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ABSTRACT

ONE-WAREHOUSE MULTI-RETAILER PROBLEM UNDER INVENTORY
CONTROL AND TRANSPORTATION POLICIES

Solyali, Oguz
Ph.D., Department of Industrial Engineering
Supervisor: Assoc. Prof. Dr. Haldun Siral

December 2008, 164 pages

We consider a one-warehouse multi-retailer system where the warehouse orders or
receives from its supplier and replenishes multiple retailers with direct shipping or
multi-stop routing over a finite time horizon. The warehouse has the knowledge of
external (deterministic) demands at the retailers and manages their inventories while
ensuring no stock-out. We consider two problems with direct shipping policy and
two problems with routing policy. For the direct shipping policy, the problem is to
determine the optimal replenishments for the warehouse and retailers such that the
system-wide costs are minimized. In one problem, the warehouse decides about
how much and when to ship to the retailers while in the other problem, inventory
level of the retailler has to be raised up to a predetermined level whenever
replenished. We propose strong mixed integer programming formulations for these
problems. Computational experiments show that our formulations are better than
their competitors and are very successful in solving the problems to optimality. For
the routing policy, the problem is to decide on when and in what sequence to visit
the retailers and how much to ship to aretailer so asto minimize system-wide costs.
In one problem, the warehouse receives given amounts from its supplier while in the
other the warehouse decides on its own replenishments. We propose branch-and-cut



algorithms and heuristics based on strong formulations for both problems.
Computational results reveal that our procedures perform better than their
competitorsin the literature for both problems.

Keywords: One-warehouse multi-retailler system, Lot sizing, Inventory-routing,
Strong formulation, Branch-and-cut



0z

ENVANTER KONTROL VE ULASIM POLITIKALARI ALTINDA BIR
TEDARIK Ci-COK LU PERAK ENDECI PROBLEM1

Solyali, Oguz
Doktora, Endustri Muhendisligi Bolumu
Tez YOneticisi: Dog. Dr. Haldun Sural

Aralik 2008, 164 sayfa

Bu tezde, bir tedarikcinin ¢ok sayidaki perakendecinin envanterini bir planlama
ufku boyunca yonetmes islenmistir. Tedarik¢i perakendecilerin tahminlerle
belirlenmis musteri taleplerini bilmektedir; kendisinin ve perakendecilerin envanter
seviyesinin sifirin altina dismesine izin vermeden sistemi yonetmektedir. Dagitimin
dogrudan sevkiyatla veya rota marifetiyle yapildig1 ikiser problem ele alinmustir.
Dagitimin dogrudan sevkiyatla yapildigi problemlerde, tedarikginin ne zaman, ne
kadar mal siparis verecegine ve eldeki miktarin kimlere dagitilacagina sistemin
toplam maliyetini enazlayacak sekilde karar verilmektedir. Dogrudan sevkiyat
problemlerinin birinde, perakendecilere ne zaman ne kadar mal verilecegine
tamamen tedarikci karar verirken, digerinde tedarikci ziyaret ettigi perakendecinin
elindeki envanterini tavan seviyesine ¢ekecek sekilde mal verir. Bu problemler icin
gucli karisik tam sayili programlama formilasyonlarr gelistirilmistir. Sayisal
sonuclar, dnerilen formilasyonlarin literatiirdeki rakiplerinden daha iyi oldugunu ve
blylk 6lgekli problemlerin en iyi ¢ozimini bulmada etkin oldugunu gostermistir.
Rotayla dagitimin yapildig1 problemlerde, perakendecilerin ne zaman ve hangi sira
ile ziyaret edilecegi ve ziyaret sirasinda perakendecilere ne kadar mal verilecegi
kararlar1 sistemdeki toplam maliyeti enazlayacak sekilde verilmektedir. Bu

Vi



problemlerin birinde tedarikciye her donemde sevkiyat yapilirken, digerinde
sevkiyatin sikligina ve igerigine tedarikginin kendisi karar vermektedir. Bu
problemler igin gugli formulasyonlara dayal: dal-kesi algoritmalar: ve sezgiseller
Onerilmistir. Sayisal deneyler, her iki problem icin de dal-kesi algoritmasinin ve
sezgiselin literatirdeki rakiplerinden daha iyi galistigim gostermistir.

Anahtar Kelimeler: Bir tedarik¢gi-coklu perakendeci sistemi, Kafile buyUklugu
problemi, Envanter-rotalama, Guglu formtlasyon, Dal-kesi
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CHAPTER 1

INTRODUCTION

Supply chain management is a systems approach where different planning problems
(inventory management, production planning, distribution planning, etc.) of several
parties (suppliers, manufacturers, warehouses, retailers, etc.) can be integrated and
viewed as a whole. Numerous studies such as Chandra (1993), Fumero and
Vercellis (1999), and Boudia and Prins (2007) have investigated integration of
different functions within the echelons of the system and have reported significant
cost savings. Boudia and Prins (2007), for instance, report cost savings ranging
from 15% to 30% achieved by an integrated production and distribution planning
over an uncoordinated approach (where the output of production planning is the
input for distribution planning, or vice versa). A review of such studies can be found
in Thomas and Griffin (1996), Sarmiento and Nagi (1999) and Baita et al. (1998).
Most of these studies have considered integration of inventory/production and

transportation/distribution management issues, which is also the focus of this study.

Traditionally, inventory and transportation management issues are treated separately
(see Silver et al., 1998; Toth and Vigo, 2002). According to Timme and Williams-
Timme (2003), inventory accounts for around 37%, 56% and 62% of net operating
assets in manufacturing, retail and distribution industries, respectively.
Transportation sector, on the other hand, accounts for around 10% of gross domestic
product (GDP) in European Union (Salani, 2006) and around 16% of GDP in
Canada (Canada Research Chair in Distribution Management, 2008). Considering
al these figures together, one can say that there is a huge opportunity to obtain
significant cost savings by taking an integrated approach to inventory and
transportation management since frequent (rare) inventory replenishment decreases
(increases) the inventory carrying cost but increases (decreases) the transportation

cost. Moreover, a recent survey conducted to analyze the role of inventories from



the manager’s point of view has revealed that an integrated approach with different
functions of the companies is required for an efficient inventory management
(Chikan, 2008). In the following, we present an integrated inventory/production and
transportation/distribution management system that we address, our motivation and
purpose in addressing such a system, and finally the outline of the thesis.

1.1 System under study, motivation and purpose

In this study, we consider a basic two-level supply chain structure, namely
arborescent or distribution structure, composed of one warehouse and multiple
retailers in which the warehouse orders or receives a single commodity from its
supplier and replenishes multiple retailers with direct shipping (i.e. visiting a single
retailer on a trip from the warehouse) or multi-stop routing (i.e. visiting several
retailers on a trip from the warehouse) over a finite time horizon. Such a supply
chain frequently occurs, for instance, when (i) the warehouse and retailers are
different echelons of the same company or (ii) they do not belong to the same
company but the warehouse (vendor) manages the inventories of the retailers in a
vendor managed inventory (VMI) setting. VMI is different from the traditional
customer (retailer) managed systems in that instead of customer orders in the
traditional system, vendor (warehouse) decides on when and how much to replenish
its customers inventories while guaranteeing no stock-out at its customers
(assuming a deterministic setting). It provides several benefits to both vendors and
customers. For example, customers do not have to alocate their resources to
inventory management and would have improved service levels due to the vendor’s
no stock-out guarantee. Vendor, on the other hand, is able to better utilize its own
resources as it has the full authority over the system. To be able to manage the
inventories of its customers, vendor needs timely information on the inventory
status of its customers and it is met with the help of latest advances in information
and communication technologies. |mplementation of VMI systems has generated
favorable results for the involved parties in areas such as industrial gas industry



(Campbell et al., 2002; Campbell and Savelsbergh, 2004), supermarket chains
(Mongelluzo, 1998) and grocery industry (Ross, 1998). For detailed information on
benefits of VMI systems and their application areas, we refer the reader to
Cetinkaya and Lee (2000), and Campbell et al. (2002). Note that we do not deal
with the allocation of (dis)benefits of VMI system to the involved parties and this
issue is, therefore, out of scope of this thesis. In addition, even though we consider a
single commodity in the system, it is also applicable to systems involving multiple
commodities when those commodities do not create any resource conflicts, and thus
can be aggregated and treated as a single commodity.

We present an integrated view that simultaneously considers management of the
shipments from the warehouse to the retailers and/or from the supplier to the
warehouse in addition to inventory management at the system. We specifically
address integrated inventory and transportation management problems in one
warehouse multi-retailer systems where we assume a periodic review system in that
al information and decisions occur in discrete points in time. In addition, we
assume that the warehouse has the complete knowledge of time-varying external
(deterministic) demand occurring at the retailers and manages the inventories of the
retailers while ensuring no stock-out (i.e. backlogging is not allowed) both at the
retailers and at itself. We consider two problems with direct shipping policy and two
problems with multi-stop routing policy.

Two problems with direct shipping policy

In the problems with direct shipping policy, we consider a two-level production-
distribution system in which replenishment decisions are given for all the facilities
(i.e. both warehouse and retailers) and there are no capacity restrictions on the
replenishment quantities from the supplier to the warehouse as well as on the
shipment quantities from the warehouse to the retailers. This fundamental structure
is not only important in its own right but also arises as a subproblem in many more
complex systems. For example, it arises in the one-warehouse multi-retailer systems
with multi-stop routing of vehicles for the shipments from the warehouse to the



retailers instead of the direct shipping policy (e.g. Fumero and Vercellis, 1999; Bard
and Nananukul, 2008). It also arises in one warehouse multi-retailer systems with
capacity restrictions imposed on replenishment quantities to the warehouse and/or to
the retailers (e.g. Robinson and Lawrence, 2004; Federgruen et a., 2007), or in
multi-echelon systems involving production-distribution structure (e.g. Veinott,
1969; Kalymon, 1972; Diaby and Martel, 1993). Thus, contributions to a relatively
fundamental system will contribute to the more complex systems as well. Indeed,
one-warehouse multi-retailer systems with direct shipping policy can be considered
as a generalization of single-level lot sizing problems since production/order
decisions at the warehouse level in the former should be given together with the
replenishment decisions at the retalers level in the latter. The two problems with
direct shipping policy differ from each other only in the inventory control policy at
theretailers.

Problem with endogenous policy

In one problem, we consider an endogenously defined inventory control policy at
the retailers so that the warehouse has the complete control on when and how much
to ship to the retailers. The problem, referred to as the one-warehouse multi-retailer
problem with endogenous policy, is to decide on how much and when to order for
the warehouse as well as how much and when to ship to the retailers so that total
system-wide costs composed of variable and fixed order costs, inventory holding
costs, and transportation costs are minimized. The variable order cost incurred per
unit can be considered as the purchasing cost and the fixed order cost paid whenever
an order is placed for the warehouse can be considered as the order processing cost.
The inventory holding cost isa linear function of the ending inventory levels, which
is the most widely used measure in the literature. Transportation cost is a fixed cost
incurred whenever aretailer is replenished and it can be considered as a cost paid to
a third party logistics provider shipping the goods from the warehouse to the
retailers.



Problem with order-up-to level policy

In the other problem, however, we consider an exogenously defined inventory
control policy at the retailers where the inventory level of the retailer has to be
raised up to its prespecified maximum level whenever replenished by the warehouse
(called order-up-to level policy). This problem, referred to as one-warehouse multi-
retailer problem with order-up-to level policy, is the same as the one with
endogenous policy in other respects. The order-up-to level policy is a kind of
deterministic application of the well-known stochastic (s, S) policy (see e.g. Silver
et a., 1998) and it can be observed in practice in the replenishment of tanks of
industrial gas dealers, shelf-spaces of supermarkets and vending machines where
the tanks, shelf-spaces or vending machines are filled up to their capacities
whenever replenished. While the order-up-to level policy isimposed by the retailers
(customers) to the warehouse (vendor) in above-described contexts, the warehouse
is free to choose the time and quantity of replenishments to the retailers as being in
systems with endogenous policy when the retailers do not have an inventory holding
capacity and they consent to such a policy. Obviously, the order-up-to level policy
is a more restrictive policy than the endogenous policy and this may cause larger

total system-wide costsin the former.

Two problems with multi-stop routing policy

In the problems with multi-stop routing policy, we address a two-level system in
which the warehouse either receives given amounts from its supplier or decides on
when and how much to order/produce, and then ships to the retailers using multi-
stop routes. Such systems with routing policy arise in the same contexts described
above for the direct shipment problems but especially when less-than-truck-load
shipments to the retailers are concerned. One-warehouse multi-retailer systems with
multi-stop routing policy can also be considered as a generalization of classical
vehicle routing problems (see e.g. Toth and Vigo, 2002) in that the two problems
with routing policy considered in this thesis involve inventory management issues
in addition to vehicle routing issues over a finite horizon. The two problems with



routing policy differ from each other in having production/order decisions at the

warehouse or not.

Problem with no order decision at the warehouse

In one of the settings where a multi-stop routing is desirable, we consider the same
problem of one-warehouse multi-retailer problem with order-up-to level policy with
routing instead of the direct shipment policy. Also, different from the corresponding
direct shipment problem, we consider capacity restrictions on the shipment
guantities from the warehouse to the retailers due to vehicle capacity and a limited
amount made available at the warehouse in each period. The problem, referred to as
the inventory routing problem (i.e. no production/order decisions at the warehouse)
with order-up-to level policy, isto decide on the delivery times and quantities to the
retailers and routing of vehicles such that the total system-wide costs composed of
inventory holding costs and transportation costs are minimized. The inventory
holding cost is a linear function of ending inventory levels while the transportation
cost is incurred based on the distance travelled by vehicles, which is the most

widely used measure in the literature.

Problem with order decision at the warehouse

In the other problem, we consider the same problem except that an endogenous
policy is allowed instead of the order-up-to level policy and there is a decision
problem of how much and when to produce/order at the warehouse instead of a
given amount made available at the warehouse in each period. The problem,
referred to as the production-distribution-routing problem (i.e. production/order
decisions should be given at the warehouse), is to determine how much and when to
order for the warehouse, and the replenishment quantities, delivery times and
vehicles' routes to the retailers such that total costs comprised of inventory holding
costs, order costs and transportation costs are minimized. Inventory holding and
transportation costs are the same as described above while order cost is composed
of a variable part incurred for each unit ordered for the warehouse (can be
considered as the purchasing cost) and a fixed part incurred whenever an order is



placed for the warehouse (can be considered as the setup cost or order processing
cost). Note that this problem is a generalization of the one-warehouse multi-retailer
problem with endogenous policy in that it allows multi-stop routing and there are

capacities over the replenishment quantitiesto retalers.

In this thesis, our aim is to address the above-mentioned problems by proposing
effective mathematical programming formulations and solution algorithms. We try
to solve these problems to optimality because this not only yields the best solutions
but also helps in gauging the quality of solutions attainable by heuristics if
necessary. Instead of formulating the problems using standard (mostly weak)
mathematical programming formulations, our approach is to develop their strong
representations so that exact (i.e. optimal) solutions to the problems can be obtained
efficiently. Strong formulations are vital in thisregard since they lend themselves to
exact solution even using an off-the-shelf optimization solver or they can be used
within advanced decomposition/cutting plane algorithms due to their strong bounds.
For the two-level problems considered in this thesis, there are very few to a certain
extent or even no studies using strong formulations and attempting to obtain exact
solutions to the problems. We first investigate the one-warehouse multi-retailer
problems with direct shipping policy. We propose strong formulations for these
problems which are both theoretically and empirically better than the existing ones.
We show that those formulations can be used to solve mediunvlarge size instances
(in terms of number of retailers and length of planning horizon) to optimality in
reasonable time using an off-the-shelf optimization solver. Second, we consider
problems with multi-stop routing policy. Since these problems are much more
difficult than their direct shipment counterparts, we propose strong formulations and
embed them into advanced cutting plane based algorithms (called branch-and-cut),
where some inequalities (cutting planes) are dynamically added to the formulations.
Moreover, as multi-stop routing policy adds a significant complexity to the problem
and these problems can only be solved exactly up to a certain size, we use our
strong formulations in conjunction with an idea to get rid of the complexity due to
routing so as to develop heuristics for these problems.



We assume that deterministic external demands occur at the retailers over a
planning horizon or in other words, our models accept forecasted demand data as
input. As the demand is mostly stochastic in real-life, such deterministic multi-
period models are mostly used within a rolling horizon framework (see e.g. Chand
et al., 2002), which provide approximations to actua stochastic problems. Bitran
and Leong (1992), for instance, have shown that the deterministic approximations
under rolling horizon framework are quite satisfactory (3% error) in the context of a
multi-period multi-item production planning problem. Dhaenens-Flipo and Finke
(2001) have proposed a deterministic multi-period mathematical programming
model for a real-life production-distribution problem and solved it to optimality
with an off-the-shelf optimization solver. Usage of the model has improved the
distribution and lead to the closing of some warehouses. Besides, the studies on
one-warehouse multi-retailer systems with stochastic demand ignore many other
aspects emerging as the features of real-life such as capacities, fixed (transportation)
costs and multi-stop routing (see the references in Dogru, 2006). In this sense, our
deterministic approximations via powerful mathematical programming seem
promising to deal with real-life problems. Our models with direct shipping policy
are for medium-term (tactical) planning and they can be used, for example, in
constructing master production schedules while the models with routing policy are
aimed at short-term (operational) planning and can be used in detailed production
and distribution planning.

Another important issue addressed in this study is about initial inventories at the
warehouse. Almost all of the literature related to the problems considered in this
thesis assumes zero initial inventories. We consider nonzero initial inventories as an
important issue and explicitly incorporate them into our models because they cannot
be trested as zero since the models proposed are mostly used within a rolling
horizon framework, implying presence of initial inventories. Nonzero initial
inventories may affect the complexity of the problem. For instance, the only known
easy multi-level lot sizing problem, the one with a serial structure for which
Zangwill (1969) proposed a polynomial time recursive algorithm (Pochet and



Wolsey, 2006) assumes zero initial inventories. It is shown that Zangwill’s
recursion does not apply in the presence of initial inventories at echelons other than
the retailer level and its adaptation accordingly results in an exponential time
algorithm (van Hoesel at a., 2005). Therefore, we explicitly incorporate nonzero

initial inventories into our models.

1.2 Outline

The rest of the thesis is organized as follows. In Chapter 2, we present some
preliminaries and a literature review on studies related with the problems considered

in this thesis to make it self-contained as much as possible.

In Chapter 3, we consider the one-warehouse multi-retailer problem with
endogenous inventory control policy at the retailers. We present two mixed integer
programming (MIP) formulations from the literature and propose a new stronger
formulation for the problem. We present theoretical and empirical results on the
strength of those formulations both in the presence and absence of initial inventory
at the warehouse. We also show important theoretical results about the following
cases: (i) when there is a single retailer, (ii) when the warehouse does not keep
inventory at all. For case (i), our new formulation is tight in that its linear
programming (LP) relaxation yields integer optimal solutions. For case (ii), the new
formulation and an existing one are LP equivalent. Furthermore, we perform an
experimental analysis over a set of randomly generated instances to assess the
performance of formulations against each other and to observe whether these
formulations are able to solve large instances using an off-the-shelf optimization

solver.

Chapter 4 addresses the one-warehouse multi-retailer problem with order-up-to
level inventory control policy at the retailers (exogenously defined policy). We
show that the problem addressed is NP-hard and propose strong MIP formulations



for the problem under zero and nonzero initial inventory at the warehouse. For the
case of zero initial inventory at the warehouse and a single retailer, we show that
our formulation is tight. We test the performance of our formulations over a set of
randomly generated instances against a standard formulation of the problem. We
also computationally compare the VMI system (computed by solving MIPs) over
the traditional retailer-managed system.

Chapter 5 is devoted to the inventory routing problem with order-up-to level policy
where shipments to retailers are performed by multi-stop routing instead of direct
shipment. We show that even the feasibility problem is NP-complete in the strong
sense. We propose a branch-and-cut algorithm based on a strong MIP formulation
for the problem. We also develop a mathematical programming based heuristic
algorithm using the strong MIP formulation. We perform benchmarking by
comparing the performance of our algorithms (both branch-and-cut and heuristic)
with their competitors in the literature over a set of test instances. We discuss how
to extend our approach to the problems with different inventory control policies at
the retailers.

We consider the production-distribution-routing problem in Chapter 6. We propose
a strong MIP formulation for the problem and develop a branch-and-cut algorithm
based on the strong formulation. Also, we adapt the mathematical programming
based heuristic in Chapter 5 to the production-distribution routing problem. We
conduct experimental analysis over several test problems to evaluate the
performance of our branch-and-cut and heuristic algorithms against their
competitorsin the literature.

We conclude the study by briefly stating our contributions and giving future
research directions in Chapter 7.
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We should note that each chapter of this thesis is self-contained so that the indices,
parameters and variables defined in a specific chapter are merely valid for that
given chapter.
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CHAPTER 2

PRELIMINARIESAND LITERATURE REVIEW

In this chapter, we first give some preliminaries necessary for the comprehension
and completeness of the thesis. Then, we review the related literature on one-
warehouse multi-retailer problem with different inventory control policies,
inventory routing problem and production-distribution-routing problem. In addition
to these, we give information about some related problems such as single-level and
multi-level lot sizing problems as well as vehicle routing problem. In the following
chapters, we briefly cite the pertinent studies. We should mention that we use
warehouse/supplier/plant as well as retailer/customers mostly interchangeably in the
sequel. If they refer to the facilities at different levels, the distinction will be clear

from its context.

2.1 Preliminaries

A mixed integer (linear) program (MIP) is a mathematical program composed of a
linear objective function and linear constraint(s) where some or all of the decision
variables are restricted to be integers. Although it is quite powerful in modeling
various real-life problems, it is well-known that solving a MIP to optimality is
difficult, namely an NP-hard problem. Nevertheless, in order to solve a MIP to
optimality, a general implicit enumeration technique, called branch-and-bound, has
been proposed. The branch-and-bound ensures optimality by actually enumerating
all the possible solutions implicitly. Linear programming (LP), which can be solved
to optimality efficiently, is an important component of general-purpose branch-and-
bound algorithms since LP is solved at each node of the branch-and-bound tree to
obtain valid lower bounds (assuming a minimization problem throughout this

chapter).
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Since the lower bounds are crucial for the success of a branch-and-bound algorithm,
one ideally desires to have a MIP formulation with an LP relaxation objective value
close to or even equal to the optimal objective value of the MIP formulation. We
call a MIP formulation as strong when its associated LP relaxation objective value
is close to its optimal objective value. For a MIP formulation to be stronger than
another one, the former should have an LP relaxation objective value closer to the
optimal objective value than the latter. A formulation is called tight whenever the
LP relaxation of that formulation guarantees an integer optimal solution. Whenever
a formulation is tight, it means that that formulation defines the convex hull of
feasible solutions of the corresponding problem or that formulation gives the

complete linear description of the corresponding problem.

One way to obtain a stronger formulation is to add valid inequalities (i.e. those
inequalities that cut fractional solutions but not integer solutions) into the MIP
formulation at hand. Assuming that there exist valid inequalities for a specific
formulation, if these valid inequalities are polynomial in number then it is mostly
better to add them to the formulation a priori, whereas if valid inequalities are
exponential in number then it is better to add them dynamically which is actually
referred to as branch-and-cut rather than branch-and-bound. Branch-and-cut
algorithms are indeed branch-and-bound algorithms where valid inequalities are
usually added dynamically in a cutting plane fashion to each node of the branch-
and-bound tree. In addition to the two main decisions in classical branch-and-bound
algorithms, namely branching variable and node selection decisions, one has to
decide on how often to look for violated inequalities and how to find violated
inequalities, called separation problem, if there is any at all in branch-and-cut
algorithms.

Another way to obtain a stronger formulation is to try to better represent a problem
utilizing its solution or structural features (e.g. knowing the optimality properties).
This mostly requires defining new variables (variable redefinition) which are
usually larger in number than variables needed in a standard formulation. Obtaining
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a strong formulation via variable redefinition (also called strong extended
formulation), however, has several advantages. First, certain sizes of such strong
formulations are even solvable to optimality using off-the-shelf optimization solvers
(i.e. MIP software systems) which does not require any advanced programming
language knowledge. This also implies that one can easily add several side
congtraints to the strong formulations and solve a problem with additional issues to
optimality by means of a solver. Second, even if it is not possible to obtain exact
solutions in reasonable times, one can use these strong formulations within
advanced customized cutting plane/decomposition algorithms since they provide
lower bounds close to the optimal objective value. One possible disadvantage of
strong formulations within a branch-and-bound algorithm may be larger number of
variables (may be constraints as well) due to variable redefinition compared to a
standard formulation since it will take longer time to solve LP relaxations in the
tree.

Although we describe above two ways of obtaining strong formulations, this does
not mean that these two ways are mutually exclusive. Of course, one can add valid
inequalities to a strong (extended) formulation as well. Branch-and-cut algorithms
and strong formulations dominate the current MIP literature as they are very
effective and useful in solving a MIP to optimality (Wolsey, 2003; Pochet and
Wolsey, 2006). The focus of the book by Pochet and Wolsey (2006), for example, is
on recognizing subproblems of production planning problems and better
representing these subproblems via either a strong reformulation (variable
redefinition) or strong valid inequalities so that the solution of the problem to
optimality may be possible.

In the last decade, MIP software systems have dramatically been improved (Bixby
et al., 2000; Atamtirk and Savelsbergh, 2005) such that they become powerful tools
for solving (mixed) integer programs to optimality. This is mainly due to the
improvements in LP solvers and incorporation of effective cutting planes as well as
primal heuristics, which significantly improve lower and upper bounds,
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respectively. The state-of-the-art commercial MIP software systems, such as
CPLEX, LINDO and Xpress-MP, are able to solve MIPs with thousands of integer
variables within reasonable times (Atamtirk and Savelsbergh, 2005). Moreover,
some of these software systems involve environments like Concert Technology and
Xpress-Mosel that ease the development of models and algorithms. There are also
noncommercial MIP software systems like ABACUS, GLPK, SYMPHONY, etc.
but they are still behind the commercial ones with regard to speed and robustness.
For a detailed overview on noncommercial MIP software systems, one can refer to
Linderoth and Ralphs (2006). In the following, we give brief information about MIP
solver of CPLEX 10.1 and Concert Technology in CPLEX, which we use in the
succeeding chapters to solve MIPs.

MIP solver of CPLEX 10.1 is basically a branch-and-cut algorithm, default version
of which, automatically determines when and how often to look for adding a certain
class of valid inequality. Available classes of inequalities in CPLEX 10.1 are clique,
cover, disunctive, flow cover, flow path, Gomory, GUB cover, implied bound and
mixed integer rounding inequalities (see Atamtirk and Savelsbergh, 2005 for
information on these inequalities), which proved to be effective for general (mixed)
integer programs. Concert Technology 2.2 available in CPLEX 10.1 can be used by
anyone with some knowledge on C++, C#, Java or Visual Basic to develop
customized branch-and bound based algorithms easily. The advantages of using
Concert Technology are the chance of rapidly developing an algorithm, not being
having to code a branch-and-bound tree structure, which may be difficult, and the

opportunity to use CPLEX’s inequalities with no coding effort.

2.2 Literaturereview

In the following, we make literature reviews in several areas related with the
decision problems we encounter. However, the aim is not to give an exhaustive
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review, instead we highlight major achievements and describe closely related
studies in detail while briefly mentioning different approaches.

2.2.1 Single-level lot sizing

One-warehouse multi-retailer systems we consider involve lot sizing issues since
there is an associated replenishment problem for each facility (warehouse and
retailers). It requires a decision regarding when and how much to order (or ship in
terms of transportation) to each facility. Thus, it is pertinent to start with briefly
reviewing literature on single-level problems and then to extend the review to multi-

level problems, in particular one-warehouse multi-retailer problem.

The most basic problem in the single-level lot sizing literature is the well-known
single-item uncapacitated lot sizing problem (ULS) where the problem is to
determine when and how much to produce (or order) so as to satisfy external
deterministic dynamic demands over a finite time horizon. Since we will propose
strong formulations in the following chapters, based on those formulations which
are developed for ULS, we would like to give brief information on strong
formulations developed for ULS. There are two fundamental strong formulations
known for ULS: transportation formulation (TF) and shortest path formulation
(SPF): Krarup and Bilde (1977) develop the TF (they called it plant location
formulation) and show that it always gives integral solution when its linear
programming relaxation is solved. Eppen and Martin (1987) develop SPF for a
multi-item capacitated lot sizing problem and show that it describes the convex hull
of feasible solutions of ULS. Below, we give TF and SPF formulations.

Consider a finite time horizon T with discrete periods t ={1,2,..., T} . Let r, be the

demand in period t, f; be the fixed order cost in period t, h; be the holding cost
incurred for each unit held in stock at the end of period t, p; be the unit order cost in

period t, and ¢, be the unit cost of ordering in period g to satisfy the demand in
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period t. Defining W, as the quantity ordered in period g to satisfy the demand in

period t, and z as 1 if an order occurs in a period t and O otherwise, the TF

formulation is as follows.

T T T
TF:Min § § ¢, W, +Q f.z (2.1)
q=1 t=q t=1
st.
t
aw, =r 1EtET (2.2)
q=1
W, £1,2, 1EQELET (2.3)
W, 2 0 1EQELET (2.4)
z1 {03 1ELET (2.5)

o]

where ¢, = p, +& _h-

Objective function (2.1) is the total of fixed and variable ordering costs and
inventory holding cost. Constraints (2.2) ensure that the demand in period t is
satisfied by ordering through the interval from period 1 to period t. Constraints (2.3)
stipulate that a fixed order cost isincurred if an order is placed. Constraints (2.4) are
for nonnegativity of variables while constraints (2.5) are for integrality of variables.

Additional parameters and variables are defined for SPF as follows. Let R, be the
demand from period t through period k, e, be the cost of satisfying a fraction of
demand from period t through k. Defining X, as the fraction of demand from

period t through k that is satisfied in period t, SPF is as follows.

T T T

SPF:Min § 8 & X, +a iz (26)
t=1 k=t t=1

st. (2.5) and
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o k o k-1
where R, = Qa e T phRata AR and & :}o otherwise.

Objective function (2.6) is the same as (2.1). Constraint (2.7) and (2.8) are flow
balance equations of the shortest path network. Constraints (2.9) stipulate that a
fixed order cost is incurred if an order is placed. Constraints (2.10) are for
nonnegativity of variables. It is shown by Denizel et al. (2008) that both
formulations give the same LP relaxation objective values even if more complicated
congtraints are added to ULS. Thus, these formulations and their equivalence result
in the single-level case enables us the opportunity to derive different formulations
based on TF and/or SPF for the two-level one-warehouse multi-retailer problems.

ULS and its variants have been extensively studied in the literature and one can
refer to Pochet and Wolsey (2006) for a detailed analysis of these problems.

