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ABSTRACT

A LAGRANGEAN HEURISTIC FOR THE TWO-STAGE MODULAR
CAPACITATED FACILITY LOCATION PROBLEM

Seving, Selim
M.S., Department of Industrial Engineering
Supervisor: Assist. Prof. Dr. Sedef Meral

May 2008, 157 pages

In this study, a Lagrangean heuristic based on Lagrangean relaxation and subgradient
optimization is proposed for the two-stage modular capacitated facility location
problem. The objective is to minimize the cost of locating and operating plants and
warehouses, plus the cost of transporting goods at both echelons to satisfy the
demand of customers. The difference of our study from the two-stage capacitated
facility location problem is the existence of multiple capacity levels as a candidate
for each plant in the problem. Each capacity level has a minimum production
capacity which has to be satisfied to open the relevant capacity level. Obviously, a
single capacity level can be selected for an opened facility location. In the second
echelon, the warehouses are capacitated and have unique fixed and variable costs for

opening and operating. Multiple sourcing is allowed in both transportation echelons.

v



Firstly, we develop a mixed integer linear programming model for the two-stage
modular capacitated facility location problem. Then we develop a Lagrangean
heuristic to solve the problem efficiently. Our Lagrangean heuristic consists of three
main components: Lagrangean relaxation, subgradient optimization and a primal
heuristic. Lagrangean relaxation is employed for obtaining the lower bound,
subgradient optimization is used for updating the Lagrange multipliers at each
iteration, and finally a three-stage primal heuristic is created for generating the upper

bound solutions.

At the first stage of the upper bound heuristic, global feasibility of the plants and
warehouses is inspected and a greedy heuristic is executed, if there is a global
infeasibility. At the next stage, an allocation heuristic is used to assign customers to
warehouses and warehouses to plants sequentially. At the final stage of the upper
bound heuristic, local feasibilities of the plants are investigated and infeasible

capacity levels are adjusted if necessary.

In order to show the efficiency of the developed heuristic, we have tested our
heuristic on 280 problem instances generated randomly but systematically. The
results of the experiments show that the developed heuristic is efficient and effective

in terms of solution quality and computational effort especially for large instances.

Keywords: Network Design, Modular Capacity, Facility Location, Lagrangean

Relaxation, Lagrangean Heuristic, Subgradient Optimization.
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IKi SEVIYELI MODULER KAPASITELI TESIS YERLESIMI
PROBLEMI ICIN BIR LAGRANGE SEZGISELI

Seving, Selim
Yiiksek Lisans, Endiistri Miihendisligi Bolimii

Tez Yoneticisi: Y. Dog. Dr. Sedef Meral

Mayis 2008, 157 Sayfa

Bu c¢alismada iki seviyeli modiiler kapasiteli bir tesis yerlesim problemi igin
Lagrange gevsetimi ve altgradyan optimizasyonu tekniklerine dayanan bir Lagrange
sezgiseli sunulmustur. Problemin amaci, fabrika ve depolarin yerlestirilmesi ve
igletilmesi ile miisterilerin taleplerini karsilamak {izere {iriinlerin fabrikalardan
miisterilere tasinmasi sonucu ortaya ¢ikan maliyetlerin toplamini asgariye
indirmektir. Calismamizin kapasiteli tesis yerlesimi probleminden farki, her fabrika
yeri secenegi i¢in birden fazla kapasite seviyesi segeneginin bulunmasidir. Ayrica her
kapasite seviyesinin agilabilmesi i¢in saglanmasi gereken farkli bir minimum {iretim
kapasitesi bulunmaktadir. Agilacak bir tesis mekani igin sadece bir kapasite seviyesi
belirlenebilir. Problemin ikinci seviyesinde, fabrikalardan farkli olarak her depo i¢in

sadece tek bir kapasite seviyesi vardir ve agilip igletilebilmesi i¢in bir sabit ve
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degisken maliyete sahiptir. Her iki seviyede de ¢ok kaynakliliga izin verilmistir; yani
bir depo birden fazla fabrikadan iiriin alabilirken, ayn1 sekilde ikinci seviyedeki bir

miisterinin talebi, gerekli durumlarda birden fazla depodan karsilanabilir.

Bu ¢alismada s6z konusu iki seviyeli modiiler kapasiteli tesis yerlesimi problemi igin
bir karmasik tamsayili programlama modeli gelistirilmis ve sonra bu problemi etkin
bir sekilde ¢ozmek i¢in bir Lagrange sezgiseli Onerilmistir. Bu Lagrange sezgiseli;
Lagrange gevsetimi, altgradyan optimizasyonu ve lig-asamali bir ana sezgiselden
olusmaktadir. Lagrange sezgiselinde, Lagrange gevsetimi alt sinir1 bulmakta,
altgradyan optimizasyonu her yinelemede Lagrange carpanlarini giincellemekte ve

lic-agamal1 sezgisel de problemin {ist sinirin1 bulmakta kullanilir.

Ug-agamali sezgiselin birinci asamasinda, fabrikalarin ve depolarin toplam
fizibiliteler1 kontrol edilmekte ve toplam fizibilitenin olmamasi durumunda bir
acgdzlii sezgisel calistirlmaktadir. Ikinci asamada ise tahsis sezgiseli ©Once
miisterileri depolara ve sonra da depolari fabrikalara atamaktadir. Ust sinir
sezgiselinin son asamasinda, her fabrikanin lokal fizibilitesi kontrol edilmekte ve

yerel fizibilitesi olmayan fabrikalarin kapasite seviyelerini ayarlamaktadir.

Gelistirilen Lagrange sezgiselinin etkinligini gostermek i¢in rassal fakat sistematik
bir bi¢imde olusturulan 280 test problem Ornegi yaratildi ve sezgisel yaklasim bu
ornekler tiizerinde denendi. Deneylerin sonuglari, gelistirilen sezgiselin ¢oziim
kalitesi ve hesaplama giicliigli acisindan ozellikle biiyiik problemlerde verimli ve

etkili oldugunu gosterir.

Anahtar Kelimeler: Serim Tasarimi, Modiiler Kapasite, Tesis Yerlesimi, Lagrange

Sezgiseli, Lagrange Gevsetmesi, Altgradyan Optimizasyonu.
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CHAPTER 1

INTRODUCTION

In the "80s, rough competition in global markets, the introduction of products with
short life cycles, and high expectations of customers have forced companies to
discover new manufacturing technologies and strategies that allow them to reduce
costs and be more competitive in global markets. Strategies such as just-in-time
manufacturing, total quality management, kaizen and similar became popular and

many resources were invested in implementing these strategies.

In recent years as Simchi-Levi et al. (1999) stated, it has become clear that many
companies have reduced manufacturing costs as far as practically possible. Many of
these companies focus on and invest in their supply chains since they discovered that
creating an effective and efficient supply chain is the next step to increase the profit
and market share. Moreover, recent developments in communications and
transportation technologies have motivated the evolution of the supply chain. The
information and communication systems have been widely developed to provide
access to whole information at all stages of the supply chain. Finally, the design of
the new transportation modes and significant improvement of the existing ones

increase the complexity of the logistic systems.

A supply chain consists of suppliers, plants, warehouses, distribution centers,
retailers as well as the raw materials, work-in-process inventory, and finished goods
that flow between the facilities. In a supply chain, raw materials are obtained from

suppliers, and then goods are produced in one or more plants. Produced goods are



dispatched to warehouses for intermediate storage and finally served to retailers or
directly to the customers. In order to improve service quality as well as reduce costs,
more effective supply chain strategies and the interactions between the components

of the supply chain have to be taken into consideration.

Developing and implementing effective strategies in supply chain is called “supply
chain management” which focuses on the efficient integration of suppliers,
manufacturers, warehouses and stores and encompasses the firm’s activities at many
levels, from the strategic level through the tactical to the operational level. Simchi-
Levi et al. (1999) also define supply chain management as a set of approaches
utilized to effectively integrate suppliers, manufacturers, warehouses and stores, so
that merchandise is produced and distributed at the right quantities, to the right
locations, and at the right time, in order to minimize system-wide costs while

satisfying service level requirements.

The system-wide supply chain costs include the costs of movement, storage, and
management of all type of goods both within and between the components of the
supply chain. However, inefficient supply chains have additional costs besides these
costs stemming from superfluous inventories, excessive transported items, etc.
Therefore, there are many opportunities to cut down costs in the less efficient supply
chain. In fact, Simchi-Levi et al. (1999) state that experts believe that grocery
industry can save about 10% of its annual operating cost by using more efficient

supply chain strategies.

The supply chain is composed of a wide range of organizational activities from the
strategic to the operational level. The strategic level deals with the decisions that
have a long lasting effect on the firm, covers the decisions concerning the number,
location and the capacity of manufacturing plants and warehouses. Tactical level
deals with the decisions which have a lifetime of three months to a year, and covers
purchasing and production decisions, inventory policies and the decisions concerning
transportation. The operational level refers to the daily decisions such as scheduling,

routing and truck loading.



Distribution network design problem is one of the key issues of supply chain
management that deals with determining the best location and capacities of the
facilities and the distribution pattern of the goods in order to satisfy the demands of
the customers. Distribution network design focuses on the issues related to plant,
warehouse and retailer locations. The decisions given within the scope of the
distribution network problem are the combination of various strategic and tactical
level supply chain decisions, because their implications are significant and long
lasting. These decisions may be required due to the changes in the demand patterns,
new markets, or previously given wrong decisions. Incorrect decisions of such kind
may cause irreversible loss of the overall efficiency of the firm. Therefore, in order
to design an efficient strategic plan, it is necessary to plan carefully before making

these decisions.

The distribution network design problems are defined within the context of a number
of production plants that are supplying warehouses, which, in turn distribute these
goods to the customers based on their demand. It is required to select the best set of
plants and warehouses from a set of potential alternatives, and determine the amount
of product flow and inventory among them so that the objective of the company is

optimized.

The choice of the distribution network can be used to achieve a variety of supply
chain objectives ranging from low cost to high responsiveness. Distribution means
the movement, transfer, or disbursement of goods from the point of production to the
point of consumption. In supply chain networks, distribution occurs between every
pair of stages; raw materials and components are moved from suppliers to
manufacturers, and final products are moved from the manufacturer to the consumer.
Distribution 1s one of the critical points of the overall profitability of a firm, because

it directly affects both costs and responsiveness.

Beside the distribution decisions, using warehouses in distribution also affects the

costs and responsiveness of a company. According to Amiri (2006), an important



strategic issue related to the design and operation of a physical distribution network
in a supply chain system is the determination of the best sites for intermediate
stocking points, or warehouses. The use of warehouses provides a company with
flexibility to respond to the changes in the marketplace and can result in significant

cost savings due to economies of scale in transportation or shipping costs.

The network design problems belong to the strategic level of decision making. Jang
et al. (2002) mention that the decisions made for network design determine the
number and the locations of raw material suppliers, manufacturing plants and
intermediate inventory warehouses, select the distribution channel from suppliers to
customers and identify the transportation volume among the distributed facilities.
Numerous papers including Pirkul et al. (1998), Amiri (2006), and Jang et al. (2002)

have dealt with the design problem of supply chain networks.

In this study, we have considered the problem of designing a distribution network
that involves simultaneously determining both the best sites of the plants and the
distribution facilities and also the best strategy for distributing the products from the
plants to the warehouses and from the warehouses to the customers. A common
objective in designing such a distribution network is to determine the least cost of the
system such that all the demands of all the customers are satisfied. This usually
involves making trade-offs between the cost components of the system such as
opening and operating cost of the plants and warehouses as well as inbound and

outbound transportation costs.

Our aim in this study is to propose solution approaches for a special type of
distribution network design problem (DNDP), which is called the two stage modular
capacitated facility location problem (TSMCFLP). For this purpose, we have first
reviewed the literature covering both the exact and heuristic methods for similar
problems and proposed Lagrangean Relaxation and decomposition based heuristics
for our TSMCFLP environment. Finally, the proposed heuristics are tested on a
number of randomly generated test problems in several instances and the results are

compared to the optimal solutions of the problem.



The ensuring exposition is structured as follows:

In Chapter 2, a review of DNDP literature is presented and related work is classified

with respect to the capacity limitation, number of echelons and product variety.

In Chapter 3, the problem context is described and a mathematical formulation of the
TSMCFLP is presented. The parameters, decision variables and the constraints are
explained in detail. Main assumptions considered throughout the study are also

presented in this chapter.

In Chapter 4, the solution procedures for TSMCFLP are defined. Before that the
Lagrangean relaxation and the subgradient optimization methods and also the
implementation of these methods to our problem are discussed. Then the developed

heuristic solution for our TSMCFLP environment is explained in detail.

In Chapter 5, the experimental design, data generation for the test problems and the
problem instances are defined. The performance measures which have been used to
evaluate the quality of the solution are presented and the results of the experiments

are discussed.

Finally in Chapter 6, the conclusions are stated along with the suggestions for further

research.



CHAPTER 2

REVIEW OF THE RELATED LITERATURE

The distribution network design problem (DNDP) consists of determining the best
way to transfer goods from the supply to the demand points by minimizing the
overall costs through determining the structure of the network that is relevant to the
number and location of different types of facilities. DNDP has long been studied in
the operations research literature. DNDPs cover a broad range from the simple
single-commodity deterministic linear models to the multi-commodity nonlinear
stochastic versions. Solution approaches include heuristics, optimization, simulation
and some rather recent and innovative hybrid procedures which integrate multiple

solution approaches.

A great deal of research exists in developing the mathematical models and the exact
solution techniques for the DNDP which date back to 1970s. An important problem
class in this area is the facility location problem. In the broadest sense, the term
‘facility’ refers to plants, warehouses, distribution centers, retailer outlets, schools,
hospitals, etc. In this type of problem, a finite number of candidate location sites for
the facilities are given. The problem consists of opening facilities on the set of
candidate sites in such a way that the sum of the fixed costs of opening facilities and
the variable costs of satisfying the known customer demands from the facilities is

minimized.

The facility location problem can be classified into different subcategories depending

on the characteristics of the problem that is dealt with. In our literature review



section, the main focus is on the heuristics and the exact solutions; hence the
considerable work on the simulation studies is neglected. The distribution network

location models can be broadly classified according to:

i.  Distribution network (capacitated or uncapacitated)

ii. Number of echelons or levels (single or multiple)

1ii. Number of commodities (single or multiple)

iv. Cost structure (linear or nonlinear)

v. Planning horizon (static or dynamic)

vi. Pattern of demand (deterministic or stochastic)

vii. Additional side constraints (e.g. single-sourcing, choice from a candidate

subset, client matching)

In our literature review, we have classified the studies according to the first two
aspects listed above. However, the other five aspects of the problem are examined for
each study. Besides, the algorithms in these studies and their solution effectiveness

are discussed.

Previous research studies on the facility and demand allocation problems are well

surveyed by Brandeau and Chiu (1989) and Avella et al. (1998) among others.

Avella et al. (1998) present the state of art and the future trends in the location
analysis. The issues discussed include the modeling aspects in discrete location
theory, the influence of the distance function, the relation between discrete, network
and continuous location, heuristic techniques, the state of technology and undesirable

facility location.

Vidal & Goetschalckx (1997) present a literature review of strategic production-
distribution models. The review studies the optimization models and focuses on the
identification of the relevant factors to be included in the formulations, and the

specific characteristics of the solution methods.



Cornuejols et al. (1991) compare the approaches proposed in the literature for the
capacitated plant location problem. The comparison is based on the theoretical and

computational results, with the main emphasis placed on the relaxations.

2.1 Uncapacitated Facility Location Problems

In the uncapacitated facility location problem, each facility is assumed to have no
limit on its capacity. In this case, due to the uncapacitated structure of the model,
each demand point is supplied by only one facility that has the least transportation

cost.

2.1.1 Simple (Uncapacitated, Single-Echelon) Facility Location Problems
(SFLP)

The simplest case in the class of location models is SFLP that has a single
commodity with unlimited capacity, a single transportation echelon and linear costs.

This type of problem is based on the tradeoff between the fixed and variable costs.

Numerous approaches have been proposed for solving the SFLP. The earliest
attempts were through the use of heuristics. The Kuehn and Hamburger’s (1963)
“pairwise interchange or bump and shift routine” is a kind of generic standard against
which the following algorithms were compared. An early attempt to optimize the
SFLP is a branch-and-bound procedure proposed by Efroymson et al. (1966).
Khumawala (1972) has also made notable contributions to the efficient solution of
the SFLP principally in the development of the efficient branching rules for the

branch-and-bound procedure.

Erlenkotter (1978) reports impressive computational success with the SFLP using a
dual based procedure, called the dual ascent method which is based on linear
programming dual formulation of the problem. Instead of solving the problem
directly, Erlenkotter solves a condensed dual in which the dual of the SFLP is

reduced to a form involving only the multipliers corresponding to the constraints.



Dual ascent procedure starts with an initial dual solution and adjusts the multipliers
incrementally in such a way that complementary slackness violations are reduced.
The algorithm terminates when no further adjustments are possible. A simple ascent
and adjustment procedure proposes optimal dual solutions, which in turn often
correspond to optimal integer primal solutions. If not, a branch-and-bound procedure

completes the solution.

Van Roy and Erlenkotter (1982) formulate a particular dynamic facility location
problem, where time-staged establishment of facilities at different locations is
considered. Opening of new facilities and closing of existing ones is allowed. For
solving the problem, a branch-and-bound procedure incorporating a dual ascent
method that extends the approach developed by Erlenkotter (1978) for the static

uncapacitated problems is proposed.

Klincewicz et al. (1986) describe a branch-and-bound algorithm for a generalization
of the classic uncapacitated facility location problem (UFLP), in which customers
need multiple products. They call the new problem as the multi-product
uncapacitated facility location problem. The lower bound of the problem is obtained
by solving an uncapacitated facility location problem for each product using a dual
ascent procedure. They also describe a heuristic branch-and-bound procedure in
which the solutions to the subproblems at a given node may not generate a true lower
bound. Feasible solutions are generated based on the superposition and a drop

heuristic.

Klincewicz and Luss, (1987) propose a dual based algorithm for the multi-product
uncapacitated facility location problem. In this problem, in addition to the fixed cost
for opening a facility, there is an added fixed cost for handling a particular product.
The dual ascent and dual adjustment procedures generate a feasible solution to the
dual of the linear programming relaxation of the problem. This procedure can be
used either as a stand-alone heuristic or can be incorporated with a branch-and-bound

heuristic.



Guignard (1988) proposes a model to strengthen the separable Lagrangean relaxation
(equivalent to LP relaxation) of the uncapacitated plant location problem by using
Bender’s inequalities generated during a Lagrangean dual ascent procedure. These

inequalities can be used as knapsack constraints in the Lagrangean relaxation.

Korkel (1989) modifies the primal-dual version of Erkenkotter’s exact algorithm to
get an improved procedure which is called the multi-ascent method. Experiments
show that the new method significantly improves the empirically verified average

case efficiency of the dual ascent algorithm, especially for large-scale instances.

Klose (1998) presents a branch-and-bound algorithm for solving an uncapacitated
facility location problem with an aggregate capacity constraint. The algorithm is
based on Lagrangean relaxation and subgradient optimization for the lower bounds
and a simple Lagrangean heuristic to produce feasible solutions and penalties to

reduce the problem size.

Holmberg (1999) studies the exact solution methods for the uncapacitated facility
location problems where the transportation costs are nonlinear and convex. In order
to enable the formulation of the problem as an extended linear pure zero-one location
model, an exact linearization of the costs is made. In order to obtain an exact solution
of the problem, a dual ascent and adjustment method within a branch-and-bound
framework is used and this solution is compared to a modified version of Benders’

decomposition, which has been found to be the most efficient in this class.

Gourdin et al. (2000) study a particular type of the uncapacitated facility location
problem where two clients allocated to the same facility are matched. The allocation
cost is calculated as either the cost of a return trip between the facility and the client,
or the length of a tour containing the facility and the two clients. They develop a
greedy heuristic and a branch-and-cut algorithm, and describe several separation
algorithms. The computational results confirm the efficiency of the proposed

approach.
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Ghosh (2003) develops a neighborhood search heuristic based on tabu search and
complete local search with a memory to solve large instances of the uncapacitated

facility location problems.

Barahona and Chudak (2005) investigate the solution of large scale instances of the
capacitated and uncapacitated facility location problems. They develop a heuristic to
approximately solve the problems, providing a feasible solution together with a
lower bound on the optimum. The method is based on the volume algorithm to solve
the linear programming relaxation to the problem, together with the variants of
randomized rounding to obtain feasible solutions. The volume algorithm is an
extension of the subgradient method introduced by Held et al. (1974) to produce
primal solutions. However, this algorithm is devised for the simplest facility location

models of the single echelon, single commodity, uncapacitated models.

Resende and Werneck (2006) present a hybrid multi-start heuristic for the
uncapacitated facility location problem based on a very successful method that was
originally developed for the p-median problem by them. The results show that the
developed algorithm is the best algorithm found so far for obtaining near-optimal or
optimal solutions for the large, heterogeneous uncapacitated facility location

problem.

Beltran-Royo et al. (2007) develop a new approach for solving uncapacitated facility
location problems, based on semi-Lagrangean relaxation (SLR) that has been
introduced by Beltran et al. (2006) for solving p-median problems. They propose two
different approaches for solving the Lagrangean dual problem which are proximal
ACCPM and dual multi-ascent method, and show that using SLR has some
advantages for the uncapacitated facility location problems. They can solve many
unsolved problem instances in the literature; however it is proved that the algorithm
is not as efficient as the recent meta-heuristics like hybrid multi-start heuristic.
Nevertheless, it provides better solutions compared to the other Lagrangean based
heuristics developed for the uncapacitated facility location problems due to the

additional constraint.
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2.1.2 Uncapacitated, Multi-Echelon Facility Location Problems

An extension of the SFLP, in which two echelons of facilities are involved, is called
the two-echelon uncapacitated facility location problem. In this problem, the
deliveries are made from the first-echelon uncapacitated facilities such as plants or
depots to the customer via the second-echelon uncapacitated facilities such as the
warehouses. The objective is to determine the number and the location of facilities in
the echelons, the flow of products between the facilities in different echelons and the

assignment of the customers to the facilities in the second echelon.

Ro and Tcha (1984) develop a branch-and-bound algorithm for solving the two-level
uncapacitated facility location problem with some side constraints where
commodities are delivered from plants to customers either directly or indirectly via
warehouses. Side-constraints in this study represent the adjunct relationship of some
warehouses to a certain plant. The proposed branch-and-bound procedure employs a
set of new mechanisms for lower bounds and simplifications which are obtained by
exploiting the submodularity of the objective function and the special structure of the

side-constraints.

Narula and Ogbu (1985) formulate and solve an uncapacitated two-level hierarchical
location-allocation problem where a certain number of first and second level
facilities are to be located, with the objective of minimizing the total weighted travel
distance. The solution method is based on Lagrangean relaxation and subgradient

optimization.

