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ABSTRACT

A GENETICALGORITHM FOR THE BIOBJECTIVE TRAVELING
SALESMAN PROBLEM WITH PROFITS

Karademir, Serdar
M.S., Department of Industrial Engineering
Supervisor  : Assoc. Prof. Dr. Haldun Sural
Co-Supervisor : Assoc. Prof. Dr. Esra Karasaka

July 2008, 80 pages

In Traveling Salesman Problem (TSP) with profits, a profit is associated with each
city and the requirement to visit al cities is removed. The purpose is to
simultaneously minimize cost (excluding as many cities as possible) and maximize
profit (including as many cities as possible). Although the reduced single-objective
case of the problem has been well-studied, the true biobjective problem has been
studied only by afew researchers. In this paper we study the true biobjective problem
using the Multiobjective Genetic Algorithm NSGA 1l and the Lin-Kernighan
Heuristic. We propose several improvements for NSGA |l in solving the problem.
Based on these improvements, we provide computational results of the approximated
Pareto-optimal front for a set of practicaly large size TSP instances. Finally, we
provide a framework and its computational results for a post-optimality analysis to
guide the decision maker, using the data mining software Clementine.

Key Words. TSP with Profits, Evolutionary Multiobjective Combinatorial
Optimization, Data Mining.



Oz

COK AMACLI KAR GETIiREN GEZGIN SATICI PROBLEMI ICIN
GENETIK BiR ALGORITMA

Karademir, Serdar
Yiiksek Lisans, Endiistri Miithendisligi Boliimii
Tez Y Oneticisi : Dog. Dr. Haldun Siral
Ortak Tez Yoneticisi : Dog. Dr. Esra Karasakal

Temmuz 2008, 80 sayfa

Kar getiren Gezgin Satic1 Problemi’nde (KGSP) her sehire bir kar atanir ve tiim
sehirleri gezme zorunlulugu ortadan kalkar. KGSP’de amag¢ ayni zamanda hem
maliyeti en aza indirmek (en az sayida sehir gezerek) hem de kazanci en yiiksek
seviyede tutmaktir (en fazla sayida sehir gezerek). Tek amaclhi KGSP tiirleri
literatiirde fazlaca yer edinmis olsa da, gercek anlamda iki amag¢li KGSP ¢ok az
arastirmaci tarafindan ¢alisiimistir. Bu ¢alismada iki amacli KGSP i¢in Cok Amacl
Genetik Algoritma NSGA-IlI ve Lin-Kernighan sezgisel yontemlerine dayali bir
¢Oziim sunmaktayiz. Bu ¢alismada NSGA-II icin bir kag iyilestirme 6nerilmektedir.
Bu iyilestirmelerin sonucunda literatiirdeki orta ve biiyiik boyutlarda pek ¢ok problem
icin tahmini etkin sinirlar (approximate efficient frontier) verilmektedir. Son olarak,
veri madenciligi yazilimi Clementine kullanarak, yaratilan etkin smirlarda karar

vericiyi yonlendirebilecek bir eniyileme-sonrasi analiz taslagi sunmaktayiz.

Anahtar Kelimeler: Kar Getiren GSP, Evrimsel Cok Amagli Kombinasyonal

Eniyileme, Veri Madenciligi.
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CHAPTER 1

INTRODUCTION

In this chapter we introduce preliminary concepts regarding Traveling Salesman
Problem with Profits and present an overview of the work conducted by authors of
this paper.

Problem Definition:

Given a graph G(E,V) with edge set E, vertex set V, and costs on edge set, Travelling
Salesman Problem (TSP) can be defined as finding the shortest Hamiltonian tour on
G. Assuming that there is also a prize associated with each vertex in V, in TSP with
Profits (TSPP) the aim is to ssmultaneously minimize the route cost (excluding as
many vertices as possible) and maximize the prize (including as many vertices as
possible). When compared to TSP, in TSPP, there is a prize (i.e., profit) associated
with each vertex and the constraint for including all vertices into the tour is removed.
Moreover, since it is not required to visit all vertices, a depot vertex is generally
defined for TSPP and inclusion of this vertex to all considered toursis enforced.

Since TSPP can be reduced to TSP, it is also NP-complete. Considering an instance
for TSPP where al vertices are included in the tour (i.e., the instance with maximum
prize), finding the shortest Hamiltonian tour corresponds to TSP. Another difficulty
introduced with TSPPis the combinatorial number of subsets of vertices that are to be
considered. An enumeration algorithm has to consider 2™ subsets of vertices for a
graph with n vertices. This also means that the enumeration algorithm has to solve 2™
TSPs. Hence, as number of vertices considered increases linearly, the number of TSPs

to be solved and the difficulty of solving these TSP instances (i.e., time required to
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consider all permutations of vertices for a given subset of vertices) increase

exponentially.

After providing the formal definition of TSPP, we want to state that in the rest of this
paper we will refer “vertices’ as “cities” and “prizes’ as “profits’. This notation is a

practical and commonly used onein literature.

Since there are two conflicting objectives in TSPP, the problem is a multiobjective
optimization problem. There is not generally a single optimal solution for TSPP.
Solution of a TSPPis a set of nondominated solutions. However, since the problem is
avery difficult problem, it is generally studied as a single objective problem by some
sort of transformation. In Profitable Tour Problem (PTP), objectives are converted in
commensurable units and the objective function for problem is defined as
minimization of cost minus profit. In Orienteering Problem (OP), objective for cost is
included in constraint set as a knapsack constraint and profit is maximized. In Prize
Collecting TSP (PCTSP), profit objective is included into constraint set as a general

covering constraint and cost is minimized.

Although PTP, OR, and PCTSP are al well studied in literature, the true biobjective
problem is considered only by Keller et al. (1988), Simsek (2007), and Berube et al.
(2008). These authors use exact and heuristic methods on OP and PCT SP settings and
generate a set of nondominated solutions for the problem. These authors could not
solve larger problem instances, limiting themselves with instance sizes up to 150
cities. In this study we examine a Multiobjective Genetic Algorithm (MOGA) to
apply to TSPP, propose several improvements for this genetic agorithm, and
demonstrate computational results for a set of problems in literature the largest of
which being a problem with 400 cities. We present two metrics to evaluate results of
our proposed algorithm; Hyper Volume and Generational Distance. Both metrics are
able to evauate performance of a MOGA in terms of both convergence and

dispersion properties.



A Post-optimality analysis framework is also provided in this paper. We use
datamining to enhance decision making process after optimization. Rules and
indications derived from generated nondominated solution sets are provided to enable

a DM to make more conscious decisions.

Real Life Applications of TSPP:

One of the applications of TSPP is where it is not possible to visit all customers due
to some constraints enforced. Then we have to make the best selection among
customers subject to enforced constraints. For instance, when a manufacturer can not
visit all of his suppliers due to some constraints, he has to choose a set of suppliers to
visit first and then make the routing decision. In another case, a salesman may want to
sell a given quota of a product as soon as possible, hence, make a decision on which
locations and in what order to visit. Another application area of TSPP is daily
scheduling of steel-rolling mills. In this context a producer should select a set of steel
dlabs and order them for hot or cold rolling to produce steel sheets. Orienteering
competitions are also one of the application areas of TSPPs. In orienteering games a
player should collect maximum amount of hidden prize in a preset time limit. TSPPs
are aso encountered as subproblems in solution procedures of other problems.
Reader isreferred to study of Feillet et al. (2005) for areview on TSPP.

Motivation:

In this study we focus on the true biobjective TSPP. The aim of this study is to
generate the whole Pareto front, up to a certain extent, for TSPP. We argue that exact
algorithms practically are not feasible due to harmful complexity of the problem and
propose a Metaheuristic that can approximate the Pareto-optimal front with a
reasonable error. Such a Metaheuristic could aso be used to demonstrate the structure

of Pareto front for very large problem instances (e.g., problems including 5000 cities)
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where deviation from Pareto-optimal front may be relatively considerable. With the
hope to present all available actions to Decision Maker (DM), we approximate
complete Pareto front. However, we aso provide a Post-optimality anayss

framework that could guide the DM to preferred solutions on generated Pareto front.

Organization of the thesis is as follows: In Chapter 2 we present a mathematical
model for TSPP and summarize literature review on TSPP, MOGA, and preference
incorporation issues for MOGAS. In Chapter 3, areview of one of the state-of-the-art
MOGAS is presented and severa improvements for the algorithm are proposed.
Chapter 4 explains the selection of test problems and gives computational results for
selected problems. In Chapter 5 we provide a framework for post-optimality analysis
of agiven pareto front and conclude our study in Chapter 6.



CHAPTER 2

LITERATURE REVIEW

In this chapter we provide a mathematical model for TSPP, review studies on TSPPR,
summarize literature on Multiobjective Genetic Algorithms (MOGAS), and give
preference incorporation strategies proposed for MOGAS in literature. We also

provide several definitions regarding multiobjective optimization.

2.1 Mathematical Model For TSPP

The mathematical model for TSPPis alinear integer program. It includes assignment
constraints and subtour elimination constraints for TSP. Different from TSP, in the
formulation for TSPP, the right hand side for assignment constraints is also a
decision variable. Moreover, there are two conflicting objective functions to be
optimized.

The model isasfollows:

Decision Variables:

Xj = 1if city j isvisited after city i, O otherwise.
yi = 1if city i isvisited, O otherwise.

Parameters:

Cij: cost of visiting city j right after city i.
pi: profit associated with city i.



The moded!:

MIN z Cij * Xij (1)
Lj

MAX ) p; <y, @
i

Subject to

z Xij = Vi Vi (3)

j#i

Z Xjj =Y V] €))

i#j

Subtour Elimination Constraints (5)
y; BIN (7)

(1) and (2) represent the cost and profit objectives respectively for the tour to be
constructed. (3) ensures that if a city is included in the tour, then, there is an arc
leaving this city. (4) similarly ensures that if a city isincluded in the tour, then, there
is an arc entering this city. (5) represents a set of constraints that ensures construction
of subtours are not alowed. (6) and (7) are 0-1 constraints that enforces related
variablesto take only O or 1 value.

We should also note that a depot constraint that ensures depot city is always included
in the tour could be added to this formulation. We would simply force the binary
variable yqepor t0 take a value of 1. Inserting such a constraint ensures that depot city
is included in all tours generated. This extra constraint does not make the problem
harder.



2.2 TSPPLiterature

TSPP is mainly studied as a single objective problem in the literature under different
settings. Feillet et al. (2005) report the following three problem settings.

Profitable tour problem (PTP): Objectives (1) and (2) are combined as minimization
of cost minus prize. Constraint set remains unchanged. However, cost and prize must
be of the same type (i.e., Dollars) in order to be able to use this setting. Dell’ Amico et
al. (1995) propose lower bounds for problem and show that large problem instances
for PTP could be solved efficiently.

Orienteering problem (OP): Objective (1) is formulated as a constraint with a right
hand side value corresponding to an upper bound on tour cost in terms of time. Thisis
generally the case in orienteering problems where players try to collect maximum

amount of pointsin alimited time. This problem is aso known as Selective TSP,

Tsiligirides (1984) proposes severa algorithms for OP which he calls SOE (Score
Orienteering Event). He proposes S-Algorithm (Stochastic Algorithm), D-Algorithm
(Deterministic Algorithm), and a RI-Algorithm (Route Improvement Algorithm). S-
Algorithm constructs a tour based on stochastic rules, D-Algorithm constructs a tour
based on deterministic algorithm, and RI-Algorithm improves a given route using
“savings’ principle. Then Tsiligirides combines S, D, and RI algorithms where tours
constructed by S and D agorithms are improved with RI-Algorithm. He aso
conducts a study on effect of profit structure on problem, however, he concludes that
no satisfactory results are obtained.

Laporte and Martello (1990) propose a Branch and Bound (B&B) algorithm for the
problem. They first solve the L P-relaxation of the problem and then use B&B to solve for

violated constraints.



Ramesh et a. (1992) propose a Branch-and-Bound (BB) algorithm for OP. First they
transform the original problem formulation by moving prizes from nodes to edges.
The reasoning is that, the profit on two nodes can be carried on the edge between
these two nodes by taking average of profits on the nodes. If a node is visited, then
there is exactly two arcs connecting this node to other nodes in the tour and hence
profit of that node will be exactly collected. Using this approach authors drop the
binary variables showing whether a city is visited and update the cost matrix using
profits. They use Lagrangian relaxation at root node which they call Phase 1 of their
algorithm. Then they use subgradient optimization. If optimal solution is not found,
then they start the BB approach by branching, which they call Phase 2 of their
algorithm. They provide five nondominated solutions for problems sizes up to 80
cities and three nondominated solutions for problem sizes larger than 80 cities. They

generate problems randomly and the largest problem they solve includes 150 cities.

Chao, et al. (1996) propose a two-step heuristic for selective TSP. The first step in their
heuristic is to generate severa routes and select the best route as the initial solution. Then

they use several greedy heuristics to improve thisinitial tour in the second phase.

Millar and Kiragu (1997) propose a time-based formulation and an upper bounding
scheme for OP. In their model they define flow variables to reduce the number of
constraints in original OP formulation. They use CPLEX to solve their model and use
problems including at most 10 nodes. They also apply their methodology to a 15-zone

fisheries surveillance problem.

Awerbuch et al. (1998) propose an algorithm based on an approximation schema for
k-MST that has a poly-logarithmic performance. Their agorithm is both applicable to
OP and PCTSPwhich is described next.

Gendreau et al. (1998a) propose a branch-and-cut algorithm for OP. They provide two

8



heuristics that they use to update their bounds and quickly fathom nodes in branch-
and-cut tree. They provide results for problem sizes up to 300 cities. However, again
only a few nondominated solutions for each problem type are found by their

algorithm.

