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I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced all

material and results that are not original to this work.

Name, Last name: Nurgül GÖKGÖZ
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abstract

DEVELOPMENT OF TOOLS FOR MODELING

HYBRID SYSTEMS WITH MEMORY

Gökgöz, Nurgül

M.Sc., Department of Scientific Computing

Supervisor: Assist. Prof. Dr. Hakan Öktem

Co-advisor: Prof. Dr. Gerhard-Wilhelm Weber

August 2008, 114 pages

Regulatory processes and history dependent behavior appear in many dynami-

cal systems in nature and technology. For modeling regulatory processes, hybrid

systems offer several advances. From this point of view, to observe the capabil-

ity of hybrid systems in a history dependent system is a strong motivation. In

this thesis, we developed functional hybrid systems which exhibit memory de-

pendent behavior such that the dynamics of the system is determined by both

the location of the state vector and the memory. This property was explained by

various examples. We used the hybrid system with memory in modeling the gene

regulatory network of human immune response to Influenza A virus infection.

We investigated the sensitivity of the piecewise linear model with memory. We

introduced how the model can be developed in future.

Keywords: piecewise linear systems, hybrid systems, memory, regulatory gene
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networks, Influenza A virus infection.
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öz

HAFIZALI HİBRİT SİSTEMLERİN MODELLENMESİ

İÇİN YÖNTEMLERİN GELİŞTİRİLMESİ

Gökgöz, Nurgül

Yüksek Lisans, Bilimsel Hesaplama Bölümü

Tez Yöneticisi: Yar. Doç. Dr. Hakan Öktem

Tez Yönetici Yardımcısı: Prof. Dr. Gerhard-Wilhelm Weber

Ağustos 2008, 114 sayfa

Düzenleyici süreçler ve geçmişe dayalı davranış doğadaki ve teknolojideki pek çok

dinamik sistemde ortaya çıkar. Düzenleyici süreçleri düzenlemede, hibrit sistem-

ler çeşitli ilerlemeler sunar. Bu bakımdan, hibrit sistemlerin geçmişe dayalı bir

sistemde yeteneğini gözlemlemek güçlü bir motivasyondur. Bu tezde, hafızaya

dayalı davranış sergileyen hibrit sistemler geliştirdik; öyle ki sistemin dinamik-

leri hem durum vektörünün konumu, hem de hafıza tarafndan belirlenir. Bu

özellik, çeşitli örneklerle açıklandı. Bu hafızalı hibrit sistemi, İnfluenza A virüsü

enfeksiyonuna karşı insan bağışıklık tepkisinin düzenleyici gen ağının modellen-

mesinde kullandık. Hafızalı parçalı doğrusal modelin duyarlılığını inceledik.

İlerde modelin nasıl geliştirilebileceğini ortaya koyduk.

Anahtar Kelimeler: parçalı doğrusal sistemler, hibrit sistemler, hafıza, düzenleyici

gen ağları, İnfluenza A virüsü enfeksiyonu.
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chapter 1

INTRODUCTION

1.1 Introduction to the Work

Mathematical modeling of a dynamical system is an essential method for

understanding or controlling many science and engineering problems. By con-

structing a mathematical model for a dynamical system, one can investigate the

dynamical system with different conditions, determine the dynamical system’s

future development under different initial conditions or construct some control

strategies so that the system can be brought to a desired state.

Because of the developments in many different areas of science, mathematical

modeling of dynamical systems become much more important. From this point

of view, hybrid systems are very useful, since hybrid systems are the systems

constructed by both continuous and Boolean variables regulating each other [25],

[28], [43]. This property allows various advantages in modeling complex processes

and designing control systems. Hybrid system formalization firstly used in con-

trol application. By the study of engineering systems which contain relays and/or

hysteresis, 1950’s can be thought of a start of hybrid system research [37]. Due

to the vast development and implementation of digital micro controllers and em-

bedded devices, 1990’s were the years that started to take people’s attention [37].

With the developments of control applications like robotics, air traffic control, etc.
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their use increased. During last decade, many researchers from various disciplines

such as computer science, control systems engineering, and mathematics [5], [51]

have performed considerable research activities on hybrid systems. Modeling [3],

[7], [8], [54], reachability analysis [3], [4] ,[6] , stability and stabilization [17], [26],

[29], [34], [35], [58], observability and controllability [10], [54], [59] and optimal

control [9], [68] are the primarily studied issues [37]. Today, hybrid systems serve

important advances for various modeling [19], [21], [43] and theoretical problems

[20], [43] in nature and science. Moreover, some dynamical systems that have

threshold phenomena can best be formalized by hybrid systems. By piecewise

linear systems which is a subclass of hybrid systems, complex nonlinear dynami-

cal systems can best be approximated as a combination of piecewise analytically

solvable systems, except the ones that are chaotic. Many different formalizations

of hybrid systems are used in various fields. In this thesis, state space represen-

tation and hybrid automata representation are used.

Since many dynamical systems are history dependent [16], [30] constructing

a mathematical model with memory has taken attention. Because of the useful-

ness and advanced features of hybrid systems, hybrid systems with memory are

investigated in this thesis. The future behavior of the system depends on the

state transition and the memory. The issue of this work, in the sense of memory,

can be thought as ”functional memory” not ”initial condition memory”. History

dependent behavior appears in many biological systems. One of the obvious one

is immune response which is also investigated in this thesis.
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1.2 Explanation of the Work

In this thesis, development of tools for hybrid systems is considered. In Chap-

ter 2, a background of the study is given. In Chapter 3, the definition of hybrid

systems with memory is given and explained with two illustrative examples. In

Chapter 4, a dynamical model of the human response of immune system to in-

fluenza A virus infection is explained in detail in order to compare the results with

the hybrid model. In Chapter 5, an application of hybrid systems with memory

to the dynamical model of human immune response to influenza A virus infection

is done. In Chapter 6, sensitivity analysis of the hybrid model is investigated. In

Chapter 7, future work of the model is considered and Chapter 8 is the conclusion

chapter.

1.3 Aim and Importance of the Work

This thesis consists of modeling hybrid systems with memory. In this work, the

use of piecewise linear systems depending on memory is investigated. Since gene

networks are multi stationary and history dependent, modeling these systems by

an appropriate piecewise linearity is important. By using the idea of piecewise

linearity, reduced complexity is obtained. Also a more realistic model can be

constructed.

This work has some important features. Firstly, complex dynamical systems

which are history dependent can be modeled by hybrid systems with memory.

By using hybrid system formulation complex dynamics can be reconstructed and

investigated easily. Secondly, since regulatory gene networks are multi stationary,

they can be divided into subsystems by the idea of state space representation and

3



each state transition can decide the new state’s dynamics. Moreover, by analyzing

the sensitivity of the hybrid model, a confident way of determining the parameter

values is investigated. By applying this tool, understanding the model’s behavior

in response to changes in its inputs and ensuring the correct use of the model is

studied.
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chapter 2

BACKGROUND

2.1 Dynamical Systems

Before starting, the concepts of dynamics must be well determined. Dynam-

ics is the subject that deals with change, with systems that evolve in time [57].

The system can settle down to equilibrium, keep repeating in cycles, or do some-

thing more complicated, this is the dynamics that is to be analyzed in terms of

dynamical systems. Differential equations, classical mechanics, chemical kinet-

ics, population biology, etc., are the most probable areas to face with dynamical

ideas.

2.1.1 Examples of Dynamical Systems

For detailed discussion of the examples see [14], [57], [66]. One typical example

of dynamical systems is the exponential growth of a population of organisms. This

system is given by the first order equation

ẋ = rx, (2.1.1)

where x is the population at time t and r is the growth rate. This system is given

by one variable, x, i.e., n = 1 because the current value of the population x is

5



enough to determine the population at any later time. Moreover, this system is

linear because the differential equation (2.1.1) is linear in x.

Another typical example of dynamical systems is the swinging of a pendulum

represented by the equation

ÿ +
ρ

L
sin y = 0, (2.1.2)

where y is the angle of the pendulum from vertical, ρ is the acceleration due to

gravity, and L is the length of the pendulum. This system’s state is given by

two variables: its current angle y and the angular velocity ẏ at time t. In other

words, to determine the solution uniquely the initial values of both y and ẏ are

needed. The system (2.1.2) is equivalent to the following one:

ẏ1 = y2,

ẏ2 = −
ρ

L
sin y1,

which is nonlinear.

Suppose the solution to this pendulum system is known for some particular

initial conditions. Then a pair of function y1(t) and y2(t) will be obtained, rep-

resenting the position and velocity of the pendulum, respectively. In an abstract

space where coordinates are y1 and y2, the solution

(y1(t), y2(t))

corresponds to a point moving along a curve in this space which can be seen by

the Figure (2.1).

6



Figure 2.1: A trajectory in the phase space of the pendulum system [57].

In Figure 2.1, the curve is called as trajectory and the space is called the

phase space of the system.

2.2 Hybrid Systems

Hybrid systems are some kind of dynamical systems that are formed by both

continuous and Boolean variables regulating each other [25], [28], [43]. Therefore,

in hybrid systems the ranges of some continuous variables can determine the

Boolean state of a discrete variable where the Boolean state of a discrete variable

can determine the governing differential equation of a continuous variable.

There are typical examples of hybrid systems in nature and technology. The

first group includes real physical switches. Traffic flow, which is continuous,

regulated by traffic lights, which is discrete, an electrical circuit protected by a

7



fuse and temperature controlled by a thermostat are the examples of the first

group.

The second group of hybrid systems are the dynamical systems subject to

threshold phenomena. In this case the dynamical system switches when a thresh-

old exceeded. Bouncing ball and the activation or the inhibition of a gene when a

corresponding protein or protein complex exceed a threshold are some examples

of the second group. Hybrid systems can be represented in different ways since it

is considered in various fields such as control engineering, computer engineering,

logistics, automation, dynamical systems theory.

A general representation is hybrid automata. Hybrid automata will be given

later in this thesis, but before, a state space representation will be given. The

following equations represent a hybrid system:

dy

dt
= fs(y(t), xe(t)),

s(t) = (sk, sx) if y(t) ∈ Uk,

where U1, U2, . . . , Un are subspaces of the state space Y of y and sx is an external

state input. An another representation can be the one that the state space is

partitioned by single threshold crossings at each axis (variable). So that the

above equation can be generalized as the following one:

dy

dt
= fs(y(t), xe(t)),

s(t) = FB(Q(y(t)), s(t − τ), sx(t)),

8



Qi(y(t)) =











1 if yi(t) > hi

0 if yi(t) ≤ hi,

where

• fs : Y × Xe → Rn is a switching function determined by the state vector

s(t),

• y is an n dimensional vector of continuous variables,

• xe is a vector representing the continuous external inputs,

• s(t) : R → [0, 1]m is the state vector,

• FB : [0, 1]n+m+k → [0, 1]m is a Boolean function,

• sx(t) is a vector representing the Boolean external inputs,

• Q(.) is the quantization operation, and

• τ is the delay.

2.2.1 Example (Bouncing Ball)

Consider a ball which is released from its center with height x(t0) = x0 at time

t = t0 without an initial velocity v(t0) = 0. The ball will accelerate downwards

until the time when it hits to the ground with

v(t) = v(t0) − gt

9



and

x(t) = x(t0) −
1

2
gt2,

where g is the acceleration due to gravity. As a simple case, nonelastic collision

and no mechanical properties of the ball are considered. Let r be the radius of

the ball. The ball hits to the ground when x(t) = r. After the hit, the ball

compresses and all the kinetic energy will turn into compression until the ball

stops, i.e., v(t) = 0 where it will decelerate by

dv

dt
= k.

After the compression the ball will start to accelerate upwards with

dv

dt
= ρk,

where 0 < ρ < k.

In this example, different states of the system can be considered as

s1 = x(t) > r,

s2 = (x(t) ≤ r) ∧ (v(t) ≤ 0),

s3 = (x(t) ≤ r) ∧ (v(t) > 0),

where ∧ is the logical AND. Here, the state is 1 if the binary relation between

the terms is true and 0 otherwise. The state representation of the bouncing ball

10



example is given by

dx

dt
= v,

dv

dt
= −(s(t) = s1)g + (s(t) = s2)k + (s(t) = s3)ρk,

s1 = x(t) > r,

s2 = (x(t) ≤ r) ∧ (v(t) ≤ 0),

s3 = (x(t) ≤ r) ∧ (v(t) > 0),

For different examples of dynamical systems with state space representation

see [46] and for detailed discussion of this example see [43] and [38].

2.3 An Overview of The Graph Theory

A hybrid system can also be represented as a graph. In this representation,

the nodes corresponds to different states of the system and the edges corresponds

to possible state transitions of the system. So, to give basic definitions of the

graph theory will be useful.

Definition 2.3.1. A graph G is a finite nonempty set V (G) of objects called

vertices (also called points or nodes) and a (possibly nonempty) set E(G) of

2−element subsets of V (G) called edges (or lines). The set V (G) is called the

vertex set of G and E(G) its edge set [15].

If e = uv is an edge of a graph G, then we say that u and v are adjacent in G,

and that e joins u and v (It is also possible to say that each of u and v is adjacent

11



to or with the other). For example, a graph G is defined by the sets

V (G) = {u, v, w, x, y, z}

and

E(G) = {uv, uw,wx, xy, xz} .

If more than one edge join a pair of vertices in a graph, then this graph is called

multigraph. Two or more edges that join the same pair of vertices are called

parallel edges. An edge that join itself is a loop [15].

Definition 2.3.2. A network G = (V,E) is a directed graph where every edge e

is assigned an initial vertex and a terminal vertex [43].

Graphs or networks are useful in the case of formalizing the systems that

have interconnected elements such as dynamical systems, artificial intelligence

tools, traffic, fluid flow, social interactions, technological networks of connected

computers, chemical bonds and linguistics. In the case of complex networks, by

the analysis of the network of the system, very useful information can be obtained.

There are two main ways of defining a dynamical system by graph represen-

tation. First way is state space representation [46] as illustrated in the previous

section. Second way is to display the cause-effect relation [43], [52], [62], [63]. A

plus sign on the edge corresponds to the activation and a minus sign corresponds

to the repression. For flows, capacities of arcs can be introduced.

Gene regulatory systems have various models in mathematical biology and

bioinformatics with the developments in technological developments. Genes reg-

ulate the metabolism functions by activating or repressing protein synthesis. The

12



mechanism in a cellular system can well be understood by the regulatory rela-

tions in a gene network. When illustrating gene networks in graph representation,

nodes correspond to the genes and directed edges to their relations such that a

positive directed edge from a gene to the other means the activation, whereas

a negative directed edge means the repression [55], [52]. The knowledge on the

relations in gene networks are limited because of the complexity of these networks

[21].

Boolean approach is the generally used modeling technique in gene networks.

Depending on the activity level of the gene there exist two different states: active

or inactive respectively 1 or 0. Boolean functions can be used with this approach

[62], [63]. There are some different approaches such that NK model can be used

for modeling gene regulatory networks as Kauffman used this representation [52].

In this system, connectivity can be thought as K and the nodes can be thought

as N .

2.4 Discrete Event Systems

2.4.1 Automaton (State Machine)

Definition 2.4.1. A state machine or an automaton M is a 5−tuple M =

(Q, q0, V, I, E) consisting of [43]

• a finite set of locations Q,

• an initial location q0 ∈ Q,

• a finite set of variable V , which defines the set TV of all possible values of

V ,
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• an initial set of values to the variables I ⊆ TV , and

• a set of edges E, where an edge e = (q1, q2, g, a) ∈ E consists of

– the source location q1 ∈ Q,

– the destination location q2 ∈ Q,

– the guard g ⊂ TV of an edge

– the action part of the edge a : TV → TV , where the action a can

happen when V ∈ g

The state space of M is
∑

= Q×TV . An automaton M is a hybrid automaton

if V includes continuous variables.

The automatons (state machines) can be represented by directed graphs. In

this representation, the vertices (nodes) corresponds to the states and the edges

corresponds to the possible transitions from one state to another.

2.4.2 Regular Languages

Following definitions are collected from [38] and [43].

Definition 2.4.2. A regular language is the set of all orderings of events which

can happen in a system.

Definition 2.4.3. An alphabet A is a finite nonempty set of events.

Definition 2.4.4. A trace (string, word) is a finite sequence of events from an

alphabet.
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Assuming A∗ denotes the set of all finite traces of A including the empty string

a language L over A is defined as

L ⊆ A∗.

A formal language is a language marked by an automaton.

2.4.3 Hybrid Automata

Hybrid automata is a well-defined formal representation of hybrid systems.

