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ABSTRACT 

 

 

THERMORESPONSIVE SMART POLYMERIC CELL CARRIERS OF 
PNIPAM AND ELP FOR BONE TISSUE ENGINEERING 

 

 

 

Öztürk, Nihan 

M.S., Department of Biotechnology 

Supervisor      : Prof. Dr. Vasıf Hasırcı                                                               

Co-Supervisor : Assoc. Prof. Dr. Gamze Torun Köse 

 

May 2008, 77 pages 

 

 

This study was aimed at designing a cell carrier from an intelligent polymer to 

achieve loading of mechanical stress for the purpose of improving the tissue 

engineering capability in vitro.  

 

Ethyleneglycoldimethacrylate (EGDMA) crosslinked poly(N-

isopropylacrylamide) (pNIPAM) films were prepared by radical polymerization 

with ultraviolet light (UV) in the presence of photoinitiator 2,2 -

azoisobutyronitrile (AIBN) in isopropanol/water (1:1). Patterns were formed 

on the surface of the polymers by using silicon wafers with microridges (2 

μm) and grooves (10 μm) that were prepared by photolithography technique 

as the template. The surfaces of the films were also modified by adsorption of 

ELP-RGD6 polypeptide. 

 

Bone marrow stem cells (BMSCs) isolated from 6 week old Sprague-Dawley 

rats were seeded onto the pNIPAM films with different surface topography and 

chemistry and cultured under static and dynamic conditions. Dynamic 

conditions were generated by cyclic temperature changes (15 min at 29°C, 30 

min at 37°C) for 10 times a day during 5 days starting on the second day 

post-cell seeding. 
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ELP-RGD6 on the films enhanced initial cell attachment but had no effect on 

proliferation in long term culturing. However, for the dynamic culturing, ELP 

was crucial for both retaining cells attached on the surface when the surface 

became hydrophilic and resulted in weakened cell attachment, and for better 

communication between cell and material which enhanced the ability of 

pNIPAM films to transfer mechanical stress on the cells. Dynamic conditions 

improved cell proliferation but decreased differentiation. Presence of the 

patterns also influenced the differentiation but did not affected proliferation. 

 

Keywords: Thermoresponsive, pNIPAM, Mechanical Stress, Bone Tissue 

Engineering   
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ÖZ 

 

 

KEMİK DOKU MÜHENDİSLİĞİ İÇİN PNIPAM VE ELP TEMELLİ 
ISIYA DUYARLI AKILLI POLİMERİK  

HÜCRE TAŞIYICILARI 
 

 

 

Öztürk, Nihan 

Yüksek Lisans, Biyoteknoloji Bölümü 

Tez Yöneticisi           : Prof. Dr. Vasıf Hasırcı 

Ortak Tez Yöneticisi : Doç. Dr. Gamze Torun Köse 
 

Mayıs 2008, 77 sayfa 
 

 

Bu çalışmada amaçlanan, in vitro ortamda doku mühendisliği yetisini 

geliştirmek için, akıllı bir polimerden mekanik stres uygulayabilen bir hücre 

taşıyıcısının tasarlanmasıydı. 

 

Etilenglikoldimetakrilat (EGDMA) ile çapraz bağlanan poli(N-izopropilakrilamid) 

(pNIPAM) filmler radikal polimerizasyonla fotobaşlatıcı 2,2 -azoisobutironitril 

varlığında ultraviyole ışıkla  izopropanol/su (1:1) içinde hazırlanmıştır. 

Fotolitografi tekniğiyle hazırlanan  mikro tepecik (2 μm) ve mikrokuyucuklu  

(10 μm) silikon pullarla polimerlerin yüzeyleri desenlendirilmiştir. Filmlerin 

yüzeyleri ayrıca ELP-RGD6 polipeptidinin adsorpsiyonuyla modifiye edilmiştir. 

 

6 haftalık Sprague-Dawley sıçanlardan izole edilen kemik iliği kök hücreleri, 

farklı yüzey topografisi ve kimyası olan pNIPAM filmler üzerine ekilmiş ve 

statik ve dinamik koşullarda kültüre edilmiştir. Dinamik koşullar hücre 

ekiminden iki gün sonra başlatılarak 5 gün boyunca günde 10 kez periyodik 

sıcaklık değişimleriyle (15 dakika 29°C, 30 dakika 37°C) oluşturulmuştur. 

 

Filmlerin yüzeyindeki ELP-RGD6, başlangıçtaki hücre tutunmasını arttırmış 

ama uzun dönem kültürde, bu proteinin çoğalma üzerinde etkisi olmamıştır. 
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Bununla birlikte dinamik kültürde yüzeyin hidrofilikliği arttığında ve bunun 

sonucu olarak hücre tutunması zayıfladığında, hücreleri yüzeye bağlı tutmak 

için ve pNIPAM filmlerin hücrelere mekanik stresi aktarma özelliğini arttıran 

daha iyi bir hücre-malzeme iletişimi kurulmasında önemli olmuştur. Dinamik 

kültür koşulları hücre çoğalmasını arttırmış, fakat diferensiyasyonu 

düşürmüştür. Yüzey desenlerinin varlığı diferensiyasyonda etkili olmuş, ama 

hücre çoğalmasını etkilememiştir. 

 

Anahtar Kelimeler: Isıya Duyarlı, pNIPAM, Mekanik Stres, Kemik Doku 

Mühendisliği 
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CHAPTER 1 

 

 

INTRODUCTION 
 

 

 

1.1 Tissue Engineering 

 

Due to aging, diseases or injury, many people suffer from malfunctioning of 

tissues, which may even lead to organ failure. Organ transplantation, 

prosthesis and tissue grafting are the treatments used in medicine to meet 

these problems. Although they have revolutionized medical practice, they still 

have limitations. For organ transplantation, it is mostly hard to find a 

genetically identical organ and in most of the cases the organ transplanted is 

from another person that is not genetically identical but with high conformity, 

which is called an allograft. However the insufficiency of donors leads to the 

death of many people due to the long period they may wait in order to fınd a 

suitable organ. Patients who survive after a successful transplantation still 

need to use costly immunosuppressive drugs that lower their quality of life. 

Autologous tissue grafting is also limited by the availability of host tissue and 

donor site morbidity. Prosthesis cause problems like material failure that lead 

to immunogenic response and increased rates of infection and since it is 

nonliving, it can not grow with the patient or adapt to changing circumstances 

[1].  

 

Tissue engineering has emerged as a promising research area with a high 

potential to replace these conventional medical treatments by producing 

biological substitutes to restore, maintain or enhance tissue and organ 

function by combining biological understanding and applications with 

engineering principles. The early studies started from 1970s and progressed 

enormously in the last decade of 20th century reaching to clinically available 

medical therapeutics, yet need to be improved [2].  
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We can classify tissue engineering applications broadly into two categories: 

therapeutic applications, where the tissue is either grown in a patient or 

grown outside the patient and transplanted; and diagnostic applications, 

where the tissue is formed in vitro and used for testing drug metabolism and 

uptake, toxicity, pathogenecity, and so on [2]. 

 

The complexity and highly organized structure of human body makes it a big 

challenge for researchers to achieve the goal of engineering a desired tissue. 

Various disciplines need to be involved to analyze tissue dynamics and 

recreate it such as cell biology, biochemistry, biomechanics, biophysics and 

materials science. To generate a living tissue in vitro we need 1) cells, which 

will form the desired tissue or tissue groups, 2) scaffold or a cell carrier that 

host cells help them to grow and get organized in the way they are in the 

body and 3) surrounding media composed of nutrients, essential amino acids, 

and biological stimulants such as differentiation and growth factors. 

 

1.2 Bone Tissue Engineering 

 

The loss of bone because of trauma, cancer, osteoporosis or congenital 

abnormalities is a big clinical problem. High costs theraphies still do not 

provide a qualified life because many problems arise afterwards. The most 

common methods to repair these defects are through autologous grafting or 

using alloplastic implants which are nonbiological materials [3,4]. Autologous 

tissue grafting is the prevalent and most versatile option in most cases but 

has constraints such as the availability of donor tissue, morbidity at the donor 

site, and time-consuming surgery. Alloplastic implants are readily available 

and do not lead to donor site morbidity, but there is a risk of immune 

rejection and transfer of infectious diseases during the surgery. Moreover they 

are not long-lasting and biomaterial failure and incompatibility due to wear or 

corrosion may cause complications like chronic irritation and sometimes even 

carcinogenicity [4].  

 

As an alternative approach, tissue engineering seems promising as it aims to 

create fully functional and biocompatible “living” grafts in sufficient amounts 

that have the potential to integrate with the surrounding native tissue 
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eliminating problems of donor scarcity, supply limitation, pathogen transfer 

and immune rejection [5, 6]. 

 

1.3 Scaffolds 

 

A tissue engineered product is composed of two main components, the cells 

and their carrier. Named ‘scaffold’, its design is a crucial step in tissue 

engineering process since the rate of success of tissue engineering depends 

significantly on this carrier. Its main function is that in combination with the 

cells of interest it should mimic the structure and function of the natural 

extracellular matrix (ECM). Polymeric scaffolds, especially biodegradable ones, 

have attracted the attention of the researchers in the last decades. There 

exists a variety of scaffold preparation methods, among which are solvent 

casting, gas foaming, phase separation, electrospinning, salt leaching and 

self-assembly [7,8]. These scaffolds may be prepared in different forms such 

as films [9,10], foams [11] or fibers [7].   

 

Due to its importance in tissue engineering and regenerative medicine there 

are some certain minimum requirements that the scaffold should possess. 

First of all, it needs to have an appropriate microstructure and chemical 

composition so that the cells can communicate well with it. Porosity is an 

important parameter that should be taken into consideration while designing a 

tissue engineering scaffold (even though the exact specifications depend on 

the type of tissue that will be produced). The pore diameter, size, distribution 

and orientation are chosen depending on the target tissue. A pore size of 

hundred microns has been reported for housing of osteoblasts and blood 

vessels. Microporosity (pore size below 10 μm) is also crucial since it is 

important for protein adhesion, cell attachment and proliferation, and for 

nutrient and waste product exchange [12-14]. Many studies have shown that 

pore size, shape and density of scaffolds have a significant effect on the 

behavior of cells [14,15].  

The chemical structure of the materials used is known to have an influence on 

cell behavior to a great extent. In cases when the properties of the bulk 

material is suitable for tissue engineering but the chemistry is not, surface 
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treatments like exposure to UV [16], plasma treatment [7], grafting of 

chemical and biological entities [17] are applied to modify the surface 

properties of scaffolds.  

Two other important requirements of the scaffold are that it should be 

biocompatible and biodegradable. The degradation properties (mainly the 

rate) of the material are again chosen by taking the target tissue into 

consideration. It is important to consider the products of degradation; mainly 

no toxic materials should be released into the biological medium. The 

degradation rate of the scaffold material can be altered by changing its 

chemistry, adding other components such as ceramics [18,19] or by altering 

the manufacturing methods [19-21]. Finally, the newly formed tissue should 

be able to withstand the load that may be created on it when in vivo, 

therefore, the mechanical properties of the scaffold material that is employed 

are of great importance [22,23]. It has been found that the efficacy of several 

silk- and collagen-based substrates in supporting chrondrogenesis of cultured 

human mesenchymal stem cells was influenced more by scaffold degradation 

rates than by chemical composition [24]. Crosslinked collagen and slowly 

degrading silks increased cell differentiation and matrix deposition, but the 

uncrosslinked collagen samples were unable to support significant 

cartilaginous tissue formation because of weak mechanical property. 

There are many crucial roles that a tissue engineered scaffold plays; it acts as 

a framework and supports cell migration from the surrounding tissue into the 

defect area, it serves as a matrix for endogenous or exogenous cell adhesion 

and facilitates cell processes like proliferation, migration and synthesis, it may 

be used as delivery vehicle of certain genes for certain growth factors or 

growth factors themselves,  it may structurally reinforce the defect area, it 

may also serve as a barrier against infiltration of the surrounding tissue that 

may hinder the regeneration process [22].  

 

1.3.1 Materials  

 

The materials utilized in the design of tissue engineering scaffolds can be 

classified as metals and metal alloys, ceramics, polymers, modified natural 

materials and composites. Based on their degree of resorbability they can be 



 5 

divided into two groups: degradable and non-degradable. Non-degradable 

materials are usually used for prosthetic devices whereas resorbable ones are 

mainly used for tissue regeneration like bone, cartilage, artificial skin, etc. 

[25]. Degradability has been shown to be important since the surface 

properties of the material used influence to a great extent the initial cellular 

events occuring at the contact phase between the cell and the material.  

 

Regarding their application as scaffold materials in tissue engineering or as 

bone substitute materials it can be said that four types of materials have been 

studied. They include the synthetic organic materials (polyglycolides, 

polylactides, polydioxanone, polycaprolactone, polyanhydrides, 

polyhydroxyalkanoates, etc.), synthetic inorganic materials (hydroxyapatite, 

glass ceramics, etc.), organic materials of natural origin (collagen, hyaluronic 

acid, elastin, fibrin, etc.) and inorganic materials of natural origin (coralline 

HA) [25]. The following section explains these materials in more detail. 

 

1.3.1.1 Degradable polymers 

 

Bioabsorbable polymers are preferred because they can be employed to 

provide temporary scaffolding function for newly forming tissue and to be 

subsequently replaced by the native tissue with the polymer material getting 

removed by natural and metabolic processes of the body. Hence, no residual 

material that can act as focus of irritation with possible infection is left in the 

body. It is also important for the newly formed tissues to take over by time 

and become independent of the supporting scaffold. This is especially 

important, e.g. in tissues like bone where physiological loading is crucial.  

 

The main polymers utilized with the ultimate aim of tissue engineering include 

poly L-lactic acid (PLLA), poly (L,DL) lactic acid P(L,DL)LA, poly(ε-

caprolactone) (PCL) or their copolymers like poly(lactic acid-co-glycolic acid) 

(PLGA) and poly(ε-caprolactone-co-L-lactide) (PCL-PLLA) etc. Polymers of 

natural origin include collagen, silk protein, elastin, fibrinogen, fibrin, 

chitosan, hyaluronic acid and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) 

(PHBV) [26,27]. These types of natural polymers are often used in the form of 

blends with some other materials like ceramics (especially in bone tissue 
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engineering) in order to increase their load bearing ability, thus, strengthen 

their mechanical properties [28-30]. 

 

Collagen is a natural fibrous protein found most abundantly in the 

extracellular matrix of the body, in tissues like bone, tendon, cartilage, 

ligament, skin, meniscus, etc. Due to the differences in chemical composition 

and molecular structure collagen has 25 different types, the most abundant 

ones being types I, II, III and V. While type I is more present in bone and 

meniscus, type II is more found in cartilage. It is widely used in tissue 

engineering applications; however, crosslinking is sometimes necessary in 

order to improve the mechanical properties of the collageneous scaffold 

[24,27,28,31]. 

 

Elastin is a protein found in connective tissue to help to resume the shape 

after stretching or contracting. It is most abundantly found in load-bearing 

tissues such as arteries, lungs, elastic ligaments, skin, bladder, elastic 

cartilage, and the intervertebral disc. It is primarily composed of the amino 

acids glycine (G), valine (V), alanine (A) and proline (P).  

 

Genetically engineered artificial elastin-like polypeptides (ELPs) possess 

physical properties that are notably similar to those of native elastin. The 

crosslinked matrices of ELPs show outstanding resistance to fatigue and have 

almost ideal elasticity, with Young’s modulus, elongation at break, etc. in the 

range of natural elastin [32,33]. Moreover, these proteins can be modified at 

the genetic level to match the requirements of desired applications, such as 

addition of cell attachment sequences and amino acids to use for crosslinking 

purposes i.e. lysine [34]. The general formula for ELPs is (VPGXG)n, where X 

represents any natural or modified amino acid, except proline [35]. 

  

Fibrin is a polypeptide and has an important role in tissue repair and 

homeostasis. This substance is produced by polymerization of fibrinogen in 

the presence of enzyme thrombin and as a result clotting occurs. It can either 

be obtained directly from blood plasma of patients [36]. It is not a part of 

ECM but it has been used especially for wound closure as a matrix that can be 
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replaced by the ECM. It is widely used as fibrin glue in clinical applications. Its 

combination with alginate or hyaluronic acid has been demonstrated [31]. 

 

Hyaluronic acid, known as hyaluronan, is a linear, high molecular weight 

polysaccharide and it is one of those glucosaminoglycans present in the 

connective tissues of the body, in the eye vitreus humor and the synovial fluid 

of the joint capsule. Due to its disaccharide units, hyaluronic acid has a rigid 

structure and its anionic groups function in binding water molecules and other 

cations. They appear to be very good water absorbers and lubricants due to 

its viscoelastic properties. They play a crucial role in wound repair, 

morphogenesis and inflammation [31,37,38,39].  

 

Chitosan is a deacetylated chitin derivative mostly found in the shells of 

marine crustaceans and the walls of fungal cells. It is soluble in dilute acids. 

