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ABSTRACT 
 
 

BLUR ESTIMATION AND SUPERRESOLUTION 
FROM 

MULTIPLE REGISTERED IMAGES 
 
 
 

Şenses, Engin Utku 

M.S., Department of Electrical and Electronics Engineering 

Supervisor: Assist. Prof. Dr. İlkay Ulusoy 

 

September 2008, 84 pages 

 

 

Resolution is the most important criterion for the clarity of details on an image. 

Therefore, high resolution images are required in numerous areas. However, 

obtaining high resolution images has an evident technological cost and the value of 

these costs change with the quality of used optical systems. Image processing 

methods are used to obtain high resolution images with low costs. This kind of image 

improvement is named as superresolution image reconstruction. 

 

This thesis focuses on two main titles, one of which is the identification methods of 

blur parameters, one of the degradation operators, and the stochastic SR image 

reconstruction methods. The performances of different stochastic SR image 

reconstruction methods and blur identification methods are shown and compared. 

Then the identified blur parameters are used in superresolution algorithms and the 

results are shown. 

 

Keywords: Superresolution, Blur Estimation / Identification, Image Reconstruction, 

Image Enhancement. 
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ÖZ 
 
 

HİZALANMIŞ ÇOKLU RESİMLERDEN BULANIKLIK TAHMİNİ 
VE 

SÜPER ÇÖZÜNÜRLÜKLÜ GÖRÜNTÜ ELDE ETME 
 
 
 

Şenses, Engin Utku 

Yüksek Lisans, Elektrik – Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Yrd. Doç. Dr. İlkay Ulusoy 

 

Eylül 2008, 84 sayfa 

 

 

Çözünürlük bir görüntü üzerindeki detayların belirginliği açısından önem teşkil eden 

ölçütlerin en başında gelmektedir. Bu yüzdendir ki günümüzde yüksek çözünürlüklü 

görüntüler artık birçok alanda aranır olmuştur. Ancak yüksek çözünürlüklü görüntü 

elde etmenin teknolojik olarak belirgin bir maliyeti mevcuttur ve bu miktarlar 

kullanılan optik sistemlerin kalitesine göre değişmektedir. Daha az maliyetle yüksek 

çözünürlüklü görüntü elde etmek için görüntü işleme yöntemleri kullanılmaktadır. 

Bu şekilde yüksek çözünürlüklü görüntü elde etme işlemi süper çözünürlüklü 

görüntü oluşturma olarak adlandırılır. 

 

Bu tez, görüntü çözünürlüğünü bozan etkenlerden biri olan bulanıklığın tahmin 

edilmesi yöntemleri ve istatistiksel süper çözünürlük metotları olmak üzere iki temel 

başlık üzerinde yoğunlaşmıştır. Farklı istatistiksel süper çözünürlük modellerinin ve 

bulanıklık tahmini yöntemlerinin başarıları gösterilmiş ve karşılaştırılmıştır. Daha 

sonra tahmin edilen bulanıklık değerleri, süper çözünürlük algoritması içerisinde 

kullanılmış ve sonuçlar gösterilmiştir. 
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Anahtar Kelimeler: Süper Çözünürlük, Bulanıklık Tahmini / Tanımlama, İmge 

Yapılandırılması, İmge İyileştirme. 
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 CHAPTER 1 
 
 

INTRODUCTION 
 
 
 

The number of the elements (pixels) that represent a digital image is known as the 

resolution. It can be said that the resolution of the image is directly proportional to 

the number of the pixels in the image. High resolution (HR) is a required 

characteristic in many areas. For instance, medical images, the images must be HR 

for correct diagnosis. Also HR images can be used to evaluate any situation correctly 

on the place that is watched by camera for surveillance applications. On the other 

hand, the requirements to HR images are increasing due to technological 

improvement day by day. 

  

In the last two decades big revolutions become real in the digital imaging. Upgraded 

cameras have the ability to save HR images. In these cameras Charged Coupled 

Device (CCD) and Complementary Metal Oxide Semiconductor (CMOS) sensors are 

used. Photodiodes are placed inside these sensors and by increasing the number of 

these photodiodes the pixel level increases. The pixel level is proportional to the 

photodiodes. High pixel level promotes image resolution. General purposed cameras 

have 30000 – 50000 photodiodes which have sizes change between 2µm - 10µm. HR 

images can be acquired by decreasing the photo sensitive diode size, consequently 

the pixel size. Nowadays sensors are developed that use diodes smaller than 0.35 µm. 

By this development 39 mega pixel images are reached in the professional 

photography. But because of the high prices, these cameras can be used only in 

limited areas. 

 

The physical and the economical limitations direct the people to find new solutions 

for obtaining HR images that are cheaper and easier. In this situation signal 
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processing techniques meet peoples need. The applications of signal processing 

techniques enable to generate HR images by using low resolution images. This 

process is named as “generation of superresolution image”. 

 

The main idea of superresolution (SR) is to create HR images by using different low 

resolution (LR) images which include to the same scene. But it could not be said that 

HR images can be created by only increasing the pixel number. Although pixel 

expresses the resolution, the aim of generating HR image is to uncover the details of 

the scene besides increasing the number of pixels. These details carry high frequency 

information of the image. This process can be done by two ways: 1-) SR Restoration 

is the process that produces HR image without changing the image size, 2-) SR 

Reconstruction uses LR images for increasing pixel level and increasing image 

details of the scene. 

 

Digital image is exposed to some effects during recording. These effects can be listed 

as blurring, motion, decimation and noise. To reach a HR image from LR ones, the 

exposed effects have to be removed. 

 

There are two main approaches which are used to generate HR images. These are 

frequency domain approaches and pixel domain approaches. Various methods have 

been proposed under each approach and these are classified as follows: 

 

� Frequency Domain Approaches: 

� Least Squares Approximation Methods, 

� Recursive Least Squares Approximation Methods, 

� Multichannel Sampling Theorem Methods, 

� Spatial Domain Approaches: 

� Iterated Back Projection (IBP) Methods, 

� Deterministic Methods, 

� Set Theoretic Methods,  

� Stochastic Methods, 

� Hybrid Methods. 
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The scope of this thesis is to find the blurring parameters, one of the effects that 

decrease the resolution, and to create HR images by using one of the well known 

methods of spatial domain approaches, stochastic methods, where the estimated 

blurring parameter is considered also.  

 

This thesis consists of six chapters. In Chapter 1, a brief introduction of digital 

imaging and SR methodology is given. In Chapter 2, observation model of LR 

images is explained. The matrix and the mathematical forms are also derived. In 

Chapter 3, SR approaches are surveyed. In Chapter 4, blur estimation / identification 

methods are surveyed. In Chapter 5, experimental studies for Stochastic Methods and 

blur parameter estimation / identification methods are shown. SR methods are 

applied with the known and the estimated / identified blur parameters. Chapter 6 

provides the conclusions for the overall study. Throughout the thesis, the 

implementations of the methods are generated using MATLAB. The methods are 

examined and analyses of the methods are performed under various blur conditions 

with different sized images.  
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 CHAPTER 2 
 
 

LOW RESOLUTION IMAGE FORMATION 
MODEL 

 
 
 

SR is an ill posed inverse problem because of the effects that degrade the image 

frame during the record of the scene. Some of these effects are caused by the 

limitations of the used camera, as insufficient number of CCD sensors and the 

continuous Point Spread Functions (PSF). The motion between the scene and the 

camera during the record causes warping [22]. And the insufficient amount of light 

of the environment can cause noise. Also the atmospheric conditions cause extra blur 

to the scene. The schematically description of these effects is given in Figure 2.1.  

 

 

 

Figure 2.1  Schematic of the LR observation model. 

 

 

In this chapter, model of the LR image formation is explained. The matrix forms of 

the degradation operators will be shown with examples and the mathematical forms 

of the degradation operators will be derived. The explanation of how to create 
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registered LR images for the tests is given and also an example of registered LR 

image formation is given. 

 

2.1. Observation Model of Low Resolution Images 

 

The general observation model of the LR image with all of the degradation effects 

can be given as, 

 

pinxFHDy iiii
...,,2,1, =+=                    (2.1) 

 

where 

 

� '' y  is the lexicographically ordered vector form of LR image of size 

211 nn× , 

� '' D  is the matrix form of the decimation operator of size 212121 nnqqnn × , 

( 1q  and 2q  are the decimation ratios in vertical and horizontal directions), 

� '' H  is the matrix form of blurring operator of size 21212121 nnqqnnqq × , 

� '' F  is the matrix form of warping operator of size 21212121 nnqqnnqq × , 

� '' x  is the lexicographically ordered vector form of original HR image of 

size 21211 nnqq× , 

� ''n  is the vector form of noise of size 21211 nnqq× ,  

� ‘p’ is the number of available LR image frames. 

 

The decimation matrix symbolizes the sampling operation. In the classic sampling 

theory, the samples take the value of the continuous function at that time as seen in 

Figure 2.2 as one dimension [28]. 
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Figure 2.2  Example of Classic Sampling. 

 

 

In the cameras, the focused light luminous energy on the CCD sensor creates 

electrical energy on the cells. The output of the cell is the sum of these energies [28]. 

