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abstract

A NEW CONTRIBUTION TO NONLINEAR ROBUST

REGRESSION AND CLASSIFICATION WITH MARS

AND ITS APPLICATIONS TO DATA MINING FOR

QUALITY CONTROL IN MANUFACTURING

Fatma Yerlikaya

M.Sc., Department of Scientific Computing

Supervisor: Prof. Dr. Gerhard Wilhelm Weber

Co-Supervisor: Assoc. Prof. Dr. İnci Batmaz

September 2008, 102 pages

Multivariate adaptive regression spline (MARS) denotes a modern methodology

from statistical learning which is very important in both classification and regression,

with an increasing number of applications in many areas of science, economy and

technology.

MARS is very useful for high dimensional problems and shows a great promise

for fitting nonlinear multivariate functions. MARS technique does not impose any

particular class of relationship between the predictor variables and outcome variable

of interest. In other words, a special advantage of MARS lies in its ability to estimate

the contribution of the basis functions so that both the additive and interaction

effects of the predictors are allowed to determine the response variable.

The function fitted by MARS is continuous, whereas the one fitted by classical

classification methods (CART) is not. Herewith, MARS becomes an alternative

to CART. The MARS algorithm for estimating the model function consists of two

complementary algorithms: the forward and backward stepwise algorithms. In the

first step, the model is built by adding basis functions until a maximum level of

complexity is reached. On the other hand, the backward stepwise algorithm is

began by removing the least significant basis functions from the model.
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In this study, we propose not to use the backward stepwise algorithm. Instead,

we construct a penalized residual sum of squares (PRSS) for MARS as a Tikhonov

regularization problem, which is also known as ridge regression. We treat this prob-

lem using continuous optimization techniques which we consider to become an im-

portant complementary technology and alternative to the concept of the backward

stepwise algorithm. In particular, we apply the elegant framework of conic quadratic

programming which is an area of convex optimization that is very well-structured,

herewith, resembling linear programming and, hence, permitting the use of interior

point methods. The boundaries of this optimization problem are determined by the

multiobjective optimization approach which provides us many alternative solutions.

Based on these theoretical and algorithmical studies, this MSc thesis work also

contains applications on the data investigated in a TÜBİTAK project on quality

control. By these applications, MARS and our new method are compared.

Keywords: Statistical Learning, MARS, Penalty Methods, Continuous Optimiza-

tion, Conic Quadratic Programming, Well-Structured Convex Problems, Interior

Point Methods, Multiobjective Optimization
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öz

DOĞRUSAL OLMAYAN SAĞLAM REGRESYON VE

SINIFLANDIRMAYA MARS İLE YENİ BİR KATKI VE BU

KATKININ ENDÜSTRİDE KALİTE KONTROLÜ AMAÇLI

VERİ MADENCİLİĞİ UYGULAMALARI

Fatma Yerlikaya

Yüksek Lisans, Bilimsel Hesaplama Bölümü

Tez Yöneticisi: Prof. Dr. Gerhard Wilhelm Weber

Ortak Tez Yöneticisi: Doç. Dr. İnci Batmaz

Eylül 2008, 102 sayfa

Çok deǧişkenli uyarlanabilir regresyon eǧrileri (MARS), istatistiksel öǧrenmede

modern bir teknoloji olarak görülmektedir. Hem sınıflandırma hem de regresyonda

çok büyük bir öneme sahip olan MARS, ekonomi, bilim ve teknoloji alanında giderek

artan bir şekilde uygulanmaktadır.

Çok boyutlu problemlerin çözümünde oldukça elverişli olan MARS, doǧrusal

olmayan çok deǧişkenli fonksiyonlara uygunluk bakımından da büyük bir olanak

vaad etmektedir. MARS tekniǧi, baǧımsız deǧişkenlerle baǧımlı deǧişken arasında

belirli bir ilişki biçimi öngörmez. Bir başka deǧişle, baǧımlı deǧişkeni tanımlamak

için baǧımsız deǧişkenlerin eklemeli ve etkileşimsel katkılarına yer vermektedir. Bu

ise MARS’ ın önemli bir avantajı olan, temel fonksiyonların katkısını tahmin etme

yeteneǧini ortaya koymaktadr.

MARS’ ın uygunluk saǧladıǧı fonksiyon sürekli bir fonksiyon iken, klasik sınıflan-

dırma yöntemlerinden biri olan CART’ ın uygunluk saǧladıǧı fonksiyon sürekli deǧildir.

Bu nedenle MARS, sürekli fonksiyonlara uygunluk bakımından, CART’ ın bir alter-

natifi olarak görülmektedir.

Model fonksiyonunu tahmin etmek için MARS iki aşamalı bir algoritmadan
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oluşmaktadır. Birinci aşamada, maksimum karmaşıklık düzeyine ulaşıncaya dek

temel fonksiyonlar eklenerek model yapılandırılır. İkinci aşamada ise modele katkısı

en az fonksiyonlar elenir.

Bu çalışmada biz, MARS’ ın ikinci aşamasını oluşturan geriye doǧru eleme

yöntemi yerine penaltı yöntemini kullanmayı önermekteyiz. Bu amaçla, bir Tikhonov

düzenleme problemi olarak MARS için cezalandırılmış hata kareler toplamı oluşturduk.

Bu problemi ele alırken, geriye doǧru eleme yöntemine bir alternatif ve önemli

bir tamamlayıcı teknik olarak düşündüǧümüz sürekli optimizasyon tekniklerini kul-

landık. Özellikle, iyi yapılandırılmış, doǧrusal programlamaya benzeyen ve bundan

dolayı da iç nokta yöntemlerini kullanmaya olanak saǧlayan ikinci dereceden konik

karesel programlamayı (CQP) kullandık. Bu optimizasyon probleminin sınırlarının,

çok amaçlı optimizasyon yaklaşımı ile belirlenmesi, bize pek çok alternatif çözüm

saǧlamaktadır.

Bu tez, yukarıda bahsi edilen teorik ve algoritmik çalışmaların yanısıra , kalite

kontrolüne yönelik bir TÜBİTAK projesinin verileri üzerine uygulamaları da kap-

samaktadr. Bu uygulamalarda, MARS ve geliştirdiǧimiz yeni metod karşılaştırılmıştır.

Anahtar Kelimeler: İstatistiksel Öğrenme, MARS, Penaltı Metodu, Sürekli Opti-

mizasyon, İkinci Dereceden Konik Karesel Programlama, İyi Yapılandırılmış Dışbükey

Problemler, İç Nokta Yöntemleri, Çok Amaçlı Optimizasyon
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chapter 1

INTRODUCTION

Data mining (DM) is one of the most important techniques of scientific and

technologic studies. It is a complicated, e.g., interdisciplinary, process dealing with

outcomes of experiments, records, measurements, questionnaires, etc.. This process

inevitably contains difficulties such as computational time, inaccurate predictions,

interpretability and transfering results into other computational systems. Moreover,

complex data sets are another challenging matter in DM process. This situation

motivates to develope innovative DM tools.

In this thesis, we study multivariate adaptive regression splines (MARS) which

is developed by Friedman in 1991 and used successfully in many areas of science,

economy and technology. We also developed our C-MARS as a modification of

MARS.

As a modern methodology from statistical learning MARS is very important

in classification and regression. Its ability to estimate the contribution of basis

functions and additive and interaction effects of the predictors is a special advantage

of MARS. This makes MARS a useful tool for high-dimensional problems. In order

to estimate the model function, MARS uses two step-wise algorithms, forward and

backward. In the first step, the model is generated by adding basis functions until a

maximum level of complexity is reached. In the backward step, the basis functions

having least contribution to the overall fit are removed from the model.

Instead of this second step, we propose to construct a penalized residual sum

of squares (PRSS) enabling us to control complexity and the accuracy of the model.

Our PRSS transforms MARS in to a Tikhonov regularization problem. In order to

solve this problem, we use conic quadratic programming (CQP) as a continuous op-

timization technique. The boundaries of this optimization problem are determined

by the multiobjective optimization approach. This provides us many alternative
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solutions. In order to see the efficiency of C-MARS, our modificated version of

MARS, we compare these two methods by using three different data sets, while two

of these data sets are simulation data sets, the other one is a real-world data about

metal casting industry obtained from a TÜBİTAK Project (the project number is

105M138). For comparing these two models, three different data sets are used and

one of them is real-world data. This comparison is applied first of all according to

method based measures, then general performance measures are used. For model-

free measures, cross validation is used. Besides these comparisons, by using Tukey

test, it is aimed at to determine whether there are statistically significant differences

between the averaged values of employed measures. According to an ordinal seman-

tic scale -“very poor”, “poor”, “good”, “very good”- the results are re-evaluated.

In this thesis, a literature review of regression models is given briefly in Chapter

2. This chapter also includes a comprehensive information about Tikhonov regu-

larization, CQP and multiobjective optimization which constitute the background

of our study. Chapter 3 contains a detailed description of MARS and its modified

version C-MARS. In this chapter, a numerical example for C-MARS is also pre-

sented. The applications of the MARS and C-MARS take place in Chapter 4. The

comparison of the methods with respect to the determined performance measures

and evaluations are included in Chapter 5. Moreover, an outlook on further studies

is given in this chapter.
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chapter 2

LITERATURE SURVEY AND

BACKGROUND

2.1 Literature Survey

The data of real-world problems are finite, that is “discrete”. Regression models,

which are also called as discrete approximation or Gaussian approximation, are used

for analyzing data sets by disclosing the relationship between the predictors and re-

sponse variable(s). Regression analysis is the most widely used statistical technique,

in investigating and modeling the relationship between variables. There are many

regression models. They are used for several purposes such as data description,

parameter estimation for learning, prediction and control [44].

Almost in every field such as engineering, the physical and chemical sciences,

economics and social sciences, scientists and engineers use regression models for

summarizing or describing a set of data [2, 28, 44].

2.1.1 Linear Regression Model

If a regression model is linear in a fitted parameters, it is called as linear regres-

sion model (LRM ) [2]. In general, the following equation

y = β0 + β1x1 + β2x2 + ...+ βkxk + ε (2.1.1)

represents an LRM [44].

In equation (2.1.1), y is called the response variable (or the dependent variable)

and xj (j = 1, 2, ..., k) are called the regressor variables (predictor or independent

variables) [44]. Furthermore, ε is a random error component. The errors are assumed
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to have a normal distribution with a mean of zero and unknown constant variance,

σ2. It is also assumed that the errors are uncorrelated. In other words, the value

of one error is independent from the value of any other error [44]. These are also

known as “white noise assumption”. The parameter β0 means the intercept and the

other parameters βj (j = 1, 2, ..., k) are the regression coefficients. The parameter

βl represents the expected change in the response y per unit change in xl when all

of the remaining regressor variables xj (j = 1, 2, ..., k; j 6= l) are held constant [44].

The word linear is used to indicate that the model is linear in the parameters

β0, β1, β2, ..., βk. It does not mean that y is a linear function of the coordinates xj.

Even in case of a nonlinear fashion in which y is related to the xj’ s will be treated

as a linear regression model when the equation is linear in the components βj [44].

In most real-world problems, the values of the regression coefficients βj and the

error variance σ2 are not known. These parameters and the error variance must be

estimated from a sample data set. The fitted regression equation or the model enable

to predict future observations of the response variable y. Least squares estimation

(LSE) or maximum likelihood estimation (MLE) are two widely used optimization

methods applied on the regression model for estimating the unknown regression pa-

rameters [44, 55].

Least Squares Estimation Method

The method of LS is used for estimating the regression coefficients [44] β =

(β0, β1, β2, ..., βk)
T in y = β0 +

k∑
j=1

βjxj to minimize the residual sum of squares

(RSS ) [25]. The below (RSS ) formula is written in terms of the N pairs of data

(xi, yi) (i = 1, 2, ..., N) as follows:

RSS(β) =
N∑
i=1

(yi − f(xi))
2 =

N∑
i=1

(
yi − β0 −

k∑
j=1

xijβj

)2

.

Here, RSS(β) is a quadratic function of the parameters. For minimizing RSS, it is

the easiest expression to write it in matrix notation as follows [25]:
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RSS(β) = (y −Xβ)T (y −Xβ),

= ‖y −Xβ‖22 .

In this equation, X denotes the N × (k + 1) matrix with each row input vector,

a column of entries 1 standing in the first position in the matrix X and y is the

N -vector of output in the data set. The Euclidean norm is denoted by ‖.‖22 [25].

Differentiating RSS with respect to β results in:

∇RSS(β) = −2X T (y −Xβ), (2.1.2)

∇2RSS(β) = −2X TX . (2.1.3)

The second derivative matrix of RSS in equation (2.1.3) is a Hessian matrix. After

setting the first derivative (2.1.2) to zero, we get

X T (y −Xβ) = 0, (2.1.4)

the normal equations are obtained [25].

If X TX is nonsingular, then the unique solution is given by

β̂ = (X TX )−1X Ty , (2.1.5)

and the fitted values are defined by [25]

ŷ = X β̂ = (X TX )−1X Ty .

If X TX is singular, then a method of solving the LS problem is called as singu-

lar value decomposition (SVD). By using the SVD method, the solution of the LS

problem is obtained from the normal equations as shown in equation (2.1.4). By

this, a particular (especially, also norm-minimal) solution of (2.1.5) is obtained [2].
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Maximum Likelihood Estimation Method

Although the LS estimation method is generally very convenient, it does not

make much sense in some cases. If the form of the distribution of the error is known,

a more general principle for estimating regression coefficients is MLE method [25].

The model which is defined in the equation (2.1.1) can be written in matrix notation

as follows:

y = Xβ + ε.

Here, the error term ε = (ε1, ε2, ..., εN)T is the residual vector and this vector com-

ponents are normally and independently distributed with constant variance σ2
i like

in LSE [25]. Given the set of data (xi, yi) (i = 1, 2, ..., N), y = (y1, y2, ..., yN)T , X is

an N × (k+1) matrix and β = (β0, β1, β2, ..., βk)
T . The probability density function

f(yi,β) for yi (i = 1, 2, ..., N) is

f(yi,β) =
1

σi(2π)1/2
exp(− 1

2σ2
i

(yi − (Xβ)i)
2). (2.1.6)

This expression corresponds to the general framework for the probability density

function by taking σ = diag(σ1, σ2, ..., σN)T . The likelihood function for the com-

plete data set is

L(β|y) =
1

(2π)N/2
N∏
i=1

σ2
i

N∏
i=1

exp(− 1

2σ2
i

(yi − (Xβ)i)
2). (2.1.7)

The constant factor 1

(2π)N/2
N∏
i=1

σ2
i

does not affect the maximization of L, so it can

be solved as

max
β

N∏
i=1

exp(− 1

2σ2
i

(yi − (Xβ)i)
2). (2.1.8)

Since the logarithm is a monotonically increasing function, the equation (2.1.8) can

be equivalently solved by

max
β

log
N∏
i=1

exp(− 1

2σ2
i

(yi − (Xβ)i)
2).

6



After making some calculations, the following equation is given by

max
β

−
N∑
i=1

(yi − (Xβ)i)
2

2σ2
i

. (2.1.9)

By changing sign and ignoring the constant factor of 1/2, the maximization problem

is transformed into the following minimization problem:

min
β

N∑
i=1

(yi − (Xβ)i)
2

σ2
i

. (2.1.10)

This minimization problem is identical to the LS problem of y = Xβ + ε. To

combine the data points standard deviations into this solution, a diagonal weight

matrix W = diag (1/σ1, 1/σ2, ..., 1/σN) is used. The weighted system of equations

is

yw = X wβ + ε. (2.1.11)

Here, X w := W X and yw := W y . The solution of the above weighted system is

β∗ = (X T
wX w)−1X T

wyw,

if (X T
wX w)−1 exists. Thus, the LS solution of yw = X wβ + ε is turned out to be

the ML solution [2].

2.1.2 Nonlinear Regression Model

Although linear regression is a powerful method for analyzing data when the

model is linear in the parameters [6], there are many situations where the linear

regression model is not appropriate [44]. Indeed, in general, life has various nonlinear

features. Many processes in nature, technology and economy, especially, financial

processes, involve stochastic fluctuations. Therefore, stochastic differential equations

(SDEs) that have nonlinearly embedded parameters, are considered. Moreover, the

true relationship between the response variable and regressors can be expressed by

a differential equation or by a solution of a differential equation. In such cases, we
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may use nonlinear regression model (NRM ) [2, 44, 45]. A NRM is nonlinear in the

unknown parameters. In general, the NRM is defined by the following equation

y = f(x ,θ) + ε, (2.1.12)

where θ is a k×1 vector of unknown parameters θ = (θ1, θ2, ..., θk)
T ; ε is an uncorre-

lated random error term with constant variance σ2 and a zero of mean, as in the the

LR case, and f(x ,θ) is the expectation function for the nonlinear regression model

and x = (x1, x2, ..., xk)
T is an input vector [44]. In nonlinear regression models, at

least one of the derivatives of the expectation function with respect to the param-

eters depends on at least one of the parameters [44]. The expression in equation

(2.1.12) can be written as a vector form in terms of the unknown parameters θj

(j = 1, 2, ..., k) by

y = η(θ) + ε,

where η(θ) := (f(x 1,θ), f(x 2,θ), ..., f(xN ,θ))T and x i (i = 1, 2, ..., N) is given in-

put data.

Nonlinear Least Squares Estimation Method

In a sample of N observations, the response and the regressors are yi and x i =

(xi1, xi2, ..., xik)
T (i = 1, 2, ..., N), respectively. The function in (2.1.12) can be

written in a form of LS as follows:

S(θ) =
N∑
i=1

(yi − f(x i,θ))2. (2.1.13)

To find the LS estimators, the equation (2.1.13) must be differentiated with

respect to each element of θ. This provides a set of k normal equations for the

nonlinear regression situation. The first order necessary optimality conditions are

obtained by the following equations [44]:

N∑
i=1

(yi − f(x i,θ))
∂f(x i,θ)

∂θj
|θ=θ∗ = 0. (2.1.14)

In a nonlinear regression model, solving the normal equations can be very difficult
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because the derivatives are functions of the unknown parameters and the expecta-

tion function has a nonlinear function form [44].

Maximum-Likelihood Estimation Method

The method of MLE will lead to LS when the error terms in the model are

normally and independently distributed with the variances σ2
i per experiment [44].

The likelihood function for the complete data set z i = (x i, yi) (i = 1, 2, ..., N) is

expressed by

L(θ|y) :=
1

(2π)N/2
N∏
i=1

σ2
i

N∏
i=1

exp(− 1

2σ2
i

[yi − f(x i,θ)]2). (2.1.15)

This expression corresponds to the general framework for the likelihood function

by taking σ = diag(σ1, σ2, ..., σN)T . Then, maximizing the likelihood function in

equation (2.1.15) and minimizing the LS in equation (2.1.13) are equivalent kind of

problems in the normal-theory case [44].

A nonlinear LS problem is an unconstraint minimization problem of the following

form presented by Nash and Sofer (1996):

min
θ

F (θ) =
1

2

N∑
i=1

g(z i,θ)2.

The function g(z i,θ) = yi − f(x i,θ) is called “least squares” because the sum of

squares of this function is minimized. This minimization problem can be represented

in vector notation as follows:

min
θ

F (θ) =
1

2
η(θ)Tη(θ),

where η is the vector valued function η(θ) = (g(z 1,θ), g(z 2,θ), ..., g(zN ,θ))T and

z i = (xi1, xi2, ..., xik, yi)
T are our data vectors. In fact, by the chain rule

∇F (θ) := ∇η(θ)η(θ), (2.1.16)

is obtained, where ∇η(θ) is an (k×N)-matrix valued function. By row-wise differ-
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entiation of ∇η(θ) and using this gradient representation, the Hessian matrix of F

is obtained:

∇2F (θ) := ∇η(θ)η(θ)T +
N∑
i=1

g(z i,θ)∇2
θg(z i,θ).

Let θ∗ be a solution of the nonlinear LS problem and suppose that g(z i,θ
∗) = 0

(i = 1, 2, ..., N). Then, all the residuals ri vanishes and the model fits data without

error. As a result, η(θ∗) = 0 and, by (2.1.16), ∇F (θ∗) = 0, which confirms the first-

order necessary optimality condition. Then, the Hessian matrix of F is obtained by

∇2F (θ∗) := ∇η(θ∗)∇η(θ∗)T ,

which is a positive semi-definite matrix, just as we expected by second-order nec-

essary optimality condition. In case where ∇η(θ∗) is a matrix of full rank, i.e.,

rank(∇η(θ∗)) = k (k ≤ N), then ∇2
θF (θ∗) is positive definite, i.e., the second-order

necessary optimality condition is satisfied such that θ∗ is also a strict local minimizer.

The Gauss-Newton Method

There are a number of specialized nonlinear least squares methods. The sim-

plest of these methods is the Gauss-Newton method. The Gauss-Newton method of

parameter estimation corresponds to the Newton’s method for nonlinear regression

problems [2, 44]. The Gauss-Newton method uses the following approximation:

∇2F (θ)δ = −∇F (θ).

It computes a search direction using the formula for Newton’s method, but replaces

the Hessian with the approximation. Therefore, it has the form

∇η(θ)∇η(θ)Tδ = −∇η(θ)η(θ),

where δ is Gauss-Newton increment δ = θk − θk−1.

If η(θ∗) ≈ 0 and rank(∇η(θ∗)) = k, then, near the solution θ∗, Gauss-Newton

behaves like Newton’s method. Since the second derivatives creates computational
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costs, it is unnecessary to calculate them. Gauss-Newton’s method sometimes be-

haves poorly if there is one or a number of outliers, i.e., if the model does not fit the

data well, or if rank(∇η(θ∗)) is not of full rank k. In these cases, there is a poor

approximation to the Hessian of F .

Many other methods for nonlinear least-squares can be interpreted as using an

approximation to the second additive form in the formula for the Hessian, i.e., and

each of the functions g(z i,θ) corresponds to a residual in nonlinear problem which

may arise in a mathematical modelling or an inverse problem.

N∑
i=1

g(z i,θ)∇2
θg(z i,θ). (2.1.17)

The Levenberg-Marquardt Method

Although the Gauss-Newton iterative method for nonlinear LS estimation is

simple and easy to implement for finding θ∗, it may converge very slowly in some

problems. It may also generate a move in the wrong direction. Even in some extreme

cases, it may fail to converge at all [6, 44]. To overcome these shortcomings, same

modifications and refinements have been developed [44]. One of the modification is

the Levenberg-Marquardt method (LM ).

The LM method uses a rank-improving approximation in equation (2.1.17):

N∑
i=1

g(z i,θ)∇2
θg(z i,θ) ≈ λI k, (2.1.18)

with some scalar λ ≥ 0. This approximation yields the following linear system:

(∇η(θ)∇η(θ)T + λI k)δ = −∇η(θ)η(θ). (2.1.19)

The LM method is also implemented in the context of a trust region strategy.

There, δ is a search direction and it is obtained by minimizing a quadratic model
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of the objective function with Gauss-Newton approximation to the Hessian:

min
δ

Q(δ) := F (θ) + δT∇η(θ)η(θ) +
1

2
δT∇η(θ)∇η(θ)Tδ

subject to ‖δ‖2 ≤ ∆. (2.1.20)

Here, λ is indirectly determined by picking a value of ∆ (∆ > 0). The scalar ∆ can

be chosen based on the effectiveness of the Gauss-Newton.

LM method can approximately be interpreted as the Gauss-Newton method if

λ ≈ 0 and steepest-descent method if λ is very large. An adaptive and sequential

way of choosing λ and, by this, of the adjustment of mixture between the methods

the methods of Gauss-Newton and steepest-descent, is presented in [2, 45]. The term

λI k in equation (2.1.19) can also be regarded as regularization term. Another way

to solve the system (2.1.19) for given θ = θν , i.e., to find (ν + 1)-st iterate δ = δν ,

consists of an application of LS estimation. The equation (2.1.19) can be represented

by Gδ = d , where G = ∇η(θ)∇η(θ)T + λI k and d = −∇η(θ)η(θ). Then, the

regularization form of the problem can be written by adding to the squared residual

norm ‖Gδ − d‖22, a penalty or regularization term of the form γ2 ‖Lδ‖22, as follows:

min
θ

∥∥(∇η(θ)∇Tη(θ) + λI k)δ − (−∇η(θ)η(θ))
∥∥2

2
+ γ2 ‖Lδ‖22 , (2.1.21)

where L may be the unit matrix, but it can also be a discrete differentiation of first

or second order. This minimization problem bases on the tradeoff between both

accuracy, i.e., a small sum of square error, and not too high in complexity. This

tradeoff is established through the penalty parameters γ2. If γ2 ≥ 0, then the set of

feasible solutions becomes smaller, and the minimum value of ‖Gδ − d‖22 increases.

If γ2 ≈ 0, then the set of feasible models and the minimum value of ‖Lδ‖22 decreases.

This regularization reduces the complexity of the model. The minimization problem

above is called a Tikhonov regularization problem. As an alternative to our penal-

ization approach, the regularization term ‖Lδ‖22 can be bounded by an inequality

constraint. This optimization problem can be turned to a conic quadratic program-

ming (CQP) problem for finding step δν and also next iterate θν+1 = θν + δν . In

order to determine step δ, with a suitable and adaptive choice of an upper bound
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M , the CQP can be written as [25, 51, 52]:

min
θ

∥∥(∇η(θ)∇Tη(θ) + λI k)δ − (−∇η(θ)η(θ))
∥∥2

2
, subject to ‖Lδ‖22 ≤M,

(2.1.22)

This minimization problem can be written as a CQP with linear objective function

t and two ice-cream cones [47]:

min
t,θ

t, (2.1.23)

subject to
∥∥(∇η(θ)∇Tη(θ) + λI k)δ − (−∇η(θ)η(θ))

∥∥2

2
≤ t2, t ≥ 0,

‖Lδ‖22 ≤M.

The general problem form for CQP is

min
x

cTx , subject to ‖D ix − d i‖ ≤ pT
i x − q i (i = 1, 2, ..., k). (2.1.24)

The optimization problem (2.1.22) is such a CQP with

c = (1,0 T
k )T , x = (t, δT )T , D1 = (0 k, Ā), d 1 = −∇η(θ)η(θ), p1 = (1, 0, ..., 0)T ,

δ1 = 0, D2 = (0 k,Lk×k), d 2 = 0 k, k 2 = 0 k+1 and δ2 = −
√
M1.

CQP and Tikhonov regularization will be introduced in detail in the next sections

of this study. There are also other approaches for solving NLR models such as the

methods of steepest descent, fractional increments, Marquardt’s compromise. These

are modification and refinements of the Gauss-Newton iteration method [2].

2.1.3 Generalized Linear Model

Both linear and nonlinear regression models are unified under the framework of

generalized linear models (GLMs). This approach is used when the assumptions of

normality and constant variance are not satisfied. It enables the incorporation of

nonnormal response distributions [44]. It allows the mean of a dependent variable,

Y , to depend on a linear predictor through a nonlinear link function and also allows

the probability distribution of Y , to be any member of an exponential family of
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distributions. Many widely used statistical models belong to GLMs. These include

classical linear models with normal errors, logistic and probit models for binary data,

and log-linear models for multinomial data and many other useful statistical models

such as the Poisson, binomial, Gamma, and normal distribution can be formulated

as GLMs by the selection of an appropriate link function and response probability

distribution.

A GLM has the following basic structure

h(µi) = x T
i β,

where µi = E(Yi), h is a smooth monotonic “link function”, x i is the input variable of

predictors, and β is a vector of an unknown parameters. In addition, a GLM usually

makes the distributional assumption that the response variables Yi are independent

and can have any distribution from exponential family density of the form

Yi ∼ fYi(yi, θi, φ) = exp

{
θiyi − bi(θi)

ai(φ)
+ ci(yi;φ)

}
(i = 1, 2, ..., N), (2.1.25)

where ai, bi and ci are arbitrary functions, φ is an arbitrary “scale” parameter and

θi is called a natural parameter. It can also be obtained a general expression for the

mean and variance of dependent variable Yi using log likelihood of θi, µi = E(Yi) =

b
′
i(θi) and V ar(Yi) = b

′′
i (θi) · ai(φ). Generally, ai(φ) is defined as ai(φ) := φ/wi, and

V ar(Yi) = V ar(µi) · φ, where V ar(µi) := b
′′
i /wi. Here, the symbol “ ′ ” is used for

differentiation [57].

2.1.4 Nonparametric Regression Models

The general nonparametric regression model is of the form

y = f(x ) + ε,

where x = (x1, x2, ..., xk)
T . The object of traditional regression analysis is to es-

timate parameters of the model, while the aim of nonparametric regression is to

estimate the regression function f directly [18, 19]. In nonparametric regression, it
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is implicitly assumed that f is a generally smooth, continuous function and in the

model the error term ε has zero mean and constant variance σ2. However, in some

cases, it can be nonsmooth [18, 44].

The additive regression model,

y = β0 + f1(x1) + f2(x2) + ...+ fk(xk) + ε,

where β0 is the unknown bias (intercept) and the partial regression functions fj (j =

1, 2, ..., k) are assumed to be smooth. Both β0 and the functions fj (j = 1, 2, ..., k)

are to be estimated from the data.

Variations of the additive regression models are the semiparametric regression

model, in which predictor variables are “additively” separated by the unknown func-

tions like:

y = β0 + β1x1 + f2(x2) + ...+ fk(xk) + ε,

or interactions of some predictor variables are expressed in unknown functions that

appear as higher-dimensional terms such as:

y = β0 + f12(x1, x2) + f3(x3) + ...+ fk(xk) + ε.

These models are also extended to generalized nonparametric regression [18].

In addition to these nonparametric regression models, there are same other models

such as projection-pursuit regression, Classification and Regression Trees (CART )

and Multivariate Adaptive Regression Splines (MARS ) [18]. In MARS, functions

are multiplicative nature and nonsmooth.

The nonparametric regression models mentioned above are estimated by using

three common methods of nonparametric regression. These are: (i) kernel estima-

tion, (ii) local-polynomial regression being a generalization of kernel estimation, and

(iii) smoothing splines [18].
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2.1.5 Additive Models

Regression models, especially linear ones, are very important in many application

areas. However, the traditional linear models often fail in real life since many effects

are generally nonlinear. To characterize these effects, flexible statistical methods

like nonparametric regression must be used (Fox, 2002) [18]. However, if the num-

ber of independent variables is large in the models, many forms of nonparametric

regression do not perform well. It is also difficult to interpret nonparametric re-

gression depending on smoothing spline estimates. To overcome these difficulties,

additive models are used. These models estimate an additive approximation of the

multivariate regression function.

If the data consist of N realizations (x i, yi) (i = 1, 2, ..., N) of random variable

y at k design values, then the additive model (AM) takes the following form:

y = β0 +
k∑
j=1

fj(xj) + ε.

Here, β0 is the intercept, input data values are represented by xj (j = 1, 2, ..., k)

and x = (x1, x2, ..., xk)
T . The functions fj (j = 1, 2, ..., k) are mostly considered

to be splines, i.e., piecewise polynomial. Since they can have too strong or early

asympototic towards ±∞, they do not satisfy for data fitting.

