routing problem, 

as presented in Chapter 2, which may be due to the problem being very complex. 

Most of the studies propose heuristic solution approaches to their problems without 

having a lower bounding procedure to gauge the effectiveness of their heuristics. 

Only a few studies to the best of our knowledge, such as Fumero and Vercellis 

(1999), Archetti et al. (2007b), Bard and Nananukul (2008), consider obtaining 

lower bounds. All these studies use weak representations for the replenishment 

decisions at the suppliers and retailers which limit their approaches in obtaining 

exact solutions. In particular, the only study that tries to obtain exact solutions is the 

study of Archetti et al. (2007b). 

 

In this study, we consider strong representations of replenishment decisions and a 

computationally attractive formulation for the routing of vehicles to develop a 

branch-and-cut algorithm. To the best of our knowledge, this is the first exact 

algorithm that is based on a strong formulation in the context of production-

distribution-routing problems. We also use the proposed strong formulation to 

develop a mathematical programming based heuristic. Computational experiments 
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show that our branch-and-cut and heuristic algorithms perform better than their 

competitors in the literature.    

 

The rest of the paper is organized as follows. In Section 6.1, we describe the PDR 

problem in detail. We present the formulation we propose for the problem in 

Section 6.2. In Section 6.3, we provide the details of our branch-and-cut algorithm 

and mathematical programming based heuristic. Section 6.4 is devoted to the 

computational experiments over the test instances to assess the performance of the 

proposed algorithms. Note that the notation and abbreviations defined in this 

chapter is only valid in this chapter and in Appendix E. 

 

 

6.1 Problem definition 

 

We consider a production-distribution system in which a supplier orders (or 

produces) a single product and distributes to N retailers over a finite time horizon T 

with a capacitated vehicle. Retailer i (1 i N≤ ≤ ) faces external customer demand itd  

in each discrete time period t (1 t T≤ ≤ ) and may keep inventory itI  to meet the 

demand without backordering. The supplier, denoted by i=0, manages the 

inventories at the retailers by deciding on when and how much to ship to each 

retailer i, and guarantees that neither retailers nor itself will stock-out (i.e. 0itI ≥  for 

0 i N≤ ≤ ) in any period t. The supplier decides on how much to order in each 

period t, and may ship to the retailers immediately or keep inventory 0tI  for 

replenishing retailers in later periods. We assume the beginning inventory level 00I  

is zero. When an order is placed at the supplier in a period t, a fixed order cost tf  

independent of the size of order and a variable order cost tp  per unit ordered are 

incurred. For each unit kept in inventory at facility i ( 0 i N≤ ≤ ) in a period t, a 

holding cost ith  is incurred. The vehicle based at the supplier can visit multiple 

retailers in a multi-stop route without exceeding its capacity C. A vehicle traveling 



 119 

from facility i ( 0 i N≤ ≤ ) to facility j ( 0 j N≤ ≤ ) incurs a transportation cost ijc , 

where ij jic c= . We assume that the vehicle can only perform a single tour in every 

period. The PDR problem is to decide on when and how much to order at the 

supplier, when and how much to ship to each retailer, and the routing of vehicles 

such that the sum of fixed and variable order costs, transportation cost as well as 

inventory carrying costs at the supplier and retailers is minimized. It is an extension 

of the OWMR problem, studied in Chapter 3, so that a multi-stop routing as a 

transportation policy is imposed to the OWMR problem instead of the direct 

shipment. The PDR problem, a strongly NP-hard problem, is formulated as a mixed 

integer program (MIP) in the following. We also present a standard MIP 

formulation, referred to as formulation F-ML, due to Archetti et al. (2007b) in the 

Appendix E to inform the reader of the type of formulations usually proposed in the 

literature for the PDR problems. 

 

 

6.2 Strong formulation for the PDR problem 

 

We view the PDR problem as an integration of a two-level lot sizing problem (very 

similar to the OWMR problem in Chapter 3) and routing problem of vehicles. The 

formulation that we will propose is a strong formulation since we use effective 

mathematical representations for these two problems. For the lot sizing part of the 

problem, we use the shortest path based representation we propose in Chapter 3 for 

the OWMR problem as a basis to develop an effective representation for the 

replenishment decisions of the PDR problem since it has proved to be the strongest 

one in Chapter 3. Besides, we use a two-index vehicle flow based formulation, 

which proved to be one of the effective formulations for vehicle routing problems 

(see Laporte, 2007 for a general discussion and Chapter 5 for a usage in inventory 

routing), in formulating the routing problem of vehicles. 
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Define itkD  as the total demand of retailer i from period t through k, i.e. 

k
itk irr t

D d
=

= ∑ , and itka  as being equal to 1 if 0itkD > , 0 otherwise. Letting ijtx  be 1 

if the vehicle visits facility j immediately after facility i ( j i< ) in period t and 0 

otherwise; 0tz  be 1 if the vehicle departs from the supplier in period t and 0 

otherwise; itz  be 1 if retailer i is visited in period t and 0 otherwise; ty  be 1 if an 

order is placed at the supplier in period t and 0 otherwise; itkW  be the fraction of the 

total demand of retailer i from period t through k satisfied in period t; and iqtkU  be 

the fraction of the amount ordered at the supplier in period q to meet the demand of 

retailer i from period t through k, the strong formulation SF-PR we propose is as 

follows. 

 

SF-PR: Min  
1 1 1 0 1

T N T T T N T

t t t itk iqtk it it
t i q t q k t i t

f y p D U h I
= = = = = = =

+ +∑ ∑∑∑∑ ∑∑
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1 0 1

N i T

ij ijt
i j t
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= = =
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1

0 1

2
i N

ijt jit it
j j i

x x z
−

= = +

+ =∑ ∑   0 ,i N≤ ≤ 1 t T≤ ≤             (6.10) 

,
ijt it kt

i S j S j i i S
x z z

∈ ∈ < ∈

≤ −∑ ∑ ∑   {1,2,..., },1 ,some S N t T k S⊆ ≤ ≤ ∈          (6.11) 

0it tz z≤     1 ,i N≤ ≤ 1 t T≤ ≤             (6.12) 

ijt itx z≤     1 ,1j i N t T≤ < ≤ ≤ ≤             (6.13) 

ijt jtx z≤     1 ,1j i N t T≤ < ≤ ≤ ≤             (6.14) 

{0,1}ijtx ∈    0 ,1j i N t T≤ < ≤ ≤ ≤             (6.15) 

0 {0,1,2}i tx ∈    1 ,i N≤ ≤ 1 t T≤ ≤             (6.16) 

{0,1}itz ∈    0 ,i N≤ ≤ 1 t T≤ ≤             (6.17) 

{0,1}ty ∈    1 t T≤ ≤               (6.18) 

0itkW ≥     1 ,i N≤ ≤ 1 t k T≤ ≤ ≤             (6.19) 

0iqtkU ≥     1 ,i N≤ ≤ 1 q t k T≤ ≤ ≤ ≤             (6.20) 

where 0 0iI =  for 0 .i N≤ ≤  

 

Objective function (6.1) is the sum of fixed and variable order costs, inventory 

holding costs at the supplier and retailers as well as transportation costs, 

respectively. Constraints (6.2) and (6.3) are inventory balance equations for the 

supplier and retailers, respectively. They are actually not needed but used to 

compute inventory holding costs. Constraints (6.4) ensure that if retailer i is shipped 

a quantity in period t then it is satisfied by placing an order to the supplier in period 

q (1 q t≤ ≤ ). Constraints (6.5) stipulate that a fixed cost is incurred when an order is 

placed to the supplier. Constraints (6.6) and (6.7) are the flow conservation 

equations of the shortest path representation of each retailer i. Constraints (6.8) 

ensure that the total amount shipped to the retailers in period t cannot exceed the 

capacity of the vehicle. Constraints (6.9) guarantee that if any replenishment occurs 

to a retailer i in period t then i must be visited in t. Constraints (6.10) are degree 

constraints for ensuring that two edges are incident to retailer i in a period t if i is 

visited in t. Constraints (6.11) are the generalized subtour elimination constraints. 
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Constraints (6.12)–(6.14) are indeed not needed here but they are added to 

strengthen the formulation. Constraints (6.15)–(6.18) are for integrality while 

constraints (6.19) and (6.20) are for nonnegativity. 

 

As the nonzero initial inventories at the retailers (i.e. 0 0iI >  for 1 i N≤ ≤ ) can be 

treated as zero by deducing external demands at the retailers from 0iI  until it 

becomes zero and adding its cost to the objective function value, the SF-PR 

formulation given above is assuming zero initial inventories. Although SF-PR is 

also assuming zero initial inventory at the supplier, it is easy to incorporate nonzero 

initial inventories into SF-PR as done in Chapter 3. 

 

The SF-PR formulation we propose is a quite flexible formulation in that it can 

handle a variety of issues considered in the literature. In the following, we briefly 

discuss these issues and show how SF-PR can cope with them. 

 

§ Inventory bound constraints: Some researchers consider problems in which 

the amount of inventory carried in any period at the retailers and/or at the 

supplier cannot exceed a maximum level iUP  ( 0 i N≤ ≤ ). For example, Lei 

et al. (2006) consider inventory bound constraints both at the supplier and at 

the retailers while Archetti et al. (2007b) consider these constraints at the 

retailers (they call maximum level policy). We can incorporate such a 

constraint into SF-PR as follows. 

it iI UP≤   1 ,1i N t T≤ ≤ ≤ ≤            (6.21) 

 

§ Capacity over replenishment quantities to supplier: Lei et al. (2006) and 

Boudia et al. (2007) consider a capacity constraint sC  on the amount that 

can be produced or ordered at the supplier in a period. This can also be 

easily handled in SF-PR by adding the following constraints. 

