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ABSTRACT 
 
 
 

A GENETIC ALGORITHM FOR THE MULTI-LEVEL  

MAXIMAL COVERING AMBULANCE LOCATION PROBLEM 

 

Karaman, Mesut 

 

M.Sc., Department of Industrial Engineering 

Supervisor: Asst. Prof. Dr. Sedef Meral 

 

September 2008, 116 pages 

  
 
 
 
The emergency medical services (EMS) provide the preliminary assistance and 

transportation for patients in need of urgent medical care in order to decrease the 

mortality rate and reduce the non-reversible effects of injuries. Since the objective is 

directly related to the human life, the value of the proposed solutions in order to 

improve the performance of EMS is highly welcomed. Mainly, there are three 

problems that EMS managers face with: location, allocation and redeployment of the 

EMS facilities/vehicles. Most of the studies in EMS literature focus on accurately 

modeling the probabilistic nature of the availability of an ambulance when it is called 

for. However, trivial changes in model parameters or estimates could dramatically 

change the optimal allocations generated by the probabilistic models and hence make 

the model invalid. In this study, we formulate the ambulance location problem as a 

deterministic multi-level maximal coverage model by which the total demand is tried 

to be covered as many as possible at multiple levels. Both a mathematical 

programming model and genetic algorithm-based heuristic approaches are proposed 

for the problem. The results indicate that the genetic algorithm-based solutions give 

reliable (near-optimal) and robust results in reasonable computational times for the 
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problem. Moreover, the tradeoffs between the two performance measures,  

‘responsiveness’ and ‘preparedness’, are searched for; and our approaches with 

multi-level coverage are compared against the multiple coverage approaches in terms 

of these performance measures.  

 

Keywords: emergency medical service, ambulance, location-allocation, coverage 

models, genetic algorithm, metaheuristics. 
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ÖZ 
 
 

ÇOK-SEVĐYELĐ EN FAZLA KAPSAMALI AMBULANS 

KONUMLANDIRMA PROBLEMĐ ĐÇĐN BĐR GENETĐK 

ALGORĐTMA  

 

Karaman, Mesut 

 

Yüksek Lisans, Endüstri Mühendisliği Bölümü 

Tez Yöneticisi: Y. Doç. Dr. Sedef MERAL 

 

Eylül 2008, 116 sayfa 

  
 
 
 
Acil sağlık hizmetleri, hasta ve yaralılar için temel acil ilkyardım müdahalelerini 

yapmayı ve gerekli ulaşımı sağlayarak yaralanmaya bağlı kalıcı hasarlar ile ölüm 

vakalarını azaltmayı amaç edinmiştir. Konu insan hayatı olduğu için, acil sağlık 

hizmetlerinin sağlanması ve eniyilenmesi ile ilgili olarak geliştirilen her türlü çözüm 

yüksek oranda kabul görmektedir. Bu alanda ilgili kişilerin karşılaştığı üç temel 

problem, acil sağlık hizmeti veren araçların (ambulans) konumlandırılması, tekrar 

yerleştirme ve sorumlu olduğu bölge tayini problemleridir. Acil sağlık hizmetleri 

literatüründeki birçok çalışma, bir ambulansın aramaya cevap verememe 

durumundan kaynaklanan olasılıksal durumun çözümüne odaklanmıştır. Diğer 

taraftan, bu tür modeller içerisindeki parametre ve tahminlerdeki küçük değişiklikler 

veya yapılacak hatalar modelin bütününde yol açacağı değişikliklerden ötürü modeli 

uygulanamaz hale getirebilmektedir. Bu çalışmada, üç düzeyli kapsama standardı 

önerilerek, ambulans ihtiyacı içerisinde bulunan talep noktalarının kapsanması 

amaçlanmaktadır. Problem ile ilgili olarak, bir matematiksel model ve genetik 

algoritma çözümüne dayalı sezgisel yaklaşımlar geliştirilmiştir. Sonuçlar, geliştirilen 
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genetik algoritmanın çok düzeyli kapsama problemi için güvenilir ve hızlı çözümler 

verdiğini göstermektedir. Ek olarak, aramalara hızlı cevap verebilme ve sistem 

hazırganlığı gibi iki performans kriteri kullanılarak, geliştirilen çok düzeyli kapsama 

modelininin çoklu kapsama modelleri ile karşılaştırılması yapılmıştır. 

 

Anahtar Kelimeler: acil sağlık hizmetleri, ambulans, konumlandırma-atama, 

kapsama modelleri, genetik algoritma, modern sezgisel yöntemler. 
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CHAPTER 1 
 

 
INTRODUCTION 

 
 
 

The aim of emergency medical services (EMS) is to reduce the mortality and 

irreversible effects of injuries on people by providing urgent transportation and 

intervention to the patients. However, it is impossible to place an ambulance in every 

corner of the streets. EMS managers and administrators frequently face with the 

challenging task of locating a limited number of ambulances in a way that provides 

the best results in terms of covering the entire population. The term “coverage” is 

defined in the EMS Act of 1973 as follows: in urban areas 95 percent of calls must 

be reached in 10 minutes, and in rural areas, calls should be reached in 30 minutes or 

less. Although the nature of the problem resembles the well-known set covering or 

maximal expected location coverage problems, the probability that any given 

ambulance is busy, enforces us to develop improved models by which the uncertainty 

could be handled as long as coverage and quick response objectives are considered. 

 

The approaches for the ambulance location problem are divided into two categories: 

deterministic models and probabilistic models. The accuracy of the parameters in 

probabilistic models could considerably affect the overall model’s performance and 

they are exposed to errors just because of the limited availability of simulating 

emergency cases. Hence, we prefer to work for a deterministic environment in this 

study. On the other hand, in order to overcome the shortcomings of considering such 

a deterministic environment and to handle the conditions of missing calls, we intend 

to incorporate the idea of multi-level coverage, specifically the triple coverage 

standards in our study. 

 

As previously stated, the environment we work on throughout this study is 

deterministic in which the demand at the populated sites and the possible location 
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sites are known in advance. However, the possibility of change in demand patterns, 

for example in different time zones of the day, is taken into consideration. By 

detecting the possible movements of the demand points, the need for ambulances is 

assessed and the model can be used continuously to find the optimal places for the 

changed conditions.  The changes in the system parameters could be because of the 

different time periods or a meeting in a known square, a sport activity or any 

considerable coverage decrease in a zone due to heavy ambulance activity just 

because of a big traffic accident. In addition to these, an ambulance placed at a site 

could be assigned to any call, if the demand point is in any coverage of the 

ambulance. So, no demand point is attached specifically to an ambulance before any 

call.  

 

Imposing some absolute or partial coverage standards may lead to infeasible 

solutions if they are too tight. In fact, no approach can satisfy a feasible solution at 

every situation, since demand for ambulances is highly stochastic and conditions 

might occur where there are not adequate ambulances or the coverage fails in some 

areas. In order to provide a “good” level of coverage and not to fall in infeasibility, 

several remedial actions can be taken like: increasing the number of available 

ambulances or relaxing the higher level coverage standard and partial coverage 

standards, or not specifying the number of ambulances apriori (Hogan and Revelle, 

1986; Marinov and Revelle, 1996; Gendreau et al., 1997). 

 

The set covering and maximal covering problems are classified as NP-hard in the 

literature while targeting one level of coverage. While trying to overcome the 

stochastic nature of the missing call problem we introduce the triple coverage 

standard, making the problem much more extended in terms of the decision variables. 

That is why classical mathematical modeling approaches seem to be disadvantageous 

in terms of computation time, hence, we resort to metaheuristics.  

 

The most common approaches in ambulance location studies are based on ‘set 

covering’ models, ‘maximal expected coverage’ location models, queuing theoretic 
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models, hypercube models and the other extended probabilistic location models. In 

most of these studies, the vehicle type is single, and relocation aspects are ignored.  

 

By using the three-level coverage standards, our aim is to provide a solid coverage 

for the demand points and increase the probability of quick response to a call by 

locating service units with respect to coverage levels. In a single coverage standard, a 

demand point is tried to be covered by a service unit as close as possible. However, 

the demand points which are probably in a partial coverage range of the ambulance 

are left out of consideration. Based on the three-level coverage idea, the demand 

points, which are slightly distant from the tighter coverage standard, are taken into 

account. We do not consider more than three levels in multiple coverage; because 

especially in emergency cases, an ambulance station located after some distant point 

does not contribute to the demand coverage quality of the ambulances, since the 

response time of that distant unit turns out to be longer than critical response time 

stated by the EMS Act.  

 

The inability of the mathematical programming solvers to provide optimal or near-

optimal solutions in reasonable times even for medium-sized location problems has 

led us to search for the use of metaheuristics for our three-level coverage problem. 

Problems with up to 500 demand points and 10 ambulances could be solved by the 

available capable solvers. When the number of demand points is increased to 1000, 

the computer memory (Intel Centrino Duo CPU 1.66 GHz, 1 GB of RAM) fails to 

solve the model. For this reason, we have investigated the principles of some 

metaheuristics and applied an appropriate method; a genetic algorithm (GA) based 

solution approach for our three-level coverage idea. Our approach is unique in a 

sense that it tries to maximize the three levels of coverage for a demand point and 

utilizes a genetic algorithm. The solution quality of our genetic algorithm then has 

been compared against both the exact optimal solution of the model and another 

solution obtained by a well known greedy ADD and DROP heuristic. 
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As far as the additional issues are considered, our method is applicable to relocation 

problems because of its rapid solution capability in changing conditions either 

because of changes in the demand pattern or ambulance conditions. The new 

locations for ambulances providing three levels of coverage in changing conditions 

are found in a reasonable computation time and then a redeployment problem needs 

be solved. Obviously, the redeployment problem of ambulances is an easy problem if 

the related assignment cost matrix is known in advance. Also, our study contributes 

to the ambulance location theory with its analysis on the comparison of the multi-

level coverage approaches and backup coverage/multiple coverage approaches. In 

the comparison analysis, the performance metrics ‘responsiveness’ and 

‘preparedness’ are used in which ‘preparedness’ corresponds to capability of 

decreasing the level of missing calls as much as possible. While multi-level coverage 

idea favors quick response criterion, multiple coverage idea increases the system-

wide preparedness. Hence, the comparison results obtained provide useful insights 

for the decision makers in making use of both multi-level and multiple coverage 

ideas.   

 

In the following chapters, the details of our study are presented in the sequence of 

below outline. 

 

Chapter 2 introduces overview of the location and relocation models developed for 

the EMS services and especially for ambulances. Chapter 3 focuses on the problem 

environment and presents the mathematical programming formulation. Chapter 4 

presents the proposed solution approaches. Chapter 5 presents the results of the 

computational study performed. Finally Chapter 6 concludes with the discussions on 

the proposed approaches, presents the remarks derived from the study and suggests 

some issues for future work. 
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CHAPTER 2 
 
 

LITERATURE REVIEW 
 
 

 
2.1 Deterministic Approaches 

 
The idea of locating emergency service facilities or so called public facilities by 

using mathematical tools had come out around the beginning of 70s. Prior to this date, 

the studies based on mathematical analysis had focused extensively on the solution 

of commercial problems; locating a new machine in a manufacturing environment or 

a warehouse in a distribution network was among the issues that had been studied. In 

one of the initial studies ReVelle et al. (1971) explain the reason as follows: in the 

area of private facility location problems, the starting point is much more identifiable, 

since the cost elements included in the objective function of the commercial facility 

location problems can be reasonably estimated and the models can well represent the 

real location problem they are designed to solve. For example, in the area of private 

facilities location analysis, an accurate objective function in locating a warehouse is 

to minimize the cost of manufacturing and distribution.  

 

As far as the public side is concerned, the approach has to be redefined in terms of 

the objectives. Two different measures which have received attention in location 

models are: (1) total weighted distance or time from/to the facilities, and (2) distance 

or time that the most distant user from a facility would have to travel to reach that 

facility, that is, the maximal service distance. The difficulty of defining optimal 

service∗ distance in emergency situations requires much more attention in locating 

public sector facilities.  

 

                                                 
∗ Accepted time threshold written in the EMS Act of 1973 requires that in urban areas 95 % of 
requests be reached in 10 minutes, and in rural areas, calls should be reached in 30 minutes or less. 
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Among the initial studies on emergency services location problems, the study by 

Toregas, ReVelle and Bergman (1971) views the location of emergency facilities as a 

‘set covering’ problem with equal costs in the objective and linear programming 

model is formulated to solve the set covering problem. A single cut constraint is 

added to resolve the fractional solutions. The model is defined as follows:  

 

Minimize      ∑ =

=
=

ni

j jxz
1

 

Subject to:  ∑ ∈
≥

iNj jx ,1  ( ni ,...,2,1= ) 

   )1,0(=jx  ( nj ,...,2,1= ) 

where: 





=    jx  

iN : the set of points in the distance of ‘S’ units to the demand point i. 

 

The model is basically minimizing the number of facilities to be located while 

targeting the required service distance, S, for each demand point. The cut constraint 

used is simply, 

 

  ,10

1
+≥=∑ =

=
mxz

ni

j j   

 

where  0m  is the integer part of the initial solution. 

 

The first critical point in the model is to allow for a number of ambulances as much 

as the location sites. However, in real life, the number of ambulances is limited.  

 

Furthermore, the model does not capture the unavailability of the ambulances. That 

is to say, during a call, the covering ambulance may be busy due to a previous call 

within the covering distance. On the other hand, the model is valid in the EMS 

0, if no facility is established at point j 

1, if a facility is established at point j 
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literature in the sense that it provides a solution to the public facility problem via 

mathematical modeling and at least a bound in order to satisfy the required service 

level; it is and classified as “Location Set Covering Model” (LSCM).  

 

Another model that needs to be analyzed is the one developed by Church and 

ReVelle (1974). This model tries to deal with one of the shortcomings of the 

previous model, i.e. LSCM. Rather than allowing for an unlimited number of 

ambulances, the model seeks to maximize the population coverage by the limited 

ambulance usage. This problem is classified as the “Maximal Covering Location 

Problem” (MCLP).  

 

Defined on a network of nodes and arcs, a mathematical formulation of this problem 

can be stated as follows: 

 

(MCLP) 

 

Maximize     ∑ ∈
=

Ii ii yaz  

Subject to: ∑ ∈
≥

iNj ij yx  for ∀ Ii∈  

  ∑ ∈
=

Jj j Px  

  )1,0(=jx   for ∀ Jj∈    

  )1,0(=iy   for ∀ Ii∈    

where  

 I  : the set of demand nodes, 

J : the set of facility sites, 

S : distance beyond which a demand point is considered “uncovered”, 

ijd : the shortest distance from node i  to node j , 
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



=    jx  

      

=iy




covered is  node demand  theif ,1

coverednot  is  node demand  theif ,0

i

i
 

 

 { }SdJjN iji ≤∈= , 

 =ia population to be served at demand node i,  

 =P number of facilities to be located, 

      

Church and ReVelle (1974) list two solution techniques for the above formulation. 

One is the heuristic approaches. Greedy Adding Algorithm (GAA) and modified 

version of it (Greedy Adding with Substitution-GAS) are utilized. Secondly, a linear 

programming approach is proposed. However, in the linear programming approach, 

the solution reveals two cases:  

  

 Case 1: All jx , iy = (0,1), which is called an “all integer answer”.  

 Case 2: Some jx ’s are fractional, which is called a “fractional answer”. 

 

Here, it has to be noted that the linear programming approach is utilized in another 

version of the problem. In this version of the problem, they define the problem in 

such a way that rather than maximizing the covered population, they seek to 

minimize the uncovered population (the decision variable iy  is introduced in this 

second version of the problem definition). When the Case 2 above is faced with, they 

eliminate the fractional variables either by the method of inspection or the method of 

Branch and Bound. By assuming the same cost for every establishment of emergency 

services at location sites, they help in the generation of a cost-effectiveness curve. By 

increasing the number of ambulances allowed, it is possible to measure the 

0,  if no facility is established at point j 

1,  if a facility is established at point j 
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percentage of population covered. This trade-off curve provides valuable information 

for the decision makers. 

 

They extend their model by the addition of another constraint to their models. By this 

way, they aim to maximize the population that can be covered within a given service 

distance S  while at the same time ensuring that the users at each point of demand 

find a facility no more than T units of distance (T  > S ) away. The extended model 

is also called as MCLP with mandatory closeness constraints. 

 

The model does not address the issue of not answering the calls because of busy units. 

But it has the ability of capturing the real life situations more extensively than the 

previous model, since it brings limits to the number of ambulances and takes into 

consideration the mandatory closeness aspect. Eaton et al. (1985) have used MCLP 

to plan the reorganization of the emergency medical services in Austin, Texas. The 

developed plan has reduced the total cost of emergency services by $4.6 million in 

terms of both construction and operation in 1984. 