A hybrid automaton is an automaton that includes continuous variables in V as

mentioned in state machine.

Definition 2.4.5. A hybrid automaton is defined as H = {Q, Y, Init, f, Inv, E,G,R}

consisting of [12], [30], [39], [47]

• a set of discrete states Q = {q1, q2, . . . , qm} also called locations,

• a space of continuous variables Y = Rn,

• a set of initial conditions Init ⊆ Q × Y ,

• a vector field f : Q × Y → Y governing the continuous evolution,

• an invariant set (domain,subspace) for each q ∈ Q, Inv : Q → P (Y ) where

P (.) denotes the power set. Each state’s governing dynamics is valid within

its invariant set.

• A set of edges (state transitions) E ⊂ Q × Q,

• guard conditions for each edge G : E → P (Y ),
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• a reset map for each combination of edges and continuous states R : E ×

Y → P (Y ). A reset map represents possible jumps in the values of the

continuous variables which takes place with a state transition.

Hybrid Time Sets

A hybrid time set is defined as a sequence of intervals τ = {T0, T1, . . . , TN}

where N can be finite or infinite, such that

Ti =
[

τi, τ
′

i

]

if

N < ∞

then either

TN =
[

τN , τ
′

N

]

or

TN =
[

τN , τ
′

N

)

where

τi ≤ τ
′

i = τi+1

for all i [43].

Hybrid Trajectory

The solutions of the state variables of hybrid systems are defined by hybrid

trajectories.
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Definition 2.4.6. A hybrid trajectory is a triple (τ, q, y) which consists of τ =

{T0, T1, . . . , TN}, q = {q0, . . . , qN}, y = {y0, . . . , yN} , where qi : Ti → Q and

yi : Ti → Rn [43].

Executions

Definition 2.4.7. A hybrid trajectory (τ, q, y) is an execution of a hybrid au-

tomaton H if the following conditions hold [43]:

• Initial condition: (q0(0), y0(0)) ∈ Init.

• Discrete evolution:

–
(

qi(τ
′

i ), qi+1(τi+1)
)

∈ E

– yi(τ
′

i ) ∈ G
(

qi(τ
′

i ), qi+1(τi+1)
)

– yi+1(τi+1) ∈ R
(

qi(τ
′

i ), qi+1(τi+1), yi(τ
′

i )
)

.

• Continuous evolution: qi : Ti → Q is constant over t ∈ Ti, yi : Ti → Rn is

the solution of the differential equation

– dyi

dt
= fqi(t)

(yi(t))

and for all t ∈
[

τi, τ
′

i

)

, yi ∈ Inv(qi).

If τ is a finite sequence and the last interval in τ is closed, then the execution

is finite. If τ is an infinite sequence, or the sum of the time intervals is infinite

then it’s infinite. If it is infinite where the sum of time intervals τN − τ0 < ∞,

then it is called zeno.
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2.4.4 An Example: Bouncing Ball

If the bouncing ball example considered, there exist three locations depending

on the states. x = r, v = 0 and x = r are the guard conditions for the states

from first to second, from second to third and from third to one, respectively (see

Figure 2.2). Assuming k >> g, only one state is obtained. The guard condition

makes the system show a jump behavior (see Figure 2.3). For detailed discussion

see [43] and [38].

Figure 2.2: Hybrid automaton representation of bouncing ball example [38], [43].

2.5 Piecewise Linear Dynamical Systems

Let F be a functional which maps the input variable x(t) to output variable

y(t) and let x1, x2 are two input variables of F with output variables y1, y2 re-

spectively such that
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Figure 2.3: Hybrid automata representation of bouncing ball when k >> g [38],
[43].

y1(t) = F (x1)

y2(t) = F (x2).

The system F is linear if and only if the following condition holds [41], [42]:

α1y1(t) + α2y2(t) = F (α1x1(t) + α2x2(t)).

Linear systems have many advantages in mathematical modeling [43], [52]. A

linear system,

dy

dt
= My,

has analytical solution

y(t) = y0(t)exp(t − t0)M, ∀y0, t0
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and y0, t0 are the initial values. For some nonlinear systems piecewise linear

models can be considered because of their simplicity.

Let the state space of a dynamical system be formed by k disjoint subspaces

such that [43]

U = U1 ∪ U2 ∪ . . . ∪ Uk

and

Ui ∩ Uj = Ø where i 6= j.

Let y0, y1, y2 ∈ Ui, where

y2 − y0 = r (y1 − y0) .

Assume that y0(t), y1(t), y2(t) respectively indicates that if the system starts with

the initial state y(t0) = y0, then the function representing its temporal evolution

for t > t0 is denoted by y0(t). The system is piecewise linear in Ui if

y2 [t0, ti] − y [t0, ti] = M (y1 [t0, ti] − y [t0, ti]) ,

where

y0(t), y1(t), y2(t) ∈ Ui

and M is a constant matrix,

for all t0 < t < ti.

The system is piecewise linear if it is piecewise linear in all subspaces of its

state space. To represent a piecewise linear system as the switching differential
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equations the following representation is used [43]

dy

dt
= Ms(t)y(t) + Ns(t)xe(t) + ks(t)

s(t) = si if y(t) ∈ Ui

where

• y(t) ∈ Rn is a column vector denoting the continuous variables,

• s(t) ∈ {1, 2, . . . , p} is a variable denoting the state of the system,

• M : s → Rn×n is a switching matrix and the elements are determined by

the state of the system,

• k : s → Rn is a switching vector and the elements are determined by the

state of the system,

• U ⊂ Rn is a subspace of the system’s state space.

In this representation, subscript i denotes the ith element of the corresponding

vector.

Systems that exhibit nonlinear behavior can well be approximated by piece-

wise linear systems including threshold phenomena. Critical measures, approxi-

mation accuracy and physical interpretation make piecewise linear systems suit-

able for use.
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chapter 3

HYBRID SYSTEMS WITH

MEMORY

In this chapter, hybrid systems with memory is introduced and explained by

two illustrative examples. Hybrid systems is explained in the previous chapter.

By including a memory set in the definition, to observe the history dependent

behavior in detail is aimed. For a wide range of switching systems in nature

and technology, the system’s behavior and response to external inputs are deter-

mined not only by the initial value but by the whole history [45]. Especially, for

systems requiring history memorization capabilities like many biological systems,

this is a requirement [45]. With this approach, initial state of the system can

be determined by the output or, conversely, the output can be determined by

investigating the initial state.

3.1 Definition

Definition 3.1.1. A Hybrid system with memory H is a collection

H = {Q, X, U, T, Init, M, f, Inv, E, G, R}

22



consisting of [45]

• a set of discrete states Q = {q1, . . . , qm} also called locations,

• a space of continuous variables X = Rn,

• a set of initial conditions Init ⊆ Q × X × M ,

• a space of inputs U = Rz (control, disturbance or both),

• a space of independent variables T = Rk, typically the time T = [t0,∞),

• a vector field f : Q×X×U×M −→ X, governing the continuous evolution,

• an invariant set (domain, subspace) for each q ∈ Q, Inv : Q −→ P (Y )

where P (.) denotes the power set. Each state’s governing dynamics is valid

within its invariant set.

• A set of edges (state transitions) E ⊂ Q × Q,

• guard conditions for each edge G : E × M −→ P (X),

• a reset map for each edge R : E × X × U −→ P (X),

– For verifiability analysis R : E × G −→ X, can be considered.

• M(t) ∈ M is a growing memory of past state transitions such that

– M(0) = {M0} = {(t0, x0, q0)},

– if M(t;−) = {M0,M1, . . . ,Mi} and x(tj) ∈ g{q(t), q ∈ Q} then

M(t; +) = {M(t;−),Mi+1},

– Mi+1 = {tj, x(tj−), q(tj−)}
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With this definition the past evolution of the system is sampled at state

transitions containing the time and the values of variables before and after the

state transition. In this definition, M(t) is piecewise constant between state

transitions.

A typical subclass is the piecewise linear Hybrid system with memory with a

state space description [45]:

dx

dt
= Aq(t),M(t) x(t) + Bq(t),M(t) u(t) + kq(t),M(t)

x(0) = x0, q(0) = q0, i = 1, 2, . . . , n,

q(t) = qj if x(t) ∈ Xj,

if x(t0−) ∈ Xj and x(t0−) /∈ Xjand,

M(t0−) = {M1, . . . ,Mk}, k = 1, 2, . . . ,

then

M(t0+) = {M(t0−),Mk+1},

Mk+1 = {t0, x(t0−), x(t0+)}.

After introducing hybrid systems with memory, some illustrative examples

will be introduced.
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3.2 Examples

3.2.1 Illustrative Example 1

For illustration the following example is presented;

Q = {q1, q2, q3, q4} ,

Y = R2,

Inv(q1) = {y1 ≤ 1, y2 ≤ 1} ,

Inv(q2) = {y1 > 1, y2 ≤ 1} ,

Inv(q3) = {y1 ≤ 1, y2 > 1} ,

Inv(q4) = {y1 > 1, y2 > 1} .

A simplified model is used such that

dy

dt
= Aq(t), M(t) y(t) + kq(t),M(t),

A((0,0),0) = A((0,1),0) = A(1,0),0 = A((1,1),0) =







−1 0

0 −1






,

k((1,1),0) =







5

4






,

h1 = h2 = 1.

The threshold values partitions the space into four subspaces. Initial points

are in subspace I. In other words y1(t) ≤ 1 and y2(t) ≤ 1. (See 3.1)

In this representation, the initial subspace of the point which is subspace I is

divided into two half spaces by the line which is constructed by the initial focal

point and the intersection point of the threshold which is (1, 1).
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Initially, the memory set is equal to M(t) = m0.

The equation of the line that partitions the initial subspace, I, into half spaces

can be found by solving;

dy1

dt
= −y1 + 5,

dy2

dt
= −y2 + 4.

Then, the solution is

y1(t) = 5 − (5 − y1(0)) e−t,

y2(t) = 4 − (4 − y2(0)) e−t.

As time goes to infinity, the line which also includes the origin, (0, 0), is

4y1(t) − 5y2(t) = 0.

If the point is in subspace I and above this line, as it moves toward the initial

focal point, it will cross h1 = 1. Conversely, if the point is in subspace I and below

this line, as it moves toward the initial focal point, it will cross h2 = 1. According

to these two possibilities, two systems and different rounding trajectories occur.

When it crosses one of these two thresholds, according to the memory of the

system the trajectories will be clockwise or counterclockwise.

Case I Below the line:

When the trajectories crosses h2 = 1, the memory set will be equal to m1 ∈ M(t).
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m1 ∈ M(t) and y2(t1+) = y2(t1−) = 1 conditions identify this case. The governing

system of differential equations according to state space partitions is given as:

dy

dt
= Aq(t), M(t) y(t) + kq(t),M(t),

A((0,0),1) = A((0,1),1) = A(1,0),1 = A((1,1),1) =







−1 0

0 −1






,

k((0,0),1) =







−2

6






, k((0,1),1) =







4

4






, k((1,0),1) =







−1

−2






,

k((1,1),1) =







2

−1






.

The initial point is (0.1, 0.5). As it starts to move, it will cross threshold y2(t) = 1

and initial focal point will disappear, and according to the new partitions it will

enter subspace II.

Figure 3.1: State space representation of Example 1.
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The governing differential equation is

dy

dt
= A(0,1),1 y(t) + k(0,1),1,







dy1

dt

dy2

dt






=







−1 0

0 −1













y1

y2






+







4

4






,

that has a solution







y1

y2






=







4 − (4 − y1(0)) e−t

4 − (4 − y2(0)) e−t






.

All points of which has the properties of case I will converge to (4, 4). During

this movement, the point will cross threshold h1 = 1 and will enter subspace IV.

The governing differential equation of subspace IV is

dy

dt
= A(1,1),1 y(t) + k(1,1),1,







dy1

dt

dy2

dt






=







−1 0

0 −1













y1

y2






+







2

−1






,

that has a solution







y1

y2






=







2 − (2 − y1(0)) e−t

−1 − ((−1) − y2(0)) e−t






.

All points in subspace IV will converge to (2,−1). Then, the point will cross
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h2 = 1 and enter the subspace III. The governing equation of subspace III is

dy

dt
= A(1,0),1 y(t) + k(1,0),1,







dy1

dt

dy2

dt






=







−1 0

0 −1













y1

y2






+







−1

−2






,

that has a solution







y1

y2






=







−1 − ((−1) − y1(0)) e−t

−2 − ((−2) − y2(0)) e−t






.

All points in subspace III will converge to (−1,−2). Then the point will cross

h1 = 1 and enter subspace I. The governing differential equation of subspace I is

dy

dt
= A(1,0),1 y(t) + k(1,0),1,







dy1

dt

dy2

dt






=







−1 0

0 −1













y1

y2






+







−2

6






,

that has a solution







y1

y2






=







−2 − ((−2) − y1(0)) e−t

6 − (6 − y2(0)) e−t






.

The representation of case I according to initial point (0, 1, 0.5) is shown by the

figure. In this case the rounding trajectories are clockwise.
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−0.5 0 0.5 1 1.5 2
0.5

1

1.5

2

Figure 3.2: Rounding trajectories with initial values (0.1, 0.5).

Case II Above the line:

When the trajectory crosses h1 = 1 the memory set will be equal to m1 ∈ M(t).

m1 ∈ M(t) and y1(t1+) = y1(t1−) = 1 conditions identify this case. The governing

differential equations according to state space partitions are given as

dy

dt
= Aq(t), M(t) y(t) + kq(t),M(t),

A((0,0),1) = A((0,1),1) = A(1,0),1 = A((1,1),1) =







−1 0

0 −1






,

k((0,0),1) =







2

−1






, k((0,1),1) =







−1

−2






, k((1,0),1) =







4

4






,

k((1,1),1) =







−2

6






.
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The focal points are different because of the transition state; in other words

because of memory.

The initial point is chosen as (0.5, 0, 5). As it starts to move it will cross the

threshold y1(t) = 1 and the initial focal point will disappear, and according to

the partitioning of the space it will enter subspace III.

The governing differential equation of subspace III is

dy

dt
= A(1,0),1 y(t) + k(1,0),1,







dy1

dt

dy2

dt






=







−1 0

0 −1













y1

y2






+







4

4






,

that has a solution







y1

y2






=







4 − (4 − y1(0)) e−t

4 − (4 − y2(0)) e−t






.

All points which has the properties of case II will converge to (4, 4). During

this movement, the point will cross threshold h2 = 1 and will enter subspace IV.

The governing differential equation of subspace IV is

dy

dt
= A(1,1),1 y(t) + k(1,1),1,







dy1

dt

dy2

dt






=







−1 0

0 −1













y1

y2






+







−2

6






,
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that has a solution







y1

y2






=







−2 − ((−2) − y1(0)) e−t

6 − (6 − y2(0)) e−t






.

All points in subspace IV will converge to (−2, 6). Then the point will cross

h1 = 1 and enter subspace II. The governing differential equation of subspace II

is

dy

dt
= A(0,1),1 y(t) + k(0,1),1,







dy1

dt

dy2

dt






=







−1 0

0 −1













y1

y2






+







−1

−2






,

that has a solution







y1

y2






=







−1 − ((−1) − y1(0)) e−t

−2 − ((−2) − y2(0)) e−t






.

All points in subspace II will converge to (−1,−2) than the point will cross

h2 = 1 and enter the subspace I. The governing differential equation of subspace

I is

dy

dt
= A(0,0),1 y(t) + k(0,0),1,







dy1

dt

dy2

dt






=







−1 0

0 −1













y1

y2






+







2

−1






,
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that has a solution







y1

y2






=







2 − (2 − y1(0)) e−t

−1 − ((−1) − y2(0)) e−t






.

The representation of case II according to initial point (0.5, 0.5) is shown by

the figure. In this case the rounding trajectories will be counter clockwise.

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−0.5

0

0.5

1

1.5

2

2.5

Figure 3.3: Rounding trajectories with initial values (0.5, 0.5).

3.2.2 Illustrative Example 2

In this illustrative example, we tried to illustrate how the state transitions of

a piecewise linear model can get slower by depending on the memory.

Again a simplified model is used:

dy

dt
= Aq(t), M(t) y(t) + kq(t),M(t),
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the solutions of this system are given as

ym(t) = ym
0 (t) e(t−t0) Am

+ (e(t−t0) Am

− 1) (Am)−1 km,

where m is the mth component of the corresponding variable and Am yields the

mth eigenvalue of matrix A. This equation can be rewritten as

ym
n+1 = h = eTnAm

(ym
n + (Am)−1 km) − (Am)−1 km,

where n indicates the nth state transition and h is the corresponding threshold

value. By rearranging, we obtain

eTnAm

=
h + (Am)−1 km

ym
n + (Am)−1 km

,

so that the state transition time of the nth state can be calculated from this

equation:

Tn = [ln
h + (Am)−1 km

ym
n + (Am)−1 km

]/Am.