2.2.2 Two-level lot sizing

We now review one-warehouse multi-retailer (OWMR) problem with deterministic
demand occurring at retailers and its two special cases. One of these special casesis
the single retailer case, referred to as single-warehouse single retailer (SWSR)
problem. The other is where the warehouse acts as a crossdocking or transshipment
point (i.e. no inventory is kept at the warehouse), referred to as joint replenishment
problem (JRP).
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Review on the OWMR problem

Studies on infinite horizon OWMR problems commonly assume a constant
deterministic demand rate and try to minimize the long-run average cost of the
system. They consider a specific policy (mainly stationary nested) to approximate
the optimal policy. Examples to such studies are Schwarz (1973), Roundy (1985),
Gallego and Simchi-Levi (1990), and Y ao and Wang (2006). For arecent review on
infinite horizon or continuous review OWMR problems, one may refer to Yao and
Wang (2006).

Federgruen and Tzur (1999) propose a time-partitioning heuristic for the multi-item
OWMR problem, which can be designed to give a certain performance guarantee.
The heuristic divides the problem into smaller interval problems that are modeled
using echelon stock formulation and solved to optimality by a Lagrangian relaxation
based branch-and-bound algorithm. The smaller problems are then merged into a
solution to the original problem. Levi et al. (2008) formulate the OWMR problem
with a general inventory holding cost structure and stationary fixed order cost at
retailers as a MIP, whose LP relaxation is used to develop an approximation
algorithm with worst case performance guarantee of 1.8 times the optimal objective
value. Chan et al. (2002) address a variant of the OWMR problem where a
piecewise linear concave order cost (modified all-units discount order cost) is
incurred for the shipments to the warehouse (retailers) acting as a crossdocking
point. They show that zero-inventory ordering (ZIO) policy has a worst case
performance guarantee of 4/3 times the optimal objective value, and propose an LP-
based heuristic which finds a nearly-optimal ZIO policy as finding the optimal ZIO
policy itself is an NP-hard problem. Jin and Muriel (2006) propose two Lagrangian
decomposition algorithms based on a standard MIP formulation for a variant of the
OWMR problem where all the cost parameters are constant over time and there are
cargo constraints for the replenishment quantities to both the warehouse and the
retailers requiring enough number of trucks to be dispatched.
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Review on the JRP

Contrary to the limited literature on the OWMR problem, there are a vast number of
studies for the JRP. Note that the JRP is also called coordinated (replenishment) lot
sizing problem or lot sizing with joint (or major) setups in the literature. Zangwill
(1966) and Kao (1979) propose dynamic programming algorithms while Erengtic
(1988) develops a hybrid algorithm composed of dynamic programming and
branch-and-bound. Those mentioned studies, however, can only solve instances
with a few number of periods and retailers (or items) to optimality. Remarkable
progress in solving larger sized instances is achieved by developing algorithms
based on strong mathematical programming formulations for the JRP, which
capitalize on tight representations of the uncapacitated single-item lot sizing
problem (Wagner and Whitin, 1958). Joneja (1990) is the first to formulate the JRP
as a shortest path based formulation. Kirca (1995) proposes a dual ascent based
branch-and-bound algorithm using this formulation. Robinson and Gao (1996) isthe
first to develop a transportation based formulation and propose another dual ascent
based branch-and-bound algorithm to solve this formulation. Both algorithms are
currently the best exact algorithms for the JRP (Gao et al., 2008). Several studies
empirically compare the LP relaxation objective values of shortest path and
transportation based formulations and find the same values on a wide set of test
instances (Gao et a., 2008; Robinson et a., 2009). There are also several studies
considering heuristic solution approaches (see e.g. Joneja, 1990; Boctor et al., 2004,
Federgruen et al., 2007). Interested reader can refer to Robinson et al. (2009) for a
recent review on the JRP.

Review on the SWSR problem

The SWSR problem is also the two-level case of the uncapacitated multi-level lot
sizing problem in series (Zangwill, 1969). Zangwill (1969) proposes a DP algorithm
that runsin O(T?®) time for the SWSR problem with general concave costs where T
is the horizon length. The DP algorithm of van Hoesel et al. (2005) for the two level
case runsin O(T’) under general concave production, inventory and transportation

costs with stationary (i.e. constant) production capacity at the warehouse level. Lee
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et a. (2003) consider a variant of SWSR where a fixed cost plus fixed cost per
vehicle dispatched (stepwise cargo cost structure) is associated with the shipments

from the warehouse to the retailer. They develop a DP algorithm running in O(T?®)
when backlogging is allowed and in O(T*) when backlogging is not allowed. Jin

and Muriel (2006) propose a DP algorithm that runsin O(T®) time when there is a
single retailer in their problem. Solyali and Siral (2008a) consider a variant of
SWSR where the retailer employs order-up-to level policy. They propose a DP
algorithm running in O(T?®) time for the problem. Also, they present a pseudo-

polynomial DP algorithm to determine the optimal order-up-to level besides the
replenishment quantities to the warehouse and retailer.

2.2.3 Multi-level lot sizing

Based on the product structure, multi-level lot sizing problems can be classified into
four groups. series structure (i.e. each node has only one predecessor and one
successor), assembly structure (i.e. each node has only one successor), general
structure and production-distribution/arborescent structure (i.e. each node has only
one predecessor). Among these, only the uncapacitated multi-level lot sizing
problem in series is solvable in polynomial time (Zangwill, 1969). On the other
hand, the problem with assembly structure is still an open problem such that neither
a polynomial time algorithm nor an NP-hardness result exists for it (Pochet and
Wolsey, 2006). For detailled information on these problems, one can refer to
Chapter 13 of Pochet and Wolsey (2006).

Zangwill (1969) considers an uncapacitated multi-level (say, L levels) lot sizing
problem in series and proposes a DP algorithm for solving the problem, which runs

in O(T®+(L- 2)T*) time (van Hoesel et al., 2005). van Hoesel et al. (2005) extend

Zangwill’s work to a more general problem in which a stationary capacity on

production is considered in the first level. To the best of our knowledge, van Hoesel
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et a. (2005) is the only study that deals with initial inventories at levels other than
last level (retailer level).

For multi-level lot sizing problem with assembly or general structure, echelon stock
concept plays an important role such that the strongest M1P formulations up to now
are obtained using echelon stock concept. Echelon stock idea enables one to
separate lot sizing problem of each item in the product structure and thus each of
these lot sizing problems can be represented using transportation or shortest path
formulations given in Section 2.2.1 which gives the strongest formulations (Stadtler,
1996 and 1997). These formulations are related with the echelon stock formulation
proposed for the OWMR problem by Federgruen and Tzur (1999).

Our interest in multi-level lot sizing problem with arborescent structure is due to its
being a generalization of the OWMR problem. For this problem, Veinott (1969) and
Kalymon (1972) develop exact dynamic programming and implicit enumeration
algorithms, respectively, which are exponential in running time. Diaby and Martel
(1993) propose a Lagrangian relaxation algorithm based on a standard formulation
to the problem where general piecewise linear costs are incurred for the shipments.

2.2.4Vehiclerouting problem

The problems with multi-stop routing policy involve decisions regarding the routing
of vehicles such that the sequence of customers to be visited should be decided. The
classical vehicle routing problem (VRP), a strongly NP-hard problem, is the
problem of finding a collection of routes with each starting from the depot, visiting
a subset of customers without exceeding vehicle capacity and returning back to the
depot such that total distance is minimized. VRP has a close connection with
inventory routing problem and production-distribution-routing problem in that they
can be seen as a multi-period extension of VRP with some side constraints. Thus, it

is pertinent to provide areview on VRP literature.
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VRP has been widely studied by researchers such that many exact and heuristic
algorithms have been proposed (Laporte, 2007). The most successful exact
algorithms proposed up to now are based on sophisticated branch-and-cut (Naddef
and Rinaldi, 2002; Lysgaard et al., 2004; Baldacci et al., 2004) and branch-and-cut-
and-price algorithms (Fukasawa et al., 2006; Baldacci et al., 2008). Naddef and
Rinaldi (2002) review the exact algorithms proposed in the VRP literature up to
2002 and present the best algorithm using a two-index vehicle flow formulation
which can solve instances up to 135 customers to optimality with a variable success
rate. Lysgaard et al. (2004) improve the two-index flow formulation by adding
effective inequalities such as framed capacity, strengthened comb, generalized
multistar, etc. in a cutting plane fashion. Baldacci et al. (2004) propose an exact
algorithm based on a two-index two-commodity flow formulation. Fukasawa et al.
(2006) and Baldacci et al. (2008) propose a set partitioning formulation (STP) with
additional inequalities. They dynamically generate routes (variables in STP) via a
pricing problem and add valid inequalities to STP. Currently, the best exact
algorithms are due to Fukasawa et al. (2006) and Baldacci et al. (2008), which can
solve instances up to 135 customers to optimality with a constant success rate. In
the following, we give the two-index vehicle flow formulation for the VRP with
homogeneous fleet because we will use this formulation in Chapters 5 and 6.

Let O denote the depot, M and M ¢ be the set of customers and the set of facilities
respectively where M ¢={0}UM, c; be the cost of traveling from facility il Mdto

jT M¢, d bethe demand of customer i1 M , V be the number of vehicles, Q bethe
capacity of each vehicle. Define y, as 1 if vehicle visits facility iT M¢

immediately after facility i1 M ¢, and O otherwise. Then the two-index vehicle flow

formulation is as follows.

VE:Min g a oy (2.11)

T ME]TMGi>j

S.t.
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ave=2 (2.12)

i M

4 v+ a vy, =2 it M 2.13)
T M¢Ej<i fTMEj>i

aavy+taay:zae simls:=2 (2.14)
s ji s j<i iilsjl s, j<i

y; 1 {03 iT M, jT M, j<i (2.15)
Yol {0,1,2% it M (2.16)

Objective function (2.11) is the total traveling cost. Constraints (2.12) stipulate that
V vehicles depart and return back to the depot. Constraints (2.13) are degree
constraints ensuring that two edges are incident to customer i. Constraints (2.14)
ensure that subtours are eliminated and capacity of vehicles are not exceeded. In

congtraints (2.14), r(S) denotes the minimum number of vehicles required to

satisfy demands of customers in S Researchers use a lower bound value,
@ nsdi/QH’ instead of finding the exact value of r(S) which requires solving an

NP-hard bin packing problem. Constraints (2.15) and (2.16) are for the integrality of
variables. In constraints (2.16), y,, is allowed to take 2 to account for single retailer

trip between customer i1 M and depot. Note that constraints (2.14) can be

equivalently rewritten as

a a vy £lg-rs Si M,[g3 2 2.17)

iis jisj<i

There is also a very rich literature on heuristic algorithms applied to VRP. For a
recent review of exact and heuristic solution approaches to VRP, one can refer to
Laporte (2007). VRP and its variants have been extensively studied in the literature
and one can refer to Toth and Vigo (2002) as well as Golden et al. (2008) for a
detailed treatment of those problems.
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The well-studied traveling salesman problem (TSP) is a special case of the VRP
where there is a single vehicle with enough capacity to visit all the customers.
Although TSP is a strongly NP-hard problem, its solution is a success story in
combinatorial optimization since instances with thousands of customers (up to 2500
customers) can be solved to optimality within reasonable times (<1000 CPU
seconds) by means of a solver, called CONCORDE. One can refer to Applegate et
al. (2007) for a detailed trestment of TSP and an explanation of the theory and
algorithms utilized to develop CONCORDE. We use CONCORDE to solve TSPs
arising in inventory routing and production-distribution-routing problems in
Chapters 5 and 6 to optimality.

2.2.5Inventory routing problems

The inventory routing problem (IRP) can be defined as the problem of deciding on
delivery times, quantities and routes to customers such that a criterion (cost or
profit) is optimized. There are numerous studies on different variants of the IRP.
Researchers have considered different characteristics such as planning horizon
(finite, infinite) and demand process (deterministic, stochastic) under different cost
structures or profit. In this subsection, we give brief information on related studies
by mentioning the important aspects. We restrict ourselves to the deterministic cases
and refer the interested reader to Hvattum and Lokketangen (2008) for stochastic

cases.

First studies on IRP appeared in 1980s and attempted to take into account inventory
control in addition to vehicle routing on single period models. The seminal work by
Federgruen and Zipkin (1984) considers distribution of a limited quantity of asingle
product available at a supplier to multiple retailers with stochastic demand using a
fleet of capacitated vehicles. Their aim is to minimize the expected inventory
holding and shortage costs as well as routing costs. Federgruen et al. (1986) extend
the former work to the case of perishable products. Chien et al. (1989) address a
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single period problem with deterministic demand at retailers where the aim is to
maximize revenues less delivery costs. They formulate the problem as a MIP, which
they use to develop a Lagrangian relaxation algorithm yielding good upper and

lower bounds.

Dror et al. (1985) and Dror and Ball (1987) are the first to study a multi-period IRP.
They reflect the long-term effect of short-term decisions transforming the multi-
period problem into a single period problem where demands at customers are
treated as deterministic. While the latter focuses on the analysis of transforming the
multi-period problem into a single period problem, the former considers the solution
of the single period problem. Campbell and Savelsbergh (2004) develop a two-
phase solution approach to the multi-period |RP with constant demand at customers.
Delivery quantities and times are determined in the first-phase by solving an integer
program, and delivery routes are obtained using heuristics in the second-phase.
Bertazzi et a. (2002), Pinar and Siiral (2006), and Archetti et al. (2007a) address the
multi-period IRP with deterministic dynamic demand at customers. They employ a
deterministic order-up-to level inventory control policy at customers (or retailers),
which requires the supplier to raise each customer’s inventory level to its
predetermined maximum level whenever visited. Bertazzi et al. (2002) develop an
improvement heuristic to the problem and analyze the impact of different cost
structures on the solution. Pinar and Stral (2006) propose a Lagrangian relaxation
algorithm which yields upper and lower bounds to the problem. Archetti et al.
(2007a), on the other hand, propose the only exact algorithm for the multi-period
IRP and analyze the effect of relaxing the order-up-to policy at customers. In
contrast to the Dror et a. (1985), Dror and Ball (1987) and Campbell et al. (2004)
where a limitless amount of product is assumed to be available at the supplier
whenever needed, Bertazzi et al. (2002), Pinar and Siral (2006), and Archetti et al.
(2007a) assume that the supplier receives a given amount of product each period
and supplier can only distribute the amount in its inventory. Abdelmaguid et al.
(2008) consider a multi-period IRP with backlogging allowed at customers and
propose construction and improvement heuristics to solve the problem. They also
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provide a multi-commodity flow based MIP formulation which they use to obtain
lower and upper bounds by solving with an off-the-shelf solver. Yugang et al.
(2008) also study a multi-period IRP with dynamic demand at customers and bound
congtraints on the inventory levels at the customers. They propose two Lagrangian
relaxation algorithms: one is based on an approximate MIP formulation that
provides upper bound while the other is a complete formulation yielding lower
bounds.

Anily and Federgruen (1990), Anily (1994) and Viswanathan and Mathur (1997)
consider infinite horizon IRPs with constant deterministic demand at customers
where the aim is to minimize long-run average costs. Anily and Federgruen (1990)
propose a heuristic, which is asymptotically optimal under certain conditions. Anily
(1994) generalizes the work of Anily and Federgruen (1990) to the case of retailer-
dependent holding costs while the study of Viswanathan and Mathur (1997)
generalizes that of Anily and Federgruen (1990) to the multiple products.

Burns et al. (1985), Gallego and Simchi-Levi (1990), and Bertazzi (2008) analyze
the performance of direct shipping policy and multi-stop routing policy on infinite
horizon. Burns et al. (1985) neglect many details of the system (e.g. spatial density
of customers is used instead of their precise locations) and obtain analytical
formulas in terms of a few measurable parameters which enable one to make
sensitivity analyses and cost trade-off easily and quickly. Their results reveal that
optimal shipment size is given by the economic order quantity formula for direct
shipping policy whereas it is the full truck for multi-stop routing policy. Gallego
and Simchi-Levi (1990) show that direct shipping policy is at most 1.061 of the
optimal policy when the minimal economic lot size over all retailersis at least 71%
of the vehicle capacity. Bertazzi (2008) analyzes different direct shipping policiesin
terms of their worst case performance and their empirical performance (on
randomly generated instances). In Gallego and Simchi-Levi (1990), shipments can
be performed in continuous time whereas shipments can be performed in discrete
time in Bertazzi (2008).
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There are also some other studies that differ from the standard inventory routing
problem in some aspects. Webb and Larson (1995) consider a strategic IRP in that
they try to find the best fleet size. Bard et a. (1998) and Jaillet et al. (2002) consider
IRP with satellite facilities where the vehicles can be reloaded. Savelsbergh and
Song (2008) address an IRP with continuous moves in which customers cannot be
served in a single period by out-and-back trips since delivery to customers spans
more than a single period, and product pickups occur a different facilities. They

develop an optimization algorithm for the problem.

For detailed information on IRP, we refer the readersto the studies themselves or to
review papers such as Campbell et al. (1998; 2002), Baita et al. (1998), Schwarz et
al. (2004), and Moin and Salhi (2007).

2.2.6 Production-distribution routing problem

The Production-distribution-routing (PDR) problem is a generalization of the IRP in
that production/order decisions should be given in addition to the IRP decisions.
The PDR problem can also be seen as an integrated production planning (lot sizing)
and distribution management (vehicle routing) problem. Although there is a vast
amount of literature on the IRP, the literature on the PDR problem is rather limited.
While the studies on the PDR problem consider different characteristics such as
single/multiple items, no production/production capacity, not to/to split deliveries,
etc., the majority of them propose two-phase heuristic methods where the solution
of the production planning problem at the upper level (i.e. at the warehouse) is an
input to the distribution management problem (as in the form of multi-period VRP
or IRP) or vice versa. Those studies that develop two-phase heuristics mostly lack a
lower bounding procedure. They mainly try to measure the cost savings attainable
by a coupled approach over the decoupled/sequential approach.
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Chandra (1993) addresses a system in which a warehouse orders multiple items and
distributes to the retailers via capacitated vehicles over afinite horizon. The vehicle
fleet is unredtricted in size and there is no production/order capacity at the
warehouse. It is allowed to split deliveries (i.e. delivering to a retailer with more
than one vehicle is possible in any period) which can reduce the routing costs
significantly compared to the case where split delivery is not allowed (Archetti et
al., 2008). The author investigates the savings obtained by the coupled approach
over the decoupled one. Chandra and Fisher (1994) is an extension of Chandra
(1993) which consider production capacities at the warehouse. Y ugang et al. (2007)
show that the MIP formulation proposed in Chandra and Fisher (1994) is not correct
in that it may not yield the optimal solution but can be used to find lower bounds.
Fumero and Vercellis (1999) consider the same problem as in Chandra and Fisher
(1994) but with a restricted fleet size for vehicles and a quantity as well as distance
based transportation cost instead of the distance based cost a Chandra and Fisher
(1994). Fumero and Vercellis (1999) propose a multi-commodity flow based MIP
formulation and develop a Lagrangian relaxation algorithm yielding upper and
lower bounds to the problem. It is the first study to propose a lower bounding
procedure in the PDR literature.

Bertazzi et al. (2005) address a PDR problem with order-up-to level inventory
policy at the retailers. They propose an improvement heuristic in which the initial
solution is found by a decoupled approach and then improved by modifying
replenishment decisions of retailers taking into account the impact of this
modification on the corresponding routing costs and costs at the warehouse. They
show that the vendor managed inventory policy (found by their improvement
heuristic) reduces total cost significantly compared to the retailer managed policy
(found by the decoupled approach). They also partially relax the order-up-to level
policy and obtain reduction in the total cost. Solyali and Siral (2008b) consider a
PDR problem with order-up-to level inventory policy at the retailers but have some
differences with Bertazzi et al. (2005) in the cost structure. They propose a multi-
commodity flow formulation for the problem, which is used to develop a
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Lagrangian relaxation algorithm providing upper and lower bounds. The study of
Solyal1 and Sural (2008b) reveal that it is only possible to solve small instances (8
retaillers, 5 time periods and a single vehicle) to optimality with the multi-
commodity flow formulation due to its large number of binary variables and

constraints.

Lei et al. (2006) address a PDR problem motivated by a real-life problem where
there are multi-plants producing a single product subject to production capacities.
The product is distributed by heterogeneous vehicles. Each vehicle is allowed to
make multiple trips in a period provided that the available time is not exceeded.
Unlike Chandra (1993), Chandra and Fisher (1994), and Fumero and Vercellis
(1999), Lei et al. (2006) consider inventory bound constraints on the level of
inventory carried at the plants and customers. They propose a multi-commodity
flow formulation for the problem and develop a two-phase algorithm. In the first
phase, routing constraints are removed from the formulation (i.e. direct shipment is
assumed between plants and customers) which is solved to give a feasible solution
to the problem. Then, in the second phase, the feasible solution of the first phase is
tried to be improved by consolidating the shipments into routes involving multiple
customers. The algorithm is benchmarked against the best solution found by
CPLEX using the complete formulation within 4-hour time limit on small instances
(up to 12 customers, 4 time periods, 2 heterogeneous vehicles). Archetti et al.
(2007b) consider a plant with no production capacity distributing a single product to
multiple retailers with capacitated vehicles. They consider a fleet of homogeneous
vehicles unrestricted in size and do not allow split deliveries. Like Lei et al. (2006),
they have inventory bound constraints but only on the inventory levels of retailers.
They refer to this PDR problem as the PDR with maximum level policy. For the
single vehicle case, they propose a branch-and-cut algorithm using a standard
formulation, which is the only exact algorithm for a PDR problem we are aware of.
They also propose an improvement heuristic for the problem with multi-vehicles.
They compare the best solutions found by their branch-and-cut and heuristic
algorithms on a set of test problem instances (19 retailers, 6 time periods, single
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vehicle). Furthermore, they compare the PDR problem with order-up-to level policy
and maximum level policy and show that the solution found by order-up-to level
policy can be arbitrarily worse than the relaxed one.

Recently, a couple of studies, such as Boudia et al. (2007), Boudia and Prins (2007),
Boudia et al. (2008), and Bard and Nananukul (2008), address a PDR problem
where a plant produces a single product subject to production capacity and ships to
multiple customers using a fleet of capacitated vehicles. They consider inventory
bound constraints on the inventory levels of both the plant and customers. They do
not alow split delivery. The distinguishing feature of those studies is that they do
not consider inventory holding cost at the customers. Boudia and Prins (2007)
propose a memetic algorithm combined with population management which
outperforms their heuristics in Boudia et a. (2007; 2008). Bard and Nananukul
(2008) develop a two-phase algorithm similar to that of Lel et al. (2006) such that in
the first phase a standard MIP formulation without routing constraints (they called it
as allocation model) is solved to obtain an initial solution and in the second phase, a
reactive tabu search is developed that tries to improve the initial solution. Different
from Boudia et al. (2007), Boudia and Prins (2007), and Boudia et al. (2008), Bard
and Nananukul (2008) propose a lower bounding procedure based on a modification
of the allocation model, though it is not so effective.

While above mentioned studies consider dynamic deterministic demands at retailers
over a finite horizon, there are also studies like Anily and Federgruen (1993) and
Herer and Roundy (1997) that incorporate predictable vehicle routing costs to the
basic infinite horizon OWMR problem.
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CHAPTER 3

THE ONE-WAREHOUSE MULTI-RETAILER PROBLEM WITH
ENDOGENOUSPOLICY

In this chapter, we consider the one-warehouse multi-retailer (OWMR) problem
with endogenous policy in which a warehouse places orders and decides on when
and how much to ship to the retailers. OWMR problems have been widely studied
in the literature under various settings, as discussed in Chapter 2. The OWMR
problem considered here can be thought of as a two-level lot sizing problem
generalizing the well-known uncapacitated single-level lot sizing problem (ULS).
The OWMR problem also generalizes the joint replenishment problem (JRP) such
that the former allows keeping inventory at the warehouse level whereas the latter
does not (i.e. the warehouse acts as a crossdocking or transshipment point in JRP).
Although there are various studies on strong mixed integer programming
formulations and exact algorithms based on such formulations for ULS and JRP,
there are only two studies considering strong MIP formulations in the OWMR
literature. However, both studies use their strong formulations in developing
heuristic algorithms with performance guarantees rather than using them in devising
exact algorithms.

One of our ams in this chapter is to devise a stronger formulation than the existing
ones for the OWMR problem such that solving certain sizes of OWMR problems to
optimality would be possible by means of an off-the-shelf optimization solver. We
consider strong formulations as important because the OWMR problem is not only
important in its own right, but also arises as a subproblem in many involved settings
such as variants with capacities over replenishment quantities and variants with
multi-stop routing policy. As the strong formulations lend themselves to an exact

solution, they create an opportunity in solving such complex variants. Consider, for
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instance, the OWMR problem with multi-stop routing policy (called production-
disribution routing problem in Chapter 1) where the problem is comprised of two
parts. inventory replenishment part (i.e. OWMR problem) and routing part.
Although the routing part is well-studied and its shortcomings are well-known, to
the best of our knowledge, strong formulations of the inventory replenishment part
have not been studied and implemented yet in the literature. For an evidence of the
effectiveness of using a strong formulation in that context, one can refer to Chapter
6. Another aim in this chapter is to analyze the impact of nonzero initial inventories
at the warehouse, the importance of which is discussed in Chapter 1. Note that the
amount of inventory initially available at the warehouse cannot be eliminated
simply by deducing that amount from the beginning periods' demands since how

much each retailer will demand is not known a priori.

In this chapter, we propose a new shortest path based strong formulation for the
OWMR problem. Considering two other formulations, namely, echelon stock
(Federgruen and Tzur, 1999) and transportation based (Levi et al., 2008)
formulation, we analyze and demonstrate the relation among their LP relaxations.
We show that the new formulation gives the complete linear description of the
OWMR problem if there is a single retailer, referred to as single warehouse-single
retailer (SWSR) problem, whereas the previously proposed formulations do not. As
an important consequence of this, we reveal that the new formulation is stronger
than the transportation based one which is stronger than the echelon stock
formulation. It is contrary to the results in single-level lot sizing where shortest path
and transportation based formulations are the LP equivalent (see Nemhauser and
Wolsey, 1988 for ULS problem and Denizel et al., 2008 for the capacitated multi-
item lot sizing problem with setups). Besides, we resolve the question of whether
the empirical results on the equivalence of LP relaxation solution values are valid
for all instances of the JRP or are just due to a given sample of instances in the
literature, and elucidate that both formulations of the JRP are theoretically
equivalent. Also, we explicitly consider nonzero initial inventory at the warehouse,
extend all formulations to the case of nonzero initial inventory at the warehouse and
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present the relation among L P relaxations of those formulations. Finally, we test the
computational performance of the MIP formulations on a set of test instances.
Computational results reveal that our strong formulation is quite satisfactory to
close the integrality gap and to solve large problem instances, using standard MIP

solvers.

The rest of this chapter is organized as follows. In Section 3.1, we present the MIP
formulations for the OWMR problem and analyze the strength of their LP
relaxations with respect to each other. We consider the SWSR problem and the JRP
in Sections 3.2 and 3.3, respectively. In Section 3.4, we extend the reviewed
formulations to the case of nonzero initial inventory at the warehouse and analyze
the strength of their LP relaxations. Section 3.5 is devoted to the computational
experiments. Note that the notation and abbreviations defined in this chapter is only
valid in this chapter and in Appendix A.

3.1 Problem definition and formulations

The OWMR problem is defined as follows. A warehouse replenishes multiple
retailers over a finite time horizon T. Retaler i (1 £ i £ N) faces external
deterministic dynamic demand d;; in period t (1 £ t £ T) and may keep inventory I;;
at the end of period t to satisfy demands of future periods k, where t+1£ k£ T. The
warehouse (i=0) manages the entire inventories in the system and has to order from
its supplier so as to be able to replenish the retailers. The warehouse may keep
inventory lo to satisfy future retailers demands. There are no capacities over the
replenishment quantities in any level. The shipments to the warehouse incur a fixed
order cost fq, independent of the size of shipment, and a variable order cost pot,
which is charged for each unit ordered int. A fixed order cost fi; and a variable order
cost pi are aso incurred whenever retailer i (1 £ £ N) receivesashipment int (1 £
t £ T). Both parties incur a linear holding cost for each item carried at the end of a

period, hi.. All the parameters are assumed to be nonnegative. The OWMR problem
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is to jointly determine lot sizing policy of the warehouse and the retailers such that
the total of inventory holding costs and order cods at both levels is minimized.
Arkin et al. (1989) show that the OWMR problem is NP-hard by reducing the JRP
to it.

We assume, without loss of generality, that there is no lead time for the shipments
in and between levels. We also assume that there is no initial inventory in any level.
Note that having initial inventory at retailers does not have any impact on the
problem difficulty since one can simply deduce external demands at the retailers
from their initial inventory levels and obtain an equivalent problem with zero initial
inventories at the retailers. However, it is not the case when assuming initial

inventories at the warehouse as we elaborate later.

A standard formulation for the OWMR problem is given in Appendix A which has

O(NT) binary and continuous variables, and O(NT) constraints. It is a small-size

weak formulation and there is no study, to the best of our knowledge, which uses it
for solving the problem to optimality. There are two alternative formulations
proposed in the literature for the OWMR problem: echelon stock formulation and
transportation type lot sizing formulation. Besides presenting them, we will propose

anew formulation in this section.

In addition to the notation defined before, we define several parameters and

variables that will commonly be used in the subsequent subsections. Let D, bethe
total demand of facility i (O £ i £ N) from period t through k, D, = a '::t d,,and y,

be 1 if an order for facility i (O£i £ N) isplaced in period t and O otherwise.
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3.1.1 Echélon stock formulation

The echelon stock (ES) formulation given below is proposed by Federgruen and

N

Tzur (1999). Let d,, bethe total external demand in period t, i.e. d,, = é d,.Let

i=1 it

Q, bethe quantity ordered for facilityi (O£i £ N) in period t.

ES Min é}é fityit+éN pth|t+hOt|0t+éN (h, - hm)lng (3.1)
t=1 | i=0 i=0 i=1

st.

|1 +Q =d, +1, O£iEN, 1£t£T (3.2)
Q, £D, Y, OF£iE£N,1EtET (3.3)
g y 4

ag.*aaqQ 1ELET (3.4)
o1 i1 1

y.1{0,3 OFLIi£N, 1£t£T (3.5
Q30 OFi£N, 1£t£T (3.6)
.30 O£iEN, 1£t£T (3.7)

The objective function (3.1) of the model is the sum of fixed and variable order
costs and inventory holding costs a the warehouse and retailers. Constraints (3.2)
are the inventory balance constraints for the warehouse and retailers. Constraints
(3.3) dtipulate that afixed order cost isincurred at facility i (O£1 £ N) if an order is
placed for i in a period. Constraints (3.4) ensure that the total amount ordered for
the warehouse up to and including period t must be greater than or equal to the total
amount ordered for all of the retailers up to and including t. Constraints (3.5) are for
integrality of variables while (3.6) and (3.7) are for nonnegativity of variables.

The ES separates the lot sizing decisions at the warehouse and retailers, and then
associates those decisions via a linking constraint like constraints (3.4). Note that
constraints (3.2), (3.3) and (3.5)—3.7) can be decomposed into N+1 facilities, each
of which defines an ULS problem, when constraints (3.4) are relaxed. Federgruen
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and Tzur (1999) dualize constraints (3.4) into the objective function (3.1) to develop
a Lagrangian relaxation based branch-and-bound algorithm so as to solve small-size
OWMR problems as part of their heuristic. They solve N+1 ULS problems to
optimality in each iteration of the relaxation. The Lagrangian relaxed problems do
not have integrality property; therefore one can find better Lagrangian bound values
than the LP relaxation solution values of the ESin this framework.

