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ABSTRACT 

ACOUSTIC WAVE ANALYSIS USING DIFFERENT WAVE 
PROPAGATION MODELS 

 
 
 
 

Yıldırım, Baran 
M.Sc., Department of Engineering Science 

Supervisor: Prof.Dr.Y.Cevdet Akgöz 
 
 

May 2008, 50 pages 
 

 

 

 

In this study in order to simulate the acoustic waves, Ray Theory and Normal 

Mode models are used. These methods are analyzed using MATLAB simulation 

tool; differences between two models are examined and a region with a known 

bottom profile and sound velocity profiles is investigated. The Ray Theory is used 

in acoustic systems which is the one of the applications of wave modeling. Ray 

theory is solved with standard Ordinary Differential Equation solvers and normal 

mode with finite element method. Different bottom profiles and sound velocity 

profiles previously taken are interpolated to form an environment and examined 

in the case study.   
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ÖZ 

AKUSTĐK DALGA DENKLEMLER ĐNĐN DEĞĐŞĐK YAYILMA 
METODLARI KULLANILARAK ANAL ĐZĐ 

 
 
 
 

Yıldırım, Baran 
Yüksek Lisans, Mühendislik Bilimleri Bölümü 

Tez danışmanı: Prof.Dr.Y.Cevdet Akgöz 
 
 

Mayıs 2008, 50 sayfa 
 

 

 

 

Bu çalışmada akustik dalga modelleme yöntemlerinden ışın teoremi ve normal 

mod yöntemi kullanılmıştır. Bu metodlar MATLAB aracılığıyla çözülmüş farkları 

incelenmiş ve dip profilleri belli olan bir bölgenin akustik incelemesi yapılmıştır. 

Işın teoremi, akustik uygulama alanlarından biri olan sonar sistemlerinde 

kullanılmıştır. Işın teoremi standart difransiyel denklem çözücüleri ile (Runga 

Kutta), Normal Mod sonlu elemanlar yöntemleri ile çözülmüştür. Daha önceden 

alınmış dip profileri ve ses hız profılleri interpolasyon yöntemi ile şekillendirilip 

değişik analiz ortamları oluşturulmuş ve durum çalışmasında incelenmiştir.  

 

 

 

 

Anahtar Kelimeler : Işın teoremi, Normal Mod, Sonar Sistemleri, Runga Kutta, 

Sonlu Elemanlar 
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CHAPTER 1 

INTRODUCTION 

1.1 HISTORICAL BACKGROUND 

Acoustics is primarily a matter of communication. The phenomenon of speaking 

is based on acoustic waves and it has been the base of early human 

communication. Recently, the introduction of Electromagnetic (EM) Waves has 

been a great evolution in human communication systems. However, EM waves 

cannot propagate much through the sea medium, and acoustic waves is still the 

most efficient way to transmit information through this medium. Therefore, 

underwater acoustics should be studied in detail. 

The first acoustic studies started with Pythagoras[3].He developed the theory of 

the musical scale in terms of a device called a monochord. He recognized that the 

lengths of these strings were inversely proportional to the frequency of sound 

generated when plucked. Galileo, an Italian astronomer and physicist, was the 

greatest contributor to our understanding of sound. He demonstrated that the 

frequency of sound waves determined the pitch. This was done by scraping a 

chisel across a brass plate producing a screech. Galileo then related the spacing of 

the grooves induced by the chisel to the pitch of the screech. Leonardo DaVinci 

discovered that sound travels in waves. In 17th century, Marin Mersenne was the 

first measured the speed of sound in air, Robert Boyle discovered that sound 

waves must travel in a medium and Sir Isaac Newton formulated a relationship 

between the speed of sound in a medium and the density and compressibility in a 

medium.   
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Impressive lists of physicists and mathematicians from Galileo, Newton to 

Rayleigh, and beyond have made major contributions to the theory of acoustics in 

gases, liquids, and solids. For example, Euler’s and Lagrange’s ideas on sound 

propagation were studied by D’Alembert[3]. He was the first to write down the 

partial differential equation describing the motion of a vibrating string which is 

now referred to as the wave equation. He developed a method to solve this type of 

equation: separation of variables. Newton is normally credited with the first 

theoretical attempt to describe sound propagation in a fluid. The development of 

acoustics theory has followed a different historical path than optics and 

electromagnetic theory. While there has been a long running battle in optics 

between ray and wave theory, acoustics originally developed with wave and 

vibration concepts as far back as ancient Greek times. For example, musical 

sound is the result of air motion generated by a vibrating musical instrument. This 

sound is propagated in an analogous manner to water surface waves which 

propagate disturbances (signals), but does not propagate matter to long distances. 

The bending of sound around corners is then easily understood in the context of 

diffraction in the water surface wave analogy.  

Analytical investigations of sound propagation in an inhomogeneneous medium 

are usually based on normal mode theory, the parabolic approximation, or ray 

theory. Each theory has its strengths and weaknesses. In normal mode theory the 

acoustic wave equation is solved explicitly. A complete solution in normal modes 

is often difficult. Nevertheless, valuable results have been obtained (Chunchuzov 

(1985), Zorumski and Willshire (1986)) but, the application of normal mode 

theory to atmospheric noise propagation problems depends on being in the far 

field, so it cannot be used to study data near the source. Although the parabolic 

approximation is used in ocean acoustics with good results, its use in atmospheric 

acoustics is relatively unknown. However, White and Gilbert (1986), using the 

parabolic approximation, also obtained good agreement between theory and 
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Willshire’s 1985 data at long ranges. Again, however, predictions for near-source 

ranges were in question. As the normal mode theory is very complicated and 

difficult to interpret, ray theory is often employed as an alternative or as a first 

approximation to describing the sound field. Ray theory has the advantages of 

being easy to use and of providing a simple visualization of the sound field. As a 

result, in underwater acoustics, in which the medium is inhomogeneous and 

bounded by complicated interfaces, ray theory has historically proved to be an 

indispensable tool for understanding and studying sound propagation. However, 

because it is a high frequency approximation of the wave equation, ray theory 

also has limits of applicability.  

