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ABSTRACT 

 

 

PERFORMANCE ANALYSIS  
OF  

STACKED GENERALIZATION  
 

 

 

ÖZAY, Mete 

M.S., Department of Information Systems 

Supervisor: Prof. Dr. Fatoş Y. Vural 

 

 

 

September 2008, 144 pages 

 

 

 

Stacked Generalization (SG) is an ensemble learning technique, which aims to 

increase the performance of individual classifiers by combining them under a 

hierarchical architecture. This study consists of two major parts. In the first part, the 

performance of Stacked Generalization technique is analyzed with respect to the 

performance of the individual classifiers and the content of the training data. In the 

second part, based on the findings for a new class of algorithms, called Meta-

Fuzzified Yield Value (Meta-FYV) is introduced. 

The first part introduces and verifies two hypotheses by a set of controlled 

experiments to assure the performance gain for SG. The learning mechanisms of SG 

to achieve high performance are explored and the relationship between the 

performance of the individual classifiers and that of SG is investigated. It is shown
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that if the samples in the training set are correctly classified by at least one base layer 

classifier, then, the generalization performance of the SG is increased, compared to 

the performance of the individual classifiers. In the second hypothesis, the effect of 

the spurious samples, which are not correctly labeled by any of the base layer 

classifiers, is investigated.  

In the second part of the thesis, six theorems are constructed based on the 

analysis of the feature spaces and the stacked generalization architecture. Based on 

the theorems and hypothesis, a new class of SG algorithms is proposed. 

The experiments are performed on both Corel data and synthetically generated 

data, using parallel programming techniques, on a high performance cluster. 

 

Keywords: Ensemble learning, stacked generalization, pattern recognition, 

parallel computing 



vi 
 

ÖZ 

 

 

YIĞILMIŞ GENELLEME ALGORİTMASININ PERFORMANS ANALİZİ 
 

 

 

ÖZAY, Mete 

Yüksek Lisans, Bilişim Sistemleri 

Tez Yöneticisi: Prof. Dr. Fatoş Y. Vural 

 

 

 

Eylül 2008, 144 sayfa 

 

 

 

Yığılmış Genelleme Algoritması (YG), bağımsız sınıflandırıcıları sıradüzensel 

bir mimari altında birleştirerek performanslarını arttırmayı amaçlayan bir topluluk 

öğrenme tekniğidir. Bu çalışma, iki ana bölümden oluşmaktadır. İlk bölümde, 

Yığılmış Genelleme tekniğinin performansı, bağımsız sınıflandırıcıların 

performansına ve eğitim kümesinin içeriğine göre analiz edilmiştir. İkinci Bölümde, 

Meta-Bulanık Verim Değerleri (Meta-FYV) olarak adlandırılan, yığılmış genelleme 

için yeni bir algoritma geliştirilmiştir.  

 

İlk bölümde, YG’nin performans kazancını garanti edecek iki hipotezi sunulmuş 

ve doğruluğu bir dizi kontrollü deney ile sınanmıştır. Deneysel analizlerde, bireysel 

sınıflandırıcıların performansından daha yüksek performansa ulaşmak için YG’nin 

öğrenme tekniği incelenmiş ve bağımsız sınıflandırıcılar ile YG’nin performansı 

arasındaki ilişki araştırılmıştır. Eğer, eğitim kümesindeki örnekler en az bir alt-

katman sınıflandırıcı tarafından doğru sınıflandırılırsa, YG’nin genelleştirme 

performansının bağımsız sınıflandırıcı performanslarına göre arttığı gösterilmiştir. 

İkinci olarak, herhangi bir alt katman sınıflandırıcı tarafından doğru 

sınıflandırılamayan parazit örneklerin etkisi incelenmiştir. Herhangi bir alt katman 
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sınıflandırıcı tarafından doğru sınıflandırılamayan örnekleri elemenin YG’nin genel 

performansını geliştirdiği gösterilmiştir  

İkinci bölümde, YG’deki ard arda bağlama işlemi matris cebri ve geometrik veri 

analizi ile incelenmiştir. Öznitelik uzaylarının ve mimarinin analizine dayalı altı 

teorem oluşturulmuş ve ispatlanmıştır. Son olarak, deneyler, hem Corel verikümesi 

üzerinde hem de sentetik olarak üretilen verikümesi üzerinde, yüksek başarımlı 

bilgisayar kümesinde, parallel programlama teknikleri kullanılarak 

gerçekleştirilmiştir.  

 

Anahtar Kelimeler: Toplu öğrenme, yığılmış genelleme, örüntü tanıma, paralel 

hesaplama
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CHAPTER 1 

 

 

PROLOGUE   

 
 
 

“… and the Big Blue Cloud screamed “What is the purpose of the life” 

Athena whispered through the Wise Wildflower: “Not the purpose but the process is 

meaningful”  

   

      ‘Learning is Love’   

 

      The epic of grand holy Athena, Book 1 

 
 

Starting from the Babylonians, people employ computing methodologies for 

simulating their intelligence to satisfy their natural instincts. In the struggle between 

the human beings and the nature, they recognized that they could succeed by just 

having the power over the nature. For this purpose, they, firstly, stole “the fire” from 

the “gods”, in order to take the nature under control using the power of the gods. 

They believed that the nature could only be controlled by understanding and 

implementing the laws of the gods, which creates it. At the same time, they are 

attracted by the beauty of the nature. In the dilemma of the attraction and the 

repulsion, the passion has become the love and the adoration.  

Under that love and its many folded projections, such as hate, wrangling, 

glorification and admiration, people have worked and studied rigorously in order to 

gain the information that will provide them the power. For this purpose, they started 

to model and simulate the nature, and use these models for their goals. As much 



as they gain information, they noticed that the dilemma has become more and more 

complicated and their instinct has been evolved to control the ones that provide the 

fire, which are the gods.  

After a while, the human beings recognized that the main warriors of the nature 

whom they should fight are themselves. Therefore, they started to employ the 

intelligence to combat on a new frontier which is the intelligence of the humans. For 

this purpose, the men have tried to model the intelligence and create the intelligent 

creatures, in other words, intelligent machines. From the Abacus to digital era, they 

keep inventing machines which provide monotonically increasing power for humans 

for the simulations and the controlling.  

Throughout the centuries, the intelligent machines have evolved to digital 

computers. However, the fundamental models and structure of human intelligence is 

still in its infancy. In order to analyze the human brain, the main conjuncture of the 

intelligence have been divided into several sub-problems, e.g., language processing,  

machine learning, pattern recognition, and artificial intelligence by one of the human 

instincts of the human beings in order to analyze and control the nature, which is 

divide and conquer. 

In pattern recognition, which is the focus of this thesis, one of the main problems 

is to project the objects of the nature through the computational representations, to 

the artificial spaces that are created by the humans. In other words, we transform the 

natural objects to mathematical spaces, which is more comfortable to control the 

nature under those spaces via the object representations. One of the approaches for 

the solutions of this transform is to class the objects and describes them under the 

same labels, which is called clustering and the classification.  

In the classification paradigm, since the main goal of the analyses is determining 

the class labels of the objects, the methodology of the analyses is mostly focused on 

the investigation of the feature spaces, classification rules, classifier types, etc. The 

feature spaces are used to represent objects in the abstract spaces. Therefore, the 

selection of the “best” representation method plays an important role in the class 

label determination. However, a successful methodology for the selection of the 

“best” has not been constructed and left as an intuitive task, which is the state of the 

art, and abandoned to the engineers, which perform art rather than science.  
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Another task in the determination of the object classes which requires the 

selection of the “best” model that will perform the “best” clustering or the “best” 

classification has been left as the state of the art.  

Scientists are considered to solve such a huge amount of the state of the art 

problems as “The Black Artists” so the problems are called “The black art”. 

In order to attack the black art problems, several strategies have been developed. 

One of them is employing the brute force, which is a mostly try-and-error method by 

computational power. On the other hand, that methodology has advanced in chaos 

because of the limitations of the human beings and the machines, compared to almost 

“unlimited” complexity of The Black Art problems, in other words, huge amount of 

parameters. Another problem of such a methodology is that it deals only with the 

cause and the reason arguments, without the process in between the arguments and 

the interaction, mathematically speaking, the transformation.  

Another strategy to solve the black art problems is extending the present models 

and the strategies through the multimodal architectures, such as model combination 

methods, classifier ensemble methods, multilayer models, hierarchical models, etc. 

Similar to the human instincts and behavior, as discussed above, the instincts of The 

Black Artist have been evolved, and the black art problems have been mutated in 

multimodal forms. In that case, the black art problems have become the “best” 

selection of the “best” representational model combiners, the “best” classification 

model combiners, etc.  

 Humorously, we followed our mutated instincts by the guidance of Athena and 

studied on controlling the nature by not focusing on the results, but the processes of 

the models. In other words, we analyzed the art without the concern of seeing it, like 

the others, who looked and saw the black, since they could not see the light of 

Athena that brighten the black and transform into light.   

In the present work, the black art problems of the two layer ensemble learning 

algorithm, namely, Stacked Generalization (SG), has been examined through the 

analyses of the algorithm. Theoretical analyses of SG involve the investigation of the 

feature spaces at each layer and the transformations between the layers. Accordingly, 

two hypothesis statements are proposed for the generalization performance at the SG. 

The complementary arguments stated the relations between the feature spaces and 
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the algorithm by focusing on the conditions, where the classification performance 

increases. 

In the experimental analyses, the proposed hypotheses are examined, firstly, by 

the synthetic datasets which provides an environment for controlling the parameters. 

In the first set of experiments, the relation of the feature space, which is the 

projections of the objects, with the outcomes of the algorithm, is investigated. In 

other words, the behavior of the objects of the nature is considered to be controlled 

under the artificial problem spaces. During the experiments, the validations of the 

hypotheses have been confirmed experimentally. In addition, a conceptual equation 

that defines the relation between the feature space and the performance space of the 

algorithm is constructed.  

In the second part of the experiments, the hypotheses have been tested on the real 

datasets, which include the projections of the real objects from the real world on the 

feature space, through features extracted by MPEG 7 descriptors from the Corel 

Draw Dataset. 

During these investigations, the black art problems of the SG architecture, which 

examines the relation between the feature space and the performance and between 

the classifiers and the performance, are observed. In consequence, three algorithms 

have been developed that will enlighten the darkness of the art, based on the 

hypotheses.   

In the next chapter, the available theoretical and experimental work is surveyed. 

In Chapter 3, The Stacked Generalization architecture is described. In Chapter 4, the 

suggested theoretical investigations and the hypotheses are formalized. Chapter 5 

presents the experiments in order to validate the hypothesis proposed in this thesis. In 

Chapter 6, the concatenation operation in SG is analyzed both experimentally and 

theoretically. Six complementary theorems are introduced and proved based on the 

hypotheses proposed in Chapter 4. Additionally, the investigations are applied to the 

classification problem via constructing a meta-layer classification algorithm, which 

is called Meta-Fuzzy Yield Values (Meta-FYV). Finally, in Chapter 7, the results are 

discussed. 
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CHAPTER 2 

 

 

THE SURVEY ON ENSEMBLE LEARNING 

 

 

 

“…and Gaia whispered to Big Blue Cloud through Wise Wildflower”  

  

 ‘Love yields’   

 

      The epic of grand holy Athena, Book 1 

 

 

In this chapter, the challenging problems of the computational learning theory, 

focusing on the ensemble learning paradigm is surveyed for the purpose of providing 

the background to the reader, which is necessary to grasp the problems in the 

available systems. 

2.1 The Conjuncture of Computational Learning Theory  

Computational Learning Theory is one of the most challenging research areas of 

the 21st century, since both the definition and the phenomenology of the common 

sense learning concept has not been well-understood and formalized, yet. The 

traditional models of computational learning theory are based on constructing the 

adaptive dynamic algorithms that can acquire information, explore the concepts of 

the information and generalize the conceptualization in polynomial time complexity 

by induction or deduction [1]. 
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The fundamental conjunctures of computational learning theory can be 

investigated in two major streams, namely; epistemology and computer science.

Epistemologically, the problem of learning is based on the data inquisition and 

inference inspired from human learning or other natural learners. In this paradigm, 

the tasks that perform the learning without analytical models are assumed to be the 

skill development for humans learning through inbuilt preprogrammed algorithms. 

However, it can be noticed that this approach restricts the perception of the learning 

phenomenon. Learning in human brain is known to be the generation of new 

information through joining the available information, coded in neurons. From this 

point of view, the learning process takes place in various natural media, other than 

human brain.   

One may consider many natural processes as “learning”. For example, it is not 

awkward to say that the available information of oxygen and that of hydrogen atoms 

produces the information to form water molecule. The emission of some of the 

electrons from the surface by the interaction with photons, the crossover and 

mutation of the genes in order to cause the evolution and the impregnation of the 

genes to form a new cell can be considered to produce new information during the 

processes. Therefore, the learning paradigm can be interpreted as the process of 

production.  

In this interpretation, the learning paradigm is not different from describing the 

mapping or the transformation functions, in other words, the relations between 

individual phenomenons on different spaces. Newton states that if the information on 

the spaces and the states of the beings is available, the transformation function can be 

approximately achieved. By using the available information on the three laws of the 

classical dynamics of the particles, it is acknowledged for a long time that more 

information on the particles could be gained. Following that idea, scientists have 

been studying to find the “Theory Of Everything” [2] and “Unified Field Theory” [3] 

starting from the second half of the 20th century. For that purpose, different 

representations of the objects, such as the studying with the objects in higher or 

lower dimensions, or recognizing them as the strings as in String Theory [4], [5] or 

different function descriptions such as uncertainty based interpretation like quantum 

mechanics have been introduced.  
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The interpretation contains two conjunctures, namely, information acquisition 

and its interpretation in order to produce new information. Meanwhile, Feynman [6] 

stated that the nature and, also, the computation, is not “classical”. By the 

investigations on the nature, new approaches to the solutions of the conjunctures 

have been introduced, such as quantum mechanics, quantum field theory, in other 

words relativistic quantum mechanics, quantum statistics, etc. It should be noted that 

all of the effort on the learning theory, such as feature extraction, representation and 

classifier development, the theories of the physics, such as string representation, 

wave-particle dualities, and hidden space theories and the mathematics, such as 

algebraic topology spaces, probabilistic graph theories, and non-deterministic 

nonlinear equations, are related and focused on the same problem, namely, 

information acquisition, interpretation and the generalization, for the sake of the 

production.  

From a different perspective, it can be observed that all the effort mentioned 

above is, ironically, the methodology used by most of the distributed fields of the 

science. Indeed, this conclusion is not unexpected, since the purpose of all the work 

is the one inspired by the instincts discussed in the previous chapter, which is the 

control of the nature. 

 From the computer science perspective, the problem of learning is defined as 

developing a mathematical model for the learning phenomenon. The state of the art 

is focused on the problems of complexity of the learning algorithms, their stability 

and performance. Complexity requirement of the learning algorithms states two 

constraints for the algorithms. Firstly, the algorithms should be implemented in 

polynomial time. Secondly, the tradeoff between the algorithm complexity and the 

algorithm performance should be acceptable and optimized [7]. By the development 

of parallel computing methodologies and high performance computing facilities, the 

tradeoff can be optimized [8]. However, the optimization of the NP complete 

problems is still an open research area. The generalization ability and the 

performance criteria of the algorithms are only investigated on very restricted and 

problem specific domains. Therefore, these problems are still wide open in the 

machine learning community.  
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2.2 The Conjuncture of Pattern Recognition 

In the framework of pattern recognition, where the learning machines are 

considered as recognizers or classifiers of the predefined labels, the conjunctures of 

computational learning theory are attacked by the statistical or structural analysis of 

the data to extract “useful” information in the algorithmic spaces. Let us now 

investigate the Pattern Recognition systems, the related problems and their 

generalization performances.  

2.2.1 Pattern Recognition System 

Statistical pattern recognition involves three main learning paradigms, namely; 

supervised learning, unsupervised learning, and the reinforcement learning. In 

supervised learning, the samples are trained by predefined class labels, however, in 

unsupervised learning, the predefined class labels are not provided to the classifiers, 

and in reinforcement learning, the learners are supported by feedbacks [9]. In pattern 

recognition, the algorithms are formed in two phases; training and testing. The 

training phase starts by extracting informative features from the data which is, then, 

used for the modeling of the classifier. Finally, in the testing phase, or the 

classification phase, the hypothesis spaces, which are constructed in the training 

phase, are evaluated.  

In most of the practical applications, the raw data obtained by the sensor 

measurements, is embroidered in order to extract the patterns of interest from the 

measurement environment. This very initial step, called preprocessing, removes or 

decreases the ambiguity of the methodological and ontological interpretations of the 

measurement and provides a representation. In the classical models, the assumptions 

and the lack of knowledge on the states of the observers and the observables (the 

quantitative and the qualitative significance of the operators and the peers) and the 

interactions between them (the collapse of the states), compels the interpretations to 

be constrained.    

For the sake of simplicity, we indicate all the samples in both training and test set 

by the set S. If our pattern recognition system involves total of K feature extraction 

algorithms, in the feature extraction step, the information that will be fed to the 

recognition machine is extracted from the set of N patterns 1{ , }N

i i iS s y == , by an 
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extraction model which maps the raw data to a set of informative features by a linear 

or non-linear feature extraction mapping kτ ; 

1 1{ , } { , }kN N

iki i i k i iS s y S x y
τ

= == → =   ,      (Equation 2.1) 

where 
iy  is the class label of each d-dimensional feature vector ,i kx  extracted by 

th
k feature extraction algorithm kτ ,  k=1,2,...,K∀ . The process of feature extraction 

depends on the problem domains by the no free lunch theorem [9], [10]. 

Unfortunately, there is no well-defined methodology to extract a set of features, for a 

given data. This task is mostly achieved by heuristic techniques, which may yield 

many redundant and/or irrelevant feature elements. Therefore, a post processing step, 

such as principle component analysis, and independent component analysis may be 

employed to reduce the dimension of the feature space [11]. However, the quality 

and the quantity of the information that is sacrificed causing the information 

distortion in the mapping, can not be conjectured explicitly, even by using error 

correcting codes or compression techniques.  

In the training step, the correlation and the dependency between the feature 

vectors of the samples and their class labels is modeled by the classifier, for the 

estimation of the labels corresponding to the test samples. The precise relationship is 

modeled by a classification function kf that maps each feature vector ,i kx from feature 

space to its label iy ; 

,:  i kk if x y→                  (Equation 2.2) 

 The inference of the classification function 1{ }K

k kf F= ∈ , where F is the essential 

function space, is the fundamental problem of statistical pattern recognition [12].  

The “true” classification function kf  is approximated by a hypothesis function 

1{ }K

k kh H= ∈ , where H is the hypothesis space, such that,  

, ,ˆ:  i kk i kh x y→   ,             (Equation 2.3) 

where ,ˆ
i ky  is the prediction of ,i kx  by kh , by minimizing an error function ( risk 

functional) , such as, 

2

,
1

ˆ
N

i k i

i

error y y
=

= −∑   ,            (Equation 2.4) 
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where . indicates the norm space. 

Other types of error functions are, also, available [13]. The set of classification 

functions include linear, non-linear, syntactic or stochastic models [14], [15], [11]. 

Since the main goal of the classification function is to map the feature vector to a 

class label of the pattern and their corresponding concepts, the structure of the 

problem can be characterized as the estimation of the probability density functions of 

the classes. Especially, for statistical pattern recognition problems, the density 

functions are estimated by stochastic inference techniques, such as Bayesian [13], 

Boltzmann [16], Gibbs [16] Learning, Kernel Machines and Statistical Discriminant 

Analysis.  

 In order to reduce the error, a feedback to the feature extraction algorithms can be 

formed, that will enable either the selection of the appropriate feature extractors 

(descriptor extraction algorithms) or the modification of the feature set [17]. 

 Finally, in the testing phase, the test features 'kS  are extracted from the dataset 

1{ , }N

ikk i iS x y ==  using a splitting splitf algorithm, such as cross-validation; 

'
1 , 1{ , } ' { ' , ' }

splitfN N

ikk i i k i k i iS x y S x y= == → =   ,     (Equation 2.5) 

where  'N N< , such that, 'tr

k k kS S S= ∪ , tr

kS is the training feature set. The feature 

space of the test samples is mapped to the label set, with the estimated ,( ' )i kh x  

function; 

, ,ˆ( ' ) 'i k i kh x y=   ,              (Equation 2.6) 

and the performance of the ( , ')tr

k kh S S  function trained by tr

kS  and tested by the 

feature set 'kS  is inspected by a function such as, 

 
,ˆ '

1

1
( ( , ')) ( ')

i k

N
tr

k k y k

i

Performance h S S S
N

δ
=

= ∑        (Equation 2.7) 

where 
,ˆ ' ( ')

i ky k
Sδ is the Dirac measure defined as; 

,

,

ˆ '
,

ˆ1, ' '
( ')

ˆ0, ' 'i k

i k k

y k

i k k

y S
S

y S
δ

∈
= 

∉
            (Equation 2.8) 
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2.2.2 The Curse of Dimensionality Problem 

There are many problems of the available pattern recognition systems. One of the 

major problems of the algorithms is called “the curse of dimensionality”, which 

states the exponential dependence of the number of the samples on the dimension of 

the feature vector space. In [18], Bishop states that dependence as a partitioning 

problem of the sample space by the representation in the feature space, for the 

mapping to class label space. 

 Formally, Vapnik [14] states this exponential dependence in the problem of 

approximating functions, such as the approximation to the function f by its closest 

function from the set of trigonometric polynomials of degree n� , nPoly �   with the 

parameter space of dimension Nn = d
n
 (Nn  is the number of parameters) where 

f∈Φ*, Φ* is a set of functions defined on the d-dimensional cube, [0,1]d
  and f is s 

times differentiable by the boundary 

 
( ) ( )| ( ) ( ') | | ' |s s

f x f x x x
ε− ≤ Ξ −         (Equation 2.9) 

for some integer s , 0<ε<1 , and 3 / 2πΞ <  is a universal constant, and the 

exponential dependency is; 

 ( ) /( , ) ( ) s d

n ndist f Poly Cons f N ε− +≤   ,           (Equation 2.10) 

where 
*

( , ) inf sup | ( ) *( ) |
n

n
f M x

dist f Poly f x f x
∈

= −� , that is the distance between f and 

the closest function f* from the set nPoly � , and Cons(f) is a constant of the function f. 