In this example, we want that the transitions are slower but the focal points

do not change. In order to satisfy these conditions, a model can be constructed

such that

dy

dt
= bAq(t), M(t) y(t) +

1

b
kq(t),M(t),

where 0 < b < 1.

Then this system has solutions

ym(t) = ym
0 (t) e(t−t0) b Am

+ (e(t−t0) b Am

− 1) (Am)−1 km,
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with state transition time of the nth state;

T ∗
n = [ln

h + (Am)−1 km

ym
n + (Am)−1 km

]/b(Am).

Obviously, Tn < T ∗
n , since 0 < b < 1 and 1 < 1

b
< ∞.

Again, assume a system that has a periodic solution

A((0,0),0) = A((0,1),0) = A(1,0),0 = A((1,1),0) =







−1 0

0 −1






,

with threshold values

h1 = h2 = 1

and focal points

k((0,0),0) =







0

0






, k((0,1),0) =







2

0






, k((1,0),0) =







0

2






, k((1,1),0) =







2

2






.

Let us choose b = 1
2
.

Q = {q1, q2, q3, q4} ,

Y = R2,

Init = {q = q1, y1, y2 ∈ R} ,

Inv(q1) = {y1 ≤ 1, y2 > 1} ,

Inv(q2) = {y1 > 1, y2 > 1} ,

Inv(q3) = {y1 ≤ 1, y2 ≤ 1} ,

Inv(q4) = {y1 > 1, y2 ≤ 1} ,

If M(t) = m0, then the governing differential equations are:
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For subspace IV ;

dy

dt
= A(1,0),0 y(t) + k(1,0),0,







dy1

dt

dy2

dt






=







−1 0

0 −1













y1

y2






+







0

0






,

where the solution is







y1

y2






=







y1(0) e−t

y2(0) e−t






.

All points in that region exponentially approach to (0, 0). Then the point will cross

h1 = 1 and enter subspace III. The governing differential equation of subspace

III is

dy

dt
= A(0,0),0 y(t) + k(0,0),0,







dy1

dt

dy2

dt






=







−1 0

0 −1













y1

y2






+







0

2






,

where the solution is







y1

y2






=







y1(0) e−t

2 − (2 − y2(0)) e−t






.

All points in that region exponentially approach to (0, 2). Then the point will cross
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h2 = 1 and enter subspace I. The governing differential equation of subspace I is

dy

dt
= A(1,1),0 y(t) + k(1,1),0,







dy1

dt

dy2

dt






=







−1 0

0 −1













y1

y2






+







2

2






,

where the solution is







y1

y2






=







2 − (2 − y1(0)) e−t

2 − (2 − y2(0)) e−t






.

All points in that region exponentially approach to (2, 2). Then the point will cross

h1 = 1 and enter subspace II. The governing differential equation of subspace II

is

dy

dt
= A(0,1),0 y(t) + k(0,1),0,







dy1

dt

dy2

dt






=







−1 0

0 −1













y1

y2






+







2

0






,

where the solution is







y1

y2






=







2 − (2 − y1(0)) e−t

y2(0) e−t






.

All points in that region exponentially approach to (2, 0).
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Figure 3.4: State space representation of Example 2

Case I

• If m1 ∈ M(t) and y1(m1) = y1(t1+) = y1(t1−) = 1 and y2(t1+) = y2(t1−) < 1

or

• if m2 ∈ M(t) and y1(m2) = y1(t2+) = y1(t2−) = 1 and y2(t2+) = y2(t2−) < 1,

the governing dynamics of the system do not change.

Case II

• If m1 ∈ M(t) and y1(m1) = y1(t1+) = y1(t1−) = 1 and y2(t1+) = y2(t1−) ≥ 1

or

• if m2 ∈ M(t) and y1(m2) = y1(t2+) = y1(t2−) = 1 and y2(t2+) = y2(t2−) ≥ 1,

the differential equations that govern the system look as follows:
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For subspace III :

dy

dt
= bA(0,0),0 y(t) +

1

b
k(0,0),0,







dy1

dt

dy2

dt






=

1

2







−1 0

0 −1













y1

y2






+ 2







0

2






,

where the solution is







y1

y2






=







y1(0) e−
1
2

t

2 − (2 − y2(0)) e−
1
2

t






;

as time goes to infinity, all points in region III will exponentially approach to

(0, 2). Then, the point will cross h1 = 1 and enter subspace I. The governing

system of differential equations of subspace I is

dy

dt
= bA(0,1),1 y(t) +

1

b
k(1,1),1,







dy1

dt

dy2

dt






=

1

2







−1 0

0 −1













y1

y2






+ 2







2

2






,

where the solution is







y1

y2






=







2 − (2 − y1(0)) e−
1
2

t

2 − (2 − y1(0)) e−
1
2

t






.

All points in that region exponentially approach to (2, 2). Then, the point

will cross h2 = 1 and enter subspace II. The governing differential equation of

subspace IV is
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dy

dt
= bA(1,1),1 y(t) +

1

b
k(1,1),1,







dy1

dt

dy2

dt






=

1

2







−1 0

0 −1













y1

y2






+ 2







2

0






,

where the solution is







y1

y2






=







2 − (2 − y1(0)) e−
1
2

t

y2(0) e−
1
2

t






.

All points in that region exponentially approach to (2, 0). Then the point

will cross h1 = 1 and enter subspace IV. The governing differential equations of

subspace IV are

dy

dt
= bA(1,0),0 y(t) +

1

b
k(1,0),0,







dy1

dt

dy2

dt






=

1

2







−1 0

0 −1













y1

y2






+ 2







0

0






,

where the solution is







y1

y2






=







y1(0) e−
1
2

t

y2(0) e−
1
2

t






.

In that case the focal points don’t change but the state transition times are
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slower in the second case, since

[ln
1 + (−1)−1 km

ym
n + (Am)−1 km

]/(−1) < [ln
1 + (−1)−1 km

ym
n + (Am)−1 km

]/(−1/2).
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chapter 4

DYNAMICAL MODEL OF

HUMAN IMMUNE RESPONSE

TO INFLUENZA A VIRUS

INFECTION

In this chapter, a dynamical model of human immune response to influenza

A virus infection is introduced and this chapter includes a summary of the work

of Baris Hancioglu, David Swigon and Gilles Clermont [22].

4.1 Biology of Influenza

Influenza A virus (IAV) interacts with the host respiratory tract, then attacks

healthy cells, binds to cell surface receptors via one of the major surface glycopro-

teins, HA, and converts the healthy cells to infected cells [60]. In these infected

cells, the virus multiply and NA’s, another glycoprotein, action causes the release

of the newly synthesized virus particles [61]. Effector cells and molecules reply

to the attack of IAV infection [1], [60]. The host can neutralize the free virus,

kill infected cells and limit the spread of viral particles by increasing healthy cell
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resistance to infection [22]. A general decline in cellular protein synthesis oc-

curs in host because of the inhibition of the polyadenylation-site cleavage of host

pre-mRNAs that is caused by the NS1 protein of influenza virus which shuts

off host gene expression [53]. However, an activation of various host genes due

to host antiviral defense, like interferon- alpha/beta, MxA, 2′, 5′-oligoadenylate

synthetase, and Fas happens upon infection [53].

Antigen presenting cells (APC) are important since the human immune re-

sponse can induct and amplify by them [2]. APC alerts both innate and adaptive

immunity [22].

As the first response of the human immune system, the innate immunity

is alerted with secreting interferon α and β (IFN) molecules by APC and in-

fected cells [27],[32], [49], [50], [56]. MxA protein significantly contributes to

IFN-mediated host defense mechanisms against influenza A virus [49]. IFN con-

tacts with healthy cells and forms an infection resistant state from healthy cells,

so that the adaptive immune system gains time to response and eliminates virus

since the infection resistant state prevents the efficient spread of the virus [48].

As the second response of the human immune system the cellular component

of innate immunity, effector cells (cyhotoxic T cells (CTL), or natural killer (NK))

is alerted by APC, so that the cellular component of innate immunity prevents

infected cells release a mature virus by destroying them [22].

Finally, adaptive immunity is alerted by APC which activates the proliferation

of virus-specific plasma cells, so that they start the production of antibodies (Abs)

which binds with IAV and inactivities it [22].
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4.2 The ODE Model

In the dynamical model of Hancioglu, Swigon and Clermont, three important

components of the immune response are observed, namely, the interferon and

cellular components of innate immunity and the adaptive immunity. These three

components limits the concentration of the virus and prevents the damage to

the system. Interferon immunity removes the ”substrate” that virus needs for

reproduction, cellular immunity removes the source of new viruses and adaptive

immunity lowers the effective concentration of the virus [22].

A simplified model of population dynamics is used while modeling the human

immune response against IAV infection by Hancioglu, Swigon and Clermont see

Figure 4.1.

Figure 4.1: The interactions that the ODE model depends on [22].
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Four states for the epithelial cells of the respiratory tract are considered:

healthy (H), infected (I), dead (D) or resistant (R). It is noted that H +I +D+

R = 1, in other words; the number of elliptical cells are considered as constants.

Firstly, the healthy cells interface with the virus particles (V ) and are con-

verted to infected cells which causes the release of new virus particles till death.

The activation of APC (M) is alerted by the dead cells. The reproduction of

interferon α and β (F ) is due to the stimulation by APC. They form a resistant

state by interacting with the healthy cells. Effector cells (E) destroy infected

cells and also are alerted by APC. Effector cells causes the production of plasma

cells (P ) and this effects the production of antibodies (A). Antibodies neutral-

ize virus. The antigenic compatibility (S) infers the affinity between virus and

antibodies. These interactions are shown with 10 differential equations and 1

algebraic equation by Hancioglu, Swigon and Clermont:

dV

dt
= γV I − γV A SAV − γV H HV − αV V −

αv1V

1 + αv2V
, (4.2.1)

dH

dt
= bHDD(H + R) + aRR − γHV V H − bHF FH, (4.2.2)

dI

dt
= γHV V H − bIEEI − aII, (4.2.3)

dM

dt
= (bMDD + bMV V ) (1 − M) − aMM, (4.2.4)

dF

dt
= bF M + cF I − bFHHF − aF F, (4.2.5)

dR

dt
= bHF FH − aRR, (4.2.6)

dE

dt
= bEMME − bEIIE + aE(1 − E), (4.2.7)

dP

dt
= bPMMP + aP (1 − P ), (4.2.8)

dA

dt
= bAP − γAV SAV − aAA, (4.2.9)
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dS

dt
= rP (1 − S), (4.2.10)

D = 1 − H − R − I. (4.2.11)

Equation (4.2.1) of the system infers the rate of change of virus concentration

V . It indicates the production rate of the viral particle by infected cells, rate

of neutralization of IAV by specific antibodies, the rate of adsorption of viral

particles. The term (αv1V )/(1 + αv2V ) describes the nonspecific mucociliary

removal of virions which is caused by cough and other mechanism.

Equation (4.2.2) of the system describes the rate of change of healthy cells H.

Equation (4.2.3) of the system defines the time rate of change of infected cells

I.

Equation (4.2.4) of the system infers that the time rate of increase of activated

APC (M) is proportional to the amount of dead cells.

Equation (4.2.5) of system determines the time rate of change of interferons

α and β (F ). APC and infected cells effects the production rate of F .

Equation (4.2.6) of the system indicates that healthy cells form resistant cells

(bHF FH) and resistant cells convert back to healthy cells (aRR).

Equation (4.2.7) of the system defines the rate of change of effector cells E

concentration.

Equation (4.2.8) of the system determines the activation process of plasma

cells alerted by APC.

Equation (4.2.9) of the system defines the time rate of change of the concen-

tration of antibodies A.

The variable S in the model quantifies the affinity between antibodies and

virus strain in an individual. It can take value from 0 (no compatibility) to 1
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(maximal compatibility). The initial value S(0) of S infers the immune memory

of host.

The variable D, dead cell proportion, stands for tissue damage [23] and is

used to understand the severity of the disease and Dmax = 0.36.

In the Figures 4.2, 4.3 and 4.4 time-courses of the viral load, proportion of

respiratory epithelial cells, and the three arms of the immune response for a

standard course of the disease can be found according to the initial values

(V,H, I,M, F,R,E, P,A, S,D) = (0.01, 1, 0, 0, 0, 0, 1, 1, 1, 0.1, 0).

The disease can have three different regimes: asymptomatic, typical and severe

cases [22]. Figures 4.2, 4.3, 4.4 belong to the typical state with initial values

(V,H, I,M, F,R,E, P,A, S,D) = (0.01, 1, 0, 0, 0, 0, 1, 1, 1, 0.1, 0).

For asymptomatic case of the ODE model please see the Figures 4.5, 4.6 and 4.7

where the initial values are

(V,H, I,M, F,R,E, P,A, S,D) = (0.01, 1, 0, 0, 0, 0, 1, 1, 1, 0.3, 0).

The figures are obtained by our matlab m-files which are contained in the appen-

dix part.
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Table 4.1: Model parameters used for the baseline case [22].

Parameter Value Description Sources
γV 510 Rate constant of influenza A virus (IAV) [71]

particles secretion per infected epithelial
cells

γV A 619.2 Rate constant of neutralization of IAV by [11]
antibodies

γV H 1.02 Rate constant of adsorption of IAV by [11]
infected epithelial cells

αV 1.7 Rate constant of nonspecific IAV removal [11]
aV 1 100 Rate constant of nonspecific IAV removal
aV 2 2300 Rate constant of nonspecific IAV removal
bHD 4 Rate constant of regeneration of epithelial [31]

cells
aR 1 Rate constant of epithelial cells’ virus [40]

resistance state decay
γHV 0.34 Rate constant of epithelial cells infected [40]

by IAV
bHF 0.01 Rate constant of epithelial cells’ virus [11]

resistance state induction
bIE 0.066 Rate constant of epithelial cells [11]

that CTL damage
aI 1.5 Rate constant of epithelial cells [71]

damage by cytopathicity of IAV
bMD 1 Rate constant of simulation of antigen [40]

presenting cells by dead cells
bMV 0.0037 Rate constant of simulation of antigen [40]

presenting cells by virus particles
aM 1 Rate constant of stimulated state loss of [40]

antigen presenting cells
bF 250.000 Interferon (IFN) production rate per APC [11]
cF 2000 Interferon (IFN) production rate per Estimated

infected cell
bFH 17 Rate constant of epithelial cells that IFN [11]

binds
aF 8 Rate constant of IFN’s naturally decay [11]

bEM 8.3 Rate constant of stimulation of effector [40]
cells

bEI 2.72 Rate constant of death of effector by lytic [11]
interactions with infected epithelial cells

aE 0.4 Rate constant of death of effector [40]
cells

bPM 11.5 Rate constant of plasma cells production [40]
aP 0.4 Rate constant of naturally death of plasma [40]

cells
bA 0.043 Antibody production rate per plasma cells [40]

γAV 146.2 Rate constant of antibodies which binds [11]
to IAV

aA 0.043 Rate constant of natural death of [40]
antibodies

r 3e − 5 Rate constant for S variable Estimated
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Figure 4.2: ODE model graphics of V , H, I and M variables with initial values
(V,H, I,M, F,R,E, P,A, S,D) = (0.01, 1, 0, 0, 0, 0, 1, 1, 1, 0.1, 0).
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Figure 4.3: ODE model graphics of F , R, E and P variables with initial values
(V,H, I,M, F,R,E, P,A, S,D) = (0.01, 1, 0, 0, 0, 0, 1, 1, 1, 0.1, 0).
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Figure 4.4: ODE model graphics of A, S and D variables with initial values
(V,H, I,M, F,R,E, P,A, S,D) = (0.01, 1, 0, 0, 0, 0, 1, 1, 1, 0.1, 0).