 

The two approaches above do not still eliminate the problem of missing calls due to 

the unavailability of medical units. In the deterministic sense, after these two studies 

are introduced, some models have been developed to handle this issue. In addition to 

this, by the extended versions of the above models, real life situations have been 

handled in a broader sense. One of the issues that have been studied is addressing 

problems with several vehicle types. The model developed by Schilling et al. (1979) 

is called as tandem equipment allocation model (TEAM). The model was particularly 

developed for fire fighting purposes. However, it is related with emergency medical 

services, since there are two basic ambulance vehicles, equipped with different types 

of utilities, called Basic Life Support Unit (BLS) and Advanced Life Support Unit 

(ALS). Let Ap  and Bp  be the number of vehicles of type A  and B in use, and Ar  

and Br  be the coverage standards for each vehicle type, and { }Aij

A

i rtWjW ≤∈= : , 

{ }Bij

B

i rtWjW ≤∈= :  in which ijt  is the time or distance limit for the coverage 



 

 10 

level corresponding to the vehicle types. These two sets include the possible location 

sites for the two types of vehicles. Finally, letting A

jx  and B

jx  be the location 

variables and iy be the coverage variable if point Vi∈ is covered by both vehicle 

types, the TEAM model is developed as shown below: 

 

 

Maximize ∑
∈

=
Vi

ii ydz     

Subject to: i

Wj

A

j yx
A
i

≥∑
∈

  ( )Vi∈  

 i

Wj

B

j yx
B
i

≥∑
∈

  ( )Vi∈  

  A

Wj

A

j px =∑
∈

 

  B

Wj

B

j px =∑
∈

 

  B

j

A

j xx ≤   ( )Wj∈    

  )1,0(, =B

j

A

j xx   ( )Wj∈           

   )1,0(=iy   ( )Vi∈           

 

Actually, this model is the modification of MCLP, and it differs basically from it by 

the constraint: B

j

A

j xx ≤ , which forces the model to create a hierarchy among the two 

vehicle types. This constraint can be removed according to the conditions, then the 

model is an extension of MCLP to multiple vehicle types. This extended version 

(Schilling et al., 1979) is called the FLEET model (facility, location, equipment 

placement technique). In this model, the hierarchy constraint is removed, but only p  

location sites can be used. A more advanced model in the same fire fighting area was 

developed by Marianov and ReVelle (1992). In this model, it is assured that each 

demand point is covered by an adequate number of pumpers and rescue ladders. 
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As far as missing calls are concerned with, none of the approaches proposes an 

appropriate solution. Daskin and Stern (1981) develop a strategy to handle this issue. 

The strategy is based on MCLP. Rather than increasing the available number of 

ambulances, the aim is to keep the number as it is and handle the missing calls issue. 

The solution strategy is based on the idea of multiple coverage. In this approach, a 

hierarchical objective is used to maximize the number of demand points covered 

more than once. Similarly, Hogan and ReVelle (1986) use the idea of multiple 

coverage in their methodology and define their objective as the maximization of the 

total demand covered twice. Brotcorne et al. (2003) mention in their review paper 

about the two backup coverage formulations developed by Hogan and ReVelle 

(1986). The formulations are called as BACOP1 and BACOP2. In these models, a 

binary variable ui is incorporated into the model formulations; it is equal to 1 if and 

only if i is covered twice within the coverage standard, r. The two models are shown 

below: 

 

(BACOP1) 

 

Maximize       ∑
∈

=
Vi

iiudz    

Subject to:  1≥−∑
∈ iWj

ij ux  Vi∈  

  px
Wj

j =∑
∈

 

  10 ≤≤ iu   Vi∈  

   0≥jx   Vi∈  

 

(BACOP2) 

 

Maximize     ∑∑
∈∈

−+=
Vi

ii

Vi

ii ydudz )1( θθ    

Subject to:  0≥−−∑
∈ iWj

iij uyx  Vi∈  
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   0≤− ii yu  

  px
Wj

j =∑
∈

 

  10 ≤≤ iu   Vi∈  

  10 ≤≤ iy   Vi∈  

   0≥jx   Wi∈  

 

In BACOP2, θ  is a weight chosen in [0, 1]. BACOP2 is a model that looks for a 

balance among demand points covered only once and twice. However, BACOP1 

strictly imposes that demand points be covered twice. 

 

In order to solve the problem of missing calls, we see the work by Gendreau et al. 

(1997) among the most recent approaches. In their work, they aim to maximize the 

demand covered twice within a time standard of 1r , using p  ambulances, at most jp  

ambulances at site j . Two coverage standards are used ( 1r  and 2r ) with 1r  < 2r . All 

demand must be covered by an ambulance located within 2r time units (broader 

coverage is guaranteed), and a proportion α  of the demand must lie within 1r  time 

units of an ambulance. The ambulance that covers this α  portion could be the same 

ambulance as the one that covers demand in 2r time units. Letting 

{ }11 : rtWjW iji ≤∈=  and { }22 : rtWjW iji ≤∈= , the integer variable jy  stands for 

the number of ambulances located at j W∈ and the binary variable k

ix  is equal to 1 

if and only if the demand at vertex Vi∈ is covered k times ( 2,1=k ) within 1r  time 

units. The formulation below is called the double standard model (DSM). 

 

(DSM) 

 

Maximize ∑
∈

=
Vi

ii xdz 2  (2.1) 
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Subject to: 1
2

≥∑
∈ iWj

jy  Vi∈  (2.2) 

 ∑∑
∈∈

≥
Vi

i

Vj

ii dxd α1  (2.3) 

 21

1
ii

Wj

j xxy

i

+≥∑
∈

 Vi∈  (2.4) 

 12
ii xx ≤  Vi∈  (2.5) 

 py
Wj

j =∑
∈

 (2.6) 

 jj py ≤  Wj∈  (2.7) 

 { }1,0, 12 ∈ii xx  Vi∈  (2.8) 

 jy , integer Wj∈  (2.9) 

 

In this context, (2.1) computes the demand covered twice within 1r  time units, 

constraints (2.2) and (2.3) stand for multiple coverage requirements. The left hand 

side of (2.4) represents the number of ambulances covering vertex iwithin 1r  units, 

while the right hand side is 1 if i  is covered within 1r  units and 2 if it is covered at 

least twice within 1r  units. The combinations of constraints (2.3) and (2.4) ensure 

that α portion of the demand is covered and the coverage standard must be 1r . 

Constraint (2.5) ensures that demand point i cannot be covered at least twice if it is 

not covered at least once. In constraint (2.7), jp  could be set as 2, since the solution 

always satisfies that condition. 

 

Although the model looks similar to BACOP2, it allows some portion of the demand 

in the area to be covered again by the same ambulance by the coverage standard 

approach. DSM enables to construct two level coverage distances or time base rather 

than using only one type coverage standard r. Gendreau et al. (2001) later extend this 

model to a dynamic environment and develops the model which is dynamic double 

standard model (DDSM), and the model is solved by utilizing the tabu search 

heuristic.  
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As far as the common properties of these models are concerned with, they are all 

appropriate for the deterministic and static environment. With the exception of 

LSCM, the number of vehicles is determined in advance. Some side issues as well 

can be taken into account as the multiple types of vehicles and extra-coverage. The 

development of the models is presented below in a chronological order (see Table 1). 

 
Brotcorne et.al (2003) summarizes the deterministic, static and dynamic models as 

shown in Table 3 (at the end of this chapter). 

 
 
Table 1 : The chronological development of deterministic ambulance location 
models 
 
1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982

LSCP MCLP
TEAM, 

FLEET

Multiple 

Coverage

1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994

BACOP1 

BACOP 2

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

DSM DDSM

 

 

 

2.2 Probabilistic and Dynamic Approaches 

 

It is the fact that the cost of not being able to respond to an emergency call 

sometimes might be immeasurable, since the task, at last, is related with the human 

life. For this reason, much attention has been given to managing responses to calls in 

the emergency medical services field. Probabilistic and dynamic methods have been 

heavily utilized in order to decrease the number of missing calls and increase the 

performance of ambulance services in this manner. 

 

The maximum expected covering location problem formulation (MEXCLP) by 

Daskin (1983) is among the first probabilistic models in ambulance location studies. 
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In this work a “server busy probability” p is assigned to each server (ambulance). 

The assumption is that this probability is the same for every ambulance. The 

developed model is as follows:  

 

(MEXCLP) 

 

Maximize   ∑∑∑∑
= == =

− =−=
N

k

M

j

jkkjjkk

N

k

M

j

j yhwyhppz
1 11 1

1)1(                                           

Subject to:    0
11

≤−∑∑
==

N

i

iki

M

j

jk xay        k∀  

                     Mx
N

i

i ≤∑
=1

 

                    Mxi ,...,1,0=     i∀  

                    My yk ,...,1,0=     kj,∀    

where 

       =jky




,0

,1
  

              =ix number of facilities located at node i  

   1)1( −−= j

j ppw ,  Mj ,...,1=   

              =kh demand generated at node k  

               =kia




,1

,0
  

               =M number of facilities to be located, 

               =N number of nodes in the network,  

               =D distance standard for the required coverage, 

               =kid  distance between facility at i  and demand at k . 

 

if node k  is covered by at least j   facilities 

if node k  is covered by less than j  facilities 

if kid  > D  , a facility at i  does not cover demands at k  

if kid  ≤  D , a facility at i  covers demands at k  
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Briefly, in the model, if vertex Vi∈  is covered by r  ambulances, the expected 

covered demand is )1( r

ir phE −= , and marginal contribution of the rth ambulance to 

this expected value is 1
1 )1( −
− −=− r

irr pphEE , and the model tries to maximize their 

sum. The validity of this model emerges from the fact that the objective function is 

concave in ,j  this implies that if 1=jky , then 1...1 21 ===== jkkk yyy ; and if 

0=jky , then .0...0 21 ===== jkkk yyy   

 

Daskin (1983) applies the model to a 55-node example by utilizing a single node 

substitution heuristic. Though the solution procedures yield the same results as 

MCLP while p  approaches 1, it is stated that optimum solution is not guaranteed.  

 

Later the model MEXCLP is revisited by Batta, Dolan and Krishnamurthy (1989). 

The MEXCLP is criticized in terms of its underlying assumptions such as 

independent operation of servers, the same busy probability for all servers and for all 

locations. In order to eliminate these problems, authors apply hypercube queueing 

model (developed by Larson, 1974) in a single node substitution heuristic 

optimization procedure. The empirical findings show that the new method 

(AMEXCLP: adjusted MEXCLP) produces much more reliable results.  

 

An extension of MEXCLP, called TIMEXCLP, is proposed by Repede and Bernardo 

(1994) and applied to the Louisville-Kentucky data. In TIMEXCLP, variations in 

travel speed in separate parts of the day are explicitly considered. The method is 

combined with a simulation module to provide an analysis of the developed solution. 

The main result is an increase of the proportion of calls covered in 10 minutes or less 

from 84% to 95%. 

 

Rather than getting interested in busy probabilities of servers, some work also 

focused on ability of the servers to cover demand with a given probabilityα . Two 

probabilistic models are developed by ReVelle and Hogan (1989). These authors 

formulate the maximum availability location problem (MALP I). The busy fraction 
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p is assumed to be the same for all potential location sites. The minimum number of 

ambulances required to serve each demand point k  with reliability level α  is 

determined by the constraint: 

α≥
∑

− ∈Ni

ix

p1 , which can be later linearized as: 

 

[ ] bpx
Ni

i =−≥∑
∈

log/)1log( α . 

 

In order to formulate MALP I, jky is defined as in MEXCLP, that is: 

       =jky




,0

,1
  

 

(MALP I) 

Maximize z= jk

Nk

k yh∑
∈

 

Subject to 0
11

≤− ∑∑
==

N

i
iki

b

j
jk xay

 

 Mx
N

i

i ≤∑
=1

 

 1, −≤ kjjk yy    ,Nj∈  bk ,...,2=  

 { }1,0, ∈jki yx  

 

Other than the reliability probability, the model also differs from MEXCLP by the 

constraint 1, −≤ kjjk yy . It is stated that this constraint is required because of the loss of 

concavity property observed in MEXCLP. In the second model developed by the 

same authors, unique busy probability is calculated for every server, and again for 

every ,i  a new ib  value is determined. The second model (MALP II) points out the 

difficulty of working with a busy fraction jp , specific to each Mj∈ , since these 

values cannot be known in advance and could be determined correctly after the 

if node k  is covered by at least j  facilities 

if node k  is covered by less than j  facilities 



 

 18 

model output is revealed. Another work on this issue is proposed by Marianov and 

ReVelle (1994). They propose the queueing probabilistic location set covering 

problem (QPLSCP) in which busy fractions are site-specific. These authors compute 

the minimum number of ambulances, ib , necessary to cover a demand point Vi∈  in 

such a way that the probability of all being busy does not exceed a given threshold. 

This value is then used in MALP II model. 

 

As far as overall reliability revel is concerned with rather than busy probabilities, 

Ball and Lin (1993) propose an extension of LSCM, called Rel-P. This model 

incorporates a linear constraint on the number of vehicles required to achieve a given 

reliability level. 

 

Lastly, it should be noted that all probabilistic models up to now, have tried to 

resolve the issue of not responding to a call by using especially vehicle specific busy 

probabilities or ensuring overall system reliability. In addition to these studies, 

Mandell (1998) describes a two-tiered system in which advanced life support (ALS) 

and basic life support (BLS) units are available. This two-tiered model (TTM) aims 

to maximize the expected covered demand by using two vehicle types, one of which 

has superiority over the other. That is to say, BLS units could also be replaced by 

ALS units while reverse is not possible.  

 

The development of the probabilistic models in chronological order is shown below 

in Table 2. The detailed tabulated presentation is in Table 4 (at the end of this 

chapter). 
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Table 2 : The chronological development of probabilistic ambulance location 
models 
 

1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994

MEXCLP

MALP I 

MALP II 

AMEXCLP

REL-P
TIMEXCLP 

QPLSCP

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

TTM

 

 

 

2.3 Recent Studies in Locating Emergency Services  

 

The detailed models developed so far constitute the major frameworks in locating 

emergency services. Most of the recent works are based on those well known studies. 

For instance, Galvao et al. (2001) examine MEXCLP, AMEXCLP and hypercube 

queueing model (HQM) in terms of their differences and conclude that these three 

models are not strictly comparable because of their different objectives. Additionally, 

the work confirms the fact that AMEXCLP produces improved results compared to 

MEXCLP by relaxing the assumption that the servers operate independently. On the 

other hand, hypercube location model (HLM) by relaxing other two assumptions of 

MEXCLP (about server busy probabilities and busy probabilities according to the 

location) and dealing with queued calls as well, opposed to AMEXCLP, is capable of 

producing much more reliable results. 

 

Later, Saydam et al. (2002) propose a genetic algorithm (GA) in order to reduce the 

considerable over- or under-estimated margins among optimal locations found by 

AMEXCLP and MEXCLP.  

Ingolfsson et al. (2003) extend their studies in order to capture the random delays and 

travel times. In their approach, they address a new side issue that has not been 

studied extensively. The time period that is spent for the preparation of the medical 

crew to respond to a call and the other delays in travel times are considered 

separately in this study. The underlying motivation is such that a node assigned as 



 

 20 

covered may not be covered when possible delays are considered. A branch and 

bound algorithm working with a nonlinear programming algorithm is proposed, and 

the model is run for the city of Edmonton.  

 

Lightner et al. (2004) incorporate the extension of FLEET model (MOFLEET: 

multiple coverage, one unit FLEET problem) in order to solve locating EMS vehicles 

in Fayetteville, NC. The study shows that within the existing sites it is possible to 

increase the coverage by redistributing the vehicles; and when the possible site 

alternatives are on hand, the coverage increases sharply. The study includes a real-

life application. 

 

Peleg et al.(2004) utilize the tool, geographic information system (GIS), in order to 

reduce ambulance response time.  

 

Galvao et al. (2005) propose a unified version of Daskin’s maximum expected 

covering location problem (MEXCLP) and ReVelle and Hogan’s maximum 

availability location problem (MALP) and by relating these two approaches, they 

develop extensions to those approaches mainly by incorporating Larson’s hypercube 

model and simulated annealing.  

 

Rajagopalan et al. (2006) analyze the performance of four meta-heuristics applied to 

a probabilistic location model. The findings show that the tabu search and simulated 

annealing approaches find the best solutions in the least amount of time. Morabito et 

al. (2007) extend the hypercube model in order to handle the location and allocation 

of non-homogeneous vehicle types. 
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2.4 The Models with Redeployment  

 

The crucial phase in detecting ambulance locations begin when the redeployment and 

relocation needs arise. Determining the initial position of the vehicle is the core 

crucial problem that has been studied widely.  

 

Among the works that have been analyzed so far, the population or so-called demand 

points have been considered stable. However, it is a fact that the population 

dispersion changes at different time zones of the day. While the population is 

dispersed in city centers at noon time, it is scattered around the countryside and far 

from the city centers during night time. So, keeping the position of ambulances 

always the same is not an efficient policy when the dynamic nature of the population 

is taken into consideration. Then determining the new settlement of ambulances and 

the assignment of ambulances to their new places become the issue. 

 

There are several works which have addressed the relocation issue. As mentioned in 

the review by Richards (2007), the first emergency redeployment problem was 

proposed by Kolesar and Walker in 1974. They analyzed the relocation of fire 

companies in the following case: when a fire unit leaves its initial place, the 

decreased coverage level in that area is compensated for by the other units placed in 

its “response neighborhood”. The objective in Kolesar and Walker (1974) is to 

minimize the assignment costs to the new locations by minimizing travel times on 

account of the pre-defined “good coverage” standard. The work follows four-step 

sequential solution approaches. With the help of response neighborhoods the 

availability of relocation is determined, the empty fire fighting houses that are going 

to be filled are determined. The vehicles are chosen and lastly the assignment 

problem is solved. The first three stages are handled by heuristic approaches while 

the last stage is solved as an assignment problem.   

 

Gendreau et al. (2001) enhance the scope of their study conducted in Gendreau et al. 