We can obtain a stronger ES (SES) by replacing constraints (3.2), (3.3) and (3.5)—
(3.7) with their strong counterparts of the formulation giving the convex hull of
feasible solutions of ULS. For this purpose, we use transportation formulation for
developing strong counterparts, and thus show the relation among LP relaxation
solution values of different formulations.

Defining X, as the quantity ordered to facility i (O£i £ N) in period t to satisfy

the demand of i inperiod k (LEt £k £T ), astronger formulation SESis obtained as

follows.
& d d 4 4
ES Minga fuyeta a a HuXi (3.8)
i=0 t=1 i=0 t=1 k=t
st. (3.5) and
k
a X, =d, O£iE£N,1EKET (3.9)
t=1
X Ed Y, OLIiEN,1EtEKET (3.10)
d & d 4 4
aaXuwiaaa X 1EtET (3.11)
r=1 k=r i=1 r=1 k=r
Xy 30 OLIiEN,1EtEKET (3.12)

o & _ o k-1
where H,, = p, +a I:tl(hl -hy) for IEP£N, and Hey = py +@ 1=t M-

Objective function (3.8) is equivalent to (3.1) while congtraints (3.10) and (3.11) are
used in place of (3.3) and (3.4), respectively. Constraints (3.9) are for demand
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satisfaction at the warehouse and retailers instead of balance equations (3.2).
Congtraints (3.12) are for nonnegativity of variables. Note that SES has O(NT)

binary variables and O(NT?) constraints.

SES is stronger than ES since the former describes the convex hull of feasible
solutions of UL'S problem for each facility i (O£i £ N) whereas the latter does not.
One can show that the best Lagrangian bound value attainable in Federgruen and
Tzur (1999) would not be better than the LP relaxation solution value of the SES

3.1.2 Transportation based formulation

We refer to the next formulation as transportation based formulation (TP) since lot
sizing problems of both the warehouse and the retallers are modeled using

transportation type lot sizing formulation. Let HE (= p, + h ) be the unit cost
of satisfying demand of facility i (O£i £ N) in period k by placing an order in
period t. Let W, be the quantity ordered by the warehouse in period g and sent to

theretailer i in period t to satisfy the demand of i inperiod K (LEQEtEKET).

N T T T N T T
TP: Min a a fiYetaaaa HEWe ta a a H&X (313)
i=0 t=1 i=1 gq=1 t=q k=t i=1 t=1 k=t
st. (3.5) and
t
a Wiy = Xig 1£i£N,1EtEKET (3.14)
g=1
k
a W £ dy Yo, 1EiEN,1EQEKET (3.15)
t=q
k
a X, =d, 1EiEN,IEKET (3.16)
t=1
X £y, 1EiEN,1EtEKET (3.17)
X, 3 0 1EiEN,1EtEKET (3.18)
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/3 0 1£iEN,1EqEtEKET (3.19)

The objective function (3.13) is the sum of fixed and variable order costs and
inventory holding costs at the warehouse and retailers. Constraints (3.14) ensure
that if retailer i places an order in period t then it is satisfied by placing an order for
the warehouse prior to or a t. Constraints (3.15) guarantee that a fixed order cost is
incurred at the warehouse if an order is placed by the warehouse in a period.
Constraints (3.16) ensure that the total amount received by the retailer i from period
1 through k is equal to the demand of i in k. Constraints (3.17) stipulate that a fixed
order cos isincurred at retailer i if i places an order in a period. Constraints (3.18)
and (3.19) arefor nonnegativity of variables.

Note that all X, variables in TP can be eliminated using (3.14) so that the

formulation becomes more compact. The resulting formulation, referred to as TP-c,

isasfollows.
&3 33 38 A
TP-C: Mln a a fitylt a a a a qutk iqtk (320)
i=0 t=1 i=1 gq=1 t=q k=t

st. (3.5), (3.15), (3.19) and

t kK

A aWg =d, 1EiENLEKET (3.21)
gq=1t=1

t

éW,qtkEd,ky,t 1EiEN,1ELEKET (3.22)

g=1

where H,qtk HéEt +HE.

TP-c isthe same as in Levi et a. (2008) except that they consider a more general

cost term HIqtk than ours and use W¢ in place of W, variables where
W¢ =W, /d, . We next show that y, variables (1£i£ N,1£t£T) of TP-c can

be treated as continuous variables.
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Proposition 3.1. Given the integral values of y,, variables, the optimal solution of
the TP-c formulation yields integral values of continuous vy, variables

(LEIiEN,IELET).

Proof. Given the integral values of vy, variables, constraints (3.15) can be
eliminated as follows. For vy, variables taking value ‘1’, corresponding constraints

of (3.15) become redundant since left-hand side of (3.15) is contained by left-hand
side of (3.21). For vy, variables taking value ‘0’, W variables in (3.15) take value
‘0" due to (3.15) and are removed from the formulation together with the
corresponding constraints (3.15). Then, the remaining formulation with constraints
(3.21) and (3.22) decomposes for each retailer, and each of the decomposed
problems defines the convex hull of feasible solutions of an ULS problem. Hence,

continuous Yy, variables(1£i £ N,1£t £T ) naturally take integral values. m

The number of binary variables in TP and TP-c is O(T) while the number of

continuous variables and constraints are O(NT*®) and O(NT?), respectively.

3.1.3 A new combined transportation and shortest path based formulation

In this section, we propose a new stronger formulation, referred to as the combined
transportation and shortest path based formulation (SP) where we represent lot
sizing problem of retailers using shortest path. Lot sizing problem of the warehouse
is represented in the same manner as TP. Since timing and magnitude of demands
realized at the warehouse (due to the replenishment of retailers) cannot be known in
advance, which is necessary to compute the cost figures at the warehouse in a
shortest path representation, using the shortest path type lot sizing representation for

the warehouse (as it is) is not possible.

Additional parameters and variables used in the SP formulation are as follows. Let

G, be the total variable cost of satisfying total demand of retailer i from period t
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through k, i.e. G, = p,Dy +aQ :Ztlh, D, k- Let Z, be the fraction of the total

demand of retailer i from period t through k satisfied int, and U. . be the fraction of

iqtk
the quantity ordered by the warehouse in period g and sent to the retailer i in period
t to satisfy the total demand of i from period t throughk (LEQEtEKET).

N T N t T T N T T
S Min 2a five+a aadaHsDUa*+a a a Gule (3.23)
i=0 t=1 i=1 gq=1 t=1 k=t i=1 t=1 k=t

st. (3.5) and

t
A Ui = Zye 1EiEN,1EtEKET (3.24)
q=1

3 g
a A aU £ Yoo 1EiEN,1EQELET (3.25)
k=q r=t

g .
az,=1 1£i£N (3.26)
t=1

5! g
“A ZertQ Zy =0 1EiEN, 2EtE£T (3.27)

k=1 k=t

.
a a,Zy £V, 1EiEN,1ELET (3.28)
k=t
Z.30 1EiEN,1EtEKET (3.29)
U 2 O 1EiEN,1EQELEKET (3.30)

i1if D, >0
where a, =i _
1 0 otherwise.

The objective function (3.23) is the sum of fixed codts, variable order costs and
inventory holding costs at the warehouse and retailers. Constraints (3.24) ensure
that if retailer i places an order in period t, then it is satisfied by placing an order for
the warehouse prior to or a t. Constraints (3.25) guarantee that a fixed order cost is
incurred at the warehouse if an order is placed by the warehouse in a period.
Constraints (3.26) and (3.27) are the shortest path representation constraints for the
retailers’ replenishment problems. Constraints (3.28) stipulate that a fixed order cost
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isincurred at retaler i if i places an order in a period. Constraints (3.29) and (3.30)
are for nonnegativity of variables. For having a more compact formulation, referred
to as SP-c, Z,, variablesin SP can be eliminated using (3.24).

N T N t T T
SP-c: Min aa fityit tadaad (H(S%tDitk +Gitk)Uiqtk (3-31)
i=0 t=1 i=1 g=1 t=1 k=t

st. (3.5), (3.25), (3.30) and

.
QU =1 1£i£N (3.32)
t=1
5t & g g
-adVYgitaaVY =0 1EIiEN,2E£ELET (3.33)
k=1 gq=1 ’ k=t gq=1
g g .
a aaWiu £ Vs 1EiEN,1ELET (3.39)
k=t gq=1
ilifD, >0
where a, =i .
1 0 otherwise.

Similar to the case in TP-c, continuous Yy, variables (LEi£N,1£t£T) in SP-c
automatically take integral values provided that y, variables are integral in any

solution.

Proposition 3.2. Given the integral values of vy, variables, the optimal solution of
the SP-c formulation vyields integral values of continuous Yy, variables
(1£i£N,1ELET).

Proof. Since f 3 0, y, variables will take the smallest possible value which

means constraints (3.34) will be satisfied as equality in the optimal solution for that
i and t. Thus, (3.34) can be eliminated by replacing y, with the left-hand side of

(3.34) in (3.31) for al i and t. Given the integral values of y,, variables, constraints
(3.25) can be eliminated as follows. For vy, variables taking value ‘1’,
corresponding constraints of (3.25) become redundant since left-hand side of (3.25)
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cannot take a value greater than ‘1’ due to (3.32) and (3.33). For vy, variables

taking value ‘0", U variables take value ‘0’ due to (3.25) and are removed from the
formulation together with the corresponding constraints (3.25). The remaining
constraints (3.32) and (3.33) define a shortest path problem, which is known to have
a totaly unimodular coefficient matrix. Hence, U-variables take integral values,
which imply integral y, values(1Ei £ N,1£t£T). O

As a result, the number of binary variables in SP and SP-c is O(T) while the

number of continuous variables and condraints are O(NT®) and O(NT?),

respectively. Table 3.1 summarizes the number of constraints, integer and

continuous variables of formulations.

Table 3.1 Number of constraints, integer and continuous variables in formulations

Formulation | Constraints | Integer variables | Continuousvariables
SES O(NT?) O(NT) O(NT?)
TP-c O(NT?) o(T) O(NT?)
P-c O(NT?) o(T) O(NT?)

3.1.4 Analysis of L P relaxations of formulations

In this section, we study the strength of formulations in terms of their LP relaxation
solution values. In the LP relaxations of SES TP and SP, we replace their
constraints (3.5) with the following constraints.

O£y, £1 O£iEN, 1£t£T (3.35)

Define v(.) as the optimal LP relaxation solution value and F(.) as the feasible

solution space of LP relaxation of formulation (.). Then, we have

(X, y) °{(Xiy, Y|OETEN,LELtEKETH F(SES),
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W, X, y) © {(Way: Xy, Y )LET EN,OE j £ N,IEqEtE£KET}T F(TP), and

U.Z,y) ° {(Uig: Zi. Y )LETEN,OE j £ N,IEQEtEKETHT F(SP).

Before showing the relations among LP relaxations of formulation, we present an

example problem instance, which will help us in making the proofs.

Example: Consider an instance of OWMR problem with T=4, N=1,d, =1 for
1Et£T; p,=p,=0for 1Et£T; h,=2,h,=1 h,=1h,=0, h,=4,h,=3,
h,=2,h,=0, f,=0,f,=4, f;=6,f,=2and f,=0,f,=4, f,=4,f,=2.
For this instance, the LP optimal solutions are as follows:
§ SES V(SES)=14.33 with yo1 = y11 = 1, Yoo = Y13 = 0.67, Yos = Y12 = Y1a =
0.33, yo3 = 0.
§ TP: v(TP) =14.5, withyo1 = Y11 =1, Yo2 = Yoa = Y12 = Y13 = Y14 = 0.5, yo3 = 0.
§ SP:v(SP)=15withyn =Yu=yYu1=Viz=Yuu=1
The SP gives the integer optimal.

Theorem 3.1. V(SES) £ v(TP)

Proof. Let j (X,y) and j -(W,X,y) be LP relaxation solution values of
(X,y)T F(SES) and (W, X,y)T F(TP), respectively. To make the proof, it
sufficesto show F(TP) | F(SES) and give an instance for which v(SES) < v(TP) .
(i) To show F(TP) | F(SES), we take a feasible solution (W, X,y)T F(TP) and
construct a feasible solution (X,y)T F(SES) with the same objective function
value as follows. By convention, we have

N Kk
o O

Xox =aA A Wi for 1EqEKET (i.1)
i=1 t=q
Note that since X, for 1IEiEN,1£tE£KET, and y, for OLi£N,1E£t£T are
the same for both SES and TP, we directly map them. Now, we show that (X,y)

constructed using (i.1) is feasible to F(SES).



(@

(b)

(©)

Congtraints (3.9): For 1£i £ N,1EKET, constraints (3.16) are equivalent to
(39).Fori=0,1£k£T, wesum(3.14) over all t and i which gives

t N k N Kk
O O O o o
aaaWg=aa X 1EKET.
g=1 i=1 t=1 i=1 t=1

Since g £t, we can modify the summation bounds above, which gives

& & & & &
aaavviqtk:aaxitk 1£k£T
g=1 i=1 t=q i=1 t=1

The term in right-hand side above is equal to d,, (= é ildik ) due to (3.16).

Substituting X inplaceof § lé‘lf:qvviqtk above due to (i.1) gives

k
o]

A Xoge = o 1EKET,

g=1

which isequivalent to (3.9) for i =0, 1£ K£ T . Thus, constraints (3.9) hold.

Constraints (3.10): For 1Ei £ N, 1£t£KET, congtraints (3.17) are equivalent
t0(3.10). Fori=0,1£t£KET, we sum (3.15) over dl i, which gives

N N
a a W £(Q 9i) Yoq = Aoy Yoq 1EqE£KET.
i=1 t=q i=1

k
t=

Substituting X, inplaceof § " W, abovedueto (i.1) gives
Xog £ A Yoq 1EQEKET,
which is equivalent to (3.10) for i = 0, 1EqE£ KET. Thus, constraints (3.10)

hold.

Constraints (3.11): Summing constraints (3.14) over t (fromr =1tot) and all i,

k, we obtain
Ygsg. NS S
aaaaWx=aaa X, 1Et£T.
i=1 q=1 r=1 k=r i=1 r=1 k=r



(d)

Adding the same term to both sides, we have

N t t T N t T T N t T N t T T
O O o o O O o o _ 9 o o O O o o
daadaWeutaada a aWeu=aaad Xataad a a W
i=1 q=1 r=q k=r i=1 q=1 r=t+1k=r i=1 r=1 k=r i=1 q=1r=t+1k=r

The left-hand side of the above equation reducesto § . § tq:lé T:q . W,

o t

which isindeed equal to § _ & | X,y dueto (i.1). Thus, it becomes

r=.

3 9 d 4 g ds & &
daadXu=aaadXctaad a a W 1ELET,
r=1 k=r i=1 r=1 k=r i=1 q=1r=t+lk=r
which ensures that
3 g dd 3
aaXm®aada X 1ELET.
r=1 k=r i=1 r=1 k=r

Thus, constraints (3.11) hold.

To show that j os(X,y) = j»W,X,y) for (X,y)I F(SES) and
W, X,y)T F(TP), we start with j .,(W, X, y), which is equal to

d 3 S 8 o &3 3 st
ad f.ty.t+aaaa(p0q+a hhWeta a a (peta h) X
i=0 t=1 i=1 gq=1 t=q k=t i=1 t=1 k=t r=t

Let the second term of the right-hand side of above equation be equal to

d 333 d 333
aaaa(p0q+a by Wy - aaaa(a P WV g
i=1 gq=1 t=q k=t i=1 q=1 t=q k=t I=t

&3 &4 . s 8 o

aaaa (Pgta hy)We- aaaa(a ho )W

i=1 g=1 t=q k=q I=q i=1 g=1 t=1 k=t I=t
s 9 d & d 33
aa(p0q+a h)a @ W - aaa(a ho.)a otk
g=1 k=q i=1 t=q i=1 t=1 k=t |I=t

Using (i.1) for the first term and (3.14) for the second term above, we obtain

Qo

3
a

=1

dd g%t
HquXqu -aaa (a hOI)Xitk'

q =1 t=1 k=t =t

Qo
=
1

Then, replacing the above with the second term of j (W, X,Vy), ] (W, X,y)

becomes

46



& J g 9 & g Kt & 3d d .
aafiyetaaHgXg-aaa@h)Xctaaa (P +ta h) Xy
i=0 t=1 g=1 k=q i=1 t=1 k=t I=t i=1 t=1 k=t r=t
whichisequal to ] (X,Y).
(i) As presented in the example instance, V(SES) < v(TP). m

Theorem 3.2. V(TP) £ v(SP)

Proof. Let j ,(W,X,y) and j ,(U,Z,y) be LP relaxation solution values of
W, X, YT F(TP) and (U,Z,y)] F(SP), respectively. To make the proof, it
sufficesto show F(SP) | F(TP) and give an instance for which v(TP) <v(SP).

(i) To show F(SP) | F(TP), we take a feasible solution (U,Z,y)T F(SP) and
construct a feasible solution (W, X,y)T F(TP) with the same objective function

value as follows. By definition, we have

.
X =i Zy for 1EiEN,IELEKET (i)
i=k
.
W, =d, 3 Uy, for 1EiEN,1EQELEKET (i.2)

=
Note that since y, (OE£i£N,1£t£T) are the same for both TP and SP, we
directly map them. Now, we show that (W, X,y) constructed using (i.1) and (i.2) is
feasibleto F(TP).
(8 Constraints (3.14): Summing constraints (3.24) over k (from j=k to j=T) and
multiplying both sides by d, , we obtain
S , 9 3 .
a d.a Vi, =dia 2 1ETEN,1EtEKET.
=1 j=k j=
Substituting (i.1) and (i.2) into the above equation gives

t
o]

W = Xy 1EiEN,1EtEKET,

q=1

which is equivalent to (3.14). Thus, constraints (3.14) hold.
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(b) Congtraints (3.15): Note that (i.2) can be rewritten as W, = d.a Lk aiUigi

since if d, >0 then a, =1 for tEKE JET, else W, becomes zero. Then,

itk

we substitute W, /d, inplaceof § | a,U,, in(3.25), which gives
t
a W, /d,) £y, 1£iEN,1£EqELET.
k=g

Thus, constraints (3.15) hold.

(c) Congtraints (3.16): Summing constraints (3.26) and (3.27) from t=2 to t=k, we

obtain
& 4 .
aaz,=1 1E£iE£N,1EKET.

=k

_<
LY

Substituting X, /d, inplaceof § |, Z,; dueto (i.1) gives

k
o]

4 (X, /d,)=1 1£iEN,1EKET,

r=1

which is equivalent to (3.16). Thus, constraints (3.16) hold.

(d) Congtraints (3.17): Notethat (3.28) can be rewritten as

.

aaZ,£y, 1EIENIEtEKET  (3.28)

i=k
which actually encompasses (3.28). (i.1) can be rewritten as
Xit = & ©_, 8Z » a done for W variables in part (b). Substituting X, /d,
inplace of § Lk a,Zy in(3.28') gives

(X /d)EY, 1EIEN,1ELtEKET,

which is equivalent to (3.17). Thus, constraints (3.17) hold.

(e To show that j(W,X,y) = joU,Zy) for W,X,y)l F(TP) and
(U,Z,y)T F(SP), we start with
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SR G
jTP(W’X!y) —aaf.tyn aaaaH(SBW +

iqtk
i=0 t=1 i=1 g=1 t=q k=t

Hiﬁ Xitk'

Qo=
Qo-
T o-

i=1t

Substituting (i.1) and (i.2) into j ,(W, X,y), we obtain

1

T T

& d dd 3 4 0 dd 3 ® J 0
aafivytaaaaH§ gd.ka Ug+ta a a H& gd.ka Zi+ (el
i=0 t=1 i=1 g=1 t=q k=t g i=1 t=1 k=t e j=k 7]
We can rewrite the second termin (e.1) as
dd g J & g 0 &3 d
aaa H(%ta Qdika Uiqtj —adaaad H(S%t{dituiqtt +ditUiqt,t+l+"'+ditUith
i=1 g=1 t=q k=t @ j=k @ il g=1t=q
+ di ,t+1Uiqt,t+1 Tt dl t+1U|th
+ diTUith} .
Thus, the second termin (e.1) can be rewritten as
dd d 4
a a a a H(%t Dltkulqtk (62)
i=1 gq=1 t=q k=t

We can rewrite the third termin (e.1) as

N T T
848 dpd +8 hd,)A 2, whichisequal to
i e

i=1 t=1 k=t

-
7\_

1=t j=k 4]
d g
a a { pltditzitt + pltditzit.t+l Tt pltditzitT
i=1 t=1

+ ( pitdi t+1 + htdi ,t+1)Zit.t+1 Tt ( pitdi t+L + htdi,t+1)zitT

+ ( pitdiT + htdiT + h,t+ldiT Tt h,T-ldiT )ZitT} .

Thus, thethird termin (e.1) can be rewritten as

dd g 5t
a a a (pltDitk +a hl Di,l+1,k)Zitk (63)
i=1 t=1 k=t 1=t
Thus, summing the first termin (e.1), (e.2) and (e.3), we obtain
d 3 d 338 d 33
aafitaaaaH§bWata aa Gl
i=0 t=1 i=1 g=1 t=1 k=t i=1 t=1 k=t

whichisequaltoj (U,Z,y).

(i) As presented in the example instance, v(TP) <v(SP).
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3.2 Single war ehouse-single retailer (SWSR) problem

Except the echelon stock formulation, the two other formulations are based on the
same principle: The warehouse is considered to be divided into N departments, each
of which is responsible for replenishing a specific retailer. Thus, the OWMR
problem is set as the assemblage of N many SWSR problems. All the SWSR
problems are linked so that a fixed order cost at the warehouse is incurred whenever
any department places an order. Therefore, the SWSR problem deserves a detailed
analysis. The SWSR problem is also important since it is the two-level case of the
multi-level problem in Zangwill (1969) and uncapacitated case of the two-level
problem in van Hoesel et a. (2005). In the following we adapt the SP-c formulation
to the SWSR problem, referred to as the SSP-c formulation, by dropping subscript i
from the SP-c.

T t T T
SP-c: Min g (faYa tfuV)ta a a (H(%tDtk +Gtk)thk (3.36)
t=1 =l t=1 k=t
S.t.
3
aUy =1 (3.37)
t=1
5 & 14
'aaqu,t-1+aathk:O 2EtET (3.38)
k=1 g=1 k=t gq=1
3 9
aaaUufyy 1EtET (3.39)
k=t gq=1
s g
aa aYy £ Yy 1£9£T (3.40)
k=q r=t
thk30 1EqQEtEKET (341)
Yoo Yu | {03 1ELET (3.42)

Below we dlightly modify SSP-c before showing that it defines the convex hull of
the feasible solutions of SWSR problem.
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Lemma 3.1. The inequalities

T
a Uy £ Yo 1£qET (3.43)
r=q

g d

a ak,t-luqk,t-l - a atkthk 3 O 1£ q <t £T (344)
k=q k=t

where g, ,* O for a least onek (q£k £1- 1) arevalid for SSP-c.

Proof. Inequalities (3.43) are valid for SSP-c since they correspond to constraints
(3.40) when t=q. Inequalities (3.44) are actualy the simplified version of the
following constraints (some terms appear on both sides of (3.45) and cancel each

other):
3 g ol d
a a akqukr £a a akqukr 1£q<t£T (345)
k=q r=t k=qr=t-1

where a ., ,* O for at least one k (QEk £t- 1) to account for the zero demand

case. As the optimal policy at the warehouse has the well-known Wagner-Whitin
property (Federgruen and Tzur, 1999), if a quantity is ordered by the warehouse in
period g to satisfy the demand of retailer i from period t through k (t£kK£T) then
the demand of retailer i from periodj (q£ j <t) through t-1 must also be met by an
order in period g by the warehouse. Since this is ensured by constraints (3.44), they
arevalid for SSP-c. O

Since constraints (3.43) and (3.44) do not change the feasible region of SSP-c with
regard to y variables, we use them in place of (3.39). Thus, in the sequel by SSP-c
we mean the formulation: Min (3.36) s.t. (3.37)—«3.39) and (3.41)—3.44).

Theorem 3.3. SSP-c defines the convex hull of feasible solutions of the SWSR
problem.

Proof. We show that the associated constraint matrix of SSP-c is totally unimodular
(TU) using the following well known rule:

-1£3 ¢ -a¢ £l for all j,
ic G,
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where j denotesthe columns, and ¢, is the technological coefficient of j™ column in

]
i™ row. For any subset C of constraints of SSP-c, C would be partitioned into two
digoint sets, C; and C; where C=C,UC,, such that the difference between the

total of coefficientsin C; and C; for each column equalsto O, 1 or -1. First note that
constraints (3.39) and (3.43) can be eliminated in a similar manner of the proof of
Proposition 3.2. Then, the constraint matrix of SSP-c is composed of constraints
(3.37), (3.38) and (3.44). Note that each variable appears at most twice with
coefficients -1 and 1 in (3.37) and (3.38). The same argument is valid for (3.44) as
well. Thus, the TU rule is satisfied if C involves only rows from (3.37) and (3.38) or
only from (3.44). On the other hand, if C involves rows from (3.37), (3.38) and
(3.44) at the same time, we propose the following partitioning scheme:
§ Assignall therowsin C from (3.37) and (3.38) into C;.
§ Assignrows from (3.44) for agiven period t in C into C; if row from (3.38)
for that t isin C, and into C, otherwise. Note that row from (3.38) for a
given period t contains all variables in constraints (3.44) for that t with just
the opposite sign.
Due to the TU property, U variables take integral values which in turn imply
integral y variables. m

To show that SES and TP formulations do not represent the convex hull of feasible
solutions of the SWSR problem, we use the example already presented before
Theorem 3.1. Indeed, this example has been used by Pochet and Wolsey (1994) to
disprove the conjecture that the LP relaxation of multi-commodity formulation
solves the uncapacitated multi-level lot sizing problem in series. To the best of our
knowledge, SSP-c is the first formulation that defines the convex-hull of feasible
solutions of the SWSR problem (see Solyali and Siiral, 2008a and Chapter 4 for a
similar argument on a variant of the SWSR problem where retailers apply order-up-

to level inventory policy).
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3.3 Joint replenishment problem

In this subsection, using Theorem 3.2 we show that transportation and shortest path
based formulations for the JRP yield the same objective value for the LP relaxation.

We start with the TP for the OWMR problem and obtain the formulation for the
JRP, referred to as TP-JRP. Note that W variables are not needed any more since
whenever aretailer places an order, the warehouse also places an order in the same
period. Thus, there is no need for constraints (3.14), and constraints (3.15) can be

rewritten as X, £d,Y,, . Consgtraints (3.17) and X,, £d,Y, imply the following

constraints.
Y £ Yo 1£iEN,1ELET (3.46)

Asaresult, TP-JRP is as follows.

N

N T T
TP-JRP: Min g & f.v,.+a a

i=0 t=1 i=1 t=1

st. (3.5), (3.16)~(3.18), and (3.46)

H iﬁ Xitk (347)

Qo-

=
1

t

Next, we derive the SP formulation for JRP, referred to as SP-JRP. U variables in
SP are not needed any more due to the same reason stated above as for the TP.
There is no need for constraints (3.24), and constraints (3.25) can be rewritten as

a Lt a,Zy, £ Yy, Which in turn imply constraints (3.46) due to (3.28). Thus, SP-

JRP is as follows.

N T N T T
SP-JRP: Min a a fitylt a a a Githitk (3-48)
i=0 t=1 i=1 t=1 k=t

st. (3.5), (3.26)~(3.29), and (3.46)
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In the following, we present the LP equivalence result of TP-JRP and SP-JRP. Note
that we replace (3.5) in both formulations with (3.35). The solutions in F(TP-JRP)
and F(SP-JRP) can be identified respectively as

(X,y) °{(Xiy, YOLEIEN,OL ENIEtEKETH F(TP- JRP) and

(Z,y) °{(Zy, YOLETEN,OE JENIELEKET}H F(SP- JRP).

Theorem 3.4. V(TP - JRP) =v(SP- JRP)

Proof. Let j o ;e (X,Y) and | & mo(Z,y) be LP relaxation solution values of

(X,y)T F(TP- JRP) and (Z,y)T F(SP- JRP). To make the proof, it suffices to

show (i) F(SP-JRP) | F(TP-JRP), (ii) F(TP-JRP) | F(SP-JRP), and (iii)

j om0 (X0Y) =] om0 (Z,y) for any (X,y)I F(TP- JRP) and its corresponding

(Z,y)T F(SP- JRP), or vice versa.

(i) As the JRP is a special case of the OWMR problem, it is immediate from
Theorem 3.2 that the relation F(SP-JRP) |  F(TP-JRP) holds.

(i) To show F(TP-JRP) | F(SP-JRP), we take a feasible solution (X,y)
I F(TP- JRP) and construct an associated feasible  solution
(Z,y)T F(SP- JRP) asfollows. By definition, we have
Z: =V for 1EiEN,1ELET (ii.1)

Ziye =Vig = Viers for 1ETEN,1EtEK<T (ii.2)
i X /d, if d, >0
where V,, =1ifd, =0andt=k
10 otherwise.
Since y, variables (O£i £ N,1£t £T) are the same for both TP-JRP and SP-

JRP, we directly map them. The construction above is defined by Denizel et al.
(2008) in the context of the capacitated multi-item lot sizing problem with setup
times. Now, we should show that (Z,y) constructed using (ii.1) and (ii.2) is
feasible to F(SP-JRP). Since constraints (3.26)—3.29) have been shown to be
feasible by Denizel et al. (2008) and constraints (3.46) are common to both
formulations, feasibility of (Z,y) is proved.
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(iii) TO SOW j 1. 10 (X,Y) = J o3 (Z,y) for any (X,y)] F(TP- JRP) and the

associated (Z,y)T F(SP- JRP) or vice versa, we start with

) d g d 4 4
Jme(Xyy) =aa fiveta a a HE X,
i=0 t=1 i=1 t=1 k=t

which is equivalent to

248 fyraa &0, (X /d,) + 2 (n+an )d.k<><.tk/d.k)u

i=0 t=1 i=1 t=1 € k=t+1 1=t

574

We can safely insert V,, in place of (X, /d,) above regardless of the value
of d, since by definition V, =X, /d, if d, >0, and p,dV, =0 or

(P, +é :(;tlhl)dik\/itk =0 if d, =0. So, we have

N T A
0O o & 4 e

aa fiveta a ahid: Vi) + a (P« +a h )dlk(\/ltk)u
i=0 t=1 i=1 t=1 € k=t+1

.
Since d =Dy - Dy, for t£k- 1, é (P« +é :(;tlhl)dik(\/itk) equalsto

k=t+1
T 4 k-2 N
o € )
=a éplt(Ditk - Dit,k-l) +a h| (Di,|+1,k - Di,l+1,k-1) + h,k-lDikk L'juvitk
k=t+1€ I=t u
T 4 k-1 ks 2 N
o € o)
=a gpltDitk +a Dy - PiDis- a N D ke 1uuV|tk
k=t+1 1=t =t

- a @Gnk it,k- 1H itk

k=t+1

T

ThUS J TP- JRP(X y) a a fltylt +a a eGltt itt + a (Gltk Gltk 1) |tku

i=0 t=1 i=1 t=1 € k=t+1

Rewriting the second term of the above relation, we obtain

N T ~
o o d § éG? u
aa fivvtaa aa G Vi - it,k+1) + G Vir 1}
i=0 t=1 i=1 t=1 €k=t u

Inserting Z variables using (ii.1) and (ii.2) to the above relation gives

y 3 N33
aa fiyeta a a Guli
i=0 t=1 i=1 t=1 k=t
whichis | ¢. e (Z, ). o
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3.4 Extending formulationsto initial inventory case

Our theoretical results in Section 3.1 are extended to the case of nonzero initial

inventory at the warehouse (i.e. |,,>0). We explicitly address nonzero initial

inventories in contrast to the most of the studies in the multi-level lot sizing
literature where initial inventories are usually ignored (see Zangwill, 1969;
Federgruen and Tzur, 1999; Levi et al., 2008; Pochet and Wolsey, 2006). To the
best of our knowledge, only van Hoesel et al. (2005) explicitly consider initial
inventory issue. Although the models presented in Section 3.2 yield zero ending
inventories at all facilities in optimality, such planning models are mostly used
within a rolling horizon framework, which necessarily implies presence of initial
inventories. Thus, initial inventory at the warehouse is an important issue and must
be explicitly considered in the formulations. Note that it is not possible to smply
deduce demands of retailers from the initial inventory of warehouse, loo, until oo
becomes zero since the replenishment of retailers is not known in advance. An
exception to this is the echelon stock case where the warehouse is supposed to face
with the total system-wide demand dy: and one can deduce dy: values from Iy until

loo equal to zero.