This can be shown in Figure 2.3 in one dimension. This is also an integration of the 

luminance values. 

 

 

 

Figure 2.3  Example of Area Sampling. 
 

 

This effect can be seen in the figure below where the pixel intensity value takes the 

average of the luminance values. Hence the spaces between the pixels shown in 

Figure 2.4 are very small; these values are neglected in the calculations.  
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Figure 2.4  The HR pixels and LR pixel formation model. 
 

 

In our implementations the warping effect is assumed to be known. So the warping 

operator is not used in our image model. The warping operations and registration 

operations are done out of the model. Hence, the image formation model of our 

implementations is reduced to the form shown in (2.2). The used algorithm for 

creating registered LR test image formation is given in part 2.4.   

 

pinxHDy iii
...,,2,1, =+= .                            (2.2) 

 

2.2. Matrix Forms of Degradation Parameters 

 

As mentioned before the matrix form of D  is sized as 212121 nnqqnn ×  and it has a 

form shown as below [23 - 25]. 

 





























=

110

11

11

011

1

21

LLLL

M

MLOM

OMO

MOLM

M

LLLL

qq
D              (2.3) 



 8 

An example D  decimation matrix for a 44×  sized image with 221 == qq  that 

decreases the image dimensions to 22×  can be given as, 

 

 



















=

1100110000000000

0011001100000000

0000000011001100

0000000000110011

2

1
2

D              (2.4) 

 

The H  is the matrix of blurring kernel. The dimensions of the blurring kernel are 

smaller than the image dimensions, for example 55×  or 77× . It depends on the PSF 

effect of the used camera. The blurring kernel and its matrix form are shown below. 

 




















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+−

+−−−−
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LL

NMO
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1,,1,
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jijiji

jijiji

hhh

hhh

hhh

h                 (2.5) 
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        (2.6) 

 

An example 33×  dimension h  blurring kernel (2.7) and corresponding 1616×  H  

blurring matrix (2.8) for a 44×  sized image are shown below. 
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The noise is in vector form of the same size of lexicographically ordered LR image 

frame.  

 

2.3. Mathematical Forms of Degradation Parameters 

 

If we remember our observation model mentioned above, 

 

pinxHDy iii
...,,2,1, =+= ,                            (2.9) 

 

we can see that the HR image x  is first blurred with a smoothing kernel. This 

smoothing operation can be done by two dimensional convolution in spatial domain: 

(2.8) 
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),(),(),(
1

0

1

0

1 2

ljkixlkhjia
N

k

N

l

−−= ∑∑
−

=

−

=

.               (2.11) 

 

Then the size of the smoothed image obtained by convolution is reduced by down 

sampling procedure [23 - 25]: 
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In the last step, the noise is added to the blurred, decimated image. 

 

),(),(),( jinjibjiy += .                (2.13) 

 

In our implementations the noise is assumed to be zero mean, independent and 

identically distributed (i.i.d.). Then the probability density function (PDF) of the 

noise can be given as [24, 25]: 
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Here 2
ησ  denotes the variance of the noise. The reconstruction problem now reduces 

to estimating x  given iy 's, which is clearly an ill-posed, inverse problem. 

 

2.4. Creation of Registered Low Resolution Images 

 

As mentioned before the warping parameters are assumed to be known in this thesis 

study and the registration operations are done out of the LR image formation model. 
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Warping may contain global or local translation, rotation, shifts, etc. But for 

simplicity only the horizontal and vertical shifts are considered. The applied steps of 

registered LR frame creation shown schematically in Figures 2.6 and 2.7 are: 

  

� original HR frame boundaries are filled with zeros, 

� zero filled image is resampled by a factor of 2 in each dimensions, 

� new image is shifted with double of the given subpixel values in x and y 

dimensions, 

� shifted image is down sampled by a factor of 2 in each dimensions, 

� the zero boundaries of the image are eliminated, 

� image is convolved with a blurring kernel, 

� blurred image is downsampled by a factor of 2, 

� a Gaussian noise of a variance 5 is added, 

� blurred noise added LR frame boundaries are filled with zeros, 

� zero filled image is resampled by a factor of 2 in each dimensions, 

� new image is shifted with double of the given subpixel values (half negative 

values of the first subpixel shift values) in x and y dimensions, 

� shifted image is down sampled by a factor of 2 in each dimensions, 

� the zero boundaries of the registered LR image frame are eliminated. 

 

The new pixel values (Figure 2.5) are calculated as follows (2.15 – 2.19): 

 

 

 

Figure 2.5 Shifted pixel value calculation 
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2)1(1 PaPak ×−+×= ,                (2.15) 

 

bPbPl ×+−×= 4)1(2 ,                (2.16) 

 

)1(43 aPaPm −+×= ,                (2.17) 

 

bPbPn ×+−×= 3)1(1 ,                (2.18) 

 

( ) 2/)1()1( analbmbkPnew ×+−×+×+−×= .             (2.19) 

 

 

 
 

(a) (b) 

  
(c) (d) 

Figure 2.6 The original HR frame (a) boundaries are filled with zeros (b). (c) shows the resampled 
image and (d) shows the subpixel shifted image. 
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(a) (b) (c) 

  
 

(d) (e) (f) 

  
(g) (h) 

 
  

(i) (j) (k) 

Figure 2.7 Boundary zeros of down sampled image (a) are eliminated (b). Image is blurred by a 
blurring kernel (c), down sampled (d) and added noise (e). The LR frame boundaries are filled with 

zeros (f). Image is resampled (g) and shifted with subpixel values (h). The boundaries of down 
sampled image (i) are eliminated (j). (k) shows the reference LR image frame.  
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 CHAPTER 3 
 
 

SUPERRESOLUTION METHODS 
 
 
 

SR image reconstruction aims to create a HR image from a sequence of LR images 

of a scene. The main expectation of the application is to reach an upper sized and 

more detailed image.  

 

While recording the scene information by a digital camera some effects based on 

atmosphere and hardware cause some information lost about the scene. These effects 

could be classified as follows: 

 

� blur effect caused by the atmospheric conditions, 

� blur effect caused by the PSF of the sensors, 

� motion effect, 

� insufficient photodiode number of the sensors, 

� noise caused by the sensors.  

 

The main idea of SR image reconstruction is to combine the LR data to upper size 

grid as shown in Figure 3.1.  

 

SR is first mentioned by R.Y. Tsai and T.S. Huang in 1984 [1].  They used frequency 

domain approach on a set of decimated and shifted versions of an aerial image scene. 

They did not use blur and noise in their image model. 
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Figure 3.1 Observed and required resolution grids. 

 

 

As mentioned before, there exists two SR approaches in the literature: frequency 

domain and spatial domain approaches. The frequency domain approach methods are 

based on three main principles [27]: 

 

i. the shifting property of the Fourier Transform, 

ii. the aliasing relationship between the Continuous Fourier Transform (CFT) of 

a HR image and Discrete Fourier Transform (DFT) of observed LR f images, 

iii. the assumption that an original HR image is band limited.   

 

These properties make it possible to formulate the system equation relating the 

aliased DFT coefficients of the observed LR images to a sample of the CFT of an 

unknown image.  

 

Kim et.al. handled the frequency domain approach technique presented by Tsai and 

Huang and added blur and noise to their image model and developed an algorithm 

based on weighted recursive least squares theory [2]. M.Tekalp et.al. continued the 

method used in [1, 2] and denoted the blur as the point PSF of the sensors [3]. They 

solved the problem by using least squares approximation. A two step procedure 
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including up sampling and restoration of blur is given. And they showed the 

Projection onto Convex Sets (POCS) formulation as a method for the restoration of 

spatially variant blurred images and also multichannel sampling theorem methods are 

also discussed in [4, 5]. 

 

Frequency domain approaches are simple to implement, because the relationship of 

the LR images and the HR image can be shown easily in frequency domain.  The 

methods have low computational complexity that reduces the hardware requirement. 

One of the disadvantages of the frequency domain approach is the limitation of the 

observation model. The model only includes global translation and linear space 

invariant degradation. And it is hard to implement the spatial domain a-priori 

knowledge for regularization [6]. 

 

Spatial domain approach is the second solution procedure of SR. In this procedure 

extraction of model formulation and the SR calculations are done in spatial domain. 

The linear spatial domain model can accommodate global and non-global motion, 

optical blur, motion blur, spatially varying PSF, non-ideal sampling, compression 

artifacts and more [6]. Spatial domain methods make it possible to include spatial 

domain a-priori knowledge to reconstruction.  

 

The major spatial domain methods can be listed as follows: 

 

� Iterated Back Projection (IBP) Methods 

� Deterministic Methods 

� Set Theoretic Methods  

� Stochastic Methods 

� Hybrid Methods 

 

IBP methods depend on simulate and improve methodology. By using the initial 

estimate of SR image and the degradation model, new simulated images are created. 

Then the error between the observed images and the new simulated images is 
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calculated. Then this error value is back projected to update the initial estimate of HR 

image. This procedure is continued until the error is minimized to a desired value 

(Figure 3.2). 