1

N T T

itk iqtk s q
i t q k t

D U C y
= = =

≤∑∑∑  1 q T≤ ≤            (6.22) 
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§ Vehicle fleet: Although we consider a single vehicle, it is possible to adapt 

SF-PR to the case of homogeneous/heterogeneous vehicles by adding an 

index v into transportation cost and vehicle capacity parameters, i.e. ijvc  and 

vC  as well as into the variables x, z, W, and modifying related constraints in 

SF-PR accordingly. Also, it is possible to adapt SF-PR for an unlimited fleet 

size as in Chandra and Fisher (1994) and Archetti et al. (2007b). 

 

§ Multi-product case: It is also easy to address multi-product case by 

incorporating an additional index for each product into the variables 

, , ,I U W y  and writing all constraints in SF-PR for each product except (6.8) 

and (6.10)–(6.14). 

 

Although our focus is on the PDR problem, we also consider the PDR problem with 

bounded inventory (i.e. the PDR problem with constraints (6.21)) for benchmarking 

of our formulations with that of Archetti et al. (2007b). For the PDR problem with 

bounded inventory, we add (6.21) to SF-PR, which we refer to as SF-ML 

formulation. Note that SF-ML reduces to SF-PR if iUP  is sufficiently large (e.g. 

1i i TUP D= ) for all i (1 i N≤ ≤ ). 

 

Since SF-PR (SF-ML) has an exponential number of constraints due to (6.11), one 

cannot directly attempt to solve the complete SF-PR (SF-ML) formulation even for 

a few retailers. Instead, we add constraints (6.11) dynamically to SF-PR (SF-ML), 

which leads to a branch-and-cut algorithm, as described next.    
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6.3 Solution algorithms for the PDR problems 

 

 

6.3.1 Branch-and-cut algorithm 

 

The branch-and-cut algorithm proposed for the PDR problem is based on dynamic 

addition of constraints (6.11). We first start with SF-PR without constraints (6.11) 

and integrality requirements on variables. At each node of the branch-and-bound 

tree, first, the current solution at this node is checked to see whether there are 

inequalities of (6.11) that are violated by the current solution. If there are such 

inequalities then they are added to the formulation and it is reoptimized. This 

procedure repeats until no such violated inequalities are found. We use the 

separation algorithm of Padberg and Rinaldi (1991) to detect violated inequalities of 

(6.11) (see Appendix C for further details), where ktz  variable with largest value in 

any iteration, i.e. arg max { }i itk z= , is selected to subtract from summation of z 

variables in the retailer subset S. Whenever there is no violated inequality of (6.11), 

branching occurs. Regarding the branching variable selection, we first branch on y 

variables, then on z variables and lastly on x variables. As a node selection rule we 

use best-bound first rule (i.e. the node with the best objective function value is 

selected). We also use an initial upper bound found by a heuristic described in the 

next subsection. Our branch-and-cut algorithm is referred to as BC(SF-PR). 

Similarly, using SF-ML in place of SF-PR, we obtain a branch-and-cut algorithm for 

the PDR problem with bounded inventory, which is referred to as BC(SF-ML). Note 

that our branch-and-cut algorithms are almost the same as that of Archetti et al. 

(2007b), which is referred to as BC(F-ML). There are only two differences between 

our and their branch-and-cut algorithms in that we use SF-PR or SF-ML formulation 

and a mathematical programming based heuristic for initial upper bounding whereas 

they use F-ML formulation and an improvement heuristic, referred to as ABPS, for 

initial upper bounding.    
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6.3.2 A priori tour based heuristic 

 

In this subsection, we present a mathematical programming based heuristic, a priori 

tour heuristic, for the PDR problem. The idea of replacing combinatorial routing 

decision problem with a simpler ordering decision problem has already been 

explained in Chapter 5. Adaptation of the algorithm given in Section 5.3.2 to the 

PDR problem is undemanding. We replace the formulation given in Section 5.3.2 

for the VMIR-OU problem with the following formulation for the PDR problem. 

 

A-PR: Min
1 1 1 0 1

T N T T T N T

t t t itk iqtk it it
t i q t q k t i t

f y p D U h I
= = = = = = =

+ +∑ ∑∑∑∑ ∑∑
0 0, 1

N N T

ij ijt
i j i j t

c x
= = ≠ =

+∑ ∑ ∑        (6.23) 

s.t. (6.2)–(6.9), (6.12) and (6.17)–(6.20) 

i

ijt it
j

x z
α∈

=∑   0 ,1i N t T≤ ≤ ≤ ≤              (6.24) 

i

jit it
j

x z
β∈

=∑   0 ,1i N t T≤ ≤ ≤ ≤              (6.25) 

{0,1}ijtx ∈   0 ,0 , ,1i N j N j i t T≤ ≤ ≤ ≤ ≠ ≤ ≤             (6.26) 

where the set iβ  ( 0 i N≤ ≤ ) contains facilities j ( 0 j N≤ ≤ ) that can be visited 

before visiting facility i, the set iα  contains facilities j ( 0 j N≤ ≤ ) that can be 

visited after visiting facility i, and ijtx  takes value 1 if facility j is visited 

immediately after facility i in period t and 0 otherwise. 

 

As in Section 5.3.2, we denote the a priori tour heuristic without the improvement 

step (i.e. solving T many traveling salesman problems to improve the tours in each 

period) for the PDR problem as APT-PR while the complete procedure including the 

improvement step is denoted as APT+-PR. To obtain a priori tour heuristic for the 

PDR problem with bounded inventory, we add (6.21) to A-PR, which is referred to 

as A-ML formulation. Using A-ML in place of A-PR in APT-PR and APT+-PR, we 

obtain APT-ML and APT+-ML heuristics, respectively.  
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6.4 Computational experiments 

 

We conduct computational experiments on instances generated by Archetti et al. 

(2007b) to evaluate the performance of the algorithms. The computational platform 

used is a Pentium IV Core 2 Duo 2.33GHz PC with 1GB RAM running under 

Windows XP. We code all the algorithms in C++ on MS Visual Studio.NET 2005 

using Concert Technology 2.2 and CPLEX 10.1. We use CPLEX 10.1 to solve A-

PR and A-ML, and CONCORDE (Applegate et al., 2007) to solve TSPs to 

optimality. In the following, we present the properties of instances in Archetti et al. 

(2007b).  

 

The number of retailers N and horizon length T are set equal to 19 and 6, 

respectively. External demands itd  are constant over time (i.e. it id d= ) and 

generated from U[5,25] as an integer. Maximum inventory level at retailers iUP  is 

set equal to i ig d  where ig  is randomly selected from the set {2,3,6} and denotes the 

number of periods needed to consume inventory at retailers. There is a single 

vehicle with capacity C, which is set equal to ,3 / 2UP UP′ ′  and 2UP′  where 

1max { }i N i iUP UP d≤ ≤′ = + . Initial inventory level at the supplier is set equal to 0 

while the initial inventory level at retailers 0iI  is set equal to i iUP d− . It is provided 

that all the problem instances are feasible. All the cost parameters are generated as 

constant over time. Inventory carrying cost rate at retailers hi is generated from 

U[1,5] and U[6,10] while inventory carrying cost rate at the supplier h0 is set equal 

to 3 and 8. Variable order (production) cost p is set equal to 10h0 and fixed order 

cost f is set equal to 100p. Transportation cost ijc  between two facilities i and j is set 

equal to 2 2( ) ( ) 0.5i j i jX X Y Y − + − +   where , ,i j iX X Y  and jY  are the 

coordinates of facilities i and j and are generated from U[0,500] and U[0,1000] as 

integers. Thus, 24 test instances are obtained in the first class of instances. In the 

second class of instances, only the variable order cost parameter p is changed from 

10h0 to 100h0 (note that p affects f). The third class of instances is created by 
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multiplying the coordinates of the supplier and retailers with five and the rest 

remains the same. In the fourth class of instances, instances 1–6 and 13–18 of the 

first class, and instances 7–12 and 19–24 of the second class are selected and their hi 

is set equal to 0. Thus, there are 96 instances in total. We give the properties of 

instances of the first class corresponding to the combination of parameters h0, hi, 

coordinates (Xi, Xj, Yi, Yj) and C in the Table 6.1. 

 

 

Table 6.1 Properties of instances 

Instance h0 hi Xi, Xj, Yi, Yj C 
1 3 [6,10] [0,500] 2UP′  
2 3 [6,10] [0,500] 3 / 2UP′  
3 3 [6,10] [0,500] UP′  
4 8 [6,10] [0,500] 2UP′  
5 8 [6,10] [0,500] 3 / 2UP′  
6 8 [6,10] [0,500] UP′  
7 3 [1,5] [0,500] 2UP′  
8 3 [1,5] [0,500] 3 / 2UP′  
9 3 [1,5] [0,500] UP′  

10 8 [1,5] [0,500] 2UP′  
11 8 [1,5] [0,500] 3 / 2UP′  
12 8 [1,5] [0,500] UP′  
13 3 [6,10] [0,1000] 2UP′  
14 3 [6,10] [0,1000] 3 / 2UP′  
15 3 [6,10] [0,1000] UP′  
16 8 [6,10] [0,1000] 2UP′  
17 8 [6,10] [0,1000] 3 / 2UP′  
18 8 [6,10] [0,1000] UP′  
19 3 [1,5] [0,1000] 2UP′  
20 3 [1,5] [0,1000] 3 / 2UP′  
21 3 [1,5] [0,1000] UP′  
22 8 [1,5] [0,1000] 2UP′  
23 8 [1,5] [0,1000] 3 / 2UP′  
24 8 [1,5] [0,1000] UP′  

 

 

We start with basic experiments in order to assess the impact of CPLEX cuts and 

initial upper bounding on our algorithm using the test instances of Archetti et al. 