We should note that Stadtler (1996; 1997) consider nonzero initial inventories for a
multi-level lot sizing problem with a general product structure, but use echelon

stock type formulation, which can reduce initial inventories to zero.

3.4.1 The SES formulation with nonzero initial inventory

Now, we extend the SES formulation to the nonzero initial inventory case, referred
to as SES|. As lot sizing decisions at the warehouse are separated from lot sizing
decisions of retailers in SES and the warehouse is faced with total system-wide
demand dy, one can deduce do: values from I by finding a period j such that
loo = Dpyj 2 0, and I, - Dy, ., <O. Then, the total cost (IC) of satisfying demand by
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the initial inventory at the warehouse is equal to g r’:lhm(loo- D, ). Next, we
should modify the total system-wide demand values as d,, =0 for 1£t£ ) and

dO,j+l = D01,j+1 - I00 . Then’

N T N T T
SESI:Min @ @ fiyi+a @ a HuXu +1C (3.49)
i=0 t=1 i=0 t=1 k=t

st. (3.5), (3.9), (3.10), (3.12) and
A X, 1EteT (3.50)

1 k=

Qo=
Qo

3
XOrk + I00

Qo
Qo

1

=
1

=
1

=

r i r

=

o k o k-1

where Hmk:p0t+a|;tlh0|’ Hy =Pcta (- hy) for IETEN,IELtEKET,

dy =0for 1£t£ j and d, ., =Dgy s oo -

Objective function (3.49) involves a constant term IC that is the inventory holding
cost due to the initial inventory at the warehouse in addition to the original objective
function (3.8). Congtraints (3.50) gipulate that the total amount ordered for the
warehouse up to and including period t plus initial inventory at the warehouse must
be greater than or equal to the total amount ordered for all of the retailers up to and
including period t. Note that oo appears only in constraints (3.50) and is used to
modify original d,, for LEt£ j +1.

Although it could be conjectured that the demand quantities d, for 1Et£ j and
portionof d, ;,, (i.e. Iy - Dy,;) should be satisfied by the initial inventory available

at the warehouse in an optimal solution of SESI, this may not be the case. For

example, we have |, =2600, d, =2464 and d,, = 2683 in one of the instances

we addressed in Section 3.5. Note that j=1 in this instance and it could be expected
that demand quantities 2464 (=d,,) for t =1 and 136 (=1,, - D,,,) for t =2 would

be satisfied by |, in the optimal solution. However, this is not true. At optimality,

the retailers prefer to have an amount of 2598 units in period t=1, which is supplied
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by I,,. Theremaining 2 units of |,, and an amount ordered in t=2 at the warehouse
are used to satisfy the order of retailersin t3 2. Thanks to thetrick in H,, term for

retailers and constraints (3.50), SES| is able to find the true optimum solution with

the true optimum solution value.

3.4.2 The TP formulation with nonzero initial inventory

The TP formulation presented in Levi et al. (2008) does not consider initial

inventories. Let W, be fraction of the demand of retailer i in period k satisfied

from the initial inventory of the warehouse in period t. We refer to TP with initial
inventories at the warehouse as TP-I, which is given below.

&4 dd 4 g dd g
TP-1: Min aa fityit taaadad H(S%tvviqtk taaa Hiﬂixitk
i=0 t=1 i=1 g=1t=q k=t i=1 t=1 k=t
g &3 d ., 9
+tahle-aaa @ h W (3.51)
r=1 i=1 t=1 k=t r=t
st. (3.5), (3.15)—3.19),
t
A W + Wiy = Xig 1EiEN,1EtEKET (3.52)
q=1
&3 d
aaaWoutly (3.53)
i=1 t=1 k=t
W, 20 1£i£N,1EtEKET (3.54)

where Hg = p, +& ‘h, for OLi EN,1ELEKET.

The objective function (3.51) consists of inventory holding cost due to the initial
inventory at the warehouse besides the cost terms in (3.13). Constraints (3.52)
ensure that if retailer i places an order in period t, then this order is either satisfied
by the initial inventory available at the warehouse or by placing an order for the
warehouse prior to or at period t. Constraint (3.53) assures that the total amount of
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demand supplied by the initial inventory of the warehouse cannot exceed the
available amount. Constraints (3.54) are for nonnegativity. As in Section 3.1, one
can substitute the left-hand side of (3.52) in place of X, variables for
1£i£N,1£t£EKET and obtain a more compact formulation, referred to as TP-1-

C.

3.4.3 The SP formulation with nonzeroinitial inventory

Let U, be the fraction of the quantity supplied by the initial inventory of
warehouse to satisfy the total demand of retailer i from period t through k. Then, the

SP formulation with initial inventories at the warehouse explicitly modeled, referred
to as SP-1, isas follows.

&g d 4 S & d g
SP-I: Min aa fityit taadaada H(S%tDitkUiqtk taaa Githitk
i=0 t=1 i=1 g=1 t=1 k=t i=1 t=1 k=t
g &3 d 3
a hOrIOO -aaa (a hOr)DitkUiOtk (3-55)
r=1 i=1 t=1 k=t r=t
st. (3.5), (3.25)~(3.30),
t
A Ui +Yiow = Z 1EiEN,1EtEKET (3.56)
q=1
&3 d
aaad DitkUiOtk £ Ioo (3-57)
i=1 t=1 k=t
U, 20 1Ei EN,1ELEKET (3.58)

The objective function (3.55) isthe total of inventory holding costs due to the initial
inventory at the warehouse and cost terms in (3.23). Constraints (3.56) ensure that if
retailer i places a positive order in period t, then this order is either satisfied by the
initial inventory available at the warehouse or by placing an order for the warehouse
prior to or a period t. Constraint (3.57) assures that the total amount of demand

supplied by the initial inventory of the warehouse cannot exceed the available
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amount. Constraints (3.58) are for nonnegativity of variables. Like in Section 3.1,
one can substitute the left-hand side of (3.56) in place of Z, variables for
1£i£N,1£tEKET and obtain a more compact formulation, referred to as SP-1-

C.

Initial inventory at the warehouse actually acts as a capacitated source of alternative
supply as opposed to the replenishment of warehouse using an uncapacitated source
of supply. As a result, there exist both capacitated and uncapacitated sources of
supplies in the presence of initial inventory at the warehouse, which decreases the
strength of TP-1 (and TP-1-c) aswell as SP-1 (and SP-I-c) formulations.

3.4.4 Analysis of L P relaxations of formulations with oo >0

In this subsection, we extend the analysis in Section 3.1.4 to the case with log > O.
Since the LP relaxations of formulations are concerned, constraints (3.5) are
replaced with (3.35) in SESI, TP-I, and SP-I. The solutions in F(SES1), F(TP-I)
and F(SP-1) can be identified respectively as

(X, ¥) °{(Xiy, )|OET EN,LEtEKETH F(SES- 1),

W, X, y) ® {(W g Xy Y )LET EN,OE JEN,0EEtEKET}H F(TP- 1), and

U.Z,y) °{Ui. Zy. Y )LEI EN,OE j EN,OEQELEKETHT F(SP- ).

Theorem 3.5. V(TP- ) EV(SP- I)

Proof. Let j ».,(W,X,y) and | &,(U,Z,y) be LP relaxation solution values of
W, X, YT FP- 1) and (U,Z,y)T F(SP- 1), respectively. To make the proof, it
suffices to show F(SP-1) | F(TP-I) and give an instance for which
V(TP- 1) <v(SP-1).
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(i) To show F(SP-1) I F(TP-1), we take a feasible solution (U,Z,y)T F(SP- 1)
and construct a feasible solution (W, X,y)T F(TP- 1) with the same objective

function value as follows. By definition, we have

.
X =i Zy for 1EPEN,IELEKET (i)
i=k
.
W, =d, 3 Uy, for 1EiEN,0£qELEKET (i.2)

i=k

Note that since y, (O£i£ N,1£t£T) are the same for both TP-I and SP-I, we

directly map them. Now, we should show that (W, X,y) constructed using (i.1) and

(i.2) isfeasible to F(TP-I).

(@ Congtraints (3.15)—«3.17): These constraints have already been shown to be
feasible in Theorem 3.2.

(b) Constraints (3.52): Summing constraints (3.56) over k (from j=k to j=T) and
multiplying both sides of (3.56) by d,, we obtain

.
a d,ka Uiy +d,ka Ugy = d.a Z, 1EiEN,1Et£KET.
i=k

g=1 i=k

Substituting (i.1) and (i.2) into the above equation gives

t
AW, +W,, =X, 1EiEN,1ELEKET,

iqtk
g=1

which is (3.52). Thus, constraints (3.52) hold.

(c) Congtraints (3.53): Constraint (3.57) is

d d 4 d 4 4
aaablwu=aaal(d +di,t+l+"'+dik)Ui0tk £ g

t=1 k=t i=1 t=1 k=t

[y
LY
=

The above inequality can be rewritten as

N T

o] o , N
aa @dnUion +(dit +di,t+l)Ui0t,t+l +"'+(dit +di,t+1 +"'+diT )UiOtT H
i=1 t=1
Yy e d J I 0
=aa eduta U ou +di,t+l a Ui +---+dna Uiorkﬂ

i=1 t=1 € k=t k=t+1 k=T u
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=&

Substituting (i.2) for g=0 into above expression gives
dd g
aaaWeutly

i k=t

Thus, constraints (3.53) hold.

(d) To show that j o, (W,X,y)=j &, U,Z,y) for W,X,y)T F(TP-1) and
U,Z,y)T F(SP- 1), wedart with j ., (W, X, y), which is equal to

N T T T
O O

JTP(WXy)+amIOO aaa @ h Wy

=1 i=1 t=1 k=t r=t

We have already shown in Theorem3.2 that j [,(W, X,y) =] - U,Z,y), i.e.

N T T T N T T
[o) o] O O o] o] [o) o] o]
aafiy.taaaaH&Wu+taaa H&X
i=0 t=1 i=1 g=1 t=q k=t i=1 t=1 k=t
S g d 4 d g dd g
=aa fivwtraaaa H(S%tDitkUiqtk +a a a Guli
i=0 t=1 i=1 g=1 t=1 k=t i=l t=1 k=t
Since D, U,y =W asshown in part (c) above, j 1., (W, X,y) canbe
rewritten as
dd S ,4d
J TP(W X y) +a hOrIOO a a a (a hO )DltkUIOtk’
=1 i=1 t=1 k=t r=t

whichisequaltoj o ,(U,Z,y).

(i) Consider an instance with T=4, N=2, 1,=65, p,=p,=0, h,=0.5,
h, =0.68, h, =058 for 1£t£T; I,=1,=0, f,=70, f,=60, f,=70,
f,=50, f,=40, f,=60, f,=20, f,=40, f, =20, f,=40, f,=50,
f, =40, d, =100, d,=77, d,=28 d,=66, d,=65 d,, =89, d,=11

d,, =35. For thisinstance, v(SP- 1) =393.49 while v(TP - |)=392.718.
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On the other hand, there is no dominance relation between v(SES-1) and
V(SP- 1) (or v(TP- 1)). In the following, we present the two instances that have
V(SES- I)>Vv(SP- 1) and v(SES- 1) <v(SP- 1), respectively. Our first instance
is as follows: Consider an instance with T=4, N=2, |, =34; p,, = p, =0, h, =0.5
h,=07, h,=05 f, =60, f, =40, f, =30 for 1£t£T; l,=1,=0,
d, =100, d, =77, d,=28, d, =66, d, =65 d,, =89, d, =11, d, =35. For
this instance, v(SP- I)=v(TP- 1)=397.04 whereas V(SES- |)=397.311. Our
second instance is the same as the first instance except that 1, =33. For this

instance, V(SP- 1) =v(TP- I)=397.38 whereas v(SES- |) =397.311.

3.5 Computational experiments

We perform a set of computational experiments on randomly generated instances to
assess the empirical performance of the formulations when the solution tool is a
standard general purpose MIP solver. We generate our instances as follows.
Number of retailers is set equal to 50. Two different horizon lengths are considered:
T = 15 or 30. External demand at retailers d., is generated as an integer for static
demand case (i.e. d, =d. for 1£t £T) and dynamic demand case from U[5,100].
Fixed cost a the warehouse f, is either static (i.e. f, =f, for LEt£T) or

dynamic over time and generated from U[1500,4500] as an integer. Fixed cost at the
retailers f, is generated as an integer from U[5,100]. Inventory holding cost at the

warehouse is set equal to 0.5, while inventory holding cost a the retalers is static
over time and generated from U[0.5,1]. Variable order cost at facility i (O£i £ N)

p, is equal to 0. For each combination of parameters, we generate 10 random
instances; thus, we obtain 80 instances in total. Besides, two levels for initial

. . o N .
inventory level 1,, are considered: zero and nonzero, where 1, =g _ d, for static
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demand case and |,, = @5+100)/2¢* N for dynamic demand case. Thus, we solve

160 instances in total.

We use SES, TP-c, SP-c and their variants with |, (i.e. SES|, TP-I-c and SP-I-c) in

the computational experiments. All these formulations are solved using callable
library of CPLEX 10.1 under atime limit of 7200 seconds on a Pentium 1V 3.2 GHz
PC with 1GB RAM running under Windows XP. We have tested some of the
default features of CPLEX in our preliminary experiments, and decided not to allow
CPLEX MIP cuts in our experiments and to set presolver and aggregator off in
solving all formulations, except SESand SES.

We present the average computational results over 10 instances with 1o0=0 in Table
3.2. In the table, columns 1-3 show horizon length, type of demand (static or
dynamic) and type of fixed cost a the warehouse (static or dynamic), respectively.
Columns 46 indicate the integrality gap (%Gap) between the optimal objective
value (z) and the objective value in the LP relaxation for formulation (.), i.e. %Gap
=100*(Z - v(.))/V(.). Columns 7-9 and 10-12 show the elapsed time in seconds and
the number of nodes explored in solving the corresponding formulation by CPLEX.
The numbers in parenthesis in Column 7 indicate the number of instances that could
not be solved within the time limit of two hours.

Empirical results given in Table 3.2 are in accordance with the theoretical results in
Section 3.1.4, as expected. Results reveal that SP-c and TP-c formulations perform
significantly better than SES formulation. TP-c and SP-c achieve integrality gaps
which are very close to zero whereas SES gives around 7.3% integrality gap on
average. This success of TP-c and SP-c can be attributed to disaggregation of
replenishment decisions at the warehouse into separate retailers, which is contrary
to the SES. The integrality gap and elapsed time figures for SP-c and TP-c are quite
close to each other. Regarding the integrality gaps, the largest integrality gap
difference between SP-c and TP-c is 0.1% among the 80 instances generated. Note
that this difference was around 3.4% for the example instance of the single retailer
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case in Section 3.1.4. It seems that instances with dynamic fixed cost at the
warehouse are relatively easier to solve for all formulations than those with static
rates. Besides, instances with static demand and static fixed cost rate at the

warehouse are the most challenging ones for all formulations.

Table 3.2 Average results when 19p=0

%Gap Seconds Nodes
SES TP-c SPc SES TP-c SP-c SES TP-c SP-c

—
o
—h

ot
15 S S 8310 0013 0013 13.6 12 0.7  326.6 0.0 0.0
D 5731 0.000 0.000 5.7 0.5 0.3 88.5 0.0 0.0

D S 748 0003 0.003 10.3 11 06 2215 0.0 0.0

D 584 0000 0.000 55 0.5 04 1037 0.0 0.0

30 S S 9511 0044 0030 5464.7(4) 148 139 492536 13 0.9
D 6313 0001 0.000 4795 44 46  3536.4 0.0 0.0

D S 9170 0031 0030 47654(3) 110 95 43914.7 0.6 0.6

D 6389 0.000 0.000 520.3 4.2 42 45947 0.0 0.0

Average 7.347 0012 0.010 1408.1 4.7 43 12755.0 0.2 0.2
S: Static, D: Dynamic

Average computational results over 10 instances with |,, >0 are provided in Table
3.3, which has the same format with Table 3.2. Results in Table 3.3 indicate that
SP-1-c and TP-I-c still perform far better than the SES|. However, SP-1-c and TP-I1-
c yield results not as good as those results that are given for the case with 1,, =0
while the impact on SES| is not significant compared to the results for SES
Nevertheless, both SP-I-c and TP-I-c are quite successful in that they find the
optimal solution within one minute on average and within three minutes in general.
Note that SES| needs around 25 minutes on average to solve the instances to
optimality and it could not find the optimal solution in 10 out of 80 instances.
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Table 3.3 Average results when 100>0

%Gap Seconds Nodes
SES| TP-I-c SP-I-c SES| TP-l-c SP-I-c  SESI TP-I-c SP-l-c

T d, f

ot
15 S S 895 0910 08%4 20 135 112 3041 0.7 14
D 6760 1558 1558 6.8 4.0 44 1132 0.3 13
D S 7445 1667 1653 103 177 154 2189 270 211
D 629 259 2528 6.3 5.8 69 1371 246 269
30 S S 10029 0635 058 6098.8(6) 1494 1274 506935 164 34
D 6657 0713 0711 606.6 347 280 43441 10 14
D S 933 1030 1029 5268.1(4 929 872 481421 306 367
D 6674 1216 1216 7026 258 354 66878 207 232

Average 7762 1282 1272 1590.2 430 395 138301 163 144
S: Static, D: Dynamic
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CHAPTER 4

ONE-WAREHOUSE MULTI-RETAILER PROBLEM WITH ORDER-UP-

TO LEVEL POLICY

In this chapter, we address the one-warehouse multi-retailer problem with order-up-
to level inventory control policy (OWMR-O) where the warehouse orders from a
higher echelon (supplier) to be able to serve the retailers (endogenously defined
inventory control policy). When a retailer is replenished by the warehouse, its
inventory level has to be brought up to a predetermined maximum level
(exogenously defined inventory control policy). This inventory policy is called
deterministic order-up-to level inventory control policy and introduced in Bertazzi
et a. (2002) for an inventory routing problem. The same policy is studied in
Bertazzi et al. (2005), Piar and Sural (2006), Archetti et al. (2007a), and Solyal1
and Sural (2008a; 2008b). In practice, order-up-to level policy is frequently
observed in distribution of industrial gases (Dror and Ball, 1987), in replenishment
of vending machines and shelf-spaces of groceries where replenishment raises
inventory up to the maximum level. Unlike Bertazzi et al. (2002; 2005), Pinar and
Siral (2006), Solyal1 and Sural (2008b), and Archetti et a. (2007a), we consider
direct shipments in delivery to the retailers. Our problem, therefore, is closely
related to the one-warehouse multi-retailer (OWMR) problem in that when we relax
the order-up-to level control policy in OWMR-O, we obtain the OWMR problem
(studied in Chapter 3) where the inventory control policies at both levels are
endogenously defined. To the best of our knowledge, this is the first study
considering the OWMR-O problem.

As the echelon stock and transportation based formulations of the OWMR problem
given in Chapter 3 cannot be adapted for the OWMR-O problem (reasons are given

in Section 4.2) and the standard formulation of the OWMR-O problem cannot solve
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large size instances to optimality (see Section 4.4), one of our aims in this chapter is
to propose a strong formulation for the OWMR-O which can solve large size
instances to optimality by means of an off-the-shelf MIP solver. The OWMR-O
problem is not only important in its own right, but also arises as a subproblem in its
variants with capacities over replenishment quantities and/or multi-stop routing.
Therefore, introduction of a strong formulation for the OWMR-O problem is
important since it creates an opportunity in solving such complex variants. As
discussed in Chapter 1, nonzero initial inventories cannot be treated as zero and they
may increase the complexity of the problem. In the current study, for instance, only

O(T) binary variables are needed in the formulation if no initial inventory exists at
the warehouse in the OWM R-O problem wheresas the presence of initial inventories
increases the number to O(NT?). Thus, analyzing the effect of nonzero initial

inventories to the OWMR-O problem is another aim in this chapter.

In this chapter, we show that the OMWR-O problem is NP-hard. We formulate the
problem as a mixed integer program and the formulation is rather unique due to
three reasons in comparison to its weak representations in Pinar and Sural (2006),
Solyal1 and Sural (2008b), and Archetti et al. (2007a). First, we provide a stronger
formulation for the retailers' replenishment problem using a shortest path network
representation. Second, we decompose the warehouse' s replenishment problem into
independent retailers and represent each with a novel set of constraints. Third, we
show that the resulting formulation leads to the convex hull of the feasible region in
the single retailer case of OMWR-O. Computational experiments reveal that our
strong formulation is able to solve large-scale instances in reasonable time whereas
the standard formulation does not. Through computational experiments, we also
show that the vendor-managed approach (i.e. solving the MIPs) provides
considerable savings compared to the traditional retailer-managed approach.

The remainder of this chapter is organized as follows. We present the problem
definition and the computational complexity of the problem in Section 4.1. In

Section 4.2, we present strong mixed integer program formulations for the problem
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and the convex hull proof for the single retailer case. We examine a greedy policy
for controlling retailers’ inventories in Section 4.3. Its implementation reduces the
OWMR-O problem into a set of single-level lot sizing problems. Section 4.4 is
devoted to a computational study on randomly generated problem instances in order
to find out the integrality gaps created by strong formulations. Note that the notation
and abbreviations defined in this chapter is only valid in this chapter.

4.1 Problem definition

We consider a two-level vendor-managed system where a warehouse (vendor)
replenishes multiple retailers with direct shipments over a finite time horizon.
Retailer i (1 £1 £ N) faces external deterministic dynamic demand di; in period t (1
£t £T) and may keep inventory, I, a the end of period t to satisfy demands of
future periods k, where t+1£ k £ T. Retailer i employs an order-up-to level inventory
control policy such that its inventory level is brought up to a maximum level S
whenever it is replenished by an amount of Qj;; by the warehouse. The warehouse
(i=0) manages the entire inventories in the system and has to order an amount of Qg
from its supplier to replenish the retailers. The warehouse like retailers may keep
inventory, lo, to satisfy future demands. It uses a direct shipment transportation
policy to replenish each retailer and ships an amount equal to the maximum
inventory level of the retailer less its inventory level at the end of the previous
period (S-li+1) whenever a replenishment is made. Figure 4.1 clarifies the order of

events occurring in retailers.

We assume, without loss of generality, that there is no lead time for the shipments
between the warehouse and the retallers and between the supplier and the
warehouse. The shipments to the warehouse incur a fixed order cos, for,
independent of the size of shipment and a variable purchasing cost p;, which is
charged for each unit purchased in t. A fixed order cost, fi;, is also incurred
whenever retailer i receives a shipment in t. Both the warehouse and the retailers
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incur a linear holding cost for each item carried at the end of a period, hi. We
assume that all parameters are nonnegative. In addition, we assume that initial
inventory level at retailer i, ljp, is less than total demand of retailer i over the
planning horizon so that at least one replenishment is required for retaler i;
otherwise, retailer i can trivially be eliminated from the problem. The problem isto
simultaneously determine lot sizing decisions of the warehouse and replenishment
decisions of the retailers such that the total of inventory holding costs and fixed
order costs a the warehouse and at the retailers, and the purchasing costs are
minimized. We provide a standard MIP formulation of the problem in the following.

Amount Amount
delivered, demanded,
Si'l it-1 dit
_ t
t Il A\ 4 T I
Inventory level Inventory level
at the end of t-1, at theend of t,
Ii,t-1 Si'dit

Figure 4.1 Order of events at the retailers

N T T
P: Min & & (f.y, *hl)+a pQy (4.1)
i=0 t=1 t=1
St.
y
IO,t-1+Q0t =a Q +ly 1EtET (4.2
i=1
Ii,t-l+ n:dn+|n 1£iEN, 1£tET (4.3)
QOt £ MyOt 1£tET (4.4)
Q. £SY, 1EiEN,1ELET (4.5)
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QES- I, 1EIiEN,1ELET (4.6)

Qi3 SV~ liis 1EiE£N,1ELET (4.7)
Qul: 20 OFLIi£N, 1£t£T (4.9)
y.1{0.3 O£IEN, 1ELET 4.9)

where M is a large number, and y, isequal to 1 if an order for facility i (O£i £ N)

isplaced in period t and O otherwise.

Objective function (4.1) is the total of fixed order and inventory holding costs at the
warehouse and retailers as well as per-unit order coss at the warehouse. Constraints
(4.2) and (4.3) are the inventory balance equations for the warehouse and retailers
respectively. Constraints (4.4) ensure that afixed order cost isincurred if warehouse
places an order in a period. Constraints (4.5)-(4.7) are the either-or type constraints
ensuring order-up-to level policy a the retailers. Constraints (4.8) are for
nonnegativity of variables while (4.9) are for integrality of variables.

Theorem 4.1. The OWMR-O problem is NP-hard.
Proof. We prove by reducing the NP-hard uncapacitated facility location problem
(UFLP) (Cornuejols et al., 1990) to the OWMR-O problem. Consider a simple
instance of the OWMR-O problem: for every retailer i, d, =0 for 1Et£T - 1and
dr=S; hy=0foraliandt,and h, =M and p, =0 for LEtE£T where M isavery
large number. All shipments incur fixed order costs fo: (fit) for the warehouse (the
retailers) in t. There are no initial inventories in the system. This instance suggests
the following optimal policy.
- Each retailer i makes a single replenishment S throughout the entire
horizon.
- Warehouse does not keep inventory at all, and in any period it orders from
its supplier an amount just enough to ship to the retailers.
This optimal policy is equivalent to solving an instance of the NP-hard UFLP where

there are T alternative sites to locate facilities with a fixed establishment cost f,, for
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each 1£t£T, a service cost from facility t to retailer i being equal to fi;, and the
problem is to decide the number of facilities to establish (total number of
orders/shipments), their sites (their periods) and their service regions (the retailers to
be served in these periods). Thus, solving the described instance of the OWMR-O

problem will also solve the above instance of UFLP. m

4.2 Strong formulations for the OWM R-O problem

Due to the fixed-charge cost structure at the warehouse and order-up-to level
policies of the retailers, formulation P provides a weak LP relaxation solution value
(see Section 4.4), which makes solving even small-size problems to optimality
difficult. In this section, we propose a strong formulation for the OWMR-O
problem, which enables us to solve reasonable sized problems to optimality using
an off-the-shelf solver.

The MIP formulated below includes integration of two components. replenishment
problem of retailers and lot sizing problem of the warehouse. All of the previous
studies in the literature (Archetti et al., 2007a; Pinar and Siral, 2006; Solyal: and
Siral, 2008b) have modeled the retailer’s replenishment problem using either-or
type (weak) constraints (see constraints (4.5)—4.7) in P formulation) as a retailer i
receives either nothing or a quantity raising its inventory to § at any period. We use
the shortest path network representation of the retailer’ s replenishment problem that
gives the convex hull of a single retailer’ s replenishment problem (see Bertazzi et
al., 2002; Solyali and Siral, 2008a for usages of network representation in different
contexts). The lot sizing problem of the warehouse, on the other hand, is different
from the single-level problem because its decisions regarding how much to ship to
the retailers are endogenoudy specified here (note that, unlike the OWMR problem,
the total amount ordered from the warehouse in the OWMR-O problem may be
greater than or equal to the total external demand). We therefore redefine the
variables related with the warehouse in P formulation and model the entire problem
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as a set of combined N single warehouse-single retailer problems. Additional
parameters and decision variables used in the formulation are as follows.

Parameters

H, : Cost of serving retailer i in period t when the last replenishment has
occurred in period k.

b,: Quantity shipped to retailer i in period t when the last replenishment has
occurred in period k.

D,.: Demand of retailer i from period k to period t,i.e. D, = t_k o

. Level of initial inventory at facility i (O£i £ N).

p(i,t): The earliest period starting from which retailer i does not stock out until
replenished in  period t, tha is p(@i,)=0 for 1£i£N,
p@,t)=min{(O[l,,- D, ,20),(r|S-D,.,% 0} where 1£r£t-1 for
al 1£i £N,2£t£T +1.

m(i,t) : The latest period that retailer i can be replenished before being stocked out
when the previous replenishment has occurred in period t, i.e,
m(i,0) =max{L(r |l,,- D,,., 2 0)} where 2£r£T for al 1£i£N,
m(i,t) =max(r [S - D;,., 3 0) where t+1E£r £T+1 for all

1EiEN,1ELET.

Variables

Xy o 1 if retailer i is replenished in period t (LEt£T) when the last
replenishment has occurred in period k (p (i,t) £ k <t), 0 otherwise.

Xir+ -1 if the last replenishment to the retaller has occurred in period k
(p(, T+)E£k<T+1) and no replenishments occur until the end of the
horizon, 0 otherwise.

y,: 1if anorder for warehouse is placed in period t and O otherwise.

73



Uiy © Quantity the warehouse orders in period q to serve retailer i in period t when

the last replenishment to i has occurred in period k.

V,,: Quantity supplied from the initial inventory at the warehouse to serve

retailer i in period t when the last replenishment to i has occurred in period k.

. a d 4 Bt g q d B g

FI): Ming foyytaa a a9%Vew fahlp-a a a Vi)

t=1 i=1 g=1k=p(i,t) t=1 r=1 i=1 k=p (i t) t=1

c';l tdl T°+1
+a a a HiktXikt (410)
i=1 k=p (i t) t=1
st.
t
A Uige +Vie =hie Xie 1EiEN,p(i,t) Ek<t,1EtE£T (4.11)
q=1
Uige £ B Y, 1EiEN,p(i,t)Ek<t,1EQELET (4.12)
mg,O)
a X =1 1£i £N (4.13)
t=1
m(i,t) t61
a X.- a X,=0 1£iEN,1ELET (4.14)
k=t+1 k=p (i t)
q

- a Xein=-1 1£i £N (4.15)
k=p (i,T+1) ’
d Bt g
a a aVietly (4.16)
i=1 k=p(i,t) t=1
X1 {03} 1EiEN,p(i,t) Ek<t,1EtE£T +1 (4.17)
y. 1 {01 1ELET (4.18)
Ui 20 1EiEN,p(i,t)Ek<t,1EQELET (4.19)
V, 30 1EiEN,p(i,t) Ek<t,1E£tET (4.20)

t-1
where g, = p,+a h, for IEQELET,

r=q
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1S 1,,+D,,, ifk=0,1£t£m(i,0)
B =1 Dy..s if LEKET, k<t£mi,k),t1 T+1
}0 otherwise,

| Gt - :

::: fit+la:lh|(|i0- Dy)+h(S-d,) ifk=0,1£t£m(i,0)

Lt & (S~ D)+ (S-d) ifpE.OEK<LIELETK? O
AAK

I=k+1
éT h (S - Dy) ifp(I, T+)EKET,t=T+1

|
|
to ifk=T.