  Since it is a crucial task to control the number of parameters of a classifier, 

there is no explicit solution to the dimensional curse problem. However, there are 

some experimental work and approaches to the solution. Empirically, the 

dimensionality relation ratio, which is the ratio of the sample size, Ns, and the 

dimension of the feature space, d, is considered as a dimensionality metric, and 

chosen to be greater than 10 [9]. 

2.2.3 The Generalization Problem 

 Another problem in pattern recognition is the generalization ability of the 

classifiers, which is defined as the performance criteria stated by equation (2.7). 

Training the classifiers with the optimization constraint of equation (2.4), does not 

guarantee the generalization performance and may also cause a distortion of the 
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hypothesis space. There may be three reasons of this distortion. First of them is the 

overtraining of the training set, which happens because of an intensive optimization 

on the training set. The second one is the underfitting of the classifiers because of 

trying to fit a more complex function f with less complex hypothesis h. Finally, one 

is the curse of dimensionality, or the increasing degree of freedoms of the parameters 

affect the classifier performance, generating an ill-conditioned partition in the feature 

space. 

 One of the theoretical explanations to the overtraining of the classifier and the 

classifier complexity is stated by Vapnik[14], constructing a probabilistic bound for 

the classifier error and capacity. Vapnik defines the capacity of the hypothesis space 

H in terms of the number of samples that minimize the risk functional, in equation 

(2.4), which is called Vapnik-Chervonenkis (VC) dimension of H [15]. Equivalently, 

Vapnik [14] defines the VC-dimension of a set of indicator functions Q(x,α), α∈Λ, 

is the maximum number b of vectors 1,  ,  bx x… , which can be separated (shattered) 

in all 2b possible ways using functions of this set. Formally, Theodoridis et. al [11] 

defines VC dimension(Vc ) of F , which is the set of binary classifiers, as the largest 

integer b ≥1, for which S(F,b)= 2
b  and if for each sample 1{ , }N

i i ix y = , S(F,b)= 2
N , 

then the Vc approaches to infinity.  

 Vc  constructs a bound for the error probability in the classifier. For the training 

error probability, )(hP
N

e , and the essential classification error probability )( fP
N

e , 

that depends on the nature of the data independent of the training set, VC theory 

states that with a probability at least (1-p); 

)()()(
N

V
hPfP cN

e

N

e Φ+≤   ,         (Equation 2.11) 

where  

2
(ln( 1)) ln( )

4
( )

c

c c

N p
V

V V

N N

+ −

Φ =   .       (Equation 2.12) 

 One of the most important results of the VC theory is that it guarantees maximum 

generalization capability in case of finite VC dimension and increasing number 

samples, by minimizing the classification error difference between the F and H 

spaces. However, VC theory limits the learning capability with VC dimension, by 
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stating that the learning capability is limited by the VC dimension, independent of 

the probability distribution of the samples. However, in some of the real life 

applications that can be approximated successfully by the stochastic approaches, 

especially for the one that can provide a-priori information, h with small VC(H) are 

preferred over h with higher VC(H) [15]. This is one of the pitfalls of the theory. 

 In addition to the VC theory for the analysis of the generalization problem, 

another approach is training the classifiers within the combinations of the training 

set, by cross validation, or leave-one-out approaches. In that case, the classifier is 

avoided from the overtraining of the training feature space. One of the architectures 

that form a solution for the problem is Stacked Generalization [19], which will be 

discussed in the next chapter.  

 

 2.3 The Conjuncture of Classifier Combination 

  

"An oligarchy is said to be that in which the few and the wealthy and a democracy, 

that in which the many and the poor are the rulers."  

       Aristotle, Politics. 

    

“…the desires of the less reputable majority are controlled by  

the desires and wisdom of the superior minority.”   

Plato, The Republic, Book II. 

 

 

 The problems of pattern recognition, discussed in the previous sections, which 

constrains the state-of-the-art solutions, have been attacked by the researchers with 

different classical paradigms. The general approaches have been selection of the 

most appropriate feature extraction or classification functions, dimensionality 

reduction with linear kernels, using nature inspired phenomenon, such as Gibbs and 

Boltzmann learning, simulated annealing, Artificial Neural Networks and Genetic 

Algorithms [18], [13], [16]. However, after a while, they all have been entered into 

the same state-of-the-art paradox and the main concern has become the selection of 
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the best models that correspond to the solution for the specified problem domain 

[20].  

 By the development of hybrid systems, it is noticed that complementary 

classifiers could be more successful than the individuals under restricted problem 

domains and the classifier combination paradigm, has entered the scene of pattern 

recognition [20]. In the classifier ensemble, similar to the classical paradigm, several 

ad hoc methods, such as Hierarchical ARTMAP [21] and multilayer Neural 

Networks [13], inspired from human learning and vision, have been constructed.  

 There have been several theoretical studies for the ensemble learning [22], [23]. 

Most of such theoretical approaches are based on linear combination methods such 

as averaging, mixture of experts, linear perception, bagging and regressions [24], 

[25], [26]. However, none of them can provide methods for the analysis of non-linear 

methods, such as Neural Networks, fuzzy combiners, and concatenation methods 

[27], [28] [29]. Since the theoretical analyses on the nonlinear combiners are 

threatened by the lack of analytical methodologies to extract information through the 

projections of the spaces, the state of interest is mostly focused on the experimental 

studies. However, because of the increasing number of parameters causing high 

degree of freedom and the stochastic nature of the architectures, there exists no 

generalized explanation of the relatively higher performance of the SG, observed 

during the experimentation.      

 Dietterich [30] explains the success of the classifier ensembles, or ensemble 

learning algorithms in the framework of three perspectives; statistical, computational 

and representational point of views.  

 From the statistical perspective, when the size of the space H is smaller than the 

size of the sample space S, the single classifier selection approach may be threatened 

by the selection of less generalized h, since there may be degenerate solutions for the 

selection space. Dietterich states that using all of the h and averaging the outputs of h 

would reduce the risk. 

 From the computational perspective, when the selection of the best h among H 

could not be guaranteed, such as in the gradient descent case of Neural Networks, the 

actual classification function f could never be approximated. Similar to the solution 
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to the problems in pattern recognition, a weighted combination of the classifiers is 

offered.  

 In the representational problem, where the hypothesis space H may not contain a 

relatively “good” approximation h to the actual classification function f, searching 

the optimal hypothesis in H may fail. A solution can be provided by aggregating the 

functions for the expansion of the function space, which would increase the 

possibility of finding optimal h with respect to f. 

2.3.1 The Architecture of the Classifier Ensemble System 

 A classifier ensemble architecture consists of four basic levels; data level, feature 

level, classifier level and the combination level [31]. Before discussing the levels of 

the architecture, the terminological ambiguity in the literature on the classifier 

combination methods should be clarified.  

 There are two basic methodologies for ensemble learning approaches; fusion and 

selection. In the fusion approach, individual data or function spaces interact with 

each other and carry the information about the entire feature space and supposed to 

work together. On the other hand, in the selection approach, each space is considered 

by its own, as a subspace of the whole data or function space. The optimal space is, 

then, chosen by the methods such as voting. Throughout this work, the fusion 

paradigm will be considered. 

 Fusion of sensors in the ensemble classifiers is achieved by three types of 

models; complementary, competitive, and cooperative [32].  

 In the complementary models, sensors are fused in order to provide a complete 

description of data space. The complementary models are usually employed in 

surveillance application for object recognition, detection and tracking [33].   

 In the competitive models, sensors provide independent measurements of the 

same information, which is similar to the human vision system, such as capturing 

images of an object from different perspectives.  

 In the cooperative models, the data obtained from the individual sensors are 

combined by producing a data space which can not be obtained from the individual 

sensors. Meanwhile, these three models can be applied to the other levels of the 

ensemble learning architecture. 
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 In the feature level fusion, two common methodologies are the direct fusion and 

the feature space combination. The common type of feature extractors used in visual 

media processing are descriptor extractors, which provide a mapping from the 

objects to a set of features which include semantic and syntax information, which are 

called descriptors, in feature space [46] . Henceforth, in the text, we will assume that 

the feature extractors are descriptor extractors and the features are descriptors.  

The direct fusion of the feature spaces spans the features ,i kx  extracted by 

different descriptor extractors kτ  1, 2,...k K∀ = , that construct descriptors kΓ  which 

are directly fed into each individual classifier kϒ  with the corresponding hypothesis 

functions kh ,  1, 2,...k K∀ = , for K classifiers. In that schema, the number of 

descriptors and the classifiers are taken the same [34], [35]. In the combination of the 

features, the feature spaces are fused using a combination rule, such as aggregation. 

In this study, both of the approaches are implemented in the algorithms, in classifier 

and combination levels.    

 In the classification level, a subspace of H is either used with homogenous (same 

type of classifiers) or heterogeneous (different type of classifiers) set of classifiers 

from different spaces Hk. In that case, three types of classifiers, complementary, 

competitive, and cooperative, can be operated. Moreover, base classifiers may, also, 

be ensemble classifiers in an ensemble learning architecture [21]. In the meta 

classification level, the predictions of each individual classifier are combined either 

in parallel, such as stacked generalization or Neural Networks or sequential, such as 

boosting and bagging, hierarchically [36], [37], [39]. Since the main goal of the 

thesis is the investigation of the relationships between the base-layer and meta-layer 

classifiers, the detailed analysis of the Stacked Generalization architecture will be 

discussed in the next chapter.   

 In the design of the ensemble learning architecture, there are two popular 

construction methods [20]. The first method optimizes the meta classifier by fixing 

the parameters of the base classifiers and the spaces in the lower levels, which is 

called decision optimization. The second one is the coverage optimization, whose 

goal is the optimization of the base classifier parameters and the data dependent 

spaces relative to the meta classifier, in terms of performance.  
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 From the training point of view, there are three types of meta classifiers 

according to Kuncheva [31]. The first type is independent of the feature space and do 

not need retraining after the training of the base classifiers. The second one is data 

dependent, either implicitly or explicitly. Explicitly data dependent classifiers use the 

fusion functions of feature vectors. On the other hand, implicitly dependence allows 

the parameter optimization independent of the feature vectors, just before the 

prediction of the labels. The third type of the meta classifiers are the dynamic 

combiners, which can be evaluated during the training of the individual classifiers, 

such as AdaBoost and dynamic weighting [40], [41], [42], [43].   

 The main conjunctures of the pattern recognition have been switched into the 

multimodal forms for the ensemble learning paradigm. Similar problems have 

appeared for representation of the features, reducing the redundancy in the feature 

space, finding the best classifier and the problems of the selection of the best 

combination methods, at all the levels of the ensemble learning.    

 In the data fusion level, data representation has been evolved into the problem of 

the selection of the best models for the data space construction partitioning and the 

distribution among the descriptors. Data acquisition is accomplished by either the 

distributed sensors or by the same type of sensors measuring different states of the 

same object.  

 One of the major problems of data fusion is the selection of the sensor types or 

structures for data acquisition, for a specific domain. In other words, the 

measurement or metrology problem is considered as the state of the art [44]. 

However, the solutions depend on the skill of the artist. The second problem rises 

because of the gap between the meaning of the data and the corresponding low-level 

descriptor. For example, representing high level information received from LIDAR, 

camera, and the photovoltaic detector in the same data space is an extremely difficult 

task and my yield a lot of discrepancy and redundancy. This problem, also, frustrates 

the success of the data normalization techniques. 

 Data space transformations and projections keep their challenges within the 

addition of the feature level fusion conjectures, in the next level of representation. 

Since the feature fusion algorithms are at the heart of the ensemble learning 

architectures, the general approach for the analysis of the architecture is the 
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investigation of the feature space in terms of the space parameters, such as mean 

variance, covariance, and correlation coefficients, which are related to the 

performance of the ensemble. 

 The problem of designing the feature spaces, can be analyzed in two phases. In 

the first phase, the problem is to define an appropriate descriptor that will map the 

raw data space to the feature space by the minimum topological deformations. The 

relationship between the raw data space and the descriptors can be analyzed either in 

terms of topological mappings [45], statistical analysis [46], [47], [48] or the 

semantic analysis of the samples [49].  

 In the second phase of the feature space design, the selection of the subspace 

from the whole feature space is the point of interest. In all of the subspace selection 

methods, the main goal is the selection, based on the diversity that is, selecting the 

most “diverse” subspace. The idea behind the diversity construction is to achieve a 

group of classifiers that are expert on a distinct rule. In other words, the main goal is 

to obtain distinct spaces spanned by different representation of the objects, which are 

competitive, complete, and cooperative. The idea is studied and widely accepted by 

the pattern recognition community and applied to each level of the ensemble 

architecture [31], [22], [24].   

 The subspaces produced by descriptors are either selected by random or 

nonrandom methods. In the random selection methods, the randomly selected 

parameters satisfy a dissimilarity metric between the samples. For this purpose, 

methods like bagging or boosting, or stochastic selection methods, such as genetic 

algorithms or simulated annealing are used [31].  

 In the nonrandom selection methods, class label correlated relations and the 

diversity based on these relations are considered. Moreover, inversely, ensemble 

learning algorithms such as AdaBoost, Genetic Ensemble, Majority Voting and 

Stacked Generalization can be used for the feature selection [50], [51], [52].  

 At the input of the classifiers, either the same set of features are fed into different 

type of classifiers, or the selected subsets are fed into the same or different type of 

classifiers, each of which span distinct hypothesis or classifier spaces. As mentioned 

above, the feature subspace selection is also important at the present level. Error 
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analysis can also be used, to ensure that each classifier has relatively distinct errors 

on the predictions of the hypothesis, constructing the individual expertise [53], [54].    

 In various studies, the relationship between the feature spaces, the hypothesis 

spaces of intra and inter classifiers, that is the agreement of the classifiers, and the 

hypothesis spaces of the combiners are determined in terms of both generalization 

performances and topological structures. 

 In the topological analysis perspective, the methods such as, correlation 

coefficients of the classifier predictions, predicate analysis, class conditional 

probability distribution analysis, statistical stability analysis, bias-variance 

decomposition analysis, and entropy related transformation can be employed [56], 

[57], [58]. The bias-variance decompositions are mostly used in the error and the 

performance estimations of the architecture. This approach gives the ability to 

control the classifier parameters more efficiently, and to understand the relationship 

between the classifiers and the architecture. 

2.3.2 Bias-Variance and Noise in Ensemble System 

 The bias is considered as the divergence from the essential prediction by the  

classifier, whereas, the variance as the class prediction divergence of the classifier, 

independent of the essential state or the label, of the sample [31]. 

To simplify the notation let us resume the subscript of the descriptor ,i kx  and use 

x  for this section. Kohavi and Wolpert [56], [59], define the bias, variance and the 

noise respectively, as follows; 

 2

1

1
( ( | ) ( | ))

2

C

c k c

c

Bias P x P xω ω
=

= −∑   ,      (Equation 2.13) 

 2

1

1
(1 ( | ) )

2

C

k c

c

Variance P xω
=

= −∑    ,      (Equation 2.14) 

 2

1

1
(1 ( | ) )

2

C

c

c

Noise P xω
=

= −∑     ,      (Equation 2.15) 

for the fixed label cω , given x  of the distribution ( | )k cP xω  predicted by the k
th 

classifier , for C classes, ∀ c= 1,2,…..,C and K classifiers, ∀  k= 1,2,…,K .     
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 As mentioned before, the above interpretation can be used for the error analysis 

of the ensemble. By defining the probability of the error for a given x  as the 

divergence between the prediction of the classifier and the true class label of x ;  

 
1

( | ) 1 ( | ) ( | )
C

c k c

c

P error x P x P xω ω
=

= −∑  .      (Equation 2.16) 

the total error can be calculated over the entire sample space S by; 

 ( ) ( | ) ( )
S

P error P error x p x dx=∑   . 

  Using equations (Equation 2.11- Equation 2.14), the conditional error is; 

 2 21 1
( | ) 1 ( | ) ( | ) ( | ) ( | )

2 2
c c c

c k c c k cP error x P x P x P x P x
ω ω ω

ω ω ω ω= − + +∑ ∑ ∑  

              2 21 1
( | ) ( | )

2 2
c c

c k c
P x P x

ω ω

ω ω− −∑ ∑    ,  (Equation 2.17) 

 2 21 1
( | ) ( ( ( | ) ( | )) ) (1 ( | ) )

2 2
c c

c c k cP error x P x P x P x
ω ω

ω ω ω= − + −∑ ∑   

     21
(1 ( | ) )

2
c

cP x
ω

ω+ −∑       ,  (Equation 2.18) 

 Therefore, 

 ( | )P error x Bias Variance Noise= + +      .  (Equation 2.19) 

 In addition to the Wolpert’s interpretation, Domingos [60] defines the bias, 

variance and noise, respectively, as follows 

ˆ( *, *)Bias Loss ω ω=          ,  (Equation 2.20) 

where ˆ( *, *)Loss ω ω  is the loss function of the optimal class label of x ,  *ω and the 

guessed label ˆ *ω  with largest ( | )k cP xω . For zero-one decomposition;  

 
0,

ˆ( , )
1,

Loss ω ω


= 


 
ˆ* *

ˆ* *

ω ω

ω ω

=

≠
        .  (Equation 2.21) 

Similarly, variance is defined as,  

 ˆ( ( *, ( )))k kVariance E Loss h xω=        ,  (Equation 2.22) 

where kE  is the expectation on all possible instances of the classifier k, and the noise 

is; 

 ( ( ( ), *))kNoise E Loss f x ω=         .  (Equation 2.23) 
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For the zero-one loss decomposition,  

 
ˆ*

ˆ( | ) 1 ( * | )k kVariance P x P x
ω ω

ω ω
≠

≡ = −∑      ,  (Equation 2.24) 

and 

 1 ( * | )Noise P xω= −           .  (Equation 2.25) 

In that case, the error is defined by; 

 1 2( | ) varP error x c Noise Bias c iance= × + + ×    ,  (Equation 2.26) 

where c1 and c2 are constants. In zero-one error case, and for two class classification, 

and Bias =0; 

 ( | ) (1 2 )P error x Noise Variance Bias Noise= − × × + +  .  (Equation 2.27) 

For Bias =1; 

 ( | ) (2 1)P error x Noise Variance Bias Noise= × − × + −  .  (Equation 2.28) 

 It can be seen that, for biased samples, as the Variance decreases, ( | )P error x  

decreases, and vice-versa, since  ½ Noise < . However, for the biased samples, as 

the Variance increases, ( )|  P error x decreases. It is observed that, for some 

classifiers, as the variance increases, the bias decreases and vice-versa. Therefore, as 

the precision and the flexibility of the classifiers increases, like in Neural Networks, 

their bias decreases. However, changing the parameters in order to increase the 

performance may damage the sensitivity, and will increase the bias by decreasing the 

variance. So, an important conjuncture, which is called the bias-variance dilemma, 

rises.  

 For some cases, the decomposition theory fails. Domingos recognized that, 

changing the k value of k-nearest neighbor classifier either increases or decreases the 

error, for different datasets [60]. Another problem of bias-variance decomposition is 

that it provides an efficient analysis for linear ensemble structures [26], [38]. 

However, it fails for the nonlinear structures. Therefore, this kind of analysis can not 

be generalized for all the classifiers. 

In this study, we have studied the relative performance variations and the 

relationships between base-layer classifiers and the ensemble classifier. The detailed 

discussion is provided in Chapter 3.  

 At the top level of the ensemble learning architecture, which is called the Meta 

level, the studies are focused on the selection of the best combiner that will improve 
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the classification performance. There are various types of meta classifier, as much as 

classical single classifiers, and most of the combiners are the hybrid combinations of 

them. However, there have been constructed combiners inspired from human vision, 

like Hierarchical ARTMAP [21], and social committees, like voting [31], [61], [62], 

etc.  

 Input to the meta layer can be studied in three major classes; data space of labels, 

probability density functions, and possibility density functions.  

 The meta classifiers, which process on the label space, is threatened by the lack 

of confidence of the classifier predictions. This phenomenon causes problems for 

defining the certainty of the data space and the weighting of the classifiers. One of 

the approaches to this problem is to assign random weights to the classifiers, initially, 

and update the weights by training the meta classifier. However, this is still an open 

research problem. 

 Probability density functions may provide more information about the classifiers 

compared to the pure predictions. There are several meta classifiers that receive the 

probability density functions (pdf) as feature vectors and augments the data space for 

the classifier fusion[22], [63], [36], [37]. Even if probability density functions give 

detailed information on the classifier predictions and the generalization ability, there 

are challenges on their interpretation. Firstly, reliability of the probability density 

functions predicted by the classifiers may not be credible. Secondly, there should be 

a formalism that will consider the probability density functions in a different 

perspective. However, the available methods are far from explaining the reason of 

such an evaluation and the success is achieved only on domain specific datasets. 

Therefore, the approaches still remain as the state of the art, depending on the 

experience of the researchers [37].  

 Considering the possibility information of the samples, processed by the 

classifiers, seems to be a more flexible model. Compared to the probability density 

function models, the fuzzy membership values are obtained from the base classifiers, 

and the fuzzy combination rules are applied by the meta classifier [29]. The problem 

with this approach is the difficulty of constructing the fuzzy feature space 

significantly. It is not clear whether to use the fuzzified features as vectors in the 

crisp feature space, or to construct an inherently fuzzy feature space.  
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2.4 The Peroration 

 Despite of variety of different attempts to solve the pattern recognition 

conjunctures using the multimodal approximations, the conjunctures reappeared in a 

more powerful mutated form for the ensemble learning and classifier fusion 

paradigms. This was because of the lack of the stable interpretations of the 

computational learning and pattern recognition theory.  

 Most of the studies on the ensemble learning are directly focused on achieving 

“better” generalization performance by repeating the classifier design methodologies 

on the ensembles. However, in addition to the classical conjunctures of the learning 

and recognition theories, the new paradigm comes with fundamental problems. 

Skipping such problems and building new architectures based on incomplete and 

defecting conjectures, just increase the gap between interpretation of the theories and 

the architecture design, resulting in a serious paradox.  

 Despite the powerful conjectures and the postulates of the ensemble learning, or 

data fusion, some of which are discussed above, it is long far away from constructing 

stable theories.  

 In the present work, the main goal is to develop a framework which analyses the 

architecture of an ensemble learning system. To assure the improved generalization 

performance, we also attempt to provide explanations of its transformation and 

classification mechanisms. Based on the experimental and theoretical analysis of the 

architecture, three classification algorithms are developed.  

