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ABSTRACT 

 
 

A GENETIC ALGORITHM FOR THE BIOBJECTIVE TRAVELING 
SALESMAN PROBLEM WITH PROFITS 

 
 
 

Karademir, Serdar 

M.S., Department of Industrial Engineering 

Supervisor       : Assoc. Prof. Dr. Haldun Süral 

Co-Supervisor : Assoc. Prof. Dr. Esra Karasakal 

 
July 2008, 80 pages 

 
 
In Traveling Salesman Problem (TSP) with profits, a profit is associated with each 

city and the requirement to visit all cities is removed. The purpose is to 

simultaneously minimize cost (excluding as many cities as possible) and maximize 

profit (including as many cities as possible). Although the reduced single-objective 

case of the problem has been well-studied, the true biobjective problem has been 

studied only by a few researchers. In this paper we study the true biobjective problem 

using the Multiobjective Genetic Algorithm NSGA II and the Lin-Kernighan 

Heuristic. We propose several improvements for NSGA II in solving the problem. 

Based on these improvements, we provide computational results of the approximated 

Pareto-optimal front for a set of practically large size TSP instances. Finally, we 

provide a framework and its computational results for a post-optimality analysis to 

guide the decision maker, using the data mining software Clementine. 

 

Key Words: TSP with Profits, Evolutionary Multiobjective Combinatorial 

Optimization, Data Mining. 
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ÖZ 

 

 

ÇOK AMAÇLI KAR GETİREN GEZGİN SATICI PROBLEMİ İÇİN 

GENETİK BİR ALGORİTMA 
 

 

 

Karademir, Serdar 

Yüksek Lisans, Endüstri Mühendisliği Bölümü 

Tez Yöneticisi           : Doç. Dr. Haldun Süral 

Ortak Tez Yöneticisi : Doç. Dr. Esra Karasakal 

 

Temmuz 2008, 80 sayfa 

 

Kar getiren Gezgin Satıcı Problemi’nde (KGSP) her şehire bir kar atanır ve tüm 

şehirleri gezme zorunluluğu ortadan kalkar. KGSP’de amaç aynı zamanda hem 

maliyeti en aza indirmek (en az sayıda şehir gezerek) hem de kazancı en yüksek 

seviyede tutmaktır (en fazla sayıda şehir gezerek). Tek amaçlı KGSP türleri 

literatürde fazlaca yer edinmiş olsa da, gerçek anlamda iki amaçlı KGSP çok az 

araştırmacı tarafından çalışılmıştır. Bu çalışmada iki amaçlı KGSP için Çok Amaçlı 

Genetik Algoritma NSGA-II ve Lin-Kernighan sezgisel yöntemlerine dayalı bir 

çözüm sunmaktayız. Bu çalışmada NSGA-II için bir kaç iyileştirme önerilmektedir. 

Bu iyileştirmelerin sonucunda literatürdeki orta ve büyük boyutlarda pek çok problem 

için tahmini etkin sınırlar (approximate efficient frontier) verilmektedir. Son olarak, 

veri madenciliği yazılımı Clementine kullanarak, yaratılan etkin sınırlarda karar 

vericiyi yönlendirebilecek bir eniyileme-sonrası analiz taslağı sunmaktayız.    

 

Anahtar Kelimeler: Kar Getiren GSP, Evrimsel Çok Amaçlı Kombinasyonal 

Eniyileme, Veri Madenciliği. 
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CHAPTER 1 

 
 

INTRODUCTION 
 
 
 

In this chapter we introduce preliminary concepts regarding Traveling Salesman 

Problem with Profits and present an overview of the work conducted by authors of 

this paper. 

 

Problem Definition: 

 

Given a graph G(E,V) with edge set E, vertex set V, and costs on edge set, Travelling 

Salesman Problem (TSP) can be defined as finding the shortest Hamiltonian tour on 

G. Assuming that there is also a prize associated with each vertex in V, in TSP with 

Profits (TSPP) the aim is to simultaneously minimize the route cost (excluding as 

many vertices as possible) and maximize the prize (including as many vertices as 

possible). When compared to TSP, in TSPP, there is a prize (i.e., profit) associated 

with each vertex and the constraint for including all vertices into the tour is removed. 

Moreover, since it is not required to visit all vertices, a depot vertex is generally 

defined for TSPP and inclusion of this vertex to all considered tours is enforced.  

 

Since TSPP can be reduced to TSP, it is also NP-complete. Considering an instance 

for TSPP where all vertices are included in the tour (i.e., the instance with maximum 

prize), finding the shortest Hamiltonian tour corresponds to TSP. Another difficulty 

introduced with TSPP is the combinatorial number of subsets of vertices that are to be 

considered. An enumeration algorithm has to consider 2𝑛𝑛  subsets of vertices for a 

graph with n vertices. This also means that the enumeration algorithm has to solve 2𝑛𝑛  

TSPs. Hence, as number of vertices considered increases linearly, the number of TSPs 

to be solved and the difficulty of solving these TSP instances (i.e., time required to 
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consider all permutations of vertices for a given subset of vertices) increase 

exponentially.  

 

After providing the formal definition of TSPP, we want to state that in the rest of this 

paper we will refer “vertices” as “cities” and “prizes” as “profits”. This notation is a 

practical and commonly used one in literature. 

 

Since there are two conflicting objectives in TSPP, the problem is a multiobjective 

optimization problem. There is not generally a single optimal solution for TSPP. 

Solution of a TSPP is a set of nondominated solutions. However, since the problem is 

a very difficult problem, it is generally studied as a single objective problem by some 

sort of transformation. In Profitable Tour Problem (PTP), objectives are converted in 

commensurable units and the objective function for problem is defined as 

minimization of cost minus profit. In Orienteering Problem (OP), objective for cost is 

included in constraint set as a knapsack constraint and profit is maximized. In Prize 

Collecting TSP (PCTSP), profit objective is included into constraint set as a general 

covering constraint and cost is minimized. 

 

Although PTP, OP, and PCTSP are all well studied in literature, the true biobjective 

problem is considered only by Keller et al. (1988), Şimşek (2007), and Berube et al. 

(2008). These authors use exact and heuristic methods on OP and PCTSP settings and 

generate a set of nondominated solutions for the problem. These authors could not 

solve larger problem instances, limiting themselves with instance sizes up to 150 

cities. In this study we examine a Multiobjective Genetic Algorithm (MOGA) to 

apply to TSPP, propose several improvements for this genetic algorithm, and 

demonstrate computational results for a set of problems in literature the largest of 

which being a problem with 400 cities. We present two metrics to evaluate results of 

our proposed algorithm; Hyper Volume and Generational Distance. Both metrics are 

able to evaluate performance of a MOGA in terms of both convergence and 

dispersion properties. 
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A Post-optimality analysis framework is also provided in this paper. We use 

datamining to enhance decision making process after optimization. Rules and 

indications derived from generated nondominated solution sets are provided to enable 

a DM to make more conscious decisions.    

 

Real Life Applications of TSPP: 

 

One of the applications of TSPP is where it is not possible to visit all customers due 

to some constraints enforced. Then we have to make the best selection among 

customers subject to enforced constraints. For instance, when a manufacturer can not 

visit all of his suppliers due to some constraints, he has to choose a set of suppliers to 

visit first and then make the routing decision. In another case, a salesman may want to 

sell a given quota of a product as soon as possible, hence, make a decision on which 

locations and in what order to visit. Another application area of TSPP is daily 

scheduling of steel-rolling mills. In this context a producer should select a set of steel 

slabs and order them for hot or cold rolling to produce steel sheets. Orienteering 

competitions are also one of the application areas of TSPPs. In orienteering games a 

player should collect maximum amount of hidden prize in a preset time limit. TSPPs 

are also encountered as subproblems in solution procedures of other problems. 

Reader is referred to study of Feillet et al. (2005) for a review on TSPP. 

 

Motivation: 

 

In this study we focus on the true biobjective TSPP. The aim of this study is to 

generate the whole Pareto front, up to a certain extent, for TSPP. We argue that exact 

algorithms practically are not feasible due to harmful complexity of the problem and 

propose a Metaheuristic that can approximate the Pareto-optimal front with a 

reasonable error. Such a Metaheuristic could also be used to demonstrate the structure 

of Pareto front for very large problem instances (e.g., problems including 5000 cities) 
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where deviation from Pareto-optimal front may be relatively considerable. With the 

hope to present all available actions to Decision Maker (DM), we approximate 

complete Pareto front. However, we also provide a Post-optimality analysis 

framework that could guide the DM to preferred solutions on generated Pareto front. 

 

Organization of the thesis is as follows: In Chapter 2 we present a mathematical 

model for TSPP and summarize literature review on TSPP, MOGA, and preference 

incorporation issues for MOGAs. In Chapter 3, a review of one of the state-of-the-art 

MOGAs is presented and several improvements for the algorithm are proposed. 

Chapter 4 explains the selection of test problems and gives computational results for 

selected problems. In Chapter 5 we provide a framework for post-optimality analysis 

of a given pareto front and conclude our study in Chapter 6.   
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CHAPTER 2 

 
 

LITERATURE REVIEW 
 
 
 

In this chapter we provide a mathematical model for TSPP, review studies on TSPP, 

summarize literature on Multiobjective Genetic Algorithms (MOGAs), and give 

preference incorporation strategies proposed for MOGAs in literature. We also 

provide several definitions regarding multiobjective optimization. 

 

 2.1  Mathematical Model For TSPP 

 

The mathematical model for TSPP is a linear integer program. It includes assignment 

constraints and subtour elimination constraints for TSP. Different from TSP, in the 

formulation for  TSPP, the right hand side for assignment constraints is also a 

decision variable. Moreover, there are two conflicting objective functions to be 

optimized. 

 

The model is as follows: 

 

Decision Variables: 

 

 xij = 1 if city j is visited after city i, 0 otherwise. 

 yi = 1 if city i is visited, 0 otherwise. 

 

Parameters: 

 

 cij: cost of visiting city j right after city i. 

 pi: profit associated with city i.  
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The model: 

 

MIN � cij ∗ xij
i,j

                                                                                                                       (1) 

MAX � pi ∗ yi
i

                                                                                                                        (2) 

 

Subject to 

 

      � xij = yi
j≠i

                                     ∀ i                                                                               (3) 

      � xij = yj
i≠j

                                     ∀ j                                                                               (4) 

     𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑛𝑛𝐸𝐸𝑆𝑆𝐸𝐸𝑆𝑆𝑛𝑛 𝐶𝐶𝑆𝑆𝑛𝑛𝐶𝐶𝑆𝑆𝑆𝑆𝐸𝐸𝐸𝐸𝑛𝑛𝑆𝑆𝐶𝐶                                                                             (5) 

    xij   BIN                                                                                                                                    (6) 

    yi    BIN                                                                                                                                    (7)

  

(1) and (2) represent the cost and profit objectives respectively for the tour to be 

constructed. (3) ensures that if a city is included in the tour, then, there is an arc 

leaving this city. (4) similarly ensures that if a city is included in the tour, then, there 

is an arc entering this city. (5) represents a set of constraints that ensures construction 

of subtours are not allowed. (6) and (7) are 0-1 constraints that enforces related 

variables to take only 0 or 1 value.   

 

We should also note that a depot constraint that ensures depot city is always included 

in the tour could be added to this formulation. We would simply force the binary 

variable ydepot to take a value of 1. Inserting such a constraint ensures that depot city 

is included in all tours generated. This extra constraint does not make the problem 

harder. 
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 2.2  TSPP Literature 

 

TSPP is mainly studied as a single objective problem in the literature under different 

settings. Feillet et al. (2005) report the following three problem settings. 

 

Profitable tour problem (PTP): Objectives (1) and (2) are combined as minimization 

of cost minus prize.  Constraint set remains unchanged. However, cost and prize must 

be of the same type (i.e., Dollars) in order to be able to use this setting. Dell’Amico et 

al. (1995) propose lower bounds for problem and show that large problem instances 

for PTP could be solved efficiently.   

 

Orienteering problem (OP): Objective (1) is formulated as a constraint with a right 

hand side value corresponding to an upper bound on tour cost in terms of time. This is 

generally the case in orienteering problems where players try to collect maximum 

amount of points in a limited time. This problem is also known as Selective TSP.  

 

Tsiligirides (1984) proposes several algorithms for OP which he calls SOE (Score 

Orienteering Event). He proposes S-Algorithm (Stochastic Algorithm), D-Algorithm 

(Deterministic Algorithm), and a RI-Algorithm (Route Improvement Algorithm). S-

Algorithm constructs a tour based on stochastic rules, D-Algorithm constructs a tour 

based on deterministic algorithm, and RI-Algorithm improves a given route using 

“savings” principle. Then Tsiligirides combines S, D, and RI algorithms where tours 

constructed by S and D algorithms are improved with RI-Algorithm. He also 

conducts a study on effect of profit structure on problem, however, he concludes that 

no satisfactory results are obtained.  

 

Laporte and Martello (1990) propose a Branch and Bound (B&B) algorithm for the 

problem. They first solve the LP-relaxation of the problem and then use B&B to solve for 

violated constraints.  
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Ramesh et al. (1992) propose a Branch-and-Bound (BB) algorithm for OP. First they 

transform the original problem formulation by moving prizes from nodes to edges. 

The reasoning is that, the profit on two nodes can be carried on the edge between 

these two nodes by taking average of profits on the nodes. If a node is visited, then 

there is exactly two arcs connecting this node to other nodes in the tour and hence 

profit of that node will be exactly collected. Using this approach authors drop the 

binary variables showing whether a city is visited and update the cost matrix using 

profits. They use Lagrangian relaxation at root node which they call Phase 1 of their 

algorithm. Then they use subgradient optimization. If optimal solution is not found, 

then they start the BB approach by branching, which they call Phase 2 of their 

algorithm. They provide five nondominated solutions for problems sizes up to 80 

cities and three nondominated solutions for problem sizes larger than 80 cities. They 

generate problems randomly and the largest problem they solve includes 150 cities.   

 

Chao, et al. (1996) propose a two-step heuristic for selective TSP. The first step in their 

heuristic is to generate several routes and select the best route as the initial solution. Then 

they use several greedy heuristics to improve this initial tour in the second phase.  

 

Millar and Kiragu (1997) propose a time-based formulation and an upper bounding 

scheme for OP. In their model they define flow variables to reduce the number of 

constraints in original OP formulation. They use CPLEX to solve their model and use 

problems including at most 10 nodes. They also apply their methodology to a 15-zone 

fisheries surveillance problem. 

 

Awerbuch et al. (1998) propose an algorithm based on an approximation schema for 

k-MST that has a poly-logarithmic performance. Their algorithm is both applicable to 

OP and PCTSP which is described next.    

 

Gendreau et al. (1998a) propose a branch-and-cut algorithm for OP. They provide two 



9 
 

heuristics that they use to update their bounds and quickly fathom nodes in branch-

and-cut tree. They provide results for problem sizes up to 300 cities. However, again 

only a few nondominated solutions for each problem type are found by their 

algorithm.     