Gendreau et a. (1998b) propose Tabu Search (TS) algorithm for OP. First they
propose a heuristic which they call Insert and Shake to obtain an initial solution for
their TS algorithm. In their TS algorithm the neighborhood structure is defined as
solutions obtained by removing or inserting clusters of cities. Hence, the algorithm
differs from other algorithms performing insertion of acity into the tour or deletion of
acity from the tour. As in Gendreau (1998a), they provide a maximum of 5 solutions
for problem sizes less than 100 cities and number of solutions they provide for a
maximum problem size of 300 cities decreases to one.

Fischetti et al. (1998) propose a Branch-and-Cut algorithm that solves OP optimally.
They calculate three nondominated solutions for Vehicle Routing Problems and one
nondominated solution for TSPs.

Tasgetiren and Smith (2000) propose a genetic algorithm (GA) to solve the orienteering
problem. They propose several crossover and mutation operators that are designed for
TSP. Four test sets are used. Three of the sets are originally from Tsiligirides (1984) and
one is corrected by Chao, et a. (1996). Their agorithm is able to solve problems with at
most 33 cities. Since their genetic algorithm also tries to find the best TSP tour for a
given set of cities besides choosing this set of cities, they are unable to solve large

problem instances.

Liang et a. (2002) present two metaheuristics for OP; an ant colony optimization
algorithm and a tabu search algorithm. Heuristics described are used to solve OP, the
single objective TSPP. Hence, Liang et al. (2002) do not introduce a new agorithm
but apply existing single objective metaheuristics using a different local search



schema. The largest problem instance their algorithm is able to solve includes 33

cities.

Prize collecting TSP (PCTSP): Objective (2) isformulated as a constraint with aright
hand side value corresponding to a lower bound on prize to be collected. This
problem is encountered when a salesman has to sell a given quota of a product, hence

also known as Quota TSP,

Dell’Amico et al. (1998) report that PCTSP was introduced by Balas and Martin
(1985 and 1991) for scheduling of the daily operations of a steel rolling mill. Balas
(1989 and 1995) aso presents structural properties of the PCTSP related to the TSP
and Knapsack polytopes.

Dell’Amico et a. (1998) propose a lagrangian heuristic for PCTSP where they start
from a feasible solution and use a method they call “Extension and Collapse” to

improve thisinitial feasible solution.

Balas (1999) introduces a special case of PCTSP where he provides an agorithm of
polynomia time. Besides, he also notes that this algorithm could be used as a

heuristic when solving general PCTSP.

To our knowledge, the true biobjective problem is studied only by Keller et al.
(1988), Simsek (2007) and Berube et a. (2008). Keller et al. (1988) generate
nondominated solutions for TSPP which they call Multiobjective Vending Problem.
They propose seven routines to construct an initial tour and improve that tour with
under a knapsack constraint. They give results for a 25-city problem. Simsek (2007)
uses e-constraint method to generate the Pareto front. He uses OP setting and solves
g-constraint problems through CGW heuristic developed by Chao et a. (1996).
Results very close to Pareto-optimal front are reported for problem sizes up to 121

vertices. Berube et. al. (2008), on the other hand, uses €-constraint method to solve

10



PCTSP. They use a Branch-and-Cut algorithm and report Pareto-optimal fronts for

problem sizes up to 150 vertices where integer cost and prize values are used.

2.3 Definitions For Multiobjective Optimization

The general MO problem can be represented as follows;

Min f1(x)
Min fa(X)

Subject To
X€X

fi are objective functions, x is a decision space vector, X is called the “decision
space’, and objective function values are represented in “objective space”’, Z, with
objective space vector z, which is the corresponding objective space vector for x.
Figure 1 demonstrates the decision space and objective space in a two dimensiona

case.

The following definitions are also needed before we continue our discussion (Deb,
2001);

Definition 1. A solution s; issaid to dominate s, if and only if it isno worsethan s, in
all objectives and strictly better than s, in at least one objective.

Definition 2. A decision space vector x is said to be efficient if its corresponding

objective space vector zis nondominated.

11



Definition 3. The set of all nondominated solutions of entire feasible solution space is

called the Pareto-optimal set.

X2

._*\

/

-

v

»
>

. X
Decision Space !

Objective Space

Z

Figure 1 The correspondence between decision space and objective spacein a
Multiobjective Optimization Problem.

Pareto-optimal set is also called “Pareto-optimal Front” or “Efficient Frontier”.
Severa efficient solutions may correspond to a single nondominated solution which
is the case for aternate optima. Hence the size of distinct nondominated solutions set
is aways less than or equal to the size of efficient solutions set. However, since
alternative optimal solutions are nondominated to each other, the size of efficient

solutions set is equal to the size of nondominated solutions set.

In Figure 1, al solutions in objective space are nondominated, assuming a problem

minimizing z; and maximizing z.. Hence, all solutions in decision space are efficient.
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Moreover, number of distinct nondominated solutions is less than number of efficient

solutionsin Figure 1.

We also want to state some relevant concepts regarding Evolutionary Optimization
(Deb, 2001);

Definition 4. Nondominated Sorting is a methodology that separates a set of solutions
into smaller sets of solutions which are nondominated within
themselves. Given a set of solutions S in nondominated sorting,
nondominated members of S are put in another set P;. Then,
nondominated solutions of set SP; are put in P, This operation
continues until S= @. Hence, when routine is completed, all solutions
are separated into fronts where none of solutions in a front dominate
each other, whereas, fronts strictly dominate each other with P, being
the Pareto-optimal set of S

Nondominated sorting is used by algorithms that uses domination

concept as fitness function.

Definition 5. Niching Mechanism is the methodology used to keep a diverse set of
nondominated solutions in Evolutionary Algorithms. Counting number
of neighboring solutions and average distance between neighboring

solutions are two diversity mechanisms used in literature.

Without such a diversity keeping mechanism (i.e, niching
mechanism), most of algorithms fail to generate a uniformly

distributed range of solutions.

Nondominated Sorting is the primary selection criterion in most of the recent

MOGAS, whereas, Niching Mechanism is the secondary selection criterion.
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24 MOGA Literature

Deb (2001, p. 80) reports that the concept of a genetic algorithm was first conceived
by John Holland of the University of Michigan, Ann Arbor. Genetic Algorithms
(GAs), which are population based metaheuristics, simulate the theory of evolution.
The process starts with generation of an initial population of solutions. Initial
population may be randomly created or seeded with heuristic solutions. In GAs each
solution has a genotype and a phenotype. Genotype is the decoding schema of
solutions. A solution may be represented as a binary string or as area valued string,
called “chromosome’. Also each solution (i.e., chromosome) has a fithess value (e.g.,
corresponding objective function value) which corresponds to phenotype of the
chromosome. Fitness for a solution represents the desirability of that solution and is
crucial for its survival and reproduction. Chromosomes are crossed together to
generate new solutions (crossover operator) and then generated solutions are mutated
(mutation operator). These two operators are applied with some appropriate
probabilities depending on the structure of the problem considered. After generation
of new solutions, called “child population”, their fitness values are assigned. Finally,
based on fitness values, a child either replaces its parent or is discarded (i.e., natura
selection). After updating parent population, process is repeated. Four parameters are
to be set in a GA; crossover probability, mutation probability, population size, and

number of generations to be performed.

GAs are well-suited for multiobjective optimization (MO) due to their population
based optimization structures (see Coello, 2006, for a recent discussion on MOGA).
Aim in multiobjective optimization is to find a set of hondominated solutions. Since
in a genetic agorithm we always work with a population of solutions, result of a GA
is naturally a set of nondominated solutions (see Chinchuluun and Pardal os, 2007, for
a recent discussion on Multiobjective Optimization). Hence, convergence to the

Pareto-optimal front and ability to generate a diverse set of nondominated solutions

14



are the most important features of MOGASs and research on these properties of
MOGAs is very active. In fact, design of a MOGA itself is a multiobjective problem
in nature. Many different strategies are used in literature to design good quality
algorithms that can satisfy both goals adequately. Deb (2001, p. 161-273) classifies
multiobjective algorithms into two groups. Non-Elitist MOGASs and Elitist MOGAS.

Non-Elitist MOGAS:

These algorithms are the first proposed simple MOGASs and they do not use any elite-
preserving operator. VEGA, VOES, WBGA, RWGA, MOGA, NSGA, NPGA, PPES,
DSGA, DRLA, NCGA, MNA, and NGA are algorithms of this class suggested in
literature. These agorithms are easy to understand and implement. However they

have found very good resultsin their original studies.

Elitist MOGAs:

In elite-preserving algorithms, elites have an opportunity to be directly included in
next generations. No matter how elitism is introduced in these algorithms, they ensure
that fitness of population-best solution does not deteriorate. REMEA, NSGA-I1I (Deb
et al., 2000), DPGA, SPEA, SPEA2 (Zitzler et al., 2001), TDGA, PAES, NSAGA,
PCGA, MuGA, ERMOCS, e-MOEA (Deb et a., 2005), SMS-EMOE (Beume et al.,
2007), MOTGA (Alves and Almedia, 2007), and FWEA (Soylu and Kdksalan, 2007)
are ditist MOGAS proposed in literature. Many of these algorithms use external

populations to preserve dlite solutions. They exploit elitism in different ways.

Refer to Deb (2001) for a more detailed study on MOGAS.

2.5 Literature Review on PreferenceIncorporation in MOGASs

No matter how many nondominated solutions exist for a decision making problem,

DM has to choose only one of these solutions. Hence, the only tie breaking rule is

preference. We refer reader to the work of Rachmawati and Srinivasan (2006) for a
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survey on preference articulation in MOGAS.

Three classes of methods exist for preference incorporation in MOGAS:. a priori

methods, interactive methods, and a posteriori methods.

A Priori methods: In this class preferences of DM is formulated prior optimization.
Preferences are incorporated in fitness function and optimization is done accordingly.
Weighted sum and Lexicographic approaches are examples of this method. However,
this method is difficult to use due to lack of sufficient problem knowledge and non-

convexity issues.

I nteractive Methods: Few parameters are fixed prior optimization and rest is tailored
during the search process based on guidance of DM. Difficulties faced when using
this method are the extensive effort required from DM and the more apparently

observed disagreement in the case of more than one decision maker.

A Posteriori Methods: In this method optimization and decision making processes
are separated. DM selects her/his most preferred solution from set of solutions
generated. Some computational problems are avoided by delaying decision making
process to post-optimization stage, however, new problems arises. Finding a set of
solutions with varying tradeoffs and navigating through Pareto front may be difficult.
Moreover, as number of objectives increases, size of pareto front increases

exponentially and algorithms lack an effective selection force.

Deb (2001, p. 162) argues that it is better to find a set of Pareto-optimal solutions first
and then choose one solution from this set using some other higher-level information.
This approach is reported as an ideal approach. After finding a set of nondominated
solutions, if preference knowledge about the trade-off among objectives is known,
one of these nondominated solutions could be chosen based on this preference

information. This method, at least, gives a user an overal perspective of other
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possible optimal solutions that the underlying multiobjective optimization problem

offers before choosing one of the nondominated solutions.

A posteriori method is used in this paper due to the following reasons. In TSPP we
have only two objectives, hence, the problem of scalability (i.e., exponential increase
in the size of Pareto front as the number of objectives increases) is not a severe issue
for our case. Secondly, for practically large problem sizes, we are able to find extreme
solutions and a set of solutions that uniformly sketches Pareto front with solution
methodology proposed in this paper. Finaly, we also propose a tool for navigating
Pareto front without putting an extra burden on DM in Chapter 7.
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CHAPTER 3

A MOGA FOR TSPP

Since search space increases exponentially for NP-complete problems, a failure at
large problem sizes is inevitable for exact algorithms. We observe that none of exact
algorithms proposed in literature are able to solve problems with more than 150
nodes for TSPP, which empower our former statement. Hence, usage of heuristics that
can approximate optimal solution in single objective case or Pareto-optimal front in
multiobjective case within areasonable error is quite often, natural, and necessary.

In this chapter we examine an existing MOGA, NSGA-IlI, and summarize
modifications we propose for this algorithm. In section 3.1 original NSGA-II
algorithm is reviewed, in section 3.2 we propose first modification for NSGA-II,
Modified NSGA-II is presented in section 3.3, section 3.4 summarizes performance
metrics used, and finally we set parameters for the Modified NSGA-I1 and present
preliminary results in section 3.5.

3.1 NSGA-II

In this work we use one of state-of-the-art metaheuristics: NSGA-Il. NSGA-II is
proposed by Deb et a. (2000) as a Multiobjective Genetic Algorithm. Algorithm uses
nondominated sorting mechanism and an explicit diversity preserving mechanism.
Niching mechanism used in algorithm is based on average distance of neighboring
solutions in al objectives. In NSGA-Il we use a binary chromosome representation.
The length of chromosome is equal to n, which is the number of cities considered. A
“1” at location j on chromosome means j™ city is included in the tour, “0” otherwise.
We use Lin-Kernighan TSP heuristic (Concorde, 2008) to find cost based objective
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for a given chromosome (i.e., for a given subset of cities). Cost for atour is generally
the length of the tour. For some problem instances length between two cities is
calculated as the Euclidean Distance between the two cities, for some instances
Geometric Distance is used, and for a small number of instances ATT Distance metric
is used. Profit based objective is simply caculated by adding up profits
corresponding to nodes included in the subset defined by chromosome. Table 1

demonstrates how objective function values are calculated for a given chromosome.

Table 1 Calculation of cost and profit for a chromosome.

