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ABSTRACT 

A LAGRANGEAN HEURISTIC FOR THE TWO-STAGE MODULAR 
CAPACITATED FACILITY LOCATION PROBLEM 

  
 
 
 

Sevinç, Selim 

M.S., Department of Industrial Engineering 

Supervisor: Assist. Prof. Dr. Sedef Meral 

  

 

 

May 2008, 157 pages 

 

 

 

In this study, a Lagrangean heuristic based on Lagrangean relaxation and subgradient 

optimization is proposed for the two-stage modular capacitated facility location 

problem. The objective is to minimize the cost of locating and operating plants and 

warehouses, plus the cost of transporting goods at both echelons to satisfy the 

demand of customers. The difference of our study from the two-stage capacitated 

facility location problem is the existence of multiple capacity levels as a candidate 

for each plant in the problem. Each capacity level has a minimum production 

capacity which has to be satisfied to open the relevant capacity level. Obviously, a 

single capacity level can be selected for an opened facility location. In the second 

echelon, the warehouses are capacitated and have unique fixed and variable costs for 

opening and operating. Multiple sourcing is allowed in both transportation echelons.  
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Firstly, we develop a mixed integer linear programming model for the two-stage 

modular capacitated facility location problem. Then we develop a Lagrangean 

heuristic to solve the problem efficiently. Our Lagrangean heuristic consists of three 

main components: Lagrangean relaxation, subgradient optimization and a primal 

heuristic. Lagrangean relaxation is employed for obtaining the lower bound, 

subgradient optimization is used for updating the Lagrange multipliers at each 

iteration, and finally a three-stage primal heuristic is created for generating the upper 

bound solutions.  

At the first stage of the upper bound heuristic, global feasibility of the plants and 

warehouses is inspected and a greedy heuristic is executed, if there is a global 

infeasibility. At the next stage, an allocation heuristic is used to assign customers to 

warehouses and warehouses to plants sequentially. At the final stage of the upper 

bound heuristic, local feasibilities of the plants are investigated and infeasible 

capacity levels are adjusted if necessary.  

In order to show the efficiency of the developed heuristic, we have tested our 

heuristic on 280 problem instances generated randomly but systematically. The 

results of the experiments show that the developed heuristic is efficient and effective 

in terms of solution quality and computational effort especially for large instances. 

 
Keywords: Network Design, Modular Capacity, Facility Location, Lagrangean 

Relaxation, Lagrangean Heuristic, Subgradient Optimization. 
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ÖZ 

ĐKĐ SEVĐYELĐ MODÜLER KAPASĐTELĐ TESĐS YERLEŞĐMĐ 
PROBLEMĐ ĐÇĐN BĐR LAGRANGE SEZGĐSELĐ 

  
 
 
 
 

Sevinç, Selim 

Yüksek Lisans, Endüstri Mühendisliği Bölümü 

Tez Yöneticisi: Y. Doç. Dr. Sedef Meral 

  

 

 

Mayıs 2008, 157 Sayfa 

 

 

 

Bu çalışmada iki seviyeli modüler kapasiteli bir tesis yerleşim problemi için 

Lagrange gevşetimi ve altgradyan optimizasyonu tekniklerine dayanan bir Lagrange 

sezgiseli sunulmuştur. Problemin amacı, fabrika ve depoların yerleştirilmesi ve 

işletilmesi ile müşterilerin taleplerini karşılamak üzere ürünlerin fabrikalardan 

müşterilere taşınması sonucu ortaya çıkan maliyetlerin toplamını asgariye 

indirmektir. Çalışmamızın kapasiteli tesis yerleşimi probleminden farkı, her fabrika 

yeri seçeneği için birden fazla kapasite seviyesi seçeneğinin bulunmasıdır. Ayrıca her 

kapasite seviyesinin açılabilmesi için sağlanması gereken farklı bir minimum üretim 

kapasitesi bulunmaktadır. Açılacak bir tesis mekanı için sadece bir kapasite seviyesi 

belirlenebilir. Problemin ikinci seviyesinde, fabrikalardan farklı olarak her depo için 

sadece tek bir kapasite seviyesi vardır ve açılıp işletilebilmesi için bir sabit ve 
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değişken maliyete sahiptir. Her iki seviyede de çok kaynaklılığa izin verilmiştir; yani 

bir depo birden fazla fabrikadan ürün alabilirken, aynı şekilde ikinci seviyedeki bir 

müşterinin talebi, gerekli durumlarda birden fazla depodan karşılanabilir.  

Bu çalışmada söz konusu iki seviyeli modüler kapasiteli tesis yerleşimi problemi için 

bir karmaşık tamsayılı programlama modeli geliştirilmiş ve sonra bu problemi etkin 

bir şekilde çözmek için bir Lagrange sezgiseli önerilmiştir. Bu Lagrange sezgiseli; 

Lagrange gevşetimi, altgradyan optimizasyonu ve üç-aşamalı bir ana sezgiselden 

oluşmaktadır. Lagrange sezgiselinde, Lagrange gevşetimi alt sınırı bulmakta, 

altgradyan optimizasyonu her yinelemede Lagrange çarpanlarını güncellemekte ve 

üç-aşamalı sezgisel de problemin üst sınırını bulmakta kullanılır. 

Üç-aşamalı sezgiselin birinci aşamasında, fabrikaların ve depoların toplam 

fizibiliteleri kontrol edilmekte ve toplam fizibilitenin olmaması durumunda bir 

açgözlü sezgisel çalıştırılmaktadır. Đkinci aşamada ise tahsis sezgiseli önce 

müşterileri depolara ve sonra da depoları fabrikalara atamaktadır. Üst sınır 

sezgiselinin son aşamasında, her fabrikanın lokal fizibilitesi kontrol edilmekte ve 

yerel fizibilitesi olmayan fabrikaların kapasite seviyelerini ayarlamaktadır.  

Geliştirilen Lagrange sezgiselinin etkinliğini göstermek için rassal fakat sistematik 

bir biçimde oluşturulan 280 test problem örneği yaratıldı ve sezgisel yaklaşım bu 

örnekler üzerinde denendi. Deneylerin sonuçları, geliştirilen sezgiselin çözüm 

kalitesi ve hesaplama güçlüğü açısından özellikle büyük problemlerde verimli ve 

etkili olduğunu gösterir. 

 
Anahtar Kelimeler: Serim Tasarımı, Modüler Kapasite, Tesis Yerleşimi, Lagrange 

Sezgiseli, Lagrange Gevşetmesi, Altgradyan Optimizasyonu. 
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CHAPTER 1 

1. INTRODUCTION 

 

 

 

In the `80s, rough competition in global markets, the introduction of products with 

short life cycles, and high expectations of customers have forced companies to 

discover new manufacturing technologies and strategies that allow them to reduce 

costs and be more competitive in global markets. Strategies such as just-in-time 

manufacturing, total quality management, kaizen and similar became popular and 

many resources were invested in implementing these strategies.  

 

In recent years as Simchi-Levi et al. (1999) stated, it has become clear that many 

companies have reduced manufacturing costs as far as practically possible. Many of 

these companies focus on and invest in their supply chains since they discovered that 

creating an effective and efficient supply chain is the next step to increase the profit 

and market share. Moreover, recent developments in communications and 

transportation technologies have motivated the evolution of the supply chain. The 

information and communication systems have been widely developed to provide 

access to whole information at all stages of the supply chain. Finally, the design of 

the new transportation modes and significant improvement of the existing ones 

increase the complexity of the logistic systems. 

 

A supply chain consists of suppliers, plants, warehouses, distribution centers, 

retailers as well as the raw materials, work-in-process inventory, and finished goods 

that flow between the facilities. In a supply chain, raw materials are obtained from 

suppliers, and then goods are produced in one or more plants. Produced goods are 
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dispatched to warehouses for intermediate storage and finally served to retailers or 

directly to the customers. In order to improve service quality as well as reduce costs, 

more effective supply chain strategies and the interactions between the components 

of the supply chain have to be taken into consideration. 

 

Developing and implementing effective strategies in supply chain is called “supply 

chain management” which focuses on the efficient integration of suppliers, 

manufacturers, warehouses and stores and encompasses the firm’s activities at many 

levels, from the strategic level through the tactical to the operational level. Simchi-

Levi et al. (1999) also define supply chain management as a set of approaches 

utilized to effectively integrate suppliers, manufacturers, warehouses and stores, so 

that merchandise is produced and distributed at the right quantities, to the right 

locations, and at the right time, in order to minimize system-wide costs while 

satisfying service level requirements. 

 

The system-wide supply chain costs include the costs of movement, storage, and 

management of all type of goods both within and between the components of the 

supply chain. However, inefficient supply chains have additional costs besides these 

costs stemming from superfluous inventories, excessive transported items, etc. 

Therefore, there are many opportunities to cut down costs in the less efficient supply 

chain. In fact, Simchi-Levi et al. (1999) state that experts believe that grocery 

industry can save about 10% of its annual operating cost by using more efficient 

supply chain strategies.  

 

The supply chain is composed of a wide range of organizational activities from the 

strategic to the operational level. The strategic level deals with the decisions that 

have a long lasting effect on the firm, covers the decisions concerning the number, 

location and the capacity of manufacturing plants and warehouses. Tactical level 

deals with the decisions which have a lifetime of three months to a year, and covers 

purchasing and production decisions, inventory policies and the decisions concerning 

transportation. The operational level refers to the daily decisions such as scheduling, 

routing and truck loading. 
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Distribution network design problem is one of the key issues of supply chain 

management that deals with determining the best location and capacities of the 

facilities and the distribution pattern of the goods in order to satisfy the demands of 

the customers. Distribution network design focuses on the issues related to plant, 

warehouse and retailer locations. The decisions given within the scope of the 

distribution network problem are the combination of various strategic and tactical 

level supply chain decisions, because their implications are significant and long 

lasting. These decisions may be required due to the changes in the demand patterns, 

new markets, or previously given wrong decisions. Incorrect decisions of such kind 

may cause irreversible loss of the overall efficiency of the firm. Therefore, in order 

to design an efficient strategic plan, it is necessary to plan carefully before making 

these decisions.  

 

The distribution network design problems are defined within the context of a number 

of production plants that are supplying warehouses, which, in turn distribute these 

goods to the customers based on their demand. It is required to select the best set of 

plants and warehouses from a set of potential alternatives, and determine the amount 

of product flow and inventory among them so that the objective of the company is 

optimized. 

 

The choice of the distribution network can be used to achieve a variety of supply 

chain objectives ranging from low cost to high responsiveness. Distribution means 

the movement, transfer, or disbursement of goods from the point of production to the 

point of consumption. In supply chain networks, distribution occurs between every 

pair of stages; raw materials and components are moved from suppliers to 

manufacturers, and final products are moved from the manufacturer to the consumer. 

Distribution is one of the critical points of the overall profitability of a firm, because 

it directly affects both costs and responsiveness.  

 

Beside the distribution decisions, using warehouses in distribution also affects the 

costs and responsiveness of a company. According to Amiri (2006), an important 



 
 

4 

strategic issue related to the design and operation of a physical distribution network 

in a supply chain system is the determination of the best sites for intermediate 

stocking points, or warehouses. The use of warehouses provides a company with 

flexibility to respond to the changes in the marketplace and can result in significant 

cost savings due to economies of scale in transportation or shipping costs. 

 

The network design problems belong to the strategic level of decision making. Jang 

et al. (2002) mention that the decisions made for network design determine the 

number and the locations of raw material suppliers, manufacturing plants and 

intermediate inventory warehouses, select the distribution channel from suppliers to 

customers and identify the transportation volume among the distributed facilities. 

Numerous papers including Pirkul et al. (1998), Amiri (2006), and Jang et al. (2002) 

have dealt with the design problem of supply chain networks. 

 

In this study, we have considered the problem of designing a distribution network 

that involves simultaneously determining both the best sites of the plants and the 

distribution facilities and also the best strategy for distributing the products from the 

plants to the warehouses and from the warehouses to the customers. A common 

objective in designing such a distribution network is to determine the least cost of the 

system such that all the demands of all the customers are satisfied. This usually 

involves making trade-offs between the cost components of the system such as 

opening and operating cost of the plants and warehouses as well as inbound and 

outbound transportation costs. 

 

Our aim in this study is to propose solution approaches for a special type of 

distribution network design problem (DNDP), which is called the two stage modular 

capacitated facility location problem (TSMCFLP). For this purpose, we have first 

reviewed the literature covering both the exact and heuristic methods for similar 

problems and proposed Lagrangean Relaxation and decomposition based heuristics 

for our TSMCFLP environment. Finally, the proposed heuristics are tested on a 

number of randomly generated test problems in several instances and the results are 

compared to the optimal solutions of the problem.  
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The ensuring exposition is structured as follows: 

 

In Chapter 2, a review of DNDP literature is presented and related work is classified 

with respect to the capacity limitation, number of echelons and product variety.  

 

In Chapter 3, the problem context is described and a mathematical formulation of the 

TSMCFLP is presented. The parameters, decision variables and the constraints are 

explained in detail. Main assumptions considered throughout the study are also 

presented in this chapter. 

 

In Chapter 4, the solution procedures for TSMCFLP are defined. Before that the 

Lagrangean relaxation and the subgradient optimization methods and also the 

implementation of these methods to our problem are discussed. Then the developed 

heuristic solution for our TSMCFLP environment is explained in detail. 

 

In Chapter 5, the experimental design, data generation for the test problems and the 

problem instances are defined. The performance measures which have been used to 

evaluate the quality of the solution are presented and the results of the experiments 

are discussed.   

 

Finally in Chapter 6, the conclusions are stated along with the suggestions for further 

research. 
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CHAPTER 2 

2. REVIEW OF THE RELATED LITERATURE 

 

 

 

The distribution network design problem (DNDP) consists of determining the best 

way to transfer goods from the supply to the demand points by minimizing the 

overall costs through determining the structure of the network that is relevant to the 

number and location of different types of facilities. DNDP has long been studied in 

the operations research literature. DNDPs cover a broad range from the simple 

single-commodity deterministic linear models to the multi-commodity nonlinear 

stochastic versions. Solution approaches include heuristics, optimization, simulation 

and some rather recent and innovative hybrid procedures which integrate multiple 

solution approaches. 

 

A great deal of research exists in developing the mathematical models and the exact 

solution techniques for the DNDP which date back to 1970s. An important problem 

class in this area is the facility location problem. In the broadest sense, the term 

‘facility’ refers to plants, warehouses, distribution centers, retailer outlets, schools, 

hospitals, etc. In this type of problem, a finite number of candidate location sites for 

the facilities are given. The problem consists of opening facilities on the set of 

candidate sites in such a way that the sum of the fixed costs of opening facilities and 

the variable costs of satisfying the known customer demands from the facilities is 

minimized.  

 

The facility location problem can be classified into different subcategories depending 

on the characteristics of the problem that is dealt with. In our literature review 
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section, the main focus is on the heuristics and the exact solutions; hence the 

considerable work on the simulation studies is neglected. The distribution network 

location models can be broadly classified according to: 

 

i. Distribution network (capacitated or uncapacitated) 

ii. Number of echelons or levels (single or multiple) 

iii. Number of commodities (single or multiple) 

iv. Cost structure (linear or nonlinear) 

v. Planning horizon (static or dynamic) 

vi. Pattern of demand (deterministic or stochastic) 

vii. Additional side constraints (e.g. single-sourcing, choice from a candidate 

subset, client matching) 

 

In our literature review, we have classified the studies according to the first two 

aspects listed above. However, the other five aspects of the problem are examined for 

each study. Besides, the algorithms in these studies and their solution effectiveness 

are discussed. 

 

Previous research studies on the facility and demand allocation problems are well 

surveyed by Brandeau and Chiu (1989) and Avella et al. (1998) among others. 

 

Avella et al. (1998) present the state of art and the future trends in the location 

analysis. The issues discussed include the modeling aspects in discrete location 

theory, the influence of the distance function, the relation between discrete, network 

and continuous location, heuristic techniques, the state of technology and undesirable 

facility location. 

 

Vidal & Goetschalckx (1997) present a literature review of strategic production-

distribution models. The review studies the optimization models and focuses on the 

identification of the relevant factors to be included in the formulations, and the 

specific characteristics of the solution methods. 
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Cornuejols et al. (1991) compare the approaches proposed in the literature for the 

capacitated plant location problem. The comparison is based on the theoretical and 

computational results, with the main emphasis placed on the relaxations. 

 

2.1 Uncapacitated Facility Location Problems 

 

In the uncapacitated facility location problem, each facility is assumed to have no 

limit on its capacity. In this case, due to the uncapacitated structure of the model, 

each demand point is supplied by only one facility that has the least transportation 

cost. 

 

2.1.1 Simple (Uncapacitated, Single-Echelon) Facility Location Problems 

(SFLP) 

 

The simplest case in the class of location models is SFLP that has a single 

commodity with unlimited capacity, a single transportation echelon and linear costs. 

This type of problem is based on the tradeoff between the fixed and variable costs.  

 

Numerous approaches have been proposed for solving the SFLP. The earliest 

attempts were through the use of heuristics. The Kuehn and Hamburger’s (1963) 

“pairwise interchange or bump and shift routine” is a kind of generic standard against 

which the following algorithms were compared. An early attempt to optimize the 

SFLP is a branch-and-bound procedure proposed by Efroymson et al. (1966). 

Khumawala (1972) has also made notable contributions to the efficient solution of 

the SFLP principally in the development of the efficient branching rules for the 

branch-and-bound procedure. 

 

Erlenkotter (1978) reports impressive computational success with the SFLP using a 

dual based procedure, called the dual ascent method which is based on linear 

programming dual formulation of the problem. Instead of solving the problem 

directly, Erlenkotter solves a condensed dual in which the dual of the SFLP is 

reduced to a form involving only the multipliers corresponding to the constraints. 
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Dual ascent procedure starts with an initial dual solution and adjusts the multipliers 

incrementally in such a way that complementary slackness violations are reduced. 

The algorithm terminates when no further adjustments are possible. A simple ascent 

and adjustment procedure proposes optimal dual solutions, which in turn often 

correspond to optimal integer primal solutions. If not, a branch-and-bound procedure 

completes the solution. 

 

Van Roy and Erlenkotter (1982) formulate a particular dynamic facility location 

problem, where time-staged establishment of facilities at different locations is 

considered. Opening of new facilities and closing of existing ones is allowed. For 

solving the problem, a branch-and-bound procedure incorporating a dual ascent 

method that extends the approach developed by Erlenkotter (1978) for the static 

uncapacitated problems is proposed. 

 

Klincewicz et al. (1986) describe a branch-and-bound algorithm for a generalization 

of the classic uncapacitated facility location problem (UFLP), in which customers 

need multiple products. They call the new problem as the multi-product 

uncapacitated facility location problem. The lower bound of the problem is obtained 

by solving an uncapacitated facility location problem for each product using a dual 

ascent procedure. They also describe a heuristic branch-and-bound procedure in 

which the solutions to the subproblems at a given node may not generate a true lower 

bound. Feasible solutions are generated based on the superposition and a drop 

heuristic.  

 

Klincewicz and Luss, (1987) propose a dual based algorithm for the multi-product 

uncapacitated facility location problem. In this problem, in addition to the fixed cost 

for opening a facility, there is an added fixed cost for handling a particular product. 

The dual ascent and dual adjustment procedures generate a feasible solution to the 

dual of the linear programming relaxation of the problem. This procedure can be 

used either as a stand-alone heuristic or can be incorporated with a branch-and-bound 

heuristic.  
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Guignard (1988) proposes a model to strengthen the separable Lagrangean relaxation 

(equivalent to LP relaxation) of the uncapacitated plant location problem by using 

Bender’s inequalities generated during a Lagrangean dual ascent procedure. These 

inequalities can be used as knapsack constraints in the Lagrangean relaxation. 

 

Korkel (1989) modifies the primal-dual version of Erkenkotter’s exact algorithm to 

get an improved procedure which is called the multi-ascent method. Experiments 

show that the new method significantly improves the empirically verified average 

case efficiency of the dual ascent algorithm, especially for large-scale instances. 

 

Klose (1998) presents a branch-and-bound algorithm for solving an uncapacitated 

facility location problem with an aggregate capacity constraint. The algorithm is 

based on Lagrangean relaxation and subgradient optimization for the lower bounds 

and a simple Lagrangean heuristic to produce feasible solutions and penalties to 

reduce the problem size. 

 

Holmberg (1999) studies the exact solution methods for the uncapacitated facility 

location problems where the transportation costs are nonlinear and convex. In order 

to enable the formulation of the problem as an extended linear pure zero-one location 

model, an exact linearization of the costs is made. In order to obtain an exact solution 

of the problem, a dual ascent and adjustment method within a branch-and-bound 

framework is used and this solution is compared to a modified version of Benders’ 

decomposition, which has been found to be the most efficient in this class. 

 

Gourdin et al. (2000) study a particular type of the uncapacitated facility location 

problem where two clients allocated to the same facility are matched. The allocation 

cost is calculated as either the cost of a return trip between the facility and the client, 

or the length of a tour containing the facility and the two clients. They develop a 

greedy heuristic and a branch-and-cut algorithm, and describe several separation 

algorithms. The computational results confirm the efficiency of the proposed 

approach. 
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Ghosh (2003) develops a neighborhood search heuristic based on tabu search and 

complete local search with a memory to solve large instances of the uncapacitated 

facility location problems.  

 

Barahona and Chudak (2005) investigate the solution of large scale instances of the 

capacitated and uncapacitated facility location problems. They develop a heuristic to 

approximately solve the problems, providing a feasible solution together with a 

lower bound on the optimum. The method is based on the volume algorithm to solve 

the linear programming relaxation to the problem, together with the variants of 

randomized rounding to obtain feasible solutions. The volume algorithm is an 

extension of the subgradient method introduced by Held et al. (1974) to produce 

primal solutions. However, this algorithm is devised for the simplest facility location 

models of the single echelon, single commodity, uncapacitated models. 

 

Resende and Werneck (2006) present a hybrid multi-start heuristic for the 

uncapacitated facility location problem based on a very successful method that was 

originally developed for the p-median problem by them. The results show that the 

developed algorithm is the best algorithm found so far for obtaining near-optimal or 

optimal solutions for the large, heterogeneous uncapacitated facility location 

problem. 

 

Beltran-Royo et al. (2007) develop a new approach for solving uncapacitated facility 

location problems, based on semi-Lagrangean relaxation (SLR) that has been 

introduced by Beltran et al. (2006) for solving p-median problems. They propose two 

different approaches for solving the Lagrangean dual problem which are proximal 

ACCPM and dual multi-ascent method, and show that using SLR has some 

advantages for the uncapacitated facility location problems. They can solve many 

unsolved problem instances in the literature; however it is proved that the algorithm 

is not as efficient as the recent meta-heuristics like hybrid multi-start heuristic. 

Nevertheless, it provides better solutions compared to the other Lagrangean based 

heuristics developed for the uncapacitated facility location problems due to the 

additional constraint. 
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2.1.2 Uncapacitated, Multi-Echelon Facility Location Problems 

 

An extension of the SFLP, in which two echelons of facilities are involved, is called 

the two-echelon uncapacitated facility location problem. In this problem, the 

deliveries are made from the first-echelon uncapacitated facilities such as plants or 

depots to the customer via the second-echelon uncapacitated facilities such as the 

warehouses. The objective is to determine the number and the location of facilities in 

the echelons, the flow of products between the facilities in different echelons and the 

assignment of the customers to the facilities in the second echelon. 

 

Ro and Tcha (1984) develop a branch-and-bound algorithm for solving the two-level 

uncapacitated facility location problem with some side constraints where 

commodities are delivered from plants to customers either directly or indirectly via 

warehouses. Side-constraints in this study represent the adjunct relationship of some 

warehouses to a certain plant. The proposed branch-and-bound procedure employs a 

set of new mechanisms for lower bounds and simplifications which are obtained by 

exploiting the submodularity of the objective function and the special structure of the 

side-constraints.  

 

Narula and Ogbu (1985) formulate and solve an uncapacitated two-level hierarchical 

location-allocation problem where a certain number of first and second level 

facilities are to be located, with the objective of minimizing the total weighted travel 

distance. The solution method is based on Lagrangean relaxation and subgradient 

optimization.  

 

It is interesting that there is not any research about the uncapacitated, multi-echelon 

facility location problem between 1985 and 2007. Actually, in their two studies 

Tragantalerngsak et al. (1997) and (2000) deal with a problem that has uncapacitated 

plants, but they call their study as the two-echelon capacitated facility location 

problem because of the existence of the capacitated warehouses. Therefore, these two 

studies are reviewed within the multi-echelon capacitated facility location problem 

class. 
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Marin (2007) presents a mixed integer formulation based on twice indexed 

transportation variables, which reduce the number of coefficients and variables in the 

model and performs an analysis of several Lagrangean relaxations for the two-stage 

uncapacitated facility location problem. The upper bound of the problem is obtained 

by solving two separate uncapacitated facility location problems for each echelon in 

every 10 iterations.  

 

2.2 Capacitated Facility Location Problems (CPLP) 

 

When each facility has a limited capacity, the problem is referred to as the 

capacitated facility location problem. According to Cournuejols et al. (1991), the 

state of art of solving the capacitated facility location problem is unknown in the 

sense that no one has known a heuristic that always works well in practice. Part of 

the reason is that the linear programming relaxation is known not to be tight both 

theoretically and experimentally.  