This linear polysaccharide is attractive for researchers because it is 

biodegradable, highly biocompatible, it has controllable hydrophilicity (with 

deacetylation level) and it is easy to process. Chitin-based polymers can be 

processes into various forms like sponges, fibers, hydrogels and beads, and 

this is a good proof of its versatility of its biomedical applications especially 

tissue engineering. Other physicochemical and biological properties of 

chitosan in addition to hydrophilicity can be altered by changing the 

deacetylation degree [31,40]. 

 

Another class of naturally derived polymers is polyhydroxyalkanoates (PHAs), 

which are polyesters produced by microorganisms [41]. They are degradable 

and biocompatible and are used as a reserve of energy and carbon. A variety 

of these polymer were produced and among especially poly(3-

hydroxybutyrate) (PHB) and its copolymer poly(hydroxybutyrate-co-

hydroxyvalerate) (PHBV) have been tested the most in the biomedical field. 

Addition of hydroxyvalerate to the structure results in a less crystalline, more 

flexible and easily processable polymer, so depending on the amount of 

degradability and crystallinity desired, an appropriate copolymer is 

synthesized [31]. Among the PHAs, PHB is of particular interest due to its 

ability to support in vitro bone formation [42,43].  
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Recently, proteins obtained from animals or plants have started to attract the 

researcher’s attention significantly nowadays. A good example of these 

proteins is silk, which is produced in fiber form by silkworms and spiders. The 

high mechanical properties of silk come as a result of the highly repetitive 

primary sequence that leads to a high content of β-sheets [31]. This is a good 

reason that explains potential of silk protein in tissue engineering processes, 

especially in the case when mechanically robust and sufficiently degradable 

materials are required [44]. The only disadvantage of utilizing this material is 

that it might evoke foreign body responses when implanted in vivo [31]. 

 

Like the natural polymers, synthetic polymers are also in a great variety and 

due to the results obtained many of them have been approved by FDA to be 

used in tissue engineering applications. Compared to natural polymers, they 

have shown lower risk of immunogenicity, easier procesability and higher 

flexibility. As mentioned in the sections above, the most common synthetic 

polymers are, poly(ε-caprolactone) (PCL), poly(glycolic acid) (PGA), 

poly(lactic acid) (PLA), their copolymers poly(lactic acid-co-glycolic acid) 

(PLGA), poly(phosphoesters), poly(phosphazene), and  poly(propylene 

fumarate) (PPF). Some of them will be described in more detail below: 

 

PLA, PGA and PLGA (with different ratios of LA and GA) are the most 

intensively investigated synthetic polymers in tissue engineering, especially 

bone. Upon reaction with water they undergo random bulk degradation via 

hydrolysis of ester bonds which results in their degradation products namely 

lactic and glycolic acids [45]. PLA exists in mainly three forms: L-PLA (PLLA), 

D-PLA (PDLA) and the racemic mixture D,L-PLA (PDLLA) with the main 

difference between them being stereochemistry. PLA is known to be less 

degradable and more hydrophilic than PGA [45]. The most utilized polymer in 

tissue engineering is PLGA, which is chosen according to the ratio of LA and 

GA in its structure because this detemines their crystallinity, hydrophilicity 

and their rate of degradation. For instance, if a highly degradable polymer is 

required, a blend with a LA:GA ratio of around 1 is preferred [46]. 
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Another important synthetic polyester is poly(ε-caprolactone) (PCL), which is 

also a linear polymer with a slower degradation rate than most biodegradable 

polymers [47,48]. 

 

1.3.1.2 Non-degradable materials 

 

The most commonly used non-degradable materials for tissue engineering, 

especially bone, are ceramics and its composites with polymers. Ceramics are 

mostly considered as crystalline materials, but there exist some non-

crystalline ceramics also. When the glass is semi crystalline due to later heat 

treatments, it is known as glass-ceramic. A combination of both these two 

types and some others constitute what is named as composites. Composites 

have been utilized more in the last decade due to their versatility, the 

presence of many different composites with different structures suitable for 

various applications. Some composites are listed below:  

 

A. Calcium phosphate-based ceramics. These include (1) hydroxyapatite 

(HAp), (2) beta-tricalcium phosphate (β-TCP), (3) biphasic calcium phosphate 

(BCP), (4) amorphous calcium phosphate (ACP), (5) carbonated apatite (CA) 

and (6) calcium deficient HAp (CDHAp). Their application in tissue engineering 

is still being explored, however, it can be said that the problem of incomplete 

resorption especially in the case of HAp or CA still exists. Introduction of 

porosity to the structure is an important issue that should be taken into 

consideration since it is well known that highly porous implants induce tissue 

ingrowth within the implant and decrease degradation time. This can be 

achieved by a variety of methods that lead to structures with interconnected 

pores [29]. Salt leaching and incorporation of polymeric microparticles that 

can be sintered afterwards to yield ceramics with micropores are two of these 

techniques. Furthermore, some surfactant (i.e. H2O2) can be utilized to 

produce spherical porosity inside the CaP-ceramic. In addition to these, some 

of the ceramics like bovine derived ones might possess inherent porosity but 

they are disadvantageous in that they cannot be tailored for specific purposes 

due to their fixed shape and volume. Some other CaP-ceramics have 

micro/nanoporosity, which is not very preferred in tissue engineering 

applications because of the pore size being close or lower than that of the 
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cells. The most appropriate tissue engineering application for them is bone 

tissue engineering since these CaP-based ceramics had a positive influence on 

cell differentiation and proliferation. Addition of osteoinductive growth factors 

or drugs [49] to these ceramics is also a common method due to their high 

affinity for ionic molecules. Utilization of ceramics with self-osteoinductive 

properties, such as biphasic calcium phosphate and HAp [50] is another way 

to improve their suitability for tissue engineering.  

 

B. Calcium phosphate-based cements (a powder phase of calcium and/or 

phosphate salts that together with an aqueous phase react at room/body 

temperature and form a calcium phosphate precipitate that sets in the form of 

crystals). Cements based on calcium salts, phosphates or sulphates, have 

attracted much attention in medicine and dentistry due to their excellent 

biocompatibility and bone-repair properties. Many of them are attractive for 

use in tissue engineering, but the introduction of a crucial characteristic like 

porosity is a necessity. Highly porous systems can be obtained by either 

utilizing leaching of water soluble crystals [51] or degradation of polymer 

microspheres with time [29]. The polymer is chosen according to its 

degradation properties. The porosity of the structure and the mechanical 

properties depend on the cement formulation and whether there is any 

additive or not [52,53].  

 

Calcium phosphate cements which can be injected and resorbed are prepared 

with slight differences in their compositions and/or processing. These cements 

are very compatible with the bone and seem to resorb slowly. During this 

gradually occurring resorption process the newly formed bone grows and 

replaces the cement. However, the properties of the calcium phosphate 

cements are still insufficient for their reliable application. There are problems 

related to their mechanical strength, the curing time, the application 

technique on the osseous defect and the final biological properties [53]. In 

addition, all the implants obtained from these materials can lead to infections 

due to their action as foreign materials for the body. In these situations some 

drugs, which can be locally released ‘‘in situ’’ are incorporated into the 

structure [54,55]. New improvements in the development of these cements 
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are being made in order to at least overcome some of these disadvantages 

[53]. 

 

C. Glass ceramics. They are reported to be bioactive due to their ability to 

bind to bone. This process happens due to formation of a CaP-rich layer which 

then crystallizes to carbonated hydroxyapatite on the surface of the glass 

after implantation and contact with biological fluids [56]. Several studies have 

shown that bioactive glasses support in vitro osteobast attachment, 

proliferation and differentiation of mesenchymal cells into osteoblasts [56-58]. 

 

These ceramics include glass compositions that have the ability to bind to 

bone and other tissues. The chemical reactivity of the glass where Si bonds 

are broken and the formation of a CaP-rich layer on the top of the glass, 

which then crystallizes to HCA is the basic idea of how bone binding process 

occurs. They are produced like conventional glasses where SiO2, Na2O, CaO 

and P2O5 are the basic components. These materials often need addition of 

other ceramic components for reinforcement due to their non-optimal 

mechanical properties. These types of combinations are named as glass-

ceramic composites. Porosity is again a necessity for their ultimate use in 

tissue engineering applications and it is generally introduced as in the case of 

CaP-based ceramics [59]. 

 

D. Polymer/ceramic composites. Although ceramics seem to be excellent 

materials for use as scaffolds, they possess certain drawbacks. Brittleness and 

slow or no degradation and resorption are the main issues. In order to 

overcome these drawbacks ceramics are generally manufactured as 

composites, mostly of polymer-ceramic type. Addition of biodegradable 

polymers in the structure aims to improve the degradability, alter the 

mechanical properties of ceramics and create a porous structure. These 

composites also mimic the natural bone tissue composition of collagen and 

calcium phosphate. Several studies have reported the success of such designs 

in bone tissue engineering with better mechanical, osteoconductive (enable 

bone ingrowth) and osteoinductive (stimulate bone formation) properties 

[56]. 
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As mentioned in the sections above, introduction of porosity to these ceramics 

materials is a necessity for especially tissue engineering applications. This has 

been solved by addition of some other molecules that can be destroyed before 

implantation, however, there still exits some problems such as poor 

degradability and mechanical properties. Mixing them with some 

biodegradable polymers is a solution to this at least to the majority of the 

problems. These biodegradable polymers can improve the degradability of 

these ceramics and further improve their mechanical properties [60].  

Polymer/ceramic composites can be divided into two groups as cement with 

added polymers, and ceramic particles incorporated into a porous polymeric 

carrier. Some of the polymers combined with ceramics are 

polylactic/polyglycolic acid, polylactid acid (PLA, PLLA, PDLLA), polyglycolic 

acid (PGA), poly(lactic-co-glycolic acid) (PLGA), poly(ε-caprolactone) (PCL), 

collagen, gelatin, fibrin, casein, peptides, chitin, chitosan, cellulose, starch, 

alginate, hyaluronan, etc. 

 

1.3.1.3 Stimuli-Responsive Polymers 

 

Stimuli-responsive polymers are defined as polymers that exhibit dramatic 

property changes in response to small external changes in the environmental 

conditions.  

 

They can be classified according to the stimuli they respond to. The stimulus 

can be physical such as temperature, electric or magnetic fields, and light, 

which alter molecular interactions. Chemical stimuli, such as pH, ionic 

strength and chemical agents, change the interactions of polymer chains 

among each other or between polymer chains and solvents at the molecular 

level [61]. Some polymers can respond to more than one stimulus, such as 

temperature and pH [62-65], and some polymers can also respond to two or 

more signals when they are simultaneously applied such as in dual responsive 

polymer systems which can find application in drug delivery [66]. 

 

These polymers can be utilised in various physical forms such as free chains in 

solutions, chains grafted on a surface, covalently cross-linked gels and 

reversible (or physical) gels [67].  
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Smart systems can be designed for biomedical applications using stimuli 

responsive polymers such as intelligent on-off systems for bioseperation [68-

70], actuation [71-73], gene [74,75] and drug delivery [66,76-81], tissue 

engineering and cell culture [82-104]. 

 

Cell sheet engineering has emerged as one of the outcomes of this intense 

research area. Okano et al. published a paper in 1990 which made a great 

impact on the biomaterials and tissue engineering community [90]. The paper 

was describing the development of a novel cell culture substrate to harvest 

and expand cells. The researchers grafted the surface of tissue culture plates 

with a thermoresponsive polymer, poly(N-isopropylacrylamide) (pNIPAM), 

which has a lower critical solution temperature (LCST) around 32°C meaning 

that the polymer solution undergoes phase transition from a soluble to an 

insoluble state above this critical temperature in water [61]. This interesting 

property of LCST polymers is observed as a result of reversible hydrogen bond 

formation between water molecules and polar groups of the polymer such as 

C=O and -NH upon change in temperature leading the polymer to be 

hydrophilic below 32°C and hydrohopic above it (Fig. 1).  

 

 

 

     (a)          
    

(b)  

 
Figure 1. Poly(N-isopropylacrylamide), (a) Structure, (b) Schematic of 
‘smart’ polymer response to temperature changes [91].  
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At normal cell culture temperature, which is 37°C, the polymer becomes 

slightly hydrophobic allowing various cell types to attach, spread and 

proliferate similarly to that on normal tissue culture polystyrene (TCP). 

However, when the temperature is reduced below the LCST, a hydration layer 

forms between the culture surface and cells and this weakens the attachment 

of cells, enabling the harvest of confluently cultured cells as intact sheets 

[92]. These cell monolayers with undistrupted intercellular connections, unlike 

those cells harvested by trypsinization are promising tools for successful 

tissue engineering applications. Numerous cell types including epidermal 

keratinocytes, vascular endothelial cells, renal epithelial cells, periodontal 

ligaments and cardiomyocytes have been shown to maintain differentiated 

functions after low-temperature cell sheet allowing production of vascularized 

thick tissues [93], cardiac patches [94], organ-like structures such as 

myocardial tubes [95] and reconstruction of cornea [96], esophagus [97] and 

trachea [98]. 

 

 

 

Single Layer Tissue 

・Skin 

・Corneal Epithelium 

・Periodontal Ligaments 

 

 

 

 

Multiple, Stratified Tissues 

・Myocardium 

 

 

 
Figure 2. Schematic drawings of tissue reconstruction as cell sheet stacks 
using thermoresponsive culture dishes [99]. 
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Furthermore, cell sheets composed of co-culture of different kinds of cells can 

also be harvested from patterned dual thermoresponsive surfaces with two 

kinds of thermoresponsive domains with different transition temperatures by 

copolymerization of a hydrophobic monomer to pNIPAM. In a study carried 

out by Tsuda et al., rat primary hepatocytes (HCs) and bovine carotid artery 

endothelial cells (ECs) were co-cultured on patterned dual thermoresponsive 

surfaces [100]. N-butyl methacrylate (BMA) was copolymerized with NIPAM to 

decrease the LCST. Patterns were prepared by electron beam 

copolymerization of these monomers using a mask led to islands of 1000 or 

500 μm dots separated from each other by 1000 or 500 μm pNIPAM-grafted 

domains. First HCs were seeded at 27°C and they selectively adhered onto 

the relatively hydrophobic p(NIPAM–BMA) co-grafted domains but not onto 

the hydrophilic pNIPAM domains. They were incubated at 27°C for two days 

and at 37°C for an additional 2 days. Then the other cell type, the ECs, was 

seeded at 37°C. Finally, single co-cultured cell sheet could be released and 

recovered at a lower temperature than either of the transition temperatures 

(20°C) (Fig. 3). They showed that hepatic physiological functions such as 

albumin secretion and ammonium metabolism were enhanced by increasing 

heterotypic cell–cell interactions in a patterned co-culture. These findings 

indicate the importance of co-cultures for the reconstruction of complex 

tissues. 
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Figure 3. Schematic representation of patterning cell co-culture and 
harvesting of co-cultured cell sheets using a patterned dual thermoresponsive 
surface (a) First cell type, HCs is seeded and cultured at 27°C, resulting in 
localization of hepatocytes onto p(NIPAM–BMA) co-grafted hydrophobic 
patches. (b) Second cell type, ECs seeded and cultured at 37°C, resulting in 
generation of patterned co-cultures. (c) Decreasing temperature to 20°C 
enables obtaining the co-cultured cell sheet (on the right) [100].  
 

 

 

Cell sheets harvested from thermoresponsive culture surfaces can be used for 

the reconstruction of many tissue types but may not be ideally suited to the 

creation of some cell-sparse tissues, such as bone or cartilage, because they 

contain relatively little ECM when compared with scaffold based methods [92]. 

 

Researchers are utilizing stimuli-responsive hydrogels as scaffolds in the 

engineering of tissues. Hydrogels can be applied as space filling agents, as 

delivery vehicles for bioactive molecules, and as three dimensional (3D) 

structures that organize cells and present stimuli to guide the formation of the 

desired tissue [101].  

 

Stile and Healy prepared loosely crosslinked hydrogels composed of pNIPAM 

and acrylic acid (Aac) functionalized with RGD peptides as injectable scaffolds 

for cell attachment to study cell-material interactions in 3D [102]. They were 

the first to report covalent grafting of a large RGD peptide into NIPAM/Aac 
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hydrogels. These injectable hydrogels demonstrated increase in Young’s 

modulus (i.e. rigidity) at the body temperature (37°C). Furthermore these 

injectable hydrogels were also synthesized by using peptide crosslinkers which 

can be splitted by matrix metalloproteinases, endopeptidases responsible for 

cleavage of extracellular matrix (ECM) proteins, adding a second property to 

the material which is biodegradability [103]. Increased adhesion and 

spreading of rat calvarial osteoblasts (RCO) to the hydrogel in the presence of 

the RGD peptide was shown. 