 In the next chapter, the theoretical structure, and the algorithmic variations of 

stacked generalization is discussed. In Chapter 4, the analytical and in Chapter 5 the 

experimental investigations of the fuzzy stacked generalization algorithm (fuzzy SG) 

are introduced, with a new algorithm. In Chapter 6, the concatenation operation at 

the fuzzy stacked generalization algorithm is analyzed and the analyses are 

summarized in six theorems, leading to a meta layer classification algorithm, namely, 

Meta-FYV.
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PART 1 

 

 

PERFORMANCE ANALYSIS OF STACKED 

GENERALIZATION 

 

 

 

In the first part of the thesis, we investigate the relationship between the 

performances of base layer classifiers and the general performance of Stacked 

Generalization in terms of function and data space transformations. 

In Chapter 3, Stacked Generalization architecture is introduced and in Chapter 4, 

a fuzzified variation of SG, which is called Fuzzy SG, is theoretically investigated 

and 2 Hypotheses that define the performance criteria of SG are proposed.  

In Chapter 5, the hypotheses are validated with synthetic and real datasets. In 

addition, a variation of SG for classification which modifies the spurious samples 

from the training data is proposed.  
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CHAPTER 3 
 

 

STACKED GENERALIZATION ARCHITECTURE 

 

 

 

3.1 Overview 

We have discussed some of the challenging problems of pattern recognition, 

specifically, ensemble learning algorithms in Chapter 2, focusing on the 

generalization problem. Wolpert [64] developed a stacking architecture which 

provides solutions for the overtraining, overfitting, and generalization problems, 

which is called Stacked Generalization (SG). However, SG brings new problems, 

which are called “black art” and partial solutions to the black art problems are 

discussed [36].  

In this chapter, firstly, SG is introduced with its challenging problems. In the 

second part, the various SG architectures are investigated, and finally the pitfalls of 

the available architectures are discussed. 

3.2 The Stacked Generalization Architecture 

Stacked Generalization is an ensemble learning technique, which aims to increase 

the performance of individual classifiers by combining them under a hierarchical 

architecture. Individual classifiers at the base-layer, which are called generalizers, are 

trained by cross-validation and meta-layer classifier is trained on the data which is 

not used by the individual classifiers. The meta-data may be the combination of 

different kind of attributes such as crisp predictions, membership values, cross-

entropy of the classes and probability density functions. In addition, meta-classifier is 
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tested by the samples which are not introduced at base-layer. Therefore, the training 

process of the meta-layer classifier is achieved by learning the errors of individual 

classifiers from their predictions.  

Stacked Generalization architecture implements the training process by 

partitioning the learning set into two subsets which are used for training and testing. 

SG uses cross validation techniques in order to split the learning set. On the other 

hand, cross validation techniques are usually used via the winner takes all strategy, 

which maps the function space to a function that has the highest generalization 

accuracy. Unlikely, SG uses cross validation in order to gain information on the bias 

of the individual classifier or classifiers, and use this information for reducing the 

biases on the higher layers of the architecture by meta layer generalization.  

SG may consist of one or more than one classifier. One classifier architectures 

are used in order to improve the generalization ability of the classifier [64]. Multi-

classifier architectures may consist of two or more layers. As discussed on the 

previous chapter, at the base layer, the base classifiers are trained using in-

sample/out-of-sample techniques, such as cross validation or bootstrapping. The 

trained classifiers are, then, combined at the meta classifier. Meanwhile, more than 

two layers can be used in the architecture by assigning each layer to each one of the 

nodes [64].  

As a special case of multi-classifier architectures, single classifier architectures 

are used for density estimation or increasing the generalization accuracy for the 

classifier [65]. In such kind of architectures, the single classifier is trained on both 

the base and meta layer.  

The motivation of the present work is the theoretical and the experimental 

analysis of the generalization performance of two layer architecture. We investigate 

the relationship of the performance of the individual classifiers at the base layer and 

that of the classifiers at meta-layer. The detailed discussion of the architecture will be 

provided in the next section. 

3.2.1 The Multiple Classifier Architecture 

In SG, the generalizer is defined as a mapping from the feature set of N 

samples, , 1{ , }d N

i kk i iS x y == ∈ℜ ∈ℜ  together with a query ,
d

q kx ∈ℜ , q i∀ ≠ , where d is 
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the dimension of the descriptor space, into a guess, ,ˆ
q ky ∈ℜ , q i∀ ≠ . The feature set 

kS  is split into two sets, such that, ,
tr

q kk k
S S x= ∪  for one-leave out cross validation.   

In the training process performed on the base layer, the classifiers are taught with 

tr

kS and tested with ,q kx . Wolpert [64] defines the cross validation error estimate of 

the classifiers, kϒ , with the hypothesis function set, kh H∈  consisting of K 

classifiers, with respect to 
kS   by, 

2
, ,

1

1
ˆ( ) ( ( ; ) )

N
tr

q kk q k

i

Error k h S x y
N =

= −∑  (Equation 3.1) 

where ,( ; )tr

q kkh S x  is the guesses or the predictions of the classifiers, in other words, 

the set of predictions when the classifier is trained on the training set tr

kS  and 

questioned by ,q kx . 

The output data space of the base layer may consist of the predictions of each 

classifier, kϒ  with the hypothesis function kh , on the feature set kS  ; 

,ˆ
i ky = , 1{ ( ; )}tr K

i kk kh S x =  , and the actual labels of the samples, yi ∀ i=1,2,..,N..  

Define a mapping ,
combination

p rf , which combines all the output kΩ  to generate the 

input feature vector for the next layer. The output data space of the thp  layer, which 

consists of the set of outputs, 1{ }K

k k =Ω = Ω , ∀ k , is then, transformed into the input 

data space of the thr layer, p r< , 1p∀ ≥ , 2r∀ ≥ ,using a combination mapping 

,
combination

p rf ; 

,
combination
p rf

r
SΩ →   (Equation 3.2) 

The number of layers may be greater than 2. The mapping of ,
combination

p rf  continues 

up to the top layer, which is called meta-layer. For two layer architecture, the input 

feature set at the layer with 2r =  is the meta-layer with 
metaS  defined by 2S . Base 

layer input feature set baseS is defined by 1S  at the layer with 1r = , which consists of 

descriptors. Through the chapter and the thesis, we will consider two layer 

architecture with the meta-layer at the second layer. 
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In the mapping, the predictions of the base layer classifiers are transformed as 

being the meta layer feature vectors of the meta classifier in order to form the meta 

layer training dataset with the actual labels, 1{ , }meta N

imeta i iS x y == . At the meta layer, the 

meta classifier 
metaϒ  with hypothesis function hmeta ,is trained on 

metaS , using the 

cross validation technique.  

The purpose of the meta layer training process is to teach metaϒ the biases of the 

base layer classifiers. Therefore, the meta layer input space should consist of the 

predictions that provide information on the base layer classifiers. These predictions 

can be the label estimates, probability density functions or possibility density 

functions, which are discussed on the previous chapter.  

 3.2.2 The Black Art Problems in SG 

In this subsection, we will investigate the various approaches to form the SG 

architecture.  

In the bottom-up approach, the input data space, Sbase ,of the base layer can be 

generated either by one descriptor or multiple individual descriptors, 

kΓ ,  1, 2, ,k K∀ = … (Figure 3.1). The created feature set can be fed into the same type 

of classifiers or different type of classifiers, kϒ  having the hypothesis functions kh , 

 1, 2, ,   k K∀ = … .  There are various works examining the classifier combinations 

[65]-[68].  

Among these combinatorial options, feeding each classifier with a different 

feature set provides an important property. In that case, each classifier gains the 

ability to be an expert on different aspects of the object represented by the feature 

space. This approach not only avoids the normalization problem created by the 

combinations of the features of different nature or decision of each classifier, but also 

reduces the curse of dimensionality.  

On the other hand, there is no reason for choosing one of them instead of the 

others. This is one of the challenging problems of SG and left as the state of the art. 

Therefore, it is called as black art.   
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Figure 3.1:  2 layer Stacked Generalization architecture  
     

The selection of the individual classifiers is another black art problem. Wolpert 

[64] offers to use different types of classifiers in order to gain wealthy information. 

Meanwhile, the algorithm complexity criteria should also be considered in the 

classifier selection. Another criteria on the classifier selection is selecting the 

classifiers as they could provide complementary and cooperative information on both 

the structure of the samples and their generalization accuracy. Therefore, they should 

neither compress and damage their individual predicted information by redundant 

information nor they present the same information that has already been introduced 

by the other classifiers.  
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The information generated at the output of the classifier
kϒ , which is kΩ , ∀ 

k=1,2,…,K , form the base layer output space. The selection of the type of the 

information among 'k sΩ  is another black art. This type of information may be 

selected from the meta feature classes discussed above or they may be either dataset 

related attributes such as the number of samples, correlation coefficients, statistical 

skew and kurtosis values or entropy related features, such as class entropy, attribute 

entropy, or cross entropy [66].  

One of the risks that should be considered is the increasing dimensionality while 

gathering such information. While constructing the input space for the meta layer, 

the dilemma of the dimensionality reduction and the loss of information is a 

challenging problem for the determination of the feature combination model, which 

is another black art at the base layer output space.  

Majority voting, weighted voting, cross validation, concatenation, linear 

combination and boosting are some of the combination techniques for the meta layer 

[68]. The fuzzy SG model proposed by Uysal, Akbas, and Yarman-Vural [21Error! 

Reference source not found.] reduces the base layer output space dimension by 

using fuzzy k-nearest neighbor (fuzzy k-nn) classifiers at the base layer. Moreover, 

fuzzy k-nn classifiers provide information on the membership values of each sample, 

for each classifier. The detailed theoretical analysis of the fuzzy SG will be provided 

in the next chapter. 

The combined features at the input space, metaS , are then, fed into the meta 

classifier, 
metaϒ  with the hypothesis function hmeta. Wolpert [64] recommends 

training the meta classifier on metaS , in order to teach the meta classifier the 

information on the classifier biases. However, some meta classifiers such as majority 

voting, does not need training at the meta layer. A detailed discussion of training and 

non-training strategies for the meta classifiers is provided by Kuncheva [70]. 

Surprisingly, for some cases, relatively less expensive non-training strategies may 

result in the higher classification performance by just changing the type of the meta 

classifier. This shows the sensitivity of the SG architecture to the application domain. 

Therefore, the selection of the training strategy and the meta classifier type is the 

state of the art problem at the meta layer.  
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 3.3 Discussion 

The suggested solutions to the black art problems in the literature are domain 

specific. In most of the work on ensemble learning and especially on SG, various 

classifiers are examined on several datasets, using several training strategies. 

However, most of the analyses are far from explaining the reasons of the success and 

failure of the SG architectures. 

One of the reasons of such a lack of analysis is that the common perspective on 

the community is constructing a “better” classifier, generalizer or the learner on a 

specific problem domain. Therefore, the challenging problems of the ensemble 

learning and SG seem to be as the mutated problems of the single classification 

architectures adapted to the multiple layer and multiple classifiers.  Ho [71] suggests 

that in order to avoid such an infinite recurrence and not considered to lose the sight 

of the problems, the fundamental challenging problems should be reviewed. 

In the present work, we focused on the theoretical and experimental analysis of 

the SG architecture. This analysis revealed an SG algorithm which yielded a better 

performance. As a consequence of the analyses, three algorithmic variations of SG 

are developed. The analyses and the proposed algorithms are introduced in the 

Chapter 4, 5 and 6.  
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CHAPTER 4 
 

 

FUZZY STACKED GENERALIZATION:  

ANALYSIS AND VARIATIONS 

  
 
 

“Of course it is very interesting to know how humans 
can learn. However, this is not necessarily the best way 

for creating an artificial learning machine. It has been 
noted that the study of the birds was not very useful for 

constructing the airplane.” 
 

The Nature of Statistical Learning 

Vladimir N. Vapnik 

 

 

4.1 Overview 

In the previous chapter, Stacked Generalization (SG) architecture, is introduced 

with its state of the art problems, called black art. 

In this chapter, we employ a two-level fuzzy SG [21], [72] and investigate the 

black art problems in terms of the parameters that affect the performance of SG. The 

experimentations revealed us to propose two hypotheses, which assure an 

improvement on the overall performance of SG. The first hypothesis, involves a 

sufficient condition on the performance of the individual base-layer classifiers, to 

improve the overall SG performance. The hypothesis claims that the overall 

performance of SG reaches an upper bound and gets higher than the performance of 

the individual classifiers, provided that each training data is correctly labeled by at 

least one base-layer classifier.  
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The second hypothesis deals with the effect of the training samples, which cannot 

be correctly classified by any of the base-level classifiers. It is shown that the 

elimination of the samples which are misclassified by all of the base layer classifiers, 

from the training data improves the overall performance of SG. The hypotheses are 

tested and verified on both real and artificially generated data.    

In the next section, fuzzy SG architecture and performance description problem 

is discussed. In the third section, the proposed hypotheses will be elaborated. The 

first hypothesis constructs a relationship between the performance of SG and the 

performance of individual classifiers, whereas the second one introduces an 

experimental approach to the black art problem in order to increase the classification 

performance of SG relative to the attributes of the base layer output feature space and 

the classification behavior of the base layer classifiers. The experiments, which 

examine the validity of the hypotheses will be provided in the next chapter.  

4.2 Fuzzy Stacked Generalization Architecture 

Stacked Generalization is an ensemble learning technique that combines more 

than one classifier in a hierarchical architecture. There is no restriction on the 

number of classifiers and the number of layers that will be used in the architecture. 

However, the 2-layer architectures with one classifier at the meta-layer and multiple 

classifiers at the base layer is very popular and are used for increasing the 

classification performance of the individual classifiers, at the base layer. The other 

types of architectures are used for object recognition, image retrieval, density 

estimation, etc. [72], [73] ,[74].  

A 2-layer fuzzy SG classifier receives feature vectors at the input of the base 

layer fuzzy k-nn classifiers. Then, the outputs of the individual classifiers are 

combined by concatenating all the outputs of the base-layer classifiers to feed the 

fuzzy k-nn classifier at the meta-layer. 

Base Layer Input Space 

In the bottom-up approach, the image dataset, { },iS s=  1, 2,..,i N∀ = , consisting 

of N images,  is mapped to the feature dataset kS , using th
k  descriptor, 

, 1{ } { , }k K

i ki k i kS s S x y
τ

== → = , ∀ i  ,      (Equation 4.1) 
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 where ,i kx is the i
th feature vector of the N-sample training data extracted by the 

th   k descriptor and yi is the label of the corresponding sample. The extracted features 

at each descriptor  kΓ are fed into each classifier
kϒ , directly. Therefore, the number 

of classifiers is equal to the number of descriptors.  

In the present work, MPEG 7 descriptors are implemented on Corel Draw 

dataset. The detailed information on the structures of the descriptors is introduced in 

Chapter 5.  

Base Layer Classifiers: Fuzzy k-Nearest Neighbor Classifiers  

In the base layer fuzzy k-nn classifiers, the feature data set kS , firstly, is divided 

into N parts, such that, ,
tr

i kk kS S x= ∪  ∀ i=1,2,..,N, by one-leave out cross 

validation. In the training process performed on the base layer, the classifiers are 

taught with tr

kS and tested with ,i kx . 

In the fuzzy k-nn, the membership value of the sample ,i kx  corresponding to the 

th
c class, cω ,  1, 2,..,c C∀ = , is calculated by each classifier kϒ with the hypothesis 

function  kh   as, 

2
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  ,     (Equation 4.2) 

where ,( ( ))i kjL xη   is the label of the thj -nearest neighbor of i,kx , which is ,( )i kj xη  

and , , ,( ) ( )i k i k i kj j
x x xρ η= −  is the Euclidean distance between i,kx and ,( )i kj xη , 

 1, 2,..,j κ∀ = . m is the fuzzification parameter and taken as m=2, as in [75]. 

The performance of each base layer classifier kϒ  is calculated from the 

membership vector of each i,kx   , , , , , ,1 2( ) ( ) ( ) . . . ( ) . . . ( )i k i k i k i k i kc Cx x x x xµ µ µ µ µ =     

,,ˆ max( ( ))i ki ky xµ=             (Equation 4.3) 

where ,ˆ
i ky  is the estimated label of i,kx by hk of kϒ . 

By equation (2.7), the classification performance of hk  is defined as, 
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,ˆ
1

1
( ) ( )

i k

N

k y k

i

Perf h S
N

δ
=

= ∑      .       (Equation 4.4) 

Base Layer Output Space, Concatenation and Meta Layer Input Space 

Base layer output space is spanned by the membership vectors for each i,kx that 

are calculated by each classifier kϒ .  

It should be noted that the membership vectors in equation (4.2) 

satisfies ,
1

( ) 1
N

i kc

c

xµ
=

=∑ . Incidentally, this equation aligns each sample on a line at the 

output space of the base layer classifiers satisfying the line equation. Therefore, the 

base layer classifiers can be considered as transformations which map the input 

feature space of any dimension into a point on a line in C (number of classes) 

dimensional space. This property will allow us to fix the dimension of the input 

space to the number of classes at the output space which is the input to the meta layer 

input space. 

Concatenation of all the outputs of base layer classifier will yield an input space 

to meta layer with a fixed dimension CK through the mapping from this space to the 

meta layer input space. The class membership values ,( )i kc xµ  obtained from each 

classifier kϒ  is concatenated by forming the feature vector of the meta layer 

classifier 
metaϒ  with the hypothesis function hmeta ; 

 ,1 ,1 , ,1 C 1( ) ( ) ... ( )... ( )... ( )meta

i i i K i Ki C
s x x x xµ µ µ µ µ =     ,   (Equation 4.5) 

,( ) ( )meta

i Ki C
s xµ µ =               (Equation 4.6) 

by satisfying ,
1 1

( )
K C

i kc

k c

x Kµ
= =

=∑∑ . Remarking that each classifier kϒ  is fed by each 

descriptor kΓ . Therefore, the proposed feature vector 1{ ( )}meta N

meta i i
S sµ ==  is a CK 

dimensional feature vector. 

Note that the dimension of the feature space at meta-layer is independent from 

the dimensions of the feature spaces at the base layer classifiers. Therefore, no matter 

how high is the dimension of the feature vectors at the base layer, this architecture 

fixes the dimensions at meta-layer to CK. This may be considered as a partial 
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solution to dimensional curse problem provided that CK is bounded to a value to 

assure statistical stability to avoid curse of dimensionality. 

The membership vector of the training dataset, ,( )tr

i kxµ , is constructed by the 

leave-one-out cross-validation at kϒ and is fed into the meta classifier the training 

dataset, tr

metaS  , by concatenation. Similarly, the membership vector of the test 

dataset, ,( ' )i kxµ , is constructed by teaching kϒ  with the training dataset and 

examining with the test dataset, and then, is fed as the testing dataset for the meta 

classifier, te

metaS , by concatenation. 

Meta Layer Classifier 

The meta fuzzy k-nn classifier metaϒ  proposes the classification on the feature 

vector metaS
 either by training [72] or without training. Similar to the base layer fuzzy 

k-nn, the meta-layer fuzzy k-nn calculates the memberships by the equation (4.2) and 

the performance is calculated by the equation (4.4).     

4.2.1 Some Comments on the Performance of Fuzzy Stacked 

Generalization 

The performance of the SG varies greatly depending on several parameters. 

Specifically, the type of the individual classifiers, the dimensions of feature vectors, 

the size and distribution of training set, number of classes, and the relationship 

between all of these parameters affect the performance.  

It is well known that, for real life applications, where there are too many linearly 

non-separable classes, even if we increase the dimension of the feature space to 

achieve seperability, the classification performance does not increase due to the curse 

of dimensionality problem. On the other hand, reducing the dimensionality by the 

methods such as principal component analysis, normalization, and feature selection 

algorithms causes the lack of information. Therefore, one needs to find a balance 

between the dimensionality curse and the information deficiency with the 

seperability problems, in designing the classifiers. 

 Employing distinct descriptors for each classifier enables us to split various 

coherent properties of feature space, such as color, shape, and texture, which yields a 

set of relatively low dimensional feature spaces, for the individual classifiers at the 
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base layer. It, also, allows us to control and improve the performance of the 

individual classifier, independent of the other. 

 Moreover, implementing the classifiers on their individual feature spaces allows 

us to deal with the features with consistent information, since each sample is 

considered in its individual space with its specific attributes without any deformation 

of the space that could happen because of the interactions with the other spaces. In 

addition, the dimension can be restricted in the individual spaces without loss of 

information. Moreover, individual classifiers produce complete information about 

the space and their structure, which is the information on the quantity of the 

generalization ability of the classifier on each sample. Therefore, the dilemma of 

curse of dimensionality and the information gain could be controlled, up to a point. 

As a result, this approach yields a better performance than feeding the same and most 

of the time high dimensional feature vector to all of the classifiers [75].  

At the meta-layer, concatenating the membership values of the base layer 

classifiers as input vectors, also, controls the degree of the curse of dimensionality by 

allowing the meta-classifier to do the mappings from the base layer output space to 

the meta-layer feature space with two degrees of freedom parameters such as the 

number of classes and the classifiers of the base layer space, in some manner. Even 

if,  the dimension of the vector space that are input to the base layer classifiers varies 

a great deal, in an architecture of C classes and K classifiers each of which is fed by 

K descriptors, the dimension of the meta-layer input vector is fixed by; 

dim( )metaS CK=  (Equation 4.7) 

This formula indicates that for a relatively low number of classes and classifiers, 

the size of the input vector for the meta-classifiers is reasonably small, which assures 

to avoid the curse of dimensionality problem. Concatenation of the vectors at the 

output of base layer classifiers helps us to learn different properties of the samples, 

which may result in substantial improvement in the performance. However, the 

concatenation technique increases the dimension of the feature vector by CK. If one 

deals with a problem of a high number of classes, which may also require high 

number of base layer classifiers for high performance, the dimension of the feature 

space at the meta-layer becomes large, causing again curse of dimensionality. This 

phenomenon is observed clearly for the architectures with higher number of 
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classifiers[75]. However, one may realize that addition of each class will bring the 

additional samples which represent that class in the training set. Therefore, 

increasing the number of classes will automatically increase the number of samples 

in the training data. This fact gives directions for the success of SG even for high 

number of classes. We will discuss these issues in the next chapter.  

An analysis to show the decrease in performance as the number of classes and the 

classifiers increase is provided in [75]. Since there are several parameters such as the 

types of classifiers, the number of classes, the number of descriptors, the distribution 

of the feature vectors, and the mean and variances of these distributions, there is no 

generalized model that defines the behavior of the performance for high class 

numbers.  