(1997) in order to analyze the relocation problem. The model is based on the idea of 
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maximizing the total demand covered at least twice within 1r  dynamically by 

introducing a penalty term for relocation alternatives. As being different from the 

DSM (double standard method) approach, DDSM (dynamic double standard model) 

is solvable in real time by the contribution of parallel computing and tabu search 

heuristic. The DDSM is proposed as follows: 

 

(DDSM) 

 max jl

m

j

p

l

t

jl

Vi

ii yMxd ∑∑∑
= =∈

−
1 1

2  

Subject to: 1
1 1

≥∑∑
= =
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m

j

p

l
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 ∑∑
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≥
n

i

i
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i
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1 λλ   (proportion a  of all demand is 

covered) 
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1 1
iijl

m

j

p

l

ij xxy +≥∑∑
= =

γ    Vvi ∈∀ (number of ambulances located 

within 1r  units should be at least 1 if 

11 =ix  or at least two if 112 == ii xx ) 

 12
ii xx ≤  Vvi ∈∀   (Demand point can not be covered 

twice if it is not covered at least 

once) 

 1
1

=∑
=

m

j

jly  pl ,...,1=   (each ambulance is assigned to a 

possible location site) 

 j

p

l

jl py ≤∑
=1

Wvi ∈∀  (an upper bound for the number of 

vehicles waiting at a location site) 

 01 =ix  or 1  Vvi ∈∀  

 02 =ix  or 1 Vvi ∈∀  
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 0=jly  or 1 Wvi ∈∀  and pl ,...,1=  

 

In the model the composition of the t

jlM  is crucial. It is defined as the cost 

coefficient associated with the relocation of ambulance pl ,...,1=  from its current 

site at time t  to location site .Wv j ∈  t

jlM  coefficients are updated at each period and 

penalize redeploying the same ambulance repeatedly, avoiding round trips between 

two location sites and preventing the large-drive times between initial location and 

final destination. The other detailed explanation for the variables and cost 

coefficients are mentioned in the part related with DSM above. 

 

Later Gendreau et al. (2003) examine the relocation issue in the context of maximal 

expected coverage relocation problem (MECRP). The model concerns the dynamic 

problem from somehow the static perspective and solves the relocation problems 

between different time zones by imposing constraints upon the number of 

redeployments. MECRP assumes the redeployment time to be zero. With this 

assumption, there are no repositioning costs and ambulances are placed to serve the 

next call in the best way. 

 

Andersson et al. (2006) propose a model DYNAROC, which solves the dynamic 

relocation problem in real time. By the concept of “preparedness”, DYNAROC 

detects the regions where there is a decrease in the level of emergency case 

preparedness and relocate ambulances accordingly. In this sense the model is similar 

to the one developed by Kolesar et al. (1974). The model uses tree search heuristic.  

 

Lastly, Saydam et al. (2006) propose a comprehensive approach in order to handle 

the multiperiod set covering issue and dynamic redeployment of ambulances. In their 

study, the changing nature of the demand patterns in different time zones is 

considered and the model is enhanced by calculating server specific busy 

probabilities that are incorporated into a simulated environment. The model seeks to 

provide a reliability level at each time zone as similar to the case of preparedness. 
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The detailed tabulated presentation for the model that considers relocation is in Table 

5 (at the end of this chapter). 

    

The review by Goldberg (2004) is also a valuable source of information in terms of 

modelling efforts for the emergency services location and allocation. Goldberg 

classifies the works according to the dates of studies and modelling approaches. As a 

result of compact collection of analysis, Goldberg concludes that real time vehicle 

routing, scheduling and crew shifting issues deserve to be focused intensively as 

future work. The work in this study aims to focus on the following issues: 

- Multi-level coverage perspective  

- Rapid solution procedures  

- Changing patterns of demand during a certain period of time, and hence the 

shift of ambulances from one site to another 

- Comparison between multi-level and multiple coverage ideas and the 

interaction among them. 

 

2.5 Issues Considered in Location of Emergency Service Vehicles  

 

Both in deterministic and probabilistic models, there are some common issues and 

questions. All these issues that have to be addressed while studying EMS are 

summarized below. 

 

o How many servers (ambulances) are needed? 

o How long can people involved in an emergency case afford to wait for 

service before the consequences of a lack of response become intolerable? 

o What does ‘coverage’ or ‘good quality coverage’ mean? 

o What is to be done when servers are not available? 

o How is the distribution of workload among servers? 

o In real life situations: 

• The issue of data collection for the right modeling is crucial. 
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• The analysis must take into account the nature of the emergency 

service as public or private. 

• Political or real-life feasibility of locating new services or closing the 

existing ones is another factor while specifying the location sites. 

• Handling multiple objectives in decision making always force to 

produce alternative solutions. 

 

The budget allocated for the emergency services directly affects the number of 

ambulances available. For this reason, covering the population as much as possible 

with the existing ambulances is among the first motivations. Though emergency 

cases vary, being able to respond quickly and on time is another highly valued 

objective; if this objective is not met, the result might not be endurable. 

 

All in all, it is appropriate to classify the major works on ambulance location and 

allocation in terms of the following characteristics: 

 

I. Objective 

A. Statement 

i. Covering each demand point 

ii. Maximal coverage 

B. Approach 

i. Single Objective 

ii. Multiple Objective 

II. Type of Vehicles 

A. One type 

B. Two types (BLS, ALS) 

III. Nature of Demand 

A. Deterministic 

B. Stochastic  

C. Dynamic 

IV. Hierarchical Level 
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A. Single Stage (Location) 

B. Multiple Stage (Location, Routing)  

V. Planning Horizon 

A. Single Period (Static) 

B. Multiple Period (Dynamic) 

VI. Types of the Model 

A. Hypothetical 

B. Real-Word Data 

 

 

2.6 The Link between EMS and Disaster Operations Management (DOM) 

 

The utilization of OR methods and mathematical tools in the field of EMS location 

goes back to 70s as mentioned in the previous sections. The further enhancement of 

the methods and tools are also seen in the management of disasters and large scale 

emergencies. However, the developments in large scale emergencies are much more 

recent. The work conducted by Altay et al. (2006) covers a wide range of literature 

on DOM. Emergency management is composed of four phases called as mitigation, 

preparedness, response and recovery. The 109 articles examined are placed in one of 

these categories. Altay et al. (2006) also present the statistical summary for the 

articles’ details such as their publishing origin (US or international), publishing time, 

methodology, disaster type examined and research contribution (theory, model, 

application). Another review work is conducted by Denizel et al. (2003) who classify 

the literature by the properties of articles based on mainly the problem setting, data, 

novelty of the problem, solution approach, generalization of results and future 

research implications.  

 

The most appropriate phases in which OR tools could be used in large scale 

emergencies are “preparedness” and “response” stages. The fact is also confirmed by 

the review works conducted by Altay et al. (2006) and Denizel et al. (2003). In other 

two stages, that is, mitigation and recovery, rather than mathematical tools, action 
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plans and handbooks are mostly published concerning the planning and coordination 

of governmental and civil institutions.  

 

The intersection between emergency services location and large scale emergencies 

lies in the “preparedness” stage. It is the fact that large scale emergencies have their 

unique features different from daily emergencies. However, the units required to be 

placed in order to respond to large scale emergencies share the same motivation with 

daily life emergencies, that is, quick response.   

 

The studies in the context of large scale emergencies focus more on locating facilities 

that are to be operable for rescuing operations and stocking as well as providing first-

aid kit packages through logistic networks. Belardo (1984) is among the initial works 

that focuses on partial covering approach to locating response resources for major 

maritime oil spills.  

 

Though Drezner (1987) does not directly consider the location problem in disaster 

cases, his work on two location problems (p-median and p-center) analyzing the 

unreliable facility case is placed in large scale emergencies literature. By considering 

that facilities may become unavailable in disaster situations, the solution methods 

developed by the study is applicable for large scale emergencies. Drezner develops 

heuristic solutions for the problem and presents the results.  

 

Knott (1987) considers the last-mile delivery of food items from a distribution centre 

to a number of refugee camps, assuming a single mode of transportation that makes 

direct deliveries to camps. 

 

One of the major studies in large scale emergency case is Batta et al. (1990). The 

study concerns the location of ambulances in an environment in which a large 

demand volume often leads to the unavailability of the most desirable response unit. 

By utilizing the idea of backup coverage and applying the set covering and maximal 

covering location models, Batta et al. (1990) propose a solution methodology to 
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minimize the congestion in ambulance calls when there is a large volume of demand 

in large scale emergencies.  

 

Related with DOM, Current et al. (1992) propose solutions for locating emergency 

warning sirens. During late 90s, the studies mostly focus on simulation models for 

large scale emergency evacuation activities. Pidd (1996) and Yamada (1996) focus 

on a city’s emergency evacuation planning through simulation models. A network 

flow approach is used in Yamada’s (1996) study. In addition to those studies, 

Gregory and Midgley (2000) propose a multi-agency planning and coordination 

framework for disaster operations.  

 

In parallel with the location concepts, we see relief logistics studies beginning from 

late 90s. Haghani and Oh (1996) and Oh and Haghani (1996) provide detailed 

routing and scheduling plans for more than one transportation mode facilitating the 

flow of multiple commodities from multiple supply points in a disaster relief 

operation. The authors assume that the quantities of commodities are known. They 

formulate a multi-commodity, multi-modal network flow problem with time 

windows as a large scale MIP model on a time space network with the objective of 

minimizing accumulated aggregate cost in the whole set up.  

 

Özdamar et al. (2004) work on another similar problem situation and address an 

emergency logistics problem for distributing multiple commodities from a number of 

supply centers to distribution centers next to the affected areas. They formulate a 

multi-period multi-commodity network flow model to determine pick-up and 

delivery schedules for vehicles as well as the quantities of loads delivered on these 

routes, with the objective of minimizing the amount of unsatisfied demand over time. 

The proposed model allows for regenerating plans based on changing demand, 

supply quantities, and fleet size. Later Balçık and Beamon  (2008) consider both 

location and stocking issues sequentially, for a humanitarian relief chain responding 

to quick-onset disasters. In particular, they develop a model that determines the 

number and location of distribution centers in a relief network and amount of relief 
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supplies to be stocked at each distribution center to meet the needs of people affected 

by disasters.   
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Table 3 : Summary of the deterministic models    
 

Reference Model Objective Coverage constraints Constraints on location sites Ambulances 

ReVelle, Toregas, 

Bergman (1971) 
LSCM Minimize # of ambulances 

Cover each demand point at 

least once 
At most one ambulance per site One type, number unlimited 

Church and 

ReVelle(1974) 
MCLP Maximize the demand covered None At most one ambulance per site One type, number given 

Schilling et al. (1979) TEAM Maximize the demand covered None 

At most one ambulance of each 

type per site. Type A can only 

be located if Type B is located 

Two types, number given 

Schilling et al. (1979) FLEET Maximize the demand covered None 
At most one ambulance per site. 

Only p sites can be used 
Two types, number given 

Daskin and Stern (1981) Modified MCLP 

Maximize the demand covered, 

then the number of demand points 

covered more than once 

Cover each demand point at 

least once 
At most one ambulance per site One type, number given 

Hogan and ReVelle 

(1986) 

Modified MCLP 

(BACOP1 and 

BACOP2) 

Maximize the demand covered 

twice, or combination of the 

demand covered once or twice 

Cover each demand point at 

least once 
At most one ambulance per site One type, number given 

Gendreau et al. (1997) DSM 
Maximize the demand covered at 

least twice within 1r  

All demand covered within 2r . 

Proportion α of all demand 

covered within 1r  

Upper bound on the number of 

ambulances per site 
One type, number given 

Gendreau et al. (2001) DDSM 

Dynamically maximize the 

demand covered at least twice 

within 1r , minus a redeployment 

penalty term 

All demand covered within 2r . 

Proportion α of all demand 

covered within 1r  

Upper bound on the number of 

ambulances per site 
One type, number given 
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Table 4 : Summary of the probabilistic models 
 

Reference Model Objective 
Coverage 

constraints 

Constraints on 

location sites 
Ambulances Busy Period 

Daskin (1983) MEXCLP 
Maximize the expected demand 

covered 
None None 

One type.Upper bound 

given, (always reached) 

Same for each ambulance, 

given 

ReVelle and Hogan 

(1989) 
MALP I 

Maximize the total demand covered 

with a probability  α 
None None One type.Number given Same for all potential sites 

ReVelle and Hogan 

(1989) 
MALP II 

Maximize the total demand covered 

with a probability at least α 
None None One type.Number given 

Varies according to each 

demand point 

Batta et al. (1989) AMEXCLP 
Maximize the expected demand 

covered 
None None One type.Number given 

Varies according to each 

demand point 

Ball and Lin (1993) 
Modified 

LSCM (Rel-p) 

Minimize the sum of ambulance fix 

costs 

Proportion a of 

all demand 

covered within 

1r  

At most jp  

ambulances at site 

j  

One type.Number given 
Upper bound computed on 

busy period 

Repede and Bernardo 

(1994) 
TIMEXCLP 

Maximize the expected demand 

covered 
None None 

One type.Number 

given.Varying speeds 

Same for each ambulance, 

given 

Marianov and 

ReVelle (1994) 
QPLSCP 

Maximize the total demand covered 

with a probability at least  α 
None None 

One type.Lower bound 

computed for each demand 

point 

Varies according to demand 

points 

Mandell (1998) TTM Maximize the expected demand  None 
Bounds on each 

type per site 
Two Types 

Computed using a queueing 

model 
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Table 5 : Summary of the studies on relocation   
 

Reference Model Objective Coverage constraints Solution Method Used data 
Relocation 

Constraints 

Kolesar and 

Walker (1974) 

Relocation of 

Fire 

Companies 

Four step Sequential Objectives 

1-Decide for relocation (with the help 

of response neighborhoods) 

2-Determine empty houses to be 

filled. 

3-Determining available companies to 

relocate 

4-Solve the assignment targeting 

minimizing travel times. 

Standard minimal 

coverage constraint, 

targeting a “good” level. 

Heuristic Methods for 

the first three stages, 

and assignment 

algorithm for the last 

stage. 

Hypothetical and 

Real data. 

-Long trips not 

allowed 

-too busy units not 

allowed 

-units covering big 

areas not allowed. 

Gendreau et al 

(2001) 

Redeployment 

problem (RP) 

-Location Ambulances with respect to 

double coverage standard 

-relocate them dynamically to 

maximize the covered area 

Double coverage standard Parallel tabu search  
Hypothetical and 

Real data. 

- too busy units not 

allowed 

-round trips not 

allowed 

-Long trips not 

allowed 

Andersson (2006) DYNAROC 
Dynamically providing a minimum 

preparedness level ( mP ) 

Maximizing the demand 

in which the minimum 

preparedness level is met 

The tree search 

algorithm 
Hypothetical data 

-repeated trips  not 

allowed. 

Rajagopalan and 

Saydam (2008) 
DACL 

Determine the minimum number of 

ambulances and their locations for 

each time cluster 

Coverage requirement 

with predetermined 

reliability  

Reactive Tabu Search 

and Hybercube 

Algorithm 

Hypothetical data No constraint 
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CHAPTER 3 

 
 

DEFINITION AND MATHEMATICAL MODELING OF THE 

AMBULANCE LOCATION PROBLEM FOR THREE-LEVEL 

COVERAGE 

 

 

In this chapter, starting with the drawbacks of the former formulations of the 

ambulance location problems like LSCP, MCLP, we define our problem formulation 

with its environmental characteristics and assumptions. Finally we present the 

mathematical model of our formulation.  

 

3.1 Covering Problems in General 

 

“The location set covering problem” (LSCP) and “maximal covering location 

problem” (MCLP) form the foundation in our study. For this reason it is appropriate 

to elaborate on the characteristics of these two models. In LSCP: 

 

(i) There is no distinction among nodes based on demand size. Each node must 

be covered based on the specified distance criterion regardless of its demand 

size. 

(ii) If the coverage restriction is tight, this leads to a large number of facilities to 

be located. 

(iii) When an outlying node has a small demand, the cost/benefit ratio of covering 

this node can be extremely high. 

 

On the other hand, LSCP enables us to determine the minimum number of available 

resources to ensure a desired service level for every individual or demand area. 
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The limited resources are taken into consideration in the maximal covering location 

problem (MCLP), since it seeks to maximize the covered demand in the specified 

distance standard by the given number of resources. The first attempt to combine 

LSCP and MCLP was achieved by Revelle et al. (1974) in which the idea of “the 

maximal covering with mandatory closeness constraint” was proposed, and the 

location problem was redefined as: 

 

Locate p facilities at possible sites on the network to maximize the population that 

can be covered within a given service distance S while at the same time ensuring that 

the users at each point of demand will find a facility no more than T distance   (T >S ) 

away.  

 

Although the incorporation of mandatory closeness in the formulation improves the 

coverage quality, there are circumstances where the provision of a service needs 

more than one "covering" facility (Daskin, Hogan, and ReVelle 1988). This occurs 

when resources are not available. For example, assume that ambulances are being 

located at dispatching points in order to serve demand across an area. If the closest 

ambulance is busy when a call is received, then the next closest available ambulance 

is assigned to the call. If the closest available ambulance is farther than the service 

standard, then the call for service is not provided a service within the coverage 

standard. To handle such issues, models have been developed that seek multiple 

coverage in the form of stochastic and deterministic formulations. A good example 

of a  stochastic multiple coverage model is the maximal expected coverage model of 

Daskin (1983). 

 

The back up covering model of Hogan and ReVelle (1986) is a good example of a 

deterministic coverage model that involves maximizing the second-level coverage. 

However, in this model it is observed that when the multiple coverage is targeted, the 

optimal locations are aggregated at the center of the network.  

 

The idea of multiple coverage, at first glance, helps us to think that all demand points 

are covered in a way that no missing calls exist in the system and quick response 
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objective is handled. However, as it is observed in the work of Hogan and Revelle 

(1986), collecting the vehicles in a centralized service station may lead to failures in 

answering an urgent call requiring an immediate access.  

 

In this context, it seems much more appropriate to provide services as close as 

possible to the demand points, while not failing to cover each demand point in the 

broader sense. This approach seems to converge to the idea of “the maximal covering 

with mandatory closeness constraint” approach. However, by defining multi-level 

coverage quality, the approach is much more a maximal covering location model in 

the presence of a broader coverage. That is to say, rather than accomplishing only 

one-level broad coverage, the aim is to maximize the closest coverage that leads to 

step-by-step broader coverage levels. By this method demand points as many as 

possible can be covered in terms of tight coverage constraint that leads to the 

extended step-by-step broader coverage. 

