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ABSTRACT

CATEGORY KNOWLEDGE, SKELETON-BASED SHAPE MATCHING AND SHAPE
CLASSIFICATION

Erdem, İbrahim Aykut

Ph.D., Department of Computer Engineering

Supervisor: Assoc. Prof. Dr. Sibel Tarı

October 2008, 179 pages

Skeletal shape representations, in spite of their structural instabilities, have proven them-

selves as effective representation schemes for recognition and classification of visual shapes.

They capture part structure in a compact and natural way and provide insensitivity to visual

transformations such as occlusion and articulation of parts.

In this thesis, we explore the potential use of disconnected skeleton representation for

shape recognition and shape classification. Specifically, we first investigate the importance

of contextual information in recognition where we extend the previously proposed discon-

nected skeleton based shape matching methods in different ways by incorporating category

knowledge into matching process. Unlike the view in syntactic matching of shapes, our in-

terpretation differentiates the semantic roles of the shapes in comparison in a way that a

query shape is being matched with a database shape whose category is known a priori. The

presence of context, i.e. the knowledge about the category of the database shape, influences

the similarity computations, and helps us to obtain better matching performance. Next, we

build upon our category-influenced matching framework in which both shapes and shape

categories are represented with depth-1 skeletal trees, and develop a similarity-based shape

classification method where the category trees formed for each shape category provide a

reference set for learning the relationships between categories. As our classification method

takes into account both within-category and between-category information, we attain high

classification performance. Moreover, using the suggested classification scheme in a retrieval

task improves both the efficiency and accuracy of matching by eliminating unrelated com-
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parisons.

Keywords: shape matching, shape classification, disconnected skeleton, shape similarity,

similarity-based pattern recognition
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ÖZ

KATEGORİ BİLGİSİ, İSKELET TABANLI ŞEKİL EŞLEME VE ŞEKİL
SINIFLANDIRMA

Erdem, İbrahim Aykut

Doktora, Bilgisayar Mühendisliği Bölümü Bölümü

Tez Yöneticisi: Doç. Dr. Sibel Tarı

Ekim 2008, 179 sayfa

İskelet tabanlı gösterimler, yapısal kararsızlıklarına rağmen görsel şekillerin tanınması ve

sınıflandırmasında başarıları kanıtlanmış gösterimlerdir. Parça yapısını tıkız ve doğal bir şek-

ilde yakalar ve kapatma, parçaların eklemlenmesi gibi görsel dönüşümlere karşı duyarsızdırlar.

Bu tezde bağlantısız iskelet gösteriminin şekil tanıma ve sınıflandırmadaki olası kullanım-

ları incelenmektedir. Özellikle, ilk olarak bağlamsal bilginin tanımadaki önemi, bağlantısız

iskelete dayalı daha önce önerilen şekil eşleme metodlarına kategori bilgisinin farklı biçim-

lerde dahil edilerek bu yöntemlerin geliştirilmesiyle araştırılmaktadır. Şekillerin sözdizimsel

eşlenmelerindeki görüşün tersine, bize göre karşılaştırılan şekillerinin anlamsal rolleri bir-

birinden farklıdır ve buna göre sorgulanan şekil veri tabanında yer alan ve kategorisi bilinen

bir şekil ile eşlenmektedir. Bağlamın yani veri tabanındaki şeklin kategorisine dair bilginin

varlığı, benzerlik hesaplamasını etkilemekte ve eşleme başarımını arttırmaktadır. Sonradan

kategorinin etkilediği eşleme metodumuz kullanılarak ki bu yöntemde hem şekiller hem de

şekil sınıfları derinliği bir olan isleket tabanlı ağaç yapıları ile ifade edilmektedir, benzerliğe

dayalı bir şekil sınıflandırma yöntemi geliştirilmiştir. Bu yaklaşımımızda şekil sınıfları için

yaratılan kategori ağaçları, kategoriler arasındaki ilişkilerinin öğrenilmesi amacıyla kullanılan

bir dayanak kümesi oluşturmaktadır. Sınıflandırma metodumuz, hem kategoriler içindeki

hem de kategoriler arasındaki bilgiyi dikkate aldığı için yüksek sınıflandırma başarısı elde

edilmektedir. Dahası, önerilen sınıflandırma yönteminin bir geri çağırma görevinde kullanıl-

ması ilgisiz kıyaslamaları engellediği için karşılaştırma işleminin verimini ve doğruluğunu

arttırmaktadır.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

The ultimate goal of visual perception is to recognize or classify surrounding objects through

images of the environment cast on retina, the light-sensitive part of the eye. As an emerging

scientific discipline, computer vision shares the same goal, whose premise is that we will one

day have computer systems with capabilities equivalent to those of the human visual system.

But unlike a biological eye, input to a computer vision system is a digital image composed

of pixels having discrete brightness values.

Taking its roots from the field of artificial intelligence (AI) in the beginning of 1960s, the

problem of computer vision was first approached as a fairly simple problem that even Marvin

Minksy, one of the fathers of AI, assigned this problem to an undergraduate student as a

summer project [38]. Hence, in computational terms, these early approaches to computer

vision soon failed to provide a clear understanding of the principles of vision. The well-

founded theories were established during the next twenty years by the scientists like David

Marr. As an influential figure, Marr suggested to interpret vision as an information processing

system that should be investigated in three interrelated levels: (1) computational theory –

what is to be computed and why?, (2) representation and algorithm – how the computation

is performed? and (3) hardware implementation – how it is to be realized physically? [62].

Although the efforts of Marr and his colleagues transformed the field into a concrete science

and significant progress has been made since then, we don’t have yet a computer vision

system that can fully compete with humans in its ability to recognize or classify visual

objects.

The visual recognition and classification of objects require learning mechanisms that

combine visual information with prior knowledge and experience. The primary source of
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Figure 1.1: Objects can be immediately recognized and classified based on their shapes.

visual information is the shape knowledge since, in general, it is alone sufficient to recognize

and classify a given object (Figure 1.1). The other visual clues crucial to recognition and

classification are color, texture, and spatial information. For instance, you recognize your car

in a parking lot by a search based on its color and location; or wild animals such as leopards

or zebras can be classified on the basis of the color and texture of their skins. In these days,

appearance-based models have gained popularity among computer vision community. At

first, these studies ignore shape information and model objects by a set of image patches

representing local appearance. However, there is now an increasing number of works that

incorporate shape information into appearance-based approaches, e.g. [30, 68, 69, 95].

In this thesis, we will focus on shape-based recognition and classification of objects. The

shape of objects present in nature exhibit great variability, and thus the key issue is choosing

the appropriate representation scheme for both of these two problems, as is the case for all

information processing systems. A shape representation should be insensitive to not only

geometric similarity transformations (i.e. translation, rotation, and scaling) but also visual

transformations such as occlusion, deformation and articulation of parts. In this regard,

there is a long history of research on shape representation and recognition (For a historical

discussion, see [53, 114]). Approaches to two dimensional (2D) shape representation can

mainly be grouped into two broad categories: boundary-based (e.g. [9, 31, 50, 103]) and

axis-based or skeleton-based (e.g. [3, 6, 32, 36, 91, 96, 107, 125, 127]) representation schemes.

In boundary-based approaches, shapes are either represented by a set of boundary points or

by a set of boundary curves. On the other hand, in skeleton-based approaches, shapes are

modeled in terms of a set of axial curves explicitly representing parts of the shapes. Skeleton-

based representations are superior to boundary-based ones as they naturally capture part

structure and provide insensitivity to articulations and occlusion.
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1.2 The Objective and Major Contributions of This Thesis

Our principle goal in this thesis is to develop efficient and reliable methods for shape matching

and shape classification using the disconnected skeleton representation of Aslan and Tari [3].

In this regard, it is important to note that the proposed approaches strongly depend on our

choice of representation, since some of the presented computational mechanisms becomes

feasible as a consequence of the (very coarse but very stable) structure of extracted shape

skeletons. The major contributions of this dissertation can be listed as follows:

1. Enriching Disconnected Skeleton Representation

At the representation level, we explore the approaches to enrich the disconnected skele-

ton representation of Aslan and Tari [3], so that we eliminate some drawbacks of the

original skeleton scheme. In particular, first, we present a way to make information

regarding boundary details available for the positive skeleton branches. The informa-

tion is fetched from a related smooth distance surface proposed by Tari, Shah and

Pien [107], which we call TSP surface throughout the thesis, and specified in the form

of a one-dimensional radius function representing the approximate distance to shape

boundary along the branch. Second, we devise a multi-level approach to increase the

level of detail in skeleton descriptions. Our approach relies on segmenting a given shape

into its parts based on its disconnected skeleton structure and performing the skeleton

analysis on the extracted parts to obtain a hierarchical representation.

2. Incorporating Semantic Category Knowledge into Shape Matching

Motivated by the importance of context in human similarity judgments, we investigate

a number of ways to incorporate semantic category knowledge into shape matching pro-

cess. First, we present a novel extension to the tree edit distance-based shape matching

algorithm of Baseski [7]. In the proposed approach, each shape in the database has a

category label and the matching process of a query shape to a database shape is influ-

enced by the additional (categorical) information provided by all the database shapes

belonging to the same category. We refer to this algorithm as category-influenced shape

matching. Building upon this formulation, we then present a coarse-to-fine strategy

to incorporate categorical boundary similarity into shape matching by utilizing the

approximate radius functions mentioned previously. Lastly, we make use of category

knowledge to achieve contextual sensitivity to articulations in shape matching. Based

on the structure of disconnected skeleton, we define a novel representation space for
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articulations where similar articulations lie close to each other, enabling to construct

articulation priors from the members of a shape category and to make inferences about

likely articulations. We incorporate this approach to the method of Aslan and Tari [3]

and come up with a shape matching framework that is sensitive to unlike articulations

but insensitive to likely ones.

3. A Similarity-Based Approach for Shape Classification

We present a novel (supervised) shape classification method by employing a similarity-

based approach. Having a network structure, the proposed framework first computes

the distances between a given shape and existing shape categories in the database

by using a variation of our category-influenced shape matching method. Then, these

computed distances are embedded into a similarity space, in which support vector

machine (SVM) classifiers are previously trained for each shape category, and the final

decision is made according to the outputs of SVM classifiers. The similarity-based

approach brings considerable improvements in terms of performance over classifying

shapes based on a nearest-neighbor strategy. In this regard, it is important to note that

similarity-based approaches have great importance especially for studies in structural

pattern recognition as the learning and classification techniques for structural pattern

recognition are not as diverse as the number of algorithms proposed in statistical

pattern recognition.

1.3 Organization of The Thesis

The organization of the thesis is as follows. In Chapter 2, we give a brief review of discon-

nected skeleton representation of Aslan and Tari [3], and then discuss how the representation

can be enriched to eliminate some of its drawbacks. In Chapter 3, we compare and contrast

several skeleton-based representation schemes proposed in the literature, and discuss how

they are used in generic shape recognition. In Chapter 4, we analyze two other shape match-

ing methods, i.e. the method of Aslan and Tari [3] and Baseski [7], which are all based

on disconnected skeleton representation of shapes. In Chapter 5, we investigate contextual

effects of semantic category information on matching two shapes, where we revise and extend

the matching methods described in Chapter 4 in a number of ways. In Chapter 6, we present

a novel similarity-based shape classification approach based on the category-influenced shape

matching method devised in the preceding chapter. In Chapter 7, we conclude the thesis

with a summary of our contributions and some discussions. In Appendix A-E, we provide
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tables of matching and classification results obtained with the methods discussed in the

thesis.
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CHAPTER 2

DISCONNECTED SKELETON

In the previous chapter, we discussed visual object recognition and classification in general

and compared and contrasted two generic approaches of representing objects by their shape.

Among those approaches, (local symmetry) axis-based representations, commonly referred to

as shape skeletons, are one of the widely used and investigated representation schemes ever

since the seminal work of Blum [11]. The skeletal representations provide a compact and

perceptually meaningful way of representing shape as they capture the part structure and

yield a shape centered coordinate frame.

We start this chapter with a brief review of Blum’s skeleton, focusing on the basic def-

initions. Following that, in the next section, we discuss the Disconnected Skeleton repre-

sentation of Aslan and Tari [3] which is the underlying shape representation for the shape

recognition and the shape categorization frameworks proposed in this thesis. After giving the

formulation of disconnected skeleton, we will discuss its main advantages and disadvantages

and then present various ways of enriching the disconnected skeleton representation in order

to overcome some of its drawbacks. Finally, we conclude the chapter by summarizing the

key characteristics of disconnected skeleton representation and discussing our contributions

on enriching the representation.

2.1 A Short Review of Blum’s Skeleton [11]

Blum’s skeleton, also known as Symmetry Axis Transform or Medial Axis Transform, was

introduced in [11] as an alternative shape representation where shapes are expressed in terms

of local symmetries with a finite set of shape primitives in the form of axial curves. In contrast

to the boundary-based descriptors, skeletal representations provide a local representation

of the shape, which is insensitive to occlusion and changes in articulation of parts. As
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intended by Blum, the resulting representations are perceptually more meaningful. In this

respect, there are also some recent supporting evidences on the psychophysical correlates

(e.g. [43, 44]), and on the potential neurophysiological implementation of related mechanisms

(e.g. [54]).

Blum’s skeleton can be formulated based on the following three different approaches, each

resulting in the same representation. The first one is the grass fire model. Suppose at time

t = 0, fire fronts are initiated simultaneously at every point on the shape boundary. Letting

these fire wavefronts propagate towards the center of the shape at uniform (constant) speed,

as time goes by, they will meet at some interior points of the shape, thereby producing shocks.

The skeleton of the shape is defined as the locus of these shock points (Figure 2.1(a)). Rather

than looking at the dynamic picture of the process, one can also adopt a static view and

interpret the fire wavefronts as the level curves of a surface, whose value at any point is the

minimum distance to the shape boundary (Figure 2.1(b)). In this interpretation, skeleton

is the set of points which are equidistant from at least two boundary points. Another way

of constructing shape skeletons depends on the notion of maximum inscribed circles where

each skeleton point is obtained as the center of a maximum inscribed circle that touches the

shape boundary in more than one point (Figure 2.1(c)).

Although skeletons successfully capture the hierarchy of parts, a challenging issue to

be resolved is the instability of skeletons that a small change in the shape might yield a

significant change in its skeleton (however, as discussed in [55], the reverse is not true). In this

respect, the success of any skeletonization method largely depends on how robustly skeletons

are extracted in the presence of noise and changes in shape features such as protrusions,

(a) (b) (c)

Figure 2.1: Extracting the skeleton of a rectangle using (a) grass fire model, (b) distance

transform, (c) maximum inscribed circles (images taken from [1]).
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(a) (b)

Figure 2.2: The instability of skeletons demonstrated on a collection of hand shapes. (a) The

spurious branches due to boundary perturbations. (b) The topological changes in ligature

regions (images taken from [115]).

indentations, necks, concavities, etc. (Figure 2.2).

Many skeleton extraction techniques exist in the literature e.g. [6, 32, 36, 91, 96, 107,

125, 127]. Common to all is that the skeleton branches corresponding to ribbon-like sections

of shapes can always be extracted in a stable way with far less effort. On the other hand,

accurate extraction of skeleton branches corresponding to noise and secondary details is a

difficult process and requires more computational effort [4, 91]. The disconnected skeleton

proposed in [3] differs from these approaches in the sense that the skeleton is extracted only

at the locations where it can be accurately computed. As a result, the representation does

not suffer from the instability of classical skeletons. In the following section, the disconnected

skeleton representation of Aslan and Tari is reviewed in detail.

2.2 Disconnected Skeleton [2, 3]

Disconnected Skeleton is a very coarse but very stable skeletal shape representation. In this

method, extraction of shape skeletons depends on computation of a special distance surface

φ, which is excessively smooth version of the distance transform. Given a shape silhouette,

the surface φ is obtained by solving the linear diffusion equation given below:

∂

∂σ
φ(x, y, σ) =

(

∂2

∂x2
+

∂2

∂y2

)

φ(x, y, σ)

φ(x, y, σ)|(x,y)∈Γ = 1 (2.1)

where Γ is the original shape boundary, and σ is the artificial time parameter that can be

interpreted as a scale parameter [2].
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The values on the resulting surface φ remain in the interval (0,1], where 1-level curve of

the surface correspondd to the original shape boundary Γ, and the remaining level curves

approximately follow the evolution of the shape boundary towards a circle. The surface

φ takes its root from the TSP surface proposed by Tari, Shah and Pien [106, 107], which

is computed as the steady-state solution of the following linear diffusion equation with an

additional term:

∂

∂σ
v(x, y, σ) =

(

∂2

∂x2
+

∂2

∂y2

)

v(x, y, σ) −
v(x, y, σ)

ρ2

v(x, y, σ)|(x,y)∈Γ = 1 (2.2)

where Γ is the original shape boundary, σ is the artificial time parameter, and ρ is a parameter

that controls the level of smoothing.

In this regard, the surface φ can be interpreted as the limit case of the TSP surface when

we let the level of smoothing (ρ) tend to infinity. However, notice that the steady-state

solution of Equation 2.1 results in a totally flat surface which is 1 everywhere. Clearly, this

flat surface is not meaningful for shape analysis, and hence the diffusion is stopped a critical

moment where a single extremum is reached. Note that this critical time is determined

automatically by the shape itself. As expressed in [3], when the shape has two equally

prominent parts, reaching a distance surface with a single extremum is computationally very

time consuming. For this reason, the authors decide to preserve the dumbbell-like topology

of these kind of shapes in the computation of corresponding φ surfaces.

To illustrate the behavior of φ, in Figure 2.3, we present a sample camel shape and several

surface representations describing it. Given the camel shape in Figure 2.3(a), Figure 2.3(b)

and (c) respectively shows the result of the Euclidean distance transform and the corre-

sponding φ surface. Compare these surfaces with the TSP surfaces obtained with ρ = 16,

ρ = 64 and ρ = 256, which are given in Figure 2.3(d)-(f), respectively. The excessive amount

of regularization in computing φ has important consequences: First, the level curves tend

to evolve to a blob-like representation of the initial shape boundary. Hence, the surface φ

has only a single extremum point, capturing the center of this blob-like representation while

the TSP surfaces might have many such extremum points. For instance, the TSP surfaces

given in Figure 2.3(d)-(f) have two elliptic points corresponding to the centers of the head

and body sections of the camel shape.

In [106, 107], Tari, Shah and Pien devised a simple procedure to detect skeleton points

of a shape from a corresponding TSP surface. The authors simply observe the link between

the curvature extrema of the evolving level curves and the differential properties of TSP
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(a) (b) (c)

(d) (e) (f)

Figure 2.3: (a) Silhouette of a camel. The level curves of (b) Euclidean distance transform

(c) 1 − φ, (d) 1 − v, computed with ρ = 16, (e) 1 − v, computed with ρ = 64, (f) 1 − v,

computed with ρ = 256.

surface, and define the skeleton as the closure of the set of zero-crossings of d|∇v|
ds , where s is

the arclength in the direction of the level curves and d|∇v|
ds is computed using:

d|∇v|

ds
=

((

v2
y − v2

x

)

vxy − vxvy (vyy − vxx)
)

|∇v|2
(2.3)

The skeleton points detected as zero-crossings of d|∇v|
ds are always connected for each

branch (until the branch gets terminated) and the skeleton branches can be classified into

two sets as positive and negative (See Algorithm 2 in the Appendix of [2]). The branches that

originate from a positive curvature maxima of the boundary are classified as positive whereas

the ones that originate from a negative curvature minima or a positive curvature minima

are classified as negative. As the value of parameter ρ denotes the level of smoothing, when

ρ gets larger, the protrusions are smoothed out earlier, less important symmetry branches

shrink, and the length of a branch becomes an accurate measure of its importance. This

phenomenon can be observed in Figure 2.4(a)-(d), showing the skeleton extracted from the

corresponding TSP surfaces computed with ρ = 4, ρ = 16, ρ = 64 and ρ = 256, respectively.
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(a) (b)

(c) (d)

Figure 2.4: Skeletons of the camel shape in Figure 2.3(a) extracted from the corresponding

TSP surfaces, computed with (a) ρ = 4, (b) ρ = 16, (c) ρ = 64. and (d) ρ = 256.