(2007b) with inventory bound constraints. First, we run BC(SF-ML) without an 
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initial upper bound, referred to as BC(SF-ML)-, under three different settings of 

CPLEX cuts: (i) All cuts are allowed, (ii) Only Gomory and implied bound cuts are 

allowed, and (iii) No cuts are allowed. Results are given in Table 6.2 where column 

1 indicates the class of instances, column 2 indicates both elapsed time in seconds 

(averaged over 24 instances in each class) and number of instances that are solved 

to optimality, and columns 3–5 show BC(SF-ML)- with all cuts (All), with only 

Gomory and implied bound cuts (G&IB) and no cuts (None), respectively. Table 

6.2 indicates that the worst performance of the algorithm is the case where no cuts 

are allowed. BC(SF-ML)- with G&IB is better than BC(SF-ML)- with All for the 

first two classes while BC(SF-ML)- with All is better than BC(SF-ML)- with G&IB 

for the last class. They are even for the third class. Second, we try BC(SF-ML), that 

is the branch-and-cut with an initial upper bound, with All and with G&IB. Results 

are given in columns 6 and 7, respectively in Table 6.2. We have decided to use 

BC(SF-ML) with G&IB in subsequent experiments. Although providing an initial 

upper bound to the branch-and-cut algorithm may not yield better results (see the 

results for second class), the overall results justify feeding an initial upper bound to 

the algorithm. 

 

Unfortunately we do not have the algorithm of Archetti et al (2007b). Because of 

this, we were not able to directly compare BC(F-ML) and BC(SF-ML) (or BC(SF-

ML)-). Average results by BC(F-ML), BC(SF-ML)- and BC(SF-ML) over 24 

instances in each class are given in Table 6.3. In this table, column 1–5 show the 

algorithm used, the elapsed time in seconds, the number of nodes explored, the 

remaining percentage gap (%Gap) between the best upper (UB) and lower bounds 

(LB) (i.e. %Gap = 100 * (UB – LB) / LB), and the number of instances solved to 

optimality, respectively.  

 

BC(F-ML) could not solve 52 out of 96 instances to optimality within 2-hour time 

limit and the results did not change when it was allowed to run for two hours more 

as noted in Archetti et al. (2007b). BC(SF-ML)- and BC(SF-ML) yield quite 

satisfactory results proving optimality in all instances in reasonable times (except 
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one instance for BC(SF-ML)-). In spite of the differences in the computational 

platform and solver in the experiments of Archetti et al. (2007b), it can be said that 

our branch-and-cut algorithms outperform their competitor. 

 

 

Table 6.2 Average results for the impact of CPLEX cuts and initial upper bounding 

  BC(SF-ML)- BC(SF-ML) 
Class Info All G&IB None All G&IB 

Seconds 404.4 377.4 426.9 364.6 352.2 1st 
# solved 24 24 24 24 24 
Seconds 975.8 842.8 1404.7 1323.5 1189.3 2nd 
# solved 24 24 24 24 24 
Seconds 1463.8 1464.7 1697.9 1118.8 939.9 3rd 
# solved 23 23 22 22 24 
Seconds 1004.1 1384.8 1754.0 912.6 1057.1 4th 
# solved 24 24 23 24 24 

Average Seconds 962.0 1017.4 1320.9 929.9 884.6 
Total # solved 95 95 93 94 96 

 

 

Table 6.3 Average results for BC(F-ML)†, BC(SF-ML)- and BC(SF-ML) 

Class Algorithm Seconds Nodes %Gap # solved 
BC(F-LM) 6131.0 28375.0 1.24 4 

BC(SF-ML)- 377.4 2740.8 0.00 24 1st 
BC(SF-ML) 352.2 3115.0 0.00 24 
BC(F-ML) 2013.0 8389.8 0.01 18 

BC(SF-ML)- 842.8 6953.0 0.00 24 2nd 
BC(SF-ML) 1189.3 11020.4 0.00 24 
BC(F-ML) 4252.5 19203.7 1.34 11 

BC(SF-ML)- 1464.7 10768.6 0.04 23 3rd 
BC(SF-ML) 939.9 8213.5 0.00 24 
BC(F-ML) 4318.1 18716.0 1.03 11 

BC(SF-ML)- 1384.8 10530.2 0.00 24 4th 
BC(SF-ML) 1057.1 10149.1 0.00 24 

                 †Results of BC(F-ML) are found using CPLEX 9.0 on a Pentium IV 2.8GHz PC  

                 with 1GB RAM running under Windows XP. 
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We also compare our heuristics, APT-ML and APT+-ML, with that of Archetti et al. 

(2007b), called ABPS. Results are provided in Table 6.4, where columns 2–3 show 

the elapsed time in seconds for APT-ML and APT+-ML respectively, and columns 4–

6 indicate the percentage deviation (%Dev) of the heuristic value (Heur) from the 

optimal solution value (Opt) (i.e. %Dev = 100 * (Heur – Opt) / Opt). According to 

the results, all heuristics perform well but our heuristics are slightly better. In 

particular, APT+-ML yields solutions with an overall average percentage deviation 

of 0.07% and achieves to find the optimal solution in 29 out of 96 instances whereas 

APT-ML and ABPS could not find the optimal solution in any of the 96 instances. 

Besides, the time required to solve T many TSPs to improve the solutions of APT-

ML is negligible compared to the time required to solve the A-ML formulation. 

 

 

Table 6.4 Average results for APT-ML, APT+-ML and ABPS 

 Seconds %Dev 
Class APT-ML APT+-ML APT-ML APT+-ML ABPS 

1st 13.0 14.3 0.20 0.07 1.46 
2nd 22.9 24.2 0.03 0.02 0.19 
3rd 48.9 50.1 0.68 0.19 2.05 
4th 37.2 38.4 0.13 0.02 0.47 

Average 30.5 31.8 0.26 0.07 1.05 
 

 

Next, we perform experiments without setting the inventory bound constraints, i.e. 

testing the PDR problem. We again implement BC(SF-PR)- and BC(SF-PR) with 

G&IB. Average results are presented in Table 6.5, where it can be seen that both 

BC(SF-PR)- and BC(SF-PR) perform well. Note that for those instances BC(SF-PR) 

could not solve two instances in the third class to optimality whereas BC(SF-PR)- is 

able to find the optimal solution in all instances. These results imply that the impact 

of initial upper bounding diminishes when inventory bounds on stocking are 

relaxed. 
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Table 6.5 Average results for BC(SF-PR)- and BC(SF-PR) 

Class Algorithm Seconds Nodes %Gap 
BC(SF-PR)- 384.6 3037.1 0.00 1st 
BC(SF-PR) 309.6 2947.3 0.00 
BC(SF-PR)- 812.8 7192.6 0.00 2nd 
BC(SF-PR) 644.1 6541.9 0.00 
BC(SF-PR)- 1606.4 12773.4 0.00 3rd 
BC(SF-PR) 1624.0 15033.5 0.08 
BC(SF-PR)- 1306.5 11627.1 0.00 4th 
BC(SF-PR) 1301.2 14042.1 0.00 
BC(SF-PR)- 1027.6 8657.5 0.00 Average 
BC(SF-PR) 969.7 9641.2 0.02 

 

 

Table 6.6 Average results for APT-PR and APT+-PR 

 Seconds %Dev 
Class APT-PR APT+-PR APT-PR APT+-PR 

1st 9.0 10.4 0.15 0.07 
2nd 17.9 19.1 0.03 0.01 
3rd 27.1 28.3 0.49 0.10 
4th 20.3 21.6 0.11 0.03 

Average 18.6 19.8 0.19 0.05 
 

 

As shown in Table 6.6, our heuristics APT-PR and APT+-PR yield superior results 

in short times even if inventory bounds on stocking are relaxed. Specifically, APT+-

PR finds the optimal solution in 44 out of 96 instances. 

 

Archetti et al. (2007b) have analyzed the consequences of using maximum level 

policy and order-up-to level policy (discussed in Chapters 4 and 5) both 

theoretically and empirically and shown that a solution found using the order-up-to 

level policy can be significantly worse than the maximum level policy in terms of 

costs. As a by-product of our computational experiments, we have an opportunity to 

compare the consequences of using maximum level policy (ML) and the 

endogenous policy (E). We compute the percentage difference (%Dif) between the 

optimal solution values of two policies (i.e. %Dif = 100 * (ML – E) / ML) in two 
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different ways: Considering the total cost (TC) term and the total cost less constant 

terms (TC-Const), which does not have any affect on the optimal solution. These 

constant terms involve variable order costs and costs due to initial inventories at the 

retailers. Since per unit order cost is constant over time and the total amount to be 

ordered to the supplier is known, one can compute the total variable order cost in 

advance. Also, costs due to initial inventories at the retailers can be computed in 

advance. Average and Maximum %Dev figures over 24 instances in each class are 

provided in Table 6.7 through columns 2–3 and 4–5, respectively. Columns 2 and 4 

(3 and 5) indicate results obtained with the total cost (the total cost less constant 

terms). Apparently, there is not much difference between the two policies so that the 

optimal solution values obtained under the maximum level policy can be used as an 

upper bound on the objective function of the PDR problem with endogenous policy. 

