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ABSTRACT

CATEGORY KNOWLEDGE, SKELETON-BASED SHAPE MATCHING AND SHAPE
CLASSIFICATION

Erdem, Ibrahim Aykut
Ph.D., Department of Computer Engineering
Supervisor: Assoc. Prof. Dr. Sibel Tar1

October 2008, 179 pages

Skeletal shape representations, in spite of their structural instabilities, have proven them-
selves as effective representation schemes for recognition and classification of visual shapes.
They capture part structure in a compact and natural way and provide insensitivity to visual
transformations such as occlusion and articulation of parts.

In this thesis, we explore the potential use of disconnected skeleton representation for
shape recognition and shape classification. Specifically, we first investigate the importance
of contextual information in recognition where we extend the previously proposed discon-
nected skeleton based shape matching methods in different ways by incorporating category
knowledge into matching process. Unlike the view in syntactic matching of shapes, our in-
terpretation differentiates the semantic roles of the shapes in comparison in a way that a
query shape is being matched with a database shape whose category is known a priori. The
presence of context, i.e. the knowledge about the category of the database shape, influences
the similarity computations, and helps us to obtain better matching performance. Next, we
build upon our category-influenced matching framework in which both shapes and shape
categories are represented with depth-1 skeletal trees, and develop a similarity-based shape
classification method where the category trees formed for each shape category provide a
reference set for learning the relationships between categories. As our classification method
takes into account both within-category and between-category information, we attain high
classification performance. Moreover, using the suggested classification scheme in a retrieval

task improves both the efficiency and accuracy of matching by eliminating unrelated com-
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parisons.

Keywords: shape matching, shape classification, disconnected skeleton, shape similarity,

similarity-based pattern recognition



OZ

KATEGORI BILGISI, ISKELET TABANLI SEKIL ESLEME VE SEKIL
SINIFLANDIRMA

Erdem, Ibrahim Aykut
Doktora, Bilgisayar Miihendisligi Bolimi Bolimii
Tez Yoneticisi: Dog. Dr. Sibel Tari

Ekim 2008, 179 sayfa

Iskelet tabanli gosterimler, yapisal kararsizliklarima ragmen gorsel gekillerin tanmmmasi ve
smiflandirmasinda bagarilar: kanitlanmig gésterimlerdir. Parca yapisini tikiz ve dogal bir gek-
ilde yakalar ve kapatma, parcalarin eklemlenmesi gibi gorsel doniistimlere kars: duyarsizdirlar.

Bu tezde baglantisiz iskelet gésteriminin gekil tanima ve simiflandirmadaki olasi kullanim-
lar1 incelenmektedir. Ozellikle, ilk olarak baglamsal bilginin tanimadaki énemi, baglantisiz
iskelete dayali daha Once onerilen sekil esleme metodlarina kategori bilgisinin farkli bi¢im-
lerde dahil edilerek bu yontemlerin gelistirilmesiyle aragtirilmaktadir. Sekillerin s6zdizimsel
eslenmelerindeki goriigiin tersine, bize gore kargilagtirilan sekillerinin anlamsal rolleri bir-
birinden farklidir ve buna gore sorgulanan sekil veri tabaninda yer alan ve kategorisi bilinen
bir sekil ile eslenmektedir. Baglamin yani veri tabanmindaki gseklin kategorisine dair bilginin
varligi, benzerlik hesaplamasini etkilemekte ve egleme bagariminmi arttirmaktadir. Sonradan
kategorinin etkiledigi esleme metodumuz kullanilarak ki bu yontemde hem sekiller hem de
sekil simiflar1 derinligi bir olan isleket tabanli agag¢ yapilar ile ifade edilmektedir, benzerlige
dayali bir gekil siniflandirma yontemi geligtirilmistir. Bu yaklagimimizda sekil simiflar1 igin
yaratilan kategori agaclari, kategoriler arasindaki iligkilerinin 6égrenilmesi amaciyla kullanilan
bir dayanak kiimesi olugturmaktadir. Simiflandirma metodumuz, hem kategoriler i¢indeki
hem de kategoriler arasindaki bilgiyi dikkate aldig1 i¢in yiiksek simiflandirma basgarisi elde
edilmektedir. Dahasi, 6nerilen siniflandirma yénteminin bir geri ¢agirma gorevinde kullanil-
masi ilgisiz kiyaslamalar1 engelledigi icin karsilagtirma igleminin verimini ve dogrulugunu

arttirmaktadir.
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Anahtar Kelimeler: gekil egleme, sekil siniflandirma, baglantisiz iskelet, sekil benzerligi, ben-

zerlige dayali 6riintii tanima
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CHAPTER 1

INTRODUCTION

1.1 Motivation

The ultimate goal of visual perception is to recognize or classify surrounding objects through
images of the environment cast on retina, the light-sensitive part of the eye. As an emerging
scientific discipline, computer vision shares the same goal, whose premise is that we will one
day have computer systems with capabilities equivalent to those of the human visual system.
But unlike a biological eye, input to a computer vision system is a digital image composed
of pixels having discrete brightness values.

Taking its roots from the field of artificial intelligence (AI) in the beginning of 1960s, the
problem of computer vision was first approached as a fairly simple problem that even Marvin
Minksy, one of the fathers of Al, assigned this problem to an undergraduate student as a
summer project [38]. Hence, in computational terms, these early approaches to computer
vision soon failed to provide a clear understanding of the principles of vision. The well-
founded theories were established during the next twenty years by the scientists like David
Marr. As an influential figure, Marr suggested to interpret vision as an information processing
system that should be investigated in three interrelated levels: (1) computational theory —
what is to be computed and why?, (2) representation and algorithm — how the computation
is performed? and (3) hardware implementation — how it is to be realized physically? [62].
Although the efforts of Marr and his colleagues transformed the field into a concrete science
and significant progress has been made since then, we don’t have yet a computer vision
system that can fully compete with humans in its ability to recognize or classify visual
objects.

The visual recognition and classification of objects require learning mechanisms that

combine visual information with prior knowledge and experience. The primary source of
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Figure 1.1: Objects can be immediately recognized and classified based on their shapes.

visual information is the shape knowledge since, in general, it is alone sufficient to recognize
and classify a given object (Figure 1.1). The other visual clues crucial to recognition and
classification are color, texture, and spatial information. For instance, you recognize your car
in a parking lot by a search based on its color and location; or wild animals such as leopards
or zebras can be classified on the basis of the color and texture of their skins. In these days,
appearance-based models have gained popularity among computer vision community. At
first, these studies ignore shape information and model objects by a set of image patches
representing local appearance. However, there is now an increasing number of works that
incorporate shape information into appearance-based approaches, e.g. [30, 68, 69, 95].

In this thesis, we will focus on shape-based recognition and classification of objects. The
shape of objects present in nature exhibit great variability, and thus the key issue is choosing
the appropriate representation scheme for both of these two problems, as is the case for all
information processing systems. A shape representation should be insensitive to not only
geometric similarity transformations (i.e. translation, rotation, and scaling) but also visual
transformations such as occlusion, deformation and articulation of parts. In this regard,
there is a long history of research on shape representation and recognition (For a historical
discussion, see [53, 114]). Approaches to two dimensional (2D) shape representation can
mainly be grouped into two broad categories: boundary-based (e.g. |9, 31, 50, 103|) and
azis-based or skeleton-based (e.g. 3, 6, 32, 36, 91, 96, 107, 125, 127|) representation schemes.
In boundary-based approaches, shapes are either represented by a set of boundary points or
by a set of boundary curves. On the other hand, in skeleton-based approaches, shapes are
modeled in terms of a set of axial curves explicitly representing parts of the shapes. Skeleton-
based representations are superior to boundary-based ones as they naturally capture part

structure and provide insensitivity to articulations and occlusion.



1.2 The Objective and Major Contributions of This Thesis

Our principle goal in this thesis is to develop efficient and reliable methods for shape matching
and shape classification using the disconnected skeleton representation of Aslan and Tari [3].
In this regard, it is important to note that the proposed approaches strongly depend on our
choice of representation, since some of the presented computational mechanisms becomes
feasible as a consequence of the (very coarse but very stable) structure of extracted shape

skeletons. The major contributions of this dissertation can be listed as follows:

1. Enriching Disconnected Skeleton Representation
At the representation level, we explore the approaches to enrich the disconnected skele-
ton representation of Aslan and Tari [3], so that we eliminate some drawbacks of the
original skeleton scheme. In particular, first, we present a way to make information
regarding boundary details available for the positive skeleton branches. The informa-
tion is fetched from a related smooth distance surface proposed by Tari, Shah and
Pien [107], which we call TSP surface throughout the thesis, and specified in the form
of a one-dimensional radius function representing the approximate distance to shape
boundary along the branch. Second, we devise a multi-level approach to increase the
level of detail in skeleton descriptions. Our approach relies on segmenting a given shape
into its parts based on its disconnected skeleton structure and performing the skeleton

analysis on the extracted parts to obtain a hierarchical representation.

2. Incorporating Semantic Category Knowledge into Shape Matching
Motivated by the importance of context in human similarity judgments, we investigate
a number of ways to incorporate semantic category knowledge into shape matching pro-
cess. First, we present a novel extension to the tree edit distance-based shape matching
algorithm of Baseski [7]. In the proposed approach, each shape in the database has a
category label and the matching process of a query shape to a database shape is influ-
enced by the additional (categorical) information provided by all the database shapes
belonging to the same category. We refer to this algorithm as category-influenced shape
matching. Building upon this formulation, we then present a coarse-to-fine strategy
to incorporate categorical boundary similarity into shape matching by utilizing the
approximate radius functions mentioned previously. Lastly, we make use of category
knowledge to achieve contextual sensitivity to articulations in shape matching. Based

on the structure of disconnected skeleton, we define a novel representation space for



articulations where similar articulations lie close to each other, enabling to construct
articulation priors from the members of a shape category and to make inferences about
likely articulations. We incorporate this approach to the method of Aslan and Tari [3]
and come up with a shape matching framework that is sensitive to unlike articulations

but insensitive to likely ones.

3. A Similarity-Based Approach for Shape Classification
We present a novel (supervised) shape classification method by employing a similarity-
based approach. Having a network structure, the proposed framework first computes
the distances between a given shape and existing shape categories in the database
by using a variation of our category-influenced shape matching method. Then, these
computed distances are embedded into a similarity space, in which support vector
machine (SVM) classifiers are previously trained for each shape category, and the final
decision is made according to the outputs of SVM classifiers. The similarity-based
approach brings considerable improvements in terms of performance over classifying
shapes based on a nearest-neighbor strategy. In this regard, it is important to note that
similarity-based approaches have great importance especially for studies in structural
pattern recognition as the learning and classification techniques for structural pattern
recognition are not as diverse as the number of algorithms proposed in statistical

pattern recognition.

1.3 Organization of The Thesis

The organization of the thesis is as follows. In Chapter 2, we give a brief review of discon-
nected skeleton representation of Aslan and Tari [3], and then discuss how the representation
can be enriched to eliminate some of its drawbacks. In Chapter 3, we compare and contrast
several skeleton-based representation schemes proposed in the literature, and discuss how
they are used in generic shape recognition. In Chapter 4, we analyze two other shape match-
ing methods, i.e. the method of Aslan and Tari [3] and Baseski [7], which are all based
on disconnected skeleton representation of shapes. In Chapter 5, we investigate contextual
effects of semantic category information on matching two shapes, where we revise and extend
the matching methods described in Chapter 4 in a number of ways. In Chapter 6, we present
a novel similarity-based shape classification approach based on the category-influenced shape
matching method devised in the preceding chapter. In Chapter 7, we conclude the thesis

with a summary of our contributions and some discussions. In Appendix A-E, we provide



tables of matching and classification results obtained with the methods discussed in the

thesis.



CHAPTER 2

DISCONNECTED SKELETON

In the previous chapter, we discussed visual object recognition and classification in general
and compared and contrasted two generic approaches of representing objects by their shape.
Among those approaches, (local symmetry) axis-based representations, commonly referred to
as shape skeletons, are one of the widely used and investigated representation schemes ever
since the seminal work of Blum [11]. The skeletal representations provide a compact and
perceptually meaningful way of representing shape as they capture the part structure and
yield a shape centered coordinate frame.

We start this chapter with a brief review of Blum’s skeleton, focusing on the basic def-
initions. Following that, in the next section, we discuss the Disconnected Skeleton repre-
sentation of Aslan and Tari [3] which is the underlying shape representation for the shape
recognition and the shape categorization frameworks proposed in this thesis. After giving the
formulation of disconnected skeleton, we will discuss its main advantages and disadvantages
and then present various ways of enriching the disconnected skeleton representation in order
to overcome some of its drawbacks. Finally, we conclude the chapter by summarizing the
key characteristics of disconnected skeleton representation and discussing our contributions

on enriching the representation.

2.1 A Short Review of Blum’s Skeleton [11]

Blum’s skeleton, also known as Symmetry Axis Transform or Medial Axis Transform, was
introduced in [11] as an alternative shape representation where shapes are expressed in terms
of local symmetries with a finite set of shape primitives in the form of axial curves. In contrast
to the boundary-based descriptors, skeletal representations provide a local representation

of the shape, which is insensitive to occlusion and changes in articulation of parts. As



intended by Blum, the resulting representations are perceptually more meaningful. In this
respect, there are also some recent supporting evidences on the psychophysical correlates
(e.g. [43, 44]), and on the potential neurophysiological implementation of related mechanisms
(e.g. [54]).

Blum'’s skeleton can be formulated based on the following three different approaches, each
resulting in the same representation. The first one is the grass fire model. Suppose at time
t = 0, fire fronts are initiated simultaneously at every point on the shape boundary. Letting
these fire wavefronts propagate towards the center of the shape at uniform (constant) speed,
as time goes by, they will meet at some interior points of the shape, thereby producing shocks.
The skeleton of the shape is defined as the locus of these shock points (Figure 2.1(a)). Rather
than looking at the dynamic picture of the process, one can also adopt a static view and
interpret the fire wavefronts as the level curves of a surface, whose value at any point is the
minimum distance to the shape boundary (Figure 2.1(b)). In this interpretation, skeleton
is the set of points which are equidistant from at least two boundary points. Another way
of constructing shape skeletons depends on the notion of mazimum inscribed circles where
each skeleton point is obtained as the center of a maximum inscribed circle that touches the
shape boundary in more than one point (Figure 2.1(c)).

Although skeletons successfully capture the hierarchy of parts, a challenging issue to
be resolved is the instability of skeletons that a small change in the shape might yield a
significant change in its skeleton (however, as discussed in [55], the reverse is not true). In this
respect, the success of any skeletonization method largely depends on how robustly skeletons

are extracted in the presence of noise and changes in shape features such as protrusions,
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Figure 2.1: Extracting the skeleton of a rectangle using (a) grass fire model, (b) distance

transform, (c) maximum inscribed circles (images taken from [1]).



(a) (b)
Figure 2.2: The instability of skeletons demonstrated on a collection of hand shapes. (a) The
spurious branches due to boundary perturbations. (b) The topological changes in ligature

regions (images taken from [115]).

indentations, necks, concavities, etc. (Figure 2.2).

Many skeleton extraction techniques exist in the literature e.g. |6, 32, 36, 91, 96, 107,
125, 127]. Common to all is that the skeleton branches corresponding to ribbon-like sections
of shapes can always be extracted in a stable way with far less effort. On the other hand,
accurate extraction of skeleton branches corresponding to noise and secondary details is a
difficult process and requires more computational effort [4, 91]. The disconnected skeleton
proposed in [3] differs from these approaches in the sense that the skeleton is extracted only
at the locations where it can be accurately computed. As a result, the representation does
not suffer from the instability of classical skeletons. In the following section, the disconnected

skeleton representation of Aslan and Tari is reviewed in detail.

2.2 Disconnected Skeleton [2, 3]

Disconnected Skeleton is a very coarse but very stable skeletal shape representation. In this
method, extraction of shape skeletons depends on computation of a special distance surface
¢, which is excessively smooth version of the distance transform. Given a shape silhouette,

the surface ¢ is obtained by solving the linear diffusion equation given below:

0 0? 0?
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where I is the original shape boundary, and ¢ is the artificial time parameter that can be

interpreted as a scale parameter [2].



The values on the resulting surface ¢ remain in the interval (0,1], where 1-level curve of
the surface correspondd to the original shape boundary I', and the remaining level curves
approximately follow the evolution of the shape boundary towards a circle. The surface
¢ takes its root from the TSP surface proposed by Tari, Shah and Pien [106, 107], which
is computed as the steady-state solution of the following linear diffusion equation with an

additional term:

B 92 02 v(z,y,0)
$U(ﬂf,y,0) = <@ + 8—y2> v(z,y,0) — 2
U(‘Tayaa)‘(m,y)ef‘ =1 (2'2)

where I is the original shape boundary, o is the artificial time parameter, and p is a parameter
that controls the level of smoothing.

In this regard, the surface ¢ can be interpreted as the limit case of the TSP surface when
we let the level of smoothing (p) tend to infinity. However, notice that the steady-state
solution of Equation 2.1 results in a totally flat surface which is 1 everywhere. Clearly, this
flat surface is not meaningful for shape analysis, and hence the diffusion is stopped a critical
moment where a single extremum is reached. Note that this critical time is determined
automatically by the shape itself. As expressed in [3], when the shape has two equally
prominent parts, reaching a distance surface with a single extremum is computationally very
time consuming. For this reason, the authors decide to preserve the dumbbell-like topology
of these kind of shapes in the computation of corresponding ¢ surfaces.

To illustrate the behavior of ¢, in Figure 2.3, we present a sample camel shape and several
surface representations describing it. Given the camel shape in Figure 2.3(a), Figure 2.3(b)
and (c) respectively shows the result of the Euclidean distance transform and the corre-
sponding ¢ surface. Compare these surfaces with the TSP surfaces obtained with p = 16,
p = 64 and p = 256, which are given in Figure 2.3(d)-(f), respectively. The excessive amount
of regularization in computing ¢ has important consequences: First, the level curves tend
to evolve to a blob-like representation of the initial shape boundary. Hence, the surface ¢
has only a single extremum point, capturing the center of this blob-like representation while
the TSP surfaces might have many such extremum points. For instance, the TSP surfaces
given in Figure 2.3(d)-(f) have two elliptic points corresponding to the centers of the head
and body sections of the camel shape.

In [106, 107], Tari, Shah and Pien devised a simple procedure to detect skeleton points
of a shape from a corresponding TSP surface. The authors simply observe the link between

the curvature extrema of the evolving level curves and the differential properties of TSP
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Figure 2.3: (a) Silhouette of a camel. The level curves of (b) Euclidean distance transform
(¢) 1 —¢, (d) 1 — v, computed with p = 16, (e) 1 — v, computed with p = 64, (f) 1 — v,

computed with p = 256.

d|Vv|

surface, and define the skeleton as the closure of the set of zero-crossings of ==, where s is
the arclength in the direction of the level curves and d|dZu is computed using:
d| V| _ ((vg — v2) Vay — vavy (vyy — Vaa)) (2.3)

ds |Vv|?

The skeleton points detected as zero-crossings of % are always connected for each

branch (until the branch gets terminated) and the skeleton branches can be classified into
two sets as positive and negative (See Algorithm 2 in the Appendix of [2]). The branches that
originate from a positive curvature maxima of the boundary are classified as positive whereas
the ones that originate from a negative curvature minima or a positive curvature minima
are classified as negative. As the value of parameter p denotes the level of smoothing, when
p gets larger, the protrusions are smoothed out earlier, less important symmetry branches
shrink, and the length of a branch becomes an accurate measure of its importance. This
phenomenon can be observed in Figure 2.4(a)-(d), showing the skeleton extracted from the

corresponding TSP surfaces computed with p =4, p = 16, p = 64 and p = 256, respectively.

10



Figure 2.4: Skeletons of the camel shape in Figure 2.3(a) extracted from the corresponding

TSP surfaces, computed with (a) p =4, (b) p =16, (c) p=64. and (d) p = 256.

The same skeletal analysis can be performed to extract skeleton from the surface ¢. In
this case, however, the resulting skeletons are much coarser in the sense that there exist
only a small number of simple branches on which branching occurs very rarely. Moreover,
in TSP skeletons, unintuitive branches might appear in the vicinity of necks due to a major
pathology, which is referred to as the saddle point instability and is related to insufficient
diffusion (See Section II.B-C of [2]). In extracting skeleton from ¢, the saddle point instability
can be avoided simply because the level of smoothing tends to infinity. The skeleton of the
camel shape extracted from its ¢ surface is given in Figure 2.5(a). Compare and contrast this
skeleton with the TSP skeletons of the same shape shown in Figure 2.4(a)-(d), respectively.
The difference between the skeleton extracted from the TSP surface computed with p = 256
is explicitly shown in Figure 2.5(b).

The very small branches near the shape boundary appear because of the discretization
and they can be easily eliminated by performing a simple pruning step. Figure 2.6 shows the

resulting disconnected skeletons of some shapes after pruning. Notice that if the symmetry
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Figure 2.5: (a) Skeleton of the camel shape in Figure 2.3(a) extracted from the corresponding
¢ surface. (b) The difference between the skeletons extracted from the corresponding ¢

surface and the TSP surface computed with p = 256.

at the shape center is n-fold, there are n positive and n negative branches, designated as
magor branches, which meet at the shape center [3]. The remaining branches all terminate at
some disconnection points organized around the shape center, and hence this unconventional
structure gives disconnected skeleton its name. At each disconnection point, a positive branch
always meets with a negative one. As reported in [2, 3], one should further apply the
disconnection concept (artificially) to the major positive branches in order to obtain a stable
skeleton description (For a detailed analysis, see Section III.B of [2]). In Figure 2.7, the final

skeleton descriptions of some shapes are illustrated.

Figure 2.6: Extracted skeleton branches for some shapes after pruning (images taken

from [2]).
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Figure 2.7: Some shapes and their disconnected skeletons. Notice that each positive branch
meets with a negative branch at a disconnection point. Positive skeleton branches are shown

in blue whereas the negative ones are shown in red.

In the resulting skeleton representation, the relative organization of the branches can be
captured by the location of their termination points. These points can be expressed with
reference to a shape dependent global coordinate frame that is constructed by any one of
the negative major negative branches (Figure 2.8). This novel way of representing shapes is
demonstrated to be highly robust under global transformations (i.e. translation, rotation,

scaling) as well as articulation of parts and perturbations on the boundary |2, 3].

