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ABSTRACT 

 

 

 

kJ -INTEGRAL FORMULATION AND IMPLEMENTATION FOR 

THERMALLY LOADED ORTHOTROPIC FUNCTIONALLY GRADED 

MATERIALS 

 

 

Arman, Eyüp Erhan 

M.Sc., Department of Mechanical Engineering 

   Supervisor: Assoc. Prof. Dr. Serkan Dağ 

November 2008, 99 pages 

 

The main aim of this study is to utilize a kJ -integral based computational 

method in order to calculate crack tip parameters for orthotropic functionally 

graded materials (FGMs). The crack is subjected to mixed mode thermal 

loading. Mixed mode thermal fracture analysis requires the calculation of mode-

I and mode-II stress intensity factors ( IK , IIK ). In addition to stress intensity 

factors, energy release rate and T -stress are calculated by means of kJ -integral. 

kJ -integral is defined as a line integral over a vanishingly small curve. Since it 

is difficult to deal with a line integral on a vanishing curve , kJ -integral is 

converted to a domain independent form containing area and line integrals by 

the help of plane thermoelasticity constitutive relations. Steady-state 

temperature distribution profiles in FGMs and the components of the kJ -

integral are computed by means of the finite element method.  



 v 

In both thermal and structural analyses, finite element models that possess 

graded isoparametric elements are created in the general purpose finite element 

analysis software ANSYS. In the formulation of kJ -integral, all required 

engineering material properties are assumed to possess continuous spatial 

variations through the functionally graded medium. The numerical results are 

compared to the results obtained from Displacement Correlation Technique 

(DCT). The domain independence of kJ -integral is also demonstrated. The 

results obtained in this study show the effects of crack location and material 

property gradation profiles on stress intensity factors, energy release rate and T -

stress. 

 

 

Keywords: Functionally Graded Materials (FGMs), Finite Element Method, 

kJ -Integral, Mixed-Mode Stress Intensity Factors, Thermal Stresses. 
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ÖZ 

 

 

 

FONKSĠYONEL DERECELENDĠRĠLMĠġ MALZEMELERDE ISISAL 

YÜKLEME ALTINDA kJ -ĠNTEGRAL FORMÜLASYONU VE 

UYGULAMASI 

  

Arman, Eyüp Erhan 

Yüksek Lisans, Makina Mühendisliği Bölümü 

    Tez Yöneticisi: Doç. Dr. Serkan Dağ 

Kasım 2008, 99 Sayfa 

 

Bu çalıĢmanın amacı, kJ -integral metodunu kullanarak Fonksiyonel 

DerecelendirilmiĢ Malzemelerdeki çatlak ucu parametrelerini hesaplamaktır. 

Çatlak, karıĢık modda termal yüklemeye maruz kalmaktadır. KarıĢık modda 

termal yüklemeler altındaki çatlak analizleri mod-I ve mod-II gerilme Ģiddeti 

factörlerinin ( IK , IIK ) hesap edilmesini gerektirmektedir. Gerilme Ģiddeti 

faktörlerinin hesabına ek olarak enerji bırakma miktarı ve T -gerilimsi de kJ -

integral metodu ile hesap edilmektedir. kJ -integral sonsuz küçüklükte bir eğri 

üzerinde eğri integrali olarak tanımlanmıĢtır. Eğri üzerinde tanımlanmıĢ integral 

ile çalıĢmanın mümkün olmamasından, kJ -integral, düzlemsel termal elastikiyet 

kuramları ile alan ve çizgi integralleri içeren ve alandan bağımsız bir integral 

haline dönüĢtürülmüĢtür. Fonsiyonel DerecelendirilmiĢ Malzemelerdeki sürekli 

haldeki sıcaklık dağılım profilleri ve kJ -integrali oluĢturan unsurlar sonlu 

elemanlar yöntemi ile hesap edilmektedir.  
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Genel amaçlı sonlu eleman analiz yazılımı olan ANSYS’te yapılan termal ve 

yapısal analizlerde derecelendirilmiĢ izoparametrik elemanlara sahip sonlu 

eleman modelleri oluĢturulmuĢtur. kJ -integral formülasyonunda gerekli olan 

bütün malzeme özelliklerinin, fonksiyonel derecelendirilmiĢ ortamda sürekli 

uzaysal değiĢimlere sahip oldukları varsayılmıĢtır. Elde edilen sayısal sonuçlar 

Yer DeğiĢtirme Bağıntısı Tekniği ile elde edilen sonuçlarla karĢılaĢtırılmıĢtır. 

kJ -integralinin alandan bağımsız olma özelliği de gösterilmiĢtir. Bu çalıĢmada 

elde edilen sonuçlar çatlak pozisyonunun ve malzeme özelliklerinin 

derecelendirilme profillerinin gerilme Ģiddeti faktörlerine, enerji bırakma 

miktarına ve T -gerilmesine etkilerini göstermektedir.  

 

Anahtar Kelimeler: Fonksiyonel DerecelendirilmiĢ Malzemeler, Sonlu 

Elemanlar Methodu, kJ -Integrali, KarıĢık-Mod Gerilme ġiddeti Faktörleri, 

Termal Gerilmeler. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

1.1 Functionally Graded Materials 

In recent years, there is an increasing demand for high performance materials 

that can deal with severe thermal environmental conditions. Some examples of 

these conditions are combustion chambers, aerospace structures, modern power 

generation and propulsion applications. Special focus has been given on 

Functionally Graded Materials (FGMs) which can provide thermal protection. 

Functionally Graded Materials are heterogeneous composites that have spatial 

variations in thermal and mechanical properties in a continuous manner. In 

general, Functionally Graded Materials demonstrate ceramic/metal material 

property gradation exploiting the favorable properties of both ceramics and 

metals. 

 

Initially, FGMs have been introduced to take the advantages of ceramic and 

metallic components. Ceramic layer provides heat and corrosion resistance. On 

the other hand metallic substrate provides mechanical strength and toughness. 

With such materials, it is possible to improve thermal or mechanical stress 

relaxation, and to increase bonding strength and toughness along a 

coating/substrate interface. Therefore, FGMs have an ability to reduce the 

magnitude of residual and thermal stresses and to increase the bonding strength 

and fracture toughness. 
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FGMs have many potential applications in various industries such as the 

aerospace industry. Since FGMs enable to produce light weight, strong and 

durable materials, they are preferred to be used in aeronautics. Another possible 

technological application is the cutting tools. The demand for increased strength 

and thermal resistant cutting tools leads to use of FGMs in cutting tools. In 

biomaterial industry FGMs are used as components in bones and joints. Also, in 

combustion chambers, solid oxide fuel cells, piezoelectric devices and pressure 

vessels, FGMs are utilized. 

 

There are various techniques of processing FGMs. Some of the methods are  

plasma spray forming, electron beam physical vapor deposition, combustion 

sintering, centrifugal casting and electrophoretic deposition. Some of these 

deposition methods are known to result in a highly anisotropic structure with 

reduced thermal and mechanical properties. For instance, plasma sprayed 

coatings have a lamellar microstructure, on the contrary electron beam physical 

vapor deposition method leads to a columnar microstructure. Due to the 

deposition methods, FGMs lose their isotropy and it is necessary to consider the 

orthotropic properties when studying the mechanics of FGMs. 

 

Better understanding of FGMs is needed to allow wider use of such materials. 

Structural performance of material compounds is affected by various defects that 

already exist within the material. Therefore, fracture remains as a key failure 

mode of FGMs. Fracture mechanisms of these materials have to be carefully 

investigated. In recent years, there has been a great interest in determining the 

thermal stress distribution near the vicinity of a crack located in FGMs. By 

calculating the crack tip parameters such as stress intensity factors, it is possible 

to determine failure characteristics and structural reliability of FGMs.  
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In this study, kJ -integral is used to determine crack tip parameters. kJ -integral 

is a highly effective method to carry out fracture analysis. Originally, kJ -

integral is not used for thermally loaded materials. This is due to the fact that, it 

is not possible for kJ -integral to keep its path independence under thermal 

stress conditions. In this study, kJ -integral is converted to domain independent 

form consisting of line and area integrals. 

1.2 Literature Survey 

Extensive research efforts are currently devoted to the experimental 

characterization, analytical interpretation and numerical simulation of fracture in 

FGMs. Because of the complexity of fracture analysis of FGMs, these 

researches are limited to simple geometries that contain a single crack or a series 

of cracks. Also, loading conditions of these geometries are simple.  In the 

fracture analysis of FGMs different methods, such as Displacement Correlation 

Technique (DCT) and kJ -integral, are employed. In almost all of these 

methods, a numerical method (generally FEM) is used to obtain results. Below 

is a review of the literature related to the problem under consideration. 

 

An important study was performed by Nikishkov and Atluri [1]. They used the 

equivalent domain integral method to calculate crack tip parameters, which 

quantify the severity of the stress/strain fields near the crack-tip under thermo-

mechanical loading. 8-node isoparametric finite elements were used in the 

computational algorithm of this study. It is shown that the equivalent domain 

integral representation yields the most accurate, stable, and path-independent 

numerical values for the crack-tip parameters.  
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In the paper by Kim and Paulino [2], slanted and non-slanted cracks in 

orthotropic FGM plates under mechanical loading were studied. kJ -integral 

formulation was made for cracks that did not need to be oriented parallel to the 

principal orthotropy directions. Mode-I and mode-II stress intensity factors were 

calculated with the help of the finite element method. In the finite element 

procedure, isoparametric formulation was used. Material properties were chosen 

to be exponentially and linearly varying. The numerical results obtained from 

kJ -integral were validated by the results obtained from the Displacement 

Correlation Technique. It was shown that plate size, material property gradation 

and boundary conditions play significant roles in fracture behavior of FGMs.  

 

One of the three dimensional fracture analyses was made by Walters et al [3]. In 

this study, the crack under consideration was subjected to thermomechanical 

loading which were tension loading and temperature gradient dependent loading. 