1.2 SCOPE OF THE THESIS 

The thesis is about sound in underwater, 2-D Ray Theory and Normal Mode 

theory are examined. After some comparisons, Ray Theory is used during 

modeling. Different types of sound speed profiles and bottom profiles are 

discussed during the case study.  

This is an introductory study for acoustics, the conventional models are used. The 

acoustic wave modeling of a specific region is required before the settlements of 

acoustic sensors, to find the right places of this settlement the modeling of this 

region should be done.  

1.3 SUMMARY OF THE THESIS 

The thesis is composed of 4 chapters.  

In Chapter 1, an introduction is given. Starting from the necessity of acoustic 

studies, the summary of acoustic studies is explained also the development of the 
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wave models is introduced. 

Chapter 2 is started with some basic definitions for acoustic waves, then a brief 

explanation of acoustic wave models and mathematical formulations of the ray 

theory are given. Ray theory section is finalized with ray theory simulations. The 

same flowing is followed for the Normal Mode. Thus; mathematical formulations 

and simulations are given for the Normal Mode. This chapter is finalized with 

discussion of the two models. 

In Chapter 3 a case study is analyzed. Starting with sonar systems explanation the 

assumptions and simulations are shown, tied up with results. 

In the last chapter the study is finalized by summarizing the basic conclusions of 

the work and the recommendations for future studies. 
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CHAPTER 2 

DEFINITIONS AND SIMULATIONS 

2.1 PHYSICS BEHIND THE ACOUSTICS 

The variables; displacement, density and the pressure should be identified to 

formulate the theory of the propagation of acoustic waves: 

 

Fig.2.1 One-dimensional geometry for wave motion. [3] 

The acoustic waves are longitudinal waves. In order to drive the acoustic wave 

displacement the pressure term should be defined which is actually a function of 

density P, such as f(ρ).  
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In Fig. 2.1, x is the distance in the direction of wave propagation, P(x) is the 

pressure ξ�x 	 ∆x , t� is the change in the volume. In this study linear acoustics is 

considered, illustrated in the figure volume is linear and motion along the x axis is 

considered. Starting from the conservation of mass and using the Newton 2nd Law 

the acoustic wave equation in terms of displacement is found as  

∂�ξ∂�t � � Bρ�� ∂�ξ∂�x � 0 
(2.1) 

where ξ is the change in the volume, t is the time and B � ρ�∂P/ ∂ρ�  is the bulk 

modulus which is the complement of the medium compressibility. From Eqn. 2.1 

the sound speed is  

c � � Bρ� � ��∂P∂ρ�� 
(2.2) 

This means, the sound speed or wave speed is a property of the medium, is 

independent of the strength or amplitude of the acoustic wave. 

The actual value of sound speed emerges not only arises from Newton’s 

mechanics, but it also requires the specific properties of the material, i.e., its 

compressibility. Newton theory explains sound speed but some thermodynamic is 

required to define the velocity of sound. When the thermodynamics is considered 

the sound velocity is found as [1]: 

c � �γRT M"#$ � %γrT  
(2.3) 

Where R is the molar gas constant, Tk is the absolute temperature, Mmol is the 

molar mass and  γ is the ratio of the specific heats, γ � '(')  *1, 
This equation says that Newton approach needs some corrections. It defines the 

speed of waves but some more additional terms are required. After further 

considerations, the sound speed in the ocean found as a function of temperature, 
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salinity and ambient pressure. Since the ambient pressure is a function of depth, it 

is customary to express the sound speed (c) as an empirical function of 

temperature (T) in degrees centigrade, salinity (S) in parts per thousand and depth 

(z). In general, the velocity of sound in water is given by the following equation 

[6] 

c � 1449.2 	 4.6T � 0.055T� 	 0.00029T 3 	 �1.34 � 0.01T��S �
35	  0.016z  

(2.4) 

2.2 SOUND PROPOGATION MODELS 

All acoustic models start solving Helmholtz equation in an azimuthally symmetric 

environment [3]. Starting from Eqn.2.1 Helmholtz equation is stated for acoustic 

medium as: 

7�p 	 ω�
:c��r, z�; p � �δ�r � r=��z � z=�r  

(2.5) 

 

where c(r,z) is the ocean sound speed as a function of range and depth, rs  and zs 

states the point the where the source is located in cartesian coordinates. The 

Eqn.2.4. is approximated as Eqn.2.20 that will be discussed in Section 2.3. In 

addition, ω is the angular frequency of the source which is located at the range 

depth coordinate �r=, z=�.  

There are mainly four types of models to describe sound propagation in the sea: 

ray theory, the spectral method or fast field program (FFP), normal mode (NM) 

and parabolic equation (PE). All of these models states that the water 

environment varies with depth. The two of four types will be examined during the 

study; Ray Theory and Normal mode which are the most frequent used among 

others. Spectral integral and normal mode models are closely related. 



 

 

8 

 

2.3 RAY THEORY 

Optical ray theory can all be translated to acoustics. Snell’s Law should be known 

to provide first order knowledge on where rays go. 

