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ABSTRACT

J-INTEGRAL FORMULATION AND IMPLEMENTATION FOR

THERMALLY LOADED ORTHOTROPIC FUNCTIONALLY GRADED
MATERIALS

Arman, Eylip Erhan
M.Sc., Department of Mechanical Engineering
Supervisor: Assoc. Prof. Dr. Serkan Dag

November 2008, 99 pages

The main aim of this study is to utilize a J, -integral based computational

method in order to calculate crack tip parameters for orthotropic functionally
graded materials (FGMs). The crack is subjected to mixed mode thermal
loading. Mixed mode thermal fracture analysis requires the calculation of mode-

| and mode-II stress intensity factors (K, , K, ). In addition to stress intensity
factors, energy release rate and T -stress are calculated by means of J, -integral.
J, -integral is defined as a line integral over a vanishingly small curve. Since it
is difficult to deal with a line integral on a vanishing curve , J, -integral is

converted to a domain independent form containing area and line integrals by
the help of plane thermoelasticity constitutive relations. Steady-state

temperature distribution profiles in FGMs and the components of the J, -

integral are computed by means of the finite element method.



In both thermal and structural analyses, finite element models that possess
graded isoparametric elements are created in the general purpose finite element
analysis software ANSYS. In the formulation of J, -integral, all required
engineering material properties are assumed to possess continuous spatial
variations through the functionally graded medium. The numerical results are
compared to the results obtained from Displacement Correlation Technique
(DCT). The domain independence of J, -integral is also demonstrated. The
results obtained in this study show the effects of crack location and material
property gradation profiles on stress intensity factors, energy release rate and T -

stress.

Keywords: Functionally Graded Materials (FGMs), Finite Element Method,

J, -Integral, Mixed-Mode Stress Intensity Factors, Thermal Stresses.
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FONKSIYONEL DERECELENDIRILMIS MALZEMELERDE ISISAL
YUKLEME ALTINDA J, -INTEGRAL FORMULASYONU VE

UYGULAMASI

Arman, Eylip Erhan
Yiiksek Lisans, Makina Miihendisligi Boliimii

Tez Yoneticisi: Dog. Dr. Serkan Dag

Kasim 2008, 99 Sayfa

Bu c¢alismanin  amaci, J, -integral  metodunu  kullanarak  Fonksiyonel
Derecelendirilmis Malzemelerdeki c¢atlak ucu parametrelerini hesaplamaktir.
Catlak, karisik modda termal yliklemeye maruz kalmaktadir. Karistk modda
termal yiiklemeler altindaki ¢atlak analizleri mod-1 ve mod-II gerilme siddeti
factorlerinin (K, ,K, ) hesap edilmesini gerektirmektedir. Gerilme siddeti
faktorlerinin hesabina ek olarak enerji birakma miktar1 ve T -gerilimsi de J, -
integral metodu ile hesap edilmektedir. J, -integral sonsuz kiigiikliikte bir egri
tizerinde egri integrali olarak tanimlanmistir. Egri tizerinde tanimlanmis integral
ile galismanin miimkiin olmamasindan, J, -integral, diizlemsel termal elastikiyet

kuramlar ile alan ve ¢izgi integralleri igeren ve alandan bagimsiz bir integral

haline doniistiiriilmiistiir. Fonsiyonel Derecelendirilmis Malzemelerdeki siirekli

haldeki sicaklik dagilim profilleri ve J, -integrali olusturan unsurlar sonlu

elemanlar yontemi ile hesap edilmektedir.

Vi



Genel amagh sonlu eleman analiz yazilimi1 olan ANSYS’te yapilan termal ve
yapisal analizlerde derecelendirilmis izoparametrik elemanlara sahip sonlu
eleman modelleri olusturulmustur. J, -integral formiilasyonunda gerekli olan
biitlin malzeme 06zelliklerinin, fonksiyonel derecelendirilmis ortamda siirekli
uzaysal degisimlere sahip olduklar1 varsayilmistir. Elde edilen sayisal sonuglar
Yer Degistirme Bagintis1 Teknigi ile elde edilen sonuglarla karsilastirilmistir.
J, -integralinin alandan bagimsiz olma 6zelligi de gosterilmistir. Bu caligmada
elde edilen sonuglar ¢atlak pozisyonunun ve malzeme Ozelliklerinin
derecelendirilme profillerinin gerilme siddeti faktorlerine, enerji birakma

miktarina ve T -gerilmesine etkilerini géstermektedir.

Anahtar Kelimeler: Fonksiyonel Derecelendirilmis Malzemeler, Sonlu

Elemanlar Methodu, J, -Integrali, Karisitk-Mod Gerilme Siddeti Faktorleri,

Termal Gerilmeler.
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CHAPTER 1

INTRODUCTION

1.1 Functionally Graded Materials

In recent years, there is an increasing demand for high performance materials
that can deal with severe thermal environmental conditions. Some examples of
these conditions are combustion chambers, aerospace structures, modern power
generation and propulsion applications. Special focus has been given on
Functionally Graded Materials (FGMs) which can provide thermal protection.
Functionally Graded Materials are heterogeneous composites that have spatial
variations in thermal and mechanical properties in a continuous manner. In
general, Functionally Graded Materials demonstrate ceramic/metal material
property gradation exploiting the favorable properties of both ceramics and

metals.

Initially, FGMs have been introduced to take the advantages of ceramic and
metallic components. Ceramic layer provides heat and corrosion resistance. On
the other hand metallic substrate provides mechanical strength and toughness.
With such materials, it is possible to improve thermal or mechanical stress
relaxation, and to increase bonding strength and toughness along a
coating/substrate interface. Therefore, FGMs have an ability to reduce the
magnitude of residual and thermal stresses and to increase the bonding strength

and fracture toughness.



FGMs have many potential applications in various industries such as the
aerospace industry. Since FGMs enable to produce light weight, strong and
durable materials, they are preferred to be used in aeronautics. Another possible
technological application is the cutting tools. The demand for increased strength
and thermal resistant cutting tools leads to use of FGMs in cutting tools. In
biomaterial industry FGMs are used as components in bones and joints. Also, in
combustion chambers, solid oxide fuel cells, piezoelectric devices and pressure
vessels, FGMs are utilized.

There are various techniques of processing FGMs. Some of the methods are
plasma spray forming, electron beam physical vapor deposition, combustion
sintering, centrifugal casting and electrophoretic deposition. Some of these
deposition methods are known to result in a highly anisotropic structure with
reduced thermal and mechanical properties. For instance, plasma sprayed
coatings have a lamellar microstructure, on the contrary electron beam physical
vapor deposition method leads to a columnar microstructure. Due to the
deposition methods, FGMs lose their isotropy and it is necessary to consider the

orthotropic properties when studying the mechanics of FGMs.

Better understanding of FGMs is needed to allow wider use of such materials.
Structural performance of material compounds is affected by various defects that
already exist within the material. Therefore, fracture remains as a key failure
mode of FGMs. Fracture mechanisms of these materials have to be carefully
investigated. In recent years, there has been a great interest in determining the
thermal stress distribution near the vicinity of a crack located in FGMs. By
calculating the crack tip parameters such as stress intensity factors, it is possible

to determine failure characteristics and structural reliability of FGMs.



In this study, J, -integral is used to determine crack tip parameters. J, -integral
is a highly effective method to carry out fracture analysis. Originally, J, -

integral is not used for thermally loaded materials. This is due to the fact that, it

is not possible for J, -integral to keep its path independence under thermal
stress conditions. In this study, J, -integral is converted to domain independent

form consisting of line and area integrals.
1.2 Literature Survey

Extensive research efforts are currently devoted to the experimental
characterization, analytical interpretation and numerical simulation of fracture in
FGMs. Because of the complexity of fracture analysis of FGMs, these
researches are limited to simple geometries that contain a single crack or a series
of cracks. Also, loading conditions of these geometries are simple. In the
fracture analysis of FGMs different methods, such as Displacement Correlation

Technique (DCT) and J, -integral, are employed. In almost all of these

methods, a numerical method (generally FEM) is used to obtain results. Below

is a review of the literature related to the problem under consideration.

An important study was performed by Nikishkov and Atluri [1]. They used the
equivalent domain integral method to calculate crack tip parameters, which
quantify the severity of the stress/strain fields near the crack-tip under thermo-
mechanical loading. 8-node isoparametric finite elements were used in the
computational algorithm of this study. It is shown that the equivalent domain
integral representation yields the most accurate, stable, and path-independent

numerical values for the crack-tip parameters.



In the paper by Kim and Paulino [2], slanted and non-slanted cracks in

orthotropic FGM plates under mechanical loading were studied. J, -integral

formulation was made for cracks that did not need to be oriented parallel to the
principal orthotropy directions. Mode-I and mode-II stress intensity factors were
calculated with the help of the finite element method. In the finite element
procedure, isoparametric formulation was used. Material properties were chosen
to be exponentially and linearly varying. The numerical results obtained from

J, -integral were validated by the results obtained from the Displacement

Correlation Technique. It was shown that plate size, material property gradation

and boundary conditions play significant roles in fracture behavior of FGMs.

One of the three dimensional fracture analyses was made by Walters et al [3]. In
this study, the crack under consideration was subjected to thermomechanical
loading which were tension loading and temperature gradient dependent loading.
Results were obtained by using the domain integral approach. Therefore, a new
form of J -integral was proposed. Displacement correlation technique was used
to validate the results obtained from domain integral. For different crack sizes,
aspect ratios and material property gradations under tensile, bending and
spatially varying temperature loading, the 2D and 3D normalized stress intensity
factors were calculated. The results demonstrate the accuracy of proposed J -
integral in 2D and 3D.

Another important study was performed by Kim and Paulino [4]. They
developed an interaction integral (M -integral) formulation by using the
Lekhnitskii and Stroh formalisms to evaluate elastic T -stress for arbitrarily
oriented straight and curved cracks in orthotropic nonhomogeneous materials.
Exponential and hyperbolic-tangent functions are utilized to model the material

property gradation.



Several fracture problems were investigated to validate the proposed integral
formulation. The computed T -stress values were compared to available

reference solutions. It was shown that the computed values are highly accurate.

An experimental study was carried out by Abanto-Bueno and Lambros [5].
Mechanical behaviour of the FGMs was characterized by uniaxial tensile
testing. Real time data acquisitions were required for the utilization of this
testing method. With the help of full-field digital image correlation technique,
data for displacement field around the crack tip were acquired while the crack
propagated into the graded material. Stress intensity factor and T -stress were
calculated with the obtained data. It was shown that T -stress term in the
asymptotic expansions for stresses had to be taken into account in order to

obtain fracture resistance in FGMs.

A J -integral based method for thermal fracture analysis of orthotropic FGMs is
presented by Dag [6]. Two models were considered. The first one was a single
edge crack in an FGM layer. The second one consists of periodic cracks in an
FGM layer bonded to a homogeneous substrate. In both of these analyses, the
FGM layer is assumed to be orthotropic. Again, the J -integral was converted to
a domain independent area integral to calculate the crack tip parameters. The J -
integral was computed by the finite element method. The mode-I stress intensity
factors for different crack geometries and material property variation profiles
were compared to the results obtained from enriched finite element method.
Numerical results illustrate the influences of thermal conductivity, thermal
expansion coefficient, relative crack length and crack periodicity on the mode-I
stress intensity factors.