It is interesting that there is not any research about the uncapacitated, multi-echelon
facility location problem between 1985 and 2007. Actually, in their two studies
Tragantalerngsak et al. (1997) and (2000) deal with a problem that has uncapacitated
plants, but they call their study as the two-echelon capacitated facility location
problem because of the existence of the capacitated warehouses. Therefore, these two
studies are reviewed within the multi-echelon capacitated facility location problem

class.
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Marin (2007) presents a mixed integer formulation based on twice indexed
transportation variables, which reduce the number of coefficients and variables in the
model and performs an analysis of several Lagrangean relaxations for the two-stage
uncapacitated facility location problem. The upper bound of the problem is obtained
by solving two separate uncapacitated facility location problems for each echelon in

every 10 iterations.

2.2 Capacitated Facility Location Problems (CPLP)

When each facility has a limited capacity, the problem is referred to as the
capacitated facility location problem. According to Cournuejols et al. (1991), the
state of art of solving the capacitated facility location problem is unknown in the
sense that no one has known a heuristic that always works well in practice. Part of
the reason is that the linear programming relaxation is known not to be tight both

theoretically and experimentally.

2.2.1 Capacitated, Single Echelon Facility Location Problems

In the last two decades, many papers have been proposed on solving the capacitated
plant location by using both approximate and exact solutions like Barcelo and
Casanovas (1984), Aikens (1985), and Beasley (1993). Researchers have worked on
developing both heuristic and exact algorithms. Exact algorithms can solve medium
sized problems within reasonable computer time while heuristics are required to

solve realistic sized problems.

Cournuejols et al. (1991) studied the relaxations of the capacitated facility location
problem from three angles: inequalities among the corresponding bounds,
computational experiments and complexity. Based on the computational results, they
recommend the Lagrangean relaxation based heuristics for solving large scales of

capacitated facility location problems.
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Beasley (1993) presents a framework for developing Lagrangean heuristics, based
upon Lagrangean relaxation and subgradient optimization for the location problems.
The computational results are given for four different location problems which are p-
median, uncapacitated warehouse location, capacitated warehouse location with and
without single-sourcing constraints. Beasley reports that the developed framework is

robust and gives good quality solutions for each of the location problems.

Lee (1993) studies multi-commodity, multi-type facility location problem with a
choice of various facility types where several different products are required by
customers. Each facility type offers a different capacity on a particular product with
different fixed set-up costs. In the formulation of the studied problem, in addition to
the fixed cost of opening a facility, there is an added fixed cost incurred if an open
facility is equipped to handle a particular product. The solution algorithm unifies
Benders’ decomposition and Lagrangean relaxation into a single framework that
involves successive solution to a Benders’ primal subproblem and a Lagrangean dual

subproblem.

Jayaraman (1998) studies the capacitated warehouse location problem that involves
locating a given number of capacitated warehouses in order to satisfy customer
demands for different products. A Lagrangean relaxation-based procedure is
developed for solving the logistics design problem. Then an effective heuristic
solution procedure that is used in conjunction with the Lagrangean problem is
discussed. The computational results on a wide variety of problems are reported and
these results indicate that the feasible solution procedure consistently provides stable
solutions to the problem. Moreover, the heuristic performs well in terms of both

approximations to optimality and solution times regardless of the problem structure.

Bornstein and Campelo (2004) propose an Add/Drop heuristic algorithm for the
capacitated facility location problem based on the dominance criteria between the
fixed and variable costs. The computational results show that it is able to tackle large

scale problems obtaining almost always near optimal solutions at very low cost.
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Klose and Gortz (2007) present a branch-and-price algorithm for the capacitated
facility location problem. The approach is based on relaxing the demand constraints
in a Lagrangean manner, and a hybrid mixture of subgradient optimization and a
weighted decomposition method is applied for solving the master problem.
Furthermore, the column generation procedure is embedded in a branch-and-price
algorithm for computing optimal solutions to the CFLP. The proposed branch-and-
price method usually performs better than a branch-and-cut method (CPLEX) based
on the LP relaxation of the original problem formulation as well as a branch-and-

bound method based on Lagrangean relaxation and subgradient optimization.

Sankaran (2007) presents two sets of results pertaining to the solution of capacitated
facility location problems that are large, especially with regard to the number of
customers. One set of results relates to customer aggregation, while another set of
results concerns the judicious selection of variable-upper-bounding (VUB)

constraints to include in the initial integer-programming formulation.

2.2.2 Single-Source, Capacitated Facility Location Model

The single-source, capacitated facility location problem is a special case of the
capacitated facility location problem in which it could only be supplied to each
customer from exactly one facility. This problem has been studied by several
authors, including Barcelo and Casanovas (1984), Sridharan (1993), Klincewicz and

Luss (1986) and Beasley (1993).

Barcelo and Casanovas (1984) propose a Lagrangean relaxation heuristic where the
demand constraints are dualized. The heuristic consists of two stages: plant selection
and assignment. The plant selection stage terminates when the total capacity of the
open plants just exceeds the total demand. Then either an interchange procedure is
adopted to select an improved list of open plants or the assignment stage starts where

the assignment of customers to open plants is performed by the regret heuristic.
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Barcelo et al. (1991) present an algorithm for the capacitated plant location problem
based on a formulation obtained by adding auxiliary variables, which couples the
allocation variables. By relaxing the coupling constraints two separate subproblems

are obtained, which is the basis for the variable splitting approach.

Sridharan (1993) considers the Lagrangean relaxations of the capacitated plant
location problem with the single-source constraints. The paper proposes a
Lagrangean heuristic, based on the Lagrangean relaxation, subgradient optimization

and a primal heuristic to obtain a feasible solution.

Cortinal and Captivo (2003) study a Lagrangean heuristic combined with search
methods, namely with local and tabu search to obtain the upperbound of the problem.
The computational results show that Lagrangean heuristic combined with tabu search
performs quite well, even for some large instances. Among the two heuristics
proposed, it is indicated that the tabu search performed better than the local search

for the test instances in the literature.

Chen and Ting (2007) develop a multiple ant colony system and a hybrid algorithm,
which combines Lagrangean heuristic and ant colony system to solve the single-
source capacitated facility location problem. The performances of the proposed
methods are compared with the other heuristic algorithms in the literature. The
computational results demonstrate that both proposed heuristics are effective and

efficient for the problem.

2.2.3 Multi-Echelon, Capacitated Facility Location

A further extension of the location problem is the two-echelon facility location
problem where a two-stage distribution process is considered with deliveries being
made from first echelon facilities to second echelon facilities and from there to
customers. The capacitated plant location problem has been solved by using both

approximate and exact methods.
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Many models in the literature that are concerned with material procurement,
production and distribution activities treat each stage of the supply chain as separate
systems and ignore complex supply chain interactions. In order to take more
interactions into account in the supply chain, the two-stage facility location problem
is further extended to incorporate vendors who have fixed the plant locations and
supply raw materials to the production plants. These types of models are referred as

the multi-echelon facility location problems in the literature.

For the first time in the literature, Geoffrion and Graves (1974) formulated a multi-
commodity, capacitated single-period facility location problem as a mixed integer
linear programming model. In order to solve the problem a solution technique based
on Benders’ decomposition is developed, implemented an applied to a real problem

instance.

Tragantalerngsak et al. (1997) study the two-echelon, single-source, capacitated
facility location problem. Each facility in the second echelon has a limited capacity
and can be supplied by only one facility in the first echelon, which is uncapacitated.
Similarly, in the second echelon each customer is serviced by only one facility. The
number and location of facilities at both echelons, and the allocation of customers to
the second echelon facilities are to be determined simultaneously. They propose a
mathematical model for this problem and consider six heuristics based on
Lagrangean relaxation for its solution. The subgradient optimization procedure is
employed for updating Lagrange multipliers. The results indicate that the
lowerbounds, which are obtained from the heuristic where the demand satisfaction
constraints are relaxed, have a duality gap which is one third of the one obtained
from the traditional linear programming relaxation. Also it is stated that the overall

solution time for the heuristics are less than the time to solve the LP relaxation.

Pirkul and Jayaraman (1998) present the distribution network strategic design
problem and discuss the transportation and distribution issues that exist for the multi-
commodity, multi-level logistics problem. They develop a mixed integer

programming model for the plant and warehouse location problem to minimize the
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total distribution and transportation costs and the fixed costs of opening and
operating plants and warehouses. They employ Lagrangean relaxation, subgradient
optimization and a primal heuristic to provide an effective feasible solution. The
combination of these methods, called as Lagrangean heuristics, performs well in
terms of tightness of the gap between the upper and lowerbound and provides good
quality results in terms of the computational time regardless of problem size and

structure.

Barbarosoglu and Ozgiir (1999) deal with the hierarchical design problem of an
integrated model of production and distribution functions in a two-echelon system. In
order to solve the large scale problem, the Lagrangean relaxation is used to decouple
the imbedded distribution and production subproblems, and subgradient optimization
is implemented to coordinate the information flow between these in a hierarchical
manner. A forward heuristic designed to solve the distribution subproblem is placed
in the top level to restrict the solution of the production subproblem in the lower

level.

Mazzola and Neebe (1999) present exact and heuristic solution procedures for the
multi-commodity capacitated facility location problem (MPCFLP) in which the
demand for a number of different product families must be supplied from a set of
facility sites and each site offers a choice of facility types exhibiting different
capacities. They define a branch-and-bound algorithm for the MPCFLP that utilizes
bounds formed by a Lagrangean relaxation which decomposes the problem into
uncapacitated facility location (UFL) subproblems and easily solvable 0-1 knapsack
subproblems. The UFL subproblems are solved by the dual-based procedure of
Erlenkotter. They also present a subgradient optimization based heuristic for the
MPCFLP. The heuristic is seen to be extremely effective, generating result for the
test problems that on average within 2% of optimality, and the branch-and-bound

algorithm is to successfully solve all test problems.

Klose (1999) proposes a heuristic solution procedure for the two-stage capacitated

facility location problem with single-source constraints. The approach is based on
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linear programming, and iteratively refines the LP formulation using valid
inequalities and facets for various relaxations of the problem. After each re-
optimization step, a feasible solution is obtained from the current fractional solution
using different heuristics to determine the set of open depots and simple re-
assignment procedures to find a feasible customer assignment. The computational
results show that this method is able to compute near-optimal solutions and useful
lowerbounds for the two-stage capacitated facility location problem in short

computation time, even in the case of larger problem instances.

Marin and Pelegrin (1999) formulate the two-stage capacitated facility location
problem in two different ways according to the decision variables used. In the first
model, twice-indexed transportation variables are employed whereas the three-
indexed variables are employed in the second model. They propose several
relaxations based on Lagrangean relaxation for each model type, and compare the
performance of these relaxations. For each relaxation, the subgradient optimization
and a simple primal heuristic for generating the upperbound is used. The results
show that the model with the twice-indexed variable is more appropriate for large-
scale instances and among the twice-indexed models, the model relaxing the demand

satisfaction constraints provides better solutions.

Hinojosa et al. (2000) deal with a facility location problem where the two-echelon
facilities are located by selecting the time periods. The model intends to minimize
the total cost for meeting the demands for all the products specified over the planning
horizon at various customer locations while satisfying the capacity requirements of
the production plants and intermediate warehouses. A Lagrangean relaxation is
proposed to solve the problem, with a heuristic procedure that generates the feasible
solutions for the original problem using the lowerbound results of the relaxed

problem.
Tragantalerngsak et al. (2000) consider a two-echelon capacitated facility location

problem with single-sourcing constraints at both echelons. This means each facility

in the second echelon has a limited capacity and can be supplied by only one facility
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in the first echelon. Each customer is also serviced by only one facility in the second
echelon. The number and the location of all facilities at both echelons and the
allocation of customers to the second level facilities are to be determined
simultaneously. A Lagrangean relaxation that employs branch-and-bound algorithm

is proposed for the solution which indicates that the method is efficient.

Klose (2000) develops a Lagrangean relax-and-cut procedure for the two-stage,
single-source, capacitated facility location problem. The approach is based on
relaxing the plant and depot capacity constraints; thus the resulting Lagrangean
subproblem is an aggregate capacitated plant location problem and can be solved
efficiently by the branch-and-bound method based on dual ascent and subgradient
optimization. Feasible solutions are obtained employing reassignment heuristics. The
lowerbound is further improved by adding valid inequalities, which cuts off a near-

optimal fractional solution of the primal master problem.

Pirkul and Jayaraman (2001) study an integrated logistics model for locating
production and distribution facilities in a multi-echelon, multi-commodity
environment. Both facility types are capacitated and the numbers of the opened
facilities for each level are fixed to a predefined value. Only at the third echelon
there is a single-sourcing constraint, besides multiple sourcing is allowed at the first
and second echelons. They provide a Lagrangean relaxation and subgradient

optimization based solution procedure.

Jang et al. (2002) propose a supply network with a global bill of material. The supply
network management system is made up of four different modules which are the
supply network optimization module, the planning module for production and
distribution operations from raw material suppliers to customers, the model
management module and finally the data management module. First two modules are
solved by Lagrangean relaxation and a genetic algorithm, respectively. In the supply
network optimization module, a model similar to the one that of Pirkul and

Jayaraman (2001) is introduced. Based on the solution, an integrated planning
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module for the production and distribution operations covering raw material

suppliers to customers is solved.

Elhedhli and Goffin (2005) propose a solution methodology for a production —
distribution problem that is based on Lagrangean relaxation, interior point methods
and branch-and-bound. Lagrangean relaxation is applied in a two-level hierarchy;
branch-and-bound is based on a Lagrangean lowerbound and column generation,
while interior point methods are used within a cutting plane context. Unlike the
classical Lagrangean approach, the study devises a two-level hierarchy of
Lagrangean relaxation, where the constraints are relaxed sequentially, rather than

simultaneously, provides better bounds for the original problem.

In the study of Dias et al. (2007), the dynamic location problem with opening,
closure and reopening of facilities is formulated and an efficient primal-dual heuristic
that computes both upper and lower limits to its optimal solution is described. The
problem considers the possibility of re-configuring any location more than once over
the planning horizon. A primal-dual heuristic based on the study of Erlenkotter
(1978) generates good-quality solutions, and calculates tight lowerbounds for the
optimal objective function value. A branch-and-bound procedure that enables to
optimize the problem is also described and tested over the same set of randomly

generated problems.

2.3 Multi-Capacitated Facility Location Problems

The modular capacitated facility location problem (MCFLP) is an extension of single
echelon CFLP in which multiple types of facilities with different sizes and operating
costs are considered as possible alternatives in every facility location. In other words,
in each plant facility there is more than one alternative that has different production
capacities and operating costs. But only one (or none) of these alternatives can be
installed to a facility location. The assumption of the traditional CFLP is one

alternative facility for a location and this actually restricts its practical application,
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because in real life, most of the time decision makers have possibility to choose

among the several types of technologies for a plant.

The MCFLP is a recently developed subject in logistics management and there are
only a few papers about this subject due to the complexity of the problem. The
MCEFLP is quite difficult to solve because there are more binary variables compared
to the CFLP. Broek et al. (2006) address to the multiple capacity levels only in
variable costs. It means that the fixed cost of establishing a facility to a location is the
equivalent for every possible capacity level which is called as the production
volumes between the breakthroughs in this class of problems, but the operating costs
differ at each breakthrough. Conversely, in the study of Amiri (2006), the fixed costs
are different while the variable costs are equivalent for each capacity level. Other
papers define different fixed and variable costs for each capacity level, as defined

also in our study.

The “modular capacity” term refers to the candidate capacity levels of a facility and
was introduced to the literature for the first time by Correia and Captivo (2003).
Their study was triggered by a problem that arose in the location of health care
facilities in Portugal. The authors realized that this kind of service should be built in
the modules of a certain size which had a determined number of structures like
consulting rooms, waiting rooms, and also staff rooms. It was wiser to install one or
more modules to the locations that had higher patient intensity. If two modules were
installed to a location, structures like rooms and machines had to be doubled, but it
was not necessary to double the entire staff. This assumption actually, explains the
increase in the fixed cost, and the decrease in the variable cost at higher capacity
levels. Practical use of this modular structure can be found either in public service
such as schools, waste management facilities, fire department structures or private

services like warehouses, manufacturing plants and distribution centers etc...
Holmberg and Ling (1997) are the first researchers to introduce the multiple capacity

concepts in logistic problems. They define their problem environments as the

“facility location problem with staircase costs”. The staircase cost function in the
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model is presented as a finite piecewise linear increasing function with a finite set of
discontinuities, each corresponding to a capacity level of a facility. In their study, a
Lagrangean heuristic based on Lagrangean relaxation, subgradient optimization and
a transportation problem heuristic which leads to the primal feasible solutions
developed in order to deal with this problem. In order to compare the results of the
Lagrangean heuristic, ADD heuristic developed by Jacobsen (1983), and improved
by Domschake and Drexl (1985), is modified to handle the multiple capacity levels.
The developed Lagrangean heuristic yields better results than the ADD heuristic and
proved itself as quite an efficient method for solving the facility location problem

with staircase costs.

Harkness and ReVelle (2002) developed an exact algorithm based on the study of
Homberg and Ling (1997) to solve the staircase cost facility location problem
(SCFLP). The exact algorithm consists of four parts which are Lagrangean relaxation
model for finding proper lowerbounds, subgradient optimization for updating the
Lagrange multipliers, problem reduction algorithm for fixing some facilities as open
or close based on the techniques presented in the study of Christofides and Beasley
(1983) and Beasley (1988), and a branch-and-bound algorithm for solving the
reduced problems. They pointed out that the number of alternative capacity levels for
a facility location is a key factor determining the performance of Lagrangean
heuristic on nearly all measures, whereas the number of alternative facility location
plays relatively a minor role. The cost parameters are presented as the other factor

significantly related to the performance of Lagrangean relaxation.

Correia and Captivo (2003) generalize the SCFLP presented by Holmberg and Ling
(1997) as the MCFLP and propose three different mixed integer linear programming
models to compare. They stated that solving the problem could be quite difficult due
to the large number of variables and constraints. Lagrangean relaxation is employed
to obtain an effective lowerbound while a primal feasible heuristic based on the study
of Beasley (1988) is adapted to obtain an upperbound. The Lagrange multipliers are
updated using subgradient optimization technique presented by Herd et al. (1974).

After the relaxation, emerging minimum cost flow problem is solved using the
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Relax-IV algorithm that is introduced by Bertsegas and Tseng (1994). As a result, the
presented heuristic leads to the satisfactory results regarding the average gaps and the

execution time.

Amiri (2006) addresses to the distribution network design problem in a supply chain
system that involves locating production plants and distribution warehouses and
determining the best strategy for distributing the product from the plants to the
warehouses and from the warehouses to customers. The goal is to select the optimum
numbers, locations and the capacities for plants and warehouses to open to satisfy all
customer demand at the minimum cost. In the study, all the plants and warehouses
are multi-capacitated and multiple sourcing is allowed between all the facilities and
customers. A mixed integer programming model and a Lagrangean relaxation with
subgradient optimization based heuristic is developed. The results of the experiments
indicate that the proposed heuristic procedure produces good feasible solutions when

compared to the optimal/best available ones.

Correia and Captivo (2006) extended their previous work by adding single-sourcing
constraints to the problem. Again a Lagrangean relaxation theme similar to their
earlier work is used to solve the problem. But this time due to the complexity of the
problem, even the relaxed subproblems are still very hard to solve. In order to obtain
a proper lowerbound, they also relax the integrality constraint of the subproblems
and solve the rest of the problem as in their previous work. A primal heuristic
enhanced by tabu search and local search is developed during Lagrangean heuristic

for obtaining good feasible solutions.

Broek et al. (2006) developed a model as an industrial application for the
slaughterhouse industry of Norway. They dealt with a specific problem instance that
Norwegian Meat Co-operative faced in determining the locations with production
capacities of slaughterhouses and in the allocation of animals in different farming
districts which had to be served. The authors observed that the slaughterhouse
industry had economies of scale in the production facilities. In order to reflect the

economies of scale in the model, they constructed their average cost function as
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convex and monotonically decreasing function with respect to the volume increase.
As mentioned before, no fixed cost for establishing a facility was introduced to the
model; all the computations were made by using the average cost function which is
convex, continuous but nonlinear. The continuous cost function allowed the authors
to employ a model which differs from the one that of Holmberg and Ling (1997) and
Correia and Captivo (2003). Since LP relaxation generated poor results, the authors
developed a Lagrangean heuristic containing Lagrangean relaxation, subgradient
optimization and a greedy heuristic for generating tight upper and lowerbound. The
heuristic is quite effective and results a 1% gap between the upper and lowerbound

for the Norwegian Meat Co-operative problem.
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CHAPTER 3

MATHEMATICAL FORMULATION OF THE TWO-STAGE MODULAR
CAPACITATED FACILITY LOCATION PROBLEM

In this chapter firstly we have defined the modular capacity concept and our problem
environment. Then we have discussed the assumptions of the model and presented a
mixed integer programming model that fits the problem environment and the given
assumptions. We have also explained the notations that are used during the study.

Finally the requirement of developing a heuristic for the model has been discussed.

3.1 Problem Environment

The problem considered here is an integrated logistics model for locating the
manufacturing and distribution facilities in a two-stage supply chain environment.
Designing such logistic systems requires two essential decisions, one strategic;
deciding where to locate the plants and warehouses, and the other is tactical;

determining the distribution pattern from the plants to the customers via warehouses.

In this study, we address the distribution network design problem in a supply chain
system that both locates the manufacturing plants and warehouses and determines the
best pattern for distributing the goods from the plants to the warehouses and from the
warehouses to the customers where multi-levels of capacities are available in the
manufacturing plants with different fixed opening costs and different variable

operating costs. The aim in our study is selecting the best set of plant and warehouse
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locations and plant capacity levels to install in order to satisfy the demand of the

customers in a way that the overall distribution network cost is minimized.

In the literature, it is found that in general, both the capacitated and the uncapacitated
facility location problems are solved by assigning a single fixed and/or a single
variable cost for each facility location without considering the annual production
amount of the facility. However, in our study, a new approach has been presented for
modeling the distribution network in which the fixed and variable costs of opening
the facilities are determined based on their opened capacity levels which are related
to the planned annual production of the facility. In our model, the fixed opening cost
increases non-monotonically where the production volume of the plant also increases
regardless of the opening cost. On the other hand, the variable cost of producing a
product decreases while the capacity level increases. The essential idea underlying
this model is to better represent the real-life nature of the problem. The total cost
function that encompasses the fixed opening and the variable operating cost has
staircase steps that progressively become longer and flatter as the candidate facility
increase in size denotes economies of scale as in real instances. An example of the

staircase cost function is illustrated in Figure 3.1 below.
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Figure 3.1 The Staircase Cost Function

27



in max

In Figure 3.1, v and v represent the possible minimum and maximum

production amounts of the plant, respectively in 1" capacity level. f, denotes the

fixed cost of opening the plant in " capacity level. As interpreted, the slope of this

line at any point, Ve, gives the unit operating cost at the relevant capacity. It should

be noted that as mentioned before, in general Av, > Av, | and Ve, < Ve, .