The same skeletal analysis can be performed to extract skeleton from the surface φ. In

this case, however, the resulting skeletons are much coarser in the sense that there exist

only a small number of simple branches on which branching occurs very rarely. Moreover,

in TSP skeletons, unintuitive branches might appear in the vicinity of necks due to a major

pathology, which is referred to as the saddle point instability and is related to insufficient

diffusion (See Section II.B-C of [2]). In extracting skeleton from φ, the saddle point instability

can be avoided simply because the level of smoothing tends to infinity. The skeleton of the

camel shape extracted from its φ surface is given in Figure 2.5(a). Compare and contrast this

skeleton with the TSP skeletons of the same shape shown in Figure 2.4(a)-(d), respectively.

The difference between the skeleton extracted from the TSP surface computed with ρ = 256

is explicitly shown in Figure 2.5(b).

The very small branches near the shape boundary appear because of the discretization

and they can be easily eliminated by performing a simple pruning step. Figure 2.6 shows the

resulting disconnected skeletons of some shapes after pruning. Notice that if the symmetry
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(a) (b)

Figure 2.5: (a) Skeleton of the camel shape in Figure 2.3(a) extracted from the corresponding

φ surface. (b) The difference between the skeletons extracted from the corresponding φ

surface and the TSP surface computed with ρ = 256.

at the shape center is n-fold, there are n positive and n negative branches, designated as

major branches, which meet at the shape center [3]. The remaining branches all terminate at

some disconnection points organized around the shape center, and hence this unconventional

structure gives disconnected skeleton its name. At each disconnection point, a positive branch

always meets with a negative one. As reported in [2, 3], one should further apply the

disconnection concept (artificially) to the major positive branches in order to obtain a stable

skeleton description (For a detailed analysis, see Section III.B of [2]). In Figure 2.7, the final

skeleton descriptions of some shapes are illustrated.

Figure 2.6: Extracted skeleton branches for some shapes after pruning (images taken

from [2]).
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Figure 2.7: Some shapes and their disconnected skeletons. Notice that each positive branch

meets with a negative branch at a disconnection point. Positive skeleton branches are shown

in blue whereas the negative ones are shown in red.

In the resulting skeleton representation, the relative organization of the branches can be

captured by the location of their termination points. These points can be expressed with

reference to a shape dependent global coordinate frame that is constructed by any one of

the negative major negative branches (Figure 2.8). This novel way of representing shapes is

demonstrated to be highly robust under global transformations (i.e. translation, rotation,

scaling) as well as articulation of parts and perturbations on the boundary [2, 3].

2.2.1 Advantages and Disadvantages of Disconnected Skeleton

Skeleton-based representations provide a compact and generic way to represent shapes in a

structured manner and hence they are commonly used in visual shape recognition research,

e.g. [5, 32, 61, 74, 90, 98, 115, 127]. Disconnected skeleton has also proven itself to be a

powerful representation for shape recognition and retrieval [2, 8]. However, disconnected

13



Figure 2.8: Spatial organization of extracted skeleton branches (image taken from [2]).

skeleton has its own strengths and drawbacks, as this is the case for any representation

scheme.

To start with, disconnected skeleton has one remarkable advantage over the other skele-

tonization methods that the representation does not suffer from the instability of skeletons.

This is because the skeletal analysis is performed at the coarsest scale possible and the

resulting skeleton branches are unconventionally disconnected. As a consequence, no post-

processing step is necessary for the skeleton prior to be used in recognition. However, one

might criticize the very coarseness of disconnected skeleton descriptions. This issue is in fact

about a philosophical choice of compromise between sensitivity and stability and in regards

to this argument, we prefer to obtain a stable representation first than a sensitive one, and

then gradually enrich the representation in a systematic way according to needs.

On the negative side, the main drawback of disconnected skeleton is the limitation that,

in order to obtain disconnected skeleton description of a shape, the shape should have a

closed boundary. The method is not applicable to shapes with holes (Figure 2.9(a)) or

stroke shapes, i.e. the shapes whose width is nearly constant everywhere (Figure 2.9(b)). In

these kind of situations, either the skeleton cannot be extracted accurately due to elliptical

and/or hyperbolic points arise in the corresponding φ surface, or even if a skeleton is correctly

extracted, it is not be so obvious how to define the coordinate frame in a stable way.

Another disadvantage that one might consider is the stability of the representation under

occlusion or missing parts. Although the extraction of skeleton branches are not affected by

these conditions since they are detected locally, the shape center might shift to a different

location. When this happens, the resulting shape description might be completely different

as the spatial organization of branches are expressed with reference to a global coordinate

frame that is dependent to the shape center.
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(a) (b)

Figure 2.9: Examples of two classes of shapes where disconnected skeleton approach do not

succeed in obtaining a complete description. (a) a shape with hole and its skeleton points.

(b) a stroke shape and its skeleton points (images taken from [1]).

Lastly, unlike Blum’s skeleton, disconnected skeleton lacks information about boundary

details in the skeleton descriptions. In Blum’s original formulation [11], every skeleton branch

(medial axis) is associated with a radius function. This radius function is a continuous, real-

valued function defined on skeleton branches, whose value at each skeleton point is equal

to the the distance from the skeleton branch to the closest point on the object boundary,

or equivalently the radius of the associated maximal inscribed circle. By making use of the

radius functions, one can reconstruct the shape exactly given the full skeleton description

of the shape. Due to the excessive amount of regularization, disconnected skeleton is not

information-preserving and there is no way to obtain the width of a skeleton point directly

from surface φ. In this regard, as reported by Baseski [7], computing shape similarities

merely based on the spatial organization of skeleton branches and the lengths of the branches

sometimes do not reflect the perceptual similarities well (See Section 5.4. of [7]).

2.3 Enriching Disconnected Skeleton Representation

In Section 2.2.1, we have listed the drawbacks of disconnected skeleton representation. In

the following sections, we will discuss various ways of enriching the representation in order to

overcome some of these drawbacks. First, we will propose a simple way to obtain approximate

radius functions for the extracted positive skeleton branches. Next, we will employ a multi-

level approach to increase the level of detail in the descriptions.
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2.3.1 Associating Approximate Radius Functions with the Positive Skele-

ton Branches

As we have mentioned before, the regularization employed in the formulation of the distance

surface φ makes it practical to obtain a stable skeleton-based representation of shape. How-

ever, this stability comes at the expense of losing the information about boundary details, i.e.

in contrast to Blum’s skeleton, it is impossible to recover the distance from a skeleton point

to the closest point on the shape boundary by using the corresponding φ surface. Hence,

the radius functions of skeleton branches are absent in the resulting descriptions. In this

section, we will present a straightforward way to roughly obtain this missing information by

utilizing the TSP surface formulation of Tari, Shah and Pien [106, 107] where our analysis

depends on one-dimensional (1D) version of the diffusion equation in Equation 2.2.

Consider a ribbon-like section of a shape illustrated in Figure 2.10. The dotted line in

the figure shows the skeleton points representing the shape section. Assuming the 1D form

of the Equation 2.2, the diffusion process along a 1D slice (shown in red) is given by:

vxx(x) −
v(x)

ρ2
= 0 ; 0 ≤ x ≤ 2d

with the boundary conditions v(0) = 1, v(2d) = 1.

The explicit solution of this equation can be easily derived as:

v(x) =

(

1 − e2d/ρ

e−2d/ρ − e2d/ρ

)

e−x/ρ −

(

1 − e−2d/ρ

e−2d/ρ − e2d/ρ

)

ex/ρ (2.4)

The value of v on the skeleton point (the midpoint x = d) is equal to the hyperbolic

cosine function 1
cosh(d/ρ) , or equivalently, the distance from the skeleton point to the closest

point on the boundary is given by ρcosh−1( 1
v(d) ). The explicit solution given in Equation 2.4

is certainly not valid for the 2D case as the interactions in the diffusion process are more

complicated. However, it can be used as an approximation as follows. Let s be a skeleton

Figure 2.10: An illustration of a ribbon-like section of a shape and its skeleton description

(the dotted line).
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point located at (sx, sy) along a positive skeleton branch. Given a corresponding TSP sur-

face v computed with a sufficiently large value of ρ, the minimum distance from s to the

shape boundary, denoted by r(s), can be approximated with:

r(s) = ρcosh−1

(

1

v(sx, sy)

)

(2.5)

In Figure 2.11(a)-(b), a seahorse shape and its disconnected skeleton are given, respec-

tively. Note that this is not the final description because major positive branches are not cut

yet. The shape can be reconstructed by the radius functions associated with each positive

skeleton branch exist in the disconnected skeleton description by drawing the corresponding

maximal inscribed circles. Figure 2.11(c)-(d) shows results of shape reconstruction from dis-

connected skeleton using two different TSP surfaces, computed with ρ = 128 and ρ = 256,

respectively. There is no observable change in the quality of reconstruction results with

respect to the value of ρ. Notice that since the perturbations on the shape boundary is

neglected in computing the disconnected skeleton, these small details cannot be exactly re-

covered. Moreover, the accuracy of reconstruction deviates from its true form at the dorsal

fin of the sea horse. These are the locations where a positive branch loses its ribbon-like

structure (having slowly varying width).

(a) (b) (c) (d)

Figure 2.11: (a) A seahorse shape. (b) Its disconnected skeleton. (c)-(d) Shape reconstruc-

tion results from the disconnected skeleton description in using TSP surfaces, computed

with ρ = 128 and ρ = 256, respectively. Due to demonstrative purposes, maximal circles are

drawn at every third skeleton point and major positive branches are not cut.
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Figure 2.12 shows some other shape reconstruction results for various shapes, using TSP

surfaces computed with ρ = 256 (the same value of ρ is used in all of the subsequent sections).

When it comes to storing the enriched disconnected skeleton descriptions, the approximate

radius function of each positive branch is normalized with respect to the radius of maximum

circle associated with the shape center to make the representation scale insensitive. Note

that if the shape has two equally prominent parts, there will be two distinct shape centers,

and in this case, the radius functions are normalized with respect to the closest center. Some

shapes and their enriched disconnected skeletons with the approximate radius functions are

given in Figure 2.13 through Figure 2.15.

Figure 2.12: Reconstructing shapes from their disconnected skeleton descriptions using ap-

proximate radius functions obtained from the corresponding TSP surfaces.
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Figure 2.13: (a) A horse shape. (b) Shape reconstruction from disconnected skeleton. (c)-

(h) Reconstructed shape sections associated with the positive skeleton branches A-F, re-

spectively. (i)-(n) Approximate radius functions associated with the skeleton branches A-F,

respectively.
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Figure 2.14: (a) A helicopter shape. (b) Shape reconstruction from disconnected skeleton.

(c)-(h) Reconstructed shape sections associated with the positive skeleton branches A-F,

respectively. (i)-(n) Approximate radius functions associated with the skeleton branches

A-F, respectively.
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Figure 2.15: (a) A (two-centered) butterfly shape. (b) Shape reconstruction from discon-

nected skeleton. (c)-(h) Reconstructed shape sections associated with the positive skeleton

branches A-F, respectively. (i)-(n) Approximate radius functions associated with the skeleton

branches A-F, respectively.
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2.3.2 A Multi-Level Hierarchical Approach To Increase The Level Of De-

tail In Disconnected Skeletons

The intention of Aslan and Tari in devising the disconnected skeleton is to obtain the coarsest

but the most stable representation of shapes, and therefore the part structure captured

by the disconnected skeleton is very simple. The extracted skeletons are in the form of

a set of (unconventionally disconnected) skeleton branches, each corresponding to one of

the most descriptive parts of the shape. Moreover, no branching occurs on any of the

skeleton branches, meaning that the level of hierarchy is always 1 in the skeleton descriptions.

Despite this coarse structure, the retrieval performance of disconnected skeleton-based shape

matching algorithms of Aslan and Tari [1] and Baseski [7] were reported to be high.

Even though the discriminative power of disconnected skeleton in shape recognition is

effective, one might concern about the coarseness of the representation that it lacks sensi-

tivity. It appears that multi-level hierarchical representation schemes are required to satisfy

the opposing goals of sensitivity and stability. In this regard, we propose to increase the

level of detail gradually by employing a multi-level approach. Once the shape is segmented

into its parts based on its disconnected skeleton description, the skeletal analysis can be per-

formed on the extracted shape sections and finally, one can obtain a hierarchical disconnected

skeleton representation.

In disconnected skeleton, each positive (negative) skeleton branch is associated with a

boundary segment, which is bounded by two negative (positive) branches neighboring the

positive one. To segment a shape into its parts, Baseski made use of this fact and proposed

fitting cubic Bézier curves to the starting and termination points of the neighboring negative

branches of each positive branch [105]. We demonstrate this approach in Figure 2.16. The cat

shape shown in Figure 2.16(a) is segmented into six parts based on its disconnected skeleton

given in Figure 2.16(b). The extracted parts, corresponding to the legs, head and the tail

of the cat, and their disconnected skeletons are given in Figure 2.16(c)-(d), respectively. A

drawback of this approach is that when the termination points of the negative branches are

very far from each other, the extracted part might be perceptually less meaningful (See the

tail section of the cat in Figure 2.16(c)).

An alternative approach to shape segmentation using disconnected skeleton might be

computing the maximum circles at the termination points of the positive skeleton branches.

To compute the radii of the maximum circles, one can employ the approach in Section 2.3.1

and utilize Equation 2.5 after computing a corresponding TSP surface. Shape parts extracted
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in this way resemble the shape primitive that is referred to as circle in FORMS [127]. The

resulting segmentation of the cat shape in Figure 2.16(a), and the disconnected skeletons of

the extracted parts are shown in Figure 2.16(e)-(f), respectively.

(a) (b)

(c) (d)

(e) (f)

Figure 2.16: (a) A cat shape. (b) Its disconnected skeleton. (c)-(d) Its segmentation into

parts by the cubic Bézier curves (images taken from [105]). (e)-(f) Its segmentation into

parts by the maximum inscribed circles.

2.4 Summary and Discussion

In this chapter, disconnected skeleton representation of Aslan and Tari [2, 3] is reviewed.

As a brief summary, the skeletonization process is rooted in the TSP approach of Tari,
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Shah and Pien [106] and relies on the computation of a special distance surface which is

excessively smooth and has only a single extremum point corresponding to the center of the

shape. The resulting skeletons are very coarse in the sense that no branching occurs on the

skeleton branches, and besides, unlike common skeletal representations, the branches are

unconventionally disconnected and terminate before reaching the shape center. Depending

on the symmetry at the shape center, however, some branches meet at the shape center and

these branches are used to form a shape-centered global coordinate frame. It is shown that

the spatial organization of the branches captured by the location of disconnection points is a

stable representation of the shape with respect to that specified coordinate frame. Moreover,

due to the disconnected property of branches, extracted skeletons do not suffer from the

topological instabilities that might occur near ligature regions.

Disconnected skeleton representation can be enriched in different ways. First, one can

obtain the corresponding radius function of each positive branch by additionally utilizing

TSP surfaces. These radius functions can be used to roughly reconstruct the shape from

its disconnected skeleton and moreover, when normalized they can be used as descriptors

of the boundary details. Second, a multi-level hierarchical approach to increase the level

of detail in skeleton descriptions is presented. The presented approach requires segmenting

the shape into its parts and performing skeleton analysis on the extracted parts in order

to obtain a hierarchical disconnected skeleton representation. In this respect, two different

segmentation procedures are demonstrated. While one approach fits cubic Bézier curves, the

other approach we presented in this thesis uses maximum inscribed circles, and results in

perceptually more meaningful segmentations.
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CHAPTER 3

USE OF SKELETONS FOR SHAPE

RECOGNITION

In Chapter 2, we reviewed the disconnected skeleton representation of Aslan et al. [2, 3]

by giving details of its formulation and investigating its key characteristics. Moreover, we

proposed two ways of enriching the disconnected skeleton representation to overcome some

of its drawbacks. Before discussing the use of disconnected skeletons for recognition, in this

chapter, we survey some of the existing skeleton-based shape matching frameworks.

Skeletal representations have been successfully used in shape recognition as they provide

a compact way of expressing shapes while capturing the hierarchy of parts. In all these

frameworks, a challenging issue that needs to be resolved is the instability of skeletons that

two almost identical shapes might have structurally different skeletons (Figure 2.2). Hence,

the success of any skeletonization method depends on how robust the extracted skeletons

are in the presence of noise and shape features such as protrusions, indentations, necks,

concavities. As one might expect, this instability issue can be passed over to the recognition

framework, but in this case, the recognition algorithm should be devised in such a way that

it includes a mechanism to handle these structural changes.

In this chapter, we review each study by pointing out how their authors attempted to solve

the issues addressed above. In this respect, we mainly focus on the choice of representation

scheme, i.e. how skeletons are extracted and their structures are expressed, in addition to

the design and computational details of the underlying shape matching algorithms.

3.1 FORMS [126, 127]

FORMS was proposed by Zhu and Yuille as a categorical shape matching framework [126,

127]. Compared to other skeletal shape matching frameworks, the proposed approach is
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interesting in the sense that recognition is performed by a combined bottom-up/top-down

approach, involving a cycle of skeleton computation and adjusting the extracted skeleton

description according to the matching residual. In this way, the instabilities occurred in the

skeleton extraction process can be resolved. An overview of the entire recognition process is

demonstrated on a sample input shape in Figure 3.1.

Figure 3.1: An overview of the recognition process employed in FORMS (image taken

from [127]).

The skeleton of the query shape is first extracted in a pure bottom-up manner by mini-

mizing an energy functional (Figure 3.2(a)). Based on the structure of the extracted skeleton,

the input shape is segmented into parts, each of which is a deformed version of either one

of the two predefined generic shape primitives, referred to as worms and circles in the text

(Figure 3.2(b)), and following this the skeleton is then expressed by a graph whose nodes

represent the branching and ending points of the skeleton branches (Figure 3.2(c)).

The shape database contains both the skeleton graphs of the database shapes and their

segmented parts. It is important to note that the database shapes belonging to the same

category share a common skeleton graph. Accordingly, each segmented part is represented

in a low dimensional deformation space formed using Principle Component Analysis (PCA)

based on the data collected from the category members. In addition, some other attributes
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(a)

(b) (c)

Figure 3.2: (a) The skeleton of a dog shape (b) Its segmentation of parts. (b) Skeleton graph

of a human shape (images taken from [127]).

like the length (for worms), the angle specifying the angular region in which the deformations

occur (for circles), the area and the radius of the maximum circles of joint points are also

stored.

The proposed matching algorithm in FORMS uses a branch-and-bound strategy, return-

ing the the partial match with the highest similarity score after searching over all possible

matches between the input shape and the prototypical shape models in the database. More-

over, in contrast to other skeletal shape matching frameworks, a top-down verification process

is employed as well in order to adjust the skeleton of the input shape based on the match-

ing residual. In this respect, there exists four predefined skeleton operations (cut, merge,

concatenate and shift) acting on the skeleton graphs, which can be used to obtain alterna-

tive skeleton description of the input shape(Figure 3.3). Note that each skeleton operation

changes the skeleton structure, thus the segmentation into parts is different than the pre-

vious one. Hence, the similarity score is re-evaluated at each step according to changes in

the description. This process is carried out until the skeleton structure of the input shape

becomes equivalent to the one of the matching database shape. Although the framework is

tested on a small data set, it seems the approach can deal with articulation of parts, the

changes in viewpoint and occlusion.

Even though FORMS is dating back to 1995, it is quite a compelling skeletal recognition
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Figure 3.3: The skeleton operations defined to adjust the skeleton structure. From top to

bottom are cut, merge, concatenate and shift (image taken from [127]).

framework for the reason that recognition unconventionally involves a bi-directional data

flow. However, as noted by the authors themselves, the recognition success is directly re-

lated with the success of describing the input shape in terms of the specified generic shape

primitives. Since the motive behind FORMS is especially dealing with the animate objects,

the inanimate objects might not be described so well. Besides, introduction of a new generic

shape primitive to resolve this issue is not so straightforward because this will also require

a reinterpretation of the skeleton graph. As a last point, the authors addressed the issue of

shape classification within FORMS framework as well, which will be discussed in a related

upcoming chapter of this thesis.

3.2 Shock Trees [98] and Shock Graphs [87, 90]

Being inspired by Blum’s seminal work[11], Siddiqi and Kimia devised shock graph grammar

to classify shocks (skeleton points) formed during the propagation of the shape boundary

in the skeletonization process [97]. Moreover, they utilize the grammar in eliminating the

inconsistent (false) skeleton branches. Thus, by using the grammar, the hierarchy of shocks
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can be captured as a graph, referred to as shock graph, nodes of which are labeled as one

of the four types of shocks. Figure 3.4 shows each of these shock types. A first-order shock

originates from a protrusion, where the radius function varies monotonically. A second-order

shock emerges at a neck, corresponding to a strict local minimum in the radius function. At

a third-order shock, the radius function is approximately constant along an interval, due to

bending of a shape section. Finally, at a fourth-order shock the radius function reaches to a

strict local maximum, corresponding to a seed.