The available research studies on the performance analysis on SG usually 

investigate the linear architectures [24], [25]. However, the architecture used in this 

work is doubly non-linear, because of the nonlinearity of the classifiers and the 

construction of the meta-layer feature vector.  

4.3 A Discussion on the Performance of Fuzzy Stacked 
Generalization  

As mentioned in the previous sections, the performance of the SG can not be 

predicted by analyzing the parameters, such as the number of the individual 

classifiers, classes, and the training samples, because of the large number of 

parameters that affect the overall system in a highly nonlinear structure.  Especially, 

the choice of the techniques for constructing the meta-layer input space and the 

choice of the meta-classifier are extremely complicated problems. Although the 

fuzzy classification technique, used in two-layer architecture and concatenation of 

the output vectors of the individual classifier fixes the dimension of the input vector 

in the meta-layer, the increase in the class number  brings many problems, which 

results in a decrease in the performance when the number of classifiers are limited. 

However, it is highly desirable to define a framework, which ensures an increase in 

the performance of the SG, compared to the performance of the individual classifiers. 

Otherwise, using the expensive SG algorithms is nothing, but, waste of time and 

effort, with unsatisfactory results.  
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Wolpert [64], Ting and Witten [63] states that the SG architecture performs better 

when the individual classifiers can identify the different parts of the feature space. In 

such a case, the feature space of the input data of base layer classifiers are mapped to 

a well separated feature space which include the clusters of the samples.  

During our experimentations, we noticed that the generalization performance of 

the overall SG highly depends on the design of the training data. The performance of 

the individual classifiers by the cross validation, at base layer, provides important 

information about the contribution of each sample in the training data to the 

generalization performance at meta-level.  In other words, if a sample or a group of 

samples in the training data is correctly classified by at least one classifier at base 

layer, then, this group of samples contributes to improve the overall performance of 

SG. Otherwise, these samples become spurious and distort the feature space at the 

input of the meta-layer. This observation is consistent with Wolpert [64], Ting and 

Witten[63] which assures that the individual classifiers can identify the different 

parts of the feature space. Therefore, during the construction of the meta-layer input 

space which concatenates the feature spaces obtained from the individual classifiers, 

it is wise to eliminate the spurious samples, which spoils the seperability of the 

feature space. In order to assure the seperability at the input of meta-layer, we 

modified the base layer feature space to include only the samples that are correctly 

classified by at least one classifier, in cross validation.  

Mathematically, in a 2-layer fuzzy SG architecture consisting of C classes and K 

classifiers, let’s assume that the dataset ˆ
kS  consists total of N samples belonging to C 

classes, each of which is correctly classified by at least one classifier. Then, the 

number of samples which are correctly classified by the kth classifiers, 
kn , is defined 

by the set; 

, 1
ˆ { , } kn

i kk i i
S x y ==               (Equation 4.8) 

Using the equations (4.3) and (4.4), we can define a lower bound for the 

performance of the kth classifier 
kϒ  with the hypothesis function 

kh  as, 

( ) k
k

n
Perf h

N
≥    ,            (Equation 4.9) 
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for the special case that each sample is correctly classified by at least one classifier. 

In the extended case, where each sample can be classified correctly by individual 

classifiers, there would be overlapping between the correctly classified datasets 

defined by the equation (4.8), and there may be the correctly classified sample sets 

which are defined by each classifier, that is, 1 2 3
ˆ ˆ ˆ ˆ

corrS S S S= ∩ ∩ . 

For a special case that C=3, and K=3, and with the assumption that each classifier 

is correctly classified by just one classifier, the samples belonging to 
cω  is correctly 

classified just by the kth classifier and c=k. Therefore, 1
,1 1 1{ }n

i ix ω= ∈ , 2
,2 1 2{ }n

i ix ω= ∈  and 

3
,3 1 3{ }n

i ix ω= ∈ . The Venn diagram representation of the sets is indicated in (Figure 4.1) 

: 

 

Figure 4.1: Venn diagram representation of the correctly classified samples in the 
classifiers 

 

In that case, ignoring the order of the features and assuming that the dataset is 

divided into 3 parts, each of which consists of kn samples with 1 2 3N n n n= + + ; 

1
,11 2 3 ,1 1

ˆ ˆ ˆ( ) { , }n

i i i
S S S x y =− ∪ = ,  

1
1( )

n
Perf h

N
=     (Equation 4.10) 

2
,22 1 3 ,2 1

ˆ ˆ ˆ( ) { , }n

i i iS S S x y =− ∪ = ,  
2

2( )
n

Perf h
N

=     (Equation 4.11) 

3
,33 1 2 ,3 1

ˆ ˆ ˆ( ) { , }n

i i iS S S x y =− ∪ = ,  
3

3( )
n

Perf h
N

=     (Equation 4.12) 

2Ŝ  

3Ŝ  

ˆ
corr

S  
1 3
ˆ ˆ ˆ( ) corrS S S∩ −

 
2 3

ˆ ˆ ˆ( ) corrS S S∩ −  

1 2
ˆ ˆ ˆ( ) corrS S S∩ −  

1̂S  1 2 3
ˆ ˆ ˆ( )S S S− ∪  2 1 3

ˆ ˆ ˆ( )S S S− ∪
 

3 1 2
ˆ ˆ ˆ( )S S S− ∪  
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and the other subsets would be empty sets. 

Therefore, following equation (4.2), the membership vector obtained from the kth 

classifier,
kϒ , fed by th

k descriptor, 
kΓ , for the ith sample would be; 

, , , , ,1 2( ) ( ) ( ) . . . ( ) . . . ( )i k i k i k i k i kc C
x x x x xµ µ µ µ µ =       (Equation 4.13) 

If 1{ } kn

i i cy ω= = , then , ,( ) max( ( )), 1,2...,i k i kc kx x i nµ µ= ∀ = , with the normalization 

property that ,
1

( ) 1
C

i kc

c

xµ
=

=∑ . 

and the membership vectors obtained from each classifier is, respectively; 

,1 ,1 ,1 ,11 2 3( ) ( ) ( ) ( )i i i ix x x xµ µ µ µ =     ,  

,1 ,11( ) max( ( ))i ix xµ µ=     ,       (Equation 4.14) 

,2 ,2 ,2 ,21 2 3( ) ( ) ( ) ( )i i i ix x x xµ µ µ µ =    ,  

,2 ,22 ( ) max( ( ))i ix xµ µ=     ,       (Equation 4.15) 

,3 ,3 ,3 ,31 2 3( ) ( ) ( ) ( )i i i ix x x xµ µ µ µ =    ,  

,3 ,33( ) max( ( ))i ix xµ µ=     ,       (Equation 4.16) 

In the concatenation process, the concatenated membership matrix is obtained by 

equation (4.6); 

,1 ,2 ,3( ) ( ) ( ) ( )meta

i i ii
s x x xµ µ µ µ =    .       (Equation 4.17) 

In the meta-classifier, the performance is calculated based on the meta-layer 

feature matrix obtained from equation (4.17), in other words, the membership values. 

Since the performance of the meta-classifier fuzzy κ -nn metaϒ  with the hypothesis 

function metah , ( ) ,  metaPerf h is inversely proportional to the Euclid distance metric, 

which is used for the membership vector calculation in equation (4.2); 

,

1
( ) ~

( )meta

i kj

Perf h
xρ

             (Equation 4.18) 

where ,( )i kj xρ is the distance between ,i kx  and its th
j  nearest neighbor. Therefore, in 

order to maximize the performance of the meta-classifier, we should minimize the 

distance metric for the correctly classified samples, and maximize the metric for the 

misclassified samples; 
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, 1

,

min( ( )), { }
max( ( )) ~

max( ( )),

i kj i j j

meta

i kj

x y y
Perf h

x otherwise

κρ

ρ

=
 ∈



  ,     (Equation 4.19) 

For the general case, C classes and K classifiers which are fed by K descriptors, 

and each kth classifier,
kϒ , is fed by th

k descriptor, 
kΓ ,  

, , ,( ) ( ) ( ( ))i k i k i kj j
x x xρ µ η µ= −        ,   (Equation 4.20) 

1

2
, , , , ,( ) [( ( ) ( ( ))) ( ( ) ( ( )))]T

i k i k i k i k i kj j jx x x x xρ µ η µ µ η µ= − −   (Equation 4.21) 

for 1, 2,...,k K= ,  1,2,...,i N=  and j=1,2…..κ . 

The above theoretical analysis shows that, if the ith sample and the κ samples are 

from the same class, the performance would be preserved, since the class 

membership values of the samples would be closer and the metric would minimize.  

On the other hand, if the samples do not belong to the same class, the class 

membership values of the samples obtained from the classifiers should be 

exclusively different in order to maximize the metric. This fact indicates that the 

individual classifiers should be able to make diverse predictions on the samples for 

improved performance.  

Additionally, the number of the classifiers that can classify the samples 

accurately in a diverse range directly affects the distance metric. Therefore, as the 

number of the classifiers that can perform the accurate classification increase, even in 

a diverse and partial range, the performance of the general architecture increases, 

proportionally. 

 The performance increase is due to the equations (4.14-4.16), which show that 

the membership vectors obtained from each individual classifier form a line equation 

in the feature space, where the correctly classified and the misclassified samples are 

assembled on the line. In that case, the distance metric is applicable to the distances 

between the lines. Moreover, even if the membership vectors obtained from each 

classifier is linearly dependent, the concatenation process destructs the linear 

dependency, successfully.  

Following the above theoretical analysis, the first hypothesis for an increased 

performance of the overall SG could be stated as follows; 
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Hypothesis 1 (Performance of SG): In a 2-layer Homogenous Stacked 

Generalization architecture consisting of C-classes and K-classifiers, fed by K 

distinct descriptors; if a group of samples belonging to a specific class in a data set 

can be classified correctly by at least one classifier, then, the performance of the SG 

gets higher than that of the performances of the individual classifiers. The overall 

performance of SG increases as the number of samples which are correctly classified 

by at least one classifier, is increased. 

While the theoretical analysis of the performance description of the SG 

architecture is based on the fuzzy k-nn, the hypothesis could be tested by the other 

variations of the stacked generalization. Independent of the classifier and the feature 

combination structures, the hypothesis mentions a diversity criterion for the feature 

and the classifier spaces at the base layer that would increase the overall 

performance.  

In the real world problems, the diversity and completeness of the feature sets can 

not be controlled easily, and the conformity can not be obtained clearly. In that case, 

the diversity of the classification results can be controlled by force. One of the 

methodologies in order to achieve the diversity, is the spurious sample elimination. 

In complementary with Hypothesis 1, the sample elimination method is advanced in 

Hypothesis 2: 

Hypothesis 2 (Elimination of Spurious Samples): In a 2-layer Homogenous 

Stacked Generalization architecture consisting of C-classes and K-classifiers, fed by 

K distinct descriptors; in the leave-one-out cross validation if the training samples 

that can not be correctly validated by any of the base layer classifiers are eliminated 

from the meta-layer input dataset for the meta-layer classification process, then the 

overall performance of the SG in the test stage gets higher than that of the 

performance of the classification of the whole set including the samples misclassified 

by the base layer classifiers. 

One of the drawbacks of the second hypothesis is that the sample elimination 

method causes the loss of data on the samples and may cause the curse of 

dimensionality. On the other hand, sample elimination controls the decisions of the 

individual classifiers at the meta-layer and enables the diversity at the meta feature 
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set. In addition, as the number of classifiers that can classify the samples correctly 

increase the performance of the architecture increase proportionally.  

In the next chapter, the experiments that examine the validity of the hypotheses 

will be introduced.   
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CHAPTER 5 
 

 

TESTING AND VALIDATING THE PERFORMANCE 

INCREASE IN STACKED GENERALIZATION 

 

 

 

“Give a man a hammer, and every problem looks like a nail.” 

Paraphrase of comment by J. Friedman 

 

 

5.1 Overview 

For the experiments, synthetic data sets and the Corel Dataset are employed. 

Firstly, a variety of synthetic data are produced systematically, such that each 

classifier labels at least one group of data correctly.  Then, the effects of 

classification performances of the individual classifiers on the performance of SG are 

examined over different data sets. In order to reduce the number of variables that 

change the parameters discussed in the previous chapter, the data sets are produced 

by Gaussian distribution via changing the mean and covariance of the distributions. 

This enables us to overlap the classes as much as we like, so that, we can control the 

performance of each classifier, to label the samples correctly or incorrectly. 

 In the second part of the experiments, the datasets with the features extracted 

from the Corel Dataset using 8 of MPEG-7 [48] descriptors, which are color 

layout(CL), color structure(CS), edge histogram (EH), region shape (RS), Haar (H), 
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dominant color (DC), scalable color (SC), and homogenous texture (HT), are 

constructed. Then, the relations of the datasets that are constructed by the 

classification of the individual descriptor features and the SG classification 

performance are studied.  

All the experiments on the Corel Dataset are discussed in the third part. 

Experiments are implemented by Matlab, using C/C++ and MPI library, on METU 

High Performance Cluster. 

5.2 Preparation of Synthetic Datasets 

In order to study the performance of SG in a controlled experiment apparatus, d-

dimensional Gaussian data sets are generated as the representation of each class. 

While constructing the data sets,   with the mean vector, cm  and the covariance 

matrix cΣ  of class c with the class conditional density, 

( ) ( )11 1
( |  , ) exp

2(2 ) | |

T

c c cc c
d

f x m x m x m
π

− 
Σ = − − Σ −  Σ

 

 that affect the bias and variance, are systematically varied. Experiments are 

performed by changing both cm  and cΣ  to get an intuitive feeling about the behavior 

of the SG. One can easily realize that there are explosive alternatives for changing 

the parameters of the class conditional densities, in the d-dimensional vector space. 

However, it is quite intuitive that rather then the changes in the class scatter matrix, 

the amount of overlaps among the classes affect the performance of the individual 

classifiers. Therefore, during the experiments we suffice to control only the amount 

of overlaps. This task is achieved by fixing the covariance matrix
cΣ , in other words, 

within-class variance and changing the mean values of the individual classes, which 

varies the between-class variances,   BCσ .    

The data sets are displayed in 2-dimensional Euclidean space for the visualization 

of the feature vectors and for the simplicity of the calculations of controlled 

experiments. Defining iν   as the eigen-vector of Σ , and, iλ  are the eigen-values of 

the data set, we have, 

 =  i i iν λν∑  .               (Equation 5.1) 
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Therefore, the central position of the sample distribution, constructed by data sets 

in 2-dimensional space is defined by 1ν  and 2ν , and the propagation is defined by 

λ1
1/2

 and λ2
1/2. In the data sets, the covariance matrices are held fix and equal, the 

eigenvalues on both axes are equal. As a result, the data sets are generated by the 

circular Gaussian function with fixed radius. 

5.3 Validation of Hypothesis-1 on Synthetic Dataset Experiments 

In the experiments, 2 different apparatus are prepared. In the first apparatus, the 

relationship between the performance of the classifiers at the base layer and the 

performance of SG is explored. In the second apparatus, the performance of SG is 

investigated in terms of between-class-variances. 

5.3.1 Comparison of the Performances of Individual Classifiers and 

Fuzzy SG  

In this set of experiments, a variety of data sets is generated in such a way that 

each sample is correctly labeled by at least one classifier, in the base layer. The 

number of samples in each class is taken as 250, and for 12 classes, 3000 samples 

with 2-dimensional feature sets are fed to each classifier as input. The performances 

of the classifiers are observed by fixing the covariance matrices and changing the 

mean values of Gaussian class conditional density which generalizes the feature 

vectors. Therefore, the classes that are to be classified by high accuracy are 

distributed separately, from the other classes which are overlapped in some ratios.  

In order to avoid the misleading information in this gradual overlapping process, 

the classes are first generated apart from each other to assure the linear separablity, in 

the initialization step. Then, the distance among the mean values of the classes are 

gradually decreased. The ratio of decrease is selected as one tenth of between-class 

variance of each 2 classes cω and ξω .  c ξ∀ ≠ , 1,2,..,c C= , 1, 2,..,Cξ = , which is, 

,
,

1

10
c

c BCr
ξ

ξ σ= , where 
,c

BC cm m
ξ

ξσ = − . The termination condition for the 

algorithms is
,

,

0c

BC

c

ξ

ξ

σ =∑ ,  c ξ∀ ≠ . At each epoch, only one of the mean values 
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approaches to the mean value of another class, while keeping the rest of the mean 

values fixed. Defining K as the number of classifiers fed by K descriptors and C as 

the number of classes, the data generation algorithm is given below: 

 

Algorithm 5. 1: The synthetic dataset generation algorithm 
 
Initialize: Generate linearly separable data sets of classes separately 

1. for each ξ =1,2,…..,C-1 

2.        for each k=1,2,………,K 

3.          for each c=1,2,………,C 

   in the k
th

 classifier, kϒ , group C classes by moving the  dataset of 

cω over the dataset of ξω via ,cr ξ , such that the class will be 

overlapped, 
, 0c

BC

ξσ = . 

4.                end for(c) 

5.        end for(k)                                                                  

6.    split the data sets into two randomly selected parts, and construct test        

and training sets.  

7.   perform classification in SG using test and training sets. 

8.  end for(ξ ) 

                                                                                                                                                 

 
 

In the first set of the experiments, 12 classes, each consisting of 250 samples, are 

classified using 7 base layer classifiers. The feature sets are prepared with fixed and 

equal 1[  . . . ]T

k cΤ = Σ Σ , which is the covariance matrix of the classes distributed in 

kΓ , 
5 5

5 5k

 
Τ =  

 
,  , 1, 2,..,12c c∀ = , k=1,2,…, 7. In other words, 1/2

1  5λ =  and 

1/2
2  5λ = (equation 5.1).  

Meanwhile, the classes are distributed with different   BCσ and converged towards 

each other using Algorithm 5.1. The convergence metric, ,c
r ξ  , is selected as 5. The 
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matrix 12
, 1[ ]k c k cM m == , with the row vectors that contain the mean values of each class 

c at each descriptor k=1,2,…, 7 , ,c km , are as follows, 

1 2 3 4 5 6 7[ | | | | | | ]M M M M M M M M=   , 

-10 -10 -10 -10 -10 -10 -10 -10 -10 -10 10 -15 -25 -25

-10 10 -10 10 -10 10 -10 10 -25 -25 0 0 -15 10

10 -10 10 -10 10 -10 20 -10 15 -15 -10 -10 -25 -25

15 15 15 15 25 25 15 15 15 15 10 10 -15 10

15 5 -25 0 -15 5 -15 5 -15 5 15 15 5 -10

-25 0 15 5 15 5 15 5 15 5 15 5 0 0

5 15 5 15 5 15 5
M =

15 5 15 10 15 -25 25

5 -20 5 -20 5 -20 5 -15 5 -15 -15 -10 25 -25

-5 -5 -5 -5 -5 -5 -5 -5 -5 -5 15 10 25 25

5 5 5 5 5 5 5 5 5 5 0 0 25 0

-5 5 -5 5 -5 5 -5 5 -5 5 -15 10 -10 10

5 -5 5 -5 5 -5 5 -5 5 -5 25 -25 10 -10

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

With the matrix introduced above, the distribution of the classes in each 

descriptor is controlled such that the classification performances of the individual 

classifiers for a specific class are limited to around 90%.  

In Figure 5.1, the distributions of the classes at each descriptor are visualized 

from (a) to (g), from Descriptor 1 to Descriptor 7, respectively. 

 
(a) 

Figure 5.1: Distribution of the classes at, (a) Descriptor 1, (b) Descriptor 2,                                         
(c) Descriptor 3, (d) Descriptor 4, (e) Descriptor 5, (f) Descriptor 6, (g) Descriptor 7 
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(b) 

 

 
(c) 

 
             Figure 5.1 (Continued) 
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(d) 

 

 
(e) 

 
           Figure 5.1 (Continued) 
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(f) 
 

 
(g) 

 
             Figure 5.1 (Continued) 
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In this epoch, it is visualized that different classes are distributed with different 

topologies in each classifier by different overlapping and discrimination attributes. 

For examples, the ninth class is located with a higher distance relative to the other 

classes in Descriptor 7, while it is overlapped with the other classes in other 

descriptors. The classification performance of the ninth class for each distribution 

can be seen from Table 5.1. In this way, the classification behaviors of the classes are 

controlled through the topological distributions and the performance criteria in 

equation (4.19) is verified.  

 

Table 5.1: Comparison of the performances (perf %) of individual 
Classifiers ( 1ϒ , 2ϒ , 3ϒ , 4ϒ , 5ϒ , 6ϒ and 7ϒ ) with respect to the classes (C) and the 

performance of SG 
 

 1ϒ  2ϒ  3ϒ  4ϒ  5ϒ  6ϒ  7ϒ  SG 

C1 66 63.6 67.6 62.8 61.6 85.6 50.0 100 

C2 67.2 60.8 49.6 50.8 98.4 38.4 36.8 100 

C3 54.4 58.8 50.8 85.2 72.4 53.6 47.6 99.2 

C4 66.8 64.0 96.8 66.4 61.6 22.8 37.6 100 

C5 60.8 90.0 56.0 63.6 75.2 38.8 48.4 100 

C6 91.6 57.2 69.6 54.0 66.0 43.6 73.6 100 

C7 57.2 55.2 65.2 57.6 60.8 37.2 94.4 100 

C8 78.4 75.6 86.0 69.2 54.4 61.6 97.6 100 

C9 40.8 41.2 36.0 36.0 32.8 26.0 99.6 100 

C10 44.0 32.4 32.0 38.0 37.6 43.2 95.6 100 

C11 32.0 35.2 33.6 40.0 39.6 92.8 38.8 99.6 

C12 37.6 39.6 34.4 52.0 44.4 97.2 63.6 99.6 

Total 

Performance 58.0 56.1 56.5 56.3 58.7 53.4 65.3 99.9 

 
In Table 5.1, performances of individual classifiers and the performance of SG 

are given for an instance of dataset generated by the above algorithm. For that 

particular instance, note that, the performance of the individual classifiers are in 

between 26-75% for 12 classes and the overall performance of SG is 99%. Highest 

performance for each classifier indicates the class with the largest between class 

variances, which are indicated by underline. 

As mentioned above, the data sets are constructed in such a way that each sample 

is correctly recognized by at least one classifier. Although the performances of 
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individual classifiers are around 55%, the classification performance of SG is around 

100%, verifying Hypothesis 1.  
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In Figure 5.2, the distribution of the classes with the given matrix M is 

introduced.  

