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ABSTRACT

3D RECONSTRUCTION OF UNDERWATER SCENES

FROM UNCALIBRATED VIDEO SCENES

KIRLI, Mustafa Yavuz
M.Sc., Department of Electrical and Electronics Engineering

Supervisor: Assist. Prof. ilkay ULUSOY

August 2008, 144 pages

The aim of this thesis is to reconstruct 3D representation of underwater scenes
from uncalibrated video sequences. Underwater visualization is important for
underwater Remotely Operated Vehicles and underwater is a complex structured
environment because of inhomogeneous light absorption and light scattering by
the environment. These factors make 3D reconstruction in underwater more

challenging.

The reconstruction consists of the following stages: Image enhancement, feature
detection and matching, fundamental matrix estimation, auto-calibration, recovery

of extrinsic parameters, rectification, stereo matching and triangulation.

For image enhancement, a pre-processing filter is used to remove the effects of
water and to enhance the images. Two feature extraction methods are examined:
1. Difference of Gaussian with SIFT feature descriptor, 2. Harris Corner Detector
with grey level around the feature point. Matching is performed by finding
similarities of SIFT features and by finding correlated grey levels respectively for

each feature extraction method. The results show that SIFT performs better than



Harris with grey level information. RANSAC method with normalized 8-point
algorithm is used to estimate fundamental matrix and to reject outliers. Because
of the difficulties of calibrating the cameras in underwater, auto-calibration
process is examined. Rectification is also performed since it provides epipolar
lines coincide with image scan lines which is helpful to stereo matching
algorithms. The Graph-Cut stereo matching algorithm is used to compute
corresponding pixel of each pixel in the stereo image pair. For the last stage

triangulation is used to compute 3D points from the corresponding pixel pairs.

Keywords: Underwater, 3D Reconstruction, SIFT, Rectification, Stereo Mapping,

Underwater Image Enhancement, Triangulation, Kruppa Equations
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KALIBRE EDILMEMIS SUALTI VIDEO SERISINDEN

3 BOYUTLU SAHNE GERI CATIMI

KIRLI, Mustafa Yavuz
Yiksek Lisans, Elektrik Elektronik MUhendisligi BolUmu

Tez Yéneticisi: Yrd. Dog. Dr ilkay ULUSOY

Agustos 2008, 144 sayfa

Bu tezin amaci, kalibre edilmemis sualti videosu kullanarak 3B sahne geri ¢catimi
yapmaktir. Sualti gérintileme, uzaktan kumanda edilebilen sualti araclari igin
¢ok oOnemlidir ve sualti 1sik sogrulmasi agisindan homojen olmamasi ve
ortamdaki 151k yansimalari nedeniyle gorintl isleme acgisindan karmasik bir
ortamdir. Bu sinirlayici kosullar sualti sahnesinin 3B geri ¢atimini daha da

zorlastirmaktadir.

Geri ¢atim islemi su adimlardan olusmaktadir: Goérlnta iyilestirme, kése nokta
bulunmasi ve eslenmesi, temel matris kestirimi, oto-6lgimleme, dissal

parametrelerin bulunmasi, dogrultma, stereo eslestirme ve tiggenleme.

Gorlnta iyilestirme igin suyun etkisini kaldiran ve gorintiyl iyilestiren bir filtre
yonetimi kullaniimistir. Kose nokta bulunmasi icin SIFT ve Harris Kése Bulma

yontemleri karsilastirilmistir ve SIFT ydnteminin daha iyi sonu¢ verdigi
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gorulmastir. Kése noktalarini eglestirmek icin korelasyon yontemi kullaniimistir.
Epipolar iliskiyi gosteren temel matris kestirimi icin RANSAC ve normalize edilmis
8-nokta algoritmasi kullaniimigtir. Sualtinda kamera 6lgiimlemesi zor bir islem
oldugu igin kalibrasyon objesi gerektirmeden sahne goérUntilerini kullanarak
Olcimleme yapabilen oto-6lcimleme ydntemi Kruppa Denklemleri kullaniimistir.
Goruntd  Uzerindeki epipolar dogrulari goérintd koordinat sisteminin yatay
eksenine gbre paralellestiren ve ayni zamanda stereo eslestirme algoritmasi igin
gerekli olan dogrultma yontemi ile géruntiler stereo eslestirme algoritmalari igin
uygun hale getirilmistir. Graph-Cut stereo eslestirme algoritmasi ile gérintideki
her bir pikselin diger gorinti de karsiigi bulunmustur. Son asama olarak
Ucgenleme yontemi kullanilarak eslenigi bulunan her bir pikselin karsilik geldigi

noktanin 3 boyutlu uzayda koordinatlari bulunmusgtur.

Anahtar Kelimeler: Sualti, 3 Boyutlu Geri Catim, SIFT, Gérinti Dogrultma,

Stereo Eslestirme, Sualti Gorinti iyilestirme, Uggenleme, Kruppa Denklemleri
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CHAPTER 1

INTRODUCTION

1.1 Problem Definition

3D reconstruction of the scenes has been studied for 20 years in computer vision
literature. Many methods have been developed such as, structured lighting,
ultrasonic and laser range finders... etc. Some of the methods mentioned above
give high accuracy but cost more, some of them give inaccurate results beside
provides no flexibility. By the development in computer vision, it becomes
possible to reconstruct a 3D model of the scene from just the video sequence of
that scene. Camera moves through the scene while making an arbitrary motion,
from the frames of the video, the 3D model is reconstructed via related computer

vision algorithms.

Considering the underwater environment, the methods such as structured lighting
or laser range finders need more equipment and provide no flexibility and they
are hard to apply. Ultrasonic or sonar is widely used in underwater researches.
These methods perform perfectly in long range distances. But in short range,
they do not provide detailed results like cameras do. For that reason, studies are
performed to combine the data extracted from these two type sensors, optical

(e.g. camera) and acoustic sensors (e.g. sonar) [27, 28].

Several methods have been developed to reconstruct 3D model from underwater
images. Most of them uses calibrated stereo cameras, where the positions of the
cameras are known and fixed. In recent years, the stereo systems leave their
places to mono cameras. In this situation the motion of the camera becomes
more important. In [13] a robot arm is used to move the calibrated camera in a
predefined trajectory. In [33] a calibrated camera is used with a system which

provides the position, orientation of AUV with magneto-inductive compass, so

1



that the motion of the camera is known. Fusiello proposed a method in [34] which
uses an uncalibrated camera with an arbitrary motion, achieving to an Euclidean
reconstruction with a-priori information about the positions of five identifiable

scene points.

The aim of this thesis is to reconstruct the 3D model of the underwater scenes

using pictures captured from an uncalibrated camera moving in an arbitrary path.

1.2 System Overview

The process of 3D reconstruction is composed of the following sub-steps:

1.2.1 Image Enhancement

Underwater is a complex structured environment for computer vision algorithms.
Underwater images suffer from many factors: inhomogeneous environment,
limited range, non-uniform lighting, important blur, back-scattering and little
particles floating in the water like marine snow. It is necessary to enhance the
images before using the image processing algorithms [20]. There are two
approaches to solve this problem; physical approach (mount a polarizer to the
front part of the camera) [28] and software approach (develop a preprocessing
filter) [20]. Since software approach brings more flexibility than the physical

approach, the preprocessing filter proposed by [20] is used in this thesis.

1.2.2 Feature Detection and Matching

After preprocessing the images, the first step of the reconstruction process is to
determine the corresponding points from the images. The points which are
distinctive according to their neighbors, called features, are detected. Many
methods have been developed on feature detection. Harris Corner Detector is
one of the most famous one. Because of the blurred structure of the water, corner
detection does not perform well. For that reason, it is compared with another
method called SIFT, provided by [3].

1.2.3 Estimation of Fundamental Matrix

Given the putative correspondences of the feature points, it is possible to

estimate the epipolar geometry between the two images. Epipolar geometry



between two images can be represented with a fundamental matrix. Fundamental
matrix can be estimated with at least 8 corresponding points. But all of the
corresponding points may not be matched correctly due to the noise in the
images. Therefore false matches in the corresponding points, called outliers,
cause mistakes in fundamental matrix estimation. The outliers can be removed
during the estimation process of fundamental matrix by combining the normalized
8-point algorithm and RANSAC method [7, 32].

1.2.4 Auto-Calibration

The forth step is to recover the camera parameters. Camera calibration is one of
the most important steps of reconstruction for a more accurate 3D model. The
cameras can be calibrated by using known structured calibration objects. Also
methods which do not need calibration objects are developed. This type of
methods is called auto-calibration or self-calibration. The cameras can be
calibrated using the images that are captured by themselves. Because of the
difficulties in calibrating cameras in underwater and the possibility of change in
the calibration of the camera during functioning (e.g. zooming), auto-calibration is
used in this thesis. The only required data in auto-calibration is the captured
images from different locations and orientations. Many methods are developed
for the auto-calibration problem. The most famous one is Kruppa equations [30].
Fundamental matrices are used to construct Kruppa equations and minimization
algorithms are used to solve the Kruppa equations to determine the unknown
calibration parameters. Unknown calibration parameters can also be determined
by using the relation between the virtual conic and the calibration parameters.
Since the virtual conic is invariant of Euclidean transformations (rotation and
translation), its image on the camera only depends on the intrinsic parameters of
the camera. Two algorithm representing the two approaches, simplified Kruppa
equations [22] based on Kruppa equations and calibration by absolute quadric

based on the virtual conic [1] are examined.

1.2.5 Estimation of Camera Motion

Once the fundamental matrix is estimated and the intrinsic parameters of the
camera are determined by auto-calibration, the extrinsic parameters of the

cameras can be determined. The extrinsic parameters of the cameras include the



rotation and translation of the cameras according to each other. Fundamental
matrix is transformed to essential matrix which is only defined by the rotation and
the translation of the camera by using the intrinsic parameters. Using the relation
between the rotation and translation matrices, first the unit translation matrix is

computed and finally the rotation matrix is estimated.

1.2.6 Rectification

Rectification is the process of determining new camera geometry such that the
epipolar lines of the cameras are parallel to each other and horizontal axis. Since
rectification reduces the search area and computation time, any stereo matching
algorithm require rectified images. Two algorithms are examined in rectification:

one for calibrated images [9] and the other for the uncalibrated images [10].

1.2.7 Stereo Matching

Stereo matching is the process of finding the correspondence pixel of each pixel
in the image. From these correspondences, disparity map is constructed. Using
the relation between the disparity and depth, the depth of each pixel is
determined. There are several algorithms for stereo matching. The major problem
in stereo matching is the homogenous regions (in term of texture) in the image.
Finding the corresponding pixel in homogenous parts of the image is very difficult
and error-prone. Because of the presence of homogenous areas in underwater
images, stereo matching algorithm based on graph cut [14] which perform well in

homogenous images is used in this thesis.

1.2.8 Triangulation

The final step of the reconstruction process is triangulation. Once the calibration
matrices, rotation and translation matrices of the image pair are known, 3D
coordinate of the point projected to the two images can be determined by back-
projecting the rays of the corresponding points. Because of the noise on the
images, the rays do not intersect. For that reason an optimal point must be
estimated and this estimation process is called triangulation. A linear and a

robust triangulation algorithm [23] are examined in this chapter.



With triangulation of feature points only, a sparse 3D reconstruction can be
achieved. Sparse means that depth is not known for all of the points in the image,
but for the corresponding points only. In order to perform dense reconstruction,
the projection matrix of the camera and the disparity map constructed in stereo
matching are required. A method for dense reconstruction is examined in this
chapter and the final 3D model is visualized by VRML (Virtual Reality Modeling

Language).

1.3 Scope of the Thesis

The scope of this thesis, summarized in Figure 1, is to develop the blocks of a
complete 3D reconstruction system for underwater images. Rather than
proposing a new algorithm this thesis is devoted to develop the sub-blocks of the
complete 3D reconstruction process and compare different algorithms proposed
for each sub-block in order to identify the best performing algorithm for

underwater applications.
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Figure 1 The summary of the 3D reconstruction process.

1.4 Organization

In the first chapter, problem definition, system overview and scope of the thesis

are defined.

In Chapter 2 background information about the projective geometry and the

camera model used throughout the thesis is provided.



In Chapter 3, underwater image enhancement is discussed and a preprocessing

method is examined.

Feature detection and matching is discussed in Chapter 4. Two methods, Harris
Corner Detector and SIFT are examined and compared using underwater

images.

In Chapter 5, estimation of the fundamental matrix is given. Normalized 8-point
algorithm and RANSAC method are examined for fundamental matrix estimation

and outlier removal process.

Chapter 6 is devoted to auto-calibration. Camera calibration matrix is one of the
important parts to be estimated for an accurate 3D reconstruction. The most
famous algorithm, Kruppa equations, and the auto-calibration with virtual conic

are examined and compared.

Chapter 7 gives brief information about how to extract rotation and translation
matrices of the camera from given fundamental matrix and camera calibration
matrix. A linear and a robust algorithm are examined and compared for rotation

and translation matrix estimation.

In Chapter 8, rectification is discussed. Rectification is the process of determining
new camera geometry such that the epipolar lines of the cameras are parallel to
each other and horizontal axis that is necessary for stereo matching algorithms
since all stereo matching algorithms require rectified images. Two algorithms,
calibrated rectification and uncalibrated rectification, are examined and

compared.

Chapter 9 is devoted to stereo matching. After the rectification of the images, the
correspondence of each pixel in the image can be determined by stereo
matching. Once the correspondence of each pixel of the image is determined, the
dense 3D reconstruction of the scene can be computed. Graph-cut based stereo
matching algorithms are examined and compared with a traditional stereo

matching algorithm.

Chapter 10 gives the last step of the reconstruction which is triangulation. Once

the projection matrices of the cameras and the corresponding points are found,
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the coordinates of the 3D points are computed by back-projecting the rays from
corresponding points. Because of the noise in the images, the rays do not
intersect. An optimal solution is computed via triangulation. Triangulation gives
sparse 3D model of the scene. Also a method for dense reconstruction is given in

this chapter.

Chapter 11 gives the experimental results of the sub-blocks of the reconstruction

process on different data sets.

Chapter 12 concludes the thesis with the remark about the sub-blocks and the

whole 3D reconstruction process and provides some ideas about future work.



CHAPTER 2

THEORETICAL BACKGROUND

2.1 Introduction

In this chapter the geometry behind the projective geometry is discussed to better
understand the uncalibrated scene reconstruction. This chapter gives brief
information about the Euclidean geometry, the most general geometry without
any constraint, Projective geometry, and the relation between the two views,
epipolar geometry and the camera model used throughout this thesis. The
following topics and definitions mostly follow the text [6, 24]; the details can be

followed from these references.

Euclidean geometry is the most familiar geometry to us, since it describes our
world. The basic properties of Euclidean geometry are intersecting lines
determine angles between them, and two lines are said to be parallel if they lie in
the same plane and never meet. Moreover, these properties do not change when
the Euclidean transformations (translation and rotation) are applied. But these
properties become insufficient when the imaging process of a camera is
considered. Lengths and angles are no longer preserved, and parallel lines may

intersect.

Euclidean geometry is actually a subset of what is known as projective geometry.

The following section gives brief information about Projective geometry
2.2 Projective Geometry

N-dimensional projective space,Pn, is defined by a (n+1) vector with

T
coordinates: X = [Xl Xn+1] . One of these coordinates must be non-zero.

This coordinate representation is known as homogenous coordinates. In this

10



representation, two points represented by (n+1) vectors X and Y are equal if
there exists a non-zero scale factorA such that X; = AY;

wherel <1 < n + 1. This equality is shownas X ~ Y .

