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ABSTRACT 
 
 
 

APPROXIMATE ANALYSIS AND CONDITION ASSESMENT OF 
REINFORCED CONCRETE T-BEAM BRIDGES USING ARTIFICIAL 

NEURAL NETWORKS 
 
 
 
 

 
Dumlupınar, Taha 

     M.Sc., Department of Civil Engineering 

     Supervisor      : Assist. Prof. Dr. Oğuzhan Hasançebi 

 

July 2008, 135 pages 
 
 
 
 
 
In recent years, artificial neural networks (ANNs) have been employed for 

estimation and prediction purposes in many areas of civil/structural engineering. In 

this thesis, multilayered feedforward backpropagation algorithm is used for the 

approximate analysis and calibration of RC T-beam bridges and modeling of bridge 

ratings of these bridges. 

 

Currently bridges are analyzed using a standard FEM program. However, when a 

large population of bridges is concerned, such as the one considered in this project 

(Pennsylvania T-beam bridge population), it is  impractical to carry out FEM 

analysis of all bridges in the population due to the fact that development and 

analysis of every single bridge requires considerable time as well as effort. Rapid 

and acceptably approximate analysis of bridges seems to be possible using ANN 

approach. First part of the study describes the application of neural network (NN) 

systems in developing the relationships between bridge parameters and bridge 

responses. The NN models are trained using some training data that are obtained 
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from finite-element analyses and that contain bridge parameters as inputs and 

critical responses as outputs.  

 

In the second part, ANN systems are used for the calibration of the finite element 

model of a typical RC T-beam bridge -the Manoa Road Bridge from the 

Pennsylvania’s T-beam bridge population - based on field test data. Manual 

calibration of these models are extremely time consuming and laborious. Therefore, 

a neural network- based method is developed for easy and practical calibration of 

these models. The ANN model is trained using some training data that are obtained 

from finite-element analyses and that contain modal and displacement parameters as 

inputs and structural parameters as outputs. After the training is completed, field-

measured data set is fed into the trained ANN model. Then, FE model is updated 

with the predicted structural parameters from the ANN model. 

  

In the final part, Neural Networks (NNs) are used to model the bridge ratings of RC 

T-beam bridges based on bridge parameters. Bridge load ratings are calculated more 

accurately by taking into account the actual geometry and detailing of the T-beam 

bridges. Then, ANN solution is developed to easily compute bridge load ratings. 

 
 
 
 
Keywords: Artificial Neural Networks, T-Beam Bridges, Approximate Analysis, 

Calibration, Bridge Ratings. 
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ÖZ 
 
 
 

BETONARME T-KİRİŞ KÖPRÜLERİN YAPAY SİNİR AĞLARINI 
KULLANARAK YAKLAŞIK ANALİZİ VE DURUM TESPİTİ 

 
 
 
 

 
      Dumlupınar, Taha 

      Yüksek Lisans, İnşaat Mühendisliği Bölümü 

      Tez Yöneticisi      : Assist. Prof. Dr. Oğuzhan Hasançebi 

 

Temmuz 2008, 135 sayfa 
 
 
 
 
 
Son yıllarda, yapay sinir ağları (YSA) inşaat/yapı mühendisliğinde etkili tahminler 

yapmakta oldukça geniş bir alanda kullanılmıştır. Bu tezde de, çok katmanlı, ileri 

beslemeli, geri yayınım algoritmalı YSA mimarisi betonarme T-kiriş köprülerin 

yaklaşık analizinde, kalibrasyonunda ve bu köprülerin köprü reytinglerinin 

modellemesinde kullanılmıştır.  

 

Günümüzde sonlu eleman metodu köprülerin analizinde yaygınca kullanılan bir 

yöntemdir. Fakat bu çalışmada olduğu gibi birçok köprüden oluşan bir popülasyon 

düşünüldüğünde (Pennsylvania T-kiriş köprü popülasyonu) sonlu eleman yöntemini 

bütün köprülerin analizinde kullanmak aşırı derecede zaman ve zahmet alacağından 

pratik olmamaktadır. Buna rağmen hızlı ve doğru analiz yapmak yapay sinir 

ağlarıyla mümkün gibi görünmektedir. Bu çalışmanın ilk kısmında, yapay sinir 

ağları (YSA) kullanılarak köprü parametreleriyle köprü analiz sonuçları arasında bir 

ilişki bulunmaya çalışılmıştır. YSA modelleri girdi olarak köprü parametrelerinden 
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çıktı olarak da köprü analiz sonuçlarından oluşan ve sonlu eleman metoduyla 

üretilmiş eğitim setiyle eğitilmiştir. 

 

İkinci kısımda, Yapay Sinir Ağları (YSA) tipik betonarme T-kiriş köprülerin - 

Pennsylvania T-kiriş köprülerinden Manoa Road Köprüsünün- analitik modelinin 

arazi test sonuçlarını dayalı kalibrasyonunda kullanılmıştır. Bu modellerin 

kalibrasyonu fazlasıyla zaman alıcı ve zahmetlidir. Bu nedenle, bu modelleri kolay 

ve pratik bir şekilde kalibre etmek için YSA ya dayalı bir yöntem geliştirilmiştir. 

YSA Modeli girdi olarak modal ve yer değiştirme parametrelerinden çıktı olarak da 

yapısal parametrelerden oluşan ve sonlu eleman metoduyla üretilmiş eğitim setiyle 

eğitilmiştir. Eğitim bitikten sonra arazi test sonuçları Sinir Ağlarına (SA) 

sunulmuştur. Analitik model Sinir Ağlarının verdiği yapısal parametre tahminleriyle 

güncellenmiştir. 

 

Son kısımda betonarme T-kiriş köprü reytinglerinin yapay sinir ağları (YSA) 

kullanılarak köprü parametrelerine dayalı modellenmesi yapılmıştır. Köprü 

reytingleri köprünün gerçek geometrisini ve detaylarını hesaba katarak yeniden 

hesaplanmıştır. Sonra, sinir ağlarını kullanarak bu köprü reytingleri kolayca 

hesaplanması için bir model geliştirilmiştir. 

 

 
 
Anahtar Kelimeler: Yapay Sinir Ağları, T-Kiriş Köprüler, Yaklaşık Analiz, 

Kalibrasyon, Köprü Reytingleri. 
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CHAPTER 1 

 
 

INTRODUCTION 
 

 

 

Over the past years, computers have become an integral part of the day-to-day 

activities in engineering studies and they have been used in various applications to 

assist engineers in improving their works. Although computers are utilized to model 

a variety of engineering activities, the main focus of computer applications is still 

the areas in which a set of rules are established. The use of computer in the some 

areas of decision making process where there are no defined rules is very limited. In 

recent years, Artificial Neural Networks (ANN) has emerged as a promising 

candidate in modeling some of the human activities in many areas of science and 

engineering. Unlike expert systems, ANN systems do not need any rules. They are 

suitable particularly for problems that are too complex to be modeled and solved by 

classical mathematics and traditional procedures. One of the distinct characteristics 

of the ANN is its ability to learn and generalize from experience and examples to 

produce meaningful solutions to problems even if the input data contains error or is 

incomplete or even fuzzy. These characteristics of ANNs make them a promising 

tool for modeling some of the engineering problems (Rafiq et al., 2001). Their 

computing abilities have also been proven in the fields of civil/structural 

engineering (Adeli, 2001). In this thesis, some of the possible applications of ANN 

will be explored in conjunction with RC T-beam bridges. In this framework, the 

three objectives of the thesis are set as follows:  (i) to achieve acceptably 

approximate analysis of RC T-beam bridges using neural networks; (ii) to 

investigate calibration of RC T-beam bridges using neural networks; and (iii) to 

model the bridge load ratings of these bridges based on neural networks. 
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The thesis is organized in eight chapters. Chapter 1 presents general information on 

the purpose of the study. The scope and objective of subsequent chapters are briefly 

explained. In Chapter 2, previous applications of ANNs in the literature are 

reviewed in the fields of approximate structural analysis and structural 

identification, which are also the major concerns of the thesis. Chapter 3 introduces 

the fundamentals of Artificial Neural Networks (ANNs).  First, inspiration of 

Artificial Neural Networks from the biological neural networks is explained. Then, 

a popular network type, the feed-forward network, is introduced in detail and key 

points that are important for understanding of their implementations are 

emphasized. One of the most popular learning algorithms, i.e. the backpropagation 

algorithm, for feed-forward neural networks is presented in the final section of the 

chapter. In Chapter 4, development of FE model of a typical T-beam bridge of 

Pennsylvania’s bridge population is described. Firstly, general information on the 

bridge population is presented. Next, the finite element modeling of a typical T-

beam bridge is explained using a bridge (selected from the entire population) with 

average structural and geometrical parameters. 

 

Chapter 5 focuses on the approximate analysis of single span T-beam bridges in 

Pennsylvania using Neural Networks. Pennsylvania has the third largest reinforced 

concrete (RC) T-beam population with 2,440 T-beam bridges in the US and 1,899 

of which are single span. Especially, when a large population of bridges is 

concerned, a rapid and reliable estimate of actual response computations is essential 

and possible using ANN approach.  Available analysis methods and tools are 

insufficient to cope with large population of bridges. Currently, FEM analysis 

procedure is the most frequently used method in the analysis of bridges. However, it 

is impractical to carry out FEM analysis of all bridges in the population due to the 

fact that development and analysis of every single bridge requires considerable time 

as well as effort. Recent progress in neural computing technology has provided an 

ideal and reasonable method which enables to reliably predict actual response of a 

bridge with a trivial computational effort. In this chapter, the inherent structural 

behavior of T-beam bridges is modeled using neural networks. It is realized that the 

bridges in the Pennsylvania T-beam bridge population have a common set of 
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geometrical and structural parameters. Amongst them, the governing ones are 

identified and used as inputs to the networks to simulate the behavior of T-beam 

bridges. A group of bridge samples are randomly generated using different 

combinations of these parameters within the ranges of possible variations to ensure 

that the ANN model trained using these samples can predict, within an acceptable 

accuracy, the structural behavior exhibited by majority of the bridges within the 

population. In order to obtain the outputs of bridge samples, all bridges in the bridge 

set are modeled using a standard FEM program and analyzed for structural 

responses. The bridge data acquired are divided into three sets; the training set, the 

cross validation set and the test set. The training set is used to establish intrinsic 

relationships between the bridge parameters and responses. The cross validation set 

is used to avoid overfitting, which is the case of poor generalization. The test set is 

used to evaluate the performance of the network. Several network designs are 

examined to determine one with a reasonable performance. Once trained 

successfully, the network can confidently be used to predict accurate output values 

for new input data. The analysis results can be obtained from the trained neural 

network with a trivial computational time and effort and without a need to construct 

and analyze a new model for each parameter set.  

 

Chapter 6 discusses the calibration of the finite element model of the Manoa Road 

Bridge, a typical T-beam bridge from the Pennsylvania’s bridge population, based 

on field test data and neural networks. Calibration can be defined as the process of 

modifying the input parameters to a model until the output from the model matches 

an observed set of data. Manual calibration of T-beam bridge models are extremely 

time consuming and laborious. A neural network- based method is developed here 

for an efficient and practical calibration of these bridges. Artificial neural network 

(ANN) is trained to learn the pattern between the output and input data sets of an 

analytical model in reverse direction. The training samples consist of structural 

parameters to be updated and their corresponding modal and displacement 

parameters obtained from the FE analyses. Modal and displacement parameters are 

used as the input data to train the network. The outputs introduced in the training 

session are the structural parameters. After the training of the ANN model, the 
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model calibration procedure begins with feeding measured modal and displacement 

parameters (field-measured data set) into the trained ANN model. The outputs of 

the ANN model are the predicted structural parameters. These predicted structural 

parameters are then fed into the FE model to produce a set of calculated modal and 

displacement parameters. A comparison between the calculated and measured 

modal and displacement parameters is conducted. If these two sets of parameters 

differ significantly, then the ANN model is retrained. This procedure is repeated 

until the calculated and measured responses correlate well.  Preparing input and 

output data sets for such a neural network would take a considerable amount of 

time; nevertheless, once a neural network is successfully trained and a relationship 

between the inputs and outputs is established, the same system can be used 

efficiently and quickly for calibration of the analytical model any time in future, 

following the testing of actual bridge.  

 

Chapter 7 discusses the modeling of bridge load ratings of RC T-beam Bridges 

based on Artificial Neural Networks (ANNs). In the current load capacity rating 

practice, an individual beam is taken out as a free-body, idealized as simply-

supported, and the continuity of the bridge in the transverse direction is indirectly 

accounted for by means of axle-load distribution factors. It has been found that this 

approach significantly underestimates the contribution of deck slab to lateral load 

distribution for many bridge geometries. This contribution is properly simulated 

when a properly constructed, geometric replica 3D FE model is used for analysis. 

Hence, the load rating of the bridges obtained by using AASHTO and FEM-based 

analysis methods are different. In this chapter, bridge load ratings are calculated 

more accurately by taking into account the actual geometry and detailing of the T-

beam bridges. Then, Artificial Neural Network solution of bridge load ratings is 

obtained to easily compute the highest utilizable capacity of any T-beam bridge 

while still strictly conforming to the AASHTO standards and provisions. The bridge 

data acquired in the Chapter 5 is used to obtain the training set for the ANN 

systems. The analysis results of FE models are utilized to obtain the bridge ratings 

of these bridges. The training samples consist of the same bridge parameters 

discussed in Chapter 5 and their corresponding FEM based bridge ratings. The 
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training samples are used to establish intricate relationships between the bridge 

parameters and bridge ratings. Once the training is successfully completed, the 

developed ANN model can be used efficiently to retrieve the bridge ratings from 

another set of bridge parameters within the range of the training set. 

 

Finally, the conclusions of the study are given in Chapter 8. 
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CHAPTER 2 

 
 

LITERATURE SURVEY 
 

 

 

In this chapter, previous applications of ANN in structural engineering are 

overviewed. The first article reporting the use of neural networks in a 

civil/structural engineering application was published by Adeli and Yeh (1989). 

Since then, a large number of articles have been published on the topic, which is 

summarized in a review article by Adeli (2001). The chapter is organized in two 

subsequent sections as; approximate structural analysis studies and structural 

identification and model updating studies based on ANNs. 

 

2.1 Approximate Structural Analysis Studies 

 

In 1997, Cattan and Mohammadi (Cattan and Mohammadi, 1997) used artificial 

neural networks to investigate the relationship between the bridge rating and several 

bridge parameters. In this study, railroad bridges from the Chicago metropolitan 

area were used as database. A total of 405 rail bridges in the Chicago metropolitan 

area were selected from the entire population since these bridges had complete 

information for all the parameters. A statistical analysis of bridge parameters was 

conducted to determine the variability in each parameter and the representation of 

the entire bridge population. Based on statistical analysis, the common 12 bridge 

parameters, such as bridge type, substructure type, deck type, span length, etc. were 

selected to be used as inputs to the networks. Data set containing 405 rail bridges 

was divided into two sets: training set and test set. Training set contains 307 bridges 

and was used to map the relationship between bridge rating and bridge parameters. 

Test set contains 98 bridges and was used to evaluate the performance of the 

network. Several network designs were examined to arrive at one with a reasonable 
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performance. Finally, 45 nodes in input layer, two hidden layers with 45 nodes 

each, and 4 nodes in the output layer with the learning coefficient of 0.60 and the 

momentum coefficient 0.85 was arrived as the one having the best performance. 

The network was then used to predict ratings for several bridges outside the training 

and test data sets. The overall performance of the network is 73.47%. This study 

shows that neural network can be trained and used successfully in estimating ratings 

of a bridge population.  

 

Özkaya and Pakdemirli (2002) investigated the applicability of ANN systems in 

predicting the natural frequencies of suspension bridges based on common physical 

parameters of the bridges. In the study, parameters affecting the frequencies are 

determined as span length, moment of inertia of the bridge cross-section, initial 

horizontal component of cable tension, dead weight of the bridge per unit length of 

the span, cables’ cross-sectional area, modulus of elasticity of the bridge deck and 

the cables. The first three natural frequencies were calculated using Newton-

Raphson (N-R) method for different physical parameters to prepare data set for 

training of the network. In the network, these five physical parameters were used as 

inputs and the first three natural frequencies were predicted as outputs. The ANN 

architecture used is a 5:12:12:3 multi-layer, feed-forward and back-propagation 

architecture with momentum coefficient of 0.9 and learning rate of 0.7. A total of 

493 examples in the data set were used to train the network and error was 

minimized to beneath the tolerable level. An additional 15 test patterns were 

generated using N-R method to test the ANN. For the test patterns, the maximum 

error between the ANN results and N-R method results is less than 1.02%. The 

engineering importance of the study was demonstrated by predicting the frequencies 

for the test values with a considerable low error without spending much effort and 

time. 

 

Jenkins (1999) investigates the use of neural networks for the structural re-analysis 

of two-dimensional trusses. In the study, a simple two-layer configuration network 

is used. The inputs describe the structure, geometry, material properties, applied 

loads and supports, in the initial states. The output from the net will be the 
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displacements due to applied loads. The displacements at the outputs nodes are 

processed using the geometrical and material properties of the members to produce 

forces at the structural joints. A back-propagation algorithm is used to solve the 

structural equilibrium equations at the joints and then the member forces are 

computed. The network is then applied to the linear and non-linear analysis. The 

network is capable of carrying out the linear analysis and simple non-linear analysis 

to a desired degree of accuracy. Further work is recommended by the writer in 

application of the network to complex non-linear analysis. 

 

In 2002, Jenkins presents another study which is a neural network iterative method 

for structural reanalysis.  The network is a simple back-propagation neural network 

in which the weights under iterative updating are retained and updating resumed as 

each structural modification is made. The network has two layers, namely input and 

output layers. Inputs in the network are the applied loads at the joints. The outputs 

are the displacements at the joints. The joint displacements are used to calculate the 

forces at the joints. Considering the applied loads in the equilibrium, the joint forces 

should be zero for equilibrium. Computed forces represent error. A backpropagation 

is used to reduce the error by adjusting the weights. This iterative process is 

continued until the error is reduced to tolerable level. This method is applied to 

plane truss and space truss for illustration of reanalysis. Design change options such 

as the insertion of additional joints, insertion of new member, additional load, etc. 

are introduced into neural network based reanalysis.  Analysis results for different 

design states are presented in the paper. The writer concluded that “the software 

described is compact, easily portable, and suitable to take advantage of the 

continuous increase in the processing speed and memory capacity of the modern 

computer”. 

 

In 2000, Consolazio presented a technique for enhancing finite-element analysis 

equation solvers for particular problem domains, i.e., particular classes of structures 

such as highway bridges. In the technique, artificial neural networks are merged 

with a preconditioned conjugate gradient iterative equation-solving algorithm to 

seed the initial solution vector and to precondition the matrix system using 
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customizable and trainable neural networks. This technique is applied to the 

particular domain of flat-slab highway bridge analysis. Eighteen networks are 

trained using the load-displacement data from FE analysis to encode the load (Fz, 

Mx, My)-displacement (Tz, Rx, Ry) relationships for concrete flat-slab highway 

bridges. In the combined algorithm, neural networks are used to predict 

approximate displacements under at each iteration, while overall iterative 

preconditioned conjugate gradient process guides convergence to the exact solution. 

This study showed that combining the Neural networks with preconditioned 

conjugate gradient is very effective for accelerating the convergence of iterative 

methods. 

 

In 2005, Rogers developed the guidelines to create a neural network that can 

simulate the structural analysis in the optimization process to reduce the amount of 

time that an optimization process takes to converge to an optimum design. These 

guidelines were applied to optimize the shape of a beam to minimize the weight 

while satisfying the stress constraints. Several network designs were trained using a 

set of training sample consisting of the design variables as inputs and values of the 

constraints and objective function as outputs to arrive at one with a reasonable 

performance. Finally, combination of the selecting the training pairs based on 

hypercube method and 46 nodes in hidden layer was found to yield better 

approximation. Further studies on this network design show that it is possible to 

reduce the overall time required for convergence from 198 min (required by 

reference optimization process) to 159 min. The results indicate that by selecting 

the right network parameters and properly constructing and training the NN model, 

it is possible to reduce the amount of time it takes an optimization process to 

converge to an optimum design. 

 

C W Tang et al (2003) investigate the use of the artificial neural networks in 

predicting the confinement efficiency of concentrically loaded reinforced concrete 

(RC) columns with rectilinear transverse steel. For this purposes, a database of 55 

square columns was retrieved from existing literature. In the study, a multilayer-

functional-link neural network (MFLN) which is a modification of the standard 
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backpropagation neural network was used to estimate the maximum axial stress and 

strain of confined concrete. After a comprehensive study, six major variables - 

cylinder compressive strength of concrete,  area of concrete in the core,  volumetric 

ratio of transverse steel in concrete core, the distance between the laterally 

supported longitudinal bars, spacing of transverse steel, and  yield strength of 

transverse steel-  were discovered to be effective in capturing the underlying 

behavior of confined RC columns. In other words, the input layer of the neural 

network consists of six processing units representing these six variables, and the 

output layer includes two neurons representing the maximum axial stress and strain 

of confined concrete. Of 55 examples, 45 were used for training of the 6-14-2 

architecture network with various network parameters and the rest were used for 

testing to find the best network. Results were compared with the several analytical 

models such as Park et al. Model, Yong et al. Model, Sheikh and Uzumeri Model. 

The overall predictions from the neural network MFLN model were found to be 

better than analytical models. 

