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ABSTRACT 
 

MODAL IDENTIFICATION OF NONLINEAR SUBSTRUCTURES AND 
IMPLEMENTATION IN STRUCTURAL COUPLING ANALYSIS 

 

Arslan, Özge 

M.S., Department of Mechanical Engineering 

Supervisor: Prof. Dr. H. Nevzat Özgüven 

 

August 2008, 111 pages 

 

In this work, a new method is suggested for the modal identification of nonlinear 

structures and for the use of the modal data in calculating response of the 

nonlinear system to harmonic excitation. Nonlinearity in mechanical structures is 

usually encountered in connection regions. In this study, the nonlinear part of such 

a structure is modeled as a single nonlinear element and modal parameters of the 

structure are obtained as a function of displacement amplitude. Identification and 

modeling of nonlinear elements can be done through modal tests conducted at 

different response levels. Response level dependent modal parameters are used in 

calculating the response of the system to harmonic excitation at any forcing level. 

Furthermore, the modal model of a nonlinear substructure can be used in 

structural coupling of the nonlinear system with a linear one, and in structural 

modification problems where a nonlinear structure is modified with linear 

elements. Validation of the modal model proposed, and the use of this model in 

harmonic response computation, structural coupling and structural modification 

problems are demonstrated with several case studies. 

 

Keywords: Structural Nonlinearity, Nonlinear Modal Parameters, Coupling 

Analysis  
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ÖZ 

 
DOĞRUSAL OLMAYAN YAPILARIN TİTREŞİM BİÇİM TANILAMASI VE 

YAPISAL BİRLEŞİM ANALİZİNDE KULLANIMI 

 

Arslan, Özge 

Yüksek Lisans, Makina Mühendisliği Bölümü 

Tez Yönetici: Prof. Dr. H. Nevzat Özgüven 

 

Ağustos 2008, 111 sayfa 

Bu çalışmada, doğrusal olmayan özellik gösteren yapıların titreşim biçim 

tanılanması ve elde edilen sonuçların yapının harmonik tahrik tepkilerinin 

çözümlenmesinde kullanılması için yeni bir yaklaşım sunulmuştur. Mekanik 

yapılarda doğrusal olmayan özellikler genellikle bağlantı noktalarında 

görülmektedir. Böyle bir yapının, doğrusal olmayan kısmı tek bir eleman olarak 

modellenmiş ve yapının biçim parametreleri yer değiştirme genliğine bağlı olarak 

bulunmuştur. Önerilen yöntemle farklı yer değiştirme genliklerinde yapılacak 

ölçümlerle doğrusal olmayan elemanların tanılanması ve modellenmesi 

sağlanabilir. Elde edilen, yer değiştirme genliğine bağlı biçim parametreleri, 

doğrusal olmayan sistemin herhangi bir harmonik tahrik kuvveti altındaki 

tepkisinin çözümlemesi için kullanılabilir. Ayrıca, doğrusal olmayan yapı için 

oluşturulan model doğrusal yapılarla birleşim analizinde ve doğrusal olmayan 

yapılarda yapısal değişiklik analizinde kullanılabilir. Sunulan modelin ve bu 

modelin harmonik tepki hesaplanmasında, yapısal birleşim ve yapısal değişiklik 

problemlerinde kullanımının doğrulanması örnek çalışmalarla gösterilmiştir. 

 

Anahtar kelimeler: Yapısal Doğrusalsızlık, Doğrusal Olmayan Biçim 

Parametreleri, Birleşim Analizi 
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CHAPTER 1 

 

INTRODUCTION 

 
 

1.1 Structural Nonlinearity 

 
In simplest words, nonlinearity is lack of linearity. However structural 

nonlinearity deserves a further description to be fully expressed. In engineering 

structures nonlinearity can arise from a number of reasons or their combination. 

These reasons can be listed as looseness, clearance or friction in structural joints, 

presence of components with input dependent dynamics and amplitude dependent 

materials. It is also possible for a structure to exhibit nonlinearity when large 

amplitudes are reached since most systems behave linearly in small amplitudes. 

Furthermore, each nonlinear system is specific within itself and requires a 

different approach. Therefore, once the nonlinearity of a structure is verified, type 

and quantity of the nonlinearity should be determined. In the following sections, 

symptoms and types of nonlinearity will be discussed.   

 

1.1.1 Detection of Nonlinearity 

 

Distortion of frequency response functions (FRFs) is undoubtedly the most 

common method for detection of nonlinearity in a system. If the FRFs a system 

for different levels do not overlap but separate, this indicates presence of 

nonlinearity. FRFs of linear systems do not change with different forcing levels. 

However, this is not the same for nonlinear systems. The type of nonlinearity in 

the system can be depicted by the form of distortion observed in the plot as long 

as the excitation type is known.  In Figure 1, Nyquist and Bode plot representation 

of FRFs for different types of nonlinear elements that are harmonically excited are 
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shown. Distortions, especially around resonant regions, can be observed easily 

both in Nyquist and Bode plots.  

It is also possible to observe the effects of nonlinearity in alternative FRF 

representations of nonlinear systems. So called carpet plots [1] also set a practical 

way of nonlinearity detection. Carpet plots, mainly used in damping prediction, 

are 3 dimensional plots in which one of the axes is the damping ratio and the 

others are the frequency range before and after the resonance frequency, 

respectively. In a linear system, the carpet plot is expected to be planar and 

parallel to the plane formed by both frequency axes. Any deviation from linearity 

results in variation of the damping ratio with respect to the frequency plane. In 

terms of clarity in visual intelligibility carpet plots establish a good option for 

detection of nonlinearity. On the other hand the method is quite restricted 

compared to use of other FRF representations such that it is sensitive to phase 

distortions, restricted to SDOF systems and requires prior information of the 

damping in the system.  

In principle, any type of excitation reveals the nonlinearity in the system. In other 

words it is possible to detect nonlinearity by a simple visual assessment. However 

in order to state the exact type of the nonlinearity and quantify it, correct 

excitation method is to be selected since nonlinear systems respond in different 

ways to different types of excitation.  

It is well-known that harmonic excitation generally produces the most apparent 

effects of nonlinearity. In this excitation type, all the input energy is concentrated 

at the frequency of excitation. Especially systems possessing polynomial stiffness 

nonlinearity exhibit strong nonlinear effects such as the jump phenomena under 

harmonic forcing. However, it has a main disadvantage in terms of the 

measurement time when compared to impact and/or random input excitation.  
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Figure 1. SDOF system Nyquist and FRF (Bode) plot distortions for five types of 
nonlinear element excited with constant amplitude sinusoidal force; — low level, 

- - - high level. [2] 
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Impact testing delivers responses with high crest factors which assist the 

excitement of nonlinearity. Usually the distortions produced this way are opposite 

to those obtained by harmonic excitation. Unlike harmonic excitation, energy 

associated with a single frequency is small which makes the evoking of 

nonlinearities more difficult [2]. 

The FRF of a nonlinear structure subjected to random excitation appears like that 

of a linear one. This is a consequence of the randomness of the amplitude and 

phase of the excitation. Due to this linearization effect, random excitation will be 

useful in detecting nonlinearity only when several tests are carried out with 

different rms levels of the excitation and the results are compared. Like in impact 

testing, excitation of nonlinearities is difficult as a result of the input spectrum 

spread over the frequency range. It should be noted that the linearized FRF 

obtained from this type of testing is not related to the linear counterpart of the 

nonlinear system but an averaged value between these two.  

As mentioned before, structural nonlinearities respond in different forms 

according to the type of excitation employed. In consequence, identification and 

quantification methods for nonlinear systems are dependent on the type of input 

used and will provide reliable results only under correct excitation conditions. 

Another distinguishing property between linear and nonlinear systems is 

reciprocity. Reciprocity holds if the FRF values at a single frequency stays 

constant when the input and output points are swapped [2]. Like distortion of 

FRFs, it allows a visual check to detect nonlinearity. He (Jimin He) [3] showed 

that reciprocal of FRF can be effectively used to detect nonlinearity in a structure. 

The method is based on the idea of separating the real and imaginary parts of the 

inverse receptance. In case of a nonlinear system, either real or imaginary part of 

the inverse receptance data reveals the nonlinearity in the system. The effect of 

stiffness nonlinearity shows up is the real part while damping nonlinearity is 

monitored in the imaginary part of the inverse FRF. However one should know 
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that reciprocity is a necessary but not sufficient condition for nonlinearity as 

structures with symmetrical nonlinearities also demonstrate reciprocity. 

 

1.1.2 Types of Nonlinearity 

 

In this section the most common nonlinearities encountered in structural dynamics 

will be listed. As expected, structural nonlinearities are usually displacement, 

velocity and/or frequency dependent. However, they are generally represented in 

idealized forms in order to provide the integration into analysis. Idealized forms 

of some of these nonlinearities are illustrated in Figure 2.  

 

 

 
 

Figure 2. Idealized forms of common structural nonlinearities [2] 
 
 

displacement displacement displacement 

displacement velocity 

force force force 

force force 

Softening Cubic Stiffness Hardening Cubic Stiffness Piecewise Linear Stiffness 

Clearence Coulomb Friction 
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1.1.2.1 Cubic Stiffness 

 

This type is the most frequently encountered type of polynomial stiffness. In this 

case force is directly proportional to the cube of displacement as in the following 

relation: 

( ) 3
nlf x bx=  (1.1) 

Here the proportionality constant, b, can be either positive or negative. Positive 

constant introduces greater restoring forces than the linear one at higher levels of 

excitation. Such systems are referred to have hardening characteristic. Similarly, 

systems representing decreasing stiffness behavior with increasing excitation 

levels are stated to have softening nonlinearity. Unlike hardening cubic systems, 

these systems always posses higher order polynomial terms that dominate 

stiffness. This is inevitable to provide stability since a softening cubic system is 

unphysical in the sense that the system tends to infinity after a certain distance 

from equilibrium.  

FRF distortion characteristic of these systems can be observed in Figure 1 (b) and 

(c). The most important feature these figures present is the shift of resonance 

peak. FRFs of systems with cubic nonlinearity also introduce the jump 

phenomena. Because of the cubic term in the equation of motion there exist 

multiple solutions. In vibration testing, it is possible to obtain only one response 

depending on the frequency sweep direction. Overlay of both FRFs measured 

with increasing and decreasing frequency increments reveals this occurrence. 

With bending of FRFs around resonance frequency, a jump phenomenon is a 

strong indicative of nonlinearity in the system.  

 

1.1.2.2 Piecewise Linear Stiffness 

 

The form of stiffness function for this case is 
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( )
( )

( )

2 1 2

1

2 1 2

,
,

,
s

k x k k d x d
f x k x x d

k x k k d x d

+ − >⎧
⎪= <⎨
⎪ − − < −⎩

 (1.2) 

where k1 and k2 are the slopes of the first and second lines in force vs. 

displacement graph of piecewise stiffness in Figure 2, respectively, and d is the 

displacement value corresponding to the point where first slope ends and the 

second one begins.    

This type of nonlinearity is encountered in many applications, for instance in 

ground vibration tests of aircrafts especially in pylon-store-wing assemblies or 

preloading bearing conditions. Typical results of such nonlinearity in a system can 

be seen in [4]. Clearance nonlinearity is a special case of piecewise linear stiffness 

where k1 = 0.  