Additive models have a strong motivation as a useful data analytic tool. Each

function is estimated by an algorithm proposed by Friedman and Stuetzle (1981)

[9] and called backfitting (or Gauss-Seidel) algorithm. As the estimator for β0, the

arithmetic mean (average) of the output data is used:

β̂0 = ave(yi|i = 1, ..., N) := (1/N)
N∑
i=1

yi.

This procedure depends on the partial residual against xij:

rij = yi − β̂0 −
k∑
j=1

f̂κ(xiκ) (j 6= κ),
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and consists of estimating each smooth function by holding all other ones fixed [11].

2.1.6 Generalized Additive Models

Generalized Additive Models (GAMs) are extended forms of the additive models.

They belong to modern techniques from statistical learning and they are applicable

in many areas of predictions. For identifying and characterizing nonlinear regres-

sion effects, GAMs provide more flexible statistical methods. Having k covariates

x1, x2, ..., xk, comprised by the k-tuple x = (x1, x2, ..., xk)
T , and a response y to the

input x is assumed to have exponential family density hy(y, α,$) with the mean

µ = E(y|x1, x2, ..., xk) linked to the predictors through a link function G = Pr(y−1|x)
Pr(y−1|x) .

Examples of link functions are logit link function, the probit link function and iden-

tity link function. In addition, α is called the natural parameter and $ is the

dispersion parameter.

In a regression setting, GAMs have the following form:

η(x ) = G(µ) = β0 +
k∑
j=1

fj(xj),

where the functions fj are unspecified (“nonparametric”) and χ := (β0, f1, ..., fk)
T

is the unknown entire parameter vector to be estimated. The incorporation of β0 as

an average outcome allows to assume E(fj(xj)) = 0 (j = 1, 2, ..., k) [25].
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2.2 Background

2.2.1 Tikhonov Regularization

Problems whose solution do not exist, or which is not unique or not stable under

perturbations on data are called ill-posed [2]. Tikhonov regularization belongs to

the most commonly used methods of making these problems well-posed (regular or

stable) in some fields, it is also known as ridge regression. The Tikhonov solution

can be expressed quite easily in terms of singular value decomposition (SVD) of the

coefficient matrix X of a regarded linear systems of equations

Xβ = y .

For a general linear LS problem there may be infinitely many solutions. If we

take into account that the data contain noise, in that situation, generally, noisy

data points cannot be fitted exactly. Then, it becomes evident that there may be

many solutions which can adequately fit the data in the sense that the Euclidean

distance ‖Xβ − y‖2 is the smallest. The discrepancy principle [2] can be used to

regularize the solution of a discrete ill-posed problem based on the assumption that

a reasonable level for δ = ‖Xβ − y‖2 is known. If the norm of the error in the data

or the norm of the solution of the error-free problem is available, a suitable value of

the parameter for Tikhonov regularization is considered and computed. Under the

discrepancy principle, all solutions with ‖Xβ − y‖2 ≤ δ are considered, and we

select the one from these solutions such that it minimizes the norm of β,

min
β
‖β‖2 such that ‖Xβ − y‖2 ≤ δ. (2.2.26)

In this minimization problem, any nonzero feature that appears in the regularized

solution increases the norm of β. These features exist in the solution because they

are necessary to fit the data. Therefore the mimimum of ‖β‖2 should ensure that

unneeded features do not appear in the regularized solution. While δ increases, the

set of feasible models expands, and the minimum value of ‖β‖2 decreases. It is
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possible to trace out this minimization problem by considering problems of the form

min
β
‖Xβ − y‖2 such that ‖β‖2 ≤ ε. (2.2.27)

As ε decreases, the set of all feasible solutions becomes smaller, and the minimum

value of ‖Xβ − y‖2 increases. In the second optimization problem, it is desired to

select the minimum norm solution among those parameter vectors which adequately

fit the data, because any important nonzero feature that appears in the regularized

solution must not be neglected to fit the data and unimportant data must be removed

by the regularization. Yet, there is also a third option in which we consider a

dampened LS problem of the form

min
β
‖Xβ − y‖22 + ϕ2 ‖β‖22 , (2.2.28)

arising when we apply the method of Lagrange multipliers to problem (2.2.27). Here,

λ = ϕ2 is the tradeoff parameter between the first and the second part.

These three problems have the same solution for some appropriate choice of the

values δ, ε, ϕ [2].

When plotted on a log-log scale, the curve of optimal values of ‖β‖22 versus

‖Xβ − y‖22 often has a characteristic L shape. This occurs because ‖β‖22 is a strictly

decreasing function of ϕ and ‖Xβ − y‖22 is a strictly increasing function of ϕ. The

sharpness of the “corner” varies from problem to problem but it is often well-defined.

Because of this, the curve is called an L-curve [24].

Above, different kinds of Tikhonov regularization represented by minimization

problems are discussed. These problems can be solved using the SVD [1]. However,

in many situation, it is preferred to obtain a solution which minimizes some other

measure of β, such as the norm of some first or second derivative of β. These

derivatives are given by first- or second- order difference quotients of β, regarded

as a function that is evaluated at discrete points enumerated by i and i+1. These

difference quotients approximate first- and second- order derivates; altogether they

are comprised by products Lβ of β with matrices L that represent the discrete

differential operators of first- and second- order, respectively. These matrices are
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of a band structure with values -1, 1 and 1, -2, 1 on the band [1]. Herewith, the

optimization problem takes the following from

min ‖Xβ − y‖22 + ϕ2 ‖Lβ‖22 . (2.2.29)

The optimization problem given in (2.2.28) is a special realization of optimization

problem of (2.2.29), namely, with L = I . Generally, (2.2.29) comprises higher-order

Tikhonov regularization problem which can be solved using generalized singular

value decomposition (GSVD) [1]. In many situations, to reach a solution that min-

imizes some other measures of β, such as the norm of the first or second derivative,

is preferred. In the first-order Tikhonov regularization, for solving the dampened LS

problem, the following L matrix is used:

L =



−1 1

−1 1 0

· · ·
0 −1 1

−1 1


.

In the second-order Tikhonov regularization,

L =



1 −2 1

1 −2 1 0

· · ·
0 1 −2 1

1 −2 1


is used. Here, Lβ is a finite-difference approximation proportional to the second

derivative of β, and inclusion of ‖Lβ‖22 into the joint minimization penalizes so-

lutions that are like a second derivative sense. In our study, the matrix L has a

different type (cf. Section 3). For all of these matrices and problems, MATLAB

Regularization Toolbox can be used [2].
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2.2.2 Conic Quadratic Programming

Some “generic” group of conic problems are of special interest both for theory

and applications. The cones in these problems are simple enough; therefore, it

can be described explicitly the dual cone, due to the general duality machinery

becoming algorithmic as in the linear programming (LP) case. In addition, in many

cases, this algorithmic duality machinery facilitates to understand the original model

better [47]. The well-known examples of generic conic problem are LP, semidefinite

programs and conic quadratic programming.

A generic conic problem can be written as follows:

min
x

cTx , where Ax −B ∈ K ,

associated with a cone K given as a direct product of m cones, each of them being

either a semidefinite or a second-order (Lorentz) cone:

K := S k1
+ × ...×S

kp
+ ×Lkp−1 × ...×Lkm ⊆ E := Sk1+ × ...×S

kp
+ ×Rkp−1 × ...×Rkm .

A conic quadratic (CQ) problem is a conic problem which can be shown as follows

[47]:

min
x

cTx subject to Ax − b ≥K 0 ,

for which the cone K is the direct product of several ice-cream cones. In case of

CQP, there are no semidefinite factors Ski+ ; therefore, K can be represented in the

following way:

K := Lk1 × ...× Lkr ⊆ E ,

and the k-dimensional ice-cream (second-order, Lorenz) cone Lk is as follows:

Lk :=
{
x = (x1, x2, ..., xk)

T ∈ Rk|xk ≥
√
x2

1 + x2
2 + ...+ x2

k−1

}
(k ≥ 2).

In general, a CQ problem is an optimization problem with linear objective function
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and finitely many “ice-cream constraints”

A
i
x − b i ≥Lki 0 (i = 1, ..., r).

Therefore, a CQ problem can be written as [47]:

min
x

cTx subject to A
i
x − b i ≥Lki 0 (i = 1, ..., r).

If we subdivide the data matrix, [A
i
, b i], as follows:

[A
i
, b i] =

[
D i d i

pT
i q i

]
,

where D i is of the size (ki − 1)× dim x , the problem can be written as follows:

min
x

cTx , subject to ‖D ix − d i‖2 ≤ pT
i x − q i (i = 1, 2, ..., r); (2.2.30)

This is the most explicit form that is used. In this form, D i are matrices of the

same row dimensions as x, d i are vectors of the same dimensions as the column

dimensions of the matrices D i, p i are vectors of the same dimensions as x and q i

are real numbers [47].

On Solution Methods for Conic Quadratic Programming

For solving convex optimization problems like LP, semidefinite programming,

geometric programming and, in particular, CQ problems, all of them being very im-

portant in DM, classical polynomial time algorithms can be applied. However, these

algorithms have some disadvantages since they use local information on the objec-

tive function and the constraints. For this reason, to solve “well-structured” convex

problems such as the aforementioned ones and, in particular, CQ problems, there

are interior point methods (IPM s) [48] which were firstly introduced by Karmakar

(1984) [29]. Let us consider an optimization problem given by

min
x

cTx , where x ∈ Ω ⊆ Rn. (2.2.31)
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IPM s classically base on the interior points of the feasible set Ω, which is assumed

to be closed and convex. Then, an interior penalty function (barrier) F (x ) is chosen,

well defined (smooth and strongly convex) in the interior of Ω and “blowing up” as

a sequences from the interior int Ω approches a boundary point of Ω:

x k ∈ int Ω (k ∈ N0), lim
k→∞

x k ∈ ∂Ω ⇒ F (x k)→∞ (k →∞). (2.2.32)

Now, we consider one parametric family of functions generated by our objective an

interior penalty function F t(x ) := tcTx + F (x) : int Ω → R. Here, the penalty

parameter t is assumed to be nonnegative. Under mild regularity assumptions,

• every function F t(·) attains its minimum over the interior of Ω, the minimizers

x ∗(t) being unique;

• the central path x ∗(t) is a smooth curve, and all its limiting points (as t→∞),

belong to the set of optimal solution of above optimization problem.

These algorithms have the advantage of employing the structure of the problem,

of allowing better complexity bounds for the indicated generic problems and ex-

hibiting a much better practical performance. For closer details about these IPMs,

we refer to [8]. In the so-called primal-dual IPMs, both the primal and the dual

problems and their variables are regarded (cf. Section 3), the joint optimality con-

ditions perturbed, parametrically solved and followed towards a solution along a

central path.

Complexity of Conic Quadratic Programming

A program from conic quadratic optimization:

min
x

cTx , subject to ‖D ix − d i‖2 ≤ pT
i x − q i, (i = 1, 2, ..., r), ‖x‖2 ≤ t

where the matrices D i are of the type ki × k, p i, x ∈ Rk and d i ∈ Rki . The data

of (2.2.30) can be presented in the way [47, 52]

Data((2.2.30)) := [r; k; k1; ...; kr; c; D1,d 1,p1, q1; ...,Dk,dk,pk, qk; t]
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and

Size((2.2.30)) := Data((2.2.30)) :=

(
r +

r∑
i=1

ki

)
(k + 1) + k + 3.

The arithmetic complexity of ε-solution is as follows:

Compl((2.2.30), ε) := O(1)(r + 1)1/2k

(
k2 + r +

r∑
i=1

k2
i

)
Digits((2.2.30), ε),

where

Digits((2.2.30), ε) := ln
((

Size((2.2.30)) + ‖Data((2.2.30))‖1 ε
2
)
/ε
)
,

is defined as the number of accuracy digits in an ε-solution to (2.2.30), referring to

the sum (or l1) norm [52]. Please note that complexity is often and differently is

used in this thesis. Here, definition of complexity is given by Arkadi Nemirovski

[47].

2.2.3 MOSEK

The MOSEK, which is a MATLAB add-on, is an optimization tool for solving

large-scale mathematical optimization problems [41]. MOSEK provides solvers for

optimization problems of the following types:

• linear problems,

• CQ problems,

• convex quadratic problems,

• general convex problems,

• mixed integer problems.

MOSEK has technical advantages [41]. For example, it can solve large-scale

problems. The problem size is only limited by the available memory. MOSEK

has an interior-point optimizer with basis identification. For its excellent speed
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and stability, the MOSEK interior-point optimizer is well known. Fine tuning of

algorithmic parameters to obtain good performance is needed. The software exploits

problem sparsity and structure automatically to obtain the best possible efficiency.

MOSEK also has both primal and dual simplex optimizers for LP. It has an efficient

presolver for reducing problem size before optimization. Moreover, MOSEK can also

deal with primal and dual infeasible problems in a systematic way. It can read and

write industry standard formats such as MPS, LP and XML, and includes tools for

infeasibility diagnosis and repair. Finally, it corrects sensitivity analysis for linear

problems [41].

MOSEK optimization tools also consist of interfaces that makes it easy to de-

ploy the functionality of MOSEK from programming languages such as C, C++,

MATLAB Toolbox, Java, NET, and Python [41].

2.2.4 Multiobjective Optimization

In classical optimization problems, there is a single objective function and the

goal is to find a solution that optimizes the objective function value. However,

many real life problems have many objectives and decisions should be made by

considering these objective functions simultaneously. Normally different objectives

are conflicting with each other and a solution that fulfills well in one objective will

not fulfill as well in other objectives. There are many solutions that do not perform

well each other in all objectives. It does not become clear which of these solutions

are better until the decision maker (DM) evaluates them.

A multiobjective problem (MOP) can be stated as follows

min Cx = (f1(x ), f2(x ), ..., fp(x ))T subject to x ∈ X ,

where x ∈ Rn is a feasible solution and X is the set of all feasible solutions. In this

problem, there are p objective functions to be minimized and C is a (p×n)-matrix.

The qth row of C corresponds to the qth objective function, fq(x ).

The point y = (y1, y2, ..., yp)
T ∈ Rp such that y = Cx is the outcome of the solu-

tion x ∈ X . The sets X is called decision space and Y = {y ∈ Rp|y = Cx ,x ∈ X }
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is called the objective (criterion) space.

A point y is called to dominate point y
′

if and only if yq ≤ y
′
q for all q and

yq < y
′
q for at least one q. If yq < y

′
q for all q then y is called to strictly dominate y

′
.

If there exists no y
′ ∈ Y such that y

′
dominates y , then y is called nondominated.

A point y is said to be weakly nondominated if and only if there is no point y
′ ∈ Y

such that yq > y
′
q for all q. The set of weakly nondominated points consists of all

nondominated points and some special dominated points.

The terms dominance and efficiency are equivalent of each other in the objective

and decision spaces, respectively. A solution x is said to be efficient (nondominated)

if and only if y = Cx . In other words, a feasible solution to an MOP is efficient

(nondominated) if no other feasible solution is at least as good for every objective

and strictly better in one. A solution x ∈ X is inefficient (dominated) if and only

if y = Cx . A solution x ∈ X is weakly efficient if and only if y = Cx is weakly

nondominated. We refer to Steuer (1986) [50] for an overview of the multiple criteria

optimization theory, methodology and applications. In Figure 2.1, while y1, y2, y3,

y4, y5, y6 and y7 are nondominated points, y8, y9 and y10 are dominated points.

Figure 2.1: Efficient frontier with dominated and nondominated points.
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chapter 3

METHODS

3.1 Multivariate Adaptive Regression Splines

3.1.1 Introduction into MARS

Multivariate Adaptive Regression Splines (MARS), developed in 1991 by the

well-known physicist and statistician Jerome Friedman (Friedman 1991) [20], is a

novel and powerful adaptive regression method from statistical learning. MARS

essentially constructs flexible models by introducing piecewise linear regressions.

The nonlinearity of the models is approximated by having different regression slopes

in the corresponding intervals of each predictor. The intervals underlying those

pieces are closed and non-overlapping except of their boundaries. In other words,

the slope of each regression line is allowed to change from one interval to another

one with the condition that there is a “knot” defined in between. Therefore, splines

are used rather than normal straight lines if there is a need. Predictors which are

included in the final model together with their respective knots are found via a fast

but intensive search procedure. Other than examining each individual predictor,

MARS also automatically searches for interactions between them in any degree [15].

The MARS method generates a model in a two-stage process: forward and back-

ward. In the first stage, MARS constructs an extra large number of basis functions

(BFs), which deliberately overfit the data. These BFs represent distinct intervals

of every predictor divided by knots, and in an intensive search, every possible knot

location is tested. The MARS model is actually, in each dimension, a linear sum-

mation of certain BFs, and interactions among them if needed. Then, some of the

BFs are removed as they contribute least to the overall performance. Therefore,

the forward construction initially includes many incorrect terms. In the backward
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pruning step, these erroneous terms are eventually excluded. Thus, the backward

step reduces the “complexity” of the model without degrading the fit to the data.

By allowing arbitrary shapes of BFs and their interactions, MARS has the capacity

of reliably tracking very complex data structures that often hide in high dimensions

[15].

In recent years, MARS has been successfully applied in many areas of science and

technology such as predicting object-oriented software maintainability [65], species

distribuions from presence-only data [17], gastro-intestinal absorption of drugs [13],

wastewater treatment [54], and predicting Acute Myocardial Infaction (AMI) mor-

tality [3]. In addition, MARS has applications in speech modeling [23], mobile radio

channels prediction [33], intrusion detection in information systems securty [42],

global optimum in structural design [11], determining the relationship between bio-

logical activities and HIV reverse transcriptase inhibitors [59], and detecting disease

risk relationship differences among subgroups [62]. MARS has also been employed

to simulate soil temparature [61], and pesticide transport in soils [63], to detect

genotype-environment interaction [62], to examine the impact of information tech-

nology investment an productivity [31], to model the relationship between retention

indices and molecular descriptors of alkanes [60]. Moreover, MARS is used for DM

on breast cancer pattern [8], credit scoring [36], and foreign exchange rate prediction.

In Chapter 5, we will also indicate application in the financial sector.

3.1.2 MARS Word by Word

The first word “multivariate” expresses that MARS is able to deal with multi-

dimensional data, examine individual features and possible interactions among them.

The second word “adaptive” simply means selective. MARS automatically deletes

certain number of predictors if they do not contribute enough to the performance

of the final model. Sometimes, this is also called feature selection [15].

The next word “regression” refers to the normally used statistical term, which
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is often represented as a general prediction function:

y = β0 +

p∑
j=1

βjxj,

where y is the target value, β0 is the constant term, βj are the set of coefficients, xj

are the predictor values.

The last word “splines” indicates a wide class of piecewise defined functions that

are used in applications requiring data interpolation and/or smoothing. In order to

develop a spline, the original space is divided into a conventional number of regions.

The boundary between regions is known as a knot. By obtaining a sufficient number

of knots, any shape can be well approximated [15].

3.1.3 The Approach

MARS is a nonparametric modeling approach versus the well-known global para-

metric modeling methods such as linear regression. In global and parametric ap-

proaches, a global parametric function which is fitted to the available data is used

to approximate the underlying relationship between a target variable and a set of

explanatory variables. While global parametric modeling methods are relatively

easy to improve and interpret, they have a limited flexibility and work well only in

the case where the true underlying relationship is close to the pre-specified approx-

imated function in the model. To overcome the shortcomings of global parametric

approaches, nonparametric models are developed locally over specific subregions

of the data; the data is searched for optimum number of subregions and a simple

function is optimally fit to the realizations in each subregion [64].

Let y be the dependent response, which can be continuous or binary, and let

x = (x1, x2, ..., xp)
T be a vector of predictor variables. The true relationship between

y and x can be described as

y = f(x1, x2, ..., xp) + ε

= f(x ) + ε,
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where f is an unknown function, and the error term ε is a white noise. The most

fundamental elements of MARS are BFs, as they are used to build the most essential

piecewise linear regression. The following two functions are truncated functions,

where x ∈ R [9]:

(x− t)+ :=

{
x− t, if x > t,

0, otherwise,
(t− x)+ :=

{
t− x, if x < t,

0, otherwise.

Figure 3.1: The BFs (x− t)+ and (t− x)+ used by MARS [25].

For both forms, let us consider a functional value x∗. In the first form, x∗ is set

to 0 for all values of x up to some threshold value t and x∗ is equal to x − t for

all values of x greater than t. In the second form, x∗ is set to 0 for all values of

x greater than some threshold value t and x∗ is equal to t − x for all values of x

less than t [1]. Each function is piecewise linear, with a knot at the value t. These

trancated functions are linear nonsmooth splines. The two functions are called a

reflected pair. The idea is to form reflected pairs for each input xj with knots at

each observed value xi,j (i = 1, 2, ..., N ; j = 1, 2, ..., p) of that input. Therefore, the

collection of BFs can be written as:

C := {(xj − t)+, (t− xj)+| t ∈ {x1,j, x2,j, ..., xN,j} , j ∈ {1, 2, ..., p}} .

If all of the input values are distinct, there are 2Np BFs altogether. It should be

noted that each BF depends only on a single xj [25].

The usual method for generalizing spline fitting in higher dimensions is to em-
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ploy BF that are the tensor products of univariate spline functions. Therefore,

multivariate spline BFs take the following form:

Bm(x) :=
Km∏
k=1

[skm.(xv(km) − tkm)]+,

where Km is the total number of truncated linear functions in the mth BF, xv(km)

is the input variable corresponding to the kth truncated linear function in the mth

basis function, tkm is the corresponding knot value and skm ∈ {±1}.
The model-building strategy is similar to a forward stepwise linear regression;

however, instead of using the original inputs, it is allowed to use functions from the

set C and their products. Thus, the model has the form

f̂(x) = c0 +
M∑
m=1

cmBm(x) + ε,

where M is the set of BFs in the current model and c0 is the intercept [15].

Given some choices for the Bm, the coefficients cm are estimated by minimizing

the RSS, that is also made in standard linear regression. To generate the model,

the most important issue is the construction of the functions Bm. The construction

of the model starts with only the constant function B0(x) = 1, and all functions in

the set C are candidate functions.

The following functions are possible forms of BFs Bm(x ) [32]:

• 1,

• xj,

• (xj − tk)+,

• xlxj,

• (xj − tk)+xl,

• (xj − tk)+(xl − th)+.
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In the MARS algorithm, each BF can not include the same input variables. Thus,

above BFs which are obtained from two multiplied BFs use different input variables

such as xj, xl and tk, th are their corresponding knots. At each stage, a new BF pair

is all products of a function Bm(x ), in the model set M with one of the reflected

pairs in C. Then, the term below is added to the model set M:

ĈM+1Bl(x )(xj − t)+ + ĈM+2Bl(x )(t− xj)+;

this produces the largest decrease in training error. Here, ĈM+1 and ĈM+2 are coeffi-

cients estimated by LS, along with all the other M+1 coefficients in the model. The

process is continued until the model setM contains some preset maximum number

of terms. This process means that the model setM is iteratively (recursively) built

up [25].

For example, the following BFs are possible candidates [32]:

• xj, j = 1, 2, ..., p,

• (xj − tk)+, if xj is already in the model,

• xlxj, if xl and xj are already in the model,

• (xj − tk)+xl, if xlxj and (xj − tk)+ are already basis functions,

• (xj − tk)+(xl− th)+, if (xj − tk)+xl and (xl− th)+xj are already in the model.

At the end of this process, a large model is obtained. This model typically overfits

the data, and then a backward deletion procedure is started. In this pruning step, the

term whose removal causes the smallest increase in residual squared error is deleted

from the model at each stage. This process produces an estimated best model f̂M

of each size (number of terms) M . In order to estimate the optimal value of M , for

computational savings, the MARS procedure uses generalized cross-validation. This

criterion, also known as lock of fit criterion, is defined as [20]

LOF (f̂M) = GCVFriedman :=
1

N

N∑
i=1

(yi − f̂M(xi))
2/(1−C(M)/N)2,

C(M) = trace(B(BTB)−1BT ) + 1,
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where there are N number of data samples, C(M) is the cost penalty measures of a

model containing M BFs, and B is an (M×N)-matrix. Indeed, C(M) is the number

of parameters being fit. The numerator is the common RSS, which is penalized by

the denominator. This denominator accounts for the increasing variance in the case

of increasing the model complexity.

There are different representations of C(M). One of them is: C(M) = r + cK.

Here, r is linearly independent BFs in the model, and K represents the number of

knots which are selected in the forward process and, the quantity c shows a cost for

each BF optimization and generally, c = 3 [25]. If the model is additive, a penalty

of c = 2 is used. A smaller C(M) generates a larger model with more BFs, a larger

C(M) creates a smaller model with less BFs. Using lack of fit criteria, the best

model along the backward sequence that minimizes GCVFriedman is reached [15, 25].

MARS uses piecewise linear BFs, and it has a particular model strategy. A key

property of the piecewise linear BFs is their ability to operate locally; they are zero

over part of their range. When they are multiplied together, as in Figure 3.2, the

result is nonzero only over the small part of the factor space where both component

functions are nonzero. As a result, the regression surface is built up by using nonzero

components locally - only where they are needed. On the other hand, the use of

other BFs such as polynomials, would produce a nonzero product everywhere, and

would not work as well.

Figure 3.2: Two-way interaction basis fnctions [25].
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In Figure 3.2, the function h(X1, X2) = (X1−x51)+(x72−X2)+ is resulting from

multiplication of two piecewise linear MARS BFs. The forward modeling strategy in

MARS is hierarchical. Since multiway products are built up from products involving

terms already in the model. A high-order interaction only exists if some of its lower

order components exist as well. For example, a four-way product can only be added

to the model if one of its three-way components is already in the model. This is a

reasonable working assumption and avoids the search over an exponentially growing

space of alternatives [25].

There is one limitation put on the formation of MARS model terms: each input

can appear at most once in a product. This prevents the formation of higher-order

powers of an input, which increases or decreases too sharply near the boundaries of

the factor space. Higher order powers can be approximated in a more stable way

with piecewise linear functions.

Enabling to set an upper limit on the order of interaction is a useful option in the

MARS procedure. For example, choosing two as a limit allows pairwise products of

piecewise linear functions but not three- or higherway products. This can be helpful

to interpret the final model. An upper limit of one results in an additive model [25].

3.1.4 MARS Software Overview

The MARS models in this study are fitted using MARS (Version 2, Salford

Systems, San Diego, Calif., USA). MARS allows the user to set control parameters

to explore different models and find the “best” model. The maximum number of

knots is determined by trial and error; the maximum number of interactions can

be more than the degree of two (2-way interaction). The MARS package developed

by Salford Systems is avalible at [9]. It is a well designed piece of software that

implements MARS technique with friendly graphical user interface.

Penalty on added variables results in MARS to prefer to reusing of variables al-

ready in the model over adding new variables. As the penalty increases, MARS au-

tomatically generates new knots in existing variables of generates interaction terms

in involving existing variables [40]. Although the minimum number of observations

between knots is very useful for continuous variables, it is not useful for discrete
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variables with only a few distinct values. By default, MARS allows to create a knot

at every distinct observed data value, which allows the MARS regression to change

slope or direction anywhere and as often as the data dictate [40]. The search speed

parameter can be set one to five and its default value is 4. It is suggested by MARS

(2001) that the search speed parameter be set to four for real-world problems, and

the use of search speed parameter of three, four, or five do not change the models

[58].

After setting all the parameters correctly, MARS will yield the final model in a

rather short time. There are lots of result evaluations provided: R2, Mean Square

Error (MSE), ANOVA, f -value, t-value, p-value, RSS, variable importance measure-

ment assessed by observing the decrease in performance when one is removed from

the model, etc.. Moreover, various result illustrations are also available: the final

model consists of a number of specific BFs, gain and lift charts, curve and surface

plots, etc.. In addition, a previously yielded model can be applied to a new dataset.

Therefore, the MARS package is considered as very powerful as it takes in various

preferences, criteria, constraints, and control parameters for the user [15].

3.1.5 MARS vs. Other Algorithms

The explanation given till now provides a complete picture of how MARS works.

Although it is an extension of Classification and Regression Trees CART, MARS

is normally not presented in decision tree (DT) format. The similarity is mainly

on the partitioning of intervals, where two symmetric BFs are created at the knot

location. However, MARS differs from decision tree techniques such as CART and

CHAID since it assigns a coefficient (a slope) to each part. In other words, while

DT techniques use step functions to model the dependent variable and this causes a

discontinuous models, MARS uses piecewise linear functions which are continuous.

This produces continuous models which provides a more effective way to model

nonlinearities (De Veaux et al., 1993) [12].

MARS is a flexible regression technique that uses a modified recursive partition-

ing strategy for simplifying high-dimensional problems. Although recursive parti-

tioning regression (RPR) is a powerful method, it has some shortcomings such as
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discontinuity at the subregion boundaries. MARS overcomes these limitations [64].

When compared with other typical modeling techniques such as multivariate

linear regression models, regression tree models, support vector results, MARS has

a better prediction accuracy. Moreover, the artificial neural network has limitations

like a long training process, interpretation difficulties of the model and application

in some problems. MARS has also the capability to overcome these problems [65].

Conventional statistical methods such as regression can handle interactions terms,

but this is not easy in practice since it requires trying many combinations of the

variables in the data set. In fact, it can be computationally infeasible. MARS

automatically looks for suitable interactions between independent variables, which

makes it in particular preferable whenever there is a large number of interacting

variables.

The MARS methodology has a risk of overfitting because of very exhaustive

search that is conducted to identify nonlinearities and interactions. There are pro-

tections against overfitting such as setting a lower maximum number of BFs and a

higher “cost” per knot [20].

In conclusion, although MARS has this limitation, it offers a number of advan-

tages. For example, MARS is capable of identifying a relatively small number of

predictor variables which are complex transformations of initial variables. It also en-

ables to discover nonlinearities that may exist in the relationship between response

and predictor variables. Another advantage of MARS is that it identifies inter-

actions, and also produces graphs that help visualize and understand interactions

[14].

In the next section, we will present an own contribution to the theory of MARS by

the use of modern continuous optimization. In fact, while in the explanations given

in this section different elements of a model-free approach were used, especially, via

GCV in the backward stepwise algorithm, we are going now to turn to an integrated

model-based approch. For this one, continuous optimization will serve us, in the

form of a penalized optimization problem and, then, a conic quadratic optimization

problem. By this we will arrive at a new, alternative version of MARS, called

C-MARS (“C” standing for conic, but also reminding us of continuous and

convex ).
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3.2 Conic Multivariate Adaptive Regression

Splines

3.2.1 Multivariate Adaptive Regression Splines Method Re-

visited by Tikhonov Regularization

Multivariate Adaptive Regression Splines (MARS ) is a method to estimate gen-

eral functions of high dimensional arguments given sparse data [20]; it has an in-

creasing number of applications in many areas of science, economy and technology.

At the same time it is a research challenge, to which this present thesis wishes

to contribute, especially, by means of using continuous optimization theory. We

shall mostly refer to a regression formulation, but also classification will become

addressed. The finitely many data underlying may base on different types of exper-

iments, questionnaires, records or a preprocessing of information by clustering, etc.;

they can also be obtained with different kinds of technologies.