Figure 3.4: Categorization of shocks into four types (images taken from [98]). See text for

the explanation.

The use of shock graphs for shape matching was first demonstrated by Siddiqi et al. [98].

Since inexact graph matching problem is NP-Hard, the authors first defined a mapping

to reduce a shock graph into a unique rooted tree, which they called shock tree, so that

polynomial time algorithms proposed for approximate tree matching can be utilized. A

shock tree is in the form of directed acyclic tree and is formed by the following procedure.

The oldest shock is first designated as the root of the tree while the remaining shock segments

of the same type constitute the nodes of the tree. Besides, the formation times of shocks

are used to define the direction of edges connecting the adjacent shock types. Shock graphs

of some shapes and the corresponding shock tree representations are given in Figure 3.5(a)

and (b), respectively. Several different matching methods were proposed to compute the

similarity between two shock trees.

In [98], Siddiqi et al. presented a combined approach, involving a prior indexing mecha-

nism and a shock tree matching method. First, a similarity between the topology of shock

trees is computed, which relies on a eigenvalue characterization of shock tree’s adjacency

matrix. This indexing step is followed by a tree matching algorithm which takes the sim-

ilarity between the shock geometry into account. Being a modification of [80], this tree

matching algorithm starts from the roots of the shock trees to and continue through the
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(a) (b)

Figure 3.5: (a) Shock graphs of some shapes. (b) Their shock tree descriptions (images taken

from [98]).

subtrees in a depth-first fashion. The geometric similarity between two nodes is measured

with respect to the aligned versions of shock segments after an affine transformation and

considering the changes in scale and rotation. In [74], Pelillo et al. utilized the connection

that any maximal subtree isomorphism between two rooted trees induces a maximal clique

in the corresponding tree association graph and proposed solving the maximal clique prob-

lem in a association graph instead. Once the corresponding association tree is constructed

from two shock trees, a matching between these trees is determined by computing the global

maximum of a quadratic function. In this approach, the geometric similarity between two

nodes is measured in terms of a linear combination of the differences in the skeletal attributes

that is the lengths, radii, velocities and curvatures of the shock segments. This approach is

then extended to handle many-to-many matchings in [75].

In [110], Torsello and Hancock proposed a weighted edit distance-based approximate

tree matching algorithm to compute a match between two shock trees. The main idea

behind this approach is the Bunke’s observation in [16] that the graph edit distance and

the maximal weight clique problem is equivalent under the constraint that when the cost

of relabeling operation should be always higher than the sum of deleting and reinserting
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the nodes. In order to reflect the visual significance in calculations, the authors propose to

assign each node a weight proportional to the length of the boundary segments generating

the associated shocks.

Although shock trees of Siddiqi et al. successfully capture the hierarchical structure of

shocks, it has some drawbacks. To start with, designating the oldest shock as the root of

the shock tree makes the representation unstable in the sense that a small change occurring

on the shape boundary might dislocate the oldest shock, resulting in a shock tree which

has a completely different topology (Figure 3.6(a)). Moreover, the planar order of skeleton

branches is not explicitly stored in the nodes of shock trees. Hence, in some cases, matching

two shapes with respect to their shock tree descriptions might return misleading results. For

example, there is no way to distinguish between two shape where the second shape is formed

from the first one by a different reordering of its branches (Figure 3.6(b)).

(a) (b)

Figure 3.6: Drawbacks of shock trees of Siddiqi et al.. (a) Shock graphs of two very similar

shapes, together with the oldest shocks (indicated by squares) are given on the left. On the

right are the corresponding shock trees. Observe that a small change in the shape might

dislocate the oldest shock, causing a significant change in the topology of the shock tree

representation. (b) Since the planar order of skeleton branches is not explicitly stored in the

nodes of shock trees, a shape is indistinguishable in terms of its shock tree description from

its another version formed by a different reordering of its branches (images taken from [90]).
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In [87, 90], Sebastian et al. presented an alternative way of representing and matching

shock graphs [97] of Siddiqi and Kimia. In this approach, shock graphs are expressed in terms

of ordered unrooted attributed trees that bifurcation points, ending points of skeleton branches

and shock segments of second-order and fourth-order are designated as the nodes of the tree

whereas shock segments of first and third order constitute the edges. The skeletal attributes

stored in a node are the time of formation and the direction of flow of the associated shock.

Similarly, the attributes for the edges are defined by the geometry of corresponding shock

segment, namely, curvature, acceleration, length and total time. A shock graph of a shape

and its ordered unrooted tree representation are respectively given in Figure 3.7(a) and (b).

(a) (b)

Figure 3.7: (a) Shock graph of a shape. (b) Representing the shock graph by an ordered

unrooted tree (images taken from [1]).

Moreover, Sebastian et al. employed an edit distance-based algorithm to determine the

distance between two shock graphs represented as above. The proposed method can cope

with the instabilities associated with the representation because it inherently utilizes the

classification of shock graph transitions reported in [33]. Each transition is represented by

any one of the four edit operations defined on the shock graph, namely, splice, contract, merge,

and deform. The first three edit operations are illustrated in Figure 3.8(a)-(c), respectively.

The usage of deform operation is to measure the dissimilarity between two matching shock

segments and the boundary segments they represent. Being an extension of the measure
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(a) (b) (c)

Figure 3.8: Three edit operations defined on the shock graphs. (a)-(c) splice, contract and

merge, respectively (images taken from [90]).

in [89], deformation cost is defined by the sum of local differences in shock geometry after

finding the optimal alignment between the corresponding shock segments. Additionally, the

costs for other edit operations are defined by considering them as the limit cases of a deform

cost.

It is important to note that the skeletal shape matching framework presented in [90]

does not suffer from the instability of skeleton-based representations and the experimental

results show that the recognition performance is not affected much by perturbations on shape

boundary, articulation of parts and reasonable viewpoint changes. On the other hand, the

proposed shape matching method is computationally inefficient. The point is that although

the matching method is a polynomial time algorithm with respect to the number of nodes

of shock graphs, the costs of edit operations dominate the overall time complexity of the

method.

3.3 Shape Axis Tree [57]

In [57], Liu et al. presented a compact and stable axis-based shape representation, which

was referred to as shape axis. Formulated in a variational setting, the representation relies

on a self-similarity measure which gives a set of correspondences along the shape boundary

by matching two parameterizations of the shape boundary, one oriented clockwise and one

oriented counterclockwise. Once an optimal matching is determined, the shape axis repre-

sentation is formed by connecting the midpoints of line segments attached to each pair of

matched points on the shape boundary. It is essential to note that the shape axis represen-

tation is analogous to shape skeleton, each axis representing an object substructure if the

optimization criterion is based on mirror symmetry or co-circularity. Figure 3.9(a) shows

shape axis descriptions of some shapes when such a criterion is utilized in determining the

optimal matching.
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In [57], it was demonstrated that shape axis can be expressed with a special tree struc-

ture, named as shape axis tree. This tree is in the form of a connected, acyclic and undirected

graph where leaf nodes correspond to the ending points of shape axis whereas the remaining

nodes correspond to bifurcation points, captured by the discontinuities in the set of corre-

spondences. Note that each edge of a shape axis tree is associated with a pair of boundary

segments. Figure 3.9(b) shows shape axis trees of some shapes derived from their shape axis

descriptions.

Shape axis tree was first utilized for recognition by Liu et al. in [32, 56]. To determine

the similarity between two shapes, they formulated an approximate tree matching method

based on A∗ search, which returns the best match between their corresponding shape axis

trees. As noted before, each edge of a shape axis tree correspond to an object substructure

hence the proposed matching algorithm relies on finding the correspondences between the

edges of shape axis trees. The cost of matching two edges depends on how the associated

boundary segment are alike and should be defined in a way that takes into account local

(a)

(b)

Figure 3.9: (a) Shape axis descriptions of some shapes. (b) The resulting shape axis trees

(images taken from [56]).
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deformations and regional properties.

The shape axis trees of shapes within to the same category might be structurally different

due to visual transformations such as occlusion and stretching (Figure 3.10(a)). Thus, finding

a one-to-one mapping between the edges is not sufficient enough to completely explain the

visual correspondences. In order to cope with such structural instabilities, three additional

edit operations, namely cut, merge and merge-and-cut, are introduced in [32, 56]. The action

of each operation is demonstrated through Figure 3.10(b)-(d). In this way, many-to-many

correspondences can be obtained with the help of these operations, allowing an edge to be

matched with a path of two consecutive edges.

As reported in [32], a notable advantage of shock axis representation over other skeletal

representations is that the proposed shape analysis can be performed on open shapes as well.

However, for these kind of shapes, it is not always possible to represent the structure of their

shape axis in the form of a shape axis tree. As demonstrated in Figure 3.11, the procedure

defined to form shape axis trees might also result in a shape axis forest.

The matching results given in [32, 56] shows that correct correspondences can be found

under challenging conditions such as articulation of parts, occlusion and missing parts. How-

ever, the recognition performance of the proposed framework was not fully investigated in

(a)

(b) (c) (d)

Figure 3.10: (a) Shape axis trees of some human shapes, showing some possible structural

changes in the representation due to occlusion and stretching. (b)-(d) The edit operations

cut, merge and merge-and-cut, respectively (image taken from [56]).
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Figure 3.11: Shape axis analysis can be performed of open shapes as well, however the

resulting graph structure might be a shape axis forest (images taken from [32]).

a quantitative manner. Pelillo also utilized shape axis trees to illustrate the strength of the

proposed tree matching scheme in [73]. In that study, the use of shape axis trees for shape

matching was tested on a very small shape data set (a total of 17 shapes, representing 6

six different shape categories), but again no recognition rate was reported. The author only

stated that the proposed algorithm returned maximum subtree isomorphism in each trial.

3.4 Bone Graphs [61]

Bone graph was just recently proposed by Macrini et al. as a coarse skeletal representation

which captures the most salient part structure of the shape [61]. In this sense, the underlying

idea behind bone graphs is very similar to the one employed in the disconnected skeleton

representation of Aslan and Tari [3, 2], in contrast to the fact that a bone graph is a higher

level representation built on skeletons extracted by any method. The approach of Macrini

et al. is founded on the work of August et al. [4] and relies on ligature analysis where the

skeleton branches are classified as ligature or non-ligature. The term ligature was proposed

by Blum [11] to define a proper subset of the skeleton which arises due to concave corners

(Figure 3.12). Conceptually, ligature regions of skeletons are related to the attachment of

parts [4] and moreover, they have little contribution to represent or reconstruct the shape [11].
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Figure 3.12: The taxonomy of ligature configurations (image taken from [61]).

Following Blum’s analysis, August et al. revisited the notion of ligature in [4]. After

giving a formal definition of ligature based on the negative curvature minima of the boundary

(a skeleton point is designated as ligature if its bitangent points fall within a fixed sized ball

of the negative curvature minima), they investigated the instability of skeletons in terms

of the structural changes in the ligature regions of skeletons (Figure 2.2). Accordingly,

they suggested removing ligature sections of the skeletons in order to obtain robustness and

they qualitatively demonstrated the use of this idea on shock trees (Figure 3.13) of some

shapes. However, regarding the effect on the performance rate, the proposed approach was

not analyzed quantitatively.

In [61], Macrini et al. utilized the boundary-to-axis ratio measure of Blum and Nagel [12]

and formulated a more robust definition of ligature in which local scale information was con-

sidered as well (a ligature branch is defined as the branch which has at least one side whose

boundary-to-axis ratio is smaller than one). Figure 3.14(a) shows the skeleton branches of

a dog shape identified as either ligature (shown in green) or non-ligature (shown in black)

based on this definition. However, as illustrated in the figure, some branches around junc-

tion points might be oversegmented. Hence, the initial ligature analysis is followed by a

rectification step where the ligature properties around every junction point are further in-

spected and the problematic branches are corrected by applying the branch fusion operation

shown in Figure 3.15 in a recursive manner. A second ligature analysis on the modified
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(a)

(b)

(c)

Figure 3.13: (a) Two similar hand shapes having different skeleton structures at the ligature

regions. (b) The shock trees of hand shapes where the nodes corresponding to ligature

branches are shaded. (c) The resulting shock trees becomes equivalent when the ligature

nodes are removed (images taken from [4]).
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skeleton yields an accurate set of ligature and non-ligature branches. The modified skeleton

and the corrected ligature branches of the dog shape are shown in Figure 3.14(b). The final

non-ligature branches were called bones and correspond to the salient parts of the shape.

Figure 3.14(c) shows the bones of the dog and the reconstruction of the shape from its bones.

Based on the proposed ligature analysis, Macrini et al. introduced bone graphs as a

graphical abstraction over skeleton representations, capturing the coarse part structure of a

shape. Each bone graph is an unrooted tree where the nodes correspond to the non-ligature

branches (bones), while the edges correspond to the ligature branches or the junctions. As

shown Figure 3.14(d), the directions of the edges denote the parent-child relationship and are

determined according to the relative sizes of the corresponding parts. However, in case there

is uncertainty in the part hierarchy, the authors also allow undirected edges (Figure 3.16).

In addition, the edges might be enriched with labels denoting the position of a part relative

to its parent.

(a) (b)

(c) (d)

Figure 3.14: Obtaining the bone graph of a dog shape. (a) An initial classification of

skeleton branches based on boundary-to-axis ratios. The ligature branches of the skeleton

are shown in green whereas the non-ligature ones are shown in black. The enlarged versions

of oversegmented regions are also given. (b) The final result of ligature analysis after branch

fusion operations. (c) The parts and the reconstruction of the shape from the non-ligature

branches. (d) The corresponding bone graph of the dog shape (images taken from [61]).
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Figure 3.15: The branch fusion operation acting on the branch junctions (image taken

from [61]).

Lastly, Macrini et al. compared the stability of bone graphs with the stability of shock

trees of Siddiqi et al. [98]. The matching framework proposed for bone graphs follows the

one in [98] which uses a node similarity function based on subpartitioning each bone into

shock parts. The experimental results showed that substantial improvements in the recog-

nition and the pose estimation performance were obtained since bone graphs does not suffer

from the instabilities of shock trees or other skeletal representations. However, as noted by

the authors, the proposed matching framework ignores where information, i.e. the spatial

ordering of skeletal shape primitives, and do not use the edge attributes and labels.

Figure 3.16: The bone graph of a cattle shape. Since the ligature branches l3 and l4 are

associated with necks, the corresponding edges in the bone graph are undirected (image

taken from [61]).
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3.5 Path Similarity Skeleton Graphs [5]

In [5], Bai and Latecki presented a novel shape matching framework built upon a stable

skeleton-based shape representation. In the first place, this matching method depends on

an interesting skeleton pruning strategy proposed by the same authors, which is based on

contour partitioning via Discrete Curve Evolution [6]. As the pruning result shown in Fig-

ure 3.17 demonstrates, the proposed pruning procedure preserves the topology of skeletons

while removing redundant branches and hence, end points of skeleton branches correspond

to visual parts of the shapes.

(a) (b)

Figure 3.17: Skeleton pruning by contour partitioning using discrete curve evolution. (a) Ex-

tracted skeleton branches of an elephant shape (b) Resulting skeleton after pruning (images

taken from [122]).

Motivated by the pruning method in [6], Bai and Latecki employed an alternative ap-

proach to represent shape skeletons. That is, the extracted skeletons are not explicitly

represented by their topological structures (with the use of graphs or trees), but they are

represented with a set of geodesic paths between every pair of end points of skeleton branches

instead (Figure 3.18). The resulting descriptions do not involve any junction points, and

thus they do not suffer from the instability of skeletons.

In this approach, matching process of two shapes was formulated as finding the corre-

spondences among the end points of corresponding skeleton branches. For that purpose,

each skeleton is represented with a graph, in which each of its nodes refers to the end points

of branches and holds the skeleton paths to all other end points. To compute the corre-
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Figure 3.18: The shortest paths between the pairs of endpoints of skeleton branches (image

taken from [122]).

spondences and the dissimilarity between two such graphs, the authors apply the Hungarian

algorithm [48] on a matrix of dissimilarity costs between the pairs of end points, each of

which is estimated based on the paths to all other end points and computed by the optimal

subsequence bijection method proposed in [52]. Here, the dissimilarity between two skeleton

paths depends on two terms. The first is the dissimilarity between their radius functions,

and the second is the difference in their lengths.

To summarize, the method of Bai and Latecki is interesting in the way how it handles

the instability of skeletons as this is the most challenging issue about the use of skeletons

for shape recognition. Their approach, in contrast to other methods we reviewed in this

chapter, does only depend on the similarities among the end points of skeleton branches

measured in terms of the path similarities. Since the proposed approach does not require

finding the correspondences among junctions points of the skeletons, it is very stable to visual

transformations. However, as noted by the authors, the success of the method is limited in

the presence of large protrusions.

3.6 Summary and Discussions

Skeleton-based representations are widely used in shape recognition due to their strength in

capturing the part structure of shapes and their insensitivity to articulations or bendings.

As we mentioned in Section 2.1, a challenging issue though with the use of shape skeletons

for recognition is their structural instability in that two visually similar shapes might have
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topologically different skeletons. In this regard, one can either attempt to resolve this matter

in the representation level and come up with a much stable representation or pass this

problem to the matching algorithm which is developed in a way that it can deal with possible

structural changes, or both.

Keeping the discussion above in mind, we have reviewed some popular and distinguished

skeletal representation and matching schemes based on how they represent the skeleton

structure and how they compare the corresponding representations in a recognition task.

All these studies typically use graphical representations of skeleton structures and compute

a partial match between proposed skeletal graphs or trees, returning a similarity or a dissim-

ilarity value. In matching process, the algorithms compensate the instability of skeletons by

utilizing a number of edit operations acting on either nodes or edges. Hence, the recognition

performance of a method highly depends on how well the proposed edit operations model the

transitions that might occur on a skeleton description of a shape. In this regard, the method

of Bai and Latecki [5] is exceptional because in this method, matching of skeletons does not

depend on the similarity of their topological structures, but rely on the (path) similarities

among the end points of the skeleton branches.

As compared to other works reviewed here, bone graphs of Macrini et al. [61] also looks

promising in the sense that they first seek stability in their skeletal graphs by inspecting

ligature sections of the skeletons. Note that there is no need for disconnected skeletons to

include such a ligature analysis due to their disconnected property of extracted branches.

Moreover, the approach of Zhu and Yuille in FORMS [127] also needs further attention

regardless of the limited capability of the shape primitives used in skeleton extraction in

that they attempt to solve the instability of skeletons by involving a bi-directional data

flow where the information passes through the matching method and the skeleton extraction

procedure in both ways.
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CHAPTER 4

USE OF DISCONNECTED SKELETON

FOR SHAPE RECOGNITION

In the previous chapter, we discussed some skeleton-based shape recognition frameworks,

each of which was built upon a different representation scheme. Our main focus was on how

these skeletal representations and the related recognition algorithms could cope with the

instability of skeletons.

In this chapter, we revisit the disconnected skeleton representation to discuss its use

for recognition. The main motivation of Aslan and Tari in devising disconnected skeleton

was to come up with the most stable representation of shape in the coarsest possible scale.

Compared to other skeletal representations, disconnected skeleton appears to be an unusual

approach that as its name reveals, the branches of disconnected skeletons are unconvention-

ally disconnected. This distinctive property give rise to a very stable skeleton structure as

the representation does not suffer from the instability of traditional skeletons. Moreover,

the number of branches is reasonably small and furthermore no branching occurs due to the

excessive smoothing involved in the extraction of skeletons. Hence, the level of hierarchy in

the descriptions are always one.

In the following sections, we review two previously proposed shape matching algorithms

which utilize disconnected skeleton as the underlying shape representation. In Section 4.1, we

discuss the method of Aslan and Tari [3] which is based on a branch and bound approach. In

Section 4.2, we investigate the tree edit distance-based shape matching algorithm proposed

by Baseski [7].
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4.1 The Method of Aslan and Tari [3]

When the disconnected skeleton was first introduced by Aslan and Tari [3], the authors

also demonstrated the use of disconnected skeletons for shape matching. Unlike the case in

most of the studies reviewed in Chapter 3, Aslan and Tari avoided representing disconnected

skeletons by graphs or trees, but interpreted disconnected skeletons as unlabeled attributed

point sets instead. They developed a branch and bound algorithm to compute the similarity

between two shapes. Based on the data structure shown in Table 4.1, the proposed algorithm

exhaustively searches over all possible matchings between branches while computing a total

similarity score for each one and finally returns the optimum set of correspondences with the

maximum similarity score.