 
We formulate the problem as a multi-level maximal covering location problem the 

characteristics of which can be stated as follows.  

 

3.2 Characteristics of the Three Level Maximal Covering Location Problem  

 

♦ As the objective function, maximal first level coverage is targeted while aiming 

at accomplishing to maximize the second and the third degree coverage. 

However, the problem reduces to a set covering location problem if the 

mandatory closeness constraint is set as a must.  

♦ Actually multi-level maximal covering location problem could be classified as 

both single and multiple objective type problems. Since we assign weights for 

every level of coverage, the weights can be changed, and accordingly the 

objective function can be changed from favoring closeness to favoring being 

distant from the demand points level by level. The problem can be reduced to a 

single objective maximal covering location problem by giving no weights for the 

second and the third degree coverage. 

♦ Type of resource (ambulance) is single. Number of ambulances is limited. 
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♦ Our model is a single stage location model, since it does not address any 

allocation or routing problem. Actually, there is an embedded allocation phase in 

the problem; however, in ambulance location problem, there is no specific 

allocation of customers to ambulances. Each ambulance is responsible to answer 

a call if it is in one of the coverage ranges of the demand point in practice. 

♦ The model’s planning horizon is a single period, but the problem can be solved 

repeatedly according to the changing demand conditions. However, the 

dispersion of the population must be known for the time periods.  

♦ The nature of demand is deterministic but dynamic. Both demand points and the 

ambulances are not static in real life. 

 

The population concentration may shift from the city centers at noon time to the 

countryside at night time. Also, the ambulances are mostly on duty because of the 

continuous calls. So, by having a quick and reliable model it is easy to perform 

repeated runs according to known or anticipated demand and ambulance dispersion 

patterns. For example, if we know where the population is going to accumulate 

during the weekends or in a social meeting or in a sports competition by collecting 

historical data, we can run our model again and again and decide on the new 

relocation plans. With the developed advanced GIS technology, real time ambulance 

locations are easy to detect. To sum up, the repeated runs for the new data can find 

the solutions for the ambulances according to the same multi-level maximal coverage 

objective.  

 

Here, the difficulty lies in the assignment of the cost coefficients to the ambulances 

in shifting them from their previous locations to the newly found locations. Although 

it seems to be a trivial assignment problem in terms of distances, that is, an 

ambulance is assigned to its nearest new location, it is not always the optimal 

solution to assign the ambulance that is nearest to the new place. An ambulance 

might be required to undergo several logistics operations before being assigned to its 

new place, such as renewal of medicine or oxygen tube stocks or gasoline 

replenishment. So, after finding out assignment cost coefficients and the new places 

of ambulances, it is an assignment problem that is to be solved by the commercially 
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available solvers. An example node dispersion is presented below in Figure 1 in 

order to show how demand points could scatter in a different way in different time 

periods. 

 

As far as recent studies are concerned with, there are two works that could be seen as 

inspiring studies for us to work on this multi-level maximal covering location 

problem. One of them is by Church et al. (2003) named as “multi-level location set 

covering problem” ML-LSCP. In their work they explain the fact that the ML-LSCP 

spans the LSCP, which is an applied form of the minimum cardinality set covering 

problem, and adds that since the minimum cardinality set covering problem is NP-

hard, the ML-LSCP is also NP-hard. This means, essentially, that some problem 

instances are not solvable optimally within a reasonable computational time. Hence, 

it may be necessary to depend on heuristics to solve large or difficult-to-solve 

problems. 

 

 

  only a demand point           an ambulance location site 

Figure 1.a : The dispersion in the noon time and hypothetical 10 ambulance 

locations. 
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   only a demand point           an ambulance location site 

Figure 1.b : The dispersion in the night time and hypothetical 10 ambulance 
locations. 
 
 

Toregas and ReVelle (1973) had found that a specific instance of a LSCP may yield 

to a reduction algorithm, which could possibly reduce a problem instance in terms of 

both rows and columns. The work of Church et al. (2003) focuses on these reduction 

algorithms. By the reduction algorithm, they claim that the work of heuristics can be 

much easier with less data to work with.  

 

Another study in this context is the one performed by Karasakal et al. (2004). In their 

work, they aim to detect the performance of the maximal covering location model in 

the presence of partial coverage. Basically two level coverage standards are 

presented. The points which lie in the coverage of first level are accepted as fully 

covered, whereas the points which lie outside of the first level are assumed to be 

partially covered. They conclude that the maximal covering location problem with 
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partial coverage has a substantial effect on the optimal solution in which the partial 

coverage is not taken into account.  

 

3.3 Mathematical Model for the Three Level Maximal Covering Location 

Problem  

 

The mathematical model we develop can be considered a hybrid of the models 

developed by Karasakal et al. (2004 ) and Hogan and Revelle’s (1986) back up 

coverage location problem. However, we extend the coverage idea to three levels by 

incorporating the “weighted linear-stepwise partial coverage” into the objective 

function.  

 

By using the three-level coverage idea, we let the model first maximize the demand 

points that are covered by the nearest coverage possible solutions. At the same time, 

while targeting at the nearest possible solutions, the model tries to maximize the 

number of demand points uncovered in the nearest possible solution, by covering 

them in the best manner at the second and the third level coverages. In general, we 

can define our multi-level coverage approach as follows: 

 

At time period t , given the demand points with their weights, possible location sites 

are determined. Possible location sites could either be the same as the demand points 

or could be determined exogenously. The coverage standards, 1r , 2r  and 3r , are 

defined and the number of ambulances is given. The first level coverage standard 1r  

is the shortest and most favored coverage level; it corresponds to the highly critical 

emergency cases.  The first level coverage standard 1r  is followed by the less critical 

coverage levels 2r  and 3r  in order. At first, the initial coverage 1r  is favored because 

of the highest weight given to the first level coverage, then the second level coverage 

and the third level coverages are favored in sequence with the objective of 

maximizing the weighted total demand covered. Prior to the model formulation, the 

determination of the coverage levels, the minimum number of ambulances that 

satisfy at least the most relaxed ( 3r ) coverage standard, and the coverage capacity 
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constraint for an ambulance are among the crucial issues. The restrictions imposed 

on the coverage standards could create different types of location problems. 

 

We present our integer programming model in the following sections:  

 

3.3.1 Assumptions, Sets, Parameters, Decision Variables 

 

Assumptions 

 

1. A demand point is weighted in proportion to its demand volume, i.e., 

population size. 

2. Euclidean distance is assumed, rather than the road network. 

3. Though ambulances could answer the calls while they are out of the stations, 

they do not patrol in the streets if a call is not assigned to them. Therefore, 

there is always a need to define specific ambulance location sites for different 

time periods. 

4. An ambulance site can be the same as a demand point.  

5. Only one type of ambulance is used. 

6. More than one ambulance can be placed at a possible location site. 

7. Rather than set covering the model aims at maximal covering. If a demand 

point can not be covered even within the defined largest coverage range 3r , 

then either a coverage standard is relaxed or the available number of 

ambulances can be increased. 

 

Sets 

 

I   set of demand points                                    ni ,...,1=  

J   set of potential ambulance sites                 nj ,...,1=  , φ≠∩ JI  

ijd   distance between the demand point i  and possible ambulance location site j                                       

1iM  set of potential ambulance sites that cover demand point i  such that 1rd ij ≤  

2iM  set of potential ambulance sites that cover demand point i  such that 2rd ij ≤  
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3iM  set of potential ambulance sites that cover demand point i  such that 3rd ij ≤   

 

Here it is worth to note that 1r  < 2r  < 3r . This definition implies that  

1iM ⊂  2iM ⊂ 3iM . The graphical representation of the three-level coverage is shown 

below in Figure 2. 

 

 

 
Figure 2 : The coverage circles representing the three coverage levels 
  

Parameters 

 

iλ  demand at point .i   

kw  associated weight with the desired coverage level k (k=1, 2, 3); 1w > 2w > 3w . 

ijd  distance between demand point i  and ambulance site j .  

p  number of available ambulances.  

 

Decision Variables 
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3.3.2 The Mathematical Model  
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jij yx ≤2  Ii∈∀ , 2iMj∈  (3.4) 

jij yx ≤3  Ii∈∀ , 3iMj∈  (3.5) 

21
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02 =ijx  or 1 ji,∀  (3.12) 

03 =ijx  or 1 ji,∀  (3.13) 

integer,0≥jy
  Jj∈∀  (3.14) 

 

The objective function (3.1) maximizes the total weighted demand covered in the 

first-level, second-level, and third-level coverages. Constraint (3.2) satisfies that the 

total number of ambulances sited is equal to .p  Constraints (3.3), (3.4) and (3.5) 

control the k

ijx  ( 3,2,1=k ) variables so that if an ambulance is not sited at j, all k

ijx ’s 

for site j are forced to be zero. The constraints (3.6) and (3.7) are the consequences of 

the coverage level definition, 1r < 2r < 3r ; so, if a demand point is covered in 1r , it is 

also automatically covered in 2r  and 3r ; the same relationship holds between 2r  and 

3r . Constraints (3.8), (3.9) and (3.10) have a similar function such that the demand 

point is taken as covered by at most one of the ambulance locations sited around 

itself for every coverage level. If there are more than one ambulances sited that cover 

the demand point, only the ambulance that can provide the maximum contribution to 

the objective function is selected. Constraints (3.11), (3.12), (3.13) and (3.14) are the 

integrality constraints for the decision variables. Figure 3 is a helpful representation 

of what the objective function aims at by the three-level coverage idea. 
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Figure 3 : The graphical representation of three-level coverage idea 
 

 

In the example in Figure 3, if we take the weights for each corresponding coverage 

level as 21 =w , 12 =w  and 5.03 =w , then for the two possible location sites, the 

objective function values are f1=20.5 and f2=21, respectively. In this solution, while 

site 1 covers 5, 6 and 9 demand points in 1r , 2r  and 3r  distance units, respectively, 

site 2 covers 4, 6 and 14 demand points in 1r , 2r  and 3r  distance units, respectively. If 

we had solved this problem only for one or two-level coverages, the optimal solution 

would have been site 1, however, as it is observed in the figure, with three-level 

coverage approach, site 2 stands as the optimum. Here, on the other hand, it should 

be noted that a change in the relative weights of the coverage levels could change the 

optimal solution in the example. In our study, since we would be favoring the closest 

coverage more, the weight given to the demand covered within 1r  units of distance is 

the highest among all the coverage level weights (w1 > w2 > w3). 

 

 

 

2 

level 1    level 2   Level 3  

1 

ambulance site  

demand point  
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3.4 Problem Complexity and Model Validation  

 

The NP-hard nature of the p-median, set covering and maximal covering location 

problems are a well known fact and has been studied extensively. One of the studies 

is the one performed by Garey and Johnson (1979). For example, if we have an N-

node network and possible P facilities to site, the number of possible location 

configurations amount to: 

 

)!(!

!

PNP

N

P

N

−
=



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


 

 

For a 1000-node network with 10 location sites, the number becomes  2.6341E+23, 

a-non traceable number to write. Since a one-level coverage problem is NP-hard, the 

three-level coverage is also NP-hard. Also, when there is no restriction in terms of 

the number of ambulances located at a site, the possible number of combinations 

raises to PN , which makes the solution even harder. 

 

Fortunately, with the advanced computer and software technology, moderate sized 

NP-hard and NP-complete problems are solvable to optimality. For this reason we 

code our exact model in Genetic Algebraic Modeling System (GAMS) which is 

capable of solving both IP (integer programming) and MIP (mixed integer 

programming) models. We utilize the CPLEX solver embedded in GAMS 

environment and produce results for moderate sized problems. As it is expected, 

when the problem size exceeds 1000 nodes, we start to cope with computer memory 

restrictions.  

 

The code of the three-level maximal covering location model in GAMS environment 

is given in Appendix A. The GAMS model has been used for two purposes: (i) to 

validate our model and (ii) to obtain an optimal or near-optimal benchmark solutions 

to compare the performances of the heuristics we developed for large size three-level 

coverage problems. The validity of the GAMS model was tested for small-sized 



 

 46 

problem instances with 10-20 nodes and 2-3 ambulances for which the optimum 

solutions were known in advance. 

 

The following chapter presents the heuristic approaches we develop for the large size 

three-level maximal coverage location problem. 
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CHAPTER 4 
 

 
THE SOLUTION APPROACHES PROPOSED 

 

 

Three solution approaches are available in the literature for the location problems. 

One is the complete enumeration, which is easy to implement when the problem size 

is small. Since every possible solution is traced in the complete enumeration, the 

computational burden is high. The other solution approach is mathematical 

programming. Though the mathematical models guarantee the optimum solutions, 

even with the advanced general-purpose mathematical solvers and commercial 

software, they may not solve large-size problems. The other solution approach is 

heuristics, which are capable of solving large-size problems, but fail to prove 

optimality. Several heuristics that are utilized for location problems are “greedy 

adding”, “tabu search”, “simulated annealing”, “genetic algorithms” and 

“langrangean relaxation based heuristics”. 

 

After reviewing the solution approaches in the literature, we decided to build up our 

own solution methodology based on the genetic algorithm which is proved to be 

producing reliable results in location network problems (Altman et al., 2002 and 

Jamaa et al. 2004). On the other hand, we have developed a greedy ADD-and-DROP 

algorithm as well to determine whether a genetic algorithm does really outperform 

an-easy-to-implement heuristics in this three-level coverage approach.  

 

In this chapter, the heuristics we develop are explained in detail. The fundamentals 

related with different phases and parameters of GA (Genetic Algorithm) are defined. 
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4.1 ADD and DROP Heuristic 

 

The ADD algorithm, also referred to as “greedy” or “myopic” algorithm, was first 

suggested by Kuehn and Hamburger (1963) for a slightly different problem as well 

as by Feldman et al. (1966). 

 

 It follows a very simple strategy: within each iteration it locates a new ambulance at 

the location that contributes most to the objective in our problem. It starts with an 

empty configuration and stops if the configuration reaches the desired number of p 

ambulances. Once an ambulance site is established in the configuration, it is never 

moved. The algorithm always terminates and the computation time is known and 

small. However, the ADD algorithm is very likely to get caught in a local optimum. 

Consider the linear network of five nodes in Figure 4 with a demand of one for each 

point and a distance of one between every two neighbour points.  

 

Figure 4 : The ADD algorithm’s local optima 
 

All points are ambulance site candidates. The first point the algorithm chooses is C, 

because it has the minimal distance of a one-point configuration of 6. The second 

point can be any of A,B,D, and E, since a new service at any of these points results in 

a total cost of 4. However, the global optimum of a two-point configuration is B and 

D and has a total distance of only 3.  

 

The ADD algorithm is simple, and rather fast; the computational time needed is 

determined only by the size of the input data such as the number of candidate 

location sites and demand points. So every problem of the same size needs the same 
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time, that is, the algorithm does not need a longer computational time, if problem as 

described by the data is difficult.  

 

The ADD algorithm is coded in MATLAB environment for the three-level maximal 

covering location problem and presented in Appendix B. 

 

The DROP algorithm is based on the naive drop heuristic developed by Chardaire 

and Lutton (1993). Initially, all candidates are part of the configuration. In each 

iteration one candidate is removed until only the given number of p candidates is left 

in the configuration. At each iteration the candidate site that produces the smallest 

decrease (deterioration) in the objective function value is dropped.  

 

This strategy is the reverse of the ADD heuristic approach that adds one candidate to 

the configuration at each iteration. Like the ADD algorithm, it is simple and tempted 

to return a sub-optimal result.  

 

The DROP strategy can be observed in reality, if a company reduces the number of 

its branches by always shutting down the one, which affects the overall accessibility 

least at that stage.  

 

The DROP algorithm is coded in MATLAB environment for the three-level maximal 

covering location problem and presented in Appendix C. 

 

4.2 Genetic Algorithm Based Heuristics for Three-Level Maximal Covering 

 

After first introduced by Holland (1975) and disciplined by Goldberg (1989), genetic 

algorithms (GA) have been applied to various problem situations. Basically GAs are 

adaptive heuristic search algorithms based on the evolution idea of natural selection 

and genetics. In the optimization environment, they represent a useful way of random 

search via keeping the past information of the solution set in genes. 
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GAs encourage the survival of the fittest among the individuals over periods for 

solving a problem. Each generation consists of a population character string that has 

a similar representation with our DNAs. Each individual stands for a solution in a 

search space. These individuals are then subject to an evolutionary process to form 

the best individual in terms of “fitness”. 

 

There are several components which must be defined properly in order to form a well 

working GA. They are basically: 

 

o Chromosome coding. 

o Methods to generate an initial population. 

o Determining the fitness function.  

o Defining the evolutionary process including genetic operators, parent 

selection technique, crossover, mutation and replacement strategies. 

o Defining the parameters for the evolutionary process by which the duration 

for the process is defined, and crossover and mutation rates. Om 

 

These components of the GA which are related to our solution procedure for the 

three-level maximal covering location problem are explained in the following 

sections. 

 

4.2.1 Chromosome Coding 

 

While developing a GA, chromosome coding is critical in terms of its ability in 

representing every possible solution and also avoiding infeasible solutions in the 

population. 

 

Mainly there are two representation schemes for chromosome coding in GAs: (i) 

binary representation, and (ii) non-binary representation. The binary representation 

uses base 2 and any value or character could be converted into base 2 from base 10. 