 

2.2.1 Capacitated, Single Echelon Facility Location Problems 

 

In the last two decades, many papers have been proposed on solving the capacitated 

plant location by using both approximate and exact solutions like Barcelo and 

Casanovas (1984), Aikens (1985), and Beasley (1993). Researchers have worked on 

developing both heuristic and exact algorithms. Exact algorithms can solve medium 

sized problems within reasonable computer time while heuristics are required to 

solve realistic sized problems. 

 

Cournuejols et al. (1991) studied the relaxations of the capacitated facility location 

problem from three angles: inequalities among the corresponding bounds, 

computational experiments and complexity. Based on the computational results, they 

recommend the Lagrangean relaxation based heuristics for solving large scales of 

capacitated facility location problems. 
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Beasley (1993) presents a framework for developing Lagrangean heuristics, based 

upon Lagrangean relaxation and subgradient optimization for the location problems. 

The computational results are given for four different location problems which are p-

median, uncapacitated warehouse location, capacitated warehouse location with and 

without single-sourcing constraints. Beasley reports that the developed framework is 

robust and gives good quality solutions for each of the location problems. 

 

Lee (1993) studies multi-commodity, multi-type facility location problem with a 

choice of various facility types where several different products are required by 

customers. Each facility type offers a different capacity on a particular product with 

different fixed set-up costs. In the formulation of the studied problem, in addition to 

the fixed cost of opening a facility, there is an added fixed cost incurred if an open 

facility is equipped to handle a particular product. The solution algorithm unifies 

Benders’ decomposition and Lagrangean relaxation into a single framework that 

involves successive solution to a Benders’ primal subproblem and a Lagrangean dual 

subproblem. 

 

Jayaraman (1998) studies the capacitated warehouse location problem that involves 

locating a given number of capacitated warehouses in order to satisfy customer 

demands for different products. A Lagrangean relaxation-based procedure is 

developed for solving the logistics design problem. Then an effective heuristic 

solution procedure that is used in conjunction with the Lagrangean problem is 

discussed. The computational results on a wide variety of problems are reported and 

these results indicate that the feasible solution procedure consistently provides stable 

solutions to the problem. Moreover, the heuristic performs well in terms of both 

approximations to optimality and solution times regardless of the problem structure. 

 

Bornstein and Campelo (2004) propose an Add/Drop heuristic algorithm for the 

capacitated facility location problem based on the dominance criteria between the 

fixed and variable costs. The computational results show that it is able to tackle large 

scale problems obtaining almost always near optimal solutions at very low cost. 
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Klose and Görtz (2007) present a branch-and-price algorithm for the capacitated 

facility location problem. The approach is based on relaxing the demand constraints 

in a Lagrangean manner, and a hybrid mixture of subgradient optimization and a 

weighted decomposition method is applied for solving the master problem. 

Furthermore, the column generation procedure is embedded in a branch-and-price 

algorithm for computing optimal solutions to the CFLP. The proposed branch-and-

price method usually performs better than a branch-and-cut method (CPLEX) based 

on the LP relaxation of the original problem formulation as well as a branch-and-

bound method based on Lagrangean relaxation and subgradient optimization. 

 

Sankaran (2007) presents two sets of results pertaining to the solution of capacitated 

facility location problems that are large, especially with regard to the number of 

customers. One set of results relates to customer aggregation, while another set of 

results concerns the judicious selection of variable-upper-bounding (VUB) 

constraints to include in the initial integer-programming formulation. 

 

2.2.2 Single-Source, Capacitated Facility Location Model 

 

The single-source, capacitated facility location problem is a special case of the 

capacitated facility location problem in which it could only be supplied to each 

customer from exactly one facility. This problem has been studied by several 

authors, including Barcelo and Casanovas (1984), Sridharan (1993), Klincewicz and 

Luss (1986) and Beasley (1993). 

 

Barcelo and Casanovas (1984) propose a Lagrangean relaxation heuristic where the 

demand constraints are dualized. The heuristic consists of two stages: plant selection 

and assignment. The plant selection stage terminates when the total capacity of the 

open plants just exceeds the total demand. Then either an interchange procedure is 

adopted to select an improved list of open plants or the assignment stage starts where 

the assignment of customers to open plants is performed by the regret heuristic. 
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Barcelo et al. (1991) present an algorithm for the capacitated plant location problem 

based on a formulation obtained by adding auxiliary variables, which couples the 

allocation variables. By relaxing the coupling constraints two separate subproblems 

are obtained, which is the basis for the variable splitting approach.  

 

Sridharan (1993) considers the Lagrangean relaxations of the capacitated plant 

location problem with the single-source constraints. The paper proposes a 

Lagrangean heuristic, based on the Lagrangean relaxation, subgradient optimization 

and a primal heuristic to obtain a feasible solution. 

 

Cortinal and Captivo (2003) study a Lagrangean heuristic combined with search 

methods, namely with local and tabu search to obtain the upperbound of the problem. 

The computational results show that Lagrangean heuristic combined with tabu search 

performs quite well, even for some large instances. Among the two heuristics 

proposed, it is indicated that the tabu search performed better than the local search 

for the test instances in the literature.  

 

Chen and Ting (2007) develop a multiple ant colony system and a hybrid algorithm, 

which combines Lagrangean heuristic and ant colony system to solve the single-

source capacitated facility location problem. The performances of the proposed 

methods are compared with the other heuristic algorithms in the literature. The 

computational results demonstrate that both proposed heuristics are effective and 

efficient for the problem. 

 

2.2.3 Multi-Echelon, Capacitated Facility Location 

 

A further extension of the location problem is the two-echelon facility location 

problem where a two-stage distribution process is considered with deliveries being 

made from first echelon facilities to second echelon facilities and from there to 

customers. The capacitated plant location problem has been solved by using both 

approximate and exact methods. 
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Many models in the literature that are concerned with material procurement, 

production and distribution activities treat each stage of the supply chain as separate 

systems and ignore complex supply chain interactions. In order to take more 

interactions into account in the supply chain, the two-stage facility location problem 

is further extended to incorporate vendors who have fixed the plant locations and 

supply raw materials to the production plants. These types of models are referred as 

the multi-echelon facility location problems in the literature.  

 

For the first time in the literature, Geoffrion and Graves (1974) formulated a multi-

commodity, capacitated single-period facility location problem as a mixed integer 

linear programming model. In order to solve the problem a solution technique based 

on Benders’ decomposition is developed, implemented an applied to a real problem 

instance. 

 

Tragantalerngsak et al. (1997) study the two-echelon, single-source, capacitated 

facility location problem. Each facility in the second echelon has a limited capacity 

and can be supplied by only one facility in the first echelon, which is uncapacitated. 

Similarly, in the second echelon each customer is serviced by only one facility. The 

number and location of facilities at both echelons, and the allocation of customers to 

the second echelon facilities are to be determined simultaneously. They propose a 

mathematical model for this problem and consider six heuristics based on 

Lagrangean relaxation for its solution. The subgradient optimization procedure is 

employed for updating Lagrange multipliers. The results indicate that the 

lowerbounds, which are obtained from the heuristic where the demand satisfaction 

constraints are relaxed, have a duality gap which is one third of the one obtained 

from the traditional linear programming relaxation. Also it is stated that the overall 

solution time for the heuristics are less than the time to solve the LP relaxation. 

 

Pirkul and Jayaraman (1998) present the distribution network strategic design 

problem and discuss the transportation and distribution issues that exist for the multi-

commodity, multi-level logistics problem. They develop a mixed integer 

programming model for the plant and warehouse location problem to minimize the 
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total distribution and transportation costs and the fixed costs of opening and 

operating plants and warehouses. They employ Lagrangean relaxation, subgradient 

optimization and a primal heuristic to provide an effective feasible solution. The 

combination of these methods, called as Lagrangean heuristics, performs well in 

terms of tightness of the gap between the upper and lowerbound and provides good 

quality results in terms of the computational time regardless of problem size and 

structure. 

 

Barbarosoğlu and Özgür (1999) deal with the hierarchical design problem of an 

integrated model of production and distribution functions in a two-echelon system. In 

order to solve the large scale problem, the Lagrangean relaxation is used to decouple 

the imbedded distribution and production subproblems, and subgradient optimization 

is implemented to coordinate the information flow between these in a hierarchical 

manner. A forward heuristic designed to solve the distribution subproblem is placed 

in the top level to restrict the solution of the production subproblem in the lower 

level. 

 

Mazzola and Neebe (1999) present exact and heuristic solution procedures for the 

multi-commodity capacitated facility location problem (MPCFLP) in which the 

demand for a number of different product families must be supplied from a set of 

facility sites and each site offers a choice of facility types exhibiting different 

capacities. They define a branch-and-bound algorithm for the MPCFLP that utilizes 

bounds formed by a Lagrangean relaxation which decomposes the problem into 

uncapacitated facility location (UFL) subproblems and easily solvable 0-1 knapsack 

subproblems. The UFL subproblems are solved by the dual-based procedure of 

Erlenkotter. They also present a subgradient optimization based heuristic for the 

MPCFLP. The heuristic is seen to be extremely effective, generating result for the 

test problems that on average within 2% of optimality, and the branch-and-bound 

algorithm is to successfully solve all test problems. 

 

Klose (1999) proposes a heuristic solution procedure for the two-stage capacitated 

facility location problem with single-source constraints. The approach is based on 
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linear programming, and iteratively refines the LP formulation using valid 

inequalities and facets for various relaxations of the problem. After each re-

optimization step, a feasible solution is obtained from the current fractional solution 

using different heuristics to determine the set of open depots and simple re-

assignment procedures to find a feasible customer assignment. The computational 

results show that this method is able to compute near-optimal solutions and useful 

lowerbounds for the two-stage capacitated facility location problem in short 

computation time, even in the case of larger problem instances. 

 

Marin and Pelegrin (1999) formulate the two-stage capacitated facility location 

problem in two different ways according to the decision variables used. In the first 

model, twice-indexed transportation variables are employed whereas the three-

indexed variables are employed in the second model. They propose several 

relaxations based on Lagrangean relaxation for each model type, and compare the 

performance of these relaxations. For each relaxation, the subgradient optimization 

and a simple primal heuristic for generating the upperbound is used. The results 

show that the model with the twice-indexed variable is more appropriate for large-

scale instances and among the twice-indexed models, the model relaxing the demand 

satisfaction constraints provides better solutions.  

 

Hinojosa et al. (2000) deal with a facility location problem where the two-echelon 

facilities are located by selecting the time periods. The model intends to minimize 

the total cost for meeting the demands for all the products specified over the planning 

horizon at various customer locations while satisfying the capacity requirements of 

the production plants and intermediate warehouses. A Lagrangean relaxation is 

proposed to solve the problem, with a heuristic procedure that generates the feasible 

solutions for the original problem using the lowerbound results of the relaxed 

problem.  

 

Tragantalerngsak et al. (2000) consider a two-echelon capacitated facility location 

problem with single-sourcing constraints at both echelons. This means each facility 

in the second echelon has a limited capacity and can be supplied by only one facility 
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in the first echelon. Each customer is also serviced by only one facility in the second 

echelon. The number and the location of all facilities at both echelons and the 

allocation of customers to the second level facilities are to be determined 

simultaneously. A Lagrangean relaxation that employs branch-and-bound algorithm 

is proposed for the solution which indicates that the method is efficient. 

 

Klose (2000) develops a Lagrangean relax-and-cut procedure for the two-stage, 

single-source, capacitated facility location problem. The approach is based on 

relaxing the plant and depot capacity constraints; thus the resulting Lagrangean 

subproblem is an aggregate capacitated plant location problem and can be solved 

efficiently by the branch-and-bound method based on dual ascent and subgradient 

optimization. Feasible solutions are obtained employing reassignment heuristics. The 

lowerbound is further improved by adding valid inequalities, which cuts off a near-

optimal fractional solution of the primal master problem. 

 

Pirkul and Jayaraman (2001) study an integrated logistics model for locating 

production and distribution facilities in a multi-echelon, multi-commodity 

environment. Both facility types are capacitated and the numbers of the opened 

facilities for each level are fixed to a predefined value. Only at the third echelon 

there is a single-sourcing constraint, besides multiple sourcing is allowed at the first 

and second echelons. They provide a Lagrangean relaxation and subgradient 

optimization based solution procedure.  

 

Jang et al. (2002) propose a supply network with a global bill of material. The supply 

network management system is made up of four different modules which are the 

supply network optimization module, the planning module for production and 

distribution operations from raw material suppliers to customers, the model 

management module and finally the data management module. First two modules are 

solved by Lagrangean relaxation and a genetic algorithm, respectively. In the supply 

network optimization module, a model similar to the one that of Pirkul and 

Jayaraman (2001) is introduced. Based on the solution, an integrated planning 
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module for the production and distribution operations covering raw material 

suppliers to customers is solved. 

 

Elhedhli and Goffin (2005) propose a solution methodology for a production – 

distribution problem that is based on Lagrangean relaxation, interior point methods 

and branch-and-bound. Lagrangean relaxation is applied in a two-level hierarchy; 

branch-and-bound is based on a Lagrangean lowerbound and column generation, 

while interior point methods are used within a cutting plane context. Unlike the 

classical Lagrangean approach, the study devises a two-level hierarchy of 

Lagrangean relaxation, where the constraints are relaxed sequentially, rather than 

simultaneously, provides better bounds for the original problem. 

 

In the study of Dias et al. (2007), the dynamic location problem with opening, 

closure and reopening of facilities is formulated and an efficient primal-dual heuristic 

that computes both upper and lower limits to its optimal solution is described. The 

problem considers the possibility of re-configuring any location more than once over 

the planning horizon. A primal-dual heuristic based on the study of Erlenkotter 

(1978) generates good-quality solutions, and calculates tight lowerbounds for the 

optimal objective function value. A branch-and-bound procedure that enables to 

optimize the problem is also described and tested over the same set of randomly 

generated problems. 

 

2.3 Multi-Capacitated Facility Location Problems 

 

The modular capacitated facility location problem (MCFLP) is an extension of single 

echelon CFLP in which multiple types of facilities with different sizes and operating 

costs are considered as possible alternatives in every facility location. In other words, 

in each plant facility there is more than one alternative that has different production 

capacities and operating costs. But only one (or none) of these alternatives can be 

installed to a facility location. The assumption of the traditional CFLP is one 

alternative facility for a location and this actually restricts its practical application, 
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because in real life, most of the time decision makers have possibility to choose 

among the several types of technologies for a plant.  

 

The MCFLP is a recently developed subject in logistics management and there are 

only a few papers about this subject due to the complexity of the problem. The 

MCFLP is quite difficult to solve because there are more binary variables compared 

to the CFLP. Broek et al. (2006) address to the multiple capacity levels only in 

variable costs. It means that the fixed cost of establishing a facility to a location is the 

equivalent for every possible capacity level which is called as the production 

volumes between the breakthroughs in this class of problems, but the operating costs 

differ at each breakthrough. Conversely, in the study of Amiri (2006), the fixed costs 

are different while the variable costs are equivalent for each capacity level. Other 

papers define different fixed and variable costs for each capacity level, as defined 

also in our study.  

 

The “modular capacity” term refers to the candidate capacity levels of a facility and 

was introduced to the literature for the first time by Correia and Captivo (2003). 

Their study was triggered by a problem that arose in the location of health care 

facilities in Portugal. The authors realized that this kind of service should be built in 

the modules of a certain size which had a determined number of structures like 

consulting rooms, waiting rooms, and also staff rooms. It was wiser to install one or 

more modules to the locations that had higher patient intensity. If two modules were 

installed to a location, structures like rooms and machines had to be doubled, but it 

was not necessary to double the entire staff. This assumption actually, explains the 

increase in the fixed cost, and the decrease in the variable cost at higher capacity 

levels. Practical use of this modular structure can be found either in public service 

such as schools, waste management facilities, fire department structures or private 

services like warehouses, manufacturing plants and distribution centers etc… 

 

Holmberg and Ling (1997) are the first researchers to introduce the multiple capacity 

concepts in logistic problems. They define their problem environments as the 

“facility location problem with staircase costs”. The staircase cost function in the 
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model is presented as a finite piecewise linear increasing function with a finite set of 

discontinuities, each corresponding to a capacity level of a facility. In their study, a 

Lagrangean heuristic based on Lagrangean relaxation, subgradient optimization and 

a transportation problem heuristic which leads to the primal feasible solutions 

developed in order to deal with this problem. In order to compare the results of the 

Lagrangean heuristic, ADD heuristic developed by Jacobsen (1983), and improved 

by Domschake and Drexl (1985), is modified to handle the multiple capacity levels. 

The developed Lagrangean heuristic yields better results than the ADD heuristic and 

proved itself as quite an efficient method for solving the facility location problem 

with staircase costs. 

 

Harkness and ReVelle (2002) developed an exact algorithm based on the study of 

Homberg and Ling (1997) to solve the staircase cost facility location problem 

(SCFLP). The exact algorithm consists of four parts which are Lagrangean relaxation 

model for finding proper lowerbounds, subgradient optimization for updating the 

Lagrange multipliers, problem reduction algorithm for fixing some facilities as open 

or close based on the techniques presented in the study of Christofides and Beasley 

(1983) and Beasley (1988), and a branch-and-bound algorithm for solving the 

reduced problems. They pointed out that the number of alternative capacity levels for 

a facility location is a key factor determining the performance of Lagrangean 

heuristic on nearly all measures, whereas the number of alternative facility location 

plays relatively a minor role. The cost parameters are presented as the other factor 

significantly related to the performance of Lagrangean relaxation. 

 

Correia and Captivo (2003) generalize the SCFLP presented by Holmberg and Ling 

(1997) as the MCFLP and propose three different mixed integer linear programming 

models to compare. They stated that solving the problem could be quite difficult due 

to the large number of variables and constraints. Lagrangean relaxation is employed 

to obtain an effective lowerbound while a primal feasible heuristic based on the study 

of Beasley (1988) is adapted to obtain an upperbound. The Lagrange multipliers are 

updated using subgradient optimization technique presented by Herd et al. (1974). 

After the relaxation, emerging minimum cost flow problem is solved using the 
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Relax-IV algorithm that is introduced by Bertsegas and Tseng (1994). As a result, the 

presented heuristic leads to the satisfactory results regarding the average gaps and the 

execution time.  

 

Amiri (2006) addresses to the distribution network design problem in a supply chain 

system that involves locating production plants and distribution warehouses and 

determining the best strategy for distributing the product from the plants to the 

warehouses and from the warehouses to customers. The goal is to select the optimum 

numbers, locations and the capacities for plants and warehouses to open to satisfy all 

customer demand at the minimum cost. In the study, all the plants and warehouses 

are multi-capacitated and multiple sourcing is allowed between all the facilities and 

customers. A mixed integer programming model and a Lagrangean relaxation with 

subgradient optimization based heuristic is developed. The results of the experiments 

indicate that the proposed heuristic procedure produces good feasible solutions when 

compared to the optimal/best available ones. 

 

Correia and Captivo (2006) extended their previous work by adding single-sourcing 

constraints to the problem. Again a Lagrangean relaxation theme similar to their 

earlier work is used to solve the problem. But this time due to the complexity of the 

problem, even the relaxed subproblems are still very hard to solve. In order to obtain 

a proper lowerbound, they also relax the integrality constraint of the subproblems 

and solve the rest of the problem as in their previous work. A primal heuristic 

enhanced by tabu search and local search is developed during Lagrangean heuristic 

for obtaining good feasible solutions.  

 

Broek et al. (2006) developed a model as an industrial application for the 

slaughterhouse industry of Norway. They dealt with a specific problem instance that 

Norwegian Meat Co-operative faced in determining the locations with production 

capacities of slaughterhouses and in the allocation of animals in different farming 

districts which had to be served. The authors observed that the slaughterhouse 

industry had economies of scale in the production facilities. In order to reflect the 

economies of scale in the model, they constructed their average cost function as 
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convex and monotonically decreasing function with respect to the volume increase. 

As mentioned before, no fixed cost for establishing a facility was introduced to the 

model; all the computations were made by using the average cost function which is 

convex, continuous but nonlinear. The continuous cost function allowed the authors 

to employ a model which differs from the one that of Holmberg and Ling (1997) and 

Correia and Captivo (2003). Since LP relaxation generated poor results, the authors 

developed a Lagrangean heuristic containing Lagrangean relaxation, subgradient 

optimization and a greedy heuristic for generating tight upper and lowerbound. The 

heuristic is quite effective and results a 1% gap between the upper and lowerbound 

for the Norwegian Meat Co-operative problem. 
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CHAPTER 3 

3MATHEMATICAL FORMULATION OF THE TWO-STAGE MODULAR 

CAPACITATED FACILITY LOCATION PROBLEM 

 

 

 

In this chapter firstly we have defined the modular capacity concept and our problem 

environment. Then we have discussed the assumptions of the model and presented a 

mixed integer programming model that fits the problem environment and the given 

assumptions. We have also explained the notations that are used during the study. 

Finally the requirement of developing a heuristic for the model has been discussed. 

 

3.1 Problem Environment  

 

The problem considered here is an integrated logistics model for locating the 

manufacturing and distribution facilities in a two-stage supply chain environment. 

Designing such logistic systems requires two essential decisions, one strategic; 

deciding where to locate the plants and warehouses, and the other is tactical; 

determining the distribution pattern from the plants to the customers via warehouses. 

 

In this study, we address the distribution network design problem in a supply chain 

system that both locates the manufacturing plants and warehouses and determines the 

best pattern for distributing the goods from the plants to the warehouses and from the 

warehouses to the customers where multi-levels of capacities are available in the 

manufacturing plants with different fixed opening costs and different variable 

operating costs. The aim in our study is selecting the best set of plant and warehouse 
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locations and plant capacity levels to install in order to satisfy the demand of the 

customers in a way that the overall distribution network cost is minimized.  

 

In the literature, it is found that in general, both the capacitated and the uncapacitated 

facility location problems are solved by assigning a single fixed and/or a single 

variable cost for each facility location without considering the annual production 

amount of the facility. However, in our study, a new approach has been presented for 

modeling the distribution network in which the fixed and variable costs of opening 

the facilities are determined based on their opened capacity levels which are related 

to the planned annual production of the facility. In our model, the fixed opening cost 

increases non-monotonically where the production volume of the plant also increases 

regardless of the opening cost. On the other hand, the variable cost of producing a 

product decreases while the capacity level increases. The essential idea underlying 

this model is to better represent the real-life nature of the problem. The total cost 

function that encompasses the fixed opening and the variable operating cost has 

staircase steps that progressively become longer and flatter as the candidate facility 

increase in size denotes economies of scale as in real instances. An example of the 

staircase cost function is illustrated in Figure 3.1 below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 The Staircase Cost Function 
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In Figure 3.1, min
lv  and max

lv  represent the possible minimum and maximum 

production amounts of the plant, respectively in lth capacity level. lf  denotes the 

fixed cost of opening the plant in lth capacity level. As interpreted, the slope of this 

line at any point, le∇  gives the unit operating cost at the relevant capacity. It should 

be noted that as mentioned before, in general 1l lv v −∆ > ∆  and 1l le e −∇ < ∇ .  

 

As can be seen in Figure 3.1, two capacity levels may overlap at certain points. It 

means at some points, two different capacity levels can produce the same production 

amount with different costs. Due to our objective, the capacity level with the higher 

total cost is never to be selected, hence to make the problem simpler, the capacity 

level that has higher costs can be prevented to produce at this volume. Thereby at 

most, one cost value is assigned to a specific production amount. Additionally, some 

production amounts may not be covered by any of the capacity levels. It means that a 

specific plant may not produce in some production amounts. In this situation, no cost 

function is available for these production amounts. 

 

For better understandability, we can refer to the capacity levels as different 

production technologies. For example, let us assume that, the first capacity level is a 

universal lathe. Its fixed cost is low, but its variable cost is high and the production 

capacity is limited. Then the second capacity level refers to a numerical control lathe. 

Its fixed cost is higher than the universal lathe, but its variable cost is lower while its 

production volume is larger. The last capacity level can be conceived as a CNC lathe. 

Its fixed cost is the highest, its production amount is also the highest and the variable 

cost is the lowest among the alternatives. 

 

Due to the capacitated nature of the system, only one plant or warehouse cannot 

satisfy the whole demand of customers. Consequently, at least two plants have to be 

opened in order to satisfy the total demand. Actually, the minimum number of plants 

required to be opened may be higher than two in many of the instances. This number 

is determined by the system itself according to the number of candidate plant 

locations and the maximum capacities in the problem. The warehouses are also 



 
 

29 

capacitated, but differing from the plants, there is only one capacity level for a 

warehouse. There is also a required number of opened warehouses in order to satisfy 

the overall demand. The warehouses have only two costs; one of them is the fixed 

opening cost which represents the cost of installing a warehouse considering its 

capacity and the other cost is the variable operating cost that is fixed and do not vary 

according to the quantity of the goods handled in the warehouse. As the variable cost 

does not vary according to the capacity of the warehouse, it could be incorporated 

into the variable cost of transporting the goods from the warehouses to the 

customers. 

 

As a final note for cost determination, we assume that, the fixed cost of operating a 

plant includes all the building, machinery, equipment and managerial costs to run a 

plant at a specified capacity level. Similarly for the warehouses, the fixed costs are 

assumed to include the building and some small-scale machinery such as crane, 

forklift leasing or rent, storage management cost and personnel wages to run a 

warehouse. Each facility has a different fixed and variable cost, which is reasonable 

because the costs may differ according to the region of the location site. 