In general, the shapes to be matched may have different number of branches. Hence,

Aslan and Tari proposed to compute corresponding total similarity scores by the weighted

sum of similarities between matched pair of skeleton branches, where the weights are deter-

mined by the normalized lengths of branches. However, as mentioned by the authors, this

formulation resulted in an asymmetric measure because the similarity score changes with the

choice of the reference shape. Therefore, they chose to symmetrize the measure by simply

taking the minimum of the two possible similarity scores in reporting the matching results.

The formal definition of the algorithm is as follows:

Let S1 and S2 denote the two shapes to be matched and ω ∈ Ω denote a set of correspon-

dences between the skeleton branches of S1 and S2 defined in the search space Ω containing

all possible matchings. Then, the total similarity between S1 and S2 is given by:

sim(S1,S2) = max
ω∈Ω



min





∑

(b1,b2)∈ω

l1 × sim(b1, b2),
∑

(b1,b2)∈ω

l2 × sim(b1, b2)







 (4.1)

where the similarity between attributes of two matched branches b1 ∈ S1 and b2 ∈ S2 is

determined by a multivariate Gaussian distribution:

sim(b1, b2) =







exp
(

−0.5
(

(l1−l2)2

σl
+ (r1−r2)2

σr
+ (θ1−θ2)2

σθ

))

if type1 = type2

0 otherwise

where σl, σr, σθ respectively specify the importance of each attribute that are determined

experimentally.
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Table 4.1: The data structure defined to express disconnected skeleton of a shape (table

taken from [2]).

Recall that in disconnected skeleton, each branch is of a positive or negative type depend-

ing on either it corresponds to a protrusion or an indentation. Hence, setting the similarity

between different types of branches to zero drastically reduces the total similarity score and

practically eliminate this sort of semantically invalid correspondences.

In traversing the search space, Aslan and Tari employed a branch and bound approach

to find the optimum matching in an effective way. They introduced an additional pruning

strategy to discard regions of the search space that contain visually unmeaningful set of cor-

respondences. In expanding the search tree, the order of skeleton branches of a shape should

be preserved in the matching. Hence, if a correspondence violates the ordering constraint, all

the related matchings are totally ignored. It is important to note that this not only reduces

the computation time but improves the visual quality of matching results. Moreover, to

further speed up the algorithm, Aslan and Tari divide the problem into two subproblems by

defining two different coordinate frames, each of which is used to express a different half of

a shape.

Figure 4.1 shows some illustrative matching results obtained by the method of Aslan and

Tari. In each case, visually correct correspondences are obtained under Euclidean transfor-

mations (translation, rotation and scaling), articulation of parts and even missing features.

The authors tested the performance of their matching method on the shape database shown

in Figure 4.2, which contains a total of 180 shapes with 30 categories, each having 6 exam-

ples. In the experiments, each shape was used as a query shape and the most similar shapes

are retrieved accordingly. Average precision-recall curve is given in Figure 4.3. The average

precision was found to be around 88% at recall level 100%.
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Figure 4.1: Some skeletal matching results obtained by the method of Aslan and Tari. The

total similarity scores are 0.992, 0.708, 0.886, 0.652, 0.714, and 0.832, respectively (images

taken from [2]).

Figure 4.2: The shape database used in the experiments performed by Aslan and Tari (image

taken from [2]).

4.2 The Method of Baseski [7]

In [7], Baseski employed widely used tree edit distance approach [92] and came up with

an alternative shape matching method to compare shapes using their disconnected skele-

tons. Unlike the method of Aslan and Tari [3], their formulation depends on representing
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Figure 4.3: Average precision-recall graph (image taken from [2]).

disconnected skeletons by trees and for that purpose, they introduced a skeletal tree repre-

sentation, which was referred to as shape tree. Compared to other skeleton-based graphical

representations such as shock trees, the key characteristic of shape trees is that the depth

of each constructed shape tree is always one since disconnected skeletons capture the most

prominent part structure of shapes with only one level of hierarchy.

Representing disconnected skeletons by shape trees is quite straightforward. However,

first recall that as we indicated in Section 2.2, a shape might have alternative descriptions

based on the construction of the coordinate frame in its disconnected skeleton. Therefore,

in [7], Baseski and Tari decided to form multiple shape trees for each alternative description

of the shape. Figure 4.4 illustrates shape trees of some shapes.

Each shape tree is a rooted attributed depth-1 tree where the root node can be interpreted

as the shape center but it actually holds necessary and sufficient information to construct

the coordinate system. This information includes the location of the center, the directions of

reference axes and a normalization factor for branch length (based on total branch length).

Accordingly, each leaf node of the shape tree corresponds to one of the extracted skeleton

branches and holds the following attributes:

• the disconnection location in polar coordinates (r, θ),

• the normalized length of the branch l,

• the branch type as negative or positive.
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Figure 4.4: Some shape trees. Note that each disconnection point (except the pruned major

branches) gives rise to two different nodes in the tree, representing the positive and negative

skeleton branches meeting at that disconnection point. However, for illustration purposes,

only one node is drawn.

In addition, Baseski and Tari preferred labeling each node with respect to an ordering

of branches in order to devise a more efficient edit distance-based tree matching algorithm.

Their choice for ordering is to start with any one of the major negative branches and hence

they store alternative descriptions of the shape tree for each such possible choice (Figure 4.5).

As noted before, for the shapes having n-fold symmetry, there are n major negative branches.

Figure 4.5: Multiple descriptions obtained with different orderings of branches.
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The formal definition of the method of Baseski and Tari for skeletal tree matching is as

follows: Let T1 and T2 denote the two shape trees to be matched. Since T1 and T2 are all

ordered-depth-1 trees, each of them can be expressed as a list of nodes (excluding the root

node):

T1 =

{

ui =
(

ur
i , u

θ
i , u

l
i, u

type

i

)

∣

∣ ui ∈ N1

}

T2 =

{

vj =
(

vr
j , v

θ
j , v

l
j , v

type

j

)

∣

∣ vj ∈ N2

}

where i, j denote the order of nodes, (r, θ) is the normalized location of the disconnection

point in polar coordinates, type denotes the type of the branch (either positive or negative)

and l is the normalized length of the corresponding skeleton branch. N1 and N2 are the set

of leaf nodes of T1 and T2, respectively.

To transform a shape tree into another, or vice versa, Baseski and Tari defined three

edit operations, namely remove, insert and change. Let Λ denote the set of nodes removed

from T1, ∆ denote the set of nodes inserted to T1 from T2 and Ω denote the set of matched

nodes. Then the the distance between T1 and T2 is given by Equation 4.2, as the cost of the

sequence of edit operations S with minimum cost.

d (T1,T2) = min
S





∑

u∈Λ

remove (u) +
∑

v∈∆

insert (v) +
∑

(u,v)∈Ω

change (u, v)



 (4.2)

The cost functions of edit operation are defined as follows. Note that each edit cost

function returns a value in the range [0, 1]:

• remove. The corresponding cost function quantitatively measures how well the removed

skeleton branch characterizes the shape. In this regard, the cost of removing a given

node u of T1 is defined based on two significance measures. The first significance

measure is the branch length, as argued in [1, 3, 2]. The second significance measure

is the disconnection location of a branch. While the major branches do not terminate,

and reach to the shape center, boundary details terminate quite early.

remove (u) =

(

ul

lmax (T1)

)

(1 − ur) (4.3)

where ul is the length of the branch, ur is the distance from shape center and lmax (T1)

is the length of the longest branch of T1. See Figure 4.6.
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(a) (b)

Figure 4.6: remove cost function. (a) Since ul
1 ≥ ul

5, remove(u1) ≥remove(u5). (b)

Since ur
6 ≥ ur

2, remove(u6) ≥remove(u2).

• insert. This operation is the dual operator of remove. It inserts a node from T2 to T1

(or equivalently removes the corresponding node from T2). Hence, the cost function

given below is same with remove except that the length is normalized with respect to

lmax (T2):

insert (v) =

(

vl

lmax (T2)

)

(1 − vr) (4.4)

• change. This operation computes the dissimilarity of two nodes u and v based on the

differences between their attributes. The corresponding cost function resembles the

one used in [74]. However, an additional constraint enforces the types of the matched

branches to be identical. If they differ, the cost is set to 1.

change(u, v) =







1 if utype 6= vtype

β1
|ul−vl|

max (ul,vl)
+β2

|ur−vr |
max (ur ,vr)+β3

|uθ−vθ |
max(uθ ,vθ)

otherwise

(4.5)

Figure 4.7 shows matching results of some illustrative shapes. In the matching process,

Baseski and Tari gave more weight to the similarity of lengths by setting β1 = 0.5 and

β2 = β3 = 0.25. As these examples demonstrate, the method of Baseski and Tari is also

able to obtain the correct matchings under various visual transformations. To evaluate the

retrieval performance of their method, Baseski and Tari repeated the same experiments as

Aslan and Tari performed in [1]. The corresponding average precision-recall curve is given

in Figure 4.8. The average precision is 87% at recall level 100%. Note that this value is very

close to the one in [1].
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(a) (b)

(c) (d)

Figure 4.7: Some skeletal matching results obtained by the method of Baseski and Tari.

Matching costs are 0.683, 1.459, 2.725 and 2.372, respectively.

Figure 4.8: Average precision-recall graph (image taken from [8]).
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In [7], Baseski identified four typical reasons why his method might return a mismatch

or a dissimilarity value which is beyond our visual judgments. Two of these are related to

how the edit cost functions are defined whereas the other two are in fact related to one of

the shortcoming of disconnected skeleton representation that we mentioned in Section 2.2.1,

i.e. information about boundary details are absent in the skeleton descriptions. To resolve

this issue we will propose a coarse-to-fine strategy in Section 5.1.5, which is based on the

category-influenced matching method presented in Section 5.1.

The time complexity of the shape matching method proposed by Baseski and Tari can be

analyzed as follows. When each edit operation has unit cost, the time complexity of matching

two ordered-depth-1 trees is O(mn), where m and n respectively denote the number of leaf

nodes in the trees [92]. However, a critical issue in tree edit distance-based skeletal shape

matching is how the cost of each edit operation is computed because these costs might

dominate over the cost of tree matching as in [90, 98]. In this respect, the method of Baseski

and Tari has two main advantages. First, the edit cost computations are nearly negligible

and second, the number of leaf nodes is significantly small as disconnected skeleton is a very

coarse skeletal representation.

4.3 Summary and Discussions

In this chapter, we discuss two previously proposed approaches to shape matching using

disconnected skeleton representation. In the matching method of Aslan and Tari [3], dis-

connected skeletons are represented by their disconnection points as unlabeled attributed

point sets, and a branch-and-bound strategy is used in order to match the disconnected

skeleton structures of two shapes. In the matching method of Baseski [7], however, a struc-

tural approach is employed and skeletons are represented as (shape) trees, which reduces

the problem into matching two shape trees, and accordingly, the authors proposed a tree

edit distance-based algorithm to find a partial match between two given shape trees. The

experiments performed on the same shape database reveal that the retrieval rates of both

methods are nearly the same, yet the method of Baseski is superior to that of Aslan and

Tari in terms of computational complexity.
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CHAPTER 5

INCORPORATING SEMANTIC

CATEGORY KNOWLEDGE INTO SHAPE

MATCHING

In the previous chapter, we reviewed two different shape matching methods that were built

upon disconnected skeleton representation. While neither of these methods outperforms the

other one, they both demonstrated that despite its coarseness, disconnected skeleton is quite

stable compared to other skeletal representations, thus making it an effective representation

for visual shape recognition.

In this chapter, we investigate the effect of context in shape (dis)similarity computation.

Borrowing the definition from Toussaint [112], the effect of context in a recognition task can

be stated that “some entity Z can have certain properties, when Z is viewed in isolation,

which change when Z is viewed in some context. Alternately, an entity Z is seen as one thing

in context A and another in context B”. In our study, context refers to the set of shapes

belonging to the same category and accordingly, we extend and refine the shape matching

methods described in Chapter 4 in a number of ways by incorporating semantic category

knowledge into the matching process. Each modification offers a higher retrieval accuracy

than the original algorithms. Moreover, each one results in a non-metric shape similarity

(or dissimilarity) measure that is more consistent with our visual judgments in terms of its

formulation.

The conventional approach in the shape matching literature is to define shape (dis)similarity

by means of metrics. On the other hand, starting from the influential work of Tversky [113],

there has been a long history of empirical research in psychology which suggests otherwise

that human similarity judgments are in fact not metric, meaning that our judgments may vi-
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Figure 5.1: An example from Basri et al. [9] used to illustrate the violation of triangle

inequality axiom in visual dissimilarity relationships, see text for the explanation (shapes

taken from the mythological creatures data set used in [15]).

olate metric axioms, i.e. minimality, symmetry and triangle inequality. For some discussions

on this issue from computational point of view, see Basri et al. [9] and Mumford [64].

Figure 5.1 is an illustrative example from [9] that demonstrates a case where our visual

perception system does not satisfy the triangle inequality. Note that the centaur shape shares

some similar parts with both of the other two shapes. Psychological judgment data indicates

that many human observers report that the dissimilarity between the human shape and the

horse shape is far more than the sum of the dissimilarities between the centaur shape and

either of the human and horse shapes.

Above all, the reason why metric similarity measures have been prevalent in the shape

matching literature is because many computational tools of pattern recognition cannot suc-

cessfully deal with non-metric data. However, this situation starts to change with the in-

troduction of new generation of tools and the paradigm shifts happening in the pattern

recognition community, e.g. [24, 25, 26, 71]. As a consequence, a less but growing number of

studies, which utilize non-metric similarity measures for shape matching, began to appear in

the literature, e.g. [15, 39, 51]. These studies mainly concentrate on the violation of triangle

inequality and solely depend on identifying part correspondences between shapes based on

contour fragments or regions. On the other hand, our approach is conceptually different

than the cited works in the way that in the studies presented in this chapter, we investigate

and utilize the effects of context on measuring visual similarity, context being specified as

the existing category structure.

The influence of context on similarity judgments is a well-studied topic in psychology [27,

35, 64, 85, 113]. For instance, in an experiment conducted by Tversky [113], human subjects

were asked to chose among the countries Sweden, Norway and Hungary, the most similar one
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to Austria. 60% of the subjects chose Hungary. However, when he repeated the experiment

with a new answer set, which included Poland instead of Norway, 49% of those chose Sweden.

Now, note that this experiment was carried out in the Cold War era. Hence, it is most likely

that the subjects tended to consider Hungary and Poland dissimilar to other countries since

these were two Eastern Bloc countries.

Context information can also be used to account for asymmetric similarity relation-

ships [64, 113]. This follows from the interpretation that two objects to be compared, say A

and B, have in fact two separate roles such that while A is considered as a newly encountered

stimulus input, B is thought as a memory benchmark belonging to a category. Accordingly,

this view suggests that in measuring the similarity between A and B, human mind analyzes

these objects differently, for example, that it might be the case that it immediately searches

for the salient features of B whether they are found in A or not.

In Section 5.1, we follow the above interpretation and present a novel extension to the

shape matching method of Baseski [7] by incorporating semantic category knowledge into

matching process1. In this modified version of the method, which we refer to as category-

influenced matching, each database shape is associated with a category and the cost func-

tion of each edit operation is redefined in a way to reflect the information coming from

the category of the database shape. Hence, the category knowledge directly influences

the dissimilarity between the query shape and the database shape. In Section 5.1.5r, we

present a coarse-to-fine strategy to incorporate categorical boundary similarity into category-

influenced matching method by utilizing the representation of approximate radius functions

described in Section 2.3.1.

In Section 5.2, we use category knowledge to achieve contextual sensitivity to articulations

in shape matching2. Our approach depends on the disconnected skeleton representation in

that we first formulate a representation space for articulations of parts using the structure of

extracted skeletons. This articulation space enables us to make inferences about likely artic-

ulations based on the prior knowledge obtained from existing examples of a shape category.

Following to that, we incorporate the proposed approach to the method of Aslan and Tari [3]

and come up with a shape matching framework that is sensitive to unlikely articulations but

insensitive to likely ones.

1This is a joint work with Emre Baseski and an early version of this study was partly published in MSc.

thesis of Emre Baseski [7]. Full version is published in Pattern Recognition [8].
2This is a joint work with Erkut Erdem and was previously presented in the Workshop on the Represen-

tation and Use of Prior Knowledge in Computer Vision [28].
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Finally, we conclude the chapter with a summary and some discussions.

5.1 Category-Influenced Shape Matching

In the following, motivated by the importance of context in human similarity judgements,

we modify and extend the skeletal tree matching algorithm of Baseski and Tari [7] by incor-

porating contextual effects into the matching process. In the literature, the notion of context

has a vast number of meanings, typically refering to either a collection of neighboring enti-

ties (e.g. nearby objects [35, 64], local pixel neighborhood [29, 101]), or prior knowledge and

expectations [58]. See Wolf et al. [120] for a broad discussion on the topic. In our study,

context is defined as being a collection of shapes belonging to the same category.

An interesting argument in favor of context dependence in pattern recognition comes

from the Ugly Duckling Theorem [119] which states that categorization or recognition is

impossible without an underlying bias, hence in the absence of bias any two patterns are

equally similar to each other. This is quite important in the sense that it also implies that

there are in fact no privileged primitives. In this sense, one approach could be to start with

many primitives, each of which provides a rough representation, and then to select the best

ones in a given context [76, 118]. Our approach is in the opposite direction that we start with

a very coarse yet very stable skeletal description and a context provides extra information

about the extracted primitives.

In defining the dissimilarity between two shapes in a context, we extend the tree edit

distance measure of Baseski [7] by following the interpretation mentioned in [64, 113] in

which different roles are assigned to the shapes in comparison. That is to say a query

shape A (input stimulus) is compared to a database shape B (memory benchmark) whose

category is known. The category knowledge of B, i.e. all the category members (including

B), forms a context that influences the dissimilarity computation by modifying the saliency

of primitives and the distances between attributes, as in the philosophy of some recent works

such as [65, 67].

5.1.1 Representing Category Knowledge with Category Trees

To form and utilize the relevant category knowledge of a given set of shape trees belonging

to the same category, we propose a special tree structure, which we name category tree. Built

like a union of the shape trees, a category tree is a depth-1 tree whose leaf nodes represent

a specific primitive observed in the category. In particular, each leaf node of a category
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tree is linked to a corresponding leaf node of one or more shape trees and in addition,

stores some basic information about attribute statistics. Once formed, each category tree

provides a context for each primitive of a database shape. In this regard, we come up with

two different procedures for constructing category trees, referred to as static formation and

dynamic formation, respectively.

Note that in the context of shape matching, forming a union of tree representations

has been previously addressed by Torsello and Hancock [109]. However, unlike Torsello and

Hancock’s construction, both of our constructions naturally preserve the tree structure in the

union, and moreover, the resulting category trees are depth-1 trees as well, just like the shape

trees. In fact, this is a direct implication of the depth-1 property of shape trees. Representing

both individual shapes and categories using the same data structure is noteworthy that this

makes the necessary constructions and computations trivial.

In the static formation, shapes to be united should be given in advance. In the beginning,

the shape tree with the maximum number of nodes is designated as a base tree and then

all the remaining trees are matched to the base tree (using the method of Baseski) and

the category tree is formed solely based on the found correspondences. This procedure has

two major drawbacks though. First, the structure of the category tree is fixed and hence

addition of a new shape may require a re-formation from scratch. Second, the procedure

does not guarantee the inclusion of all the available information. This drawback is visible in

the illustration given in Figure 5.2.

In the dynamic formation, the category tree is formed by using an incremental procedure.

In this regard, it resembles formation of Tree-Unions of Torsello and Hancock [109]. First,

the pairwise distances between the given set of shapes are computed (again using the method

of Baseski). Then, according to the descending order of total distances, the category tree is

progressively expanded by using the correspondences between the category tree and the shape

trees (obtained with the modified matching method in the way described in Section 5.1.3).

The dynamic formation procedure is superior to the static one because it does not suffer

from any of the drawbacks mentioned for the static formation. Moreover, since it operates

in a dynamic way, it is computationally more effective in updating categories as new shapes

are observed and categorized.