MARS is an adaptive procedure because the selection of BFs is data-based and

specific to the problem at hand. This algorithm is a nonparametric regression proce-

dure that makes no specific assumption about the underlying functional relationship

between the dependent and indepentent variables. It is very useful for high dimen-

sional problems and shows a great promise for fitting nonlinear multivariate func-

tions. A special advantage of MARS lies in its ability to estimate the contributions

of the BFs so that both the additive and the interactive effects of the predictors are

allowed to determine the response variable.

For this model an algorithm was proposed by Friedman (1991) [20] as a flexible

approach to high dimensional nonparametric regression, based on a modified recur-

sive partitioning methodology. The above explanations are given in detail in the

previous section. In this section, we introduce a modified version of MARS called

Conic Multivariate Adaptive Regression Splines (C-MARS). Here, “C” means not

only the word conic but also convex and continuous. For our explanations on

C-MARS, we prefer the following notation for the piecewise linear BFs:

c+(x, τ) = [+(x− τ)]+, c−(x, τ) = [−(x− τ)]+, (3.2.1)
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where [q]+ := max {0, q} and τ is an univariate knot. Each function is piecewise

linear, with a knot at the value τ , and it is called a reflected pair. For a visualization

see Figure 3.3:

Figure 3.3: Basic elements in the regression with MARS [56].

The points in this figure illustrate the data (x̄ i, ȳi) (i = 1, 2, ..., N) composed

of a p-dimensional input specification of the variable x and the corresponding one-

dimensional response which specify the variable y.

Let us consider the following general model on the relation between input and

response that we introduced in the Subsection 3.1.3:

Y = f(X ) + ε, (3.2.2)

where Y is a response variable, X = (X1, X2, ..., Xp)
T is a vector of predictor vari-

ables and ε is an additive stochastic component which is assumed to have zero

mean and finite variance. The goal is to construct reflected pairs for each input Xj

(j = 1, 2, ..., p) with p-dimensional knots τ i = (τi,1, τi,2, ..., τi,p)
T at or just nearby

each input data vectors x̄ i = (x̄i,1, x̄i,2, ..., x̄i,p)
T of that input (i = 1, 2, ..., N). Such

a nearby placement means a slight modification made in this study. In the previous

section, the knots’ values are presented as equal to input values. Indeed, we may

without loss of generality assume that τi,j 6= x̄i,j for all i and j, in order to prevent

from nondifferentiability in our optimization problem later on. This assumption is

also implied into Figure 3.3. Actually, we could even choose the knots τi,j more far
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away from the input values x̄i,j if any such a position promises a better data fitting.

In compact matrix notation, τi,j and x̄i,j can be comprised as follows:

(τi,j)i=1,2,...,N
j=1,2,...,p

=


τ1,1 τ1,2 · · · τ1,p

τ2,1 τ2,2 · · · τ2,p
...

. . . . . .
...

τN,1 τN,2 · · · τN,p

 , (x̄i,j)i=1,2,...,N
j=1,2,...,p

=


τ1,1 τ1,2 · · · τ1,p

τ2,1 τ2,2 · · · τ2,p
...

...
. . .

...

τN,1 τN,2 · · · τN,p

 .

After these preparations for C-MARS, let use below formulation for the set of BFs:

℘ := {(Xj − τ)+, (τ −Xj)+ | τ ∈ {x1,j, x2,j, ..., xN,j} , j ∈ {1, 2, ..., p}} . (3.2.3)

If all of the input values are distinct, there are 2Np BFs altogether. Thus, we

can represent f(X ) by a linear combination which is successively built up by the

set ℘ and with the intercept θ0 such that (3.2.2) takes the form

Y = θ0 +
M∑
m=1

θmψm(X ) + ε. (3.2.4)

Here, ψm (m = 1, 2, ..,M) represents a BF from ℘ or products of two or more such

functions, ψm is taken from a set of M linearly independent basis elements, and θm

is the unknown coefficient for the mth BF (m = 1, 2, ..,M) for the constant 1, m

equals to zero. A set of eligible knots τi,j is assigned separately for each input variable

dimension and is chosen to approximately coincide with the input levels represented

in the data. Interaction BFs are created by multiplying an existing BF with a

truncated linear function involving a new variable. In this case, both the existing

BF and the newly created interaction BF are used in the MARS approximation.

Provided the observations represented by the data (x̄ i, ȳi) (i = 1, 2, ..., N) the form

of the mth BF is as follows:

ψm(x ) :=
Km∏
j=1

[sκmj · (xκmj − τκmj )]+, (3.2.5)

where Km is the number of truncated linear functions multiplied in the mth BF,
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xκmj is the input variable corresponding to the j th truncated linear function in the

mth BF, τ κmj is the knot value corresponding to the variable xκmj and sκmj is the

selected sign +1 or -1. A lack of fit criterion is used to compare the possible BFs.

The search of new BFs can be restricted to interactions of a maximum order. For

example, if only up to two-factor interactions are permitted, then Km ≤ 2 would be

restricted in.

The first fundamental drawback of recursive partitioning strategies like CART

[7] which uses indicator functions, is the lack of continuity, which affects the model

accuracy. Secondly, the recursive partitioning often results in a poor predictive

ability for even low-order performance functions when new data are introduced. The

MARS method overcomes these two problems of recursive partitioning regression to

increase accuracy. For this reason, the MARS algorithm is a modifed recursive

partitioning algorithm which has important advantages compared to other recursive

partitioning algorithms.

The MARS algorithm for estimating the model function f(x ) consists of two

algorithms (Friedman 1991) [20]:

(i) The forward stepwise algorithm: Here, forward stepwise search for the BF

starts with the constant BF, the only one presents initially. At each step, the split

that minimizes some “lack of fit” from all the possible splits on each BF is chosen.

The process stops when a user-specified value Mmax is reached. At the end of this

process, we have a large expression given in (3.2.4). This model typically overfits

the data and so a backward deletion procedure is applied.

(ii) The backward stepwise algorithm: The purpose of this algorithm is to prevent

from overfitting by decreasing the complexity of the model without degrading the

fit to the data. Therefore, the backward stepwise algorithm involves removing from

the model such BFs that contribute to the smallest increase in the RSS error at each

stage, producing an optimally estimated model f̂α with respect to each number of

terms, called α. Note here that α expresses some complexity of our estimation. To

estimate the optimal value of α, generalized cross-validation can be used which shows

the lack of fit when using MARS. For our explanations on C-MARS, we prefer to

use the following notation for this criterion which is also mentioned in the previous
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section:

GCV :=
1

N

N∑
i=1

(yi − f̂α(xi))
2

(1−M(α)/N)2
, (3.2.6)

where M(α) := u + dK , α depending on (u, d,K) [10]. Here, N is the number of

sample observations, u is the number of linearly independent BFs, K is the number

of knots selected in the forward process, and d is a cost for BF optimization as

well as a smoothing parameter for the procedure. We do not employ the backward

stepwise algorithm to estimate the function f(x). At its place, as an alternative,

we propose to use penalty terms in addition to the LSE to control the lack of fit

from the viewpoint of the complexity of the estimation. We shall explain this below.

Because of this new treatment offered, we do not need to run the backward stepwise

algorithm.

3.2.2 The Penalized Residual Sum of Squares Problem

Let us use the penalized residual sum of squares (PRSS) with Mmax BFs having

been accumulated in the forward stepwise algorithm. For the MARS model, PRSS

has the following form:

PRSS :=
N∑
i=1

(yi − f(x̄ i))
2 +

Mmax∑
m=1

λm

2∑
|α|=1

α=(α1,α2)T

∑
r<s

r,s∈Vm

∫
θ2
m

[
Dα
r,sψm(tm)

]2
dtm,

(3.2.7)

where Vm :=
{
κmj |j = 1, 2, ..., Km

}
is the variable set associated with the mth basis

function ψm, tm =
(
tm1

, tm2
, ..., tm

Km

)T
represents the vector of variables which

contribute to the mth basis function ψm. The parameter λm are nonnegative

(λm ≥ 0), and in the role of penalty parameters (m = 1, 2, ...,Mmax). While the

integrals of the second-order derivatives measure the energy (unstability, complexity)

inscribed into the model (via the model functions) [25, 51], the integral of the first-

order derivatives measure the flatness of the model functions. Furthermore, we refer

to

Dα
r,sψm(tm) :=

∂αψm

∂α1tmr ∂α2tms
(tm)
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for α = (α1, α2)
T , |α| := α1 +α2, where α1, α2 ∈ {0, 1}. Indeed, we note that in any

case where αi = 2, the derivative Dα
r,sψm(tm) vanishes, and by addressing indices

r < s, we have applied Schwarz’s Theorem. In order not to overload the exposition,

we still accept a slight flaw in the notation since in case of |α| = 1 and Km > 1 the

integral terms become mentioned Km times by the pair r < s. By redefining λm by

λm/Km, this little deficiency could be easily corrected. The reader may choose a

notation of his or her preference. Furthermore, for convenience, we use the integral

symbol “
∫

” as a dummy in the sense of
∫
Qm

, where Qm is some appropriately large

Km-dimensional parallelpipe where the integration takes place. We shall come back

to this below. Finally, since all the regarded derivatives of any function ψm exist

except on a set of measure zero, the integrals and entire optimization problems are

well defined [53].

Our optimization problem bases on the tradeoff between both accuracy, i.e., a

small sum of error squares, and not too high a complexity. This tradeoff is established

through the penalty parameters λm. The goal on a small complexity encompasses

two parts.

Firstly, the areas where the base functions contribute to an explanation of the

observations, should be large. In the case of classification, this means that the

classes should be big rather than small. This aim is achieved by a “flat” model

which is the linear combination of the BFs, together with our wish to have small

residual errors; i.e., the model being “lifted” from the coordinate axes towards the

data points (x̄ i, ȳi) (i = 1, 2, ..., N). Here, the basic idea is to dampen the slope of

the linear parts of the BFs via the parameters θm, while still guaranteeing a quite

satisfactory goodness of data fitting. Secondly, we aim at stability of the estimation,

by taking care that the curvatures of the model function with its compartments

according to (3.2.4)-(3.2.5), are not so high and, hence, their oscillations is not so

frequent and intense. For closer information we refer to the paper of Taylan, Weber

and Beck (2007) [52]. Motivated in this way, both first- and second-order partial

derivatives of the model function f , better to say: of its additive components, enter

our penalty terms in order to keep the complexity of the LS estimation appropriately

low.
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In this study, we tackle that tradeoff by means of penalty methods, such as

regularization techniques [2], and by CQP [5, 16, 47].

If we take into account the representations (3.2.4) and (3.2.5) in (3.2.7), then

the objectice function (3.2.7) will be of the following form [53]:

PRSS =
N∑
i=1

(
ȳi − θ0 −

M∑
m=1

θmψm(x̄m
i )−

Mmax∑
m=M+1

θmψm(x̄m
i )

)2

+
Mmax∑
m=1

λm

2∑
|α|=1

α=(α1,α2)T

∑
r<s

r,s∈Vm

∫
θ2
m

[
Dα
r,sψm(tm)

]2
dtm, (3.2.8)

where x̄ i = (x̄i,1, x̄i,2, ..., x̄i,p)
T denotes any of the input vectors and

x̄m
i =

(
x̄i,κ1 , x̄i,κ2 , ..., x̄i,κKm

)T
stands for the corresponding projection vectors of x̄ i

onto those coordinates which contribute to the mth BF ψm, they are related with

the ith output ȳi. In matrix notation, the vectors x̄m
i (i = 1, 2, ..., N) for the mth

BF could also be compactly comprised as follows:

(
x̄m
i,κmj

)
i=1,2,...,N
j=1,2,...,Km

=


x̄m1,κm1 x̄m1,κm2 · · · x̄m1,κmKm
x̄m2,κm1 x̄m2,κm2 · · · x̄m2,κmKm

...
... · · · ...

x̄mN,κm1 x̄mN,κm2 · · · x̄mN,κmKm

 .

We recall that those coordinates are collected in the set Vm. Let us note that

the second-order derivatives of the piecewise linear functions ψm (m = 1, 2, ...,M)

and, hence, the penalty terms related are vanishing. Now, we can rearrange the

representation of PRSS as follows:
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PRSS =
N∑
i=1

(
yi − θTψ(d̄ i)

)2
+

Mmax∑
m=1

λm

2∑
|α|=1

α=(α1,α2)T

∑
r<s

r,s∈Vm

∫
θ2
m

[
Dα
r,sψ(tm)

]2
dtm, (3.2.9)

where ψ(d̄ i) :=
(
1, ψ1(x̄

1
i ), ..., ψM(x̄M

i ), ψM+1(x̄
M+1
i ), ..., ψMmax(x̄

Mmax
i )

)T
,

θ := (θ0, θ1, ..., θMmax)
T with the point d̄ i :=

(
x̄ 1
i , x̄

2
i , ..., x̄

M
i , x̄

M+1
i , ..., x̄Mmax

i

)T
in

the argument. In matrix notation, the vectors ψ(d̄ i) (i = 1, 2, ..., N) can be com-

pactly comprised as follows:

ψ(d̄ i) :=


1 ψ1(x̄

1
1) · · · ψM(x̄M

1 ) · · · ψMmax(x̄
Mmax
1 )

1 ψ1(x̄
1
2) · · · ψM(x̄M

2 ) · · · ψMmax(x̄
Mmax
2 )

...
... · · · · · · ...

1 ψ1(x̄
1
N) · · · ψM(x̄M

2 ) · · · ψMmax(x̄
Mmax
N )

 .

On the other hand, in matrix notation, the vector d̄ i (i = 1, 2, ..., N) could be

compactly comprised as a matrix in the following way,

d̄ :=


x̄ 1

1 x̄ 2
1 · · · x̄Mmax

1

x̄ 1
2 x̄ 2

2 · · · x̄Mmax
2

...
... · · · ...

x̄ 1
N x̄ 2

N · · · x̄Mmax
N

 .

To approximate the multi-dimensional integrals∫
Qm

θ2
m

[
Dα
r,sψ(tm)

]2
dtm ,

we use discretized forms of them instead [53]. For this purpose, our data point

(x̄ l, ȳl) (l = 1, 2, ..., N) with x̄ l ∈ Rn are given. In a natural way, these input data

x̄ l = (x̄l,1, x̄l,2, ..., x̄l,p)
T (l = 1, 2, ..., N) generate a subdivision of any sufficiently
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large parallelpipe Q of Rn which contains each of them as elements. Let Q be a

parallelpipe which encompasses all our input data; we represent it by

Q = [a1, b1]× [a2, b2]× ...× [ap, bp] =

p∏
j=1

Qj,

where Qj =: [aj, bj], aj < x̄l,j < bj (j = 1, 2, ..., p) (l = 1, 2, ..., N). Without loss

of generality, we may assume aj < x̄l,j < bj. For all j we reorder the coordinates

of the input data points: x̄lj1,j
≤ x̄lj2,j

≤ ... ≤ x̄ljN ,j
, where ljσ = 1, 2, ..., N (σ =

1, 2, ..., N ; j = 1, 2, ..., p), and x̄ljσ ,j is the jth component of x̄ljσ , the ljσ input vector

after reordering. Without loss of generality we may assume x̄ljσ ,j 6= x̄ljϕ,j for all

σ, ϕ = 1, 2, ..., N with σ 6= ϕ; i.e., x̄lj1,j
< x̄lj2,j

< ... < x̄ljN ,j
(j = 1, 2, ..., p). The

symbol “×” and “
∏

” are used for Cartesian product, and and “
∏

”is also used for

the multiplication of numbers [53].

Indeed, whenever “=” is attained for some coordinate, we would obtain subpar-

allelpipes of a lower dimension in the following integration process and its approxi-

mation, i.e., zero sets [53]. Let us denote

x̄lj0,j
:= aj, l

j
0 := 0; x̄ljN+1,j

:= bj, l
j
N+1 := N + 1.

Then,

Q =
N⋃

σj=0

p∏
j=1

[
x̄lj
σj
,j, x̄lj

σj+1
,j

]
.

Based on the aforementioned notation, we discretize our integrals according to

the following approximate relations:

∫
Q

f(t)dt ≈
∑

(σj)j∈{1,2,...,p}∈{0,1,2,...,N+1}p
f
(
x̄l1
σ1 ,1

, x̄l2
σ2 ,2

, ..., x̄lp
σp
,p

) p∏
j=1

(
x̄lj
σj+1

,j − x̄lj
σj
,j

)
.

In our study, that notation, subdivision and approximation needs to be done for all

[
Dα
r,sψm(tm)

]2
,

with the corresponding variables and lower dimensions of tm also. For this pur-

45



pose, we look at the projection of Q into RKm related with the special coordinates

of tm and we can take the subdivision of the corresponding Qm according to the

subdivision obtained for Q.

Then, if we apply this idea to our case, we write discretization form as∫
Qm

θ2
m

[
Dα
r,sψm(tm)

]2
dtm ≈

∑
(σj)j∈{1,2,...,p}∈{0,1,2,...,N+1}Km

θ2
m ·

[
Dα
r,sψm(x̄

l
κm1

σ
κm1

,κm1
, ..., x̄

l
κm
Km

σ
κm
Km

,κmKm

)

]2

.

Km∏
j=1

(
x̄
l
κm
j

σ
κm
j

+1,κmj

− x̄
l
κm
j

σ
κm
j
,κmj

)
.

Then, we can rearrange PRSS in the following form [53]:

PRSS ≈
N∑
i=1

(
yi − θTψ(d̄ i)

)2
+

Mmax∑
m=1

λm

2∑
|α|=1

α=(α1,α2)T

∑
r<s

r,s∈Vm

∑
(σκj )

θ2
m ·

[
Dα
r,sψm(x̄

l
κm1

σ
κm1

,κm1
, ..., x̄

l
κm
Km

σ
κm
Km

,κmKm

)

]2

.
Km∏
j=1

(
x̄
l
κm
j

σ
κj

+1,κmj

− x̄
l
κm
j

σ
κj
,κmj

)
, (3.2.10)

where (σκj)j∈{1,2,...,p} ∈ {0, 1, 2, ..., N + 1}Km . Let us introduce some more notation

related with the sequence (σκj) [53]:

x̂m
i =

(
x̄
l
κm1

σ
κm1

,κm1
, ..., x̄

l
κm
Km

σ
κm
Km

,κmKm

)
, ∆x̂m

i :=
Km∏
j=1

(
x̄
l
κm
j

σ
κj

+1,κmj

− x̄
l
κm
j

σ
κj
,κmj

)
. (3.2.11)

By (3.2.11), we can approximate PRSS as follows:

PRSS =
N∑
i=1

(
yi − θTψ(d̄ i)

)2

+
Mmax∑
m=1

λmθ
2
m

(N+1)Km∑
i=1


2∑

|α|=1

α=(α1,α2)T

∑
r<s

r,s∈Vm

[
Dα
r,sψm(x̂m

i )
]2
∆x̂m

i .

(3.2.12)

46



For a short representation, we can rewrite the approximate relation (3.2.10) as

PRSS ≈
∥∥y − ψ(d̄)θ

∥∥2

2
+

Mmax∑
m=1

λm

(N+1)Km∑
i=1

L2
imθ

2
m, (3.2.13)

where ψ(d̄) =
(
ψ(d̄ 1), ...,ψ(d̄N)

)T
is an (N × (Mmax + 1))-matrix and the squared

numbers L2
im are defined by their roots

Lim :=




2∑
|α|=1

α=(α1,α2)T

∑
r<s

r,s∈Vm

[
Dα
r,sψm(x̂m

i )
]2
∆x̂m

i


1/2

.

The first parts of PRSS equations in (3.2.12) and (3.2.13) are equal. We can

show as follows how the first part of the equation in (3.2.12) turns into the first part

of the PRSS equation in (3.2.13):

N∑
i=1

(
yi − θTψ(d̄ i)

)2
=

(
y1 − θTψ(d̄ 1)

)2
+(

y2 − θTψ(d̄ 2)
)2

+

...(
yN − θTψ(d̄N)

)2

=
[
y1 − θTψ(d̄1), y2 − θTψ(d̄ 2), · · · , yN − θTψ(d̄N)

]

y1 − θTψ(d̄ 1)

y2 − θTψ(d̄ 2)
...

yN − θTψ(d̄N)

 .

If we write the above equation in vector notation, we can get the following equation:

N∑
i=1

(
yi − θTψ(d̄ i)

)2
= (y −ψ(d̄ i)θ)T (y −ψ(d̄ i)θ) =

∥∥y −ψ(d̄ i)θ
∥∥2

2
.
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3.2.3 Tikhonov Regularization Applied

Now, we approach our problem PRSS as a Tikhonov regularization problem [2].

For this purpose we consider formula (3.2.13) again, arranging it as follows [53]:

PRSS ≈
∥∥y − ψ(d̄)θ

∥∥2

2
+

Mmax∑
m=1

λm

(N+1)Km∑
i=1

L2
imθ

2
m

=
∥∥y − ψ(d̄)θ

∥∥2

2
+

Mmax∑
m=1

λm
[
(L1mθm)2 + (L2mθm)2 + ...+ (L(N+1)Kmmθm)2

]
=

∥∥y − ψ(d̄)θ
∥∥2

2
+

Mmax∑
m=1

λm


[
L1mθm, L2mθm, · · · , L(N+1)Kmmθm

]


L1mθm

L2mθm
...

L(N+1)Kmmθm




=

∥∥y −ψ(d̄)θ
∥∥2

2
+

Mmax∑
m=1

λm ‖Lmθm‖22

=
∥∥y −ψ(d̄)θ

∥∥2

2
+ λ1 ‖L1θ1‖22 + λ2 ‖L2θ2‖22 + ...+

λMmax ‖LMmaxθMmax‖
2
2 , (3.2.14)

where Lm := (L1m, L2m, ..., L(N+1)Km ,m)T (m = 1, 2, ...,Mmax). But, rather than a

singleton, there is a finite sequence of the tradeoff or penalty parameters λ1, λ2, ..., λMmax

such that this equation is not yet a Tikhonov regularization problem with a single

such parameter. For this reason, let us make a uniform penalization by taking the

same λ for each derivative term, i.e., λ1 = λ2 = ... = λMmax =: λ, where λm ≥ 0

(m = 1, 2, ...,Mmax). Then, our approximation of PRSS can be rearranged as

PRSS ≈
∥∥y −ψ(d̄)θ

∥∥2

2
+ λ ‖Lθ‖22 , (3.2.15)

where L is a diagonal (Mmax + 1) × (Mmax + 1)-matrix with first column L0 =

0(N+1)Km and the other columns being the vectors Lm introduced above. Further-

more, θ is an ((Mmax + 1)× 1)-parameter vector to be estimated through the data
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points. Let us state explicitly [53]:

L :=


0 0 · · · 0

0 L1 · · · 0
...

...
. . .

...

0 0 ... LMmax

 .

Then, our PRSS problem looks as a Tikhonov regularization problem (2.2.29) with

ϕ > 0, i.e., λ = ϕ2 for some ϕ ∈ R [2].

Tikhonov regularization problem has multiple objective functions through a lin-

ear combination of
∥∥y −ψ(d̄)θ

∥∥2

2
and ‖Lθ‖22. We select the solutions such that

it minimizes both first objective function (
∥∥y −ψ(d̄)θ

∥∥2

2
) and second objective

function (‖Lθ‖22). Therefore, we can consider Tikhonov regularization problem as

a multiobjective problem. Indeed, our Tikhonov regularization problem combines

these two objective functions into a single functional form. This combination is a

weighted linear sum of the objectives. We set a weight by a penalty parameter λ.

The solutions are obtained by referring to such a given weighted sum. However,

coming up with meaningful combinations of weights can be challenging.
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3.2.4 An Alternative for Tikhonov Regularization Problem

with Conic Quadratic Programming

Construction of the Conic Quadratic Programming Problem

Let us tackle the Tikhonov regularization problem (3.2.15) with CQP which is

a continuous optimization program with its corresponding technique. We can easily

formulate PRSS as a CQP problem (please revisit Section 2). Indeed, based on an

appropriate choice of a bound M̄ we state the following optimization problem [53]:

min
θ

∥∥ψ(d̄)θ − y
∥∥2

2
(3.2.16)

subject to ‖Lθ‖22 ≤ M̄.

Let us underline that this choice of M̄ should be the outcome of a careful learning

process, with the help of model-free or model-based methods [25]. In (3.2.16), we

have the LS objective function
∥∥ψ(d̄)θ − y

∥∥2

2
and the inequality constraint function

−‖Lθ‖22+M̄ which is requested to be nonnegative for feasibility. Now, by a classical

epigraph argument, we equivalently write our optimization problems as follows [53]:

min
t,θ

t, (3.2.17)

subject to
∥∥ψ(d̄)θ − y

∥∥2

2
≤ t2, t ≥ 0,

‖Lθ‖22 ≤ M̄.

Please note that we have introduced a new variable, the hight variable [53]. Now,

equivalently again, our problem looks so:

min
t,θ

t, (3.2.18)

subject to
∥∥ψ(d̄)θ − y

∥∥
2
≤ t,

‖Lθ‖2 ≤
√
M̄.

Let us use modern methods of continuous optimization techniques, especially,

50



from CQP where we use the basic notation [52]:

min
x

cTx , subject to ‖D ix − d i‖ ≤ pT
i x − q i (i = 1, 2, ..., k). (3.2.19)

In fact, we see that our optimization problem is such a CQP program with

c = (1,0 T
Mmax+1)

T , x = (t,θT )T , D = (0N ,ψ(d̄)), d 1 = y , p1 = (1, 0, ..., 0)T ,

q1 = 0, D = (0Mmax+1,L), d 2 = 0Mmax+1, p1 = 0Mmax+2 and q2 = −
√
M̄.

In order to write the optimality condition for this problem, we firstly reformulate

the problem (3.2.18) as follows [53]:

min
t,θ

t, (3.2.20)

such that χ :=

[
0N ψ(d̄)

1 0 T
Mmax+1

][
t

θ

]
+

[
−y

0

]

η :=

[
0Mmax+1 L

0 0 T
Mmax+1

][
t

θ

]
+

[
0Mmax+1√

M̄

]
,

χ ∈ LN+1, η ∈ LMmax+2,

where LN+1, LMmax+2 are the (N + 1)- and (Mmax + 2)-dimensional ice-cream (or

second-order, or Lorentz ) cones, defined by:

LN+1 :=

{
x = (x1, x2, ..., xN)T ∈ RN+1 | xN+1 ≥

√
x2

1 + x2
2 + ...+ x2

N

}
(N ≥ 1).

The dual problem to the latter primal one is given by
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max (yT , 0)ω1 +
(

0 T
Mmax+1,−

√
M
)
ω2 (3.2.21)

such that χ :=

[
0TN 1

ψ(d̄) 0 T
Mmax+1

]
ω1 +

[
0 T
Mmax+1 0

LT 0Mmax+1

]
ω2 =

[
1

0Mmax+1

]
,

ω1 ∈ LN+1, ω2 ∈ LMmax+2.

Moreover, (t,θ,χ,η,ω1,ω2) is a primal dual optimal solution if and only if [53]

χ :=

[
0N ψ(d̄)

1 0 T
Mmax+1

][
t

θ

]
+

[
−y

0

]
,

η :=

[
0Mmax+1 L

0 0 T
Mmax+1

][
t

θ

]
+

[
0Mmax+1√

M̄

]
,

[
0 T
N 1

ψ(d̄) 0 T
Mmax+1

]
ω1 +

[
0 T
Mmax+1 0

LT 0Mmax+1

]
ω2 =

[
1

0Mmax+1

]
,

ωT1χ = 0, ωT2 η = 0,

ω1 ∈ LN+1, ω2 ∈ LMmax+2,

χ ∈ LN+1, η ∈ LMmax+2.

In order to provide with some fundamental facts on the solution methods for CQP

and convex problem classes beyond [53], we state the Subsection 2.2.2 of this thesis.
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3.3 Numerical Example for C-MARS

The data set that we used for our numerical example of C-MARS has five pre-

dictor variables (x1, x2, x3, x4, x5) and contains 32 observations (taken from Myers

and Montgomery (2002) [44] p. 71). Here, we write x as a generic variable in the

corresponding space Rl (l ∈ {1, 2, ..., 5}). Later, we will write x t1, t2, ... or t5. In

order to build the MARS model by trial and error we set the maximum number of

BFs allowed to five, i.e., Mmax = 5 and set the highest degree of interaction allowed

to be two. Then the number of maximum basis functions and interactions which are

constructed by using MARS version 2 developed by Salford Systems are as follows:

ψ1(x ) = max {0, x2 + 0.159} ,

ψ2(x ) = max {0,−0.159− x2} ,

ψ3(x ) = max {0, x4 + 1.517} ,

ψ4(x ) = max {0, x1 + 2.576} ∗max {0, x4 + 1.517} ,

ψ5(x ) = max {0, x5 + 1.562} ∗max {0, x4 + 1.517} .

The BFs ψ1 and ψ2 are the standard BFs and mirror image (reflected) BFs for the

predictor x2, respectively. The graphical representation of ψ1 and ψ2 is given in

Figure 3.4.

Figure 3.4: The graphical representation of BFs 1 and 2.
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The x2 value of −0.159 is found to be the knot point for the predictor x2. This

knot point is a value both for BFs ψ1 and ψ2.

For x4, there is only one standard BF ψ3, where the knot location has the value

−1.517. Figure 3.5 shows the BF ψ3:

Figure 3.5: The graphical representation of basis function 3 [39].

While the BF ψ4 uses the BF ψ3 to express the interaction between the variables

x1 and x4, the BF ψ5 uses the BF ψ3 to express the interaction between the input

variables x5 and x4. The interactions between the predictor variables are presented

in Figure 3.6 and Figure 3.7.
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Figure 3.6: The graphical representation of interactions between the predictor vari-
ables x1 and x4 [39].

Figure 3.7: The graphical representation of interactions between the predictor vari-
ables x4 and x5 [39].
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In order to prevent our optimization problem from nondifferentiability, we choose

the knot values very near to the input values of the data point. Below we select

knot values for corresponding BFs:

For ψ1:

τ16,2 = −0.159 , x̄16,2 = −0.1589 =⇒ τ16,2 6= x̄16,2.

For ψ2:

τ16,2 = −0.159 , x̄16,2 = −0.1589 =⇒ τ16,2 6= x̄16,2.

For ψ3:

τ1,4 = −1.517 , x̄1,4 = −1.5172 =⇒ τ1,4 6= x̄1,4.

For ψ4:

τ5,1 = −2.576 , x̄5,1 = −2.5759 =⇒ τ5,1 6= x̄5,1,

τ1,4 = −1.517 , x̄1,4 = −1.5172 =⇒ τ1,4 6= x̄1,4.

For ψ5:

τ28,5 = −1.5624 , x̄28,5 = −1.562 =⇒ τ28,5 6= x̄28,5,

τ1,4 = −1.517 , x̄1,4 = −1.5172 =⇒ τ1,4 6= x̄1,4.