 

At both echelons multiple sourcing is allowed in our problem environment. In other 

words, the opened warehouses can be supplied from one or more facility. Similarly, 

each customer can be served by multiple warehouses. Based on these characteristics 

of the problem environment, the visual representation of the distribution network 

studied is shown in Figure 3.2. 

 

As stated in the literature review chapter, it is clear that the modular capacitated 

facility location problems are modeled in single echelon environment. To our 

knowledge, modular capacitated facility problem has never been studied in the two-

echelon environment in the literature so far. This study contributes to the literature 

with a unique model that extends the modular capacitated facility location problem to 

the two echelon environment, while introducing the capacitated warehouses to the 

model.  

 



 
 

30 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 Graphical Representation of the Distribution Network 

 

 

3.2 Model Formulation 

 

In this section of our study, we present a mixed integer linear programming model 

for the TSMCFLP. The main aim of the model is to select the production plants and 

warehouses from a number of candidate sites and determine the capacity levels of the 

opened plants so that the annual total cost of the distribution network is minimized. 

The solution of our mixed integer model demonstrates the locations of the opened 

plants and warehouses and the capacities of the opened plants. The results also 

represent the distribution pattern of the network from the plants to the customers via 

the warehouses. 

PLANTS WAREHOUSES CUSTOMERS 
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3.2.1 Assumptions of the Model 

 

Main assumptions of the model are as follows: 

 

1. The values of the following parameters are deterministic and known. 

• Customer locations and their annual demands 

• Candidate locations for plants and warehouses 

• Unit transportation cost of distributing goods from plants to warehouses 

• Unit transportation cost of distributing goods from warehouses to customers 

• Unit production cost of plants in a specific capacity level 

• Unit handling cost of warehouses 

• Annual fixed cost of opening plants at a specific capacity level 

• Annual fixed cost of opening a warehouse 

• Maximum and minimum annual production amounts of each capacity of a 

plant. 

• Maximum annual handling capacity of warehouses 

2. Each plant has more than one candidate capacity level that determines the 

maximum and the minimum production amounts of the facility.  

3. If a plant is opened in a specified capacity level, the distributed goods from this 

plant to all the warehouses neither exceed the maximum capacity nor be less than 

the minimum capacity of that capacity level. 

4. Some capacity levels may overlap in some production amounts, and some 

production amounts may not be covered by any of the capacity level of a plant. If 

the capacity levels overlap, then the capacity level that has the lower total cost in 

the relevant production amount is always preferred to the higher cost one.  

5. Only one capacity level can be selected for a plant location. 

6. Warehouses are capacitated, and if opened, limited amounts can be supplied by 

and handled. 

7. The number of the opened warehouses cannot exceed the pre-specified number 

which is determined by the decision makers. 

8. Demands of the customers must be fully satisfied. 
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9. A customer can be assigned to one or more opened warehouses (multiple-

sourcing). 

10. An opened warehouse can be supplied by more than one opened plants (multiple-

sourcing). 

11. It is not allowed to transport products among facilities of the same type. That is, 

the shipment from a plant to another plant, the shipment from a warehouse to 

another warehouse, and the shipment from a customer to another customer is not 

permitted. 

12. Reverse transportation is not allowed. In other words, warehouses can not supply 

plants and similarly customers can not supply warehouses. 

13. There is only one type of product. This may be either a real product or some kind 

of an aggregated product covering more than one real product. 

14. All the volumes of production, handling and transportation have to be integer 

values. The fractional volumes of production, handling or transportation are not 

allowed. 

15. All minimum and maximum capacities of plants and warehouses have to be 

integer. 

 

3.2.2 Notation of the Model 

 

The following notation is used in the mixed integer linear programming model of the 

problem: 

 

                 PLANTS                         WAREHOUSES                          CUSTOMERS 

Indices:         i                                            j                                                     k  

Sets     :         I                                           J                                                     K 

 

:I  Set of potential plant locations 

{ }1, 2, , , ,I i I= … …  

 

:J  Set of potential warehouse locations 

{ }1, 2, , , ,J j J= … …  
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:K  Set of customers 

{ }1, 2, , , ,K k K= … …  

 

:L  Set of potential capacity levels 

{ }1, 2, , , ,L l L= … …  

 

3.2.3 Parameters of the Model 

 

The parameters of the mixed integer linear programming model are as follows: 

 

:kd  Annual demand of Customer k K∈  

:ijb  Unit transportation cost from Plant i I∈  to Warehouse j J∈  

:jkc  Unit transportation and handling cost from Warehouse j J∈  to Customer 

k K∈  

:ile  Unit production cost of Plant i I∈  at Level l L∈  

:ilf  Annual fixed cost of opening and operating Plant i I∈  at Level l L∈  

:
j

g  Annual fixed cost of opening and operating Warehouse j J∈  

max :ilv  Maximum production capacity of Plant i I∈  at Level l L∈  

min :ilv  Minimum production capacity of Plant i I∈  at Level l L∈  

:
j

w  Maximum handling capacity of Warehouse j J∈  

max :R  Number of maximum allowed warehouses 

 

3.2.4 Decision Variables of the Model 

 

The decision variables that will be determined by the model are cited below: 
 

:
ijl
x Total annual amount supplied from Plant i I∈  at Level l L∈  to Warehouse 

j J∈  

:
jk
z Total annual amount supplied from Warehouse j J∈  to Customer k K∈  
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1 If Plant  is opened at Level 

0 Otherwiseil

i I l L
q

∈ ∈
= 


 

 
1 If Warehouse  is opened

0 Otherwisej

j J
r

∈
= 


 

 

3.2.5 Original Problem 

 

The TSMCFLP is formulated as a mixed integer linear programming problem below. 

From now on, this model will be called as the “Original Problem” and denoted by P. 

 

( )ij il ijl jk jk il il j j

i I j J l L j J k K i I l L j J

P Min b e x c z f q g r
∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈

= + + + +∑∑∑ ∑∑ ∑∑ ∑  

 

              Subject to 

 

max

min

max

(1)

(2)

1 (3)

(4)

(5)

(6)

(7)

0 , (8)

0

ijl il il

j J

il il ijl

j J

il

l L

jk j j

k K

jk k

j J

j

j J

jk ijl

k K i I l L

ijl

jk

x v q i I and l L

v q x i I and l L

q i I

z w r j J

z d k K

r R

z x j J

x and Integer i I j J and l L

z and

∈

∈

∈

∈

∈

∈

∈ ∈ ∈

≤ ∀ ∈ ∀ ∈

≤ ∀ ∈ ∀ ∈

≤ ∀ ∈

≤ ∀ ∈

= ∀ ∈

≤

≤ ∀ ∈

≥ ∀ ∈ ∀ ∈ ∀ ∈

≥

∑

∑

∑

∑

∑

∑

∑ ∑∑

{ }

{ }

(9)

0,1 (10)

0,1 (11)

il

j

Integer j J and k K

q i I and l L

r j J

∀ ∈ ∀ ∈

∈ ∀ ∈ ∀ ∈

∈ ∀ ∈
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The objective of the model is to minimize the sum of the variable and the fixed cost 

components simultaneously. The variable costs include the costs of producing the 

goods, supplying goods from the plants to the warehouses, and from the warehouses 

to the customers. Moreover, the fixed costs include the annual costs of opening the 

plants and warehouses. Thus the objective function consists of four parts. The first 

part is the total cost of production and first echelon transportation, the second part is 

the total cost of handling and second echelon transportation, the third part is the total 

cost of the opened plants and the last part is the total cost of the opened warehouses. 

 

First two constraint sets are the capacity constraints of the plants. The constraint set 

(1), also known as the capacity constraints, implies the following two situations: if a 

plant is opened at a location with specific capacity level, the total supplied product 

from this plant cannot exceed the maximum capacity and if a specific capacity level 

is not opened, then no product can be supplied from there.  

 

The constraint set (2) ensures that if a facility is opened at the location i I∈ , the 

facility has to provide products at least at the amount of the minimum requirement of 

the corresponding capacity level l L∈ . In the literature, this class of constraints is 

called as the “minimum supply requirements” which are similar to the standard 

capacity constraints, but work in the opposite direction. For an opened plant, while 

the capacity constraints restraint the total amount supplied from above, minimum 

supply requirements restraint the total amount supplied from below.  

 

The constraint set (3) guarantees that more than one capacity level cannot be opened 

in a possible plant location site.  

 

The constraint set (4) is the capacity constraint set of the warehouses and ensures that 

a warehouse can serve customers if and only if the warehouse is opened. The 

constraint set (4) also restricts the amount of supplied goods from the opened 

warehouses to the customers.  
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The constraint set (5), which is also known as the demand satisfaction constraint, 

ensures that the demand of each customer has to be satisfied completely by one or 

more warehouses.  

 

The constraint set (6) limits the number of the opened warehouses to a pre-specified 

number. This constraint is inherited from the p-median location problems. Various 

researchers including Cornuejols et al. (1977) and Pirkul and Jayaraman (1998) use 

the same constraint in their studies.  

 

The constraint set (7) is the flow conservation constraint set and works as a balancer 

between the inbound and outbound amount of the warehouses. It guarantees that the 

total amount of the shipped product from an opened warehouse to all the customers 

cannot exceed the total amount of the supplied product of the same warehouse from 

all of the plants. This constraint set can be written in equality form but it is written in 

inequality form in order to decrease the complexity of the problem and increase the 

efficiency of the branch-and-bound procedures. The solution of the problem is the 

same in both equality and inequality forms, because the objective function always 

enforces the right-hand side to be equal to the left-hand side of the constraint set.  

 

The constraint sets (8) and (9) are the non-negativity and integrality constraints and 

ensure that the amounts of the transported products from a plant at any capacity level 

to a warehouse and from a warehouse to a customer are integer.  

 

The constraint sets (10) and (11) enforce the integrity on the relevant binary 

variables. 

 

The “Original Problem”, P, is a mixed integer linear programming problem which is 

an extension of the two-stage capacitated facility location problem (TSCFLP). The 

TSCFLP is shown to be NP-Hard by Mirchandandi and Francis (1990). TSMCFLP is 

an extension of TSCFLP and a special case of TSMCFLP, where there is only one 

available capacity level, is also a TSCFLP. This reflection proves that our problem is 

also NP-Hard. Thus; solving even the medium sized TSMCFLPs via using the 
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commercial optimization packages is limited. In our experimental study, there are 

problem instances with over 160,000 variables and 1200 constraints. It is unlikely 

that commercial optimizers can find the optimal solution for instances like this in 

reasonable computational effort. Even then, buying these solvers for commercial 

purposes is expensive. Therefore, we have developed a heuristic method to solve 

problem P based on a well-established Lagrangean relaxation technique which has 

been employed successfully in various facility location problems in the studies by 

Klincewicz and Luss (1986), Barcelo et al. (1991), Beasley (1993), Tragantalerngsak 

et al. (1997), Pirkul and Jayaraman (1998), Mazzola and Neebe (1999), Jang et al. 

(2002), Amiri (2006), Marin (2007) following the pioneered studies of Held and 

Karp (1971) and Geoffrion (1972). Implementing Lagrangean relaxation requires 

computationally less effort and yields reasonably effective results compared to the 

optimal solution techniques. 

 

In the following chapter, we discussed our Lagrangean relaxation based approach 

together with the subgradient optimization algorithm to update the Lagrange 

multipliers. The previous studies about these techniques are discussed as well. 
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CHAPTER 4 

4. SOLUTION APPROACH 

 

 

 

Lagrangean heuristic is one of the today’s indispensable techniques to solve the 

combinatorial optimization problems. The heuristic consists of three parts; the first 

part is a technique to generate a lowerbound for the problem. The relaxed problem 

always has an objective function value that is less than or equal to the optimal 

solution of the original problem for the minimization case, because the Lagrangean 

relaxation contains less constraints than the original problem. Therefore, Lagrangean 

relaxation can be used (actually has to be used in order to call the procedure as 

Lagrangean heuristic) to generate a lowerbound. 

 

The second part of the heuristic is the primal heuristic that is used for obtaining a 

proper upperbound. Most of the time, the relaxation of the original problem yields 

infeasible solutions for the original problem; hence a primal heuristic based on the 

results of the relaxed problem is needed to construct a feasible solution, that is, an 

upperbound for the original problem. This upperbound heuristic is the distinctive part 

of the Lagrangean heuristic from the exact Lagrangean relaxation methods in which, 

an optimization technique such as branch-and-bound is used in order to close the gap 

between the solution of the relaxed problem and the optimal solution of the original 

problem. On the other hand, a primal heuristic is employed in Lagrangean heuristic 

technique in order to find an acceptable solution in a reasonable computer effort.  

 

The last part is the procedure to update the Lagrange multipliers. Calculating the 

Lagrangean relaxation lowerbound requires the solution of a concave 
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nondifferentiable optimization problem, because two decision variables which are 

the Lagrange multipliers and the decision variables of the original problem are 

multiplied in objective function. Solving this kind of problem may be harder than 

solving the original problem. In order to deal with this complexity, the values of the 

Lagrange multipliers are determined in a separate problem. It is quite difficult to find 

the best values for the Lagrange multipliers so that the overall heuristic is repeated 

until the efficient Lagrange multipliers are acquired. Various algorithms such as 

subgradient optimization (Poljak 1969), volume algorithm (Barahona and Chudak, 

2005), bundle methods (Crainic et al., 2001), multiplier adjustment methods 

(Erlenkotter, 1978) can be used to update the Lagrange multipliers. In our study, 

subgradient optimization has been selected for updating the Lagrange multipliers due 

to the easy adaptation and less computational effort it requires.  

 

These three components of the Lagrangean heuristic are explained in detail in the 

following sections. 

 

4.1 Lagrangean Relaxation 

 

Lagrangean relaxation has been used as an effective algorithm for generating 

lowerbounds for both exact algorithms like branch-and-bound and Lagrangean 

heuristics for solving the combinatorial optimization problems. The Lagrangean 

relaxation of a mixed integer problem is obtained through relaxing a set of 

constraints from the original problem and attaching these constraints into the 

objective function by penalizing them with proper weights. Agar and Salhi (1998) 

express that the Lagrangean relaxation is inspired from an important observation that 

the  formulation  of  many  hard combinatorial  problems  consists  of  an  easy  

problem  that become  difficult  by  the addition of a set of constraints. 

 

The problem after relaxing the hard constraints is called as the relaxed problem 

which is easier to solve due to its special structure. An illustration of the Lagrangean 

relaxation is as follows: 
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Z=Minimize Cx  

 Subject to 

(12)

(13)

0 and integer (14)

Ax b

Bx d

x

=

≤

≥

 

 

where A and B are coefficient matrices and Constraint set (12) represents the easy 

constraints and Constraint set (13) represents the hard constraints which make the 

whole problem difficult to solve or decompose. If the hard constraints are somehow 

excluded from the constraint set, the problem becomes much more easier to solve. 

The Lagrangean relaxation works exactly this way. The hard constraints are 

penalized with Lagrange multipliers, 0λ ≥ , and added to the objective function as 

follows: 

 

( )Z  LR Minimize Cx Bx dλ= + −  

 Subject to              

(12)

0 and integer (14)

0 (15)

Ax b

x

λ

=

≥

≥

 

 

The optimal objective value of the Lagrangean relaxation problem with the optimal 

set of Lagrange multipliers provides a lowerbound for the optimal solution to the 

original minimization problem. It is a lowerbound, because some constraints of the 

original problem are omitted from the constraint set that gives rise to the enlargement 

of the feasible region.  

 

4.1.1 Issues of Lagrangean Relaxation 

 

According to Beasley (1995), before reaching a proper and efficient lowerbound 

using Lagrangean relaxation, there are two major issues that have to be dealt with. 

These issues can be categorized as: 
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1. Tactical Issue: How will the optimal Lagrangean multiplier values that give 

the maximum objective function value of the relaxed problem be found? 

 

2. Strategic Issue: Which sets of constraints should be chosen to relax for the 

best lowerbound? 

 

4.1.1.1 Tactical Issue of Lagrangean Relaxation 

 

Fisher (1981) emphasizes that the objective function of a Lagrangean relaxation for a 

mixed integer programming problem is differentiable almost every where, but it is 

generally nondifferentiable at the optimal point. Hence, to be able to find a near-

optimal solution, the problem of finding the optimal values of the Lagrange 

multipliers has to be detached from the relaxed problem and be solved as a separate 

problem. The aim of the new problem is finding the best Lagrange multipliers for the 

Lagrangean relaxation problem that maximizes its objective function value. This 

problem is called as the Lagrangean dual problem. In our illustration, the Lagrangean 

dual problem is formulated as follows: 

 

              ( )
0

( )D t

LRZ Max Z
λ

λ
≥

=   

 

where LRZ  is the Lagrangean relaxation problem with given (known) x variables 

which is also called as oracle. Tragantalerngsak et al. (1997) express that to solve the 

Lagrangean dual problem, standard ascent methods based on the gradients of the 

problem cannot be employed due to the nondifferentiability of the problem. 

However, there are a lot of alternatives to update the Lagrange multipliers that use 

the subgradients instead of gradients, such as subgradient optimization, volume 

algorithm, bundle methods, steepest ascent methods and multiplier adjustment 

methods. 

 

Subgradient optimization is an iterative technique which is as an extension of the 

gradient optimization developed to solve the nondifferentiable functions. As stated in 

Fumero (2001), although many other techniques with stronger convergence 
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properties have been developed, the subgradient optimization and its variants seem to 

have wider acceptability among researchers and continue to remain as one of the 

most effective and useful techniques for solving the dual problems, especially when 

large scale applications are considered. Subgradient optimization used in Lagrangean 

heuristics is so common that quite a few people believe that the subgradient 

optimization is a mutual part of the Lagrangean relaxation algorithm. The wide 

employment of the subgradient optimization in Lagrangean relaxation is due to the 

simplicity of the algorithm’s structure.  

 

More recent algorithms provide outstanding theoretical convergence performances, 

but they cannot carry their theoretical convergence results into real life applications 

for large scale problems or problems with complex structures, that is because usually 

searching for a descent direction in recently developed methods is computationally 

inefficient. For example, bundle methods require the solution of a quadratic problem 

to find the descent direction in each iteration. On the other hand, subgradient 

optimization is both simple to use and computationally efficient in calculating the 

descent direction. The subgradient optimization has a zig-zag pattern that wastes 

time, but it gains back this lost time in computing the descent direction. In our study, 

we have employed a modified subgradient algorithm to update the Lagrangean 

multipliers. The details of the modified subgradient optimization are explained in the 

following sections. 

 

4.1.1.2 Strategic Issue of Lagrangean Relaxation 

 

In the illustration of Lagrangean relaxation, the constraints are identified as hard and 

easy constraints without having any difficulties. But in real life, determining the hard 

constraints to be relaxed is not so easy. The relaxation of a different set of constraints 

yields solutions with different qualities regarding the tightness of the solution and the 

computational effort.  

 

For example, if we go on with to the previous illustration, we can see that there are 

quite a few candidates for relaxation. We can relax either (12) or (13) individually, or 
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both. Constraint set (14) cannot be relaxed in a Lagrangean relaxation fashion, 

because actually this constraint set is not an equality or inequality, furthermore, it 

does not have a Lagrange multiplier/dual variable. However, it can still be removed 

from the model and replaced with a constraint set that ensures the relevant variables 

take value between zero and one. This class of relaxation is called as linear 

programming relaxation (LP relaxation). LP relaxation is an easier way of solving 

the problem, but as Beasley (1995) states, it always yields worse results compared to 

the results of the Lagrangean relaxation.  

 

There are two innovative alternatives for relaxation that may not be seen at first 

glance. The first one is called as Lagrangean decomposition and it relies on assigning 

different decision variables for each constraint set by adding a binding constraint set 

that guarantees the value of the new decision variable to be equal to the older one, 

and then relaxing the binding constraint of these two variables as shown in the 

illustration below. 

 

For our example, let us replace the decision variables of the second constraint with a 

new variable “y” and add a binding constraint. The model becomes: 

 

Z=MinimizeCx  

 Subject to              

(12)

(16)

(17)

0 and integer (14)

0 and integer (18)

Ax b

By d

x y

x

y

=

≤

=

≥

≥

 

 

After relaxing the constraint set (17), the Lagrangean relaxation of the model 

becomes:  
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( )Z =  LP Minimize Cx x yλ′ + −  

Subject to 

              

(12)

(16)

0 and integer (14)

0 and integer (18)

 unrestricted (19)

Ax b

By d

x

y

λ

=

≤

≥

≥

 

 

The other innovative relaxation is called the semi-Lagrangean relaxation and 

introduced by Beltran et al. (2006). It exploits one or more equality constraints in the 

problem and relaxes only one side of the equation. To show the logic of the semi-

relaxation, let us recall our illustration. The constraint set (12) actually is a 

combination of two different constraint sets shown below: 

 

(12a)

(12b)

Ax b

Ax b

≥

≤
 

 

By replacing the constraint set (12) with (12a) and (12b), we get the following 

model: 

 

Z=MinimizeCx  

 Subject to          

(12a)

(12b)

(13)

0 and integer (14)

Ax b

Ax b

Bx d

x

≥

≤

≤

≥

 

 

Now we obtain two more constraint sets that can be relaxed. When we relax 

constraint set (12a), as Beltran et al. (2006) state, we acquire a relaxed model for the 

problem as follows: 
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( )Z=  Minimize Cx b Axλ+ −  

 Subject to          

(12b)

(13)

0 and integer (14)

Ax b

Bx d

x

≤

≤

≥

 

 

As cited above, there are a lot of candidates for relaxation even in a model which has 

only a few constraint sets. Geoffrion and Mc Bride (1978) show that generally a 

relaxation which gives a tighter bound requires longer computational time, whereas 

an easily solvable relaxation problem is likely to give poor results. Therefore, 

researchers who are willing to choose the best relaxation set are facing with a trade-

off between the computational effort required and the quality of the bounds. As 

Trangantalerngsak et al. (1997) state, the ease of the solution depends on the methods 

available for solving the subproblem. 

 

4.1.2 Lagrangean Relaxation of TSMCFLP 

 

In our problem, there are seven constraint sets, excluding the binary and non-

negativity constraints ranging from (1) to (7) that lead to 27 = 128 possible 

relaxations even without considering the innovative ways of relaxation mentioned 

above. In practice, as Beasley (1995) pointes, most of them are not worth 

considering. As for our problem relaxing the constraint set (1) yields the problem to 

two-stage uncapacitated facility location problem with minimum supply 

requirements and capacitated warehouses; relaxing the constraint set (2) results in 

two-stage, capacitated facility location problem with staircase costs, relaxing the 

constraint set (3) generates a two-stage capacitated facility location problem with 

minimum supply requirements. On the other hand, relaxing the other three 

constraints, (4), (5) and (6), by themselves does not change the structure of the 

problem. Relaxing the constraint set (4) results in two-stage, modular capacitated 

facility location problem with uncapacitated warehouses, relaxing the constraint set 

(5) results in two-stage, modular capacitated facility location problem without a 

specific demand and the constraint set (6) generates a two-stage, modular capacitated 
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facility location problem without a restriction on the number of warehouse to be 

opened. All of the relaxed problems generated so far are still non-decomposable and 

hard to solve. On the other hand, relaxing the constraint set (7) with the vector of 

Lagrange multipliers ( )1 2, ,..., ,...,j J
α α α α α= , seems to be quite promising: 

 

 

( ) ( )LR

ij il ijl jk jk il il j j

i I j J l L j J k K i I l L j J

j jk ijl

j J k K i I l L

P Min b e x c z f q g r

z x

α

α

∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈

∈ ∈ ∈ ∈

= + + + + +

 
− 

 

∑∑∑ ∑∑ ∑∑ ∑

∑ ∑ ∑∑
 

 

              Subject to 
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min
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(2)

1 (3)

(4)
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∈
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∈

∈

∈

∈
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≤ ∀ ∈

= ∀ ∈

≤
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∑

∑

∑

∑
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∑
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After relaxation of the constraint set (7), the relaxed problem, LRP  can be 

decomposed into two separate problems for each echelon. The first echelon is a 

relaxed single-echelon, modular capacitated facility location problem, whereas the 

second echelon part is a single-echelon, capacitated warehouse location problem. 

From now on, these problems will be called as main subproblem 1LRP  and main 

subproblem 2LRP , respectively. 

 

The main subproblems 1LRP  and 2LRP  are as follows: 

 

The main subproblem 1LRP : 

 

( ) ( )1LR

ij il j ijl il il

i I j J l L i I l L

P Min b e x f qα α
∈ ∈ ∈ ∈ ∈

= + − +∑∑∑ ∑∑  

              Subject to 

{ }

max

min

(1)

(2)

1 (3)

0 , (8)

0,1 (10)

ijl il il

j J

il il ijl

j J

il

l L

ijl

il

x v q i I and l L

v q x i I and l L

q i I

x and Integer i I j J and l L

q i I and l L

∈

∈

∈

≤ ∀ ∈ ∀ ∈

≤ ∀ ∈ ∀ ∈

≤ ∀ ∈

≥ ∀ ∈ ∀ ∈ ∀ ∈

∈ ∀ ∈ ∀ ∈

∑

∑

∑  
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The main subproblem 2LRP : 

 

( ) ( )2LR

jk j jk j j

j J k K j J

P Min c z g rα α
∈ ∈ ∈

= + +∑∑ ∑  

              Subject to 

{ }

max

(4)

(5)

(6)

0 (9)

0,1 (11)

jk j j

k K

jk k

j J

j

j J

jk

j

z w r j J

z d k K

r R

z and Integer j J and k K

r j J

∈

∈

∈

≤ ∀ ∈

= ∀ ∈

≤

≥ ∀ ∈ ∀ ∈

∈ ∀ ∈

∑

∑

∑  

 

It should be noted that the main subproblem 1LRP  can be decomposed for each plant 

location candidate, i I∈ . However, the main subproblem 2LRP  is still a difficult 

problem to solve using the exact methods. Hence al least one constraint set of the 

second main subproblem must be relaxed in order to solve it more efficiently. The 

constraint set (6) cannot be the relaxed constraint, because it does not exploit the 

structure of the main subproblem. We can choose the constraint set (4) or (5) or both 

to relax or we can use the other innovative relaxations. 

