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ABSTRACT 

 

 

INVERSE DYNAMICS CONTROL OF PARALLEL MANIPULATORS 

AROUND SINGULAR CONFIGURATIONS 

 

 

Özdemir, Mustafa 

M.S., Department of Mechanical Engineering 

Supervisor: Prof. Dr. S. Kemal İder 

 

January 2008, 98 pages 

 

 

In this thesis, a technique for the motion of parallel manipulators through drive 

singularities is investigated. To remedy the problem of unbounded inverse 

dynamics solution in the neighborhood of drive singularities, an inverse 

dynamics controller which uses a conventional inverse dynamics control law 

outside the neighborhood of singularities and switches to the mode based on 

the formerly derived modified equations inside the neighborhood of 

singularities is proposed. As a result, good tracking performance is obtained 

while the actuator forces remain within the saturation limits of the actuators 

around singular configurations. 

 
 
Keywords: Parallel Manipulator, Inverse Dynamics Control, Drive Singularity 
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ÖZ 

 

 

PARALEL MANİPÜLATÖRLERİN TEKİL KONFİGÜRASYONLAR 

YAKININDA TERS DİNAMİK KONTROLÜ 

 

 

Özdemir, Mustafa 

Yüksek Lisans, Makine Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. S. Kemal İder 

 

Ocak 2008, 98 sayfa 

 

 

Bu tezde paralel manipülatörlerin tahrik tekillikleri yakınındaki hareketi için 

bir yöntem üzerinde çalışılmıştır. Tahrik tekillikleri yakınında ters dinamik 

çözümün ıraksamasını önlemek için tekilliklerin uzağında konvansiyonel bir 

ters dinamik kontrol yöntemi kullanan ve tekilliklerin yakınında daha önceden 

türetilmiş modifiye denklemlere dayalı biçime değişen bir ters dinamik 

kontrolcü önerilmiştir. Sonuç olarak tekil konfigürasyonlar yakınında eyleyici 

kuvvetleri eyleyicilerin saturasyon limitleri içinde kalırken, iyi bir yörünge 

izleme performansı elde edilmiştir. 

 
 
Anahtar Kelimeler: Paralel Manipülatör, Ters Dinamik Kontrol, Tahrik 

Tekilliği 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

1.1 Literature Survey 

 

 

Parallel manipulators are becoming more and more popular thanks to 

their higher load-carrying capacity, greater rigidity to weight ratio and more 

precise positioning capability of the end-effector compared to their 

conventional serial counterparts. Additionally, since all of the joints are not 

required to be actuated, it is possible to gather the actuators closer to the 

ground or on the ground itself resulting in lower weight and hence higher end-

effector accelerations [1-3]. Merlet [4], Dasgupta and Mruthyunjaya [5] 

presented comprehensive reviews of the literature on the parallel manipulators. 

Despite the advantages, due to the closed loop structure, parallel manipulators 

suffer from drive singularities where the actuator forces become unboundedly 

large. Many researchers studied this type of singularity [6-21]. 

Gosselin and Angeles [6] showed that there are three types of 

singularities of parallel manipulators based on the two Jacobian matrices. The 
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rank deficiency of each Jacobian matrix corresponds to inverse kinematic 

singularities or drive singularities of the manipulator and the rank deficiency of 

both Jacobian matrices occurs if and only if the manipulator is at an 

architectural singularity. However, Daniali et al., [7] declared that the rank 

deficiency of both Jacobian matrices is not necessarily architecture-dependent. 

Sefrioui and Gosselin [8] derived analytical expressions in quadratic 

form to describe the singularity loci of general three-degree-of-freedom planar 

parallel manipulators in terms of the roots of the determinant of the 

manipulator's Jacobian matrix. Additionally, a graphical representation of these 

loci superimposed on the manipulator's workspace is obtained. St-Onge and 

Gosselin [9] indicated that the singularity loci of the general Gough-Stewart 

platform should be a third-degree polynomial expression also by analyzing the 

Jacobian matrix. 

Merlet [10] and Collins and Long [11] analyzed singularity of parallel 

manipulators using line geometry rather than the Jacobian matrix. Basu and 

Ghosal [12] proposed algebraic and geometric methods to determine the 

singularities of platform-type multi-loop spatial mechanisms containing 

spherical joints on the platform. 

Earlier studies on the drive singularities typically focused on the 

determination of the locations of this type of singularity for avoiding them in 

the motion planning stage. At an inverse kinematic singularity the manipulator 

generally reaches a boundary of its workspace [6] and avoiding them does not 

limit its workspace in practice. Besides, architectural singularities can normally 

be eliminated by an appropriate selection of the kinematic parameters [6]. 

However, drive singularities characteristically arise within the workspace [6] 

and avoiding them restricts the practical workspace. For that reason, although 

parallel manipulators are uncontrollable at drive singularities [17], it is required 

to develop methods for moving parallel manipulators through those singular 

positions. 
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Özgören [18] studied the constrained motion control of a normally 

unconstrained mechanical system. As a part of his work, he considered drive 

singularities in a case where non-redundant number of actuators is used and 

developed a modification scheme by allowing a slight deviation from the 

desired trajectory only locally around the drive singularities. 

Jui and Sun [19] devised a method to overcome the problem of 

unbounded actuator forces at drive singularity by relaxing the rigid constraint 

on timing due to trajectory parameterization with respect to time. Based upon 

the techniques of minimum time path tracking, they presented techniques for 

path verification and tracking and examined an inverse dynamics algorithm 

taking actuator bounds into consideration. 

İder [20, 21] identified that if the trajectory is planned in such a way 

that certain conditions corresponding to the consistency of the dynamic 

equations are met, the manipulator can pass through the singular positions 

while the actuator forces remain bounded. Furthermore, he showed that the 

dynamic equations can be modified by using higher order derivative 

information to replace the linearly dependent equations in the neighborhood of 

the singularities. Analogous modifications were formerly used for kinematic 

singular positions of multibody systems by İder and Amirouche [22] and for 

drive singularities of redundant serial manipulators by İder [23]. 

 

 

1.2 Objective 

 

 

The aim of this thesis is to propose an inverse dynamics controller for 

trajectory tracking control of parallel manipulators passing through drive 

singularities. 
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For this purpose, the controller uses the conventional inverse dynamics 

control law based on the regular inverse dynamics equations outside the 

neighborhood of drive singularities and switches to the mode based on the 

approximate dynamics obtained by İder [20, 21] inside the neighborhood of 

drive singularities where the modified equations are valid.  

 

 

1.3 Scope of the Thesis 

 

 

Chapter 1 presents the literature review on the singularity analysis of 

parallel manipulators and gives the objective of this thesis. 

Chapter 2 is reserved to explain the inverse dynamics algorithm for 

parallel manipulators passing through drive singularities proposed in [20]. In 

this chapter, inverse dynamics problem and singular positions are defined and 

consistency conditions and modified equations are introduced as in [20]. 

Chapter 3 proposes a switching inverse dynamics controller for 

trajectory tracking control of parallel manipulators passing through drive 

singularities. In this chapter, the conventional inverse dynamics control law to 

be used outside the neighborhood of drive singularities is presented and the 

inverse dynamics control law to be switched inside the vicinity of drive 

singularities is derived. 

In Chapter 4, the 2-RPR (revolute, prismatic, revolute joints) planar 

parallel manipulator with two legs is considered to test the performance of the 

proposed inverse dynamics controller. First, inverse dynamics problem and 

singular positions of this parallel manipulator are defined and the consistency 

condition and modified equation are given as done in [21]. Next, the 

conventional inverse dynamics controller to be used outside the neighborhood 
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of drive singularities is introduced and the inverse dynamics control law to be 

switched inside the neighborhood of drive singularities is derived using the 

method proposed in Chapter 3. Finally, the results of the numerical simulations 

carried out using the SIMULINK® model developed and the SIMULINK® 

model itself are presented. 

Chapter 5 interprets the simulation results and recommends for future 

work on the trajectory tracking control of parallel manipulators in the presence 

of drive singularities. 
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CHAPTER 2 

 

 

DYNAMIC MODEL 

 

 

 
This chapter is reserved for a presentation of the work of İder [20, 21] 

on the inverse dynamics of parallel manipulators in the presence of drive 

singularities. His work provides the basic groundwork to this thesis. 

Section 2.1 briefly reviews inverse dynamics and singular positions. 

Section 2.2 deals with consistency conditions and modified equations. 

 

 

2.1 Inverse Dynamics and Singular Positions 

 

 

Consider an n  degree of freedom parallel robot. This system can be 

converted into an open-tree system by disconnecting a sufficient number of 

unactuated joints. Let the degree of freedom of the open-tree structure be m . 

Let [ ]1
T

mq q=q "  denote the joint variables of the open-tree system. The 

m n−  loop closure equations to be satisfied in order to convert the open-tree 

structure into the closed-loop parallel manipulator can be written as 
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( ) =φ q 0                      (2.1) 

where φ  is a ( )m n− -dimensional vector function. Equation (2.1) can be 

expressed at velocity level as 
G =Γ q 0�           (2.2) 

where ( )G G= = ∂ ∂Γ Γ q φ q .  

Let ( ) ( ) ( )1
T

nt x t x t= ⎡ ⎤⎣ ⎦x "  denote the prescribed Cartesian 

position and orientation coordinates of the end-effector. The n  task equations 

which give the relation between the pose of the end-effector and the joint 

variables can be written as 

( ) =f q x           (2.3) 

where  f  is an n -dimensional vector function. Equation (2.3) can be expressed 

at velocity level as 
P =Γ q x� �           (2.4) 

where ( )P P= = ∂ ∂Γ Γ q f q . 

Equations (2.2) and (2.4) can be combined to give 

=Γq h�           (2.5) 

where 
T TT G P⎡ ⎤= ⎣ ⎦Γ Γ Γ  and T T⎡ ⎤= ⎣ ⎦h 0 x� . Differentiating Equation (2.5) 

with respect to time gives the acceleration level relations as follows: 

= − +Γq Γq h� ��� �           (2.6) 

During the inverse kinematic solution, singularities arise when 0=Γ . 

It is assumed that Γ  never becomes singular so that an inverse kinematic 

singularity is not encountered. 

If q  is chosen for the generalized coordinates, the equations of motion 

of the parallel manipulator can be represented in the following matrix form 

obtained through the Lagrange’s equations: 
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TT G+ = +Mq B Z T Γ λ��         (2.7) 

where ( )=M M q  is the m m×  generalized inertia matrix and ( ), =B B q q�  is 

the m -dimensional bias vector that includes the generalized Coriolis, 

centrifugal and gravity forces of the open-tree system, λ  is the ( )m n− -

dimensional vector of Lagrange multipliers, T  is the n -dimensional vector of 

the actuator forces, and each row of Z is the direction of one actuator force in 

the generalized space. If the variable of the joint which is actuated by the i th 

actuator is kq , then for the i th row of Z , 1ikZ =  and 0ijZ =  for 

1, 2, , j m= "  ( )j k≠ . 

If the terms involving λ  and T  are combined, Equation (2.7) can be 

rewritten as follows: 
T = +A μ Mq B��          (2.8) 

where 
TT G T⎡ ⎤= ⎣ ⎦A Γ Z  and T T T⎡ ⎤= ⎣ ⎦μ λ T . 

In the inverse dynamics solution, singularities are encountered when 

0=A . This type of singularity is called drive singularity. At such 

singularities, the actuator forces take infinitely large values. 

 

 

2.2 Consistency Conditions and Modified Equations 

 

 

The rank deficiency of the A  matrix results in drive singularities. At a 

drive singularity the rank r  of A  usually becomes 1m − . The general case 

r m<  is considered though. Let rows ks , 1, , k m r= −"  of TA can be 
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expressed as linear combinations of the other rows of TA  at the singular 

position, i.e., 

k

T T
s j kp pjA Aα=                                                                                                   (2.9) 

for 1, , p m= "  ( )kp s≠ , 1, , j m= " , 1, , k m r= −"  

where the linear combination coefficients kpα  may also depend on q . Notice 

that in the equations, repeated subscript indices in a term imply summation 

over their corresponding ranges. Hence, the following relations must be at hand 

among the rows of the Equation (2.8). 

( )
k k k

T T
s j j kp pj j s j j s kp pj j pA A M q B M q Bμ α μ α− = + − +�� ��                                     (2.10) 

for 1, , k m r= −"  

Putting Equations (2.9) into Equations (2.10) gives 

( )
k ks j j s kp pj j pM q B M q Bα+ = +�� ��                                                                   (2.11) 

for 1, , k m r= −"  

Equations (2.11) signify the m r−  consistency conditions that q��  should satisfy 

at the singular position. Since q��  is related to x��  through Equation (2.6), the 

prescribed trajectory must satisfy Equations (2.11) at the drive singularity. 

Otherwise an inconsistent trajectory cannot be realized and the actuator forces 

grow without bounds as the drive singularity is approached. 

Differentiating Equations (2.10) with respect to time yields 

( ) ( ) ( )
( )

k k k

k k

T T T T T
s j kp pj j s j kp pj kp pj j s j kp pj j

s j kp pj kp pj j s kp p kp p

A A A A A M M q

M M M q B B B

α μ α α μ α

α α α α

− + − − = −

+ − − + − −

� � �� ���

� � � �� ���
            (2.12) 

for 1, , k m r= −"  

Now, since Equations (2.9) are valid at the singular position, there 

exists a vicinity in which the first terms of Equations (2.12) are insignificant 

compared to the other terms. Therefore in that neighborhood these terms can be 

neglected to obtain 
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( ) ( )
( )

k k

k k

T T T
s j kp pj kp pj j s j kp pj j

s j kp pj kp pj j s kp p kp p

A A A M M q

M M M q B B B

α α μ α

α α α α

− − = −

+ − − + − −

� � � ���

� � � �� ���
                                     (2.13) 

for 1, , k m r= −"  

The m r−  Equations (2.13) are the modified equations that can be used to 

replace the ks th rows, 1, , k m r= −" , of Equation (2.8). 