2.3.1 Snell’s Law and Rays 

Snell’s Law in terms of emerging angle θ with respect to the horizontal can be 

rewritten as  

 

cos θ=c�z=� � cos θ
c�z�  A  θ � cosBC Dc�z=�

c�z�  cosθ=E (2.6) 

 

where Eq. 2.6.is interpreted to be the angle dependence of a ray as a function of 

depth as specified through the sound speed profile. After differentiating Eq. 2.6 

with respect to z: 

�c�z=�sin θ dθ
dz � dc�z�

dz  cos θ= 

 

(2.7)

 

 

Figure 2.2: Schematic of two dimensional geometry.[3] 



 

 

9 

 

2.3.2 Ray Theory 

The starting point is the Helmholtz equation in the Cartesian Coordinates;  

x=(x,y,z), 

7�P 	 I�
c��x� P � �δ�x � x�� 

(2.8) 

Here the sound speed c(x) and the angular frequency ω belong to the source 

located at x=. Assuming a high frequency solution by a series expansion in inverse 

frequency, each term thereby getting smaller. The series expansion of Pressure 

can be written as the following equation [2]  

P�x� � eKLM�N� O AQ  �x��iI�Q
R

QS�
 

(2.9) 

where τ�x� denotes the wavefronts,  AQ  terms of series. Substituting this result  
into the Helmholtz equation, one obtains the infinite sequence of equations for the 

functions τ (x) and Aj(x),  

O�ω��:                                                             |7τ|� � 1 c��x�⁄  

O�ω�:                                            27τ. 7A� 	 �7�τ�A� � 0 

O:ωCBQ;:               27τ. 7AQ 	 �7�τ�AQ � �7�AQBC     j � 1,2, …    
 

(2.10)

(2.11)

(2.12)

The O(ω�) equation (Eqn.2.10.) for τ(x) is known as the eikonal equation. The 

remaining equations (Eqn.2.11, Eqn.2.12) for Aj(x) are stated as the transport 

equations which will not be studied in this study. Ray paths or pictures of where 

sound travels are inferred from the eikonal equation, the transport equations are 

related to the amplitude of the sound.  
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Figure 2.3: Rays and wavefronts. *3, 
A single linear partial differential equation (PDE) is converted into a nonlinear 

PDE (the eikonal equation) plus an infinite series of linear PDEs (the transport 

equations) which will not be solved here. The eikonal equation: 

|7τ|� � 1c��x� 
(2.13)

is a first-order nonlinear PDE which is solved by the method of characteristics. 

Constant τ defines a wavefront and the normals to that ever changing (because of 

varying sound speed) wavefront in space are rays. Basically, it is introduced a 

family of curves (rays) which are perpendicular to the level curves (wavefronts) 

of τ(x) as seen in Fig. 2.3. This family of rays defines a new coordinate system, 

and in ray coordinates the eikonal equation reduces to a linear, ordinary 

differential equation. 

dxds � c7τ 

 

(2.14)

7τ is a vector perpendicular to the wavefronts, c is introduced so that the tangent 

vector dx/ds has unit length. The rays can also be parameterized with respect to 

travel time or any other quantity which increases monotonically along the ray. 
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The definition for the rays is based on their being perpendicular to the level 

curves of r(x), a function which for the moment is an unknown. However, with 

some manipulations the ray equations in a form involving only c(x) can be 

written,  dds �1c dxds� � � 1c� �7c� 

  
(2.15) 

The ray equations may be written in the first-order form[12] 

drds � cη�s�, dηds � � 1c� dcdr 

dz
ds � cζ�s�, dζ

ds � � 1
c�

dc
dz 

 

(2.16)

(2.17)

[r(s),z(s)] is the trajectory of the ray in the two dimensional range-depth plane. 

The auxiliary variables η�s� and ζ(s) are introduced in order to write the equations 

in first-order form. The tangent vector to a curve [r(s), z(s)] is given by [dr/ds, 

dz/ds]. Thus from the above equations the tangent vector to the ray is c [η�s�, 
ζ(s)]. 

This set of ordinary differential equations is solved numerically. However, to 

complete the specification of the rays initial conditions are needed. As indicated 

in Fig. 2.2, the initial conditions are that the ray starts at the source position (rs, zs) 

with a specified angle  θ . Thus, 

 r � r= ,    ξ � cosθ
c�0� 

z � z=  ,   ζ � sinθ
c�0� 

(2.18)

(2.19)

 

MATLAB is used to solve these systems of equations. The sound speed profile is 

approximated as: 

c�z� � 1500.0\1.0 	 ]�z ̂ � 1 	 eB_̀  �a 
 

(2.20) 
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The quantity ] is taken as ] � 0.00737. The scaled depth  z ̂ is taken as: *10, 
 z ̂ �  2�z � 1300�

1300   
 

(2.21) 

 

Figure 2.4: Generic Sound Speed Profile 

2.3.3 Ray Theory Simulations  

According to the scope defined above, the codes tried to be realized step by step. 

When the basic picture of Ray Theory is considered, the source is located at 1000 

m depth and the range is 100 km, the graph is obtained as follows: 

 

Figure 2.5: Ray figure (depth=1000m) 
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MATLAB default ODE45 and ODE23 functions are used in order to figure this 

graph. The equations stated in Eqn.2.16 and Eqn.2.17 are solved simultaneously 

with the initial conditions defined in Eqn.2.18 and Eqn.2.19. Sound speed profile 

is taken as Eqn.2.20. Propagation of rays perpendicular to wavefronts with 

different grazing angles are seen in the graph. In the case study the shallow water 

will be considered. When we decrease the depth, we see that the rays that 

penetrate do not highly effected from the sound speed profile since the sound in 

lower depths are nearly constant in generic sound profile (Fig.2.4.). This plot is 

only the skeleton of the acoustic field; to obtain the associated pressure field it 

should be further developed. However, this ray trace is often the most important 

product of a ray model. Other techniques can give more accurate transmission 

loss figures; however, they do not readily provide this simple graphical ray 

picture showing the important energy paths. 

The main issue in shallow water is the interferences. The reflected waves from 

boundaries will interfere which will be seen in the Fig.2.6.  

 

 

Figure 2.6:Ray figure (depth=100 m) 
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In Fig.2.6, the source is at 25 meters the depth is 100m and the range is 5km. 

Boundary conditions for this case is adapted as a full reflection at the boundaries, 

which means the bottom and the sea level behaves like a mirror. It is seen that 

reflections from the sea level and bottom make the graph more complex. When 

we examine much simpler case, depth is 500 meters and range is 20 km:   

 

Figure 2.7: Ray figure (depth=500 m)  

In Fig.2.7, the source is at 100 meters. It can be easily observed that, whatever the 

arriving angle of the rays, they are collected at nearly 7 km, thus if one puts a 

receiver at nearly 7 km source can be easily detected.  