Mixed mode thermal fracture analysis of isotropic FGMs was carried out by Dag

[7] using the J, -integral. Mode-lI and Mode-Il stress intensity factors were

calculated for an embedded crack in an FGM layer under steady state thermal
loading conditions and for periodic cracks in an FGM Thermal Barrier Coating
subjected to thermal shock heating. The necessary modifications were carried

out to convert the J, -integral to a domain independent form that contains area
and line integrals. Then, the components of the J, -integral were calculated by

the finite element method. The results illustrate the influences of material
property variation profiles and crack geometry on the crack tip parameters, such
as mode-1 and mode-1I stress intensity factors, energy release rate and T -stress.

Another important study is presented in the paper by Kim [8]. They calculated
the non-singular T -stress and mixed-mode stress intensity factors in
functionally graded materials (FGMs) by means of interaction integral in
conjunction with finite element method. In this study, spatial gradation of
thermomechanical properties was represented by graded finite elements. It was
shown that material gradation affects the magnitudes and signs of T -stress and
stress intensity factors. The path independence of M -integral was demonstrated
for both SIFs and T -stress. It was also demonstrated that T -stress is more
dependent on the size of domain compared to the SIFs and for the same mesh
discretization, the accuracy of SIFs is higher than that of the T -stress.

In all of the studies mentioned above, materials are either isotropic or
orthotropic. In isotropic models, mode-lI and mixed-mode thermal stress
intensity factors, energy release rate and T -stress have been calculated under
both thermal loading and mechanical loading. In the case of orthotropic models,

under thermal loading only mode-1 fracture analysis has been performed.



The work reported in this study presents the formulation and implementation of

the J, -integral for mixed-mode fracture analysis of orthotropic functionally

graded materials under thermal stress conditions.

1.3 Scope of the Study

The main objective of this study is to evaluate the crack tip parameters, namely
mode-1 and mode-II stress intensity factors, energy release rate and T -stress
under thermal loading conditions by considering orthotropic functionally graded

materials.

All the crack tip parameters are calculated using the J, -integral approach. J, -

integral formulation is integrated into ANSYS by utilizing Ansys Parametric
Design Language (APDL). Subroutines are written to calculate the integrands of

J, -integral. Numerical method of Gauss Quadrature is used to evaluate J, -

integral components. In addition, continuous variations in the material properties
are taken into account by assigning the properties at the centroids of the finite

elements.

The code written for the analysis is composed of two parts. In the first part,
thermal boundary conditions are assigned to the related surfaces of the
functionally graded medium and steady-state temperature distribution is
determined. In the second part, using the calculated temperature field, structural
analysis is performed and crack tip parameters are calculated. In order to
validate the stress intensity factors, those obtained from J, -integral are
compared to the results obtained from the Displacement Correlation Technique

[8]. The effects of crack location and material nonhomogeneity are depicted by
related plots.



This study introduces a new approach to the calculation of the fracture
mechanics parameters of thermally loaded orthotropic FGMs. Mixed-mode

fracture analysis of orthotropic FGMs under mechanical loading have been
performed by utilizing J, -integral approach . In the literature, mode-I and
mixed-mode fracture mechanics analysis of isotropic FGMs under mechanical
and thermal loading conditions have been considered [7]. Therefore, this will be
a new study where J, -integral approach is used for mixed-mode fracture
analysis of a crack embedded in an orthotropic functionally graded medium

under thermal loading. The particular crack problem considered in the present

study is shown in Figure 1.1.

X2

reference temperature = Ty

FGM HHEHHE. h,

T:To

Figure 1.1 Geometry of the crack problem considered in the present study.



The material property gradation is in X, direction. Therefore the crack is lying
perpendicular to the direction of the property gradation. The temperatures of the

top and bottom surfaces are different and these are designated by T = 2T, on the
top surface and T =T, on the bottom surface. The top and bottom surfaces are
kept at different but constant temperatures. Reference temperature is T,. The

problem is solved under steady-state conditions. The lateral surfaces of the
model are assumed to be insulated. The two dimensional model of the
orthotropic FGM layer is created by using the general purpose finite element
analysis software ANSYS. 8-node quadrilateral elements are used in mesh

generation.



CHAPTER 2

FORMULATION

2.1 Constitutive Relations of Plane Orthotropic Thermoelasticity

Constitutive relations characterize the individual material and its reaction to the
applied loads. Materials for which the constitutive behavior is only a function of
the current state of deformation are known as elastic. These elastic materials
deform under stress and when the stress is removed they return to their original
shape. The amount of deformation during the application of the stress is strain.
The homogeneity and non-homogeneity of the material significantly affect the
constitutive behavior. A body is called homogeneous when the material
properties are the same throughout the body, in other words, the material
properties are independent of the position within the body. In case of a
heterogeneous or nonhomogeneous body, the material properties are functions
of position. For instance, a body composed of layers is nonhomogeneous. The
layers can have uniform thicknesses of different materials. The directional
dependency of material properties in a body yields anisotropy. An anisotropic
body possesses different values of a material property in different directions at a
point. An isotropic body possesses same values of a material property in all

directions at a point.

One of the most frequently encountered non-homogeneous materials are
orthogonal anisotropic or, in other words, orthotropic materials. In case of
thermal elasticity, the stress-strain relation of orthotropic materials is given by
Lekhnitskii [10] as follows:

10



i - V21 V31 0 0 0
E, E, E,
Vo 1 —Va
S 0 0 0
& E, E, E, %
& —Vis Vi 1 0 0 0 T2
&3 _ E, E, E, O3
€4 0 0 0o X o o||%
Es Gy o
&g 0 0 0 0 i 0 ||os
Gy
0 0 0 0 0 Gi
12

where

AT =T —T,, T, is the reference temperature.
E =6y, &, =&y, E3 =8y, €, =26y, &5 =283, & =28y,

0, =0y, O, =0y, O3 =033, Oy =0y, O5 =03, € =0

o, AT
o,AT
o, AT

2.1)

2.2)

(2.3)

In the case of plane stress and plane strain, the constitutive relations of plane

orthotropic thermoelasticity are given by Dag [6]. For the case of plane stress,

the relation is given as follows:

i Vi 0
&y —I?/l Ell o, o, AT
£y = E“ E 0 (10, +1a,AT
2¢,, ! 2 1 | low 0

0 0 —_—

GlZ

(2.4)

where & (i, j=12) are the combination of mechanical and thermal strains,

namely total strain components. E;,

constants. AT =T -T,

temperature.

11

v, and G; (i, j=12) are engineering

is the temperature difference from a reference



The constitutive relation for the case of plane strain is given by Dag [6] as

follows:
(L-vgyvis) — (v +Vi3Vs,) 0
€11 ( E, ) a E, ) Oy (vayas + 0 )AT
— (V5 T V..V — Vo,V
Ep (= = E, — EZ: = 0 110y, p+y(vVao, +a,)AT
2¢,, . . 1 | low 0
G,

(2.5)

The relationships between the engineering constants of orthotropic materials are

given by:
Yo _Va YVis _Var Vos _ Va2 (2.6)
E, E, E, E; E, E;

The two-dimensional anisotropic elasticity problems can be formulated in terms
of the analytic functions, ®(z,), of complex variable, z, =x, +iy, (k=1,2),

where

Xk =X+ ak y’ yk = IBk y ’ (k:1,2) (27)

a.and B, (k=1,2) are the real and imaginary parts of x, =, +if,. u, are the
roots of the characteristic equation given below. The roots are selected such that
B >0 [2]. p, are always complex or purely imaginary in conjugate pairs as

My, Iy 1y, 1, Moreover, s and g, must be evaluated at the crack tip location.

12



4, can be considered as numbers which characterize the degree of anisotropy in

the case of plane problems. According to their values one can judge how much a

given body differs from that of the isotropy, for which x, = g, =1[10].

arfp +(2a)) +agd)u’ +ay =0 (2.8)

The compliance coefficients ai‘jip are given as follows for plane stress:

i
tip _ 1 tip _ _Vllzp tip _ 1 tip _ 1 (2 9)
11 Eltip ! 12 = Efp ! 22 E;ip ! 66 szp '
In case of plane strain these constants are given by
tip, tip tip tip, , tip tip, , tip
af — 1-vyvis tip _ Y12 TVizVa ip _ 1= V3Va ip _ 1L (2.10)
11 Etip M1 T Etip ! 22 Etip ! 66 Gtip :
1 1 2 12

When the material is orthotropic and the directions of axes x, and x, coincide
with the principal directions of elasticity, then the following three possibilities

exist for the roots g, and , [10]:
Case I: y, =xi, u, =Ai,roots are purely imaginary and unequal.
Case IlI: 1, = 1, =xi, roots are purely imaginary and equal.

Case lll: y, =p+xi, y, =—@+xKi

13



Since p, are taken as positive, kand A values are positive as well. In this

study, Case | is obtained.

2.2 Ji-Integral Formulation

The Jy-integral is a line integral which is defined over a vanishingly small curve
at a crack tip. In Figure 2.1, an orthotropic functionally graded medium is
depicted. It is assumed that the FGM medium shown in Figure 2.1 is linear
elastic. Also, the medium is assumed to be under mixed-mode thermal stresses.

X, and x, constitute a local crack tip coordinate system. I', is an arbitrary curve
around the crack tip. It starts from the lower crack face and ends up at the upper

crack face. n is the unit outward normal of the curve T, .

Orthotropic
Functionally Graded Medium

Figure 2.1 A curve I', around a crack tip in an orthotropic functionally graded

medium.

14



Then J, -integral is defined on the curve T, in the case of plane stress or plane

&

strain as follows:

J, :rlirrl{j(Wnk —oyN Uy, )dr} (jk=12) (2.11)
84) 1_,5
where W : mechanical strain energy density function.
n, : unit normal outward to the curve I'; .

Gij : stress components.

U :displacement components.

I . arc length of the curve.
_a0)
(=%

One of the main variables required in the calculation of J, -integral is the

mechanical strain energy density function, W. In case of a general 3-D state of
stress, the mechanical strain energy density function can be written in the

following form:

W=16 el
2

ij<ij

(i,j=1,2,3) (2.12)

where &'is the mechanical strain. The components of the mechanical strain are

given as
el =&, —a.AT ,em =¢6,, —a, AT , g = &0 — AT
11 11 1 1 ©22 22 2 1 ©33 33 3
m m m
Ep =&p 1 &3 = &3, 893 = Ep3 (2.13)

where ¢,, =0 for plane strain.

15



The mechanical strain energy density function takes the following form for

plane stress and strain:

1

E[allel"} + O + Oy &g + Ty ] plane stress

1 (2.14)
[ 0+ o+ o+ o + '“] lane strain

E 011811 T 081 T 0585 T 038y 043853, P

The stress-strain relations for the cases of plane stress and plane strain are given
by equations (2.4) and (2.5) respectively. In the case of plain strain,
£33 = &3 = &, =0 and o,; can be obtained by equating ¢, to zero as follows:
E3 E3
O3y = — Vi30u +— V530 — B3, AT (2.15)
El E2
Then W can be written in terms of strain components for the case of plane strain

in the following form [6]

E z Ev,.vi. _ _ _
W =—*X {(1_ 2 L3 SZ)Elgll +(vy, +V13V32)E2522}+Glz (5122 +5221)

2A E

sl (2.16)

E.E,& E
+ 12—2/\822 {(VlZ + VsV ) ey + (L=Vyvi5)e,, }+ 21V31 agz (AT)Z
Vis
where
V§2V13 2
A=E, (1_ V31V13)_ E, + Vi +2V,ViaVa (2.17)
31

Epy =&y — (V31a3 +a, )AT  Ep =&y — (Vszas +a, )AT (2.18)

16



Using the equations (2.16)-(2.18), W can be represented in the following form:

w ZW(811,812,€21,822, E,, Ez1V311V13'V12’V32'G12'a1’a2’0‘3’AT) (2.19)

In the case of plain stress, o, =0, =0, =0 and W can be written in terms of

strain components in the following form [6]

_ E12 (6 —ayAT) +v,EE, (&5 —a,AT)

W 2(E, —V2E,) (61—, AT) + Gy, (61, +&3,) .20
n vi,E,E, (61, —aAT) +2E1E2 (622 — 2,AT) (£, — 2, AT)
2(E, —v,E,)
Using equation (2.20), W can be represented in the following form
w :W(811'812’821’822' E; E2,V12,G12,a1,0£2,AT) (2.21)

The expression of the J, -integral given in equation (2.11) is not suitable to be

used in the numerical analysis. Because stress and strain components can not be

calculated over a vanishingly small curve. It is necessary to express the J, -
integral in terms of domain and line integrals. In order to express the J, -integral

in terms of area and line integrals, we consider a positively oriented closed curve

I" around the crack tip as shown in Figure 2.2.

