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ABSTRACT

ENVIRONMENTAL EFFECTS ON QUANTUM GEOMETRIC PHASE AND
QUANTUM ENTANGLEMENT

Günhan, Ali Can

Ph.D., Department of Physics

Supervisor : Prof. Dr. Namık Kemal Pak

March 2008, 58 pages

We investigate the geometric phase (GP) acquired by the states of a spin-1/2 nucleus

which is subject to a static magnetic field. This nucleus as the carrier system of GP,

is taken as coupled to a dissipative environment, so that it evolves non-unitarily. We

study the effects of different characteristics of different environments on GP as nucleus

evolves in time. We showed that magnetic field strength is the primary physical

parameter that determines the stability of GP; its stability decreases as the magnetic

field strength increases. (By decrease in stability what we mean is the increase in the

time rate of change of GP.) We showed that this decrease can be very rapid, and so it

could be impossible to make use of it as a quantum logic gate in quantum information

theory (QIT). To see if these behaviors differ in different environments, we analyze the

same system for a fixed temperature environment which is under the influence of an

electromagnetic field in a squeezed state. We find that the general dependence of GP

on magnetic field does not change, but this time the effects are smoother. Namely,

increase in magnetic field decreases the stability of GP also for in this environment;

but this decrease is slower in comparison with the former case, and furthermore it

occurs gradually.
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As a second problem we examine the entanglement of two atoms, which can be used

as a two-qubit system in QIT. The entanglement is induced by an external quantum

system. Both two-level atoms are coupled to a third two-level system by dipole-

dipole interaction. The two atoms are assumed to be in ordinary vacuum and the

third system is taken as influenced by a certain environment. We examined different

types of environments. We show that the steady-state bipartite entanglement can be

achieved in case the environment is a strongly fluctuating, that is a squeezed-vacuum,

while it is not possible for a thermalized environment.

Keywords: Quantum information theory, quantum computation, entanglement, con-

currence, geometric phase, Berry phase, quantum logic gate.
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ÖZ

KUANTUM GEOMETRİK FAZ VE KUANTUM DOLANIKLIĞA ÇEVRESEL
ETKİLER

Günhan, Ali Can

Doktora, Fizik Bölümü

Tez Yöneticisi : Prof. Dr. Namık Kemal Pak

Mart 2008, 58 sayfa

Statik bir manyetik alana maruz kalan bir çekirdeğin kuantum durumlarının kazanacağı

geometrik faz (GF) incelendi. GF’nin taşıyıcısı olan bu çekirdek dağıtıcı bir sistemle

birleşik alındığı için üniter olmayan bir şekilde evrilmektedir. Çekirdeğin zamanda

evrimi esnasında farklı ortamların farklı özelliklerinin GF’ye etkileri çalışıldı. Uygu-

lanan manyetik alan şiddetinin GF’nin kararlılığını belirleyen birincil fiziksel parame-

tre olduğu gösterildi. Manyetik alan şiddeti arttırıldıkça GF’nin kararlılığının azaldığı

gözlendi. (Burada, kararlılıktaki azalma GF’nin değişim hızındaki artşı tarif etmekte-

dir.) Kararlılıktaki bu azalmanın çok hızlı olabileceği gösterildi. Öyle ki, bu durumda

kuantum bilgi kuramında (KBK) bir kuantum kapı olarak kullanılamaz hale gelmek-

tedir. Böyle davranışlarının farklı ortamlarda farklı olup olmadığının anlaşılması

için aynı sistem, sıcaklığı sabit tutulmuş ve sıkıştırılmış bir durumda bulunan bir

elektromanyetik dalgaya maruz olan bir çevrede çözümlendi. GFnin manyetik alan

bağımlılığının genelde değişmediği, ancak etkilerin bu durumda daha yumuşak olduğu

bulundu. Yani manyetik alandaki artış GF’nin kararlılığında bu ortam için de azal-

maya sebep olumakta ama bu sefer bu azalış önceki ortamdakine göre daha yavaş ve

kademe kademe gerçekleşmektedir.
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İkinci bir problem olarak, KBK’nda bir iki-kuantum-bit olarak kullanılabilecek iki tane

iki seviyeli atomun dolanıklığı incelendi. Bu sistemdeki dolanıklığa bir dış sistem neden

olmaktadır. İki-seviyeli atomların her ikisi de üçüncü bir iki-seviyeli atomla dipol-dipol

etkileşim halinde ve aynı zamanda sıradan vakum içinde bulunmaktadırlar. Üçüncü

atom ise başka bir ortam içerisindedir. Bu sistem, üçüncü atomun içinde bulunduğu

ortam farklılaştırılarak incelendi. İki parçacıklı durağan-durum dolanıklığının, üçüncü

atom sıkıştırılmış-vakumda iken elde edilebilmesine rağmen sadece sıcaklığın olduğu

bir ortamda bulunduğunda bunun mümkün olmadığı gösterildi.

Anahtar Kelimeler: Kuantum bilgi kuramı, kuantum hesaplama, dolanıklık, mu-

tabıklık, geometrik faz, Berry fazı, kuantum lojik kapısı.
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CHAPTER 1

INTRODUCTION

During the history of civilization, humankind invented and improved various methods

to encode, to process data, and to send it to a receiver in such a way that it is secure

and fast enough. These data have been for example, his love, commercial information,

military secrets. For this purpose he educated the pigeons, wrote the messages on a

piece of cloth that is wrapped around a rod, encoded the natural languages with

symbols different than the known alphabets, created non-natural languages, etc.

Beginning from 1950s another method has been used. In this technique, which is now

conventional, information is processed classically via logic gates, that performs logical

operations on one or more logic inputs, and produces a single logic output. These

inputs and outputs are register of classical bits, which are discrete Boolean states

0 and 1. Classical logic gates are primarily implemented electronically and electro-

magnetically. Though it is not reached yet, today’s technology show us the limits

of this technique. What we can see more is the existence of another method which

takes these limits far beyond. It depends on the quantum theory. This theory’s basic

principles, which are constructed in the first quarter of 20th century, offer alternative

entities for information processing, such as the states of any two-state quantum sys-

tem. These states can be used as Boolean variables. Unlike those classical ones, such

a system, which is called a quantum bit, can actually be in an arbitrary superposition

of its bases states, |0〉 and |1〉. This makes it a much more powerful computational

resource as a continuous variable. The devices that performs necessary operations on

these quantum bits are also offered by quantum theory. These are called quantum

logic gates. These gates can be implemented by an entity called, quantum geometric

phase, [1, 2]. It involves intrinsic properties of a quantum system, so is independent
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from the parameters that determines the dynamics of evolution of the system.

One other entity offered by quantum theory is entanglement, [3–5]. It depends basi-

cally on the inseparability of degrees of freedom of a quantum system. This means

that these degrees of freedom are instantly sending information of their state to each

other. This information is called quantum information and does not necessitate man

in nature.

On account of mentioned properties, if man makes it possible to use and to manipu-

late these quantum entities, in all the ways he wants, he would process and send the

information in an amount [6], with a speed [7–9], and with a security [10, 11] never

attained before. In chapter II, we introduce basic components of quantum informa-

tion theory (QIT). First the definitions of necessary tools for processing information

quantum mechanically will be given. Then, how computation can be performed with

quantum logic gates operating on input states giving needed outputs will be explained.

In this manner definition of quantum geometric phase is introduced. It is shown that

it is a physical property with which one is capable to perform those computational

tasks for implementing the necessary quantum logic gates. In computation, the input

states can, and sometimes have to be entangled. Together with its structure, defining

quantum information, a measure for entanglement is given. Because one needs to

know whether a quantum state is entangled, and if so, the amount of entanglement it

possesses.

Even though it is known where to find and how to take advantage of these quantum

structures, there is one thing to battle against, that is, the environment in which the

systems carrying these entities are placed. (The terms bath, environment and reservoir

will be used interchangeably throughout this thesis.) Since we can not truly isolate

a system, it constantly interacts with an environment. This interaction has a great

potential to kill those fragile quantum characteristics of a system before it is made

possible to utilize these characteristics. Thus, we have to know what can happen to

our candidate carrier systems during their evolutions in a reservoir.

In chapter III, we give the basic properties of environments in which quantum systems

are expected to be affected differently. These environments are assumed to be baths

of harmonic oscillators. A general equation of motion for a collection of spin−1/2
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quantum systems in a bath is given. This system is taken to be in interaction with a

thermal environment driven by an electromagnetic field in a squeezed coherent state.

But due to its infinitely many degrees of freedom this bath is assumed not to be

affected significantly, so that it remains in its initial state. One other approximation

is considered in simplifying the equation of motion for the system. It is the so called

Markov approximation which assumes that the system does not have memory. In

other words, it instantly forgets the past due to the damping caused by environmental

degrees of freedom.

We assumed our carrier system to be in environments having different physical prop-

erties. One of these should be temperature. It is because first, there would always

be a finite temperature in a real physical environment, and second, with increasing

temperature a quantum system can easily leave the quantum regime. Another physi-

cal parameter is the magnetic field in and around the system. Even the background

radiation, which exists everywhere in the universe, may cause significant changes, es-

pecially in geometric phase, so that it cannot be used in QIT. In taking into account

these possibilities we analyzed, in chapter IV, the effects of temperature and magnetic

field on carrier systems. We also studied the case when the environment is under the

influence of a specific type of radiation field. We chose it to be in a squeezed state.

The reason is that, squeezed state electromagnetic fields are in the farthest position

to classical regime. Their this property makes one to think that they have a potential

to make the systems, to which they affect, stay in the quantum regime, and demon-

strate their quantum characteristics. Since we need quantum bits, all the carriers are

assumed to be two-level quantum systems.
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CHAPTER 2

INFORMATION PROCESSING AND COMPUTING

QUANTUM MECHANICALLY

In this chapter we will introduce some basic concepts and definitions on quantum

information processing and quantum computing together with some examples. The

aim is to underline the nature of quantum states, so called entangled states, which are

needed to be used as resources and the characteristics of the operations, quantum gates,

manipulate those resources to get required outputs as results of the computational

processes.