This is a basic illustration, thus the reflections from the bottom are considered as 

perfect, means full reflection from the bottom. However the reflections are not 

perfect and the bottom is not smooth and also sound speed profile is taken as 

generic. The sound speed profile depends on many factors like salinity, 

temperature, mostly temperature which changes even the daytime.  

The basic boundary conditions (i.e. full reflection at z=0 and z=500) are easily to 

be handled but more complex boundaries will be applied further, thus ODE solver 
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which is used up to this point, should be coded. In order to accomplish this, 3th 

order Runga Kutta method is used which is assumed to be one of the effective 

solvers for differential equations. In the case study, 3thorder Runga Kutta method 

will be used. 

2.4 NORMAL MODE PROPAGATION 

The sea medium can be thought as an acoustical waveguide bounded above by air 

and below by the sea bottom which may be a combination of sand, mud, layered 

rocks, etc. This waveguide is considered to be range-independent, meaning that it 

is a horizontally stratified medium. The two most obvious properties of a 

waveguide are: 

1. It is infinite in the horizontal dimension (r) 

2. It is finite in the vertical direction (z) 

The assumption of range-independence implies that the wave equation can be 

solved by “separation of variables” which means that the solution is a product of 

solutions of one dimensional wave equations (r and z equations) which are related 

by a separation constant. The solution of the waveguide equation will be a 

product of traveling waves in the horizontal direction and standing waves in the 

vertical direction. The standing waves in the z coordinate are called normal 

modes.  Waves refer to many paths that are described by many waves. In effect, 

the solutions are in terms of these normal modes, each of which is distributed in 

depth differently. Each of these modes are then the amplitude of a particular plane 

wave (through the separation constant) traveling in the horizontal and the total 

solution is the sum of these terms.  



 

 

16 

 

2.4.1 The picture of normal modes 

A waveguide is considered which is bounded above by the air/water interface. 

Hence having perfect reflection with a 180 degree phase change at the surface and 

for paths more horizontal than the bottom critical angle, there will also be perfect 

reflection with an angle dependent phase change.  

  

Figure 2.8: Shallow water waveguide propagation  
a)sound speed profile 

 b)ray mode analogy[6] 
 
 

As seen in Fig. 2.8a ray paths within a cone of 2θc will propagated unattenuated 

down the waveguide. Since the up and down going rays have equal amplitudes, 

preferred angles will exist such that perfect constructive interference can occur. 

These particular angles can be associated with the normal modes of the 

waveguide. Figure 2.8b is a schematic of a ray reflected from the bottom and then 

the surface of a “Pekeris” waveguide (an environment with constant sound speeds 

and densities in the water column and fluid bottom, respectively). When a ray 

along the path ACDF is considered and its wavefront which is perpendicular to 
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the ray, the two downgoing rays, AC and DF will constructively interfere if points 

B and E have a phase difference of an integral number of 360 degrees (and 

similarly for upgoing rays).  

 

 

Figure 2.9: Schematic of normal mode propagation  
a)long range propagation in  2cd cone 
b)propagation of waves with different wave numbers[3] 

Referring to Fig. 2.9 it is seen that the more vertical the ray the more horizontal 

the wavefront. Hence the most vertical ray corresponds to the maximum phase 

velocity of c2; that is, rays more vertical than the critical angle do not propagate 

down the waveguide. On the other hand, a horizontal ray has a vertical wavefront 

and so the phase is constant in the vertical. The superposition of discrete up and 

downgoing waves results in a vertical amplitude distribution in the waveguide of 

the form,  

ef g eK� hiBLj�uf�z�;  uf�z� � sin mnkC� � kf�zp 

  

(2.22)

[3]The un’s are called the normal modes of the waveguide each propagate with 

phase velocity cn. The total field in the waveguide is a sum of all the normal mode 
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terms of the form of Eq. 2.22; the vertical distribution can be thought of as a 

superposition of up and down going plane waves at discrete propagation angles 

within the cone ±θc. Rays and modes are shown in Fig. 2.9a.  

2.4.2 Normal mode solution from the wave equation 

Beginning with the Helmholtz equation in cylindrical coordinates with sound 

speed depending only on depth z, 

1r ∂∂r �r ∂p∂r� 	 ∂�p∂z� 	 ω�
c��z� p � � δ�r�δ�z � z=�

2πr  

 

  

(2.23)

where the right hand side is the delta function in cylindrical coordinates 

representing a point source at (r, z) = (0, zs). Using the technique of separation of 

variables, the solution is in the form p(r, z) = Φ (r) Ψ (z). The modal equation in 

the z direction is, 

∂�Ψ" �z�
∂z� 	 D ω�

c��z� � k"� E Ψ" �z� � 0 

  

(2.24)

the boundary conditions for Ψm(z) at the surface and bottom, 

Ψ" �0� � 0,     d Ψ" dz �D� � 0 

  
(2.25)

The modal equation is Sturm–Liouville eigenvalue problem. The function Ψm(z) 

is an eigenfunction and km is an eigenvalue. The mth mode has m zeroes in the 

interval [0,D] and the corresponding eigenvalues km
2
 are all real and are ordered 

as k1
2 > k2

2 > · · ·. In addition, the modes of Sturm–Liouville problems are 

orthogonal,  

t Ψ"�z�Ψf�z�
ρ�z�

u
�

 dz � 0      for   m x n 

  
(2.26)

The modes are normalized so that 
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t Ψ"� �z�
ρ�z�

u
�

 dz � 1 

 
 

(2.27) 

Finally, the modes form a complete set, which means one can represent an 

arbitrary function as a sum of the normal modes. Solution for the travelling wave 

in the r direction is 

1
r

d
dr Dr dΦf�r�

dr E 	 k"� Φf�r� � � δ�r�Ψ"�z=�
2πrρ�z=�  

  

(2.28)