 

 
(a) 

Figure 5.2: Distribution of the classes at, (a) Descriptor 1, (b) Descriptor 2, (c) 
Descriptor 3, (d) Descriptor 4, (e) Descriptor 5, (f) Descriptor 6, (g) Descriptor 7 
In that epoch, the classes are distributed in a topology different from Figure 5.1. 
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(c) 

        Figure 5.2 (Continued) 
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(d) 

 
(e) 

 
        Figure 5.2 (Continued) 
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(f) 

 
(g) 

 
          Figure 5.2 (Continued) 
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In that case, different classes are distributed at higher relative distances and with 

different overlapping ratios. 

In Table 5.2, the performance results of another epoch of the experiments are 

introduced. The corresponding mean value matrix of each class at each descriptor is 

the following; 

Table 5.2: Comparison of the performances (perf %) of individual 
Classifiers ( 1ϒ , 2ϒ , 3ϒ , 4ϒ , 5ϒ , 6ϒ and 7ϒ ) ith respect to the classes (C) and the 

performance of SG 
 

 1ϒ  2ϒ  3ϒ  4ϒ  5ϒ  6ϒ  7ϒ  SG 

C1 97.2 67.6 68.4 69.6 28.0 53.6 65.6 100 

C2 96.8 63.2 63.6 41.6 67.6 44.4 30.0 100 

C3 56.4 95.2 57.2 66.8 56.8 47.2 66.4 99.6 

C4 60.8 98.0 22.8 30.8 62.0 24.4 46.0 100 

C5 56.8 24.0 96.8 27.2 44.8 38.8 50.4 100 

C6 32.8 68.4 97.6 71.2 57.2 43.6 14.0 100 

C7 54.0 65.6 74.4 96.8 52.4 36.8 24.4 99.6 

C8 77.2 43.6 29.6 98.4 48.0 65.6 27.6 99.6 

C9 45.2 34.0 35.2 35.2 98.8 24.8 29.2 100 

C10 40.0 33.6 22.4 47.6 90.4 33.6 18.0 100 

C11 49.2 28.4 38.0 28.0 38.4 100.0 26.0 100 

C12 34.8 34.4 22.4 34.4 44.4 65.2 98.8 100 

Total 

Performance 58.433 54.667 52.367 53.967 57.4 48.167 41.367 99.9 

 

In the third set of the experiments, samples are distributed in the descriptors such 

that each classifier can correctly classify at least one class with approximately 80% 

performance limit. The corresponding mean value matrix is, 
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In Figure 5.3, the distribution of the classes with the given matrix M is 

introduced.  

 

 

(a) 

 

 

(b) 

 
Figure 5. 3: Distribution of the classes at, (a) Descriptor 1, (b) Descriptor 2, (c) 
Descriptor 3, (d) Descriptor 4, (e) Descriptor 5, (f) Descriptor 6,  (g) Descriptor 7 
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(c) 

 

(d) 

 

      Figure 5.3 (Continued) 
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(e) 

 

(f) 

     Figure 5.3 (Continued) 
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(g) 

      Figure 5.3 (Continued) 

 

In Table 5.3, the performance results of the experiment are introduced. The 

corresponding mean value matrix of each class at each descriptor is the following; 

 
Table 5.3 Comparison of the performances (perf %) of individual 

Classifiers ( 1ϒ , 2ϒ , 3ϒ , 4ϒ , 5ϒ , 6ϒ and 7ϒ ) ith respect to the classes (C) and the 

performance of SG 
 

 1ϒ  2ϒ  3ϒ  4ϒ  5ϒ  6ϒ  7ϒ  SG 

C1 82.8 63.6 66.0 71.2 32.0 54.0 67.2 99.6 

C2 73.2 63.6 48.0 34.4 51.6 37.6 29.6 97.2 

C3 55.2 78.0 59.6 51.2 62.4 46.8 69.6 98.4 

C4 61.2 82.0 26.0 31.2 44.4 17.6 52.8 98.4 

C5 53.2 23.2 76.8 29.6 41.2 39.6 45.2 100 

C6 24.8 66.4 87.2 62.0 56.4 42.4 21.2 98.8 

C7 54.0 63.2 54.8 88.4 55.2 36.8 23.6 98.4 

C8 80.8 39.2 22.8 74.8 45.2 63.2 23.6 96.4 

C9 39.6 33.2 33.2 29.6 83.6 21.6 29.6 99.2 

C10 38.4 35.6 30.8 47.6 82.8 38.0 24.0 99.2 

C11 33.2 30.0 30.8 30.4 38.8 84.4 29.6 96.4 

C12 40.4 33.2 28.0 40.4 32.4 58.8 81.2 99.2 

Total 

Performance 53.1 50.9 47 49.2 52.2 45.1 41.4 98.4 
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In the fourth set of the experiments, samples are distributed in the descriptors 

such that each classifier can correctly classify at least one class with approximately 

70% performance limit. The corresponding mean value matrix is, 
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In Figure 5.4, the distribution of the classes with the given matrix M is 

introduced.  

 

 

(a) 

 

Figure 5. 4: Distribution of the classes at, (a) Descriptor 1, (b) Descriptor 2, (c) 
Descriptor 3, (d) Descriptor 4, (e) Descriptor 5, (f) Descriptor 6,  (g) Descriptor 7 
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(b) 

 

( c ) 

      Figure 5.4 (Continued) 
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(d) 

 

 

(e) 

 

      Figure 5.4 (Continued) 
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(g) 

 

      Figure 5.4 (Continued) 
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In Table 5.4, the performance results of the experiment are introduced. The 

corresponding mean value matrix of each class at each descriptor is the following; 

 
Table 5.4: Comparison of the performances (perf %) of individual 

Classifiers ( 1ϒ , 2ϒ , 3ϒ , 4ϒ , 5ϒ , 6ϒ and 7ϒ ) ith respect to the classes (C) and the 

performance of SG 

 1ϒ  2ϒ  3ϒ  4ϒ  5ϒ  6ϒ  7ϒ  SG 

C1 75 42 68 52 36 62 46 99 

C2 64 45 41 38 43 37 32 98 

C3 46 72 60 40 39 52 46 88 

C4 68 72 23 33 45 17 59 98 

C5 54 22 70 28 40 42 32 100 

C6 22 68 74 50 46 28 18 97 

C7 65 62 50 72 44 34 20 96 

C8 55 30 25 75 44 61 18 89 

C9 36 24 36 30 67 32 23 100 

C10 42 32 24 27 74 32 21 98 

C11 31 17 34 16 38 70 26 95 

C12 33 28 27 41 38 67 68 100 

Total 

Performance 49.3 42.9 44.3 41.8 46.1 44.4 34.2 96.4 

 

5.3.2 Comparison of the Between Class Variance with the 

Performance of Stacked Generalization  

In this set of experiments, the relationship among the sum of the between class 

variances of the data sets in each classifier and the performance of SG is explored. In 

the first experiment, the data set is constructed by forming 2-classes, each having 500 

samples, in 2-dimensional feature space. In Figure 5.5 -a, the axes represent the 

number of samples correctly classified by classifier 1, CS1 and the number of 

samples correctly classified by classifier 2, CS2 , respectively, and the z axis 

represents the number of samples correctly classified by SG, CSSG. In Figure 5.5-b, 

the relationship between the  total σBC in the base classifiers, ∑σBC and  the number 

of samples correctly classified by SG, CSSG is shown.  
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Figure 5.5: (a) The relationship between the number of samples correctly classified 
by base classifiers and the number of samples correctly classified by SG, (b) the 
relationship between the  total σBC in base classifiers and  the number of samples 

correctly classified by SG 
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In Figure 5.5-a, it is observed that some points are concentrated at two 

intersecting lines on top of z-axis. This is because of the fact that once a classifier 

reaches a relatively higher performance compared to the other classifier, this 

performance dominates the other classifier resulting an accumulation at the top 

edges.  

In Figure 5.5-b, the performance of SG reaches an asymptote at the point p where 

the classes are well separated. Notice that, up to the point p, different combinations 

of BCσ  ‘s that sums up to the same value ∑σBC  results in different SG performance, 

and that results in an interval of performances for a fixed ∑σBC.    

In Figure 5.6-a, similar experiments of 3-class problem consisting of 1500 

samples are displayed. In Figure 5.6-a, the relationship between the  total σBC for the 

first classifier, σBC,1 and the total  σBC for the second classifier, σBC,2  and  the 

number of samples correctly classified by SG, CSSG is shown. In Figure 5.6-b, the 

relationship between the  total σBC for the base classifiers, ∑σBC and  the number of 

samples correctly classified by SG, CSSG is shown. 

 In the experiments, a sigmoidal relationship between the performances of the 

base layer classifiers and the performance of SG is observed.  

 

 

 

Figure 5.6: (a) The relationship between the  total σBC in the first and second 
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classifier, and  the number of samples correctly classified by SG, (b) total σBC  of 3 
classes and the performance of  SG 

 

 

       Figure 5.6 (Continued) 

 

In the figures, it is observed that the same value of total σBC in the base classifiers 

have several different corresponding correctly classified values of SG, in other 

words, different topological distribution of the classes corresponding to the same 

BCσ∑  results in different classification performances.  

The sigmoid function observed from the experiments is,  

( )
(1 .exp( .C))

c

c

Performans SG
Α

=
+ Β − Σ∑

          (Equation 5.2) 

depends on parameters A, B and C. which is to be estimated from the training data.  

This function may lead to an open ended discussion about relation between the 

between-class variance of the base layer input features and the performance of the 

SG. If there is such a relationship, the mappings between the feature spaces of the 

hierarchical architecture may be estimated through equation (5.2). 
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5.4 Validation of Hypothesis-1 on Corel Data  

In this section, the validation of the Hypothesis -1 is examined with the 

experiments on the Corel Dataset classes using 7 MPEG-7 visual descriptors Color 

Structure (32 dimensional), Color Layout (12 dimensional), Edge Histogram (80 

dimensional), Region-based Shape (35 dimensional), Dominant Color (16 

dimensional), Scalable Color (64 dimensional), Homogenous Texture (62 

dimensional) [46] and Haar Coefficients (195 dimensional) [76]. In the experiments, 

4 to 8 descriptor combinations; 4 (Color Structure , Color Layout, Edge Histogram, 

Region-based Shape), 5 (Color Structure , Color Layout, Edge Histogram, Region-

based Shape, Haar) , 6 (Color Structure , Color Layout, Edge Histogram, Region-

based Shape, Haar, Dominant Color) , 7 (Color Structure , Color Layout, Edge 

Histogram, Region-based Shape, Haar, Dominant Color, Scalable Color), and 8 

(Color Structure , Color Layout, Edge Histogram, Region-based Shape, Haar, 

Dominant Color, Scalable Color, Homogenous Texture) descriptors are used.  

MPEG-7 standard is developed by Moving Picture Experts Group in order to 

describe the audio, video and visual multimedia contents by the acquisition of the 

maximum information coded in the media for a broad range of applications [77] 

,[78],[79].  

MPEG-7 descriptors are chosen to be the feature extractors on Corel Dataset 

since they generate descriptions with high variance and a well-balanced cluster 

structure [46]. Since the mean and the standard deviation of the features describe the 

location and distribution of the samples, the high variability property allows us to 

construct highly distinguished samples for the Corel samples. In addition, the 

descriptors are independent of each other by providing high between class variance 

values. Therefore, the structures of the feature spaces are consistent with the 

synthetic datasets, and provide wealthy information variability.  

The 10 classes used for the experiments are New Guinea, Beach, Rome, Bus, 

Dinosaurs, Elephant, Roses, Horses, Mountain, and Dining, each contain 100 

samples from the dataset, and 50 of the samples of each class are used for the 

training and the remaining 50 samples are used for testing. In the homogenous SG 

structure, all of the classifiers are fuzzy k-NN, with optimized k-values for each 
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iteration. In the experiments, fuzzy knn is implemented both in Matlab and C++, 

where C++ implementations classified 2% more samples than Matlab 

implementations. For C++ implementations, the fuzzified modification of 

Approximate Nearest Neighbor library is used.  

In the first group of the experiments, the samples in the training and test set 

which cannot be correctly classified by at least one classifier are labeled as 

misclassified (MCtraining ) and MCtesting ,respectively. These samples are eliminated 

from the data sets, therefore new dataset consists of the samples which are correctly 

labeled by at least one classifier at the base layer. Defining K as the number of 

classifiers fed by K descriptors, memCV,k as the membership vector obtained from the 

cross validation on the training set in the kth classifier, memtest,k as the  membership 

vector obtained from test set in the kth classifier, MCtraining,k as MC set obtained over 

the training data set in the kth classifier, MCtesting,k   as MC set obtained over the test 

data set in the kth classifier,  the algorithm is given below: 

 

Algorithm 5. 2 Misclassified training and testing data elimination algorithm 
1. for each k=1,2,…..,K 

2.  Calculate training,MC  k  

3.  Calculate testing,kMC  

4.  Calculate test ,mem k  

5.  Calculate CV,mem k  

6. end for(k) 

7. Calculate training training,k
1

MC (MC )
K

k =
= ∪  

8. Concatenate ,mem kCV ,for the meta-layer input training dataset 

9. Eliminate the samples of x from CVmem  where trainingx  MC∈  

10. Calculate testing testing,k
1

MC (MC )
K

k =
= ∪  

11. Concatenate test ,mem k for the meta-layer input test dataset 

12. Eliminate the samples of z from testmem ,where testingz  MC∈   

     13. Perform the meta–layer classification    
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The performances of the classifications using 10 classes are introduced on the 

Table 5.5. 

 

Table 5.5 Performances of 10 Class Experiments for test data 
 

10 Class 
Experiments 

Without 
MC Sample 
Elimination 

With 
MC Sample 
Elimination 

Performance 
Gain 

4 Descriptors  85.6% 86.9% 1.3% 

5 Descriptors 86.6 % 88.0% 1.4% 

6 Descriptors 85.6% 87.2% 1.6% 

7 Descriptors 85.4% 86.0% 0.6% 

8 Descriptors 85.8% 87.0% 1.2% 

 

In Table 5.6, the number of samples eliminated from each class, that is the 

number of MC samples for each class, in both training (tr) and testing (te) phases are 

given.  

 

Table 5.6: Number of MC samples from  each class, in 10 class classification 
with 4 Descriptor, 5 Descriptor, 6 Descriptor, 7 Descriptor and 8 Descriptor 

experiments, with each class of 50 samples, in both training (tr) and testing (te) 
phases 

 

Classes  4 D  5D 
 

6D 7D 8D 

 te tr te tr te tr te tr te tr 
New Guinea 3 1 2 1 2 0 1 0 1 0 

Beach 4 9 3 5 3 5 2 5 2 5 
Rome 2 1 2 1 2 1 1 0 1 0 
Bus 6 3 6 3 4 1 3 1 2 1 

Dinosaurs 5 6 3 4 3 2 1 1 1 1 
Elephant 2 2 1 2 1 2 1 2 1 2 

Roses 6 2 4 2 3 2 2 2 2 2 
Horses 2 0 2 0 1 0 1 0 1 0 

Mountain 2 4 2 4 2 4 2 4 2 3 
Dining  3 5 2 5 2 4 2 4 2 4 

Total Number of 
MC samples 

35 33 27 27 23 21 16 19 15 18 
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In the experiments, it is observed that, when the meta-layer input data space is 

constructed by eliminating MC samples from the base layer output space, the 

classification performance of SG is increased. This observation offers an approach to 

one of the black art problems of SG which is the construction of meta-layer input 

space.   

As it is expected, as the number of classifiers increase, the number of MC 

samples in the tests decreased, and the performance gain decreased. However, this is 

because of the fact that MC samples of test sets are eliminated. In the next section, 

by only eliminating the samples from the training sets, the performance gain 

increased as the number of the descriptors increased.  

5.5 Validation of Hypothesis-2 on Corel Data  

In this section, the validation of the Hypothesis -2 is examined with the 

experiments on the Corel Dataset classes. In the experiments, 4 to 8 descriptor 

combinations of the MPEG 7 descriptors are used over 10 to 20 classes, each of 

which contain 100 samples from the dataset. 50 of the samples of each class are used 

for the training and the remaining 50 samples are used for testing. In the homogenous 

SG structure, all of the classifiers are fuzzy k-NN, with optimized k-values for each 

iteration.  

In the experiments, the samples that are not correctly labeled  by any of the base 

layer classifiers are determined by cross-validation on the training and test dataset.  

These samples are considered as spurious samples and placed on misclassified (MC) 

sample sets obtained in training and testing processes, MCtraining. , and  MCtraining 

samples are extracted from training data sets.  

In this section, the elements, x ∈ MCtraining  are extracted from the meta-layer 

input data set( in other words, base layer output set)  in order to construct the data set 

in a topology that will include only the correctly classified samples. So, in some 

manner, a dataset to be the input for the meta-layer that contains the samples that are 

defined by at least one of the base layer classifiers is constructed. 

Defining K as the number of classifiers fed by K descriptors, memCV,k as the 

membership vector obtained from the cross validation on the training set in the kth 

classifier, memtest,k as the  membership vector obtained from test set in the kth 
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classifier, and MCtraining,k as MC set obtained over the training data set in the kth 

classifier, the sample elimination algorithm is given below: 

Algorithm 5. 3: Misclassified training data elimination 
1. for each k=1,2,…..,K 

2.  Calculate training,MC  k  

3.  Calculate test ,mem k  

4.  Calculate CV,mem k  

5. end for(k) 

6. Calculate training training,k
1

MC (MC )
K

k =
= ∪  

7. Concatenate ,mem kCV ,for the meta-layer input training dataset 

8. Eliminate the samples of x  from CVmem  where trainingx  MC∈  

      9. Perform the meta–layer classification 

  
  

After extracting the samples x , from the dataset, the features of the remaining 

samples obtained from different classifiers are concatenated and fed into the meta-

layer classifier. In Table 5.7, the experiments implemented on four descriptors; color 

layout, color structure, edge histogram and region shape with 10 classes of 100 

samples; New Guinea, Beach, Rome, Bus, Dinosaurs, Elephant, Roses, Horses, 

Mountain, and Dining are introduced. The performances are introduced for Cross 

Validation on training set and for the test set. The total number of the elements of the 

dataset is 1000, with 500 samples for training, and 500 samples for testing.  

 

Table 5.7: 10-classes, 4 Descriptors Experiment 
 

 
Training 

Performance 
Test 

Performance 
Color Layout 67.2% 67.8% 
Color Structure 80.4% 80.6% 
Edge Histogram 59.8% 57.4% 
Region Shape 38.6% 35.8% 

Number of misclassified  Samples 
33 (6.6 % of the 

dataset) 
35 (7 % of the 

dataset) 
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In the experiment, after removed 33 samples from the dataset, 467 samples are 

fed into the meta-layer classifier. After the classification process, 86.9% performance 

is obtained with approximately 1.3% performance gain, since SG obtained 85.6% 

performance without extracting the samples. 

 
Table 5.8: Performances of 10-class classification with 8 Descriptors Experiment 

 

 Training 
Performance 

Testing 
Performance 

Color Layout 67.2% 67.8% 
Color Structure 80.4% 80.6% 
Edge Histogram 59.8% 57.4% 

Region Shape 38.6% 35.8% 
Haar 61.0% 62.8% 

Dominant Color 53.8% 51.0% 
Scalable Color 76.6% 77.2% 

Homogenous Texture 46.8% 48.6% 
Number of MC 

Samples 
18 (3.6 % of the 

dataset) 
15 (3 % of the 

dataset) 
 

In this experiment introduced by Table 5.8, 8 descriptors are used for the level-0 

classifiers. Since the number of the descriptors is increased, the number of MC 

samples is decreased. In the experiment, 18 are removed from the training data set. 

The test dataset is classified with a performance of 87.4% by approximately 1.6% 

performance gain compared to the performance of the original data set 85.8%. 

Figure 5.7 shows a  sample image that cannot be classified by the 4D, 5D, 6D, 

and 7D classification experiments of 10 classes. As can be seen clearly, the sample 

includes different attributes, such as man, sea, and mountain that are meaningful for 

different descriptors. This causes the distribution of the points of the feature vector 

extracted from the picture take place in an entangled state with other feature vectors 

resulting with de-coherence of the classes. 
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Figure 5.7: A sample image form mountain class that the first 7 descriptors can not 
define 

 

In the experiment presented by Table 5.9, 5 classes, Autumn, Bhutan, California 

Sea, Canada Sea, and Canada West classes are added to the data set. Therefore, the 

total number of the samples became 1500, with 750 for training and 750 for testing. 

In the experiment, 8 descriptors are used and 96(12% of the dataset) samples are 

removed from the dataset. After the samples are extracted, 67.7% performance is 

obtained with 3.2% improvement compared to the case where no sample removal 

which is 64.5%.  

 
Table 5.9: Number of samples eliminated from the training data in 15 class 
classification with , 8 descriptors experiment, with each class of 50 samples 

 

Performance Training Performance 
Test 

Performance 
Color Layout 49.47% 46.67% 

Color Structure 61.3% 61.20% 
Edge Histogram 42.27% 40.00% 
Region Shape 25.20% 22.93% 

Haar 46.13% 46.13% 
Dominant Color 36.93% 35.07% 
Scalable Color 58.00% 61.07% 

Homogenous Texture 33.87% 35.60% 

Number of MC Samples 
96 (12.8 % of the training 

dataset) 
100 (13.3 % of the 
training dataset) 

 

In Table 5.10, the performances of the 10 class classification experiments by 

eliminating the MC samples, and without eliminating the MC samples, and the 

corresponding performance gains are provided.  
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Table 5.10: Performances of 10-Class Experiments 

 

10-Class Experiments 
Without 

MC Sample 
Elimination 

With MC 
Sample 

Elimination 

Performance 
Gain 

4 Descriptors 85.6% 86.2% 0.6% 
5 Descriptors 86.8 % 87.6% 1.8% 
6 Descriptors 85.6% 86.4% 0.8% 
7 Descriptors 85.8% 86.2% 0.4% 
8 Descriptors 86.4% 87.4.% 1.0% 

 

 In the Table 5.11, the number of elements eliminated is given per classes in 5 

Descriptors and 8 Descriptors with 15 class classification experiments. 

