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ABSTRACT 

 

 

METAMODELING FOR THE HLA FEDERATION ARCHITECTURES 

 

Topçu, Okan 

Ph.D., Department of Computer Engineering 

Supervisor: Assoc. Prof. Dr. Halit OĞUZTÜZÜN 

 

December 2007, 194 pages 

 

This study proposes a metamodel, named Federation Architecture Metamodel 

(FAMM), for describing the architecture of a High Level Architecture (HLA) 

compliant federation. The metamodel provides a domain specific language and a 

formal representation for the federation adopting Domain Specific Metamodeling 

approach to HLA-compliant federations. The metamodel supports the definitions of 

transformations both as source and as target. Specifically, it supports federate 

base code generation from a described federate behavior, and it supports 

transformations from a simulation conceptual model. A salient feature of FAMM is 

the behavioral description of federates based on live sequence charts (LSCs). It is 

formulated in metaGME, the meta-metamodel for the Generic Modeling 

Environment (GME). 

This thesis discusses specifically the following points: the approach to building the 

metamodel, metamodel extension from Message Sequence Chart (MSC) to LSC, 

support for model-based code generation, and action model and domain-specific 

data model integration. 

Lastly, this thesis presents, through a series of modeling case studies, the 

Federation Architecture Modeling Environment (FAME), which is a domain-specific 

model-building environment provided by GME once FAMM is invoked as the base 

paradigm. 

 

Keywords: Domain Specific Architectures, High Level Architecture, Metamodeling, 

Generic Modeling Environment, Live Sequence Charts 
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ÖZ 

 

HLA FEDERASYON MĠMARĠLERĠ ĠÇĠN METAMODELLEME 

 

 

Topçu, Okan 

Doktora, Bilgisayar Mühendisliği Bölümü 

Tez Yöneticisi: Doç. Dr. Halit OĞUZTÜZÜN 

 

Aralık 2007, 194 sayfa 

 

Bu çalışma, Yüksek Seviye Mimarisi (HLA) uyumlu bir federasyon mimarisinin 

tanımlanabilmesine olanak sağlayan ve Federasyon Mimari Metamodeli (FAMM) 

olarak adlandırılan bir metamodel önermektedir. Önerilen metamodel, Alan Özel 

Metamodelleme yaklaşımının HLA uyumlu federasyonlarına uyarlanmasıyla 

federasyon için biçimsel bir gösterim ve uygulama alanına yönelik bir dil 

sağlamaktadır. Metamodel, transformasyonlarıın tanımlanmasını hem kaynak 

hemde hedef model olarak desteklemektedir. Özellikle, simülasyon kavramsal 

modelinden transformasyon yapılmasını ve tanımlanmış federe davranışlarından 

federe temel kodunun üretilmesini desteklemektedir. FAMM’ın öne çıkan özelliği 

Canlı Sıralama Çizelgelerine (LSC) dayalı olarak federelerin davranışlarının 

tanımlanabilmesine olanak vermesidir. Jenerik Modelleme Ortamının (GME) meta 

metamodeli olan MetaGME kullanılarak oluşturulmuştur. 

Bu tez özellikle şu noktaları tartışmaktadır: metamodel oluşturulmasında ki 

yaklaşımlar, Mesaj Sıralama Çizelgelesinden (MSC) LSC’lere metamodelin 

genişletilmesi, model tabanlı kod üretimi için sağlanan destek ve aksiyon modeli ile 

alan özel veri modelinin bütünleştirilmesi. 

Son olarak, bu tez, FAMM’ın temel model olarak çağrılmasıyla GME tarafından 

sağlanan alan özel model oluşturma ortamı olan Federasyon Mimarisi Modelleme 

Ortamını (FAME) bir dizi örnekle desteklenmiş olarak sunmaktadır. 

 

Anahtar Kelimeler: Alan Özel Mimariler, Yüksek Seviye Mimarisi, Metamodelleme, 

Jenerik Modelleme Ortamı, Canlı Sıralama Çizelgeleri 
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CHAPTER 1 

CHAPTERS 

 

1. INTRODUCTION 

 

 

 

This chapter presents the motivation and background for the study, presents the 

development context and objectives, discusses the related work, and then provides 

an overview of the relevant technology and tools used during the study. 

1.1 Motivation and Background 

High Level Architecture (HLA) provides a framework for distributed simulations with 

special emphasis on interoperability and reusability of simulation components [1, 2, 

3]. It became a widely accepted standard in the area of distributed modeling and 

simulation over the last decade, and it is not surprising to see that the majority of 

new distributed simulations in both the civilian and military context are being built to 

be HLA compliant while HLA itself evolves. Although much effort has been spent 

on developing HLA federations, the state-of-the-art in federation design 

representation and documentation still does not provide adequate support for full 

automation of the federation development process with user guidance [4].  

The Federation Development and Execution Process (FEDEP) [5] assists and 

guides the activities of developing an HLA federation. Although it has defined some 

design activities, it has left design notations and documentation methods to the 

designers. With respect to the HLA object model, the Object Model Template 

(OMT) standard [3] is adequate for representing the static view of a federation. 

OMT, however, does not attempt to capture the dynamic view of a federation or 

member federates (e.g., creation/deletion of object instances and regions, 

transfer/accept ownership of instance attributes). 

This thesis proposes a metamodel for specifying the architecture of an HLA-

compliant federation by adopting the Domain Specific Metamodeling approach to 

facilitate tool support for federation development. The metamodel treats the 

structural and dynamic views of a federation on equal footing. The dynamic view of 
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a federate is tantamount to its interactions with the HLA Runtime Infrastructure 

(RTI), the middleware implementing the HLA Interface Specification. The dynamic 

view of the federation emerges as the joined federates interact with each other 

over the RTI as the federation execution unfolds. 

Model Driven Engineering (MDE) is a promising approach in software industry and 

academia, which views the system development as a series of models and 

transformations among the models [6, 7]. A known MDE initiative is the Model 

Driven Architecture (MDA) of Object Management Group (OMG). MDA advocates 

separating the specification and the implementation of a software-intensive system, 

in terms of Platform Independent Model (PIM) and Platform Specific Model (PSM), 

respectively. Most prominently, MDA promotes automated transformations 

between models. In particular, the PIM of a system to be constructed is to be 

transformed into a PSM. Automated tools, then, could carry out code generation 

from a PSM. 

An earlier manifestation of MDE is Model Integrated Computing (MIC).  As stated in 

[8], MIC relies on metamodeling to define domain-specific modeling languages and 

model integrity constraints. The domain-specific language is then used to 

automatically compose a domain-specific model-building environment for creating, 

analyzing, and evolving the system through modeling and generation [9]. 

The proposed metamodel, Federation Architecture Metamodel (FAMM), provides a 

domain-specific language for the formal representation of the federation 

architecture. Serving both as a source and a target, the metamodel supports the 

definitions of transformations. Specifically, it supports federate base code 

generation from a described federate behavior and transformations from a 

simulation conceptual model (which could be regarded as a PIM). 

1.2 Development Context 

To elucidate the purpose and the use of the metamodel, we clarify the 

development context where this metamodel fits by articulating a methodological 

view emphasizing models and transformations. Adopting the MDE approach, 

development steps can be seen as a series of model transformations. In our view, 

HLA-based distributed simulation development basically is comprised of a 

conceptual model, federation architecture model, detailed design model, and 

federation (in some executable form). Figure 1 sketches the roles of the models. 

Each model layer corresponds to a distinct level of abstraction, for example, the 
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conceptual model layer pertains to domain entities while the detailed design model 

layer pertains to software objects. 

 

 

Figure 1. Development Methodology for HLA-Based Distributed Simulations 

 

The Conceptual Model (CM) is a PIM of the reality with which the simulation is 

concerned. A CM can also address simulation capabilities and limitations. It serves 

as an agreement among project stakeholders about what is to be developed and 

represents how developers understand the problem domain. Conceptual models 

and their validation, with respect to the presented methodology, are discussed in 

[10].  

The Detailed Design Model outlines the internal structure (computational model) of 

the federate components. It helps generate the software skeleton for the 

computational part. 

Federation Architecture Model (FAM), which is the main concern of this thesis, is a 

major portion of the federation design documentation. Federation design for HLA 

based distributed simulations includes the following activities: 

 Forming a federation object model and possibly simulation object models: 

o Designing static information interests of federates (related to declaration 

management interface),  

o Designing dynamic information interests of federates (related to object 

management interface),  
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o Designing dynamic object flows (related to data distribution and 

ownership management interfaces),  

o Designing synchronization scheme (related to time management 

interface) 

 Specifying the behaviors of participating federates (so that they can fulfill 

their responsibilities within the federation)  

The Federation Architecture
1
 is a PSM where, in our case, the platform is the RTI, 

and it comprises the Federation Model (Federation Structure, Federation Object 

Model, and HLA Services) and the Behavioral Models for each participating 

federate. The model of a particular federation architecture conforms to the 

Federation Architecture Metamodel.  

Both tasks, metamodeling and modeling, are accomplished using the Generic 

Modeling Environment (GME) developed and maintained by Institute for Software 

Integrated Systems at Vanderbilt University, as a tool to put the MIC vision into 

practice. Formalism is due to the conformance of FAMM to the MetaGME, the 

metamodel (i.e., meta-metamodel) provided by GME. GME is an open source 

modeling tool that supports domain-specific modeling, where, in our case, the 

domain is HLA [8, 11]. GME initially serves as a metamodel development 

environment for domain analysts, and then, based on the metamodel; it provides a 

domain-specific model-building environment for the developers. GME is chosen in 

this study both for being open source and academic research tool, and for 

providing Application Programmer’s Interface (API) (i.e., the GME generic BON2 

API) for model traversing and manipulation to develop model interpreters2. For the 

complete characteristics of the GME why it is chosen in (meta)modeling, see [12].  

It is also worth to note that whenever a minor bug is found in GME, a fix is received 

immediately. 

“Domain specific (meta)modeling is an approach to modeling that emphasizes the 

terminology and concepts specific to the domain [13], where data types and logic 

are abstracted beyond programming” [12]. OMG introduces a four-layer metamodel 

hierarchy for defining modeling, metamodeling, and meta-metamodeling languages 

and activities in [14]. Table 1 relates the HLA Federation Architecture Metamodel to 

                                                 
1
 “Federation Architecture” is used as replaceable with “Federat ion Architecture Model”.  

2
 A model interpreter is a plug-in software component to traverse and interpret a domain-specific 

model in GME. 
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OMG’s four-layer metamodel hierarchy. Each layer is an instance of the layer 

above. For example, a particular federation architecture is an instance of FAMM. 

 

Table 1. FAMM Correlated with OMG’s Four-layer Metamodel Hierarchy 

OMG’s Four-layer Metamodel  

Hierarchy 

Related Model 

Meta-Metamodel (M3 Layer) GME Metamodel (MetaGME) 

Metamodel (M2 Layer) Federation Architecture Metamodel 

(referred to as  a “paradigm” in GME vernacular)  

Model (M1 Layer) Federation Architecture of a particular federation (e.g., St rait  

Traffic Monitoring Federation Architecture) 

Run-time Instance (M0 Layer) Federation Runtime Instance (e.g., a  particu lar execution of 

the Strait Traffic Monitoring Federation. For instance, 

Bosporus Federation, which is given as an example in this 

thesis) 

 

1.3 Related Work 

Recently, there have been numerous calls to apply MDA to HLA-based distributed 

simulations, see, for example, [15, 16, 17]. These papers provide an account of the 

tenets of MDE/MDA and the potential benefits of applying it to simulation 

development. Some go on discussing how these benefits can be achieved. 

In the scope of this thesis, we indeed do not argue for the desirability of applying 

MDE to HLA, instead, we rely on the cogent arguments made in the relevant 

literature. We adopt the view that model integrated computing is well suited for HLA 

development and we go on to actually build a workable domain-specific metamodel 

to realize the vision, where the domain is HLA. Contrariwise, our contribution is 

unique in that it is the first metamodel fully accounting for HLA compliant federation 

architectures from both static and dynamic points of view. Hence, a point-by-point 

detailed comparison with the earlier literature does not seem fruitful. 

Some recent studies [18, 19], albeit limited in scope, represent attempts at building 

and utilizing metamodels to realize the potential of MDA/MDE. One is the Capsule 

study which aims to apply the MDE methodology to the simulation study. In this 

work, a metamodel for HLA related to the other simulation platforms (e.g., LIGASE 

and ESCADRE) is created, but the metamodel is not intended to be a universal 

metamodel of HLA, rather it is specific to its intended project and apparently not 

appropriate for other needs [18]. In the words of the authors, 
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Please  note  that  the  HLA  Meta-PSM  presented  here  is not the 

unique meta-representation of HLA, but it is  the most  suitable  one  

to  be  aligned  with  the  other  two simulation platforms  for a generic 

meta-modeling in the COCA  study.  That’s  why this  representation 

is  not the universal  meta-model  of  HLA,  and  may  not  be 

appropriate for other needs. 

The other one [19] mentions a metamodel for HLA without elaboration, but it seems 

geared toward the needs of a specific project. They discuss, in a paragraph, their 

“FRG (Federation Rapid Generation) metamodel”, which is based on the HLA 

metamodel.  Further, “One of the main components of the FRG is the HLA 

framework called RAL, which stands for RTI Abstract Layer”. These remarks, in 

connection with other information in the paper, lead us to think that their 

metamodel is also project specific. Please, note that we make a point of not 

providing any abstraction layers on top of RTI. This would be effectively redefining 

the standard interface within the confines of a particular organization. We 

understand that some developers can find this approach convenient for their 

specific projects. They can still benefit from our modeling technique for bringing in 

their own metamodels. 

The most important gap in the literature we reviewed is the lack of modeling 

formalisms specifically addressing the behavioral description of HLA-compliant 

federates. Sharing the MDE vision put forth in the recent literature, we lay the 

groundwork to realize it. This thesis propounds a full-fledged metamodel for 

federation architectures. The metamodel covers not only the static view reflected in 

the OMT standard, but also the proposed dynamic view, based on Live Sequence 

Charts (LSCs) and Message Sequence Charts (MSCs). 

Providing both static and dynamic views of a federation is a tenet of the Base 

Object Model (BOM) as well [20]. BOMs are reusable model components and “they 

provide a mechanism for defining a simulation conceptual model and optionally 

mapping to the interface elements of a simulation or federation using HLA OMT 

constructs” [20]. BOM effort aims to support component-based development of 

simulations, starting with the simulation conceptual model, while our work is 

concerned with the architectural description of federations, formalized in sufficient 

detail to allow model-based processing -code generation, in particular. The 

following phrase is taken from [20]. 
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While events and BOMs are used to represent pattern actions, 

variations, and exceptions, the actual behavior modeling required in 

carrying out a pattern action, variation, or exception by a federate is 

an implementation focus, which is outside the scope of this 

specification. 

BOM template specification extends the HLA OMT to cover the conceptual entities 

and events, and contains information on how such entities relate and interact with 

each other. The BOM can be integrated to our proposed metamodel by replacing 

the HLA OMT model part of the metamodel with a new BOM template metamodel. 

The nested structure of our metamodel supports that kind of integrations. 

Supporting component-based development within our metamodeling framework 

would be worthwhile track to pursue in later studies. 

An earlier use of MSCs in the HLA realm has been reported in [21], where MSCs 

are used to specify the procedures to test individual federates for HLA Interface 

Specification compliance. 

Some studies propose extending Unified Modeling Language (UML) using its 

extension mechanisms (a.k.a. profiling).  Such a study, carried out by the author of 

this thesis, is UML Profile for HLA Federation Design, which can be seen as 

development of HLA-specific extensions to UML to support a more formalized and 

standardized description of the federation, federate design, and documentation 

issues [22, 23]. The work is not completed because the authors shifted stance on 

UML profiling approach to a more powerful metamodeling approach. Another 

similar study [24] presents an extension as stereotyped in Rational Rose for the 

HLA OMT. The model is simply another rendering of OMT, where stereotyping is a 

mechanism of UML profiling. This study only sketches the static OMT. For a 

discussion of metamodeling vs. UML Profiling, see [12]. 

1.4 Objectives and Scope 

The main objective of this thesis is to formalize the federation architectures, so that 

a federation architecture can be put into a machine processable form, thereby 

enabling tool support for the code generation and the early verification of the 

federation architectures. 

One of the requirements anticipated is to eliminate the limitations of OMT and 

FEDEP and thus to bring dynamism into the architectural descriptions. 
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The benefits of applying MDA to HLA-based distributed simulation area has been 

discussed in literature but our contribution is unique in that it is the first metamodel 

fully accounting for HLA compliant federation architectures from both static and 

dynamic points of view. While realizing this, domain specific metamodeling, which 

is one of the current research threads, is adopted.  

The overall effort is directed towards building an HLA Federation Design and 

Development Framework.  

As a by-product, the MSC and LSC metamodels that cover the entire standard 

MSC and LSC features are prepared separately from FAMM. Thus, they can be 

used in other research and development areas.  

Moreover, FAMM can be used to extract usable views to support federation 

designers. Such a usable view is the Publish and Subscribe (P/S) Diagrams, which 

are design artifacts to focus on the object/interaction interests among the 

federates. From a federation architecture conforming to FAMM, the P/S models 

can be automatically generated using the P/S model builder developed in this 

study. 

The metamodel presentation is accompanied by an example: the Strait Traffic 

Monitoring Simulation (STMS). On a larger scale, the architectural modeling of 

Naval Surface Tactical Maneuvering Simulation System (NSTMSS) [25], a 

distributed interactive simulation, is carried out using FAMM and is presented in 

Appendix B. 

1.5 Technology Overview 

1.5.1 High Level Architecture 

“HLA provides a common framework and approach for distributed simulations and 

virtual worlds to share information and capabilities, to expand interoperability, and 

to promote reuse and extensibility” [26]. HLA is a set of specifications which include 

the HLA Rules, Interface Specification and the Object Model Template.  

HLA was developed under leadership of the U.S. Defense Modeling and 

Simulation Office (DMSO). The HLA was approved as an open standard through 

the Institute of Electrical and Electronic Engineers (IEEE), namely IEEE Standard 

1516, in September 2000. The standard embodies four related standards shown in 

Table 2. 
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Table 2. IEEE 1516 Standards 

STANDARD EXPLANATION 

IEEE 1516-2000 IEEE Standard for Modeling and Simulation (M&S) HLA Framework 
and Rules. 

IEEE 1516.1-2000 

Errata to IEEE 1516.1 

IEEE Standard for M&S HLA Federate Interface Specification. 

Correction Sheet issuued 16 October 2003 

IEEE 1516.2-2000 IEEE Standard for M&S HLA Object Model Template Specification. 

IEEE 1516.3-2003 IEEE Recommended Practice for HLA Federation Development and 
Execution Process 

 

The HLA is mainly comprised of three elements: 

HLA Rules: “A set of rules that must be followed to achieve proper interaction of 

simulations (federates) in a federation. These describe the responsibilities of 

simulations and of RTI in HLA federations” [1]. 

Interface Specification: “The HLA Interface Specification defines the interface 

between the simulation and the software that will provide the network and 

simulation management services. RTI is the software that provides these services” 

[2]. 

Object Model Template: “The OMT describes a common method for recording the 

information that will be produced and communicated by each simulation 

participating in the distributed exercise” [3].  

1.5.2 Tools 

1.5.2.1 Generic Modeling Environment 

GME is touted as “a domain-specific, model-integrated program synthesis tool for 

creating and evolving domain-specific, multi-aspect models of large-scale 

engineering systems” in [11]. GME is an ongoing academic research project at 

Vanderbilt University, in which the source codes are public. 

GME is used as the primary tool for both metamodels and models introduced in 

this thesis. Metamodels are defined in modeling paradigms using MetaGME, the 

GME meta-metamodel. After describing the metamodel, the GME creates a design 

environment for domain models once this metamodel is invoked. Then the 

generated design environment can be used to design domain specific models (e.g., 

FAM). 
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Currently, GME version 7.6.29 is used in this study. Figure 2 depicts a typical GME 

user interface. 