The objective function (4.10) of the model consists of fixed order, purchasing and
inventory holding costs a the warehouse, and fixed order as well as inventory
holding costs a the retailers. Constraints (4.11) ensure that the sum of the quantity
supplied from initial inventory at the warehouse and the quantity ordered from the
supplier from period 1 through period t for retailer i is equal to the quantity shipped
to i int when the last replenishment has occurred in period k. Constraints (4.12)
guarantee that a fixed order cos is incurred if the warehouse places an order in a
period. Constraints (4.13)—(4.15) are flow conservation constraints on the shortest
path network problem accounting for the replenishment decisions of retailers over
the horizon. They ensure that the inventory level at a retailer is brought up to the

maximum level if adelivery is made. Note that p (i,t) and m(i,t) are used to define
feasible replenishment periods. That is, by the use of p (i,t) and m(i,t), infeasible
arcs (variables) representing stock out cases are never generated. For instance, if a
retailer i isreplenished in period t then it has to be replenished no later than period k
(t<kE£T)when S-D,, ,*0and S - Dy <0 in order not to stock out. Then, in
this specific example, feasibility is ensured by setting m(i,t) equal to k. Similarly,
for example, if aretailer i isreplenished in period t >2 then it can satisfy external
demands from period k+1 through t-1 from its inventory at the end of period k
(2Ek £t- 1) without being stocked out when S- D, ,,*0and S-D,,,,,<0.

Then, in this specific example, feasibility is ensured by setting p (i,t) equal to k. An
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example shortest path network for the replenishment problem of a single retailer for
a three-period planning horizon wherem(0) =3, —m1)=m(2)=m(3) =4,
P@=p(2)=p(3)=0 and p(4) =1 isdepicted in Figure 4.2.

Figure 4.2 Shortest path network representation of the single retailer replenishment
problem for T=3

In the network, nodes except first and last represent time periods while arcs
represent the replenishment decisions. Constraint (4.16) assures that the amount
shipped from initial inventory is not more than the available amount. Constraints
(4.17) and (4.18) assure the integrality of variables while constraints (4.19) and
(4.20) are for the nonnegativity of variables.

A stronger representation of OWMR-O
Formulation F(I) can be further strengthened by the following variable
redefinitions. Let W, (=U,,, /b, ) be the fraction of the quantity ordered at the

warehouse in period g to serve retailer i in period t when the last replenishment to i
has occurred in period k, and Z,, (=V,, /b,) be the fraction of the quantity
supplied by the initial inventory of warehouse to serve retailer i in period t when the
last replenishment to i has occurred in period k. Then, constraints (4.11), (4.12) and
(4.16) can be rewritten respectively as
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t
évviqkt+zikt=xikt 1EiEN,p(i,t) Ek<t,1EtE£T (4.21)

q=1

W, £, 1£iEN,p(,t)Ek<t, 1EQELET (4.22)
& 6t d

a a abZetly (4.23)

Constraints (4.21)—4.23) are the results of straightforward conversion of variables
and affect neither the total number of constraints nor the strength of the formulation.
However, variable redefinition enables us to derive a stronger and reduced-size
formulation as we show below. Theorem 4.2 is based on the fact that the warehouse
must incur a fixed cost in period q if an order is placed in period q to replenish
retailer i in period t when the last replenishment to the retailer might have occurred
in any period k (p (i,t) £k <t). Therefore, left hand side of (4.22) can be summed

over k.

Theorem 4.2. The inequalities

t-1

a Wy Y, 1EiEN,1EQELET (4.24)
k=p (i.t)

are valid for the OWMR-O problem and they are tighter than constraints (4.12) and

(4.22).

Proof. Because of the flow conservation constraints (4.13)—(4.15), the relation

[] [] []

a :p ip K £1 holds. Due to (4.21) and g :p o X EL A L:lp .o Wae CaNnot be

greater than 1. Thus, constraints (4.24) are valid inequalities for the OWMR-O
problem. Since (4.12) are equivalent to (4.22) and left-hand side of (4.24) is greater
than or equal to that of (4.22), (4.24) aretighter than both (4.12) and (4.22). O

Note that contrary to (4.22), it is not possible to sum left-hand side of (4.12) over k.

Constraints (4.24) not only reduce the total number of constraints from O(NT?) to

O(NT?) but also tighten the formulation. However, there is till room for

improvement as shown in the following theorem. Theorem 4.3 is based on the fact
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that the warehouse must incur a fixed cost in period q if an order is placed in period
g to replenish retailer i for any period t or later when the last replenishment to the
retailer might have occurred in any period k (O£ k<t). Thus, left hand side of

(4.24) can besummed over r3 t.

Theorem 4.3. The inequalities

t61 min{ngi,k),T}
a a W.£y, 1Ei£N,1EqQELET  (4.25)
k=0 r=t

arevalid for the OWMR-O problem and they are tighter than constraints (4.24).
Proof. Consider the shortest path network representation of the replenishment
problem for each retailer by replacing X variables with W variables as suggested by
(4.21). Now consider the partial networks involving only those arcs defined by
(4.25). Each such partial network contains nodes only with either outgoing or
incoming arcs with W variables but not both. Because there is unit flow over the
network and no node has both incoming and outgoing arcs with positive W
variables, the left-hand side of (4.25) cannot be greater than one (see Figure 4.3 as
an illustrative example for (4.25) withg=1andt =1, 2 and 3 on a partial network
assuming M(0) = m(2) = m(2) = 3). Thus, (4.25) congtitute valid inequalities for the
OWMR-O problem.

We rewrite left-hand side of (4.25) separately for r =t and r3 t+1 as

51 51 min{m(i k), T}
a VViqkt + a a VViqkr (425’)
k=p (i,t) k=0 r=t+l

Recall that feasible variables (arcs) are assured by either p or m. While m is used
to define feasible variables in the left-hand side of (4.25), k is set to p (i,t) instead

of O in the first term of (4.25'), since r is set equal to t and only feasible arcs
incoming to period t should be defined. Constraints (4.25) are tighter than (4.24)

51 min{ngi,k),T} t-1 1 min{ngi,k),T} 51

Since a a VViqkr = é VViqkt +a a VViqkr 3 a VViqkt ' O

k=0 r=t k=p (i,t) k=0 r=t+l k=p (i,t)
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The stronger formulation is given as follows.

N t T N r

S:(I) Mlna fOtyt+é é é é gqthkt igkt +a hO (IOO é é é lqkth(t)
t=1 i=1 g=1k=p(i,t) t=1 i=1 k=p(i,t) t=1
c';l tél T°+l
+a a a Hiktxikt (426)

i=1 k=p (it) t=1
st. (4.13)«4.15), (4.17), (4.18), (4.21), (4.23), (4.25)
W, 2 0 1EiEN,p(,)EK<t,1EQELET (4.27)
Z.20 1EiEN,p(i,t) Ek<t,IEtET (4.28)

WlOS
W102

W,
oS ONNONNO

103

W,
we (@ O O

103

SHOBNONNO O
113

Figure 4.3 Anillustrative example for constraints (4.25) for g=1 when T=3
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Note that SF(I) has O(NT?) constraints and O(NT?) variables, O(NT?) of which

are binary. We should note that in the OWMR problem, the optimal replenishment
policy at retailers is of Wagner-Whitin type, and the warehouse orders a quantity
equal to the total external demand of retailers over the entire horizon. The echelon
stock formulation for the OWMR problem cannot simply be extended to model the
OWMR-O problem since the observation of demand at the warehouse in a period
being equal to total external demand of retailers in that period (Federgruen and
Tzur, 1999) is not valid for the OWMR-O problem. Similarly, the formulation
proposed in Levi et al. (2008) cannot be directly used since it is based on
replenishing the warehouse according to the retailers given external demands in a
period, which is non-germane to the OWMR-O problem.

Aspeual case: OWMR-O with lgg=0
In the absence of initial inventory at the warehouse, all Z, variables and

congtraints (4.23) would be removed from the formulation SF(I). For

t
1EiEN,p(i,t)EK<t,1ELET, letting X,, = W, due to (4.21), the

q=1
formulation for the OWMR-O problem with |, =0, referred to as the formulation

SF, can be written as

T N t t1 T N T
SF: Min é fOtyt +é é é é (Hikt + gqtblkt Vviqkt +é é Hik,T+lXik,T+1 (4-29)
t=1 i=1 g=1 k=p(it) t=1 i=1 k=p (i, T+1)
st. (4.18), (4.25), (4.27) and
g mg,o)
aa W=1 1£i£N (4.30)
q=1 t=1
min{nc')(i,t),T} & 51 g _
aXrat A AWu- & @We=0  1EIENIELET (431
’ k=t+1 q=1 k=p (i,t) g=1
g .
-a aitxit,T+1 =-1 1£i£N (4.32)
t=1
X123 0 1EiEN,p(I, T+)ELET (4.33)
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ilifp(i,T+)£Et

where a, :% P _ )
1 0 otherwise.

Note that X's are set as nonnegative continuous variables and its legitimacy is

proven below. Hence, SF has only O(T) binary variables.

Theorem 4.4. The formulation SF has an optimal solution with integral values for
X.

Proof. Consider a partial solution for SF in which all y-variables are known. To
reach a complete solution, set W, =0, 1£i£N,p(i,t) Ek<t,1£t£T, for those

q'swith y, =0, in (4.25). For those g's with y,=1, eliminate the associated (4.25),

o t-1 o min{m(ik)T}

since, due to congtraints (4.30H4.32), a ,_.a . W,

[« £1 becomes
redundant. Simplify the objective function (4.29) by letting the first term be
constant. This reduces SF to a formulation of a collection of N replenishment
problems, one for each retailer, whose constraint matrix (defined by constraints
(4.30)—«4.32)) is totally unimodular since all coefficients are elements of {0, -1,
+1}, each W and X variable appear twice with coefficients -1 and +1, and there

exists a partition (R =R/R, =/4) of the set R of rows such that the difference

between summation of coefficientsin R; and summation of coefficientsin R, is zero
for each variable. Thus, W-variables and X-variables take integral values in an
optimal solution to the formulation SF. m

Below we show that SF describes the convex-hull of feasible solutions of the

OWMR-O problem with 1, =0 when there isasingle retailer. For this purpose, we

remove i subscript representing retailer from SF since N = 1, and refer to the
resulting single retailer SF formulation as SF-SR.

Lemma 4.1. Let FeasbleSR be the set of feasible solutions to the single retailer
variant of the OWMR-O problem with 1o = 0. The following inequalities
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To-lmin{ rg(k),T} szmin{ rcr)‘(k),T} g min{ rg(k),T} %-1 min{ rg(k),T}
a a Vvqkr£a a Vvqkr££a Vvqkr£a a Vvqkr£yq
k=0 r=T k=0 r=T-1 k=0 r=qg+1 k=0 r=q

for LEQET (4.34)
arevalid for FeasibleSR.
Proof. Inequalities (4.34) can equivalently be represented as

%- 1 min{ rg(k),T}

Yooad A W30 1£qET (4.35)
k=0 r=q

t51 min{rg(k),T} d min{rg(k),T}

a We-a a W30 1£qELET-1 (4.36)

k=0 r=t k=0 r=t+l

Validity of constraints (4.35) has already been shown in Theorem 4.3. Inequalities
(4.36) can be simplified and rewritten as

tdl min{g(t),T}
A Wee- @ W30 1EqELET-1 (4.37)
k=p (t) k=t+1

Note that first term of (4.37) denotes the replenishment of retailer in period t
realized by the quantity ordered at the warehouse in period q while second term of
(4.37) denotes the replenishment of retailler in any period s (s>t) where the
previous replenishment has occurred in period t by the quantity ordered at the
warehouse in period g. Since the optimal replenishment policy at the warehouse has
the well-known Wagner-Whitin property (Solyal1 and Siral, 2008a), if the quantity
shipped to retailer in period s is ordered to the warehouse in period g, then the
quantity shipped to retailer in period t (q£t<s) must also be ordered to the

warehouse in period g. Asthisis ensured by (4.37), (4.37) are valid. O

Thus, the modified but equivalent SF-SR is as follows.

T t t-1 T T
S:_SQ: Mln a fOtyt +a a a (Hkt +gqth<t)vvqkt + a Hk,T+1Xk,T+1 (438)
t=1 gq=1 k=p(t) t=1 k=p (T+1)
st. (4.18), (4.35), (4.37) and
g B
aaWe=1 (4.39)
q=1 t=1
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min{g’(t),T} c|)< t61 g
aXqrat ad aAWu- a aW,e=0 1£t£T (4.40)
k=t+1 g=1 k=p (t) g=1
g
- & Xt,T+1 =-1 (4-41)
t=1
W, 2 0 Pt)EK<t,1EQELET (4.42)
Xira?0 pT+YELET (4.43)

Theorem 4.5. The LP relaxation of the SF-SR formulation has an optimal solution
with integral y, Wand X.
Proof. As f,, 2 0, (4.35) will be satisfied as equality in the optimal LP relaxation

0 g-1 o min{m(k),T}

solution of S=-SR and y, can be eliminated by substituting g ,_.a W, in

r=q q
place of y, in (4.38). Let R denote the constraint matrix composed of the remaining

constraints (4.37) and (4.39)—<4.41), and Rs denote the subset of rows of R. We will
show that R is totally unimodular by using the following sufficient condition: For

any R, there exists a partition of Rsinto R and R, such that

la ; RN Qg i E1 for all columns (variables) (4.44)
where r, denotes the technological coefficient of j™ variable in i row. Note that
rijT {0,-1,+1} for all i, j. Our partitioning scheme is as follows: We assign all rows
of Rs corresponding to constraints (4.39)—4.41) intoR . We assign the rows of Rs
corresponding to constraint (4.37) for g, t (1IEQ£t£T-1) into R if the row

corresponding to constraint (4.40) fort (1£t £T) existsin R, otherwise intoR, .

With this partitioning scheme it is obvious that condition (4.44) holds for the
columns corresponding to each X, variable for p(T)£k<T and each W,
variablefor p(T)Ek<T,1Eg£T where k<q since those variables appear twice
in each column with coefficients -1 and +1 due to constraints (4.39)—<4.41) (i.e.
R =R,,R, =/). Also, if Rs involves only the rows corresponding to constraints
(4.39)—4.41), then (4.44) holds due to the same reason. Similarly, if Rs involves

83



only the rows corresponding to (4.37), (4.44) holds since each variable appears
either two times with coefficients -1 and +1 or only once with coefficient -1 or +1
dueto (4.37) (i.e. R,=R,R =/4). If Rs involves the rows corresponding to both

constraints (4.39)—(4.41) and (4.37), then there are two cases to consider.

Casel Foranyt (LEt£T), Rsinvolves (4.37) for g, t (LEQEtE£T - 1) and (4.40)
for t: Notethat variablesin (4.37) for g, t (1£QEt£T - 1) aredl involved in (4.40)
for t (1Et£T) with just the opposite coefficient signs. Thus, those opposite signs
cancel each other since all those rows are assigned to R according to the proposed

partitioning scheme.

Case 2. Forany t (1Et£T), Rsinvolves (4.37) for q, t (LEQEt£E£T - 1) but not
(4.40) for t: Note that variables in (4.37) for g, t (LEQEtE£T-1) also exist in
(4.40) for some k1t (1£ k£T) with the same coefficient sign. Thus, those same
signs cancel each other since rows corresponding to (4.40) are assigned to R
whereas rows corresponding to (4.37) are assigned to R, according to the proposed

partitioning scheme.

Due to cancellations of nonzero coefficients as depicted by case 1 and case 2, left-
hand side of (4.44) takes values O or +1 for all columns which means (4.44) holds
for Rs involving rows corresponding to both constraints (4.39)—4.41) and (4.37).

Since the constraint matrix is totally unimodular, the proof is done. O
4.3 Vendor-managed approach versus retailer-managed approach

In contrast to the above vendor-managed inventory system, suppose that the supply
chain operates under a retailer-managed inventory system so that each retailer
wishes to replenish its own stock just prior to the period in which it stocks out and

dictates this to the warehouse. This replenishment policy is a deterministic variant
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of the classical (s, S policy, which we call latest ordering up-to level policy,

determined in O(T)time for a single retailer. Given all retailers replenishment
schedules, the optimal replenishment decisions at the warehouse are found in
O(TlogT) time by solving a single-item uncapacitated lot sizing problem in which
demands to the warehouse are specified as the sum of individual retailer’s
replenishment quantities in every period of the schedule. Thus, such a retailer-
managed approach requires O(NT +TlogT) time, which is quite efficient
compared to the vendor-managed approach in Sections 4.1 and 4.2. Below we
analyze the structural properties of the latest ordering up-to level policy. In the
following theorem, we first show that the latest ordering up-to level policy is
optimal for the single retailer replenishment problem when three major problem

parameters are constant.

Theorem 4.6. The latest ordering up-to level policy is optimal for the single retailer
problem with order-up-to policy if order cost, holding cost, and external demand are
all constant over the planning horizon.

Proof. Under the latest ordering up-to level policy, we can define at most three
successive stages over the planning horizon regarding the replenishment process,
assuming at least one replenishment is needed during the horizon. Stage 1 starts
with the very first period where the demand is satisfied from initial inventory and
lasts until the first replenishment is inevitably done. Stage 2 is the one in between

two consecutive replenishment periods k and t, k<t such that S- (t- k)d3 0 and
S- (t- k+1)d <0. Stage 3 starts with the last replenishment period and ends with
T. Note that stages 1 and 3 can be equivalent to stage 2 when 1, =S- d and when

the difference between the last replenishment period and T is equal to t- k,
respectively. It is easy to see that any other replenishment cannot reduce the
inventory holding cost components associated with stage 1 and stage 2(s). The
number of replenishments specified by the latest ordering up-to level policy cannot
be decreased either. Only, the cost associated with stage 3 may lead to a higher cost
because of the possibility of a leftover stock after T. Although a replenishment

before the last possible moment (period in which stock-out occurs) may eliminate
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stage 3, the resulting cost of such apolicy is at least equal to the cost incurred by the
latest ordering up-to level policy. m

We next illustrate by counter-examples how optimality of the latest ordering up-to
level policy vanishes even if only one of these three parameters changes
dynamically. Below we assumethat T =4, S=75 and |, =50.

i. Demand is dynamic: Let h =h and f,=f for 1£t£4, and d, =40,
d, =15, d, =50, d, =11. Optimal policy sends 25 and 55 units in periods 1 and
3, respectively, yielding atotal cost of 2f + 94h, whereas the latest ordering up-to
level policy sends 65 units in periods 2 and 4, and its associated cost is 2f +144h.
ii. Unit holding cost changes over time: Supposethat h =h for 1£t£3, h, =h’

where " >>h, and f,=f and d, =15 for 1£t£4. The optimal solution is to
make a replenishment of 25 units in period 1 with a total cost of f +135h+15h’
whereas the cost of the latest ordering up-to level policy isf +60h+60h’.

iii. Fixed order cost changes over time: Consider an instance with the following
data: f, =ffor 1£t£3,f,=f where f >>f, and h=h and d, =15 for
1£t£4. The optimal solution isto make a replenishment of 25 units in period 1
with a total cost of f +150h whereas the cost of the latest ordering up-to level

policy is f" +120h.

4.4 Computational experiments

We performed computational experiments on randomly generated instances to test
the computational performance of our MIP formulations. In this section we present
our results. We compare the results obtained under the vendor-managed inventory
approach using MIPs with those of the retailer-managed approach implementing
latest ordering policy. MIPs were solved using callable library of CPLEX 10.1 and
latest ordering up-to level policy is coded in C within MS Visual C++ 6.0. All the
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computational experiments were done on an Intel Pentium IV 3.2 GHz PC with 1
GB RAM. Instances are generated with the following settings.

Table4.1 Resultsfor N=50, T=15and 1, =0

Optimal Latest
dy Pt fo he %Gap CPU %LD WC TC RC WC TC RC
0.3 000 090 1526 2416 1230 6354 3276 1130 5594

b 0.8 001 118 1793 2716 1282 6002 4122 1029 4849

D >0 L 0.3 002 153 149 1719 1355 6926 2336 1333 6331
0.8 006 247 1573 1954 1494 6552 2980 1328 5692

H 0.3 000 080 1575 3401 1266 5333 4420 1113 4467

0.8 002 172 1757 3619 1138 5244 5166 829 40.05
Average 002 143 1620 2637 1294 6069 3717 1127 5156
0.3 008 085 1377 2245 1226 6530 3276 1130 5594

b 0.8 034 18 2307 2430 1291 6278 4122 1029 4849

D 0 L 0.3 063 372 999 1649 1337 7014 2336 1333 6331
0.8 236 484 1405 1878 1418 6704 2980 1328 5692

H 0.3 010 157 1670 3384 1229 5387 4420 1113 4467

0.8 089 418 2812 3460 1122 5418 5166 829 40.05
Average 073 283 1762 2508 1271 6222 3717 1127 5156
0.3 000 064 1113 2600 1458 5942 3296 1389 5316

b 0.8 001 103 1116 2885 1384 5732 4110 11.82 47.09

DD >0 L 0.3 005 179 1059 1932 1640 6428 2339 16.73 59.88
0.8 004 176 1240 2249 1571 6180 2845 1533 5621

H 0.3 001 118 1041 3478 1327 5195 4124 1257 4619

0.8 006 266 1284 3877 1191 4932 5060 9.95 3945
Average 003 151 1142 2837 1428 57.35 3629 1338 50.33
0.3 004 086 1076 259 1459 5945 3296 1389 5316

b 0.8 022 163 1537 2770 1403 5826 4110 11.82 47.09

DD 0 L 0.3 053 305 760 1933 1651 6416 2339 1673 59.88
0.8 164 282 983 2128 1608 6264 2845 1533 56.21

H 0.3 016 212 1020 3418 1329 5252 4124 1257 46.19

0.8 091 445 1853 3668 1246 5086 50.60 995 3945

Average 058 249 1206 2752 1450 5798 36.29 1338 50.33

Overall average 034 206 1432 2684 1361 5956 36.73 1233 50.95

The number of retailers, N, is set to 50 whereas the number of time periods, T, is set
equal to 15 and 30. External demands are considered either constant (SD) or
dynamic (DD), which are randomly generated as integers from U[5,100]. Maximum

inventory level at retailer i, S, is set egual to its mean_demand*g, where
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mean_demand = d; (mean_demand =g5+100)/2g) if demands are constant

(dynamic), and g is randomly generated as an integer from U[2,8] if T = 15 and
from U[2,15] if T = 30. Retailer inventory holding costs are generated for each i and
t from U[0.05,1.00]. Retailers fixed cost for each t is randomly generated as an
integer from U[5,100]. We test the warehouse's fixed costs under three settings: two
different levels, 1500 (L) and 6000 (H), are tried for constant fixed cost, whereas
dynamic fixed costs (D) are randomly generated as integers from U[1500,6000].

Table 4.2 Resultsfor N=50, T=30and |, =0

Optimal L atest
d; Pt fo hae %Gap CPU %LD WC TC RC WC TC RC
0.3 0.02 1257 1505 1379 590 80.31 2255 548 7197

D 0.8 002 2373 1541 1657 639 7704 2920 527 65.54

D >0 L 0.3 009 6659 1391 1029 6.34 8337 1515 6.39 7846
0.8 008 7076 1372 1269 6.80 8052 1997 643 7361

H 0.3 012 8014 1305 2244 618 7138 3227 563 6211

0.8 0.14 10689 1462 2329 572 7099 3857 4.23 57.20
Average 008 6011 1429 1651 622 7727 26.28 557 68.15
0.3 015 3068 1060 1278 583 8139 2255 548 7197

D 0.8 034 6240 1678 1448 649 79.03 2920 527 65.54

D 0 L 0.3 089 17316 677 964 621 8414 1515 6.39 7846
0.8 176 30516 935 1152 6.84 8165 1997 643 7361

H 0.3 139 18880 1287 2152 6.09 7238 3227 563 6211

0.8 235 26859 2128 2153 572 7275 3857 423 57.20
Average 115 17146 1294 1525 6.20 7856 2628 557 68.15
0.3 001 1489 1093 1637 723 7639 2270 6.93 70.37

D 0.8 002 2442 1261 1847 697 7456 2993 59 64.12

DD >0 L 0.3 009 5701 1102 1231 775 7994 1595 771 76.34
0.8 006 3605 1243 1362 767 7870 1946 7.15 7340

H 0.3 012 7301 1105 2341 692 69.67 3050 6.54 6297

0.8 012 9170 1248 2634 6.85 66.81 40.23 538 54.40
Average 0.07 4951 1175 1842 723 7435 2646 6.61 66.93
0.3 009 2297 916 1607 731 7662 2270 6.93 70.37

D 0.8 059 6373 1486 1705 705 7590 2993 59 64.12

DD 0 L 0.3 0.77 12803 678 1216 7.76 8008 1595 7.71 76.34
0.8 125 11006 884 1320 771 7910 1946 7.15 7340

H 0.3 0.94 14870 980 2282 705 7012 3050 6.54 6297

0.8 204 22525 1813 2584 6.76 6741 40.23 538 54.40

Average 0.95 11645 1126 1786 727 7487 2646 6.61 66.93

Overall average 056 9939 1256 1701 6.73 7626 26.37 6.09 67.54

88



Warehouse' s holding costs, hq, are set at two levels, 0.3 and 0.8. Purchasing costs,
pi, are set at two levels: either to 0 or 10 when hy=0.3 and 30 when hy=0.8. If the

warehouse has nonzero initial inventory, then its level is taken as éIN: 4 if
demands are constant and N* g5+100)/2g if demands are dynamic. Retailers

initial inventory is taken as |, =@ * S where r is randomly generated from

U[0.01,0.99]. Both for the zero and nonzero initial inventory cases, we generate 10
random instances for each combination of the parameters, thus we have 960

instances in total.

Computational results on instances with T = 15 and 30 in the absence of initial
inventory at the warehouse are presented in Tables 4.1 and 4.2, respectively. Results
for which the initial inventory at the warehouse is nonzero are given in Tables 4.3
and 4.4 for T = 15 and 30, respectively. In Tables 4.1-4.4, columns 14 show the
type of demand pattern, unit purchasing cost, fixed order cost at the warehouse and
unit inventory holding cost at the warehouse, respectively. Column 5 shows the
percentage gap (%Gap) between the optimal solution value (Opt) of a MIP
formulation (SF in Tables 4.1-4.2 and SF(I) in Tables 4.34.4) and the LP
relaxation solution value (LP) of the MIP formulation, i.e. %Gap=100* (Opt —
LP)/LP. Column 6 lists the time elapsed in seconds to obtain the optimal solution
(CPU). Column 7 gives the percentage deviation (%L D) of the solution value found
by latest ordering up-to level policy (Latest) from the optimal solution value, i.e.
%L D=100* (Latest — Opt)/Opt. WC, TC and RC in columns 8-10 (for MIPs) and in
columns 11-13 (for latest ordering up-to level policy) denote percentages of the
warehouse’'s cost (fixed order plus inventory holding costs a warehouse),
transportation cost (fixed cost of shipments from warehouse to retailers) and
retaillers cost (inventory holding cost a retailers), respectively, over the total cost
less purchasing cost. Purchasing cost is disregarded because it is assumed to be a
system cost shared by all parties. Each entry of Tables 4.1-4.4 is the average results
of 10 instances.
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In the absence of initial inventories at the warehouse, all instances with T = 15 are
solved less than five seconds and integrality gaps are quite small, about 0.3% on
average. When T increases to 30, integrality gaps are still about 0.6% on average
and CPU times increase from seconds to 1.7 minutes. This can be explained by the
fact that as the number of time periods increases, the number of continuous
variables and constraints increase in cubic and quadratic terms, respectively.

Table4.3 Resultsfor N=50, T=15and 1, >0

Optimal L atest
di Pt for he %Gap CPU %LD WC TC RC WC TC RC
0.3 024 1477 1637 2314 1246 6440 31.87 1143 56.70

D 0.8 014 2399 1935 26.67 1281 6051 39.96 1050 49.54

D >0 L 0.3 014 3192 1601 1648 1359 69.93 2238 1351 64.11
0.8 010 4258 17.08 1932 1458 66.10 2851 1353 57.97

H 0.3 026 3251 1680 3313 1266 5421 4280 1141 4579

0.8 023 6010 1888 3549 1146 5305 5059 847 40.94
Average 018 3431 1742 2571 1293 6137 36.02 1148 5251
0.3 136 1728 1363 2156 1230 66.15 31.87 1143 56.70

D 0.8 223 3562 2254 2378 1290 6332 39.96 1050 49.54

D 0 L 0.3 140 7150 998 1541 1363 70.96 2238 1351 64.11
0.8 288 13889 1511 1706 1451 6842 2851 1353 57.97

H 0.3 179 6195 1688 3239 1257 55.04 4280 1141 4579

0.8 358 12231 2767 33.69 1129 5502 50.59 847 40.94
Average 221 7459 1763 2398 1287 6315 36.02 1148 5251
0.3 018 902 1191 2495 1470 6036 31.77 1414 54.09

D 0.8 009 1921 1199 2791 1406 5803 39.64 1211 4825

DD >0 L 0.3 014 2641 1137 1870 1647 6483 2263 1690 60.48
0.8 009 2211 1334 2181 1583 6231 27.78 1548 56.73

H 0.3 025 2749 1111 3384 1352 5264 4024 1279 46.98

0.8 015 4384 1388 3733 1234 50.33 49.35 1020 40.45
Average 015 2468 1227 2742 1449 5808 3523 13.60 5116
0.3 098 1879 1101 2466 1480 6054 3177 1414 54.09

D 0.8 138 2775 1529 2718 1418 58.64 39.64 1211 4825

DD 0 L 0.3 117 4934 784 1884 1637 6479 2263 1690 60.48
0.8 240 3675 998 20.70 1627 63.02 27.78 1548 56.73

H 0.3 146 6566 1048 3326 1351 5323 4024 1279 46.98

0.8 230 8780 1912 3558 1276 51.66 49.35 10.20 40.45

Average 161 4768 1229 26.70 1465 58.65 3523 13.60 51.16

Overall average 104 4532 1490 2595 1373 6031 3563 1254 51.83
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Nevertheless, all of the 480 instances are solved to optimality in less than five

minutes when 1, =0. When the initial inventory at the warehouse is nonzero
(15 >0), dl of the 240 instances are solved to optimality within three minutes for

T=15. For T=30, 47 out of 240 instances could not be solved to optimality within a
2 hour time limit and the number of those instances is indicated in CPU column
within parenthesis in Table 4.4. Although average integrality gaps in the experiment
are about 1%, it is evident that presence of initial inventories at the warehouse

significantly increases the computational requirements for solving the problem.