 

 

Table 6.7 Differences between the maximum level and endogenous policy 

 %AveDif %MaxDif 
Class TC TC-Const TC TC-Const 

1st 0.38 1.18 1.58 4.49 
2nd 0.07 0.49 0.23 1.65 
3rd 2.72 5.45 6.56 10.89 
4th 1.04 4.06 4.42 13.59 
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CHAPTER 7 

 

CONCLUSIONS AND DIRECTIONS FOR FUTURE RESEARCH 

 

 

In this thesis, we have addressed one-warehouse multi-retailer problems under two 

different inventory control (endogenous and order-up-to level) and two different 

shipment policies (direct shipping and multi-stop routing), namely,  

§ One-warehouse multi-retailer problem with endogenous policy (OWMR) 

§ One-warehouse multi-retailer problem with order-up-to level policy 

(OWMR-O) 

§ Inventory routing problem with order-up-to level policy (VMIR-OU) 

§ Production-distribution-routing problem with endogenous policy (PDR) 

  

We have addressed the OWMR problem by proposing a new shortest path based 

formulation and showing that it is stronger than the previously proposed 

transportation based formulation, which in turn is stronger than the strengthened 

version of another previously proposed one, echelon stock formulation. The new 

formulation is a strong formulation since it defines the convex hull of feasible 

solutions of the single-warehouse single-retailer (SWSR) problem. We have also 

revealed that the shortest path and transportation based formulations are equivalent 

in strength for the joint replenishment problem (JRP), which is an important special 

case of OWMR problem. Moreover, we have explicitly considered the case of 

nonzero initial inventory at the warehouse which is truly a neglected issue in the 

multi-level lot sizing literature although it is natural for only some specific 

representations. We have shown both theoretical and empirical implications of 

nonzero initial inventories to the problem complexity. Our computational 

experiments over the test instances have revealed that the shortest path and 

transportation based formulations perform significantly better than the echelon 

stock formulation both under zero and nonzero initial inventories at the warehouse. 

In particular, our shortest path based formulation being the best yields integrality 
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gaps of 0.01% and 1.3% on average in the absence and presence of initial 

inventories, respectively. This formulation also achieves to find the optimal solution 

for all instances within less than three minutes for large instances involving 50 

retailers and 30 time periods. 

 

We have proposed strong formulations for the OWMR-O problem by explicitly 

considering the case of nonzero initial inventory at the warehouse besides the case 

of zero initial inventory. We have shown that in the case of single retailer and zero 

initial inventory at the warehouse, our strong formulation defines the convex hull of 

feasible solutions of the problem. We have shown that problem becomes more 

difficult in the presence of initial inventories at the warehouse in contrast to the 

single-level lot sizing problems where initial inventories can be easily handled. 

Computational experiments performed on a set of randomly generated instances 

have provided that our strong formulations are very successful in solving the 

problem to optimality. They are very effective in closing the gap between the 

integer and the continuous solutions with 1% gap on average. Moreover, we have 

performed a limited number of experiments with the standard (weak) formulation. 

The results have shown that our strong formulation significantly outperforms the 

standard formulation such that the standard formulation could not solve any of the 

instances to optimality within a two-hour time limit whereas our strong formulation 

solves them to optimality only within a few seconds. We have also shown that 

significant cost savings (14% on average) can be obtained by using the vendor 

managed inventory system (by solving MIPs) over the retailer managed inventory 

system (by implementing latest ordering up-to level policy). 

 

We have addressed the VMIR-OU problem by proposing a branch-and-cut 

algorithm and a heuristic, based on strong formulations. To the best of our 

knowledge, this study is the first to consider strong formulations for inventory 

routing problems. Computational results indicate that our exact and heuristic 

algorithms have outperformed their competitors in the literature. Our branch-and-

cut algorithm is able to find the optimal solution values of the larger problem 
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instances with size up to nxH ={65 3, 45 6,35 9,20 12}x x x x  where n and H denote the 

number of retailers and horizon length, respectively. Our heuristic achieves to find 

high quality solutions deviating 1% from the optimal solution on average within a 

few minutes. 

 

We have considered the PDR problem (and also PDR problem with bounded 

inventory) and proposed branch-and-cut and heuristic algorithms based on strong 

formulations. Computational experiments have shown that the proposed algorithms 

have outperformed their competitors in the literature. Our branch-and-cut algorithm 

solves all instances to optimality for both the PDR problem and the PDR problem 

with bounded inventory whereas an existing exact algorithm for the PDR problem 

with bounded inventory could not solve more than half of all instances. Within a 

few minutes, our heuristic achieves to find solutions with 0.05% and 0.07% 

deviation on average from the optimal solution values for PDR problem and PDR 

problem with bounded inventory, respectively. We have also empirically compared 

the optimal solution values of PDR problem and PDR problem with bounded 

inventory, and we have shown that the difference is indeed small, which is contrary 

to the result of huge difference between optimal solution values of PDR problem 

with order-up-to level policy and PDR with bounded inventory (Archetti et al., 

2007b). 

 

One of our overall conclusions is as follows. Since the strong formulations we have 

proposed for four related but different one-warehouse multi-retailer problems are 

proved to be effective and they are flexible with regard to handling additional side 

constraints, they can be used within the decision support systems for planning 

purposes in different levels in VMI settings discussed in Chapter 1. For instance, 

direct shipment formulations can be used for tactical level planning such as 

constructing master production schedules, while multi-stop routing formulations can 

be used for operational level planning such as constructing detailed production and 

distribution schedules. In case of multi-stop routing policy, the proposed heuristics 
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can also be used in place of the exact algorithms as they are effective and flexible as 

well.  

 

As we formulate the retailers’ replenishment problem using strong shortest path 

representation and effectively extend this representation to the warehouse 

operations for different inventory control policies (like endogenous and order-up-to 

level policies), we conclude that our approach can be applicable to different 

replenishment problems (at retailers) provided that a strong shortest path 

representation of the replenishment problem can be developed. For example, the 

existence of strong shortest path representations for problems with stationary 

capacity on replenishment quantities and problems with backorders (see Pochet and 

Wolsey, 2006) lends these types of lot sizing problems to our approach.  

 

Another overall conclusion we have reached is that the presence of initial inventory 

at the warehouse adds a significant complexity to the problem at hand. 

 

Further research issues 

A research direction is to use the approximate strong formulation idea of Van Vyve 

and Wolsey (2006), instead of incorporating the complete strong formulation. The 

authors add only some part of the complete formulation as cuts and obtain the best 

results in the context of the multi-item capacitated lot sizing problem with setup 

times. Since our strong formulations involve a large number of variables and 

constraints, decreasing the formulation size using the approximate strong 

formulation idea seems promising for solving larger problem instances. Another 

research direction is to use our strong formulations within decomposition based 

customized algorithms that might help in solving larger problem instances. 

 

Since we assume predetermined order-up-to level (Si) for each retailer i in the 

OWMR-O problem, one interesting research question that might immediately arise 

is whether it is possible to optimize order-up-to levels or not. Indeed, this question 

is partially answered in Solyalı and Süral (2008a) where the authors propose a 
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pseudo-polynomial dynamic programming algorithm for the single retailer case. As 

discussed in Solyalı and Süral (2008a), each Si should take a value in between 

retailer i’s maximum and total demand over the horizon. Thus, by incorporating an 

additional index accounting for the possible values of Si into the shortest path 

representation variables, one could obtain a promising strong formulation for this 

problem. The disadvantage of the resulting formulation might be the large number 

of variables arising due to accounting for each possible Si value. However, such a 

handicap might be addressed by generating a variable only when it improves the 

solution (i.e. using column generation).      

 

As a further research issue, one can easily extend the formulations considered in this 

thesis to the multi-item case (as in Federgruen and Tzur, 1999). A promising 

research avenue is to adapt the shortest path based formulation for the multi-level 

lot sizing problems with serial, assembly or general structure. In particular, although 

there exists a polynomial time algorithm for the problem with serial structure, there 

is no known explicit convex hull defining formulation for it. As the shortest path 

based formulation is tight for the two-level problem with serial structure (SWSR 

problem), its extension to more than two levels would be nice contributions to the 

literature. Extension of the shortest path based formulation for the problem with 

assembly or general structure seems also promising anyway as the mathematical 

programming studies almost are based on the echelon stock idea (e.g. Stadtler, 

1997). 

 

Another research direction might be to study multiple vehicles for problems with 

multi-stop routing policy. However, exact solution of such problems will be quite 

challenging since the known valid inequalities for the vehicle routing problem 

cannot be trivially adapted here due to not knowing how much a retailer will receive 

in each period. Let alone the additional valid inequalities, even the so called 

rounded capacity inequalities in VRP cannot be used because of the same reason 

and one has to resort to fractional capacity inequalities which are not strong enough. 

 



 138 

 

REFERENCES 

 

 

Abdelmaguid, T.F., M.M. Dessouky, F. Ordonez. 2008. Heuristic approaches for 
the inventory routing problem with backlogging. Computers & Industrial 
Engineering, to appear. 
 