2.2.1 Advantages and Disadvantages of Disconnected Skeleton

Skeleton-based representations provide a compact and generic way to represent shapes in a
structured manner and hence they are commonly used in visual shape recognition research,
e.g. |5, 32, 61, 74, 90, 98, 115, 127]. Disconnected skeleton has also proven itself to be a

powerful representation for shape recognition and retrieval [2, 8]. However, disconnected
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Figure 2.8: Spatial organization of extracted skeleton branches (image taken from [2]).

skeleton has its own strengths and drawbacks, as this is the case for any representation
scheme.

To start with, disconnected skeleton has one remarkable advantage over the other skele-
tonization methods that the representation does not suffer from the instability of skeletons.
This is because the skeletal analysis is performed at the coarsest scale possible and the
resulting skeleton branches are unconventionally disconnected. As a consequence, no post-
processing step is necessary for the skeleton prior to be used in recognition. However, one
might criticize the very coarseness of disconnected skeleton descriptions. This issue is in fact
about a philosophical choice of compromise between sensitivity and stability and in regards
to this argument, we prefer to obtain a stable representation first than a sensitive one, and
then gradually enrich the representation in a systematic way according to needs.

On the negative side, the main drawback of disconnected skeleton is the limitation that,
in order to obtain disconnected skeleton description of a shape, the shape should have a
closed boundary. The method is not applicable to shapes with holes (Figure 2.9(a)) or
stroke shapes, i.e. the shapes whose width is nearly constant everywhere (Figure 2.9(b)). In
these kind of situations, either the skeleton cannot be extracted accurately due to elliptical
and /or hyperbolic points arise in the corresponding ¢ surface, or even if a skeleton is correctly
extracted, it is not be so obvious how to define the coordinate frame in a stable way.

Another disadvantage that one might consider is the stability of the representation under
occlusion or missing parts. Although the extraction of skeleton branches are not affected by
these conditions since they are detected locally, the shape center might shift to a different
location. When this happens, the resulting shape description might be completely different
as the spatial organization of branches are expressed with reference to a global coordinate

frame that is dependent to the shape center.
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Figure 2.9: Examples of two classes of shapes where disconnected skeleton approach do not
succeed in obtaining a complete description. (a) a shape with hole and its skeleton points.

(b) a stroke shape and its skeleton points (images taken from [1]).

Lastly, unlike Blum’s skeleton, disconnected skeleton lacks information about boundary
details in the skeleton descriptions. In Blum'’s original formulation [11], every skeleton branch
(medial axis) is associated with a radius function. This radius function is a continuous, real-
valued function defined on skeleton branches, whose value at each skeleton point is equal
to the the distance from the skeleton branch to the closest point on the object boundary,
or equivalently the radius of the associated maximal inscribed circle. By making use of the
radius functions, one can reconstruct the shape exactly given the full skeleton description
of the shape. Due to the excessive amount of regularization, disconnected skeleton is not
information-preserving and there is no way to obtain the width of a skeleton point directly
from surface ¢. In this regard, as reported by Baseski [7], computing shape similarities
merely based on the spatial organization of skeleton branches and the lengths of the branches

sometimes do not reflect the perceptual similarities well (See Section 5.4. of [7]).

2.3 Enriching Disconnected Skeleton Representation

In Section 2.2.1, we have listed the drawbacks of disconnected skeleton representation. In
the following sections, we will discuss various ways of enriching the representation in order to
overcome some of these drawbacks. First, we will propose a simple way to obtain approximate
radius functions for the extracted positive skeleton branches. Next, we will employ a multi-

level approach to increase the level of detail in the descriptions.
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2.3.1 Associating Approximate Radius Functions with the Positive Skele-

ton Branches

As we have mentioned before, the regularization employed in the formulation of the distance
surface ¢ makes it practical to obtain a stable skeleton-based representation of shape. How-
ever, this stability comes at the expense of losing the information about boundary details, 4.e.
in contrast to Blum’s skeleton, it is impossible to recover the distance from a skeleton point
to the closest point on the shape boundary by using the corresponding ¢ surface. Hence,
the radius functions of skeleton branches are absent in the resulting descriptions. In this
section, we will present a straightforward way to roughly obtain this missing information by
utilizing the TSP surface formulation of Tari, Shah and Pien [106, 107] where our analysis
depends on one-dimensional (1D) version of the diffusion equation in Equation 2.2.
Consider a ribbon-like section of a shape illustrated in Figure 2.10. The dotted line in
the figure shows the skeleton points representing the shape section. Assuming the 1D form

of the Equation 2.2, the diffusion process along a 1D slice (shown in red) is given by:

v(x)

vm(:n)—?zo; 0<zx<2d

with the boundary conditions v(0) = 1, v(2d) = 1.

The explicit solution of this equation can be easily derived as:
1— e2d/r . 1— e 2d/p
|- e _[_— = |
U(x) o <e—2d/P — ezd/l’> ¢ e—2d/P — e2d/ﬁ ¢ (24)

The value of v on the skeleton point (the midpoint = d) is equal to the hyperbolic

1

cosine function osh(@p)

or equivalently, the distance from the skeleton point to the closest
point on the boundary is given by pcosh_l(@). The explicit solution given in Equation 2.4
is certainly not valid for the 2D case as the interactions in the diffusion process are more

complicated. However, it can be used as an approximation as follows. Let s be a skeleton

]
o

x=0 x=d x=2d

Figure 2.10: An illustration of a ribbon-like section of a shape and its skeleton description

(the dotted line).
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point located at (s, s,) along a positive skeleton branch. Given a corresponding TSP sur-
face v computed with a sufficiently large value of p, the minimum distance from s to the
shape boundary, denoted by r(s), can be approximated with:

r(s) = pcosh™* <#> (2.5)

v(8z,8y)

In Figure 2.11(a)-(b), a seahorse shape and its disconnected skeleton are given, respec-
tively. Note that this is not the final description because major positive branches are not cut
yet. The shape can be reconstructed by the radius functions associated with each positive
skeleton branch exist in the disconnected skeleton description by drawing the corresponding
maximal inscribed circles. Figure 2.11(c)-(d) shows results of shape reconstruction from dis-
connected skeleton using two different TSP surfaces, computed with p = 128 and p = 256,
respectively. There is no observable change in the quality of reconstruction results with
respect to the value of p. Notice that since the perturbations on the shape boundary is
neglected in computing the disconnected skeleton, these small details cannot be exactly re-
covered. Moreover, the accuracy of reconstruction deviates from its true form at the dorsal
fin of the sea horse. These are the locations where a positive branch loses its ribbon-like

structure (having slowly varying width).

(a) (b) (c) (d)

Figure 2.11: (a) A seahorse shape. (b) Its disconnected skeleton. (c¢)-(d) Shape reconstruc-
tion results from the disconnected skeleton description in using TSP surfaces, computed
with p = 128 and p = 256, respectively. Due to demonstrative purposes, maximal circles are

drawn at every third skeleton point and major positive branches are not cut.
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Figure 2.12 shows some other shape reconstruction results for various shapes, using TSP
surfaces computed with p = 256 (the same value of p is used in all of the subsequent sections).
When it comes to storing the enriched disconnected skeleton descriptions, the approximate
radius function of each positive branch is normalized with respect to the radius of maximum
circle associated with the shape center to make the representation scale insensitive. Note
that if the shape has two equally prominent parts, there will be two distinct shape centers,
and in this case, the radius functions are normalized with respect to the closest center. Some
shapes and their enriched disconnected skeletons with the approximate radius functions are

given in Figure 2.13 through Figure 2.15.

s
s
it

XX
i i 2

Figure 2.12: Reconstructing shapes from their disconnected skeleton descriptions using ap-

proximate radius functions obtained from the corresponding TSP surfaces.
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Figure 2.13: (a) A horse shape. (b) Shape reconstruction from disconnected skeleton. (c)-
(h) Reconstructed shape sections associated with the positive skeleton branches A-F, re-
spectively. (i)-(n) Approximate radius functions associated with the skeleton branches A-F,

respectively.
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Figure 2.14: (a) A helicopter shape. (b) Shape reconstruction from disconnected skeleton.
(c)-(h) Reconstructed shape sections associated with the positive skeleton branches A-F,
respectively. (i)-(n) Approximate radius functions associated with the skeleton branches

A-F, respectively.
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Figure 2.15: (a) A (two-centered) butterfly shape. (b) Shape reconstruction from discon-
nected skeleton. (c)-(h) Reconstructed shape sections associated with the positive skeleton

branches A-F, respectively. (i)-(n) Approximate radius functions associated with the skeleton



2.3.2 A Multi-Level Hierarchical Approach To Increase The Level Of De-

tail In Disconnected Skeletons

The intention of Aslan and Tari in devising the disconnected skeleton is to obtain the coarsest
but the most stable representation of shapes, and therefore the part structure captured
by the disconnected skeleton is very simple. The extracted skeletons are in the form of
a set of (unconventionally disconnected) skeleton branches, each corresponding to one of
the most descriptive parts of the shape. Moreover, no branching occurs on any of the
skeleton branches, meaning that the level of hierarchy is always 1 in the skeleton descriptions.
Despite this coarse structure, the retrieval performance of disconnected skeleton-based shape
matching algorithms of Aslan and Tari [1] and Baseski [7| were reported to be high.

Even though the discriminative power of disconnected skeleton in shape recognition is
effective, one might concern about the coarseness of the representation that it lacks sensi-
tivity. It appears that multi-level hierarchical representation schemes are required to satisfy
the opposing goals of sensitivity and stability. In this regard, we propose to increase the
level of detail gradually by employing a multi-level approach. Once the shape is segmented
into its parts based on its disconnected skeleton description, the skeletal analysis can be per-
formed on the extracted shape sections and finally, one can obtain a hierarchical disconnected
skeleton representation.

In disconnected skeleton, each positive (negative) skeleton branch is associated with a
boundary segment, which is bounded by two negative (positive) branches neighboring the
positive one. To segment a shape into its parts, Baseski made use of this fact and proposed
fitting cubic Bézier curves to the starting and termination points of the neighboring negative
branches of each positive branch [105]. We demonstrate this approach in Figure 2.16. The cat
shape shown in Figure 2.16(a) is segmented into six parts based on its disconnected skeleton
given in Figure 2.16(b). The extracted parts, corresponding to the legs, head and the tail
of the cat, and their disconnected skeletons are given in Figure 2.16(c)-(d), respectively. A
drawback of this approach is that when the termination points of the negative branches are
very far from each other, the extracted part might be perceptually less meaningful (See the
tail section of the cat in Figure 2.16(c)).

An alternative approach to shape segmentation using disconnected skeleton might be
computing the maximum circles at the termination points of the positive skeleton branches.
To compute the radii of the maximum circles, one can employ the approach in Section 2.3.1

and utilize Equation 2.5 after computing a corresponding TSP surface. Shape parts extracted
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in this way resemble the shape primitive that is referred to as circle in FORMS [127]. The
resulting segmentation of the cat shape in Figure 2.16(a), and the disconnected skeletons of

the extracted parts are shown in Figure 2.16(e)-(f), respectively.

Figure 2.16: (a) A cat shape. (b) Its disconnected skeleton. (c)-(d) Its segmentation into
parts by the cubic Bézier curves (images taken from [105]). (e)-(f) Its segmentation into

parts by the maximum inscribed circles.

2.4 Summary and Discussion

In this chapter, disconnected skeleton representation of Aslan and Tari [2, 3] is reviewed.

As a brief summary, the skeletonization process is rooted in the TSP approach of Tari,
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Shah and Pien [106] and relies on the computation of a special distance surface which is
excessively smooth and has only a single extremum point corresponding to the center of the
shape. The resulting skeletons are very coarse in the sense that no branching occurs on the
skeleton branches, and besides, unlike common skeletal representations, the branches are
unconventionally disconnected and terminate before reaching the shape center. Depending
on the symmetry at the shape center, however, some branches meet at the shape center and
these branches are used to form a shape-centered global coordinate frame. It is shown that
the spatial organization of the branches captured by the location of disconnection points is a
stable representation of the shape with respect to that specified coordinate frame. Moreover,
due to the disconnected property of branches, extracted skeletons do not suffer from the
topological instabilities that might occur near ligature regions.

Disconnected skeleton representation can be enriched in different ways. First, one can
obtain the corresponding radius function of each positive branch by additionally utilizing
TSP surfaces. These radius functions can be used to roughly reconstruct the shape from
its disconnected skeleton and moreover, when normalized they can be used as descriptors
of the boundary details. Second, a multi-level hierarchical approach to increase the level
of detail in skeleton descriptions is presented. The presented approach requires segmenting
the shape into its parts and performing skeleton analysis on the extracted parts in order
to obtain a hierarchical disconnected skeleton representation. In this respect, two different
segmentation procedures are demonstrated. While one approach fits cubic Bézier curves, the
other approach we presented in this thesis uses maximum inscribed circles, and results in

perceptually more meaningful segmentations.

24



CHAPTER 3

USE OF SKELETONS FOR SHAPE
RECOGNITION

In Chapter 2, we reviewed the disconnected skeleton representation of Aslan et al. |2, 3|
by giving details of its formulation and investigating its key characteristics. Moreover, we
proposed two ways of enriching the disconnected skeleton representation to overcome some
of its drawbacks. Before discussing the use of disconnected skeletons for recognition, in this
chapter, we survey some of the existing skeleton-based shape matching frameworks.

Skeletal representations have been successfully used in shape recognition as they provide
a compact way of expressing shapes while capturing the hierarchy of parts. In all these
frameworks, a challenging issue that needs to be resolved is the instability of skeletons that
two almost identical shapes might have structurally different skeletons (Figure 2.2). Hence,
the success of any skeletonization method depends on how robust the extracted skeletons
are in the presence of noise and shape features such as protrusions, indentations, necks,
concavities. As one might expect, this instability issue can be passed over to the recognition
framework, but in this case, the recognition algorithm should be devised in such a way that
it includes a mechanism to handle these structural changes.

In this chapter, we review each study by pointing out how their authors attempted to solve
the issues addressed above. In this respect, we mainly focus on the choice of representation
scheme, i.e. how skeletons are extracted and their structures are expressed, in addition to

the design and computational details of the underlying shape matching algorithms.

3.1 FORMS [126, 127]

FORMS was proposed by Zhu and Yuille as a categorical shape matching framework [126,

127]. Compared to other skeletal shape matching frameworks, the proposed approach is
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interesting in the sense that recognition is performed by a combined bottom-up/top-down
approach, involving a cycle of skeleton computation and adjusting the extracted skeleton
description according to the matching residual. In this way, the instabilities occurred in the
skeleton extraction process can be resolved. An overview of the entire recognition process is

demonstrated on a sample input shape in Figure 3.1.

he match algorithm
traveling circles algorithm 1. retrieve the butcher's shop database
1.skeleton modeled by three models recommended:
probability. madals 1.cat 2.dog 3.lioness

2.match the skeleton against
the recommended models

2.skeleton calculated by

deformable circlei

input shape

database
l.deformation modes
2.abstract structures
3.all mid-grained parts
(butcher’s shop)

model of skeleton /(
shape consistg of primitjvés skeleton matched
// againgt model
all mid-grained pal ﬁiicate joint circles

are reduced into primitive and segment shape

> data flow

* model data shape segmented into
mid-grained parts

— — P learning

Figure 3.1: An overview of the recognition process employed in FORMS (image taken

from [127]).

The skeleton of the query shape is first extracted in a pure bottom-up manner by mini-
mizing an energy functional (Figure 3.2(a)). Based on the structure of the extracted skeleton,
the input shape is segmented into parts, each of which is a deformed version of either one
of the two predefined generic shape primitives, referred to as worms and circles in the text
(Figure 3.2(b)), and following this the skeleton is then expressed by a graph whose nodes
represent the branching and ending points of the skeleton branches (Figure 3.2(c)).

The shape database contains both the skeleton graphs of the database shapes and their
segmented parts. It is important to note that the database shapes belonging to the same
category share a common skeleton graph. Accordingly, each segmented part is represented
in a low dimensional deformation space formed using Principle Component Analysis (PCA)

based on the data collected from the category members. In addition, some other attributes
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Figure 3.2: (a) The skeleton of a dog shape (b) Its segmentation of parts. (b) Skeleton graph

of a human shape (images taken from [127]).

like the length (for worms), the angle specifying the angular region in which the deformations
occur (for circles), the area and the radius of the maximum circles of joint points are also
stored.

The proposed matching algorithm in FORMS uses a branch-and-bound strategy, return-
ing the the partial match with the highest similarity score after searching over all possible
matches between the input shape and the prototypical shape models in the database. More-
over, in contrast to other skeletal shape matching frameworks, a top-down verification process
is employed as well in order to adjust the skeleton of the input shape based on the match-
ing residual. In this respect, there exists four predefined skeleton operations (cut, meryge,
concatenate and shift) acting on the skeleton graphs, which can be used to obtain alterna-
tive skeleton description of the input shape(Figure 3.3). Note that each skeleton operation
changes the skeleton structure, thus the segmentation into parts is different than the pre-
vious one. Hence, the similarity score is re-evaluated at each step according to changes in
the description. This process is carried out until the skeleton structure of the input shape
becomes equivalent to the one of the matching database shape. Although the framework is
tested on a small data set, it seems the approach can deal with articulation of parts, the
changes in viewpoint and occlusion.

Even though FORMS is dating back to 1995, it is quite a compelling skeletal recognition
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Figure 3.3: The skeleton operations defined to adjust the skeleton structure. From top to

bottom are cut, merge, concatenate and shift (image taken from [127]).

framework for the reason that recognition unconventionally involves a bi-directional data
flow. However, as noted by the authors themselves, the recognition success is directly re-
lated with the success of describing the input shape in terms of the specified generic shape
primitives. Since the motive behind FORMS is especially dealing with the animate objects,
the inanimate objects might not be described so well. Besides, introduction of a new generic
shape primitive to resolve this issue is not so straightforward because this will also require
a reinterpretation of the skeleton graph. As a last point, the authors addressed the issue of
shape classification within FORMS framework as well, which will be discussed in a related

upcoming chapter of this thesis.

3.2 Shock Trees [98] and Shock Graphs [87, 90]

Being inspired by Blum’s seminal work[11], Siddiqi and Kimia devised shock graph grammar
to classify shocks (skeleton points) formed during the propagation of the shape boundary
in the skeletonization process [97]. Moreover, they utilize the grammar in eliminating the

inconsistent (false) skeleton branches. Thus, by using the grammar, the hierarchy of shocks
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can be captured as a graph, referred to as shock graph, nodes of which are labeled as one
of the four types of shocks. Figure 3.4 shows each of these shock types. A first-order shock
originates from a protrusion, where the radius function varies monotonically. A second-order
shock emerges at a neck, corresponding to a strict local minimum in the radius function. At
a third-order shock, the radius function is approximately constant along an interval, due to
bending of a shape section. Finally, at a fourth-order shock the radius function reaches to a

strict local maximum, corresponding to a seed.

=

First-Order Second-Order Third—Order Fourth—Order

Figure 3.4: Categorization of shocks into four types (images taken from [98]). See text for

the explanation.

The use of shock graphs for shape matching was first demonstrated by Siddiqi et al. [98].
Since inexact graph matching problem is NP-Hard, the authors first defined a mapping
to reduce a shock graph into a unique rooted tree, which they called shock tree, so that
polynomial time algorithms proposed for approximate tree matching can be utilized. A
shock tree is in the form of directed acyclic tree and is formed by the following procedure.
The oldest shock is first designated as the root of the tree while the remaining shock segments
of the same type constitute the nodes of the tree. Besides, the formation times of shocks
are used to define the direction of edges connecting the adjacent shock types. Shock graphs
of some shapes and the corresponding shock tree representations are given in Figure 3.5(a)
and (b), respectively. Several different matching methods were proposed to compute the
similarity between two shock trees.

In [98], Siddiqi et al. presented a combined approach, involving a prior indexing mecha-
nism and a shock tree matching method. First, a similarity between the topology of shock
trees is computed, which relies on a eigenvalue characterization of shock tree’s adjacency
matrix. This indexing step is followed by a tree matching algorithm which takes the sim-
ilarity between the shock geometry into account. Being a modification of [80|, this tree

matching algorithm starts from the roots of the shock trees to and continue through the
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Figure 3.5: (a) Shock graphs of some shapes. (b) Their shock tree descriptions (images taken
from [98]).

subtrees in a depth-first fashion. The geometric similarity between two nodes is measured
with respect to the aligned versions of shock segments after an affine transformation and
considering the changes in scale and rotation. In [74], Pelillo et al. utilized the connection
that any maximal subtree isomorphism between two rooted trees induces a maximal clique
in the corresponding tree association graph and proposed solving the maximal clique prob-
lem in a association graph instead. Once the corresponding association tree is constructed
from two shock trees, a matching between these trees is determined by computing the global
maximum of a quadratic function. In this approach, the geometric similarity between two
nodes is measured in terms of a linear combination of the differences in the skeletal attributes
that is the lengths, radii, velocities and curvatures of the shock segments. This approach is
then extended to handle many-to-many matchings in [75].

In [110], Torsello and Hancock proposed a weighted edit distance-based approximate
tree matching algorithm to compute a match between two shock trees. The main idea
behind this approach is the Bunke’s observation in [16] that the graph edit distance and
the maximal weight clique problem is equivalent under the constraint that when the cost

of relabeling operation should be always higher than the sum of deleting and reinserting
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the nodes. In order to reflect the visual significance in calculations, the authors propose to
assign each node a weight proportional to the length of the boundary segments generating
the associated shocks.