NODES 1 2 3 4 5 6 7 8 9 10
COORDINATES [59,68] | [70,86] | [26.64] | [15,75] | [64,15] | [77,62] | [85,38] | [46,57] | [57.9] | [89,51]
PROFITS 0 42 9 43 84 20 34 1 75 75
CHROMOSOME 1 1 0 1 0 0 0 1 1 0
COST: 221 | For sequence generated with Lin-Kernighan Heuristic: 1-2-4-9-8-1
PROFIT: 161 | =1*0+ 1*42+ 0*9 + 1*43+ 0*84+ 0*20+ 0*34 + 1*1 + 1*75+ 0* 75

In the literature of TSPP, nodes are generally treated as “cities’. Thisis mainly due to
terms used in TSP literature. Since we do not have to visit all cities, a depot city is
defined for TSPPs. Generaly profit assigned to depot city is zero. All subsets
considered in TSPP should include depot city. However, this constraint does not make
problem more difficult since one could easily force any algorithm to include depot in
the constructed tour by assigning avery large profit to it.

In NSGA-II we generate initial population randomly but we always include extreme
solutions. Extreme solutions are easy to find: staying at the depot is the solution with
least cost and visiting all cities is the solution with largest profit. We include these

two extreme solutions as two binary chromosomes where in one of the chromosomes
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all genestake avaue of 1, and in the other chromosome only the gene corresponding

to the depot city takes avalue of 1. Figure 2 shows aflow chart for NSGA-I1.

Handur_nlly_ Evaluate Parent Assign crowding
generate initial » . o —
Parent Population Population distance and rank
Perform crossover
Evaluate Child | Mutate Child | and selection to
Population h Population - generate Child
Population

"

Merge Child and | Assigne fing Generate new Parent

F*arE|_1t ® istance and rank F‘Dpul_ﬂtlon using
Populations nondominated sorting

L 4

Figure 2 Flowchart for NSGA-II.

To summarize the flow in Figure 2, agorithm starts with creation of random initial
population. However, depot city is included in all members of population (i.e., in al
subset of cities generated). The two extreme solutions, minimum cost and maximum
profit cases, are also included in population. Then cost and profit values are assigned
to population as explained in Table 1. Based on objective values, nondominated
sorting and niching mechanism is used to sort members of population from best to
worst. Then, based on tournament selection, two-point crossover operator is executed
to generate child population. Child population is mutated according to bit-wise
mutation operator with given mutation probability as the next step. Afterward
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objective values for members of child population are calculated. Then, child and
parent populations are merged and rank and crowding distance is assigned to all
members of merged population. Finally, parent population for next generation is
selected from the merged population based on rank and crowding distance of

solutions.

The pseudo code for original NSGA-II isgiven in Appendix A.

3.2 First Improvement for Population Size Limit of NSGA-I |

In MOGAS, as initia population evolves, the number of nondominated solutions
increases. When the number of these solutions exceeds population size, a niching
schema is used to select individuals from less crowded regions so as to escape local
optima and access less searched regions of the search space. Thus, some
nondominated solutions are cut-off from population. The number of such wasted
nondominated solutions increases exponentially in TSPP as problem size n increases
due to combinatorial number of subsets of cities possible. However, in NSGA-II,
number of nondominated solutions returned eventually is at most equal to the

population size.

The first and most apparent solution to the problem stated is to keep al nondominated
solutions generated during execution of NSGA-II. We modified NSGA 11 in the
following sense. We generate an external population of nondominated individuals
generated during the execution of NSGA-I1. Figure 3 shows aflow chart for proposed

improvement.

As it can be seen in Figure 3, execution of the original algorithms is not modified.
The only change is inclusion of an archive population which we call “Elite Pop”.
Elite Pop preserves all nondominated solutions generated. Hence, Elite Pop returned
by algorithm always covers final population returned.
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Figure 3 Flow chart for proposet improvement to NSGA-I1.

3.3 Final Improvement: The Modified NSGA-I1 (MNSGA-I11)

One further modification we propose is to use nondominated solutions archived in
Elite Pop to modify Parent Population in each iteration of the algorithm. To apply this
modification, we modified NSGA |1, caled mNSGA 11, in the following sense. We
define two external populations of nondominated individuals consisting of solutions
not accepted to parent population, and use them to update parent population in each
iteration of algorithm. These external populations are named “Elite Pop 1" and “Elite
Pop 2”. Elite Pop 2 is a temporary population which is reset at the end of each
generation performed. On the other hand, Elite Pop 1 is a permanent population
which preserves all nondominated solutions generated and not included in parent
population. Hence, at the end of run, Elite Pop 1 and Parent Population are merged to
generate the compl ete pareto front. Figure 4 shows a flow chart for NSGA-II.

22



Randomly Parform crossover
genznratznzial .| Evaluate Parent | Assign crowding | and selection to Mutate Child
Parent Pepulation Population distance and rank generate l::-hlld Fapulation
Papulation
L
hd
GE::;‘Z};?;"“LI:&HE“' . Assign crowding | Merg;;:r;l_:? and P Ewaluate Child
nondominated sarting distance and rank Populations Population
r 9
h
Copy nondominated Copy ‘popsize’
solutions that are not in I Elite Pop 1 Ol individuals from
Parent Population into Elite empty? Elite Pop 1 into
Fop 2 Chikd Pop
YES
4
Return last generated | Copy Elite Pop 2 into

Elite Pop 1 and empty
Elite Pop 2

Parent Population

Figure 4 Flowchart for NSGA-I1.

In Figure 4, the first nine steps are exactly the same asin original NSGA-II agorithm
as given in Figure 2. After generation of the first parent population in each
generation, MNSGA-II starts a loop as seen in Figure 4. First, nondominated
solutions that were not included in generated parent population are copied into Elite
Pop 2. Then, we check whether Elite Pop 1 is empty or not. If Elite Pop 1 is not
empty, we copy “popsize” solutions from this population into child population.
“Popsize’ is the size of population which is set at the beginning of algorithm. After
copying popsize solutions into child population, standard “merge, sort, and select”
steps are performed and the loop is restarted. Loop is executed until all members of
Elite Pop 1 are used. Then, we exit the loop, copy all individuals in Elite Pop 2 into
Elite Pop 1, empty Elite Pop 2, and report last generated parent population for next

generation.
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The loop described here ensures that al nondominated solutions generated during
execution of algorithm and not included in parent population are preserved.
Moreover, preserved solutions interact with parent population at each generation and
if they are re-included in parent population, they get a chance to be used in evolution
process (i.e., they are used in crossover and mutation operators) and affect future

generations.

The pseudo code for mMNSGA-II isgiven in Appendix B.

3.4 PeformanceMetrics Used

To make comparisons, basically two metrics from MOGA literature are used; Hyper
Volume (HV) and Generational Distance (GD) (Deb, 2001, p. 306-324).

For a given set of nondominated solutions, the hyper volume they enclose in
objective space is the union of the volumes each point generates with respect to a
reference point. The reference point can be the nadir point or estimation to it. In
Figure 5, HV enclosed by a given set of nondominated solutions in biobjective case
where both objectives are to be minimized is the sum of areas of blue rectangles. It
can be shown that a set of nondominated solutions with better convergence and
dispersion will always constitute equal or alarger HV.

Another metric is defined based on this argument; Hyper Volume Ratio (HVR). HVR
shows the relative distance between two set of nondominated solutions or two Pareto
fronts. It can be stated as;

I—IVApproximation

HVR =

(8)

I_lVOptimal

(8) can be used to make a comparison between an approximation set and a Pareto-
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optimal set of solutions. In this case HVR can take a maximum value of 1. Vaues

larger than 0.95 would imply a very good approximation to the Pareto-optimal front.

A
) Reference
Obj 2 Point
\olume (i)
\olume (i+1)
..... h
obj1

Figure 5 HV enclosed by a given set of nondominated solutions.

On the other hand, GD shows the mutual distance between a Pareto-optimal front and
an approximation set to this front. First, for each point on Pareto-optimal front the
nearest point on approximate front is found using a relevant distance metric. Then,
GD is calculated as the average of these distances. Since such a metric requires
knowledge of the range of objectives, it is more meaningful to define a metric that

shows relative distance between two fronts. If we define Zf,pt as i point on Pareto-
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optimal front and Z},,,, as corresponding nearest point on approximate Pareto front
based on Euclidean distance, we define the following two measures of distance

between two fronts;

i,cost i,cost
2 Zheur Zopt
i Zi,cost

GDY,, = "T’;t * 100 9)

Lprof __ iprof
Z Zopt Zheur
i Zi,prof

% _ t
GD,r = ;’l’" + 100 (10)

GD5s, shows average percent deviation in cost objective, GD,®,. shows average
percent deviation in profit objective, and n is the size of Pareto-optimal front. These
two metrics show relative distance of two Pareto fronts in terms of cost and profit
objectives. However, any kind of objectives could be used with these metrics. We will
refer to these metrics as Percent GD in cost objective and Percent GD in profit

objective.

Several other metrics exist in literature: Error Ratio, Set Coverage Metric, Maximum
Pareto Optimal Front Error, Spacing, Spread, Maximum Spread, Chi-Square-Like
Deviation Measure, Attainment Surface Based Statistical Method, Weighted Method,
and Nondominated Evaluation Metric. All these metrics try to measure convergence
and dispersion properties of algorithms. Hence, we would like to select two metrics:
one for convergence and one for dispersion properties of the algorithm of interest.
Since two metrics are adequate to measure these two properties and since HV and GD
give more insight to the algorithm of interest and more frequently used in literature,
we used only these two metrics. We should also note that Percent GD is proposed for
the first time in this study and aims to demonstrate the percent deviation from Pareto-

optimal front.
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3.5 Parameter Setting for mMNSGA-I|

Population Size: Since we deal with a combinatorial optimization problem, search
space to be considered is intractable even for very small problem sizes. Note that a
large population size is desirable even for small problem sizes. On the other hand,
since finding the objective function values for each member of population is also a
very time consuming process for TSPP due to the requirement for solving a TSP for
each member of population, a small population size is desirable. The reasoning
behind the desire of a small population size is to obtain a converged population in a
reasonable time. If population size were very large, each generation of the algorithm
would require a very long time and we would have to stop before the agorithm
converges due to time considerations. Moreover, in NSGA-II population size
determines the size of pareto front returned by algorithm. However, since in mMNSGA -
Il all generated efficient solutions are kept in an external population, size of pareto
front is independent from population size for MNSGA-11. Hence we decided to use a
population size of 100. This selection is based on previous studies on best parameter
settings for other algorithms, the time required to perform a single iteration in

MNSGA-II, and the size of pareto front we target.

Crossover Probability: After defining metrics to be used, we first set crossover and
mutation probabilities. To alow adequate inheritance of good schemata, the origina
crossover probability of 0.9 in NSGA-II is kept unchanged.

Mutation Probability: Table 2 shows hyper volumes enclosed by generated Pareto
fronts for test problem EIL76 at several mutation probability levels for mNSGA-II. A
generation number limit of 250 is used. We observed that high mutation probabilities
cause loss of good quality solutions and very low ones result in premature
convergence. Therefore we use 0.02 as the mutation probability, Pr.
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Table 2 Hyper volumes at various mutation probabilities.

Pm Hyper Volume
0.0125 399,402
L 0.0200 420,114
= | 0.0500 408,121
0.1000 395,180

Generation Number Limit: Convergence to the Pareto-optimal front gets difficult
and probability of being stuck at a local optima increases rapidly as n increases
because of exponential increase of search space. Thus, we used different generation
number limits for a population size of 100. After various experiments we set the limit
to 1,000 for n<100, to 5,000 for 100<n<200, and to 10,000 for n>200. These limits
are defined considering convergence of algorithm at various problem sizes

(independent from difficulty of TSP instances solved) and time requirements.

3.6 Evaluation of Proposed M odifications for NSGA-I |

Firs we conducted a preliminary experiment for NSGA-11 and proposed improvement
in section 3.2. Table 3 shows results of experiment, where a generation number limit
of 250 and a population size of 100 is used. As it can be seen in Table 3, number of
nondominated solutions for NSGA-Il never exceeds 100, which corresponds to the
population size used. On the other hand, with the first improvement we are able to
find a more populated pareto front. Also hyper volumes are better for proposed
algorithm on all six problem instances and accordingly HVR values are less than 1.

However, HVR are very close to 1 since we do not modify execution of algorithm.

To visually show and exemplify pareto fronts generated, in Figure 6 we present
Pareto front generated for REINELT 1084 instance which include 1084 cities.
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Table 3 Results for first modification to NSGA-I|

Problem f#of Nondominated Hyper Volume
Instance solutions gener ated HVR
NSGA-Il | Proposed NSGA-II Proposed

EIL30 66 119 2,616,200 2,630,350 | 0.9946

CMT101 92 147 444,830 448,370 | 0.9921

F135 98 219 6,479,901 6,535,792 | 0.9914

GIL262 97 223 13,862,466 14,003,940 | 0.9899

E484 99 181 3,986,497 4,009,011 | 0.9944
REINELT1084 99 256 4,626,044,046 | 4,684,320,515 | 0.9876

Consequently, as it can be observed from Figure 6, with proposed algorithm we are
able to find a pareto front in terms of convergence, dispersion, and number of

nondominated solutions.

Secondly, fixing population size to 100 and performing 20 replications, we conducted
another preliminary experiment using NSGA-Il1 and mMNSGA-II over 3 instances from
TSP literature with problem sizes of 100, 200, and 300 cities. Table 4 presents
average hyper volumes enclosed by Pareto fronts generated for both algorithms over
20 replications. MNSGA-11 is better in all cases, except for one instance shown in red
ink.

Moreover, the size of Pareto front generated by the original agorithm for three
problems is always 100, whereas, it is 500, 300, and 700 on average for mNSGA |1
for three problems respectively.