 
Anily, S. 1994. The general multi-retailer EOQ problem with vehicle routing costs. 
European Journal of Operational Research 79 451–473. 
 
 
Anily, S., A. Federgruen. 1990. One warehouse multiple retailer systems with 
vehicle routing costs. Management Science 36 (1) 92–114. 
 
 
Anily, S., A. Federgruen. 1993. Two-echelon distribution systems with vehicle 
routing costs and central inventories. Operations Research 41 37–47. 
 
 
Applegate, D.L., R.E. Bixby, V. Chvatal, W.J. Cook. 2007. The traveling salesman 
problem: A computational study. Princeton University Press, New Jersey. 
 
 
Archetti, C., L. Bertazzi, G. Laporte, M.G. Speranza. 2007a. A branch-and-cut 
algorithm for a vendor-managed inventory-routing problem. Transportation Science 
41 (3) 382–391. 
 
 
Archetti, C., L. Bertazzi, G. Paletta, M.G. Speranza. 2007b. Optimization of an 
integrated production-distribution system. Technical Report No:287. Diparimento 
Metodi Quantitativi, Universita Degli Studi Di Brescia, Italy. 
 
 
Archetti, C., M.W.P. Savelsbergh, M.G. Speranza. 2008. To split or not to split: 
That is the question. Transportation Research Part E 44 114–123. 
 
 
Arkin, E., D. Joneja, R. Roundy. 1989. Computational complexity of uncapacitated 
multi-echelon production planning problems. Operations Research Letters 8 61–66. 
 
 



 139 

Atamtürk, A., S. Küçükyavuz. 2008. An O(n2) algorithm for lot sizing with 
inventory bounds and fixed costs. Operations Research Letters 36 297–299. 
 
 
Atamtürk, A., M.W.P. Savelsbergh. 2005. Integer programming software systems. 
Annals of Operations Research 140 67–124. 
 
 
Baita, F., W. Ukovich, R. Pesenti, D. Favaretto. 1998. Dynamic routing-and-
inventory problems: A review. Transportation Research A 32 585–598. 
 
 
Baldacci, R., E. Hadjiconstantinou, A. Mingozzi. 2004. An exact algorithm for the 
capacitated vehicle routing problem based on a two-commodity network flow 
formulation. Operations Research 52 723–738. 
 
 
Baldacci, R., N. Christofides, A. Mingozzi. 2008. An exact algorithm for the vehicle 
routing problem based on the set partitioning formulation with additional cuts. 
Mathematical Programming 115 351–385. 
 
 
Bard, J., L. Huang, P. Jaillet, M. Dror. 1998. A decomposition approach to the 
inventory routing problem with satellite facilities. Transportation Science 32 189–
203. 
 
 
Bard, J., N. Nananukul. 2008. The integrated production-inventory-distribution-
routing problem. Journal of Scheduling, to appear. 
 
 
Bertazzi, L., G. Paletta, M.G. Speranza. 2002. Deterministic order-up-to level 
policies in an inventory routing problem. Transportation Science 36 119–132. 
 
 
Bertazzi, L., G. Paletta, M.G. Speranza. 2005. Minimizing the total cost in an 
integrated vendor managed inventory system. Journal of Heuristics 11 393–419. 
 
 
Bertazzi, L. 2008. Analysis of direct shipping policies in an inventory-routing 
problem with discrete shipping times. Management Science 54 (4) 748–762. 
 
 
Bitran, G.R., T.Y. Leong. 1992. Deterministic approximations to co-production 
problems with service constraints and random yields. Management Science 38 (5) 
724–742. 



 140 

Bixby, R.E., M. Fenelon, Z. Gu, E.E. Rothberg, R. Wunderling. 2000. MIP: Theory 
and practice – Closing the gap. Kluwer Academic Publishers, 19–49. 
 
 
Boctor, F.F., G. Laporte, J. Renaud. 2004. Models and algorithms for the dynamic 
demand joint replenishment problem. International Journal of Production Research 
42 (13) 2667–2678. 
 
 
Boudia, M., C. Prins. 2007. A memetic algorithm with dynamic population 
management for an integrated production-distribution problem. European Journal 
of Operational Research, to appear. 
 
 
Boudia, M., M.A.O. Louly, C. Prins. 2007. A reactive GRASP and path relinking 
for a combined production-distribution problem. Computers & Operations Research 
34 3402–3419. 
 
 
Boudia, M., M.A.O. Louly, C. Prins. 2008. Fast heuristics for a combined 
production planning and vehicle routing problem. Production Planning & Control 
19 (2) 85–96. 
 
 
Burns, L.D., R.W. Hall, D.E. Blumenfeld, C.F. Daganzo. 1985. Distribution 
strategies that minimize transportation and inventory costs. Operations Research 33 
(3) 469–490. 
 
 
Campbell, A.M., L.W. Clarke, A. Kleywegt, M.W.P. Savelsbergh. 1998. The 
inventory routing problem, T.G.Crainic, G.Laporte, eds. Fleet Management and 
Logistics. Kluwer Academic Publishers, London, UK. 95–113. 
 
 
Campbell, A.M., L.W. Clarke, M.W.P. Savelsbergh, 2002. Inventory routing in 
practice. P. Toth, D. Vigo, eds. The Vehicle Routing Problem. Society for Industrial 
and Applied Mathematics, Philadelphia. 309–330. 
 
 
Campbell, A.M., M.W.P. Savelsbergh. 2004. A decomposition approach for the 
inventory routing problem. Transportation Science 38 (4) 488–502.   
 
 
Canada Research Chair in Distribution Management. http://www.chairs.gc.ca/web/ 
chairholders. Last access: November 2008. 

http://www.chairs.gc.ca/web/


 141 

Chan, L.M.A., A. Muriel, Z.J.M. Shen, D. Simchi-Levi, C.P. Teo. 2002. Effective 
zero-inventory-ordering policies for the single-warehouse multiretailer problem 
with piecewise linear cost structures. Management Science 48 1446–1460. 
 
 
Chand, S., V.N. Hsu, S. Sethi. 2002. Forecast, solution, rolling horizons in 
operations management problems: A classified bibliography. Manufacturing & 
Service Operations Management 4 (1) 25–43. 
 
 
Chandra, P. 1993. A dynamic distribution model with warehouse and customer 
replenishment requirements. Journal of the Operational Research Society 44 (7) 
681–692. 
 
 
Chandra, P., M.L. Fisher. 1994. Coordination of production and distribution 
planning. European Journal of Operational Research 72 503–517.  
 
 
Chien, T.W., A. Balakrishnan, R.T. Wong. 1989. An integrated inventory allocation 
and vehicle routing problem. Transportation Science 23 (2) 67–76. 
 
 
Chikan, A. 2008. An empirical analysis of managerial approaches to the role of 
inventories. International Journal of Production Economics, to appear. 
 
 
Cornuejols, G., G.L. Nemhauser, L.A. Wolsey. 1990. The uncapacitated facility 
location problem. P. Mirchandani and R.L. Francis, eds. Discrete Location Theory. 
Wiley, New York. 119–171. 
 
 
Çetinkaya, S., C.Y. Lee. 2000. Stock replenishment and shipment scheduling for 
vendor-managed inventory systems, Management Science 46 217–232. 
 
 
Denizel, M., F.T. Altekin, H. Süral, H. Stadtler. 2008. Equivalence of the LP 
relaxations of two strong formulations for the capacitated lot-sizing problem with 
setup times. OR Spektrum 30 773–785. 
 
 
Dhaenens-Flipo, C., G. Finke. 2001. An integrated model for an industrial 
production-distribution probem. IIE Transactions 33 705–715. 
 
 



 142 

Diaby, M., A. Martel. 1993. Dynamic lot sizing for multi-echelon distribution 
systems with purchasing and transportation price discounts. Operations Research 41 
(1) 48–59. 
 
 
Doğru, M.K. 2006. Optimal control of one-warehouse multi-retailer systems: An 
assessment of the balance assumption. PhD Thesis. Technische Universiteit 
Eindhoven, The Netherlands. 
 
 
Dror, D., M. Ball. 1985. A computational comparison of algorithms for the 
inventory routing problem. Annals of Operations Research 4 3–23. 
 
 
Dror, D., M. Ball. 1987. Inventory / Routing: Reduction from an annual to a short-
period problem. Naval Research Logistics 34 891–905. 
 
 
Eppen, G.D., R.K. Martin. 1987. Solving multi-item capacitated lot-sizing problems 
using variable redefinition. Operations Research 35 832–848. 
 
 
Erengüç, S.S. 1988. Multi-product dynamic lot-sizing model with coordinated 
replenishments. Naval Research Logistics 35 1–22. 
 
 
Federgruen, A., P. Zipkin. 1984. A combined vehicle routing and inventory 
allocation problem. Operations Research 32 (5) 1019–1037. 
 
 
Federgruen, A., G. Prastacos, P. Zipkin. 1986. A combined vehicle routing and 
inventory allocation problem. Operations Research 34 (1) 75–82. 
 
 
Federgruen, A., M. Tzur. 1991. A simple forward algorithm to solve general 
dynamic lot sizing models with n periods in O(n log n) or O(n) time. Management 
Science 37 909–925. 
 
 
Federgruen, A., M. Tzur. 1999. Time partitioning heuristics: Application to one 
warehouse, multi-item, multi-retailer lot-sizing problems. Naval Research Logistics 
46 463–486. 
 