 

Fisher (1981) emphasizes that the tightness of bounds after choosing different 

constraint sets to relax is completely problem-specific and largely empirical. In order 

to find the lowest gap possible, Beasley (1995) recommends investigation of the 

previous studies about Lagrangean relaxation related to the study. The previous 

studies that have similar structures with our problem are Tragantalerngsak et al. 

(1997, 2000),  Pirkul and Jayaraman (1998, 2001), Marin and Pelegrin (1999), Klose 

(2000), Jang et al. (2002), Elhedhli and Goffin (2005) and Amiri (2006). 

 

Many of the previous studies which compare different Lagrangean relaxations about 

the two stage problems suggest researchers to relax the similar constraints to the 
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constraint set (5) and (7) simultaneously to obtain the “best” problem considering 

both the computational burden and the quality of the results of the relaxation. 

Another option is relaxing the constraint set (4) instead of (5) and solving the 

remaining uncapacitated warehouse location problem by employing an efficient 

algorithm such as multi-ascent method of Körkel (1989) or hybrid multistart heuristic 

of Resende and Wernck (2006). 

 

In our study, we have decided to relax the constraint sets (5) and (7). After relaxing 

these constraints with Lagrange multipliers α and β respectively, the relaxed problem 

becomes as follows: 

 

( ) ( ),LR

ij il ijl jk jk il il j j

i I j J l L j J k K i I l L j J

j jk ijl k k jk

j J k K i I l L k K j J

P Min b e x c z f q g r

z x d z

α β

α β

∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈

∈ ∈ ∈ ∈ ∈ ∈

= + + + + +

  
− + −  

   

∑∑∑ ∑∑ ∑∑ ∑

∑ ∑ ∑∑ ∑ ∑
 

              Subject to 
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min
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x and Integer i I j J and l L
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∈

∈

∈

∈

∈

≤ ∀ ∈ ∀ ∈

≤ ∀ ∈ ∀ ∈

≤ ∀ ∈

≤ ∀ ∈

≤
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∈ ∀ ∈ ∀ ∈

∑

∑

∑

∑

∑

{ }0,1 (11)j j J∈ ∀ ∈  
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It should be noted that we have already mentioned about dividing the problem into 

two independent subproblems 1LRP  and 2LRP  if we relax the constraint set (7). This 

structure still holds, because the constraint set (7) is still in our relaxed set. But due 

to the second relaxed constraint set (5), the main subproblems are slightly changed. 

The main subproblems 1LRP  and 2LRP  are now as follows: 

 

The main subproblem 1LRP : 

( ) ( )1LR

ij il j ijl il il

i I j J l L i I l L

P Min b e x f qα α
∈ ∈ ∈ ∈ ∈

= + − +∑∑∑ ∑∑  

              Subject to 

max

min

(1)

(2)

ijl il il

j J

il il ijl

j J

x v q i I and l L

v q x i I and l L

∈

∈

≤ ∀ ∈ ∀ ∈

≤ ∀ ∈ ∀ ∈

∑

∑
 

{ }

1 (3)

0 , (8)

0,1 (10)

il

l L

ijl

il

q i I

x and Integer i I j J and l L

q i I and l L

∈

≤ ∀ ∈

≥ ∀ ∈ ∀ ∈ ∀ ∈

∈ ∀ ∈ ∀ ∈

∑

 

 

 

The main subproblem 2LRP : 

( ) ( )2 ,LR

jk j jk j j k k jk

j J k K j J k K j J

P Min c z g r d zα β α β
∈ ∈ ∈ ∈ ∈

 
= + + + − 
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Thus, this stage, our Lagrangean model has been decomposed into two independent 

main subproblems. The sum of the values of these main subproblems gives us the 

solution of the relaxed problem, LRP , at each iteration. The mathematical expression 

of the value of the relaxed problem at iteration t with Lagrange multiplier vectors 

t tandα β  is as follows: 

 

              ( ) ( ) ( )1 2, ,LR t t LR t LR t tP P Pα β α α β= +  

 

It should be noted that we have already discussed finding the best Lagrange 

multipliers: We have to turn this problem into an iterative approach in which at each 

iteration Lagrangean multipliers are updated using the subgradient optimization and 

the subproblems are solved given the predetermined values of Lagrange multipliers. 

Therefore we can exclude the constant expression “ k k

k K

dβ
∈
∑ ” from the objective 

function of the second main subproblem, 2LRP , and add this expression while 

calculating the value of the relaxed problem at each iteration. Then the value of the 

relaxed problem is as follows: 

 

              ( ) ( ) ( )1 2, ,LR t t LR t LR t t t

k k

k K

P P P dα β α α β β
∈

= + + ∑  

 

The Lagrangean dual problem which is also called as the lowerbound problem can be 

expressed as the maximum value of the relaxed problem among t iterations.  

 

              ( ) ( ){ }* *, ,LR t t

t
LB Max Pα β α β=  

 

In the literature, adding additional inequalities that are called valid inequalities is 

recommended in order to increase the value of the Lagrangean dual problem. Valid 

inequalities are actually redundant for the original model, but become useful after 

relaxing some constraint sets in the model; that means the valid inequalities can only 

reveal the undercover properties that disappear from the model after relaxing some 

constrains. They divide the feasible region of the problem into two parts and omit the 
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part that does not contain the optimal solution of the original problem. This point is 

very important; an inequality (or equality) may be treated as a valid inequality if and 

only if the value of the Lagrangean dual problem is still less than or equal to the 

optimal value of the original problem and relaxed problem is still an easily solvable 

problem. 

 

For example, we cannot limit the number of the opened warehouses unless we solve 

the optimal problem with this limitation. Otherwise the lowerbound may climb 

higher than the objective function value of the original problem and lead us to a 

wrong solution.  

 

As Klein Haneveld and van der Vlerk (2000) state, in general, it is difficult to find 

strong valid inequalities that result in a substantial reduction of the computational 

time and better bounds, simultaneously. For our study, it is also quite difficult to find 

good valid inequalities, because many of the valid inequalities that are generated for 

the capacitated facility location problem do not hold in our case or are redundant due 

to the structure of the problem. For each of the main subproblems, we can add a 

constraint that limits the minimum number of opened facilities. These constraints 

may be expressed as: 

 

min

min

(20)

(21)

il

i I l L

j

j J

q Q

r R

∈ ∈

∈

≥

≥

∑∑

∑
 

 

where minQ  and minR  values in the constraints (20) and (21) are the minimum number 

of opened capacity levels and warehouses respectively, in order to satisfy the overall 

demand. To calculate the value of minQ , firstly the highest available capacities of the 

plants are sorted in non-increasing order. Let us assume that n
ilv  represents the nth 

biggest maximum capacity among all plants, then the new set satisfies the following 

inequality: 
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1 2 ,Nn

il il il ilv v v v where N I≥ ≥ ≥ ≥ ≥ =… …  

 

Then the value of minQ  has to satisfy the following condition: 

 

min min1

1 1

Q Q

n n
il k il

n k K n

v d v
−

= ∈ =

≤ ≤∑ ∑ ∑  

 

This condition means that at least minQ  opened plants can satisfy the total demand of 

the customers. The value of minR  is calculated in a similar way. The capacities of the 

warehouses are sorted in non-decreasing order with the same index, n. Hence the nth 

biggest warehouse capacity is denoted by n
jw . This set also has to satisfy the 

following condition: 

 

1 2 ,Nn

j j j jw w w w where N J≥ ≥ ≥ ≥ ≥ =… …  

 

The value of minR  is the minimum number of opened warehouses which satisfies the 

inequality below: 

 

min min1

1 1

R R

n n
j k j

n k K n

w d w
−

= ∈ =

≤ ≤∑ ∑ ∑  

 

Differing from the capacitated warehouse location problem that we have dealt with 

in the second main subproblem, actually the constraint (20) is not a strong inequality 

for the first main subproblem, because in the capacitated warehouse location problem 

the difference between the fixed cost of the plant which has the minimum production 

capacity and the fixed cost of the plant which has the maximum production capacity 

is small in quantity, on the other hand, in the modular capacitated facility location 

problem the fixed costs of the first level capacities are much lower than the fixed 

costs of highest capacities, as expected. Regardless, valid inequalities (20) and (21) 
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are included in the model, because they have no significant computational cost, but 

have improvement on the value of the relaxed problem. 

 

There is also another valid inequality set for each echelon that can be added into our 

model. In our model, the decision variables ijl jkx and z  are already restricted by the 

maximum production capacities of the capacity levels and the maximum handling 

capacities of the warehouses by the constraint sets (1) and (4), respectively. It means 

that we limit these decision variables by the constraints about their origin point 

(departing site). In addition to that, we can restrict these variables using their 

destination point (arrival site). It is clear that the destination point of the ijlx  variable 

is the warehouse j and the destination point of the jkz  variable is the customer k. 

These destination points have their own capacity restrictions that we can use for 

restricting the relative variables. As a result, the ijlx  variable has to be less than or 

equal to both max
ilv  and jw . Similarly, the jkz  variable has to be less than or equal to 

both jw and kd . Thus the constraint sets (8) and (9) of our relaxed problem can be 

rearranged as below: 

  

( ) ( )

( ) ( )

max0 , integer , ,and 8

0 , integer and 9

ijl il j

jk k j

x Min v w and i I j J l L

z Min d w and j J k K

≤ ≤ ∀ ∈ ∀ ∈ ∀ ∈

≤ ≤ ∀ ∈ ∀ ∈

 

 

4.1.2.1 Solution Methodology for the First Main Subproblem 

 

After adding these valid inequalities into our model, the main subproblems are ready 

to be solved separately. The first main subproblem and its solving methodology are 

as follows: 
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( ) ( )1LR

ij il j ijl il il

i I j J l L i I l L

P Min b e x f qα α
∈ ∈ ∈ ∈ ∈

= + − +∑∑∑ ∑∑  

 

              Subject to 
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(2)
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0,1 (10)

ijl il il

j J

il il ijl

j J
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l L
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i I l L

ijl il j
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x v q i I and l L

v q x i I and l L

q i I

Q q

x Min v w and Integer i I j J and l L

q i I and l L

∈

∈

∈

∈ ∈
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≤ ∀ ∈

≤

≤ ≤ ∀ ∈ ∀ ∈ ∀ ∈

∈ ∀ ∈ ∀ ∈

∑

∑

∑

∑∑
 

 

In the literature there is an efficient solution methodology for the first main 

subproblem 1LRP . It can easily be seen that the main subproblem can be decomposed 

into subproblems for each plant location i I∈  and solved separately after omitting 

the constraint (20), as no hard constraints that bind the capacity levels of the plants 

remain. It should be noted that we isolate the constraint (20) from the model, but at 

the end of the solution, while determining the opened warehouses, we attach back 

this constraint and give our final decision considering this constraint. Details of 

attaching these constraint sets back to the model are explained in further sections. 

 

Since the decision variable  ilq  is binary, a plant in a specific location i with a 

specific capacity level l can either be opened ( 1ilq = ) or remain closed ( 0ilq = ). If 

ilq  is “remain closed”, there is no production, so all related ijlx  variables and the 

objective function value of the subproblem are equal to zero. On the other hand, if it 

is decided to be opened, by setting ilq  to one, the problem turns into the following 

problem: 
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( ) ( )1LR

i l i j i l j i jl i l

j J

P Min b e x fα α′ ′ ′ ′ ′ ′ ′ ′ ′
∈

= + − +∑  

 

              Subject to 

 

( )

max

min

max

(1)

(2)

0 , and (8)

i jl i l

j J

il ijl

j J

i jl i l j

x v

v x

x Min v w Integer j J

′ ′ ′ ′
∈

∈

′ ′ ′ ′

≤

≤

≤ ≤ ∀ ∈

∑

∑  

 

The constraint set (3) is eliminated, because this constraint is satisfied automatically 

by setting only one ilq  equal to one at each time. This problem is actually a special 

type of a knapsack problem. The structure of the knapsack is very special because it 

is the combination of the following four knapsack problems: it is a minimization 

knapsack problem (MinKP) since the objective function of the problem is 

minimization. On the other hand, it is an unweighted knapsack problem due to the 

equal weights of the decision variables. Also it is an interval knapsack problem (I-

KP) on account of existence of additional lower bound limit on the total weight of a 

knapsack and finally it is a bounded knapsack problem (BKP) because of the 

structure of the ijlx  variables. Detailed information about these knapsack problem 

classes can be found in Martello and Toth (1990), Zhou (2006) and Babaioff et al., 

(2007). 

 

Although three of these knapsack problems (MinKP, I-KP and BKP) stated above are 

NP-hard in the given references above, our subproblem can be solved optimally and 

very efficiently using a simple algorithm, due to the nature of the unweighted 

knapsack problem type. It can be seen that in our knapsack problem all weights of 

the decision variables are the same and equal to one which is aliquot of all upper and 

lower threshold values. This structure provides our knapsack problem with the 

integrality property.  
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Magee and Glover (1996) state that a constraint set has the integrality property if the 

linear problem formed by adding any linear objective function is guaranteed to have 

an optimal integer solution. Thus, the objective function value of the LP relaxation of 

our knapsack problem also gives the optimal solution of the problem as far as the 

integrality property holds.  

 

To solve this subproblem, LR

ilP , for iteration t, first we have to calculate the objective 

function coefficient of each  ijlx  variable, that is ijlcc , for known values of  t

jα  and 

then select the minimum ijlcc  value for each il pair, that is ijlcc : 

 

{ }

,t

ijl ij il j

il ijl
j J

cc b e i I j J and l L

cc Min cc i I and l L

α

∈

= + − ∀ ∈ ∀ ∈ ∀ ∈

= ∀ ∈ ∀ ∈
 

 

The ijlx  variable that has the minimum ijlcc  value for an il pair is the best variable to 

minimize the objective function of the subproblem, 1LR

ilP , and therefore selected to 

satisfy the constraints of the objective function. If ilcc  value is negative (Case 1), 

then transporting goods to the relevant warehouse as much as possible is the most 

reasonable action. But the amount that can be transported is limited either by the 

capacity of the plant or the capacity of the supplied warehouse, thus the value of ijlx  

variable that has the minimum ijlcc  value is set to ( )max ,il jMin v w . On the other hand, 

if ilcc  has a positive value (Case 2), it means that transporting goods does not 

improve the objective function, hence setting ijlx  variable as small as possible is the 

best way. Due to the modular capacitated structure, there is a minimum supply 

requirement, min
ilv  for each capacity level.  Therefore, we can not just set the value of 

the relevant ijlx  to zero. In order to satisfy the constraint set (2), the ijlx  variable that 

has the minimum ijlcc  value is set to ( )min ,il jMin v w  even if its ilcc  is positive.  
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If the value of jw  is less than the value of max
ilv  for the first case or less than min

ilv  for 

the second case, then the maximum or minimum capacity requirement is not satisfied 

completely. Let us assume that maxrem

ilv  is the remaining amount for reaching the 

maximum capacity of a capacity level after assigning a value to variable ijlx  that has 

the minimum and negative ijlcc , and minreq

ilv  is the required amount for reaching the 

minimum capacity of a capacity level after assigning a value to variable ijlx  that has 

the minimum but positive ijlcc . 

 

For the first case, we select the variable ijlx  that has the second minimum ijlcc  value 

and assign a value ( )max ,il jMin v w  if the value of ijlcc  is still negative. This procedure 

is repeated until the maximum capacity of a capacity level is full or all remaining 

ijlcc  variables are positive and production capacity is above the min
ilv . 

 

For the second case, we know that all remaining ijlcc  values are positive. Assigning a 

value to a ijlx  variable that has positive ijlcc  is not a desirable move, but we have to 

keep assigning values to satisfy the minimum requirement constraint of the capacity 

level. Thus, we select the next ijlx  variable that has the minimum ijlcc  value among 

the unassigned variables and assign a value ( )max ,il jMin v w . We have to repeat this 

until the total production of the plant reaches the minimum limit of its capacity level. 

 

The unassigned ijlx  variables actually have a worse effect on objective function of 

the subproblem, 1LR

ilP  compared to the assigned ones, and hence they are assigned to 

zero. After determining the values of all ijlx  variables, the total cost of opening a 

plant for a capacity level is calculated as: 

 

il ijl ijl il

j J

tc cc x f
∈

= +∑ . 
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When we calculate the total opening cost, iltc , for each capacity level of each plant, 

our main subproblem reduces to determining the values of ilq  variables from the 

following pure integer model: 

 

( )1LR

il il

i I l L

P Min tc qα
∈ ∈

= ∑∑  

 

 Subject to 

 

{ }

min

1 (3)

(20)

0,1 (10)

il

l L

il

i I l L

il

q i I

Q q

q i I and l L

∈

∈ ∈

≤ ∀ ∈

≤

∈ ∀ ∈ ∀ ∈

∑

∑∑  

 

Solving this problem is also very easy. The constraint set (3) forces that at most one 

capacity may be opened for a candidate plant location. Due to the fact that there is no 

additional constraint for selecting a capacity level for a candidate plant location, the 

capacity level that has the best (minimum for our instance) total opening cost, iltc , 

value becomes the only candidate for a location. Hence the best possible candidate 

for a location is determined by inspecting the iltc  values of the relevant capacity 

levels. Let us assume that 
___

itc  is the total opening cost that has the minimum opening 

and operating cost among all the capacity levels for plant location i, then it can be 

expressed as: 

 

{ }
___

i il
l L

tc Min tc
∈

= . 

 

At this stage, our main subproblem 1LRP  becomes much easier to solve. If l L′∈  is 

the best candidate capacity level for plant location i, the main subproblem is as 

follows: 
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( )
__

1LR
i il

i I

P Min tc qα ′
∈

= ∑  

 

 Subject to 

 

{ }

min (20)

0,1 (10)

il

i I l L

il

Q q

q i I and l L

∈ ∈

≤

∈ ∀ ∈ ∀ ∈

∑∑
 

 

Before solving this subproblem, we need to introduce a new set, M, which is the non-

decreasing ordered set of 
___

itc  values. Let us assume that m M∈  is the index of this 

new set M and m

ilq  is the decision variable for the relevant 
___
m

itc  value, then the set M 

fulfills the inequality below: 

 

__ __ __ __
1 2 ,m

i i i itc tc tc tc where M I≤ ≤ ≤ ≤ ≤ =… …  

 

In order to satisfy the constraint (20), at least minQ  many  ilq  variables starting from 

the beginning of the order have to be set equal to one, even if some of them may 

have positive coefficients in the objective function. After opening minQ  many plants, 

if there still negative 
__

itc  values, then the associated variables [ ]il m
q  are set equal to 

one as well. If not, no more ilq  variables are set to one. This can be mathematically 

described as follows: 

 

[ ]
[ ]

__

min1   or 0
1,2, ,

0 Otherwise

i m

il m

if m Q tc
q m I

 ≤ <
= ∀ =



…  

 

Since the opened plants and capacity levels are determined, we can now calculate the 

final values of ijlx  variables and the value of the objective function of the main 
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subproblem 1LRP . As stated before, if a capacity level of a plant is decided as 

“remain closed”, then no transportation occurs from this level. Therefore, the values 

of ijlx  variables are set to zero, if the relevant ilq  variable is equal to zero; otherwise 

the values of  ijlx  variables preserve their former values that are calculated in the 

previous stages of the algorithm. 

 

Finally, the objective function value of the main subproblem 1LRP  is calculated by 

putting either the values of ijlx  and ilq  variables and their coefficients into the 

objective function of the subproblem or the 
__

itc  values of the opened plants. If ˆ
ijlx  

and ˆ
ilq  represent the previously selected values of the relevant variables, then the 

value of our main subproblem is calculated as follows: 

 

( ) ( )1

__

ˆ ˆ

ˆ

LR

ij il j ijl il il

i I j J l L i I l L

i il

i I l L

P b e x f q

tc q

α α
∈ ∈ ∈ ∈ ∈

∈ ∈

= + − +

=

∑∑∑ ∑∑

∑∑
 

 

The pseudo-code of the solution algorithm is as follows: 

START 
FOR Each plant location i and capacity level l 

SET Maximum available capacity, MC = 
max
ilv  and  

Minimum required capacity, MR= 
min
ilv  

Calculate the objective function coefficient of ijlx  variables for each warehouse j ( ijlcc ) 

 WHILE MR > 0  

    Select the unassigned ijlx  variable that has the minimum ijlcc  value 

   Assign relevant ( ),ijl jx Minimum MR w=  

   Update MR = MR - ijlx  

 END WHILE 

 Select the unassigned warehouse that has the minimum ijlcc  value 

 WHILE Selected ijlcc  < 0 AND MC > 0 

   Assign relevant ( ),ijl jx Minimum MC w=  

   Update MC = MC - ijlx  

   Select next warehouse that has the minimum ijlcc  value 
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 END WHILE 

 Calculate total opening cost of relevant capacity level ( iltc ) 

END FOR 
FOR Each Plant location 

 SET Capacity level that has the minimum cost as ( )
___

i il
l L

tc Minimum tc
∈

=   

 IF 
___

itc  < 0 THEN 

  Open relevant capacity level 
 END IF 
END FOR 

WHILE Number of opened capacity levels < minQ  

  Open unopened capacity level that has the minimum 
___

itc  value 

END WHILE 
FOR Each closed plant and capacity level 

 SET All relevant ijlx  variables to 0 

END FOR 

Calculate the value of ( )1LRP α  

STOP 
 

4.1.2.2 Solution Methodology for the Second Main Subproblem 

 

The second main subproblem 2LRP  is also solved in a similar fashion, but this time 

there is no capacity selection procedure as there is in the main subproblem 1LRP , 

because there is only one capacity limit for each warehouse. The mathematical model 

of the second main subproblem is as follows: 

 

( ) ( )2 ,LR

jk j k jk j j

j J k K j J

P Min c z g rα β α β
∈ ∈ ∈

= + − +∑∑ ∑  

              Subject to 

( )

{ }

max

min

(4)

(6)

(21)

0 , integer and (9)

0,1 (11)

jk j j

k K

j

j J

j

j J

jk k j

j

z w r j J

r R

r R

z Min d w and j J k K

r j J

∈

∈

∈

≤ ∀ ∈

≤

≥

≤ ≤ ∀ ∈ ∀ ∈

∈ ∀ ∈

∑

∑

∑  
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We can also solve this main subproblem for each warehouse separately by enforcing 

the constraint (6). We solve each subproblem corresponding to a warehouse without 

considering the hard constraint (6), but at the end, the model is forced to fit this 

neglected constraint in order to get the optimal solution for the main 

subproblem 2LRP . The mixed integer programming model of the subproblem 2LR
jP  

corresponding to warehouse j is as follows: 

 

( ) ( )2 ,LR

j jk j k jk j j

k K

P Min c z g rα β α β
∈

= + − +∑  

 

              Subject to 

 

( )

{ }

(4)

0 , integer (9)

0,1 (11)

jk j j

k K

jk k j

j

z w r

z Min d w and k K

r

∈

≤

≤ ≤ ∀ ∈

∈

∑

 

 

In the subproblem 2LR
jP , the decision variable jr  is binary variable. Either the 

warehouse is decided to be opened thus the corresponding jr  variable is set to one, or 

it is decided to be “remain closed” by setting jr  variable equal to zero. If it is decided 

to be “remain closed”, then handling products in this warehouse or supplying goods 

for satisfying the demand of a customer is not allowed. Thus if jr  is equal to zero, all 

the related jkz  variables are also set to zero. But if it is decided to be opened, our 

problem then is to determine the valuable customers that provide the minimum 

objective function. If we assume that jr ′  is equal to one, then we end up with the 

following knapsack problem for this opened warehouse: 
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( ) ( )2 ,LR

j j k j k j k j

k K

P Min c z gα β α β′ ′ ′ ′ ′
∈

= + − +∑  

 

              Subject to 

 

( )

(4)

0 , integer (9)

j k j

k K

j k k j

z w

z Min d w and k K

′ ′
∈

′ ′

≤

≤ ≤ ∀ ∈

∑
 

 

This problem is a minimization type, unweighted, bounded knapsack problem and as 

the first subproblem, and due to its special structure that is explained in the first main 

subproblem, this subproblem has integrality property, too. Therefore, the value of the 

LP relaxation of this special knapsack problem equals its optimal value because of 

the integrality property. 

 

In order to determine the best customers to serve for a warehouse, the coefficients of 

the objective function are calculated for each customer. Let us assume that jkccc  is 

the cost coefficient of the customer k supplied from the warehouse j, and jccc   is the 

lowest jkccc  value, corresponding to the most valuable customer supplied from 

warehouse j. Then their values are calculated as follows: 

 

{ }
jk jk j k

j jk
k K

ccc c

ccc Min ccc

α β

∈

= + −

=
 

 

The 
jkz  variable that has the minimum 

jkccc  value, jccc  for a warehouse j is the best 

variable so as to minimize the objective function of the subproblem, 2LR

jP . If the 

value of jccc  is greater than or equal to zero, it means that there is no valuable 

customer for this warehouse. In other words, if jccc  is positive, serving a customer 

worsens the objective function value of the problem. In a situation like this, the best 
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action is not serving any customer from this warehouse j and setting all 
jkz  variables 

equal to zero.  