A preliminary analysisis also conducted to find out effect of usage of a heuristic and

an exact method on quality of generated pareto front. Lin-Kernighan is used as

heuristic and Concorde TSP solver used to obtain exact results.
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Table 4 Hyper volumes at various generations for three test problems with 20

replications.

Generation NSGA |1 MNSGA I
Number

0 96,396 96,396
= 100 324,125 326,456
= 200 350,476 349,531
S 300 360,784 365,237
© 400 366,324 372,234
500 369,006 376,245
0 441,148 441,148
100 1,193,185 1,201,742
8 200 1,259,501 1,262,951
N 300 1,290,893 1,304,978
400 1,314,062 1,331,932
500 1,328,356 1,351,339
0 99,159,717 99,159,717
© 100 279,237,849 | 287,690,064
& 200 297,581,093 | 300,516,775
% 300 305,733,034 | 311,836,548
400 312,160,786 | 319,694,935
500 316,361,711 | 325,504,095

Table 5 shows hyper volumes for three test problems and Figures 7 and 8 show
generated pareto fronts when solving TSP instances under mMNSGA-II using exact
method and Lin-Kernighan heuristic. For experiments a generation number limit of
250 and a population size of 100 are used.

As it can be seen from Table 5 results generated are very close to each other. Figures
7 and 8 also suggest that the two methods generate equally good solutions. For OP33
instance results are amost the same. For EIL76, in Figure 8, algorithms perform
better in different segments of generated pareto front. Results indicate that for
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moderate problem sizes Lin-Kernighan heuristic and exact method are nondominated
to each other. For larger problem sizes usage of exact method becomes impossible
due to large computational requirements. Thus, we will use Lin-Kernighan heuristic

to solve TSPinstances faced during execution of mMNSGA-II.

Table 5 Hyper volumes for three test problems.

Hyper Volume
Exact Lin-Kernighan
OP33 37,860 37,860
EIL51 194,001 194,366
EIL76 425,301 430,624

In summary, the second improvement explained in section 3.3 is a more generd
improvement and it includes the first improvement explained in section 3.2. Also
results shown in Table 4 show that mMNSGA-II is better than origina NSGA-II
algorithm. Hence, we will use only mNSGA-I1 to compare our results with resultsin
literature. Moreover, due to reasons explained above, we will use Lin-Kernighan

heuristic in our computational experiments which are summarized in the next chapter.

3.7 A Preliminary Analysis on Robustness of Modified NSGA-I |

Since MNSGA-II is a heuristic, results generated by this heuristic will vary based on
initial conditions selected. Hence, performance of a heuristic is effectively measured
if adequate number of replications is conducted. If the results of experiments prove
that heuristic is robust and correlation between initial conditions and the results of
runsis weak, then, results of asingle run could be assumed to be adequate to measure

performance of heuristic studied.
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For mMNSGA-II, we generate initial parent population randomly where we control
randomness using initial seed value for random number generator it uses. To observe
the effect of randomness in initial population on results of simulation, we have
conducted a preliminary experiment. The aim of this experiment is to observe
robustness of the modified heuristic and decide whether it is required to conduct more

than one ssimulation for problems with long runtimes.

Tables 6, 7, and 8 give results for VRP and TSP instances including less than 100
cities. We have conducted 10 runs for each problem instance. Tables 6, 7, and 8
summarize averages for these instances. Demand data for VRP instances is accepted
as profits for cities. For TSP instances we have generated two types of profits
randomly, named as TSP-1 and TSP-3. In the next chapter we provide details of this
profit assignment schema.

In Tables 6, 7, and 8 we provide minimum, average, maximum, and standard
deviation for parameters considered. For each problem instance, we give number of
efficient solutions generated (# of sol), hyper volume enclosed by generated pareto
front (HV), hyper volume ratio (HVR), Percent GD in cost objective (PGD-cost(%)),
Percent GD in profit objective (PGD-prof(%)), CPU time for modified NSGA-I1I
(Time NSGA-II (sec)), and CPU time for Lin&Kernighan Heuristic (Time L&K
(sec)). Considering standard deviation for number of efficient solutions generated, the
largest deviation is 22 solutions for EIL76 where 339 solutions are generated on
average as it can be seen in Table 8. Considering hyper volume, standard deviation is
less than 1% of average hyper volume in all cases and it is less than 1%. in most of
the results. HVR values show that in all cases results found are very close to each
other, less than 5%o in al cases. Deviation in Percent GD in cost and profit objectives
is always less than 6%.. This means that pareto fronts found are very close to each
other and there is no mgor deviation from one simulation to another. CPU times

reported show larger deviation when compared to results summarized up to now.
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Table 6 Preliminary experiments on robustness of mMNSGA-1I for VRP instances.

Min Ave M ax Stdev
# of sol 67 69 70 1
HV 3,286,400 3,292,630 3,297,900 5,508
N HVR 0.9964 0.9983 0.9999 0.0017
— | PGD-cost (%) 0.02 0.19 0.41 0.14
W | PGD-prof (%) 0.01 0.04 0.07 0.02
Time NSGA-I1 (Sec.) 75 91 116 14
TimeL&K (Sec.) 31 50 116 25
# of sol 74 75 77 1
HV 3,403,618 3,403,997 3,404,600 241
Q HVR 0.9997 0.9998 1.0000 0.0001
— | PGD-cost (%) 0.06 0.07 0.12 0.02
W | PGD-prof (%) 0.00 0.00 0.01 0.00
Time NSGA-I1 (Sec.) 67 82 100 11
TimelL &K (Sec) 52 80 162 33
# of sol 126 129 132 2
HV 2,689,973 2,690,377 2,690,550 184
Q | HVR 0.9997 0.9999 1.0000 0.0001
- | PGD-cost (%) 0.01 0.03 0.10 0.03
W | PGD-prof (%) 0.00 0.01 0.02 0.01
Time NSGA-I1 (Sec.) 82 89 107 8
TimeL&K (Sec.) 538 741 886 104
# of sol 159 161 162 1
HV 6,564,433 6,565,384 6,565,820 386
Q HVR 0.9998 0.9999 1.0000 0.0001
- | PGD-cost (%) 0.01 0.07 0.09 0.03
W | PGD-prof (%) 0.00 0.01 0.02 0.00
Time NSGA-I1 (Sec.) 84 95 114 9
TimeL&K (Sec) 348 551 730 104
# of sol 226 235 245 5
HV 197,504 197,564 197,597 29
o HVR 0.9993 0.9996 0.9998 0.0001
- | PGD-cost (%) 0.03 0.05 0.08 0.01
W | PGD-prof (%) 0.02 0.03 0.04 0.01
Time NSGA-I1 (Sec.) 118 140 177 20
TimeL&K (Sec.) 247 357 474 65
# of sol 307 328 345 12
HV 438,783 440,991 441,891 1,038
© HVR 0.9907 0.9957 0.9977 0.0023
— | PGD-cost (%) 0.28 0.58 1.23 0.32
W | PGD-prof (%) 0.11 0.16 0.23 0.03
Time NSGA-I1 (Sec.) 153 178 221 21
TimeL&K (Sec.) 750 1,009 1,240 137
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Table 7 Preliminary experiments on robustness of mMNSGA-II for TSP-1 instances.

Min Ave M ax Stdev
# of sol 82 91 117 11
HV 11,257 11,405 11,426 52
o HVR 0.9850 0.9979 0.9998 0.0046
— PGD-cost (%) 0.02 0.12 0.56 0.16
w PGD-prof (%) 0.00 0.14 1.45 0.46
Time NSGA-II (Sec.) 73 160 226 46
TimelL&K (Sec.) 395 589 838 152
# of sol 52 52 52 0
o~ HV 246,685 246,892 246,966 105
2 HVR 0.9988 0.9997 1.0000 0.0004
E PGD-cost (%) 0.01 0.07 0.16 0.06
w PGD-prof (%) 0.00 0.04 0.24 0.08
@ Time NSGA-II (Sec.) 134 162 202 21
TimeL&K (Sec) 2,159 2,721 4,279 685
# of sol 94 100 110 5
HV 26,057 26,319 26,419 105
o HVR 0.9853 0.9952 0.9990 0.0040
'% PGD-cost (%) 0.15 0.24 0.40 0.07
PGD-prof (%) 0.00 0.51 1.60 0.49
Time NSGA-II (Sec.) 167 208 268 36
TimeL&K (Sec.) 1,217 1,465 2,016 271
# of sol 110 132 152 12
HV 22,675 22,727 22,824 45
© HVR 0.9911 0.9934 0.9976 0.0020
- PGD-cost (%) 0.42 0.57 0.68 0.09
w PGD-prof (%) 0.14 1.10 1.79 0.51
Time NSGA-II (Sec.) 118 155 247 46
TimeL&K (Sec.) 1,072 1,579 3,227 739
# of sol 76 78 80 1
HV 4,627,952 | 4,636,060 | 4,647,299 6,063
© HVR 0.9920 0.9938 0.9962 0.0013
> PGD-cost (%) 0.34 0.40 0.52 0.06
o PGD-prof (%) 0.55 1.04 1.44 0.24
Time NSGA-II (Sec.) 163 206 268 30
TimeL&K (Sec.) 2,844 3,455 4,409 510
# of sol 116 126 138 7
HV 59,658 60,012 60,338 188
o) HVR 0.9812 0.9870 0.9924 0.0031
|<_1: PGD-cost (%) 0.38 0.46 0.56 0.06
14 PGD-prof (%) 0.52 1.31 1.89 0.40
Time NSGA-II (Sec.) 180 217 251 20
TimeL&K (Sec.) 1,146 1,270 1,412 87
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Table 8 Preliminary experiments on robustness of MNSGA-II for TSP-3 instances.

Min Ave M ax Stdev
# of sol 213 246 263 15
HV 534,607 537,148 538,709 1,277
o HVR 0.9913 0.9960 0.9989 0.0024
— PGD-cost (%) 0.15 0.55 1.03 0.25
L PGD-prof (%) 0.14 0.25 0.36 0.08
Time NSGA-I1 (Sec.) 142 171 192 16
TimeL&K (Sec.) 350 440 524 54
# of sol 411 417 425 5
o HV 7,240,064 | 7,312,420 | 7,342,129 38,058
2 HVR 0.9857 0.9956 0.9996 0.0052
g PGD-cost (%) 0.05 0.10 0.21 0.05
W PGD-prof (%) 0.09 0.65 1.80 0.60
@ Time NSGA-I1 (Sec.) 159 176 197 13
TimelL&K (Sec) 1,501 1,783 2,968 423
# of sol 397 422 454 20
HV 1,276,653 | 1,287,499 | 1,295,376 6,228
o HVR 0.9804 0.9887 0.9947 0.0048
E PGD-cost (%) 0.61 1.48 2.48 0.58
PGD-prof (%) 0.23 0.35 0.49 0.09
Time NSGA-I1 (Sec.) 165 196 213 16
TimeL&K (Sec.) 946 1,097 1,213 95
# of sol 314 339 389 22
HV 1,144,746 1,153,412 1,159,252 4,869
© HVR 0.9823 0.9898 0.9948 0.0042
- PGD-cost (%) 0.78 1.43 2.20 0.49
e PGD-prof (%) 0.30 0.38 0.46 0.05
Time NSGA-I1 (Sec.) 170 208 239 23
TimeL&K (Sec.) 680 918 1,316 182
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We also want to note that the major portion of CPU time for a simulation comes from
the routing decision, the CPU time for Lin&Kernighan Heuristic. Figure 9 shows

percentages of average CPU times for mMNSGA-II and Lin& Kernighan heuristic.

L&K
81%

Figure 9 Percentage of CPU times for mMNSGA-1I and Lin& Kernighan.

Asit can be seen from Figure 9, only asmall portion of CPU time for simulations
comes from mNSGA-I1. Thus, if a better algorithm could be found to solve routing

problem, then, mMNSGA-I1 would also improve in terms of runtime.
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CHAPTER 4

COMPUTATIONAL RESULTS

In this chapter we present computational results of mMNSGA-II and compare them to

the benchmark results available in literature. In section 4.1 selection of problem
instances is explained and results regarding selected problems are given in section
4.2.

4.1 Selection of Test Problems

Two types of problems are solved in this study: VRP and TSP instances in the routing

literature.

The datafile for aVRP instances includes coordinates of cities and demands assigned
to cities. In our study we considered demands as profits as previously done by
Fischetti et al. (1998) and Berube et al. (2008).

For TSP instances we generated profits, P;, according to method proposed by
Fischetti et al. (1998) and used by Berube et al. (2008). Three types of profits are

considered for TSP instances:

Type 1 Profits: P, = 1 (11)
Type 2 Profits: P, = 1 + (7141 * i + 73)mod(100) (12)
Type 3 Profits: P, = 1 + |99  ¢1;/6| where 6 = max;y\g13c1; (13)

In (11), (12), and (13) i=1 is considered as depot city and P; is set to 0. In (13), ¢y is
the distance between depot city and i" city and V is the set of all cities. Thus, Type 1
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profits are constant and same for al cities, Type 2 profits are generated uniformly
between [0,100], and Type 3 profits are generated between [0,100] where high profits

are assigned to cities far away from the depot city.

We give computationa results for most of VRP and TSP instances considered in
literature by other researchers. 61 problems with problem sizes up to 400 cities are
solved using MNSGA-I11.