 

Gendreau et al. (1998b) propose Tabu Search (TS) algorithm for OP. First they 

propose a heuristic which they call Insert and Shake to obtain an initial solution for 

their TS algorithm. In their TS algorithm the neighborhood structure is defined as 

solutions obtained by removing or inserting clusters of cities. Hence, the algorithm 

differs from other algorithms performing insertion of a city into the tour or deletion of 

a city from the tour. As in Gendreau (1998a), they provide a maximum of 5 solutions 

for problem sizes less than 100 cities and number of solutions they provide for a 

maximum problem size of 300 cities decreases to one.  

 

Fischetti et al. (1998) propose a Branch-and-Cut algorithm that solves OP optimally. 

They calculate three nondominated solutions for Vehicle Routing Problems and one 

nondominated solution for TSPs. 

 

Tasgetiren and Smith (2000) propose a genetic algorithm (GA) to solve the orienteering 

problem. They propose several crossover and mutation operators that are designed for 

TSP. Four test sets are used. Three of the sets are originally from Tsiligirides (1984) and 

one is corrected by Chao, et al. (1996). Their algorithm is able to solve problems with at 

most 33 cities. Since their genetic algorithm also tries to find the best TSP tour for a 

given set of cities besides choosing this set of cities, they are unable to solve large 

problem instances. 

 

Liang et al. (2002) present two metaheuristics for OP; an ant colony optimization 

algorithm and a tabu search algorithm. Heuristics described are used to solve OP, the 

single objective TSPP. Hence, Liang et al. (2002) do not introduce a new algorithm 

but apply existing single objective metaheuristics using a different local search 
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schema. The largest problem instance their algorithm is able to solve includes 33 

cities. 

 

Prize collecting TSP (PCTSP): Objective (2) is formulated as a constraint with a right 

hand side value corresponding to a lower bound on prize to be collected. This 

problem is encountered when a salesman has to sell a given quota of a product, hence 

also known as Quota TSP.  

 

Dell’Amico et al. (1998) report that PCTSP was introduced by Balas and Martin 

(1985 and 1991) for scheduling of the daily operations of a steel rolling mill. Balas 

(1989 and 1995) also presents structural properties of the PCTSP related to the TSP 

and Knapsack polytopes.  

 

Dell’Amico et al. (1998) propose a lagrangian heuristic for PCTSP where they start 

from a feasible solution and use a method they call “Extension and Collapse” to 

improve this initial feasible solution.    

 

Balas (1999) introduces a special case of PCTSP where he provides an algorithm of 

polynomial time. Besides, he also notes that this algorithm could be used as a 

heuristic when solving general PCTSP. 

 

To our knowledge, the true biobjective problem is studied only by Keller et al. 

(1988), Şimşek (2007) and Berube et al. (2008). Keller et al. (1988) generate 

nondominated solutions for TSPP which they call Multiobjective Vending Problem. 

They propose seven routines to construct an initial tour and improve that tour with 

under a knapsack constraint. They give results for a 25-city problem. Şimşek (2007) 

uses ε-constraint method to generate the Pareto front. He uses OP setting and solves 

ε-constraint problems through CGW heuristic developed by Chao et al. (1996). 

Results very close to Pareto-optimal front are reported for problem sizes up to 121 

vertices. Berube et. al. (2008), on the other hand, uses ε-constraint method to solve 
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PCTSP.  They use a Branch-and-Cut algorithm and report Pareto-optimal fronts for 

problem sizes up to 150 vertices where integer cost and prize values are used. 

 

 2.3  Definitions For Multiobjective Optimization 

 

The general MO problem can be represented as follows; 

 

Min f1(x) 

Min f2(x) 

…………. 

Min fn(x) 

 

Subject To  

 x Є X 

 

fi are objective functions, x is a decision space vector, X is called the “decision 

space”, and objective function values are represented in “objective space”, Z, with 

objective space vector z, which is the corresponding objective space vector for x. 

Figure 1 demonstrates the decision space and objective space in a two dimensional 

case. 

 

The following definitions are also needed before we continue our discussion (Deb, 

2001); 

 

Definition 1. A solution s1 is said to dominate s2 if and only if it is no worse than s2 in 

all objectives and strictly better than s2 in at least one objective.  

 

Definition 2. A decision space vector x is said to be efficient if its corresponding 

objective space vector z is nondominated. 
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Definition 3. The set of all nondominated solutions of entire feasible solution space is 

called the Pareto-optimal set. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pareto-optimal set is also called “Pareto-optimal Front” or “Efficient Frontier”. 

Several efficient solutions may correspond to a single nondominated solution which 

is the case for alternate optima. Hence the size of distinct nondominated solutions set 

is always less than or equal to the size of efficient solutions set. However, since 

alternative optimal solutions are nondominated to each other, the size of efficient 

solutions set is equal to the size of nondominated solutions set.  

 

In Figure 1, all solutions in objective space are nondominated, assuming a problem 

minimizing z1 and maximizing z2. Hence, all solutions in decision space are efficient. 

x2 

x1 z1 

z2 

Decision Space Objective  Space 

Figure 1 The correspondence between decision space and objective space in a 
Multiobjective Optimization Problem. 
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Moreover, number of distinct nondominated solutions is less than number of efficient 

solutions in Figure 1. 

 

We also want to state some relevant concepts regarding Evolutionary Optimization 

(Deb, 2001); 

 

Definition 4. Nondominated Sorting is a methodology that separates a set of solutions 

into smaller sets of solutions which are nondominated within 

themselves. Given a set of solutions S, in nondominated sorting, 

nondominated members of S are put in another set P1. Then, 

nondominated solutions of set S\P1 are put in P2. This operation 

continues until S = Ø. Hence, when routine is completed, all solutions 

are separated into fronts where none of solutions in a front dominate 

each other, whereas, fronts strictly dominate each other with P1 being 

the Pareto-optimal set of S.  

 

 Nondominated sorting is used by algorithms that uses domination 

concept as fitness function.   

 

Definition 5. Niching Mechanism is the methodology used to keep a diverse set of 

nondominated solutions in Evolutionary Algorithms. Counting number 

of neighboring solutions and average distance between neighboring 

solutions are two diversity mechanisms used in literature.  

 

 Without such a diversity keeping mechanism (i.e., niching 

mechanism), most of algorithms fail to generate a uniformly 

distributed range of solutions.  

 

Nondominated Sorting is the primary selection criterion in most of the recent 

MOGAs, whereas, Niching Mechanism is the secondary selection criterion.  
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 2.4  MOGA Literature 

 

Deb (2001, p. 80) reports that the concept of a genetic algorithm was first conceived 

by John Holland of the University of Michigan, Ann Arbor.  Genetic Algorithms 

(GAs), which are population based metaheuristics, simulate the theory of evolution.  

The process starts with generation of an initial population of solutions. Initial 

population may be randomly created or seeded with heuristic solutions. In GAs each 

solution has a genotype and a phenotype. Genotype is the decoding schema of 

solutions. A solution may be represented as a binary string or as a real valued string, 

called “chromosome”. Also each solution (i.e., chromosome) has a fitness value (e.g., 

corresponding objective function value) which corresponds to phenotype of the 

chromosome. Fitness for a solution represents the desirability of that solution and is 

crucial for its survival and reproduction. Chromosomes are crossed together to 

generate new solutions (crossover operator) and then generated solutions are mutated 

(mutation operator). These two operators are applied with some appropriate 

probabilities depending on the structure of the problem considered. After generation 

of new solutions, called “child population”, their fitness values are assigned. Finally, 

based on fitness values, a child either replaces its parent or is discarded (i.e., natural 

selection). After updating parent population, process is repeated. Four parameters are 

to be set in a GA; crossover probability, mutation probability, population size, and 

number of generations to be performed.  

 

GAs are well-suited for multiobjective optimization (MO) due to their population 

based optimization structures (see Coello, 2006, for a recent discussion on MOGA). 

Aim in multiobjective optimization is to find a set of nondominated solutions. Since 

in a genetic algorithm we always work with a population of solutions, result of a GA 

is naturally a set of nondominated solutions (see Chinchuluun and Pardalos, 2007, for 

a recent discussion on Multiobjective Optimization). Hence, convergence to the 

Pareto-optimal front and ability to generate a diverse set of nondominated solutions 
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are the most important features of MOGAs and research on these properties of 

MOGAs is very active. In fact, design of a MOGA itself is a multiobjective problem 

in nature. Many different strategies are used in literature to design good quality 

algorithms that can satisfy both goals adequately. Deb (2001, p. 161-273) classifies 

multiobjective algorithms into two groups: Non-Elitist MOGAs and Elitist MOGAs. 

 

Non-Elitist MOGAs: 

These algorithms are the first proposed simple MOGAs and they do not use any elite-

preserving operator. VEGA, VOES, WBGA, RWGA, MOGA, NSGA, NPGA, PPES, 

DSGA, DRLA, NCGA, MNA, and NGA are algorithms of this class suggested in 

literature. These algorithms are easy to understand and implement. However they 

have found very good results in their original studies. 

 

Elitist MOGAs: 

In elite-preserving algorithms, elites have an opportunity to be directly included in 

next generations. No matter how elitism is introduced in these algorithms, they ensure 

that fitness of population-best solution does not deteriorate. REMEA, NSGA-II (Deb 

et al., 2000), DPGA, SPEA, SPEA2 (Zitzler et al., 2001), TDGA, PAES, NSAGA, 

PCGA, MμGA, ERMOCS, ε-MOEA (Deb et al., 2005),  SMS-EMOE (Beume et al., 

2007), MOTGA (Alves and Almedia, 2007), and FWEA (Soylu and Köksalan, 2007) 

are elitist MOGAs proposed in literature.  Many of these algorithms use external 

populations to preserve elite solutions. They exploit elitism in different ways.   

 

Refer to Deb (2001) for a more detailed study on MOGAs. 

 

 2.5  Literature Review on Preference Incorporation in MOGAs 

 

No matter how many nondominated solutions exist for a decision making problem, 

DM has to choose only one of these solutions. Hence, the only tie breaking rule is 

preference. We refer reader to the work of Rachmawati and Srinivasan (2006) for a 
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survey on preference articulation in MOGAs.  

 

Three classes of methods exist for preference incorporation in MOGAs: a priori 

methods, interactive methods, and a posteriori methods. 

 

A Priori methods: In this class preferences of DM is formulated prior optimization. 

Preferences are incorporated in fitness function and optimization is done accordingly. 

Weighted sum and Lexicographic approaches are examples of this method. However, 

this method is difficult to use due to lack of sufficient problem knowledge and non-

convexity issues. 

 

Interactive Methods: Few parameters are fixed prior optimization and rest is tailored 

during the search process based on guidance of DM. Difficulties faced when using 

this method are the extensive effort required from DM and the more apparently 

observed disagreement in the case of more than one decision maker. 

 

A Posteriori Methods: In this method optimization and decision making processes 

are separated. DM selects her/his most preferred solution from set of solutions 

generated. Some computational problems are avoided by delaying decision making 

process to post-optimization stage, however, new problems arises. Finding a set of 

solutions with varying tradeoffs and navigating through Pareto front may be difficult. 

Moreover, as number of objectives increases, size of pareto front increases 

exponentially and algorithms lack an effective selection force. 

 

Deb (2001, p. 162) argues that it is better to find a set of Pareto-optimal solutions first 

and then choose one solution from this set using some other higher-level information.  

This approach is reported as an ideal approach. After finding a set of nondominated 

solutions, if preference knowledge about the trade-off among objectives is known, 

one of these nondominated solutions could be chosen based on this preference 

information. This method, at least, gives a user an overall perspective of other 
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possible optimal solutions that the underlying multiobjective optimization problem 

offers before choosing one of the nondominated solutions.    

 

A posteriori method is used in this paper due to the following reasons. In TSPP we 

have only two objectives, hence, the problem of scalability (i.e., exponential increase 

in the size of Pareto front as the number of objectives increases) is not a severe issue 

for our case. Secondly, for practically large problem sizes, we are able to find extreme 

solutions and a set of solutions that uniformly sketches Pareto front with solution 

methodology proposed in this paper. Finally, we also propose a tool for navigating 

Pareto front without putting an extra burden on DM in Chapter 7.      
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CHAPTER 3 

 
 

A MOGA FOR TSPP 
 
 
 

Since search space increases exponentially for NP-complete problems, a failure at 

large problem sizes is inevitable for exact algorithms. We observe that none of exact 

algorithms proposed in literature are able to solve problems with more than 150 

nodes for TSPP, which empower our former statement. Hence, usage of heuristics that 

can approximate optimal solution in single objective case or Pareto-optimal front in 

multiobjective case within a reasonable error is quite often, natural, and necessary. 

 

In this chapter we examine an existing MOGA, NSGA-II, and summarize 

modifications we propose for this algorithm. In section 3.1 original NSGA-II 

algorithm is reviewed, in section 3.2 we propose first modification for NSGA-II, 

Modified NSGA-II is presented in section 3.3, section 3.4 summarizes performance 

metrics used, and finally we set parameters for the Modified NSGA-II and present 

preliminary results in section 3.5. 

 

 3.1  NSGA-II 

 

In this work we use one of state-of-the-art metaheuristics: NSGA-II. NSGA-II is 

proposed by Deb et al. (2000) as a Multiobjective Genetic Algorithm. Algorithm uses 

nondominated sorting mechanism and an explicit diversity preserving mechanism. 

Niching mechanism used in algorithm is based on average distance of neighboring 

solutions in all objectives. In NSGA-II we use a binary chromosome representation. 

The length of chromosome is equal to n, which is the number of cities considered. A 

“1” at location j on chromosome means jth city is included in the tour, “0” otherwise. 

We use Lin-Kernighan TSP heuristic (Concorde, 2008) to find cost based objective 
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for a given chromosome (i.e., for a given subset of cities). Cost for a tour is generally 

the length of the tour. For some problem instances length between two cities is 

calculated as the Euclidean Distance between the two cities, for some instances 

Geometric Distance is used, and for a small number of instances ATT Distance metric 

is used. Profit based objective is simply calculated by adding up profits 

corresponding to nodes included in the subset defined by chromosome. Table 1 

demonstrates how objective function values are calculated for a given chromosome.  

 

 

 

Table 1 Calculation of cost and profit for a chromosome. 