This is a standard equation whose solution is given in terms of a Hankel function 

as 

Φf�r� � i
4ρ�z=� Ψ"�z=�H��C�,����kfr� 

  
(2.29)

The choice of H(1)
0 or H(2)

0 is determined by the radiation condition stating that 

energy should be radiating outward as r A ∞ .Since a time dependence of the 

form exp(−iωt) is suppressed, Hankel function of the first kind is used. Putting 

these all together,  

p�r, z� �  i
4ρ�z=� O Ψ"�z=�H��C��k"r�

R

"SC
 

  

(2.30)

or, using the asymptotic approximation to the Hankel function,[8] 

p�r, z� { i
p�z=�√8πr eBK~ �� O Ψ"�z=�Ψ"�z�

R

"SC
eK �r
%k"

 

  

(2.31)

Hence the acoustic field in the waveguide can be thought of as a sum of plane 

waves travelling horizontally with wavenumbers km. The amplitude of the m-th 

wave as function of depth is a product of the m-th mode as a function of depth 

and the value of that (normalized) mode at the source depth. 
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2.4.3 Normal Mode Simulations  

Finite difference approximation for modal equation (Eqn 2.24) can be 
written as follows; 

Ψ"Q � ΨQBC � 2Ψ"Q 	 ΨQ�C
h� 	 O(h�) 

 
  

(2.32)

ΨQBC
h� 	 ��2

h� 	 ω�
�zQ� � k�� ΨQ 	 ΨQ�C

h� � 0        j � 1 … … N � 1 

Ψ� � 0  Ψ��C � 0 

  

 (2.33)

 (2.34)

Matrix form representation: 
*A � k�I,Ψ � 0  

 

 (2.35) 

This equation has N eigenvalues k(") , and corresponding eigenvectors Ψ(") , 
Ψ" is the vector with components ΨC", Ψ�", … … … … . . Ψ�"  

A �

��
��
��
��
�dC e�  e� d3 e3  e3 d�

      e�   
                  �
         

   e�B�       
d�B� e�BC  e�BC d�BC e� e� d���

��
��
��
�

 

 
 

(2.36) 

 dQ �  �2
h� 	 ω�

c�(zQ) ,                   eQ �  1
h� 

  

(2.37)

Numerical solution steps: 
• Eigenvalue problem is solved AΨ �  λΨ 
• k" � √λ  
• km  are sorted, largest k is the most effective in solution. 
• Eigenfunctions are normalized  
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Ψ(")  �   �(�)  
��(�) � 

  
  (2.38)

•  Eigenvectors are assembled into matrix(isd�index of source depth) 
Ψ = \Ψ(C)Ψ(�) … … Ψ(�)a  

 

 (2.39) 

C =
�
��
�
� ΨK=¡,C

ΨK=¡,�.
.

ΨK=¡,��
��
�
�
 

  

(2.40)

  

• A mode matrix Ψ¢ is scaled by the mode excitation 

Ψ¢ = Ψ

�
�
�
�
� 1
CC

  
 �  
    1

C��
�
�
�
�
 

  

(2.41)

•  Φ a phase matrix (Eqn 2.29) is formed 

Φ =

�
�
�
�
�
�1

%kC¤   

 �  
  1

%k�¤
�
�
�
�
�
�
 
�
��
�
� eK ¥i¥ eK ¥i¦

eK ¦i¥ eK ¦i¦
. .
. .  eK ¥i§¨

  .  
.  

  
  

  
 .  

eK ©i¥ eK ©i¦
  
. .

 .
. eK ©i§¨�

��
�
�
 ª C

√i« 

  

(2.42)

 
• Finally 

p = Ψ¢Φ 
  

(2.43)
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Figure 2.10: Normal Mode figure (depth=1000m) 

In order to observe the similarities and differences of two modes the situation is 

taken as same as the situation in Fig. 2.4. Source is at 1000 meters range is 100 

km. In the Fig.2.10 .it can be seen the wave propagation due to Normal mode 

theory with pressure distribution. The solution of Eqn.2.31 with 102 number of 

modes and 5000 number of finite points for Ψ in the z direction. Frequency is 50 

Hz which is a very small frequency for acoustics. The run time for high frequency 

(i.e.5000Hz) is very much compared to low frequency (i.e.50Hz). The run time 

for f=50Hz (number of modes=100) is less than 1 min, for f=500Hz (number of 

modes=1000) approximately 3 minutes and for f=5000Hz (number of 

modes=10000) run time is approximately 25 min with %50 CPU usage. This 

datas are taken with computer configuration: INTEL Core 2 Duo T7300 2GHz 

processor with 1 GB RAM.   

In the graph, brighter areas show that the pressure is high at this point and areas 

which turn to black show that the effect of pressure is diminished at these points. 
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It is easily seen that the white points turn to gray while the wave penetrates. The 

sound speed profile is used as defined in Eqn 2.20, the graph of generic sound 

speed profile is as in Fig 2.4: 

 

Figure 2.11:Normal Mode figure (depth=500m) 

The depth is 500 meters and the range is 20 km. When compared with Figure 2.6 

this graph is more complicated. Although number of modes is 10 the waves 

reflected from sea level and from the bottom are hardly distinguished. 

2.5 DIFFERENCES BETWEEN TWO MODELS 

The need for these various types of models stems from the diversity of 

applications. While one model may be capable of treating all the problems one 

encounters, usually at least some of the problems are more efficiently treated by 

another model. After simulations it is also observed that, high-frequency 

problems are easily treated with ray models, range-dependent problems with 

normal mode model. 
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For high frequencies (a few kilohertz or above), ray theory is the most practical. 

Since the solution is frequency independent the ray theory is applicable for all 

frequencies. This feature of ray models is that they can be adapted to broadband 

problems. As many modes occur for normal mode theory, number of modes 

increase with increasing frequency and the complexity of the code become high.  