Note that q���  which appears in the modified equations and the prescribed 

end-effector jerks x���  are related via the derivative of Equation (2.6), 

2= − − +Γq Γq Γq h� �� ����� �� �                   (2.14) 

In addition, the coefficients of the forces in the modified Equations (2.13) 

depend on velocities. As a result, if at the singularity the system is in motion, 

the actuator forces in general affect the end-effector jerks instantaneously in 

the singular directions thanks to the modified equations. 

When the modified equations replace the linearly dependent dynamic 

equations in Equation (2.8), Equation (2.8) takes the following form, which is 

applicable in the vicinity of the singular configurations. 
T =D μ S                    (2.15) 

where 
T
ij kT

ij T T T
ij kp pj kp pj k

A i s
D

A A A i sα α
⎧ ≠⎪= ⎨ − − =⎪⎩
� � �

                (2.16) 

and 

( ) ( )
ij j i k

ij kp pj j ij kp pj kp pj ji
k

i kp p kp p

M q B i s

M M q M M M qS
i s

B B B

α α α

α α

+ ≠⎧
⎪⎪ − + − −= ⎨ =⎪+ − −⎪⎩

��
� � ���� ��

� � �
                     (2.17) 

for 1, , k m r= −"  

Equation (2.15) is employed in the neighborhood of the drive singularities, i.e., 

( )g < εq  and Equation (2.8) is employed elsewhere, where ( ) 0g =q  



 11

represents the singularity condition and ε  is a positive number which defines 

the size of the neighborhood. ε  should be selected small enough to have the 

error in the modified equations in Equation (2.15) insignificant and also large 

enough to prevent the A  matrix in Equation (2.8) from becoming ill-

conditioned. 
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CHAPTER 3 

 

 

INVERSE DYNAMICS CONTROL 

 

 

 
This chapter proposes a switching inverse dynamics controller for 

trajectory tracking control of parallel manipulators in the presence of drive 

singularities. The controller uses the conventional inverse dynamics control 

law based on the regular inverse dynamics equations given by Equation (2.8)

outside the neighborhood of drive singularities and switches to the mode based 

on the approximate dynamics given by Equation (2.15) inside the 

neighborhood of drive singularities where the modified equations are valid.  

Section 3.1 presents the conventional inverse dynamics control law to 

be used outside the neighborhood of drive singularities. Section 3.2 derives the 

inverse dynamics control law to be switched inside the vicinity of drive 

singularities. 
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3.1 Inverse Dynamics Control outside the Neighborhood of 

Drive Singularities 

 

 

The n  elements of the m -dimensional generalized force vector TZ T  in 

Equation (2.7) are the elements of the vector T  and its remaining m n−  

elements are zero. Accordingly, the rows of Equation (2.7) can be interchanged 

to have those m n−  zero elements at the bottom: 

TG⎡ ⎤
+ = +⎢ ⎥

⎣ ⎦

T
Mq B Γ λ

0
��         (3.1) 

where M , B  and 
TGΓ  are obtained by interchanging the corresponding rows 

of M , B  and 
TGΓ , respectively. This rearranged form suggests a partitioning 

process of M , B  and 
TGΓ  as follows: 

( )

a
n m

u
m n m

×

− ×

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

M
M

M
         (3.2) 

( )

1

1

a
n

u
m n

×

− ×

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

B
B

B
          (3.3) 

( )

( ) ( )

T

T

T

Ga
n m nG

Gu
m n m n

× −

− × −

⎡ ⎤
⎢ ⎥=
⎢ ⎥
⎣ ⎦

Γ
Γ

Γ
         (3.4) 

where superscripts a  and u  denote the partitions related to the actuated and 

unactuated joints, respectively. Thus, Equation (3.1) can be divided into the 

following two equations: 
Ta a Ga= + −T M q B Γ λ��         (3.5)  

TGu u u= +Γ λ M q B��          (3.6) 
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Note that the drive singularity condition 0
TGu =Γ  is equivalent to 

0=A . As long as ( )g ≥ εq , A  and hence 
TGuΓ  are not ill-conditioned and 

the 
TGuΓ  matrix is invertible outside the neighborhood of drive singularities. 

Hence, λ  can be found using Equation  (3.6) as follows: 

( ) ( )
1TGu u u
−

= +λ Γ M q B��         (3.7) 

Then, T  can be determined substituting Equation (3.7) into Equation (3.5): 

′ ′= +T M q B��           (3.8) 

where n m×  matrix ′M  is  

( ) 1T Ta Ga Gu u
−

′ = −M M Γ Γ M                    (3.9) 

and n -dimensional vector ′B  is    

( ) 1T Ta Ga Gu u
−

′ = −B B Γ Γ B                  (3.10) 

Equation (2.6) can be rearranged as 

( )1−= − +q Γ Γq h� ��� �                   (3.11) 

Putting Equation (3.11) into Equation (3.8) yields 
* *= +T M h B�                    (3.12) 

where n m×  matrix *M  is 
* 1−′=M M Γ                    (3.13) 

and n -dimensional vector *B  is 
* 1−′ ′= −B B M Γ Γq� �                   (3.14) 

In Equation (3.12), all of the elements in the first m n−  columns of the 

matrix *M  are multiplied by the first m n−  zero elements in the vector h� . 

This fact leads to a partitioning of the matrix *M  as follows: 

( )
* * *G P

n nn m n ×× −
⎡ ⎤= ⎣ ⎦M M M                  (3.15) 
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Based on this partitioning, the relation between the input T  and the output x  

can be obtained in the following form:   
* *P

= +T M x B��                   (3.16) 

An inverse dynamics control law can then be formulated using Equation 

(3.16). In the control law, command accelerations u  have to be specified. For 

example, using PD control, u  can be generated as     

( ) ( )1 2
d d d= + − + −u x C x x C x x�� � �                 (3.17) 

where superscript d  denotes desired values and 1C  and 2C  are constant 

feedback gain diagonal matrices. 

Then, using Equation (3.16) the actuator forces T  can be computed as 
* *P

= +T M u B                   (3.18) 

Since *P

M  is the n n×  inertia matrix of the parallel manipulator expressed in 

the task space, the inverse of *P

M  exists because the inertia matrix should be 

positive definite for a proper system. Hence, in the absence of modeling error 

and disturbances, the application of the actuator forces given by Equation  

(3.18) results in actual accelerations which are equal to the command 

accelerations, i.e., 

=x u��                     (3.19)  

As a result, Equations (3.17) and (3.19) lead to the following error equation: 

1 2+ + =e C e C e 0�� �                              (3.20) 

where d= −e x x . 

Based on this error equation, the feedback gain matrices can be selected 

appropriately to ensure asymptotic stability. 
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3.2 Inverse Dynamics Control inside the Neighborhood of 

Drive Singularities 

 

 

The rank deficiency of 
TGuΓ  results in drive singularities. Combining 

the terms involving λ  and T  in Equation (3.1), Equation (2.8) can be rewritten 

as follows: 
T = +A μ Mq B��                   (3.21) 

where 
TT G T⎡ ⎤= ⎣ ⎦A Γ Z  and 

( )

nT

m n n− ×

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

I
Z 0 . Recall that nI  is an n n×  identity 

matrix. This rearranged form suggests a partitioning process of TA  as follows: 

( )

T

T

a
n mT

u
m n m

×

− ×

⎡ ⎤
⎢ ⎥=
⎢ ⎥⎣ ⎦

A
A

A
                  (3.22) 

where 
T Ta Ga

n
⎡ ⎤= ⎣ ⎦A Γ I  and ( )

T Tu Gu
m n n− ×

⎡ ⎤= ⎣ ⎦A Γ 0 . Thus, Equation (3.21) 

can be divided into the following two equations: 
Ta a a= +A μ M q B��                   (3.23) 
Tu u u= +A μ M q B��                   (3.24) 

One should note that Equations (3.23) and (3.24) are just another way of 

writing Equations (3.5) and (3.6) respectively by combining the terms the 

terms involving λ  and T . By looking at 
TaA , one can claim that the rows of 

TaA  are always linearly independent due to nI . However, at a drive 

singularity, 
TGuΓ , hence 

TuA  due to 0 , become rank deficient. Therefore, 

Equation (2.9) gives essentially the relation among the linearly dependent rows 

of TuA , hence 
TGuΓ , at a drive singularity. Then, at that drive singularity 

Equation (2.10) must give the relation between the linearly dependent rows of 
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Equation (3.24), hence Equation (3.6). Consequently, the linearly dependent 

equations in Equation (3.24), hence in Equation (3.6), can be replaced by the 

m r−  modified equations given by Equation (2.13). Noticing that Equation 

(2.10) does not include any of the actuator forces since Equation (3.6) does not, 

one can conclude that the modified equations also do not include any of the 

actuator forces. When, the m r−  modified equations replace the linearly 

dependent equations in Equation (3.6), the resulting system of equations can be 

written in matrix notation as follows: 

ˆ ˆ ˆ ˆTGu u u u= + +Γ λ N q M q B��� ��                  (3.25) 

where the corresponding rows of the ( )m n m− ×  matrix ( )ˆ ˆu u=N N q  consist 

of the coefficients of jq��� ’s 1, , j m= "  in the modified equations while its 

remaining r n−  rows are composed of zeros, ( )ˆ ˆ ,
T TGu Gu=Γ Γ q q�  and 

( )ˆ ˆ ,u u=M M q q�  are obtained via replacing the corresponding rows of 
TGuΓ  and 

uM  by the rows consisting of the coefficients of iλ ’s 1, , i m n= −…  and jq�� ’s 

in the modified equations, respectively and ( )ˆ ˆ ,u u=B B q q�  is obtained via 

replacing the corresponding elements of uB  by the remaining terms in the 

modified equations. Note that Equations (3.5) and (3.25) form together 

Equation (2.15). 

λ  can be found using Equation (3.25) as follows: 

( ) ( )1ˆ ˆ ˆ ˆTGu u u u
−

= + +λ Γ N q M q B��� ��                 (3.26) 

Then, T  can be determined substituting Equation (3.26) into Equation (3.5): 

ˆ ˆ ˆ′ ′ ′= + +T N q M q B��� ��                              (3.27) 

where n m×  matrices ˆ ′N  and ˆ ′M  are   

( ) 1ˆ ˆ ˆT TGa Gu u
−

′ = −N Γ Γ N                  (3.28) 
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( ) 1ˆ ˆ ˆT Ta Ga Gu u
−

′ = −M M Γ Γ M                  (3.29) 

and n -dimensional vector ˆ ′B  is   

( ) 1ˆ ˆ ˆT Ta Ga Gu u
−

′ = −B B Γ Γ B                  (3.30) 

Equation (2.14) can be rearranged to obtain 

= + +Γq Pq R h����� ��                                                          (3.31) 

where the m m×  matrix ( ),=P P q q�  and the m -dimensional vector 

( ),=R R q q�  includes the coefficients of jq�� ’s and the nonlinear terms in 

Equation (2.14), respectively. Solving Equation (3.31) for q���  gives 

( )1−= + +q Γ Pq R h����� ��                   (3.32) 

On substituting Equation (3.11), Equation (3.32) becomes 

( )1 1− −⎡ ⎤= − + + +⎣ ⎦q Γ PΓ Γq h R h� � ����� �                 (3.33) 

Putting Equations (3.11) and (3.33) into Equation (3.27) gives 
* * *ˆ ˆ ˆ= + +T N h M h B�� �                   (3.34) 

where n m×  matrices *N̂  and *M̂  are 
* 1ˆ ˆ −′=N N Γ                    (3.35) 

( )* 1 1ˆ ˆ ˆ− −′ ′= +M N Γ P M Γ                  (3.36) 

and n -dimensional vector *B̂  is  

( )* 1 1 1ˆ ˆ ˆ ˆ− − −′ ′ ′= + − −B B N Γ R PΓ Γq M Γ Γq� �� �                           (3.37) 

In Equation (3.34), all of the elements in the first m n−  columns of the 

matrices *N̂  and *M̂  are multiplied by the first m n−  zero elements in the 

vectors h��  and h� , respectively. This fact leads to a partitioning of the matrices 
*N̂  and *M̂  as follows: 

( )
* * *ˆ ˆ ˆG P

n nn m n ×× −
⎡ ⎤= ⎣ ⎦N N N                  (3.38) 
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( )
* * *ˆ ˆ ˆG P

n nn m n ×× −
⎡ ⎤= ⎣ ⎦M M M                  (3.39) 

Based on this partitioning, the relation between the input T  and the output x  

can be obtained in the following form: 
* * *ˆ ˆ ˆP P

= + +T N x M x B��� ��                   (3.40) 

An inverse dynamics control law can then be formulated using Equation (3.40) 

provided that the desired trajectory is chosen to be consistent. It is then 

assumed that the trajectory tracking errors have become small at the onset of 

the neighborhood of drive singularities so that the actual trajectory almost 

satisfies the consistency conditions. This is possible if the initial positioning 

errors are handled for a sufficient time to settle down to small values by the 

inverse dynamics control law covered in Section 3.1. 