NODES 1 2 3 4 5 6 7 8 9 10 

COORDINATES [59,68] [70,86] [26,64] [15,75] [64,15] [77,62] [85,38] [46,57] [57,9] [89,51] 

PROFITS 0 42 9 43 84 20 34 1 75 75 

CHROMOSOME 1 1 0 1 0 0 0 1 1 0 
 

COST:  221 For sequence generated with Lin-Kernighan Heuristic: 1-2-4-9-8-1 

PROFIT: 161 =1*0 + 1*42 + 0*9 + 1*43 + 0*84 + 0*20 + 0*34 + 1*1 + 1*75 + 0*75 

 

 

 

In the literature of TSPP, nodes are generally treated as “cities”. This is mainly due to 

terms used in TSP literature. Since we do not have to visit all cities, a depot city is 

defined for TSPPs. Generally profit assigned to depot city is zero. All subsets 

considered in TSPP should include depot city. However, this constraint does not make 

problem more difficult since one could easily force any algorithm to include depot in 

the constructed tour by assigning a very large profit to it.  

 

In NSGA-II we generate initial population randomly but we always include extreme 

solutions. Extreme solutions are easy to find: staying at the depot is the solution with 

least cost and visiting all cities is the solution with largest profit. We include these 

two extreme solutions as two binary chromosomes where in one of the chromosomes 
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all genes take a value of 1, and in the other chromosome only the gene corresponding 

to the depot city takes a value of 1. Figure 2 shows a flow chart for NSGA-II. 

 

 

 
Figure 2 Flowchart for NSGA-II. 

 

 

 

To summarize the flow in Figure 2, algorithm starts with creation of random initial 

population. However, depot city is included in all members of population (i.e., in all 

subset of cities generated). The two extreme solutions, minimum cost and maximum 

profit cases, are also included in population. Then cost and profit values are assigned 

to population as explained in Table 1. Based on objective values, nondominated 

sorting and niching mechanism is used to sort members of population from best to 

worst. Then, based on tournament selection, two-point crossover operator is executed 

to generate child population. Child population is mutated according to bit-wise 

mutation operator with given mutation probability as the next step. Afterward 
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objective values for members of child population are calculated. Then, child and 

parent populations are merged and rank and crowding distance is assigned to all 

members of merged population. Finally, parent population for next generation is 

selected from the merged population based on rank and crowding distance of 

solutions. 

 

The pseudo code for original NSGA-II is given in Appendix A.   

 

 3.2  First Improvement for Population Size Limit of NSGA-II 

 

In MOGAs, as initial population evolves, the number of nondominated solutions 

increases. When the number of these solutions exceeds population size, a niching 

schema is used to select individuals from less crowded regions so as to escape local 

optima and access less searched regions of the search space. Thus, some 

nondominated solutions are cut-off from population. The number of such wasted 

nondominated solutions increases exponentially in TSPP as problem size n increases 

due to combinatorial number of subsets of cities possible. However, in NSGA-II, 

number of nondominated solutions returned eventually is at most equal to the 

population size. 

 

The first and most apparent solution to the problem stated is to keep all nondominated 

solutions generated during execution of NSGA-II. We modified NSGA II in the 

following sense. We generate an external population of nondominated individuals 

generated during the execution of NSGA-II. Figure 3 shows a flow chart for proposed 

improvement.  

 

As it can be seen in Figure 3, execution of the original algorithms is not modified. 

The only change is inclusion of an archive population which we call “Elite Pop”. 

Elite Pop preserves all nondominated solutions generated. Hence, Elite Pop returned 

by algorithm always covers final population returned.  
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Figure 3 Flow chart for proposet improvement to NSGA-II. 
 

 

 

 3.3  Final Improvement: The Modified NSGA-II (mNSGA-II) 

 

One further modification we propose is to use nondominated solutions archived in 

Elite Pop to modify Parent Population in each iteration of the algorithm. To apply this 

modification, we modified NSGA II, called mNSGA II, in the following sense. We 

define two external populations of nondominated individuals consisting of solutions 

not accepted to parent population, and use them to update parent population in each 

iteration of algorithm. These external populations are named “Elite Pop 1” and “Elite 

Pop 2”. Elite Pop 2 is a temporary population which is reset at the end of each 

generation performed. On the other hand, Elite Pop 1 is a permanent population 

which preserves all nondominated solutions generated and not included in parent 

population. Hence, at the end of run, Elite Pop 1 and Parent Population are merged to 

generate the complete pareto front. Figure 4 shows a flow chart for NSGA-II. 
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Figure 4 Flowchart for NSGA-II. 

 

 

 

In Figure 4, the first nine steps are exactly the same as in original NSGA-II algorithm 

as given in Figure 2. After generation of the first parent population in each 

generation, mNSGA-II starts a loop as seen in Figure 4. First, nondominated 

solutions that were not included in generated parent population are copied into Elite 

Pop 2. Then, we check whether Elite Pop 1 is empty or not. If Elite Pop 1 is not 

empty, we copy “popsize” solutions from this population into child population. 

“Popsize” is the size of population which is set at the beginning of algorithm. After 

copying popsize solutions into child population, standard “merge, sort, and select” 

steps are performed and the loop is restarted. Loop is executed until all members of 

Elite Pop 1 are used. Then, we exit the loop, copy all individuals in Elite Pop 2 into 

Elite Pop 1, empty Elite Pop 2, and report last generated parent population for next 

generation. 
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The loop described here ensures that all nondominated solutions generated during 

execution of algorithm and not included in parent population are preserved. 

Moreover, preserved solutions interact with parent population at each generation and 

if they are re-included in parent population, they get a chance to be used in evolution 

process (i.e., they are used in crossover and mutation operators) and affect future 

generations. 

 

The pseudo code for mNSGA-II is given in Appendix B.   

 

 3.4  Performance Metrics Used 

 

To make comparisons, basically two metrics from MOGA literature are used; Hyper 

Volume (HV) and Generational Distance (GD) (Deb, 2001, p. 306-324).  

 

For a given set of nondominated solutions, the hyper volume they enclose in 

objective space is the union of the volumes each point generates with respect to a 

reference point. The reference point can be the nadir point or estimation to it. In 

Figure 5, HV enclosed by a given set of nondominated solutions in biobjective case 

where both objectives are to be minimized is the sum of areas of blue rectangles. It 

can be shown that a set of nondominated solutions with better convergence and 

dispersion will always constitute equal or a larger HV.  

 

Another metric is defined based on this argument; Hyper Volume Ratio (HVR). HVR 

shows the relative distance between two set of nondominated solutions or two Pareto 

fronts. It can be stated as; 

 

HVR =  
HVApproximation

HVOptimal
                                                     (8) 

 

(8) can be used to make a comparison between an approximation set and a Pareto-
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optimal set of solutions. In this case HVR can take a maximum value of 1. Values 

larger than 0.95 would imply a very good approximation to the Pareto-optimal front. 

 

 

 

 
 

 

 

 

On the other hand, GD shows the mutual distance between a Pareto-optimal front and 

an approximation set to this front. First, for each point on Pareto-optimal front the 

nearest point on approximate front is found using a relevant distance metric. Then, 

GD is calculated as the average of these distances. Since such a metric requires 

knowledge of the range of objectives, it is more meaningful to define a metric that 

shows relative distance between two fronts. If we define 𝑍𝑍𝑆𝑆𝑜𝑜𝑆𝑆𝐸𝐸  as ith point on Pareto-

Volume (i) 

Volume (i+1) 

Reference 
Point Obj 2 

Obj 1 

Figure 5 HV enclosed by a given set of nondominated solutions. 
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optimal front and 𝑍𝑍ℎ𝑒𝑒𝑆𝑆𝑆𝑆𝐸𝐸  as corresponding nearest point on approximate Pareto front 

based on Euclidean distance, we define the following two measures of distance 

between two fronts; 

 

𝐺𝐺𝐺𝐺𝑐𝑐𝑆𝑆𝐶𝐶𝑆𝑆% =

∑
𝑍𝑍ℎ𝑒𝑒𝑆𝑆𝑆𝑆
𝐸𝐸 ,𝑐𝑐𝑆𝑆𝐶𝐶𝑆𝑆 − 𝑍𝑍𝑆𝑆𝑜𝑜𝑆𝑆

𝐸𝐸 ,𝑐𝑐𝑆𝑆𝐶𝐶𝑆𝑆

𝑍𝑍𝑆𝑆𝑜𝑜𝑆𝑆
𝐸𝐸 ,𝑐𝑐𝑆𝑆𝐶𝐶𝑆𝑆    𝐸𝐸

𝑛𝑛
∗ 100                                       (9) 

 

𝐺𝐺𝐺𝐺𝑜𝑜𝑆𝑆𝑆𝑆𝑝𝑝
% =

∑
𝑍𝑍𝑆𝑆𝑜𝑜𝑆𝑆
𝐸𝐸 ,𝑜𝑜𝑆𝑆𝑆𝑆𝑝𝑝 − 𝑍𝑍ℎ𝑒𝑒𝑆𝑆𝑆𝑆

𝐸𝐸 ,𝑜𝑜𝑆𝑆𝑆𝑆𝑝𝑝

𝑍𝑍𝑆𝑆𝑜𝑜𝑆𝑆
𝐸𝐸 ,𝑜𝑜𝑆𝑆𝑆𝑆𝑝𝑝𝐸𝐸

𝑛𝑛
∗ 100                                    (10) 

 

𝐺𝐺𝐺𝐺𝑐𝑐𝑆𝑆𝐶𝐶𝑆𝑆%  shows average percent deviation in cost objective, 𝐺𝐺𝐺𝐺𝑜𝑜𝑆𝑆𝑆𝑆𝑝𝑝
%  shows average 

percent deviation in profit objective, and n is the size of Pareto-optimal front. These 

two metrics show relative distance of two Pareto fronts in terms of cost and profit 

objectives. However, any kind of objectives could be used with these metrics. We will 

refer to these metrics as Percent GD in cost objective and Percent GD in profit 

objective.  

 

Several other metrics exist in literature: Error Ratio, Set Coverage Metric, Maximum 

Pareto Optimal Front Error, Spacing, Spread, Maximum Spread, Chi-Square-Like 

Deviation Measure, Attainment Surface Based Statistical Method, Weighted Method, 

and Nondominated Evaluation Metric.  All these metrics try to measure convergence 

and dispersion properties of algorithms. Hence, we would like to select two metrics: 

one for convergence and one for dispersion properties of the algorithm of interest. 

Since two metrics are adequate to measure these two properties and since HV and GD 

give more insight to the algorithm of interest and more frequently used in literature, 

we used only these two metrics. We should also note that Percent GD is proposed for 

the first time in this study and aims to demonstrate the percent deviation from Pareto-

optimal front. 
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 3.5  Parameter Setting for mNSGA-II 

 

Population Size: Since we deal with a combinatorial optimization problem, search 

space to be considered is intractable even for very small problem sizes. Note that a 

large population size is desirable even for small problem sizes. On the other hand, 

since finding the objective function values for each member of population is also a 

very time consuming process for TSPP due to the requirement for solving a TSP for 

each member of population, a small population size is desirable. The reasoning 

behind the desire of a small population size is to obtain a converged population in a 

reasonable time. If population size were very large, each generation of the algorithm 

would require a very long time and we would have to stop before the algorithm 

converges due to time considerations. Moreover, in NSGA-II population size 

determines the size of pareto front returned by algorithm. However, since in mNSGA-

II all generated efficient solutions are kept in an external population, size of pareto 

front is independent from population size for mNSGA-II. Hence we decided to use a 

population size of 100. This selection is based on previous studies on best parameter 

settings for other algorithms, the time required to perform a single iteration in 

mNSGA-II, and the size of pareto front we target.       

 

Crossover Probability: After defining metrics to be used, we first set crossover and 

mutation probabilities. To allow adequate inheritance of good schemata, the original 

crossover probability of 0.9 in NSGA-II is kept unchanged. 

 

Mutation Probability: Table 2 shows hyper volumes enclosed by generated Pareto 

fronts for test problem EIL76 at several mutation probability levels for mNSGA-II. A 

generation number limit of 250 is used. We observed that high mutation probabilities 

cause loss of good quality solutions and very low ones result in premature 

convergence. Therefore we use 0.02 as the mutation probability, Pm. 
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Table 2 Hyper volumes at various mutation probabilities. 

 Pm Hyper Volume 

EI
L7

6 
   

   
 

0.0125 399,402 
0.0200 420,114 
0.0500 408,121 
0.1000 395,180 

 

 

 

Generation Number Limit: Convergence to the Pareto-optimal front gets difficult 

and probability of being stuck at a local optima increases rapidly as n increases 

because of exponential increase of search space. Thus, we used different generation 

number limits for a population size of 100. After various experiments we set the limit 

to 1,000 for n<100, to 5,000 for 100≤n<200, and to 10,000 for n≥200. These limits 

are defined considering convergence of algorithm at various problem sizes 

(independent from difficulty of TSP instances solved) and time requirements. 

 

 3.6  Evaluation of Proposed Modifications for NSGA-II 

 

Firs we conducted a preliminary experiment for NSGA-II and proposed improvement 

in section 3.2. Table 3 shows results of experiment, where a generation number limit 

of 250 and a population size of 100 is used. As it can be seen in Table 3, number of 

nondominated solutions for NSGA-II never exceeds 100, which corresponds to the 

population size used. On the other hand, with the first improvement we are able to 

find a more populated pareto front. Also hyper volumes are better for proposed 

algorithm on all six problem instances and accordingly HVR values are less than 1. 

However, HVR are very close to 1 since we do not modify execution of algorithm. 

 

To visually show and exemplify pareto fronts generated, in Figure 6 we present 

Pareto front generated for REINELT1084 instance which include 1084 cities.  
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Table 3 Results for first modification to NSGA-II 

Problem 
Instance 

# of Nondominated 
solutions generated Hyper Volume 

HVR 
NSGA-II Proposed NSGA-II Proposed 

EIL30 66 119 2,616,200 2,630,350 0.9946 
CMT101 92 147 444,830 448,370 0.9921 

F135 98 219 6,479,901 6,535,792 0.9914 
GIL262 97 223 13,862,466 14,003,940 0.9899 

E484 99 181 3,986,497 4,009,011 0.9944 
REINELT1084 99 256 4,626,044,046 4,684,320,515 0.9876 

 

 

 

Consequently, as it can be observed from Figure 6, with proposed algorithm we are 

able to find a pareto front in terms of convergence, dispersion, and number of 

nondominated solutions.  

 

Secondly, fixing population size to 100 and performing 20 replications, we conducted 

another preliminary experiment using NSGA-II and mNSGA-II over 3 instances from 

TSP literature with problem sizes of 100, 200, and 300 cities. Table 4 presents 

average hyper volumes enclosed by Pareto fronts generated for both algorithms over 

20 replications. mNSGA-II is better in all cases, except for one instance shown in red 

ink. 

 

Moreover, the size of Pareto front generated by the original algorithm for three 

problems is always 100, whereas, it is 500, 300, and 700 on average for mNSGA II 

for three problems respectively. 

 

A preliminary analysis is also conducted to find out effect of usage of a heuristic and 

an exact method on quality of generated pareto front. Lin-Kernighan is used as 

heuristic and Concorde TSP solver used to obtain exact results.  
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Figure 6 Pareto fronts generated for REINELT1084 by NSGA-II and Proposed algorithms.  30 
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Table 4 Hyper volumes at various generations for three test problems with 20 
replications. 