 

Oreta and Kawashima (2003) explore the feasibility of using artificial neural 

networks (ANNs) to predict the confined compressive strength and corresponding 

strain of circular reinforced columns. A total of 38 examples for network training 

were obtained from the past experiments. In the network, seven variables - the 

unconfined compressive strength, core diameter, column height, and yield strength 

of lateral reinforcement, volumetric ratio of lateral reinforcement, tie spacing, and 

longitudinal steel ratio - were used as input parameters. Of 38 examples, twenty-

nine data pairs were used as training data and the remaining nine data pairs were 

used as test data. After examining several architectures, 7-4-2 model with sigmoid 

transfer function was found to have better performance. The results were compared 

with the analytical models. There is an average difference of between 1% and 3% 

for the confined compressive strength and corresponding strain of circular concrete 

columns.  It was seen that only with a sufficient number of data, it is still possible to 

develop ANNs which can completely model the complex interactions among the 

multiple variables. 
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2.2 Structural Identification and Model Updating Studies  

 

C. C. Chang et al (2000) proposed a model updating methodology based on an 

adaptive neural network (NN) model. This method was applied to the structure 

model which is a scaled version of the Humen suspension bridge in China. Modal 

properties such as natural frequencies and mode shapes were used as inputs to a 

neural network model to predict the structural parameters as outputs. Structural 

parameters are the parameters such as the modulus of elasticity, the mass density, 

the cross sectional area, etc. that significantly affect the modal parameters of the 

structure. The neural network model has feedforward architecture. In this study, 16 

nodes (first eight natural frequencies and corresponding mode shapes) in the input 

layer, 39 and 16 nodes in the first and second hidden layer respectively and 8 nodes 

(eight structural parameters) in the output layer were used with a modified 

backpropagation training algorithm with a dynamically adjusted learning rate and a 

jump factor to improve the convergence performance of the network training. 

Network was trained using 33 examples obtained from the FE analysis and first 

estimation of the structural parameters is obtained by feeding the modal parameters 

into trained NN model. The first predicted structural parameters are then fed into FE 

model for the calculation of modal parameters. If the difference between the 

measured and predicted modal parameters does not satisfy the given criterion, 

training samples are adjusted and the process is repeated. Retraining procedure is 

repeated until a set of satisfactory result is obtained. This study showed that it is 

possible to reduce the difference between the measured and the predicted 

frequencies from a maximum of 17% to 7% for the first eight vertical modes. 

 

Chen (2005) proposed a neural network-based method for determining the dynamic 

characteristic parameters of structures from field measurement data. Structural 

responses were used to train an ANN to determine the frequencies, damping ratios 

and modal shapes. The architecture of proposed ANN model is single hidden layer 

with 16 nodes. In the model, n (lags in the output) = 2 and m (lags in the input) = 8. 

The technique was employed to determine the dynamic characteristics of two 

bridges. First one is the arch pylon of a cable-stayed bridge. In this bridge, ANN 
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was trained using the Randomdec signatures to identify the dynamic characteristics 

of the arch pylon such as the natural frequencies, modal damping ratios and modal 

shapes of first five modes. The results are reasonably consistent with the results of 

the finite element analysis. Second bridge is a three-span highway bridge. In the 

bridge, ANN was trained using the velocity responses to identify the natural 

frequencies, modal damping ratios and modal shapes of six modes in transverse 

direction. The results show a very good agreement with ambient vibration test 

results. 

 

Barai and Pandey (1995) presented vibration signature analysis of steel bridge 

structures based on artificial neural networks (ANN) for the purpose of damage 

identification. This strategy was applied to a typical structure idealized as a simply 

supported steel truss bridge with a pinned joint. In order to generate a structural 

response, a moving load was simulated to travel on the bridge structure and the 

vibration signatures at various nodes of the bridge structure were obtained for 

various position of the load.  Vertical displacements at several nodes at a certain 

time interval were used as inputs to the network and structural identification 

parameters such as cross-sectional area of the members representing the stiffness in 

damage state formed the outputs of the network. A total of 16 examples were 

generated using FEM program to train the network and additional five examples 

were generated to test the network. After an extensive study on number of hidden 

layer , number of hidden units per layer, learning parameter, momentum parameter 

and error tolerance, 69-(21-21)-21 architecture was found to have better 

performance with learning parameters of 0.9 , momentum parameters of 0.7 and  

error tolerance of 0.01. Based on this architecture, the average percent error in the 

identification of stiffness of members was found to be less than 4%.  This study 

shows that ANN has great potential in damage identification. 

 

In 2000, Yun and Bahng studied substructure identification using neural networks. 

In this study, neural network is used to estimate the stiffness parameters of a 

complex structural system using the natural frequencies and mode shapes as inputs 

to the network. For the identification of a structure, the structure is subdivided into 
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several substructures to reduce the size of the system to concentrate the 

identification at critical locations of the structure. Then, modal data on the 

substructure of interest and corresponding submatrix scaling factors (SSF) are 

obtained to train the network. The first four modes are used as input patterns to the 

neural networks and the corresponding SSFs are estimated as output. Finally, 

trained networks are tested using the testing patterns to measure the generalization 

performance of the neural networks. The proposed neural network-based method 

was applied to a two-span truss and a multi-storey frame. For two examples, the 

average relative estimation errors for testing data set were found to be in the range 

of 9±15%, which shows the applicability of the present method for the 

identification of large structural systems. 

 

Fang et al. (2005) presented a structural damage detection method based on neural 

network with learning rate improvement. In the study, frequency response functions 

(FRFs) are used as input data to the back-propagation neural network to estimate 

the location and severity of damage as the outputs. In order to increase the training 

effectiveness, efficiency and robustness without increasing the algorithm 

complexity, a tunable steepest descent algorithm (TSD) was used in determining an 

optimal learning rate. The frequency response functions (FRFs) of the intact and the 

damaged state are directly used as input data to the TSD based neural network. 

Structural damage is designated as stiffness loss in one or multiple elements and the 

network outputs are designed as the relative stiffness ratio, that is, the ratio of the 

stiffness of the damaged structure with respect to the stiffness at the intact state. 

This method was applied to a cantilevered beam. In the application, the beam is 

equally divided into 20 elements and the elements are numbered in sequence.  

Structural damage causes stiffness loss in one or multiple elements. The natural 

frequencies and modal shapes of the intact and damaged structures were recorded 

and a total of 30 numerical stiffness loss cases were obtained to train the network. A 

three-layer feedforward network with 78 input nodes, 40 hidden nodes, and 5 output 

nodes was used in training process. Then, the trained network was tested using 4 

unseen cases which gave maximum 17.7% error which is very high accuracy in 



   

14 
 

predicting damage location and severity. This study has showed that neural network 

can assess damage conditions successfully. 
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CHAPTER 3 

 
 

ARTIFICIAL NEURAL NETWORKS 
 

 

 

3.1 General 

 

Artificial Intelligence (AI) is a very versatile and potential area in the field of 

computing technology. It enables computer users in various fields to solve problems 

which cannot be formulated using algorithmic approaches and which normally 

requires human intelligence and expertise. Artificial Neural Networks (ANNs) 

which is one of the best known manifestations of AI has today gained immense 

credibility and acceptance in many professional fields (Fausett, 1994). 

 

An Artificial Neural Network (ANN) is an information processing paradigm that is 

inspired by the way biological nervous systems process information. The key 

element of this paradigm is the novel structure of the information processing 

system. It is composed of a large number of highly interconnected processing 

elements (neurons) working in unison to solve specific problems. ANNs, like 

people, learn by example. An ANN is configured for a specific application, such as 

pattern recognition or data classification, through a learning process. Learning in 

biological systems involves adjustments to the synaptic connections that exist 

between the neurons. This is true of ANNs as well. 

 

Biologically inspired methods of computing are the major advancement in the 

computing industry. Even simple animal brains are capable of functions that are 

currently impossible for computers. While computers do rote things well, like 

keeping ledgers or performing complex math, they have trouble recognizing even 

simple patterns much less generalizing those patterns of the past into actions of the 
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future (Anderson and McNeill, 1992). What makes such a difference is neither due 

to the processing ability of the computers nor due to their processing speed. Today’s 

processors are much complicated and have a speed 106 times faster than neurons. 

The difference is mainly because of the structural and operational trend. While the 

instructions are executed sequentially in a complicated and fast processor in a 

conventional computer, the brain is a massively parallel interconnection of 

relatively simple and slow processing elements (Halıcı, 2004). 

 

3.2 From Biological to Artificial Neuron Model 

 

3.2.1 Biological Neuron 

 

Neurons are the basic computational unit in the nerve system. It is estimated that 

there are  1,3x1010 neurons in the human central nerve system and about 1x1010 of 

them takes place in the brain. The power dissipation due to firing of neurons is 

estimated to be in the order of 10 watts. When asleep, about 5x107 nerve impulses 

per second are being relayed back and forth between the brain and other parts of the 

body and this rate is increased significantly when awake (Fischer, 1987). 

 

 

 

Figure 3.1 Typical Neuron (Halıcı, 2004) 

 

A typical neuron is shown in Figure 3.1. Most of the neural computation occurs in 

the cell body (soma of the neuron) which includes the neuron’s nucleus. The signals 

generated in soma are transmitted to other neurons through an extension on the cell 

body called axon or nerve fibres. Dendrites are another kind of extensions around 
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the cell body like bushy three. They are responsible from receiving the incoming 

signals generated by other neurons. The axon is separated into several branches and 

at the very end the axon enlarges and forms terminal buttons. Terminal buttons are 

placed in special structures called the synapses which are the junctions transmitting 

signals from one neuron to another. In terminal buttons, the synaptic vesicles which 

hold several thousand molecules of chemical transmitters take place. When a nerve 

impulse arrives at the synapse, some of these chemical transmitters are discharged 

into synaptic cleft. Synaptic cleft is the narrow gap between the terminal button of 

the neuron transmitting the signal and the membrane of the neuron receiving it. The 

membrane of the post-synaptic cell gathers the chemical transmitters, which cause 

either decrease or increase in the efficiency of the local sodium and potassium 

pumps depending on the type of the chemicals released into the synaptic cleft. The 

synapses, whose activation decreasing the efficiency of the pumps cause 

depolarization of the resting potential. On the other hand, the synapses increasing 

the efficiency of pumps results in hyper-polarization. The first kind of synapses 

which encourage depolarization is called excitatory and the others which discourage 

it are called inhibitory synapses. If the decrease in the polarization is adequate to 

exceed a threshold, then the post-synaptic neuron fires (Halıcı, 2004). 

 

3.2.2 Artificial Neuron Model 
 

As mentioned in the previous section, the transmission of a signal from one neuron 

to another through synapses is a complex chemical process in which specific 

transmitter substances are released from the sending side of the junction. The effect 

is to raise or lower the electrical potential inside the body of the receiving cell. If 

this graded potential reaches a threshold, the neuron fires. It is this characteristic 

that the artificial neuron model proposed by McCulloch and Pitts, (1943) attempt to 

reproduce. The neuron model shown in Figure 3.2 is the one that is widely used in 

artificial neural networks with some minor modifications on it. 
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Figure 3.2 Artificial Neuron 

 

 

The artificial neuron given in this figure has � input, denoted as ��, �	, … ��. Each 

line connecting these inputs to the neuron is assigned a weight, which is denoted as ��, �	 , … ��  respectively. Weights in the artificial model correspond to the synaptic 

connections in biological neurons. The threshold in artificial neuron is usually 

represented by � and the activation corresponding to the graded potential is given 

by the formula: 

 


 = �� ����
�

��� � + �                                                                             (3.1) 

 
 
The inputs and the weights are real values. A negative value for a weight indicates 

an inhibitory connection while a positive value indicates an excitatory one. 

Although in biological neurons, � has a negative value, it may be assigned a 

positive value in artificial neuron models. If � is positive, it is usually referred as 

bias. For its mathematical convenience we will use (+) sign in the activation 

formula. Sometimes, the threshold is combined for simplicity into the summation 

part by assuming an imaginary input �� = +1 and a connection weight �� = �. 

Hence the activation formula becomes: 

 


 = �� ����
�

��� �                                                                                    (3.2) 
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The output value of the neuron is a function of its activation in an analogy to the 

firing frequency of the biological neurons: 

 � = �(
)                                                                                                  (3.3) 
 
 
Furthermore the vector notation 
 
 
 = �� + �                                                                                         (3.4) 
 

is useful for expressing the activation for a neuron. Here, the "#$  element of the 

input vector u is �� and the "#$  element of the weight vector of w is �� . Both of 

these vectors are of size �. Notice that, wTu is the inner product of the vectors w 

and u, resulting in a scalar value. The inner product is an operation defined on equal 

sized vectors. In the case these vectors have unit length, the inner product is a 

measure of similarity of these vectors.  

 

Originally, the neuron output function, f(a), in McCulloch-Pitts model was 

proposed as threshold function, however, sigmoid, hyperbolic tangent, and linear 

functions formulated in Equations 3.5-3.7  are also widely used output functions. 

These functions are graphically represented in Figure 3.3.  

 

�(
) = %&'(
) = 11 + exp(−a)                                                       (3.5) 

 
 �(
) = .
/ℎ(
) = exp(a) − exp(−a)exp(a) + exp(−a)                                            (3.6) 

 
 �(
) = 2�3456/(
) = 
                                                                  (3.7) 

 

 
where; sgm(⋅) is sigmoid function, tanh(⋅) is hyperbolic tangent function (Morshed 

and Kaluarachchi, 1998), and purelin(⋅) is linear function. 
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Figure 3.3 Transfer Functions of Artificial Neurons (Rafiq, 2001)  

 

 

3.3 Network Structure 
 

3.3.1 Network of Neurons  
 

Since a single artificial neuron is not able to implement some boolean operations, 

the problem is overcome by connecting the outputs of some neurons as input to the 

others, so constituting a neural network. Supposing that many artificial neurons 

introduced in Section 3.2.2 are connected to form a network, there appears several 

neurons in the system. Hence, indices are assigned to the neurons to discriminate 

them. Then, to express the activation 6#$ neuron, the above formulas are modified as 

follows: 

 


8 = �� ��8 ��
�

��� � + �8                                                                           (3.8) 

 
 
where ��  may be either the output of a neuron determined as 
 



   

21 
 

�� = ��:
�;                                                                                              (3.9) 

 
 
or an external input determined as: 
 
 �� = ��                                                                                                    (3.10) 

 

In some applications the threshold value �8  is determined by the external inputs. 

Due to the equation (3.8) sometimes it may be convenient to think that all the inputs 

are connected to the network only through the threshold of some special neurons 

called the input neurons. They are just conveying the input value connected to their 

threshold as �� = �� to their output �� with a linear output transfer function ��(
) = 
. 

 

For a neural network a state vector x can be defined in which the 6#$ component is 

the output of 6#$ neuron, that is �8. Furthermore a weight matrix W can be defined, 

in which the component  ��8 is the weight of the connection from neuron " to 

neuron 6. Therefore the system can be represented as: 

 

 > = ?(@�> + θ)                                                                                 (3.11) 
 
 

Here �  is the vector whose 6#$ component is �8 and f is used to denote the vector 

function such that the function �8 is applied at the 6#$ component of the vector. 

 

3.3.2 Network Architectures 

 

In the previous sections, we discussed the properties of the basic processing unit in 

an artificial neural network. This section focuses on the pattern of connections 

between the units and the propagation of data. There are two well-known network 
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architectures, namely feed-forward networks and recurrent networks, which mainly 

differ from each other in terms of pattern of connections.  

 

 

 
 

 
Figure 3.4 a) Layered Feedforward Neural Network b) Nonlayered Recurrent 

Neural Network 

 
 
 

• Feed-forward Networks (Figure 3.4 (a)) allows the data to travel one way 

only; from input to output. Data flow is strictly feedforward. The data 

processing can extend over multiple (layers of) units, but there is no 

feedback connections i.e. connections extending from outputs of units to 

inputs of units in the same layer or previous layers (Kröse and Smagt, 1996). 

 

• Recurrent Networks (Figure 3.4 (b)) allows the data to travel in both 

directions. Contrary to feed-forward networks, they contain feedback 

connections and the dynamical properties of the network are important. In 

some cases, the activation values of the units undergo a relaxation process 

during which the network evolves to a stable state where these activations 

do not change anymore. In other applications, the change of the activation 

values of the output neurons is significant, such that the dynamical behavior 

constitutes the output of the network (Pearlmutter, 1990). 
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3.4 Feed-forward Neural Network 
 

The network consists of several layers of neurons (Figure 3.5). The input vector 

distributes the inputs to the input layer. There is no processing in input layer; rather 

it can be conceived as a sensory layer, where each neuron receives a sole 

component of the input vector U. The last layer is the output layer which outputs the 

processed data. The output of each neuron in this layer corresponds to a component 

of the output vector X. The layers between the input and output ones are referred to 

as hidden layers. Hidden layer(s) may have any number of neurons; however they 

should be chosen scrupulously to achieve some special effects in some cases. 

 

 

 

 
Figure 3.5 Single Hidden Layer Feedforward Neural Networks (Pandey and Barai, 

1993) 

 

 

Shown in Figure 3.5 is a straight feedforward network where each neuron in a layer 

is connected to all the neurons of the previous and next layers by weighted 
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connections. Except for the first sensory layer, the outputs of all neurons from the 

previous layer are received as an input to each neuron.  Each neuron performs a 

nonlinear transformation of the weighted sum of the incoming inputs to produce the 

output of the neuron which is given to other neurons or outside the network.   

 

3.4.1 ANN Definitions and Concepts 

 
The training process in the multilayer feedforward networks involves presenting to 

the network a set of training data (examples) consisting of a selected number of 

known input and output pairs. During training the system adjusts the weights of the 

internal connections to minimize errors between the network output and target 

output. However, it is not always advantageous to continue training until the errors 

reach a minimum level. This situation is referred to ‘overfitting’ in the 

nomenclature of ANN, where the network learns the ‘noise’ presented in the 

training data and not the required general pattern. When this happens, the network 

performs very well over the data set used for training, but shows poor predictive 

capabilities when supplied with data other than the training patterns. This case can 

be thought as “memorization” rather than “learning”. One of the simplest and most 

widely used means of avoiding overfitting is to divide the training data into two 

sets: a training set and a validation set. Training set is used for computing the error 

gradient and updating the network weights and biases, and the validation set is used 

at some interval for calculation of error. The error on the validation set is monitored 

during the training process. The validation error will normally decrease during the 

initial phase of training, as does the training set error. However, when the network 

begins to overfit the data, the error on the validation set will typically begin to rise. 

The network starts memorizing the training patterns. When the validation error 

increases for a specified number of iterations, the training is stopped, and the 

weights and biases at the minimum of the validation error are returned. Schematic 

learning curves showing error on the training and validation sets are shown in 

Figure 3.6. To avoid overfitting, it is necessary to stop the training at time t, where 

performance on the validation set is optimal. 
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Figure 3.6 The learning error and the validation error as a function of the time   
 

 

After the training is completed, usually, the network error is minimized. The 

network output shows similarities with the target output. However, a set of unseen 

patterns, test set, must be selected and the network should be tested using these 

patterns to make sure that the network training has been satisfactorily completed 

and the network is capable of generalization (Rafiq, 2001). 

 

Two modes of training are present in neural network training: supervised and 

unsupervised learning. 

 

In supervised learning, there is an external teacher, a training set of data or an 

observer who grades the performance, to control the learning and incorporate global 

information. Training requires examples whose target output is known. Therefore, 

we must have a training set for which we already know ‘the answer’ to our 

questions to the network. While learning, weights are adjusted according to the 

input/output samples. Examples of supervised learning algorithms are the least 

mean square (LMS) algorithm and its generalization, known as backpropagation 

algorithm, and radial basis function network. (Fausett, 1994).  
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Unsupervised learning is sometimes referred to as self-organizing, i.e. learning to 

classify without being taught. There is no external teacher. Therefore, the system 

must organize itself by external criteria and local information designed into the 

network. Unsupervised learning involves no target values, only the input samples 

are available and the network classifies the input patterns into different groups. 

Kohonen network is an example of unsupervised learning (Konar, 1999). 

 

Initialization is required for the weights of the neural network. Before training, the 

network weights are initialized to small random values. The random values are 

usually drawn from a uniform distribution over the range [-r,r] (usually in the range 

of -1 to +1). Selection of initial weights influences whether the network reaches a 

global (or only a local) minimum of the error and how quickly it converges.  

 

Presenting the entire set of training patterns to the network is called an epoch. The 

number of ‘epochs’, number of times that the whole set of patterns is presented to 

the network, affects the performance of the network. This number depends on many 

factors such as number of training data, number of hidden layers, number of 

neurons in hidden layers and number of dependent output parameters. 

 

Training a NN involves gradual reduction of the error between NN output and the 

target output. Generally, there are two different modes of training NN, namely 

batch mode and pattern mode. In a batch mode, when an epoch is completed a 

single average error is calculated and the weights in the network are adjusted 

according to that error. In a pattern mode, the error is calculated after each pattern is 

presented to the network, and network weights are adjusted. Choosing between the 

two modes is generally problem specific.  

 

Data scaling is another essential step for network training. For example, upper and 

lower limits of output from a sigmoid transfer function are generally 1 and 0 

respectively. Scaling of the inputs to the range [0, +1] greatly improves the learning 

speed, as these values fall in the region of the sigmoid transfer function where the 

output is most sensitive to variations of the input values (Figure 3.3). It is therefore 
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recommended to normalize the input and output data before presenting them to the 

network. 

 

Choosing a topology for the network is a difficult task. If the number of hidden 

units is too small, than the network may not be sufficient to develop the required 

internal representation of the problem and therefore may not be able to perform the 

necessary recognition task. On the other hand if the number of hidden unit is too 

large, then the network can overfit the data. The appropriate selection of layers and 

nodes is problem dependent and the optimum layout can be arrived by trial and 

error approach. 