Although shock trees of Siddiqi et al. successfully capture the hierarchical structure of
shocks, it has some drawbacks. To start with, designating the oldest shock as the root of
the shock tree makes the representation unstable in the sense that a small change occurring
on the shape boundary might dislocate the oldest shock, resulting in a shock tree which
has a completely different topology (Figure 3.6(a)). Moreover, the planar order of skeleton
branches is not explicitly stored in the nodes of shock trees. Hence, in some cases, matching
two shapes with respect to their shock tree descriptions might return misleading results. For
example, there is no way to distinguish between two shape where the second shape is formed

from the first one by a different reordering of its branches (Figure 3.6(b)).
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Figure 3.6: Drawbacks of shock trees of Siddiqi et al.. (a) Shock graphs of two very similar

n

O —
G
o-—

O -—r
D-—

shapes, together with the oldest shocks (indicated by squares) are given on the left. On the
right are the corresponding shock trees. Observe that a small change in the shape might
dislocate the oldest shock, causing a significant change in the topology of the shock tree
representation. (b) Since the planar order of skeleton branches is not explicitly stored in the
nodes of shock trees, a shape is indistinguishable in terms of its shock tree description from

its another version formed by a different reordering of its branches (images taken from [90]).
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In [87, 90|, Sebastian et al. presented an alternative way of representing and matching
shock graphs [97] of Siddiqi and Kimia. In this approach, shock graphs are expressed in terms
of ordered unrooted attributed trees that bifurcation points, ending points of skeleton branches
and shock segments of second-order and fourth-order are designated as the nodes of the tree
whereas shock segments of first and third order constitute the edges. The skeletal attributes
stored in a node are the time of formation and the direction of flow of the associated shock.
Similarly, the attributes for the edges are defined by the geometry of corresponding shock
segment, namely, curvature, acceleration, length and total time. A shock graph of a shape

and its ordered unrooted tree representation are respectively given in Figure 3.7(a) and (b).

time Inks

(a) (b)

Figure 3.7: (a) Shock graph of a shape. (b) Representing the shock graph by an ordered

unrooted tree (images taken from [1]).

Moreover, Sebastian et al. employed an edit distance-based algorithm to determine the
distance between two shock graphs represented as above. The proposed method can cope
with the instabilities associated with the representation because it inherently utilizes the
classification of shock graph transitions reported in [33]. Each transition is represented by
any one of the four edit operations defined on the shock graph, namely, splice, contract, merge,
and deform. The first three edit operations are illustrated in Figure 3.8(a)-(c), respectively.
The usage of deform operation is to measure the dissimilarity between two matching shock

segments and the boundary segments they represent. Being an extension of the measure
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Figure 3.8: Three edit operations defined on the shock graphs. (a)-(c) splice, contract and

merge, respectively (images taken from [90]).

in [89], deformation cost is defined by the sum of local differences in shock geometry after
finding the optimal alignment between the corresponding shock segments. Additionally, the
costs for other edit operations are defined by considering them as the limit cases of a deform
cost.

It is important to note that the skeletal shape matching framework presented in [90]
does not suffer from the instability of skeleton-based representations and the experimental
results show that the recognition performance is not affected much by perturbations on shape
boundary, articulation of parts and reasonable viewpoint changes. On the other hand, the
proposed shape matching method is computationally inefficient. The point is that although
the matching method is a polynomial time algorithm with respect to the number of nodes
of shock graphs, the costs of edit operations dominate the overall time complexity of the

method.

3.3 Shape Axis Tree [57]

In [57], Liu et al. presented a compact and stable axis-based shape representation, which
was referred to as shape axis. Formulated in a variational setting, the representation relies
on a self-similarity measure which gives a set of correspondences along the shape boundary
by matching two parameterizations of the shape boundary, one oriented clockwise and one
oriented counterclockwise. Once an optimal matching is determined, the shape axis repre-
sentation is formed by connecting the midpoints of line segments attached to each pair of
matched points on the shape boundary. It is essential to note that the shape axis represen-
tation is analogous to shape skeleton, each axis representing an object substructure if the
optimization criterion is based on mirror symmetry or co-circularity. Figure 3.9(a) shows
shape axis descriptions of some shapes when such a criterion is utilized in determining the

optimal matching.
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In [57], it was demonstrated that shape axis can be expressed with a special tree struc-
ture, named as shape axis tree. This tree is in the form of a connected, acyclic and undirected
graph where leaf nodes correspond to the ending points of shape axis whereas the remaining
nodes correspond to bifurcation points, captured by the discontinuities in the set of corre-
spondences. Note that each edge of a shape axis tree is associated with a pair of boundary
segments. Figure 3.9(b) shows shape axis trees of some shapes derived from their shape axis
descriptions.

Shape axis tree was first utilized for recognition by Liu et al. in [32, 56]. To determine
the similarity between two shapes, they formulated an approximate tree matching method
based on A* search, which returns the best match between their corresponding shape axis
trees. As noted before, each edge of a shape axis tree correspond to an object substructure
hence the proposed matching algorithm relies on finding the correspondences between the
edges of shape axis trees. The cost of matching two edges depends on how the associated

boundary segment are alike and should be defined in a way that takes into account local

l

(b)
Figure 3.9: (a) Shape axis descriptions of some shapes. (b) The resulting shape axis trees

(images taken from [56]).
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deformations and regional properties.

The shape axis trees of shapes within to the same category might be structurally different
due to visual transformations such as occlusion and stretching (Figure 3.10(a)). Thus, finding
a one-to-one mapping between the edges is not sufficient enough to completely explain the
visual correspondences. In order to cope with such structural instabilities, three additional
edit operations, namely cut, merge and merge-and-cut, are introduced in [32, 56]. The action
of each operation is demonstrated through Figure 3.10(b)-(d). In this way, many-to-many
correspondences can be obtained with the help of these operations, allowing an edge to be
matched with a path of two consecutive edges.

As reported in [32], a notable advantage of shock axis representation over other skeletal
representations is that the proposed shape analysis can be performed on open shapes as well.
However, for these kind of shapes, it is not always possible to represent the structure of their
shape axis in the form of a shape axis tree. As demonstrated in Figure 3.11, the procedure
defined to form shape axis trees might also result in a shape axis forest.

The matching results given in [32, 56] shows that correct correspondences can be found
under challenging conditions such as articulation of parts, occlusion and missing parts. How-

ever, the recognition performance of the proposed framework was not fully investigated in
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Figure 3.10: (a) Shape axis trees of some human shapes, showing some possible structural

changes in the representation due to occlusion and stretching. (b)-(d) The edit operations

cut, merge and merge-and-cut, respectively (image taken from [56]).
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Figure 3.11: Shape axis analysis can be performed of open shapes as well, however the

resulting graph structure might be a shape axis forest (images taken from [32]).

a quantitative manner. Pelillo also utilized shape axis trees to illustrate the strength of the
proposed tree matching scheme in [73]. In that study, the use of shape axis trees for shape
matching was tested on a very small shape data set (a total of 17 shapes, representing 6
six different shape categories), but again no recognition rate was reported. The author only

stated that the proposed algorithm returned maximum subtree isomorphism in each trial.

3.4 Bone Graphs [61]

Bone graph was just recently proposed by Macrini et al. as a coarse skeletal representation
which captures the most salient part structure of the shape [61]. In this sense, the underlying
idea behind bone graphs is very similar to the one employed in the disconnected skeleton
representation of Aslan and Tari [3, 2|, in contrast to the fact that a bone graph is a higher
level representation built on skeletons extracted by any method. The approach of Macrini
et al. is founded on the work of August et al. [4] and relies on ligature analysis where the
skeleton branches are classified as ligature or non-ligature. The term ligature was proposed
by Blum [11] to define a proper subset of the skeleton which arises due to concave corners
(Figure 3.12). Conceptually, ligature regions of skeletons are related to the attachment of

parts [4] and moreover, they have little contribution to represent or reconstruct the shape [11].
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Figure 3.12: The taxonomy of ligature configurations (image taken from [61]).

Following Blum’s analysis, August et al. revisited the notion of ligature in [4]. After
giving a formal definition of ligature based on the negative curvature minima of the boundary
(a skeleton point is designated as ligature if its bitangent points fall within a fixed sized ball
of the negative curvature minima), they investigated the instability of skeletons in terms
of the structural changes in the ligature regions of skeletons (Figure 2.2). Accordingly,
they suggested removing ligature sections of the skeletons in order to obtain robustness and
they qualitatively demonstrated the use of this idea on shock trees (Figure 3.13) of some
shapes. However, regarding the effect on the performance rate, the proposed approach was
not analyzed quantitatively.

In [61], Macrini et al. utilized the boundary-to-axis ratio measure of Blum and Nagel [12]
and formulated a more robust definition of ligature in which local scale information was con-
sidered as well (a ligature branch is defined as the branch which has at least one side whose
boundary-to-axis ratio is smaller than one). Figure 3.14(a) shows the skeleton branches of
a dog shape identified as either ligature (shown in green) or non-ligature (shown in black)
based on this definition. However, as illustrated in the figure, some branches around junc-
tion points might be oversegmented. Hence, the initial ligature analysis is followed by a
rectification step where the ligature properties around every junction point are further in-
spected and the problematic branches are corrected by applying the branch fusion operation

shown in Figure 3.15 in a recursive manner. A second ligature analysis on the modified
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Figure 3.13: (a) Two similar hand shapes having different skeleton structures at the ligature
regions. (b) The shock trees of hand shapes where the nodes corresponding to ligature
branches are shaded. (c) The resulting shock trees becomes equivalent when the ligature

nodes are removed (images taken from [4]).
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skeleton yields an accurate set of ligature and non-ligature branches. The modified skeleton
and the corrected ligature branches of the dog shape are shown in Figure 3.14(b). The final
non-ligature branches were called bones and correspond to the salient parts of the shape.
Figure 3.14(c) shows the bones of the dog and the reconstruction of the shape from its bones.

Based on the proposed ligature analysis, Macrini et al. introduced bone graphs as a
graphical abstraction over skeleton representations, capturing the coarse part structure of a
shape. Each bone graph is an unrooted tree where the nodes correspond to the non-ligature
branches (bones), while the edges correspond to the ligature branches or the junctions. As
shown Figure 3.14(d), the directions of the edges denote the parent-child relationship and are
determined according to the relative sizes of the corresponding parts. However, in case there

is uncertainty in the part hierarchy, the authors also allow undirected edges (Figure 3.16).

In addition, the edges might be enriched with labels denoting the position of a part relative

,/_\/—\ S

to its parent.

Figure 3.14: Obtaining the bone graph of a dog shape. (a) An initial classification of
skeleton branches based on boundary-to-axis ratios. The ligature branches of the skeleton
are shown in green whereas the non-ligature ones are shown in black. The enlarged versions
of oversegmented regions are also given. (b) The final result of ligature analysis after branch
fusion operations. (c¢) The parts and the reconstruction of the shape from the non-ligature

branches. (d) The corresponding bone graph of the dog shape (images taken from [61]).
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Figure 3.15: The branch fusion operation acting on the branch junctions (image taken

from [61]).

Lastly, Macrini et al. compared the stability of bone graphs with the stability of shock
trees of Siddiqi et al. [98]. The matching framework proposed for bone graphs follows the
one in [98] which uses a node similarity function based on subpartitioning each bone into
shock parts. The experimental results showed that substantial improvements in the recog-
nition and the pose estimation performance were obtained since bone graphs does not suffer
from the instabilities of shock trees or other skeletal representations. However, as noted by
the authors, the proposed matching framework ignores where information, i.e. the spatial

ordering of skeletal shape primitives, and do not use the edge attributes and labels.

Figure 3.16: The bone graph of a cattle shape. Since the ligature branches I3 and l4 are
associated with necks, the corresponding edges in the bone graph are undirected (image

taken from [61]).
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3.5 Path Similarity Skeleton Graphs [5]

In [5], Bai and Latecki presented a novel shape matching framework built upon a stable
skeleton-based shape representation. In the first place, this matching method depends on
an interesting skeleton pruning strategy proposed by the same authors, which is based on
contour partitioning via Discrete Curve Evolution [6]. As the pruning result shown in Fig-
ure 3.17 demonstrates, the proposed pruning procedure preserves the topology of skeletons
while removing redundant branches and hence, end points of skeleton branches correspond

to visual parts of the shapes.

Figure 3.17: Skeleton pruning by contour partitioning using discrete curve evolution. (a) Ex-
tracted skeleton branches of an elephant shape (b) Resulting skeleton after pruning (images

taken from [122]).

Motivated by the pruning method in [6], Bai and Latecki employed an alternative ap-
proach to represent shape skeletons. That is, the extracted skeletons are not explicitly
represented by their topological structures (with the use of graphs or trees), but they are
represented with a set of geodesic paths between every pair of end points of skeleton branches
instead (Figure 3.18). The resulting descriptions do not involve any junction points, and
thus they do not suffer from the instability of skeletons.

In this approach, matching process of two shapes was formulated as finding the corre-
spondences among the end points of corresponding skeleton branches. For that purpose,
each skeleton is represented with a graph, in which each of its nodes refers to the end points

of branches and holds the skeleton paths to all other end points. To compute the corre-
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Figure 3.18: The shortest paths between the pairs of endpoints of skeleton branches (image
taken from [122]).

spondences and the dissimilarity between two such graphs, the authors apply the Hungarian
algorithm [48] on a matrix of dissimilarity costs between the pairs of end points, each of
which is estimated based on the paths to all other end points and computed by the optimal
subsequence bijection method proposed in [52]. Here, the dissimilarity between two skeleton
paths depends on two terms. The first is the dissimilarity between their radius functions,
and the second is the difference in their lengths.

To summarize, the method of Bai and Latecki is interesting in the way how it handles
the instability of skeletons as this is the most challenging issue about the use of skeletons
for shape recognition. Their approach, in contrast to other methods we reviewed in this
chapter, does only depend on the similarities among the end points of skeleton branches
measured in terms of the path similarities. Since the proposed approach does not require
finding the correspondences among junctions points of the skeletons, it is very stable to visual
transformations. However, as noted by the authors, the success of the method is limited in

the presence of large protrusions.

3.6 Summary and Discussions

Skeleton-based representations are widely used in shape recognition due to their strength in
capturing the part structure of shapes and their insensitivity to articulations or bendings.
As we mentioned in Section 2.1, a challenging issue though with the use of shape skeletons

for recognition is their structural instability in that two visually similar shapes might have
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topologically different skeletons. In this regard, one can either attempt to resolve this matter
in the representation level and come up with a much stable representation or pass this
problem to the matching algorithm which is developed in a way that it can deal with possible
structural changes, or both.

Keeping the discussion above in mind, we have reviewed some popular and distinguished
skeletal representation and matching schemes based on how they represent the skeleton
structure and how they compare the corresponding representations in a recognition task.
All these studies typically use graphical representations of skeleton structures and compute
a partial match between proposed skeletal graphs or trees, returning a similarity or a dissim-
ilarity value. In matching process, the algorithms compensate the instability of skeletons by
utilizing a number of edit operations acting on either nodes or edges. Hence, the recognition
performance of a method highly depends on how well the proposed edit operations model the
transitions that might occur on a skeleton description of a shape. In this regard, the method
of Bai and Latecki [5] is exceptional because in this method, matching of skeletons does not
depend on the similarity of their topological structures, but rely on the (path) similarities
among the end points of the skeleton branches.

As compared to other works reviewed here, bone graphs of Macrini et al. [61] also looks
promising in the sense that they first seek stability in their skeletal graphs by inspecting
ligature sections of the skeletons. Note that there is no need for disconnected skeletons to
include such a ligature analysis due to their disconnected property of extracted branches.
Moreover, the approach of Zhu and Yuille in FORMS [127] also needs further attention
regardless of the limited capability of the shape primitives used in skeleton extraction in
that they attempt to solve the instability of skeletons by involving a bi-directional data
flow where the information passes through the matching method and the skeleton extraction

procedure in both ways.
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CHAPTER 4

USE OF DISCONNECTED SKELETON
FOR SHAPE RECOGNITION

In the previous chapter, we discussed some skeleton-based shape recognition frameworks,
each of which was built upon a different representation scheme. Our main focus was on how
these skeletal representations and the related recognition algorithms could cope with the
instability of skeletons.

In this chapter, we revisit the disconnected skeleton representation to discuss its use
for recognition. The main motivation of Aslan and Tari in devising disconnected skeleton
was to come up with the most stable representation of shape in the coarsest possible scale.
Compared to other skeletal representations, disconnected skeleton appears to be an unusual
approach that as its name reveals, the branches of disconnected skeletons are unconvention-
ally disconnected. This distinctive property give rise to a very stable skeleton structure as
the representation does not suffer from the instability of traditional skeletons. Moreover,
the number of branches is reasonably small and furthermore no branching occurs due to the
excessive smoothing involved in the extraction of skeletons. Hence, the level of hierarchy in
the descriptions are always one.

In the following sections, we review two previously proposed shape matching algorithms
which utilize disconnected skeleton as the underlying shape representation. In Section 4.1, we
discuss the method of Aslan and Tari [3] which is based on a branch and bound approach. In
Section 4.2, we investigate the tree edit distance-based shape matching algorithm proposed

by Baseski |7].
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4.1 The Method of Aslan and Tari [3]

When the disconnected skeleton was first introduced by Aslan and Tari [3], the authors
also demonstrated the use of disconnected skeletons for shape matching. Unlike the case in
most of the studies reviewed in Chapter 3, Aslan and Tari avoided representing disconnected
skeletons by graphs or trees, but interpreted disconnected skeletons as unlabeled attributed
point sets instead. They developed a branch and bound algorithm to compute the similarity
between two shapes. Based on the data structure shown in Table 4.1, the proposed algorithm
exhaustively searches over all possible matchings between branches while computing a total
similarity score for each one and finally returns the optimum set of correspondences with the
maximum similarity score.

In general, the shapes to be matched may have different number of branches. Hence,
Aslan and Tari proposed to compute corresponding total similarity scores by the weighted
sum of similarities between matched pair of skeleton branches, where the weights are deter-
mined by the normalized lengths of branches. However, as mentioned by the authors, this
formulation resulted in an asymmetric measure because the similarity score changes with the
choice of the reference shape. Therefore, they chose to symmetrize the measure by simply
taking the minimum of the two possible similarity scores in reporting the matching results.
The formal definition of the algorithm is as follows:

Let S1 and Sy denote the two shapes to be matched and w € €2 denote a set of correspon-
dences between the skeleton branches of S; and S defined in the search space €2 containing

all possible matchings. Then, the total similarity between &1 and Ss is given by:

sim(S81,S2) = gleaé( min Z l1 x sim(by,ba), Z ly x sim(by, ba) (4.1)
(b1,b2)Ew (b1,b2)Ew

where the similarity between attributes of two matched branches by € S7 and by € Ss is

determined by a multivariate Gaussian distribution:

. exp (—0.5 <(11(—”12)2 + el (61;992)2» if type1 = types
sim(by,by) = "

0 otherwise

where oy, 0,, 0g respectively specify the importance of each attribute that are determined

experimentally.
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Table 4.1: The data structure defined to express disconnected skeleton of a shape (table
taken from [2]).

Description element Information stored
Shape Center point (o, yo)
Total length of the axes
Orientation of the reference axes (o, m1)

Local Symmetry Branch  Type (Positive, Negative)
Location (7, 6)
Normalized Length
Reference Axis (Yes, No)
Next Symmetry Axis
Previous Symmetry Axis

Recall that in disconnected skeleton, each branch is of a positive or negative type depend-
ing on either it corresponds to a protrusion or an indentation. Hence, setting the similarity
between different types of branches to zero drastically reduces the total similarity score and
practically eliminate this sort of semantically invalid correspondences.

In traversing the search space, Aslan and Tari employed a branch and bound approach
to find the optimum matching in an effective way. They introduced an additional pruning
strategy to discard regions of the search space that contain visually unmeaningful set of cor-
respondences. In expanding the search tree, the order of skeleton branches of a shape should
be preserved in the matching. Hence, if a correspondence violates the ordering constraint, all
the related matchings are totally ignored. It is important to note that this not only reduces
the computation time but improves the visual quality of matching results. Moreover, to
further speed up the algorithm, Aslan and Tari divide the problem into two subproblems by
defining two different coordinate frames, each of which is used to express a different half of
a shape.

Figure 4.1 shows some illustrative matching results obtained by the method of Aslan and
Tari. In each case, visually correct correspondences are obtained under Euclidean transfor-
mations (translation, rotation and scaling), articulation of parts and even missing features.
The authors tested the performance of their matching method on the shape database shown
in Figure 4.2, which contains a total of 180 shapes with 30 categories, each having 6 exam-
ples. In the experiments, each shape was used as a query shape and the most similar shapes
are retrieved accordingly. Average precision-recall curve is given in Figure 4.3. The average

precision was found to be around 88% at recall level 100%.
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Figure 4.1: Some skeletal matching results obtained by the method of Aslan and Tari. The
total similarity scores are 0.992, 0.708, 0.886, 0.652, 0.714, and 0.832, respectively (images

taken from [2]).
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Figure 4.2: The shape database used in the experiments performed by Aslan and Tari (image

taken from [2]).

4.2 The Method of Baseski [7]

In [7], Baseski employed widely used tree edit distance approach [92] and came up with
an alternative shape matching method to compare shapes using their disconnected skele-

tons. Unlike the method of Aslan and Tari [3], their formulation depends on representing
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Figure 4.3: Average precision-recall graph (image taken from [2]).

disconnected skeletons by trees and for that purpose, they introduced a skeletal tree repre-
sentation, which was referred to as shape tree. Compared to other skeleton-based graphical
representations such as shock trees, the key characteristic of shape trees is that the depth
of each constructed shape tree is always one since disconnected skeletons capture the most
prominent part structure of shapes with only one level of hierarchy.

Representing disconnected skeletons by shape trees is quite straightforward. However,
first recall that as we indicated in Section 2.2, a shape might have alternative descriptions
based on the construction of the coordinate frame in its disconnected skeleton. Therefore,
in [7], Baseski and Tari decided to form multiple shape trees for each alternative description
of the shape. Figure 4.4 illustrates shape trees of some shapes.

Each shape tree is a rooted attributed depth-1 tree where the root node can be interpreted
as the shape center but it actually holds necessary and sufficient information to construct
the coordinate system. This information includes the location of the center, the directions of
reference axes and a normalization factor for branch length (based on total branch length).
Accordingly, each leaf node of the shape tree corresponds to one of the extracted skeleton

branches and holds the following attributes:

e the disconnection location in polar coordinates (7, ),
e the normalized length of the branch [,

e the branch type as negative or positive.
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Figure 4.4: Some shape trees. Note that each disconnection point (except the pruned major
branches) gives rise to two different nodes in the tree, representing the positive and negative
skeleton branches meeting at that disconnection point. However, for illustration purposes,

only one node is drawn.

In addition, Baseski and Tari preferred labeling each node with respect to an ordering
of branches in order to devise a more efficient edit distance-based tree matching algorithm.
Their choice for ordering is to start with any one of the major negative branches and hence
they store alternative descriptions of the shape tree for each such possible choice (Figure 4.5).

As noted before, for the shapes having n-fold symmetry, there are n major negative branches.