4.2 Computational Results

Up to now, it has been shown that mMNSGA-II performs better in terms of
convergence and size of Pareto front generated. Hence, only mNSGA-I1 algorithm is
used to solve a wide range of problem types and sizes. As previoudy stated, a
crossover probability of 0.9, a mutation probability of 0.02, a population size of 100,
a generation number limit of 1.000, 5.000, and 10.000 for problems including less
than 100, between 100 and 200, and between 200 and 400 cities respectively are used.
MNSGA-II is coded in C programming language on a Linux platform with an Intel
Core2Duo 2 Ghz processor and 2 GB of RAM. Tables 9, 10, 11, and 12 show results
for problems from VRP and TSP literature (TSPLIB, 2008). Table 9 shows results for
VRP instances, Table 10 gives results for TSP instances with Type 1 profits, Table 11
gives results for TSP instances with Type 3 profits for which results exist in the
literature, and finally Table 12 presents results regarding TSP instances with Type 3
profits for which complete approximate pareto fronts are given for the first time in
this study.

We use results of studies conducted by Fischetti et al. (1998) and Berube et al.
(2008). We refer to the former FGT and latter BGP. The followings are summarized
in Tables 9, 10, 11, and 12;

Problem Name: The name of problem asin TSPLIB (2008) is given.
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Size of Pareto Front: Number of efficient solutions reported in the literature and
number of efficient solutions generated by mNSGA-II are given. In literature, BGP
provides complete distinct nondominated solutions, whereas FGT reports only three
solutions for VRP instances and only one solution for TSP instances.

Hyper Volume of Pareto Front: HV enclosed by Pareto fronts reported by BGP and
FGT and HV enclosed by Pareto front found by mNSGA-II are presented. For
problems where only one (see Tables 9 and 12) or three solutions is reported
(problems reported by FGT), we did not compute hyper volume since three solutions
are not adequate to correctly estimate Pareto-optimal front, hence a HV for Pareto-
optimal front.

HVR: Hyper Volume Ratio for reported Pareto fronts is given. Pareto front reported
by BGP is the Pareto-optimal front. On the other hand, since results provided by FGT
includes only 3 solutions (1 solution in the case of TSP), we did not compute HV for
solutions given by FGT and HVR for problems reported by FGT.

Percent GD: Average percent deviation in cost and profit objective is calculated for
all problems.

NGP: Number of generations performed. It shows how many generations are
performed for the given problem size.

CPU Tims: It shows total CPU time spent for each problem reported by BGP and
used by mMNSGA-II. FGT reports that they put time limit of 5 hours to generate a
single solution. Also since the study reported by FGT is old, considering
technological advancements in computer industry, CPU times for FGT are not
included in tables. FGT have used a DEC station 5000/240 and on a Hewlett Packard
Apollo 9000/720 computer and CPLEX 3.0. BGP have used an AMD Opteron 2.4
Ghz processor and CPLEX 9.3.

To summarize, Fischetti et al. (1998) provide 3 solutions for VRP instances and 1
solution for TSP instances. The largest VRP instance they solve is GIL260 and the
largest TSP instance they solve is RD400. They use atime limit of 5 hours to generate

a solution. However, since their work dates back to 1998, technology they have used
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to implement their algorithm is incomparable with current computer technology we
have used. Thus, we will not present a comparison between our results and results of
Fischetti et a. (1998). On the other hand, study of Berube et a. (2008) is a recent
one. They generate the whole Pareto front for problems they were able to solve under
a time limit of 72 hours. We compare our computation times with theirs since their
study isrecent. The largest VRP instance for which they report Pareto-optimal front is
EIL101. The largest TSP instance with Type 1 profits they are able to solve includes
150 cities and the largest TSP instance with Type 3 profits for which they are able to
generate the whole Pareto front in 72 hours is EIL101. However, we should note that
they are unable to solve some medium size problems such as PR76 for Type 3 profits.
They report that instances with Type 3 profits are the hardest problems. Based on
their claim we have solved only TSP instances with Type 1 and Type 3 profits.
Instances with Type 2 profits are not considered in this paper since we believe that
instances with type 1 and type 3 profits are adequate to show performance of
MNSGA-II.

Before discussing results regarding hyper volumes and hyper volume ratios given in
Tables 9, 10, 11, and 12, we want to point out an issue regarding hyper volumes
reported for the problems with Pareto front size of 1 and 3 solutions. For these
problems, actually, HV and HVR are meaningless. All convexities and concavities of
Pareto-optimal front would be disregarded if we calculated HV for these problem

instances. Hence, it is more meaningful to look at Percent GD for such problems.

For problems with complete Pareto-optimal fronts, results reported by BGP, HVR
values for VRP instances are above 0.99 as can be seen in Table 9. This means that
the results very close to Pareto-optimal fronts are found by mNSGA-I1. HVR values
for TSP instances with Type 1 profits, in Table 10, are 0.96 for one instance, 0.98 for
5 instances and above 0.99 for other 14 problem instances. It can be concluded that
MNSGA-II is able to find results very close to the Pareto-optimal front for other 6
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Table 9 Computational results for VRP instances.

. Hyper Volume of .

Pl\rlg?rll:;n Size of Pareto Front Par o Eront HVRE Percent GD NGP CPU Time

BGP/FGT | mMNSGA- Il | BGP/FGT | mNSGA-II Cost | Profit BGP MNSGA-| |
ElIL22 67 67 3,298,300 3,297,500 | 0.9998 | 0.41 | 0.06 1,000 | 00:00:08 | 00:05:35
EIL23 75 77 3,404,732 3,404,732 | 1.0000 | 0.00 | 0.00 1,000 | 00:00:08 | 00:05:40
EIL30 125 132 2,690,675 2,689,974 | 0.9997 | 0.10 | 0.00 1,000 | 00:00:27 | 00:09:40
EIL33 159 161 6,565,900 6,564,433 | 0.9998 | 0.00 | 0.00 1,000 | 00:00:55 | 00:06:32
EIL51 223 238 197,640 197,565 | 0.9996 | 0.06 | 0.04 1,000 | 00:09:00 | 00:04:55
EIL76 355 337 442,888 441,599 | 0.9971 | 0.36 | 0.14 1,000 | 00:43:25 | 00:13:28
EIL101 498 644 584,767 583,624 | 0.9980 | 0.34 | 0.07 5,000 | 01:24:07 | 02:25:50
CMT101 3 794 - 487,490 -| 045 | 0.00 5,000 * 05:36:27
CMT121 3 494 - 390,436 -1 049 | 0.02 5,000 * 10:49:44
CMT151 3 603 - 955,292 -1 0.80 | 0.06 5,000 * 04:06:49
CMT200 3 535 - 1,469,317 -1 237 | 0.17 | 10,000 * 10:39:24
GIL262 3 668 -| 16,837,105 -1 325 | 0.09 | 10,000 * 20:37:02

4%

* Complete Pareto front is not available. Complete Pareto front for the problem is published for the first time here.

T Format for problem namesis“ABC#’, where“ABC” isakeyword for problem and “#" indicates the problem size n.

T Hyper volume ratio is the ratio between hyper volume enclosed by Pareto front found by mNSGA Il and hyper volume
enclosed by Pareto optimal front.
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Table 10 Computational results for TSP instances with Type 1 profits.

Hyper Volume of Pareto

Size of Pareto Front Percent GD CPU times
Problem Front
Namet HVRY : NGP MNSGA-
BGP/FGT | mMNSGA-II | BGP/FGT | mNSGA-II Cost | Profit BGP Y

EIL51 51 91 11,428 11,425 | 0.9997 | 0.05 | 0.00 | 1,000 | 00:00:10 | 00:12:05
BERLIN52 52 52 246,976 246,707 | 0.9989 | 0.16 | 0.14 | 1,000 | 00:00:10 | 01:12:52
ST70 70 101 26,445 26,340 | 0.9960 | 0.31 | 0.30 | 1,000 | 00:01:02 | 00:23:06
EIL76 76 128 22,878 22,690 | 0.9918 | 0.45 | 1.66 | 1,000 | 00:00:37 | 00:30:02
PR76 76 78 4,665,108 | 4,627,952 | 0.9920 | 0.38 | 1.23 | 1,000 | 48:42:14 | 00:50:21
RAT99 99 122 60,802 60,081 | 0.9881 | 0.41 | 1.34 | 1,000 | 00:03:53 | 00:23:10
KROB100 100 101 1,213,670 | 1,199,239 | 0.9881 | 045 | 1.61 | 5000 | 00:17:56 | 03:58:50
KROE100 100 100 1,220,850 | 1,215,885 | 0.9959 | 0.35 | 0.31 | 5,000 | 00:13:57 | 03:34:13
RD100 100 105 443,357 440,870 | 0.9944 | 0.30 | 0.78 | 5,000 | 00:06:05 | 02:57:56
EIL101 101 248 36,747 36,503 | 0.9934 | 0.38 | 0.98 | 5,000 | 00:01:30 | 03:49:36
LIN105 105 126 843,792 842,515 | 0.9985| 0.14 | 0.04 | 5,000 | 01:32:39 | 05:58:14
PR107 107 6620 2,275,961 | 2,270,681 | 0.9977| 0.08 | 0.25 | 5,000 | 00:01:14 | 08:03:13
PR124 124 137 3,978,325 | 3,930,137 | 0.9879 | 0.25 | 2.60 | 5,000 | 00:49:51 | 11:17:55
BIER127 127 132 10,617,461 | 10,579,952 | 0.9965 | 0.82 | 3.56 | 5,000 | 00:17:53 | 25:30:42
CH130 130 140 448,458 444017 | 0.9901 | 044 | 151 | 5,000 | 00:11:59 | 07:33:39
PR136 136 562 6,876,821 | 6,860,664 | 0.9977 | 0.30 | 0.08 | 5,000 | 17:56:30 | 06:08:37
PR144 144 161 4,359,979 | 4,324,206 | 0.9918 | 0.42 | 1.16 | 5,000 | 04:51:21 | 10:27:54
CH150 150 168 536,330 527,830 | 0.9842 | 0.56 | 2.45 | 5,000 | 01:01:46 | 06:37:34
KROA150 150 152 2,155,970 | 2,076,616 | 0.9632 | 0.64 | 6.06 | 5000 | 22:30:24 | 07:12:38
KROB150 150 153 2,122,032 | 2,081,561 | 09809 | 0.54 | 3.38 | 5000 | 18:54:50 | 07:36:51

T Format for problem namesis“ABC#’, where “ABC” is akeyword for problem and “#” indicates the problem size n.
T Hyper volume ratio is the ratio between hyper volume enclosed by Pareto front found by mNSGA |1 and hyper volume enclosed by Pareto optimal front.
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Table 11 Computational results for TSP instances with Type 3 profits for which results exist in the literature.

Hyper Volume of Pareto

Problem Size of Pareto Front Eront Percent GD CPU Time
HVR% NGP
Namet MNSGA- .
BGP/FGT Y BGP/FGT | mNSGA-II Cost | Profit BGP MNSGA-I|
EIL51 267 242 539,301 538,304 | 0.9982 | 0.37 | 0.26 | 1,000 | 00:19:56 | 00:07:04
BERLIN52 439 419 7,344,871 | 7,331,620 | 0.9982| 0.09 | 0.38 | 1,000 | 00:21:32 | 00:51:20
ST70 452 454 1,302,221 | 1,276,653 | 0.9804 | 248 | 0.44 | 1,000 | 02:34:18 | 00:16:41
EIL76 383 350 1,165,318 | 1,152,535 | 0.9890 | 1.55 | 0.34 | 1,000 | 01:22:51 | 00:23:34
RD100 1513 1137 21,453,308 | 21,434,376 | 0.9991 | 0.23 | 0.49 | 5,000 | 50:16:00 | 03:24:25
EIL101 499 495 1,869,369 | 1,865,935 | 0.9982 | 0.26 | 0.12 | 5000 | 10:37:.07 | 02:35:17

T Format for problem namesis“ABC#’, where “ABC” is akeyword for problem and “#” indicates the problem size n.
T Hyper volumeratio is the ratio between hyper volume enclosed by Pareto front found by mNSGA 11 and hyper volume enclosed by Pareto optimal front.




Table 12 Results for TSP instances with Type 3 profit for which complete pareto
fronts are given for the first time.

Problem Size of Pareto Front Hyper Percent GD CPU
Namet | BGP/FGT | mNSGA-II pvomme o [ cost | Profit| " | Time
ar eto Front
PR76 1 560 227,374,231 | 0.06 | 0.08 | 1,000 | 00:45:52
RAT99 1 727 3,230,875 | 0.61 | 0.16 | 1,000 | 00:17:06
KROB100 1 862 53,183,779 | 0.05| 054 | 5,000 | 03:29:30
KROE100 1 1124 56,941,724 | 0.04 | 0.00 | 5,000 | 02:46:37
LIN105 1 916 38,784,808 | 0.28 | 0.80 | 5,000 | 05:03:05
PR107 1 1162 115,318,278 | 0.41 | 0.89 5,000 | 05:48:02
PR124 1 822 204,782,671 | 0.18 | 0.95 | 5000 | 04:39:23
BIER127 1 1104 252,861,992 | 0.02 | 0.18 | 5,000 | 10:19:27
CH130 1 903 22,785,953 | 0.00 | 0.00 | 5,000 | 05:03:51
PR136 1 1007 384,209,556 | 0.02 | 0.32 | 5,000 | 06:39:20
PR144 1 972 216,310,640 | 0.16 | 1.30 | 5,000 | 12:03:28
CH150 1 1080 28,269,844 | 0.00 | 0.00 | 5,000 | 06:31:31
KROA150 1 843 117,424,746 | 0.02 | 0.13 | 5,000 | 04:50:54
KROB150 1 942 121,774,833 | 0.14 | 0.80 | 5,000 | 06:04:51
PR152 1 1034 293,545,081 | 0.00 | 0.03 | 5,000 | 57:12:27
U159 1 846 191,262,327 | 0.02 | 0.15 | 5,000 | 04:48:02
RAT195 1 714 12,454,180 | 1.66 | 0.01 5,000 | 03:37:14
D198 1 682 83,462,482 | 0.48 | 0.74 | 5,000 | 25:34:12
KROA?200 1 1012 159,004,259 | 0.02 | 1.18 | 10,000 | 22:33:44
TS225 1 751 817,585,504 | 0.07 | 1.86 | 10,000 | 07:58:30
PR264 1 827 336,548,607 | 0.70 | 2.97 | 10,000 | 33:42:34
LIN318 1 682 360,287,518 | 0.65 | 1.79 | 10,000 | 36:48:34
RD400 1 751 160,862,912 | 2.75 | 1.72 | 10,000 | 37:33:31

T Format for problem namesis“ABC#’, where “ABC” is akeyword for problem and “#" indicates the

problem size n.
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instances. In Table 11, we observe that HVR values are 0.98 for 2 out of 6 problems,
for which complete Pareto-fronts are available, and 0.99 for the remaining 4 problem

instances. For all other problem instances we will use Percent GD as comparison tool.