 

If one or more customers that have negative 
jkccc  values exist, we have to select the 

more valuable ones among these customers, because the handling capacity of the 

warehouse is limited and may not serve all these valuable customers. In order to 

determine the more valuable customers, we have to re-sort the 
jkccc  variables of a 

warehouse in a non-decreasing order. Let m be the index for the position in the order, 

then [ ]jk m
ccc  values have to satisfy the following condition: 

 

[ ] [ ] [ ]1 2 , 1,2, ,
jk jk jk m jk K

ccc ccc ccc ccc where m K
  

≤ ≤ ≤ ≤ ≤ =… … …  

 

The first customer is the most valuable customer for the relevant warehouse j. Hence 

this customer has to be served in the first place, if [ ]1jk
ccc  is negative. The transported 

amount between this warehouse-customer pair is determined by considering their 

capacities. So the 
jkz  variable is equal to either the capacity of this warehouse 

jw , or 

the demand of the customer, 
kd . If 

jw  is less than or equal to kd , then the variable 

jkz  is set equal to
jw , otherwise the variable 

jkz  is set equal to kd . If the transported 

amount is equal to the demand of the customer, it means that the warehouse still has 

the capacity to serve other customers. Hence other customers can be accepted for 

serving according to the ordering of the customers, until the capacity of the 

warehouse is full or all the remaining customers have positive 
jkccc  values. Let us 

assume that rem

jw  is the remaining capacity of the warehouse j after serving some 

customers that have negative 
jkccc  values. The transported amounts between the 

warehouse and the selected customers to be served are either equal to the remaining 

capacity of the warehouse, rem

jw  or equal to the demand of the customer kd . 

 



 
 

66 

The unassigned customers are worthless customers for the related warehouse and the 

jkz  variables related to these customers are set equal to zero. After determining all 

values of 
jkz  variables of a warehouse, the total cost of opening this warehouse is 

calculated as follows: 

 

j jk jk j

k K

wc ccc z g
∈

= +∑  

 

When we calculate the total opening cost 
jwc , for each warehouse separately, our 

main subproblem turns into determining the values of 
jr  which can be formulated as 

a pure integer model: 

 

( )2 ,LR

j j

j J

P Min wc rα β
∈

= ∑  

 

 Subject to 

 

{ }

max

min

(6)

(21)

0,1 (11)

j

j J

j

j J

j

r R

r R

r j J

∈

∈

≤

≥

∈ ∀ ∈

∑

∑  

 

Now the problem becomes much easier to solve. The constraint sets (6) and (21) 

restrict the number of opened warehouses in a tight interval. In order to satisfy these 

constraints, the number of the opened plants has to be greater than or equal to minR  

and less than or equal to maxR . In order to solve this problem we have to re-sort the 

jwc  values in a non-decreasing way where m is the index for showing the position in 

the ordering: 

 

[ ] [ ] [ ]1 2 , 1, 2, , .
j j j m j J

wc wc wc wc where m J
  

≤ ≤ ≤ ≤ ≤ =… … …  
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Starting from the beginning of this ordering at least minR  many warehouses have to 

be opened without considering their [ ]j m
wc  values. Then, if there still exists negative 

[ ]j m
wc  values, the relevant warehouses are also opened until the number of the total 

opened warehouses is equal to maxR . The mathematical expression for this selection is 

as follows: 

 

[ ]( )min min1   or 0
1,2, ,

0 Otherwise

j m

j

if m R wc and m R
r m J

 ≤ < ≤
= ∀ =



…  

 

Since the opened warehouses are determined, we are free to calculate the final values 

of 
jkz  variables and the value of the objective function of the main subproblem 2LRP . 

The values of 
jkz  variables are set to zero, if the related 

jr  variable is equal to zero. 

If the 
jr  variable is equal to one, then the related 

jkz  variables preserve their former 

values that are calculated in the previous stages of the algorithm. 

 

Finally the objective function value of the main subproblem 2LRP  is calculated by 

putting the previously found values of 
jr  and 

jkz  variables, 
ĵr  and ˆ

jkz , into the 

objective function of the subproblem or only multiplying the 
jwc  values of the 

opened warehouses. 

 

( ) ( )2 ˆˆ,

ˆ

LR

jk j k jk j j

j J k K j J

j j

j J

P c z g r

wc r

α β α β
∈ ∈ ∈

∈

= + − +

=

∑∑ ∑

∑
 

 

 

The pseudo-code of the solution algorithm is as follows: 
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START 
FOR Each warehouse 

SET Maximum Capacity, MC, equal to jw  

Calculate the objective function coefficient of jkz  variables for each customer ( jkccc ) 

Select the unassigned customer that has the minimum jkccc  value 

 WHILE Selected jkccc  < 0 AND MC > 0 

   Assign relevant jkz  = Minimum (MC, kd ) 

   Update MC = MC - jkz  

   Select the next customer that has the minimum jkccc  value 

 END WHILE 

 Calculate total opening cost of relevant capacity level ( jwc ) 

 IF jwc  < 0 THEN 

  Open the relevant warehouse 
 END IF 
END FOR 

WHILE Number of opened warehouses < minR  

  Open unopened warehouse that has the minimum jwc  value 

END WHILE 

WHILE Number of opened capacity levels > maxR  

  Close the opened warehouse that has the maximum jwc  value 

END WHILE 
FOR Each closed warehouse 

 SET All relevant jkz  variables to 0 

END FOR 

Calculate the value of ( )2 ,LRP α β  

STOP 
 

4.1.2.3 Solution Methodology of the Lagrangean Dual Problem 

 

Even though no optimization software is used for solving these main subproblems, 

our procedure yields optimal results for all subproblems by exploiting their special 

structure. Otherwise, if we employ a solution procedure that cannot yield optimal 

solutions for subproblems, then: 

 

i. it generates infeasible results that have lower objective function value than 

the optimal solution 

ii. it generates feasible results that have higher objective function value than the 

optimal solution  
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iii. it generates mixed results that both contains lower and higher objective 

function value than the optimal solution.  

 

The second and the third solution procedures are not acceptable in Lagrangean 

relaxation for generating a proper lowerbound, because if they are employed in the 

solution, the lowerbound may exceed the optimal solution of the original problem .P  

The first solution procedure can be employed in Lagrangean relaxation, especially if 

the main subproblems are still difficult to solve, but it is not recommended unless it 

is mandatory, because employing it yields bigger gaps between the lower and 

upperbounds. 

 

As mentioned before, the Lagrangean dual problem is the problem of finding the 

maximum value of the relaxed problem with given Lagrange multiplier values which 

are separately calculated by the subgradient optimization. Due to some properties of 

the subgradient optimization that are explained in the next section, the lowerbound 

value found in each iteration is not monotonically increasing or decreasing. It means 

that the solution of the Lagrangean dual problem is not always the value of the 

Lagrangean relaxation of the last iteration, because of the zigzagging pattern of the 

subgradient optimization. If ( ),LR t tP α β  denotes the objective function value of the 

Lagrangean relaxation problem for TSMCFLP at iteration t with known t tandα β  

values, then it is calculated as: 

 

( ) ( ) ( )1 2, ,LR t t LR t LR t t t

k

k K

P P Pα β α α β β
∈

= + + ∑ . 

 

And the solution of the Lagrangean dual problem, also called as the lowerbound 

value of the original problem, is determined by selecting the maximum ( ),LR t tP α β  

value among the others. Let LB be the lowerbound of our problem among t T∈  

iterations, then its value is found as follows:  

 

( ){ },LR t t

t T
LB Max P α β

∈
= . 
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4.2 Primal Heuristic 

 

Usually, the results of the relaxed problem may turn out to be infeasible for the 

original problem. Even if they are feasible, they may not be the optimal solution of 

the original problem. Thus an algorithm has to be employed in order to find the 

optimal or a near-optimal solution for the problem. In early studies of Lagrangean 

relaxation, after solving the Lagrangean dual problem, the remaining gap between 

the optimal solution and the solution of the Lagrangean dual problem, which is also 

called as the duality gap, is closed by using a combinatorial optimization technique 

such as the branch-and-bound, branch-and-price or branch-and-cut.  

 

Normally, the branch-and-bound and similar procedures use the solution of the linear 

programming (LP) relaxation of the model as an initial solution. Early stage studies 

had discovered that using Lagrangean relaxation instead of LP relaxation usually 

yields much better initial solutions and started to treat the Lagrangean relaxation as 

an initiation phase of an exact algorithm. For the first time, Pirkul (1987) proposes an 

interactive primal heuristic that fixes some decision variables of the original problem 

with the results obtained in the relaxed problem and determines the rest of the 

decision variables in the problem by an efficient heuristic. This is an interactive 

approach, because unlike the branch-and-bound procedure that is executed after the 

termination of the Lagrangean dual problem, the new primal heuristic is executed 

repeatedly in each iteration, after finding the solution of the relaxed problem. 

 

Later, it is seen that the Lagrangean relaxation not only provides an initial solution of 

an exact algorithm, but also an important part of the efficient heuristic which is 

called as the Lagrangean heuristics. Due to its nature, this heuristic does not seek the 

optimal solution, but a near-optimal solution. The optimal results may not be 

obtained using Lagrangean heuristics. On the other hand, using heuristic instead of 

exact algorithms has serious advantages; the computational effort and the solution 

time is decreased significantly and obtaining both an upperbound and a lowerbound 

in an iteration provides us to check the quality of the solution in the current state. 
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The most important part of the Lagrangean heuristic is definitely the primal heuristic 

component, because only its results are always feasible for the original problem, 

hence only its results can be applicable in real world. Pirkul and Jarayaman (1998) 

extend the primal heuristic of Pirkul (1987) to the two-stage location problem. Since 

then the variants of this primal heuristic have been used in similar studies. For the 

reason that there is no alternative heuristic in the literature competing with heuristic 

presented by Pirkul (1987)), we also use a similar heuristic for generating feasible 

results.  

 

As mentioned before, the distribution network design problems are location-

allocation type problems. In this type of problems, the locations of the opened 

facilities are determined and the customers are allocated to the opened facilities 

simultaneously. Deciding locations and allocations simultaneously, makes this 

problem much difficult to solve. On the other hand, allocation of customers to the 

facilities formerly determined is a less difficult problem than the simultaneous 

problem. Pirkul’s (1987) primal heuristic is based on this logic. In the heuristic, the 

location decisions are obtained from the solution of the relaxed problem. In other 

words, the given decisions about the opened facilities in the relaxed problem are 

transferred into the primal heuristic so that the heuristic only deals with the allocation 

problem of the original problem.  

 

In Pirkul’s (1987) heuristic only the locations of the facilities are obtained from the 

lowerbound, but not their capacities. The capacities of the facilities are determined 

after executing the allocation heuristic, which is inapplicable for our problem, 

because we have more than one available maximum and minimum capacity levels 

each with a unique cost. For this reason, we obtain not only the locations of the 

opened plants but also the selected capacity levels for the opened plants from the 

lowerbound solution. This makes our primal heuristic more complicated than Pirkul 

(1987) and Pirkul and Jarayaman (1998).  

 

The proposed primal heuristic consists of three phases. First, a greedy heuristic is 

developed for making the infeasible location decisions feasible. Secondly, the 
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allocation problem is solved efficiently using an allocation heuristic, and finally at 

the third phase feasibility is checked for each plant. Details of these three phases are 

presented below. 

 

4.2.1 Greedy Heuristic 

 

The greedy heuristic is a heuristic that always takes the immediate best or local 

optimum solution while finding an answer at each stage with the hope of finding the 

global optimum. Greedy algorithms find the overall or global optimal solution for 

some optimization problems, but may find suboptimal solutions for some instances 

of other problems. The heuristic selects the best choice in a situation and then solves 

the problems that arise later. The choice made by a greedy algorithm may depend on 

prior decisions made but not on the future choices or all the solutions to the 

subproblem. It iteratively makes one greedy choice after another, reducing each 

given problem into a smaller one. In other words, a greedy algorithm never attempts 

an improvement on the solutions found. In spite of its drawbacks, the greedy 

heuristic is widely used in the previous studies; it has the advantages of being 

extremely fast and producing reasonably efficient solutions. 

 

4.2.1.1 Plant Greedy Heuristic 

 

We use a greedy algorithm to generate feasible solutions for the location problem 

which is not in the scope of the primal heuristic. We have already mentioned that in 

the primal heuristic, the location problem is removed from the original problem and 

the opened capacities and warehouses are obtained from the solution of the relaxed 

problem. However, the plant and warehouse decisions may be infeasible for the 

original problem, because the demand satisfaction constraints are dualized in the 

relaxed problem. Hence, at any iteration, the total capacity of the opened plants with 

specific capacity levels can be in one of the three different cases: 
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min max
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CASE 1: In the first case, the total minimum capacity of the opened plants is less 

than the total demand and the total maximum capacity of the opened plants is greater 

than or equal to the total demand. In this case, the global feasibility of the original 

problem is achieved. We call this situation as “global feasibility”, because this 

feasibility deals with the total capacities. In addition to the global infeasibility case 

there is another infeasibility that we may encounter after solving the allocation 

heuristic, which we call as local infeasibility.  

 

Local infeasibility emerges if one or more plants distribute less than their minimum 

supply constraints. Local infeasibility is checked in the third phase of the heuristic 

procedure and explained in detail in further sections. 

 

If the result of the lowerbound is in the state of global feasibility, then there is 

nothing we should do. The allocation heuristic can be executed directly for making 

feasible allocations for the original problem. 

 

CASE 2: In the second case, the total maximum capacity is less than the total 

demand. It means that the total production capacity is not enough for satisfying the 

demand of all customers. In order to satisfy the whole demand, one or more plants 

may be opened or capacity levels of the opened plants may be increased or both of 

these remedies may be implemented. In order to decide the set of plants/capacity 

levels that are decided to be opened, we calculate the opening cost ilOC , for each 

possible alternative. For the plants which do not have an opened capacity level, we 

calculate the opening cost only for the first capacity level; in other words, only the 

opening cost of the first capacity level 1iOC  is considered as a possible alternative if 

no capacity level is already opened in a specific location. For this type of locations 
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opening cost is formed by the fixed cost of opening the first capacity level of the 

location and variable cost of operating this capacity level at the allowed maximum: 

 

1

max
1 1 1 1

0 0i i l

i i i i

OC if q l L

OC f e v

′ ′

′ ′ ′ ′

> = ∀ ∈

= +
 

 

If there is an opened capacity level for a plant and the current capacity level is not the 

highest capacity level of this plant, then ilOC is calculated for only the next capacity 

level. If the next capacity level is decided to be opened, then the previous capacity 

level of the plant has to be closed. Therefore, the opening cost is calculated as the 

fixed cost of opening the relevant capacity level and variable cost of operating at the 

maximum level for this capacity minus the fixed and variable cost of operating at the 

lower capacity level. 

 

( ) ( )
1

max min max min
1 1 1 1

0 1 1i l i l

i l i l i l i l i l i l i l i l i l

OC if q and l

OC f e v v f e v v

′ ′ ′ ′−

′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′− − − −

′> = ≠

   = + − − + −   

 

 

If the capacity level/plant that has the minimum opening cost is high enough to 

satisfy the demand shortage of customers, then it is selected as the opened 

plant/capacity level. Otherwise we develop three alternative solutions in an attempt 

to obtain the best solution. We execute the three solutions whenever the capacity 

level/plant that has minimum opening cost is not high enough to satisfy the demand 

shortage of customers. After execution, the solution that has the lowest total opening 

cost is selected and the plants/capacity levels are opened with respect to the results of 

the selected solution. 

 

These three alternative solutions can be described as follows:  

 

• opening a plant/capacity level that is big enough to satisfy the demand 

shortage 

 



 
 

75 

• opening a plenty of plants/capacities that have the minimum ratio of opening 

cost, ilrOC , until the total capacity of these plants/capacities satisfies the 

demand shortage  

 

• opening a plenty of plants/capacities until the total capacity of these 

plants/capacities satisfies the demand shortage according to the minimum 

opening cost, ilOC .  

 

For calculating the ratio of the opening cost, ilrOC , we divide ilOC  values to 

( )max min
il ilv v− . 

 

max min
il

il

il il

OC
rOC

v v
=

−
 

 

In order to calculate the total opening cost, 
_____

2OC , of the capacity set determined 

according to ilrOC  values of the capacities, we have to re-sort the ilrOC  values in a 

non-decreasing order. Let m be the index that indicates the position in the ordering, 

then the ordering is as follows: 

 

[ ] [ ] [ ]1 2 ... ...
il il il m il M

rOC rOC rOC rOC where M I
  

≤ ≤ ≤ ≤ ≤ ≤   

 

Similarly for calculating the total opening cost, 
_____

3OC , of the capacity set determined 

with respect to ilOC  values of the capacities, we have to re-sort the ilOC  values in a 

non-decreasing order. Let n be the index that indicates the position in the ordering, 

then the ordering is as follows: 

 

[ ] [ ] [ ]1 2 ... ...
il il il n il N

OC OC OC OC where N I
  

≤ ≤ ≤ ≤ ≤ ≤   

 



 
 

76 

Then the costs of these solution alternatives 
_____ _____ _____

1 2 3,OC OC and OC  are calculated as 

follows: 

 

{ }

[ ] [ ] [ ]( ) [ ] [ ]( )

[ ] [ ] [ ]( )
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=
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It should be noted that, while calculating 
_____ _____

2 3OC and OC , if a capacity level is 

selected to be opened, then automatically the opening cost, ilOC , for the next 

capacity level and its ratio, ilrOC , is calculated, unless the recently opened capacity 

level is the highest capacity level of the plant. The il ilrOC and OC  values are re-

sorted considering the new values. Furthermore, after determining the sets of opening 

plants for each alternative solution, a post optimization procedure is employed and 

the total opening cost is tried to be decreased by removing one or more unnecessary 

plants. 

 

After calculating the costs of these three alternatives, 
_____ _____ _____

1 2 3,OC OC and OC , the one 

with the lowest cost is selected and the plants/capacity levels which are decided to be 

opened in the selected alternative are opened. 

 

CASE 3: In this case, the total minimum capacity of the opened plants is greater than 

the overall demand. It shows there is excess capacity in the solution. This surplus 

capacity leads to local infeasibilities in one or more plants if allocation heuristic is 

executed without making any change. In order to prevent the local infeasibilities, one 

or more plants/capacity levels have to be closed. In order to determine the 

plants/capacity levels that are to be closed, a heuristic is employed similar to the one 

in case 2. But this time, instead of calculating the opening cost for the closed 
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plants/capacities, the closing profit ilCP  is calculated for the opened capacity levels. 

If the capacity level is the first level, then 1iCP′ is calculated as: 

 

1 1

max
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If the opened capacity level of a plant is higher than the first level, the value of ilCP  

is calculated as the cost of closing current level minus the cost of opening the prior 

capacity level: 

 

( ) ( )max min max min
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If the capacity level that has the highest closing profit is big enough to eliminate the 

surplus, then it is closed. Otherwise the set of plants or capacity levels that are to be 

closed is selected in the same way as the Case 2, but this time the plants/capacity 

levels that have the maximum ilrCP  or ilCP  are chosen for closing. 
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The pseudo-code of the solution algorithm is follows: 

 

START 
Calculate Total Maximum Capacity AND Total Minimum Capacity 
IF Total Maximum Capacity < Total Demand THEN 
 SET Shortage = Total Demand - Total Maximum Capacity 
 FOR Each plant location 
  IF No Capacity level is opened in the plant THEN 
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Calculate opening cost ( ilOC ) for the first capacity level which is not in 

tabu list 
  ELSE 

Calculate opening cost ( ilOC ) for upgrading opened capacity to next 

capacity level which is not in tabu list 
  END IF 
 END FOR 

IF Capacity level that has the minimum ilOC  is big enough to satisfy the Shortage 

THEN 
Close the previous capacity level and open relevant capacity level 

ELSE 
Select the capacity levels which are big enough to satisfy the Shortage 

Select the capacity level that has the minimum ilOC  in this set 

SET 
_____

1OC  value as the relevant ilOC value 

Calculate ilrOC  values 

 WHILE Total Maximum Capacity < Total Demand 

Select the capacity level that has the minimum ilrOC  value 

Close the previous capacity level and open the relevant capacity 
level 

Calculate ilOC  and ilrOC  values for the next capacity level 

which is not in tabu list 

Update 
_____ _____

2 2 ilOC OC OC= +  

Update Total Maximum Capacity 
Store recently opened capacity levels 

END WHILE 
  SET Surplus = Total Maximum Capacity - Total Demand 

WHILE One or more recently opened plants’ capacity < Surplus 

Calculate closing profit ( ilCP ) for relevant capacity levels 

Select the capacity level that has the maximum ilCP  

Close relevant capacity level and open previous one 
Update the Surplus value 

  END WHILE 
Reset the value of Total Maximum Capacity 
WHILE Total Maximum Capacity < Total Demand 

Select the capacity level that has the minimum ilOC  value 

Close the previous capacity level and open the relevant capacity 
level 

Calculate ilOC  value for next capacity level which is not in tabu 

list 

Update 
_____ _____

3 3 ilOC OC OC= +  

Update Total Maximum Capacity 
Store recently opened capacity levels 

END WHILE 
WHILE One or more recently opened plants’ capacity < Surplus 

Calculate closing profit ( ilCP ) for relevant capacity levels 

Select the capacity level that has the maximum ilCP  

Close relevant capacity level and open previous one 
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Update the Surplus value 
  END WHILE 

Compare the 
_____ _____ _____

1 2 3,OC OC and OC  values and select the minimum one 

Open the new capacity levels, and close the older ones according to selected 
_____

OC   
 END IF 
ELSE IF Total Minimum Capacity > Total Demand THEN 
 SET Surplus = Total Minimum Capacity - Total Demand 

Calculate closing profit ( ilCP ) for the opened capacity levels that closing it does not disrupt 

the Case 1 

 IF Capacity level that has the maximum ilCP  is big enough to satisfy the  

Surplus THEN 
Close the relevant capacity level and open the previous capacity level 

ELSE 
Select the capacity levels which are big enough to satisfy the Surplus 

Select the capacity level that has the minimum ilCP  in the ordering 

SET 
_____

1CP  value as the relevant ilCP  value 

Calculate ilrCP  values 

 WHILE Total Minimum Capacity > Total Demand 

Select the capacity level that has the maximum ilrCP  value 

Close the relevant capacity level and open the previous capacity 
level 

Calculate ilCP  and ilrCP  values for new capacity level if 

available 

Update 
_____ _____

2 2 ilCP CP CP= +  

Update Total Minimum Capacity 
Store recently opened capacity levels 
 

END WHILE 
Reset the value of Total Minimum Capacity 
WHILE Total Minimum Capacity > Total Demand 

Select the capacity level that has the maximum ilCP   value 

Close the relevant capacity level and open the previous capacity 
level 

Calculate ilOC  value for new the capacity level if available 

Update 
_____ _____

3 3 ilCP CP CP= +  

Update Total Minimum Capacity 
Store recently opened capacity levels 

END WHILE 

Compare the 
_____ _____ _____

1 2 3,CP CP and CP  values and select the maximum one 

Close the older capacity levels, and open the new ones according to selected 
_____

CP  
 END IF 
END IF 
STOP 
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4.2.1.2 Warehouse Greedy Heuristic 

 

As stated before, the constraint (21) in the second echelon is more successful than the 

constraint (20) which is in the first echelon. But still, the total capacity of the 

warehouses first obtained from the solution of the relaxed problem may be infeasible. 

We can come across with two cases: 

 

(1)

(2)

j j k

j J k K

j j k

j J k K

w r d

w r d

∈ ∈

∈ ∈

≥

<

∑ ∑

∑ ∑
 

 

In the first case, the total capacity of the warehouses is greater than or equal to the 

total demand. It means there is enough capacity to satisfy the demand of all 

customers. There is nothing we should do if the solution of the relaxed problem is 

feasible for the warehouses. The allocation heuristic can be executed directly for 

making feasible allocations for the original problem. 

 

In the second case, one or more warehouses have to be opened in order to satisfy the 

total demand. In order to determine the warehouses that are going to be opened by 

the greedy heuristic, we use the fixed cost of opening the warehouse, jg . 

 

If the closed warehouse that has the minimum jg  value can also satisfy all the 

shortage by itself, then it is selected as the warehouse to be opened. Else 

________ ________

1 3WOC and WOC  values are calculated in the same as the 
_____ _____

1 3,OC and OC  values are 

calculated. 