Figure 4.5: Multiple descriptions obtained with different orderings of branches.
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The formal definition of the method of Baseski and Tari for skeletal tree matching is as
follows: Let 7; and 75 denote the two shape trees to be matched. Since 7; and 75 are all
ordered-depth-1 trees, each of them can be expressed as a list of nodes (excluding the root

node):
T = {ul = <u uf | ul utype> ‘ Uu; 6/\/1}

6 t
,2-2 = {’Uj = (/Uj7rv‘]7/u‘77fv‘]ype) | ’Uj GNQ}

where 7, j denote the order of nodes, (r,0) is the normalized location of the disconnection
point in polar coordinates, type denotes the type of the branch (either positive or negative)
and [ is the normalized length of the corresponding skeleton branch. N7 and N5 are the set
of leaf nodes of 77 and 75, respectively.

To transform a shape tree into another, or vice versa, Baseski and Tari defined three
edit operations, namely remove, insert and change. Let A denote the set of nodes removed
from 77, A denote the set of nodes inserted to 7; from 75 and € denote the set of matched
nodes. Then the the distance between 77 and 75 is given by Equation 4.2, as the cost of the

sequence of edit operations § with minimum cost.

d(Th,Tz) = Irgn Z remove (u) + Z insert (v) + Z change (u, v) (4.2)
u€A vEA (u,v)eN

The cost functions of edit operation are defined as follows. Note that each edit cost

function returns a value in the range [0, 1]:

e remove. The corresponding cost function quantitatively measures how well the removed
skeleton branch characterizes the shape. In this regard, the cost of removing a given
node u of 77 is defined based on two significance measures. The first significance
measure is the branch length, as argued in [1, 3, 2]. The second significance measure
is the disconnection location of a branch. While the major branches do not terminate,

and reach to the shape center, boundary details terminate quite early.

ul

remove (u) = (W) (1—u") (4.3)

where u! is the length of the branch, u" is the distance from shape center and I,;,q; (77)

is the length of the longest branch of 7;. See Figure 4.6.
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Figure 4.6: remove cost function. (a) Since u} > ul, remove(u;) >remove(us). (b)

Since ug > uf, remove(ug) >remove(us).

e insert. This operation is the dual operator of remove. It inserts a node from 75 to 7y
(or equivalently removes the corresponding node from 73). Hence, the cost function

given below is same with remove except that the length is normalized with respect to

lmax (75)

ot

insert (v) = <m> (1-") (4.4)

e change. This operation computes the dissimilarity of two nodes v and v based on the
differences between their attributes. The corresponding cost function resembles the
one used in [74]. However, an additional constraint enforces the types of the matched

branches to be identical. If they differ, the cost is set to 1.

1 if qtupe o£ ytupe
change(u,v) =

51 [ _le S, S il Y 0=l therwise

maz (ul maz (o) maz (a9 ,00)

(4.5)

Figure 4.7 shows matching results of some illustrative shapes. In the matching process,
Baseski and Tari gave more weight to the similarity of lengths by setting 5, = 0.5 and
B2 = (B3 = 0.25. As these examples demonstrate, the method of Baseski and Tari is also
able to obtain the correct matchings under various visual transformations. To evaluate the
retrieval performance of their method, Baseski and Tari repeated the same experiments as
Aslan and Tari performed in [1]. The corresponding average precision-recall curve is given
in Figure 4.8. The average precision is 87% at recall level 100%. Note that this value is very

close to the one in [1].

o1



Figure 4.7: Some skeletal matching results obtained by the method of Baseski and Tari.
Matching costs are 0.683, 1.459, 2.725 and 2.372, respectively.
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Figure 4.8: Average precision-recall graph (image taken from [8]).
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In [7], Baseski identified four typical reasons why his method might return a mismatch
or a dissimilarity value which is beyond our visual judgments. Two of these are related to
how the edit cost functions are defined whereas the other two are in fact related to one of
the shortcoming of disconnected skeleton representation that we mentioned in Section 2.2.1,
i.e. information about boundary details are absent in the skeleton descriptions. To resolve
this issue we will propose a coarse-to-fine strategy in Section 5.1.5, which is based on the
category-influenced matching method presented in Section 5.1.

The time complexity of the shape matching method proposed by Baseski and Tari can be
analyzed as follows. When each edit operation has unit cost, the time complexity of matching
two ordered-depth-1 trees is O(mn), where m and n respectively denote the number of leaf
nodes in the trees [92]. However, a critical issue in tree edit distance-based skeletal shape
matching is how the cost of each edit operation is computed because these costs might
dominate over the cost of tree matching as in [90, 98|. In this respect, the method of Baseski
and Tari has two main advantages. First, the edit cost computations are nearly negligible
and second, the number of leaf nodes is significantly small as disconnected skeleton is a very

coarse skeletal representation.

4.3 Summary and Discussions

In this chapter, we discuss two previously proposed approaches to shape matching using
disconnected skeleton representation. In the matching method of Aslan and Tari [3], dis-
connected skeletons are represented by their disconnection points as unlabeled attributed
point sets, and a branch-and-bound strategy is used in order to match the disconnected
skeleton structures of two shapes. In the matching method of Baseski [7], however, a struc-
tural approach is employed and skeletons are represented as (shape) trees, which reduces
the problem into matching two shape trees, and accordingly, the authors proposed a tree
edit distance-based algorithm to find a partial match between two given shape trees. The
experiments performed on the same shape database reveal that the retrieval rates of both
methods are nearly the same, yet the method of Baseski is superior to that of Aslan and

Tari in terms of computational complexity.
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CHAPTER 5

INCORPORATING SEMANTIC
CATEGORY KNOWLEDGE INTO SHAPE
MATCHING

In the previous chapter, we reviewed two different shape matching methods that were built
upon disconnected skeleton representation. While neither of these methods outperforms the
other one, they both demonstrated that despite its coarseness, disconnected skeleton is quite
stable compared to other skeletal representations, thus making it an effective representation
for visual shape recognition.

In this chapter, we investigate the effect of context in shape (dis)similarity computation.
Borrowing the definition from Toussaint [112], the effect of context in a recognition task can
be stated that “some entity Z can have certain properties, when Z is viewed in isolation,
which change when Z is viewed in some context. Alternately, an entity Z is seen as one thing
in context A and another in context B”. In our study, context refers to the set of shapes
belonging to the same category and accordingly, we extend and refine the shape matching
methods described in Chapter 4 in a number of ways by incorporating semantic category
knowledge into the matching process. Each modification offers a higher retrieval accuracy
than the original algorithms. Moreover, each one results in a non-metric shape similarity
(or dissimilarity) measure that is more consistent with our visual judgments in terms of its
formulation.

The conventional approach in the shape matching literature is to define shape (dis)similarity
by means of metrics. On the other hand, starting from the influential work of Tversky [113],
there has been a long history of empirical research in psychology which suggests otherwise

that human similarity judgments are in fact not metric, meaning that our judgments may vi-
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Figure 5.1: An example from Basri et al. [9] used to illustrate the violation of triangle
inequality axiom in visual dissimilarity relationships, see text for the explanation (shapes

taken from the mythological creatures data set used in [15]).

olate metric axioms, i.e. minimality, symmetry and triangle inequality. For some discussions
on this issue from computational point of view, see Basri et al. [9] and Mumford [64].

Figure 5.1 is an illustrative example from [9] that demonstrates a case where our visual
perception system does not satisfy the triangle inequality. Note that the centaur shape shares
some similar parts with both of the other two shapes. Psychological judgment data indicates
that many human observers report that the dissimilarity between the human shape and the
horse shape is far more than the sum of the dissimilarities between the centaur shape and
either of the human and horse shapes.

Above all, the reason why metric similarity measures have been prevalent in the shape
matching literature is because many computational tools of pattern recognition cannot suc-
cessfully deal with non-metric data. However, this situation starts to change with the in-
troduction of new generation of tools and the paradigm shifts happening in the pattern
recognition community, e.g. [24, 25, 26, 71]. As a consequence, a less but growing number of
studies, which utilize non-metric similarity measures for shape matching, began to appear in
the literature, e.g. [15, 39, 51]. These studies mainly concentrate on the violation of triangle
inequality and solely depend on identifying part correspondences between shapes based on
contour fragments or regions. On the other hand, our approach is conceptually different
than the cited works in the way that in the studies presented in this chapter, we investigate
and utilize the effects of context on measuring visual similarity, context being specified as
the existing category structure.

The influence of context on similarity judgments is a well-studied topic in psychology [27,
35, 64, 85, 113]. For instance, in an experiment conducted by Tversky [113], human subjects

were asked to chose among the countries Sweden, Norway and Hungary, the most similar one
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to Austria. 60% of the subjects chose Hungary. However, when he repeated the experiment
with a new answer set, which included Poland instead of Norway, 49% of those chose Sweden.
Now, note that this experiment was carried out in the Cold War era. Hence, it is most likely
that the subjects tended to consider Hungary and Poland dissimilar to other countries since
these were two Eastern Bloc countries.

Context information can also be used to account for asymmetric similarity relation-
ships [64, 113]. This follows from the interpretation that two objects to be compared, say A
and B, have in fact two separate roles such that while A is considered as a newly encountered
stimulus input, B is thought as a memory benchmark belonging to a category. Accordingly,
this view suggests that in measuring the similarity between A and B, human mind analyzes
these objects differently, for example, that it might be the case that it immediately searches
for the salient features of B whether they are found in A or not.

In Section 5.1, we follow the above interpretation and present a novel extension to the
shape matching method of Baseski [7] by incorporating semantic category knowledge into

1 In this modified version of the method, which we refer to as category-

matching process
influenced matching, each database shape is associated with a category and the cost func-
tion of each edit operation is redefined in a way to reflect the information coming from
the category of the database shape. Hence, the category knowledge directly influences
the dissimilarity between the query shape and the database shape. In Section 5.1.5r, we
present a coarse-to-fine strategy to incorporate categorical boundary similarity into category-
influenced matching method by utilizing the representation of approximate radius functions
described in Section 2.3.1.

In Section 5.2, we use category knowledge to achieve contextual sensitivity to articulations
in shape matching?. Our approach depends on the disconnected skeleton representation in
that we first formulate a representation space for articulations of parts using the structure of
extracted skeletons. This articulation space enables us to make inferences about likely artic-
ulations based on the prior knowledge obtained from existing examples of a shape category.
Following to that, we incorporate the proposed approach to the method of Aslan and Tari [3]

and come up with a shape matching framework that is sensitive to unlikely articulations but

insensitive to likely ones.

IThis is a joint work with Emre Baseski and an early version of this study was partly published in MSc.

thesis of Emre Baseski [7]. Full version is published in Pattern Recognition [8].
2This is a joint work with Erkut Erdem and was previously presented in the Workshop on the Represen-

tation and Use of Prior Knowledge in Computer Vision [28].
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Finally, we conclude the chapter with a summary and some discussions.

5.1 Category-Influenced Shape Matching

In the following, motivated by the importance of context in human similarity judgements,
we modify and extend the skeletal tree matching algorithm of Baseski and Tari [7] by incor-
porating contextual effects into the matching process. In the literature, the notion of context
has a vast number of meanings, typically refering to either a collection of neighboring enti-
ties (e.g. nearby objects [35, 64], local pixel neighborhood [29, 101]), or prior knowledge and
expectations [58]. See Wolf et al. [120] for a broad discussion on the topic. In our study,
context is defined as being a collection of shapes belonging to the same category.

An interesting argument in favor of context dependence in pattern recognition comes
from the Ugly Duckling Theorem [119] which states that categorization or recognition is
impossible without an underlying bias, hence in the absence of bias any two patterns are
equally similar to each other. This is quite important in the sense that it also implies that
there are in fact no privileged primitives. In this sense, one approach could be to start with
many primitives, each of which provides a rough representation, and then to select the best
ones in a given context |76, 118]. Our approach is in the opposite direction that we start with
a very coarse yet very stable skeletal description and a context provides extra information
about the extracted primitives.

In defining the dissimilarity between two shapes in a context, we extend the tree edit
distance measure of Baseski [7] by following the interpretation mentioned in [64, 113] in
which different roles are assigned to the shapes in comparison. That is to say a query
shape A (input stimulus) is compared to a database shape B (memory benchmark) whose
category is known. The category knowledge of B, i.e. all the category members (including
B), forms a context that influences the dissimilarity computation by modifying the saliency
of primitives and the distances between attributes, as in the philosophy of some recent works

such as [65, 67].

5.1.1 Representing Category Knowledge with Category Trees

To form and utilize the relevant category knowledge of a given set of shape trees belonging
to the same category, we propose a special tree structure, which we name category tree. Built
like a union of the shape trees, a category tree is a depth-1 tree whose leaf nodes represent

a specific primitive observed in the category. In particular, each leaf node of a category
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tree is linked to a corresponding leaf node of one or more shape trees and in addition,
stores some basic information about attribute statistics. Once formed, each category tree
provides a context for each primitive of a database shape. In this regard, we come up with
two different procedures for constructing category trees, referred to as static formation and
dynamic formation, respectively.

Note that in the context of shape matching, forming a union of tree representations
has been previously addressed by Torsello and Hancock [109]. However, unlike Torsello and
Hancock’s construction, both of our constructions naturally preserve the tree structure in the
union, and moreover, the resulting category trees are depth-1 trees as well, just like the shape
trees. In fact, this is a direct implication of the depth-1 property of shape trees. Representing
both individual shapes and categories using the same data structure is noteworthy that this
makes the necessary constructions and computations trivial.

In the static formation, shapes to be united should be given in advance. In the beginning,
the shape tree with the maximum number of nodes is designated as a base tree and then
all the remaining trees are matched to the base tree (using the method of Baseski) and
the category tree is formed solely based on the found correspondences. This procedure has
two major drawbacks though. First, the structure of the category tree is fixed and hence
addition of a new shape may require a re-formation from scratch. Second, the procedure
does not guarantee the inclusion of all the available information. This drawback is visible in
the illustration given in Figure 5.2.

In the dynamic formation, the category tree is formed by using an incremental procedure.
In this regard, it resembles formation of Tree-Unions of Torsello and Hancock [109]. First,
the pairwise distances between the given set of shapes are computed (again using the method
of Baseski). Then, according to the descending order of total distances, the category tree is
progressively expanded by using the correspondences between the category tree and the shape
trees (obtained with the modified matching method in the way described in Section 5.1.3).
The dynamic formation procedure is superior to the static one because it does not suffer
from any of the drawbacks mentioned for the static formation. Moreover, since it operates
in a dynamic way, it is computationally more effective in updating categories as new shapes

are observed and categorized.

5.1.2 The Revised Formulation of Tree Edit Distance Algorithm

Let 77 denote the shape tree of the query shape which is being compared to a database shape

whose shape tree is denoted by 75. Each leaf node of 75 is linked with a specific leaf node
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Figure 5.2: Static formation of a category tree. 73 is the base tree and the correspondences
among nodes are specified by labeling the matched nodes with identical letters. Note that
the procedure is not perfect since the node e4 in 74 is eliminated in forming the category

tree 7¢ since it does not match to any node of the base tree.

of a category tree 7¢c. Say it is denoted by By, this leaf node not only provides a context
for the corresponding leaf node in 73 but for all the related m number of category members
(including 75 and m<M, where M is the total number of shapes in that category). In the
node By, in addition to the associations with other category member shape trees, each leaf

node of 7¢ by providing some basic information about attribute statistics:
e the observed ranges for r, § and [ of the branch (7min, "maz, Omins Omaz s lmins lmaz );
e the categorical saliency of the branch, defined by its frequency freq(By) = m/M.

Following these denotations, the shape trees 77 and 75 and the category tree 7¢ can all

be expressed as a list of nodes (excluding their root nodes) as follows:

T = ui:(u ueu utype) |u E./\/l}
Ty =1<v; = (vj,vf,vj,v;ype) |U]€N2}
To = By = (B, By, Blre Bl By, Byres, B, freq(By) ) | B e/\/c}

where i, j, k denote the order of nodes, (r,0) is the normalized location of the disconnection
point in polar coordinates, type denotes the type of the branch (either positive or negative)

and [ is the normalized length of the corresponding skeleton branch. N7, Ay and N are the
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Figure 5.3: Dynamic formation of a category tree. The category tree 7¢ is enlarged incre-
mentally with the shape trees 77, 75, 73 and 7;. Matched nodes are labeled with identical
letters. Note that the procedure does not suffer from any of the drawbacks of the static

formation procedure.

set of leaf nodes of 77, 75 and Ng, respectively.

To calculate the distances between attributes in the presence of category statistics,
Baseski proposed the generic function f (z|y, [min, max]) (Figure 5.4) [7]. In the experi-
ments, ¢1 and ¢2 is taken as ¢; = 7 and ¢ = %’T. x is defined on the horizontal axis and
the function is fixed for [min, mazx] and a given y. Notice that value of function f depends
not only to the difference x — y, but also to the range [min, maz]. When z falls in the range,
x — y difference is taken as it is. On the other hand, when x fall out of the range, z — y
difference is boosted. That is, numerically equal differences are perceived smaller within
categories and larger between categories. The idea is not so different than a Mahalanobis

distance or the distance used in [86]. It gives a distance weighted in a context.

The modified cost functions are given by:
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Figure 5.4: The generic cost function f (x|y, [min, maz]) (image taken from [7]).

1 if qtupe £ ytupe

change(u,v,B) = o ol b o
S o™ B)+f(u Ig B)+3f (W o!.B) | freq(B)

otherwise

!

remove (u) = <m) (1—u")

l

insert (v) = (m;ﬁ) (1 —=2") x freq(B)

Note that there is no change in the cost function of remove operation however, the
insertion cost of a node is multiplied by a factor of categorical significance of the skeleton

branch since the category of the shape denoted by 75 is known.

5.1.3 Matching a Shape Tree with a Category Tree

We can exploit the structural equivalences of shape trees and categories and formulate a
simple way of matching a shape tree with a category tree: Let 77 be the input shape tree to be
matched with the category tree 7¢. We construct a mean shape tree 7¢c having equal number
of nodes with 7 whose leaf nodes hold ordinary average values of the attributes collected
from the shape trees of the category members. Since a mean shape tree is indistinguishable
from a shape tree, we can apply the matching algorithm given in the previous section in
order to determine the correspondences between a shape tree and a category tree.

We make two remarks to make. First, the mean tree is uniquely defined as an ordinary
average. Hence, it differs from a mean or median structure which has equal edit distances to
all the contributing shapes as in [18, 40|. Second, a comparison of a shape tree with a mean

tree is guided by the category tree from which the mean tree is calculated. Even though the
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mean tree does not capture within group variability, the category tree does.

As noted in Section 5.1.1, we utilize this way of matching a shape tree with a category
tree in the dynamic procedure proposed for the construction of category trees in which a
category tree is expanded progressively, via computing the correspondences with the given
shape trees. In Chapter 6, we will use this method for the purpose of categorization that the

method will provide a starting point for us in devising a novel shape classification framework.

5.1.4 Experimental Results

To observe the effect of context in shape matching, we first repeated the experiments given in
Section 4.1 and Section 4.2 with our category-influenced matching method. Figure 5.5 shows
the average precision-recall curve for this experiment. Incorporating category knowledge
into matching process aids resolving the erroneous situations that is faced with the methods
that don’t use contextual knowledge, thus we attain precision values are above 99.4% for
all the recall levels. Moreover, the new dissimilarity measure gives a better within group
versus between group separation, and it mimics the asymmetric nature of human similarity

judgements. Compare Table 5.1 with Table 5.2.

Average Precision-Recall Curve

Precision

Recall

Figure 5.5: Average precision-recall graph (cf. Figure 4.3 and Figure 4.8).
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Table 5.1: The top 8 retrievals for 6 elephants. The dissimilarity between an elephant and

a squirrel is very close to the dissimilarities among elephants. (image taken from [7]).

‘o &

0.994

¥:3
F
> %
o k4
g
4:H

o
®
[N
(=]
[
o
w
w
=
[
N
o
—_
ot
[0}
o
—
[=2}
J
(=2}
—
[«
©
—_
—_
D
o
[

o
»
o~
ol

™

>
¥

o
©
o
=
-
o
w
w
=
=
N
(V)
o
3t
J
[y
=)
=)
w
0
~
o
—_
e
g
%)

U,
.
U,

ﬁ
ol
)
a
oo
\gr

Ju
iy
M
N
Jun

.15

“]
[
I
[\
()
=
w
w
(=)
=
w
=
Y]
—_
N
~
N
—
~
®
¢
—
o~
©
®

7
3
S
x5
S
A
5

[y
'y
(%A}
©
-
(%
[=2]
(V)
[
[~
=
w
=
3
o
®
=
q]
'y
'y
—_
©
[
o]
=
o
[=>}
w
—_
©
D
3

a
:3
7
.
"
5
5}

[
(=)
e
()
=
(%33
w
(=)
=
[«
&
=)
=
-3
o
[v3)
—
~
w
w
=
-~
Ny
w

w % ¥ FH
> 2k

o
®
iy
=

Table 5.2: The top 8 retrievals for 6 elephants. Compare the results to the ones in Table 5.1

(image taken from [7]).

Y AE IR I IR 40 SRS
0.356 0.414 0.418 0.431 0.693 2.101 2.119 2.140
Em PRI L ™
0.375 0.446 0.450 0.514 0.815 2.069 2.091 2.098
RDE L™
0.378 0.452 0.457 0.621 0.968 2.426 2.475 2.477
LIPS IR IE A JENP AR S
0.675 0.756 0.828 0.848 0.857 2.224 2.240 2.327
L 4 IR IR,
0.898 1.004 1.106 1.170 1.254 2.183 2.188 2.260
L I IE Nk 3K 4 \e |\
0.401 0.467 0.480 0.615 0.908 2.364 2.391 2.464

For a detailed analysis of the performance, we form a much larger shape database by
extending the database of Aslan [1] with new shapes and additional shape categories, which
are collected from various sources, including [50, 88|. As shown in Figure 5.6, the database
contains 50 categories, each having 20 examples among which there are differences in orien-

tation, scale, articulation of parts and small boundary details.
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Figure 5.6: The shape database used in the experiments. It contains a total of 1000 shapes

(50 categories, each having 20 examples).
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We evaluate the performance of the matching method of Baseski 7] and the proposed
category-influenced matching by performing 100 experiments where in each run the shape
database is randomly partitioned into two: 750 shapes for training (15 examples for each cat-
egory) and the remaining 250 shapes for testing. A sample partition is given in Appendix A.
For each partition, each shape in the test set is used as a query shape and matched with all
the remaining 750 shapes in the training set. The knowledge about a specific category is rep-
resented by a category tree formed using the shapes in the training set which belong to that
category. The average precision-recall curves are presented in Figure 5.7. Notice that the
importance of context is clearly visible at high recall levels, where the improvement obtained
by incorporating semantic category knowledge into matching shows 50% improvement in the
precision at 100% recall. For the partition given in Appendix A, the results of the matching
method of Baseski [7] and the category-influenced matching method are respectively shown

in Appendix B and Appendix C.