 
Table 5.11: Number of samples eliminated from each class, in      15-class 

experiments, with each class of 50 samples 
 

Classes 5 Descriptors 
Experiment 

8 Descriptors 
Experiment 

 Test Training Test Training 
New Guinea 19 17 14 13 

Beach 26 15 17 12 
Rome 3 1 2 0 
Bus 4 8 3 7 

Dinosaurs 2 2 1 2 
Elephant 9 8 5 3 

Roses 15 18 12 16 
Horses 22 29 16 19 

Mountain 17 13 9 9 
Dining 8 6 2 3 

Autumn 1 4 1 2 
Bhutan 8 4 4 2 

California Sea 2 0 1 0 
Canada Sea 3 8 2 4 

Canada West 12 7 10 4 
Total Number of MC Samples 151 139 100 96 

 

In Table 5.12, the performances of the 15 class experiments by eliminating the 

MC samples, and without eliminating the MC samples, and the corresponding 

performance gains are provided. 
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Table 5.12: Performances of 15-Class Experiments 
 

15-Class Experiments 
Without MC 

Sample 
Elimination 

With MC 
Sample 

Elimination 

Performance 
Gain 

5 Descriptors 65.3% 66.4% 1.1% 
6 Descriptors 62.3 % 62.3% 0.0% 
7 Descriptors 62.8% 64.0% 1.2% 
8 Descriptors 64.5% 67.7% 3.2% 

 

Consequently, since the extra classes reduce the performances of the individual 

classifiers, the total number of MC samples is increased. As can be seen from the 

Table 5.11, the added 5 classes intended to disarrange the feature space by damaging 

the space of the classes New Guinea, Beach, Roses, Horses, and Mountain. 

In the next group of experiments, 5 more classes; China, Croatia, Death Valley, 

dogs and England are added to the present classes. In Table 5.13, the performances 

of the 20 class experiments by eliminating the MC samples, and without eliminating 

the MC samples, and the corresponding performance gains are provided.  

 
Table 5.13: Performances of 20-Class Experiments 

 

20-Class Experiments 
Without MC 

Sample 
Elimination 

With MC 
Sample 

Elimination 

Performance 
Gain 

4 Descriptors 52.4% 54.0% 1.6% 
5 Descriptors 50.7% 52.3% 1.6% 
6 Descriptors 49.9 % 51.8.% 1.9% 
7 Descriptors 50.9% 53.0% 2.1% 
8 Descriptors 52.9% 56.2% 3.3% 

 

In the experiments, it is observed that as the number of descriptors increase, the 

number of MC samples decrease and the data set is less spoiled. In 10 class, 15 class 

and 20 class experiments, the most successful experiments are implemented by the 

least and the most number of descriptors, such as, using 4 descriptors and 8 

descriptors. However, as the number of descriptors increased, the performance gain 

increased, since the number of MC samples decreased by the increasing number of 

descriptors. However, the structure of the classes and the impact of descriptors on the 

classes affect the results.  
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PART 2 

 

 

A NEW THEORETICAL FRAMEWORK FOR ENSEMBLE 

LEARNING WITH FUSION  

 

 

 

In the second part of the thesis, a theoretical analysis of Stacked Generalization 

architecture is conducted. For this purpose, six theorems are proposed and proved by 

following the hypotheses of the first part and examining the feature space 

transformations.  

Firstly, the meta-layer input space is theoretically analyzed, where the doubly 

non-linear architecture of Fuzzy SG is transformed into a linear architecture. Based 

on the investigations, Theorem 1, which promises the existence of the solution to the 

linear equation obtained at the meta-layer data space is proposed and proved. The 

rate of increase in the classification performance of SG is formalized by Theorem 2. 

Secondly, transformations of the feature space from the base-layer descriptors to 

the output space of the classifiers for the meta-layer input space is geometrically 

investigated. Then, by investigating the linear separability conditions of meta-layer 

feature space, Theorem 3, which states the conditions for the linear separability is 

proposed.  

Thirdly, from the analyses of the meta-layer feature space and the relationships of 

the error functions of the base-layer classifiers and the meta-classifier, Theorem 4, 

which states the relationship of the meta-layer feature space and the performance of 

the classifiers is proposed and proved. Then, the error of the SG is formalized by 

functional analysis in Theorem5, which states the conditions for the performance 

increase of SG. Through the investigations of the relationship between the base-layer 
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feature space and the hypothesis function spaces of the classifiers, Theorem 6, which 

states the performance bound for SG, in terms of the relationships, is constructed. 
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CHAPTER 6 
 

 

A NEW THEORETICAL FRAMEWORK FOR ENSEMBLE 

LEARNING WITH FUSION AND META-FUZZIFIED YIELD 

VALUE 

 

 

 

6.1 Introduction 

In most of the pattern recognition problems, feature space is formed by 

concatenating more than one descriptor to provide the necessary and sufficient 

information for representing the object classes. This commonly used technique, 

employed for feature space fusion, brings extra power to solve the problems in 

application domains such as face [80], [81], and speech recognition [82], [83] and 

biometric authentication [84]. In stacked generalization, feature spaces at any layer 

can be formed by concatenation of descriptors in various forms, as explained in the 

previous chapter. 

The motivation for the concatenation of the feature spaces is to combine non-

homogenous feature sets, to form a better feature space [85]. On the other hand, the 

concatenation process should be considered carefully. Ross and Govindarajan [86] 

state the major problems of the feature space concatenation as the incompatibility of 

the feature sets of multiple modalities (e.g., the attributes of fingerprints and eigen-
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faces), the unknown relationships between features spaces, the curse of 

dimensionality problem of the concatenated feature vector, and the convenient 

selection of the classifier for the concatenated feature space. However, feature 

selection, normalization and dimensionality reduction techniques, such as the kernel 

machine methods, can be used for the solutions to the feature space fusion problems 

[87].  

Ironically, even though the concatenation methods are successfully applied to the 

pattern recognition problems, the structure of the concatenation transformation and 

the argument of its success could not be analyzed and explained clearly. Therefore, 

the concatenation operation is applied intuitively as a tool from the “black box” of 

the “Black Artist”. In the present chapter, the structure of the concatenated feature 

spaces and the mappings between the spaces are theoretically and experimentally 

investigated in order to clarify the concatenation process which is the black box of 

feature level fusion.   

In the next section, the concatenation transformations of the generic feature 

vectors are theoretically discussed. In the third section, the concatenation of the 

meta-layer features on the fuzzy SG architecture is investigated. In the fourth section, 

a new stacked generalization algorithm, called meta-fuzzified yield value (Meta-

FYV), is introduced.  

6.2 The Analysis of Concatenation Operator 

Concatenation is a commonly used operator in computer science by different 

fields, such as logic theory, automata theory [88], pattern recognition[89] and coding 

theory [90] for different purposes like constructing logical connectives, reducing 

transmission channel error and feature space construction. In the present work, we 

focus on the application of the concatenation operator for the fusion of feature 

spaces. 

 In pattern recognition, the feature vector is defined as an n-dimensional vector 

that represents the attributes of the patterns or objects. By definition [91], any feature 

vector n
x ∈ℜ can be expressed as ; 
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1 21 2 ... nnx a e a e a e= + + +               (Equation 6.1) 

where, { }
1

n

i i
e

=
form the standard basis of nℜ and { }

1

n

i i
a

=
 is the set of coordinates of x .  

In most general case, let us consider the concatenation of two matrixes mxn
U ∈ℜ  

and mxp
V ∈ℜ consisting of feature vectors, 1

1{ }n mx

i iu = ∈ℜ , 

1 2[   . . .  ]nU u u u=  and 1
1{ }p mx

j jv = ∈ℜ , 1 2[   . . .  ]pV v v v=  with n and 

p dimensions, defined by two different basis, { }
1

n

i i
φ

=
 and { }

1

p

i i
ϕ

=
; 

1 21 2
...

n n
U α φ α φ α φ= + + +      ,      (Equation 6.2) 

1 21 2
... p p

V β ϕ β ϕ β ϕ= + + +      .      (Equation 6.3) 

The concatenation operation is another feature matrix obtained by appending the 

entries of U  and V , yielding n+p dimensional matrix. The basic motivation for the 

concatenation is to combine the feature spaces of the patterns for a high level 

information about the patterns.  

Mathematically, the matrix concatenation, ( , ) Con U V can be defined as, 

( , )

T
T

T

U
Con U V

V

 
Ψ = =  

  
       ,         (Equation 6.4)  

1 2 1 21 2 1 2
[ ...  ... ]n pn p
α φ α φ α φ β ϕ β ϕ β ϕΨ = + + + + + +     (Equation 6.5)  

where the concatenation of the basis is, 

1 2 1 2
[   ...    ... ]

n p
φ φ φ ϕ ϕ ϕΦ =           (Equation 6.6) 

The concatenated matrix Ψ  is m by n+p dimensional feature matrix.  

One of the challenging problems of the concatenation of feature matrix is the 

normalization of the features during the concatenation. Since different vectors 

contain different magnitudes of the attributes, a feature space may dominate the 

others, which may cause serious problems for the algorithms based on the distance 

metrics. Another problem with the concatenation is the dilemma of the curse of 

dimensionality versus dimensionality reduction, which causes the loss of information 

as discussed in Chapter 3.     
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Definition 1 (Vectorization): Let ( ) pxq

ijψΨ = ∈ℜ  be a pxq matrix and 

,1 ,2 ,(   . . . )T

i i i i p
ψ ψ ψ ψ=  is the th

i  column of Ψ , then 

1 2( ) (   . . . )T T T T

qVec ψ ψ ψΨ =  is a pq dimensional vector. 

In [92], Zhang utilizes the matrix concatenation operation for the solution of a set 

of matrix equations. According to the theorem proposed by Zhang [92], for a given 

matrix mxnΨ ∈ℜ , and t nxmΨ ∈ℜ which is the pseudo-inverse of Ψ ,and uxl
Y ∈ℜ , the 

matrix equation  

t
X YΨ Ψ =                        (Equation 6.7) 

has a common  solution if and only if Y spans ( )t TΨ ⊗ Ψ .  

One of the sufficient conditions for the solution is that Y = Φ , in other words, the 

matrix product is the basis space of the concatenated matrix. One of the most 

important consequences of the theorem for the pattern recognition is that it states the 

solution conditions for the regression equations. This theorem can be applied for the 

regression analysis. In the next section, the theorem will be applied to the meta-layer 

feature space in the regression analysis for the fuzzy SG architecture. 

6.3 The Analysis of Concatenation Operator at Meta Layer in Fuzzy 

Stacked Generalization 

In this section, the effect of concatenation operation at the output of base-layer 

classifiers in fuzzy SG will be investigated by matrix algebra, geometric data 

analysis and functional analysis. In Section 6.3.1, the theorem, proposed by Zhang 

will be applied to the fuzzy SG architecture. In Section 6.3.2, the geometric 

interpretation of the concatenation in membership vectors, at the output of base layer 

classifiers will be analyzed. In Section 6.3.3, the concatenation operation will be 

investigated in terms of the error function of the classification operation at the meta-

layer, in complement with Hypothesis 1, which is introduced in Chapter 4.  

6.3.1 The Matrix Analysis of Meta-layer Concatenation  

The solution of the linear equations of the concatenated matrices, which is 

introduced in Section 6.2, can be applied for the analysis of the matrices proposed by 

concatenated membership vectors. 
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Definition 2: Let, NxCKΜ ∈ℜ  be N by CK dimensional membership matrix, 

where ,1 ,( ) ( ) ... ( )i i ki
s x xµ µ Μ =   , such that, , , ,1( )= ( ) . . . ( )i k i k i kC

x x xµ µ µ   , 

1
,( ) xC

i kxµ ∈ℜ are the class membership vectors of C classes obtained from 

th
k classifier kϒ , 1,2,...,k K=  which is fed by th

k descriptor, kΓ , 1, 2,...,k K= , 

 1, 2,...,i N∀ =   samples. 

Definition 3: N xC
Y ∈ ℜ is N by C dimensional class label matrix, where 

[ ]1( ) ( ) . . ( ) . Y ( )
i i c i C i

Y s Y s Y s s=  , such that, for ( )c iY s ∈ ℜ  , 1, 2,...,c C= , and for 

each sample { }
1

N

i i
s

=
, such that ,while 

is  belongs to the th
c class 

cω , 

1,   
( )

0,  
i c

c i

if s
Y s

otherwise

ω∈ 
=  
 

 and [ ( )]j iY Y s= ,  ,i j∀ .  

Theorem 1 (Existence Theorem): Given membership matrix Μ  and label 

matrix Y, there exists the solution matrix X for the regression equation, 

X YΜ =  

Proof: 

Let us define a feature vector mxnΨ ∈ℜ , its pseudo-inverse t nxmΨ ∈ℜ  and the 

matrix uxl
Y ∈ℜ . According to Zhang [92], the linear equation tX YΨ Ψ = would have 

solution if and only if ( ( )) ( ( ( )  ))t T

i i iCon Vec Y R Con∈ Ψ ⊗ Ψ .  

Recall that our aim is to investigate the solution of X YΜ =  equation. For this 

purpose, let ( ( )  )t T

i iConΜ = Ψ ⊗ Ψ , ( ( ))iY Con Vec Y=  and ( ( ))iX Con Vec X= , 

respectively. Then, 

( ) (( ) ) ( )t t T

i i i i i iVec X Vec XΨ Ψ = Ψ ⊗ Ψ    ,    (Equation 6.8) 

(( ) ) ( ) ( )t T

i i i iVec X Vec YΨ ⊗ Ψ =      ,        (Equation 6.9) 

 X YΜ =            .    (Equation 6.10) 

Since, the class label matrix ,1 ,2 ,{ ( ), ( ),..., ( )}i i i kY Span x x xµ µ µ∈ , there exists a 

solution matrix X to the linear matrix equation, 

 X YΜ =                   (Equation 6.11) 
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Lemma 1: 

Given membership matrix NxCKΜ ∈ℜ , where ,1 ,( ) ( ) ... ( )i i ki
s x xµ µ Μ =    and 

, ,( ) max( ( ))i k i kh x xµ=  with class label matrix NxC
Y ∈ℜ . According to the theorem 

proposed by Zhang [92], the general solution of the matrix equation X YΜ =  is, 

, ( )t t

m n mn
X Invec Y I z = Μ + − Μ Μ    ,           (Equation 6.12) 

where, mn
z ∈ℜ  arbitrary vector, and , ( )m nInvec x is a matrix mxn

X ∈ℜ , such that, 

( )Vec X x= , mnI  is mn dimensional identity matrix,  

( ( )  )t T

i iConΜ = Ψ ⊗ Ψ and ( ( ))iY Con Vec Y=  for mxnΨ ∈ℜ . 

Definition 4: 

Let’s choose a group of feature vectors , 1{ } lg

i ll iG x ==  of the samples ,i ls  ,with the  

corresponding label set, 1{ }g

l i iY y ==  , where the samples of the feature set '
1{ , }K

l l lG Y =  

covers the whole set of samples S, 
'

,
1

K

i l

l

s S
=

=∪ , ∀ 1l ≥  and '
1{ , }K

l l lG Y =  is classified by 

at least one classifier correctly, 'K K≤ , for K classifiers. The classifier set which 

can correctly classify the feature set '
1{ , }K

l l lG Y =  is defined by { }lγ ∈Λ with the 

hypothesis function ( )lh G  and the error function ( )l l lh G Yε = − . 

Definition 5:  

When the membership matrix from the kth
 classifier which classifies a group of 

feature vectors, 
'

,
1

K

i k

k

s S
=

=∪ , ∀ 1k ≥ , correctly, is added, the meta-layer membership 

matrix, solution matrix, meta-layer class label matrix and the error function is 

defined by, ( )kΜ , ( )X k , ( )Y k and ( )e k , respectively, such that, 

( ) ( ) ( ) ( )e k k X k Y k= Μ −           (Equation 6.13) 

Theorem 2 (Performance Increase Ratio) : In a 2-layer Homogenous Stacked 

Generalization architecture consisting of C-classes and K-classifiers, fed by distinct 

K-descriptors, the performance of SG increases by the 

ratio
2

2

( )1
( )

2 ( ) ( ) ( )T t

e k
k

e k e k e k
υ =

ΜΜ −
, where NxCKΜ ∈ℜ  is the meta layer 



88 
 

membership matrix and ( )e k is the error function, when the membership matrix 

obtained from the th
k supplementary and the mutual classifier kγ is augmented to 

meta layer feature space.  

Proof: 

Let’s define the cost function of the equation X YΜ = by, 

2
( , )J X Y X Y= Μ −             (Equation 6.14) 

In order to minimize the cost function, we may check the minima of the function 

by, 

( , ) 2X J X Y X Y∇ = Μ Μ −   ,        (Equation 6.15) 

( , ) 2Y J X Y X Y∇ = − Μ −   ,        (Equation 6.16) 

and since tX Y= Μ , where tΜ  is the pseudo inverse of Μ  

( , ) 0X J X Y∇ =      .        (Equation 6.17) 

The positive gradient descent procedure results in 0Y = , however, Y increases as 

k increases. Therefore, a negative descent procedure proposed by Duda et. al. [13] 

can be applied, such that,  

1
( 1) ( )

2 Y YY k Y k J Jυ  + = − ∇ − ∇   ,       (Equation 6.18) 

( 1) ( ) 2 ( ) ( )Y k X k k e kυ ++ = +    .       (Equation 6.19) 

where, ( )kυ is convergence rate and ( )e k+ is the positive part of the error function 

,such that, 

1
( ) ( ( ) ( )

2
e k e k e k+ = +            (Equation 6.20) 

Following equation (6.13) ( )e k is, 

( ) ( ) ( )t
e k I Y k= ΜΜ −            (Equation 6.21) 

and 

( 1) ( ) 2 ( ) ( )te k e k I e kυ ++ = + ΜΜ −           (Equation 6.22) 

Then, 

22 2
( 1) ( ) 2 ( )( ) ( ) 4 ( ) ( )( ) ( )t T t

e k e k k I e k e k k I e kυ υ+ ++ = + ΜΜ − + ΜΜ −  

                 (Equation 6.23) 
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Since ( ) 0Te k Μ = , where ( )Te k  is the transpose of ( )e k  and, 

2
( ) ( )( ) ( ) ( ) ( )T t

e k k I e k k e kυ υ+ +ΜΜ − = −       (Equation 6.24) 

and since ( )t t T tΜΜ = ΜΜ ΜΜ , 

2 22 22 ( )( ) ( ) ( ) ( ) ( ) ( ) ( )t t
k I e k k e k k e k e kυ υ υ+ + + +ΜΜ − = − ΜΜ  (Equation 6.25) 

Therefore, 

22 2 21
( ( 1) ( ) ) ( )(1 ( )) ( ) ( ) ( ) ( )

4
T te k e k k k e k k e k e kυ υ υ+ + ++ − = − + ΜΜ   

                  (Equation 6.26) 

By taking the partial differentiation with respect to ( )kυ , 

22 2 21
( ( ( ) ( 1) )) ( ( )(1 ( )) ( ) ( ) ( ) ( ))

( ( )) 4 ( ( ))
T t

e k e k k k e k k e k e k
k k

υ υ υ
υ υ

+ + +∂ ∂
− + = − + ΜΜ

∂ ∂
  

                  (Equation 6.27) 

2

2

( )1
( )

2 ( ) ( ) ( )T t

e k
k

e k e k e k
υ

+

+ + +
=

ΜΜ −
        (Equation 6.28) 

Since  ( ) 0e k > , and ( ) ( )e k e k+ = , 

2

2

( )1
( )

2 ( ) ( ) ( )T t

e k
k

e k e k e k
υ =

ΜΜ −
        (Equation 6.29) 

6.3.2 The Geometric Analysis of Meta-layer Concatenation  

The column space meta-layer feature matrix ( )isΜ  consists of the samples that 

lie on a set of lines defined by the line equations ,
1

( )
K

i k

k

x Kµ
=

=∑ . This is the 

consequence of the structure of the membership vectors, which adds to 1 for each 

classifier.  

Therefore, the samples reside on the edges of the hyper-polygon in CK 

dimensional Euclidean Space and have tendencies toward the vertices of the hyper-

polygon where the correct estimations of the class labels take place. 

 In order to investigate the geometrical properties of the concatenation operator in 

fuzzy SG, let’s consider an experiment based on synthetic datasets, consisting of 2 

classes and 3 descriptors. In the base layer feature spaces, the classes will be 
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distributed by Gaussian distribution with the covariance kΤ , which is the covariance 

matrix of the classes distributed in 
kΓ  and variance matrices

kM , k=1,2,3 , 

1

0 1

0 1
M

− 
=  
 

, 1

1 0

0 0.5

 
Τ =  

 
,   2

1 0

1 0
M

− 
=  
 

, 2

1 0

0 0.5

 
Τ =  

 
 and 

3

1 0.5

1 0.5
M

− − 
=  
 

, 3

1 0

0 0.5

 
Τ =  

 
, for the first, second and third descriptor, 

respectively ( Figure 6.1). 

 Each class consists of 100 samples for each test and training datasets, therefore, 

training and test datasets consist of 200 samples for each descriptor, respectively. 

The κ values for the fuzzy knn algorithms at the base layer and the meta-layer are 

chosen as 10, for simplicity. 

 

 

(a) 

 

Figure 6.1: (a) Feature dataset in descriptor 1, (b) Feature dataset in descriptor 
2, (c) Feature dataset in descriptor 3,  consisting of  2 classes, where red samples 

belong to the first class and blue samples belong to the second class. 
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(b) 

 

 

(c) 

 

     Figure 6.1 (Continued) 
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The datasets are distributed with different orientations at each descriptor, since 

they are distributed by different mean values. Therefore, the samples that are 

classified correctly would be relatively different for each classifier. Meanwhile, 
BCσ  

values for two classes are same for the first and second descriptors, and it is 

relatively different in the third descriptor. Consequently, overlapping of the classes in 

each descriptor is different.  

The output space of the base layer classifiers consist of membership matrices 

obtained from the classifiers 1 2
,( ) x

i kxµ ∈ℜ , for k=1,2,3, i=1,2,…,200 ,such that, 

, , ,1 2( ) [ ( ) ( )]i k i k i kx x xµ µ µ=           (Equation 6.30) 

for 2 classes, by the constraint 
2

,
1

( ) 1i kc

c

xµ
=

=∑ , which constructs the line equation. 

The output space of each base layer classifier can be visualized by plotting the 

membership vectors of each classifier ,( )i kxµ  (Figure 6.2) 

 

 

 
(a-1) Test Set 

 
Figure 6.2: (a) Membership space for Descriptor 1, (b) Membership space for 

Descriptor 2, (c) Membership space for Descriptor 3, with test and training datasets. 
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(a-1) Training Set 

 
 

 
(a-2) Test Set 

 
                  Figure 6.2 (Continued) 
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(a-2) Training Set 

 
(a-3) Test Set 

 
                   
                 Figure 6.2 (Continued) 
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(a-3) Training Set 

 
                Figure 6.2 (Continued) 
 

 

As can be seen from the figures, the samples are nicely mapped on a line for each 

descriptor. In the input space at the meta-layer, the membership vectors are 

concatenated. In order to visualize the concatenated feature space, the vectors are 

plotted in combination with 3 dimensions selected from the concatenated meta-layer 

feature vector ,( ) [ ( )]i ki cs xµΜ = , c=1,2, k=1,2,3,  i∀ .  