 

 

Figure 2. GME Screenshot  

 

A detailed explanation of the GME and its concepts can be found in [11]. 

1.5.2.2 Microsoft Visual Studio .NET Integrated Development Environment 

Microsoft Visual Studio .NET provides a complete set of development tools for 

building applications. Visual Basic .NET, Visual C++ .NET, Visual C# .NET, and 

Visual J# .NET all use the same integrated development environment (IDE), which 

allows them to share tools and facilitates in the creation of mixed-language 

solutions.  

Microsoft Visual Studio .NET is used as the primary IDE tool to develop a model 

interpreter for the metamodels and the models introduced in this thesis. Currently, 

version 8.0 (2005) is used. 

1.6 Typeface Conventions 

This thesis uses the following typeface conventions: 

 All code examples/snippets are printed in a Book Antiqua Font. 
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 At the first introduction or definition of a major term, the term is shown in 

italics. 

 All references to classes, attributes, and other elements of a model are 

shown in Courier New Font. 

 General emphasis is shown in italics. 

1.7 Summary of Chapters 

The preceding sections of this chapter outline the motivation and background of 

the study, presents the development context and the objectives, discusses the 

related work, and then gives a technology overview and tools used during the 

study. The remaining chapters are broken down as follows: 

 Chapter 2 provides at-a-glance information about the HLA development 

vision, including a methodological and a lifecycle view. 

 Chapter 3 through Chapter 5 expounds upon the proposed Federation 

Architecture Metamodel by giving detailed examples of the metamodel 

elements. 

 Chapter 6 presents the model integration and extensibility capabilities of 

the proposed metamodel. 

 Chapter 7 lays out an assessment for FAMM. 

 Chapter 8 outlines the results achieved as a result of this work and points  

the way ahead. 

 Appendix A explains the Federation Architecture Modeling Environment 

(FAME) and presents a running example: Strait Traffic Monitoring 

Simulation. 

 Appendix B presents a modeling study, a case study with NSTMSS. 

 Appendix C gives an analysis for the HLA services and presents the 

transition tables between the HLA services and the HLA methods library.  

 Appendix D presents the details of the HLA arguments for the library 

developers. 
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CHAPTER 2 

 

 

2. FRAMEWORK FOR HLA FEDERATION DESIGN AND 
DEVELOPMENT 

 

 

 

The material in this chapter is adapted from [10]. A supporting life cycle for the 

framework is presented in [25]. 

2.1 Methodology 

It is important to explicitly state the development context, where this metamodel 

fits, in order to clarify the purpose and the use of the metamodel. The development 

context is put forth by articulating a methodological view emphasizing models and 

transformations. 

Adopting the Model Driven Engineering approach [6], development steps can be 

seen as a series of model transformations. In our view, HLA-based distributed 

simulation development basically comprises a conceptual model, federation 

architecture model, detailed design model, and federation (in executable form). 

Figure 3 depicts the basic models. Each layer of models corresponds to a distinct 

level of abstraction, for example, while the conceptual model layer is related to 

domain entities, detailed design model layer is related to software objects. 
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Figure 3. Development Methodology for HLA-Based Distributed Simulations 

 

2.1.1 Conceptual Model 

CM is the model of the reality with which the simulation is concerned. Simulation 

Conceptual Models serve a variety of purposes. From the users perspective, 

conceptual model provides a documentation to understand the simulation 

capabilities and limitations. From the developers’ perspective, conceptual model 

serves as an agreement about what is to be developed. It represents how 

developers understand the problem domain. From a communication perspective, 

conceptual model serves as a communications link between users and developers.  

The methodology suggests two representations of conceptual model; namely, 

informal conceptual model and formal conceptual model.  
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Informal CM will be used especially by the sponsor and the user group, which we 

can call CM users. Informal CM will help CM users to assess the capabilities and 

the intended focus of the simulation without any technical background. Informal CM 

can easily be validated by a domain expert, who generally has no technical 

background of the simulations and the software. We can accept this as the main 

technique for conceptual model validation. Meanwhile, being informal does not 

imply being unformatted. The scientific paper-based approach [28, 29], promoted 

by DMSO, can be used for representation of the informal CM. 

On the other hand, formal CM representation will be directly used by the CM 

developers, who may modify or redevelop the conceptual model. At the same time, 

formal CM can be applied to solve disputes when there is an uncertainty or a 

disagreement in the informal CM (e.g., two people can infer different things by 

reading the same sentence in informal CM). Another main objective of formal CM is 

to transform a conceptual model into machine-processable form. In this respect, it 

will be possible to provide the conceptual model to all kinds of software tools (e.g., 

verification and validation (V&V) tools, HLA federates) and software agents (e.g. 

web robots). Note that it may not always be practical to formalize the entire 

conceptual model (e.g., CM may include some photos, charts, etc.). 

Conceptual models, in the view of the presented methodology, are elucidated and 

discussed in [10]. 

2.1.2 CM Validation Using Scenarios 

Scenarios can be used as a supporting validation technique for formal CM 

validation. Simulation requirements are captured as use cases by using use case 

requirements analysis techniques [30]. These use cases (a.k.a. use case 

scenarios) provide the main part of the simulation scenarios. Then, CM will be 

meaningful according to its level of support for scenarios. The meaning of support 

should be defined operationally within the overall problem domain. Simply, entities, 

actions, relationships, states, and parameters implied by scenarios should exist in 

CM representation. 

Scenario-based CM Validation is discussed and explained in [10]. 

2.1.3 Federation Architecture Model 

Federation Architectural Metamodel, which is the main concern of this thesis, will 

be discussed at length in the subsequent chapters. 
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2.1.4 Federation Architecture Verification 

Federation architecture verification is to check that FAM does what it promises and 

whether it is consistent within itself. 

2.1.4.1 Static Verification 

The federation scenarios can be used to verify the federation architecture. The 

main idea is that if the federation scenarios can be “played” with the current 

federation architecture, then it can be asserted that the FAM is a reliable model. 

Playing the scenario in the design phase means static model checking 

(decomposition of Federation Scenario LSC into the corresponding federate HLA-

specific LSCs).  

Both Federation scenario(s) and FAM can be represented using LSCs. Therefore, 

the static model checking can be performed using the model interpretation over 

both LSCs where Federate LSCs must include the Federation Scenario LSC. 

As seen in Figure 4, the FAM in the representation layer is used to model FOM and 

federate behaviors, domain scenarios in the conceptual layer are used to model 

the federation scenarios. 

The ideas presented here for the static verification of a FAM is noted as a future 

work. 

 

Federation Layer

Representation Layer

Instance of

FOM
+ n x Federate LSCs

HLA Federation

Metamodel
LSC Metamodel

Federation 

Architecture 

Metamodel

Federation 

Architecture Model

m x Domain Scenario

LSCs

m x Federation Scenario

LSCs

Conceptual Layer

Static Model Check

 

Figure 4. Static Federation Design Verification 

 



   

16 

2.1.4.2 Dynamic Verification (Runtime Verification, Monitoring) 

Verification can be interpreted in the dynamic (federation execution) sense. 

Dynamic verification is based on the automatic code generation.  

Model-based code generation for HLA federates from the given FAM that conforms 

to FAMM is discussed and explained in [31]. 

2.1.5 Detailed Design Model 

Detailed design briefly depicts the internal structure (computational model) of the 

federate components in detail and it is the critical design effort before the 

implementation, and can be seen as the skeleton of the components.  

At the end of the federation design activity, if the components, which compose the 

distributed simulation, are ready at hand, then there is no need for a detailed 

design. However, if federation design model implies a requirement to develop a 

new component or to modify an existing component, then a detailed analysis and 

design that is focused on the component must be conducted.  

It will be a complementary approach to use object oriented analysis and design 

techniques and UML in designing each federate’s internal structure.  

A typical internal structure of a federate is recommended in [10] and this internal 

architecture has been applied successfully in the development of some naval 

federations [25 and 32]. 

2.1.6 Transformations and Code Generation 

“A transformation is the automatic generation of a target model from a source 

model, according to a transformation definition, which is a set of transformation 

rules that together describe how a model in the source language can be 

transformed into a model in the target language” [33]. The transformations 

(including code generations) defined in this framework are summarized in Table 3X. 
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 Table 3. Transformations  

TRANSFORMATION SOURCE MODEL TARGET MODEL 

Transformation – 1 (T1) Domain Model (e.g., a model 
conforming to Field Artillery 
Metamodel) 

FAM (conforming to FAMM) 

Code Generation for HLA FAM (conforming to FAMM) Aspect Java Code (by the 
generator) 

Code Generation for 
Computational Model 

FAM (conforming to FAMM) Java Code (by the user) 

 

FAM is being used to generate RTI related code automatically. For the 

computational parts, standard programming techniques can be used. Detailed 

design model is the major source model that helps generate the software skeleton 

for federate’s computational part [31]. 
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CHAPTER 3 

 

 

3. FEDERATION ARCHITECTURE METAMODEL 

 

 

 

FAMM provides a domain-specific language for the formal representation of the 

HLA-compliant federation architectures. This chapter outlines its structure, 

presents the behavioral metamodel and gives a user perspective. 

3.1 FAMM Structure 

The Federation Architecture Metamodel is comprised of two main sub-metamodels: 

the Behavioral Metamodel (BMM) for specifying the observable behaviors of the 

federates and the HLA Federation Metamodel (HFMM) for defining both the HLA 

Federation Object Model (FOM) and the service interface. These two metamodels, 

included as GME libraries, are connected through a GME paradigm, named Model 

Integration. The structure of FAMM is depicted in Figure 5. BMM is a logical 

container for the LSC Metamodel (LMM), which is extended from the MSC 

Metamodel (MMM). HFMM is composed of the HLA Object Metamodel (HOMM), 

Federation Structure Metamodel (FSMM), and HLA Services Metamodel (HSMM). 

Lastly, the Publish/Subscribe Metamodel (PSMM) is included as a derivative 

metamodel in order to illustrate the extraction of utility metamodels from the core 

FAMM. Once the federation architecture is modeled conforming to FAMM, a model 

interpreter can traverse this model to extract the federation publish and subscribe 

view and then display it as P/S diagrams [22, 23].  

Metamodels support each other in a way that an element defined in one model can 

be used in other models. For example, any method parameter that occurs in 

HSMM is accounted for by HOMM. Nevertheless, each sub-metamodel can be 

used independently. This was a main concern in devising the structure of FAMM. In 

particular, the Metamodel for Message Sequence Charts as well as Live Sequence 

Charts can be used to model the MSCs/LSCs for any system of communicating 

components, not only for distributed simulation components. In the same vein, the 
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HOMM stands on its own and can be used to generate useful artifacts, such as the 

FOM Document Data (FDD) [34]. 
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Figure 5. Federation Architecture Metamodel Structure 

 

The implementation of FAMM in GME is depicted in Figure 6. HFMM and LMM are 

included as GME libraries. 

 

 

Figure 6. Federation Architecture Metamodel in GME 
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One may visualize a (meta)model as a graph whose nodes correspond to concepts 

and edges to relationships. Thus, the following table should give a rough idea 

about the size of FAMM. Concepts include the GME stereotypes: atom (models, 

atoms, FCOs, attributes, references, and inheritances), model (paradigm sheet), 

set (aspects), and folder. Reference stereotype (proxy) is excluded. Relationships 

include GME connections. 

 

Table 4. Size of FAMM
1
 and Its Sub-metamodels  

Sub-metamodel  Number of Concepts  Number of Relationships 

BMM 326 397 

HFMM 454 369 

Model Integration 20 35 

Total 800 801 

 

Figure 7 depicts the “conforms to” relationship between the Federation Architecture 

and FAMM. A Federation Architecture encompasses an object model and LSCs for 

each participating federate. The LSCs of a federate manifest its interaction with the 

RTI and possibly with other entities (e.g., users and live entities), and so they 

describe the federate’s observable behavior. The Federation Architecture 

Metamodel provides the underlying language to describe the federation 

architectures. Each participating federate’s behavior is modeled conforming to 

BMM and HSMM. The FOM is constructed in conformance with the HLA Object 

Metamodel and the Federation Structure Metamodel. 

 

FOM + n x Federate LSC

HOMM + FSMM BMM + HSMM FAMM

FAM

Conforms to Conforms to

 

Figure 7. Relationship Between a Federation Architecture and the Metamodel  

 

                                                 

1
 For FAMM version 20071217. 
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3.2 User Perspective 

The Federation Architecture Modeling Environment for users is made available by 

GME once FAMM is invoked as the base paradigm. The screen shot in Figure 8 

shows an example-modeling environment, for FAMM users, who are typically 

federation designers. GME allows creation of a project for developing a new 

federation architecture. Figure 8 presents a screen shot of the project for the STMS 

federation architecture. The root folder (e.g., 

StraitTrafficMonitoringSimulation in the screen shot) serves as a project 

container for the federation architecture. It includes three major sub-folders, 

namely, federation structure, behavioral models, and federation models. The 

federation structure folder contains information about the federation, such as the 

location of the FOM Document Data file, the link for the related FOM, and the 

structure of the federation, where the participating federate applications and their 

corresponding Simulation Object Models are linked. The folder for behavioral 

models includes an MSC document for each participating federate. The federation 

model folder includes the FOM, SOMs, and the other Object Model Template 

related information (e.g., data types, dimensions, etc.). In the example, SOMs for 

ship and station applications and a FOM for the STMS federation are provided.  

There are auxiliary libraries that can be readily attached to a project. Three libraries 

are currently provided: IEEE 1516.1 Methods Library, IEEE 1516.1 Management 

Object Model (MOM) Library, and IEEE1516.2 HLA Defaults Library. In the 

example, the methods library (designated with a book icon) is attached to the 

project. 

Detailed explanation for FAME is provided in Appendix A. 
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Root folder is the main project 

folder. It contains all the 

models for federation 

architecture

Behavioral models folder 

embodies the behaviors of the 

participating federates. It 

includes the MSC documents 

and the sequence charts.

Federation model folder 

contains the FOM, SOMs, and 

other object model related info 

(e.g., dimensions)

Federation structure folder 

includes the federation 

structure where the static 

structure of the federation is 

specified.

HLA Services folder is 

attached as a GME library. It 

includes all the management 

services in HLA interface spec.

P/S model is an utility model, 

which depicts the federation P/

S structure.

Info about the project

 

Figure 8. Federation Architecture Modeling Environment (FAME)  

 

3.3 Behavioral Metamodel 

The Behavioral Metamodel provides an abstract syntax for specifying the 

observable (primarily, as witnessed by the RTI) behaviors of a federate. Forming 

precise behavior models of the participating federates along with their object 

models gives us the ability to exercise a federation architecture. In a fully 

automated exercise, intra-federation communication will follow the specified 

patterns; the communicated values, however, will not be correct. Taking a step 
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towards complete federate application generation, the developer can weave the 

computation logic onto the generated code. 

Modeling the behavior of a federate can involve not only the HLA-specific behavior 

(e.g., creating regions in runtime, exchanging ownership of the objects, etc.), but 

also the interactions between the components of the federate and the actors (e.g., 

interactive users and live entities) in the environment.  

A fundamental decision is to adopt Live Sequence Charts, and in turn, Message 

Sequence Charts as the basis for the behavioral modeling of the federates. LSCs 

are chosen among the alternatives such as UML sequence charts and activity 

diagrams, to model the federate’s behavior because (1) they are currently active 

research topic, (2) they are suitable to extend and customize, (3) LSCs allow a 

distinction to be made between mandatory and possible behavior, which is 

believed important for the behavior specification for federate and federation. 

The observable behaviors of a federate are represented by means of LSCs, 

specialized for HLA federates. Specialization involves, in essence, formulating the 

RTI methods as MSC/LSC messages and integrating the HLA Object Model as the 

data language of MSC/LSC. Initially, MSC is formalized as the basis of the 

behavioral metamodel, and then LSC extensions are added on top of the MSC 

metamodel. Note that BMM covers all the standard MSC features [36] and the 

proposed LSC extensions [37] as long as they do not conflict with the MSC 

standard (e.g., an MSC loop is used instead of LSC iteration). 

As an example, consider the graphical and textual representation of an MSC 

diagram presented in Figure 9, where the basic MSC elements such as instance, 

message, action, and condition are depicted. Here, instance i creates the instance 

j. Afterwards, j performs some initialization action and then if condition C is true, j 

sends a message to i and terminates. 
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Graphical RepresentationGraphical Representation

i

j

A

message

action

instance

instance end

Condition C

Instance

creation

Instance 

termination

Textual RepresentationTextual Representation

msc example;

   instance i;

      create j;

      condition C;

      in message from j;

   endinstance;

   instance j;

      action A;

      condition C;

      out message to i;

  stop;

endmsc;

 

Figure 9. Graphical and Textual Representation of an MSC Diagram  

 

The technical details of the main sub-metamodels of BMM: MSC and LSC 

Metamodel and the utility of MSC/LSCs in behavioral specifications are presented 

and discussed in Chapter 4. HLA Federation Metamodel is presented in Chapter 5.  

Integrating the HLA Federation Metamodel (i.e., data model) and the Behavioral 

Metamodel (i.e., action model) is presented in Chapter 6. 
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CHAPTER 4 

 

 

4. LSC/MSC METAMODEL 

 

 

 

One of the main objectives of visual modeling languages is to provide a 

representation suitable to specify, design, and analyze systems. The system 

representation must be precise enough to support automated processing, 

specifically, generation of useful artifacts, such as the source code. Modeling the 

observable behavior of a system is considered as an important part of the system’s 

specification. There are some visual modeling languages that are aimed at 

behavior specification, such as UML Sequence Diagrams, Message Sequence 

Charts, and Live Sequence Charts. 

In this respect, MSC, which is standardized by ITU, is a formal language that 

enables one to specify the interactions among the components of a system. MSCs 

are commonly used in the telecommunication area [35, 36] for protocol and service 

specification. LSCs [39] have been proposed as an extension to MSCs so as to 

allow distinguishing between the mandatory and the possible behavior of the 

system. 

The proposed metamodel defines a domain-specific language for the formal 

representation of MSCs and LSCs. The metamodel supports the definitions of 

transformations. Specifically, it supports base code generation from a described 

behavior. The metamodel’s facility of integration with domain-specific data models 

plays a critical role to achieve useful transformations. 

To the best of our knowledge, a metamodel that would admit particular 

MSCs/LSCs as models, has not been put forth in the literature. 

Code generation from MSC/LSC is still an on going and an open challenge for 

researchers. Automatic code generation plays an important role in early validation 

of the model after the behavior of a system is described using the MSC/LSC. 

Despite the fact that a play engine is proposed in [42] as an implementation 
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mechanism for LSC, it only provides a simulation of the execution of the LSC 

diagrams by playing out scenarios and thus helps testing and observing of system 

behaviors; but it does not attempt to generate code, and more importantly, it is not 

extendible due to its fixed data model, and not customizable for domain specific 

modeling. In contrast, our metamodeling approach, due to its data model 

integration capability, gives power to the user to extend or tailor his1 application 

code generator or interpreter in accordance with his data model. 

The metamodeling study is conducted by taking textual language for MSCs as a 

starting point. A feedback loop is established between metamodeling and code 

generator development activities. Each one proceeds in parallel: metamodeling 

provide the input to code generation and the latter provides the feedback to the 

former. 

This chapter first presents and discusses the challenges in making the major 

modeling decisions, then MMM is presented. Extending MMM for LSC Metamodel 

is discussed afterwards. The material in this chapter has appeared as a technical 

report [55]. 

Examples of actual use of the metamodel elements are provided while introducing 

the metamodel instead of presenting them in a distinct section. 

4.1 Metamodeling Approach and Design Principles 

This section expounds various design decisions, principles, and metamodeling 

approach taken concerned with the code generation support.  

As a summary, the following metamodeling design decisions and principles are 

taken: 

 For modeling level, 

 For constructing a syntax tree for each instance, 

 For employing references for the design of the multi-instance elements, 

 For supporting cardinality constraints by design,  

 For element uniqueness, 

 For dispersing abstract syntax trees for each chart. 