 

 

 
Figure 3.2  Schematical description of IBP. 

 

 

The mathematical description of IBP cost function (3.1) in minimum least square 

sense and iterative formula (3.2), differentiated cost function with respect to x , can 

be given as: 
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where W  is the observation model and BPW  is the back projection operator. 

Example of IBP methods can be found in [7, 8].  

 

Deterministic SR approaches solve the ill posed inverse problem by using the prior 

information. The only difference of deterministic methods from IBP methods is the 

added regularization term that represents the prior information. The aim of 

deterministic methods is to minimize the cost function in regularized least squares 

sense: 
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Differentiating the cost function with respect to x  and setting to zero gives the 

iterative formula: 
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              (3.4) 

 

where  W  is the observation model, α  is the regularization parameter and C  

generally represents a high pass filter. 

 

POCS is the generally used method in set theoretic reconstruction. The method is 

popular because of its simplicity [6]. Set theoretic methods use some constraint sets 

such as smoothness, bounded energy, fidelity to data, positivity, etc. The aim of the 

POCS method is to find a common point in the intersection of these (convex) 

constraint sets in the SR solution space shown in Figure 3.3. POCS is an iterative 

procedure and if the process convergences it will be in the first few iterations [9].  
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Figure 3.3  Schematic of the POCS Algorithm. 
 

 

While the observation model is given as, 

 

xWy pp=                                (3.5) 

 

where W represents the degradation model, constraint sets are formulated as in (3.6). 

 

{ }0: δ<−= xWyxCi                    (3.6) 

 

where iC   denotes the constraint set. The solution point x̂  lies in the intersection of 

all constraint sets. 
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The initial points jix ,ˆ  must be chosen consistent to all constraint sets. The solution 

point can be found by applying projection operator to the corresponding constraint 

set as follows: 
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Here, P  denotes the projection operator and x̂  is the HR image. Generally x̂  is the 

interpolated version of reference LR image, and it becomes the initial estimate. As an 

example, amplitude constraint set (3.9) with amplitude bounds of 0=α  and 255=β  

is given [29].  The projection P  onto the amplitude constraint set C  is shown in 

(3.10).  

 

{ }βα ≤≤= ),(:),( jixjiyC                              (3.9) 
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POCS procedure is an iterative method. The convergence can be provided by using 

closed convex sets [10].  

 

Maximum Likelihood (ML) Estimation is a popular stochastic method. ML 

Estimation aims to maximize the conditional PDF of the observed data, given the 

original HR image ( )xyP | .  

 

By assuming the noise model of the observed images is zero mean white Gaussian 

with auto correlation matrix 1−W and after some mathematical steps, the ML is 

reduced to the weighted least squares (WLS) estimation [11]: 
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              (3.11) 

 

Differentiating the above formula with respect to x and equating to zero, MLx̂  could 

be computed.  
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Another Stochastic SR image reconstruction method, also called Bayesian approach 

which resembles to ML Estimation, is Maximum a Posteriori Estimation (MAP) 

method. MAP maximizes the PDF of the original HR image, given the observed 

images ( )yxP | .  

 

( )
p

x

yyyxPx ...,,,|maxargˆ
21

=                            (3.12) 

 

By using the Bayesian rule, the above equation becomes, 

 

( ) ( )xPxyyyPx
p

x

|...,,,maxargˆ
21

=  .                          (3.13) 

 

MAP is a special case of ML, where the difference is the included a-priori 

information of the desired HR image. Since the inclusion of a-priori information is 

essential for the solution of ill posed problems, MAP estimation should be used in 

preference to ML estimation [6].  

 

The detailed information about the Stochastic SR image Reconstruction with a-priori 

knowledge will be given in Chapter 5.  

 

Generally the ML or MAP Estimators and the POCS method are used in the hybrid 

methods to construct a SR image. The aim is to combine the benefits of stochastic 

approaches and the set theoretic methods. Some application about hybrid methods 

can be found in [11, 12]. 
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 CHAPTER 4 
 
 

BLUR MODELS AND BLUR ESTIMATION 
METHODS 

 
 
 

While creating an image of a scene, it is required that the information of the observed 

data is useful and has more details. The detail information of the scene is included in 

the high frequency components of the image. Some effects cause blur degradation on 

the image. Blurring makes a low pass filtering operation on the image and suppresses 

the high frequency components. This also means losing of detail information of the 

scene. 

 

Blurring effects reduce the bandwidth of the ideal HR image. It can be caused by the 

imperfect focusing of the camera lenses as shown in Figure 4.1. If there is a relative 

motion between the camera and the scene or if any object in the scene moves with 

respect to the camera, blurring exists on the movement direction. Also atmospheric 

conditions (temperature, exposure time, wind) cause blur on the image. These effects 

are named as the PSF of the sensors. 

 

Blurring is a convolution operation in the spatial domain (4.1), (4.2) or a product 

operation in the frequency domain (4.3). 
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where y, h and x are the degraded image, blurring kernel and the original frame 

respectively. i, j, k and l are the indices of the images and the blurring kernel. 

 

),(.),(),( 212121 wwXwwHwwY =                  (4.3) 

 

where Y, H and X are the Fourier transforms of the degraded image, blurring kernel 

and the original image frame respectively. 

 

 

 
Figure 4.1  Formation of Out of Focus Blur. 

 

 

The spatially continuous PSF ),( lkh  satisfies three constraints [13]: 

 

� ),( lkh  takes non negative values only, 

� when dealing with real valued images the PSF is real valued too, 

� the sum of the blurring kernel values is equal to one (4.4), because the 

blurring degradation operation is an energy preserving transform. 
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The general PSF models can be categorized as follows: 

 

� the Uniform Out of Focus Blur, 

� the Motion Blur, 

� Atmosphere (Gaussian Blur).  

 

The Uniform Out of Focus blur is caused by the imperfect focusing of the camera. 

This type of blurring can affect the whole image or some parts of the image because 

of the distances of the objects in the scene. The spatially continuous PSF of the 

blurring kernel is given by: 
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where R is the diameter of the blurring kernel. In the discrete version boundary 

elements are not taken into account as shown in Figure 4.2. So the above formula can 

be expressed as: 
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where C  is a constant satisfying the condition in (4.4). 
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Figure 4.2  Boundary Elements of Blurring Kernel. 

 

 

The relative motion between the imaging system and the scene or any object 

movement with respect to the camera in the scene cause the motion blur. This motion 

can be in the form of a translation, a rotation, a sudden change of scale, or some 

combinations of these [13]. The most important and generally used model is the 

linear motion blur.  In this type of blurring, the motion is at a constant velocity and it 

makes an angle with the horizontal axis of the scene during the exposure time. The 

PSF kernel is given by: 
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where L = velocity ×  exposure time, and φ is the angle between the motion and the 

horizontal axis of the image. A special case for φ = 0 of discrete version of this 

kernel is given by: 
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The atmosphere turbulence blur relies on some factors such as wind, temperature, 

exposure time. Due to long term exposures, the PSF can be modeled as a Gaussian 

function. 
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( ))2(/)( 222

),( σjieCjid +−=                   (4.9) 

 

where σ  is the variance of the Gaussian blur kernel and C  is the constant satisfying 

the condition in (4.4).  

 

Type and amount of the blurring kernel must be estimated / identified from the 

degraded observed image to achieve the best values of the high frequency 

components of the ideal HR image.  

 

There exist two main blur estimation / identification approaches in the literature. The 

estimation of blur parameters and SR algorithm are handled jointly in the first 

approach. An example study for this type of approach can be found in [30]. The 

second approach, handled in this thesis study, is the identification of blur parameters 

out of the SR algorithm. 

 

The general blur identification methods use the spectral zeros of the frequency 

domain values of the blurred images. But these methods could only identify a certain 

class of blurs.  

 

M. E. Moghaddam has given a model to estimate out of focus blur in [14]. The 

proposed method aims to find the circular zero crossings of the logarithm spectrum 

of the degraded image. The absolute logarithm spectrum of the out of focus blurred 

images has circles that can be seen in Figure 4.3 (d) and (e). Moghaddam used 

Circular Hough Transform to estimate the diameter of these circles. The diameter of 

the circles has an inverse ratio with the original diameter of the blurring kernel as 

seen in Figure 4.3 (d) and (e). Then a formulation (4.10) shows the relation of the 

diameter of the zero crossing and the original diameter.  
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(a) 

  
(b) (c) 

  
(d) (e) 

Figure 4.3  Spectrum Examples. The original image (a) is blurred with out of focus blurring kernels of 
6 pixels radius (b) and 10 pixels radius (c). (d) and (e) are the corresponding spectrums of out of focus 

blurred images respectively. 

 



 28 













−+−+−

>+−+−
=

elseRRRR

RifRRR
R

241.319623.700373.51404.00012.0

17207.54088.4101.00009.0
'2'3'4'

''2'3'

 (4.10) 

 

Shiqian Wu et.al. have used the cepstrum domain to identify blur parameters of out 

of focus blurred and motion blurred images [15]. The cepstrum domain is formulated 

as: 

 

( ) ( ){ }jiGFjiC ,log, 1−= .                (4.11) 

 

where 1−
F  is the inverse Fourier transform operator, ),( jiG  is the Fourier 

Transform of the degraded image and ),( jiC  is the cepstrum of the degraded image. 