 

3.4.2 Learning in Feedforward Neural Networks  
 

Although the method of storing and recalling information in brain is not fully 

understood, experimental research has enabled some understanding of how neurons 

appear to gradually modify their characteristics as a result of exposure to particular 

stimuli. The most obvious changes have been observed to occur in the electrical and 

chemical properties of the synaptic junctions. For example the quantity of chemical 

transmitter released into the synaptic cleft is increased or reduced, or the response 

of the postsynaptic neuron to receive transmitter molecules is altered. The overall 

effect is to modify the significance of nerve impulses reaching that synaptic 

junction on determining whether the accumulated inputs to post-synaptic neuron 

will exceed the threshold value and cause it to fire. Thus learning appears to 

effectively modify the weightings of the synaptic connections that exist between the 

neurons. 

 
A single-layer network has severe restrictions, and the class of tasks that can be 

accomplished using this network is very limited (Kröse and Smagt, 1996). A multi 

layer feed-forward network can overcome many restrictions, but did not present a 

solution to the problem of how to adjust the weights from input to hidden (Minsky 

and Papert, 1969). The tool that was missing in those early days of multilayer 

feedforward networks was what we now call backpropagation learning. The central 
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idea behind this solution is that the errors for the units of the hidden layer are 

determined by back-propagating the errors of the units of the output layer (Kröse 

and Smagt, 1996). 

 

Although usage of the term backpropagation appears to have evolved in 1985, the 

basic idea of back-propagation was first described by Werbos in his Ph.D. Thesis 

(Werbos, 1974), in the context of a more general network. It was rediscovered by 

Rumelhart et al.  (1986), and popularized through the publication of the seminal 

book entitled “Parallel and Distributed Processing” by Rumelhart and McClelland 

(1986). Parker (1985) derived a similar generalization of the algorithm 

independently. A roughly similar learning algorithm was also presented by LeCun 

(1985). 

 

3.4.3 The Backpropagation Algorithm 
 

Back propagation neural networks are powerful tools for searching regularities, 

forecasting, and qualitative analysis. They are called back propagation networks 

because of the learning algorithm they use, in which an error moves from output 

layer to the input one, i.e. in the direction opposite to that of signal spreading during 

the normal network operation. 
 
 
Backpropagation process is conducted by supervised learning because the output of 

the system delivered is compared to the exact values. In backpropagation algorithm 

there are two main phases. The first phase is a forward pass, which is also called as 

activation phase. In that phase, inputs are processed to reach the output layer 

through the network. After the error is computed, a second phase starts backward 

through the network, which is also called as error backpropagation.  

 

Back-propagation can also be considered as a generalization of the delta rule for 

multi layer networks. The derivation of the generalized delta rule is included in the 

Appendix A. Based on the network shown in Figure 3.5, the main steps involved for 

implementing the algorithm are given as follows (Pandey and Barai, 1993). 
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Step 1. Select a number of input nodes (/), output nodes (2) and hidden nodes (') 

and first training example (�8) . 
 

BC8 D =
EFG
FH���	�I⋮�KLFM

FN                                                                                         (3.12) 

 

Step 2. Initialize the weights using random number generator in the range               

of -0,5 to 0,5 

OP�8Q =
RSS
ST ��� ��	 ��I ⋯ ��K�	� �		 �	I ⋯ �	K�I� �I	 �II ⋯ �IK⋮ ⋮ ⋮ ⋱ ⋮�W� �W	 �WI ⋯ �WKXYY

YZ                                                   (3.13) 

Step 3. Compute the value of  [
�\  for the hidden nodes [see eqn (A1.1)] 

[
�\ =
EFG
FH 
�
	
I⋮
WLFM

FN = OP�8QBC8D                                                                  (3.14) 

Step 4. Calculate the activation value [��\ for the hidden nodes [eqn (A1.2)]. Here 

the sigmoid function has been used. The parameter �� is to shift the activation 

function to the left and right along the horizontal axis depending upon its positive or 

negative values, respectively. Similarly the �^  is used to modify the shape of the 

sigmoid. 
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[��\ =
EFG
FH ���	�I⋮�WLFM

FN =
EFG
FH���	�I⋮�WLFM

FN
_
à

EFG
FH 
�
	
I⋮
WLFM

FN
b
cd =
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FH ��(
�)�	(
	)�I(
I)⋮�W(
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FN =
EFG
FH 1/(1 + 4f(ghijh)/jk)1/(1 + 4f(glijl)/jk)1/(1 + 4f(gmijm)/jk)⋮1/(1 + 4f(gnijn)/jk)LFM

FN   3.15 

 

Step 5. Calculate the value of  B
oD  for the output node 

B
oD =
EFG
FH
�
	
I⋮
pLFM

FN = OPo�Q[��\                                                                   (3.16) 

Step 6. Calculate the activation value  B�oD for the output nodes 

B�oD =
EFG
FH���	�I⋮�pLFM

FN =
EFG
FH���	�I⋮�pLFM

FN
_
à

EFG
FH
�
	
I⋮
pLFM

FN
b
cd =

EFG
FH��(
�)�	(
	)�I(
I)⋮�p:
p;LFM

FN =
EFG
FH1/(1 + 4f(ghijh)/jk)1/(1 + 4f(glijl)/jk)1/(1 + 4f(gmijm)/jk)⋮1/(1 + 4f(gqijq)/jk )LFM

FN    (3.17) 

Step 7. Calculate the O∆Po�Q [eqn (A1.24)] 

O∆Po�Q = �B.o − �oDB�oD[��\s + �O∆pPo�Q                                   (3.18) 

   � (learning parameter) and � (momentum parameter) are usually selected from 

experience. 

. = target output and  ∆pP = previous weight changes 
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Step 8. Compute the new values of weights between the hidden and output layers 

OPo�Q = OPo�Q + O∆Po�Q                                                                    (3.19) 

Step 9. Calculate the O∆P�8Q for input to hidden weights 

O∆P�8Q =  �[��\B.o − �oDB�oD ∗ OPo�QsBC8 Ds + �O∆pP�8Q                     (3.20) 

Step 10. Calculate the new values of the weights between input and hidden layer 

OP�8Q = OP�8Q + O∆P�8Q                                                                        (3.21) 

The algorithm continues for all set until the average system error (ASE) [eqn 

(A1.7)] between the target output and computed output is close to the tolerance 

specified. 
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CHAPTER 4 

 
 

ANALYTICAL MODELING OF A TYPICAL T-BEAM BRIDGE 
 

 

 

4.1 Pennsylvania’s T- Beam Bridge Population 
 

The total T-beam bridge population in the US is 38,170 based on the NBI (2001). 

With 2,440 T-beam bridges, Pennsylvania has the third largest reinforced concrete 

(RC) T-beam population after California and Kentucky. However, Pennsylvania has 

the greatest number of structurally deficient and functionally obsolete T-beam 

bridges in the US (NBI, 2001). The total number of single span T-beam bridges in 

PA is 1,899 and approximately 60% of this population is older than 60 years, with a 

maximum age of 101 years. Most of RC T-beam bridges were constructed mostly 

between 1900’s and 1960’s by using a standard set of design drawings (Figure 4.1). 

Therefore, these T-beam bridges share geometry and design details, materials and 

similar cast-in-place construction. 
 
 
The Swan Road Bridge and Manoa Road Bridge shown in Figures 4.2 and 4.3 are 

the two of these bridges, and are used for numerical studies in this thesis. Close-up 

photographs in Figures 4.2 and 4.3 show the conditions and any damage at critical 

areas of these bridges.  

 

Swan Road Bridge with 26-ft length (7.93 m) and 26- ft width (7.93 m) was 

constructed in 1937, has no skew and is supported on 6 T-beams each of which has 

a depth of 24 in (0.6096 m). Total steel area in the tension region is 12.50 in2 (80.65 

cm2) for all beams. T-beam web width, beam spacing (flange width) and deck 

thickness are 15.75 in (0.4001 m), 61 in (1.5494 m) and 8.5 in (0.2159 m), 

respectively. Bridge has end diaphragm beams at the boundaries and reinforced 

concrete parapets on both sides through the roadway. 
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Figure 4.1 Example of a Population of Similar Bridges 

 
 

 
 

The Manoa Road Bridge with 32ft length (9.75 m), 53-ft width (16.15 m) and 15 

degree skew, was constructed in 1929, and is supported by 11 T-beams. The depth 

of beams is 28.5 in (0.7239 m) and total steel area in the tension region is 14.50 in2 

(93.55 cm2). T-beam web width, beam spacing (flange width) and deck thickness 

for Manoa Road Bridge are 16.5 in (0.4191 m), 61.5 in (1.5621 m) and 8.5 (0.2159 

m) inches, respectively. The secondary structural elements, such as end diaphragm 

beams at the boundaries and reinforced concrete parapets, are also critical 

components of the bridge. While the geometry of the Swan Road Bridge may be 

considered typical, the Manoa Road Bridge represents a particular case of large 

width. Both bridges feature just two traffic lanes.  
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Figure 4.2 Swan Road Bridge: General and Close-up Views 
 
 

 
 

 

 
 

 
Figure 4.3 Manoa Road Bridge: General and Close-up Views 

 

 

4.2 Analytical Modeling of T-Beam Bridges 
 

It is clear that developing a detailed FE model of each and every bridge of the T-

beam population will be impractical, as it requires a considerable time and expertise 
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for development and interpretation. When a major, long span bridge is considered, 

this effort is very feasible and valuable. Here in the case of a population, a real 

bridge with average structural and geometric parameters is selected from the entire 

population for modeling. 

 

A typical T-beam bridge is in fact an integration of beams and slab along the span 

of the bridge ending in rigid diaphragm beams. The orthotropically reinforced slab 

is bounded by stiff edge girders monolithic with parapets in addition to the 

diaphragm beams. While the girders predominantly transmit forces through uni-

axial shear-flexure, the orthogonal flexural response of the slab as a plate, and the 

axial membrane forces in the slab that arise due to the restraining of the diaphragms 

at the abutment interfaces are additional mechanisms that contribute to load 

capacity. 

 

The finite element libraries of modern general-purpose structural analysis software 

such as SAP 2000 offer various options for 3D FE modeling of a T-beam bridge. 

Several options are illustrated in Figure 4.4. While all options may permit 

representing the critical behavior mechanisms of the bridge, the first option based 

on using solid elements for simulating concrete at the microscopic level and using 

axial frame elements for simulating individual reinforcing bars on an individual 

rebar basis offers great advantages in simulating deterioration and damage.  

 

In order to verify the reliability in mixing the solid and frame elements for 

simulations, a single reinforced concrete T-beam from an existing bridge was 

modeled by 3D solid and beam elements and the results were compared with the 

engineering mechanics solution. Figure 4.5 shows two responses for stress and 

moment compared along the beam from the FE model and the engineering 

mechanics solution. The study verified that solid elements for the concrete and 

frame elements for the steel rebars can be connected at the nodes and used for finite 

element modeling of reinforced concrete T-beams at a microscopic level, given the 

dimensions for the solid and frame elements shown in Fig. 4.5. 
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Figure 4.4 Finite Element Modeling Options (DIITSI, 2003) 
 
 

 

 

Figure 4.5 Verification Analysis; Solid Modeling of T-beam Section (DIITSI, 2003) 
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4.2.1 Finite Element Model of the Swan Road Bridge 
 

The Swan Road Bridge in Chester County (Figure 4.6) was selected as a typical T-

beam bridge in PA in terms of its nominal design attributes with 6 reinforced 

concrete T-beams, and a deck thickness of 8.5inches. After identifying the most 

suitable modeling option, the analytical model can be constructed. A typical 3D FE 

model that is constructed using solid elements and axial frame elements available in 

the library of the SAP 2000 V9 software (2002) for a complete and accurate 

modeling of the geometry, detailing and material properties are illustrated in the 

example in Figure 4.7. Such a fine microscopic approach to 3D geometric -replica 

analytical modeling is now practical and enables explicitly simulating every 

material point of the bridge for an accurate representation of the geometry, the 

actual behavior mechanisms and any existing deterioration or damage. 

 

 

 

 
 

Figure 4.6 Swan Road Bridge, Lancaster Co, PA - Average Geometric and 
Structural Parameters 
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Figure 4.7 Finite Element Modeling of a T-beam Bridge with Solid and Frame 
Elements 
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The nominal concrete cylinder stress is 3 ksi and rebar yield stress is 33 ksi. The 

model features 108,243 degrees of freedom, employing 22,940 solid elements and 

7,636 frame elements. Both longitudinal and transverse steel reinforcing bars were 

modeled on a one-to-one basis using frame elements and connected to the solid 

elements simulating perfect bond. The parapets and lateral end diaphragm were 

modeled in detail. Boundary conditions are defined such that all the center nodes on 

the superstructure-substructure interface at one end of the bridge are modeled using 

pin supports to simulate restraints due to the dowels, while the center nodes at the 

other end are modeled with roller supports, allowing both rotation and translation in 

longitudinal and transverse directions, as shown in Figure 4.7. In addition, the 

lateral earth pressure on the diaphragm beam can be simulated using linear springs.  

 

In order to investigate the mesh sensitivity, a second model with a finer mesh was 

also constructed. The second model incorporated a total of 301,887 degrees of 

freedom as opposed to the 108,243 degrees of freedom of the first model, yet the 

maximum difference in the deflections and stresses remained within 0.7%. 

Therefore, to increase the computational efficiency the model with 108,243 degrees 

of freedom was employed for the reported studies. 
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CHAPTER 5 

 
 

APPROXIMATE ANALYSIS OF T-BEAM BRIDGES USING NEURAL 
NETWORKS 

 

 

 

Using present-day computing resources and a finite-element (FE) modeling 

software, it is possible to routinely apply FE analysis techniques to the evaluation of 

complex structures systems. Accompanying the use of such modeling software, 

however, is a substantial increase in the quantity of time required to perform the 

analysis. In addition, the preparation of such models requires substantial amount of 

effort. Engineers practicing in certain fields (e.g. highway bridge engineering) often 

find themselves repeatedly analyzing structures that fall into fairly well-defined 

categories or “problem domains”. Structures falling into this problem domain will 

exhibit certain common characteristics. Given the increasing use of modeling 

software, the increasing size of FEA models routinely generated in everyday 

practice, and the frequent need to analyze structures in well-defined problem 

domains, it becomes desirable to conceive a strategy wherein the analysis can be 

accelerated by exploiting structural similarities within particular problem domains.  

 

In this chapter, a technique for enhancing analysis of bridge structures for a 

particular problem domain is discussed. The strategy described herein consists of 

restricting bridge structures to a particular problem domain, e.g., a particular type of 

bridge population, and then using neural networks to approximately encode the 

basic structural behavior of that class of structures. This strategy was applied to 

single span RC T-beam bridge population in the Pennsylvania state. ANN systems 

seem to be applicable to predicting structural responses from bridge parameters. 

They are capable of learning the relationship between bridge parameters and 

responses based on the existing data and generalizing this for other bridges not 

included in the existing set. Firstly, a statistical analysis of bridge parameters is 
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conducted to determine the variability in each parameter and the degree to which 

the entire bridge population can be represented. Then, based on these parameters, a 

group of bridge samples are randomly generated using different combinations of the 

parameters within the ranges of possible variations  to ensure that the ANN model 

trained using these samples can predict, within an acceptable accuracy, the 

structural behavior exhibited by majority of the bridges within the population. In 

order to obtain the outputs of bridge set, all bridges in the set are modeled using a 

standard FEM program and analyzed for structural responses. The bridge data 

acquired are divided into three sets; the training set, the cross validation set and the 

test set. The training set is used to establish relation between bridge parameters and 

structural responses. The cross validation set is used to avoid overfitting which is 

the case of poor generalization. The test set is used to evaluate the performance of 

the network. Finally, several network designs are created and examined to arrive at 

ones with good generalization capability. If a relationship between bridge 

parameters and bridge responses can be found, then prediction of a bridge’s 

responses can readily be made just by evaluating its input parameters with a trivial 

computational time and effort and without a need to construct and analyze a new 

model for each parameter set. 

 

5.1 Statistical Analysis 

 

There are a large number of parameters controlling the structural behavior of T-

beam bridges. Amongst these parameters are the span length, skew angle, width of 

bridge (number of T-beams), beam depth, beam web width, beam flange width 

(beam spacing), slab thickness, reinforcement detailing, boundary conditions and 

existence of reinforced parapets or end diaphragms.  

 

However, not all these parameters are independent owing to the fact that the 

majority of the T-beam bridges were constructed using a standard set of drawings. 

In the standard design drawings, the structural details and element dimensions are 

dependent on the span length and width of the bridges. For example, when a bridge 

with a certain plan geometry is selected, the beam sizes, reinforcement and all other 
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details are automatically established. This “mechanistic” dependency greatly 

reduces the number of independent structural parameters. 

 

A statistical analysis is conducted here to determine the governing and independent 

structural and geometrical parameters. It has been found that T-beam web width, 

beam spacing (flange width) and deck thickness are constant for all bridges in the 

population at values of around 16 in (0.4064 m), 60 in (1.524 m) and                    

8.5 in (0.2159 m), respectively. Since the bridges were constructed from one set of 

typical plans, all other parameters such as proportioning and reinforcement detailing 

were dependent on these parameters. The secondary structural elements, such as 

end diaphragm beams at the boundaries and reinforced concrete parapets, are 

critical components of the bridges contributing to the structural behavior. It is noted 

that not all bridges in the population possess these secondary components. The 

boundary conditions (BC) of an actual bridge are often complicated. Therefore, they 

can be idealized as pin roller supports in the analysis models. 

   

As a result of this study, the numbers of governing independent bridge parameters 

are reduced to six as follows:  the span length and skew angle, width of bridges, 

beam depth and existence of reinforced parapets and end diaphragms.  

 

5.2 Bridge Data 

 

As mentioned in the previous section, the independent bridge parameters are 

established as the span length, skew angle, width of bridge (number of T-beam), 

beam depth, and existence of reinforced parapets and end diaphragms. NBI (1998) 

data and PennDOT database are used to determine the range of variation of each of 

these parameters within the population. A summary of the results of this study is 

given as follows:  

 

• span length ; 20 ft ( ~6 m) – 55 ft (~17 m) 

• skew angle ; 0 – 45 degrees 

• number of beams ; 5 – 11 
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• beam depth ; 19 in (~0.48 m) – 40 in (~1.02  m) 

• parapet ; exist or not exist 

• diaphragm ; exist or not exist 

 

T-beam web width, beam spacing (flange width) and deck thickness are assumed to 

be constant equal to 15.5 in (0.3937 m), 60 in (1.524 m) and 8.5 in (0.2159 m), 

respectively for all bridges in the sample set. All other parameters are kept at their 

nominal values and the boundary conditions are idealized as pin roller supports. 

 

According to Atalla and Inman (1998) the training of the network with a random 

generation of the bridge parameters within the ranges of possible variations 

produces the best results.  In line with this statement, a total of 140 sample bridges 

are randomly generated using the aforementioned ranges/values of bridge 

parameters to generate a representative bridge set, accounting for distinct structural 

and geometrical features of the bridges in the population. . The dataset used for this 

study is tabulated in Appendix B.1. 

 

5.2.1 Loading Conditions 

 

Live load is either the standard truck or lane loading corresponding to HS20 truck. 

For short spanned bridges, such as the ones considered in this study, the governing 

loading condition is usually the truckload. Therefore, only the live load due to truck 

loads is simulated in order to generate the maximum absolute member forces. 

Determining the most critical member forces due to truck loads require a number of 

sequential analyses such that after determining the number of the design lanes in the 

bridge, various number of trucks are positioned at different locations in the model.  

Then, model is analyzed under these truck configurations considering the multiple 

presence factors for moment and shear.  The moments and shears found in this way 

needs to be compared against each other in order to establish the maximum member 

forces for the model. 
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5.2.1.1 Number of Design Lanes and Multiple Presence of Live Load 

 

The number of design lanes in a bridge is determined by taking the integer part of 

the ratio w/3600, where w is the clear roadway width in mm between curbs and/or 

functional clear roadway width of the bridge is considered (Figure 5.1). In cases 

where the traffic lanes are less than 3.6 m wide, the number of design lanes shall be 

equal to the number of traffic lanes, and the width of the design lane shall be taken 

as the width of the traffic lane. Roadway widths from 6 to 7.2 m are assumed to 

have two design lanes, each equal to one-half the roadway width (AASHTO Section 

3.6, 1999). 

 

 

 

Figure 5.1 Application of Live Load to Lanes 

 

 

According to AASHTO Specification, bridges in the representative set are 

composed of one, two, and three lanes depending on the number of beams along 

their width. These are presented in Table 5.1. 
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Table 5.1 Number of design lane of bridges in the representative sample set  

 

Number of Beams Width   (mm) Number of Lanes 

5-beam 5151 1 

6- beam 6675 2 

7- beam 8199 2 

8- beam 9723 2 

9- beam 11247 3 

10- beam 12771 3 

11- beam 14295 3 
 

 
 
The extreme live load force effect shall be determined by considering each possible 

combination of number of loaded lanes multiplied by a corresponding multiple 

presence factor to account for the probability of simultaneous lane occupation of the 

design truck. The following table gives the multiple presence factors, m. (AASHTO 

Section 3.6, 1999). 

 

 
Table 5.2 Multiple Presence Factors “m” 

 

 

 

 

 

 

 

 

5.2.1.2 Truck load generation 

 

The next step is to define the loads. Mainly, there are two different vehicle loads 

considered:  a) truck loads, and b) lane loads (see Figure 5.2). 