                                                 

1
 “He” and “his” is used as replaceable with “she” and “her”, respectively. 
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4.1.1 Modeling Level 

In this study, we adopt a syntactical view of metamodeling in that the metamodel 

serves as a metalanguage (or grammar) for the object language, which, in our 

case, consists of syntax for MSC/LSC based on their concrete textual syntax, 

which has a formal standard in case of MSC.  

The semantics of a chart is defined in the standard [36] as a partial order of events. 

Of course, the code generation process must guarantee that any event sequence 

observed while the generated code is running respects the partial order specified 

by the chart. 

Message Sequence Charts and Live Sequence Charts can be represented, in a 

standard way, graphically or textually. The textual form is intended to facilitate 

exchange between tools and to serve as a basis for automated analysis. 

The MSC/LSC language definition offers two principal means for the textual 

description. First, an MSC/LSC can be described by giving the behavior of all 

instances separately, which is called instance-oriented textual syntax. The other 

one is called event-oriented textual syntax where events are listed as they are 

encountered while scanning the MSC/LSC from top to bottom [35]. As an example, 

the graphical and textual representation of an MSC diagram is presented in Figure 

10. 

 

 

Figure 10. Graphical and Textual Representations of an MSC Diagram  

 

While constructing the metamodel, instance-oriented textual syntax, which is based 

on the concrete textual grammar and lexical rules defined in Backus-Naur Form 

(BNF) [36], is assumed as the concrete syntax. In addition, some non-terminals, 

GRAPHICAL REPRESENTATIONGRAPHICAL REPRESENTATION EVENT-ORIENTED TEXTUAL REPRESENTATIONEVENT-ORIENTED TEXTUAL REPRESENTATION INSTANCE-ORIENTED TEXTUAL REPRESENTATIONINSTANCE-ORIENTED TEXTUAL REPRESENTATION

A B

m1

m2

a1

msc ex1;
   A: out m1 to B;
   B: in m1 from A;
   B: action a1;
   B: out m2 to A;
   A: in m2 from B;
end msc;

msc ex1;
  instance A
    out m1 to B;
    in m2 from B;
  end instance;
  instance B
    in m1 from A;
    action a1;
    out m2 to A;
  end instance;
end msc;



   

28 

defined in the textual grammar and in the lexical rules, are carried over to the 

metamodel.  

One of the modeling issues was to decide which non-terminals would be included. 

The problem is to select the “essential” versus “nonessential” non-terminals so that 

only the essential ones are carried over to the metamodel. 

As a rule of thumb, the essential non-terminals are identified as those constituting a 

“building block”, from the syntactical perspective a significant syntactic category 

and from the semantical perspective, having an intuitive meaning. For example, the 

non-terminal, Input Address, is defined by a production rule expressed below 

[36]: 

 <input address>::=<instance name>|{env|<reference identification>}[via<gate name>] 

The input address specifies the MSC elements that can be connected to an MSC 

message. As it is regarded as an essential non-terminal in the sense described, a 

metamodel element, Address Connection, for representing a connection 

between a message model element and an input/output address element (e.g., 

environment), is created. Another example, Orderable Event, is defined in the 

textual grammar. Most events are categorized as orderable according to their 

connectability with the instance axis. Furthermore, some lexical rules refer to 

orderable events, for instance, a rule states that the MSC general ordering 

elements (i.e., before and after) could be connected with the orderable events.  

Eventually, the orderable event constitutes a building block and a corresponding 

modeling element is constructed (as an abstract element) in the metamodel. Thus, 

to express the aforementioned rule, it is sufficient to define a connection between 

the “general ordering element” and the “orderable event” modeling elements. 

In contrast, the nonessential non-terminals can be seen merely as BNF artifacts, 

serving as stepping stones to define the essential ones. For example, Action 

Statement is regarded as a non-essential non-terminal as it is simply used to 

define the actions. 

Note that those non-terminals included in the metamodel serve as abstract 

modeling elements, so that the modeler cannot use them in constructing an 

MSC/LSC model directly. They are used to structure the metamodel and to provide 

traceability of the MSC metamodel with the BNF grammar for the textual syntax 

given in the standard. 
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4.1.2 Using Abstract Syntax Trees for Each MSC/LSC Instance 

Constructing an abstract syntax tree for each instance (representing a system 

component whose behavior is under observation), was a major metamodeling 

design decision. Instance-oriented representation leads to isolated trees for each 

instance due to its definition. Although this approach simplifies the code 

generation, when two or more instances are involved, it adds superfluous modeling 

work (e.g., modeling the interactions for each instance separately) for the modeler. 

4.1.3 Designing Multi-instance Elements 

Some MSC/LSC elements may be connected to more than one instance. These 

are called Multi-instance Elements (a.k.a., shared elements). They are inline 

expressions, reference expressions, conditions, pre- and sub-charts. Separate 

instances make it hard to interpret the shared elements between the instances. 

The metamodel must reflect a shared element as a unique element to both the 

modeler and the code generator. 

The use of copies of the multi-instance elements in each shared instance model as 

distinct modeling elements is not appropriate. If a multi-instance element is shared 

among multiple instances, each modeling element corresponding to multi-instance 

element must be the same. For instance, if an attribute value (e.g., name of the 

element) is changed in one instance, then the other copies must be changed 

automatically. 

A straightforward design approach for such elements is to connect directly the 

shared events with the instances that share them. So, the metamodel allows 

multiple connections for shared events. This approach is called multiple connection 

method. However, for complex charts that have many instances and shared 

events, this approach will hinder the readability of the chart because of many 

connections between the shared events and instances. Consequently, to overcome 

this obstacle, the references (“pointers” to other model elements) between 

modeling elements are devised in the metamodel. Actually, there must be only one 

multi-instance event to be shared by instances. This sharing is done via GME built-

in references and this mechanism is called Referencing Mechanism, which works 

as follows: the multi-event element must only be used in one of the instances. In 

the other instances, references to this element are used for sharing.  As all the 

references point to the same element, they share the properties with the 
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referenced element. If an attribute value is changed (at model building time) in the 

multi-instance event, then the references reflect this change.  

The examples for the usage of multiple connection method and referencing 

mechanism are presented in (a) and (b) of Figure 11 respectively. In the figure, 

condition is a shared element between instances i and j. In (a), instances are 

directly connected to the condition, while in (b), a condition reference element is 

used to substitute the original one. 

 

(a) Using Multiple Connections to 

refer a shared element

(b) Using Referencing Mechanism to 

refer a shared element
 

Figure 11. Modeling Multi-instance Elements 

 

The referencing mechanism is also used in event referencing. General ordering 

elements may point out to the events defined in the other instances found in the 

chart. This is done connecting the ordering element with the event references. 

Moreover, the input and output message events between instances are shared by 

using the event references. To facilitate this, each event has also a corresponding 

reference (e.g., message output event has a reference to itself).  

4.1.4 Cardinality Constraints 

The metamodel supports cardinalities. The cardinality constraints for the 

relationships are preserved by the metamodel structure. For example, Figure 12 

depicts two kinds of cardinality constraint for relationships: (1) an instance must 

have only one instance end, (2) instance end must be connected only once to the 

instance. 
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Figure 12. Cardinality Constraint 

 

If the modeler violates a cardinality constraint, then GME Constraint Manager 

automatically generates a warning as seen in Figure 13. 

 

 

Figure 13. GME Constraint Manager Screenshot  

 

Further constraints that cannot be enforced by metamodel structure, such as 

semantic/business/domain constraints, can be formulated using the Object 

Constraint Language (OCL) [27]. GME allows the constraints in OCL to be included 

First Case: Part-of relation 

cardinality constraint
Second Case: Connection 

cardinality constraint
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in the metamodel. OCL utilization in the LSC/MSC metamodel is noted as a future 

work. 

4.1.5 Element Uniqueness, Naming, and Naming Scope 

In the MSC standard, naming provides element uniqueness to distinguish among 

the same type of MSC/LSC elements. At the model level, for uniqueness of model 

elements, using unique names is not necessary. Because, the metamodel does not 

depend on the naming constraint for uniqueness, but rather it uses stronger 

constraint mechanisms (i.e., using references and connections). The modeler is 

free to use the same names for the same kind of elements. This approach also 

eliminates the message-overtaking problem, which occurs in textual 

representations of MSCs. The problem is that when two messages with the same 

name are sent, message instance naming is required for a unique correspondence 

between message input and output [36].  

Note that when a modeling element is created in GME, GME automatically assigns 

the type of the element as the default name. Therefore, a separate name attribute 

is not defined for each modeling element. Uniqueness of model element names in 

the generated code is guaranteed by appending a portion of the GME-provided ID 

to the name in the model. 

On the other hand, naming scope has an impact on code generators. Therefore, 

the MSC metamodel conforms to the naming scope specified in [36] in terms of 

declarations of elements. The root folder of the model is the scope for defining the 

MSC documents. An MSC document is the scope for defining charts, instances, 

conditions, timers, messages, and variables. An MSC is the scope for gates and 

MSC formal data parameters. Metamodel only allows legal declarations according 

to the scoping rules. Declaration of elements is discussed in MSC data concepts 

section. 

4.1.6 Multiple Branches of an Instance in Different Charts  

Axis of an instance may be scattered among more than one chart. Figure 14 

presents an example. In LSC charts, pre-chart and body are in fact two sub-charts. 

Thus, the axes of both instances A and B are dispersed between these sub-charts. 
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Figure 14. Multiple Braches for Instance Axis  

 

Owing to the events that are dispersed into the sub-charts, each chart must be 

traversed by the model interpreters (e.g., code generator) to generate a complete 

abstract syntax tree for an instance.  

4.2 MSC Metamodel 

The MSC Metamodel is the basis for the Behavioral Metamodel where MSCs can 

be used to model the observable federate behavior. MMM includes all the MSC 

constituents, time concepts, data concepts, and High-level MSCs (HMSC) 

specified in [35, 36]. 

The hierarchical structure of MMM is depicted in Figure 15. MMM is formed by four 

main containers (i.e., folder in GME parlance), namely, Auxiliaries, Basic 

Constituents, Data Concepts, and Time Concepts. 

 

Main LSC Chart

A B

m1

m2

Prechart

Body
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Figure 15. The MMM Implementation View (GME Screenshot)  

 

The MSC documents, diagrams, instances, messages, comments, ordering 

elements, coregions, actions, references, inline expressions, gates, and timers are 

all defined in the Basic Constituents folder. Time concepts folder includes time 

measurement, time interval, time offset, and time point modeling elements. 

Auxiliaries folder includes the associations and events (e.g., message events: in 

and out) between the MSC elements. Data Concepts folder includes the data 

related elements such as arguments and expressions. 

In the following sections, the basic constituents, data concepts, time concepts, and 

lastly the auxiliary metamodel elements are introduced. Elementary knowledge on 

MSCs, as provided in [40 and 41], is required for the succeeding discussion. 
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4.2.1 Constituents 

4.2.1.1 MSC Documents 

An MSC document (mscdocument) groups a number of MSCs and determines a 

namespace.  An MSC document has two major model elements: the document 

head and body. As GME allows us to define roles for associations, body acts as 

both a defining container and a utility container. 

The document head contains the declaration lists of messages, instances, and 

timers, which are used as types for the counter-part elements (instances) in the 

charts whereas the charts (i.e., MSCs) are defined in the defining or in the utility 

part. MSC documents define an instance kind for the other MSC elements. A 

document may use or inherit the other instance kinds by referring to the document 

by means of the “Using” and “Inherit” model elements. The document head also 

contains a data definition part, which specifies the data language, data, and the 

wildcards for referencing an external data model/language. 

The charts in the defining part are the public charts while the ones in the utility part 

behave like private charts, which are used merely by the defining charts.  

Model interpreters, particularly the code generator, traverse the MSCs in the 

defining part for each instance found in the instance list of the MSC document. For 

the modeler, an attribute, named Chart Order Index, is defined to guide the 

chart execution/interpretation order of the model interpreters. If required, this 

attribute can be set by the modeler. Similarly, for multiple documents in a model, 

the order of the documents may be specified by the Document Order Index. 

Lastly, the MSC document contains an optional attribute related to specify the 

pathname of the document, to which the MSCs refer. The structure of the 

document model element is depicted in Figure 16. Additionally, the right pane of 

the screen shot gives a top folder view of the MSC metamodel. 
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Figure 16. The Structure of MSC Document Model Element  

 

Figure 17 and Figure 18 present an example about the usage of MSC documents. 

The examples are mostly taken from [35, 36]. Corresponding model for Figure 17 is 

presented in Figure 18. 

 

mscdocument ACContext

inst ACSystem, inst User, inst Supervisor, inst NewUser

language C; wildcards __; data #include cdefs.h;

UserAccess

PIN_Change

NewUser

EstablishAccess

OpenDoor

GivePIN

 

Figure 17. Example from (Figure 23 of) [36]. 

 

In Figure 18, the right top pane depicts a tree structure of the MSC document, the 

left top pane shows only the document head model, the right down pane shows the 
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data definition attributes, and the left down pane shows the model elements that 

can be used in document head model. 

 

 

Figure 18. Corresponding Model for Document Example (GME Screenshot) 

 

4.2.1.2 Charts 

A Message Sequence Chart determines a partial order on the events that 

constitute the behavior of a system. The behavioral description given by an MSC, 

however, may not be complete description.   MSC is the main model where most of 

the model elements (e.g., events, messages, conditions etc.) are contained. MSC 

model is presented in Figure 19. 

MSC has two parts: the head and the body. The head, which is optional, contains 

the MSC parameters and an offset for time. The body, which is compulsory, 

contains either an MSC body or a HMSC. MSC body (also can be seen as the 

MSC itself) contains the abstract syntax trees of each instances where the 

interactions (a.k.a. events) of an instance are specified. The instances, messages, 
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and timers that declared in the MSC document are used in the MSC body. The 

instance (or instance reference) is the root node for the abstract syntax tree. 

 

 

Figure 19. Chart Paradigm Sheet  

 

To enforce the constraint “MSC must have a body as either an MSCBody or HMSC”, 

first, the cardinality of association between MSC and body elements is set to one 

and then, a new element (i.e., body) is introduced as a GME First Class Object 

(FCO) class which is mandatorily abstract, to group the “either/or” elements (i.e., 

MSCBody and HMSC respectively).  

4.2.1.3 Instances and Instance Decomposition 

An instance is the root for the abstract syntax tree ended with one instance end 

(endinstance). Instance is an entity on which events can be specified. They are 

declared in the enclosing MSC document. 

All model elements and events can be connected to the instance via the 

connection element OrderedConnection. Only this type of connection is allowed 

with the instance. The order of events (connections to the instance) is specified by 

the help of the attribute Precedence. The modeler must manually specify the 
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order of the events in the instance axis by assigning values to this attribute. For 

example, the connection between instance and endinstance must have the 

last precedence order expected. 

The structure of the instance element is depicted in Figure 20. Instance kind, which 

is an MSC document, may be specified in addition to the instance and an instance 

may inherit from an instance kind. Finally, instances may define a variable list 

where instance variables are declared. 

  

 

Figure 20. The Structure of Instance Model Element 

 

An instance may be decomposed into another MSC. The decomposed modeling 

element includes a reference that refers to the decomposed MSC. When the 

decomposed model element is used, then an MSC reference must certainly be 

included.  

InstanceTypeElement is an abstract class to group instance and instance 

reference to simplify the connection structure in metamodel and to ensure that 

instance references are also behaved as instances. For example, when a 

connection is defined for an instance element, then generally it will be legal for an 

instance reference too. So, while metamodeling, the connection is defined between 

an element and InstanceTypeElement, instead of defining it explicitly both for 
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instance and instance reference. This kind of generalization (grouping element and 

its reference) is used mostly for the other elements in the metamodel. 

4.2.1.4 Comments 

Comments are used to enhance documentation in the behavior model. They can 

be utilized to help with traceability, e.g., traceability between the generated code 

and the source model.  

Two different kinds of comments, videlicet text and comment, are used. 

Comment is associated with the most of the MSC elements. Instead of adding the 

comment as an attribute for each element, an abstract base class 

(ElementHasComment) is created and a GME string attribute for comment is 

added only to this base class. Finally, the elements that have a comment are 

inherited from this base class. 

The text, for that matter, can be associated merely with the MSC or HMSC 

diagrams for the purpose of global explanations.  

4.2.1.5 Message and Message Events 

A message is the main entity, sent or received, between the message events (i.e., 

message output out and message input in) and between the method call events 

(i.e., call/receive and reply out/reply in). Messages may have 

arguments. Message types are declared in the message declaration list of the MSC 

document. The structure of message model is depicted in Figure 21. Arguments 

are discussed in Data Concepts (section 4.2.2). 
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Figure 21. The Structure of Message Model Element  

 

While designing the message exchange, it is taken into consideration that 

message/method call events must refer to a message and must point out the 

recipient or sender of the message. Therefore, the metamodel enables this kind of 

connections.  

Message and method call events can be completed or uncompleted. Each event 

has a Boolean attribute in order to specify an incomplete message, which means 

that a message can be found or lost. The outgoing message events (i.e., out, 

call, and reply out) has a Boolean attribute lost to indicate the message is 

lost or not, while the incoming events (i.e., in, receive, and reply in) has 

found to indicate the message is found or not. 

An example for incomplete messages, first, the MSC example is presented in 

Figure 22, and then the corresponding model for instance i is presented in Figure 

23. 
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Figure 22. Example B.11 from [35].  

 

Notice in Figure 23 that the lost attribute of out event of instance i is set to true to 

indicate that the message m is lost after sent to instance j.  

 

 

Figure 23. Corresponding Behavioral Model for B.11 

 

4.2.1.6 Control Flow Using Method Call Events 

MSC may describe control flows by the means of calls and replies. A method is a 

named unit of behavior inside an instance. Methods are modeled with method 

and suspension elements. Suspension regions indicate the regions where no 
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events occur till the reply of the call returns (that is to say a synchronizing call). On 

the other hand, an asynchronous call implies the method regions where the caller 

may continue without waiting for the reply of the call. Method and Suspension are 

non-orderable events. 

Some elements such as method and suspension define regions; such elements 

have modeled as a start and an end element to indicate the region. The events 

connected to the instance axis between a region start (e.g., Method) and a region 

end (EndMethod) must be interpreted as the events occurring in the region. For 

example, a method region can contain any events while a suspension region 

cannot.  

A method may be invoked remotely (callout and receive) and the results of 

the calculations of the method may be returned through a reply to the caller 

(replyout and replyin). As used in message events, incomplete method calls 

can be used. An example for the usage of the control flow elements is depicted in 

Figure 24. 

 

 

Figure 24. Example for Method Call.  
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Method 

Region

 

Figure 25. Corresponding Behavioral Model for Method Call in Figure 24.  

 

4.2.1.7 Environment and Gates 

The outside region of an MSC frame is called as its environment. Environment is 

inherited from an MSC instance. While inheriting the environment element from the 

MSC instance, instead of using the usual inheritance operator, the GME interface 

inheritance1 is used, so that the environment becomes a black box. Thus, the 

environment does not contain any MSC/LSC instance constituents such as a 

variable list. 

As expected, only one environment can exist in an MSC chart.  

The gates represent an entry point between the enclosing chart (i.e., MSC) and its 

environment. The gates are defined in MSC reference or inline expression frame 

as well as in environment. The message events, the order events, and the process 

creation event can be connected to the gates. Gates are implemented in the 

metamodel as GME ports, which behave like an interface (connection points) for 

the model element.  

                                                 

1
 Interface inheritance is described as “Interface inheritance allows no attribute inheritance but does 

allow fu ll association inheritance” [37].  
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4.2.1.8 General Ordering 

MSC general ordering elements, namely, before and after, are modeled as 

GME ports, which are contained in the orderable events (e.g., timer events, actions 

etc.).  

In the MSC, the preceding/following events are specified via their names, but the 

metamodel enables us to directly establish a link between the ordering element 

and the events. Therefore, the general ordering elements can be connected to the 

preceding/following (according to the ordering type) events (or references of 

events), environment, or gates. 

An example is given in the following figures. First, in Figure 26, the example MSC 

chart, taken from [35] is presented and then the corresponding model is given. 