51



0 5 10 15
0

0.002

0.004

0.006

0.008

0.01

V
0 5 10 15

0.99

0.995

1

1.005

H

0 5 10 15
0

1

2

3

4
x 10

−4

I
0 5 10 15

−2

0

2

4

6
x 10

−5

M

Figure 4.5: ODE model graphics of V , H, I and M variables with initial values
(V,H, I,M, F,R,E, P,A, S,D) = (0.01, 1, 0, 0, 0, 0, 1, 1, 1, 0.3, 0).
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Figure 4.6: ODE model graphics of F , R, E and P variables with initial values
(V,H, I,M, F,R,E, P,A, S,D) = (0.01, 1, 0, 0, 0, 0, 1, 1, 1, 0.3, 0).
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Figure 4.7: ODE model graphics of A, S and D variables with initial values
(V,H, I,M, F,R,E, P,A, S,D) = (0.01, 1, 0, 0, 0, 0, 1, 1, 1, 0.3, 0).
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4.3 Sensitivity Analysis

In the work of Hancioglu, Swigon and Clermont, sensitivity analysis with re-

spect to random perturbations of the model parameters is done in order to deter-

mine the robustness of the simplified uncomplicated influenza model against the

perturbed parameter values and investigate which parameters effect the system

more than the others. In this way, key processes and immune system mecha-

nisms can be understood. To understand the sensitivity effect on the system, the

baseline value is increased and decreased threefold for every parameter.

4.3.1 Sensitivity to Pathogen Virulence

The parameters γHV and γV infer the virulence and stand for the rate of

infection of epithelial cells by IAV and the rate of IAV particles secretion per

infected epithelial cell, respectively. The healthy cells are infected faster in the

case of high virulence. Only for one parameter, namely, γHV , different disease

regimes occur. For a three times higher baseline value of γHV , disease always

develops independently from the initial viral load V (0). For a three times less

baseline value of γHV , disease can be asymptomatic, typical or severe depending

on the initial viral load V (0). For lower values, the disease is asymptomatic.

4.3.2 Sensitivity to Interferon Response

The interferon production rate constant and the rate constant of induction

of resistant state are symbolized by bF and bHF , respectively. Disease always

develops for standard values of V (0) and S(0) in the case of any change in the

standard value of bF . On the other hand, the high values of bHF cause asymp-
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tomatic disease regime. In the case of higher values of bF or bHF , the duration of

disease becomes shorter. However, lower values of bF or bHF cause the increase

of damage. When either of these constant is higher, less virus shedding with a

longer contagious period occurs in disease. For a two times higher baseline value

bF , i.e. bF = 500.000, the contagious period is about 3.5 days where for a two

times smaller baseline value of bF , i.e. bF = 125.000, the contagious period is

about 2.5 days.

Therefore, the difference in the length of the infectious period is important

for different levels of innate immune response. When bF = 0 and bHF = 0, the

disease is cleared by the adaptive immune response and the host goes into the

healthy state.

4.3.3 Sensitivity to Cellular Component of Innate Immu-

nity

The parameters bEM and bIE characterize the rate constant of production of

effector cells and the rate constants of removal of infected cells by effectors, re-

spectively. In the case of sufficiently large bEM and bIE, typical disease conditions

occur and the disease is cleared without symptoms with given standard initial

immunity and standard initial amount of virus. For low values of bEM and bIE,

the symptoms last longer. When bEM has high values, the maximum damage

Dmax is high and also can cause death. However, high values of bIE results in

lower damage of epithelial cells.

When bEM = 0, the innate and adaptive immune responses clear the disease

and the host goes into the healthy state.
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4.3.4 Sensitivity to Adaptive Response

Activation of cellular and interferon components of innate immunity is faster

than activation of adaptive immune response. The plasma cell production rate

constant, antibody production rate constant and the rate constant of neutraliza-

tion of IAV by antibodies are symbolized by the parameters bPM , bA and γV A,

respectively. At sufficiently large values of these parameters, the infection is

cleared with symptoms after administration of a standard inoculum. If bA is

high, the resulting maximum damage, Dmax, is lower while the other two para-

meters have no effect on damage. Moreover, if bA has high values, the contagious

period becomes shorter.

The parameter γV A is only effective on the onset of the disease. On the other

hand, bMP is only effective on virus shedding at the peak. The system is much

more sensitive to the parameter bA.

4.4 Impact of Antigenic Distance

The impact variable S determines how much efficient the existing antibodies

of the host are against the virus of the strain causing the illness. The probability

of match between the existing antibodies and the antigenic structure of the viral

strain is characterized by this parameter. Figure 4.8 shows that damage changes

with different values of S(0), the initial value of S.

In the work of Hancioglu, Swigon and Clermont S(0) is chosen as 0.1 in the

simulations of disease. The value S indicates the partial match of antibodies

because of the organism’s history of previous contacts with the virus. In the case

of S(0) = 0, the damage is higher [69]. As S(0) takes higher values, the disease
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Figure 4.8: Damage for different values of S(0) [22].
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becomes asymptomatic [36], [70]. When S(0) is chosen as equal to 0, the disease

always develops no matter what the initial viral load is. In other words, the

threshold for typical regime of the disease is equal to −∞. If S(0) = 0.0124, this

value becomes finite. As S(0) takes higher values, the threshold for the severe

regime of the disease increases. If S(0) > 0.2, the disease becomes asymptomatic

unless V (0) > 1. As S(0) takes higher values, the onset of the disease delays.

For all values of S(0), the duration of the disease does not change. On the other

hand, for higher values of S(0), the damage is lower and the contagious period is

shorter [69].

Figure 4.9: Different types of disease depending on the values of S(0) and V (0)
[22].
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The parameter r stands for the rate of improvement of antigenic distance.

When r = 0, the antibodies are not able to match antigens. When S(0) = 0 and

r(0) = 0, the organism completely fails to develop antibodies and this situation

leads to the recurrence of the disease and causes a chronic state. The following

values stands for the chronic state [22];

(V,H, I,M, F,R,E, P,A) = (5.26, 0.06, 0.018, 0.05, 1484, 0.89, 67.0).

Figure 4.10: Virus load (on the left) and healthy cell proportion (on the right) of
an individual without adaptive response, i.e., S(0) = 0 and r = 0 [22].

The organism can clear the virus and the disease although r takes very low

values, such as r = 10−5. This is shown by Figure 4.11. If S(0) > 0 and r = 0, the

organism partially fails to develop antibodies. This situation leads to a chronic

state whenever S(0) is sufficiently small actually less than 10−7.
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Table 4.2: One-way sensitivity analysis on model parameters [22].

Parameter Baseline (range) Model behavior

γHV 0.34 (0.1 − 1) At high virulence,
disease always develops.

At less virulence, damage is higher.
So, high virulence may cause death

At less virulence,
the longer contagious period occurs.

γV 510 (150 − 1500) The model behaves the same
as in case for γHV .

γV A 619.2 (200 − 1800) For low γV A, disease
always develops.

For high values, the duration and the
onset of disease are about the same.

bMD 2 (0.6 − 6) The higher bMD,the shorter the
duration of disease and the lesser damage.

Very low values may cause death.
bIE 0.066 (0.02 − 0.1) At high bIE , asymptomatic disease is

observed for standard V (0) and S(0).
At high values damage is lower and
the duration of disease is shorter.

aI 1.5 (0.5 − 4.5) At high aI , asymptomatic disease is
observed for standard V (0) and S(0).

At high values damage is lower and the
duration of disease is shorter.

bHD 4 (2 − 8) At high values damage is lower and the
duration of disease is shorter.

bF 25.000 (125.000 − 500.000) At high values damage is lower and the
duration of disease is shorter.

bA 0.043 (0.01 − 0.12) At high values damage is lower.
bHF 0.02 (0.005 − 0.03) At high bHF , asymptomatic disease is

observed for standard V (0) and S(0).
At high values damage is lower and the

duration of disease is shorter.
bEM 8.3 (2.5 − 25) At high bEM , asymptomatic disease

is observed for standard V (0) and S(0).
At low values damage is lower.

bPM 11.3 (3 − 30) Onset, damage and duration of disease is
about the same for various values of bPM

S(0) 0 − 1 For S(0) = 0, disease always develops.
At high values, damage is lower and the

onset of disease is later.
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Figure 4.11: Virus load (on the left) and healthy cell proportion (on the right)
with S(0) = 0 and r = 10−5 [22].
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chapter 5

APPLICATION OF HYBRID

SYSTEM WITH MEMORY

This chapter includes an application of hybrid system with memory to the

dynamical model of human immune response to influenza A virus infection which

is explained in Chapter 4. The dynamical system of human immune response to

influenza A virus is explained in Chapter 4. According to the work of Hancioglu,

Swigon and Clermont, the system demonstrates different disease regimes accord-

ing to the different values of S and V variables: severe, typical and asymptomatic

regimes and moreover, with some values of V, H, I, M, F, R, E, P, A, S, D the

disease can stay chronic, i.e., V , virus load values, never decrease and H, healthy

cell proportion, never increase as shown in Figure 4.10.

In this chapter, an application of human immune response to influenza A virus

infection with piecewise linear system with memory which is a subclass of hybrid

systems is illustrated. The change of variables is approximated modularly. Every

variable is effected from other variable or variables and this idea infers that the

value of a variable is the external input of one to another. The variables which

are external inputs of an another variable are determined with the ODE model

in Chapter 4. The model is approximated by using the idea of when a goes up, b

goes down. The variable µ is taken as −1 at each state. Numerical simulations
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of the ODE model are investigated and the corresponding k and h values are

obtained.

Figure 5.1: Approximated disease regimes according to initial values of S(0) and
V (0).

The variables S, V and the memory set determines the new dynamics of

the system. The initial set of S and V variables and the corresponding disease

regimes are given by the Figure 4.9. Here V stands for the virus load and the

regime of the disease changes due to the virus load. The guard conditions in our

model are shown by the Figure 5.2 and invariant sets of our model are illustrated

by the Figure 5.3. There are two possibilities that can be distinguished by the

memory set and the guard conditions. Firstly, if the host is not faced with the

virus before, (m0), then three of the different types can occur according to the

guard conditions. Secondly, if the host is faced with the virus before, (mi where
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i ∈ {1, . . . , n}), then an asymptomatic regime occurs only. In this application

mi+1 = {(ti, Vti , qti)} and V (ti−) > 0 is assumed. When V (ti−) > 0, i increases by

1, in other words, every time the host faces with the virus memory set increases

by 1. The initial values of Figure 4.9 is approximated by partitioning the set

discretely. If in these subsets most of the region behaves asymptomatic the subset

is assumed as asymptomastic. Since typical and severe regimes exhibit similar

behaviors, severe regime is also regarded as typical. The vector fields, governing

the continuous evolution, is obtained in the following Sections 5.1, 5.2 and 5.3. By

giving initial values, a governing differential equation is acquired for every state.

The state space representation of the regimes according to the corresponding S

and V values can be seen from the Figure 5.1. According to these assumptions

the model can be approximated as

• Q = {q1, q2, q3, q4} ,

• S ∈ [0, 1], H ∈ [0, 1], R ∈ [0, 1], I ∈ [0, 1], D ∈ [0, 1] and V = M = F = E =

P = A = R,

• Init = {q1} × {V,H, I,M, F,R,E, P,A, S,D} × {mi−1} ,

• V = R,

• T = [t0,∞) ,

• – fq1 : dS
dt

= µq1 [S] + η[V ], where µq1 = 0 and η = 0,

– fq2 : dy

dt
= Aq2(t),M(t)y(t) + Bq2(t),M(t)y(t) + kq2(t),M(t),

– fq3 : dy

dt
= Aq3(t),M(t)y(t) + Bq3(t),M(t)y(t) + kq3(t),M(t),

– fq4 : dy

dt
= Aq4(t),M(t)y(t) + Bq4(t),M(t)y(t) + kq4(t),M(t),
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• – Inv(q1) = {V = 0, H = 1} ,

– Inv(q2) = {V > 0, D > 0} ,

– Inv(q3) = {V > 0, D > 0} ,

– Inv(q4) = {(V,H, I,M, F,R,E, P,A, S,D)

= (5.26, 0.06, 0.018, 0.05, 1484, 0.89, 67.0, 1, 1, 0, 0)} ,

• E = {(q1, q2), (q1, q3), (q1, q4), (q2, q1), (q3, q1)} ,

• – G(q1, q2) = {(S ∈ [0, 0.1) × V ∈ [10−3,∞))

∨(S ∈ [0.1, 0.2) × V ∈ [10−2,∞))

∨(S ∈ [0.2, 0.3) × V ∈ [10−1,∞))}

×{m1}

– G(q1, q3) = {(S ∈ [0, 0.1) × V ∈ (0, 10−3))

∨(S ∈ [0.1, 0.2) × V ∈ (0, 10−2))

∨(S ∈ [0.2, 0.3) × V ∈ (0, 10−1))

∨(S ∈ [0.3, 1) × V ∈ (0,∞))}

×{mi} , where i ∈ {1, . . . , n} ,

– G(q1, q4) = {(V,H, I,M, F,R,E, P,A, S,D)

= (0.01, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0)}

×{m1} ,

– G(q3, q1) = {V = 0} × {mi} ,

– G(q2, q1) = {V = 0, S = 1} × {mi} ,

• M = {m0, . . . ,mn} .
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Figure 5.2: Guard conditions of the corresponding states.
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Figure 5.3: Invariant sets and the governing dynamics of the states.
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5.1 Typical Regime

The characteristic behavior of the typical case is that V , virus load, exhibits

an increase and by the effect of other variables it decreases. The antigenic com-

patibility variable, S, increases to 1 and never decreases. The general dynamics

of the typical case are approximated by the following equations with the initial

values (V,H, I,M, F,R,E, P,A, S,D) = (0.01, 1, 0, 0, 0, 0, 1, 1, 1, 0.1, 0) so that a

comparison with the ODE model can be done. In this model, since the value of S

is taken as 0.1, the related focal points and threshold values must be considered

with this in mind. For example, in S module the focal points are taken as 0.1 and

1. For a different value of S, let us say that S∗, the corresponding focal points

should be taken as S∗ and 1 because of the fact that after every state transition,

from healthy state to typical state, the value of S increases to 1 as a result of the

governing dynamics of the typical state. Similarly, the threshold values related to

S, existing in the modules V and A with threshold values S = 0.1 and S = 0.15,

respectively, should be considered as S∗ and S∗+0.05. The same approach should

be considered for the variable V. There is no need to do the same approach for

other variables, since the initial state is healthy state, q1, and the values of other

variables are assumed to be at their equilibrium values.

The variable V is effected by the values of I, infected cell proportion, S, A, con-

centration of antibodies and H, healthy cell proportion. The approximation of

variable V can be illustrated as

dV

dt
= µV

q(t),M(t)V + 0[I] + 0[S] + 0[A] + 0[H] + kV
q(t),M(t),
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q(t) =

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

q1 if I ≥ 0.0000001 ∧ S ≥ 0.1 ∧ A ≥ 1 ∧ H ≥ 0.99999,

q2 if I ≥ 0.0000001 ∧ S ≥ 0.1 ∧ A ≥ 1 ∧ H < 0.99999,

q3 if I ≥ 0.0000001 ∧ S ≥ 0.1 ∧ A < 1 ∧ H ≥ 0.99999,

q4 if I ≥ 0.0000001 ∧ S ≥ 0.1 ∧ A < 1 ∧ H < 0.99999,

q5 if I ≥ 0.0000001 ∧ S < 0.1 ∧ A ≥ 1 ∧ H ≥ 0.99999,

q6 if I ≥ 0.0000001 ∧ S < 0.1 ∧ A ≥ 1 ∧ H < 0.99999,

q7 if I ≥ 0.0000001 ∧ S < 0.1 ∧ A < 1 ∧ H ≥ 0.99999,

q8 if I ≥ 0.0000001 ∧ S < 0.1 ∧ A < 1 ∧ H < 0.99999,

q9 if I < 0.0000001 ∧ S ≥ 0.1 ∧ A ≥ 1 ∧ H ≥ 0.99999,

q10 if I < 0.0000001 ∧ S ≥ 0.1 ∧ A ≥ 1 ∧ H < 0.99999,

q11 if I < 0.0000001 ∧ S ≥ 0.1 ∧ A < 1 ∧ H ≥ 0.99999,

q12 if I < 0.0000001 ∧ S ≥ 0.1 ∧ A < 1 ∧ H < 0.99999,

q13 if I < 0.0000001 ∧ S < 0.1 ∧ A ≥ 1 ∧ H ≥ 0.99999,

q14 if I < 0.0000001 ∧ S < 0.1 ∧ A ≥ 1 ∧ H < 0.99999,

q15 if I < 0.0000001 ∧ S < 0.1 ∧ A < 1 ∧ H ≥ 0.99999,

q16 if I < 0.0000001 ∧ S < 0.1 ∧ A < 1 ∧ H < 0.99999,

kV
q1

= 0, kV
q5

= 0, kV
q9

= 0, kV
q13

= 0,

kV
q2

= 0, kV
q6

= 0, kV
q10

= 2500, kV
q14

= 0,

kV
q3

= 0, kV
q7

= 0, kV
q11

= 0, kV
q15

= 0,

kV
q4

= 0, kV
q8

= 0, kV
q12

= 0, kV
q16

= 0,

where µV
q1,q2,q3,q4,q5,q6,q7,q8,q9,q10,q11,q12,q13,q14,q15,q16

= −1.