Tables 4.1-4.4 indicate that the instances with zero purchasing cost are “difficult”
compared to those with nonzero purchasing cost, independently from initial
inventory status. Especially, those with static demand at retailers and static fixed
cost a the warehouse require more computational effort. Besides, the amount
shipped to the retailers tends to deviate from the exact required amount a the

retailers (i.e, & " (Dyr - 1)), as expected.

Eitherl,, =0 or 1, >0, the total cost values by the latest ordering up-to level

policy are 14% worse than the optimal total cost values on average, ranging from
4% to 32%. This policy is most successful when the setting involves no purchasing
cost, satic low fixed cost at the warehouse, and low inventory holding cost rates at
the warehouse. This is because myopic decisions can be penalized only up to a
certain degree when cost parameters at the warehouse are low. Composition of total
costs for the two approaches is considerably different: retailers costs are lower but
warehouse's costs are higher for the latest ordering up-to level policy, it is just the
opposite as for the optimal policy. Transportation cost figures are similar for both
policies. As expected vendor-managed inventory approach coordinates
replenishments better than the retailer-managed inventory approach leading to
significant reductions in cost.
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Table 4.4 Resultsfor N=50, T=30and |, >0

Optimal* Latest
d Pt fa ha %Gap CPU %LD WC TC RC WC TC RC
D 0.3 0.08 16119 1551 1335 590 80.75 2201 551 7248
0.8 0.08 25361 1598 1625 641 77.34 2889 529 65.83
D >0 L 0.3 0.17 1067.31 1433 1005 6.33 8362 1490 641 78.69
0.8 0.10 1109.17 1425 1243 6.80 80.77 1956 6.46 73.98
H 0.3 030 264534(1) 1342 2177 627 719 3167 568 62.65

0.8 019 3206.09(2) 1514 2285 569 7146 37.79 429 57.92
Average 0.15 140712 1477 1612 623 77.65 2580 561 68.59
0.3 0.50 42397 1056 1225 587 8L88 2201 551 7248

D 0.8 1.00 868.90 1687 1404 652 7944 2889 529 65.83

D 0 L 0.3 129 434024(3) 667 951 622 8427 1490 641 7869
0.8 216 4787.76(4) 946 1122 6.838 81.90 1956 646 73.98

H 0.3 254 T711462(9 1242 2086 6.22 7292 3167 568 6265

0.8 344 652143(9 2072 2137 566 7298 37.79 429 57.92
Average 182 400049 12.78 1487 623 7890 2580 561 68.59
0.3 0.12 13050 1125 1603 729 76.68 2229 6.97 70.74

D 0.8 0.07 35563 1307 1787 701 7512 2925 6.02 64.73

DD >0 L 0.3 0.14 607.98 1139 1192 778 8030 1560 7.74 76.66
0.8 0.09 580.10 1287 1350 764 7886 1908 718 7374

H 0.3 0.25 1969.71 1141 2255 7.00 7044 2985 660 63.55

0.8 017 306210(2) 1291 2584 685 6730 3934 546 5521
Average 0.14 111917 1215 1795 726 7479 2590 666 6744
0.3 0.52 17492 914 1573 737 7690 2229 697 70.74

D 0.8 096 1596.40(1) 1504 1664 7.07 7629 2925 602 64.73

DD 0 L 0.3 103 288054 687 1189 7.77 80.34 1560 7.74 76.66
0.8 158 2769.73(1) 888 1300 7.64 79.36 1908 7.18 73.74

H 0.3 155 652460(6) 980 2236 7.08 7055 2985 6.60 63.55

0.8 294 697546(9 1774 2491 6.92 6817 3934 546 5521

Average 143 348844 1124 1742 731 7527 2590 6.66 67.44

Overall average 0.89 2506.05 1274 1659 6.76 76.65 2585 6.13 68.01

"Some instances could not be solved to optimality due to a 2 hour time limit. %GAP for such
instances is computed by using the best integer feasible solution value found within the limit instead
of Opt.

We also attempt to solve the instances using the standard (weak) MIP formulation

' d. foreach

o T-
k=p(it) 1K

(P). We set the M value in constraints (4.4) of P equal to § " §

t (LEt£T) where d,=S- 1., so that constraints (4.4) are as tight as possible

using information regarding the total requirements of retailers in period t and

afterwards. We use P to solve the first ten instances generated (first row of Table
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4.1) which corresponds to instances with N=50, T=15, static demand at retailers,
nonzero production cost, low inventory holding cost rate for warehouse, dynamic
fixed cost and zero initial inventory at the warehouse. Computational results with a
2 hour time limit are given in Table 4.5. In Table 4.5, column 1 lists the instances.
Column 2 is the same as column 5 in Tables 4.1-4.4. Column 3 shows the
percentage gap (%BO) between the best solution value found by P and the optimal
solution value, i.e. %BO =100 * (Best — Opt) / Opt. Column 4 shows the remaining
percentage gap (%Rgap) between the best solution value found by P (Best) and the
minimum of the objective function values of unexplored nodes (BestNode), i.e.
%Rgap = 100 * (Best — BestNode) / BestNode.

Table 4.5 indicates that none of the instances are solved to optimality by using P:
Seven of them due to lack of memory and the rest due to time limit. On average,
there is still 2% remaining gap (Y0Rgap) between the best solution and best lower
bound when CPLEX terminated. Integrality gaps (%Gap) are on average 15.9% for
P whereas it is almost zero for SF for the same group of instances. Although the
best solution values found by P are quite close to the optimal solution values, note
that SF finds those values and proves that they are optimal within a few seconds.

Table 4.5 Results using P with a 2-hour time limit
Instance % Gap %BO %Rgap

1 15.33 0.00 1.87
2 15.63 0.81 2.61
3 12.37 0.13 111
4 14.27 0.43 1.94
5 16.88 0.36 2.98
6 19.68 0.68 3.00
7 16.49 0.44 1.93
8 15.54 0.35 2.13
9 16.06 0.00 1.78
10 16.27 0.00 1.62
Average 15.85 0.32 2.10
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CHAPTER 5

THE INVENTORY ROUTING PROBLEM WITH ORDER-UP-TO LEVEL
POLICY

In this chapter, we consider the inventory routing problem with order-up-to level
policy, the same problem as in Bertazzi et al. (2002), Pinar and Siral (2006), and
Archetti et al. (2007a). A supplier (vendor) receives a given amount of a single
product each period and distributes to multiple retailers controlled by order-up-to
level policy in a vendor-managed inventory (VMI) setting over afinite time horizon
using a capacitated vehicle. It is called deterministic VMI routing with order-up-to
level (VMIR-OU) problem in Archetti et al. (2007a). This policy is also considered
in production-distribution routing problems (Bertazzi et al., 2005; Solyali1 and Sural,
2008b) and production-distribution problems with direct shipments (Chapter 4;
Solyal1 and Siral, 2008a).

The inventory routing problem (IRP) has been widely studied in the literature under
various settings, as discussed in Chapter 2. Recently, Archetti et al. (20073),
Abdelmaguid et al. (2008), Yugang et al. (2008), and Savelsbergh and Song (2008)
try to find the optimal solution or a lower bound for their multi-period (finite) IRPs
using mathematical programming formulations. The common feature of all these
studies is that they use weak representations for the inventory replenishment
problem of retailers. Since strong formulations lend themselves to an exact solution,
their use in IRPs seems promising. To the best of our knowledge, this study is the
first to consider strong formulations for inventory routing problems in developing

solution algorithms.

We view the VMIR-OU problem as an integration of vehicle routing problem and
inventory replenishment problems, and model the problem by using a strong
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formulation for its replenishment decisions and a computationally attractive
formulation for routing decisions. We develop a branch-and-cut algorithm and an a
priori tour heuristic, both based on the strong formulation proposed. Computational
results reveal that our agorithms perform better than their competitors in the
literature. We also discuss how to implement our approach to the two related
problems in which order-up-to level policy is relaxed.

The rest of the chapter is organized as follows. We give aformal problem definition
in Section 5.1. The notation and description of the problem draw on Archetti et al.
(2007a@). In Section 5.2, we present the strong formulation for the problem. Section
5.3 describes the branch-and-cut and the heuristic algorithms in detail. In Section
5.4, we provide a computational study on randomly generated instances to test the
performance of algorithms and compare them with those available in the literature.
Also, we discuss how to extend our approach to the two related VMI routing
problems. Note that the notation and abbreviations defined in this chapter is only
valid in this chapter and Appendices B, C, and D.

5.1 Problem definition

We consider a distribution system in which a supplier distributes a single product to
n retailers over a finite time horizon H with a vehicle of capacity C. Retailer

il M={12,..,n faces externa demand r

it

in each discrete time period
tTt ={12,..,H} and keepsinventory |, to meet the demand without backlogging.

Besides, retailer i1 M is controlled by an order-up-to level inventory, and in any

period tl t it receives either no replenishment or a quantity U, - I, raising its

it
inventory level |, to its maximum level U, whenever replenished by the supplier.
The supplier, denoted by i = 0, manages the inventories at the retailers by deciding
on when and how much to ship to each retailer i1 M, and guarantees that no

retailers will stock-out (i.e. 1,3 0) in any period tl t. The supplier receives a
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quantity r,, inevery period t1 t and may ship to the retailers immediately or keep
inventory 1, for replenishing retailers in later periods. I, and 1, respectively
denote inventory levels of the supplier and retailers at the beginning of period t1 t.
H+1 accounts for the impact of decisions given in the last period H. Each unit kept
a inventory in t1t ¢, t ¢=t U{H +1}, incurs a holding cost h at facility il Md¢
where M ¢=M U{C}. The vehicle can visit several retailers in a multi-stop route,
departing from and returning back to the supplier’s depot, without exceeding the
vehicle capacity. A visit from facility iT M to facility jT M¢ incurs a

transportation cost ¢; . We assume that the vehicle performs at most a single tour in

every period. The VMIR-OU problem is to decide on when and in what sequence to
visit retailers and how much to ship to each retailer in a trip such that the sum of
transportation costs and inventory carrying costs at the supplier and retailers is
minimized. The VMIR-OU problem is known to be a strongly NP-hard problem
(Bertazzi et al., 2002). In the following theorem, we show that even the feasibility
problem of the VMIR-OU problem is NP-complete in the strong sense.

Theorem 5.1. The feasibility problem of the VMIR-OU problem is strongly NP-
complete.

Proof. Let Feas denote the associated feasibility problem of the (optimization)
VMIR-OU problem. Feas is obviously in NP. We prove by reducing the strongly
NP-complete 3-partition problem (Garey and Johnson, 1979) to the Feas. The 3-
partition problem can be described as follows. Given a finite set A of 3q elements, a

bound BT Z* and a“size’ d, ® O satisfying %B<dk <%B for each ki A such
that § ,,d, =qB, can A be partitioned into g disjoint sets, i.e. A, Ay,...A,... A
such that each set s (1£ s£ q) satisfy § i n 0 =B?

Consider the following instance of the Feas: Let n=3g, H =q; for each

O n

il M,U;=d, r, =0 for tTt\{H} and r, =d. Let r,=q _d, r, =0 for
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0 30 0 q

tit\{3,C=B, a _a,' =98 ad %B<di<%8 for each iT M. Note that

t=1 it

solving the above instance of Feas will also solve the 3-partition problem. O

The VMIR-OU problem is formulated as a mixed integer program (MI1P) by Pinar
and Sural (2006) and Archetti et a. (2007a8). The main difference between two
MIPs is their way of modeling routing part of the problem. The former uses a
Miller-Tucker-Zemlin based formulation to model routing decision while the latter
uses a two-index vehicle flow based formulation. We present the latter formulation,
referred to as formulation F, in Appendix B.

5.2 Strong formulation for the VM IR-OU problem

A two-index vehicle flow representation of routing problem in F is one of few
effective representations for the symmetric vehicle routing problem in the literature
(Laporte, 2007). Inventory replenishment problem of retailers in F, on the other
hand, is formulated using either-or type constraints (see constraints (B.5)—(B.7) in
Appendix B), later strengthened with some valid inequalities (see constraints
(B.15)—(B.17) in Appendix B). However, such a representation is not tight as it is
shown by an example below. Apparently, the replenishment problem of a single
retailer can be represented as a shortest path problem, which can be solved in
O(H?) time (see Bertazzi et al., 2002, and Solyal: and Siiral, 2008a for alternative
shortest path representations). We reformulate the VMIR-OU problem so that the
routing uses the two-index vehicle flow representation and the convex-hull of
inventory replenishment problem is represented using the shortest path problem.
Additional parameters and variables needed in the strong formulation are as follows.

Define b, as the quantity shipped to retailer i in period t when the last

replenishment has occurred in period k and R,, as the sum of demand between
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periods k and t to retailer i, i.e. R, :étj:k r;. p(i,t) denotes the earliest period
starting from which retailer i does not stock out until replenished in period t, where
p@i,)=0 for il M, p(i,t)=min{(0]l,,- Rit120), (K|U;- Ry, 2 0)} for dll
il M,1£k£t-1, tT t & {1 . m(,t) indicatesthe latest period that retailer i can be
replenished before being stock out when the previous replenishment has occurred in
period t, where m(i,0) = max{1,(k|l,- R, % 0)} for all il M,2£kEH and
mi,t) =max{(k |U, - R,,.,2 O)} forall il M, t+1£EKEH +1tl t. Let w, bel

if retailer i is replenished in period t (1Et £ H ) when the last replenishment has
occurred in period k (p(i,t)£k<t) and O otherwise; w, ., be 1 if the final

replenishment to the retailer has occurred in period k (p (i,H +1) £k<H +1) and
no replenishment occurs any more, and O otherwise; z, be 1 if retailer il M s
replenished in period t1 t and O otherwise; z, be 1 if vehicle departs from the
supplier in period tI t and O otherwise; and y;, be 1 if vehicle visits facility
i1 Md¢immediately after facility jT M¢inperiod tI t and O otherwise. Then, the

strong formulation we propose is as follows.

s:Mingahl,+a a aoy (5.1)
iTMetit ¢ iTMeji MEj<i tit
st.
o % ~
IOt = I0,t-1 + r0,t-1 - a a blk,t-lvvik,t-l thtd (5-2)
it M k=p(i,t-2)
o B! .
lh® & & bW tht (5.3)
iTM k=p(it)
52 . R
Iit = Ii,t-1+ a buk,t-lwik,t-l' ri,t-1 1M ’tl t¢ (5-4)
k=p (i t-1)
mg,O) R
a W, =1 it M (5.5)
k=1
m(i t) t61 ~ ~
k=t+1 k=p (i,t)
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il M (5.7)

k=p (i,H +1)

° t61 )

a a bw,£Cz, tht (5.8)
il M k=p (i,t)

tol

a W, =z, il M, tlt (5.9
k=p (i,t)

a v+ a vi=2z iT MGl t (5.10)
T M¢Ej<i fTMEj>i

a avtaz-z Si M, tT t,somekl S (5.11)
its i s j<i iis

z, £ 2, il M,tTt (5.12)
y; £ 2, it M, jT M,tTt (5.13)
y; 1 {03 iT M, jT M, j<itlit (5.14)
yio1{012 il M,tTt (5.15)
z,1{0,3 il MGtT t (5.16)
I, 30 tTtd (5.17)
W, 20 il M,p(i,t) Ek<t,tT td (5.18)

where w,, =1, =0 for iT M and

iU, - 1o+ Ry, ifk=0,LEt £ m(i,0)
B ={ Req ifIEKEH, K<t £m(i,k),t1 H +1
%O otherwise.

Objective function (5.1) is the sum of inventory holding costs a the supplier and
retailers as well as transportation costs, respectively. Constraints (5.2) are inventory
balance equations for the supplier. Constraints (5.3) ensure that the total amount
shipped to the retailers in a period cannot exceed the available amount at the
supplier in the beginning of that period. Constraints (5.4) are inventory balance
equations for retailers. Congtraints (5.5)—«5.7) define the shortest path network
representation of order-up-to level policy at eachretailer i1 M. Its network consists

of nodes for each time period t1 t ' and a dummy node 0. An arc from node k to t
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(t* H +1) represents that a quantity b,, is shipped to retailer i in period t where the

last replenishment has occurred in k. An arc from any k to H+1 represents that the
final replenishment to retailer i has occurred in k and no replenishments occur any
more. It is well known that the associated matrix of the shortest path problem
formulation is totally unimodular and such a formulation describes the convex hull
of the single retailer replenishment problem with order-up-to level policy (see
Chapter 4). Note that p(i,t) and m(i,t) define arcs corresponding to feasible
replenishment policies on the network (i.e. arcs representing occurrences of stock-
out are cancelled out). An example network for H = 4 where all possible arcs are
assumed to be feasible is shown in Figure 5.1. Constraints (5.8) stipulate that the
total amount shipped to the retailers in a period cannot exceed the capacity of the
vehicle. Constraints (5.9) assure that if retailer iT M is replenished in t1 t then
that retailer must be replenished prior to t. Constraints (5.10) are degree constraints
ensuring that two edges are incident to node (retailer) i in a period if i is visited in
that period. Constraints (5.11) are generalized subtour elimination constraints.
Constraints (5.12) and (5.13) are actually not needed in formulating the VMIR-OU
problem but added a priori as being in Archetti et al. (2007a) to strengthen SF.
Congtraints (5.14)—(5.16) are for integrality. Note that y', can take 2 to account for

asingle stop (at retaler i) tour from supplier. Constraints (5.17) and (5.18) are for
nonnegativity. Note that w must take a binary value for which the order-up-to level
policy restriction holds at the retailers. However, due to (5.9), imposing integrality
on z variables is sufficient and the optimal solution of SF always gives integral w
variables. Actually, constraints (5.2) and (5.4) are not necessary in SF and they are
just needed to keep track of cost accounts. Instead, one can represent those costs in

terms of w variablesin (5.1).
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Figure 5.1 An example network with H=4 for the single retailer replenishment

problem

We have now afew remarks about the formulation F given in Appendix B. We start
with an example showing that the representation of the single retailer inventory
replenishment problems in F is not tight. For instance, consider a single retailer i
(i.,e. [M|=1) with h,=1, U, =51,=3r,=2 for al tIt where H = 4. The
corresponding formulation F for retailer i is

Min I+l +1,+1,+1,

st. (B.4)«B.7), (B.15)—B.17), and (B.20)«B.22)
The optimal solution has an objective function value of 11 whereas its linear
programming (LP) relaxation yields a value of 5.92 with a fractional solution
composed of z; =0, z, = 0.5, zi3 = 0.64 and z, = 0.4. Note that the duality gap is
about 86%. However, the LP relaxation of the formulation SF (i.e. Min
l o+, + 1+, +1 st (6.4—5.7), (5.9), (516) and (5.18)) would have an

integral optimal solution, as clarified before.

The second remark is about an extension of F. Archetti et a. (2007a) consider two
related problems in which order-up-to level policy is relaxed. First is vendor-
managed inventory routing with maximum level (VMIR-ML) problem where the

amount shipped to a retailer in a period plus inventory carried from the previous
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period cannot exceed retailer’ s maximum level, and the second is vendor-managed
inventory routing (VMIR) problem where any amount can be shipped to aretailer in
aperiod. Archetti et a. (2007a) claim that by eliminating constraints (B.5) and (B.7)
from F one can model the VMIR-ML problem, and by eliminating (B.5)—(B.7) from
F one can model the VMIR problem. However, the resulting reduced formulations
cannot have the true link between x and z variables, where the first one denotes the
amount shipped to retailer i1 M in tl t and the second indicates whether retailer
il M hasreceived ashipment or not in tI t . Therefore, the given formulations in
their article need to be revised with adding the following constraints.

x, £Cz, il M,tTt (5.19)

As a final remark, we will show that constraints (B.8), (B.14) and (B.15) of F are
indeed dominated by other constraints in F. It is clear that Cz, £ C so constraints

(B.9) dominate (B.8). Constraints (B.10) can be rewritten as 2z, =
Q e i @ e Vi TP 0 W F @ e Vi ? Voo Ths, constraints
(B.14) are dominated by (B.10). When k=0, constrants (B.16) become
I, 31, (1- z,) for il M,tT t which are equivalent to (B.15). Thus, constraints
(B.15) are encompassed by (B.16).

5.3 Solution algorithmsfor the VMIR-OU problem

5.3.1 Branch-and-cut algorithm

In the branch-and-cut algorithm, we consider all constraints in SF except (5.11) and
al integralities, so that (5.11) would be added dynamically in a cutting plane
fashion if it is violated. Whenever a violated constraint has been found, it would be
added to the LP relaxation on hand and we reoptimize it until no constraint of (5.11)
is violated. We use the separation algorithm of Padberg and Rinaldi (1991) to find
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violated constraints of (5.11). This separation algorithm is for classical traveling
salesman problem (TSP) subtour elimination constraints whose right-hand side is
|S-1. Right-hand side of (5.11) is tighter than |[§-1 since it depends on whether the

retailers in S are visited or not. In constraints (5.11), we select z, variable with
largest value in that iteration, i.e. k =argmax,{z,} , to subtract from summation of z

variables in S This cutting plane generation procedure is repeated in each node of

the branch-and-bound tree. For branching variable selection, we first branch on z,
and then on y; variables. We use a best-node-first strategy (i.e. the node with the

best objective function value is selected) as a node selection rule. An initial upper
bound is found by a heuristic which is described in detail in the next section. For a
detailed explanation of the branch-and-cut algorithm proposed, we refer the reader
to Appendix C. Note that our branch-and-cut principle is almost the same as that of
Archetti et al. (2007a) except that we use SF formulation within our branch-and-cut
algorithm and a new heuristic to find an initial upper bound. Archetti et al. (2007a)
use F formulation within their branch-and-cut algorithm and a heuristic proposed in
Bertazzi et al. (2002), referred to as BPS to find an initial upper bound. In the rest
of the chapter, we will refer to our branch-and-cut algorithm as BC(SF) whereas
that of Archetti et al. (2007a) will be referred to as BC(F).

5.3.2 A priori tour based heuristic

The main idea of our heuristic is to replace routing decision problem with a simple
sequencing decision problem so that the vehicle following a priori route always
skips the retailers that would not be visited on the route, but is being loyal to the
predetermined visiting order of retailers that would be visited. In other words, given
a TSP tour (optimal or not) involving the supplier and all retailers (i.e. all facilities),
the precedence order of the facilities on the tour is fixed to determine facilities
jT M¢that can be visited before visiting facility i (denoted by set b,) and facilities

jT M¢ that can be visited after visiting facility i (denoted by set a,), for each
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facility iT M¢. Notethat sets b, and a, for il M aways involve supplier, and b,
and a, cover al the retailers. Imposing a predetermined tour into SF eliminates the

need to solve inherent H many TSPs and significantly simplifies the routing
decision. Thisideais firstly introduced by Pinar and Sural (2006) for the VMIR-OU
problem. The strong formulation we propose for the VMIR-OU problem with a
priori tour, called APF, is as follows.

APF: Min § 4 hl,+4 & acqV (5.20)
iTMetit ¢ iTMeji Meij it

st. (5.2)«5.9), (5.12), (5.16)—5.18),

av=z il M¢tl t (5.21)

ila

av =z il M¢tl t (5.22)

il by

y;1{0,3 it M¢jT MGt jtlt (5.23)

Objective function (5.20) is the same as (5.1). Constraints (5.21) and (5.22) are the
assignment constraints which ensure that if facility i1 Md is visited in any period
tl1 t then it will be visited in the order imposed by a priori tour. Note that non-
visited retailers will be skipped. Since a priori tour imposed is indeed a directed
tour, it necessitates the definition of y variables in (5.23) to be based on arcs rather
than on edgesin (5.14) and (5.15).

A complete presentation of the relaxation heuristic, referred to as a priori tour

heuristic, is as follows.

A priori tour heuristic:
S1: Solve a TSP instance with all iT M ¢ and store the (optimal) solution denoted

by s(TSP)
S2: Use s(TSP) tofind b, and a, forall il M¢:
b, ={j: j isvisited beforei ins(TSP), jT M §,
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a, ={j: ] isvisited afteri ins(TSP), j1 M¢

S3: Construct APF using b, and a, for al il M¢, solve it to optimality and store
the optimal solution s(APF) and the optimal objective value z(APF).
Z(APF) isavalid upper bound for the VMIR-OU problem

SA: (Improvement step) z(APF) may be further improved:

Set Z§APF) =3 ., A ;. Nl Where I T S(APF)

for t:=1toH do
Solve a TSP over al il M¢' z =1 in s(APF) and store the optimal

objective value z(TSP')
Set z§ APF) = z§ APF) + z(TSP')

end
Z§ APF) isavalid upper bound for the VMIR-OU problem

We refer to a priori tour heuristic without the improvement step S4 as APT whereas
we refer to the complete procedure from S1 to S4 as APT'. APT' requires to solve
H many TSPs in addition to computational requirements of APT. Computational
effectiveness of the heuristic depends on the solvers used for solving APF and
TSPs. Note that any feasible solution to the APF formulation yields an upper bound
to the VMIR-OU problem. In Appendix D, asmall example is given so as to explain

how a priori tour heuristic works.

5.4 Computational experiments

We perform computational experiments on instances generated by Archetti et al.
(2007a) as well as a set of new instances introduced by us for assessment of the
performance of the algorithms. The computational platform used is a Pentium 1V
3.2GHz PC with 1GB RAM running under Windows XP. We code all the
algorithms in C++ on MS Visual Studio.NET 2005 using Concert Technology 2.2
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and CPLEX 10.1. We use CPLEX 10.1 to solve APF, and CONCORDE (Applegate
et a., 2007) to solve TSPs to optimality. Below we present the properties of
instances in Archetti et al. (20073).

Two different horizon lengths (H = 3 or 6) are considered. When H = 3 (H = 6),

instances with up to 50 (30) retailers are generated. External demands r, are
considered constant over time (i.e. r,=r) and generated as integers from

U[10,100]. The quantity received by the supplier r, is set equal to énMri.
Maximum inventory level at retailers U, is set equal to g,r, where g, is randomly
selected from the set {2, 3} and denotes the number of periods needed to consume

inventory at retailers. Initial inventory level at the supplier |, is set equal to
a .U, while initial inventory level at retailers 1, is set equal to U, - r,.
Inventory carrying cost rate at retailers h is generated from U[0.01,0.05] and
U[0.1,0.5] while inventory carrying cost rate at the supplier h, is set equal to 0.03 if
h is generated from U[0.01,0.05] and 0.3 if h is generated from U[0.1,0.5].

a .. r . Transportation cost ¢

Ml

Vehicle' s capacity C is set equal to is set equal to

j

N w

g\/(xi - XJ.)2+(Yi - Yj)zg where X;,X,,Y, and Y, are generated as integers from

U[0,500]. Five random instances are generated for each combination of the

parameters.

Using the above generation scheme, we generate new larger instances for H = 3 and
H = 6 with up to 65 and 45 retailers, respectively. We also generate new larger
instances with up to 35 retailers for H = 9 and up to 25 retailers for H = 12. g, is
selected from the set {2, 3, 4} for H = 9 and from the set {2, 3, 4, 5} for H = 12,
respectively. In the sequel, abls refers to the instances generated by Archetti et al.
(2007a) while ssrefers to the new instances.
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Table 5.1 Average results on abls instances with and without CPLEX cuts'

With Cplex Cuts Without Cplex Cuts
BC(F) BC(SF) BC(F) BC(SF)

n H h;&hy %LP  Seconds Nodes Seconds Nodes Seconds Nodes Seconds Nodes
5 3 low 52.1 0.1 2.8 0.1 40 01 24 01 94
10 3 low 429 0.6 4.2 05 378 0.6 434 0.5 354
5 3 low 3.0 2.0 63.0 2.9 95.2 24 75.0 2.2 70.0
20 3 low 26.7 83 1034 111 1564 123 1818 101 1434
25 3  low 3.7 04 1858 279 1900 431 2380 326 2028
30 3 low 36.0 741 2546 743 2504 1170 4440 938 3366
3B 3 low 336 1700 3386 1953 4006 3382 5764 2068 4448
40 3 low 329 565.3 7018 6427 796.8 6782 8794 5650 69%.8
45 3 low 308 12674 8388 10999 9402 16837 1077.2 11324 7764
50 3 low 284 3245(1) 13478 29377 15050 48126(1) 19324 21050 12150

Average 354 5543 3881 4992 4376 7688 5450 4148 3931
5 3 high 21.6 0.1 32 0.1 44 01 6.4 01 74
10 3  high 142 05 388 0.6 420 0.5 434 0.5 410
15 3  high 10.3 21 724 24 87.2 26 88.0 19 68.8
20 3 high 74 83 1200 84 1152 139 1844 7.7 1132
25 3 high 88 25 1252 244 1328 374 2422 397 2476
30 3 high 85 U3 3516 839 2836 1222 4592 831 336.0
3 3 high 79 2345 5002 1971 4548 2865 5464 2130 4558
40 3 high 76 4315 4494 5511 6000 8995 9376 5162 5750
45 3 high 7.2 7383 4%8 9666 737.2 16013 10250 11460 8786
50 3  high 6.8 37836(1) 18010 27127 12832 36935(1) 18534 30125 17018

Average 10.0 5316 3%.8 4546 3740 665.8 5386 5021 4425
5 6 low 235 05 51.6 04 436 05 1506 0.3 64.6
10 6 low 219 51 1572 38 1270 119 7318 36 1278
5 6 low 20.9 236 2148 193 2238 871 16772 154 1498
20 6 low 195 2660 15722 1982 9966 23963 202788 207.7 109%.4
25 6 low 214 3%3 6022 321 4588 44204(2) 108050 4704 6536
0 6 low 213 20761 20888 16877 16140 7200.1(5) 66580 16063 14108

Average 21.4 4611 7811 3719 5773 23527 67169 3839 5838
5 6 high 117 04 444 0.3 470 05 1370 0.3 59.2
10 6  high 10.0 57 186.0 39 1330 129 8696 39 1332
15 6  high 8.3 202 1874 146 1258 919 19874 165 1532
20 6  high 74 3193 20842 2008 10714 3326.6(1) 251668 2223 11552
25 6  high 7.7 423 8418 074 4670 4685.2(3) 110892 3167 4306
30 6 high 73 20966 20956 15033 14558 72002(5) 67356 17852 17574

Average 8.7 4874  906.6 3384 5500 25529 76643 3908 6148
Overdl average ~ 19.8 5172 5617 4313 4650 13681 30351 4318 4859

low: h =[0.01, 005] and h, = 0.03; high: h =[0.1, 0.5] and h, = 0.3. The numbers in

parentheses on columns 5 and 9 represent the number of instances that could not be solved to

optimality within 2 hour-time limit.
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We compare the LP relaxation solution values of F and SF without constraints
(5.11) on abls instances to see the strength of formulations relative to each other.
Also, in order to fairly compare branch-and-cut algorithms BC(F) and BC(SF), we
test them on abls instances without using any initial upper bound. We refer to those
branch-and-cut agorithms without their initial upper bounding heuristics as
BC(SF)” and BC(F), respectively. Furthermore, we conduct computational
experiments to see the impact of CPLEX’s cuts such as clique inequalities, cover
inequalities, mixed integer rounding cuts, etc. (for a detailed information on
available cuts see the User Manual of CPLEX 10.1) on the performance of BC(F)
and BC(SF)". By default, CPLEX 10.1 automatically decides on whether generating
a class of cuts or not. Average computational results (over five instances) using
branch-and-cut algorithms with and without CPLEX’s cuts on abls instances are
given in Table 5.1. In the table, columns 1-3 show the number of retailers, horizon
length and inventory carrying cost rates for retailers and supplier, respectively.
Column 4 shows the percentage gap between the LP relaxation solution values of
the formulations, computed as the difference between the LP relaxation solution
values of the formulations divided by the LP relaxation solution values of F.
Columns titled as “Seconds’ and “Nodes’ show elapsed time in seconds and the
number of nodes explored in the branch-and-bound tree for the algorithm with and

without CPLEX’ s cuts, respectively.