The rank of *ˆ P

N  is m r−  which is indeed less than n . So, in the control 

law, both command accelerations u  and command jerks u�  have to be 

specified. Once u  is generated as in Equation (3.17), the actuator forces T  can 

be computed using Equation (3.40): 
* * *ˆ ˆ ˆP P

= + +T N u M u B�                   (3.41) 

To show that the application of the computed forces from Equation (3.41) 

linearizes and decouples the system in the absence of modeling error and 

disturbances, substitution of Equation (3.41) into Equation (3.40) results in 
* *ˆ ˆP P

+ =N η M η 0�                   (3.42) 

where = −η u x�� . Besides, since Equation (3.19) holds up to the onset of the 

neighborhood of drive singularities, 

( )τ =η 0                    (3.43) 

where τ  is the right end point of the closed time interval passed until the 

manipulator arrives at the onset of the neighborhood. Since the rank of the 

matrix *ˆ P

N  is less than n , namely m r−  as mentioned earlier, n m r− +  

equations of Equation (3.42) can be converted to algebraic equations through 
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elementary row operations. Then, using those algebraic equations, n m r− +  of 

the jη ’s can be obtained in terms of the others and those results can be used to 

reduce the system of Equation (3.42) by n m r− +  unknowns and n m r− +  

equations. The reduced system is a linear first order system of m r−  

differential equations in the m r−  unknowns ( ) ( )1 , , m rt tκ κ −…  and is in the 

form of 

( ) ( )

( ) ( )( ) ( ) ( )( )

11 1 11 11 1

1 11 1

0

0

m r m rm r m r

m r m rm r m r m r m r m r m r

a a b b

a a b b

κ κ κ κ

κ κ κ κ

− −− −

− −− − − − − −

+… + +… =

+… + +… =

� �

#
� �

                         (3.44) 

subject to the initial conditions 

( ) ( ) ( )1 20, 0, , 0m rκ τ κ τ κ τ−= = =…                (3.45) 

where 1 2, , , m rκ κ κ −…  denote the remaining jη ’s in the reduced system and 

the coefficients ( ) ( ) ( )( ) ( )11 12, , , m r m ra t a t a t− −"  and 

( ) ( ) ( )( ) ( )11 12, , , m r m rb t b t b t− −"  can be determined in terms of  the elements of 

*ˆ P

N  and *ˆ P

M . Now, since the rank of the matrix 
( )

( ) ( )( )

11 1

1

m r

m r m r m r

a a

a a

−

− − −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

…

# % #
"

 is 

m r− , Equation (3.44) can be written in the explicit form: 

( )

( ) ( ) ( )( )

1 11 1 12 2 1

1 21 2

,

,

m rm r

m r m rm r m r m r m r

c c c

c c c

κ κ κ κ

κ κ κ κ

−−

− −− − − −

= + +

= + +

� …

#
� …

                          (3.46) 

subject to the initial conditions (3.45). The Existence and Uniqueness Theorem 

for Linear First-Order Systems [24] states that if ( )tΛ  is a continuous matrix 

valued function of t  and ( )tυ  is a continuous vector valued function of t , each 
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on the closed time interval ϒ , and if 0t  is a given point in ϒ , then the initial 

value problem 

( ) ( ) ( ) ( )t t t t= +ξ Λ ξ υ�                  (3.47) 

( )0 0t =ξ ξ                    (3.48) 

has a unique solution ( )tξ  on ϒ . This theorem implies that, since the 

coefficients ( ) ( ) ( )( ) ( )11 12, , , m r m rc t c t c t− −"  are continuous on a closed time 

interval I  including the time period passed inside the neighborhood of the 

singularity and the point τ  as well, the system of Equation  (3.46) subject to 

the initial conditions (3.45) has a unique solution on I . Consequently, the 

system represented by Equation (3.42) subject to initial conditions (3.43) has a 

unique solution on I , and obviously, it is the trivial solution, i.e., ( )t =η 0 . 

Therefore, Equations (3.19) and (3.20) are still valid inside the neighborhood 

of drive singularities. 
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CHAPTER 4 

 

 

CASE STUDY AND NUMERICAL SIMULATIONS 

 

 

 
In this chapter, the 2-RPR (revolute, prismatic, revolute joints) planar 

parallel manipulator with two legs is considered to test the performance of the 

proposed inverse dynamics controller in the presence of drive singularities. 

Singularity robust inverse dynamics of this type of parallel manipulators was 

studied by İder [21]. 

Section 4.1 reviews inverse dynamics and singular positions of this 

parallel manipulator as dealt in [21]. Section 4.2 presents the consistency 

condition and modified equation as derived in [21]. Section 4.3 covers the 

conventional inverse dynamics controller to be used outside the neighborhood 

of drive singularities as depicted in Section 3.1. Section 4.4 derives the inverse 

dynamics control law to be switched inside the neighborhood of drive 

singularities using the findings of Section 3.2. Section 4.5 introduces the 

SIMULINK® model developed to carry out the numerical simulations. Section 

4.6 presents the results of the simulations under different scenarios using the 

model depicted in Section 4.5. The numerical data and consistent and 

inconsistent reference trajectories used in these simulations are taken from the 

numerical example in [21]. 
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4.1 Inverse Dynamics and Singular Positions 

 

 

The 2-RPR planar parallel manipulator is shown in Figure 1. This 

parallel manipulator has 3 degrees of freedom ( )3n = . 

 

 

 

 

Figure 1 2-RPR planar parallel manipulator 

 

 

 

This system can be converted into an open-tree system by disconnecting the 

revolute joint at D  (Figure2). The degree of freedom of the open-tree structure 

is 5 ( )5m = . [ ]1 1 2 2 3
Tθ ζ θ ζ θ=q  denotes the joint variables of the 

open-tree system, where 1 ABζ =  and 2 CDζ = . Let the joints whose variables 

A  C  1θ  2θ  

1G  

2G  

B

D

P

3G  

4G  

5G  

3θ  

1 

2 

5 

3 

4 

x

y  
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are 1θ , 1ζ  and 2ζ  be the actuated joints. The actuator force vector can be 

written as [ ]1 1 2
TT F F=T  where 1T  is the motor torque corresponding to 1θ , 

and 1F  and 2F  are the actuator forces corresponding to 1ζ  and 2ζ . 

 

 

 

 

Figure 2 The open-tree system obtained by disconnecting the joint at D  

 

 

 

Let the link dimensions of the manipulator be labeled as a AC= , b BD= , 

c BP=  and PBDα = ∠ . [ ]3
T

P Px y θ=x  denotes the position and 

orientation of the moving platform, where Px , Py  are the coordinates of the 

end point P . 

The position level loop closure constraint equations expressing the fact 

that 4D  and 5D  are always coincident can be written as 

A  C  1θ  2θ  

1G  

2G  

B

5D  

P

3G  

4G  

5G  

3θ  

1 

2 

5 

3 

4 

4D  

x

y  
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1 1 1 3 2 2cos cos cos 0b aφ θ θ θ= ζ + − −ζ =       (4.1)

2 1 1 3 2 2sin sin sin 0bφ θ θ θ= ζ + −ζ =        (4.2) 

Equations (4.1) and (4.2) can be expressed at velocity level as 
G =Γ q 0�           (4.3) 

where 

1 1 1 2 2 2 3

1 1 1 2 2 2 3

sin cos sin cos sin
cos sin cos sin cos

G b
b

θ θ θ θ θ
θ θ θ θ θ

−ζ ζ − −⎡ ⎤
= ⎢ ⎥ζ −ζ −⎣ ⎦

Γ     (4.4) 

The position level task equations are 

( )1 1 1 3cos cos Pf c xθ θ α= ζ + + =                   (4.5) 

( )2 1 1 3sin sin Pf c yθ θ α= ζ + + =        (4.6) 

3 3 3f θ θ= =           (4.7) 

Equations (4.5)-(4.7) can be expressed at velocity level as 
P =Γ q x� �           (4.8) 

where 

( )
( )

1 1 1 3

1 1 1 3

sin cos 0 0 sin
cos sin 0 0 cos
0 0 0 0 1

P

c
c

θ θ θ α
θ θ θ α

−ζ − +⎡ ⎤
⎢ ⎥= ζ +⎢ ⎥
⎢ ⎥⎣ ⎦

Γ      (4.9) 

Equations (4.3) and (4.8) can be combined to give 

=Γq h�                    (4.10) 

where 

( )
( )

1 1 1 2 2 2 3

1 1 1 2 2 2 3

1 1 1 3

1 1 1 3

sin cos sin cos sin
cos sin cos sin cos
sin cos 0 0 sin

cos sin 0 0 cos
0 0 0 0 1

b
b

c
c

θ θ θ θ θ
θ θ θ θ θ
θ θ θ α
θ θ θ α

−ζ ζ − −⎡ ⎤
⎢ ⎥ζ −ζ −⎢ ⎥
⎢ ⎥= −ζ − +
⎢ ⎥ζ +⎢ ⎥
⎢ ⎥⎣ ⎦

Γ             (4.11) 

Differentiating Equation (4.10) with respect to time gives the acceleration level 

relations as follows: 
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= − +Γq Γq h� ��� �                    (4.12) 

where 

11 12 13 14 15

21 22 23 24 25

31 32 35

41 42 45

0 0
0 0

0 0 0 0 0

⎡ ⎤Γ Γ Γ Γ Γ
⎢ ⎥Γ Γ Γ Γ Γ⎢ ⎥
⎢ ⎥= Γ Γ Γ
⎢ ⎥
Γ Γ Γ⎢ ⎥
⎢ ⎥⎣ ⎦

Γ

� � � � �
� � � � �

� � � �
� � �

                (4.13) 

The time derivatives are 

11 1 1 1 1 1sin cosθ θ θΓ = −ζ −ζ� ��                  (4.14) 

12 1 1sinθ θΓ = − ��                   (4.15) 

13 2 2 2 2 2sin cosθ θ θΓ = ζ + ζ� ��                  (4.16) 

14 2 2sinθ θΓ = ��                    (4.17) 

15 3 3cosbθ θΓ = − ��                   (4.18) 

21 1 1 1 1 1cos sinθ θ θΓ = ζ −ζ� ��                  (4.19) 

22 1 1cosθ θΓ = ��                    (4.20) 

23 2 2 2 2 2cos sinθ θ θΓ = −ζ + ζ� ��                  (4.21) 

24 2 2cosθ θΓ = − ��                   (4.22) 

25 3 3sinbθ θΓ = − ��                   (4.23) 

31 1 1 1 1 1sin cosθ θ θΓ = −ζ −ζ� ��                  (4.24) 

32 1 1sinθ θΓ = − ��                   (4.25) 

( )35 3 3coscθ θ αΓ = − +��                  (4.26) 

41 1 1 1 1 1cos sinθ θ θΓ = ζ −ζ� ��                  (4.27) 

42 1 1cosθ θΓ = ��                    (4.28) 

( )45 3 3sincθ θ αΓ = − +��                  (4.29) 
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During the inverse kinematic solution, singularities arise when 0=Γ . 

Since 1 2= ζ ζΓ , the kinematic singular positions are the positions where 

1 0ζ =  or 2 0ζ = . These positions are not accessible in practice because of the 

legs’ finite lengths, i.e., an inverse kinematic singularity is not encountered in 

practice. 

Once q  is chosen for the generalized coordinates, the dynamic behavior 

of the open-chain system can be obtained through the Lagrange’s equations. 

The Lagrangian of the open-chain system is the difference between its kinetic 

energy and potential energy 

L K U= −                    (4.30) 

Use of Lagrange’s equations yields the 5 differential equations for the open-

chain system 

1, , 5i
i i

d L L Q i
dt q q
⎛ ⎞∂ ∂

− = =⎜ ⎟∂ ∂⎝ ⎠
"

�
                (4.31) 

where iQ ’s are the generalized forces. 

The kinetic energy of each link is 

2 21 1 1, , 5
2 2i i i i iK m v I iω= + = "                 (4.32) 

where im , 1, , 5i = "  are the masses of the links, iv , 1, , 5i = "  are the 

velocities of the mass centers of the links, iI , 1, , 5i = "  are the centroidal 

moments of inertia of the links and iω , 1, , 5i = "  are the angular velocities of 

the links. The velocities of the mass centers of the links are 

1, , 5i
i

d i
dt

= =
rv "                   (4.33) 

where ir , 1, , 5i = "  are the position vectors of the mass centers of the links. 

The position vectors of the mass centers of the links are given in the 

exponential form as: 
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1
1 1

jg e θ=r                    (4.34) 

( ) 1
2 1 2

jg e θ= ζ −r                   (4.35) 

2
3 3

jg e θ=r                    (4.36) 

( ) 2
4 2 4

jg e θ= ζ −r                   (4.37) 

( )31
5 1 5

jje g e θ βθ += ζ +r                   (4.38) 

where j  is the unit imaginary number and the locations of the mass centers 

iG , 1, , 5i = "  are indicated by 1 1g AG= , 2 2g BG= , 3 3g CG= , 4 4g DG= , 

5 5g BG=  and 5G BDβ = ∠ . 