Projective spaces can be transformed to each other, which is called collineation.
This transformation fromP ™ to P"is done with a(m +1)x (n +1)

matrix H . Points are transformed linearly X — X' = HX .
2.3 Projective Plane

Projective plane is the projective space, p? . A point in P 2 is defined with 3

dimensional vector M = [U v W]T . Also a line is defined with 3 dimensional

vector. A point M is located on a line | if I'm =0 . This equation shows that
there is no formal difference between points and lines in projective plane. This is

known as the principle of duality [24].
2.4 Projective 3D-Space

Projective 3D space is the projective space, P> . A point in P * is defined with 4

dimensional vector M = [X Y Z W ]T . The dual of a point in P3is a

plane, I . If a pointis on a plane, then I1 ™ =0.
2.5 Transformations

Transformations in images, PZ—)PZ, is performed with homographies

represented by 3x3 matrix H.A point and a line are transformed as follows:

m— m’'= Hm

21
| > 1'=H @0

In P 3 , points and planes are transformed with a 4x4 matrix T :
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M > M'=TM

- I'=T7"' 22)
2.6 Conics and Quadrics
A conic in P % is the locus of all points M satisfying the equation:
S(m)=m'Cm =0 (2.3)
where C is a 3x3 symmetric matrix only defined up to a scale.
A dual conic in P 2 is the locus of all lines | satisfying the equation:
I"C1=0 (2.4)

where C . is a 3x3 symmetric matrix only defined up to a scale.

When M varies along the conicC , it satisfies M T Cm =0 , also at the same
time the tangent linel to the conic atm satisfies|' C "'l = 0 . This relation

shows that the tangents of a conic C belong to a dual conic C T~ C ! [24].

The transformations of conics and dual conics can be written as:

C—>C'~H 'CH !

C »>C ~HCH
A quadric in P * is the locus of all points M satisfying the equation:
MTQOM =0 (2.6)

where Q is a 4x4 symmetric matrix only defined up to a scale.

A dual quadric in P % is the locus of all planes I1 satisfying the equation:
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Mm'QMm=0 (2.7)

When M varies along the quadricQ , it satisfiesMTQM =0, also at the

same time the tangent plane I1 to the quadric at M satisfies I 1 T Q I =0 .

This relation shows that the tangents of a quadricQ belong to a dual quadric
* -1
Q ~Q 4

The transformations of quadric and dual quadric can be written as:

Q> Q' ~T'QrT "
Q"> Q" ~TQ'T
2.7 The stratification of 3D Geometry

World is described by the Euclidean geometry, but in computer vision it is
sometimes not desired to use to the full Euclidean structure. Instead of it, a less
structured and simple projective geometry is used. Affine and metric geometry

forms the intermediate layers.

The vision geometry is stratified to the stratums (layers) related to the
transformation actions on geometric entities and invariants belong to that group.
Projective stratum is the group of projective transformations; the affine stratum is
the group of affine transformations; the metric stratum is the group of similarities
and the Euclidean stratum is the group of Euclidean transformations and these

groups are subgroups of each other [24].
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Projective

Metric

Figure 2 Hierarchy of geometries. [19]

As explained above, one of the important properties of these groups are their
invariants. An invariant is a property of a configuration of geometric entities that is
not altered by a transformation belonging to a specific group. The structure of a
geometry can be upgraded to a higher geometry by computing there invariants.
In the following section, each stratum, its invariants, transformations are

discussed in detail.
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Projective
R ———

Metric
(simularity)

Ty

Euclidean
_uchdean

Iz

QD

Figure 3 Shapes which are equivalent to a cube for the geometric strata projective,
affine, metric and Euclidean. The reason of the deformation on the shape of the

cube depends on the ambiguity of the related geometric stratum [24].

2.7.1 Projective Stratum

The first stratum is the projective stratum. It is the less structured one and
therefore includes the least number of invariants. In contrary projective stratum
has the largest number of transformations. The projective transformation of a 3D

space point can be represented with a 4x4 invertible matrix [24].

Pu P Pz Py
Par P2 Pz Pos
Par Pz Paz Pay (2.9)
Par Paz Paz Pas_

Since this transformation is defined up to non-zero scale factor, it has 15 degrees

of freedom. The invariants of projective stratum are relations of incidence,
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collinearity, tangency and cross-ratio. The cross-ratio is defined as follows:

assume four points, M ; , M , M, M, are collinear. They can be defined

asMiIM +ﬂ,iM'_

A=Ay A, — A
{MliMz;M31M4}: - -2 3

(2.10)

2.7.2 Affine Stratum

The affine stratum lies between the projective and metric stratum. It contains
more structure and invariants according to the projective one, but less than the

metric one [24]. The specialty of affine stratum is defining the plane at infinity,

IT_ =[0 0 0 1]" . The affine transformation is defined as, M ' ~ M

ay CEP: a3 a4
a a a a
T, ~ 21 22 23 24

2.11
31 Qzp  dyp Ay ( )

Since the plane at infinity is the invariant of affine stratum, the affine

transformation can not change the plane at infinity:Ho0 ~ TAHOO. Also

another invariant is added with affine transformation, parallelism. Lines or planes

having intersection at infinity are called parallel [24].

The transformation from projective representation to affine representation is
achieved by finding the plane at infinity. The position of plane at infinity can be

computed by using the parallelism constraint.
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Figure 4 A cube defined in projective (left) and affine (right) stratum. Each figure is
equal to a cube under their ambiguities. The plane at infinity can be found by using
the vanishing points which are the points where the parallel sides of the cube

intersects. This is used to transform from projective to affine stratum [24].

Once the location of the plane at infinity is found, the transformation from

projective to affine is defined as:

(2.12)

where 7T  is the plane at infinity.

2.7.3 Metric Stratum

Metric stratum can be defined as the group of similarities. Metric transformations
correspond to the Euclidean transformations (orthonormal transformation and

translation) up to a scale factor. The metric transformation can be defined as:
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!
Y' ' l=0|l, I, TIgl|lY [+]t, (2.13)

The coefficients I‘ij define the rotation matrix that has the properties:

RR T = | . The metric transformation can be rewritten as:

or, or, or; ty
T or, of,, of,; 1,
M ofr,, of, ol { (2.14)
0 0 0 1 ]

The new invariants with metric stratum are relative lengths and angles, which
corresponds to a new geometric entity, absolute conic. It can be defined as an
imaginary circle located in the plane at infinity. The absolute conic can be defined

as:

Q=X4+Y2+Z%=0withW =0 (2.15)

and also it can be defined as a 2D conic:

1 0 O 1 0 O
0O 0 1 0O 0 1
The dual entity of absolute conic, absolute dual quadric €2 . is defined as:
1 0 0 O]
a° 0O 1 0 O
0O 0 1 0 (2.17)
0 0 0 O]
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Since the absolute quadric is the invariant of metric stratum, metric

transformations must leave it unchanged.
T
lse O3] |A blys O A c| | AA Ac e
o 0| [¢" d|of ofb d| |[cA cc| ©@1®
T
Hence, AA ~ |3X3 andC = 03 which are constraints for metric transformation.

The transformation from affine to metric is achieved by finding the absolute conic.
Every angle and ratio of length gives a constraint about the absolute conic. Once
an affine reconstruction is done, there must be an affine transformation which

brings the absolute quadric to its canonical position satisfying the relation: [19,

24]
o [A afle 0]AT 0] [MaT o, »
o] 1]lol ofla” 1| |0l o (2.19)

The 2D representation of absolute conic and its dual can be rewritten as:
o, ~ATA o~ AAT (2.20)
The transformation from affine to metric is defined as:

At 0,

T. =
AM O‘g O

(2.21)

where A can be calculated from Q- via Cholesky decomposition or singular

value decomposition [24].
The transformation from projective to metric directly can be written as:

Al 0,
0

o0

Tom =TamTea = (2.22)
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2.7.4 Euclidean Stratum

The only difference between metric and Euclidean stratum is the scale factor is

fixed in Euclidean stratum. Hence in Euclidean stratum, absolute lengths are

measured not the relative ones. The transformation of the Euclidean stratum is
defined as [24]:

Kp il
[ [

w
=

o

o T3
PYRRRPE
I3 I3
0 O

(2.23)

In Table 1, all of the properties of the stratums are summarized. It is seen from

the Table 1, while moving from Projective to Euclidean stratum, the ambiguity in

the model decreases.

Table 1 The transformations, invariants and degrees of freedom of projective,

affine, metric and Euclidean stratum [24].

Ambiguity | DOF Transformation Invariants
Projective | 15 B p p p p Cross-ratio
11 12 13 14
T ~ P2 P2 P2 P2
P
P Pa Pas Pas
' Pa Pax P Pa
Affine 12 i a, a, a4 a,, ] Relative
Distances alon
T -~ Ay 8y Ay Ay direct J
A irection
fa A a A Parallelism
o 0 0 1|

Plane at infinity
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Metric 7 B or, or,, ofy, tx Relative
am oty oy tY distances
Ty ~
ory ofy ofy Angles
0 0 0 1
Absolute Conic
Euclidean | 6 B N Absolute
r11 r12 If13 tx ,
Distances
r21 r22 r23 tY
Tz ~
r31 r32 r33 1:z
0O 0 0 1

2.8 Camera Model

In this section, the camera model used in this thesis is discussed. The following

topics and definitions mostly follow the text [6, 24]; the details can be followed

from these references.

The most basic camera model, pinhole camera model, is used in this thesis. In
pinhole camera model, a 3D point in space is projected onto a 2D image plane by

drawing a line from 3D point to the center of the camera. Where the line

intersects with the image plane is the location of the 2D projection of 3D point.
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Figure 5 Pinhole Camera Geometry
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f

Figure 6 Side-view of the projection of a 3D point M onto the image plane.

The projection is shown in Figure 5, and Figure 6. In the figures C is the camera
center; p is the principal point; f is the focal length. The ray, which is
perpendicular to the image plane and passing through the camera center, is the
principal axis. The intersection of the principal axis and the image plane is the

principal point.
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A 3D point M = [X Y Z ]T is projected to the 2D point M . Using the similar
triangles the projected coordinates are calculated as:

X T

m=[f?f ] (2.24)

Using the homogeneous coordinates the transformation can be rewritten as:

X X
fX] [f 0 0 0 f 0 0
v l=lo f 0 of" OfO[IO]Y

7 7 (2.25)
f 0 010 0 0 1

1 1

2.8.1 Principal Point Offset

In Equation 2.24 it is assumed that the origin of the coordinates in the image
plane is the principal point. But in practice, instead of it lower left corner is used

and the mapping is updated as accordingly:
X Y
[X Y Z]" - [f —* P, f?+ p, 1" (2.26)

In homogenous coordinates

1 X X
fX+pzZ| [f 0 p, O v f 0 p y
fY+pZ|=0 f p, O 7|7 0 f p, [' O]Z (2.27)
f 0O 0 1 O 0 0 1
__1_ _1_
f P,
m=K[l 0M_, K= L (2.28)
1
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The matrix K is called the camera calibration matrix. In Equation 2.28 it is

assumed that the camera is located in the origin of the Euclidean coordinate

system with the principal axis, and the point M cam IS expressed in this system

[6].

2.8.2 Camera Rotation and Translation

Up to now two coordinate systems are mentioned, camera coordinate system
and world coordinate system. In general the points in space are represented with
the world coordinate system. The transformation between these systems is

based on the rotation and translation as seen in Figure 7.

Y

cam

| ’*.'um

R, t

X

cim

0 B

Figure 7 The Euclidean transformation from world coordinate system to camera

coordinate system [6].

~

The transformation between the 3D points M cam and M can be written as

~

M_, =R(M —C)where C is the camera center in the world

coordinate system and R is the 3x3 rotation matrix.
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(2.29)

~ N < X

[l

1
o O
|

— 0

™

1
<

Substituting the Equation 2.29 with Equation 2.28 results as:
m=K[l 0]M_,, = K]l O]E - TC}M =K[R ~RC]M (2.30)

The above equation can be rewritten as:

m=K[R —RC]M

m = K[R t]M @31)

where the translationt is equal to— R C . The projection matrix of the camera

which projects the 3D points in space to 2D plane can be defined as:

m=PM = P =K[R t] (2.32)
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CHAPTER 3

UNDERWATER IMAGE ENHANCEMENT

3.1 Introduction

Underwater is a complex structured environment for image processing
algorithms. Optical cameras are used for short-range operations in remotely
operated underwater vehicles. But the underwater visualization suffers from
limited range, non uniform lighting, low contrast, blurring and marine snow,
floating small white particles [20]. So a pre-processing step that will remove the
effects of water and enhance the image is necessary before processing the
underwater images. Usually methods need parameter tuning or human
interaction during processing, but in [20] a parameter-free pre-processing method
is proposed which reduces the water effects and improves image quality and the

method proposed by [20] is used in this thesis.

The algorithm is composed of the following successive independent steps:

3.2 Removing Moire Effect

Moire effect is a wavy repetitive pattern on the image. The reason of this effect is
the aliasing in the digital camera. It is removed by detecting the peaks of the
Fourier transform and deleting them [20]. The importance of removing the moiré
effect is that the following steps increase the contrast, also the moiré effect, and

this increases the chance of degraded results.

3.3 Resizing the Image

Resizing the image into a square form enables the usage of fast Fourier
transform, fast wavelet transform algorithms and speeds up the process. In [20]

the images are resized to a square form.
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3.4 Color Space Conversion

The color space of the image is converted from RGB to YCbCr. In YCbCr color
space, only the luminance channel (Y) is processed. This step increases the
speed of the process by processing only one channel instead of processing the
three channels in RGB color space [20].

3.5 Homomorphic Filtering

The homomorphic filter is used to correct the non-uniform lighting and enhance
the contrast [20]. An image can be modeled as a product of illumination and

reflectance.
f(x,y)=i(x,y)r(x,y) (3.1)

where f (X, Y) is the image, i(X, Y) is the illumination factor and

I‘(X, Y) is the reflectance factor. Since the illumination changes slowly

throughout the image, it is assumed as the low frequency component in the
Fourier transform and reflectance is the high frequency component. The non-

uniform illumination is suppressed via high pass filtering.

First the logarithm of the image is taken. So the multiplicative effects turn to

additive ones.
g(x,y)=InCf(x,y)) =In(i(x,y)) +In(r(x,y)) @32
The Fourier transform of the image is:
G(w,,w,)=1I(w,,w,)+R(w,,w,) (3.3)

The high pass filter is defined as:

2 2
We+ W)

H (Wx’ Wy) = (rH - )(1_ exp( _(T») + I (3.4)
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where I is 2.5, I is 0.5, (the maximum and minimum coefficients values) and

O, is 32 (the factor that controls the cut-off frequency). These values are

selected empirically [20].

3.6 Wavelet De-noising

The Gaussian noise present in the image is amplified by the previous step,
homomorphic filtering. A further de-noising step is necessary to remove the
amplified noise. Wavelet based filtering is used to remove noise, because of its

performace compared to other similar algorithms [20].

3.7 Anisotropic filtering

Anisotropic filter smoothes the image in the homogeneous regions, while
preserving the edges. The intensities of the pixels are re-calculated considering
their 4-neighbor pixels [20]. For every pixel, the nearest-neighbor differences and
the diffusion coefficients in the four directions North, South, East, West are

computed [20].

CNiyj:g(Jlei,j‘) Csi,j:gquli,j‘)
CEivj:g(JvEli,j‘) Cw ZQQlei,j‘)

i]

wherevd| is the nearest-neighbor difference in direction d, Cdi J_ is the

2
j and K is0.1.

Vi
diffusion coefficient and Y (V | ) =exXp| — [Hf

The updated pixel intensity is:
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Li=1, + Ay Vil + eVl +¢, VI +ceVel]

3.8 Image Intensity Adjustment

Adjusting the image intensity provides increase in contrast. After the anisotropic
filtering some pixels intensity values can exceed the valid range or a non-uniform
distribution of pixel values can occur considering the full valid range. The range of
intensity is stretched so that the intensity of the pixels is spread to a full range.

The following condition is applied to all pixels:

= — . if 0<1I;;,<1
' max ,— min , ’
=1 if 1,,>1
where |i,jis the pixel value of image | in the coordinates(i, J)

max, andMiN, are the maximum and minimum pixel values in image |

respectively.

3.9 Re-converting the Color Space and Equalizing Color Mean

The image is converted from YCbCr color space back to RGB. Also the image is
resized to its original size. The color channels are not balanced because of the
nature of the underwater images [20]. For each RGB channel, the difference

between the mean and median of the channel is added to each pixel.

3.10 Results and Conclusion

The performance of preprocessing method is examined on real images and the
results are given in Figure 8, 9 and 10. The red crosses in the images show the

features detected by SIFT in the images before and after preprocessing.
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Figure 8 The Boat Sequence. The upper left is the image before preprocessing,
lower left is the image after preprocessing.

Figure 9 The Pipe Sequence. The upper left is the image before preprocessing,

lower left is the image after preprocessing.