Average Precision-Recall Curve

09

0.6

0.5

Precision

0.4

03

0.2

0.1

The method of Baseski
Category-influenced matching
T T T T

0 | | 1 ! i
0 0.1 0.2 0.3 0.4 0.5 0.6 07 0.8 0.9 1
Recall

Figure 5.7: Average precision-recall curves. At each recall level, compare the precision
values of the category-influenced matching method (shown in blue) to those of the method

of Baseski [7]| (shown in red).
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5.1.5 A Coarse-To-Fine Strategy To Incorporate Categorical Boundary
Similarity into Category-Influenced Matching

In Section 2.3.1, we have demonstrated a way to obtain approximate radius function of a
positive skeleton branch from a corresponding TSP surface. Recall that when computed
with a sufficiently large value of p, the resulting TSP surface becomes a smoothed ver-
sion of distance surface [106, 107]. Thus, the extracted radius functions are very smooth,
representing only the most significant boundary details. Once the disconnected skeleton rep-
resentation is enriched with the radius functions, we can compare boundary similarity of two
positive branches based on the corresponding radius functions, as traditionally utilized in
skeletal matching methods such as [5, 32, 74, 90, 98]. This provides us a way to incorporate
boundary similarity into category-influenced matching method. Our strategy is to adopt a
coarse-to-fine approach that we first find a match between two shapes, and then recalculate
the dissimilarity by taking boundary similarity into account. The details are as follows:

In constructing a shape tree, we uniformly sample 32 points along each extracted positive
branch and store the corresponding vector of radii values as an additional attribute in the
corresponding node of the shape tree. Note that this vector is null for the nodes which corre-
spond to negative skeleton branches. In forming a category tree, we employed the approach
in [127]. That is, we model deformations of shape section associated with a positive branch
in the presence of category knowledge. Here, we first collect all the information about bound-
ary details coming from the category members and then apply principal component analysis
(PCA) to form a low-dimensional linear space for the observed deformations. Subsequently,
in the related nodes of the category tree, we additionally store the mean of the approximate
radius functions together with a reduced set of principle components. In the experiments,
these deformation spaces are all represented with the first five principal components. In
Figure 5.8-Figure 5.11, we give some illustrative examples showing the observed variations
some shape sections with different characteristics, captured by the uniformly sampled radius
functions of corresponding skeleton branches.

Once the descriptions of shape trees and category trees are enriched in this way, we define
the following two-step procedure to incorporate boundary similarity into category-influenced
matching of shapes: Let 77 denote the shape tree of the query shape which is being compared

to a database shape whose shape tree is denoted by 75 and suppose 75 is associated with
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the category tree 7¢. The enriched version of 77, 75 and 7¢ can all be expressed as follows:
T =2u = (u ul ul, ul utype> |u, 6/\/1}

R R R

Ty =qv; = (v v, vk ! Utyp€> | v; GNQ}
To = By = (B, Byres, Bl Bires B, By, Bl BI* B  freq(By)) | By e/\/c}

where the additional attribute f in 77 and 75 denotes the uniformly sampled approximate
radius function of the corresponding branch and f, and fe in 7¢ denote the mean of the
approximate radius functions of the associated branches and the reduced set of corresponding
principle components, respectively. Note that for each leaf nodes corresponding to a negative
branch, these additional attributes are all null.

First, category-influenced matching between 77 and 75 is performed in the way described
previously. In the refinement step, the overall dissimilarity is re-calculated according to
Equation 5.1, this time by considering the boundary similarities between every matched pair
of branches. The definition of this boundary similarity measure is given in Equation 5.2 and
requires projecting the corresponding uniformly sampled radius functions onto the related

low-dimensional deformation space.

d(Th,T2) = Z remove (u) + Z insert (v) + < ,V)) X change (u,v,B)>(5.1)
Q

u€A vEA (u,v)€

5 2
1 (al _ﬁl) . tupe tupe iy
exp | — E T if u'¥P€ and v"YP€ are positive
d(u,v) = V2o’ ( ~ 207 ) (5.2)

0 otherwise
where a and § correspond to the projected values of approximate radius functions of « and

v and o is taken as ¢ = 0.4 in the experiments.

In the following, we investigate the effect of incorporating categorical boundary sim-
ilarity into category-influenced matching using the training and test shape sets given in
Appendix A. Figure 5.12-Figure 5.19 shows some sample matching results with and without
boundary information, where for each category, the corresponding category tree influencing
the distance computation and the suggested deformations spaces are constructed using 15
example shapes belonging to that category. As it can be clearly seen, the proposed ap-
proach results in perceptually more meaningful matching scores, as compared to the original

category-influenced matching formulation.
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normalized radii values

4 8 12 16 20 24 28 32
sampled medial points
(b)
Figure 5.8: An analysis of boundary deformations using approximate radius functions.

(a) Equivalent shape sections of 20 squirrel shapes, each associated with a positive skeleton

branch. (b) The corresponding set of uniformly sampled approximate radius functions.
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normalized radii values

4 8 12 16 20 24 28 32
sampled medial points

(b)

Figure 5.9: An analysis of boundary deformations using approximate radius functions.
(a) Equivalent shape sections of 20 horse shapes, each associated with a positive skeleton

branch. (b) The corresponding set of uniformly sampled approximate radius functions.
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Figure 5.10: An analysis of boundary deformations using approximate radius functions.
(a) Equivalent shape sections of 20 shapes from the same artificial shape category, each
associated with a positive skeleton branch. (b) The corresponding set of uniformly sampled

approximate radius functions.
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Figure 5.11: An analysis of boundary deformations using approximate radius functions.
(a) Equivalent shape sections of 20 seahorse shapes, each associated with a positive skeleton

branch. (b) The corresponding set of uniformly sampled approximate radius functions.
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Figure 5.12: (a) Category-influenced skeletal matching result between the shapes A4 and B.
Total matching cost is reduced from 0.7240 to 0.5800 when boundary similarity is incorpo-
rated. (b)-(g) Radius profiles of matched pair of branches A; and By, A3 and Bs, A5 and
Bs, A7 and B7, Ag and By, A1; and Bi1, respectively.
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Figure 5.13: (a) Category-influenced skeletal matching result between the shapes A and C.

Total matching cost is reduced from 0.7823 to 0.5368 when boundary similarity is incorpo-

rated. (b)-(g) Radius profiles of matched pair of branches A; and Cy, A3 and Cs, A5 and Cr,

A7 and Cy, Ag and Cq1, A1 and Cy3, respectively.
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Figure 5.14: (a) Category-influenced skeletal matching result between the shapes D and £.
Total matching cost is reduced from 1.2904 to 1.1989 when boundary similarity is incorpo-
rated. (b)-(e) Radius profiles of matched pair of branches D3 and &1, D5 and &3, D7 and Es,

D11 and &7, respectively.
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Figure 5.15: (a) Category-influenced skeletal matching result between the shapes D and F.

Total matching cost is reduced from 1.4936 to 0.9458 when boundary similarity is incorpo-

rated. (b)-(f) Radius profiles of matched pair of branches D; and Fi, D3 and F3, D5 and
Fs, Dg and Fr, D1y and Fy, respectively.
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Figure 5.16: (a) Category-influenced skeletal matching result between the shapes G and H.
Total matching cost is reduced from 2.1879 to 1.9576 when boundary similarity is incorpo-
rated. (b)-(g) Radius profiles of matched pair of branches G; and Hs, G3 and Hs, G5 and
H7, Gr and Hg, Gg and H11, G11 and His, respectively.
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Figure 5.17: (a) Category-influenced skeletal matching result between the shapes G and Z.
Total matching cost is reduced from 3.0387 to 1.8744 when boundary similarity is incorpo-
rated. (b)-(g) Radius profiles of matched pair of branches G; and Z7, G and Z3, G5 and Zs,

G7 and Z7, Gg and Zg, G171 and Z;1, respectively.
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Figure 5.18: (a) Category-influenced skeletal matching result between the shapes J and K.
Total matching cost is reduced from 0.8105 to 0.8052 when boundary similarity is incorpo-
rated. (b)-(d) Radius profiles of matched pair of branches [J; and Ky, J3 and K3, J7 and

K5, respectively.
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Figure 5.19: (a) Category-influenced skeletal matching result between the shapes J and L.
Total matching cost is reduced from 1.0875 to 0.6738 when boundary similarity is incorpo-
rated. (b)-(e) Radius profiles of matched pair of branches [J; and £, J3 and L3, J5 and Ls,
J7 and L7, respectively.
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5.2 Contextual Sensitivity to Articulation of Parts in Skeletal

Shape Matching

The complexity of visual shape recognition requires representation and matching schemes
that are invariant or insensitive to visual transformations such as deformations and articula-
tion of parts. In this regard, skeletal representation schemes have been widely used for generic
shape recognition as they lead to articulation insensitive representations while capturing the
part structure of shapes [2, 5, 8, 57, 61, 74, 87, 94, 98, 110, 127].

Despite their desirable strengths, presemantic and purely syntactic level of skeletal rep-
resentations fail to distinguish a likely articulation from an unlikely one. In this regard,
consider the shapes given in Figure 5.20. On one hand, certain context might require articu-
lation invariance such as asserting that the shapes shown in (a) and (b) are the same shape.
On the other hand, it is less natural to make the same claim for the shapes in (c¢) and (d).
We refer this as contextual sensitivity to articulations. In fact, the distinction between such
cases lies in the previous encounters to the shapes in consideration and hence, it requires the
interpretation which we considered in the beginning of this chapter.

The previous example shows that it is essential for a skeleton-based recognition framework
to have an additional representation scheme to handle sensitivity to articulations depending
on the context. In this section, we present such a complementary work to the method of Aslan
and Tari [3]. Motivated both by the hybrid (axis vs. point) nature of disconnected skeleton
representation and the techniques developed for landmark-based shape analysis [13, 42|, we
propose a part-centered coordinate frame, referred to as semi-local coordinate frame, that
provides us a representation space for making inferences about articulations, in which similar

articulations or bendings yield closer coordinates. Then, we demonstrate the use of semi-local

Ll

(a) (b) () (d)
Figure 5.20: Contextual sensitivity to articulation of parts. See text for explanation (images

taken from [1]).
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coordinate frame on a set of human shapes with different postures.

Note that the tools for landmark-based shape analysis [13, 42| are previously adopted by
Burl et al. to design a recognition scheme by considering the relative spatial arrangement of
shape sections [19]. However, our goal is completely different from the aim in [19] and the
related followup works in the sense that they use these ideas to filter out global transfor-
mations in order to capture shape information. On the other hand, we filter out the shape

information in addition to global transformations to capture the articulations.

5.2.1 Semi-local Coordinate Frame

Recall that in the disconnected skeleton, the extracted skeleton is in the form of a set of
disconnected skeleton branches, each corresponding to a salient part of the shape. Moreover,
a positive branch is neighbored by two negative branches. Typically, the start points of the
negative branches as well as all the disconnection locations, are quite stable under bendings
and articulations. It is the tip of the positive branch that moves freely if the branch is denot-
ing a deformable section. Consider the disconnected branches of some shapes as displayed
in Figure 5.21. Four points define three vectors, starting from the disconnection point of
the protrusion branch and ending respectively at the starts of the two indentations and the
protrusion. The third vector can be represented as a linear combination of the remaining
two.

When these vectors are transformed to standard bases, each configuration can be repre-
sented by only a single point, which denotes the local pose of a shape section, which may
or may not articulate or bend. We name this coordinate frame as semi-local coordinate

frame and a point in this coordinate frame as LA coordinate. Note that any measurement

(a) (b) (c)

Figure 5.21: Vector combinations of some skeleton branches.
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in semi-local coordinate frame is deprived of any shape information as well as Euclidean
transformations, as illustrated in Figure 5.22. By separating visual transformations, we can
produce descriptions that are sensitive to any combination of changes in scale, location,

orientation, and articulations in addition to descriptions that are invariant to these changes.
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Figure 5.22: Articulation of a section can be described by a single point in the semi-local

coordinate frame.

5.2.2 Articulation Space

From a geometric point of view, shape is defined as the geometric information that remains
when location, scale and rotational effects are filtered out [42]. On the other hand, it is the
shape information that has to be filtered out in order to make articulations explicit. In this
regard, we show that semi-local coordinate frame can provide us such an articulation space
to represent solely articulation information.

Notice that the three vectors used in representing the local pose of a shape section define
a quadrangle. Therefore it is possible to associate each LA coordinate with a set of affine
related quadrangles or equivalently a canonical quadrangle represented in LA coordinates.
The collection of such quadrangles may be considered as an articulation space (Figure 5.23).
Note that this space is qualitatively similar to the triangle shape space of Kendall [42].

In articulation space, similar articulations or bendings yield closer coordinates. Consider
the two human silhouettes shown in Figure 5.24. Since their left arms have similar postures,
the corresponding articulations are represented by two nearby points in £.A coordinates. On

the contrary, LA coordinates of right arms are far distant from each other. Notice that a
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Figure 5.23: Articulation space. (a) Each point in the articulation space can be associated

with a quadrangle (b) four quadrangles that fall on = y line in the articulation space.

horizontal arm will be on z = y line, whose polar representation is (I,7/4) where [ is the

dimensionless arm length.

Assuming that the arm is a single rigid body, possible coordinates should fall into a

circle whose radius is [ since the size information is already filtered out. One may think

that quadrangles that lie on a constant angle line in the articulation space (such as any two

quadrangles shown in Figure 5.23(b)) can not both belong to the same shape section and

may come to a conclusion that the whole space is not utilized and the articulations lie on a

1D manifold. This is not the case. Figure 5.25(d) shows three different postures of human

6 6
5.5 5.5
5 5
4.5 1a 4.5
4 2a 4
3.5¢ 3:6
3 3
2.5¢ 25
2 2
-1 0 1 2 3 4 5 -1

(b)

2b

Figure 5.24: LA coordinates. (a) two human silhouettes with different postures (b) LA

coordinates of the left arms (c) LA coordinates of the right arms.
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arm in a single image consisting of two rigid body movements of arm (Figure 5.25(a)-(b)),
and a case where a bending occurs (Figure 5.25(c)). The corresponding £.A coordinates of
left arms (which are determined from the disconnected skeleton representations computed
from extracted silhouettes) are given in Figure 5.25(e). Notice that due to initially ignored
joints such as elbows, LA coordinates of a shape section may not always lie on a circular

arc.

......
.
.

() (€)
Figure 5.25: Articulations and bendings in the articulation space. (a)-(c) three different
postures of a human figure (taken from ira_wave2 video sequence from action-silhouette
database of [10]), the corresponding binary silhouettes and disconnected skeletons extracted
from upper body portions (d) these three postures combined (e) LA coordinate representa-

tions of left arms in the articulation space.

Representing articulations in semi-local coordinate frame deteriorates when the points
defining the coordinate system are nearly colinear, e.g. the head section in Figure 5.26(a).
Even a very small change in the location of the tip of the positive branch might lead to a

significant change in its LA coordinate. Another degenerate situation is encountered when
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the second indentation is not close enough, e.g. the leg sections in Figure 5.26(a). In this
case, the length of one of the vectors defining the coordinate frame becomes too large. Hence
the corresponding semi-local coordinate frame fails to capture the variations of the tip of
protrusion. But note that this latter degenerate case is a side effect of the skeleton extraction

and may be alleviated by modifying it.

(a) (b)
Figure 5.26: Deformable sections of a human shape via its disconnected skeleton. (a) Start-
ing and ending points of skeleton branches (b) quadrangle or triangle representations of

deformable sections.

In these degenerate situations, it is possible to define the local frame using only two
points and the coordinate representation becomes equivalent to that of Bookstein used for
analyzing landmark data [13]. At such object sections the set of quadrangles are replaced

by a set of triangles.

5.2.3 Inferences in Articulation Space

A collection of possible postures or deformations defines either a subset of the articulation
space (static view) or a trajectory in the articulation space (dynamic view). In literature,
articulation priors are considered particularly in applied problems involving motion and
tracking [121] and pose configurations are mostly represented as data determined manifolds
embedded in high dimensional measurement spaces |14, 121, 123|.

In this section, we adopt the static view and discuss very basic inferences that can be
made in the articulation space. We restrict our discussion to a set of twenty human shapes

with different postures given in Figure 5.27. The main reason for selecting this data set is
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Figure 5.27: Set of 20 human silhouettes used in the experiments.

that the sections as captured by protrusions and their movements are intuitive and one can
judge relative closeness of two different postures, such as arms being up or down. Secondly,
human figure provides a rich data set since each figure contains five flexible sections to cover
all possible situations that may arise in terms of degeneracies.

Once the deformable shape sections are extracted from disconnected skeletons of the
training set and then mapped to LA coordinates, the distributions of the points can serve
as prior knowledge about possible degrees of articulation in each section. In this study,
we model these distributions as Gaussians although one can also employ a non-parametric
approach.

The collected statistics about part articulations for the shape set S; = {A,B,C,D,E}
is illustrated in Figure 5.28. The largest ellipse corresponds to the distribution of arml
coordinates where the postural variability is the highest whereas the very small ellipse shown
in the square window corresponds to the distribution of the head coordinates practically
having no variability at all. The individual plots of each part are provided in Figure 5.29.
One can observe that similar articulations of a part are expressed with nearby points in the
corresponding articulation space. For example, the articulations of arml for shapes B and
D and the articulations of leg2 of shapes A and B are close to each other.

When we consider the set So = {A, .., P} and concentrate only on the degrees of articu-
lation in arml, the distribution of this articulated section becomes as shown in Figure 5.30.
Table 5.3 shows the pairwise similarities between articulations of arml, each computed with
the similarity measure given in Equation 5.3. Observe that the similar configurations have

relatively high similarity scores.

. 1
sim(x,y) = TPy (5.3)

where x, y are LA coordinates of two articulations, d(x,y) is the Mahalanobis distance
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between x and y measured using the estimated covariance matrix and € is a scalar which

determines the decay rate of the similarity and is taken as 4 in the following experiments.

N\
—

e

Figure 5.28: Collected statistics of each part for shape set S; = {A,B,C,D,E} in the artic-

ulation space. The ellipses are drawn at 20. The largest one corresponds to arml and the

small dot corresponds to head.
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Figure 5.29: For the shape set S; = {A, B, C,D, E}, the distributions of (a) head, (b) arm1,

(c)arm2, (d) legl and (e) leg2 in articulation space. Note that the scales are not equal.
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Table 5.3: The pairwise similarities between

articulations of arml in Sy = {A,..,P}.

A B C D B F G H I J K L M N (0] P
A | 1.000 | 0.158 | 0.249 | 0.186 | 0.084 | 0.236 | 0.755 | 0.434 | 0.337 | 0.197 | 0.125 | 0.928 | 0.824 | 0.622 | 0.468 | 0.133
B X 1.000 | 0.161 | 0.945 | 0.128 | 0.797 | 0.247 | 0.180 | 0.455 | 0.900 | 0.873 | 0.160 | 0.162 | 0.144 | 0.103 | 0.113
C X X 1.000 | 0.192 | 0.262 | 0.212 | 0.304 | 0.124 | 0.175 | 0.171 | 0.147 | 0.203 | 0.375 | 0.468 | 0.358 | 0.597
D X X X 1.000 | 0.139 | 0.919 | 0.300 | 0.199 | 0.519 | 0.939 | 0.766 | 0.186 | 0.194 | 0.172 | 0.120 | 0.129
E X X X X 1.000 | 0.131 | 0.106 | 0.060 | 0.091 | 0.117 | 0.140 | 0.076 | 0.106 | 0.119 | 0.099 | 0.415
F X X X X X 1.000 | 0.394 | 0.250 | 0.673 | 0.927 | 0.581 | 0.237 | 0.241 | 0.208 | 0.141 | 0.133
G X X X X X X 1.000 | 0.432 | 0.529 | 0.316 | 0.189 | 0.707 | 0.733 | 0.558 | 0.352 | 0.156
H X X X X X X X 1.000 | 0.479 | 0.236 | 0.137 | 0.564 | 0.294 | 0.220 | 0.170 | 0.076
I X X X X X X X X 1.000 | 0.633 | 0.315 | 0.372 | 0.294 | 0.232 | 0.159 | 0.106
J X X X X X X X X X 1.000 | 0.662 | 0.203 | 0.196 | 0.169 | 0.118 | 0.113
K X X X X X X X X X X 1.000 | 0.125 | 0.132 | 0.121 | 0.088 | 0.111
L X X X X X X X X X X X 1.000 | 0.650 | 0.472 | 0.361 | 0.113
M X X X X X X X X X X X X 1.000 | 0.899 | 0.638 | 0.185
N X X X X X X X X X X X X X 1.000 | 0.790 | 0.229
X X X X X X X X X X X X X X 1.000 | 0.203
P X X X X X X X X X X X X X X X 1.000
| kB!
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Figure 5.30: The distribution of articulations of arml in the shape set So = {A,..,P}.

Observe that in semi-local coordinate frame, LA coordinate of arml belonging to shape G

(straight arm posture) is close to = y line.

Next, we consider the set S3 = {A,C,E,L,M,N, O, P} which contains only the shapes

having their arm1s up (Figure 5.31(a)). In this particular case, the past experience is incom-

plete, therefore when a human shape whose arml has a different posture is encountered, it

must be considered as impossible. The Mahalanobis distances from arm1l of shapes J (arm

down) and G (horizontal arm) to the distribution reflect this fact with the values 5.008 and

1.791 respectively. We can expand our knowledge about arml by inserting the instance F

where arm1 is down. New distribution covers the cases where arm1 is down (Figure 5.31(b)).
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As expected, the distances of configurations for shapes J and G are reduced to 2.638 and

0.923, respectively.
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Figure 5.31: The distributions of articulations of arml in the shape sets (a) S3 =
{A,C,E,L,M,N,0,P} (b) S3 = {A,C,E,F,L,M,N,O,P}. Notice the change in the distri-

bution when shape F (arml down) is added.