 

It can be easily predicted that warehouse greedy heuristic takes more computational 

time than the plant greedy heuristic, because there always exists more warehouses in 

the problem. So, in order to gain some computational time, we do not employ 

calculation of 
_______

2WOC  value that uses the ratio of opening cost in the warehouse 
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greedy heuristic. Because most of the time, opening at most two warehouses are 

sufficient due to the existence of the constraint (21) which is a strong valid inequality 

for the second echelon. In this situation, opening two warehouses that have least total 

costs is better than opening two warehouses that have least unit costs. The pseudo-

code of the greedy heuristic is as follows: 

 

START 
Calculate Total Capacity  
IF Total Capacity < Total Demand THEN 
 SET Shortage = Total Demand - Total Capacity 

 IF The warehouse that has the minimum jg  is big enough to satisfy the  

Shortage THEN 
Open relevant warehouse 

ELSE 
Select the warehouses which are big enough to satisfy the Shortage 

Select the warehouse that has the minimum jg  in this set as 
_______

1WOC  

WHILE Total Capacity < Total Demand 

   Select the warehouse that has the minimum jg  value 

Open the relevant warehouse 

Update 
_______ _______

3 3 ilWOC WOC WOC= +  

Update Total Capacity 
Store recently opened capacity levels 

END WHILE 
  SET Surplus = Total Capacity - Total Demand 

WHILE A recently opened warehouse’s capacity < Surplus 

Calculate closing profit ( jWCP ) for relevant warehouses 

Select the warehouse that has the maximum jWCP  

Close relevant warehouse 
Update the Surplus value 

  END WHILE 

Compare the 
_______ _______

1 3,WOC and WOC  values and select the minimum one 

Open the new warehouses according to selected 
_____

OC   
 END IF 
END IF 
STOP 
 
4.2.2 Allocation Heuristics 

 

4.2.2.1 Warehouse Allocation Heuristic 

 

After global feasibility is obtained for both echelons using the developed greedy 

heuristics, we can proceed by assigning the customers to the opened warehouses. 
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Although the warehouses are capacitated, due to the allowance of multiple sourcing, 

the assignment is relatively easier. Every customer is to be assigned to the opened 

warehouse that minimizes the transportation cost of the customer. But it is not 

possible in all instances due to the capacities of the warehouses. So we have to 

specify a penalty value for each customer and assign these customers to the 

warehouses in an order that is related to their penalty values. We define the penalty 

value of a customer as the extra cost of assigning a customer to its second cheapest 

opened warehouse instead of the cheapest opened warehouse. Let  jkWAC be the 

warehouse assignment cost of the customer k for the warehouse j, then the values of 

jkWAC  and the penalty value, jkPWAC are calculated as follows: 

 

         
{ } { } { }2 | 1

k jk k

nd

k j k j k j
j J j J

WAC c d

PWAC Min WAC Min WAC J j J r′ ′′ ′
′ ′ ′ ′′∈ ∈

=

′ ′= − = ∈ =
 

 

Then the penalties of the customers are re-sorted in a non-increasing way. Let index 

m denote the position in the ordering: 

 

[ ] [ ] [ ]1 2 ... ...
j j j m j M

PWAC PWAC PWAC PWAC
  

≥ ≥ ≥ ≥ ≥  

 

Thus, starting from the customer that has the highest penalty value (in position 1), 

the customers are assigned to the cheapest warehouses. While assigning a customer 

to a warehouse that has still handling capacity left, one of the following two cases 

may occur: 

 

1. The remaining capacity of the cheapest warehouse, remain

jw ′  is greater than the 

demand of the customer, remain

j kw d′ ≥  

2. The remaining capacity of the cheapest warehouse is less than or equal to the 

demand of the customer, remain

j kw d′ < . 
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In the first case, the warehouse has still got enough capacity to serve the whole 

demand of the relevant customer. So the whole demand of this customer is assigned 

to the mentioned warehouse and the remaining capacity of the warehouse remain

jw  is 

updated. At this point, the assigned customer and its penalty are removed from the 

penalty set and the next customer that has the highest penalty value in the list is 

selected to be assigned to a warehouse. 

 

remain

k j k

jk
remain

j

remain

j j jk

k K

d If w d
z

w Otherwise

w w z
∈

 ≥
= 



= − ∑

 

 

In the second case, the remaining capacity of the warehouse is not enough for 

satisfying the overall demand of the customer. Fortunately, multiple sourcing is 

allowed. Therefore, the maximum amount that the relevant warehouse can accept is 

assigned to the warehouse, and then the remaining demand of the customer is 

calculated as the total demand of the customer minus the assigned demand of this 

customer. 

 

remain

k k jk

j J

d d z
∈

= −∑ . 

 

At this stage, the associated warehouse has no remaining capacity. So it is closed for 

further demands and the penalty values are re-calculated by ignoring the fully loaded 

warehouses in the calculation of the 
jkWAC  values.  

 

Then again the customer that has the maximum penalty value is selected, and it is 

assigned either fully or partially to a warehouse. This procedure is repeated until all 

customer demands are fully satisfied by the warehouses. The pseudo-code of the 

allocation heuristic is as follows: 
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START 

SET Remaining warehouse capacity to jw for opened warehouses 

WHILE  There exists one or more unassigned demand of customer 

Calculate warehouse assignment costs ( jkWAC ) for each unassigned customer – 

opened but not full warehouse pair 

  Calculate the penalty value ( kPWAC ) for each unassigned customer 

  Select the customer that has the highest kPWAC  value 

Select the opened but not full warehouse that the selected customer has lowest 

jkWAC  value 

IF Customer’s unallocated demand < remaining warehouse capacity THEN 
   Assign all demand to relevant warehouse 
   Update the remaining warehouse capacity 
   Mark relevant customer demand as assigned 
  ELSE 
   Assign the maximum available demand to relevant warehouse 
   Update the unassigned demand amount 
   Mark relevant warehouse as full 
  END IF 
END WHILE 
IF No customer is assigned to an opened warehouse THEN 
 Close relevant warehouse 
END IF 
STOP 
 

4.2.2.2 Plant Allocation Heuristic 

 

After assigning all customers to the opened warehouses, the capacities of the 

warehouses, actual

jw , are determined by adding all the demand of customers that are 

assigned to relevant warehouses: 

 

actual

j k jk

k K

w d z j J
∈

= ∀ ∈∑ . 

 

It should be noted that even if a warehouse is decided to be opened in the 

lowerbound solution, but its calculated capacity actual

jw  is equal to zero, then there is 

no need to keep this warehouse open in the upperbound, thus it is decided to be 

closed and the relevant jr variable is set to zero: 

 

1 0

0

actual

j

j

If w
r j J

Otherwise

 >
= ∀ ∈


 . 
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Assigning opened warehouses to the opened plants is much difficult than assigning 

customers to the opened warehouses due to the existence of the minimum supply 

requirement constraints of the capacity levels. As far as we know, there are no 

heuristic solutions for the plants which consider both the maximum and minimum 

supply limits of the plants. Even we develop a heuristic for this case; it may be far 

from the optimal solution. So we have decided to ignore the minimum flow 

constraints of the plants in the allocation heuristic and deal with this complexity in 

the next stage that is the local feasibility check stage. Without the minimum supply 

constraints, the allocation problem can be solved efficiently by using a heuristic that 

is similar to the warehouse allocation heuristic explained above. 

 

First, for each opened plant and warehouse pair, the plant assignment cost ijlPAC , 

which is the cost of assigning the whole demand of a warehouse to a specific plant, is 

calculated as: 

 

( ) 1 1actual

i j l i j i l j i l jPAC c e w whre q and r′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′= + = =  

 

Then a penalty is calculated for each warehouse; that is the extra cost of assigning a 

warehouse to the second cheapest plant is as follows: 

 

{ } { } { }
, ,

2 | 1nd

j i jl i jl i l
i l IL i l IL

PPAC Min PAC Min PAC IL i I and l L q′ ′ ′ ′ ′ ′′ ′ ′ ′ ′ ′∈ ∈
′ ′ ′= − = ∈ ∈ =  

 

Then the penalties of the opened warehouses are re-sorted in a non-increasing way. 

Let m be the index denoting the position in the ordering, and then: 

 

[ ] [ ] [ ]1 2 ... ...
j j j m j M

PPAC PPAC PPAC PPAC where M J
  

≥ ≥ ≥ ≥ ≥ <  

 

Then, starting from the warehouse that has the highest penalty value, the warehouses 

are assigned to the cheapest plants. However, unlike the warehouses, the plants do 
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have capacity limits. Thus while assigning a warehouse to a plant which still has 

production capacity left, one of the following two cases may occur: 

 

1. The remaining capacity of the cheapest plant is greater than the warehouse 

demand actual

jw  . 

 

2. The remaining capacity of the cheapest plant is less than or equal to the 

warehouse demand actual

jw  . 

 

In the first case, the plant still has got enough capacity to serve the full demand of the 

relevant warehouse. So the whole demand of this warehouse is assigned to the 

mentioned plant and the remaining capacity of the plant is updated. Then the 

assigned warehouse and its penalty are removed from the list and the next warehouse 

that has the highest penalty value in the list is selected to be assigned to a plant. 

 

In the second case, the remaining capacity of the plant is not enough for satisfying 

the overall demand of the relevant warehouse. Similar to the second echelon, 

multiple sourcing for a warehouse is allowed. For this reason, the maximum amount 

that the relevant plant can accept is assigned to the plant, and then the remaining 

(unmet) demand of the warehouse is calculated as “the overall demand of the 

warehouse” minus “the remaining capacity of the plant before assigning some of the 

warehouse’s demand”. At this stage, the associated plant has no more remaining 

capacity. So it is closed and the penalty values are re-calculated by ignoring the fully 

loaded plants.  

 

Then again the warehouse demand that has the maximum penalty value is selected 

and this procedure is repeated until all demands of all warehouses are fully satisfied 

by the plants.  
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4.2.3 Local Feasibility Check 

 

As we recall, for solving the plant allocation heuristic efficiently, we ignore the 

minimum supply constraints of the plants. Therefore some plants may supply less 

than their minimum limit. This local infeasibility, which is the infeasibility situation 

that is caused by one or more plants, makes the original problem infeasible, too. In 

the literature, in order to deal with this infeasibility, some interchange heuristics are 

used in some studies like Ayrım (2006) or in other studies upperbound is marked as 

infeasible for this iteration and it is proceeded with the next iteration as it is in the 

study of Correia et al. (2003). Interchange heuristics may be efficient for the 

capacitated facility location with minimum supply requirements problem class, but 

for the modular capacitated facility location problem, we have decided that the most 

efficient way to deal with this infeasibility is downgrading the capacity level of the 

infeasible plants: The lower capacity level always has lower cost compared to the 

higher capacity levels as shown in Figure 3.1. Therefore we have downgraded the 

capacity level of the plant until the solution becomes feasible. It should be noted that 

in the modular capacitated facility problem, there may be production intervals that 

are not covered by any of the capacity levels. For example in Figure 3.1 the interval 

between max min
2 3v and v  is not covered by any capacity level. In other words, the plant 

in Figure 3.1 can not produce ψ  amount of product if max min
2 3v vψ< < . If the result of 

the lowerbound of a plant is in this uncovered interval, then the capacity level is 

decreased to the nearest lower capacity level, which is Capacity level 2 for our 

example. 

 

After downgrading the infeasible plants, the problem may become globally 

infeasible, so we return to the greedy heuristic stage and re-execute the plant greedy 

heuristic and plant allocation heuristic with the downgraded capacity levels. But to 

prevent the downgraded facilities to be upgraded to the previous capacity level in 

greedy heuristic, we make a tabu list and do not calculate the opening cost for the 

capacity levels which are in the tabu list. Tabu list is valid only for an iteration and in 

each iteration tabu list is emptied after generating a feasible upperbound. If the local 

infeasibility still exists after a specified number of trials, we give up looking for a 
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feasible upperbound in this iteration and assign positive infinite value to the 

upperbound solution of this iteration considering the computational burden of 

repeating the primal heuristic. 

 

If all plants are feasible, then we can calculate the value of the primal heuristic at the 

current iteration, UBP , by putting the values of the decision variables which are 

found in the primal heuristic, into the objective function of the original problem, P. 

Let us assume ˆ ˆ ˆˆ, , andijl jk il jx z q r  be the primal heuristic values of the decision 

variables, then the value of the primal heuristic at the current iteration is as follows: 

 

( ) ˆ ˆ ˆˆUB

ij il ijl jk jk il il j j

i I j J l L j J k K i I l L j J

P b e x c z f q g r
∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈

= + + + +∑∑∑ ∑∑ ∑∑ ∑  . 

 

As mentioned before, primal heuristic is employed in our solution procedure for 

generating a feasible upperbound for the original problem, P. Since the original 

problem, P has minimization type objective function, the minimum of the primal 

heuristic found among certain iterations is selected as the best primal solution which 

is called as the upperbound value, UB.   

 

4.3 Subgradient Optimization 

 

In the section 4.1.1.1 we dealt with the issue of finding optimal Lagrange multipliers 

and chose to employ subgradient optimization in our heuristic to update the Lagrange 

multipliers. Beasley (1995) defines subgradient optimization as an iterative 

procedure which, from an initial set of Lagrange multipliers, generates further 

multipliers in a systematic fashion that attempts to maximize lowerbound value 

obtained from the Lagrangean dual problem. Subgradient optimization is developed 

and improved by Polyak (1967), and after the work of Held and Karp (1970, 1971) 

and Held, Wolfe and Crowder (1974), subgradient algorithm has been widely used in 

many different contexts for producing lowerbounds for large-scale linear programs.  
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Subgradients are partial differentials of the Lagrangean dual problem in a specific 

point and used instead of gradient of a function if the function is nondifferentiable. 

Unlike the gradient direction, the subgradient direction may not be an ascent/descent 

direction, and for this reason a line search can not be done in this method. Let us 

assume that ( ).f  is a nondifferentiable function and t nu ∈ℜ , ( )f u∂  denotes the 

subdifferential, or the set of subgradients of  ( ).f  at tu . Then 

 

( ) ( ) ( ) ( ){ }|n nf u g f u f u g u u u∂ = ∈ℜ ≤ + − ∀ ∈ℜ . 

 

For example, if we recall our illustration that has an objective function value 

( )1 1Z= Cx b Axλ+ −  at point 1x , the subgradient vector 1g  is calculated as below: 

 

1 1 1( , )Z x g b Zxλ∂ = = −  

 

Although subgradients are not an ascent/descent direction, Fumero (2001) states that 

the subgradient optimization guarantees that the new point is closer, in the Euclidean 

sense, to the optimal point tu , since by definition, the subgradient vectors tg  and 

( )* ku u−  form an acute angle. Therefore, by selecting a sufficiently small step size, 

direction kg  allows to move towards the optimum, so that the Euclidean distance to 

the optimal solution is strictly decreasing. Thus, the choice of the step size is crucial 

for the convergence of the algorithm. The step size should decrease as the iterations 

increase, but not so quickly as to cause Lagrangean dual problem to converge to a 

non-optimal point. There are several popular choices for calculating the step size, tδ  

for iteration t as cited below: 

 

1. 
1

0, .t t

t

δ δ
∞

=

→ = ∞∑  

2. , 0 1, 0.t tC Cδ ρ ρ= < < >  
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3. 
( ) ( )( )*

2
, 0 2.

t t

t t

t

f u f u

g

µ
δ µ

−
= < ≤  

 

where ( )*f u  denotes the optimal value of the function. First two alternatives are 

used in the literature, while the third formulation is the most common one. However, 

the optimal value of the problem is required to calculate the step size which makes 

the formulation impractical. In order to deal with this problem, either a fixed constant 

that is assumed to be slightly bigger than the optimal value but not as big, or a 

variable value that is calculated for each iteration is used instead of ( )*f u  in the 

formulation, if no primal heuristic is employed in the algorithm. On the other hand, if 

a primal heuristic is employed in the algorithm to find feasible solutions for the 

problem, then the best way to follow is using the best upperbound found so far 

instead of the optimal value.  

 

The parameter tµ  used in formulation 3 above is a constant that lies between 0 and 2 

in the heuristic. Often the sequence of tµ  is determined by setting an initial value 

that is less than or equal to 2 and halving tµ  whenever the lowerbound value fails to 

increase in some predetermined number of iterations. 

 

After calculating the subgradients and the step size, the Lagrange multipliers, tλ , are 

updated using the formulation below: 

 

1t t t tdλ λ δ−= +  , 

 

where td  denotes the selected direction in the tth iteration. Crainic et al. (2001) 

denote that as for the early versions of the subgradient algorithm, only the 

subgradients are used to compute a direction td . However, it was quickly realized 

that taking into account the directions of the previous iterations could lead to 

performance improvements. Hence, for calculating the direction td  at the tth 
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iteration, the linear combination of all previous gradient directions is used rather than 

just the current subgradient. The general formula of the direction is as follows: 

 

1t t t td g dθ −= +  . 

 

This formulation is the special case of the previous formulation where the constant  

tθ  is not equal to zero this time. There are many approaches for calculating the 

coefficient tθ  to obtain better directions. For example, Camerini–Fratta–Maffioli 

rule is developed in the study of Camerini et al. (1975) for determining tθ  values. 

According to this rule, the values of tθ  is calculated as below: 

 

1
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t t
t t
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g d
if g d
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Otherwise
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where η  is a constant whose optimal value could be determined through 

experiments. The rule of thumb indicates that using 1.5 for η  is the good choice. On 

the other hand, the simplest and the most widely used alternative that is developed by 

Crowder (1976) is called the Crowder rule. According to the Crowder rule, the 

constant tθ  is fixed to a value that is less than 1. The rule of thumb for this 

alternative is fixing tθ  to 0.3. When the Crowder rule is applied, the direction 

becomes a power series as below:  

 

( )
1

1 2
1 2 3 1

1

t
t t l t

l t t t

l

d g g g g gθ θ θ θ
−

− −
− − −

=

= = + + + +∑ … .  

 

4.3.1 Subgradient Optimization for TSMCFLP 

 

In our problem, we have decided to employ the direction that incorporates the 

previous directions as well and determine the value of tθ  constant using the Crowder 

rule with 0.3θ = . We have two different Lagrange multiplier sets, thus different 
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subgradients and directions are calculated for each Lagrange multiplier set, whereas 

only one step size is generated for all of the Lagrange multipliers. At iteration t, after 

finding the lower and upperbound values of the current iteration, first the 

subgradients t t

j kandφ ϕ  of the Lagrange multipliers t t

j kandα β  are calculated: 

 

1

t t t

j k jk ijl

k K i I l L

t t

k jk

j J

d z x

z

φ

ϕ
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∈

= −

= −

∑ ∑∑

∑
 

 

Secondly directions t t

j kandϖ ω  are calculated as below: 

 

1

1 .

t t t
j j j

t t t
k k k

ϖ φ θϖ

ω ϕ θω

−

−

= +

= +
 

 

Then the step size for the current iteration is calculated as follows: 

 

( )( )1.05* ,t LR t t

t

t t t t

j j k k

j J k K

UB Pµ α β
δ

φ ϖ ϕ ω
∈ ∈

−
=
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 . 

 

Finally, the Lagrange multipliers t t

j kandα β  are updated as follows: 

 

1

1 .

t t t t

j j j

t t t t

k k k

α α δ ϖ

β β δ ω

−

−

= +

= +
 

 
4.4 Stopping Criteria 

 
We have already mentioned that subgradient optimization is an iterative procedure. If 

some criteria are not defined for terminating the procedure, it would keep iterate 

forever. As Bahiense et al. (2002) state, the subgradient optimization has lack of 

well-defined stopping criteria. The theoretical stopping criterion of the subgradient 
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optimization is that the norm of the projected subgradient is too small. But as Crainic 

et al. (2001) express unfortunately this stopping criterion almost never applies in 

practice, because it would require that the solution of the Lagrangean dual problem 

be feasible for the original problem. Therefore, alternative stopping criteria have to 

be determined. We employ two criteria for this purpose similar to the previous 

researches.  

 

First criterion calculates a ratio of the gap, %Gap , between the upperbound and the 

lowerbound value and stops the overall procedure if its value is small enough. Its 

value is calculated as follows: 

 

( )
%

UB LB
Gap

LB

−
=  . 

 

We decide the threshold value as 0.001. It means that if the %Gap  is less than or 

equal to 0.001, the developed Lagrangean heuristic is assumed to converge to the 

optimal point and the procedure stops. 

 

The second criterion limits the number of iterations allowed to a certain number. If 

the heuristic does not converge to a point in the determined number of iterations, 

then this criterion steps in and stops the procedure. If this limit is set too small, the 

procedure is terminated without having an opportunity to converge. In this case, the 

computational time is too low, but the %Gap  is too high. On the other hand, if the 

limit is set too high, the procedure converges to a near-optimal point during the 

procedure and keeps iterating without improving the solution of the procedure. 

Unfortunately, determining the value of the maximum number of iterations is 

empirical and problem specific. Previous researchers use various numbers between 

100 and 50,000 according to the complexity and the size of their problem, and the 

heuristic. In the light of the previous researches, we have decided to set its value to 

1000 for all problem instances. 
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After defining the stopping criteria, all components of the heuristic are conflated 

together. At each iteration first, the value of the relaxed problem is found and the 

best lowerbound is updated if available. Second, warehouse greedy heuristic and 

warehouse allocation heuristic are executed for finding a feasible solution for the 

second echelon. Third, plant greedy heuristic and plant allocation heuristic are 

executed alternately.  Then local feasibility is checked for each opened plant. If there 

exists local infeasibility in one or more plants, the capacity levels of infeasible plants 

are adjusted until the infeasibility is eliminated and the plant greedy and allocations 

are re-executed for finding a feasible solution for the second echelon. If all plants are 

feasible, then stopping criteria are checked. As a final step subgradient optimization 

is employed and the Lagrangean multipliers are updated by this procedure. Figure 

4.1 shows the overall solution procedure that is explained above verbally. The 

pseudo-code of the overall Lagrangean Heuristic is as follows: 

 

START 

INIT LB = −∞ , UB = +∞ , 0jα = , 0kβ = , no_improv = 0 and counter = 0 

Define the values of iteration limit and µ  

WHILE Counter < Iteration limit AND Gap > 0.001 
  SET counter = counter + 1 
  CALL Solver of first Main Subproblem  
  CALL Solver of second Main Subproblem 

Calculate the solution value of the Lagrangean relaxation at this iteration 

( ( ),LR t tP α β ) 

  IF ( ),LR t tP α β  > LB THEN 

   SET LB = ( ),LR t tP α β  

   SET no_improv = 0 
  ELSE 
   SET no_improv = no_improv +1 

IF no_improv equal to no_improv limit AND                  µ  is greater 

than minµ   THEN 

   Update the value of µ  

    SET no_improv = 0 
   END IF 
  END IF 
  CALL Warehouse Greedy Heuristic 
  CALL Warehouse Allocation Heuristic 
  REPEAT  
    CALL Plant Greedy Heuristic 
    CALL Plant Allocation Heuristic 
    FOR Each opened plant 
     Check Local feasibility 
    END FOR 



 
 

95 

  UNTIL Local feasibility of each opened plant is OK 

  Calculate the value of the primal heuristic at this iteration (
UBP ) 

  IF 
UBP  > UB THEN 

   SET UB = 
UBP  

  END IF 

  SET 
( )UB LB

Gap
LB

−
=  

  IF Gap > 0.001 THEN 
   Calculate subgradients, directions and stepsize 

   Update Lagrange multipliers j jandα β  

  END IF 
END WHILE 
Write the performance measures 
STOP 
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Start

Initalize Lagrangean Multipliers,
Lower and Upperbound, Set Iteration

Count = 1

Solve the main subproblems

Calculate the value of the relaxed
problem. Update the LB if applicable

Execute Warehouse Greedy Heuristic

Lowerbound
solution feasible

for WHs?

Execute Warehouse Allocation
heuristic.

YES

NO

A

B

 
 
 

Figure 4.1: The Proposed Lagrangean Heuristic Approach 
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Any Stoping
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NO

Execute Plant Greedy Heuristic
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Heuristic. Update the UB if applicable
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Figure 4.1 Cont’d 
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CHAPTER 5 

5. COMPUTATIONAL STUDY 

 

 

 

In this chapter, we discuss the results of the experiments designed to evaluate the 

performance of our solution approach. We first introduce the design of our 

experiments, i.e. the generation of the problem instances. Next we define the 

performance measures. In the last section, we report and discuss the results of the 

computational study. 

 

5.1 Design of the Experiments 

 

In order to test the performance of our solution procedure, a variety of problems are 

generated and solved for different sets of I, J, K and L. Both in the two-stage facility 

location and modular capacitated problems literature, all researchers generate their 

own data randomly for testing their solution procedure as there is no library that 

includes the data sets of the previous researches. All researchers use different 

parameters for generating data and problem instances. We have decided to 

implement a similar procedure to the procedure that was used in the study of 

Harkness and ReVelle (2002) in constructing the data for the test problems, because 

among the similar studies, this study has the most comprehensive data generation 

scheme. We have extended their data generation procedure for our TSMCFLP as 

follows: 

 

The annual demands of the customers are drawn from a uniform distribution between 

10 and 100. 
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The unit transportation costs of distributing the goods from the plants to the 

warehouses and from the warehouses to the customers are generated from a uniform 

distribution between 1 and 10. 

 

The expected number of the maximum-capacitated facilities is computed by 

multiplying the two problem parameters for the number of candidate facility sites by 

the proportion of the largest facilities required to serve the total demand. Dividing 

the total demand by this expected number of the maximum-capacitated facilities 

yields a maximum capacity average. In order to obtain the maximum capacity for 

each site, this average is multiplied by a uniformly distributed random number in 

[0.75, 1.25]. 

 

The maximum capacities for the facilities less than the highest capacity level are 

assigned according to the following formula: 

 

( ) ( )max max max max
1 1 /il il ili L

v v z v v L l− −= + − −  

 

where z is a uniformly distributed random number in [0.25, 0.75]. This formula 

insures a disproportionate increase in the size of the facilities with the increase of l. 