In classical information processing, binary digits 0 and 1 are used as logical states. A

classical bit can be in either one of the boolean states 0 and 1. The information is

classically encoded and decoded with these classical bits, and processed with classical

logic gates.

In quantum information processing, the basic resource is two-level quantum systems.

Two-level atoms, polarization states of polarized photons, spin states of spin−1/2

nuclei are examples of those resources, called as quantum binary digits, or qubits, in

short. The quantum states, |0〉, |1〉, representing the two levels of a qubit, also repre-

sents the quantum Boolean states. But in this case, unlike its classical counterpart, a

qubit can be in any arbitrary superposition state,

α0|0〉 + α1|1〉, (2.1)

with αj ∈ C, making it a much more powerful resource. Here |0〉 and |1〉 states

are prescribed as normalized and mutually orthogonal, 〈j|k〉 = δjk, where δjk is the

Kronecker-delta symbol, being equal to 1 for j = k, and to 0 for j 6= k. For the

superposition state (2.1) we have described normalization by |α0|2 + |α1|2 = 1.
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A quantum computation is performed as follows: An input state is prepared on a

register of qubits. The state of qubits is evolved unitarily by a building-block of

operations. At the end of this unitary evolution the final state is taken as the output

of the block. A ’device’ which performs fixed unitary operations on selected qubits of

the input state of the block in which it stays is called a quantum logic gate, [12, 13].

At this point some examples of quantum logic gates will be given, using the following

notation;

A matrix representation of the computational bases |0〉 and |1〉 can be as follows;

|0〉 .=





1

0



 , |1〉 .=





0

1



 , (2.2)

where
.
= will be read as ’is represented by ’, following Sakurai, [14].

Schematic representation of a gate operated on input states resulting output states is

GATE|input state〉 |output state〉.

One-Qubit Gates

A NOT gate, X, defined as a flip operation between states |0〉 and |1〉, is given in the

computational basis B1 = {|0〉, |1〉} as

X
.
=





0 1

1 0



 . (2.3)

Throughout this thesis computational basis, which is defined for n−qubits as

Bn ≡
n
⊗

j=1

{|0〉, |1〉}j

= {|00 · · · 0〉, |0 · · · 01〉, · · · , |11 · · · 1〉}. (2.4)

will be used, unless otherwise stated.

A Y -gate is defined as a flip operation between states |0〉 and |1〉 followed by multi-

plication of them with −i and i, respectively,

Y
.
=





0 −i
i 0



 . (2.5)
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A Z-gate leaves |0〉 unchanged and flips the sign of |1〉,

Z
.
=





1 0

0 −1



 . (2.6)

A phase φ-gate changes the relative phase between the states |0〉 and |1〉 by φ,

φ
.
=





1 0

0 eiφ



 . (2.7)

One other important single-qubit gate is the Hadamard gate, H, sometimes described

as ’square-root of NOT’ gate, in that it turns |0〉 and |1〉 into (|0〉 + |1〉)/
√

2 and

(|0〉− |1〉)/
√

2, respectively, which are ’halfways’ between (|0〉 and |1〉. It is defined as

H
.
=

1√
2





1 1

1 −1



 . (2.8)

The schematic representations of these five single-qubit gates are

X|x〉 |1 − x〉,
(2.9)

Y|x〉, (−1)1−x i |1 − x〉,
(2.10)

Z|x〉 (−1)x |x〉,
(2.11)

φ|x〉 eixφ|x〉,
(2.12)

H|x〉 1√
2
(|1 − x〉 + (−1)x|x〉),

(2.13)

where x is either 0 or 1.

Two-Qubit Gates

Quantum computation and quantum information processing requires to execute con-

ditional dynamics between two qubits, where the state of one qubit influences the

evolution of another qubit during a quantum computation, ( [13, 15, 16] ). So, in

addition to those single-qubit ones we also need two-qubit gates. We will give two

important ones.
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Controlled-NOT or CNOT gate has two input qubits, known as the control qubit, |c〉,
and the target qubit, |t〉, respectively. It is defined schematically as

|c〉

|t〉

|c〉

|t ⊕ c〉
(2.14)

and represented by the matrix

UCN
.
=

















1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

















, (2.15)

for the second qubit being the target. Here the input state |c, t〉 is CNOTted by the

gate to get the output state |c, t ⊕ c〉, where ⊕ is addition modulo two. It is possible

to think that control qubit does not change its state. But depending on the state of

control qubit, a NOT operation may or may not be applied to target. One candidate

implementation for the CNOT gate was proposed by Cory et al. ( [17, 18]). In this

technique it is showed that by applying a sequence of radio frequency pulses ( [19–21])

to a nuclear magnetic resonance (NMR) liquid consisting of identical molecules each

containing exactly two spin-1/2 nuclei of the same isotope, it is possible to obtain

a CNOT-gate operated two qubit system. Here the two qubits are the two nuclei

of the identical molecules, and the sequence of radio frequency (RF) pulses play the

CNOT-gate role.

Controlled phase-shift gate is defined schematically as

|x〉

|y〉

|x〉

eixyφ|y〉

φ

(2.16)
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and represented by the matrix

Uφ
.
=

















1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 eiφ

















. (2.17)

It performs the transformation |11〉 → eiφ|11〉, and leaves the other basis states un-

changed. For implementation of the controlled phase-shift gate a similar technique

used for implementation of CNOT gate is suggested by Ekert et al. ( [13,22]). In this

technique again the NMR spectroscopic methods are used. But this time an appro-

priate sequence of RF pulses is used to eliminate the dynamical phases gained by the

states of the system in hand during an evolution. What remains at end is a condi-

tionally phase shifted states of a system of two spin−1/2 particles. This remaining

phase is the so-called Berry phase, or more generally geometric phase , ( [1,2]). By

conditionally it is meant that the phase shift of the state of particle 1 depends on

the state of particle 2, and vice versa, i.e. the amount of phase shifts of the states

of particles, when their spins are aligned, is different than the amount of shift when

they are anti-aligned, for example. By the same method it is also possible to obtain

a single qubit phase shift gate defined by (2.7). In fact, all the single qubit gates can

be implemented by NMR operations.

In order to be able to perform an arbitrary quantum computation on any number

of qubits, one needs ”a set of gates that is sufficient for approximating any unitary

operation to arbitrary accuracy”. A set is called a universal set of quantum gates

if it is possible to satisfy this approximation only with the gates in it [23]. A known

result in the literature states that the Hadamard gate, H, and all controlled phase

gates, Uφ, form a universal set, E, for quantum computations, ( [13,16]),

E = {H,Uφ;∀φ ∈ R}. (2.18)

Having a universal set of quantum gates, one is able to manipulate a register of n-qubit

state. These states can, and for some quantum computations have to be entangled .

Now we will give definitions of quantum geometric phase and quantum entanglement

together with some properties that will be needed and used throughout this work.
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2.1 Geometric Phase

During its evolution, the wave function of a quantum system gathers information on

the geometric structure of the Hilbert space, H, in which it lies. This information

is retained in the form of a phase factor distinct from the familiar dynamical one,

which is caused by and depends on the dynamical variables of the system. Unlike its

dynamical counterpart, this phase is independent of all the external dependencies of

the system, and depends only on the path traversed by the system’s state in H. For

this reason it is named as the geometric phase, [24]. Its this property that makes it a

possibly useful tool for fault tolerant quantum computation [25], since it is potentially

robust against certain sources of noise, ( [26] and the references therein).

Pancharatnam is the one who first introduced the concept of geometric phase in the

classical context in 1956 [1]. He defined a phase characterizing the interference of

classical light in distinct states of polarization. The quantum counterpart is defined

30 years later in 1984 by Berry, [2], for the case of cyclic evolution of a pure state. In

this case the system is assumed to be closed, and the speed of change of the state is

small enough in comparison with the change in its energy, so that it is in an adiabatic

unitary evolution. In 1987 and 1988 Aharanov and Anandan relaxed the adiabaticity

condition, ( [27, 28]). They showed first that a quantum system which is initially

in state |ψ〉 and completes a closed loop in its Hilbert space, H, at time τ in state

|ψ̃〉 ≡ e−i f |ψ〉, gains a geometric phase

ΦG ≡ i

∫ τ

0
〈ψ̃| d

dt
|ψ̃〉dt, (2.19)

where f = f(t) is a real valued function of time so that f(τ) − f(0) = ΦG and the

observable characteristics of |ψ〉 and |ψ̃〉 are the same. What they then showed is that

this expression is adiabaticity independent, where a system is said to be adiabatically

evolving if its speed of change between the states of different energies is too slow

in comparison with the energy differences in convenient units. The following year

Samuel and Bhandari were able to extend the concept to non-cyclic evolutions, viz

they express the geometric phase between any two non-orthogonal states in a Hilbert

space, [29].

The concept of mixed state geometric phase was first introduced as a purely math-
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ematical problem by Uhlmann in 1991, [30]. Then in 2000 Sjöqvist et al. provided

a physical prescription based on interferometry, and introduced the total phase of a

mixed state [31]. They showed that it is possible to express the geometric part of this

total phase by defining the parallel transport condition [32] for mixed states.

Finally in 2004 Tong et al. relaxed the unitarity condition and obtained the gener-

alization of the mixed quantal state geometric phase to non-unitary evolutions, [33].

What they did is summarized below. The problem is to express the geometric phase of

a state, ρ̂(t), of a system, s, gained during the course of its evolution in time t ∈ [0, τ ].