 

 

Figure 26. Example B.18 from [35].  

 

The general ordering element before embodied as a port in the message out 

event is connected to the action local event of instance k. So, the interpretation 

should be that sending message m by instance i shall occur before the action a of 

instance k. 

 

 

Figure 27. Corresponding Behavioral Model for B.18 
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Another example with a coregion is provided in the following figures. 

 

 

Figure 28. Example B.20 from [35].  

 

 

Figure 29. Corresponding Behavioral Model for B.20 

 

4.2.1.9 Conditions 

Conditions describe a state that is common to a subset of instances in an MSC. 

They are multi-instance modeling elements. 

Condition has a type, which can be set as setting condition or guarding condition. 

Setting condition is the default type for a condition. When condition is a guarding 
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condition, then an expression field, which evaluates to a Boolean value, is required 

to be filled. For setting conditions, expression attribute value should be null.  

Otherwise is a specialized condition used as a guarding condition just in one of 

the operands of an alternative inline expression. It is evaluated as true if only the 

other conditions defined in the alternative expression evaluate to false. The 

condition paradigm sheet is presented in Figure 30. 

 

 

Figure 30. Paradigm Sheet for Condition
1
 

 

An example for the usage of conditions is depicted in the following figures. 

 

 

Figure 31. Example B.13 from [35]  

 

Note that instance i and k uses the same condition where condition type is a 

setting condition and expression attribute is null. It is also possible to link a 

condition reference to the instance k referring the condition of instance i instead of 

using the same condition. 

                                                 
1
 The triangle with black dot represents a GME implementation inheritance, where “the subclass 

inherits all of the base class’ attributes, but only those containment associations where the base class 

functions as the container” [37].  
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Figure 32. Corresponding Behavioral Model for B.16 (GME Screenshot) 

 

4.2.1.10 Timers and Timer Events 

Timers are used in MSC diagrams and they can be controlled using the basic timer 

events, namely start (starttimer), reset/stop (stoptimer), and time-out 

(timeout) events. A timer event has a timer identifier (a reference to the declared 

timer) to specify which timer the event refers. The timer identifier represents a timer 

instance. Each timer has arguments and furthermore maximum and minimum 

durations in the form of a time expression. Time expressions are discusses in 

Time Concepts section.  

The timer events are local to an instance and they can be used stand-alone or in 

combinations, where timer set event is allowed to be connected to timer reset and 

time-out events. 

The modeler may explicitly pair off the timer events at design time, if required. Note 

that if the timer event pairs (i.e., set-reset, set-timeout, and set-reset-timeout) are 

contained in co-regions, then unifying those events is compulsory. The timer and 

timer events model is depicted in Figure 33. 
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(a) Timer Paradigm Sheet (b) Timer Events (from Events Paradigm Sheet)
 

Figure 33. Timer and Timer Events Model.  

 

Examples about timers and timer events are presented in the following figures.  

 

(b)(a)

T

T(d)

 

Figure 34. Example B.9 from [35]. 

 

In the corresponding model, the timer T(d) is declared in the declaration list of the 

enclosing MSC document. In Figure 35, the right pane shows the timer declaration 

list. In the MSC diagram, the start timer event includes a reference (aka, timer 

instance) to the timer T(d). 

 

 

Figure 35. Corresponding Behavioral Model for B.9 
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4.2.1.11 Actions 

Actions are events that are local to an instance where local indicates a connection 

specific to one instance. An action is an atomic event used to specify some 

computation. Figure 27 presents a simple example for the usage of action model 

element.  

The name of the action model element acts as an informal action string. Moreover, 

an action may have a data statement list which contains a defined (e.g., def x) or 

an undefined (e.g., undef x) statement with a collection of variables (e.g., the “x” 

is a variable in def x or undef x). An undefined statement is used to indicate is 

used to indicate that a variable has named out of scope and cannot be referenced 

furthermore. The structure of action model element is given in Figure 36. 

 

 

Figure 36. The Structure of Action Model Element  

 

4.2.1.12 Instance Creation and Termination 

Instance creation and termination events (i.e., create and stop) are used to handle 

process lifetime. A create event must be connected to an instance where a 

termination event behaves like an instance end for the created process. An 

instance can merely terminate itself whereas an instance is created by another 

instance. 

The created instances are also declared in the instance declaration list of the MSC 

document. Therefore, the references are used in the MSC. 

While creating an instance, a parameter list can be specified in the created 

instance. An example for the instance creation and deletion is provided in the 

following figures. 
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Figure 37. Example B.6 and B.7 from [35]. 

 

 

Figure 38. Corresponding Behavioral Model for B.6 

 

4.2.1.13 Coregions 

A coregion, specified with the start and the end events (concurrent and 

endconcurrent respectively), is a part of the instance axis for which the events 

connected to that part are assumed unordered. Only orderable events can be 

connected to a coregion. An example is presented through Figure 39 and Figure 

40. 
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Figure 39. Example B.16 from [35].  

 

 

Figure 40. Corresponding Behavioral Model for B. 16 

 

4.2.1.14 Inline Expressions 

Inline expressions provide a means for the composition of event structures. The 

inline operators and their semantics are presented in Table 5. In addition to their 

usage in the MSC, they are also used with the MSC references and in the High-

level MCSs.  
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Table 5. Inline Operators  

OPERATOR EXPLANATION OPERANDS 

Seq Sequential operation. One or more 

Par Parallel execution. It refers to a horizontal composition. One or more 

Alt For alternative runs for MSC sections. It refers to an 
alternative composition. 

One or more 

Loop The loop structure. It indicates iteration of the events within 
the inline expression. 

One 

Exc It represents an exception. One 

Opt It represents an optional (zero or one time) execution. One 

 

Figure 41 depicts the structure of the inline expression model. External attribute 

indicates the MSC keyword “external” in the textual notation.  

 

 

Figure 41. The Structure of the Inline Expressions  

 

Inline operators must have one or more operands according to its model type. 

Operands are indeed MSC bodies, which contain all the basic MSC events. The 

metamodel reflects this multiplicity; for example, a loop expression has exactly one 
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operand. If an inline operator has more than one operand, then it is essential to 

specify the precedence of its operands. Thus, each operand has an order index to 

specify the interpretation order. 

Inline operators are multi-instance elements, meaning that they can be connected 

more than one instance axis. In order to share, one inline operator between 

instances, referencing mechanism is used. Each inline operator has a 

corresponding reference element (InlineExpressionRef). 

An example for alt inline operator in an MSC is presented through Figure 43. 

 

 

Figure 42. Example B.29 (msc A) from [35].  

 

Corresponding model for Figure 42 is presented in Figure 43. The main chart is 

seen in (a) where an inline model element can be referenced in two ways. First, a 

reference element is used (in the left side); second, both instances are directly 

connected to the inline expression. Inline expression has two operands, where 

each operand behaves like a sub-chart (or MSC body). The “inside” of each 

operand is presented in (b) and (c) respectively. 
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(a) OR

(b)

(c)

 

Figure 43. Corresponding Behavioral Model for B.29 “msc A”. 

 

Loops have a loop boundary (NaturalNumberExpression) in order to indicate 

the minimum and maximum iteration values for looping behavior. Loop operand is 

executed at least “minimum” times and at most “maximum” times. The values or 

minimum and maximum can either be the keyword inf, representing infinity, or a 

sequence of digits. Loop boundary values are initially (1, inf). An example for 

the practice of loop inline operator in HMSCs is given in Figure 64. 

Inline expressions define regions. Gates are also used as the entry points for the 

inline expressions. An example for inline operators with gates appears in Figure 44. 
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alt

i j

m1m1

m2

m1

g1

g1

 

Figure 44. An Example for Inline Operators with Gates. 

 

The instance j sends a message to the alt inline expression of instance i via gate 

g1. The MSC statement corresponding that is j: out m1 to inline alt via 

g1. The first operand of the alt operator receives m1 via its gate g1, while the 

second operator receives it via the environment. 

 

 

Figure 45. Corresponding Model for Inline Operators with Gates (GME Screenshot) 

 

4.2.1.15 References 

An MSC reference expression can be used to refer to other MSCs in an MSC 

document. Reference model structure is depicted in Figure 46. A reference 

structure can include other MSC diagrams as well as composition operators for 
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complex referencing mechanisms. Examples of MSC reference expressions are 

reference A, reference (A alt B) seq C where A, B, and C are MSC 

diagrams referenced.  

The actual reference parameters are used to call the referred MSC declaration 

parameters with actual values. The actual reference parameters include the data, 

instance, message, and timer parameters. 

 

 

Figure 46. The Structure of the Reference Model Element. 

 

If the MSC reference element does not contain any MSC, then it means that it is a 

null reference corresponding to the MSC keyword empty. 

MSC references are also multi instance events. Therefore, a reference element 

(ReferenceRef) for the MSC reference is created. 

For the usage of the complex reference expressions, such as reference (A 

alt B) seq C, a conceptual view of the corresponding model is depicted in 

Figure 47. 
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reference
seq

operand

operand

reference
A

alt

operand

operand

 

Figure 47. Conceptual View of the Corresponding Model for Referencing.  

 

Gates are also used with references. An example is depicted in the following 

figures. 

 

msc A

j i

m1

msc B

Reference to

msc B
m2

i
m1

m2

 

Figure 48. An Example for MSC Reference with Gates. 

 

The message m1 comes from the environment. In MSC A, there is no connection to 

the gate g1. This represents an environment gate. 

  

 

Figure 49. Corresponding Model for MSC Reference with Gates.  

 



   

59 

4.2.2 Data Concepts 

The MSC specification, in addition to an action model, introduces a preliminary 

data model via some predefined elements, such as messages, actions, and MSC 

references. Basic data concepts as defined in MSC specification [36] are included 

in the metamodel to enable the declaration and the use of the static and the 

dynamic data. 

4.2.2.1 Declaring Data and Using Declarations 

Messages, timers, instances, and variables are declared via declaration lists as 

specified in [36]. The declaration lists are message list, timer list, instance list (has 

variable list), and dynamic variable list. The first three are declared in the MSC 

document whilst the last one specifies the MSC parameter types. In declaration 

lists, type, number, and order of the arguments are defined. Declaration lists are 

used for type checking. For example, messages that have parameters are declared 

so that the type and number of parameters are defined. 

In Figure 50, an example is provided for a message declaration. A message sum is 

declared in the message declaration list of an MSC document header. Sum has two 

arguments; first and second having the type of natural number. 

  

GME Aspects 

(views)

Declaration List

Argument

Argument Type

Argument Value

 

Figure 50. Declaration of a Message (GME Screenshot) 
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For the representation of both actual and formal parameters, an argument model is 

devised. The structure of an argument is presented in Figure 51. An argument has 

a data type and a value. Actually, two GME aspects (i.e., views for the modeler) 

are defined to separate the data type view and value view as seen in the lower 

pane of Figure 50. While declaring an element (i.e., message, instance, timer, and 

variable), the number and the type of arguments are provided. It is also important 

to specify the order of the arguments. An attribute (OrderIndex) is provided for 

this purpose. Values of arguments may be left unspecified or an initial value may 

be provided.  

Note that for parameterless elements (e.g., a parameterless message), there is no 

need for a declaration. 

A variable is an element that has a specific data type and value. Variables are 

represented using the arguments. Variable lists are used by the MSC in instances 

and in wildcards.  

Data types and value expressions are discussed in the following sections. 

 

 

 

Figure 51. The Structure of an Argument 
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4.2.2.2 Type Checking 

A declaration provides a template (a type model) for the actual use (an instance 

model). After declaring the element, the instance of the declared element can be 

used in the MSC diagrams (In GME, an instance model can be created by dragging 

the type model icon and dropping it to the behavioral model [11]). The modeler 

cannot change the number and type of the arguments, but can only set the 

argument values. Figure 52 presents the actual use of message sum in a MSC 

chart.  The modeler can assign any natural number expression for the argument 

values (e.g., Sum (5, 4)). GME marks the sum as an instance model and 

automatically provides the type of the instance (the red oval marking in the figure) 

as “type of sum” in the example. 

 

Instance Model 

Element

(marked with “I”)

Type Model 

Element

Type of the 

Instance

 

Figure 52. Using a Message Declaration (GME Screenshot) 

 

A clear advantage of this approach is that it eliminates the need for a type checking 

mechanism to be integrated to the metamodel (e.g., by creating specialized 

elements for type checking). While creating an instance from a type model 

element, thanks to GME instantiation mechanism, GME automatically provides the 

type for the instance. Further type checking is left to the model interpreters. 
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GME model browser has the Inheritance tab used explicitly for visualizing the 

type inheritance hierarchy. For example, in Figure 53, Input message is used 

(instantiated) two times in the model as Input_Msg and Input_Name. 

 

 

Type Model

Instance 

Models

Inheritance

Tab

 

Figure 53. Inheritance Tab of GME Model Browser 

 

4.2.2.3 Data Types 

Data types are used to define the kind of model elements. MSC specification 

defines three predefined basic data types, namely, natural number expressions, 

Boolean valued expressions, and time expressions [36]. 

The structure of the data type metamodel is depicted in Figure 54. Data type 

reference is used to share the declared data types in an MSC. First Class Object 

(FCO), atom, and reference are all GME built-in stereotypes. The abstract model 

DataTypeFromDataModel is created to support for the integration of the user 

data models, which will be discussed in Chapter 6. 
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Figure 54. The Structure of Data Type Model Element 

 

4.2.2.4 Expression 

Expressions are used in certain MSC elements, such as arguments, conditions, the 

boundaries of a loop, and the time intervals. Expressions are domain-specific 

structures that occur in the data model; they might be arbitrarily complex. In the 

present metamodel, merely the basic expressions (e.g., 

MSCBooleanExpression) are defined. The categorization of the expressions 

(e.g., BooleanExpression) is also defined to support for the user data model.  

Figure 55 depicts the expressions model structure. Evaluating expressions is up to 

the model interpreters. 
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Figure 55. The Expressions  

 

Please, note that an extension is made to the expression model in the model 

integration part of FAMM for string type expressions in order to express the 

integrability of the model with external data models. Moreover, an example is given 

to illustrate how to extend the expression model to use a domain-specific Boolean 

expression model in Chapter 6. 

4.2.2.5 Data Definitions 

Data definitions include the text for an external data language and a data field to 

point the external data as well as wildcards. Data definition element is used in the 

MSC document to declare the external data connections. A wildcard represents a 

“don’t care” value, and it is modeled as an argument. The model is depicted in 

Figure 56. DataStatementList is used in actions (and is explained in section 

4.2.1.11). 

 



   

65 

 

Figure 56. Data Definitions Model  

 

4.2.3 Time Concepts 

Time concepts, introduced in MSC, support the notion of quantified time [36]. 

Absolute or relative timing can be specified by the use of the default type time. 

Static and dynamic time variables are like any other variables except that they are 

of the type time.  

Time offset is used as an offset to all absolute time values within that MSC.  A time 

offset is defined in the head of the MSC. The structure is given in Figure 57. If the 

MSC has no time offset model element, then it means that the offset is equal to 

zero.  

 

 

Figure 57. The Structure of Time Offset Model Element  

 

In addition, time constraints can be defined as time points, time intervals, and 

measurements. Measurements and time points are used in time intervals. The 

structure of a measurement and a time point is presented in Figure 58 while the 

structure of a time interval is presented in Figure 59. 
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Measurement is a time observation that has a measurement type and a reference 

to a time variable (i.e., a variable with a default type time). Measurement type is 

either absolute or relative where the latter means duration. 

Time point represents a concrete time value. The absolute mark, when set to true, 

indicates absolute timing. Time value is expressed in time expression attribute. 

Inclusion mode is only used when a time point is used in a time interval.  

 

(a) (b)
 

Figure 58. (a) Measurement Model Element (b) Time Point Model Element  

 

Time intervals are used to define constraints on the timing for the occurrence of 

events. A time interval may include a measurement, a singular time that is either a 

time point or a measurement, and a bounded time. Minimal or maximal bounds can 

be defined as time points for the delay between two events. The inclusion mode 

indicates whether the bound is included or excluded. 
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Figure 59. The Structure of Time Interval Model Element  

 

Time intervals can be defined for any two events within an MSC document. Time 

intervals can be connected to the orderable events, Top or Bottom of an MSC 

reference or an inline expression. This connection is called Time Address 

Connection and it specifies the source and the destination events by the 

connection order. When an event is connected to a time interval, the event 

becomes a source for the time interval. Conversely, when a time interval is 

connected to an event, then the event becomes a destination for the time interval. 

Thus, the origin of the time interval is specified. Therefore, no element is required 

for the origin MSC keyword. 

An example is provided in Figure 60 for the use of time constraints for MSC 

references. The time destination connection that shows the destination (i.e., 

reference element) for the time interval defined in par parallel inline operator 

has a bottom attribute set to true indicating the top of the reference region. 
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Figure 60. Example for Time Destinations 

 

Time constraints can also be used in the High-level MSCs. 

4.2.4 High-level MSC 

High-level MSCs provide a way to compose MSCs. The HMSCs can be embodied 

in the MSC in place of MSC bodies. The structure of the HMSC is depicted in 

Figure 61. 

An HMSC includes a start and an end node (initial and final respectively) as well as 

MSC references, inline expressions, and conditions. Conceptually, the inline 

expression and reference nodes are called timeable nodes meaning that those 

nodes include time intervals.  

 



   

69 

  

Figure 61. The Structure of the HMSC Nodes.  

 

Each HMSC element can be connected to others to specify the composition order. 

In order to provide this, a directed connection is defined between the HMSC nodes 

(i.e., model elements). The inline expressions specify the operands that are also 

connected to the other HMSC nodes. For this reason, another connection is 

defined between the operands of the inline expression and the HMSC nodes. The 

former connection is called “HMSC Main Connection” while the other is called 

“HMSC Operand Connection”. Connection structure is depicted in Figure 62. 

 

  

Figure 62. The Structure of the HMSC Connections. 
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An example is provided in the following figures showing different composition 

techniques using the HMSCs. First, the HMSC is given, and then the 

corresponding model in FAMM notation is presented. 

 

 

Figure 63. The HMSC Example Fig.59 from [36]. 

 

 

Figure 64. The Corresponding Model for HMSC Example.  
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4.2.5 Auxiliary Models 

4.2.5.1 Events 

In the metamodel, the MSC instance events are grouped as orderable events and 

non-orderable events as classified in the MSC specification in order to simplify the 

connection between MSC elements.  

The classification groups are presented in Table 6. 

 

Table 6. The Event Groups  

GROUP MEMBERS 

Orderable Events Message events, method call events, actions,  timer events, and process 
creation 

Non-orderable 
Events 

Multiple Events, method, end method, suspension, end suspension, 
concurrent, end concurrent, process stop, and instance end 

Multi Instance Events Condition, Inline Expressions, and MSC reference 

Message Events In and out 

Method Call Events Call, receive, reply out, and reply in  

Timer Events Start timer, stop timer, and time-out 

 

4.2.5.2 MSC Connections 

Connection elements are used to connect and associate modeling elements with 

each other. There are mainly four connection types allowed in the current 

metamodel: Ordered Connection, Special Connection, Address Connection, and 

Time Address Connection.  

An ordered connection has a Precedence attribute to specify the order in the 

connections. For example, all the connections made to the instance are ordered 

connections. Some modeling elements need special connections with each other, 

such as the set timer event, which can be connected to the other timer events. The 

requirements for this connection type are modeled as special connections. The 

address connection is used to connect the messages to the destination addresses 

as the time address connection is used to connect the time intervals with the 

source and destination events. The metamodel is depicted in Figure 65. 

 



   

72 

 

Figure 65. Address Connection and Time Address Connection.  

 

4.3 LSC Metamodel 

LSCs are introduced in [39] as an extension to MSCs primarily to enable a 

distinction to be made between mandatory and possible behaviors in sequence 

charts. Later studies [37, 42] proposed some extensions to the basic LSC. 

4.3.1 Extending MSC to LSC 

Before introducing the LMM extensions, we need to clarify how the LSCs are 

understood in conjunction with MSCs.  