 

1.1.2.3 Coulomb Friction 

 

This type nonlinearity has the characteristic relation, 

( ) ( )sgnnlf x a x=   (1.3) 

also as shown in Figure 2, where a  is the magnitude of the nonlinear force 

resulting from this nonlinearity. Coulomb friction, also known as Coulomb 

damping, is common in interfacial motion. In such structures friction occurs along 

with clearance nonlinearities. Unlike other types of nonlinearities, it is most 

apparent at low levels of excitation. In extreme situations, stick-slip motion can 

occur. The characteristic FRF distortion is the reveal of higher damping with 

lower excitation levels.  
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1.2 Literature Survey 

 

There exist a variety of studies in nonlinear structural dynamics area. Earlier 

studies mostly concentrate on detection, localization, and identification of 

nonlinearity. Mertens et al. [5] stated the importance of analyzing nonlinear 

systems separated from linear ones and validated their statement with 

experimental work. Use of modal analysis tool in the area of detection and 

identification of nonlinear structures were studied by a number of researchers. He 

and Ewins [6] presented one of the first studies in this field. They proposed a new 

approach for the interpretation of FRF data for the specific purpose of detecting 

and identifying nonlinearities. The method is used to locate the type of nonlinear 

element by separating the stiffness and damping effects (into the real and 

imaginary parts of the inverse FRF). They also introduced the concept of 

displacement amplitude dependent modal parameters which will be of use in this 

thesis. However, the method is restricted to SDOF models.  

Lin and Ewins [7] investigated the possibility of locating structural nonlinearity 

by combining a finite element model containing modeling errors and the modal 

data measured at different response levels. The sensitivity of certain modes to 

localized nonlinearity has been defined in terms of modal parameters and it is 

suggested that relatively sensitive modes should be used in the location process in 

order to make nonlinearity location reliable in practice. First-order frequency 

response functions are calculated and analyzed to give an indication of which 

mode is the most sensitive one and should therefore be used in the location 

process. Lin [8] extended this concept further and employed in modeling and 

model updating of nonlinear structures. In his work he claimed the advantages of 

using FRF data over modal data to update an analytical model. On top of all, 

special attention is given to the application of the method to the case where both 

measured modes and coordinates are incomplete. The practical applicability of the 

method is assessed based on the GARTEUR (Group for Aeronautical Research 

and Technology in Europe) exercise which is intended to represent practical 
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problems in terms of the incompleteness of both measured modes and 

coordinates. 

Vakakis and Ewins [9] examined the nonlinear distortions in the receptance plots 

of forced mechanical systems. The concept of FRF distortions in nonlinear 

systems is also mentioned in earlier sections this chapter. They observed the trend 

of natural frequencies of nonlinear structures and established a formulation of 

natural frequency both for damping and stiffness nonlinearity. In their work also a 

method for identifying and quantifying weak nonlinearities in the modal 

responses is suggested and tested with theoretical and experimental data. 

Benhafsi et. al. [10] developed a parametric identification method based on the 

fact response of nonlinear systems can be associated with mode shapes that are 

constant over a certain dynamic range of the input. The method uses describing 

function theory to obtain the extended forms of backbone and limit curves. These 

are then used for the identification of both linear and nonlinear parameters of a 

multimode system. The feasibility of the method is demonstrated on simulated 

MDOF systems involving cubic nonlinearity. The method is restricted to systems 

whose mode shapes are insensitive to nonlinearities. Also proportional damping 

assumption is made. They also extended this study to localize the nonlinearity in a 

structure [11].  

Özer and Özgüven [12] introduced a new method for localization of the physical 

coordinates to which nonlinear elements are connected in MDOF systems by 

using first order frequency response function data. They managed to determine 

the parametric values of nonlinearity provided that the nonlinearity is located at 

the ground connection of the structure. Case studies, in which theoretically 

calculated harmonic responses are used, are given to illustrate the application of 

the method. Theoretically calculated values are polluted in order to investigate 

robustness of the identification method under measurement errors. Later they 

extended this study to systems that possess nonlinear elements between any two 

coordinates [13]. The Sherman–Morrison matrix inversion method is used in this 
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study to put the response expression in a form where the nonlinearity term is 

isolated. Using measured responses, nonlinearity can be quantified thus identified. 

To demonstrate the applicability of the method case studies are given in this study 

as well. 

Song and Wang [14] presented a method for identifying nonlinear element 

positions and their physical parameters in a multiple degree of system. In their 

study, first the local nonlinear restoring forces are modeled with polynomial series 

functions of the relative displacements and velocities, respectively. Then an 

iterative equation between excitation and response signals and the general 

frequency response function are derived. The nonlinear degree of freedom is 

extracted from the general system in the frequency domain based on this 

information. In short, when two different levels of excitation forces are imposed 

on a testing system, the frequency domain measurement data is used to detect the 

nonlinear element positions. In addition, an approach for nonlinear parameter 

identification is developed, which can be used to obtain the polynomial 

coefficients of the nonlinear stiffness and damping forces. The effectiveness of 

the method is demonstrated by numerical examples. 

Studies on modeling and identification of nonlinearity have increased further in 

recent years. However, construction of reliable models for nonlinear structures is 

still uncertain. Former studies [15, 16] show that linear identification of nonlinear 

systems causes misleading results. In [15] Özgüven and İmregün applied linear 

modal analysis on classically damped nonlinear systems. The results showed 

highly complex modes that indicate nonlinear behavior since the initial damping 

was proportional. This indicated that linear identification methods can reveal 

nonlinearity in a structure but they fail to provide a reliable modal model. As 

linear modal analysis tools are not compatible with the nonlinear theory, majority 

of the studies in this field [15 - 17] focus on development of nonlinear modal 

analysis techniques. Setio et. al. [16] proposed a nonlinear modal analysis method 

to describe the dynamic behavior of nonlinear MDOF systems. The technique is 

based on nonlinear mode superposition approach. The calculation of nonlinear 
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natural frequencies and nonlinear normal modes were performed implicitly by the 

proposed approximation based upon the equivalent linearization approach. Some 

examples including experimental simulation were introduced to illustrate the 

efficiency, accuracy and advantages of the proposed methods. 

Ferreira and Ewins [17] described a new Nonlinear Receptance Coupling 

Approach (NLRCA) for fundamental harmonic analysis based on describing 

functions. They proposed an analytical development of assembling many 

structures considering just the fundamental frequency. The approach is able to 

couple structures with local nonlinear elements, where the describing functions of 

all the nonlinear elements are known. 

Richards and Singh [18] investigated reliability of approximating nonlinearities in 

discrete systems consisting of nonlinear elastic forces by polynomial models. 

Coherence functions are introduced which are based on a "reverse path" spectral 

approach, previously developed by the authors for MDOF systems. These 

coherence functions, as calculated from conditioned spectra, indicate the accuracy 

of the assumed mathematical models.  

Chong and İmregün [19, 20] also suggested a nonlinear modal analysis for a 

multi-degree-of-freedom system that involves identifying modal parameters from 

measured response at first. For verification they used simulated nonlinear 

response data. They were able to predict the nonlinear response of the system for 

other excitation levels by using the modal parameter variations with respect to 

modal displacement. They also extended this idea for coupling of nonlinear 

systems with linear ones [21] and performed a numerical study on a system with 

friction damping nonlinearity [22]. The study presented in this thesis follows a 

similar approach with this study, in some respect.  

Elizalde Siller [23] presented new nonlinear modal analysis methods to detect, 

localize, identify and quantify the nonlinearities in large systems, based on first 

order nonlinear FRFs as input data. The methods are first introduced in a direct-

path, by analyzing a general theoretical system. Then, the concepts are extended 
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to undertake a nonlinear identification via the reverse-path of the same 

methodologies.  

 

1.3 Objective of the Study 

 

In this study it is aimed to establish an approach to predict forced harmonic 

response of nonlinear systems. The proposed approach bases on the fact that 

nonlinear structures exhibit linear behavior under certain conditions, which makes 

the use of linear modal identification methods possible. Modal parameters 

identified under these conditions are used to construct a modal model for the 

nonlinear system to be analyzed. In these terms, the study follows a similar 

approach with that of Chong and İmregün [19, 20]. However, in the present study 

physical displacements are used, unlike in references [19 – 22] in which modal 

displacements were employed. Furthermore, the present work uses a semi 

analytical approach for the modal model, and also extends the use of the modal 

model in structural modification problems in addition to response prediction and 

dynamic coupling analysis.  

 

1.4 Scope of the Thesis 

 

The outline of the thesis is as follows: 

In Chapter 2, basic characteristics of forced harmonic response of nonlinear 

systems are reviewed. The theory of modal identification of nonlinear structures 

using quasi-linearization theory will be presented in this chapter. FRF 

measurements of nonlinear systems are also discussed. The methodology of 

modal identification and establishment of the modal model is presented.  

In Chapter 3, implementation of the modal model of a nonlinear system in 

structural dynamic analysis is explained in detail. Computation of the forced 

harmonic response of a nonlinear system, once its modal model is obtained, to an 

arbitrary force level is given in the first section. Response prediction of a 
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nonlinear system coupled with a linear one using the modal model of the original 

nonlinear system, and the use of the modal model in structural modification 

analysis of a nonlinear system is presented.  The numerical solution method 

employed in these harmonic response analyses is also given.  

In Chapter 4, case studies to study the validity and efficiency of the presented 

methods are given. Case studies are selected such that all methods presented will 

be covered for different types of nonlinearities. In case studies theoretically 

generated FRFs are used as if they were results of harmonic vibration tests. In 

order to simulate and observe the effects of conditions in real measurements, 

selected case studies are solved by using polluted data. An experimental case 

study is also presented in the end.  

In Chapter 5, brief summary of the work done is given with conclusions and 

discussion. Advantages and drawbacks of the methods are listed and finally, 

suggestions for future studies are made.  
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CHAPTER 2 
 

MODAL IDENTIFICATION OF NONLINEAR STRUCTURES 
 

 

2.1 Introduction 

 

The theory of modal identification of nonlinear structures using quasi-

linearization of structural nonlinearities, which outlines the basis of this study, 

will be presented in this chapter. The underlying theory is first established by 

Budak and Özgüven [24, 25] and has been used by several researchers. In section 

2.2 and its subsections, the basics and the extension of the method presented by 

Budak and Özgüven will be given.  FRF measurements of nonlinear systems are 

discussed in section 2.3. Force amplitude and response amplitude controlled 

measurements applied on nonlinear structures will be explained in separate 

subsections. In section 2.4, the methodology of modal identification and 

establishment of the modal model will be presented.  