From Table 9 we observe that Percent GD in both objectives for the problems
including less than 200 cities is smaller than 1%. It is 2% for a 200-city problem and
3% for a 262-city problem. Considering Table 10, Percent GD is less than 0.5% for
most of the problems in the cost objective. However, we a so observe values up to 6%
in the profit objective. The reason for such a dightly larger deviation in profit
objective will become clearer after investigating Table 9. However, we can conclude
that results of MNSGA-II are very close to the Pareto-optimal front. In Tables 11 and
12, we observe that Percent GD in cost objective is below 1% except for two
problems. For these two problems it is 1% and 2%. In profit objective we observe
that PGD is below 1% up to problem sizes of 200 cities and below 2% up to problem
sizes of 400 cities. Thus for these problems, MNSGA-II generate good
approximations to Pareto-optimal front. If we reconsider 6% deviation in profit
objective for TSP instances with Type 1 profits in Table 10 together with results
presented in Tables 11 and 12, the deviation is most probably due to range of profit
objective. Because that in Type 1 profits al cities, except depot, have a profit value of
1, even missing 1 or 2 points on Pareto-optimal front causes large deviations. This
argument is also enhanced with results found for TSP instances with Type 3 profits,

where range of profit objective is moderately larger.

We have seen that MNSGA-II performs well in finding near-optimal results for all
problems considered. Now, we would like to compare our computation times with the
ones reported by BGP. We observe from Tables 9 and 10 that for small problem sizes
their algorithm is better than mMNSGA-II in genera. However, for some small
problems and for large problem sizes their runtimes are much larger than runtimes of
MNSGA-II. For instance, the CPU time reported by BGP for PR76 in Table 10 is 10

times of CPU time of mMNSGA-IlI. The same situation is observed for some small
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problems in Tables 9 and 10. Another observation is that as problem size gets larger,
CPU times of BGP increases more rapidly than that of mMNSGA-I1. Figure 10 shows
pareto front for PR76 instance with Type 1 profits. One solution provided by FGT is
used in figure since BGP report that they could not fount complete pareto front in 72
hours of time limit. We have aso included extreme solutions although FGT do not
report. Asit can be seen from Figure 10, approximation of mMNSGA-I1 isvery close to
optimal. Figures 11 and 12 show pareto fronts for two other problem instances:
CH150 with Type 1 profits and TS225 with Type 3 profits. Again approximations of
MNSGA-II are very good.

If we consider Tables 11 and 12, CPU times for mMNSGA-I1I are much better than CPU
times of BGP. Except for one small problem, BERLINS2, in all cases CPU times for
MNSGA-II are much shorter than that of BGP. In fact, BGP reports that their
algorithm is very dependent on profit structure of the problem instances and that they
are unable to solve most of problem instances with type 3 profits in atime limit of 72
hours, for problems reported in Table 12. On the other hand, since MNSGA-II is a
search heuristic, we observe from Tables 10, 11, and 12 that it generates similar
results for all profit structures. Such a robustness property of MNSGA-I11 is one of the
most important features of our proposed algorithm. We observe from Table 12 that
RAT99 could not be solved in 72 hours by BGP, whereas, mMNSGA-II finds a result
very close to optimal pareto front in 17 minutes. Runtimes of MNSGA-I1I is below 38
hours for the largest problem solved, which indicates a logarithmic-like attitude in
terms of runtime of the algorithm. Hence, we believe that mMNSGA-II is a very

powerful heuristic especially for large sized problems, where exact algorithms fail.

From Tables 9, 10, 11, and 12, we conclude that MNSGA-II is able to find Pareto
fronts very close to Pareto-optimal fronts. We also observe a trend in results we have
found. We observe that as problem size increases deviation from Pareto-optimal front
also increases. The deviation seems to increase in a slow fashion when number of

generations performed isincreased as we previoudly stated. This result is expected
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Figure 10 Pareto front generated by mNSGA-II and solutions provided by FGT for PR76 with Type 3 profits.
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because as problem size increases in TSPP, the search space for MNSGA-11 increases
exponentially. Hence, either population size or number of generations performed

should be increased in order to partially avoid this drawback.
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CHAPTER 5

A FRAMEWORK FOR POST-OPTIMALITY ANALY SIS OF
PARETO FRONT

After finding Pareto front for the problem, DM has to choose one of these
nondominated solutions. The aim of this chapter is to support this decision making
process and guide the DM by extracting supportive information from found Pareto
front and corresponding decision space vectors (i.e., efficient solution vectors). In this
chapter we demonstrate post-optimality analysis performed by a data mining
software, SPSS Clementine, on the Pareto front found for the VRP instance EIL 33 by
MNSGA-II.

Which cities have the largest marginal effect on pareto front?

The first analysis we make is to find cities with largest marginal effect on objectives.
We start with inputting the Pareto front to the software. It contains subset of cities
visited, cost, and profit values for each efficient solution. Pareto front for EIL33 is
given in Appendix C. After feeding data into program, we choose one of the
objectives that analysis will be conducted for. The subset of cities for each solution
(decision space vector) is examined and the cities with highest marginal effect on
chosen objective are reported. Results for the test instance EIL33 are shown in Figure
13. For instance, considering cost objective, the average cost is 203 for solutions
excluding city 28 while it is 355 units for solutions including city 28. Average cost is
163 units for solutions excluding both cities 28 and 27. The process is shown also for
profit objective. For this example we limited the depth of tree to 5 levels, however,
the software can provide a depth where average of the considered objective hits to its

minimum.



In fact, entire processis similar to conducting a sensitivity analysisin the LP (Linear
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Figure 13 Post-optimality analysis for VRP instance EIL33.



Programming). Here, the DM can clearly observe cities with drastic marginal effects
on the considered objective, and can focus on specific regions of the Pareto front

generated within afew steps by including or excluding some of these cities.

How are cities distributed on pareto front?

We are also able to find the range and concentration in each objective for each city.
For example, Figure 14 shows histograms cities 6 and 17. X-coordinate shows values
for considered objective and y-coordinate shows frequency of occurrence of
considered city for each level of considered objective.

It is clearly observed that city 6 isincluded in various parts of Pareto front and has a
large range of aobjective values. This means that city 6 is included both in short and
long tours on Pareto front. However, city 17 is included only in long tours where
large costs are accepted for larger profits. We can conclude that city 17 is far away
from depot city and the only reason for including this city in a tour is the desire for
larger profits. It is aso reasonable to point out that there is nothing more to be
decided for city 6, because city 6 is already included most of the tours. However, this

is not the case for city 17.

Figure 15 shows another point of view for discussion on distribution of a city over
Pareto front. It shows range of pareto front and the number of solutions including
cities 6 and 7 and number of solutions excluding cities 6 and 7. In histograms, cities
are considered independently, that is we do not mean solutions where both cities are
included. Blue (red) colored bars show the number of solutions where the
predetermined city is excluded (included).

How isa pair of citiesdistributed on pareto front?
We are also able to investigate the Pareto front considering both cities together.
Figure 16 shows frequency diagrams considering both city 6 and city 7. In Figure 16,

blue colored bars of graphic on the top left corner show the number and dispersion of
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solutions excluding both cities 6 and 17 in cost objective. Red colored bars of this
graphic shows solutions excluding city 17 and including city 6. On the other hand,
blue colored bars of graphic on the top right corner show solutions including city 17
and excluding 6. Red colored bars of this graphic shows distribution of solutions
including both cities 6 and 17 in cost objective. Two graphics on the bottom of Figure

16 show similar results in profit objective.

How are cities correlated based on their usage on pareto front?

The last result we want to demonstrate is an overal graph showing correlation
between cities considering Pareto front. To assist this aim, Clementine can generate a
network of relationship intensity between a set of cities. As an example analysis, we
consider cities 5, 6, 13, 17, and 31. Figure 17 shows co-occurrence frequency webfor
considered 5 cities. Note that there is no limit on the number of cities that can be
considered. In Figure 17, for each city considered there are two nodes on the web.
The “0.000000” node represents the case for solutions excluding considered city and
“1. 000000" node represents the case for solutions including considered city. The arc
between two nodes on this net shows the co-occurrence of these two cases. Bold arcs
represent the “strong” relationship between two cases, thin arcs represent “medium”
relationship, and dashed arcs represents “weak” relationship between two cases. This
classification is based on the percentage of solutions where considered two cases co-
occur. Then, aDM can read from Figure 17 that the relationship type where both city
17 and city 6 are excluded from solutions on Pareto front is a strong one. Also one
can conclude that relationship is always weak between the case that city 5 is included
in the solutions and all other cases. That is, city 5 is most of the time excluded from
tours. The same situation is valid for the case where city 17 is included in the
solutions. Hence we can conclude that also city 17 is rarely included in tours. It is
shown with a strong relationship on the co-occurrence frequency web for the links

connecting the case where city 17 is excluded from solutions and all other cases.
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Figure 18 Overall percentage of co-occurence frequencies for pair of cities.

Moreover, this situation can be clearly observed in Figures 14 and 15 where we
provide histograms for frequency of solutions including city 17. Figure 18 shows
percentages of co-occurrences for both links that are shown and not shown in Figure
17. In Figure 18 we observe that 7.83% of solutions on Pareto front exclude both
cities 17 and 5. Percentage of nondominated solutions that exclude city 17 and
include city 31 is 7.7. On the other hand, the weakest link is the case where city 5 is
included and city 31 is excluded from the tours constructed with a frequency of
0.12%. A DM can use these results for making robust decisions. For instance, strong
links point out cities that are included or excluded in most of tours, hence these cities
could be removed from or included into tours only in major distortions of considered
scenarios. The Clementine models used to generate results in this chapter are
summarized in Appendix D.

We believe that data mining can be a powerful tool for multiobjective decision
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making where preferences of a decision maker or decision makers are imprecise,
conflicting, and very difficult to obtain and incorporate into developed algorithms.
Post-optimality analysis that can be performed on the set of nondominated solutions
by the help of adata mining software like SPSS Clementine can demonstrate the links
from decision space into objective space and provide a better understanding of the
problem under consideration. With a better understanding of the problem and
guidelines provided, a DM could easily select his’her most preferred solution from
the set of nondominated solutions generated with mNSGA-II.
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CHAPTER 6

CONCLUSION

TSPP is a well-known hard multiobjective optimization problem. Hence, methods
that can tackle the multiobjective nature of the problem effectively are compulsory.
However, most of the algorithms proposed in literature reduce the problem to a single
objective problem through scalarization of objectives. Few studies deal with TSPP
using a multiobjective approach, however, these studies lack to effectively deal with

problem.

In this study we review a well-known Multiobjective Genetic Algorithm, NSGA-II,
for TSPP and propose several improvements on this algorithm, which we call
MNSGA-II after the implementation of proposed improvements. We use Lin-
Kernighan Heuristic provided with CONCORDE TSP solver to solve TSP instances
generated during execution of MNSGA-11. We generate approximate Pareto fronts for
61 test problems in the TSP and VRP literature. The problem size for test problems
varies between 22 and 400 cities.

Comparison with existing results in the literature proves that the pareto fronts
generated by mNSGA-II agorithm are very close to Pareto-optimal fronts for
problems including less than 150 cities and shows at most 2% deviation from Pareto-
optimal front for larger problem sizes, except for a few test problems. We observe
that computation time for our algorithm does not increase as rapid as computation
times of other algorithms provided in the literature (e.g., algorithm of Fischetti et al.,
1998, and algorithm of Berube et a., 2008). MNSGA-II is able to solve our largest
test problem instance, the problem with 400 cities, in 38 hours, whereas the best

known agorithm in literature for TSPP is unable to solve problems including more
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than 150 cities in atime limit of 72 hours.

Another strength of mMNSGA-I1 is that its computational performance is independent
from profit structure of test problems, based on results we have obtained for test
problems we have considered. Berube et a. (2008) report that their agorithm is
unable to solve problems with more than 100 cities in a time limit of 72 hours for a
specific type of profit. For instance, for this specific profit structure our algorithm
solves PR76 test problem which includes 76 cities in 50 minutes, whereas Berube et
al. (2008) report 48 hours of CPU time. We solve the RD400 TSP instance which

includes 400 cities in 38 hours using the same profit structure.

We also provide a data mining based approach for post-optimality analysis of
generated pareto fronts. By conducting an analysis on decision space properties of a
generated pareto front, DM is enabled to observe which cities are included in which
parts of pareto front and the relationship among a given set of cities. We believe that
this information is helpful to a DM for making a selection among the generated
pareto front.