The variable H is effected by the values of D, dead cell proportion, R, resistant

cell proportion, V and F , amount of interferon. The approximation of variable

H can be shown as

dH

dt
= µH

q(t),M(t)H + 0[D] + 0[R] + 0[V ] + 0[F ] + kH
q(t),M(t),
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q(t) =

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

q1 if D ≥ 0.00001 ∧ R ≥ 0.00001 ∧ V ≥ 0 ∧ F ≥ 0.00001,

q2 if D ≥ 0.00001 ∧ R ≥ 0.00001 ∧ V ≥ 0 ∧ F < 0.00001,

q3 if D ≥ 0.00001 ∧ R ≥ 0.00001 ∧ V < 0 ∧ F ≥ 0.00001,

q4 if D ≥ 0.00001 ∧ R ≥ 0.00001 ∧ V < 0 ∧ F < 0.00001,

q5 if D ≥ 0.00001 ∧ R < 0.00001 ∧ V ≥ 0 ∧ F ≥ 0.00001,

q6 if D ≥ 0.00001 ∧ R < 0.00001 ∧ V ≥ 0 ∧ F < 0.00001,

q7 if D ≥ 0.00001 ∧ R < 0.00001 ∧ V < 0 ∧ F ≥ 0.00001,

q8 if D ≥ 0.00001 ∧ R < 0.00001 ∧ V < 0 ∧ F < 0.00001,

q9 if D < 0.00001 ∧ R ≥ 0.00001 ∧ V ≥ 0 ∧ F ≥ 0.00001,

q10 if D < 0.00001 ∧ R ≥ 0.00001 ∧ V ≥ 0 ∧ F < 0.00001,

q11 if D < 0.00001 ∧ R ≥ 0.00001 ∧ V < 0 ∧ F ≥ 0.00001,

q12 if D < 0.00001 ∧ R ≥ 0.00001 ∧ V < 0 ∧ F < 0.00001,

q13 if D < 0.00001 ∧ R < 0.00001 ∧ V ≥ 0 ∧ F ≥ 0.00001,

q14 if D < 0.00001 ∧ R < 0.00001 ∧ V ≥ 0 ∧ F < 0.00001,

q15 if D < 0.00001 ∧ R < 0.00001 ∧ V < 0 ∧ F ≥ 0.00001,

q16 if D < 0.00001 ∧ R < 0.00001 ∧ V < 0 ∧ F < 0.00001,

kH
q1

= 1, kH
q5

= 1, kH
q9

= 1, kH
q13

= 1,

kH
q2

= 0, kH
q6

= 1, kH
q10

= 1, kH
q14

= 1,

kH
q3

= 1, kH
q7

= 1, kH
q11

= 1, kH
q15

= 1,

kH
q4

= 1, kH
q8

= 1, kH
q12

= 1, kH
q16

= 1,

where µH
q1,q2,q3,q4,q5,q6,q7,q8,q9,q10,q11,q12,q13,q14,q15,q16

= −1.

The variable I is influenced by the values of H, V and E, effector cell concentra-

tion. The approximation of variable I can be given as

dI

dt
= µI

q(t),M(t)I + 0[H] + 0[V ] + 0[E] + kI
q(t),M(t),
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q(t) =


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

















q1 if H ≥ 0.99999 ∧ V ≥ 1 ∧ E ≥ 1.000001,

q2 if H ≥ 0.99999 ∧ V ≥ 1 ∧ E < 1.000001,

q3 if H ≥ 0.99999 ∧ V < 1 ∧ E ≥ 1.000001,

q4 if H ≥ 0.99999 ∧ V < 1 ∧ E < 1.000001,

q5 if H < 0.99999 ∧ V ≥ 1 ∧ E ≥ 1.000001,

q6 if H < 0.99999 ∧ V ≥ 1 ∧ E < 1.000001,

q7 if H < 0.99999 ∧ V < 1 ∧ E ≥ 1.000001,

q8 if H < 0.99999 ∧ V < 1 ∧ E < 1.000001,

kI
q1

= 0, kI
q5

= 0,

kI
q2

= 0, kI
q6

= 15,

kI
q3

= 0, kI
q7

= 0,

kI
q4

= 0, kI
q8

= 0,

where µI
q1,q2,q3,q4,q5,q6,q7,q8

= −1.

The variable M , activated APC proportion, is influenced by the values of D and

V . The approximation of variable M can be illustrated as

dM

dt
= µM

q(t),M(t)M + 0[D] + 0[V ] + kM
q(t),M(t),

q(t) =



































q1 if D ≥ 0.2 ∧ V ≥ 5,

q2 if D ≥ 0.2 ∧ V < 5,

q3 if D < 0.2 ∧ V ≥ 5,

q4 if D < 0.2 ∧ V < 5,
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kM
q1

= 0.5,

kM
q2

= 0.5,

kM
q3

= 0,

kM
q4

= 0,

where µM
q1,q2,q3,q4

= −1

The values of M , I and H effects the amount of interferons, F . The approxi-

mation of variable F can be given as

dF

dt
= µF

q(t),M(t)F + 0[M ] + 0[I] + 0[H] + kF
q(t),M(t),

q(t) =


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
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















q1 if M ≥ 0.2 ∧ I ≥ 0.0000001 ∧ H ≥ 0.9999999,

q2 if M ≥ 0.2 ∧ I ≥ 0.0000001 ∧ H < 0.9999999,

q3 if M ≥ 0.2 ∧ I < 0.0000001 ∧ H ≥ 0, 9999999,

q4 if M ≥ 0.2 ∧ I < 0.0000001 ∧ H < 0.9999999,

q5 if M < 0.2 ∧ I ≥ 0.0000001 ∧ H ≥ 0.9999999,

q6 if M < 0.2 ∧ I ≥ 0.0000001 ∧ H < 0.9999999,

q7 if M < 0.2 ∧ I < 0.0000001 ∧ H ≥ 0.9999999,

q8 if M < 0.2 ∧ I < 0.0000001 ∧ H < 0.9999999,

kF
q1

= 0, kF
q5

= 0,

kF
q2

= 12000, kF
q6

= 0,

kF
q3

= 0, kF
q7

= 0,

kF
q4

= 0, kF
q8

= 0,
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Figure 5.4: Numerical simulations of V, I, H and M variables with initial values
(V,H, I,M, F,R,E, P,A, S,D) =(0.01, 1, 0, 0, 0, 0, 1, 1, 1, 0.1, 0).
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where µF
q1,q2,q3,q4,q5,q6,q7,q8

= −1.

The variable R, resistant cell proportion, is influenced from the values of F and

H. The approximation of variable R can be shown as

dR

dt
= µR

q(t),M(t)R + 0[F ] + 0[H] + kR
q(t),M(t),

q(t) =




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


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



















q1 if F ≥ 10 ∧ H ≥ 0.9999999,

q2 if F ≥ 10 ∧ H < 0.9999999,

q3 if F < 10 ∧ H ≥ 0.9999999,

q4 if F < 10 ∧ H < 0.9999999,

kR
q1

= 0,

kR
q2

= 0,

kR
q3

= 1,

kR
q4

= 0,

where µR
q1,q2,q3,q4

= −1.

The values of M and I effects the effector cell amount, E. The approximation of

variable E is illustrated as

dE

dt
= µE

q(t),M(t)E + 0[M ] + 0[I] + kE
q(t),M(t),
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q(t) =












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



















q1 if M ≥ 0.3 ∧ I ≥ 0.00001,

q2 if M ≥ 0.3 ∧ I < 0.00001,

q3 if M < 0.3 ∧ I ≥ 0.00001,

q4 if M < 0.3 ∧ I < 0.00001,

kE
q1

= 180,

kE
q2

= 180,

kE
q3

= 25,

kE
q4

= 0,

where µE
q1,q2,q3,q4

= −1

Activated plasma cell amount, P , is influenced by the values of M , amount of

activated APC. The approximation of variable P is given as

dP

dt
= µP

q(t),M(t)P + 0[M ] + kP
q(t),M(t),

q(t) =


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

















q1 if M ≥ 0.000001 ∧ M ≥ 0.3,

q2 if M ≥ 0.000001 ∧ M < 0.3,

q3 if M < 0.000001 ∧ M < 0.3,

kP
q1

= 33000,

kP
q2

= 5000,

kP
q3

= 0,

where µP
q1,q2,q3

= −1.
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Figure 5.5: Numerical simulations of F, R, E and P variables with initial values
(V,H, I,M, F,R,E, P,A, S,D) =(0.01, 1, 0, 0, 0, 0, 1, 1, 1, 0.1, 0).
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A, concentration of antibodies, is effected from the values of S, P and V . The

approximation of variable A is shown as

dA

dt
= µA

q(t),M(t)A + 0[S] + 0[P ] + 0[V ] + kF
q(t),M(t),

q(t) =


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



q1 if S ≥ 0.15 ∧ P ≥ 5000 ∧ V ≥ 0,

q2 if S ≥ 0.15 ∧ P ≥ 5000 ∧ V < 0,

q3 if S ≥ 0.15 ∧ P < 5000 ∧ V ≥ 0,

q4 if S ≥ 0.15 ∧ P < 5000 ∧ V < 0,

q5 if S < 0.15 ∧ P ≥ 5000 ∧ V ≥ 0,

q6 if S < 0.15 ∧ P ≥ 5000 ∧ V < 0,

q7 if S < 0.15 ∧ P < 5000 ∧ V ≥ 0,

q8 if S < 0.15 ∧ P < 5000 ∧ V < 0,

kA
q1

= 5000, kA
q5

= 1,

kA
q2

= 5000, kA
q6

= 1,

kA
q3

= 5000, kA
q7

= 1,

kA
q4

= 5000, kA
q8

= 1,

where µA
q1,q2,q3,q4,q5,q6,q7,q8

= −1.

Plasma cell proportion, P , effects S. The approximation of variable S, antigenic

compatibility, is given as

dS

dt
= µS

q(t),M(t)S + 0[P ] + kS
q(t),M(t),
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q(t) =











q1 if P ≥ 5000,

q2 if P < 5000,

kS
q1

= 1,

kS
q2

= 0.1,

where µS
q1,q2

= −1.

The variable D, dead cell proportion, is influenced by the values of H, R and I.

The approximation of variable D can be illustrated as

dD

dt
= µD

q(t),M(t)D + 0[H] + 0[R] + 0[I] + kD
q(t),M(t),

q(t) =


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





q1 if H ≥ 0.99 ∧ R ≥ 0.9 ∧ I ≥ 0.001,

q2 if H ≥ 0.99 ∧ R ≥ 0.9 ∧ I < 0.001,

q3 if H ≥ 0.99 ∧ R < 0.9 ∧ I ≥ 0.001,

q4 if H ≥ 0.99 ∧ R < 0.9 ∧ I < 0.001,

q5 if H < 0.99 ∧ R ≥ 0.9 ∧ I ≥ 0.001,

q6 if H < 0.99 ∧ R ≥ 0.9 ∧ I < 0.001,

q7 if H < 0.99 ∧ R < 0.9 ∧ I ≥ 0.001,

q8 if H < 0.99 ∧ R < 0.9 ∧ I < 0.001,
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kD
q1

= 0, kD
q5

= 0.5,

kD
q2

= 0.5, kD
q6

= 0,

kD
q3

= 0, kD
q7

= 0.5,

kD
q4

= 0, kD
q8

= 0,

where µD
q1,q2,q3,q4,q5,q6,q7,q8

= −1.

The whole system can be demonstrated as;

dy

dt
= Aq2(t),M(t)y(t) + Bq2(t),M(t)y(t) + kq2(t),M(t),

where q2(t) =
{

qV (t) ∪ qH(t) ∪ qI(t) ∪ qM(t) ∪ qF (t) ∪ qR(t) ∪ qE(t) ∪ qP (t)∪

qA(t) ∪ qS(t) ∪ qD(t)
}

and y = [V H I M F R E P A S D]′ and

Aq2(t),M(t) =

























−1 0 . . . . . . 0

0 −1 0 . . . 0

...
. . .

...

... 0 −1 0

0 . . . . . . 0 −1

























(11×11)

,

Bq2(t),M(t) =













0 . . . 0

...
. . .

...

0 . . . 0













(11×11)

.
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Figure 5.6: Numerical simulations of A, S and D variables with initial values
(V,H, I,M, F,R,E, P,A, S,D) =(0.01, 1, 0, 0, 0, 0, 1, 1, 1, 0.1, 0).
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5.2 Asymptomatic Regime

The characteristic behavior of the asymptomatic case is that V , virus load, de-

creases immediately and antigenic compatibility variable, S, increases by 0.0003

and never decreases. The general dynamics of the typical case are approximated

by the following equations with the initial values (V,H, I,M, F,R,E, P,A, S,D) =

(0.01, 1, 0, 0, 0, 0, 1, 1, 1, 0.3, 0) so that a comparison with the ODE model can be

done. In this model, since the value of S is taken as 0.3, the related focal points

and threshold values must be considered with this in mind. For example, in mod-

ule S the focal points are taken as 0.3 and 0.3003. For different value of S, let

us say S∗, the corresponding focal points should be taken as S∗ and S∗ + 0.0003

because of the fact that after every state transition, from healthy state to asymp-

tomatic state, the value of S increases by 0.0003 as a result of the governing

dynamics of the asymptomatic state. Similarly, the threshold values related to

S, existing in the modules V and A with threshold values S = 0.3001 should be

considered as S∗ + 0.0001. The same approach should be considered for the vari-

able V. Moreover S = 1 is a special case such that, S value does not increase by

0.0003 since the maximum value for S is 1 but still asymptomatic regime occurs,

i.e., virus load, V , decreases immediately.

The variable V is effected from the values of I, infected cell proportion, S, A,

concentration of antibodies and H, healthy cell proportion. The approximation

of variable V can be illustrated as

dV

dt
= µV

q(t),M(t)V + 0[I] + 0[S] + 0[A] + 0[H] + kV
q(t),M(t),
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q(t) =

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

q1 if I ≥ 5 × 10−6 ∧ S ≥ 0.3001 ∧ A ≥ 0.965 ∧ H ≥ 0.9998,

q2 if I ≥ 5 × 10−6 ∧ S ≥ 0.3001 ∧ A ≥ 0.965 ∧ H < 0.9998,

q3 if I ≥ 5 × 10−6 ∧ S ≥ 0.3001 ∧ A < 0.965 ∧ H ≥ 0.9998,

q4 if I ≥ 5 × 10−6 ∧ S ≥ 0.3001 ∧ A < 0.965 ∧ H < 0.9998,

q5 if I ≥ 5 × 10−6 ∧ S < 0.3001 ∧ A ≥ 0.965 ∧ H ≥ 0.9998,

q6 if I ≥ 5 × 10−6 ∧ S < 0.3001 ∧ A ≥ 0.965 ∧ H < 0.9998,

q7 if I ≥ 5 × 10−6 ∧ S < 0.3001 ∧ A < 0.965 ∧ H ≥ 0.9998,

q8 if I ≥ 5 × 10−6 ∧ S < 0.3001 ∧ A < 0.965 ∧ H < 0.9998,

q9 if I < 5 × 10−6 ∧ S ≥ 0.3001 ∧ A ≥ 0.965 ∧ H ≥ 0.9998,

q10 if I < 5 × 10−6 ∧ S ≥ 0.3001 ∧ A ≥ 0.965 ∧ H < 0.9998,

q11 if I < 5 × 10−6 ∧ S ≥ 0.3001 ∧ A < 0.965 ∧ H ≥ 0.9998,

q12 if I < 5 × 10−6 ∧ S ≥ 0.3001 ∧ A < 0.965 ∧ H < 0.9998,

q13 if I < 5 × 10−6 ∧ S < 0.3001 ∧ A ≥ 0.965 ∧ H ≥ 0.9998,

q14 if I < 5 × 10−6 ∧ S < 0.3001 ∧ A ≥ 0.965 ∧ H < 0.9998,

q15 if I < 5 × 10−6 ∧ S < 0.3001 ∧ A < 0.965 ∧ H ≥ 0.9998,

q16 if I < 5 × 10−6 ∧ S < 0.3001 ∧ A < 0.965 ∧ H < 0.9998,

kV
q1

= 0, kV
q5

= 0, kV
q9

= 0, kV
q13

= 0.1,

kV
q2

= 0, kV
q6

= 0, kV
q10

= 0, kV
q14

= 0,

kV
q3

= 0, kV
q7

= 0, kV
q11

= 0, kV
q15

= 0,

kV
q4

= 0, kV
q8

= 0, kV
q12

= 0, kV
q16

= 0,

where µV
q1,q2,q3,q4,q5,q6,q7,q8,q9,q10,q11,q12,q13,q14,q15,q16

= −1.