The mixed state ρ̂(t) can be expressed in its spectral decomposition as

ρ̂(t) =

S
∑

k=1

ρk(t)|ρk(t)〉〈ρk(t)|, (2.20)

where ρk(t) ∈ [0, 1], satisfying the normalization condition,
S
∑

k=1

ρk = 1, are the eigen-

values, and {|ρk(t)〉}S
k=1, spanning the Hilbert space Hs of dimension S of the system,

is the set of eigenvectors of ρ̂(t). This state is purified by taking the system s as a

subsystem of a larger system s + a, where the added system a is called ancilla, of

dimension dim(a) ≥ S. So, the pure state |ψ(t)〉 ∈ Hs ⊗ Ha, Ha being the Hilbert

space in which the states of ancilla lies, can be expressed as

|ψ(t)〉 =
S
∑

k=1

√

ρk(t)|ρk(t)〉 ⊗ |ak〉. (2.21)

Here Ha is assumed to be spanned by {|ak〉}S
k=1, and its dimension, without loss of

generality, is taken to be S. The relative phase between |ψ(τ)〉 and |ψ(0)〉 reads

ΦG(τ) ≡ arg(〈ψ(0)|ψ(τ)〉)

= arg(

S
∑

k=1

√

ρk(0)ρk(τ)〈ρk(0)|ρk(τ)〉)

= arg(
S
∑

k=1

√

ρk(0)ρk(τ)〈ρk(0)|V (τ)|ρk(0)〉), (2.22)

where in the last step the transformation between orthonormal basis {|ρk(t)〉}S
k=1 and

{|ρk(0)〉}S
k=1 is performed by a unitary operator

V (τ) ≡
S
∑

k=1

|ρk(τ)〉〈ρk(0)|. (2.23)
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But this operator is not the only one that realizes the path between |ψ(0)〉 and |ψ(τ)〉.
Instead, there is an equivalence set of unitary operators Ṽ (t) of the form

Ṽ (t) = V (t)
S
∑

k=1

eiθk(t)|ρk(0)〉〈ρk(0)|, (2.24)

where θk are time-dependent real parameters such that θk(0) = 0. We know that

arg〈ψ(0)|ψ(τ)〉 gives the pure geometric phase of |ψ〉 in case its evolution satis-

fies the parallel transport condition 〈ψ(t)|ψ̇(t)〉 = 0, and if so |ρk〉 should satisfy

〈ρk(t)|ρ̇k(t)〉 = 0. Taking this condition into account with the operators Ṽ (t), they

removed the dependence of ΦG(t) upon the purification type displayed by equation

(2.21), and reached to the expression

ΦG(τ) = arg







S
∑

k=1

√

ρk(0)ρk(τ)〈ρk(0)|ρk(τ)〉e
−

∫ τ

0
〈ρk(t)|ρ̇k(t)〉dt






. (2.25)

The equation (2.25) is the most general expression for the geometric phase of a quan-

tum system evolving non-unitarily, i.e. in interaction with an environment.

2.2 Entanglement

The concept of entanglement was introduced as a tool for the test of completeness

and, in some sense consistency of the quantum theory, [3–5, 34]. Today it is a vital

concept for quantum information theory, [7,35,36]. In spite of this much significance,

there is no general agreement on a single definition or a measure of entanglement,

valid for all types of quantum states.

Mainly there are three difficulties against a general definition. These are non-locality,

violation of classical realism and separability. First, the strong overlap of wave-

functions of individual atoms in a Bose-Einstein condensate, [37], and the concept

of single particle entanglement with respect to its intrinsic degrees of freedom, [38,39],

makes the non-locality requirement meaningless. Second, violation of classical real-

ism which is described by Bell-type inequalities, [40–42], and was assumed to be a

signal for the existence of entanglement, indicates only the quantum nature of states.

This violation can be observed in truly unentangled states as well as entangled ones.

And third, non-separability condition, which is undoubtedly necessary for a state to

be entangled, is not sufficient for at least one definition. Three-tangle is defined for
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three-partite entanglement measure, [43], and gives 0 for the so-called inseparable

W -states,

|W 〉 =
1

3
(|100〉 + |010〉 + |001〉). (2.26)

Though it is still in need of an accurate definition, we have at least one necessary

condition for a quantum state to be entangled. And without further details we will be

content with this condition only, which will be mentioned below. It is because first,

the very definition of this enigmatic phenomenon is beyond the scope of this work.

Second, and fortunately, those quantum computation and quantum information tasks

requires the ability of only one- and two-qubit manipulations for which the following

necessity condition is also sufficient.

For an N -particle system’s state to possess N -partite entanglement it is necessary

that their total density matrix, ρ̂(N), can not be written in the form

ρ̂(N) =
∑

ij

p
(k)
ij ρ̂

(k)
i ⊗ ρ̂

(N−k)
j , (2.27)

for any k = 1 · · ·N − 1, where p
(k)
ij ∈ [0, 1] satisfy

∑

ij

p
(k)
ij = 1.

Since it is a ’kind of’ information between the corresponding parties of a total system,

and is purely quantum in nature, in order to quantify the entanglement in a two qubit

system, one has to answer the question ”how much quantum information does the

state of the pair involve?”. Before this, the quantification of classical information will

be stated, with which the quantum counterpart is closely related.

By knowing a random variable X it is meant that one has the complete information

about X. Or, with the complementary perspective, before knowing X there was some

uncertainty about X, and to know it one should remove this uncertainty. The amount

of uncertainty, before having the complete knowledge about X, and equivalently the

information gained, on the average, by knowing X, is given by the Shannon entropy,

[44], defined for a probability distribution {px} as

H(X) ≡ −
∑

x

px log2 px, (2.28)

where px is the probability for X to get the value x, x is a possible symbol for X, and

’loga’ is the logarithm function in base a.
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Now, let |ψ(AB)〉 be the pure state of a pair of quantum systems, A and B. The

appearing state from the viewpoint of either observer can be obtained by tracing over

the degrees of freedom of the other observer,

ρ̂A = TrB ρ̂
(AB), ρ̂B = TrA ρ̂

(AB), (2.29)

where ρ̂(AB) = |ψ(AB)〉〈ψ(AB)|, and TrK is the partial trace operation with respect to

part K.

What this operation does is more than tracing over one party, it takes the quantum

information, shared by the pair, out of the picture. That is, it creates an uncertainty

(in some sense) which does not appear when the pair is considered as a total system.

So it destroys the quantum information between A and B. The meaning of the

general physical quantity entropy, ”available space per available states”, makes it again

the best candidate for the quantification of this uncertainty. Because, ignoring one

subsystem of the whole creates some amount of space for the information between the

parties, which means that the parties share this information with some probability,

or share that information with some other probability, etc. Such probabilities did not

appear before. There were no room for more than one possibility, which is for the

state of the whole at which the subsystems can share only this information.

This time von Neumann entropy is the proper choice [45],

S(ρ̂K) ≡ −Tr ρ̂K log2 ρ̂
K

≡ E(|ψ(AB)〉). (2.30)

Here K can be either one of A and B, the result does not change. The amount of

entanglement, E, is the same from point of view of either observer, as it should be;

S(ρ̂A) = S(ρ̂B). (2.31)

In the spectral decomposition of its argument von Neumann entropy reduces to the

Shannon entropy,

S(ρ̂K) = −
∑

j

ρK
j log2 ρ

K
j , (2.32)

with ρK
j is the jth eigenvalue of the density matrix of the system K.

Bennett et al. [45] verified the validity of this quantification for entanglement as the

following. Take n copies of the bi-partite pure state |ψ(AB)〉. Let this n qubit pairs be
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reversibly convertible to maximum m copies of one of the completely entangled Bell

states, i.e. to the singlets

|βxy〉 ≡
1√
2

(|0, y〉 + (−1)x|1, 1 − y〉), x, y = 0, 1, (2.33)

by purely local operations and classical communication (LOCC). Then, the entangle-

ment of concentration for |ψ(AB)〉 is given as

EC(|ψ(AB)〉) =
m(n)

n
. (2.34)

They showed that for large n, EC(|ψ(AB)〉) approaches E(|ψ(AB)〉),

lim
n→∞

m(n)

n
= E(|ψ(AB)〉). (2.35)

Entanglement of concentration gives the number of singlets that can be extracted from

a state. The complementary perspective also gives a measure for bi-partite entangle-

ment; the minimum number of singlets required to create a state. This measure is

called entanglement of formation (EoF) and given by Bennet et al. [46]. It is defined

as the following. Let m′ copies of singlets (2.33) be reversibly convertible to n copies

of |ψ(AB)〉 by LOCC. Then, EoF for |ψ(AB)〉 is given as

EF (|ψ(AB)〉) =
m′(n)

n
. (2.36)

In case the state in question is pure, distillation (EC) and dilution (EF ) gives same

amount of entanglement S(ρ̂K). But for mixed states they need not be equal, [45–49].

Moreover, for mixed states, S(ρ̂K) can not be a measure of entanglement, since it

gives different values for different decompositions

ρ̂(AB) =
∑

j

pj |ψ(AB)
j 〉〈ψ(AB)

j |, (2.37)

of the same state ρ̂(AB). Here |ψ(AB)
j 〉 are the pure states of the pair (AB), and pj are

the corresponding weights for the decomposition in hand, satisfying
∑

j

pj = 1.

Depending on this argument Wootters et al. [50,51] introduced a well defined definition

for the quantification of entanglement of a bi-partite state ρ̂(AB) as

”the average entanglement of the pure states of the decomposition of the state ρ̂(AB),

minimized over all decompositions ”,
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E(ρ̂(AB)) ≡ min
∑

j

pjE(|ψ(AB)
j 〉), (2.38)

where

E(|ψ(AB)
j 〉) ≡ S(|ψ(AB)

j 〉〈ψ(AB)
j |). (2.39)

In case the parties A and B are two-level systems, it is possible to find a closed form

for the amount of entanglement (2.38) as a function of their density matrix. First we

define concurrence as

C(ρ̂(AB)) ≡ max(0, 2λmax − TrR), (2.40)

where λmax is the maximum of the eigenvalues of the matrix

R = |ρ̂(AB)Y ⊗ Y ρ̂∗
(AB)|1/2, (2.41)

with Y given by (2.5) in the basis B1 (2.4) is the Pauli matrix, σy, and ρ̂∗
(AB)

is

the complex conjugate of ρ̂(AB) with respect to the basis B2 (2.4). They proved that

E(ρ̂(AB)), (2.38), can be given in the closed form

E(ρ̂(AB)) = h

(

1 +
√

1 − C2

2

)

, (2.42)

with

h(x) ≡ −[x log2 x+ (1 − x) log2(1 − x)]. (2.43)
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CHAPTER 3

EVOLUTION OF SYSTEMS IN INTERACTION

WITH THE ENVIRONMENT

The quantum superposition of a system interacting with an environment decays, in

general, into statistical mixtures. This phenomenon is called decoherence. For quan-

tum computational and quantum informational tasks decoherence is one of the most

important limiting factors. So, one has to deal with it. The reason for the word in

general is that, the state of a system may evolve in a subspace of its total Hilbert

space without decohering. Such a subspace is called decoherence free [52, 53]. Such

subspaces may be obtained even with adiabatically [54] manipulating the environ-

ment [55]. Hodges et al. reported in [56] an experimental implementation of condi-

tional gate, CNOT gate, between two qubits, each of which lies in their decoherence

free (DF) subspaces. The gate is capable of creating entanglement between those

qubits. Since they are in DF subspaces it is possible to control these qubits coherently

so that the entanglement between them can live long enough.