The minimum production capacity of the first capacity levels is set to 1. The other 

capacity levels are determined as follows: 

 

( )

max
1

min

max
1

1 0.8
1

1 0.2

il

il

il

v with probability

v i I and l
v z with probability

′−

′

′−

 + ′= ∀ ∈ ≠
+

 

 

where z is a uniformly distributed random number in [1, 1.25]. The capacities of the 

warehouses are calculated as follows: 

 

/jw z Jζ=  , 
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where z is a uniformly distributed random number in [1, 1.5] and ζ is the total 

demand factor which is calculated by multiplying the total demand by a constant. We 

take the parameter ζ  constant as “3” in our study which means that on the average 

opening 1/3 of the warehouses is enough for satisfying the overall demand. 

 

The annual fixed cost of establishing the highest capacity level of a plant is 

determined according to the following formula: 

 

max
i L i L
f z vξ=  , 

 

where z is a uniformly distributed random number in [0.75, 1.25] and ξ  is an 

average total cost factor. This factor is selected in order to determine the importance 

of the fixed costs compared to the transportation costs. We take its value as 50, 

reflecting the plant locations having “higher importance” than the transportation 

costs. The annual fixed costs of the other capacity levels are assigned via the 

following formula: 

 

( ) ( )1 1 /il il ili L
f f z f f L l− −= + − −  , 

 

where z is a uniformly distributed random number in [0.25, 0.5]. The variable cost of 

production is assigned by the following formula: 

 

( )
( )

1

max max
1

2 il il

il

il il

f f
e z

l v v

−

−

−
=

−
 

 

where z is a uniformly distributed random number between 0.25 and 0.5 and 

max
0 0 0i if v= = . The scope of the cost function and the 2/l factor insures that on the 

average, the variable cost is declining for higher capacity levels, reflecting the 

economies of scale. 
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The annual fixed cost of opening a warehouse is determined as follows: 

 

1
ˆ

j ig zf=  , 

 

where z is a uniformly distributed random number in [0.375, 0.75] and 1
ˆ
if is the 

average cost of installing the first level capacity for plants.  

 

Our test problem instances are generated according to the defined procedure. In some 

cases, generated values may not be suitable for our problem because of the existence 

of random variables in the procedure. Therefore, at each stage the procedure checks 

the values of the parameters for conformity with the assumptions stated while 

defining the problem environment and adjust the values of the parameters if 

necessary. For example, all fractional values of the parameters are rounded to the 

nearest integer. Besides these randomly generated parameters, there are some 

parameters of the model that have to be determined by us. These parameters are the 

number of the maximum allowed warehouse, maxR ; the initial values of Lagrange 

multipliers, 0 0andα β ; the stepsize multiplier that is used for calculating the stepsize 

in the subgradient optimization procedure, µ ; the allowed number of unsuccessful 

iterations before updating the value of µ . Unfortunately, all these parameters are 

problem specific and an efficient procedure for estimating their best value for the 

problem instance does not exist. Hence, we have decided to determine their values by 

examining the previous researches.  

 

The maximum number of the warehouses allowed can not be a fixed value for each 

problem size and it has to be determined according to the number of possible 

warehouse locations in the model. It must be higher than the minimum number of 

warehouses that have to be opened in order to satisfy the overall demand, minR . We 

have decided its value as max
1

2R J= . It means that at most half of the possible 

warehouse locations can be opened at any instance. 
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The most important issues of the subgradient optimization are determining the initial 

value of the stepsize multiplier, µ , and the procedure of updating the value of µ . 

Crainic et al. (2001) express that the computational experiments show that the setting 

of the initial value of µ  usually makes up a significant portion of the difference 

between obtaining good performances and having the method diverge, never being 

able to improve on the initial estimate. Unfortunately, in the literature we do not find 

a procedure which seems to provide at least reasonable performances on all problem 

classes. However Held et al. (1974) states that taking µ  between 0 and 2 assures the 

geometric convergence to the optimal point. This is the reason why µ  is given 

values ranging from 0 to 2 in the previous researches. In our study, we have decided 

to take the initial value of µ  as 2, considering the results of preliminary testing. 

 

 In the literature, there are a few criteria and procedures for updating the value of µ  

during the heuristic. All of them multiply the value of µ  with a constant number 

between 0 and 1 after a number of consequent unsuccessful iterations in the 

lowerbound procedure up to a certain point. Unsuccessful iteration is an iteration that 

does not change the value of the UB. After reaching a certain point, few researchers 

terminate the overall heuristic procedure, few researchers reset the value of µ  to its 

initial value, and the rest of them just stops multiplying µ  with a constant number. If 

the number of consequent unsuccessful iterations is set too small or no certain point 

is set for the procedure, then the Lagrangean relaxation procedure may converge to a 

far-optimal point because of the very small values of µ .  

 

In our subgradient procedure, we have decided to multiply µ  with 0.5 after 50 

consequent unsuccessful iterations until the value of µ  has become less than or 

equal to 0.1 ( min 0.1µ = ). After this point, we keep iterating the heuristic without 

changing the value of µ . 

 

Initializing the values of Lagrange multipliers is a less important subject in 

subgradient optimization; that is why many of the researchers such as 

Tragantalerngsak et al. (1997, 2000), Pirkul and Jayaraman (1998, 2001), Mazzola 
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and Neebe (1999) and Broek et al. (2006) have not mentioned their own procedures 

of generating the initial Lagrange multipliers generation.   

 

A small part of the researchers such as Gavish (1978), Beasley (1993), Marin and 

Pelegrin (1999), Marin (2007), Bektas and Bulgak (2008) have tried to estimate the 

values of Lagrange multipliers in different ways and started the subgradient 

procedure with these estimated initial Lagrange multipliers. For example, Gavish 

(1978) solved the LP relaxation of the problem, and set the initial Lagrange 

multipliers as the dual variables of the LP relaxation.  

 

The rest of the researchers including Fisher (1981), Jang et al. (2002), Correia and 

Captivo (2003, 2006) and Amiri (2006) preferred to set the initial values of Lagrange 

multipliers to zero, because it is assumed that in the first 50-100 iterations, the values 

of Lagrange multipliers of all the alternatives converge to very close values. For this 

reason, starting with good Lagrange multipliers can be seen as warm start of the 

procedure, but after some iterations usually no difference remains between a warm 

start and a cold start. In our study, we have decided to make a cold start and set the 

values of 0 0andα β  to zero. 

 

After defining the parameters used in the heuristic procedure, we may test our 

solution procedure in several problem sizes to show its efficiency and robustness. 

The parameters defining the problem size are the number of potential plant 

locations, I , the number of potential warehouse locations, J , the number of 

customers, K , and the number of available capacity levels for a plant location , L . 

In our experiments, we prefer to fix the number of available capacity levels to a 

constant value that both preserves the nature of the modular capacitated structure and 

takes less time in computing the optimal solution of the original problem, P. Hence, 

we have decided to make our elaborated runs with three levels of capacity. But in 

order to show the performance of the heuristic, we also make runs with 5 and 10 

capacity levels for three problem sizes only. 
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Table 5.1. Problem Sizes in the Experiments 

 

# of 
Plant 

Locations 

# of 
Warehouse 
Locations 

# of 
Customers 

# of 
Capacity 

Levels 
I  J  K  L  

5 10 20 3 
5 10 20 5 
5 10 20 10 
5 10 30 3 
5 10 40 3 
5 10 50 3 
5 15 40 3 
5 15 50 3 

10 25 50 3 
10 25 75 3 
10 25 100 3 
10 25 200 3 
10 40 100 3 
10 40 200 3 
20 30 100 3 
20 30 100 5 
20 30 100 10 
20 30 200 3 
20 40 100 3 
20 40 200 3 
20 50 100 3 
20 50 200 3 
20 50 500 3 
30 50 100 3 
30 50 200 3 
30 50 500 3 
30 50 500 5 
30 50 500 10 

 

 

Other three parameters I , J  and K  are formed in such a way that a wide range of 

problem sizes is covered. Starting with the small-size problems of 5 potential 

locations, 10 warehouse locations and 20 customers, the larger-scale problems up to 

30 plant locations, 50 warehouse locations and 500 customers are considered. The 

problem sizes that are employed during the experiments can be seen in Table 5.1. For 
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each problem size, we have solved randomly but systemically generated 10 problem 

instances; as a total we have got 22 problem sizes with 3 capacity levels and 3 

problem sizes with 5 and 10 capacity levels. By solving 10 problem instances for 

each set, we have carried out the experiments with 280 problem instances.  

 

5.2 Performance Measures 

 

In evaluating the performance of the developed solution procedure, we use the 

following main performance measures: 

 

1. The following gap ratios are the most important measures for investigating 

the performance of the heuristic: 

 

a. The total gap ratio, %Gap : It is the gap ratio between the upper and lower 

bounds with respect to the lowerbound. %Gap  reveals the quality of the 

overall heuristic procedure. It is calculated as follows: 

 

( )%Gap UB LB LB= −  

 

b. The upperbound gap ratio, %UBGap : It is the gap ratio between the 

upperbound and the optimal solution of the problem with respect to the 

optimal solution. As mentioned before, in the TSMCFLP, the lowerbound 

heuristic may be generating results far from feasibility. Therefore, much falls 

onto the greedy heuristic developed by us. By this ratio, we may examine the 

quality of the primal heuristic procedure. Besides, if we decide to implement 

this solution in real life, then our actual distance from the optimal solution, in 

other words the loss, will be determined by this measure. Therefore it is an 

important performance measure for us. If *P  represents the optimal solution 

of the original problem, P, then the upperbound gap ratio is calculated as 

follows: 
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( )* *%UBGap UB P P= −  

 

c. The lowerbound gap ratio, %LBGap : It is the gap ratio between the 

lowerbound and the optimal solution of the problem with respect to the 

lowerbound of the heuristic. This ratio shows the performances of 

Lagrangean relaxation and subgradient optimization techniques in our 

problem. It is calculated as: 

 

( )*%LBGap P LB LB= −  

 

2. The solution time in central processing unit (CPU) seconds: We have solved 

each problem instance both with the developed heuristic and GAMS with CPLEX 

10.0.1 and compared the solution times of both. This comparison shows the 

performance of the developed heuristic against the best known optimization package, 

CPLEX.  

 

In addition to these main performance measures, we have collected some supportive 

performance measures, for investigating the performance of the developed 

upperbound heuristic procedure. These measures count how many times the 

warehouse greedy heuristic procedure and the plant greedy heuristic procedures are 

needed for. Some other measures count how many times each alternative solution of 

the greedy heuristic gives the best solution. Also there is another measure that counts 

how many times the local feasibility fails in one or more plants. In order to interpret 

their results, we show them in percentages in the average results table.  

 
5.3 Experimental Results 

 

The heuristic solution procedure is coded in GAMS environment. The optimal 

solutions of the problem instances are solved in GAMS with CPLEX 10.0.1. All 

computational studies are conducted on an Intel® Pentium® M 1.7 GHz processor 

with 512 MB RAM under Windows XP operating system.  
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The detailed results of the problem instances are given in Appendix 1 while a 

summary of those results is given in Table 5.2 and Table 5.3 below, where the 

average values of the main performance measures and the average values of the 

supportive performance measures for each problem size are presented, respectively. 

 

In Table 5.2 and 5.3, each row shows the average values of the main and supportive 

performance measures for each problem size. The results are rounded to the nearest 

representable value. 

 

CPLEX 10.0.1 is unable to solve 26 problem instances due to the memory 

limitations. In Table 5.2, the problem sizes that include the problem instances which 

cannot be solved by CPLEX are marked with an asterisk sign (*). In problem size 

30x50x500x10, CLPEX can not solve a problem instance in 10 hours. This problem 

size marked with a dagger sign (†) in Table 5.2 and in Appendix 1 includes the 

problem instance mentioned. In problem size 30x50x500x5 CPLEX is unable to 

solve any of the ten instances thus the average %LBGap  and %UBGap  values of this 

problem size can not be calculated.  

 

In Table 5.3, the “Avg. WHGH” column represents the average of how many times 

the warehouse greedy heuristic procedure is needed for in our heuristic procedure as 

a percentage of the number of the total iterations of the heuristic procedure. For 

example in the first row, for the problem size 5x10x20x3, the value of “Avg. 

WHGH” is 0.25%. It means that the warehouse greedy heuristic is executed for a 

problem in 0.25% of the iterations on the average. We have already mentioned that 

we have solved 10 problem instances for a problem size, and we have made 1000 

iterations in one problem instance, if the first stopping criterion has not been satisfied 

earlier. Therefore, we need to call the warehouse greedy heuristic procedure 

1000*0.25% = 2.5 times on the average for a problem instance and 10*1000*0.25% 

= 25 times in total for the relevant problem size. 

 

The “Avg. POGH” and “Avg. PCGH” columns also show similar performance 

measures. They present the percentage of how many times the plant greedy heuristic 



 
 

108 

procedure is needed for on the average in our heuristic procedure for opening more 

plants and for closing some of the opened ones, respectively. Their values are 

calculated as is the value of “Avg. WHGH”.  

 

 

Table 5.2. Results of the Main Performance Measures in Averages 

 

Plant WarehouseCustomer Capacity 
Level Average Average Average Average Average   

I  J  K  L  %LBGap  %UBGap  %Gap  Heuristic 
CPU (s) 

CPLEX 
CPU (s) 

 

5 10 20 3 1.558 0.340 1.904 3.552 1.985   

5 10 20 5 2.197 0.431 2.635 4.479 1.619   

5 10 20 10 1.975 0.602 2.590 6.524 3.346   

5 10 30 3 3.278 0.226 3.514 4.967 2.482   

5 10 40 3 1.905 0.359 2.271 6.822 2.853   

5 10 50 3 1.664 0.518 2.190 8.920 5.870   

5 15 40 3 1.919 0.388 2.314 8.843 9.246   

5 15 50 3 2.557 0.219 2.781 11.157 11.435   

10 25 50 3 1.575 0.485 2.068 18.021 29.839   

10 25 75 3 2.346 0.593 2.819 27.685 422.153   

10 25 100 3 1.736 0.667 2.413 39.035 166.176   

10 25 200 3 2.036 0.478 2.523 107.965 187.337   

10 40 100 3 1.890 0.564 2.465 57.065 309.656   

10 40 200 3 1.934 0.540 2.483 141.009 376.617   

20 30 100 3 1.033 0.907 1.949 49.249 916.166   

20 30 100 5 0.905 0.916 1.816 56.432 1948.958 * 

20 30 100 10 0.678 0.806 1.490 75.357 3935.654   

20 30 200 3 1.188 0.693 2.053 121.138 1820.632 * 

20 40 100 3 1.022 1.013 2.045 62.855 1510.097   

20 40 200 3 1.083 0.970 2.063 146.647 3690.557   

20 50 100 3 1.163 0.829 1.951 79.778 2011.426 * 

20 50 200 3 1.035 1.016 2.189 177.632 1803.916 * 

20 50 500 3 1.685 0.553 2.247 759.923 4311.758   

30 50 100 3 0.615 0.876 1.457 88.456 2598.602 * 

30 50 200 3 0.720 0.838 1.554 185.776 5890.367 * 

30 50 500 3 1.298 0.934 2.253 834.614 6544.300 * 

30 50 500 5 N/A N/A 1.9036 840.605 21920.083 * 

30 50 500 10 0.674 0.976 1.6047 937.701 22628.724 *† 

Average 1.543 0.657 2.198 172.037 2923.544   
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In Section 4.2.1, we discuss the warehouse and plant greedy heuristics thoroughly. 

As readers may recall, we introduce three different solution alternatives for selecting 

the opened warehouses. First we find the warehouse that is decided to “remain 

closed” in the lowerbound solution and has the lowest opening cost. If its capacity is 

big enough for satisfying the demand shortage, then without evaluating the other 

alternatives, we select this solution as the best alternative; otherwise we select the 

warehouses to be opened in two different ways: Selecting the minimum-cost 

warehouse that is big enough to satisfy the shortage or collecting a set of warehouses 

that has the lowest opening cost until the shortage is satisfied.  

 

The columns “Avg. WHGH 1”, “Avg. WHGH 2” and “Avg. WHGH 3” in Table 5.3 

represent how many times these alternatives are selected as the best alternative on the 

average as a percentage if the warehouse greedy heuristic is required to be executed. 

For example, for the problem size 20x30x100x3, the values of “Avg. WHGH 1”, 

“Avg. WHGH 2” and “Avg. WHGH 3” are 90.011%, 7.250% and 2.738% 

respectively. It means that if we execute the warehouse greedy heuristic 100 times, 

then the first solution alternative is selected as the best alternative 90.011 times, the 

second solution alternative is selected as the best alternative 7.25 times and so on. 

The sum of these three values is approximately 100% as expected because there is no 

other alternative solution if the warehouse greedy heuristic is executed.  

 

Using these three columns and the “Avg. WHGH” column, it is very simple to find 

how many times these alternatives are selected as the best alternative for a specific 

problem size. For example, the percentage of selecting the first alternative as the best 

alternative solution with respect to the total number of iterations of Lagrangean 

heuristic for the problem size 20x30x100x3 is 70.480%*90.011% 63.44%≅ . We 

know that we make 10*1000 = 10,000 iterations for each problem size. Accordingly, 

for the problem size 20x30x100x3, we select the first solution alternative as the best 

solution for 63.44%*10,000 6344=  times. 
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The “Avg. POGH 1”, “Avg. POGH 2”, “Avg. POGH 3”, "Avg. POGH 4” and “Avg. 

PCGH 1”, “Avg. PCGH 2”, “Avg. PCGH 3”, “Avg. PCGH 4” columns represent 

similar measures that are presented in “Avg. WHGH 1”, “Avg. WHGH 2” and “Avg. 

WHGH 3” columns. As explained in Section 4.2.1.2, we have got four different 

solution alternatives both for opening the required capacity levels and for closing the 

excess capacity levels.  The “Avg. POGH 1”, “Avg. POGH 2”, “Avg. POGH 3” and 

"Avg. POGH 4” columns show the average of the selection in percentages of the four 

solution alternatives while opening more plants, also “Avg. POGH 1”, “Avg. POGH 

2”, “Avg. POGH 3” and "Avg. POGH 4” columns show the average of the selection 

in percentages of the four solution alternatives while closing some of the opened 

plants. 

 

The last column, “Avg. LFC”, shows on the average the percentage of how many 

times the plant allocation heuristic yields results in which the production volumes of 

one or more plants are infeasible. For example, for the problem size 5x10x20x3 the 

value of “Avg. LFC” is 4.1%. It means that for the problem size 5x10x20x3, if we 

execute Lagrangean heuristic for 100 iterations, then the results of plant allocation 

heuristic is marked as the “local infeasible” in 4.1 iterations on average and some 

adjustments are made in the capacity levels of the infeasible plants in order to 

generate a feasible solution. It can be seen that for some problem sizes, the value of 

the “Avg. LFC” is greater than 100%. This means that in some iterations, the local 

infeasibility continues after adjusting the capacity levels and re-allocating the 

warehouses. Therefore, the local feasibility check stage has to run again and again 

for some iterations. For example for the problem size 30x50x500x10, the value of 

“Avg. LFC” is 145.11%. This means that the local feasibility check procedure has to 

adjust the capacity levels 1.45 times on the average for an iteration. 

 

It can be seen in Table 5.2 that the solution procedure produces high quality results 

in short times, which makes our proposed heuristic a reasonably well solution 

alternative for the TSMCFLP. The gap percentage between the best feasible solution 

(upperbound) and the Lagrangean dual problem (lowerbound) is employed to be able 

to judge the quality of the solution. The %Gap  values range between 0.438% and 
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11.760%, with an overall average of 2.198% confirming the high quality of the 

developed heuristic.  

 

%UBGap can be treated as the actual gap as it represents the difference between the 

optimal solution and the best feasible solution found, which is the only alternative 

solution that could be implemented in real-life. The %UBGap  values which are 

ranging between 0% and 1.880% with an overall average of 0.657% show that the 

employed allocation heuristic integrated with the developed greedy heuristic and the 

local feasibility check procedure yields very good upperbound solutions. Even in the 

problem instance that has the highest %Gap  among the experiments, the value of 

%UBGap  is 0.540%. This shows even in the problem instances in which subgradient 

optimization cannot converge rapidly, the upperbound procedure is effective and 

efficient. 

 

%LBGap can be employed for measuring the quality of Lagrangean relaxation and 

subgradient optimization. In our study, %LBGap  is ranging between 0.251% and 

11.178% with an overall average of 1.543% which shows that even with the 

existence of some outliers, the lowerbound procedure is efficient on the average.  

 

As it can be seen in Table 5.3, in the first several problem sizes, the average solution 

duration of CPLEX is less than the solution duration of the developed Lagrangean 

heuristic. This is predictable; although the TSMCLP is NP-Hard, the problem 

structure is very small and CPLEX is the most powerful solver in the market, 

especially for the small-sized problems. Besides, the maximum difference for a 

problem size between the average solution duration of CPLEX and the developed 

heuristic is 3.969 seconds, which is negligible. On the other hand, for most of the 

problem sizes, the developed heuristic outperforms CPLEX in terms of the average 

solution duration. On the overall average, the developed heuristic is approximately 

17 times faster than CPLEX.  
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Following is an interesting observation about the solution duration of CPLEX and 

the developed heuristic: the solution durations of the problem instances within a 

specific problem size in CPLEX have major differences. On the other hand, the 

solution durations of the developed heuristic are close to each other within a specific 

problem size. Table 5.4 shows the standard deviation of the solution durations of the 

CPLEX and the developed heuristic. The standard deviation of Lagrangean heuristic 

varies between 0.139 and 12.844 with an average of 2.612 seconds, and the standard 

deviation of CPLEX solution varies between 0.623 and 10294.882 with an average 

of 2319.563 seconds. The reason of this high variance of CPLEX may occur due to 

many different factors that depend on the characteristics of the problem instances. 

The most possible factors according to us are as follows: 

 

• Due to the unique structure of each problem, at some instances CPLEX is 

able to generate good initial solutions; however at some instances CPLEX 

cannot generate good initial solutions.  

 

• CPLEX uses many different heuristics such as relaxation induced 

neighborhood search, feasibility pump heuristic, node heuristic, and apply 

many different cuts such as Gomory fractional cuts, clique cuts, mixed 

integer rounding cuts and so on. For some problem instances, CPLEX is able 

to generate efficient cuts and heuristics for the branch-and-cut tree, but not 

for other problem instances. 

 

High variance in CPLEX solution durations makes the estimation of the optimal 

solution duration impossible, even if many problems having the same problem size 

have been solved previously. On the other hand, the developed heuristic has got low 

variance, which makes the estimation of the heuristic solution duration possible. 

 

Robust design is defined as designing a product so that its functionality varies 

minimally, despite the disturbing factor influences. Our heuristic can solve each 

problem instance that has the same size but distinctive characteristics in close 

solution durations, which shows us the robustness of the developed heuristic. 



 
 
 
 

115 

Table 5.4. The Standard Deviations of the Solution Durations 

 

Plant Warehouse Customer 
Capacity 

Level 
Standard Deviation (σ) 

I  J  K  L  Heuristic CPLEX 

5 10 20 3 0.161 1.187 

5 10 20 5 0.222 0.623 

5 10 20 10 0.305 1.811 

5 10 30 3 0.202 1.192 

5 10 40 3 0.139 1.071 

5 10 50 3 0.333 1.463 

5 15 40 3 0.413 5.415 

5 15 50 3 0.377 5.047 

10 25 50 3 0.476 41.963 

10 25 75 3 0.638 1211.986 

10 25 100 3 0.989 390.181 

10 25 200 3 2.089 414.696 

10 40 100 3 1.225 345.844 

10 40 200 3 2.831 460.087 

20 30 100 3 0.897 1909.731 

20 30 100 5 1.607 2030.548 

20 30 100 10 2.629 4468.668 

20 30 200 3 2.470 2718.835 

20 40 100 3 1.496 2038.426 

20 40 200 3 1.542 5852.541 

20 50 100 3 1.136 3670.370 

20 50 200 3 4.030 3314.790 

20 50 500 3 11.024 2487.193 

30 50 100 3 2.588 3618.867 

30 50 200 3 4.215 8015.969 

30 50 500 3 8.922 5599.963 

30 50 500 5 12.844 5768.042 

30 50 500 10 7.324 10294.882 

Average 2.612 2319.563 
 

 

In the upperbound procedure, the warehouse greedy heuristic procedure is required 

to be executed varying between 0.25% and 96.82% with an average of 53.457% 

iterations of all the iterations. Its average is higher than the plant heuristic requires, 

which may cause doubts about the strength of the constraint (20). However, if we 
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look at the values of “Avg. WHGH 1”, “Avg. WHGH 2” and “Avg. WHGH 3”, we 

can see that if the warehouse greedy heuristic is executed, the first solution 

alternative is selected as the 89.622 % on the average. The first solution alternative 

of all greedy heuristics can be selected if and only if the results of the lowerbound 

procedure are very close to the feasible region. In the execution of the plant opening 

heuristic and plant closing heuristic, the first alternative is selected as the best 

alternative only 17.787% and 14.795% on the average, respectively. These results 

show that the result of the lowerbound solution procedure of the first stage is not 

close to the feasible region due to the lack of a strong valid inequality. 