 

Generation 
Number NSGA II mNSGA II 

C
M

T1
21

 

0 96,396 96,396 
100 324,125 326,456 
200 350,476 349,531 
300 360,784 365,237 
400 366,324 372,234 
500 369,006 376,245 

       

E2
00

 

0 441,148 441,148 
100 1,193,185 1,201,742 
200 1,259,501 1,262,951 
300 1,290,893 1,304,978 
400 1,314,062 1,331,932 
500 1,328,356 1,351,339 

       

LI
N

31
8 

0 99,159,717 99,159,717 
100 279,237,849 287,690,064 
200 297,581,093 300,516,775 
300 305,733,034 311,836,548 
400 312,160,786 319,694,935 
500 316,361,711 325,594,095 

 

 

 

Table 5 shows hyper volumes for three test problems and Figures 7 and 8 show 

generated pareto fronts when solving TSP instances under mNSGA-II using exact 

method and Lin-Kernighan heuristic. For experiments a generation number limit of 

250 and a population size of 100 are used. 

 
As it can be seen from Table 5 results generated are very close to each other. Figures 

7 and 8 also suggest that the two methods generate equally good solutions. For OP33 

instance results are almost the same. For EIL76, in Figure 8, algorithms perform 

better in different segments of generated pareto front. Results indicate that for 
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moderate problem sizes Lin-Kernighan heuristic and exact method are nondominated 

to each other. For larger problem sizes usage of exact method becomes impossible 

due to large computational requirements. Thus, we will use Lin-Kernighan heuristic 

to solve TSP instances faced during execution of mNSGA-II.    

 
 
 

Table 5 Hyper volumes for three test problems. 

 Hyper Volume 
Exact Lin-Kernighan 

OP33 37,860 37,860 
EIL51 194,001 194,366 
EIL76 425,301 430,624 

 
 
 
 
In summary, the second improvement explained in section 3.3 is a more general 

improvement and it includes the first improvement explained in section 3.2. Also 

results shown in Table 4 show that mNSGA-II is better than original NSGA-II 

algorithm. Hence, we will use only mNSGA-II to compare our results with results in 

literature. Moreover, due to reasons explained above, we will use Lin-Kernighan 

heuristic in our computational experiments which are summarized in the next chapter.  

 
 3.7  A Preliminary Analysis on Robustness of Modified NSGA-II 

 

Since mNSGA-II is a heuristic, results generated by this heuristic will vary based on 

initial conditions selected. Hence, performance of a heuristic is effectively measured 

if adequate number of replications is conducted. If the results of experiments prove 

that heuristic is robust and correlation between initial conditions and the results of 

runs is weak, then, results of a single run could be assumed to be adequate to measure 

performance of heuristic studied.   
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Figure 7 Results for OP33. 

33 



34 
 

 

 
Figure 8 Results for EIL76. 34 
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For mNSGA-II, we generate initial parent population randomly where we control 

randomness using initial seed value for random number generator it uses. To observe 

the effect of randomness in initial population on results of simulation, we have 

conducted a preliminary experiment. The aim of this experiment is to observe 

robustness of the modified heuristic and decide whether it is required to conduct more 

than one simulation for problems with long runtimes. 

 

Tables 6, 7, and 8 give results for VRP and TSP instances including less than 100 

cities. We have conducted 10 runs for each problem instance. Tables 6, 7, and 8 

summarize averages for these instances. Demand data for VRP instances is accepted 

as profits for cities. For TSP instances we have generated two types of profits 

randomly, named as TSP-1 and TSP-3. In the next chapter we provide details of this 

profit assignment schema.  

 

In Tables 6, 7, and 8 we provide minimum, average, maximum, and standard 

deviation for parameters considered. For each problem instance, we give number of 

efficient solutions generated (# of sol), hyper volume enclosed by generated pareto 

front (HV), hyper volume ratio (HVR), Percent GD in cost objective (PGD-cost(%)), 

Percent GD in profit objective (PGD-prof(%)), CPU time for modified NSGA-II 

(Time NSGA-II (sec)), and CPU time for Lin&Kernighan Heuristic (Time L&K 

(sec)). Considering standard deviation for number of efficient solutions generated, the 

largest deviation is 22 solutions for EIL76 where 339 solutions are generated on 

average as it can be seen in Table 8. Considering hyper volume, standard deviation is 

less than 1% of average hyper volume in all cases and it is less than 1‰ in most of 

the results. HVR values show that in all cases results found are very close to each 

other, less than 5‰ in all cases. Deviation in Percent GD in cost and profit objectives 

is always less than 6‰. This means that pareto fronts found are very close to each 

other and there is no major deviation from one simulation to another. CPU times 

reported show larger deviation when compared to results summarized up to now.  
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Table 6 Preliminary experiments on robustness of mNSGA-II for VRP instances. 

  
Min Ave Max Stdev 

EI
L2

2 
# of sol 67 69 70 1 
HV 3,286,400 3,292,630 3,297,900 5,508 
HVR 0.9964 0.9983 0.9999 0.0017 
PGD-cost (%) 0.02 0.19 0.41 0.14 
PGD-prof (%) 0.01 0.04 0.07 0.02 
Time NSGA-II (Sec.) 75 91 116 14 
Time L&K (Sec.) 31 50 116 25 

EI
L2

3 

# of sol 74 75 77 1 
HV 3,403,618 3,403,997 3,404,600 241 
HVR 0.9997 0.9998 1.0000 0.0001 
PGD-cost (%) 0.06 0.07 0.12 0.02 
PGD-prof (%) 0.00 0.00 0.01 0.00 
Time NSGA-II (Sec.) 67 82 100 11 
Time L&K (Sec.) 52 80 162 33 

EI
L3

0 

# of sol 126 129 132 2 
HV 2,689,973 2,690,377 2,690,550 184 
HVR 0.9997 0.9999 1.0000 0.0001 
PGD-cost (%) 0.01 0.03 0.10 0.03 
PGD-prof (%) 0.00 0.01 0.02 0.01 
Time NSGA-II (Sec.) 82 89 107 8 
Time L&K (Sec.) 538 741 886 104 

EI
L3

3 

# of sol 159 161 162 1 
HV 6,564,433 6,565,384 6,565,820 386 
HVR 0.9998 0.9999 1.0000 0.0001 
PGD-cost (%) 0.01 0.07 0.09 0.03 
PGD-prof (%) 0.00 0.01 0.02 0.00 
Time NSGA-II (Sec.) 84 95 114 9 
Time L&K (Sec.) 348 551 730 104 

EI
L5

1 

# of sol 226 235 245 5 
HV 197,504 197,564 197,597 29 
HVR 0.9993 0.9996 0.9998 0.0001 
PGD-cost (%) 0.03 0.05 0.08 0.01 
PGD-prof (%) 0.02 0.03 0.04 0.01 
Time NSGA-II (Sec.) 118 140 177 20 
Time L&K (Sec.) 247 357 474 65 

EI
L7

6 

# of sol 307 328 345 12 
HV 438,783 440,991 441,891 1,038 
HVR 0.9907 0.9957 0.9977 0.0023 
PGD-cost (%) 0.28 0.58 1.23 0.32 
PGD-prof (%) 0.11 0.16 0.23 0.03 
Time NSGA-II (Sec.) 153 178 221 21 
Time L&K (Sec.) 750 1,009 1,240 137 
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Table 7 Preliminary experiments on robustness of mNSGA-II for TSP-1 instances. 

  
Min Ave Max Stdev 

EI
L5

1 
# of sol 82 91 117 11 
HV 11,257 11,405 11,426 52 
HVR 0.9850 0.9979 0.9998 0.0046 
PGD-cost (%) 0.02 0.12 0.56 0.16 
PGD-prof (%) 0.00 0.14 1.45 0.46 
Time NSGA-II (Sec.) 73 160 226 46 
Time L&K (Sec.) 395 589 838 152 

BE
R

L
IN

52
 

# of sol 52 52 52 0 
HV 246,685 246,892 246,966 105 
HVR 0.9988 0.9997 1.0000 0.0004 
PGD-cost (%) 0.01 0.07 0.16 0.06 
PGD-prof (%) 0.00 0.04 0.24 0.08 
Time NSGA-II (Sec.) 134 162 202 21 
Time L&K (Sec.) 2,159 2,721 4,279 685 

ST
70

 

# of sol 94 100 110 5 
HV 26,057 26,319 26,419 105 
HVR 0.9853 0.9952 0.9990 0.0040 
PGD-cost (%) 0.15 0.24 0.40 0.07 
PGD-prof (%) 0.00 0.51 1.60 0.49 
Time NSGA-II (Sec.) 167 208 268 36 
Time L&K (Sec.) 1,217 1,465 2,016 271 

EI
L7

6 

# of sol 110 132 152 12 
HV 22,675 22,727 22,824 45 
HVR 0.9911 0.9934 0.9976 0.0020 
PGD-cost (%) 0.42 0.57 0.68 0.09 
PGD-prof (%) 0.14 1.10 1.79 0.51 
Time NSGA-II (Sec.) 118 155 247 46 
Time L&K (Sec.) 1,072 1,579 3,227 739 

PR
76

 

# of sol 76 78 80 1 
HV 4,627,952 4,636,060 4,647,299 6,063 
HVR 0.9920 0.9938 0.9962 0.0013 
PGD-cost (%) 0.34 0.40 0.52 0.06 
PGD-prof (%) 0.55 1.04 1.44 0.24 
Time NSGA-II (Sec.) 163 206 268 30 
Time L&K (Sec.) 2,844 3,455 4,409 510 

R
A

T9
9 

# of sol 116 126 138 7 
HV 59,658 60,012 60,338 188 
HVR 0.9812 0.9870 0.9924 0.0031 
PGD-cost (%) 0.38 0.46 0.56 0.06 
PGD-prof (%) 0.52 1.31 1.89 0.40 
Time NSGA-II (Sec.) 180 217 251 20 
Time L&K (Sec.) 1,146 1,270 1,412 87 



38 
 

Table 8 Preliminary experiments on robustness of mNSGA-II for TSP-3 instances. 

  
Min Ave Max Stdev 

EI
L5

1 
# of sol 213 246 263 15 
HV 534,607 537,148 538,709 1,277 
HVR 0.9913 0.9960 0.9989 0.0024 
PGD-cost (%) 0.15 0.55 1.03 0.25 
PGD-prof (%) 0.14 0.25 0.36 0.08 
Time NSGA-II (Sec.) 142 171 192 16 
Time L&K (Sec.) 350 440 524 54 

BE
R

L
IN

52
 

# of sol 411 417 425 5 
HV 7,240,064 7,312,420 7,342,129 38,058 
HVR 0.9857 0.9956 0.9996 0.0052 
PGD-cost (%) 0.05 0.10 0.21 0.05 
PGD-prof (%) 0.09 0.65 1.80 0.60 
Time NSGA-II (Sec.) 159 176 197 13 
Time L&K (Sec.) 1,501 1,783 2,968 423 

ST
70

 

# of sol 397 422 454 20 
HV 1,276,653 1,287,499 1,295,376 6,228 
HVR 0.9804 0.9887 0.9947 0.0048 
PGD-cost (%) 0.61 1.48 2.48 0.58 
PGD-prof (%) 0.23 0.35 0.49 0.09 
Time NSGA-II (Sec.) 165 196 213 16 
Time L&K (Sec.) 946 1,097 1,213 95 

EI
L7

6 

# of sol 314 339 389 22 
HV 1,144,746 1,153,412 1,159,252 4,869 
HVR 0.9823 0.9898 0.9948 0.0042 
PGD-cost (%) 0.78 1.43 2.20 0.49 
PGD-prof (%) 0.30 0.38 0.46 0.05 
Time NSGA-II (Sec.) 170 208 239 23 
Time L&K (Sec.) 680 918 1,316 182 
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We also want to note that the major portion of CPU time for a simulation comes from 

the routing decision, the CPU time for Lin&Kernighan Heuristic. Figure 9 shows 

percentages of average CPU times for mNSGA-II and Lin&Kernighan heuristic. 

 

 

 

 
Figure 9 Percentage of CPU times for mNSGA-II and Lin&Kernighan. 

 

 

 

As it can be seen from Figure 9, only a small portion of CPU time for simulations 

comes from mNSGA-II. Thus, if a better algorithm could be found to solve routing 

problem, then, mNSGA-II would also improve in terms of runtime.  
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CHAPTER 4 

 
 

COMPUTATIONAL RESULTS 
 
 
 

 In this chapter we present computational results of mNSGA-II and compare them to 

the benchmark results available in literature. In section 4.1 selection of problem 

instances is explained and results regarding selected problems are given in section 

4.2. 

 

 4.1  Selection of Test Problems 

 

Two types of problems are solved in this study: VRP and TSP instances in the routing 

literature. 

 

The data file for a VRP instances includes coordinates of cities and demands assigned 

to cities. In our study we considered demands as profits as previously done by 

Fischetti et al. (1998) and Berube et al. (2008).  

 

For TSP instances we generated profits, Pi, according to method proposed by 

Fischetti et al. (1998) and used by Berube et al. (2008). Three types of profits are 

considered for TSP instances: 

 

Type 1 Profits: 𝑃𝑃𝐸𝐸 = 1                                                                               (11)          

Type 2 Profits: 𝑃𝑃𝐸𝐸 = 1 + (7141 ∗ 𝐸𝐸 + 73)𝐸𝐸𝑆𝑆𝑚𝑚(100)                       (12)    

Type 3 Profits: 𝑃𝑃𝐸𝐸 = 1 + ⌊99 ∗ 𝑐𝑐1𝐸𝐸/𝜃𝜃⌋ 𝑤𝑤ℎ𝑒𝑒𝑆𝑆𝑒𝑒 𝜃𝜃 = 𝐸𝐸𝐸𝐸𝑚𝑚𝐸𝐸𝑖𝑖𝑖𝑖\{1}𝑐𝑐1𝐸𝐸    (13)    

 

In (11), (12), and (13) i=1 is considered as depot city and P1 is set to 0. In (13), c1i is 

the distance between depot city and ith city and V is the set of all cities. Thus, Type 1 
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profits are constant and same for all cities, Type 2 profits are generated uniformly 

between [0,100], and Type 3 profits are generated between [0,100] where high profits 

are assigned to cities far away from the depot city. 

 

We give computational results for most of VRP and TSP instances considered in 

literature by other researchers. 61 problems with problem sizes up to 400 cities are 

solved using mNSGA-II. 