 
Federgruen, A., J. Meissner, M. Tzur. 2007. Progressive interval heuristics for 
multi-item capacitated lot-sizing problems. Operations Research 55 490–502. 



 143 

Fukasawa, R., H. Longo, J. Lysgaard, M. Poggi de Aragão, M. Reis, E. Uchoa, R.F. 
Werneck. 2006. Robust branch-and-cut-and-price for the capacitated vehicle routing 
problem, Mathematical Programming 106 491–511. 
 
 
Fumero, F., C. Vercellis. 1999. Synchronized development of production, inventory 
and distribution schedules. Transportation Science 33 (3) 330–340. 
 
 
Gallego, G., D. Simchi-Levi. 1990. On the effectiveness of direct shipping strategy 
for the one-warehouse multi-retailer R-systems. Management Science 36 240–243. 
 
 
Gao, L.L., N. Altay, E.P. Robinson. 2008. A comparative study of modeling and 
solution approaches for the coordinated lot-size problem with dynamic demand. 
Mathematical and Computer Modelling 47 1254–1263. 
 
 
Golden, B., S. Raghavan, E. Wasil. 2008. The vehicle routing problem: Latest 
advances and new challenges. Springer: New York. 
 
 
Herer, Y., R. Roundy. 1997. Heuristics for a one-warehouse multiretailer 
distribution problem with performance bounds. Operations Research 45 (1) 102–
115. 
 
 
Hvvatum, L.M., A. Løkketangen. 2008. Using scenario trees and progressive 
hedging for stochastic inventory routing problems. Journal of Heuristics, to appear. 
 
 
Jaillet, P., J.F. Bard, L. Huang, M. Dror. 2002. Delivery cost appoximations for 
inventory routing problems in a rolling horizon framework. Transportation Science 
36 (3) 292–300. 
 
 
Jin, J., A. Muriel. 2006. Single-warehouse multi-retailer inventory systems with full 
truckload shipments. Technical Report. Department of Mechanical and Industrial 
Engineering, University of Massachusetts, Arnherst, MA, USA.  
 
 
Joneja, D. 1990. The joint replenishment problem: New heuristics and worst case 
performance bounds. Operations Research 38 (4) 711–723. 
 
 



 144 

Kalymon, B.A. 1972. A decomposition algorithm for arborescence inventory 
systems. Operations Research 20 860–874. 
 
 
Kao, E.P.C. 1979. A multi-product dynamic lot-size model with individual and joint 
set-up costs. Operations Research 27 (2) 279–289. 
 
 
Kırca, Ö. 1995. A primal–dual algorithm for the dynamic lot-sizing problem with 
joint set-up costs. Naval Research Logistics 42 791–806. 
 
 
Krarup, J., O. Bilde. 1977. Plant location, set covering and economic lot size: An 
O(mn)-algorithm for structured problems. In: Numerische methoden bei 
optimierungsaufgaben, band 3: Optimierung bei graphentheoritischen ganzzahligen 
problemen, Birkhauser, 155–186. 
 
 
Laporte, G. 2007. What you should know about the vehicle routing problem. Naval 
Research Logistics 54 811–819. 
 
 
Lee, C.Y., S. Çetinkaya, W. Jaruphongsa. 2003. A dynamic model for inventory lot 
sizing and outbound shipment scheduling at a third-party warehouse. Operations 
Research 51 (5) 735–747. 
 
 
Lei, L., S. Liu, A. Ruszczynski, S. Park. 2006. On the integrated production, 
inventory and distribution routing problem. IIE Transactions 38 955–970. 
 
 
Levi, R., R. Roundy, D. Shmoys, M. Sviridenko. 2008. A constant approximation 
algorithm for the one-warehouse multi-retailer problem. Management Science 54 
(4) 763–776. 
 
 
Linderoth, J.T., T.K. Ralphs. 2006. Noncommercial software for mixed integer 
linear programming. J.K. Karlof, ed. Integer programming: Theory and practice. 
CRC Press, 253–304. 
 
 
Love, S.F. 1973. Bounded production and inventory models with piecewise concave 
costs. Management Science 20 313–318. 
 
 



 145 

Lysgaard, J., A.N. Letchford, R.W. Eglese. 2004. A new branch-and-cut algorithm 
for the capacitated vehicle routing problem. Mathematical Programming 100 423–
445. 
 
 
Moin, N.H., S. Salhi. 2007. Inventory routing problems: a logistical overview. 
Journal of the Operational Research Society 56 345–356. 
 
 
Mongelluzzo, B. 1998. Shippers let vendors manage the stocks. Journal of 
Commerce 417 12A. 
 
 
Naddef, D., G. Rinaldi. 2002. Branch-and-cut algorithms for the capacitated VRP. 
P. Toth, D. Vigo, eds. The vehicle routing problem. Society for Industrial and 
Applied Mathematics, Philadelphia, 53–81. 
 
 
Nemhauser, G.L., L.A. Wolsey. 1988. Integer and combinatorial optimization. 
Wiley: New York. 
 
 
Padberg, M., G. Rinaldi. 1991. A branch-and-cut algorithm for the resolution of 
large-scale symmetric traveling salesman problems. SIAM Review 33 60–100. 
 
 
Pınar, Ö., H. Süral. 2006. Coordinating inventory and transportation in vendor 
managed systems. Meller, R. et al. (eds.). Proceedings of the Material Handling 
Research Colloquium 2006, 459–474. 
 
 
Pochet, Y., L.A. Wolsey. 1994. Polyhedra for lot-sizing with Wagner-Whitin costs. 
Mathematical Programming 67 297–323. 
 
 
Pochet, Y., L.A. Wolsey. 2006. Production planning by mixed integer 
programming. Springer: New York. 
 
 
Robinson, E.P., L.L. Gao. 1996. A dual ascent procedure for multiproduct dynamic 
demand coordinated replenishment with backlogging. Management Science 42 (11) 
1–9. 
 
 
Robinson, E.P., F.B. Lawrence. 2004. Coordinated capacitated lot-sizing problem 
with dynamic demand: A Lagrangian heuristic. Decision Sciences 35 25–53. 



 146 

Robinson, P., A. Narayanan, F. Şahin. 2009. Coordinated deterministic dynamic 
demand lot-sizing problem: A review of models and algorithms. Omega 37 3–15. 
 
 
Roundy, R. 1985. 98%-Effective integer-ratio lot-sizing for one-warehouse multi-
retailer systems. Management Science 31 1416–1430. 
 
 
Ross, J. 1998. HEB project leads expansion of vendor managed inventory programs. 
Stores 80 46–47. 
 
 
Salani, M. 2006. Branch-and-price algorithms for vehicle routing problems. PhD 
Thesis. Universita Degli Studi Di Milano, Italy. 
 
 
Sarmiento, A.M., R. Nagi. 1999. A review of integrated analysis of production-
distribution systems. IIE Transactions 31 1061–1074. 
 
 
Savelsbergh, M., J.H. Song. 2008. An optimization algorithm for the inventory 
routing problem with continuous moves. Computers and Operations Research 35 
2266–2282. 
 
 
Schwarz, L.B. 1973. A simple continuous review deterministic one-warehouse N-
retailer inventory problem. Management Science 19 555–566. 
 
 
Silver, E.A., D.F. Pyke, R. Peterson. 1998. Inventory management and production 
planning and scheduling. Wiley: New York. 
 
 
Schwarz, L.B., J. Ward, X. Zhai. 2004. Joint Transportation-and-Inventory 
Problems in Supply Chains: A Review. Krannert School of Management, Purdue 
University. 
 
 
Solyalı, O., H. Süral. 2008a. A single supplier-single retailer system with order-up-
to level inventory policy, Operations Research Letters 36 543–546. 
 
 
Solyalı, O., H. Süral. 2008b. A relaxation based solution approach for the inventory 
control and vehicle routing problem in vendor managed systems. Modeling, 
Computation and Optimization (an edited volume by World Scientific), to appear. 
 



 147 

Stadtler, H. 1996. Mixed integer programming model formulations for dynamic 
multi-item multi-level capacitated lotsizing. European Journal of Operational 
Research 94 561–581. 
 
 
Stadtler, H. 1997. Reformulations of the shortest route model for dynamic multi-
item multi-level capacitated lotsizing. OR Spectrum 19 87–96. 
 
 
Timme, S.G., G. Williams-Timme. 2003. The real cost of holding inventory. Supply 
Chain Management Review 7 (4) 30–37. 
 
 
Thomas, D.J., P.M. Griffin. 1996. Coordinated supply chain management. 
European Journal of Operational Research 94 1–15. 
 
 
Toth, P., D. Vigo. 2002. The vehicle routing problem. Society for Industrial and 
Applied Mathematics: Philadelphia. 
 
 
van Hoesel, S., H.E. Romeijn, D.R. Morales, A.P.M. Wagelmans. 2005. Integrated 
lot-sizing in serial supply chains with production capacities. Management Science 
51 1706–1719. 
 
 
van Vyve, M., L.A. Wolsey. 2006. Approximate extended formulations. 
Mathematical Programming 105 501–522. 
 
 
Veinott, A.F., Jr. 1969. Minimum concave-cost solution of Leontief substitution 
models of multi-facility inventory systems. Operations Research 17 262–291. 
 
 
Viswanathan, S., K. Mathur. 1997. Integrating routing and inventory decisions in 
one-warehouse multiretailer multiproduct distribution systems. Management 
Science 43 294–312. 
 