5.1.2 The Revised Formulation of Tree Edit Distance Algorithm

Let T1 denote the shape tree of the query shape which is being compared to a database shape

whose shape tree is denoted by T2. Each leaf node of T2 is linked with a specific leaf node
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T1

a1 b1 c1

T2

a2 c2

T3

a3 b3 d3 c3

T4

b4 c4 e4

TC

a1, a2, a3 b1, b3, b4 d3 c1, c2, c3, c4

Figure 5.2: Static formation of a category tree. T3 is the base tree and the correspondences

among nodes are specified by labeling the matched nodes with identical letters. Note that

the procedure is not perfect since the node e4 in T4 is eliminated in forming the category

tree TC since it does not match to any node of the base tree.

of a category tree TC . Say it is denoted by Bk, this leaf node not only provides a context

for the corresponding leaf node in T2 but for all the related m number of category members

(including T2 and m≤M , where M is the total number of shapes in that category). In the

node Bk, in addition to the associations with other category member shape trees, each leaf

node of TC by providing some basic information about attribute statistics:

• the observed ranges for r, θ and l of the branch (rmin, rmax, θmin, θmax, lmin, lmax);

• the categorical saliency of the branch, defined by its frequency freq(Bk) = m/M .

Following these denotations, the shape trees T1 and T2 and the category tree TC can all

be expressed as a list of nodes (excluding their root nodes) as follows:

T1 =

{

ui =
(

ur
i , u

θ
i , u

l
i, u

type

i

)

∣

∣ ui ∈ N1

}

T2 =

{

vj =
(

vr
j , v

θ
j , v

l
j , v

type

j

)

∣

∣ vj ∈ N2

}

TC =

{

Bk =
(

Brmin

k ,Brmax

k ,Bθmin

k ,Bθmax

k ,Blmin

k ,Blmax

k ,Btype

k , freq(Bk)
)

∣

∣ Bk ∈ NC

}

where i, j, k denote the order of nodes, (r, θ) is the normalized location of the disconnection

point in polar coordinates, type denotes the type of the branch (either positive or negative)

and l is the normalized length of the corresponding skeleton branch. N1, N2 and NC are the
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T1

a1 b1 c1

T2

a2 c2

T3

a3 b3 d3 c3

T4

b4 c4 e4

TC

a1 b1 c1

TC

a1, a2 b1 c1, c2

TC

a1, a2, a3 b1, b3 d3 c1, c2, c3

TC

a1, a2, a3 b1, b3, b4 d3 c1, c2, c3, c4 e4

Figure 5.3: Dynamic formation of a category tree. The category tree TC is enlarged incre-

mentally with the shape trees T1, T2, T3 and T4. Matched nodes are labeled with identical

letters. Note that the procedure does not suffer from any of the drawbacks of the static

formation procedure.

set of leaf nodes of T1, T2 and NC , respectively.

To calculate the distances between attributes in the presence of category statistics,

Baseski proposed the generic function f (x|y, [min,max]) (Figure 5.4) [7]. In the experi-

ments, φ1 and φ2 is taken as φ1 = π
4 and φ2 = 4π

9 . x is defined on the horizontal axis and

the function is fixed for [min,max] and a given y. Notice that value of function f depends

not only to the difference x−y, but also to the range [min,max]. When x falls in the range,

x − y difference is taken as it is. On the other hand, when x fall out of the range, x − y

difference is boosted. That is, numerically equal differences are perceived smaller within

categories and larger between categories. The idea is not so different than a Mahalanobis

distance or the distance used in [86]. It gives a distance weighted in a context.

The modified cost functions are given by:
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Figure 5.4: The generic cost function f (x|y, [min,max]) (image taken from [7]).

change(u, v,B) =







1 if utype 6= vtype

f(ur |vr ,B)+f(uθ |vθ,B)+3f(ul|vl,B)
5 × freq(B) otherwise

remove (u) =
(

ul

lmax (T1)

)

(1 − ur)

insert (v) =
(

vl

lmax (T2)

)

(1 − vr) × freq (B)

Note that there is no change in the cost function of remove operation however, the

insertion cost of a node is multiplied by a factor of categorical significance of the skeleton

branch since the category of the shape denoted by T2 is known.

5.1.3 Matching a Shape Tree with a Category Tree

We can exploit the structural equivalences of shape trees and categories and formulate a

simple way of matching a shape tree with a category tree: Let T1 be the input shape tree to be

matched with the category tree TC . We construct a mean shape tree TC having equal number

of nodes with TC whose leaf nodes hold ordinary average values of the attributes collected

from the shape trees of the category members. Since a mean shape tree is indistinguishable

from a shape tree, we can apply the matching algorithm given in the previous section in

order to determine the correspondences between a shape tree and a category tree.

We make two remarks to make. First, the mean tree is uniquely defined as an ordinary

average. Hence, it differs from a mean or median structure which has equal edit distances to

all the contributing shapes as in [18, 40]. Second, a comparison of a shape tree with a mean

tree is guided by the category tree from which the mean tree is calculated. Even though the
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mean tree does not capture within group variability, the category tree does.

As noted in Section 5.1.1, we utilize this way of matching a shape tree with a category

tree in the dynamic procedure proposed for the construction of category trees in which a

category tree is expanded progressively, via computing the correspondences with the given

shape trees. In Chapter 6, we will use this method for the purpose of categorization that the

method will provide a starting point for us in devising a novel shape classification framework.

5.1.4 Experimental Results

To observe the effect of context in shape matching, we first repeated the experiments given in

Section 4.1 and Section 4.2 with our category-influenced matching method. Figure 5.5 shows

the average precision-recall curve for this experiment. Incorporating category knowledge

into matching process aids resolving the erroneous situations that is faced with the methods

that don’t use contextual knowledge, thus we attain precision values are above 99.4% for

all the recall levels. Moreover, the new dissimilarity measure gives a better within group

versus between group separation, and it mimics the asymmetric nature of human similarity

judgements. Compare Table 5.1 with Table 5.2.

Figure 5.5: Average precision-recall graph (cf. Figure 4.3 and Figure 4.8).
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Table 5.1: The top 8 retrievals for 6 elephants. The dissimilarity between an elephant and

a squirrel is very close to the dissimilarities among elephants. (image taken from [7]).

Table 5.2: The top 8 retrievals for 6 elephants. Compare the results to the ones in Table 5.1

(image taken from [7]).

For a detailed analysis of the performance, we form a much larger shape database by

extending the database of Aslan [1] with new shapes and additional shape categories, which

are collected from various sources, including [50, 88]. As shown in Figure 5.6, the database

contains 50 categories, each having 20 examples among which there are differences in orien-

tation, scale, articulation of parts and small boundary details.
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Figure 5.6: The shape database used in the experiments. It contains a total of 1000 shapes

(50 categories, each having 20 examples).
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We evaluate the performance of the matching method of Baseski [7] and the proposed

category-influenced matching by performing 100 experiments where in each run the shape

database is randomly partitioned into two: 750 shapes for training (15 examples for each cat-

egory) and the remaining 250 shapes for testing. A sample partition is given in Appendix A.

For each partition, each shape in the test set is used as a query shape and matched with all

the remaining 750 shapes in the training set. The knowledge about a specific category is rep-

resented by a category tree formed using the shapes in the training set which belong to that

category. The average precision-recall curves are presented in Figure 5.7. Notice that the

importance of context is clearly visible at high recall levels, where the improvement obtained

by incorporating semantic category knowledge into matching shows 50% improvement in the

precision at 100% recall. For the partition given in Appendix A, the results of the matching

method of Baseski [7] and the category-influenced matching method are respectively shown

in Appendix B and Appendix C.

Figure 5.7: Average precision-recall curves. At each recall level, compare the precision

values of the category-influenced matching method (shown in blue) to those of the method

of Baseski [7] (shown in red).
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5.1.5 A Coarse-To-Fine Strategy To Incorporate Categorical Boundary

Similarity into Category-Influenced Matching

In Section 2.3.1, we have demonstrated a way to obtain approximate radius function of a

positive skeleton branch from a corresponding TSP surface. Recall that when computed

with a sufficiently large value of ρ, the resulting TSP surface becomes a smoothed ver-

sion of distance surface [106, 107]. Thus, the extracted radius functions are very smooth,

representing only the most significant boundary details. Once the disconnected skeleton rep-

resentation is enriched with the radius functions, we can compare boundary similarity of two

positive branches based on the corresponding radius functions, as traditionally utilized in

skeletal matching methods such as [5, 32, 74, 90, 98]. This provides us a way to incorporate

boundary similarity into category-influenced matching method. Our strategy is to adopt a

coarse-to-fine approach that we first find a match between two shapes, and then recalculate

the dissimilarity by taking boundary similarity into account. The details are as follows:

In constructing a shape tree, we uniformly sample 32 points along each extracted positive

branch and store the corresponding vector of radii values as an additional attribute in the

corresponding node of the shape tree. Note that this vector is null for the nodes which corre-

spond to negative skeleton branches. In forming a category tree, we employed the approach

in [127]. That is, we model deformations of shape section associated with a positive branch

in the presence of category knowledge. Here, we first collect all the information about bound-

ary details coming from the category members and then apply principal component analysis

(PCA) to form a low-dimensional linear space for the observed deformations. Subsequently,

in the related nodes of the category tree, we additionally store the mean of the approximate

radius functions together with a reduced set of principle components. In the experiments,

these deformation spaces are all represented with the first five principal components. In

Figure 5.8-Figure 5.11, we give some illustrative examples showing the observed variations

some shape sections with different characteristics, captured by the uniformly sampled radius

functions of corresponding skeleton branches.

Once the descriptions of shape trees and category trees are enriched in this way, we define

the following two-step procedure to incorporate boundary similarity into category-influenced

matching of shapes: Let T1 denote the shape tree of the query shape which is being compared

to a database shape whose shape tree is denoted by T2 and suppose T2 is associated with
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the category tree TC . The enriched version of T1, T2 and TC can all be expressed as follows:

T1 =

{

ui =
(

ur
i , u

θ
i , u

l
i, u

f
i , utype

i

)

∣

∣ ui ∈ N1

}

T2 =

{

vj =
(

vr
j , v

θ
j , v

l
j , v

f
j , vtype

j

)

∣

∣ vj ∈ N2

}

TC =

{

Bk =
(

Brmin

k ,Brmax

k ,Bθmin

k ,Bθmax

k ,Blmin

k ,Blmax

k ,B
fµ

k ,BfΦ
k ,Btype

k , freq(Bk)
)

∣

∣ Bk ∈ NC

}

where the additional attribute f in T1 and T2 denotes the uniformly sampled approximate

radius function of the corresponding branch and fµ and fΦ in TC denote the mean of the

approximate radius functions of the associated branches and the reduced set of corresponding

principle components, respectively. Note that for each leaf nodes corresponding to a negative

branch, these additional attributes are all null.

First, category-influenced matching between T1 and T2 is performed in the way described

previously. In the refinement step, the overall dissimilarity is re-calculated according to

Equation 5.1, this time by considering the boundary similarities between every matched pair

of branches. The definition of this boundary similarity measure is given in Equation 5.2 and

requires projecting the corresponding uniformly sampled radius functions onto the related

low-dimensional deformation space.

d (T1,T2) =
∑

u∈Λ

remove (u) +
∑

v∈∆

insert (v) +
∑

(u,v)∈Ω

(

(1 − φ(u, v)) × change (u, v,B)

)

(5.1)

φ(u, v) =















1√
2πσ2

exp

(

−
5
∑

i=1

(αi − βi)
2

2σ2

)

if utype and vtype are positive

0 otherwise

(5.2)

where α and β correspond to the projected values of approximate radius functions of u and

v and σ is taken as σ = 0.4 in the experiments.

In the following, we investigate the effect of incorporating categorical boundary sim-

ilarity into category-influenced matching using the training and test shape sets given in

Appendix A. Figure 5.12-Figure 5.19 shows some sample matching results with and without

boundary information, where for each category, the corresponding category tree influencing

the distance computation and the suggested deformations spaces are constructed using 15

example shapes belonging to that category. As it can be clearly seen, the proposed ap-

proach results in perceptually more meaningful matching scores, as compared to the original

category-influenced matching formulation.
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Figure 5.8: An analysis of boundary deformations using approximate radius functions.

(a) Equivalent shape sections of 20 squirrel shapes, each associated with a positive skeleton

branch. (b) The corresponding set of uniformly sampled approximate radius functions.
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Figure 5.9: An analysis of boundary deformations using approximate radius functions.

(a) Equivalent shape sections of 20 horse shapes, each associated with a positive skeleton

branch. (b) The corresponding set of uniformly sampled approximate radius functions.
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(b)

Figure 5.10: An analysis of boundary deformations using approximate radius functions.

(a) Equivalent shape sections of 20 shapes from the same artificial shape category, each

associated with a positive skeleton branch. (b) The corresponding set of uniformly sampled

approximate radius functions.
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Figure 5.11: An analysis of boundary deformations using approximate radius functions.

(a) Equivalent shape sections of 20 seahorse shapes, each associated with a positive skeleton

branch. (b) The corresponding set of uniformly sampled approximate radius functions.
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Figure 5.12: (a) Category-influenced skeletal matching result between the shapes A and B.

Total matching cost is reduced from 0.7240 to 0.5800 when boundary similarity is incorpo-

rated. (b)-(g) Radius profiles of matched pair of branches A1 and B1, A3 and B3, A5 and

B5, A7 and B7, A9 and B9, A11 and B11, respectively.
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Figure 5.13: (a) Category-influenced skeletal matching result between the shapes A and C.

Total matching cost is reduced from 0.7823 to 0.5368 when boundary similarity is incorpo-

rated. (b)-(g) Radius profiles of matched pair of branches A1 and C1, A3 and C3, A5 and C7,

A7 and C9, A9 and C11, A11 and C13, respectively.
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Figure 5.14: (a) Category-influenced skeletal matching result between the shapes D and E .

Total matching cost is reduced from 1.2904 to 1.1989 when boundary similarity is incorpo-

rated. (b)-(e) Radius profiles of matched pair of branches D3 and E1, D5 and E3, D7 and E5,

D11 and E7, respectively.
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Figure 5.15: (a) Category-influenced skeletal matching result between the shapes D and F .

Total matching cost is reduced from 1.4936 to 0.9458 when boundary similarity is incorpo-

rated. (b)-(f) Radius profiles of matched pair of branches D1 and F1, D3 and F3, D5 and

F5, D9 and F7, D11 and F9, respectively.
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Figure 5.16: (a) Category-influenced skeletal matching result between the shapes G and H.

Total matching cost is reduced from 2.1879 to 1.9576 when boundary similarity is incorpo-

rated. (b)-(g) Radius profiles of matched pair of branches G1 and H3, G3 and H5, G5 and

H7, G7 and H9, G9 and H11, G11 and H13, respectively.
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Figure 5.17: (a) Category-influenced skeletal matching result between the shapes G and I.

Total matching cost is reduced from 3.0387 to 1.8744 when boundary similarity is incorpo-

rated. (b)-(g) Radius profiles of matched pair of branches G1 and I1, G3 and I3, G5 and I5,

G7 and I7, G9 and I9, G11 and I11, respectively.
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Figure 5.18: (a) Category-influenced skeletal matching result between the shapes J and K.

Total matching cost is reduced from 0.8105 to 0.8052 when boundary similarity is incorpo-

rated. (b)-(d) Radius profiles of matched pair of branches J1 and K1, J3 and K3, J7 and

K5, respectively.
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Figure 5.19: (a) Category-influenced skeletal matching result between the shapes J and L.

Total matching cost is reduced from 1.0875 to 0.6738 when boundary similarity is incorpo-

rated. (b)-(e) Radius profiles of matched pair of branches J1 and L1, J3 and L3, J5 and L5,

J7 and L7, respectively.
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5.2 Contextual Sensitivity to Articulation of Parts in Skeletal

Shape Matching

The complexity of visual shape recognition requires representation and matching schemes

that are invariant or insensitive to visual transformations such as deformations and articula-

tion of parts. In this regard, skeletal representation schemes have been widely used for generic

shape recognition as they lead to articulation insensitive representations while capturing the

part structure of shapes [2, 5, 8, 57, 61, 74, 87, 94, 98, 110, 127].

Despite their desirable strengths, presemantic and purely syntactic level of skeletal rep-

resentations fail to distinguish a likely articulation from an unlikely one. In this regard,

consider the shapes given in Figure 5.20. On one hand, certain context might require articu-

lation invariance such as asserting that the shapes shown in (a) and (b) are the same shape.

On the other hand, it is less natural to make the same claim for the shapes in (c) and (d).

We refer this as contextual sensitivity to articulations. In fact, the distinction between such

cases lies in the previous encounters to the shapes in consideration and hence, it requires the

interpretation which we considered in the beginning of this chapter.

The previous example shows that it is essential for a skeleton-based recognition framework

to have an additional representation scheme to handle sensitivity to articulations depending

on the context. In this section, we present such a complementary work to the method of Aslan

and Tari [3]. Motivated both by the hybrid (axis vs. point) nature of disconnected skeleton

representation and the techniques developed for landmark-based shape analysis [13, 42], we

propose a part-centered coordinate frame, referred to as semi-local coordinate frame, that

provides us a representation space for making inferences about articulations, in which similar

articulations or bendings yield closer coordinates. Then, we demonstrate the use of semi-local

(a) (b) (c) (d)

Figure 5.20: Contextual sensitivity to articulation of parts. See text for explanation (images

taken from [1]).
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coordinate frame on a set of human shapes with different postures.

Note that the tools for landmark-based shape analysis [13, 42] are previously adopted by

Burl et al. to design a recognition scheme by considering the relative spatial arrangement of

shape sections [19]. However, our goal is completely different from the aim in [19] and the

related followup works in the sense that they use these ideas to filter out global transfor-

mations in order to capture shape information. On the other hand, we filter out the shape

information in addition to global transformations to capture the articulations.

5.2.1 Semi-local Coordinate Frame

Recall that in the disconnected skeleton, the extracted skeleton is in the form of a set of

disconnected skeleton branches, each corresponding to a salient part of the shape. Moreover,

a positive branch is neighbored by two negative branches. Typically, the start points of the

negative branches as well as all the disconnection locations, are quite stable under bendings

and articulations. It is the tip of the positive branch that moves freely if the branch is denot-

ing a deformable section. Consider the disconnected branches of some shapes as displayed

in Figure 5.21. Four points define three vectors, starting from the disconnection point of

the protrusion branch and ending respectively at the starts of the two indentations and the

protrusion. The third vector can be represented as a linear combination of the remaining

two.

When these vectors are transformed to standard bases, each configuration can be repre-

sented by only a single point, which denotes the local pose of a shape section, which may

or may not articulate or bend. We name this coordinate frame as semi-local coordinate

frame and a point in this coordinate frame as LA coordinate. Note that any measurement

(a) (b) (c)

Figure 5.21: Vector combinations of some skeleton branches.
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in semi-local coordinate frame is deprived of any shape information as well as Euclidean

transformations, as illustrated in Figure 5.22. By separating visual transformations, we can

produce descriptions that are sensitive to any combination of changes in scale, location,

orientation, and articulations in addition to descriptions that are invariant to these changes.

Figure 5.22: Articulation of a section can be described by a single point in the semi-local

coordinate frame.

5.2.2 Articulation Space

From a geometric point of view, shape is defined as the geometric information that remains

when location, scale and rotational effects are filtered out [42]. On the other hand, it is the

shape information that has to be filtered out in order to make articulations explicit. In this

regard, we show that semi-local coordinate frame can provide us such an articulation space

to represent solely articulation information.

Notice that the three vectors used in representing the local pose of a shape section define

a quadrangle. Therefore it is possible to associate each LA coordinate with a set of affine

related quadrangles or equivalently a canonical quadrangle represented in LA coordinates.

The collection of such quadrangles may be considered as an articulation space (Figure 5.23).

Note that this space is qualitatively similar to the triangle shape space of Kendall [42].

In articulation space, similar articulations or bendings yield closer coordinates. Consider

the two human silhouettes shown in Figure 5.24. Since their left arms have similar postures,

the corresponding articulations are represented by two nearby points in LA coordinates. On

the contrary, LA coordinates of right arms are far distant from each other. Notice that a
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Figure 5.23: Articulation space. (a) Each point in the articulation space can be associated

with a quadrangle (b) four quadrangles that fall on x = y line in the articulation space.

horizontal arm will be on x = y line, whose polar representation is (l, π/4) where l is the

dimensionless arm length.

Assuming that the arm is a single rigid body, possible coordinates should fall into a

circle whose radius is l since the size information is already filtered out. One may think

that quadrangles that lie on a constant angle line in the articulation space (such as any two

quadrangles shown in Figure 5.23(b)) can not both belong to the same shape section and

may come to a conclusion that the whole space is not utilized and the articulations lie on a

1D manifold. This is not the case. Figure 5.25(d) shows three different postures of human

(a) (b) (c)

Figure 5.24: LA coordinates. (a) two human silhouettes with different postures (b) LA

coordinates of the left arms (c) LA coordinates of the right arms.
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arm in a single image consisting of two rigid body movements of arm (Figure 5.25(a)-(b)),

and a case where a bending occurs (Figure 5.25(c)). The corresponding LA coordinates of

left arms (which are determined from the disconnected skeleton representations computed

from extracted silhouettes) are given in Figure 5.25(e). Notice that due to initially ignored

joints such as elbows, LA coordinates of a shape section may not always lie on a circular

arc.