As can be seen in Figure 3.1, two capacity levels may overlap at certain points. It
means at some points, two different capacity levels can produce the same production
amount with different costs. Due to our objective, the capacity level with the higher
total cost is never to be selected, hence to make the problem simpler, the capacity
level that has higher costs can be prevented to produce at this volume. Thereby at
most, one cost value is assigned to a specific production amount. Additionally, some
production amounts may not be covered by any of the capacity levels. It means that a
specific plant may not produce in some production amounts. In this situation, no cost

function is available for these production amounts.

For better understandability, we can refer to the capacity levels as different
production technologies. For example, let us assume that, the first capacity level is a
universal lathe. Its fixed cost is low, but its variable cost is high and the production
capacity is limited. Then the second capacity level refers to a numerical control lathe.
Its fixed cost is higher than the universal lathe, but its variable cost is lower while its
production volume is larger. The last capacity level can be conceived as a CNC lathe.
Its fixed cost is the highest, its production amount is also the highest and the variable

cost 1s the lowest among the alternatives.

Due to the capacitated nature of the system, only one plant or warehouse cannot
satisfy the whole demand of customers. Consequently, at least two plants have to be
opened in order to satisfy the total demand. Actually, the minimum number of plants
required to be opened may be higher than two in many of the instances. This number
is determined by the system itself according to the number of candidate plant

locations and the maximum capacities in the problem. The warehouses are also
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capacitated, but differing from the plants, there is only one capacity level for a
warehouse. There is also a required number of opened warehouses in order to satisty
the overall demand. The warehouses have only two costs; one of them is the fixed
opening cost which represents the cost of installing a warehouse considering its
capacity and the other cost is the variable operating cost that is fixed and do not vary
according to the quantity of the goods handled in the warehouse. As the variable cost
does not vary according to the capacity of the warehouse, it could be incorporated
into the variable cost of transporting the goods from the warehouses to the

customers.

As a final note for cost determination, we assume that, the fixed cost of operating a
plant includes all the building, machinery, equipment and managerial costs to run a
plant at a specified capacity level. Similarly for the warehouses, the fixed costs are
assumed to include the building and some small-scale machinery such as crane,
forklift leasing or rent, storage management cost and personnel wages to run a
warehouse. Each facility has a different fixed and variable cost, which is reasonable

because the costs may differ according to the region of the location site.

At both echelons multiple sourcing is allowed in our problem environment. In other
words, the opened warehouses can be supplied from one or more facility. Similarly,
each customer can be served by multiple warehouses. Based on these characteristics
of the problem environment, the visual representation of the distribution network

studied is shown in Figure 3.2.

As stated in the literature review chapter, it is clear that the modular capacitated
facility location problems are modeled in single echelon environment. To our
knowledge, modular capacitated facility problem has never been studied in the two-
echelon environment in the literature so far. This study contributes to the literature
with a unique model that extends the modular capacitated facility location problem to
the two echelon environment, while introducing the capacitated warehouses to the

model.
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PLANTS WAREHOUSES CUSTOMERS

Figure 3.2 Graphical Representation of the Distribution Network

3.2 Model Formulation

In this section of our study, we present a mixed integer linear programming model
for the TSMCFLP. The main aim of the model is to select the production plants and
warehouses from a number of candidate sites and determine the capacity levels of the
opened plants so that the annual total cost of the distribution network is minimized.
The solution of our mixed integer model demonstrates the locations of the opened
plants and warehouses and the capacities of the opened plants. The results also
represent the distribution pattern of the network from the plants to the customers via

the warehouses.
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3.2.1 Assumptions of the Model

Main assumptions of the model are as follows:

1. The values of the following parameters are deterministic and known.
e Customer locations and their annual demands
e (andidate locations for plants and warehouses
e Unit transportation cost of distributing goods from plants to warehouses
e Unit transportation cost of distributing goods from warehouses to customers
e Unit production cost of plants in a specific capacity level
e Unit handling cost of warehouses
e Annual fixed cost of opening plants at a specific capacity level
e Annual fixed cost of opening a warehouse
e Maximum and minimum annual production amounts of each capacity of a
plant.
e Maximum annual handling capacity of warehouses
2. Each plant has more than one candidate capacity level that determines the
maximum and the minimum production amounts of the facility.
3. If a plant is opened in a specified capacity level, the distributed goods from this
plant to all the warehouses neither exceed the maximum capacity nor be less than
the minimum capacity of that capacity level.
4. Some capacity levels may overlap in some production amounts, and some
production amounts may not be covered by any of the capacity level of a plant. If
the capacity levels overlap, then the capacity level that has the lower total cost in
the relevant production amount is always preferred to the higher cost one.
5. Only one capacity level can be selected for a plant location.
6. Warehouses are capacitated, and if opened, limited amounts can be supplied by
and handled.
7. The number of the opened warehouses cannot exceed the pre-specified number
which is determined by the decision makers.

8. Demands of the customers must be fully satisfied.
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9.

10.

11.

12.

13.

14.

15.

A customer can be assigned to one or more opened warehouses (multiple-
sourcing).

An opened warehouse can be supplied by more than one opened plants (multiple-
sourcing).

It is not allowed to transport products among facilities of the same type. That is,
the shipment from a plant to another plant, the shipment from a warehouse to
another warehouse, and the shipment from a customer to another customer is not
permitted.

Reverse transportation is not allowed. In other words, warehouses can not supply
plants and similarly customers can not supply warehouses.

There is only one type of product. This may be either a real product or some kind
of an aggregated product covering more than one real product.

All the volumes of production, handling and transportation have to be integer
values. The fractional volumes of production, handling or transportation are not
allowed.

All minimum and maximum capacities of plants and warehouses have to be

integer.

3.2.2 Notation of the Model

The following notation is used in the mixed integer linear programming model of the

problem:

PLANTS — > WAREHOUSES — CUSTOMERS
Indices: i Jj k
Sets I J K

I : Set of potential plant locations

1={1,2,....i,...[1|}
J . Set of potential warehouse locations
J={12,.... j,....[J|}
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K : Set of customers

K={1,2,...,k,...,

K[}

L : Set of potential capacity levels

L}

L={1,2,...,1,...,

3.2.3 Parameters of the Model

The parameters of the mixed integer linear programming model are as follows:

d, : Annual demand of Customer k € K
b, : Unit transportation cost from Plant i € / to Warehouse jeJ

¢, - Unit transportation and handling cost from Warehouse jeJ to Customer

keK

e, : Unit production cost of Plant i € / at Level /e L

f; : Annual fixed cost of opening and operating Plant i € / at Level / € L
g, + Annual fixed cost of opening and operating Warehouse j € J

V™ : Maximum production capacity of Plant i € [ at Level / € L

vf,“j“ : Minimum production capacity of Plant i € I at Level /€ L

w; : Maximum handling capacity of Warchouse j e J

R_.. : Number of maximum allowed warehouses

3.2.4 Decision Variables of the Model

The decision variables that will be determined by the model are cited below:
x;; : Total annual amount supplied from Plant ie/ at Level /e L to Warchouse
jeJ

z, : Total annual amount supplied from Warehouse jeJ to Customer k € K
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1 If Plant i € [ is opened at Level / € L
= 0 Otherwise

1 If Warehouse j € J 1s opened
7o Otherwise
3.2.5 Original Problem

The TSMCFLP is formulated as a mixed integer linear programming problem below.

From now on, this model will be called as the “Original Problem” and denoted by P.

P=MinY 3 > (b +e)xy+ 2, 2 cuzy+ 22 fuda+ 2,87,

iel jeJ leL jeJ keK iel leL jeJ
Subject to
wa <v;q, VielandVlelL 1)
jeJ
vig, < inj, VielandVlelL (2)
jel
D> g, <1 Viel (3)
leL
2z Swr, vjieJ (4)
keK
Dz, =d, VkeK (5)
jel
Z r; <R . (6)
jel

Dz, <D > x, VjielJ (7)

keK iel leL

x; 20 and Integer Viel,VjeJ and VlelL 8)
z, 20 and Integer ViedJ and Vk e K 9)
q; € {0,1} Viel and Vle L (10)
r, €{0,1} Vjield (11)
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The objective of the model is to minimize the sum of the variable and the fixed cost
components simultaneously. The variable costs include the costs of producing the
goods, supplying goods from the plants to the warehouses, and from the warehouses
to the customers. Moreover, the fixed costs include the annual costs of opening the
plants and warehouses. Thus the objective function consists of four parts. The first
part is the total cost of production and first echelon transportation, the second part is
the total cost of handling and second echelon transportation, the third part is the total

cost of the opened plants and the last part is the total cost of the opened warehouses.

First two constraint sets are the capacity constraints of the plants. The constraint set
(1), also known as the capacity constraints, implies the following two situations: if a
plant is opened at a location with specific capacity level, the total supplied product
from this plant cannot exceed the maximum capacity and if a specific capacity level

is not opened, then no product can be supplied from there.

The constraint set (2) ensures that if a facility is opened at the locationi e/, the
facility has to provide products at least at the amount of the minimum requirement of
the corresponding capacity level /€ L. In the literature, this class of constraints is
called as the “minimum supply requirements” which are similar to the standard
capacity constraints, but work in the opposite direction. For an opened plant, while
the capacity constraints restraint the total amount supplied from above, minimum

supply requirements restraint the total amount supplied from below.

The constraint set (3) guarantees that more than one capacity level cannot be opened

in a possible plant location site.

The constraint set (4) is the capacity constraint set of the warehouses and ensures that
a warehouse can serve customers if and only if the warehouse is opened. The
constraint set (4) also restricts the amount of supplied goods from the opened

warehouses to the customers.
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The constraint set (5), which is also known as the demand satisfaction constraint,
ensures that the demand of each customer has to be satisfied completely by one or

more warehouses.

The constraint set (6) limits the number of the opened warehouses to a pre-specified
number. This constraint is inherited from the p-median location problems. Various
researchers including Cornuejols et al. (1977) and Pirkul and Jayaraman (1998) use

the same constraint in their studies.

The constraint set (7) is the flow conservation constraint set and works as a balancer
between the inbound and outbound amount of the warehouses. It guarantees that the
total amount of the shipped product from an opened warehouse to all the customers
cannot exceed the total amount of the supplied product of the same warehouse from
all of the plants. This constraint set can be written in equality form but it is written in
inequality form in order to decrease the complexity of the problem and increase the
efficiency of the branch-and-bound procedures. The solution of the problem is the
same in both equality and inequality forms, because the objective function always

enforces the right-hand side to be equal to the left-hand side of the constraint set.

The constraint sets (8) and (9) are the non-negativity and integrality constraints and
ensure that the amounts of the transported products from a plant at any capacity level

to a warehouse and from a warehouse to a customer are integer.

The constraint sets (10) and (11) enforce the integrity on the relevant binary

variables.

The “Original Problem”, P, is a mixed integer linear programming problem which is
an extension of the two-stage capacitated facility location problem (TSCFLP). The
TSCFLP is shown to be NP-Hard by Mirchandandi and Francis (1990). TSMCFLP is
an extension of TSCFLP and a special case of TSMCFLP, where there is only one
available capacity level, is also a TSCFLP. This reflection proves that our problem is

also NP-Hard. Thus; solving even the medium sized TSMCFLPs via using the
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commercial optimization packages is limited. In our experimental study, there are
problem instances with over 160,000 variables and 1200 constraints. It is unlikely
that commercial optimizers can find the optimal solution for instances like this in
reasonable computational effort. Even then, buying these solvers for commercial
purposes is expensive. Therefore, we have developed a heuristic method to solve
problem P based on a well-established Lagrangean relaxation technique which has
been employed successfully in various facility location problems in the studies by
Klincewicz and Luss (1986), Barcelo et al. (1991), Beasley (1993), Tragantalerngsak
et al. (1997), Pirkul and Jayaraman (1998), Mazzola and Neebe (1999), Jang et al.
(2002), Amiri (2006), Marin (2007) following the pioneered studies of Held and
Karp (1971) and Geoffrion (1972). Implementing Lagrangean relaxation requires
computationally less effort and yields reasonably effective results compared to the

optimal solution techniques.
In the following chapter, we discussed our Lagrangean relaxation based approach

together with the subgradient optimization algorithm to update the Lagrange

multipliers. The previous studies about these techniques are discussed as well.
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CHAPTER 4

SOLUTION APPROACH

Lagrangean heuristic is one of the today’s indispensable techniques to solve the
combinatorial optimization problems. The heuristic consists of three parts; the first
part is a technique to generate a lowerbound for the problem. The relaxed problem
always has an objective function value that is less than or equal to the optimal
solution of the original problem for the minimization case, because the Lagrangean
relaxation contains less constraints than the original problem. Therefore, Lagrangean
relaxation can be used (actually has to be used in order to call the procedure as

Lagrangean heuristic) to generate a lowerbound.

The second part of the heuristic is the primal heuristic that is used for obtaining a
proper upperbound. Most of the time, the relaxation of the original problem yields
infeasible solutions for the original problem; hence a primal heuristic based on the
results of the relaxed problem is needed to construct a feasible solution, that is, an
upperbound for the original problem. This upperbound heuristic is the distinctive part
of the Lagrangean heuristic from the exact Lagrangean relaxation methods in which,
an optimization technique such as branch-and-bound is used in order to close the gap
between the solution of the relaxed problem and the optimal solution of the original
problem. On the other hand, a primal heuristic is employed in Lagrangean heuristic

technique in order to find an acceptable solution in a reasonable computer effort.

The last part is the procedure to update the Lagrange multipliers. Calculating the

Lagrangean relaxation lowerbound requires the solution of a concave
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nondifferentiable optimization problem, because two decision variables which are
the Lagrange multipliers and the decision variables of the original problem are
multiplied in objective function. Solving this kind of problem may be harder than
solving the original problem. In order to deal with this complexity, the values of the
Lagrange multipliers are determined in a separate problem. It is quite difficult to find
the best values for the Lagrange multipliers so that the overall heuristic is repeated
until the efficient Lagrange multipliers are acquired. Various algorithms such as
subgradient optimization (Poljak 1969), volume algorithm (Barahona and Chudak,
2005), bundle methods (Crainic et al., 2001), multiplier adjustment methods
(Erlenkotter, 1978) can be used to update the Lagrange multipliers. In our study,
subgradient optimization has been selected for updating the Lagrange multipliers due

to the easy adaptation and less computational effort it requires.

These three components of the Lagrangean heuristic are explained in detail in the

following sections.

4.1 Lagrangean Relaxation

Lagrangean relaxation has been used as an effective algorithm for generating
lowerbounds for both exact algorithms like branch-and-bound and Lagrangean
heuristics for solving the combinatorial optimization problems. The Lagrangean
relaxation of a mixed integer problem is obtained through relaxing a set of
constraints from the original problem and attaching these constraints into the
objective function by penalizing them with proper weights. Agar and Salhi (1998)
express that the Lagrangean relaxation is inspired from an important observation that
the formulation of many hard combinatorial problems consists of an easy

problem that become difficult by the addition of a set of constraints.
The problem after relaxing the hard constraints is called as the relaxed problem

which is easier to solve due to its special structure. An illustration of the Lagrangean

relaxation is as follows:
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Z=Minimize Cx

Subject to
Ax=b (12)
Bx<d (13)
x >0 and integer (14)

where A and B are coefficient matrices and Constraint set (12) represents the easy
constraints and Constraint set (13) represents the hard constraints which make the
whole problem difficult to solve or decompose. If the hard constraints are somehow
excluded from the constraint set, the problem becomes much more easier to solve.
The Lagrangean relaxation works exactly this way. The hard constraints are
penalized with Lagrange multipliers, 4 >0, and added to the objective function as

follows:

Z,, = Minimize Cx + /1(Bx - a’)

Subject to
Ax=b (12)
x 2 0 and integer (14)
120 (15)

The optimal objective value of the Lagrangean relaxation problem with the optimal
set of Lagrange multipliers provides a lowerbound for the optimal solution to the
original minimization problem. It is a lowerbound, because some constraints of the
original problem are omitted from the constraint set that gives rise to the enlargement

of the feasible region.
4.1.1 Issues of Lagrangean Relaxation
According to Beasley (1995), before reaching a proper and efficient lowerbound

using Lagrangean relaxation, there are two major issues that have to be dealt with.

These issues can be categorized as:
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1. Tactical Issue: How will the optimal Lagrangean multiplier values that give

the maximum objective function value of the relaxed problem be found?

2. Strategic Issue: Which sets of constraints should be chosen to relax for the

best lowerbound?
4.1.1.1 Tactical Issue of Lagrangean Relaxation

Fisher (1981) emphasizes that the objective function of a Lagrangean relaxation for a
mixed integer programming problem is differentiable almost every where, but it is
generally nondifferentiable at the optimal point. Hence, to be able to find a near-
optimal solution, the problem of finding the optimal values of the Lagrange
multipliers has to be detached from the relaxed problem and be solved as a separate
problem. The aim of the new problem is finding the best Lagrange multipliers for the
Lagrangean relaxation problem that maximizes its objective function value. This
problem is called as the Lagrangean dual problem. In our illustration, the Lagrangean

dual problem is formulated as follows:
D _ t
2" = Max(Z,,(2")

where Z,, is the Lagrangean relaxation problem with given (known) x variables

which is also called as oracle. Tragantalerngsak et al. (1997) express that to solve the
Lagrangean dual problem, standard ascent methods based on the gradients of the
problem cannot be employed due to the nondifferentiability of the problem.
However, there are a lot of alternatives to update the Lagrange multipliers that use
the subgradients instead of gradients, such as subgradient optimization, volume
algorithm, bundle methods, steepest ascent methods and multiplier adjustment

methods.

Subgradient optimization is an iterative technique which is as an extension of the
gradient optimization developed to solve the nondifferentiable functions. As stated in

Fumero (2001), although many other techniques with stronger convergence
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properties have been developed, the subgradient optimization and its variants seem to
have wider acceptability among researchers and continue to remain as one of the
most effective and useful techniques for solving the dual problems, especially when
large scale applications are considered. Subgradient optimization used in Lagrangean
heuristics is so common that quite a few people believe that the subgradient
optimization is a mutual part of the Lagrangean relaxation algorithm. The wide
employment of the subgradient optimization in Lagrangean relaxation is due to the

simplicity of the algorithm’s structure.

More recent algorithms provide outstanding theoretical convergence performances,
but they cannot carry their theoretical convergence results into real life applications
for large scale problems or problems with complex structures, that is because usually
searching for a descent direction in recently developed methods is computationally
inefficient. For example, bundle methods require the solution of a quadratic problem
to find the descent direction in each iteration. On the other hand, subgradient
optimization is both simple to use and computationally efficient in calculating the
descent direction. The subgradient optimization has a zig-zag pattern that wastes
time, but it gains back this lost time in computing the descent direction. In our study,
we have employed a modified subgradient algorithm to update the Lagrangean
multipliers. The details of the modified subgradient optimization are explained in the

following sections.

4.1.1.2 Strategic Issue of Lagrangean Relaxation

In the illustration of Lagrangean relaxation, the constraints are identified as hard and
easy constraints without having any difficulties. But in real life, determining the hard
constraints to be relaxed is not so easy. The relaxation of a different set of constraints
yields solutions with different qualities regarding the tightness of the solution and the

computational effort.

For example, if we go on with to the previous illustration, we can see that there are

quite a few candidates for relaxation. We can relax either (12) or (13) individually, or
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both. Constraint set (14) cannot be relaxed in a Lagrangean relaxation fashion,
because actually this constraint set is not an equality or inequality, furthermore, it
does not have a Lagrange multiplier/dual variable. However, it can still be removed
from the model and replaced with a constraint set that ensures the relevant variables
take value between zero and one. This class of relaxation is called as linear
programming relaxation (LP relaxation). LP relaxation is an easier way of solving
the problem, but as Beasley (1995) states, it always yields worse results compared to

the results of the Lagrangean relaxation.

There are two innovative alternatives for relaxation that may not be seen at first
glance. The first one is called as Lagrangean decomposition and it relies on assigning
different decision variables for each constraint set by adding a binding constraint set
that guarantees the value of the new decision variable to be equal to the older one,
and then relaxing the binding constraint of these two variables as shown in the

illustration below.

For our example, let us replace the decision variables of the second constraint with a

new variable “y” and add a binding constraint. The model becomes:

Z=Minimize Cx

Subject to
Ax=b (12)
By<d (16)
x=y (17)
x 2 0 and integer (14)
» 20 and integer (18)

After relaxing the constraint set (17), the Lagrangean relaxation of the model

becomes:
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Z, =Minimize Cx + /I(x - y)

Subject to

Ax=b (12)
By<d (16)
x 20 and integer (14)
y 2> 0 and integer (18)
A unrestricted (19)

The other innovative relaxation is called the semi-Lagrangean relaxation and
introduced by Beltran et al. (2006). It exploits one or more equality constraints in the
problem and relaxes only one side of the equation. To show the logic of the semi-
relaxation, let us recall our illustration. The constraint set (12) actually is a

combination of two different constraint sets shown below:

Ax>b (12a)
Ax<b (12b)

By replacing the constraint set (12) with (12a) and (12b), we get the following

model:

7= Minimize Cx

Subject to
Ax>b (12a)
Ax<b (12b)
Bx<d (13)
x 2 0 and integer (14)

Now we obtain two more constraint sets that can be relaxed. When we relax
constraint set (12a), as Beltran et al. (2006) state, we acquire a relaxed model for the

problem as follows:

44



Z=Minimize Cx + A (b - Ax)

Subject to
Ax<b (12b)
Bx<d (13)
x 2 0 and integer (14)

As cited above, there are a lot of candidates for relaxation even in a model which has
only a few constraint sets. Geoffrion and Mc Bride (1978) show that generally a
relaxation which gives a tighter bound requires longer computational time, whereas
an easily solvable relaxation problem is likely to give poor results. Therefore,
researchers who are willing to choose the best relaxation set are facing with a trade-
off between the computational effort required and the quality of the bounds. As
Trangantalerngsak et al. (1997) state, the ease of the solution depends on the methods

available for solving the subproblem.

4.1.2 Lagrangean Relaxation of TSMCFLP

In our problem, there are seven constraint sets, excluding the binary and non-
negativity constraints ranging from (1) to (7) that lead to 2’ = 128 possible
relaxations even without considering the innovative ways of relaxation mentioned
above. In practice, as Beasley (1995) pointes, most of them are not worth
considering. As for our problem relaxing the constraint set (1) yields the problem to
two-stage uncapacitated facility location problem with minimum supply
requirements and capacitated warehouses; relaxing the constraint set (2) results in
two-stage, capacitated facility location problem with staircase costs, relaxing the
constraint set (3) generates a two-stage capacitated facility location problem with
minimum supply requirements. On the other hand, relaxing the other three
constraints, (4), (5) and (6), by themselves does not change the structure of the
problem. Relaxing the constraint set (4) results in two-stage, modular capacitated
facility location problem with uncapacitated warehouses, relaxing the constraint set
(5) results in two-stage, modular capacitated facility location problem without a

specific demand and the constraint set (6) generates a two-stage, modular capacitated
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facility location problem without a restriction on the number of warehouse to be
opened. All of the relaxed problems generated so far are still non-decomposable and

hard to solve. On the other hand, relaxing the constraint set (7) with the vector of

Lagrange multipliers o = (al,az,..., Asenn @ ) , seems to be quite promising:

P (a)=Min 3% 3 (b e )3, + 2 2 ez + DD fudy+ 2,81+

iel jeJ leL jeJ kek iel leL jeJ

RIS

jeJ keK iel leL

Subject to
wa <v;™g, VielandVle L (1)
jeJ
Vi, <D xy, VielandVlelL (2)
jeJ
> g, <1 Viel 3)
leL
Dz <wr, vjelJ (4)
keK
Yz, =d, VkeK (5)
jeJ ‘
Z’jj S Rmax (6)
jeJ
x;; 20 and Integer Viel,VjeJ and VlelL (8)
z, 20 and Integer ViedJ and Yk e K 9)
q, € {O,l} Viel and Vle L 10)
rj 6{0,1} VieJ (8]
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After relaxation of the constraint set (7), the relaxed problem, P** can be
decomposed into two separate problems for each echelon. The first echelon is a
relaxed single-echelon, modular capacitated facility location problem, whereas the

second echelon part is a single-echelon, capacitated warehouse location problem.
From now on, these problems will be called as main subproblem P**' and main
subproblem P*** | respectively.