In conclusion, proposed algorithm, mNSGA-I1, is shown to be a robust and effective
heuristic for TSPP. Furthermore, a post-optimality analysis framework is described in
this study. As future research directions, one could try to observe performance of
proposed heuristic for larger problem sizes and study the proposed framework for

post-optimality in a more detailed extent.
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APPENDIX A

THE PSEUDO CODE FOR NSGA-I|

Define:

- P(i) : parent population in i™ generation (of size popsize).

- (i) : child population in i" generation (of size popsize).

- M(i) : mixed population in i generation (of size 2* popsize).
Initialize

- Randomly genarate P(1) (always include depot city and extreme solutions)
- Evaluate P(1)
0 Assign cost using CONCORDE
0 Assign profit
- Assign crowding distance and rank
0 Assignrank
0 Assign crowding distance
= Assigninfinity to extremes in the population
= For solution j (wherej is not an extreme solution)
e Crow.dist(j) =

difference of two neig hboring solutions in objective i
difference of the extreme solutions in objective i

Yobj (i)

number of objectives

- Return P(1) as P(2)

For (i=2; i<=generation number limit ; i++)
- Selection
0 Randomize P(i) and copy to POOL_1
0 Randomize P(i) and copy to POOL_2
o For (j=0;j<popsize; j=j+4)
=  Chooseindivdual(j) and indivdual (j+1) from POOL _1
e Tournament select parent 1 from indivdual(j) and
indivdual (j+1)
o If indivdual(j) dominates indivdual (j+1)
* Returnindivdual(j)
o If indivdual(j+1) dominates indivdual (j)
* Returnindividual (j+1)
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o If they are nondominated
= |f crowding_distance(j) >
crowding_distance(j+1)
e Returnindividual(j)
= |f crowding_distance(j) <
crowding_distance(j+1)
e Returnindividual(j+1)
= |f crowding_distance(j) =
crowding_distance(j+1)
e Randomly select one of the
individuals
= Chooseindivdual(j+2) and indivdual (j+3) from POOL 1
e Tournament select parent 2 from indivdual (j+2) and
indivdual (j+3)
= Chooseindivdual(j) and indivdual (j+1) from POOL_2
e Tournament select parent 3 from indivdual (j) and
indivdual (j+1)
= Choose indivdual(j+2) and indivdual (j+3) from POOL_2
e Tournament select parent 4 from indivdual (j+2) and
indivdual (j+3)
= Perform crossover
e For parent 1 and parent 2
0 With crossover_probability crosstwo
parents
= Perform two-point binary crossover
e Return two childs
o Otherwise return two parents as child
e For parent 3 and parent 4
0 With crossover_probability crosstwo
parents
o Otherwise return two parents as child
0 Return child population C(i)
Mutation (bitwise mutation)
o For al childeren
= For al genes
e Mutate gene with probability mutation_probability
o If gene=1, then gene=0
0 Elsegene=1
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0 Return mutated C(i)
Evaluate child population C(i)
Merge P(i) and C(i) into mixed population M (i)
0 Create amixed population of size 2*popsize
= Copy P(i) and C(i) into M(i)
*=  Return M(i)
Fill Nondominated sort
o Divide M(i) into fronts
= Assignrank 1 to thefirst front
= Assignrank 2 to the second front, and so on.
o0 Create atemporary population TEMP of size popsize
= |fsize of first front <= popsize
e Copy individuasin first front into TEMP
e |If size of second_front <= (popsize - first_front)
o Copy individualsin second front into TEMP
o If size of third_front <= (popsize —
(first+second fronts))

e Assign crowding distanceto TEMP

= |f size of first_front > popsize
e Assign crowding distance to the first front
o Fill TEMPin non increasing order of
crowding distance
0 Return TEMPasP(i+1)
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APPENDIX B

THE PSEUDO CODE FOR mNSGA-I|

Define:
- P(i,j) : j"™ parent population in i generation (of size popsize).
- C(i,j) : j" child population in i generation (of size popsize).
- M(i,) : j" mixed population in i™ generation (of size 2* popsize).
- EL(i) : First external population in generation i, Elite Pop 1, (of size
infinity).
- E2(i) : Second external population in generation i, Elite Pop 2, (of size
infinity).
Initialize
- Randomly genarate P(1,1)
- Evauate P(1,1)

0 Assign cost using CONCORDE
0 Assign profit
- Assign crowding distance and rank
0 Assignrank
0 Assign crowding distance
= Assigninfinity to extremesin the population
= For solutionj (wherej isnot an extreme solution)
e Crowdist(j) =

difference of two neig hboring solutions in objective i
difference of the extreme solutions in objective i

Yobj (i)

number of objectives
- E1(1)=NULL
- P(Z,l):P(l,l)

For (i=2; i<=generation number limit ; i++)
- SELECTION
o0 Randomize P(i) and copy to POOL_1
o Randomize P(i) and copy to POOL_2
o For (j=0;j<popsize;j=j+4)
= Chooseindivdual(j) and indivdual (j+1) from POOL _1
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e Tournament select parent 1 from indivdual (j) and
indivdual (j+1)
o If indivdual(j) dominates indivdual (j+1)
= Returnindivdual(j)
o If indivdual(j+1) dominates indivdual(j)
= Returnindividual(j+1)
o If they are nondominated
= If crowding_distance(j) >
crowding_distance(j+1)
e Returnindividual(j)
= If crowding_distance(j) <
crowding_distance(j+1)
e Returnindividual(j+1)
= If crowding_distance(j) =
crowding_distance(j+1)
e Randomly select one of the
individuals
= Choose indivdual(j+2) and indivdual (j+3) from POOL _1
e Tournament select parent 2 from indivdual (j+2) and
indivdual (j+3)
=  Chooseindivdual(j) and indivdual (j+1) from POOL_2
e Tournament select parent 3 from indivdual (j) and
indivdual (j+1)
= Choose indivdual(j+2) and indivdual (j+3) from POOL_2
e Tournament select parent 4 from indivdual (j+2) and
indivdual (j+3)
= Perform crossover
e For parent 1 and parent 2
0 With crossover_probability cross two
parents
=  Perform two-point binary crossover
e Return two childs
0 Otherwise return two parents as child
e For parent 3 and parent 4
0 With crossover_probability crosstwo
parents
o0 Otherwise return two parents as child
0 Return child population C(i)
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Mutation (bitwise mutation)
o For al childeren
= For al genes
e Mutate gene with probability mutation_probability
o If gene=1, then gene=0
0 Elsegene=1
0 Return mutated C(i)
Evaluate child population C(i,1)
Merge P(i,1) and C(i,1) into mixed population M (i,1)
0 Create amixed population of size 2* popsize
=  Copy P(i,1) and C(i,1) into M(i,1)
»  Return M(i,1)
Fill Nondominated sort
o Divide M(i,1) into fronts
= Assignrank 1 to thefirst front
= Assignrank 2 to the second front, and so on.
0 Create atemporary population TEMP of size popsize
= |f size of first front <= popsize
e Copy individuasin first front into TEMP
e |If size of second_front <= (popsize - first_front)
o Copy individualsin second front into TEMP
o If size of third_front <= (popsize —
(first+second fronts))

e Assign crowding distanceto TEMP

= |fsize of first front > popsize
e Assign crowding distance to the first front
o Fill TEMPin non increasing order of
crowding distance
0 Return TEMPasP(i,2)
0 Copy dl rank 1 individualsin M(i,1) but not in P(i,2) into E2(i)
o0 Return P(i,2)
Use wasteindividuals
o While E1(i-1) is not empty; Copy j" popsize individualsin E1(i-1)

into C(i,j+1)
= MergeP(i,j+1) and C(i,j+1) into mixed population
M(i,j+1)

=  Fjll Nondominated sort
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e Fill nondominated sort P(i,j+2)
e Appendal rank 1 individualsin M(i,j+1) but not in
P(i,j+2) into E2(i)
= Setjs+l

Finalize
o Copy E2(i) into E1(i)
0 Return E1(i)
0 Return P(i,j+1) asP(i+1,1)
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Table 13 Pareto front generated for EIL33.

COST | PROFIT VISITED CITIES
0 0|1
69 400 | 1-4
97 1.200 | 1-5
114 1.600 | 1-4-5
116 2500 | 1-31
131 2900 | 1-4-31
133 4.200 | 1-31-32
137 4.420 | 1-3-4-6-7-8-12
138 4570 | 1-3-4-6-7-8-12-13
139 5.520 | 1-3-4-6-7-8-12-33
140 5.670 | 1-3-4-6-7-8-12-13-33
142 6.420 | 1-3-4-6-7-8-9-12-33
143 7.020 | 1-3-4-6-7-8-9-10-12-33
144 7.170 | 1-3-4-6-7-8-9-10-12-13-33
149 7.770 | 1-3-4-6-7-8-9-10-11-12-33
150 7.920 | 1-3-4-6-7-8-9-10-11-12-13-33
164 8.320 | 1-4-6-7-8-9-10-12-32-33
167 8.680 | 1-3-4-7-8-9-10-12-32-33
168 8.870 | 1-3-4-6-7-8-9-10-12-13-32-33
169 9.020 | 1-2-4-6-7-8-9-10-12-32-33
170 9.270 | 1-2-4-6-7-8-9-10-12-14-32-33
171 9.320 | 1-4-6-7-8-12-31-32-33
172 9.380 | 1-2-3-4-7-8-9-10-12-32-33
173 9.570 | 1-2-3-4-6-7-8-9-10-12-13-32-33
174 10.220 | 1-4-6-7-8-9-12-31-32-33
175 10.820 | 1-4-6-7-8-9-10-12-31-32-33
178 11.180 | 1-3-4-7-8-9-10-12-31-32-33
179 11.370 | 1-3-4-6-7-8-9-10-12-13-31-32-33
180 11.520 | 1-2-4-6-7-8-9-10-12-31-32-33
181 11.770 | 1-2-4-6-7-8-9-10-12-14-31-32-33
183 11.880 | 1-2-3-4-7-8-9-10-12-31-32-33
184 12.130 | 1-2-3-4-7-8-9-10-12-14-31-32-33
185 12.320 | 1-2-3-4-6-7-8-9-10-12-13-14-31-32-33
187 12.520 | 1-2-4-6-7-8-9-10-11-12-14-31-32-33
189 12.630 | 1-2-3-4-7-8-9-10-11-12-31-32-33
190 13.120 | 1-2-4-6-7-8-9-10-12-15-31-32-33
191 13.370 | 1-2-4-6-7-8-9-10-12-14-15-31-32-33
193 13.480 | 1-2-3-4-7-8-9-10-12-15-31-32-33
194 13.730 | 1-2-3-4-7-8-9-10-12-14-15-31-32-33
195 13.920 | 1-2-3-4-6-7-8-9-10-12-13-14-15-31-32-33
197 14.120 | 1-2-4-6-7-8-9-10-11-12-14-15-31-32-33
199 14.230 | 1-2-3-4-7-8-9-10-11-12-15-31-32-33
200 14.480 | 1-2-3-4-7-8-9-10-11-12-14-15-31-32-33
201 14.670 | 1-2-3-4-6-7-8-9-10-11-12-13-14-15-31-32-33
204 14.680 | 1-2-3-4-7-8-9-10-11-12-15-16-31-32-33
205 14.930 | 1-2-3-4-7-8-9-10-11-12-14-15-16-31-32-33
206 15.120 | 1-2-3-4-6-7-8-9-10-11-12-13-14-15-16-31-32-33
215 15.420 | 1-2-4-6-7-8-9-10-12-15-27-31-33
216 15.670 | 1-2-4-6-7-8-9-10-12-14-15-27-31-33
218 15.780 | 1-2-3-4-7-8-9-10-12-15-27-31-33
219 16.030 | 1-2-3-4-7-8-9-10-12-14-15-27-31-33
220 16.220 | 1-2-3-4-6-7-8-9-10-12-13-14-15-27-31-33
222 16.420 | 1-2-4-6-7-8-9-10-11-12-14-15-27-31-33
223 16.520 | 1-2-4-6-7-8-9-12-15-27-31-32-33
224 17.120 | 1-2-4-6-7-8-9-10-12-15-27-31-32-33
225 17.370 | 1-2-4-6-7-8-9-10-12-14-15-27-31-32-33
227 17.570 | 1-2-4-6-7-8-9-10-12-15-16-27-31-32-33
228 17.820 | 1-2-4-6-7-8-9-10-12-14-15-16-27-31-32-33
229 17.920 | 1-2-3-4-6-7-8-9-10-12-13-14-15-27-31-32-33
230 17.930 | 1-2-3-4-7-8-9-10-12-15-16-27-31-32-33
231 18.180 | 1-2-3-4-7-8-9-10-12-14-15-16-27-31-32-33
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Table 14 Cont' d.