(a) (d)

(b)

(c) (e)

Figure 5.25: Articulations and bendings in the articulation space. (a)-(c) three different

postures of a human figure (taken from ira_wave2 video sequence from action-silhouette

database of [10]), the corresponding binary silhouettes and disconnected skeletons extracted

from upper body portions (d) these three postures combined (e) LA coordinate representa-

tions of left arms in the articulation space.

Representing articulations in semi-local coordinate frame deteriorates when the points

defining the coordinate system are nearly colinear, e.g. the head section in Figure 5.26(a).

Even a very small change in the location of the tip of the positive branch might lead to a

significant change in its LA coordinate. Another degenerate situation is encountered when
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the second indentation is not close enough, e.g. the leg sections in Figure 5.26(a). In this

case, the length of one of the vectors defining the coordinate frame becomes too large. Hence

the corresponding semi-local coordinate frame fails to capture the variations of the tip of

protrusion. But note that this latter degenerate case is a side effect of the skeleton extraction

and may be alleviated by modifying it.

(a) (b)

Figure 5.26: Deformable sections of a human shape via its disconnected skeleton. (a) Start-

ing and ending points of skeleton branches (b) quadrangle or triangle representations of

deformable sections.

In these degenerate situations, it is possible to define the local frame using only two

points and the coordinate representation becomes equivalent to that of Bookstein used for

analyzing landmark data [13]. At such object sections the set of quadrangles are replaced

by a set of triangles.

5.2.3 Inferences in Articulation Space

A collection of possible postures or deformations defines either a subset of the articulation

space (static view) or a trajectory in the articulation space (dynamic view). In literature,

articulation priors are considered particularly in applied problems involving motion and

tracking [121] and pose configurations are mostly represented as data determined manifolds

embedded in high dimensional measurement spaces [14, 121, 123].

In this section, we adopt the static view and discuss very basic inferences that can be

made in the articulation space. We restrict our discussion to a set of twenty human shapes

with different postures given in Figure 5.27. The main reason for selecting this data set is
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Figure 5.27: Set of 20 human silhouettes used in the experiments.

that the sections as captured by protrusions and their movements are intuitive and one can

judge relative closeness of two different postures, such as arms being up or down. Secondly,

human figure provides a rich data set since each figure contains five flexible sections to cover

all possible situations that may arise in terms of degeneracies.

Once the deformable shape sections are extracted from disconnected skeletons of the

training set and then mapped to LA coordinates, the distributions of the points can serve

as prior knowledge about possible degrees of articulation in each section. In this study,

we model these distributions as Gaussians although one can also employ a non-parametric

approach.

The collected statistics about part articulations for the shape set S1 = {A,B,C,D,E}

is illustrated in Figure 5.28. The largest ellipse corresponds to the distribution of arm1

coordinates where the postural variability is the highest whereas the very small ellipse shown

in the square window corresponds to the distribution of the head coordinates practically

having no variability at all. The individual plots of each part are provided in Figure 5.29.

One can observe that similar articulations of a part are expressed with nearby points in the

corresponding articulation space. For example, the articulations of arm1 for shapes B and

D and the articulations of leg2 of shapes A and B are close to each other.

When we consider the set S2 = {A, ..,P} and concentrate only on the degrees of articu-

lation in arm1, the distribution of this articulated section becomes as shown in Figure 5.30.

Table 5.3 shows the pairwise similarities between articulations of arm1, each computed with

the similarity measure given in Equation 5.3. Observe that the similar configurations have

relatively high similarity scores.

sim(x,y) =
1

1 + d2(x,y)/ǫ2
(5.3)

where x, y are LA coordinates of two articulations, d(x,y) is the Mahalanobis distance
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between x and y measured using the estimated covariance matrix and ǫ is a scalar which

determines the decay rate of the similarity and is taken as 4 in the following experiments.

Figure 5.28: Collected statistics of each part for shape set S1 = {A,B,C,D,E} in the artic-

ulation space. The ellipses are drawn at 2σ. The largest one corresponds to arm1 and the

small dot corresponds to head.
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Figure 5.29: For the shape set S1 = {A,B,C,D,E}, the distributions of (a) head, (b) arm1,

(c)arm2, (d) leg1 and (e) leg2 in articulation space. Note that the scales are not equal.
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Table 5.3: The pairwise similarities between articulations of arm1 in S2 = {A, ..,P}.

A B C D E F G H I J K L M N O P

A 1.000 0.158 0.249 0.186 0.084 0.236 0.755 0.434 0.337 0.197 0.125 0.928 0.824 0.622 0.468 0.133

B × 1.000 0.161 0.945 0.128 0.797 0.247 0.180 0.455 0.900 0.873 0.160 0.162 0.144 0.103 0.113

C × × 1.000 0.192 0.262 0.212 0.304 0.124 0.175 0.171 0.147 0.203 0.375 0.468 0.358 0.597

D × × × 1.000 0.139 0.919 0.300 0.199 0.519 0.939 0.766 0.186 0.194 0.172 0.120 0.129

E × × × × 1.000 0.131 0.106 0.060 0.091 0.117 0.140 0.076 0.106 0.119 0.099 0.415

F × × × × × 1.000 0.394 0.250 0.673 0.927 0.581 0.237 0.241 0.208 0.141 0.133

G × × × × × × 1.000 0.432 0.529 0.316 0.189 0.707 0.733 0.558 0.352 0.156

H × × × × × × × 1.000 0.479 0.236 0.137 0.564 0.294 0.220 0.170 0.076

I × × × × × × × × 1.000 0.633 0.315 0.372 0.294 0.232 0.159 0.106

J × × × × × × × × × 1.000 0.662 0.203 0.196 0.169 0.118 0.113

K × × × × × × × × × × 1.000 0.125 0.132 0.121 0.088 0.111

L × × × × × × × × × × × 1.000 0.650 0.472 0.361 0.113

M × × × × × × × × × × × × 1.000 0.899 0.638 0.185

N × × × × × × × × × × × × × 1.000 0.790 0.229

O × × × × × × × × × × × × × × 1.000 0.203

P × × × × × × × × × × × × × × × 1.000

Figure 5.30: The distribution of articulations of arm1 in the shape set S2 = {A, ..,P}.

Observe that in semi-local coordinate frame, LA coordinate of arm1 belonging to shape G

(straight arm posture) is close to x = y line.

Next, we consider the set S3 = {A,C,E, L,M,N,O,P} which contains only the shapes

having their arm1s up (Figure 5.31(a)). In this particular case, the past experience is incom-

plete, therefore when a human shape whose arm1 has a different posture is encountered, it

must be considered as impossible. The Mahalanobis distances from arm1 of shapes J (arm

down) and G (horizontal arm) to the distribution reflect this fact with the values 5.008 and

1.791 respectively. We can expand our knowledge about arm1 by inserting the instance F

where arm1 is down. New distribution covers the cases where arm1 is down (Figure 5.31(b)).
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As expected, the distances of configurations for shapes J and G are reduced to 2.638 and

0.923, respectively.

(a) (b)

Figure 5.31: The distributions of articulations of arm1 in the shape sets (a) S3 =

{A,C,E, L,M,N,O,P} (b) S3 = {A,C,E,F, L,M,N,O,P}. Notice the change in the distri-

bution when shape F (arm1 down) is added.

Similar inferences are also valid for the degenerate cases. When the articulation distri-

bution of leg1 for the shape set S4 = {A,C,D,E,F,G,Q,R,S} is considered, the articulation

of shape T can be regarded as impossible (see Figure 5.32) since the Mahalanobis distance

from it to the distribution is very high (6.290) compared to the others.

Figure 5.32: The distribution of articulation of leg1 in the set S4 = {A,C,D,E,F,G,Q,R,S}.

The articulation of shape T is far distant from the distribution.
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5.2.4 Incorporating Contextual Sensitivity to Articulations into Skeletal

Shape Matching

We now utilize the developed ideas to incorporate contextual sensitivity to articulations into

the skeletal shape matching method of Aslan and Tari [3]. But note that our approach is in

fact independent of the matching method. However, it depends on the disconnected skeleton

representation in order to construct the semi-local coordinate frame. Recall that in the

matching method of Aslan and Tari, the total similarity of two shapes is determined by the

weighted sum of matched branch pairs, in which the weights are the normalized lengths of the

branches (Equation 4.1). As a refinement step, we propose to reevaluate the overall matching

score by integrating the measurements in the articulation space as additional weights. But

as in Section 5.1.3, it is sufficient to revise only the weights of the positive skeleton branches,

because these branches actually represent the deformable sections of shapes.

Consider the matching between shapes A and T (Figure 5.33). In the syntactic level,

these two shapes are found to be similar with a score of 0.826. However, when we take

into consideration the prior knowledge about likely articulations obtained from the set S5 =

{A, ..,S}, this score is reduced to 0.458. This updated matching score reflects the difference

in the posture of leg1s of the given shapes.

Figure 5.33: Matching result of two human shapes. The original matching score is 0.826 but

it reduces to 0.458 in the context of articulations in S5 = {A, ..,S}.

Figure 5.34 illustrates the effect of contextual sensitivity to articulations on some example

queries when the prior knowledge is expressed with the shape set S5. For each query, we list

the five best matches with and without contextual sensitivity. See how the five best matches

to shape G are re-ordered. Also notice the drastic change in the best match list of shape A.
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Query 5 best matches without feedback 5 best matches without feedback

A F D B C R L M G B R

0.975 0.962 0.940 0.917 0.890 0.582 0.559 0.550 0.532 0.515

G M I K J L M L I J K

0.999 0.996 0.995 0.994 0.991 0.945 0.932 0.901 0.869 0.849

Figure 5.34: Some query results with and without contextual sensitivity.

5.3 Summary and Discussions

In this chapter, the effects of context, in particular the function of semantic category knowl-

edge, in shape dissimilarity computation is investigated. In doing so, we adopt the interpre-

tation of Tversky about the asymmetric nature of human (dis)similarity judgements [113],

in which different roles are assigned to the shapes in consideration and extend or refine the

shape matching methods of Aslan and Tari [3] and Baseski [7] accordingly. In the proposed

versions of these algorithms, a query shape is being compared with a database shape that be-

longs to a familiar category. Hence, the knowledge about the category of the database shape

guides the dissimilarity computation. Note that in shape matching literature, the classic

view is to define shape (dis)similarity by means of metrics, whereas in our formulation, the

resulting (dis)similarity measures are asymmetric due to influence of category knowledge.

Our motivation in extending the tree edit distance-based algorithm of Baseski [7] is to

utilize the extra information inferred from all the members of the category of which the

database shape in comparison belongs. Availability of the knowledge about the category of

the database shape allows us both to modify the importance of extracted skeleton branches

and the distances between attributes in the matching process. Early experimental results

demonstrate that incorporating category knowledge into matching drastically improve the

performance of the originating matching method.

The key to our category-influenced matching algorithm is the category tree data structure

which we construct as a union of shape trees belonging to the same category. In the context

of skeletal shape matching, forming a union of tree representations was previously addressed

by Torsello and Hancock [109]. However, in contrast to their way of utilizing tree unions that
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they embed shock trees into a vector space, we utilize category trees in order to provide a

context for each primitive of a database shape. Moreover, unlike the case in forming the union

shock trees, our constructions naturally result in tree structures as a consequence of depth-1

property of shape trees. In fact, category trees are also depth-1 trees. Recently, Torsello and

Hancock utilized tree unions in an unsupervised setting to learn shape categories [111]. In

Chapter 6, we will make use of category trees in a supervised shape categorization framework.

As noted before in Chapter 2, disconnected skeleton representation does not carry any

information about the boundary details and in this regard, we propose to obtain approxi-

mate radius functions from TSP surfaces to enrich the disconnected skeleton descriptions. In

Section 5.1.5, we make use of these enriched descriptions to incorporate boundary similarity

into our category-influenced matching method. We first employed the approach in [127] and

model a low-dimensional linear deformation space for each positive branch which appears

in a shape category and then we develop a refinement procedure to revise the overall dis-

similarity score by considering the boundary similarity of matched positive branches in the

corresponding deformation spaces.

The widespread use of skeletal representations in visual shape recognition lies mostly

in the fact that they are insensitive to articulation of parts. However, as demonstrated

in [1], insensitivity to articulations becomes undesired in some circumstances which actually

involves prior knowledge about the degree of possible articulations to come up with the cor-

rect matching result. This contextual sensitivity to articulations raises another need for the

incorporation of category knowledge into shape matching process. In this regard, we propose

a novel part-centered coordinate frame constructed via the disconnected skeleton represen-

tation which provides a representation space for making inferences about articulations, in

which similar articulations or bendings yield closer coordinates. Using illustrative examples,

we demonstrated that it is possible to build articulation priors and incorporate them to the

matching method of Aslan and Tari [3] to arrive at an enriched skeletal matching scheme.
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CHAPTER 6

SIMILARITY-BASED CLASSIFICATION

OF SHAPES USING DISCONNECTED

SKELETONS

Classification (or categorization) is among the most primary cognitive processes, described

as the ability to group a very large (or possibly infinite) number of similar objects into a

relatively small number of classes (or categories) and to identify a novel object as a member

of a particular class. From the perspective of information retrieval, having a classification

mechanism is vital because organizing knowledge in a structured way offers efficient and

economical use of limited resources when reasoning about a novel object. Moreover, the

knowledge about the category of an object enables making inferences about unobserved

characteristics of that object [46, 77, 82]. Lastly, it is important to note that the notion of

similarity plays a central role in classification, especially in explaining generalization from

the knowledge about previously encountered objects of the same category.

Visual object classification is one of the fundamental tasks of both human and computer

vision systems. This ability, as in recognizing a novel object, requires the integration of

information about the properties of the object such as shape, size, color, texture. In this

regard, it is widely believed that shape information provides an informative representation

that is invariant to changes in the viewpoint that objects can be identified and classified

solely based on their shapes (Figure 6.1) [62]. As first demonstrated by Landau and her

colleagues [49], psychological experiments suggest that infants have a tendency to name

objects based on the resemblance in their shapes rather than other perceptual properties

like size, color or texture, and this phenomenon is called shape bias.

In this chapter, we start with some theoretical preliminaries on classification and sim-
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Figure 6.1: Objects can be easily classified solely based on their shapes.

ilarity. Next, we review some skeleton based shape classification methods proposed in the

literature. In the following section, we present our shape classification algorithm, which is

based on disconnected skeleton representation of Aslan and Tari [3].

6.1 Classification and Similarity

6.1.1 Supervised vs. Unsupervised Classification

In literature, classification studies can be divided into two broad groups, supervised and

unsupervised classification, based on two different strategies used in learning. In supervised

category learning, a subject or a machine learns to discriminate between different categories

while members of the categories are repeatedly provided with a category label and feedback

is given accordingly about their classification accuracy [63, 66, 45, 23]. In computational

terms, supervised learning approach can be interpreted as a function approximation process

with a good generalization capability [23, 99, 116]. On the other hand, in unsupervised

category learning, no explicit feedback or even no information about existing categories is

provided, and the objective of the subject or the machine is to find out the hidden category

structure by himself or itself.

6.1.2 Theoretical Approaches to Classification

Classification studies in the literature can be grouped as the classical, prototype and exemplar

approaches based on how category knowledge is represented [100]:

In the classical approach or so-called the Aristotelian view, it is believed that every

category is constructed by a set of essential features, each of which is necessary and sufficient

in defining that particular category (e.g., the defining properties of bird category can be listed

as can fly, has feathers, has wings and can sing). According to this line of explanation,

the boundaries of categories are all well-defined that a novel object is a member of a category
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if and only if it satisfies all the characteristics of that category. Hence, there is no notion of

a membership rating. In contrast to other two approaches, each member of a category is an

equally representative example of that category.

In the prototype approach, the concept of prototype plays the central role in categorization

where each category is a fuzzy set that is constructed as groupings of objects similar to

the prototype of that category [82]. A prototype can be considered as either a summary

representation formed by abstracting over previously encountered examples of a category

(e.g. suppose instances of a category are represented with n-dimensional feature vectors then

a prototype of the category can be easily formed by averaging over all these feature vectors) or

just a typical example of the category (e.g. think about a robin or a sparrow representing the

bird category). When a novel object is encountered, classification is performed by comparing

it with the prototypes of categories. The instance is then assigned to the most similar

category if the corresponding similarity is found to be greater than a threshold value. This

kind of decision making process can utilize Luce’s well-known Choice Rule [59, 60]: Let

S(x,A) be the similarity between the newly encountered instance x and the category A, the

probability of membership of x to category A is calculated as:

P (x ∈ A) =
S(x,A)

S(x,A) +
∑

B 6=A

S(x,B)
(6.1)

In the exemplar approach, each category is believed to be constructed by not as a single

prototype, but as a collection of exemplars, referring to the memory traces of some previously

encountered examples of a category, and according to this view, classification depends on the

similarities to the stored exemplars. For example, consider the following simple classification

procedure. In classifying a newly encountered object, for each category, we sum up all the

similarities between the novel object and the exemplars of the category (Equation 6.2).

Following to that, the object is assigned to the category having the greatest cumulative

similarity value. Here, Luce’s choice rule can also be used, as in [63, 66].

S(x,A) =
∑

y∈A

S(x, y) (6.2)

The main difference between prototype and exemplar approaches to classification lies in

how they define classification: whether classification relies on an abstraction over previously

encountered objects, or it is a function of these stored examples [83]. In fact, these two
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approaches can be considered as the two extremes in a continuum. When only the most

typical exemplar of a category defines the category, the exemplar-based model becomes

equivalent to a prototype-based one. Similarly, the exemplars defining a category might

not refer to actual copies of encountered examples but they might involve abstraction. In

short, one can end up with a different classification model by combining these two alternative

approaches, as demonstrated in [66, 45, 117].

6.1.3 Models of Similarity

As clearly discussed above, the notion of similarity is at the heart of classification models

regardless of the approach employed. We now review two major models of similarity, which

are geometric, feature-based models.

Geometric models of similarity treat objects as points in a multidimensional perceptual

space where the similarity between two objects is inversely related to the distance between

their representations in the perceptual space:

S(x, y) ∝ D(x, y)−1 where D(x, y) =

(

n
∑

i=1

|xi − yi|
p

)1/p

(6.3)

where n denotes the number of features and p is a positive real number.

Note that the underlying assumption behind geometric models is that similarity judg-

ments satisfy all three metric axioms, which are minimality, symmetry and triangle inequality.

We mentioned in the beginning of Chapter 5 that this is in fact a false proposition though.

Feature-based models of similarity are set theoretic models where each object is repre-

sented as a set of features and the similarity between two objects is a function of their

common and distinguishing features. An early and well-known feature-based model is the

Contrast Model of Tversky [113] in which the similarity is calculated with the following linear

combination formula:

S(x, y) = af(x ∩ y) − bf(x − y) − cf(y − x) (6.4)

where (x ∩ y) is the set of features shared by x and y, (x − y) and (x − y) are the disjoint

sets of distinctive features of x and y, respectively, a, b and c are positive real numbers, and

the function f is mostly defined as an additive function.

In [113], Tversky suggested that the rationale behind the non-metric nature of human

similarity judgments was the context of comparison and as we investigated in Chapter 5, in

the setting of his similarity model, he proposed that context might influence the saliency of

features.
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Comparing objects having a hierarchical structure (e.g. strings, shapes, scenes) is chal-

lenging for both geometric or feature-based models of similarity. In this regard, there are

some alternative models proposed in the literature, each of which depends on finding cor-

respondences between parts of objects in comparison. In alignment-based models of simi-

larity [34], common features belonging to matched parts affect the similarity computation

more, as compared to feature-based models. However, note that this leads to a chicken

and egg dilemma since matching also depends on features common to parts of objects. In

transformation-based models of similarity [37], the comparison of two objects involves trans-

forming one into another and the similarity value is inversely proportional to the total cost

of transformation operations.

6.1.4 Generalization

Theoretical approaches to classification, especially exemplar approaches, rely on similarity

to account for generalization from past experience to classify novel instances, and in this

regard, it is important to note that the generalization capability of a classification method

is critical to its performance.