The BFs given in (3.2.5), which are constructed for the numerical example, are
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looking as follows:

ψ1 : K1 = 1,

xκ1
1

= x2,

τκ1
1

= −0.159,

sκ1
1

= +1,

ψ1(t
1) =

K1∏
j=1

[
sκ1

1
· (xκ1

1
− τκ1

1
)
]

+

=
[
sκ1

1
· (xκ1

1
− τκ1

1
)
]

+
,

ψ2 : K2 = 1,

xκ2
1

= x2,

τκ2
1

= −0.159,

sκ2
1

= −1,

ψ2(t
2) =

K2∏
j=1

[
sκ2

1
· (xκ2

1
− τκ2

1
)
]

+

=
[
sκ2

1
· (xκ2

1
− τκ2

1
)
]

+
,

ψ3 : K3 = 1,

xκ3
1

= x4,

τκ3
1

= −1.517,

sκ3
1

= +1,

ψ2(t
3) =

K3∏
j=1

[
sκ3

1
· (xκ3

1
− τκ3

1
)
]

+

=
[
sκ3

1
· (xκ3

1
− τκ3

1
)
]

+
,
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ψ4 : K4 = 2,

xκ4
1

= x1, xκ4
2

= x4,

τκ4
1

= −2.576, τκ4
2

= −1.517,

sκ4
1

= +1, sκ4
2

= +1,

ψ4(t
4) =

K4∏
j=1

[
sκ4

j
· (xκ4

j
− τκ4

j
)
]

+

=
[
sκ4

1
· (xκ4

1
− τκ4

1
)
]

+
·
[
sκ4

2
.(xκ4

2
− τκ4

2
)
]

+
,

ψ5 : K5 = 2,

xκ5
1

= x5, xκ5
2

= x4,

τκ5
1

= −1.562, τκ5
2

= −1.517,

sκ5
1

= +1, sκ5
2

= +1,

ψ5(t
5) =

K5∏
j=1

[
sκ5

j
· (xκ5

j
− τκ5

j
)
]

+

=
[
sκ5

1
· (xκ5

1
− τκ5

1
)
]

+
·
[
sκ5

2
· (xκ5

2
− τκ5

2
)
]

+
.

The large model (3.2.4) for this numerical example is then obtained as follows:

Y = θ0 +
M∑
m=1

θmψm(x ) + ε

= θ0 + θ1ψ1(x ) + θ2ψ2(x ) + θ3ψ3(x ) + θ4ψ4(x ) + θ5ψ5(x ) + ε

= θ0 + θ1 max {0, x2 + 0.159}+ θ2 max {0,−0.159− x2}+ θ3 max {0, x4 + 1.517}

+θ4 max {0, x1 + 2.576} ∗max {0, x4 + 1.517}

+θ5 max {0, x5 + 1.562} ∗max {0, x4 + 1.517}+ ε.

For this numeric example, we can write the PRSS objective function in (3.2.7) as
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follows:

PRSS =
32∑
i=1

(yi − f(x̄ i))
2 +

5∑
m=1

λm

2∑
|α|=1

α=(α1,α2)T

∑
r<s

r,s∈Vm

∫
θ2
m

[
Dα
r,sψm(tm)

]2
dtm

=
32∑
i=1

(yi − f(x̄ i))
2 + λ1


2∑

|α|=1

α=(α1,α2)T

∑
r<s
r,s∈V1

∫
θ2
1

[
Dα
r,sψ1(t

1)
]2
dt1



+λ2


2∑

|α|=1

α=(α1,α2)T

∑
r<s
r,s∈V2

∫
θ2
2

[
Dα
r,sψ2(t

2)
]2
dt2



+λ3


2∑

|α|=1

α=(α1,α2)T

∑
r<s
r,s∈V3

∫
θ2
3

[
Dα
r,sψ3(t

3)
]2
dt3



+λ4


2∑

|α|=1

α=(α1,α2)T

∑
r<s
r,s∈V4

∫
θ2
4

[
Dα
r,sψ4(t

4)
]2
dt4



+λ5


2∑

|α|=1

α=(α1,α2)T

∑
r<s
r,s∈V5

∫
θ2
5

[
Dα
r,sψ5(t

5)
]2
dt5

 .

For the above numerical example, all evaluations of the notations Vm and tm

(m = 1, ..., 5) in the above equation are given below:
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V1 =
{
κ1
j |j = 1

}
= {2} , t1 = (t11)

T = (x2)
T ,

V2 =
{
κ2
j |j = 1

}
= {2} , t2 = (t21)

T = (x2)
T ,

V3 =
{
κ3
j |j = 1

}
= {4} , t3 = (t31)

T = (x4)
T ,

V4 =
{
κ4
j |j = 1, 2

}
= {1, 4} , t4 = (t41, t

4
2)
T = (x1, x4)

T ,

V5 =
{
κ5
j |j = 1, 2

}
= {4, 5} , t5 = (t51, t

5
2)
T = (x4, x5)

T .

The corresponding derivatives for the BFs Dα
r,sψm(tm) (m = 1, 2, ..., 5) are stated

below. For the BF ψ1(t
1) = max {0, x2 + 0.159}, there is no interaction; so r = s =

2. The sum of selected first- and second-order derivatives of ψ1 is

2∑
|α|=1

α=(α1,α2)T

∑
r<s
r,s∈V1

[
Dα
r,sψ1(t

1)
]2
dt1,

where

|α| = 1 : D1
2ψ1(t

1) :=
∂ψ1

∂t11
(t1) =

∂ψ1

∂x2

(x2) = 1 if x2 > −0.159 ,

D1
2ψ1(t

1) :=
∂ψ1

∂t11
(t1) =

∂ψ1

∂x2

(x2) = 0 if x2 ≤ −0.159 ,

|α| = 2 : D2
2ψ1(t

1) :=
∂2ψ1

∂t11∂t
1
1

(t1) =
∂2ψ1

∂x2∂x2

(x2) = 0 for all x2.

For the BF ψ2(t
2) = max {0,−0.159− x2}, there is no interaction; so r = s = 2.

The sum of selected first- and second-order derivatives of ψ2 is

2∑
|α|=1

α=(α1,α2)T

∑
r<s
r,s∈V2

[
Dα
r,sψ2(t

2)
]2
dt2,
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where

|α| = 1 : D1
2ψ2(t

2) :=
∂ψ2

∂t21
(t2) =

∂ψ2

∂x2

(x2) = −1 if x2 < −0.159 ,

D1
2ψ1(t

1) :=
∂ψ1

∂t21
(t2) =

∂ψ2

∂x2

(x2) = 0 if x2 ≥ −0.159 ,

|α| = 2 : D2
2ψ2(t

2) :=
∂2ψ2

∂t21∂t
2
1

(t2) =
∂2ψ2

∂x2∂x2

(x2) = 0 for all x2.

For the BF ψ3(t
3) = max {0, x4 + 1.517}, there is no interaction; so r = s = 4. The

sum of selected first- and second-order derivatives of ψ3 is

2∑
|α|=1

α=(α1,α2)T

∑
r<s
r,s∈V3

[
Dα
r,sψ3(t

3)
]2
dt3,

where

|α| = 1 : D1
4ψ3(t

3) :=
∂ψ3

∂t31
(t3) =

∂ψ3

∂x4

(x4) = 1 if x4 > −1.517 ,

D1
4ψ3(t

3) :=
∂ψ3

∂t31
(t3) =

∂ψ3

∂x4

(x4) = 0 if x4 ≤ −1.517 ,

|α| = 2 : D2
4ψ3(t

3) :=
∂2ψ3

∂t31∂t
3
1

(t3) =
∂2ψ3

∂x4∂x4

(x4) = 0 for all x4.

For the BF ψ4(t
4) = max {0, x1 + 2.576}∗max {0, x4 + 1.517}, there is an interaction

between the predictors x1 and x4; so r < s ⇒ r = 1 and s = 4. The sum of selected

first- and second-order derivatives of ψ4 is then:

2∑
|α|=1

α=(α1,α2)T

∑
r<s
r,s∈V4

[
Dα
r,sψ4(t

4)
]2
dt4,
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where

|α| = 1 : D1
1,4ψ4(t

4) :=
∂ψ4

∂t41
(t4) =

∂ψ4

∂x1

(x1, x4) = max {0, x4 + 1.517}

if x1 > −2.576 ,

D1
1,4ψ4(t

4) :=
∂ψ4

∂t41
(t4) =

∂ψ4

∂x1

(x1, x4) = 0 if x1 ≤ −2.576 ,

D1
1,4ψ4(t

4) :=
∂ψ4

∂t42
(t4) =

∂ψ4

∂x4

(x1, x4) = max {0, x1 + 2.576}

if x4 > −1.517 ,

D1
1,4ψ4(t

4) :=
∂ψ4

∂t42
(t4) =

∂ψ4

∂x4

(x1, x4) = 0 if x4 ≤ −1.517 ,

|α| = 2 : D2
1,4ψ4(t

4) :=
∂2ψ4

∂t41∂t
4
2

(t4) =
∂2ψ4

∂x1∂x4

(x1, x4) = 1 for all x4 > −1.517 ,

D2
1,4ψ4(t

4) :=
∂2ψ4

∂t41∂t
4
2

(t4) =
∂2ψ4

∂x1∂x4

(x1, x4) = 0 for all x4 ≤ −1.517 .

For the BF ψ5(t
5) = max {0, x5 + 1.562}∗max {0, x4 + 1.517}, there is an interaction

between the predictors x4 and x5; so r < s ⇒ r = 4 and s = 5. The sum of selected

first- and second-order derivatives of ψ5 is obtained as:

2∑
|α|=1

α=(α1,α2)T

∑
r<s
r,s∈V5

[
Dα
r,sψ5(t

5)
]2
dt5,
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where

|α| = 1 : D1
4,5ψ5(t

5) :=
∂ψ5

∂t51
(t5) =

∂ψ5

∂x4

(x4, x5) = max {0, x5 + 1.562}

if x4 > −1.517,

D1
4,5ψ5(t

5) :=
∂ψ5

∂t51
(t5) =

∂ψ5

∂x4

(x4, x5) = 0 if x4 ≤ −1.517,

D1
4,5ψ5(t

5) :=
∂ψ5

∂t52
(t5) =

∂ψ5

∂x5

(x4, x5) = max {0, x4 + 1.517}

if x5 > −1.562,

D1
4,5ψ5(t

5) :=
∂ψ5

∂t52
(t5) =

∂ψ5

∂x5

(x4, x5) = 0 if x5 ≤ −1.562,

|α| = 2 : D2
4,5ψ5(t

5) :=
∂2ψ5

∂t51∂t
5
2

(t5) =
∂2ψ5

∂x4∂x5

(x4, x5) = 1

for all x5 > −1.562,

D2
4,5ψ5(t

5) :=
∂2ψ5

∂t51∂t
5
2

(t5) =
∂2ψ5

∂x4∂x5

(x4, x5) = 0

for all x5 ≤ −1.562.

As a result, the PRSS objective function in (3.2.8) has the following form:

PRSS =
N∑
i=1

(
yi − θTψ(d̄ i)

)2
︸ ︷︷ ︸

=:I (RSS)

+
Mmax∑
m=1

λm

2∑
|α|=1

α=(α1,α2)T

∑
r<s

r,s∈Vm

∫
θ2
m

[
Dα
r,sψm(tm)

]2
dtm

︸ ︷︷ ︸
=:II

.

If λ1 = λ2 = ... = λMmax =: λ, then the Tikhonov regularization problem form of

the function PRSS equation look as follows:

PRSS ≈
∥∥y −ψ(d̄)θ

∥∥2

2︸ ︷︷ ︸
=I

+λ ‖Lθ‖22︸ ︷︷ ︸
≈II

,

The first part of the PRSS objective function and of the Tikhonov regularization

problem are equal as it is seen below. Note here that the second part is approxi-
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mately equal:

I :
N∑
i=1

(
yi − θTψ(d̄ i)

)2
=
∥∥y −ψ(d̄)θ

∥∥2

2
.

II :
Mmax∑
m=1

λm

2∑
|α|=1

α=(α1,α2)T

∑
r<s

r,s∈Vm

∫
θ2
m

[
Dα
r,sψm(tm)

]2
dtm ≈ λ ‖Lθ‖22 .

The combination and approximation of the parts I and II are displayed next in our

numerical example. The following values are such ones of RSS. For some illustration,

a part of it is presented below. The whole RSS can be seen in Appendix A.

On I:

N∑
i=1

(
yi − θTψ(d̄ i)

)2
= (−1.1224− θ0 − (max {0,−0.6109 + 0.159}) θ1 −

(max {0,−0.159 + 0.6109}) θ2 −

(max {0,−0.5172 + 1.517}) θ3 −

(max {0,−0.0781 + 2.576} ∗max {0,−1.5172 + 1.517}) θ4 −

(max {0,−0.8184 + 1.562} ∗max {0,−1.5172 + 1.517}) θ5)
2 +

(−0.8703− θ0 − (max {0,−0.5885 + 0.159}) θ1 −

(max {0,−0.159 + 0.5885}) θ2 −

(max {0,−1.3501 + 1.517}) θ3 −

(max {0,−0.0781 + 2.576} ∗max {0,−1.3501 + 1.517}) θ4 −

(max {0,−0.8184 + 1.562} ∗max {0,−1.3501 + 1.517}) θ5)
2 +

...

(3.5314− θ0 − (max {0, 4.3884 + 0.159}) θ1 −

(max {0,−0.159− 4.3884}) θ2 −

(max {0, 1.0942 + 1.517}) θ3 −

(max {0, 2.4197 + 2.576} ∗max {0, 1.0942 + 1.517}) θ4 −

(max {0,−1.5624 + 1.562} ∗max {0, 1.0942 + 1.517}) θ5)
2.
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According to the values obtained by computing the maximum functions, the RSS

term has the following form:

N∑
i=1

(
yi − θTψ(d̄ i)

)2
= (−1.1224− θ0 − 0.4519θ2)

2 +

(−0.8703− θ0 − 0.4295θ2 − 0.1669θ3 − 0.4169θ4 − 0.3973θ5)
2 +

...

(3.5314− θ0 − 4.5474θ1 − 2.6112θ3 − 13.0448θ4)
2

= (−1.1242− θ0 − 0.4519θ2)
T (−1.1242− θ0 − 0.4519θ2) +

(−0.8703− θ0 − 0.4295θ2 − 0.1669θ3 − 0.4169θ4 − 0.3973θ5) +

(−0.8703− θ0 − 0.4295θ2 − 0.1669θ3 − 0.4169θ4 − 0.3973θ5) +
...

(3.5314− θ0 − 4.5474θ1 − 2.6112θ3 − 13.0448θ4) +

(3.5314− θ0 − 4.5474θ1 − 2.6112θ3 − 13.0448θ4) .

If we turn the above summation into vector notation, we get the subsequent

representation. By this, we have found the value of the first part of PRSS, which is

RSS:

N∑
i=1

(
yi − θTψ(d̄ i)

)2
=

(
y −ψ(d̄)θ

)T (
y−ψ(d̄)θ

)
=

∥∥y − ψ(d̄)θ
∥∥2

2
. (3.3.22)

On II: The multi-dimensional integral in the second part of the equation in

(3.2.9) takes the form in (3.2.12) by discretizing. The discretized form is denoted

by L and finally we obtain the formulation from (3.2.15). In order to apply this

discretization, we sort the data set used in the numerical example. We slightly de-

crease the input data value of each first predictor variable and slightly increase the

input data value of each last predictor variable. That means by adding two new

observations, we get a new data set. In this case,

65



x1: the first discretization value of x1 is x̄0,1 = −3.0, the last discretization value is

x̄33,1 = 3.0.

x2: the first discretization value of x2 is x̄0,2 = −0.7, the last discretization value is

x̄33,2 = 5.0.

x3: the first discretization value of x3 is x̄0,3 = −3.5, the last discretization value is

x̄33,3 = 1.5.

x4: the first discretization value of x4 is x̄0,4 = −2.0, the last discretization value is

x̄33,4 = 2.0.

x5: the first discretization value of x5 is x̄0,5 = −2.0, the last discretization value is

x̄33,5 = 2.5.

The numbers Lim applied to our numeric example, corresponding to each BF,

are as follows:

(33)K1∑
i=1




2∑
|α|=1

α=(α1,α2)T

∑
r<s
r,s∈V1

[
Dα
r,s (max {0, x2 + 0.159})

]2

(
x̄
l
κ1
1
σκ1+1

,κ1
1

− x̄
l
κ1
1
σκ1

,κ1
1

)
︸ ︷︷ ︸

=Li1

.

The value of L1 is 1.9545.

(33)K2∑
i=1




2∑
|α|=1

α=(α1,α2)T

∑
r<s
r,s∈V2

[
Dα
r,s (max {0,−0.159− x2})

]2

(
x̄
l
κ2
1
σκ1+1

,κ2
1

− x̄
l
κ2
1
σκ1

,κ2
1

)
︸ ︷︷ ︸

=Li2

.

The value of L2 is 0.5999.
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(33)K3∑
i=1




2∑
|α|=1

α=(α1,α2)T

∑
r<s
r,s∈V3

[
Dα
r,s (max {0, x4 + 1.517})

]2

(
x̄
l
κ3
1
σκ1+1

,κ3
1

− x̄
l
κ3
1
σκ1

,κ3
1

)
︸ ︷︷ ︸

=Li3

.

The value of L3 is 2.0622.

(33)K4∑
i=1




2∑
|α|=1

α=(α1,α2)T

∑
r<s
r,s∈V4

[
Dα
r,sψ4(t

4)
]2

(
x̄
l
κ4
1
σκ1+1

,κ4
1

− x̄
l
κ4
1
σκ1

,κ4
1

)
.

(
x̄
l
κ4
2
σκ2+1

,κ4
2

− x̄
l
κ4
2
σκ1

,κ4
2

)
︸ ︷︷ ︸

=Li4

.

Here, ψ4(t
4) = (max {0, x1 + 2.576} ∗max {0, x4 + 1.517}). The value of L4 is

1.6002.

(33)K5∑
i=1




2∑
|α|=1

α=(α1,α2)T

∑
r<s
r,s∈V5

[
Dα
r,sψ5(t

5)
]2

(
x̄
l
κ5
1
σκ1+1

,κ5
1

− x̄
l
κ5
1
σκ1

,κ5
1

)
.

(
x̄
l
κ5
2
σκ5+1

,κ5
2

− x̄
l
κ5
2
σκ1

,κ5
2

)
︸ ︷︷ ︸

Li5

.

Here, ψ5(t
5) = (max {0, x5 + 1.562} ∗max {0, x4 + 1.517}). The value of L5 is

13.1962.

The matrix L is a (6× 6)-diagonal matrix. Its first column values are zero and

the diagonal values of this matrix are Lm (m = 1, 2, ..., 5) which are introduced

above. The matrix L of our numerical example is presented below:
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L =



0 0 0 0 0 0

0 1.9545 0 0 0 0

0 0 0.5999 0 0 0

0 0 0 2.0622 0 0

0 0 0 0 1.6002 0

0 0 0 0 0 13.1962


.

In the equation (3.15), ‖Lθ‖22 is the squared norm of

Lθ :=



0 0 0 0 0 0

0 1.9545 0 0 0 0

0 0 0.5999 0 0 0

0 0 0 2.0622 0 0

0 0 0 0 1.6002 0

0 0 0 0 0 13.1962


.



θ0

θ1

θ2

θ3

θ4

θ5


=



0

θ1 · (1.9545)

θ2 · (0.5999)

θ3 · (2.0622)

θ4 · (1.6002)

θ5 · (13.1962)


.

‖Lθ‖22 = (θ1 · (1.9545))2 + (θ2 · (0.5999))2 + (θ3 · (2.0622))2 + (θ4 · (1.6002))2

+ (θ5 · (13.1962))2 . (3.3.23)

From the equations (3.3.13) and (3.3.14), we obtain the objective function PRSS

for the numerical example. In the previous section, we mention that PRSS is the

Tikhonov regularization problem. In order to solve this problem, we can easily

formulate PRSS as a CQP problem as follows:

min
t,θ

t,

subject to
∥∥ψ(d̄)θ − y

∥∥
2
≤ t,

‖Lθ‖2 ≤
√
M̄. (3.3.24)

Although PRSS and CQP problem have different notations, they have the same
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solution for appropriate choice of the values λ and
√
M̄ . If we decrease the values

of λ and
√
M̄ a bit, then the minimum value of

∥∥ψ(d̄)θ − y
∥∥

2
increases for both

minimization problem (PRSS and CQP). While for CQP an interior point method

is used, for PRSS generalized singular value decomposition (GSVD) is employed for

solving problem [2, 47].

In our numerical example, this CQP problem can be written as follows:

min
t,θ

t,

subject to

−1.1224− θ0 − 0.4519θ2 = θ6,

−0.8703− θ0 − 0.4295θ2 − 0.1669θ3 − 0.4169θ4 − 0.3973θ5 = θ7,

−0.9549− θ0 − 0.4295θ2 − 0.1669θ3 − 0.4169θ4 − 0.3973θ5 = θ8,

−0.8703− θ0 − 0.4295θ2 − 0.1669θ3 − 0.4169θ4 − 0.4966θ5 = θ9,

−0.9549− θ0 − 0.4295θ2 − 0.1669θ3 − 0.5960θ5 = θ10,

−0.8703− θ0 − 0.4295θ2 − 0.1669θ3 − 0.5960θ5 = θ11,

−1.0396− θ0 − 0.3347θ2 − 0.5221θ3 − 1.3042θ4 − 0.6213θ5 = θ12,

−0.447− θ0 − 0.2873θ2 − 0.6892θ3 − 1.7216θ4 − 0.8201θ5 = θ13,

−0.701− θ0 − 0.2873θ2 − 0.6892θ3 − 1.7216θ4 − 0.8201θ5 = θ14,

−0.6163− θ0 − 0.2873θ2 − 0.6892θ3 − 1.7216θ4 − 0.3973θ5 = θ15,

−0.447− θ0 − 0.2873θ2 − 0.6892θ3 − 1.7216θ4 − 1.6406θ5 = θ16,

−0.6163− θ0 − 0.2873θ2 − 0.6892θ3 − 1.7216θ4 − 1.6406θ5 = θ17,

−0.447− θ0 − 0.2873θ2 − 0.6892θ3 − 1.7216θ4 − 1.6406θ5 = θ18,

−0.1085− θ0 − 0.2789θ2 − 1.7755θ3 − 4.4350θ4 − 2.1128θ5 = θ19,

−0.1085− θ0 − 0.0557θ2 − 1.5666θ3 − 3.9132θ4 − 1.8643θ5 = θ20,

−0.0238− θ0 − 0.0557θ2 − 1.7755θ3 − 4.4350θ4 − 2.1128θ5 = θ21,

−0.1931− θ0 − 0.0001θ1 − 1.7755θ3 − 4.4350θ4 − 2.1128θ5 = θ22,
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−0.1085− θ0 − 0.0001θ1 − 1.7755θ3 − 4.4350θ4 − 2.1128θ5 = θ23,

−0.1931− θ0 − 0.0001θ1 − 1.7755θ3 − 4.4350θ4 − 2.1128θ5 = θ24,

−0.1085− θ0 − 0.0001θ1 − 1.7755θ3 − 4.4350θ4 − 4.2264θ5 = θ25,

0.0680− θ0 − 0.0001θ1 − 1.7755θ3 − 4.4350θ4 − 4.2264θ5 = θ26,

−0.0238− θ0 − 0.0001θ1 − 2.6112θ3 − 6.5225θ4 − 6.2157θ5 = θ27,

0.2301− θ0 − 0.2233θ1 − 2.6112θ3 − 6.5225θ4 − 3.1073θ5 = θ28,

0.3148− θ0 − 0.2233θ1 − 2.6112θ3 − 6.5225θ4 = θ29,

0.1455− θ0 − 0.2233θ1 − 2.6112θ3 − 6.5225θ4 − 1.5531θ5 = θ30,

0.4841− θ0 − 0.2233θ1 − 2.9454θ3 − 7.3573θ4 − 5.2581θ5 = θ31,

0.5687− θ0 − 0.3153θ1 − 2.6112θ3 − 6.5225θ4 − 3.1073θ5 = θ32,

1.0766− θ0 − 0.5022θ1 − 2.6112θ3 − 13.0448θ4 = θ33,

1.1613− θ0 − 0.5022θ1 − 2.6112θ3 − 6.5225θ4 = θ34,

0.738− θ0 − 0.5022θ1 − 2.6112θ3 − 6.5225θ4 − 4.6615θ5 = θ35,

2.5156− θ0 − 2.8735θ1 − 2.6112θ3 − 13.0448θ4 = θ36,

3.5314− θ0 − 4.5474θ1 − 2.6112θ3 − 13.0448θ4 = θ37,

(θ2
6 + θ2

7 + θ2
8 + θ2

9 + θ2
10 + θ2

11 + θ2
12 + θ2

13 + θ2
14 + θ2

15 + θ2
16 + θ2

17 + θ2
18 +

θ2
19 + θ2

20 + θ2
21 + θ2

22 + θ2
23 + θ2

24 + θ2
25 + θ2

26 + θ2
27 + θ2

28 + θ2
29 + θ2

30 +

θ2
31 + θ2

32 + θ2
33 + θ2

34 + θ2
35 + θ2

36 + θ2
37)

1/2 ≤ t,

(
θ2
38 + θ2

39 + θ2
40 + θ2

41 + θ2
42 + θ2

43

)1/2 ≤ (M̄)1/2.

This problem involves 32 linear constraints and two quadratic cones. In equation

(3.3.15), our numerical problem has only two quadratic cones. For solving our nu-

merical problem, we transform it into the MOSEK format. For this transformation,

we attribute new unknown variables to the linear notations in these two quadratic

cones. By this way, we simplify the notations in the cones and write them as con-
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straints. MOSEK uses an interior-point optimizer as a default for the CQP problem.

The interior-point optimizer is an implementation of the homogeneous and self-dual

algorithm and it computes the interior point solution which is an arbitrary optimal

solution.

The values
√
M̄ in our optimization problem are determined by a model-free

(train and error) method. When we access the
√
M̄ values in our C-MARS code,

C-MARS provides us several solutions, each of them based on the five BFs.

In the next section, we apply C-MARS to different sizes and types of data sets.

The results obtained from the algorithms C-MARS and MARS are also compared

according to many different general performance comparison criteria.
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chapter 4

APPLICATIONS

In the previous section, MARS and C-MARS have been presented and investi-

gated in detail. In this section for comparing these methods, different data sets are

used in the applications. While Salford Systems is used for MARS application [39],

for C-MARS a code is written by using MATLAB and in order to solve the CQP

problem in C-MARS, MOSEK software is preferred.

4.1 Description of Data Sets Used in Applications

Three data sets are used in the applications.

Data Set 1: The first data set, Latin Hypercube Sampling (LHS), is obtained

by means of design of experiments performed on solid rocket motors. It contains 389

observations and ten predictor variables which are design variables for performance

of solid rocket motors such as radius of grain, burn rate constant and density of

propellant. The response variable is a total impulse. In this data set, the type of

input variables is quantitative. The data are preprocessed for all missing values, in-

consistency and outliers. The 335th sample of this data set is an outlier. The matrix

plot of the response variable versus predictor variables of LHS data can be seen in

Appendix B. According to this matrix plot, although we can see a weak relation be-

tween predictor variables x4, x8 and response variable, we can not find a distinctive

relation between response variable and other predictor variables. However, we can

say that it is reasonable to look for such a relation between variables for this data

set. For detailed information about LHS data see Kartal, E., 2007 [30].
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Data Set 2: Our second data set is Uniform Sampling (US) which is also ob-

tained by means of design of experiments performed on solid rocket motors. It has

seven predictor variables and its sample size is 100. The input variables of this

data set are design variables for performance of solid rocket motors. The outcome

variable is a total impulse for this data set. The type of both input variables and

response variable is quantitative. The same data preprocessing is used for the US

data, too. The 78th sample of this data set is an outlier. The matrix plot of the

response variable versus predictor variables of US data can be seen in Appendix B.

As in the case of the first data set, there is no distinctive relation between response

variable and input variables according to the matrix plot, except the relation be-

tween x4 and response variable. We try to find out a reasonable relation between

variables. For detailed information about US data you can refer to Kartal, E., 2007

[30].

Data Set 3: The last data set consists of real-world data provided by a manifac-

turing company from the metal casting industry. It includes 34 predictor variables

and 92 observations. The input variables are process and product parameters. The

response variable of the real-world data is a percent defective of production. All

variables are quantitative. This data set is handled according to all missing val-

ues, inconsistancy and outliers. There is no outlier for this data set. The matrix

plot of response variable versus predictor variables of the third data can be found in

Appendix B. For this data set, variables start from x2. Although there is no remark-

able relation between response variable and input variables, in this data set it can

be searched for a reasonable relation between variables. More detailed information

about this data set can be found in this study Bakır, B., 2006 [4].
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4.2 Validation Approach and Comparison

Measures

In our applicatios, to compare the methods we prefer to use a 3-times replicated

3-fold cross validation (CV) approach. In 3-fold CV, the original data are randomly

divided into three sub-samples (folds). While a single sub-sample is retained as

the data for testing the model, the remaining two sub-samples are used as training

data. This process is then repeated three times; thus, each of the three sub-samples

is used exactly once as the test data. To produce a single estimate for each measure,

the three results from the folds can be averaged. Since the proportion of labels in

the response variable is not equal, there is a possibility that a given fold may not

contain one of the labels. To guarantee that this does not happen, a stratified 3-fold

CV is used where each fold includes roughly the same proportion of class labels as

in the original set of data. Moreover, to increase the reliability of the model, the

CV process is replicated three times, each time with a new partitioning.

To evaluate the performance of MARS and C-MARS methods, several measures

can be used. The performance measures that we used in our applications and their

general notation are as follows:

General Notation

yi is an ith observed response value,

ŷi is an ith fitted response,

ȳ is a mean response,

N is a number of observations,

p is a number of terms in the model,

¯̂y is a mean fitted response,

s(y)2 is a sample variance for observed response,

s(ŷ)2 is a sample variance for fitted response,

ei = yi − ŷi is an ith ordinary residual,

hi is a leverage value for the ith observation, which is the ith diagonal element

of the hat matrix, H . The hat matrix is H = X (X TX )−1X T , where X is (N × p)
design matrix and rank(X ) = p (p ≤ N).
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Adjusted R2

Accounts for the number of predictors in your model and is useful for comparing

models with different numbers of predictors. The higher the Adjusted R2 (Adj-R2),

the better the model fits your data. The formula is:

R2
Adj := 1− MSError

MS Total
= 1−


N∑
i=1

(yi − ŷi)2

N∑
i=1

(yi − ȳi)2

( N − 1

N − p− 1

)
,

where (N − p− 1) 6= 0.

R2

This value is a coefficient of determination; it indicates how much variation in

response is explained by the model. The higher the R2, the better the model fits

your data. The formula is:

R2 := 1− RSS

SS Total
= 1−


N∑
i=1

(yi − ŷi)2

N∑
i=1

(yi − ȳ)2

 .

Mean Absolute Error (MAE)

MAE measures the average magnitude of error. The smaller MAE, the better it

is. The formula is:

MAE :=
1

N

N∑
i=1

|yi − ŷi| .

Mean Absolute Percentage Error (MAPE)

MAPE represents the scale independent (relative) error. The smaller MAPE,

the better it is. The formula is:

MAPE :=
100

N

N∑
i=1

∣∣∣∣yi − ŷiyi

∣∣∣∣ .
75



Mean Square Error (MSE)

MSE emphasizes the grossly inaccurate estimates. The smaller MSE, the better

it is. The formula is:

MSE :=
1

N

N∑
i=1

(yi − ŷi).