Number of Loaded Lanes Multiple Presence Factors "m" 

1 1,2 
2 1 
3 0,85 

>3 0,65 
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The rating-truck “HS20-44” defined in AASHTO was used in this study. An HS20-

44 truck is a virtual rating truck. It weighs a total of 320.3kN (72 kips, 36 short 

tons; one short ton is equal to 2 kips and 0.91 tons), and is composed of three axles. 

The first two axles are 4.27m (14ft) apart. The distance between the second and 

third axles can vary between 4.27m (14ft) and 9.14m (30ft). In this study, the rear 

axle spacing was taken as 4.27m (14ft.) in order to maximize positive bending 

moment in each span. The width of the truck is assumed to be constant and equal to 

1.8m (6ft.) for all axles. The first axle weight is 35.6kN (8kips); the second and 

third axles are 142.3kN (32kips) each. The term “20” in “HS20-44” notation comes 

from the summation of the first two axle weights in terms of short tons. The term 

“44” represents the year 1944 that HS20-44 trucks were first started to be used for 

bridge design/rating. 

 

AASHTO lane loads are composed of a uniformly distributed lane load of 

9.34kN/m/lane (640lbf/ft/lane) together with one or two 80.1kN/lane (18 kips/lane) 

of concentrated load(s). Lane loading is intended to be a governing case for 

especially long bridges since uniformly distributed vehicle traffic in a closed road or 

traffic jam condition can be more critical than a single truck load. One 80.1kN (18 

kips) concentrated point load per lane is used to maximize the positive bending 

moment. This load is located along the bridge to produce the largest positive 

moment. For members experiencing negative bending (such as members close to 

the piers), two concentrated loads of 80.1kN/lane (18 kips/lane) must be defined on 

either side of the support to obtain the largest negative bending moment. Each one 

of the two 80.1kN (18 kips) loads on each lane should be placed at a location to 

maximize the negative bending moment. 

 

Since bridges generated for the study fall into the class of short span bridges, the 

governing loading condition is the truckload. In models, each truck is represented 

by 96 concentrated loads, sixteen of which represent each tire (Figure 5.3). 

Concentrated loads are spread over the nodes of solid elements over which the tire 

is acting. Truck configurations are positioned such that they create the maximum 

member forces at defined sections in the model as shown in Figure 5.3.   
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Figure 5.2 Loading Types for AASHTO (Turer, 2000) 
 
 
 

 

 

Figure 5.3 Application of Truck Load for Critical Moment and Shear 
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5.2.2 FE Modeling and Analysis 
 

Finally, randomly generated 140 T-beam bridges are constructed using solid 

elements and frame elements available in the library of the SAP 2000 V9 software 

for a complete and accurate modeling of the geometry, detailing and material 

properties as illustrated in Figure 4.7. Pin-roller type supports are used in all the 

models to simulate the nominal boundary conditions. All of the 3D FE models are 

analyzed under various configurations of HS20-44 trucks for critical moment and 

shear (see Appendix B.1 for analysis results). After analyzing the bridges, the 

training data for neural network model has been generated. As mentioned before, 

the training data consists of input and output pairs where the bridge parameters 

identified in statistical analysis and used to parameterize the models are the inputs, 

whereas the outputs are the maximum shear and moment developing in bridges. 

 

5.3 Neural Network Modeling 

 

ANN learns from the existing patterns and then makes a prediction for the patterns 

which are not considered during learning. Therefore, the success of a network is 

measured by its generalization performance. If the difference between the actual 

and computed output by ANN is within the acceptable level, then the network can 

be used for prediction in the similar domain which exhibits certain common 

characteristics with the existing patterns. The prediction performance of a network 

usually depends on the network parameters and the topology chosen. The best 

performance is generally achieved by extensive parametric study on the different 

network using trial and error approach. In each trial, performance of network is 

evaluated.  This process is repeated until the best architecture with the right network 

parameters is arrived. 

 

In this study, the Levenberg- Marquardt algorithm (Rao and Kumar, 2007) is used 

for learning rule of ANN, and the sigmoid function is used for activation function. 

Since, Levenberg- Marquardt requires less time and epochs to converge, it performs 

more efficiently compared to other learning rules, which in turn makes it ideal for 
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trial of different networks. In addition, while almost all learning rules lead to 

somewhat satisfactory results, Levenberg- Marquardt is the one producing the best 

results (Yetilmezsoy and Demirel, 2008). The use of sigmoid function requires that 

the input and output data be scaled to the range [0-1]. In the present study, the input 

and output data are scaled to a somewhat narrower range between 0.2 and 0.8, 

resulting in  a considerable improvement in learning speed due to increased 

sensitivity of the sigmoid function within this range. As mentioned before, the 

training data generated for the application consist of 140 input-output patterns 

(pairs) and are divided into three sets, namely, the training set, the cross-validation 

set and the test set. The training set contains 101 patterns and used to detect any 

relationship between the bridge parameters and responses. The cross-validation set 

contains 29 patterns and is used to avoid overfitting problem. The test set consists 

of 10 patterns and is used to evaluate the performance of the networks. Based on 

defined network parameters, the effect of the number of hidden layers and number 

of processing elements in hidden layers as well as in output layer are observed using 

several architectures with the help of Neuro Solutions 5 (www.neurosolutions.com) 

which is general software developed for neural network applications. After 

completion of training of each network design, the performance of the network is 

tested using the test patterns that are not used during the training. The performance 

is measured by the average maximum error in the testing set. This process is 

repeated for each network design. In this way, many networks which are capable of 

generalization at different levels are obtained. Among them, the best network is 

selected. 

 

5.3.1 Development of the Network Models 

 

Obtaining the best network is a lengthy process which requires trial of different 

network parameters in several architectures. After a number of trials, appropriate 

values of the networks parameters are set as follows:  

• Number of training examples = 101 

• Number of cross-validation examples = 29 
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• Number of test examples = 10 

• Number of input layer neurons = 6 

• Number of output layer neuron(s) = 1 or 2 

• Type of back-propagation = Levenberg-Marquardt back-propagation 

• Activation function = Sigmoid function 

• Normalization range = [0.2,0.8] 

• Learning rate = 0,01 

• Training mode = Batch mode 

• Termination rule = minimum cross validation error or maximum epoch 

 

Several architectures are tested in conjunction with the above set of network 

parameters to find the one having the best prediction performance, that is, the best 

generalization capability. A typical architecture is designated as “input nodes (n) - 

[hidden nodes per hidden layer (m)]-output nodes (p)”. For example, the notation 

“6-(7-7)-2” (7-7) indicates that the network architecture consists of an input layer of 

6 nodes, an output layer of 2 nodes, and two hidden layers of 7 nodes each. 

 

The following cases are created and studied with respect to the choice of network 

architecture as well as the selection of network output  

 

Case 1:  Network 6-(m-m)-2; m varies from 4 to 11  

In case 1, the moment and shear are both considered as network output. The 

architecture used has two hidden layers with m nodes per layer denoted as              

6-(m-m)-2.  

 

Case 2:  Network 6-(m-m)-1; m varies from 5 to 11  

For case 2, the moment and shear are separately considered as network output. 

Hence, the network architecture is denoted by 6-(m-m)-1, in which the output node 

is assigned to either moment or shear. 
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Case 3:  Network 6-(m)-2; m varies from 3 to 9 

In case 3, both the moment and shear are considered as network output. The 

architecture used has one hidden layer with m nodes denoted as 6-(m)-2. 

 

Case 4:  Network 6-(m)-1; m varies from 3 to 9 

For case 4, the moment and shear are separately considered as network output. The 

network architecture is denoted by 6-(m)-1, in which the output node is assigned to 

either moment or shear. 

 

In the current study, the network performance is associated with the maximum error 

in the moment and shear prediction of the network for all the testing patterns. If the 

maximum testing error appears to be below the tolerable level, then the 

performance of network is considered satisfactory. 

 

5.3.1.1 Observations 

 

The results of the study on the network designs has showed that ANN is quite 

promising in predicting the maximum moment and shear developing in the bridges 

due to moving truck loads.  Some of the typical results have been given in Figures 

5.4 through 5.7. The following observations are made based on all examined 

networks. 

 

1. All the trained networks are able to predict the responses for all the testing 

patterns with a reasonable accuracy (Figure 5.4 and 5.5). Thus it can be 

deduced that single span population of T-beam bridge behavior can be 

modeled through neural networks. 

 

2. While minimum MSE (Mean Square Error) [eqn (A1.8)] is a measure of 

learning performance, it does not guarantee the best prediction rate 

(generalization capability). As it is clear from Figures 5.4 to 5.7 that the 
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prediction performance of the 6-(m)-1 architecture is generally better than that 

of other architectures for both moment and shear for all the testing patterns, 

even though some of them have lower MSE.  

 

 

 

Figure 5.4 Maximum Testing Errors versus Number of Nodes in Hidden Layer(s) 
for Moment 

 

 

 

Figure 5.5 Maximum Testing Errors versus Number of Nodes in Hidden Layer(s) 
for Shear 
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Figure 5.6 Minimum MSE versus Number of Nodes in Hidden Layer(s) for 
Moment 

 

 

 

Figure 5.7 Minimum MSE versus Number of Nodes in Hidden Layer(s) for Shear 

 

 

3. Levenberg- Marquardt learning rule and the sigmoid transfer function are 

appropriate choices for a successful network application in the current context. 
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4. The learning and prediction performance of the network vary depending on the 

number of hidden layers and the number of nodes in the hidden and output 

layers.  A single hidden layer with an optimum number of neurons is sufficient 

for modeling of this problem. The use of single output node assigned to either 

moment or shear improves the performance of the networks compared to the 

cases where two output nodes are used for predicting moment and shear 

together (Figures 5.4 and 5.5). 

 

5.3.2 Best Neural Network Models 

 

It is clear from Figures 5.6 and 5.7 that almost all networks generate a reasonable 

MSE value. However, as seen from the Figures 5.4 and 5.5, the best performance in 

predicting moment is shown by Case 4 with a seven processing elements, resulting 

in 3.36% maximum average testing error for all testing patterns. Similarly, the best 

performance in predicting shear is again exhibited by Case 4, yet this time with a 

five processing elements, resulting in 1.53% maximum average testing error for all 

testing patterns.  

 

In Figures 5.8 and 5.9, the average MSE in training versus epochs are plotted for 

moment and shear, respectively. The MSE drops drastically after 10 epochs for 

moment and carries on running until minimum validation error which is reached at 

38th epoch with a MSE error of 0,000231. For shear, the error stabilizes at around 

10 epochs and goes on running until minimum validation error which is reached at 

79th epoch with a MSE error of 0,000794. To make sure that the network training 

has been satisfactorily completed and the network is capable of generalization, a set 

of unseen patterns must be selected and the network should be tested using these 

patterns.  For this purpose, a total of 10 testing patterns are used to observe the 

prediction performance of all the architectures considered in the study.  
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Figure 5.8  Learning Curves for 6-(7)-1 Moment Output Network 

 
 

 

 

 

 

 
 

Figure  5.9  Learning Curves for 6-(5)-1 Shear Output Network 
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Figure 5.10 FEM Output and Best Network (6-(7)-1) Output for Moment  

 
  
 
 

 

Figure 5.11  FEM output and Best Network (6-(5)-1) Output for Shear 
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maximum error of 1.53% for these patterns under the defined network parameters. 

This indicates that the networks trained successfully establish the relationship 

between the bridge parameters and responses and interpolate this relationship for 

other bridges in the population with an acceptable accuracy.  In addition, the 

coefficient of correlation (see Appendix A.2) between analytical and predicted 

outputs is 0.998 for moment and 0.956 for shear, indicating that the learning and 

generalization performance of the network is very good. 

 

5.4 Sensitivity Analysis 
 

Sensitivity analysis is a method for extracting the cause and effect relationship 

between the inputs and outputs of the network. The basic idea is that each input 

channel to the network is offset slightly and the corresponding change in the output 

is reported. To ascertain the influence of the input variables on output variables, 

sensitivity analysis is also carried out. This testing process provides a measure of 

the relative importance among the inputs of the neural model and illustrates how the 

model output varies in response to variation of an input. The first input is varied 

between its mean +/- a user-defined number of standard deviations while all other 

inputs are fixed at their respective means. The network output is computed for a 

user-defined number of steps above and below the mean. This process is repeated 

for each input.  In this study, the number of standard deviations to add and subtract 

from the mean of an input is 1 and the number of steps to use on each side of the 

mean is 50. A report was generated which summarizes the variation of each output 

with respect to the variation in each input and presented in Figure 5.12 for moment 

and in Figure 5.14 for shear. In addition, a plot was created for each input showing 

the network output(s) over the range of the varied input. These plots are shown in 

Figure 5.13 for moment and Figure 5.15 for shear. 

 

It can be clearly seen from the Figure 5.12 and 5.14 that the most important input 

parameter for moment is the bridge length, while the most important input 

parameter for shear is skew angle. The least important input for both is parapet. 



   

58 
 

 

Figure 5.12 Variation of Moment w.r.t. the Variation in Each Input about Its Mean 

 

 

 

 

Figure 5.13 Plots Showing the Moment over the Range of the Varied Input 
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Figure 5.14 Variation of Shear w.r.t. the Variation in Each Input about Its Mean 

 

 

 

 

Figure 5.15 Plots Showing the Shear over the Range of the Varied Inputs 
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As it can be observed from Figure 5.13, moment increases with increasing span 

length, beam depth and the number of beam, while it decreases with increasing 

skew angle and existence of parapet and diaphragm. Similarly, Figure 5.15 

illustrates that shear increases with increasing span length, skew angle, beam depth, 

the number of beam and presence of diaphragm while it decreases with the 

existence of parapet. 

 

5.5 Discussion 
 

The principal objective of this chapter is to show that artificial neural networks can 

be trained to predict critical structural responses of a population of bridges once 

governing structural and geometrical parameters are identified.  Rapid and accurate 

analysis is essential, especially when a large population of bridges is concerned, and 

seems to be possible using ANN approach. This strategy was applied to single span 

T-beam bridge population in the Pennsylvania state. Common governing bridge 

parameters of the population were identified. Based on these parameters, a total of 

140 representative T-beam bridges was randomly generated and modeled with the 

help of a standard FEM program and analyzed under HS20-44 trucks for critical 

moment and shear. Bridge set consisting of bridge parameters as inputs and bridge 

responses as outputs was divided into three subsets; the training set, the cross 

validation set and the test set. Based on these sets, we investigated the relationship 

between bridge parameters and bridge responses in different network designs. The 

results indicate that by selecting the right input parameters and properly 

constructing and training the ANN model, it is possible to reduce the differences 

between the FE analysis results and the ANN results to 3.36% for moment and 

1.53% for shear. In addition, the linear coefficient of correlations very high between 

analytical data and values predicted through neural nets and it is 0.998 for moment 

and 0.956 for shear. These clearly show that the neural network methodology can 

be used efficiently to model the structural behavior of single span T-beam bridges. 

The main advantage of neural networks is that the analysis outputs can be obtained 

from the trained neural network within seconds without spending much effort and 

time required in constructing and analyzing of analytical models. Sensitivity 
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analyses with the trained neural net or during training could provide valuable 

additional information on the relative influence of various parameters on the bridge 

systems. From our results, it is obvious that networks are promising in analysis of 

civil structures and should be investigated further. 
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CHAPTER 6 

 
 

CALIBRATION OF T-BEAM BRIDGES USING NEURAL NETWORKS 
 

 

 

Structural identification is the process of developing and/or revising an analytical 

model of a structure such that for a given set of inputs the model can simulate the 

output response accurately. Structural parameter estimation, one area within the 

field of structural identification uses optimization to reconcile an analytical model 

of a structure with full-scale test data. The result is a set of estimated parameters 

capable of simulating "actual" structural response. Structural identification is an 

objective tool for condition assessment of structures. The current application is 

bridge condition assessment. By using structural identification and parameter 

estimation as a means of determining the actual state properties, performance, and 

limit states of a structure it is possible to gain an improved understanding of a 

structure's capacity and typical performance during serviceability. Thus, at any 

point in time it would be possible to assess the reliability of the structure using the 

objective results obtained through structural identification. 

 

Today, analysis of very large structures with detailed discretization is possible even 

with personal computers. Models in each one of the numerical, modal or geometric 

spaces may contain any number of independent coordinates, representing a structure 

at different levels of discretization and detail. Moreover, numerical and geometric 

model spaces may accommodate various types of nonlinearity as well as non-

stationarity. Yet there is a great need in civil engineering education, research and 

practice for emphasis upon the difference between modeling of an actual 

constructed facility for condition assessment, as opposed to modeling a non-existing 

one for design purposes. In particular, geometric models in the form of 3D FE 

models are constructed to assist with identifying the critical regions and behavior 
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mechanisms of a structure and to estimate the limits of the forces, strains, tilts, 

displacements and accelerations that may be necessary to measure. It is important 

that the models are calibrated through system-identification procedures to permit 

reliable simulations based on the data from a health monitoring implementation. 

The data needed for system identification of the structure and subsequent 

calibration of the FE model may be obtained from experiments conducted on the 

structure. 

 

This chapter discusses the calibration of the finite element model of the Manoa 

Road Bridge, a typical T-beam bridge from the Pennsylvania’s bridge population, 

based on field test data and neural networks. After a bridge is constructed, it may 

show significant variations in terms of its structural, geometrical and material 

properties. Therefore, a FE model should be updated considering the modified 

parameters of the structure. By this way, the ability of the model to simulate actual 

behavior is improved. This is called calibration. To calibrate a FE model, first field 

tests are conducted to collect experimental data, and next FE model is successively 

changed until the analytical response it produces correlates well with experimental 

data. Manual calibration of T-beam bridge models are also extremely time 

consuming and laborious. Therefore, a neural network- based solution strategy is 

investigated here for easy and practical calibration of these models. First a FE 

model of the Monoa Road Bridge is developed using the nominal structural 

parameters and material properties. Sensitivity studies are conducted next to 

determine the governing parameters affecting the dynamic and static response of the 

bridge, as well as to determine the sensitivity range of each parameter. Afterwards, 

a set of training patterns incorporating a selected number of bridge parameters and 

response are constituted by considering different values/combinations of these 

parameters generated randomly within their sensitive ranges. Neural network (NN) 

is then trained to learn the relationship between the bridge parameters and response 

in a reverse direction such that the inputs are the bridge response and outputs are the 

bridge parameters.  After the training is completed, the field-measured bridge 

response is fed into the trained neural network system to predict the values of 

structural parameters representing the as-is condition of the bridge. Structural 
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parameters are then updated in the FE model in line with the predictions of ANN 

and the analytical response of the bridge is obtained analyzing the bridge under the 

predicted parameter set.  A comparison between the experimental and analytical 

response of the bridge is conducted. If these two sets of parameters differ 

significantly, then the ANN model is retrained. The re-training procedure is 

continued until the measured and calculated responses do correlate well.  

 
6.1 Bridge Description  

 

The Manoa Road Bridge is a reinforced concrete structure located in E.  Karakung 

Drive 26J07 in Pennsylvania. Its coordinates are 39°58′48″N and 78°16′54″W and 

is schematically shown in Figures 6.1. The typical cross section of deck is shown in 

Figure 6.2. The Manoa Road Bridge is 32 ft (9.75 m) long with a 15 degree skew, 

was constructed in 1929. It is 53 ft (16.55 m) wide and is supported by 11 T-beams, 

carrying two-way traffic. Each beam has a width of 61.5 in (1.5621 m) and depth of 

28.5 in (0.7239 m). T-beam web width and deck thickness are 16.5 in (0.4191 m)  

and 8.5 in (0.2159 m), respectively. Total steel area in the tension region is 14.50 

in2 (93.55 cm2). Secondary elements, such as diaphragms and parapets exist in the 

structure.  

 

 
 

Figure 6.1 Manoa Road Bridge 
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Figure 6.2 Typical cross section of the bridge deck 

 

 

6.2 Field Investigations 

 

DI3 researchers (DIITSI, 2003) conducted extensive field investigations and 

experiments on Manoa Road Bridge. The experimental studies included 

instrumentation and controlled load testing of selected bridges by stationary and 

crawling trucks and, dynamic testing by impact using an instrumented impact 

hammer. Researchers also explored possible uses of Falling Weight Deflectometer 

(FWD) as a practical test method to quantify bridges’ as-is stiffness.  

 

In dynamic tests, acceleration of the different points of the bridge due to an impact 

is recorded to extract dynamic properties of the structure (i.e. mode shapes, natural 

frequencies). Impact and accelerometer locations were determined prior to the test 

based on preliminary dynamic analysis of the structure. In controlled static truck 

load tests, two trucks were simultaneously positioned on the bridge. Truck positions 

were determined prior to the test in conjunction with the instrumentation plan. Each 

predetermined location corresponds to a load case, which can also be simulated in 

the FE model. Displacement data is separately recorded for each load case. 
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Figure 6.3 Dynamic Test Results of Manoa Road Bridge (DIITSI, 2003) 
 
 
 
 
 
 
 

 
 

 
Figure 6.4 Deflections of the Beam “F” From the Field Test for Manoa Road Bridge 
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In this study, the measured response of the Manoa Road Bridge obtained from field 

tests is used for the calibration of the analytical model of the bridge. The measured 

response consists of the first three modes and natural frequencies of the bridge as 

illustrated in Figure 6.3 as well as the vertical displacements recorded at three 

locations along the length of the center beam as visualized in Figure 6.4.  