 

2.2 Forced Harmonic Response Characteristics of Nonlinear Structures 

 

In the following subsections, separation of the linear and nonlinear forces in a 

nonlinear structure and representation of the nonlinear forces as matrix 

multiplication will be explained. The computation of the coefficient matrix is 

performed by two different methods, first being the “Iterative Receptance 

Method” presented by Budak and Özgüven [25] and the second one being a 

describing function based method proposed by Tanrıkulu et. al. [26]. In this 

thesis, computation by using the second method will be given due to its relevance 

to the concept.   
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2.2.1 Representation of Nonlinear Forces by the Nonlinearity Matrix 

 

Consider the equation of motion of a nonlinear MDOF system: 

[ ]{ } [ ]{ } [ ]{ } [ ]{ } ( ){ } { },M x C x K x i H x N x x f+ + + + =  (2.1) 

where matrices [M], [C], [H] and [K] represent the mass, viscous damping, 

structural damping and stiffness matrices, respectively. Vectors {x} and {f} stand 

for the response and external force applied on the system, respectively. The vector 

{N} corresponds to the nonlinear internal forces in the system. This force vector 

is usually a function of displacement and/or velocity response, depending on the 

type of nonlinearity present in the system.  

Considering a sinusoidal excitation at a frequency ω and assuming that the 

response is also harmonic at the same frequency, the forcing and response vectors 

can be written as; 

{ } { } i tf F e ω=   (2.2) 

and 

{ } { } i tx X e ω=   (2.3) 

respectively. The vector {X} consists of complex values to accommodate phase 

information.  As long as the above assumption holds, the nonlinear forces can also 

be accepted to be harmonic with the same frequency as follows, 

{ } { } i tN G e ω=   (2.4) 

where {G} is the amplitude vector of nonlinear forces. Substituting the equations 

(2.2), (2.3) and (2.4) in equation (2.1) the following equation is obtained, 

[ ] [ ] [ ] [ ]( ){ } { } { }2M i C K i H X G Fω ω+ + + + =  (2.5) 
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Budak and Özgüven [24, 25] first suggested that nonlinear forces can be 

expressed in a matrix form. They developed a method for the harmonic vibration 

analysis of nonlinear structures, by which the amplitude vector of nonlinear forces 

can be expressed in the form, 

{ } [ ]{ }G X= Δ   (2.6) 

where [∆] is the response dependent “nonlinearity matrix”. Budak and Özgüven 

[25] gave a formulation to obtain the elements of [∆] for polynomial type 

nonlinearities. This concept is then extended by Tanrıkulu et. al. [26] with a new 

formulation to different kinds of nonlinearities by using describing functions. In 

the following section, the computation of [∆] by using describing functions will 

be presented.  

 

2.2.2 Describing Function Approach in the Computation of Nonlinearity 

Matrix 

 

The well known describing function theory [27] is used for the quasi-linearization 

of nonlinearities. Here the use of this theory in computation of the nonlinearity 

matrix will be presented. Let us consider the rth element of the vector {N}, Nr. 

Here r stands for the coordinate of concern and Nr is the sum of the nonlinear 

forces acting on this coordinate. Mathematically it can be expressed as  

1

n

r rj
j

N n
=

= ∑   (2.7) 

where nrj represents the nonlinear force element between coordinates r and j    for 

j ≠ r and between the coordinate r and the ground for j = r. depending on the type 

of the nonlinearity present in the system, nrj is a function of the intercoordinate 

displacement and/or velocity such that 

,rj r jy x x r j= − ≠   (2.8) 
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,rj ry x r j= =   (2.9) 

Since xr and xj are harmonic functions, yrj can also be represented as a harmonic 

function. Using complex notation, 

i t
r rx X e ω=   (2.10) 

i t
j jx X e ω=   (2.11) 

i t
rj rjy Y e ω=   (2.12) 

the harmonic input describing function vrj for nrj, such that vrj provides the best 

average of the true restoring force, can be calculated using the following integral: 

2

0

,i
rj rj

rj

i n e d t
Y

π
ψν ψ ψ ω

π
−= =∫   (2.13) 

Derivation of v for various nonlinearity and input types can also be found in 

reference [27]. Using equation (2.6), the vector {N} can now be written as 

{ } [ ]{ } i tN X e ω= Δ   (2.14) 

Here the elements of [∆] are given in terms of describing functions vrj as follows: 

1

1, 2,...,
n

rr rr rj
j
j r

r nν ν
=
≠

Δ = + =∑   (2.15) 

1,2,...,rj rj r j r nνΔ = − ≠ =   (2.16) 

When the nonlinearity considered is localized between a single coordinate and the 

ground, {N} includes only one nonzero element. Consequently, the nonlinearity 

matrix for the system consists of only one nonzero diagonal element vii, i being 

the coordinate where the nonlinear element is connected.  
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Substituting equation (2.6) into equation (2.5), yields 

[ ] [ ] [ ] [ ] [ ]( ){ } { }2M i C K i H X Fω ω+ + + + Δ =  (2.17) 

Then the receptance matrix of the system can be written as: 

( ) [ ] [ ] [ ] [ ] [ ] 12,X M i C K i Hα ω ω ω
−

⎡ ⎤= + + + + Δ⎣ ⎦  (2.18)  

From equation (2.18) it is seen that the nonlinearity can be considered as an added 

equivalent stiffness matrix which is a function of the response amplitude. It 

should be noted that the term “pseudo receptance” should be used in case of a 

nonlinear system as it is not possible to talk about receptance for a nonlinear 

system. 

 

2.3 Measurement of FRFs in Nonlinear Structures 

 

As mentioned earlier, “pseudo FRF” is a better expression for the FRFs of 

nonlinear structures since they do not satisfy the conditions for an FRF. An FRF 

is simply a transfer function relating the response of the system to the force 

applied and does not change with varying force or response levels as long as the 

system is linear. However, for a nonlinear system, a measured FRF is valid only 

for the specific force or response level maintained during the test. In the following 

subsections these measurements are classified and explained with respect to the 

control parameter.  

 

2.3.1 Force Amplitude Controlled FRFs 

 

In this type of measurement, a constant amplitude harmonic force is applied over 

a frequency range. An FRF resulting from such a measurement is invariant of the 

force amplitude value in a linear system. To visualize, FRFs corresponding to 

different forcing levels end up as the same curve when graphically represented. In 

case of a nonlinear system, this type of measurement produces completely 
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different results. When a harmonic force with constant amplitude is applied over a 

frequency range on a nonlinear system, the nonlinear elements in the structure 

will act like equivalent dampings and/or stiffnesses with different values at each 

frequency. In other words, at every frequency the value of equivalent damping 

and/or stiffness will change which violates the definition of FRF. Variation of 

damping and/or stiffness values over the frequency range results in the distortion 

of the FRF, an indicative of nonlinearity. Another sign of nonlinearity in FRFs 

can be observed as the amplitude of the applied force varies. Unlike linear ones, 

nonlinear structures generate different curves with different forcing amplitudes. 

These facts can also be seen in Bode plot and Nyquist plot representations of 

FRFs of a nonlinear structure in Figure 3 and Figure 4, respectively.  

 

 

 
 

Figure 3. Bode plot representation of FRFs of a nonlinear structure at different 

forcing levels. [28] 

 

 

This type of measurement is suitable to detect structural nonlinearity since FRF 

distortion is a good indicator. On the other hand, results of such a measurement 

are not proper for identification of modal parameters since linear analysis tools 

are not compatible with nonlinear systems and will give misleading results.  
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Figure 4. Nyquist plot representation of FRFs of a nonlinear structure at different 

forcing levels. [28] 

 

 

2.3.2 Displacement Amplitude Controlled FRFs 

 

When the response level is kept constant in a frequency sweep experiment, 

nonlinear elements will behave as equivalent linear elements, and the structure 

will behave linearly for that response level as discussed in [6] and experimentally 

shown in [28]. It can also be seen in equation (2.18) that the nonlinearity can be 

considered as an added equivalent stiffness matrix which is a function of the 

response amplitude, provided that the describing function for the nonlinearity is a 

function of the response amplitude only. Then, it can be concluded that response 

controlled measurements provide linear FRFs, each corresponding to a different 

response level, as can be seen in Figure 5 and Figure 6.  
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Figure 5. Bode plot representation of FRFs of a nonlinear structure at different 

response levels. [28] 

 

 

 
 

Figure 6. Nyquist plot representation of FRFs of a nonlinear structure at different 

response levels. [28] 

 
 

Response controlled measurements can be performed by keeping the response 

amplitude of the nonlinear coordinate constant. Here the term “nonlinear 

coordinate” refers to the coordinate to which the nonlinear element is attached. If 
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the nonlinear element is localized between two arbitrary coordinates, the 

amplitude of the relative displacement between these coordinates is to be kept 

constant.  

 

FRFs of linear structures are invariant of response amplitudes as well as force 

amplitudes. Hence, a sequence of measurement on a linear system by keeping the 

response amplitude constant will result in a set of overlapping curves that are 

indeed the same FRF.   

 

2.4 Extraction of Modal Parameters – The Modal Model 

 

One of the well known characteristic indicating nonlinearity in the FRF 

measurements is distortion especially around resonance frequencies. Linear modal 

identification tools are based on fitting FRF curves that show linear behavior. 

Consequently unreliable results are obtained. Özgüven and İmregün [15] 

investigated the results when linear identification is applied on a nonlinear 

system. Study resulted with complex modes although the system did not include 

nonproportional damping which is customary to assume when complex modes are 

encountered. In conclusion, linear identification of force amplitude controlled 

FRF of a nonlinear system will not present useful results other that specifying the 

system as nonlinear.  

However, if an FRF of a nonlinear system is measured by keeping the response 

amplitude constant (with displacement controlled experiments), linear 

identification can be carried out, and a set of modal parameters for each response 

level can be obtained. As equation (2.18) indicates, nonlinearity in a system can 

be considered as an added system property matrix which is a function of the 

response amplitude. Therefore, the modal parameters can be expected to follow a 

pattern according to the nonlinearity present in the system. As the identified 

modal parameters vary with respect to the response amplitude Yrj, they can be 

expressed as a function of Yrj as follows 
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( )r r rjYω ω=   (2.19) 

( )r r rjYη η=   (2.20) 

( )r kl r kl rjA A Y=   (2.21) 

This model then can be used in harmonic response prediction of the non-linear 

system, as well as in coupling and modification analyses, which will be discussed 

in detail in next chapter.  
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Figure 7. Natural frequencies of a nonlinear system identified at different forcing 

levels.  
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Figure 8. Damping ratios of a nonlinear system identified at different forcing 

levels 
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CHAPTER 3 

 

HARMONIC RESPONSE ANALYSIS USING THE MODAL 

MODEL 
 

 

In this chapter, implementation of the modal model of a nonlinear system in 

structural dynamic analysis will be explained in detail. In section 3.1 computation 

of the forced harmonic response of a nonlinear system, once its modal model is 

obtained, to an arbitrary force level is given. In section 3.2 response prediction of 

a nonlinear system coupled with a linear one using the modal model of the 

original nonlinear system is presented. In section 3.3 the use of the modal model 

in structural modification analysis of a nonlinear system is illustrated.  The 

numerical solution method employed in these harmonic response analyses is 

presented in section 3.4. 

 

3.1 Forced Harmonic Response Prediction Using the Modal Model 

 

Once the variation of the nonlinear modal parameters with respect to the response 

amplitude is known, response of the system can be predicted applying an iterative 

solution method. In this section the theory of this approach will be given. The 

method is formulated with respect to the position of the nonlinear element, i.e. 

grounded or interconnected, in the system. In the following subsections 3.1.1 and 

3.1.2 formulations for the systems possessing grounded nonlinear elements and 

interconnected nonlinear elements will be given, respectively. 
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3.1.1 Grounded Nonlinear Element 

 

Consider a structurally damped nonlinear system in which the nonlinear element 

is localized between the ith coordinate and ground, as shown in Figure 9.  