Because the logarithm of zero is negative infinite [15], it is also calculated as: 

 

( ) ( ){ }jiGFjiC ,1log, 1 += −                            (4.12) 

 

Corresponding cepstrums for out of focus blurred and motion blurred images are 

shown in Figure 4.4. As it is seen from Figure 4.4 (f and g) the spectral zero 

crossings or the spectral zeros give the parameters for blurring kernels. In the motion 

blur the zero crossings occur in the motion direction and with the length of the kernel 

size. In the out of focus blur a circle occurs and the radius of this formed circle is 

equal to double of the real blur kernel radius. To provide visibility of the normalized 

cepstrums, a mathematical operation is performed as: 

 

( )( )N
CepstrumShownCepstrum −−= 11_               (4.13) 

 

where N is the power coefficient as 10 or 20 that satisfies the visual improvement. 
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(a) 

  
(b) (c) 

  
(d) (e) 

  
(f) (g) 

Figure 4.4 Cepstrum examples. The original image (a) is blurred with a motion blurring kernel of 11 
pixels and an angle of 45 degrees (b). (a) is also blurred with an out of focus blurring kernel with a 

radius of 11 pixels (c). (d) and (e) are the corresponding cepstrums of motion blurred and out of focus 
blurred images respectively. (f) and (g) are the focused ceptrum centers respectively. 
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The above techniques can only be used for the PSFs of having spectral zeros. The 

Gaussian PSFs (Figure 4.5) do not have spectral zeros in frequency domain such as 

motion blur or out of focus blur [13, 16]. Therefore, the Gaussian PSF parameters 

could not be identified with the described techniques. The Gaussian PSFs have to be 

estimated from the degraded data. The general estimation techniques are the Auto 

Regressive Moving Average (ARMA) modeling [16 - 18] of the image and ML 

Estimation [13, 16].   

 

 

 
Figure 4.5 The frequency domain of Gaussian PSF. 

 

 

In ARMA model, space models for the real image and the observed image are given 

as follows: 
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where  

 

� s  is the original HR frame, 

� r  is the observed noisy and blurred image, 

� w  and v  are the independent zero mean Gaussian noise fields with variances 

2
wσ  and 2

vσ respectively, 

� lkc , ’s are the nonsymmetrical half plane model support (4.16) parameters 

(Autoregressive (AR) part), 

� jih , ’s are the blurring parameters (Moving Average (MA) part), 

� m, n are the image density indices; i, j are blur kernel indices and k, l are the 

half plane support indices.  

 

( ) ( ) ( ){ }MlkMMlMklnkmR ≤≤≤≤−<≤<≤−−=+⊕ 1,00,1, U            (4.16) 

 

The relations (4.14, 4.15) are not suitable unless the original HR frame is known. 

Therefore ),( nms  should be eliminated to get a useable model. Combining (4.14) 

and (4.15), interchanging the summations and substituting (4.15) back into the 

resulting equation [16], the model becomes: 
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Moreover, if (4.18) is defined, the equation (4.17) turns into (4.19). 
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Given the representation of (4.19), a likelihood function can be defined as: 

 

( )θθ |),(log)( nmxpL =                 (4.20) 

 

where { } { }]),(,[ *
, jihc lk +−=θ  and ),(* jih +−  are the quarter plane factors described in 

(4.22) and (4.23) [16]. After some steps explained in [16] by Tekalp et.al., 

maximizing the likelihood function turns into minimizing the below function: 
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where N is the number of observations.  

 

),(*),(*),(*),(),( jihjihjihjihjih −+−−+++−=              (4.22) 

 

),(),(),(),( jihjihjihjih −−=−+=+−= −+−−+++−              (4.23) 

 

where Figure 4.6 shows the quarter plane factors and their direction of recursion. 

 

 

 

Figure 4.6  Quarter plane factors and their direction of recursion. 
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For computing the equation (4.21), ),( nmx  is passed through the model transfer 

function defined as: 
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=                 (4.24) 

 

where FH , C  and H  represents the frequency domain values of transfer function, 

half plane support parameters and blur kernel respectively. 

 

By applying the quarter plane factors (4.24) turns into: 
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Another method for Gaussian PSF estimation based on Kurtosis minimization is 

given by Dalong et.al. in [19]. The Kurtosis is a measure of the peakedness of the 

probability distribution of a real-valued random variable and is defined as the fourth 

central moment (4.26) of that random variable. The normal distribution has a kurtosis 

value of three and named as mesokurtic. Kurtosis values smaller than three are 

named platycurtic and the values above three are called leptokurtic.  

 

( )( )
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4

σ

µ−
=

xE
Kurtosis                 (4.26) 

 

where σ  is the standard deviation, µ  is the mean value and x is the random 

variable. 

 

Dalong et.al. restored the blurred, noisy images by wiener filter using different 

variances and different sized Gaussian PSF blurring kernels. The kurtosis value of 

the restored image is used as a measurement parameter. Because the larger kurtosis 
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in a platycurtic distribution means a smoother data [19], the PSF that satisfies the 

minimum kurtosis value is accepted as the real PSF kernel. They compared the 

results with Peak Signal Noise Ratio (PSNR) values of the restored images and 

showed that the max PSNR gives the minimum kurtosis value. 

 

Also some edge based blur identification methods for Gaussian PSFs are discussed in 

[20, 21]. H.Hu and G.de Haan proposed a method that finds the Gaussian blur radius 

by using the differences between the observed image and its reblurred versions [20]. 

An edge localization and derivative procedure is given for Gaussian blur 

identification by Ming Chao Chiang and Terrence E. Boult [21]. 



 35 

 CHAPTER 5 
 
 

EXPERIMENTAL STUDIES 
 
 
 

The studies continued in this thesis can be categorized into two main titles: 

estimation of the blur parameters and the SR reconstruction studies. In the SR study 

part, one of the well known SR image reconstruction methods, the stochastic method 

with a priori knowledge, is handled. In the blur estimation part, the identification 

performances of different methods for different blur models are discussed under 

noiseless and noisy conditions. In the rest of this section the experimental studies and 

the results are given. 

 

5.1. Stochastic Image Reconstruction Method with a Priori Knowledge – 
Maximum a Posteriori Method 

 

In statistics, the method of MAP estimation can be used to obtain a point estimate of 

an unobserved quantity on the basis of empirical data. MAP employs an augmented 

optimization objective which incorporates a prior distribution over the quantity one 

wants to estimate [31]. 

 

MAP estimation technique is used to obtain the HR image x  given the ensemble of 

LR images. The estimation of the HR image from LR ones is given as: 

 

),...,,|(maxargˆ 21 p
x

yyyxPx = .                 (5.1) 

 

From Bayes’ rule, this can be written as: 
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Since the denominator is not a function of x̂ , above equation becomes: 

 

)()|,...,,(maxargˆ 21 xPxyyyPx p
x

= .                 (5.3) 

 

Taking the log of posterior probability, 

 

)](log)|,...,,(log[maxargˆ 21 xPxyyyPx p
x

+= .               (5.4) 

 

Hence, we need to specify the conditional density )|,...,,( 21 xyyyP p  and the prior 

image density )(xP . )(xP  is used as regularization term and it can be defined by 

different models. Because small amount of noise will result in large perturbations, 

considering regularization in SR algorithm as a means for picking a stable solution is 

very useful [22].  

 

Since the noises ( in ’s) are independent, 
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Since the noise is assumed to be i.i.d. Gaussian,  
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Eliminating the constants, the conditional density becomes 
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Substituting (5.9) into (5.6), the final cost function becomes: 
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or 
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The above cost function resembles the given cost function form in deterministic 

method (3.3) with the difference of regularization term. The regularization operator 

C  is generally a high pass filter in deterministic method, but in MAP method the 

regularization term depends on PDF of solution x , )(log xP . 

 

Sina Farsiu et.al. have used L1 Norm (5.12) approach instead of L2 Norm as data 

fidelity term for general purpose, because L2 Norm is only optimal for the case of 

Gaussian noise [22, 26]. 
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D. Rajan and S. Chaudhuri have given a Markov Random Field (MRF) based prior 

model with Gibbs density function in [23, 24] as: 

 



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c xV
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xP )(exp
1

)( ,                (5.13) 

 

where Z  is a normalizing constant known as the partition function, ( )
c

V  is the 

clique potential and C  is the set of all cliques in the image. Cliques depend on the 

neighborhood of the pixels shown in Figure 5.1. 

 

 

  
(a) (b) 

Figure 5.1 Eight neighbors of the pixel (a) and the possible clique combinations (b). 
 

 

Different cost functions can be written by using various clique combinations. As an 

example, a quadratic cost which is a function of finite difference approximations of 

first order derivative at each pixel location can be shown as follows: 
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where λ  is a tuning (regularization) parameter.  
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Sina Farsiu et.al. have given different regularization term models in [22, 26], which 

are 

 

� Tikhonov,  

� Total Variation (TV), 

� Bilateral Total Variation (BTV). 