Similar inferences are also valid for the degenerate cases. When the articulation distri-
bution of legl for the shape set Sy = {A,C,D,E,F,G,Q,R,S} is considered, the articulation
of shape T can be regarded as impossible (see Figure 5.32) since the Mahalanobis distance

from it to the distribution is very high (6.290) compared to the others.
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Figure 5.32: The distribution of articulation of legl in the set Sy = {A,C,D,E,F,G,Q,R,S}.

The articulation of shape T is far distant from the distribution.
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5.2.4 Incorporating Contextual Sensitivity to Articulations into Skeletal

Shape Matching

We now utilize the developed ideas to incorporate contextual sensitivity to articulations into
the skeletal shape matching method of Aslan and Tari [3]. But note that our approach is in
fact independent of the matching method. However, it depends on the disconnected skeleton
representation in order to construct the semi-local coordinate frame. Recall that in the
matching method of Aslan and Tari, the total similarity of two shapes is determined by the
weighted sum of matched branch pairs, in which the weights are the normalized lengths of the
branches (Equation 4.1). As a refinement step, we propose to reevaluate the overall matching
score by integrating the measurements in the articulation space as additional weights. But
as in Section 5.1.3, it is sufficient to revise only the weights of the positive skeleton branches,
because these branches actually represent the deformable sections of shapes.

Consider the matching between shapes A and T (Figure 5.33). In the syntactic level,
these two shapes are found to be similar with a score of 0.826. However, when we take
into consideration the prior knowledge about likely articulations obtained from the set S5 =
{A,..,S}, this score is reduced to 0.458. This updated matching score reflects the difference

in the posture of legls of the given shapes.

Figure 5.33: Matching result of two human shapes. The original matching score is 0.826 but

it reduces to 0.458 in the context of articulations in S5 = {A,..,S}.

Figure 5.34 illustrates the effect of contextual sensitivity to articulations on some example
queries when the prior knowledge is expressed with the shape set Ss. For each query, we list
the five best matches with and without contextual sensitivity. See how the five best matches

to shape G are re-ordered. Also notice the drastic change in the best match list of shape A.
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Query 5 best matches without feedback 5 best matches without feedback

0.999 | 0.996 | 0.995 | 0.994 | 0.991 || 0.945 | 0.932 | 0.901 | 0.869 | 0.849

Figure 5.34: Some query results with and without contextual sensitivity.

5.3 Summary and Discussions

In this chapter, the effects of context, in particular the function of semantic category knowl-
edge, in shape dissimilarity computation is investigated. In doing so, we adopt the interpre-
tation of Tversky about the asymmetric nature of human (dis)similarity judgements [113],
in which different roles are assigned to the shapes in consideration and extend or refine the
shape matching methods of Aslan and Tari [3] and Baseski [7] accordingly. In the proposed
versions of these algorithms, a query shape is being compared with a database shape that be-
longs to a familiar category. Hence, the knowledge about the category of the database shape
guides the dissimilarity computation. Note that in shape matching literature, the classic
view is to define shape (dis)similarity by means of metrics, whereas in our formulation, the
resulting (dis)similarity measures are asymmetric due to influence of category knowledge.

Our motivation in extending the tree edit distance-based algorithm of Baseski [7] is to
utilize the extra information inferred from all the members of the category of which the
database shape in comparison belongs. Availability of the knowledge about the category of
the database shape allows us both to modify the importance of extracted skeleton branches
and the distances between attributes in the matching process. Early experimental results
demonstrate that incorporating category knowledge into matching drastically improve the
performance of the originating matching method.

The key to our category-influenced matching algorithm is the category tree data structure
which we construct as a union of shape trees belonging to the same category. In the context
of skeletal shape matching, forming a union of tree representations was previously addressed

by Torsello and Hancock [109]. However, in contrast to their way of utilizing tree unions that
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they embed shock trees into a vector space, we utilize category trees in order to provide a
context for each primitive of a database shape. Moreover, unlike the case in forming the union
shock trees, our constructions naturally result in tree structures as a consequence of depth-1
property of shape trees. In fact, category trees are also depth-1 trees. Recently, Torsello and
Hancock utilized tree unions in an unsupervised setting to learn shape categories [111]. In
Chapter 6, we will make use of category trees in a supervised shape categorization framework.

As noted before in Chapter 2, disconnected skeleton representation does not carry any
information about the boundary details and in this regard, we propose to obtain approxi-
mate radius functions from TSP surfaces to enrich the disconnected skeleton descriptions. In
Section 5.1.5, we make use of these enriched descriptions to incorporate boundary similarity
into our category-influenced matching method. We first employed the approach in [127] and
model a low-dimensional linear deformation space for each positive branch which appears
in a shape category and then we develop a refinement procedure to revise the overall dis-
similarity score by considering the boundary similarity of matched positive branches in the
corresponding deformation spaces.

The widespread use of skeletal representations in visual shape recognition lies mostly
in the fact that they are insensitive to articulation of parts. However, as demonstrated
in [1], insensitivity to articulations becomes undesired in some circumstances which actually
involves prior knowledge about the degree of possible articulations to come up with the cor-
rect matching result. This contextual sensitivity to articulations raises another need for the
incorporation of category knowledge into shape matching process. In this regard, we propose
a novel part-centered coordinate frame constructed via the disconnected skeleton represen-
tation which provides a representation space for making inferences about articulations, in
which similar articulations or bendings yield closer coordinates. Using illustrative examples,
we demonstrated that it is possible to build articulation priors and incorporate them to the

matching method of Aslan and Tari [3] to arrive at an enriched skeletal matching scheme.
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CHAPTER 6

SIMILARITY-BASED CLASSIFICATION
OF SHAPES USING DISCONNECTED
SKELETONS

Classification (or categorization) is among the most primary cognitive processes, described
as the ability to group a very large (or possibly infinite) number of similar objects into a
relatively small number of classes (or categories) and to identify a novel object as a member
of a particular class. From the perspective of information retrieval, having a classification
mechanism is vital because organizing knowledge in a structured way offers efficient and
economical use of limited resources when reasoning about a novel object. Moreover, the
knowledge about the category of an object enables making inferences about unobserved
characteristics of that object [46, 77, 82]. Lastly, it is important to note that the notion of
similarity plays a central role in classification, especially in explaining generalization from
the knowledge about previously encountered objects of the same category.

Visual object classification is one of the fundamental tasks of both human and computer
vision systems. This ability, as in recognizing a novel object, requires the integration of
information about the properties of the object such as shape, size, color, texture. In this
regard, it is widely believed that shape information provides an informative representation
that is invariant to changes in the viewpoint that objects can be identified and classified
solely based on their shapes (Figure 6.1) [62]. As first demonstrated by Landau and her
colleagues [49], psychological experiments suggest that infants have a tendency to name
objects based on the resemblance in their shapes rather than other perceptual properties
like size, color or texture, and this phenomenon is called shape bias.

In this chapter, we start with some theoretical preliminaries on classification and sim-
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Figure 6.1: Objects can be easily classified solely based on their shapes.

ilarity. Next, we review some skeleton based shape classification methods proposed in the
literature. In the following section, we present our shape classification algorithm, which is

based on disconnected skeleton representation of Aslan and Tari [3].

6.1 Classification and Similarity

6.1.1 Supervised vs. Unsupervised Classification

In literature, classification studies can be divided into two broad groups, supervised and
unsupervised classification, based on two different strategies used in learning. In supervised
category learning, a subject or a machine learns to discriminate between different categories
while members of the categories are repeatedly provided with a category label and feedback
is given accordingly about their classification accuracy [63, 66, 45, 23]. In computational
terms, supervised learning approach can be interpreted as a function approximation process
with a good generalization capability [23, 99, 116]. On the other hand, in unsupervised
category learning, no explicit feedback or even no information about existing categories is
provided, and the objective of the subject or the machine is to find out the hidden category

structure by himself or itself.

6.1.2 Theoretical Approaches to Classification

Classification studies in the literature can be grouped as the classical, prototype and exemplar
approaches based on how category knowledge is represented [100]:

In the classical approach or so-called the Aristotelian view, it is believed that every
category is constructed by a set of essential features, each of which is necessary and sufficient
in defining that particular category (e.g., the defining properties of bird category can be listed
as can fly, has feathers, has wings and can sing). According to this line of explanation,

the boundaries of categories are all well-defined that a novel object is a member of a category
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if and only if it satisfies all the characteristics of that category. Hence, there is no notion of
a membership rating. In contrast to other two approaches, each member of a category is an
equally representative example of that category.

In the prototype approach, the concept of prototype plays the central role in categorization
where each category is a fuzzy set that is constructed as groupings of objects similar to
the prototype of that category [82]. A prototype can be considered as either a summary
representation formed by abstracting over previously encountered examples of a category
(e.g. suppose instances of a category are represented with n-dimensional feature vectors then
a prototype of the category can be easily formed by averaging over all these feature vectors) or
just a typical example of the category (e.g. think about a robin or a sparrow representing the
bird category). When a novel object is encountered, classification is performed by comparing
it with the prototypes of categories. The instance is then assigned to the most similar
category if the corresponding similarity is found to be greater than a threshold value. This
kind of decision making process can utilize Luce’s well-known Choice Rule [59, 60]: Let
S(x, A) be the similarity between the newly encountered instance z and the category A, the

probability of membership of = to category A is calculated as:

S(z, A)
S, A)+ Y S(z,B)

B#A

Pz e A) =

In the exemplar approach, each category is believed to be constructed by not as a single
prototype, but as a collection of exemplars, referring to the memory traces of some previously
encountered examples of a category, and according to this view, classification depends on the
similarities to the stored exemplars. For example, consider the following simple classification
procedure. In classifying a newly encountered object, for each category, we sum up all the
similarities between the novel object and the exemplars of the category (Equation 6.2).
Following to that, the object is assigned to the category having the greatest cumulative

similarity value. Here, Luce’s choice rule can also be used, as in [63, 66].

S(x,A) = S(x,y) (6.2)

yeA

The main difference between prototype and exemplar approaches to classification lies in
how they define classification: whether classification relies on an abstraction over previously

encountered objects, or it is a function of these stored examples [83]. In fact, these two
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approaches can be considered as the two extremes in a continuum. When only the most
typical exemplar of a category defines the category, the exemplar-based model becomes
equivalent to a prototype-based one. Similarly, the exemplars defining a category might
not refer to actual copies of encountered examples but they might involve abstraction. In
short, one can end up with a different classification model by combining these two alternative

approaches, as demonstrated in [66, 45, 117].

6.1.3 Models of Similarity

As clearly discussed above, the notion of similarity is at the heart of classification models
regardless of the approach employed. We now review two major models of similarity, which
are geometric, feature-based models.

Geometric models of similarity treat objects as points in a multidimensional perceptual
space where the similarity between two objects is inversely related to the distance between

their representations in the perceptual space:

n 1/p
S(z,y) < D(z,y)~" where D(x,y) = (Z |z; — y,-\p> (6.3)
i=1

where n denotes the number of features and p is a positive real number.

Note that the underlying assumption behind geometric models is that similarity judg-
ments satisfy all three metric axioms, which are minimality, symmetry and triangle inequality.
We mentioned in the beginning of Chapter 5 that this is in fact a false proposition though.

Feature-based models of similarity are set theoretic models where each object is repre-
sented as a set of features and the similarity between two objects is a function of their
common and distinguishing features. An early and well-known feature-based model is the
Contrast Model of Tversky [113] in which the similarity is calculated with the following linear

combination formula:

S(x,y) =af(zny) —bf(x—y) —cf(y —x) (6.4)

where (x Ny) is the set of features shared by z and y, (x — y) and (z — y) are the disjoint
sets of distinctive features of x and y, respectively, a, b and ¢ are positive real numbers, and
the function f is mostly defined as an additive function.

In [113], Tversky suggested that the rationale behind the non-metric nature of human
similarity judgments was the context of comparison and as we investigated in Chapter 5, in
the setting of his similarity model, he proposed that context might influence the saliency of

features.
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Comparing objects having a hierarchical structure (e.g. strings, shapes, scenes) is chal-
lenging for both geometric or feature-based models of similarity. In this regard, there are
some alternative models proposed in the literature, each of which depends on finding cor-
respondences between parts of objects in comparison. In alignment-based models of simi-
larity [34], common features belonging to matched parts affect the similarity computation
more, as compared to feature-based models. However, note that this leads to a chicken
and egqg dilemma since matching also depends on features common to parts of objects. In
transformation-based models of similarity [37], the comparison of two objects involves trans-
forming one into another and the similarity value is inversely proportional to the total cost

of transformation operations.

6.1.4 Generalization

Theoretical approaches to classification, especially exemplar approaches, rely on similarity
to account for generalization from past experience to classify novel instances, and in this
regard, it is important to note that the generalization capability of a classification method
is critical to its performance.

In [93], Shepard formulated what he referred to as wuniversal law of generalization, ac-
cording to which the probability of generalization falls of exponentially with the perceptual
distance between a previously encountered example and the novel one, or in other words sim-
ilarity is an exponential decay function of distance in perceptual space. In [108], Tenenbaum
and Griffiths presented a Bayesian-based extension of Shepard’s work to concept learning
that could explain generalization from multiple examples. Morever, the authors showed that
their proposed generalization function is closely related to Tversky’s set theoretic approach

to similarity [113].

6.2 Related Works On Shape Classification Using Skeletons

As noted before, shape information is an important clue for visual perception as objects can
be recognized and classified solely based on their shapes. However, in computational terms,
visual shape recognition and classification is rather challenging because objects show great
variability in their shapes due to visual transformations such as articulation and deformation
of parts, occlusion and changes in viewpoint. Shape skeletons, in spite of their instability
issues, proved themselves more effective than boundary based shape representations since

they can capture intuitive part structure of shapes.
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In Chapters 3-5, we investigated the use of skeletons for shape recognition, where we
first reviewed some of the existing skeleton based shape matching methods [1, 7, 32, 61, 74,
75, 90, 98, 110, 127| and then developed a number of ways to incorporate semantic category
knowledge into the matching process in order to improve the performance of the methods
of Aslan and Tari [3] and Baseski [7]. In this section, we investigate the use of skeletons
for shape classification. Despite their common use in shape recognition, the potential of
shape skeletons for shape classification has not been investigated much. This is partly
because the structure of skeletons, i.e. the interrelationships between skeleton branches, are
conventionally represented by graphs or trees, and in this regard, the variety of classification
tools proposed in structural pattern recognition are not as diverse as those available in
statistical pattern recognition.

The most common approach in structural pattern recognition is to use k-nearest neighbor
(kNN) method [23]. However, despite its conceptual simplicity and asymptotic behavior
(when k£ = 1 and the size of training data approaches to infinity, the error rate of kNN
classifier is bounded by twice the Bayes error rate), classifying a query shape based on a
naive kNN classifier involves first computing the distances between the skeleton of the query
shape and all the skeletons of database shapes and hence it is computationally inefficient.
To reduce this computational burden, a variety of indexing studies have been proposed, each
of which attempt to organize a metric space for fast searching (For a survey, see [20]). The
typical approach employed in these studies is to eliminate certain distance computations
using triangle inequality wherein the database shapes are clustered into groups based on
their distances to some prototypical objects. However, these methods face with the curse
of dimensionality, which means their performance deteriorate as the dimensionality of the
metric space increases. In this regard, an alternative approach is to encode the topological
structure of graphs into low dimensional vector spaces [22, 94].

In the following sections, we will review some skeleton based shape classification methods
proposed in the literature. There are some conceptual issues worth mentioning about these
methods. First, all of these are supervised classification methods, i.e. they both involve
a training phase. Although there are some interesting unsupervised methods applied on
skeleton based shape classification, e.g. [111], they are omitted here simply because our
classification method, which will be presented in the next section, is also a supervised method.
Next, all of the reviewed methods (may be except the method of Sebastian et al. [88]) are
specifically proposed for classification of shapes based on skeletons, meaning that they are

not general methods, and depend on the underlying skeletal representation of shapes.
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6.2.1 FORMS [127]

In Section 3.1, we reviewed skeleton based shape matching method of Zhu and Yuille [127].
Recall that the approach employed in this study differs from the others in that recognition
of a shape is carried via bidirectional (bottom-up and top-down) procedure to cope with the
instabilities of shape skeleton. That is, the skeleton of the query shape is initially extracted
in a bottom-up manner, segmented into parts and expressed as a graph. But the extracted
skeleton is subject to change based on the information coming from the matching process.

In the matching process, the skeleton graphs of the query and the database shapes are
not directly compared but instead they are first matched against a skeleton model associated
with the database shape in comparison and their extracted skeletons are revised according to
the matching residue. This skeleton model is a prototypical skeleton graph which represents
a common skeleton structure for a category of shapes and in addition provides for each
shape part a low dimensional representation space, which is formed by applying Principle
Component Analysis (PCA) on the observed deformations. Once the query and the database
shapes are matched with the associated skeleton model, the distance between each matched
pair of parts are computed as in the corresponding PCA subspace. However, note that the
distance computation also depends on some other measurable properties such as the area,
the radius of the maximum circles of joint points.

As clearly seen from the above description, the approach of Zhu and Yuille for skeleton
based shape matching in fact involves a phase that can be utilized as a prototype based clas-
sification method, as demonstrated in [127]. Remember that each shape part is represented
as a set of skeletal attributes, which are the length (for worms), the angle specifying the
angular region in which the deformations occur (for circles), its area and the radius of the
maximum circles of joint points. The only difference in utilizing FORMS for shape classi-
fication is that the query shape is matched with a prototypical shape formed based on the
skeleton model of the shape category where each part is represented by the average values
of the corresponding skeletal attributes in the category.

As we emphasized in Section 3.1, the problem with this approach is that its success is
mainly depends on how well the skeleton of the query shape can be extracted in terms of the
specified generic shape primitives since these primitives are designed especially to represent

articulated or deformable objects.
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6.2.2 The Method of Sebastian et al. [88]

In [88], Sebastian et al. presented an exemplar based approach for shape classification,
which is built upon shock graph matching of shapes [87] . It is essential to note that, as
the title of the paper clearly indicates, the main focus of this study is not classification
but to investigate several indexing strategies for fast retrieval of shapes, and in this regard,
the proposed classification method is interpreted as an indexing method as well. That is,
the function of the classification method is to eliminate unrelated shape comparisons in a
retrieval task. The proposed method is explored only in terms of its indexing performance,
but the details of exemplar selection process are missing in the text.

As noted above, the method of Sebastian et al. is developed as an exemplar based method,
wherein each shape category is represented with a small set of representative members of
that category. More formally, let @) be a query shape, and N be the number of categories
in the database, then each category C;, i = 1..., N, is expressed by the set E; = {Elk|k: =
1,...,N;} where EZk is one among N; exemplars of the category C;.

Given a query shape ), the proposed classification method works as follows. First, the
similarities between the query shape ) and the exemplars are computed using Equation 6.5,
where d(Q, Elk ) corresponds to the distance between @ and EZk obtained with the edit dis-
tance based method in [87]. Followingly, a fuzzy membership value is assigned to @ for each
category C; as the sum of similarities of the query to all exemplars of C; and the closest
categories are identified accordingly. In regard to indexing, the cost of computing the edit
distances between the query and the exemplars is much lower than matching the query shape

against all of the shapes in database.

d(Q, Ef)
S(Q, Bf) = eap | -—— (6.5)
min d(Q, )
k=1,..,N;
v(Q,Ci)= Y S(Q Ef) (6.6)
k:17“'7Ni

In the method of Sebastian et al., unlike the case in FORMS [127], each shape category
is represented with a small set of typical examples of the shape category, not just a single
prototype. This brings an advantage over the approach of Zhu and Yuille in that a single
prototype model might be incapable of representing a shape category if the category is very

diverse in itself. Moreover, the method seems scalable to larger sets. But it is important to
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note that the authors did not discuss the selection process of the optimal exemplars, which

is in fact the most challenging issue for exemplar based approaches.

6.2.3 The Method of Yang et al. [122]

In [122], Yang et al. presented a skeleton based Bayesian framework for shape classification.
The proposed classification method strongly relies on two previous studies. The first one
is the skeleton pruning work of Bai et al. [6], which is based on contour partitioning via
Discrete Curve Evolution [6] and the second one is the shape classification method of Sun
an Super [104], which learns a Bayesian classifier to classify each shape category from the
distributions of the boundary segments extracted from the database shapes that belong to
that category.

Yang et al. utilize the pruning algorithm proposed in [6] to obtain stable descriptions of
extracted skeletons. That is, as in the matching method of Bai et al. [5], a skeleton is not
represented by its topological structure, but by the set of the shortest paths between every
pair of end points of its branches, each of which is described with the corresponding radius
functions, i.e. the sequence of radii of the maximal circles at the successive skeleton points
on the path (Figure 3.18).

To classify shapes based on the proposed skeleton representation, the authors employed
the approach in [122], where in the place of contour segments, they use the shortest skeleton
paths in learning a Bayesian classifier for each shape category. Assuming that all paths
within a shape category are equally probable, the probability of a shape belonging to a
category is calculated as the sum of posterior probabilities of all the paths of the query
shapes with the distributions of all paths in the category.

As the authors themselves reported, the main drawback of this method lies in the as-
sumption that radius functions of the shortest skeleton paths of the query shape should
be close to the ones in the category it belongs since the dissimilarity between two skeleton
paths depends solely on the differences in the corresponding radius functions. Moreover,
the method does not compute the correspondences between the skeleton paths of the query
shape and the shape category. The lack of this matching information is a limitation that

one cannot update the prior knowledge once the input shape is classified.
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6.3 Similarity-Based Classification of Shapes using Disconnected

Skeletons

In the previous section, we have reviewed some shape classification methods which are all
based on skeletal representations of shapes. Among these studies, the method of Sebastian et
al. [88] is conceptually different than the other two classification methods, (i.e. the methods
of Zhu and Yuille [127] and Yang et al. [122]) as it is based on an exemplar approach.
This provides robustness against outlier shapes within a category. On the other hand, in
contrast to the case in other approaches, Sebastian et al. specifically didn’t mention any
details about the training phase, though the selection process of exemplar shapes to represent
shape categories is a challenging problem in itself. In this section, keeping these issues in
mind, we propose an novel shape classification algorithm which is based on disconnected
skeleton representation of Aslan and Tari [3].