But for more realistic cases we need to know the effects of environments on the tools

that are needed to be used in computational and informational processes. For this

purpose we have studied the effects of an environment at different temperatures and

the effects of electromagnetic field in squeezed state that drives the environment in

which our candidate systems live.

In this chapter some important properties of different kinds of reservoirs will be given.

These reservoirs constitute possible environments for the quantum systems to live in

and to interact with. Most of the notations and definitions used in the sections which

follow are taken from [57] and [58].
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3.1 Thermal States

In thermal equilibrium at temperature T the state of a system with Hamiltonian Ĥ

is represented by the density matrix

ρ̂thermal =
e
− Ĥ

kBT

Tr e
− Ĥ

kBT

(3.1)

where kB is the Boltzmann constant. The only non-zero moments are those containing

equal number of photon creation, b̂†, and annihilation, b̂, operators. First two of them

are

〈b̂†(ω1)b̂(ω1)〉ρ̂thermal
= n̄(ω1)δ(ω1 − ω1), (3.2)

〈b̂†(ω1)b̂†(ω2)b̂(ω2)b̂(ω1)〉ρ̂thermal
= n̄(ω1)n̄(ω2)[δ(ω1 − ω1)δ(ω2 − ω2)−

δ(ω1 − ω2)δ(ω2 − ω1)], (3.3)

where ~ is the Planck’s constant divided 2π,

n̄(ω) = (e
~ω

kBT − 1)−1 (3.4)

is the average number of thermal photons with frequency ω, and b̂(ω), b̂†(ω) are the

annihilation and the creation operators for the corresponding photons, satisfying

[b̂(ω), b̂†(ω′)] = δ(ω − ω′). (3.5)

3.2 Squeezed States

Squeezed states are one of the most important types of states of radiation field. They

are characterized by the property that the variance of a quadrature operator x̂λ, ∆x̂λ

is less than 1/2. Here the operator x̂λ is defined in terms of operators b̂† and b̂ as

x̂λ ≡ 1√
2

(b̂e−iλ + b̂†eiλ), (3.6)

with [b̂, b̂†] = 1, and λ ∈ R being a phase. And it is said that the quadrature x̂λ is

squeezed. Following the Heisenberg uncertainty relation,

∆x̂2
λ∆x̂2

λ+π/2 ≥ 1

4
|〈[x̂λ, x̂λ+π/2]〉|2 =

1

4
, (3.7)
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the variance in x̂λ+π/2 is greater than 1/2. Here [x̂λ, x̂λ+π/2] = i is the commutator

between quadrature operators. As an illustration with a physical quantity, consider a

quantized single-mode electric field of frequency ν, amplitude E, and polarized in the

direction ǫ̂,

~E(t) = ǫ̂E(b̂e−iνt + b̂†eiνt). (3.8)

In terms of quadrature operators given above, ~E(t) is given as

~E(t) =
√

2ǫ̂E
[

x̂λ cos(λ− νt) − x̂λ+π/2 sin(λ− νt)
]

. (3.9)

Single mode squeezed states are generated by the action of the unitary squeezing

operator Ŝ(ξ) on ordinary vacuum,

|ξ〉 ≡ Ŝ(ξ)|0〉

≡ exp

(

−ξ
2
b̂†2 +

ξ∗

2
b̂2
)

|0〉, (3.10)

with ξ = rξe
iφξ ∈ C, ξ∗ the complex conjugate of ξ, and rξ, φξ ∈ R characterizing the

squeezing.

The annihilation and creation operators b̂ and b̂† transform by Ŝ(ξ) as

Ŝ†(ξ)b̂Ŝ(ξ) = b̂ cosh(rξ) − b̂† eiφξ sinh(rξ), (3.11)

Ŝ†(ξ)b̂†Ŝ(ξ) = b̂† cosh(rξ) − b̂ e−iφξ sinh(rξ). (3.12)

For two modes with annihilation operators b̂1 and b̂2, the two-mode squeezed vacuum

state |ξ12〉 is generated by the action of the two-mode squeezing operator

Ŝ12(ξ) ≡ exp(−ξb̂†1b̂
†
2 + ξ∗b̂2b̂1), (3.13)

on the vacuum |0102〉. The operator Ŝ12(ξ) is not simply the product of the single-

mode squeezing operators for the modes 1 and 2. The generalization of the squeezed

vacuum states to a continuum of modes is achieved by acting on the vacuum state |0〉
of the continuum field with the squeezing operator

Ŝ[ξ(ω)] = exp

(

−1

2

∫ 2Ω

ω
dω[ξ(ω)b̂†(ω)b̂†(2Ω − ω) − ξ∗(ω)b̂(2Ω − ω)b̂(ω)]

)

, (3.14)
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where ξ(ω) = rξ(ω) exp [iφξ(ω)], and 2Ω is the squeezing carrier frequency, which

is the natural generalization of the two-mode squeezing operator (3.13). Since they

multiply the same pairs in the integrand, we can set, without loss of generality, ξ(ω)

and ξ(2Ω − ω) as equal, i.e. r(ω) = r(2Ω − ω) and φ(ω) = φ(2Ω − ω). It is then said

that the field is squeezed at frequency Ω. The statistical properties of the continuum

squeezed vacuum state

|{ξ(ω)}〉 = Ŝ[ξ(ω)]|0〉 (3.15)

can be found with the aid of the transformations

Ŝ†[ξ(ω)] b̂(ω
′

) Ŝ[ξ(ω)] = b̂(ω
′

) cosh(rξ(ω
′

))−

b̂†(2Ω − ω
′

) exp[iφξ(ω
′

)] sinh(rξ(ω′)), (3.16)

and

Ŝ†[ξ(ω)] b̂†(ω
′

) Ŝ[ξ(ω)] = b̂†(ω
′

) cosh(rξ(ω
′

))−

b̂(2Ω − ω
′

) exp[−iφξ(ω
′

)] sinh(rξ(ω′)). (3.17)

The lowest order moments in the continuum squeezed vacuum are

〈b̂(ω)〉ξ(ω) = 0, (3.18)

〈b̂†(ω)〉ξ(ω) = 0, (3.19)

〈b̂†(ω)b̂(ω
′

)〉ξ(ω) = sinh2 rξ(ω) δ(ω − ω
′

), (3.20)

〈b̂(ω)b̂†(ω
′

)〉ξ(ω) = cosh2 rξ(ω) δ(ω − ω
′

), (3.21)

〈b̂(ω)b̂(ω
′

)〉ξ(ω) = −e[iφξ(ω)] sinh rξ(ω) cosh rξ(ω) δ(ω + ω
′ − 2Ω), (3.22)

= 〈b̂†(ω)b̂†(ω
′

)〉∗ξ(ω), (3.23)

where (3.20) defines the photon number function N(ω) = N(2Ω − ω), and (3.22)

defines the two-photon correlation function M(ω) = M(2Ω − ω).
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3.3 Coherent States

Coherent states are another important type of radiation field states. Single mode

coherent state is defined as

|α〉 ≡ D̂(α)|0〉 (3.24)

≡ exp(αb̂† − α∗b̂)|0〉 (3.25)

= exp
(

−|α|2/2
)

exp(αb̂†) exp(−α∗b̂)|0〉, (3.26)

where α is any complex number. Here, |α〉 is an eigenstate of the annihilation operator

with eigenvalue α,

b̂|α〉 = α|α〉, (3.27)

and it follows from (3.26) that

|α〉 = exp
(

−|α|2/2
)

∞
∑

n=0

αn

√

(n!)
|n〉, (3.28)

where the single-mode number states |n〉 are the eigenatates of the number operator n̂

with eigenvalues n. So, for a radiation field in a coherent state |α〉 the mean number

of photons is

〈n̂〉α ≡ 〈α|b̂†b̂|α〉

= |α|2, (3.29)

and the variance of n̂ is easily calculated to be equal to it

∆n2 ≡ 〈n̂2〉α − 〈n̂〉2α

= |α|2. (3.30)

Their equivalence is a characteristic of the Poissonian statistics, namely the photon

number probability distribution P (n) for the coherent state |α〉 is

P (n) ≡ |〈n|α〉|2

= exp
(

−|α|2
) |α|2n

n!
. (3.31)

Another important property of coherent states to be mentioned is that, for all coherent

states the variances of the quadrature operator, x̂λ, defined by (3.6), and its conjugate

component, x̂λ+π/2, are same and equal to 1/2,

∆x̂2
λ =

1

2
= ∆x̂2

λ+π/2. (3.32)
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It follows that coherent states are minimum uncertainty states.

Under the action of the unitary operator D̂(α) defined in (3.24) the annihilation and

the creation operators b̂ and b̂† transform as follows

D̂†(α)b̂D̂(α) = b̂+ α (3.33)

D̂†(α)b̂†D(α) = b̂† + α∗. (3.34)

With this property the operator D̂(α) takes its name as the displacement operator.