In some of the figures, the values of some samples are introduced in order to 

sense the structure of the data space (Figure 6.3, Figure 6.4. and Figure 6.5). 

In Figure 6.3, it is observed that the samples are mostly spread through the edges 

and are accumulated around the vertices of the cube. In Figure 6.4, similar separation 

and the accumulation is observed for different basis space consisting of different 

membership values, which are the membership values of the samples relative to the 

first class. Moreover, in Figure 6.4-c, 2D projection of the samples over 

1 ,1 2 ,3( ) ( )i ix xµ µ−  plane is visualized. In the figure, it is observed that the samples are 

accumulated through the corners of the plane, similar to the distribution in Figure 

6.3. 
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In Figure 6.5, the samples are distributed with the membership values for the 

second class and scattered with similar arrangement in Figure 6.4, even if the basis 

vectors that span the spaces are orthogonal.     

 

 

(a) 

 

(b) 

 
Figure 6.3: (a) Concatenation of base layer membership vectors, (b) with 
membership values of some samples.  The concatenated dimensions are 

1 ,1 2 ,1 1 ,2( ), ( ), ( )i i ix x xµ µ µ  
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(a) 

 

 

(b) 

 

Figure 6.4: (a) Concatenation of base layer membership vectors over the 
dimensions 1 ,1 1 ,2 1 ,3( ), ( ), ( )i i ix x xµ µ µ , (b) with data values of some samples , (c) the 

projection on 1 ,1 1 ,3( ) ( )i ix xµ µ−  plane. 
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(c) 

      Figure 6.4 (Continued) 

 

 

 

(a) 

 

Figure 6.5: (a) Concatenation of base layer membership vectors over the 
dimensions 2 ,1 2 ,2 2 ,3( ), ( ), ( )i i ix x xµ µ µ , (b) with membership values of some samples 
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(b) 

      Figure 6.5 (Continued) 

 

In the second type of the experiments, the concatenation operation is analyzed on 

the Corel Dataset. The classification is implemented on Rome and Buses datasets 

using Color Structure (32 dimensional) and Edge Histogram (80 dimensional) 

descriptors, with 50 samples for each class. The classification performances of the 

base layer fuzzy k-nn classifiers implemented on the Color Structure and Edge 

Histogram descriptors are introduced in (Table 6.1) 

 

Table 6.1: Individual performances of the base-layer fuzzy k-nn implemented on 
Color Structure and Edge Histogram descriptors, respectively. The performance of 

SG is 100% 
 

 Training Set Test Set 

Color Structure 94% 94% 

Edge Histogram 95% 85% 

 

In the experiment, it is observed that SG increases the classification performance 

by 6% relative to the individual classification performances.  



100 
 

The membership vectors at the output space of the base layer classifiers are 

visualized in Figure 6.6 for (a) Color Structure training dataset (CS-tr), (b) Color 

Structure test dataset (CS-te), (c) Edge Histogram training dataset (EH-tr), (d) Edge 

Histogram test dataset, (EH-te) respectively. 

 

 

(a) 

 

(b) 

Figure 6.6: Visualization of the membership vectors obtained from fuzzy k-nn 
classifiers implemented on (a) CS-tr, (b) CS-te, (c) EH-tr , (d) EH-te 
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(c) 

 

(d) 

              Figure 6.6 (Continued) 

 

In Figure 6.6, the distribution of the samples at the base layer output space with 

the basis consisting of the membership values is observed. By examining the sample 

distributions in the figures, we can perceive the classification performances in Table 
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6.1. In Figure 6.6-a to Figure 6.6-c, the samples are well separated through the end 

points of the line and correspondingly, the classification performances on these 

spaces are relatively higher than in Figure 6.6-d. In Figure 6.6-d, the samples are 

scattered smoothly on the line, and the classification performance of the 

corresponding space is relatively low.  

In the input space of the base layer, the membership vectors are concatenated. 

The proposed concatenated matrix is visualized in (Figure 6.7).  

 

 

(a) 

 

Figure 6.7: Concatenation of the membership vectors with the dimensions obtained 
from the descriptors (a) CS(Bus)-CS (Rome)- EH (Bus) for test dataset, (b) for 

training dataset, (c)  CS(Bus)-CS (Rome)- EH(Rome) for test dataset, (d) for training 
dataset, (e) CS(Rome)- EH(Bus)- EH(Rome) for test dataset, (f) for training dataset. 
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(b) 

 

 

(c) 

           Figure 6.7  (Continued) 
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(d) 

 

 

(e) 

          Figure 6.7  (Continued) 
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(f) 

          Figure 6.7  (Continued) 

 

 

In Figure 6.7, we examine that the number of red points, which represent the 

samples belonging to bus class, that reside on the edges are more than the blue 

points, which represent the Rome class. Therefore, we observe that the samples from 

the bus class are clustered better than the samples from the Rome class.  

In Figure 6.7-a and Figure 6.7-b it is observed that the red points are mostly 

accumulated on the edge that is represented by the membership values obtained from 

the classifier which is fed by Edge Histogram descriptor and the samples are 

relatively well separated compared to the other spaces. Hence, it is considered that 

the samples are classified better in that space and the samples from the bus class are 

classified better via the feature vectors obtained from Edge Histogram. 

Meanwhile, in Figure 6.7-f, it is observed that the samples from Rome class 

mostly reside on the edges represented by the memberships vectors obtained from 

Color Structure descriptor indicating that they are described better by Color Structure 

descriptor than Edge Histogram descriptor. Consequently, it can be considered that 
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the bus class is described better by Edge Histogram descriptor and Rome class is 

described better by Color Structure descriptor.  

Furthermore, it is investigated that the samples reside on the planes and tends to 

be separated linearly in all the subspaces of Figure 6.7. These experiments provide a 

strong clue for the effect of the concatenation of the memberships vectors, for an 

increased the linear separability.  

In the third type of the experiments, synthetic datasets, consisting of 2 classes and 

3 descriptors are constructed. In base layer feature space, the classes are distributed 

by Gaussian distribution with the covariance and variance matrices, 1

5 0

5 0
M

− 
=  
 

,  

1

5 5

5 5

 
Τ =  

 
 ,  2

0 5

0 5
M

− 
=  
 

 , 2

5 5

5 5

 
Τ =  

 
 and 3

5 5

0 0
M

 
=  
 

 , 3

5 5

5 5

 
Τ =  

 
, for 

the first, second and third descriptor, respectively (Figure 6.8) . Each class consists of 

250 samples for each test and training datasets, therefore, training and test datasets 

consist of 500 samples for each descriptor, respectively. The κ values for the fuzzy 

κ -nn algorithms at the base layer and the meta-layer are chosen as 10, for simplicity. 
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(a) 

 

 

(b) 

 

Figure 6.8: Artificial (a) feature training dataset in descriptor 1, (b) feature test 
dataset in descriptor 1, (c) feature training dataset in descriptor 2, (d) feature test 
dataset in descriptor 2, (e) feature training dataset in descriptor 3, (f) feature test 

dataset in descriptor 3, consisting of 2 classes, where blue samples belong to the first 
class and red samples belong to the second class. 



108 
 

 

 

    

(c) 

 

(d) 

             Figure 6.8 (Continued) 
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(e) 

 

 

(f) 

               

                Figure 6.8 (Continued) 
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The samples are distributed with equal 1,2
BCσ  in Figure 6.8-a,b and Figure 6.8-c,d 

however, with different 1,2
BCσ  in Figure 6.8-e,f. It is noticed that in all of the figures, 

the samples are distributed with vertical, horizontal and diagonal symmetry, 

respectively.  

After the classification, at each base layer classifiers, the following classification 

performances are obtained,  

 

Table 6.2: Fuzzy SG classification performances of the classifiers 
 

 Class 1 Class 2 Overall 

Performance 

Classifier 1 80.0% 82.8% 81.4% 

Classifier 2 83.2% 84.0% 83.6% 

Classifier 3 69.2% 69.6% 72.8% 

Meta-Classifier 87.6% 90.8% 89.2% 

 

In Table 6.2, it is observed that the classification performance of meta-classifier 

is approximately 9% better than that of the individual classifiers. Therefore, we can 

infer that different samples are classified by different classifiers and provide 

complementary information on the samples to the meta classifier.  

In addition, meta classifier perform 10% better for Class 1 and 12% for Class 2, 

in average. Therefore, it can be stated that the number of samples from class 2 which 

are classified by different classifiers are more than the samples from class 1.   

In the experiments, 497 samples are classified by at least one classifier, 249 

samples from the first class, and 248 samples from the second class. In addition, 247 

samples are classified by both of the classifiers. 

In Figure 6.9, the membership vectors obtained from each classifier for the test 

sets are visualized. The samples from the first class are represented by blue, from the 

second class are represented by red. In Figure 6.10, the samples from class 1 and 

class 2, which are correctly classified by at least one classifier,
3

1

ˆ
k

k

S S
=

=∪ , are 
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visualized and represented by black and green, respectively. The vertices where the 

correct labels of the classes take place are represented by yellow markers. 

 

(a) 

 

(b) 

 

Figure 6.9: Membership vectors obtained from (a) Classifier 1, (b) Classifier 2, (c) 
Classifier 3 
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(c) 

 

               Figure 6.9 (Continued) 

 
 

In Figure 6.9-b, the samples are well separated through the end points of the line 

relative to the other sub-figures. Therefore, we can conclude that Classifier 2 

performs better than the other classifiers. However, the samples are mostly 

overlapped in Figure 6.9-c shows that classifier three has the worst classification 

performance.   

Furthermore, the red points, which represent the first class, scatter through the 

blue points, which represent the second class, mostly. On the other hand, the blue 

points scatter up to the middle of the line. Consequently, the samples from the first 

class causes a decrease in the classification performance more than the samples from 

the second class, and also affect the classification ability of the samples from the 

second class. Hence, if the samples from the first class can be separated from the 



113 
 

samples of the second class in a higher dimensional feature space, the increase in the 

classification performance of the samples from the second class would be higher. 

 

 

(a) 

 

 

(b) 

 

Figure 6.10: Membership vectors obtained from (a) Classifier 1, (b) Classifier 2, (c) 
Classifier 3, of the samples classified by at least one classifier. 
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( c ) 

                Figure 6.10 (Continued) 

 
In Figure 6.11, the concatenated membership vectors are visualized including the 

samples which are classified by at least one classifier. 

Since the first 2 classifiers perform with higher classification performances, it is 

observed that most of the samples are scattered through the two dimensional plane 

described by the predictions of Classifier 1 and Classifier 2 in Figure 6.11-a. 

Meanwhile, it is considered that the samples from Ŝ accumulate towards the vertices 

of the cube. 

On the other hand, since 2 1
ˆ ˆS S<  and 2 3

ˆ ˆS S< , the samples are scattered through 

different planes in Figure 6.11-b. While, the samples from Ŝ  scatter towards the 

vertices and edges, and reside on the surfaces of the cube, the remaining samples 

reside on the diagonal surface of the cube, towards the edges at the inverse of the 

edges which represent the actual class labels. The reason of the diagonal distribution 

is that most of the misclassified samples belong to the first class and are affected by 
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the predictions of the third classifier, which performs worse, that lies on the z-axis 

and causes the diagonalization of the distribution through bottom-up directions.  

In Figure 6.11-c and Figure 6.11-d, it is observed that most of the samples from 

Ŝ  accumulate towards the edges and scatter through the faces smoothly. Since the 

basis spaces in these figures are constructed by the membership vectors that contain 

the membership values belonging to the second class and there are relatively less 

samples which are classified by none of the classifiers in the figures, we observe that 

most of the misclassified samples belong to the first class. 

In Figure 6.11-f, the samples from Ŝ  are scattered on the diagonal plane of the 

cube. Since the diagonalization is through the basis vectors described by the 

membership vectors obtained from the second classifier, we can state that the second 

classifier form the topology of the distribution of the samples by having the higher 

classification performance.  

In order to visualize the affect of concatenation of the feature vector in meta 

layer, we take various combinations of classifiers and class memberships. For this 

purpose, we design Figure 6.11, throughout the concatenated membership vectors 

with the axis (a) Classifier 1 - Class 1 Membership ( 1 ,1( )ixµ ),Classifier 1 - Class 2 

Membership ( 2 ,1( )ixµ ), Classifier 2 - Class 1 Membership ( 1 ,2( )ixµ ), (b) Classifier 1 

- Class 1 Membership ( 1 ,1( )ixµ ), Classifier 2 - Class 2 Membership ( 2 ,2( )ixµ ), 

Classifier 3 - Class 1 Membership ( 1 ,3( )ixµ ), (c) Classifier 1 - Class 2 Membership 

( 2 ,1( )ixµ ),Classifier 2 - Class 2 Membership ( 2 ,2( )ixµ ), Classifier 3 - Class 2 

Membership ( 2 ,3( )ixµ ), (d) Classifier 1- Class 1 Membership ( 1 ,1( )ixµ ), Classifier 2 - 

Class 2 Membership ( 2 ,2( )ixµ ), Classifier 3 - Class 2 Membership ( 2 ,3( )ixµ ), (e) 

Classifier 1 - Class 1 Membership ( 1 ,1( )ixµ ), Classifier 2 - Class 1 Membership 

( 1 ,2( )ixµ ), Classifier 2 - Class 2 Membership ( 2 ,2( )ixµ ), are visualized.  
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(a) 
 
 

 
(b) 

 
Figure 6.11: The relationship among (a) ( 1 ,1( )ixµ ), ( 2 ,1( )ixµ ),( 1 ,2( )ixµ ), (b) 

( 1 ,1( )ixµ ), ( 2 ,2( )ixµ ), ( 1 ,3( )ixµ ), (c) ( 2 ,1( )ixµ ), ( 2 ,2( )ixµ ), ( 2 ,3( )ixµ ), (d) ( 1 ,1( )ixµ ), 

( 2 ,2( )ixµ ), ( 2 ,3( )ixµ ), (e) ( 1 ,1( )ixµ ), ( 1 ,2( )ixµ ), ( 2 ,2( )ixµ )  are visualized. 
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( c ) 
 

 
(d) 

 
              Figure 6.11 (Continued) 
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(e) 

 
              Figure 6.11 (Continued) 
 

 
As can be observed from the experiments, the concatenation operations over the 

membership vectors sort the samples through the edges of the polygons, in a linearly 

separable space provided that a sample is correctly classified by at least one 

classifier. In the experiments, it is observed that as the dimension of the samples 

increase by expanding the feature space, the samples tend to accumulate around the 

solution points, which are vertices, of the polygons. Therefore, the tendency 

increases as the dimension by complementary feature spaces, and the performance 

increases, relatively.  

Note that concatenation of the memberships vectors at the output of the base 

layer classifiers, transforms the feature spaces of the input of the individual 

classifiers to a fixed CK dimensional vector space, where the samples which are 

correctly classified by at least one classifier lies on hyper-lines.  

6.3.3 The Functional Analysis of Meta-layer Concatenation  

In Chapter 2, one of the fundamental problems of the pattern recognition is 

discussed by the minimization of the error function, 
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2

,
1

ˆ
N

i k i

i

error y y
=

= −∑             (Equation 6.31) 

Where ,,ˆ ( )i ki ky h x= is the estimated label of the actual label 
iy  for the sample ,i kx , 

through the hypothesis function
kh . Additionally, the classification performance is 

defined based on the hypothesis function using equation (2.7).  

In Section 6.3.1, Theorem 1 states that the concatenation process provides 

solutions for the linear discrimination equation constructed by the concatenated 

matrixes and in section 6.3.2, Theorem 1 is examined experimentally, on both 

synthetic and Corel datasets. In other words, it is observed that the concatenation 

process separate the feature space linearly under the conditions defined by Theorem 

1.  

Moreover, in Section 6.3.2, it is observed that, as the dimension of the feature 

space increases during the concatenation process, the samples tend to approach to the 

vertices where the actual labels of the samples reside  and decrease the error function 

described in equation (6.13).  

One of the conditions for increasing the performance of SG is to expand the 

feature space with additional column spaces that will decrease the margin to the 

vertices and the lines where the samples lay, which are described in the previous 

section. Following Theorem 1, the second condition is that as the feature space 

increases by the increasing the number of columns (expanding the column space), the 

label space should also be expanded such that the label space will lay in the span of 

the column space of the features.  

The proposed conditions are consistent with Hypothesis 1 , which state that, as 

the column space is increased by the way that the margins to the edges where the 

correctly classified samples lay decrease, the general performance of SG increases, in 

other words, the classification performance on the concatenated feature space and the 

error function decreases.  

Lemma 2: If the set of feature vectors lG  is correctly classified by each 

classifier kϒ ,  k∃ , mutually, then lG  is kG . Therefore, l k= , lγ = kϒ , K’=K and 

l kε ε= . 
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Definition 6: 

The transpose of the membership matrix ,1 ,( ) ( ) ... ( )i i ki
s x xµ µ Μ =   , 

1, 2,...,k K= , 1, 2,...,i N= samples, is defined by TΜ , such that, 

,1 ,( ) ( ) ... ( )T TT

i i kis x xµ µ Μ =   .   

Theorem 3 (Linear Separability): In a 2-layer Homogenous Stacked 

Generalization architecture consisting of C-classes and K-classifiers, fed by distinct 

K-descriptors; if ,( )i kxµ obtained from each classifier 
kγ for the feature vectors ,i kx  

of samples 
i ks G∈  , is merged to the concatenated membership matrix space, then 

the space becomes linearly separable. 

Proof: 

By considering TΜ , if ,( ) 0.5i kxµ ≥ , and , ,( ) max( ( ))i k i kc x xµ µ=  the sample is  is 

assigned to cω , for c=1,2,…,C classes, and if its actual class labels is cω , than it is 

correctly classified. Therefore, the correctly classification of the sample ,i kx  assures 

that  

,( ) 0.5i kxµ ≥               (Equation 6.32)  

Since ,
1

( )
K

i k

k

x Kµ
=

=∑ , concatenation of each membership vector of ,i kx , 

discriminates the space by the equation ,
1

( )
K

i k

k

x Kµ
=

=∑ , then, 

 ,
1

( ) 0.5
K

i k

k

x Kµ
=

= +∑     ,        (Equation 6.33) 

and 

,
1

( )
K

i k

k

x Kµ
=

>∑      .        (Equation 6.34) 

So, ,i kx  is assigned to cω .  

As a result, merging the concatenated membership vector of ,i kx  linearly 

separates the sample ,i kx  in the concatenated space and, hence, the space is linearly 

separated i∀ , 1, 2,...,i N= . 
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Theorem 4 (Performance Relation): In a 2-layer Homogenous Stacked 

Generalization architecture consisting of C-classes and K-classifiers, fed by distinct 

K-descriptors; if the classification is implemented on a group of samples i ks G∈ , 

then, ( ) ( )kPerf SG Perf γ≥ ,  k∀ . 

Proof: 

Following equation (4.4), ( )kPerf γ is, 

,ˆ '
1

1
( ) ( )

i k

N

k y k

i

Perf Y
N

γ δ
=

= ∑           (Equation 6.35) 

,where , ,( ' ) ( ' )i k i kx h xµ =  is the membership vector for test sample i,k'x by hk of kγ  

and , ,ˆ ' max( ( ' ))i k i ky xµ= is the estimated class label value. 

At the meta layer, '( )kΜ ,which is the meta layer membership matrix for test data 

,consists of the estimated membership values of i,k'x by hk obtained from k classifiers, 

such that, 

,1 ,2 ,

,1 ,2 ,

'( ) ( ' ) ( ' ) . . . ( ' )

           = ( ' ) ( ' ) . . . ( ' )

i i i k

i i i k

k x x x

h x h x h x

µ µ µ Μ =  

  

       (Equation 6.36) 

,and the classification performance of the meta layer classifier is, 

,ˆ '
1

1
( ) ( ( ))

i meta

N

meta y

i

Perf Y k
N

γ δ
=

= ∑          (Equation 6.37) 

where  

 
'

,

,1 ,2 ,

ˆ ' ( ) ( )

          ( ' ) ( ' ) . . . ( ' ) ( )

i meta

i i i k

y k X k

h x h x h x X k

= Μ

 =  
      (Equation 6.38) 

is the estimated class label of  is  at the meta layer. 

At the base classifiers, while the samples belonging to 
cω ,  c∀ , are not correctly 

classified, ,( ' )i kxµ  are wrongly estimated and become relatively joint, then ( )kPerf γ  

is low.  However, following Theorem 3, the concatenation operation linearly 

separates the meta layer feature space. Therefore, it is obvious that, ( )metaPerf γ , 

which is the classficiation performance of SG, which is ( )Perf SG , is higher than 

( )kPerf γ . 
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Theorem 5 (Error Bound): In a 2-layer Homogenous Stacked Generalization 

architecture consisting of C-classes and K-classifiers, fed by distinct K-descriptors, 

( )Perf SG  increases as CK N→  for the meta-layer feature matrix NxCKΜ ∈ℜ   , and 

( )e k  reaches to the its optimum error bound 
metaε ,  provided that Μ  consists of the 

membership vectors obtained from supplementary classifiers kγ .   

Proof: 

Let’s define the hypothesis function for the th
k classifier of the feature vector  

,i kx ∈ℜ  from the feature set , 1{ , }N

i kk i iS x y == , by ,( )i kh x , ,( )i kh x H∈ , for K 

classifiers, which is bounded by ,0 ( ) 1i kh x< < , and for some error function 0ε > , 

we may state that, 

,( )i k i
h x y ε− <               (Equation 6.39) 

where iy  is the actual class label of the feature vector ,i kx .  

The classifier kγ with the hypothesis function ( )kh G  satisfies, 

( )k k kh G Y ε− <       , ∀ 0kε ≥          (Equation 6.40) 

Meanwhile, following Theorem 2, since ( ) 0e k > and ( ) ( )t
k kΜ Μ is positive semi-

definite, 
2 2

( ) ( 1)e k e k> + ,  while 0 ( ) 1tυ< < . Therefore, the error function of the 

meta-layer classifer ( )e k is monotonically decreasing, and converges to some limiting 

value 0metaε ≥ , such that, 

 '( ) ( ) ( ) ( )
meta

k X k Y k e k εΜ − = →             (Equation 6.41) 

where, '( )kΜ is the membership matrix for test data. 