Figure 10 The Coral Sequence. The upper left is the image before preprocessed,

lower left is the image after preprocessed.

As it is seen in Figure 8, 9 and 10, the preprocessing method removes the water
effects and enhances the images. The edges are clearer and there is a significant
improvement in color histogram. The goal of the preprocessing method is to
enhance the image and increase the number of detected edges which is crucial

for the detection of the epipolar geometry.

In all sequences the number of detected features is significantly increased by the
preprocessing method. For comparison purposes, the number of detected feature

before and after preprocessing is listed in Table 2 for 3 image sets.
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Table 2 The number of detected features with SIFT method, before and after

applying the preprocessing method to the input sequences.

# of Features
Input
Sequence
Before After
Boat 11 127
Pipe 11 103
Coral 934 1305
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CHAPTER 4

FEATURE DETECTION AND MATCHING

4.1 Introduction

The first stage of reconstruction process is feature detection and matching in
order to recover the relative geometry between the images. Feature points are
the special points that can be differentiated from their neighboring pixels, so that
it is possible to match them uniquely with the corresponding pixels in the other

image [1].

Since underwater is a complex environment with poor illumination and the
camera movement is not deterministic, features between two images suffers from
illumination change, rotation and translation. This makes the feature detection
and matching process more difficult and decreases its accuracy. For that reason,

the feature detection and matching method should cope with these difficulties.

Many methods are developed to find feature points in different ways and one of
the most famous one is Harris corner detector [2]. Harris corner detector is based
on image gradient evaluation and this makes the method illumination invariant
and insensitive to the transformations defined above. Another feature detection

method, SIFT, is also illumination, transformation and scale invariant [3].

Harris corner detector and SIFT method and Keypoint descriptor [3], an improved
version of correlation-based feature matching method [4] are examined in this

thesis.

4.2 Harris Corner Detector

Harris corner detector is based on image gradient evaluation. The points which

have high gradient through x and y directions are defined as feature points.
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Image regions are typically compared using sum-of-squared-differences (SSD)
for matching purposes. Considering a window W in image | and a corresponding
region T(W) in image J, the dissimilarity between two image regions based on
SSD is given by [1]:

D =[], [3(T (x,y)) = 1(x, ) w(x, y)dxdy (@.1)

The approximation of dissimilarity between an image window W and a slightly

translated image window is represented as [2] :

AX
D (Ax,Ay) = Ly} M [Ax Ay] (4.2)

where M is defined as:

ol
¢t | ax || o1 ol
M —IIW ﬂ |:5ai|W(X;y)dXdy (4.3)
oy

where 01 / 0X and Ol /6y represents the derivative of image | in x and y

directions respectively and W ( X, Y) represents the Gaussian smoothing filter:

x2+y?

w(x,y)=e 2o (4.4)

The typical value of O is 0.7. The window size is 7x7.

The desired result is to have large eigenvalues for M matrix. The magnitude of
eigenvalue represents the intensity change around the pixel. If the two
eigenvalues of M matrix are small, this means that the windowed image region is
approximately constant intensity. If one eigenvalue is high and the other one is
low, this indicates an edge. If both of the eigenvalues are high, this indicates a

corner [2].
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The method Harris cornerness measure [2] to find corners without calculating the

eigenvalues is given below:

R(x,y)=det( C) -k trace ?(C) (4.5)

where C is defined as
_ X Xy
C=l~n = (4.6)

where | represents the Gaussian smoothing of grey-level image | (X, Y) .

| x and | y represents the derivates in the x and y direction respectively.

k is set to 0.04 according to the suggestion of Harris [2].

Since the original Harris cornerness measure did not give satisfactory results, the

Harris cornerness measure defined in [5] is used in the thesis:

det(C|

RX, I SO
*) [15+1;+e] @7

For comparison purposes, feature points are detected by the original Harris
corner measure and corner measure modified by Nobel in [5] are shown in Figure
11. The false feature points detected by the original Harris corner detector are

eliminated by the modified Harris corner detector.
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Figure 11 The left image shows the feature points detected by original Harris

corner measure with false feature points. The right image shows the feature points

detected by modified Harris corner measure by Nobel [5].

4.3 Normalized Cross Correlation

Normalized cross correlation is widely used in matching feature points. The
correspondence of given feature point is searched in a determined area, where
the pixel can traverse, with a pre-defined NxN square window. The center of the
search area is the coordinates of the given feature point. Normalized Cross

Correlation is defined as [1]:

[ Qe -I)1(x y)-Dwix, )y
\/”” eIt y)dXdX/J [ (100 )~Tw(x, y)elxdy 0

S(x,y)= )

where
I=[[, 3T O y)dxdy T=[[ 1(T(x, y))dxdy (4.9)

are the mean image intensity for | and J in the search window.

S(X,Y) defines the similarity matrix of the feature point searched in the

defined search area of the other image.

The performance of the Normalized Cross Correlation (NCC) is good at the
images which are slightly transformed. If we consider adjacent frames in a video,
small translation constraint is met. But the complex structure of underwater

increases the false matches of NCC.
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Figure 12 represents the feature points and the feature matches computed with
Normalized Cross Correlation. Although the features make a horizontal

translation between the two frames, NCC found a few vertical translated feature

matches which are false matches and are called as outliers.

Figure 12 The upper left and upper right images are the two frames from coral
sequence. The red crosses show the feature points with Harris Corner Detector in
the middle left and middle right images. The last image shows the matches with
normalized cross correlation between the feature points of the image above. The
blue line represents the translation between the matched features. All of the
features in the images make a horizontal translation. The vertical blue lines are the

false matches (outliers).
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4.4 Scale Invariant Feature Transform (SIFT)

SIFT is a method of extracting distinctive invariant features from images. These
features are invariant to illumination, scale, rotation and change in 3D viewpoint,

which provide robust matching [3].

SIFT method is performed under 4 stages:

4.4.1 Scale-space extrema detection

The first stage is the interest point detection. Interest points are called keypoints
in SIFT framework. Keypoints invariant to scale and orientation are detected by
extremum points of Difference of Gaussian. It is shown that under reasonable
assumptions the only possible scale-space kernel is the Gaussian function. [3]

Therefore, the scale-space of an image is defined as:
L(x,y,0)=G(x,y,0)*I(x,Y) (4.10)

where L(X,Y,0)is the scale-space of the image |(X,Y) and
G (X, Y, 0) is the Gaussian function with scale T :
—(x2+y?) /252

1
G(x,y,0)=——¢ (4.11)
2no

The difference of Gaussian function is defined as:

D(x,y,0)=(G(x,y,ka)=G(x,y,0))* (X, y)

—L(x,y, ko) = L(x, y,0) (4.12)

The computation of D (X, Y, U) is shown in Figure 13. The input image is

incrementally convolved with Gaussian to produce images separated by a

constant scale factor K in scale space shown as stacked layers in the left

column. Each octave of scale space is divided into an integer number, s, of

/
intervals, so k=2'° . S + 3 images must be produced in the stack of blurred

images for each octave, so the final extrema detection covers a complete octave.
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Adjacent image scales are subtracted to produce the difference of Gaussian
images shown on the right. Once a complete octave has been processed, the
Gaussian image that has twice the initial value of O is resampled by taking

every second pixel in each row and column.

Scale ﬁ “;p—) ‘ﬁ
e gﬁ—»ﬁ

Scale
(first
octave)

Difference of
Gaussian Gaussian (DOG)

Figure 13 The input image is incrementally convolved for each octave as shown in
the left. Adjacent image scales are subtracted to produce the difference of
Gaussian images (shown on the right) [3].

The keypoints are identified as the local maxima and minima of D (X, Y, o)

and the keypoint detection is done by comparing each pixel in the DoG images to
its eight neighbor pixels in the same scale and the nine neighbors in the scale
above and below. If the pixel is the maximum or minimum of its 26 neighbor

pixels, then it is selected as keypoint candidate.
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Figure 14 Adjacent image scales are subtracted to produce the difference of

Gaussian images [3].

4.4.2 Keypoint localization:

After the detection of the keypoint candidates, the next step is the accurate
localization of each keypoint candidate while removing the low contrasted and

poorly localized ones.

A method is developed by Brown and Lowe et al [6] to fit a 3D quadratic function

to the keypoint candidate to determine the interpolated location of the maximum.

This method uses the Taylor expansion of scale-space function, D (X, Y, O') X

T 2
D(x):D+£x+1xT ob,

OX 2 OX? (4.13)

where D and its derivatives are evaluated at the same point and
X=(X,Y, G)T is the offset from this point. The location of maximum/minimum

point, X , iIs computed by taking the derivative of this function with respect to

X and setting the result to zero. Solving this equation, X is estimated as follows

[3]:
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_o°D™ D

%= 2
ox>  Ox

(4.14)

If X is smaller than 0.5 in any dimension, the offset is added to its keypoint

candidate to compute the interpolated estimate for the location of extremum.

To reject the keypoint candidates with low contrast D ()2) is calculated:

A 1oD" .
D(X)=D+_-——X (4.15)
2 OX
If the value of ‘D ()2)‘ is less than 0.03, the corresponding keypoint candidate is
rejected.
Besides rejecting the low contrasted keypoint candidates, Difference of Gaussian

(DoG) function has strong responses along the edges, which creates unstable

keypoints.

Edges create poor peaks in DoG function which have a large principal curvature
across the edge but a small one in the perpendicular direction [3]. To find these

principal curvatures Hessian matrix is used:

H=|p D (4.16)

where DXX and Dyy represents the secondary derivates in the x and y

direction respectively.

Consider & as the eigenvalue with the largest magnitude and ﬂ be the

smaller one of this Hessian matrix [3], then

Tr(H)=D,+D, =a+p

Det (H)=D,_,D, —(D,)? = ap 417
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Let @ = I [ and

R Tr(H)® (r +1)?
Det(H) r

(4.18)

It is suggested in [3] that the keypoints that have the ratio R greater than

(r +1)°
—  with ' = 10 should be eliminated.

4.4.3 Orientation assignment

After the keypoints are detected and localized, the next step is to assign
orientation to each keypoint based on local image gradient directions. In the
keypoint descriptor identification step, the keypoint descriptors are related with

this orientation values and therefore achieve rotation invariant property [3].

The scale of the keypoint is used to select the Gaussian smoothed image, L , so

that scale-invariant property is achieved. The gradient magnitude, M (X, Y) and

the orientation, @ (X, V) , forimage L(X, Y, ) are computed as:

M0 Y)=y (L1 Y) - L1, Y)Y +(L06 y+D) —L(x y DY

oo L y+D)—-L(x, y-D) (4.18)
Ay (L(X+l Y)-L(x-1 y))

An orientation histogram with 36 bins where each bin represents 10 degrees,
covering 360 degree is computed. Each sample in the neighboring window added
to a histogram bin is weighted by its gradient magnitude and by a Gaussian-
weighted circular window with a variance 0 that is 1.5 times of the scale of the

keypoint [3].

Peaks in the orientation histogram represent the dominant direction of local
gradients. The highest peak and any other peak that is 80% of the highest peak
is used to create another keypoint with that orientation. This approach creates

multiple keypoints with same location and scale but different orientations. [3]
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Multiple keypoints with different orientations provide a signification contribution to

the matching stability.

4.4.4 Keypoint descriptor:

Once the location, scale and orientation of the keypoints are detected, the next
step is to compute the descriptors of these keypoints that are highly distinctive

and invariant to illumination and 3D viewpoint.

This step is pretty similar to the Orientation Assignment step. The feature
descriptor is computed as a set of orientation histograms on (4 x 4) pixel
neighborhoods. The orientation histograms are relative to the keypoint orientation
and the orientation data comes from the Gaussian image closest in scale to the
keypoint's scale. Just like before, the contribution of each pixel is weighted by the
gradient magnitude, and by a Gaussian with o 1.5 times the scale of the
keypoint. Histograms contain 8 bins each, and each descriptor contains a 4x4
array of 16 histograms around the keypoint. This leads to a SIFT feature vector
with (4 x 4 x 8 = 128 elements). This vector is normalized to enhance invariance

to changes in illumination.

ZE =01 PRI
7

— N
T | N T " o
P - | = P

TR T [
N v

N x|

Image gradients Keypoint descriptor

|

7
-

Figure 15 The computation of 2x2 descriptor. The computed gradient magnitude
and orientation is weighted by a Gaussian window indicated by the circle as shown

on the left. On the right side, keypoint descriptor is shown. It allows for significant
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shift in gradient positions by creating orientation histograms over 4x4 sample

regions [3].

A keypoint descriptor is created by first computing the gradient magnitude and
orientation at each image sample point in a region around the keypoint location,
as shown on the left part of figure 3.5. These are weighted by a Gaussian window
with a o that is 1.5 times of the scale of the keypoint, indicated by the circle.
Gaussian windowing is performed in orientation assignment step. These samples
are then accumulated into orientation histograms summarizing the contents over
4x4 sub-regions, as shown on the right of figure 3.5 with the length of each arrow
corresponding to the sum of the gradient magnitudes near that direction within
the region. This figure shows a 2x2 descriptor array computed from an 8x8 set of
samples, 4x4 descriptors computed from a 16x16 sample array is generally used
[3]. A histogram with 8 bins where each bin represents an orientation is formed,
and each descriptor contains a 4x4 array of 16 histograms around the keypoint.
This leads to a SIFT feature vector with (4 x 4 x 8 = 128 elements). Then this

vector is normalized to remove illumination effect.

4.5 Feature Matching with SIFT Keypoint Descriptors

Feature matching with keypoint descriptors is performed by comparing the
descriptor of the keypoint with the descriptors of match candidates on the other

image and this is done by Euclidean-distance based nearest neighbor approach.

Euclidean distance between the descriptor of selected keypoint and the

descriptors of match candidates are computed. If the ratio of the nearest neighbor
distance to the second nearest neighbor distance is greater than d then the
corresponding match is rejected. The value of dis implementation dependent.
Its valid range is between 0.0 and 1.0. The smaller the value of d , the more
matches are found, also with more outliers. The larger the value ofd , the lesser
matches are found, but with more robust matches. The value of d is 0.8 in [3]. In

this thesis d is taken as 0.97.
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Figure 16 shows the 2 frames from Coral sequence with detected features via
SIFT method and the last image in figure 16 shows the translation of matched

features with a blue line.

Figure 16 The upper left and upper right images are the two frames from coral

sequence. The red crosses show the feature points with SIFT method in the middle
left and middle right images. The last image shows the matches between the

feature points of the image above using the Key Descriptor method.

4.6 Results and Conclusion

In Figure 11, two frames from coral sequence are shown with the features
detected by Harris Corner Detector and the matching result of normalized cross
correlation is also shown. In Figure 15 the features detected by SIFT and the

matching result of keypoint descriptor is seen. For comparison purposes, the
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number of detected features and matched pairs are listed in Table 3 for Harris

corner detector and SIFT method.

Table 3 The Comparison of SIFT and Harris Corner Detector.

Feature Detection & Matching Method

Harris Corner Detector &
SIFT & Keypoint
Normalized Cross
Descriptor
Correlation
Features Detected in left
) 926 359
image
Features Detected in
866 323
right image
Corresponding Pairs 241 178

In Coral sequence, SIFT method gives a better performance than Harris Corner

Detector and Normalized Cross Correlation. Nearly 3 times more features are

detected with SIFT compared to Harris. Keypoint Descriptor used in SIFT gives a

better performance than normalized cross correlation method. When the last

images of Figure 12 and Figure 16 are compared, normalized cross correlation

gives more false matches than Keypoint Descriptor.

In order to compare the computation time of these algorithms, processing times

are presented in Table 4.

Table 4 The execution times of feature detection and matching algorithms

Algorithm

Process Time (in seconds)
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SIFT 1.062

Keypoint Detector 0.437
Harris Corner Detector 0.172
Normalized Cross Correlation 0.281

From these results, it is seen that SIFT is more suitable for underwater
applications. Although Harris Corner Detector and Normalized Cross Correlation
performs faster than SIFT and Keypoint Descriptor, these algorithms suffers from
the effects of water, blurring and scattering, which decreases the edge detection

performance and accuracy.
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CHAPTER §

FUNDAMENTAL MATRIX ESTIMATION

5.1 Introduction

Two images of a scene are represented by epipolar geometry which is
independent of scene structure and depends on camera’s intrinsic and extrinsic
parameters. The geometric relation of a stereo image pair can be related with a
3x3 singular matrix. If internal parameters of the camera are known, the epipolar
geometry is defined with an essential matrix [6]. Essential matrix consists of the
extrinsic parameters of the stereo system. If the internal parameters of the
camera are not known, the epipolar geometry is defined with a fundamental
matrix [7]. Fundamental matrix contains both internal parameters and relative
poses of the cameras. Since a video sequence is used in this thesis, two
consecutive frames of the video are considered as two images, taken from the
same camera, which means that they have the same internal parameters, with an

undetermined rotation and translation.