Results were obtained by using the domain integral approach. Therefore, a new 

form of J -integral was proposed. Displacement correlation technique was used 

to validate the results obtained from domain integral. For different crack sizes, 

aspect ratios and material property gradations under tensile, bending and 

spatially varying temperature loading, the 2D and 3D normalized stress intensity 

factors were calculated. The results demonstrate the accuracy of proposed J -

integral in 2D and 3D.   

 

Another important study was performed by Kim and Paulino [4]. They 

developed an interaction integral ( M -integral) formulation by using the 

Lekhnitskii and Stroh formalisms to evaluate elastic T -stress for arbitrarily 

oriented straight and curved cracks in orthotropic nonhomogeneous materials. 

Exponential and hyperbolic-tangent functions are utilized to model the material 

property gradation.  
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Several fracture problems were investigated to validate the proposed integral 

formulation. The computed T -stress values were compared to available 

reference solutions. It was shown that the computed values are highly accurate.  

 

An experimental study was carried out by Abanto-Bueno and Lambros [5]. 

Mechanical behaviour of the FGMs was characterized by uniaxial tensile 

testing. Real time data acquisitions were required for the utilization of this 

testing method. With the help of full-field digital image correlation technique, 

data for displacement field around the crack tip were acquired while the crack 

propagated into the graded material. Stress intensity factor and T -stress were 

calculated with the obtained data. It was shown that T -stress term in the 

asymptotic expansions for stresses had to be taken into account in order to 

obtain fracture resistance in FGMs.  

 

A J -integral based method for thermal fracture analysis of orthotropic FGMs is 

presented by Dağ [6]. Two models were considered. The first one was a single 

edge crack in an FGM layer. The second one consists of periodic cracks in an 

FGM layer bonded to a homogeneous substrate. In both of these analyses, the 

FGM layer is assumed to be orthotropic. Again, the J -integral was converted to 

a domain independent area integral to calculate the crack tip parameters. The J -

integral was computed by the finite element method. The mode-I stress intensity 

factors for different crack geometries and material property variation profiles 

were compared to the results obtained from enriched finite element method. 

Numerical results illustrate the influences of thermal conductivity, thermal 

expansion coefficient, relative crack length and crack periodicity on the mode-I 

stress intensity factors.  
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Mixed mode thermal fracture analysis of isotropic FGMs was carried out by Dağ 

[7] using the kJ -integral. Mode-I and Mode-II stress intensity factors were 

calculated for an embedded crack in an FGM layer under steady state thermal 

loading conditions and for periodic cracks in an FGM Thermal Barrier Coating 

subjected to thermal shock heating. The necessary modifications were carried 

out to convert the kJ -integral to a domain independent form that contains area 

and line integrals. Then, the components of the kJ -integral were calculated by 

the finite element method. The results illustrate the influences of material 

property variation profiles and crack geometry on the crack tip parameters, such 

as mode-I and mode-II stress intensity factors, energy release rate and T -stress. 

 

Another important study is presented in the paper by Kim [8]. They calculated 

the non-singular T -stress and mixed-mode stress intensity factors in 

functionally graded materials (FGMs) by means of interaction integral in 

conjunction with finite element method. In this study, spatial gradation of 

thermomechanical properties was represented by graded finite elements. It was 

shown that material gradation affects the magnitudes and signs of T -stress and 

stress intensity factors. The path independence of M -integral was demonstrated 

for both SIFs and T -stress. It was also demonstrated that T -stress is more 

dependent on the size of domain compared to the SIFs and for the same mesh 

discretization, the accuracy of SIFs is higher than that of the T -stress. 

In all of the studies mentioned above, materials are either isotropic or 

orthotropic. In isotropic models, mode-I and mixed-mode thermal stress 

intensity factors, energy release rate and T -stress have been calculated under 

both thermal loading and mechanical loading. In the case of orthotropic models, 

under thermal loading only mode-I fracture analysis has been performed.  
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The work reported in this study presents the formulation and implementation of 

the kJ -integral for mixed-mode fracture analysis of orthotropic functionally 

graded materials under thermal stress conditions. 

1.3 Scope of the Study 

The main objective of this study is to evaluate the crack tip parameters, namely  

mode-I and mode-II stress intensity factors, energy release rate and T -stress 

under thermal loading conditions by considering orthotropic functionally graded 

materials.  

 

All the crack tip parameters are calculated using the kJ -integral approach. kJ -

integral formulation is integrated into ANSYS by utilizing Ansys Parametric 

Design Language (APDL). Subroutines are written to calculate the integrands of 

kJ -integral. Numerical method of Gauss Quadrature is used to evaluate kJ -

integral components. In addition, continuous variations in the material properties 

are taken into account by assigning the properties at the centroids of the finite 

elements.  

 

The code written for the analysis is composed of two parts. In the first part, 

thermal boundary conditions are assigned to the related surfaces of the 

functionally graded medium and steady-state temperature distribution is 

determined. In the second part, using the calculated temperature field, structural 

analysis is performed and crack tip parameters are calculated. In order to 

validate the stress intensity factors, those obtained from kJ -integral are 

compared to the results obtained from the Displacement Correlation Technique 

[8]. The effects of crack location and material nonhomogeneity are depicted by 

related plots.  
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This study introduces a new approach to the calculation of the fracture 

mechanics parameters of thermally loaded orthotropic FGMs. Mixed-mode 

fracture analysis of orthotropic FGMs under mechanical loading have been 

performed by utilizing kJ -integral approach . In the literature, mode-I and 

mixed-mode fracture mechanics analysis of isotropic FGMs under mechanical 

and thermal loading conditions have been considered [7]. Therefore, this will be 

a new study where kJ -integral approach is used for mixed-mode fracture 

analysis of a crack embedded in an orthotropic functionally graded medium 

under thermal loading. The particular crack problem considered in the present 

study is shown in Figure 1.1.       

 

Figure 1.1 Geometry of the crack problem considered in the present study. 
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The material property gradation is in 2x direction. Therefore the crack is lying 

perpendicular to the direction of the property gradation. The temperatures of the 

top and bottom surfaces are different and these are designated by 02TT  on the 

top surface and 0TT   on the bottom surface. The top and bottom surfaces are 

kept at different but constant temperatures. Reference temperature is 0T . The 

problem is solved under steady-state conditions. The lateral surfaces of the 

model are assumed to be insulated. The two dimensional model of the 

orthotropic FGM layer is created by using the general purpose finite element 

analysis software ANSYS. 8-node quadrilateral elements are used in mesh 

generation. 
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CHAPTER 2 

 

 

FORMULATION 

 

2.1 Constitutive Relations of Plane Orthotropic Thermoelasticity 

Constitutive relations characterize the individual material and its reaction to the 

applied loads. Materials for which the constitutive behavior is only a function of 

the current state of deformation are known as elastic. These elastic materials 

deform under stress and when the stress is removed they return to their original 

shape. The amount of deformation during the application of the stress is strain. 

The homogeneity and non-homogeneity of the material significantly affect the 

constitutive behavior. A body is called homogeneous when the material 

properties are the same throughout the body, in other words, the material 

properties are independent of the position within the body. In case of a 

heterogeneous or nonhomogeneous body, the material properties are functions 

of position. For instance, a body composed of layers is nonhomogeneous. The 

layers can have uniform thicknesses of different materials. The directional 

dependency of material properties in a body yields anisotropy. An anisotropic 

body possesses different values of a material property in different directions at a 

point. An isotropic body possesses same values of a material property in all 

directions at a point.  

 

One of the most frequently encountered non-homogeneous materials are 

orthogonal anisotropic or, in other words, orthotropic materials. In case of 

thermal elasticity, the stress-strain relation of orthotropic materials is given by 

Lekhnitskii [10] as follows: 
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  (2.1) 

where 

 0TTT  , 0T  is the reference temperature.  

126135234333222111 2,2,2,,,      (2.2) 

126135234333222111 ,,,,,      (2.3) 

In the case of plane stress and plane strain, the constitutive relations of plane 

orthotropic thermoelasticity are given by Dağ [6]. For the case of plane stress, 

the relation is given as follows: 
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    (2.4) 

where ij   2,1, ji  are the combination of mechanical and thermal strains, 

namely total strain components. ijE , ij  and ijG   2,1, ji  are engineering 

constants. 0TTT   is the temperature difference from a reference 

temperature.  
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The constitutive relation for the case of plane strain is given by Dağ [6] as 

follows:  
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 (2.5) 

The relationships between the engineering constants of orthotropic materials are 

given by: 
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The two-dimensional anisotropic elasticity problems can be formulated in terms 

of the analytic functions, )( kz , of complex variable, kkk yixz   (k=1,2), 

where 

 

 yxx kk  ,  yy kk  ,  (k=1,2)    (2.7) 

 

k and k  (k=1,2) are the real and imaginary parts of kkk i  . k  are the 

roots of the characteristic equation given below. The roots are selected such that 

0k  [2]. k  are always complex or purely imaginary in conjugate pairs as 

2211 ,;,  . Moreover, 21  and must be evaluated at the crack tip location.  
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k  can be considered as numbers which characterize the degree of anisotropy in 

the case of plane problems. According to their values one can judge how much a 

given body differs from that of the isotropy, for which i 21  [10].  
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In case of plane strain these constants are given by 
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When the material is orthotropic and the directions of axes 1x  and 2x  coincide 

with the principal directions of elasticity, then the following three possibilities 

exist for the roots 1  and 2  [10]: 

 Case I: i 1 , i 2 , roots are purely imaginary and unequal. 

 Case II: i  21 ,  roots are purely imaginary and equal. 

 Case III: i 1 , i 2    
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Since k  are taken as positive,  and   values are positive as well. In this 

study, Case I is obtained.  

2.2 Jk-Integral Formulation 

The Jk-integral is a line integral which is defined over a vanishingly small curve 

at a crack tip. In Figure 2.1, an orthotropic functionally graded medium is 

depicted. It is assumed that the FGM medium shown in Figure 2.1 is linear 

elastic. Also, the medium is assumed to be under mixed-mode thermal stresses. 