Differentiating, one obtains: 
1

1 1 1
jjg e θθ=v �                    (4.39) 

( )1 1
2 1 1 1 2

j je j g eθ θθ= ζ + ζ −v � �                  (4.40) 

2
3 3 2

jjg e θθ=v �                    (4.41) 

( )2 2
4 2 2 2 4

j je j g eθ θθ= ζ + ζ −v � �                 (4.42) 

( )31 1
5 1 1 1 3 5

jj je j e j g e θ βθ θθ θ += ζ + ζ +v � � �                 (4.43) 

or in terms of their Cartesian x  and y  components: 

1 1 1
1

1 1 1

sin
cos

g
g
θ θ
θ θ

⎡ ⎤−
= ⎢ ⎥
⎣ ⎦

v
�
�                   (4.44) 

( )
( )

1 1 1 1 2 1
2

1 1 1 1 2 1

cos sin
sin cos

g
g

θ θ θ
θ θ θ

⎡ ⎤ζ − ζ −
= ⎢ ⎥ζ + ζ −⎣ ⎦

v
� �
� �                 (4.45) 

3 2 2
3

3 2 2

sin
cos

g
g

θ θ
θ θ

⎡ ⎤−
= ⎢ ⎥
⎣ ⎦

v
�
�                   (4.46) 

( )
( )

2 2 2 2 4 2
4

2 2 2 2 4 2

cos sin
sin cos

g
g

θ θ θ
θ θ θ

⎡ ⎤ζ − ζ −
= ⎢ ⎥ζ + ζ −⎣ ⎦

v
� �
� �                 (4.47) 
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( )
( )

1 1 1 1 1 3 5 3
5

1 1 1 1 1 3 5 3

cos sin sin
sin cos cos

g
g

θ θ θ θ θ β
θ θ θ θ θ β

⎡ ⎤ζ − ζ − +
= ⎢ ⎥ζ + ζ + +⎣ ⎦

v
� � �
� � �               (4.48) 

Then, the kinetic energy of each link will be given by: 

( ) ( )2 2 2
1 1 1 1 1 1 1 1 1 1

2 2 2
1 1 1 1 1

1 1sin cos
2 2
1 1
2 2

K m g g I

m g I

θ θ θ θ θ

θ θ

⎡ ⎤= − + +⎢ ⎥⎣ ⎦

= +

� � �

� �
              (4.49) 

( ){
( ) }

( )

2

2 2 1 1 1 1 2 1

2 2
1 1 1 1 2 1 2 1

2 2 2
2 1 2 1 2 1

1 cos sin
2

1sin cos
2

1 1
2 2

K m g

g I

m g I

θ θ θ

θ θ θ θ

θ θ2
1

⎡ ⎤= ζ − ζ −⎣ ⎦

⎡ ⎤+ ζ + ζ − +⎣ ⎦

⎡ ⎤= ζ + ζ − +⎣ ⎦

� �

� � �

� � �

              (4.50) 

( ) ( )2 2 2
3 3 3 2 2 3 2 2 3 2

2 2 2
3 3 2 3 2

1 1sin cos
2 2
1 1
2 2

K m g g I

m g I

θ θ θ θ θ

θ θ

⎡ ⎤= − + +⎢ ⎥⎣ ⎦

= +

� � �

� �
             (4.51) 

( ){
( ) }

( )

2

4 4 2 2 2 2 4 2

2 2
2 2 2 2 4 2 4 2

2 2 2
4 2 4 2 4 2

1 cos sin
2

1sin cos
2

1 1
2 2

K m g

g I

m g I

θ θ θ

θ θ θ θ

θ θ2
2

⎡ ⎤= ζ − ζ −⎣ ⎦

⎡ ⎤+ ζ + ζ − +⎣ ⎦

⎡ ⎤= ζ + ζ − +⎣ ⎦

� �

� � �

� � �

              (4.52) 

( ){
( ) }

( )

( )

2

5 5 1 1 1 1 1 3 5 3

2 2
1 1 1 1 1 3 5 3 5 3

2 2 2 2
5 1 5 3 5 1 3 1 3

2
1 5 1 3 1 3 5 3

1 cos sin sin
2

1sin cos cos
2

1 2 sin
2

12 cos
2

K m g

g I

m g g

g I

θ θ θ θ θ β

θ θ θ θ θ β θ

θ θ θ θ θ β

θθ θ θ β θ

2
1 1

⎡ ⎤= ζ −ζ − +⎣ ⎦

⎡ ⎤+ ζ + ζ + + +⎣ ⎦

⎡= ζ + ζ + + ζ − −⎣

⎤+ ζ − − +⎦

� � �

� � � �

� � � � �

� � �

             (4.53)

The kinetic energy of the open chain system is the sum of the kinetic energies 

of each link: 
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( )

( )

( )

( )

22 2 2 2 2
1 1 1 1 1 2 1 2 1 2 1

22 2 2 2 2
3 3 2 3 2 4 2 4 2 4 2

2 2 2 2
5 1 5 3 5 1 3 1 3

2
1 5 1 3 1 3 5 3

1 1 1 1
2 2 2 2
1 1 1 1
2 2 2 2
1 2 sin
2

12 cos
2

K m g I m g I

m g I m g I

m g g

g I

θ θ θ θ

θ θ θ θ

θ θ θ θ θ β

θθ θ θ β θ

2
1

2
2

2
1 1

⎡ ⎤= + + ζ + ζ − +⎣ ⎦

⎡ ⎤+ + + ζ + ζ − +⎣ ⎦

⎡+ ζ + ζ + + ζ − −⎣

⎤+ ζ − − +⎦

� � � � �

� � � � �

� � � � �

� � �

             (4.54) 

The potential energy of each link is 

1, , 5i i iU m gh i= = "                  (4.55) 

where g  is the gravitational acceleration and ih , 1, , 5i = "  are the distances 

from the datum to the mass centers of the links. Choosing the joint at A  as the 

datum, the potential energy of each link will be given by: 

1 1 1 1sinU m gg θ=                              (4.56) 

( )2 2 1 2 1sinU m g g θ= ζ −                  (4.57) 

3 3 3 2sinU m gg θ=                   (4.58) 

( )4 4 2 4 2sinU m g g θ= ζ −                  (4.59) 

( )5 5 1 1 5 3sin sinU m g gθ θ β= ζ + +⎡ ⎤⎣ ⎦                 (4.60) 

The potential energy of the open chain system is the sum of the potential 

energies of each link: 

( ) ( )
( )

1 1 1 2 1 2 1 3 3 2 4 2 4 2

5 1 1 5 3

sin sin sin sin

sin sin

U m gg m g g m gg m g g

m g g

θ θ θ θ

θ θ β

= + ζ − + + ζ −

+ ζ + +⎡ ⎤⎣ ⎦
 (4.61) 

Substituting Equations (4.54) and (4.61) into Equation (4.30), the 

Lagrangian of the open-chain system is 
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( )

( )

( )

( )

22 2 2 2 2
1 1 1 1 1 2 1 2 1 2 1

22 2 2 2 2
3 3 2 3 2 4 2 4 2 4 2

2 2 2 2
5 1 5 3 5 1 3 1 3

2
1 5 1 3 1 3 5 3

1 1 1

1 1 1 1
2 2 2 2
1 1 1 1
2 2 2 2
1 2 sin
2

12 cos
2

sin

L m g I m g I

m g I m g I

m g g

g I

m gg

θ θ θ θ

θ θ θ θ

θ θ θ θ θ β

θθ θ θ β θ

θ

2
1

2
2

2
1 1

⎡ ⎤= + + ζ + ζ − +⎣ ⎦

⎡ ⎤+ + + ζ + ζ − +⎣ ⎦

⎡+ ζ + ζ + + ζ − −⎣

⎤+ ζ − − +⎦

−

� � � � �

� � � � �

� � � � �

� � �

( ) ( )
( )

2 1 2 1 3 3 2 4 2 4 2

5 1 1 5 3

sin sin sin

sin sin

m g g m gg m g g

m g g

θ θ θ

θ θ β

− ζ − − − ζ −

− ζ + +⎡ ⎤⎣ ⎦

 (4.62) 

The partial derivatives are 

( )

( )

22
1 1 1 2 2 1 2 5 1

1

5 1 5 3 1 3cos

L m g I I m g m

m g

θ
θ

θ θ θ β

2
1

∂ ⎡ ⎤= + + + ζ − + ζ⎣ ⎦∂

+ ζ − −

�
�

�
              (4.63) 

( ) ( )2 5 1 5 5 3 1 3
1

sinL m m m g θ θ θ β∂
= + ζ + − −

∂ζ
� �

�                (4.64) 

( )22
3 3 3 4 4 2 4 2

2

L m g I I m g θ
θ
∂ ⎡ ⎤= + + + ζ −⎣ ⎦∂

�
�                (4.65) 

4
2

L m 2
∂

= ζ
∂ζ

�
�                    (4.66) 

( ) ( ) ( )2
5 1 5 1 1 3 5 5 1 1 3 5 5 5 3

3

cos sinL m g m g m g Iθ θ θ β θ θ β θ
θ
∂

= ζ − − + ζ − − + +
∂

� � �
�   (4.67) 

( ) ( )

( )

5 5 3 1 1 3 1 1 1 3
1

1 1 2 1 2 5 1 1

cos sin

cos

L m g

m g m g m g

θ θ θ β θ θ θ β
θ

θ

∂ ⎡ ⎤= ζ − − − ζ − −⎣ ⎦∂

− + ζ − + ζ⎡ ⎤⎣ ⎦

� � �
             (4.68) 

( ) ( )

( )

2
2 1 2 1 5 1 1 5 3 1 3

1

2 5 1

cos

sin

L m g m g

m m g

θ θ θ θ θ θ β

θ

1
∂ ⎡ ⎤= ζ − + ζ + − −⎣ ⎦∂ζ

− +

� � � �
             (4.69) 

( )3 3 4 2 4 2
2

cosL m g m g g θ
θ
∂

= − + ζ −⎡ ⎤⎣ ⎦∂
               (4.70) 
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( ) 2
4 2 4 2 2

2

sinL m g gθ θ∂ ⎡ ⎤= ζ − −⎣ ⎦∂ζ
�                 (4.71) 

( ) ( ){
( )}

5 5 3 1 1 3 1 1 1 3
3

3

cos sin

cos

L m g

g

θ θ θ β θ θ θ β
θ

θ β

∂ ⎡ ⎤= − ζ − − − ζ − −⎣ ⎦∂

+ +

� � �
            (4.72) 

The time derivatives of the first group of terms are 

( )

( )
( ) ( )

( ) ( )

22
1 1 1 2 2 1 2 5 1

1

5 1 5 3 1 3

2 1 2 5 1 1 1 5 5 1 3 1 3

2
5 1 5 1 3 5 1 5 3 1 3

cos

2 cos

sin

d L m g I I m g m
dt

m g

m g m m g

m g m g

θ
θ

θ θ θ β

θ θ θ θ β

θθ θ θ θ β

2
1

⎛ ⎞∂ ⎡ ⎤= + + + ζ − + ζ⎜ ⎟ ⎣ ⎦∂⎝ ⎠
+ ζ − −

+ ζ − + ζ ζ + ζ − −⎡ ⎤⎣ ⎦

− ζ − ζ − −

��
�

��

� � � �

� � �

            (4.73) 

( ) ( )

( ) ( )

2 5 1 5 5 3 1 3
1

2
5 5 1 3 5 5 3 1 3

sin

cos

d L m m m g
dt

m g m g

θ θ θ β

θθ θ θ θ β

⎛ ⎞∂
= + ζ + − −⎜ ⎟∂ζ⎝ ⎠

+ − − −

�� ��
�

� � �
              (4.74) 

( ) ( )22
3 3 3 4 4 2 4 2 4 2 4 2 2

2

2d L m g I I m g m g
dt

θ θ
θ

⎛ ⎞∂ ⎡ ⎤= + + + ζ − + ζ − ζ⎜ ⎟ ⎣ ⎦∂⎝ ⎠
�� � �

�             (4.75) 

4
2

d L m
dt 2

⎛ ⎞∂
= ζ⎜ ⎟∂ζ⎝ ⎠

��
�                   (4.76) 

( ) ( )

( ) ( ) ( )

( ) ( )

5 1 5 1 1 3 5 5 1 1 3
3

2 2
5 5 5 3 5 1 5 1 5 1 5 1 3 1 3

5 5 1 1 5 5 1 3 1 3

cos sin

sin

2 cos

d L m g m g
dt

m g I m g m g

m g m g

θ θ θ β θ θ β
θ

θ θ θ θ θ θ β

θ θ θ θ β

⎛ ⎞∂
= ζ − − + ζ − −⎜ ⎟∂⎝ ⎠

+ + − ζ − ζ − −

+ ζ − ζ − −

�� ��
�

�� � � �

� � � �

        (4.77) 

The corresponding set of Lagrange’s equations of the open-chain 

system is then 
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( ) ( )

( ) ( )
( )

1
1 1

22
1 1 1 2 2 1 2 5 1 5 1 5 3 1 3

2
2 1 2 5 1 1 1 5 1 5 3 1 3

1 1 2 1 2 5 1 1

cos

2 sin

cos

d L LT
dt

m g I I m g m m g

m g m m g

m g m g m g

θ θ

θ θ θ θ β

θ θ θ θ β

θ

2
1

⎛ ⎞∂ ∂
= −⎜ ⎟∂ ∂⎝ ⎠
⎡ ⎤= + + + ζ − + ζ + ζ − −⎣ ⎦

+ ζ − + ζ ζ + ζ − −⎡ ⎤⎣ ⎦
+ + ζ − + ζ⎡ ⎤⎣ ⎦

�

�� ��

� � �
  (4.78) 

( ) ( ) ( )
( ) ( )

1
1 1

2
2 5 1 5 5 3 1 3 2 1 2 5 1

2
5 5 3 1 3 2 5 1

sin

cos sin

d L LF
dt

m m m g m g m

m g m m g

θ θ θ β θ

θ θ θ β θ
1

⎛ ⎞∂ ∂
= −⎜ ⎟∂ζ ∂ζ⎝ ⎠
= + ζ + − − − ζ − + ζ⎡ ⎤⎣ ⎦
− − − + +

�

�� �� �

�
         (4.79) 

( ) ( )

( )

2 2

22
3 3 3 4 4 2 4 2 4 2 4 2 2

3 3 4 2 4 2

0

2

cos

d L L
dt

m g I I m g m g

m g m g g

θ θ

θ θ

θ

⎛ ⎞∂ ∂
= −⎜ ⎟∂ ∂⎝ ⎠
⎡ ⎤= + + + ζ − + ζ − ζ⎣ ⎦
+ + ζ −⎡ ⎤⎣ ⎦

�

�� � �              (4.80) 