By the estimation of the fundamental matrix, the epipolar geometry of the stereo
image pair is found. It is known that corresponding points between the two
images are enough to estimate the fundamental matrix. Many algorithms are
developed to estimate fundamental matrix using its properties. One of the most
popular algorithms is 8-Point Algorithm that Longuet-Higgins introduced to
estimate the essential matrix for calibrated cameras [8]. It is linear, fast and easy
to implement but very sensitive to noise. Hartley introduced a method based on
8-Point Algorithm with a slight modification by normalizing the input data before
constructing the equations which increased the performance significantly [7].

Hartley’s method is called normalized 8-point algorithm. In this thesis, normalized
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8-point algorithm is used for estimating fundamental matrix because of its

performance and implementation ease.

5.2 8-Point Algorithm

Once at least 8 corresponding matches are known, fundamental matrix can be
estimated up to a scale factor. The epipolar relation between the two matching

points and the fundamental matrix is:
m™Fm =0 (5.1)

T T
wheremiZ[Ui,Vi,l] : mi’:[ui’,vi',]_] and F is the fundamental

matrix. If this matrix multiplication is extended for two points, the following linear

equation is formed:
U fy U+ U VU +VV v s +u By v B+ =0 (5.2

The linear equation for n corresponding points is:

fll
f12
[ /2 ’ ’ ! ’ ] f13
Uy, uv, U vy ovvovouo vy 1
. f21
Af = | T [=0
. f23 (5.3)
uu. uv. u vuo vv.o vou v, o1
- 1 5
f32
_fas_

The eigenvector corresponding to the smallest eigenvalue of matrix A is the
estimated fundamental matrix. The fundamental matrix is a rank-2 matrix.
Because of the errors while determining the corresponding points and the noise
on point coordinates, estimated fundamental matrix can not meet rank-2

constraint and epipolar lines do not meet in a single point and the algorithms
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which depend on the fundamental matrix fails. For these reasons, the estimated

fundamental matrix F is corrected by a singular matrix F ' which minimizes

the Frobenius norm HF -F 'H By Singular Value Decomposition method, the

eigenvalues of estimated fundamental matrix is computed and the smallest one is

set to 0. By this method rank-2 constraint for fundamental matrix is provided.
F =UDV T’ (5.4)
where D =diag(r,s,t) and r 2s>t. Then t=0 and
F'=Udiag (r,s,0)V’ (5.5)

where F'is the corrected rank-2 fundamental matrix.

5.3 Normalized 8-Point Algorithm

Normalized 8-Point Algorithm is the modified version of 8-Point Algorithm with
normalized corresponding points. The biggest advantage of 8-Point Algorithm is
being linear and easy to implement, but it is very sensitive to noise. It is shown
that using 8-Point Algorithm with normalized corresponding points significantly

increases the performance of the algorithm [7].
The normalized 8-point algorithm is summarized as follows:

o First, the center of corresponding points are calculated as follows:

m, = [u;,v,,1] anda m;=[u/, v/, 1]
1 1
U,y _FizﬂUi Vay _Hgvi

!/ 1 . 4 ! 1 . !
Ua :_Z Ui Vu :_Z Vi
n = n =
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where M and fTTare the i-th corresponding pair in left and right image
respectively. U, Vi are the X and Y coordinates of the point M; W and V.
are the X 'and Y coordinates of the point mi' :

o The center of the corresponding point is transformed to the center of the

reference and the corresponding points are scaled so that the root-mean-

square (RMS) distance of the points to the origin is v/ 2 .

l:l‘ ﬁ(ui _uav) \'/‘ '\/E(Vi _Vav)
S

and Vi —
1 Sy

and Vi —
2 S,

oo N2@ui-uy) o N2(v-vy)
S

where

S1 = %Zi \/((ui - uav)2 + (Vi - Vav)z)

S, = %i VU = u)? + (v = vy)?)

e The resultant transformation matrices are:

2 0 —u,, | 2 —u/, |
SZ
0
0

o Normalized corresponding points are:
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rﬁi =T,M; and rﬁi,:TZmi’

e The corrected fundamental matrix F is computed with the normalized
corresponding point set rﬁi and rﬁi' by 8-point algorithm and inverse

translation is applied to get the fundamental matrix F .

5.4 RANSAC

The input of the fundamental matrix estimation algorithm is the corresponding
points and the noise in the image causes false matches, called outliers, which is
mentioned in Chapter 5.2 and Chapter 5.5. Since an input set with outliers does
not provide correct results for the fundamental matrix estimation and is the
source of error in the estimation process, the outliers, which does not fit the
fundamental matrix model, should be rejected. RANSAC method is used for this

outlier rejection process.
The fundamental matrix estimation with RANSAC is summarized as follows:
Repeat for N times

o Select a random sample of 8 corresponding points and compute the

fundamental matrix F with the normalized 8-point algorithm

e Calculate the Sampson error esamp for each putative match for the

estimated fundamental matrix.

e

_ (mi,T Fmi)2
samp,i 2 2 T )2 T )2
(Fm,); +(Fm,), +(Fm/). +(F"m/),
o If esamp i is below the threshold, then that match is considered as inlier,

otherwise it is considered as outlier. The threshold value is the distance of
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the point to the epipolar line, which is 0.02 for normalized corresponding

points.

e Choose F with the largest number of inliers, and reject the outliers.

e Refresh the number of iterations N

__ log(1-p)
log(1-(1-¢)°)

where P is the probability that at least one of the random samples of

points is free from outliers, usually it is as 0.99, € is the probability that
any selected point is an outlier. S is the size of the sample, 8 for

normalized 8-point algorithm.

5.5 Results and Conclusion

The accuracy and constraint satisfaction in fundamental matrix estimation is
crucial. The performance of fundamental matrix estimation determines the

performance of the rest of the reconstruction process.

Figure 17 shows the epipolar lines in the two images of coral sequence via the
fundamental matrix computed by normalized 8-point algorithm and RANSAC

method.

Figure 17 The corresponding pairs and the epipolar lines in coral sequence.
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Figure 18 The inliers computed by RANSAC method. The red cross show the
position of the corresponding point in the left image. The green cross show the
position of the corresponding point in the right image. The blue line represents the

route of the point between the two frames.

In coral sequence, 231 inliers are found among 241 corresponding pairs with a

Sampson error of 0.0217.

Figure 19 The corresponding pairs and the epipolar lines in pipe sequence.
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Figure 20 The inliers in the pipe sequences. Unlike in coral sequence, camera

makes a translational motion in this sequence.

In pipe sequence, 14 inliers are found among 14 corresponding pairs with a

Sampson error of 0.9788.

i
|
|
|
z

Figure 21 The corresponding pairs and the epipolar lines in boat sequence.
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Figure 22 The inliers in the boat sequence.

In pipe sequence, 19 inliers are found among 21 corresponding pairs with a

Sampson error of 0.6374.

Table 5 The percentage of inliers on corresponding points and the computed

Sampson errors for different video sequences.

# of Inliers / Corresponding
Sequences Sampson Error
Inliers Points
Coral 231 231/241 ~ %96 0.0217
Pipe 14 14/14 ~ %100 0.9788
Boat 19 19/21 ~ %90 0.6374
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CHAPTER 6

AUTO CALIBRATION

6.1 Introduction

Auto-calibration or Self-calibration is the process of determining the intrinsic
parameters directly from multiple uncalibrated images. Once auto-calibration is
done, the extrinsic parameters, rotation and translation matrices, can be
computed and it is possible to compute the metric reconstruction of the scene.
Auto-calibration provides the calibration of the camera directly from an image
sequence despite the unknown motion, instead of calibrating the camera with a

special calibration object [6].

6.2 Algebraic Framework

Consider that a projective reconstruction is performed with a camera projection
matrix Pi and 3D point coordinate M j is computed. This 3D point is projected
to the 2D point via mij = PiM j » Where i represents the number of views and

j represents the number of corresponding points. A 4x4 homography matrix H

is used to upgrade the projection reconstruction to a metric one. The projection
matrix of the camera and the 3D point coordinate is transformed as following, but

the coordinates of the 2D projected point does not change:

m, = (PH)H M) (6.1)

Pi =PH M, =H'M, (6.2)
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A t
The goal is to determine the homography matrix H , where H = {VT k|-
Since the left camera coordinate system is assumed as the world coordinate

system, the projection matrix of the first camera in the projection reconstruction

is Pl = [| 0] . In metric reconstruction once the calibration matrix is estimated,

the projection matrix is transformed to Py, ; = K [ 0]. The transformation

from projective to metric reconstruction is

P,,=PH = K,J[I 0]=[I O]JH . This relaton shows that
A= K1 andt = 0 . SinceH is non-singular, K must be non-zero and it is

set to 1 to fix the scale of the reconstruction. The vector V with K 1 determines

the plane at infinity in projective reconstruction satisfying the following relation:

K," —-K;Tv
0 1

- O O O
- O O O
[
~
=
_|
<

The plane at infinity can be represented as 7 =[p 1]T where

p=-K 1_T V . The homography matrix can be also be represented as:

K, t
H=\| oK, K (6.4)

If the plane at infinity in the projective frame and the calibration matrix of the first

camera are known, the homography H that upgrades the projective

reconstruction to the metric one can be computed. To do this, it is sufficient to

specify the 8 parameters, 3 for P and 5 for K 1-

Let the projective matrices of the other cameras be Pi = [Ai ai] . From

Equation 6.2,
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K\R, = (A — 4, pT )K fori=2...m (number of cameras)  (6.5)
which may be rearranged as

R = K (A —ap")K, (6.6)

T

Remembering the rotation matrix is an orthogonal matrix RiRi = | , the
T

rotation matrix can be eliminated by multiplying both sides with Ri and the result

is:

KK =(A —ap )K,K (A -ap") (6.7)

* T
The dual image of the absolute conic is @; = KiKi and by making this

substitution the basic auto-calibration equations are derived [6]:
* T * TAT
o, =(A—a;p o (A-ap) (6.8)

o, =(A-ap") o (A-ap)" (6.9)

All self-calibration methods are the variations of solution to Equation (6.8) and

(6.9). The first step is to compute @; or@; , then the calibration matrix is

* T
calculated by Cholesky Decomposition of @; = Ki Ki .

A counting argument can be developed to determine the number of view required
to solve the 8 unknown parameters. Each image except the first one imposes 5

constraints. Since these constraints are independent for each view, a solution is
determined providing5(m - 1) > 8 , where M is the number of views. At

least 3 views are required to solve the auto-calibration problem.
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6.3 Auto-calibration by Dual Absolute Quadric

The absolute dual quadric,Q;, is a dual quadric represented by a 4x4
homogenous matrix of rank 3 [6]. In Euclidean coordinate system, the absolute

dual quadric is defined asQ; = diag (1,1,1,0) . The importance of the

absolute dual quadric is that it is invariant to transformations. According to this

property a transformation that transforms the dual absolute conic to its form in
Euclidean frame,Q; — diag (1,1,1,0), will transform the projective

reconstruction to the metric one.

The projection of the dual absolute quadric in the image is defined as:
w ~PQ P’ (6.10)

Once the dual absolute quadric is computed, using Equation (6.10) the dual

image of the absolute conic can be calculated and with Cholesky Decomposition

* T
the calibration matrix can be computed via@; = KiKi .The algorithm

examined below is known as linear auto-calibration.

The first step is to normalize the projection matrix.

W+ h 0 w/2
1

where W and h are the width and height of the image, respectively. After the
normalization the focal length is in the order of 1, the principal point is close to
origin. For practical purposes, the skew is assumed as 0 and the aspect ratio as

1. Considering the standard deviation on the intrinsic parameters,

f =1£3,u, =V, = £0.1 the following relation can be composed: [1]
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P+ uv, | [1+9 +001 +01
o ~KK = uv, f*+¢ v, |=+001 1+9
u v 1| %01 01 1

I+
o

(6.12)

and 6022 /601*1 ~ 1+ 0.2 . Using the Equation (6.9) the uncertainty can be

handled by weighting the equations as [1]:

giv(PZQ;PJ - P,QLP,T) =0
Olzv(Plﬂ;PJ - P,QP,7) =0
E%V(HQ;%T):O (6.13)
1 . T
5 1V(P19wP3 )=0
1 * T
m(PZQwP3 ):O

where Pi is the i-th row of P and V is a scale factor, initially set to 1 but

updated with P3Q; P3T where (2 « 1S the result of previous iteration [1]. Since

*

Qw is a symmetric 4x4 matrix, it is defined with 10 coefficients. Once the

absolute dual quadric is computed, the dual image of absolute quadric can be
calculated via Equation (6.10) and the calibration matrix can be calculated by the

Cholesky Decomposition of the dual image of absolute quadric.

6.4 Auto-calibration by Kruppa Equations

The absolute conic is a special conic lying at the plane at infinity and having the

property that its projection depends on the intrinsic parameters of the camera

61



[21]. This property is expressed mathematically by Kruppa equations. If the
intrinsic parameters of the camera do not change between the frames, the image

of the absolute conic @W will be same.

Figure 23 The Absolute Conic

The derivation of classical Kruppa equation is as follows:

Given that F '€' = 0, the epipole of the right camera®’ must satisfy the

following equation:
KTRT[t]LK' e’ =0 (6.14)

.
Remembering that[t], T = O the following solution for €' is obtained:
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e'=AK'"t (6.15)

where A is a non-zero scalar. The translation can be obtained as:
t=—K'"e (6.16)
Equation (6.16) leads to the following equation for ['[]X :

1 r— !/ ! !
[t], = IdEt( K™K T[e'],K (6.17)

Substitution of Equation (6.17) into Equation (6.18) yields the Kruppa equations
in the matrix form as shown in Equation (6.19) [21].

FKK TF" = K T[t], ([t],)" K" (6.18)
FKK TFT = y[e'], KK ([e'])" (6.19)

where ¥ is non-zero scalar. Since FKK TF T is a symmetric matrix, by

eliminating the /' , the Kruppa equations are formed:

(FKKTFT)11 B (FKKTFT)12 3
[T, KK ([el))y ([T KKT([el) ),
(FKKTFT)22 B (FKKTFT)13 B
[eL,KKT([el) ), (eLKKT([el) ) 621
(FKKTFT)23 B (FKKTFT)?,3

[T, KK ([el) ) (e, KK(el) )

The Equations (6.20) are linearly dependent since

(FKK TFT - y[e', KK ([eT,)")e'=0 (622
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There are two independent equations among the set of six equations. A special
parameterization of epipolar geometry is used in order to choose which two
equations are selected or by randomly selecting one equation for estimating the
scale factor and then substituting the result into two others that are arbitrarily

chosen among the remaining five ones [21].

Simplified Kruppa equations derive fewer equations than the classical Kruppa

equations and there is no need to compute e’ which suffers from the presence of
noise and degenerate motion. Because of these reasons, Simplified Kruppa

equations are used in this thesis.

6.5 Simplified Kruppa Equations

In [22] Hartley derived simplified Kruppa equations using Singular Value

Decomposition of fundamental matrix. The SVD of F is:
F =UDV ' (6.23)

Remembering that F is rank 2 matrix that the diagonal matrix D has the form:

(6.24)

O

I
o O =
o »vw O
o o o

where I and S are the eigenvalues of the matrix FF T U andV are the
orthogonal matrices. The relation between the fundamental matrix F and the

epipole e’ can be rewritten as:

F'e'=VD'UTe'=0 (6.25)
Since D isa diagonal matrix with a last element zero, the direct solution ofe’is:
e'=Uo (6.26)

where 0 = [0 0 1]T . Hence the skew-symmetric matrix of e'is:
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[e'], =UOU T (6.27)

where O = [0]X .