 

Smith et al. prepared p(NIPAM/NASI), NIPAM-based synthetic, 

thermoresponsive copolymers containing protein-reactive N-

acryloxysuccinimide (NASI) groups to increase local retention of bone 

morphogenetic protein-2 (BMP-2), which is one of the BMPs used for bone 

regeneration [17]. They utilized the thermoresponsiveness of pNIPAM to 

entrap and retain BMP-2 at the injection site (as much as 100 fold better), as 

the polymer solution became insoluble upon reaching the physiological 

temperature. They used C2C12 cells in their study and found out that the cells 

showed increased alkaline phosphatase  (ALP) activity, which is one of the 

early markers showing the osteogenic differentiation, when they were on 

p(NIPAM-NASI) surfaces with BMP-2 rather than on tissue culture polystyrene 

(TCP) with BMP-2. Furthermore they showed that unlike cells on TCP, cells 

grown on the p(NIPAM/NASI) surfaces exhibited an ALP activity even without 

BMP-2 exposure, indicating that p(NIPAM/NASI) surfaces were more 

conductive for the expression of ALP activity for the chosen cell model. 

 

Genetically engineered ELPs, mentioned in section 1.3.1.1, also are 

thermoresponsive polymers associated with the inverse transition 

temperature (ITT), a phenomenology which is similar to LCST. However, ELPs 

undergo a regular, non-random structure when the temperature is above the 

transition temperature, which is not shown by LCST polymers such as pNIPAM 

[31]. Phase transition behavior of an ELP is a function of the sequence, the 

identity and mole fraction of guest residues (X) at the fourth position of the 

general formula which is (VPGXG)n, and its chain length [104].  
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The biosynthesis of the genetically engineered protein based polymers is 

superior over chemical synthesis in means of achieving absolute control of the 

amino acid sequence with complete absence of randomness. Moreover they 

can be easily produced in huge amounts using micro-organisms as factories to 

express these proteins [31]. Modification of sequence, chain length, topology 

and stereochemistry enables the controlling of physical properties such as 

transition temperature, mechanical stiffness and they can be functionalized to 

exhibit responsiveness to pH, light and other stimuli, such as an 

electrochemical potential or analyte concentration [77,105]. They are widely 

used in many fields of biotechnology including bioseparation [69,70], drug 

delivery [76,81] and tissue engineering [33,105].  

 

They have been utilized to serve as injectable scaffolds for cartilaginous tissue 

repair because of their potential to promote chondrogenesis [105,106]. After 

injection in situ, similarly to pNIPAM, the ELP-chondrocyte suspension 

aggregates into a stiff gel-like coacervate when the temperature reaches the 

physiologic value entrapping cells within an elastic 3D matrix that has 

mechanical properties comparable to those reported for collagen and 

hyaluronan-based scaffolds which are commonly used for cartilage 

regeneration. Betre et al. examined the potential of a genetically engineered 

ELP to promote the chondrocytic differentiation of human adipose derived 

adult stem cells (hADAS) without exogenous chondrogenic supplements 

[105]. They observed that constructs cultured in either chondrogenic or 

standard medium (without chondrogenic supplements) exhibited significant 

increases in sulfated glycosaminoglycan and collagen contents by day 14. 

They also showed that the matrix formed consisted mainly of type II and not 

type I collagen and the composition of the constructs cultured in either 

medium did not differ significantly. 

 

In order to manipulate the physical properties, ELPs may also be crosslinked 

enzymatically. McHale et al. designed and synthesized ELPs capable of 

undergoing enzyme initiated gelation via tissue transglutaminase [106]. The 

formed cartilaginous matrix was rich in type II collagen and lacking in type I 

collagen. They found out that the dynamic shear moduli of ELP hydrogels 

seeded with chondrocytes increased from 0.28 to 1.7 kPa during a 4 week 
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culture period indicating the restructuring of the ELP matrix by deposition of 

functional cartilage ECM components. 

 

1.4 Mechanical Stimuli as a Modulator  

 

Most of the cells in the body including fibroblasts, osteoblasts, chondrocytes, 

endothelial cells, and smooth muscle cells (SMCs) recieve mechanical stimuli 

from a wide variety of sources in daily life. These mechanical forces are 

gravity, compressive loads on cartilage and bones during walking and 

exercise; blood pressure and shear stresses on the vessels, the heart and the 

lung due to blood flow; tensile, compressive, and shearing forces causing 

surface tension on dermal tissues [107]. Tissues sense these mechanical 

stimuli and convert them into biological responses through a cascade of signal 

transduction resulting in regulation of cell functions like gene expression, 

cytoskeleton organization, protein synthesis, proliferation, apoptosis, and 

differentiation.  

 

When the skeleton is unloaded due to microgravity in space flights and bed-

rest, bone mineral density reduces [108]. On the other hand, suitable 

exercise regimes have been proposed to maintain bone mass in 

postmenopausal women and accelerate bone mass recovery after bed rest 

[109,110]. Mechanical loading is also important in fracture healing. These 

show that bone is a living organ that is modulated by mechanical stimuli. 

Bone tissues grow in a highly dynamic environment, experiencing both of 

compressive loads and tensile stress as well as fluid shear stress as a result of 

enhanced fluid flow in the canalicular network caused by mechanical loading 

[111].  

 

In order to study the effect of mechanical stimuli on bone cells, several 

different devices have been used. These devices were usually designed to 

apply fluid flow [112,113], stretching and fluid flow using four point bending 

[114], hydrodynamic pressure [115], stretching and compression [116-120]. 

However, the reported answers vary widely and it is difficult to compare these 

results because of the variation in the devices and cell sources used. 

Moreover, parameters differ on the magnitude of the mechanical stress 
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applied as well as cycle number and the frequency of the strain in the studies 

[121]. 

 

1.5 Summary of the Used System 

 

The aim of this study was to design a cell carrier with a capacity of loading 

mechanical stress on cells seeded onto them as an alternative to the devices 

mentioned in section 1.4. To achieve this goal, crosslinked pNIPAM films were 

used as cell carriers which have the ability to alter their dimensions in 

response to temperature changes below and above its LCST, ca. 32°C.   
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CHAPTER 2 

 

 

MATERIALS AND METHODS 
 

 

 

2.1 Materials 

 

Poly(N-isopropylacrylamide) (pNIPAM), Coomassie Brillant Blue, Bromophenol 

Blue, APS, tetramethylenediamine (TEMED), buthanol, phenylmethylsulphonyl 

fluoride (PMSF), cacodylic acid (sodium salt), glutaraldehyde (Grade I, 25 % 

aqueous solution), Amphothericin B, Penicilline-Streptomycine, trypsin-EDTA 

(0.25 %), Trizma® Base, dimethyl sulfoxide (DMSO), Β-glycerophosphate, 

ascorbic acid and dexamethasone were purchased from Sigma-Aldrich Co. 

(USA). 2,2 -azoisobutyronitrile (AIBN) and Luria-Bertani agar (LBA) were 

purchased from Fluka (Germany). Ethyleneglycoldimethacrylate (EGDMA) was 

purchased from Fluka Biochemica (Switzerland). Elastin like polypeptide was 

produced and isolated from E. coli at the University of Valladolid, Spain. 

Tetracycline was a gift of Dr. I. Yılmaz of FAKO Ilac. San. (Istanbul, Turkey).  

 

Methanol, acetic acid, sodium dodecylsulfate (SDS), 2-β-mercaptoethanol, 

isopropanol and glycerol were purchased from Merck (Germany). Glycine was 

purchased from USB (USA). Acrylamide was purchased from Amresco (USA). 

Ampicilline and isopropyl-β-D-thiogalactopyranoside (IPTG) were purchased 

from Apollo Scientific (UK). Luria–Bertani broth (LB) was purchased from 

Pronadisa (Spain). 

 

Triton®X-100 was purchased from Applichem (USA). Fetal calf serum (FCS) 

was purchased from PAA (Austria). Dulbecco’s Modified Eagle Medium (DMEM; 

high glucose) and Terrific Broth (TB) were purchased from Gibco (USA). 

Colorless DMEM (without sodium pyruvate and phenol red) was purchased 

from HyClone® (USA). Alamar Blue was from Biosource (USA). Alkaline 

Phosphatase 307 Kit was purchased from Randox® (UK). NucleoCounter 

reagents and nucleocasettes were purchased from Chemometec (Denmark).  
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2.2 Methods 

 

2.2.1 Synthesis of pNIPAM 

  

pNIPAM was synthesized by free radical polymerization method [122,123] 

with EGDMA as the crosslinker and AIBN as the photoinitiator under the 

presence of ultraviolet (UV) light. AIBN (1.36 mol % w.r.t. NIPAM), NIPAM 

(50% w/v) and EGDMA (1.2 mol % w.r.t NIPAM) were dissolved in 

isopropanol (polymer E). Different groups of polymers were obtained also by 

the addition of water in the last step in the ratios of 1:1 (polymer A), 3:7 

(polymer C), 1:9 (polymer D) with respect to isopropanol. Another polymer 

group (polymer B) was synthesized doubling the crosslinker amount (2.4 mol 

% w.r.t NIPAM) without the addition of water. One last polymer group 

(polymer A*) was also synthesized by decreasing mol % of initiator, AIBN, to 

0.3 with respect to NIPAM in a solvent mixture of 1:1 isopropanol/water. The 

feed composition ratios for the reactions are summarized in Table 1.  

 

N2 gas was bubbled through the reaction mixture for 10 min to remove 

oxygen dissolved in the reaction mixture. The reaction mixture was then 

poured into a petri dish, sealed with parafilm and put in a closed chamber. 

After an additional purge with N2 gas for 5 min, the container was completely 

sealed with parafilm and kept under UV light for 6 h. The polymer was washed 

for several days with several distilled water changes to remove all the 

residues of unreacted monomer and other chemicals. 

 

The polymer used as cell carrier in vitro in this study was polymer A*. 
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Table 1. Feed composition for the preparation of pNIPAM hydrogels 
 

 
Polymer 

A 

Polymer 

B 

Polymer 

C 

Polymer 

D 

Polymer 

E 

Polymer 

A* 

NIPAM 500 mg 500 mg 500 mg 500 mg 500 mg 500 mg 

AIBN 10 mg 10 mg 10 mg 10 mg 10 mg 2.2 mg 

EGDMA 10 μL 20 μL 10 μL 10 μL 10 μL 10 μL 

Isopropanol 500 μL 500 μL 700 μL 900 μL 1 mL 500 μL 

Water 500 μL 500 μL 300 μL 100 μL  500 μL 

 

 

 

2.2.2 Preparation of pNIPAM Films 

 

In order to prepare unpatterned pNIPAM films, the synthesis in section 2.2.1 

was carried out in glass petri dishes with a smooth surface. 

 

Patterns were created on the films by placing silicon wafers (groove width: 2 

micrometer, ridge width: 10 micrometer, depth: 20 micrometer, angle: 54.7°) 

at the bottom of the petri dishes before introducing the reaction mixture. The 

synthesis was carried out under the same conditions.  

 

2.2.3 Production and Isolation of ELP 

 

The design of “ELP-RGD8” oligopeptide sequence and the molecular biology 

techniques that were used to clone the desired gene into expression vectors 

and transform E. coli BL21 strain were performed by Prof. J. Carlos Rodríguez-

Cabello’s group (BIOFORGE), at the University of Valladolid, Spain [34]. 

 

2.2.3.1 Inoculum Preparation 

 

100 mL TB and 100 μL ampicillin (100 mg/mL) were put in an erlenmeyer. 

Two colonies of E. coli on LBA carrying the designed gene were transferred to 

the erlenmeyer containing TB with the aid of a sterile toothpick by gently 

touching on the colony and then putting it into the TB. This process was 

carried out in a laminar flow cabinet (Cruma, 870-FL, Spain). The erlenmeyer 
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was put in rotary shaker (Thermo Electron Corporation, 420 Incubated-

Tabletop, USA) at 37°C for at least 16 h. 

 

2.2.3.2 Growth of E. coli and ELP Production 

 

LB or TB were autoclaved (Raypa, AES-28, Spain) before inoculation. 

Transformed E. coli were grown both in batch culture in a rotary shaker 

(Thermo Electron Corporation, 420 Incubated-Tabletop, USA) at 37°C and 

using a fermenter (2L) (B. Braun Biotech International, Biostat, Germany), in 

which temperature, pH, and oxygen levels were controlled and adjusted. Gene 

expression was induced by IPTG (0.8 mM) addition at an OD600 of 0.8 (Milton 

Roy Company, spectronic 601, USA). The cultures were incubated for an 

additional 3 h after induction. 

 

2.2.3.3 Isolation of ELP from E. coli  

 

The cultured cells were cultivated and centrifuged (Eppendorf, 5804 R, 

Germany) at 18x103 g for 5 min at 4°C. The pellet was washed with Tris 

Buffered Saline (TBS, pH 8) (100 mL/L cell suspension) twice and centrifuged 

again at 18x103 g for 5 min at 4°C. The pellet was resuspended in Tris-EDTA 

(TE, pH 8) solution (25 mL/L culture fermentation medium) and 

phenylmethylsulphonyl fluoride (PMSF) was put to avoid polymer proteolysis 

due to the activity of proteases and then the cells were lysed by sonication for 

10 min with pauses of 2 s each 5 s at 100 W (Misonix, Sonicator 3000 USA). 

All these steps were carried out on ice. The lysate was centrifuged again at 

18x103 g for 5 min at 4°C. The supernatant which contains the total soluble 

proteins was collected and acidified to a pH value of 3 using 1.6 M HCl on ice. 

The proteins which become insoluble at this pH precipitated and they were 

removed by centrifugation at 18x103 g for 5 min at 4°C. The supernantant’s 

pH was changed to 10 using NaOH and it was warmed to 70°C for 1 h. ELP-

RGD became insoluble at this temperature and precipitated by centrifugation 

at 18x103 g for 5 min at 40°C. The pellet was dissolved in Milli-Q water 

(Millipore, USA) (1-2 mL/L culture fermentation medium) by stirring (IKA, 

Color Squid IKAMAG, Germany) at 4°C overnight. The protein solution was 

centrifuged at 15x103 g for 20 min at 4°C. The supernatant was warmed to 
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70°C and the protein precipitated at this temperature was centrifuged again 

at 18x103 g for 5 min at 4°C. The final pellet was resuspended in cold Milli-Q 

water (0.5 mL/L culture fermentation medium) and freeze dried for at least 

48 h (Labconco Corporation, FreeZone 1 Liter Benchtop Freeze Dry System, 

USA).  

 

2.2.3.4 Determination of Protein Expression 

 

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was 

performed using cell suspensions taken from the cell culture at different time 

points to evaluate protein expression profile of E. coli. It was also used for the 

evaluation of purification steps for ELP-RGD8 protein. The reagents of SDS-

PAGE gel can be seen in Table 2.  

 

 

 

 Table 2. Reagents and Composition of SDS-PAGE gels 
 

Separating (Running) Gel Stacking Gel 
 

10% 12% 4% 

Acrylamide (40%) 2.5 mL 2.25 mL 500 μL 

1M Tris pH 8.8 3.75 mL 2.8 mL  

0.5M Tris pH 6.8   1.25 mL 

Milli-Q water 3.5 mL 2.25 mL 3 mL 

SDS (10%) 75 μL 75 μL 50 μL 

Ammonium Persulfate 

(APS) (10%) 
50 μL 50 μL 50 μL 

TEMED 5 μL 5 μL 12.5 μL 

 

 

 

When the separating gel reagents were mixed, the solution was poured 

quickly into the gel cassette (Amersham Pharmacia Biotech, MiniVe, UK), 

leaving some space for stacking solution. In order to have a flat surface, a few 

drops of butanol was added carefully at the top of the gel and the gel was left 

to polymerize for 40 min. Stacking gel reagents were mixed leaving out APS 
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and TEMED until the gel was ready to be poured. Butanol was washed out 

before pouring the stacking gel solution. Since stacking gel polymerizes very 

quickly, the comb to form wells for loading was placed immediately after 

pouring the stacking gel on the separating gel avoiding making bubbles 

underneath the comb. The gel was left to polymerize for an aditional 20-30 

min.  

 

Cell suspensions taken at different time points during culture were collected in 

1.5 mL Eppendorf tubes and centrifuged (Eppendorf, MiniSpin, Germany) at 

13.4x103 rpm. The pellets were stored at 4°C until SDS-PAGE was performed. 

Then they were resuspended in TBS (pH 8) and mixed with sample buffer 

(3X) at a ratio of 4:1. Sample buffer (3X) was composed of 3mL of 0.5 M Tris 

(pH 6.8), 2.4 mL of glycerol, 4.8 mL of 10% SDS, 1.2 mL of 2-β-

mercaptoethanol and 15 μL of 2% Bromophenol Blue. The gel cassette was 

clamped into the electrophoresis apparatus and the buffer chambers were 

filled with 1X running buffer (also named as Laemmli buffer) (pH 8.3). 