However, the normal mode is more applicable and useable at lower frequencies 

(below a kilohertz). A model that also takes into account horizontal variations in 

the environment is termed range dependent. Normal mode model assume a 

stratified ocean (no range dependence) and take advantage of this for speed.  

When the Figures 2.4. and 2.9 are considered, ray picture and normal mode 

graphs are same in formal comparison. The ray mode analogy suggests that each 

mode corresponds to a kind of ray with an incident angle. Every time the ray 

bounces off the bottom, it will undergo a reflection loss because of the bottom 

attenuation. Bottom loss is very important in shallow water propagation that is 

bottom loss increases with increasing grazing angle and the number of reflections 

per unit distance increases with grazing angle. This combination causes the 

exponential damping factor to grow with mode number. 

In the view of the above advantages of ray theory, another advantage arises 

compared to normal mode model; its numerical efficiency. Typically, the normal 

mode model requires about 10 nodes per wavelength. Long range problems are 

often thousands of wavelengths in range and tens of wavelengths in depth. The 

resulting linear systems of equations for the acoustic field at each node involve 

millions of unknowns [19].Thus, such technique is not computationally very 

practical for long range problems but for short ranges Normal Mode works. 

Especially mode based approaches require a large amount of computing time 

since the number of modes increase with frequency. In addition to the time factor, 

modeling of the transmission and reflection of sound at rough wave guide 
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boundaries is comparatively simple in the ray tracing method. 

The models are two dimensional models since the index of refraction has much 

stronger dependence on depth than on horizontal distance. Nevertheless, bottom 

topography and strong sea features can cause horizontal refraction. Ray models 

are most easily extendable to include this added complexity. Three dimensional 

wave models are extremely computationally very complex.  
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CHAPTER 3 

CASE STUDY 

3.1 SONAR EQUATION  

There are two kinds of sonar (SOund NAvigation and Ranging): passive and 

active as shown in Fig. 3.1. In active sonar, the system emits a pulse of sound and 

then the operator listens for echoes. In passive sonar, the operator listens to 

sounds emitted by the object which is trying to be located.  

 

Figure 3.1: Schematic of Passive and Active Sonars.  

A major application of underwater acoustics is sonar system technology. The 

performance of sonar is often approximately described simply in terms of the 
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sonar equation. The methodology of the sonar equation is analogous to an 

accounting procedure involving acoustic signal, interference and system 

characteristics. The latter involves the ability of the combination of the system 

and operator to discern a target in the noise clutter. 

One of the way that prediction tools are used is match field processing (MFP). In 

MFP, the first data input is measured acoustic data from a sonar set of 

hydrophones, the second data input is a predicted data set, or replica data set, 

against which the measured data are compared. Multiple replicas are compared to 

the measured data and the closest match is retained. The closest match of the 

replica is presumed to characterize the data in some important way (e.g., a source 

location). More specifically, the output of a sensor of the towed array is translated 

to the frequency domain by applying a Discrete Fourier Transform (DFT) or a 

Fast Fourier Transform (FFT) to a set of contiguous time samples. A replica 

vector is the frequency domain N x 1 vector representing the predicted or 

expected values at each sensor of the sensor array for a specific frequency. The 

corresponding output of the method is an ambiguity surface. The ambiguity 

surface is a set of numbers ranging between zero and one with each number 

corresponding to a specific location in the sea medium. The highest values on the 

ambiguity surface indicate the most likely position of an acoustic source. The 

matched-field response is generalized by averaging the response over multiple 

frequencies. A response for an array may be computed by forming beams and 

then combining them by multiplying each by an eigenray factor before summing.  

3.2 DETECTION THRESHOLD  

The detection threshold DT is a decibel number that essentially incorporates the 

Sonar systems (which includes operator) ability to decide that a detection is made 

or not made. The detection process includes the following probabilities: 
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• PD (probability of detection): Probability of a signal is detected which is 

detected if it is present. 

• 1-PD: The probability of a the signal which will not be detected if it is present; 

• PFA (probability of false alarm): Probability of a signal is detected that is 

detected when it is not present. 

• 1-PFA: The probability of a signal which will not be detected when it is not 

present. 

 

Figure 3.2: Probability density functions (PDF’s) for signal plus noise and noise alone.  

In practical terms, since the signal and noise are fluctuating, the detection is made 

(over a time interval) when the fluctuating sum of the signal and noise exceeds a 

threshold that is determined from empirically derived probability density 

functions (PDFs) of noise and signal plus noise. For example, the case that the 

noise alone rises above the threshold contributes to the PFA. Therefore, the 

process for determining a detection threshold level depends on PD and PFA. 

Typically numbers might be a PD of 0.5 and PFA of .0001.  
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3.3 PASSIVE SONAR EQUATION 

A passive sonar system uses the radiated sound from a target to detect and locate 

the target. A radiating object of source level SL is received at a hydrophone of a 

sonar system at a lower signal level S, because of the transmission loss “TL”. 

¬ � ¬ � ® 

  
(3.1)

The noise, N at a single hydrophone is subtracted from Eq. 3.1. to obtain the 

signal-to-noise ratio at a single hydrophone, 

¬¯° � ¬ � ® � ¯ 

  
(3.2)

Typically a sonar system consists of an array or antenna of hydrophones which 

provides signal to noise enhancement through a beam forming process. This 

process is quantified in decibels by an array gain AG that is added to the single 

hydrophone SNR to give the SNRBF at the output of the beam former, 

¬¯°±² � ¬ � ® � ¯ 	 ³´ 

  
(3.3)

Because detection involves additional factors including sonar operator ability, it is 

necessary to specify a detection threshold, DT level above the SNRBF at which 

there is a 50% (by convention) probability of detection. The difference between 

these two quantities is called signal excess (SE), 

¬µ � ¬ � ® � ¯ 	 ³´ � ¶®  
  

(3.4)

This decibel bookkeeping leads to an important sonar engineering descriptor 

called the figure of merit, FOM, which is the transmission loss that gives a zero 

signal excess, 

·¸¹ � ¬ � ¯ 	 ³´ � ¶®  
  

(3.5)