 
Wagner, H.M., T.M. Whitin. 1958. Dynamic version of the economic lot size 
model. Management Science 5 89–96. 
 
 
Webb, I., R. Larson. 1995. Period and phase of customer replenishment: A new 
approach to the strategic inventory/routing problem. European Journal of 
Operational Research 85 132–148.  



 148 

Wolsey, L.A. 1998. Integer Programming. Wiley: New York. 
 
 
Wolsey, L.A. 2003. Strong formulations for mixed integer programs: valid 
inequalities and extended formulations. Mathematical Programming 97 423–447. 
 
 
Yao, M.J., Y.C. Wang. 2006. A new algorithm for one-warehouse multi-retailer 
systems under stationary nested policy. Optimization Methods and Software 21 41–
56. 
 
 
Yugang, Y., C. Feng, C. Haoxun. 2007. A note on coordination of production and 
distribution planning. European Journal of Operational Research 177 626–629. 
 
 
Yugang, Y., C. Haoxun, C. Feng. 2008. A new model and hybrid approach for large 
scale inventory routing problems. European Journal of Operational Research 189 
(3) 1022–1040. 
 
 
Zangwill, W.I. 1966. A deterministic multiproduct, multi-facility production and 
inventory model, Operations Research 14 486–507. 
 
 
Zangwill, W.I. 1969. A backlogging model and a multi-echelon model of a dynamic 
economic lot size production system – a network approach. Management Science 15 
506–527. 



 149 

 

APPENDIX A 

 

A STANDARD FORMULATION FOR THE OWMR PROBLEM 

 

 

In this appendix, we provide a standard formulation of the OWMR problem, 

referred to as P. Define N as the number of retailers, T as the number of periods in 

the time horizon, itd  as the external demand faced by retailer i (1 ≤ i ≤ N), i = 0 as 

the warehouse, itf  as the fixed order cost incurred when an order for facility i 

( 0 i N≤ ≤ ) is placed in period t (1 t T≤ ≤ ), itp  as the variable order cost incurred 

per unit ordered by facility i in period t, and ith  as the inventory holding cost at 

facility i incurred for each unit kept at the end of period t. Let 0tI  and itI  

respectively be inventory levels of the supplier and retailers at the end of period t , 

itQ  be the quantity ordered to facility i in period t, and ity  be 1 if an order for 

facility i is placed in period t and 0 otherwise. 

 

P: Min  ( )
0 1

N T

it it it it it it
i t

f y p Q h I
= =

+ +∑∑             (A.1) 

s.t. 

0, 1 0 0
1

N

t t it t
i

I Q Q I−
=

+ = +∑  1 t T≤ ≤            (A.2) 

, 1i t it it itI Q d I− + = +   1 ,i N≤ ≤  1 t T≤ ≤                      (A.3) 

it itT itQ D y≤    0 ,i N≤ ≤ 1 t T≤ ≤                      (A.4) 

{0,1}ity ∈    0 ,i N≤ ≤  1 t T≤ ≤                      (A.5) 

0itQ ≥     0 ,i N≤ ≤  1 t T≤ ≤                      (A.6) 

0itI ≥     0 ,i N≤ ≤  1 t T≤ ≤                      (A.7) 
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where 0iI  is the known initial inventory level at facility i ( 0 i N≤ ≤ ), 0 1

N
t iti

d d
=

= ∑  

for 1 i N≤ ≤  and k
itk irr t

D d
=

= ∑  for 0 ,1 .i N t k T≤ ≤ ≤ ≤ ≤  

 

The objective function (A.1) is the sum of fixed and variable order costs and 

inventory holding costs at the warehouse and retailers. Constraints (A.2) and (A.3) 

are the inventory balance constraints for the warehouse and retailers, respectively. 

Constraints (A.4) ensure that a fixed order cost is incurred at facility i ( 0 i N≤ ≤ ) if 

an order is placed any time for i. Constraints (A.5) are for integrality while (A.6) 

and (A.7) are for nonnegativity. 
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APPENDIX B 

 

A STANDARD FORMULATION FOR THE VMIR-OU PROBLEM 

 

 

In this appendix, we provide the standard formulation of the VMIR-OU problem 

due to Archetti et al. (2007a). Define n as the number of retailers, H as the number 

of periods in the time horizon, itr  as the external demand faced by retailer 

{1, 2,..., }i M n∈ = , 0tr  as the amount received by the supplier, denoted by i = 0, in 

period {1, 2,..., }t Hτ∈ = , C as the capacity of the vehicle, iU  as the maximum 

inventory level at retailer ,i M∈  ih  as the inventory holding cost at facility 

i M M′∈ = U{0} incurred for each unit kept at inventory in t τ ′∈  where 

τ τ′ = U{ 1}H + , and ijc  as the transportation cost of traveling from facility i M ′∈  

to facility j M ′∈ . Let 0tI  and itI  respectively be inventory levels of the supplier 

and retailers at the beginning of period t τ∈ ; itx  be the amount shipped to retailer 

i M∈  in period t τ∈ ; itz  be 1 if retailer i M∈  is replenished in period t τ∈  and 0 

otherwise; 0tz  be 1 if vehicle departs from the supplier in period t τ∈  and 0 

otherwise; and t
jiy  be 1 if vehicle visits facility i M ′∈  immediately after facility 

j M ′∈  in period t τ∈  and 0 otherwise. Then, the formulation of the VMIR-OU 

problem due to Archetti et al. (2007a), referred to as F, is as follows. 

 

F: Min  i it
i M t

h I
τ′ ′∈ ∈

∑ ∑
,

t
ij ij

i M j M j i t
c y

τ′ ′∈ ∈ < ∈

+∑ ∑ ∑            (B.1) 

s.t. 

0 0, 1 0, 1 , 1t t t i t
i M

I I r x− − −
∈

= + − ∑   t τ ′∈            (B.2) 

0t it
i M

I x
∈

≥ ∑     t τ∈            (B.3) 

, 1 , 1 , 1it i t i t i tI I x r− − −= + −    ,i M t τ ′∈ ∈           (B.4) 
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it i it itx U z I≥ −     ,i M t τ∈ ∈           (B.5) 

it i itx U I≤ −     ,i M t τ∈ ∈           (B.6) 

it i itx U z≤     ,i M t τ∈ ∈           (B.7) 

it
i M

x C
∈

≤∑     t τ∈            (B.8) 

0it t
i M

x Cz
∈
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j M j i j M j i
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t
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0 2t
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t

it i i t k ij
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I U z r
−

−
= −

≥ − ∑    , , 0,1,..., 1i M t k tτ∈ ∈ = −       (B.17) 

{0,1}t
ijy ∈     , , ,i M j M j i t τ∈ ∈ < ∈       (B.18) 

0 {0,1, 2}t
iy ∈     ,i M t τ∈ ∈         (B.19) 

{0,1}itz ∈     ,i M t τ′∈ ∈         (B.20) 

0itI ≥      ,i M t τ′ ′∈ ∈         (B.21) 

0itx ≥      ,i M t τ∈ ∈         (B.22) 

where 0 0 0i ix r= =  for .i M∈  

 

Objective function (B.1) is exactly the same as (5.1). Constraints (B.2)–(B.4) are 

respectively the same as (5.2)–(5.4) except that w variables are replaced with x 

variables. Constraints (B.5)–(B.7) guarantee that the order-up-to level policy is 

satisfied at the retailers. Constraints (B.8) and (B.9) stipulate that the total amount 
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shipped to the retailers in a period cannot exceed the capacity of the vehicle. Indeed, 

only constraints (B.8) or (B.9) are sufficient to ensure that capacity of the vehicle is 

not exceeded. Constraints (B.10) and (B.11) are exactly the same as (5.10) and 

(5.11), respectively. Constraints (B.12)–(B.17) are actually not needed in 

formulating the VMIR-OU problem but they are added to F a priori by Archetti et 

al. (2007a) to strengthen the formulation. Constraints (B.12)–(B.14) are for 

strengthening retailers’ replenishment part of the problem while constraints (B.15)–

(B.17) are for strengthening routing part of the problem. Constraints (B.18)–(B.20) 

are for integrality while (B.21) and (B.22) are for nonnegativity of variables. 
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APPENDIX C 

 

AN OVERVIEW OF THE BRANCH-AND-CUT ALGORITHM 

 

 

In this appendix, we present the branch-and-cut algorithm proposed in Chapter 5 in 

detail.  