 

6.3 Bridge Modeling 

 

SAP2000 is used to model and analyze the Manoa Road Bridge. Accordingly, a 3-D 

numerical model of the Manoa Road Bridge is developed using the 9th version of 

the software. The key dimensions and geometry of bridge members were extracted 

from the plans. A typical 3D FE model that is constructed using solid elements and 

frame elements for a complete and accurate modeling of the geometry, detailing and 

material properties are illustrated in the example in Figure 4.7. Each reinforcing bar 

and its bond with concrete are explicitly simulated. Such a fine microscopic 

approach to 3D geometric -replica analytical modeling is now practical and enables 

explicitly simulating every material point of the bridge for an accurate 

representation of the geometry, the actual behavior mechanisms and any existing 

deterioration or damage. 

 

 

 

                                           
Figure 6.5 3-D Views of the Entire Bridge 
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Figure 6.6 Top and Bottom Views of the Entire Bridge, respectively 

 

 

 

Figure 6.7 Reinforcement of the Entire Bridge 
 
 
 

 

 
Figure 6.8 3-D Views of a Single T-Beam 



   

69 
 

Various outlooks of the Manoa Road Bridge model with explicit modeling of all 

main components are presented in Figures 6.5 to 6.8. The bridge was modeled 

based on the geometries and material data from as-built drawings. In the FE model, 

axial frame elements were adopted for reinforcement and solid elements were 

adopted for concrete. The complete FE model of the entire bridge has a total of 

40935 joints, 12161 frame elements, 31060 solid elements, resulting in 154419 

degrees of freedom. Both longitudinal and transverse steel reinforcing bars were 

modeled on a one-to-one basis using frame elements and connected to the solid 

elements simulating perfect bond. The parapets and lateral end diaphragm were 

modeled in detail. Boundary conditions were defined such that all the nodes on the 

superstructure-substructure interface at the ends of the bridge are modeled using 

linear springs. As observed during visual inspections, there are effective lateral 

restraints at the ends of the bridges due to earth pressure and pavement thrust. 

Therefore, the lateral earth pressure on the diaphragm beam is also simulated using 

linear springs. Thickness of asphalt overlay on top of the concrete deck is accounted 

for by distributing the total mass of the asphalt to the joints on the surface of the 

concrete deck. 

 

6.4 Parametric Studies  
 

Sensitivity studies are conducted to asses the governing bridge parameters affecting 

most the dynamic and static response of the structure, as well as to determine the 

sensitivity range of each parameter. These parameters are identified as the boundary 

conditions, elasticity of concrete, lateral soil pressure and the thickness of asphalt. 

Only the first 3 modes of vibration of the bridge are considered. 

 

6.4.1 Boundary Conditions  
 

The boundary conditions (BC) of an actual bridge are often complicated. Usually 

they are idealized as fixed, hinged or roller supports in the analytical models. The 

field tests by DI3 researchers revealed that friction and dowels between the stiff 
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lateral diaphragm beams of the superstructure and the beams on the abutments 

create a very effective restraint, prohibiting any slippage and other movements. 

Lateral soil pressure and pavement thrust further contribute to the restraint.  In an 

effort to simulate this restraint in the analytical model, boundary conditions of the 

Manoa Road Bridge are simulated using linear springs in vertical and horizontal 

(lateral and longitudinal) directions as described in Figure 6.9 (a and b). In addition, 

the lateral earth pressure on the diaphragm beam is simulated using linear lateral 

springs as shown in Figure 6.9 (c).  

 

In order to examine the influence of vertical, horizontal and lateral springs on the 

structural behavior of the bridge and determine the sensitive ranges of these 

parameters, each spring stiffness was set to the powers of ten and the first three 

natural frequencies of the bridge were calculated. For the different spring stiffness 

values, the calculated frequencies are plotted in Figures 6.10, 6.11 and 6.12. It can 

be seen that boundary conditions do have significant influences on the dynamic 

characteristics of the Manoa Road Bridge.  

 

 
Figure 6.9 a) Vertical springs,   b) Horizontal springs (lateral and longitudinal 

springs),   c) Lateral spring due to soil pressure 
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As observed from Figure 6.10, the bridge response is sensitive to the variation of 

the vertical spring stiffness value between 0 and 105. However, the model produces 

very large vertical displacements which are not possible to observe in real structure 

for the range of 0 to 102. Hence, the sensitive range of this parameter is determined 

as [102, 105]. 

 

 

 

Figure 6.10 Frequencies versus Vertical Spring Stiffness 
 
 

 

 

 

Figure 6.11 Frequencies versus Horizontal Spring Stiffness 
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Figure 6.12 Frequencies versus Lateral Spring Stiffness 
 
 
 
 
 

Based on the Figure 6.11, the bridge response is sensitive to the variation of the 

horizontal spring stiffness value between 10 and 105. However, very large 

horizontal spring stiffness reduces the flexibility of the model resulting in 

frequencies far larger than the ones observed in field test. Hence, the sensitive range 

of this parameter is set to be between [10, 104]. Similarly, from Figure 6.12, the 

bridge response is sensitive to the variation of the lateral spring stiffness value 

between 0 and 104. Hence, the sensitive range of this parameter is determined as    

[0, 104]. 

 
While generating the training set for Neural Networks, spring stiffness is expressed 

only in powers (of 10) so that the parameters are uniformly distributed within their 

sensitive ranges. For example, vertical spring stiffness is varied from 2 to 5 in the 

training set. 
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6.4.2 Modulus of Elasticity of Concrete 
 

The modulus of elasticity of concrete plays an important role in the dynamic 

characteristics of the RC T-Beam bridges. It can be said that any increase in 

modulus of elasticity of concrete structures results in an increase in the natural 

frequencies of the bridge due to the stiffened structure.  Therefore, it was taken as 

one of the parameters that significantly affect the modal parameters of the structure.  

Based on the field tests and the reduced elasticity modulus for concrete to account 

for the deterioration, the range of variation of this parameter is assumed to be 

between 800-4000 ksi in analytical modeling and ANN studies. 

 

6.4.3 Thickness of Asphalt  

 

In the FE modeling of the Manoa Road Bridge, the presence of the asphalt directly 

affects the mass of the bridge and thus its dynamic properties. Therefore, thickness 

of asphalt overlay on top of the concrete deck should also be considered in the 

modeling to completely reflect the dynamic characteristics of the system under 

study. When the asphalt thickness in Pennsylvania’s RC T-beam bridge population 

is statistically analyzed using NBI Data, it has been found that it varies between 0 

and 12 inch. Accordingly, the range of variation of this parameter is assumed to be 

0-12 in the analytical model and ANN studies. 

 

6.5 Mode shape verification  

 

Modal analysis in structural dynamics is aimed to determine the natural frequencies 

and mode shapes of a structure and evaluate its responses under dynamic loading. In 

most cases, only a small number of lowest vibration modes dominate the responses 

of an engineering structure. In the present study, only the first three modes were 

used. However, these three modes may not appear the same under all parameter 

values of the bridge. The modes may switch or vanish, or in some cases new modes 

may appear in a modal analysis of a bridge based on it vibration characteristics 

governed by the assigned parameter set.  For example, low values of horizontal 
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stiffness (u$) introduce a new mode as the first mode of the system, shifting the 

first three modes of the nominal model. Therefore, it is essential to compare the 

mode shapes of natural frequencies using the so-called Modal Assurance Criterion 

(MAC) to ensure about the equivalence of modes between different models. MAC, 

a coefficient lying in a range between 0 and 1, is used to quantify the similarity 

between two mode vectors (Equation 6.1). A zero MAC indicates no correlation, 

whereas 1 indicates the highest correlation (i.e., identical vectors). It is important to 

mention that it correlates the two modes based on their shapes only, not on their 

magnitudes. As an example, the MAC values for a model in the training set are 

presented in Table 6.1. The values on the diagonal are ones, implying that the mode 

shapes are the same, and of the same order. Zero terms on off diagonal terms show 

that the mode shapes are orthogonal to each other.  

 

 
 vwx�o = ([yz\{By|D)l

([yz\{[yz\)(By|D{By|D)                                                                     (6.1) 

 
 
 
where [}�\ is the "#$ mode shape obtained from the FE model and B}oD is the ~#$ 

mode shape identified from the measured accelerations.  

 
 
 

Table 6.1 Comparison of Mode Shapes between Analytical and Experimental 
Results 

 
Experimental Modes 

1 2 3 4 5 6 

A
n

a
ly

ti
c

a
l 

M
o

d
e

s
 

1 0,997 0,001 0,063 0,001 0,022 0,018 

2 0,005 0,994 0,001 0,084 0,000 0,001 

3 0,070 0,003 0,997 0,003 0,248 0,078 

4 0,002 0,124 0,003 0,994 0,013 0,173 

5 0,028 0,001 0,348 0,011 0,992 0,524 

6 0,018 0,000 0,083 0,293 0,404 0,978 

 
Max 0,997 0,994 0,997 0,994 0,992 0,978 
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6.6 Neural Network Modeling 

 

6.6.1 Training Patterns  

 

Based on the results of sensitivity analyses, five parameters have been identified as 

having significant impact on the static and dynamic properties of a T-beam bridge. 

Assigning random values to these parameters within their specified ranges, a total 

of 121 FE model of the Manoa Road Bridge were created individually with the aid 

of SAP 2000 program to generate the necessary training patterns (see Appendix C 

for the training data set). To obtain the static response (deflections) of the bridge 

analytically, two dump trucks with tandem-axle loads of 40 Kips–55 Kips per truck 

are simulated in all the FE models in line with actual field tests. After performing 

modal and static analysis of each model, first three natural frequencies were 

recorded considering Modal Assurance Criterion (MAC) and simulated deflections 

were taken at three predefined locations along the middle T-beam (Appendix C). 

This set was reversed to train the ANN model due to inverse nature of the problem. 

Frequencies and deflections are used as the inputs of the network, and the outputs 

are the structural parameters to be updated in the analytical model. 

 

6.6.2 Neural Networks Model 

 

The successful application of neural networks to a specific problem depends on two 

factors, namely representation and learning. Choice of an appropriate network 

topology and training parameters are problem-dependent and are usually 

determined by trial and error in the back-propagation learning algorithm. After a 

number of trials in NeuroSolutions 5, appropriate values of the network parameters 

are set as follows: 

 

• Number of training examples = 121; 

• Number of input layer neurons = 3 for Model 1 and 6 for Model 2 

• Number of output layer neurons = 5 
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• Type of back-propagation = Levenberg-Marquardt back-propagation 

• Activation function = Sigmoid function 

• Normalization range = [0.2,0.8] 

• Learning rate = 0,01 

• Training mode = Batch mode 

 

Based on the above network parameters, extensive study on one and two hidden 

layers networks was carried out and it was found that a single hidden layer with an 

optimum number of neurons is sufficient for modeling of this problem.  

 

• Number of hidden layer = 1 

 

The number of nodes in the hidden layer was varied from 4 to 15 in Neuro 

Solutions 5 to determine the optimum number of nodes in the hidden layer. 

Optimum number of nodes was found to be 9. 

 

• Number of hidden layer neurons = 9 

 

The architecture of the network is shown in Figure 6.13. 

 

 
Figure 6.13 ANN Model for Calibration of Manoa Road Bridge 

 



   

77 
 

ANN Model  
 

In the ANN model, the first three natural frequencies and three deflection values 

taken along the middle beam of the bridge (Beam F, Figure 6.4) were used as inputs 

to the network to predict the five output parameters to be updated in analytical 

model. The network was trained with the training set generated through linear 

analysis of analytical model and the desired outputs have been reached at 10th 

epochs with average MSE value of 0.0124112. The error measurement indicates 

that the error has been reduced to an acceptable level. The field-measured data set, 

which consists of the first three natural frequencies and three deflection values, was 

presented to the trained network to obtain the predicted values of the structural 

parameters (Table 6.2).  The second row in Table 6.2 shows the predicted values of 

the structural parameters. To validate the prediction of ANN based calibration 

procedure, the FE model of the Manoa Road Bridge was updated with the predicted 

values of the bridge parameters, and a modal as well as static analysis of the bridge 

was carried out in SAP2000 under this parameter set to obtain the analytical 

frequencies and deflections. The third row in Table 6.2 shows the calculated 

deflections and frequencies of the bridge.   

 

 
Table 6.2 Calibration of Manoa Road Bridge (Linear Analysis of the Model) 
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The results indicate that by using this ANN model, it is possible to reduce the 

differences between the measured and the calculated frequencies to less than 10% 

for the first three modes and to reduce the measured and the calculated deflections 

to less than 31% for the deflections along the central T-beam. 

 

Although computed natural frequencies of the 3-D FE model agree well with those 

from field measured data, significant differences exist between the computed and 

the measured values of deflections. Therefore, the training set was re-generated 

considering that concrete does not carry tension forces. In each model of the 

training set, solids subjected to tension were assigned zero elasticity to prevent 

concrete from carrying tensions. As a result, analysis results of training patterns 

have been generated through non-linear analysis of the analytical model. 

 

The same parameters (first three natural frequencies and three deflection values 

taken along the middle beam) were again used as inputs to the network to predict 

the five output parameters to be updated in analytical model.  

 
 

 
Table 6.3 Calibration of Manoa Road Bridge (Nonlinear Analysis of the Model) 
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Using the same network parameters and architecture, the network was trained with 

the training set generated through non-linear analysis of the analytical model. The 

desired outputs were reached at 14th epochs with average MSE value of 0.0060617. 

The error is relatively good compared the previous one. The field-measured data 

set, which consists of the frequencies and deflections of the Manoa Road Bridge, 

was fed into the trained neural network system to obtain the predicted values of 

bridge parameters (Table 6.3). The second row in Table 6.3 shows the predicted 

values of the bridge parameters. To validate the prediction of ANN based 

calibration procedure, the FE model of the Manoa Road Bridge was updated with 

the predicted values of the bridge parameters, and a modal as well as static analysis 

of the bridge was carried out in SAP2000 under this parameter set to obtain the 

analytical frequencies and deflections. The third row in Table 6.3 shows the 

calculated frequencies and deflections of the bridge. 

 

A comparison of measured and calculated frequencies indicates that they do differ 

from each other only by 5.83 % for the first mode, 0.71 % for the second mode and 

8.81 % for the third mode. A comparison of measured and calculated deflections 

caused by the truck loads indicates that the results of the calibrated model based on 

predicted bridge parameters may differ from the measured deflections by 0 to 12 %. 

The differences are all within tolerable limits, validating a successful prediction of 

the bridge parameters by neural networks. 

 

6.7 Discussion 
 

The purpose of this study was to demonstrate the applicability of neural network 

technique in prediction of the structural parameters to be updated in calibration of 

analytical models. Parametric sensitivity analyses are first performed in order to 

identify those parameters that significantly affect the dynamic and static properties 

of the T-beam bridges. After the structural parameters are assessed, a set of training 

samples are generated in such that these training samples should cover all possible 

combinations and ranges of parametric variation to ensure that the ANN models 

trained using these patterns can accurately represent the structural behavior. 
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Training patterns were processed by the network to establish implicit relationship 

between the inputs (modal parameters, deflections) and the outputs (structural 

parameters). Several network designs were examined, and 6-9-5 architecture with 

defined network parameters was identified to have a reasonable performance. The 

network first trained with the training set generated through linear analysis of the 

analytical model and desired outputs were reached at 10th epochs with an average 

MSE value of 0.0124156. The maximum difference between the measured and the 

calculated frequencies for the first three modes appeared to be less than 10%. 

Calculated and measured deflections differ from each other as much as 31%.  Then, 

the training set was re-generated considering that concrete does not carry tension 

forces. The network was trained with this training set which has been generated 

through non-linear analysis of the analytical model and desired outputs were 

reached at 14th epochs with an average MSE value of 0.0060617.  The maximum 

difference between the measured and the calculated frequencies for the first three 

modes is less than again 9%. However there is a significant improvement in 

deflections. The maximum difference between measured and the calculated 

deflections along the central T-beam were reduced from 31% to 12% indicating that 

T-beam bridges should be calibrated by taking into account the non-linear behavior 

of concrete. 

 

Due to possible errors, uncertainties and discrepancies between the experiment and 

the analytical model, a "100% match" should not expected,  hence it can concluded 

that the calibration of the bridge is achieved to the point that computed natural 

frequencies of the 3-D FE model agree well with those from field measured data. 

For deflections, however, slight differences exist between the computed and the 

measured values.  

 

This study show that, a neural network (NN) can be trained to learn the pattern 

between the output and input data sets of an analytical model in reverse direction. 

Preparing input and output data sets for such a neural network would take 

considerable amount of time; however, once a neural network is successfully 

trained, the same system can be used efficiently and quickly for calibration of other 
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bridge models. The field-measured data set, which has the same format with the 

selected analysis output parameters, can be fed into the trained neural network 

system obtaining the proper input parameter that should be used in the analytical 

model. Following the testing of a bridge, the proper parameters to construct a 

calibrated analytical model can be obtained from the trained neural network within 

seconds. 
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CHAPTER 7 

 
 

A RAPID CALCULATION OF LOAD RATING OF T-BEAM BRIDGES 
BASED ON FE MODEL AND NEURAL NETWORKS 

 

 

 

Bridge load rating is a component of the inspection process and is used to determine 

the safe-load carrying capacity of the bridge. AASHTO recommends the use of a 

simple and practical method for rapid evaluation of load rating capacity of T-beam 

bridges. In this method, an individual beam is taken out as a free-body, idealized as 

simply-supported, and the continuity of the bridge in the transverse direction is 

indirectly accounted for by means of axle-load distribution factors. This approach is 

found to significantly underestimate the deck slab's contributions to lateral load 

distribution for many bridge geometries. A more accurate evaluation of load rating 

capacities of T-beam bridges is possible through a properly constructed, geometric 

replica 3D FE model since the contribution of slab is properly simulated by the 

model. Besides, the secondary components such as the contributions of parapets and 

diagrams can be accounted for. FE based method is quite a reasonable and 

advantageous method for load rating analysis of a single bridge. However, as far as 

load rating analysis of a population of bridges is concerned, the method is not 

practical, and computationally unmanageable due to the development of FE model 

of each bridge in the population. In this chapter, we develop a method based on the 

use of neural network and FE model together for rapid and accurate load rating 

analysis of a population of bridges. 104 T-beam bridge models constructed in 

Chapter 5 were used to generate necessary data for the training of ANN. The 

maximum shear and moment (demand) developed under different values of the 

governing parameters set (the span length and skew angle, width of bridges, beam 

depth and existence of reinforced parapets and end diaphragms) are recorded. After 

calculating the capacity of each bridge model, the load ratings are calculated with the 

aid of a spreadsheet program using the capacity and demand of the bridge. The training 
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data is prepared such that inputs are the bridge parameters and outputs are the shear and 

moment load rating. ANN is trained to learn this relationship in order to speed up the 

accurate load rating of these bridges while still strictly conforming to the AASHTO 

standards and provisions. 

 

7.1 AASHTO Load Rating 

 
The AASHTO contains simplified procedures to be used in the analysis and design 

of bridges. The analysis of a bridge superstructure is reduced to the analysis of 

single member with the introduction of wheel load distribution factors (Figure 7.1).  

 

 

 

 

Figure 7.1 AASHTO Modeling a T-beam Bridge with HS20 Truck Loading for  

Load Rating 

 

 

 
In order to load rate a bridge, AASHTO utilizes a rating factor. The rating factor 

(RF) is a scaling number used as a multiplier of the loading used in determining the 

live load effects. According to AASHTO Manual for Condition Evaluation of 

Bridges (1994 and updated interims), each highway bridge is rated at two levels: 

Inventory and Operating. The inventory rating level corresponds to the customary 
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design level of stresses but reflects the existing bridge and material conditions with 

regard to deterioration and loss of section. Operating rating level generally describe 

the maximum permissible live load to which the structure may be subjected. 

Essentially, the inventory level represents the capacity of a bridge for normal traffic, 

whereas the operating level corresponds to an occasional oversized load. 

 

 

Figure 7.2 Rating Flowchart for Moment 

 

 

AASHTO uses the following expression in determining the load rating of a 

structure. Figure 7.2 summarizes the AASHTO based bridge rating procedure. 

 

�� = x − w� ∗ ��w	 ∗ (1 + �) ∗ �� ∗ ��                                                      (7.1) 
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where 

RF  =  Rating Factor 

C    =  Member Capacity 

DL =  Dead Load Effect 

LL  =  Live Load Effect 

A1  =  Dead Load Factor 

A2  =  Live Load Factor 

I     =  Impact Factor 

DF =  Distribution Factor 

 

The impact factor is a multiplier on live load intended to account for the dynamic 

effects of vehicles. To account for distribution of the load to adjacent members by 

the slab, AASHTO uses what is known as a distribution factor (DF). The 

distribution factor greatly affects a beam design or rating because it determines the 

percentage of vehicular load (moment or shear) that must be carried by the beam. 

Since their inception, these distribution factors have evolved or changed very little. 

These distribution factors have been criticized for being overly conservative. 

 

In the AASHTO 2007 LRFD specifications for the T-beam bridges, the distribution 

factors are defined as a function of the spacing, span length, girder stiffness and slab 

thickness (Equation 7.2, 7.3, 7.5 and 7.6). In addition, there are modification factors 

for skewed bridges in the LRFD specifications (Equation 7.4 and 7.7). 

 

Moment distribution factor for an interior beam with two or more design lanes 

loaded using Table S4.6.2.2.2b-1. 

 

 �� = 0,075 + ( ��,�)�,� ∗ (SL) �,	 ∗ � K��	∗L∗��m��,�                                              (7.2)  
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Moment distribution factor for an interior beam with one design lane loaded using 

Table S4.6.2.2.2b-1. 