Running buffer (5X) was composed of 15 g of Tris base, 72 g of glycine and 5 

g of SDS in 1 L of water.  The samples were boiled for 5 min and 5-7 μL of the 

samples were loaded in seperate wells of the stacking gel. The gels were run 

at 300V for about 2 h (Amersham pharmacia biotech, EPS301 Power Supply, 

UK). The gels were stained in Coomassie-Blue staining solution (0.1% 

Coomassie Blue, 10% acetic acid, 40% methanol) for overnight on a rocking 

shaker in slow mode (Heidolph, Duomax 1030, Germany). To eliminate 

unspesific binding of the stain, the gels were immersed in Coomassie-Blue 

destaining solution (10% acetic acid and 40% methanol) or in hot water for 

hours long on the shaker with several changes, until the gel becomes 

destained. The gels were monitored and gel photos were taken by “Gel logic 

100 Imaging System” (Kodak, USA) and analysed by “Kodak 1D Image 

Analysis Software”. 

 

2.2.4 Adsorption of ELP-RGD6 on pNIPAM Films  

 

ELP-RGD6 was a gift from Prof. J. Carlos Cabello-Rodríguez, University of 

Valladolid, Spain. The protein was dissolved in distilled water at a 

concentration of 0.1% (w/v). The solution was filter sterilized with 0.2 μ pore 
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sized syringe filters (Orange Scientific). Dry pNIPAM films were sterilized by 

UV for 30 min at each side. 100 μL of this solution was put on patterned and 

unpatterned pNIPAM films and left to dry in a laminar flow hood (LaminAir 

Safe 2000, Holten A/S, Denmark) for 2 days. 

 

2.2.5 Characterization of pNIPAM Films: 

 

2.2.5.1 Microscopic Examination 

 

2.2.5.1.1 Scanning Electron Microscopy (SEM) 

 

Patterned and unpatterned pNIPAM films were gold coated under vacuum and 

micrographs were taken with a Scanning Electron Microscope (SEM) (FEI 

QUANTA 400-F, Holland) in (Central Laboratory, METU).  

 

2.2.5.2 Water Contact Angle Measurement 

 

Unpatterned pNIPAM films were incubated at 29°C and 37°C for 48 h. The 

excess water on the surface of the films was absorbed by gently touching a 

tissue paper to the surface. Water contact angle measurements were 

performed using a goniometer (CAM 200, KSV Ltd, Finland). 

 

2.2.5.3 Swelling of pNIPAM Films versus Temperature 

 

The swelling behavior of polymer discs at various temperatures was studied 

by weighing the polymer discs at 20-37°C after equilibrating the samples in a 

temperature controlled water bath. At each particular temperature, samples 

were incubated in distilled water for 24 h, wiped with moistened filter paper to 

remove excess water from the sample surface, and weighed.  
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2.2.6 In vitro Studies: 

 

2.2.6.1 Isolation of Bone Marrow Stem Cells (BMSCs) from Rat 

 

Six week old male Sprague-Dawley rats weighing approximately 150 g were 

euthanized and disinfected with 1:1 (v/v) betadine-70% EtOH. Surgery took 

place in the laminar flow hood under aseptic conditions.  

 

The femur and tibia were excised and placed in 50 mL Falcon tube containing 

the harvest medium (100 units/mL penicillin, 100μg/mL streptomycin in high 

glucose Dulbecco’s Modified Eagle Medium (DMEM)). Bones were then 

transferred to sterile petri dishes with harvest medium. The soft tissue 

covering the bones was removed with the help of sterile surgical blades and 

metaphyseal ends of the femur and tibia were cut off to enable access to the 

bone marrow. The needle of a sterile syringe containing 4 mL of primary 

medium (high glucose DMEM supplemented with 100 units/mL penicillin, 100 

μg/mL streptomycin and 10% fetal calf serum (FCS)) was introduced into the 

femur and tibia midshafts and the bone marrow was put in 15 mL Falcon 

tubes. The bone marrow cell suspensions in 15 Falcon tubes were centrifuged 

for 5 min at 3000 rpm (RotaFix 32, Hettich Zentrifugen, Germany). The 

supernatants were discarded and the remaining pellets were resuspended 

with 2 mL of primary medium by the aid of 2 mL sterile pasteur pipettes. The 

cell suspensions were transferred to sterile T-75 tissue culture flasks and 8 

mL of primary medium was added into each flask. The flasks were placed into 

a carbon dioxide incubator (5% CO2, Sanyo MCO-17AIC, Japan) at 37°C and 

left undisturbed for 2 days to enable cell attachment. After 2 days, the 

medium was discarded and the cells were washed with phosphate buffered 

saline (PBS) (0.01M, pH 7.4). The medium was refreshed every two days. 

When the cells reached confluency, medium was discarded and the cells were 

washed 3 times with PBS (0.01M, pH 7.4) to remove FCS completely since it 

is known to inactivate trypsin. Trypsin-EDTA solution (0.05%, PBS diluted 

from 0.25% stock) was warmed to 37°C and 2 mL was added into the T-75 

flasks. Then the cells were incubated for 3-4 min in the carbon dioxide 

incubator at 37°C. The detachment of cells was checked by light microscope. 

Primary medium containing 10% FCS at least 3 times the volume of trypsin 
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solution (0.5%) was added into the flasks to terminate trypsin activity. The 

cell suspensions were centrifuged for 5 min at 3000 rpm. The supernatant 

was discarded and the cells were resuspended in FCS. The number of cells 

was determined with a nucleocounter (Chemometec A/S Nucleo Counter, 

Denmark). In brief, 100 μL of cell suspension was taken into a 1.5 mL 

eppendorf tube and pumped into a nucleocasette. Then the nucleocasette was 

placed in the nucleocounter and the instrument gave the number of dead cells 

per mL of cell suspension. Another 100 μL of cell suspension was taken into a 

1.5 mL eppendorf tube and mixed with Reagent A, which is a lysis buffer and 

then with Reagent B, which stabilizes the nucleus of the cells. This mixture 

was pumped into another nucleocasette and placed in the nucleocounter. This 

time the number given by the machine was the total cell number per mL of 

cell suspension and it was multiplied by the dilution factor, 3. The live cell 

number was calculated by subtracting the dead cell number from the total cell 

number and the number obtained was again multiplied by the volume (mL) of 

cell suspension.  The cells in FCS were distributed to 2 mL cryovials and 10% 

dimethyl sulfoxide (DMSO) was added into each cryovial. Cell number/vial did 

not exceed 1x106 cells/mL. Cryovials were placed into a freezing container 

(5100 Cryo 1°C Freezing Container, Nalgene, USA) immediately after the 

DMSO was added. The freezing container was left at -80°C in a deep freeze 

overnight. The following day, cryovials were transferred to the liquid nitrogen 

tank (-196°C). 

 

2.2.6.2 Culture of BMSCs 

 

Cryovials carrying frozen cells were taken out of the nitrogen tank and thawed 

quickly by holding in hand. The suspensions were diluted immediately by 

adding 8 mL primary medium for each 2 mL cell suspension and centrifuged 

at 3000 rpm for 5 min.  

 

The precipitated cells were resuspended in 0.5 mL of primary medium for 

each cryovial.  The cell number was determined with nucleocounter and the 

cells were seeded onto T-25 or T-75 flasks at a cell seeding density of 20x103 

cells/cm2 and were incubated for about 1 week until they became confluent 

refreshing the medium every 2 days.  
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2.2.6.3 Cell Seeding on Films 

 

The medium in the flasks was discarded and the cells were washed with PBS 

(0.01M, pH 7.4) 3 times. Warm (37°C) 0.05% trypsin-EDTA was added into 

each flask; 1 mL for T-25 and 2 mL for T-75 flasks. The cells were left in a 

carbon dioxide incubator at 37°C for 3-4 min. After their detachment was 

observed with the light microscope, primary medium containing 10% FCS at 

least 3 times the volume of trypsin solution (0.5%) was added into the flasks 

to terminate trypsin activity. The cells were centrifuged at 3000 rpm for 5 min 

to remove trypsin-EDTA containing medium and were resuspended again in 2 

mL of primary medium. The number of viable cells was determined by using 

the nucleocounter. Then 20x103 cells were seeded onto each sterile, dry film 

which were placed in 24-well tissue culture plates conatining 30 μL medium 

per well. The samples were incubated at 37°C for 3 h for attachment onto the 

films. After 3 h, 1 mL of differentiation medium composed of high glucose 

DMEM supplemented with 100 units/mL penicillin, 100 μg/mL streptomycin, 

4% amphotericin B, 10% FCS, 10 mM β-glycerophosphate, 50 μg/mL L-

ascorbic acid and 10 nM dexamethasone was added into each well. Medium in 

the well was changed every two days. 

 

2.2.6.4 Dynamic culturing of the BMSCs 

 

Tensile stress was applied to cells utilising the thermoresponsiveness of 

pNIPAM films. The swelling behavior of pNIPAM films synthesized with 

different solvent compositions and crosslinker percentages were studied. The 

polymer type used in the cell experiments consisted of AIBN (0.3 mol % w.r.t. 

NIPAM), NIPAM (50% w/v), EGDMA (1.2 mol % w.r.t. NIPAM) in 

isopropanol:water ratio of 1:1 (See Table 1). 

 

Tension was generated on the pNIPAM films by changing the temperature to 

29°C. The 24-well tissue culture plates carrying the cell seeded pNIPAM films 

were taken out of the carbon dioxide incubator at 37°C, placed into the 

laminar flow hood and the caps of the plates were left open for 5 min to 

achieve rapid temperature change. Then the caps were closed and the flasks 

were transferred to another carbon dioxide incubator maintained at 29°C (5% 
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CO2) (Heal force HF90, Shangai Lishen Scientific Equipment Co., Ltd., China). 

After incubating at 29°C for 10 min, the plates were again transferred to the 

previous carbon dioxide incubator that was maintained at 37°C. Ten cycles of 

temperature switches between 37 and 29°C were applied 5 days starting on 

the second day post cell seeding.  

 

2.2.6.5 BMSC Characterization on Films 

 

2.2.6.5.1 Cell Proliferation Assay with Alamar Blue™   

 

Alamar Blue assay was performed in order to investigate cell proliferation. 

Alamar Blue calibration curve was prepared for BMSC at passage 2 cultured in 

the primary medium. Different amounts (1x104, 2x104, 5x104, 7.5x104, 

10x104, 15x104, 17.5x104, 20x104) of BMSC were seeded on 24-well tissue 

culture plates in duplicate. The cells were incubated for 3 h for attachment on 

the TCP in carbon dioxide incubator at 37°C. After 3 h, the medium was 

removed and the wells were washed with PBS (10 mM, pH 7.4). 1 mL Alamar 

Blue solution (10% in colorless DMEM medium) was added into each well and 

the cells were incubated for 1 h in Alamar Blue solution in a carbon dioxide 

incubator at 37°C.  

 

After 1 h, 200 μL of the Alamar Blue solution from each well was transferred 

into a 96-well tissue culture plate in triplicate. Their absorbances were 

measured at 595 nm and 570 nm by the Elisa Plate Reader (Maxline Vmax®, 

Molecular Devices, USA). Percent reduction of the dye due to the metabolic 

activity of the cells was determined by using the recommendations absorption 

coefficients of the reduced and oxidized dye according to the manufacturer’s 

recommendation. A calibration curve of the reduction percentage of the dye 

versus viable cell number was constructed (Appendix A). 

 

Alamar Blue assay was performed on Days 1, 7, 14 and 21 of culture. Cell 

seeded and unseeded films were transferred into other 24-well tissue culture 

plates and washed with PBS (10mM, pH 7.4). Alamar Blue solution (1 mL, 

10% in colorless DMEM medium) was added onto each well and the cells were 

incubated for 1 h with Alamar Blue solution in a carbon dioxide incubator at 
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37°C. All solutions introduced to cells were preheated to 37°C in order to 

eliminate polymer swelling. 

 

After 1 h, 200 μL of the Alamar Blue solution from each well was added into a 

96-well tissue culture plate in triplicate and their absorbances were measured 

at 595 nm and 570 nm by the Elisa Plater Reader. The films without cells 

were used as blank controls. The films were washed twice with PBS (10 mM, 

pH 7.4) to remove the Alamar Blue to a large extent, and then they were 

transferred again to their original 24-well tissue culture well plates in which 

they were seeded. 1 mL of differentiation medium was added into each well 

for continuity of culture.  

 

The absorbance values were analyzed according to the manufacturer’s 

recommendation and the viable cell numbers were determined using the 

previously prepared calibration curve for BMSC (Appendix A).  

 

2.2.6.5.2 Assessment of Cell Differentiation with ALP Assay 

 

Alkaline phosphatase (ALP) assay was performed for cell seeded films, 

unseeded films and TCP cultured for 7, 14 and 21 days. At these time points, 

the medium inside the wells was removed and the films were washed with 

PBS (10 mM, pH 7.4). The films were cut and transferred into 15 mL Falcon 

tubes containing 500 μL of Tris Buffer (10 mM, pH 7.5, 0.1% Triton®X-100) to 

lyse the cells. They were stored at -20°C until the assay was performed. On 

the day of the assay, films in the lysis buffer were thawed in a carbon dioxide 

incubator at 37°C and then frozen at -20°C to ensure complete lysis and this 

cycle was repeated three times. Then each sample was sonicated for 5 min at 

25W (Ultrasonic Homogenizer, Cole Parmer, USA) on ice with 30 s on, 30 s off 

cycles, for a total of 9.5 min. Before sonication the Falcon tubes containing 

the films were incubated in a water bath at 37°C for 1 min in order to remove 

the fluid inside the films. After sonication the same method was used 

(incubation at 37°C in water bath) for 5 min and then the films were taken 

out of the solution. The cell lysates were then centrifuged at 2000 rpm for 10 

min. Supernatants of each sample were collected in different 1.5 mL 

eppendorf tubes. 10 μL of each supernatant was added to 240 μL of substrate 
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(p-nitrophenyl phosphate reconstituted with MgCl2-diethanolamine buffer 

supplied by Randox AP307 kit). The time dependent absorbance of the 

mixture was obtained at 405 nm every min for a total of twelve min by Elisa 

Plate Reader (readings were performed in duplicate). In case there was not a 

significant colorimetric change, the amount of supernatant used was 

increased to 100 μL and the volume of substrate was decreased to 150 μL. 

Graph of optical densities at 405 nm (OD405) vs. time was drawn for each 

sample and the slopes were calculated. The data was analyzed by using the 

slope of the calibration curve previously prepared with p-nitrophenol 

(Appendix B) to determine enzyme activity in units of nmol substrate 

converted to product/min. 

 

ALP activity (nmoles/min/sample) was calculated as follows: 

Net OD405 = OD405, seeded film – OD405, unseeded film 

Slope of Net OD405 vs. Time graph = Net OD405/ min for sample 

Slope of calibration curve = OD405 /nmoles of p-nitrophenol  

ALP Activity (nmoles/min/sample) = [(Net OD405/min for sample) / (OD405 

/nmoles of p-nitrophenol)] x (Total volume of lysis buffer (μL) / Amount 

added on the substrate (μL)) 

 

Also specific ALP activity (ALP activity/cell) was calculated for each sample 

dividing the total ALP activity per sample to the number of the cells 

determined by Alamar Blue assay on the day the ALP assay was performed.  

 

2.2.6.5.3 Determination of Mineralization 

 

2.2.6.5.3.1 Fluorescence Microscopy 

 

To detect mineralization on the films, differentiation medium containing 10 

μg/mL tetracycline instead of 100 units/mL penicillin and 100 μg/mL 

streptomycin was given to cells beginning from the 3rd day of culture. 

Tetracycline is known to bind to calcium and it is autofluorescent. On Day 21 

of culture, the cells were washed with PBS (10mM, pH 7.4), twice with 70% 

ethanol and fixed in 96% ethanol at 37°C for 6 h [124]. The ethanol was 

discarded and the films were left to dry wrapped in aluminium foil to keep in 
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dark. Mineralization was observed using a fluorescence microscope (Leica, 

DFC 300 FX, Germany) at 480 nm.  

 

2.2.6.5.3.2 SEM Examination 

 

On Day 21 of culture, cells were fixed with glutaraldehyde (2.5% 

glutaraldehyde in 0.1M, pH 7.4 sodium cacodylate buffer) for 2 h. After 

fixation, they were washed three times with cacodylate buffer with 30 min 

incubation periods to ensure complete removal of glutaraldehyde. All solutions 

introduced to cells were preheated to 37°C in order to eliminate polymer 

swelling. The samples were frozen at -80°C over night and freeze dried the 

following day, for 10 h under 4.5x10-2 mbar pressure. The dry samples were 

gold coated under vacuum and then examined by Scanning Electron 

microscope (SEM) (FEI QUANTA 400-F, Holland) (Central Laboratory, METU). 