In [93], Shepard formulated what he referred to as universal law of generalization, ac-

cording to which the probability of generalization falls of exponentially with the perceptual

distance between a previously encountered example and the novel one, or in other words sim-

ilarity is an exponential decay function of distance in perceptual space. In [108], Tenenbaum

and Griffiths presented a Bayesian-based extension of Shepard’s work to concept learning

that could explain generalization from multiple examples. Morever, the authors showed that

their proposed generalization function is closely related to Tversky’s set theoretic approach

to similarity [113].

6.2 Related Works On Shape Classification Using Skeletons

As noted before, shape information is an important clue for visual perception as objects can

be recognized and classified solely based on their shapes. However, in computational terms,

visual shape recognition and classification is rather challenging because objects show great

variability in their shapes due to visual transformations such as articulation and deformation

of parts, occlusion and changes in viewpoint. Shape skeletons, in spite of their instability

issues, proved themselves more effective than boundary based shape representations since

they can capture intuitive part structure of shapes.
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In Chapters 3-5, we investigated the use of skeletons for shape recognition, where we

first reviewed some of the existing skeleton based shape matching methods [1, 7, 32, 61, 74,

75, 90, 98, 110, 127] and then developed a number of ways to incorporate semantic category

knowledge into the matching process in order to improve the performance of the methods

of Aslan and Tari [3] and Baseski [7]. In this section, we investigate the use of skeletons

for shape classification. Despite their common use in shape recognition, the potential of

shape skeletons for shape classification has not been investigated much. This is partly

because the structure of skeletons, i.e. the interrelationships between skeleton branches, are

conventionally represented by graphs or trees, and in this regard, the variety of classification

tools proposed in structural pattern recognition are not as diverse as those available in

statistical pattern recognition.

The most common approach in structural pattern recognition is to use k-nearest neighbor

(kNN) method [23]. However, despite its conceptual simplicity and asymptotic behavior

(when k = 1 and the size of training data approaches to infinity, the error rate of kNN

classifier is bounded by twice the Bayes error rate), classifying a query shape based on a

naive kNN classifier involves first computing the distances between the skeleton of the query

shape and all the skeletons of database shapes and hence it is computationally inefficient.

To reduce this computational burden, a variety of indexing studies have been proposed, each

of which attempt to organize a metric space for fast searching (For a survey, see [20]). The

typical approach employed in these studies is to eliminate certain distance computations

using triangle inequality wherein the database shapes are clustered into groups based on

their distances to some prototypical objects. However, these methods face with the curse

of dimensionality, which means their performance deteriorate as the dimensionality of the

metric space increases. In this regard, an alternative approach is to encode the topological

structure of graphs into low dimensional vector spaces [22, 94].

In the following sections, we will review some skeleton based shape classification methods

proposed in the literature. There are some conceptual issues worth mentioning about these

methods. First, all of these are supervised classification methods, i.e. they both involve

a training phase. Although there are some interesting unsupervised methods applied on

skeleton based shape classification, e.g. [111], they are omitted here simply because our

classification method, which will be presented in the next section, is also a supervised method.

Next, all of the reviewed methods (may be except the method of Sebastian et al. [88]) are

specifically proposed for classification of shapes based on skeletons, meaning that they are

not general methods, and depend on the underlying skeletal representation of shapes.
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6.2.1 FORMS [127]

In Section 3.1, we reviewed skeleton based shape matching method of Zhu and Yuille [127].

Recall that the approach employed in this study differs from the others in that recognition

of a shape is carried via bidirectional (bottom-up and top-down) procedure to cope with the

instabilities of shape skeleton. That is, the skeleton of the query shape is initially extracted

in a bottom-up manner, segmented into parts and expressed as a graph. But the extracted

skeleton is subject to change based on the information coming from the matching process.

In the matching process, the skeleton graphs of the query and the database shapes are

not directly compared but instead they are first matched against a skeleton model associated

with the database shape in comparison and their extracted skeletons are revised according to

the matching residue. This skeleton model is a prototypical skeleton graph which represents

a common skeleton structure for a category of shapes and in addition provides for each

shape part a low dimensional representation space, which is formed by applying Principle

Component Analysis (PCA) on the observed deformations. Once the query and the database

shapes are matched with the associated skeleton model, the distance between each matched

pair of parts are computed as in the corresponding PCA subspace. However, note that the

distance computation also depends on some other measurable properties such as the area,

the radius of the maximum circles of joint points.

As clearly seen from the above description, the approach of Zhu and Yuille for skeleton

based shape matching in fact involves a phase that can be utilized as a prototype based clas-

sification method, as demonstrated in [127]. Remember that each shape part is represented

as a set of skeletal attributes, which are the length (for worms), the angle specifying the

angular region in which the deformations occur (for circles), its area and the radius of the

maximum circles of joint points. The only difference in utilizing FORMS for shape classi-

fication is that the query shape is matched with a prototypical shape formed based on the

skeleton model of the shape category where each part is represented by the average values

of the corresponding skeletal attributes in the category.

As we emphasized in Section 3.1, the problem with this approach is that its success is

mainly depends on how well the skeleton of the query shape can be extracted in terms of the

specified generic shape primitives since these primitives are designed especially to represent

articulated or deformable objects.
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6.2.2 The Method of Sebastian et al. [88]

In [88], Sebastian et al. presented an exemplar based approach for shape classification,

which is built upon shock graph matching of shapes [87] . It is essential to note that, as

the title of the paper clearly indicates, the main focus of this study is not classification

but to investigate several indexing strategies for fast retrieval of shapes, and in this regard,

the proposed classification method is interpreted as an indexing method as well. That is,

the function of the classification method is to eliminate unrelated shape comparisons in a

retrieval task. The proposed method is explored only in terms of its indexing performance,

but the details of exemplar selection process are missing in the text.

As noted above, the method of Sebastian et al. is developed as an exemplar based method,

wherein each shape category is represented with a small set of representative members of

that category. More formally, let Q be a query shape, and N be the number of categories

in the database, then each category Ci, i = 1 . . . , N , is expressed by the set Ei = {Ek
i |k =

1, . . . , Ni} where Ek
i is one among Ni exemplars of the category Ci.

Given a query shape Q, the proposed classification method works as follows. First, the

similarities between the query shape Q and the exemplars are computed using Equation 6.5,

where d(Q,Ek
i ) corresponds to the distance between Q and Ek

i obtained with the edit dis-

tance based method in [87]. Followingly, a fuzzy membership value is assigned to Q for each

category Ci as the sum of similarities of the query to all exemplars of Ci and the closest

categories are identified accordingly. In regard to indexing, the cost of computing the edit

distances between the query and the exemplars is much lower than matching the query shape

against all of the shapes in database.

S(Q,Ek
i ) = exp











−
d(Q,Ek

i )

min
i=1,...,N
k=1,...,Ni

d(Q,Ek
i )











(6.5)

ν(Q,Ci) =
∑

k=1,...,Ni

S(Q,Ek
i ) (6.6)

In the method of Sebastian et al., unlike the case in FORMS [127], each shape category

is represented with a small set of typical examples of the shape category, not just a single

prototype. This brings an advantage over the approach of Zhu and Yuille in that a single

prototype model might be incapable of representing a shape category if the category is very

diverse in itself. Moreover, the method seems scalable to larger sets. But it is important to
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note that the authors did not discuss the selection process of the optimal exemplars, which

is in fact the most challenging issue for exemplar based approaches.

6.2.3 The Method of Yang et al. [122]

In [122], Yang et al. presented a skeleton based Bayesian framework for shape classification.

The proposed classification method strongly relies on two previous studies. The first one

is the skeleton pruning work of Bai et al. [6], which is based on contour partitioning via

Discrete Curve Evolution [6] and the second one is the shape classification method of Sun

an Super [104], which learns a Bayesian classifier to classify each shape category from the

distributions of the boundary segments extracted from the database shapes that belong to

that category.

Yang et al. utilize the pruning algorithm proposed in [6] to obtain stable descriptions of

extracted skeletons. That is, as in the matching method of Bai et al. [5], a skeleton is not

represented by its topological structure, but by the set of the shortest paths between every

pair of end points of its branches, each of which is described with the corresponding radius

functions, i.e. the sequence of radii of the maximal circles at the successive skeleton points

on the path (Figure 3.18).

To classify shapes based on the proposed skeleton representation, the authors employed

the approach in [122], where in the place of contour segments, they use the shortest skeleton

paths in learning a Bayesian classifier for each shape category. Assuming that all paths

within a shape category are equally probable, the probability of a shape belonging to a

category is calculated as the sum of posterior probabilities of all the paths of the query

shapes with the distributions of all paths in the category.

As the authors themselves reported, the main drawback of this method lies in the as-

sumption that radius functions of the shortest skeleton paths of the query shape should

be close to the ones in the category it belongs since the dissimilarity between two skeleton

paths depends solely on the differences in the corresponding radius functions. Moreover,

the method does not compute the correspondences between the skeleton paths of the query

shape and the shape category. The lack of this matching information is a limitation that

one cannot update the prior knowledge once the input shape is classified.
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6.3 Similarity-Based Classification of Shapes using Disconnected

Skeletons

In the previous section, we have reviewed some shape classification methods which are all

based on skeletal representations of shapes. Among these studies, the method of Sebastian et

al. [88] is conceptually different than the other two classification methods, (i.e. the methods

of Zhu and Yuille [127] and Yang et al. [122]) as it is based on an exemplar approach.

This provides robustness against outlier shapes within a category. On the other hand, in

contrast to the case in other approaches, Sebastian et al. specifically didn’t mention any

details about the training phase, though the selection process of exemplar shapes to represent

shape categories is a challenging problem in itself. In this section, keeping these issues in

mind, we propose an novel shape classification algorithm which is based on disconnected

skeleton representation of Aslan and Tari [3].

Recall that in Section 5.1.3, where we presented our category-influenced shape matching

method, we formulated a straightforward procedure to match a shape tree with a category

tree by exploiting the structural equivalence of shape and category trees. Although in the

past we have utilized that procedure to form category trees in a dynamic way, it can also

be considered as a naive prototype-based shape classification method, as we demonstrated

in [8]. That is, one can classify a given shape by matching its shape tree against all of

the category trees, each of which represents a specific shape category, and then assigning

the category of the closest one. In the next section, we review this procedure in detail by

investigating its use as a classification scheme.

In Section 6.3.2, we present a novel classification method, which is founded on the ap-

proach mentioned above. More specifically, we make a key change in the matching procedure

and introduce additional mechanisms to come up with a more complete and robust classifica-

tion method. In short, these contributions can be listed as follows. First, we replace the cost

function of change operation with a new one, which is based on a generalization function

proposed by Tenenbaum and Griffiths [108]. Second, we devise a recursive clustering strat-

egy to form multiple category trees for each shape category so that our classification method

doesn’t suffer from the outlier shapes in a category. Finally, we employ a similarity-based

representation paradigm [17, 24, 25, 26, 71] in which the computed distances to all category

trees are embedded into a similarity space wherein the final decision is made.
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6.3.1 Shape Classification By Matching Shape Trees with Category Trees

In Section 5.1.3, the structural equivalence of shape and category trees (i.e. each is a

depth-1 tree) helped us to formulate a simple procedure to compare instances of these two

structures. The proposed matching process is based on the category-influenced matching

method we presented in Section 5.1 and can be summarized as follows:

Let T1 be the shape tree in comparison with the category tree TC. In order to compare

T1 with TC, we construct a mean shape tree TC from TC on the fly. It serves as a hypothetical

shape tree representing the structure of TC , i.e. it has equal number of nodes with TC, each

of which holds nothing but the ordinary average values of the attributes collected from the

shape trees associated with TC . Hence, since a mean shape tree constructed in this way is

indistinguishable from a regular shape tree, one can directly apply the category-influenced

matching algorithm to determine the correspondences between a shape tree and a category.

Note that at the time of matching, TC is associated with TC , just like the shape trees of

database shapes used in the formation of TC , but this association has nothing to do with the

content of TC and released after the matching.

Previously, we have utilized this matching procedure in dynamically constructing a cate-

gory tree where the shape trees in the given set are progressively matched with the category

tree in consideration following the steps described above. Apart from this use, the same

procedure can also be employed as a straightforward shape classification method as follows.

Observe that the mean shape tree that is formed from a specific category tree in fact func-

tions as a prototypical representation of the corresponding shape category. This suggests

that a shape can be easily classified by using 1-nearest neighbor (1NN) approach. That is,

the shape tree of the query shape is matched against all the category trees formed for each

shape category in the database, and finally, it is classified as a member of the most similar

category.

The main problem with the above classification scheme is that only a single category tree

is formed for each shape category so there is an underlying assumption that the database

shapes of the same category should all contain some common substructures in their shape

tree descriptions. Hence, if there exist some outlier shapes or some subcategories within a

category, the resulting category tree might contain misleading correspondences. To overcome

this drawback the obvious solution is to form multiple category tree to represent a shape

category. In Section 6.3.2, we present such a modification, in which we incorporate a recursive

clustering step into the formation process of category trees.
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6.3.2 The Proposed Classification Method

In the previous section, we have discussed a simple shape classification approach, which is

based on the matching procedure for comparing a shape tree with a category tree. That is,

to determine the category of a input shape, its shape tree is matched with each category

tree, which is formed to represent a single shape category. Hence, the proposed method

can be considered as a prototype-based classification algorithm. In this section, we built on

this method, but employ an exemplar based approach instead to enhance its classification

capability. As noted earlier, our newly proposed classification scheme involves three key

changes.

Firstly, we replace the cost function of change operation with a new one, which is more

appropriate for use in an exemplar based approach. Recall that in the original version, the

skeletal attributes of the query shape is compared with the average attribute values of the

category members, where, as described in Section 5.1.2, this comparison is influenced by

the categorical context. Based on a generalization function proposed by Tenenbaum and

Griffiths [108], our alternative cost function does not compute a difference score between

the attributes of the query shape and the average attribute values but, instead, computes a

membership value by considering the whole set of attributes.

Secondly, we incorporate a clustering mechanism into the procedure for forming category

trees so that multiple category trees are formed for each shape category in a recursive manner.

In this way, as we discuss previously, our new classification scheme doesn’t suffer from the

outlier shapes or a subcategory structure, which may exist in a category. In short, the

proposed clustering strategy make use of both the pairwise distances between the category

members and their distances to the corresponding category tree.

Lastly, we combine our previous classification strategy with a similarity-based approach

to come up with a more effective classification scheme. The whole idea of our category

influenced matching is to incorporate within category knowledge into distance computation.

By further employing a similarity-based approach, we rise a level up in the context and

model the between-category differences as well. That is, the computed distances to all

category trees are embedded into a similarity space and a Support Vector Machine (SVM)

classifier [116, 84] for each shape category is trained in this representation space.

An overview of our newly proposed classification scheme is given in Figure 6.2. Hav-

ing a three-layered structure, the input to the system is the shape tree obtained from the

disconnected skeleton of the query shape. The units in the hidden layer, which we refer
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to as pseudo-exemplar units, are associated with the category trees, representing the shape

categories in the database. Each of these returns a similarity value between 0 and 1, which

is computed as the negative exponential of the edit-distance between the input shape tree

and the corresponding category tree. The units in the hidden layer are fully connected to

the nodes in the output layer, each of which corresponds to a specific shape category and

outputs a membership score for the input shape. The weights of the connections between

the hidden layer and the output layer are learned using SVMs based on a training set of

previously categorized shapes (i.e. the database shapes used in the formation of shape trees).

It is important to note that the proposed framework is an exemplar model since we

form multiple category trees for each shape category. However, when the number of pseudo-

exemplar units in the hidden layer is equal to the number of shape categories in the database

Figure 6.2: Overview of the proposed classification framework.
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(i.e. a single category tree is formed for each category, as in our previous approach), the

framework can be considered a prototype-based method. Moreover, the organization of our

classification framework resembles a Radial Basis Function (RBF) network with Gaussian

kernels. As demonstrated by Poggio et al., these networks are biologically plausible and

effective cognitive models of recognition and generalization [79, 78]. The definition of our

framework differs from the definition of RBFs in two terms. First, the input to the system is

not a vectorial representation but a structural representation. Second, the pseudo-exemplar

units in our framework plays the role of Gaussian functions, returning a similarity value

based on the tree-edit distances.

A New Cost Function for change Operation

In comparing the input shape with the category trees by using the category-influenced match-

ing method, we utilize a new cost function for change operation, which depends on the gen-

eralization function proposed by Tenenbaum and Griffiths [108], instead of the generic cost

function given in Figure 5.4. Based on a Bayesian formulation, this generalization function

is an extension of Shepard’s Universal Law of Generalization [93] to the cases of multiple ex-

amples and moreover, the function is also closely related to Tversky’s set theoretic approach

to similarity [113].

Let Tquery be the input shape tree to be compared with the category tree TC and let

TC be the corresponding mean shape tree. Suppose B and u denote nodes in TC and Tquery,

respectively, and X =
{

x(1), x(2), . . . , x(freq(B))
}

be the set of corresponding nodes associated

with the node B. The following generalization function gB(u) is derived by approximating

the conditional probability p(u ∈ B|X ) [108] where u corresponds to a leaf node in Tquery:

gB(u) =
exp

(

−
(

d̃r/σr + d̃θ/σθ + d̃l/σl

))

[(

1 + d̃r

(rmax−rmin)

)(

1 + d̃θ

(θmax−θmin)

)(

1 + d̃l

(lmax−lmin)

)]freq(B)−1
(6.7)

where the value of d̃i equals to 0 if u falls inside the observed range of corresponding attribute

space spanned by X . If this is not the case, its value is determined as the distance from u

to the nearest example in X along the corresponding attribute space. σr, σθ and σl are the

scaling parameters which are taken as σr = 1, σθ = 2π and σl = 2 in the experiments.

When the skeletal attributes specified in u moves away from the observed ranges for r, θ

and l, similarity decreases based on an exponential decay function. Adaptive behavior of the

generalization function with an increasing number of examples is demonstrated in Figure 6.3.

For illustrative purposes we neglect the length attribute l and describe the effect in 2D, based
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Figure 6.3: Adaptive behavior of generalization function with increasing number of examples.

(a) Five examples from crocodile category (b)-(c) A squirrel and a crocodile shape used

as query shapes (d)-(f) The behavior of the generalization function associated with the

positive local symmetry branch corresponding the back leg in the crocodile category, when

hypothesized from three, four and five examples respectively. The encountered examples are

denoted with circular spots whereas triangle and square denote respective skeleton branches

of the squirrel and the crocodile shapes. Contours show the value of generalization function in

increments of 0.1 where thick ones correspond to p(u ∈ B |X ) = 0.5. For illustrative purposes

length attribute l is neglected and only the location attributes r and θ are considered.

on only r and θ attributes corresponding the location of disconnection points. As the number

of encountered examples increases, the observed range enlarges to cover all examples and

the degree of generalization is adjusted accordingly, describing the characteristics of the

corresponding skeleton branch in the category more precisely.

Following this generalization function, we define the new cost function for change oper-

ation used in comparing a shape tree with a category tree as follows:

change∗(u,B) = 1 − gB(u) (6.8)

Multiple Category Trees For Each Shape Category

As we mentioned previously, our former classification approach is prone to outlier shapes

or subcategories in a category, and the reason for that is we form a single category tree
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for each shape category in the database. When a category contains some outlier shapes or

has two or more subcategories, the resulting category tree might have a wrong structure

and contain misleading associations between the category members. Evidently, this might

degrade the performance of the category-influenced matching when used in a classification

task. In order to overcome this drawback in our new classification scheme, we incorporate

a recursive clustering phase into the formation process of category trees so that multiple

category trees are formed for each shape category. This also makes our new framework an

exemplar-based classification method.

Recall the structure of our new classification scheme given in Figure 6.2 that once the cat-

egory trees are formed, they provide us a representation set for similarity-based classifiers. In

this sense, formation process of category trees share conceptual similarity with the selection

strategies utilized in similarity-based classification studies, e.g. [21, 70, 72, 102, 124], which

are used for choosing a reduced set of representative examples from a set of objects. However,

note the difference that forming a category tree is more like generating a pseudo-exemplar

than selecting actual category members to represent a category of shapes.

The revised version of the procedure for forming category trees involves an additional

recursive clustering phase in order to construct multiple category tree for a shape category.