Accordingly, continuum displacement operator D̂[α(ω)] acts on the continuum anni-

hilation and creation operators as

D̂†[α(ω)]b̂(ω
′

)D̂[α(ω)] = b̂(ω
′

) + α(ω
′

) (3.35)

D̂†[α(ω)]b̂†(ω
′

)D̂[α(ω)] = b̂†(ω
′

) + α∗(ω
′

). (3.36)

It defines the continuum coherent state

|{α(ω)}〉 ≡ D̂[α(ω)]|0〉

≡ exp

(∫

dω[α(ω)b̂†(ω) − α∗(ω)b̂(ω)]

)

|0〉, (3.37)

which is an eigenstate of the continuum annihilation operator b̂(ω), so is an eigenstate

of the boson annihilation operator

b̂f ≡
∫

dω f∗(ω) b̂(ω) (3.38)

with eigenvalue

αf =

∫

dω f∗(ω) α(ω), (3.39)

where f(ω) is any complex function satisfying the normalization condition
∫

dω|f(ω)|2 = 1. (3.40)

The expectation value of the normal ordered product (b̂†f )l(b̂f )m in the continuum

coherent state is

〈{α(ω)}|(b̂†f )l(b̂f )m|{α(ω)}〉 = (α∗
f )l(αf )m. (3.41)

For l = m

〈(b̂†f )l(b̂f )l〉α(ω) = 〈b̂†f b̂f 〉lα(ω),

showing that statistics associated with quanta annihilated by b̂f are Poissonian i.e.

the variance is equal to the mean.
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3.4 System, Environment, and Their Interaction

The Hamiltonians for the system, environment and their interaction are given as ĤS ,

ĤR and ĤRS , respectively,

Ĥ = ĤS + ĤR + ĤRS

≡ Ĥ0 + ĤRS . (3.42)

Environment will be assumed to be a bath of harmonic oscillators with creation op-

erator b̂(ω)† and annihilation operator b̂(ω) for the ω-mode,

ĤR = ~

∫

ωb̂†(ω)b̂(ω)dω. (3.43)

The system is a collection of 2−level systems each of which will be characterized by

the dipole operators

ŝ+j ≡ |ej〉〈gj |,

ŝ−j ≡ |gj〉〈ej |, (3.44)

ŝz
j ≡ 1

2
(|ej〉〈ej | − |gj〉〈gj |),

with the transition frequency ωj between the excited state, |ej〉, and the ground state,

|gj〉, of the jth 2−level system. The dipole operators (3.44) satisfy the well-known

commutation

[ŝ+j , ŝ
−
k ] = 2ŝz

jδjk,

[ŝz
j , ŝ

±
k ] = ±ŝ±j δjk, (3.45)

and anti-commutation

{ŝ+j , ŝ−k } = δjk (3.46)

relations, with (ŝ±j )2 = 0.

The Hamiltonian of the J 2−level systems is

ĤS = ~

J
∑

j=1

ωj ŝ
z
j . (3.47)

The interaction Hamiltonian ĤRS in Schrödinger picture is assumed to be as

ĤRS = ~

J
∑

j=1

∫ ∞

−∞
dωgj(ω)ŝ+j b̂(ω) + h.c. (3.48)
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where gj(ω), depending on ωj and ω, is the coupling coefficient between the jth 2-level

system and the ω-mode of the reservoir, and h.c. indicates the hermitian conjugate of

the previous term.

The total (system + environment) is represented by the density matrix ρ̂RS for which

the equation of motion in the interaction picture reads

d

dt
ρ̂RS(t) ≡ ˙̂ρRS(t) = − i

~
[V̂ (t), ρ̂RS(t)], (3.49)

where

V̂ (t) = e
i
~
Ĥ0tĤRS e

− i
~

Ĥ0t (3.50)

is the interaction Hamiltonian in the interaction picture.

Integrating (3.49) and inserting the result again in (3.49) gives

˙̂ρRS(t) = − i

~
[V̂ (t), ρ̂RS(0)] − 1

~2

∫ t

0
[V̂ (t), [V̂ (t′) , ρ̂RS(t′)] ] dt′. (3.51)

Since it has infinitely many degrees of freedom, evolution resulting from coupling with

the finite system does not affect the environment significantly. This enables us to

assume that the reservoir, represented by the density matrix ρ̂R, remains in its initial

state during this evolution, i.e.

ρ̂R(t) = ρ̂R(0).

Ignoring the terms not affecting the dynamics, total density matrix can be written as

ρ̂RS(t) ≃ ρ̂S(t) ⊗ ρ̂R(0).

Here ρ̂S(t) is the system’s density operator, and is obtained from ρ̂RS(t) by tracing

out the reservoir’s degrees of freedom,

ρ̂S(t) = TrR ρ̂RS(t).

So, the equation of motion for ρ̂S(t) is

˙̂ρS(t) = − i

~
TrR[V̂ (t), ρ̂S(0) ⊗ ρ̂R(0)] − 1

~2
TrR

∫ t

0
[V̂ (t), [V̂ (t′) , ρ̂S(t′) ⊗ ρ̂R(0)] ] dt′.

(3.52)

Substituting the explicit form of the interaction picture Hamiltonian V̂ (t),

V̂ (t) = ~

J
∑

j=1

∫ ∞

−∞
dω
(

gj(ω)ŝ+j b̂(ω)ei(ωj−ω)t
)

+ h.c., (3.53)
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into (3.52) one gets

˙̂ρS(t) = {−i
J
∑

j=1

[ŝ+j , ρ̂S(0)]

∫ ∞

−∞
dω
(

gj(ω)ei(ωj−ω)t〈b̂(ω)〉R
)

+

∫ t

0
dt′
∫ ∞

−∞
dω′

∫ ∞

−∞
dω

J
∑

j=1

J
∑

j′=1

(gj(ω)gj′(ω
′)ei(ωj−ω)tei(ωj′−ω′)t′

×[ (ŝ+j′ ρ̂S(t′)ŝ+j − ŝ+j ŝ
+
j′ρ̂S(t′))〈b̂(ω)b̂(ω′)〉R

+ (ŝ+j ρ̂S(t′)ŝ+j′ − ρ̂S(t′)ŝ+j′ ŝ
+
j )〈b̂(ω′)b̂(ω)〉R ]

+ gj(ω)g∗j′(ω
′)ei(ωj−ω)te−i(ωj′−ω′)t′

×[ (ŝ−j′ ρ̂S(t′)ŝ+j − ŝ+j ŝ
−
j′ ρ̂S(t′))〈b̂(ω)b̂+(ω′)〉R

+ (ŝ+j ρ̂S(t′)ŝ−j′ − ρ̂S(t′)ŝ−j′ ŝ
+
j )〈b̂+(ω)b̂(ω′)〉R ])}

+ h.c., (3.54)

where 〈operator〉R means the expectation value of the reservoir operator.

In the next step, one more assumption will be taken into account. In order to illustrate

this assumption explicitly, we write the second term in (3.54) that contains time

integral as follows,

ρ̂2.(t) =

∫ ∞

−∞
dβf̂(β)

∫ t

0
dt′ρ̂(t′)ei(β−β0)(t−t′). (3.55)

Here we confine all the terms, which are not necessary for this illustration, into the

definitions of new variables. If f̂(β) is a slowly varying function function of β, then

the β-integration would yield a strongly localized function in time at t′ = t. This

function approximates a Dirac-delta function the width of which depends on the β-

rate-of-change-of-f̂ . In this case ρ̂(t′) in (3.55) can be taken outside the integral as

ρ̂(t),

ρ̂2.(t) ≃ ρ̂(t)

∫ ∞

−∞
dβf̂(β)

∫ t

0
dt′ei(β−β0)(t−t′). (3.56)

Since in the t′ integration the contribution will be prominently at t′ ∼= t, the upper

limit can be extended to infinity,

ρ̂2.(t) ≃ ρ̂(t)

∫ ∞

−∞
dβf̂(β)

∫ ∞

0
dt′ei(β−β0)(t−t′). (3.57)
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Performing these integrals would yield as follows,

ρ̂2.(t) ≃ ρ̂(t)

∫ ∞

−∞
dβf̂(β)

(

πδ(β − β0) + iP 1

(β − β0)

)

(3.58)

= ρ̂(t)

(

πf̂(β0) + iP
∫ ∞

−∞
dβ

f̂(β)

(β − β0)

)

, (3.59)

where P denotes the principal part of the integral,

P
∫ ∞

−∞
dβ

f̂(β)

(β − β0)
≡ lim

δ→0

(

∫ β0−δ

−∞
dβ

f̂(β)

(β − β0)
+

∫ ∞

β0+δ
dβ

f̂(β)

(β − β0)

)

. (3.60)

This principal part integral yields a shift in the natural frequency, β0, of the system.

Practically by redefining the natural frequency, these shifts can be incorporated into

the free Hamiltonian. Thus, since it does not effect the dynamics of the system, we

will ignore these shifts.

The physical motivation behind this approximation is that, the large number of reser-

voir degrees of freedom causes a damping on the system. And this damping destroys

the memory of the past. It is the so called Markov approximation. Now we define

the reservoir in which the Markov approximation will be assumed. The environment

is taken to be a continuum in a thermal bath that is driven by a squeezed coherent

field, i.e.

ρ̂R = Ŝ[ξ(ω)] D̂[α(ω)] ρ̂thermal Ŝ
†[ξ(ω)] D̂†[α(ω)] (3.61)

The operator moments in (3.54) can easily be calculated for this reservoir with the

aid of the displacement and the squeezing operators given in (3.16, 3.35). They are

listed below:

〈b̂(ω)〉R = α(ω) cosh r(ω) − α∗(2Ω − ω)eiφ(ω) sinh r(ω), (3.62)

〈b̂(ω)b̂(ω′)〉R = (α(ω) cosh r(ω) − α∗(2Ω − ω) sinh r(ω)eiφ(ω))

×(α(ω′) cosh r(ω′) − α∗(2Ω − ω′) sinh r(ω′)eiφ(ω′))

−[(n(ω) + 1) cosh r(ω) sinh r(ω′)eiφ(ω′)

+n(ω′) sinh r(ω) cosh r(ω′)eiφ(ω)]δ(ω + ω′ − 2Ω)

= 〈b(ω)〉〈b(ω′)〉

−[(n(ω) + 1) cosh r(ω) sinh r(ω′)eiφ(ω′)
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+n(ω′) sinh r(ω) cosh r(ω′)eiφ(ω)]δ(ω+ω′−2Ω), (3.63)

〈b̂(ω)b̂†(ω′)〉R = (α(ω) cosh r(ω) − α∗(2Ω − ω) sinh r(ω)eiφ(ω))

×(α∗(ω′) cosh r(ω′) − α(2Ω − ω′) sinh r(ω′)e−iφ(ω′))

+[(n(ω) + 1) cosh r(ω) cosh r(ω′)