 

�� = 0,06 + ( �14)�,� ∗ (SL) �,I ∗ � K�12 ∗ L ∗ t�I��,�                                           (7.3) 

 

According to S4.6.2.2.2e, a skew correction factor for moment may be applied for 

bridge skews greater than 30 degrees. 

 

�x = �1 − 0,25 ∗ � K�12 ∗ L ∗ t�I��,	� ∗ (SL) �,� ∗ (tan (θ))�,��                     (7.4) 

 

Shear distribution factor for an interior beam with two or more design lanes loaded 

using Table S4.6.2.2.3a-1. 

 

�� = 0,2 + � �12� − � S35�	                                                                                 (7.5) 

 

Calculate the shear distribution factor for an interior beam with one design lane 

loaded using Table S4.6.2.2.3a-1. 

 

�� = 0,36 + � �25�                                                                                               (7.6) 

 

According to S4.6.2.2.3c, a skew correction factor for support shear must be applied 

to the distribution factor of all skewed bridges. The value of the correction factor is 

calculated using Table S4.6.2.2.3c-1 
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�x = 1 + 0,2 ∗ �12 ∗ L ∗ t�IK� ��,I ∗  tan (θ)                                                     (7.7) 

 

 

The load ratings for 104 representative bridges from the AASHTO based analysis 

results are given in Appendix D.1. Appendix D.2 illustrates an example for load 

rating using AASHTO. 

 

7.2 FE Based Load Rating 

The additional reserve capacity and conservatism in load rating for T-beam bridges 

are recognized by DI3 engineers and researchers (DIITSI, 2003). There are several 

mechanisms that contribute to the load rating of bridges. Identifying the individual 

effects of those mechanisms is crucial for evaluation of the current rating process. 

For instance, additional capacity is brought by the existence of reinforced parapets 

or end diaphragms. In addition, it is possible to reflect some additional load 

capacity by only proper 3D modeling and still complying with AASHTO rating 

procedures. Figure 7.3 illustrates how two HS20 truck loads are defined for the 3D 

FE models for load rating. Truck loads are defined without any distribution factors.  

 

Following expression can be used in determining the FEM based load rating of a 

structure. Rating calculation procedure by FE analysis is summarized in Figure 7.2.  

 

��� ¡ = x − w� ∗ ��� ¡w	 ∗ (1 + �) ∗ ��� ¡                                                         7.8 

 

where 

RFFEM  =  FEM Based Rating Factor 

C          =  Member Capacity 

DLFEM  =  FEM Based Dead Load Effect 
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LLFEM   =  FEM Based Live Load Effect 

A1        =  Dead Load Factor 

A2        =  Live Load Factor 

I           =  Impact Factor 

Due to having three dimensional FEM, no distribution factor (DF) is incorporated. 

 

 

  

Figure 7.3 FE Modeling a T-beam Bridge with HS20 Truck Loading for Load 

Rating 

 

 

FE based method is quite a reasonable and advantageous method for load rating 

analysis of a single bridge. However, as far as load rating analysis of a population 

of bridges is concerned, the method is not practical, and computationally 

unmanageable due to the development of FE model of each bridge in the 
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population. The load ratings for 104 representative bridges from the FE model 

analysis results are given in Appendix D.1. Appendix D.2 illustrates an example for 

load rating using FE model. 

 

7.3 Network Modeling of FE Based Bridge Ratings 

7.3.1 Bridge Data 
 

The bridge data is prepared such that inputs are the bridge parameters identified in 

statistical analysis in Chapter 5 and outputs are the FEM based bridge load ratings 

(Inventory ratings, IR). As a result of statistical analysis, the numbers of governing 

independent bridge parameters are establish as only the span length and skew angle, 

width of bridges, beam depth and existence of reinforced parapets and end 

diaphragms. These parameters are used as inputs to the network. The outputs are the 

moment and shear load ratings obtained as discussed in previous section. In this 

study, the bridge data is used to establish intrinsic relationships between the bridge 

parameters and corresponding load ratings to speed up the FE based load rating 

analysis. Bridge data consisting of 104 T-beam bridges is given in Appendix D.1. 

Of these bridges, 75 have been assigned to training, 19 as cross-validation and 10 as 

test patterns in neural network modeling. 

 

7.3.2 Neural Network Modeling 
 
As mentioned before, the success of networks depends on network parameters and 

the topology. Appropriate values of the network parameters are set as follows: 

 
• Number of training examples = 75 

• Number of cross-validation examples = 19 

• Number of test examples = 10 

• Number of input layer neurons = 6 

• Number of output layer neuron =  2 

• Type of back-propagation = Levenberg-Marquardt back-propagation 

• Activation function = Sigmoid function 
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• Normalization range = [0.2,0.8] 

• Learning rate = 0,01 

• Training mode = Batch mode 

• Termination rule = minimum cross validation error or maximum epoch 

 
Several architectures are tested in conjunction with the above set of network 

parameters to find the one having the best prediction performance. This is a similar 

process that is carried out in Chapter 5. A typical architecture is designated as 

“input nodes (n) - [hidden nodes per hidden layer (m)]-output nodes (p)”. Six bridge 

parameters (the span length and skew angle, width of bridges, beam depth and 

existence of reinforced parapets and end diaphragms) form the inputs of the 

network and moment and shear load ratings are considered as network output. The 

following cases are created and studied with respect to the choice of network 

architecture 

 

Case 1:  Network 6-(m)-2; m varies from 4 to 12 

In case 1, the architecture has one hidden layer with m nodes denoted as 6-(m)-2. 

 

Case 2:  Network 6-(m-m)-2; m varies from 4 to 12  

In case 2, the architecture has two hidden layers with m nodes per layer denoted as 
6-(m-m)-2 

 

In the current study, the network performance is associated with the maximum error 

in load rating prediction of the network for all the testing patterns. If the maximum 

testing error appears to be below the tolerable level, then the performance of 

network is considered satisfactory. The results of the study on different network 

designs are shown in Figure 7.4. 
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Figure 7.4 Maximum Testing Errors versus Number of Nodes in Hidden Layer(s) 

 
 
 
 
 
It can be seen from this figure that ANN is quite useful in predicting load ratings. 

All the trained networks are able to predict the load ratings for all the testing 

patterns with a reasonable accuracy. Predictive performance of the network may be 

improved depending on the number of nodes in the hidden layer(s) and the number 

of hidden layers. A single hidden layer with an optimum number of neurons is 

sufficient for modeling of this problem. As seen from the Figure 7.4, the best 

performance in predicting load ratings is shown by Case 1 with a ten nodes, 

resulting in 3.89% maximum average testing error for moment load ratings and 

1.97% maximum average testing error for shear load ratings for all testing patterns. 

 

Best ANN Model 
 
 
The predictive performance of the 6-10-2 architecture is better than other 

architectures. The neural network is presented in Figure 7.5. 
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Figure 7.5 ANN Model for the Prediction of Inventory Load Ratings 
 
 
 
 
 
 

 
 

Figure 7.6  Avarage MSE versus Number of Epochs for Training the Best Network 
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In figure 7.6, the average MSE in training versus number of iteration is plotted. The 

average MSE drops drastically after 11 epochs and carries on running until 

minimum validation error which is reached at 59th epoch with a MSE error of 

0.000495371. After training is completed, test set is used to evaluate the 

performance of the network. For this purpose, a total of 10 testing patterns are used 

to observe the prediction performance. In testing, the network predicts load ratings 

by generalizing what it has been trained for. The actual outputs (FEM based load 

ratings) and the outputs from the networks of each example are graphically 

represented in Figure 7.7 and 7.8. 

 
 
 
 
 

 

Figure 7.7 Desired Output (FEM based) and Actual output of the Best Network for 
Moment 
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Figure 7.8 Desired Output (FEM based) and Actual output of the Best Network for 
Shear 

 
 
 
From Figure 7.7 and 7.8, it is clear that the predictions of the best networks  for 10 

unseen patterns is quite satisfactory, resulting in maximum average testing error of 

3.89% for moment load ratings and 1.97% for shear load ratings as mentioned 

before. This indicates that the network has learned the relation and generalizes to 

other patters reasonably. In addition, the linear coefficient of correlations very high 

between actual data and values predicted through neural network and it is 0.997 for 

moment load rating and 0.996 for shear load rating, indicating that proposed ANN 

model shows very good agreement with actual bridge data. 

 

The load ratings for 10 testing patterns from the FE model and the corresponding 

AASHTO based analysis results as well as network prediction are given in Table 

7.1. It is clear from the results that FEM based load ratings are higher than the 

AASHTO based rating, indicating that bridges inherently possess a greater load 

capacity. It can also be seen from this table that ANN is quite successful in 

predicting the load ratings from the bridge parameters. 
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Table 7.1 Moment and Shear Bridge Ratings for 10 Testing Patterns 

  MODEL INFORMATION AASHTO (LRFD) FEM ANN (FEM Based) 
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h

ea
r 

 I
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1 21 2 22 10 1 1 1,167 1,201 1,635 1,529 1,611 1,557 

2 25 21 21 11 0 1 0,566 0,968 1,013 1,413 1,017 1,421 

3 37 37 25 9 0 0 1,788 1,658 2,92 2,102 2,956 2,142 

4 32 19 19 8 1 0 1,678 1,655 2,66 2,024 2,741 2,027 

5 28 24 35 6 1 1 0,335 0,952 0,778 1,453 0,792 1,424 

6 30 25 37 7 1 1 1,226 1,217 1,838 1,556 1,788 1,542 

7 45 23 25 8 1 1 0,466 0,978 0,781 1,391 0,751 1,398 

8 26 28 23 9 1 0 1,055 1,312 1,576 1,656 1,620 1,678 

9 41 28 25 10 1 0 0,499 0,950 0,677 1,341 0,700 1,359 

10 32 15 28 11 1 1 1,584 1,485 2,31 1,782 2,389 1,794 

 

 

 

7.4 Discussion 

 

The purpose of this chapter is to develop an ANN model to obtain the FEM based 

bridge ratings of T-beam bridges from the common bridge parameters so that the 

load ratings of these bridges are calculated accurately and practically. 104 T-beam 

bridge models constructed in Chapter 5 are used to generate necessary data for the 

training of ANN. Bridge data is prepared such that inputs are the bridge parameters 

and outputs are the FEM based shear and moment load ratings. The bridge data is 

divided into three sets, namely, “training” set, “cross-validation” set and “test” set. 

Of these bridges, 75 have been assigned to training, 19 as cross-validation and 10 as 

test sets in ANN modeling. ANN is trained to predict FEM based ratings from the 

bridge parameters. Several network designs are examined to determine one with a 

reasonable performance. The predictive performance of the 6-10-2 architecture with 

defined network parameters was found to be better than others. It produces 

maximum average testing error of 3.89% for moment load ratings and 1.97% for 
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shear load ratings in the test set, indicating that the learning and generalization 

performance of the ANN Model is very good. In addition, the linear coefficient of 

correlations is 0.997 for moment load rating and 0.996 for shear load rating in the 

ANN Model. This indicates that proposed ANN Model shows very good agreement 

with FEM based load ratings. It is clear from the results that FEM based ratings can 

be easily and accurately obtained using ANN Model while still strictly conforming 

to the AASHTO standards and provisions. The proposed ANN model is quite 

accurate, fast and practical. 
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CHAPTER 8 

 
 

CONCLUSIONS 
 

 

 

In this work, approximate analysis of RC T-beam bridges, calibration of the T-beam 

bridges and modeling of load ratings of these bridges are studied using neural 

networks. Based on the results, the following conclusions can be drawn from the 

study: 

 

Approximate Analysis of RC T-Beam Bridges 

 

• The results indicate that by selecting the right input parameters and properly 

constructing and training the ANN models, it is possible to establish 

intrinsic relationship between the bridge parameters and responses, and 

interpolate this relationship for other bridges with a maximum error of 

3.36% for moment and 1.53% for shear. In addition, the linear coefficient of 

correlations between analytical data and values predicted through neural 

nets is very high and it is 0.998 for moment and 0.956 for shear, indicating 

that proposed NN models show very good agreement with actual responses. 

 

• Sensitivity analyses with the trained neural networks provide valuable 

additional information on the relative influence of input parameters on the 

bridge systems. The most important input parameter for moment is the 

bridge length, while the most important input parameter for shear is skew 

angle. The least important input for both is parapet. In addition, moment 

increases with increasing span length, beam depth and the number of beam, 

while it decreases with increasing skew angle and existence of parapet and 

diaphragm. Shear increases with increasing span length, skew angle, beam 
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depth, the number of beam and presence of diaphragm while it decreases 

with the existence of parapet. 

 

• In addition to the accuracy of outputs and the ease of use, neural networks 

reduce the overall time required for implementations by significant amount 

when compared with FE methods. The bridge responses can be obtained 

from the trained neural networks with a trivial computational time and effort 

and without a need to construct and analyze a new model for each parameter 

set. 

 

Calibration of the T-Beam Bridges -Manoa Road Bridge- 

 

• ANN model was first trained with the training set generated through linear 

analysis of analytical model. The results indicate that by using this ANN 

model, it is possible to reduce the differences between the measured and the 

calculated frequencies to less than 10% for the first three modes and to 

reduce the measured and the calculated deflections to less than 31% for the 

deflections along the central T-beam. Then, the same ANN Model was 

trained with the training set generated by considering that concrete does not 

carry tension forces. The maximum difference between the measured and 

the calculated frequencies for the first three modes is less than again 9%. 

However there is a significant improvement in deflections. The maximum 

difference between measured and the calculated deflections along the central 

T-beam were reduced from 31% to 12% indicating that T-beam bridges 

should be calibrated by taking into account the non-linear behavior of 

concrete. 

 

• Due to possible errors, uncertainties and discrepancies between the 

experiment and the analytical model, a "100% match" should not expected,  

hence it can concluded that the calibration of the bridge is achieved to the 

point that computed natural frequencies of the 3-D FE model agree well 

with those from field measured data. For deflections, however, slight 
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differences exist between the computed and the measured values. Preparing 

training set would take considerable amount of time; nevertheless, once a 

neural network is successfully trained, the same system can be used 

efficiently and quickly for calibration of the bridge model during the 

lifetime of the structure, following testing of the actual bridge. 

 

Modeling of Bridge Load Ratings of T-Beam Bridges 

 
• Since 3D FE models that precisely represent PA’s T-beam bridge population 

improve the load rating of these bridges, load ratings are calculated again 

more accurately by taking into account the actual geometry and detailing of 

the T-beam bridges. Then, ANN systems are used to model the bridge 

ratings based on the bridge parameters. The proposed ANN Model produces 

maximum average testing error of 3.89% for moment bridge ratings and 

1.97% for shear bridge ratings for the test patterns. This shows that the 

learning and generalization performance of the ANN Model is very good. In 

addition, the linear coefficient of correlations is 0.997 for moment bridge 

ratings and 0.996 for shear bridge ratings, indicating that proposed ANN 

Model shows very good agreement with FEM based bridge ratings. 

 

• Using this ANN model, the highest utilizable capacity of any T-beam bridge 

can be easily computed while still strictly conforming to the AASHTO 

standards and provisions. 

  

Artificial Neural Networks  

 

• The success of networks depends on network parameters and the topology. 

 

• Levenberg- Marquardt learning rule and the sigmoid transfer function are 

appropriate choices for a successful network application in the current 

context. 
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• The learning and prediction performance of the network vary depending on 

the number of hidden layers and the number of nodes in the hidden and 

output layers.  A single hidden layer with an optimum number of neurons is 

sufficient for modeling of these problems. 

 

• While minimum MSE is a measure of learning performance, it does not 

guarantee the best prediction rate (generalization capability). To make sure 

that the network training has been satisfactorily completed and the network 

is capable of generalization, a set of unseen patterns must be selected and 

the network should be tested using these patterns.   

 

• The proposed models are quite accurate, fast and practical for use within the 

range of bridge data used for training. 
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APPENDIX A 

 
 

LEARNING IN ARTIFICIAL NEURAL NETWORKS 
 

 

 

A.1 Generalized Delta Rule Algorithm 
 
 
 
The net input to a node in the layer " is given by (Figure 3.5) 

 


� =  � ��8
W

8�� �8                                                                                                                                (A1.1) 

 

and the output of node " will be 

 �� = �(
�)                                                                                                    (A1.2) 

 

Here � is the activation function and in this study following given sigmoidal 

function has been used 

 

�� = 11 + 4f(gzijz)/jk                                                                                  (A1.3) 

 

Now the input to the nodes of layer ~ is 

 


o = � �o� ��                                                                                           (A1.4) 
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and its respective outputs are 

 
 �o = �(
o)                                                                                                   (A1.5) 

 

 
In the training process of neural networks, for the input pattern �p = 6p8  the 

weights adjustment will take place in the links of the neural networks for desired 

output  .po   at the output nodes. After achieving this first adjustment the network 

will pick up another pair of �p and .po, and will again adjust weights for new pair. 

Similar way the process will go on till all the input-output pairs get exhausted. 

Finally network will have a single set of stabilized weights satisfying all the input-

output pairs. 

 

Usually the outputs �po will not be the same as desired output values .po . For each 

input-output pattern, the square of error can be given by 

 

¢p = 12 �(.po − �po)	
o                                                                         (A1.6) 

 

and the average system error by 

 

¢ = 12£ � �(.po − �po)	
op                                                                  (A1.7) 

 

Avoiding the 2 subscript in the eqn (A6) for convenience, then the expression will 

be 

 

¢ = 12 �(.o − �o)	
o                                                                                (A1.8) 
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In a true gradient search for a minimum system error one has to compute the 

derivative of the error function ¢, with respect to any weight in the network and 

then change the weights according to the rule 

 

∆�o�  = − � ¤¢    ¤�o�                                                                              (A1.9) 

 

where  � is learning parameter. 

 

The partial derivative ¤¢ ¤�o� ⁄  can be given by using chain rule 

 ¤¢ ¤�o� = ¤¢¤
o   ¤
o  ¤�o�                                                                             (A1.10) 

using eqn (A4) 

¤
o¤�o� = ¤ ¤�o� � �o� �� = ��                                                            (A1.11) 

now  ¦o can be given by 

¦o = −¤¢¤
o                                                                                                (A1.12) 

therefore   

∆�o�  = �¦o��                                                                                         (A1.13) 
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The weights on each line should be changed by an amount proportional to the 

product of the term ¦o, available to the unit receiving input along that line and the 

activation ��  along that line. The determination of ¦o is a recursive process. To 

compute  ¦o = −¤¢ ¤
o⁄ , the chain rule can be used to express in terms of two 

factors. First the rate of change of error with respect to the output �o and second the 

rate of change of the output of the node ~ with respect to input to that same node. 

Therefore  

 

¦o = − ¤¢¤
o = − ¤¢¤�o  ¤�o¤
o                                                                   (A1.14) 
 

now  these factors can be computed as 

¤¢¤�o = −(.o − �o)                                                                                   (A1.15) 

 ¤�o¤
o = �§o(
o)                                                                                           (A1.16) 

using expressions (A15) and (A16), we have 

¦o = (.o − �o)�§o(
o)                                                                             (A1.17) 

for any output layer ~, ∆�o�  will be given by 

∆�o�  = �(.o − �o)�§o(
o)�� = �¦o��                                               (A1.18) 

Similarly for the internal units  

∆��8  = �¦��8                                                                                            (A1.19) 

¦� = �§�(
�) � ¦o�o�o                                                                             (A1.20) 
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The application of the backpropagation algorithm involves two phases. In the first 

phase the input is presented and propagated forward through the network to 

compute the output value of each unit. In the backward phase the ¦ s for all the units 

are computed. Once these two phases are complete, one can compute for each 

weight the ∆� s. 

In summary here we add one more subscript 2 to denote the pattern number, we 

have 

∆p��8   = �¦p��p8                                                                                  (A1.21) 

 

If  " are the nodes of the output layer then 

 ¦p� = (.p� − �p�)�§�(
p�)                                                                    (A1.22) 
 

or if  " are nodes of internal or hidden units then 

¦p� = �§�(
p�) � ¦po�o�o                                                                      (A1.23) 

The backpropagation is basically a gradient descent algorithm. In multilayer 

networks, the error surfaces will be complex with several local minima. It is 

possible that the gradient descent procedure may not reach the global minimum, but 

get trapped in one of the many local minima. 

One way to increase the learning rate without leading to oscillation is to modify the 

backpropagation algorithm by including the momentum term � as below 

 

∆��8 (/ + 1)  = �(¦��8) + �∆��8(/)                                              (A1.24) 
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where / is the presentation number and   � is the constant that determines the effect 

of the previous weight changes on the current direction of movement in the weight 

space. This provides a kind of momentum in the weight space that effectively filters 

out the high frequency variations of the error surface in the weight space. 