The LSC Metamodel is constructed on top of the MSC Metamodel. Although LSC 

is proposed as an extension to the MSC, some incongruity problems were revealed 

while extending the MSC metamodel to form the LSC metamodel (this can be cited 

as a side benefit of the metamodeling exercise).  

First, there are minor disparities among the LSC papers. As there is no official 

standard for LSCs to date, the references [37, 49, 42] are taken as the principal 

specification documents. When a disparity arises, the latest dated reference is 

given priority. Some disparities are as follows: 

 The activation modes for charts are defined as “Preactive and Active” in 

[42], and changed as “Initial, Invariant, and Iterative” in [37]. 

 A pre-chart seems mandatory in universal charts in [42], but in [37], the 

activation conditions are introduced for simple conditions to express an 

activation point for an LSC.   
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Furthermore, LSC is originally extended from MSC-96 specification. In our study, 

we base our metamodel on the MSC-2004 specification [36], the current 

recommendation for MSC, which improves MSC in many ways such as data and 

time concepts. It is unclear how LSC incorporates all the MSC artifacts such as 

gates, inline operators, and MSC composition techniques (MSC references and 

HMSC). 

Such data concepts as symbolic messages, variables, assignments, classes, and 

symbolic instances, which are incorporated to the basic LSCs by [42] for play-out 

mechanism, are not included in the metamodel as the data model is inherently 

domain specific and can be supplied separately by the modeler. We thus achieve a 

separation of behavioral and data-related concerns in the metamodel. Additionally, 

the modeler can use the MSC data and time concepts with LSCs. 

4.3.2 Extending MMM for LMM 

In order to construct a new metamodel as an extension of an existing one (e.g. 

extending the MSC metamodel to the LSC metamodel), one could copy the 

existing metamodel and afterwards make modifications and additions to it. 

Alternatively, one may attach the existing metamodel as a library and then build the 

new model on top of it without any modifications to the attached library elements. 

The latter method, using the nested libraries feature of GME, yields better model 

encapsulation. 

The structure of LMM is depicted in Figure 66. As seen in the figure, MMM is 

attached as a library (indicated with a book icon).  
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Figure 66. The LMM Implementation View (GME Screenshot) 

 

LSC metamodel uses MMM library to extend its own model elements. GME 

inheritance is used as the mechanism for extending the MSC. The following 

sections explain how the extension is done and introduce the structure of LMM. 

4.3.3 Live Sequence Charts 

A live sequence chart is the main containment for the instance interactions. It 

matches the MSC body where all the events are defined. MSC Body, a model 

proxy, is an element from MMM, where events of an instance are specified. Thus, 

we allowed the modeler to use all the MSC elements. For example, the modeler 

may declare message types (templates) as he does in MSCs. The other proxy 

elements, condition, inline operand, and reference are also the members of MMM. 

LSC has an enumerated attribute where it represents the distinction between 

mandatory (universal) and possible (existential) behavior on the chart level. The 

default value is “existential”. LSC also has an attribute to specify the activation 

mode defined in [37].  

LSCs (for universal charts) may include a simple activation condition or a pre-chart 

or both wherein they behave like a precondition so that if evaluates to true, it 

activates the body of the LSC [37]. Activation condition for a sub-chart acts as a 

top-level condition [39]. A pre-chart is always existential by definition. 
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LSC may also include one or more sub-charts to support composition of charts. 

The sub-chart and the pre-chart is indeed an LSC, but its semantics is different. 

The structure of LSC is depicted in Figure 67.  

 

 

Figure 67. Extending MSC Body for LSC 

 

4.3.4 Temperatures 

Temperature of an element shows its liveliness. It can be hot meaning mandatory 

or cold meaning possible behavior. Charts, locations, conditions, messages, and 

local invariants have temperature, which is added as an enumerated attribute. The 

meaning of temperature has to be tailored to the element for which it is specified. 

4.3.5 Locations 

Temperature represents the mandatory or possible behavior. Charts, conditions, 

messages, and local invariants have temperature. Moreover, when an event is 

connected to an instance, this connection represents a location and it can also be 

marked as cold or hot. Thus, some interesting combinations of temperatures can 

occur. For example, a hot message can be connected to a cold location.  

The combinations between the temperature of the location and the temperature of 

the event that is connected to that location need some clarifications. We adopt the 
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fairness assumption that an enabled event cannot be delayed indefinitely. Table 7 

explains the interpretations for such combinations with an emphasis on code 

generation. 

 

Table 7. Interpretation of Location and Event Temperature Pairs 

 HOT LOCATION COLD LOCATION 

HOT EVENT 
(MESSAGE) 

Event must occur (e.g.,  a message is 
sent or a message is received) and 
progress is forced to the next event. 

Event must occur (e.g.,  a message is 
sent or a message is received) and 
progress is forced to the next event.  

COLD 
EVENT 
(MESSAGE) 

Wait for a pre-defined (as a 
configuration parameter) 
duration/number-of-trials for the event 
to occur. When the event has occurred 
(e.g., a message is received) or the trial 
period is over without the event 
occurrence, continue to the next event.  

For sending a message, code 
generator randomly decides to send or 
not. Not sending amounts to message 
getting lost. For receiving messages, 
generated instance code waits for a 
pre-defined period of time, if the 
message has not received till then, it is 
assumed to be lost. 

Wait for a pre-defined duration/number-
of-try for the event to occur. If the event 
has occurred, continue to the next 
event. Else,  abort (break) the chart. 

For sending a message, generated 
instance code randomly decides to 
send or not. For receiving messages, 
generated instance code waits for a 
pre-defined period of time. If the 
message has not been received till 
then, it is assumed that progress 
beyond this event is not possible, so 
the chart is aborted. 

 

The combination of a cold event and a cold location is especially useful for pre-

charts to characterize the pre-conditional events. As an example, see the LSC in 

Figure 112. 

4.3.6 Conditions 

Conditions can be selected as hot or cold, where a hot condition must be satisfied 

(violation is an error) and a cold condition simply means an exit from the enclosing 

chart. A condition also acts as a synchronizing point if and only if it is connected to 

more than one instance. 

4.3.7 Messages 

Messages are the same as MSC messages except for two extra attributes. One is 

for specifying the temperature of the message, and the other is for specifying 

whether the message is time delayed (i.e., asynchronous) or instantaneous (i.e., 

synchronous). 
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4.3.8 Simultaneous Regions 

Simultaneous regions are used to group several elements, which should be 

observed at the same time. As far as the simultaneous regions are reference 

points, they are represented with one modeling element rather than as a region 

with start and end nodes such as in the coregion element. 

 

  

Figure 68. LSC Simultaneous Region Metamodel  

 

An example for the usage of the simultaneous regions is given in Figure 71. 

4.3.9 Local Invariants 

A local invariant expresses the satisfaction of a condition over a period. They can 

have temperature, with the same interpretation as for conditions. Since they cover 

a period, they need reference points for the start (Invariant) and the end 

(EndInvariant) [37].  The start element has an expression just as conditions do. 

It can be possible or mandatory, with the same interpretation as for a condition. 

When the start element marked as cold or hot, then the same is assumed for the 

end element. Furthermore, start and end elements can be marked as included or 

excluded using the inclusion mode attribute. 

The structure of the invariants is presented in Figure 69. 
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Figure 69. LSC Invariant Metamodel  

 

An example is presented in Figure 70. In the figure, instance A has an invariant 

through its instance lifeline connected with the simultaneous regions denoted as 

black dots. 
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Figure 70. LSC Invariant and Simultaneous Region Example  

 

The corresponding model for instance A is presented in Figure 71. 
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Figure 71. LSC Invariant and Simultaneous Region Corresponding Model  

 

4.3.10 Time (Timing Intervals) 

For the specification of time concepts of LSC, reference [37] is taken into 

consideration while reference [42] also offers another time concept.  

In LSCs, MSC timers and time concepts can be used as they are. In addition, time 

constraints can be specified with a timing interval. Timing intervals with lower and 

upper bound are used to give both a minimum and a maximum delay between two 

directly consecutive events (i.e., message out, message in, instance axis, and 

instance end). 

4.3.11 Iteration and Conditional Execution 

Interestingly, LSC iterations are not based on MSC loops. We have chosen to 

provide iteration in LSC as the loop construct in MSC. Thus, another iteration 

model element is not needed; instead the MSC loop is extended to cover the 

dynamic loops (for which the loop count is to be entered by the user at execution 

time). 
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In [42], three kinds of loops are defined, namely, fixed loops, unbounded loops, 

and dynamic loops. The MSC loops cover the first two kinds where iteration can be 

fixed by defining the min and max iteration bounds or can be unlimited using inf 

keyword as opposed to using an asterisk specified in [42]. For the third kind of 

loops, the MSC loop is extended by creating a Boolean attribute to specify that the 

loop is dynamic or not. If this attribute is set to true, then the iteration of the loop 

will be defined in run time and the iteration bounds become “don’t care” attributes. 

The value is false by default. 

An LSC chart for fixed iteration taken from [38] is modeled and presented in Figure 

72. 

 

 

Limited IterationLimited Iteration

A B

m1

60

(b) Chart view where loop has one 

operand and one boundary element
(c) Inside of the loop operand

 

Figure 72. Fixed Iteration Example 

 

4.3.12 Additional LMM Elements 

While constructing LMM, two minor extensions are done to LSC. One is to extend 

the usage of LSC pre-charts (e.g., using pre-charts in inline operands) and the 

other is to package some well-known constructs as idioms (e.g., while-do iteration). 

4.3.12.1 Extended Pre-charts 

Pre-charts, in their original manner, can only be used with the universal LSCs 

wherein they behave as a precondition in that if a pre-chart completes its specified 

behavior; the body of the LSC is activated [37]. In some behavioral patterns; 

however, it is essential to use pre-charts within the inline operands. Thus, one can 

specify a conditional behavior pattern in inline operands. 

For instance, a bank client can interact with an Automatic Teller Machine (ATM) by 

selecting money-withdraw operation or exit operation. According to each type of 

action, the ATM responds with a series of events. When the client selects the 
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withdrawal, then the ATM asks the amount of the withdrawal request. The behavior 

model for processing the menu is seen in Figure 73. 

 

Par

Client ATM

Output(Enter Amount)

Input(Selection.Withdrawal)

Input(Selection.Exit)

C
o
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o
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Input(WithdrawalAmount)

Check Amount 

and Give Money

 

Figure 73. LSC for Process Menu Selection 

 

Consequently, the pre-charts are extended so that they can be nested in the 

metamodel and can be used within the inline operands. Moreover, the pre-charts 

can be nested in the pre-charts. 

The inline operands are instantiated from the MSCBody and LSC so that they 

become charts where many MSC and LSC elements can be defined. The structure 

of the inline operand element and the pre-chart is depicted in Figure 74. 
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MSC

MSCBody

LSC InlineOperand

The GME interface 

inheritance operator 

suppresses the inline 

operand to be 

included in the MSC. 

Thus, MSC only 

includes the 

MSCBody, LSC, and 

HMSC (not seen in 

the figure).

Pre-chart Sub-chart

Using the GME 

implementation inheritance, 

the inline operands can 

include the pre-charts and 

the sub-charts.
 

Figure 74. The Structure of Inline Operands and LSC Pre-Charts 

 

4.3.12.2 Idioms 

By combining iterations and cold conditions, conditional and repetitive execution 

(i.e., Repeat-Until (a.k.a., Do-While), While-Do, If-Then, If-Then-Else) can be 

created [38]. In order to simplify these combinations, an idiom for each is 

constructed as a new modeling element for conditional and repetitive execution. 

The set of idioms is expected to enlarge as more experience is gained with the 

FAMM usage. 

The following example illustrates the Repeat_Until construct. This sample chart 

is taken from [38]. 

 

Repeat UntilRepeat Until

A B

m1

*

B.Response=False

 

Figure 75. Repeat-Until LSC 
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The corresponding model is given both by using the idioms and by using the loop 

construction. The main difference is the location of the condition. When using the 

idiom element (i.e., repeat_until), the condition is provided in the element body 

while when using the loop, the condition is attached to the instances. 

 

(a) Chart view where Repeat-Until 

has one operand and one condition
(b) Inside of the operand

I. Using Idiom Construction (Repeat-Until)

II. Using Loop Construction

(a) Chart view where loop has one 

operand and one boundary element 

(1,inf)

 

Figure 76. Corresponding models for Repeat-Until  
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CHAPTER 5 

 

 

5. HLA FEDERATION METAMODEL 

 

 

 

This chapter introduces the HLA federation metamodel and its sub-metamodels. 

The material in this chapter is based on [53].  

5.1 HLA Object Metamodel 

The HLA Object Metamodel is constructed to provide a domain specific (i.e., HLA 

in our case) data model for the behavioral models. HOMM fully accounts for [3] and 

can be regarded as an alternative rendering of the HLA OMT [34].  

The HLA OM paradigm includes the Object Model paradigm sheet and the OMT 

Core folder. Paradigm sheets are separate portions of metamodels. The OM 

paradigm sheet includes the main diagram for object models. The OMT Core folder 

includes the table contents specified in the HLA Object Model Template. Top view 

is presented in Figure 77. 

  

 

Figure 77. Object Model Top View [ 34]  
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Note that based on this metamodel, the IEEE HLA Defaults library (HDefLib) and 

HLA Management Object Model library (HMOMLib) are modeled as helper 

libraries. For further details, please refer to [34]. 

5.2 Federation Structure Metamodel 

The Federation Structure Metamodel represents the structural aspect of the 

federation. This metamodel is created for the developer to define a federation and 

its participating federate applications, and to easily connect them to their respective 

FOM and SOMs. In this metamodel, the participating federate applications are 

emphasized and their corresponding SOM’s can be specified in addition to the 

FOM. The FOM and SOMs that are referred by this model are prepared based on 

HOMM. 

Each federation structure can include only one federation and one FOM, while 

there may be any number of federates and SOMs. Figure 78 shows the GME 

paradigm sheet of FSMM. There is a MemberOf association between the 

federation and federates, indicating potential federation execution members. 

Federate application is discussed in Section 5.4.5.4 and an example for the use of 

the FSMM is provided in Figure 103. 

 

 

Figure 78. Federation Structure Paradigm Sheet (modified from [34]) 

 

5.3 Publish/Subscribe Metamodel 

Publish and Subscribe diagrams are introduced in [23] as design artifacts to focus 

on the object/interaction interests among the federates. In the current metamodel, 

some minor modifications were made to connect it with the HLA object model. 
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PSMM is not a core metamodel of FAMM, instead, it is devised to illustrate that 

FAMM can be used to generate useful views for the federation designers. After the 

federation architecture is modeled using FAMM, an interpreter, called P/S Model 

Generator, traverses the FAM to extract the federation publish and subscribe 

interests of the federates, and then builds the P/S models of the federation. 

Publish/Subscribe metamodel is depicted in Figure 79. Metamodel allows 

interpreter to generate the Federate-based P/S Diagrams as well as the Class-

based P/S Diagrams. 

 

 

Figure 79. PSMM 

 

5.4 HLA Services Metamodel 

The HLA Federate Interface Specification defines the standard services of and 

interfaces to the RTI. These management services provide a functional interface 

between federates and the RTI. They are arranged into seven groups: federation 

management (FM), declaration management (DM), object management (OM), 

ownership management (OwM), time management (TM), data distribution 

management (DDM), and support services [2]. 

The HLA Services Metamodel includes the necessary modeling elements to model 

the HLA services interface. The primary modeling approach for constructing HSMM 

is to separate the HLA method specifications and the concepts that constitute the 
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HLA services. An HLA service defines an interface, where an HLA method is  a 

realization of that service. For example, the “Reflect Attribute Values” service can 

be mapped to more than one “Reflect Attribute Values” methods with different 

argument sets due to the optional arguments in the service specification. The HLA 

Services Metamodel merely provides the constructs, namely, methods, arguments, 

and exceptions to model the HLA services specified in [2].  Afterwards, the HLA 

methods are defined as a GME library based on this metamodel. This approach 

offers the following advantages: 

 First, it supports modeling different HLA interface specifications in forms of 

GME libraries such as IEEE 1516 and 1.3 along with the DoD 

interpretations to both, without changing the metamodel. The IEEE 1516 

Methods and DMSO RTI NG 1.3 library are included in the present work.  

 More specifically, it enables construction of the “method” libraries for 

particular RTI implementations such as Pitch RTI (pRTI). For instance, the 

pRTI library has methods attributeIsNotOwned and 

attributeIsOwnedByRTI. 

 It also has the potential to support project-specific RTI abstraction layers. 

 As the HLA interface specification evolves, it will be easy to modify the 

metamodel to support the new libraries.  

Regarding another metamodeling issue, it is worth noting that cardinalit y 

constraints in the standard are preserved in the metamodel. For instance, as seen 

in Figure 81, an HLA method shall have exactly one “exceptions” model that 

accounts for the method exceptions. 

5.4.1 Connection to the Other Metamodels 

Some RTI methods require a connection to the HLA Object Model. HSMM allows 

the required connections to be made between the behavioral model and the HLA 

Object Model by offering reference elements that refer to the other metamodel 

elements. This referencing mechanism links the method parameters to the related 

model elements. 

For example, the “publish interaction class” method requires an “interaction class 

handle” to specify which interaction class, defined in the FOM, will be published. In 
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modeling, this argument is provided to the user as a reference to the interaction 

class element in the FOM. Thus, the interaction class to be published is specified. 

When generating code, thanks to this referencing mechanism, it is easy to traverse 

the model. GME provides the necessary API for model traversing. 

5.4.2 Methods 

The labels of the messages in a generic MSC/LSC are un-interpreted; they are just 

symbols. In the context of a federation architecture, though, the labels must be 

interpreted. That is, the messages must correspond to the RTI method calls 

(including callbacks), and refer to the HLA objects and interactions defined in the 

FOM. HLA methods are simply modeled as interpreted LSC messages which can 

be exchanged with simple message events (i.e., in and out) or method call 

events (i.e., call, receive, reply out, and reply in). 

In the metamodel, the HLA services are indicated as being RTI-initiated or 

federate-initiated by means of the enumerated attribute initiator of HLAMethod 

element as sketched in Figure 80. This attribute is devised to create verification 

points to help consistency checking in model verification. For example, if a federate 

initiates an RTI-initiated method, which indeed it should not; an interpreter may 

catch this design error by merely checking the initiator attribute. 

 

Federate RTI

RTI-initiated 

Method Calls, 

also known as 

“Callbacks”

Federate-

initiated Method 

Calls

 

Figure 80. RTI/Federate-initiated Methods  

 

The top view of HSMM is presented in Figure 81. 
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Figure 81. HLA Method of HSMM 

5.4.3 Arguments 

Each HLA method has arguments, either in “Supplied Arguments” form or in 

“Returned Arguments” form. Accordingly, a container modeling element is 

introduced for each of them, called SuppliedArguments and 

ReturnedArguments, respectively. Arguments model contain all the arguments 

of the services specified in [2] as well as the additional arguments for DMSO RTI 

NG 1.3.The structure of the arguments model is presented in Figure 82. 

 

 

Figure 82. Method Arguments Model  
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Many of the arguments are references to the other modeling elements (e.g., 

lookahead reference, synchronization reference, transportation reference, etc.), but 

some are made up by us, namely, indicator, order type, numeric type, resign 

federation action, and string type arguments. The Indicator element is created 

for the representation of Boolean arguments such as registration-success indicator. 

The OrderType element is created for the representation of the order type 

arguments such as the sent message order type. The StringType element is 

created for the representations of the label type arguments such as the federation 

save label. The NumericType element is created for the representation of numeric 

arguments such as the region bounds and normalized values. Resign federation 

action argument is an enumerated element that represents the actions taken by the 

federate when resigning federation. The details of arguments for the library 

developers are given in Appendix D. 

Each argument element has an Optional attribute to indicate whether the 

argument is optional or not in the method call and a ParameterOrder attribute to 

specify the order of the parameter in the method call.  

For null arguments in an HLA method call, it is enough to leave the returned or the 

supplied argument containers empty. 

Set, List, and Collection models correspond to their counterparts in the HLA 

interface specification. Sets and lists include pairs such as a federate and restore 

status pair while the collections include only the sets. The pair structure is depicted 

in Figure 83.  