The main subproblems P**' and P*** are as follows:

The main subproblem P"*':

P (a)= MinZZZ(bii tey _a.i)xtfi/ + 2.2 Jud

iel jeJ leL iel leL

Subject to
D x, <vi¥q, VielandVlelL (1)
jeJ
vitg., < wa VielandVle L (2)

jeJ
D> g, <1 Viel 3)
leL
x; 20 and Integer Viel,VjeJ and Yl e L 8)
q, €1{0,1} Viel and VYleL (10)
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The main subproblem P***:

P (a)=Min} Y (c+a;)z,+3 g,

jeJ keK jeJ
Subject to

szkﬁwjrj ViedJ (4)
kekK

Dz, =d, VkeK (5)
jeJ

2SR, (6)
jeJ

z, 20 and Integer ViedJ and Vk e K )
v 6{0,1} Vjied an

It should be noted that the main subproblem P**' can be decomposed for each plant

location candidate, i € /. However, the main subproblem P is still a difficult
problem to solve using the exact methods. Hence al least one constraint set of the
second main subproblem must be relaxed in order to solve it more efficiently. The
constraint set (6) cannot be the relaxed constraint, because it does not exploit the
structure of the main subproblem. We can choose the constraint set (4) or (5) or both

to relax or we can use the other innovative relaxations.

Fisher (1981) emphasizes that the tightness of bounds after choosing different
constraint sets to relax is completely problem-specific and largely empirical. In order
to find the lowest gap possible, Beasley (1995) recommends investigation of the
previous studies about Lagrangean relaxation related to the study. The previous
studies that have similar structures with our problem are Tragantalerngsak et al.
(1997, 2000), Pirkul and Jayaraman (1998, 2001), Marin and Pelegrin (1999), Klose
(2000), Jang et al. (2002), Elhedhli and Goffin (2005) and Amiri (2006).

Many of the previous studies which compare different Lagrangean relaxations about

the two stage problems suggest researchers to relax the similar constraints to the
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constraint set (5) and (7) simultaneously to obtain the “best” problem considering
both the computational burden and the quality of the results of the relaxation.
Another option is relaxing the constraint set (4) instead of (5) and solving the
remaining uncapacitated warehouse location problem by employing an efficient
algorithm such as multi-ascent method of Korkel (1989) or hybrid multistart heuristic
of Resende and Wernck (2006).

In our study, we have decided to relax the constraint sets (5) and (7). After relaxing
these constraints with Lagrange multipliers o and 3 respectively, the relaxed problem

becomes as follows:

P (. )= Min 373 by +e )3y + 20 2 Cuzu+ 20 Fud+ 28,7+

iel jeJ leL jeJ kek iel leL jeJ

ISR WL

jeJ keK iel leL keK jeJ

Subject to
inj, <v;"q, VielandVlel )]
jeJ
Vi, < x, VielandVlel (2)

jeJ
> g, <1 Viel (3)
leL
ZijSwjrj Vjield (4)
keK
<R, (6)
jeJ

x; 20 and Integer Viel,VjeJ and VlelL 8)
z, 20 and Integer ViedJ and Yk e K 9)
q, €{0,1} Viel and VlelL (10)
r € {0,1} Vjield an
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It should be noted that we have already mentioned about dividing the problem into

two independent subproblems P"“*' and P“** if we relax the constraint set (7). This

structure still holds, because the constraint set (7) is still in our relaxed set. But due

to the second relaxed constraint set (5), the main subproblems are slightly changed.

The main subproblems P**' and P*** are now as follows:

The main subproblem P"*':

P ()= Mi”ZZZ(bﬁ tey _aj)xtfi/ + 2.2 St

iel jeJ leL iel leL

Subject to
le.j, <v;"q, VielandVlelL
jeJ
vitg, < Zx,.j, VielandVle L

jeJ
Zqﬂ <1 Viel
leL
x;; 20 and Integer Viel,VjeJ and VlelL
q; € {O,l} Viel and VleL

The main subproblem P"***:

PLRz(“’ﬂ)szZZ(Cjk +0‘1)ij 2.8+ 2.5 (dk x

jeJ keK jeJ keK jeJ
Subject to
z Zy SwWI; Vied
keK
21 <R
jeJ
z, 20 and Integer ViedJ and Vk e K
1€ {O, 1} Vjied
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Thus, this stage, our Lagrangean model has been decomposed into two independent
main subproblems. The sum of the values of these main subproblems gives us the
solution of the relaxed problem, P**, at each iteration. The mathematical expression

of the value of the relaxed problem at iteration ¢ with Lagrange multiplier vectors

a' and ' is as follows:
PLR (at’ﬂt)=PLR1(at)+PLR2(at,ﬁt)

It should be noted that we have already discussed finding the best Lagrange
multipliers: We have to turn this problem into an iterative approach in which at each
iteration Lagrangean multipliers are updated using the subgradient optimization and

the subproblems are solved given the predetermined values of Lagrange multipliers.

Therefore we can exclude the constant expression “Z B.d,” from the objective
keK

function of the second main subproblem, P>, and add this expression while
calculating the value of the relaxed problem at each iteration. Then the value of the

relaxed problem is as follows:

PLR((Zt,,Bt):PLRI(a’t)+PLR2((ZI,,Bt)+Zﬂ,£dk

keK

The Lagrangean dual problem which is also called as the lowerbound problem can be

expressed as the maximum value of the relaxed problem among ¢ iterations.
* ook LR t ot
LB(o. 8 )—Mtax{P (. 8 )}

In the literature, adding additional inequalities that are called valid inequalities is
recommended in order to increase the value of the Lagrangean dual problem. Valid
inequalities are actually redundant for the original model, but become useful after
relaxing some constraint sets in the model; that means the valid inequalities can only
reveal the undercover properties that disappear from the model after relaxing some

constrains. They divide the feasible region of the problem into two parts and omit the
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part that does not contain the optimal solution of the original problem. This point is
very important; an inequality (or equality) may be treated as a valid inequality if and
only if the value of the Lagrangean dual problem is still less than or equal to the
optimal value of the original problem and relaxed problem is still an easily solvable

problem.

For example, we cannot limit the number of the opened warehouses unless we solve
the optimal problem with this limitation. Otherwise the lowerbound may climb
higher than the objective function value of the original problem and lead us to a

wrong solution.

As Klein Haneveld and van der Vlerk (2000) state, in general, it is difficult to find
strong valid inequalities that result in a substantial reduction of the computational
time and better bounds, simultaneously. For our study, it is also quite difficult to find
good valid inequalities, because many of the valid inequalities that are generated for
the capacitated facility location problem do not hold in our case or are redundant due
to the structure of the problem. For each of the main subproblems, we can add a
constraint that limits the minimum number of opened facilities. These constraints

may be expressed as:

> > 6,20, (20)

iel leL

25 2R,, (21)

jeJ

where O . and R . values in the constraints (20) and (21) are the minimum number

n

of opened capacity levels and warehouses respectively, in order to satisfy the overall

demand. To calculate the value of QO

min

firstly the highest available capacities of the
plants are sorted in non-increasing order. Let us assume that v? represents the n™

biggest maximum capacity among all plants, then the new set satisfies the following

inequality:
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AR 2...2\},‘5\/‘, where|N|=|I|

Then the value of Q

min

has to satisfy the following condition:

Ouin —1 Ohin

Dovn<>d <D v
n=1

n=1 keK

This condition means that at least Q

min

opened plants can satisfy the total demand of

the customers. The value of R_. is calculated in a similar way. The capacities of the

n

warehouses are sorted in non-decreasing order with the same index, n. Hence the n™

biggest warchouse capacity is denoted byw?. This set also has to satisfy the

following condition:

w} ijz. 2...2w}7 2...ZWLM, where|N|:|J|

The value of R, is the minimum number of opened warehouses which satisfies the

n

inequality below:

Rmin -1 Rmin
n < < n
Wj - Z dk - WJ

keK

n= n=

Differing from the capacitated warehouse location problem that we have dealt with
in the second main subproblem, actually the constraint (20) is not a strong inequality
for the first main subproblem, because in the capacitated warehouse location problem
the difference between the fixed cost of the plant which has the minimum production
capacity and the fixed cost of the plant which has the maximum production capacity
is small in quantity, on the other hand, in the modular capacitated facility location
problem the fixed costs of the first level capacities are much lower than the fixed

costs of highest capacities, as expected. Regardless, valid inequalities (20) and (21)
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are included in the model, because they have no significant computational cost, but

have improvement on the value of the relaxed problem.

There is also another valid inequality set for each echelon that can be added into our

model. In our model, the decision variables x;;, and z, are already restricted by the

maximum production capacities of the capacity levels and the maximum handling
capacities of the warehouses by the constraint sets (1) and (4), respectively. It means
that we limit these decision variables by the constraints about their origin point
(departing site). In addition to that, we can restrict these variables using their

destination point (arrival site). It is clear that the destination point of the x;, variable
is the warehouse j and the destination point of the z, variable is the customer £.

These destination points have their own capacity restrictions that we can use for
restricting the relative variables. As a result, the x,, variable has to be less than or
equal to both v;** and w,. Similarly, the z, variable has to be less than or equal to

both w,and d, . Thus the constraint sets (8) and (9) of our relaxed problem can be

rearranged as below:

0<x, < Min(vlffa", wj)and integer Viel,VjeJ,andV/elL (8)

0<z, SMin(a’k,wj)andinteger VjeJand Vk e K (9)
4.1.2.1 Solution Methodology for the First Main Subproblem

After adding these valid inequalities into our model, the main subproblems are ready

to be solved separately. The first main subproblem and its solving methodology are

as follows:
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P (a)=MinY > > (b +e,—a;)x, + 2. fid,

iel jeJ leL iel leL
Subject to
inﬂ <vi™g, VielandVlelL ()
jeJ
vitg., < le.j, VielandVle L (2)
jeJ
D g, <1 Viel 3)

lel

Opin .04, (20)

iel leL

0<x, < Min(v;ax,wi) and Integer Viel,VjeJ and Vle L (8)

q; € {O,l} Viel and Vel (10)

In the literature there is an efficient solution methodology for the first main

subproblem P"®'. It can easily be seen that the main subproblem can be decomposed
into subproblems for each plant location i € / and solved separately after omitting
the constraint (20), as no hard constraints that bind the capacity levels of the plants
remain. It should be noted that we isolate the constraint (20) from the model, but at
the end of the solution, while determining the opened warehouses, we attach back
this constraint and give our final decision considering this constraint. Details of

attaching these constraint sets back to the model are explained in further sections.

Since the decision variable ¢, is binary, a plant in a specific location i with a
specific capacity level / can either be opened (g, =1) or remain closed (g, =0). If
g, 1s “remain closed”, there is no production, so all related x,, variables and the

objective function value of the subproblem are equal to zero. On the other hand, if it

is decided to be opened, by setting g, to one, the problem turns into the following

problem:
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Pt (a)=Miny (b +ey—a; )5y + fr

jeJ
Subject to
D Xy SV (1)
jeJ
ZHED IS 2)
jeJ
0<x,, <Min (v;','flx , Wj) and Integer VjieJ (8)

The constraint set (3) is eliminated, because this constraint is satisfied automatically

by setting only one g, equal to one at each time. This problem is actually a special

type of a knapsack problem. The structure of the knapsack is very special because it
is the combination of the following four knapsack problems: it is a minimization
knapsack problem (MinKP) since the objective function of the problem is
minimization. On the other hand, it is an unweighted knapsack problem due to the
equal weights of the decision variables. Also it is an interval knapsack problem (I-
KP) on account of existence of additional lower bound limit on the total weight of a
knapsack and finally it is a bounded knapsack problem (BKP) because of the

structure of the x,, variables. Detailed information about these knapsack problem

classes can be found in Martello and Toth (1990), Zhou (2006) and Babaioff et al.,
(2007).

Although three of these knapsack problems (MinKP, I-KP and BKP) stated above are
NP-hard in the given references above, our subproblem can be solved optimally and
very efficiently using a simple algorithm, due to the nature of the unweighted
knapsack problem type. It can be seen that in our knapsack problem all weights of
the decision variables are the same and equal to one which is aliquot of all upper and
lower threshold values. This structure provides our knapsack problem with the

integrality property.
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Magee and Glover (1996) state that a constraint set has the integrality property if the
linear problem formed by adding any linear objective function is guaranteed to have
an optimal integer solution. Thus, the objective function value of the LP relaxation of
our knapsack problem also gives the optimal solution of the problem as far as the

integrality property holds.

To solve this subproblem, R,L *, for iteration ¢, first we have to calculate the objective
function coefficient of each x,, variable, that is cc,, for known values of «; and

then select the minimum cc;, value for each i/ pair, that is cc;,:

cc; =b, +e,—a; Viel,VjeJandVlelL
e, = z\j@n{ccij,} VielandVlel

The x;, variable that has the minimum cc;, value for an i/ pair is the best variable to

minimize the objective function of the subproblem, P/*', and therefore selected to
satisfy the constraints of the objective function. If cc, value is negative (Case 1),

then transporting goods to the relevant warehouse as much as possible is the most
reasonable action. But the amount that can be transported is limited either by the

capacity of the plant or the capacity of the supplied warehouse, thus the value of x,
variable that has the minimum cc;, value is set to Min(vfl“a", w; ) On the other hand,

if cc, has a positive value (Case 2), it means that transporting goods does not
improve the objective function, hence setting x;;, variable as small as possible is the
best way. Due to the modular capacitated structure, there is a minimum supply
requirement, v;"" for each capacity level. Therefore, we can not just set the value of
the relevant x;, to zero. In order to satisfy the constraint set (2), the x;, variable that

min

has the minimum cc;, value is set to Min (vﬂ , wj) even if its cc, is positive.
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If the value of w; is less than the value of v;™ for the first case or less than v for

the second case, then the maximum or minimum capacity requirement is not satisfied

maxrem

completely. Let us assume that v} is the remaining amount for reaching the
maximum capacity of a capacity level after assigning a value to variable x;; that has

minreq

the minimum and negative cc,,, and v, is the required amount for reaching the

iil >
minimum capacity of a capacity level after assigning a value to variable x, that has

the minimum but positive cc; .

For the first case, we select the variable x,, that has the second minimum cc;, value

max

and assign a value Min(vﬂ ,wj) if the value of cc, is still negative. This procedure
is repeated until the maximum capacity of a capacity level is full or all remaining
cc;, variables are positive and production capacity is above the v

For the second case, we know that all remaining cc;, values are positive. Assigning a
value to a x,, variable that has positive cc;, is not a desirable move, but we have to

keep assigning values to satisfy the minimum requirement constraint of the capacity

level. Thus, we select the next x;; variable that has the minimum cc;, value among

max

the unassigned variables and assign a value Min(vl.l ,wj). We have to repeat this

until the total production of the plant reaches the minimum limit of its capacity level.

The unassigned x;, variables actually have a worse effect on objective function of

the subproblem, P/*' compared to the assigned ones, and hence they are assigned to
zero. After determining the values of all x;, variables, the total cost of opening a

plant for a capacity level is calculated as:

tc, = ZCcy.,xl.ﬂ + 1

jeJ
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When we calculate the total opening cost, tc,, for each capacity level of each plant,

our main subproblem reduces to determining the values of ¢, variables from the

following pure integer model:

P (a)=Min) > 1c,q,

iel leL
Subject to
D g, <1 Viel 3)
leL
Qmin < quil (20)
iel leL
q; € {0,1} Viel and VilelL (10)

Solving this problem is also very easy. The constraint set (3) forces that at most one
capacity may be opened for a candidate plant location. Due to the fact that there is no

additional constraint for selecting a capacity level for a candidate plant location, the
capacity level that has the best (minimum for our instance) total opening cost, #c,,
value becomes the only candidate for a location. Hence the best possible candidate

for a location is determined by inspecting the fc, values of the relevant capacity

levels. Let us assume that #c, is the total opening cost that has the minimum opening

and operating cost among all the capacity levels for plant location i, then it can be

expressed as:

tc, = Min {tcﬂ} .

leL

At this stage, our main subproblem P“*' becomes much easier to solve. If I'e L is
the best candidate capacity level for plant location i, the main subproblem is as

follows:

59



P* (a)=Min tciq,

iel

Subject to

Ouin <D0 4 (20)

iel leL

q; € {O,l} Viel and VielL (10)

Before solving this subproblem, we need to introduce a new set, M, which is the non-

decreasing ordered set of fc, values. Let us assume that m € M is the index of this

new set M and g, is the decision variable for the relevant tcT’” value, then the set M

fulfills the inequality below:

t;il Stc_'iz S...Stgi’” <..<tc, where|M|:|I|

In order to satisfy the constraint (20), at least Q

., many g, variables starting from
the beginning of the order have to be set equal to one, even if some of them may

have positive coefficients in the objective function. After opening Q

min

many plants,

if there still negative fc, values, then the associated variables yp are set equal to

one as well. If not, no more g, variables are set to one. This can be mathematically

described as follows:

1 ] S . Fim <0
) = e

0 Otherwise

1

Since the opened plants and capacity levels are determined, we can now calculate the

final values of x, variables and the value of the objective function of the main

60



subproblem P“*'. As stated before, if a capacity level of a plant is decided as
“remain closed”, then no transportation occurs from this level. Therefore, the values

of x;, variables are set to zero, if the relevant g, variable is equal to zero; otherwise
the values of x,, variables preserve their former values that are calculated in the

previous stages of the algorithm.

Finally, the objective function value of the main subproblem P**' is calculated by

putting either the values of x;, and g, variables and their coefficients into the

objective function of the subproblem or the fc, values of the opened plants. If X

and ¢, represent the previously selected values of the relevant variables, then the

value of our main subproblem is calculated as follows:

P (a)= ZZZ(bii te —aj)fcw +sz;l('}il

iel jeJ leL iel lelL

= 221‘;’ éil

iel leL

The pseudo-code of the solution algorithm is as follows:

START
FOR  Each plant location 7 and capacity level /

SET  Maximum available capacity, MC = v;** and
Minimum required capacity, MR= v;;lm
Calculate the objective function coefficient of X,; variables for each warehouse j (cc;;)

WHILEMR >0

Select the unassigned X, variable that has the minimum cey value
Assign relevant x;; = Minimum (MR, w, )

Update MR = MR - Xy
END WHILE
Select the unassigned warehouse that has the minimum ccy value

WHILESelected cey < 0 AND MC>0
Assign relevant x;,; = Minimum (MC, W].)
Update MC = MC - X1

Select next warehouse that has the minimum ccy, value

61



END WHILE
Calculate total opening cost of relevant capacity level (7c;)

END FOR
FOR  Each Plant location

SET  Capacity level that has the minimum cost as E = Minimum (tcil )
leL

IF tc, <0 THEN
Open relevant capacity level
END IF
END FOR

WHILENumber of opened capacity levels < Q

min

Open unopened capacity level that has the minimum t?l value

END WHILE
FOR  Each closed plant and capacity level

SET  Allrelevant X variables to 0
END FOR
Calculate the value of P™*' (Ol)
STOP

4.1.2.2 Solution Methodology for the Second Main Subproblem

The second main subproblem P2 is also solved in a similar fashion, but this time
there is no capacity selection procedure as there is in the main subproblem P!,
because there is only one capacity limit for each warehouse. The mathematical model

of the second main subproblem is as follows:

PY (. f)=Min} Y (cy+a, =B )z, + 2 8,

jeJ keK jeJ
Subject to
szk Swr, Vjied (4)
keK
er <R (6)
jeJ
D2 R,, (1)
jeJ
0<z, SMin(dk,w/.)andinteger VieJand Vk e K 9)
r, €{0,1} VjelJ 11

62



We can also solve this main subproblem for each warehouse separately by enforcing
the constraint (6). We solve each subproblem corresponding to a warehouse without
considering the hard constraint (6), but at the end, the model is forced to fit this

neglected constraint in order to get the optimal solution for the main

subproblem P£2. The mixed integer programming model of the subproblem P*#>

corresponding to warehouse j is as follows:

P (a, )= Mi”Z(Cjk ta,; _ﬁk)sz +87

keK
Subject to
27k ST “)
keK
0<z, <Min (dk W, ) and integer VkeK 9)
1€ {O, 1} a1

In the subproblem P*®*, the decision variable r, is binary variable. Either the
warehouse is decided to be opened thus the corresponding 7; variable is set to one, or
it is decided to be “remain closed” by setting 7, variable equal to zero. If it is decided

to be “remain closed”, then handling products in this warehouse or supplying goods

for satisfying the demand of a customer is not allowed. Thus if 7, is equal to zero, all
the related z, variables are also set to zero. But if it is decided to be opened, our

problem then is to determine the valuable customers that provide the minimum

objective function. If we assume that r, is equal to one, then we end up with the

following knapsack problem for this opened warehouse:
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B (e, ) =Min 3 (cp+a; ~ i)zt e,

kek
Subject to
Sz, <w, (4)
keK
0<z, < Min(a’k, w; ) andinteger VkeK )

This problem is a minimization type, unweighted, bounded knapsack problem and as
the first subproblem, and due to its special structure that is explained in the first main
subproblem, this subproblem has integrality property, too. Therefore, the value of the
LP relaxation of this special knapsack problem equals its optimal value because of

the integrality property.

In order to determine the best customers to serve for a warehouse, the coefficients of

the objective function are calculated for each customer. Let us assume that ccc, is
the cost coefficient of the customer & supplied from the warehouse j, and ccc; is the
lowest ccc;, value, corresponding to the most valuable customer supplied from

warehouse j. Then their values are calculated as follows:

ceey =cyt+a,—p,

cee; = ]}ian {cccjk}
The z, variable that has the minimum ccc, value, ccc, for a warehouse j is the best
variable so as to minimize the objective function of the subproblem, PjLRz. If the
value of ccc, is greater than or equal to zero, it means that there is no valuable
customer for this warehouse. In other words, if ccc; is positive, serving a customer

worsens the objective function value of the problem. In a situation like this, the best

64



action is not serving any customer from this warehouse j and setting all z,, variables

equal to zero.