+n(2Ω − ω) sinh r(ω) sinh r(ω′)ei(φ(ω)−φ(ω′))]δ(ω − ω′)

= 〈b(ω)〉〈b†(ω′)〉

+[(n(ω) + 1) cosh r(ω) cosh r(ω′)

+n(2Ω − ω) sinh r(ω) sinh r(ω′)ei(φ(ω)−φ(ω′))]δ(ω − ω′),

(3.64)

〈b̂†(ω)b̂(ω′)〉R = (α(ω′) cosh r(ω′) − α∗(2Ω − ω′) sinh r(ω′)eiφ(ω′))

×(α∗(ω) cosh r(ω) − α(2Ω − ω) sinh r(ω)e−iφ(ω))

+[(n(2Ω − ω) + 1) sinh r(ω) sinh r(ω′)e−i(φ(ω)−φ(ω′))

+n(ω) cosh r(ω) cosh r(ω′)]δ(ω − ω′)

= 〈b†(ω)〉〈b(ω′)〉

+[(n(2Ω − ω) + 1) sinh r(ω) sinh r(ω′)e−i(φ(ω)−φ(ω′))

+n(ω) cosh r(ω) cosh r(ω′)]δ(ω − ω′). (3.65)

In the next chapter we will consider different systems in specified environments. For

these systems we will find the solution for the equation (3.54) by taking into account

the Markov approximation.
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CHAPTER 4

EFFECTS ON GEOMETRIC PHASE AND

ENTANGLEMENT DUE TO THE INTERACTION

BETWEEN CARRIER SYSTEMS AND

ENVIRONMENT

4.1 Geometric Phase

As it was mentioned in chapter two a full understanding of the nature of quantum

geometric phase in different environments is vital for quantum computations. Because

it is proposed to implement the controlled gates, [13,56], and these gates are of crucial

importance for a universal set of quantum logic gates. In this section the analysis of

the environmental characteristics affecting the geometric phases will be given.

The effects of such environments on the geometric phase that will be gained by the

state of an open quantum system was studied before.

Wang et al. [59] analyzed the effects of a squeezed vacuum reservoir on geometric phase

of a two-level atom in an electromagnetic field by a formulation entirely in terms of

geometric structures. Carollo et al. [55] showed that geometric phase can be induced

by cyclic evolution in an adiabatically manipulated the environment, which is again a

squeezed vacuum reservoir.

Banerjee and Srikanth studied the effects of a squeezed-thermal environment on the

geometric phase of a two-level atom, [60]. In this study two types of interaction

between the two-level atom and the environment was considered; one is quantum

non-demolitional and in the other weak Born-Markov approximation is considered.
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Rezakhani and Zanardi analyzed the temperature effects on mixed-state geometric

phase for one and two coupled spin-1/2 particles, [26].

In this work the geometric phase gained by a two-level nucleus in a mixed state, which

is evolving non-unitarily, viz. in interaction with the environment, is studied. The

effects of temperature, magnetic field and squeezing is analyzed in the time evolution

of the system. The relationships between those effects is also examined.

Our specific system is a single spin 1/2 nucleus in a magnetic field ~B. We assume

that the static magnetic is in the direction of the quantization axis which is assumed

to define the z−axis, i.e. ~B = Bẑ. In this case the Hamiltonian of the system is

ĤS = −~̂µ · ~B

= −~γnBÎ
z, (4.1)

where γn is the gyromagnetic ratio of the nucleus, and Îz is the z−component of the

spin operator Î of the nucleus,

Îz =
1

2





1 0

0 −1



 . (4.2)

Defining ω(n) ≡ γnBz, we have the interaction picture Hamiltonian as

V (t) = ~

∫ ∞

−∞
dω[gn(ω)e−i(ω(n)+ω)tÎ+b̂(ω) + h.c.], (4.3)

where Î± defined in terms of the x− and y−components of spin operator Î as Î± ≡
Îx ± iÎy, and satisfy the commutation relations

[Îz, Î±] = ±Î±, (4.4)

[Î+, Î−] = 2Îz . (4.5)
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4.1.1 Temperature and Applied Magnetic Field Dependencies of Geomet-

ric Phase

In order to analyze the effects of only temperature and magnetic field in time we set

α = r = φ = 0 in equations (3.62-3.65). The operator moments in this case are

〈b̂(ω)〉R = 0

〈b̂(ω)b̂(ω′)〉R = 0

〈b̂(ω)b̂†(ω′)〉R = (n(ω) + 1)δ(ω − ω′)

〈b̂(ω)b̂†(ω′)〉R = n(ω)δ(ω − ω′) (4.6)

Inserting equations (4.3) and (4.6) into equation (3.54) and performing the integrals

by taking into account the Markov approximation, we get the equation of motion for

the density matrix of the nucleus as

˙̂ρS(t) = πg2{ (n(ω(n)) + 1)[ (Î−ρ̂S(t)Î+ − Î+Î−ρ̂S(t))

+n(ω(n))(Î
+ρ̂S(t)Î− − ρ̂S(t)Î−Î+) ]} + h.c. , (4.7)

where

n(ω(n)) ≡ n(B,T ) =

(

~γn

kBT
B − 1

)−1

, (4.8)

T being the temperature of the environment. Here the coupling coefficient, gn(ω),

between the nucleus and the ω−mode of the reservoir is taken to be constant, g.

We obtained the solution of the equation (4.7) as

ρS11(t) =
n(ωn)

2n(ωn) + 1
+

(

ρS11(0) − n(ωn)

2n(ωn) + 1

)

e−(4n(ωn)+2)πg2
(4.9)

ρS12(t) = ρS12(0)e−(2n(ωn)+1)πg2
, (4.10)

where ρSij(t) is the ij-th entity of the matrix ρ̂S(t). In terms of these, the eigenvalues

and the normalized eigenvectors of ρ̂S(t) are

λS±(t) =
1

2

(

1 ±
√

1 − 4(ρS11(t)(1 − ρS11(t)) − |ρS11(t)|2)
)

, (4.11)

|ρS±(t)〉 .= N±(t)





ρS12(t)e−iω(n)t

(λS±(t) − ρS12(t))eiω(n)t



 , (4.12)
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with the normalization coefficient

N±(t) = (|ρS12(t)|2 + (λS±(t) − ρS12(t))2)−1/2. (4.13)

Since ρ̂S(t) is the density matrix in an interaction picture, and since geometric phase

expression (2.25) assumes Schrödinger picture, we have transformed the eigenvectors

of ρ̂S(t) into Schödinger picture. The last term in the geometric phase (GP) expression

(2.25), which is the exponent, can be expressed in terms of (4.9) and (4.10) as follows,

−
∫ t

0
〈ρS±(t′)|ρ̇S±(t′)〉dt′ =

−i
∫ t

0

Im[ρ̇S12(t′)ρ∗S12(t′)] − ωn

[

|ρS12(t′)|2 − (λS±(t′) − ρS11(t′))2
]

|ρS12(t′)|2 − (λS±(t′) − ρS11(t′))2 dt′. (4.14)

We calculated (4.14) for the system in hand, and obtained explicitly

−
∫ t

0
〈ρS±(t′)| d

dt′
|ρS±(t′)〉dt′ = iω(n)

( |ρS12(0)|2
2αγ + β

− 1

)

t

±iω(n)
|ρS12(0)|2

(4n(ω(n)) + 2)πg2(2αγ + β)
[ Arcsinh

(

2α2e(4n(ω(n))+2)πg2t + β
√

4α2γ2 − β2

)

− Arcsinh

(

2α2 + β
√

4α2γ2 − β2

)

− Arcsinh

(

2γ2e−(4n(ω(n))+2)πg2t + β
√

4α2γ2 − β2

)

+ Arcsinh

(

2γ2 + β
√

4α2γ2 − β2

)

], (4.15)

where

α ≡ 1

4n(ωn) + 2
, (4.16)

γ ≡ ρS11(0) − n(ωn)

2n(ωn) + 1
, (4.17)

β ≡ |ρS12(0)|2 − γ. (4.18)

Now, with equations (4.11), (4.12) and (4.15) we are able to calculate the GP, ΦG, of

the system. We will analyze the temperature and the magnetic field dependence of ΦG

as it evolves in time. For this purpose we first define new dimensionless parameters

for time, magnetic field, and temperature as g2 t, γn

g2B, kB

g2~
T , respectively. We take

an arbitrary initial state, defined by ρS11(0) = 0.6 and ρS12(0) = 0.3, and evaluate

the time evolution of GP.
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Figure 4.1: GP (ΦG, in radians), versus time. Time, t, is in unit of g−2. Here, we have

taken γn

g2B = 1, i.e. magnetic field, B, is in unit of g2

γn
, and kB

g2~
T = 1, i.e. temperature,

T , is in unit of g2
~

kB
.

The figure (4.1) shows the behavior of ΦG for g2t ∈ [0, 100]. Each blue dot shows the

first point on the next 2π segment, which ΦG sweeps. So, (2×nd− 1)π per unit time

gives the speed of ΦG. Here, nd stands for the number of the dots, and we will use

it as the measure of speed of GP. The increase in the negative direction shows that

the angle that defines GP rotates clockwise. At some instants 60.01 g2t, 66.03 g2t and

72.03 g2t it oscillates back-and-forth around −19π, −21π and −23π, respectively. But

then it continues to rotate in the same direction.

By fixing temperature at g2~

kB
T = 1 we analyzed the behavior of ΦG for different values

of magnetic field γn

g2B.
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Figure 4.2: GP (ΦG, in radians), versus time, for various values of γn

g2B. Time, t, is

in unit of g−2. Here, we have taken kB

g2~
T = 1, i.e. temperature, T , is in unit of g2

~

kB
.

It is understood from figure (4.2) that when we increase magnetic field twice of its

first value, ΦG becomes very unstable. Because it completes 265 rotations in a 100 g−2

time interval by sweeping a 1664.74 radians angle, while it completed 22 rotations by

sweeping 99.64 radians angle before the magnetic field is doubled. For a stronger

magnetic field, B, γn

g2B = 4, GP changes the direction of rotations, this time counter-

clockwise. It becomes more stable, because number of full rotations is 103 and the

swept angle is 645.28 radians in this case. Further increases in B to the values γn

g2B =

8, 16 decrease the stability of ΦG that continues rotating counter-clockwise.