The whole surfaces of the films were also scanned with X-ray photoelectron 

spectroscopy (XPS) and percentage of calcium and phosphate elements were 

found.  
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CHAPTER 3 

 

 

RESULTS AND DISCUSSION 
 

 

 

3.1 Characterization of Films 

 

3.1.1 Swelling of pNIPAM Films 

 

Temperature responsiveness studies were performed by weighing the polymer 

discs at different temperatures (20-37°C) and swelling behavior at different 

temperatures was studied (Fig. 4 a). The water content of polymer discs at 

different temperatures were calculated by subtracting the weight of dry 

polymer (Wd) from the weight of swollen polymer (Ws) after it was incubated 

at a particular temperature in water bath for 24 h ((Ws-Wd)/Wd (g water/ g 

dry gel)).  

 

All polymer groups showed similar swelling behavior between 37 and 34°C, 

but a sharp transition was observed between 34 and 31°C, which is the range 

in which the LCST (~32°C) of pNIPAM (Fig. 4). The only exception was 

polymer B. This was an expected result because of the relatively high 

crosslinking degree of polymer B. The crosslinker amount significantly 

affected the swelling behavior; increased crosslinker content of the reaction 

mixture resulted in decreased swelling behavior, especially below 31°C. At 

20°C, the water content of polymer A was twice that of polymer B, which was 

synthesized in the presence of crosslinker twice as much than in the synthesis 

of polymer A.  

 

The amount of initiator in the reaction mixture did not have effect on LCST 

and swelling behavior of the polymer A (Fig. 4 b).  
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Figure 3. Swelling of polymers (a) prepared with different solvent mixtures 
and crosslinker amounts:  
A = 0.5 g/mL NIPAM in 2-Propanol : water = 1:1 
B = 0.5 g/mL NIPAM in 2-Propanol : water = 1:1  
C = 0.5 g/mL NIPAM in 2-Propanol : water = 7:3  
D = 0.5 g/mL NIPAM in 2-Propanol : water = 9:1  
E = 0.5 g/mL NIPAM in 2-Propanol  
 
(b) Swelling of polymer A (AIBN: 1.36 mol % w.r.t NIPAM) and A* (AIBN: 0.3 
mol % w.r.t. NIPAM) 
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3.1.2 Water Contact Angle Measurement 

 
After an incubation of 48 h at 29°C and 37°C, water contact angles of 

unpatterned pNIPAM films (A*) were measured using a goniometer. The water 

contact angle was measured as 60.5° ± 5.3 at 37°C and 21.0° ± 5.7 at 29°C. 

This finding indicates a significant increase in hydrophilicity upon temperature 

decrease, and explains the reason of swelling at temperatures below the 

LCST. 

 

3.1.3 Calculation of Strain Applied to BMSCs Under Dynamic 

Conditions 

 

pNIPAM films were prepared ultimately to use as a cell carrier with a capacity 

of generating tension on BMSCs, seeded on the films, through temperature 

changes to study the effect of dynamic tensile stress on BMSCs (proliferation, 

alkaline phosphatase activity, mineralization). The conditions of dynamic 

culturing were presented in section 2.2.5.4. Briefly, pNIPAM films carrying the 

cells were incubated in a carbon dioxide incubator at 37°C, transferred to a 

laminar flow cabinet and the caps of the plates were left open for 5 min to 

achieve rapid cooling, then they were transferred to another carbon dioxide 

incubator maintained at 29°C and left there for 10 min. Finally the cells were 

again transferred to the original incubator at 37°C and kept there for 30 min.  

Ten cycles of temperature switches (37-29-37°C) were applied per day for 5 

days starting on the second day post cell seeding. Three unpatterned pNIPAM 

films were incubated under the same conditions in PBS (10 mM, pH 7.4) just 

to measure the elongation and contraction of films upon temperature 

changes. Strain was calculated by the equation below:  

     

0

0

0 L
LL

L
L −
=

Δ
=ε                     (3.1) 

where; ε is the strain in measured direction, L0 is the original length of the 

film, L is the current length of the film.  
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The percentage strain calculated using the 3 unpatterned pNIPAM films were 

varying between 2.2 and 10%, with an average of 5.9% (± 2.3%). The 

deviation in the elongation values might be the result of the not so precisely 

controlled temperature change which took place in the laminar flow hood. 

Also, it is important to note that polymers were not synthesized at the same 

date.  

Strain is a dimensionless unit. 1 strain is defined as 100% elongation. 0.1%, 

which is equivalent to 1000 μstrain, is in the physiological range in loaded 

bone tissue [125]. Strain magnitudes between 1000 and 10000 μstrain were 

reported to occur in the gap of fracture site of healing bone [126]. In 

comparison to these, the mechanical strain generated by pNIPAM films under 

the defined conditions in this study was in a high magnitude range. 

3.1.4 Microscopic Examination 

 

The surface characterization of the synthesized polymer films were done by 

microscopy. 

 

3.1.4.1 SEM 

 

SEM micrographs of cell seeding surfaces of patterned and unpatterned films 

(A*) presented in Figures 14 A and 14 B show that the pattern could be 

transferred with high fidelity onto the polymer. Figure 14 C shows the 

unpatterned film with the same chemistry with the others. 
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Figure 4. SEM images of pNIPAM films of type A* (a) Patterned pNIPAM film, 
from edge (x 2504), (b) patterned pNIPAM film, (x 1414), (c) unpatterned 
pNIPAM film, (x 2000). 
 

 

 

3.2 Determination of Protein Expression and Isolation of ELP-RGD8  

 

E. coli BL21 strain, which were transformed to carry ELP-RGD8 gene, was 

grown both in batch culture on a rotary shaker at 37°C and using fermentor. 

Gene expression was induced by addition of IPTG (0.8 mM) at an OD600 of 

0.8, which corresponds to the exponential growth phase. The cultures were 

incubated for an additional 3 h after induction. These steps were optimized by 

Prof. J. Carlos Rodríguez-Cabello’s group (BIOFORGE), at the University of 

Valladolid, Spain. 

 

a b 

c 
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SDS-PAGE was performed to determine the protein expression in E. coli. SDS-

PAGE is a technique used to separate proteins based on their size, which 

correlates with their molecular weights. SDS is an anionic detergent which 

denatures proteins and also applies a uniform negative electrical charge to 

each protein in proportion to its mass. Without SDS, proteins with similar 

molecular weights would migrate differently in the gel due to the differences 

in their mass to charge ratios. Therefore, SDS eliminates the effect of 

differences in shape so that chain length is the only determinant of the 

migration rate of proteins under the influence of an applied electric field. The 

rate of mobility in the gel depends on the pore size of gel, a property which 

can be modified by adjusting the concentration of acrylamide and the 

crosslinker, and the magnitude of the electric field applied. Proteins with lower 

molecular weights migrate more quickly through the pores of gel than those 

with higher molecular weights.  

 

For the isolation of ELP-RGD8, cell lysates were prepared by breaking cell 

membranes by sonication, releasing the proteins. PMSF, protease inactivator, 

was added prior to sonication to prevent ELP-RGD8 degradation.  The cell 

debris was precipitated by centrifugation and the supernatant containing the 

total soluble proteins was acidified to a pH value of 3. ELP-RGD8 was soluble 

at this pH and after centrifugation, the acidified supernatant carried the ELP-

RGD8 (Fig. 6 lane 2), whereas the precipitate did not (Fig. 6 lane 1).  
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Figure 5. SDS-PAGE image of E. coli proteins and ELP-RGD. Lane 1 shows 
precipitate and lane 2 shows supernatant of centrifugation at pH 3. Lane 3, 
the pellet of sonication; lane 4, O/N culture in fermentor 2 h after induction; 
lane 5, O/N culture in fermentor just after induction; lane 6, molecular marker 
(kDa).  
 

 

 

Later, the pH of the supernantant was increased to 10. This pH value is 

specific for ELP-RGD8 purification.  All lysine residues in the protein are 

neutralized at pH 10. Also, for an efficient precipitation of this protein at this 

pH value, the temperature needs to be above the transition temperature of 

the protein (~33°C) (Fig. 7 Lane 5).  
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Figure 6. SDS-PAGE image of E. coli proteins and ELP-RGD. Lane 5 shows 
precipitated ELP-RGD8 at pH 10, 70°C. Lane 1, molecular marker (kDa); lane 
2, TB batch culture just after induction; lane 3, TB batch culture 1 h after 
induction; lane 4, TB batch culture 3 h after induction. 
 

 

 

The precipitated ELP-RGD8 was dissolved in Milli-Q water by stirring at 4°C 

overnight. The protein solution was subjected to a series of cold (4°C)-hot 

(70°C) centrifugation, and the final pellet was freeze dried.  

 

3.3 In vitro Studies 

 

3.3.1 Cell Proliferation 

 

A calibration curve was constructed by seeding different amounts (1x104, 

2x104, 5x104, 7.5x104, 10x104, 15x104, 17.5x104, 20x104) of BMSCs at 

passage two on 24-well tissue culture plates in duplicate and determining the 

viable cell number with the Alamar Blue assay (Appendix A).  
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Figure 7. Cell proliferation on the pNIPAM films with different surface 
topography and chemistry under static and dynamic conditions, and on TCP. 
(St: static, Dy: dynamic, P: patterned, UP: unpatterned, P-ELP: patterned and 
ELP adsorbed, UP-ELP: unpatterned and ELP adsorbed) 
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Cell numbers were determined on Day 1, 7, 14 and 21 of culture on the 

samples of TCP, unpatterned and patterned pNIPAM films with and without 

adsorbed ELP, cultured under static and dynamic conditions (Fig. 8). 

 

Although the cell number seeded on each film and the control TCP was 

20x103, the 1st day poliferation results showed that the cell numbers on the 

samples varied between 8.8x103 which is on Dy P and 37x103 which is on Dy 

TCP. The low level of cell number can be explained by insufficient attachment 

but 2-fold high number cannot be explained by cell division because the time 

for cell division is 48-72 h [127]. This may be explained by an error that 

occured during cell dispensing. It is also important to note that on the first 

two days post cell seeding, all samples were cultured in static conditions (in 

incubator at 37°C, 5% CO2), so there should not have been a difference 

between the unpatterned and patterned pairs. However it can not be stated 

that the initial cell attachments occured randomly because consistently the 

cell numbers were more on ELP adsorbed films (St P-ELP, St UP-ELP, Dy P-

ELP, Dy UP-ELP) and on TCP (St TCP, Dy TCP) than films without any protein 

modification on the surface (St P, St UP, Dy P, Dy UP). This result was 

expected because the protein ELP used in this experiment was genetically 

modified to include the cell adhesive RGD (arginine-glycine-aspartic acid) 

amino acid sequences. This result also demonstrated that the adsorption of 

ELP on films was successful.  

 

One week results showed that the cell numbers on ELP adsorbed films were 

still higher than those on the films without ELP under static culture. However, 

when the cell number increase (%) in Figure 9 for day 1 to 7 is studied, a 

higher increase in cell number was seen on the St UP films than St P-ELP and 

St UP-ELP. The highest increase in cell number was on St TCP and the lowest 

increase was on St P at the end of the first week. It is interesting that 

although the 1st day cell number on St P films (18.9x103) was twice as much 

as the cell number on St UP films (9.1x103), increase in cell number on St P 

films was just 46% whereas increase in cell number on St UP films was 225%. 

This relatively low increase in cell number on St P films can be explained by 

the possibility of aggregate formation of cells and subsequently leaving the 

film surface. 
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Proliferation rate of the cells were expected to decrease with time due to 

increased osteogenic activity upon down regulation of cell proliferation [128]. 

The cells on St P-ELP and St UP-ELP followed this fashion and their 

proliferation rates decreased, on the other hand the cells on St P and St UP 

continued to increase their numbers. On day 14 of culture, the difference of 

cell numbers on the films was not significant, except St P-ELP and St UP-ELP.  

 

The cell numbers on the films of static group were almost the same on the 

21st day of culture and the highest cell number was observed on St TCP, being 

1.6 fold of those on St P-ELP, St UP-ELP, St P and St UP.  
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Figure 8. Increase in cell number when cultured under static conditions. 
 

 

 

The dynamic conditions were generated by cyclic temperature change 

between 37 and 29°C utilising the thermoresponsiveness of the pNIPAM films 

(altering their dimensions upon temperature change). Ten cycles of 

temperature switches were applied for 5 days beginning from the second day 

post-cell seeding between 37 and 29°C. Duration of these cycles was 15 min 

at 29°C and 30 min at 37°C.  
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The cell numbers on Dy P-ELP and St P-ELP was close and Dy UP-ELP was 

significantly higher than St UP-ELP at the end of the first week. However the 

cell numbers on the films that were not ELP adsorbed (Dy P, Dy UP) increased 

very few (Dy P: 30.5 %) or decreased (Dy UP: 15.1 %) (Fig. 10). This result 

was not surprising because when the temperature is below lower critical 

solution temperature (LCST), which is around 32°C, pNIPAM becomes 

hydrophilic leading to weakened cell attachment. Okano et al. (1990) [90] 

used this property to detach cells from temperature responsive culture dishes 

that were pNIPAM grafted and obtained cell sheets eliminating the need for 

trypsin or cell scrapers. On the other hand, at 37°C, which is above the LCST, 

cells can attach and proliferate on pNIPAM. Once more the effect of ELP on 

cell attachment was observed and it can be stated that the cells cultured 

under dynamic conditions retain themselves in attached form on the surface 

in the presence of ELP.    
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Figure 9. Increase in cell number when cultured under dynamic conditions. 
 

 

 

After the cells were subjected to dynamic loading for five days, they were 

kept under static conditions (in incubator at 37°C, 5% CO2) beginning from 

the 7th day of culture until 21st day.  
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After two weeks, the cell numbers on Dy P-ELP and Dy UP-ELP were very 

close to each other and also to all the groups under static culture except St 

TCP. The highest increase in cell number between day 7 and 14 was on Dy P 

films and the number of cells were not significantly lower than the number of 

cells on Dy UP-ELP films. The second highest increase in cell number was seen 

on Dy UP films for the same period of time but the cell number was still lower 

than the cell numbers on Dy P-ELP and Dy UP-ELP films.  

 

On the 21st day, still the cell number increase was higher on films without ELP 

(Dy P and Dy UP) than ELP adsorbed films (Dy P-ELP and Dy UP-ELP). The 

number of cells on Dy P-ELP, Dy UP-ELP and Dy P were almost the same and 

the number of cells on Dy UP is not significantly lower than Dy UP-ELP but 

significantly lower than Dy P-ELP and Dy P.  

 

The cells which were subjected to cyclic mechanical load as a result of cyclic 

temperature changes for five days continued to proliferate and reached 

comparable cell numbers to those on the films of static group. On the other 

hand although the 1st day cell number on Dy TCP was 1.5 fold of cell number 

on St TCP, at the end of the first week the cells on St TCP increased in 

number by 463% of the 1st day becoming 2.2 fold of cell number on Dy TCP. 

Moreover after the first week of culture, cell number on Dy TCP started to 

decrease and on the 21st day the lowest cell number was on Dy TCP (9.2x103) 

which is 0.2 fold of the cell number on Dy TCP at day 1 (37x103) and 0.04 fold 

of the cell number on St TCP at day 21 (250.9x103). The decrease in cell 

number on Dy TCP can be ascribed to the cyclic temperature changes. The 

cells on the films in dynamic group were also under the same conditions (10 

cycles of 29°C for 15 min and 37°C for 30 min a day, continued for 5 days 

post cell seeding) with the cells on TCP, therefore they were also subjected to 

the same adverse effects of temperature change. But the only difference 

between the cells on TCP and on films was the mechanical stress created by 

the films. So this finding shows that the effect of mechanical stress created 

under the conditions is the enhancement of proliferation of cells and 

compensation of the adverse effect of temperature change. 
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3.3.2 ALP Activity  

 
The cells on TCP and patterned and unpatterned films with and without 

adsorbed ELP were cultured for 1, 2 and 3 weeks under static and dynamic 

conditions to study the effect of pattern, surface chemistry and mechanical 

stress on the phenotype expression during osteogenic differentiation.  

 

During the active proliferation period, proteins related with cell cycle (e.g. 

histones) and cell growth (e.g. c-myc, c-fos, c-jun) are transcribed as well as 

proteins that form the ECM (type I collagen, fibronectin). Subsequently 

proliferation is down regulated and proteins associated with the bone cell 

phenotype are detected [128]. Alkaline phosphatase (ALP) is an early marker 

of the osteoblast differentiation [129]. It is an extracellular enzyme capable of 

splitting organic phosphate and thus it helps supply free phosphate necessary 

for the nucleation of hydroxyapatite crystals during the mineralization stage. 

ALP mRNA and enzyme activity can increase more than 10 fold in the cells 

[128]. 

 

ALP activity was determined on the 7th, 14th and 21st days of culture. ALP 

activity of cell lysates obtained from each sample was determined by 

spectrophotometric detection of the product of ALP activity at 405 nm every 

min for a total of twelve min at 25°C. The results were expressed as nmoles 

of substrate converted to product/min/sample, and nmoles of substrate 

converted to product/min/cell, which was named as specific ALP activity. 