1x  and 2x  constitute a local crack tip coordinate system.   is an arbitrary curve 

around the crack tip. It starts from the lower crack face and ends up at the upper 

crack face. n


 is the  unit outward  normal of the curve  .  

 

 

 

 

Figure 2.1 A curve   around a crack tip in an orthotropic functionally graded 

medium. 
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Then kJ -integral is defined on the curve   in the case of plane stress or plane 

strain as follows: 
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where W   : mechanical strain energy density function. 

 kn   :  unit normal outward to the curve Γε . 

  ij  : stress components. 

 kiu ,  : displacement components. 

   : arc length of the curve. 

  
 

k

k
x




,  

One of the main variables required in the calculation of kJ -integral is the 

mechanical strain energy density function, W. In case of a general 3-D state of 

stress, the mechanical strain energy density function can be written in the 

following form:  

 m

ijijW 
2

1
      (i,j=1,2,3)              (2.12) 

where 
m

ij is the mechanical strain. The components of the mechanical strain are 

given as 

 TTT mmm  333332222211111 ,,   

 232313131212 ,,   mmm                 (2.13) 

where 033   for plane strain.        
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The mechanical strain energy density function takes the following form for 

plane stress and strain: 
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The stress-strain relations for the cases of plane stress and plane strain are given 

by equations (2.4) and (2.5) respectively. In the case of plain strain, 

0231333    and 33  can be obtained by equating 33  to zero as follows: 
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Then W  can be written in terms of strain components for the case of plane strain 

in the following form [6] 
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where 

   












 321312

2

12
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13

2

32

213311 21 



 EE              (2.17) 

     TT  2332222213311111 ,              (2.18)
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Using the equations (2.16)-(2.18), W  can be represented in the following form: 

 

 TGEEWW  ,,,,,,,,,,,,,, 32112321213312122211211              (2.19) 

 

In the case of plain stress, 0231333    and W  can be written in terms of 

strain components in the following form [6] 
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     (2.20) 

 

Using equation (2.20), W  can be represented in the following form 

 

 TGEEWW  ,,,,,,,,,, 2112122122211211                (2.21) 

 

The expression of the kJ -integral given in equation (2.11) is not suitable to be 

used in the numerical analysis. Because stress and strain components can not be 

calculated over a vanishingly small curve. It is necessary to express the kJ -

integral in terms of domain and line integrals. In order to express the kJ -integral 

in terms of area and line integrals, we consider a positively oriented closed curve 

  around the crack tip as shown in Figure 2.2. 
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Figure 2.2 A closed curve   around the crack tip. 

  

The closed curve   surrounds the area  . The curve   is piecewise smooth 

and represented as follows: 

 

   cec0                 (2.22) 

 

Before expressing the kJ -integral in terms of area and line integrals, some 

manipulations have to be carried out. Therefore, another line integral kI  is 

defined over the closed curve . In addition to defining a new line integral, a 

new function q  is defined. q  is a piecewise smooth function which changes 

from unity on e  and to zero on 0 . The integral kI is defined as follows: 

 

  


 dqnWuI jkjkiijk  ,  ,  (i,j,k = 1,2)             (2.23) 

where kj  is the Kronecker’s Delta.  

x1 

 x2 n


 

Orthotropic 

  

  

c

 
c  

e  

0    cec0  

FGM 

1E  

2E  
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By utilizing the Divergence Theorem (see APPENDIX A for the Divergence 

Theorem) in plane,  kI  can be converted into an area integral as follows: 

 

  






 dqWqu

x
I kjkiij

j

k )( ,  ,  (i,j,k = 1,2)            (2.24) 

 

Note that the equations of equilibrium read as:  

 

0, jij ,  (i,j= 1,2)               (2.25)

  

Let’s define the integrand of the integral kI  as kZ  

 

)( , qWqu
x

Z kjkiij

j

k  



    (i,j,k = 1,2)            (2.26) 

 

Carrying out the differentiation, one obtains 

 

   
jkjkiijjkjkjjkjiijkijijk qWuqWWuuZ ,,,,,,,     (i,j,k=1,2)   (2.27) 
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Note the following properties related to the Kronecker’s Delta function  

 0, jkj  ,   (k,j= 1,2) 

 kkjj WW ,,   ,      (k,j= 1,2) 

Then, kZ  can be expressed with two components 
1

kZ  and 
2

kZ  as follows: 

   
    

21

,,,,,,,

kk Z

jkjkiij

Z

jkjkjjkjiijkijijk qWuqWWuuZ                       (2.28) 

1

kZ  contains the partial derivative of W  with respect to kx . This partial 

derivative can be written for both plane stress and plane strain in the form shown 

below: 
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where  
expl,kW  is the explicit derivative of the mechanical strain energy density 

function. Assuming that all the thermomechanical material parameters are 

continuous functions of the coordinate 1x  and 2x  in the FGM layer and using 

the equations (2.19) and (2.21),   
expl,kW  can be written as follows for plane 

stress 
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For the case of plane strain we have 
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The derivatives of the strain energy density function can be obtained in closed 

form [6] (see APPENDIX A for the closed form derivatives of W). 

By using the property,  

 ij

ij

W








                  (2.32) 

and kinematic relation for small displacements  
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kW,  can be expressed as follows  
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  ,  (i,j,k=1,2)       (2.34) 
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By interchanging the dummy indices of the second term in equation (2.35), the 

following is obtained: 

 

 expl,,, )( kkjiijk WuW  ,  (i,j,k=1,2)                        (2.36) 

 

Then 1

kZ  becomes 

 

   qWuZ kkijijk expl,,,

1   ,  (i,j,k=1,2)                               (2.37) 

 

Using the equation of equilibrium 0, jij  

 

  qWZ kk expl,

1  ,   (k=1,2)              (2.38) 

 

Then 1

kZ  equals 

  

     jkjkiijkk qWuqWZ ,,expl,   ,  (i,j,k=1,2)       (2.39) 
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The integral kI  can then be redefined in the following way 

 

      
 

 qdWdqWudnqWquI kjkjkiijjkjkiijk expl,,,,  , 

(i,j,k=1,2)            (2.40)  

Let’s define a function kb as  

 

  
jkjkiijk qnWub   , ,   (i,j,k=1,2)                   (2.41) 

 

The integral kI can be divided into four line integrals by using newly defined 

function kb  

 

 





0

dbdbdbdbdbI kkkkkk

cce

, (k=1,2)            (2.42) 

 

By changing the orientation of e , a new curve is obtained identical to the curve 

in Figure 2.1 and knowing that q  is equal to zero on 0 , kI  can be written as 

follows 

 

 
 



cc

dbdbdbdbI kkkkk



,  (k=1,2)            (2.43) 
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By substituting the value kb on the integral defined on  , the kJ -integral is 

obtained. 

 

  
 




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jkiijkjk
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,



 ,  (i,j,k=1,2)       (2.44) 

Then, 

   

   



 
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,,

expl,,,

,  (i,j,k=1,2)       (2.45) 

  is the area between the crack tip and the curve 0  . Since the crack surfaces 

are free surfaces, the term 0, jkiij nu  in the c and c  integrals. Then Jk-

integral can be further simplified as follows 
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 (i,j,k=1,2)       (2.46) 

In addition, the first component of unit outward normal, i.e. 1n  , is equal to zero 

on  c and c . Finally Jk-integral is written as follows 
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There exists a discontinuity denoted by the term (W
+
-W

-
) in the mechanical 

strain energy density across the crack faces.  

The components of Jk-integral can now be written as follows 

    


 qdWdqWuJ jjiij expl1,,11,1  , (i,j=1,2)          (2.48) 
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 (i,j=1,2)          (2.49) 

The mechanical strain energy density function used in 1J  and 2J -integrals is 

given by the equations (2.14) and (2.18) for plane strain and plane stress, 

respectively. Moreover, the explicit derivatives of W  are given by equations 

(2.28) and (2.29) for plane stress and plane strain, respectively. The area 

integrals given in 1J  and 2J -integrals will be calculated over a circular domain 

as shown in Figure 2.3. 

Now let’s concentrate on the line integral term  



 qdWW

c

)(   given in the 

2J -integral. The integrand of this line integral involves mechanical strain 

energy density function difference. The most general method to calculate this 

integral is proposed by Eischen [12]. Eischen suggested that the path of the line 

integral can be divided into two one of which is close to the crack tip and the 

other remote from the crack tip. The line integral is then expressed as: 
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where R  is the length of the integration path.  is the length of portion over 

which )(  WW   is approximated by its asymptotic representation and x  is 

the line integration variable measured from the point where 0  intersects 1x axis. 

The integration path is shown in the Figure 2.3. The integral close to the crack 

tip possessing the limits RxR   can then be evaluated using the 

asymptotic approximation to W . The asymptotic distribution of the stresses near 

the crack tip are given as follows [2]: 
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where r and   are the polar coordinates shown in Figure 2.3. strT  is the non-

singular stress component, namely the T -stress. T -stress influences crack 

growth under mixed-mode loading, crack path stability and size and shape of 

plastic zone around the crack tip. 

 The mechanical strain energy density function difference can be written as 

follows 

 ),(),(    rWrWWW                (2.55) 

 

 

Figure 2.3 Integration path c  and circular area   around the crack tip. 
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which can be rewritten as 
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where the 1  and 2  are given by equation 2.7. 

Then the following approximation can be made to the line integral 

 



 qdWW

c

)( . 

Where 

 
R

xx
q

2

2

2

1
1


                  (2.61) 

Then, 

 






 
R

R

R

qdx
r

F
qdxWWqdWW

c





2
)()(

0
            (2.62) 

 



 29 

Evaluating the integral, one obtains  
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Then 2J -integral can finally be written as follow 
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2.3 Calculation of the mixed-mode stress intensity factors and the T-stress 

Notice that 1J -integral can be evaluated by calculating the domain integral 

given by equation (2.48). On the other hand, 2J -integral can not be directly 

calculated by using the integral expression (2.64). Because, the final integral 

expression for 2J -integral contains IIK  and strT  which are unknowns. 