The variable H is effected from the values of D, dead cell proportion, R, resistant

cell proportion, V and F , amount of interferon. The approximation of variable

H can be represented as

dH

dt
= µH

q(t),M(t)H + 0[D] + 0[R] + 0[V ] + 0[F ] + kH
q(t),M(t),
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q(t) =

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

q1 if D ≥ 1 × 10−6 ∧ R ≥ 1 × 10−4 ∧ V ≥ 1 × 10−6 ∧ F ≥ 0.02,

q2 if D ≥ 1 × 10−6 ∧ R ≥ 1 × 10−4 ∧ V ≥ 1 × 10−6 ∧ F < 0.02,

q3 if D ≥ 1 × 10−6 ∧ R ≥ 1 × 10−4 ∧ V < 1 × 10−6 ∧ F ≥ 0.02,

q4 if D ≥ 1 × 10−6 ∧ R ≥ 1 × 10−4 ∧ V < 1 × 10−6 ∧ F < 0.02,

q5 if D ≥ 1 × 10−6 ∧ R < 1 × 10−4 ∧ V ≥ 1 × 10−6 ∧ F ≥ 0.02,

q6 if D ≥ 1 × 10−6 ∧ R < 1 × 10−4 ∧ V ≥ 1 × 10−6 ∧ F < 0.02,

q7 if D ≥ 1 × 10−6 ∧ R < 1 × 10−4 ∧ V < 1 × 10−6 ∧ F ≥ 0.02,

q8 if D ≥ 1 × 10−6 ∧ R < 1 × 10−4 ∧ V < 1 × 10−6 ∧ F < 0.02,

q9 if D < 1 × 10−6 ∧ R ≥ 1 × 10−4 ∧ V ≥ 1 × 10−6 ∧ F ≥ 0.02,

q10 if D < 1 × 10−6 ∧ R ≥ 1 × 10−4 ∧ V ≥ 1 × 10−6 ∧ F < 0.02,

q11 if D < 1 × 10−6 ∧ R ≥ 1 × 10−4 ∧ V < 1 × 10−6 ∧ F ≥ 0.02,

q12 if D < 1 × 10−6 ∧ R ≥ 1 × 10−4 ∧ V < 1 × 10−6 ∧ F < 0.02,

q13 if D < 1 × 10−6 ∧ R < 1 × 10−4 ∧ V ≥ 1 × 10−6 ∧ F ≥ 0.02,

q14 if D < 1 × 10−6 ∧ R < 1 × 10−4 ∧ V ≥ 1 × 10−6 ∧ F < 0.02,

q15 if D < 1 × 10−6 ∧ R < 1 × 10−4 ∧ V < 1 × 10−6 ∧ F ≥ 0.02,

q16 if D < 1 × 10−6 ∧ R < 1 × 10−4 ∧ V < 1 × 10−6 ∧ F < 0.02,

kH
q1

= 1, kH
q5

= 0.995, kH
q9

= 0.995, kH
q13

= 1,

kH
q2

= 1, kH
q6

= 1, kH
q10

= 1, kH
q14

= 1,

kH
q3

= 1, kH
q7

= 1, kH
q11

= 1, kH
q15

= 1,

kH
q4

= 1, kH
q8

= 1, kH
q12

= 1, kH
q16

= 1,

where µH
q1,q2,q3,q4,q5,q6,q7,q8,q9,q10,q11,q12,q13,q14,q15,q16

= −1.

The variable I is influenced by the values of H, V and E, effector cell concentra-

tion. The approximation of variable I can be given as;

dI

dt
= µI

q(t),M(t)I + 0[H] + 0[V ] + 0[E] + kI
q(t),M(t),
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q(t) =




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
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
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




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

















q1 if H ≥ 1 ∧ V ≥ 0.01 ∧ E ≥ 1,

q2 if H ≥ 1 ∧ V ≥ 0.01 ∧ E < 1,

q3 if H ≥ 1 ∧ V < 0.01 ∧ E ≥ 1,

q4 if H ≥ 1 ∧ V < 0.01 ∧ E < 1,

q5 if H < 1 ∧ V ≥ 0.01 ∧ E ≥ 1,

q6 if H < 1 ∧ V ≥ 0.01 ∧ E < 1,

q7 if H < 1 ∧ V < 0.01 ∧ E ≥ 1,

q8 if H < 1 ∧ V < 0.01 ∧ E < 1,

kI
q1

= 0, kI
q5

= 0,

kI
q2

= 0, kI
q6

= 0,

kI
q3

= 0, kI
q7

= 0,

kI
q4

= 0, kI
q8

= 0.0002,

where µI
q1,q2,q3,q4,q5,q6,q7,q8

= −1.

The variable M , activated APC proportion, is influenced by the values of D and

V . The approximation of variable M can be illustrated as

dM

dt
= µM

q(t),M(t)M + 0[D] + 0[V ] + kM
q(t),M(t),

q(t) =



































q1 if D ≥ 1 × 10−5 ∧ V ≥ 0.0005,

q2 if D ≥ 1 × 10−5 ∧ V < 0.0005,

q3 if D < 1 × 10−5 ∧ V ≥ 0.0005,

q4 if D < 1 × 10−5 ∧ V < 0.0005,
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kM
q1

= 0.00005,

kM
q2

= 0,

kM
q3

= 0.00005,

kM
q4

= 0,

where µM
q1,q2,q3,q4

= −1.

The values of M , I and H effects the amount of interferons, F . The approxima-

tion of variable F can be given as

dF

dt
= µF

q(t),M(t)F + 0[M ] + 0[I] + 0[H] + kF
q(t),M(t),

q(t) =


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
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
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




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















q1 if M ≥ 1 × 10−6 ∧ I ≥ 1 × 10−7 ∧ H ≥ 0.99999,

q2 if M ≥ 1 × 10−6 ∧ I ≥ 1 × 10−7 ∧ H < 0.99999,

q3 if M ≥ 1 × 10−6 ∧ I < 1 × 10−7 ∧ H ≥ 0.9999,

q4 if M ≥ 1 × 10−6 ∧ I < 1 × 10−7 ∧ H < 0.99999,

q5 if M < 1 × 10−6 ∧ I ≥ 1 × 10−7 ∧ H ≥ 0.9999,

q6 if M < 1 × 10−6 ∧ I ≥ 1 × 10−7 ∧ H < 0.99999,

q7 if M < 1 × 10−6 ∧ I < 1 × 10−7 ∧ H ≥ 0.99999,

q8 if M < 1 × 10−6 ∧ I < 1 × 10−7 ∧ H < 0.99999,

kF
q1

= 0, kF
q5

= 0,

kF
q2

= 0.5, kF
q6

= 0,

kF
q3

= 0.5, kF
q7

= 0,

kF
q4

= 0, kF
q8

= 0,
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where µF
q1,q2,q3,q4,q5,q6,q7,q8

= −1.

The variable R, resistant cell proportion, is influenced from the values of F and

H. The approximation of variable R can be shown as

dR

dt
= µR

q(t),M(t)R + 0[F ] + 0[H] + kR
q(t),M(t),

q(t) =



































q1 if F ≥ 0.02 ∧ H ≥ 0.997,

q2 if F ≥ 0.02 ∧ H < 0.997,

q3 if F < 0.02 ∧ H ≥ 0.997,

q4 if F < 0.02 ∧ H < 0.997,

kR
q1

= 0,

kR
q2

= 0.00041,

kR
q3

= 0,

kR
q4

= 0,

where µR
q1,q2,q3,q4

= −1.

The values of M and I effects the effector cell amount, E. The approximation of

variable E is illustrated as

dE

dt
= µE

q(t),M(t)E + 0[M ] + 0[I] + kE
q(t),M(t),
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Figure 5.7: Numerical simulations of V , H, I and M variables with initial values
(V,H, I,M, F,R,E, P,A, S,D) =(0.01, 1, 0, 0, 0, 0, 1, 1, 1, 0.3, 0).
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q(t) =































































q1 if M ≥ 0.5 × 10−5 ∧ M ≥ 4 × 10−5 ∧ I ≥ 1 × 10−6,

q2 if M ≥ 0.5 × 10−5 ∧ M ≥ 4 × 10−5 ∧ I < 1 × 10−6,

q3 if M ≥ 0.5 × 10−5 ∧ M < 4 × 10−5 ∧ I ≥ 1 × 10−6,

q4 if M ≥ 0.5 × 10−5 ∧ M < 4 × 10−5 ∧ I < 1 × 10−6,

q5 if M < 0.5 × 10−5 ∧ M < 4 × 10−5 ∧ I ≥ 1 × 10−6,

q6 if M < 0.5 × 10−5 ∧ M < 4 × 10−5 ∧ I < 1 × 10−6,

kE
q1

= 1.0002, kE
q4

= 0.9997,

kE
q2

= 1.0002, kE
q5

= 1,

kE
q3

= 1, kE
q6

= 1,

where µE
q1,q2,q3,q4,q5,q6

= −1.

Activated plasma cell amount, P , is influenced by the values of M , amount of

activated APC. The approximation of variable P is given as

dP

dt
= µP

q(t),M(t)P + 0[M ] + kP
q(t),M(t),

q(t) =











q1 if M ≥ 0.5 × 10−5,

q2 if M < 0.5 × 10−5,

kP
q1

= 1.0008,

kP
q2

= 1,

where µP
q1,q2

= −1.

The variable A, concentration of antibodies, is effected from the values of S, P
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Figure 5.8: Numerical simulations of F , R, E and P variables with initial values
(V,H, I,M, F,R,E, P,A, S,D) =(0.01, 1, 0, 0, 0, 0, 1, 1, 1, 0.3, 0).
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and V . The approximation of variable A is shown as

dA

dt
= µA

q(t),M(t)A + 0[S] + 0[P ] + 0[V ] + kF
q(t),M(t),

q(t) =























































































q1 if S ≥ 0.3001 ∧ P ≥ 1.00001 ∧ V ≥ 0.0005,

q2 if S ≥ 0.3001 ∧ P ≥ 1.00001 ∧ V < 0.0005,

q3 if S ≥ 0.3001 ∧ P < 1.00001 ∧ V ≥ 0.0005,

q4 if S ≥ 0.3001 ∧ P < 1.00001 ∧ V < 0.0005,

q5 if S < 0.3001 ∧ P ≥ 1.00001 ∧ V ≥ 0.0005,

q6 if S < 0.3001 ∧ P ≥ 1.00001 ∧ V < 0.0005,

q7 if S < 0.3001 ∧ P < 1.00001 ∧ V ≥ 0.0005,

q8 if S < 0.3001 ∧ P < 1.00001 ∧ V < 0.0005,

kA
q1

= 0.96, kA
q5

= 0.94,

kA
q2

= 0.96, kA
q6

= 0.94,

kA
q3

= 0.94, kA
q7

= 0.94,

kA
q4

= 0.96, kA
q8

= 0.94,

Plasma cell proportion, P , effects S. The approximation of variable S, antigenic

compatibility, is given as

dS

dt
= µS

q(t),M(t)S + 0[P ] + kS
q(t),M(t),
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q(t) =











q1 if P ≥ 1,

q2 if P < 1,

kS
q1

= 0.3003,

kS
q2

= 0.3,

where µS
q1,q2

= −1.

The variable D, dead cell proportion, is influenced by the values of H, R and I.

The approximation of variable D can be illustrated as

dD

dt
= µD

q(t),M(t)D + 0[H] + 0[R] + 0[I] + kD
q(t),M(t),

q(t) =























































































q1 if H ≥ 0.999999 ∧ R ≥ 2 × 10−3 ∧ I ≥ 1 × 10−7,

q2 if H ≥ 0.999999 ∧ R ≥ 2 × 10−3 ∧ I < 1 × 10−7,

q3 if H ≥ 0.999999 ∧ R < 2 × 10−3 ∧ I ≥ 1 × 10−7,

q4 if H ≥ 0.999999 ∧ R < 2 × 10−3 ∧ I < 1 × 10−7,

q5 if H < 0.999999 ∧ R ≥ 2 × 10−3 ∧ I ≥ 1 × 10−7,

q6 if H < 0.999999 ∧ R ≥ 2 × 10−3 ∧ I < 1 × 10−7,

q7 if H < 0.999999 ∧ R < 2 × 10−3 ∧ I ≥ 1 × 10−7,

q8 if H < 0.999999 ∧ R < 2 × 10−3 ∧ I < 1 × 10−7,
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kD
q1

= 0, kD
q5

= 0,

kD
q2

= 0, kD
q6

= 0,

kD
q3

= 0, kD
q7

= 0,

kD
q4

= 0.000071, kD
q8

= 0,

where µD
q1,q2,q3,q4,q5,q6,q7,q8

= −1.

The whole system can be demonstrated as;

dy

dt
= Aq3(t),M(t)y(t) + Bq3(t),M(t)y(t) + kq3(t),M(t),

where q3(t) =
{

qV (t) ∪ qH(t) ∪ qI(t) ∪ qM(t) ∪ qF (t) ∪ qR(t) ∪ qE(t) ∪ qP (t)∪

qA(t) ∪ qS(t) ∪ qD(t)
}

and y = [V H I M F R E P A S D]′ and

Aq3(t),M(t) =

























−1 0 . . . . . . 0

0 −1 0 . . . 0

...
. . .

...

... 0 −1 0

0 . . . . . . 0 −1

























(11×11)

,

Bq3(t),M(t) =













0 . . . 0

...
. . .

...

0 . . . 0













(11×11)

.
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Figure 5.9: Numerical simulations of A, S and D variables with initial values
(V,H, I,M, F,R,E, P,A, S,D) =(0.01, 1, 0, 0, 0, 0, 1, 1, 1, 0.3, 0).
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5.3 Chronic Regime

As mentioned in Chapter 4, the disease can exhibit chronic behavior. The

characteristic behavior of this regime is that virus load, V , can not be decreased

by the organism and the healthy cell proportion, H, can not increase as illustrated

by the Figure 4.10. Moreover, following values characterizes the chronic regime

[22];

(V,H, I,M, F,R,E, P,A) = (5.26, 0.06, 0.018, 0.05, 1484, 0.89, 67.0).

A hybrid model of two variables constructed in this case since this is a special

case because antigenic compatibility variable S does not change, its value stays

at 0, V does not decrease and H can not reach 1. So, a model of two variables

which characterizes this regime is constructed.

dV

dt
= µV

q(t),M(t)V + 0[H] + kV
q(t),M(t),

q(t) =











q1 if H ≥ 0.1,

q2 if H < 0.1,

kV
q1

= 100,

kV
q2

= 5,

where µV
q1,q2

= −1.

dH

dt
= µH

q(t),M(t)M + 0[V ] + kH
q(t),M(t),
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q(t) =























q1 if V ≥ 1 × 10−6 ∧ V ≥ 70,

q2 if V ≥ 1 × 10−6 ∧ V < 70,

q3 if V < 1 × 10−6 ∧ V < 70,

kH
q1

= 0,

kH
q2

= 0.06,

kH
q3

= 0,

where µH
q1,q2,q3

= −1.

The whole system can be demonstrated as;

dy

dt
= Aq4(t),M(t)y(t) + Bq4(t),M(t)y(t) + kq4(t),M(t),

where q4(t) =
{

qV (t) ∪ qH(t)
}

and y = [V H]′ and

Aq4(t),M(t) =







−1 0

0 −1






,

Bq4(t),M(t) =







0 0

0 0






.
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Figure 5.10: Hybrid model simulation of the chronic state
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chapter 6

SENSITIVITY ANALYSIS OF

THE MODEL

6.1 Introduction

To determine if a model is sensitive to changes in the value of the model or

to changes in the structure of the model, sensitivity analysis is used. Parameter

sensitivity is useful to explain if a change in the parameter causes a change in the

dynamic behavior of the system. Since sensitivity analysis helps to understand

how the model responds to changes in parameter values, it is useful in both model

building and model evaluation.

Sensitivity analysis represents a confident way of determining the parameter

values, since to measure them with a great accuracy in the real world is very

difficult, or sometimes impossible. Thus, most of the time parameter values are

estimated when modeling a dynamical system. Sensitivity analysis helps to decide

on the accuracy of the parameter which makes the model sufficiently valid. It

also demonstrates if using a parameter in the model is reasonable or not.