Substituting Equation (6.26) with Equation (6.19) new expression of Kruppa
equation is obtained:

FKK "FT =yUoU "K'K''UOTUT (6.28)

It is assumed that the calibration matrix of the cameras are the same, K = K "

Since U is an orthogonal matrix, left and right multiplication of the Equation

(6.28) by u’ andU respectively, gives the following simple expression of

Kruppa equation:
DV TAVD " = yOU TAUO ' (6.29)

where A = KK T Because of the simple forms of D and O Equation (6.29)

can be written as:

r2v] Av, rsviAv, O
DV TAVD " = |rsv,; Av, s°vJAv, O
0 0 0

uJAu, -—ujAv, O (6.30)
OU "AUO " =|—-u/Au, u/Au, O
0 0 0

where U; ,U, ,U; are the column vectors of U and V;,V,,V; are the column

vectors of V' .The above expressions finally yield the following three linearly

dependent equations [31]:
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r’u/ Au, rsu; Au, s’u, Au,
T = T - T T (6.31)
v, Av, -V, Av, v, Av,

Since two of these three equations are independent, by cross multiplication the

following independent equations can be obtained:

P, = (r?u; Au,)(=v; Av,) + (v; Av,)(rsu; Au,)

6.32
P, = (rsu; Au,) (v, Av,) + (-v; Av,)(s’uj Au,) (6:32)

First by solving the above equations for matrix A and then by Cholesky

Decomposition the calibration matrix K can be computed.

a; 2 3
A = a2 4 5 | and
a; ag 1
_ : -
a —al (a, — a;a,) d, — ;384
( 1 93 2 ) > 3
a, — ag a, —a;
K = 0 a,—a. a
do > (6.33)
0 0 1
The derived simplified Kruppa equations can be rewritten as in the form:
- 2 2
C(A) =) P*(F, A)+ P2 (F,A) (6.34)

i=1

The non-linear least square equation, Equation (6.32), can be solved by

Levenberg-Marquardt minimization algorithm.
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6.6 Results and Conclusion

Two methods of auto-calibration are examined, auto-calibration by absolute dual

conic and auto-calibration by simplified Kruppa equations.

First the auto-calibration algorithms are examined with “Ballet Sequence” images
which provide ground truth data for the intrinsic and the extrinsic parameters of

the cameras.

The examined auto-calibration algorithms are performed using Figure 24 and the

output calibration matrix is compared with the ground truth calibration matrix.

Figure 24 Three chosen frames from Ballet Sequence, a scene captured by 8
cameras from predetermined positions and known intrinsic and extrinsic

parameters.

Each camera has its own intrinsic parameters. Since they are very close to each
other, the intrinsic parameters of the left most camera is assumed to be the

system’s calibration matrix which is:

1908.25 0.335 560.336
0 0 1

Solving Kruppa equations with Levenberg-Marquardt requires the initial
estimation of the calibration matrix. The focal length in X and Y-axis is assumed
to be same and equal to the summation of width and height of the image. The
principal point is assumed to be in the middle of the image. Based on these

assumptions the initial calibration matrix is:
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1792 0 512
0 0 1

The changes of the calibration parameters and the error to be minimized are

shown in the following figure:
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Figure 25 The estimated calibration parameters. The upper left graphic shows the
focal length in x-axis, fy, the upper right shows the focal length in y-axis, f,. In the
second row, the graph in the left shows the principal point in x-axis, ug, the right
graph shows the principal point in the y-axis, vo. The lower right graph shows the

skew s, and the right graph show the energy minimized by Levenberg-Marquardt.
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As it is seen from the graphs above, the unknown parameters converge after 20-

30 iterations and the final estimated calibration matrix is:

1882 0.0083 431.4
0 1790.6 390.3 (6.37)
0 0 1

A
Il

est

Despite using the ground truth data, the estimated calibration matrix parameters
are different from the ground truth ones. The difference in focal length in x-axis
and the principal point in y-axis is in degrees of 10-20 pixels, which can be
ignored. But the difference in focal length in y-axis and the principal point in x-

axis is more than 100 pixels.

Another factor that affects the performance of solving the Kruppa equations with
Levenberg-Marquart is the initial estimation. The more accurate initial estimation,
the more successful results is computed. The simplified Kruppa algorithm is

tested with different initial data sets.

Table 6 List of different data sets for the initial value of calibration parameters.

Initial Data fx fy Uo Vo S
Set No.
True = True = True=560 | True=409 | True=0.335
1908 1914
1 1900 1900 500 400 0
2 1900 1900 0 0 0
3 1200 1200 500 400 0
4 2500 2500 500 400 0
5 500 800 50 50 0
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Figure 26 The effect of different initial data sets to the estimation of focal length in

x-axis, f,.

The graph above shows the effect of the data sets listed above on the estimation
of focal length in x-axis, fy. As it is seen from the graph, the accuracy of initial
value determines the success of the estimation process. The estimations are

given in Table 6. The most successful data set is Dataset2,

with fx =1907.5, DataSet2 give the second best results with fx =1925.

Although DataSet1 is closer to the true values than DataSet2, DataSet2 gives the
best estimation in focal length. But when the other unknown calibration

parameters are considered, DataSet1 gives the best estimation for all.

Table 7 The estimated calibration parameters with different initial data sets. Since

DataSet1 is the closest data set to the true value, it gives the best estimations.

Initial Data Est. f Est. f, Est. ug Est. v, Est. s
Set No.
True = True = True=560 | True=409 | True=0.335
1908 1914
1 1925 1899 386 404 0.011
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1908 1900 -35 32 0.00003

1094 1202 677 390 -0.04
2484 .4 2500.5 572 396 -0.04

350 800 291 38 -0.0074

The auto-calibration with absolute dual conic is also tested with the ballet
sequence. The required input data for the algorithm is the projection matrix of the
camera and the width and height of the image. These data are provided by the
ballet (6.12) is

parameterV converges and the absolute dual conic is computed with the

sequence. Equation computed iteratively until the

projection matrix and parameterV . Finally the image of absolute dual conic is
computed via Equation (6.9) and via Cholesky decomposition the calibration

matrix is computed.
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Figure 27 The parameter v.

It is expected that V to converge after a few iterations, but it does not converge
after 100 iterations. Although the iteration number is increased, it continues to

oscillate. The parameterV is set to the mean value of the last 20 iterations where
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the oscillation decreases with respect to the beginning. After the parameterV is
determined, the process described above is applied and the computed calibration

matrix is:

1792 0 512
0 0 1

The estimated calibration is exactly equal to the initial value of the calibration
matrix in Kruppa equations, where the focal length is equal to the sum of width
and height of the image and the principal point is in the middle of the image. Also

it is equal to the calibration matrix K n Which is used to normalize the projection

matrix in Equation (6.10). Although the estimated parameters satisfy the Equation
(6.12), the algorithm fails to estimate the calibration matrix. For that reason the

simplified Kruppa equations are used in this thesis.

The intrinsic parameters of the coral sequence are computed with the simplified

Kruppa equations. Using the following initial estimation is:

520 0 160
K..=| 0 520 100 (6.39)
0 0 1

the estimated calibration matrix is:

495.75 -0.0217 223.98
0 0 1
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CHAPTER 7

ESTIMATION OF CAMERA MOTION

7.1 Introduction

In the previous chapter, the intrinsic parameters of the camera are computed.
However in order to compute 3D metric reconstruction of the scene, it is
mandatory to compute the extrinsic parameters of the cameras, rotation and

translation matrices.

Once the intrinsic parameters and the fundamental matrix are computed, rotation
and translation matrix of the camera is estimated via essential matrix. Essential
matrix is the special case of fundamental matrix for the case of normalized image
coordinates [6]. Essential matrix is introduced before fundamental matrix.
Essential matrix can be assumed as the special form of fundamental matrix,
considering the case that the intrinsic parameters are known. The relation

between the essential matrix and the fundamental matrix is:
E = K'TFK (7.1)

where K is the calibration matrix of the left camera and K is the calibration
matrix of the right camera. Since a video sequence is used in this thesis, the
former frame is assumed as taken by the left camera and the latter frame taken
by the right camera. It is assumed that the intrinsic parameters of the camera do
not change between the two frames. Based on this assumption the intrinsic

parameters of the left and the right camera are considered as equal.

K =K' (7.2)
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The normalized image coordinates is determined as m =K ™*m and the

relation between the essential matrix and the normalized corresponding pairs is:

mTEmM =0 (7.3)

If the left camera coordinate system is chosen as the world coordinate system,

then the projection matrix of the left camera will be P = K [| O]With zero

translation and identity rotation matrix. The projection matrix of the right camera

wil be P’ = K [R t]with rotation R and translationt . Considering the left
camera coordinate system as the world coordinate system, the rotation matrix

R and the translation matrix { defines the transformation of the right camera
coordinate system with respect to the left camera coordinate system and this is

the case in this thesis.

With the rotation and the translation matrix the point

M = [M M y M Z]T defined in the left camera coordinate system and the

point M’ = [M ;( M ; M ;]T defined in the right camera coordinate system

is related as:
M'=RM +t (7.4)

The coordinates of the points on image plane is determined by normalizing the

3D coordinates of the points with the value of Z-axis, depth value.

M, M,

. M " M

. M . M !

m =|v|= LM/ =V |= y
. M, . E (7.5)

1 1

Equation 7.4 is revised:
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M'm'=M,Rm +t (7.6)

z

If there is a translation in the system, one can obtain:

Mzm'=Merﬁ+to 7.7)

] ]

t
where [ = w

From the Equation 7.7, it is easily seen that with a given corresponding pairs,

rﬁi and rﬁ,’ , the rotation matrix R and the translation vector represented by

unit vector to can be computed. With the computation of unit vectorto , only the

direction of the translation is computed, but the magnitude is still missing.
Because of the missing magnitude of translation vector, only the 3D coordinates
of the points is computed up to a scale, which is the definition of metric
reconstruction and this scale factor is the difference between the metric and

Euclidean reconstruction.

Since the fundamental matrix can be computed from the projection matrix, the

following equation can be obtained [6]:
F=KT[tRK ™ (7.8)

By substituting the fundamental matrix value with the one in Equation 7.1, the
relation between the essential matrix and the rotation and the translation matrix

can be obtained as:
E=[t]R (7.9)

7.2 Linear Algorithm for Determining R and t

Since the essential matrix is a rank-2 matrix like the fundamental matrix, SVD of

the essential matrix is:
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E =UDV " where D = (7.10)

O O w
o unw O
o O O

Camera matrices can be retrieved from the essential matrix up to a scale and

four-fold ambiguity [6]. Define the matrix:

0 -1 0
0O 0 1

.
t, is defined as t, =U (0,0,1)" = U, the last column of U . The rotation

matrix is defined as R = UWV T orR =UW VAl . Since the sign of

E and to can not be determined, two possible choices for R and two possible
choices for 1, and four possible choices of projection matrix rises. If the

projection matrix of the left camera is P = [| 0], the projection matrix of the

right camera is one of the four possible choices:

P =[UWVTu,|or P'=[UWVT —u,|

[UWTVTU3:| or P':[UWTVT—UF’] (7.12)

P!

It is known that the 3D points projected by the cameras are in front of the
cameras with positive depth values. The sign ambiguity of rotation and translation
can be solved with a triangulation of a single point: Triangulate one of the
corresponding points with the four possible projection matrices; the computed 3D
point must be in front of the cameras, Z-axis value must be positive. Choose the

projection matrix which satisfies this condition.

This method is easy to implement but it is not robust to noise which makes it

impossible to be used in practical applications.
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7.3 Robust Algorithm for Determining R and t

From the Equation 7.10, essential matrix and the translation matrix must satisfy

the following constraint:

E't,=0 (7.13)

Since 1, is a unit vector, the solution 1, is the unit eigenvector of EE " with the

smallest eigenvalue. Once to is found, the next step is to find its sign. The depth
values of the points viewed by the cameras have to be positive because of being

in front of the camera. The vectors to X rﬁ,’ and E fﬁi must have the same sign

[19]. If the following condition hold the sign of to is changed:

n
D (tyxm)(EM;) <0 (7.14)
i=1

The rotation matrix is determined by minimizing:

min [R"[-t,], —E"| (7.15)

Let C = [— t, ]X , D = E" and define a 4x4 matrix B .

3 0 (Ci - Di)T

B=> B/Band B

i1 ) (D, -C)) [Di+Ci]x (7.1

where C, and D; are the column vectors of C and D .

.
q =1[05,09;,9,,095] is the unit eigenvector of B with the smallest

eigenvalue. The rotation matrix R is related with J as:
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2(%% - qoqz)
2(Q3q1 - qoqz)
0o~ —0; +0;

2(%% - qoqs)
o~ +0; — 0
2(Q3q2 - QOql)

O+ —0; —C;
z(qqu - %qe)
z(ql% - Cquz)

R= (7.17)

7.4 Results and Conclusion

The linear and robust algorithm are tested with the ballet sequence which
provides ground truth rotation and translation matrices. The rotation and
translation matrices are computed via robust and linear algorithm with ground
truth fundamental matrix and calibration matrix values and the results are

compared with the ground truth rotation and translation matrices.

Table 8 The calculated translation matrices and euler angles of the calculated

rotation matrix via linear and robust algorithm and the ground truth values.

Method t, ty t, O o, o,
(degree) | (degree) | (degree)
Ground -3.9037 | -0.0404 0.1687 -0.68 -4.6 1.49
Truth
Linear 0.999 0.0107 -0.0431 24.9 42.07 59.16
Robust -72.5 -0.77 3.5¢” 0.331 -2.46 -0.018

Both linear and robust algorithms give good result on translation matrix
estimation. The ratio of translation among the axis is correct for both algorithms,
but the direction of the translation estimated by linear algorithm is the inverse of
the ground truth. It has to be corrected before triangulation. If not, the points are
triangulated with negative depth values, which mean they are behind the

cameras, but in real they are not.
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The problem with the linear algorithm is the estimated rotation matrix and Euler

angles. They are far from the ground truth.

Robust algorithm estimates the translation matrix in the same direction with the
ground truth but up to a scale. As it is mentioned before, only the direction of the
translation matrix can be estimated, the magnitude can be estimated up to a
scale factor which leads to a scale-ambiguity. The estimated rotation matrix and
Euler angles are nearly equal to the ground truth. The results show that robust

algorithm performs better than the linear one.
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CHAPTER 8

RECTIFICATION

8.1 Introduction

Rectification is the process of determining the transformation of a given stereo
pair, which makes the epipolar lines of the images parallel to the horizontal axis.
Rectification is the pre-step for stereo matching. Almost all stereo matching

algorithms require rectified images as input.

Rectification decreases the 2D search area to 1D for stereo matching. By the
transformation applied to the stereo image pair, the corresponding points have
the same vertical coordinates. After the rectification, it is known that the
corresponding point of each feature point is located at the same vertical
coordinate, but shifted horizontally. So the search is performed on the same

vertical axis in stereo matching algorithms.

Several algorithms are proposed for rectification, but a common criterion or a
measure of the performance have not been proposed. The average distance
between the vertical coordinates of the corresponding points is considered as a

measure for the rectification algorithms examined in this thesis.

Two rectification algorithms are examined: 1. Rectification for calibrated stereo

pairs [9], 2. Quasi-Euclidean Uncalibrated Epipolar Rectification [10].
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8.2 Redctification for Calibrated Stereo Pairs

The rectification process in calibrated images is performed by rotating the retinal
planes of the cameras until the epipolar lines coincide and the epipoles translates

to infinity. The cameras are rotated while keeping the optical centers constant.

1y my

Figure 28 Epipolar Geometry

Figure 28 shows the epipolar geometry of a stereo pair. The 3D point M with
the coordinates [X, Y, Z ,1]T is projected by a stereo camera pair with camera
centersC; and C, , and projection matrices P =K [R t]and

P, = K[R '[], to the 2D points M;and M, with the coordinates

[ul,vl,l]T and [uz,vz,l]T _
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Figure 29 Rectified cameras. Epipolar lines are parallel to each other and baseline.

When the focal plane of the right camera coincides with the optical center C; of

left camera, the right epipole is at infinity. The same concept holds for the left

camera. When both epipoles are at infinity, the baseline C,C, is in both focal

planes which means that the retinal planes are parallel to the baseline and the

epipolar lines are parallel to the horizontal axis [9].