Therefore a new quantity 2Ĵ is introduced as follows: 
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The quantity 
2Ĵ  is evaluated using the equation (2.65) for two values of 

),( 21  . The distances 1 and 2 are shown in Figure 2.4. These values of 

2Ĵ can be written as follows 
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Let’s define a new function S  as follows 
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The equations (2.66) and (2.67) can be rewritten as follows 

 

  S
R

JJ 









3
1ˆ 1

122
1





                (2.69) 

 

  S
R

JJ 









3
1ˆ 2

222
2





                (2.70) 

  



 31 

 

Figure 2.4 The distances 1 and 2 . 

 

2J and S can now be easily obtained as follows 

 

 

   









































RR

J
R

J
R

J

3
1

3
1

ˆ
3

1ˆ
3

1

2
2

1
1

2
2

22
1

1

2

22















             (2.71) 

 

 
   























RR

JJ
S

3
1

3
1

ˆˆ

2
2

1
1

22
21








               (2.72) 

 

 

 

δ1 

δ2 

R 

x1 

x2 

+ 

_ 

Γ0 

x 

c
 

c
 



 32 

Then, from equations (2.57)-(2.60) and (2.68) T -stress is calculated as follows 
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In orthotropic FGMs, the relationship between kJ -integral and mode-I and 

mode-II stress intensity factors have been established as (Obata et al., 1989; Ma 

and Chen, 1996) [13,14] 
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                        (2.75) 

where 11a  is given in equation (2.59), and 1  and 2  are given by equation 

(2.8). 

 

Since the stress intensity factors are coupled, they may be solved by means of 

iteration. Newton iteration is proposed in the paper of Kim and Paulino [2]. But 

in order to calculate SIFs by means of Newton iteration, initial values of IK  and 

IIK  are required. Initial values of IK  and IIK  are determined by means of 

Displacement Correlation Technique (DCT) in this paper.  
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Since in this study 1 and 2  are obtained purely imaginary, equations (2.74) 

and (2.75) are further simplified. The relationship between kJ -integral and 

stress intensity factors can then be rewritten as 
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where 1 and 2   are the imaginary parts of the roots 1 and 2 , respectively. 

Here there are two unknowns IK  and IIK , and two equations. Therefore from 

equation (2.77) IK  can be written as   
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By utilizing the equations (2.76) and (2.78), IIK  is obtained from the following 

equation  
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All material properties are calculated at the crack tip. 
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Let’s define a new parameter  , such that  

2

IIK                    (2.80) 

Then, we obtain 
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 can be obtained in the form, 
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IIK  is obtained as,   
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Similarly IK  is obtained as, 
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The signs of the SIFs and those of the terms within the parenthesis are 

determined by monitoring relative normal and tangential displacements near the 

crack tip which are defined as [7, 15, 16] 

  

 
  22 uuI ,  

  11 uuII                (2.85) 

where the superscripts + and – stands for upper and lower crack surfaces, 

respectively.  
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I  and II  are calculated in the close vicinity of the crack tip. A positive I  

implies that crack is open and IK  is positive. Similarly, IIK  is positive if 

0 II . The signs of the terms within the parenthesis in equations (2.83) and 

(2.84) can be determined by the conditions given below [15]: 

 

 If III   take [+] for IIK  and take [-] for IK              (2.86) 

 If III   take [-] for IIK  and take [+] for IK              (2.87)
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CHAPTER 3 

 

 

FINITE ELEMENT IMPLEMENTATION 

 

3.1 Finite Element Method 

In today’s studies, modelling the physical phenomena is one of the most 

important things that the engineers and scientists consider. Almost every 

phenomenon in the nature, for instance aeronautical, biological, mechanical, 

chemical, or geological can be described, with the aid of the laws of physics or 

other fields in terms of algebraic, differential, and/or integral equations relating 

various quantities of interest. Determining the stress distribution on a cantilever 

beam subjected to mechanical, aerodynamical or even thermal loading, 

preparing simulation of weather in advance of a thunderstorm or tornado are the 

few examples of practical problems.  

Physical phenomena can be described analytically. This description is called 

mathematical model. Mathematical models are composed of a set of equations 

expressing the important features of the phenomena in terms of variables that 

describe the system. Mathematical models depend on the fundamental scientific 

laws of physics. In the case of a dynamics problem, e.g. a simple pendulum, the 

principle of conservation of linear momentum is used whereas, in case of a heat 

transfer problem the principle of conservation of energy is utilized. Many 

engineering problems have been solved with the help of suitable mathematical 

models and numerical methods by computers for the last three decades. Today, 

the most general and powerful numerical method in its applications to real world 

problems involving complicated physics, geometry and boundary conditions is 

the Finite Element Method.  
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In the Finite Element Method, the geometrically complex domain under 

consideration is represented as a set of geometrically simple subdomains, 

namely finite elements. Every finite element is considered as an independent 

domain by itself. The governing equation of the problem is approximated over 

the each subdomains with the help of a suitable variational method. The 

variational formulation stands for the construction of a functional principle that 

is equavalent to the governing equations of the problem. In order to obtain the 

numerical model of the whole domain, the relationships from all elements are 

assembled using certain interelement relationships.  

A finite element analysis typically involves the following steps. Steps 1, 4, and 5 

require decisions by the analyst and provide input data for the computer 

program. Steps 2, 3, 6, and 7 are carried out automatically by the computer 

program. Stress analysis and heat transfer analysis will be cited as typical 

applications. 

1. Mesh generation programs, called preprocessors, divide the domain into 

finite elements. 

2. The properties of each element are formulated. For instance, in stress 

analysis, nodal loads associated with all element deformation states that 

are allowed are determined. 

3. Assembly of the elements to obtain the finite element model of the 

structure is done. 

4. Application of the known loads are performed. Nodal forces and/or 

moments in stress analysis, nodal heat fluxes in heat transfer analysis 

are determined. 

5.  All the boundary conditions are specified. In stress analysis, how the 

structure is supported is specified. This step involves setting several 

nodal displacements to known values. In heat transfer, where typically 

certain temperatures are known, all known values of nodal temperature 

are imposed. 
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6. Linear algebraic equations to determine nodal degrees of freedom are 

solved simultaneously. 

7. With the help of postprocessors, calculated nodal values are used to sort 

the output. 

 

The main aim in the numerical analysis carried out in this study is to obtain the 

results of the area and line integrals given by kJ -integral. Exact evaluation of 

these integrals is not possible because of the algebraic complexity of the 

integrands. Numerical evaluation of these integrals involves approximation of 

the integrand by a polynomial of sufficient degree. This is due to the fact that, 

the integral of a polynomial can be evaluated exactly. Numerical integration is 

considered in the present study in order to compute the components of the kJ -

integral.   

Consider the integral 
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Polynomial approximation of )(xF can be written in the following way 
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where iF  denotes the value of )(xF at the thi point of the interval  ba xx , and 

)(xi  are polynomials of degree 1N .  
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In general, a quadrature formula has the form 
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where ix  are called the quadrature points and  iW  are the quadrature weights.   

An accurate representation of irregular domains can be accomplished by using 

quadrilateral elements. But, derivation of shape functions and evaluation of 

integrals are difficult over quadrilateral elements. Therefore integral statements 

defined over quadrilaterals are transferred to rectangle. The transformation is 

depicted in figure 3.1. In this study, Gauss-Legendre quadrature is used to 

evaluate the kJ -integrals. Gauss-Legendre quadrature requires the integral to be 

evaluated over a square region ̂  shown in figure 3.1 and the coordinate system 

  ,  to be defined on the interval  1,1 . In order to use this interval, a 

coordinate transformation from the global coordinate  yx,  to local coordinate 

  ,  is carried out. The values of the local coordinate system always lie 

between -1 and 1 with its origin at the center of the element.  

 

The utilization of the local coordinate system is beneficial in two ways: 

1. It is convenient in constructing the interpolation functions. 

2. It is required in numerical integration when using Gauss-Legendre 

Quadrature. 

 

The element ̂ is called master element. Each element of the finite element 

mesh is transformed to ̂only for the purpose of numerically evaluating the kJ -

integral.  
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Figure 3.1 Mapping of a master rectangular element to an arbitrary quadrilateral 

element of a finite element mesh. 

The transformation between the element  and ̂  is performed by a 

coordinate transformation of the form 
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where ),(  i  denote the shape functions. In general, the dependent variable or 

variables of the problem are approximated by an expression similar to the 

expressions (3.4) and (3.5).  
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The variable or variables are given in the following form: 
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Here the shape functions given by i̂ are different than i . Therefore 

depending on the relative degree of approximations used for the geometry and 

dependent variable(s), the finite element formulations are classified into three 

categories. 

1. Superparametric (m>n): The approximation used for the geometry is 

higher order than that used for the dependent variable.  

2.  Isoparametric (m=n): The approximation used for the geometry is equal 

to that of used for the dependent variable.  

3. Subparametric (m<n): The higher order approximation of the dependent 

variable is used.  

 

In this study isoparametric formulation is used and all the dependent variables of 

kJ -integral are approximated in a way that is shown in equation (3.6). 