By performing sensitivity tests, to understand the dynamics of a system is

also possible. A leverage point, a parameter whose specific value can signifi-

cantly effect the behavior of the system, can be observed by experimenting with
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a wide range of values. There are some different approaches to analyze sensitivity

like constructing a sensitivity equation [64] and analyzing the system’s dynamics

according to this equation or solving an inverse problem [13].

6.2 Sensitivity Analysis of The Hybrid Model

In the hybrid model with memory, there are two parameters: thresholds and

focal points. In this chapter, we investigated the different values of thresholds in

order to determine the effect of varying the inputs of our model on the output of

the model itself. This tool is important in the sense of understanding the model’s

behavior in response to changes in its inputs and ensuring the correct use of the

model.

In order to study sensitivity, the baseline values for every threshold are in-

creased and decreased and the effects of changes in the model are investigated.

For this purpose, the m-file which is also used in order to obtain the simulations

of Chapter 5 and represented in the Appendix is used. The resulting simulations

of the m-file are investigated with different threshold values. Depending on the

varying values, some changes in the regime, the severity or the duration of dis-

ease are observed (see Tables 6.1 and 6.2). If the virus load does not increase

and starts to decrease immediately in typical case, this is considered as a change

in the disease regime, actually towards an asymptomatic state. If dead cell pro-

portion, D, increases, this is commented as the severity of disease increases like

Hancioglu, et al. [22] considered in their work. If healthy cell proportion, H,

cannot reach 1 and the virus load cannot reach 0, then this is considered as the

chronic regime. In order to decide the duration of disease, the times when D
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exceeds and drops below 0.1 is measured. In the tables, the threshold values

named as hV , hH , hI , hM , hF , hR, hE, hP , hA, hS and hD are the threshold val-

ues that are used to construct the hybrid model in every module for typical and

asymptomatic regimes in Chapter 5. For example, the variable hI of module V

in the Table 6.1 corresponds to the I value of module V of Chapter 5, i.e. 10−7.
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Table 6.1: Sensitivity analysis of typical regime

Module Threshold Baseline(range) Model behavior

hI 10−7[10−7 − 10−6] • as gets higher values the organism is not
able to clear the virus in 15 days.

• for lower values asymptomatic regime occurs.
V hS 0.1[0 − 0.1] • for higher values the disease

is asymptomatic.
hA 0.1[0 − 1] • for higher values the disease

is asymptomatic.
hH 0.99999[0 − 1] • does not effect.

hD 10−5[10−5 − 0.36] • for hD = 0 the organism is able
to clear the virus in 5 days.

• for higher values the duration of
disease extends.

H hR 10−5[0 − 0.99] • for higher values asymptomatic regime occurs
and duration and severity of disease increase.

hV 0[0 − 0.01] • for higher values the disease is asymptomatic
and duration and severity of disease increase.

hF 0.99999[0 − 1] • for hF = 0 the disease is asymptomatic
and duration and severity of disease increase.

hH 0.99999(0 − 1) • for hH = 0 the disease approaches to
chronic regime

(can not clear the virus in 15 days).
hV 1[0.001 − 120] • for lower values the disease is

asymptomatic.
I • for higher values, virus load gets higher

values till the virus is cleaned.
hE 1.000001(0.09 −∞) • for lower values the disease

approaches to chronic state.

hD 0.99999(0 − 1] • for hD = 0 disease approaches to chronic.
M hV 5 • does not effect.

hM 0.2(0 −∞) • does not effect.
F hI 10−7[0 − 1] • does not effect.

hH 0.9999999[0 − 1] • does not effect.

hF 10(0 −∞) • for hF = 0 disease is asymptomatic.
R hH 0.9999999[0 − 1] • does not effect.

E hM 0.3[0.1 −∞) • out of the range, the disease approaches
to chronic.

hI 1[0.001 − 120] •hI = 0 the disease approaches to chronic.

hM1
10−6 • does not effect.

P hM2
0.3 • does not effect.

hS 0.15[0 − 1] • does not effect.
A hP 5000(0 −∞) • does not effect.

hV 0(0 −∞) • does not effect.

S hP 5000(0 −∞) • does not effect.

hH 0.99[0 − 1] • does not effect.
D hR 0.9[0 − 1] • as approaches to 0 the organism’s reply

is late.
• when hR = 0, severity of disease increase.

hI 0.001(0 − 1) • hI = 0 the disease is asymptomatic.
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Table 6.2: Sensitivity analysis of asymptomatic regime

Module Threshold Baseline(range) Model behavior

hI 5 × 10−6[0 − 1] • does not effect.
V hS 0.1[0 − 0.1] • does not effect.

hA 0.1[0 − 1] • does not effect.
hH 0.9998[0 − 1] • does not effect.

hD 10−6[9 × 10−7 − 1.2 × 10−6] • for higher values severity
increases.

H hR 10−4[3 × 10−5 − 1.7 × 10−4] • for higher and lower values
severity increases.

hV 10−6[0 − 10−5] • for higher values severity
increases.

hF 0.02[0 − 0.025] • for higher values severity
increases.

hH 1[0.9989 − 1] • for lower values
duration of severity increases

I hV 0.001[0.0075 − 0.01] • for lower values
duration of severity increases

hE 1[1 −∞) • for lower values severity
increases.

hD 0.00001[0 − 1] • does not effect.
M hV 0.0005[0 − 0.0095] • for higher values severity

increases.

hM 0.000001[0 − 2.5 × 10−6] • for higher values severity
increases.

F hI 10−7(0 − 0.00002) • for higher values
duration of severity increases.
• for hI = 0 severity increases.

hH 0.99999[0.9966 − 1] • for lower values severity increases.

hF 0.02[0 − 0.049] •for higher values severity increases.
R hH 0.997[0.9968 − 1] • for lower values severity

increases.

hM1
0.000005 • does not effect.

E hM2
0.00004 • does not effect.

hI 0.000001 • does not effect.

P hM 0.000005 • does not effect.

hS 0.3001[0 − 1] • does not effect.
A hP 1.00001 • does not effect.

hV 0.0005 • does not effect.

S hP 1 • does not effect.

hH 0.999999[0.99999 − 1] • for lower values severity increases.
D hR 0.002 • for higher and lower values

stays asymptomatic.
hI 10−7 • for higher and lower values

stays asymptomatic.
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chapter 7

FUTURE WORK

In this work, the deterministic case of hybrid systems with memory is ex-

plained and applied. In this case, the first transitions are determined by par-

titioning the initial set of variables and the future behavior of these variables

are determined according to these partitionings. However, in nature and science,

there exist random behaviors. With our deterministic approach, this randomness

cannot be investigated properly. For a more realistic model, stochastic hybrid

systems with memory [45] should be developed. In that case, the first behavior

of variable or variables can be thought as random until the event of hitting to

the boundaries or until the state transition. After hitting one of the boundaries,

the system exhibits a differentiation depending on which boundary is hitted or

which state transition is occurred. This property characterizes the effect of the

memory on the system. Depending on the memory, the system can have different

solutions with different distributions, mean and variance values.

If such a model can be constructed, in which memory is contained, then the

history of the system can be investigated by analyzing the distributional behavior,

mean or variance values of the system. By this way, the future behavior of the

system can be arranged by control variables, so that the system can exhibit the

desired behavior. As an illustration, if the dimension is assumed as n = 1 and the

initial set Y (t0) ∈ Inv(q(t0),m(t0)) where (q(t0),m(t0)) is the zero state of the
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system, the governing dynamics of the system until it hits one of the boundaries

can be denoted by [45]

dYt = σ0YtdWt, (7.0.1)

Y0 = y0,∀y0 ∈ (b1, b2), (7.0.2)

where b1, b2 is the boundaries of the initial set. According to the boundary it hits

the system exhibits different behaviors such that

dYt =











−a2[Yt − c2]dt + σ2dWt if τ ∗ = τ2

−a1[Yt − c1]dt + σ1dWt if τ ∗ = τ1

This type of modeling allows constructing models for the systems which shows

random behavior in the memory. Moreover, if the model is constructed properly,

then the possible effects of changes in conditions on system behaviors can be

measured by computer simulations without any need of real experiments.

In addition, the control mechanism of the system can be investigated by the

external input variables. For example, in biological systems, drug effect can be

investigated.
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chapter 8

CONCLUSION

In this thesis, hybrid systems with memory are introduced, applied and in-

vestigated. Firstly, a background of the system is explained in detail by giving

examples. Then, the system is introduced with two illustrative examples. An

ODE model of human immune response to Influenza A virus, chosen from liter-

ature, is explained and the application of a hybrid model with memory to this

ODE model is performed piecewise linearly. Hybrid systems with memory can be

used in modeling dynamical systems which have regulatory processes and exhibit

history dependent behaviors. Modeling gene regulatory networks by investigating

their skill on memory is investigated by the application. The sensitivity analysis

of the hybrid model is observed in order to find the baseline values of thresholds,

so that an uncertainty analysis of the model can be done in the future.

Complex networks, which involve memory can be modeled in a simpler way by

using hybrid system with memory where the dynamics of the system is determined

by the location of the state vector and the memory. The memorization capability

of gene regulatory networks can be mimicked by this approach.

In this work, a deterministic case of the proposed model is observed. However,

a stochastic case will give more realistic results as discussed in the future work

part. To model the memory dependent behavior with stochastic hybrid systems

with memory is a promising challenge.
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appendix A

Matlab m-file for Chapter 4

The following m-file is written by inspiring from the m-files of M. Kahraman

[30]. In order to obtain the ODE simulations of Chapter 4 the following matlab

m-file is used. Initial values of the typical case is given in ”initial values of global

variables” which are used in the simulations for the typical regime of ODE model.

For the asymptomatic type simulations of Chapter 4, S = 0.3 is used.

function result=influenza_1

global V;

global H;

global I;

global M;

global F;

global R;

global E;

global P;

global A;

global S;

global D;

% initial values of global variables************
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V=0.01;

H=1;

I=0;

M=0;

F=0;

R=0;

E=1;

P=1;

A=1;

S=0.1;

D=0;

%initial values of iteration**************

V_i=V;

H_i=H;

I_i=I;

M_i=M;

F_i=F;

R_i=R;

E_i=E;

P_i=P;

A_i=A;

S_i=S;

D_i=D;

%time

t_initial=0;
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t=t_initial;

t_step=0.05;

t_final=15;

%Arrays of variables and time

V_array=[0 V];

H_array=[0 H];

I_array=[0 I];

M_array=[0 M];

F_array=[0 F];

R_array=[0 R];

E_array=[0 E];

P_array=[0 P];

A_array=[0 A];

S_array=[0 S];

D_array=[0 D];

t_array=t_initial;

options = odeset(’RelTol’,1e-4,’AbsTol’,[1e-4 1e-4 1e-5]);

for t=t_initial:t_step:t_final

%V******************************************************

aa= ode23t(@dV_dt,[t t+t_step],V);

V_i=aa.y(11);

V_array=[V_array;[t V_i]];

%H******************************************************

aa = ode23t(@dH_dt,[t t+t_step],H);

H_i=aa.y(11);
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H_array=[H_array;[t H_i]];

%I******************************************************

aa = ode23t(@dI_dt,[t t+t_step],I);

I_i=aa.y(11);

I_array=[I_array;[t I_i]];

%M******************************************************

aa = ode23t(@dM_dt,[t t+t_step],M);

M_i=aa.y(11);

M_array=[M_array;[t M_i]];

%F******************************************************

aa = ode23t(@dF_dt,[t t+t_step],F);

F_i=aa.y(11);

F_array=[F_array;[t F_i]];

%R******************************************************

aa = ode23t(@dR_dt,[t t+t_step],R);

R_i=aa.y(11);

R_array=[R_array;[t R_i]];

%E******************************************************

aa = ode23t(@dE_dt,[t t+t_step],E);

E_i=aa.y(11);

E_array=[E_array;[t E_i]];

%P******************************************************

aa = ode23t(@dP_dt,[t t+t_step],P);

P_i=aa.y(11);

P_array=[P_array;[t P_i]];
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%A******************************************************

aa = ode23t(@dA_dt,[t t+t_step],A);

A_i=aa.y(11);

A_array=[A_array;[t A_i]];

%S******************************************************

aa = ode23t(@dS_dt,[t t+t_step],S);

S_i=aa.y(11);

S_array=[S_array;[t S_i]];

%D******************************************************

D_i=D_equation(H,R,I);

D_array=[D_array;[t D_i]];

%Change global variables

V=V_i;

H=H_i;

I=I_i;

M=M_i;

F=F_i;

R=R_i;

E=E_i;

P=P_i;

A=A_i;

S=S_i;

D=D_i;

end

subplot(2,2,1)
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plot(V_array(:,1),V_array(:,2),’LineWidth’,2);

xlabel(’V’)

subplot(2,2,2)

plot(H_array(:,1),H_array(:,2),’LineWidth’,2);

xlabel(’H’)

subplot(2,2,3)

plot(I_array(:,1),I_array(:,2),’LineWidth’,2);

xlabel(’I’)

subplot(2,2,4)

plot(M_array(:,1),M_array(:,2),’LineWidth’,2);

xlabel(’M’)

figure;

subplot(2,2,1)

plot(F_array(:,1),F_array(:,2),’LineWidth’,2);

xlabel(’F’)

subplot(2,2,2)

plot(R_array(:,1),R_array(:,2),’LineWidth’,2);

xlabel(’R’)

subplot(2,2,3)

plot(E_array(:,1),E_array(:,2),’LineWidth’,2);

xlabel(’E’)

subplot(2,2,4)

plot(P_array(:,1),P_array(:,2),’LineWidth’,2);

xlabel(’P’)

figure;
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subplot(2,2,1)

plot(A_array(:,1),A_array(:,2),’LineWidth’,2);

xlabel(’A’)

subplot(2,2,2)

plot(S_array(:,1),S_array(:,2),’LineWidth’,2);

xlabel(’S’)

subplot(2,2,3)

plot(D_array(:,1),D_array(:,2),’LineWidth’,2);

xlabel(’D’)

end

%Differential equation of V

function result = dV_dt(t,param_V)

global I;

global S;

global A;

global H;

gama_V=510;

gama_VA=619.2;

gama_VH=1.02;

alfa_V=1.7;

a_V1=100;

a_V2=23000;

result=gama_V*I-gama_VA*S*A*param_V-gama_VH*H*param_V

-alfa_V*param_V-((a_V1*param_V)/(1+a_V2*param_V));

end
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%Differential equation of H

function result=dH_dt(t,param_H)

global D;

global R;

global V;

global F;

b_HD=4;

a_R=1;

gama_HV=0.34;

b_HF=0.01;

result=b_HD*D*(param_H+R)+a_R*R-gama_HV*V*param_H-b_HF*F*param_H;

end

%Differential equation of I

function result = dI_dt(t,param_I)

global V;

global H;

global E;

gama_HV=0.34;

b_IE=0.066;

a_I=1.5;

result=gama_HV*V*H-b_IE*E*param_I-a_I*param_I;

end

%Differential equation of M

function result = dM_dt(t,param_M)

global D;
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global V;

b_MD=1;

b_MV=0.0037;

a_M=1;

result=(b_MD*D+b_MV*V)*(1-param_M)-a_M*param_M;

end

%Differential equation of F

function result = dF_dt(t,param_F)

global M;

global I;

global H;

b_F=250000;

c_F=2000;

b_FH=17;

a_F=8;

result=b_F*M+c_F*I-b_FH*H*param_F-a_F*param_F;

end

%Differential equation of R

function result = dR_dt(t,param_R)

global F;

global H;

b_HF=0.01;

a_R=1;

result= b_HF*F*H-a_R*param_R;

end
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%Differential equation of E

function result = dE_dt(t,param_E)

global M;

global I;

b_EM=8.3;

b_EI=2.72;

a_E=0.4;

result=b_EM*M*param_E-b_EI*I*param_E+a_E*(1-param_E);

end

%Differential equation of P

function result = dP_dt(t,param_P)

global M;

b_PM=11.5;

a_P=0.4;

result=b_PM*M*param_P+a_P*(1-param_P);

end

%Differential equation of A

function result = dA_dt(t,param_A)

global P;

global S;

global V;

b_A=0.043;

gama_AV=146.2;

a_A=0.043;

result=b_A*P-gama_AV*S*param_A*V-a_A*param_A;
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end

%Differential equation of S

function result = dS_dt(t,param_S)

global P;

r=0.00003;

result=r*P*(1-param_S);

end

%Algebraic equation of D

function result=D_equation(param_H,param_R,param_I)

result=1-param_H-param_R-param_I;

end
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appendix B

Matlab m-file for Chapter 5

The following m-file is written by inspiring from the m-files of M. Kahraman

[30]. For Chapter 5 the following m-file is used. Only the m-file which is used for

the typical regime is given. For asymptomatic and chronic types m-files can be

written by using the corresponding threshold and focal point values.