 

 4.2  Computational Results 

 

Up to now, it has been shown that mNSGA-II performs better in terms of 

convergence and size of Pareto front generated. Hence, only mNSGA-II algorithm is 

used to solve a wide range of problem types and sizes. As previously stated, a 

crossover probability of 0.9, a mutation probability of 0.02, a population size of 100, 

a generation number limit of 1.000, 5.000, and 10.000 for problems including less 

than 100, between 100 and 200, and between 200 and 400 cities respectively are used. 

mNSGA-II is coded in C programming language on a Linux platform with an Intel 

Core2Duo 2 Ghz processor and 2 GB of RAM. Tables 9, 10, 11, and 12 show results 

for problems from VRP and TSP literature (TSPLIB, 2008). Table 9 shows results for 

VRP instances, Table 10 gives results for TSP instances with Type 1 profits, Table 11 

gives results for TSP instances with Type 3 profits for which results exist in the 

literature, and finally Table 12 presents results regarding TSP instances with Type 3 

profits for which complete approximate pareto fronts are given for the first time in 

this study. 

 

We use results of studies conducted by Fischetti et al. (1998) and Berube et al. 

(2008). We refer to the former FGT and latter BGP. The followings are summarized 

in Tables 9, 10, 11, and 12; 

  

Problem Name: The name of problem as in TSPLIB (2008) is given. 
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Size of Pareto Front: Number of efficient solutions reported in the literature and 

number of efficient solutions generated by mNSGA-II are given. In literature, BGP 

provides complete distinct nondominated solutions, whereas FGT reports only three 

solutions for VRP instances and only one solution for TSP instances. 

Hyper Volume of Pareto Front: HV enclosed by Pareto fronts reported by BGP and 

FGT and HV enclosed by Pareto front found by mNSGA-II are presented. For 

problems where only one (see Tables 9 and 12) or three solutions is reported 

(problems reported by FGT), we did not compute hyper volume since three solutions 

are not adequate to correctly estimate Pareto-optimal front, hence a HV for Pareto-

optimal front. 

 HVR: Hyper Volume Ratio for reported Pareto fronts is given. Pareto front reported 

by BGP is the Pareto-optimal front. On the other hand, since results provided by FGT 

includes only 3 solutions (1 solution in the case of TSP), we did not compute HV for 

solutions given by FGT and HVR for problems reported by FGT. 

Percent GD: Average percent deviation in cost and profit objective is calculated for 

all problems.  

NGP: Number of generations performed. It shows how many generations are 

performed for the given problem size. 

CPU Tims: It shows total CPU time spent for each problem reported by BGP and 

used by mNSGA-II. FGT reports that they put time limit of 5 hours to generate a 

single solution. Also since the study reported by FGT is old, considering 

technological advancements in computer industry, CPU times for FGT are not 

included in tables. FGT have used a DEC station 5000/240 and on a Hewlett Packard 

Apollo 9000/720 computer and CPLEX 3.0. BGP have used an AMD Opteron 2.4 

Ghz processor and CPLEX 9.3. 

 

To summarize, Fischetti et al. (1998) provide 3 solutions for VRP instances and 1 

solution for TSP instances. The largest VRP instance they solve is GIL260 and the 

largest TSP instance they solve is RD400. They use a time limit of 5 hours to generate 

a solution. However, since their work dates back to 1998, technology they have used 
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to implement their algorithm is incomparable with current computer technology we 

have used. Thus, we will not present a comparison between our results and results of 

Fischetti et al. (1998). On the other hand, study of Berube et al. (2008) is a recent 

one. They generate the whole Pareto front for problems they were able to solve under 

a time limit of 72 hours. We compare our computation times with theirs since their 

study is recent. The largest VRP instance for which they report Pareto-optimal front is 

EIL101. The largest TSP instance with Type 1 profits they are able to solve includes 

150 cities and the largest TSP instance with Type 3 profits for which they are able to 

generate the whole Pareto front in 72 hours is EIL101. However, we should note that 

they are unable to solve some medium size problems such as PR76 for Type 3 profits. 

They report that instances with Type 3 profits are the hardest problems. Based on 

their claim we have solved only TSP instances with Type 1 and Type 3 profits. 

Instances with Type 2 profits are not considered in this paper since we believe that 

instances with type 1 and type 3 profits are adequate to show performance of 

mNSGA-II. 

 

Before discussing results regarding hyper volumes and hyper volume ratios given in 

Tables 9, 10, 11, and 12, we want to point out an issue regarding hyper volumes 

reported for the problems with Pareto front size of 1 and 3 solutions. For these 

problems, actually, HV and HVR are meaningless. All convexities and concavities of 

Pareto-optimal front would be disregarded if we calculated HV for these problem 

instances. Hence, it is more meaningful to look at Percent GD for such problems.  

 

For problems with complete Pareto-optimal fronts, results reported by BGP, HVR 

values for VRP instances are above 0.99 as can be seen in Table 9.  This means that 

the results very close to Pareto-optimal fronts are found by mNSGA-II. HVR values 

for TSP instances with Type 1 profits, in Table 10, are 0.96 for one instance, 0.98 for 

5 instances and above 0.99 for other 14 problem instances. It can be concluded that 

mNSGA-II is able to find results very close to the Pareto-optimal front for other 6 
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Table 9 Computational results for VRP instances. 

Problem 
Name† 

Size of  Pareto Front  Hyper Volume of 
Pareto Front HVR‡ 

Percent GD 
NGP 

CPU Time 

BGP/FGT mNSGA- II BGP/FGT mNSGA-II Cost Profit BGP mNSGA-II 
EIL22 67 67 3,298,300 3,297,500 0.9998 0.41 0.06 1,000 00:00:08 00:05:35 
EIL23 75 77 3,404,732 3,404,732 1.0000 0.00 0.00 1,000 00:00:08 00:05:40 
EIL30 125 132 2,690,675 2,689,974 0.9997 0.10 0.00 1,000 00:00:27 00:09:40 
EIL33 159 161 6,565,900 6,564,433 0.9998 0.00 0.00 1,000 00:00:55 00:06:32 
EIL51 223 238 197,640 197,565 0.9996 0.06 0.04 1,000 00:09:00 00:04:55 
EIL76 355 337 442,888 441,599 0.9971 0.36 0.14 1,000 00:43:25 00:13:28 
EIL101 498 644 584,767 583,624 0.9980 0.34 0.07 5,000 01:24:07 02:25:50 

CMT101 3 794 - 487,490 - 0.45 0.00 5,000 * 05:36:27 
CMT121 3 494 - 390,436 - 0.49 0.02 5,000 * 10:49:44 
CMT151 3 603 - 955,292 - 0.80 0.06 5,000 * 04:06:49 
CMT200 3 535 - 1,469,317 - 2.37 0.17 10,000 * 10:39:24 
GIL262 3 668 - 16,837,105 - 3.25 0.09 10,000 * 20:37:02 

 
* Complete Pareto front is not available. Complete Pareto front for the problem is published for the first time here. 
† Format for problem names is “ABC#”, where “ABC” is a keyword for problem and “#” indicates the problem size n. 
‡ Hyper volume ratio is the ratio between hyper volume enclosed by Pareto front found by mNSGA II and hyper volume 
enclosed by Pareto optimal front. 
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Table 10 Computational results for TSP instances with Type 1 profits. 

Problem 
Name† 

Size of  Pareto Front  Hyper Volume of Pareto 
Front HVR‡ 

Percent GD 
NGP 

CPU times 

BGP/FGT mNSGA-II BGP/FGT mNSGA-II Cost Profit BGP mNSGA-
II 

EIL51 51 91 11,428 11,425 0.9997 0.05 0.00 1,000 00:00:10 00:12:05 
BERLIN52 52 52 246,976 246,707 0.9989 0.16 0.14 1,000 00:00:10 01:12:52 
ST70 70 101 26,445 26,340 0.9960 0.31 0.30 1,000 00:01:02 00:23:06 
EIL76 76 128 22,878 22,690 0.9918 0.45 1.66 1,000 00:00:37 00:30:02 
PR76 76 78 4,665,108 4,627,952 0.9920 0.38 1.23 1,000 48:42:14 00:50:21 
RAT99 99 122 60,802 60,081 0.9881 0.41 1.34 1,000 00:03:53 00:23:10 
KROB100 100 101 1,213,670 1,199,239 0.9881 0.45 1.61 5,000 00:17:56 03:58:50 
KROE100 100 100 1,220,850 1,215,885 0.9959 0.35 0.31 5,000 00:13:57 03:34:13 
RD100 100 105 443,357 440,870 0.9944 0.30 0.78 5,000 00:06:05 02:57:56 
EIL101 101 248 36,747 36,503 0.9934 0.38 0.98 5,000 00:01:30 03:49:36 
LIN105 105 126 843,792 842,515 0.9985 0.14 0.04 5,000 01:32:39 05:58:14 
PR107 107 6620 2,275,961 2,270,681 0.9977 0.08 0.25 5,000 00:01:14 08:03:13 
PR124 124 137 3,978,325 3,930,137 0.9879 0.25 2.60 5,000 00:49:51 11:17:55 
BIER127 127 132 10,617,461 10,579,952 0.9965 0.82 3.56 5,000 00:17:53 25:30:42 
CH130 130 140 448,458 444,017 0.9901 0.44 1.51 5,000 00:11:59 07:33:39 
PR136 136 562 6,876,821 6,860,664 0.9977 0.30 0.08 5,000 17:56:30 06:08:37 
PR144 144 161 4,359,979 4,324,206 0.9918 0.42 1.16 5,000 04:51:21 10:27:54 
CH150 150 168 536,330 527,830 0.9842 0.56 2.45 5,000 01:01:46 06:37:34 
KROA150 150 152 2,155,970 2,076,616 0.9632 0.64 6.06 5,000 22:30:24 07:12:38 
KROB150 150 153 2,122,032 2,081,561 0.9809 0.54 3.38 5,000 18:54:50 07:36:51 
 
† Format for problem names is “ABC#”, where “ABC” is a keyword for problem and “#” indicates the problem size n. 
‡ Hyper volume ratio is the ratio between hyper volume enclosed by Pareto front found by mNSGA II and hyper volume enclosed by Pareto optimal front.  45 
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Table 11 Computational results for TSP instances with Type 3 profits for which results exist in the literature. 

Problem 
Name† 

Size of  Pareto Front  Hyper Volume of Pareto 
Front 

HVR‡ 
Percent GD 

NGP 
CPU Time 

BGP/FGT mNSGA-
II BGP/FGT mNSGA-II Cost Profit BGP mNSGA-II 

EIL51 267 242 539,301 538,304 0.9982 0.37 0.26 1,000 00:19:56 00:07:04 
BERLIN52 439 419 7,344,871 7,331,620 0.9982 0.09 0.38 1,000 00:21:32 00:51:20 
ST70 452 454 1,302,221 1,276,653 0.9804 2.48 0.44 1,000 02:34:18 00:16:41 
EIL76 383 350 1,165,318 1,152,535 0.9890 1.55 0.34 1,000 01:22:51 00:23:34 
RD100 1513 1137 21,453,308 21,434,376 0.9991 0.23 0.49 5,000 50:16:00 03:24:25 
EIL101 499 495 1,869,369 1,865,935 0.9982 0.26 0.12 5,000 10:37:07 02:35:17 
 
† Format for problem names is “ABC#”, where “ABC” is a keyword for problem and “#” indicates the problem size n. 
‡ Hyper volume ratio is the ratio between hyper volume enclosed by Pareto front found by mNSGA II and hyper volume enclosed by Pareto optimal front. 
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Table 12 Results for TSP instances with Type 3 profit for which complete pareto 
fronts are given for the first time. 

Problem 
Name† 

Size of Pareto Front Hyper 
Volume of 

Pareto Front 

Percent GD 
NGP CPU 

Time BGP/FGT mNSGA-II Cost Profit 

PR76 1 560 227,374,231 0.06 0.08 1,000 00:45:52 
RAT99 1 727 3,230,875 0.61 0.16 1,000 00:17:06 
KROB100 1 862 53,183,779 0.05 0.54 5,000 03:29:30 
KROE100 1 1124 56,941,724 0.04 0.00 5,000 02:46:37 
LIN105 1 916 38,784,808 0.28 0.80 5,000 05:03:05 
PR107 1 1162 115,318,278 0.41 0.89 5,000 05:48:02 
PR124 1 822 204,782,671 0.18 0.95 5,000 04:39:23 
BIER127 1 1104 252,861,992 0.02 0.18 5,000 10:19:27 
CH130 1 903 22,785,953 0.00 0.00 5,000 05:03:51 
PR136 1 1007 384,209,556 0.02 0.32 5,000 06:39:20 
PR144 1 972 216,310,640 0.16 1.30 5,000 12:03:28 
CH150 1 1080 28,269,844 0.00 0.00 5,000 06:31:31 
KROA150 1 843 117,424,746 0.02 0.13 5,000 04:50:54 
KROB150 1 942 121,774,833 0.14 0.80 5,000 06:04:51 
PR152 1 1034 293,545,081 0.00 0.03 5,000 57:12:27 
U159 1 846 191,262,327 0.02 0.15 5,000 04:48:02 
RAT195 1 714 12,454,180 1.66 0.01 5,000 03:37:14 
D198 1 682 83,462,482 0.48 0.74 5,000 25:34:12 
KROA200 1 1012 159,004,259 0.02 1.18 10,000 22:33:44 
TS225 1 751 817,585,504 0.07 1.86 10,000 07:58:30 
PR264 1 827 336,548,607 0.70 2.97 10,000 33:42:34 
LIN318 1 682 360,287,518 0.65 1.79 10,000 36:48:34 
RD400 1 751 160,862,912 2.75 1.72 10,000 37:33:31 
 
† Format for problem names is “ABC#”, where “ABC” is a keyword for problem and “#” indicates the 
problem size n. 
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instances. In Table 11, we observe that HVR values are 0.98 for 2 out of 6 problems, 

for which complete Pareto-fronts are available, and 0.99 for the remaining 4 problem 

instances. For all other problem instances we will use Percent GD as comparison tool. 

 

From Table 9 we observe that Percent GD in both objectives for the problems 

including less than 200 cities is smaller than 1%. It is 2% for a 200-city problem and 

3% for a 262-city problem. Considering Table 10, Percent GD is less than 0.5% for 

most of the problems in the cost objective. However, we also observe values up to 6% 

in the profit objective. The reason for such a slightly larger deviation in profit 

objective will become clearer after investigating Table 9. However, we can conclude 

that results of mNSGA-II are very close to the Pareto-optimal front. In Tables 11 and 

12, we observe that Percent GD in cost objective is below 1% except for two 

problems. For these two problems it is 1% and 2%. In profit objective we observe 

that PGD is below 1% up to problem sizes of 200 cities and below 2% up to problem 

sizes of 400 cities. Thus for these problems, mNSGA-II generate good 

approximations to Pareto-optimal front. If we reconsider 6% deviation in profit 

objective for TSP instances with Type 1 profits in Table 10 together with results 

presented in Tables 11 and 12, the deviation is most probably due to range of profit 

objective. Because that in Type 1 profits all cities, except depot, have a profit value of 

1, even missing 1 or 2 points on Pareto-optimal front causes large deviations. This 

argument is also enhanced with results found for TSP instances with Type 3 profits, 

where range of profit objective is moderately larger.  