In Table 5.1, %LP column ranging from 7 to 52 indicates that the LP relaxation
solution value of SF is better than that of F, as expected. In particular, the lower the
inventory carrying cost rate is, the larger the gap is. Results reveal that the
performance of BC(F)" depends on CPLEX’s cuts whereas BC(SF)™ performs well
even in the absence of those cuts. Without cuts, BC(SF) outperforms BC(F)" in that
the former is more than 3 times faster than BC(F)", and the latter explores 6 times
more nodes than the former. Besides, BC(SF)" solved all instances to optimality
while BC(F)" could not solve 16 out of 60 instances to optimality when H = 6.
When CPLEX cuts are allowed, BC(SF)" is on average 17% faster than BC(F)’, and
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BC(SF) is able to solve all instances well under 2 hour-time limit whereas BC(F)
could not solve the two larger instances within the time limit.

We also test our heuristics (APT and APT") on abls instances and compare them
with the BPS heuristic. Average computational results are given in Table 5.2.
Column 4 shows the elapsed time in seconds for APT' to run. Columns 5-7
designate the percent deviation (%Dev) of solution values found by the heuristics
APT", APT and BPS respectively from the optimal solution value, i.e. %Dev = 100
* (Heur — Opt) / Opt where Heur represents the solution value found by the
corresponding heuristic and Opt denotes the optimal solution value.

All heuristics perform well. Especially, APT' heuristic yields higher quality
solutions within a few seconds (on average 0.6% deviation from the optimal
solution value) and has found the optimal solution in 73 out of 160 instances. We
should also note that time required to solve TSPs for APT" heuristic at the outset is
negligible (not greater than 3 seconds even for the largest ss instances solved)
compared to the time required to solve APF formulation. It seems that instances
with low inventory carrying cost rates are more difficult to solve for all than those
with high rates. More success on instances with high inventory carrying cost rates
can be related with the fact that transportation cost constitutes a smaller percentage
of the total cost in these instances compared to the instances with low rates.

To see whether using APT" as an initial upper bound has a significant effect on the
performance of BC(SF), we test BC(SF) on abls instances. In these experiments, we
use the solution value obtained by APT" as an initial upper bound within BC(SF)
and allow CPLEX to add its cuts. Average computational results (over five
instances) on abls instances are given in Table 5.3. Columns 6 and 7 list the
percentage reduction achieved in elapsed time of the algorithm (%Rsec) and the
number of nodes explored by the algorithm (%Rnode), where %Rsec (%Rnode) is
found as the percentage of the difference between values in column 7 (8) of Table
5.1 and column 4 (5) of Table 5.3 divided by values of column 7 (8) of Table5.1.
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Table 5.2 Average results for heuristics on abls instances'

% Dev

n H h; &h, Seconds APT" APT BPS
5 3 low 061 000 009 288
10 3 low 081 09 09 078
15 3 low 101 021 035 256
20 3 low 128 043 100 383
25 3 low 146 103 198 299
30 3 low 197 220 326 3.60
35 3 low 18 055 110 4.46
40 3 low 2.72 115 1.94 6.46
45 3 low 316 260 351 7.60
50 3 low 372 088 222 581
Average 1.86 1.00 164 410

5 3 high 058 000 006 131
10 3 high 080 036 036 174
15 3 high 1.00 007 013 218
20 3 high 119 012 036 330
25 3 high 156 043 078 1.06
30 3 high 188 065 09 121
35 3 high 198 022 039 225
40 3 high 280 023 063 226
45 3 high 341 052 108 249
50 3 high 357 016 066 157
Average 188 028 054 194

5 6 low 124 003 013 164
10 6 low 162 035 055 136
15 6 low 232 089 119 427
20 6 low 330 031 089 29
25 6 low 366 059 122 6.19
30 6 low 543 1.94 4.23 4.64
Average 293 0.68 137 351

5 6 high 107 004 011 034
10 6 high 163 017 031 187
15 6 high 229 042 058 120
20 6 high 353 016 042 209
25 6 high 400 020 070 212
30 6 high 516 087 156 256
Average 295 031 061 170
Overall average 227 059 105 286

flow: h =[0.01, 0.05] and h, =0.03; high: h =[0.1, 0.5] and h, =0.3.
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Table 5.3 Average results on abls instances for BC(SF)"

n H h;&hy, Seconds Nodes %Rsec %Rnode
5 3 low 0.1 1.0 0.0 75.0
10 3 low 0.4 25.8 18.9 31.7
15 3 low 1.6 59.8 45.2 37.2
20 3 low 6.0 82.0 46.5 47.6
25 3 low 226 135.2 19.1 28.8
30 3 low 62.5 227.2 15.9 9.3
3B 3 low 163.0 370.8 16.6 7.4
40 3 low 409.3 581.6 36.3 27.0
45 3 low 618.3 453.0 43.8 51.8
50 3 low 1593.6 901.6 45.8 40.1
Average 287.7 283.8 28.8 35.6

5 3 high 0.1 2.0 85 54.5
10 3 high 0.4 35.6 322 15.2
15 3 high 1.6 50.0 339 42.7
20 3 high 59 79.6 29.7 30.9
25 3 high 191 1314 220 11
30 3 high 70.3 272.8 16.3 3.8
3B 3 high 140.1 275.6 28.9 394
40 3 high 3231 385.0 414 35.8
45 3 high 596.2 471.8 38.3 36.0
5 3 high 1883.2 1179.6 30.6 8.1
Average 304.0 288.3 28.2 26.8

5 6 low 0.3 304 19.1 30.3
10 6 low 2.7 88.4 271.7 304
15 6 low 11.3 99.4 41.5 55.6
20 6 low 120.4 626.6 39.3 37.1
25 6 low 218.8 384.6 321 16.2
30 6 low 1065.3 1129.6 36.9 30.0
Average 236.5 393.2 32.8 33.3

5 6 high 0.3 33.8 16.0 28.1
10 6 high 2.8 91.8 27.3 31.0
15 6 high 10.4 93.8 28.9 254
20 6 high 124.4 643.0 38.0 40.0
25 6 high 220.9 329.0 28.1 29.6
30 6 high 10904 1037.4 275 28.7
Average 2415 371.5 27.6 30.5
Overdl average 274.5 322.2 29.1 31.4

low: h =[0.01, 0.05] and h, =0.03; high: h =[0.1,0.5] and h, =0.3.
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Results indicate that using APT" as an initial upper bound enhances the performance
of BC(SF). On average, there exist 30% reduction in both the elapsed time and
number of nodes explored regardless of the horizon length and level of inventory

carrying cost rates.

In all experiments on larger ss instances, we allow APT" to find an initial bound and
CPLEX cuts within BC(SF). Average computational results (over five instances) are
reported in Table 5.4 for the first group of ss instances. Those largest ss instances
(i.e. the second group of ss instances) that could not be solved to optimality in
reasonable times are solved with atime limit of 4 hours and results for each instance
arereported in Tables 5.5 and 5.6. In Table 5.4, column 6 shows the elapsed time in
seconds for APT" to run, and column 7 indicates the percentage deviation (%Dev)
of the upper bound found by APT* from the optimal solution value. In Tables 5.5
and 5.6, columns 1 refers to test instance number, and column 6 shows the
remaining percentage gap (%Gap) between the best upper bound (UB") and lower
bound (LB") found (i.e. %Gap = 100 * (UB" —LB") / LB") by BC(SF). A “—" sign
in %Gap column means that the optimal solution of the corresponding instance is
proved. Columns 8 is the same as column 7 in Table 5.4 but note that column 8
indicates the percentage deviation of the upper bound found by APT® from the

optimal or the best available lower bound solution value.

As seen in Table 5.4, BC(SF) is consistently able to solve to optimality instances
containing up to 60, 35, 25 and 15 retailers with horizon length of 3, 6, 9 and 12,
respectively under both low and high inventory carrying cost rates within
reasonable times (less than 2.5 hours). Also, APT" finds high quality solutions
within a few minutes. Similar to the results on abls instances, APT" is more
successful (with regard to the deviation from optimal solution value) on ss instances
with high inventory carrying cost rates. Results on Tables 5.5 and 5.6 indicate that
BC(SF) has found the optimal solution in 18 (15) out of 35 (35) instances with low
(high) inventory carrying cost rates for the largest ss instances. Furthermore,
BC(SF) has succeeded in finding a small gap between the best upper bound and
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lower bound for those instances that could not be solved to optimality within limited
time. Except six out of 70 instances, all %Gaps are less than 2.7%. Results with

APT" are in accordance with previous comments.

Table 5.4 Average results on “optimally solvable” ssinstances'

BC(SF) APT "
n H h;&hy Seconds Nodes Seconds %Dev
5 3 low 6669.4 3683.4 5.1 0.93
60 3 low 7080.5 2762.8 5.7 1.34
5 3 high 5034.7 2350.0 4.6 0.28
60 3 high 8621.0 3370.4 6.9 0.45
35 6 low 52075 3949.6 8.6 1.03
35 6 high 34949 2129.2 7.3 0.49
5 9 low 1.7 264.0 2.2 0.00
10 9 low 16.4 402.4 39 0.15
15 9 low 197.4 1424.0 125 0.23
20 9 low 450.4 958.8 11.1 0.95
25 9 low 3903.0 4105.0 29.1 0.40
5 9 high 1.4 213.8 1.9 0.00
10 9 high 13.4 327.4 3.0 0.24
15 9 high 135.0 971.4 8.7 0.05
20 9 high 995.9 2689.2 19.1 0.07
25 9 high 6240.6 6403.4 25.6 0.20
5 12 low 8.8 1214.2 5.2 0.00
10 12 low 181.4 3486.2 23.2 0.25
15 12 low 2253.2 90334 55.8 1.04
5 12  high 240 3150.2 6.7 0.00
10 12  high 119.4 1723.2 24.2 0.13
15 12  high 962.5 4550.2 33.2 0.11

"low: h =[0.01,0.05] and h, =0.03; high: h =[0.1,0.5] and h, =0.3.
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Table 5.5 Results on low-cost ss instances

BC(SF) APT"
# n H Seconds Nodes %Gap Seconds % Dev
1 65 3 121723 3542 — 59 055
2 65 3 14541.3 2324 441 8.1 441
3 65 3 105447 3340 -— 58 156
4 65 3 31977 921 — 50 0.85
5 65 3 144359 3345 1.35 74 185
1 40 6 5231.8 2472 — 6.8 0.66
2 40 6 6387.7 2021 — 86 1.02
3 40 6 144009 4428 254 153 254
4 40 6 4903.2 1930 -— 95 1.37
5 40 6 85199 3413 -— 11.8 1.90
1 45 6 144021 2389 2.68 10.3 3.30
2 45 6 144016 2831 0.85 13.7 149
3 45 6 144001 2771 126 17.4 2.29
4 45 6 144001 1683 0.89 184 4.32
5 45 6 10221.0 2574 — 95 146
1 30 9 5634.3 2966 — 60.0 1.28
2 30 9 105238 5837 — 25.1 081
3 30 9 51746 1681 — 79.4 4.06
4 30 9 108089 5700 -— 539 237
5 30 9 117180 6959 — 42.0 1.69
1 35 9 144004 2585 2.03 309 4.12
2 3 9 144001 2279 3.33 106.6 3.33
3 3 9 144000 1678 3.90 451 4.44
4 35 9 144003 2198 8.04 47.3 8.04
5 3 9 4365.1 962 — 44.0 0.00
1 20 12 9301.3 13947 — 96.3 0.21
2 20 12 2840.3 3143 — 949 0.80
3 20 12 14400.8 13209 4.15 1046.5 4.15
4 20 12 27478 4185 — 69.3 0.00
5 20 12 38675 6324 — 1545 0.03
1 25 12 14400.7 4765 2.05 191.3 205
2 25 12 14400.2 5927 1.16 260.2 1.16
3 25 12 144004 3893 1.95 181.7 2.26
4 25 12 14401.3 4101 169 180.3 1.69
5 25 12 14400.3 4062 7.23 1309.0 7.23
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Table 5.6 Results on high-cost ss instances

BC(SF) APT"
# n H Seconds Nodes %Gap Seconds % Dev
1 65 3 7786.2 1322 - 7.4 1.00
2 65 3 3785.6 1131 — 5.6 0.07
3 65 3 115430 3181 - 7.7 0.11
4 65 3 7504.2 2115 — 1.7 0.40
5 65 3 5810.8 1527 — 6.1 0.05
1 40 6 5281.3 1763  — 9.3 0.35
2 40 6  14400.7 4818 0.07 18.7 1.23
3 40 6 2236.2 626 — 7.9 0.38
4 40 6 4359.2 1470 — 8.9 0.40
5 40 6 5850.8 3361 — 8.3 0.18
1 45 6 5835.4 1123 — 94 0.51
2 45 6 144010 3229 0.07 13.2 0.16
3 45 6 144008 1986 0.74 10.3 1.00
4 45 6 14410.9 1756 1.71 14 2.12
5 45 6 7906.4 1463  — 8.2 0.62
1 30 9 14401.2 5741 021 59.6 0.90
2 30 9 14400.7 5430 0.26 39.7 1.19
3 30 9 14400.1 5580 0.74 14.8 0.74
4 30 9 144043 4851 0.62 21.6 0.82
5 30 9 6404.2 3699 — 20.7 0.20
1 35 9 144009 3216 0.21 18.8 0.21
2 35 9 144016 2721 243 132.9 243
3 35 9 14400.0 2300 191 72.1 1.91
4 35 9 144005 2998 0.28 65.8 0.28
5 35 9 14400.1 2641 0.50 325 1.96
1 20 12 4850.8 4420 — 19.5 0.06
2 20 12 5312.4 7267 - 717 0.13
3 20 12 144002 11126 0.24 106.2 0.35
4 20 12 5767.5 8693 — 243.7 0.03
5 20 12 144002 20939 0.11 52.7 0.32
1 25 12 14401.3 3861 0.73 277.1 0.98
2 25 12 144004 5794  0.66 248.2 0.94
3 25 12 14400.9 4074 158 279.4 1.58
4 25 12 14400.1 7282 0.25 57.1 0.25
5 25 12 14400.1 4759 032 25.0 1.23
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Our approach in strong formulations can also be extended to the two related
inventory routing problems, namely VMIR-ML and VMIR problems. Retailers
inventory replenishment problem in VMIR-ML problem is a lot-sizing problem
with bounds on inventory (Love, 1973), which can be solved polynomialy in
O(H?* by a dynamic programming (DP) algorithm (see Atamtirk and
Kiglkyavuz, 2008). Similarly, the retailers’ inventory replenishment problem in
VMIR problem is an uncapacitated lot-sizing problem (Wagner and Whitin, 1958)
which can be solved polynomially in O(H logH) by a DP algorithm (Federgruen
and Tzur, 1991). Using DP recursions, one can construct shortest path formulations
for the replenishment problems. Another direction might be to study inventory
routing problems with multiple vehicles. However, exact solution of such problems
will be quite challenging since the known valid inequalities for the vehicle routing
problem (VRP) cannot be trivially adapted here due to not knowing how much a
retailer will receive in each period. Let alone the additional valid inequalities, even
the so called rounded capacity inequalities in VRP cannot be used because of the
same reason and one has to resort to fractional capacity inequalities which are not
strong enough.
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CHAPTER 6

A PRODUCTION-DISTRIBUTION-ROUTING PROBLEM WITH
ENDOGENOUSPOLICY

In this chapter, we consider a production-distribution-routing problem with
endogenous inventory control policy (PDR) where a supplier (vendor) decides when
and how much to order/produce a single product and distributes to multiple retailers
inaVMI setting over afinite time horizon using a capacitated vehicle.

Although production-distribution problems arise in many settings, there are very
few studies in the literature that consider production-distribution-routing problem,
as presented in Chapter 2, which may be due to the problem being very complex.
Most of the studies propose heuristic solution approaches to their problems without
having a lower bounding procedure to gauge the effectiveness of their heuristics.
Only a few studies to the best of our knowledge, such as Fumero and Vercellis
(1999), Archetti et al. (2007b), Bard and Nananukul (2008), consider obtaining
lower bounds. All these studies use weak representations for the replenishment
decisions at the suppliers and retailers which limit their approaches in obtaining
exact solutions. In particular, the only study that triesto obtain exact solutionsis the
study of Archetti et al. (2007b).

In this study, we consider strong representations of replenishment decisions and a
computationally attractive formulation for the routing of vehicles to develop a
branch-and-cut algorithm. To the best of our knowledge, this is the first exact
algorithm that is based on a strong formulation in the context of production-
distribution-routing problems. We also use the proposed strong formulation to
develop a mathematical programming based heuristic. Computational experiments
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show that our branch-and-cut and heuristic algorithms perform better than their
competitorsin the literature.

The rest of the paper is organized as follows. In Section 6.1, we describe the PDR
problem in detail. We present the formulation we propose for the problem in
Section 6.2. In Section 6.3, we provide the details of our branch-and-cut algorithm
and mathematical programming based heuristic. Section 6.4 is devoted to the
computational experiments over the test instances to assess the performance of the
proposed algorithms. Note that the notation and abbreviations defined in this
chapter isonly valid in this chapter and in Appendix E.

6.1 Problem definition

We consider a production-distribution system in which a supplier orders (or
produces) a single product and distributes to N retailers over afinite time horizon T
with a capacitated vehicle. Retailer i (1£i £ N) faces external customer demand d,
in each discrete time period t (LEt£T ) and may keep inventory |, to meet the

demand without backordering. The supplier, denoted by i=0, manages the
inventories at the retalers by deciding on when and how much to ship to each

retailer i, and guarantees that neither retailers nor itself will stock-out (i.e. I, 3 O for

O£i£N) in any period t. The supplier decides on how much to order in each

period t, and may ship to the retailers immediately or keep inventory 1, for
replenishing retailers in later periods. We assume the beginning inventory level |,
is zero. When an order is placed at the supplier in a period t, a fixed order cost f,
independent of the size of order and a variable order cost p, per unit ordered are
incurred. For each unit kept in inventory at facility i (O£i £N) in a period t, a
holding cost h, is incurred. The vehicle based at the supplier can visit multiple

retailers in a multi-stop route without exceeding its capacity C. A vehicle traveling
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from facility i (O£i £ N) to facility j (O£ j £ N) incurs a transportation cost ¢,
where ¢; =c; . We assume that the vehicle can only perform a single tour in every

period. The PDR problem is to decide on when and how much to order a the
supplier, when and how much to ship to each retailer, and the routing of vehicles
such that the sum of fixed and variable order costs, transportation cost as well as
inventory carrying costs at the supplier and retailers is minimized. It is an extension
of the OWMR problem, studied in Chapter 3, so that a multi-stop routing as a
transportation policy is imposed to the OWMR problem instead of the direct
shipment. The PDR problem, a strongly NP-hard problem, is formulated as a mixed
integer program (MIP) in the following. We aso present a standard MIP
formulation, referred to as formulation F-ML, due to Archetti et al. (2007b) in the
Appendix E to inform the reader of the type of formulations usually proposed in the
literature for the PDR problems.

6.2 Strong formulation for the PDR problem

We view the PDR problem as an integration of a two-level lot sizing problem (very
similar to the OWMR problem in Chapter 3) and routing problem of vehicles. The
formulation that we will propose is a strong formulation since we use effective
mathematical representations for these two problems. For the lot sizing part of the
problem, we use the shortest path based representation we propose in Chapter 3 for
the OWMR problem as a basis to develop an effective representation for the
replenishment decisions of the PDR problem since it has proved to be the strongest
one in Chapter 3. Besides, we use a two-index vehicle flow based formulation,
which proved to be one of the effective formulations for vehicle routing problems
(see Laporte, 2007 for a general discussion and Chapter 5 for a usage in inventory
routing), in formulating the routing problem of vehicles.
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Define D, as the tota demand of retailer i from period t through k, i.e.
D =a . d,,and a, asbeing equal to 1if D, >0, 0 otherwise. Letting x,, be 1
if the vehicle visits facility j immediately after facility i (j<i) in period t and O
otherwise; z, be 1 if the vehicle departs from the supplier in period t and O
otherwise; z, be 1 if retailer i is visited in period t and O otherwise; y, be 1 if an
order is placed at the supplier in period t and O otherwise; W, be the fraction of the

total demand of retailer i from period t through k satisfied in period t; and U, ., be

iqtk
the fraction of the amount ordered at the supplier in period g to meet the demand of

retailer i from period t through k, the strong formulation SF-PR we propose is as

follows.
g dd d 4 S d d et g
S-PR Min g fiy,+taaaa pPDuWiwta a hliy *a a a ¢ (6.1)
t=1 i=1 g=1t=q k=t i=0 t=1 i=1 j=0 t=1
S.t.
d d 4 d 4 4
lo =loestad Ad A DYk - A @ A PuYig 1ELET (6.2)
i=1l r=t k=r i=1 q=1 k=t
.
le =1+ @ DWW, - d, 1EiEN,1ELET (6.3)
k=t
t
a Ui =W, 1EiEN,1EtEKET (6.4)
q=1
d 4 )
aaalgty, 1EiEN,1EQELET (6.5)
k=q r=t
g )
aw, =1 1£i£N (6.6)
k=1
g Bt
aW,-aWw,.,=0 1E£iEN, 2£tET (6.7)
k=t k=1
d d
a & bW, £Cz, 1ELET (6.8)
i=1 k=t
g )
a a,W, £z 1EiEN,1EtET (6.9)
k=t
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i-1

éxjﬁg X = 22, OLi£N,1ELET (6.10)
j=0 j=i+1

a a xfaz-z Si {12,..,N} , 1£t £T,s0meki S (6.11)
its jis,j<i irs

z, £ 2, 1EiEN,1ELET (6.12)
X, £ 2, 1£ j<iEN,AELET (6.13)
X £ 2, 1£ j<iEN,AELET (6.14)
X, 1 {03} O£ J<iEN,IEtET (6.15)
X, 1 {0,1,2 1EiEN,1ELET (6.16)
z,1{0,1 OFLi£N,1EtET (6.17)
y,1{0,3 1EtET (6.18)
W, 30 1EiEN,1IELEKET (6.19)
U 2 0 1£i£N,1EQELEKET (6.20)

where 1,,=0 for O£i £ N,

Objective function (6.1) is the sum of fixed and variable order costs, inventory
holding costs at the supplier and retailers as well as transportation costs,
respectively. Congtraints (6.2) and (6.3) are inventory balance equations for the
supplier and retailers, respectively. They are actually not needed but used to
compute inventory holding costs. Constraints (6.4) ensure that if retailer i is shipped
aquantity in period t then it is satisfied by placing an order to the supplier in period
g (1£g£t). Congraints (6.5) stipulate that a fixed cost is incurred when an order is
placed to the supplier. Constraints (6.6) and (6.7) are the flow conservation
equations of the shortest path representation of each retailer i. Constraints (6.8)
ensure that the total amount shipped to the retailers in period t cannot exceed the
capacity of the vehicle. Constraints (6.9) guarantee that if any replenishment occurs
to aretailer i in period t then i must be visited in t. Constraints (6.10) are degree
constraints for ensuring that two edges are incident to retailer i in aperiod tif i is
visited in t. Constraints (6.11) are the generalized subtour elimination constraints.

121



Congtraints (6.12)—6.14) are indeed not needed here but they are added to
strengthen the formulation. Constraints (6.15)—6.18) are for integrality while
constraints (6.19) and (6.20) are for nonnegativity.

As the nonzero initial inventories at the retailers (i.e. 1., >0 for 1£i £ N) can be
treated as zero by deducing external demands at the retailers from |1, until it

becomes zero and adding its cost to the objective function value, the SF-PR
formulation given above is assuming zero initial inventories. Although SF-PR is
also assuming zero initial inventory at the supplier, it is easy to incorporate nonzero
initial inventories into SF-PR as done in Chapter 3.

The SF-PR formulation we propose is a quite flexible formulation in that it can
handle a variety of issues considered in the literature. In the following, we briefly
discuss these issues and show how SF-PR can cope with them.

§8 Inventory bound constraints: Some researchers consider problems in which
the amount of inventory carried in any period at the retailers and/or at the
supplier cannot exceed a maximum level UP (O£i £ N). For example, Lei
et a. (2006) consider inventory bound constraints both at the supplier and at
the retailers while Archetti et a. (2007b) consider these constraints at the
retailers (they call maximum level policy). We can incorporate such a
constraint into S--PR as follows.

|, EUP 1EiENAELET (6.21)

§ Capacity over replenishment quantities to supplier: Lei et al. (2006) and
Boudia et al. (2007) consider a capacity constraint C, on the amount that

can be produced or ordered at the supplier in a period. This can also be
easily handled in SF-PR by adding the following constraints.

.
a DoV £CY, 1EQET (6.22)

q k=t

o-

N
a

i=1

-
1
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8 Vehicle fleet: Although we consider a single vehicle, it is possible to adapt
SF-PR to the case of homogeneous/heterogeneous vehicles by adding an
index v into transportation cost and vehicle capacity parameters, i.e. ¢;, and
C, aswell asinto the variables x, z, W, and modifying related constraints in
SF-PR accordingly. Also, it is possible to adapt SF-PR for an unlimited fleet

size asin Chandra and Fisher (1994) and Archetti et al. (2007b).

§ Multi-product case: It is also easy to address multi-product case by
incorporating an additional index for each product into the variables

I,U,W,y and writing all constraints in S=-PR for each product except (6.8)
and (6.10)—(6.14).

Although our focus is on the PDR problem, we also consider the PDR problem with
bounded inventory (i.e. the PDR problem with constraints (6.21)) for benchmarking
of our formulations with that of Archetti et al. (2007b). For the PDR problem with
bounded inventory, we add (6.21) to SF-PR, which we refer to as SF-ML
formulation. Note that SF-ML reduces to SF-PR if UP is sufficiently large (e.g.

UP =D, )forali(1£i £ N).

Since S--PR (SF-ML) has an exponential number of constraints due to (6.11), one
cannot directly attempt to solve the complete SF-PR (SF-ML) formulation even for
a few retalers. Instead, we add constraints (6.11) dynamically to SF-PR (SF-ML),

which leads to a branch-and-cut algorithm, as described next.
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6.3 Solution algorithmsfor the PDR problems

6.3.1 Branch-and-cut algorithm

The branch-and-cut algorithm proposed for the PDR problem is based on dynamic
addition of constraints (6.11). We first start with SF-PR without constraints (6.11)
and integrality requirements on variables. At each node of the branch-and-bound
tree, first, the current solution at this node is checked to see whether there are
inequalities of (6.11) that are violated by the current solution. If there are such
inequalities then they are added to the formulation and it is reoptimized. This
procedure repeats until no such violated inequalities are found. We use the
separation algorithm of Padberg and Rinaldi (1991) to detect violated inequalities of
(6.11) (see Appendix C for further details), where z, variable with largest value in

any iteration, i.e. k=argmax.{z,}, is selected to subtract from summation of z

variables in the retailer subset S. Whenever there is no violated inequality of (6.11),
branching occurs. Regarding the branching variable selection, we first branch on'y
variables, then on z variables and lastly on x variables. As a node selection rule we
use best-bound first rule (i.e. the node with the best objective function value is
selected). We also use an initial upper bound found by a heuristic described in the
next subsection. Our branch-and-cut algorithm is referred to as BC(SF-PR).
Similarly, using SF-ML in place of S--PR, we obtain a branch-and-cut algorithm for
the PDR problem with bounded inventory, which isreferred to as BC(SF-ML). Note
that our branch-and-cut algorithms are amost the same as that of Archetti et al.
(2007b), which is referred to as BC(F-ML). There are only two differences between
our and their branch-and-cut agorithms in that we use SF-PR or SF-ML formulation
and a mathematical programming based heuristic for initial upper bounding whereas
they use F-ML formulation and an improvement heuristic, referred to as ABPS for
initial upper bounding.
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6.3.2 A priori tour based heuristic

In this subsection, we present a mathematical programming based heuristic, a priori
tour heuristic, for the PDR problem. The idea of replacing combinatorial routing
decision problem with a simpler ordering decision problem has aready been
explained in Chapter 5. Adaptation of the algorithm given in Section 5.3.2 to the
PDR problem is undemanding. We replace the formulation given in Section 5.3.2
for the VMIR-OU problem with the following formulation for the PDR problem.

dJd & g S d S & g
A-PR: Min a fy+aaaa PO U ta a il ta a a &% (6.23)
i=1 gq=1t=q k=t i=0 t=1 i=0 j=0,i1j t=1
st. (6.2)6.9), (6.12) and (6.17)—(6.20)
a % =z OLi£EN,IELET (6.24)
ila
a X, =z OLiEN,IELET (6.25)
il by
X, 1 {03} OLi£N,0£JEN,jLi1ELET (6.26)

where the set b, (O£i £ N) contains facilities j (O£ j £ N) that can be visited
before visiting facility i, the set a, contains facilitiesj (O£ j £ N) that can be
visited after visiting facility i, and x, takes value 1 if facility j is visited

immediately after facility i in period t and O otherwise.

As in Section 5.3.2, we denote the a priori tour heuristic without the improvement
step (i.e. solving T many traveling salesman problems to improve the tours in each
period) for the PDR problem as APT-PR while the complete procedure including the
improvement step is denoted as APT'-PR. To obtain a priori tour heuristic for the
PDR problem with bounded inventory, we add (6.21) to A-PR, which is referred to
as A-ML formulation. Using A-ML in place of A-PR in APT-PR and APT'-PR, we
obtain APT-ML and APT'-ML heurigtics, respectively.
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6.4 Computational experiments

We conduct computational experiments on instances generated by Archetti et al.
(2007b) to evaluate the performance of the algorithms. The computational platform
used is a Pentium IV Core 2 Duo 2.33GHz PC with 1GB RAM running under
Windows XP. We code all the algorithms in C++ on MS Visual Studio.NET 2005
using Concert Technology 2.2 and CPLEX 10.1. We use CPLEX 10.1 to solve A-
PR and A-ML, and CONCORDE (Applegate et a., 2007) to solve TSPs to
optimality. In the following, we present the properties of instances in Archetti et al.
(2007b).