function infuenza_hybrid_new

%V

V=0.01;

global V_array;

V_array=[0 V];

%H

H=1;

global H_array;

H_array=[0 H];

%I

I=0;

global I_array;

I_array=[0 I];

%M

126



M=0;

global M_array;

M_array=[0 M];

%F

F=0;

global F_array;

F_array=[0 F];

%R

R=0;

global R_array;

R_array=[0 R];

%E

E=1;

global E_array;

E_array=[0 E];

%P

P=1;

global P_array;

P_array=[0 P];

%A

A=1;

global A_array;

A_array=[0 A];

%S

S=0.1;

127



global S_array;

S_array=[0 S];

%D

D=0;

global D_array;

D_array=[0 D];

%time

t_step=0.05;

t_initial=0;

t_final=15;

global t;

for t=t_initial:t_step:t_final

V=V_module(V,I,S,A,H,t_step);

V_array=[V_array;[t V]];

H=H_module(H,D,R,V,F,t_step);

H_array=[H_array;[t H]];

I=I_module(I,H,V,E,t_step);

I_array=[I_array;[t I]];

M=M_module(M,D,V,t_step);

M_array=[M_array;[t M]];

F=F_module(F,M,I,H,t_step);

F_array=[F_array;[t F]];

R=R_module(R,F,H,t_step);

R_array=[R_array;[t R]];

E=E_module(E,M,I,t_step);
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E_array=[E_array;[t E]];

P=P_module(P,M,t_step);

P_array=[P_array;[t P]];

A=A_module(A,S,P,V,t_step);

A_array=[A_array;[t A]];

S=S_module(S,P,t_step);

S_array=[S_array;[t S]];

D=D_module(D,H,R,I,t_step);

D_array=[D_array;[t D]];

end

subplot(2,2,1)

plot(V_array(:,1),V_array(:,2),’LineWidth’,2);

xlabel(’V’)

subplot(2,2,2)

plot(H_array(:,1),H_array(:,2),’LineWidth’,2);

xlabel(’H’)

subplot(2,2,3)

plot(I_array(:,1),I_array(:,2),’LineWidth’,2);

xlabel(’I’)

subplot(2,2,4)

plot(M_array(:,1),M_array(:,2),’LineWidth’,2);

xlabel(’M’)

figure;

subplot(2,2,1)

plot(F_array(:,1),F_array(:,2),’LineWidth’,2);
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xlabel(’F’)

subplot(2,2,2)

plot(R_array(:,1),R_array(:,2),’LineWidth’,2);

xlabel(’R’)

subplot(2,2,3)

plot(E_array(:,1),E_array(:,2),’LineWidth’,2);

xlabel(’E’)

subplot(2,2,4)

plot(P_array(:,1),P_array(:,2),’LineWidth’,2);

xlabel(’P’)

figure;

subplot(2,2,1)

plot(A_array(:,1),A_array(:,2),’LineWidth’,2);

xlabel(’A’)

subplot(2,2,2)

plot(S_array(:,1),S_array(:,2),’LineWidth’,2);

xlabel(’S’)

subplot(2,2,3)

plot(D_array(:,1),D_array(:,2),’LineWidth’,2);

xlabel(’D’)

%V module

function result_V=V_module(V,I,S,A,H,t_step)

i=0.0000001;

s=0.1;

a=1;
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h=0.99999;

k1=0;

k2=0;

k3=0;

k4=0;

k5=0;

k6=0;

k7=0;

k8=0;

k9=0;

k10=2500;

k11=0;

k12=0;

k13=0;

k14=0;

k15=0;

k16=0;

if I>=i & S>=s & A>=a & H>=h

f=@(x)(-1)*x+k1;

result_V=Euler_Method(V,f,t_step);

elseif I>=i & S>=s & A>=a & H<h

f=@(x)(-1)*x+k2;

result_V=Euler_Method(V,f,t_step);

elseif I>=i & S>=s & A<a & H>=h

f=@(x)(-1)*x+k3;
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result_V=Euler_Method(V,f,t_step);

elseif I>=i & S>=s & A<a & H<h

f=@(x)(-1)*x+k4;

result_V=Euler_Method(V,f,t_step);

elseif I>=i & S<s & A>=a & H>=h

f=@(x)(-1)*x+k5;

result_V=Euler_Method(V,f,t_step);

elseif I>=i & S<s & A>=a & H<h

f=@(x)(-1)*x+k6;

result_V=Euler_Method(V,f,t_step);

elseif I>=i & S<s & A<a & H>=h

f=@(x)(-1)*x+k7;

result_V=Euler_Method(V,f,t_step);

elseif I>=i & S<s & A<a & H<h

f=@(x)(-1)*x+k8;

result_V=Euler_Method(V,f,t_step);

elseif I<i & S>=s & A>=a & H>=h

f=@(x)(-1)*x+k9;

result_V=Euler_Method(V,f,t_step);

elseif I<i & S>=s & A>=a & H<h

f=@(x)(-1)*x+k10;

result_V=Euler_Method(V,f,t_step);

elseif I<i & S>=s & A<a & H>=h

f=@(x)(-1)*x+k11;

result_V=Euler_Method(V,f,t_step);
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elseif I<i & S>=s & A<a & H<h

f=@(x)(-1)*x+k12;

result_V=Euler_Method(V,f,t_step);

elseif I<i & S<s & A>=a & H>=h

f=@(x)(-1)*x+k13;

result_V=Euler_Method(V,f,t_step);

elseif I<i & S<s & A>=a & H<h

f=@(x)(-1)*x+k14;

result_V=Euler_Method(V,f,t_step);

elseif I<i & S<s & A<a & H>=h

f=@(x)(-1)*x+k15;

result_V=Euler_Method(V,f,t_step);

elseif I<i & S<s & A<a & H<h

f=@(x)(-1)*x+k16;

result_V=Euler_Method(V,f,t_step);

end

%H module

function result_H=H_module(H,D,R,V,F,t_step)

d=0.00001;

r=0.00001;

v=0;

f=0.00001;

k1=1;

k2=0;

k3=1;
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k4=1;

k5=1;

k6=1;

k7=1;

k8=1;

k9=1;

k10=1;

k11=1;

k12=1;

k13=1;

k14=1;

k15=1;

k16=1;

if D>=d & R>=r & V>=v & F>=f

f=@(x)(-1)*x+k1;

result_H=Euler_Method(H,f,t_step);

elseif D>=d & R>=r & V>=v & F<f

f=@(x)(-1)*x+k2;

result_H=Euler_Method(H,f,t_step);

elseif D>=d & R>=r & V<v & F>=f

f=@(x)(-1)*x+k3;

result_H=Euler_Method(H,f,t_step);

elseif D>=d & R>=r & V<v & F<f

f=@(x)(-1)*x+k4;

result_H=Euler_Method(H,f,t_step);
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elseif D>=d & R<r & V>=v & F>=f

f=@(x)(-1)*x+k5;

result_H=Euler_Method(H,f,t_step);

elseif D>=d & R<r & V>=v & F<f

f=@(x)(-1)*x+k6;

result_H=Euler_Method(H,f,t_step);

elseif D>=d & R<r & V<v & F>=f

f=@(x)(-1)*x+k7;

result_H=Euler_Method(H,f,t_step);

elseif D>=d & R<r & V<v & F<f

f=@(x)(-1)*x+k8;

result_H=Euler_Method(H,f,t_step);

elseif D<d & R>=r & V>=v & F>=f

f=@(x)(-1)*x+k9;

result_H=Euler_Method(H,f,t_step);

elseif D<d & R>=r & V>=v & F<f

f=@(x)(-1)*x+k10;

result_H=Euler_Method(H,f,t_step);

elseif D<d & R>=r & V<v & F>=f

f=@(x)(-1)*x+k11;

result_H=Euler_Method(H,f,t_step);

elseif D<d & R>=r & V<v & F<f

f=@(x)(-1)*x+k12;

result_H=Euler_Method(H,f,t_step);

elseif D<d & R<r & V>=v & F>=f
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f=@(x)(-1)*x+k13;

result_H=Euler_Method(H,f,t_step);

elseif D<d & R<r & V>=v & F<f

f=@(x)(-1)*x+k14;

result_H=Euler_Method(H,f,t_step);

elseif D<d & R<r & V<v & F>=f

f=@(x)(-1)*x+k15;

result_H=Euler_Method(H,f,t_step);

elseif D<d & R<r & V<v & F<f

f=@(x)(-1)*x+k16;

result_H=Euler_Method(H,f,t_step);

end

%I module

function result_I=I_module(I,H,V,E,t_step)

h=0.99999;

v=1;

e=1.000001;

k1=0;

k2=0;

k3=0;

k4=0;

k5=0;

k6=15;

k7=0;

k8=0;
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if H>=h & V>=v & E>=e

f=@(x)(-1)*x+k1;

result_I=Euler_Method(I,f,t_step);

elseif H>=h & V>=v & E<e

f=@(x)(-1)*x+k2;

result_I=Euler_Method(I,f,t_step);

elseif H>=h & V<v & E>=e

f=@(x)(-1)*x+k3;

result_I=Euler_Method(I,f,t_step);

elseif H>=h & V<v & E<e

f=@(x)(-1)*x+k4;

result_I=Euler_Method(I,f,t_step);

elseif H<h & V>=v & E>=e

f=@(x)(-1)*x+k5;

result_I=Euler_Method(I,f,t_step);

elseif H<h & V>=v & E<e

f=@(x)(-1)*x+k6;

result_I=Euler_Method(I,f,t_step);

elseif H<h & V<v & E>=e

f=@(x)(-1)*x+k7;

result_I=Euler_Method(I,f,t_step);

elseif H<h & V<v & E<e

f=@(x)(-1)*x+k8;

result_I=Euler_Method(I,f,t_step);

end
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%M module

function result_M=M_module(M,D,V,t_step)

d=0.2;

v=5;

k1=0.5;

k2=0.5;

k3=0;

k4=0;

if D>=d & V>=v

f=@(x)(-1)*x+k1;

result_M=Euler_Method(M,f,t_step);

elseif D>=d & V<v

f=@(x)(-1)*x+k2;

result_M=Euler_Method(M,f,t_step);

elseif D<d & V>=v

f=@(x)(-1)*x+k3;

result_M=Euler_Method(M,f,t_step);

elseif D<d & V<v

f=@(x)(-1)*x+k4;

result_M=Euler_Method(M,f,t_step);

end

%F module

function result_F=F_module(F,M,I,H,t_step)

m=0.2;

i=0.0000001;
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h=0.9999999;

k1=0;

k2=12000;

k3=000;

k4=000;

k5=0;

k6=0;

k7=0;

k8=0;

if M>=m & I>=i & H>=h

f=@(x)(-1)*x+k1;

result_F=Euler_Method(F,f,t_step);

elseif M>=m & I>=i & H<h

f=@(x)(-1)*x+k2;

result_F=Euler_Method(F,f,t_step);

elseif M>=m & I<i & H>=h

f=@(x)(-1)*x+k3;

result_F=Euler_Method(F,f,t_step);

elseif M>=m & I<i & H<h

f=@(x)(-1)*x+k4;

result_F=Euler_Method(F,f,t_step);

elseif M<m & I>=i & H>=h

f=@(x)(-1)*x+k5;

result_F=Euler_Method(F,f,t_step);

elseif M<m & I>=i & H<h
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f=@(x)(-1)*x+k6;

result_F=Euler_Method(F,f,t_step);

elseif M<m & I<i & H>=h

f=@(x)(-1)*x+k7;

result_F=Euler_Method(F,f,t_step);

elseif M<m & I<i & H<h

f=@(x)(-1)*x+k8;

result_F=Euler_Method(F,f,t_step);

end

%R module

function result_R=R_module(R,F,H,t_step)

f=10;

h=0.9999999;

k1=0;

k2=0;

k3=1;

k4=0;

if F>=f & H>=h

f=@(x)(-1)*x+k1;

result_R=Euler_Method(R,f,t_step);

elseif F>=f & H<h

f=@(x)(-1)*x+k2;

result_R=Euler_Method(R,f,t_step);

elseif F<f & H>=h

f=@(x)(-1)*x+k3;
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result_R=Euler_Method(R,f,t_step);

elseif F<f & H<h

f=@(x)(-1)*x+k4;

result_R=Euler_Method(R,f,t_step);

end

%E module

function result_E=E_module(E,M,I,t_step)

m=0.3;

i=0.00001;

k1=180;

k2=180;

k3=25;

k4=0;

if M>=m & I>=i

f=@(x)(-1)*x+k1;

result_E=Euler_Method(E,f,t_step);

elseif M>=m & I<i

f=@(x)(-1)*x+k2;

result_E=Euler_Method(E,f,t_step);

elseif M<m & I>=i

f=@(x)(-1)*x+k3;

result_E=Euler_Method(E,f,t_step);

elseif M<m & I<i

f=@(x)(-1)*x+k4;

result_E=Euler_Method(E,f,t_step);
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end

%P module

function result_P=P_module(P,M,t_step)

m1=0.000001;

m2=0.3;

k1=33000;

k2=5000;

k3=5000;

k4=000;

if M>=m1 & M>=m2

f=@(x)(-1)*x+k1;

result_P=Euler_Method(P,f,t_step);

elseif M>=m1 & M<m2

f=@(x)(-1)*x+k2;

result_P=Euler_Method(P,f,t_step);

elseif M<m1 & M>=m2

f=@(x)(-1)*x+k3;

result_P=Euler_Method(P,f,t_step)

elseif M<m1 & M<m2

f=@(x)(-1)*x+k4;

result_P=Euler_Method(P,f,t_step);

end
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%A module

function result_A=A_module(A,S,P,V,t_step)

s=0.15;

p=5000;

v=0;

k1=5000;

k2=5000;

k3=5000;

k4=5000;

k5=1;

k6=1;

k7=1;

k8=1;

if S>=s & P>=p & V>=v

f=@(x)(-1)*x+k1;

result_A=Euler_Method(A,f,t_step);

elseif S>=s & P>=p & V<v

f=@(x)(-1)*x+k2;

result_A=Euler_Method(A,f,t_step);

elseif S>=s & P<p & V>=v

f=@(x)(-1)*x+k3;

result_A=Euler_Method(A,f,t_step);

elseif S>=s & P<p & V<v

f=@(x)(-1)*x+k4;

result_A=Euler_Method(A,f,t_step);
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elseif S<s & P>=p & V>=v

f=@(x)(-1)*x+k5;

result_A=Euler_Method(A,f,t_step);

elseif S<s & P>=p & V<v

f=@(x)(-1)*x+k6;

result_A=Euler_Method(A,f,t_step);

elseif S<s & P<p & V>=v

f=@(x)(-1)*x+k7;

result_A=Euler_Method(A,f,t_step);

elseif S<s & P<p & V<v

f=@(x)(-1)*x+k8;

result_A=Euler_Method(A,f,t_step);

end

%S module

function result_S=S_module(S,P,t_step)

if P<5000

f=@(x)(-1)*x+0.1;

result_S=Euler_Method(S,f,t_step);

elseif P>=5000

f=@(x)(-1)*x+1;

result_S=Euler_Method(S,f,t_step);

end

%D module

function result_D=D_module(D,H,R,I,t_step)

h=0.99;
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r=0.9;

i=0.001;

k1=0;

k2=0.5;

k3=0;

k4=0;

k5=0.5;

k6=0;

k7=0.5;

k8=0;

if H>=h & R>=r & I >=i

f=@(x)(-1)*x+k1;

result_D=Euler_Method(D,f,t_step);

elseif H>=h & R>=r & I <i

f=@(x)(-1)*x+k2;

result_D=Euler_Method(D,f,t_step);

elseif H>=h & R<r & I >=i

f=@(x)(-1)*x+k3;

result_D=Euler_Method(D,f,t_step);

elseif H>=h & R<r & I <i

f=@(x)(-1)*x+k4;

result_D=Euler_Method(D,f,t_step);

elseif H<h & R>=r & I >=i

f=@(x)(-1)*x+k5;

result_D=Euler_Method(D,f,t_step);
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elseif H<h & R>=r & I <i

f=@(x)(-1)*x+k6;

result_D=Euler_Method(D,f,t_step);

elseif H<h & R<r & I >=i

f=@(x)(-1)*x+k7;

result_D=Euler_Method(D,f,t_step);

elseif H<h & R<r & I <i

f=@(x)(-1)*x+k8;

result_D=Euler_Method(D,f,t_step);

end
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