17



Orthotropic
FGM O X2

n
¢ I,
[=T,+T' +T, + T ./

Figure 2.2 A closed curve T" around the crack tip.

The closed curve T" surrounds the area Q. The curve T" is piecewise smooth

and represented as follows:

=T,+I,+[,+T, (2.22)

Before expressing the J, -integral in terms of area and line integrals, some

manipulations have to be carried out. Therefore, another line integral I, is

defined over the closed curveI". In addition to defining a new line integral, a

new function q is defined. g is a piecewise smooth function which changes

from unity on T, and to zero on T',. The integral |, is defined as follows:

 =floyu, -wa fan dr . (jk=12) (2.23)

r

where J,; is the Kronecker’s Delta.

18



By utilizing the Divergence Theorem (see APPENDIX A for the Divergence

Theorem) in plane, |, can be converted into an area integral as follows:
_a - -
=[] o (Tl d—Wo,q)de, (jk=12) (2.24)
Q Y7

Note that the equations of equilibrium read as:

o;; =0, (ij=12) (2.25)

Let’s define the integrand of the integral |, as Z,

0
Z, = s —(o;U;, 4 -Ws,,0) (ijk=12) (2.26)

J
Carrying out the differentiation, one obtains

Z, =10 Ui +oyUs g —W 8 —WS, ; j9+ioyU; ~WS, ja,; (i,ik=1,2) (2.27)

ij,j ik ij i,k

19



Note the following properties related to the Kronecker’s Delta function
6.; =0, (kj=1,2)

Wiy =W, (kj=1,2)

Then, Z, can be expressed with two components Z& and Zk2 as follows:

Z, =105 Uiy + oyUig —W 8 —WS,, ; J0+loyUi —WS, fa (2.28)

ij,j ik ij ik

Zi z

Z& contains the partial derivative of W with respect to X, . This partial

derivative can be written for both plane stress and plane strain in the form shown

below:
o0&
W, = oW _ oW % + ow : (i,j,k=1,2) (2.29)
TO0X Ogy OX | OXy
[ expl
where (VV,k )expl is the explicit derivative of the mechanical strain energy density

function. Assuming that all the thermomechanical material parameters are

continuous functions of the coordinate X; and X, in the FGM layer and using
the equations (2.19) and (2.21), (W,k )expl can be written as follows for plane

stress

{aw} _OWOE, OWOE, OW dv, W 3G, oW o
Ky Jo  OF1 OX OB, OX, Ovy, OX Gy, OX  Oay OX,
W 0a, oW O(AT)
da, 0x, O(AT) o,

(2.30)

(k=12)
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For the case of plane strain we have

oW | _OWOE, OWOE, W dv, W vy OW dvy
M |, OE X OB, Ox, 0wy 0% Oviy OX vy OX,
oW 0Ov,, oW 0G,, oW Oy OW Oda, OW Oa,
+ + + + +
0vy, 0X, 0G, OX, Oa, 0X, Oa, OX, Oa, OX,
oW 8(AT)
A(AT) ox,

(2.31)

(k=12)

The derivatives of the strain energy density function can be obtained in closed
form [6] (see APPENDIX A for the closed form derivatives of W).

By using the property,

oW
o, (2.32)
ij

and kinematic relation for small displacements

1]|0u. 6”] ..
C_ljow (il j=1,2 2.33

W, can be expressed as follows

1 6 |ou Ou; .
W, =c. = L1l (w , ij,k=1,2 2.34
X %Z&ija&}(*M' y ) @3
1 0 ou 1 6 ou, ..
W, =0.-— 15 = 2 1 (W , ij,k=1,2 2.35
k=95 X, OX, iy X, OX, ( ’k)ex”' (i ) 239
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By interchanging the dummy indices of the second term in equation (2.35), the

following is obtained:

Wy =oyUi 5 + W) e (1j,k=1,2) (2.36)

Then Z; becomes

Z, = (Uij,jui,k _(W,k )exp.)CI, (i,j,k=1,2) (2.37)

Using the equation of equilibrium o, ; =0

zt=l-Ww,),,)a. (k=1,2) (2.38)

Then Z; equals

Z, = _(\N,k)exp| q +(O-ijui,k -Wé, )q,j , (i,j,k=1,2) (2.39)
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The integral 1, can then be redefined in the following way

l, = if{aijuiykq ~Ws5,qn,dr = ] {o,u, ~Ws, }q,,d0 —'U(va )expl qdQ,
r Q Q

(i,jk=1,2) (2.40)

Let’s define a function bk as
by = (07U, ~W3, ) an;, (i.jk=12) (2.41)

The integral 1, can be divided into four line integrals by using newly defined

function b,

l, = §bdr = §b,dl + {b,dl + {b,dl + §b,dr',  (k=1,2) (2.42)
r T, rr o T,

4 c

By changing the orientation of I",, a new curve is obtained identical to the curve

in Figure 2.1 and knowing that q is equal to zero on T,, |, can be written as

follows

l, =§bdr =—{b,dl + {b,dl + fb,dr, (k=1,2) (2.43)
r T, ry I,
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By substituting the value b, on the integral defined on I',, the J, -integral is

obtained.
fo.dr = fWws,; —oyu;, Jan,dr + fb,dr + fb,dr, (jk=12)  (2.44)
r r, l"* Ie
J —integral
Then,

J:[ Oij |k Wakj q jdA- J] expl dA

Q

_J( Oijlik W5kj)qn dr - I Oijli « Wékj)qnjdl"’

e e

(jk=12)  (2.45)

Q is the area between the crack tip and the curve I, . Since the crack surfaces
are free surfaces, the term oyu; ,n; =0 in thel'“and I'; integrals. Then Ji-

integral can be further simplified as follows

J-'[ Oij |k WakJ q jdA— _” expl dA

+I( ng qu+J'W’nk’ qdl’,

e e

(jk=12)  (2.46)

In addition, the first component of unit outward normal, i.e. N, , is equal to zero

on I';and I'; . Finally Jc-integral is written as follows

=H oUs vvakJ q,;dA- ” exp.qu
Q
+I(\N*—W )andl"

T

4

(i,j,k=1,2)  (2.47)
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There exists a discontinuity denoted by the term (W'-W) in the mechanical

strain energy density across the crack faces.

The components of Jy-integral can now be written as follows

5 = [[logu, -ws, Ja,do-[[W,), ad2, (=12 (249)

32 = [[loy 5., Jo 00— [[ )., o002
- I(W+ ~W " )qdr, (ij=12) (2.49)

T,

4

The mechanical strain energy density function used in J, and J,-integrals is

given by the equations (2.14) and (2.18) for plane strain and plane stress,
respectively. Moreover, the explicit derivatives of W are given by equations
(2.28) and (2.29) for plane stress and plane strain, respectively. The area
integrals given in J, and J, -integrals will be calculated over a circular domain

as shown in Figure 2.3.

Now let’s concentrate on the line integral term I(\N* —W™)qdl" given in the
FC

J,-integral. The integrand of this line integral involves mechanical strain

energy density function difference. The most general method to calculate this
integral is proposed by Eischen [12]. Eischen suggested that the path of the line
integral can be divided into two one of which is close to the crack tip and the
other remote from the crack tip. The line integral is then expressed as:

fow- —W’)qu:jORON* —W*)qu:LR_é(\N* —W’)qu+'[:_5(\N* —W)gdx

(2.50)
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where R is the length of the integration path.s is the length of portion over
which (W* —-W ™) is approximated by its asymptotic representation and x is
the line integration variable measured from the point where I, intersects x,axis.

The integration path is shown in the Figure 2.3. The integral close to the crack
tip possessing the limits R—&6<x<R can then be evaluated using the
asymptotic approximation to W . The asymptotic distribution of the stresses near
the crack tip are given as follows [2]:

K I

N

I<II

Jij (r’e) = \/ﬁ

£ (0)+ = £, (0) + T, 5,6, | (j=12)  (251)

K tip , , tip tip tip
o (r.0)= K Re{ w1 15 ~ ﬂl
2rr " | JcosO+ uiPsing  \/cosO + P sing

ip )2 ip |2
KII R 1 (:u;p) _ (/Llltp) T
+ e tip tlp t tio - + str
2rr Lt JcosO+ 1P sind  Jcos + 1P sind

(2.52)

1 " _ He'
T \/cose + 13" sin@ \/cose + 1,7 sin@

1 1 1
+ Re tip tlp N ip o:
2rr Lt Jcos@+ uPsing  \Jcosd+ ulP sing

(2.53)

K ,Ll“p,tl“p 1 1
Oy (r,9)= I RE{ n; . ti B tip o
270 Ly " | JcosO+ u®sing  \JcosO + uPsing

1 " _ 1’
m"® = 1" | JeosO+ uPsing  \JcosO + P sind

(2.54)
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where rand @ are the polar coordinates shown in Figure 2.3. T, is the non-

singular stress component, namely the T -stress. T -stress influences crack
growth under mixed-mode loading, crack path stability and size and shape of

plastic zone around the crack tip.

The mechanical strain energy density function difference can be written as

follows

W*-W~ =W(r,z)-W(r,—x) (2.55)

I'o

» X1

Q

Figure 2.3 Integration path T, and circular area €2 around the crack tip.

In order to calculate W™ —W ~, in addition to knowing that Case | is obtained in
this study, the equations (2.12), (2.51) and (2.55) are used. Then the mechanical
strain energy density function difference is obtained as

W(r, 7) W (r,—z) =W * —W ] = %{an(zl%{D(ﬂf — B )}rwj} (2.56)
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which can be rewritten as

cowole i
M W ] N F (2.57)
where
F =2a,K, {D(82 - 5 )IT,, (258)

1
E plane stress

- ) 2.59
11 w plane strain | |
E, ’
. B (2.60)
(ﬂl - ﬂZ )

where the g, and g, are given by equation 2.7.

Then the following approximation can be made to the line integral

I(W*—W‘)qdl“.

Where
2 2
g1 Y T (2.61)
R
Then,
j (W* —W )qdl ~j (W —W " )gdx+ j qu (2.62)
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Evaluating the integral, one obtains

o -w)gdr ~ jOR’5w+ _W)qdx+ \/g W (2.63)

Then J, -integral can finally be written as follow

3, = [[loyu,, ~Wé,; )a jda-[[ W, ), qdo
Q Q .
2 3R

O ey |

2.3 Calculation of the mixed-mode stress intensity factors and the T-stress

Notice that J,-integral can be evaluated by calculating the domain integral
given by equation (2.48). On the other hand, J,-integral can not be directly

calculated by using the integral expression (2.64). Because, the final integral

expression for J,-integral contains K, and T, which are unknowns.