Rectification is the process of defining new projection matrices Pm and Pnr by

rotating the old ones PQ, and Por around their optical centers until focal planes

coincide [9]. In order to get epipolar lines parallel to the horizontal axis, the new X
axis of the cameras must be parallel to the baseline. The camera matrices of the
cameras must be same in order to have corresponding points with same vertical

coordinates [9]. The new projection matrices are defined as:

P, =K [Rn - RnCl]and P, =K [Rn - RnCZ] (8.1)

nl

The algorithm is summarized as follows:

e The old projection matrices P0| and Por are factorized to calibration,

rotation and translation matrices:
I:)ol = KoI [Rol 1:ol ] and I:)or = Kor [Ror tor] (8.2)
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e The projection matrices can be represented as P0| = [Q0| d, ]and

Por = [Q or Yor ] . The optical centers of the cameras are:

C, = _Q|_lq| and C, = _Qr_lqr (8.3)

e The new rotation matrix is defined as:

T
]
T
Ro =T (8.4)
T
I3
e The new X axis is parallel to the baseline:
— (C1 — Cz) (8.5)
1= :
e: - c.|
e The new Y axis is orthogonal to X and k :
r, =KkAr (8.6)
e The new Z axis is orthogonal to X and Y axis:
r; = LAT, (8.7)

K is an arbitrary vector to define the position of new Y axis and it is chosen

as the Z unit vector of the old left rotation matrix.

e The choice of calibration matrices is arbitrary. The calibration matrix of the
right camera is chosen as the calibration matrix of the new camera

matrices [9].

Ky=K,=K (8.8)

nl nr or

e The new projection matrices are:
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P = Knl [Rn - RnC|] and Pnr = Knr [Rn - Rncr] (8.9)

nl

if P, = [Qm 4. ]and P, = [Qor dor ],the transformation applied to

-1
the first camera projection matrix is T| = Qm Q0| . It is also same for the

second camera.

8.3 Quasi-Euclidean Uncalibrated Epipolar Rectification

Euclidean rectification is provided by a rotation of image planes providing that
epipolar lines are parallel and horizontal. The image transformation is computed
by a reference frame, plane at infinity in the calibrated case. Quasi-Euclidean
rectification is an approximation to the plane at infinity as a reference plane [10].

As explained in the previous part, the transformation applied to the cameras in

-1
order to rectify them can be represented asT| = Qon. . Indeed T| is the

collineation referenced by plane at infinity between the old and the new cameras
[10].

The transformation can be represented as:
-1
T, =K,RK; (8.10)

where K n and KQ, are the intrinsic parameters of the new and old cameras

and R. is the rotation applied to the old left camera to rectify it [10]. In the

uncalibrated case, only the corresponding pairs are given. The aim is to compute
the proper transformation in order to transform the corresponding points to satisfy

the epipolar geometry of a rectified image pair.

The fundamental matrix of the rectified image pair can be represented as:

0
0 —1|=u], (8.11)
1
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where U, = (1,0,0) and F. is the fundamental matrix of the rectified image
pair.
The relation between the corresponding pairs and the fundamental

matrix, Xi'T F X, = 0 | is refined as:
(Trxi'T )Fr (TIXi ): 0 (8.12)

T| and T, are the unknown transformations for the rectification and they must

satisfy the epipolar constraint with the transformed corresponding point [10]. The

transformation matrices are defined as:
T, =K, RKi'and T, =K R, K’ (8.13)

The unknown parameters are the old intrinsic parameters, KQ, , Kor and the

rotation matrices R, , Rr . For the new intrinsic parameters, it is assumed that

the vertical and horizontal focal lengths are the same and the principal point is

the mid point of the image.

Consider the following equation that:
F =Ky R FRK (8.14)

The multiplication of R, , R, with F, will eliminate the X components of the

rotation matrices so that they can be set to zero. Using the above relations the
uncalibrated rectification problem can be approximated as a least-squares
problem with six unknown parameters, the rotation angles Y, Z for the left image,
X, Y, Z for the right image and the focal length. Sampson error is used for the
error measurement which is a first order approximation of the geometric re-

projection error.
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i (Xi,T F Xi)z
Jlus T P+ [ F fus ],

samp

2 (8.15)

where U, = (0,0,2)

The algorithm is summarized as:

The corresponding pairs and the fundamental matrix is given. The

unknown parameters are:

Y-left: the rotation angle around Y-axis for the left image.

Z-left: the rotation angle around Z-axis for the left image.

X- right: the rotation angle around X-axis for the right image.

Y- right: the rotation angle around Y-axis for the right image.

Z- right: the rotation angle around Z-axis for the right image.
Focal length: the focal length of the camera pair.

The rotation angle around X-axis for the left camera is set to zero.
Set the initial values of the unknown parameters to zero.

The cost function is defined as in Equation (8.15). The fundamental matrix

is computed with the parameters defined in Equation (8.14).

f w/2
K. =K = f hi/2
1

where W and h are the width and height of the image respectively. The

rotation matrix R, with Euler angles (0, Y-left, Z-left) and the rotation
matrix Rr with Euler angles (X-right, Y-right, Z-right).
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8.4

Compute the average Sampson error for all of the N corresponding pair.

Esamp :szl Esamp

Minimize the Sampson error with least-squares method.

The translation T| and Tr is computed with the rotation angles Y-left, Z-

left, X-right, Y-right, Z-right and focal length which provide minimum

Sampson error using Equation 8.13.

Results and Conclusion

Calibrated rectification and uncalibrated rectification algorithms are examined and

compared. For the calibrated rectification algorithm only the projection matrices of

the cameras are required. For the uncalibrated rectification fundamental matrix is

required which is enough to provide the epipolar relation between the two

cameras.

Figure 30 Coral sequence rectified with uncalibrated rectification algorithm. The

upper left image is the image from left camera. The upper right is the image from

87



right camera with the epipolar lines and corresponding pairs. The lower left shows
the rectified left image. The lower right is the rectified right image with the epipolar

lines horizontal and parallel to the X-axis.

Figure 31 The coral sequence rectified with calibrated rectification algorithm.

In Figure 30 and Figure 31 the rectified images are seen with the two rectification
algorithms. The biggest challenge in rectification is to rectify the images without
much degeneration. Warping the images according to the computed new
projection matrices is crucial because these images are the inputs of stereo
matching algorithms and the performance of rectification algorithm directly affects
the result of the stereo matching algorithm. The calibrated rectification gave a
more distorted image according to the uncalibrated rectification. The reason is
that in calibrated rectification collineations are derived directly from the camera
matrices and the camera matrices are computed by auto-calibration, which is
error-prone. But in uncalibrated rectification, rectification collineations are derived

by minimizing the error function defined in Equation 8.15.
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There is no a common criterion or performance measure of the rectification
algorithms except visual comparison. But the rectified corresponding points can
be compared using the properties of having the same horizontal coordinates. The
mean absolute difference between the y- coordinates of the rectified
corresponding points can be a measure of performance. The mean absolute
difference of corresponding points after calibrated rectification is 12.8804 and the
difference after uncalibrated rectification is 0.303865. The reason of the
difference between the two algorithms is that the latter one naturally minimizes

this error during its optimization step.

As an example for their performances, x and y coordinates of points before and
after rectification are given in Table 8. In the uncalibrated rectification the y
coordinates of the points (bold ones) are same which means they are parallel.
But in calibrated rectification, the difference in the y coordinates of the points

shows the distortion in the image.

Table 9 The corresponding points before and after the rectification.

Corresponding Pairs Uncalibrated
Calibrated Rectification
before Rectification Rectification
m m’ m m’ m m’

108.68 86.61 101.96 77.98 -70.50 17.11
74.49 69.46 72.96 72.49 197.417 205.63
77.21 52.32 155.86 131.82 69.085 180.58
73.22 68.44 67.40 67.11 367.48 396.87
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CHAPTER 9

STEREO MATCHING

9.1 Introduction

Stereo matching is the process of computing the correspondence pixel for each

pixel in a rectified image pair and produce a dense disparity map by which the

depth map of the scene can be extracted easily. Each pixel P = ( Py, py) in

the left image must have a corresponding pixel ( = (qx, qy) in the right

image. As a result of rectification the vertical coordinates of the corresponding

pixels are same py = qy. The distance between the horizontal components

(px - q, ) is called disparity and it is inversely proportional to the distance of

the object to the camera [16]. So the distance of the object to the camera, depth
of the scene, can be found by computing the disparity of the corresponding pixels

which is possible by stereo matching.

Traditional dense stereo matching algorithms computes a dense disparity map
and a depth map from the known camera motion, which is provided by
rectification. The scene in stereo matching is assumed as Lambertian, without
specularities, reflection or any transparency [15]. The factors that make stereo

matching challenging are:

o Noise: Unavoidable light variations between the two frames, image

blurring.

o Textureless areas: computing corresponding pixel pairs in textureless
areas where there is no significant difference between the neighbor

pixels.
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o Depth Discontinuities: computing disparities and depth values near object

borders.

o Occlusions: the pixels seen by only one of the cameras that causes

correspondence problems.

Stereo matching is one of the most popular research topics in computer vision. A
large number of stereo matching algorithms have been developed. In [11]
Scharstein and Szeliski provided a good taxonomy of stereo matching algorithms.
20 stereo algorithms have been compared. Considering the overall performance
of the algorithms, Graph Cut and Belief Propagation algorithms give the best
performance in all regions of the sample images [11]. These two algorithms
become the basis for new powerful vision algorithms. Tappens provided a
comparison between these two algorithms and in his study he showed that Graph
Cut performs better than Belief Propagation proving more smooth disparity map
and better energy minimization [12]. It is proven that Graph Cut gives better
results in underwater especially in textureless areas and near discontinuities [13].
Considering the reasons above, Graph Cut algorithm [14] is chosen as the stereo

matching algorithm in this thesis.

9.2 Stereo Matching with Graph Cuts

The stereo problem is summarized as follows: compute the corresponding pixel
in the right image for every pixel in the left image [14]. This problem fits a class of
problems called pixel labelling problem. The aim is to assign each pixel a label
from a set. The procedure is similar to image segmentation but it is more
complex. In stereo matching problem this label set is the disparity.

Every pixel P = (px, py) € P must have a corresponding  pixel

q=(a9,.9 y) € P in the other image and must be assigned a label fp el.

In a labeling f = { fp, P e P} the pixel P in the left image corresponds to
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the pixel P + fp in the right image. During the labeling process the following

factors have to be considered [16]:

e The pixel P in the left image and the pixel P + fp in the right image
must have similar intensities.
e With this labeling P and P + fp must have similar labels fp and

fq with their neighbor pixels.

The pixel labelling problem is formularized as an energy minimization problem.

The goal is to find the labelling f which minimizes the energy defined as:
E(f)=Egu(f)+ Eqoon(f) + Evisibility( f) (9.1)

The energy of labeling f consists of two sub-energy forms. Edata ( f ) is the
cost of assigning labels. Esmooth ( f ) is the smoothness term that measures

the extent to which f is not piecewise smooth. Energy function must be

minimized considering the criteria of finding the appropriate labeling for pixel

P while pixel P must have a label which is also smooth with its neighbor pixels.

Eisinitiy () will encode the visibility constraint.

The data term is

Eww (F) =D D, (f,) 9.2)

peP

The match penalty Dpprovides the photoconsistency, the constraint of

corresponding pixels to having similar intensities.

D,(f,)=[1(p)-1"(p+ £,)| ©3)
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The smoothness term is

Edata(f) = Zv{p,q}(fp’ fq) (94)

{p.a}eN

Neighborhood constraint is introduced in the smoothness term. The

neighborhood is defined as:
Nc{{p.a} p.ge P} (9.5)

The pixels P = ( Py, py) and = (qx, qy) are neighbors if they are in the

same image and \px — qx\+ ‘py — qy\=1.

The smoothness penalty V' provides the smoothness constraint through the

neighbor pixels.

V(f, f)=AT[f, = f] (©.6)

where T[] is 1 if its argument is true and 0 otherwise [14].

Figure 32 summarized the occlusion and visibility terms. The pixel p from Camera
1 (C1) and pixel q from Camera2 (C2) are shown. They are at the same disparity
level, level 2 and will have the same label. The green square represents the pixel
g in a different (more deep) level, behind the red dot with a different label. The
pair (p,2) and (q,2) have visibility constraint, but the pair (p,2) and (gq,3) do not
have and they belong to | .. [14].

vis
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=R J

Y
Depth labels

Figure 32 Occlusion and Visibility Constraint in stereo matching.

The visibility term is zero if visibility constraint is satisfied; otherwise it is infinity

[14]. According to the visibility constraint, a 3D point <p, fp> is present in a
labeling f , it blocks the views of other cameras. The new set |Vis contains the
3D points <p, fp> and <q, fq>where fof,.

Evisibility (f)= 0 (9.7)
(P, fo).(a fq )e i

Minimizing the energy function defined in Equation 9.1 is NP-hard problem [14].
For that reason, the goal is to find an approximation to the optimization algorithm

based on graph cut to find a local minimum.

9.2.1 a Expansion Move Algorithm

If the smooth penalty function V is a metric on labels, the energy function

defined in Equation 9.1 can be minimized by & expansion move algorithm [14].
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Given a label & , a labeling f and another labeling f'isan a expansion

move from f to T for every pixel P .

f'(p)# f(p)= f'(p)=a (9.8)

A label, & , is chosen from the label set and the expansion move algorithm finds
a unique labeling within a single & expansion move from the current labeling

and updates the labeling if its energy is lower. Termination criteria is to reach

~

such a labeling f that there is no o expansion move from f whose energy is

lower than E ( 1:) .

Finding the lowest energy & expansion move from f is the key problem. In

expansion move algorithm each pixel has two options [14]:
e keep its old label fp or,

e switch to the new label & .

Figure 33 a Expansion Move Algorithm. Three different labeling is shown on the
left part. After the expansion move algorithm, the pixels whose label is not q, is

switched to label a.
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Considering the options of the pixels, expansion move can be defined as a binary
image that a single bit is defined for each pixel representing which option that

pixel selects in the expansion move [14].

A binary image X = {Xp, P € P}is defined. Given an initial labeling f and
a label , if X,=1, f'(p)=aand if X,=0 then
f '( p)= f(p). This labeling is defined as f [X] [14]. The energy

function E is rewritten as S(X) =E ( f [X]) . The energy function on the

binary image is defined as [14]:
8(X):Z‘9p(xp)+zgp,q(xp’xq) (9.9)
P p.q

The data term is defined as:

if x, =1 ¢,(x,)=D,(a)
. 9.10
It x, =0, ¢&,(x,)=D,(f,) (5-10)

The smoothness term is defined as:

if x,=1,%x,=1,¢,,(X,,Xy) =V (a,a)

if x,=1,%x,=0,¢,,(x,,%)=V(a, f,)

if x, =0,x,=1, ¢, ,(x,,%,) =V (f,,a) (9.11)
if X, =0,x,=0,¢,,(x,,%x,)=V(f,, 1)

The energy function 6‘(X) can be minimized if &, , has regularity property

[14]. The regularity property proposes that:
V(a,a)+V (LI <V(l,a)+V (a,l) (9.12)

!
)

for any labels I [14]. Since V (a,a) = 0 then the regularity property is
just triangle inequality [14].
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9.2.2 Graph Cuts

G is a weighted graph with vertices V and edges E. Vertices represent the pixels
and edges connect the vertices to each other with a weight defined as the data
penalty or smooth penalty. There exist two terminal vertices {s, t}, source and

sink terminals. A cut C separates the graph from the edges into two parts; some
vertices are in the source part S € V * and the others are left in the sink part
teV?®. The cost of the cut C equals to the sum of the edges between the

vertex V * and vertex V ' . The goal is to find the cut with the smallest cost. The
minimum cut on graph G provides the labeling that minimizes the energy function

within one & expansion move [17].

9.2.3 Graph Construction

The structure of the graph is determined by the current labeling and the label & .

Figure 34 The configuration of the current labeling f and the new label @ .
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Figure 34 shows the configuration of the current labeling f and the new
labelx . The current labeling, the partition P , consists of the
Iabels{Pl, Pz, Pa}. The pixel p is set to label P, the pixels q and r P2 and
the pixel s, Pa . Two nodes are added to the graph between the neighbor pixels
with different labels, & = @;, 1 and b= Agr sy -The vertices also includes
the terminals @ and @ . Each pixel is connected to the terminals @ and @ by

tlinks, T and tg. Neighbor pixels which have the same labels are connected

by n-links e{ p.q} [17]. The weights of the edges are:

Table 10 The weights of the edges in the graph.