 

 

 
 

Figure 9. Discrete MDOF system possessing a grounded nonlinear element 

connected at the ith coordinate. (k*
r  = kr + ihr). 

 

 

Consider a number of harmonic vibration tests conducted on this system; each one 

performed by applying a harmonic force to an arbitrary coordinate while keeping 

Xi constant. FRFs resulting from these measurements are expected to show linear 

behavior, and therefore linear identification can be applied. Once the variation of 

the nonlinear modal parameters with respect to the response amplitude Xi is 

obtained as follows 

( )r r iXω ω=   (3.1) 

k*
i+1 

m1

m2

k*
1  

k*
2  

 mi 

k*
i  

k*
3  

kNL

Xi 
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( )r r iXη η=   (3.2) 

( )r kl r kl iA A X=   (3.3) 

they can be used to write the pseudo receptance expression of the system as a 

modal summation in terms of the modal parameters identified: 

 ( ) ( )
( )( ) ( )( ) ( )2 221

,
n

r ij i
ij i

r r i r i r i

A X
X

X i X X
α ω

ω ω ω η=

=
− +

∑   (3.4) 

Then the harmonic response amplitude Xi can be written as 

( ),i ij i jX X Fα ω=   (3.5) 

Here, Fj is the amplitude of the harmonic force applied at jth coordinate and αij is 

the response level dependent receptance value. Note that the formulation above is 

given for a structurally damped system. In case of a system with viscous damping, 

damping ratio, ξ, is to be identified and included in the modal model, instead of 

the loss factor, η. Receptance expression for such a system also shows difference. 

Should the system given in Figure 9 be viscously damped, the term 

( ) ( )2 r i r ii X Xωω ζ  in equation (3.4) will replace ( )( ) ( )2
r i r ii X Xω η .  

For a specific value of ω, equation (3.5) becomes an implicit equation in Xi. Then, 

it can be solved with an iterative approach such that modal parameters are 

updated at each iteration step. Updating procedure is simply replacing the modal 

parameters with the ones corresponding to the newly obtained Xi value. Once a 

convergent solution is reached for Xi, then the rest of the response amplitudes Xj (j 

= 1, 2, .., n, j ≠ i) can be calculated directly by using the modal data corresponding 

to the convergent response value, Xi. Note that this solution will be valid only for 

the case where there is a harmonic force with amplitude Fj applied at the jth 

coordinate.  
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3.1.2 Interconnected Nonlinear Element 

 

Consider a structurally damped nonlinear system possessing a nonlinear element 

between the coordinates r and q, as shown in Figure 10. Using complex notation,  

i t
r rx X e ω=   (3.6) 

i t
q qx X e ω=   (3.7) 

where Xr and Xq are the complex response amplitudes of the coordinates r and q, 

respectively. Let us define a variable Yrq as the amplitude of the relative 

displacement between the coordinates, such that 

rq r qY X X= −   (3.8) 

In order to obtain linearized FRFs of such a system so that linear identification 

can be applied, the relative displacement amplitude between the two coordinates, 

to which the nonlinear element is connected, is to be kept constant.  Then the 

variations of the modal parameters are to be obtained with respect to the relative 

displacement amplitude, Yrq, as follows:  

( )r r rqYω ω=   (3.9) 

( )r r rqYη η=   (3.10) 

( )r kl r kl rqA A Y=   (3.11) 

Then they can be used to write the pseudo receptance expression of the system in 

a similar way. In this case, one needs to state two receptance expressions, since 

the iteration parameter is the difference of two response amplitudes.  
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Figure 10. Discrete MDOF system possessing a nonlinear element between the 

coordinates q and r.  (k*
r  = kr + i·hr). 

 

 

Consider a harmonic force of amplitude Fj applied at jth coordinate. Then,  

r rj jX Fα=   (3.12) 

q qj jX Fα=   (3.13) 

Using equations (3.8), (3.12) and (3.13), the relative response amplitude Yrq can 

be written as 

 mi 
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rq rj qj jY Fα α= −   (3.14) 

where αrj and αqj are the response level dependent receptance values and they can 

be expressed in terms of the modal parameter variations as follows: 

( ) ( )
( )( ) ( )( ) ( )( )2 221

,
n

r rj rq
rj rq

r
r rq r rq r rq

A Y
Y

Y i Y Y
α ω

ω ω ω η=

=
− +

∑   (3.15) 

( ) ( )
( )( ) ( )( ) ( )( )2 221

,
n

r rj rq
qj rq

r
r rq r rq r rq

A Y
Y

Y i Y Y
α ω

ω ω ω η=

=
− +

∑   (3.16) 

respectively.  

In equation (3.14) the iteration parameter is Yrq, consequently a convergent value 

for Yrq is sought in order to obtain the response of the system for that specific 

forcing level.  The algorithm is simply updating the modal parameters in 

equations (3.15) and (3.16) with respect to current Yrq value and substituting in 

equation (3.14) to get the new Yrq value.  Once a convergent value for Yrq is 

reached, then the rest of the response amplitudes can be calculated directly by 

using the modal data corresponding to the convergent relative response value. 

Note that this solution will be valid only for the case where there is a harmonic 

force with amplitude Fj applied at the jth coordinate. 

 

3.2 Structural Coupling Analysis Using the Modal Model 

 

The idea presented in the preceding section can be extended so that it can be 

employed in dynamic analyses of nonlinear systems coupled with linear ones 

using the receptance coupling method. Receptance values for a linear system can 

be found experimentally or computationally by linear modal analysis tools. For 

nonlinear system, receptance values are to be constructed via modal summation 

by using identified response dependent modal parameters, as explained earlier.  
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Consider a linear and a nonlinear system with structural damping to be coupled 

rigidly as in Figure 11.  

 

 

 
 

Figure 11. A nonlinear MDOF system coupled with an MDOF linear system (both 

systems are structurally damped). 

 

 

The receptance matrices of the nonlinear and linear substructures are as follows, 

respectively 

[ ] [ ]
[ ] [ ]

mm mn
NL

nm nn

α α
α

α α
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

  (3.17) 

[ ] [ ]
[ ] [ ]

kk kl
L

lk ll

α α
α

α α
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

  (3.18) 

Nonlinear MDOF substructure Linear MDOF substructure

Coupled nonlinear MDOF structure

xk 

fk 

xm 

fm 

xc 

fc 

xi 
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where m and k refer to the coordinates to be coupled, n and l represent the rest of 

the coordinates in the nonlinear and linear systems, respectively.  

For the linear substructure, the following equation can be written. 

{ } [ ]{ }L L Lx fα=   (3.19) 

where {xL} and {fL} are the response and forcing vectors of the linear system, 

respectively, and [αL] is the receptance matrix relating these vectors. 

Displacement vector in equation (3.19) is partitioned as follows 

{ } { }
k

L
l

x
x

x
⎧ ⎫

= ⎨ ⎬
⎩ ⎭

  (3.20) 

Here xk is the displacement of the single mass at the free end and { }lx represents 

the displacements of the rest of the masses. Using this partitioned displacement 

vector, following equations for the linear substructure can be written    

[ ]{ }k kk k kl lx f fα α= +   (3.21) 

{ } [ ] [ ]{ }l lk k ll lx f fα α= +   (3.22) 

where fk  and {fl} represent the external forces at the coordinates k and l.  

Equations for the nonlinear system can be written similarly where the 

displacement vector is partitioned as 

{ } { }
m

NL
n

x
x

x
⎧ ⎫

= ⎨ ⎬
⎩ ⎭

  (3.23) 

where xm is the displacement of the free end of the system and { }lx  represents the 

displacements of the rest of the coordinates. Note that the coordinate where the 

nonlinear element is connected is included in {xn}. Then,  
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[ ]{ }m mm m mn nx f fα α= +   (3.24) 

{ } [ ] [ ]{ }n nm m nn nx f fα α= +   (3.25) 

As mentioned in the preceding sections of this chapter, the receptance expressions 

in equations (3.24) and (3.25) can be written as a modal summation, thus they are 

functions of frequency and displacement amplitude of the ith coordinate of the 

nonlinear system:  

( ) ( ) { }, ,m mm i m mn i nx X f X fα ω α ω= + ⎡ ⎤⎣ ⎦   (3.26) 

{ } ( ) ( ) { }, ,n nm i m nn i nx X f X fα ω α ω= +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦   (3.27) 

Recall that Xi is the amplitude of xi, displacement of the coordinate where the 

nonlinear element is connected. The notation in equations (3.26) and (3.27) will 

not be used through the derivations, and instead the notation şn equations (3.24) 

and (3.25) will be used for simplicity. 

At the connection node, the following compatibility equations hold true when the 

substructures are coupled rigidly:  

m kx x=   (3.28) 

m kf f= −   (3.29) 

Substituting equations (3.21) and (3.24) in equation (3.28) and rearranging to 

obtain fm yield 

[ ]{ } [ ]{ }kl l mn n
m

mm kk

f f
f

α α
α α

−
=

+
  (3.30) 

Equation (3.30) can be used in equation (3.22) to obtain the following relation 
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{ } [ ][ ]{ } [ ][ ] { }nm kl nm mn
n l nn n

mm kk mm kk

x f f
α α α α

α
α α α α

⎛ ⎞
= + −⎜ ⎟

+ +⎝ ⎠
 (3.31) 

From equation (3.31), two of the receptance expressions of the coupled system 

can be obtained.  

[ ][ ]nm klC
nl

mm kk

α α
α

α α
⎡ ⎤ =⎣ ⎦ +

  (3.32) 

[ ][ ]nm mnC
nn nn

mm kk

α α
α α

α α
⎡ ⎤ = −⎣ ⎦ +

  (3.33) 

Equation (3.30) can be rewritten to obtain fk  

[ ]{ } [ ]{ }mn n kl l
k

mm kk

f f
f

α α
α α

−
=

+
  (3.34) 

Substituting equation (3.34) into equation (3.25) and reorganizing the following 

relation, from which the remaining receptance expressions can be extracted, is 

obtained: 

{ } [ ][ ]{ } [ ] [ ][ ] { }lk mn lk kl
l n ll l

mm kk mm kk

x f f
α α α α

α
α α α α

⎛ ⎞
= + −⎜ ⎟

+ +⎝ ⎠
 (3.35) 

[ ][ ]lk mnC
ln

mm kk

α α
α

α α
⎡ ⎤ =⎣ ⎦ +

  (3.36) 

[ ] [ ][ ]lk klC
ll ll

mm kk

α α
α α

α α
⎡ ⎤ = −⎣ ⎦ +

  (3.37) 

Equations (3.32), (3.33), (3.36) and (3.37) can be combined to form the complete 

receptance matrix of the coupled system.  
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C C
nn nlC

C C
ln ll

α α
α

α α

⎡ ⎤⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎢ ⎥⎡ ⎤ =⎣ ⎦ ⎢ ⎥⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎣ ⎦
  (3.38) 

In equations (3.26) and (3.27), response dependency of the receptance expressions 

of the nonlinear system was shown. As those equations are used throughout the 

derivation, it is obvious that the final receptance matrix of the coupled system is 

also Xi dependent.  