An example of an operation coded in binary representation is shown below. 
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0: 0000 
1: 0001 
2: 0010 
3: 0011 
4: 0100 
5: 0101 
6: 0110 
7: 0111 
8: 1000 
9: 1001 
+: 1010 
-: 1011 
*: 1100 
/: 1101 
 
For example, with the above representation, the expression (6+5*4/2+1) could be 

stated as:  

0110 1010 0101 1100 0100 1101 0010 1010 0001 
  

6        +        5        *        4         /        2        +       1 
 

The mathematical value of the above gene is 17. The later operations with the above 

offspring and other population members could produce better values in terms of 

fitness. 

 

However, in several instances it is much more useful to use non-binary 

representations in order to handle information tracking on genes much more easily 

and not to cause difficulties in genetic operations over offspring (Özgönenç, 2006). 

 

To implement the genetic algorithm (GA) for our problem, non-binary representation 

is chosen and the coding of the information is carried out in the following manner: a 

chromosome corresponds to a particular set of available ambulances and the location 

indices they are assigned to. For example, with 60 possible location sites and 5 

available ambulances, a possible chromosome coding for a feasible solution can be 

seen in Figure 5; the first ambulance is located at the location site indexed by 25, and 

the second ambulance is located at site 42, and so on.  
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Ambulance no   1 2 3 4 5 

Assigned location site   25  42  5 52 11 

Chromosome 

  

Figure 5 : Chromosome representation 
 
 
4.2.2 Fitness function 

 

The fitness function of the GA heuristics to solve the three-level maximal covering 

location problem is the same as the objective function defined in the integer 

programming model. That is to say, the individuals which have higher total coverage 

values with respect to coverage levels and the weights are said to have higher fitness 

values.   

 

4.2.3 Initial population generation  

 

A gene pool that has a wide variety is much more preferable than a small gene pool; 

because in this way, the probability of forming the best individuals is increased. This 

makes initial population generation in GAs crucial. The objective is to have an 

optimal population size in which every possible solution (chromosome 

representation) can be attained through the genetic operators.  

 

One way of forming an initial population is forming it randomly. During the random 

generation process, the population is controlled such that it is checked whether it 

includes every possible gene that can contribute to the fitness function or not. So, 

with an initial population generation method which is not fully randomized, and with 

control on genes included in the population, a gene pool is created, which is a 

starting point to generate the best individuals. However, when the overall size of the 

problem is increased, a predetermined constant population size might prevent 

keeping genetic variety in the population, and the initial population size might 

require modifications in that sense.  In general, the population size is defined as: n/p, 

where n is the possible number of sites, and p is the number of available vehicles. 

25 42 5 52 11 
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In the GA developed to solve the three-level maximal covering location problems, 

we have used two different approaches to test the effect of initial population size and 

its formation on the performance of the algorithm. In the first approach, we apply the 

traditional way which is defined above (n/p) while in the second approach we adopt 

the idea developed by Erkut et al. (2003). The population size is based on the 

“density” concept which is defined by the possible number of sites ( n ) and the 

available vehicles p . 







=

p

n
S  is the total number of possible solutions for the 

problem,  while  pnd /=    is the rounded density of the problem. Then the initial 

population size is defined as : 
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In this sense, for a 1000-node network problem with 8 ambulances the initial 

population size would be: 
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The effects of p and n on the initial population size is shown below in Figures 6 and 

7. 
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Figure 6 : Population size as a function of n for three different values of p 
 
 

 

Figure 7 : Population size as a function of p for three different values of n 
 

After the population size is determined, the next step is to initialize the population in 

such a manner that the gene pool is unbiased. Hence, in this phase, we adopt the idea 
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based on the uniform probability distribution so that each gene has the same chance 

of appearing in the initial population.  

 

4.2.4 Selecting the parents 

 

The genetic heritage is carried to an offspring by two parents. Although it is a 

common fact in humans that two perfect parents are required for a perfect child, it is 

not always the case in GAs. Sometimes a weak parent could enable the production of 

an offspring that has rich treats in terms of gene design. This is due to the fact that a 

weak parent might hide some powerful chromosomes in its design waiting to show 

up. 

 

For this reason it is not always preferred to give chance to the stronger parents in 

terms of fitness value. There are several parent selection techniques which can 

outperform the other techniques in some aspects and become an underperformer in 

some other aspects. The selection techniques are summarized below. 

 

o Roulette-wheel selection: each individual possesses a part of area 

according to its fitness in the selection scheme, and the higher the 

individual fitness, the higher the probability of that individual to enter the 

offspring production is. 

o Stochastic universal sampling: similar to roulette wheel selection, this 

time the fitness scheme for individuals is divided again according to the 

fitness values, then the mating population is chosen one by one starting 

from the first pointer in the fitness scheme. Pointers are equally 

positioned in the scheme and the number of pointers is as many as the 

number of required parents. This method enforces production of an 

offspring which is closer to what is desired, compared to the roulette 

wheel selection.  

o Local selection: every individual is mated with an individual around its 

neighbourhood defined with specific characteristics on purpose. 
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o Truncation selection: this is an artificial selection method by which only 

some percent of individuals are subject to mating within the fitness 

scheme. For example, an individual may be forced to be chosen as a 

parent from the last 20 % of the best group. 

o Tournament selection: a number “Tour” of individuals is chosen 

randomly from the population and the best individual from this group is 

selected as a parent. This process is repeated as often as individuals must 

be chosen. These selected parents produce offspring. The parameter for 

tournament selection is the tournament size Tour. Tour takes values 

ranging from 2 to total number of individuals. 

o Random selection: parents are selected uniform randomly from the 

population. So, every individual has the same chance to be selected for 

the crossover. Though convergence to the best value takes time in this 

way, this method increases the genetic diversity in the offspring by 

preserving the weak genes in the gene pool.  

 

4.2.5 Generating new members (Crossover) 

 

In a classical GA application, selected parent’s genes are merged with a prescribed 

crossover operation. Generally, the chromosomes of the parents are split into two or 

three, creating four or six partial chromosomes, and then these partial chromosomes 

are combined with the defined procedures to create two new members. The classical 

way of producing a new member is shown below in Figure 8. 

 

Parent 1 5 3 8 1 2 7 

Parent 2 11 6 9 4 13 10 

Child 1 5 3 8 4 13 10 

Child 2 11 6 9 1 2 7 

  
Figure 8 : A single point crossover operator 
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In one of our GA heuristics, we adopt this method, whereas in the other GA heuristic 

we utilize the idea developed by Erkut et al. (2003). In the latter method, instead of 

the traditional crossover technique, a greedy procedure is followed. The 

chromosomes of parents are unified causing an infeasible gene combination with the 

total of m genes where pmp ≥≥2  (repeating genes counted only once). After that, 

a greedy deletion heuristic is applied to the infeasible gene in order to make it a 

feasible one. The technique we apply is somehow a genetic engineering approach to 

the offspring formation. Besides, while applying the deletion heuristic, the repeated 

genes in both parents are preserved in the new offspring. The procedure is shown 

below in Figure 9. 

 

Parent 1 5 3 8 1 2 7 

Parent 2 11 6 9 4 13 10 

Infeasible 

Child 
5 3 8 1 2 7 11 6 9 4 13 10 

Feasible Child, 

after deletion 
5 8 1 11 2 10 

 
Figure 9 : A single point crossover operator 

 

As it is observed in the figure, the genes 3, 7, 6, 9, 4, and 13 are removed from the 

infeasible child one by one in order to make it a feasible and fittest offspring. 

 

4.2.6 Mutation 

 

One of the crucial problems in GA is to get out of the local optima. Mutation is a 

component to make jumps from local optima in GA. In our two GA approaches we 

use mutation idea in order to get away from the local optima after a prescribed 

number of iterations. In this context, iteration is to apply fully the new member 

generation procedure and to evaluate its fitness value. We perform mutation in such a 

way that a new member (gene) is randomly added into the chromosomes of a 

predefined number of parents, while the member that is going to be removed from 

the chromosomes of the selected parents in a uniform random manner.  
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4.2.7 Replacement  

 

The new offspring in both GAs is evaluated according to its fitness values and 

compared with the existing ones in the population. The worst member(s) of the 

population are replaced by the new member(s) if the new ones outperform the 

existing ones. 

 

4.2.8 Termination 

 

In most of the GA applications, a convergence based stopping criterion is designed. 

The algorithm terminates after observing a defined number of iterations. For example 

one of the used stopping criterions in the literature is )( pnn − (Erkut et al. 2003). 

In our GA we take the iteration limit as 1000.  

 

We summarize the properties of the two GAs below in Table 6.  

 
Table 6 : Properties of applied genetic heuristics. 
 
 GA1 GA2 

Chromosome Coding Non-binary Non-binary 

Fitness Function  The same with the 

Three-Level 

Maximal Covering 

Location Problem 

The same with the Three-Level 

Maximal Covering Location 

Problem 

Initial population 

generation (size)  
(n/p) d

d

Sn
pnP *

)ln(
*

100
,2max),(














=
 

Initializing the 

population 

Uniform Random Uniform Random 

Selecting the parents Random Selection Random Selection 

Generating new 

members 

Classical Crossover Creating an infeasible offspring then 

making it feasible by greedy 

deletion 
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Mutation 

 

20% of the 

population are 

subject to mutation 

in each generation 

20% of the population are subject to 

mutation in each generation 

Replacement Only the best 6 

members from the 

previous population 

preserved 

Only the best 6 members from the 

previous population preserved 

Termination After 200 successive 

iterations by which 

no improvement is 

observed or 1000 

generations 

After 200 successive iterations by 

which no improvement is observed 

or 1000 generations 

 

The MATLAB codes for GA1 and GA2 and flowchart of the GAs proposed are 

given on Appendix D, E and F, respectively.  
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CHAPTER 5 
 
 

COMPUTATIONAL STUDY 

 

5.1 Preliminary Results 

 

The solution approaches to the multi-level coverage problem have been tested on 

several problem instances which are classified according to the number of demand 

points and the available ambulances. The total number of demand points is 200, 400 

and 1000 in the problem instances. The GAMS model could solve the instances with 

up to 500 demand points optimally using the computer, which is intel R CPU, 1,66 

Ghz, with 1 GB RAM. So, the problem instances sized as 200 and 400 are solved by 

the GAMS model and the heuristics performances are compared with the optimal 

results. The problem instances of 1000 demand points could only be solved by the 

heuristics methods.  

  

The demand points are randomly generated in the [0, 1002] square based on the 

continuous uniform distribution. The weight for each demand point is assumed to be 

equal to 1, though the model allows them to be different for possible modifications in 

real life usage. The number of ambulances is 5, 8 and 10 for all problem instances. 

Euclidean distances between demand points and possible location sites are assumed. 

 

In each problem instance the maximum distance among the demand points is found 

out and the third level coverage standard is set as the half of the maximum distance 

in the system, that is,
2

)max(
3

ijd
r = . The simple justification for this arrangement is 

that the central point among those two points is able to cover all demand points with 

respect to 3r .  In fact, the coverage levels are subject to change according to real life 

conditions. For example 3r  can be set as the maximum distance or time limit in 
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which the ambulance service still keeps its effectiveness. After that 2r  can be set as 

half of 3r , and 1r  as half of 2r . It should be noted that forcing coverage levels not to 

be tight may cause failure in evaluating the performance of solution methodologies; 

this is because when the coverage levels are set loose, every solution technique is 

able to find the optimal solutions by which every demand point can be covered in 1r  

standard. In real life conditions, for example, 1r  could be defined as the maximum 

distance criterion in which a heart attack emergency must be responded, and 2r is 

used as the distance limit in accessing the site of a traffic accident, and lastly 3r  is the 

least serious emergency case such that relatively a late response to the call does not 

considerably affect the patients’ survival chance, like a knee injury or loosing 

consciousness.  

 

The contribution of coverage levels to the objective function in all problem instances 

are set as 2, 1 and 0.5 for weights 21 ,ww  and 3w , respectively. This enforcement is 

made to encourage the hierarchical coverage that gives more weight to a closer 

coverage. The resulting effect of the coverage weights (w1=2, w2=1, w3=0.5) on the 

coverage levels in any problem instance is shown in Figure 10 below.  

 

 

Figure 10 : Effect of weights of coverage levels on the objective function 

Effect of Coverage Levels on the Objective Function 

64%

27% 

9% 

r 1 r 2 r 3 
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Greedy ADD and DROP heuristics, and GA heuristics (GA1, GA2) are coded in 

MATLAB (2008r version) environment, and integer model is coded in GAMS 

environment and solved by using both MIP (mixed integer programming) and 

CPLEX solvers. 

 

The initial results reveal that both greedy ADD heuristic and GA2 outperform the 

other two heuristics in terms of the objective function values. The test run results 

obtained for 200 and 400-demand point environments with 5, 8 and 10 ambulance 

servers are shown at the end of section 5.1 (Tables 14 and 15). 

 

 Greedy ADD and GA2 managed to obtain 0.74% and 1.96% close results to the 

optimum objective value, respectively, in 200-demand point environment with 5 

ambulances. On the other hand, it is observed that when the number of available 

ambulances is increased, GA2 becomes much more efficient compared to greedy 

ADD heuristic. This result could be totally related to the myopic nature of the ADD 

heuristic. When the number of ambulances is not high, greedy ADD has a 

comparative advantage; it has to locate only a few ambulances and hence could find 

the global optima with a high probability in a short time. 

 

As far as run time performances are considered, the DROP heuristic performance is 

the worst in 400-demand point environment, while it is relatively better in small 

sized, like 200-demand point environments. Since the DROP heuristic starts to 

eliminate the possible location sites from the entire set of solution space with respect 

to their contributions to the objective function, when the problem size gets larger, the 

run time performance of the DROP heuristic starts to be worse due to the fact that it 

has to examine a larger solution space. The performance of the ADD heuristic is 

outstanding such that it is able to find “good” results in a short period of time. 

Although GA2 performs best in terms of the solution quality as the problem size is 

increased, its run time performance becomes worse. This may be due to both the 

“crossover” method utilized in GA2 and the stopping criteria imposed at the 

beginning of the computer run. Fortunately, later examinations have revealed that the 

performance increase of GA2 is possible through some modifications in some 
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specifications of the algorithm. We discuss these improvements in the following 

sections.    

 

Also in the preliminary test runs, we keep the relevant data in order to compare the 

multi-level coverage and backup coverage approaches. This is an interesting analysis 

because the findings can direct us in the comparison of multiple coverage idea that 

encourages gathering vehicles at central stations, and multi-level maximal covering 

idea that aims to be closer to the demand points by spreading out the vehicles all over 

the network.  

 

The comparison between the multi-level maximal covering location approach and the 

back up coverage location approach is performed through the concept of 

“preparedness”. Since the concept is used as a qualitative measure, two people 

might not define the term always the same. However, while using the concept of 

preparedness, we adapt the term defined by Andersson and Varbrand (2007). Then 

the preparedness measure for demand point i  can be calculated as: 

∑
=

=
iL

l
l

i

l

i

i

i
d

p
1

1 γ
λ

, 

where iL  is the number of ambulances that contribute to the preparedness for 

demand point i , l

id  is the distance for ambulance l  to demand point i , and l

iγ  is the 

contribution factor for an ambulance l  to the preparedness measure of demand point 

i . iλ  is a weight associated with the demand for ambulances at demand point i . In 

this context, in our study the following assumptions hold for this factor: 

 

− Each demand point is equally weighted like in the LSCM, so iλ  is equal to 1 

for every demand point. However, our model allows iλ  to be greater than 1. 

− The contribution factor l

iγ  for each ambulance is the same and equals 1.  

 

As a result of these two assumptions, the preparedness for a demand point increases 

if an ambulance moves closer to the demand point. On the other hand, preparedness 
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for a demand point may increase if the number of ambulances is increased in a 

specific distant point. 

 

During the test runs, the optimal solutions found by GAMS/CPLEX reveal worse 

preparedness values, whereas heuristic approaches are able to produce much better 

preparedness values. These first conclusions helped us to gain insight and 

encouraged us to make comparison between multiple coverage and multi-level 

coverage approaches; we discuss the results in detail in the next sections.  

 

As far as the framework of the test runs is considered, four problem instances are 

generated for each problem type, that is, for each (number of sites & number of 

ambulances) pair. All 4 runs are recorded for a problem type. The average values of 

four problem instances are recorded in Tables 7 through 9, and Figures 11, 12, 13 for 

n=200 problems, and in Tables 10 through 12 and Figures 14, 15, 16 for n=400 

problems. The individual run results are provided in Tables 14 and 15, for n=200 and 

400, respectively. 