If one or more customers that have negative ccc,, values exist, we have to select the

more valuable ones among these customers, because the handling capacity of the
warehouse is limited and may not serve all these valuable customers. In order to
determine the more valuable customers, we have to re-sort the ccc, variables of a
warehouse in a non-decreasing order. Let m be the index for the position in the order,

then CCC 1] values have to satisfy the following condition:

< <...< <...< =
CCC 1 S CCC 101 S o0 SCCCH 1 S et S CCC 0 where m=1,2,..., K|

m]

The first customer is the most valuable customer for the relevant warehouse j. Hence

this customer has to be served in the first place, if e is negative. The transported

amount between this warehouse-customer pair is determined by considering their

capacities. So the z, variable is equal to either the capacity of this warehouse w;,, or
the demand of the customer, d,. If w; is less than or equal tod,, then the variable
z, 1s set equal tow,, otherwise the variable z, is set equal tod, . If the transported

amount is equal to the demand of the customer, it means that the warehouse still has
the capacity to serve other customers. Hence other customers can be accepted for
serving according to the ordering of the customers, until the capacity of the
warehouse is full or all the remaining customers have positive ccc,, values. Let us

em

assume that w™ is the remaining capacity of the warehouse j after serving some

customers that have negative ccc, values. The transported amounts between the

warehouse and the selected customers to be served are either equal to the remaining

rem

capacity of the warehouse, w™ or equal to the demand of the customer d, .
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The unassigned customers are worthless customers for the related warehouse and the

z, variables related to these customers are set equal to zero. After determining all
values of z, variables of a warchouse, the total cost of opening this warehouse is
calculated as follows:
we; = ZCCCijjk +g;
keK
When we calculate the total opening cost wc,, for each warehouse separately, our

main subproblem turns into determining the values of , which can be formulated as

a pure integer model:

P* (a,B)=Miny wer;

it
Subject to

25 <R, (6)

il

D2 R,, 1)

il

r, €{0,1} vjelJ 11

Now the problem becomes much easier to solve. The constraint sets (6) and (21)
restrict the number of opened warehouses in a tight interval. In order to satisfy these

constraints, the number of the opened plants has to be greater than or equal to R .
and less than or equal toR_, . In order to solve this problem we have to re-sort the
we; values in a non-decreasing way where m is the index for showing the position in

the ordering:

We iy < WE o) <...< WE 1,1 <...< WE s where m=1,2,..., J|.
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Starting from the beginning of this ordering at least R, many warehouses have to

n

be opened without considering their WE 1 values. Then, if there still exists negative
W values, the relevant warehouses are also opened until the number of the total

opened warehouses is equal to R, . The mathematical expression for this selection is
as follows:

1 if m<R_ or (wcj[m] <0and m<R, )

min

oy

0 Otherwise

Since the opened warehouses are determined, we are free to calculate the final values

of z, variables and the value of the objective function of the main subproblem P***.
The values of z, variables are set to zero, if the related r, variable is equal to zero.
If the r; variable is equal to one, then the related z, variables preserve their former

values that are calculated in the previous stages of the algorithm.

Finally the objective function value of the main subproblem P"** is calculated by

putting the previously found values of 7, and z, variables, 7, and Z,, into the
objective function of the subproblem or only multiplying the wc, values of the

opened warehouses.

P (@ f)=3 3 (en+a, )2+ g

JjeJ keK jeJ

The pseudo-code of the solution algorithm is as follows:
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START
FOR  Each warehouse

SET  Maximum Capacity, MC, equal to w;
Calculate the objective function coefficient of Zy variables for each customer ( ccc jk)
Select the unassigned customer that has the minimum ccc i value
WHILE S Selected ccc < 0 AND MC>0
Assign relevant z = Minimum (MC, d 0)
Update MC = MC - Zy
Select the next customer that has the minimum ccc i value

END WHILE
Calculate total opening cost of relevant capacity level ( wc ; )

IF we, <0 THEN

Open the relevant warehouse
END IF
END FOR

WHILENumber of opened warehouses < R

'min
Open unopened warehouse that has the minimum Wc; value

END WHILE
WHILENumber of opened capacity levels > R

Close the opened warehouse that has the maximum wc¢ j value

END WHILE
FOR  Each closed warehouse

SET  Allrelevant z, variables to 0
END FOR
Calculate the value of P (Ot, ﬂ)
STOP

4.1.2.3 Solution Methodology of the Lagrangean Dual Problem

Even though no optimization software is used for solving these main subproblems,
our procedure yields optimal results for all subproblems by exploiting their special
structure. Otherwise, if we employ a solution procedure that cannot yield optimal

solutions for subproblems, then:

1. it generates infeasible results that have lower objective function value than
the optimal solution
ii. it generates feasible results that have higher objective function value than the

optimal solution
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iii. it generates mixed results that both contains lower and higher objective

function value than the optimal solution.

The second and the third solution procedures are not acceptable in Lagrangean
relaxation for generating a proper lowerbound, because if they are employed in the
solution, the lowerbound may exceed the optimal solution of the original problem P.
The first solution procedure can be employed in Lagrangean relaxation, especially if
the main subproblems are still difficult to solve, but it is not recommended unless it
is mandatory, because employing it yields bigger gaps between the lower and

upperbounds.

As mentioned before, the Lagrangean dual problem is the problem of finding the
maximum value of the relaxed problem with given Lagrange multiplier values which
are separately calculated by the subgradient optimization. Due to some properties of
the subgradient optimization that are explained in the next section, the lowerbound
value found in each iteration is not monotonically increasing or decreasing. It means
that the solution of the Lagrangean dual problem is not always the value of the

Lagrangean relaxation of the last iteration, because of the zigzagging pattern of the

subgradient optimization. If P** (a’, ,Bt) denotes the objective function value of the

Lagrangean relaxation problem for TSMCFLP at iteration ¢ with known «' and '

values, then it is calculated as:

PLR(at,ﬁt):PLRl(at)_i_PLRZ(at,ﬁt)_i_zﬁli '

keK

And the solution of the Lagrangean dual problem, also called as the lowerbound

value of the original problem, is determined by selecting the maximum P"* (a’, ﬂ’)

value among the others. Let LB be the lowerbound of our problem among teT

iterations, then its value is found as follows:

LB = Max{Pu* (o, Bt)} .

teT
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4.2 Primal Heuristic

Usually, the results of the relaxed problem may turn out to be infeasible for the
original problem. Even if they are feasible, they may not be the optimal solution of
the original problem. Thus an algorithm has to be employed in order to find the
optimal or a near-optimal solution for the problem. In early studies of Lagrangean
relaxation, after solving the Lagrangean dual problem, the remaining gap between
the optimal solution and the solution of the Lagrangean dual problem, which is also
called as the duality gap, is closed by using a combinatorial optimization technique

such as the branch-and-bound, branch-and-price or branch-and-cut.

Normally, the branch-and-bound and similar procedures use the solution of the linear
programming (LP) relaxation of the model as an initial solution. Early stage studies
had discovered that using Lagrangean relaxation instead of LP relaxation usually
yields much better initial solutions and started to treat the Lagrangean relaxation as
an initiation phase of an exact algorithm. For the first time, Pirkul (1987) proposes an
interactive primal heuristic that fixes some decision variables of the original problem
with the results obtained in the relaxed problem and determines the rest of the
decision variables in the problem by an efficient heuristic. This is an interactive
approach, because unlike the branch-and-bound procedure that is executed after the
termination of the Lagrangean dual problem, the new primal heuristic is executed

repeatedly in each iteration, after finding the solution of the relaxed problem.

Later, it is seen that the Lagrangean relaxation not only provides an initial solution of
an exact algorithm, but also an important part of the efficient heuristic which is
called as the Lagrangean heuristics. Due to its nature, this heuristic does not seek the
optimal solution, but a near-optimal solution. The optimal results may not be
obtained using Lagrangean heuristics. On the other hand, using heuristic instead of
exact algorithms has serious advantages; the computational effort and the solution
time is decreased significantly and obtaining both an upperbound and a lowerbound

in an iteration provides us to check the quality of the solution in the current state.
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The most important part of the Lagrangean heuristic is definitely the primal heuristic
component, because only its results are always feasible for the original problem,
hence only its results can be applicable in real world. Pirkul and Jarayaman (1998)
extend the primal heuristic of Pirkul (1987) to the two-stage location problem. Since
then the variants of this primal heuristic have been used in similar studies. For the
reason that there is no alternative heuristic in the literature competing with heuristic
presented by Pirkul (1987)), we also use a similar heuristic for generating feasible

results.

As mentioned before, the distribution network design problems are location-
allocation type problems. In this type of problems, the locations of the opened
facilities are determined and the customers are allocated to the opened facilities
simultaneously. Deciding locations and allocations simultaneously, makes this
problem much difficult to solve. On the other hand, allocation of customers to the
facilities formerly determined is a less difficult problem than the simultaneous
problem. Pirkul’s (1987) primal heuristic is based on this logic. In the heuristic, the
location decisions are obtained from the solution of the relaxed problem. In other
words, the given decisions about the opened facilities in the relaxed problem are
transferred into the primal heuristic so that the heuristic only deals with the allocation

problem of the original problem.

In Pirkul’s (1987) heuristic only the locations of the facilities are obtained from the
lowerbound, but not their capacities. The capacities of the facilities are determined
after executing the allocation heuristic, which is inapplicable for our problem,
because we have more than one available maximum and minimum capacity levels
each with a unique cost. For this reason, we obtain not only the locations of the
opened plants but also the selected capacity levels for the opened plants from the
lowerbound solution. This makes our primal heuristic more complicated than Pirkul

(1987) and Pirkul and Jarayaman (1998).

The proposed primal heuristic consists of three phases. First, a greedy heuristic is

developed for making the infeasible location decisions feasible. Secondly, the
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allocation problem is solved efficiently using an allocation heuristic, and finally at
the third phase feasibility is checked for each plant. Details of these three phases are

presented below.

4.2.1 Greedy Heuristic

The greedy heuristic is a heuristic that always takes the immediate best or local
optimum solution while finding an answer at each stage with the hope of finding the
global optimum. Greedy algorithms find the overall or global optimal solution for
some optimization problems, but may find suboptimal solutions for some instances
of other problems. The heuristic selects the best choice in a situation and then solves
the problems that arise later. The choice made by a greedy algorithm may depend on
prior decisions made but not on the future choices or all the solutions to the
subproblem. It iteratively makes one greedy choice after another, reducing each
given problem into a smaller one. In other words, a greedy algorithm never attempts
an improvement on the solutions found. In spite of its drawbacks, the greedy
heuristic is widely used in the previous studies; it has the advantages of being

extremely fast and producing reasonably efficient solutions.

4.2.1.1 Plant Greedy Heuristic

We use a greedy algorithm to generate feasible solutions for the location problem
which is not in the scope of the primal heuristic. We have already mentioned that in
the primal heuristic, the location problem is removed from the original problem and
the opened capacities and warehouses are obtained from the solution of the relaxed
problem. However, the plant and warehouse decisions may be infeasible for the
original problem, because the demand satisfaction constraints are dualized in the
relaxed problem. Hence, at any iteration, the total capacity of the opened plants with

specific capacity levels can be in one of the three different cases:
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CASE 1: In the first case, the total minimum capacity of the opened plants is less
than the total demand and the total maximum capacity of the opened plants is greater
than or equal to the total demand. In this case, the global feasibility of the original
problem is achieved. We call this situation as “global feasibility”, because this
feasibility deals with the total capacities. In addition to the global infeasibility case
there is another infeasibility that we may encounter after solving the allocation

heuristic, which we call as local infeasibility.

Local infeasibility emerges if one or more plants distribute less than their minimum
supply constraints. Local infeasibility is checked in the third phase of the heuristic

procedure and explained in detail in further sections.

If the result of the lowerbound is in the state of global feasibility, then there is
nothing we should do. The allocation heuristic can be executed directly for making

feasible allocations for the original problem.

CASE 2: In the second case, the total maximum capacity is less than the total
demand. It means that the total production capacity is not enough for satisfying the
demand of all customers. In order to satisfy the whole demand, one or more plants
may be opened or capacity levels of the opened plants may be increased or both of
these remedies may be implemented. In order to decide the set of plants/capacity
levels that are decided to be opened, we calculate the opening cost OC,, for each
possible alternative. For the plants which do not have an opened capacity level, we
calculate the opening cost only for the first capacity level; in other words, only the

opening cost of the first capacity level OC,, is considered as a possible alternative if

no capacity level is already opened in a specific location. For this type of locations
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opening cost is formed by the fixed cost of opening the first capacity level of the

location and variable cost of operating this capacity level at the allowed maximum:

0C,,>0 if q,=0 Vel

_ max
OC,, = f., +e, v

If there is an opened capacity level for a plant and the current capacity level is not the

highest capacity level of this plant, then OC,is calculated for only the next capacity

level. If the next capacity level is decided to be opened, then the previous capacity
level of the plant has to be closed. Therefore, the opening cost is calculated as the
fixed cost of opening the relevant capacity level and variable cost of operating at the
maximum level for this capacity minus the fixed and variable cost of operating at the

lower capacity level.

0oC, >0 ifq, , =landl' #1

_ max __ _ min _ max __ _ min
ocC,, = [ Jor +en (vi,,, Vi )] [ Jora +en (vi’l'—l Vi )]

If the capacity level/plant that has the minimum opening cost is high enough to
satisfy the demand shortage of customers, then it is selected as the opened
plant/capacity level. Otherwise we develop three alternative solutions in an attempt
to obtain the best solution. We execute the three solutions whenever the capacity
level/plant that has minimum opening cost is not high enough to satisfy the demand
shortage of customers. After execution, the solution that has the lowest total opening
cost is selected and the plants/capacity levels are opened with respect to the results of

the selected solution.
These three alternative solutions can be described as follows:

e opening a plant/capacity level that is big enough to satisfy the demand
shortage
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e opening a plenty of plants/capacities that have the minimum ratio of opening

cost, *OC,, until the total capacity of these plants/capacities satisfies the

demand shortage

e opening a plenty of plants/capacities until the total capacity of these

plants/capacities satisfies the demand shortage according to the minimum

opening cost, OC,.

For calculating the ratio of the opening cost, rOC,, we divide OC, values to

max min
(vil ~ Vi ) :

In order to calculate the total opening cost, OC:, of the capacity set determined
according to 7OC,, values of the capacities, we have to re-sort the 7OC, values in a

non-decreasing order. Let m be the index that indicates the position in the ordering,

then the ordering is as follows:

<rOC,.<..2<rOC, ,<..<rOC.

r OCil[l] il[2] illm] = il[|M]]

where |M| < |I|

Similarly for calculating the total opening cost, OCs, of the capacity set determined

with respect to OC, values of the capacities, we have to re-sort the OC, values in a

non-decreasing order. Let n be the index that indicates the position in the ordering,

then the ordering is as follows:

OCypy <O0C <..<0C, .. <OCyp g where|N|<|1|

illn] =
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Then the costs of these solution alternatives OC:, OC2 and OCs are calculated as

follows:

oCi=  Min {0C,}

max _  max

i€l leL>q;=0and v v} >Shortage

OC, = z rOCl,[m]( ,T[Z] —vﬂm[i,';]) where z ( ;ﬁf] ;EZ])Z shortage.

meM

OC; = z OCﬂ[n] where Z( Vil ]) > shortage.

neN

It should be noted that, while calculating OC: and OCs, if a capacity level is
selected to be opened, then automatically the opening cost, OC,, for the next
capacity level and its ratio,»OC,, 1s calculated, unless the recently opened capacity
level is the highest capacity level of the plant. The rOC, and OC, values are re-

sorted considering the new values. Furthermore, after determining the sets of opening
plants for each alternative solution, a post optimization procedure is employed and
the total opening cost is tried to be decreased by removing one or more unnecessary

plants.

After calculating the costs of these three alternatives, OC., OC» and OC3, the one

with the lowest cost is selected and the plants/capacity levels which are decided to be

opened in the selected alternative are opened.

CASE 3: In this case, the total minimum capacity of the opened plants is greater than
the overall demand. It shows there is excess capacity in the solution. This surplus
capacity leads to local infeasibilities in one or more plants if allocation heuristic is
executed without making any change. In order to prevent the local infeasibilities, one
or more plants/capacity levels have to be closed. In order to determine the
plants/capacity levels that are to be closed, a heuristic is employed similar to the one

in case 2. But this time, instead of calculating the opening cost for the closed
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plants/capacities, the closing profit CP, is calculated for the opened capacity levels.

If the capacity level is the first level, then CP,is calculated as:

CP,>0 if q,=

max
CP,=f.,+e, v~ .

If the opened capacity level of a plant is higher than the first level, the value of CP,

is calculated as the cost of closing current level minus the cost of opening the prior

capacity level:

CP,>0 ifg,=land !l #1

_ max min max min
CP, = [f,, +e, ( — Vi )] _[fi'm +e., (v”_l — Vi )] .

If the capacity level that has the highest closing profit is big enough to eliminate the
surplus, then it is closed. Otherwise the set of plants or capacity levels that are to be
closed is selected in the same way as the Case 2, but this time the plants/capacity

levels that have the maximum »CP, or CP, are chosen for closing.

Chi=  Max,  ACHS

CPZ mEZM VC ( mj;( _VzlnE]:;]) where z ( ]l?;] —V:;Em ) > Surplus

CP; = Z Cly where Z ( - vﬂ[ ] ) > surplus
neN neN

The pseudo-code of the solution algorithm is follows:

START
Calculate Total Maximum Capacity AND Total Minimum Capacity
IF Total Maximum Capacity < Total Demand THEN
SET  Shortage = Total Demand - Total Maximum Capacity
FOR  Each plant location
IF No Capacity level is opened in the plant THEN
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Calculate opening cost (OCil) for the first capacity level which is not in

tabu list
ELSE
Calculate opening cost (OC,) for upgrading opened capacity to next
capacity level which is not in tabu list
END IF
END FOR
IF Capacity level that has the minimum OC,, is big enough to satisfy the Shortage
THEN
Close the previous capacity level and open relevant capacity level
ELSE

Select the capacity levels which are big enough to satisfy the Shortage
Select the capacity level that has the minimum OC;, in this set

SET OC value as the relevant OC, value

Calculate 7OC;, values
WHILE Total Maximum Capacity < Total Demand
Select the capacity level that has the minimum I’OCI.I value

Close the previous capacity level and open the relevant capacity
level

Calculate OC,, and rOC, values for the next capacity level

which is not in tabu list

Update OC2 = OC1+ ocC,

Update Total Maximum Capacity
Store recently opened capacity levels

END WHILE

SET  Surplus = Total Maximum Capacity - Total Demand

WHILE One or more recently opened plants’ capacity < Surplus
Calculate closing profit ( CP,) for relevant capacity levels
Select the capacity level that has the maximum CP,
Close relevant capacity level and open previous one
Update the Surplus value

END WHILE

Reset the value of Total Maximum Capacity
WHILE Total Maximum Capacity < Total Demand

Select the capacity level that has the minimum OC), value

Close the previous capacity level and open the relevant capacity
level

Calculate OC,, value for next capacity level which is not in tabu
list

Update OC3 = OC3+0C,
Update Total Maximum Capacity
Store recently opened capacity levels

END WHILE
WHILE One or more recently opened plants’ capacity < Surplus

Calculate closing profit ( CP,) for relevant capacity levels

Select the capacity level that has the maximum CP,

Close relevant capacity level and open previous one
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END IF

ELSE IF
SET

END WHILE

Update the Surplus value

Compare the OC1, OC> and OC' values and select the minimum one

Open the new capacity levels, and close the older ones according to selected OC

Total Minimum Capacity > Total Demand THEN
Surplus = Total Minimum Capacity - Total Demand

Calculate closing profit (CEI) for the opened capacity levels that closing it does not disrupt
the Case 1
Capacity level that has the maximum CP, is big enough to satisfy the

Close the relevant capacity level and open the previous capacity level

Select the capacity levels which are big enough to satisfy the Surplus
Select the capacity level that has the minimum CP, in the ordering

SET §1 value as the relevant CPH value

WHILETotal Minimum Capacity > Total Demand

Select the capacity level that has the maximum rCPl.l value

Close the relevant capacity level and open the previous capacity
Calculate CP, and rCP, values for new capacity level if
Update CP2 = CP >+ CP,

Update Total Minimum Capacity
Store recently opened capacity levels

Reset the value of Total Minimum Capacity
WHILE Total Minimum Capacity > Total Demand

Select the capacity level that has the maximum CPil value

Close the relevant capacity level and open the previous capacity

Calculate OC); value for new the capacity level if available

Update CP3 = CP3+CPF,
Update Total Minimum Capacity
Store recently opened capacity levels

Compare the CP1, CP, and CP 3 values and select the maximum one

Close the older capacity levels, and open the new ones according to selected CP

IF
Surplus THEN
ELSE
Calculate 7CP, values
level
available
END WHILE
level
END WHILE
END IF
END IF
STOP
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4.2.1.2 Warehouse Greedy Heuristic

As stated before, the constraint (21) in the second echelon is more successful than the
constraint (20) which is in the first echelon. But still, the total capacity of the
warehouses first obtained from the solution of the relaxed problem may be infeasible.

We can come across with two cases:

o Dwr=>d,

jeJ keK
@ Twn<Xd,
jeJ keK

In the first case, the total capacity of the warehouses is greater than or equal to the
total demand. It means there is enough capacity to satisfy the demand of all
customers. There is nothing we should do if the solution of the relaxed problem is
feasible for the warehouses. The allocation heuristic can be executed directly for

making feasible allocations for the original problem.

In the second case, one or more warehouses have to be opened in order to satisfy the
total demand. In order to determine the warehouses that are going to be opened by

the greedy heuristic, we use the fixed cost of opening the warehouse, g .

If the closed warehouse that has the minimum g, value can also satisfy all the

shortage by itself, then it is selected as the warechouse to be opened. Else

WOC, and WOC, values are calculated in the same as the OC,, and OC, values are

calculated.