 

We have seen that mNSGA-II performs well in finding near-optimal results for all 

problems considered. Now, we would like to compare our computation times with the 

ones reported by BGP. We observe from Tables 9 and 10 that for small problem sizes 

their algorithm is better than mNSGA-II in general. However, for some small 

problems and for large problem sizes their runtimes are much larger than runtimes of 

mNSGA-II. For instance, the CPU time reported by BGP for PR76 in Table 10 is 10 

times of CPU time of mNSGA-II. The same situation is observed for some small 
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problems in Tables 9 and 10. Another observation is that as problem size gets larger, 

CPU times of BGP increases more rapidly than that of mNSGA-II. Figure 10 shows 

pareto front for PR76 instance with Type 1 profits. One solution provided by FGT is 

used in figure since BGP report that they could not fount complete pareto front in 72 

hours of time limit. We have also included extreme solutions although FGT do not 

report. As it can be seen from Figure 10, approximation of mNSGA-II is very close to 

optimal. Figures 11 and 12 show pareto fronts for two other problem instances: 

CH150 with Type 1 profits and TS225 with Type 3 profits. Again approximations of 

mNSGA-II are very good.     

 

If we consider Tables 11 and 12, CPU times for mNSGA-II are much better than CPU 

times of BGP. Except for one small problem, BERLIN52, in all cases CPU times for 

mNSGA-II are much shorter than that of BGP. In fact, BGP reports that their 

algorithm is very dependent on profit structure of the problem instances and that they 

are unable to solve most of problem instances with type 3 profits in a time limit of 72 

hours, for problems reported in Table 12. On the other hand, since mNSGA-II is a 

search heuristic, we observe from Tables 10, 11, and 12 that it generates similar 

results for all profit structures. Such a robustness property of mNSGA-II is one of the 

most important features of our proposed algorithm. We observe from Table 12 that 

RAT99 could not be solved in 72 hours by BGP, whereas, mNSGA-II finds a result 

very close to optimal pareto front in 17 minutes. Runtimes of mNSGA-II is below 38 

hours for the largest problem solved, which indicates a logarithmic-like attitude in 

terms of runtime of the algorithm. Hence, we believe that mNSGA-II is a very 

powerful heuristic especially for large sized problems, where exact algorithms fail.  

 

From Tables 9, 10, 11, and 12, we conclude that mNSGA-II is able to find Pareto 

fronts very close to Pareto-optimal fronts. We also observe a trend in results we have 

found. We observe that as problem size increases deviation from Pareto-optimal front 

also increases. The deviation seems to increase in a slow fashion when number of 

generations performed is increased as we previously stated. This result is expected  
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Figure 10 Pareto front generated by mNSGA-II and solutions provided by FGT for PR76 with Type 3 profits. 50 
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Figure 11 Pareto front generated by mNSGA-II and solutions provided by BGP for CH150 with Type 1 profits. 51 
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Figure 12 Pareto front generated by mNSGA-II and solutions provided by BGP for TS225 with Type 3 profits.52 
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because as problem size increases in TSPP, the search space for mNSGA-II increases 

exponentially. Hence, either population size or number of generations performed 

should be increased in order to partially avoid this drawback. 
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CHAPTER 5 

 
 

A FRAMEWORK FOR POST-OPTIMALITY ANALYSIS OF 
PARETO FRONT 

 
 
 

After finding Pareto front for the problem, DM has to choose one of these 

nondominated solutions. The aim of this chapter is to support this decision making 

process and guide the DM by extracting supportive information from found Pareto 

front and corresponding decision space vectors (i.e., efficient solution vectors). In this 

chapter we demonstrate post-optimality analysis performed by a data mining 

software, SPSS Clementine, on the Pareto front found for the VRP instance EIL33 by 

mNSGA-II.  

 

Which cities have the largest marginal effect on pareto front? 

The first analysis we make is to find cities with largest marginal effect on objectives. 

We start with inputting the Pareto front to the software. It contains subset of cities 

visited, cost, and profit values for each efficient solution. Pareto front for EIL33 is 

given in Appendix C. After feeding data into program, we choose one of the 

objectives that analysis will be conducted for. The subset of cities for each solution 

(decision space vector) is examined and the cities with highest marginal effect on 

chosen objective are reported. Results for the test instance EIL33 are shown in Figure 

13. For instance, considering cost objective, the average cost is 203 for solutions 

excluding city 28 while it is 355 units for solutions including city 28. Average cost is 

163 units for solutions excluding both cities 28 and 27. The process is shown also for 

profit objective. For this example we limited the depth of tree to 5 levels, however, 

the software can provide a depth where average of the considered objective hits to its 

minimum. 
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In fact, entire process is similar to conducting a sensitivity analysis in the LP (Linear  
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Figure 13 Post-optimality analysis for VRP instance EIL33. 
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Programming). Here, the DM can clearly observe cities with drastic marginal effects 

on the considered objective, and can focus on specific regions of the Pareto front 

generated within a few steps by including or excluding some of these cities. 

 

How are cities distributed on pareto front? 

We are also able to find the range and concentration in each objective for each city. 

For example, Figure 14 shows histograms cities 6 and 17. X-coordinate shows values 

for considered objective and y-coordinate shows frequency of occurrence of 

considered city for each level of considered objective.   

 

It is clearly observed that city 6 is included in various parts of Pareto front and has a 

large range of objective values. This means that city 6 is included both in short and 

long tours on Pareto front. However, city 17 is included only in long tours where 

large costs are accepted for larger profits. We can conclude that city 17 is far away 

from depot city and the only reason for including this city in a tour is the desire for 

larger profits. It is also reasonable to point out that there is nothing more to be 

decided for city 6, because city 6 is already included most of the tours. However, this 

is not the case for city 17. 

 

Figure 15 shows another point of view for discussion on distribution of a city over 

Pareto front. It shows range of pareto front and the number of solutions including 

cities 6 and 7 and number of solutions excluding cities 6 and 7. In histograms, cities 

are considered independently, that is we do not mean solutions where both cities are 

included. Blue (red) colored bars show the number of solutions where the 

predetermined city is excluded (included). 

 

How is a pair of cities distributed on pareto front? 

We are also able to investigate the Pareto front considering both cities together. 

Figure 16 shows frequency diagrams considering both city 6 and city 7. In Figure 16, 

blue colored bars of graphic on the top left corner show the number and dispersion of 
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Figure 14 Histograms for cities 6 and 17 showing distribution of objective function values for solutions they are included. 
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Figure 15 Histograms for cities 6 and 17 showing objective function values where the two cities are included and excluded. 
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solutions excluding both cities 6 and 17 in cost objective. Red colored bars of this 

graphic shows solutions excluding city 17 and including city 6. On the other hand, 

blue colored bars of graphic on the top right corner show solutions including city 17 

and excluding 6.  Red colored bars of this graphic shows distribution of solutions 

including both cities 6 and 17 in cost objective. Two graphics on the bottom of Figure 

16 show similar results in profit objective.   

 

How are cities correlated based on their usage on pareto front? 

The last result we want to demonstrate is an overall graph showing correlation 

between cities considering Pareto front. To assist this aim, Clementine can generate a 

network of relationship intensity between a set of cities. As an example analysis, we 

consider cities 5, 6, 13, 17, and 31. Figure 17 shows co-occurrence frequency webfor 

considered 5 cities. Note that there is no limit on the number of cities that can be 

considered. In Figure 17, for each city considered there are two nodes on the web. 

The “0.000000” node represents the case for solutions excluding considered city and 

“1. 000000” node represents the case for solutions including considered city. The arc 

between two nodes on this net shows the co-occurrence of these two cases. Bold arcs 

represent the “strong” relationship between two cases, thin arcs represent “medium” 

relationship, and dashed arcs represents “weak” relationship between two cases. This 

classification is based on the percentage of solutions where considered two cases co-

occur. Then, a DM can read from Figure 17 that the relationship type where both city 

17 and city 6 are excluded from solutions on Pareto front is a strong one. Also one 

can conclude that relationship is always weak between the case that city 5 is included 

in the solutions and all other cases. That is, city 5 is most of the time excluded from 

tours. The same situation is valid for the case where city 17 is included in the 

solutions. Hence we can conclude that also city 17 is rarely included in tours. It is 

shown with a strong relationship on the co-occurrence frequency web for the links 

connecting the case where city 17 is excluded from solutions and all other cases.  
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Figure 16 Frequency histograms for cost and profit objectives when considering 
cities 6 and 17 together. 
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Figure 17 Co-occurrence frequency web. 

Strong 
Medium 
Weak 
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Figure 18 Overall percentage of co-occurence frequencies for pair of cities. 

 

 

 

Moreover, this situation can be clearly observed in Figures 14 and 15 where we 

provide histograms for frequency of solutions including city 17. Figure 18 shows 

percentages of co-occurrences for both links that are shown and not shown in Figure 

17. In Figure 18 we observe that 7.83% of solutions on Pareto front exclude both 

cities 17 and 5. Percentage of nondominated solutions that exclude city 17 and 

include city 31 is 7.7. On the other hand, the weakest link is the case where city 5 is 

included and city 31 is excluded from the tours constructed with a frequency of 

0.12%. A DM can use these results for making robust decisions. For instance, strong 

links point out cities that are included or excluded in most of tours, hence these cities 

could be removed from or included into tours only in major distortions of considered 

scenarios. The Clementine models used to generate results in this chapter are 

summarized in Appendix D.       

We believe that data mining can be a powerful tool for multiobjective decision 
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making where preferences of a decision maker or decision makers are imprecise, 

conflicting, and very difficult to obtain and incorporate into developed algorithms. 

Post-optimality analysis that can be performed on the set of nondominated solutions 

by the help of a data mining software like SPSS Clementine can demonstrate the links 

from decision space into objective space and provide a better understanding of the 

problem under consideration. With a better understanding of the problem and 

guidelines provided, a DM could easily select his/her most preferred solution from 

the set of nondominated solutions generated with mNSGA-II.  
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CHAPTER 6 

 
 

CONCLUSION 
 
 
 

TSPP is a well-known hard multiobjective optimization problem. Hence, methods 

that can tackle the multiobjective nature of the problem effectively are compulsory.  

However, most of the algorithms proposed in literature reduce the problem to a single 

objective problem through scalarization of objectives. Few studies deal with TSPP 

using a multiobjective approach, however, these studies lack to effectively deal with 

problem. 

 

In this study we review a well-known Multiobjective Genetic Algorithm, NSGA-II, 

for TSPP and propose several improvements on this algorithm, which we call 

mNSGA-II after the implementation of proposed improvements. We use Lin-

Kernighan Heuristic provided with CONCORDE TSP solver to solve TSP instances 

generated during execution of mNSGA-II. We generate approximate Pareto fronts for 

61 test problems in the TSP and VRP literature. The problem size for test problems 

varies between 22 and 400 cities. 

 

Comparison with existing results in the literature proves that the pareto fronts 

generated by mNSGA-II algorithm are very close to Pareto-optimal fronts for 

problems including less than 150 cities and shows at most 2% deviation from Pareto-

optimal front for larger problem sizes, except for a few test problems. We observe 

that computation time for our algorithm does not increase as rapid as computation 

times of other algorithms provided in the literature (e.g., algorithm of Fischetti et al., 

1998, and algorithm of Berube et al., 2008). mNSGA-II is able to solve our largest 

test problem instance, the problem with 400 cities, in 38 hours, whereas the best 

known algorithm in literature for TSPP is unable to solve problems including more 
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than 150 cities in a time limit of 72 hours. 

 

Another strength of mNSGA-II is that its computational performance is independent 

from profit structure of test problems, based on results we have obtained for test 

problems we have considered. Berube et al. (2008) report that their algorithm is 

unable to solve problems with more than 100 cities in a time limit of 72 hours for a 

specific type of profit. For instance, for this specific profit structure our algorithm 

solves PR76 test problem which includes 76 cities in 50 minutes, whereas Berube et 

al. (2008) report 48 hours of CPU time. We solve the RD400 TSP instance which 

includes 400 cities in 38 hours using the same profit structure. 

 

We also provide a data mining based approach for post-optimality analysis of 

generated pareto fronts. By conducting an analysis on decision space properties of a 

generated pareto front, DM is enabled to observe which cities are included in which 

parts of pareto front and the relationship among a given set of cities. We believe that 

this information is helpful to a DM for making a selection among the generated 

pareto front. 

 

In conclusion, proposed algorithm, mNSGA-II, is shown to be a robust and effective 

heuristic for TSPP. Furthermore, a post-optimality analysis framework is described in 

this study. As future research directions, one could try to observe performance of 

proposed heuristic for larger problem sizes and study the proposed framework for 

post-optimality in a more detailed extent.     
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APPENDIX A 

 
 

THE PSEUDO CODE FOR NSGA-II 
 
 
 

Define: 
- P(i) : parent population in ith generation (of size popsize). 
- C(i) : child population in ith generation (of size popsize). 
- M(i) : mixed population in ith generation (of size 2*popsize). 