 

A.2 Correlation Coefficient 

 

The size of the mean square error (MSE) can be used to determine how well the 

network output fits the desired output, but it doesn't necessarily reflect whether the 

two sets of data move in the same direction. For instance, by simply scaling the 

network output, we can change the MSE without changing the directionality of the 

data. The correlation coefficient (r) solves this problem. By definition, the 

correlation coefficient between a network output x and a desired output t is: 

 

3 = ∑ (�8 − �©)(.8 − .©)8 �ª∑ (.8 − .©)	8 � ª∑ (�8 − �©)	8 �
                                                       (w1.25) 

 

The correlation coefficient is confined to the range [-1,1]. When r =1 there is a 

perfect positive linear correlation between x and t, that is, they covary, which means 

that they vary by the same amount. When r = -1, there is a perfectly linear negative 

correlation between x and t, that is, they vary in opposite ways (when x increases, t 

decreases by the same amount). When r = 0 there is no correlation between x and t, 

i.e. the variables are called uncorrelated. Intermediate values describe partial 

correlations. For example a correlation coefficient of 0.88 means that the fit of the 

model to the data is reasonably good. 
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APPENDIX B 

 
 

BRIDGE DATA FOR APPROXIMATE ANALYSIS 
 

 

 

Table B.1 Generated Models and Corresponding Analysis Results  

 

 
MODEL INFORMATION ANALYSIS OUTPUTS 

Model 
Span 

Length 
Skew 
Angle 

Beam 
Depth 

Number of 
Beam 

Parapet Diaphragm 
FEM  

Moment 
FEM   
Shear 

1 26 32 26 5 1 1 718,234 23,234 
2 36 39 33 5 0 1 1427,633 26,588 
3 32 12 40 5 1 1 1134,555 23,939 
4 22 26 24 5 1 1 640,897 21,43 
5 29 14 24 5 1 1 754,005 21,238 
6 24 15 31 5 1 1 739,897 21,868 
7 29 23 34 5 1 1 972,534 22,873 
8 49 32 25 5 1 1 1113,118 23,075 
9 49 25 29 5 1 1 1296,697 23,898 
10 40 28 31 5 1 0 1189,578 23,508 
11 41 6 31 5 1 0 1195,406 21,58 
12 20 10 31 5 0 1 743,601 20,672 
13 47 7 23 5 0 1 1943,912 22,738 
14 21 45 21 5 0 1 608,804 22,401 
15 39 21 19 5 0 0 1500,546 22,39 
16 20 27 38 5 0 0 753,835 21,135 
17 41 6 31 5 0 0 1745,813 23,221 
18 26 0 24 6 1 1 810,057 20,438 
19 28 28 32 6 1 1 1023,79 23,271 
20 50 22 38 6 1 1 2289,972 25,314 
21 23 31 39 6 1 1 866,842 22,607 
22 51 25 36 6 1 0 2148,386 24,249 
23 28 27 20 6 1 0 825,016 20,755 
24 29 0 23 6 1 0 985,28 19,907 
25 54 28 22 6 0 1 2902,305 24,559 
26 54 4 29 6 0 1 3086,096 24,296 
27 25 12 31 6 0 1 1023,414 22,46 
28 37 1 19 6 0 0 1839,272 21,62 
29 36 4 20 7 1 1 1117,098 21,187 
30 26 36 28 7 1 1 909,456 24,137 
31 49 17 33 7 1 1 2109,775 25,351 
32 35 39 39 7 1 0 1541,666 26,969 
33 27 35 21 7 1 0 875,648 23,081 
34 52 11 19 7 1 0 1346,455 20,624 
35 34 0 30 7 1 0 1397,282 22,821 
36 21 35 19 7 0 1 707,919 22,129 
37 24 3 23 7 0 1 882,953 20,896 
38 32 39 27 7 0 1 1317,915 26,326 
39 55 39 20 7 0 1 2415,02 25,892 
40 42 26 39 7 0 0 2138,326 25,757 
41 50 8 25 7 0 0 2649,935 23,607 
42 49 28 19 8 1 1 1306,137 22,183 
43 24 44 33 8 1 1 827,929 24,388 
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Table B.1 (continued). 

44 33 30 25 8 1 1 1150,534 24,13 
45 33 10 25 8 1 0 1299,422 22,82 
46 37 2 35 8 1 0 1677,228 24,028 
47 36 21 19 8 1 0 1177,831 21,291 
48 48 39 21 8 1 0 1451,435 22,644 
49 47 31 32 8 1 0 1953,888 25,298 
50 25 17 38 8 0 1 956,251 23,451 
51 55 45 20 8 0 1 1923,636 26,172 
52 34 32 21 8 0 1 1321,827 24,238 
53 48 15 39 8 0 0 2494,788 26,221 
54 53 23 25 9 1 1 1951,25 23,955 
55 40 8 36 9 1 1 1735,088 25,074 
56 38 40 22 9 1 1 1212,005 26,49 
57 21 10 30 9 1 1 776,331 21,46 
58 31 14 25 9 1 1 1124,206 22,82 
59 52 2 31 9 1 0 2380,562 24,999 
60 36 45 38 9 1 0 1480,588 27,727 
61 30 5 22 9 1 0 1125,145 22,306 
62 33 35 23 9 1 0 1151,799 24,614 
63 28 31 38 9 0 1 1133,351 24,705 
64 42 27 29 9 0 1 1829,805 26,196 
65 49 32 21 9 0 1 2106,361 25,133 
66 37 37 25 9 0 0 1430,889 25,227 
67 30 37 22 9 0 0 1078,143 24,468 
68 27 18 39 9 0 0 1148,586 23,851 
69 22 15 40 9 0 0 881,849 22,301 
70 37 26 25 10 1 1 1342,869 24,512 
71 31 24 25 10 1 1 1111,678 23,628 
72 48 24 36 10 1 1 2068,198 26,707 
73 44 41 33 10 1 1 1710,487 28,277 
74 21 2 22 10 1 1 751,17 20,427 
75 40 8 39 10 1 0 1904,678 25,63 
76 30 45 38 10 1 0 1230,696 26,426 
77 38 38 38 10 1 0 1690,701 26,704 
78 54 43 32 10 0 1 2301,866 28,344 
79 40 22 39 10 0 1 1729,635 26,377 
80 41 44 36 10 0 1 1629,005 28,442 
81 49 1 33 10 0 1 2532,279 25,295 
82 35 19 40 10 0 0 1638,345 25,532 
83 31 11 24 10 0 0 1271,526 22,171 
84 33 16 28 10 0 0 1398,857 23,351 
85 52 14 24 10 0 0 2535,614 24,077 
86 29 40 26 10 0 0 1050,448 24,585 
87 51 45 31 10 0 0 2069,741 27,872 
88 21 43 22 11 1 1 631,585 22,641 
89 38 38 31 11 1 1 1396,37 27,518 
90 51 7 27 11 1 1 2107,604 24,509 
91 54 25 23 11 1 0 2041,764 23,467 
92 30 5 32 11 1 0 1234,07 23,082 
93 54 0 19 11 1 0 1888,665 22,205 
94 32 41 32 11 1 0 1245,423 26,479 
95 46 19 37 11 1 0 2142,325 25,905 
96 50 31 26 11 0 1 2085,061 26,16 
97 35 26 32 11 0 0 1544,681 25,335 
98 53 38 28 11 0 0 2207,442 26,034 
99 28 21 21 11 0 0 1016,031 22,29 
100 46 34 31 11 0 0 1976,295 26,141 
101 37 26 22 11 0 1 1378,852 24,062 
102 28 28 19 11 1 1 903,853 23,266 
103 26 3 25 8 0 0 966,723 21,02 
104 35 22 19 8 0 0 1438,956 22,614 
105 47 0 19 8 1 1 1351,672 21,544 
106 41 32 31 8 0 1 1836,371 26,046 
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Table B.1 (continued). 

107 21 4 39 7 0 0 874,132 21,283 
108 52 44 25 7 1 1 1557,353 26,437 
109 24 5 24 6 0 0 942,194 20,753 
110 49 19 28 6 0 0 2837,365 24,62 
111 34 7 20 6 0 1 1586,351 22,023 
112 35 4 35 6 1 0 1555,862 23,539 
113 45 17 19 6 1 0 1111,021 18,842 
114 31 21 25 11 1 1 1117,09 23,529 
115 25 21 21 11 0 1 877,846 22,527 
116 30 39 28 6 0 0 1289,762 24,862 
117 32 14 40 7 0 0 1579,935 24,289 
118 42 24 32 8 0 1 1956,106 25,401 
119 50 15 29 11 1 0 2241,165 25,602 
120 54 10 20 8 1 1 1521,141 22,252 
121 32 19 19 8 1 0 1081,079 21,809 
122 32 32 39 5 0 1 1293,81 25,637 
123 53 0 19 7 1 1 1357,467 20,659 
124 41 44 36 10 0 1 1629,005 28,376 
125 37 26 20 10 0 1 1390,765 23,593 
126 38 40 40 6 1 0 1701,652 26,4 
127 31 17 38 9 0 0 1359,581 24,062 
128 42 20 33 8 1 1 1745,81 23,998 
129 49 14 20 7 0 1 2471,707 23,707 
130 28 19 38 5 1 0 951,964 23,059 
131 49 17 27 11 0 0 2322,649 24,914 
132 42 26 25 9 0 0 1820,374 24,057 
133 22 26 23 6 0 1 849,231 22,034 
134 31 19 32 5 1 1 976,878 22,895 
135 28 24 35 6 1 1 1079,69 23,202 
136 30 25 37 7 1 1 1217,701 24,6 
137 45 23 25 8 1 1 1606,977 23,719 
138 26 28 23 9 1 0 930,698 23,055 
139 41 28 25 10 1 0 1566,541 24,375 
140 32 15 28 11 1 1 1256,158 23,935 
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APPENDIX C 

 
 

TRAINING SET OF MANOA ROAD BRIDGE 
 

 

 

Table C.1 Generated Models and Analysis Results for Manoa Road Bridge 
 

 
ANALYSIS OUTPUTS MODEL INFORMATION 

Model 
f1 

(Hz) 
f2 

(Hz) 
f3 

(Hz) 
dF1 
(in) 

dF2 

(in) 
dF3 

(in) 
E   

(ksi) 
tasphalt 
(in) 

Kv (10x) 
(kips/ft) 

Kh (10x) 
(kips/ft) 

Kl (10x) 
(kips/ft) 

1 20,03 21,46 23,01 0,017 0,038 0,021 2500 5 4,78 3 2,6 
2 17,21 18,58 20,08 0,022 0,048 0,027 2000 0 4 2,85 1,85 
3 14,35 15,4 16,53 0,034 0,074 0,041 1100 12 4,48 3,48 1,3 
4 21,3 22,82 24,42 0,015 0,034 0,019 3000 2 2,78 1,3 3,95 
5 19,85 21,2 22,69 0,018 0,036 0,021 3300 7 3,78 1 1,48 
6 18,41 19,58 20,86 0,02 0,045 0,025 2200 4 4,85 1 2,48 
7 18,88 20,18 21,69 0,019 0,044 0,024 2000 3 4,85 1,9 3,7 
8 18,07 19,26 20,57 0,021 0,046 0,026 2100 3 3,6 1,9 2,95 
9 13,01 14,01 15,06 0,042 0,082 0,049 1300 8 2,9 1,78 1,7 

10 14,56 15,72 16,92 0,033 0,067 0,039 1600 11 2,95 2,3 1,85 
11 14,39 15,66 16,72 0,034 0,065 0,041 1900 11 2 2,7 1,78 
12 21,11 22,94 24,87 0,015 0,034 0,019 3000 11 3,95 3,95 1,85 
13 17,37 18,44 19,6 0,023 0,05 0,028 2000 8 4,6 1 1,9 
14 15,05 16,55 18,09 0,029 0,06 0,035 1800 0 2,9 2,85 1,6 
15 21,24 22,77 24,48 0,015 0,035 0,019 2800 6 4,78 1,9 3,48 
16 21,66 23,55 25,51 0,015 0,032 0,018 3400 10 3,95 3,3 1,6 
17 22,55 24,24 26,21 0,013 0,031 0,016 3000 8 4,3 3,3 3,95 
18 24 25,79 27,73 0,012 0,027 0,014 3900 2 4,78 2,9 2,95 
19 20,75 22,22 23,71 0,016 0,035 0,02 3100 10 2,78 1 3,48 
20 19,78 21,18 22,79 0,018 0,04 0,021 2300 9 3,95 1,85 3,78 
21 18,15 19,36 20,74 0,021 0,048 0,026 1700 9 3,3 3,78 3,3 
22 15,62 16,78 17,94 0,029 0,059 0,035 1800 5 2,48 2,7 2,3 
23 17,41 18,63 20,15 0,022 0,05 0,027 1700 0 4,6 1,7 3,78 
24 19,98 21,31 22,75 0,017 0,038 0,021 2700 9 4,7 1 2,6 
25 21,15 22,71 24,42 0,015 0,035 0,019 2800 3 4,48 3,3 2,7 
26 19,21 20,61 22,16 0,018 0,04 0,022 2500 0 2,7 2 3,7 
27 20,26 21,99 23,81 0,017 0,037 0,02 2700 3 3,9 3,95 1,9 
28 17,16 18,23 19,39 0,024 0,05 0,028 2100 1 4 1 1,3 
29 22,33 24,55 26,8 0,014 0,03 0,017 3800 7 3,48 3,9 1,85 
30 19,69 22,01 24,21 0,018 0,036 0,021 3300 10 3 3,7 1 
31 19,41 20,2 20,89 0,019 0,039 0,024 2700 2 2 2,7 3,7 
32 18,03 19,21 20,5 0,021 0,047 0,026 2100 5 3,85 1,3 2,85 
33 21,09 22,56 24,24 0,015 0,036 0,019 2500 7 2,9 3,9 3,9 
34 21,92 23,56 25,42 0,014 0,033 0,017 3000 3 3,7 2 4 
35 20,35 21,79 23,39 0,017 0,038 0,02 2500 6 3,9 2,95 3,3 
36 15,71 16,82 18,04 0,028 0,062 0,034 1300 11 5 3,95 1,9 
37 15,45 16,64 17,89 0,029 0,063 0,035 1400 11 3,7 3,3 1,7 
38 18,35 19,54 20,84 0,021 0,045 0,025 2100 9 5 1 2,78 
39 12,84 13,53 14,31 0,043 0,093 0,052 800 12 2,95 1,9 2,85 
40 21,8 23,67 25,58 0,014 0,031 0,017 3600 4 3,95 2,95 1 
41 18,23 19,57 21,03 0,02 0,043 0,024 2300 0 4,95 2,3 1,7 
42 15,04 16,98 18,81 0,03 0,054 0,035 3400 2 2,3 1,3 1,9 
43 15,71 16,88 18,09 0,028 0,058 0,034 1800 10 2,85 2,48 2,3 
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Table C.1 (continued). 

44 16,67 17,74 19,01 0,025 0,057 0,03 1400 1 5 2,3 3,7 
45 18,15 20,34 22,28 0,021 0,041 0,025 3300 8 2,6 2,95 1 
46 14,73 15,57 16,52 0,032 0,07 0,039 1200 6 5 1 2,48 
47 18,64 19,87 21,23 0,02 0,044 0,024 2200 8 4 1,78 2,95 
48 17,42 18,61 19,89 0,022 0,048 0,027 2000 0 2,48 1 3,6 
49 19,8 21,2 22,71 0,018 0,039 0,021 2500 6 4,3 2,85 2,6 
50 12,19 13,11 14,03 0,047 0,099 0,057 800 5 2,3 4 1,85 
51 20,72 22,31 23,98 0,016 0,034 0,019 3500 4 3,7 2,3 1,9 
52 17,04 18,14 19,42 0,024 0,055 0,029 1400 2 4,85 3,6 3,3 
53 20,58 22,96 25,22 0,016 0,033 0,02 3600 7 2,95 3,85 1,48 
54 16,54 17,58 18,72 0,025 0,055 0,031 1700 11 3,7 1 2,78 
55 18,13 19,43 20,84 0,021 0,047 0,025 1900 9 3,95 3,48 2,48 
56 16,22 17,23 18,35 0,027 0,059 0,033 1400 8 2,7 1,6 3,9 
57 16,87 17,93 19,08 0,024 0,052 0,029 1900 10 3,95 1 2,3 
58 17,12 18,25 19,43 0,024 0,05 0,029 2100 4 2,7 1,9 2,95 
59 13,3 14,28 15,33 0,039 0,085 0,047 900 4 4,3 3,78 1 
60 22,91 24,62 26,59 0,013 0,03 0,016 3100 9 3,78 3,7 3,7 
61 13,67 14,43 15,36 0,037 0,085 0,046 800 8 4,78 1,95 3,48 
62 20,64 22,21 23,99 0,015 0,034 0,019 3000 0 3,78 1 3,3 
63 13,8 14,62 15,5 0,037 0,078 0,044 1100 11 4,6 1,7 1,3 
64 22,24 23,89 25,77 0,014 0,032 0,017 2900 7 3,7 3,6 3,7 
65 23,36 25,09 27 0,013 0,028 0,015 3600 1 4,7 1 3,48 
66 21,41 22,9 24,53 0,015 0,033 0,018 3100 12 4,48 1 3 
67 19,24 20,59 22,03 0,019 0,04 0,023 2700 4 3,3 1 3 
68 19,49 20,85 22,38 0,018 0,042 0,022 2100 9 4,7 3,6 3 
69 18,65 20,24 21,97 0,019 0,041 0,023 2400 0 3,85 3,3 2 
70 19,41 20,73 22,18 0,018 0,042 0,022 2100 9 2,9 3,78 3,3 
71 19,68 21,08 22,66 0,018 0,04 0,022 2300 7 3,95 1 3,7 
72 16,72 18,48 20,3 0,024 0,045 0,028 3300 0 3 1 2 
73 17,29 18,51 19,78 0,023 0,049 0,028 2200 3 3,78 2 0 
74 17,62 18,75 20 0,022 0,047 0,027 2400 10 3,78 1 0 
75 21,57 23,18 24,94 0,015 0,034 0,018 2800 6 3,78 3,78 3 
76 21,98 23,61 25,43 0,014 0,032 0,017 3100 2 3,9 1 3,7 
77 18,89 20,19 21,67 0,019 0,044 0,024 2000 6 3,48 3 3,6 
78 20,96 23,17 25,37 0,015 0,033 0,019 3400 11 3,48 3,9 0 
79 17,22 18,53 19,93 0,022 0,047 0,027 2300 0 3,78 2 1 
80 20,97 23,12 25,22 0,015 0,033 0,019 3500 1 3 3,78 2 
81 21,64 23,16 24,64 0,015 0,032 0,018 3600 3 2,6 3 3 
82 18,41 19,63 20,92 0,02 0,044 0,025 2300 4 4,7 2 1 
83 18,92 20,24 21,73 0,019 0,044 0,024 2100 4 3,48 1,3 3,78 
84 22,59 24,27 26,19 0,013 0,031 0,016 3200 2 4,48 2 3,78 
85 21,24 22,78 24,44 0,015 0,034 0,019 3000 8 3 1 3,78 
86 21,26 22,53 23,7 0,015 0,034 0,019 2800 7 2,3 3,9 3,6 
87 22,25 23,89 25,79 0,014 0,032 0,017 2800 6 4,6 4 3,48 
88 22,26 23,92 25,78 0,014 0,032 0,017 3100 5 4 2,7 3,7 
89 18,44 19,95 21,55 0,02 0,045 0,024 2100 11 4,6 3,9 0 
90 20,02 21,38 22,9 0,017 0,04 0,021 2200 8 2,78 3,9 3,78 
91 19,83 21,28 22,81 0,018 0,037 0,021 3200 11 3,78 2 0 
92 20,73 22,62 24,58 0,016 0,035 0,019 3000 6 3,95 3,78 0 
93 21,92 23,62 25,42 0,014 0,032 0,017 3300 9 4,7 3 2 
94 17,88 19,08 20,33 0,022 0,046 0,026 2200 2 4,3 2 0 
95 19,86 21,88 23,8 0,017 0,036 0,021 3200 5 2,78 3,6 2 
96 21,96 24,07 26,24 0,014 0,031 0,017 3500 12 3,85 4 0 
97 17,9 20,04 22,06 0,021 0,044 0,026 2700 2 2,9 3,6 0 
98 21,03 22,55 24,33 0,015 0,036 0,019 2400 4 4,48 4 3,6 
99 17,73 19,63 21,51 0,022 0,042 0,026 3600 10 3 2 0 

100 20,55 22,02 23,56 0,016 0,035 0,02 3100 6 3 1 3,3 
101 17,93 19,23 20,67 0,022 0,043 0,026 2900 4 3,48 1 0 
102 21,74 23,34 25,13 0,015 0,033 0,018 3000 8 3,85 2 3,7 
103 21,21 22,85 24,82 0,014 0,033 0,018 2800 0 4,6 3 3,7 
104 16,25 17,98 19,69 0,026 0,05 0,031 2900 12 2,9 2 0 
105 12,68 14,88 16,65 0,042 0,071 0,048 3200 5 2 1 0 
106 19,32 20,78 22,35 0,018 0,038 0,022 2700 0 2,85 2,9 3 
107 19,89 21,28 22,75 0,017 0,039 0,021 2600 11 3 2,7 3,3 
108 20,11 21,41 22,68 0,017 0,036 0,021 3100 5 2,48 1,9 3,3 
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Table C.1 (continued). 