Edge Weight Reason
tf ®© peP,

ty D,(f,) DgP

b D, (a) peP

€p.a3 V, (), a)

a0y V, (e, T) {p.,q}e N, f = f,
ty Vv, (f,, f)
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Vo (f,,a) [{PareN. T, =1,

€n.ad o

Any cut C on graph G must contain one t-link for each pixel. This defines the new

labeling f “ and for each pixel P :

fe=a iftieC
fo=f, ift7eC

p

(9.13)

If the cut C separates the pixel P form the terminal & , the pixel P is set to
label & , otherwise it is set to its old label fp , if the cut separates P from the

terminal @ [17].

9.3 Results and Conclusion

The graph cut stereo matching algorithm is briefly discussed above. Three stereo
matching algorithms are compared in this section. First two algorithms are sub-
types of graph cut algorithms and the last one is a traditional stereo matching
algorithm. The first graph cut algorithm is called voxel labeling (KZ1) [17]. The
second graph cut algorithm is called pixel labeling (KZ2) [25], and the last
algorithm is a traditional stereo algorithm (BVZ) [26]. [26] focuses on solving the
stereo matching problem by maximum a posteriori (MAP) estimate of a class of a
Markov Random Fields which generalizes the Potts model and ignore the
occlusions. The difference between KZ1 and KZ2 is the handling method of
smoothing terms in the energy function. For more detail about the algorithms,
reader may refer to the following references. [17] for KZ1, [25] for KZ2 and [26]
for BVZ.

These algorithms are first applied to a very well known stereo pair, Tsukuba pair.
Tsukuba pair, the ground truth disparity map and occlusions are shown in Figure
35.
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Figure 35 Tsukuba sequence. The lower left image is the ground truth for the

disparity maps. The lower right image (red marked points) shows the occlusions
between the two images.

Figure 36 shows the result of the stereo algorithms on Tsukuba pair. Here, the

estimated disparity map and occluded regions are given for each algorithm.
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Figure 36 The performance of stereo matching algorithms on Tsukuba sequence.

The red marks on images in the right part shows the occlusions. The first pair is
KZ1, the second pair KZ2 and the last pair is BVZ.

In the disparity maps, the objects close to the camera are brighter than the
objects far from the camera. With this scaling the disparity maps behave as a

depth map of the scene.
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Figure 37 The performance of stereo matching algorithms on coral sequence. The

red marks on images in the right part shows the occlusions. The first pair is KZ1,
the second pair KZ2 and the last pair is BVZ.

These algorithms are also applied to underwater stereo pair. The resultant
disparity maps and occluded regions are shown in Figure 37 and the same type

of performance are observed.
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From Figure 37 it is seen that graph cut algorithms performs better than
traditional stereo algorithm and among the graph cut algorithms KZ1 performs
better than KZ2. The smoothness in the object borders is the advantage of KZ1
and there are also more less spikes in the sloping sides in KZ1 when compared
to KZ2.
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CHAPTER 10

TRIANGULATION

10.1 Introduction

The final step of the 3D reconstruction process is the triangulation step where the
coordinates of 3D points are computed from the corresponding pairs and the
projection matrix of the cameras. In theory, since the 3D point is visualized by
both of the cameras, left and right, the back-projected rays from the cameras
should meet at the location of 3D point. Due to the noise in determining the
corresponding pairs and estimating the fundamental matrix, the back-projected
rays do not meet. In this case, it is necessary to find the best 3D point of

intersection [23].

Assume a 3D point M in 3D space viewed by two cameras whose projection

matrices are P and P’ respectively and also M and m’ are the projected points

in the two images satisfying the epipolar constraint M "Fm =0 . The two rays

back-projected from the points M and m' lie on an epipolar plane that passes
from the camera centers. Since the rays lie on plane they must intersect in a
point, which is the 3D point projects via the left and right cameras to the
points M and m’ . But these rays do not intersect because of the presence of
noise. The goal of triangulation is to back-project these rays and to intersect them

in 3D space.

Several algorithms have been developed for triangulation. Two of most common
methods, linear triangulation and polynomial triangulation are examined in this

thesis.
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Assume a triangulation method 7 to compute the 3D pointM from
corresponding points M andM’ with the cameras  with projection

matrices P and P .
M =z(m,m',P,P") (10.1)

10.2 Linear Triangulation

Linear triangulation method is the most common and simple triangulation method
to overcome the problem defined above. The 3D point M is projected via the
two cameras to the pointsAM ~ PM andA'm’'~ P'M | where
A and A are scalar factors. Cross multiplication method is applied in order to

eliminate the scale factors M x PM = 0 . If the relation is written in the open

form, it gives three equations two of which are independent and linearly

dependent to M

u(psM)-(p;M)=0
v(p;M)—(p,M)=0 (10.2)
u(p,M)-v(p;M)=0

where piT is the i-th row of P . Equation 10.2 can also be written for the right

image and an equation of the form AM = 0 can be composed:

up, - p;
A_| VP2 Pl
urp:;T _ p;{T (103)
| V' = Py

The solution of AM = 0 is the unit eigenvector corresponding to the smallest

eigenvalue of A .

105



10.3 Polynomial Triangulation

The noisy point correspondences do not meet the epipolar constraint.

IfM and M’ are the point correspondences close to M and m’ but satisfying

the epipolar constraint, a geometric error cost function is defined:

-~

M

Cf

™
e
R

Figure 38 Polynomial triangulation computes the closest corresponding point

which minimized the error function defined in Equation 10.4.
C(m,m)=d(m,m)?>+d(m’,m)? (10.4)

where d (*,*) is the Euclidean distance between the points. Once the point

correspondences M and M’ are found which minimizes the cost function, the 3D

point M can be computed by linear triangulation and the back-projected rays
will precisely intersect [6]. This cost function can be minimized using optimization
algorithm like Levenberg-Marquardt, but polynomial triangulation provides a non-

iterative method, the solution of six-degree polynomial.

Any corresponding pair that satisfies the epipolar constraint must lie on the
corresponding epipolar lines in the two images. M is the optimum point lies on

the epipolar linel and M’ is the optimum point lies on the epipolar line I" . Since

the cost function is the Euclidean distance between the measured points and the
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optimal points, the closest distance between these points are the perpendicular
distance between the measured point and the corresponding epipolar line. So

that the cost function can be rewritten as:

C(m,m)=d(m,*+d(m’1")? (10.5)
ThereforeM and M’ are  the closest points on linesl andl’to the
points M and M " The strategy of minimization is as follows:

1. Parameterize the epipolar lines in the left image with T . An epipolar line in

the left image is written as | () .

2. By using the fundamental matrix F | define the epipolar lines in the right

image as ' (t) .
3. The cost function is defined as
C(m,m") =d(m,I(t)*+d(m’1'(t)?> (10.6)
4. Find the value of t which minimizes the cost function.

By a suitable parameterization of the epipolar lines, the cost function turns to a

polynomial function of t [6].

First step of the minimization algorithm is to apply a transformation to the

corresponding points to place them at the origin, [0 0 1]T. With this
. . . . . . T

transformation the epipoles is on the X-axis with coordinates, [1 0 f ] and

[1 0 f ']T and the fundamental matrix has a special form:

ffd —-ftc —fd
F=|-fb a b (10.7)
— fd Cc d
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Suppose a point with the coordinate [1 t f ]T . Since the epipole is [1 0 f ]T ,
the equation of the epipolar line of this point is

[t f]x[10 f]l=[tF 1 —1t] whichis of the form |(t) . The squared

distance between the epipolar line and the origin is:

t2
1 + (tf )2 (10.8)

d(m,I(t)* =

The corresponding epipolar line in the right image is:

I'(t) = F[0Ot1]" =[-f'(ct +d) at +b ct +d]’

(10.9)
The squared distance of this line to the origin is:
. ct+d)?
d(m. o) = (at +b)(2 T f’z)(ct 1d)? (10-10)
The total squared distance is:
2 RCEE (ct+d)?
st) =d(mI(t))y +d(n,I'(t)) "Ly + @by s Fetdy (1o
The derivative of the function is:
$'(t) 2t 2(ad —Dbc)(at + b)(ct+d) (1042

T @rFA)? ((@t+b)? + fE(ct+d)?)?

The maxima and minima of S(t) will occur whenS'(t) = O . Equating the

Equation 10.12 to zero will give:
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g(t) =t((at +b)* + f"?(ct +d))>
—(ad —bc)(L+ f’t2)(at +b)(ct +d) (10.13)
=0

The maxima and minima ofS(t) occur at the roots of the polynomial defined in
Equation 10.13. The polynomial J (t) is a six-degree polynomial having six
roots. The real root giving the minimum value ofS(t) is the value oft that is
looked for. The compete polynomial triangulation is summarized as [6]:

1. Define the transformation matrices that

takeM =[u Vv 1]T andm’' =Ju’ v’ 1]T to the origin:

1 u 1 u’
T= 1 v| T'= 1 Vv
1 1

(10.14)

2. Replace F withT'"TFT ', The newF corresponds to translated

coordinates.

T
3. Compute the left and right epipole €=[€ €, €] and
e’ =[e e, eé]T viaFe =0andFTe'=0. Normalize  the
: 2 2
epipoles such thate, +€, =1

4. Form the rotation matrices

& & €

_ r_ | _af ’
R— —92 el R - ez el (1015)

5. Replace F with R'FR " . The resultant F has the form in Equation
10.7
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6. setf =e;, f'=e;,a=F, b=F,; c=F, d=F;.

7. Form the polynomial J (t) and solve fort to get the six roots.

8. Evaluate the cost function defined in Equation 10.10 for the real-part of

the roots of § (t) . Select the value oft ast, that gives the minimum

value of the cost function.

9. Evaluate the two lines | = [tf -1 t]T and |’ defined in Equation 10.9
witht;, and find M and M’ that are the closest points on the epipolar
lines to the origin. For a general Iine[/1 2 V]T the closest point to the

o 2 2\1T
origin |s[—/1V - uv (/1 + U )] .
10. Transfer back to the original coordinate system by

replacing M with T "R M and M’ with T 'R'T M’

11. Compute the 3D point M via linear triangulation.

10.4 Results and Conclusion

Triangulation can be defined as a sparse 3D reconstruction. Only the
corresponding points are reconstructed. For that reason, in this section only the
images that have over 500 corresponding points are triangulated. For an
underwater image, it is hard to find over 500 corresponding points, because the

underwater scene structure has not been textured very much.
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Figure 39 Castle sequence. The top pair are the images from the left and the right
camera. The middle left shows the 3D reconstructed model from top view, the

middle right from front view. The last image shows the 3D model from side view.
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10.5 Dense 3D Reconstruction

Since in the triangulation method, only the corresponding points are triangulated,
only %2~3 of the points are triangulated, which is called sparse 3D
reconstruction. The size of the images in castle sequence is 768x576 which
means 442368 points. When only the 3D coordinates of the corresponding point

are calculated, this makes 1305 points which provides a poor visualization.

Since each pixel’'s correspondence is computed in stereo matching, it is possible
to find the 3D points projected to each pixel in the image. By this way, 3D model
of the whole scene can be reconstructed, which is called dense 3D

reconstruction.

The first step of dense reconstruction is to compute the disparity map, which is
discussed in the stereo matching. Occlusions cause holes in the disparity map.

These are filled according to the disparity values of neighbor pixels.

The second step is the spike removal. The pixels which have a large disparity
difference according to the neighbor pixels are called spikes. If there is a large
difference in disparity value between a pixel and its neighbors, the disparity of
that pixel is replaced by the average disparity value of its neighbors. The spikes

are removed with this process.

The last step is smoothing. The disparity map is filtered by a Gaussian filter in

order to smooth the disparity map and to provide a continuous surface.

These post-processing steps are applied to the disparity of coral pair and the

result is shown in Figure 40.
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Figure 40 The disparity map of the coral sequence. The left part is the disparity
map before spike removal and smoothing and the right part is the smoothed

disparity map with removed spikes.

The disparity values of the pixels are not their actual z-coordinate. Disparity
represents a relative depth value. The disparity value is be transformed to the

actual depth value as follows:

d 1 1 1 (10.16)
— +
255 | Min, Max, Max |,

where  is the disparity value, Min , and Max , are the minimum and

maximum depth values in the images. These values are estimated empirically

and set to (80,200) for the coral sequence.

Once the depth value of the 3d point is computed, the computation

of X andY are left. The 2D projection of the 3D point and the camera projection
matrix is known. The X and Y coordinates of 3D point can be calculated by

solving the equation:

m = PM (10.17)

(10.18)
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The steps of the solution are:

e Compute the valuesC,,C; andC, :

C, = ZP,, + Py,
¢, = 2P, + P (10.19)
C, = ZPzz + P23

where Pij is the i-th row and j-column of the projection matrix P.

o Define the equations:

u= XPy, +YP, + ¢,
V = XP].O + YPll + Cl (1020)
1= XP,, +YP,, +¢,

By solving the three equations defined in Equation (10.19), the X and Y-

coordinates is calculated as:

Y (P, —uP,)+c,—uc,
upzo - I:)oo

X = (10.21)

_ U(C,Pyy —C,P0) +V(C, Py, —CoPy) + Gy — Ry
V(PP = PuPy) +U(PPyy — RiPoo) + (RoR: — BoPoy)

(10.22)

For each pixel, the 3D projected point is computed. By this way the 3d model

of the whole image is reconstructed.
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Figure 41 The 3D point cloud of coral sequence. The reconstructed point number is

76800.

The 3D point cloud is triangulated in order to form a mesh and the result mesh is

covered with a default surface.
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Figure 42 The dense 3D reconstruction of coral sequence.

The 3D representation will be more realistic by texture mapping the mesh model.
The image taken from the left camera is chosen as the texture. A polygon is
formed by using the reference pixel and its right and down neighbors. Since
mesh is formed by polygons, each texture polygon is mapped to the surface
polygon.
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CHAPTER 11

EXPERIMENTS

11.1 Introduction

This chapter is devoted to the 3D reconstruction of different types of underwater
scenes. Three sequences are examined. First one is the coral sequence, which is
used throughout the thesis to demonstrate the sub-blocks of the reconstruction
process and to compare the algorithms. The second one is boat sequence and
the last is another coral sequence but this sequence is different from the first two
by the motion of the camera. In the first two sequence the camera makes a
translational motion with a relatively small rotation around the object, but in the
last sequence the camera makes translational motion along the principal axis
with again a relatively small rotation and the effect of this different motion is

examined.

11.2 Coral 1 Sequence

Figure 43 shows two frames from a video sequence captured from a camera

following a quasi-circular translational path around a coral reef in clear water.

Figure 43 Chosen two frames from the coral sequence. The left image represents

the left camera and the right image represents the right camera in the stereo pair.
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The two frames are preprocessed with the method examined in Chapter 3. The
resultant images are shown in Figure 44. It seems to decrease the visibility

quality but it increases the number of detected features.

Figure 44 The result of preprocessing of coral sequence.

Once the images are preprocessed, the next step is to detect features, find
corresponding pairs and compute the fundamental matrix which represents the
epipolar geometry between the two cameras. The feature points are detected
with SIFT method and matched with SIFT descriptors. The fundamental matrix is
estimated via normalized 8-point algorithm and RANSAC. In Figure 45, the left
image shows the matched corresponding points and their motion between the
two images on the left image. The red cross shows their position in the left image
and the green cross shows their position in the right image. The blue line
represents their path between the two frames. In Figure 45, the right image

shows the epipolar lines wit green lines and the feature points with red cross.

Figure 45 The path of corresponding points between the two frames is shown in

the left and the epipolar lines and feature points is shown in the right image.
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With the estimated fundamental matrix, the intrinsic parameters are computed via
simplified Kruppa equations and the extrinsic parameters are computed via
robust method of rotation and translation matrices. Once the intrinsic and
extrinsic parameters are computed, the next step is rectification. The two frames
are rectified via uncalibrated rectification algorithm, since it performs better than

the calibrated rectification and give less distorted images. Figure 46 shows the

rectified image pair.

Figure 46 The coral sequence rectified via uncalibrated rectification algorithm.