Then, with the help of Gauss-Legendre Quadrature, a line integral is represented 

as 
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where,  

  JddxJxFF  ),())(()(ˆ       (3.8) 
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where r is the number of base points and iw  are the weight factors.   
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In the case of an area integral, Gauss-Legendre Quadrature can be expressed as 

follows 
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where J  is the Jacobian matrix determinant. Jacobian matrix and its 

determinant are given as follows, 
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In this study, 2
nd

 order Gauss- Legendre Quadrature is used. For the 2
nd

 order 

Gauss- Legendre Quadrature and for the line integral, the Gauss points and 

weights are given as 
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For the area integral, the Gauss points and weights are given as 
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1,1  ji ww                    (3.17) 

 

In this study, the developed numerical procedure is integrated into the general 

purpose finite element analysis software ANSYS []. Two kinds of analysis are 

performed in the ANSYS. Firstly, thermal analysis is conducted and in the 

second part structural analysis is performed. Thermal analysis is carried out with 

the help of the PLANE77 element in ANSYS. It possesses thermal degrees of 

freedom such as temperatures at nodes. Structural analysis is performed using 

the PLANE82 element. PLANE82 element possesses structural degrees of 

freedom such as displacements. These two elements are shown in Figure 3.2. 

(The Gauss points on the PLANE77 and PLANE82 elements for the area and 

line integrals are shown in the Figures 3.3 and 3.4, respectively.)  
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Figure 3.2 PLANE77 and PLANE82 elements. 

 

 

Figure 3.3 Location of the Gauss points for area integrals. 
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Figure 3.4 Location of the Gauss points for the line integrals. 

 

Shape functions for PLANE77 and PLANE82 elements are given as follows, 
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In this study, in order to discretize the functionally graded medium, first the 8-

node quadrilateral elements, which are PLANE 77 and PLANE 82 elements, are 

selected from the Ansys element type menu and then by collapsing the three 

nodes of these 8-node elements as shown in Figure 3.5, 6-node triangular 

elements are obtained.  
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The reason to utilize the triangular elements is to obtain much more accurate 

results. As a result, the domain is discretized by triangular elements which are 

actually 8-node quadrilateral elements. Since the triangular elements are 8-node 

quadrilateral elements in essence, the shape functions and formulations of 8-

node quadrilateral elements are utilized throughout this study. 

 

 

 

 

Figure 3.5 (a) Quadrilateral element in the global coordinate system; (b) 

triangular element in the global coordinate system; (c) quadrilateral and 

triangular elements in the isoparametric coordinate system. 
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3.2 Finite Element Procedure 

In this study, the kJ -integral method, which is described in Chapter 2, is 

integrated into an APDL code in ANSYS which is used to solve the problem 

under consideration. The written APDL code solves the problem in two steps. In 

the first part, heat transfer problem is solved with the help of ANSYS. In the 

second part, structural analysis is conducted by utilizing the finite element 

method described above according to the type of the problem, i.e. plane stress or 

plane strain. The temperature field obtained in the first part is transferred to the 

second within the written code. At the end of the second part, all related 

components of the kJ -integral are calculated. As a result, computation of the 

stress intensity factors, energy release rate and T -stress is finalized in the 

written APDL code. It should be mentioned that continuous variations in the 

thermomechanical properties in the functionally graded medium are 

incorporated into the finite element model by assigning the material properties at 

the centroid of each finite element. 

 

In order to calculate the crack tip properties, i.e. stress intensity factors, energy 

release rate and T -stress, under thermal loading, as mentioned before the 

orthotropic functionally graded medium is discretized using the triangular 

elements which are obtained actually from the 8-node quadrilateral elements. 

Four different circular regions are defined around the crack tip in order to 

calculate the domain integrals. These circular regions differ from each other by 

their radii. Although the analysis is independent of the shape of the regions 

defined, as mentioned before, circular regions will be used in this study.  
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In the structural analysis part, the line integrals are calculated over the elements 

which are located on four line segments. Two of the line segments are defined 

on the upper crack face and two of them are defined on the lower crack face. On 

the upper crack face the first line segment is confined between the point where 

the selected circular region intersects the upper crack face and the point 1  away 

from the crack tip. The second line segment is confined between same 

intersection point and the point 2  away from the crack tip. On the lower crack 

face, same procedure is followed to obtain the two line segments. On the other 

hand, the domain integrals are calculated over the elements defined within the 

selected circular region.  

 

 

Figure 3.6 Line segments I and II  and circular region . 

 

From this point, the finite element procedure of computation of  1J  and 2Ĵ  

integrals will be considered. Since the 2Ĵ integral contains the line integral, let’s 

first deal with this integral. 
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2Ĵ integral is defined in equation (2.65) as 

 

 

   
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expl2,,22,2
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  (i,j=1,2)          (3.19) 

As mentioned above, the line integrals are calculated first with the help of 

equations (3.7), (3.8), and (3.9). In order to calculate the line integral, the 

mechanical strain energy density functions are computed by equations (2.16) 

and (2.20). The function q  defined within the line integral and the material 

properties defined in the equations (2.16) and (2.20) are calculated at both of the 

gauss points on line elements shown in Figure 3.4.  As an example, the line 

integral calculated at the upper crack face and for 1   is given as follows 
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where R  is the radius of selected region shown in Figure 3.5, | | represents 

absolute value and i stands for gauss points.  

The Jacobian is computed with the help of the equation (3.9). For the upper 

crack face 2L  is calculated on line segment II  for 2  . For lower crack face 

3L  and 4L  are calculated for 1   and 2  , respectively.  
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In order to evaluate the domain integral part of the
2Ĵ , the components given in 

Table 3.1 must be evaluated at the Gauss points of every element within the 

selected circular region shown in Figure 3.6. 

 

Table 3.1 The components of 
2Ĵ -integral  

Component Description Explicit Form 

ij  
Stress distribution on the 

element 
122211 ,,   

2,iu  
Derivative of displacement 

field with respect to 2x  2

2

2

1 ,
xx 





 
 

W  
Mechanical strain energy 

density function 
(2.16) or (2.20) 

 
expl2,W  

Derivative of  mechanical 

strain energy density 

function with respect to 2x  

(2.30) or (2.31) 

J  Jacobian determinant (3.13) 

q  The q function APPENDIX A 

jq,  
Derivatives of the q 

function 
APPENDIX A 

 

We define domainJ 2
ˆ  as, 

    


 dqWqWuJ jjiij

domain

expl2,,22,2
ˆ  , (i,j=1,2)            (3.22) 
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When the isoparametric formulation of the integrand is carried out, domainJ 2
ˆ  can 

be expressed as follows: 

 

  
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The stress components ij  given in equation (3.22) are calculated by means of 

the constitutive relations given by (2.1) and (2.4) for plane stress and plane 

strain, respectively. All the stress components are obtained in terms of strain 

components by using equations (2.1) and (2.4). In order to calculate strains, 

displacement components are calculated as shown below: 
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where 1u  is the displacement 1x  direction and  2u  is the displacement 2x  

direction. 
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Since the mechanical strain energy density function is represented in terms of 

strain components and material properties, it can be easily calculated by the 

equations (2.16) and (2.20) which are given for plane strain and plane stress, 

respectively. 

The derivative of mechanical strain energy density function,  
expl2,W , requires 

the calculation of the following terms for plane stress: 
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In case of plane strain, the required terms are given below: 
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The derivatives given in equations (3.29) and (3.31) are given in APPENDIX A. 

They are represented in terms of strain components and material properties. 

They can be easily calculated using the equations given in APPENDIX A. The 

derivatives given in equations (3.30) and (3.32) are calculated as follows: 

 



 53 


 






 8

1

1

22

1

i
i

i E
xx

E 
                   (3.33) 


 






 8

1

2

22

2

i
i

i E
xx

E 
                  (3.34) 


 






 8

1

12

22

12

i
i

i

xx



                  (3.35) 


 






 8

1

13

22

13

i
i

i

xx



                  (3.36) 


 






 8

1

31

22

31

i
i

i

xx



                  (3.37) 


 






 8

1

32

22

32

i
i

i

xx



                  (3.38) 


 






 8

1

12

22

12

i
i

i G
xx

G 
                  (3.39) 


 






 8

1

1

22

1

i
i

i

xx



                  (3.40) 


 






 8

1

2

22

2

i
i

i

xx



                             (3.41) 


 






 8

1

3

22

3

i
i

i

xx



                  (3.42) 

 
 











 8

1 22 i

i

i T
xx

T 
                 (3.43) 

 

The Jacobian determinant is calculated by using equation (3.13). The q  function 

and its derivatives are given in APPENDIX A.  
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The derivatives of the shape functions with respect to the global coordinates can 

be calculated as follows: 
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The 1J  integral is calculated in a similar way as DomainJ 2
ˆ  integral. 1J  integral is 

given in equation (2.46) as   

 

     
 

 qdWdqWuJ jjiij expl1,,11,1               (3.47)  

 

In order to evaluate 1J -integral, the components given in Table 3.2 must be 

evaluated at the Gauss points of the element shown in Figure 3.3. 
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Table 3.2 The components of 1J -integral 

Component Description Explicit Form 

ij  
Stress distribution on the 

element 
122211 ,,   

1,iu  

Derivative of 

displacement field with 

respect to 1x  
1

2

1

1 ,
xx 





 
 

W  
Mechanical strain 

energy density function 
(2.16) or (2.20) 

 
expl1,W  

Derivative of 

mechanical strain energy 

density function with 

respect to 1x  

(2.30) or (2.31) 

J  Jacobian determinant (3.13) 

q  The q function APPENDIX A 

jq,  
Derivatives of the q 

function 
APPENDIX A 
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When the isoparametric formulation of the integrand is carried out, 1J  can be 

reduced to the following form: 
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The stress components ij  given in equation (3.47) are calculated by means of 

the constitutive relations given by (2.1) and (2.4) for plane stress and plane 

strain, respectively. All the stress components are obtained in terms of strain 

components by using equations (2.1) and (2.4). In order to calculate strains, 

displacement components are calculated by equations (3.24)-(3.28). 

Since the mechanical strain energy density function is represented in terms of 

strain components and material properties, it can be easily calculated by the 

equations (2.16) and (2.20) which are given for plane strain and plane stress, 

respectively. 

The derivative of mechanical strain energy density function,  
expl1,W , requires 

the calculation of the following terms for plane stress: 
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In case of plane strain, the required terms are given below: 
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The derivatives given in equations (3.29) and (3.30) are calculated as follows: 
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The Jacobian determinant is calculated by using equation (3.13). The q  function 

and its derivatives are given in APPENDIX A.  