Recall that in Section 5.1.3, where we presented our category-influenced shape matching
method, we formulated a straightforward procedure to match a shape tree with a category
tree by exploiting the structural equivalence of shape and category trees. Although in the
past we have utilized that procedure to form category trees in a dynamic way, it can also
be considered as a naive prototype-based shape classification method, as we demonstrated
in [8]. That is, one can classify a given shape by matching its shape tree against all of
the category trees, each of which represents a specific shape category, and then assigning
the category of the closest one. In the next section, we review this procedure in detail by
investigating its use as a classification scheme.

In Section 6.3.2, we present a novel classification method, which is founded on the ap-
proach mentioned above. More specifically, we make a key change in the matching procedure
and introduce additional mechanisms to come up with a more complete and robust classifica-
tion method. In short, these contributions can be listed as follows. First, we replace the cost
function of change operation with a new one, which is based on a generalization function
proposed by Tenenbaum and Griffiths [108]. Second, we devise a recursive clustering strat-
egy to form multiple category trees for each shape category so that our classification method
doesn’t suffer from the outlier shapes in a category. Finally, we employ a similarity-based
representation paradigm [17, 24, 25, 26, 71| in which the computed distances to all category

trees are embedded into a similarity space wherein the final decision is made.
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6.3.1 Shape Classification By Matching Shape Trees with Category Trees

In Section 5.1.3, the structural equivalence of shape and category trees (i.e. each is a
depth-1 tree) helped us to formulate a simple procedure to compare instances of these two
structures. The proposed matching process is based on the category-influenced matching
method we presented in Section 5.1 and can be summarized as follows:

Let 7; be the shape tree in comparison with the category tree Z¢. In order to compare
T, with T¢, we construct a mean shape tree Tc from 7¢ on the fly. It serves as a hypothetical
shape tree representing the structure of 7¢, i.e. it has equal number of nodes with 7¢, each
of which holds nothing but the ordinary average values of the attributes collected from the
shape trees associated with 7¢. Hence, since a mean shape tree constructed in this way is
indistinguishable from a regular shape tree, one can directly apply the category-influenced
matching algorithm to determine the correspondences between a shape tree and a category.
Note that at the time of matching, 7¢ is associated with Z¢, just like the shape trees of
database shapes used in the formation of 7¢, but this association has nothing to do with the
content of 7¢ and released after the matching.

Previously, we have utilized this matching procedure in dynamically constructing a cate-
gory tree where the shape trees in the given set are progressively matched with the category
tree in consideration following the steps described above. Apart from this use, the same
procedure can also be employed as a straightforward shape classification method as follows.
Observe that the mean shape tree that is formed from a specific category tree in fact func-
tions as a prototypical representation of the corresponding shape category. This suggests
that a shape can be easily classified by using I-nearest neighbor (1INN) approach. That is,
the shape tree of the query shape is matched against all the category trees formed for each
shape category in the database, and finally, it is classified as a member of the most similar
category.

The main problem with the above classification scheme is that only a single category tree
is formed for each shape category so there is an underlying assumption that the database
shapes of the same category should all contain some common substructures in their shape
tree descriptions. Hence, if there exist some outlier shapes or some subcategories within a
category, the resulting category tree might contain misleading correspondences. To overcome
this drawback the obvious solution is to form multiple category tree to represent a shape
category. In Section 6.3.2, we present such a modification, in which we incorporate a recursive

clustering step into the formation process of category trees.
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6.3.2 The Proposed Classification Method

In the previous section, we have discussed a simple shape classification approach, which is
based on the matching procedure for comparing a shape tree with a category tree. That is,
to determine the category of a input shape, its shape tree is matched with each category
tree, which is formed to represent a single shape category. Hence, the proposed method
can be considered as a prototype-based classification algorithm. In this section, we built on
this method, but employ an exemplar based approach instead to enhance its classification
capability. As noted earlier, our newly proposed classification scheme involves three key
changes.

Firstly, we replace the cost function of change operation with a new one, which is more
appropriate for use in an exemplar based approach. Recall that in the original version, the
skeletal attributes of the query shape is compared with the average attribute values of the
category members, where, as described in Section 5.1.2, this comparison is influenced by
the categorical context. Based on a generalization function proposed by Tenenbaum and
Griffiths [108], our alternative cost function does not compute a difference score between
the attributes of the query shape and the average attribute values but, instead, computes a
membership value by considering the whole set of attributes.

Secondly, we incorporate a clustering mechanism into the procedure for forming category
trees so that multiple category trees are formed for each shape category in a recursive manner.
In this way, as we discuss previously, our new classification scheme doesn’t suffer from the
outlier shapes or a subcategory structure, which may exist in a category. In short, the
proposed clustering strategy make use of both the pairwise distances between the category
members and their distances to the corresponding category tree.

Lastly, we combine our previous classification strategy with a similarity-based approach
to come up with a more effective classification scheme. The whole idea of our category
influenced matching is to incorporate within category knowledge into distance computation.
By further employing a similarity-based approach, we rise a level up in the context and
model the between-category differences as well. That is, the computed distances to all
category trees are embedded into a similarity space and a Support Vector Machine (SVM)
classifier [116, 84| for each shape category is trained in this representation space.

An overview of our newly proposed classification scheme is given in Figure 6.2. Hav-
ing a three-layered structure, the input to the system is the shape tree obtained from the

disconnected skeleton of the query shape. The units in the hidden layer, which we refer
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to as pseudo-exemplar units, are associated with the category trees, representing the shape
categories in the database. Each of these returns a similarity value between 0 and 1, which
is computed as the negative exponential of the edit-distance between the input shape tree
and the corresponding category tree. The units in the hidden layer are fully connected to
the nodes in the output layer, each of which corresponds to a specific shape category and
outputs a membership score for the input shape. The weights of the connections between
the hidden layer and the output layer are learned using SVMs based on a training set of

previously categorized shapes (i.e. the database shapes used in the formation of shape trees).

It is important to note that the proposed framework is an exemplar model since we
form multiple category trees for each shape category. However, when the number of pseudo-

exemplar units in the hidden layer is equal to the number of shape categories in the database

. category nodes

pseudo-exemplar units

shape skeleton

full set of exemplars shape silhouette

Figure 6.2: Overview of the proposed classification framework.
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(i.e. a single category tree is formed for each category, as in our previous approach), the
framework can be considered a prototype-based method. Moreover, the organization of our
classification framework resembles a Radial Basis Function (RBF) network with Gaussian
kernels. As demonstrated by Poggio et al., these networks are biologically plausible and
effective cognitive models of recognition and generalization [79, 78|. The definition of our
framework differs from the definition of RBFs in two terms. First, the input to the system is
not a vectorial representation but a structural representation. Second, the pseudo-exemplar
units in our framework plays the role of Gaussian functions, returning a similarity value

based on the tree-edit distances.

A New Cost Function for change Operation

In comparing the input shape with the category trees by using the category-influenced match-
ing method, we utilize a new cost function for change operation, which depends on the gen-
eralization function proposed by Tenenbaum and Griffiths [108], instead of the generic cost
function given in Figure 5.4. Based on a Bayesian formulation, this generalization function
is an extension of Shepard’s Universal Law of Generalization [93] to the cases of multiple ex-
amples and moreover, the function is also closely related to Tversky’s set theoretic approach
to similarity [113].

Let Tguery be the input shape tree to be compared with the category tree 7¢ and let
T¢ be the corresponding mean shape tree. Suppose B and u denote nodes in 7¢ and Tquerys
respectively, and X = {x(l),x(z), .. ,a:(f"eq(B))} be the set of corresponding nodes associated
with the node B. The following generalization function gg(u) is derived by approximating

the conditional probability p(u € B|X) [108] where u corresponds to a leaf node in Zgyery:

erp (— <Jr/0r +dg/og + Jl/ffz))

- ~ = freq(B)—1
dr d d
|:(1 + (T’max—T’min) ) (1 + (emax _eemin) ) (1 + (lmax _llmin) >:|

where the value of d; equals to 0 if u falls inside the observed range of corresponding attribute

98(u) = (6.7)

space spanned by X'. If this is not the case, its value is determined as the distance from u
to the nearest example in X along the corresponding attribute space. o,, oy and o; are the
scaling parameters which are taken as o, = 1, 09 = 27 and 0; = 2 in the experiments.
When the skeletal attributes specified in « moves away from the observed ranges for r, 6
and [, similarity decreases based on an exponential decay function. Adaptive behavior of the
generalization function with an increasing number of examples is demonstrated in Figure 6.3.

For illustrative purposes we neglect the length attribute [ and describe the effect in 2D, based
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Figure 6.3: Adaptive behavior of generalization function with increasing number of examples.
(a) Five examples from crocodile category (b)-(c) A squirrel and a crocodile shape used
as query shapes (d)-(f) The behavior of the generalization function associated with the
positive local symmetry branch corresponding the back leg in the crocodile category, when
hypothesized from three, four and five examples respectively. The encountered examples are
denoted with circular spots whereas triangle and square denote respective skeleton branches
of the squirrel and the crocodile shapes. Contours show the value of generalization function in
increments of 0.1 where thick ones correspond to p(u € B |X') = 0.5. For illustrative purposes

length attribute [ is neglected and only the location attributes r and 6 are considered.

on only r and € attributes corresponding the location of disconnection points. As the number
of encountered examples increases, the observed range enlarges to cover all examples and
the degree of generalization is adjusted accordingly, describing the characteristics of the
corresponding skeleton branch in the category more precisely.

Following this generalization function, we define the new cost function for change oper-

ation used in comparing a shape tree with a category tree as follows:

change” (u, B) = 1 — gg(u) (6.8)

Multiple Category Trees For Each Shape Category

As we mentioned previously, our former classification approach is prone to outlier shapes

or subcategories in a category, and the reason for that is we form a single category tree

107



for each shape category in the database. When a category contains some outlier shapes or
has two or more subcategories, the resulting category tree might have a wrong structure
and contain misleading associations between the category members. Evidently, this might
degrade the performance of the category-influenced matching when used in a classification
task. In order to overcome this drawback in our new classification scheme, we incorporate
a recursive clustering phase into the formation process of category trees so that multiple
category trees are formed for each shape category. This also makes our new framework an
exemplar-based classification method.

Recall the structure of our new classification scheme given in Figure 6.2 that once the cat-
egory trees are formed, they provide us a representation set for similarity-based classifiers. In
this sense, formation process of category trees share conceptual similarity with the selection
strategies utilized in similarity-based classification studies, e.g. [21, 70, 72, 102, 124], which
are used for choosing a reduced set of representative examples from a set of objects. However,
note the difference that forming a category tree is more like generating a pseudo-exemplar
than selecting actual category members to represent a category of shapes.

The revised version of the procedure for forming category trees involves an additional
recursive clustering phase in order to construct multiple category tree for a shape category.
The steps of the procedure is as follows. Given a set of shape trees ¥, a temporary category
tree 7¢ is formed either by using the static or dynamic formation procedure. Next, similar
to approach in [17], the most representative member of the set, which is denoted by Zpedian,
is identified using Equation 6.9 as the shape tree that is most closest to 7¢. Consequently, ¥
is partitioned into two groups according to the measure S(7) given in Equation 6.10, which
simply returns a similarity value between 0 and 1. The shape trees having S(7) > 0.5 are
removed from original set ¥ and used to form a new category tree representing a subcategory
structure and this procedure is repeated recursively until ¥ contains no shape trees. These

steps are summarized in Algorithm 1.

Tnedi = —dist(T,7¢ )
median argg}g%{;exp( dZS( 3 C)) (6 9)

2
S(T) = exp —S’im(T, Tmedi(m) X Z <82m(7772) - Sim(Tmediam’Ti)> (6'10)
T,eT
T#T
where sim(71,73) = exp (—dist(T1,7T2)).

Figure 6.4 shows the clustering results of the two different shape sets, which are obtained

while forming the category trees by using the revised formation procedure. For each of these
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Figure 6.4: Some clustering results obtained while forming multiple category trees for the

given set of shapes. While the top row shows the given shape sets, the bottom row presents
the clustered shapes used in the formation of multiple category trees for the corresponding

category.

shape sets, the procedure obtains two partitions in the end, and, accordingly, two separate

category trees are formed for each one of the clusters.

Similarity-Based Classification of Shapes Using Support Vector Machines

In classical approaches to pattern recognition, objects are recognized or in terms of their
inherent characteristic features, and hence the concept of feature is at the heart of the
proposed techniques. To be more specific, in statistical pattern recognition, objects are
expressed as a vector in a feature space, where each dimension represents a measurement
of feature. In structural pattern recognition, however, objects are expressed by a syntactic
scheme (e.g. a string, a graph or a tree), which represents the interrelationships between the
structural features (primitives) of objects. A major challenge common to all recognition or
classification systems, either based on the statistical or structural approaches, is the feature
selection problem, i.e. determining an optimal set of essential features. This issue can be
resolved only if one has domain knowledge about the problem at hand. However, in most of
the real-world problems, gathering this information might be hard or even impossible.
Recently, similarity-based approaches begins to gain popularity in pattern recognition
community. In this paradigm shift, as opposed to the traditional approaches, objects are
represented by distances or similarities to some reference objects, not by features that are
hard to choose [25, 24, 71, 26, 17]. Hence, similarity-based approaches require no domain-
specific knowledge other than an distance or a similarity measure. Moreover, they have
vital significance in structural pattern recognition, as they provide a natural embedding to
representation spaces in which the learning tools already present in the statistical pattern

recognition can be used to cluster or classify structurally represented object (e.g., see [17,
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109]). In this regard, they bring together the advantages of both the structural and the
statistical pattern recognition, i.e. structural approaches provide richer representation of
objects whereas the learning tools proposed in statistical pattern recognition literature are
much diverse than those exist in structural pattern recognition.

In our classification framework, the reference set used for defining a similarity space is
comprised of the set of the category trees which are constructed using the procedure in 6.3.2.
Denoting this reference set by R = {7};1, Teyy - Z;M}, where m is the total number of
category trees formed for N number of categories (M > N), a given query shape can be
embedded as a point in the similarity space by taking negative exponential of the vector of

distances between the shape tree representation of a shape and the existing category trees:

S(Tguery R) = €~ (U Tuerys Te)s d(Tguerys ) oy dlTquerys Te,))) (611)

Algorithm 1 Recursively Forming Multiple Category Trees for Each Shape Category
Require: A set of shape trees ¥ = {71,75,...,7,},|%] >0

1: repeat

2. n<|%|

3:  Construct a temporary category tree Z¢ for the set of shape trees ¥
n

4: Thedian <= arg I%_la()z(z sim(7;,7c) {where sim(71,73) = exp(—d(T1,72)}
€
i=1
5. {Partitition ¥ into two subsets based on the distances to 7p,edian }

6: Tx<=0
7. fori=0tondo

8: {Iterate over all the shape trees in T}

2
9: S(Z) <~ exp _Sz‘m(z;Tmedian) X Z <szm( 2773) - Sim(Tmedian77})>

Tiex
T;#7Ti
10: if S(7;) > 0.5 then
11: T =T N7}
12: else
13: T<=T—{T;}
14: end if

15:  end for
16:  Construct the category tree for the set of shape trees ¢, T C ¥
17: until ¥ = ()
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In this similarity space, the simplest classification strategy, which does not involve any
learning at all, is to use INN rule. Note that this in fact equivalent to our former classification
approach explained in Section 6.3.1, where the query shape is simply assigned to the category
described by the category tree that is found most similar. As we mentioned previously, the
main novelty of a similarity-based approach, however, lies in the ability to use conceptually
more complex classification techniques. To demonstrate the idea, consider the two dimen-
sional similarity space defined by the two category trees that are respectively formed to
represent the category knowledge about the camel and tulip shapes shown in Figure 6.5(a).
The similarity representations of some query shapes are given in Figure 6.5(b), where the di-
mensions corresponds to the negative exponentials of distances to the category trees of camel
and tulip categories, respectively. Note that the performance of 1NN classifier is 70%, as
three of the camel shapes are misclassified. Now, suppose that we have trained a linear clas-
sifier in the similarity space to discriminate between the shape categories. This hypothetical
classifier is shown with a thick black line in the plot given in Figure 6.5(c), wherein the
similarity representations of training shapes of camel and tulip categories are respectively
displayed with blue and red points, and the similarity representations of query shapes are
displayed by themselves. The classification rate of this classifier is 90%, where only a single
shape is misclassified. At this point, it should be clear that employing a similarity-based
approach can boost the performance of an underlying structural classification approach.

Recall the structure of our new classification scheme shown in Figure 6.2 that the func-
tion of the hidden layer is to compute a similarity representation of the input shape based
on the distances between its shape tree and the category trees formed for each category in
the database. In this similarity space, for each shape category, we train a separate SVM
classifier with Gaussian kernel [116, 84] based on one-vs-all approach, where in the training
phase, the similarity representation of members of that shape category is labeled as posi-
tive examples with (1) whereas the members of all other categories are labeled as negative
examples with (-1).

In classifying a novel shape, the vector of computed similarities is fed to all of learned
SVM classifiers, each outputting a scalar value. Then, a membership score for each category
is obtained by normalizing these outputs according to Luce’s choice rule [59, 60|, as follows:

exp(Vi)
> erp(Y)

where Zgyery and V; denote the shape tree of the input shape and the output of the SVM

P(Zquery € Ci) = (6.12)
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Figure 6.5: Example of a 2D similarity space and a linear classifier to discriminate between
two shape categories. (a) Training set of shapes used in forming category trees to represent
camel and tulip shape categories. (b) Query shapes and their similarity representation in
the space defined by the distances to the formed category trees where the first dimension
corresponds to the similarity to tulip category and the second dimension corresponds to the
similarity to camel category. (c) The representation of training and query shapes plotted
in the similarity space, where the training shapes of camel and tulip categories are shown
with blue and red points, respectively and the query shapes are shown by themselves. Note
that the classification performance is 90%, as compared to the 70% performance rate of INN

classifier. (adapted from a figure provided by Pekalska et al. [72]).

classifier trained specifically for the i** shape category, C;, respectively.
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6.4 Experimental Results

In this section, we investigate the performance of the proposed shape classification frame-
work using the database shown in Figure 5.6. In particular, we compare our similarity-based
approach with the one that utilizes I-nearest neighbor (1INN) rule. Moreover, we analyze the
classification accuracy when single or multiple category trees are formed for each shape cat-
egory (prototype vs. exemplar) and the two alternative cost functions (change vs. change®)
are used in computing the distances to the category trees. Our experimental setting is same
with the one given in Section 5.1.4, where we randomly generate 100 partitions, each of which
contains 750 shapes for training (15 examples from each shape category) and the remaining
250 shapes for testing. In each run, we first form the category trees, and afterwards use
them as a reference set to define a similarity space wherein we train SVM classifiers for each
category!. Following the training phase, we classify each shape in the test set by either using
the proposed classification framework or 1NN rule.

Table 6.1 shows the average classification rates of each strategy and the corresponding
standard deviations. The proposed similarity-based approach results in an average perfor-
mance rate of 91.18% (when multiple category trees are formed for each shape category and
the proposed change* cost function is used), boosting the 83.09% classification accuracy of
INN classifier. In Figure 6.6, we also provide the average classification performances for each
category. As an example case, for the sample partition given in Appendix A, the correspond-
ing classification results are presented in Appendix D. As it can be clearly seen in Table 6.1,
the similarity-based approach introduces considerable improvements in terms of accuracy
when compared to the nearest-neighbor strategy. Moreover, as expected, forming multiple
category trees for each category increases the performance of both 1NN and similarity based
approaches, and the newly proposed change* cost function is more effective for the proposed
classification framework.

As we mentioned previously, from an information retrieval perspective, one of the func-
tions of classification is to eliminate unrelated comparisons in a retrieval task. In this regard,
as a supplementary experiment, we evaluate the indexing performance of the proposed clas-
sification framework on our category-influenced matching method. In a retrieval task, we

first perform classification to identify the top five most similar categories for the given shape.

'In the training phase, we use SVM"9"¢ [41] package and perform 5-fold cross validation, and automatically
select the best values for the parameters v and C, which respectively correspond to the radius of RBF kernel

and the weighting factor for misclassification penalty.
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Table 6.1: Average Classification Performances

1NN Approach Similarity-Based Approach

Classification Rate Std. Dev. Classification Rate Std. Dev.

L change 79.07 2.43 87.19 3.88
S
kS
E change” 77.13 2.59 87.80 1.95
5 change 84.18 2.22 88.65 2.67
g
% change” 83.09 2.99 91.18 1.66

Average Categorization Performance

W similarity-Based Approach
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Figure 6.6: Average classification performances for each category.
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Then, we eliminate some of these retrieved categories using a simple thresholding mechanism
after normalizing the corresponding membership scores. Following to that, the query shape
is compared to only the shapes belonging to the categories in the final candidate list. The
resulting distance values along with the associated normalized membership information are

then used to compute a new matching score as:
d* (11, Tz) = 1 — exp(—d(T1,T2)) x p*(T1 € C) (6.13)

where d(77,73) denotes the category-influenced matching score and p*(7; € C) is the mem-
bership score normalized with respect to the retrieved shape categories.

We evaluate the effect of the proposed indexing strategy by repeating the experiments
in Section 5.1.4 with a prior classification step. In Appendix E, we present the results of
the category-influenced matching method with indexing for the sample partition given in
Appendix A. Figure 6.7 shows the average precision-recall curves for the category-influenced
matching that includes a prior classification step. The experimental results reveal that
performing a prior classification step contributes in achieving better precision values at each

recall level with a less computation effort.

Average Precision—Recall Curve
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Figure 6.7: Average precision-recall curves. At each recall level, compare the precision values
of the category-influenced matching method after classification (shown in green) to those of
the category-influenced matching method (shown in blue) and the method of Baseski [7]

(shown in red).
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6.5 Summary and Discussions

In this chapter, we present a similarity-based supervised shape classification framework built
on disconnected skeleton representation. Our starting point is the matching procedure pre-
viously developed for comparing a shape tree with a category tree. In the first step of the
procedure, exploiting the structural equivalence of shape and category trees, a mean shape
tree is formed from the category tree on the fly. As the mean shape tree is indistinguishable
from a regular shape tree, it becomes possible to compare a shape tree with a category tree
by matching it with the corresponding mean tree using the category-influenced matching.
While in Section 5.1 the method is used in dynamic formation of category trees, in this
chapter, we demonstrate its use as a nearest-neighbor based classification approach.