FOM encompasses the various parameters one must deal with: expected source 

level, the noise environment, array gain and the detection threshold. Conversely 

since FOM is a transmission loss, one can use the output of a propagation model 
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to estimate the minimum range at which a 50% probability of detection can be 

expected. This range changes with conditions, *13,. 
3.4 ACTIVE SONAR EQUATION 

A monostatic active sonar transmits a pulse to a target and its echo is detected at a 

receiver collected with the transmitter. A bistatic active sonar has the receiver in a 

different location than the transmitter. The main differences between the passive 

and active cases are the addition of a target strength term, TS; reverberation and 

hence reverberation level, RL, is usually the dominant source of interference as 

opposed noise; and the transmission loss is over two paths: transmitter to target 

and target to receiver. In the monostatic case, the transmission loss is 2TL where 

TL is the one way transmission loss, and in the bistatic case, the transmission loss 

is the sum (in dB) over paths from the transmitter to the target and the target to 

the receiver, TL1 + TL2. The concept of the detection threshold is useful for both 

passive and active sonars. Hence, for signal excess, 

¬µ � ¬ � ®C 	 ®¬ � ®� � �° 	 ¯� 	 ³´ � ¶® 

  
  

(3.6)

The corresponding FOM for an active system is defined for the maximum 

allowable two-way transmission loss with TS = 0 dB, *13,. 
3.5 PERFORMANCE PREDICTIONS USING RAY THEORY 

Passive sonars work in the frequency (f) range 0.01-3.5 kHz the noises and losses 

are approximated as; in case of the acoustic wave has an approach of λ/4 to the 

receiver the wave would be detected.   
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Figure 3.3:Transmitter Receiver (f=3500Hz)  

In Fig.3.3 the source is at 85 meters and the receiver is at 90 meters, the depth of 

the water is 110 meters. Simple rays are chosen for illustration; 3 of the rays are 

caught by the receiver one is reflected from the sea level and two from the 

bottom.  

Figure 3.3. represents not only passive sonars but also bi-static case of active 

sonars. The figure may be thought as a transmitter of an active sonar working in 

3500Hz. Actually the active sonars work in the range 10-35 kHz but wideband 

solutions of lower frequencies is also acceptable (i.e 3500Hz). The transmitter 

frequency is chosen as 3500Hz which covers the both gaps for passive and active 

cases. The main problem for passive case is whether there is an actual target 

transmitting in 3500 kHz.  
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Figure 3.4: Time diagram transmitter receiver (f=3500 Hz)  

The time of arrivals of rays are shown in the figure which are sampled at a 

frequency 10*f, f is equal to 3500 Hz in this figure. 

 

Figure 3.5: Transmitter Receiver (f=50Hz) 
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When lower frequencies are considered the Probability of Detection (PoD) 

increases for passive sonars in this approximated case. In Fig 3.5. the rays, 

reached to the receiver are much more considered to f=3500Hz case, however in 

f=50Hz case there is no such sensitive receiver and it should be considered that 

active sonars are only sensitive to transmitting frequency but passive sonars are 

sensitive to band of frequency. To illustrate such case instead of λ/4 

approximation λ/40 approximation is considered in Fig 3.6. 

 

 

Figure 3.6: Transmitter Receiver (f=50 Hz, less sensitive case) 
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Figure 3.7: Source is at 10 meters receiver is at 100 meters 

In Fig.3.7., the source is at 10 meters and the receiver is at 100 meters. The 

bottom is 110 meters.  

 

Figure 3.8: Time diagram (source is at 10 meters receiver is at 100 meters)  
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The time diagram is as in Fig3.8. The receiver catches the signals between 5.555 

and 5.650 seconds. One pulse in the transmitter results four signals in the 

receiver.  

3.6 SIMULATIONS 

3.6.1 Environment  

In case study a specific place whose sound velocity profiles and bottom profiles 

are known is investigated. The place is separated into two zones; passive sonars 

are placed in the outer zone for longe range detection, active sonars are placed in 

the inner zone to get high accuracy. The maximum efficient settlement shall be 

considered with the use of this code.  

3.6.1.1 Sound Velocity Profiles  

A case study is conducted in order to compare a summer sound velocity (Fig.3.9.) 

with a warm surface layer and a winter sound velocity profile with nearly 

constant temperature (Fig.3.10.). 

                                            

Figure 3.9: Sound speed velocity profile in summer  
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Figure 3.10: Sound speed velocity profile in winter 

3.6.1.2 Bottom profiles 

The bottom decreases strongly in the first several 1000 m to values of 90 m. In 

further ranges the sea become shallow. The profile is like a hollow from one coast 

to other coast as seen in the Fig.3.11. The sea bottom is assumed to be mostly 

sandy and full reflection is assumed.  

 

Figure 3.11:Bottom profile  for active sensors  
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Figure 3.12: Bottom profile for passive sensors 

For Passive sensors the bottom is degreasing continuously as seen in Fig.3.12. 

For the active case Fig 3.11 is considered and for the passive case Fig. 3.12 is 

considered 

3.6.2 Active detection simulation 

For active case detection the scenario is;  

• There is a transmitter and an array of receivers which are separated 

from each other means bistatic case,  

• The transmitter is in the one coast and the transmitter is in the other 

coast of the hollow like shaped bay.  

• The receiver is an array of hydrophone, consists of 3 elements which 

are arranged in every 10 meters. 
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Figure 3.13: Active Case (summer SVP)  

The different colors indicate the receiving arrays to a certain hydrophone. The 

rays received by the upper hydrophone represented in green, red for the 

middle and the rays caught by the lower one are cyan in color. As seen in the 

Fig 3.13 there is only one ray colored in green indicates there is only one ray 

reaches to the hydrophone settled near the sea surface. It can be inferred that 

no need for such a near surface settlement for active case. Also, there are some 

anomalities in the rays seen in the figure due to the bottom profile.  