( )

2
2 2

2
4 4 2 4 2 2sin

d L LF
dt

m m g gθ θ2

⎛ ⎞∂ ∂
= −⎜ ⎟∂ζ ∂ζ⎝ ⎠

⎡ ⎤= ζ − ζ − −⎣ ⎦

�

�� �
               (4.81) 

( ) ( ) ( )
( ) ( ) ( )

3 3

2
5 1 5 1 1 3 5 5 1 1 3 5 5 5 3

2
5 5 1 1 1 3 1 1 1 3 3

0

cos sin

sin 2 cos cos

d L L
dt

m g m g m g I

m g g

θ θ

θ θ θ β θ θ β θ

θ θ θ β θ θ θ β θ β

⎛ ⎞∂ ∂
= −⎜ ⎟∂ ∂⎝ ⎠

= ζ − − + ζ − − + +

⎡ ⎤+ −ζ − − + ζ − − + +⎣ ⎦

�

�� �� ��

� � �
 (4.82) 

Equations (4.78)-(4.82) can be expressed in matrix form as follows: 
T+ =Mq B Z T��                   (4.83) 

where M , B  and TZ  are 
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11 15

22 25

33

44

51 52 55

0 0 0
0 0 0
0 0 0 0
0 0 0 0

0 0

M M
M M

M
M

M M M

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

M                           (4.84) 

1

2

3

4

5

B
B
B
B
B

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

B                    (4.85) 

1 0 0
0 1 0
0 0 0
0 0 1
0 0 0

T

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Z                   (4.86) 

and the elements of  M  and B  are given below: 

( )22
11 1 1 1 2 2 1 2 5M m g I I m g m 2

1= + + + ζ − + ζ                (4.87) 

( )15 5 1 5 1 3cosM m g θ θ β= ζ − −                 (4.88) 

22 2 5M m m= +                   (4.89) 

( )25 5 5 1 3sinM m g θ θ β= − −                  (4.90) 

( )22
33 3 3 3 4 4 2 4M m g I I m g= + + + ζ −                 (4.91) 

44 4M m=                    (4.92) 

( )51 5 1 5 1 3cosM m g θ θ β= ζ − −                 (4.93) 

( )52 5 5 1 3sinM m g θ θ β= − −                  (4.94) 

2
55 5 5 5M m g I= +                   (4.95) 

( ) ( )
( )

2
1 2 1 2 5 1 1 1 5 1 5 3 1 3

1 1 2 1 2 5 1 1

2 sin

cos

B m g m m g

m g m g m g

θ θ θ θ β

θ

= ζ − + ζ ζ + ζ − −⎡ ⎤⎣ ⎦
+ + ζ − + ζ⎡ ⎤⎣ ⎦

� � �
            (4.96) 
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( ) ( )
( )

2 2
2 2 1 2 5 1 5 5 3 1 3

2 5 1

cos

sin

B m g m m g

m m g

θ θ θ θ β

θ
1= − ζ − + ζ − − −⎡ ⎤⎣ ⎦

+ +

� �
             (4.97) 

( ) ( )3 4 2 4 2 2 3 3 4 2 4 22 cosB m g m g m g gθ θ= ζ − ζ + + ζ −⎡ ⎤⎣ ⎦
� �              (4.98) 

( ) 2
4 4 2 4 2 2sinB m g gθ θ⎡ ⎤= − ζ − −⎣ ⎦

�                 (4.99) 

( ) ( )
( )

2
5 5 5 1 1 1 3 1 1 1 3

3

sin 2 cos

cos

B m g

g

θ θ θ β θ θ θ β

θ β

⎡= −ζ − − + ζ − −⎣
+ + ⎤⎦

� � �
           (4.100) 

Then, imposing the constraint equations on Equation (4.83), the 

dynamic behavior of the parallel manipulator can be expressed by the 

following matrix equation: 
TT G+ = +Mq B Z T Γ λ��                (4.101) 

where [ ]1 2
T= λ λλ . 

Combining the terms involving λ  and T , Equation (4.101) can be 

written again as 
T = +A μ Mq B��                 (4.102) 

where 
T T T⎡ ⎤= ⎣ ⎦μ λ T                 (4.103) 

and  

1 1 1 1

1 1

2 2 2 2

2 2

3 3

sin cos 1 0 0
cos sin 0 1 0

sin cos 0 0 0
cos sin 0 0 1
sin cos 0 0 0

T

b b

θ θ
θ θ
θ θ
θ θ
θ θ

−ζ ζ⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= ζ −ζ
⎢ ⎥− −⎢ ⎥
⎢ ⎥−⎣ ⎦

A              (4.104) 

Since ( )2 3 2sinb θ θ= ζ −A , drive singularities arise when 2 0ζ =  or 

3 2 nθ θ π− = ± , ( )0, 1, 2, n = … . Noting that 2ζ  cannot become zero in 

practice, the drive singular positions are those positions where the points B , 

D  and C  happen to be collinear. 
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4.2 Consistency Conditions and Modified Equations 

 

 

At a singular position, the third and fifth rows of TA  become linearly 

independent as 

2
3 5 0 1, , 5T T

j jA A j
b
ζ

+ σ = = …               (4.105) 

where 1σ =  if 2 3θ θ=  and 1σ = −  if 3 2θ θ π− = . The same relation must be 

present among the third and fifth rows of Equation (4.102). 

( )

2 2
31 51 1 32 52 2 33 2

2 2
51 1 52 1 55 3 3 5

T T T TA A A A M
b b

M M M B B
b b

θ

θ θ

ζ ζ⎛ ⎞ ⎛ ⎞+ σ λ + +σ λ =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

ζ ζ
+σ + ζ + + +σ

��

�� �� ��
               (4.106) 

On substituting Equation (4.105), Equation (4.106) becomes 

( )2 2
33 2 51 1 52 1 55 3 3 5 0M M M M B B

b b
θ θ θζ ζ

+ σ + ζ + + +σ =�� �� �� ��            (4.107) 

Equation (4.107) is the consistency condition that q��  should satisfy at the 

singular position. 

Differentiating Equation (4.106) with respect to time, one obtains 

( )

( )

2 2 2 2
31 51 1 32 52 2 31 51 51 1

2 2 2
32 52 52 2 33 2 51 1 52 1 55 3

2 2
33 2 51 1 52 1 55 3

T T T T T T T

T T T

A A A A A A A
b b b b

A A A M M M M
b b b

M M M M M
b b

ζ ζ ζ ζσ λ σ λ σ σ λ

ζ ζ ζσ σ λ θ σ θ ζ θ

ζ ζθ σ θ ζ θ σ

⎛ ⎞⎛ ⎞ ⎛ ⎞+ + + + + +⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠
⎛ ⎞

+ + + = + + +⎜ ⎟
⎝ ⎠

+ + + + +

�� � � �

�� � ��� ��� ��� ���

��� �� �� ��� � � � ( )51 1 52 1 55 3

2 2
3 5 5

M M

B B B
b b

θ ζ θ

ζ ζσ σ

+ +

+ + +

�� �� ��

�� �

(4.108) 

In view of the fact that the coefficients of 1λ�  and 2λ�  vanish thanks to Equation 

(4.105) at the singular position, there is a neighborhood in which the terms 
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containing 1λ�  and 2λ�  are negligible. Therefore in that neighborhood they can 

be dropped to yield 

1 1 2 2H Hλ λ+ = Ψ                                                                                        (4.109) 

where 

2 2
1 31 51 51

T T TH A A A
b b
ζ ζσ σ= + +

�� �               (4.110) 

2 2
2 32 52 52

T T TH A A A
b b
ζ ζσ σ= + +

�� �               (4.111) 

( )

( )

( )

2
33 2 51 1 52 1 55 3

2
33 2 51 1 52 1 55 3

2 2 2
51 1 52 1 55 3 3 5 5

M M M M
b

M M M M
b

M M M B B B
b b b

ζθ σ θ ζ θ

ζθ σ θ ζ θ

ζ ζ ζσ θ ζ θ σ σ

Ψ = + + +

+ + + +

+ + + + + +

��� ��� ��� ���

�� �� �� ��� � � �

� ��� �� �� � �

           (4.112) 

The time derivatives that appear in Equation (4.109) are 

31 2 2 2 2 2sin cosTA θ θ θ= ζ + ζ� � �                (4.113) 

32 2 2 2 2 2cos sinTA θ θ θ= −ζ + ζ� � �                (4.114) 

51 3 3cosTA bθ θ= −� �                 (4.115) 

52 3 3sinTA bθ θ= −� �                 (4.116) 

( )33 4 2 2 42M m g= ζ ζ −��                (4.117) 

( ) ( ) ( )51 5 1 5 1 3 5 1 5 1 3 1 3cos sinM m g m gθ θ β θ θ θ θ β= ζ − − − ζ − − −� � ��           (4.118) 

( ) ( )52 5 5 1 3 1 3cosM m g θ θ θ θ β= − − −� ��               (4.119) 

55 0M =�                             (4.120) 

( ) ( )
( )

3 4 2 4 2 2 4 2 4 2 2 4 2

4 2 2 3 3 4 2 4 2 2

2 2 2

cos sin

B m g m g m

m g m g m g g

θ θ θ

θ θ θ

2
2= ζ − ζ + ζ − ζ + ζ

+ ζ − + ζ −⎡ ⎤⎣ ⎦

� �� � �� � ��

� �            (4.121) 
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( ) ( ){
( ) ( )

( ) ( )

( ) ( ) ( )}

5 5 5 1 1 1 3 1 1 3 1

2
1 1 1 3 1 1 1 3

2
1 1 1 3 1 3

1 1 1 3 1 3 3 3

2 sin 2 cos

2 cos sin

cos

2 sin sin

B m g

g

θ θ θ β θ θ β θ

θ θ θ β θ θ θ β

θ θ θ θ θ β

θ θ θ θ θ β θ θ β

⎡ ⎤= − ζ − − + ζ − −⎣ ⎦

+ ζ − − − ζ − −

−ζ − − −

− ζ − − − − +

� � ���

� �� � �

� � �

� � � � �

          (4.122) 

Equation (4.109) is the modified equation that can be used to replace the third 

or fifth equation of Equation (4.102). 

Note that q���  which appears in the modified equation and the prescribed 

end-effector jerks x���  are related via the derivative of Equation (4.12), 

2= − − +Γq Γq Γq h� �� ����� �� �                 (4.123) 

where 

11 12 13 14 15

21 22 23 24 25

31 32 35

41 42 45

0 0
0 0

0 0 0 0 0

⎡ ⎤Γ Γ Γ Γ Γ
⎢ ⎥Γ Γ Γ Γ Γ⎢ ⎥
⎢ ⎥= Γ Γ Γ
⎢ ⎥
Γ Γ Γ⎢ ⎥
⎢ ⎥⎣ ⎦

Γ

�� �� �� �� ��
�� �� �� �� ��

�� �� �� ��
�� �� ��

              (4.124) 

with 
2

11 1 1 1 1 1 1 1 1 1 1 1cos sin 2 cos sinθ θ θ θ θ θ θΓ = −ζ − ζ − ζ + ζ�� �� � � ���            (4.125) 

2
12 1 1 1 1sin cosθ θ θ θΓ = − −�� ���                           (4.126) 

2
13 2 2 2 2 2 2 2 2 2 2 2cos sin 2 cos sinθ θ θ θ θ θ θΓ = ζ + ζ + ζ − ζ�� �� � � ���            (4.127) 

2
14 2 2 2 2sin cosθ θ θ θΓ = +�� ���                (4.128) 

2
15 3 3 3 3cos sinb bθ θ θ θΓ = − +�� ���                (4.129) 

2
21 1 1 1 1 1 1 1 1 1 1 1sin cos sin cosθ θ θ θ θ θ θΓ = −ζ + ζ − 2 ζ − ζ�� �� � � ���            (4.130) 

2
22 1 1 1 1cos sinθ θ θ θΓ = −�� ���                (4.131) 

2
23 2 2 2 2 2 2 2 2 2 2 2sin cos 2 sin cosθ θ θ θ θ θ θΓ = ζ − ζ + ζ + ζ�� �� � � ���            (4.132) 

2
24 2 2 2 2cos sinθ θ θ θΓ = − +�� ���                (4.133) 
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2
25 3 3 3 3sin cosb bθ θ θ θΓ = − −�� ���                (4.134) 

2
31 1 1 1 1 1 1 1 1 1 1 1cos sin 2 cos sinθ θ θ θ θ θ θΓ = −ζ − ζ − ζ + ζ�� �� � � ���            (4.135) 

2
32 1 1 1 1sin cosθ θ θ θΓ = − −�� ���                (4.136) 

( ) ( )2
35 3 3 3 3cos sinc cθ θ α θ θ αΓ = − + + +�� ���              (4.137) 

2
41 1 1 1 1 1 1 1 1 1 1 1sin cos sin cosθ θ θ θ θ θ θΓ = −ζ + ζ − 2 ζ − ζ�� �� � � ���            (4.138) 

2
42 1 1 1 1cos sinθ θ θ θΓ = −�� ���                (4.139) 

( ) ( )2
45 3 3 3 3sin cosc cθ θ α θ θ αΓ = − + − +�� ���              (4.140) 

When the modified equation replaces the third equation in Equation 

(4.102), Equation (4.102) takes the following form by which one can find μ  

(and hence T ) in the neighborhood of the drive singularities, 
T =D μ S                             (4.141) 

where 

1, 2, 4, 5; 1, , 5
3; 1, 2

0 3; 3, 4, 5

T
ij

T
ij j

A i j
D H i j

i j

⎧ = =
⎪= = =⎨
⎪ = =⎩

…
             (4.142) 

and 

1, 2, 4, 5
3

ij j i
i

M q B i
S

i
+ =⎧

= ⎨ Ψ =⎩

��
              (4.143) 