Root Mean Square Error (RMSE)

RMSE measures the magnitude with more weight on grossly inaccurate esti-

mates. The smaller RMSE, the better it is. A model independent formula is:

RMSE :=
√
MSE =

√√√√ 1

N − p− 1

N∑
i=1

(yi − ŷi)2.

Correlation Coefficient

A correlation coefficient is a measure of linear association between actual and

predicted response values. The formula is:

r :=

n∑
i=1

(y − ȳ)(ŷ − ¯̂y)/(n− 1)√
s(y)2s(ŷ)2

.

Prediction error sum of squares (PRESS)

PRESS is an assessment of your model’s predictive ability. PRESS, similar to

the residual sum of squares, is the sum of squares of the prediction error. In general,

the smaller the PRESS value, the better the model’s predictive ability. In least

squares regression, PRESS is calculated with the following formula:

PRESS :=
N∑
i=1

(
ei

1− hi

)2

.

Predicted R2

The predicted R2 indicates how well the model predicts responses for new obser-

vations. Larger values of predicted R2 suggest models of greater predictive ability.
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The higher predicted R2, the better it is. The formula is:

R2(pred) := 1− PRESS

SS Total
= 1−

N∑
i=1

(
ei

1−hi

)2

1−
N∑
i=1

(yi − ȳ)2

.

Mallows’ Cp

Mallows’ Cp is a measure of the goodness-of-prediction. The formula is:

Cp := (RSSp/MSEm)− (N − 2p).

Here, SSEp is SSE for the model under consideration; MSEm is the mean square

error for the model with all predictors included. In general, we look for models where

Mallows’ Cp is less than or equal to p. A small Cp value indicates that the model is

relatively precise (has small variance) in estimating the true regression coefficients

and predicting future responses. Models with poor predictive ability and bias have

values of Cp larger than p.

Many of these measures can be found in any statistic text book such as Menden-

hall and Sincich (2003) [38].

Proportion of Responses Within Some User-specified Range (PWI)

PWI is the proportion of responses within some user-specified range is the sum

of indicator variables over all observations. The indicator variables take the value

of one if the absolute value of the difference between actual and predicted response

is within some user-specified thresholds [43].

Stability

The prediction model obtained from the methods is stable when it performs just

as well on both seen (training) and unseen (test) data sets. The stability can be

measured as a positive or negative number between 0 and 1 (or -1), where 0 means

completely stable and -1 or 1 means completely unstable. This value is calculated

for all measures. Stability can be calculated as the arithmetic difference divided by
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the arithmetic sum of training and test of performance criterion [26, 27]:

(CRTR − CRTE)− (CRTR + CRTE).

4.3 Construction of Models

As we mentioned before, MARS algorithm creates the best model by using two

step-wise stages: forward and backward. The obtained models having different

numbers of BFs and interaction terms are trained in CV analysis. The best model

is selected among the models with minimum GCV and the highest Adjusted R2. By

using these two criteria, nine best models are generated for MARS.

In order to construct C-MARS models, we use the BFs of the large model of

MARS produced by the forward step-wise algorithm.

We access the BFs of the large model and choose
√
M̄ to our C-MARS code. As

you remember,
√
M̄ is a boundary value for CQP and this value is determined by

training and error. C-MARS algorithm provides us many different models without

identifying the best one.

After developing both MARS and C-MARS models for all training data sets,

their performances are compared with respect to the following criteria:

• ‖Lθ‖2 versus SQRT (RSS),

• GCV, and

• ‖Lθ‖2.

To compare MARS and C-MARS, we choose three representative solutions, S1,

S2 and S3, provided by the developed program. Here, S1 is the best solution among

the ones that respect to goodness of fit and S3 is the best solution for SQRT (RSS).

In order to determine S2, we plotted a log-log scale curve of ‖Lθ‖2 and SQRT (RSS)

of values of the solutions obtained from CQP problem (3.2.18). It has a characteristic

L shape. The sharpness of the corner value is the S2 solution [2].

We applied this procedure to all of our data sets. In order to see the results, we

present one of the applications on data set 1. For the first replication and first fold
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(CV) of this data set, Table 4.1 and Table 4.2 show the results of Salford MARS

and C-MARS according to the SQRT (RSS), ‖Lθ‖2 and GCV are obtained from

MARS and C-MARS.

Table 4.1: The results of Salford MARS.

No. BF SQRT(RSS) norm of Lθ GCV Denominator
1 8.3751 2.2017 0.2750 0.9698
2 5.5860 1.8111 0.1252 0.9475
3 4.9931 2.1467 0.1049 0.9036
4 4.4397 2.1621 0.0857 0.8749
5 3.7117 2.2089 0.0619 0.8467
6 3.2703 2.2486 0.0497 0.8189
7 3.0401 2.2508 0.0444 0.7916
8 2.6179 2.1476 0.0341 0.7648
9 2.1788 2.1373 0.0244 0.7384
10 1.7619 2.1328 0.0166 0.7125
11 1.5087 2.2359 0.0126 0.6871
12 1.2909 2.1778 0.0096 0.6621
13 1.1557 2.1504 0.0080 0.6376
14 1.0271 2.1220 0.0065 0.6135
15 0.9639 2.0372 0.0060 0.5899
16 0.9096 2.0411 0.0055 0.5668
17 0.8691 2.0333 0.0053 0.5441
18 0.8584 2.0407 0.0054 0.5219
19 0.8528 2.0476 0.0055 0.5002
20 0.8501 2.0511 0.0057 0.4789
21 0.8480 2.0515 0.0060 0.4581
22 0.8480 2.0515 0.0062 0.4377

No. BF: number of basis function, Denominator: denominator of GCV.

As it is seen from Table 4.1, MARS generates 22 solutions and the 17th solution

is the best one. Its GCV value is 0.0053 and Adjusted R2 is 0.997.

In the following Table 4.2, C-MARS results are presented according to the same

measures and values of
√
M̄ .
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Table 4.2: The results of C-MARS.

√
M̄ No. BF SQRT(RSS) norm of Lθ GCV Denominator

0.265 22 6.5015 0.265 0.3672 0.4377
0.3 22 6.2446 0.3 0.3387 0.4377
0.35 22 5.9403 0.35 0.3065 0.4377
0.4 22 5.6755 0.4 0.2798 0.4377
0.45 22 5.434 0.45 0.2565 0.4377
0.5 22 5.2083 0.5 0.2356 0.4377
0.55 22 4.9941 0.55 0.2167 0.4377
0.6 22 4.7889 0.6 0.1992 0.4377
0.7 22 4.3994 0.7 0.1681 0.4377
0.8 22 4.0313 0.8 0.1412 0.4377
0.9 22 3.6799 0.9 0.1176 0.4377
1 22 3.3424 1 0.097 0.4377
1.1 22 3.0171 1.1 0.0791 0.4377
1.2 22 2.7031 1.2 0.0635 0.4377
1.25 22 2.5501 1.25 0.0565 0.4377
1.3 22 2.3999 1.3 0.05 0.4377
1.4 22 2.1081 1.4 0.0386 0.4377
1.5 22 1.8292 1.5 0.0291 0.4377
1.6 22 1.5661 1.6 0.0213 0.4377
1.7 22 1.3243 1.7 0.0152 0.4377
1.8 22 1.1138 1.8 0.0108 0.4377
1.9 22 0.9512 1.9 0.0079 0.4377
2 22 0.86 2 0.0064 0.4377
2.1 22 0.8478 2.0509 0.0062 0.4377
2.2 22 0.8478 2.0509 0.0062 0.4377
2.3 22 0.8478 2.0509 0.0062 0.4377

No. BF: number of basis function, Denominator: denominator of GCV.

C-MARS provides many solutions, each one having 22 basis functions.

Let us consider only three solutions of C-MARS. Here, S1 solution is the best

for ‖Lθ‖2 and worst for SQRT (RSS); S3 solution is the best for SQRT (RSS) and

worst for ‖Lθ‖2. S2 solution is the minimizing solution for PRSS. It is obtained by

plotting a log-log scale curve of values of ‖Lθ‖2 versus SQRT (RSS).
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Figure 4.1: A log-log scale, the curve of norm of Lθ vs. SQRT(RSS).

The corner of the L curve in Figure 4.1, demonstrated with red point, represents

S2 solution of C-MARS.

C-MARS solutions obtained by using CQP change according to the changes in

the values of
√
M̄ . The soltions S1, S2 and S3 are extreme solutions and the values

of
√
M̄ for S1, S2 and S3 are 0. 265, 2, 2.3 respectively. For appropriate choices of

λ and
√
M̄ , PRSS and CQP are equivalent.

Figure 4.2 shows the ‖Lθ‖2 versus SQRT (RSS) for MARS and C-MARS so-

lutions. These two objectives are taken into account with respect to provide the

minimization of the mentioned objectives. As it is expected, from Figure 4.2 we

see that when the value of ‖Lθ‖2 gets better (decreases), the vaue of SQRT (RSS)

gets worst (increases). C-MARS solutions dominate MARS solutions according to

‖Lθ‖2 and ‖RSS‖2.
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Figure 4.2: Norm of Lθ vs. SQRT(RSS) for the solutions of methos (*: MARS
solutions; o: C-MARS solutions).

Figure 4.3 shows the GCV values of the C-MARS solutions (S1, S2 and S3) and

MARS solutions. As it is mentioned in Section 3, the best model is one that has

the minimum GCV value. According to the GCV, all MARS models dominate the

solutions of our problem (3.2.18).
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Figure 4.3: GCV values for the solutions of methos (*: MARS solutions; o: C-MARS
solutions).

Figure 4.4 indicates the ‖Lθ‖2 values of the methods solutions. The model

having minimum value of ‖Lθ‖2 is considered as the best solution. With regard

to ‖Lθ‖2, MARS solutions are dominated by C-MARS solutions. This means that

C-MARS solutions have lower ‖Lθ‖2 values.
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Figure 4.4: Norm of Lθ for the solutions of methos (*: MARS solutions; o: C-MARS
solutions).

According to the employed measures, the remained replications and folds CVs

for the first data set indicate the same results. The related tables and figures can be

found in Appendix C. We notice that according to the above comparisons (GCV and

‖Lθ‖2), we can not see any significant differences between the performances of these

two methods. As it is seen from the above Figure 4.2, Figure 4.3 and Figure 4.4,

each method has a better performances with respect to their own criteria. In other

words, while according to ‖Lθ‖2, C-MARS has a better performance, according to

GCV, MARS has a better performance. Because of this, the models for all test

data sets are also compared according to the method-free measures such as MSE,

Adjusted-R2, Mallow’s Cp, Correlation Coefficient (Cor. Coeff.), etc., as presented

in Section 4.2. The comparison measures are based on the average of nine values

(one for each fold and each replication) and the stability of measures obtained from

the training and test results are in Table 4.3.
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Table 4.3: Averages of performance measure values for the models and stability of
measures for LHS data.

Measures MARS S1 S2 S3
MAE 0.057467 0.33404 0.082378 0.057456
MSE 0.006133333 0.19782 0.019978 0.006378
RMSE 0.078022222 0.42921 0.111133 0.079511
MAPE 20.49863333 81.9345 26.61973 20.89033
Cor. Coeff. 0.997022222 0.89832 0.9912 0.996933
R2 0.994 0.81077 0.982756 0.993878
Adj-R2 0.992822222 0.75593 0.975567 0.992189
PWI-1 0.944611111 0.95477 0.942033 0.936911
PWI-2 0.986377778 0.99486 0.987244 0.983811
Press 2.339188889 20.8966 3.178644 2.706878
R2-Pred 1.017355556 1.16516 1.023656 1.020044
Mallows Cp 35.5427 49.5556 49.55556 49.55556
Stability MSE -0.291855556 -0.05214 -0.27894 -0.31692
Stability Cor. Coeff. 0.000666667 0.003211111 0.000777778 0.000744444
Stability R2 0.001377778 0.0064 0.001511 0.001433
Stability Adj-R2 0.001822222 0.025411111 0.004166667 0.002133333
Stability PWI-1 0.003211111 -0.00172 0.001367 0.004556
Stability PWI-2 0.003455556 -0.090955556 0.002144444 0.004988889
Stability Press -0.999866667 -0.78309 -0.83231 -0.94402
Stability R2-Pred -0.008366667 -0.05284 -0.01132 0.085233
Stability Mallows Cp 0.1717 0 0 0.090911

When we consider the results in Table 4.3 with respect to the fit measures such

as MSE, MAPE, R2, etc., and to the complexity measure Adjusted R2, the best

solution of the MARS and S3 solution of C-MARS have a better performance. Ac-

cording to the PWI-1 and PWI-2, S1 solution of C-MARS has a better performance.

When we consider the stability of the measures, generally C-MARS solutions have a

better performance. From these results, again we can not found a meaningful differ-

ence between the methods and not decide which method has a better performance.

Therefore, we handle all performance measures for considering the relationship be-

tween the measures and their efficiency. Tukey multiple comparison tests (=0.50)

are used to decide whether the differences among the averages of different measures
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are statistically significant or not [38]. An ordinal semantic scale of “very poor”,

“poor”, “good” and “very good” are used in order to reevaluate and express the

performances of the models. If the Tukey test do not indicate a statistically signif-

icant difference between these two methods, then the same semantic evaluation is

used for both methods based on the measure under consideration. The results are

presented in Table 4.4.

Table 4.4: Evaluation of the models of LHS data based on Tukey test and on the
ordinal semantic scale.

Measures MARS S1 S2 S3
MSE good poor good good
Cor. Coeff. very good good very good very good
R2 very good good very good very good
Adj-R2 very good good very good very good
PWI-1 very good very good very good very good
PWI-2 very good very good very good very good
Press good poor good good
R2-Pred very poor poor very poor very poor
Mallows Cp poor very poor very poor very poor
Stability MSE poor good poor poor
Stability Cor. Coeff. very good very good very good very good
Stability R2 very good very good very good very good
Stability Adj-R2 very good good very good very good
Stability PWI-1 very good very good very good very good
Stability PWI-2 very good good very good very good
Stability Press very poor very poor very poor very poor
Stability R2-Pred good good good good
Stability Mallows Cp good good good good

In the first data set, the C-MARS models S2 and S3, have the same performance.

Except for Mallows’ Cp, there is no significant difference between the MARS, S2 and

S3 solutions. Mallows’ Cp criterion focuses on minimizing total mean square error

and the regression bias. We may prefer a model that yields a Cp value slightly larger

than the minimum but which has slight (or no) bias. With respect to Mallows’ Cp,

MARS has a better performance than the other three solutions of C-MARS. The
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solution S1 shows a lower performance than the other solutions with regard to fit,

complexity and stability measures.

As in our first data set, we again determine three representative solutions for

C-MARS: S1, showing minimum ‖Lθ‖2, S2, minimizing solution for PRSS, S3,

having minimum SQRT (RSS). In the second case, with respect to ‖Lθ‖2 and

SQRT (RSS), C-MARS solutions dominate MARS solutions. As for GCV, C-MARS

solutions are dominated by MARS solutions. According to ‖Lθ‖2, C-MARS solu-

tions dominate MARS solutions. The related tables and figures of the US data, for

the results obtained from all replications and CVs are represented in Appendix D.

For the second data set, the results indicate that MARS and C-MARS solutions

have advantages according to their own criteria. Therefore, the models are com-

pared according to the method-free measures. These measures are represented in

Table 4.5. This table also contains the stability of the measures that based on the

average of nine replications for US data set.

When we compare the preformance of solutions, we see that MARS and solu-

tion S3 of C-MARS have a better performance with respect to fit and complexity

measures. For stability of measures, all of the C-MARS solutions have better per-

formance.

For the second data set, we can not find a remarkable difference between the

methods. In order to define a significant difference between them, we apply the

Tukey test on the ordinal semantic scale to this data set. The results are given in

Table 4.6.
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Table 4.5: Averages of performance measure values for the models and stability of
measures for US data.

Measures MARS S1 S2 S3
MAE 0.060356 0.253289 0.093656 0.067233
MSE 0.007678 0.112378 0.024211 0.009311
RMSE 0.084367 0.3291 0.131044 0.092156
MAPE 19.38231 60.35537 25.95136 19.9871
Cor. Coeff. 0.996611 0.9593 0.990756 0.995822
R2 0.993256 0.921489 0.981711 0.991689
Adj-R2 0.947022 0.943133 0.940256 0.946611
PWI-1 0.983111 0.996411 0.986789 0.980256
PWI-2 0.986377778 0.99486 0.987244 0.983811
Press 1.018322 1.1079 1.021311 1.013489
R2-Pred 25.97532 32.44444 32.44444 32.44444
Mallows Cp 35.5427 49.5556 49.55556 49.55556
Stability MSE -0.51944 -0.07933 -0.41617 -0.48554
Stability Cor. Coeff. 0.001122222 0.002733333 0.000744444 0.000944444
Stability R2 0.002222 0.005467 0.0015 0.001822
Stability Adj-R2 0.004055556 0.058067 0.016711 0.005867
Stability PWI-1 0.007711 0.006133 0.003511 0.003567
Stability PWI-2 0.004366667 -0.00327 0.004211 0.007522
Stability Press -0.99791 -0.39339 -0.9899 -0.85568
Stability R2-Pred -0.00882 -0.02006 -0.01029 -0.00633
Stability Mallows Cp 0.131356 0 0 0

The S2 and S3 models have completely the same performance for the second

data set. For the stability of Mallows’ Cp, all of the C-MARS solution have a

better performance than the MARS solution. Except this measure, there is not

a remarkable difference between MARS and S2 and S3 solutions. We may prefer

S2 and S3 solutions instead of MARS solution, because of their better stability

performances for Mallows’ Cp. On the other hand, S1 solution has lower performance

compared with the other solutions.

The same comparisons are applied to the last data set which is a real-world data

obtained from metal casting industry. When we evaluate the solutions according

to the method based performance measures SQRT (RSS), ‖Lθ‖2 and GCV, for all
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Table 4.6: Evaluation of the models of US data based on Tukey test and on the
ordinal semantic scale.

Measures MARS S1 S2 S3
MSE very good good very good very good
Cor. Coeff. very good good very good very good
R2 very good good very good very good
Adj-R2 very good good very good very good
PWI-1 very good very good very good very good
PWI-2 very good very good very good very good
Press very good very good very good very good
R2-Pred very good very good very good very good
Mallows Cp very poor very poor very poor very poor
Stability MSE very poor good very poor very poor
Stability Cor. Coeff. good good good good
Stability R2 very good very good very good very good
Stability Adj-R2 very good good very good very good
Stability PWI-1 very good very good very good very good
Stability PWI-2 very good very good very good very good
Stability Press very poor poor very poor very poor
Stability R2-Pred very good very good very good very good
Stability Mallows Cp good very good very good very good

replications and all CVs, MARS and C-MARS solutions have better performance

with respect to their own criteria. In other words, while C-MARS solutions dominate

MARS solutions according to ‖Lθ‖2 and SQRT (RSS), MARS solutions dominate

C-MARS solutions with respect to GCV. The tables and figures containing the

replication and CV results can be found in Appendix E.

For a general evaluation, as we apply to the first two data sets, with respect

to the performance measures, Table 4.7 includes averages of performance measure

values and their stability based on the average of nine replications for the real-world

data set.

As it is seen from this table, MARS and C-MARS solutions have poor perfor-

mances with respect to fit and complexity measures. Because in this data set, there

are not any relations between predictors and response variable. This is an expected
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Table 4.7: Averages of performance measure values for the models and stability of
measures for metal casting data.

Measures MARS S1 S2 S3
MAE 0.951778 0.761089 0.982511 1.129667
MSE 1.897422 0.962722 1.810789 2.316311
RMSE 1.273433 0.980578 1.284978 1.4784
MAPE 353.4088 168.5833 316.4185 412.5994
Cor. Coeff. 0.053844 0.154356 0.088789 -0.08333
R2 0.007311 0.043311 0.044211 0.038467
Adj-R2 -1.59646 -2.39168 -4.90102 -7.69542
PWI-1 0.841911 0.942056 0.953056 0.9528
PWI-2 0.8853 1 0.992711 0.992711
Press 86.66932 15.10758 126.565 161.991
R2-Pred 4.063689 1.526 5.371867 6.616667
Mallows Cp 7.390556 33.33333 33.33333 33.33333
Stability MSE -0,521944444 -0,12768 -0,48579 -0,73672
Stability Cor. Coeff. 0.671511111 0.621055556 0.870422222 -1.287366667
Stability R2 0.8662 0.803667 0.845433 0.904378
Stability Adj-R2 -0.261511111 -1.098022222 -2.092011111 -1.964122222
Stability PWI-1 0.002077778 0.003 0.002844444 0.003977778
Stability PWI-2 7,77778E-05 -0,00451 -0,00082 0,0019
Stability Press 0,936288889 -0,52274 -0,9842 -0,86552
Stability R2-Pred -0,415277778 -0,14463 -0,29448 -0,40852
Stability Mallows Cp 0,695133333 0,0825 0,0825 0,0825

situation for this data set. When we look at the stability of measures we notice that

MARS and the solution S1 of C-MARS have a better performance. As in the first

two cases, there is no meaningful difference between MARS and C-MARS in order

to define the best model. Therefore, we apply a Tukey test to the last data set.

When we look at Table 4.8, these two methods can not provide a best model for

this real-world data set. As it is stated before, because of the structure of this data

set, MARS and C-MARS have the same performance both for measures and their

stabilities.
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Table 4.8: Evaluation of the models of metal casting data based on Tukey test and
on the ordinal semantic scale.

Measures MARS S1 S2 S3
MSE very poor very poor very poor very poor
Cor. Coeff. very poor very poor very poor very poor
R2 poor poor poor poor
Adj-R2 poor poor poor very poor
PWI-1 very good very good very good very good
PWI-2 very good very good very good very good
Press very poor very poor very poor very poor
R2-Pred very poor very poor very poor very poor
Mallows Cp good poor poor poor
Stability MSE very poor poor very poor very poor
Stability Cor. Coeff. very poor very poor very poor very poor
Stability R2 poor poor poor poor
Stability Adj-R2 very poor very poor very poor very poor
Stability PWI-1 very good very good very good very good
Stability PWI-2 very good very good very good very good
Stability Press very poor poor very poor very poor
Stability R2-Pred poor poor poor poor
Stability Mallows Cp very poor poor poor poor
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chapter 5

CONCLUSION AND FURTHER

STUDIES

This study on regression and classification provides a new contribution to the

MARS method which is applied in many areas during the last decades. The MARS

algorithm is modified by constructing a penalized residual sum of squares (PRSS)

as a Tikhonov regularization problem. This problem is solved by using continuous

optimization, especially, conic quadratic programming (CQP). This provides us an

alternative modeling technique for MARS. We named our method as C-MARS.

For examining the efficiency of C-MARS, it is compared with MARS method by

using three different data sets. This comparison is applied first of all according to

these measures: Norm of RSS, norm of Lθ and GCV. The results of these applica-

tions show that C-MARS has a better performance with respect to the norm of Lθ.

On the other hand, according to the GCV, MARS has a better performance.

According to the method-free performance measures, the application results in-

dicate that there is not a significant difference between C-MARS and MARS solu-

tions. However, performance measures of C-MARS show higher stability. Besides

these comparisons, by using the Tukey test, it is aimed at to determine whether

there are statistically significant differences between the averaged values of employed

measures. The results obtained from the Tukey test do not indicate statistically sig-

nificant differences and, then, according to an ordinal semantic scale (“very poor”,

“poor”, “good”, “very good”) the results have been re-evaluated.

When we consider the data sets according to the data structure, the first two data

sets, LHS and US, are containing outliers and do not promise a defining relationship

between predictors and response variable. In these two data sets, the solutions S2

and S3 of C-MARS and MARS solutions have similar performances. However, the
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solution S1 of C-MARS has a worse performance compared with the other solutions.

For the real-world data set which does not include an outlier, MARS and C-MARS

generate models having not a remarkable difference between each other. In general,

for all data sets, there is not a remarkable difference between MARS and C-MARS

solutions according to the methpd-free measures. C-MARS generates more complex

models than MARS with respect to the number of BFs. Because C-MARS employs

all the BFs obtained from the forward stepwise algorithm of MARS. Even it does not

remove the BFs having coefficients close to zero. Moreover,
√
M̄ values determined

by CQP are choosen as model free. C-MARS provides at least one solution very

similar to MARS solution. Moreover, this solution is sometimes better than MARS

solution. Because of this the solution S2, which is minimizing solution for PRSS, is

more preferable in our cases.

C-MARS provides its solutions by using CQP. In this respect, it has the advan-

tage of speed and complexity as defined by Arkadi Nemirovski [47].

For all three data sets used in the applications, C-MARS generates better models

according to norm of Lθ. Hence, the minimization of norm of Lθ is itself maxi-

mizing the stability as explained in (3.2.2). After discretizing the integrals which

are measures of energy, we try to keep that energy under control by bounding it (in

CQP) or minimizing it in the framework of PRSS [22].

As a future work, MARS and C-MARS can be compared with other modeling

techniques such as artificial neural networks and robust regression in the case of

continuous data sets and different distributions of variables. Morever, under the

normality assumption, MARS and C-MARS can be compared with linear regression.

In our application on C-MARS, data sets and BFs accessions were made manu-

ally. Beside of this, C-MARS does not represent the results as a model form. This

takes time when compared with MARS software. In this respect, C-MARS can

be improved and made a user friendly DM tool. In addition, when we compare

MARS and C-MARS with regard to their computational time it is obviously seen

that MARS has a very high speed.

C-MARS generates models with a maximum number of basis functions. However,

some coefficients can be “very near” to zero (which can and will be statistically well

defined). By removing these coefficients, the model size will be decreased and C-
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MARS generated models will have a different, actually smaller number of basis

functions.

As we observed in our applications, the models generated from C-MARS tend

to a better fitting than MARS models. On the other hand, C-MARS constructs

more complex models than MARS. In order to provide less complex models having

better fitting we can apply continuous multiobjective approaches such as Epsilon

constraint, goal programming.

Unlike MARS, C-MARS does not select a better model. For overcoming this

difficulty, multiobjective approaches can be used.

The importance and benefit of CQP in manufacturing have already been demon-

strated in this study. For further study, the CQP problem in the way of robust

optimization will be generalized. This kind of optimization is introduced by Aharon

Ben-Tal, and used by Laurent El Ghaoui in the area of DM. This robustification of

CQP with robust optimization can be compared with our previous contributions via

CQP which are based on Tikhonov regularization, and with the traditional MARS

method.

As Prof. Dr. Gerhard Wilhelm Weber also Efsun Kurum and I understood,

piecewise linear functions over a compact interval can be represented by a linear

combination of one-dimentional MARS basis functions. For example, for a stochastic

process these basis functions can be used for a approximative representation of the

trajectories.

In general, for solving Tikhonov regularization problem, SVD is used where

L = I . However, in our case because of the form of L, GSVD is employed, so that

GSVD allows the solution to this problem to be expressed by a sum of filter factors

times generalized singular vectors. When the generalized singular values γj tend to

zero the corresponding contributious of independent variables vanish. This causes a

feature selection. In this frame, as a further study, γj and penalty parameter λ for

Tikhonov regularization problem can be compared and truncation conducted.