 

 

Figure 83. Pairs Model  

 

Synchronization references are used to make the connection between HLA 

interface method parameters and HLA object model element. For example, one 
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can introduce static synchronization points in the object model, and then design the 

dynamic synchronization behavior of the federation in connection with federation 

object model. 

5.4.4 Exceptions 

For each exception of HLA services, there is only one modeling element, called 

Exception, in the Exceptions container model. In the HLA Methods library, the 

exception modeling element is named according to the exception name in the 

standard. For instance, the “RTI internal error” and “restore in progress” exceptions 

of method “join federation execution” are the same type of exception, the only 

difference lies in their names. The structure for exceptions is depicted in Figure 84. 

The Common Exceptions folder is used to group common exceptions, which can 

be thrown by more than one method, for instance, the “RTI internal error” 

exception. Therefore, only one exception is created and located in the “Exceptions” 

folder and then the reference to this exception is used in the HLA methods. 

 

 

Figure 84. Exceptions Model  

 

Exception modeling element may contain an MSC reference. Thus, the modeler 

can define a behavior (in terms of an MSC chart) handling the exception.  

5.4.5 Runtime HLA Instances 

The method arguments can be classified as static or dynamic according to their 

creation time. A static argument generally refers to the static objects in the object 

model such as an HLA object class (defined at design time) while a dynamic object 

(i.e., instance) is created at runtime to refer to a runtime instance such as an object 

instance, message retraction designator, federate, or region.  
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Dynamic arguments that are used by other methods during design and judged as 

being primary modeling elements for the federate’s behavior are logically classified 

into two groups: those with static counterparts in the metamodel and those without . 

The former ones can be instantiated directly from the counterpart model using the 

GME built-in instantiation mechanism. The static counterparts act as template 

classes for instantiation. These arguments are object instances and federate 

instances. An object instance is an instance of an HLA object class found in the 

object model and this element can only be created by instantiating the 

ObjectClass. Other method calls can reference this object instance via the 

ObjectClassReference modeling element as the object instance designator. 

The federate instance is discussed in Section 5.4.5.3. 

For those that do not have static counterparts in the object model (i.e., message 

retraction designators and regions), a new modeling element is devised in the 

auxiliary metamodel. These dynamic elements are modeled as symbolic instances 

that represent the actual values produced by the RTI. The rationale for modeling 

message retraction designators and regions is presented in the following 

paragraphs, along with some examples. 

5.4.5.1 Message Retraction Designator 

Some OM methods use message retraction designators to keep track of the 

messages sent to the other federates. During runtime, the RTI automatically 

assigns a message retraction designator after “Update Attribute Values”, “Send 

Interaction”, “Send Interaction with Regions”, and “Delete Object Instance” calls. 

This runtime instance must be referred to symbolically in the design time to keep 

track of the message calls made. Thereupon, a 

MessageRetractionDesignator modeling element is added to the metamodel. 

This element corresponds to the assigned designators; however, the object 

management and time management methods that need this designator use “the 

designator references” to point the assigned designator. For example, as seen in 

Figure 85, the Retract and RequestRetraction methods use the “Message 

Retraction Designator” references resulting from some object management calls 

(e.g., send interaction and receive interaction). 
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Federate_B

mrd1=sendInteraction(msg1)

Federate_A Federation Execution

mrd2=sendInteraction(msg2)

receiveInteraction(msg1, mrd1)

receiveInteraction(msg2, mrd2)

Retract(mrd1)

requestRetraction(mrd1)

 

Figure 85. Using Message Retraction Designator 

 

5.4.5.2 Region 

Some HLA data distribution management methods define and use regions during 

run time. The HLA Object Model allows defining dimensions, which are static 

elements and used by federates to define regions. To use the regions at federation 

design time, a Region modeling element is introduced. The “Create Region” 

method call creates the region designator while other DDM method calls (e.g., 

“Delete Region” call, which deletes a created region) refer to it by using the 

RegionReference modeling element.  

5.4.5.3 Federate and Federate Application 

The HLA standard makes a distinction between federate and federate application. 

Federate application is akin to component type (in Architecture Description 

Languages parlance, see [43]) and is associated with an HLA SOM, while a 

federate is akin to a component, which exists at federation execution time. When a 

federate joins a federation execution, the RTI generates a federate handle for it. All 

federate handles are unique in a federation execution. As an example, a virtual 

“Ship” which is capable of joining a federation is a federate application. This 

federate application may join a federation (more than one federation, for that 

matter) as many federates, say ship A, ship B, and so on, during federation 

execution. 

Hence, it seems appropriate to maintain this distinction in the metamodel. The 

FederateApplication represents the software elements, which are connected 

to a SOM in the federation architecture and it helps to describe the federation 

structure in the static view. A federate is created by instantiating the 
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FederateApplication and it is referred to in HLA methods such as 

JoinFederationExecution method. This modeling element has a reference 

(named FederateApplicationReference) to be used by the FM calls that 

need the federate handle. For example, RegisterSynchronizationPoint 

requires knowledge of which federates are currently joined to the federation, as 

seen in Figure 86.  

 

Federate_B

RegisterSyncPoint

(“Sync1”, Federate_A,Federate_B)

Federate_A Federation Execution

ConfirmSyncPoint (“Sync1”, True)

AnnounceSyncPoint (“Sync1”) AnnounceSyncPoint (“Sync1”)

Set of Joined 

Federates

 

Figure 86. Using Federates  

 

There is a difference between the concepts of federation and federation execution 

in parallel with federate application and federate, respectively. Federation 

executions are instantiated from the Federation model element, which is created 

in the Federation Structure Model. Consult [2] for further clarifications of the 

terminology. 

Federation and federate application are specialized from LSC instances using 

GME inheritance (denoted by a triangle) [11]. 

5.4.6 HLA Runtime Infrastructure and Federation Executions 

HLA Runtime Infrastructure is not explicitly referred in the metamodel. Federation 

execution, though, is an instance model element of Federation. A federation 

execution is the primary instance the federate interacts with (e.g., joining the 

federation, receiving an interaction etc.). A federation is modeled as an LSC 

instance rather than as the MSC/LSC environment. This decision leaves the 

environment concept at the disposal of the modeler and allows multiple federation 

executions in a model. While inheriting the federation element from the LSC 

instance, instead of the usual inheritance operator, the GME interface inheritance 
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is used, so that the federation execution becomes a black box. Thus, the federation 

execution does not contain any MSC/LSC instance constituents such as a variable 

list. 

5.4.7 Live Entities 

In interactive and live simulations, the users (players) and live entities, such as a 

real ship, play an essential role in the federation and federate’s behavior. 

Therefore, a modeling element is created as an LSC instance using GME interface 

inheritance to represent live entities. 

5.4.8 Libraries for HLA Methods 

The HSMM supports modeling of the HLA methods as GME libraries. In this 

respect, two libraries are constructed for representing the HLA methods, namely 

IEEE 1516 HLA Methods library and DMSO 1.3 Methods library, using the HSMM 

in order to test the metamodel and to prepare the required methods to model the 

federate behavior both for IEEE 1516 and DMSO 1.3 compatible federations. 

As seen in Figure 87, DMSO 1.3 Methods library is a programming language 

specific library whereas IEEE 1516 HLA Methods library is an abstract library, 

which is language unspecific. Both are provided in this study providing the 

evidence of HSMM support for HLA specifications. Furthermore, the modelers can 

also model the programming language specific libraries that conform to the IEEE 

1516 specification, such as pRTI library.    
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Figure 87. HLA Methods Libraries 

5.4.8.1 IEEE 1516 HLA Methods Library 

An IEEE 1516.1 HLA Methods library (IMLib) is providing an abstract view (i.e., 

programming language unspecific) of HLA services defined in [2] and it is the 

library required to model the federate behavior for IEEE 1516 federations. A screen 

shot of the library is presented in Figure 88. There are 811 concepts1 (elements 

with a kind of model, atom, and folder stereotypes in GME parlance) defined in the 

library. The mapping of the HSMM elements to the method arguments of the IMLib 

is presented in Appendix C. 

                                                 

1
 For IMLib version 20071217_01. 
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Figure 88. IEEE 1516.1 HLA Methods Base Library (GME Screenshot) 

 

In order to use this library, we simply attach it to the model concerned and then 

instantiate the required method in the model (in a drag-and-drop fashion). It is also 

possible to refer to a method by the GME referencing mechanism. 

Although the HLA management services are defined in full detail in [2]; it might 

make sense to at least recap what they are. 

HLA Federation Management Interface refers to the creation, dynamic control, 

modification, and deletion of a federation execution. HLA Declaration Management 

Interface is used to coordinate data exchange between federates, to specify the 

data a federate will send and receive, and to control where data are sent. HLA 

Object Management Interface Methods deal with the registration, modification, and 

deletion of object instances and the sending and receipt of interactions. HLA 

Ownership Management Interface is used by joined federates and the RTI to 

transfer ownership of instance attributes among joined federates [2].  

The OwM method “Inform Attribute Ownership” has an attribute 

FederateReference type to inform the ownership status of the queried attribute. 

This status can be a “Federate”, RTI, or un-owned. If the ownership is a federate, 

then a federate instance reference must be included in the model to point to the 
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owner, or a null pointer refers to un-owned or a federation execution reference to 

point to the RTI. 

The Time Management services and associated mechanisms permit messages 

sent by joined federates to be delivered in a consistent order to any joined federate 

in the federation execution that is to receive those messages. Data Distribution 

Management services serve to filter the data communicated between federates at 

the class attribute level and the interaction level. HLA Support Services are defined 

in HLA interface specification to be utilized by joined federates for performing such 

actions as name-to-handle transformation (and vice versa), controlling advisory 

switches, manipulating regions, and RTI start-up/shutdown [2]. 

The set argument has only one element (i.e., a reference to an argument) by 

default. If this reference is null, then it is assumed an empty set. The user may add 

new elements to the set. For example, 

RegisterFederationSynchronizationPoint method has a set argument, 

called “set of joined federate designators”, the HLA methods library provide only 

one reference inside the set (i.e., a federate application reference). The user can 

subtype this method and then can add any number of federate application 

references. 

5.4.8.2 DMSO 1.3 Methods Library 

DMSO 1.3 Methods library (DMLib) provides the methods for the DMSO RTI API1 

to model the federate behavior for DMSO 1.3 federations. Its structure is very 

similar to IMLib. There are 815 concepts2 defined in it. 

 

                                                 

1
 For DMSO RTI NG 1.3 v6 API.  

2
 For DMLib version 20071217_01.  
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CHAPTER 6 

 

 

6. MODEL INTEGRATION AND EXTENSIBILITY 

 

 

 

The MSC specification, in addition to an action model, introduces a rudimentary 

data model via some predefined elements, such as messages, actions, and MSC 

references. Basic data concepts as defined in MSC specification [36] are included 

in the metamodel to enable the declaration and the use of the static and the 

dynamic data. 

However, it is certainly needed to build a domain-specific data model for many real-

life applications and to integrate it with the MSC. Therefore, the LSC/MSC 

metamodel must provide by design a flexible structure for such future integrations. 

While designing the data concepts in BMM, the facility for model integration was a 

main design principle. Therefore, as explained later, some explicit integration 

model elements are devised. This approach enables the user to supply a domain-

specific data model. 

6.1 Integration by Extension 

FAMM is a typical example of how to integrate the domain-specific data model 

(HFMM) and action model (LMM) by using extensions as depicted in Figure 89.  

 



   

100 

 

Figure 89. Development Methodology for HLA -Based Distributed Simulations  

 

A model can be integrated by extending any element defined in the MSC/LSC 

metamodel. For example, the MSC/LSC message can be extended to provide a 

domain-specific meaning to it. The HLA interface methods are a specialization of 

the MSC/LSC message as seen in Figure 90. Thus, HLA methods are allowed to 

be used in MSC/LSC charts in place of the MSC messages. 

 

 

Figure 90. Extending MSC Message as HLA methods  

 

Using the same approach, the HLA model elements, federate application, 

federation, and live entity, are all instantiated from the MSC instance model 

element. The integration is depicted in Figure 91. Federate application is inherited 

using normal inheritance operator because some properties of MSC instance 

element such as “decomposed” can also be used for federates. The others are 
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inherited using the interface inheritance operator. Therefore, they behave as a 

black box. 

 

 

 

Figure 91. Extending MSC Instance to Integrate Some HLA Model Elements  

 

6.2 Accommodating Future Integrations 

Explicit integration points in LMM are created with the purpose of easing the 

(meta)model integration. These integration points are defined in expressions, in 

data types, and in arguments. Integration points are intentionally designed as 

abstract GME FCO (First Class Object) classes so that any kind of GME class 

(e.g., atom, reference, etc.) can easily be inherited. 

A data model may define a probabilistic kind of Boolean expression, to account for 

the occurrence probability of the truth, to be used in the conditions. After modeling 

this special Boolean expression, it is enough to inherit it from the 

BooleanExpression FCO class defined in the MSC metamodel. As a result, 

while modeling a condition, modeler can select either the default Boolean 

expression or the new probabilistic Boolean expression. 
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(1) Extending boolean expressions in metamodel using the explicitly 

defined integration point

Integration Point 

for Boolean 

Expressions

The new 

extended 

Boolean 

Expression

(2) The modeler may choose the default or extended boolean 

expression while modeling

Default Boolean 

Expression

Extended 

Boolean 

Expression

  

Figure 92. Integration of a Probabilistic Boolean Expression  

 

The same approach is also used for message arguments and data types. For 

arguments the Argument FCO class, and for data types the 

DataTypeFromDataModel FCO classes are created as integration points. As 

seen in Figure 93, the domain data types (HLA) are instantiated as MSC data 

types. Thus, the modeler can use the HLA data types in MSC/LSC charts as well. 
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Figure 93. Integration of MSC Data Types and HLA Data Types 

 

6.3 Console Input Output Library 

To illustrate the integration of the external data models, a basic Console Input 

Output Model Library (CIOMLib) is created using the default MSC data concepts. 

This library is used to model the basic user input output via a simple console. 

There are two interactions; Input and Output, and two arguments, bearing the 

names, InputString and OutputString respectively. The interactions are 

modeled as MSC messages. The arguments can be easily used as arguments of 

HLA methods. For instance, in Figure 94, the user inputs a name using Input 

message and then its argument, InputString, is used in 

ReserveObjectInstanceName method call. 
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Input 

Message

 

Figure 94. Example for the integration of an External Data Model and HLA Methods  

 

The use of this library demonstrates that a data modeling element defined with the 

MSC model can be used in the HLA model. 
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CHAPTER 7 

 

 

7. FAMM ASSESSMENT 

 

 

 

FAMM assessment can be carried out, in qualitative terms,  based on the criteria of 

completeness, traceability, modularity, layering, partioning, extensibility , reusability  

and usability (adapted from Section 7.1 of [14] and from [44]). It is believed that all 

the criteria defined here determines the metamodel quality.  

The assessment is based on the case studies and architecturing a real world 

federation, NSTMSS, which is presented in Appendix B. Though this assessment 

can be seen as a self-assesment and can be judged as being subjective, the 

assessment is open to discussion. Of course, architecting and modeling more real 

world federations using FAMM will bring out a more objective assessment of 

FAMM. 

7.1 Completeness (Scope) 

Completeness criterion answers whether the metamodel includes all the relevant 

concepts and entities of the intended domain [44, 45, 46]. The completeness of the 

metamodel can be checked using the specifications and the standards of the 

intended domain.  

Completeness refers to the scope of the FAMM. FAMM offers a formalization of a 

significant portion of the IEEE 1516 standard (the HLA Framework and Rules 

specification and the pre/post conditions of the interface services are excluded). In 

particular, HOMM formalizes the HLA OMT (IEEE 1516.2), and HSMM formalizes 

HLA Federate Interface Specification (IEEE 1516.1). Another benefit of formalizing 

the HLA standard is that vendors' deviations from the official standard become 

manifest from library. For example, in Pitch RTI implementation, the indicator 

argument is absent in SubscribeInteractionClass method call. This should 

also help, for example, in porting a federate to a different RTI. Further, FAMM 
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covers the complete MSC/LSC specification in its Behavioral Metamodel. FAMM is 

checked with each of the examples found in [35 and 38].  

7.2 Traceability 

Traceability between the domain specific concepts and the metamodel elements is 

important for the proposed metamodels. Because the modelers generally tend to 

expect to see the same concepts, which they are familiar from the domain. For 

example, in LSC domain, the modelers would like to see the coregion construct 

instead of a new devised construct doing the same work. This situation also 

alleviates the learning and adaptation period. Therefore, keeping traceability 

between the standardization documents and the metamodel elements 

straightforward was a (meta)modeling guideline. 

Another traceability issue is between the model and the generated code. 

Traceability via comments is significant because the application developer works 

over the generated code (e.g., he/she weaves the application logic code after 

automatic base code generation). 

7.3 Modularity 

The modularity (Section 7.1 of [14]) principle addresses high coherence and low 

coupling between the modules. It should be evident from the FAMM presentation, 

as seen in Figure 5, that modularity principle is adhered to so that each concern 

area is addressed by a self-functional (high coherence) sub-metamodel (e.g., LMM 

and HFMM) as these sub-metamodels are connected loosely through Integration 

Metamodel. Moreover, each sub-metamodel is also separated into sub-

metamodels (e.g., LMM is separated to MMM). By separating FAMM into sub-

metamodels provides the modularity. In terms of GME, this modularity is provided 

by using libraries where each sub-metamodel (i.e., module) is a GME library.  

7.4 Layering 

Layering is defined as (1) separating the core constructs from the higher-level 

constructs that use them, (2) separating concerns by a four-layer metamodel 

architectural pattern [14]. 

The correlation of FAMM with OMG’s four-layer metamodel hierarchy has already 

been presented in Table 1. 
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FAMM structure separates the core constructs and higher level constructs by using 

the GME folder and the GME paradigm sheet structures. For example, the HOMM 

encompasses the OMT Core folder and the Object Model paradigm sheet where 

the former includes the core OMT elements and the latter includes the elements, 

which use the core elements. Another example for layering is the structure of the 

LSC idioms, which are created using the LSC/MSC core constructs such as the 

inline expressions and the conditions.  

Layering property of FAMM becomes more pronounced in a Federation 

Architecture Model, which conforms to FAMM. In a federation architecture, two 

levels become visible by separating the model specific (i.e., federation/federate 

specific) and non-specific (i.e., HLA specific) concerns. The base layer is the HLA-

specific layer. The top layer is the federation/federate specific layer. The top layer 

uses the constructs found in the base layer.  

This layering is done via the GME libraries. The libraries, provided with FAMM such 

as IMLib, are all specific to HLA standard rather than to a specific model. These 

libraries provide the core constructs and form the base layer in a federation 

architecture project. The top layer, which is formed by the behavior models, the 

federation structure model, and the federation model in the project use the core 

constructs provided with the libraries. The layers are depicted in Figure 95. 

 

Base Layer:

These are all model non-specific libraries.

Top Layer:

These are all model specific (i.e., federation/federate 

specific) constructs. They use the base layer elements.

 

Figure 95.  Layers in a Federation Architecture Model  

 

7.5 Partioning 

As specified in [14], partioning is used to organize the conceptual areas within the 

same layer. In the case of FAMM, partioning is provided by grouping constructs 
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into folders for each sub-metamodel. For example, considering MMM, it organizes 

the MSC constructions in four folders, namely, Auxiliaries, Basic Constituents, Data 

Concepts, and Time Concepts. In each folder, by using the GME paradigm sheets, 

the constructs are grouped. For instance, in Basic Constituents folder, there are 

actions, charts, comments, gates, etc paradigm sheets and in Time Concepts 

folder, there is measurement, time interval, time offset, etc. paradigm sheets. Each 

paradigm sheets include the model constructs and the structure of these 

constructs. 

 

 

Figure 96. FAMM Partioning 

 

Partioning is conducted according to the specifications and standards of the 

intended domain (e.g., for MMM, the MSC specification is taken into consideration) 
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to support the traceability between FAMM and the domain specific concepts. Thus, 

the conceptual areas are organized according to the domain authoritative 

documentation. 