 

In summary, the components of the kJ -integral can be evaluated numerically. 

These results can then be used to compute the thermal fracture parameters.
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CHAPTER 4 

 

 

NUMERICAL EXAMPLE 

 

 

 

 

In this section, temperature distribution profiles and fracture mechanics 

parameters are calculated by considering the problem of an embedded crack in 

an FGM layer under steady-state thermal loading. The geometry of the problem 

and thermal boundary conditions are depicted in Figure 4.1.  

 

 

Figure 4.1 An embedded crack in an orthotropic functionally graded layer under 

thermal loading. 

 

The particular ceramic and metal components of the orthotropic FGM layer are 

taken as alumina (Al2O3) and nickel (Ni). The material properties vary 

continuously from 100% Ni at 02 x  to 100% Al2O3 at hx 2 . The embedded 

crack shown in Figure 4.1 is aligned parallel to the boundaries and perpendicular 
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to the direction of the material property gradation. The length of the embedded 

crack, which is located at 12 hx  , equals to a2 .  

Initially, the FGM layer is kept at a reference temperature 0T  at which all the 

stress components are equal to zero. Then, temperature of the surface at hx 2  

is increased to 02T  and the surface temperature at 02 x  is kept at 0T . The crack 

surfaces and the surfaces at Wx 1 are assumed to be insulated. The presence 

of the insulated crack disturbs the one dimensional temperature distribution and 

leads to a two-dimensional temperature distribution field in the vicinity of the 

crack faces.      

The thermomechanical properties of the functionally graded layer are assumed 

to be continuous functions of the 2x coordinate. The material property 

variations are represented by using power functions as follows:   

   
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2
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where the superscripts m and c stand for the properties of metallic and ceramic 

components namely for the properties of Nickel and Alumina.  

The remaining material properties 2321 , and 3E  can be calculated with the 

help of the equation (2.6) and equations (4.1)-(4.6). 

The power-law representations of the material property variations given in 

equations (4.1)-(4.12) are convenient in representing the thermomechanical 

properties of the FGM layer. The exponents of these equations are positive 

constants that can be adjusted to attain a required variation profile for the 

orthotropic FGM layer. If an exponent is greater than unity, the material 

property variation profile is metal-rich. On the other hand, if an exponent is less 

than unity the corresponding material property possesses a ceramic-rich 

variation profile. In this study, the effects of these exponents will be investigated 

by changing the exponent of one of the material properties from zero to infinity 

while keeping the other properties constant.  
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The material properties of 100% alumina surface are given as follows [19]: 

GPaE c 43.901  , GPaE c 36.1161  , GPaG c 21.3012              (4.13) 

2176.012 
c , 1399.013 

c , 14.031 
c ,   21.032 

c                                  (4.14) 

 KmWk c 25.211  ,  KmWk c 82.292                 (4.15) 

    16

1 108


 Coc ,     16

2 105.7


 Coc  ,       16

3 109


 Coc            (4.16) 

 

The material properties of 100% nickel surface are given as follows [19]: 

GPaEEE mmm 20421  , 31.032311312  mmmmm  ,            (4.17) 

   GPaEG mmm 9.771212   ,  KmWkkk mmm 7021  ,           (4.18) 

    16

321 103.13


 Commmm                            (4.19) 

 

There are certain limitations on the Poisson’s ratios in the orthotropic materials. 

These limitations are given as follows: 

  01 2112      01 3113      01 3223               (4.20) 

  021 312312322331132112                  (4.21) 

 

These restrictions hold at every point in the alumina-nickel orthotropic FGM 

layer. 
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It must be noted that lateral displacement in the embedded crack shown in 

Figure 4.1 are anti-symmetric and vertical displacements are symmetric about 

2x -axis. Therefore, the relations between the crack tip parameters can be 

expressed in the following form: 

)()( aKaK II   )()( aKaK IIII                 (4.22) 

)()( 11 aJaJ   )()( 22 aJaJ   )()( aTaT ss              (4.23) 

where  a  and  a  represent the crack tip where the corresponding parameter 

is calculated. As a result of the symmetry, it is sufficient to model the one-half 

of the layer. In the present analysis, the region Wx  10 is modeled and crack 

tip parameters are calculated at ax 1 .  

First, the influence of the thermal conductivity variations on the steady-state 

crack tip temperature will be examined. Figure 4.2 and 4.3 show the variations 

of crack tip temperature with respect to 1  and 2 , respectively. Crack tip 

temperature is plotted for various values of  Wh1 .  

It can be seen from Figure 4.2 that the principal thermal conductivity 1k  has 

almost no effect on the crack tip temperatures. The effect of the other principal 

thermal conductivity 2k  can be seen from Figure 4.3. For the different values of 

the exponent 2 , different crack tip temperatures are obtained as can be seen 

from Figure 4.3. In both of the figures, it is also seen that the normalized crack 

tip temperature values are increasing while the crack is coming closer to the 

upper surface of the layer. This is also an expected result since the temperature 

of the upper surface is two times of the temperature of the lower surface. For 

2.01 Wh  crack closure happens. Therefore, as a minimum value 0.23 is taken 

for Wh1 in the analysis of the influence of 1 . 
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Figure 4.2 Influence of 1  on the temperature at the crack tip ax 1 . 

1.0Wa , 4.0Wh , 42  . 
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Figure 4.3 Influence of 2  on the temperature at the crack tip ax 1 . 

1.0Wa , 4.0Wh 41  . 

 

In order to verify the accuracy of the developed procedure, some comparisons of 

the mode-I and mode-II stress intensity factors calculated using the kJ -integral 

technique to those calculated by displacement correlation technique [9] will be 

presented. The details of the formulation and finite element implementation of 

the kJ -integral technique is given in the previous chapters. Domain 

independence of  kJ -integral method is demonstrated in Tables 4.1 and 4.2 by 

providing the results for four different domain size values as shown in Figure 

4.4 (b). The comparisons are provided for both plane stress and plane strain 

conditions.  
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 The normalized stress intensity factors given in Tables 4.2 and 4.3 are defined 

as 

a

aK
K I

nI
 0

)(
 , 

a

aK
K II

nII
 0

)(
 , 0110 TE cc               (4.24) 

 

Table 4.1 Comparisons of the results obtained by kJ -integral to those 

calculated by DCT. 25,01 Wh , 1.0Wa , 4.0Wh , 21221   , 

5.132311312   , 331   , 421  . 

  

kJ -integral 

DCT 
1.0

a
R  2.0

a
R  3.0

a
R  4.0

a
R  

PLANE  

STRESS 

3

1
2   

InK  0.0176 0.0176 0.0176 0.0176 0.0177 

IInK  0.1197 0.1197 0.1197 0.1197 0.119 

32   
InK  0.0207 0.0207 0.0207 0.0207 0.02088 

IInK  0.1271 0.1271 0.1271 0.1271 0.1263 

PLANE  

STRAIN 

3

1
2   

InK  0.0259 0.026 0.026 0.0261 0.0259 

IInK  0.1586 0.1587 0.1588 0.1589 0.1579 

32   
InK  0.0294 0.0295 0.0295 0.0296 0.02936 

IInK  0.1663 0.1664 0.1665 0.1666 0.1656 
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Table 4.2 Comparisons of the results obtained by kJ -integral to those 

calculated by DCT. 3,01 Wh , 1.0Wa , 4.0Wh , 21221   , 

5.132311312   , 331   , 421  . 

  

kJ -integral 

DCT  
1.0

a
R  2.0

a
R  3.0

a
R  4.0

a
R  

PLANE  

STRESS 

3

1
2   

InK  0.0278 0.0278 0.0278 0.0278 0.0279 

IInK  0.1024 0.1024 0.1024 0.1024 0.1018 

32   
InK  0.0328 0.0328 0.0328 0.0328 0.033 

IInK  0.1081 0.1081 0.1081 0.1081 0.1074 

PLANE  

STRAIN 

3

1
2   

InK  0.0386 0.0386 0.0386 0.0386 0.0387 

IInK  0.1318 0.1319 0.1321 0.1322 0.1312 

32   
InK  0.044 0.044 0.044 0.044 0.0441 

IInK  0.1377 0.1379 0.138 0.1382 0.1372 

 

The element and node numbers for these two different Wh1 values are given in 

Table 4.3. 

Table 4.3 Number of elements and nodes used in the analyses. 

 

 

 

 

 

 
Number of 

Elements 

Number 

of Nodes 

25.01 Wh  93952 189223 

3.01 Wh  92014 185347 
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(b) 

 

(a) 

 

Figure 4.4 (a) Deformed shape of the finite element mesh (b) close-up view of 

the circular domains around the crack tip. 25.01 Wh , 1.0Wa , 4.0Wh , 

21221   , 5.132311312   , 3321   , 421  .  

4.0aR  

3.0aR  

2.0aR  

1.0aR  
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(b) 

 

(a) 

 

Figure 4.5 (a) Deformed shape of the finite element mesh (b) close-up view of 

the circular domains around the crack tip. 3.01 Wh , 1.0Wa , 4.0Wh , 

21221   , 5.132311312   , 3321   , 421  .  

1.0aR  

4.0aR  

3.0aR  

2.0aR  
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In both kJ -integral method and displacement correlation technique, triangular 

elements, which are obtained from  8-node quadrilateral elements, are used. In 

displacement correlation technique special quarter point crack tip elements are 

used to calculate normalized stress intensity factors. The meshes in the circular 

domains are especially refined to evaluate the stress intensity factors within a 

high degree of accuracy. In both Table 4.2 and Table 4.3, it can be seen that the 

results obtained by kJ -integral method and displacement correlation technique 

are in excellent agreement for both of the cases of plane stress and plane strain. 

The results evaluated using different domain sizes also agree quite well which 

indicates that developed kJ -integral method possesses the required domain 

independence.  