The number of retailers N and horizon length T are set equal to 19 and 6,
respectively. External demands d, are constant over time (i.e. d,=d) and
generated from U[5,25] as an integer. Maximum inventory level at retailers UP is
set equal to g, d. where g, israndomly selected from the set {2,3,6} and denotesthe

number of periods needed to consume inventory at retailers. There is a single
vehicle with capacity C, which is set equal to UP¢3UP®¥ 2 and 2UP¢ where

UPC=max, . {UP +d}. Initial inventory level at the supplier is set equal to O
while the initial inventory level at retailers |, is set equal to UP - d.. It is provided

that all the problem instances are feasible. All the cost parameters are generated as
constant over time. Inventory carrying cost rate at retailers h; is generated from
U[1,5] and U[6,10] while inventory carrying cost rate at the supplier hy is set equal
to 3 and 8. Variable order (production) cost p is set equal to 10hy and fixed order
cost f is set equal to 100p. Transportation cost ¢; between two facilitiesi and j is set

equal to g\/(xi-xj)2+(vi-vj)2+o.5g where X, XY and Y, are the

coordinates of facilitiesi and j and are generated from U[0,500] and U[0,1000] as
integers. Thus, 24 test instances are obtained in the first class of instances. In the
second class of instances, only the variable order cost parameter p is changed from
10hy to 100hy (note that p affects f). The third class of instances is created by
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multiplying the coordinates of the supplier and retailers with five and the rest
remains the same. In the fourth class of instances, instances 1-6 and 13-18 of the
first class, and instances 7-12 and 19-24 of the second class are selected and their h;
is set equal to 0. Thus, there are 96 instances in total. We give the properties of
instances of the first class corresponding to the combination of parameters ho, hj,
coordinates (X, X, Vi, Y;) and C in the Table 6.1.

Table 6.1 Properties of instances

Instance hg h; Xi, Xi, Yi, Y] C

1 3 [6,10] [0,500] 2UP¢
2 3 [6,10] [0,500] PG 2
3 3 [6,10] [0,500] UP¢
4 8 [6,10] [0,500] 2UP¢
5 8 [6,10] [0,500] PG 2
6 8 [6,10] [0,500] UP¢
7 3 [1,5] [0,500] 2UP¢
8 3 [1,5] [0,500] PG 2
9 3 [1,5] [0,500] UP¢
10 8 [1,5] [0,500] 2UP¢
11 8 [15  [0500]  3UPG2
12 8 [1,5] [0,500] UP¢
13 3 [6,10] [0,1000] 2UP¢
14 3 [6,10] [0,1000] PG 2
15 3 [6,10] [0,1000] UP¢
16 8 [6,10] [0,1000] 2UP¢
17 8 [6,10] [0,1000] PG 2
18 8 [6,10] [0,1000] UP¢
19 3 [1,5] [0,1000] 2UP¢
20 3 [1,5] [0,1000] PG 2
21 3 [1,5] [0,1000] UP¢
22 8 [1,5] [0,1000] 2UP¢
23 8 [1,5] [0,1000] PG 2
24 8 [1,5] [0,1000] UP¢

We start with basic experiments in order to assess the impact of CPLEX cuts and
initial upper bounding on our algorithm using the test instances of Archetti et al.
(2007b) with inventory bound constraints. First, we run BC(SF-ML) without an
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initial upper bound, referred to as BC(S--ML), under three different settings of
CPLEX cuts: (i) All cuts are allowed, (ii) Only Gomory and implied bound cuts are
allowed, and (iii) No cuts are allowed. Results are given in Table 6.2 where column
1 indicates the class of instances, column 2 indicates both elapsed time in seconds
(averaged over 24 instances in each class) and number of instances that are solved
to optimality, and columns 3-5 show BC(SF-ML) with all cuts (All), with only
Gomory and implied bound cuts (G&1B) and no cuts (None), respectively. Table
6.2 indicates that the worst performance of the algorithm is the case where no cuts
are allowed. BC(SF-ML)" with G&IB is better than BC(SF-ML)™ with All for the
first two classes while BC(SF-ML)" with All is better than BC(SF-ML)” with G& 1B
for the last class. They are even for the third class. Second, we try BC(SF-ML), that
is the branch-and-cut with an initial upper bound, with All and with G&IB. Results
are given in columns 6 and 7, respectively in Table 6.2. We have decided to use
BC(SF-ML) with G&IB in subsequent experiments. Although providing an initial
upper bound to the branch-and-cut algorithm may not yield better results (see the
results for second class), the overall results justify feeding an initial upper bound to
the algorithm.

Unfortunately we do not have the algorithm of Archetti et a (2007b). Because of
this, we were not able to directly compare BC(F-ML) and BC(SF-ML) (or BC(SF-
ML)). Average results by BC(F-ML), BC(SF-ML)" and BC(SF-ML) over 24
instances in each class are given in Table 6.3. In this table, column 1-5 show the
algorithm used, the elapsed time in seconds, the number of nodes explored, the
remaining percentage gap (%Gap) between the best upper (UB) and lower bounds
(LB) (i.e. %Gap = 100 * (UB — LB) / LB), and the number of instances solved to
optimality, respectively.

BC(F-ML) could not solve 52 out of 96 instances to optimality within 2-hour time
[imit and the results did not change when it was allowed to run for two hours more
as noted in Archetti et a. (2007b). BC(SF-ML)" and BC(SF-ML) yield quite
satisfactory results proving optimality in all instances in reasonable times (except
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one instance for BC(SF-ML)). In spite of the differences in the computational
platform and solver in the experiments of Archetti et al. (2007b), it can be said that
our branch-and-cut algorithms outperform their competitor.

Table 6.2 Average results for the impact of CPLEX cuts and initial upper bounding

BC(SF-ML) BC(SF-ML)
Class Info All G& 1B None All G& 1B
1t Seconds 404.4 377.4 426.9 364.6 352.2
# solved 24 24 24 24 24
ond Seconds 975.8 8428 14047 13235 1189.3
# solved 24 24 24 24 24
ard Seconds 1463.8 1464.7 16979 111838 939.9
# solved 23 23 22 22 24
4th Seconds 10041 13848 1754.0 9126 1057.1
# solved 24 24 23 24 24
Average Seconds 962.0 10174 13209 929.9 884.6
Total  # solved 95 95 93 94 96

Table 6.3 Average results for BC(F-ML)", BC(SF-ML)” and BC(SF-ML)
Class Algorithm  Seconds  Nodes %Gap # solved

BC(F-LM) 61310 283750 124 4
1t  BC(SF-ML) 3774 27408 0.0 24
BC(SF-ML) 3522 31150  0.00 24
BC(F-ML) 20130 83898 001 18
2nd  BC(SF-ML) 8428 69530  0.00 24
BC(SF-ML)  1189.3 110204  0.00 24
BC(F-ML) 42525 19203.7 1.34 11
3rd  BC(SF-ML) 14647 107686  0.04 23
BC(SF-ML)  939.9 82135  0.00 24
BC(F-ML) 43181 187160  1.03 11
4th  BC(SF-ML)  1384.8 105302  0.00 24
BC(SF-ML)  1057.1 101491  0.00 24

"Results of BC(F-ML) are found using CPLEX 9.0 on a Pentium IV 2.8GHz PC
with 1GB RAM running under Windows XP.
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We also compare our heuristics, APT-ML and APT'-ML, with that of Archetti et al.
(2007b), called ABPS. Results are provided in Table 6.4, where columns 2—3 show
the elapsed time in seconds for APT-ML and APT -ML respectively, and columns 4—
6 indicate the percentage deviation (%Dev) of the heuristic value (Heur) from the
optimal solution value (Opt) (i.e. %Dev = 100 * (Heur — Opt) / Opt). According to
the results, all heuristics perform well but our heuristics are slightly better. In
particular, APT'-ML vyields solutions with an overall average percentage deviation
of 0.07% and achieves to find the optimal solution in 29 out of 96 instances whereas
APT-ML and ABPS could not find the optimal solution in any of the 96 instances.
Besides, the time required to solve T many TSPs to improve the solutions of APT-
ML is negligible compared to the time required to solve the A-ML formulation.

Table 6.4 Average results for APT-ML, APT -ML and ABPS

Seconds % Dev
Class APT-ML APT"-ML APT-ML APT'-ML ABPS
1st 13.0 14.3 0.20 0.07 1.46
2nd 22.9 24.2 0.03 0.02 0.19
3rd 48.9 50.1 0.68 0.19 2.05
4th 37.2 38.4 0.13 0.02 0.47
Average 30.5 31.8 0.26 0.07 1.05

Next, we perform experiments without setting the inventory bound constraints, i.e.
testing the PDR problem. We again implement BC(SF-PR)” and BC(SF-PR) with
G&IB. Average results are presented in Table 6.5, where it can be seen that both
BC(SF-PR)" and BC(SF-PR) perform well. Note that for those instances BC(SF-PR)
could not solve two instances in the third class to optimality whereas BC(SF-PR)” is
able to find the optimal solution in all instances. These results imply that the impact
of initial upper bounding diminishes when inventory bounds on stocking are
relaxed.
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Table 6.5 Average results for BC(SF-PR)” and BC(SF-PR)

Class Algorithm  Seconds  Nodes % Gap
BC(SF-PR) 3846 3037.1 0.00

1o BC(SF-PR)  309.6 29473  0.00
ong BC(SF-PRy 8128 71926 000
BC(SF-PR) 6441 65419 0.00
5q BC(SF-PR) 16064 127734 000
BC(SF-PR) 16240 150335  0.08
4n  BC(SF-PRy 13065 11627.1 0.00
BC(SF-PR) 13012 14042.1 0.00
BC(SF-PR)  1027.6 86575  0.00
Average

BC(SF-PR) 969.7 9641.2 0.02

Table 6.6 Average results for APT-PR and APT'-PR

Seconds % Dev
Class APT-PR APT"-PR APT-PR APT'-PR
1st 9.0 10.4 0.15 0.07
2nd 17.9 19.1 0.03 0.01
3rd 271 28.3 0.49 0.10
4th 20.3 21.6 0.11 0.03
Average 18.6 19.8 0.19 0.05

As shown in Table 6.6, our heuristics APT-PR and APT'-PR vyield superior results
in short times even if inventory bounds on stocking are relaxed. Specifically, APT"-
PR finds the optimal solution in 44 out of 96 instances.

Archetti et a. (2007b) have analyzed the consequences of using maximum level
policy and order-up-to level policy (discussed in Chapters 4 and 5) both
theoretically and empirically and shown that a solution found using the order-up-to
level policy can be significantly worse than the maximum level policy in terms of
costs. As a by-product of our computational experiments, we have an opportunity to
compare the consequences of using maximum level policy (ML) and the
endogenous policy (E). We compute the percentage difference (%Dif) between the
optimal solution values of two policies (i.e. %Dif = 100 * (ML — E) / ML) in two
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different ways. Considering the total cost (TC) term and the total cost less constant
terms (TC-Const), which does not have any affect on the optimal solution. These
constant terms involve variable order costs and costs due to initial inventories at the
retailers. Since per unit order cos is constant over time and the total amount to be
ordered to the supplier is known, one can compute the total variable order cost in
advance. Also, costs due to initial inventories at the retailers can be computed in
advance. Average and Maximum %Dev figures over 24 instances in each class are
provided in Table 6.7 through columns 2-3 and 4-5, respectively. Columns 2 and 4
(3 and 5) indicate results obtained with the total cost (the total cost less constant
terms). Apparently, there is not much difference between the two policies so that the
optimal solution values obtained under the maximum level policy can be used as an

upper bound on the objective function of the PDR problem with endogenous policy.

Table 6.7 Differences between the maximum level and endogenous policy

% AveDif % MaxDif
Class TC TC-Const TC TC-Const
1st 0.38 1.18 1.58 4.49
2nd 0.07 0.49 0.23 1.65
3rd 2.72 5.45 6.56 10.89
4th 1.04 4.06 442 13.59
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CHAPTER 7

CONCLUSIONS AND DIRECTIONS FOR FUTURE RESEARCH

In this thesis, we have addressed one-warehouse multi-retailer problems under two
different inventory control (endogenous and order-up-to level) and two different
shipment policies (direct shipping and multi-stop routing), namely,

§ One-warehouse multi-retailer problem with endogenous policy (OWMR)

8 Onewarehouse multi-retailer problem with order-up-to level policy

(OWMR-0)
8 Inventory routing problem with order-up-to level policy (VMIR-OU)
8 Production-distribution-routing problem with endogenous policy (PDR)

We have addressed the OWMR problem by proposing a new shortest path based
formulation and showing that it is stronger than the previously proposed
transportation based formulation, which in turn is stronger than the strengthened
version of another previously proposed one, echelon stock formulation. The new
formulation is a strong formulation since it defines the convex hull of feasible
solutions of the single-warehouse single-retailer (SWSR) problem. We have also
revealed that the shortest path and transportation based formulations are equivalent
in strength for the joint replenishment problem (JRP), which is an important special
case of OWMR problem. Moreover, we have explicitly considered the case of
nonzero initial inventory at the warehouse which is truly a neglected issue in the
multi-level lot sizing literature although it is natural for only some specific
representations. We have shown both theoretical and empirical implications of
nonzero initial inventories to the problem complexity. Our computational
experiments over the test instances have revealed that the shortest path and
transportation based formulations perform significantly better than the echelon
stock formulation both under zero and nonzero initial inventories at the warehouse.
In particular, our shortest path based formulation being the best yields integrality
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gaps of 0.01% and 1.3% on average in the absence and presence of initial
inventories, respectively. This formulation also achievesto find the optimal solution
for al instances within less than three minutes for large instances involving 50

retailers and 30 time periods.

We have proposed strong formulations for the OWMR-O problem by explicitly
considering the case of nonzero initial inventory at the warehouse besides the case
of zero initial inventory. We have shown that in the case of single retailer and zero
initial inventory at the warehouse, our strong formulation defines the convex hull of
feasible solutions of the problem. We have shown that problem becomes more
difficult in the presence of initial inventories at the warehouse in contrast to the
single-level lot sizing problems where initial inventories can be easily handled.
Computational experiments performed on a set of randomly generated instances
have provided that our strong formulations are very successful in solving the
problem to optimality. They are very effective in closing the gap between the
integer and the continuous solutions with 1% gap on average. Moreover, we have
performed a limited number of experiments with the standard (weak) formulation.
The results have shown that our strong formulation significantly outperforms the
standard formulation such that the standard formulation could not solve any of the
instances to optimality within a two-hour time limit whereas our strong formulation
solves them to optimality only within a few seconds. We have also shown that
significant cost savings (14% on average) can be obtained by using the vendor
managed inventory system (by solving MIPs) over the retailer managed inventory
system (by implementing latest ordering up-to level policy).

We have addressed the VMIR-OU problem by proposing a branch-and-cut
algorithm and a heuristic, based on strong formulations. To the best of our
knowledge, this study is the first to consider strong formulations for inventory
routing problems. Computational results indicate that our exact and heuristic
algorithms have outperformed their competitors in the literature. Our branch-and-
cut algorithm is able to find the optimal solution values of the larger problem
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instances with size up to nxH ={65x3,45x6,35x9, 20x12} where n and H denote the

number of retailers and horizon length, respectively. Our heuristic achieves to find
high quality solutions deviating 1% from the optimal solution on average within a

few minutes.

We have considered the PDR problem (and also PDR problem with bounded
inventory) and proposed branch-and-cut and heuristic algorithms based on strong
formulations. Computational experiments have shown that the proposed algorithms
have outperformed their competitors in the literature. Our branch-and-cut algorithm
solves all instances to optimality for both the PDR problem and the PDR problem
with bounded inventory whereas an existing exact agorithm for the PDR problem
with bounded inventory could not solve more than half of all instances. Within a
few minutes, our heuristic achieves to find solutions with 0.05% and 0.07%
deviation on average from the optimal solution values for PDR problem and PDR
problem with bounded inventory, respectively. We have also empirically compared
the optimal solution values of PDR problem and PDR problem with bounded
inventory, and we have shown that the difference is indeed small, which is contrary
to the result of huge difference between optimal solution values of PDR problem
with order-up-to level policy and PDR with bounded inventory (Archetti et al.,
2007b).

One of our overall conclusions is as follows. Since the strong formulations we have
proposed for four related but different one-warehouse multi-retailer problems are
proved to be effective and they are flexible with regard to handling additional side
congtraints, they can be used within the decision support systems for planning
purposes in different levels in VMI settings discussed in Chapter 1. For instance,
direct shipment formulations can be used for tactical level planning such as
constructing master production schedules, while multi-stop routing formulations can
be used for operational level planning such as constructing detailed production and
distribution schedules. In case of multi-stop routing policy, the proposed heuristics
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can also be used in place of the exact algorithms as they are effective and flexible as
well.

As we formulate the retailers' replenishment problem using strong shortest path
representation and effectively extend this representation to the warehouse
operations for different inventory control policies (like endogenous and order-up-to
level policies), we conclude that our approach can be applicable to different
replenishment problems (at retailers) provided that a strong shortest path
representation of the replenishment problem can be developed. For example, the
existence of strong shortest path representations for problems with stationary
capacity on replenishment quantities and problems with backorders (see Pochet and
Wolsey, 2006) lends these types of lot sizing problems to our approach.

Another overall conclusion we have reached is that the presence of initial inventory
at the warehouse adds a significant complexity to the problem at hand.

Further research issues

A research direction is to use the approximate strong formulation idea of Van Vyve
and Wolsey (2006), instead of incorporating the complete strong formulation. The
authors add only some part of the complete formulation as cuts and obtain the best
results in the context of the multi-item capacitated lot sizing problem with setup
times. Since our strong formulations involve a large number of variables and
congtraints, decreasing the formulation size using the approximate strong
formulation idea seems promising for solving larger problem instances. Another
research direction is to use our srong formulations within decomposition based
customized algorithms that might help in solving larger problem instances.

Since we assume predetermined order-up-to level (S) for each retailer i in the
OWMR-O problem, one interesting research question that might immediately arise
is whether it is possible to optimize order-up-to levels or not. Indeed, this question
is partially answered in Solyali and Siral (2008a) where the authors propose a
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pseudo-polynomial dynamic programming algorithm for the single retailer case. As
discussed in Solyali and Siral (2008a), each S should take a value in between
retailer i’'s maximum and total demand over the horizon. Thus, by incorporating an
additional index accounting for the possible values of § into the shortest path
representation variables, one could obtain a promising strong formulation for this
problem. The disadvantage of the resulting formulation might be the large number
of variables arising due to accounting for each possible S value. However, such a
handicap might be addressed by generating a variable only when it improves the

solution (i.e. using column generation).

As afurther research issue, one can easily extend the formulations considered in this
thesis to the multi-item case (as in Federgruen and Tzur, 1999). A promising
research avenue is to adapt the shortest path based formulation for the multi-level
lot sizing problems with serial, assembly or general structure. In particular, although
there exists a polynomial time algorithm for the problem with serial structure, there
is no known explicit convex hull defining formulation for it. As the shortest path
based formulation is tight for the two-level problem with serial structure (SWSR
problem), its extension to more than two levels would be nice contributions to the
literature. Extension of the shortest path based formulation for the problem with
assembly or general structure seems also promising anyway as the mathematical
programming studies almost are based on the echelon stock idea (e.g. Stadtler,
1997).

Another research direction might be to study multiple vehicles for problems with
multi-stop routing policy. However, exact solution of such problems will be quite
challenging since the known valid inequalities for the vehicle routing problem
cannot be trivially adapted here due to not knowing how much aretailer will receive
in each period. Let alone the additional valid inequalities, even the so called
rounded capacity inequalities in VRP cannot be used because of the same reason
and one has to resort to fractional capacity inequalities which are not strong enough.
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APPENDIX A

A STANDARD FORMULATION FOR THE OWMR PROBLEM

In this appendix, we provide a standard formulation of the OWMR problem,
referred to as P. Define N as the number of retailers, T as the number of periods in
the time horizon, d, asthe external demand faced by retailer i (LEi £N),i =0as
the warehouse, f, as the fixed order cost incurred when an order for facility i
(OEIi£N) isplaced in period t (LEt£T), p, asthe variable order cost incurred
per unit ordered by facility i in period t, and h, as the inventory holding cost at
facility i incurred for each unit kept at the end of period t. Let 1, and I,

respectively be inventory levels of the supplier and retailers at the end of period t,
Q, be the quantity ordered to facility i in period t, and y, be 1 if an order for

facility i is placed in period t and O otherwise.

P: Min %é(fityt+ptgt+htln) (A.1)
st.
8

o1+ Qo :‘EQ”H(” 1ELET (A.2)
|1 +Q, =d, +1, 1£iEN, 1£tE£T (A.3)
Q. £ D, Vi OLiEN,1£tET (A.4)
y.1{0,3 OFLIi£N, 1£t£T (A.5)
Q30 OFIi£N, 1£t£T (A.6)
1,30 O£i£N, 1E£tET (A7)
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where |., isthe known initial inventory level at facility i (O£i £ N), d,, :é " d

j=1 it

for LEIEN and D, =8 " d, for OEi EN,1ELEKET.

The objective function (A.1) is the sum of fixed and variable order costs and
inventory holding costs at the warehouse and retailers. Constraints (A.2) and (A.3)
are the inventory balance constraints for the warehouse and retailers, respectively.
Constraints (A.4) ensure that afixed order cost isincurred at facility i (O£i £ N) if
an order is placed any time for i. Constraints (A.5) are for integrality while (A.6)
and (A.7) arefor nonnegativity.
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APPENDIX B

A STANDARD FORMULATION FOR THE VMIR-OU PROBLEM

In this appendix, we provide the standard formulation of the VMIR-OU problem
due to Archetti et al. (2007a). Define n as the number of retailers, H as the number

of periods in the time horizon, r.

. as the external demand faced by retailer
il M={12,..n}, r, astheamount received by the supplier, denoted by i = 0, in
period tT t ={1,2,...,H}, C as the capacity of the vehicle, U, as the maximum
inventory level at retailer il M, h as the inventory holding cost at facility
il M¢=M U{Q} incurred for each unit kept a inventory in ti t¢ where

t¢=t U{H +1}, and c

; as the transportation cost of traveling from facility il Md

to facility jT Md. Let I, and |, respectively be inventory levels of the supplier
and retailers at the beginning of period t1 t ; x, be the amount shipped to retailer
il M inperiodtlt ; z, belif retailer il M isreplenished in period t1 t and O
otherwise; z, be 1 if vehicle departs from the supplier in period tI't and O
otherwise; and y}i be 1 if vehicle visits facility i1 Md immediately after facility
jT M€ in period t1t and O otherwise. Then, the formulation of the VMIR-OU
problem due to Archetti et al. (2007a), referred to asF, is as follows.

F:Min @ ahl,+a a aoy (B.1)
iTMetit ¢ iTMeji MEj<i tit
s.t.
IOt = Io,t-1+r0,t-1' é Xi,t-l tT td (B.Z)
Y
I ® & % tlt (B.3)
Y
A T D TR iTM,tTtd (B.4)
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where x,=r,=0 for il M.
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N

N

M, tTt
M, tTt
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tlt
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N

Si M,tlt,someki S

N

M ¢t t

M, tTt
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M,jT M,j<itit
M, tTt

M¢tT t

M¢tT td
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(B.5)
(B.6)
(B.7)

(B.8)

(B.9)

(B.10)

(B.11)

(B.12)
(B.13)

(B.14)
(B.15)

(B.16)

(B.17)

(B.18)
(B.19)
(B.20)
(B.21)
(B.22)

Objective function (B.1) is exactly the same as (5.1). Constraints (B.2)—(B.4) are
respectively the same as (5.2)—«5.4) except that w variables are replaced with x

variables. Constraints (B.5)—<B.7) guarantee that the order-up-to level policy is
satisfied at the retailers. Constraints (B.8) and (B.9) stipulate that the total amount
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shipped to the retailers in a period cannot exceed the capacity of the vehicle. Indeed,
only constraints (B.8) or (B.9) are sufficient to ensure that capacity of the vehicle is
not exceeded. Constraints (B.10) and (B.11) are exactly the same as (5.10) and
(5.11), respectively. Constraints (B.12)—«(B.17) are actually not needed in
formulating the VMIR-OU problem but they are added to F a priori by Archetti et
al. (2007a) to strengthen the formulation. Constraints (B.12)—(B.14) are for
strengthening retailers’ replenishment part of the problem while constraints (B.15)—
(B.17) are for strengthening routing part of the problem. Constraints (B.18)—(B.20)
are for integrality while (B.21) and (B.22) are for nonnegativity of variables.
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APPENDIX C

AN OVERVIEW OF THE BRANCH-AND-CUT ALGORITHM

In this appendix, we present the branch-and-cut algorithm proposed in Chapter 5 in
detail.

As cutting planes, we use constraints (5.11) in Chapter 5 and those of CPLEX 10.1
mentioned in Section 2.1 with the default version. We use the exact separation
algorithm of Padberg and Rinaldi (1991) to find violated inequalities of (5.11). The
separation algorithm of Padberg and Rinaldi (1991), a polynomial time algorithm, is
based on determination of the minimum weighted cut. At each node| of the branch-
and-bound tree, we add constraints (5.11) as long as the separation algorithm detects
any violated inequality. As for branching variable selection, we only give priority to
zvariables over y variables and the decision of which z or y variable to select among
eligible ones is left to the MIP solver of CPLEX. In Figure C.1, we present our
branch-and-cut algorithm with a flow chart, which is an adaptation of the generic
flow chart given in Wolsey (1998). In the flow chart, UB™ denotes the best objective

value, X denotes the best solution obtained, z§ APF) denotes the solution value
obtained by APT", s§ APF) denotes the solution obtained by APT", SF' denotes the

SF formulation at node j, and SF* denotes the SF formulation at node j in iteration
K.
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Initialization
Set UB' = Z(APF), X =S(APF), j=0
Generate SFi formulation without (5.11) and
integrality requirements and put on node list

v

Node Exit
If nodelistisempty,goto  Exit ; .
»  Else choosenode j from the nodelist | Terminate agortihm nd
using best-node-first strategy !
f v
Restore
S formulation and
Setk=1land SFit=GF
LP Relaxation Cut
lteration k Solve SFi*andset "| lteration k Trytocutoff X with
Z*=optimd solutionvalueof S CPLEX's cuts and congtraints (5.11)
xk=optima solutionof Sk If noviolated cuts, goto Prune
If infeasibleor Z%>UB*, pruneandgoto Node | Else, add cuts to SFik set SFikrl=grik
Else, goto Cut k=k+landgoto LP Reaxation
A
< Prune
If Z%> UB'", pruneand goto Node
Branching Elseif x*isfeasble and 2* < UB’, update UB" and

Sdlect avariable to branch on and add <
the new nodes to node list

X asUB'=2* X'=x* pruneandgoto Node
Else, goto Branching

Figure C.1 Flowchart of our branch-and-cut algorithm
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APPENDIX D

AN OVERVIEW OF A PRIORI TOUR HEURISTIC

Here, we describe how our a priori tour heuristic works on a small example.
Consider a VMIR-OU problem instance with four retailers, i.e. M¢={0,1,2,3,4}.

Using c; values of the instance, we construct a TSP instance and solve it to
optimality. Suppose that the optimal tour is depicted by 0 —2 -3 -1-4—-0as
given in Figure D.1. Then, we derive the sets b, and a, for il M¢ using the

optimal tour as follows:

b, ={12,3,4 a,={12,34
b, ={0,2,3 a, ={0,4}

b, ={0} a,={0134
b, ={0,2} a,={0,1,4}
b, ={012,3 a, ={0}

Then, we construct APF using b, and a, for iT M ¢ and solve it to optimality. In

any feasible solution of APF, one obtains a tour that follows the a priori tour by
skipping the unvisited retailers in each period the vehicle departs from the supplier.
For example, suppose that only retailers 1 and 2 are visited in a period. Then, the
tour that the vehicle follows in this case is shown with dashed lines in the following

figure.
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—— optimal TSP tour

— — — apriori tour

Figure D.1 Example for a priori tour
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APPENDIX E

A STANDARD FORMULATION FOR THE PDR PROBLEM

In this appendix, we provide a formulation due to Archetti et al. (2007b). Define N

as the number of retailers, T as the number of periods in the time horizon, d, asthe

external demand faced by retailer i (1£i £ N), i=0 as the supplier, C as the capacity

of the vehicle, UP as the maximum inventory level at retailer i (LEi£N), f, as
the fixed order cost incurred independent of the size of order, p, as the variable
order cost incurred per unit ordered to the supplier, h asthe inventory holding cost

at facility i (O£i £ N) incurred for each unit stocked intheend of t (LEt£T ), and

G

as the transportation cost of traveling from facility i (O£i £ N) to facility |
(OEJEN).

Let 1, and I,,, respectively, be inventory levels of the supplier and retailers at the
end of periodt (LEt£T); U, betheamount ordered to the supplier in period t; W,
be the amount shipped to retailer i (1£i£ N) in period t; x; be 1 if the vehicle
visits facility j (O£ ] £ N) immediately after facility i (O£i £ N) in period t and O
otherwise; z, be 1 if the vehicle departs from the supplier in period t and O
otherwise; z, be 1 if retailer i is visited in period t and O otherwise; and y, be 1 if

an order is placed at the supplier in period t and O otherwise. Then, the formulation
due to Archetti et al. (2007b), referred to as F-ML, is as follows.

T N T N i-1 T
F-ML: Mina(fth'*'tht)'*'aahlit +aaa0.,->§jt (E-l)
t=1 i=0 t=1 i=1 j=0 t=1

S.t.
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(E.2)
(E.3)
(E.4)
(E.5)
(E.6)
(E.7)
(E.8)
(E.9)

(E.10)
(E.11)

(E.12)

(E.13)

(E.14)

(E.15)

(E.16)

(E.17)

(E.18)

(E.19)

(E.20)



z,1{0,1 OFLi£N,1EtET (E.21)

y,1{0,3 1EtET (E.22)
1,30 OLIi£EN,1ELET (E.23)
W, 3 0 1EiEN,1ELET (E.24)
VREN) 1EtET (E.25)

where t¢=min, ., {t§ , t¢=min, . {j[l,- & _d, <O and 1,,=0.

Objective function (E.1) isthe total of fixed and variable order costs at the supplier,
inventory holding costs at the supplier and retailers as well as transportation costs.
Constraints (E.2) and (E.3) are inventory balance equations for the supplier and
retailers, respectively. Constraints (E.4) stipulate that a fixed order cost is incurred
whenever the supplier places an order. Constraints (E.5) ensure that the amount of
inventory carried at a retailer cannot exceed its maximum level. These constraints
are defined by Archetti et a. (2007b) since they consider a variant of PDR in which
there are constraints on the amount of inventory that can be carried in any period.
Thus, constraints (E.5) must be removed from F-ML to obtain a valid formulation
for the PDR problem. Constraints (E.6) guarantee that aretailer is visited in a period
in which it is replenished. Constraints (E.7) ensure that the total amount shipped to
the retailers in a period cannot exceed the capacity of the vehicle. Constraints (E.8)—
(E.12) are exactly the same as (6.10)—6.14), respectively. Indeed, constraints
(E.11)«E.18) are not needed in formulating the problem but they are shown to be
valid inequalities and added to F-ML a priori by Archetti et a. (2007b) to strengthen
the formulation. Specifically, constraints (E.11), (E.12) and (E.18) are for
strengthening routing part of the problem while constraints (E.13)—E.17) are for
strengthening inventory replenishment part of the problem. Constraints (E.19)—
(E.22) arefor integrality while (E.23)—E.25) are for nonnegativity of variables.
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