 

The Tikhonov regularization term is defined as: 

 

( ) 2

2
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where the kernel is  
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TV Prior is an edge preserving regularization term model and defined as: 
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where ∇  is the gradient operator. The mathematical form is: 
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where l

x
S  and m

yS  shift x  in horizontal and vertical directions by l and m pixels. λ  is 

the regularization parameter and α  is the scalar weight of the derivatives. The BTV 

regularization resembles TV regularization. The only difference is ( )1>P . 
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The regularization parameters in (5.14) and (5.18) dictate the strength with which the 

regularization term is enforced [26]. Assigning the value of λ  can be done by visual 

inspection or automatically by using some methods as Generalized Cross Validation 

or L-curve. The scalar weight α  in (5.18) is assigned between zero and one, 

10 << α , to satisfy a spatially decaying effect to the summation [26].  

 

Our aim now reduces to minimizing the cost function in (5.11). The generally used 

minimization procedure is the gradient descent optimization which is an iterative 

procedure. Thus the estimated image x̂  of the thn )1( +  iteration is written as: 
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The regularization terms mentioned above are used with L1 and L2 norms. The 

gradients of all different of regularization terms are given below. 

 

Gradient of L1 Norm and MRF based regularization term: 

 



















−−−−

+−

−=

∑∑

∑

= =

+−+−

=

+
M

k

N

l

lknlknlknlknlkn

p

i

ini

T

i

T

nn

xxxxx

yxDHsignHD

xx

1 1
,1)(,1)(1,)(1,)(,)(

1
)(2

)()1(

)ˆˆˆˆˆ4(2

)ˆ(
1

ˆˆ

λ

σ
β

η      (5.20) 

 

Gradient of L1 Norm and Tikhonov regularization term: 
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Gradient of L1 Norm and TV regularization term: 
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Gradient of L1 Norm and BTV regularization term: 
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Gradient of L2 Norm and MRF based regularization term: 

 



















−−−−

+−

−=

∑∑

∑

= =

+−+−

=

+
M

k

N

l

lknlknlknlknlkn

p

i

ini

T

i

T

nn

xxxxx

yxDHHD

xx

1 1
,1)(,1)(1,)(1,)(,)(

1
)(2

)()1(

)ˆˆˆˆˆ4(2

)ˆ(
1

ˆˆ

λ

σ
β

η        (5.24) 

 

Gradient of L2 Norm and Tikhonov regularization term: 
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Gradient of L2 Norm and TV regularization term: 
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Gradient of L2 Norm and BTV regularization term: 
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For evaluating the performances of the given cost functions above different LR 

images are created from the images given in Figure 5.2. The HR images are 

convolved by blurring kernels sized 77 ×  pixels with variances (0.3, 0.5, 0.7, 0.9 

and 1.1) then the dimensions are decreased by a factor of two and a white Gaussian 

noise with a variance of 5.0 is added. As an example, the original frame and the 

corresponding LR frames of Cameraman image are shown in Figure 5.3.  
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(a) (b) 

  
(c) (d) 

Figure 5.2 The used test images. Cameraman (a), Lena (b), Peppers (c) and Eia (d). 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 5.3 The original image (a) and LR frames blurred by different variance Gaussian kernels (0.3, 
0.5, 0.7, 0.9 and 1.1 respectively) and added noise (b - f). 
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The regularization parameter λ is chosen as 0.06 for MRF based regularization term 

and 0.4 for other regularization terms. The scalar weight α is assigned as 0.6 for TV 

and BTV regularization terms. The initial estimate of the image x̂  is chosen as the 

bilinear interpolation of the least degraded LR image frame. Mean Square Error 

(MSE) (5.28) and PSNR (5.29) criterions are used for the performance measurement.   
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Table 5.1 shows the results of reconstruction approaches for the test images given in 

Figure 5.2. In the first column the applied stochastic approaches (5.20 – 5.27) are 

given.  Estimated Image results are put as a row at the bottom of each method to 

make compare easy. “Iter. No” shows the iteration number of the methods. All of the 

iterations of “L1 Norm & Tikhonov Regularization” and some of the iterations of 

“L2 Norm & Tikhonov Regularization” approaches are stopped after a level, because 

the results get worse after an amount of iterations. The stopped iteration result areas 

are marked with (***). The best results are reached with “L1 Norm & TV 

Regularization” and “L1 Norm & BTV Regularization”, these areas are written bold 

and italic.  
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Table 5.1  Results of the reconstruction approaches. 

IMAGE LENA CAMERAMAN PEPPERS EIA 

METHOD 
Iter. 
No 

MSE PSNR MSE PSNR MSE PSNR MSE PSNR 

10 0,0037 29,5037 0,0085 26,1979 0,0079 26,7042 0,0128 23,6505 
35 0,0039 29,296 0,008 26,4979 0,0072 27,0932 0,0101 24,6754 
50 0,004 29,1765 0,0078 26,5756 0,0071 27,1537 0,0095 24,9303 

L1 Norm  
& 

MRF Based 
Regularization  100 0,0046 28,5808 0,008 26,508 0,007 27,2222 0,0084 25,453 

Estimated Image  0,0053 25,7405 0,0107 25,2159 0,0118 24,9702 0,0177 22,24 
          10 0,008 26,2087 0,0135 24,2142 0,014 24,2131 0,0138 23,3016 

35 0,0065 27,0829 0,012 24,7282 0,0118 24,9692 0,0141 23,2295 

50 0,0053 28,0073 0,0104 25,3598 0,0094 25,9719 0,0117 24,0228 

L2 Norm  
& 

MRF Based 
Regularization  100 0,0053 27,972 0,0103 25,3714 0,0093 25,9929 0,0118 23,9981 

Estimated Image  0,0053 25,7405 0,0107 25,2159 0,0123 24,9702 0,0176 22,24 
          10 0,0036 29,6625 0,0084 26,2614 0,0077 26,8055 0,0126 23,6912 

35 0,0033 30,017 0,0073 26,8596 0,0068 27,7151 0,0093 25,0467 
50 0,0033 30,044 0,0071 26,9737 0,0066 27,3556 0,0084 25,4473 

L1 Norm  
& 

TV 
Regularization 100 0,0034 29,8829 0,0069 27,1253 0,0063 27,4835 0,0067 26,481 

Estimated Image  0,0053 25,7405 0,0107 25,2159 0,0118 24,9702 0,0177 22,24 
          10 0,0056 27,784 0,011 25,1119 0,0113 25,1723 0,0183 22,0789 

35 0,0062 27,2729 0,0116 24,8733 0,0104 25,5352 0,0205 21,6029 
50 0,0066 27,0415 0,0119 24,7507 0,01 25,6801 0,0208 21,3181 

L2 Norm  
& 

TV 
Regularization 100 0,0074 26,5256 0,0126 24,4945 0,0094 25,9626 0,0261 20,5503 

Estimated Image  0,0053 25,7405 0,0107 25,2159 0,0118 24,9702 0,0177 22,24 
          10 0,0036 29,6287 0,0085 26,212 0,0076 26,8812 0,0129 23,5919 

35 0,0033 30,0218 0,0073 26,8615 0,0065 27,5317 0,0092 25,0668 
50 0,0033 30,0303 0,0072 26,9275 0,0063 27,6644 0,0083 25,5241 

L1 Norm  
& 

BTV 
Regularization 100 0,0034 29,9571 0,007 27,0501 0,006 27,8861 0,0067 26,4619 

Estimated Image  0,0053 25,7405 0,0107 25,2159 0,0118 24,9702 0,0177 22,24 
          10 0,0064 27,2 0,0118 24,7918 0,0116 25,055 0,0183 22,0789 

35 0,0087 25,8141 0,0143 23,9589 0,0116 24,0306 0,0205 21,6029 

50 0,0098 25,3169 0,0154 23,6336 0,0118 24,9653 0,0218 21,3181 

L2 Norm  
& 

BTV 
Regularization 100 0,0124 24,3026 0,018 22,9606 0,0124 24,7474 0,0261 20,5503 

Estimated Image  0,0053 25,7405 0,0107 25,2159 0,0118 24,9702 0,0177 22,24 
          10 0,0043 28,8943 0,0089 26,0384 0,0084 26,4488 0,0126 23,7194 

35 0,0569 17,6809 0,0628 17,5341 0,0328 20,5344 0,0896 15,1894 
50 *** *** *** *** *** *** *** *** 

L1 Norm  
& 

Tikhonov 
Regularization 100 *** *** *** *** *** *** *** *** 

Estimated  0,0053 25,7405 0,0107 25,2159 0,0118 24,9702 0,0177 22,24 
          10 0,0056 27,784 0,0095 25,7311 0,011 25,2493 0,0146 23,0683 

35 0,0062 27,2729 0,0668 17,2691 0,0296 20,9781 0,0831 15,5131 
50 0,0066 27,0415 *** *** *** *** *** *** 

L2 Norm  
& 

Tikhonov 
Regularization 100 0,0074 26,5256 *** *** *** *** *** *** 

Estimated Image  0,0053 25,7405 0,0107 25,2159 0,0118 24,9702 0,0177 22,24 
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In Chapter 2 the image formation model was given as matrix forms. But these 

matrices can be interpreted as direct image operators such as shift, blur and 

decimation [22]. The computational complexity and the hardware requirement 

reduce due to using the direct image operators. An example application schema of 

“L1 Norm & TV Regularization” (5.22) and “L1 Norm & BTV Regularization” 

(5.23) is shown below. 