 

Next, the effects of the thermal conductivities 1k and 2k , thermal expansion 

coefficients 1 , 2  and 3 , Poisson’s ratio 12  ,and crack location on the 

fracture mechanics parameters will be examined. The exponents 1 , 2 , 1 , 2 , 

3 , and 12  govern the variations in 1k , 2k , 1 , 2 , 3  and 12 , respectively. 

The variation profiles of fracture mechanics parameters are presented for whole 

ranges of 1 , 2 , 1 , 2 , 3 , and 12  by varying of these exponents from zero 

to infinity. The results illustrated in the following figures are calculated for the 

condition of plane strain.  

 

In Figure 4.6.1 variation profile of normalized mode-I stress intensity factor is 

depicted for various values of relative crack position Wh1 . Expressions for the 

normalized SIFs are given by equation (4.24). For all values of Wh1 considered 

)(aK nI generally decreases as 1  is increased. In addition, )(aK nI gets its 

largest value when 3.01 Wh  and 01   and smallest value when 

23.01 Wh  and 1  is between 2-2.5. 
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Figure 4.6.1 Influence of 1  on normalized mode-I SIF at the crack 

tip ax 1 . 21221   , 5.132311312   , 3321   , 

42  , 1.0Wa , 4.0Wh . 

 

Variation of )(aK nII  is depicted in Figure 4.6.2. Like )(aK nI , for all values of  

Wh1 , in general )(aK nII decreases as 1  is increased. Moreover, )(aK nII gets 

larger as Wh1 is decreased from 0.35 to 0.23. 
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Figure 4.6.2 Influence of 1  on normalized mode-II SIF at the crack 

tip ax 1 . 21221   , 5.132311312   , 3321   , 

42  , 1.0Wa , 4.0Wh . 

 

The computed results for normalized energy release rate )(1 aJ n and normalized 

T -stress are presented in Figures 4.6.3 and 4.6.4. The )(1 aJ n and )(aT ns are 

defined as 
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The variation profiles of )(1 aJ n  are similar to those of )(aK nII . This is an 

expected result since for given values of 1  and Wh1 , )(aK nII is larger than 

)(aK nI . 

      

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6.3 Influence of 1  on normalized energy release rate at the crack 

tip ax 1 . 21221   , 5.132311312   , 3321   , 

42  , 1.0Wa , 4.0Wh . 

 

The plots obtained for normalized T -stress for various values of Wh1  are 

almost horizontal which indicates that 1  has little influence on T -stress. It is 

also shown in the Figure 4.6.4 that as Wh1  gets smaller )(aT ns becomes 

negative.  
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Figure 4.6.4 Influence of 1  on normalized T -stress at the crack 

tip ax 1 . 21221   , 5.132311312   , 3321   , 

42  , 1.0Wa , 4.0Wh . 

 

Figure 4.7.1 presents the influence of the exponent 2 and Wh1 on )(aK nI . It 

can be seen from the figure that for 2.01 Wh , )(aK nI first goes through a 

minimum and then increases with increasing values of 2 . On the other hand, 

for 25.01 Wh , 3.0 , and 35.0  )(aK nI  increases as 2 increases. Additionally, 

)(aK nI gets larger as Wh1 is increased from 0.2 to 0.35. It can be noted that 

)(aK nI  values calculated for Wh1 3.0 , and 35.0  are very close when 

01 2  .  
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Figure 4.7.1 Influence of 2  on normalized mode-I SIF at the crack 

tip ax 1 . 21221   , 5.132311312   , 3321   , 

41  ,  1.0Wa , 4.0Wh . 

 

 

Variation of the normalized mode-II stress intensity factors with respect to 2 is 

shown in Figure 4.7.2. The variation profiles shown in the figure demonstrate 

increasing behaviour of  )(aK nII  as 2 is increased and Wh1 is decreased. 
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Figure 4.7.2 Influence of 2  on normalized mode-II SIF at the crack 

tip ax 1 . 21221   , 5.132311312   , 3321   , 

41  ,   1.0Wa , 4.0Wh . 

 

Figures 4.7.3 and 4.7.4 present the calculated results for )(1 aJ n and )(aT ns , 

respectively. The variation profile of the )(1 aJ n is analogous to that of )(aK nI . 

This is also an expected result since for given values of 2 and Wh1 , )(aK nII is 

larger than )(aK nI . The results shown in Figure 4.7.4 illustrate that T -stress 

goes through either a maximum or a minimum depending on the value of Wh1 .  
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T -stress becomes negative when Wh1 is decreased from 0.35 to 0.2. T -stress 

is more sensitive to variations in 2 when 35.01 Wh , 0.25, and 0.2. When 

3.01 Wh , T -stress is not significantly affected by the variations in 2 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7.3 Influence of 2  on normalized energy release rate at the crack tip 

ax 1 . 21221   , 5.132311312   , 3321   , 41  , 

1.0Wa , 4.0Wh . 
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Figure 4.5.4 Influence of 2  on T -stress at the crack tip  

Figure 4.7.4 Influence of 2  on T -stress at the crack tip 

ax 1 . 21221   , 5.132311312   , 3321   , 41  ,  

1.0Wa , 4.0Wh . 

 

Figure 4.8.1 shows plots of )(aK nI as functions of Wh1 and 1 . Note that 1  

controls the variation profile of 1 . It can be seen from the figure that for the 

values of  2.01 Wh  and 0.25, )(aK nI is not affected significantly by 1 . But 

in the cases of 3.01 Wh  and 0.35, the influence 1  on )(aK nI  is more 

significant. Moreover, )(aK nI  gets larger as Wh1 is increased from 0.2 to 0.35.  

The effect of 1 on the normalized mode-II stress intensity factor is depicted in 

Figure 4.8.2. Here, for all Wh1 values considered )(aK nII  increases as 1  

increases. )(aK nII gets larger values when Wh1 decreases. 
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Figure 4.8.1 Influence of 1  on normalized mode-I SIF at the crack tip ax 1 . 

21221   , 5.132311312   , 332   , 421  , 

1.0Wa , 4.0Wh . 
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Figure 4.8.2 Influence of 1  on normalized mode-II SIF at the crack tip ax 1 . 

21221   , 5.132311312   , 332   , 421  , 

1.0Wa , 4.0Wh . 

 

In Figures 4.8.3 and 4.8.4, the calculated results for )(1 aJ n and )(aT ns  are 

presented, respectively. The variation profiles of )(1 aJ n are similar to those of 

)(aK nII . This is also an expected result since for given values of 1 and Wh1 , 

)(aK nII is larger than )(aK nI .  
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It can be seen from the Figure 4.8.4 that Wh1 has a significant influence on the 

T -stress. For 35.01 Wh , T -stress first goes through a maximum and then 

goes through a minimum as 1  increases, whereas for smaller values of Wh1 , 

T -stress goes through a minimum as 1  is increased.  

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8.3 Influence of 1  on normalized energy release rate at the crack 

tip ax 1 . 21221   , 5.132311312   , 332   , 

421  , 1.0Wa , 4.0Wh . 

 

 

 

 

 




0.0 0.2 0.4 0.6 0.8 1.0

J 1
n
 (

a
)

4

8

12

16

20




0.00.20.40.60.81.0
4

8

12

16

20

h1 / W = 0.3

h1 / W = 0.35

h1 / W = 0.2

h1 / W = 0.25

310  310  



 82 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8.4 Influence of 1  on T -stress at the crack tip ax 1 . 

21221   , 5.132311312   , 332   , 421  ,  

1.0Wa , 4.0Wh . 

 

Variations of the normalized mode-I stress intensity factors with respect to 2 are 

shown in Figure 4.9.1. For all values of Wh1 , )(aK nI  first increases and then 

decreases as 2 is increased. When 2.01 Wh , )(aK nI decreases at nearly 

125.12  . When 25.01 Wh , )(aK nI decreases at about 42  . 

When 3.01 Wh , )(aK nI decreases at 102  .  
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Additionally, )(aK nI gets larger as Wh1 is increased. It can be seen from the 

Figure 4.9.2 that )(aK nII  gets larger as 2  is increased. Moreover, 

)(aK nII increases with a corresponding increase in Wh1 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9.1 Influence of 2  on normalized mode-I SIF at the crack tip ax 1 . 

21221   , 5.132311312   , 331   , 421  ,  

1.0Wa , 4.0Wh . 

 

 

 

 

 

 

Col 21 vs Col 1 

Col 21 vs Col 6 

Col 21 vs Col 11 

Col 21 vs Col 16 

Col 21 vs Col 1 

Col 21 vs Col 6 

Col 21 vs Col 11 

Col 21 vs Col 16 




0.0 0.2 0.4 0.6 0.8 1.0

K
In

 (
a

)

0.00

0.02

0.04

0.06




0.00.20.40.60.81.0
0.00

0.02

0.04

0.06

h1 / W = 0.35

h1 / W = 0.3

h1 / W = 0.25
h1 / W = 0.2



 84 

 

. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9.2 Influence of 2  on normalized mode-II SIF at the crack tip ax 1 . 

21221   , 5.132311312   , 331   , 421  , 

1.0Wa , 4.0Wh . 

 

The variation profiles of the normalized energy release rates which are depicted 

in Figure 4.9.3 are analogous to the variation profiles of the normalized mode-II 

stress intensity factors. This is an expected result since for given values of 

2 and Wh1 , )(aK nII is larger than )(aK nI . Interesting results are presented in 

Figure 4.7.4 which shows the influences of 2 and relative crack position on the 

T -stress. 2 is found to have no effect on theT -stress. The only effective 

parameter is the Wh1 .T -stress increases with a corresponding increase in 

Wh1 . 
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Figure 4.9.3 Influence of 2  on normalized energy release rate at the crack 

tip ax 1 . 21221   , 5.132311312   , 331   , 

421  , 1.0Wa , 4.0Wh . 
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Figure 4.9.4 Influence of 2  on normalized T -stress at the crack tip ax 1 . 