Initialize 
- Randomly genarate P(1) (always include depot city and extreme solutions) 
- Evaluate P(1) 

o Assign cost using CONCORDE 
o Assign profit 

- Assign crowding distance and rank 
o Assign rank 
o Assign crowding distance 

 Assign infinity to extremes in the population 
 For solution j (where j is not an extreme solution) 

• Crow.dist(j) = 
∑ 𝑚𝑚𝐸𝐸𝑝𝑝𝑝𝑝𝑒𝑒𝑆𝑆𝑒𝑒𝑛𝑛𝑐𝑐𝑒𝑒  𝑆𝑆𝑝𝑝  𝑆𝑆𝑤𝑤𝑆𝑆  𝑛𝑛𝑒𝑒𝐸𝐸𝑛𝑛 ℎ𝑆𝑆𝑆𝑆𝑆𝑆𝐸𝐸𝑛𝑛𝑛𝑛  𝐶𝐶𝑆𝑆𝐸𝐸𝑆𝑆𝑆𝑆𝐸𝐸𝑆𝑆𝑛𝑛𝐶𝐶  𝐸𝐸𝑛𝑛  𝑆𝑆𝑆𝑆𝑜𝑜𝑒𝑒𝑐𝑐𝑆𝑆𝐸𝐸𝑜𝑜𝑒𝑒  𝐸𝐸

𝑚𝑚𝐸𝐸𝑝𝑝𝑝𝑝𝑒𝑒𝑆𝑆𝑒𝑒𝑛𝑛𝑐𝑐𝑒𝑒  𝑆𝑆𝑝𝑝  𝑆𝑆ℎ𝑒𝑒  𝑒𝑒𝑚𝑚𝑆𝑆𝑆𝑆𝑒𝑒𝐸𝐸𝑒𝑒  𝐶𝐶𝑆𝑆𝐸𝐸𝑆𝑆𝑆𝑆𝐸𝐸𝑆𝑆𝑛𝑛𝐶𝐶  𝐸𝐸𝑛𝑛  𝑆𝑆𝑆𝑆𝑜𝑜𝑒𝑒𝑐𝑐𝑆𝑆𝐸𝐸𝑜𝑜𝑒𝑒  𝐸𝐸𝑆𝑆𝑆𝑆𝑜𝑜  (𝐸𝐸)

𝑛𝑛𝑆𝑆𝐸𝐸𝑆𝑆𝑒𝑒𝑆𝑆  𝑆𝑆𝑝𝑝  𝑆𝑆𝑆𝑆𝑜𝑜𝑒𝑒𝑐𝑐𝑆𝑆𝐸𝐸𝑜𝑜𝑒𝑒𝐶𝐶
 

- Return P(1) as P(2) 

For ( i=2 ; i<=generation number limit ; i++) 
- Selection 

o Randomize P(i) and copy to POOL_1 
o Randomize P(i) and copy to POOL_2 
o For ( j=0 ; j<popsize ; j=j+4) 

 Choose indivdual(j) and indivdual(j+1) from POOL_1 
• Tournament select parent 1 from indivdual(j) and 

indivdual(j+1) 
o If indivdual(j) dominates indivdual(j+1) 

 Return indivdual(j) 
o If indivdual(j+1) dominates indivdual(j) 

 Return individual(j+1) 
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o If they are nondominated 
 If crowding_distance(j) > 

crowding_distance(j+1) 
• Return individual(j) 

 If crowding_distance(j) < 
crowding_distance(j+1) 

• Return individual(j+1) 
 If crowding_distance(j) = 

crowding_distance(j+1) 
• Randomly select one of the 

individuals 
 Choose indivdual(j+2) and indivdual(j+3) from POOL_1 

• Tournament select parent 2 from indivdual(j+2) and 
indivdual(j+3) 

 Choose indivdual(j) and indivdual(j+1) from POOL_2 
• Tournament select parent 3 from indivdual(j) and 

indivdual(j+1) 
 Choose indivdual(j+2) and indivdual(j+3) from POOL_2 

• Tournament select parent 4 from indivdual(j+2) and 
indivdual(j+3) 

 Perform crossover 
• For parent 1 and parent 2 

o With crossover_probability cross two 
parents 
 Perform two-point binary crossover 

• Return two childs 
o Otherwise return two parents as child 

• For parent 3 and parent 4 
o With crossover_probability cross two 

parents 
o Otherwise return two parents as child 

o Return child population C(i) 
- Mutation (bitwise mutation) 

o For  all childeren 
 For all genes 

• Mutate gene with probability mutation_probability 
o If gene=1, then gene=0 
o Else gene=1 
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o Return mutated C(i) 
- Evaluate child population C(i) 
- Merge P(i) and  C(i) into mixed population M(i) 

o Create a mixed population of size 2*popsize 
 Copy P(i) and C(i) into M(i) 
 Return M(i) 

- Fill Nondominated sort 
o Divide M(i) into fronts 

 Assign rank 1 to the first front 
 Assign rank 2 to the second front, and so on. 

o Create a temporary population TEMP of size popsize 
 If size_of_first_front <= popsize 

• Copy individuals in first front into TEMP 
• If size_of_second_front <= (popsize - first_front) 

o Copy individuals in second front into TEMP 
o If size_of_third_front <= (popsize – 

(first+second fronts)) 
 ... 

• Assign crowding distance to TEMP 
 

 If size_of_first_front > popsize 
• Assign crowding distance to the first front 

o Fill TEMP in non increasing order of 
crowding distance  

o Return TEMP as P(i+1) 
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APPENDIX B 

 
 

THE PSEUDO CODE FOR mNSGA-II 
 
 
 

Define: 
- P(i,j) : jth parent population in ith generation (of size popsize). 
- C(i,j) : jth child population in ith generation (of size popsize). 
- M(i,j) : jth mixed population in ith generation (of size 2*popsize). 
- E1(i) :  First external population in generation i, Elite Pop 1, (of size 

infinity). 
- E2(i) :  Second external population in generation i, Elite Pop 2, (of size 

infinity). 

Initialize 
- Randomly genarate P(1,1)  
- Evaluate P(1,1) 

o Assign cost using CONCORDE 
o Assign profit 

- Assign crowding distance and rank 
o Assign rank 
o Assign crowding distance 

 Assign infinity to extremes in the population 
 For solution j (where j is not an extreme solution) 

• Crow.dist(j) = 
∑ 𝑚𝑚𝐸𝐸𝑝𝑝𝑝𝑝𝑒𝑒𝑆𝑆𝑒𝑒𝑛𝑛𝑐𝑐𝑒𝑒  𝑆𝑆𝑝𝑝  𝑆𝑆𝑤𝑤𝑆𝑆  𝑛𝑛𝑒𝑒𝐸𝐸𝑛𝑛 ℎ𝑆𝑆𝑆𝑆𝑆𝑆𝐸𝐸𝑛𝑛𝑛𝑛  𝐶𝐶𝑆𝑆𝐸𝐸𝑆𝑆𝑆𝑆𝐸𝐸𝑆𝑆𝑛𝑛𝐶𝐶  𝐸𝐸𝑛𝑛  𝑆𝑆𝑆𝑆𝑜𝑜𝑒𝑒𝑐𝑐𝑆𝑆𝐸𝐸𝑜𝑜𝑒𝑒  𝐸𝐸

𝑚𝑚𝐸𝐸𝑝𝑝𝑝𝑝𝑒𝑒𝑆𝑆𝑒𝑒𝑛𝑛𝑐𝑐𝑒𝑒  𝑆𝑆𝑝𝑝  𝑆𝑆ℎ𝑒𝑒  𝑒𝑒𝑚𝑚𝑆𝑆𝑆𝑆𝑒𝑒𝐸𝐸𝑒𝑒  𝐶𝐶𝑆𝑆𝐸𝐸𝑆𝑆𝑆𝑆𝐸𝐸𝑆𝑆𝑛𝑛𝐶𝐶  𝐸𝐸𝑛𝑛  𝑆𝑆𝑆𝑆𝑜𝑜𝑒𝑒𝑐𝑐𝑆𝑆𝐸𝐸𝑜𝑜𝑒𝑒  𝐸𝐸𝑆𝑆𝑆𝑆𝑜𝑜  (𝐸𝐸)

𝑛𝑛𝑆𝑆𝐸𝐸𝑆𝑆𝑒𝑒𝑆𝑆  𝑆𝑆𝑝𝑝  𝑆𝑆𝑆𝑆𝑜𝑜𝑒𝑒𝑐𝑐𝑆𝑆𝐸𝐸𝑜𝑜𝑒𝑒𝐶𝐶
 

- E1(1)=NULL 
- P(2,1)=P(1,1) 

For ( i=2 ; i<=generation number limit ; i++) 
- SELECTION 

o Randomize P(i) and copy to POOL_1 
o Randomize P(i) and copy to POOL_2 
o For ( j=0 ; j<popsize ; j=j+4) 

 Choose indivdual(j) and indivdual(j+1) from POOL_1 
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• Tournament select parent 1 from indivdual(j) and 
indivdual(j+1) 

o If indivdual(j) dominates indivdual(j+1) 
 Return indivdual(j) 

o If indivdual(j+1) dominates indivdual(j) 
 Return individual(j+1) 

o If they are nondominated 
 If crowding_distance(j) > 

crowding_distance(j+1) 
• Return individual(j) 

 If crowding_distance(j) < 
crowding_distance(j+1) 

• Return individual(j+1) 
 If crowding_distance(j) = 

crowding_distance(j+1) 
• Randomly select one of the 

individuals 
 Choose indivdual(j+2) and indivdual(j+3) from POOL_1 

• Tournament select parent 2 from indivdual(j+2) and 
indivdual(j+3) 

 Choose indivdual(j) and indivdual(j+1) from POOL_2 
• Tournament select parent 3 from indivdual(j) and 

indivdual(j+1) 
 Choose indivdual(j+2) and indivdual(j+3) from POOL_2 

• Tournament select parent 4 from indivdual(j+2) and 
indivdual(j+3) 

 Perform crossover 
• For parent 1 and parent 2 

o With crossover_probability cross two 
parents 
 Perform two-point binary crossover 

• Return two childs 
o Otherwise return two parents as child 

• For parent 3 and parent 4 
o With crossover_probability cross two 

parents 
o Otherwise return two parents as child 

o Return child population C(i) 
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- Mutation (bitwise mutation) 
o For  all childeren 

 For all genes 
• Mutate gene with probability mutation_probability 

o If gene=1, then gene=0 
o Else gene=1 

o Return mutated C(i) 
- Evaluate child population C(i,1) 
- Merge P(i,1) and  C(i,1) into mixed population M(i,1) 

o Create a mixed population of size 2*popsize 
 Copy P(i,1) and C(i,1) into M(i,1) 
 Return M(i,1) 

- Fill Nondominated sort 
o Divide M(i,1) into fronts 

 Assign rank 1 to the first front 
 Assign rank 2 to the second front, and so on. 

o Create a temporary population TEMP of size popsize 
 If size_of_first_front <= popsize 

• Copy individuals in first front into TEMP 
• If size_of_second_front <= (popsize - first_front) 

o Copy individuals in second front into TEMP 
o If size_of_third_front <= (popsize – 

(first+second fronts)) 
 ... 

• Assign crowding distance to TEMP 
 

 If size_of_first_front > popsize 
• Assign crowding distance to the first front 

o Fill TEMP in non increasing order of 
crowding distance  

o Return TEMP as P(i,2) 
o Copy all rank 1 individuals in M(i,1) but not in P(i,2) into E2(i) 
o Return  P(i,2) 

- Use waste individuals  
o While E1(i-1) is not empty; Copy jth  popsize individuals in E1(i-1) 

into C(i,j+1)  
 Merge P(i,j+1) and  C(i,j+1) into mixed population 

M(i,j+1) 
 Fill Nondominated sort 
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• Fill nondominated sort P(i,j+2) 
• Append all rank 1 individuals in M(i,j+1) but not in 

P(i,j+2) into E2(i) 
 Set j=j+1; 

 
 
 

- Finalize 
o Copy E2(i) into E1(i) 
o Return E1(i) 
o Return  P(i,j+1) as P(i+1,1) 
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                                                                  Figure 19 Pareto front for EIL33. 

76 

A
PPE

N
D

IX
 C

 
  

PA
R

E
TO

 FR
O

N
T G

E
N

E
R

AT
E

D
 B

Y
 m

N
SG

A
-II FO

R
 E

IL
33 V

R
P 

IN
STA

N
C

E
 

 