 

 

 

Figure 5.4 Block Diagram of direct image operator applications. 
 

 

The initial estimates and the superresolved images are shown in the following 

figures. 
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(a) MSE = 0.0107 PSNR = 25.2159 (b) MSE = 0.0069 PSNR = 27.1253 

  
(c) MSE = 0.0053 PSNR = 25.7405 (d) MSE = 0.0033 PSNR = 30.0333 

Figure 5.5 The bilinear interpolated initial estimates (a, c) from LR frames and SR frames (b, d) of the 
test images. 
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(a) MSE = 0.0177 PSNR = 22.2400 (b) MSE = 0.0067 PSNR = 26.4679 

  
(c) MSE = 0.0118 PSNR = 24.9702 (d) MSE = 0.0063 PSNR = 27.4835 

Figure 5.6 The bilinear interpolated initial estimates (a, c) from LR frames and SR frames (b, d) of the 
test images. 



 50 

5.2. Blur Identification 

 

Because SR image reconstruction is an ill posed inverse problem, the degradation 

models must be known or identified from the observations while achieving a 

superresolved image from a sequence of degraded images. Blur is one of the 

degradation operators. As mentioned before, the general encountered blur models 

are: 

 

� Out of Focus Blur, 

� Motion Blur, 

� Gaussian Blur. 

 

In this part, the identification methods of mentioned blur types are applied and the 

performance will be discussed.  

 

5.2.1. Out of Focus Blur Identification 

 

For the identification of out of focus blur, the logarithm spectrum approach [14] and 

the cepstrum approach [15] are tried with noiseless and noisy observations for 

different sized blur kernels. The methods are tried on different sized images: Lena, 

Eia, Peppers, and Cameraman shown in Figure 5.2. All of the images are convolved 

with the same blurring kernels and the results are compared.  

 

As seen from the Figures 5.7 and 5.8, the first spectral zeros occur at the 10th pixel of 

the diagonal from the center for the noiseless and noisy out of focus blurred Lena 

images with a blurring radius of 11 pixels. Table 5.2 shows the first spectral zeros of 

the images for different blur radius values.  
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Table 5.2 First spectral zeros of out of focus blurred images (Spectrum Method). 

Image Lena Eia Peppers Cameraman 
Blur 

Radius 
N.less Noisy N.less Noisy N.less Noisy N.less Noisy 

5 pixels 25th p 24th p 32nd p 36th p --- --- 22nd p 25th p 
7 pixels 16th p 19th p 21rst p 21rst p --- --- 16th p 18th p 
11 pixels 10th p 10th p 10th p 11th p --- --- 11th p 9th p 

 

 

  
(a) (b) 

 
(c) 

Figure 5.7 The logarithm spectrum of out of focus blurred image (a) is shown in (b). (c) shows the 
logarithm spectrum values of diagonal elements from the center. 
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(a) (b) 

 

(c) 

Figure 5.8 The logarithm spectrum of out of focus blurred noise added image (a) is shown in (b). (c) 
shows the logarithm spectrum values of diagonal elements from the center. 

 

 

In the logarithm spectrum the formed circle radius values have an inverse ratio with 

the radius of blur kernel, 
circlenel

RR /1ker ≈ . The disadvantageous of the logarithm 

spectrum is that the occurred circles can be ellipsoids due to the dimensions of the 

interested image. For example Peppers image size is 512440×  and logarithm 

spectrum is elliptical as seen in Figure 5.9. Table 5.2 shows that the observed circle 

radius values are not same for all images, it changes with the image dimensions. For 
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example the first spectral zeros for an out of focus blurring kernel of 5 pixels radius 

for 360360×  sized noiseless Eia image and 256256×  sized noiseless Lena image 

are occurred at 32nd pixel and 25th pixel respectively. Also the observed spectral 

zeros for the same sized images such as Lena and Cameraman are not same, and the 

logarithm spectrum method for out of focus blur identification is not robust to noise. 

 

 

  
(a) (b) 

Figure 5.9 The logarithm spectrum of out of focus blurred Peppers image (a) is shown in (b). 

 

 

As seen from the Figures 5.10 and 5.11, which are the results of image cepstrums, 

the minimum values occur at the 15th pixel of the diagonal for the noiseless image 

and at the 15th pixel of the noisy out of focus blurred Cameraman images with a 

radius of 11 pixels. Table 5.3 shows the minimum diagonal values from the center of 

the other images with different radius values. To provide visibility of the normalized 

cepstrums, (4.13) is applied with N = 10 for noiseless frame cepstrum and N = 20 for 

noisy frame cepstrum.  The noisy image cepstrum is smoothed with a 55×  

dimensions kernel to detect the spectral zeros easily (Figure 5.11 - d).  
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(a) 

  
 (b) (c) 

 
(d) 

Figure 5.10 The cepstrum of blurred image (a) with an out of focus blurring kernel of radius 11 pixels 
is shown in (b). (c) focused center of the cepstrum. (d) shows the cepstrum values of  diagonal 

elements from the center. 
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(a) (b) 

  

(c) (d) 

 
(e) 

Figure 5.11 The cepstrum of blurred image (a) with an out of focus blurring kernel of radius 11 pixels 
and added noise is shown in (b). (c) focused center of the cepstrum. (d) shows the smoothed view of 

(c). (d) shows the values of  diagonal elements of smoothed cepstrum values from the center. 
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Table 5.3 First spectral zeros of out of focus blurred images (Cepstrum method). 

Image Lena Eia Peppers Cameraman 
Radius N.less Noisy N.less Noisy N.less Noisy N.less Noisy 

5 7th p 7th p 7th p 7th p 7th p 7th p 7th p 7th p 
7 9th p 9th p 9th p 9th p 9th p 9th p 9th p 9th p 

11 15th p 15th p 15th p 15th p 15th p 15th p 15th p 15th p 
 

 

As seen from the Table 5.3 cepstrum of the out of focused images is robust to noise 

and results do not change with the image dimensions, i.e., the observed spectral 

circles have the same diameters. The values are the diagonal values of the image 

cepstrums. The real blur kernel diameter can be calculated from these observations as 

follows: 

 

( ) 2/*2 2
RadiusCepstrumObservedRadius ≈              (5.30) 

 

As an example for radius of 11 pixels, observed cepstrum radius is 15 pixels on the 

diagonal and the estimated blur radius is computed as follows: 

 

606,10112/15*211 2 ≈⇒≈  

 

Also the performance is tested with real camera images beside synthetic test images. 

For the out of focus blur identification the bookshelf images shown in Figure 5.12 (a) 

and 5.13 (a) are used. The cepstrum method is applied to both of these images and 

the identified blurs are shown in Figure 5.12 (b) and 5.13 (b) and the blur parameters 

are found to be 7 pixels and 8 pixels respectively by using (5.30). It is seen that the 

image in Figure 5.13 (a) is more blurry and the identified blur diameter is bigger. To 

provide visibility of the normalized cepstrums, (4.13) is applied with N = 10 for real 

frame cepstrums.    
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(a) 

  
(b) (c) 

 
(d) 

Figure 5.12 Cepstrum domain of out of focus blurred real camera image (a) is shown in (b). (c) shows 
the zoomed cepstrum center values. (d) shows the diagonal cepstrum elements from the center. 
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(a) 

  
(b) (c) 

 
(d) 

Figure 5.13 Cepstrum domain of out of focus blurred real camera image (a) is shown in (b). (c) shows 
the zoomed cepstrum center values. (d) shows the diagonal cepstrum elements from the center. 
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5.2.2. Motion Blur Identification 

 
For the identification of motion blur, the logarithm spectrum approach [14] and the 

cepstrum approach [15] are tried with noiseless and noisy observations for different 

sized blur kernels. The methods are tried on different sized images: Lena, Eia, 

Peppers, and Cameraman shown in Figure 5.2. All of the images are convolved with 

the same blurring kernels and the results are compared.  

 

As seen from the Figures 5.14 and 5.15, the first spectral zeros occur at the 15th pixel 

of the diagonal from the center for the noiseless and noisy motion blurred Eia images 

with an angle of 45 degrees and length of 11 pixels. Table 5.4 shows the first spectral 

zeros of the images for different blur radius values.  

 

 

Table 5.4 First spectral zeros of motion blurred images (Spectrum method). 