 

Generally, in the first week with the static group, the ALP activities were 

found to be low and they reached a maximum for all the samples at day 14 

(Fig. 11) before decreasing again on Day 21. On Day 7 the highest ALP 

activity was obtained from St TCP followed by Dy TCP and this difference was 

probably due to the difference in the number of cells in the two wells (cell 

number on Dy TCP: 61.2x103, St TCP: 134.9x103).  

 

The highest increase in ALP activity between Day 7 and Day 14 was observed 

with St P in the static group (87.2 fold) approaching the values on St P-ELP, 
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St UP-ELP and St UP. This steep increase of ALP activity on St P in the second 

week was probably due to rapid cell number increase (Fig. 9). 

 

Day 7 ALP results obtained from dynamic group were generally lower than the 

static group, except St P. On day 14, the ALP activity on the films increased 

but decreased on the TCP of the dynamic group. Again the decrease of ALP 

activity on TCP can be ascribed to cell number decrease on Dy TCP in the 

second week and also to the low specific ALP activity of cells as seen on 

Figure 12. On day 21, the ALP activity on Dy P-ELP was significantly lower 

than the ALP activity on day 14 but for Dy UP-ELP and Dy UP, the differences 

in ALP activity between days 14 and 21 were not significant. The only 

exception among all the groups was Dy P, which had a significantly higher ALP 

activity on day 21 than day 14. 
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Figure 10. ALP activity on the polymeric films with different topography and 
surface chemistry cultured under static and dynamic conditions, and on TCP. 
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The specific ALP activities of Day 7 results were still lower than those of Day 

14 results in static and dynamic groups with the only exception of Dy TCP, 

which followed a decreasing ALP activity trend of being the highest on Day 7 

and the lowest on Day 21. However, when St TCP and Dy TCP were compared 

to each other, the specific ALP activity results at all time points were close to 

each other and the differences were not significant except on day 14.  
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Figure 11. Specific ALP activity on the polymeric films with different 
topography and surface chemistry under static and dynamic conditions, and 
on TCP. 
 

 

 

The dynamic culturing of cells was stopped at the end of Day 6 and cell 

culture was continued under static conditions. Specific ALP activities obtained 

for St P-ELP, St UP-ELP and St UP were much higher than their counterparts 

in the dynamic group on Day 7 (St P-ELP/Dy P-ELP: 4, St UP-ELP/Dy UP-ELP: 
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4.7, St UP/Dy UP: 7.2). There were two factors which could explain relatively 

low values of specific ALP activities obtained with the dynamic group; 1) 

decrease of temperature for short periods (29°C, 15 min) and, 2) tensile 

stress applied to the cells by the pNIPAM films during the temperature cycle. 

On the other hand the control groups (Dy TCP) did not receive any mechanical 

stress from the system and they were just exposed to cyclic temperature 

decreases. The similarity of specific ALP activities on St TCP, which were 

incubated at 37°C throughout the test, and Dy TCP suggests that temperature 

decrease has no noticable effect on the ALP activities of cells. In the 

literature, no information could be found about the relationship between 

temperature decrease and ALP activity change but in a study carried out by 

Lee et al., it was found that when pulp cells that were obtained from rat 

incisors cultured at 42°C for 30 min, ALP activity and expression increased 

significantly on day 7 and 14 compared with the control group that was 

maintained at 37°C [130]. Therefore it can be stated that the relative 

decrease in specific ALP activity observed in the dynamic group when 

compared to the static group was because of the tensile stress generated by 

the pNIPAM films under the defined conditions (cyclic temperature changes). 

Similar results have been reported by other groups working on effect of 

mechanical stress on osteoblast differentiation. Chen et al. applied strain 

mechanically to the level of 3% or 10% by surface elongation at 1 Hz for 8 or 

48 h on human mesenchymal stem cells [131]. They also added another 

experimental group which included cells that rested for 48 h after cessation of 

mechanical stretching for 48 h to explore if the effects of mechanical 

stretching were transient. They found that 3% stretching induced 

upregulation of ALP gene expression at 8 h significantly but downregulation at 

48 h and the value returned to the basal level of the unstretched control after 

the stretched cells had rested for 48 h. In the 10% stretched groups, the ALP 

mRNA level did not change significantly at 8 or 48 h but downregulated when 

the cells were left to relax for 48 h. Koike et al. used the bone marrow 

stromal cell line ST2 to investigate osteoblastic differentiation under 0.8%, 

5%, 10%, and 15% elongation at 1 Hz for 2 days in a medium supplemented 

with 0.2mM ascorbic acid 2-phosphate and 5mM β-glycerophosphate [132]. 

They found that ALP activities of cells stretched by 0.8% and 5% significantly 

increased at 24h but no significant change in ALP activity was observed in the 
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5% elongation group at 48h. On the contrary, ALP activities of the 10% and 

15% elongation groups significantly decreased. 

 

In section 3.1.3, the deformation of cells was found to be above the 

physiologic conditions (2.2-10%) in this study, it was therefore concluded that 

the system applied high magnitude mechanical stress to the cells. It seems 

that magnitude of the mechanical stress may result in different response of 

cells in terms of ALP activity; high magnitude seems to lower the ALP activity, 

whereas low magnitude increases it. 

 

In the second week, when cells were no longer cultured under dynamic 

conditions, increases in specific ALP activities were observed for all groups, 

except Dy TCP. The increases in specific ALP activities during the second week 

for the Dy P-ELP, Dy UP-ELP and Dy UP were much higher than their 

counterparts in the static group (St P-ELP, St UP-ELP and St UP), but still 

could not reach values comparable with theirs, except Dy-UP. This interesting 

finding might suggest that the ability of pNIPAM films to deliver mechanical 

stress differs when they are patterned and unpatterned, but it is not enough 

to explain the low specific ALP activity on Dy UP-ELP. It has been shown that 

ELP played a role in cell attachment leading to better cell-material interaction 

and retained the cells in attached form on the surface under dynamic 

conditions. Therefore, it can be stated that ELP adsorption enhanced the cell-

material communication and thus cells received more mechanical stress. On 

the other hand, when there was no ELP on the surface, the cell-material 

interaction was not as good because of the formation of a hydration layer 

between the cells and pNIPAM when the temperature was decreased, but 

despite this disadvantage, patterns on the surface of pNIPAM (2 μm wide 

ridges and 10 μm wide grooves, a depth of 20 μm) might have increased the 

cell-material interaction by retaining the cells in the grooves.  

 

On Day 21, the specific ALP activity results obtained from samples in the 

dynamic group decreased significantly when compared to Day 14 results, 

except Dy P. They were also comparable to the results obtained from their 

counterparts in the static group on the 21st day.  
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On Day 14 and 21, the specific ALP activity results obtained from all the 

pNIPAM films, both static and dynamic groups, were higher than those 

obtained from TCP suggest that pNIPAM films used in this study support the 

differentiation of BMSCs more than TCP. Smith et al. found that multipotent 

C2C12 cells exhibited ALP activity on RGD grafted p(NIPAM/NASI) surfaces 

significantly higher than those on TCP [17]. They did not observe a specific 

effect of RGD grafting on ALP activity of cells, and concluded that 

p(NIPAM/NASI) surfaces were more conductive for the expression of ALP. 

 

3.3.3 Microscopic Examination 

 

3.3.3.1 SEM 

 

Scanning electron micrographs of cells cultured under static and dynamic 

conditions on patterned and unpatterned pNIPAM films were obtained at the 

end of 2 and 3 week incubation.  

 

At the end of the second week, sheet-like cell layers were observed on the 

patterned films (Fig. 13). The cells were found to be attached on the side-

walls of the grooves or within the grooves but stretched between the walls 

perpendicular to the axis. No difference was observed in cell attachment and 

density between ELP-adsorbed (Fig. 13 a, c) and ELP-free films (Fig. 13 b, d). 

 

Day 21 micrographs of samples were similar to those of Day 14 in terms of 

cell attachment (Fig. 14). Cells were found within the grooves (Fig. 14 a, c, e, 

f) and stretched between the ridges (Fig. 14 b, d). 
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Figure 12. SEM micrographs of samples on Day 14 of culture. (a) Day 14 St 
P-ELP, (b) Day 14 St P, (c) Day 14 Dy P-ELP, (d) Day 14 Dy P. Magnification: 
x500 
 

 
 
 
 
 
 

a b 

c d 
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Figure 13. SEM micrographs of samples on Day 21 of culture. (a) Day 21 St 
P-ELP, x500 (b) Day 21 St P-ELP, x2000 (c) Day 21 St P, x500 (d) Day 21 St 
P, x2000 (e) Day 21 Dy P-ELP, x500 (f) Day 21 Dy P, x500 
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3.3.4 Mineralization 

 

To detect mineralization on the films (to stain calcium phosphate) tetracycline 

(10 μg/mL) was introduced to the differentiation medium containing instead 

of penicillin (100 units/mL) and streptomycin (100 μg/mL) beginning from the 

3rd day of culture. The pNIPAM films were fixed with 96% ethanol for 6 h. This 

step was carried out in a carbon dioxide incubator at 37°C to prevent the 

swelling of films, but this did not prevent them swelling in ethanol and they 

were swollen even at 37°C. The samples were examined with fluorescence 

microscopy at 480 nm (Fig. 15). Most of the samples had cracked due to 

swelling. Mineralization was observed over all the films. This finding, along 

with the ALP activity results (ALP activity of cells was higher on pNIPAM films 

than of those on TCP) suggests that pNIPAM can be considered as a good 

scaffold for enhanced osteogenic differentiation. 

 

 

 

 
 
Figure 14. Fluorescense microscopy image of sample Dy UP-ELP on Day 21, 
Magnification: x10 
 

 

 

XPS applied with scanning with scanning electron microscopy showed that 

calcium and phosphate were present on all of the cell-seeded samples which 

were fixed on Day 21. The ratio of calcium to phosphate was found to be 1.56 

± 0.21, which is close to the calcium/phosphate ratio of bone HAP (1.67). 
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CHAPTER 4 

 

 

CONCLUSION 
 

 

 

Stimuli-responsive (smart) polymers have a wide variety of applications in 

many areas of biotechnology. In this study, EGDMA crosslinked pNIPAM films 

were prepared by radical polymerization with UV in the presence of 

photoinitiator AIBN in the solvent isopropanol/water (1:1) with the ultimate 

goal of serving as intelligent cell carriers which can respond to temperature 

changes by altering their dimensions and apply mechanical stress on cells 

seeded onto them to achieve better healing. Thus, using the 

thermoresponsiveness of the polymer enabled the culturing of cells under 

dynamic conditions to study the effect of mechanical stress on the 

proliferation and differentiation of BMSCs into osteoblasts.  

 

Patterns were formed on the surface of the polymers by using silicon wafers 

with microridges and grooves (groove width: 2 micrometer, ridge width: 10 

micrometer, depth: 20 micrometer, wall angle: 54.7°) that were prepared by 

photolithography and wet etching techniques. The film surfaces were 

chemically modified by ELP-RGDx6 adsorption to promote cell adhesion with 

RGD amino acid sequences.    

 

Swelling studies showed that the pNIPAM films had a LCST in the same range 

as those found in literature (~32°C). Dynamic culturing temperatures were 

chosen as 29 and 37°C, which are below and above the LCST, respectively, to 

induce hydrophilic/hydrophobic changes in the polymer resulting in dimension 

changes. The mechanical strain measured was found to vary between 2.2 and 

10%, which is significantly more than the range observed with physiologically 

loaded bone.  

 

ELP-RGD6 adsorbed surfaces had more cell numbers on the first day of 

culture, when all the cells were under static conditions, which shows that the 
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ELP-RGD6 adsorption enhanced cell attachment. The importance of the cell 

attachment sequences in ELP-RGD6 became more apparent when the cells 

were cultured under dynamic conditions. It was found that hydrophilic 

property of the polymer at 29°C resulted in decrease of cell number; 

comparable cell numbers were found on ELP adsorbed films in the dynamic 

group (Dy P-ELP, Dy UP-ELP) and the static group (St P-ELP, St UP-ELP). 

However, when the cyclic loadings were stopped, ELP-free films of the 

dynamic group reached comparable cell numbers with all the films in the 

static group. This finding showed that ELP adsorption enhanced initial cell 

attachment, but had no effect in cell proliferation in long term culturing. For 

the dynamic culture of the cells where temperature decrease was used, ELP 

was more crucial to retain cells on the films in attached form. A significantly 

high cell number decrease was observed on TCP in which cells were subjected 

to temperature changes but could not receive mechanical stress. On the other 

hand, the cells grown in dynamic culture showed an increase in number 

similar to the static group. This finding suggested that increased proliferation 

was a result of mechanical stress.  

 

Specific ALP activity was used as a differentiation marker. They were highest 

on Day 14. Mechanical strain introduced to the cells in the dynamic group was 

found to decrease the specific ALP activity when compared with the cells in 

the static group. The only exception was Dy UP, which showed comparable 

specific ALP activity to those in static group. This finding suggested that the 

ability of pNIPAM films to transfer the mechanical stress on the cells differs 

when they are patterned and unpatterned.  ELP adsorption was also thought 

to play an important role in transfer of mechanical stress by enhancing the 

cell-material interaction based on the decreased specific ALP activity on Dy 

UP-ELP films similar to Dy P-ELP films. The specific ALP results obtained from 

all the pNIPAM films, both static and dynamic, were higher than those 

obtained from TCP on Day 14 and 21. Therefore, it can be stated that pNIPAM 

films used in this study suppports the differentiation of BMSCs more than TCP. 

 

To conclude, pNIPAM films were shown to be promising cell carriers to study 

the effect of mechanical stress on cells which can compete with the 

mechanical devices designed to load mechanical stress. ELP have proven 
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themselves as cell adhesion promoters, a property critical for tissue 

engineering. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 60 

 
REFERENCES 

 

 

 

1. Grikscheit T. C., Vacanti J. P., ‘The history and current status of tissue 

engineering: the future of pediatric surgery’, J Pediatr Surg, 37 (3), 277-288 

(2002). 

 

2. McIntire L. V., Greisler H. P., Griffith L., Johnson P. C., Mooney D. J., 

Mrksich M., Parenteau N. L., Smith D., WTEC Panel Report on Tissue 

Engineering Research (2002). 

 

3. Rotter N., Haisch A., Bücheler M., ‘Cartilage and bone tissue engineering 

for reconstructive head and neck surgery’, Eur Arch Otorhinolaryngol, 262 (7), 

539–545 (2005). 

 

4. Laurencin C. T., Ambrosio A. M. A., Borden M. D., Cooper J. A. Jr., ‘Tissue 

engineering: orthopedic applications’, Annu Rev Biomed Eng, 1, 19–46 

(1999). 

 

5.  Burg K. J. L., Porter S., Kellam J. F., ‘Biomaterial developments for bone 

tissue engineering’, Biomaterials, 22 (19), 2581-2593 (2001). 

 

6.  Rose F. R. A. J., Oreffo R. O. C., ‘Bone tissue engineering: hope vs hype’ 

Biochem Biophys Res Commun, 292 (1), 1–7 (2002). 

  

7. Ndreu A., Nikkola L., Ylikauppila H., Ashammakhi N., Hasirci V., 

‘Electrospun biodegradable nanofibrous mats for tissue engineering’, 

Nanomedicine 3 (1), 45-60 (2008). 

 

8. Hutmacher D. W., ‘Scaffolds in tissue engineering bone and cartilage’, 

Biomaterials 21 (24), 2529-2543 (2000). 

 



 61 

9. Kenar H., Köse G. T., Hasirci V., ‘Tissue engineering of bone on 

micropatterned biodegradable polyester films’, Biomaterials 27 (6), 885-895 

(2006). 

 
10. Vrana E., Builles N., Hindie M., Damour O., Aydinli A., Hasirci V., ‘Contact 

guidance enhances the quality of a tissue engineered corneal stroma’ J 

Biomed Mater Res A, 84 (2), 454-463 (2008). 

 
11. Zorlutuna P., Tezcaner A., Hasirci V., ‘A novel construct as a cell carrier 

for tissue engineering’, J Biomater Sci Polym Ed, 19 (3), 399-410 (2008). 

 

12. Jones J., Hench L. L., ‘Regeneration of trabecular bone using porous 

ceramics’, Curr Opin Solid State Mater Sci, 7 (4-5), 301–307 (2003).  

 

13. Gauthier O., Bouler J. M., Aguado E., Pilet P., Daculsi G., ‘Macroporous 

biphasic calcium phosphate ceramics: influence of macropore diameter and 

macroporosity percentage on bone ingrowth’, Biomaterials, 11 (3), 133–139 

(1998).  

 

14. Karageorgiou V., Kaplan D., ‘Porosity of 3D biomaterial scaffolds and 

osteogenesis’, Biomaterials, 26 (27), 5474-5491 (2005).  

 

15. Mastrogiacomo M., Scaglione S., Martinetti R., Dolcini L., Beltrame F., 

Cancedda R., Quarto R., ‘Role of scaffold internal structure on in vivo bone 

formation in macroporous calcium phosphate bioceramics’, Biomaterials, 27 

(17), 3230–3237 (2006). 