We extend this approach and come up with a more effective exemplar-based classification
scheme by making some changes and incorporating an additional learning technique. In this
regard, we first revise the cost function of change operation with a new one that is more
suitable for an exemplar-based classification approach. Then, we propose a procedure to form
multiple category trees for each shape category, and finally, we employ a similarity-based
approach where a shape category is represented by not just a category tree, but by means of
its similarities to other existing categories as well. The proposed framework has a network
structure where the distances between the given shape and the existing shape categories are
computed. These distances are then embedded into a similarity space in which we train a
separate SVM classifier for each shape category, and subsequently, the final decision about
the category of the input shape is made according to the outputs of the SVM classifiers.

As our experimental results demonstrate, the similarity-based approach brings consid-
erable improvements in terms of performance over a nearest-neighbor strategy. Moreover,
we evaluate the indexing performance of the proposed classification framework in a retrieval
task, where classification precedes the pairwise comparisons between the query shape and

the database shapes, eliminating unrelated distance computations.
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CHAPTER 7

CONCLUSION

In this thesis, we have investigated the use of disconnected skeleton representation of Aslan
and Tari [3] for shape recognition and classification. The rationale behind the choice of this
particular representation is that, as compared to other skeletal representations, disconnected
skeletons provide a very coarse but very stable representation of shapes, making some of the
computations presented in the thesis possible. Although our experimental results have proven
that disconnected skeleton, despite of its coarse structure, is a powerful representation for
recognizing and classifying shapes, the representation might be criticized on two grounds:
it does not preserve information about the boundary details, and the level of hierarchy
is always one. In regard to these concerns, we have presented two ways of enriching the
disconnected skeleton representation. First, we have proposed a procedure to roughly fetch
the radius functions of positive skeleton branches (representing the approximate distance
to shape boundary along the branch) from a corresponding TSP surface [107]. Second, we
have devised a multi-level hierarchical approach to increase the level of detail in skeleton
descriptions by first segmenting a given shape into its parts based on its skeleton and then
performing the skeleton analysis on the extracted parts.

In the context of shape recognition, disconnected skeleton representation was previously
utilized in [3, 7]. Particularly, in the method of Aslan and Tari [3|, the authors represented
disconnected skeletons by their disconnection points as unlabeled attributed point sets, and
proposed a branch-and-bound algorithm to obtain correspondences between the skeleton
branches of two given shapes. In the method of Baseski [7], however, a structural approach is
employed and skeletons are represented as (shape) trees, reducing the problem into matching
two shape trees, and the author proposed a tree edit distance-based algorithm to find a
partial match between two given shape trees. In this thesis, using these methods as base

shape matching algorithms, we have investigated the effect of context on shape similarity
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computation and proposed a number of ways to incorporate semantic category knowledge
into matching process. Our approaches, unlike the view in syntactic matching of two given
shapes, differentiate the semantic roles of the shapes in comparison that a query shape is
being matched with a database shape, which belongs to a familiar category. The knowledge
about the category of the database shape influences the similarity computation, making the
resulting similarity measures asymmetric. It is important to note that the conventional way
in shape matching literature is to define shape similarity by means of metrics, although it is
widely believed that human similarity judgments are non-metric in nature.

In that direction, we have first extended the method of Baseski where our motivation
was to improve the quality of matching in comparing a query shape with a database shape
by incorporating the information inferred from all the shapes belonging to the same category
as the database shape in comparison belongs!. The proposed revision relies on a novel data
structure, which is referred to as category tree that is formed as a union of shape trees of
database shapes belonging to the same category. It should be mentioned that the depth-1
property of shape trees really simplifies the construction of category trees as the resulting
category trees are always (depth-1) trees. A constructed category tree holds the associations
between the primitives (i.e. the extracted skeleton branches) of the category members and
moreover, provides information regarding attribute statistics, which allows modifying both
the importance of primitives and the distances between attributes in the matching process.
Thus, we name this modified version of the algorithm category-influenced matching method.

As a further extension of our category-influenced matching method, we have also incorpo-
rate the boundary similarities by employing a coarse-to-fine approach and utilizing enriched
disconnected skeleton descriptions. Being similar to the approach of Zhu and Yuille [127], we
proposed to model a low-dimensional linear deformation space for each positive branch which
appears in a shape category, and following this, we developed a refinement procedure that
recalculated the overall dissimilarity score according to the boundary similarity of matched
positive branches in the corresponding deformation spaces?.

Next, we demonstrate another important use of category knowledge in recognition, the
contextual sensitivity to articulation of parts. Note that skeleton-based representations are
one of the most commonly used representations for shape matching as they provide insen-

sitivity to articulations. However, as mentioned in [1], insensitivity to articulations might

!This is a joint work with Emre Baseski and an early version of this study was partly published in MSc.

thesis of Emre Baseski [7]. Full version is published in Pattern Recognition [8].
2Reported in Section 2.3.1 & Section 5.1.5 and to be submitted as an article.
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be undesired in some situations that requires a combination of semantics with syntax, i.e.
prior knowledge about the degree of possible articulations is required to come up with the
correct matching result (Recall Figure 5.20). In this respect, based on disconnected skeleton
representation, we presented a novel part-centered coordinate frame which provides a rep-
resentation space for reasoning about observed articulations. In the proposed space, similar
articulations or bendings are represented with nearby points. This opens the possibility of
building articulation priors and making inferences about them in a fairly easily way. In
this thesis, we incorporate this idea into the matching method of Aslan and Tari [3] where

3. A possible future direction could be using

articulation priors are modeled as Gaussians
a non-parametric density estimation approach in order to construct more accurate priors.
Certainly, one should also need a novel shape database specifically designed for reflecting
the importance of contextual sensitivity to articulations.

Finally, we present a similarity-based supervised shape classification method that is built
on a matching procedure proposed for dynamic formation of category trees in which the
given shape trees are incrementally matched with the category tree in construction?. This
procedure exploits the structural equivalence of shape and category trees (i.e. they are
both depth-1 trees) and compares a shape tree with a category tree by first forming a
pseudo-shape tree formed from the category tree, and then comparing that with the shape
tree by category-influenced matching method. Previously in [8], we proposed to use this
matching procedure as a simple classification algorithm based on nearest-neighbor rule. In
this thesis, we extend the approach by employing a similarity-based learning strategy to
learn relationships between shape categories. To be specific, a shape category is represented
by not just a category tree, but by means of its similarities to other existing categories as
well. The proposed framework has a network structure where the distances between the
given shape and the existing shape categories are computed first, as described above. Then,
these computed distances are embedded into a similarity space in which we previously train
an SVM classifier for each shape category exist in the database, and subsequently, the final
decision about the category of the input shape is made by combining the outputs of the
SVM classifiers. As our experimental results demonstrate, the similarity-based approach
brings considerable improvements in terms of performance over our previous approach, i.e.

classifying shapes based on a nearest-neighbor strategy.

3This is a joint work with Erkut Erdem and was previously presented in the Workshop on the Represen-

tation and Use of Prior Knowledge in Computer Vision [28].
4Reported in Section 6.3 and to be submitted as an article.

119



7.1 Future Directions

In the scope of this thesis, we aimed to develop a shape classification framework using dis-
connected skeletons, which is based on a similarity-based approach where shape categories
are learned in a supervised manner. In this regard, it is important to note that there are
also some unsupervised shape classification or clustering studies based on skeletal repre-
sentations, e.g. [111]. As a future work, it will be quite interesting to explore the use of
disconnected skeleton representation along with the data structures presented within this
thesis in unsupervised learning of shape categories in a given collection of shapes.

Another interesting topic worth exploring is visualization of shape similarity or dissimilar-
ity data. Traditionally, multidimensional scaling [47] or its variants are used in visualization
of any type of similarity data where the idea is to compute a low dimensional (possibly 2D
or 3D) map in which objects that are similar to each other lie close to each other whereas
dissimilar objects are placed far away from each other. The problem with these methods is
that the similarity data should be metricized in some way before applying these techniques.
Although there exist some alternative formulations (e.g. [81]), exploring how to visualize

non-metric similarity data is still an open problem.
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APPENDIX A

A PARTITION OF THE SHAPE DB
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Figure A.1: A sample partition of the shape database. The set of (a) training, (b) test

shapes.
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APPENDIX B

RETRIEVAL RESULTS OF THE
MATCHING METHOD OF BASESKI

Table B.1: Matching results of the method of Baseski [7].
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Table B.1: continued
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APPENDIX C

RETRIEVAL RESULTS OF
CATEGORY-INFLUENCED MATCHING

Table C.1: Results of category-influenced matching.
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APPENDIX D

CLASSIFICATION RESULTS

Table D.1: Some classification results.

AN T RX K x F X X

human human human human human starfish | starfish | starfish | starfish palm
0.171 0.162 0.189 0.154 0.166 0.186 0.165 0.142 0.170 0.069

starfish dino frog dog misc6 human human palm frog starfish
0.025 0.027 0.023 0.025 0.024 0.023 0.029 0.031 0.023 0.042
frog camel misc7 frog frog frog club frog misc7 |[dumbbell
0.023 0.026 0.023 0.024 0.024 0.023 0.026 0.023 0.022 0.026

m Rmm® A F et

elephant | elephant | elephant | elephant | elephant [sea turtle|sea turtle|sea turtle[sea turtle|sea turtle

0.201 0.136 0.141 0.180 0.195 0.136 0.111 0.078 0.163 0.151
squirrel dino crocodile | crocodile frog misc2 cattle tortoise misc2 misc2
0.023 0.042 0.031 0.029 0.023 0.029 0.034 0.063 0.028 0.034
frog misc4 cat, cat misc7 miscT tank cat cattle [dumbbell
0.023 0.023 0.026 0.024 0.023 0.024 0.025 0.030 0.024 0.024
X E R K ¢t A
miscl miscl sea turtle| miscl miscl butterfly | dumbbell | dumbbell | dumbbell | dumbbell
0.187 0.176 0.045 0.182 0.148 0.079 0.136 0.105 0.087 0.170
tank frog miscl crown misch miscT butterfly | butterfly | butterfly | crown
0.025 0.023 0.034 0.024 0.024 0.051 0.029 0.041 0.050 0.022
frog misch misc2 frog frog cattle face frog frog frog
0.023 0.023 0.033 0.023 0.024 0.026 0.023 0.024 0.024 0.022
misc2 misc2 misc2 misc2 misc2 misc3 misc3 misc3 misc3 misc3
0.057 0.109 0.161 0.186 0.161 0.154 0.075 0.191 0.183 0.181
frog frog sea turtle sea turtle| dumbbell | flatfish frog dumbbell frog
0.029 0.026 0.029 0.026 0.024 0.034 0.023 0.023 0.023
sea turtle [ sea turtle| misc7 crown mischH misc? tulip elephant frog dumbbell
0.028 0.025 0.023 0.022 0.023 0.024 0.027 0.023 0.023 0.023
AW WK L[ X €T
cat cat elephant cat cat palm palm palm palm palm
0.122 0.058 0.072 0.081 0.168 0.169 0.170 0.077 0.200 0.080
sea turtle| camel cat sea turtle| elephant | starfish giraffe starfish | starfish | starfish
0.036 0.035 0.050 0.040 0.042 0.024 0.031 0.033 0.022 0.051
cattle horse horse cattle cattle giraffe frog dumbbell | giraffe frog
0.034 0.033 0.034 0.030 0.028 0.023 0.022 0.025 0.022 0.025
hand hand hand hand hand |papership|papership|papership|papership|papership
0.178 0.188 0.177 0.171 0.155 0.171 0.072 0.153 0.125 0.157
teddybear|teddybear| camel [helicopter|helicopter dog car2 tank dog tank
0.025 0.025 0.023 0.027 0.028 0.025 0.045 0.026 0.031 0.026
club frog teddybear frog frog dino dog frog tank frog
0.023 0.023 0.023 0.023 0.024 0.024 0.031 0.024 0.027 0.024
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Table D.1: continued
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misc4 misc4 misc4 misc4 misc4 tortoise | tortoise | tortoise | tortoise tank
0.170 0.194 0.151 0.062 0.129 0.125 0.146 0.123 0.142 0.046
tomb fish fish car2 seahorse fish shoe car2 tank face
0.026 0.024 0.031 0.044 0.027 0.037 0.026 0.034 0.029 0.033
car2 frog |crocodile fish car2 rabbit misc6 fish sea turtle| cattle
0.024 0.023 | 0.024 0.038 0.026 0.025 0.025 0.026 0.026 0.029
X X+ F s e e
club club club club club tulip tulip tulip tulip tulip
0.128 0.219 0.139 0.148 0.110 0.061 0.190 0.173 0.117 0.121
tulip dino flatfish | seahorse | giraffe flatfish misc3 misc3 misc3 key
0.031 0.022 0.056 0.031 0.029 0.034 0.035 0.036 0.032 0.037
seahorse | elephant frog tomb tulip club  |papership|papership| starfish bell
0.026 0.022 0.023 0.025 0.029 0.027 0.026 0.025 0.029 0.027
misch misc5 miscH misc5 misc5 | crocodile| crocodile | seahorse | crocodile | crocodile
0.189 0.114 0.131 0.188 0.147 0.258 0.183 0.052 0.194 0.209
frog seahorse | seahorse frog giraffe frog misc7 squirrel frog squirrel
0.022 0.031 0.030 0.023 0.024 0.022 0.025 0.039 0.024 0.027
cellphone | giraffe frog cellphone frog dumbbell| rabbit |crocodile | dumbbell baby
0.022 0.026 0.024 0.022 0.023 0.022 0.023 0.034 0.023 0.024
A vl ¥ LY
squirrel | squirrel | squirrel | squirrel bottle camel frog frog frog frog
0.161 0.123 0.119 0.105 0.056 0.054 0.118 0.159 0.141 0.186
baby dog dog tortoise | seahorse frog sea turtle| tank camel | dumbbell
0.027 0.045 0.030 0.034 0.033 0.052 0.029 0.024 0.028 0.023
umbrella dino |umbrella club elephant horse hand tomb sea turtle| misch
0.025 0.030 0.026 0.028 0.031 0.044 0.027 0.023 0.027 0.023
e d s R 2R IP
rabbit rabbit rabbit rabbit rabbit misc6 misc6 misc6 misc6 misc6
0.119 0.175 0.079 0.150 0.118 0.193 0.116 0.159 0.195 0.142
shoe tomb fish tomb |helicopter frog bottle brick carl rabbit
0.027 0.024 0.036 0.024 0.030 0.023 0.029 0.026 0.023 0.024
helicopter|crocodile| tomb [helicopter shoe misc7 misc7 frog teddybear|helicopter
0.026 0.022 0.033 0.024 0.030 0.023 0.025 0.024 0.023 0.024
AR AR RS R,
misc7? misc7 misc7 misc7 misc7 horse horse horse horse horse
0.083 0.177 0.135 0.125 0.173 0.098 0.195 0.109 0.082 0.087
butterfly |butterfly | butterfly | butterfly | butterfly cat misc7 giraffe cat cat,
0.038 0.024 0.028 0.029 0.024 0.050 0.022 0.029 0.065 0.054
fish crown cattle cattle hand frog misch frog misch elephant
0.027 0.022 0.024 0.024 0.022 0.024 0.022 0.025 0.024 0.028
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Table D.1: continued
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umbrella | umbrella |[umbrella|umbrellalumbrella| crown crown crown crown crown
0.201 0.200 0.089 0.201 0.080 0.055 0.148 0.063 0.131 0.145
elephant | elephant fish car2 |elephant tank carl camel camel tank
0.023 0.023 0.030 0.031 0.034 0.048 0.026 0.040 0.027 0.024
frog frog rabbit bell bell cattle tank hand hand face
0.023 0.023 0.028 0.027 0.032 0.039 0.025 0.032 0.025 0.024
L = 2N #£ * € @ & ¢
dino dino dino dino dino flatfish flatfish flatfish | flatfish | flatfish
0.081 0.086 0.069 0.140 0.113 0.088 0.085 0.190 0.134 0.185
crocodile| tulip crown horse giraffe bell key club club misc3
0.046 0.032 0.035 0.026 0.028 0.034 0.040 0.025 0.031 0.023
camel giraffe camel giraffe horse club miscl frog bell frog
0.032 0.028 0.033 0.025 0.025 0.026 0.029 0.023 0.025 0.023
seahorse key flatfish key key dog dog dog dog dog
0.052 0.100 0.077 0.245 0.247 0.152 0.123 0.166 0.142 0.041
key tulip key tulip frog giraffe squirrel club umbrella| tomb
0.046 0.049 0.044 0.040 0.021 0.025 0.029 0.029 0.027 0.034
watch carl bell frog misc7 misch misc6 frog giraffe brick
0.027 0.025 0.026 0.021 0.021 0.025 0.025 0.024 0.026 0.033
A 2 A A4} L) D
bell bell bell bell bell bottle bottle fish bottle bottle
0.096 0.045 0.114 0.159 0.100 0.167 0.154 0.036 0.185 0.164
tomb shoe misc4 car2 frog watch car2 key frog frog
0.037 0.035 0.026 0.027 0.025 0.026 0.029 0.033 0.024 0.024
umbrella| car2 frog frog car2 misc6 frog misc6 misc7 |dumbbell
0.030 0.034 0.025 0.024 0.025 0.025 0.025 0.032 0.023 0.024
brick |cellphone| brick brick brick camel camel camel camel camel
0.105 0.085 0.177 0.186 0.166 0.130 0.204 0.110 0.067 0.136
tortoise shoe tank misc7 tank |teddybear| hand horse miscl giraffe
0.028 0.039 0.033 0.023 0.026 0.028 0.026 0.036 0.035 0.028
cellphone| brick misc7 misch misc7 | butterfly [teddybear| elephant | human |butterfly
0.024 0.032 0.023 0.023 0.023 0.027 0.022 0.036 0.033 0.025
iy aly Wiy alv o =T T - - -
carl carl carl carl carl cellphone | cellphone |cellphone|cellphone|cellphone
0.080 0.175 0.081 0.151 0.117 0.128 0.131 0.086 0.170 0.075
cattle misc7 tank bell bell shoe shoe brick frog shoe
0.033 0.023 0.034 0.025 0.033 0.036 0.032 0.029 0.024 0.046
crown frog camel misc? crown frog frog fish dumbbell| tortoise
0.029 0.022 0.034 0.024 0.026 0.025 0.025 0.025 0.024 0.043
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Table D.1: continued

baby baby baby baby baby |helicopter| camel |helicopter|helicopter|helicopter
0.069 0.176 0.173 0.177 0.147 0.193 0.033 0.150 0.137 0.212
papership| watch frog frog car2 elephant |helicopter| elephant hand crown
0.047 0.026 0.024 0.024 0.027 0.023 0.030 0.030 0.031 0.023
squirrel frog dumbbell | dumbbell | bottle tank carl misc7 elephant frog
0.034 0.024 0.024 0.024 0.025 0.023 0.030 0.023 0.027 0.022
cattle cattle cattle cattle tortoise shoe face face face face
0.062 0.161 0.084 0.060 0.052 0.088 0.169 0.172 0.055 0.149
frog helicopter cat cat cattle face cellphone shoe car2 starfish
0.031 0.025 0.032 0.043 0.042 0.046 0.024 0.024 0.045 0.024
tank horse tank horse crocodile |helicopter| umbrella frog shoe misc3
0.029 0.023 0.032 0.028 0.033 0.031 0.024 0.023 0.041 0.024
fish key car2 fish key tomb umbrella tomb tomb tomb
0.115 0.050 0.045 0.138 0.063 0.082 0.100 0.211 0.163 0.175
bottle car2 bell car2 car2 watch tomb dog bell papership
0.042 0.040 0.044 0.060 0.038 0.029 0.041 0.023 0.025 0.026
car2 papership key frog fish umbrella | rabbit frog carl frog
0.027 0.031 0.036 0.024 0.032 0.028 0.028 0.022 0.024 0.023
giraffe giraffe giraffe palm giraffe car2 brick tank car2 car2
0.128 0.171 0.154 0.064 0.137 0.220 0.050 0.053 0.126 0.167
frog dino frog giraffe horse shoe car2 car2 shoe tortoise
0.024 0.028 0.023 0.059 0.028 0.028 0.040 0.051 0.041 0.031
misc? tomb misc? camel tomb face shoe elephant brick brick
0.024 0.023 0.023 0.030 0.025 0.024 0.032 0.031 0.039 0.029
W X % W W R ot
butterfly | butterfly | butterfly | butterfly | butterfly car2 shoe shoe shoe brick
0.068 0.141 0.168 0.138 0.104 0.045 0.204 0.112 0.165 0.092
dumbbell misc7 hand misc7 | dumbbell key cellphone | cellphone fish car2
0.060 0.026 0.022 0.023 0.034 0.043 0.024 0.029 0.026 0.038
frog frog starfish misc3 misc3 miscd frog tortoise bell cattle
0.024 0.023 0.022 0.023 0.023 0.042 0.022 0.029 0.023 0.027
teddybear|teddybear|teddybear|teddybear|teddybear| watch seahorse watch seahorse | seahorse
0.151 0.156 0.198 0.151 0.196 0.082 0.188 0.147 0.078 0.054
hand camel misch frog carl seahorse key seahorse car2 watch
0.025 0.030 0.022 0.024 0.022 0.055 0.025 0.052 0.028 0.045
camel hand frog crown frog frog club crocodile misc4 giraffe
0.023 0.023 0.022 0.023 0.022 0.025 0.024 0.026 0.026 0.026
tank | tank tank tank tank | watch |watch| watch watch |watch
0.110| 0.121 0.096 0.163 0.073| 0.105 |0.231 0.167 0.158 | 0.086
carl shoe |helicopter carl shoe |seahorse|giraffe key seahorse| misc4
0.032| 0.039 0.030 0.040 0.033| 0.052 |0.022 0.027 0.033 |0.031
car2 |tortoise carl helicopter| miscl| bottle | frog |papership|squirrel | fish
0.028 | 0.029 0.029 0.026 0.031| 0.028 |0.021 0.023 0.024 | 0.026
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APPENDIX E

RETRIEVAL RESULTS OF
CATEGORY-INFLUENCED MATCHING

AFTER CLASSIFICATION

Table E.1: Retrieval results of category-influenced matching after classification.
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Table E.1: continued
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Table E.1: continued
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Table E.1: continued
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Table E.1: continued
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