( ),C C
iXα α ω⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦   (3.39) 

Once the receptance matrix of the assembled system is written in terms of Xi as in 

equation (3.39), response of the system at any force level can be found by the 

same methodology explained in this section.  

In the coupling analysis presented up to here, the formulation for two single 

coordinates to be coupled is given for simplicity. However, the extension of the 

formulations for coupling of multiple coordinates is also straightforward. Let the 

number of coordinates to be coupled be r. Then the partitioning of response 

vectors, given with equations (3.20) and (3.23) are performed with the same 

approach, only xk and xm being vectors of size r instead of single values. 

Consequently, the size of the receptance expressions will also change and the 

terms in the denominator in above formulation will appear as matrix inversion and 

multiplication. 

In the coupling analysis explained above, an important point is not to take the 

coordinate where the nonlinear element is connected as a connection node. This 

restriction is due to the nature of receptance coupling method. In receptance 

coupling method, information related to the coupling nodes are not available in 

the receptance matrix of the coupled system. This is an undesired situation in this 

study since the displacement amplitude of the coordinate where the nonlinear 

element is connected is needed in order to carry out the dynamic analysis of the 

system. Ferreira [29] presented a “Refined Formulation of FRF Coupling” which 
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enables to keep the information related to the coupling nodes. Employment of the 

algorithm can remove the restriction of coupling node selection.  

 

3.3 Structural Modification Analysis Using the Modal Model 

 

The basic methodology presented in section 3.1 can also be implemented in 

structural modification problems. In this section, the formulation of this 

implementation is given. The theory is closely related to the work presented by 

Özgüven [30]. For simplicity, the theory for linear systems [30] will be given 

first.  

Consider a MDOF linear system subject to modification as shown in Figure 12.  

 
 
 

 
 

Figure 12. A discrete MDOF linear system subject to modification. 
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Receptance matrix, [α] of the original (before modification) system can be written 

as: 

[ ] [ ] [ ] [ ] 12K M i Hα ω
−

⎡ ⎤= − +⎣ ⎦  (3.40) 

where [K], [M] and [H] are the stiffness, mass and structural damping matrices of 

the system, respectively. When this system is modified without increasing the 

total degrees of freedom of the system, the receptance matrix [γ] of the modified 

structure can be written as: 

[ ] [ ] [ ] [ ] [ ] [ ] [ ]2 1K K M M i H Hγ ω
−⎡ ⎤⎡ ⎤ ⎡ ⎤= + Δ − + Δ + + Δ⎣ ⎦ ⎣ ⎦⎣ ⎦  (3.41) 

where [∆K], [∆M] and [∆H] represent the stiffness, mass and damping matrices of 

the modifying structure, respectively. Inverting both sides of equations (3.40) and 

(3.41), and then combining them yields 

[ ] [ ] [ ]1 1 Dγ α− −= +   (3.42) 

where [D] denotes the dynamic structural modification matrix and is expressed as 

[ ] [ ] [ ] [ ]2D K M i Hω= Δ − Δ + Δ   (3.43) 

When all terms of the equation (3.42) are premultiplied by [α] and postmultiplied 

by [γ], the following relation is obtained: 

[ ] [ ] [ ][ ][ ]Dα γ α γ= +   (3.44) 

Using this relation, [γ] can be obtained as: 

[ ] [ ] [ ][ ] [ ]1
I Dγ α α

−
⎡ ⎤= +⎣ ⎦   (3.45) 
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Now if we apply the same modification method to a nonlinear system, then [α] in 

equation (3.45) will be the pseudo receptance matrix of the nonlinear system 

which can be obtained by modal synthesis by using identified response dependent 

modal parameters of the nonlinear system. Response dependent modal parameters 

are to be identified from the FRFs of unmodified nonlinear system, measured at 

different response levels as discussed in section 2.4.  

The response dependent pseudo receptance of the modified system will then be 

given by  

( ) [ ] ( ) [ ] ( )1
, , ,X I X D Xi i iγ ω α ω α ω

−⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦
 (3.46) 

Once the receptance matrix of the modified system is written in terms of Xi as in 

equation (3.46), i being the coordinate where the nonlinear element is connected, 

response of the system at any force level can be found by the same methodology 

explained in this chapter.  

 

3.4 Numerical Solution Technique 

 

In the methods presented in this chapter, an implicit equation is reached so it can 

be solved iteratively with a proper numerical solution method for a given ω and 

the response of the system for that particular forcing can be achieved. In this 

thesis, the fixed point iteration method is used for the numerical solution of this 

final equation. For simplicity, the algorithm for the solution for a SDOF nonlinear 

system with is given first.  

The implicit equation obtained in the end of the response prediction procedure can 

be expressed as 

( ) ( )( )1
,

p p
X X Fα ω

+
= ⋅   (3.47) 
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where ( ) 1p
X

+
is the response amplitude of the nonlinear coordinate at (p+1)th 

iteration step and ( )( ),
p

Xα ω is the pseudo receptance expression at frequency ω 

and pth iteration step. In equation (3.47), ( )( ),
p

Xα ω  is expressed in terms of the 

modal parameters corresponding to the pth iteration step as follows: 

( )( ) ( )( )
( )( )( ) ( )( )( ) ( )( )2 2

2
, p

p

n np p p

A X
X

X i X X
α ω

ω ω ω η
=
⎛ ⎞− +⎜ ⎟
⎝ ⎠

 (3.48) 

for a structurally damped system, where ωn is the natural frequency of the system.  

The pseudo receptance expression given by equation (3.48) is updated at every 

iteration step. Iterations are to be repeated until a specified tolerance is reached. 

The convergence criteria is specified as 

( ) ( )
( )

1 100p p
p

p

X X
e

X
+
−

= ×   (3.49) 

The starting value for the iterations is taken as the linear solution of the system at 

the first frequency value. For the following frequencies, the convergent X value 

corresponding to the previous frequency point is used as the initial value. 

Similarly, the solution is carried out starting from the last frequency point and 

continuing with decreasing frequency values. If the nonlinearity in the system 

involves multiple solutions for certain frequency ranges, simply known as jump 

phenomena, it can be observed in the system when the solution of equation (3.47) 

is performed for both frequency sweep directions. 

In case the system to be analyzed is a MDOF system with a grounded nonlinear 

element connected at ith coordinate, the equation of concern is written as: 

( ),i ij i jX X Fα ω= ⋅   (3.50) 
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where Xi is the harmonic response amplitude of the ith coordinate, ω is the 

frequency, Fj is the amplitude of the harmonic force applied at jth coordinate and 

αij is the response level dependent receptance value. In this case, αij is expressed 

as a modal summation where the all the modal parameters corresponding to the pth 

iteration step are used in the calculation, as follows: 

( )( ) ( )( )
( )( )( ) ( )( )( ) ( )( )2 2

21

,
n r ij i p

ij i p
r

r i r i r ip p p

A X
X

X i X X
α ω

ω ω ω η=

=
⎛ ⎞− +⎜ ⎟
⎝ ⎠

∑  (3.51) 

At the frequencies where the system shows linear behavior, convergence is 

achieved rapidly. However, at other frequencies which are near resonance, 

convergence can be difficult to obtain with the plain fixed point iteration method. 

In such cases, convergence is obtained by using a weighted average 

displacement, ( )*

1i p
X

+
, instead of ( ) 1i p

X
+

, in calculating ( )
1ij p

α
+

, as follows: 

( ) ( ) ( )( )*

1 1
1i i ip p p

X X Xλ λ
+ +
= + −   (3.52) 

In equation (3.52), λ is a weighting factor that is assigned a value between 0 and 

2. For the values of λ between 0 and 1, previous value is weighted more and this 

is called underrelaxation. It is employed to make a non-convergent system to 

converge or hasten convergence by dampening out oscillations. For the values of 

λ between 1 and 2, present value is weighted more and this is called 

overrelaxation. This type of weighting is designed to accelerate the convergence 

of an already convergent system.  
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CHAPTER 4 

 

CASE STUDIES 
 

 

In this chapter, case studies to demonstrate the validity and efficiency of the 

presented methods are given.  

 

4.1 Forced Harmonic Response Prediction 

 

In this section, implementation of the method presented in section 3.1 on systems 

with different types of nonlinear elements is given.  

 

4.1.1 Case Study 1 

 

A 5-DOF structurally damped system with a grounded cubic stiffness element, as 
shown in  

Figure 13, under harmonic forcing is examined. 

 

 

 
 

Figure 13. Five DOF system with grounded cubic stiffness. 

 

 

System parameters for the given discreet system are as follows: 

m m m m m 

k* k* k* k* k* k*+kNL 

x1 x2 x3 x4 x5 
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1 kgm = , ( )* 50000 1 0.01  N/mk i= + , 2
1NLk bx= , 7 310  N/mb =  

As explained in section 2.4, FRFs obtained by displacement controlled tests are 

identified to construct the modal model of the system. 8 FRFs are generated 

theoretically, each corresponding to a simulated test performed with a different 

displacement amplitude. The values of the displacement amplitude, X1, start with 

1 cm and continue with 0.5 cm increment. In Figure 14 and Figure 15, point and 

transfer FRFs corresponding to these values are presented, respectively. Limited 

number of the FRFs are shown in the figure for simplicity. It is possible to 

observe the linear behavior of each curve and also the trend in shifting of 

resonance peaks which is an indication of hardening stiffness.  
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Figure 14.  Point FRFs generated at constant displacement amplitudes 

 

 

Modal parameters corresponding to each FRF are extracted using modal 

identification. As mentioned earlier, linear identification can be easily used with 

these FRFs since they show linear behavior. Identification of the modal 

parameters is performed by the formulation presented by Richardson and 

Formenti [31]. They introduced a least squared error parameter estimation 
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technique based on the fact that the frequency response measurement of a linear, 

second order dynamical system can be represented as a ratio of two polynomials. 

Natural frequencies, damping ratios and modal constants of the system are 

obtained using this technique. Magnitude and phase of the modal constant are 

identified as two separate parameters, as modal constant is a complex quantity for 

a damped system.  
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Figure 15. Transfer FRFs generated at constant displacement amplitudes 

 

 

Identified modal parameters corresponding to the first mode for each set of FRFs 

are listed in Table 1 and Table 2 to set an example for the variation of parameters 

with response amplitude.  