 

16.  Mitchell S. A., Poulsson A. H. C., Davidson M. R., Emmison N., Shard A. 

G., Bradley R. H., ‘Cellular attachment and spatial control of cells using micro-

patterned ultra-violet/ozone treatment in serum enriched media’, 

Biomaterials, 25 (18), 4079-4086 (2004). 

 

17. Smith E., Yang J., McGann L., Sebald W., Uludag H., ‘RGD-grafted 

thermoreversible polymers to facilitate attachment of BMP-2 responsive 

C2C12 cells’, Biomaterials, 26 (35),  7329–7338 (2005). 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B7GHW-4M936NX-3&_user=691352&_coverDate=03%2F31%2F2007&_alid=599491204&_rdoc=8&_fmt=full&_orig=search&_cdi=20189&_sort=d&_docanchor=&view=c&_ct=68&_acct=C000038698&_version=1&_urlVersion=0&_userid=691352&md5=ba14b5109499b6f514305571775a1248#bbib13#bbib13


 62 

18. So K., Fujibayashi S., Neo M., Anan Y., Ogawa T., Kokubo T., Nakamura 

T., ‘Accelerated degradation and improved bone-bonding ability of 

hydroxyapatite ceramics by the addition of glass’, Biomaterials, 27 (27), 

4738-4744 (2006). 

 

19. Li X., Feng Q., Cui F., ‘In vitro degradation of porous nano-

hydroxyapatite/collagen/PLLA scaffold reinforced by chitin fibres’, 

Mater Sci and Eng: C, 26 (4), 716-720 (2006). 

 

20. Luo Z. S., Cui F. Z., Feng Q. L., Li H. D., Zhu X. D., Spector M., ‘In vitro 

and in vivo evaluation of degradability of hydroxyapatite coatings synthesized 

by ion beam-assisted deposition’, Surf Coat Technol, 131 (1-3), 192-195 

(2000). 

 

21. Hasirci V., Lewandrowski K., Gresser J. D., Wise V., Trantolo D. J., 

‘Versatility of biodegradable biopolymers: degradability and an in vivo 

application’, J Biotechnol, 86 (2), 135-150 (2001). 

 

22. Spector M., ‘Biomaterials-based tissue engineering and regenerative 

medicine solutions to musculoskeletal problems’, Swiss Med Wkly, 136, 293–

301 (2006). 

 

23. Cheung H. Y., Lau K. T., Lu T. P., Hui D., ‘A critical review on polymer-

based bio-engineered materials for scaffold development’, Composites Part B: 

Eng, 38 (3), 291-300 (2007). 

 

24. Meinel L., Hofmann S., Karageorgiou V., Zichnew L., Langer R., Kaplan D., 

Vunjak-Novakovic G., ‘Engineering cartilage-like tissue using human 

mesenchymal stem cells and silk protein scaffolds’, Biotechnol Bioeng, 88, 

379-391 (2004). 

 

25. Meyer U., Büchter A., Wiesmann H. P., Joos U., Jones D. B., ‘Basic 

reactions of osteoblasts on structured material surfaces’, Eur Cell Mater, 9, 

39-49 (2005). 



 63 

26. Ashammakhi N., Ndreu A., Piras A. M., Nikkola L., Sindelar T., Ylikauppila 

H., Harlin A., Gomes M. E., Neves N. M., Chiellini E., Chiellini F., Hasirci V., 

Redl H., Reis R. L. ‘Biodegradable nanomats produced by electrospinning: 

expanding multifunctionality and potential for tissue engineering’, J Nanosci 

Nanotechnol, 7 (3), 862-882 (2007). 

 

27. Liu X., Ma P. X., ‘Polymeric scaffolds for bone tissue engineering’, Ann 

Biomed Eng, 32 (3), 477–486 (2004).  

 

28. Lee S. H., Shin H., ‘Matrices and scaffolds for delivery of bioactive 

molecules in bone and cartilage tissue engineering’, Advan Drug Del Rev, 59 

(4-5), 339-359 (2007).  

 

29. Habraken W. J. E. M., Wolke J. G. C., Jansen J. A., ‘Ceramic composites 

as matrices and scaffolds for drug delivery in tissue engineering’, Advan Drug 

Del Rev, 59 (4-5), 234–248 (2007). 

 

30. Hutmacher D. W., Schantz J. T., Lam C. X., Tan K. C., Lim T. C., ‘State of 

the art and future directions of scaffold-based bone engineering from a 

biomaterials perspective’,  J Tissue Eng Regen Med, 1 (4), 245–260 (2007). 

 

31. Mano J. F., Silva G. A., Azevedo H. S., Malafaya P. B., Sousa R. A., Silva 

S. S., Boesel L. F., Oliveira J. M., Santos T. C., Marques A. P., Neves N. M., 

Reis R. L., ‘Natural origin biodegradable systems in tissue engineering and 

regenerative medicine: present status and some moving trends’, J R Soc 

Interface, 4 (17), 999–1030 (2007). 

 

32. Rodríguez-Cabello J. C., Reguera J., Girotti A., Alonso M., Testera A. M., 

‘Developing functionality in elastin-like polymers by increasing their molecular 

complexity: the power of the genetic engineering approach’, Prog Polym Sci 

30 (11),  1119–1145, (2005). 

 

33. Tirrell D. A., ‘Mechanical properties of artificial protein matrices 

engineered for control of cell and tissue behavior’, Macromolecules, 36 (5), 

1553–1558 (2003). 



 64 

34. Girotti A., Reguera J., Rodríguez-Cabello J. C., Arias F. J., Alonso M., 

Testera A. M., ‘Design and bioproduction of a recombinant multi(bio)functional 

elastin-like protein polymer containing cell adhesion sequences for tissue 

engineering purposes’, J Mater Sci Mater Med, 15 (4), 479–484 (2004). 

 

35. Urry D. W., ‘Molecular machines: how motion and other functions of living 

organism can result from reversible chemical changes’, Angew Chem Int Edit 

Eng, 32 (6), 819–841 (1993). 

 

36. Seal B. R., Otero T. C., Panitch A., ‘Polymeric biomaterials for tissue and 

organ regeneration’, Mater Sci Eng, 34 (4-5), 147-230 (2001). 

 

37. Cancedda R., Dozin B., Giannoni P., R. Quarto, ‘Tissue engineering and 

cell therapy of cartilage and bone’, Matrix Biol, 22 (1), 81-91 (2003). 

 

38. Kim J., Kim I. S., Cho T. H., Lee K. B., Hwang S. J., Tae G., Noh I., Lee S. 

H., Park Y., Sun K., ‘Bone regeneration using hyaluronic acid-based hydrogel 

with bone morphogenic protein-2 and human mesenchymal stem cells’, 

Biomaterials, 28 (10), 1830-1837 (2007). 

 

39. Grigolo B., Roseti L., Fiorini M., Fini M., Giavaresi G., Aldini N. N., Giardino 

R., Facchini A., ‘Transplantation of chondrocytes seeded on a hyaluronan 

derivative (hyaff-11) into cartilage defects in rabbits’, Biomaterials 22 (17), 

2417–2424 (2001). 

 

40. Martinoa A. D., Sittingerc M., Risbud M. V., ‘Chitosan: A versatile 

biopolymer for orthopaedic tissue-engineering’, Biomaterials, 26 (30), 5983-

5990 (2005).  

 

41. Chen G. Q., Wu Q., ‘The application of polyhydroxyalkanoates as tissue 

engineering materials’, Biomaterials, 26, 6565–78 (2005). 

42. Köse G. T., Kenar H., Hasirci N., Hasirci V., ‘Macroporous poly(3-

hydroxybutyrate-co-3-hydroxyvalerate) matrices for bone tissue engineering’, 

Biomaterials, 24 (11), 1949-1958 (2003). 

 

http://www.sciencedirect.com/science/journal/01429612
http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%235558%232007%23999719989%23642639%23FLA%23&_cdi=5558&_pubType=J&view=c&_auth=y&_acct=C000038698&_version=1&_urlVersion=0&_userid=691352&md5=3c02a37b79a62bc6c7608950b6efdfc1
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TWB-4G5BJN0-1&_user=691352&_coverDate=10%2F31%2F2005&_alid=596121346&_rdoc=20&_fmt=full&_orig=search&_cdi=5558&_sort=d&_docanchor=&view=c&_ct=31&_acct=C000038698&_version=1&_urlVersion=0&_userid=691352&md5=9065c3e8743371b7f98be58e8483764b#aff1
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TWB-4G5BJN0-1&_user=691352&_coverDate=10%2F31%2F2005&_alid=596121346&_rdoc=20&_fmt=full&_orig=search&_cdi=5558&_sort=d&_docanchor=&view=c&_ct=31&_acct=C000038698&_version=1&_urlVersion=0&_userid=691352&md5=9065c3e8743371b7f98be58e8483764b#aff3
http://www.sciencedirect.com/science/journal/01429612
http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%235558%232005%23999739969%23598684%23FLA%23&_cdi=5558&_pubType=J&view=c&_auth=y&_acct=C000038698&_version=1&_urlVersion=0&_userid=691352&md5=6e905e658731aa236ba88561b9d215c5


 65 

43. Köse G. T., Korkusuz F., Korkusuz P., Purali N., Ozkul A., Hasirci V., ‘Bone 

generation on PHBV matrices: an in vitro study’, Biomaterials, 24 (27), 4999-

5007 (2003). 

 

44. Altman G. H., Diaz F., Jakuba C., Calabro T., Horan R. L., Chen J. S., Lu 

H., Richmond J,  Kaplan D. L., ‘Silk-based biomaterials’, Biomaterials, 24 (3), 

401–416 (2003). 

 

45. Rezwan K., Chen Q. Z., Blaker J. J., Boccaccini A. R., ‘Biodegradable and 

bioactive porous polymer/inorganic composite scaffolds for bone tissue 

engineering’, Biomaterials, 27 (18), 3413–3431 (2006). 

 

46. Dunn A. S., Campbell P. G., Marra K. G., ‘The influence of polymer blend 

composition on the degradation of polymer/hydroxyapatite biomaterials’, J 

Mater Sci Mater Med, 12 (8), 673–677 (2001). 

 

47. Rich J., Jaakkola T., Tirri T., Narhi T., Y-Urpo A., Seppala J., ‘In Vitro 

evaluation of poly(ε-caprolactone-co-DL-lactide)/bioactive glass composites’, 

Biomaterials, 23 (10), 43–2150 (2002). 

 

48. Yang S., Leong K. F., Du Z., Chua C. K., ‘The design of scaffolds for use in 

tissue engineering. Part I. Traditional factors’, Tissue Eng, 7 (6), 679–689 

(2001). 

 

49. Stallmann H. P., Faber C., Bronckers A. L. J. J., Nieuw Amerongen A. V., 

Wuisman P. I. J. M., ‘In vitro gentamycin release from commercially available 

calcium–phosphate bone substitutes influence of carrier type on duration of 

the release profile’, BMC Musculoskelet Disord, 7 (18), 1–8 (2006). 

50. Yuan H., Van Den Doel M., Li S., Van Blitterswijk C. A., De Groot K., De 

Bruijn J. D., ‘A comparison of the osteoinductive potential of two calcium 

phosphate ceramics implanted intramuscularly in goats’, J Mater Sci Mater 

Med, 13 (12), 1271–1275 (2002). 

 



 66 

51. Xu H. H. K., Weir M. D., Burguera E. F., Fraser A. M., ‘Injectable and 

macroporous calcium phosphate cement scaffold’, Biomaterials, 27 (24), 

4279-4287 (2006).  

 

52. Le Nihouannen D., Saffarzadeh A., Aguado E., Goyenvalle E., Gauthier O.,  

Moreau F., Pilet P., Spaethe R., Daculsi G., Layrolle P., ‘Osteogenic properties 

of calcium phosphate ceramics and fibrin glue based composites’, J Mater Sci 

Mater Med, 18 (2), 225–235 (2007). 

 

53. Vallet-Regí M., González-Calbet J. M., ‘Calcium phosphates as substitution 

of bone tissues’, Prog Solid State Chem, 32 (1-2), 1–31 (2004). 

 

54. Meseguer-Olmo L., Ros-Nicolás M. J., Clavel-Sainz M., Vicente-Ortega V., 

Alcaraz-Baños M., Lax-Pérez A., Arcos D., Ragel C. V., Vallet-Regí M., 

‘Biocompatibility and in vivo gentamicin release from bioactive sol-gel glass 

implants’, J Biomed Mater Res, 61 (3), 458-465 (2002). 

 

55. Ratier A., Gibson I. R., Best S. M., Freche M., Lacout J. L., Rodriguez F., 

‘Setting Characteristics and Mechanical Behaviour of a Calcium Phosphate 

Bone Cement Containing Tetracycline’, Biomaterials, 22 (9), 897-901 (2001). 

 

56. Yan X. X., Deng H. X., Huang X. H., Lu G. Q., Qiao S. Z., Zhao D. Y., Yu 

C.Z., ‘Mesoporous bioactive glasses. I. Synthesis and structural 

characterization’, J Non-Cryst Solids, 351 (40-42), 3209–3217 (2005). 

 

57. Vallet-Regí M., Arcos D., ‘Silicon substituted hydroxyapatites. A method to 

upgrade calcium phosphate based implants’, J Mater Chem, 15 (15), 1509–

1516 (2005). 

 

58. Kim H. M., ‘Ceramic bioactivity and related biomimetic strategy’, Curr 

Opin in Solid State Mater Sci, 7 (4-5), 289-299 (2003). 

 

59. Holand W., Volker Rheinberger V., Apel E., Hoen C., Holand M., Dommann 

A., Obrecht M., Mauth C., Graf-Hausner U., ‘Clinical applications of glass-

ceramics in dentistry’,  J Mater Sci Mater Med, 17 (11), 1037–1042 (2006). 



 67 

60. Kang S. W., Yang H. S., Seo S. W., Han D. K., Kim B. S., ‘Apatite-coated 

poly(lactic-co-glycolic acid) microspheres as an injectable scaffold for bone 

tissue engineering’, J Biomed Mater Res A, 85 (3), 747-756 (2008). 

 

61. Gil E. S., Hudson S. M., ‘Stimuli-reponsive polymers and their 

bioconjugates’, Prog Polym Sci, 29 (12), 1173–1222 (2004)  

 

62. Pinkrah V. T., Snowden M. J., Mitchell J. C., Seidel J., Chowdhry B. Z., 

Fern G. R., ‘Physicochemical properties of poly(N-isopropylacrylamide-co-4-

vinylpyridine) cationic polyelectrolyte colloidal microgels’, Langmuir, 19 (3), 

585–90 (2003) 

 

63. Peng T., Cheng Y. L., ‘PNIPAAm and PMAA co-grafted porous PE 

membranes: living radical co-grafting mechanism and multi-stimuli responsive 

permeability’, Polymer, 42 (5), 2091–2100 (2001). 

 

64. Bignotti F., Penco M., Sartore L., Peroni I., Mendichi R., Casolaro M., 

D’Amore A., ‘Synthesis, characterisation and solution behaviour of thermo- 

and pH-responsive polymers bearing L-leucine residues in the side chains’, 

Polymer, 41 (23), 8247–8256 (2000) 

 

65. Gan L. H., Gan Y. Y., Deen G. R., ‘Poly(N-acryloyl-N’-propylpiperazine): a 

new stimuli-responsive polymer’, Macromolecules, 33 (21), 7893–7897 

(2000) 

 

66. Kurisawa M., Yui N., ‘Dual-stimuli-responsive drug release from 

interpenetrating polymer network-structured hydrogels of gelatin and 

dextran’, J Control Release, 54 (2), 191–200 (1998). 

67. Jeong B., Gutowska A., ‘Lessons from nature: stimuliresponsive polymers 

and their biomedical applications’, Trends Biotechnol, 20 (7), 305–311 (2002) 

 

68. Anastase-Ravion S., Ding Z., Pelle A., Hoffman A.S., Letourneur D., ‘New 

antibody purification procedure using a thermally responsive poly(N-

isopropylacrylamide)-dextran derivative conjugate’, J Chromatogr B, 761 (2), 

247–254 (2001) 



 68 

69. Meyer D. E., Chilkoti A., ‘Purification of recombinant proteins by fusion 

with thermally-responsive polypeptides’, Nat Biotechnol 17 (11), 1112–1115 

(1999) 

 

70. Meyer D. E., Trabbic-Carlson K., Chilkoti A., ‘Protein purification by fusion 

with an environmentally responsive elastinlike polypeptide: effect of 

polypeptide length on the purification of thioredoxin’, Biotechnol Prog, 17 (4), 

720–728 (2001). 

 

71. Irvin D. J., Goods S. H., Whinnery L. L., ‘Direct measurement of extension 

and force in a conductive polymer gel actuator’, Chem Mater, 13 (4), 1143–

1145 (2001). 