C-MARS includes an improvement on the second part of MARS algorithm. A

similar improvement is also possible for the first part of the algorithm by using

clustering techniques. The first part of MARS algorithm, e.g., forward stepwise

algorithm, determines knot points among the data points for obtaining basis func-
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tions. Increasing in the number of data points results in a one-to-one manner in an

increase in the number of knot points. Therefore it gives rise to complexity. For this

reason we decide to determine suitable knot points for the data set by using clus-

tering theory. There are two ways for doing this: we can first cluster, then project,

or, we can first project, then cluster. This approach is the challenging core idea of a

new research project. By this thesis we intented to give a contribution to the theory,

methods and applications of mathematical data mining, for displaying its beauty

and inviting to future research challenges.
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APPENDIX A

RSS in a Numerical Example

The following function RSS became addressed in Section 3.3. On I (RSS):

N∑
i=1

(
yi − θTψ(d̄ i)

)2
= (−1.1242− θ0 − (max {0,−0.6109 + 0.159}) θ1 −

(max {0,−0.159 + 0.6109}) θ2 −

(max {0,−0.5172 + 1.517}) θ3 −

(max {0,−0.0781 + 2.576} ∗max {0,−1.5172 + 1.517}) θ4 −

(max {0,−0.8184 + 1.562} ∗max {0,−1.5172 + 1.517}) θ5)
2 +

(−0.8703− θ0 − (max {0,−0.5885 + 0.159}) θ1 −

(max {0,−0.159 + 0.5885}) θ2 −

(max {0,−1.3501 + 1.517}) θ3 −

(max {0,−0.0781 + 2.576} ∗max {0,−1.3501 + 1.517}) θ4 −

(max {0,−0.8184 + 1.562} ∗max {0,−1.3501 + 1.517}) θ5)
2 +

(−0.9549− θ0 − (max {0,−0.5885 + 0.159}) θ1 −

(max {0,−0.159 + 0.5885}) θ2 −

(max {0,−1.3501 + 1.517}) θ3 −

(max {0,−0.0781 + 2.576} ∗max {0,−1.3501 + 1.517}) θ4 −

(max {0, 0.8184 + 1.562} ∗max {0,−1.3501 + 1.517}) θ5)
2 +

(−0.8703− θ0 − (max {0,−0.5885 + 0.159}) θ1 −

(max {0,−0.159 + 0.5885}) θ2 −

(max {0,−1.3501 + 1.517}) θ3 −

(max {0,−0.0781 + 2.576} ∗max {0,−1.3501 + 1.517}) θ4 −
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(max {0, 1.4136 + 1.562} ∗max {0,−1.3501 + 1.517}) θ5)
2 +

(−0.9549− θ0 − (max {0,−0.5885 + 0.159}) θ1 −

(max {0,−0.159 + 0.5885}) θ2 −

(max {0,−1.3501 + 1.517}) θ3 −

(max {0,−2.5759 + 2.576} ∗max {0,−1.3501 + 1.517}) θ4 −

(max {0, 2.0089 + 1.562} ∗max {0,−1.3501 + 1.517}) θ5)
2 +

(−0.8703− θ0 − (max {0,−0.5885 + 0.159}) θ1 −

(max {0,−0.159 + 0.5885}) θ2 −

(max {0,−1.3501 + 1.517}) θ3 −

(max {0,−2.5759 + 2.576} ∗max {0,−1.3501 + 1.517}) θ4 −

(max {0, 2.0089 + 1.562} ∗max {0,−1.3501 + 1.517}) θ5)
2 +

(−1.0396− θ0 − (max {0,−0.4937 + 0.159}) θ1 −

(max {0,−0.159 + 0.4937}) θ2 −

(max {0,−0.9949 + 1.517}) θ3 −

(max {0,−0.0781 + 2.576} ∗max {0,−0.9949 + 1.517}) θ4 −

(max {0,−0.372 + 1.562} ∗max {0,−0.9949 + 1.517}) θ5)
2 +

(−0.447− θ0 − (max {0,−0.4463 + 0.159}) θ1 −

(max {0,−0.159 + 0.4463}) θ2 −

(max {0,−0.8278 + 1.517}) θ3 −

(max {0,−0.0781 + 2.576} ∗max {0,−0.8278 + 1.517}) θ4 −

(max {0,−0.372 + 1.562} ∗max {0,−0.8278 + 1.517}) θ5)
2 +

(−0.701− θ0 − (max {0,−0.4463 + 0.159}) θ1 −

(max {0,−0.159 + 0.4463}) θ2 −

(max {0,−0.8278 + 1.517}) θ3 −

(max {0,−0.0781 + 2.576} ∗max {0,−0.8278 + 1.517}) θ4 −

(max {0,−0.372 + 1.562} ∗max {0,−0.8278 + 1.517}) θ5)
2 +
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(−0.6163− θ0 − (max {0,−0.4463 + 0.159}) θ1 −

(max {0,−0.159 + 0.4463}) θ2 −

(max {0,−0.8278 + 1.517}) θ3 −

(max {0,−0.0781 + 2.576} ∗max {0,−0.8278 + 1.517}) θ4 −

(max {0,−0.372 + 1.562} ∗max {0,−0.8278 + 1.517}) θ5)
2 +

(−0.447− θ0 − (max {0,−0.4463 + 0.159}) θ1 −

(max {0,−0.159 + 0.4463}) θ2 −

(max {0,−0.8278 + 1.517}) θ3 −

(max {0,−0.0781 + 2.576} ∗max {0,−0.8278 + 1.517}) θ4 −

(max {0, 0.8184 + 1.562} ∗max {0,−0.8278 + 1.517}) θ5)
2 +

(−0.6163− θ0 − (max {0,−0.4463 + 0.159}) θ1 −

(max {0,−0.159 + 0.4463}) θ2 −

(max {0,−0.8278 + 1.517}) θ3 −

(max {0,−0.0781 + 2.576} ∗max {0,−0.8278 + 1.517}) θ4 −

(max {0, 0.8184 + 1.562} ∗max {0,−0.8278 + 1.517}) θ5)
2 +

(−0.447− θ0 − (max {0,−0.4463 + 0.159}) θ1 −

(max {0,−0.159 + 0.4463}) θ2 −

(max {0,−0.8278 + 1.517}) θ3 −

(max {0,−0.0781 + 2.576} ∗max {0,−0.8278 + 1.517}) θ4 −

(max {0, 0.8184 + 1.562} ∗max {0,−0.8278 + 1.517}) θ5)
2 +

(−0.1085− θ0 − (max {0,−0.4379 + 0.159}) θ1 −

(max {0,−0.159 + 0.4379}) θ2 −

(max {0, 0.2585 + 1.517}) θ3 −

(max {0,−0.0781 + 2.576} ∗max {0, 0.2585 + 1.517}) θ4 −

(max {0,−0.372 + 1.562} ∗max {0, 0.2585 + 1.517}) θ5)
2 +

(−0.1085− θ0 − (max {0,−0.2147 + 0.159}) θ1 −
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(max {0,−0.159 + 0.2147}) θ2 −

(max {0, 0.0496 + 1.517}) θ3 −

(max {0,−0.0781 + 2.576} ∗max {0, 0.0496 + 1.517}) θ4 −

(max {0,−0.372 + 1.562} ∗max {0, 0.0496 + 1.517}) θ5)
2 +

(−0.0238− θ0 − (max {0,−0.2147 + 0.159}) θ1 −

(max {0,−0.159 + 0.2147}) θ2 −

(max {0, 0.2585 + 1.517}) θ3 −

(max {0,−0.0781 + 2.576} ∗max {0, 0.2585 + 1.517}) θ4 −

(max {0,−0.372 + 1.562} ∗max {0, 0.2585 + 1.517}) θ5)
2 +

(−0.1931− θ0 − (max {0,−0.1589 + 0.159}) θ1 −

(max {0,−0.159 + 0.1589}) θ2 −

(max {0, 0.2585 + 1.517}) θ3 −

(max {0,−0.0781 + 2.576} ∗max {0, 0.2585 + 1.517}) θ4 −

(max {0,−0.372 + 1.562} ∗max {0, 0.2585 + 1.517}) θ5)
2 +

(−0.1085− θ0 − (max {0,−0.1589 + 0.159}) θ1 −

(max {0,−0.159 +−0.1589}) θ2 −

(max {0, 0.2585 + 1.517}) θ3 −

(max {0,−0.0781 + 2.576} ∗max {0, 0.2585 + 1.517}) θ4 −

(max {0,−0.372 + 1.562} ∗max {0, 0.2585 + 1.517}) θ5)
2 +

(−0.1931− θ0 − (max {0,−0.1589 + 0.159}) θ1 −

(max {0,−0.159 + 0.1589}) θ2 −

(max {0, 0.2585 + 1.517}) θ3 −

(max {0,−0.0781 + 2.576} ∗max {0, 0.2585 + 1.517}) θ4 −

(max {0,−0.372 + 1.562} ∗max {0, 0.2585 + 1.517}) θ5)
2 +

(−0.1085− θ0 − (max {0,−0.1589 + 0.159}) θ1 −

(max {0,−0.159 + 0.1589}) θ2 −
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(max {0, 0.2585 + 1.517}) θ3 −

(max {0,−0.0781 + 2.576} ∗max {0, 0.2585 + 1.517}) θ4 −

(max {0, 0.8184 + 1.562} ∗max {0, 0.2585 + 1.517}) θ5)
2 +

(0.0608− θ0 − (max {0,−0.1589 + 0.159}) θ1 −

(max {0,−0.159 + 0.1589}) θ2 −

(max {0, 0.2585 + 1.517}) θ3 −

(max {0,−0.0781 + 2.576} ∗max {0, 0.2585 + 1.517}) θ4 −

(max {0, 0.8184 + 1.562} ∗max {0, 0.2585 + 1.517}) θ5)
2 +

(−0.0238− θ0 − (max {0,−0.1589 + 0.159}) θ1 −

(max {0,−0.159 + 0.1589}) θ2 −

(max {0, 1.0942 + 1.517}) θ3 −

(max {0,−0.0781 + 2.576} ∗max {0, 1.0942 + 1.517}) θ4 −

(max {0, 0.8184 + 1.562} ∗max {0, 1.0942 + 1.517}) θ5)
2 +

(0.2301− θ0 − (max {0, 0.0643 + 0.159}) θ1 −

(max {0,−0.159− 0.0643}) θ2 −

(max {0, 1.0942 + 1.517}) θ3 −

(max {0,−0.0781 + 2.576} ∗max {0, 1.0942 + 1.517}) θ4 −

(max {0,−0.372 + 1.562} ∗max {0, 1.0942 + 1.517}) θ5)
2 +

(0.3148− θ0 − (max {0, 0.0643 + 0.159}) θ1 −

(max {0,−0.159− 0.0643}) θ2 −

(max {0, 1.0942 + 1.517}) θ3 −

(max {0,−0.0781 + 2.576} ∗max {0, 1.0942 + 1.517}) θ4 −

(max {0,−1.5624 + 1.562} ∗max {0, 1.0942 + 1.517}) θ5)
2 +

(0.1455− θ0 − (max {0, 0.0643 + 0.159}) θ1 −

(max {0,−0.159− 0.0643}) θ2 −

(max {0, 1.0942 + 1.517}) θ3 −
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(max {0,−0.0781 + 2.576} ∗max {0, 1.0942 + 1.517}) θ4 −

(max {0,−0.9672 + 1.562} ∗max {0, 1.0942 + 1.517}) θ5)
2 +

(0.4841− θ0 − (max {0, 0.0643 + 0.159}) θ1 −

(max {0,−0.159− 0.0643}) θ2 −

(max {0, 1.4284 + 1.517}) θ3 −

(max {0,−0.0781 + 2.576} ∗max {0, 1.4284 + 1.517}) θ4 −

(max {0, 0.2232 + 1.562} ∗max {0, 1.4284 + 1.517}) θ5)
2 +

(0.5687− θ0 − (max {0, 0.1563 + 0.159}) θ1 −

(max {0,−0.159− 0.1563}) θ2 −

(max {0, 1.0942 + 1.517}) θ3 −

(max {0,−0.0781 + 2.576} ∗max {0, 1.0942 + 1.517}) θ4 −

(max {0,−0.372 + 1.562} ∗max {0, 1.0942 + 1.517}) θ5)
2 +

(1.0766− θ0 − (max {0, 0.3432 + 0.159}) θ1 −

(max {0,−0.159− 0.3432}) θ2 −

(max {0, 1.0942 + 1.517}) θ3 −

(max {0, 2.4197 + 2.576} ∗max {0, 1.0942 + 1.517}) θ4 −

(max {0,−1.5624 + 1.562} ∗max {0, 1.0942 + 1.517}) θ5)
2 +

(1.1613− θ0 − (max {0, 0.3432 + 0.159}) θ1 −

(max {0,−0.159− 0.3432}) θ2 −

(max {0, 1.0942 + 1.517}) θ3 −

(max {0,−0.0781 + 2.576} ∗max {0, 1.0942 + 1.517}) θ4 −

(max {0,−1.5624 + 1.562} ∗max {0, 1.0942 + 1.517}) θ5)
2 +

(0.738− θ0 − (max {0, 0.3432 + 0.159}) θ1 −

(max {0,−0.159− 0.3432}) θ2 −

(max {0, 1.0942 + 1.517}) θ3 −

(max {0,−0.0781 + 2.576} ∗max {0, 1.0942 + 1.517}) θ4 −
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(max {0, 0.2232 + 1.562} ∗max {0, 1.0942 + 1.517}) θ5)
2 +

(2.5156− θ0 − (max {0, 2.7145 + 0.159}) θ1 −

(max {0,−0.159− 2.7145}) θ2 −

(max {0, 1.0942 + 1.517}) θ3 −

(max {0, 2.4197 + 2.576} ∗max {0, 1.0942 + 1.517}) θ4 −

(max {0,−1.5624 + 1.562} ∗max {0, 1.0942 + 1.517}) θ5)
2 +

(3.5314− θ0 − (max {0, 4.3884 + 0.159}) θ1 −

(max {0,−0.159− 4.3884}) θ2 −

(max {0, 1.0942 + 1.517}) θ3 −

(max {0, 2.4197 + 2.576} ∗max {0, 1.0942 + 1.517}) θ4 −

(max {0,−1.5624 + 1.562} ∗max {0, 1.0942 + 1.517}) θ5)
2.

After computing the maximum functions, the RSS term has the following form:

N∑
i=1

(
yi − θTψ(d̄ i)

)2
= (−1.1224− θ0 − 0.4519θ2)

2 +

(−0.8703− θ0 − 0.4295θ2 − 0.1669θ3 − 0.4169θ4 − 0.3973θ5)
2 +

(−0.9549− θ0 − 0.4295θ2 − 0.1669θ3 − 0.4169θ4 − 0.3973θ5)
2 +

(−0.8703− θ0 − 0.4295θ2 − 0.1669θ3 − 0.4169θ4 − 0.4966θ5)
2 +

(−0.9549− θ0 − 0.4295θ2 − 0.1669θ3 − 0.5960θ5)
2 +

(−0.8703− θ0 − 0.4295θ2 − 0.1669θ3 − 0.5960θ5)
2 +

(−1.0396− θ0 − 0.3347θ2 − 0.5221θ3 − 1.3042θ4 − 0.6213θ5)
2 +

(−0.447− θ0 − 0.2873θ2 − 0.6892θ3 − 1.7216θ4 − 0.8201θ5)
2 +

(−0.701− θ0 − 0.2873θ2 − 0.6892θ3 − 1.7216θ4 − 0.8201θ5)
2 +

(−0.6163− θ0 − 0.2873θ2 − 0.6892θ3 − 1.7216θ4 − 0.3973θ5)
2 +

(−0.447− θ0 − 0.2873θ2 − 0.6892θ3 − 1.7216θ4 − 1.6406θ5)
2 +
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(−0.6163− θ0 − 0.2873θ2 − 0.6892θ3 − 1.7216θ4 − 1.6406θ5)
2 +

(−0.447− θ0 − 0.2873θ2 − 0.6892θ3 − 1.7216θ4 − 1.6406θ5)
2 +

(−0.1085− θ0 − 0.2789θ2 − 1.7755θ3 − 4.4350θ4 − 2.1128θ5)
2 +

(−0.1085− θ0 − 0.0557θ2 − 1.5666θ3 − 3.9132θ4 − 1.8643θ5)
2 +

(−0.0238− θ0 − 0.0557θ2 − 1.7755θ3 − 4.4350θ4 − 2.1128θ5)
2 +

(−0.1931− θ0 − 0.0001θ1 − 1.7755θ3 − 4.4350θ4 − 2.1128θ5)
2 +

(−0.1085− θ0 − 0.0001θ1 − 1.7755θ3 − 4.4350θ4 − 2.1128θ5)
2 +

(−0.1931− θ0 − 0.0001θ1 − 1.7755θ3 − 4.4350θ4 − 2.1128θ5)
2 +

(−0.1085− θ0 − 0.0001θ1 − 1.7755θ3 − 4.4350θ4 − 4.2264θ5)
2 +

(0.0680− θ0 − 0.0001θ1 − 1.7755θ3 − 4.4350θ4 − 4.2264θ5)
2 +

(−0.0238− θ0 − 0.0001θ1 − 2.6112θ3 − 6.5225θ4 − 6.2157θ5)
2 +

(0.2301− θ0 − 0.2233θ1 − 2.6112θ3 − 6.5225θ4 − 3.1073θ5)
2 +

(0.3148− θ0 − 0.2233θ1 − 2.6112θ3 − 6.5225θ4)
2 +

(0.1455− θ0 − 0.2233θ1 − 2.6112θ3 − 6.5225θ4 − 1.5531θ5)
2 +

(0.4841− θ0 − 0.2233θ1 − 2.9454θ3 − 7.3573θ4 − 5.2581θ5)
2 +

(0.5687− θ0 − 0.3153θ1 − 2.6112θ3 − 6.5225θ4 − 3.1073θ5)
2 +

(1.0766− θ0 − 0.5022θ1 − 2.6112θ3 − 13.0448θ4)
2 +

(1.1613− θ0 − 0.5022θ1 − 2.6112θ3 − 6.5225θ4)
2 +

(0.738− θ0 − 0.5022θ1 − 2.6112θ3 − 6.5225θ4 − 4.6615θ5)
2 +

(2.5156− θ0 − 2.8735θ1 − 2.6112θ3 − 13.0448θ4)
2 +

(3.5314− θ0 − 4.5474θ1 − 2.6112θ3 − 13.0448θ4)
2 .
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APPENDIX B

Matrix Plot of Data Sets

For LHS data

Figure 5.1: Matrix plot of response variable vs. predictor variables for LHS data.

111



For US data

Figure 5.2: Matrix plot of response variable vs. predictor variables for US data.
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For Metal Casting data

Figure 5.3: Matrix plot of response variable vs. predictor variables (x2 − x11) for
metal casting data.
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Figure 5.4: Matrix plot of response variable vs. predictor variables (x12 − x21) for
casting data.
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Figure 5.5: Matrix plot of response variable vs. predictor variables (x22 − x31) for
casting data.
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Figure 5.6: Matrix plot of response variable vs. predictor variables (x32 − x36) for
casting data.
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APPENDIX C

Figures and Tables of LHS Data

REPLICATION 1 CV 1

Table 5.1: The results of Salford MARS for LHS data (Rep1-CV1).

No. BF SQRT(RSS) norm of Lθ GCV Denominator
1 8.3751 2.2017 0.2750 0.9698
2 5.5860 1.8111 0.1252 0.9475
3 4.9931 2.1467 0.1049 0.9036
4 4.4397 2.1621 0.0857 0.8749
5 3.7117 2.2089 0.0619 0.8467
6 3.2703 2.2486 0.0497 0.8189
7 3.0401 2.2508 0.0444 0.7916
8 2.6179 2.1476 0.0341 0.7648
9 2.1788 2.1373 0.0244 0.7384
10 1.7619 2.1328 0.0166 0.7125
11 1.5087 2.2359 0.0126 0.6871
12 1.2909 2.1778 0.0096 0.6621
13 1.1557 2.1504 0.0080 0.6376
14 1.0271 2.1220 0.0065 0.6135
15 0.9639 2.0372 0.0060 0.5899
16 0.9096 2.0411 0.0055 0.5668
17 0.8691 2.0333 0.0053 0.5441
18 0.8584 2.0407 0.0054 0.5219
19 0.8528 2.0476 0.0055 0.5002
20 0.8501 2.0511 0.0057 0.4789
21 0.8480 2.0515 0.0060 0.4581
22 0.8480 2.0515 0.0062 0.4377

No. BF: Number of basis function, Denominator: Denominator of GCV.
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Table 5.2: The results of C-MARS for LHS data (Rep1-CV1).

√
M̄ No. BF SQRT(RSS) norm of Lθ GCV Denominator

0.265 22 6.5015 0.265 0.3672 0.4377
0.3 22 6.2446 0.3 0.3387 0.4377
0.35 22 5.9403 0.35 0.3065 0.4377
0.4 22 5.6755 0.4 0.2798 0.4377
0.45 22 5.434 0.45 0.2565 0.4377
0.5 22 5.2083 0.5 0.2356 0.4377
0.55 22 4.9941 0.55 0.2167 0.4377
0.6 22 4.7889 0.6 0.1992 0.4377
0.7 22 4.3994 0.7 0.1681 0.4377
0.8 22 4.0313 0.8 0.1412 0.4377
0.9 22 3.6799 0.9 0.1176 0.4377
1 22 3.3424 1 0.097 0.4377
1.1 22 3.0171 1.1 0.0791 0.4377
1.2 22 2.7031 1.2 0.0635 0.4377
1.25 22 2.5501 1.25 0.0565 0.4377
1.3 22 2.3999 1.3 0.05 0.4377
1.4 22 2.1081 1.4 0.0386 0.4377
1.5 22 1.8292 1.5 0.0291 0.4377
1.6 22 1.5661 1.6 0.0213 0.4377
1.7 22 1.3243 1.7 0.0152 0.4377
1.8 22 1.1138 1.8 0.0108 0.4377
1.9 22 0.9512 1.9 0.0079 0.4377
2 22 0.86 2 0.0064 0.4377
2.1 22 0.8478 2.0509 0.0062 0.4377
2.2 22 0.8478 2.0509 0.0062 0.4377
2.3 22 0.8478 2.0509 0.0062 0.4377

No. BF: Number of basis function, Denominator: Denominator of GCV.
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Figure 5.7: Norm of Lθ vs. SQRT(RSS) for LHS data (Rep1-CV1).

(*: MARS solutions; o: C-MARS solutions)
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Figure 5.8: A log-log scale, the curve of norm of Lθ vs. SQRT(RSS) for LHS data
(Rep1-CV1).
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Table 5.3: The results of Salford MARS for LHS data (Rep1-CV2).

No. BF SQRT(RSS) norm of Lθ GCV Denominator
1 6.3910 1.8203 0.1614 0.9696
2 5.4280 1.9018 0.1192 0.9471
3 4.9394 1.8291 0.1011 0.9248
4 4.3671 1.8363 0.0809 0.9029
5 3.6609 1.8228 0.0583 0.8812
6 2.9169 1.8562 0.0379 0.8597
7 2.6310 1.8507 0.0316 0.8385
8 2.3304 1.8446 0.0254 0.8176
9 2.0608 1.8336 0.0204 0.7969
10 1.6890 2.0256 0.0154 0.7105
11 1.3677 2.0702 0.0105 0.6849
12 1.1639 2.0815 0.0079 0.6598
13 1.5194 2.0920 0.0139 0.6351
14 1.0563 2.0529 0.0070 0.6109
15 1.0277 2.0286 0.0069 0.5872
16 0.9903 2.0175 0.0067 0.5639
17 0.9705 2.0057 0.0067 0.5412
18 0.9571 2.0377 0.0068 0.5188
19 0.9487 2.0298 0.0069 0.4970
20 0.9471 2.0348 0.0072 0.4756
21 0.9459 2.0350 0.0075 0.4547
22 0.9458 2.0342 0.0079 0.4343
23 0.9458 2.0342 0.0083 0.4143

No. BF: Number of basis function, Denominator: Denominator of GCV.
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Table 5.4: The results of C-MARS for LHS data (Rep1-CV2).

√
M̄ No. BF SQRT(RSS) norm of Lθ GCV Denominator

0.265 24 9.0583 0.265 0.7963 0.3948
0.3 24 8.7009 0.3 0.7346 0.3948
0.35 24 8.2551 0.35 0.6613 0.3948
0.4 24 7.8617 0.4 0.5998 0.3948
0.45 24 7.5035 0.45 0.5464 0.3948
0.5 24 7.1702 0.5 0.4989 0.3948
0.55 24 6.8554 0.55 0.4561 0.3948
0.7 24 5.9855 0.7 0.3477 0.3948
0.9 24 4.9336 0.9 0.2362 0.3948
1 24 4.4384 1 0.1912 0.3948
1.1 24 3.9596 1.1 0.1521 0.3948
1.15 24 3.7258 1.15 0.1347 0.3948
1.2 24 3.4958 1.2 0.1186 0.3948
1.25 24 3.2696 1.25 0.1037 0.3948
1.3 24 3.0472 1.3 0.0901 0.3948
1.4 24 2.6152 1.4 0.0664 0.3948
1.5 24 2.2034 1.5 0.0471 0.3948
1.7 24 1.4727 1.7 0.021 0.3948
1.8 24 1.1891 1.8 0.0137 0.3948
1.9 24 1.0039 1.9 0.0098 0.3948
2 24 0.9457 2 0.0087 0.3948
2.1 24 0.9454 2.0119 0.0087 0.3948
2.2 24 0.9454 2.0119 0.0087 0.3948
2.3 24 0.9454 2.0119 0.0087 0.3948

No. BF: Number of basis function, Denominator: Denominator of GCV.
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Figure 5.9: Norm of Lθ vs. SQRT(RSS) for LHS data (Rep1-CV2).

(*: MARS solutions; o: C-MARS solutions)
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Figure 5.10: A log-log scale, the curve of norm of Lθ vs. SQRT(RSS) for LHS data
(Rep1-CV2).
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Table 5.5: The results of Salford MARS for LHS data (Rep1-CV3).

No. BF SQRT(RSS) norm of Lθ GCV Denominator
1 6.5470 1.9356 0.1714 0.9692
2 5.7802 1.9005 0.1390 0.9314
3 4.6694 1.7505 0.0937 0.9018
4 4.0854 1.7694 0.0741 0.8726
5 3.3285 1.7599 0.0509 0.8438
6 2.8992 1.7801 0.0399 0.8156
7 2.4624 1.8152 0.0298 0.7878
8 1.9886 1.8235 0.0202 0.7605
9 1.6056 1.8081 0.0136 0.7337
10 1.3763 1.9469 0.0104 0.7074
11 1.1813 2.0038 0.0079 0.6816
12 1.0777 2.0178 0.0069 0.6562
13 1.0120 1.9790 0.0063 0.6313
14 0.9602 1.9697 0.0059 0.6069
15 0.9153 1.9773 0.0056 0.5830
16 0.8840 1.9281 0.0054 0.5596
17 0.8577 1.8846 0.0053 0.5366
18 0.8321 1.9061 0.0052 0.5142
19 0.8198 1.9130 0.0053 0.4922
20 0.8134 1.9188 0.0054 0.4707
21 0.8035 1.9045 0.0056 0.4496
22 0.8002 1.9014 0.0058 0.4291
23 0.7993 1.9054 0.0061 0.4090
24 0.7968 1.9044 0.0063 0.3894
25 0.7966 1.9021 0.0066 0.3703

No. BF: Number of basis function, Denominator: Denominator of GCV.
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Table 5.6: The results of C-MARS for LHS data (Rep1-CV3).

√
M̄ No. BF SQRT(RSS) norm of Lθ GCV Denominator

0.265 25 6.0754 0.265 0.3863 0.3703
0.3 25 5.747 0.3 0.3457 0.3703
0.4 25 5.0452 0.4 0.2664 0.3703
0.45 25 4.7686 0.45 0.238 0.3703
0.55 25 4.2936 0.55 0.193 0.3703
0.7 25 3.6952 0.7 0.1429 0.3703
0.8 25 3.3426 0.8 0.1169 0.3703
0.9 25 3.0156 0.9 0.0952 0.3703
1 25 2.7087 1 0.0768 0.3703
1.1 25 2.4189 1.1 0.0612 0.3703
1.15 25 2.2797 1.15 0.0544 0.3703
1.2 25 2.1442 1.2 0.0481 0.3703
1.25 25 2.0123 1.25 0.0424 0.3703
1.3 25 1.8841 1.3 0.0372 0.3703
1.4 25 1.6393 1.4 0.0281 0.3703
1.5 25 1.4123 1.5 0.0209 0.3703
1.6 25 1.208 1.6 0.0153 0.3703
1.8 25 0.9063 1.8 0.0086 0.3703
1.9 25 0.8381 1.9 0.0074 0.3703
2 25 0.8297 1.9499 0.0072 0.3703
2.1 25 0.8297 1.95 0.0072 0.3703
2.2 25 0.8297 1.9499 0.0072 0.3703
2.3 25 0.8297 1.9499 0.0072 0.3703

No. BF: Number of basis function, Denominator: Denominator of GCV.
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Figure 5.11: Norm of Lθ vs. SQRT(RSS) for LHS data (Rep1-CV3).

(*: MARS solutions; o: C-MARS solutions)
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Figure 5.12: A log-log scale, the curve of norm of Lθ vs. SQRT(RSS) for LHS data
(Rep1-CV3).
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Table 5.7: The results of Salford MARS for LHS data (Rep2-CV1).

No. BF SQRT(RSS) norm of Lθ GCV Denominator
1 7.2598 1.9277 0.2074 0.9697
2 6.1564 1.7808 0.1527 0.9473
3 5.8271 1.7848 0.1435 0.9032
4 4.7911 1.8344 0.1002 0.8744
5 4.1722 1.8471 0.0785 0.8461
6 3.3968 1.8524 0.0538 0.8183
7 2.7688 1.8773 0.0370 0.7909
8 2.3230 1.8756 0.0270 0.7640
9 2.0295 1.8620 0.0213 0.7375
10 1.6256 1.7203 0.0142 0.7115
11 1.4658 1.6859 0.0120 0.6860
12 1.2874 1.6843 0.0096 0.6609
13 1.1592 1.6796 0.0081 0.6363
14 1.0771 1.7084 0.0072 0.6122
15 1.0113 1.7374 0.0066 0.5886
16 0.9810 1.6976 0.0065 0.5654
17 0.9622 1.6889 0.0065 0.5426
18 0.9571 1.7050 0.0067 0.5204
19 0.9534 1.7029 0.0070 0.4986
20 0.9534 1.7049 0.0073 0.4773

No. BF: Number of basis function, Denominator: Denominator of GCV.
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Table 5.8: The results of C-MARS for LHS data (Rep2-CV1).

√
M̄ No. BF SQRT(RSS) norm of Lθ GCV Denominator

1 20 3.4776 1 0.0967 0.4773
1.1 20 2.9197 1.1 0.0682 0.4773
1.15 20 2.6579 1.15 0.0565 0.4773
1.2 20 2.4077 1.2 0.0464 0.4773
1.25 20 2.1696 1.25 0.0376 0.4773
1.3 20 1.9447 1.3 0.0302 0.4773
1.4 20 1.541 1.4 0.019 0.4773
1.5 20 1.2187 1.5 0.0119 0.4773
1.6 20 1.0138 1.6 0.0082 0.4773
1.7 20 0.9524 1.7 0.0073 0.4773
1.8 20 0.9523 1.7055 0.0073 0.4773
1.9 20 0.9523 1.7055 0.0073 0.4773
2 20 0.9523 1.7055 0.0073 0.4773
2.1 20 0.9523 1.7055 0.0073 0.4773

No. BF: Number of basis function, Denominator: Denominator of GCV.
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Figure 5.13: Norm of Lθ vs. SQRT(RSS) for LHS data (Rep2-CV1).

(*: MARS solutions; o: C-MARS solutions)
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Figure 5.14: A log-log scale, the curve of norm of Lθ vs. SQRT(RSS) for LHS data
(Rep2-CV1).
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Table 5.9: The results of Salford MARS for LHS data (Rep2-CV2).

No. BF SQRT(RSS) norm of Lθ GCV Denominator
1 5.7892 1.8252 0.1324 0.9696
2 4.9299 1.8209 0.0999 0.9322
3 4.5277 1.7501 0.0870 0.9029
4 4.1625 1.7523 0.0760 0.8740
5 3.5392 1.7360 0.0568 0.8456
6 2.9421 1.7629 0.0406 0.8176
7 2.4838 1.8126 0.0299 0.7901
8 2.0207 1.8071 0.0205 0.7631
9 1.7641 1.8726 0.0162 0.7366
10 1.5679 1.9353 0.0133 0.7105
11 1.4538 1.8815 0.0118 0.6849
12 1.3078 1.8945 0.0099 0.6598
13 1.2343 1.9077 0.0092 0.6351
14 1.1811 1.8819 0.0087 0.6109
15 1.1523 1.9212 0.0087 0.5872
16 1.1308 1.9238 0.0087 0.5639
17 1.1079 1.9395 0.0087 0.5412
18 1.0983 1.9233 0.0089 0.5188
19 1.0892 1.9043 0.0091 0.4970
20 1.0816 1.8937 0.0094 0.4756
21 1.0782 1.8946 0.0098 0.4547
22 1.0747 1.8933 0.0102 0.4343
23 1.0741 1.8943 0.0107 0.4143
24 1.0739 1.8944 0.0112 0.3948

No. BF: Number of basis function, Denominator: Denominator of GCV.

133



Table 5.10: The results of C-MARS for LHS data (Rep2-CV2).

√
M̄ No. BF SQRT(RSS) norm of Lθ GCV Denominator

0.5 24 6.0425 0.5 0.3543 0.3948
0.55 24 5.753 0.55 0.3212 0.3948
0.6 24 5.473 0.6 0.2907 0.3948
0.8 24 4.4315 0.8 0.1906 .3948
0.9 24 3.9531 0.9 0.1516 0.3948
1 24 3.5016 1 0.119 0.3948
1.1 24 3.0772 1.1 0.0919 0.3948
1.15 24 2.8752 1.15 0.0802 0.3948
1.2 24 2.6804 1.2 0.0697 0.3948
1.25 24 2.4928 1.25 0.0603 0.3948
1.3 24 2.3128 1.3 0.0519 0.3948
1.4 24 1.9773 1.4 0.0379 0.3948
1.7 24 1.2313 1.7 0.0147 0.3948
1.8 24 1.1103 1.8 0.012 0.3948
1.9 24 1.0732 1.8938 0.0112 0.3948
2 24 1.0732 1.8938 0.0112 0.3948
2.1 24 1.0732 1.8939 0.0112 0.3948

No. BF: Number of basis function, Denominator: Denominator of GCV.
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Figure 5.15: Norm of Lθ vs. SQRT(RSS) for LHS data (Rep2-CV2).

(*: MARS solutions; o: C-MARS solutions)
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Figure 5.16: A log-log scale, the curve of norm of Lθ vs. SQRT(RSS) for LHS data
(Rep2-CV2).
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Table 5.11: The results of Salford MARS for LHS data (Rep2-CV3).