As the number of classifiers kγ  and k increases, k K→  and the dimension of the 

meta-layer feature matrix Μ  increases such that, 

Ck CK→                 (Equation 6.42) 

 When N=CK, which is an upper bound for CK, the matrix Μ becomes a square 

matrix by implying the uniqueness and existence of the solution matrix X [93] and 

( ) metae k ε→ .   

On the other hand, if   CK N≥ , the system becomes overdetermined, and 

perturbs the robustness and the integrity of the feature space.  
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In Theorem 6, the boundary condition for the performance of SG is stated. 

Theorem 6 (Performance Condition): In a 2-layer Homogenous Stacked 

Generalization architecture consisting of C-classes and K-classifiers, fed by distinct 

K-descriptors; the ( )Perf SG is bounded by the percentage of correctly classified 

samples by at least one classifier, provided that training and test sets are both 

statistically stable and consistent.  

Proof:   

Let’s consider two sets of samples belonging to two sets of feature vectors, gs G∈ , 

which is the set of feature vectors which are classified by at least one classifier, and 

mcs MC∈ , which is the set of feature vectors which can not be classified by at least 

one classifier, such that, MC S G= − .  
The previous theorems state that, as the membership vectors of the samples 

gs G∈  are augmented to the meta-layer feature space, the space becomes linearly 

separable. However, the membership vectors of mcs  damages the linear separability 

and the samples become inseparable at the feature space and can not be correctly 

classified by the meta-layer linear classifier.   

Therefore, for a finite set of classifiers, ( )Perf SG  is limited by | |G , in other 

words, limited by the percentage of the samples that can be correctly classified by at 

least one classifier. 

Following the theorems, we can conclude that, for the present architecture, the 

concatenation operation provides a linearly separable space as the membership 

vectors belonging to the samples that are classified by at least one classifier are 

concatenated.  

6.4 A new Algorithm for Stacked Generalization: Meta-Fuzzified 

Yield Values 

In this section, following the conclusions and the theorems proposed in the 

previous sections, we will introduce a meta-layer classification algorithm, which is 

called Meta-layer Fuzzified Yield Values (Meta-FYV) with a feature space 

composition-decomposition method. 

In Theorem 1, we have stated that while the label space of the features at the 

meta-layer spans the column space of the features, then, a solution for the linear 
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equation X YΜ = can be obtained. In other words, while the matrix Y consists of the 

elements that are basis of the feature matrix Μ , then a linear discriminate classifier 

can be used for the meta-layer classification.  

Applying Theorem 1  for the classification of two layer fuzzy SG architecture 

consisting of K fuzzy k-nn base layer classifiers and C classes, and defining the class 

membership values for  training and testing set of features , tr

kS and 'kS , respectively, 

obtained from each k classifier, , 1{ ( )}tr K

i k kxµ =  and , 1{ ( ' )}K

i k kxµ = , respectively. Then we 

can define the meta-layer training membership matrix consisting of membership vectors of 

training dataset, such that, , ,[ ( ) . . . ( )]tr trtr

i k i Kx xµ µΜ =  and meta-layer test membership 

matrix consisting of membership vectors of test dataset, such that, 

,1 ,[ ( ' ) . . . ( ' )]te

i i Kx xµ µΜ = . Then, we state the Meta-FYV-1 and Meta-FYV-2  

algorithms. 
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Algorithm 6. 1: Meta-FYV-1 algorithm 
1. for  k=1,2,…,K 

2.  Calculate ,( )tr

i kxµ  and ,( ' )i kxµ  

3. end 

4.  Concatenate ,( )tr

i kxµ , such that,  , ,[ ( ) . . . ( )]tr trtr

i k i Kx xµ µΜ =  

  

5.  Concatenate ,( ' )
i kte

xµ , such that,  ,1 ,[ ( ' ) . . . ( ' )]te

i i Kx xµ µΜ =   

6. for  k=1,2,…,K 

7.  for  c=1,2,…,C 

8.   Define the label vector of the training samples, such that, 

   while ,
tr

i kx  belongs to the 
lω , 

   ,
,

1,   
( )

0,  

tr

tr i k c

i kc

if x
Y x

otherwise

ω ∈ 
=  
  

 

9.  end 

10.  Concatenate the label vector for the meta –layer label matrix, 

such that, 

             , , , ,1( ) ( ) . . . ( ) . . . ( )tr tr tr tr

i k i k i k i kc CY x Y x Y x Y x =    

11. end 

12.  Concatenate  ,( )i kY x , such that, ,1 ,( ) . . . ( )tr trtr

i i KY Y x Y x =   ,   

k=1,2,…,K 

13.  Solve the equation tr tr trX YΜ =  by ( )tr tr tr
X pinv Y= Μ , where           

( )tr
pinv Μ is the pseudo-inverse of trΜ  

14.  Calculate teY by, te te trY X= Μ , 

15.  Decompose ,1 ,( ' ) . . . ( ' )te

i i K
Y Y x Y x =    by separating into the 

column vectors ,( ' )i kY x ,  k=1,2,…,K 

16.  Apply majority voting over the vectors ,( ' )i kY x , that is, calculate 

the maximum  values of the each sample over row-space, such that,  

  if ,max( ( ' ))l i kY xω = , ,'i kx belongs to the lω class. 
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In Meta-FYV-1 algorithm (Algorithm 6.1), firstly, the membership vectors are 

obtained from the base layer classifiers, for both training and test datasets. Then, the 

membership vectors are concatenated in order to construct the meta-layer feature 

matrix trΜ and teΜ . 

 Then, the class labels are represented as the base vectors in consistent with the 

base-layer membership vectors by applying a new representation algorithm (Step 8). 

In the representation, the samples are coded with the Boolean values relative to the 

classes which they belong to. In the composed label matrix tr
Y , the row vectors 

represent the samples and the column vectors represent the classes. In the next step, 

the label vector that span the membership space of each classifier is concatenated in 

correspondence with meta-layer feature space in order to completely span the meta-

layer feature space.  

After constructing the membership and the label matrixes, tr tr tr
X YΜ =  is solved. 

The solution matrix tr
X  which is obtained from the training data is, then, applied to 

the membership matrix of the test data. The resulting label matrix teY is decomposed 

to its column vectors. It should be noticed that, the column vectors may be 

considered as the predictions of different classifiers in the decomposed label matrix. 

Therefore, majority voting is applied on each vector in order to obtain class label of 

each sample.  

In Algorithm 6.2, the concatenation of the label matrix is not applied since the 

label matrix corresponding to different classifiers are equal and sufficient to 

represent the basis vectors that span the space of the meta-layer feature matrix, trΜ , 

which is the concatenated membership matrix, different from Algorithm 6.2.  
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Algorithm 6. 2: Meta-FYV-2 Algorithm 
  

1. for  k=1,2,…,K 

2.  Calculate ,( )tr

i kxµ  and ,( ' )i kxµ  

3. end 

4.  Concatenate ,( )tr

i kxµ , such that,  , ,[ ( ) . . . ( )]tr trtr

i k i Kx xµ µΜ =    

5.  Concatenate ,( ' )i kxµ , such that,  ,1 ,[ ( ' ) . . . ( ' )]te

i i Kx xµ µΜ =    

6. for  k=1,2,…,K 

7.  for  c=1,2,…,C 

8.   Define the label vector of the training samples, such that, 

   while ,
tr

i kx  belongs to the lω , 

   ,
,

1,   
( )

0,  

tr

tr i k c

i kc

if x
Y x

otherwise

ω ∈ 
=  
  

 

9.  end 

10.  Concatenate the label vector for the meta –layer label matrix, such that, 

             , , , ,1( ) ( ) . . . ( ) . . . ( )tr tr tr tr

i k i k i k i kc CY x Y x Y x Y x =    

11. end 

12.  Assign ,( )tr

i kY x  to Ytr , such that, ,( )trtr

i kY Y x= ,  

            since  , ,( ) ( )tr tr

i k i jY x Y x= ,       for any k j≠  

13.  Solve the equation tr tr trX YΜ =  by ( )tr tr tr
X pinv Y= Μ ,  

            where   ( )tr
pinv Μ is  the pseudo-inverse of trΜ  

14.  Calculate te
Y by, te te tr

Y X= Μ . 

15.  Apply majority voting over the vectors ,( ' )i kY x , that is calculate the                          

maximum  values of the each sample over row-space, such that,    

  if ,max( ( ' ))l i kY xω = , ,'i kx belongs to the lω class 
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In Table 6.3, Table 6.4 and Table 6.5, the experiments implemented on 4 to 8 

descriptor with different set of classes are introduced. The performances of Fuzzy SG 

algorithms, Meta-FYV-1 algorithm, Meta-FYV-2 algorithm and the performance 

gain of Meta-FYV-2 over Fuzzy SG are provided in the tables.  

In the first set of the experiments, New Guinea, Beach, Rome, Bus, Dinosaurs, 

Elephant, Roses, Horses, Mountain, and Dining classes are classified using the 

feature sets obtained by 4 (Color Structure , Color Layout, Edge Histogram, Region-

based Shape), 5 (Color Structure , Color Layout, Edge Histogram, Region-based 

Shape, Haar) , 6 (Color Structure , Color Layout, Edge Histogram, Region-based 

Shape, Haar, Dominant Color) , 7 (Color Structure , Color Layout, Edge Histogram, 

Region-based Shape, Haar, Dominant Color, Scalable Color), and 8 (Color Structure 

, Color Layout, Edge Histogram, Region-based Shape, Haar, Dominant Color, 

Scalable Color, Homogenous Texture) of the MPEG 7 descriptors (Table 6.3) . 

In the second set of the experiments, 5 more classes, Autumn, Bhutan, California 

Sea, Canada Sea, and Canada West classes are added to the data set. In that case, the 

performances of 5-8 descriptor experiments are provided in the (Table 6.4) 

In the third set of the experiments, 5 more classes; China, Croatia, Death Valley, 

Dogs and England are added to the present classes (Table 6.5).  

 
Table 6.3: Performances of 10-Class Experiments 

 

10-Class 
Experiments 

Fuzzy SG 

 
 

Meta-FYV-1 Meta-FYV-2 

Performance 
Gain 

(Fuzzy SG  

and  

Meta-FYV2) 
4 Descriptors 85.6% 80.4% 88.0% 2.4% 
5 Descriptors 86.8 % 81.2% 88.6% 1.8% 
6 Descriptors 85.6% 80.4% 87.4% 1.8% 
7 Descriptors 85.8% 80.8% 88.2 % 2.4% 
8 Descriptors 86.4% 81.6% 89.0.% 2.6% 
 

In 10 class experiments, Meta-FYV-1 performed worse than Fuzzy SG 

algorithm, however, Meta-FYV-2 perform better than the Fuzzy SG algorithm. In 

addition Meta-FYV-2 algorithm provided 2.2% performance gain over Fuzzy SG, in 

average. It is also observed that as the number of descriptors (classifiers) increases, 

the classification performance and the relative performance gain increase. 
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Table 6.4: Performances of 15-Class Experiments 
 

15-Class 
Experiments 

Fuzzy SG 

 
 

Meta-FYV-1 Meta-FYV-2 

Performance 
Gain 

(Fuzzy SG  

and  

Meta-FYV2) 
5 Descriptors 65.3% 66.4% 69.5% 4.2% 
6 Descriptors 62.3 % 65.6% 68.3% 6.0% 
7 Descriptors 62.8% 65.7% 68.5% 5.7% 
8 Descriptors 64.5% 66.3% 69.1 % 4.7% 

 

In 15-Class experiments, both algorithms performed better than Fuzzy SG. In 

addition, the relative performance gain of Meta-FYV-2 over Fuzzy-SG is increased 

by 5.5%. The better performance gain is obtained from 6-Descriptor experiments.  

 
Table 6.5: Performances of 20-Class Experiments 

 

20-Class 
Experiments 

Fuzzy SG 

 
 

Meta-FYV-1 Meta-FYV-2 

Performance 
Gain 

(Fuzzy SG 

and 

Meta-FYV2) 
4 Descriptors 52.4% 54.8% 57.5% 5.1% 
5 Descriptors 50.7% 54.1% 56.2% 5.5% 
6 Descriptors 49.9% 53.8% 55.8.% 5.9% 
7 Descriptors 50.9% 54.4% 56.0% 5.1% 
8 Descriptors 52.9% 54.4% 56.5% 3.6% 

 
In 20-Class experiments, Meta-FYV-2 performed better than Fuzzy SG with 5% 

performance gain. The performance of 5-Descriptor experiment increases while the 

others decrease, concluding that the additional classes are not well described by 

Dominant Color, Scalable Color and Homogenous Texture descriptors. In addition, 

the Meta-FYV-1 provided 3% performance gain over Fuzzy SG. 

In addition, the algorithms are tested over randomly selected 50 classes from 

Corel dataset with 8 descriptors which are introduced above. Fuzzy SG provided 

47.0% classification performance while Meta-FYV-1 provided 51.2% performance 

and Meta-FYV-2 provided 52.2% performance.  



130 
 

One of the reasons of the differences between the performance gains of  Meta-

FYV-1 and Meta-FYV-2 is that the additional concatenation operation of the label 

matrix in Meta-FYV-1 requires additional majority voting operation, and the 

majority voting could not succeed at the prediction of the class labels.  

Another reason of the performance difference is that as the dimension of 

tr
Y increases, the dimension of the solution matrix tr

X  and te
Y increases. Therefore, 

the majority voting for the matrix decomposition becomes an inadequate and 

insufficient method for high dimensional matrix decomposition.  

The reason of the failure of Fuzzy SG is that the concatenation operations on the 

membership vectors construct a relatively linearly separable feature space at meta-

layer input space (Theorem 3). Therefore, linear classifiers perform better than the 

non-parametric classifier, fuzzy k-nn. In addition, Theorem 4 introduced in the 

promises a solution for the constructed linear equation via corresponding 

composition-decomposition technique. 

Meanwhile, there exists a classification performance limit that can be achieved in 

Stacked Generalization algorithm introduced by Theorem 5 and Theorem 6. 

Therefore, the limit should be analyzed over the base layer classifiers and should be 

considered in the design of the architecture.   

It should be noticed that as the number of samples that can be correctly classified 

by at least one classifier increases, in other words, and as the number of classifiers 

that can correctly classify the samples provided by the descriptors increases, the 

performance of SG increases. In that case, the dimensions of the concatenated 

membership vector  trΜ  and the label vector tr
Y increase. It should be remarked that, 

in order to recover the under-determination of the linear equation, the solution matrix 

should have the dimension as the number of samples which require that the 

dimension of tr
Y should be the number of samples. Therefore, as the dimension of 

trY goes to the number of samples, that is, asCK N→ , the performance reaches to 

its limit. 
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6.5 Discussion  

In the present chapter, we investigate the concatenation operation in classification 

problems, which is a black box technique for feature space fusion of pattern 

recognition.  

In Section 6.2, the concatenation problem for the pattern recognition is analyzed.  

In Section 6.3, the concatenation operation is analyzed from three perspectives; 

linear system analysis, geometrical analysis, and functional analysis.  

In the analysis of the concatenation by linear systems, the theorem which states 

the existence of the solutions for the concatenated feature spaces, is introduced, 

namely, Theorem 1. Following Theorem 1, the ratio of error decrease at the meta-

layer feature space is stated by Theorem 2.  

 In the geometrical analysis of the concatenation, the structures of the spaces and 

the transformations between the spaces are visualized and Theorem 1 is verified by 

the experiments implemented on synthetic and Corel Draw datasets. 

In the functional analysis, the concatenation is investigated in terms of error 

functions and hypothesis functions by introducing Theorem 3, which states that the 

space of the concatenated membership vectors is linearly separable.  Theorem 4 

states the performance relations between base layer classifiers and the meta-layer 

classifier by proving the hypothesis proposed in Chapter 4. Theorem 5 states the 

performance limit of SG and Theorem 6 states the conditions in order to obtain 

higher performances in two layer fuzzy SG architectures. 

In Section 6.4, the analysis and the theorems are applied to the classification 

problems in two-layer fuzzy SG architecture and a new classification algorithm, 

which is Meta-FYV, is introduced with its two variations.
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CHAPTER 7 
 

 

EPILOGUE 

 

 

 

“The computers are useless, they can only give answers” 

Pablo Picasso 

 

 

7.1 Observations and Interpretations 

 

    This study investigates the conditions of the general improvements for the 

performances of SG classifiers by analyzing the behavior of the individual classifiers 

to learn the data. For this purpose, a great variety of experiments are performed on 

both real and synthetically generated data sets.  The experiments are restricted to 

control the critical parameters of the SG architecture, which directly and significantly 

affect the overall performance. 

In the first group of experiment, the synthetic data is generated in such a way that 

the samples can be labeled by at least one classifier correctly, at the base layer. It is 

observed that if one assures this condition, the classification performance of SG is 

significantly higher than that of the individual classifier performances. This 

observation shows that the performance of the SG architecture depends on the share 

of detection of the samples rather than the performance of individual classifiers. It is 

well known that high individual classification performances are practically not 

possible to achieve, especially, when the class numbers are high. However, SG 

allows us to reach a substantially high performance even if the performances of the 
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individual classifiers are rather low. This high performance is attributed to the 

following factors 

 i)  The ability of SG to share the correct-labeling of the  samples among 

the classifiers at the base layer. 

 ii) The ability of meta-layer classifier to learn the  mistakes of the base layer 

classifiers. 

In the next sets of the synthetic data experiments, the results show that there is a 

nonlinear sigmoid relationship between the performances of the base layer classifiers 

and that of the overall performance of SG. The parameters of the sigmoid function, k, 

l, m and n depend on the properties of training data and need to be explored further. 

Since the observations can only be made in the restricted experiments, the 

generalization of the sigmoid function is highly difficult. Furthermore, the 

nonlinearity of SG architecture complicates the problem of estimating the above 

mentioned parameters.    

Another problem in SG is the complexity of the controlled data set construction. 

As the dimension of the data sets increases, the alternative values of mean value 

vectors and covariance matrices increase, the degree of freedom in the Euclidean 

space increases, resulting a decrease in the degree of control in the experimentation.  

In the second part of the experiments, the relation between the behavior of the 

training data at the base layer classifiers and the performance of the SG is 

investigated. In order to obtain a meta-layer input data set, which consists of the 

well-separated samples, the samples in the training set that could not be correctly 

labeled by at least one individual classifier are eliminated from the feature space.  

It is observed that, as the number of classifiers increase, the number of the 

samples to be eliminated decreases. As we add more classifiers at the base layer, the 

space become more and more linearly separable. If we have sufficient number of 

classifiers, it is observed that at least one individual classifier can label a sample 

correctly in the base layer and the clustered samples can preserve the topology in the 

meta-layer input space by concatenation, in some manner. However, the preservation 

is not perfect since still some lacks of performance is observed. The characteristics of 

the mapping that will perform with the perfect preservation is still an open and 

unsolved problem, which is one of the black art problems.  
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In the experiments, construction of meta-layer input space by eliminating 

misclassified samples from the base layer output space, improves the classification 

performance of SG. However, one may employ different methods to deal with the 

violation of hypothesis 1 and 2. For example, one may construct the base layer 

classifiers in such a way so that the Hypothesis 1 is satisfied as much as possible. 

Therefore, Hypothesis 1 provides a sufficient condition for the improvement of the 

overall performance of SG. Implementation to assure this condition is yet a separate 

issue.  

7.2 Imminent Route: Dialogue   

In the present work, the analyses of the structure and behavior of the two layer 

fuzzy SG architecture have been established. The result of the analyses reveals new 

conjunctures and the conjectures of the architecture have been introduced. 

During the theoretical investigations of SG structure, we have noticed the 

relations between the base layer feature space and the classification performance of 

the architecture and, also, between the performances of the individual classifiers and 

that of the general SG architecture. We formulate these relationships as two black art 

problems of SG. 

The proposed complementary hypotheses state rigorous explanations on the 

architecture as the milestones on the pathway of the development and the 

consideration of new Stacked Generalization architectures. In the feature work, the 

hypothesis will be enforced with the supplementary hypothesis in order to construct a 

theoretical framework for Stacked Generalization architecture. 

Another conjecture acquired from the theoretical and the experimental studies is 

the sigmoid function that represents the relationship between the base layer feature 

space and the performance of the architecture. Although its controllable parameters, 

in other words, the degree of freedom, is high, the studies that may provide a solution 

to the sigmoid equation would provide very imperative and essential information on 

the architecture. In addition, the equation would present a new sight on the feature 

selection paradigm, which is another black art of pattern recognition. 

In this study, the black art problems of SG are extended beyond the definitions of 

Wolpert, Witten and Tang. In that perspective, new challenging conjunctures of SG 
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are introduced to the pattern recognition community that may lead to new approaches 

in order to consider and develop the ensemble learning and data fusion architectures.  

On the other perspective, the work on the future pathway would be accomplished 

under the new learning paradigm where learning can be formulated as uniting two 

available information to create “new” information. That is why we symbolized the 

concept of learning by “love”, saying “learning is love”. Extending this paradigm 

through the available tools that are provided by the other fields of science to the 

general argument of the Universe, not only the pattern recognition paradigms but 

also most of the, may be all of the, new born “babies” of computer science, would be 

stated in more robust platforms. Additionally, this would enable computer science to 

be considered as the big brother of mathematics, which is reflection and the 

production of human brain, with an additional power, which is the ability of the 

unlimited creativity and implementation process.  

Moreover, the development will be two-fold, in other words, the development of 

the ideas and the paradigms of computer science, would enable the development of 

the corresponding models in the other fields, such as the developments of Quantum 

Information Theory and Quantum Computation Theory. 

The only concern and the conjuncture of that interpretation is that it is based on 

the meaning of the process, not on the result. Therefore, the work that will be 

realized should take care of that consideration. Using the tools of science obtained 

from other grandparents and the parents without any analyses of the process, but 

focusing on the results, with the natural instincts that take the ego under control to 

achieve the results, would be nothing but the waste of time.  

In conclusion, following the light of Athena, the men would focus on the process 

without the concern of accomplishing the results, and would place near Athena at 

Artemis. The Artist enlighten that in order to satisfy the desires of the instincts, one 

should leave out the instincts for a while and feel the delight of information 

acquisition and creativity, which is love, and the ego and the idea would be satisfied 

with the delight. 
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