Therefore a new quantity J , is introduced as follows:

3, =[[loyu,, -Ws,; )a jao-[[W,),  qdo
Q

Q
S5

(W —w -~ )qdx,

(i,j=1,2) (2.65)

R

O ey |
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The quantity j2 is evaluated using the equation (2.65) for two values of

0(0,,0,). The distances o,and ¢J,are shown in Figure 2.4. These values of

J, can be written as follows

i) - |6, 2F(8R-45,)

(2)51—J2+ T (2.66)

() I [5, 2F(3R-5,) (267
2/ "2\ o 3R '

Let’s define a new function S as follows

g_ 2 (2.68)

The equations (2.66) and (2.67) can be rewritten as follows

(‘jz)al =J, + \/31(1_5_&}8 (2.69)

(3,), =3, +45, (1—5—&)8 (2.70)

30



Figure 2.4 The distances d,and 9, .

J,and S can now be easily obtained as follows

5 3R 3R
, =
{3l 3)
S (j 2)51 N (jz)az

EEyCE

31
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Then, from equations (2.57)-(2.60) and (2.68) T -stress is calculated as follows

SV2rx
Tstr = 2 2
4allKII D(ﬂl _ﬁz )

(2.73)

In orthotropic FGMs, the relationship between J, -integral and mode-1 and

mode-11 stress intensity factors have been established as (Obata et al., 1989; Ma
and Chen, 1996) [13,14]

a i i i i ip b
3, == e+ ) i 2k, K, ()

(2.74)
— K+ 12°)
a ip, tip ,  tip, tip, tip, ti
J, = —f'm{Kf (uf"ué" +ui"u£”ui"u£p)
-K K, [ﬂf"#?" (ui”’ + 4ty "+ u?") (2.75)

25

e+ u?p)(ﬂf"ﬂ;" + 344" 145
S Ve |

where a,; is given in equation (2.59), and g, and g, are given by equation

(2.8).

Since the stress intensity factors are coupled, they may be solved by means of

iteration. Newton iteration is proposed in the paper of Kim and Paulino [2]. But

in order to calculate SIFs by means of Newton iteration, initial values of K, and

K, are required. Initial values of K, and K, are determined by means of

Displacement Correlation Technique (DCT) in this paper.
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Since in this study g, and u, are obtained purely imaginary, equations (2.74)
and (2.75) are further simplified. The relationship between J, -integral and

stress intensity factors can then be rewritten as

a'll

N S AR AV R VARY ) (2.76)

3 =2k (g0 pe)a e e ) (2.77)

where g and g, arethe imaginary parts of the roots g, and g, , respectively.

Here there are two unknowns K, and K, , and two equations. Therefore from

equation (2.77) K, can be written as

-J

K, = i 2i ip ot
Ky ay (8" + 85" ) 8P B3°

(2.78)

By utilizing the equations (2.76) and (2.78), K,, is obtained from the following
equation

2
2] -J o
K — it S K2+( : 2 ___ j e plie — 0 (2.79)
e, (B BP) " (e (B BB A )

All material properties are calculated at the crack tip.
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Let’s define a new parameter ©, such that
K:=0 (2.80)

Then, we obtain

21, -, i
02 —7—)(9 P BP = 2.81
a11 ﬂtlp ﬂtlp +[ ( tip ﬂtlp )ﬂl“pﬂ“p j ﬂ ( )

® can be obtained in the form,

2 %
J; L) 1

K, is obtained as,

J, 1

2 %
K” == W) 1il:l_(‘]2} ﬁ“pﬂ“p] (283)

Similarly K, is obtained as,

be!

2 %
J; J 1
K| =+ ti ti tip pti F|1- - tip ppti 2.84
an( p+ﬂp) P RIp +[ ( j pﬂp] ( )

The signs of the SIFs and those of the terms within the parenthesis are

determined by monitoring relative normal and tangential displacements near the
crack tip which are defined as [7, 15, 16]

A, =u, —u,, A, =u’ —u; (2.85)

where the superscripts + and — stands for upper and lower crack surfaces,

respectively.
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A, and A, are calculated in the close vicinity of the crack tip. A positive A,
implies that crack is open and K, is positive. Similarly, K, is positive if
A, >0. The signs of the terms within the parenthesis in equations (2.83) and

(2.84) can be determined by the conditions given below [15]:

If [A,|>]A,| take [+] for K, and take [-] for K, (2.86)

If [A|<]A,| take[-] for K, and take [+] for K, (2.87)
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CHAPTER 3

FINITE ELEMENT IMPLEMENTATION

3.1 Finite Element Method

In today’s studies, modelling the physical phenomena is one of the most
important things that the engineers and scientists consider. Almost every
phenomenon in the nature, for instance aeronautical, biological, mechanical,
chemical, or geological can be described, with the aid of the laws of physics or
other fields in terms of algebraic, differential, and/or integral equations relating
various quantities of interest. Determining the stress distribution on a cantilever
beam subjected to mechanical, aerodynamical or even thermal loading,
preparing simulation of weather in advance of a thunderstorm or tornado are the

few examples of practical problems.

Physical phenomena can be described analytically. This description is called
mathematical model. Mathematical models are composed of a set of equations
expressing the important features of the phenomena in terms of variables that
describe the system. Mathematical models depend on the fundamental scientific
laws of physics. In the case of a dynamics problem, e.g. a simple pendulum, the
principle of conservation of linear momentum is used whereas, in case of a heat
transfer problem the principle of conservation of energy is utilized. Many
engineering problems have been solved with the help of suitable mathematical
models and numerical methods by computers for the last three decades. Today,
the most general and powerful numerical method in its applications to real world
problems involving complicated physics, geometry and boundary conditions is
the Finite Element Method.
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In the Finite Element Method, the geometrically complex domain under
consideration is represented as a set of geometrically simple subdomains,
namely finite elements. Every finite element is considered as an independent
domain by itself. The governing equation of the problem is approximated over
the each subdomains with the help of a suitable variational method. The
variational formulation stands for the construction of a functional principle that
Is equavalent to the governing equations of the problem. In order to obtain the
numerical model of the whole domain, the relationships from all elements are

assembled using certain interelement relationships.

A finite element analysis typically involves the following steps. Steps 1, 4, and 5
require decisions by the analyst and provide input data for the computer
program. Steps 2, 3, 6, and 7 are carried out automatically by the computer
program. Stress analysis and heat transfer analysis will be cited as typical

applications.

1. Mesh generation programs, called preprocessors, divide the domain into
finite elements.

2. The properties of each element are formulated. For instance, in stress
analysis, nodal loads associated with all element deformation states that
are allowed are determined.

3. Assembly of the elements to obtain the finite element model of the
structure is done.

4. Application of the known loads are performed. Nodal forces and/or
moments in stress analysis, nodal heat fluxes in heat transfer analysis
are determined.

5. All the boundary conditions are specified. In stress analysis, how the
structure is supported is specified. This step involves setting several
nodal displacements to known values. In heat transfer, where typically
certain temperatures are known, all known values of nodal temperature

are imposed.
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6. Linear algebraic equations to determine nodal degrees of freedom are
solved simultaneously.
7. With the help of postprocessors, calculated nodal values are used to sort

the output.

The main aim in the numerical analysis carried out in this study is to obtain the

results of the area and line integrals given by J, -integral. Exact evaluation of

these integrals is not possible because of the algebraic complexity of the
integrands. Numerical evaluation of these integrals involves approximation of
the integrand by a polynomial of sufficient degree. This is due to the fact that,
the integral of a polynomial can be evaluated exactly. Numerical integration is

considered in the present study in order to compute the components of the J, -

integral.

Consider the integral

A= ]BF(x)dx (3.2)

a

Polynomial approximation of F(x) can be written in the following way
N
F(x) ~ > R (%) (3.2)
i=1

where F, denotes the value of F(x)at the i" point of the interval [x,,x,]and

w; (x) are polynomials of degree N —1.

38



In general, a quadrature formula has the form

A= TF(x)dXziF(xi W, (3.3)

where X; are called the quadrature points and W; are the quadrature weights.

An accurate representation of irregular domains can be accomplished by using
quadrilateral elements. But, derivation of shape functions and evaluation of
integrals are difficult over quadrilateral elements. Therefore integral statements
defined over quadrilaterals are transferred to rectangle. The transformation is
depicted in figure 3.1. In this study, Gauss-Legendre quadrature is used to
evaluate the J, -integrals. Gauss-Legendre quadrature requires the integral to be

evaluated over a square region € shown in figure 3.1 and the coordinate system

(5,77) to be defined on the interval[-11]. In order to use this interval, a
coordinate transformation from the global coordinate (X, y) to local coordinate

(5,77) is carried out. The values of the local coordinate system always lie

between -1 and 1 with its origin at the center of the element.

The utilization of the local coordinate system is beneficial in two ways:

1. Itis convenient in constructing the interpolation functions.
2. It is required in numerical integration when using Gauss-Legendre

Quadrature.

The element Qis called master element. Each element of the finite element
mesh is transformed to Qonly for the purpose of numerically evaluating the J-

integral.
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n=l1

9)
X
x=x(&n)
y=y(&mn) x=x(&1),y=y(&1)

E=tGy) dxdy= |J| dédn

n=n(x.y)

x=x(L,n),y=y(,1)

Figure 3.1 Mapping of a master rectangular element to an arbitrary quadrilateral

element of a finite element mesh.

The transformation between the element _and Q) is performed by a

coordinate transformation of the form

ERTA) (3.4)
y:iyil//i (/) (3.5)

where ., (£,77) denote the shape functions. In general, the dependent variable or

variables of the problem are approximated by an expression similar to the

expressions (3.4) and (3.5).
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The variable or variables are given in the following form:
u(fﬂ)zzui‘/}i(éﬂ) (3.6)
i=1

Here the shape functions given by /,are different than ;. Therefore

depending on the relative degree of approximations used for the geometry and
dependent variable(s), the finite element formulations are classified into three

categories.

1. Superparametric (m>n): The approximation used for the geometry is
higher order than that used for the dependent variable.

2. Isoparametric (m=n): The approximation used for the geometry is equal
to that of used for the dependent variable.

3. Subparametric (m<n): The higher order approximation of the dependent

variable is used.

In this study isoparametric formulation is used and all the dependent variables of

J, -integral are approximated in a way that is shown in equation (3.6).

Then, with the help of Gauss-Legendre Quadrature, a line integral is represented

as
[ Feou= [ F@e= X FEm @
where,
F(&) =F(X(&)I(©), dx=dd& 9)
3y,
: _;Xi dg (3.9)

where r is the number of base points and W; are the weight factors.
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In the case of an area integral, Gauss-Legendre Quadrature can be expressed as
follows

[F(x,y)dxdy = [ F(£,m)d&dn = j“lﬁ(e‘,n)dé}dn ~ j{i ﬁ(fi,n)wi}dn

L=l
N

zzzﬁ(fi’ﬂj)wiwj

j=1 i=1

(3.10)

F(&m)=FX(&),ym)d|, dxdy=|I|dédn (3.11)

where ‘J| is the Jacobian matrix determinant. Jacobian matrix and its

determinant are given as follows,

x oy v v

[3]= g 0g | _ 2% 0¢ 2y ¢ (3.12)
ox oy zx_% Zy_% '
on on ' on ' on

‘J| =Jnden —Judp (3.13)
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In this study, 2" order Gauss- Legendre Quadrature is used. For the 2" order
Gauss- Legendre Quadrature and for the line integral, the Gauss points and

weights are given as

(é,nj){i% , —1j (3.14)

w =1 (3.15)

For the area integral, the Gauss points and weights are given as

(éi,n,-){ii,iiJ (3.16)

wo=1,w, = (3.17)

In this study, the developed numerical procedure is integrated into the general
purpose finite element analysis software ANSYS []. Two kinds of analysis are
performed in the ANSYS. Firstly, thermal analysis is conducted and in the
second part structural analysis is performed. Thermal analysis is carried out with
the help of the PLANE77 element in ANSYS. It possesses thermal degrees of
freedom such as temperatures at nodes. Structural analysis is performed using
the PLANES82 element. PLANES82 element possesses structural degrees of
freedom such as displacements. These two elements are shown in Figure 3.2.
(The Gauss points on the PLANE77 and PLANES82 elements for the area and

line integrals are shown in the Figures 3.3 and 3.4, respectively.)
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Figure 3.2 PLANE77 and PLANES82 elements.

n
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Figure 3.3 Location of the Gauss points for area integrals.
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Figure 3.4 Location of the Gauss points for the line integrals.