21221   , 5.132311312   , 331   , 421  , 

1.0Wa , 4.0Wh . 

 

The influence of the exponent 3  on the normalized mode-I stress intensity 

factor is depicted in Figure 4.10.1. For three values of Wh1 , which are 0.25, 

0.3, 0.35, )(aK nI increases as 3 is increased. For 2.01 Wh , )(aK nI first 

increases and then decreases. Also, )(aK nI gets larger as Wh1 is increased. 
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Figure 4.10.1 Influence of 3  on normalized mode-I SIF at the crack tip ax 1 . 

21221   , 5.132311312   , 321   , 421  ,  

1.0Wa , 4.0Wh . 

 

In Figure 4.10.2, which shows the variation profiles of )(aK nII , it can be seen 

that for all Wh1 values considered )(aK nII increases as 3 is increased. 

Moreover, )(aK nII gets larger values as Wh1 decreases.    
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Figure 4.10.2 Influence of 3  on normalized mode-II SIF at the crack 

tip ax 1 . 21221   , 5.132311312   , 321   , 

421  , 1.0Wa , 4.0Wh . 

 

 

As also seen in the other analyses, the variation profiles of the normalized 

energy release rates depicted in Figure 4.10.3 are similar to the variation profiles 

of normalized mode-II stress intensity factors. This is also an expected result 

since for given values of 3 and Wh1 , )(aK nII is larger than )(aK nI . 
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Figure 4.10.3 Influence of 3  on normalized energy release rate at the crack 

tip ax 1 . 21221   , 5.132311312   , 321   , 

421  ,  1.0Wa , 4.0Wh . 

 

It can be seen from the Figure 4.10.4 that crack location has a considerable 

influence on the T -stress. For 35.01 Wh , T -stress gets larger until 3 nearly 

equals to 4 and then it decreases. For 2.01 Wh  and 0.25, T -stress gets 

smaller until 3 nearly equals to 5 and then increases. And, finally 

for 3.01 Wh , 3  has almost no influence on T -stress until the value 

where 3 equals nearly 2.5. After this point T -stress decreases and then increases 

to its final value. Additionally, T -stress increases as Wh1 gets larger.   
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Figure 4.10.4 Influence of 3  on T -stress at the crack tip ax 1 . 

21221   , 5.132311312   , 321   , 421  , 

1.0Wa , 4.0Wh . 

 

Plots of the normalized mode-I stress intensity factor, mode-II stress intensity 

factors and energy release rates as functions of 12  are shown in Figures 4.11.1, 

4.11.2 and 4.11.3. Note that the exponent 12  governs the variation profile of 

the Poisson’s ratio 12 . All the three variation profiles are similar such that they 

display small variations with respect to 12 . The variation profiles of 

)(aK nII and )(1 aJ n are also similar. Both of these quantities get larger values as 

Wh1 becomes smaller. This is an expected result since for given values of 

12 and Wh1 , )(aK nII is larger than )(aK nI .  
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On the other hand, )(aK nI  gets larger values as Wh1 increases. In general, 12  

has little influence on the fracture mechanics parameters )(aK nI , 

)(aK nII and )(1 aJ n .    
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Figure 4.11.1 Influence of 12  on normalized mode-I SIF at the crack 

tip ax 1 . 21221   , 5.1323113   , 3321   , 

421  , 1.0Wa , 4.0Wh . 
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Figure 4.11.2 Influence of 12  on normalized mode-II SIF at the crack 

tip ax 1 . 21221   , 5.1323113   , 3321   , 

421  , 1.0Wa , 4.0Wh . 
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Figure 4.11.3 Influence of 12  on normalized energy release rate at the crack 

tip ax 1 . 21221   , 5.1323113   , 3321   , 

421  , 1.0Wa , 4.0Wh . 

 

 

The influences of the 12 and Wh1  on the T -stresses are depicted in Figure 

4.11.4. For all values of Wh1  T -stress is found to be almost not affected from 

the increasing values of 12 .  
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Figure 4.11.4 Influence of 12  on T -stress at the crack 

tip ax 1 . 21221   , 5.1323113   , 3321   , 

421  , 1.0Wa , 4.0Wh . 
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CHAPTER 5 

 

 

CONCLUDING REMARKS 

 

 

 

 

In this study, a computational method based on the kJ -integral method is used 

to calculate fracture mechanics parameters under thermal stress conditions. An 

embedded crack is considered in an orthotropic functionally graded medium. 

The problem is formulated using the plane orthotropic thermoelasticity 

constitutive relations. The orthotropic medium is under thermal loading 

condition. The upper surface of the FGM layer is at 2 times the reference 

temperature T0 and the lower surface of the layer is kept at the reference 

temperature. The other surfaces of the model are assumed to be insulated. 

Therefore, the temperature distribution within the model is two dimensional. 

The principal axes of the orthotropy coincide with the axes of the model created. 

Because of the symmetry about x2 axis, one half of the model is used in the 

finite element analysis. In order to represent the material property gradation, 

power-law is utilized. Power-law is a flexible method and frequently used in the 

analysis of FGMs. A general purpose finite element software ANSYS is utilized 

to perform thermal and structural analysis. In order to implement the kJ -integral 

method in ANSYS, Ansys Parametric Design Language (APDL) is utilized. 

With the help of the code written by means of APDL, normalized mode-I stress 

intensity factor (KIn), mode-II stress intensity factor (KIIn), normalized energy 

release rate (J1n), and normalized T -stress (Tsn) are calculated at the crack tip.  

The fracture mechanics parameters are calculated for different values of 

exponents of the power functions and for different values of relative crack 

locations.  
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The other parameters used in the analysis are ω1, ω2, δ1, δ2, δ3, and β12 which are 

the exponents of power functions representing thermal conductivity k1, thermal 

conductivity k2, thermal expansion coefficient α1, thermal expansion coefficient 

α2, thermal expansion coefficient α3, and Poisson’s ratio ν12, respectively.  

The variation profiles of fracture mechanics parameters for different values of 

the exponents and relative crack locations are depicted in the figures. In 

addition, temperature analyses are performed by the changing values ω1 and ω2 . 

The figures depicting the temperature distributions are also given in this study. 

Moreover, in order to show the domain independence and accuracy of the kJ -

integral method, normalized mode-I stress intensity factors, and mode-II stress 

intensity factors are compared to those evaluated by the displacement 

correlation technique (DCT).      

The temperature distribution is two dimensional within the FGM layer. The 

temperature distribution at the crack tip is primarily affected by the exponent of 

thermal conductivity k2. The thermal conductivity k1 has almost no effect on the 

temperature distribution at the crack tip. The normalized stress intensity factors 

obtained for the cases of plane stress and plane strain show the great agreement 

with results obtained from DCT. This agreements demonstrate the accuracy and 

domain independence of the kJ -integral method. Among the exponents ω1, ω2, 

δ1, δ2, δ3 and β12 has no effect on the fracture mechanics parameters. The other 

five exponents possess different influences on the fracture mechanics parameters 

as depicted in the figures. 

It must be noted that the used method in this study can be applicable to CASE I 

and CASE II type problems as mentioned in section 2.1. In order to obtain stress 

intensity factors for CASE III, iteration must be utilized in conjunction with 

DCT.    
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APPENDIX A 

 

 

DIVERGENCE THEOREM 

 

 

 

Let 


 denote the Laplace Operator in the two-dimensional Cartesian 

rectangular coordinate system (x, y) shown in Figure A.1,  

y
e

x
e yx









 ˆˆ


                                                                                         (A.1) 

where xê  and yê  denote the unit basis vectors along the x and y coordinates, 

respectively. If G(x,y) is a scalar function of class  0C  in the two-

dimensional domain   shown in the Figure A.1, the following divergence 

theorem holds. 

 

 

Figure A.1 Divergence theorem in two dimensional domain. 
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 
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or in indicial notation, 

 dsGndydx
x

G
ii

i

i


















                  (A.4) 

Here the dot denotes the scalar product of vectors, n̂  denotes the unit vector 

normal to the surface   of the domain ; xn  and yn  ( xG  and yG ) are the 

rectangular components of  Gn̂ ; and the circle on the boundary integral 

indicates that the integration is taken over the entire boundary. 
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APPENDIX B 

 

 

ASYMPTOTIC EXPRESSIONS FOR THE STRESS COMPONENTS 

 

 

 

 

 

Figure B.1 Crack tip coordinate system. 

The asymptotic stress field for crack shown in Figure A.2 is given as follows, 
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K
r 11

22
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
                                     (B.1) 

 

where strT  is the non-singular stress, or so called T-stress.  
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The explicit form of asymptotic stress field in the vicinity of the crack tip for 

mixed-mode is given as follows:  
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The 
tip

1  and 
tip

2  are given by equation (2.8). 
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APPENDIX C 

 

q-FUNCTION 

 

 

 

Figure C.1 Orientation of the q- function. 
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The derivatives of the function q with respect to coordinates 1x  and 2x are as 

follows 
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It is clear in the Figure A.4 that  

R

xq


1
                              (C.4) 

R

x
q                                                                                                             (C.5) 

 

Figure C.2 q- function for a circular path around the crack tip. 
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APPENDIX D 

 

DERIVATIVES OF THE MECHANICAL STRAIN ENERGY DENSITY 

FUNCTION W. 

 

The derivatives of mechanical strain energy density function for the case of 

plane stress are obtained as [6] 
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In case of plane strain, the derivatives of mechanical strain energy density 

function are given as follows [6] 
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

bb
EE

E
EbEA

E

T

W

        (D.18) 
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where   

22

31

13

2

32

1 EA



 , 

1

2

31

13

2

32

2 1
E

E
A




               (D.19) 

3213121  b , 13312 1 b                (D.20) 

  T 13322222  ,   T 13311111  ,  T 3    (D.21) 

  












 321312

2

12

31

13

2

32

213311 21 



 EE              (D.22) 

 

 

 

 

 

 

 

 

 