109 15,34 17,14 18,98 0,029 0,054 0,034 3100 12 2,7 1 1,7 
110 15,09 16,61 18,07 0,031 0,057 0,036 2600 1 2,3 2 2 
111 20,16 21,53 22,93 0,017 0,037 0,021 2800 12 2,7 2,7 3,3 
112 19,18 21,29 23,23 0,019 0,037 0,023 3500 8 2,7 3 1,7 
113 16,18 17,82 19,46 0,027 0,05 0,031 2900 7 2,6 2 2 
114 20,89 22,38 23,94 0,016 0,035 0,019 3000 2 3 2,7 3,3 
115 19,08 20,37 21,69 0,019 0,041 0,023 2600 2 2,7 1 3,3 
116 16,52 18,43 20,28 0,025 0,047 0,03 3400 3 2,6 2 1,7 
117 17,09 18,8 20,58 0,024 0,045 0,028 3300 6 2,95 1,7 1,7 
118 18,38 19,78 21,25 0,021 0,042 0,025 2900 7 2,85 2 2,7 
119 17,4 19,12 20,92 0,023 0,044 0,027 3400 9 2,9 1,7 2 
120 16,52 18,43 20,19 0,025 0,05 0,03 2600 9 2,78 2,7 0 
121 14,78 16,25 17,57 0,032 0,057 0,038 2900 7 2 1,9 2 
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APPENDIX D 

 
 

BRIDGE RATING CALCULATION 
 

 

 

D.1 Bridge Data for Load Rating 
 
 
 
 

Table D.1 Generated Models and Corresponding Load Ratings 

MODEL INFORMATION   RATING FACTORS 

Model  
Span 

Length  
Skew 
Angle 

Beam 
Depth 

Number 
of Beam 

Parapet Diaphragm 
Moment RI 
(AASHTO) 

Moment 
RI 

(FEM) 

Shear      
RI 

(AASHTO) 

Shear 
RI 

(FEM) 
1 26 32 26 5 1 1 1,511 3,131 1,314 1,730 
2 36 39 33 5 0 1 1,083 1,679 1,271 1,656 
3 32 12 40 5 1 1 1,628 3,163 1,764 2,211 
4 22 26 24 5 1 1 1,684 3,259 1,401 1,812 
5 29 14 24 5 1 1 1,042 2,583 1,251 1,779 
6 24 15 31 5 1 1 2,073 3,870 1,682 2,088 
7 29 23 34 5 1 1 1,622 3,142 1,588 2,081 
8 49 32 25 5 1 1 0,229 1,423 0,868 1,599 
9 49 25 29 5 1 1 0,334 1,417 1,020 1,674 

10 40 28 31 5 1 0 0,723 1,961 1,187 1,810 
11 41 6 31 5 1 0 0,677 1,890 1,271 1,962 
12 20 10 31 5 0 1 2,497 3,902 1,905 2,254 
13 21 45 21 5 0 1 1,644 2,804 1,182 1,585 
14 20 27 38 5 0 0 3,088 5,031 2,133 2,563 
15 41 6 31 5 0 0 0,677 0,960 1,271 1,759 
16 26 0 24 6 1 1 1,299 2,397 1,404 1,847 
17 28 28 32 6 1 1 1,613 2,749 1,519 1,965 
18 50 22 38 6 1 1 0,531 0,985 1,292 1,853 
19 23 31 39 6 1 1 2,965 4,431 1,976 2,406 
20 51 25 36 6 1 0 0,450 0,943 1,206 1,853 
21 28 27 20 6 1 0 0,851 1,763 1,057 1,632 
22 29 0 23 6 1 0 0,980 1,758 1,284 1,809 
23 36 4 20 7 1 1 0,447 1,062 1,002 1,484 
24 26 36 28 7 1 1 1,683 2,628 1,371 1,716 
25 49 17 33 7 1 1 0,440 0,829 1,176 1,623 
26 35 39 39 7 1 0 1,430 2,071 1,499 1,851 
27 27 35 21 7 1 0 1,042 1,751 1,074 1,462 
28 52 11 19 7 1 0 -0,020 0,548 0,753 1,435 
29 34 0 30 7 1 0 1,021 1,572 1,407 1,797 
30 21 35 19 7 0 1 1,365 1,980 1,162 1,504 
31 24 3 23 7 0 1 1,440 1,945 1,410 1,762 
32 32 39 27 7 0 1 1,066 1,454 1,150 1,471 
33 49 28 19 8 1 1 0,041 0,552 0,708 1,326 
34 24 44 33 8 1 1 2,498 3,707 1,589 1,944 
35 33 30 25 8 1 1 0,840 1,522 1,108 1,521 
36 33 10 25 8 1 0 0,840 1,278 1,205 1,586 
37 37 2 35 8 1 0 1,031 1,491 1,501 1,879 
38 36 21 19 8 1 0 0,398 0,846 0,888 1,423 
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Table D.1 (continued). 

39 48 39 21 8 1 0 0,132 0,630 0,725 1,386 
40 47 31 32 8 1 0 0,495 0,861 1,105 1,588 
41 25 17 38 8 0 1 2,399 3,685 1,921 2,247 
42 34 32 21 8 0 1 0,604 0,815 0,937 1,324 
43 26 3 25 8 0 0 1,371 1,924 1,428 1,827 
44 40 8 36 9 1 1 0,894 1,394 1,443 1,817 
45 38 40 22 9 1 1 0,482 1,044 0,863 1,211 
46 21 10 30 9 1 1 2,298 3,530 1,800 2,103 
47 31 14 25 9 1 1 0,962 1,548 1,234 1,610 
48 36 45 38 9 1 0 1,338 2,028 1,401 1,749 
49 30 5 22 9 1 0 0,852 1,241 1,192 1,507 
50 33 35 23 9 1 0 0,769 1,285 1,010 1,379 
51 28 31 38 9 0 1 2,066 2,975 1,737 2,092 
52 42 27 29 9 0 1 0,568 0,737 1,095 1,449 
53 37 37 25 9 0 0 0,659 0,959 0,995 1,398 
54 30 37 22 9 0 0 0,895 1,313 1,027 1,393 
55 37 26 25 10 1 1 0,630 1,094 1,051 1,437 
56 31 24 25 10 1 1 0,962 1,561 1,184 1,557 
57 48 24 36 10 1 1 0,551 0,877 1,247 1,630 
58 44 41 33 10 1 1 0,655 1,144 1,121 1,467 
59 40 8 39 10 1 0 0,993 1,376 1,541 1,883 
60 30 45 38 10 1 0 1,937 2,715 1,569 1,919 
61 38 38 38 10 1 0 1,149 1,644 1,402 1,794 
62 40 22 39 10 0 1 0,993 1,477 1,477 1,851 
63 41 44 36 10 0 1 0,912 1,426 1,241 1,587 
64 31 11 24 10 0 0 0,906 1,154 1,211 1,623 
65 33 16 28 10 0 0 0,990 1,303 1,284 1,696 
66 29 40 26 10 0 0 1,245 1,848 1,185 1,568 
67 51 45 31 10 0 0 0,350 0,515 0,956 1,349 
68 21 43 22 11 1 1 1,737 2,865 1,241 1,612 
69 38 38 31 11 1 1 0,868 1,483 1,170 1,487 
70 30 5 32 11 1 0 1,418 2,030 1,567 1,925 
71 32 41 32 11 1 0 1,353 2,017 1,317 1,651 
72 46 19 37 11 1 0 0,652 0,890 1,330 1,714 
73 35 26 32 11 0 0 1,041 1,409 1,328 1,704 
74 28 21 21 11 0 0 0,920 1,274 1,128 1,509 
75 46 34 31 11 0 0 0,504 0,640 1,073 1,490 
76 28 28 19 11 1 1 0,782 1,290 1,013 1,343 
77 35 22 19 8 0 0 0,437 0,507 0,899 1,321 
78 47 0 19 8 1 1 0,085 0,533 0,847 1,337 
79 41 32 31 8 0 1 0,702 0,923 1,150 1,545 
80 52 44 25 7 1 1 0,155 0,793 0,779 1,294 
81 35 4 35 6 1 0 1,167 1,786 1,538 1,975 
82 45 17 19 6 1 0 0,131 0,960 0,793 1,686 
83 31 21 25 11 1 1 0,962 1,524 1,199 1,562 
84 42 26 25 9 0 0 0,431 0,507 0,973 1,412 
85 30 39 28 6 0 0 1,281 1,667 1,238 1,629 
86 42 24 32 8 0 1 0,667 0,849 1,205 1,616 
87 31 19 32 5 1 1 1,332 2,826 1,467 1,973 
88 32 32 39 5 0 1 1,669 2,538 1,625 2,003 
89 41 44 36 10 0 1 0,912 1,426 1,241 1,591 
90 37 26 20 10 0 1 0,408 0,524 0,883 1,281 
91 38 40 40 6 1 0 1,236 1,893 1,456 1,936 
92 31 17 38 9 0 0 1,629 2,309 1,700 2,109 
93 42 20 33 8 1 1 0,699 1,193 1,255 1,764 
94 28 19 38 5 1 0 1,957 3,691 1,803 2,241 
95 25 21 21 11 0 1 1,167 1,635 1,201 1,529 
96 32 19 19 8 1 0 0,566 1,013 0,968 1,413 
97 28 24 35 6 1 1 1,788 2,920 1,658 2,102 
98 30 25 37 7 1 1 1,678 2,660 1,655 2,024 
99 45 23 25 8 1 1 0,335 0,778 0,952 1,453 
100 26 28 23 9 1 0 1,226 1,838 1,217 1,556 
101 41 28 25 10 1 0 0,466 0,781 0,978 1,391 
102 32 15 28 11 1 1 1,055 1,576 1,312 1,656 
103 37 26 22 11 0 1 0,499 0,677 0,950 1,341 
104 21 2 22 10 1 1 1,584 2,310 1,485 1,782 



   

 
 

 

 

                       

 

                   Figure D.1 FEM and AASHTO (LRFD) Based Bridge Ratings of Generated Models for Moment
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                       Figure D.2 FEM and AASHTO (LRFD) Based Bridge Ratings of Generated Models for Shear 
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D.2 AASHTO LRFD Based and FEM Based Rating Factor Calculation: 
 

Example Model #1: 
 References: 
1) AASHTO Manual for Condition Evaluation of Bridges. Second Edition 
1994,rev.2000 
2) AASHTO LRFD Bridge Design Specifications (2007) 
 

¼½¾¿ÀÁ: Span 26 ft, Skew 32 deg. , Depth 26 in. , Number of beam 5,  
parapet and diaphragm exist.     
 

Truck: HS20 

 

LOAD FACTOR RATING FOR MOMENT: 

 

 

 

 

    
 

 

 

 

 

 

Note: Slab thickness and wearing surface thickness are  taken as 8.5” and 4.5” 
respectively on every bridge 
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ÉÊËÌË¾ÊÍ ∶ 
Fy =  Steel yield stress (ksi) 
fc =  Concrete compressive strength (ksi) 
b =  T − beam web width (in) 
D =  T − Beam depth (in) 
d =  T − Beam adjusted depth (in) 
wÔ�  =  unit wearing surface weight (kip/ft3) 
wÕ  =  unit concrete weight (kip/ft3) 
A � =  Total steel area (in2) 
h =  T − Beam web height (in) 
L =  Span Length(ft) 
S�  =  Beam spacing (ft)                

 

Dead Load Moment Calculation:       

Calculate Dead Load Due to Concrete: 
DL_c = Deadload due to concrete (kip/ft) 
DL_ws = Deadload due to wearing surface (kip/ft) 
DL = DL_c +  DL_ws 
DL_c =  Unit Concrete Weight x [ Flange Area +  Web Area ] 
DL_ws =  Unit Wearing Surface Weight x [ Wearing Surface Section Area ] 
b =  15.5                       h =  17.5                         S � =  60 
w Õ =  0.150                 w Ô� =  0.140 
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DLÕ = wÕ Û�Ü.��	 � ∗ �S��	� + � Ý�	� ∗ � Þ�	�ß                                DLÕ = 0.814 

DLÔ� = wÔ� Û��.��	 � ∗ �S��	�ß                                                  DLÔ� = 0.2625 

DL = DLÕ + DLÔ�                                                                DL = 1.076 

Calculate Moment Due to Dead Load: 
MDL = Moment due to dead load (kip − ft) 
L = Span Length according to AASHTO 3.24.1 (ft) 
L =  26 
MDL = DL ∗ LlÜ                    MDL = 90.95 

 

Impact Factor Calculation: 

I = Impact factor in accordance with AASHTO 6.7.4 
I = 50(L + 125) 

If I >  0.30, 6. ã
/ ä4 .
~4/ 
% 0.30 (ww�åæç 3.8.2.1) 
I = 0.3 

 

Distribution Factor Calculation: 

DF = Distribution factor for live loads in accordance with AASHTO 2007 
Calculate n, the modular ratio between the beam and the deck. 

              n  = EB/ED 

                  = 3600/3600 

                  = 1 
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Calculate eg, the distance between the center of gravity of the beam and the deck.  

              eg = NAYT + ts/2 

                 = 8,75 + 8,5/2 

                 = 13 in 

Calculate Kg, the longitudinal stiffness parameter 

              Kg = n(I + Aeg
2) 

                  = 1*[39918,32 + 781,25 (13)2] 

                  = 171949,6 in4 

According to S4.6.2.2.2e, a skew correction factor for moment may be applied for 

bridge skews greater than 30 degrees. 

 

    �x = �1 − 0,25 ∗ � K�12 ∗ L ∗ t�I��,	� ∗ (SL) �,� ∗ (tan (θ))�,��       
                    

                   �x = 0,947293 

 

Moment distribution factor for an interior beam with two or more design lanes 

loaded using Table S4.6.2.2.2b-1. 

 

      �� = �0,075 + ( �9,5)�,� ∗ (SL) �,	 ∗ � K�12 ∗ L ∗ t�I��,�� ∗ SC                              
                     

                 �� =  0,533491 
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Moment distribution factor for an interior beam with one design lane loaded using 

Table S4.6.2.2.2b-1. 

                  

                    �� = è0,06 + ( ���)�,� ∗ (SL) �,I ∗ � K��	∗L∗��m��,�é ∗ SC                         
 

                     �� =  0,438546 

 

Live Load Moment Calculation: 

MLL =  Live Load Moment without impact per wheel line (kip − ft) 
MLL values are taken from the table given in the Appendix A.of the AASHTO 

(2002) manual 
MLL = 222.2 

Impact and Distribution factors are to be incorporated to use the live load in rating 

equation 

MLL_I = Factored live load moment by distribution and impact factors 
DF = Moment distribution factor for an interior beam with two or more design lanes 

loaded using 

MLL_I =  MLL ∗ DF ∗ (1 + I)  
MLL_I =  154.10 
 

Moment Capacity Calculation (same for FEM based Rating Analysis): 

beff = Effective slab width (in) 
AASHTO 8.10.1.1 
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bëìì� = L ∗ 124                         bëìì� = 78 

bëìì	 = S�                            bëìì	 = 60 

bëììI = 8.5 ∗ 12                  bëììI = 102 

Option 2 (beff2) controls the effective slab width. Therefore beff =  beff2 
bëìì = 60 

a = Depth of rectangular stress block (in) 
As = 12.50 total steel area in the tension region (in2) 
Fy = 33 steel yield stress (ksi) 
fc = 3 concrete compressive strength (ksi) 

 = A� ∗ fí0.85 ∗ fÕ ∗ bëìì                         
 = 2.696 

 

Calculate d (adjusted depth) for the section: 
Location of the center of gravity for steel rebars from the bottom fiber: 
2.696 + I.î�	 = 4.57 

� = 26 

ï = � − 4.57 = 21.43 

Calculate Moment Capacity for the section: 
MR = Moment capacity (kip − ft) 
vð = :wñ ∗ �ò; � ï12 − 
12 ∗ 2� 

vð = 692.72 
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MU =  Ultimate moment capacity (kip − ft) 
} = 0.9 

vC = } ∗  v� 
vC =  623.45 
 

Rating Calculation: 

IR =  Inventory Rating 
w � = 1.30 
w 	 = 2.17 
�� = vó − w� ∗ vôõw	 ∗ võõ_ö  

OR =  Inventory Rating 
w � = 1.30 
w 	 = 1.30 
ç� = vó − w� ∗ vôõw	 ∗ võõ_ö  

�� = 1,511              ç� = 2,522 

 

FEM BASED RATING FOR MOMENT: 

Dead Load Moment Calculation 

Same moment due to dead load found by LRFD dead load moment calculations is 

used. 

MDL = 90.95 
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Live Load Moment Calculation: 

MLL_FEM: Moment due to Live Load at the critical location(kip − ft) 

MLL values are taken from the table given in the Appendix A.of the AASHTO 

(2002) manual 
MLL = 222.2 

FEM_Moment_DF = 0,269365 

MLL_I_FEM = MLL ∗ FEM_Moment_DF ∗ (1 +  I) 
MLL_I_FEM =  77.81 
Moment Capacity Calculation: 

MU =  Ultimate moment capacity (kip − ft).  
Same capacity found by LRFD Moment capacity calculations is used. 
vC =  623.45 
FEM Based Moment Rating Calculation: 

IR =  Inventory Rating 
w � = 1.30 
w 	 = 2.17 
�¢v_�� = vó − w� ∗ vôõ_� ¡w	 ∗ võõ_ö_� ¡  

OR =  Inventory Rating 
w � = 1.30 
w 	 = 1.30 
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�¢v_ç� = vó − w� ∗ vôõ_� ¡w	 ∗ võõ_ö_� ¡  

�¢v_�� = 2.992               �¢v_ç� = 4.995 

 

LOAD FACTOR RATING FOR SHEAR: 

 ÷øùúùûøü ∶ 
s =  Stirup spacing (in) 
Av =  Stirup area (in2) 
Ab =  Bent − up rebar area (in2) 
 

Dead Load Shear Calculation: 

Critical shear location needs to be determined: 
X = Critical shear location, distance from the face of the bearing (ft) 
X should be taken as the larger of 0.5 ∗ ï ∗ ãþ.(�) or d from the internal face of the 

bearing. (AASHTO 5.8.3.2) 

θ denotes the angle between the section normal and the shear plane and is equal to 

45 degrees 

�� = 0.5 ∗ ï ∗ 112 ∗ cos �45 ∗ �180�
sin �45 ∗ �180� 

�	 = ï12 

�� = 0.896 

�	 = 1.792 

X	 governs, therefore X =  X	 
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X = �	 

VDL = Shear due to dead load (kip) 
��� = �� ∗ è� �12� − �é 

��� = 12.06 

 

Distribution Factor Calculation: 

DF = Distribution factor for live loads in accordance with AASHTO 2007 
According to S4.6.2.2.3c, a skew correction factor for support shear must be applied 

to the distribution factor of all skewed bridges. The value of the correction factor is 

calculated using Table S4.6.2.2.3c-1 

             �x = 1 + 0,2 ∗ ��	∗L∗��mK� ��,I ∗  tan (θ)                                                      
 

               �x =  1,129099 

Shear distribution factor for an interior beam with two or more design lanes loaded 

using Table S4.6.2.2.3a-1. 

�� = �0,2 + � �12� − � S35�	� ∗ SC                                                                            
 

              �� =  0,673235 

Calculate the shear distribution factor for an interior beam with one design lane 

loaded using Table S4.6.2.2.3a-1. 

 

              �� = Û0,36 + � �	��ß ∗ SC                              �� =0,632295 
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Live Load Shear Calculation: 

VLL = Shear due to live load (kip) 

VLL values are taken from the table given in the Appendix A of the AASHTO 

(2002) manual 
��� = 46.8 

Impact and Distribution factors are to be incorporated to use the live load in rating 

equation 

VLL_I = Live load shear with impact and distribution factor (kip) 
Shear distribution factor for an interior beam with two or more design lanes loaded 

using Table S4.6.2.2.3a-1. 

�� =  0,673235 

VLL_I =  VLL ∗ DF ∗ (1 +  I) 
���_� = 40.96 

 

Shear Capacity Calculation: 

Vc = Shear capacity of the concrete (kip) 
Vs1 =  Shear capacity of stirrups (kip) 
Vs2 =  Shear capacity of bent − up rebars (kip) 
Vt = Total shear capacity of the section (kip) 
Vu = Ultimate shear capacity of the section (kip) 
Vt =  Vc +  Vs1 +  Vs2 

Vu =  0.85 ∗ Vt 
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Calculate Vc,Vs1,Vs2: 
�� = :2 ∗��� ∗ ä ∗ ï;1000  

�� = 36.51 

Av = 0.393 total area of the stirups in the section (in2) 
s = 6 stirup spacing (in) 
��� = w� ∗ �ò ∗ ï%  

��� = 46.47 

Avb = 3.125 
∝= 45 ∗ �180 

��	 = w�	 ∗ �ò ∗ sin ∝ 

��	 = 72.92 

�# = �� + ��� + ��	 

�# = 155.90 

�ó = 0.85 ∗ �# 

�ó = 132.51 

 

Rating Calculation: 

IR =  Inventory Rating 
w � = 1.30 
w 	 = 2.17 
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�� = �ó − w� ∗ �ôõw	 ∗ �õõ_ö  

OR =  Inventory Rating 
w � = 1.30 
w 	 = 1.30 
ç� = �ó − w� ∗ �ôõw	 ∗ �õõ_ö  

�� = 1.314 

ç� = 2.194 

 

FEM BASED RATING FOR SHEAR: 

 

Dead Load Shear Calculation: 

Same shear due to dead load found by LRFD dead load shear calculations is used. 

��� = 12.06 

 

Live Load Shear Calculation: 

VLL_FEM: Shear due to Live Load at the critical location (kip − ft)  
VLL values are taken from the table given in the Appendix A of the AASHTO 

(2002) manual 
��� = 46.8 

FEM_Shear_DF = 0,496453 

VLL_I_FEM = VLL ∗ FEM_Shear_DF ∗ (1 + I) 
VLL_I_FEM = 30.20 
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Shear Capacity Calculation: 

Vu =  Ultimate shear capacity (kip − ft). 
Same capacity found by LFD shear capacity calculations is used. 
VU = 132.51 
 

FEM Based Shear Rating Calculation: 

IR =  Inventory Rating 
w � = 1.30 
w 	 = 2.17 
�¢v_�� = �ó − w� ∗ �ôõ_� ¡w	 ∗ �õõ_ö_� ¡  

OR =  Inventory Rating 
w � = 1.30 
w 	 = 1.30 
�¢v_ç� = �ó − w� ∗ �ôõ_� ¡w	 ∗ �õõ_ö_� ¡  

�¢v_�� = 1.783 

�¢v_ç� = 2.975 

 

 