 

In the first and the second solution alternatives of all the three greedy heuristic 

procedures, only one facility is opened whereas in the third and fourth solution 

alternatives, at least two or more facilities are opened for obtaining an initial feasible 

solution for the allocation heuristic. Table 5.3 shows that opening only one additional 

warehouse is selected as the best alternative in 96.075% of the warehouse allocation 

heuristic executions due to the reason explained in the previous paragraph. But in the 

plant opening and closing greedy heuristics; opening or closing more than one 

capacity level is selected as the best solution alternative compared to opening or 

closing only one capacity level.  

 

In the following section we elaborate on the performances of the developed heuristic 

and analyze the effects of the number of possible plant locations and warehouses, the 

number of customers and the number of available capacity levels on the performance 

measures. 

 

5.4 Analysis for Performance Measures 

 

In this section, the effect of the problem size on the main and supportive performance 

measures is studied. The size of the problem is determined by the number of the 

potential plant and warehouse locations, the number of customers and the capacity 

levels. In the following sections, the effects of these problem parameters are 

analyzed separately. But it is impractical to compare each parameter to all of the 
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performance measures, because even when the comparisons show a trend or a 

relationship between a parameter and a performance measure, this relationship may 

not be a causal relationship. Therefore, in order to distinguish the causal effects from 

the chance effects, for each parameter we select the performance measures which 

might be causally affected by the relevant parameter. 

 

For example, if we compare the situations where all the problem parameters are the 

same except for a specific parameter and if in all the comparisons, the value of 

the %Gap seems to increase as the number of the specific parameter increases, we 

may conclude that there is a relationship between the specific parameter and 

the %Gap  value. But this conclusion is not true. Previous researches show that the 

relationship between the problem size and the value of %Gap  cannot be generalized 

as a causal effect. For some of the problem instances, %Gap  value may/may not 

increase or decrease with the increase of the parameter. This can be interpreted in 

accordance with the characteristics of the problem instances where input parameters 

result in better approximations in the subgradient optimization that leads us to better 

gaps. Even if there appears to be a trend in all situations, it is a chance effect. The 

problem parameters and their effects on the selected performance measures are 

discussed in the following section. 

 

5.4.1 Effects of the Number of Potential Plant Locations on the Performance 

Measures 

 

In this section, we concentrate on the effect of the plant sites on the performance 

measures. We have already mentioned that %Gap , %LBGap  and %UBGap  are not 

causally affected by any of these parameters. The “Avg. WHGH” cannot be affected 

either, because this measure is a procedure about warehouses. Hence, we select the 

solution duration, the “Avg. POGH”, “Avg. PCGH” and “Avg. LFC” performance 

measures as the relevant measures, i.e. the measures that may be affected by the 

increase in the number of plant locations.  
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Among the available problem sizes, we have considered the sizes where the only 

change is caused by the number of potential plant locations, and determined five 

such instances and presented them with the results of the relevant performance 

measures in the comparison tables in Table 5.5. 

 

 

Table 5.5. Effects of the Number of Potential Plant Locations on the Performance 

Measures 

 

I ) 

Warehouse Customer 
Capacity  

Level 
Plant Average Average Average Average 

J  K  L  I  POGH PCGH LFC 
Heuristic 

CPU  
    (%) (%) (%) (s) 

10 59.67 1.460 9.8 57.065 
40 100 3 

20 64.32 1.150 7.8 62.855 

Increase (%) 7.793 -21.233 -20.306 10.146 
II ) 

Warehouse Customer 
Capacity  

Level 
Plant Average Average Average Average 

J  K  L  I  POGH PCGH LFC 
Heuristic 

CPU  
    (%) (%) (%) (s) 

10 61.72 1.780 16.1 61.72 
40 200 3 

20 55.58 1.750 11.2 55.58 
Increase (%) -9.948 -1.685 -30.031 3.998 

III ) 

Warehouse Customer 
Capacity  

Level 
Plant Average Average Average Average 

J  K  L  I  POGH PCGH LFC 
Heuristic 

CPU  
    (%) (%) (%) (s) 

20 57.20 1.520 10.1 79.778 
50 100 3 

30 58.79 1.430 12.1 88.456 

Increase (%) 2.780 -5.921 20.437 10.878 
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Table 5.5. Cont’d 

IV ) 

Warehouse Customer 
Capacity  

Level 
Plant Average Average Average Average 

J  K  L  I  POGH PCGH LFC 
Heuristic 

CPU 
    (%) (%) (%) (s) 

20 59.32 1.490 16.9 177.632 
50 200 3 

30 61.74 1.890 16.5 185.776 

Increase (%) 4.080 26.846 -2.363 4.585 

V ) 

Warehouse Customer 
Capacity  

Level 
Plant Average Average Average Average 

J  K  L  I  POGH PCGH LFC 
Heuristic 

CPU 
    (%) (%) (%) (s) 

20 45.46 2.360 30.8 759.923 
50 500 3 

30 28.81 2.010 43.5 789.451 

Increase (%) -36.626 -14.831 41.423 3.886 
 

 

It could easily be observed that the increase in the number of potential plant locations 

also increases the size of the problem and the average solution durations for all five 

comparison tables. The % of increases in the comparison table I and III, where the 

number of customers is equal to 100, are very close to each other and approximately 

10%. In the tables II, IV and V the % of increase is approximately 4%. These tables 

show that the effect of the number of plant locations is very low in terms of solution 

duration and it is getting lower in percentage when the number of customers 

increases. This proves a negative interaction effect between the number of plant 

locations and the number of customers, which decreases the solution duration 

increase in percentage. Also the percentage remains almost unchanged in the tables I 

and III and the tables II and IV, which shows that there is no strong interaction effect 

between the number of plant locations and the number of warehouse locations. 

 

With the increase of the number of possible plant locations, the “Avg. POGH”, 

“Avg. PCGH” and “Avg. LFC” values increase in some tables and decrease in the 

others. Hence, we can state that the number of possible plant locations has no effect 

on these measures. 
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5.4.2 Effects of the Number of Potential Warehouse Locations on the 

Performance Measures 

 

In this section, we consider the situations of problem instances, where the only 

change is in the number of potential warehouse locations, and all other parameters 

that determine the problem size remain the same. We select the solution duration, 

“Avg. WHGH” and “Avg. LFC” as the performance factors that may affected by the 

change in the number of potential warehouse locations. We have found out ten such 

situations presented in six comparison tables below in Table 5.6. 

 

 

Table 5.6. Effects of the Number of Potential Warehouse Locations on the 

Performance Measures 

 

I ) 

Plant Customers 
Capacity 

Level 
Warehouse Average Average Average 

I  K  L  J  WHGH LFC 
Heuristic 

CPU 
    (%) (%) (s) 

10 4.50 2.3 6.822 
5 40 3 

15 8.32 3.8 8.843 

Increase (%) 84.889 63.090 29.622 

II ) 

Plant Customers 
Capacity 

Level 
Warehouse Average Average Average 

I  K  L  J  WHGH LFC 
Heuristic 

CPU 
    (%) (%) (s) 

10 8.77 4.1 8.920 
5 50 3 

15 44.26 2.5 11.157 

Increase (%) 404.675 -39.709 25.087 
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Table 5.6. Cont’d 

III ) 

Plant Customers 
Capacity 

Level 
Warehouse Average Average Average 

I  K  L  J  WHGH LFC 
Heuristic 

CPU 
    (%) (%) (s) 

25 68.15 4.9 39.035 
10 100 3 

40 96.82 9.8 57.065 

Increase (%) 42.069 98.381 46.190 

IV ) 

Plant Customers 
Capacity 

Level 
Warehouse Average Average Average 

I  K  L  J  WHGH LFC 
Heuristic 

CPU 
    (%) (%) (s) 

25 37.51 14.0 107.965 
10 200 3 

40 93.75 16.1 141.009 

Increase (%) 149.933 15.054 30.606 

V ) 

Plant Customers 
Capacity  

Level 
Warehouse Average Average Average 

I  K  L  J  WHGH LFC 
Heuristic 

CPU 
    (%) (%) (s) 

30 70.480 12.8 49.249 

40 92.340 7.8 62.855 20 100 3 

50 85.720 10.1 79.778 

1st Increase (%) 31.016 -38.745 27.626 

2nd Increase (%) -7.169 29.065 26.924 

VI ) 

Plant Customers 
Capacity  

Level 
Warehouse Average Average Average 

I  K  L  J  WHGH LFC 
Heuristic 

CPU 
    (%) (%) (s) 

30 65.130 18.1 121.138 

40 78.370 11.2 146.647 20 200 3 

50 86.310 16.9 177.632 

1st Increase (%) 20.329 -37.818 21.057 

2nd Increase (%) 10.131 50.757 21.129 
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In all tables it can be seen that the solution duration of the developed heuristic 

increases in all instances drastically when the number of potential warehouse 

locations increases. The increment percentage varies between 21.057% and 46.190%, 

which shows that the effect of the number of possible warehouse locations is very 

strong in solution duration even when the accrual in the number of warehouse 

locations is so small. Table V and VI show that the increases in percentages are 

almost the same for the same increment in the number of potential warehouse 

locations. Depending on this observation, we can state that the effect of the number 

of potential warehouse locations may be a linear function, not nonlinear. If we 

compare the tables V and VI, we can see that the escalation in the percentage of the 

overall solution duration decreases when the number of customers increases. This 

might be a sign of a negative interaction effect of the number of potential warehouse 

locations and the number of customers on the solution duration.  

 

The value of “Avg. WHGH” increases in nine of the ten instances, however in one 

instance in the comparison table V, its value decreases by 7.169% when the number 

of warehouse locations increases from 40 to 50. This might be an outlier, but due to 

this instance we cannot indicate that there is a relationship between the number of 

potential warehouse locations and the value of “Avg. WHGH”.  When the number of 

potential warehouse locations increases, the value of “Avg. LFC” increases in seven 

instances and decreases in three instances. Due to these observations, we can state 

that there is no effect of the number of potential warehouse locations on the value of 

“Avg. LFC”. 

 

5.4.3 Effects of the Number of Customers on the Performance Measures 

 

In this section, the effect of the change in the number of customers on the selected 

performance measures is considered. We have considered all the performance 

measures and decided to seek a relationship between the number of customers and 

the solution duration. Because, bearing in mind our solution procedure, only the 

solution duration may be affected by the number of customers. Among the available 

problem instances, fourteen situations, in which the difference is only in the number 
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of customers and where all the other parameters are the same, are found and 

presented in eight comparison tables in Table 5.7 

  

 

Table 5.7. Effects of the Number of Customers on the Performance Measures 

 

I ) 
Plant Warehouse Capacity Level Customer Average 

I  J  L  K  Heuristic 
CPU (s) 

20 3.552 

30 4.967 

40 6.822 
5 10 3 

50 8.920 

1st Increase (%) 39.832 

2nd Increase (%) 37.344 

3rd Increase (%) 30.746 

II ) 
Plant Warehouse Capacity Level Customer Average 

I  J  L  K  Heuristic 
CPU (s) 

40 8.843 
5 15 3 

50 11.157 

Increase (%) 26.172 

III ) 
Plant Warehouse Capacity Level Customer Average 

I  J  L  K  Heuristic 
CPU 

50 18.021 

75 27.685 

100 39.035 
10 25 3 

200 107.965 

1st Increase (%) 53.625 

2nd Increase (%) 40.998 

3rd Increase (%) 176.586 
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Table 5.7. Cont’d 

IV ) 
Plant Warehouse Capacity Level Customer Average 

I  J  L  K  Heuristic 
CPU (s) 

100 57.065 
10 40 3 

200 141.009 

Increase (%) 147.101 

V ) 
Plant Warehouse Capacity Level Customer Average 

I  J  L  K  Heuristic 
CPU (s) 

100 49.249 
20 30 3 

200 121.138 

Increase (%) 145.972 

VI ) 
Plant Warehouse Capacity Level Customer Average 

I  J  L  K  Heuristic 
CPU (s) 

100 62.855 
20 40 3 

200 146.647 

Increase (%) 133.311 

VII ) 
Plant Warehouse Capacity Level Customer Average 

I  J  L  K  Heuristic 
CPU (s) 

100 79.778 

200 177.632 20 50 3 

500 759.923 

1st Increase (%) 122.659 

2nd Increase (%) 327.806 

VIII ) 
Plant Warehouse Capacity Level Customer Average 

I  J  L  K  Heuristic 
CPU (s) 

100 88.456 

200 185.776 30 50 3 

500 789.451 
1st Increase (%) 110.021 

2nd Increase (%) 324.947 
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It can be observed that in all of the situations the average solution duration increases 

as the number of customers increases. In some situations such as the one in the 

comparison tables I and II, the increase in the number of customers is small, so is the 

increase in the average solution duration. In the instances such as the ones in the 

comparison tables IV, V, VI, VII and VIII, the average solution duration increases 

significantly due to the high increment in the number of customers. The increase 

ratios in Table 5.7 show that the number of customers has a significant effect on the 

solution duration.  

 

If we compare the comparison tables I and II, the tables III and IV and the tables V, 

VI and VII, we can see that the increment in the number of customers and the other 

fixed parameters are the same except for the number of potential warehouse 

locations. In all of these comparisons tables, the increase percentage of the average 

solution duration decreases. For example in the comparison table I, the increase 

percentage, when the number of customers increases from 40 to 50, is 30.746%. 

However, in the comparison table II, where the increment amount in the number of 

customers and all parameters have values similar to the values in the comparison 

table I, except for the number of possible warehouse locations, the increase 

percentage decreases compared to the increase percentage in the comparison table I 

and becomes 26.172%. The decrement in the increase percentage may be a sign of 

the existence of a negative interaction effect between the number of customers and 

the number of potential warehouse locations. Similarly, if we compare the increment 

percentages of the comparison tables IV and VI and the tables VII and VIII 

separately, we can observe that when the number of possible plant locations 

increases, the increment percentages decrease. But this time this decrement is not as 

significant as it is in the previous case. Still there might be a very weak interaction 

effect between the number of customers and the number of possible plant locations in 

the increase percentage of the solution duration. 
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5.4.4 Effects of the Number of Available Capacity Levels on Performance 

Measures 

 

In this section, we consider the effect of increase in the number of available capacity 

levels on the relevant performance measures. As it is in the effect of potential plant 

locations section, we consider the solution duration, “Avg. POGH”, “Avg. PCGH” 

and “Avg. LFC” as the relevant measures that might be affected by the increase of 

the number of plant locations.  

 

We find six situations where the only difference in the parameters is the number of 

available capacity levels, which are presented in three comparison tables in Table 5.8 

below. 

 

 

Table 5.8. Effects of the Number of Available Capacity Levels on Performance 
Measures 

 

I ) 

Plant Warehouse Customer 
Capacity  

Level Average Average Average Average 

I  J  K  L  POGH PCGH LFC 
LH 

CPU  
    (%) (%) (%) (s) 

3 26.80 1.76 4.10 3.552 

5 51.47 8.05 12.30 4.479 5 10 20 

10 47.73 9.25 20.55 6.524 

1st Increase (%) 92.052 357.386 200.000 26.099 

2nd Increase (%) -7.266 14.907 67.073 45.657 

II ) 

Plant Warehouse Customer 
Capacity  

Level Average Average Average Average 

I  J  K  L  POGH PCGH LFC 
LH 

CPU  
    (%) (%) (%) (s) 

3 66.90 1.74 12.75 49.249 

5 49.20 2.78 20.58 56.432 20 30 100 

10 49.25 5.08 37.52 75.357 

1st Increase (%) -26.457 59.770 61.412 14.586 

2nd Increase (%) 0.102 82.734 82.313 33.536 
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Table 5.8. Cont’d 

 

III ) 

Plant Warehouse Customer 
Capacity  

Level Average Average Average Average 

I  J  K  L  POGH PCGH LFC 
LH 

CPU  
    (%) (%) (%) (s) 

3 28.81 2.01 43.53 789.451 
5 14.39 6.02 93.42 840.605 30 50 500 

10 12.64 59.11 145.11 937.701 

1st Increase (%) -50.052 199.502 114.611 6.480 

2nd Increase (%) -12.161 881.894 55.331 11.551 
 

 

In all six situations in three comparison tables, it can be observed that the solution 

duration increases when the number of available capacity level increases. Even in the 

small amount of increases in the number of available capacity levels, the increase in 

the solution duration is quite visible. This means that the number of available 

capacity levels might have a causal effect on the solution duration of the developed 

heuristic.  

 

The increase percentages of the “Avg. POGH” values are negative in four of the six 

situations; however in the other two situations the increase percentage is positive, 

which shows us that the number of available capacity levels has no effect on the 

“Avg. POGH”. On the other hand, the value of “Avg. PCGH” increases on the 

increase of the number of available capacity levels in all situations. This may be a 

chance effect because we cannot find any relationship between the number of 

available capacity levels and the value of “Avg. POGH” which is a similar measure 

to “Avg. PCGH”. However, the number of available capacity levels might have a 

causal effect on “Avg. PCGH”, the underlying reason of which cannot be interpreted 

at first glance. 

 

In all situations, the value of the performance measure “Avg. LFC” increases on the 

increment of the number of available capacity levels. This trend shows that there 

might be a cause and effect relationship between the number of available capacity 



 
 
 
 

128 

levels and the performance measure “Avg. LFC”. This relationship can be explained 

in this manner: The increment in the number of available capacity levels decreases 

the production volume of each capacity level. Tight minimum and maximum 

production capacities increase the possibility of generating infeasible plants.  
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CHAPTER 6 

6. CONCLUSION AND FURTHER RESEARCH 

 

 

 

6.1 Conclusion 

 

In this study, we have dealt with the two-stage, modular capacitated facility location 

problem. Our aim is to determine the locations and the capacities of plants and 

warehouses, and the pattern of the distribution network from the plants to customers 

via the warehouses, with the least total cost of opening and operating the logistics 

network. We model the problem as a mixed integer linear program and propose a 

heuristic solution based on the Lagrangean relaxation. We use the subgradient 

optimization algorithm to update the multipliers in the search of better solutions to 

obtain strong lowerbounds. In order to find feasible solutions, we have employed an 

allocation heuristic which uses the solutions of the lowerbound. However, 

lowerbound solutions do not always have to be feasible for the original problem. 

Therefore, we have developed a greedy heuristic in order to transform the infeasible 

lowerbound solutions into initial feasible solutions for the allocation heuristic. 

 

The results of our computational study have revealed that the overall heuristic 

solution procedure yields reasonably good solutions. The employed subgradient 

optimization method is successful to find good multipliers, which takes us to tight-

gap solutions. By using the Lagrangean relaxation method integrated with the 

subgradient optimization, we could succeed to solve a NP-hard mixed integer 

problem complicated with many binary variables. By exploiting the problem 

structure after relaxing a set of constraints, we are able solve the mentioned NP-hard 
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problem without executing any commercial solver or external heuristic procedure.  

We just break the relaxed problem into two main subproblems, and then each main 

subproblem into many easily solvable subproblems. The solution of these 

subproblems can almost be obtained by inspection, which reduces the solution time 

drastically. By this way, the developed heuristic could solve the problems 

approximately 17 times faster on the average compared to CPLEX. The contributions 

of this study to the logistics literature are as follows: 

 

• We have extended the modular capacitated facility location problem into two-

stage by adding capacitated warehouses into the problem. To the best of our 

knowledge, this logistic system environment has never been studied before. 

For this not yet studied problem, we have developed an efficient Lagrangean 

relaxation based heuristic approach. 

 

• We have coded the developed heuristic procedure using GAMS environment. 

Previous researchers have used GAMS frequently for solving the optimal 

problem. However as far as we know, GAMS has never been used for solving 

such complex procedure. Even many researchers are not aware of the fact that 

GAMS is an alternative for developing a heuristic. By using GAMS in our 

thesis, we also show that GAMS is an effective programming language as 

well.  

 

• We have developed a greedy heuristic in order to generate initial solutions for 

the allocation heuristic. In the uncapacitated facility location problem, the 

result of the lowerbound is an initial solution for the upperbound by nature. 

No additional effort is needed in this problem type. In the capacitated facility 

location problem, strong valid inequalities can be attached to the model 

easily. Most of the time, these valid inequalities remove the necessity of a 

good initialization procedure. That is why the procedure of generating an 

initial solution for the upperbound heuristic seemed unworthy to be 

mentioned in the research. But in the modular capacitated facility location 

problem, the initialization procedure is more important, because there are no 
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strong valid inequalities that can be used for this purpose. Therefore, in our 

study, we have given more emphasis to the initialization procedure for the 

first time and explained the developed procedure in details. 

 

• We have introduced a local feasibility check stage after the allocation 

heuristic that tests the feasibility of each plant separately, and if necessary, re-

solves the problem after adjusting the capacity levels. Previous researches 

have either marked the infeasible iteration and proceeded to the next iteration 

or developed an interchange heuristic which tries to generate feasible results 

without adjusting the capacity levels. Our experiments show that the 

allocation heuristic generates infeasible solutions ranging from 2.5% to 

43.5% with the average of 12.746%. Therefore, the developed procedure is 

useful for generating more feasible solutions and strengthening the 

upperbound solution. 

 

6.2 Further Research 

 

Our study can be extended in two main directions: The structural extension and the 

conceptual extension. As for the structural extension, some of the structural 

properties of the problem may be changed without changing the assumptions of the 

presented model. In this direction, the problem addressed remains the same, because 

no assumptions are changed. As for the conceptual extension, some of the 

assumptions of the problem may be re-defined in order to develop a new problem 

type. After making conceptual extensions, also a structural extension may be 

required. 

 

6.2.1 Structural Extensions 

 

The possible structural extension of the problem is as follows: 

 

• In order to strengthen the lowerbound, a different and stronger set of valid 

inequalities may be attached each of the main subproblems instead of the 
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constraints (20) and (21). These new set of valid inequalities guarantees that 

the total maximum capacity of the opened facilities/levels is greater than the 

overall demand and the total minimum capacity of the opened facilities/levels 

is less than the overall demand. However, as Cornuejols et al. (1991) state, 

adding these valid inequalities makes the relaxed problem strongly NP-Hard 

even for the capacitated case. Therefore, in order to solve our two strongly 

NP-Hard main subproblems, a new solution procedure has to be employed or 

developed. 

 

• In the allocation heuristic, we have to omit the minimum supply constraints 

of the facilities, because in the literature as far as we know, there has not been 

any heuristic which takes the minimum supply constraints into account. An 

efficient heuristic that also uses the minimum flow constraints in the 

allocation heuristic might be proposed. 

 

• Our allocation heuristic consists of two stages: the warehouse allocation 

heuristic and the plant allocation heuristic. Solving these two stages 

separately worsens the solution of the upperbound, since this heuristic is not 

able to take into account the interactions between the stages. Therefore, a new 

allocation heuristic that solves the two separate stages simultaneously might 

be developed. 

 

• We employ an allocation heuristic integrated with a greedy heuristic. In order 

to solve this allocation problem more efficiently, a meta-heuristic method 

might be developed. The efficiency of the meta-heuristics like the tabu 

search, genetic algorithms and hybrid algorithms are well proven in the 

literature. The developed meta-heuristic may have two stages: the 

initialization stage and the allocation stage as it is in our primal heuristic, or 

may have only one stage that makes the input feasible and allocates the 

customers to plants and warehouses simultaneously. 
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• We formulate the problem with a mixed integer linear programming model 

which is proved by Correia and Captivo (2003) as the best model with respect 

to %Gap  and solution time. Other models can be extended to the two-stage 

environment in order to observe their performances. Also a four-indexed 

model can be developed to decrease the size of the mixed integer model. 

 

• We find reasonably well upper and lowerbounds. The incorporation of those 

bounds to an exact solution procedure like the branch-and-bound can be an 

interesting research extension. 

 

• In the second stage of our study, we relax the demand satisfaction constraint 

set. Other constraints may be relaxed or decomposed. Even though relaxing 

different constraints may yield better %Gap  values, the computational 

burden will increase drastically as they are NP-Hard.  

 

6.2.2 Conceptual Extensions 

 

There are many conceptual extensions of the problem, because there are various 

assumptions in the model each of which can be changed in many different ways. The 

best possible directions are as follows: 

 

• In our study, the warehouses are capacitated. They can be extended to a 

modular capacitated structure. In this case, changing the proposed solution 

methodology is not required, but the size of the problem will be increases 

polynomially with a degree of the number of the capacity levels of the 

warehouses. Most probably, this will increase the solution time and worsen 

the value of %Gap . 

 

• In our study, there is only one product which can also be assumed as a 

somehow aggregated product of two or more different products. Our problem 

can easily be extended to a multi-product case. But in this case, the specially 

structured knapsack problems, which are mentioned in Section 4.1.2.1 and 
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4.1.2.2, will be NP-Hard. In order to solve these NP-Hard problems, an 

efficient external knapsack heuristic as presented in the study of Martello and 

Toth (1990) may be employed in the heuristic procedure. 

 

• In our study, multiple sourcing is allowed in each stage. Single-sourcing 

constraints may be added into the first or the second stage or both. In this 

case, the transportation variables of the single-sourced stage have to be 

replaced with some binary variables. This also makes the knapsack problems 

that are mentioned in the previous paragraph harder to solve. The solution 

methodology explained above can also be used in this case. 

 

• In our study, all of the facilities are established simultaneously. Instead of 

that, the problem can be formulated as a multi-period problem. In this case, 

also the opening dates of each facility could be decided on in a given time 

period. 

 

• We have assumed that all of the input parameters like demands and costs are 

deterministic. We may define some of these input parameters as uncertain 

parameters with a given probability density function and formulate the 

problem as a two-stage stochastic programming model with recourse.  
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