     
                  

Table 7 : Average Objective Function values for n=200 
 

 

 

                  
Table 8 : Average Run time Values for n=200 

 

 

 

averages  
n=200 ADD DROP GA1 GA2 

# of ambulance 
5 506,25 469,75 482,00 500,00 
8 604,50 592,00 565,00 569,00 592,75 
10 645,50 627,50 602,25 599,50 630,00 

Objective fuction value 
510,00

averages  
n=200 ADD DROP GA1 GA2 

# of ambulance 
5 26,45 5,88 77,33 18,23 52,48 
8 26,00 4,00 74,43 20,98 192,75 
10 51,35 4,25 74,68 22,63 335,00 

Run time (in seconds) 

Optimum 
solution 
(CPLEX) 

Optimum 
solution 
(CPLEX) 
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Table 9 : Average Preparedness Index Values for n=200 

 

 

 

 

Figure 11 : Objective function values for n=200 
 

 

Figure 12 : Run time performance for n=200 
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averages  
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ADD DROP GA1 GA2 

# of ambulance 
5 27,05 27,25 27,00 26,50 26,50 
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Figure 13 : Preparedness Index Values for n = 200 
 

 

                 
Table 10 : Average Objective Function Values for n=400 

 

 

 

Table 11 : Average Run time Values for n=400 
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averages  n=400 ADD DROP GA1 GA2 

# of ambulance 
5 1198,00 990,50 918,75 945,50 977,75
8 1313,00 1186,25 1126,00 1135,75 1177,25 
10 1347,50 1252,50 1185,25 1196,00 1264,75 

Objective value 

averages  
n=400 ADD DROP GA1 GA2 

# of ambulance 
5 328,25 4,76 1209,50 31,75 90,76 
8 300,25 5,64 1179,50 31,51 359,50
10 355,50 6,53 1186,75 29,38 597,25

Run time (in seconds) 

Optimum 
solution 
(CPLEX) 

Optimum 
solution 
(CPLEX) 
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Table 12 : Average Preparedness Index Values for n=400 
 

 

 

 

Figure 14 : Objective Function Values for n=400 
 
 
 

averages  
n=400 ADD DROP GA1 GA2 

# of ambulance 
5 48,60 56,00 52,25 53,75 55,00 
8 63,63 87,25 85,25 87,25 89,00 
10 76,80 107,25 107,25 107,25 105,50
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Figure 15 : Run time performance for n=400 
 
 

 
 
Figure 16 : Preparedness Index Values for n = 400 
 
 
 
To sum up, GA2 and greedy ADD heuristics are the best performers in terms of 

objective function values. While DROP heuristic is the worst performer, GA1 

moderately outperforms DROP heuristic. Although the run time of GA2 increases as 

the problem size gets bigger, its performance in terms of objective function value 
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value (GAMS/CPLEX) and the values found by the heuristics are shown below in 

Table 13.  

 
 
Table 13 : Performance of the methods with respect to the optimum solution 
 

averages  n =200
GAMS/ 
CPLEX ADD

% gap 
with the 
optimum DROP

% gap 
with the 
optima GA1

% gap 
with the 
optimum GA2

% gap 
with the 
optimum

# of ambulance
5 510.00 506.25 0.74% 469.75 7.89% 482.00 5.49% 500.00 1.96%
8 604.50 592.00 2.07% 565.00 6.53% 569.00 5.87% 592.75 1.94%
10 645.50 627.50 2.79% 602.25 6.70% 599.50 7.13% 630.00 2.40%

averages  n =400
GAMS/ 
CPLEX ADD

% gap 
with the 
optimum DROP

% gap 
with the 
optimum GA1

% gap 
with the 
optimum GA2

% gap 
with the 
optimum

# of ambulance
5 1198.00 990.50 17.32% 918.75 23.31% 945.50 21.08% 977.75 18.38%
8 1313.00 1186.25 9.65% 1126.00 14.24% 1135.75 13.50% 1177.25 10.34%
10 1347.50 1252.50 7.05% 1185.25 12.04% 1196.00 11.24% 1264.75 6.14%

Objective value

Objective value

 

 
 

These results in Table 13 provide us some useful insights. First of all, when the 

problem size is small and the available number of ambulances is also small, the 

greedy ADD heuristic produces closer results to the optima. On the other hand, as 

problem size gets bigger and available number of ambulances increases, GA2 

becomes the outperformer.  
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Table 14 : Computational results for 200=n  
GAMS/ 

CPLEX ADD DROP GA1 GA2 

GAMS/ 

CPLEX ADD DROP GA1 GA2 

GAMS/ 

CPLEX ADD DROP GA1 GA2 problem 

instance n  p  Objective function value Run time (in seconds) Preparedness index 

1 200 5 513 512 468 481 504 28.8 11.7 76.5 16.3 52.3 27.3 28 26 28 27 

2 200 5 519 519 485 504 505 26.7 4.1 77.3 18.6 54.4 27 27 25 27 26 

3 200 5 507 503 460 478 502 24.7 3.9 78.3 17 52.3 26.2 27 29 25 26 

4 200 5 501 491 466 465 489 25.6 3.8 77.2 21 50.9 27.7 27 28 26 27 

5 200 8 598 593 550 569 584 23.5 4.0 74.3 23.4 199 44 44 42 42 42 

6 200 8 584 572 555 551 571 26.8 4.1 74.1 22.3 187 40.8 41 43 42 42 

7 200 8 619 595 579 574 612 21.9 3.9 74.7 23.4 196 43 42 41 48 42 

8 200 8 617 608 576 582 604 31.8 4.0 74.6 14.8 189 40.8 44 44 46 46 

9 200 10 648 638 600 606 630 82 4.2 74.7 24.2 320 49 52 47 47 52 

10 200 10 654 638 615 602 644 50.8 4.2 74.5 24.6 377 52.7 55 52 52 52 

11 200 10 640 618 592 594 618 46 4.3 75.2 16.4 320 52.7 51 53 54 53 

12 200 10 640 616 602 596 628 26.6 4.3 74.3 25.3 323 48.6 48 49 50 47 
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Table 15 : Computational results for 400=n  
GAMS/ 

CPLEX ADD DROP GA1 GA2 

GAMS/ 

CPLEX ADD DROP GA1 GA2 

GAMS/ 

CPLEX ADD DROP GA1 GA2 problem 

instance n  p  Objective function value Run time (in seconds) Preparedness index 

1 400 5 1,206 995 930 942 979 430 4.80 1,233 38.80 88.50 49.60 55 53 57 55 

2 400 5 1,195 985 903 952 980 321 4.96 1,209 29.00 89.15 49.90 55 51 51 56 

3 400 5 1,188 986 927 948 974 307 4.66 1,201 29.20 88.70 52.90 61 52 54 55 

4 400 5 1,203 996 915 940 978 255 4.63 1,195 30.00 96.70 42 53 53 53 54 

5 400 8 1,301 1,155 1,125 1,126 1,152 330 5.70 1,180 32.50 348 67 87 86 95 87 

6 400 8 1,324 1,233 1,130 1,154 1,206 194 5.66 1,175 28.55 390 64.90 89 84 85 92 

7 400 8 1,318 1,176 1,090 1,096 1,181 341 5.60 1,179 30.60 353 60 88 86 85 90 

8 400 8 1,309 1,181 1,159 1,167 1,170 336 5.60 1,184 34.40 347 62.60 85 85 84 87 

9 400 10 1,362 1,284 1,195 1,216 1,288 342 6.30 1,176 33.20 597 76.70 105 107 105 100 

10 400 10 1,322 1,230 1,202 1,208 1,247 330 6.40 1,180 35.00 586 77 111 110 112 111 

11 400 10 1,356 1,242 1,168 1,174 1,252 420 7.10 1,189 22.60 604 77 107 108 109 102 

12 400 10 1,350 1,254 1,176 1,186 1,272 330 6.30 1,202 22.70 602 76 106 104 103 109 
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5.2 A Hybrid Heuristic Approach  

 

The preliminary results directed us towards a hybrid heuristic by which the greedy 

ADD heuristic and GA2 are combined in such a way that the solution found by the 

greedy ADD heuristic is placed in the initial population of the GA2 method. For this 

purpose, twelve test runs are performed and the results have revealed that the hybrid 

heuristic is able to produce much more closer results to the optima by improving 

GA2’s performance by at least 1% on the average (see Tables 16 and 17). 

 

Table 16 : Performance of the Hybrid Heuristic 
 

 

 
 

Table 17 : The percentage improvement by the Hybrid Heuristic 
 

ADD GA2
Hybrid 
Heuristic

% gap with 
the best 
performer

5 1012.50 987.50 1012.50 0.00
8 1174.00 1176.25 1187.00 0.91

10 1258.00 1260.00 1273.75 1.08

Objective Function Value Averages

 

 

Having developed the hybrid heuristic method, we have tried to make a progress in 

the run time of it. After including the solution of the ADD heuristic in the initial 

population, the run time results of the GA2 are still not satisfying. For this reason, 

ADD GA2 Hybrid ADD GA2 Hybrid 

n p

1 400 5 983 950 983 4.60 89 94
2 400 5 1004 998 1004 7.10 86 86
3 400 5 1021 999 1021 4.60 85 90
4 400 5 1042 1003 1042 4.60 87 93
5 400 8 1185 1194 1203 5.50 358 349 
6 400 8 1146 1174 1178 5.50 339 343 
7 400 8 1167 1133 1167 5.50 344 345 
8 400 8 1198 1204 1200 5.50 395 383 
9 400 10 1270 1268 1270 6.20 586 649 
10 400 10 1261 1250 1275 6.30 665 584 
11 400 10 1246 1272 1280 6.30 581 638 
12 400 10 1264 1250 1270 6.30 582 597 

Objective function Value Run Time (in seconds) 

Problem 
instance 
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two crucial factors of GA2 that may cause run time to be longer are examined: the 

stopping criteria and the initial population size.  

 

In GA1 all the runs are performed with the initial population size of (n/p) and in GA2 

the initial population size are calculated based on the formula below:  
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In both genetic heuristics we use two stopping criteria: (i) the generation limit, 1,000, 

(ii) the stopping condition, that is, no improvement in fitness value after 200 

generations. It is a fact that the initial population size and the stopping criteria would 

considerably affect the run time performance of the heuristics, since they directly 

decrease or increase the problem’s solution space. 

 

In order to test the effects, a two-factor factorial design environment is used. A total 

of 12 runs (problem instances) are performed and the results are analyzed in 

MINITAB statistical software package. The results are shown below in Table 18.  

 

                  Table 18 : Test runs for the factorial design n=400  p=8 
 

Run

Beginning 

Population size

Termination 

condition

Objective 

Function 

Value

1 50 1* 1168

2 50 2** 1126

3 50 1 1142

4 50 2 1156

5 50 1 1156

6 50 2 1178
7 150 1 1199

8 150 2 1206

9 150 1 1178

10 150 2 1198

11 150 1 1166

12 150 2 1171  

*Termination condition 1: total generation=500, stop if there is no improvement after 100 generations. 
**Termination condition 2: total generation=300, stop in there is no improvement after 50 
generations. 
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As shown in the MINITAB output in Figures 17 and 18 (the detailed statistical 

results given in Appendix G), change in the stopping criteria conditions does not 

have a dramatic effect on GA2 performance; therefore, by this experiment, it is 

decided to decrease the population generation limits in the stopping criteria. The 

effect of this reduction is observed in the following runs in Table 19 such that more 

than 75% of improvement in run time is achieved. The beginning population size is 

left the same as the proposed formula dictates.  

 

As the results in Table 19 indicate, by making reductions in the stopping criteria 

parameters, a reasonable amount of run time is saved. As it is mentioned in detail in 

the following sections, in the problems with 1000 demand points and 10 ambulances, 

the modified GA2’s (hybrid heuristic) run time is about 15 minutes, while it is 

impossible to track an optimal solution in GAMS environment.  

 

Table 19 : The effect of termination condition on run time n=400 p =10 
 

 

*Termination condition 1000/200: total generation=1000, stop if there is no improvement after 200 
generations. 
**Termination condition 300/50: total generation=300, stop in there is no improvement after 50 
generations. 

 

Run Termination Condition Run time Obj. Value 
1 1000/200* 1449 1280 
2 300/50** 352 1278 
3 1000/200 1350 1264 
4 300/50 345 1261 
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Figure 17 : The Minitab Effects Plot 
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Figure 18 : The minitab Data analysis plot  
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5.3 Comparison between multi-level and multiple coverage approaches  

 

In the mathematical model of multi-level coverage approach when the constraints 

(3.8), (3.9) and (3.10) are removed, the model turns out to be a multiple coverage 

model in which a demand point can be covered more than once. The solutions reveal 

that multiple coverage approaches tend to find ‘centralized’ solutions as shown in 

Figure 19, whereas multi-level coverage approach tries to disperse the located 

ambulances in such a way that their coverage circles at the third level, )( 3r are almost 

tangent to each other.  

 

For example, in the examples shown in Figures 19 and 20 with 400 demand points 

and 10 ambulances, the multiple coverage approach locates the ambulances in a 

centralized manner in a densely populated area. On the other hand, multi-level 

coverage approach locates ambulances in such a dispersed manner that each 

ambulance is located in a dense populated area with its coverage circle )( 3r at the 

third level being tangent to another ambulance’s third-level coverage circle. 
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Figure 19 : Location of ambulances with the multiple coverage approach, n=400   

p=10 
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Figure 20 : Location of ambulances with multi-level coverage approach, n=400  

p=10 

 

In the above example, the preparedness index values for multi-level and multiple 

coverage approaches are 79 and 88, respectively. These results are derived according 

to the ‘preparedness’ measure defined in Chapter 3; and the higher the index value is, 

the better the preparedness condition is. For every demand point, all ambulances are 

taken into consideration that the demand point falls in the coverage range of ( 3r ), and 

the sum of the reciprocals of the Euclidean distance between a demand point and 

each ambulance is calculated. Further analysis with a more refined preparedness 

measure is presented in the following sections. 

 

The results in the previous figures direct us towards an important conclusion that 

when the ambulances are centralized, the total system preparedness increases. It was 

noted before that the heuristic approaches had yield better preparedness results than 

the real optimal solutions. This was due to the fact that the non-optimal solutions in 

multi-level approach causes to locate ambulances closer to each other and this 

closeness causes the preparedness to be higher.  
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From this point on, the unification of both multi-level and multiple coverage ideas 

could provide useful real life applications both in ambulance location and relocation 

problems as well as in many other strategic location problems. To make it clear, 

multiple coverage idea locates the ambulances in such a centralized manner that 

many demand points are out of the critical coverage ranges, though the total system 

preparedness is increased (only the closer points to the ambulances get much of the 

benefit). On the other hand, multi-level coverage approach can locate the ambulances 

as close as possible to the demand points. So, when our problem is to identify a 

number of strategic ambulance stations in a city for a specific time interval, the 

multi-level approach seems to be the best. On the other hand, if the question is where 

the ambulances should be located in these areas in which stations are opened, the 

answer is stations itself. 

 

These findings are another justification of the “risk pooling” concept that is faced 

with frequently in supply chain management problems. The solution methodologies 

developed in this study (the three-level coverage idea solved by a hybrid heuristic 

method) could be adapted to several application fields such as placing recycle 

collection baskets or placing sensitive radars or ATM machines for banks. To 

illustrate, a regular citizen is generally motivated to keep the materials that can be 

recycled. However, the recycle bins are not usually located close enough to the 

citizens, and because of this, the citizens throw the material into ordinary garbage 

collection points. On the other hand, when the recycle bins are closer, they get full in 

a short period of time. The possible solution is to place the recycle bins as close as 

possible to the citizens and with multiple units at the same place. By this way, when 

a citizen wants to throw the material, most probably he/she will find a closer point in 

which an empty bin exists.  
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5.4 The Extended Analysis   

 

It could be questioned whether the developed methods could give different results 

with the specifically designed data. Actually, this argument is valid since the 

dispersion of people in a region resembles a patterned data rather than uniformly 

distributed data in real life. In addition to this point, the defined preparedness 

measure could be modified in such a manner that being far away from the demand 

point does not worsen the preparedness contribution of the ambulance to the demand 

point that much. For this reason, the distance between the ambulance and the demand 

point could be divided by the square root of the Euclidean distance between the two, 

rather than the distance itself. So, the refined preparedness measure, pi,  could be 

stated as:  

∑
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1 γ
λ  

In order to test the above aspects and run time performance of the developed hybrid 

heuristic, firstly “Extended SOLOMON's VRPTW instances” are used. Although the 

data is designed specifically for vehicle routing problems (VRP), the dispersion of 

the demand points are suitable since they are classified as clustured, uniform and 

uniform-clustured dispersions. The data are available at http://www.fernuni-

hagen.de/WINF/ touren/ menuefrm/probinst.htm.  

 

SOLOMON’s problem instances are desgined for 200-400-600-800 and 1000-

demand point environment. Although the modifications according to the vehicle 

routing problems create many possible problem instances, in terms of demand point 

dispersion, there are five possible patterns for each demand size. In problem 

instances, r stands for uniformly distributed data, c stands for clustured data and rc 

stands for uniform-clustured data. An example of  SOLOMON’s problem instances 

with 400 demand points and in form of rc is shown in Figure 21. The hybrid heuristic 

solution is shown in Figure 21 with available 10 ambulances. It should also be noted 

that, the set of demand points and the set of possible location sites are still the same. 
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Only 200, 400 and 600-demand points sized SOLOMON’s instances are analyzed 

since the exact algorithm in GAMS environment is not able to solve the problems 

sized more than 600 to optimality. The results are shown in following Tables 20, 21 

and 22.  