 

72. Huber D. L., Manginell R. P., Samara M. A., Kim B., Bunker B. C., 

‘Programmed adsorption and release of proteins in a microfluidic device’ 

Science, 301 (5631), 352–354 (2003). 

 

73. Beebe D. J., Moore J. S., Bauer J. M., Yu Q., Liu R. H., Devadoss C., Jo B. 

H., ‘Functional hydrogel structures for autonomous flow control inside 

microfluidic channels’, Nature, 404 (6778), 588–590 (2000). 

 

74. Yokoyama M., ‘Gene delivery using temperature-responsive polymeric 

carriers’, Drug Discov Today, 7 (7), 426–432 (2002). 

 

75. Kurisawa M., Yokoyama M., Okano T., ‘Gene expression control by 

temperature with thermo-responsive polymeric gene carriers’, J Control 

Release, 69 (1), 127–137 (2000). 

 

76. Meyer D. E., Shin B. C., Kong G. A., Dewhirst M. W., Chilkoti A., ‘Drug 

targeting using thermally responsive polymers and local hyperthermia’, J 

Control Release, 74 (1-3), 213–224 (2001). 

 

77. Weidner J., ‘Drug targeting using thermally responsive polymers and local 

hyperthermia’ Drug Discov Today, 6 (23), 1239–1241 (2001). 

 



 69 

78. Kim I. S., Jeong Y. I., Cho C. S., Kim S. H., ‘Thermo-responsive 

selfassembled polymeric micelles for drug delivery in vitro’, Int J Pharm, 205 

(1-2),165–172 (2000). 

 

79. Kakoulides E. P., Smart J. D., Tsibouklis J., ‘Azocross-linked poly(acrylic 

acid) for colonic delivery and adhesion specificity: synthesis and 

characterization’, J Control Release,  52 (3), 291–300 (1998). 

 

80. Shantha K. L., Harding D. R. K., ‘Preparation and in-vitro evaluation of 

poly[N-vinyl-2-pyrrolidone-polyethylene glycol diacrylate]-chitosan 

interpolymeric pH-responsive hydrogels for oral drug delivery’, Int J Pharm, 

207 (1-2), 65–70 (2000). 

 

81. Meyer D. E., Kong G. A., Dewhirst M. W., Zalutsky M. R., Chilkoti A., 

‘Targeting a genetically engineered elastin-like polypeptide to solid tumors by 

local hyperthermia’, Cancer Res, 61 (4), 1548–1554 (2001). 

 

82. Okano T., Yamada N., Okuhara M., Sakai H., Sakurai Y., ‘Mechanism of 

cell detachment from temperature-modulated, hydrophilic–hydrophobic 

polymer surfaces’, Biomaterials, 16 (4), 297–303 (1995). 

 

83. Nakajima K., Honda S., Nakamura Y., Lopéz-Redondo F., Kohsaka S., 

Yamato M., Kikuchi A., Okano T., ‘Intact microglia are cultured and non-

invasively harvested without pathological activation using a novel cultured cell 

recovery method’, Biomaterials, 22 (11), 1213–1223 (2001). 

 

84. Yamato M., Konno C., Kushida A., Hirose M., Utsumi M., Kikuchi A., Okano 

T., ‘Release of adsorbed fibronectin from temperature-responsive culture 

surfaces requires cellular activity’, Biomaterials, 21 (10), 981–986 (2000). 

 

85. Nandkumar M. A., Yamato M., Kushida A., Konno C., Hirose M., Kikuchi 

A., Okano T., ‘Two-dimensional cell sheet manipulation of heterotypically co-

cultured lung cells utilizing temperature-responsive culture dishes results in 

long-term maintenance of differentiated epithelial cell functions’, Biomaterials, 

23 (4), 1121–1130 (2002). 



 70 

86. Uchida K., Sakai K., Ito E., Kwon O. H., Kikuchi A., Yamato M., Okano T., 

‘Temperature-dependent modulation of blood platelet movement and 

morphology on poly(N-isopropylacrylamide)- grafted surfaces’, Biomaterials, 

21 (9), 923–929 (2000). 

 

87. Ebara M., Yamato M., Hirose M., Aoyagi T., Kikuchi A., Sakai K., Okano T., 

‘Copolymerization of 2-carboxyisopropylacrylamide with N-

isopropylacrylamide accelerates cell detachment from grafted surfaces by 

reducing temperature’, Biomacromolecules, 4 (2), 344–349 (2003). 

 

88. Kim M. R., Jeong J. H., Park T. G., ‘Swelling Induced detachment of 

chondrocytes using RGD-modified poly(N-isopropylacrylamide) hydrogel 

beads’, Biotechnol Prog, 18 (3), 495–500 (2002). 

 

89. Shimizu T., Yamato M., Kikuchi A., Okano T., ‘Cell sheet engineering for 

myocardial tissue reconstruction’, Biomaterials, 24 (13), 2309-2316 (2003). 

 

90. Yamada N., Okano T., Sakai H., Karikusa F., Sawasaki Y., Sakurai Y., 

‘Thermo-responsive polymeric surfaces; control of attachment and 

detachment of cultured cells’, Macromol Rapid Commun, 11 (11), 571-576 

(1990). 

 

91. de las Heras Alarcon C., Pennadam S., Alexander C., ‘Stimuli responsive 

polymers for biomedical applications’, Chem Soc Rev, 34 (3), 276–285 

(2005). 

 

92. Yang J., Yamato M., Shimizu T., Sekine H., Ohashi K., Kanzaki M., Ohki 

T., Nishida K., Okano T., ‘Reconstruction of functional tissues with cell sheet 

engineering’, Biomaterials, 28 (34), 5033–5043 (2007). 

 

93. Shimizu T., Sekine H., Yang J., Isoi Y., Yamato M., Kikuchi A., Kobayashi 

E., Okano T., ‘Polysurgery of cell sheet grafts overcomes diffusion limits to 

produce thick, vascularized myocardial tissues’, FASEB J, 20 (6), 708–710 

(2006). 

 



 71 

94. Sekine H., Shimizu T., Kosaka S., Kobayashi E., Okano T., ‘Cardiomyocyte 

bridging between hearts and bioengineered myocardial tissues with 

mesenchymal transition of mesothelial cells’, J Heart Lung Transplant, 25 (3), 

324–332 (2006). 

 

95. Sekine H., Shimizu T., Yang J., Kobayashi E., Okano T., ‘Pulsatile 

myocardial tubes fabricated with cell sheet engineering’, Circulation, 114 (1 

Suppl.), I87–193 (2006). 

 

96. Nishida K., Yamato M., Hayashida Y., Watanabe K., Yamamoto K., Adachi 

E., Nagai S., Kikuchi A., Maeda N., Watanabe H., Okano T., Tano Y., ‘Corneal 

reconstruction with tissue-engineered cell sheets composed of autologous oral 

mucosal epithelium’, N Engl J Med, 351 (12), 1187–1196 (2004). 

 

97. Ohki T., Yamato M., Murakami D., Takagi R., Yang J., Namiki H., Okano 

T., Takasaki K., ‘Treatment of oesophageal ulcerations using endoscopic 

transplantation of tissue-engineered autologous oral mucosal epithelial cell 

sheets in a canine model’, Gut,  55 (12), 1704–1710 (2006). 

 

98. Kanzaki M., Yamato M., Hatakeyama H., Kohno C., Yang J., Umemoto T., 

Kikuchi A., Okano T., Onuki T., ‘Tissue engineered epithelial cell sheets for the 

creation of a bioartificial trachea’, Tissue Eng, 12 (5), 1275–83 (2006). 

99. Kikuchi A., Okano T., ‘Regeneration of tissues and organs – new technique 

opens up new possibilities for regenerative medicine through control of 

interaction of polymers with water -’, Nitto Denko Technical Report, 85 (42), 

44-48 (2004). 

 

100. Tsuda Y., Kikuchi A., Yamato M., Chen G., Okano T., ‘Heterotypic cell 

interactions on a dually patterned surface’, Biochem Biophys Res Commun, 

348 (3), 937–944 (2006). 

 

101. Drury J. L., Mooney D. J., ‘Hydrogels for tissue engineering: scaffold 

design variables and applications’, Biomaterials, 24 (24), 4337–4351 (2003). 

 



 72 

102. Stile R. A., Healy K. E., ‘Thermo-responsive peptide-modified hydrogels 

for tissue regeneration’, Biomacromolecules, 2 (1), 185-194 (2001). 

 

103. Kim S., Healy K. E., ‘Synthesis and characterization of injectable poly(N-

isopropylacrylamide-co-acrylic acid) hydrogels with proteolytically degradable 

cross-links’, Biomacromolecules, 4 (5), 1214-1223 (2003). 

 

104. Urry D. W., Luan C. H., Parker T. M., Gowda D. C., Prasad K. U., Reid M. 

C., Safavy A., ‘Temperature of polypeptide inverse temperature transition 

depends on mean residue hydrophobicity’, J Am Chem Soc, 113 (11), 4346-

4348 (1991). 

 

105. Betre H., Ong S. R., Guilak F., Chilkoti A., Fermor B., Setton L. A., 

‘Chondrocytic differentiation of human adipose-derived adult stem cells in 

elastin-like polypeptide’, Biomaterials, 27 (1), 91-99 (2006). 

 

106. McHale M. K., Setton L. A., Chilkoti A., ‘Synthesis and in vitro evaluation 

of enzymatically cross-linked elastin-like polypeptide gels for cartilaginous 

tissue repair’, Tissue Eng, 11 (11-12), 1768-1779 (2005). 

 

107. Wang J. H. C., Thampatty B. P., ‘An introductory review of cell 

mechanobiology’, Biomech Model Mechanobiol, 5 (1), 1–16 (2006). 

108. Vico L., Collet P., Guignandon A., Lafage-Proust M. H., Thomas T., 

Rehailia M., Alexandre C., ‘Effects of long-term microgravity exposure on 

cancellous and cortical weight-bearing bones of cosmonauts’, Lancet, 355 

(9215), 1607-1611 (2000). 

109. Leblanc A. D., Schneider V. S., Evans H. J., Engelbretson D. A., Krebs J. 

M., ‘Bone mineral loss and recovery after 17 weeks of bed rest’, J Bone Miner 

Res, 5 (8), 843-850 (1990).  

110. Simkin A., Ayalon J., Leichter I., ‘Increased trabecular bone density due 

to boneloading exercises in postmenopausal osteoporotic women’, Calcif 

Tissue Int, 40, 59-63 (1987). 



 73 

111. Knothe Tate M. L., Steck R., Forwood M. R., Niederer P., 'In vivo 

demonstration of load-induced fluid flow in the rat tibia and its potential 

implications for processes associated with functional adaptation', J Exp Biol, 

203 (pt 18), 2737-2745 (2000). 

112. Leclerc E., David B., Griscom L., Lepioufle B., Fujii T., Layrolle P., 

Legallaisa C., ‘Study of osteoblastic cells in a microfluidic environment’, 

Biomaterials, 27 (4),  586–595 (2006). 

 

113. Meyer U., Büchter A., Nazer N., Wiesmann H. P., ‘Design and 

performance of a bioreactor system for mechanically promoted three-

dimensional tissue engineering’, Br J Oral Maxillof Surg, 44 (2), 134–140 

(2006). 

114. Li J., Chen G., Zheng L., Luo S., Zhao Z., ‘Osteoblast cytoskeletal 

modulation in response to compressive stress at physiological levels’, Mol Cell 

Biochem, 304 (1-2), 45–52 (2007). 

115. Walboomers X. F., Elder S. E., Bumgardner J. D., Jansen J. A., 

‘Hydrodynamic compression of young and adult rat osteoblast-like cells on 

titanium fiber mesh’, J Biomed Mater Res A, 76 (1), 16-24 (2006) 

116. Masuda T., Takahashi I., Anada T., Arai F., Fukuda T., Takano-

Yamamoto T., Suzuki O., ‘Development of a cell culture system loading cyclic 

mechanical strain to chondrogenic cells’, J Biotechnol, 133 (2), 231–238 

(2008). 

117. Suzuki O., Takahashi I., Kamakura S., Sasaki K., Kamijo R., Nakamura 

M., Oda M., Uchida T., Arai F., Fukuda T., ‘Effects of mechanical stress and 

scaffold material on osteogenesis and chondrogenesis’, Micro-

NanoMechatronics and Human Science, 2005 IEEE International Symposium, 

235-240 (2005). 

 

 



 74 

118. Takahashi I., Onodera K., Sasano Y., Mizoguchi I., Bae J. W., Mitani H., 

Kagayama M., Mitani H., ‘Effect of stretching on gene expression of β1 

integrin and focal adhesion kinase and on chondrogenesis through cell-

extracellular matrix interactions’, Eur J Cell Biol, 82 (4), 182-192 (2003). 

119. Di Palma F., Douet M., Boachon C., Guignandon A., Peyroche S., Forest 

B., Alexandre C., Chamson A., Rattner A., ‘Physiological strains induce 

differentiation in human osteoblasts cultured on orthopaedic biomaterial’, 

Biomaterials, 24 (18),  3139–3151 (2003). 

120. Yun J. K., Anderson J. M., Ziats N. P., ‘Cyclic strain effects on human 

monocyte interactions with endothelial cells and extracellular matrix proteins’, 

Tissue Eng, 5 (1), 67-77 (1999) 

121. Kaspar D., Seidl W., Neidlinger-Wilke C., Beck A., Claes L., Ignatius A., 

‘Proliferation of human-derived osteoblast-like cells depends on the cycle 

number and frequency of uniaxial strain’, J Biomech, 35 (7), 873–880 (2002). 

122. Kim Y. S., Lim J. Y., Donahue H. J., Lowe T. L., ‘Thermoresponsive 

terpolymeric films applicable for osteoblastic cell growth and noninvasive cell 

sheet harvesting’,  Tissue Eng, 11 (1/2), 30-40 (2005). 

  

123. Brazel C. S., Peppas N. A., ‘Synthesis and Characterization of Thermo- 

and Chemomechanically Responsive Poly(N-isopropylacrylamide-co-

methacrylic acid) Hydrogels’, Macromolecules, 28 (24), 8016-8020 (1995). 

124. Matsuzaka K., Walboomers X. F., de Ruijter J. E., Jansen J. A., ‘The 

effect of poly-L-lactic acid with parallel surface micro groove on osteoblast-

like cells in vitro’, Biomaterials,  20 (14), 1293-1301 (1999). 

125. Ignatius A., Blessing H., Liedert A., Schmidt C., Neidlinger-Wilke C., 

Kaspar D., Friemert B., Claes L., ‘Tissue engineering of bone: effects of 

mechanical strain on osteoblastic cells in type I collagen matrices’, 

Biomaterials, 26 (3), 311–318 (2005). 



 75 

126. Claes L. E., Heigele C. A., Neidlinger-Wilke C., Kaspar D., Seidl W., 

Margevicius K. J., Augat P., ‘Effects of mechanical factors on the fracture 

healing process’, Clin Orthop Relat Res, 355 (Suppl), 132–147 (1998). 

127. Li-Bo Chen L. B., Xiao-Bing Jiang X. B., Lian Yang L., ‘Differentiation of 

rat marrow mesenchymal stem cells into pancreatic islet beta-cells’, World J 

Gastroenterol, 10 (20), 3016-3020 (2004). 

128. Stein G. S., Lian J. B., ‘Molecular Mechanisms mediating 

proliferation/differentiation interrelationships during progressive development 

of osteoblast phenotype’, Endocr Rev, 14 (4), 424-441 (1993).  

129. Ozawa S., Kasugai S., ‘Evaluation of implant materials (hydroxyapatite, 

glass-ceramics, titanium) in rat bone marrow stromal cell culture’, 

Biomaterials, 17 (1), 23–29 (1996). 

130. Lee M. W., Muramatsu T., Uekusa T., Lee J. H., Shimono M., ‘Heat stress 

induces alkaline phosphatase activity and heat shock protein 25 expression in 

cultured pulp cells’,  Int Endod J, 41 (2), 158–162 (2008). 

131. Chen Y. J., Huang C. H., Lee I. C., Lee Y. T., Chen M. H., Young T. H., 

‘Effects of cyclic mechanical stretching on the mRNA expression of 

tendon/ligament-related and osteoblast-specific genes in human 

mesenchymal stem cells’,  Connect Tissue Res, 49 (1), 7–14 (2008). 

132. Koike M., Shimokawa H., Kanno Z., Ohya K., Soma K., ‘Effects of 

mechanical strain on proliferation and differentiation of bone marrow stromal 

cell line ST2’, J Bone Miner Metab, 23 (3), 219–225 (2005). 

 

 

 



 76 

 
APPENDIX A 

 

 

CALIBRATION CURVE FOR PROLIFERATION 
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Figure 15.  Calibration curve for BMSCs prepared by Alamar Blue assay. 
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APPENDIX B 

 

 

ALP CALIBRATION CURVE  
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Figure 16. ALP calibration curve prepared with p-nitrophenol. 
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