It can be easily predicted that warehouse greedy heuristic takes more computational
time than the plant greedy heuristic, because there always exists more warehouses in

the problem. So, in order to gain some computational time, we do not employ

calculation of WOC, value that uses the ratio of opening cost in the warehouse

80



greedy heuristic. Because most of the time, opening at most two warehouses are
sufficient due to the existence of the constraint (21) which is a strong valid inequality
for the second echelon. In this situation, opening two warehouses that have least total
costs is better than opening two warehouses that have least unit costs. The pseudo-

code of the greedy heuristic is as follows:

START
Calculate Total Capacity
IF Total Capacity < Total Demand THEN
SET  Shortage = Total Demand - Total Capacity

IF The warehouse that has the minimum g; is big enough to satisfy the

Shortage THEN
Open relevant warehouse

ELSE

Select the warehouses which are big enough to satisfy the Shortage

Select the warehouse that has the minimum g in this set as WOC,

WHILE Total Capacity < Total Demand
Select the warehouse that has the minimum g value
Open the relevant warechouse
Update WOC5 = WOCs+WOC,
Update Total Capacity
Store recently opened capacity levels

END WHILE

SET  Surplus = Total Capacity - Total Demand

WHILE A recently opened warehouse’s capacity < Surplus
Calculate closing profit ( WCPj ) for relevant warehouses
Select the warehouse that has the maximum WCP,
Close relevant warehouse
Update the Surplus value

END WHILE

Compare the WOC, and WOC3 values and select the minimum one

Open the new warehouses according to selected OC

END IF
END IF

STOP

4.2.2 Allocation Heuristics

4.2.2.1 Warehouse Allocation Heuristic

After global feasibility is obtained for both echelons using the developed greedy

heuristics, we can proceed by assigning the customers to the opened warehouses.
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Although the warehouses are capacitated, due to the allowance of multiple sourcing,
the assignment is relatively easier. Every customer is to be assigned to the opened
warehouse that minimizes the transportation cost of the customer. But it is not
possible in all instances due to the capacities of the warehouses. So we have to
specify a penalty value for each customer and assign these customers to the
warehouses in an order that is related to their penalty values. We define the penalty
value of a customer as the extra cost of assigning a customer to its second cheapest

opened warehouse instead of the cheapest opened warehouse. Let WAC ), be the

warehouse assignment cost of the customer k for the warehouse j, then the values of

WAC , and the penalty value, PWAC , are calculated as follows:

WAC, =c,d,
PWAC, = Mip{WAC ;| =2" Min{WAC,,, | J'={jel|r, =1
J'e Jjle

Then the penalties of the customers are re-sorted in a non-increasing way. Let index
m denote the position in the ordering:

PWAC, ZPWACj[Z]Z...ZPWAC >...2 PWAC.

[l] j[m] - jUMU

Thus, starting from the customer that has the highest penalty value (in position 1),
the customers are assigned to the cheapest warehouses. While assigning a customer
to a warehouse that has still handling capacity left, one of the following two cases

may occur:

remain

1. The remaining capacity of the cheapest warehouse, w;™" is greater than the

demand of the customer, w;f”’“i" >d,

2. The remaining capacity of the cheapest warehouse is less than or equal to the

demand of the customer, w;f’”’“i" <d,.
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In the first case, the warehouse has still got enough capacity to serve the whole

demand of the relevant customer. So the whole demand of this customer is assigned

remain

to the mentioned warehouse and the remaining capacity of the warehouse w; is

updated. At this point, the assigned customer and its penalty are removed from the
penalty set and the next customer that has the highest penalty value in the list is

selected to be assigned to a warehouse.

dk [](‘ W;emain Z dk

remain

Otherwise

remain __ _
W= w, =3z,
keK

In the second case, the remaining capacity of the warehouse is not enough for
satisfying the overall demand of the customer. Fortunately, multiple sourcing is
allowed. Therefore, the maximum amount that the relevant warehouse can accept is
assigned to the warehouse, and then the remaining demand of the customer is
calculated as the total demand of the customer minus the assigned demand of this

customer.

remain __ _
d" " =d, =Yz, .

jeJ

At this stage, the associated warehouse has no remaining capacity. So it is closed for
further demands and the penalty values are re-calculated by ignoring the fully loaded

warehouses in the calculation of the WAC , values.

Then again the customer that has the maximum penalty value is selected, and it is
assigned either fully or partially to a warehouse. This procedure is repeated until all
customer demands are fully satisfied by the warehouses. The pseudo-code of the

allocation heuristic is as follows:

83



START
SET  Remaining warehouse capacity to w; for opened warehouses

WHILE There exists one or more unassigned demand of customer
Calculate warehouse assignment costs (WAC jk) for each unassigned customer —

opened but not full warehouse pair
Calculate the penalty value (PWAC, ) for each unassigned customer

Select the customer that has the highest PWAC, value
Select the opened but not full warechouse that the selected customer has lowest

WA Cjk value

IF Customer’s unallocated demand < remaining warehouse capacity THEN
Assign all demand to relevant warehouse
Update the remaining warehouse capacity
Mark relevant customer demand as assigned
ELSE
Assign the maximum available demand to relevant warehouse
Update the unassigned demand amount
Mark relevant warehouse as full
END IF
END WHILE
IF No customer is assigned to an opened warehouse THEN
Close relevant warehouse
END IF
STOP

4.2.2.2 Plant Allocation Heuristic

After assigning all customers to the opened warehouses, the capacities of the

actual

warehouses, wi, are determined by adding all the demand of customers that are

assigned to relevant warehouses:

wiene! = dezjk Vijed.

keK

It should be noted that even if a warehouse is decided to be opened in the

actual

lowerbound solution, but its calculated capacity w;™" is equal to zero, then there is

no need to keep this warehouse open in the upperbound, thus it is decided to be

closed and the relevant r variable is set to zero:

1 [f Wz?ctuul > 0

J

r.= ' Vied .
0 Otherwise
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Assigning opened warehouses to the opened plants is much difficult than assigning
customers to the opened warehouses due to the existence of the minimum supply
requirement constraints of the capacity levels. As far as we know, there are no
heuristic solutions for the plants which consider both the maximum and minimum
supply limits of the plants. Even we develop a heuristic for this case; it may be far
from the optimal solution. So we have decided to ignore the minimum flow
constraints of the plants in the allocation heuristic and deal with this complexity in
the next stage that is the local feasibility check stage. Without the minimum supply
constraints, the allocation problem can be solved efficiently by using a heuristic that

is similar to the warehouse allocation heuristic explained above.

First, for each opened plant and warehouse pair, the plant assignment cost PAC,,,

which is the cost of assigning the whole demand of a warehouse to a specific plant, is

calculated as:

_ actual _ —
= (c,.,j, +e., ) wi whre q,, =1and r, =1

PAC

i

Then a penalty is calculated for each warehouse; that is the extra cost of assigning a

warehouse to the second cheapest plant is as follows:

PPAC, = Min {PAC,, | -2" Min{PAC,, | IL'={i'"elandl'eL|q, =1

i''ell’ i"I'ell’

Then the penalties of the opened warehouses are re-sorted in a non-increasing way.

Let m be the index denoting the position in the ordering, and then:

PPAC ;2 PPACJ.[Z] 2.2 PPAC],[m] >...2 PPAC

s ] where |M| < |J|

Then, starting from the warehouse that has the highest penalty value, the warehouses

are assigned to the cheapest plants. However, unlike the warehouses, the plants do
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have capacity limits. Thus while assigning a warehouse to a plant which still has

production capacity left, one of the following two cases may occur:

1. The remaining capacity of the cheapest plant is greater than the warehouse

“tual
demand wj‘”‘"

2. The remaining capacity of the cheapest plant is less than or equal to the

actual

warehouse demand w;
In the first case, the plant still has got enough capacity to serve the full demand of the
relevant warehouse. So the whole demand of this warehouse is assigned to the
mentioned plant and the remaining capacity of the plant is updated. Then the
assigned warehouse and its penalty are removed from the list and the next warehouse

that has the highest penalty value in the list is selected to be assigned to a plant.

In the second case, the remaining capacity of the plant is not enough for satisfying
the overall demand of the relevant warehouse. Similar to the second echelon,
multiple sourcing for a warehouse is allowed. For this reason, the maximum amount
that the relevant plant can accept is assigned to the plant, and then the remaining
(unmet) demand of the warehouse is calculated as “the overall demand of the
warehouse” minus “the remaining capacity of the plant before assigning some of the
warehouse’s demand”. At this stage, the associated plant has no more remaining
capacity. So it is closed and the penalty values are re-calculated by ignoring the fully

loaded plants.
Then again the warehouse demand that has the maximum penalty value is selected

and this procedure is repeated until all demands of all warehouses are fully satisfied

by the plants.
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4.2.3 Local Feasibility Check

As we recall, for solving the plant allocation heuristic efficiently, we ignore the
minimum supply constraints of the plants. Therefore some plants may supply less
than their minimum limit. This local infeasibility, which is the infeasibility situation
that is caused by one or more plants, makes the original problem infeasible, too. In
the literature, in order to deal with this infeasibility, some interchange heuristics are
used in some studies like Ayrim (2006) or in other studies upperbound is marked as
infeasible for this iteration and it is proceeded with the next iteration as it is in the
study of Correia et al. (2003). Interchange heuristics may be efficient for the
capacitated facility location with minimum supply requirements problem class, but
for the modular capacitated facility location problem, we have decided that the most
efficient way to deal with this infeasibility is downgrading the capacity level of the
infeasible plants: The lower capacity level always has lower cost compared to the
higher capacity levels as shown in Figure 3.1. Therefore we have downgraded the
capacity level of the plant until the solution becomes feasible. It should be noted that
in the modular capacitated facility problem, there may be production intervals that

are not covered by any of the capacity levels. For example in Figure 3.1 the interval

max min

between v, and v;"" 1s not covered by any capacity level. In other words, the plant

max

in Figure 3.1 can not produce w amount of product ifv)™ <y <vi"". If the result of

the lowerbound of a plant is in this uncovered interval, then the capacity level is
decreased to the nearest lower capacity level, which is Capacity level 2 for our

example.

After downgrading the infeasible plants, the problem may become globally
infeasible, so we return to the greedy heuristic stage and re-execute the plant greedy
heuristic and plant allocation heuristic with the downgraded capacity levels. But to
prevent the downgraded facilities to be upgraded to the previous capacity level in
greedy heuristic, we make a tabu list and do not calculate the opening cost for the
capacity levels which are in the tabu list. Tabu list is valid only for an iteration and in
each iteration tabu list is emptied after generating a feasible upperbound. If the local

infeasibility still exists after a specified number of trials, we give up looking for a
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feasible upperbound in this iteration and assign positive infinite value to the
upperbound solution of this iteration considering the computational burden of

repeating the primal heuristic.

If all plants are feasible, then we can calculate the value of the primal heuristic at the

current iteration, PY”, by putting the values of the decision variables which are
found in the primal heuristic, into the objective function of the original problem, P.

Let us assume %, Z,, g, and 7, be the primal heuristic values of the decision

variables, then the value of the primal heuristic at the current iteration is as follows:

P :zzz(bi/ +eil))eiﬂ +ch/’k2jk +ZZJII-1‘?U +Zgj}’;j .

iel jeJ leL jedJ kekK iel leL jeJ

As mentioned before, primal heuristic is employed in our solution procedure for
generating a feasible upperbound for the original problem, P. Since the original
problem, P has minimization type objective function, the minimum of the primal
heuristic found among certain iterations is selected as the best primal solution which

is called as the upperbound value, UB.
4.3 Subgradient Optimization

In the section 4.1.1.1 we dealt with the issue of finding optimal Lagrange multipliers
and chose to employ subgradient optimization in our heuristic to update the Lagrange
multipliers. Beasley (1995) defines subgradient optimization as an iterative
procedure which, from an initial set of Lagrange multipliers, generates further
multipliers in a systematic fashion that attempts to maximize lowerbound value
obtained from the Lagrangean dual problem. Subgradient optimization is developed
and improved by Polyak (1967), and after the work of Held and Karp (1970, 1971)
and Held, Wolfe and Crowder (1974), subgradient algorithm has been widely used in

many different contexts for producing lowerbounds for large-scale linear programs.
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Subgradients are partial differentials of the Lagrangean dual problem in a specific
point and used instead of gradient of a function if the function is nondifferentiable.
Unlike the gradient direction, the subgradient direction may not be an ascent/descent

direction, and for this reason a line search can not be done in this method. Let us

assume that f () is a nondifferentiable function and u' e R", of (LT ) denotes the

subdifferential, or the set of subgradients of f () at u’. Then

8f(z7)={geﬂ%"|f(u)£f(ft)+g(u—ﬁ)VueiR"}.

For example, if we recall our illustration that has an objective function value

Z=Cx'+ 1 (b — Ax' ) at point x! , the subgradient vector g! is calculated as below:

Z(x"\A)=g'=b—-Zx'

Although subgradients are not an ascent/descent direction, Fumero (2001) states that
the subgradient optimization guarantees that the new point is closer, in the Euclidean

sense, to the optimal point u’, since by definition, the subgradient vectors g’ and
(u* —uk ) form an acute angle. Therefore, by selecting a sufficiently small step size,

direction g* allows to move towards the optimum, so that the Euclidean distance to

the optimal solution is strictly decreasing. Thus, the choice of the step size is crucial
for the convergence of the algorithm. The step size should decrease as the iterations
increase, but not so quickly as to cause Lagrangean dual problem to converge to a
non-optimal point. There are several popular choices for calculating the step size, o

for iteration t as cited below:

2. 6'=Cp, 0<p<l, C>0.
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where f (u) denotes the optimal value of the function. First two alternatives are

used in the literature, while the third formulation is the most common one. However,
the optimal value of the problem is required to calculate the step size which makes
the formulation impractical. In order to deal with this problem, either a fixed constant

that is assumed to be slightly bigger than the optimal value but not as big, or a
variable value that is calculated for each iteration is used instead of f (u*) in the
formulation, if no primal heuristic is employed in the algorithm. On the other hand, if
a primal heuristic is employed in the algorithm to find feasible solutions for the

problem, then the best way to follow is using the best upperbound found so far

instead of the optimal value.

The parameter ' used in formulation 3 above is a constant that lies between 0 and 2
in the heuristic. Often the sequence of u‘ is determined by setting an initial value
that is less than or equal to 2 and halving x whenever the lowerbound value fails to

increase in some predetermined number of iterations.

After calculating the subgradients and the step size, the Lagrange multipliers, A', are

updated using the formulation below:

A=A s

where d' denotes the selected direction in the #” iteration. Crainic et al. (2001)

denote that as for the early versions of the subgradient algorithm, only the

subgradients are used to compute a direction d'. However, it was quickly realized

that taking into account the directions of the previous iterations could lead to

performance improvements. Hence, for calculating the direction d’ at the ¢
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iteration, the linear combination of all previous gradient directions is used rather than

just the current subgradient. The general formula of the direction is as follows:
dt =gt+0td1—l )

This formulation is the special case of the previous formulation where the constant
@' is not equal to zero this time. There are many approaches for calculating the
coefficient @' to obtain better directions. For example, Camerini—Fratta—Maffioli
rule is developed in the study of Camerini et al. (1975) for determining &' values.

According to this rule, the values of 8" is calculated as below:

_ngtdt—l
6’ _ ‘dt—l

0 Otherwise,

‘2 if g'd"™ <0

where 7 is a constant whose optimal value could be determined through
experiments. The rule of thumb indicates that using 1.5 for 7 is the good choice. On

the other hand, the simplest and the most widely used alternative that is developed by
Crowder (1976) is called the Crowder rule. According to the Crowder rule, the

constant @' is fixed to a value that is less than 1. The rule of thumb for this

alternative is fixing 6 to 0.3. When the Crowder rule is applied, the direction

becomes a power series as below:

-1

d'=3(0"g)=g.+0g ,+0°g  +...+0g,.

=1
4.3.1 Subgradient Optimization for TSMCFLP

In our problem, we have decided to employ the direction that incorporates the

previous directions as well and determine the value of @' constant using the Crowder

rule with =0.3. We have two different Lagrange multiplier sets, thus different
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subgradients and directions are calculated for each Lagrange multiplier set, whereas
only one step size is generated for all of the Lagrange multipliers. At iteration ¢, after

finding the lower and upperbound values of the current iteration, first the

subgradients ¢; and ¢, of the Lagrange multipliers o, and f; are calculated:

¢, = dezjk _ZZX;I

keK iel lelL

A :l_zzj'k

jeJ
Secondly directions @, and , are calculated as below:

t— e -1
@ = ¢ + 0]

w, = @i + 0w .
Then the step size for the current iteration is calculated as follows:

u' (1.05*UB - P (a’,,b”))

2. 4i@;+ 2Pl

jeJ keK

o' =

Finally, the Lagrange multipliers «; and f; are updated as follows:

t -1 t__t
a;=a, +5wj

p=B 0.
4.4 Stopping Criteria

We have already mentioned that subgradient optimization is an iterative procedure. If
some criteria are not defined for terminating the procedure, it would keep iterate
forever. As Bahiense et al. (2002) state, the subgradient optimization has lack of

well-defined stopping criteria. The theoretical stopping criterion of the subgradient

92



optimization is that the norm of the projected subgradient is too small. But as Crainic
et al. (2001) express unfortunately this stopping criterion almost never applies in
practice, because it would require that the solution of the Lagrangean dual problem
be feasible for the original problem. Therefore, alternative stopping criteria have to
be determined. We employ two criteria for this purpose similar to the previous

researches.

First criterion calculates a ratio of the gap, Gap% , between the upperbound and the

lowerbound value and stops the overall procedure if its value is small enough. Its

value is calculated as follows:

Gap% = M
LB ’

We decide the threshold value as 0.001. It means that if the Gap% is less than or

equal to 0.001, the developed Lagrangean heuristic is assumed to converge to the

optimal point and the procedure stops.

The second criterion limits the number of iterations allowed to a certain number. If
the heuristic does not converge to a point in the determined number of iterations,
then this criterion steps in and stops the procedure. If this limit is set too small, the
procedure is terminated without having an opportunity to converge. In this case, the

computational time is too low, but the Gap% is too high. On the other hand, if the

limit is set too high, the procedure converges to a near-optimal point during the
procedure and keeps iterating without improving the solution of the procedure.
Unfortunately, determining the value of the maximum number of iterations is
empirical and problem specific. Previous researchers use various numbers between
100 and 50,000 according to the complexity and the size of their problem, and the
heuristic. In the light of the previous researches, we have decided to set its value to

1000 for all problem instances.
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After defining the stopping criteria, all components of the heuristic are conflated
together. At each iteration first, the value of the relaxed problem is found and the
best lowerbound is updated if available. Second, warehouse greedy heuristic and
warehouse allocation heuristic are executed for finding a feasible solution for the
second echelon. Third, plant greedy heuristic and plant allocation heuristic are
executed alternately. Then local feasibility is checked for each opened plant. If there
exists local infeasibility in one or more plants, the capacity levels of infeasible plants
are adjusted until the infeasibility is eliminated and the plant greedy and allocations
are re-executed for finding a feasible solution for the second echelon. If all plants are
feasible, then stopping criteria are checked. As a final step subgradient optimization
is employed and the Lagrangean multipliers are updated by this procedure. Figure
4.1 shows the overall solution procedure that is explained above verbally. The

pseudo-code of the overall Lagrangean Heuristic is as follows:

START
INIT LB=-w,UB=+w0, a; = 0, B, =0, no_improv =0 and counter =0
Define the values of iteration limit and 4

WHILE Counter < Iteration limit AND Gap > 0.001
SET  counter = counter + 1
CALL Solver of first Main Subproblem
CALL Solver of second Main Subproblem
Calculate the solution value of the Lagrangean relaxation at this iteration

(PLR (at’ﬂt))

¥ P"(a',f') >LB THEN
SET  LB= P*(a'. ')
SET no_improv=20

ELSE
SET  no_improv=no_improv +1
IF no_improv equal to no_improv limit AND M 1is greater
than £ . THEN
Update the value of p
SET  no_improv =0
END IF
END IF

CALL Warehouse Greedy Heuristic

CALL Warehouse Allocation Heuristic

REPEAT
CALL Plant Greedy Heuristic
CALL Plant Allocation Heuristic
FOR  Each opened plant

Check Local feasibility

END FOR
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END WHILE

UNTIL Local feasibility of each opened plant is OK
Calculate the value of the primal heuristic at this iteration (PUB )
IF P“ >UB THEN

SET UB=PY
END IF

SET  Gap = (UB - LB%B

IF Gap > 0.001 THEN
Calculate subgradients, directions and stepsize

Update Lagrange multipliers a; and 'Bi
END IF

Write the performance measures

STOP
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Figure 4.1: The Proposed Lagrangean Heuristic Approach
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CHAPTERS

COMPUTATIONAL STUDY

In this chapter, we discuss the results of the experiments designed to evaluate the
performance of our solution approach. We first introduce the design of our
experiments, i.e. the generation of the problem instances. Next we define the
performance measures. In the last section, we report and discuss the results of the

computational study.

5.1 Design of the Experiments

In order to test the performance of our solution procedure, a variety of problems are
generated and solved for different sets of /, J, K and L. Both in the two-stage facility
location and modular capacitated problems literature, all researchers generate their
own data randomly for testing their solution procedure as there is no library that
includes the data sets of the previous researches. All researchers use different
parameters for generating data and problem instances. We have decided to
implement a similar procedure to the procedure that was used in the study of
Harkness and ReVelle (2002) in constructing the data for the test problems, because
among the similar studies, this study has the most comprehensive data generation
scheme. We have extended their data generation procedure for our TSMCFLP as

follows:

The annual demands of the customers are drawn from a uniform distribution between

10 and 100.
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The unit transportation costs of distributing the goods from the plants to the
warehouses and from the warehouses to the customers are generated from a uniform

distribution between 1 and 10.

The expected number of the maximum-capacitated facilities is computed by
multiplying the two problem parameters for the number of candidate facility sites by
the proportion of the largest facilities required to serve the total demand. Dividing
the total demand by this expected number of the maximum-capacitated facilities
yields a maximum capacity average. In order to obtain the maximum capacity for
each site, this average is multiplied by a uniformly distributed random number in

[0.75, 1.25].

The maximum capacities for the facilities less than the highest capacity level are

assigned according to the following formula:

max __ max max _ max _
Vi = Vi +Z(vi\L\ Vic )/(|L| l)

where z is a uniformly distributed random number in [0.25, 0.75]. This formula
insures a disproportionate increase in the size of the facilities with the increase of /.
The minimum production capacity of the first capacity levels is set to 1. The other

capacity levels are determined as follows:

‘ v +1 with probability 0.8
v = Vieland! #1
(v;?i’; + 1) z with probability 0.2

where z is a uniformly distributed random number in [1, 1.25]. The capacities of the

warehouses are calculated as follows:

wj:z§/|J

9
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where z is a uniformly distributed random number in [1, 1.5] and ¢ is the total

demand factor which is calculated by multiplying the total demand by a constant. We

take the parameter ¢ constant as “3” in our study which means that on the average

opening 1/3 of the warehouses is enough for satisfying the overall demand.

The annual fixed cost of establishing the highest capacity level of a plant is

determined according to the following formula:
S =2V >

where z is a uniformly distributed random number in [0.75, 1.25] and & is an

average total cost factor. This factor is selected in order to determine the importance
of the fixed costs compared to the transportation costs. We take its value as 50,
reflecting the plant locations having “higher importance” than the transportation
costs. The annual fixed costs of the other capacity levels are assigned via the

following formula:
Jo=Tfua Z(fim = Jia ) / (|L| _l) ’

where z is a uniformly distributed random number in [0.25, 0.5]. The variable cost of

production is assigned by the following formula:

_ z (f;l _ﬁl—l)
G =27 ( e vmax)

il il-1
where z is a uniformly distributed random number between 0.25 and 0.5 and
fio =V =0. The scope of the cost function and the 2// factor insures that on the

average, the variable cost is declining for higher capacity levels, reflecting the

economies of scale.
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The annual fixed cost of opening a warehouse is determined as follows:
g, = zfy

where z is a uniformly distributed random number in [0.375, 0.75] and fil is the

average cost of installing the first level capacity for plants.