COST | PROFIT VISITED CITIES
232 18.370 | 1-2-3-4-6-7-8-9-10-12-13-14-15-16-27-31-32-33
234 18.620 | 1-4-6-7-8-9-10-12-14-15-18-26-27-31-32-33
235 18.670 | 1-2-3-4-6-7-8-9-10-11-12-13-14-15-27-31-32-33
236 19.070 | 1-4-6-7-8-9-10-12-14-15-16-18-26-27-31-32-33
238 19.520 | 1-2-4-6-7-8-9-10-12-15-16-18-26-27-31-32-33
239 19.770 | 1-2-4-6-7-8-9-10-12-14-15-16-18-26-27-31-32-33
241 19.880 | 1-2-3-4-7-8-9-10-12-15-16-18-26-27-31-32-33
242 20.130 | 1-2-3-4-7-8-9-10-12-14-15-16-18-26-27-31-32-33
243 20.320 | 1-2-3-4-6-7-8-9-10-12-13-14-15-16-18-26-27-31-32-33
245 20.520 | 1-2-4-6-7-8-9-10-11-12-14-15-16-18-26-27-31-32-33
247 20.630 | 1-2-3-4-7-8-9-10-11-12-15-16-18-26-27-31-32-33
248 20.880 | 1-2-3-4-7-8-9-10-11-12-14-15-16-18-26-27-31-32-33
249 21.070 | 1-2-3-4-6-7-8-9-10-11-12-13-14-15-16-18-26-27-31-32-33
253 21.080 | 1-2-3-4-7-8-9-10-11-12-13-15-16-19-20-26-27-31-32-33
255 21.180 | 1-2-3-4-7-8-9-10-11-12-13-15-18-19-20-26-27-31-32-33
257 21.480 | 1-2-3-4-7-8-9-10-11-12-15-16-18-19-20-26-27-31-32-33
258 21.630 | 1-2-3-4-7-8-9-10-11-12-13-15-16-18-19-20-26-27-31-32-33
260 21.670 | 1-2-3-4-6-7-8-9-10-11-12-13-14-15-16-18-26-27-28-31-32-33
261 21.680 | 1-3-4-7-8-9-10-11-12-13-15-16-19-20-23-26-27-31-32-33
262 21.780 | 1-2-3-4-7-8-9-10-11-12-15-19-20-23-26-27-31-32-33
263 21.930 | 1-2-3-4-7-8-9-10-11-12-13-15-19-20-23-26-27-31-32-33
265 22.080 | 1-3-4-7-8-9-10-11-12-15-16-18-19-20-23-26-27-31-32-33
266 22.230 | 1-2-3-4-7-8-9-10-11-12-15-16-19-20-23-26-27-31-32-33
266 22.230 | 1-3-4-7-8-9-10-11-12-13-15-16-18-19-20-23-26-27-31-32-33
267 22.380 | 1-2-3-4-7-8-9-10-11-12-13-15-16-19-20-23-26-27-31-32-33
271 22.780 | 1-2-3-4-7-8-9-10-11-12-15-16-18-19-20-23-26-27-31-32-33
272 22.930 | 1-2-3-4-7-8-9-10-11-12-13-15-16-18-19-20-23-26-27-31-32-33
276 22,970 | 1-2-3-4-6-7-8-9-10-11-12-13-15-16-18-19-20-23-26-27-31-32-33
278 23.080 | 1-2-3-4-7-8-9-10-11-12-15-16-18-19-20-22-23-26-27-31-32-33
279 23.230 | 1-2-3-4-7-8-9-10-11-12-13-15-16-18-19-20-22-23-26-27-31-32-33
282 23.380 | 1-2-3-4-7-8-9-10-11-12-15-16-18-19-20-23-26-27-28-31-32-33
283 23.530 | 1-2-3-4-7-8-9-10-11-12-13-15-16-18-19-20-23-26-27-28-31-32-33
286 23.630 | 1-2-3-4-7-8-9-10-11-12-13-15-16-18-19-20-21-22-23-26-27-31-32-33
289 23.680 | 1-3-4-7-8-9-10-11-12-15-16-18-19-20-23-26-27-28-29-31-32-33
289 23.680 | 1-2-3-4-7-8-9-10-11-12-15-16-18-19-20-22-23-26-27-28-31-32-33
289 23.680 | 1-2-3-4-7-8-9-10-11-12-13-15-16-18-19-20-23-25-26-27-31-32-33
290 23.830 | 1-3-4-7-8-9-10-11-12-13-15-16-18-19-20-23-26-27-28-29-31-32-33
290 23.830 | 1-2-3-4-7-8-9-10-11-12-15-16-19-20-23-26-27-28-29-31-32-33
290 23.830 | 1-2-3-4-7-8-9-10-11-12-13-15-16-18-19-20-22-23-26-27-28-31-32-33
291 23.980 | 1-2-3-4-7-8-9-10-11-12-13-15-16-19-20-23-26-27-28-29-31-32-33
295 24.380 | 1-2-3-4-7-8-9-10-11-12-15-16-18-19-20-23-26-27-28-29-31-32-33
296 24.530 | 1-2-3-4-7-8-9-10-11-12-13-15-16-18-19-20-23-26-27-28-29-31-32-33
300 24.570 | 1-2-3-4-6-7-8-9-10-11-12-13-15-16-18-19-20-23-26-27-28-29-31-32-33
302 24.680 | 1-2-3-4-7-8-9-10-11-12-15-16-18-19-20-22-23-26-27-28-29-31-32-33
303 24.830 | 1-2-3-4-7-8-9-10-11-12-13-15-16-18-19-20-22-23-26-27-28-29-31-32-33
307 24.870 | 1-2-3-4-6-7-8-9-10-11-12-13-15-16-18-19-20-22-23-26-27-28-29-31-32-33
308 24.980 | 1-2-3-4-7-8-9-10-11-12-13-15-16-18-19-20-23-24-25-26-27-28-31-32-33
309 25.080 | 1-2-3-4-7-8-9-10-11-12-15-16-18-19-20-21-22-23-26-27-28-29-31-32-33
310 25.230 | 1-2-3-4-7-8-9-10-11-12-13-15-16-18-19-20-21-22-23-26-27-28-29-31-32-33
311 25.280 | 1-2-3-4-7-8-9-10-11-12-13-15-16-18-19-20-23-25-26-27-28-29-31-32-33
315 25.380 | 1-2-3-4-7-8-9-10-11-12-13-15-16-18-19-20-21-23-24-25-26-27-28-31-32-33
317 25.430 | 1-2-3-4-7-8-9-10-11-12-15-16-18-19-20-22-23-25-26-27-28-29-31-32-33
318 25.580 | 1-2-3-4-7-8-9-10-11-12-13-15-16-18-19-20-22-23-25-26-27-28-29-31-32-33
320 25.830 | 1-2-3-4-7-8-9-10-11-12-15-16-18-19-20-23-24-25-26-27-28-29-31-32-33
321 25.980 | 1-2-3-4-7-8-9-10-11-12-13-15-16-18-19-20-23-24-25-26-27-28-29-31-32-33
325 26.020 | 1-2-3-4-6-7-8-9-10-11-12-13-15-16-18-19-20-23-24-25-26-27-28-29-31-32-33
327 26.230 | 1-2-3-4-7-8-9-10-11-12-15-16-18-19-20-21-23-24-25-26-27-28-29-31-32-33
328 26.380 | 1-2-3-4-7-8-9-10-11-12-13-15-16-18-19-20-21-23-24-25-26-27-28-29-31-32-33
332 26.420 | 1-2-3-4-6-7-8-9-10-11-12-13-15-16-18-19-20-21-23-24-25-26-27-28-29-31-32-33
334 26.530 | 1-2-3-4-7-8-9-10-11-12-15-16-18-19-20-21-22-23-24-25-26-27-28-29-31-32-33
335 26.680 | 1-2-3-4-7-8-9-10-11-12-13-15-16-18-19-20-21-22-23-24-25-26-27-28-29-31-32-33
339 26.720 | 1-2-3-4-6-7-8-9-10-11-12-13-15-16-18-19-20-21-22-23-24-25-26-27-28-29-31-32-33
345 26.780 | 1-2-3-4-7-8-9-10-11-12-14-15-16-18-19-20-21-22-23-24-25-26-27-28-29-31-32-33

78




Table 15 Cont' d.

COST | PROFIT VISITED CITIES
346 26.930 | 1-2-3-4-7-8-9-10-11-12-13-14-15-16-18-19-20-21-22-23-24-25-26-27-28-29-31-32-33
350 26.970 | 1-2-3-4-6-7-8-9-10-11-12-13-14-15-16-18-19-20-21-22-23-24-25-26-27-28-29-31-32-33
356 27.080 | 1-2-3-4-7-8-9-10-11-12-13-15-16-17-18-19-20-21-23-24-25-26-27-28-29-31-32-33
358 27.180 | 1-2-3-4-7-8-9-10-11-12-13-15-16-18-19-20-21-22-23-24-25-26-27-28-29-30-31-32-33
362 27.230 | 1-2-3-4-7-8-9-10-11-12-15-16-17-18-19-20-21-22-23-24-25-26-27-28-29-31-32-33
363 27.380 | 1-2-3-4-7-8-9-10-11-12-13-15-16-17-18-19-20-21-22-23-24-25-26-27-28-29-31-32-33
366 27470 | 1-2-3-4-6-7-8-9-10-11-12-13-14-15-16-18-19-20-21-22-23-24-25-26-27-28-29-30-31-32-33
370 27.480 | 1-2-3-5-7-8-9-10-11-12-13-15-16-18-19-20-21-22-23-24-25-26-27-28-29-31-32-33
373 27.580 | 1-2-3-4-5-7-8-9-10-11-12-13-15-16-18-19-20-21-23-24-25-26-27-28-29-31-32-33
374 27.630 | 1-2-3-4-7-8-9-10-11-12-13-14-15-16-17-18-19-20-21-22-23-24-25-26-27-28-29-31-32-33
378 27.670 | 1-2-3-4-6-7-8-9-10-11-12-13-14-15-16-17-18-19-20-21-22-23-24-25-26-27-28-29-31-32-33
379 27.730 | 1-2-3-4-5-7-8-9-10-11-12-15-16-18-19-20-21-22-23-24-25-26-27-28-29-31-32-33
380 27.880 | 1-2-3-4-5-7-8-9-10-11-12-13-15-16-18-19-20-21-22-23-24-25-26-27-28-29-31-32-33
384 27.920 | 1-2-3-4-5-6-7-8-9-10-11-12-13-15-16-18-19-20-21-22-23-24-25-26-27-28-29-31-32-33
390 27.980 | 1-2-3-4-5-7-8-9-10-11-12-14-15-16-18-19-20-21-22-23-24-25-26-27-28-29-31-32-33
391 28.130 | 1-2-3-4-5-7-8-9-10-11-12-13-14-15-16-18-19-20-21-22-23-24-25-26-27-28-29-31-32-33
395 28.180 | 1-2-3-4-5-7-8-9-10-11-12-14-15-16-18-19-20-21-23-24-25-26-27-28-29-30-31-32-33
396 28.220 | 1-2-3-4-5-6-7-8-9-10-11-12-14-15-16-18-19-20-21-23-24-25-26-27-28-29-30-31-32-33
398 28.230 | 1-2-3-4-5-7-8-9-10-11-12-13-14-15-16-18-19-20-22-23-24-25-26-27-28-29-30-31-32-33
399 28.270 | 1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-18-19-20-22-23-24-25-26-27-28-29-30-31-32-33
400 28.400 | 1-2-3-4-5-8-9-10-11-12-14-15-16-18-19-20-21-22-23-24-25-26-27-28-29-30-31-32-33
401 28.480 | 1-2-3-4-5-7-8-9-10-11-12-14-15-16-18-19-20-21-22-23-24-25-26-27-28-29-30-31-32-33
402 28.520 | 1-2-3-4-5-6-7-8-9-10-11-12-14-15-16-18-19-20-21-22-23-24-25-26-27-28-29-30-31-32-33
405 28.630 | 1-2-3-4-5-7-8-9-10-11-12-13-14-15-16-18-19-20-21-22-23-24-25-26-27-28-29-30-31-32-33
406 28.670 | 1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-18-19-20-21-22-23-24-25-26-27-28-29-30-31-32-33
418 28.680 | 1-2-3-4-5-7-8-9-10-11-12-14-15-16-17-18-19-20-21-22-23-24-25-26-27-28-29-31-32-33
419 28.830 | 1-2-3-4-5-7-8-9-10-11-12-13-14-15-16-17-18-19-20-21-22-23-24-25-26-27-28-29-31-32-33
423 28.870 | 1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19-20-21-22-23-24-25-26-27-28-29-31-32-33
430 28.880 | 1-2-3-4-5-7-8-9-10-11-12-14-15-16-17-18-19-20-21-23-24-25-26-27-28-29-30-31-32-33
431 28.920 | 1-2-3-4-5-6-7-8-9-10-11-12-14-15-16-17-18-19-20-21-23-24-25-26-27-28-29-30-31-32-33
432 28.930 | 1-2-3-4-5-7-8-9-10-11-12-15-16-17-18-19-20-21-22-23-24-25-26-27-28-29-30-31-32-33
433 29.080 | 1-2-3-4-5-7-8-9-10-11-12-13-15-16-17-18-19-20-21-22-23-24-25-26-27-28-29-30-31-32-33
436 29.180 | 1-2-3-4-5-7-8-9-10-11-12-14-15-16-17-18-19-20-21-22-23-24-25-26-27-28-29-30-31-32-33
437 29.220 | 1-2-3-4-5-6-7-8-9-10-11-12-14-15-16-17-18-19-20-21-22-23-24-25-26-27-28-29-30-31-32-33
439 29.250 | 1-2-3-4-5-8-9-10-11-12-13-14-15-16-17-18-19-20-21-22-23-24-25-26-27-28-29-30-31-32-33
440 29.330 | 1-2-3-4-5-7-8-9-10-11-12-13-14-15-16-17-18-19-20-21-22-23-24-25-26-27-28-29-30-31-32-33
441 29.370 | 1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19-20-21-22-23-24-25-26-27-28-29-30-31-32-33
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APPENDIX D: CLEMENTINE MODELSUSED FOR POST-OPTIMALITY

ANALYSIS

ModelsUsed: C&R Tree

Graphs Used: Histogram, Collection, and Web.

Figure 20 is an instance from the constructed model. As it can be seen from the
figure, only one objective can be considered at atimein all anaysis.

EXCEL

profit

cost

Y /o
™~

cost

! ch over cost
profit

chxel7ucldwes

Figure 20 An instance from SPSS Clementine.
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