The steps of the procedure is as follows. Given a set of shape trees T, a temporary category

tree TC is formed either by using the static or dynamic formation procedure. Next, similar

to approach in [17], the most representative member of the set, which is denoted by Tmedian,

is identified using Equation 6.9 as the shape tree that is most closest to TC . Consequently, T

is partitioned into two groups according to the measure S(T ) given in Equation 6.10, which

simply returns a similarity value between 0 and 1. The shape trees having S(T ) > 0.5 are

removed from original set T and used to form a new category tree representing a subcategory

structure and this procedure is repeated recursively until T contains no shape trees. These

steps are summarized in Algorithm 1.

Tmedian = arg max
T ∈T

n
∑

i=1

exp (−dist(T ,TC)) (6.9)

S(T ) = exp









−sim(T ,Tmedian) ×
∑

Ti∈T

Ti 6=T

(

sim(T ,Ti) − sim(Tmedian,Ti)

)2









(6.10)

where sim(T1,T2) = exp (−dist(T1,T2)).

Figure 6.4 shows the clustering results of the two different shape sets, which are obtained

while forming the category trees by using the revised formation procedure. For each of these
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Figure 6.4: Some clustering results obtained while forming multiple category trees for the

given set of shapes. While the top row shows the given shape sets, the bottom row presents

the clustered shapes used in the formation of multiple category trees for the corresponding

category.

shape sets, the procedure obtains two partitions in the end, and, accordingly, two separate

category trees are formed for each one of the clusters.

Similarity-Based Classification of Shapes Using Support Vector Machines

In classical approaches to pattern recognition, objects are recognized or in terms of their

inherent characteristic features, and hence the concept of feature is at the heart of the

proposed techniques. To be more specific, in statistical pattern recognition, objects are

expressed as a vector in a feature space, where each dimension represents a measurement

of feature. In structural pattern recognition, however, objects are expressed by a syntactic

scheme (e.g. a string, a graph or a tree), which represents the interrelationships between the

structural features (primitives) of objects. A major challenge common to all recognition or

classification systems, either based on the statistical or structural approaches, is the feature

selection problem, i.e. determining an optimal set of essential features. This issue can be

resolved only if one has domain knowledge about the problem at hand. However, in most of

the real-world problems, gathering this information might be hard or even impossible.

Recently, similarity-based approaches begins to gain popularity in pattern recognition

community. In this paradigm shift, as opposed to the traditional approaches, objects are

represented by distances or similarities to some reference objects, not by features that are

hard to choose [25, 24, 71, 26, 17]. Hence, similarity-based approaches require no domain-

specific knowledge other than an distance or a similarity measure. Moreover, they have

vital significance in structural pattern recognition, as they provide a natural embedding to

representation spaces in which the learning tools already present in the statistical pattern

recognition can be used to cluster or classify structurally represented object (e.g., see [17,
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109]). In this regard, they bring together the advantages of both the structural and the

statistical pattern recognition, i.e. structural approaches provide richer representation of

objects whereas the learning tools proposed in statistical pattern recognition literature are

much diverse than those exist in structural pattern recognition.

In our classification framework, the reference set used for defining a similarity space is

comprised of the set of the category trees which are constructed using the procedure in 6.3.2.

Denoting this reference set by R =
{

TC1
, TC2

, . . . TCM

}

, where m is the total number of

category trees formed for N number of categories (M ≥ N), a given query shape can be

embedded as a point in the similarity space by taking negative exponential of the vector of

distances between the shape tree representation of a shape and the existing category trees:

S(Tquery,R) = exp
(

−
(

d(Tquery,TC1
), d(Tquery,TC2

), . . . , d(Tquery,TCm)
)

)

(6.11)

Algorithm 1 Recursively Forming Multiple Category Trees for Each Shape Category
Require: A set of shape trees T = {T1,T2, . . . ,Tn}, |T| > 0

1: repeat

2: n ⇐ |T|

3: Construct a temporary category tree TC for the set of shape trees T

4: Tmedian ⇐ arg max
T ∈T

n
∑

i=1

sim(Ti,TC) {where sim(T1,T2) = exp(−d(T1,T2)}

5: {Partitition T into two subsets based on the distances to Tmedian}

6: T∗ ⇐ ∅

7: for i = 0 to n do

8: {Iterate over all the shape trees in T}

9: S(Ti) ⇐ exp









−sim(Ti,Tmedian) ×
∑

Tj∈T

Tj 6=Ti

(

sim(Ti,Tj) − sim(Tmedian,Tj)

)2









10: if S(Ti) > 0.5 then

11: T∗ ⇐ T∗⋃{Ti}

12: else

13: T ⇐ T − {Ti}

14: end if

15: end for

16: Construct the category tree for the set of shape trees T∗, T∗ ⊆ T

17: until T = ∅
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In this similarity space, the simplest classification strategy, which does not involve any

learning at all, is to use 1NN rule. Note that this in fact equivalent to our former classification

approach explained in Section 6.3.1, where the query shape is simply assigned to the category

described by the category tree that is found most similar. As we mentioned previously, the

main novelty of a similarity-based approach, however, lies in the ability to use conceptually

more complex classification techniques. To demonstrate the idea, consider the two dimen-

sional similarity space defined by the two category trees that are respectively formed to

represent the category knowledge about the camel and tulip shapes shown in Figure 6.5(a).

The similarity representations of some query shapes are given in Figure 6.5(b), where the di-

mensions corresponds to the negative exponentials of distances to the category trees of camel

and tulip categories, respectively. Note that the performance of 1NN classifier is 70%, as

three of the camel shapes are misclassified. Now, suppose that we have trained a linear clas-

sifier in the similarity space to discriminate between the shape categories. This hypothetical

classifier is shown with a thick black line in the plot given in Figure 6.5(c), wherein the

similarity representations of training shapes of camel and tulip categories are respectively

displayed with blue and red points, and the similarity representations of query shapes are

displayed by themselves. The classification rate of this classifier is 90%, where only a single

shape is misclassified. At this point, it should be clear that employing a similarity-based

approach can boost the performance of an underlying structural classification approach.

Recall the structure of our new classification scheme shown in Figure 6.2 that the func-

tion of the hidden layer is to compute a similarity representation of the input shape based

on the distances between its shape tree and the category trees formed for each category in

the database. In this similarity space, for each shape category, we train a separate SVM

classifier with Gaussian kernel [116, 84] based on one-vs-all approach, where in the training

phase, the similarity representation of members of that shape category is labeled as posi-

tive examples with (1) whereas the members of all other categories are labeled as negative

examples with (-1).

In classifying a novel shape, the vector of computed similarities is fed to all of learned

SVM classifiers, each outputting a scalar value. Then, a membership score for each category

is obtained by normalizing these outputs according to Luce’s choice rule [59, 60], as follows:

p(Tquery ∈ Ci) =
exp(Yi)

∑N
j=1 exp(Yj)

(6.12)

where Tquery and Yi denote the shape tree of the input shape and the output of the SVM
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Figure 6.5: Example of a 2D similarity space and a linear classifier to discriminate between

two shape categories. (a) Training set of shapes used in forming category trees to represent

camel and tulip shape categories. (b) Query shapes and their similarity representation in

the space defined by the distances to the formed category trees where the first dimension

corresponds to the similarity to tulip category and the second dimension corresponds to the

similarity to camel category. (c) The representation of training and query shapes plotted

in the similarity space, where the training shapes of camel and tulip categories are shown

with blue and red points, respectively and the query shapes are shown by themselves. Note

that the classification performance is 90%, as compared to the 70% performance rate of 1NN

classifier. (adapted from a figure provided by Pekalska et al. [72]).

classifier trained specifically for the ith shape category, Ci, respectively.
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6.4 Experimental Results

In this section, we investigate the performance of the proposed shape classification frame-

work using the database shown in Figure 5.6. In particular, we compare our similarity-based

approach with the one that utilizes 1-nearest neighbor (1NN) rule. Moreover, we analyze the

classification accuracy when single or multiple category trees are formed for each shape cat-

egory (prototype vs. exemplar) and the two alternative cost functions (change vs. change∗)

are used in computing the distances to the category trees. Our experimental setting is same

with the one given in Section 5.1.4, where we randomly generate 100 partitions, each of which

contains 750 shapes for training (15 examples from each shape category) and the remaining

250 shapes for testing. In each run, we first form the category trees, and afterwards use

them as a reference set to define a similarity space wherein we train SVM classifiers for each

category1. Following the training phase, we classify each shape in the test set by either using

the proposed classification framework or 1NN rule.

Table 6.1 shows the average classification rates of each strategy and the corresponding

standard deviations. The proposed similarity-based approach results in an average perfor-

mance rate of 91.18% (when multiple category trees are formed for each shape category and

the proposed change∗ cost function is used), boosting the 83.09% classification accuracy of

1NN classifier. In Figure 6.6, we also provide the average classification performances for each

category. As an example case, for the sample partition given in Appendix A, the correspond-

ing classification results are presented in Appendix D. As it can be clearly seen in Table 6.1,

the similarity-based approach introduces considerable improvements in terms of accuracy

when compared to the nearest-neighbor strategy. Moreover, as expected, forming multiple

category trees for each category increases the performance of both 1NN and similarity based

approaches, and the newly proposed change∗ cost function is more effective for the proposed

classification framework.

As we mentioned previously, from an information retrieval perspective, one of the func-

tions of classification is to eliminate unrelated comparisons in a retrieval task. In this regard,

as a supplementary experiment, we evaluate the indexing performance of the proposed clas-

sification framework on our category-influenced matching method. In a retrieval task, we

first perform classification to identify the top five most similar categories for the given shape.

1In the training phase, we use SVMlight [41] package and perform 5-fold cross validation, and automatically

select the best values for the parameters γ and C, which respectively correspond to the radius of RBF kernel

and the weighting factor for misclassification penalty.
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Table 6.1: Average Classification Performances

1NN Approach Similarity-Based Approach

Classification Rate Std. Dev. Classification Rate Std. Dev.

change 79.07 2.43 87.19 3.88

P
ro

to
ty

pe
change∗ 77.13 2.59 87.80 1.95

change 84.18 2.22 88.65 2.67

E
xe

m
pl

ar

change∗ 83.09 2.99 91.18 1.66

Figure 6.6: Average classification performances for each category.
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Then, we eliminate some of these retrieved categories using a simple thresholding mechanism

after normalizing the corresponding membership scores. Following to that, the query shape

is compared to only the shapes belonging to the categories in the final candidate list. The

resulting distance values along with the associated normalized membership information are

then used to compute a new matching score as:

d∗(T1,T2) = 1 − exp(−d(T1,T2)) × p∗(T1 ∈ C) (6.13)

where d(T1,T2) denotes the category-influenced matching score and p∗(T1 ∈ C) is the mem-

bership score normalized with respect to the retrieved shape categories.

We evaluate the effect of the proposed indexing strategy by repeating the experiments

in Section 5.1.4 with a prior classification step. In Appendix E, we present the results of

the category-influenced matching method with indexing for the sample partition given in

Appendix A. Figure 6.7 shows the average precision-recall curves for the category-influenced

matching that includes a prior classification step. The experimental results reveal that

performing a prior classification step contributes in achieving better precision values at each

recall level with a less computation effort.
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The method of Baseski and Tari
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Figure 6.7: Average precision-recall curves. At each recall level, compare the precision values

of the category-influenced matching method after classification (shown in green) to those of

the category-influenced matching method (shown in blue) and the method of Baseski [7]

(shown in red).

115



6.5 Summary and Discussions

In this chapter, we present a similarity-based supervised shape classification framework built

on disconnected skeleton representation. Our starting point is the matching procedure pre-

viously developed for comparing a shape tree with a category tree. In the first step of the

procedure, exploiting the structural equivalence of shape and category trees, a mean shape

tree is formed from the category tree on the fly. As the mean shape tree is indistinguishable

from a regular shape tree, it becomes possible to compare a shape tree with a category tree

by matching it with the corresponding mean tree using the category-influenced matching.

While in Section 5.1 the method is used in dynamic formation of category trees, in this

chapter, we demonstrate its use as a nearest-neighbor based classification approach.

We extend this approach and come up with a more effective exemplar-based classification

scheme by making some changes and incorporating an additional learning technique. In this

regard, we first revise the cost function of change operation with a new one that is more

suitable for an exemplar-based classification approach. Then, we propose a procedure to form

multiple category trees for each shape category, and finally, we employ a similarity-based

approach where a shape category is represented by not just a category tree, but by means of

its similarities to other existing categories as well. The proposed framework has a network

structure where the distances between the given shape and the existing shape categories are

computed. These distances are then embedded into a similarity space in which we train a

separate SVM classifier for each shape category, and subsequently, the final decision about

the category of the input shape is made according to the outputs of the SVM classifiers.

As our experimental results demonstrate, the similarity-based approach brings consid-

erable improvements in terms of performance over a nearest-neighbor strategy. Moreover,

we evaluate the indexing performance of the proposed classification framework in a retrieval

task, where classification precedes the pairwise comparisons between the query shape and

the database shapes, eliminating unrelated distance computations.
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CHAPTER 7

CONCLUSION

In this thesis, we have investigated the use of disconnected skeleton representation of Aslan

and Tari [3] for shape recognition and classification. The rationale behind the choice of this

particular representation is that, as compared to other skeletal representations, disconnected

skeletons provide a very coarse but very stable representation of shapes, making some of the

computations presented in the thesis possible. Although our experimental results have proven

that disconnected skeleton, despite of its coarse structure, is a powerful representation for

recognizing and classifying shapes, the representation might be criticized on two grounds:

it does not preserve information about the boundary details, and the level of hierarchy

is always one. In regard to these concerns, we have presented two ways of enriching the

disconnected skeleton representation. First, we have proposed a procedure to roughly fetch

the radius functions of positive skeleton branches (representing the approximate distance

to shape boundary along the branch) from a corresponding TSP surface [107]. Second, we

have devised a multi-level hierarchical approach to increase the level of detail in skeleton

descriptions by first segmenting a given shape into its parts based on its skeleton and then

performing the skeleton analysis on the extracted parts.

In the context of shape recognition, disconnected skeleton representation was previously

utilized in [3, 7]. Particularly, in the method of Aslan and Tari [3], the authors represented

disconnected skeletons by their disconnection points as unlabeled attributed point sets, and

proposed a branch-and-bound algorithm to obtain correspondences between the skeleton

branches of two given shapes. In the method of Baseski [7], however, a structural approach is

employed and skeletons are represented as (shape) trees, reducing the problem into matching

two shape trees, and the author proposed a tree edit distance-based algorithm to find a

partial match between two given shape trees. In this thesis, using these methods as base

shape matching algorithms, we have investigated the effect of context on shape similarity
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computation and proposed a number of ways to incorporate semantic category knowledge

into matching process. Our approaches, unlike the view in syntactic matching of two given

shapes, differentiate the semantic roles of the shapes in comparison that a query shape is

being matched with a database shape, which belongs to a familiar category. The knowledge

about the category of the database shape influences the similarity computation, making the

resulting similarity measures asymmetric. It is important to note that the conventional way

in shape matching literature is to define shape similarity by means of metrics, although it is

widely believed that human similarity judgments are non-metric in nature.

In that direction, we have first extended the method of Baseski where our motivation

was to improve the quality of matching in comparing a query shape with a database shape

by incorporating the information inferred from all the shapes belonging to the same category

as the database shape in comparison belongs1. The proposed revision relies on a novel data

structure, which is referred to as category tree that is formed as a union of shape trees of

database shapes belonging to the same category. It should be mentioned that the depth-1

property of shape trees really simplifies the construction of category trees as the resulting

category trees are always (depth-1) trees. A constructed category tree holds the associations

between the primitives (i.e. the extracted skeleton branches) of the category members and

moreover, provides information regarding attribute statistics, which allows modifying both

the importance of primitives and the distances between attributes in the matching process.

Thus, we name this modified version of the algorithm category-influenced matching method.

As a further extension of our category-influenced matching method, we have also incorpo-

rate the boundary similarities by employing a coarse-to-fine approach and utilizing enriched

disconnected skeleton descriptions. Being similar to the approach of Zhu and Yuille [127], we

proposed to model a low-dimensional linear deformation space for each positive branch which

appears in a shape category, and following this, we developed a refinement procedure that

recalculated the overall dissimilarity score according to the boundary similarity of matched

positive branches in the corresponding deformation spaces2.

Next, we demonstrate another important use of category knowledge in recognition, the

contextual sensitivity to articulation of parts. Note that skeleton-based representations are

one of the most commonly used representations for shape matching as they provide insen-

sitivity to articulations. However, as mentioned in [1], insensitivity to articulations might

1This is a joint work with Emre Baseski and an early version of this study was partly published in MSc.

thesis of Emre Baseski [7]. Full version is published in Pattern Recognition [8].
2Reported in Section 2.3.1 & Section 5.1.5 and to be submitted as an article.
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be undesired in some situations that requires a combination of semantics with syntax, i.e.

prior knowledge about the degree of possible articulations is required to come up with the

correct matching result (Recall Figure 5.20). In this respect, based on disconnected skeleton

representation, we presented a novel part-centered coordinate frame which provides a rep-

resentation space for reasoning about observed articulations. In the proposed space, similar

articulations or bendings are represented with nearby points. This opens the possibility of

building articulation priors and making inferences about them in a fairly easily way. In

this thesis, we incorporate this idea into the matching method of Aslan and Tari [3] where

articulation priors are modeled as Gaussians3. A possible future direction could be using

a non-parametric density estimation approach in order to construct more accurate priors.

Certainly, one should also need a novel shape database specifically designed for reflecting

the importance of contextual sensitivity to articulations.

Finally, we present a similarity-based supervised shape classification method that is built

on a matching procedure proposed for dynamic formation of category trees in which the

given shape trees are incrementally matched with the category tree in construction4. This

procedure exploits the structural equivalence of shape and category trees (i.e. they are

both depth-1 trees) and compares a shape tree with a category tree by first forming a

pseudo-shape tree formed from the category tree, and then comparing that with the shape

tree by category-influenced matching method. Previously in [8], we proposed to use this

matching procedure as a simple classification algorithm based on nearest-neighbor rule. In

this thesis, we extend the approach by employing a similarity-based learning strategy to

learn relationships between shape categories. To be specific, a shape category is represented

by not just a category tree, but by means of its similarities to other existing categories as

well. The proposed framework has a network structure where the distances between the

given shape and the existing shape categories are computed first, as described above. Then,

these computed distances are embedded into a similarity space in which we previously train

an SVM classifier for each shape category exist in the database, and subsequently, the final

decision about the category of the input shape is made by combining the outputs of the

SVM classifiers. As our experimental results demonstrate, the similarity-based approach

brings considerable improvements in terms of performance over our previous approach, i.e.

classifying shapes based on a nearest-neighbor strategy.

3This is a joint work with Erkut Erdem and was previously presented in the Workshop on the Represen-

tation and Use of Prior Knowledge in Computer Vision [28].
4Reported in Section 6.3 and to be submitted as an article.
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7.1 Future Directions

In the scope of this thesis, we aimed to develop a shape classification framework using dis-

connected skeletons, which is based on a similarity-based approach where shape categories

are learned in a supervised manner. In this regard, it is important to note that there are

also some unsupervised shape classification or clustering studies based on skeletal repre-

sentations, e.g. [111]. As a future work, it will be quite interesting to explore the use of

disconnected skeleton representation along with the data structures presented within this

thesis in unsupervised learning of shape categories in a given collection of shapes.

Another interesting topic worth exploring is visualization of shape similarity or dissimilar-

ity data. Traditionally, multidimensional scaling [47] or its variants are used in visualization

of any type of similarity data where the idea is to compute a low dimensional (possibly 2D

or 3D) map in which objects that are similar to each other lie close to each other whereas

dissimilar objects are placed far away from each other. The problem with these methods is

that the similarity data should be metricized in some way before applying these techniques.

Although there exist some alternative formulations (e.g. [81]), exploring how to visualize

non-metric similarity data is still an open problem.
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APPENDIX A

A PARTITION OF THE SHAPE DB

(a)

(b)

Figure A.1: A sample partition of the shape database. The set of (a) training, (b) test

shapes.
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APPENDIX B

RETRIEVAL RESULTS OF THE

MATCHING METHOD OF BASESKI

Table B.1: Matching results of the method of Baseski [7].
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Table B.1: continued
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Table B.1: continued
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APPENDIX C

RETRIEVAL RESULTS OF

CATEGORY-INFLUENCED MATCHING

Table C.1: Results of category-influenced matching.
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APPENDIX D

CLASSIFICATION RESULTS

Table D.1: Some classification results.
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Table D.1: continued
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Table D.1: continued
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APPENDIX E

RETRIEVAL RESULTS OF

CATEGORY-INFLUENCED MATCHING

AFTER CLASSIFICATION

Table E.1: Retrieval results of category-influenced matching after classification.
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