Image Lena Eia Peppers Cameraman 
Blur Size N.less Noisy N.less Noisy N.less Noisy N.less Noisy 

9x9 13th p 14th p 20th p 20th p --- --- 15th p 15th p 
11x11 10th p 10th p 15th p 15th p --- --- 11th p 11th p 
13x13 9th p 10th p 14th p 14th p --- --- 8th p 10th p 

 

 

In the logarithm spectrum, the first spectral zero values have an inverse ratio with the 

size of blur kernel, )/1(ker zerosnel
SS α . The disadvantageous of the logarithm 

spectrum is that the occurred spectral zero angles can be changed due to the 

dimensions of the interested image. For example ( )512440×  pixels sized Peppers 

image seen in Figure 5.16. Table 5.4 shows that the spectral zeros do not occur on 

the same points for the same sized images such as Lena and Cameraman. Also the 

logarithm spectrum method is not robust to noise for motion blur identification. 
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(a) (b) 

 
(c) 

Figure 5.14 Logarithm spectrum of motion blurred noiseless Eia image (a) 11 pixels length motion 
blur kernel with an angle of 45 is shown in (b). (c) shows the logarithm spectrum values of diagonal 

elements from the center. 
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(a) (b) 

 
(c) 

Figure 5.15 Logarithm spectrum of motion blurred noisy Eia image (a) 11 pixels length motion blur 
kernel with an angle of 45 is shown in (b). (c) shows the logarithm spectrum values of diagonal 

elements from the center. 
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(a) (b) 

Figure 5.16 Logarithm spectrum of motion blurred noiseless Peppers image (a) by 11 pixels length 
motion blur kernel with an angle of 45 is shown in (b).  

 

 

As seen from the Figures 5.17 and 5.18, which are the results of image cepstrums, 

the minimum values occur at the 11th pixel of the diagonal for the noiseless image 

and at the 11th pixel of the noisy out of focus blurred Cameraman images with an 

angle of 45 degrees and length of 11 pixels. Table 5.5 shows the minimum diagonal 

values from the center of the other images with different radius values. To provide 

visibility of the normalized cepstrums, (4.13) is applied with N = 10 for noiseless and 

noisy frame cepstrums.   

 

 

Table 5.5 First spectral zeros of motion blurred images (Cepstrum method). 

Lena Eia Peppers Cameraman Image 
Radius N.less Noisy N.less Noisy N.less Noisy N.less Noisy 

5 5th p 5th p 5th p 5th p 5th p 5th p 5th p 5th p 
7 7th p 7th p 7th p 7th p 7th p 7th p 7th p 7th p 

11 11th p 11th p 11th p 11th p 11th p 11th p 11th p 11th p 
 

 

As seen from the Table 5.5 cepstrum of the motion blurred images is robust to noise 

and the results do not change with the image dimensions, the observed spectral zeros 

occurred in the same locations.  
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(a) 

  
(b) (c) 

 
(d) 

Figure 5.17 Cepstrum of noiseless motion blurred Cameraman image (a) by 11 pixels length motion 
blur kernel with an angle of 45 is shown in (b). (c) shows the cepstrum values of diagonal elements 

from the center.  
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(a) 

  
(b) (c) 

 
(d) 

Figure 5.18 Cepstrum of noisy motion blurred Cameraman image (a) by 11 pixels length motion blur 
kernel with an angle of 45 is shown in (b). (c) shows the cepstrum values of diagonal elements from 

the center. 
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5.2.3. Gaussian Blur Identification 

 

For the identification of Gaussian blur, the Kurtosis minimization method [19] and 

the ARMA approach [16-18] are tried with noiseless and noisy observations for 

different sized blur kernels. The methods are tried on different sized images: Lena, 

Eia, Peppers, and Cameraman shown in Figure 5.2. All of the images are convolved 

with the same blurring kernels and the results are compared.  

 

Kurtosis minimization method is tried with the test images for Gaussian blur 

identification. The images are first blurred with different known blur variances. Then 

the blurred images are deconvolved with wiener filter for different sized blur kernels 

with different variances. And the original blur kernels and the kernels that result the 

minimum Kurtosis value are shown in Table 5.6.   

 

 

Table 5.6 Real and identified Gaussian blur kernels with Kurtosis Minimization. 

Image 
Original Blur Kernel Size & 

Variance 

Blur Kernel Size and Blur 
Variance with minimum 

Kurtosis value 
   

Lena 7 x 7 pixels & σ (blur) = 1.5 5 x 5 pixels & σ (blur) = 1.2 

   

Peppers 7 x 7 pixels & σ (blur) = 1.1 5 x 5 pixels & σ (blur) = 0.1 

   

Eia 9 x 9 pixels & σ (blur) = 1.9 9 x 9 pixels & σ (blur) = 1.9 

   

Cameraman 7 x 7 pixels & σ (blur) = 2.0 7 x 7 pixels & σ (blur) = 2.0 

 

 

It is clearly seen from Table 5.6 that Kurtosis minimization approach for Gaussian 

blur kernel identification is not successful for all images.  
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Figures 5.19 and 5.20 show the results of Gaussian blur identification method 

ARMA. It can be clearly seen that the deconvolved images of blurred one with the 

original blur kernel and with the estimated blur kernel are closer.   

 

 

  
(a) (b) 

  
(c) (d) 

Figure 5.19 The Lena image (a) is blurred by a kernel of 77 ×  pixels with variance 1.5. (c) and (d) 
shows the deblurred images with estimated parameters and original parameters respectively. 
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(a) (b) 

  
(c) (d) 

Figure 5.20 The Cameraman image (a) is blurred by a kernel of 77×  pixels with variance 2.5. (c) 
and (d) shows the deblurred images with estimated parameters and original parameters respectively. 

 

 

5.3. Superresolution with Identified Blur Parameters 

 

In this part, the proposed SR reconstruction method, MAP based BTV approach, is 

handled with identified blur parameters by the methods described in Section 5.2.  

 

The regularization parameter λ is chosen as 0.3, α is chosen as 0.4, β is chosen as 

0.002 and P = 2 for BTV regularization term. The initial estimate of the image x̂  is 

chosen as the pixel medians of bilinear interpolated LR image frames. 
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5.3.1. Out of Focus Blur Estimation and Superresolution 

 

For the implementation, the used test images are shifted with known subpixel values 

and convolved with blur kernels with diameters 3, 5 and 7 pixels for different test 

conditions. The blurred images are then downsampled. Images are registered after 

the Gaussian noise is added. For each test image five LR images are created. The 

initial estimate HR frames are created by the pixel medians of the bilinear 

interpolated versions of the registered LR frames. Table 5.7 shows the real blur 

kernels and the identified blur kernels from initial estimates of the HR grid image by 

using the cepstrum method. 

 

 

Table 5.7 Real and estimated Out of Focus Blur parameters. 

Real Blur Kernels 
Image 

3 pixels 5 pixels 7 pixels 
Cameraman 2,8284 ≈ 3 5,6568 ≈ 5 7,0710 ≈ 7 

Eia 2,8284 ≈ 3 5,6568 ≈ 5 7,0710 ≈ 7 
Lena 2,8284 ≈ 3 5,6568 ≈ 5 7,0710 ≈ 7 

Peppers 2,8284 ≈ 3 5,6568 ≈ 5 7,0710 ≈ 7 
 

 

Table 5.8 shows the BTV approach results of the test images, PSNR and MSE are 

used for scalar comparison. Also Figures 5.21 – 5.23 show the visual improvement 

of the LR images. 

 

 

Table 5.8 Iteration results of Out of Focus blurred Images. 

Cameraman Eia Lena Peppers Blur Kernel 
Diameter MSE PSNR MSE PSNR MSE PSNR MSE PSNR 

3 0,0090 25,9560 0,0100 24,6912 0,0038 29,4707 0,0029 31,6559 
Initial Image 0,0145 23,8909 0,0245 20,8134 0,0075 26,4900 0,0049 28,8139 

5 0,0098 25,6007 0,0097 24,8605 0,0044 28,7669 0,0026 31,6077 
Initial Image 0,0169 23,2247 24,8605 19,7491 0,0091 25,6311 0,0058 28,0789 

7 0,0125 24,2114 0,0194 21,8342 0,0059 27,5579 0,0032 30,5792 
Initial Image 0,0214 22,2161 0,0447 18,2074 0,0120 24,4410 0,0076 26,9073 
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(a) (b) 

  
(c) (d) 

Figure 5.21 The Cameraman image (a) is blurred by an out of focus blurring kernel of 3 pixels 
diameter and down sampled by a factor of two in both dimensions and added noise (b). (c) is the pixel 

medians of bilinear interpolated  registered LR frames. (d) is the superresolved image. 
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(a) (b) 

  
(c) (d) 

Figure 5.22 The Eia image (a) is blurred by an out of focus blurring kernel of 5 pixels diameter and 
down sampled by a factor of two in both dimensions and added noise (b). (c) is the pixel medians of 

bilinear interpolated registered LR frames. (d) is the superresolved image. 
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(a) (b) 

  
(c) (d) 

Figure 5.23 The Lena image (a) is blurred by an out of focus blurring kernel of 7 pixels diameter and 
down sampled by a factor of two in both dimensions and added noise (b). (c) is the pixel medians of 

bilinear interpolated registered LR frames. (d) is the superresolved image. 
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5.3.2. Motion Blur Estimation and Superresolution 

 

This type of SR can be possible for the video frames with a motion with constant 

speed and angle. The interested parts of video frames, where the dimensions are 

smaller than the video frame, must be registered then the proposed methods must be 

applied. For instance, when a 4040×  sizes part of a video frame of sizes 480640×  

with a motion of 7 pixels speed and 45 degree angles is handled, the interested part 

will be approximately shifted 7 pixels with 45 degrees in each frame of the video one 

after another. When these interested parts of the motion blurred frames are 

registered, it will be possible to use SR techniques.  