 

 

 

Figure 21 : The solution for SOLOMON’s rc problem instance, n=400, p=10 
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Table 20 : SOLOMON’s problem instance n=200 
n=200

problem #of ambulance ADD Hybrid CPLEX ADD Hybrid CPLEX ADD Hybrid CPLEX

c1 5 572 572 572 7.26 17.2 28.9 110 110 109

c2 5 590 590 591 6.9 17.2 26.8 124 124 121.3

r1 5 514 514 515 6.9 17.5 21.7 118 118 112

r2 5 514 514 515 6.9 17 24.9 115 115 116

rc1 5 550 554 566 6.9 17 27 122 114 114

c1 8 656 656 664 7.2 54 30 176 176 157

c2 8 666 666 674 7.1 55 31.2 193 193 194

r1 8 598 600 608.5 7.2 54.7 36 179 168 170

r2 8 596 606 608.5 7.2 54.6 45 177 168 173

rc1 8 644 644 650 7.2 54.2 25 184 184 185

c1 10 694 694 700 7.4 89 38 222 222 217

c2 10 680 682 692 7.3 90 41 237 247 235

r1 10 632 632 648 7.3 89.5 27 215 215 218

r2 10 632 632 648 7.4 90 30 215 215 215

rc1 10 664 664 670 7.4 90 36 222 222 233

Objective Run time Preparedness

 
 

 

Table 21: SOLOMON’s problem instance n=400 
n=400

problem #of ambulance ADD Hybrid CPLEX ADD Hybrid CPLEX ADD Hybrid CPLEX

c1 5 1013 1013 1023 7.9 51.5 167 168 168 183

c2 5 1050 1065 1079 18.6 52.7 285 220 212 200.4

r1 5 1002 1011 1021 7.9 51.4 284 195 205 187

r2 5 1002 1008 1021 8.1 51.4 213 195 195 187.7

rc1 5 1074 1079 1088 10.22 80.1 171 183 191 184

c1 8 1205 1205 1209 12.54 210 131 277 277 271

c2 8 1264 1264 1302 14.9 199 251 321 321 335.4

r1 8 1173 1180 1221 38.8 290 636 318 294 318.4

r2 8 1173 1184 1220 9.3 230 428 318 317 316

rc1 8 1239 1241 1265 8.6 290 331 307 304 309

c1 10 1284 1284 1294 13 349 132 353 353 336

c2 10 1314 1346 1362 9.6 347 326 408 399 404.7

r1 10 1259 1264 1305 18.6 355 1052 391 377 350

r2 10 1259 1265 1305 9.7 522 1052 390 388 345

rc1 10 1308 1310 1333 29.6 504 290 371 369 372

Objective Run time Preparedness

 

 

Table 22 : SOLOMON’s problem instance n=600 
n=600

problem #of ambulance ADD Hybrid CPLEX ADD Hybrid CPLEX ADD Hybrid CPLEX

c1 5 1548 1548 1550 16.3 167 309 238 238 237.71

c2 5 1671 1671 1704 9.8 65 358 238 238 239.3

r1 5 1488 1497 1520 10.1 60.5 377 252 246 242.3

r2 5 1488 1488 1520 9.8 57 376 252 252 242.3

rc1 5 1560 1560 1588 9.8 68 420 260 260 252.5

c1 8 1830 1834 1840 12.16 240 319 390 383 387.4

c2 8 1938 1952 1990 11.3 253 361 385 391 392

r1 8 1795 1795 1827 12 239 785 381 381 387.9

r2 8 1795 1795 1827 12.3 236 785 380 380 388

rc1 8 1838 1838 1882 12.1 236 446 393 393 385.8

c1 10 1958 1958 1976 13.9 373 314 457 457 468.4

c2 10 2044 2044 - 13.7 385 - 472 472 -

r1 10 1908 1908 - 13.8 364 - 471 471 -

r2 10 1908 1908 - 13.8 371 - 471 471 -

rc1 10 1954 1954 - 13.8 337 - 486 486 -

Objective Run time Preparedness

 

 

It should be noted that the problems with 600 demand points and available 10 

ambulances, exact algorithm could not find an optimum solution. In order to solve 

problem instances other than the SOLOMON’s problem instances and to observe the 
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run time performance of the hybrid heuristic, we also develop some specially 

designed problem instances with 1000 demand points and available 10 ambulances. 

The problem instances are called D1, D2, D3 and U which stand, respectively, for 

design type 1, type 2, type 3 and uniformly distributed demand data. For each design 

type, 4 random problem instances are generated and runs are performed with only 

ADD heuristic and hybrid heuristic. Examples of design types solved by hybrid 

heuristics are shown in the following Figures 22, 23, 24 and 25.  

 

 

Figure 22 : Specially designed data, D1, solution with the hybrid heuristic 
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Figure 23 : Specially designed data, D2, solution with the hybrid heuristic 

 

Figure 24 : Specially designed data, D3, solution with the hybrid heuristic 
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Figure 25 : Specially designed data, U, solution with the hybrid heuristic 
 

The tabulated results of the specially designed data sets are shown in Table 23.  

 

Table 23 : The results for the specially designed data sets   n=1000 
n=1000

problem #of ambulance ADD Hybrid ADD Hybrid ADD Hybrid

D1 10 3279 3312 20.3 1108 1569 1596

D1 10 3297 3319 20.7 1041 1585 1623

D1 10 3285 3317 20.5 1037 1570 1576

D1 10 3291 3314 20.8 1005 1578 1571

D2 10 3247 3268 20.2 1003 1474 1455

D2 10 3240 3251 20.3 1003 1456 1506

D2 10 3260 3275 20.6 1006 1460 1462

D2 10 3252 3269 20.9 1009 1465 1468

D3 10 3138 3170 20.9 1002 1388 1379

D3 10 3120 3120 20.4 1000 1307 1307

D3 10 3119 3142 20.8 1004 1350 1344

D3 10 3148 3165 20.5 1017 1342 1335

U 10 3158 3158 20.7 1103 1338 1338

U 10 3137 3184 20.5 1033 1351 1331

U 10 3110 3157 20.9 1020 1329 1332

U 10 3125 3162 20.8 1041 1345 1348

Objective Run time Preparedness
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Table 24 : Average objective function values of the specially designed data 
 

average objective 

value results n=100, 

p=10

ADD HYBRID

Percentage 

improvement by the 

HYBRID

D1 3,288.00 3,315.50 0.84%

D2 3,249.75 3,265.75 0.49%

D3 3,131.25 3,149.25 0.57%

U 3,132.50 3,165.25 1.05%  

 

Both SOLOMON’s data and specially designed problem instances reveal valuable 

insights for our study. First of all, when the demand points are clustered, the 

percentage improvement in the objective function values provided by the hybrid 

heuristic worsen. When the demand pattern is more uniformly distributed, the 

performance of the hybrid heuristic is much more outstanding.  

 

Also, when the preparedness measure is defined differently, the obvious dominance 

of centralized solutions becomes to disappear; this might direct us towards the 

conclusion that dispersed solutions might produce even better preparedness values. 

However, for the previously studied problem instance where n=400 and p=10 

(Figures 19 and 20), the preparedness measures still become 475 and 372, 

respectively, meaning that multiple coverage are still capable of producing higher 

preparedness index values. On the other hand, in further analysis, different 

preparedness definitions could be utilized, since the definitions for the concept are 

heavily subjective as mentioned in Andersson (2007). 
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CHAPTER 6 

 

CONCLUSIONS AND DIRECTIONS FOR FUTURE STUDY 

 

 

Briefly in this study, a multi-level coverage problem, which is an NP-hard problem, 

is addressed both by a mathematical model and some heuristic methods. The study 

contributes to the literature in terms of providing the comparison of fast solution 

techniques such as ADD-DROP and genetic heuristics for these multi-level coverage 

and partial coverage types of problems. The approach proposed is applicable to the 

ambulance location and relocation problems and also for any other strategic location 

issues such as recycle baskets and ATM machines. The hybrid heuristic that utilizes 

a greedy ADD heuristic at start and then advanced genetic algorithm with non-

classical crossover technique is the most suitable solution technique for the large size 

problems, whereas, for small sized problems, exact algorithm could be used. The 

heuristic technique produces results nearly 5% close to the optimal value, and the 

performance of the heuristic could be increased by fine-tuning the genetic algorithm 

parameters. The future studies could focus on the performance improvement for the 

fast heuristic techniques. 

 

Also, the preparedness index provided us another insight such that the multiple 

coverage approaches create more system preparedness compared to the multi-level 

coverage approach. However, it is observed that multiple coverage idea might fail in 

critical distance coverage. For this reason, it is suitable to use both concepts together 

in a sequential manner. At first, multi-level coverage problem can be solved; then in 

each responsible coverage field, multiple coverage concepts can be adopted. 
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APPENDIX A 

 

GAMS CODING FOR THE EXACT ALGORITHM 

 

 

scalars 
p total number of ambulances /5/ 
; 
sets 
i set of demand points /1*400/ 
k duplicate of set of demand points /1*400/ 
j set of potential ambulance sites  /1*400/ 
dummy dummy scalar for distanceXY table /1,2/ 
s number of sectors /1*3/ 
; 
 
parameters 
lambda(i) demand at point i /set.i 1/ 
w(s) weight for each sector /1 2, 2 1, 3 0.5/ 
; 
parameter DistanceXYi (j,dummy) 
          DistanceXYk (k,dummy); 
 
$libinclude xlimport DistanceXYi Coordinates200.xls Koordinatlar!a1:c201 
$libinclude xlimport DistanceXYk Coordinates200.xls Koordinatlar!a1:c201 
 
parameter d; 
d(j,k) = sqrt((abs(DistanceXYi(j,"1")-DistanceXYk(k,"1")))**2 + 
(abs(DistanceXYi(j,"2")-DistanceXYk(k,"2")))**2); 
parameter maxim; 
maxim = smax((i,k),d(i,k)); 
parameters r(s); 
r("3") = maxim/2; 
r("2")= r("3")/2; 
r("1")=r("2")/2; 
 
binary variables x, y ; 
variable Z; 
 
 
equations Objective 
          Equation_2 
          Equation_3(i,j,s) 
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          Equation_6(i,j) 
          Equation_7(i,j) 
          Equation_8_1(i) 
          Equation_8_2(i) 
          Equation_8_3(i) 
          Equation_9(i,j,s) 
 
; 
 
Objective..                              Z=e=sum(s,sum(i,sum(j$(d(i,j)le 
r(s)),w(s)*lambda(i)*x(i,j,s)))); 
Equation_2..                             sum(j,y(j)) =e= p; 
Equation_3(i,j,s) $(d(i,j)le r(s))..     x(i,j,s) =l= y(j); 
Equation_6(i,j)..                        x(i,j,"1")=l=x(i,j,"2"); 
Equation_7(i,j)..                        x(i,j,"2")=l=x(i,j,"3"); 
Equation_8_1(i)..                        sum(j$(d(i,j)le r("1")),x(i,j,"1")) =l= 1; 
Equation_8_2(i)..                        sum(j$(d(i,j)le r("2")),x(i,j,"2")) =l= 1; 
Equation_8_3(i)..                        sum(j$(d(i,j)le r("3")),x(i,j,"3")) =l= 1; 
Equation_9(i,j,s)..                      x(i,j,"3")$(d(i,j)gt r("3"))=e=0; 
 
model mlc /all/; 
file results_200 /mlc_results/ 
option iterlim = 10000000; 
*option limrow=100000000; 
*option limcol=100000000; 
option mip=cplex; 
*option lp=cplex; 
solve mlc maximizing Z using mip; 
 
*$libinclude xlexport y.m myspread.xls output5!a1..a1 
scalar preparedness /0/; 
loop((j)$( y.l(j) gt 0), loop(k $((d(j,k) gt 0) AND (d(j,k) lt r("3") )), preparedness = 
preparedness + 1/d(j,k))); 
 
put results_200 ; 
put "---------mlc Results---------------"/ 
put "--------- X Values---------------"/ 
loop((i,j,s)$(x.l(i,j,s) gt 0), put i.tl, @4, j.tl, @7, s.tl, @14, x.l(i,j,s):0:19 /)  ; 
put "--------- Y Values---------------"/ 
loop((j)$(y.l(j) gt 0), put j.tl, @14, y.l(j):0:19 /)  ; 
put "---------Z Value------------"//; 
put "Z   ---> " Z.l:0:19 /  ; 
put "---------preparedness Value------------"//; 
put "Z   ---> " preparedness:0:100 /  ; 
put "------------------------------------------------------"//; 
display d, maxim, r, y.l, x.l, preparedness; 
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APPENDIX B 

 

MATLAB CODING FOR GREEDY ADD HEURISTIC 

 

 

B.1 : Main Body 

tic 
global cities; 
global distances; 
cities = 200; 
locations = zeros(cities,2); 
dummy_locations = zeros(cities,1);  n = 1; 
 
while (n <= cities) 
   xp = int8(rand*100); 
   yp = int8(rand*100); 
    locations(n,1) = xp; 
    locations(n,2) = yp; 
    dummy_locations(n,1)=n; 
    n = n+1; 
end 
 
dummy_locations=horzcat(dummy_locations,locations); 
dummy_locations=vertcat([str2double(' ') 1 
2],dummy_locations); 
 
xls_file = strcat ('C:\Documents and Settings\mesut\My 
Documents\gamsdir\projdir\Coordinates',num2str(cities),'.
xls'); 
xlswrite(xls_file ,dummy_locations,'Koordinatlar'); 
%% mesut 
  
distances = zeros(cities); 
for count1=1:cities, 
    for count2=1:count1, 
        x1 = locations(count1,1); 
        y1 = locations(count1,2); 
        x2 = locations(count2,1); 
        y2 = locations(count2,2); 
        distances(count1,count2)=sqrt((x1-x2)^2+(y1-
y2)^2); 
        
distances(count2,count1)=distances(count1,count2); 
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    end; 
end; 
  
max_distance = max(max(distances)) 
R3 = max_distance/2 
R2 = R3/2 
R1 = R2/2 
ambulans_sayisi = 10; 
eklenen_indeksler = zeros(1,cities-ambulans_sayisi); 
eklenen_indeks_sayisi = 0; 
ambulansli_indeksler = []; 
kalan_indeksler = 1:cities; 
  
for j = 1:ambulans_sayisi 
    scores = zeros(1,cities-j+1); 
    for m = 1 : cities-j+1 
        p = [ambulansli_indeksler kalan_indeksler(m)]; 
        scores(m) = add_fitness(R3, R2, R1, p, j); 
    end 
     
    [min_value eklenen_indeks]=min(scores); 
    eklenen_indeksler(j) = eklenen_indeks; 
    eklenen_indeks_sayisi = eklenen_indeks_sayisi+1; 
    yeni_indeksler = zeros(1, j); 
    yeni_indeksler(1:j-1)=ambulansli_indeksler; 
    yeni_indeksler(j) = eklenen_indeks; 
    ambulansli_indeksler = yeni_indeksler 
    tmp_kalan_indeksler = 
zeros(1,length(kalan_indeksler)-1); 
    t=1; 
    for r=1:length(kalan_indeksler) 
        if (r ~= eklenen_indeks) 
            tmp_kalan_indeksler(t) = kalan_indeksler(r); 
            t = t+1; 
        end 
    end 
    kalan_indeksler = tmp_kalan_indeksler; 
     
    length(ambulansli_indeksler) 
end 
  
ambulansli_indeksler 
ambulans_sayisi = length(ambulansli_indeksler); 
f=0; 
p=ambulansli_indeksler; 
min_score = add_fitness(R3, R2, R1, p, ambulans_sayisi) 
  
figure; 
plot(locations(:,1),locations(:,2),'b.'); 
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for i=1:ambulans_sayisi 
    hold on; 
    plot(locations(ambulansli_indeksler(i),1), 
locations(ambulansli_indeksler(i),2), 'ro'); 
end 
  
cozum = ambulansli_indeksler 
  
  
[n3 n2 n1] = coverage_numbers(R3, R2, R1, cozum, 
ambulans_sayisi) 
R3_COVERAGE = n3 
R2_COVERAGE = n2 
R1_COVERAGE = n1 
  
  
coverage_matrix = find_coverage_matrix(R3, R2, R1, cozum, 
ambulans_sayisi); 
  
katsayi = find_katsayi(R3, cozum, ambulans_sayisi); 
save_filename='mesut.mat'; 
save (save_filename,'locations'); 
toc 

 

B.2 : Objective Evaluation  

 
function [score] = add_fitness(R3, R2, R1, p, j) 
  
global cities; 
global distances; 
  
f=0; 
for i = 1:cities 
    tmp = zeros(1,3); 
    n1 = 0; 
    n2 = 0; 
    n3 = 0; 
    for k = 1 : j 
        if (distances(i, p(k))<R3) 
            tmp(1) = 1; 
            n1 = 0.5; 
        end 
        if (distances(i, p(k))<R2) 
            tmp(2)=1; 
            n2 = 1; 
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        end 
        if (distances(i, p(k))<R1) 
            tmp(3)=1; 
            n3 = 2; 
        end 
    end 
  
    f = f + ( -1 * (n1*tmp(1)+n2*tmp(2)+n3*tmp(3))) ;              
end 
                              
 score = f; 

 

B.3 : Preparedness index calculation 

  

function [katsayi] = find_katsayi(R3,  p, 

ambulans_sayisi) 

  
global cities; 
global distances; 
  
katsayi = 0; 
for i = 1:cities 
        for k = 1 : ambulans_sayisi 
            if (distances(i, p(k))<R3 && distances(i, 
p(k)) ~= 0) 
                katsayi = katsayi + 1 / distances(i, 
p(k)); 
            end 
        end 
         
end 
  
katsayi= katsayi / 1e4; 
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APPENDIX C 

 

MATLAB CODING FOR GREEDY DROP HEURISTIC 

 

 