No. BF SQRT(RSS) norm of Lθ GCV Denominator
1 8.7096 1.7923 0.3021 0.9694
2 5.5985 1.8149 0.1278 0.9467
3 4.8013 1.8793 0.0963 0.9243
4 4.1940 1.8779 0.0753 0.9021
5 3.4572 1.8698 0.0524 0.8803
6 2.9288 1.8996 0.0386 0.8587
7 2.6148 1.9073 0.0315 0.8373
8 2.2879 1.9080 0.0248 0.8163
9 1.9853 1.9018 0.0191 0.7955
10 1.7059 2.0441 0.0145 0.7749
11 1.4949 2.0603 0.0114 0.7547
12 1.4464 2.0651 0.0110 0.7347
13 1.2617 2.0674 0.0086 0.7150
14 1.1078 2.0658 0.0068 0.6955
15 1.0388 1.9720 0.0062 0.6763
16 0.9950 1.9686 0.0058 0.6574
17 0.9685 1.9577 0.0057 0.6388
18 0.9575 1.9514 0.0057 0.6204
19 0.9517 1.9590 0.0058 0.6023
20 0.9482 1.9581 0.0059 0.5844
21 0.9438 1.9606 0.0061 0.5669
22 0.9410 1.9653 0.0062 0.5495
23 0.9384 1.9688 0.0064 0.5325

No. BF: Number of basis function, Denominator: Denominator of GCV.
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Table 5.12: The results of C-MARS for LHS data (Rep2-CV3).

√
M̄ No. BF SQRT(RSS) norm of Lθ GCV Denominator

0.3 23 6.2435 0.3 0.3664 0.4108
0.35 23 5.9408 0.35 0.3317 0.4108
0.4 23 5.6721 0.4 0.3024 0.4108
0.45 23 5.4248 0.45 0.2766 0.4108
0.5 23 5.1927 0.5 0.2534 0.4108
0.55 23 4.9721 0.55 0.2324 0.4108
0.6 23 4.7606 0.6 0.213 0.4108
0.7 23 4.359 0.7 0.1786 0.4108
0.8 23 3.9797 0.8 0.1489 0.4108
0.9 23 3.6176 0.9 0.123 0.4108
1 23 3.27 1 0.1005 0.4108
1.1 23 2.9351 1.1 0.081 0.4108
1.15 23 2.7722 1.15 0.0722 0.4108
1.2 23 2.6122 1.2 0.0641 0.4108
1.25 23 2.4553 1.25 0.0567 0.4108
1.3 23 2.3017 1.3 0.0498 0.4108
1.4 23 2.0047 1.4 0.0378 0.4108
1.5 23 1.7245 1.5 0.028 0.4108
1.6 23 1.4666 1.6 0.0202 0.4108
1.7 23 1.2411 1.7 0.0145 0.4108
1.8 23 1.0644 1.8 0.0106 0.4108
1.9 23 0.9592 1.9 0.0086 0.4108
2 23 0.9382 1.9683 0.0083 0.4108
2.1 23 0.9382 1.9683 0.0083 0.4108

No. BF: Number of basis function, Denominator: Denominator of GCV.
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Figure 5.17: Norm of Lθ vs. SQRT(RSS) for LHS data (Rep2-CV3).

(*: MARS solutions; o: C-MARS solutions)
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Figure 5.18: A log-log scale, the curve of norm of Lθ vs. SQRT(RSS) for LHS data
(Rep2-CV3).
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Table 5.13: The results of Salford MARS for LHS data (Rep3-CV1).

No. BF SQRT(RSS) norm of Lθ GCV Denominator
1 6.6977 1.9253 0.1766 0.9697
2 5.6394 1.7648 0.1281 0.9473
3 5.0141 1.9076 0.1062 0.9032
4 4.4867 1.8879 0.0879 0.8744
5 3.8604 1.9053 0.0672 0.8461
6 3.4779 1.9443 0.0564 0.8183
7 2.9540 1.9421 0.0421 0.7909
8 2.5216 1.9437 0.0318 0.7640
9 2.1377 1.9531 0.0236 0.7375
10 1.8324 1.9394 0.0180 0.7115
11 1.5303 1.9975 0.0130 0.6860
12 1.3816 1.9691 0.0110 0.6609
13 1.1732 1.9879 0.0083 0.6363
14 1.0785 1.9895 0.0073 0.6122
15 1.0245 1.9703 0.0068 0.5886
16 0.9850 1.9317 0.0066 0.5654
17 0.9592 1.9053 0.0065 0.5426
18 0.9421 1.9126 0.0065 0.5204
19 0.9325 1.9190 0.0067 0.4986
20 0.9274 1.9207 0.0069 0.4773
21 0.9262 1.9189 0.0072 0.4564
22 0.9248 1.9150 0.0075 0.4360
23 0.9241 1.9184 0.0078 0.4161
24 0.9237 1.9169 0.0082 0.3966
25 0.9262 1.9175 0.0087 0.3776
26 0.9258 1.9173 0.0091 0.3591

No. BF: Number of basis function, Denominator: Denominator of GCV.
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Table 5.14: The results of C-MARS for LHS data (Rep3-CV1).

√
M̄ No. BF SQRT(RSS) norm of Lθ GCV Denominator

0.5 26 6.4138 0.5 0.4373 0.3591
0.55 26 6.1261 0.55 0.3989 0.3591
0.7 26 5.3219 0.7 0.301 0.3591
0.8 26 4.8226 0.8 0.2472 0.3591
0.85 26 4.5817 0.85 0.2231 0.3591
0.9 26 4.3459 0.9 0.2007 0.3591
0.95 26 4.1147 0.95 0.18 0.3591
1 26 3.888 1 0.1607 0.3591
1.05 26 3.6654 1.05 0.1428 0.3591
1.1 26 3.4469 1.1 0.1263 0.3591
1.15 26 3.2323 1.15 0.1111 0.3591
1.2 26 3.0217 1.2 0.0971 0.3591
1.25 26 2.8151 1.25 0.0842 0.3591
1.3 26 2.6128 1.3 0.0726 0.3591
1.35 26 2.415 1.35 0.062 0.3591
1.4 26 2.2221 1.4 0.0525 0.3591
1.7 26 1.2297 1.7 0.0161 0.3591
1.8 26 1.0191 1.8 0.011 0.3591

No. BF: Number of basis function, Denominator: Denominator of GCV.
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Figure 5.19: Norm of Lθ vs. SQRT(RSS) for LHS data (Rep3-CV1).

(*: MARS solutions; o: C-MARS solutions)
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Figure 5.20: A log-log scale, the curve of norm of Lθ vs. SQRT(RSS) for LHS data
(Rep3-CV1).
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Table 5.15: The results of Salford MARS for LHS data (Rep3-CV2).

No. BF SQRT(RSS) norm of Lθ GCV Denominator
1 6.4559 1.8651 0.1647 0.9696
2 5.6460 1.9202 0.1290 0.9471
3 4.9750 1.8244 0.1025 0.9248
4 4.4526 1.8159 0.0841 0.9029
5 3.7742 1.8400 0.0619 0.8812
6 3.0704 1.8783 0.0420 0.8597
7 2.7224 1.8665 0.0339 0.8385
8 2.4020 1.8724 0.0270 0.8176
9 2.0620 1.8631 0.0204 0.7969
10 1.8451 1.9803 0.0184 0.7105
11 1.7879 1.9755 0.0179 0.6849
12 1.6036 1.9857 0.0149 0.6598
13 1.3977 2.0466 0.0118 0.6351
14 1.1581 2.0417 0.0084 0.6109
15 1.0869 2.0540 0.0077 0.5872
16 1.0513 2.0565 0.0075 0.5639
17 1.0140 2.0378 0.0073 0.5412
18 0.9967 2.0433 0.0073 0.5188
19 0.9685 2.0375 0.0072 0.4970
20 0.9510 2.0333 0.0073 0.4756
21 0.9335 2.0317 0.0073 0.4547
22 0.9170 2.0554 0.0074 0.4343
23 0.9110 2.0596 0.0077 0.4143
24 0.9100 2.0598 0.0080 0.3948
25 0.9081 2.0648 0.0084 0.3758
26 0.9078 2.0621 0.0088 0.3572

No. BF: Number of basis function, Denominator: Denominator of GCV.
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Table 5.16: The results of C-MARS for LHS data (Rep3-CV2).

√
M̄ No. BF SQRT(RSS) norm of Lθ GCV Denominator

0.265 26 11.3581 0.265 1.3836 0.3572
0.3 26 11.0462 0.3 1.3086 0.3572
0.35 26 10.6111 0.35 1.2076 0.3572
0.4 26 10.1864 0.4 1.1128 0.3572
0.45 26 9.7707 0.45 1.0239 0.3572
0.5 26 9.3631 0.5 0.9402 0.3572
0.55 26 8.9631 0.55 0.8616 0.3572
0.6 26 8.57 0.6 0.7877 0.3572
0.8 26 7.062 0.8 0.5349 0.3572
0.9 26 6.3437 0.9 0.4316 0.3572
1 26 5.6481 1 0.3421 0.3572
1.1 26 4.9752 1.1 0.2655 0.3572
1.15 26 4.6476 1.15 0.2317 0.3572
1.2 26 4.3262 1.2 0.2007 0.3572
1.25 26 4.0114 1.25 0.1726 0.3572
1.3 26 3.7037 1.3 0.1471 0.3572
1.4 26 3.1125 1.4 0.1039 0.3572
1.5 26 2.5608 1.5 0.0703 0.3572
1.6 26 2.0614 1.6 0.0456 0.3572
1.7 26 1.6316 1.7 0.0286 0.3572
1.8 26 1.29 1.8 0.0178 0.3572
1.9 26 1.0521 1.9 0.0119 0.3572
2 26 0.9278 2 0.0092 0.3572
2.1 26 0.9075 2.0622 0.0088 0.3572
2.2 26 0.9075 2.0622 0.0088 0.3572
2.3 26 0.9075 2.0622 0.0088 0.3572

No. BF: Number of basis function, Denominator: Denominator of GCV.
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Figure 5.21: Norm of Lθ vs. SQRT(RSS) for LHS data (Rep3-CV2).

(*: MARS solutions; o: C-MARS solutions)
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Figure 5.22: A log-log scale, the curve of norm of Lθ vs. SQRT(RSS) for LHS data
(Rep3-CV2).
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Table 5.17: The results of Salford MARS for LHS data (Rep3-CV3).

No. BF SQRT(RSS) norm of Lθ GCV Denominator
1 8.6712 2.2557 0.2995 0.9694
2 5.8419 1.8342 0.1392 0.9467
3 4.7287 1.7911 0.0957 0.9021
4 4.1811 1.7863 0.0773 0.8730
5 3.4723 1.7864 0.0551 0.8444
6 2.8727 1.8050 0.0390 0.8163
7 2.4819 1.8022 0.0302 0.7886
8 2.0395 2.0360 0.0211 0.7614
9 1.6186 2.0367 0.0138 0.7347
10 1.3604 2.1131 0.0101 0.7085
11 1.2272 2.0595 0.0085 0.6827
12 1.1086 2.0591 0.0072 0.6574
13 1.0414 2.1357 0.0066 0.6326
14 0.9855 2.0903 0.0062 0.6083
15 0.9324 2.1021 0.0057 0.5844
16 0.9080 2.1345 0.0057 0.5611
17 0.8895 2.0940 0.0057 0.5382
18 0.8726 2.0848 0.0057 0.5157
19 0.8576 2.0743 0.0058 0.4938
20 0.8492 2.0677 0.0059 0.4723
21 0.8348 2.0923 0.0060 0.4513
22 0.8228 2.1109 0.0061 0.4308
23 0.8155 2.1079 0.0063 0.4108
24 0.8096 2.1018 0.0065 0.3912

No. BF: Number of basis function, Denominator: Denominator of GCV.
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Table 5.18: The results of C-MARS for LHS data (Rep3-CV3).

√
M̄ No. BF SQRT(RSS) norm of Lθ GCV Denominator

0.3 24 4.6825 0.3 0.2164 0.3912
0.35 24 4.4841 0.35 0.1984 0.3912
0.4 24 4.3116 0.4 0.1835 0.3912
0.45 24 4.1534 0.45 0.1702 0.3912
0.5 24 4.0043 0.5 0.1582 0.3912
0.55 24 3.8615 0.55 0.1472 0.3912
0.6 24 3.7232 0.6 0.1368 0.3912
0.7 24 3.4564 0.7 0.1179 0.3912
0.8 24 3.1989 0.8 0.101 0.3912
1.15 24 2.3451 1.15 0.0543 0.3912
1.2 24 2.2283 1.2 0.049 0.3912
1.25 24 2.113 1.25 0.0441 0.3912
1.3 24 1.9992 1.3 0.0394 0.3912
1.5 24 1.5638 1.5 0.0241 0.3912
1.6 24 1.3627 1.6 0.0183 0.3912
1.7 24 1.179 1.7 0.0137 0.3912
1.9 24 0.901 1.9 0.008 0.3912
2 24 0.83 2 0.0068 0.3912
2.1 24 0.8091 2.1 0.0065 0.3912
2.2 24 0.8091 2.1016 0.0065 0.3912
2.3 24 0.8091 2.1016 0.0065 0.3912
2.4 24 0.8091 2.1016 0.0065 0.3912

No. BF: Number of basis function, Denominator: Denominator of GCV.
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Figure 5.23: Norm of Lθ vs. SQRT(RSS) for LHS data (Rep3-CV3).

(*: MARS solutions; o: C-MARS solutions)
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Figure 5.24: A log-log scale, the curve of norm of Lθ vs. SQRT(RSS) for LHS data
(Rep3-CV3).
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APPENDIX D

Figures and Tables of US Data

REPLICATION 1 TRAIN 1

Table 5.19: The results of Salford MARS for US data (Rep1-CV1).

No. BF SQRT(RSS) norm of Lθ GCV Denominator
1 2.7475 1.8294 0.1233 0.8874
2 2.1375 1.9349 0.0820 0.8074
3 1.7808 1.9344 0.0629 0.7311
4 1.4815 1.9095 0.0483 0.6587
5 1.2799 1.8719 0.0402 0.5900
6 1.0364 1.9140 0.0296 0.5251
7 0.7525 2.0373 0.0244 0.3361
8 0.4125 2.0417 0.0091 0.2722
9 0.3377 1.9627 0.0077 0.2151
10 0.3026 1.9363 0.0081 0.1647
11 0.2895 1.9141 0.0100 0.1210
12 0.2840 1.9418 0.0139 0.0840
13 0.2825 1.9411 0.0215 0.0538
14 0.2804 1.9411 0.0377 0.0302
15 0.2804 1.9426 0.0847 0.0134

No. BF: Number of basis function, Denominator: Denominator of GCV.
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Table 5.20: The results of C-MARS for US data (Rep1-CV1).

√
M̄ No. BF SQRT(RSS) norm of Lθ GCV Denominator

0.4 15 2.8138 0.4 8.5357 0.0134
0.45 15 2.6224 0.45 7.4141 0.0134
0.5 15 2.4585 0.5 6.5165 0.0134
0.6 15 2.1823 0.6 5.1347 0.0134
0.7 15 1.9495 0.7 4.0974 0.0134
0.8 15 1.7442 0.8 3.28 0.0134
0.9 15 1.5581 0.9 2.6173 0.0134
1 15 1.3859 1 2.0707 0.0134
1.2 15 1.0713 1.2 1.2374 0.0134
1.3 15 0.9257 1.3 0.9238 0.0134
1.4 15 0.7869 1.4 0.6676 0.0134
1.5 15 0.6555 1.5 0.4632 0.0134
1.6 15 0.5329 1.6 0.3062 0.0134
1.7 15 0.4233 1.7 0.1932 0.0134
1.8 15 0.3354 1.8 0.1213 0.0134
2 15 0.28 1.9431 0.0846 0.0134
2.1 15 0.28 1.9431 0.0846 0.0134

No. BF: Number of basis function, Denominator: Denominator of GCV.
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Figure 5.25: Norm of Lθ vs. SQRT(RSS) for US data (Rep1-CV1).

(*: MARS solutions; o: C-MARS solutions)
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Figure 5.26: A log-log scale, the curve of norm of Lθ vs. SQRT(RSS) for US data
(Rep1-CV1).
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REPLICATION 1 TRAIN 2

Table 5.21: The results of Salford MARS for US data (Rep1-CV2).

No. BF SQRT(RSS) norm of Lθ GCV Denominator
1 2.0412 1.7765 0.0715 0.8825
2 1.7020 1.8096 0.0549 0.7991
3 1.3903 1.7945 0.0407 0.7199
4 1.2117 1.7850 0.0345 0.6449
5 0.9176 1.8212 0.0222 0.5739
6 0.6608 1.8156 0.0130 0.5071
7 0.6147 1.4453 0.0129 0.4444
8 0.5699 1.3977 0.0197 0.2500
9 0.4807 1.4738 0.0181 0.1931
10 0.4366 1.3875 0.0201 0.1435
11 0.4047 1.3683 0.0245 0.1012
12 0.3265 1.3714 0.0244 0.0663
13 0.3069 1.3659 0.0368 0.0388
14 0.2912 1.4099 0.0691 0.0186
15 0.2830 1.4144 0.2114 0.0057
16 0.2708 1.3682 4.8413 0.0002
17 0.2602 1.2977 0.4966 0.0021
18 0.2560 1.2984 0.0883 0.0112
19 0.2560 1.3018 0.0358 0.0278

No. BF: Number of basis function, Denominator: Denominator of GCV.
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Table 5.22: The results of C-MARS for US data (Rep1-CV2).

√
M̄ No. BF SQRT(RSS) norm of Lθ GCV Denominator

0.265 22 2.2584 0.265 0.6363 0.1214
0.3 22 1.9923 0.3 0.4952 0.1214
0.35 22 1.7158 0.35 0.3673 0.1214
0.4 22 1.4993 0.4 0.2804 0.1214
0.45 22 1.3174 0.45 0.2165 0.1214
0.5 22 1.1602 0.5 0.1679 0.1214
0.55 22 1.0229 0.55 0.1305 0.1214
0.6 22 0.9025 0.6 0.1016 0.1214
1.1 22 0.283 1.1 0.01 0.1214
1.15 22 0.2663 1.15 0.0089 0.1214
1.2 22 0.2568 1.2 0.0082 0.1214
1.25 22 0.2535 1.25 0.008 0.1214
1.3 22 0.2535 1.3 0.008 0.1214

No. BF: Number of basis function, Denominator: Denominator of GCV.
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Figure 5.27: Norm of Lθ vs. SQRT(RSS) for US data (Rep1-CV2).

(*: MARS solutions; o: C-MARS solutions)
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Figure 5.28: A log-log scale, the curve of norm of Lθ vs. SQRT(RSS) for US data
(Rep1-CV2).
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REPLICATION 1 TRAIN 3

Table 5.23: The results of Salford MARS for US data (Rep1-CV3).

No. BF SQRT(RSS) norm of Lθ GCV Denominator
1 2.2418 1.7626 0.0878 0.8807
2 1.8068 1.7677 0.0631 0.7962
3 1.5164 1.8288 0.0494 0.7160
4 1.2315 1.8551 0.0365 0.6400
5 0.9558 1.8376 0.0247 0.5683
6 0.5563 1.8482 0.0095 0.5008
7 0.5142 1.8099 0.0093 0.4376
8 0.4594 1.4558 0.0086 0.3787
9 0.4578 1.4481 0.0100 0.3240

No. BF: Number of basis function, Denominator: Denominator of GCV.
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Table 5.24: The results of C-MARS for US data (Rep1-CV3).

√
M̄ No. BF SQRT(RSS) norm of Lθ GCV Denominator

0.95 11 2.4106 0.95 0.393 0.2275
1 11 2.135 1 0.3083 0.2275
1.05 11 1.8648 1.05 0.2352 0.2275
1.1 11 1.6014 1.1 0.1735 0.2275
1.15 11 1.3474 1.15 0.1228 0.2275
1.2 11 1.1064 1.2 0.0828 0.2275
1.25 11 0.8849 1.25 0.053 0.2275
1.3 11 0.6932 1.3 0.0325 0.2275
1.35 11 0.5478 1.35 0.0203 0.2275
1.4 11 0.4688 1.4 0.0149 0.2275
1.45 11 0.4577 1.45 0.0142 0.2275
1.5 11 0.4577 1.5 0.0142 0.2275

No. BF: Number of basis function, Denominator: Denominator of GCV.
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Figure 5.29: Norm of Lθ vs. SQRT(RSS) for US data (Rep1-CV3).

(*: MARS solutions; o: C-MARS solutions)
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Figure 5.30: A log-log scale, the curve of norm of Lθ vs. SQRT(RSS) for US data
(Rep1-CV3).
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REPLICATION 2 TRAIN 1

Table 5.25: The results of Salford MARS for US data (Rep2-CV1).

No. BF SQRT(RSS) norm of Lθ GCV Denominator
1 1.9893 1.7628 0.0646 0.8874
2 1.7084 1.7923 0.0524 0.8074
3 1.4309 1.7840 0.0406 0.7311
4 1.1038 1.7769 0.0268 0.6587
5 0.8877 1.7840 0.0194 0.5900
6 0.6002 1.7902 0.0099 0.5251
7 0.5315 1.7049 0.0088 0.4640
8 0.5258 1.6498 0.0099 0.4066
9 0.5219 1.4559 0.0112 0.3531
10 0.5199 1.4436 0.0129 0.3033

No. BF: Number of basis function, Denominator: Denominator of GCV.
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Table 5.26: The results of C-MARS for US data (Rep2-CV1).

√
M̄ No. BF SQRT(RSS) norm of Lθ GCV Denominator

0.85 12 2.0082 0.85 0.2717 0.2151
0.87 12 1.874 0.87 0.2366 0.2151
0.9 12 1.6764 0.9 0.1894 0.2151
0.93 12 1.4842 0.93 0.1484 0.2151
0.95 12 1.3597 0.95 0.1246 0.2151
0.97 12 1.2388 0.97 0.1034 0.2151
1 12 1.0657 1 0.0765 0.2151
1.03 12 0.9059 1.03 0.0553 0.2151
1.05 12 0.8092 1.05 0.0441 0.2151
1.07 12 0.7232 1.07 0.0352 0.2151
1.1 12 0.6204 1.1 0.0259 0.2151
1.13 12 0.557 1.13 0.0209 0.2151
1.15 12 0.5358 1.15 0.0193 0.2151
1.17 12 0.5254 1.17 0.0186 0.2151
1.2 12 0.52 1.2 0.0182 0.2151
1.23 12 0.5197 1.2087 0.0182 0.2151
1.25 12 0.5197 1.2089 0.0182 0.2151

No. BF: Number of basis function, Denominator: Denominator of GCV.
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Figure 5.31: Norm of Lθ vs. SQRT(RSS) for US data (Rep2-CV1).

(*: MARS solutions; o: C-MARS solutions)
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Figure 5.32: A log-log scale, the curve of norm of Lθ vs. SQRT(RSS) for US data
(Rep2-CV1).
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REPLICATION 2 TRAIN 2

Table 5.27: The results of Salford MARS for US data (Rep2-CV2).

No. BF SQRT(RSS) norm of Lθ GCV Denominator
1 2.3004 1.7700 0.0909 0.8825
2 1.8715 1.7466 0.0664 0.7991
3 1.3900 1.8073 0.0407 0.7199
4 1.1199 1.8345 0.0295 0.6449
5 0.8069 1.8255 0.0172 0.5739
6 0.6320 1.8282 0.0119 0.5071
7 0.5481 1.8093 0.0102 0.4444
8 0.4796 1.7505 0.0090 0.3859
9 0.4324 1.7536 0.0085 0.3315
10 0.3977 1.7504 0.0085 0.2812
11 0.3776 1.5446 0.0092 0.2351
12 0.3775 1.5375 0.0112 0.1931
13 0.3771 1.5390 0.0139 0.1552

No. BF: Number of basis function, Denominator: Denominator of GCV.
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Table 5.28: The results of C-MARS for US data (Rep2-CV2).

√
M̄ No. BF SQRT(RSS) norm of Lθ GCV Denominator

0.97 15 2.2504 0.97 0.8356 0.0918
1 15 2.0817 1 0.715 0.0918
1.1 15 1.5352 1.1 0.3889 0.0918
1.13 15 1.3777 1.13 0.3132 0.0918
1.15 15 1.275 1.15 0.2682 0.0918
1.17 15 1.1745 1.17 0.2276 0.0918
1.2 15 1.0284 1.2 0.1745 0.0918
1.23 15 0.8895 1.23 0.1306 0.0918
1.25 15 0.8019 1.25 0.1061 0.0918
1.27 15 0.719 1.27 0.0853 0.0918
1.3 15 0.6058 1.3 0.0606 0.0918
1.33 15 0.51 1.33 0.0429 0.0918
1.35 15 0.4585 1.35 0.0347 0.0918
1.37 15 0.4188 1.37 0.0289 0.0918
1.4 15 0.3839 1.4 0.0243 0.0918
1.5 15 0.3769 1.5 0.0234 0.0918
1.6 15 0.3769 1.6 0.0234 0.0918
1.8 15 0.3768 1.8 0.0234 0.0918
3.1 15 0.3767 3.1 0.0234 0.0918
3.2 15 0.3767 3.1999 0.0234 0.0918

No. BF: Number of basis function, Denominator: Denominator of GCV.
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Figure 5.33: Norm of Lθ vs. SQRT(RSS) for US data (Rep2-CV2).

(*: MARS solutions; o: C-MARS solutions)
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Figure 5.34: A log-log scale, the curve of norm of Lθ vs. SQRT(RSS) for US data
(Rep2-CV2).

172



REPLICATION 2 TRAIN 3

Table 5.29: The results of Salford MARS for US data (Rep2-CV3).

No. BF SQRT(RSS) norm of Lθ GCV Denominator
1 2.1360 1.7741 0.0797 0.8807
2 1.7485 1.5734 0.0634 0.7422
3 1.4663 1.6116 0.0517 0.6400
4 1.1353 1.8161 0.0364 0.5453
5 0.9273 1.8415 0.0289 0.4582
6 0.7272 1.6774 0.0215 0.3787
7 0.5649 1.7038 0.0160 0.3067
8 0.4815 1.7907 0.0147 0.2424
9 0.4040 1.8164 0.0135 0.1856
10 0.3955 1.7464 0.0177 0.1363
11 0.3921 1.7327 0.0250 0.0947
12 0.3907 1.7321 0.0388 0.0606
13 0.3891 1.7205 0.0683 0.0341
14 0.3891 1.7204 0.1538 0.0151

No. BF: Number of basis function, Denominator: Denominator of GCV.
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Table 5.30: The results of C-MARS for US data (Rep2-CV3).

√
M̄ No. BF SQRT(RSS) norm of Lθ GCV Denominator

0.35 15 2.2146 0.35 19.9236 0.0038
0.4 15 2.0423 0.4 16.9454 0.0038
0.45 15 1.8931 0.45 14.5596 0.0038
0.5 15 1.7569 0.5 12.5391 0.0038
0.55 15 1.6291 0.55 10.7816 0.0038
0.6 15 1.5075 0.6 9.2323 0.0038
0.65 15 1.3908 0.65 7.8584 0.0038
0.7 15 1.2783 0.7 6.6383 0.0038
0.75 15 1.1696 0.75 5.5572 0.0038
0.8 15 1.0645 0.8 4.6037 0.0038
0.85 15 0.9632 0.85 3.7691 0.0038
0.9 15 0.8659 0.9 3.0462 0.0038
0.95 15 0.7732 0.95 2.4288 0.0038
1 15 0.6859 1 1.911 0.0038
1.05 15 0.6052 1.05 1.4878 0.0038
1.1 15 0.533 1.1 1.154 0.0038
1.15 15 0.4719 1.15 0.9047 0.0038
1.2 15 0.4253 1.2 0.7349 0.0038
1.25 15 0.3969 1.25 0.6399 0.0038

No. BF: Number of basis function, Denominator: Denominator of GCV.
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Figure 5.35: Norm of Lθ vs. SQRT(RSS) for US data (Rep2-CV3).

(*: MARS solutions; o: C-MARS solutions)
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Figure 5.36: A log-log scale, the curve of norm of Lθ vs. SQRT(RSS) for US data
(Rep2-CV3).
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REPLICATION 3 TRAIN 1

Table 5.31: The results of Salford MARS for US data (Rep3-CV1).

No. BF SQRT(RSS) norm of Lθ GCV Denominator
1 2.0029 1.7748 0.0655 0.8874
2 1.7220 1.8096 0.0532 0.8074
3 1.3521 1.7760 0.0362 0.7311
4 1.0991 1.7770 0.0266 0.6587
5 0.9052 1.7977 0.0201 0.5900
6 0.5479 1.7938 0.0083 0.5251
7 0.5269 1.5252 0.0087 0.4640

No. BF: Number of basis function, Denominator: Denominator of GCV.
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Table 5.32: The results of C-MARS for US data (Rep3-CV1).

√
M̄ No. BF SQRT(RSS) norm of Lθ GCV Denominator

0.98 8 2.1256 0.98 0.161 0.4066
1 8 2.0088 1 0.1438 0.4066
1.05 8 1.7213 1.05 0.1056 0.4066
1.08 8 1.5526 1.08 0.0859 0.4066
1.1 8 1.4422 1.1 0.0741 0.4066
1.13 8 1.2806 1.13 0.0584 0.4066
1.15 8 1.1762 1.15 0.0493 0.4066
1.18 8 1.0262 1.18 0.0375 0.4066
1.2 8 0.932 1.2 0.031 0.4066
1.23 8 0.8024 1.23 0.0229 0.4066
1.25 8 0.7263 1.25 0.0188 0.4066
1.28 8 0.6324 1.28 0.0143 0.4066
1.3 8 0.5861 1.3 0.0122 0.4066
1.33 8 0.5425 1.33 0.0105 0.4066
1.35 8 0.5295 1.35 0.01 0.4066
1.38 8 0.5268 1.38 0.0099 0.4066
1.4 8 0.5268 1.4 0.0099 0.4066
1.5 8 0.5268 1.5 0.0099 0.4066
2.4 8 0.5267 2.4 0.0099 0.4066
2.5 8 0.5267 2.4999 0.0099 0.4066

No. BF: Number of basis function, Denominator: Denominator of GCV.
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Figure 5.37: Norm of Lθ vs. SQRT(RSS) for US data (Rep3-CV1).

(*: MARS solutions; o: C-MARS solutions)
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Figure 5.38: A log-log scale, the curve of norm of Lθ vs. SQRT(RSS) for US data
(Rep3-CV1).
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REPLICATION 3 TRAIN 2

Table 5.33: The results of Salford MARS for US data (Rep3-CV2).