Equation (4.141) is utilized in the neighborhood of the drive singularities, i.e., 

3 2 nθ θ π− ± < ε  ( )0, 1, 2, n = …  and Equation (4.102) is used elsewhere, 

where ε  is a positive number which defines the size of the neighborhood. ε  

should be selected small enough to have the error in the modified equation in 

Equation (4.141) insignificant and also large enough to prevent the A  matrix 

in Equation (4.102) from becoming ill-conditioned. 
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4.3 Inverse Dynamics Control outside the Neighborhood of 

Drive Singularities 

 

 

The first, second and fourth elements of the generalized force vector 
TZ T  in Equation (4.101) are the elements of the vector T  and its third and 

fifth elements are zero. Accordingly, the third and fourth rows of Equation 

(4.101) can be interchanged to have those two zero elements at the bottom: 

TG⎡ ⎤
+ = +⎢ ⎥

⎣ ⎦

T
Mq B Γ λ

0
��                (4.144) 

where M , B  and 
TGΓ  are obtained by interchanging the third and fourth rows 

of M , B  and 
TGΓ , respectively as follows: 

11 15

22 25

44

33

51 52 55

0 0 0
0 0 0
0 0 0 0
0 0 0 0

0 0

M M
M M

M
M

M M M

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

M              (4.145) 

1

2

4

3

5

B
B
B
B
B

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

B                  (4.146) 

1 1 1 1

1 1

2 2

2 2 2 2

3 3

sin cos
cos sin
cos sin
sin cos
sin cos

TG

b b

θ θ
θ θ
θ θ
θ θ
θ θ

−ζ ζ⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= − −
⎢ ⎥ζ −ζ⎢ ⎥
⎢ ⎥−⎣ ⎦

Γ               (4.147) 
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This rearranged form suggests a partitioning process of M , B  and 
TGΓ  as 

follows: 

3 5

2 5

a

u
×

×

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

M
M

M
                 (4.148) 

3 1

2 1

a

u
×

×

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

B
B

B
                 (4.149) 

3 2

2 2

T

T

T

Ga
G

Gu

×

×

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

Γ
Γ

Γ
                 (4.150) 

where 

11 15

22 25

44

0 0 0
0 0 0
0 0 0 0

a

M M
M M

M

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

M                          (4.151) 

33

51 52 55

0 0 0 0
0 0

u M
M M M
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

M                          (4.152) 

1

2

4

a

B
B
B

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

B                  (4.153) 

3

5

u B
B
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

B                  (4.154) 

1 1 1 1

1 1

2 2

sin cos
cos sin
cos sin

TGa

θ θ
θ θ
θ θ

−ζ ζ⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥− −⎣ ⎦

Γ                           (4.155) 

2 2 2 2

3 3

sin cos
sin cos

TGu

b b
θ θ
θ θ

ζ −ζ⎡ ⎤
= ⎢ ⎥−⎣ ⎦

Γ               (4.156) 

Thus, Equation (4.144) can be divided into the following two equations: 
Ta a Ga= + −T M q B Γ λ��                (4.157) 

TGu u u= +Γ λ M q B��                 (4.158) 
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As ( )2 3 2sin
TGu b θ θ= − ζ −Γ , the drive singularity condition 0

TGu =Γ  

is equivalent to 0=A . As long as 3 2 nθ θ π− ± ≥ ε  ( )0, 1, 2, n = … , A  and 

hence 
TGuΓ  are not ill-conditioned and the 

TGuΓ  matrix is invertible outside the 

neighborhood of drive singularities. Hence, λ  can be found using Equation  

(4.158) as follows: 

( ) ( )
1TGu u u
−

= +λ Γ M q B��                (4.159) 

Then, T  can be determined substituting Equation (4.159) into Equation 

(4.157): 

′ ′= +T M q B��                  (4.160) 

where 3 5×  matrix ′M  is 

( ) 1T Ta Ga Gu u
−

′ = −M M Γ Γ M                (4.161) 

and 3-dimensional vector ′B  is 

( ) 1T Ta Ga Gu u
−

′ = −B B Γ Γ B                (4.162) 

Equation (4.12) can be rearranged as 

( )1−= − +q Γ Γq h� ��� �                 (4.163) 

Putting Equation (4.163) into Equation (4.160) yields 
* *= +T M h B�                  (4.164) 

where 3 5×  matrix *M  is 
* 1−′=M M Γ                  (4.165) 

and 3-dimensional vector *B  is 
* 1−′ ′= −B B M Γ Γq� �                 (4.166) 

In Equation (4.164), all of the elements in the first two columns of the 

matrix *M  are multiplied by the first two zero elements in the vector h� . This 

fact leads to a partitioning of the matrix *M  as follows: 
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* * *
3 2 3 3

G P

× ×
⎡ ⎤= ⎣ ⎦M M M                            (4.167) 

where 
* *
11 12

* * *
21 22
* *
31 32

G

M M
M M
M M

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

M                 (4.168) 

and 
* * *
13 14 15

* * * *
23 24 25
* * *
33 34 35

P

M M M
M M M
M M M

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

M                (4.169) 

Then, the relation between the input T  and the output x  can be obtained in the 

following form: 
* *P

= +T M x B��                 (4.170) 

An inverse dynamics control law can then be formulated using Equation 

(4.170). Once u  is generated by the command acceleration generator, the 

actuator forces T  can be computed as 
* *P

= +T M u B                 (4.171) 

 

 

4.4 Inverse Dynamics Control inside the Neighborhood of 

Drive Singularities 

 

 

The rank deficiency of 
TGuΓ  results in drive singularities. When the 

modified equation replaces the linearly dependent dynamic equation in 

Equation (4.158) and the terms involving jq��� ’s and jq�� ’s are factored, the 

resulting system of equations can be written in matrix notation as follows: 
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ˆ ˆ ˆ ˆTGu u u u= + +Γ λ N q M q B��� ��                (4.172) 

( )ˆ ˆu u=N N q , ( )ˆ ˆ ,u u=M M q q� , ( )ˆ ˆ ,u u=B B q q�  and ( )ˆ ˆ ,
T TGu Gu=Γ Γ q q�  will have 

the following expressions:    

2 2 2
51 52 33 550ˆ

0 0 0 0 0

u M M M M
b b b
ζ ζ ζσ σ σ⎡ ⎤

⎢ ⎥=
⎢ ⎥
⎣ ⎦

N             (4.173) 

31 32 33 34 35

51 52 55

ˆ ˆ ˆ ˆ ˆˆ
0 0

u M M M M M
M M M
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

M                   (4.174) 

3

5

ˆˆ u B
B
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

B                  (4.175) 

1 2

3 3

ˆ
sin cos

TGu H H
b bθ θ

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

Γ                (4.176) 

where 

( ) ( )

2 2
31 51 51

2
5 5 1 1 1 3 1 1 3

ˆ

2 sin 2 cos

M M M
b b

m g
b

ζ ζσ σ

ζσ θ θ θ β θ θ β

= +

⎡ ⎤+ − ζ − − + ζ − −⎣ ⎦

��

� �
           (4.177) 

( )2 2 2
32 52 52 5 5 1 1 3

ˆ 2 cosM M M m g
b b b
ζ ζ ζσ σ σ θ θ θ β= + + − −

� ��           (4.178) 

( )33 33 4 2 4 2
ˆ 2M M m g= + ζ − ζ��                (4.179) 

( )34 4 2 4 2
ˆ 2M m g θ= ζ − �                (4.180) 

2 2
35 55 55M̂ M M

b b
ζ ζσ σ= +

��                (4.181) 
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( )

( ) ( ) ( ){
( ) ( ) ( ) }

3 4 2 4 2 2 3 3 4 2 4 2 2

2 22
5 5 1 1 1 3 1 1 1 3 1 3

1 1 1 3 1 3 3 3

2
5

ˆ 2 cos sin

sin cos

2 sin sin

B m m g m g m g g

m g
b

g

B
b

θ θ θ θ

ζσ θ θ θ β θ θ θ θ θ β

θ θ θ θ θ β θ θ β

ζσ

2
2= ζ + ζ − + ζ −⎡ ⎤⎣ ⎦

⎡+ −ζ − − − ζ − − −⎣

⎤− ζ − − − − + ⎦

+

� � � �

� � � � �

� � � � �

�

  (4.182) 

Note that Equations (4.157) and (4.172) form together Equation (4.141). 

λ  can be found using Equation (4.172) as follows: 

( ) ( )1ˆ ˆ ˆ ˆTGu u u u
−

= + +λ Γ N q M q B��� ��               (4.183) 

Then, T  can be determined substituting Equation (4.183) into Equation 

(4.157): 

ˆ ˆ ˆ′ ′ ′= + +T N q M q B��� ��                            (4.184) 

where 3 5×  matrices ˆ ′N  and ˆ ′M  are 

( ) 1ˆ ˆ ˆT TGa Gu u
−

′ = −N Γ Γ N                (4.185) 

( ) 1ˆ ˆ ˆT Ta Ga Gu u
−

′ = −M M Γ Γ M                (4.186) 

and 3-dimensional vector ˆ ′B  is  

( ) 1ˆ ˆ ˆT Ta Ga Gu u
−

′ = −B B Γ Γ B                (4.187) 

The terms in Equation (4.123) involving jq�� ’s can be factored to yield 

= + +Γq Pq R h����� ��                                                        (4.188) 

where 5 5×  matrix ( ),=P P q q�  and 5-dimensional vector ( ),=R R q q�  are 

11 12 13 14 15

21 22 23 24 25

31 32 35

41 42 45

0 0
0 0

0 0 0 0 0

P P P P P
P P P P P
P P P
P P P

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

P               (4.189) 
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and 

1

2

3

4

0

R
R
R
R

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

R                  (4.190) 

with 

( )11 1 1 1 1 13 sin cosP θ θ θ= ζ + ζ� �                (4.191) 

12 1 13 sinP θ θ= �                  (4.192) 

( )13 2 2 2 2 23 sin cosP θ θ θ= − ζ + ζ� �               (4.193) 

14 2 23 sinP θ θ= − �                 (4.194) 

15 3 33 cosP bθ θ= �                 (4.195) 

( )21 1 1 1 1 13 sin cosP θ θ θ= ζ − ζ� �                (4.196) 

22 1 13 cosP θ θ= − �                 (4.197) 

( )23 2 2 2 2 23 cos sinP θ θ θ= ζ − ζ� �               (4.198) 

24 2 23 cosP θ θ= �                 (4.199) 

25 3 33 sinP bθ θ= �                 (4.200) 

( )31 1 1 1 1 13 sin cosP θ θ θ= ζ + ζ� �                (4.201) 

32 1 13 sinP θ θ= �                  (4.202) 

( )35 3 33 cosP cθ θ α= +�                (4.203) 

( )41 1 1 1 1 13 sin cosP θ θ θ= ζ − ζ� �                (4.204) 

42 1 13 cosP θ θ= − �                 (4.205) 

( )45 3 33 sinP cθ θ α= +�                 (4.206) 

2 3 2 3 3
1 1 1 1 1 1 1 2 2 2 2 2 2 3 33 cos sin 3 cos sin sinR bθ θ θ θ θ θ θ θ θ θ= ζ − ζ − ζ + ζ −� � � � � � �         (4.207) 
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2 3 2 3 3
2 1 1 1 1 1 1 2 2 2 2 2 2 3 3sin cos 3 sin cos cosR bθ θ θ θ θ θ θ θ θ θ= 3 ζ + ζ − ζ − ζ +� � � � � � �        (4.208) 

( )2 3 3
3 1 1 1 1 1 1 3 33 cos sin sinR cθ θ θ θ θ θ α= ζ − ζ − +� � � �             (4.209)

( )2 3 3
4 1 1 1 1 1 1 3 3sin cos cosR cθ θ θ θ θ θ α= 3 ζ + ζ + +� � � �             (4.210) 

Solving Equation (4.188) for q���  gives 

( )1−= + +q Γ Pq R h����� ��                 (4.211) 

On substituting Equation (4.163), Equation (4.211) becomes 

( )1 1− −⎡ ⎤= − + + +⎣ ⎦q Γ PΓ Γq h R h� � ����� �               (4.212) 

Putting Equations (4.163) and (4.212) into Equation (4.184) gives 
* * *ˆ ˆ ˆ= + +T N h M h B�� �                 (4.213) 

where 3 5×  matrices *N̂  and *M̂  are  
* 1ˆ ˆ −′=N N Γ                  (4.214) 

( )* 1 1ˆ ˆ ˆ− −′ ′= +M N Γ P M Γ                (4.215) 

and 3-dimensional vector *B̂  is 

( )* 1 1 1ˆ ˆ ˆ ˆ− − −′ ′ ′= + − −B B N Γ R PΓ Γq M Γ Γq� �� �                         (4.216) 

In Equation (4.213), all of the elements in the first two columns of the 

matrices *N̂  and *M̂  are multiplied by the first two zero elements in the 

vectors h��  and h� , respectively. This fact leads to a partitioning of the matrices 
*N̂  and *M̂  as follows: 

* * *
3 2 3 3

ˆ ˆ ˆG P

× ×
⎡ ⎤= ⎣ ⎦N N N                            (4.217) 

* * *
3 2 3 3

ˆ ˆ ˆG P

× ×
⎡ ⎤= ⎣ ⎦M M M                            (4.218) 

where 
* *
11 12

* * *
21 22

* *
31 32

ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ

G

N N

N N

N N

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

N                 (4.219) 
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* * *
13 14 15

* * * *
23 24 25

* * *
33 34 35

ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ

P

N N N

N N N

N N N

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

N                (4.220) 

* *
11 12

* * *
21 22

* *
31 32

ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ

G

M M

M M

M M

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

M                 (4.221) 

* * *
13 14 15

* * * *
23 24 25

* * *
33 34 35

ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ

P

M M M

M M M

M M M

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

M                (4.222) 

Then, the relation between the input T  and the output x  can be obtained in the 

following form: 
* * *ˆ ˆ ˆP P

= + +T N x M x B��� ��                 (4.223) 

An inverse dynamics control law can then be formulated using Equation 

(4.223). The rank of *ˆ P

N  is 1. So, in the control law, both command 

accelerations u  and command jerks u�  have to be specified. Using u  generated 

by the command acceleration generator as done outside the neighborhood of 

drive singularities and the time derivative of it, i.e., command jerks u� , the 

actuator forces T  can be computed using Equation (4.223): 
* * *ˆ ˆ ˆP P

= + +T N u M u B�                 (4.224) 

 

 

4.5 SIMULINK® Model 

 

 

The SIMULINK® model developed to perform the simulation of the 

proposed control system is shown in Figure 3. The clock generates the 
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simulation time and at each simulation step the Embedded MATLAB® 

Function called Desired Motion outputs the prescribed pose, velocity and 

acceleration of the end-effector. The desired and actual end-effector states are 

passed to the Embedded MATLAB® Function called Errors in the End-Effector 

States to yield the errors in the end-effector states. Taking the desired 

accelerations and the errors in the end-effector states as inputs, the Embedded 

MATLAB® Function called Command Accelerations generates the command 

accelerations according to a chosen control strategy. 