 

 



 
 

44

Table 1. Modal parameters obtained by identification of constant displacement 

point FRFs (α11) 

 

Modal constant Displacement 
amplitude 

[mm] 

Natural 
frequency 

[rad/s] 

Damping 
ratio [%] 

(structural 
damping 
model) 

Magnitude Phase 
(degrees) 

10 116.02 1.0051 0.0817 -0.7639 
15 116.35 0.9991 0.0798 -0.7525 
20 116.79 0.9930 0.0771 -0.7379 
25 117.33 0.9836 0.0739 -0.7192 
30 117.97 0.9748 0.0702 -0.6983 
35 118.67 0.9661 0.0662 -0.6731 
40 119.43 0.9567 0.0619 -0.6459 
45 120.22 0.9476 0.0575 -0.6175 

 

 

 

 

Table 2. Modal parameters obtained by identification of constant displacement 

transfer FRFs (α15) 

 

Modal constant Displacement 
amplitude 

[mm] 

Natural 
frequency 

[rad/s] 

Damping 
ratio [%] 

(structural 
damping 
model) 

Magnitude Phase 
(degrees) 

10 116.02 0.9962 0.0828 -0.2966 
15 116.34 0.9908 0.0821 -0.2906 
20 116.79 0.9937 0.0812 -0.2823 
25 117.33 0.9855 0.0800 -0.2717 
30 117.96 0.9666 0.0786 -0.2590 
35 118.66 0.9574 0.0769 -0.2445 
40 119.42 0.9484 0.0751 -0.2283 
45 120.21 0.9400 0.0731 -0.2107 
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It can be seen in Table 1 and Table 2 that modal parameters follow a visible 

pattern which allows fitting proper functions for every set of parameters with 

respect to displacement amplitude. It is also possible to observe that natural 

frequencies and damping ratios are approximately the same for both FRF sets 

whereas modal constants are different. This is an expected result since natural 

frequency and damping ratio are modal parameters independent of the identified 

FRF but modal constant is not and needed to be identified for each element of the 

FRF matrix. Identification of sets of both point and transfer FRFs are necessary in 

order to calculate the desired pseudo FRF since the corresponding modal 

constants are required.    

Graphical representation of the identified parameters from point FRFs and the 

fitted curves are shown in Figures 15 – 19, each set in a figure corresponding to a 

mode.  
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Figure 16. Variation of the modal parameters of the first mode with respect to 

response amplitude, X1.  (* identified parameters, — fitted curve) 
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As can be seen from the figures, modal parameters of the nonlinear system follow 

a trend and therefore they can be expressed in terms of proper mathematical 

functions that fit to the corresponding data points. In practical applications points 

are expected to be scattered due to measurement errors. Since analytical 

expressions are fit to modal data points, it is expected that having scattered data 

does not affect the results significantly.  

For the system in this case study, relation between the identified modal 

parameters and the response amplitude of the first coordinate are finely 

represented with second order polynomials. This can be taken as a result of the 

form of describing function for cubic stiffness type nonlinearity.  
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Figure 17. Variation of the modal parameters of the second mode with respect to 

response amplitude, X1.  (*  identified parameters, — fitted curve) 
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A typical result of hardening stiffness can be obtained from natural frequency 

versus displacement amplitude curves, in which the natural frequency increases 

with increasing displacement amplitude. Should the system have softening 

stiffness, simply a negative nonlinear stiffness coefficient, the natural frequencies 

would decrease with increasing displacement amplitude.   

 

One should be observant in selection of the displacement amplitudes to be set in 

constant displacement amplitude tests in order to obtain a set of modal parameters 

that describe the behavior of the nonlinear system well enough. If the range of 

displacement amplitudes is kept narrow, resulting modal parameters are expected 

to be approximate, which prevents the observation of the trend of the parameters 

clearly to fit a proper function. This fact, however, may require performance of 

harmonic vibration tests with relatively large displacement amplitudes and is a 

drawback of this method.  
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Figure 18. Variation of the modal parameters of the third mode with respect to 

response amplitude, X1.  (*  identified parameters, — fitted curve) 
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The functions that are fit to the modal data are used in pseudo receptance 

expression of the system by modal summation as explained in section 3.1. 

Frequency response of the system at different forcing levels is calculated by using 

the modal model.  

Pseudo point receptance values calculated for forcing level of 100 N by using the 

modal parameters identified are presented in Figures 20 – 22. The force is applied 

at the first mass to which the nonlinear element is connected. The match of the 

responses obtained from the modal model with those calculated by harmonic 

balance method demonstrates the validity of the modal model and the approach 

suggested. Note that both approaches are valid if the basic assumption (harmonic 

excitation results in harmonic response at the same frequency) holds true.  
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Figure 19. Variation of the modal parameters of the fourth mode with respect to 

response amplitude, X1.  (* identified parameters, — fitted curve) 
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Figure 21 and Figure 22 show solutions for increasing and decreasing frequency 

sweeps with that of harmonic balance solution, respectively. Slight differences are 

observed between the results of this study and the harmonic balance method only 

around jump frequency, and it is believed that they are due to expressing of modal 

parameters with analytical functions unlike exact describing functions as in the 

harmonic balance method. 

In Figure 23 a close up view of first two modes of the pseudo point receptance of 

the system for forcing level of 100 N calculated with both frequency sweep 

directions is shown. Similarly in Figure 24, response of the system to a force level 

of 250 N covering the frequencies of the third and fourth modes calculated with 

both sweep directions are presented. In both figures, a jump phenomenon is 

apparent. 

 

 

0.01 0.02 0.03 0.04 0.05
432

432.5

433

433.5

434

434.5

response amplitude [m]

na
tu

ra
l f

re
qu

en
cy

 [r
ad

/s
]

 

 

0.01 0.02 0.03 0.04 0.05

9.85

9.9

9.95

10
x 10

-3

response amplitude [m]

lo
ss

 fa
ct

or

 

 

0.01 0.02 0.03 0.04 0.05

0.08

0.1

0.12

0.14

response amplitude [m]

m
od

al
 c

on
st

an
t (

m
ag

ni
tu

de
)

 

 

0.01 0.02 0.03 0.04 0.05
-8

-6

-4

-2

0

2
x 10

-3

response amplitude [m]

m
od

al
 c

on
st

an
t (

ph
as

e)
 [r

ad
/s

]

 

 

 
 

Figure 20. Variation of the modal parameters of the fifth mode with respect to 

response amplitude, X1.  (*  identified parameters, — fitted curve) 
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Figure 21. Frequency response of the system in Case Study 1 to a force level of  

F1 = 100 N with increasing frequency sweep.  
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Figure 22. Frequency response of the system in Case Study 1 to a force level of  

F1 = 100 N with decreasing frequency sweep. 
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Figure 23. Frequency response of the system in Case Study 1 to a force level of  

F1 = 100 N with both increasing and decreasing frequency sweep. 
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Figure 24. Frequency response of the system in Case Study 1 to a force level of  

F1 = 250 N with both increasing and decreasing frequency sweep. 
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As mentioned earlier, it is also possible to calculate transfer FRFs of a nonlinear 

system by using the correspondent modal parameter variations. In order to 

illustrate this, transfer FRFs of the same system shown in Figure 15 are subjected 

to the same procedure of identification and curve fitting. The functions that are fit 

to the modal data are used to express the pseudo transfer receptance between the 

first and the fifth coordinates.  The force is applied at the fifth mass and the 

response is measured at the first coordinate to which the nonlinear element is 

connected. In Figure 25 and Figure 26 solutions for increasing and decreasing 

frequency sweeps with that of harmonic balance solution are shown, respectively. 

Solutions match in the same way as reached in the point FRFs.  
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Figure 25. Frequency response of the system in Case Study 1 to a force level of  

F5 = 100 N with increasing frequency sweep. 
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Figure 26. Frequency response of the system in Case Study 1 to a force level of  

F5 = 100 N with decreasing frequency sweep. 

 
 

4.1.2 Case Study 2 

 

In order to investigate the effect of noise in test results, the same system in Case 

Study 1 is examined by polluting the FRFs obtained by simulation. FRFs shown 

in Figure 14 are polluted by multiplying each receptance value with a random 

number such that the mean value is 1 and the standard deviation is 0.05. One of 

the polluted FRFs is shown in Figure 27.  

Modal parameters obtained by the identification of the polluted FRFs are 

presented in Figures 27 – 29, corresponding to first, second and fifth modes 

respectively. It can be observed that natural frequencies and modal constants are 

not much affected by pollution but loss factor values and modal constant phase 

angles are rather scattered.  However, it is still possible to fit a proper curve for 

each parameter set presenting the trend.   
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Figure 27. Polluted point FRF of the system in Case Study 1, obtained for           

X1 = 2.5 cm.  

 

 

Pseudo point receptance values calculated for forcing level of 100 N by using the 

modal parameters identified are presented in Figure 31 and Figure 32, 

corresponding to increasing and decreasing frequency sweep, respectively. The 

force is applied at the first mass to which the nonlinear element is connected. The 

responses obtained from the modal model with those calculated by harmonic 

balance method finely match, which demonstrates the validity of the modal model 

and the robustness of the proposed method to experimental errors and noise. 
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Figure 28. Variation of the modal parameters of the first mode with respect to 

response amplitude, X1.         (* identified parameters, — fitted curve) 
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Figure 29. Variation of the modal parameters of the second mode with respect to 

response amplitude, X1.        (* identified parameters, — fitted curve) 
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Figure 30. Variation of the modal parameters of the fifth mode with respect to 

response amplitude, X1.         (* identified parameters, — fitted curve) 
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Figure 31. Frequency response of the system in Case Study 2 to a force level of  

F1 = 100 N with increasing frequency sweep. 
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Figure 32. Frequency response of the system in Case Study 2 to a force level of  

F1 = 100 N with decreasing frequency sweep. 

 

 

4.1.3 Case Study 3 

 

A 5-DOF viscously damped system with a grounded velocity squared damping 

element, as shown in Figure 33, under harmonic forcing is examined. System 

parameters are given as follows: 

1 kgm = , 50000 N/mk = , ( )53 10  Ns/mc k−= × , 1 1NLc b x x= , 2 21 Ns /mb =  

6 theoretical FRFs are generated, corresponding to series of simulated tests 

performed with constant displacement amplitude, X1. The values of the 

displacement amplitude are evenly distributed between 5 cm and 10 cm. In Figure 

34, FRFs corresponding to first four of these values are presented. It is possible to 

observe the linear behavior of each curve and also the shift in resonance peaks 

which is the indication of the damping nonlinearity. 
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Figure 33. 5 - DOF viscously damped system with grounded velocity squared 

nonlinearity. 
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Figure 34. FRFs generated at constant displacement amplitudes 

 

 

Modal parameters obtained from the identification of these FRFs are shown in 

Figures 28 – 30, corresponding to first, third and fifth modes respectively. 

Characteristics of damping nonlinearity can be observed in variation trends of 

modal parameters. It can be observed that, unlike stiffness nonlinearity as in the 
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previous case, natural frequency values remain almost constant. This is an 

expected result since damping nonlinearity does not cause a shift in resonance 

frequency but the FRF values at resonant frequency change. It can also be 

observed in Figure 34.  
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Figure 35. Variation of the modal parameters of the first mode with respect to 

response amplitude, X1.  (*  identified parameters, — fitted curve) 

 
 

The same statement can also be made for modal constants, as they also remain 

constant. On the other hand, damping ratios spread through a large range. This is 

the most apparent property of a system with damping nonlinearity. Since natural 

frequency and modal constant magnitude values deviate around a certain value, 

they are taken as constant. 