7.6 Extensibility 

In order to construct a new metamodel as an extension of an existing one (e.g. 

extending the MSC metamodel to the LSC metamodel), one could copy the 

existing metamodel and then make modifications and additions to it. Alternat ively, 

one may attach the existing metamodel as a library and then build the new model 

on top of it without any modifications to the attached library elements. The latter 

method, using the nested libraries feature of GME, yields better model 

encapsulation. An example is provided in Section 4.3.2. 

Attaching a metamodel into another metamodel as a library can be seen as an 

analogy to the class inheritance in object-oriented languages. Moreover, read-only 

metamodel elements resemble the protected attributes in a class where, model 

elements to be extended resemble the public attributes. 

Extensibility [14 and 44] emphasizes modifiable metamodels. Extension to a 

metamodel is inevitable because the requirements and the expectations from a 

metamodel will change from time to time. In case of FAMM, for specific domains, it 

is essential to provide a domain-specific data model, which extends the basic MSC 

data model. The proposed metamodel’s facility of integration with domain-specific 

data models plays a critical role to achieve code generation. 

UML specification dictates two kinds of extension mechanism: (1) using profiling 

mechanism (i.e., profiles are used to customize the language for specific domains) 

and (2) reusing part of the infrastructure package and augmenting it [14]. 

FAMM does not provide a profiling mechanism; instead, it has built-in explicit 

integration points for model extensions. Reusing infrastructure package strategy is 

also followed for instance, in extending MMM for LMM. 

Extensibility support of FAMM and model integration are explained in detail in 

Chapter 6. 

7.7 Reusability 

Reusability (Section 7.1 of [14]) will take a longer period of time to assess. 

Presently, we note that the LSC/MSC metamodel is already being utilized in 
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performance modeling of network-based information systems. The MSC/LSC 

metamodel is used to model the traffic generation behavior of the software and is 

extended to include performance-related concepts, such as probability distributions 

over the messages. 

Another study employs the HOMM to attack the FOM independence problem. The 

existing FOM and the new FOM are both modeled in HOMM, and a third model, 

called the Correspondance Model, specifies the mappings from the former to the 

latter. From this trio of models, the skeleton code for transitioning the federate to 

the new FOM is automatically generated [47]. 

7.8 Usability 

The usability of FAMM is evaluated in re-modeling of NSTMSS and some of its 

federates, namely, Federation Monitor Federate (FedMonFd) and Exercise Planner 

Federate (ExPFd) [48]. Both are fairly common types of federates in HLA 

federations, where FedMonFd serves as a stealth observer by using the HLA 

MOM, and ExPFd serves as federation scenario manager. Modeling the 

architectures of each federate took one person-month. Most of the effort was spent 

on learning the MSC/LSC and the FAMM basics, and reverse engineering of the 

existing federate application.  

In the matter of usability, the granularity of modeling matters. At present, the user 

must model all the RTI interactions in full detail. For example, the number of 

concepts (elements with a kind of model, atom, and folder stereotypes in GME 

parlance) and connections (association in GME parlance) that constitute the STMS 

model is about 634 and 243, respectively.  

One means of alleviating this situation is to reduce the size of the handcrafted 

model with the help of model transformation. The idea is that the designer (or an 

automated conceptual model transformer) will need to specify only the essential 

interactions in the behavior model, and then an auxiliary model transformer will fill 

in the implied message exchanges taking the method pre- and post-conditions into 

account. Static analysis of the behavior model is, of course, a prerequisite for such 

model manipulations. 

A complementary approach is to isolate the users as much as possible from FAMM 

details. A graphical front-end that supports the LSC graphical syntax would 
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facilitate more intuitive behavior specification as well as prevent easy mistakes in 

modeling. 

7.9 Other Criteria 

The criteria that are often applied as the quality criteria for the conceptual models  

can also be applied to assess the metamodels. Especially, two criteria among 

them: being analyzable and executable [46], which is an expected effect of Model 

Integrated Computing, is important for models that conform to FAMM. The code 

generation study over FAMM proves that the federation architecture models (that 

conform to FAMM) are executable [31].  

The quality of definitions of the documentation [44] criterion leads us to give 

importance to the documentation for a metamodel. In this sense, FAMM is well 

documented both in defining the metamodel (i.e., FAMM) constructs and in 

explaining the domain-specific modeling environment (i.e., FAME), which use 

FAMM. 

The correctness criterion [14, 45, and 46] is an indispensable characteristic of a 

metamodel. This criterion must be evaluated by objective studies and it will take 

longer time to assess. 

Consistency [45 and 46] criterion emphasizes that the metamodel constructs are 

not in conflict with any other constructs. Due to compound structure of FAMM, 

which integrates specifications from interdisciplinary domains (i.e., HLA, MSC, and 

LSC), consistency was a major design principle. Especially, while (1) extending the 

MSC metamodel to form the LSC metamodel and (2) while integrating HLA and 

behavioral sub-metamodels, eliminating the conflicts was a design principle. As a 

result, the constructs in the sub-metamodels of FAMM are not in conflict with any 

other constructs. 

Comprehension criterion [46] addresses the need for understandable models. It is  

clear that if a metamodel is not understandable, then no one will use it.  
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CHAPTER 8 

 

 

8. RESULTS, DISCUSSIONS, AND FUTURE WORK 

 

 

 

8.1 Accomplishments and Discussions 

This study proposes a metamodel, designated FAMM, for federation architectures 

to enable a broad range of tool support for the HLA federation development 

process. A significant part of this proposal is adoption of Live Sequence Charts for 

the behavioral specification of federates. FAMM can be regarded as a domain 

specific architecture description language for HLA federations. A federation 

architecture model comforming to FAMM is in a machine-processable form, thus 

enabling tool support.  

Specifically, FAMM offers the following benefits to federation developers: 

 FAMM serves both as a basis for source models for code generation [31] 

and as a basis for target models for transformation from the domain-related 

models (e.g., conceptual models of mission space) [9]. An interpreter, 

called Code Generator, for automatic code generation is supplied with 

FAMM. The interpreter takes a model (i.e., a FAM) including a federate 

behavior specification as input and produces the federate application base 

code as output [31].  

 FAMM brings forth the expressive power to represent not only the static 

view of the federation but also the behavior of the federates. It relates 

behavior with the structure. This power comes from the Behavioral 

Metamodel, which is integrated with the HLA Object Model and HLA 

Services Metamodel. Thus, it eliminates a significant limitation of the OMT 

and FEDEP. 

 FAMM lays the groundwork for implementing model interpreters in order to 

generate useful artifacts, such as FDD files and to extract interesting views, 
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such as publish/subscribe diagrams. An interpreter, called P/S Model 

Generator, for the automatic generation of P/S models is implemented and 

an interpreter, called FDD Generator, for automatic FDD file generation is 

supplied. 

 FAMM provides support for the verification and validation activities due to 

the increased precision in the description of the federation.  

o Constraints support early verification (in the sense of consistency 

checking) in the architectural design phase. Cardinality constraints 

are supported by design. Further constraints that cannot be 

enforced by metamodel structure can be formulated using the OCL 

[27]. Note that currently the HLA Object Model contraints are 

formulated in the OCL. Formulating the constraints for the MSC/LSC 

and the HLA interface specification is left as a future work.  

o Generating codes for member federate applications and executing 

the federation serve as a test for validity of the federation 

architecture. Thus, it supports a dynamic verification of the 

federation design.  

 FAMM enables static analysis of the federation architecture. This can be 

helpful, for example, in collecting metrics for assessing the complexity of 

federation architectures. An interpreter, called Model Metrics Collector, for 

collecting the metrics over FAM is supplied with FAMM.  

 FAMM can help improve the communication among simulation engineers, 

software engineers and programmers, again due to increased precision. 

The metamodel, along with the libraries, the interpreters, and documentation for 

sample case studies, including the federation architecture and the automatically 

generated code of the Strait Traffic Monitoring Simulation, and NSTMSS models 

are available from the FAMM web page: 

http://www.ceng.metu.edu.tr/~otopcu/famm/index.html, last accessed December 

25, 2007. 

http://www.ceng.metu.edu.tr/~otopcu/famm/index.html
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8.2 Future Work 

8.2.1 From a User-friendly Trimmed Model to a RTI-friendly Full Model 

It is also aimed to minimize the behavioral modeling effort without loosing any 

details in federate’s behavior in order to simplify the designer’s work. Work is 

aimed at reducing the initial model size with the help of model transformation. The 

idea is that, the designer or the conceptual model transformer will specify only the 

essential interactions in the behavior model, and then an auxiliary model 

transformer will fill in the implied message exchanges taking method pre- and post-

conditions into account. Static analysis of the behavioral model is, of course, 

essential to lay the groundwork for such model manipulations. The designer can 

specify the minimal and basic behaviors in model (behavioral model in trimmed 

form – user friendly), and then the model transformer can fill the standard model 

elements to generate an RTI-friendly full model by the help of pre-defined 

transformation rules as exemplified in Figure 97. 

 

Trimmed ModelTrimmed Model

Fd RTI

SendInteraction(Message)

Full ModelFull Model

Fd RTI

GetParameterHandle(“Header”,Message)

GetInteractionClassHandle(Message)

GetParameterHandle(“Subject”,Message)

GetParameterHandle(“Time”,Message)

GetParameterHandle(“Body”,Message)

PublishInteractionClass(Message)

EnableAsyncDelivery()

SendInteraction(Message)

Set Parameters

 

Model 

Transformation

Transformation

Rules

 

Figure 97. Transformation 

Some potential objectives/issues to be addressed and covered are: 

 The static analysis of a federate to determine the observed state of the 

federate from RTI’s viewpoint. 

 The transformation rules for RTI methods. 

 The determination of the correct position for the generated elements in the 

model. 
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8.2.2 Graphical Front-end (from LSC to BMM) 

Future work will address improving (meta)model usability. A graphical front-end, 

supporting, in particular, the LSC graphical syntax, is certainly desirable to improve 

the usability of the metamodel. 

Abstract syntax is, clearly, not for human consumption. Understandability of the 

models is harder than that of graphical representation. Moreover, from our 

experience, the metamodel usage is error-prone. Each visual element in LSC 

corresponds to one (sometimes two) modeling element(s), which ostensibly results 

in cluttered models. This drawback can be circumvented with a front-end that 

converts the LSC in concrete syntax (in graphical notation) to the LSC in abstract 

syntax (in our metamodel).  

8.2.3 Federation Scenario 

The scenarios and federation executions are closely interrelated. Developing a 

scenario specification related to the Federation Architecture Metamodel will ease 

the transformation of the conceptual models into federation architectures. 

Moreover, the federation scenarios can be used to generate test cases for both 

integration testing and operational testing of federations. 

In a simplistic approach, federate developers may not care about federation 

scenarios but the federation developers have a concern to enforce a specific 

scenario during federation executions. The solution for enforcing a scenario will 

affect the federate design. Consequently, the computational aspect may be 

weaved according to the scenario. 

8.2.4 Extraction of Usable Views of Federation Architecture  

Another application area of the proposed metamodel will be to extract some usable 

views such as filters (e.g., filtering the architecture to show only the interactions) 

from the federation architecture. 

8.2.5 Defining Metrics for Metamodel Quality Assessment 

A research to specify generic assessment parameters for metamodel quality can 

be conducted. The assessment parameters may be discussed with respect to the 

proposed metamodels. 
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8.2.6 Constraint Checking Over FAMM (Through the OCL Constraints) 

There are many constraints defined in the MSC/LSC and the HLA interface 

specifications by prose. FAMM maintains the structural constraints of these by 

design. For example, “a loop element has exactly one operand” is a structural 

constraint. The others rather than the structural ones can be expressed using the 

OCL and can be added to the metamodel. For example, name of the elements 

must be unique in an MSC document. 

The constraints for the HLA interface specification and MSC/LSC specification 

must be formulated. The constraints provide robust models. The more the 

constraints are added to FAMM, the fewer mistakes the modeler does.  

8.2.7 Decomposition of a Federate Application 

MSC decomposition can be automatically done via model transformations. Both the 

source and target model are based on the same MSC metamodel. Model 

transformation rules defined in this scope may also support the transformations 

from scenario to federate LSCs. To explain decomposition more clearly, an 

example for the decomposition of federation scenario LSC into federate RTI-

specific LSCs is given in Figure 98. The scenario is very simple where entity A is  

sending an interaction m1 to entity B. When decomposition is applied, federate AFd 

LSC and federate BFd LSC can be generated as shown in the figure. Message m1 

is decomposed into RTI specific interface method calls where AFd sends an 

interaction and BFd receives an interaction. 

 

A B

m1

AFd RTILib

SendInteraction(m1)

AFd RTI-specific LSC

RTILib BFd

BFd RTI-specific LSC

ReceiveInteraction(m1)

Tick()

Decomposition

Federation Scenario LSC

m1

m1

Process

Interaction

 

Figure 98. LSC Decomposition Example 
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APPENDIX A 

APPENDICES 

 

A. FEDERATION ARCHITECTURE MODELING 
ENVIRONMENT 

 

 

 

A.1 Overview 

The model of a particular federation architecture is an instance of the Federation 

Architecture Metamodel (FAMM). Both tasks, metamodeling and modeling, are 

accomplished using Generic Modeling Environment (GME) developed and 

maintained by Vanderbilt University. GME is an open source, meta-programmable 

modeling tool that supports domain-specific modeling where domain is HLA in our 

case [8, 11].  

GME initially serves as a metamodel development environment for domain 

analysts, and then it provides a domain-specific model-building environment, called 

Federation Architecture Modeling Environment (FAME), for the developers and the 

modelers. 

The screen shot in Figure 101 shows an example modeling environment for FAMM 

users, who are typically federation designers. 

Please refer to GME Manual and User Guide [11] for an explicit understanding of 

GME tool and to FAMM website (http://www.ceng.metu.edu.tr/~otopcu/famm/ 

index.html, last accessed at December 25, 2007) for the example architectures 

introduced here. 

A.2 Introduction to Example 

The subsequent sections introduce the metamodel in detail, accompanied by a 

simple example: the Strait Traffic Monitoring Simulation (STMS). On a larger scale, 

the architectural modeling of Naval Surface Tactical Maneuvering Simulation 

System (NSTMSS) [25], a distributed interactive simulation, is carried out using the 

metamodel and is presented in Appendix B and in [48, 49, 50]. 

http://www.ceng.metu.edu.tr/~otopcu/famm/%20index.html
http://www.ceng.metu.edu.tr/~otopcu/famm/%20index.html
http://www.ceng.metu.edu.tr/~otopcu/famm/%20index.html
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A traffic monitoring station tracks the ships passing through the strait. Any ship 

entering the strait announces her name and then periodically reports her position to 

the station and to the other ships in the strait using the radio channels. Channel-1 

is used for ship-to-ship and channel-2 is used for ship-to-shore communication. 

The traffic monitoring station tracks ships and ships track each other through these 

communication channels. All radio messages are time-stamped to preserve the 

transmission order. 

The traffic monitoring station and the ships are represented with two types of 

applications1: a station application and a ship application, respectively. The ship  

application is an interactive federate allowing the player to pick up a unique ship 

name, a direction (eastward or westward), and a constant speed by means of a 

textual interface. Joining a federation corresponds to entering the strait, and 

resigning from the federation corresponds to leaving the strait. The station 

application is a monitoring federate, which merely displays the ships (in the strait) 

and their positions. The federation has a time management policy where each ship 

application is both time regulating and time constrained and station application is 

only time constrained.  

The conceptual view of the application is presented in Figure 99. 

  

 

Figure 99. Strait Traffic Monitoring Simulation Conceptual View 

 

While selecting this example, the following highlights were in mind: 

                                                 

1
 Application is used as a substitute for “federate application”. 
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 Clearly, the essence of this simple federation is an example of a set of 

objects tracking each other making it a common scenario/interaction for 

most distributed simulations. 

 It is believed that this example has a simple conceptual model, which will 

make it easily understandable and capture the reader’s attention 

immediately. Thus, it will force the user focus on the modeling part than the 

example itself. 

 Moreover, the sample federation naturally includes time management, 

ownership management, and data distribution management services in 

addition to the base services (e.g., federation management services).  

 The sample federation involves two distinct federate applications and it has 

a potential to support multiple federations. 

 It is an interactive simulation. Thus, it presents how to model the user 

interactions in FAME. 

For the complete federation architecture and metamodels, along with other 

supporting material, the reader is referred to the FAMM web site 

(http://www.ceng.metu.edu.tr/~otopcu/famm/index.html, last accessed at 

December 25, 2007). 

A.3 Registering the FAMM 

FAME is provided by GME once FAMM is invoked as the base paradigm. First, it is  

required to register the FAMM paradigm to configure the GME as the FAME.  

Run the GME. Click File and then select Register Paradigms. A dialog box 

will be opened as seen in Figure 100. Click Add from File; select the 

FAMM.xmp file obtained from the FAMM web site. Please, take care to check the 

version. 

 

http://www.ceng.metu.edu.tr/~otopcu/famm/index.html
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Figure 100. Registering the FAMM 

 

A.4 Creating a New Project 

GME allows creation of a project for developing a new federation architecture. Start 

GME, and select “File/New Project”. A dialog box asks you to choose the paradigm 

that the new project will be based on. Select FAMM and press the Create New 

button. The next dialog asks you to specify the data storage. Simple models are 

usually stored in project files. Click Next and name your project file. The standard 

extension is “.mga”. GME has now created and opened an empty project that is 

named and associated with the FAMM paradigm. The FAME is ready to use now. 

Figure 101 presents a screen shot of the project for the STMS federation 

architecture. The root folder (e.g., “Strait Traffic Monitoring Simulation” in the 

screen shot) serves as a project container for the federation architecture. It 

includes three major sub-folders, namely, federation structure, behavioral models, 

and federation models. The federation structure folder contains information about 

the federation, such as the location of the FOM Document Data file, the link for the 

related FOM, and the structure of the federation, where the participating federate 

applications and their corresponding Simulation Object Models (SOMs) are linked. 

The folder for behavioral models includes an MSC document for each participating 

federate. The federation model folder includes the FOM, SOMs, and the other 
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Object Model Template related information (e.g., data types, dimensions, etc.). In 

the example, SOMs for ship and station applications and a FOM for the STMS 

federation are provided. 

 

Root folder is the main project 

folder. It contains all the 

models for federation 

architecture

Behavioral models folder 

embodies the behaviors of the 

participating federates. It 

includes the MSC documents 

and the sequence charts.

Federation model folder 

contains the FOM, SOMs, and 

other object model related info 

(e.g., dimensions)

Federation structure folder 

includes the federation 

structure where the static 

structure of the federation is 

specified.

HLA Services folder is 

attached as a GME library. It 

includes all the management 

services in HLA interface spec.

P/S model is an utility model, 

which depicts the federation P/

S structure.

Info about the project

 

Figure 101. Federation Architecture Modeling Environment (FAME)  
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A.5 Creating the Federation Model 

Federation Model is a folder that includes all the federation specific models and 

related data (e.g., data types). First, create a federation model folder.  

A.5.1 Creating the Object Models 

Creating the object models are explained in [12]..  

An appropriate FOM for the STMS federation is prepared conforming to the 

HOMM. The object class and interaction class hierarchies of the object model are 

presented in Figure 102. The FOM involves two object classes, namely “ship” and 

“station”, and one interaction class, namely “radio message”. The ship object has 

four attributes, namely “name”, “course”, “speed”, and “position”, and the station 

object has two attributes, namely “name” and “location” as the radio message 

interaction class has two parameters, namely, the “call sign” and “message” 

parameters, indicating “the name of the entity that sent the message” and “the 

content of the message (i.e., the position data)”, respectively. 

 

Object Classes Interaction Classes
Ship Attributes and Their 

Properties

 

Figure 102. A Part of the STMS FOM (GME Screenshot) 

 

A.5.2 Creating Other Elements 

Right click on the federation model folder in the browser window within the “Insert 

Folder” option you can select Dimensions, Transportations, Data Types or Notes. 