The Embedded MATLAB® Functions called Control Torque and 

Forces outside the Neighborhood of the Drive Singularity and Control Torque 

and Forces inside the Neighborhood of the Drive Singularity use Equations 

(4.171) and (4.224), respectively to evaluate the required motor torque 1T  and 

the actuator forces 1F  and 2F . The switch allows the 1st input to pass through 

when the 2nd input is greater than or equal to the specified threshold, namely ε . 

If not the 3rd input is allowed to pass through. Note that the inputs are 

numbered from top to bottom, i.e., the 1st and 3rd inputs are the outputs of the 

Embedded MATLAB® Functions called Control Torque and Forces outside the 

Neighborhood of the Drive Singularity and Control Torque and Forces inside 

the Neighborhood of the Drive Singularity, respectively whereas the 2nd input 

is the output of the Embedded MATLAB® Function called Switching Criterion 

which evaluates ( )g q . 

Application of the control torque and forces to the parallel manipulator 

is executed in the subsystem called 2-RPR Planar Parallel Manipulator which 

is shown in Figure 4. The Embedded MATLAB® Function called Direct 

Dynamics solves Equation (4.101) and the loop closure constraint equations at 

acceleration level for actual joint accelerations and Lagrange multipliers but 

outputs only the actual joint accelerations to be integrated twice for obtaining 

the actual joint velocities and displacements. 
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Once the actual joint velocities and displacements are found, the actual 

end-effector states are determined using task equations at position and velocity 

levels by the Embedded MATLAB® Function called Direct Kinematics to be 

fed back for calculating the errors in the end-effector states at the next time 

step. 

Scopes are used to display the computed motor torque and actuator 

forces and the errors in the end-effector states. For brevity, those scopes are 

banded together in the subsystem called Scopes which is shown in Figure 5. 
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Figure 4 The subsystem called 2-RPR Planar Parallel Manipulator 
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Figure 5 The subsystem called Scopes 

 

 

 

4.6 Numerical Example 

 

 

The data used are as follows: The link lengths are 1 ma = , 0.4 mb = , 

0.2 mc = , 0α = . The masses and the centroidal moments of inertia are 

1 2 kgm = , 2 1.5 kgm = , 3 2 kgm = , 4 1.5 kgm = , 5 1 kgm = , 2
1 0.05 kg.mI = , 

2
2 0.03 kg.mI = , 2

3 0.05 kg.mI = , 2
4 0.03 kg.mI =  and 2

5 0.02 kg.mI = . The 

mass center locations are 1 0.15 mg = , 2 0.15 mg = , 3 0.15 mg = , 

4 0.15 mg = , 5 0.15 mg =  and 0β = . 

Consider a deployment motion where the platform is desired to move 

with a constant orientation given as 3 320θ = D  and with point P  having a 

trajectory ( )s t  along a straight line whose angle with x -axis is given as 

-K-

rad to deg

error in yP

error in xP

error in theta3

[e]

T1

[T]

F2 
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200γ = D , starting from the initial position 
0

0.800 mPx = , 
0

0.916 mPy =  

(Figure 6). Here, to recall later, one can easily conclude that 

( )0 0s =                  (4.225)  

The distance between the initial and final positions is determined to be 

1.5 mL =  and this distance is desired to be taken in 1 sT = , i.e., 

( )s T L=                  (4.226) 

Hence the desired Cartesian motion of the platform can be written as 

( )
( )

0

0

cos

sin

320

P

P

x s t

y s t

γ

γ

+⎡ ⎤
⎢ ⎥

= +⎢ ⎥
⎢ ⎥
⎣ ⎦

x
D

                                    (4.227) 

In addition, it is desired that the system has zero initial and final velocities, i.e., 

( )0 0s =�                  (4.228) 

( ) 0s T =�                  (4.229) 

 

 

 

 

Figure 6 Desired motion of the parallel manipulator 
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When point P  comes to 0.6618 mds L= = , a drive singularity is 

encountered since 2θ  becomes equal to 3θ π−  and the other joint variables at 

that instance can be found as 1 1.5404 radθ = , 1 0.8186 mζ =  and 

2 0.8729 mζ = . This singular configuration is shown in Figure 7. By the way, 

it is convenient to note down the following equation to revisit later: 

( )d ds T L=                  (4.230) 

where dT  denotes the time when the singularity happens. The consistency 

condition is given by (4.107) with 1σ = − . The desired trajectory should be 

planned via an appropriate choice of ( )s t  to satisfy the consistency condition. 

 

 

 

 

Figure 7 Singular configuration of the parallel manipulator 
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An arbitrary inconsistent trajectory cannot be realized by the actuators 

of the manipulator. This fact is illustrated by considering an arbitrary third 

order polynomial for ( )s t  having zero initial and final velocities, i.e., 

( ) 2 3
2 3

3 2L Ls t t t
T T

= −  (Figure 8). 

In such a case, the conventional inverse dynamics control law is 

applicable only. A PD controller is decided to be used. Therefore, the 

command accelerations are generated as in Equation (3.17). The constant 

feedback gain diagonal matrices are chosen to be in binomial form, i.e., 

1 0 32ω=C I  and 2
2 0 3ω=C I  where 0ω  is a positive constant and selected as 

0 30 rad/sω = . 

Besides, it is assumed that initially the parallel manipulator is at rest 

with 1 1.0439 radθ = , 1 1.1960 mζ = , 2 1.7023 radθ = , 2 0.7729 mζ =  and  

3 5.5501 radθ = . The corresponding end-effector pose is 
0

0.795 mPx = , 

0
0.900 mPy =  and 

03 318θ = D . Hence the parallel manipulator is assumed to be 

initially mispositioned. 

The closed loop system is simulated using the fourth-order Runge-Kutta 

solver with a fixed step size of 0.001 s and assuming no modeling error. The 

motor torque and actuator forces are shown in Figures 9 and 10. (In the figures 

the torque and forces are out of range around the singular position.) The 

singular position is reached when 0.461 st = . The motor torque and actuator 

forces grow without bounds as the singularity is approached and take infinitely 

large values at the singular position. 

However, in a real application the output powers of the actuators are 

limited. Hence, the maximum torque and forces exerted by the actuators are 

limited and, as a result, the actuators unavoidably saturate as the singularity is 

approached. To take actuator bounds into account, the closed loop system is 
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simulated again by setting the actuator limits as 250 N m± ⋅  for the motor 

torque 1T  and 300 N±  for the actuator forces 1F  and 2F . For this case the 

errors in the end-effector states, the motor torque and actuator forces are shown 

in Figures 11 through 14. It can be seen that tracking would be very poor and 

unacceptable and the manipulator could not perform the desired task in an 

application where an arbitrary inconsistent trajectory is chosen for the 

prescribed motion which passes through the drive singular position. 
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Figure 8 A time function that does not satisfy the consistency condition 
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Figure 9 Motor torque 1T  for the inconsistent trajectory 
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Figure 10 Actuator forces 1F  and 2F  for the inconsistent trajectory 
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Figure 11 Errors in Px  and Py  for the inconsistent trajectory considering 

actuator limits 
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Figure 12 Error in 3θ  for the inconsistent trajectory considering actuator limits 
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Figure 13 Motor torque 1T  for the inconsistent trajectory considering actuator 

limits 
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Figure 14 Actuator forces 1F  and 2F  for the inconsistent trajectory considering 

actuator limits 
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As it is obvious from the above results, for the time function ( )s t  a 

polynomial is required to be chosen which satisfies the consistency condition at 

the drive singularity in addition to having zero initial and final velocities. For 

this purpose, one can specify the time dT  and the velocity of the end point at 

the singular configuration, ( )P dv T . Let dT  and ( )P dv T  be chosen as 0.62 s  

and 1.7 m/s , respectively. Incidentally, one can establish that 

( ) ( )d P ds T v T=�                 (4.231) 

Using Equation (4.231), x�  and x��  at dT  can be written as 

( )
( )
( )

cos
sin

0

P d

d P d

v T
T v T

γ
γ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

x�                (4.232) 

( )
( )
( )

cos
sin

0

P d

d P d

a T
T a T

γ
γ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

x��                (4.233) 

where 

( ) ( )d P ds T a T=��                 (4.234)

Substituting the numerical values of ( )dTq  found above into Equation (4.10) 

where ( )dTx�  is given by (4.232)  yields q�  at dT  as follows: 1 1.9290 rad/sθ =� , 

1 0.6298 m/sζ = −� , 2 1.6866 rad/sθ =� , 2 0.8500 m/sζ =�  and 3 0 rad/sθ =� . 

Having the numerical values of ( )dTq  and ( )dTq�  now, Equation (4.12) where 

( )dTx��  is given by (4.233)  and the consistency condition constitute together the 

six equations required to solve for the six unknowns q��  at dT  and ( )P da T  as 

follows: 2
1 14.9871 rad/sθ =�� , 2

1 0.8778 m/sζ = −�� , 2
2 7.2240 rad/sθ =�� , 

2
2 7.7792 m/sζ =�� , 2

3 0 rad/sθ =��  and ( ) 210.5922 m/sP da T = . Consequently, the 

sixth order polynomial satisfying all of the Equations (4.225), (4.226), (4.228), 
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(4.229), (4.230), (4.231) and (4.234) together is shown in Figure 15 and given 

below: 

( ) 2 3 4 5 620.7303 87.8009 146.5637 103.6459 25.6528s t t t t t t= − + − +        (4.235) 
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Figure 15 A time function that satisfies the consistency condition 

 

 

 

Once the trajectory is chosen to be consistent, to test the proposed 

switching inverse dynamics controller, the model is run twelve times under 

different scenarios. These scenarios are presented in Table 1. The solver type 

and the step size used in these twelve simulations are the same with the ones 

used in the previous two simulations carried out for the inconsistent trajectory. 
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In addition, it is assumed in these simulations that the manipulator is at the 

same initial configuration so that the initial position error is the same with 

those previous two simulations. 

In the first four scenarios, the closed loop control system is simulated 

using a PD controller in the absence of modeling error. The constant feedback 

gain diagonal matrices are chosen to be in binomial form as in the previous two 

simulations carried out for the inconsistent trajectory, and so that a critically 

damped response is achieved. 

In the second four scenarios, the closed loop control system is 

simulated using 5 % smaller values for the mass and inertia values in the model 

to see the effects of modeling error. But the controller type in use is still PD. 

 

 

 

Table 1 The scenarios simulated 

 

Scenarios Modeling Error Controller Type 0ω  (rad/s) ε  (deg) 
1 No PD 30 0.5 
2 No PD 50 0.5 
3 No PD 30 1 
4 No PD 50 1 
5 Yes PD 30 0.5 
6 Yes PD 50 0.5 
7 Yes PD 30 1 
8 Yes PD 50 1 
9 Yes PID 30 0.5 
10 Yes PID 50 0.5 
11 Yes PID 30 1 
12 Yes PID 50 1 
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In the last four scenarios, an integral control action is added to the 

closed loop control system to see the effects of the PID controller on the closed 

loop response considering the same modeling error as in the second four 

scenarios. When a PID controller is used, command accelerations are generated 

as 

( ) ( ) ( )1 2 3
d d d d dt= + − + − + −∫u x C x x C x x C x x�� � �             (4.236) 

where the constant feedback gain diagonal matrices are again chosen to be in 

binomial form, i.e., 1 0 33ω=C I , 2
2 0 33ω=C I  and 3

3 0 3ω=C I . 

Furthermore, in each quartet 0ω  and ε  are altered to understand the 

effects of the selected positive constant 0ω  and the specified size of the 

neighborhood of the drive singularity on the closed loop response, respectively. 