Our test problem instances are generated according to the defined procedure. In some
cases, generated values may not be suitable for our problem because of the existence
of random variables in the procedure. Therefore, at each stage the procedure checks
the values of the parameters for conformity with the assumptions stated while
defining the problem environment and adjust the values of the parameters if
necessary. For example, all fractional values of the parameters are rounded to the
nearest integer. Besides these randomly generated parameters, there are some
parameters of the model that have to be determined by us. These parameters are the

number of the maximum allowed warehouse, R__; the initial values of Lagrange

multipliers, a’ and °; the stepsize multiplier that is used for calculating the stepsize
in the subgradient optimization procedure, y ; the allowed number of unsuccessful
iterations before updating the value of x. Unfortunately, all these parameters are

problem specific and an efficient procedure for estimating their best value for the
problem instance does not exist. Hence, we have decided to determine their values by

examining the previous researches.

The maximum number of the warehouses allowed can not be a fixed value for each
problem size and it has to be determined according to the number of possible
warehouse locations in the model. It must be higher than the minimum number of

warehouses that have to be opened in order to satisfy the overall demand, R . . We
have decided its value asR =%|J | It means that at most half of the possible

warehouse locations can be opened at any instance.
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The most important issues of the subgradient optimization are determining the initial

value of the stepsize multiplier, 1z, and the procedure of updating the value of 1.

Crainic et al. (2001) express that the computational experiments show that the setting

of the initial value of x4 usually makes up a significant portion of the difference

between obtaining good performances and having the method diverge, never being
able to improve on the initial estimate. Unfortunately, in the literature we do not find
a procedure which seems to provide at least reasonable performances on all problem

classes. However Held et al. (1974) states that taking ¢ between 0 and 2 assures the
geometric convergence to the optimal point. This is the reason why u is given

values ranging from 0 to 2 in the previous researches. In our study, we have decided

to take the initial value of x as 2, considering the results of preliminary testing.

In the literature, there are a few criteria and procedures for updating the value of u
during the heuristic. All of them multiply the value of x with a constant number

between 0 and 1 after a number of consequent unsuccessful iterations in the
lowerbound procedure up to a certain point. Unsuccessful iteration is an iteration that
does not change the value of the UB. After reaching a certain point, few researchers

terminate the overall heuristic procedure, few researchers reset the value of x to its
initial value, and the rest of them just stops multiplying ¢ with a constant number. If

the number of consequent unsuccessful iterations is set too small or no certain point
is set for the procedure, then the Lagrangean relaxation procedure may converge to a

far-optimal point because of the very small values of x.

In our subgradient procedure, we have decided to multiply x with 0.5 after 50
consequent unsuccessful iterations until the value of x has become less than or
equal to 0.1 (g, =0.1). After this point, we keep iterating the heuristic without

changing the value of 4.

Initializing the values of Lagrange multipliers is a less important subject in
subgradient optimization; that is why many of the researchers such as

Tragantalerngsak et al. (1997, 2000), Pirkul and Jayaraman (1998, 2001), Mazzola
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and Neebe (1999) and Broek et al. (2006) have not mentioned their own procedures

of generating the initial Lagrange multipliers generation.

A small part of the researchers such as Gavish (1978), Beasley (1993), Marin and
Pelegrin (1999), Marin (2007), Bektas and Bulgak (2008) have tried to estimate the
values of Lagrange multipliers in different ways and started the subgradient
procedure with these estimated initial Lagrange multipliers. For example, Gavish
(1978) solved the LP relaxation of the problem, and set the initial Lagrange

multipliers as the dual variables of the LP relaxation.

The rest of the researchers including Fisher (1981), Jang et al. (2002), Correia and
Captivo (2003, 2006) and Amiri (2006) preferred to set the initial values of Lagrange
multipliers to zero, because it is assumed that in the first 50-100 iterations, the values
of Lagrange multipliers of all the alternatives converge to very close values. For this
reason, starting with good Lagrange multipliers can be seen as warm start of the
procedure, but after some iterations usually no difference remains between a warm

start and a cold start. In our study, we have decided to make a cold start and set the

values of ' and f° to zero.

After defining the parameters used in the heuristic procedure, we may test our
solution procedure in several problem sizes to show its efficiency and robustness.

The parameters defining the problem size are the number of potential plant

1 J

locations, |/|, the number of potential warehouse locations, , the number of

K

customers, |K|, and the number of available capacity levels for a plant location , L| .

In our experiments, we prefer to fix the number of available capacity levels to a
constant value that both preserves the nature of the modular capacitated structure and
takes less time in computing the optimal solution of the original problem, P. Hence,
we have decided to make our elaborated runs with three levels of capacity. But in
order to show the performance of the heuristic, we also make runs with 5 and 10

capacity levels for three problem sizes only.

103



Table 5.1. Problem Sizes in the Experiments

# of # of 4 of # of
Plant Warehouse Customers Capacity
Locations Locations Levels
U ] K] |Z|
5 10 20 3
5 10 20 5
5 10 20 10
5 10 30 3
5 10 40 3
5 10 50 3
5 15 40 3
5 15 50 3
10 25 50 3
10 25 75 3
10 25 100 3
10 25 200 3
10 40 100 3
10 40 200 3
20 30 100 3
20 30 100 5
20 30 100 10
20 30 200 3
20 40 100 3
20 40 200 3
20 50 100 3
20 50 200 3
20 50 500 3
30 50 100 3
30 50 200 3
30 50 500 3
30 50 500 5
30 50 500 10

Other three parameters |I J | and |K | are formed in such a way that a wide range of

problem sizes is covered. Starting with the small-size problems of 5 potential
locations, 10 warehouse locations and 20 customers, the larger-scale problems up to
30 plant locations, 50 warehouse locations and 500 customers are considered. The

problem sizes that are employed during the experiments can be seen in Table 5.1. For
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each problem size, we have solved randomly but systemically generated 10 problem
instances; as a total we have got 22 problem sizes with 3 capacity levels and 3
problem sizes with 5 and 10 capacity levels. By solving 10 problem instances for

each set, we have carried out the experiments with 280 problem instances.
5.2 Performance Measures

In evaluating the performance of the developed solution procedure, we use the

following main performance measures:

1. The following gap ratios are the most important measures for investigating

the performance of the heuristic:

a. The total gap ratio, Gap%: It is the gap ratio between the upper and lower
bounds with respect to the lowerbound. Gap% reveals the quality of the

overall heuristic procedure. It is calculated as follows:
Gap%=(UB—LB)/LB

b. The upperbound gap ratio, Gap,,%: It is the gap ratio between the

upperbound and the optimal solution of the problem with respect to the
optimal solution. As mentioned before, in the TSMCFLP, the lowerbound
heuristic may be generating results far from feasibility. Therefore, much falls
onto the greedy heuristic developed by us. By this ratio, we may examine the
quality of the primal heuristic procedure. Besides, if we decide to implement
this solution in real life, then our actual distance from the optimal solution, in
other words the loss, will be determined by this measure. Therefore it is an
important performance measure for us. If P* represents the optimal solution
of the original problem, P, then the upperbound gap ratio is calculated as

follows:
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Gapy,% =(UB-P") [P’

c. The lowerbound gap ratio, Gap,;%: It is the gap ratio between the

lowerbound and the optimal solution of the problem with respect to the
lowerbound of the heuristic. This ratio shows the performances of
Lagrangean relaxation and subgradient optimization techniques in our

problem. It is calculated as:
Gap,,%=(P - LB)/LB

2. The solution time in central processing unit (CPU) seconds: We have solved
each problem instance both with the developed heuristic and GAMS with CPLEX
10.0.1 and compared the solution times of both. This comparison shows the
performance of the developed heuristic against the best known optimization package,

CPLEX.

In addition to these main performance measures, we have collected some supportive
performance measures, for investigating the performance of the developed
upperbound heuristic procedure. These measures count how many times the
warehouse greedy heuristic procedure and the plant greedy heuristic procedures are
needed for. Some other measures count how many times each alternative solution of
the greedy heuristic gives the best solution. Also there is another measure that counts
how many times the local feasibility fails in one or more plants. In order to interpret

their results, we show them in percentages in the average results table.

5.3 Experimental Results

The heuristic solution procedure is coded in GAMS environment. The optimal
solutions of the problem instances are solved in GAMS with CPLEX 10.0.1. All
computational studies are conducted on an Intel® Pentium® M 1.7 GHz processor

with 512 MB RAM under Windows XP operating system.
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The detailed results of the problem instances are given in Appendix 1 while a
summary of those results is given in Table 5.2 and Table 5.3 below, where the
average values of the main performance measures and the average values of the

supportive performance measures for each problem size are presented, respectively.

In Table 5.2 and 5.3, each row shows the average values of the main and supportive
performance measures for each problem size. The results are rounded to the nearest

representable value.

CPLEX 10.0.1 is unable to solve 26 problem instances due to the memory
limitations. In Table 5.2, the problem sizes that include the problem instances which
cannot be solved by CPLEX are marked with an asterisk sign (*). In problem size
30x50x500x10, CLPEX can not solve a problem instance in 10 hours. This problem
size marked with a dagger sign (1) in Table 5.2 and in Appendix 1 includes the
problem instance mentioned. In problem size 30x50x500x5 CPLEX is unable to

solve any of the ten instances thus the average Gap,,% and Gap,,;% values of this

problem size can not be calculated.

In Table 5.3, the “Avg. WHGH” column represents the average of how many times
the warehouse greedy heuristic procedure is needed for in our heuristic procedure as
a percentage of the number of the total iterations of the heuristic procedure. For
example in the first row, for the problem size 5x10x20x3, the value of “Avg.
WHGH?” is 0.25%. It means that the warehouse greedy heuristic is executed for a
problem in 0.25% of the iterations on the average. We have already mentioned that
we have solved 10 problem instances for a problem size, and we have made 1000
iterations in one problem instance, if the first stopping criterion has not been satisfied
earlier. Therefore, we need to call the warehouse greedy heuristic procedure
1000*0.25% = 2.5 times on the average for a problem instance and 10*1000*0.25%

= 25 times in total for the relevant problem size.

The “Avg. POGH” and “Avg. PCGH” columns also show similar performance

measures. They present the percentage of how many times the plant greedy heuristic
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procedure is needed for on the average in our heuristic procedure for opening more
plants and for closing some of the opened ones, respectively. Their values are

calculated as is the value of “Avg. WHGH”.

Table 5.2. Results of the Main Performance Measures in Averages

Plant WarchouseCustomer “2P*%%Y | Average Average Average |Average Average
VY k| |z | Gap,% Gap,%  Gap% H;ﬁ’é“}?f E}ZE%
5 10 20 3 1.558 0.340 1.904 3.552 1.985
5 10 20 5 2.197 0.431 2.635 4.479 1.619
5 10 20 10 1.975 0.602 2.590 6.524 3.346
5 10 30 3 3.278 0.226 3.514 4.967 2.482
5 10 40 3 1.905 0.359 2.271 6.822 2.853
5 10 50 3 1.664 0.518 2.190 8.920 5.870
5 15 40 3 1.919 0.388 2.314 8.843 9.246
5 15 50 3 2.557 0.219 2.781 11.157  11.435
10 25 50 3 1.575 0.485 2.068 18.021  29.839
10 25 75 3 2.346 0.593 2.819 | 27.685 422.153
10 25 100 3 1.736 0.667 2.413 39.035 166.176
10 25 200 3 2.036 0.478 2.523 | 107.965 187.337
10 40 100 3 1.890 0.564 2.465 57.065 309.656
10 40 200 3 1.934 0.540 2483 | 141.009 376.617
20 30 100 3 1.033 0.907 1.949 | 49.249 916.166
20 30 100 5 0.905 0.916 1.816 | 56.432 1948958
20 30 100 10 0.678 0.806 1.490 | 75.357 3935.654
20 30 200 3 1.188 0.693 2.053 | 121.138 1820.632
20 40 100 3 1.022 1.013 2.045 62.855 1510.097
20 40 200 3 1.083 0.970 2.063 | 146.647 3690.557
20 50 100 3 1.163 0.829 1.951 79.778 2011.426 °
20 50 200 3 1.035 1.016 2.189 | 177.632 1803.916
20 50 500 3 1.685 0.553 2.247 |759.923 4311.758
30 50 100 3 0.615 0.876 1.457 | 88.456 2598.602 "
30 50 200 3 0.720 0.838 1.554 | 185.776 5890.367
30 50 500 3 1.298 0.934 2.253 | 834.614 6544.300
30 50 500 5 N/A N/A 1.9036 | 840.605 21920.083
30 50 500 10 0.674 0.976 1.6047 | 937.701 22628.724""
Average 1.543 0.657 2.198 | 172.037 2923.544
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In Section 4.2.1, we discuss the warehouse and plant greedy heuristics thoroughly.
As readers may recall, we introduce three different solution alternatives for selecting
the opened warehouses. First we find the warehouse that is decided to “remain
closed” in the lowerbound solution and has the lowest opening cost. If its capacity is
big enough for satisfying the demand shortage, then without evaluating the other
alternatives, we select this solution as the best alternative; otherwise we select the
warehouses to be opened in two different ways: Selecting the minimum-cost
warehouse that is big enough to satisfy the shortage or collecting a set of warehouses

that has the lowest opening cost until the shortage is satisfied.

The columns “Avg. WHGH 17, “Avg. WHGH 2” and “Avg. WHGH 3” in Table 5.3
represent how many times these alternatives are selected as the best alternative on the
average as a percentage if the warehouse greedy heuristic is required to be executed.
For example, for the problem size 20x30x100x3, the values of “Avg. WHGH 17,
“Avg. WHGH 2” and “Avg. WHGH 3” are 90.011%, 7.250% and 2.738%
respectively. It means that if we execute the warehouse greedy heuristic 100 times,
then the first solution alternative is selected as the best alternative 90.011 times, the
second solution alternative is selected as the best alternative 7.25 times and so on.
The sum of these three values is approximately 100% as expected because there is no

other alternative solution if the warehouse greedy heuristic is executed.

Using these three columns and the “Avg. WHGH” column, it is very simple to find
how many times these alternatives are selected as the best alternative for a specific
problem size. For example, the percentage of selecting the first alternative as the best
alternative solution with respect to the total number of iterations of Lagrangean
heuristic for the problem size 20x30x100x3 is70.480%%90.011% = 63.44% . We
know that we make 10*1000 = 10,000 iterations for each problem size. Accordingly,
for the problem size 20x30x100x3, we select the first solution alternative as the best

solution for 63.44%*10,000 = 6344 times.
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The “Avg. POGH 17, “Avg. POGH 2”, “Avg. POGH 3”, "Avg. POGH 4” and “Avg.
PCGH 17, “Avg. PCGH 2”, “Avg. PCGH 3”, “Avg. PCGH 4” columns represent
similar measures that are presented in “Avg. WHGH 17, “Avg. WHGH 2 and “Avg.
WHGH 3” columns. As explained in Section 4.2.1.2, we have got four different
solution alternatives both for opening the required capacity levels and for closing the
excess capacity levels. The “Avg. POGH 17, “Avg. POGH 2”, “Avg. POGH 3” and
"Avg. POGH 4” columns show the average of the selection in percentages of the four
solution alternatives while opening more plants, also “Avg. POGH 17, “Avg. POGH
2”7, “Avg. POGH 3” and "Avg. POGH 4” columns show the average of the selection
in percentages of the four solution alternatives while closing some of the opened

plants.

The last column, “Avg. LFC”, shows on the average the percentage of how many
times the plant allocation heuristic yields results in which the production volumes of
one or more plants are infeasible. For example, for the problem size 5x10x20x3 the
value of “Avg. LFC” is 4.1%. It means that for the problem size 5x10x20x3, if we
execute Lagrangean heuristic for 100 iterations, then the results of plant allocation
heuristic is marked as the “local infeasible” in 4.1 iterations on average and some
adjustments are made in the capacity levels of the infeasible plants in order to
generate a feasible solution. It can be seen that for some problem sizes, the value of
the “Avg. LFC” is greater than 100%. This means that in some iterations, the local
infeasibility continues after adjusting the capacity levels and re-allocating the
warehouses. Therefore, the local feasibility check stage has to run again and again
for some iterations. For example for the problem size 30x50x500x10, the value of
“Avg. LFC” is 145.11%. This means that the local feasibility check procedure has to

adjust the capacity levels 1.45 times on the average for an iteration.

It can be seen in Table 5.2 that the solution procedure produces high quality results
in short times, which makes our proposed heuristic a reasonably well solution
alternative for the TSMCFLP. The gap percentage between the best feasible solution
(upperbound) and the Lagrangean dual problem (lowerbound) is employed to be able
to judge the quality of the solution. The Gap% values range between 0.438% and
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11.760%, with an overall average of 2.198% confirming the high quality of the

developed heuristic.

Gap,;% can be treated as the actual gap as it represents the difference between the

optimal solution and the best feasible solution found, which is the only alternative

solution that could be implemented in real-life. The Gap,,% values which are

ranging between 0% and 1.880% with an overall average of 0.657% show that the
employed allocation heuristic integrated with the developed greedy heuristic and the
local feasibility check procedure yields very good upperbound solutions. Even in the

problem instance that has the highest Gap% among the experiments, the value of
Gap,;% 1s 0.540%. This shows even in the problem instances in which subgradient

optimization cannot converge rapidly, the upperbound procedure is effective and

efficient.

Gap, ;% can be employed for measuring the quality of Lagrangean relaxation and
subgradient optimization. In our study, Gap,,% 1is ranging between 0.251% and

11.178% with an overall average of 1.543% which shows that even with the

existence of some outliers, the lowerbound procedure is efficient on the average.

As it can be seen in Table 5.3, in the first several problem sizes, the average solution
duration of CPLEX is less than the solution duration of the developed Lagrangean
heuristic. This is predictable; although the TSMCLP is NP-Hard, the problem
structure is very small and CPLEX is the most powerful solver in the market,
especially for the small-sized problems. Besides, the maximum difference for a
problem size between the average solution duration of CPLEX and the developed
heuristic is 3.969 seconds, which is negligible. On the other hand, for most of the
problem sizes, the developed heuristic outperforms CPLEX in terms of the average
solution duration. On the overall average, the developed heuristic is approximately

17 times faster than CPLEX.
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Following is an interesting observation about the solution duration of CPLEX and
the developed heuristic: the solution durations of the problem instances within a
specific problem size in CPLEX have major differences. On the other hand, the
solution durations of the developed heuristic are close to each other within a specific
problem size. Table 5.4 shows the standard deviation of the solution durations of the
CPLEX and the developed heuristic. The standard deviation of Lagrangean heuristic
varies between 0.139 and 12.844 with an average of 2.612 seconds, and the standard
deviation of CPLEX solution varies between 0.623 and 10294.882 with an average
of 2319.563 seconds. The reason of this high variance of CPLEX may occur due to
many different factors that depend on the characteristics of the problem instances.

The most possible factors according to us are as follows:

e Due to the unique structure of each problem, at some instances CPLEX is
able to generate good initial solutions; however at some instances CPLEX

cannot generate good initial solutions.

e CPLEX uses many different heuristics such as relaxation induced
neighborhood search, feasibility pump heuristic, node heuristic, and apply
many different cuts such as Gomory fractional cuts, clique cuts, mixed
integer rounding cuts and so on. For some problem instances, CPLEX is able
to generate efficient cuts and heuristics for the branch-and-cut tree, but not

for other problem instances.

High variance in CPLEX solution durations makes the estimation of the optimal
solution duration impossible, even if many problems having the same problem size
have been solved previously. On the other hand, the developed heuristic has got low

variance, which makes the estimation of the heuristic solution duration possible.

Robust design is defined as designing a product so that its functionality varies
minimally, despite the disturbing factor influences. Our heuristic can solve each
problem instance that has the same size but distinctive characteristics in close

solution durations, which shows us the robustness of the developed heuristic.
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Table 5.4. The Standard Deviations of the Solution Durations

Plant Warehouse Customer Ci}::]zilty Standard Deviation (o)
1] 7] K| IL|  Heuristic CPLEX
5 10 20 3 0.161 1.187
5 10 20 5 0.222 0.623
5 10 20 10 0.305 1.811
5 10 30 3 0.202 1.192
5 10 40 3 0.139 1.071
5 10 50 3 0.333 1.463
5 15 40 3 0.413 5.415
5 15 50 3 0.377 5.047
10 25 50 3 0.476 41.963
10 25 75 3 0.638 1211.986
10 25 100 3 0.989 390.181
10 25 200 3 2.089 414.696
10 40 100 3 1.225 345.844
10 40 200 3 2.831 460.087
20 30 100 3 0.897 1909.731
20 30 100 5 1.607 2030.548
20 30 100 10 2.629 4468.668
20 30 200 3 2.470 2718.835
20 40 100 3 1.496 2038.426
20 40 200 3 1.542 5852.541
20 50 100 3 1.136 3670.370
20 50 200 3 4.030 3314.790
20 50 500 3 11.024  2487.193
30 50 100 3 2.588 3618.867
30 50 200 3 4.215 8015.969
30 50 500 3 8.922 5599.963
30 50 500 5 12.844  5768.042
30 50 500 10 7.324  10294.882

Average 2.612 2319.563

In the upperbound procedure, the warehouse greedy heuristic procedure is required
to be executed varying between 0.25% and 96.82% with an average of 53.457%
iterations of all the iterations. Its average is higher than the plant heuristic requires,

which may cause doubts about the strength of the constraint (20). However, if we
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look at the values of “Avg. WHGH 17, “Avg. WHGH 2” and “Avg. WHGH 3”, we
can see that if the warehouse greedy heuristic is executed, the first solution
alternative is selected as the 89.622 % on the average. The first solution alternative
of all greedy heuristics can be selected if and only if the results of the lowerbound
procedure are very close to the feasible region. In the execution of the plant opening
heuristic and plant closing heuristic, the first alternative is selected as the best
alternative only 17.787% and 14.795% on the average, respectively. These results
show that the result of the lowerbound solution procedure of the first stage is not

close to the feasible region due to the lack of a strong valid inequality.

In the first and the second solution alternatives of all the three greedy heuristic
procedures, only one facility is opened whereas in the third and fourth solution
alternatives, at least two or more facilities are opened for obtaining an initial feasible
solution for the allocation heuristic. Table 5.3 shows that opening only one additional
warehouse is selected as the best alternative in 96.075% of the warehouse allocation
heuristic executions due to the reason explained in the previous paragraph. But in the
plant opening and closing greedy heuristics; opening or closing more than one
capacity level is selected as the best solution alternative compared to opening or

closing only one capacity level.

In the following section we elaborate on the performances of the developed heuristic
and analyze the effects of the number of possible plant locations and warehouses, the
number of customers and the number of available capacity levels on the performance

measures.

5.4 Analysis for Performance Measures

In this section, the effect of the problem size on the main and supportive performance
measures 1s studied. The size of the problem is determined by the number of the
potential plant and warehouse locations, the number of customers and the capacity
levels. In the following sections, the effects of these problem parameters are

analyzed separately. But it is impractical to compare each parameter to all of the
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performance measures, because even when the comparisons show a trend or a
relationship between a parameter and a performance measure, this relationship may
not be a causal relationship. Therefore, in order to distinguish the causal effects from
the chance effects, for each parameter we select the performance measures which

might be causally affected by the relevant parameter.