Considering the differences of the modal parameter variation characteristics 

between cubic stiffness and velocity squared damping nonlinearities, it can be 
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concluded that modal parameter variations can also be used to have an idea on the 

type of the nonlinearity in the system.  
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Figure 36. Variation of the modal parameters of the third mode with respect to 

response amplitude, X1.         (*  identified parameters, — fitted curve) 

 

 

The functions that are fit to the modal data are used in the calculation of pseudo 

receptance of the system. Pseudo point receptance values calculated for forcing 

level of 100 N and 200 N are presented in Figure 37 and Figure 38. The force is 

applied at the first mass to which the nonlinear element is connected. 
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Figure 37. Frequency response of the system in Case Study 3 to a force level of  

F1 = 100 N 
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Figure 38. Frequency response of the system in Case Study 3 to a force level of  

F1 = 200 N 
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4.1.4 Case Study 4 

 

The same system in Case Study 3 is examined by polluting the FRFs obtained by 

simulation. FRFs shown in Figure 34 are polluted by multiplying each receptance 

value with a random number. Random numbers are normally distributed with 

their mean value of 1 and the standard deviation of 0.05. One of the polluted 

FRFs is shown in Figure 39.  

Modal parameters are obtained by the identification of the polluted FRFs. Modal 

parameter variations of the first, second and fifth modes are presented in Figures 

39 – 41, respectively. The same characteristics of a nonlinear system with 

damping nonlinearity can also be observed in the identified modal parameters.   
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Figure 39. Polluted point FRF of the system in Case Study 3, obtained for           

X1 = 0.07 m 



 
 

63

0.04 0.06 0.08 0.1
115.4

115.6

115.8

116

displacement amplitude [m]

na
tu

ra
l f

re
qu

en
cy

 [r
ad

/s
]

 

 

0.04 0.06 0.08 0.1
-1

0

1

2
x 10-3

displacement amplitude [m]

da
m

pi
ng

 ra
tio

 

 

 

0.04 0.06 0.08 0.1
0.08

0.082

0.084

0.086

0.088

displacement amplitude [m]

m
od

al
 c

on
st

an
t (

m
ag

ni
tu

de
) 

 

 

0.04 0.06 0.08 0.1
-0.03

-0.025

-0.02

-0.015

-0.01

displacement amplitude [m]

m
od

al
 c

on
st

an
t (

ph
as

e)
 [r

ad
]

 

 

 
 

Figure 40. Variation of the modal parameters of the first mode with respect to 

response amplitude, X1.        (*  identified parameters, — fitted curve)  
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Figure 41. Variation of the modal parameters of the second mode with respect to 

response amplitude, X1.       (*  identified parameters, — fitted curve)  
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Figure 42. Variation of the modal parameters of the fifth mode with respect to 

response amplitude, X1.       (*  identified parameters, — fitted curve)  

 

 

Pseudo point receptance values calculated for forcing level of 200 N and 500 N 

covering the first three modes by using the modal parameters identified are 

presented in Figure 43 and Figure 44, respectively. The force is applied at the first 

mass to which the nonlinear element is connected. The responses obtained from 

the modal model with those calculated by harmonic balance method show a good 

match demonstrating the validity of the modal model and the robustness of the 

proposed method to experimental errors and noise. 
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Figure 43. Pseudo receptance of the system in Case Study 4 to a forcing level     

F1 = 200 N  
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Figure 44. Pseudo receptance of the system in Case Study 4 to a forcing level     

F1 = 500 N 
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4.1.5 Case Study 5 

The same system in Case Study 3 is examined with the nonlinear damping 

element inserted between the first and the second mass. As explained in section 

3.1.2, for this type of nonlinear systems harmonic vibrations tests are to be carried 

out such that the relative displacement amplitude between the coordinates at 

which the nonlinear element is connected is kept constant. Furthermore, 

measurements of a set of both point and transfer FRFs are required.   

For this system, FRFs are generated for relative displacement amplitudes evenly 

distributed between 1 cm and 5 cm. The relative displacement amplitude of 

concern is designated with Y12, standing for the relative displacement between the 

first and second coordinates. A number of FRFs are shown in Figure 45 and 

Figure 46 for a frequency range covering the last three modes.  
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Figure 45. Point FRFs generated at constant displacement amplitudes 
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Figure 46. Transfer FRFs generated at constant displacement amplitudes 

 

 

Modal parameters obtained from the identification of the point and transfer FRFs 

are presented in Figures 34 – 39. Figures 34 – 36 represent the modal parameters 

of the last three modes of the point FRFs while Figures 37 – 39 show the modal 

parameter variations of the same modes of the transfer FRFs. The obtained 

variations are used in the computation of the response of the system to different 

forcing levels. Pseudo point FRF of the system for forcing levels of 100N, 200N 

and 500 N applied on the first mass are shown in Figure 54.    
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Figure 47. Variation of the modal parameters of the third mode with respect to 

relative response amplitude, Y12.  (*  identified parameters, — fitted curve) 
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Figure 48. Variation of the modal parameters of the fourth mode with respect to 

relative response amplitude, Y12.  (*  identified parameters, — fitted curve) 
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Figure 49. Variation of the modal parameters of the fifth mode with respect to 

relative response amplitude, Y12.  (*  identified parameters, — fitted curve) 
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Figure 50. Variation of the modal parameters of the third mode with respect to 

relative response amplitude, Y12.  (*  identified parameters, — fitted curve) 
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Figure 51. Variation of the modal parameters of the fourth mode with respect to 

relative response amplitude, Y12.  (*  identified parameters, — fitted curve) 
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Figure 52. Variation of the modal parameters of the fifth mode with respect to 

relative response amplitude, Y12.  (*  identified parameters, — fitted curve) 
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Figure 53. Pseudo receptance of the system in Case Study 5 to forcing level,        

F1 = 100 N 
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Figure 54. Pseudo receptance of the system in Case Study 5 to forcing levels of  

F1 = 100 N, 200 N, 500 N  
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4.2 Coupling of Nonlinear Systems by Using Modal Model 

 

In this section, implementation of the proposed method in coupling analysis is 

given. In the following case studies, a nonlinear system is coupled with a linear 

system and the response of the coupled system is calculated using the modal 

model of the nonlinear system. Displacement controlled simulated tests are 

performed on the nonlinear system and the modal parameters are identified to 

construct the modal model. FRFs of the linear subsystem to be coupled with the 

nonlinear system are formed by using the system properties. In practical 

applications, FRFs of the linear system can be obtained by a single force 

controlled or response controlled test, since FRFs of linear systems are 

independent of the force or response level.   

 

4.2.1 Case Study 6 

 

In this case study, a three – DOF system with grounded cubic nonlinearity is 

rigidly coupled with a two – DOF linear system as shown in Figure 55.  

 

 

 
 

Figure 55. Nonlinear system to be rigidly coupled with a linear system.  

 
 
System parameters for the given discreet systems are as follows: 

1 2 3 4 1 kgm m m m= = = = , 5 2 kgm = , 

( )* *
1 2 1000 1 0.02  N/mk k i= = + , ( )* * *

3 4 5 10000 1 0.02  N/mk k k i= = = +  

 m1  m3  m5 
 

 m2  m4

k2
* k3

* k4
* k5

* k1
*+kNL 

x1 x2 x3 x4 x5 
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2
1NLk bx= , 7 310  N/mb =  

Displacement amplitude controlled simulated tests are generated for the nonlinear 

substructure and the results are used to calculate the response of the coupled 

system. 8 FRFs are theoretically generated in which the displacement amplitude, 

X1, is evenly distributed between 1 cm and 4.5 cm. Modal parameters obtained 

from the identification of these FRFs are presented in Figure 57 and Figure 58.  

As explained in section 3.2, FRFs of the linear subsystem to be coupled with the 

nonlinear system are also required in the analysis. In this case study, transfer and 

point FRFs of the linear system is obtained by matrix inversion and are shown in 

Figure 56. 
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Figure 56. Transfer and point FRFs of the linear subsystem in Case Study 6.  
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Figure 57. Variation of the modal parameters of the first mode with respect to 

response amplitude, X1.       (*  identified parameters, — fitted curve) 
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Figure 58. Variation of the modal parameters of the second mode with respect to 

response amplitude, X1.         (*  identified parameters, — fitted curve) 
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The pseudo receptance of the coupled system is computed by using the modal 

parameter variations of the nonlinear subsystem and the FRFs of the linear 

subsystem, as explained in section 3.2. The pseudo receptance is obtained around 

the first two resonances. Figure 59 shows the pseudo receptance obtained by 

using only 2 modes and compares it with the solution obtained by harmonic 

balance method using all 5 modes, for low to high frequency sweep. The 

corresponding response for decreasing frequency sweep is plotted in Figure 60, 

with the increasing frequency sweep solution.  
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Figure 59. Pseudo receptance of the coupled system in Case Study 6 for a forcing 

level, F1 = 2 N.   
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Figure 60. Pseudo receptance of the coupled system in Case Study 6 for a forcing 

level, F1 = 2 N.   

 

 

4.2.2 Case Study 7 

 

In this case study, a three – DOF viscously damped system with interconnected 

velocity squared damping nonlinearity is rigidly coupled with a 2 – DOF 

viscously damped, linear system as shown in Figure 61.  

 

 

 
 

Figure 61. A nonlinear system to be rigidly coupled with a linear system. 
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System parameters for the given discreet systems are as follows: 

1 2 3 4 1 kgm m m m= = = = , 5 2 kgm = , 

1 2 1000 N/mk k= = , 3 4 5 10000 N/mk k k= = =  

0.00003  Ns/m, 1,2,3,4,5i ic k i= =  

12 12NLc b y y= , 2 21 Ns /mb =  

In this case study, FRFs of the nonlinear system are generated for relative 

displacement amplitudes evenly distributed between 1 cm and 5 cm. Modal 

parameters obtained from the identification of the point and transfer FRFs are 

presented in Figures 60 – 65. Figures 60 – 62 represent the modal parameters of 

the point FRFs while Figures 63 – 65 show the modal parameter variations of the 

transfer FRFs. Transfer and point FRFs of the linear system is obtained by matrix 

inversion and are shown in Figure 62.  
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Figure 62. Point and transfer FRFs of the linear subsystem in Case Study 7.  
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Figure 63. Variation of the modal parameters of the first mode with respect to 

relative response amplitude, Y12.  (*  identified parameters, — fitted curve) 
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Figure 64. Variation of the modal parameters of the second mode with respect to 

relative response amplitude, Y12.  (*  identified parameters, — fitted curve) 
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Figure 65. Variation of the modal parameters of the third mode with respect to 

relative response amplitude, Y12.  (*  identified parameters, — fitted curve) 
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Figure 66. Variation of the modal parameters of the first mode with respect to 

relative response amplitude, Y12.  (*  identified parameters, — fitted curve) 
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Figure 67. Variation of the modal parameters of the second mode with respect to 

relative response amplitude, Y12.  (*  identified parameters, — fitted curve) 
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Figure 68. Variation of the modal parameters of the third mode with respect to 

relative response amplitude, Y12.  (*  identified parameters, — fitted curve) 
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The obtained parameter variations and FRFs of the linear subsystem are used in 

the computation of the response of the system to different forcing levels as 

explained in section 3.2. Pseudo point FRFs of the system for forcing levels of 1 

N, 2 N and 5 N applied on the first mass are shown in Figure 69. 
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Figure 69. Pseudo receptance of the system in Case Study 7 to different forcing 

levels.  