77 
 

Table 13 Pareto front generated for EIL33. 
COST PROFIT VISITED CITIES 

0 0 1 
69 400 1-4 
97 1.200 1-5 

114 1.600 1-4-5 
116 2.500 1-31 
131 2.900 1-4-31 
133 4.200 1-31-32 
137 4.420 1-3-4-6-7-8-12 
138 4.570 1-3-4-6-7-8-12-13 
139 5.520 1-3-4-6-7-8-12-33 
140 5.670 1-3-4-6-7-8-12-13-33 
142 6.420 1-3-4-6-7-8-9-12-33 
143 7.020 1-3-4-6-7-8-9-10-12-33 
144 7.170 1-3-4-6-7-8-9-10-12-13-33 
149 7.770 1-3-4-6-7-8-9-10-11-12-33 
150 7.920 1-3-4-6-7-8-9-10-11-12-13-33 
164 8.320 1-4-6-7-8-9-10-12-32-33 
167 8.680 1-3-4-7-8-9-10-12-32-33 
168 8.870 1-3-4-6-7-8-9-10-12-13-32-33 
169 9.020 1-2-4-6-7-8-9-10-12-32-33 
170 9.270 1-2-4-6-7-8-9-10-12-14-32-33 
171 9.320 1-4-6-7-8-12-31-32-33 
172 9.380 1-2-3-4-7-8-9-10-12-32-33 
173 9.570 1-2-3-4-6-7-8-9-10-12-13-32-33 
174 10.220 1-4-6-7-8-9-12-31-32-33 
175 10.820 1-4-6-7-8-9-10-12-31-32-33 
178 11.180 1-3-4-7-8-9-10-12-31-32-33 
179 11.370 1-3-4-6-7-8-9-10-12-13-31-32-33 
180 11.520 1-2-4-6-7-8-9-10-12-31-32-33 
181 11.770 1-2-4-6-7-8-9-10-12-14-31-32-33 
183 11.880 1-2-3-4-7-8-9-10-12-31-32-33 
184 12.130 1-2-3-4-7-8-9-10-12-14-31-32-33 
185 12.320 1-2-3-4-6-7-8-9-10-12-13-14-31-32-33 
187 12.520 1-2-4-6-7-8-9-10-11-12-14-31-32-33 
189 12.630 1-2-3-4-7-8-9-10-11-12-31-32-33 
190 13.120 1-2-4-6-7-8-9-10-12-15-31-32-33 
191 13.370 1-2-4-6-7-8-9-10-12-14-15-31-32-33 
193 13.480 1-2-3-4-7-8-9-10-12-15-31-32-33 
194 13.730 1-2-3-4-7-8-9-10-12-14-15-31-32-33 
195 13.920 1-2-3-4-6-7-8-9-10-12-13-14-15-31-32-33 
197 14.120 1-2-4-6-7-8-9-10-11-12-14-15-31-32-33 
199 14.230 1-2-3-4-7-8-9-10-11-12-15-31-32-33 
200 14.480 1-2-3-4-7-8-9-10-11-12-14-15-31-32-33 
201 14.670 1-2-3-4-6-7-8-9-10-11-12-13-14-15-31-32-33 
204 14.680 1-2-3-4-7-8-9-10-11-12-15-16-31-32-33 
205 14.930 1-2-3-4-7-8-9-10-11-12-14-15-16-31-32-33 
206 15.120 1-2-3-4-6-7-8-9-10-11-12-13-14-15-16-31-32-33 
215 15.420 1-2-4-6-7-8-9-10-12-15-27-31-33 
216 15.670 1-2-4-6-7-8-9-10-12-14-15-27-31-33 
218 15.780 1-2-3-4-7-8-9-10-12-15-27-31-33 
219 16.030 1-2-3-4-7-8-9-10-12-14-15-27-31-33 
220 16.220 1-2-3-4-6-7-8-9-10-12-13-14-15-27-31-33 
222 16.420 1-2-4-6-7-8-9-10-11-12-14-15-27-31-33 
223 16.520 1-2-4-6-7-8-9-12-15-27-31-32-33 
224 17.120 1-2-4-6-7-8-9-10-12-15-27-31-32-33 
225 17.370 1-2-4-6-7-8-9-10-12-14-15-27-31-32-33 
227 17.570 1-2-4-6-7-8-9-10-12-15-16-27-31-32-33 
228 17.820 1-2-4-6-7-8-9-10-12-14-15-16-27-31-32-33 
229 17.920 1-2-3-4-6-7-8-9-10-12-13-14-15-27-31-32-33 
230 17.930 1-2-3-4-7-8-9-10-12-15-16-27-31-32-33 
231 18.180 1-2-3-4-7-8-9-10-12-14-15-16-27-31-32-33 
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COST PROFIT VISITED CITIES 
232 18.370 1-2-3-4-6-7-8-9-10-12-13-14-15-16-27-31-32-33 
234 18.620 1-4-6-7-8-9-10-12-14-15-18-26-27-31-32-33 
235 18.670 1-2-3-4-6-7-8-9-10-11-12-13-14-15-27-31-32-33 
236 19.070 1-4-6-7-8-9-10-12-14-15-16-18-26-27-31-32-33 
238 19.520 1-2-4-6-7-8-9-10-12-15-16-18-26-27-31-32-33 
239 19.770 1-2-4-6-7-8-9-10-12-14-15-16-18-26-27-31-32-33 
241 19.880 1-2-3-4-7-8-9-10-12-15-16-18-26-27-31-32-33 
242 20.130 1-2-3-4-7-8-9-10-12-14-15-16-18-26-27-31-32-33 
243 20.320 1-2-3-4-6-7-8-9-10-12-13-14-15-16-18-26-27-31-32-33 
245 20.520 1-2-4-6-7-8-9-10-11-12-14-15-16-18-26-27-31-32-33 
247 20.630 1-2-3-4-7-8-9-10-11-12-15-16-18-26-27-31-32-33 
248 20.880 1-2-3-4-7-8-9-10-11-12-14-15-16-18-26-27-31-32-33 
249 21.070 1-2-3-4-6-7-8-9-10-11-12-13-14-15-16-18-26-27-31-32-33 
253 21.080 1-2-3-4-7-8-9-10-11-12-13-15-16-19-20-26-27-31-32-33 
255 21.180 1-2-3-4-7-8-9-10-11-12-13-15-18-19-20-26-27-31-32-33 
257 21.480 1-2-3-4-7-8-9-10-11-12-15-16-18-19-20-26-27-31-32-33 
258 21.630 1-2-3-4-7-8-9-10-11-12-13-15-16-18-19-20-26-27-31-32-33 
260 21.670 1-2-3-4-6-7-8-9-10-11-12-13-14-15-16-18-26-27-28-31-32-33 
261 21.680 1-3-4-7-8-9-10-11-12-13-15-16-19-20-23-26-27-31-32-33 
262 21.780 1-2-3-4-7-8-9-10-11-12-15-19-20-23-26-27-31-32-33 
263 21.930 1-2-3-4-7-8-9-10-11-12-13-15-19-20-23-26-27-31-32-33 
265 22.080 1-3-4-7-8-9-10-11-12-15-16-18-19-20-23-26-27-31-32-33 
266 22.230 1-2-3-4-7-8-9-10-11-12-15-16-19-20-23-26-27-31-32-33 
266 22.230 1-3-4-7-8-9-10-11-12-13-15-16-18-19-20-23-26-27-31-32-33 
267 22.380 1-2-3-4-7-8-9-10-11-12-13-15-16-19-20-23-26-27-31-32-33 
271 22.780 1-2-3-4-7-8-9-10-11-12-15-16-18-19-20-23-26-27-31-32-33 
272 22.930 1-2-3-4-7-8-9-10-11-12-13-15-16-18-19-20-23-26-27-31-32-33 
276 22.970 1-2-3-4-6-7-8-9-10-11-12-13-15-16-18-19-20-23-26-27-31-32-33 
278 23.080 1-2-3-4-7-8-9-10-11-12-15-16-18-19-20-22-23-26-27-31-32-33 
279 23.230 1-2-3-4-7-8-9-10-11-12-13-15-16-18-19-20-22-23-26-27-31-32-33 
282 23.380 1-2-3-4-7-8-9-10-11-12-15-16-18-19-20-23-26-27-28-31-32-33 
283 23.530 1-2-3-4-7-8-9-10-11-12-13-15-16-18-19-20-23-26-27-28-31-32-33 
286 23.630 1-2-3-4-7-8-9-10-11-12-13-15-16-18-19-20-21-22-23-26-27-31-32-33 
289 23.680 1-3-4-7-8-9-10-11-12-15-16-18-19-20-23-26-27-28-29-31-32-33 
289 23.680 1-2-3-4-7-8-9-10-11-12-15-16-18-19-20-22-23-26-27-28-31-32-33 
289 23.680 1-2-3-4-7-8-9-10-11-12-13-15-16-18-19-20-23-25-26-27-31-32-33 
290 23.830 1-3-4-7-8-9-10-11-12-13-15-16-18-19-20-23-26-27-28-29-31-32-33 
290 23.830 1-2-3-4-7-8-9-10-11-12-15-16-19-20-23-26-27-28-29-31-32-33 
290 23.830 1-2-3-4-7-8-9-10-11-12-13-15-16-18-19-20-22-23-26-27-28-31-32-33 
291 23.980 1-2-3-4-7-8-9-10-11-12-13-15-16-19-20-23-26-27-28-29-31-32-33 
295 24.380 1-2-3-4-7-8-9-10-11-12-15-16-18-19-20-23-26-27-28-29-31-32-33 
296 24.530 1-2-3-4-7-8-9-10-11-12-13-15-16-18-19-20-23-26-27-28-29-31-32-33 
300 24.570 1-2-3-4-6-7-8-9-10-11-12-13-15-16-18-19-20-23-26-27-28-29-31-32-33 
302 24.680 1-2-3-4-7-8-9-10-11-12-15-16-18-19-20-22-23-26-27-28-29-31-32-33 
303 24.830 1-2-3-4-7-8-9-10-11-12-13-15-16-18-19-20-22-23-26-27-28-29-31-32-33 
307 24.870 1-2-3-4-6-7-8-9-10-11-12-13-15-16-18-19-20-22-23-26-27-28-29-31-32-33 
308 24.980 1-2-3-4-7-8-9-10-11-12-13-15-16-18-19-20-23-24-25-26-27-28-31-32-33 
309 25.080 1-2-3-4-7-8-9-10-11-12-15-16-18-19-20-21-22-23-26-27-28-29-31-32-33 
310 25.230 1-2-3-4-7-8-9-10-11-12-13-15-16-18-19-20-21-22-23-26-27-28-29-31-32-33 
311 25.280 1-2-3-4-7-8-9-10-11-12-13-15-16-18-19-20-23-25-26-27-28-29-31-32-33 
315 25.380 1-2-3-4-7-8-9-10-11-12-13-15-16-18-19-20-21-23-24-25-26-27-28-31-32-33 
317 25.430 1-2-3-4-7-8-9-10-11-12-15-16-18-19-20-22-23-25-26-27-28-29-31-32-33 
318 25.580 1-2-3-4-7-8-9-10-11-12-13-15-16-18-19-20-22-23-25-26-27-28-29-31-32-33 
320 25.830 1-2-3-4-7-8-9-10-11-12-15-16-18-19-20-23-24-25-26-27-28-29-31-32-33 
321 25.980 1-2-3-4-7-8-9-10-11-12-13-15-16-18-19-20-23-24-25-26-27-28-29-31-32-33 
325 26.020 1-2-3-4-6-7-8-9-10-11-12-13-15-16-18-19-20-23-24-25-26-27-28-29-31-32-33 
327 26.230 1-2-3-4-7-8-9-10-11-12-15-16-18-19-20-21-23-24-25-26-27-28-29-31-32-33 
328 26.380 1-2-3-4-7-8-9-10-11-12-13-15-16-18-19-20-21-23-24-25-26-27-28-29-31-32-33 
332 26.420 1-2-3-4-6-7-8-9-10-11-12-13-15-16-18-19-20-21-23-24-25-26-27-28-29-31-32-33 
334 26.530 1-2-3-4-7-8-9-10-11-12-15-16-18-19-20-21-22-23-24-25-26-27-28-29-31-32-33 
335 26.680 1-2-3-4-7-8-9-10-11-12-13-15-16-18-19-20-21-22-23-24-25-26-27-28-29-31-32-33 
339 26.720 1-2-3-4-6-7-8-9-10-11-12-13-15-16-18-19-20-21-22-23-24-25-26-27-28-29-31-32-33 
345 26.780 1-2-3-4-7-8-9-10-11-12-14-15-16-18-19-20-21-22-23-24-25-26-27-28-29-31-32-33 

Table 14 Cont’d. 
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COST PROFIT VISITED CITIES 
346 26.930 1-2-3-4-7-8-9-10-11-12-13-14-15-16-18-19-20-21-22-23-24-25-26-27-28-29-31-32-33 
350 26.970 1-2-3-4-6-7-8-9-10-11-12-13-14-15-16-18-19-20-21-22-23-24-25-26-27-28-29-31-32-33 
356 27.080 1-2-3-4-7-8-9-10-11-12-13-15-16-17-18-19-20-21-23-24-25-26-27-28-29-31-32-33 
358 27.180 1-2-3-4-7-8-9-10-11-12-13-15-16-18-19-20-21-22-23-24-25-26-27-28-29-30-31-32-33 
362 27.230 1-2-3-4-7-8-9-10-11-12-15-16-17-18-19-20-21-22-23-24-25-26-27-28-29-31-32-33 
363 27.380 1-2-3-4-7-8-9-10-11-12-13-15-16-17-18-19-20-21-22-23-24-25-26-27-28-29-31-32-33 
366 27.470 1-2-3-4-6-7-8-9-10-11-12-13-14-15-16-18-19-20-21-22-23-24-25-26-27-28-29-30-31-32-33 
370 27.480 1-2-3-5-7-8-9-10-11-12-13-15-16-18-19-20-21-22-23-24-25-26-27-28-29-31-32-33 
373 27.580 1-2-3-4-5-7-8-9-10-11-12-13-15-16-18-19-20-21-23-24-25-26-27-28-29-31-32-33 
374 27.630 1-2-3-4-7-8-9-10-11-12-13-14-15-16-17-18-19-20-21-22-23-24-25-26-27-28-29-31-32-33 
378 27.670 1-2-3-4-6-7-8-9-10-11-12-13-14-15-16-17-18-19-20-21-22-23-24-25-26-27-28-29-31-32-33 
379 27.730 1-2-3-4-5-7-8-9-10-11-12-15-16-18-19-20-21-22-23-24-25-26-27-28-29-31-32-33 
380 27.880 1-2-3-4-5-7-8-9-10-11-12-13-15-16-18-19-20-21-22-23-24-25-26-27-28-29-31-32-33 
384 27.920 1-2-3-4-5-6-7-8-9-10-11-12-13-15-16-18-19-20-21-22-23-24-25-26-27-28-29-31-32-33 
390 27.980 1-2-3-4-5-7-8-9-10-11-12-14-15-16-18-19-20-21-22-23-24-25-26-27-28-29-31-32-33 
391 28.130 1-2-3-4-5-7-8-9-10-11-12-13-14-15-16-18-19-20-21-22-23-24-25-26-27-28-29-31-32-33 
395 28.180 1-2-3-4-5-7-8-9-10-11-12-14-15-16-18-19-20-21-23-24-25-26-27-28-29-30-31-32-33 
396 28.220 1-2-3-4-5-6-7-8-9-10-11-12-14-15-16-18-19-20-21-23-24-25-26-27-28-29-30-31-32-33 
398 28.230 1-2-3-4-5-7-8-9-10-11-12-13-14-15-16-18-19-20-22-23-24-25-26-27-28-29-30-31-32-33 
399 28.270 1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-18-19-20-22-23-24-25-26-27-28-29-30-31-32-33 
400 28.400 1-2-3-4-5-8-9-10-11-12-14-15-16-18-19-20-21-22-23-24-25-26-27-28-29-30-31-32-33 
401 28.480 1-2-3-4-5-7-8-9-10-11-12-14-15-16-18-19-20-21-22-23-24-25-26-27-28-29-30-31-32-33 
402 28.520 1-2-3-4-5-6-7-8-9-10-11-12-14-15-16-18-19-20-21-22-23-24-25-26-27-28-29-30-31-32-33 
405 28.630 1-2-3-4-5-7-8-9-10-11-12-13-14-15-16-18-19-20-21-22-23-24-25-26-27-28-29-30-31-32-33 
406 28.670 1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-18-19-20-21-22-23-24-25-26-27-28-29-30-31-32-33 
418 28.680 1-2-3-4-5-7-8-9-10-11-12-14-15-16-17-18-19-20-21-22-23-24-25-26-27-28-29-31-32-33 
419 28.830 1-2-3-4-5-7-8-9-10-11-12-13-14-15-16-17-18-19-20-21-22-23-24-25-26-27-28-29-31-32-33 
423 28.870 1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19-20-21-22-23-24-25-26-27-28-29-31-32-33 
430 28.880 1-2-3-4-5-7-8-9-10-11-12-14-15-16-17-18-19-20-21-23-24-25-26-27-28-29-30-31-32-33 
431 28.920 1-2-3-4-5-6-7-8-9-10-11-12-14-15-16-17-18-19-20-21-23-24-25-26-27-28-29-30-31-32-33 
432 28.930 1-2-3-4-5-7-8-9-10-11-12-15-16-17-18-19-20-21-22-23-24-25-26-27-28-29-30-31-32-33 
433 29.080 1-2-3-4-5-7-8-9-10-11-12-13-15-16-17-18-19-20-21-22-23-24-25-26-27-28-29-30-31-32-33 
436 29.180 1-2-3-4-5-7-8-9-10-11-12-14-15-16-17-18-19-20-21-22-23-24-25-26-27-28-29-30-31-32-33 
437 29.220 1-2-3-4-5-6-7-8-9-10-11-12-14-15-16-17-18-19-20-21-22-23-24-25-26-27-28-29-30-31-32-33 
439 29.250 1-2-3-4-5-8-9-10-11-12-13-14-15-16-17-18-19-20-21-22-23-24-25-26-27-28-29-30-31-32-33 
440 29.330 1-2-3-4-5-7-8-9-10-11-12-13-14-15-16-17-18-19-20-21-22-23-24-25-26-27-28-29-30-31-32-33 
441 29.370 1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19-20-21-22-23-24-25-26-27-28-29-30-31-32-33 

 
 
 
 
 
 
 
 
 
 
 
 

Table 15 Cont’d. 
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APPENDIX D: CLEMENTINE MODELS USED FOR POST-OPTIMALITY 
ANALYSIS 

 

Models Used: C&R Tree 

 

Graphs Used: Histogram, Collection, and Web. 

 

Figure 20 is an instance from the constructed model. As it can be seen from the 
figure, only one objective can be considered at a time in all analysis. 

 

 

 

 
Figure 20 An instance from SPSS Clementine. 
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