 

As cutting planes, we use constraints (5.11) in Chapter 5 and those of CPLEX 10.1 

mentioned in Section 2.1 with the default version. We use the exact separation 

algorithm of Padberg and Rinaldi (1991) to find violated inequalities of (5.11). The 

separation algorithm of Padberg and Rinaldi (1991), a polynomial time algorithm, is 

based on determination of the minimum weighted cut. At each node j of the branch-

and-bound tree, we add constraints (5.11) as long as the separation algorithm detects 

any violated inequality. As for branching variable selection, we only give priority to 

z variables over y variables and the decision of which z or y variable to select among 

eligible ones is left to the MIP solver of CPLEX. In Figure C.1, we present our 

branch-and-cut algorithm with a flow chart, which is an adaptation of the generic 

flow chart given in Wolsey (1998). In the flow chart, UB* denotes the best objective 

value, x* denotes the best solution obtained, ( )z APF′  denotes the solution value 

obtained by APT+, ( )s APF′  denotes the solution obtained by APT+, SFj denotes the 

SF formulation at node j, and SFj,k denotes the SF formulation at node j in iteration 

k.  
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LP Relaxation
Iteration  k: Solve  SFj,k and set

zj,k = optimal solution value of     SFj,k

 xj,k = optimal solution of    SFj,k

If infeasible or   zj,k > UB*, prune and go to    Node
Else, go to  Cut

Node
If  node list is empty, go to      Exit

Else, choose node   j from the node list
using best-node-first strategy

Initialization
Set UB* = z'(APF), x*=s'(APF), j=0

Generate  SFj formulation without (5.11) and
integrality requirements and put on node list

Restore
SFj formulation and

Set k = 1 and  SFj,1 = SFj

Cut
Iteration  k: Try to cut off    xj,k  with
CPLEX's cuts and constraints (5.11)
If no violated  cuts,   go to  Prune

Else,  add cuts  to  SFj,k, set  SFj,k+1=SFj,k,
k=k+1 and go to  LP  Relaxation

Prune
If zj,k > UB*, prune and go to   Node

Else if  xj,k is feasible  and  zj,k < UB*, update  UB* and
x* as UB*=zj,k, x*=xj,k, prune and go to   Node

Else, go to  Branching

Branching
Select a variable to branch on and add

the new nodes to node list

Exit
Terminate algorithm and

report UB* and x*

 
Figure C.1 Flowchart of our branch-and-cut algorithm 
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APPENDIX D 

 

AN OVERVIEW OF A PRIORI TOUR HEURISTIC 

 

 

Here, we describe how our a priori tour heuristic works on a small example. 

Consider a VMIR-OU problem instance with four retailers, i.e. {0,1, 2,3, 4}M ′ = . 

Using ijc  values of the instance, we construct a TSP instance and solve it to 

optimality. Suppose that the optimal tour is depicted by 0 – 2 – 3 – 1 – 4 – 0 as 

given in Figure D.1. Then, we derive the sets iβ  and iα  for i M ′∈  using the 

optimal tour as follows: 

 

0 {1, 2,3, 4}β =  

1 {0, 2,3}β =  

2 {0}β =  

3 {0, 2}β =  

4 {0,1, 2,3}β =  

0 {1, 2,3, 4}α =  

1 {0, 4}α =  

2 {0,1,3,4}α =  

3 {0,1,4}α =  

4 {0}α =  

 

Then, we construct APF using iβ  and iα  for i M ′∈  and solve it to optimality. In 

any feasible solution of APF, one obtains a tour that follows the a priori tour by 

skipping the unvisited retailers in each period the vehicle departs from the supplier. 

For example, suppose that only retailers 1 and 2 are visited in a period. Then, the 

tour that the vehicle follows in this case is shown with dashed lines in the following 

figure. 
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optimal TSP tour

a priori tour
 

Figure D.1 Example for a priori tour 
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APPENDIX E 

 

A STANDARD FORMULATION FOR THE PDR PROBLEM 

 

 

In this appendix, we provide a formulation due to Archetti et al. (2007b). Define N 

as the number of retailers, T as the number of periods in the time horizon, itd  as the 

external demand faced by retailer i (1 i N≤ ≤ ), i=0 as the supplier, C as the capacity 

of the vehicle, iUP  as the maximum inventory level at retailer i (1 i N≤ ≤ ), tf  as 

the fixed order cost incurred independent of the size of order, tp  as the variable 

order cost incurred per unit ordered to the supplier, ih  as the inventory holding cost 

at facility i ( 0 i N≤ ≤ ) incurred for each unit stocked in the end of t (1 t T≤ ≤ ), and 

ijc  as the transportation cost of traveling from facility i ( 0 i N≤ ≤ ) to facility j 

( 0 j N≤ ≤ ).  

 

Let 0tI  and itI , respectively, be inventory levels of the supplier and retailers at the 

end of period t (1 t T≤ ≤ ); tU  be the amount ordered to the supplier in period t; itW  

be the amount shipped to retailer i (1 i N≤ ≤ )  in period t; ijtx  be 1 if the vehicle 

visits facility j ( 0 j N≤ ≤ ) immediately after facility i ( 0 i N≤ ≤ ) in period t and 0 

otherwise; 0tz  be 1 if the vehicle departs from the supplier in period t and 0 

otherwise; itz  be 1 if retailer i is visited in period t and 0 otherwise; and ty  be 1 if 

an order is placed at the supplier in period t and 0 otherwise. Then, the formulation 

due to Archetti et al. (2007b), referred to as F-ML, is as follows. 

 

F-ML: Min
1 0 1

( )
T N T

t t t t i it
t i t

f y pU h I
= = =

+ +∑ ∑∑
1

1 0 1

N i T

ij ijt
i j t

c x
−

= = =

+∑∑∑          (E.1) 

s.t. 
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0 0, 1
1

N

t t t it
i

I I U W−
=

= + −∑   1 t T≤ ≤           (E.2) 

, 1it i t it itI I W d−= + −    1 ,i N≤ ≤ 1 t T≤ ≤          (E.3) 

1

N T

t ir t
i r t

U d y
= =

≤ ∑∑    1 t T≤ ≤           (E.4) 

it iI UP≤     1 ,i N≤ ≤ 1 t T≤ ≤          (E.5) 

min{ , , }T
it i it ir itr t

W UP d C d z
=

≤ + ∑  1 ,i N≤ ≤ 1 t T≤ ≤          (E.6) 

it
i M

W C
∈

≤∑     1 t T≤ ≤           (E.7) 

1

0 1

2
i N

ijt jit it
j j i

x x z
−

= = +

+ =∑ ∑    0 ,i N≤ ≤ 1 t T≤ ≤          (E.8) 

,
ijt it kt

i S j S j i i S
x z z

∈ ∈ < ∈

≤ −∑ ∑ ∑   {1,2,..., },1 ,some S N t T k S⊆ ≤ ≤ ∈        (E.9) 

0it tz z≤     1 ,i N≤ ≤ 1 t T≤ ≤        (E.10) 

ijt itx z≤     1 ,1j i N t T≤ < ≤ ≤ ≤        (E.11) 

ijt jtx z≤     1 ,1j i N t T≤ < ≤ ≤ ≤        (E.12) 

, , ,
0 0

1
k k

i t k i t j i t j
j j

I r z− − −
= =

  
≥ −  

  
∑ ∑  1 ,i N≤ ≤ 1 t T≤ ≤ 0 1k t≤ ≤ −      (E.13) 

0, 1
1

(1 )
N T

t ir t
i r t

I d y−
= =

≤ −∑∑   1 t T≤ ≤         (E.14) 

0

( 1)t t j t
KU y y

h j −≥ + −   2 ,1 1t T j t≤ ≤ ≤ ≤ −        (E.15) 

1
1

t

t
t

y
′

=

≥∑              (E.16) 

0
1 1 1

max{0, }
t N t

t it i
t i t

U d I
′ ′

= = =

≥ −∑ ∑ ∑           (E.17) 

0 0
1 1 1 1

max{0, }/
t N N t

i t it i
t i i t

x d I C
′ ′

= = = =

 
≥ −  

∑∑ ∑ ∑          (E.18) 

{0,1}ijtx ∈     0 ,1j i N t T≤ < ≤ ≤ ≤        (E.19) 

0 {0,1,2}i tx ∈     1 ,i N≤ ≤ 1 t T≤ ≤        (E.20) 
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{0,1}itz ∈     0 ,i N≤ ≤ 1 t T≤ ≤        (E.21) 

{0,1}ty ∈     1 t T≤ ≤         (E.22) 

0itI ≥      0 ,i N≤ ≤ 1 t T≤ ≤        (E.23) 

0itW ≥      1 ,i N≤ ≤ 1 t T≤ ≤        (E.24) 

0tU ≥      1 t T≤ ≤         (E.25) 

where 1min { }i N it t≤ ≤′ ′= , 1 0 1
min { | 0}j

i j T i itt
t j I d≤ ≤ =
′ = − <∑  and 00 0.I =  

 

Objective function (E.1) is the total of fixed and variable order costs at the supplier, 

inventory holding costs at the supplier and retailers as well as transportation costs. 

Constraints (E.2) and (E.3) are inventory balance equations for the supplier and 

retailers, respectively. Constraints (E.4) stipulate that a fixed order cost is incurred 

whenever the supplier places an order. Constraints (E.5) ensure that the amount of 

inventory carried at a retailer cannot exceed its maximum level. These constraints 

are defined by Archetti et al. (2007b) since they consider a variant of PDR in which 

there are constraints on the amount of inventory that can be carried in any period. 

Thus, constraints (E.5) must be removed from F-ML to obtain a valid formulation 

for the PDR problem. Constraints (E.6) guarantee that a retailer is visited in a period 

in which it is replenished. Constraints (E.7) ensure that the total amount shipped to 

the retailers in a period cannot exceed the capacity of the vehicle. Constraints (E.8)–

(E.12) are exactly the same as (6.10)–(6.14), respectively. Indeed, constraints 

(E.11)–(E.18) are not needed in formulating the problem but they are shown to be 

valid inequalities and added to F-ML a priori by Archetti et al. (2007b) to strengthen 

the formulation. Specifically, constraints (E.11), (E.12) and (E.18) are for 

strengthening routing part of the problem while constraints (E.13)–(E.17) are for 

strengthening inventory replenishment part of the problem. Constraints (E.19)–

(E.22) are for integrality while (E.23)–(E.25) are for nonnegativity of variables. 
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