 

 

4.3 Structural Modification in a Nonlinear System by Using Modal Model 

 

In this section, implementation of the proposed method in structural modification 

analysis of nonlinear systems is given. In each of the following case studies, a 

nonlinear system is modified with linear elements and the response of the 

modified system is calculated by using the modal model of the original nonlinear 

system. The model is constructed with the modal parameters identified from the 

displacement controlled simulated FRFs of the original nonlinear system.  

 



 
 

82

4.3.1 Case Study 8 

 

In this case study, the nonlinear substructure in Case Study 6 is taken as the 

system to be modified. Modal parameters of the original nonlinear system are 

already given in Figure 57 and Figure 58. The system is modified as follows: 

 [ ]
1 0 0
0 0 0  kg
0 0 1

M
⎡ ⎤
⎢ ⎥Δ = ⎢ ⎥
⎢ ⎥⎣ ⎦

,[ ] 5

1 0.5 0
10 0.5 1 0.5  N/m

0 0.5 1
K

−⎡ ⎤
⎢ ⎥Δ = × − −⎢ ⎥
⎢ ⎥−⎣ ⎦

, 

[ ] [ ]0.02  N/mH KΔ = Δ  

The variations of modal parameters and the linear modification matrices are used 

in the iterative solution of the modified system as given in section 3.3. The pseudo 

point FRF of the modified system for forcing level of 100 N applied on the first 

mass and the point FRF of the original system is shown in Figure 70.  
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Figure 70. Pseudo receptance of the system in Case Study 8 to a forcing level     

F1 = 100N. 
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4.3.2 Case Study 9 

 
In this case study the three – DOF nonlinear system in Case Study 5 is modified 

as follows: 

[ ]
1 0 0
0 0 0  kg
0 0 1

M
⎡ ⎤
⎢ ⎥Δ = ⎢ ⎥
⎢ ⎥⎣ ⎦

,[ ] 5

1 0.5 0
10 0.5 1 0.5  N/m

0 0.5 1
K

−⎡ ⎤
⎢ ⎥Δ = × − −⎢ ⎥
⎢ ⎥−⎣ ⎦

,  

[ ] [ ]0.00003  Ns/mC KΔ = Δ  

Modal parameters of the original nonlinear system are already given in Figures 63 

- 68. The identified modal parameters of the original nonlinear system and the 

modification matrices are used in the computation of the response of the modified 

system. Pseudo point FRF of the system for forcing levels of 100 N, 200 N and 

500 N and the corresponding FRF of the original system are shown in Figure 71. 

The force is applied on the first mass of the modified system.  
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Figure 71. Response of the system in Case Study 9 to different forcing levels. 
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4.4 Experimental Case Study   

 

For the validation of the method developed in this study in application to a real 

system, the results of a nonlinear modal test conducted by Aykan in a recent study  

[32] are used. The setup is similar to the one previously used by Ferreira [29] and 

later by Elizalde Siller [23]. 

 

 

 
 

Figure 72. Experimental Setup 

 

 

The setup consists of a linear cantilever beam with its free end held between two 

thin identical beams which generate the cubic spring effect.  

Before the dynamic tests, a static test has been conducted in order to establish the 

stiffness characteristics of the setup. The results of this test are presented as a 
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force versus deflection curve shown in Figure 73. When the curve is examined, 

cubic stiffness characteristics can easily be observed in the system, which clearly 

show that nonlinearity is present in the setup. 
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Figure 73. Stiffness characteristics of the experimental setup 

 

 

The vibration tests are divided into two groups: constant force testing and 

constant displacement testing. In order to simplify the analyses and validate the 

model, only the driving point FRF’s were considered in the tests. The FRF results 

obtained for the constant force and constant displacement tests are shown in 

Figure 74 and Figure 75, respectively. 
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Figure 74. FRFs obtained from force controlled tests  

 

 

Driving Point FRF (Constant Displacement)

1.00E-04

1.00E-03

1.00E-02

1.00E-01

37.25 39.25 41.25 43.25 45.25 47.25 49.25

Frequency (Hz)

FR
F-

Lo
g 

sc
al

e 
(m

/N
)

0.25mm 0.5mm 0.75mm 1mm 1.5mm 1.75mm

 
 

Figure 75. FRFs obtained from displacement controlled tests 
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The FRFs obtained by displacement controlled tests were identified to construct 

the modal model of the system. 6 tests were performed with different 

displacement amplitudes. Modal parameters corresponding to each FRF are 

extracted to use as the model of the system and are shown in Table 3 and 

represented in Figure 76. A good agreement between the measured and 

regenerated FRFs with identified parameters is achieved. 

 

 

Table 3. Modal parameters obtained by identification of constant displacement 

FRFs 

Modal constant Displacement 
amplitude 

[mm] 

Natural 
frequency 

[rad/s] 

Damping ratio 
(viscous 
damping 
model) Magnitude Phase angle 

(degrees) 
0.25 269.11 0.00190 6.5061  2.5281 
0.50 269.48 0.00285 6.7166  1.7540 
0.75 270.14 0.00430 6.9004  1.7826 
1.00 271.43 0.00558 6.4468 -2.3939 
1.50 272.84 0.01043 6.8385  5.5669 
1.75 274.31 0.01243 6.6291 -2.8006 

 
 
 
A proper function is fitted to every set of parameters with respect to displacement 

amplitude. One can observe that the values for the magnitude modal constant do 

not follow a proper trend but fluctuate around a nominal value. On this reason, 

their mean value is taken as if it is the actual value instead of fitting a curve.  

The model is used to predict the response of the system at 4 different forcing 

levels. Results are compared with that of the force controlled tests measured at the 

same forcing levels. FRFs used for identification were measured for a frequency 

range limited to one resonance peak only. Synthesis of FRFs was also performed 

for this frequency range. 
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Figure 76. Variation of the modal parameters with respect to response amplitude.  

(*  identified parameters, — fitted curve) 

 

 

Frequency response of the system at forcing levels of 0.1 N, 0.2 N, 0.5 N and 1 N 

are calculated by using the modal model and presented in Figures 74 – 77. The 

consistency of the pseudo receptance values obtained from the modal model with 

constant force FRFs demonstrates the validity of the modal model. Differences 

are observed between the results around the frequency range through which 

constant displacement measurements are carried. It is believed it is due to force 

dropouts that were encountered during constant force tests at the resonance zone. 

Another possible reason is that the displacement amplitude controlled FRFs were 

carried out for a frequency range covering a single mode which prevents the 

inclusion of the effect of out of range modes on the identified modal parameters.   
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Figure 77. Pseudo receptance of the system to F = 0.1 N 
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Figure 78. Pseudo receptance of the system to F = 0.2 N 
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Figure 79. Pseudo receptance of the system to F = 0.5 N 
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Figure 80. Pseudo receptance of the system to F = 1 N 
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CHAPTER 5 
 

CONCLUSIONS 
 

 

In this thesis a new approach for modal identification and modal analysis of 

nonlinear systems is proposed. The modal model of a nonlinear system is 

obtained by identifying modal parameters from the linear FRFs obtained for 

constant displacement amplitude of the nonlinear coordinate (the coordinate 

where nonlinear element is connected), or for constant relative displacement 

amplitude between the nonlinear coordinates for interconnected nonlinear 

elements. Repeating the identification for different response amplitudes, identified 

modal parameters can be expressed as functions of the related response amplitude.  

Here, the fact that nonlinear systems exhibit linear behavior under certain 

conditions is used and this made the use of linear identification methods on 

nonlinear systems possible.  

It is demonstrated with case studies that the modal model can successfully be 

employed in the nonlinear response prediction of the system at any forcing level. 

The uses of a modal model in dynamic coupling of the identified nonlinear system 

with a linear system, and also in the dynamic modification analysis of a nonlinear 

system are also formulated and validated by case studies. In order to validate the 

results, comparison with the solutions of the same case study with harmonic 

balance method is used.  

In order to investigate the effect of actual conditions such as experimental errors 

and noise, two of the case studies are used with polluted data. Data pollution is 

performed by multiplication of FRF values with random numbers. It was observed 

that modal parameters are generally not affected considerably and the results still 

show considerable match with the solution of harmonic balance method.   
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It was also observed that the variation of modal parameters may be used to 

identify the characteristics of the nonlinearity in the structure. For instance, 

natural frequency values of a structure with stiffness nonlinearity spread around a 

moderate range whereas those of a structure with damping nonlinearity remain 

almost constant. In such cases where the parameters do not follow an apparent 

trend but deviate around a nominal value, mean value of the modal parameters is 

used instead of fitting a curve to the identified parameters. It is possible to use this 

observation as a tool to determine the type of the nonlinearity in a system.  

Therefore, for a further research it can be recommended to use the relations 

between the nonlinearity type and modal parameter variations in nonlinear modal 

identification. 

As the modal parameters are represented as functions of the response itself, an 

iterative solution is required in each analysis. Fixed point iteration is used as the 

numerical solution method, and a weighting coefficient is employed in order to 

provide convergence at frequencies near resonance, especially with systems 

involving jump phenomena.  

The agreement observed between the frequency responses obtained by using the 

method proposed in this study with those of the harmonic balance method 

demonstrated the validity of the modal model and the method suggested, provided 

that the basic assumption “harmonic excitation results in harmonic response at the 

same frequency” holds true, as both approaches base on this assumption. 

However, a slight mismatch is observed between the solutions of this study and 

those of HBM only around frequencies where jump occurs.  

In order to investigate the validity of the proposed method in real structures, data 

obtained form a nonlinear modal test conducted in a recent study [32] are also 

studied and the results are presented as an experimental case study. Solutions 

obtained by the proposed method are compared to the results of force controlled 

tests that are also presented in the same recent study for validity. The results are 

found consistent in a good extent.  
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The methods suggested are applicable to nonlinear systems where nonlinearity is 

localized and therefore can be modeled as a single element, either grounded or 

between any two coordinates. However, it is observed that the methods work 

more effectively for grounded nonlinear elements. Improvement of the solution 

with interconnected nonlinear elements is suggested as future work. Furthermore, 

feasibility of performing constant displacement amplitude vibration tests should 

also be investigated.  

For future work, comparison and validation of the results with time domain 

solutions can be performed. This can be useful in terms of investigating the 

mismatch between the solutions obtained with the proposed method and the 

harmonic balance method.  

Considering the proposed method is applied on small scale systems with local 

nonlinearity, implementation of the proposed method for large systems possessing 

nonlocal nonlinearity is also suggested as future work.   
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APPENDIX A 
 

HARMONIC INPUT DESCRIBING FUNCTIONS 
 

 

Mathematical expressions and the corresponding harmonic input describing 

functions for the nonlinearities considered in this work are listed below: 

- Cubic Stiffness: 

3n bx=  

23
4

bXν =  

- Velocity Squared Damping 

n bx x=  

28
3

b Xων
π

=  

- Piecewise Linear Stiffness 

1 ,n k x x δ= <  

( )1 2 2 ,n k k k x xδ δ= − + ≥  

1 ,k Xν δ= <  

( ) 2
1 2 1

2

2
sin 1 ,

k k
k X

X X X
δ δ δν δ

π
−

⎡ ⎤− ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎢ ⎥= + − + ≥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦
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APPENDIX B 

 



 
 

100



 
 

101



 
 

102



 
 

103



 
 

104



 
 

105



 
 

106



 
 

107



 
 

108



 
 

109



 
 

110



 
 

111

 