Shape functions for PLANE77 and PLANES82 elements are given as follows,

vy == 0-)a-n)tr£+7) v, =5 -£*)a-n)

vs == @+E)-n)a-+n) vi=30-9-r") @
ve =30+ )-n?) Vo == 0= n)Lré—n)

v, =5 -6")aen) vy =50 8)Len)i-¢-n)

In this study, in order to discretize the functionally graded medium, first the 8-
node quadrilateral elements, which are PLANE 77 and PLANE 82 elements, are
selected from the Ansys element type menu and then by collapsing the three
nodes of these 8-node elements as shown in Figure 3.5, 6-node triangular

elements are obtained.
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The reason to utilize the triangular elements is to obtain much more accurate
results. As a result, the domain is discretized by triangular elements which are
actually 8-node quadrilateral elements. Since the triangular elements are 8-node
quadrilateral elements in essence, the shape functions and formulations of 8-

node quadrilateral elements are utilized throughout this study.

y
X
(a) (b)
n
4q 7 o3 3
1
8¢ 6 * ¢
1
[ L 4 4 \ll
1 5 2
«1 —><— 1>

Figure 3.5 (a) Quadrilateral element in the global coordinate system; (b)
triangular element in the global coordinate system; (c) quadrilateral and
triangular elements in the isoparametric coordinate system.
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3.2 Finite Element Procedure

In this study, the J, -integral method, which is described in Chapter 2, is

integrated into an APDL code in ANSYS which is used to solve the problem
under consideration. The written APDL code solves the problem in two steps. In
the first part, heat transfer problem is solved with the help of ANSYS. In the
second part, structural analysis is conducted by utilizing the finite element
method described above according to the type of the problem, i.e. plane stress or
plane strain. The temperature field obtained in the first part is transferred to the
second within the written code. At the end of the second part, all related

components of the J, -integral are calculated. As a result, computation of the

stress intensity factors, energy release rate and T -stress is finalized in the
written APDL code. It should be mentioned that continuous variations in the
thermomechanical properties in the functionally graded medium are
incorporated into the finite element model by assigning the material properties at

the centroid of each finite element.

In order to calculate the crack tip properties, i.e. stress intensity factors, energy
release rate and T -stress, under thermal loading, as mentioned before the
orthotropic functionally graded medium is discretized using the triangular
elements which are obtained actually from the 8-node quadrilateral elements.
Four different circular regions are defined around the crack tip in order to
calculate the domain integrals. These circular regions differ from each other by
their radii. Although the analysis is independent of the shape of the regions
defined, as mentioned before, circular regions will be used in this study.
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In the structural analysis part, the line integrals are calculated over the elements
which are located on four line segments. Two of the line segments are defined
on the upper crack face and two of them are defined on the lower crack face. On
the upper crack face the first line segment is confined between the point where
the selected circular region intersects the upper crack face and the point 5, away
from the crack tip. The second line segment is confined between same
intersection point and the point ¢, away from the crack tip. On the lower crack
face, same procedure is followed to obtain the two line segments. On the other

hand, the domain integrals are calculated over the elements defined within the

selected circular region.

Q

Figure 3.6 Line segments | and 1l and circular regionQ.

From this point, the finite element procedure of computation of J, and jz

integrals will be considered. Since the J , integral contains the line integral, let’s

first deal with this integral.
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j2 integral is defined in equation (2.65) as

3, =[[loyu,, -Ws,; )a jaa-[[ W), qdo
Q Q

5( ) (1,j=1,2) (3.19)
W* —W ™ )gdx

R

O ey |

As mentioned above, the line integrals are calculated first with the help of
equations (3.7), (3.8), and (3.9). In order to calculate the line integral, the
mechanical strain energy density functions are computed by equations (2.16)
and (2.20). The function q defined within the line integral and the material
properties defined in the equations (2.16) and (2.20) are calculated at both of the
gauss points on line elements shown in Figure 3.4. As an example, the line

integral calculated at the upper crack face and for 6 = 8, is given as follows

R-6,

L = jvv+qu (3.20)
L ~ iwg[%j\u (3.21)

where R is the radius of selected region shown in Figure 3.5, | | represents

absolute value and i stands for gauss points.

The Jacobian is computed with the help of the equation (3.9). For the upper

crack face L, is calculated on line segment Il ford =¢o,. For lower crack face

L, and L, are calculated for 6 =6, and & = o,, respectively.
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In order to evaluate the domain integral part of the 52, the components given in
Table 3.1 must be evaluated at the Gauss points of every element within the

selected circular region shown in Figure 3.6.

Table 3.1 The components of 52 -integral

Component Description Explicit Form

Stress distribution on the

Oij 011102 01
element
Derivative of displacement v, ov,
u. —
"2 field with respect to x, X, 0%,

Mechanical strain energy
W (2.16) or (2.20)

density function

Derivative of mechanical
(W,z )expl strain energy density (2.30) or (2.31)

function with respect to x,

] Jacobian determinant (3.13)
q The q function APPENDIX A
Derivatives of the q
q; _ APPENDIX A
function

We defing J ™" as,

3 = ([l ~wo Jo, W), aae, G=12) .22
Q
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When the isoparametric formulation of the integrand is carried out, J®™" can

be expressed as follows:
Ny 2 2
Jzomam ZZ omam gk’m (323)
k=1 I=1

The stress components o, given in equation (3.22) are calculated by means of

the constitutive relations given by (2.1) and (2.4) for plane stress and plane
strain, respectively. All the stress components are obtained in terms of strain
components by using equations (2.1) and (2.4). In order to calculate strains,

displacement components are calculated as shown below:

2% =i§i:‘2)‘/(’2i u,, (3.25)
% =izli‘/xfli U, (3.26)
£, :%:é%‘”;uzi (3.27)
&, :%(g 2’: Uy, +gaaxl’//1‘ UZiJ (3.28)

where u, is the displacement X, direction and u, is the displacement x,

direction.
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Since the mechanical strain energy density function is represented in terms of
strain components and material properties, it can be easily calculated by the
equations (2.16) and (2.20) which are given for plane strain and plane stress,

respectively.

The derivative of mechanical strain energy density function,(\/vlz)expl, requires
the calculation of the following terms for plane stress:

oW oW oW oW oW oW oW (3.29)
OE, ' OE, '0v, G, Oa, da, O(AT) '
oE, , oE, ’ ovy, | 0G,, , o, | oa, | 6(AT) (3.30)
OX, OX, OX, OX, OX, OX, 00X,

In case of plane strain, the required terms are given below:

oW W W oW oW oW oW oW oW oW oW (3.31)
OE, "OE, '0v, dv, 0Ovy dv, 0G, da, da, Oa, O(AT) '
OE, OE, 0Ov, Ov, Ovy 0Ovy, 0G, da, Oa, Oa, O(AT) (3.32)

X, X, OXx, OX, OX, OX, OX, OX, OX, OX, OX,

The derivatives given in equations (3.29) and (3.31) are given in APPENDIX A.
They are represented in terms of strain components and material properties.
They can be easily calculated using the equations given in APPENDIX A. The
derivatives given in equations (3.30) and (3.32) are calculated as follows:
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% v

_ E, (3.33)
x, Sox,
oE 8 Oy,
C2 Wi, (3.34)
oX, ‘T OX,
v, <0y,

= Ly, 3.35
GXZ IZ_l‘, 6)(2 V12| ( )
Ovi; _ < O
—= = “Visi (3.36)
X, ; x, °
Vs _ < OV

- LV (3.37)
X, ; x,
Vs _ OV

- Ve (3.38)
X, ,2,1: x,
G, <oy,

= LGy, 3.39
GXZ |Z:1: 6)(2 12i ( )
o, <oy,
—t= L, (3.40
X, ; X, )
oa, &Hoy

= L, (3.41)
X, ,Z:; x,
da, <& oy

= -y, 3.42
8)(2 IZ:]; 6X2 3i ( )

(3.43)

The Jacobian determinant is calculated by using equation (3.13). The g function

and its derivatives are given in APPENDIX A.
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The derivatives of the shape functions with respect to the global coordinates can

be calculated as follows:

oy _ Oy, 0%, +a‘//i X,

= — (3.44)
on 0% On OX, On
oy _ oy, %4_6% X, (3.45)
o0&  Ox, 0& OX, 0&
oy XKy, Xy | Oy
ox |_1| o on | on (3.46)

oy | | 4 | 0w
oX, o on || o

The J, integral is calculated in a similar way as jzf’°ma‘” integral. J, integral is

given in equation (2.46) as

3, = [ oy u, -Ws,; ) 00— [[W,), , qd (3.47)

In order to evaluate J,-integral, the components given in Table 3.2 must be

evaluated at the Gauss points of the element shown in Figure 3.3.
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Table 3.2 The components of J, -integral

Component Description Explicit Form
Stress distribution on the
Ojj 011102 0y
element
Derivative of
u;, displacement field with v , v,y
’ oX, 0%
respect to X;
Mechanical strain
W _ ) (2.16) or (2.20)
energy density function
Derivative of
(\N ) mechanical strain energy
X . . . 2.30) or (2.31
el density function with (2:30) or (2:31)
respect to X,
] Jacobian determinant (3.13)
q The q function APPENDIX A
Derivatives of the q
a; APPENDIX A

function
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When the isoparametric formulation of the integrand is carried out, J, can be

reduced to the following form:

2

3, =[5 .m)) (3.48)

2
k=1 1=1

The stress components o, given in equation (3.47) are calculated by means of

the constitutive relations given by (2.1) and (2.4) for plane stress and plane
strain, respectively. All the stress components are obtained in terms of strain
components by using equations (2.1) and (2.4). In order to calculate strains,

displacement components are calculated by equations (3.24)-(3.28).

Since the mechanical strain energy density function is represented in terms of
strain components and material properties, it can be easily calculated by the
equations (2.16) and (2.20) which are given for plane strain and plane stress,

respectively.

The derivative of mechanical strain energy density function,(Wyl)expl, requires

the calculation of the following terms for plane stress:

oW ow oW oW oW ow oW

) ) H H H 1 (3-49)
OE, ' OE, '0v, G, Oa, da, O(AT)

OE, OE, Ov, 0G, da, Oa, &(AT) (3.50)
OX, 0%, 0% 0% Ox  OX = 0% |
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In case of plane strain, the required terms are given below:

W W W W AW AW W AW AW W oW
OE, '0E, v, dv, 0Ov, 0Ov, 0G, Oa, da, Oa, O(AT)

(3.51)

oE, OE, Ov, 0Ov, 0Ovy O0v, 0G, Oa, Oa, Oa; G(AT) (352)
ox, Ox, | ox,  Ox, | Ox 0%, OX,  OX, 0%, 0% = 0OX '

The derivatives given in equations (3.29) and (3.30) are calculated as follows:

0E, oy
— = ~E,; (3.53)
%, ,Z:; x
0E, & oy,
—= = ~E,, (3.54)
X, ,Z:; x
Vi, _ OV

= “Vi,. 3.55
axl ; 8X1 12j ( )
Ovi; _ < O
8X1 ; 6X1 13i ( )
vy _ <0V,

= RV 3.57
O, ; ox, (3:57)
Vs _ -0V,
OX, ,Z_l: ox, (3.58)
G, <9y,

= LG, 3.59
6)(1 Zzl: 8X1 12j ( )
0 _ i, (3.60)
oX, I 0%
oa, &oy,

=) “log. 3.61
axl IZ:]; 5X1 2j ( )
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da, <oy,
Wiy 3.62
5X1 IZ:]; axl a3| ( )
8
AT)_$2 0¥ (1), (363)
OX, = OX;

The Jacobian determinant is calculated by using equation (3.13). The g function

and its derivatives are given in APPENDIX A.