C.1 : Main Body 

tic 
global cities; 
global distances; 
cities = 400; 
locations = zeros(cities,2); 
  
n = 1; 
load mesut.mat 
 
distances = zeros(cities); 
for count1=1:cities, 
    for count2=1:count1, 
        x1 = locations(count1,1); 
        y1 = locations(count1,2); 
        x2 = locations(count2,1); 
        y2 = locations(count2,2); 
        distances(count1,count2)=sqrt((x1-x2)^2+(y1-
y2)^2); 
        
distances(count2,count1)=distances(count1,count2); 
    end; 
end; 
  
max_distance = max(max(distances)) 
R3 = max_distance/2 
R2 = R3/2 
R1 = R2/2 
ambulans_sayisi = 10; 
  
  
cikartilan_indeksler = zeros(1,cities-ambulans_sayisi); 
cikartilan_indeks_sayisi = 0; 
mevcut_indeksler = 1:cities; 
for j = 1:(cities-ambulans_sayisi) 
    scores = zeros(1,length(mevcut_indeksler)); 
    for m = 1 : length(mevcut_indeksler) 
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        tmp_ambulans_sayisi = length(mevcut_indeksler)-1; 
         
         
        p = []; 
         
        if (m == 1) 
            p = 
mevcut_indeksler(2:length(mevcut_indeksler)); 
        elseif (m == length(mevcut_indeksler)) 
            p= 
mevcut_indeksler(1:length(mevcut_indeksler)-1); 
             
        else 
            p = [mevcut_indeksler(1:m-1) 
mevcut_indeksler(m+1:length(mevcut_indeksler))]; 
        end 
        
        scores(m) = 
drop_fitness(R3,R2,R1,p,tmp_ambulans_sayisi); 
    end 
     
    [max_val cikartilan_indeks]=min(scores); 
    cikartilan_indeksler(j) = cikartilan_indeks; 
    cikartilan_indeks_sayisi = 
cikartilan_indeks_sayisi+1; 
    yeni_indeksler = zeros(1, cities-
cikartilan_indeks_sayisi); 
    t=1; 
    for r=1:length(mevcut_indeksler) 
        if (r ~= cikartilan_indeks) 
            yeni_indeksler(t) = mevcut_indeksler(r); 
            t = t+1; 
        end 
    end 
    mevcut_indeksler = yeni_indeksler; 
    length(mevcut_indeksler) 
end 
  
mevcut_indeksler 
tmp_ambulans_sayisi = length(mevcut_indeksler); 
p = mevcut_indeksler; 
min_score = drop_fitness(R3, R2, R1, p, 
tmp_ambulans_sayisi) 
  
figure; 
plot(locations(:,1),locations(:,2),'b.'); 
  
  
for i=1:ambulans_sayisi 
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    hold on; 
    plot(locations(mevcut_indeksler(i),1), 
locations(mevcut_indeksler(i),2), 'ro'); 
end 
  
cozum = mevcut_indeksler 
  
[n3 n2 n1] = coverage_numbers(R3, R2, R1, cozum, 
ambulans_sayisi); 
R3_COVERAGE = n3 
R2_COVERAGE = n2 
R1_COVERAGE = n1 
coverage_matrix = find_coverage_matrix(R3, R2, R1, cozum, 
ambulans_sayisi); 
  
katsayi = find_katsayi(R3, cozum, ambulans_sayisi) 
toc 

 

C.2 : Objective Evaluation  

 
function [score] = drop_fitness(R3, R2, R1, p, j) 
  
global cities; 
global distances; 
  
f=0; 
for i = 1:cities 
    tmp = zeros(1,3); 
    n1 = 0; 
    n2 = 0; 
    n3 = 0; 
    for k = 1 : j 
        if (distances(i, p(k))<R3) 
            tmp(1) = 1; 
            n1 = 0.5; 
        end 
        if (distances(i, p(k))<R2) 
            tmp(2)=1; 
            n2 = 1; 
        end 
        if (distances(i, p(k))<R1) 
            tmp(3)=1; 
            n3 = 2; 
        end 
    end 
  
    f = f + ( -1 * (n1*tmp(1)+n2*tmp(2)+n3*tmp(3))) ;              
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end 
                         
         
 score = f; 

 

C.3 : Preparedness index calculation 

  

function [katsayi] = find_katsayi(R3,  p, 
ambulans_sayisi) 
  
global cities; 
global distances; 
  
katsayi = 0; 
for i = 1:cities 
        for k = 1 : ambulans_sayisi 
            if (distances(i, p(k))<R3 && distances(i, 
p(k)) ~= 0) 
                katsayi = katsayi + 1 / distances(i, 
p(k)); 
            end 
        end 
         
end 
  
katsayi= katsayi / 1e4; 
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APPENDIX D 

 

MATLAB CODING FOR GA1 HEURISTIC 

 

 

D.1 : Main Body 

tic 
  
global cities; 
global distances; 
  
cities = 400; 
locations = zeros(cities,2); 
dummy_locations = zeros(cities,1);   
  
n = 1; 
load mesut.mat 
 
dummy_locations=horzcat(dummy_locations,locations); 
dummy_locations=vertcat([str2double(' ') 1 
2],dummy_locations); 
 
xls_file = strcat ('C:\Documents and Settings\mesut\My 
Documents\gamsdir\projdir\Coordinates',num2str(cities),'.
xls'); 
xlswrite(xls_file ,dummy_locations,'Koordinatlar'); 
 
distances = zeros(cities); 
for count1=1:cities, 
    for count2=1:count1, 
        x1 = locations(count1,1); 
        y1 = locations(count1,2); 
        x2 = locations(count2,1); 
        y2 = locations(count2,2); 
        distances(count1,count2)=sqrt((x1-x2)^2+(y1-
y2)^2); 
        
distances(count2,count1)=distances(count1,count2); 
    end; 
end; 
  
  
max_distance = max(max(distances)) 
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R3 = max_distance/2 
R2 = R3/2 
R1 = R2/2 
ambulans_sayisi = 8; 
FitnessFcn = @(x) ambulans_fitness(x,distances, R3, R2, 
R1, ... 
    ambulans_sayisi,cities); 
  
  
my_plot = @(options,state,flag) ambulans_plot(options, 
... 
    state,flag,locations); 
  
  
options = gaoptimset('PopulationType', 
'custom','PopInitRange', ... 
    [1;cities]); 
  
options = 
gaoptimset(options,'CreationFcn',@create_ambulans_permuta
tions, ... 
    'CrossoverFcn',@crossover_ambulans_permutation, ... 
    'MutationFcn',@mutate_ambulans_permutation, ... 
    'PlotFcn', my_plot, ... 
    'Generations',300,'PopulationSize',75, ... 
    'StallGenLimit',50,'Vectorized','on'); 
  
  
  
numberOfVariables = ambulans_sayisi; 
[x,fval,reason,output] = 
ga(FitnessFcn,numberOfVariables,options) 
figure; 
plot(locations(:,1),locations(:,2),'b.'); 
  
  
for i=1:ambulans_sayisi 
    hold on; 
    plot(locations(x{1}(i),1), locations(x{1}(i),2), 
'ro'); 
end 
  
cozum = x{1} 
[n3 n2 n1] = coverage_numbers(R3, R2, R1, cozum, 
ambulans_sayisi); 
R3_COVERAGE = n3 
R2_COVERAGE = n2 
R1_COVERAGE = n1 
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coverage_matrix = find_coverage_matrix(R3, R2, R1, cozum, 
ambulans_sayisi); 
  
  
katsayi = find_katsayi(R3, cozum, ambulans_sayisi) 
toc 

 

D.2 : Fitness Evaluation  

 
function scores = ambulans_fitness(x,distances, R3, R2, 
R1, ambulans_sayisi, cities) 
 
scores = zeros(size(x,1),1); 
for j = 1:size(x,1) 
     
    p = x{j};  
 
    f = 0; 
    for i = 1:cities 
        tmp = zeros(1,ambulans_sayisi); 
        n1 = 0; 
        n2 = 0; 
        n3 = 0; 
        for k = 1 : ambulans_sayisi 
            if (distances(i, p(k))<R3) 
                tmp(1) =1; 
                n1 = 0.5; 
            end 
            if (distances(i, p(k))<R2) 
                tmp(2)=1; 
                n2 = 1; 
            end 
            if (distances(i, p(k))<R1) 
                tmp(3)=1; 
                n3 = 2; 
            end 
        end 
        
         f = f + ( -1 * (n1*tmp(1)+n2*tmp(2)+n3*tmp(3))) 
; 
         
     
    end 
    scores(j) = f; 
end 
[min_score,index] = min(scores) 
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noktalar = x{index} 
max_score = max(scores) 
 

 

D.3 : Initial Population Generation 

  

function pop = create_ambulans_permutations(NVARS, 

FitnessFcn,options) 

global cities; 
totalPopulationSize = sum(options.PopulationSize); 
n = NVARS; 
pop = cell(totalPopulationSize,1); 
for i = 1:totalPopulationSize 
    a = randperm(cities); 
    pop{i} = a(1:n);  
end 
 

 

D.4 : Crossover Technique 

 

function xoverKids  = 
crossover_ambulans_permutation(parents,options,NVARS, ... 
    FitnessFcn,thisScore,thisPopulation) 
global cities; 
nKids = length(parents)/2; 
xoverKids = cell(nKids,1);  
index = 1; 
  
for i=1:nKids 
     
    parent = thisPopulation{parents(index)}; 
    parent2 = thisPopulation{parents(index+1)}; 
    index = index + 2; 
     
    p1 = ceil((length(parent))/2)+1; 
     
    tmp = parent2(p1:length(parent2)); 
    
     
    for j=p1:length(parent) 
        for k=1:(p1-1) 
            if (parent2(j)==parent(k)) 
                tmp(j-p1+1) = tmp(j-p1+1)+1; 
                if (tmp(j-p1+1)== cities+1) 
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                    tmp(j-p1+1)=1; 
                end 
            end 
        end 
    end 
     
      
     
    parent(p1:length(parent)) = tmp; 
     
    child = parent; 
    
    xoverKids{i} = child;  
   
end 
 
 

D.5 : Preparedness index calculation  

 

function [katsayi] = find_katsayi(R3,  p, 
ambulans_sayisi) 
  
global cities; 
global distances; 
  
katsayi = 0; 
for i = 1:cities 
        for k = 1 : ambulans_sayisi 
            if (distances(i, p(k))<R3 && distances(i, 
p(k)) ~= 0) 
                katsayi = katsayi + 1 / distances(i, 
p(k)); 
            end 
        end 
         
end 
  
katsayi= katsayi / 1e4; 
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APPENDIX E 

 

MATLAB CODING FOR GA2 HEURISTIC 

 

 

E.1 : Main Body 

tic 
  
global cities; 
global distances; 
global R3; 
global R2; 
global R1; 
  
cities = 400; 
locations = zeros(cities,2); 
  
n = 1; 
load mesut.mat 
 
distances = zeros(cities); 
for count1=1:cities, 
    for count2=1:count1, 
        x1 = locations(count1,1); 
        y1 = locations(count1,2); 
        x2 = locations(count2,1); 
        y2 = locations(count2,2); 
        distances(count1,count2)=sqrt((x1-x2)^2+(y1-
y2)^2); 
        
distances(count2,count1)=distances(count1,count2); 
    end; 
end; 
  
  
max_distance = max(max(distances)) 
  
R3 = max_distance/2 
R2 = R3/2 
R1 = R2/2 
ambulans_sayisi = 8; 
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FitnessFcn = @(x) ambulans_fitness(x,distances, R3, R2, 
R1, ... 
    ambulans_sayisi,cities); 
  
  
my_plot = @(options,state,flag) ambulans_plot(options, 
... 
    state,flag,locations); 
  
  
options = gaoptimset('PopulationType', 
'custom','PopInitRange', ... 
    [1;cities]); 
  
options = 
gaoptimset(options,'CreationFcn',@create_ambulans_permuta
tions, ... 
    'CrossoverFcn',@crossover_ambulans_permutation, ... 
    'MutationFcn',@mutate_ambulans_permutation, ... 
    'PlotFcn', my_plot, ... 
    'Elitecount',6, ... 
    'Crossoverfraction',0.9, ... 
    'SelectionFcn', @selectionuniform, ... 
    'Generations',500,'PopulationSize',150, ... 
    'StallGenLimit',100,'Vectorized','on'); 
  
  
  
numberOfVariables = ambulans_sayisi; 
[x,fval,reason,output] = 
ga(FitnessFcn,numberOfVariables,options) 
figure; 
plot(locations(:,1),locations(:,2),'b.'); 
  
  
for i=1:ambulans_sayisi 
    hold on; 
    plot(locations(x{1}(i),1), locations(x{1}(i),2), 
'ro'); 
end 
  
cozum = x{1} 
[n3 n2 n1] = coverage_numbers(R3, R2, R1, cozum, 
ambulans_sayisi); 
R3_COVERAGE = n3 
R2_COVERAGE = n2 
R1_COVERAGE = n1 
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coverage_matrix = find_coverage_matrix(R3, R2, R1, cozum, 
ambulans_sayisi); 
  
  
katsayi = find_katsayi(R3, cozum, ambulans_sayisi) 
toc 

 

E.2 : Fitness Evaluation  

 
function scores = ambulans_fitness(x,distances, R3, R2, 
R1, ambulans_sayisi, cities) 
 
scores = zeros(size(x,1),1); 
for j = 1:size(x,1) 
    p = x{j};  
        f = 0; 
    for i = 1:cities 
        tmp = zeros(1,ambulans_sayisi); 
        n1 = 0; 
        n2 = 0; 
        n3 = 0; 
        for k = 1 : ambulans_sayisi 
            if (distances(i, p(k))<R3) 
                tmp(1) =1; 
                n1 = 0.5; 
            end 
            if (distances(i, p(k))<R2) 
                tmp(2)=1; 
                n2 = 1; 
            end 
            if (distances(i, p(k))<R1) 
                tmp(3)=1; 
                n3 = 2; 
            end 
        end 
        
         f = f + ( -1 * (n1*tmp(1)+n2*tmp(2)+n3*tmp(3))) 
; 
         
     
    end 
    scores(j) = f; 
end 
[min_score,index] = min(scores) 
noktalar = x{index} 
max_score = max(scores) 
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E.3 : Initial Population Generation 

 

function pop = create_ambulans_permutations(NVARS, 

FitnessFcn,options) 

global cities; 
totalPopulationSize = sum(options.PopulationSize); 
n = NVARS; 
pop = cell(totalPopulationSize,1); 
for i = 1:totalPopulationSize 
    a = randperm(cities); 
    pop{i} = a(1:n);  
end 
 

 

E.4 : Crossover Technique 

 

function xoverKids  = 
crossover_ambulans_permutation(parents,options,NVARS, ... 
    FitnessFcn,thisScore,thisPopulation) 
global cities; 
global R3; 
global R2; 
global R1; 
  
nKids = length(parents)/2; 
xoverKids = cell(nKids,1);  
index = 1; 
  
  
for i=1:nKids 
    parent = thisPopulation{parents(index)}; 
    parent2 = thisPopulation{parents(index+1)}; 
    index = index + 2; 
     
    p1 = ceil((length(parent))/2)+1; 
     
    tmp = parent2(p1:length(parent2)); 
     
    yeni_uzunluk = (length(parent2)-
p1+1)+length(parent2); 
     
     
    for j=p1:length(parent) 
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        for k=1:length(parent) 
            if (parent2(j)==parent(k)) 
                tmp(j-p1+1) = tmp(j-p1+1)+1; 
                if (tmp(j-p1+1)== cities+1) 
                    tmp(j-p1+1)=1; 
                end 
            end 
        end 
    end 
     
    tmp2 = [parent tmp]; 
    tmp3 = [parent(p1:length(parent)) tmp]; 
    cikartilan_indeks_sayisi = 0; 
    for k = 1:(length(tmp2)-p1+1)/2 
        scores = zeros(1,length(tmp3)); 
        for  m = 1:length(tmp3) 
             
            p = []; 
         
            if (m == 1) 
                p = tmp3(2:length(tmp3)); 
            elseif (m == length(tmp3)) 
                p= tmp3(1:length(tmp3)-1); 
            else 
                p = [tmp3(1:m-1) tmp3(m+1:length(tmp3))]; 
            end 
            p2 = [parent(1:p1-1) p]; 
            scores(m) = 
drop_fitness(R3,R2,R1,p2,length(p2)); 
        end 
         
        [max_val cikartilan_indeks]=min(scores); 
        cikartilan_indeks_sayisi = 
cikartilan_indeks_sayisi+1; 
        yeni_indeksler = zeros(1, length(tmp3)-1); 
        t=1; 
        for r=1:length(tmp3) 
            if (r ~= cikartilan_indeks) 
                yeni_indeksler(t) = tmp3(r); 
                t = t+1; 
            end 
        end 
        tmp3 = yeni_indeksler; 
        length(tmp3) 
    end 
         
        
    parent = [parent(1:p1-1) tmp3]; 
    child = parent; 
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    xoverKids{i} = child; 
   
end 
 
 

E.5 : Preparedness index calculation  

 

function [katsayi] = find_katsayi(R3,  p, 
ambulans_sayisi) 
  
global cities; 
global distances; 
  
katsayi = 0; 
for i = 1:cities 
        for k = 1 : ambulans_sayisi 
            if (distances(i, p(k))<R3 && distances(i, 
p(k)) ~= 0) 
                katsayi = katsayi + 1 / distances(i, 
p(k)); 
            end 
        end 
         
end 
  
katsayi= katsayi / 1e4; 
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APPENDIX F 

 

 
FLOWCHART of THE GAs 

 
 
 
Starting from the next page. 
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APPENDIX G 

 

THE MINITAB OUTPUT 

 

 
Estimated Effects and Coefficients for obj. (coded units) 
 
Term                     Effect     Coef  SE Coef       T      P 
Constant                         1170,33    5,526  211,77  0,000 
Beg. Population size      32,00    16,00    5,526    2,90  0,020 
termination condition      4,33     2,17    5,526    0,39  0,705 
Beg. Population size*      6,33     3,17    5,526    0,57  0,582 
  termination condition 
 
 
S = 19,1442     PRESS = 6597 
R-Sq = 52,56%   R-Sq(pred) = 0,00%   R-Sq(adj) = 34,77% 
 
 
 
 
 
Analysis of Variance for obj. (coded units) 
 
Source              DF  Seq SS  Adj SS  Adj MS     F      P 
Main Effects         2  3128,3  3128,3  1564,2  4,27  0,055 
2-Way Interactions   1   120,3   120,3   120,3  0,33  0,582 
Residual Error       8  2932,0  2932,0   366,5 
  Pure Error         8  2932,0  2932,0   366,5 
Total               11  6180,7 
 
 
Estimated Coefficients for obj. using data in uncoded units 
 
Term                         Coef 
Constant                  1150,83 
Beg. Population size     0,130000 
termination condition     -8,3333 
Beg. Population size*    0,126667 
  termination condition 

 
 

 
 