 

For the implementation, the used test images are shifted with known subpixel values 

and convolved by blur kernels with 45 degree angles and 5, 7 and 9 pixel motions for 

different test conditions. The blurred images are then downsampled. Images are 

registered after the Gaussian noise is added. For each test image five LR images are 

created. The initial estimate HR frames are created by the pixel medians of the 

bilinear interpolated versions of the registered LR frames. Table 5.9 shows the real 

blur kernels and the identified blur kernels from initial estimates of the HR grid 

image by using the cepstrum method.  

 

 

Table 5.9 Real and estimated Motion Blur parameters. 

Image 
45 degrees &  

5 pixels 
45 degrees &  

7 pixels 
45 degrees &  

9 pixels 
Cameraman 5 pixels 7 pixels 9 pixels 

Eia 5 pixels 7 pixels 9 pixels 
Lena 5 pixels 7 pixels 9 pixels 

Peppers 5 pixels 7 pixels 9 pixels 
 

 

Table 5.10 shows the BTV approach results of the test images, PSNR and MSE are 

used for scalar comparison. Also Figures 5.24 – 5.26 show the visual improvement 

of the LR images. 
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Table 5.10 Iteration results of Motion blurred Images. 

Cameraman Eia Lena Peppers Angle & 
Motion MSE PSNR MSE PSNR MSE PSNR MSE PSNR 

45 degrees &  
5 pixels 

0,0173 24,0076 0,0175 22,2655 0,0049 28,2281 0,0028 31,2387 

Initial Image 0,0200 22,5005 0,0425 18,4203 0,0105 25,0383 0,0071 27,1902 
45 degrees &  

7 pixels 0,0128 24,4440 0,0309 19,8129 0,0056 27,7521 0,0044 29,2380 

Initial Image 0,0252 21,5041 0,0619 16,7915 0,0138 23,8377 0,0096 25,8773 
45 degrees &  

9 pixels 0,0139 24,0812 0,0476 17,9287 0,0064 27,1643 0,0049 28,7909 

Initial Image 0,0299 20,7585 0,0793 15,7163 0,0171 22,9016 0,0122 24,8225 

 

 

  
(a) (b) 

  
(c) (d) 

Figure 5.24 The Cameraman image (a) is blurred by a motion blurring kernel of 5 pixels length with 
an angle of 45 degrees and down sampled by a factor of two in both dimensions and added noise (b). 
(c) is the pixel medians of bilinear interpolated registered LR frames. (d) is the superresolved image. 
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(a) (b) 

  
(c) (d) 

Figure 5.25 The Eia image (a) is blurred by a motion blurring kernel of 7 pixels length with an angle 
of 45 degrees and down sampled by a factor of two in both dimensions and added noise (b). (c) is the 

pixel medians of bilinear interpolated registered LR frames. (d) is the superresolved image. 
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(a) (b) 

  
(c) (d) 

Figure 5.26 The Lena image (a) is blurred by a motion blurring kernel of 9 pixels length with an angle 
of 45 degrees and down sampled by a factor of two in both dimensions and added noise (b). (c) is the 

pixel medians of bilinear interpolated registered LR frames. (d) is the superresolved image.  
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5.3.3. Gaussian Blur Estimation and Superresolution 

 

For the implementation, the used test images are shifted with known subpixel values 

and convolved by )77( ×  sized blur kernels with variances 1.1 and 2.5 for different 

test conditions. The blurred images are then downsampled. Images are registered 

after the Gaussian noise is added. For each test image five LR images are created. 

The initial estimate HR frames are created by the pixel medians of the bilinear 

interpolated versions of the registered LR frames. Table 5.11 shows the results of 

BTV algorithm applied with the original blur kernel values and identified blur kernel 

values from initial estimates of the HR grid image by using the ARMA method. 

PSNR and MSE are used for scalar comparison. Also Figures 5.27 – 5.29 show the 

visual improvement of the LR images. 

 

 

Table 5.11 Iteration results of Gaussian blurred Images. 

Blur Variance σ = 1.1 Blur Variance σ = 2.5 
IMAGE 

Blur 
Parameters MSE PSNR MSE PSNR 

Identified Blur 0,0116 24,8587 0,0177 23,0413 
Cameraman 

Original Blur 0,0097 25,6613 0,0136 24,1667 

Initial Cameraman Image 0,0171 23,1915 0,0232 21,8671 

Identified Blur 0,0119 23,9349 0,0338 19,4189 
Eia 

Original Blur 0,0096 24,8697 0,0248 20,7556 

Initial Eia Image 0,0320 19,6622 0,0516 17,5816 

Identified Blur 0,0055 27,8499 0,0092 25,6113 
Lena 

Original Blur 0,0043 28,8834 0,0066 27,0399 

Initial Lena Image 0,0091 25,6238 0,0133 23,9975 

Identified Blur 0,0039 29,7286 0,0053 28,4098 
Peppers 

Original Blur 0,0025 31,6788 0,0041 29,5666 

Initial Peppers Image 0,0058 28,0407 0,0084 26,4306 
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(a) 

  
(b) (c) 

  
(d) (e) 

Figure 5.27 The Cameraman image (a) is blurred by a Gaussian blurring kernel of )77( ×  pixels with 

a variance of 1.1 and down sampled by a factor of two in both dimensions and added noise (b). (c) is 
the pixel medians of bilinear interpolated registered LR frames. (d) and (e) are the superresolved 

images of estimated parameters and original parameters respectively.  
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(a) 

  
(b) (c) 

  
(d) (e) 

Figure 5.28 The Lena image (a) is blurred by a Gaussian blurring kernel of )77( ×  pixels with a 

variance of 2.5 and down sampled by a factor of two in both dimensions and added noise (b). (c) is the 
pixel medians of bilinear interpolated registered LR frames. (d) and (e) are the superresolved images 

of estimated parameters and original parameters respectively. 
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(a) 

  
(b) (c) 

  
(d) (e) 

Figure 5.29 The Peppers image (a) is blurred by a Gaussian blurring kernel of )77( ×  pixels with a 

variance of 2.5 and down sampled by a factor of two in both dimensions and added noise (b). (c) is the 
pixel medians of bilinear interpolated registered LR frames. (d) and (e) are the superresolved images 

of estimated parameters and original parameters respectively.  
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 CHAPTER 6 
 
 

CONCLUSIONS 
 
 
 

In this thesis, the Maximum a Posteriori method, one of the stochastic approaches, is 

examined with different regularization terms and fidelity terms for SR image 

reconstruction from multiple registered images. The main idea of SR image 

reconstruction is to reach an upper sized and more detailed image by combining the 

knowledge of the LR images to a HR image grid. But during the record period of the 

scene some unwanted conditions like blur, decimation, noise, warping, degrade the 

image information, and cause the SR image reconstruction become an ill posed 

inverse problem. 

 

As SR image reconstruction is an ill posed inverse problem, the operators that 

degrade the image must be all known or must be estimated / identified close to the 

actual values to reach the best superresolved images.  

 

In our implementations we accepted that the warping operators were all known and 

we focused on the blurring operators. The blur models and the identification methods 

are tried and their performances are shown. The critical point which should be 

emphasized is that the blur identification methods are all used in SR image 

restoration algorithms in the literature. But we have showed that these methods can 

also be used in SR reconstruction algorithms. For the out of focus blur and motion 

blur identification the logarithm spectrum and the cepstrum methods are tried. 

Logarithm spectrum method is not useful for general case, because the identified 

values and shapes change due to the image dimensions and the image itself. But the 

cepstrum blur identification method satisfies the same results for all images even 

though the images are same sized or not. For the Gaussian blur estimation Kurtosis 
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minimization based method and ARMA model are used and the results are shown. 

Kurtosis minimization method is not useful for general case, because the estimated / 

identified values are not true for all images. On the other hand, ARMA is an 

optimization based estimation technique. The reached values are not the real values 

but they converge to the real values, if initial values could be determined well. 

 

MAP Estimation maximizes the likelihood of HR image given LR images with the 

priori knowledge (regularization term). Different types of regularization terms and 

data fidelity terms are tried and performance tests are compared. L1 Norm Fidelity 

term with BTV and TV type regularization terms have given the best results.  

 

The experiments show that noise is very effective on the blur identification methods 

and the performance of SR algorithms. If the amount of noise is higher, identification 

of blur parameters is getting hard, and blur identification becomes impossible after a 

certain amount of noise. But there are no distinct threshold values that can be 

considered to frustrate blur identification.  

 

Consequently, if we consider about the general SR algorithms, the degradation 

parameters have to be estimated before they are applied to reach the best 

superresolved image. The biggest challenge of the parameter estimation / 

identification methods is caused by the system noise. Our studies will continue on 

the removal of noise effect before any parameter estimation and on the estimation of 

warping parameters, which are assumed to be known in this thesis study. 
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