In summary, the components of the J, -integral can be evaluated numerically.

These results can then be used to compute the thermal fracture parameters.
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CHAPTER 4

NUMERICAL EXAMPLE

In this section, temperature distribution profiles and fracture mechanics
parameters are calculated by considering the problem of an embedded crack in
an FGM layer under steady-state thermal loading. The geometry of the problem

and thermal boundary conditions are depicted in Figure 4.1.

Reference temperature = T / T=2T,

Orthotropic FGM
P HHHE ||,

T:To

Figure 4.1 An embedded crack in an orthotropic functionally graded layer under

thermal loading.

The particular ceramic and metal components of the orthotropic FGM layer are
taken as alumina (Al,O3) and nickel (Ni). The material properties vary
continuously from 100% Ni at x, =0 to 100% Al,Os atx, =h. The embedded

crack shown in Figure 4.1 is aligned parallel to the boundaries and perpendicular
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to the direction of the material property gradation. The length of the embedded

crack, which is located at x, = h,, equals to 2a.

Initially, the FGM layer is kept at a reference temperature T, at which all the
stress components are equal to zero. Then, temperature of the surface at x, =h
Is increased to 2T, and the surface temperature at x, =0 is kept atT,. The crack

surfaces and the surfaces at x, =+W are assumed to be insulated. The presence

of the insulated crack disturbs the one dimensional temperature distribution and
leads to a two-dimensional temperature distribution field in the vicinity of the
crack faces.

The thermomechanical properties of the functionally graded layer are assumed
to be continuous functions of the x, —coordinate. The material property

variations are represented by using power functions as follows:

7

E,(x,)=E"+(ES —E] (X—hzj 0<x,<h (4.1)
X 72

Ez(Xz): E) -|-(EzC —Ezm{rz 0<x,<h 4.2)
X P2

Vi (%)= v + (sz —Vi, {fj 0<x,<h (4.3)
X ﬂlS

Vis (Xz): Vis + (VlcS — Vi3 sz 0<x,<h (4.4)
X ﬁSl

i) v+ -va) 2 0<x, <h @5)
X Bz

Vaz(xz)= Vi + (V§2 — Vi ﬁ 0<x,<h (4.6)
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712
Glz(x2)=Glr2+(Gf2—Gm{X2j 0<x, <h (4.7)

12 ?
X, )
o, (x,)=a + (af —a (ﬁj 0<x, <h (4.8)
X, |
a,(x,)=af +(oz2 —a) (ﬁj 0<x, <h (4.9)
x, )
a(x,)=al + (a3° a; (ﬁj 0<x,<h (4.10)
X, \*
K, (%, ) = k™ + (kg — k" (f] 0<x,<h (4.11)
Ky(%,) = kD" + (kS K (X—hZ) 0<x, <h (4.12)

where the superscripts mand c stand for the properties of metallic and ceramic

components namely for the properties of Nickel and Alumina.

The remaining material properties v,,,v,;and E, can be calculated with the

help of the equation (2.6) and equations (4.1)-(4.6).

The power-law representations of the material property variations given in
equations (4.1)-(4.12) are convenient in representing the thermomechanical
properties of the FGM layer. The exponents of these equations are positive
constants that can be adjusted to attain a required variation profile for the
orthotropic FGM layer. If an exponent is greater than unity, the material
property variation profile is metal-rich. On the other hand, if an exponent is less
than unity the corresponding material property possesses a ceramic-rich
variation profile. In this study, the effects of these exponents will be investigated
by changing the exponent of one of the material properties from zero to infinity

while keeping the other properties constant.
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The material properties of 100% alumina surface are given as follows [19]:

Ef =9043GPa,  Ef=11636GPa, G, =30.21GPa (4.13)
v, =0.2176, v§, =0.1399, v5 =014, v5, =021 (4.14)
ki =21.25W/(mK), ki =29.82W/(mK) (4.15)
af =8(10)° (°C)”, af=7500)° (°c), af=9(10)y°(°c)’ (4.16)

The material properties of 100% nickel surface are given as follows [19]:

El"=E] =E"™ =204GPa, v, =v =v,; =v, =v" =0.31, (4.17)
GL =E"/(2+v"))=77.9GPa, k! =k =k" =70W/(mK), (4.18)
o =af =af =a™ =133(10)° (°C)" (4.19)

There are certain limitations on the Poisson’s ratios in the orthotropic materials.

These limitations are given as follows:
(1_ V12V21) >0 (1 - V13V31) >0 (1_ VasVa2 ) >0 (4.20)

(1_ VoV =VigVa = VosVar — 2V12V23V31) >0 (4.21)

These restrictions hold at every point in the alumina-nickel orthotropic FGM

layer.
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It must be noted that lateral displacement in the embedded crack shown in
Figure 4.1 are anti-symmetric and vertical displacements are symmetric about

X, -axis. Therefore, the relations between the crack tip parameters can be

expressed in the following form:

K, (@ =K, (-a) K, (@) =-K, (-a) (4.22)
J; (@) =1J,(-a) J,@=-J,(-a T, (@=T,(-a) (4.23)

where (a) and (—a) represent the crack tip where the corresponding parameter
is calculated. As a result of the symmetry, it is sufficient to model the one-half

of the layer. In the present analysis, the region 0 < x, <W is modeled and crack

tip parameters are calculated atx, = a.

First, the influence of the thermal conductivity variations on the steady-state
crack tip temperature will be examined. Figure 4.2 and 4.3 show the variations

of crack tip temperature with respect to @, and w,, respectively. Crack tip

temperature is plotted for various values of h, /W .

It can be seen from Figure 4.2 that the principal thermal conductivity k, has
almost no effect on the crack tip temperatures. The effect of the other principal
thermal conductivity k, can be seen from Figure 4.3. For the different values of
the exponentw,, different crack tip temperatures are obtained as can be seen

from Figure 4.3. In both of the figures, it is also seen that the normalized crack
tip temperature values are increasing while the crack is coming closer to the
upper surface of the layer. This is also an expected result since the temperature
of the upper surface is two times of the temperature of the lower surface. For

h, /W = 0.2 crack closure happens. Therefore, as a minimum value 0.23 is taken

for h, /W in the analysis of the influence of «,.
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Figure 4.2 Influence of @, on the temperature at the crack tipx, =a.

a/W =0.1, YW =0.4, 0, =4.
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Figure 4.3 Influence of @, on the temperature at the crack tipx, =a.

a/W =0.1, W =0.4 o, =4.

In order to verify the accuracy of the developed procedure, some comparisons of

the mode-I and mode-I1 stress intensity factors calculated using the J, -integral

technique to those calculated by displacement correlation technique [9] will be
presented. The details of the formulation and finite element implementation of
the J,-integral technique is given in the previous chapters. Domain

independence of J, -integral method is demonstrated in Tables 4.1 and 4.2 by

providing the results for four different domain size values as shown in Figure
4.4 (b). The comparisons are provided for both plane stress and plane strain

conditions.

65



The normalized stress intensity factors given in Tables 4.2 and 4.3 are defined

as

- oy = alELT, (4.24)

Table 4.1 Comparisons of the results obtained by J, -integral to those
calculated by DCT. h /W =0,25, a/W =0.1, hW =04, y, =y, =y, =2,

P =Pis=Pa =Py =15,0,=0,=3, 0, =w, =4.

J, -integral
R R R R et
R/ =01|R/=02|R/=03|R/ =04
1 K, | 0.0176 | 0.0176 | 0.0176 | 0.0176 | 0.0177
0, ==
PLANE 31K,, | 01197 | 01197 | 01197 | 0.1197 | 0.119
STRESS K., | 0.0207 | 0.0207 | 0.0207 | 0.0207 |0.02088
0,=3
Ky | 01271 | 0.1271 | 0.1271 | 0.1271 | 0.1263
1 K, | 0.0259 0.026 0.026 0.0261 | 0.0259
0, ==
PLANE 3K m | 0.1586 | 0.1587 | 0.1588 | 0.1589 | 0.1579
STRAIN Ky | 0.0294 | 0.0295 | 0.0295 | 0.0296 |0.02936
0,=3
Ky, | 0.1663 | 0.1664 | 0.1665 | 0.1666 | 0.1656
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Table 4.2 Comparisons of the results obtained by J, -integral to those
calculated by DCT. h,/W =03, a/W=0.1, h'W =04, y, =y, =y,=2,

P2 =Pz =Pa =P =15,0,=6,=3, o, =w, =4.

J, -integral

R/=01| R/=02 |R/=03| R/ =04

DCT

K., | 0.0278 0.0278 0.0278 0.0278 |0.0279

PLANE Ky | 01024 | 01024 | 01024 | 0.1024 |0.1018

STRESS Ky | 0.0328 0.0328 0.0328 | 0.0328 | 0.033

Ky, | 0.1081 0.1081 0.1081 0.1081 |0.1074

K., | 0.0386 0.0386 0.0386 0.0386 |0.0387

PLANE Ky, | 01318 | 01319 | 01321 | 0.1322 |0.1312

STRAIN K | 0.044 0.044 0.044 0.044 |0.0441

m | 0.1377 0.1379 0.138 0.1382 |0.1372

The element and node numbers for these two different h, /W values are given in

Table 4.3.

Table 4.3 Number of elements and nodes used in the analyses.

Number of Number
Elements of Nodes

h, /W =0.25 | 93952 189223

h /W =03 |92014 185347
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In both J, -integral method and displacement correlation technique, triangular

elements, which are obtained from 8-node quadrilateral elements, are used. In
displacement correlation technique special quarter point crack tip elements are
used to calculate normalized stress intensity factors. The meshes in the circular
domains are especially refined to evaluate the stress intensity factors within a
high degree of accuracy. In both Table 4.2 and Table 4.3, it can be seen that the

results obtained by J, -integral method and displacement correlation technique

are in excellent agreement for both of the cases of plane stress and plane strain.
The results evaluated using different domain sizes also agree quite well which

indicates that developed J, -integral method possesses the required domain

independence.

Next, the effects of the thermal conductivities k;andk,, thermal expansion
coefficientse;, @, and «,, Poisson’s ratio v,, ,and crack location on the
fracture mechanics parameters will be examined. The exponentsw,, @,, J,, 9,,
o,, and f,, govern the variations ink,, k,, «,, a,, a; and v,,, respectively.

The variation profiles of fracture mechanics parameters are presented for whole

ranges of o,, w,, 6,, J,, d,, and S, by varying of these exponents from zero

to infinity. The results illustrated in the following figures are calculated for the
condition of plane strain.