 

Figure 3.14: Time Histogram Active Case (summer SVP)  

range(m) 

depth(m) 
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When the time histogram of the rays is examined in Fig.3.14., the rays reach 

to the middle hydrophone is much dense as compared with the upper and 

lower ones. The time of arriving wave is not same in all hydrophones. In real 

time applications this figure is stored and by the use of MFP the same figure is 

expected for each wave. If there is an anomality in the figure it should be 

understood that there is an obstacle between the transmitter and the receiver.  

 

Figure 3.15: Active Case with (winter SVP) 

 

Examining the SVP of the winter in Fig. 3.10 it is seen that the velocity is 

nearly constant for all depths results much smooth shapes of the rays. 

Therefore, Fig.3.15. is less crowded compared to Fig 3.13 as the waves are 

slower; the crests are much discrete. They penetrate in an inclined angle 

results less probability of detection by the sensors.    

range(m) 

depth(m) 
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Figure 3.16: Time Histogram Active Case (winter SVP)  

Further by examining time histogram (Fig 3.16.) it is observed that no ray is 

caught by the upper hydrophone as similar to summer case. Thus, we can infer 

a hydrophone near the sea level is useless.  

3.6.3 Passive detection simulation  

 

Figure 3.17:Passive Case (summer SVP ) 

range(m) 

depth(m) 
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The scenario is much more similar to active case, however in active case the 

intruder is understood by the change in the figure. In this case situation is little 

different thus, one can reverse the Fig 3.17 means the intruder is 8 km away from 

the receivers and try to analyze the acoustic waves spread out from the source. 

The receivers catch the signals coming 8 km away from the coast. Source is 

located at 30 meters. Again different colors indicate waves caught by different 

receivers.     

 

Figure 3.18: Time Histogram Passive Case (summer SVP)  

The abnormal rays are not seen in the time histogram (Figure 3.18.) since these 

are filtered by the program. This is also done for MFP. As seen in the figure the 

number of hydrophone is 4 in this case. The received rays are at the second 

hydrophone when winter SVP is considered as seen in Fig.3.19 and Fig. 3.20 
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Figure 3.19:Passive Case (winter SVP ) 

 

Figure 3.20: Time Histogram Passive Case (winter SVP)  

range(m) 

depth(m) 
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Figure 3.21: Active Case Higher Frequency  

 

Fig 3.21 is active case when higher frequency is considered. The figure is 

similar to low frequency since the rays are not affected from the frequency 

only difference is the assumed sensitivity of the sensors, sensors became less 

sensitive however the number of hydrophones increases since there is an 

interaction between wavelength and spacing of the hydrophone thus, a 

typical sonar spacing, d is half a wavelength because the angles at which 

destructive and constructive interference occur are most advantageous. For 

simplicity d is chosen as wavelength in the code. The number of 

hydrophones increases for active case when we consider the time histogram, 

it is seen as follows in Fig.3.22. 

range(m) 

depth(m) 
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Figure 3.22: Time Histogram of Active Case Higher Frequency  

3.6.4 Results  

As considered for the active and passive cases the most suitable numerical 

scheme seemed to be ray tracing. Ray method is applied to this case, since the 

model is independent of frequencies the code is applicable for Active or Passive 

sensors. The ray equations 2.16 and 2.17 are solved simultaneously with Runga-

Kutta method. The bottom profile differs in range, so the boundaries. There was 

only 6 data for the bottom profile. The bottom profiles are formed with the 

interpolation of these datas. 

Although Ray Theory is fast, run times for this application are between 25-30 

minutes.  

Another key issue affecting acoustic models is their direct use in the signal 

processing algorithms. As it is illustrated in Fig.2.4. the bending of sound and the 

numerous bottom and surface echoes can seriously degrade standard schemes 
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based on plane-wave beam forming. Matched-field processing problems that use 

acoustic models to correct for these effects are challenging for many reasons. 

They involve repeated field calculations as a trial source is swept over the domain 

of possible source positions to generate waveguide replica vectors. Multipath 

waves cause problems in MFP [17] best way to see these multipaths which are 

reflected from bottom and sea level is Ray Model. Normal Mode does not solve 

this problem. 
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CHAPTER 4 

CONCLUSION 

In this study, the acoustic waves in sea medium is simulated. It is an introductory 

work to understand the behavior of acoustics in water. There are some methods 

for analyzing, Ray Theory and Normal Mode methods are used in this study. Ray 

Model is solved using Runga-Kutta method and the normal mode equation is 

solved using finite-difference methods.  

When simulations are compared, it has been observed that Ray method is more 

applicable to high frequencies. Environmental conditions such as bottom profile 

and sound velocity profile are easy to adapt in Ray Model. Moreover when the 

run times of models are compared Ray Model is certainly better. Although the ray 

figures seem simpler, multipath solution can easily be obtained in Ray Model 

which is an important parameter in signal processing.   

After comparison of Ray and Normal Mode methods, ray theory approach is 

chosen for the case study. In order to accomplish covering the scope of this work 

the codes have been enhanced with the feedbacks of previous runs. Starting from 

basic simulations, requirement for the next step tried to be analyzed then the next 

step is fulfilled. There may be further methods introduced in order to get better 

results, however these should be supported with experimental results. Such an 

infrastructure might be used for further studies. Also, this is an introductory study 

for sonar systems. Although our country is a peninsula these kinds of studies have 

not been done yet. There are a plenty of commercially available software in the 

world regarding acoustic wave modeling. In order to analyze anything in water 

prediction software should run with sensor systems. This kind of software are 
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integrated in acoustic systems, works as a subsystem of those systems and should 

well communicate with them, so one should have all know-how of this software 

in order to use the system. From another point of view such software works with a 

SVP database specific for region. Therefore, this kind of software should be 

nationally developed. This study may be improved to develop such national 

software. 3D analysis may be considered for a further study. 

MATLAB is used for simulation however it has some overheads such as speed. 

Software development tools such as C or FORTRAN may provide better 

solutions. 
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