No. BF SQRT(RSS) norm of Lθ GCV Denominator
1 2.6593 1.7597 0.1214 0.8825
2 2.1278 1.7511 0.0858 0.7991
3 1.7621 2.0812 0.0653 0.7199
4 1.3939 2.1854 0.0534 0.5512
5 1.2543 2.1740 0.0513 0.4649
6 1.0962 2.1072 0.0472 0.3859
7 0.8183 2.1532 0.0323 0.3143
8 0.6239 2.1725 0.0236 0.2500
9 0.4790 2.1391 0.0180 0.1931
10 0.4119 2.1082 0.0179 0.1435
11 0.3545 2.1079 0.0188 0.1012
12 0.2794 2.0338 0.0178 0.0663
13 0.2506 2.0345 0.0245 0.0388
14 0.2217 2.0445 0.0401 0.0186
15 0.2052 2.0678 0.1111 0.0057
16 0.1977 2.0748 2.5802 0.0002
17 0.1922 2.0493 0.2709 0.0021
18 0.1882 2.0332 0.0477 0.0112
19 0.1870 2.0333 0.0191 0.0278
20 0.1846 2.0304 0.0100 0.0517
21 0.1845 2.0276 0.0062 0.0829

No. BF: Number of basis function, Denominator: Denominator of GCV.
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Table 5.34: The results of C-MARS for US data (Rep3-CV2).

√
M̄ No. BF SQRT(RSS) norm of Lθ GCV Denominator

0.45 21 2.3151 0.45 0.9799 0.0829
0.5 21 2.1697 0.5 0.8607 0.0829
0.55 21 2.0427 0.55 0.7629 0.0829
0.6 21 1.9282 0.6 0.6797 0.0829
0.7 21 1.7239 0.7 0.5433 0.0829
0.75 21 1.6308 0.75 0.4862 0.0829
0.8 21 1.5423 0.8 0.4349 0.0829
1.1 21 1.0814 1.1 0.2138 0.0829
1.15 21 1.0135 1.15 0.1878 0.0829
1.2 21 0.9475 1.2 0.1641 0.0829
1.25 21 0.8835 1.25 0.1427 0.0829
1.3 21 0.8213 1.3 0.1233 0.0829
1.45 21 0.6447 1.45 0.076 0.0829
1.5 21 0.589 1.5 0.0634 0.0829
1.55 21 0.5349 1.55 0.0523 0.0829
1.6 21 0.4826 1.6 0.0426 0.0829
1.8 21 0.295 1.8 0.0159 0.0829
1.85 21 0.2565 1.85 0.012 0.0829
1.9 21 0.2239 1.9 0.0092 0.0829
1.95 21 0.1994 1.95 0.0073 0.0829

No. BF: Number of basis function, Denominator: Denominator of GCV.
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Figure 5.39: Norm of Lθ vs. SQRT(RSS) for US data (Rep3-CV2).

(*: MARS solutions; o: C-MARS solutions)
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Figure 5.40: A log-log scale, the curve of norm of Lθ vs. SQRT(RSS) for US data
(Rep3-CV2).
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REPLICATION 3 TRAIN 3

Table 5.35: The results of Salford MARS for US data (Rep3-CV3).

No. BF SQRT(RSS) norm of Lθ GCV Denominator
1 2.1483 1.7543 0.0806 0.8807
2 1.8740 1.7921 0.0679 0.7962
3 1.5081 1.8337 0.0489 0.7160
4 1.1457 2.0227 0.0370 0.5453
5 0.9023 2.0271 0.0273 0.4582
6 0.6954 2.0299 0.0196 0.3787
7 0.5415 1.9643 0.0147 0.3067
8 0.4392 2.0161 0.0122 0.2424
9 0.3816 2.0062 0.0121 0.1856
10 0.3137 1.9103 0.0111 0.1363
11 0.2758 1.8780 0.0124 0.0947
12 0.2430 1.8359 0.0150 0.0606
13 0.2196 1.8484 0.0218 0.0341
14 0.1978 1.8594 0.0397 0.0151
15 0.1955 1.8602 0.1553 0.0038
16 0.1942 1.8807 Inf 0
17 0.1941 1.8808 0.1531 0.0038

No. BF: Number of basis function, Denominator: Denominator of GCV.
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Table 5.36: The results of C-MARS for US data (Rep3-CV3).

√
M̄ No. BF SQRT(RSS) norm of Lθ GCV Denominator

0.35 18 2.2074 0.35 4.9486 0.0151
0.4 18 1.9938 0.4 4.0375 0.0151
0.5 18 1.633 0.5 2.7083 0.0151
0.55 18 1.476 0.55 2.2127 0.0151
0.6 18 1.3315 0.6 1.8006 0.0151
0.65 18 1.198 0.65 1.4577 0.0151
0.7 18 1.0746 0.7 1.1727 0.0151
0.75 18 0.9603 0.75 0.9365 0.0151
0.8 18 0.8544 0.8 0.7415 0.0151
0.85 18 0.7566 0.85 0.5814 0.0151
0.9 18 0.6665 0.9 0.4512 0.0151
0.95 18 0.5843 0.95 0.3467 0.0151
1 18 0.5103 1 0.2644 0.0151
1.1 18 0.3919 1.1 0.156 0.0151
1.15 18 0.3514 1.15 0.1254 0.0151
1.2 18 0.3266 1.2 0.1083 0.0151
1.25 18 0.3191 1.25 0.1034 0.0151
1.3 18 0.319 1.3 0.1034 0.0151
1.4 18 0.319 1.4 0.1034 0.0151
2.4 18 0.3189 2.4 0.1033 0.0151
2.5 18 0.3189 2.5 0.1033 0.0151

No. BF: Number of basis function, Denominator: Denominator of GCV.
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Figure 5.41: Norm of Lθ vs. SQRT(RSS) for US data (Rep3-CV3).

(*: MARS solutions; o: C-MARS solutions)
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Figure 5.42: A log-log scale, the curve of norm of Lθ vs. SQRT(RSS) for US data
(Rep3-CV3).
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APPENDIX E

Figures and Tables of Metal
Casting Data

REPLICATION 1 TRAIN 1

Table 5.37: The results of Salford MARS for metal casting data (Rep1-CV1).

No. BF SQRT(RSS) norm of Lθ GCV Denominator
1 7.1749 1.5306 0.9665 0.8732
2 6.6122 3.1318 0.9863 0.7267
3 6.3178 3.1152 1.0568 0.6192
4 5.8651 3.4130 1.0839 0.5203
5 5.4363 3.9396 1.1267 0.4300
6 5.3829 4.1418 1.3638 0.3483

No. BF: Number of basis function, Denominator: Denominator of GCV.
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Table 5.38: The results of C-MARS for metal casting data (Rep1-CV1).

√
M̄ No. BF SQRT(RSS) norm of Lθ GCV Denominator

1.1 8 6.5484 1.1 3.3364 0.2107
1.2 8 6.4706 1.2 3.2577 0.2107
1.3 8 6.3961 1.3 3.1831 0.2107
1.4 8 6.3246 1.4 3.1123 0.2107
1.5 8 6.2559 1.5 3.045 0.2107
1.6 8 6.19 1.6 2.9812 0.2107
1.7 8 6.1267 1.7 2.9206 0.2107
1.8 8 6.066 1.8 2.863 0.2107
1.9 8 6.0078 1.9 2.8083 0.2107
2 8 5.952 2 2.7564 0.2107
2.1 8 5.8987 2.1 2.7072 0.2107
2.2 8 5.8478 2.2 2.6607 0.2107
2.3 8 5.7993 2.3 2.6167 0.2107
2.5 8 5.7094 2.5 2.5363 0.2107
2.6 8 5.668 2.6 2.4996 0.2107
2.7 8 5.6291 2.7 2.4654 0.2107
2.8 8 5.5925 2.8 2.4334 0.2107
2.9 8 5.5583 2.9 2.4038 0.2107
3 8 5.5265 3 2.3764 0.2107
3.1 8 5.4971 3.1 2.3512 0.2107
3.2 8 5.4702 3.2 2.3282 0.2107
3.3 8 5.4457 3.3 2.3074 0.2107
3.7 8 5.3723 3.7 2.2456 0.2107
3.8 8 5.3601 3.8 2.2354 0.2107
3.9 8 5.3504 3.9 2.2273 0.2107
4 8 5.3432 4 2.2213 0.2107

No. BF: Number of basis function, Denominator: Denominator of GCV.

190



Figure 5.43: Norm of Lθ vs. SQRT(RSS) for metal casting data (Rep1-CV1).

(*: MARS solutions; o: C-MARS solutions)
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Figure 5.44: A log-log scale, the curve of norm of Lθ vs. SQRT(RSS) for metal
casting data (Rep1-CV1).

192



REPLICATION 1 TRAIN 2

Table 5.39: The results of Salford MARS for metal casting data (Rep1-CV2).

No. BF SQRT(RSS) norm of Lθ GCV Denominator
1 7.0644 2.2026 0.9370 0.8732
2 6.6501 2.4088 0.9251 0.7837
3 6.4923 2.4987 0.9885 0.6990
4 6.2277 3.3534 1.0268 0.6192
5 5.9116 3.9765 1.0527 0.5442
6 5.4962 4.5832 1.0446 0.4741
7 5.4100 4.5695 1.1738 0.4088
8 5.1026 5.5400 1.2255 0.3483
9 4.8101 5.7042 1.2960 0.2927
10 4.5991 5.6061 1.4336 0.2419
11 4.4024 5.3767 1.6217 0.1959
12 4.1971 5.2198 1.8655 0.1548
13 3.9235 5.5032 2.1293 0.1185

No. BF: Number of basis function, Denominator: Denominator of GCV.
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Table 5.40: The results of C-MARS for metal casting data (Rep1-CV2).

√
M̄ No. BF SQRT(RSS) norm of Lθ GCV Denominator

0.3 25 7.029 0.3 13.3949 0.0605
0.4 25 6.8546 0.4 12.7384 0.0605
0.5 25 6.6946 0.5 12.1506 0.0605
0.7 25 6.4027 0.7 11.1139 0.0605
1.1 25 5.8927 1.1 9.4141 0.0605
1.2 25 5.7772 1.2 9.0487 0.0605
1.4 25 5.5587 1.4 8.3771 0.0605
1.6 25 5.3555 1.6 7.7758 0.0605
1.7 25 5.2592 1.7 7.4987 0.0605
1.8 25 5.1662 1.8 7.236 0.0605
1.9 25 5.0765 1.9 6.9867 0.0605
2.1 25 4.906 2.1 6.5253 0.0605
2.3 25 4.7466 2.3 6.1083 0.0605
2.4 25 4.6708 2.4 5.9147 0.0605
2.5 25 4.5975 2.5 5.7304 0.0605
2.6 25 4.5264 2.6 5.5546 0.0605
2.8 25 4.3909 2.8 5.227 0.0605
2.9 25 4.3263 2.9 5.0743 0.0605
3.1 25 4.2028 3.1 4.7889 0.0605
3.4 25 4.0314 3.4 4.4061 0.0605
3.5 25 3.9776 3.5 4.2894 0.0605
3.7 25 3.875 3.7 4.0709 0.0605
3.8 25 3.826 3.8 3.9687 0.0605
4 25 3.7327 4 3.7775 0.0605

No. BF: Number of basis function, Denominator: Denominator of GCV.
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Figure 5.45: Norm of Lθ vs. SQRT(RSS) for metal casting data (Rep1-CV2).

(*: MARS solutions; o: C-MARS solutions)
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Figure 5.46: A log-log scale, the curve of norm of Lθ vs. SQRT(RSS) for metal
casting data (Rep1-CV2).
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REPLICATION 1 TRAIN 3

Table 5.41: The results of Salford MARS for metal casting data (Rep1-CV3).

No. BF SQRT(RSS) norm of Lθ GCV Denominator
1 7.4323 1.5131 1.0541 0.8452
2 6.8948 6.0459 1.0493 0.7307
3 5.8934 10.2215 0.8969 0.6246
4 5.4977 10.5587 0.9254 0.5268
5 5.0604 14.1571 0.9445 0.4373
6 4.6963 14.5926 0.9989 0.3561
7 4.4398 15.6615 1.1223 0.2833
8 4.0417 14.2006 1.2043 0.2188
9 3.8174 14.3799 1.4456 0.1626
10 3.6796 14.7833 1.9035 0.1147
11 3.5151 14.4868 2.6507 0.0752
12 3.3766 15.1821 4.1827 0.0440
13 3.2564 15.0237 8.1166 0.0211

No. BF: Number of basis function, Denominator: Denominator of GCV.
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Table 5.42: The results of C-MARS for metal casting data (Rep1-CV3).

√
M̄ No. BF SQRT(RSS) norm of Lθ GCV Denominator

0.265 20 6.8225 0.265 7.9941 0.0939
0.3 20 6.7907 0.3 7.9199 0.0939
0.4 20 6.7052 0.4 7.7216 0.0939
0.5 20 6.6252 0.5 7.5384 0.0939
0.6 20 6.5492 0.6 7.3664 0.0939
0.7 20 6.4763 0.7 7.2034 0.0939
1.15 20 6.1746 1.15 6.5478 0.0939
1.2 20 6.1431 1.2 6.4812 0.0939
1.4 20 6.0203 1.4 6.2246 0.0939
1.7 20 5.8446 1.7 5.8667 0.0939
1.8 20 5.7881 1.8 5.7539 0.0939
2.1 20 5.6243 2.1 5.4328 0.0939
2.2 20 5.5715 2.2 5.3313 0.0939
2.4 20 5.4685 2.4 5.1359 0.0939
2.5 20 5.4182 2.5 5.0419 0.0939
2.7 20 5.3201 2.7 4.861 0.0939
2.8 20 5.2722 2.8 4.7739 0.0939
3.1 20 5.1331 3.1 4.5253 0.0939
3.2 20 5.0882 3.2 4.4465 0.0939
3.4 20 5.0006 3.4 4.2947 0.0939
3.7 20 4.8743 3.7 4.0804 0.0939
3.9 20 4.7933 3.9 3.946 0.0939
4.2 20 4.6765 4.2 3.756 0.0939
4.3 20 4.6388 4.3 3.6957 0.0939
4.7 20 4.4934 4.7 3.4677 0.0939
5 20 4.3899 5 3.3098 0.0939

No. BF: Number of basis function, Denominator: Denominator of GCV.
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Figure 5.47: Norm of Lθ vs. SQRT(RSS) for metal casting data (Rep1-CV3).

(*: MARS solutions; o: C-MARS solutions)
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Figure 5.48: A log-log scale, the curve of norm of Lθ vs. SQRT(RSS) for metal
casting data (Rep1-CV3).
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REPLICATION 2 TRAIN 1

Table 5.43: The results of Salford MARS for metal casting data (Rep2-CV1).

No. BF SQRT(RSS) norm of Lθ GCV Denominator
1 6.5817 0.6636 0.8426 0.8428
2 6.1204 1.1380 0.8450 0.7267
3 5.8245 1.2348 0.8982 0.6192
4 5.5058 1.4275 0.9551 0.5203
5 5.0590 1.5539 0.9757 0.4300
6 4.7548 1.6627 1.0641 0.3483
7 4.4040 2.8720 1.1554 0.2752
8 4.1614 2.9592 1.3474 0.2107
9 4.0405 2.8530 1.7290 0.1548
10 3.8848 2.9586 2.3015 0.1075
11 3.8347 3.1875 3.5039 0.0688

No. BF: Number of basis function, Denominator: Denominator of GCV.
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Table 5.44: The results of C-MARS for metal casting data (Rep2-CV1).

√
M̄ No. BF SQRT(RSS) norm of Lθ GCV Denominator

0.265 19 6.7223 0.265 306.2872 0.0024
0.3 19 6.6064 0.3 295.8123 0.0024
0.45 19 6.1427 0.45 255.7402 0.0024
0.6 19 5.7308 0.6 222.5966 0.0024
0.8 19 5.2571 0.8 187.3175 0.0024
1.1 19 4.6901 1.1 149.0901 0.0024
1.3 19 4.3933 1.3 130.8208 0.0024
1.4 19 4.2654 1.4 123.3148 0.0024
1.6 19 4.0441 1.6 110.8514 0.0024
1.8 19 3.861 1.8 101.0383 0.0024
2.1 19 3.6408 2.1 89.8427 0.0024
2.2 19 3.579 2.2 86.8182 0.0024
2.4 19 3.4696 2.4 81.5906 0.0024
2.6 19 3.3766 2.6 77.2764 0.0024
3 19 3.232 3 70.7975 0.0024
3.1 19 3.2034 3.1 69.5527 0.0024
3.3 19 3.1547 3.3 67.4526 0.0024
3.4 19 3.1343 3.4 66.5845 0.0024
3.5 19 3.1165 3.5 65.8306 0.0024
3.6 19 3.1012 3.6 65.1866 0.0024
3.7 19 3.0884 3.7 64.6483 0.0024
3.8 19 3.078 3.8 64.2125 0.0024
3.9 19 3.0699 3.9 63.876 0.0024
4 19 3.0641 4 63.636 0.0024

No. BF: Number of basis function, Denominator: Denominator of GCV.
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Figure 5.49: Norm of Lθ vs. SQRT(RSS) for metal casting data (Rep2-CV1).

(*: MARS solutions; o: C-MARS solutions)
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Figure 5.50: A log-log scale, the curve of norm of Lθ vs. SQRT(RSS) for metal
casting data (Rep2-CV1).

204



REPLICATION 2 TRAIN 2

Table 5.45: The results of Salford MARS for metal casting data (Rep2-CV2).

No. BF SQRT(RSS) norm of Lθ GCV Denominator
1 7.2697 0.7656 0.9922 0.8732
2 6.7578 1.4278 0.9553 0.7837
3 6.6558 1.4537 1.0389 0.6990
4 6.4723 2.0849 1.1091 0.6192
5 6.2116 2.6176 1.1623 0.5442
6 6.0370 2.6932 1.2603 0.4741

No. BF: Number of basis function, Denominator: Denominator of GCV.
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Table 5.46: The results of C-MARS for metal casting data (Rep2-CV2).

√
M̄ No. BF SQRT(RSS) norm of Lθ GCV Denominator

0.265 13 7.2641 0.265 7.2988 0.1185
0.3 13 7.2072 0.3 7.185 0.1185
0.4 13 7.0532 0.4 6.8812 0.1185
0.5 13 6.9112 0.5 6.6068 0.1185
0.6 13 6.7802 0.6 6.3589 0.1185
0.7 13 6.6596 0.7 6.1347 0.1185
0.8 13 6.5484 0.8 5.9314 0.1185
1.1 13 6.2619 1.1 5.4238 0.1185
1.2 13 6.1797 1.2 5.2823 0.1185
1.3 13 6.1029 1.3 5.1519 0.1185
1.5 13 5.9641 1.5 4.9202 0.1185
1.7 13 5.8423 1.7 4.7213 0.1185
1.8 13 5.787 1.8 4.6324 0.1185
2.1 13 5.6408 2.1 4.4013 0.1185
2.3 13 5.5581 2.3 4.2731 0.1185
2.6 13 5.4536 2.6 4.1139 0.1185
2.8 13 5.396 2.8 4.0275 0.1185
2.9 13 5.3706 2.9 3.9897 0.1185
3.2 13 5.3076 3.2 3.8967 0.1185
3.3 13 5.2909 3.3 3.8721 0.1185
3.4 13 5.2761 3.4 3.8506 0.1185
3.5 13 5.2634 3.5 3.832 0.1185
3.6 13 5.2527 3.6 3.8164 0.1185
3.7 13 5.244 3.7 3.8037 0.1185
3.8 13 5.2372 3.8 3.7939 0.1185
4 13 5.2292 4 3.7824 0.1185

No. BF: Number of basis function, Denominator: Denominator of GCV.
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Figure 5.51: Norm of Lθ vs. SQRT(RSS) for metal casting data (Rep2-CV2).

(*: MARS solutions; o: C-MARS solutions)
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Figure 5.52: A log-log scale, the curve of norm of Lθ vs. SQRT(RSS) for metal
casting data (Rep2-CV2).
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REPLICATION 2 TRAIN 3

Table 5.47: The results of Salford MARS for metal casting data (Rep2-CV3).

No. BF SQRT(RSS) norm of Lθ GCV Denominator
1 7.0562 2.3324 0.9177 0.8751
2 6.4940 5.0266 0.9308 0.7307
3 5.8214 5.4261 0.8751 0.6246
4 5.4023 5.1742 0.8936 0.5268
5 5.0928 4.8150 0.9566 0.4373
6 4.7547 4.5057 1.0238 0.3561
7 4.4918 4.2899 1.1487 0.2833
8 4.2063 4.2933 1.3044 0.2188
9 3.7562 5.7064 1.3996 0.1626
10 3.6399 5.6697 1.8626 0.1147
11 3.5250 5.4367 2.6658 0.0752
12 3.4059 5.4215 4.2557 0.0440

No. BF: Number of basis function, Denominator: Denominator of GCV.
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Table 5.48: The results of C-MARS for metal casting data (Rep2-CV3).

√
M̄ No. BF SQRT(RSS) norm of Lθ GCV Denominator

0.265 18 6.6042 0.265 22.3487 0.0315
0.3 18 6.4805 0.3 21.5192 0.0315
0.35 18 6.3116 0.35 20.4118 0.0315
0.4 18 6.152 0.4 19.3925 0.0315
0.5 18 5.8611 0.5 17.6019 0.0315
0.6 18 5.6073 0.6 16.1105 0.0315
0.8 18 5.1992 0.8 13.851 0.0315
0.9 18 5.036 0.9 12.995 0.0315
1.1 18 4.769 1.1 11.6538 0.0315
1.2 18 4.6586 1.2 11.1201 0.0315
1.6 18 4.3192 1.6 9.5589 0.0315
1.8 18 4.1915 1.8 9.0023 0.0315
1.9 18 4.1349 1.9 8.7605 0.0315
2.1 18 4.0326 2.1 8.3326 0.0315
2.2 18 3.9861 2.2 8.1416 0.0315
2.3 18 3.9423 2.3 7.9635 0.0315
2.6 18 3.8239 2.6 7.4925 0.0315
2.8 18 3.7543 2.8 7.2221 0.0315
2.9 18 3.7219 2.9 7.098 0.0315
3.1 18 3.6615 3.1 6.8694 0.0315
3.4 18 3.581 3.4 6.5707 0.0315
3.5 18 3.5567 3.5 6.4818 0.0315
3.7 18 3.5117 3.7 6.3189 0.0315
3.8 18 3.491 3.8 6.2446 0.0315
4 18 3.453 4 6.1094 0.0315

No. BF: Number of basis function, Denominator: Denominator of GCV.
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Figure 5.53: Norm of Lθ vs. SQRT(RSS) for metal casting data (Rep2-CV3).

(*: MARS solutions; o: C-MARS solutions)
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Figure 5.54: A log-log scale, the curve of norm of Lθ vs. SQRT(RSS) for metal
casting data (Rep2-CV3).
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REPLICATION 3 TRAIN 1

Table 5.49: The results of Salford MARS for metal casting data (Rep3-CV1).

No. BF SQRT(RSS) norm of Lθ GCV Denominator
1 7.0223 2.2872 0.9089 0.8751
2 6.5239 8.1793 0.9394 0.7307
3 6.2921 16.3229 1.0223 0.6246
4 5.1404 77.7190 0.8090 0.5268
5 4.7758 77.9845 0.8412 0.4373
6 4.4926 75.8218 0.9141 0.3561
7 4.2336 79.0825 1.0204 0.2833
8 3.9818 78.6799 1.1688 0.2188
9 3.7713 78.6466 1.4109 0.1626
10 3.5925 82.1292 1.8144 0.1147
11 3.4485 80.4764 2.5512 0.0752

No. BF: Number of basis function, Denominator: Denominator of GCV.
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Table 5.50: The results of C-MARS for metal casting data (Rep3-CV1).

√
M̄ No. BF SQRT(RSS) norm of Lθ GCV Denominator

0.265 15 6.6538 0.265 10.7222 0.0666
0.3 15 6.5774 0.3 10.4775 0.0666
0.4 15 6.372 0.4 9.8335 0.0666
0.55 15 6.0928 0.55 8.9905 0.0666
0.6 15 6.0065 0.6 8.7376 0.0666
1 15 5.4232 1 7.1231 0.0666
1.25 15 5.146 1.25 6.4134 0.0666
1.4 15 5.008 1.4 6.0741 0.0666
1.5 15 4.9268 1.5 5.8788 0.0666
1.7 15 4.7878 1.7 5.5517 0.0666
1.8 15 4.7289 1.8 5.416 0.0666
1.9 15 4.6764 1.9 5.2963 0.0666
2.1 15 4.5882 2.1 5.0985 0.0666
2.2 15 4.5516 2.2 5.0174 0.0666
2.3 15 4.5193 2.3 4.9465 0.0666
2.4 15 4.491 2.4 4.8846 0.0666
2.5 15 4.4662 2.5 4.8308 0.0666
2.9 15 4.3957 2.9 4.6795 0.0666
3.2 15 4.3644 3.2 4.6132 0.0666
3.3 15 4.3565 3.3 4.5966 0.0666
3.4 15 4.3495 3.4 4.5817 0.0666
3.5 15 4.3431 3.5 4.5682 0.0666
3.7 15 4.3318 3.7 4.5444 0.0666
3.8 15 4.3266 3.8 4.5337 0.0666
3.9 15 4.3218 3.9 4.5235 0.0666
4 15 4.3171 4 4.5138 0.0666

Nu. BF: Number of basis function, Denominator: Denominator of GCV.
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Figure 5.55: Norm of Lθ vs. SQRT(RSS) for metal casting data (Rep3-CV1).

(*: MARS solutions; o: C-MARS solutions)
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Figure 5.56: A log-log scale, the curve of norm of Lθ vs. SQRT(RSS) for metal
casting data (Rep3-CV1).

216



REPLICATION 3 TRAIN 2

Table 5.51: The results of Salford MARS for metal casting data (Rep3-CV2).

No. BF SQRT(RSS) norm of Lθ GCV Denominator
1 7.2050 2.0840 0.9568 0.8751
2 6.4565 6.0437 0.9201 0.7307
3 6.0275 6.1080 0.9381 0.6246
4 5.9827 6.0987 1.0959 0.5268
5 5.4422 6.8918 1.0924 0.4373
6 5.2494 6.8850 1.2480 0.3561
7 4.8478 7.2842 1.3380 0.2833
8 4.4765 7.5388 1.4773 0.2188
9 3.9808 7.8957 1.5720 0.1626
10 3.6757 8.1823 1.8995 0.1147
11 3.3712 8.0593 2.4382 0.0752
12 3.2118 8.1696 3.7844 0.0440
13 2.9580 7.8355 6.6972 0.0211
14 2.8363 8.1693 19.9505 0.0065
15 2.7010 8.2864 452.3170 0.0003

No. BF: Number of basis function, Denominator: Denominator of GCV.
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Table 5.52: The results of C-MARS for metal casting data (Rep3-CV2).

√
M̄ No. BF SQRT(RSS) norm of Lθ GCV Denominator

0.265 22 6.8545 0.265 3.996 0.1896
0.35 22 6.7063 0.35 3.825 0.1896
0.4 22 6.6289 0.4 3.7372 0.1896
0.5 22 6.4888 0.5 3.581 0.1896
0.55 22 6.4244 0.55 3.5102 0.1896
0.8 22 6.1375 0.8 3.2037 0.1896
1 22 5.9341 1 2.9948 0.1896
1.15 22 5.7908 1.15 2.852 0.1896
1.3 22 5.6535 1.3 2.7183 0.1896
1.4 22 5.5646 1.4 2.6335 0.1896
1.7 22 5.3086 1.7 2.3967 0.1896
1.8 22 5.2262 1.8 2.323 0.1896
1.9 22 5.1452 1.9 2.2515 0.1896
2 22 5.0655 2 2.1822 0.1896
2.2 22 4.9095 2.2 2.0499 0.1896
2.3 22 4.8331 2.3 1.9866 0.1896
2.7 22 4.5381 2.7 1.7515 0.1896
2.8 22 4.4669 2.8 1.697 0.1896
2.9 22 4.3966 2.9 1.644 0.1896
3.1 22 4.2589 3.1 1.5426 0.1896
3.2 22 4.1915 3.2 1.4942 0.1896
3.4 22 4.0595 3.4 1.4016 0.1896
3.5 22 3.9949 3.5 1.3573 0.1896
3.7 22 3.8687 3.7 1.2729 0.1896
3.8 22 3.8071 3.8 1.2327 0.1896
4 22 3.6868 4 1.156 0.1896

No. BF: Number of basis function, Denominator: Denominator of GCV.
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Figure 5.57: Norm of Lθ vs. SQRT(RSS) for metal casting data (Rep3-CV2).

(*: MARS solutions; o: C-MARS solutions)
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Figure 5.58: A log-log scale, the curve of norm of Lθ vs. SQRT(RSS) for metal
casting data (Rep3-CV2).
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REPLICATION 3 TRAIN 3

Table 5.53: The results of Salford MARS for metal casting data (Rep3-CV3).

No. BF SQRT(RSS) norm of Lθ GCV Denominator
1 7.4349 0.7789 1.0188 0.8751
2 7.0438 1.0514 1.0169 0.7869
3 6.6701 1.7130 1.0201 0.7034
4 6.1898 2.1061 0.9894 0.6246
5 6.0581 2.0746 1.0754 0.5505
6 5.7934 2.3300 1.1255 0.4810
7 5.5325 2.6714 1.1861 0.4162
8 5.3211 2.8815 1.2823 0.3561
9 5.0425 3.0039 1.3637 0.3007
10 4.7659 3.4233 1.4654 0.2500
11 4.5774 3.4558 1.6570 0.2040
12 4.4411 3.6363 1.9565 0.1626

No. BF: Number of basis function, Denominator: Denominator of GCV.
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Table 5.54: The results of C-MARS for metal casting data (Rep3-CV3).

√
M̄ No. BF SQRT(RSS) norm of Lθ GCV Denominator

0.7 25 6.3766 0.7 12.8621 0.051
0.8 25 6.2119 0.8 12.2064 0.051
1 25 5.903 1 11.0225 0.051
1.15 25 5.687 1.15 10.2307 0.051
1.2 25 5.6177 1.2 9.9829 0.051
1.3 25 5.483 1.3 9.5098 0.051
1.4 25 5.3531 1.4 9.0647 0.051
1.6 25 5.1072 1.6 8.251 0.051
1.7 25 4.9909 1.7 7.8793 0.051
1.9 25 4.7708 1.9 7.1997 0.051
2 25 4.6669 2 6.8896 0.051
2.1 25 4.5671 2.1 6.5981 0.051
2.2 25 4.4714 2.2 6.3244 0.051
2.4 25 4.2921 2.4 5.8275 0.051
2.6 25 4.1293 2.6 5.3937 0.051
2.9 25 3.9166 2.9 4.8523 0.051
3 25 3.8543 3 4.6992 0.051
3.1 25 3.7964 3.1 4.5591 0.051
3.2 25 3.743 3.2 4.4317 0.051
3.3 25 3.6941 3.3 4.3168 0.051
3.4 25 3.6498 3.4 4.2138 0.051
3.6 25 3.5752 3.6 4.0432 0.051
3.7 25 3.5449 3.7 3.975 0.051
3.9 25 3.4984 3.9 3.8716 0.051
4 25 3.4823 4 3.836 0.051

No. BF: Number of basis function, Denominator: Denominator of GCV.
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Figure 5.59: Norm of Lθ vs. SQRT(RSS) for metal casting data (Rep3-CV3).

(*: MARS solutions; o: C-MARS solutions)

223



Figure 5.60: A log-log scale, the curve of norm of Lθ vs. SQRT(RSS) for metal
casting data (Rep3-CV3).
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