For example, if we compare the situations where all the problem parameters are the
same except for a specific parameter and if in all the comparisons, the value of

the Gap% seems to increase as the number of the specific parameter increases, we

may conclude that there is a relationship between the specific parameter and
the Gap% wvalue. But this conclusion is not true. Previous researches show that the
relationship between the problem size and the value of Gap% cannot be generalized
as a causal effect. For some of the problem instances, Gap% value may/may not
increase or decrease with the increase of the parameter. This can be interpreted in
accordance with the characteristics of the problem instances where input parameters
result in better approximations in the subgradient optimization that leads us to better
gaps. Even if there appears to be a trend in all situations, it is a chance effect. The
problem parameters and their effects on the selected performance measures are

discussed in the following section.

5.4.1 Effects of the Number of Potential Plant Locations on the Performance

Measures

In this section, we concentrate on the effect of the plant sites on the performance
measures. We have already mentioned that Gap%, Gap,,% and Gap,,% are not
causally affected by any of these parameters. The “Avg. WHGH” cannot be affected
either, because this measure is a procedure about warehouses. Hence, we select the
solution duration, the “Avg. POGH”, “Avg. PCGH” and “Avg. LFC” performance
measures as the relevant measures, i.e. the measures that may be affected by the

increase in the number of plant locations.
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Among the available problem sizes, we have considered the sizes where the only
change is caused by the number of potential plant locations, and determined five
such instances and presented them with the results of the relevant performance

measures in the comparison tables in Table 5.5.

Table 5.5. Effects of the Number of Potential Plant Locations on the Performance

Measures
I)
Warehouse Customer Ci‘:;?lty Plant | Average | Average | Average | Average
Heuristic
K L 1
/] K| Ll | |I| | POGH | PCGH | LFC CPU
(%) (%) (%) (©)
.065
40 100 3 10 59.67 1.460 9.8 57.06
20 64.32 1.150 7.8 62.855
Increase (%) 7.793 -21.233 | -20.306 | 10.146
II)
Warehouse Customer Ci‘; ’:,ceilty Plant | Average | Average | Average | Average
Heuristic
J K L 1
/] K| L] /] | POGH | PCGH | LFC CPU
(%) (%) (%) (©)
40 200 3 10 61.72 1.780 16.1 61.72
20 55.58 1.750 11.2 55.58
Increase (%) -9.948 -1.685 | -30.031 3.998
1)
Warehouse Customer Cilgceilty Plant | Average | Average | Average | Average
Heuristic
K L 1
/] K| || /| | POGH | PCGH | LFC CPU
(%) (%) (o) (©)
50 100 3 20 57.20 1.520 10.1 79.778
30 58.79 1.430 12.1 88.456
Increase (%) 2.780 -5.921 20.437 10.878
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Table 5.5. Cont’d

V)
Warehouse Customer Cilz,ceilty Plant | Average | Average | Average | Average
Heuristic
J K L 1
/] K| || /| | POGH | PCGH | LFC CPU
(Y0) (%) (Y0) (s)
50 200 3 20 59.32 1.490 16.9 177.632
30 61.74 1.890 16.5 185.776
Increase (%) 4.080 26.846 -2.363 4.585
\D)
Warehouse Customer Cilgceilty Plant | Average | Average | Average | Average
Heuristic
K L 1
7] K| || /| | POGH | PCGH | LFC CPU
(%) (%) (%) (©)
50 500 3 20 45.46 2.360 30.8 759.923
30 28.81 2.010 43.5 789.451
Increase (%) -36.626 | -14.831 | 41.423 3.886

It could easily be observed that the increase in the number of potential plant locations
also increases the size of the problem and the average solution durations for all five
comparison tables. The % of increases in the comparison table I and III, where the
number of customers is equal to 100, are very close to each other and approximately
10%. In the tables II, IV and V the % of increase is approximately 4%. These tables
show that the effect of the number of plant locations is very low in terms of solution
duration and it is getting lower in percentage when the number of customers
increases. This proves a negative interaction effect between the number of plant
locations and the number of customers, which decreases the solution duration
increase in percentage. Also the percentage remains almost unchanged in the tables I
and III and the tables II and IV, which shows that there is no strong interaction effect

between the number of plant locations and the number of warehouse locations.

With the increase of the number of possible plant locations, the “Avg. POGH”,
“Avg. PCGH” and “Avg. LFC” values increase in some tables and decrease in the
others. Hence, we can state that the number of possible plant locations has no effect

on these measures.
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5.4.2 Effects of the Number of Potential Warehouse Locations on the

Performance Measures

In this section, we consider the situations of problem instances, where the only
change is in the number of potential warehouse locations, and all other parameters
that determine the problem size remain the same. We select the solution duration,
“Avg. WHGH” and “Avg. LFC” as the performance factors that may affected by the

change in the number of potential warehouse locations. We have found out ten such

situations presented in six comparison tables below in Table 5.6.

Table 5.6. Effects of the Number of Potential Warehouse Locations on the

Performance Measures

I)
Plant Customers Ci[;il;llty Warehouse| Average | Average | Average
Heuristic
1 K L J
i K| W | wehen | re |Mews
(%) (%) )
5 40 3 10 4.50 2.3 6.822
15 8.32 3.8 8.843
Increase (%) 84.889 63.090 | 29.622
1)
Plant Customers Ci[:,cellty Warehouse | Average | Average | Average
Heuristic
7] K| || | WHGH | LFC |7 o0
(%) (%) (©)
8.920
5 50 3 10 8.77 4.1
15 44.26 2.5 11.157
Increase (%) 404.675 | -39.709 | 25.087
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Table 5.6. Cont’d

IT)
Plant Customers Cil;ii;ty Warehouse| Average | Average | Average
Heuristic
1 K L J
71 K] 2 VI | WHGH | LFC | L0
(%) (Y0) (©)
10 100 3 25 68.15 4.9 39.035
40 96.82 9.8 57.065
Increase (%) 42.069 98.381 46.190
Iv)
Plant Customers Cii?::llty Warehouse| Average | Average | Average
Heuristic
1 K L J
71 K] 1] VI | WHGH | LFC |7 o
(%) (Y0) (s)
2 107.965
10 200 3 5 37.51 14.0
40 93.75 16.1 141.009
Increase (%) 149.933 15.054 | 30.606
V)
Capacity
Plant Customers Level Warehouse| Average | Average | Average
Heuristic
1 K L J
0 Kl | W | wicn| Lrc | Heur
(%) (Y0) (©)
30 70.480 12.8 49.249
20 100 3 40 92.340 7.8 62.855
50 85.720 10.1 79.778
1* Increase (%) 31.016 | -38.745 | 27.626
2" Increase (%) -7.169 29.065 26.924
V1)
Plant Customers Ci[;?’zllty Warehouse| Average | Average | Average
Heuristic
1 K L J
i Kl | Ml | when| wLrc | Meurs
(o) (Y0) (©)
30 65.130 18.1 121.138
20 200 3 40 78.370 11.2 146.647
50 86.310 16.9 177.632
1* Increase (%) 20.329 | -37.818 | 21.057
2" Increase (%) 10.131 | 50.757 | 21.129
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In all tables it can be seen that the solution duration of the developed heuristic
increases in all instances drastically when the number of potential warehouse
locations increases. The increment percentage varies between 21.057% and 46.190%,
which shows that the effect of the number of possible warehouse locations is very
strong in solution duration even when the accrual in the number of warehouse
locations is so small. Table V and VI show that the increases in percentages are
almost the same for the same increment in the number of potential warehouse
locations. Depending on this observation, we can state that the effect of the number
of potential warehouse locations may be a linear function, not nonlinear. If we
compare the tables V and VI, we can see that the escalation in the percentage of the
overall solution duration decreases when the number of customers increases. This
might be a sign of a negative interaction effect of the number of potential warehouse

locations and the number of customers on the solution duration.

The value of “Avg. WHGH” increases in nine of the ten instances, however in one
instance in the comparison table V, its value decreases by 7.169% when the number
of warehouse locations increases from 40 to 50. This might be an outlier, but due to
this instance we cannot indicate that there is a relationship between the number of
potential warehouse locations and the value of “Avg. WHGH”. When the number of
potential warehouse locations increases, the value of “Avg. LFC” increases in seven
instances and decreases in three instances. Due to these observations, we can state
that there is no effect of the number of potential warehouse locations on the value of

“Avg. LFC”.

5.4.3 Effects of the Number of Customers on the Performance Measures

In this section, the effect of the change in the number of customers on the selected
performance measures is considered. We have considered all the performance
measures and decided to seek a relationship between the number of customers and
the solution duration. Because, bearing in mind our solution procedure, only the
solution duration may be affected by the number of customers. Among the available

problem instances, fourteen situations, in which the difference is only in the number
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of customers and where all the other parameters are the same, are found and

presented in eight comparison tables in Table 5.7

Table 5.7. Effects of the Number of Customers on the Performance Measures

I)
Plant Warehouse Capacity Level| Customer | Average
Heuristic
1 J L K
Y L | k|| e
20 3.552
30 4.967
5 10 3
40 6.822
50 8.920
1* Increase (%) 39.832
2" Increase (%) 37.344
3" Increase (%) 30.746
)
Plant Warehouse Capacity Level | Customer | Average
Heuristic
1 J L K
71 1 1 Kl | cpu s)
.84
5 15 3 40 8.843
50 11.157
Increase (%) 26.172
1)
Plant Warehouse Capacity Level | Customer | Average
Heuristic
1 L K
" | k|| Mews
50 18.021
10 75 3 75 27.685
100 39.035
200 107.965
1° Increase (%) 53.625
2" Increase (%) 40.998
3" Increase (%) 176.586
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Table 5.7. Cont’d

IV)
Plant Warehouse Capacity Level | Customer | Average
Heuristic
1 J L K
i 1 1] Kl | cpu s)
100 57.065
10 40 3
200 141.009
Increase (%) 147.101
V)
Plant Warehouse Capacity Level | Customer | Average
Heuristic
1 J L K
o | k]| Moo
100 49.249
20 30 3
200 121.138
Increase (%) 145.972
V1)
Plant Warehouse Capacity Level | Customer | Average
Heuristic
1 J L K
oy f | k|| Hewris
100 62.855
2 4
0 0 3 200 146.647
Increase (%) 133.311
VII)
Plant Warehouse Capacity Level | Customer | Average
Heuristic
1 J L K
o [ | (k]| Moo
100 79.778
20 50 3 200 177.632
500 759.923
1* Increase (%) 122.659
2" Increase (%) 327.806
VIII)
Plant Warehouse Capacity Level Customer Average
Heuristic
1 J L K
o | (k]| Moo
100 88.456
30 50 3 200 185.776
500 789.451
1* Increase (%) 110.021
2" Increase (%) 324.947
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It can be observed that in all of the situations the average solution duration increases
as the number of customers increases. In some situations such as the one in the
comparison tables I and II, the increase in the number of customers is small, so is the
increase in the average solution duration. In the instances such as the ones in the
comparison tables IV, V, VI, VII and VIII, the average solution duration increases
significantly due to the high increment in the number of customers. The increase
ratios in Table 5.7 show that the number of customers has a significant effect on the

solution duration.

If we compare the comparison tables I and II, the tables III and IV and the tables V,
VI and VII, we can see that the increment in the number of customers and the other
fixed parameters are the same except for the number of potential warehouse
locations. In all of these comparisons tables, the increase percentage of the average
solution duration decreases. For example in the comparison table I, the increase
percentage, when the number of customers increases from 40 to 50, is 30.746%.
However, in the comparison table II, where the increment amount in the number of
customers and all parameters have values similar to the values in the comparison
table I, except for the number of possible warehouse locations, the increase
percentage decreases compared to the increase percentage in the comparison table |
and becomes 26.172%. The decrement in the increase percentage may be a sign of
the existence of a negative interaction effect between the number of customers and
the number of potential warehouse locations. Similarly, if we compare the increment
percentages of the comparison tables IV and VI and the tables VII and VIII
separately, we can observe that when the number of possible plant locations
increases, the increment percentages decrease. But this time this decrement is not as
significant as it is in the previous case. Still there might be a very weak interaction
effect between the number of customers and the number of possible plant locations in

the increase percentage of the solution duration.
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5.4.4 Effects of the Number of Available Capacity Levels on Performance

Measures

In this section, we consider the effect of increase in the number of available capacity
levels on the relevant performance measures. As it is in the effect of potential plant
locations section, we consider the solution duration, “Avg. POGH”, “Avg. PCGH”
and “Avg. LFC” as the relevant measures that might be affected by the increase of

the number of plant locations.
We find six situations where the only difference in the parameters is the number of

available capacity levels, which are presented in three comparison tables in Table 5.8

below.

Table 5.8. Effects of the Number of Available Capacity Levels on Performance

Measures
D)
Plant Warehouse Customer Cilgzilty Average | Average | Average | Average
LH
1 J K L
Vi K| Z| | POGH | PCGH | LFC | o
(%) (%) (%) )
3 26.80 1.76 4.10 3.552
5 10 20 5 51.47 8.05 12.30 4.479
10 47.73 9.25 20.55 6.524
1* Increase (%) 92.052 | 357.386 | 200.000 | 26.099
2" Increase (%) -7.266 14.907 | 67.073 | 45.657
II)
Plant Warehouse Customer Ci‘;iiilty Average | Average | Average | Average
LH
1 J K L
LA/ K| | |/ | POGH | PCGH | LFC | 4y
(%) (%) (%) (©)
3 66.90 1.74 12.75 49.249
20 30 100 5 49.20 2.78 20.58 56.432
10 49.25 5.08 37.52 75.357
1* Increase (%) -26.457 | 59.770 | 61.412 | 14.586
2" Increase (%) 0.102 82.734 | 82.313 | 33.536
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Table 5.8. Cont’d

IIT)
Plant Warehouse Customer Ci‘;i?lty Average | Average | Average | Average
LH
7] 7] K| Z| | POGH | PCGH | LFC | oo
(%) (%) (%) (©)
3 28.81 2.01 43.53 | 789.451
30 50 500 5 14.39 6.02 93.42 | 840.605
10 12.64 59.11 145.11 | 937.701
1* Increase (%) -50.052 | 199.502 | 114.611 | 6.480
2" Increase (%) -12.161 | 881.894 | 55331 | 11.551

In all six situations in three comparison tables, it can be observed that the solution
duration increases when the number of available capacity level increases. Even in the
small amount of increases in the number of available capacity levels, the increase in
the solution duration is quite visible. This means that the number of available
capacity levels might have a causal effect on the solution duration of the developed

heuristic.

The increase percentages of the “Avg. POGH” values are negative in four of the six
situations; however in the other two situations the increase percentage is positive,
which shows us that the number of available capacity levels has no effect on the
“Avg. POGH”. On the other hand, the value of “Avg. PCGH” increases on the
increase of the number of available capacity levels in all situations. This may be a
chance effect because we cannot find any relationship between the number of
available capacity levels and the value of “Avg. POGH” which is a similar measure
to “Avg. PCGH”. However, the number of available capacity levels might have a
causal effect on “Avg. PCGH”, the underlying reason of which cannot be interpreted

at first glance.

In all situations, the value of the performance measure “Avg. LFC” increases on the
increment of the number of available capacity levels. This trend shows that there

might be a cause and effect relationship between the number of available capacity
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levels and the performance measure “Avg. LFC”. This relationship can be explained
in this manner: The increment in the number of available capacity levels decreases
the production volume of each capacity level. Tight minimum and maximum

production capacities increase the possibility of generating infeasible plants.
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CHAPTER 6

CONCLUSION AND FURTHER RESEARCH

6.1 Conclusion

In this study, we have dealt with the two-stage, modular capacitated facility location
problem. Our aim is to determine the locations and the capacities of plants and
warehouses, and the pattern of the distribution network from the plants to customers
via the warehouses, with the least total cost of opening and operating the logistics
network. We model the problem as a mixed integer linear program and propose a
heuristic solution based on the Lagrangean relaxation. We use the subgradient
optimization algorithm to update the multipliers in the search of better solutions to
obtain strong lowerbounds. In order to find feasible solutions, we have employed an
allocation heuristic which uses the solutions of the lowerbound. However,
lowerbound solutions do not always have to be feasible for the original problem.
Therefore, we have developed a greedy heuristic in order to transform the infeasible

lowerbound solutions into initial feasible solutions for the allocation heuristic.

The results of our computational study have revealed that the overall heuristic
solution procedure yields reasonably good solutions. The employed subgradient
optimization method is successful to find good multipliers, which takes us to tight-
gap solutions. By using the Lagrangean relaxation method integrated with the
subgradient optimization, we could succeed to solve a NP-hard mixed integer
problem complicated with many binary variables. By exploiting the problem

structure after relaxing a set of constraints, we are able solve the mentioned NP-hard
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problem without executing any commercial solver or external heuristic procedure.

We just break the relaxed problem into two main subproblems, and then each main

subproblem into many easily solvable subproblems. The solution of these

subproblems can almost be obtained by inspection, which reduces the solution time

drastically. By this way, the developed heuristic could solve the problems

approximately 17 times faster on the average compared to CPLEX. The contributions

of this study to the logistics literature are as follows:

We have extended the modular capacitated facility location problem into two-
stage by adding capacitated warehouses into the problem. To the best of our
knowledge, this logistic system environment has never been studied before.
For this not yet studied problem, we have developed an efficient Lagrangean

relaxation based heuristic approach.

We have coded the developed heuristic procedure using GAMS environment.
Previous researchers have used GAMS frequently for solving the optimal
problem. However as far as we know, GAMS has never been used for solving
such complex procedure. Even many researchers are not aware of the fact that
GAMS is an alternative for developing a heuristic. By using GAMS in our
thesis, we also show that GAMS is an effective programming language as

well.

We have developed a greedy heuristic in order to generate initial solutions for
the allocation heuristic. In the uncapacitated facility location problem, the
result of the lowerbound is an initial solution for the upperbound by nature.
No additional effort is needed in this problem type. In the capacitated facility
location problem, strong valid inequalities can be attached to the model
easily. Most of the time, these valid inequalities remove the necessity of a
good initialization procedure. That is why the procedure of generating an
initial solution for the upperbound heuristic seemed unworthy to be
mentioned in the research. But in the modular capacitated facility location

problem, the initialization procedure is more important, because there are no
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strong valid inequalities that can be used for this purpose. Therefore, in our
study, we have given more emphasis to the initialization procedure for the

first time and explained the developed procedure in details.

We have introduced a local feasibility check stage after the allocation
heuristic that tests the feasibility of each plant separately, and if necessary, re-
solves the problem after adjusting the capacity levels. Previous researches
have either marked the infeasible iteration and proceeded to the next iteration
or developed an interchange heuristic which tries to generate feasible results
without adjusting the capacity levels. Our experiments show that the
allocation heuristic generates infeasible solutions ranging from 2.5% to
43.5% with the average of 12.746%. Therefore, the developed procedure is
useful for generating more feasible solutions and strengthening the

upperbound solution.

6.2 Further Research

Our study can be extended in two main directions: The structural extension and the

conceptual extension. As for the structural extension, some of the structural

properties of the problem may be changed without changing the assumptions of the

presented model. In this direction, the problem addressed remains the same, because

no assumptions are changed. As for the conceptual extension, some of the

assumptions of the problem may be re-defined in order to develop a new problem

type. After making conceptual extensions, also a structural extension may be

required.

6.2.1 Structural Extensions

The possible structural extension of the problem is as follows:

In order to strengthen the lowerbound, a different and stronger set of valid

inequalities may be attached each of the main subproblems instead of the
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constraints (20) and (21). These new set of valid inequalities guarantees that
the total maximum capacity of the opened facilities/levels is greater than the
overall demand and the total minimum capacity of the opened facilities/levels
is less than the overall demand. However, as Cornuejols et al. (1991) state,
adding these valid inequalities makes the relaxed problem strongly NP-Hard
even for the capacitated case. Therefore, in order to solve our two strongly
NP-Hard main subproblems, a new solution procedure has to be employed or

developed.

In the allocation heuristic, we have to omit the minimum supply constraints
of the facilities, because in the literature as far as we know, there has not been
any heuristic which takes the minimum supply constraints into account. An
efficient heuristic that also uses the minimum flow constraints in the

allocation heuristic might be proposed.

Our allocation heuristic consists of two stages: the warehouse allocation
heuristic and the plant allocation heuristic. Solving these two stages
separately worsens the solution of the upperbound, since this heuristic is not
able to take into account the interactions between the stages. Therefore, a new
allocation heuristic that solves the two separate stages simultaneously might

be developed.

We employ an allocation heuristic integrated with a greedy heuristic. In order
to solve this allocation problem more efficiently, a meta-heuristic method
might be developed. The efficiency of the meta-heuristics like the tabu
search, genetic algorithms and hybrid algorithms are well proven in the
literature. The developed meta-heuristic may have two stages: the
initialization stage and the allocation stage as it is in our primal heuristic, or
may have only one stage that makes the input feasible and allocates the

customers to plants and warehouses simultaneously.
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e We formulate the problem with a mixed integer linear programming model
which is proved by Correia and Captivo (2003) as the best model with respect

to Gap% and solution time. Other models can be extended to the two-stage

environment in order to observe their performances. Also a four-indexed

model can be developed to decrease the size of the mixed integer model.

e We find reasonably well upper and lowerbounds. The incorporation of those
bounds to an exact solution procedure like the branch-and-bound can be an

interesting research extension.

e In the second stage of our study, we relax the demand satisfaction constraint
set. Other constraints may be relaxed or decomposed. Even though relaxing

different constraints may yield better Gap% values, the computational

burden will increase drastically as they are NP-Hard.

6.2.2 Conceptual Extensions

There are many conceptual extensions of the problem, because there are various
assumptions in the model each of which can be changed in many different ways. The

best possible directions are as follows:

e In our study, the warehouses are capacitated. They can be extended to a
modular capacitated structure. In this case, changing the proposed solution
methodology is not required, but the size of the problem will be increases
polynomially with a degree of the number of the capacity levels of the
warehouses. Most probably, this will increase the solution time and worsen

the value of Gap%.

e In our study, there is only one product which can also be assumed as a
somehow aggregated product of two or more different products. Our problem
can easily be extended to a multi-product case. But in this case, the specially

structured knapsack problems, which are mentioned in Section 4.1.2.1 and
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4.1.2.2, will be NP-Hard. In order to solve these NP-Hard problems, an
efficient external knapsack heuristic as presented in the study of Martello and

Toth (1990) may be employed in the heuristic procedure.

In our study, multiple sourcing is allowed in each stage. Single-sourcing
constraints may be added into the first or the second stage or both. In this
case, the transportation variables of the single-sourced stage have to be
replaced with some binary variables. This also makes the knapsack problems
that are mentioned in the previous paragraph harder to solve. The solution

methodology explained above can also be used in this case.

In our study, all of the facilities are established simultaneously. Instead of
that, the problem can be formulated as a multi-period problem. In this case,
also the opening dates of each facility could be decided on in a given time

period.

We have assumed that all of the input parameters like demands and costs are
deterministic. We may define some of these input parameters as uncertain
parameters with a given probability density function and formulate the

problem as a two-stage stochastic programming model with recourse.
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