To perform dense reconstruction, the correspondence pixel of each pixel in the
image should be computed. The correspondence of each pixel and disparity map
is computed with graph cut based stereo matching. In Figure 47, the left part
shows the disparity map of the coral sequence and the right part shows the
occluded parts in the disparity map. The occluded regions are filled according to

their neighbor disparity values.

Figure 47 The disparity map of the coral sequence. The occluded regions are

shown with red in the right image.
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Figure 48 shows the 3D point cloud computed via dense reconstruction from

different viewpoints.

Figure 48 The two frames of coral sequence and reconstructed 3D point cloud.
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Figure 49 The generated mesh model of coral sequence.

A mesh surface is generated by 3D point cloud for a better visualization. Figure

49 shows the generated mesh and its view from different locations.

Coral 1 Sequence is the data set with the properties of underwater images
captured in clear water with enough texture for the reconstruction. Figure 49
shows that the 3D reconstruction algorithm performs well in textured objects in

clear water where the effect of water is little to distort the image.

11.3 Boat Sequence

Figure 50 shows the two chosen frames from a camera following a quasi-circular

translational path around a submarine in blurred water.
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Figure 50 Chosen two frames from the boat sequence. The left image represents

the left camera and the right image represents the right camera in the stereo pair.

Figure 51 shows the resultant images of preprocessing step. The blurring effect

of the water is removed and it is easier to detect features.

Figure 51 The two frames of boat sequence after preprocessing.

Detected and matched feature points and the epipolar lines are shown in Figure
52.

Figure 52 The corresponding points is shown in the left and the epipolar lines and

feature points is shown in the right image.
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The images rectified via uncalibrated rectification are shown in Figure 53.

Figure 53 The boat sequence rectified via uncalibrated rectification algorithm.

Graph Cut based stereo matching algorithm is applied to the rectified images. the
resultant disparity map and the occluded regions are shown in Figure 54. As it is
seen from the Figure 54, the blurred water decreases the performance of stereo
matching algorithm. The disparity map in textureless regions shows different
depth levels, although the textureless region which represents the water at the
back ground does not have any depth variation. But the blurred water makes it
difficult to find the corresponding of each pixel in the image and causes false
matches. Despite the disparity errors on the background, the shape of the
submarine is preserved. But the little disparities differences are not detected.
Since the submarine has a curved surface, but at the disparity map the surface of
the submarine is presented as flat. The reason is that the errors in detecting the
feature points, estimating the fundamental matrix and auto-calibration process,
(lack of calibration matrix), cause a decrease in the accuracy of the dense

reconstructed model.
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Figure 54 The disparity map of the boat sequence. The occluded regions are shown
with red in the right image.

With the computed disparity map, the reconstructed 3D point cloud of the boat
sequence is shown in Figure 55.

Figure 55 The two frames of coral sequence and the resultant reconstructed 3D

point cloud.

The reconstructed point cloud is used to generate a mesh and covered with a

surface for a better visualization.
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Figure 56 The generated mesh model of the boat sequence.

11.4 Coral 2 Sequence

Coral 2 Sequence is different from the previous two data sets in the way of
camera motion. In the first two data sets the camera makes a translational motion
with a little rotation around the observed object; but in Coral 2 sequence the

camera makes a translational motion along the principal axis.

In the motion along principal axis, the features do not move along the horizontal
axis, but along the vertical axis. The camera gets closer to the object between the
successive frames. Since the object comes closer, the features’ scale changes
between frames which make them difficult to match. Since SIFT is a rotation and
scale invariant feature detector, the scale difference between the features do not

affect the performance of SIFT descriptor.
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Figure 57 shows the two frames from Coral 2 sequence. The translational motion

along the principal axis can be extracted from the positions of the coral reefs in

the images. During the motion, the coral reef comes closer to the camera.

Figure 57 The two frames of Coral 2 sequence. The camera makes a translational

motion along the principal axis.

The preprocessed images are shown in Figure 58.

Figure 58 The two frames of Coral 2 sequence after preprocessing.

The motion along the principal axis causes the epipoles located in the images.
the path of the feature points and the epipolar lines and the epipole of the right

camera in the left image is shown in Figure 59.
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Figure 59 The corresponding points is shown in the left and the epipolar lines and

feature points is shown in the right image.

The rectified images are shown in Figure 60. As it is seen, the uncalibrated
rectification algorithm gives a more distorted image than the motion type in the

previous data sets.

Figure 60 The rectified images via uncalibrated rectification algorithm.

The distorted rectified images also affect the performance of the stereo matching
algorithm. The resultant disparity map is shown in Figure 61. The white spots in
the disparity map show the false matches during the stereo matching. Although
the region around the white spots is smooth and does not have any depth
discontinuity, the stereo matching algorithm fails to find the correct

correspondences and disparity values.

127



Figure 61 The disparity map of Coral 2 sequence.

Figure 62 shows the 3D point cloud reconstructed from the Coral 2 sequence.

Figure 62 The two frames of Coral 2 sequence and the resultant reconstructed 3D
point cloud.

Figure 63 shows the mesh model generated from 3D point cloud.
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Figure 63 The mesh model of Coral 2 sequence.

Figure 63 shows that the 3D model suffers from accuracy. The positions of the
corals are relatively true, but the shape of the corals is not preserved as well as in
the previous data sets and the depth difference between the foreground and
background is relatively small. The reason is that rectification algorithms fail when
the camera moves along the principal axis. In the previous two data sets, the
camera moves not along the principal axis but perpendicular to it and 3D

reconstruction process give good results.

It is understood from the examined three data sets that 3D reconstruction
process performs well when the camera makes a motion perpendicular to the
principal axis and its performance falls when the camera moves along the

principal axis.
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11.5 METU Pool

The 3D reconstruction algorithm is also tested on PC-104 real time MPEG-4
video compressor, encoder and frame grabber module shown in Figure 64 with
Helmet mountable underwater black & white video camera. The experiment is

conducted in METU swimming pool.

Figure 64 PC-104 is shown in the left part. The right image shows the PC-104 card

used in this thesis.

Figure 65 shows the Helmet mountable underwater black & white video camera

used in this thesis.

Figure 65 The underwater black & white video camera.
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The underwater camera makes a translational motion around the submerged

object, a statuette on a box. Figure 66 shows the two frames from the pool

sequence captured in the METU Pool.

Figure 66 Two frames from pool sequence.

Since the water in the pool is clearer than the water in the sea, the images are
not blurred and there is no need to preprocess the images. But once the images
are preprocessed, a characteristic of the underwater camera used in this thesis is
observed, moiré effect. Moire effect is a wavy repetitive pattern on the image and
the importance of removing the moiré effect is that the following steps of
preprocessing increase the contrast, also the moiré effect, and this increases the

chance of degraded results. Figure 67 shows the images after preprocessing.

Figure 67 The two frames of pool sequence after preprocessing.
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As it is seen from Figure 67, the preprocessing steps increase the moiré effect,
although the moiré effect is removed from the raw images in the first step. The
increased moiré effect decreases the image quality for feature detection

algorithms. For that reason the preprocessing is not used in this sequence.

Figure 68 shows the detected feature and epipolar lines.

Figure 68 The detected feature and the epipolar lines.

The rectified images are shown in Figure 69.

Figure 69 The rectified images by uncalibrated rectification algorithm.

The next step is to compute the disparity map from rectified image pair. The
disparity map is shown in Figure 70. The left part is the disparity map and the

right part is the disparity map after the smoothing process.
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Figure 70 The left part shows the resultant disparity map from stereo matching
algorithm and the right part is the result of smoothing process.

Figure 71 shows the computed 3D point cloud. The computed 3D point clod is
covered with a surface for a better visualization. Figure 72 shows the 3D model

covered with a surface from different view points.

Figure 71 The two frames of pool sequence and the computed 3D point cloud.
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Figure 72 The 3D model of pool sequence form different viewpoints.
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CHAPTER 12

CONCLUSION

12.1 Summary of the Thesis

The 3D reconstruction of underwater scenes is composed of successive sub-

blocks.

The first step is the image enhancement process. Since the underwater is a
complex structured environment and suffers from low contrast, non-uniform
lighting, back-scattering, blurring etc..., the images from underwater has to be
preprocessed before applying the image processing algorithms. A preprocessing
filter is applied to the images which removes the effect of the water and enhance

the images.

The second step is the feature detection and matching process. In order to find
the corresponding points between the images, the feature points have to be
found in each image. The most famous feature detection algorithm is Harris
corner detector. A modified version of Harris corner detector and another feature

detection algorithm, SIFT, are examined and compared.

After the corresponding points are determined, the next step is the computation
of fundamental matrix which defines the epipolar geometry between the two
images. The combination of normalized 8-point algorithm and RANSAC is used in
estimating the fundamental matrix which is robust to noise and also provides

outlier removal during the estimation process.

The forth step is the auto-calibration. Calibration matrix is one of the most
important parameters in 3D reconstruction process. Since the underwater camera

is uncalibrated, the calibration matrix is not known. Camera can be calibrated
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with a known structured calibration object and also it can be calibrated without
using any calibration object, using calibration patterns are impractical for
underwater applications. Two different approaches to the auto-calibration
problem are examined, auto-calibration using the virtual conic and simplified

Kruppa equations.

The estimation of the rotation and translation matrix is performed with two
different algorithms, linear and robust one. These two algorithms are examined

and compared with ground truth data.

Rectification is the pre-process of stereo matching which is crucial for dense 3D
reconstruction. Rectification provides new camera matrices with parallel and
horizontal epipolar lines. This decreases the search area and improves the
computation time in stereo matching. Two algorithms are examined, calibrated

rectification and uncalibrated rectification.

Stereo matching is the process of finding the corresponding pixel of each pixel in
the image. Graph based stereo matching algorithm is examined and compared

with traditional stereo matching algorithm.

The last step is the triangulation. Because of the noise in the image, the back-
projected rays from corresponding points do not intersect in 3D space. An optimal
intersection point is computed by triangulation. Triangulation provides sparse 3D
reconstruction. Two algorithms are examined, linear and polynomial triangulation.
Finally a method for the dense reconstruction and the processes for a better 3D

model are examined.

12.2 Discussion

In image enhancement step, the preprocessing filter removed the effects of the
water and enhanced the images. The performance of the filter is tested with the
detected features before and after the filtering and it is seen that the
preprocessing filter significantly increases the number of detected feature. The

more detected features, the more robust reconstruction are performed.

In feature detection and matching step, Harris corner detector and SIFT method

are compared. SIFT method gives a better performance than Harris corner
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detector. Despite the preprocessing filter, the blur in the image decreases the
accuracy in corner detector. The invariance of SIFT to the rotation and scaling is
the major reason why SIFT performs better in underwater. In feature matching
the results show that SIFT descriptor performs better than normalized cross
correlation (NCC).

The normalized 8-point algorithm and RANSAC are used in the estimation of
fundamental matrix and outlier detection. This combination gives satisfactory

results with relatively low Sampson errors.

Auto-calibration is one of the key steps in the reconstruction process. Its
performance determines the performance of the reconstruction significantly.
Simplified Kruppa equations and auto-calibration by virtual conic algorithms are
compared. At least three images are required for the simplified Kruppa equations
to determine three fundamental matrixes for the estimation of calibration matrix
with five unknown parameters. Kruppa equations can not be solved in a
straightforward manner. Instead, minimization algorithms are used to solve.
Levenberg-Marquardt minimization algorithm, which is the most famous
minimization algorithm in computer vision, is used in this thesis. An initial
estimate is required to solve the minimization problem. The initial estimate
directly affects the performance of the algorithm, as it can be observed form the
results in Table 6. The more accurate initial estimate, the more good results the
algorithm gives. The focal length in x-axis and y-axis are assumed to be equal
and the principal point is assumed to be in the middle of the image with zero
skew. The results in Table 6 show that this is a reasonable assumption. The latter
algorithm, auto-calibration with virtual conic, fails to estimate the calibration
matrix. The result of the algorithm is exactly equal to the calibration matrix used
to normalize the projection matrix at the beginning of the algorithm. The reason is
that the parameter V which must converge during iteration, do not converge, so a
reasonable dual absolute quadric can not be computed. The results show that
simplified Kruppa equations performs better and gives reasonable calibration

matrices.

Since rectification is the pre-step of stereo matching, its performance affects the

performance of stereo matching. The goal of rectification is to form new extrinsic
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parameters which provide parallel and horizontal epipolar lines with minimal
distortion in the images. Two rectification algorithms are examined, calibrated
rectification and uncalibrated rectification. The first mentioned algorithm requires
calibration matrices with projection matrices. It computes a transformation which
transfers the epipoles to the infinity. The latter algorithm approaches the
rectification problem as a nonlinear least square problem with six unknowns and
solves by minimizing the energy function given in Equation 8.15. The two
algorithms are tested with coral sequence. It is seen that for a good result in
calibrated rectification an accurate calibration matrix is required. The calibration
matrix in the coral sequence is estimated by simplified Kruppa equations. As it is
seen from Figure 29, the rectified images satisfy the rectification constraints with
parallel and horizontal epipolar lines. But there is too much distortion in the
images during the warping process. The uncalibrated rectification performs better
than calibrated one and results with less distorted images. Since there is no
common measurement to compare the performances of the rectification
algorithm, the examined algorithms are compared with the mean differences
between the y-axis coordinates of the corresponding points. Table 8 shows the
results for calibrated and uncalibrated rectification algorithms. The results show
that uncalibrated rectification gives a better performance than the calibrated one,
which is expected, since the uncalibrated rectification minimizes this difference

while computing the new camera matrices.

After the images are calibrated, the next step is stereo matching. Stereo
matching is the process of finding the correspondence pixel of each pixel in the
image and compute the disparity map of the scene, which can be assumed as
the depth map of the scene. Several methods have been developed for stereo
matching. Graph-cut algorithm creates more smooth disparity maps and performs
better in textureless areas. For that reason graph cut is chosen in this thesis. It is
compared with a traditional stereo matching algorithm using the Tsukuba
sequence, which provides ground truth data for stereo matching algorithms, and
coral sequence. Beside this comparison, the versions of graph cut algorithm,
voxel labeling and pixel labeling, are compared. As it is seen from Figure 35,
voxel labeling gives the best performance among pixel labeling and traditional
stereo matching algorithm. The performance of stereo matching depends on the

performance of the rectification and the texture characteristic of the scene. Stereo
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matching algorithms do not perform well in homogeneous areas because of the

difficulty of finding correspondence in this type of areas.

The final step is the computation of the 3D coordinates of the points whose
projections are the corresponding points by triangulating the corresponding
points. Two triangulation algorithms, linear and polynomial triangulation, are
examined and compared. In Euclidean geometry, two algorithms perform similar.
But in projective geometry polynomial triangulation gives better performance.
When the 3D points computed with triangulation are projected on the images with
the projection matrices of the camera for verification, it is seen that the re-
projected points differs from the original ones with a difference of 3-7 pixels in y-
axis. The reason of this difference is the error in the estimation of fundamental

matrix.

Finding the 3D coordinates of the points with triangulation can be called sparse
3D reconstruction. Sparse means that not all of the points but only the
corresponding points are triangulated. This means that only 20% of the points are
triangulated. This provides a good 3D model, since the corresponding points are
the most recognizable features in the image. But for a better and more detailed
model, dense reconstruction must be performed. For dense reconstruction only
the disparity map and the projection matrix of the camera is enough. The model
is reconstructed form the view of the camera whose projection matrix is used. If
the projection matrix of the left camera is used in the reconstruction process, the
model is reconstructed according to the view of the left camera. It is same for the
right camera. The reconstruction is performed via Equation 10.16. The computed
3D model represents the scene viewed by the two cameras. The model contains
some errors, especially in the textureless regions, where stereo matching
algorithm fails to find correspondence and also the errors during the estimation of

projection matrix of the cameras.

12.3 Future Work

The 3D model is reconstructed from only 2 frames and the baseline distance
between the frames are relatively small. All the frames in the video sequence
may be used for the reconstruction and the 3d model of the scene from all

viewpoints is achieved. Since underwater provides a limited visibility range, 25
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meters in clear water and 3-5 meters in blurred water. It is impossible to cover the
research site, for example an archeological site, with this visibility range. For that
reason mosaicing algorithms are developed to combine the captured images in
an appropriate order to get the image of the whole site. The 3D reconstruction
process can be combined with mosaicing algorithm to reconstruct the 3D model

of the whole site.
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