In Figure 4.6.1 variation profile of normalized mode-I stress intensity factor is

depicted for various values of relative crack positionh, /W . Expressions for the
normalized SIFs are given by equation (4.24). For all values of h, /W considered
K,,(@)generally decreases as @, is increased. In addition, K, (a)gets its
largest value when h /W =03 and @ =0 and smallest value when

h,/W =0.23 and , is between 2-2.5.
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Figure 4.6.1 Influence of @, on normalized mode-l SIF at the crack
tipx,=a.y, =y, =y, =2, Bo=pis=Pu=pr=15 6,=06,=6,=3,
w,=4,aW =01, hW=04.

Variation of K, (&) is depicted in Figure 4.6.2. Like K, (a), for all values of

IIn

h, /W, in general K, (a)decreases as «, is increased. Moreover, K, (a) gets

IIn

larger as h, /W is decreased from 0.35 to 0.23.
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Figure 4.6.2 Influence of @, on normalized mode-Il SIF at the crack
tipx,=a.y, =y, =y, =2, Bop=pis=Pu=pr=15 6,=06,=6,=3,
w,=4,aW =01, h)W=04.

The computed results for normalized energy release rate J,,(a)and normalized

T -stress are presented in Figures 4.6.3 and 4.6.4. The J,,(a)and T, (a)are

defined as
J (a) 0-2 7@' C 2 C C
‘]ln(a):l—’ Jo :%)6_(‘/12) )’ o, =a, BTy (4.25)
Jo E,
T, (a)
T, (@)= : o, =, E[T, (4.26)
Oy
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The variation profiles of J, (a) are similar to those of K

expected result since for given values of @, and h /W, K

IIn

IIn

(@) . This is an

(a) is larger than

KI n (a) .
0-06 T T T T T T T LI DL 0-06
0.04 40.04
< h,/W=0.23
'_>H
0.02 0.02
0.00 PRI T [N TR TR SN [N W TN T (NN T TN S ST PRI W [N ST T T [N S TN TN (NN T SN T N T S 0.00

1w

Figure 4.6.3 Influence of @, on normalized energy release rate at the crack
tipx, =a.7 =7, =11,=2, B =P =Pu=pP»=15,
w,=4,aW =01, hW =04.

5,=0,=5,=3,

The plots obtained for normalized T -stress for various values of h, /W are
almost horizontal which indicates that «, has little influence on T -stress. It is

also shown in the Figure 4.6.4 that as h /W gets smaller T, (a)becomes

negative.
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Figure 4.6.4 Influence of @, on normalized T -stress at the crack
tipx,=a.y, =y, =y, =2, Bo=ps=Pu=pr=15 6,=06,=6,=3,
w,=4,aW =01, hW=04.

Figure 4.7.1 presents the influence of the exponent @,and h, /W on K, (a). It
can be seen from the figure that forh, /W =0.2, K, (a)first goes through a

minimum and then increases with increasing values of @,. On the other hand,

forh, /W =0.25, 0.3, and 0.35 K,,(a) increases as o, increases. Additionally,
K,,(a)gets larger ash, /W is increased from 0.2 to 0.35. It can be noted that

K,,(@) values calculated for h /W =0.3, and 0.35 are very close when

Yw,=0.
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Figure 4.7.1 Influence of ®, on normalized mode-1 SIF at the crack
tipx,=a.y, =y, =y, =2, Bo=ps=Pu=pr=15 6,=06,=6,=3,
o, =4, a/W=0.1, hW =04.

Variation of the normalized mode-I1 stress intensity factors with respect to w, is
shown in Figure 4.7.2. The variation profiles shown in the figure demonstrate

increasing behaviour of K, (a) asw,is increased and h, /W is decreased.

IIn
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Figure 4.7.2 Influence of @, on normalized mode-1l SIF at the crack
tipx,=a.y, =y, =y, =2, Bop=pis=Pu=pr=15 6,=06,=6,=3,
o, =4, a/W =01, h/W=04.

Figures 4.7.3 and 4.7.4 present the calculated results for J, (a)andT,(a),
respectively. The variation profile of the J,, (a) is analogous to that of K, (a).

This is also an expected result since for given values of w,andh, /W, K (@) is

In

larger than K, (a). The results shown in Figure 4.7.4 illustrate that T -stress

goes through either a maximum or a minimum depending on the value of h, /W .
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T -stress becomes negative when h, /W is decreased from 0.35 to 0.2. T -stress
is more sensitive to variations in @, when h, /W =0.35, 0.25, and 0.2. When

h,/W =0.3, T -stress is not significantly affected by the variations in w, .

107 10°°
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20 |
15 h, /W =0.25

< h,/W=0.2
'ﬁg I . . -
10 . ey

-~ T
5F - 45

- h,/W=0.35
0-...1...1...1...1......l...l...l...l...-o
00 02 04 06 08 10 08 06 04 02 00

o, lw,

Figure 4.7.3 Influence of @, on normalized energy release rate at the crack tip
X, =a.7,=0, =01y, =2,B1, = P13 =Pas =P, =15, 6,=6,=6,=3, o, =4,
a/W =0.1, hW =0.4.
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Figure 4.7.4 |Influence of @, on T-stress at the crack tip
X,=8.71=V; =01, =2, P =Pis =P =Py =15, 6,=0,=6,=3, 0, =4,
a/W =0.1, hW =0.4.

Figure 4.8.1 shows plots of K|, (a)as functions of h /W and &,. Note that &,

controls the variation profile of «,. It can be seen from the figure that for the

values of h, /W =0.2 and 0.25, K,,(a)is not affected significantly by &, . But
in the cases of h, /W =0.3 and 0.35, the influence &, on K, (a) is more

significant. Moreover, K, (a) gets larger as h, /W is increased from 0.2 to 0.35.

The effect of o6, 0n the normalized mode-11 stress intensity factor is depicted in

Figure 4.8.2. Here, for all h, /W values considered K, (a) increases as &,

IIn

increases. K, (a) gets larger values when h, /W decreases.

IIn
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Figure 4.8.1 Influence of 6, on normalized mode-I SIF at the crack tipx, =a.
=V =Vn =2, Pup=Pi=Pu=Pp=156,=6,=3, o =0,=4,
a/W =0.1, hW =0.4.
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Figure 4.8.2 Influence of &, on normalized mode-Il SIF at the crack tipx, =a.
1"W=V2=Vn=2, Po=Ps=Pu=p»=15, 06,=0,=3, o =0,=4,
a/W=0.1, hW =04.

In Figures 4.8.3 and 4.8.4, the calculated results for J, (a)andT,,(a) are
presented, respectively. The variation profiles of J,, (a)are similar to those of
K. (@) . This is also an expected result since for given values of &,andh, /W,

K,,(a)is larger than K, (a).
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It can be seen from the Figure 4.8.4 that h, /W has a significant influence on the
T -stress. For h, /W =0.35, T -stress first goes through a maximum and then
goes through a minimum as &, increases, whereas for smaller values of h /W,

T -stress goes through a minimum as &, is increased.
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Figure 4.8.3 Influence of &, on normalized energy release rate at the crack
tipx, =a.y, =y, =y, =2, B2 = Pz = P = P =15, 6, =0;=3,
w=w,=4,aW=0.1, h) W =04.
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Figure 4.8.4 Influence of o6, on T-stress at the crack tipx, =a.
=V, =Vn =2, Pup=Pis=Pu=Pp=15 6,=6,=3, o =0,=4,
a/W=0.1, hW =04.

Variations of the normalized mode-I stress intensity factors with respect to 9, are

shown in Figure 4.9.1. For all values of h /W, K, (a) first increases and then
decreases asd,is increased. When h /W =0.2, K, (a)decreases at nearly
6,=1125. When h /W =025, K, (a)decreases at about &,=4.

Whenh, /W =0.3, K|, (a)decreases at 5, =10.
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Additionally, K, (a)gets larger as h,/W is increased. It can be seen from the
Figure 4.9.2 that K, (a) gets larger as ¢, is increased. Moreover,

K. (@) increases with a corresponding increase in h, /W .
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Figure 4.9.1 Influence of &, on normalized mode-1 SIF at the crack tipx, =a.
V1=V =Vn=2, Pu=Pus=Pu=Pp=15 6,=06,=3, o =0,=4,
a/W =0.1, hW =0.4.
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Figure 4.9.2 Influence of &, on normalized mode-1I SIF at the crack tipx, =a.

=V =V =2,

ﬂlz = ﬂlS = ﬂ31 = ﬂsz

a/W =0.1, hW =0.4.

=15, 6,=6,=3,

o =0,=4,

The variation profiles of the normalized energy release rates which are depicted

in Figure 4.9.3 are analogous to the variation profiles of the normalized mode-I11

stress intensity factors. This is an expected result since for given values of

d,andh, /W, K

IIn

(a)is larger than K, (a). Interesting results are presented in

Figure 4.7.4 which shows the influences of &,and relative crack position on the

T -stress. 6, is found to have no effect on theT -stress. The only effective

parameter is the h, /W .T -stress increases with a corresponding increase in

h W .
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Figure 4.9.3 Influence of &, on normalized energy release rate at the crack
tipx, =a.y, =y, =y, =2, P2 = Pz = Par = Pa =1.5, 0, =08, =3,
o, =w,=4,aW =01, hW =04.
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Figure 4.9.4 Influence of 6, on normalized T -stress at the crack tipx, =a.
n=v,=Ve=2, Bu=Bus=Pu=pPr=15 6=6,=3, w=0,=4,
a/W =0.1, hW =0.4.

The influence of the exponent 6, on the normalized mode-| stress intensity
factor is depicted in Figure 4.10.1. For three values of h, /W, which are 0.25,
0.3, 0.35 K, ,(a)increases asd,is increased. Forh /W =0.2, K, (a)first

increases and then decreases. Also, K, (a)gets larger as h, /W is increased.
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Figure 4.10.1 Influence of 6, on normalized mode-I SIF at the crack tipx, =a.

=V =V =2,

a/W =0.1, h\W =0.4.

ﬂlZ = ﬂlS = ﬂzl = ﬂsz =15,

5,=6,=3,

o =0,=4,

In Figure 4.10.2, which shows the variation profiles of K (a), it can be seen

that for all

Moreover, K

IIn

h, /W values considered K
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(a) gets larger values as h, /W decreases.

(a) increases aso,is increased.
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Figure 4.10.2 Influence of &, on normalized mode-II SIF at the crack

tipx, =a.y, =y, =y, =2, P =Pz = Pa = Py, =15, 0, =0,=3,
o, =w,=4,aW =01, hW =04.

As also seen in the other analyses, the variation profiles of the normalized
energy release rates depicted in Figure 4.10.3 are similar to the variation profiles

of normalized mode-I1 stress intensity factors. This is also an expected result

since for given values of 6,andh, /W , K, (a) is larger than K, ,(a) .
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Figure 4.10.3 Influence of &, on normalized energy release rate at the crack
tipx, =a.y, =y, =y, =2, P2 = Pz = P = P, =1.5, 0,=0,=3,

w=w,=4, a/W=01, h/W=04.

It can be seen from the Figure 4.10.4 that crack location has a considerable

influence on the T -stress. For h, /W =0.35, T -stress gets larger until &, nearly
equals to 4 and then it decreases. For h /W =0.2 and 0.25, T -stress gets
smaller untilo;nearly equals to 5 and then increases. And, finally
forh, /W =0.3, &, has almost no influence on T -stress until the value
where 6, equals nearly 2.5. After this point T -stress decreases and then increases

to its final value. Additionally, T -stress increases ash, /W gets larger.
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Figure 4.10.4 Influence of &, on T-stress at the crack tipx, =a.