Next, we increase temperature twice, and look how does ΦG evolves, first for a single

value of magnetic field, B.
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Figure 4.3: GP (ΦG, in radians), versus time. Time, t, is in unit of g−2. Here, we have

taken γn

g2B = 1, i.e. magnetic field, B, is in unit of g2

γn
, and kB

g2~
T = 2, i.e. temperature,

T , is in unit of g2~

kB
.

Data of figure (4.3) differs from figure (4.1)’s only in temperature. Comparing these

two figures we see two little differences when the other physical parameters are held

fixed. First, the back-and-forth oscillations again occur but this time at different times

9.57 g2t, 72.07 g2t and 91.26 g2t around −3π, −23π and −29π, respectively. Second,

the total angle swept is 99.51 radians while it was 99.64 radians both with 22 surface-

changes.

We will analyze again magnetic field dependence of ΦG, but this time fixing temper-

ature at a higher value, kB

g2~
T = 2.
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Figure 4.4: GP (ΦG, in radians), versus time, for various values of γn

g2B. Time, t, is

in unit of g−2. Here, we have taken kB

g2~
T = 2, i.e. temperature, T , is in unit of g2

~

kB
.

How does the change in temperature affects the GP, that is understood from the

figure (4.4), can be listed as follows; change in the stability occurs at a stronger

magnetic field. The crazy increase in the speed takes place at a magnetic field value

in γn

g2B ∈ (2, 4], while this value was γn

g2B ∈ (1, 2], for a lower temperature, (figure 4.2).

The change in the direction of rotation occurs at a magnetic field strength between

4 g2

γn
and 8 g2

γn
. While it was between 2 g2

γn
and 4 g2

γn
for T = g2~

kB
. When this change

occurs, the stability increases, at least relatively.

In order to be able to make some generalizations we increase the temperature further,

again in the same ratio. What we obtained is summarized in the next figure.
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Figure 4.5: GP (ΦG, in radians), versus time, for various values of γn

g2B. Time, t, is

in unit of g−2. Here, we have taken kB

g2~
T = 4, i.e. temperature, T , is in unit of g2~

kB
.

The general characteristics does not change. Before it changes its direction with the

changing magnetic field, there is a wild increase in the speed of GP; number of dots

increases from 194 for B = 4 g2

γn
to 1059 for B = 8 g2

γn
, whereas the increase is from 70

to 194 for the increase in magnetic field from B = 2 g2

γn
to B = 4 g2

γn
. And a change

in the direction of rotations takes place at a magnetic field stronger than B = 4 g2

γn
.

When we compare with the previous figures we saw that this change occurs always

for the ratio ~γn

kB

B
T > 2.

These are reasonable results. Because, increase in magnetic field increases the differ-

ences between energy levels of a system, which means the system is more quantized,

and increase in temperature decreases that difference, so that this less quantized sys-

tem goes to a classical system for which the energy spectrum is a continuum. And we

know that the more quantized a system is, the more those quantum characteristics

come into prominence.

In order to reach more generalizations we analyze GP with decreasing magnetic field,

again by holding temperature fixed at different values. First results are for a very
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low temperature. The figure (4.6) shows that for temperature T = g2
~

kB
, decrease in

magnetic field increases the stability of GP; number of dots decreases. It does not

change its direction of rotation.
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Figure 4.6: GP (ΦG, in radians), versus time, for various values of γn

g2B. Time, t, is

in unit of g−2. Here, we have taken kB

g2~
T = 1, i.e. temperature, T , is in unit of g2~

kB
.

In the next two figures we increase temperature to values kB

g2~
T = 2, 16, decrease the

strength of magnetic field gradually, and see that the general behavior of GP does not

change.
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Figure 4.7: GP (ΦG, in radians), versus time, for various values of γn

g2B. Time, t, is

in unit of g−2. Here, we have taken kB

g2~
T = 2, i.e. temperature, T , is in unit of g2~

kB
.

37



20 40 60 80 100
g

2
t

-5000

-4000

-3000

-2000

-1000

FHtL

Γ
n

g 2 B=16, nd=775, FH100L=4871.16

Γn

g2
B=0.5, nd=46, FH100L=50.74

Γn

g2
B=1, nd=58, FH100L=100.39

Γn

g
2

B=2, nd=184, FH100L=200.07

Γ
n

g2
B=4, nd=283, FH100L=1777.19

Γ
n

g 2 B=8, nd=421, FH100L=2646.75

Figure 4.8: GP (ΦG, in radians), versus time, for various values of γn

g2B. Time, t, is

in unit of g−2. Here, we have taken kB

g2~
T = 16, i.e. temperature, T , is in unit of g2

~

kB
.

Another point on the effects of magnetic field and temperature on GP is the magnetic

field at which it changes its direction of rotation. In figure (4.9) its seen that GP

begins to rotate really very fast before it changes its direction, number of dots are

of the order 4000. For temperature T = g2~

kB
, this change occurs at a magnetic field

strength γn

g2B between 2.3595 and 2.36.
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Figure 4.9: GP (ΦG, in radians), versus time, for various values of γn

g2B around which

GP changes its direction of rotation. Time, t, is in unit of g−2. Here, we have taken
kB

g2~
T = 1, i.e. temperature, T , is in unit of g2

~

kB
.

Now, by taking into consideration all data above in the figures, the most general result

that one can reach can be stated as geometric phase depends on the ratio,
~γn

kBTB,

more than other physical parameters. This ratio determines the average number of

excitations in the environment. The dependencies of GP can be listed as;

1. Stability of GP is determined by the magnetic field which influences the system.

2. GP is more stable when ratio is less than 1.

3. GP changes its direction of rotation when the ratio is between 2 and 3, and

around these ratios it has a speed so that it would be interrogated whether GP

can be used in QIT.

In the next section, we will analyze how GP is affected in another type of environment.
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4.1.2 Applied Magnetic Field and Squeezed-State-Driven-Environment

Dependencies of Geometric Phase

The environment we will consider is assumed to be held at a fixed temperature and

driven by an electromagnetic field in a squeezed state. For such an environment the

operator moments (3.62-3.65) are given as,

〈b̂(ω)〉 = 0

〈b̂(ω)b̂(ω′)〉 = −([n(ω) + 1] cosh r(ω) sinh r(ω′)eiφ(ω′)

+n(ω′) cosh r(ω′) sinh r(ω)eiφ(ω))δ(ω + ω′ − 2Ω)

〈b̂(ω)b̂†(ω′)〉 = ([n(ω) + 1] cosh r(ω) cosh r(ω′)

+n(2Ω − ω) sinh r(ω′) sinh r(ω)ei(φ(ω)−φ(ω′)))

〈b̂†(ω)b̂(ω′)〉 = (n(ω) sinh r(ω′) sinh r(ω)

+[n(2Ω − ω) + 1] sinh r(ω) sinh r(ω′)e−i(φ(ω)−φ(ω′))).

(4.19)

Here the parameters 2Ω is the squeezing carrier frequency, and r and φ characterizes

the squeezing, as defined in chapter II.

With these moments, the equation of motion (3.54) for the single spin-1/2 nucleus

becomes,

˙̂ρS(t) = πg2
(

[n(ωn) + 1] cosh2 r(ωn) + n(2Ω − ωn) sinh2 r(ωn)
)

×
(

2Î−ρ̂S(t)Î+ − Î+Î−ρ̂S(t) − ρ̂S(t)Î+Î−
)

+πg2
(

n(ωn) cosh2 r(ωn) + [n(2Ω − ωn) + 1] sinh2 r(ωn)
)

×
(

2Î+ρ̂S(t)Î− − Î−Î+ρ̂S(t) − ρ̂S(t)Î−Î+
)

−πg2 (n(2Ω − ωn) + n(ωn) + 1) sinh 2r(ωn)

×
(

ei[2(ωn−Ω)t+φ(ωn)]Î+ρ̂S(t)Î+ + e−i[2(ωn−Ω)t+φ(ωn)]Î−ρ̂S(t)Î−
)

. (4.20)

We obtained the solution of this equation in terms of matrix elements as,

ρS11(t) = ρS11(0)e−2(A+B)t +
A

A+B

(

1 − e−2(A+B)t
)

, (4.21)
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ρS12(t) =
(

Ce
√

k2−(ωn−Ω)2t + (ρS12(0) − C)e−
√

k2−(ωn−Ω)2t
)

ei(ωn−Ω)t−(B+C)t,

(4.22)

with

A ≡ πg2
(

n(ωn) cosh2 r(ωn) + [n(2Ω − ωn) + 1] sinh2 r(ωn)
)

,

B ≡ πg2
(

[n(ωn) + 1] cosh2 r(ωn) + n(2Ω − ωn) sinh2 r(ωn)
)

,

k ≡ −πg2[n(2Ω − ωn) + n(ωn) + 1] sinh 2r(ωn),

C ≡ ρS12(0)

(

1

2
− i

ωn − Ω
√

(ωn − Ω)2 + k2

)

+ ρ∗S12(0)
k

√

(ωn − Ω)2 + k2
eiφ(ωn).

For calculations of the first two terms in the GP expression (2.25) this solution is

sufficient. For the last term we need the time derivative of ρS12(t), which is given as

ρ̇S12(t) =
(

Ce
√

k2−(ωn−Ω)2t − (ρS12(0) − C)e−
√

k2−(ωn−Ω)2t
)

×ei(ωn−Ω)t−(B+C)t
√

k2 − (ωn − Ω)2

+ (i(ωn − Ω) − (B + C)) ρS12(t). (4.23)

But we could not evaluate the integral in (4.14) analytically. Thus, in the following

we computed it numerically.