For each scenario four different graphs are plotted to present the 

simulation results: errors in Px  and Py , error in 3θ , motor torque 1T  and 

actuator forces 1F  and 2F  (Figures 16-63). The key points in the results, 

namely, steady-state errors before the neighborhood of the singularity, 

maximum errors in the neighborhood of the singularity, maximum errors after 

the neighborhood of the singularity, steady-state errors after the neighborhood 

of the singularity, maximum control torque and forces, jumps in the control 

torque and forces at the onset of the neighborhood of the singularity, jumps in 

the control torque and forces at the exit of the neighborhood of the singularity, 

and control torque and forces at the singularity are also tabulated in Tables 2-9 

for ease of interpretation. The results are as follows: 
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Figure 16 1st Scenario – errors in Px  and Py  
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Figure 17 1st Scenario – error in 3θ  
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Figure 18 1st Scenario – Motor torque 1T  
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Figure 19 1st Scenario – Actuator forces 1F  and 2F  
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Figure 20 2nd Scenario – errors in Px  and Py  
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Figure 21 2nd Scenario – error in 3θ  
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Figure 22 2nd Scenario – Motor torque 1T  
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Figure 23 2nd Scenario – Actuator forces 1F  and 2F  
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Figure 24 3rd Scenario – errors in Px  and Py  
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Figure 25 3rd Scenario – error in 3θ  
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Figure 26 3rd Scenario – Motor torque 1T  
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Figure 27 3rd Scenario – Actuator forces 1F  and 2F  
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Figure 28 4th Scenario – errors in Px  and Py  
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Figure 29 4th Scenario – error in 3θ  
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Figure 30 4th Scenario – Motor torque 1T  
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Figure 31 4th Scenario – Actuator forces 1F  and 2F  
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Figure 32 5th Scenario – errors in Px  and Py  
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Figure 33 5th Scenario – error in 3θ  
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Figure 34 5th Scenario – Motor torque 1T  
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Figure 35 5th Scenario – Actuator forces 1F  and 2F  
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Figure 36 6th Scenario – errors in Px  and Py  
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Figure 37 6th Scenario – error in 3θ  
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Figure 38 6th Scenario – Motor torque 1T  
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Figure 39 6th Scenario – Actuator forces 1F  and 2F  
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Figure 40 7th Scenario – errors in Px  and Py  
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Figure 41 7th Scenario – error in 3θ  
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Figure 42 7th Scenario – Motor torque 1T  
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Figure 43 7th Scenario – Actuator forces 1F  and 2F  
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Figure 44 8th Scenario – errors in Px  and Py  
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Figure 45 8th Scenario – error in 3θ  
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Figure 46 8th Scenario – Motor torque 1T  
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Figure 47 8th Scenario – Actuator forces 1F  and 2F  
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Figure 48 9th Scenario – errors in Px  and Py  

 
 
 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

-0.5

0

0.5

1

1.5

2

time (s)

er
ro

r i
n 
θ 3

 (d
eg

)

 
 

Figure 49 9th Scenario – error in 3θ  
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Figure 50 9th Scenario – Motor torque 1T  
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Figure 51 9th Scenario – Actuator forces 1F  and 2F  



 82

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

time (s)

er
ro

rs
 in

 x
P a

nd
 y

P (m
)

error in xP

error in yP

 
 

Figure 52 10th Scenario – errors in Px  and Py  
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Figure 53 10th Scenario – error in 3θ  
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Figure 54 10th Scenario – Motor torque 1T  
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Figure 55 10th Scenario – Actuator forces 1F  and 2F  
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Figure 56 11th Scenario – errors in Px  and Py  
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Figure 57 11th Scenario – error in 3θ  
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Figure 58 11th Scenario – Motor torque 1T  
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Figure 59 11th Scenario – Actuator forces 1F  and 2F  
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Figure 60 12th Scenario – errors in Px  and Py  
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Figure 61 12th Scenario – error in 3θ  
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Figure 62 12th Scenario – Motor torque 1T  
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Figure 63 12th Scenario – Actuator forces 1F  and 2F  
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Table 2 Steady-state errors before the neighborhood of the singularity 

 

Scenarios error in Px  (mm) error in Py  (mm) error in 3θ  (deg) 
1 0,0000 0,0000 0,0000 
2 0,0000 0,0000 0,0000 
3 0,0000 0,0000 0,0000 
4 0,0000 0,0000 0,0000 
5 -0,4538 0,4414 0,0157 
6 -0,1862 0,1519 0,0055 
7 -0,4432 0,4445 0,0158 
8 -0,1836 0,1525 0,0056 
9 -0,0928 -0,0301 -0,0004 
10 -0,0139 -0,0039 -0,0002 
11 -0,0965 -0,0317 -0,0003 
12 -0,0149 -0,0043 -0,0002 

 

 

 

Table 3 Maximum errors in the neighborhood of the singularity 

 

Scenarios error in Px  (mm) error in Py  (mm) error in 3θ  (deg) 
1 -0,0001 -0,0001 0,0000 
2 -0,0001 -0,0001 0,0000 
3 -0,0016 -0,0019 -0,0008 
4 -0,0050 -0,0059 -0,0026 
5 -0,4734 0,4408 0,0157 
6 -0,1912 0,1518 0,0055 
7 -0,4853 0,4438 0,0158 
8 -0,1985 0,1524 0,0055 
9 -0,0921 -0,0298 -0,0006 
10 -0,0137 -0,0038 -0,0003 
11 -0,0958 -0,0314 -0,0027 
12 -0,0859 -0,0931 -0,0392 
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Table 4 Maximum errors after the neighborhood of the singularity 

 

Scenarios error in Px  (mm) error in Py  (mm) error in 3θ  (deg) 
1 -0,0002 -0,0002 -0,0001 
2 -0,0002 -0,0002 -0,0001 
3 -0,0026 -0,0031 -0,0013 
4 -0,0062 -0,0075 -0,0032 
5 1,1108 1,0543 0,0152 
6 0,4820 0,4086 0,0051 
7 1,1108 1,0543 0,0131 
8 0,4820 0,4086 0,0024 
9 0,2755 0,0972 -0,0033 
10 0,0626 0,0223 -0,0008 
11 0,2755 0,0972 -0,0035 
12 -0,0947 -0,1053 -0,0446 

 

 

 

Table 5 Steady-state errors after the neighborhood of the singularity 

 

Scenarios error in Px  (mm) error in Py  (mm) error in 3θ  (deg) 
1 0,0000 0,0000 0,0000 
2 0,0000 0,0000 0,0000 
3 0,0000 0,0000 0,0000 
4 0,0000 0,0000 0,0000 
5 1,1108 1,0543 -0,0039 
6 0,4820 0,4086 -0,0015 
7 1,1108 1,0543 -0,0039 
8 0,4820 0,4086 -0,0015 
9 0,2755 0,0972 -0,0004 
10 0,0626 0,0223 -0,0001 
11 0,2755 0,0972 -0,0004 
12 0,0626 0,0223 -0,0001 
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Table 6 Maximum control torque and forces 

 

Scenarios 1T  (N.m) 1F  (N) 2F  (N) 
1 118,33 76,56 -131,04
2 -417,39 76,56 268,40 
3 118,33 76,56 -131,04
4 -417,39 76,56 268,40 
5 123,56 80,46 -137,75
6 -417,39 80,54 268,40 
7 123,56 80,46 -137,75
8 -417,39 80,54 268,40 
9 -465,61 80,58 295,89 
10 -1622,80 244,97 955,59 
11 -465,61 80,58 295,89 
12 -1622,80 -312,50 955,59 

 

 

 

Table 7 Jumps in the control torque and forces at the onset of the 

neighborhood of the singularity 

 

Scenarios 1T  (N.m) 1F  (N) 2F  (N)
1 -1,03 -0,83 1,50 
2 -1,08 -0,88 1,58 
3 -3,76 -3,34 5,66 
4 -6,99 -6,31 10,56 
5 -4,67 -4,23 7,09 
6 -2,59 -2,28 3,89 
7 -7,06 -6,36 10,67 
8 -8,73 -7,90 13,22 
9 -1,67 -1,43 2,48 
10 -1,37 -1,15 2,03 
11 -6,88 -6,20 10,40 
12 -20,64 -18,86 31,34 
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Table 8 Jumps in the control torque and forces at the exit of the neighborhood 
of the singularity 

 

Scenarios 1T  (N.m) 1F  (N) 2F  (N)
1 -0,59 -0,41 0,81 
2 -0,71 -0,53 1,00 
3 -1,95 -1,79 2,98 
4 -6,41 -6,32 10,10 
5 -5,27 -5,03 8,18 
6 -2,61 -2,41 4,00 
7 -5,61 -5,47 8,79 
8 -8,15 -8,09 12,88 
9 -1,37 -1,17 2,03 
10 -1,53 -1,33 2,29 
11 -5,45 -5,34 8,56 
12 -192,27 -195,14 306,88

 

 

 

Table 9 Control torque and forces at the singularity 

 

Scenarios 1T  (N.m) 1F  (N) 2F  (N)
1 28,12 26,17 1,91 
2 28,07 26,12 1,99 
3 27,96 26,02 2,15 
4 26,59 24,70 4,29 
5 28,35 26,25 4,05 
6 28,65 26,60 3,52 
7 28,03 25,95 4,54 
8 27,01 25,02 6,08 
9 29,25 27,19 2,58 
10 29,08 27,05 2,82 
11 27,92 25,91 4,65 
12 -67,06 -65,52 152,39
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CHAPTER 5 

 

 

CONCLUSIONS 

 

 

 

İder [21, 22] formerly showed that if the trajectory is planned as it 

makes the dynamic equations consistent at drive singularities, the parallel 

manipulator can pass through those singular positions while the actuator forces 

remain stable. Moreover, he modified the dynamic equations by using higher 

order derivative information to be utilized in the neighborhood of the 

singularities so that the control forces that cannot influence the end-effector 

accelerations affect the end-effector jerks instantaneously in singular 

directions. 

In this thesis, a switching inverse dynamics control law is proposed for 

trajectory tracking control of parallel manipulators in the presence of drive 

singularities. For this purpose, a conventional inverse dynamics controller is 

used outside the neighborhood of drive singularities and this control law is 

modified to be switched inside the neighborhood to prevent actuator forces 

from becoming unboundedly large using the results of [21, 22]. A 2-RPR 

parallel manipulator with two legs is considered as a case study and several 
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numerical simulations are carried out using the developed SIMULINK® model. 

In all of the simulations performed, the manipulator is initially assumed to be 

mispositioned. 

As it is shown in the first two simulations carried out with an arbitrary 

inconsistent trajectory using the conventional inverse dynamics controller and 

assuming no modeling error, the prescribed motion of the parallel manipulator 

should be chosen such that the consistency of the dynamic equations is 

satisfied at the drive singularity. Otherwise an inconsistent trajectory cannot be 

performed by the manipulator since the actuators would unavoidably saturate 

as the drive singularity is approached and unacceptably large task violations 

would be encountered. 

Once the trajectory is chosen to be consistent, to test the performance of 

the proposed controller, it is applied to the manipulator under different 

scenarios. In the first four scenarios, it is assumed that there is no modeling 

error and the command accelerations are generated by a PD controller of which 

gains are chosen to be in binomial form. In the second four, the closed loop 

system is simulated introducing 5 % modeling error while the previous PD 

controller of which gains are chosen to be in binomial form remains 

unchanged. In the last four scenarios, a PID controller is decided to be used to 

see the effects of integral control action on the closed loop response in the 

presence of the same modeling error with the second four scenarios. The 

controller gains are again selected to be in binomial form. 

In all these scenarios, good tracking performance is obtained while the 

motor torque and the actuator forces at the drive singularity are always within 

the saturation limits which can be assumed to be higher than the maximum 

torque and force values attained outside the neighborhood of the drive 

singularity. In the scenarios where modeling error is present, the errors in the 

end-effector states at the onset of the neighborhood of the singularity and 

towards the end of the task after the neighborhood of the singularity is passed 
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take almost constant values so that steady-state can be assumed to be reached 

whereas in the absence of modeling error steady state is fully reached at both 

the onset of the neighborhood and the end of the task. Furthermore, in all 

scenarios, steady state errors at the onset of the neighborhood of the singularity 

are negligible so that the actual trajectory manages to track the desired 

trajectory which is planned to be consistent until the neighborhood of the 

singularity is reached. This fact verifies the assumption made in Section 3.2 to 

be able to use the inverse dynamics algorithm of İder [21, 22] in the presence 

of drive singularities as a base for the proposed control law. 

A careful examining of these scenarios reveals that the errors in the 

end-effector states do not change dramatically but an increase in the jumps in 

the control torque and forces at the onset and exit of the neighborhood of the 

singularity is observed when the size of the neighborhood of the singularity is 

increased. This is due to the fact that the errors in the approximate dynamics 

neglecting the terms involving the first time derivatives of the Lagrange 

multipliers are greater in larger neighborhoods. Such jumps yield a jerky 

motion which should be avoided by a proper selection of ε . 

Another conclusion that can be drawn from these simulation results is 

that increasing the positive constant 0ω  would decrease the errors in the end-

effector states to the expense of an increase in both the maximum control 

torque and forces and the jumps in the control torque and forces at the onset 

and exit of the neighborhood of the singularity. The former may be dangerous 

since the required maxima may fall beyond the saturation limits of the 

actuators being used in a real application while the reason why the latter should 

be avoided is explained earlier. 

As a final remark, adding an integral control action results in better 

tracking performance and smaller jumps in the control torque and forces at the 

onset and exit of the neighborhood compared to PD controller in the presence 

of modeling error while the maximum torque and forces dramatically increase; 
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that may be an undesirable situation as explained formerly. However, despite 

the advantages, adding an integral control makes the system relatively less 

stable. This fact may lead situations, as 12th scenario, where the control torque 

and forces dramatically increase especially in the neighborhood of the 

singularity since in larger neighborhoods the errors in the approximate 

dynamics are greater as mentioned previously and the effect of these errors on 

the control torque and forces is further magnified with larger 0ω . 

As an extension of this thesis, a study on the trajectory tracking control 

of parallel manipulators with flexible joints in the presence of drive 

singularities is strongly recommended for future work. 
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