=V =0 =2,

a/W =0.1, h/W =04.
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Plots of the normalized mode-1 stress intensity factor, mode-II stress intensity

factors and energy release rates as functions of 3, are shown in Figures 4.11.1,

4.11.2 and 4.11.3. Note that the exponent f,, governs the variation profile of

the Poisson’s ratio v,,. All the three variation profiles are similar such that they

display small variations with respect tof,. The variation profiles of

K,,(@)and J, (a)are also similar. Both of these quantities get larger values as

h, /W becomes smaller. This is an expected result since for given values of

pandh /W | K, . (a)is larger than K, . (a).
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On the other hand, K|, (a) gets larger values as h, /W increases. In general, 3,
has little influence on the fracture mechanics parametersK, (a),

Ky.(@andJ, (a).
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Figure 4.11.1 Influence of p,, on normalized mode-I SIF at the crack
tipx, =a.y, =7, =y, =2, Bz = Py = P =15, 0, =0, =0;=3,
w=w,=4,aW=0.1, h) W =04.
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Figure 4.11.2 Influence of g, on normalized mode-Il SIF at the crack
tipx, =a.y, =7, =y, =2, Bz = Py = P =15, 0, =0, =0;=3,
o, =w,=4,aW =01, hW =04.
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Figure 4.11.3 Influence of S, on normalized energy release rate at the crack
tipx, =a.y, =7, =y, =2, Bz = Py = P =15, 0, =0, =0;=3,
o, =w,=4,aW =01, hW =04.

The influences of the S,and h /W on the T -stresses are depicted in Figure
4.11.4. For all values of h,/W T -stress is found to be almost not affected from

the increasing values of 4, .
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Figure 4.11.4 Influence of g, on T-stress at the crack
tipx, =a.y, =y, =7, =2, Bis = P = P =1.5, 6,=0,=06;=3,
o, =w,=4,aW =01, hW =04.
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CHAPTER 5

CONCLUDING REMARKS

In this study, a computational method based on the J, -integral method is used

to calculate fracture mechanics parameters under thermal stress conditions. An
embedded crack is considered in an orthotropic functionally graded medium.
The problem is formulated using the plane orthotropic thermoelasticity
constitutive relations. The orthotropic medium is under thermal loading
condition. The upper surface of the FGM layer is at 2 times the reference
temperature Ty and the lower surface of the layer is kept at the reference
temperature. The other surfaces of the model are assumed to be insulated.
Therefore, the temperature distribution within the model is two dimensional.
The principal axes of the orthotropy coincide with the axes of the model created.
Because of the symmetry about x, axis, one half of the model is used in the
finite element analysis. In order to represent the material property gradation,
power-law is utilized. Power-law is a flexible method and frequently used in the
analysis of FGMs. A general purpose finite element software ANSYS is utilized

to perform thermal and structural analysis. In order to implement the J, -integral

method in ANSYS, Ansys Parametric Design Language (APDL) is utilized.
With the help of the code written by means of APDL, normalized mode-I stress
intensity factor (K,,), mode-II stress intensity factor (K), normalized energy
release rate (J1n), and normalized T -stress (Ts,) are calculated at the crack tip.

The fracture mechanics parameters are calculated for different values of
exponents of the power functions and for different values of relative crack

locations.
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The other parameters used in the analysis are w1, w,, d1, d2, d3, and S1, which are
the exponents of power functions representing thermal conductivity k;, thermal
conductivity ko, thermal expansion coefficient a;, thermal expansion coefficient

az, thermal expansion coefficient ag, and Poisson’s ratio vi,, respectively.

The variation profiles of fracture mechanics parameters for different values of
the exponents and relative crack locations are depicted in the figures. In
addition, temperature analyses are performed by the changing values w; and w; .
The figures depicting the temperature distributions are also given in this study.

Moreover, in order to show the domain independence and accuracy of the J, -

integral method, normalized mode-1 stress intensity factors, and mode-II stress
intensity factors are compared to those evaluated by the displacement
correlation technique (DCT).

The temperature distribution is two dimensional within the FGM layer. The
temperature distribution at the crack tip is primarily affected by the exponent of
thermal conductivity k.. The thermal conductivity k; has almost no effect on the
temperature distribution at the crack tip. The normalized stress intensity factors
obtained for the cases of plane stress and plane strain show the great agreement
with results obtained from DCT. This agreements demonstrate the accuracy and

domain independence of the J, -integral method. Among the exponents ws, w>,

01, 02, 03 and f2 has no effect on the fracture mechanics parameters. The other
five exponents possess different influences on the fracture mechanics parameters

as depicted in the figures.

It must be noted that the used method in this study can be applicable to CASE |
and CASE 11 type problems as mentioned in section 2.1. In order to obtain stress
intensity factors for CASE Ill, iteration must be utilized in conjunction with
DCT.
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APPENDIX A

DIVERGENCE THEOREM

Let V denote the Laplace Operator in the two-dimensional Cartesian

rectangular coordinate system (x, y) shown in Figure A.1,

r6 2 (A1)

where €, and €, denote the unit basis vectors along the x and y coordinates,

respectively. If G(x,y) is a scalar function of class CO(Q) in the two-
dimensional domain Q shown in the Figure A.1, the following divergence

theorem holds.

4
A
n\ =Cx® n
A ~
‘g, e n=8
A =TI U];

X

Figure A.1 Divergence theorem in two dimensional domain.
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jdivc; dxdsz.V-dedy:ifﬁ-Gds (A2)
Q Q r

oG
J.(a;: + 8yyjdXdy:§(nx G, +n, Gy)ds (A.3)
Q r

or in indicial notation,

[ (?] dxdy = 17 (n, G, )ds (A4)

Q X;

Here the dot denotes the scalar product of vectors, i denotes the unit vector

normal to the surface I" of the domainQ; n,and n, ( G, and G,) are the

rectangular components of ﬁ(G); and the circle on the boundary integral

indicates that the integration is taken over the entire boundary.
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APPENDIX B

ASYMPTOTIC EXPRESSIONS FOR THE STRESS COMPONENTS

Figure B.1 Crack tip coordinate system.

The asymptotic stress field for crack shown in Figure A.2 is given as follows,

__K

o;(r.0) f'(0)+T

5y 8, (B.1)

str

where T, is the non-singular stress, or so called T-stress.

r
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The explicit form of asymptotic stress field in the vicinity of the crack tip for

mixed-mode is given as follows:

tip , , tip tip tip
Hy ,Uz Hy M
o, (r,0)=— Re{ : -
B 2 L "~ " | Jeos@+ 4P sing  Jcosd + 1P sing

in \2 in \2
i Re|: tlp 1 tlp </J£ p) N (ﬂ; : ) B + TStr
2xr M JcosO+ 4 sing  \Jcosd + ufPsing

tip tip
(722 r, 9 KI Re{ tip ! & - al
2xr " | JcosO+ uPsing  \Jcosd+ ufPsing
(B.2)

K, 1 1 1
+ Re tip _ tlp ti B tip oi
270 |y \/c036?+,u Psing \/coseﬂzlpsma

K ,u“p/,l“p 1 1
Oy, (I’ ' 9) = I Re{ tip _ : t - tip -
270 |ty \/cose+y"’sm9 \/cose+y2"’sm9

n K, Re|: 1 lulnp _ .U;Ip
V2zr | - " | Jeoso+ 1P sing  Jcosd+ P sing

The 1™ and 4" are given by equation (2.8).
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APPENDIX C

g-FUNCTION

- (C.1)

The derivatives of the function qwith respect to coordinates x, and X, are as

follows
Xl
q’ = (C'Z)
' RyX + X
X
9, =- 2

S, (C.3)
RX + X2
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Itis clear in the Figure A.4 that

(C.4)

qg_X
1 R

(C.5)

0| x<

q:

A 4

—» X
A R

Figure C.2 g- function for a circular path around the crack tip.

105



APPENDIX D

DERIVATIVES OF THE MECHANICAL STRAIN ENERGY DENSITY
FUNCTION W.

The derivatives of mechanical strain energy density function for the case of
plane stress are obtained as [6]

ow - {(2E2v122 —E, )] +v,E e }{vlezgg + Elglnl'}

_ (D.1)
E, 2(E, - v2E,)
m m 2

8W _ E12 (Vlz 811 + 822 ) (D2)
ok, 2(E1 - V122 E, )2

oW _EE, (vlzeﬂ + &g lez E,ep + Elgﬂ) (D.3)
oV, (El - V122 E, )2

oW

o=k e 4
8W _ - El(Vlz Ezgzrg + ElglnI )AT (D5)
oa, E, - V122 E,

oW __ ElEz(VlzglnI +‘9g12)AT (D.6)
oa, E, - V122 E,

ow __ E, {(E1a1 +vip B, )glnI + (E2a2 + Vi, )82”; } (D.7)
OAT E, -viE,
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In case of plane strain, the derivatives of mechanical strain energy density

function are given as follows [6]

oW 1 _ _ _ _ _
E = ﬂ {(AIVSl +2AE, )5121 +bE 8,60 + (blgll +0,&,, )Ezgzz}
' . (D.8)
e (A B8 +0E, 5, + (0.5 +b,5, E 5, |+ 252
> WAE & +0,E, 65, Je), +(bey, +D,65, JE 85 1+
2N\ 2v,
oW E _ ViVLE, ) _ N
Ezj{[blgﬂ e :: 11J511+(b1511+b2822)522}
E ((AE.E, +bE,5, 6, + (b5, +b,5,)E,5, ] v2 +2 VeV
+— AE &, +DE 8y e, + (D& + 0,80 JE 80 | Viy +2V,ViaVa, +
2A Vay
(D.9)
ow
G =gl +é&l, (D.10)
oW EE.b _ N _ _ _
=— 22 l{(AZElgll+blE2822)8ll+(blgll+b2822)E2822}
O A (D.11)
n E,E,&,8,
A
ow E _ N _ N _ _ _
oy = i{(Algll + AE &5 )511 _(Az E.&, +bEyE,, )‘933 - (b1‘933 +Vi3€p )Ezgzz}
3

_ —2
- El(Al—zElvm) {(Az E.&;, +bEye,, )511 + (b1§11 +h,&,, )E2§22 }"" Eifgs
2N\ 2vy,

(D.12)

107



31

oW EE _ Vapdy | = = g
e

2
2A2 {(Az E.&), +bE e, )511 (blgll +b,&,, )Ezgzz{E vy +E ( +2v,Va J]
1

V3
~2
_ Evaég
vl
(D.13)

oW E E, 2V3,VisEry |- R _
oy 2A R » Eyy + V138118 — 20,8558, 0,85,
) 31

E.E, _ _ _ vV
t—7 A2 {(Az E.&, +bE,&, )511 (b1511 +0,85 )Ez‘gzz)[ 214 V12V13)
31
(D.14)
% == ElAT {Az E1511 + blEzgzz} (D-15)
oa, A
w == ElEZAT {blgll + b2§22} (D-16)
oa,
oW E AT _
a A {(Az Eyva +bE,vy, )811 (b1E2V31 +0,E,vy, )522}
P (D.17)
E vy EAT
+ —_— o ve
Viz
ow == Eiéu {Az El(V31053 + 0‘1)+ b E, (V32a3 ta, )}+ M
a(AT) A Vi (D.18)
E E. &
_ it {bl (V310£3 + al)+ b, (V320£3 ta, )}
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where

2
_ Valis

A=—"—F,, A, =1

31

b, =vy, +ViaVa,,

Ep =&y — (Vszas +a )AT , En =&y~ (V31a3 + Otl)AT ,

A=E (l-vyvys)- Ez(

2

VaoVis

Va

b, =1-vyvi,

2
+vy, +2v;, Vlsvsz]

109

(D.19)

(D.20)

a,(AT) (D.21)

(D.22)