We will analyze the squeezing and the magnetic field dependence of GP, ΦG, as it

evolves in time. Temperature will assumed to be constant at T = g2
~

kB
. We will

consider dimensionless parameters, as was defined in the previous section, for time and

magnetic field, g2 t, γn

g2B, respectively. Initial state of the system will also assumed

to be the same with the previous analysis, ρS11(0) = 0.6 and ρS12(0) = 0.3. Since

they can always be adjusted, or can be incorporated into other physical parameters

by redefining them without affecting the dynamics of the system, two of the three

squeezing parameters will not be taken as variables. These are the squeezing carrier

frequency, Ω, and one of the squeezing characteristic parameters, φ, which are assumed

to be equal to g2 and π, respectively.
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Figure 4.10: GP (ΦG, in radians), versus time. Time, t, is in unit of g−2. Here,

we have taken γn

g2B = 1, i.e. magnetic field, B, is in unit of g2

γn
, and the squeezing

parameter r = 1. Temperature is constant at kB

g2~
T = 1.

Figure (4.10) shows that GP rotates clockwise with a speed 0.95 rad
g2t

. It is slower and

smoother in comparison with the one in figure (4.1). To see how the magnetic field

affects we looked at GP with changing magnetic field strength.
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Figure 4.11: GP (ΦG, in radians), versus time. Time, t, is in unit of g−2. We have

changed magnetic field from B = g2

γn
, to B = 16 g2

γn
. The squeezing parameter is taken

as r = 1. Temperature is constant at kB

g2~
T = 1.

In this figure the two behavior attracts the attention. One is the decrease of stability

with the increase in magnetic field, which was observed before also. Second, this

decrease occurs gradually, in contrast with the environment that was not driven by a

squeezed state electromagnetic field. To see whether this is also valid for a different

squeezing we increase r twice.
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Figure 4.12: GP (ΦG, in radians), versus time. Time, t, is in unit of g−2. We have

changed magnetic field from B = g2

γn
, to B = 16 g2

γn
. The squeezing parameter is taken

as r = 2. Temperature is constant at kB

g2~
T = 1.

This figure is almost the same with the previous one, the graphs are only a little bit

less flattened in this case. But these two shows that the wild increase in the speed of

GP can be smoothened with driving the environment a squeezed state electromagnetic

field.

The next figure shows how GP is affected with changing squeezing. It is seen that it

changes only the smoothness of GP in its time evolution, for r > 0.
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Figure 4.13: GP (ΦG, in radians), versus time. Time, t, is in unit of g−2. We have

fixed magnetic field at B = 2 g2

γn
. The squeezing parameter is varied from r = 1 to

r = 4. Temperature is constant at kB

g2~
T = 1.

This completes our analysis on how different types of environment affects the geometric

phase, and we see the advantage of radiation in a squeezed state. In the next section

we will look at the effects of such an environment on entanglement, as a resource for

quantum computing.
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4.2 Steady-State Bi-Partite Entanglement Supported By Squeezed

Environment

The practical applications in quantum information theory do not demand an arbitrary

entanglement. The quantum system which is in an entangled state needed to carry

this property long enough to be used in computations. Among the suggestions aiming

this purpose few are [61, 64]. In these works robust entangled states in two- and

three-level atomic systems is studied. Our study is on a similar system, [65].

We consider a system of three atoms such that one is connected to the others by a

dipole-dipole interaction. This atom, occupying the central position in the arrange-

ment is connected with a ’bath’ which provides decoherence in the system, (see figure

4.14).

Γ Γ

αΓ

αg

g g

Γ0

Squeezed V acuum

Figure 4.14: Two target atoms with decay rates Γ are in interaction with a source
atom of decay rate Γ0 which is driven by a squeezed vacuum.

The total Hamiltonian of this system has the form

Ĥ = 1
2

2
∑

j=0

ωjσ̂
z
j

+ (g

2
∑

f=1

σ̂+
0 σ̂

−
f +

α

2
gσ̂+

1 σ̂
−
2 + h.c.), (4.24)

where ωj denotes the atomic transition frequency, g is the coupling constant of inter-
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action of the ”source” atom labeled by the subscript 0 with the ”target” atoms, α/2

gives the relative strength of interaction between the ”target” atoms, and σ̂j denotes

the atomic operators as defined in (3.44). For simplicity, we assume that the target

atoms have symmetric positions with respect to the source atom and all atoms have

the same frequency ω.

The evolution of the density matrix ρ̂S , of the system is described by the equation

˙̂ρS(t) = −i[Ĥ, ρ̂S(t)] + L(ρ̂S(t)), (4.25)

where the form of the Liouvillean term, L, depends on the specification of the ”bath”.

In the case of thermal ”bath” acting on the source atom, we have

L = Lthermal =
Γ0

2
{(n̄+ 1)(2σ̂−0 ρ̂S(t)σ̂+

0 − σ̂+
0 σ̂

−
0 ρ̂S(t) − ρ̂S(t)σ̂+

0 σ̂
−
0 )

+n̄(2σ̂+
0 ρ̂S(t)σ̂−0 − σ̂−0 σ̂

+
0 ρ̂S(t) − ρ̂S(t)σ̂−0 σ̂

+
0 )}

+

2
∑

j,k=1

Γjk

2
(2σ̂−j ρ̂S(t)σ̂+

k − σ̂+
j σ̂

−
k ρ̂S(t) − ρ̂S(t)σ̂+

j σ̂
−
k ), (4.26)

where Γj = Γjj denotes the spontaneous decay rate of the j-th atom, Γ12 = Γ21 is the

collective emission rate of the target atoms, and n̄ is the average number of ”bath”

excitations.

In the case of squeezed vacuum state, we get

L = Lthermal −m(σ̂+
0 ρ̂S(t)σ̂+

0 e
−2iωst + σ̂−0 ρ̂S(t)σ̂−0 e

2iωst), (4.27)

where 2ωs denotes the frequency of the squeezed mode and m specifies the amount of

squeezing.

Since we are looking for the robust entanglement of the target atoms, we restrict our

consideration to the steady state solutions of the equation (4.25), i.e. ˙̂ρS(t) = 0. The

density matrix ρ̂S is defined in the eight dimensional Hilbert space of the three 2-level

atoms. As the measure of entanglement of the mixed state ρ̂S(t) we calculate the

concurrence ( [50], [51]).

The numerical calculations performed in the case of thermal environment with the

Liouvillean term of the form (4.26) give the maximum value of concurrence (2.40) of

the order of C = 1.15 × 10−8 at Γi

Γ0
= 1, g

Γ0
= 1.5, n̄ = 0.5, α = 3, which is practically
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next to nothing. Thus, the thermal environment cannot generate entanglement in the

system under consideration.

The case of squeezed vacuum state shows much more interesting dependence of con-

currence on the parameters of the system shown in figure below.
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Figure 4.15: Concurrence as a function of α and n̄; for Γ/Γ0 = 1 and g/Γ0 = 1.5. The
figure indicates that the maximum amount of concurrence occurs at a certain value
of α, and increases slowly with n̄.

In particular, the maximum value of concurrence C = 0.227 is achieved at α = 5, and

increases with n̄. This level of entanglement corresponds to that usually discussed in

connection with the practical applications.
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CHAPTER 5

CONCLUSION

The availability of easy manipulation with the current technology NMR techniques

makes nuclear systems good candidates as carrier systems of the entities that necessary

for the quantum information theory (QIT) . With this motivation, we have studied the

effects of coupling between a nucleus and a dissipative environment on the geometric

phase (GP) that the state of the nucleus gains during its evolution in time. The

spin−1/2 nucleus is assumed to be under the influence of a static magnetic field of

strength B. The environment is taken as a bath of harmonic oscillators, and the

temperature, T , is assumed to be held fixed at different values. We have studied the

magnetic field effects on GP of the nucleus. It has been shown that B is the primary

factor that determines the stability of GP. What we mean by the stability of GP is the

speed of change of GP. Since it is the argument of a complex number, [33], the speed of

GP is defined as the angle swept in unit time. The increase in magnetic field strength

increases the speed of GP, making it less stable. This increase is proportional to B up

to a threshold. After this threshold value, increase in the speed of GP becomes wild.

Until this point the direction of rotation of GP, as an angle, is constant. However,

further increase in B, from this point, suddenly changes the direction of rotations.

Together with this change it slows down, and gains speed in the reversed direction

with more increase in B. We have shown that the general magnetic field dependence

of GP, which we have explained above, does not change with temperature. Change in

temperature changes the threshold value of B. It is shown that when the temperature

gets higher the wild increase in the speed and the change in the direction of rotation

of GP occurs at stronger magnetic field strengths. Thus, a ratio of temperature and

magnetic field strength plays a crucial role. This ratio is ~γn

kB

B
T , and is related to

the number of excitations, or in other words, the dissipation in the environment. At

49



some values, around 1 and 3, of this ratio GP changes so rapidly that it would be

interrogated whether it can be used in QIT, and even whether it can be observed

or not. Next, we have made similar analysis for an environment having different

characteristics. We have assumed that the environment is driven by an electromagnetic

field in a squeezed state. We have fixed the temperature at a certain value, and

examined the behavior of GP by varying B and the squeezing, r, in the state of

driving field. We have shown that the static magnetic field applied to the nucleus

affects its GP similar to the previous case with some differences. We have observed

that the GP changes smoother, and the decrease in its stability is slower in comparison

with that in the previous environment. One other difference we have shown is that,

there does not exist a wild change in the speed of GP for the B values at which we

observed such a change before. The decrease in its stability occurs gradually. Then,

we have looked at whether we can reach further results by changing the squeezing in

the state of the driving field. We have shown that for different amounts of r at fixed

B, the behavior of GP is almost the same, unless r = 0. These differences observed

at different environments are crucial for the robustness of the GP.

Then, we have studied the steady-state entanglement of two two-level atoms induced

by an external quantum system. This induction is made possible by the interaction of

these two target atoms with a third one, which we called as the source and is under

the influence of a certain environment. First, we have chosen the environment as a

heat bath. As the measure of entanglement between two targets, we have computed

the concurrence of their mixed state. The numerical calculations has shown that the

thermal environment is not able to create entanglement at least by induction. Next,

we have assumed that the source atom is in a squeezed vacuum. In this case , we have

found that, depending on the other physical parameters of the system, it is possible to

achieve a concurrence value of C = 0.227. Thus, we have shown that the steady-state

entanglement can be induced in a system, which has low ability to evolve into an

entangled state, through interaction with a strongly fluctuating environment, that is

a squeezed vacuum.
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