After the selection, a new folder is created under the root. By right clicking on the 

new folder, you can select the related model elements. In addition, in the same way 
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with object models and federation design model, you can define the model 

elements. 

For adding HLA notes, define notes under the Notes folder and give references to 

them; or directly add notes to the notes attribute of each modeling element. For 

adding design notes, use annotation facility of GME. 

Lastly, we can add a few points. References used in the model shall not be null, if 

you want to denote “NA”, then simply use no reference element. If you want to 

check the validity of your model, you can use Check facility of GME, by selecting 

“File-> Check” option. 

A.6 Creating Federation Structure Model 

Right click on the root folder in the Browser window (the one usually positioned at  

the right side), and select the option “Federation Structure” within the “Insert 

Folder” option. Then create a new model named “New Federation Structure” is 

created under the federation structure folder; you may change the name from 

Attributes browser. Double click on the model to open it. An empty window appears 

in the user-area. 

The Part Browser, a small window in the lower left portion of the program, displays 

the model elements that can be inserted into the model in its current aspect. The 

elements in this browser are Federation, FederateApplication, 

FOMReference and SOMReference. You can use them by dragging from the Part 

Browser onto the main window. You can connect federation to federate 

applications to denote the members of the federation; federation to 

FOMReference; and FederateApplication to SOMReference. When using 

references, you drag the referred element over the reference and drop it when the 

mouse icon changes. But before referring elements you should first define FOM 

and SOM object models. Copy and paste operations on elements are supported by 

GME and all elements can be created, moved, or copied by drag and drop as 

usual. 

In the federation structure model of STMS, the connection is made for the 

federation and federate applications with the FOM and SOMs, respectively. The 

model is depicted in Figure 103. The federation is named “Traffic Monitoring 

Federation”. The multiplicity information is also supplied while connecting the 

applications to the federation. The ship application may join the federation multiple 
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times while the station application is limited to one in this specific scenario. The 

lower pane of the screen shot shows this multiplicity.  

 

 

Figure 103. The Strait Traffic Monitoring Federation Structure Model  

 

A.7 Creating Behavioral Models 

You can create a behavioral models folder under the root folder. This folder 

groups all the behavioral models of the federates in the federation.  

The folder for behavioral models defines the whole system of MSC documents and 

includes MSC documents for each participating federate. The behavior model 

folder includes a detailed structure; a screen shot for MSC/LSC building 

environment is presented in Figure 104. A document consists of head, utility, and 

defining parts where defining and utility parts include the (MSC) charts. A chart 

includes an MSC body, an HMSC, or an LSC. Charts also have precedence order 

indexes to specify the interpretation order. The document head includes the 

declaration lists. 
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Behavioral Folder is the 

main folder for a BMM 

project. It includes one or 

more (MSC) documents.

Document consists of head, 

defining, and utility parts. 

Defining and utility parts 

include the charts. Head 

includes the declaration lists.

Chart includes the MSC 

body, LSC, or HMSC.

 

Figure 104. MSC/LSC  Model Building Environment  

 

To illustrate the usage of MMM, referring back to the STMS federation, there are 

four actors that contribute to the overall behavior of the federation. These are the 

ship and station applications, the user, and the federation execution (with the RTI 

“behind the scene”). The ship application can join the federation execution multiple 

times as distinct federates. Hence, it will be the focal point for the code generation 

process. The behavior model of the ship application will be presented first in LSC 

graphical form (Figure 105), and then in FAMM form (Figure 106). 
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Figure 105. Behavior Model for the Ship Federate in LSC’ Graphical Notation  

 

The behavior model for the Ship Federate (ShipFd), which is an instance of ship 

application, includes the federation execution and user interactions as well as the 

application logic. There are three instances (represented as rectangles): User, 

ShipFd, and Bosporus Federation (i.e., an instance of strait monitoring federation). 

The code generator only generates code for the federate instance (i.e., ShipFd). 

The vertical lines represent the lifelines for the instances. A typical LSC includes 

mainly two charts: a pre-chart (the diamond-shaped area on top) and a main chart 

(the rest of the chart). The pre-chart behaves like a conditional. If it is satisfied, the 
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main chart is executed. In the pre-chart of the diagram, the ship federate first 

creates the Bosporus federation and then keeps interacting with it as it initializes its 

time management policy, declares its data interests, and creates data distribution 

regions. The behavior for these interactions is defined in separate LSC diagrams 

(not shown), namely, InitializeTimeManagement, DeclareCapability, 

and CreateRegions, and is referred to by references (the oval shapes) within the 

pre-chart. If the ship federate successfully completes the pre-chart, then the 

diagram proceeds with a parallel execution structure covering the rest of 

interactions with the user and the federation execution. This structure includes two 

operands that run in parallel: the main thread and the callbacks thread. A condition 

(ExitCondition) synchronizes the exit for these threads. In the callbacks part, 

the callbacks can occur in any order, and therefore they are connected to a 

coregion (designated by the vertical dotted line).  

Figure 106 depicts the corresponding model of the pre-chart part of the diagram in 

abstract syntax. The right pane shows the structure of the project while the left 

pane depicts the behavior model of the ShipFd corresponding to the pre-chart. The 

abstract syntax is in a one-to-one correspondence with the LSC. Therefore, the 

traceability is straightforward. As seen, the message-out events are connected to 

the HLA methods (specified in the methods library). The reference modeling 

elements are used to point to other LSCs. 

 

Figure 106. Pre-chart Part of Ship Federate’s Behavior Model in Abstract Syntax  
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The HLA methods can only be connected to the MSC message events (out and in) 

and method call events (call out, receive, reply in, and reply out).  

A.7.1 Creating Federates and Federation Executions 

Federates and federation executions are the main instances that interacts in a 

behavioral model. Federate corresponds to the joined federates. It is created by 

instantiating the FederateApplication element. Federation execution 

corresponds to the federation executions created by RTI. A federation execution is 

the primary instance the federate interacts with (e.g., joining the federation, 

receiving an interaction etc.). It is created by instantiating the Federation 

element. For example, Figure 107 presents how to create federates and federation 

executions. ShipFd and Bosporus Station, which represent two different types of 

joined federates, are instantiated from the federate applications: ship and station 

applications, respectively; while Bosporus Federation, a federation execution, is 

instantiated from the Traffic Monitoring Federation 

FederateApplication and Federation modeling elements in Federation 

Structure Model provide a template (type model) for the federate and federation 

execution, respectively. To create a federate and federation execution;  

 First, design the Federation Structure Model as described in the previous 

sections, 

 Create an Instance Declaration List under the Document Head of the MSC 

Document, 

 Instantiate the federate and federation execution elements by dragging the 

type models (i.e., FederateApplication and Federation) while pressing the 

[Alt] key, and dropping them into the Instance Declaration List,  

 Rename their names as appropriate, for example, in STMS federation, 

federate, named ShipFd is created. 

 Now, they are ready to be used in the behavior charts. In the behavior 

charts (e.g., LSC), use only the instance reference elements that refer to 

the instantiated models. They are also used in HLA method calls such as 

JoinFederationExecution and CreateFederationExecution 

method calls.  
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It is also possible to instantiate federation multiple times and thus to create multiple 

federation executions. 

 

Federate: This element is a reference to 

the ShipFd which is instantiated from the 

Federate Application, ShipApplication.

FederateExecution: This element is a 

reference to the BosporusFederation 

which is instantiated from the Traffic 

Monitoring Federation.

ShipFd is instantiated from Ship Application 

where BosporusFederation is instantiated 

from TrafficMonitoringFederation

 

Figure 107. Creating Federates and Federation Executions  

 

A.7.2 Reserving Object Instance Names 

After joining the federation, a federate may reserve object instance names with 

RTI. Although this step is not a compulsory step for a federate, sometimes, it is 

important to reserve unique names through federation executions. For example, in 

our running example, it is important to have unique ship names in the federation. 

Therefore, after joining the federation, first we seek a unique ship name and then 

try to reserve it (using a repeat-until block). 

This part of the federate’s behavior also presents an example for how to connect a 

repeat-until block condition (i.e., until condition) with a Boolean indicator of an HLA 

method. 

The LSC portion, extracted from Figure 105, for reserving the object instance 

names is depicted in Figure 108. If ObjectInstanceNameReserved callback 

returns a true indicator, then the repeat-until loop will be exited reserving the name 

successfully. Else, the loop will start over (i.e., the user will input a new name and 

the federate will try to reserve it again). 
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ReserveObjectInstanceName(ShipName)

ObjectInstanceNameReserved()

Repeat-Until (Name Selection)

NameAccepted

Input ship’s name

 

Figure 108. LSC for Reserving The Object Instance Names 

 

To preserve this semantic, the condition NameAccepted for the repeat-until loop 

must be connected to the indicator provided by the 

ObjectInstanceNameReserved callback. To do this, the modeler must define 

an indicator variable in the federate’s variable list. For example, in Figure 109, an 

indicator (Indicator_True) is defined to represent the true valued indicators. As 

seen in Figure 109, both the callback method argument and the repeat-until 

construction condition refers to the same indicator. Thus, if callback returns true, 

then the loop is exited successfully. 

 

NameAccepted 

condition of Repeat-

Until loop is a 

reference to the 

Indicator defined in 

the ShipFd variable 

list.

The argument 

“success indicator” of 

the object instance 

name reserved also 

refers to the indicator 

defined in ShipFd 

variable list.

 

Figure 109. Model for Reserving the Object Instance Names  

 

A.7.1 Creating Elements for the Variable List  

FAMM allows declaring the elements: message retraction designator, region, 

timestamp, lookahead, and object instance in the variable list of the federate 

Instance. Message retraction designator and region are directly created inhere 
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while others are instantiated from the templates (e.g., object instances are 

instantiated from the object classes). 

A.7.1.1 Creating Object Instances 

Object instances are created by instantiating the ObjectClass elements declared in 

FOM. They are placed in the variable list of a federate application. The method 

calls that use or refer to the object instances have a reference to point to the 

instance declared in the variable list. 

A.7.1.2 Creating Timestamp and Lookahead 

All federations shall document their use of time stamp and lookahead via the time 

representation table in OMT [3]. When using FAMM; timestamp, lookahead, and 

their data types are created in FOM folder. These provide a static template. The 

instance of these static templates can be created in the Variable List folder of 

the federate application (i.e., MSC Instance). After creating instance of timestamp 

or lookahead, one can assign a value to it. 

The instances declared in variable lists can be used in the method calls that 

include “timestamp/lookahead” references as arguments, such as 

EvokeCallback. 

A.7.1.3 Creating Regions and Dimensions 

First, the dimensions, which constitute a region, must be defined in the federation 

object model. To do this, under the Federation Model Folder, create a 

Dimensions folder. Herein, we can create the dimensions. Each dimension has a 

type and a normalization function as described in [3]. Type is a reference to a pre-

defined type in Data Types folder. In the normalization function element, one can 

specify the upper and lower limits. 

Second, in the Variable List of the federate under concern, the Region 

element can be created. Each region element has a reference to the dimension 

elements. Now, regions are ready to be used in the behavioral charts. 

Regions are handled via the HLA DDM methods such as CreateRegion and 

CommitRegionModifications calls. All these methods have a reference to the 

regions defined in the variable lists. CreateRegion method call creates the 

regions while SetRangeBounds method call sets the boundaries for the regions.  
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An example, a one dimensional communication space for radios, is created to 

illustrate a distribution region. In our example, radio communication is carried out 

using the radio channels: channel-1 for ship-to-ship communication and channel-2 

for ship-to-shore communication. Channels are regions over the channel dimension 

(there are two channels from zero to 3). Channels are defined by the dimension 

numbers as shown in Figure 110. 

  

Lower

Bound

Upper

Bound

Channel Dimension

0 1 2

Channel-2Channel-1

 

Figure 110. DDM Example 

 

Figure 111 presents the model. 

 

Methods use the regions 

defined in the variable 

list of the federate

Regions are defined 

here.

Two regions, channel-1 

and channel-2 are 

defined.

Dimensions are defined 

here

A ChannelDimension is 

defined for the radio 

transmissions

 

Figure 111. Creating Regions and Dimensions  
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A.7.2 Modeling Callbacks 

A.7.2.1 Discovering Objects 

Discovering objects are done via the DiscoverObjectInstance method. A 

federate may discover many objects; it is the user responsibility to specify what the 

federate will do after object discovery. There are two modeling approaches for 

object discovery: 

A loosely modeling approach is not to model the behavior after the federate 

discovers an object. If modeling each object discovery has no impact over the 

design, then it is sufficient to put only one DiscoverObjectInstance call to the 

model and to leave the arguments empty. After code generation, the modeler can 

weave the object discovery codes. 

If the modeler wants to model each object-discovery and what-to-do-afterwards, 

then the modeler can use PAR operator for each object discovery. In Figure 112, 

object discovery for two different object classes: Ship and Station are modeled. 

After discovering the objects, the federate requests object updates for each of 

them. DiscoverObjectInstance calls are marked as cold messages as well 

as their locations in order to indicate that the call “may” be received.  

 

Par

ShipFd
BosporusFederation:

Federation Execution

RequestAttributeValueUpdate(Ship)

RequestAttributeValueUpdate(Station)

DiscoverObjectInstance(Ship)

DiscoverObjectInstance(Station)
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Cold Message

Cold Message

 

Figure 112. Object Discovery 
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A.7.3 Setting the Temperatures 

The temperature of a location can be specified by setting the temperature attribute 

of the event connection. For example, as seen in Figure 113, to set the location 

temperature of the discover object instance message input, first click the 

connection between the input event and the instance reference, and then set the 

temperature attribute found in the attributes pane. In the same way, to specify a 

message/condition temperature, first select the message, and then set the 

attribute. 

 

To set the 

location 

temperature, 

first click the 

connection 

between the 

event and the 

instance, and 

then set the 

temperature 

attribute.

To set the 

temperature of a 

message. First, 

click the 

message, and 

then set the 

temperature 

attribute in the 

attributes pane

 

Figure 113. Setting the Temperature of a Location and a Message (GME 
Screenshot) 

 

A.8 Using the Libraries 

GME supports model libraries, which are ordinary GME projects. Each GME 

project can be used as a library if both the library and the target project are based 

on the same version metamodel (i.e., FAMM). The primary ways of using libraries 

is to create sub-types and instances from the library objects. It is also possible to 

refer library objects through references. Apart from being read-only, objects 

imported through the library are equivalent to objects created from scratch [11]. 

There are auxiliary libraries that can be readily attached to a project. Three libraries 

are currently provided: IEEE 1516.1 Services Library, IEEE 1516.1 Management 

Object Model Library, and IEEE1516.2 HLA Defaults Library.  
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Libraries are provided in “.mga” format. In order to attach a library into a project, 

right click to the root folder, and select Attach Library option. Choose the 

library file in the opened dialog box. 

Please, note that before attaching a library, first register the base paradigm of the 

library that will be attached to the project. The base paradigm for IEEE 1516.1 

Services Library, IEEE 1516.1 Management Object Model Library, and IEEE1516.2 

HLA Defaults Library is HLA Federation Metamodel (HFMM).  

When a library version is changed, it is sufficient to refresh the library in the project, 

do not re-attach or delete the library. To do this, select the library in the project, 

right click, and select Refresh Library option.  

A.8.1 IEEE 1516.1 Methods Library 

An IEEE 1516.1 HLA Methods library serves the template methods (a type model) 

of the HLA services specified in [2] for the actual use (an instance model). This 

library is required to model the federate behavior. In order to use this library, we 

simply attach it to the model concerned. 

A.8.1.1 Using Template Methods Defined in the Library 

There are three ways to use the template methods found in the library.  

First and the common way to use the library is the Instantiation Approach. In this 

approach, whenever the modeler wants to use a template method in the library,  

he/she instantiates the template method (in other words, he/she creates an 

instance model from the type model). In GME, instance models can be created by 

dragging the type model and dropping it while pressing alt key. The modeler 

cannot change the number and type of the arguments, but only the argument 

values. This approach is the common way to use the HLA methods in the library 

and must be preferred to the other approaches in general. An example for the 

usage of this library is already presented in Figure 106 for STMS federation. The 

method calls, such as CreateFederationExecution and 

JoinFederationExecution, are instantiated from the template models 

specified in the HLA Services Library attached to the project. 

Another way is to use a Method Reference to refer to a template method in the 

library. This approach can be preferred only if the argument values are not specific 

for each method call and where the template method is appropriate for each call. 
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The non-argument HLA methods are typical examples for such a use. For instance, 

QueryFederationRestoreStatus method has no supplied and returned 

arguments. So, when calling it, instead of instantiating it each time, the modeler 

may choose to use a reference pointed to it. 

The last way to use a template method is to sub-type it first, and then instantiating 

it. As presented in the first approach, the instantiation of a template method does 

not allow changing the number of arguments in a call. But, some HLA methods use 

the sets, collections and lists as supplied or returned arguments. These containers 

may include a number of elements. Since the template method provides only one 

element for these containers, the modeler may need to modify the number of the 

elements in the template method. Therefore, first a sub-type of the template 

method must be created in the declaration list of the MSC document head. Then, 

the modeler can modify the number and type of the arguments as needed. Lastly, 

the sub-type can be instantiated as described in instantiation approach. For 

example, PublishObjectClassAttributes method has a “set of attributes” 

supplied argument to specify the attributes to be published. The library provides a 

template method for it, but the set argument of the method has only one attribute 

reference. To add new attribute references, the modeler must sub-type it to add 

needed attribute references and then use (instantiate) it in the model.  

A.8.1.2 Using Arguments of the Template Methods 

The modeler must be familiar with the HLA methods and their arguments. 

Arguments are provided to the modeler inside the template methods.  

Most of the arguments are provided as null references for the object model such as 

federation reference, federate application reference, and object class reference. 

While modeling the federation architecture, the modeler must (re)direct the 

reference at any time by dropping a new target modeling element on top of them.  

For instance, CreateFederationExecution method has a federation 

reference, as a supplied argument. This argument is provided as a null reference in 

the template method. The modeler must manually direct which federation execution 

this null reference refers to. 

Some arguments are provided in form of the Boolean and string type values. These 

are the indicator and string type arguments. When a method has this type of 

argument, the library provides both the element itself and its reference in the 

arguments of the template method. Only one must be utilized in modeling where 
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the modeler may prefer to use the element itself in case specifying the value 

directly or its reference in case referring to other arguments defined in another 

method. A code interpreter must check the reference first, if it is null, then it must 

interpret the value assigned to the element itself. Example in Figure 94 provides a 

sample usage for StringTypeReference arguments. 

The order type element provides an enumerated list for the representation of the 

order type arguments such as the sent message order type. Message retraction 

designator, object instance, and region are new model elements used to represent 

the counterpart arguments. The modeler can use these arguments as described in 

chapter 5. 

Appendix B provides a quick reference document for mapping the HLA services 

and their arguments in the library. 

A.8.1.3 Exception Handling 

Each exception of an HLA method found in the library is empty by default. The 

code generator only generates the skeleton for the exception (i.e., catch block), 

and the user introduces the advice code by hand. 

If the modeler wants to specify a behavior for handling the exception instead of 

coding, then he can add an MSC reference to the exception in order to point a 

behavior chart.  

A.8.2 IEEE 1516.1 Management Object Model Library 

This library provides the required object models, specified in [2], to model HLA 

MOM. 

Whenever HMOMLib is attached to a FAM project, MOM automatically becomes a 

part of the FOM. There is no need an additional association among federation, 

MOM, and FOM. Which federates are using MOM is easily understood from the 

behavioral model. 

After attaching this library, predefined object and interaction classes are loaded, 

and then they can be used just as the federation object models do. 

If there is no need for a FOM, for example, in case of modeling the architecture of a 

federation monitor, it is just sufficient to attach the MOM library as the object 

model. Federation element can be attached to the MOM instead of FOM. 
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A.8.3 IEEE1516.2 HLA Defaults Library 

This library provides the predefined object model elements specified in [3].  

A.9 Creating a New Library 

Using FAMM, one can also create a new library for future use. As an example, a 

basic Console Input Output Model (CIOM) Library is created. This library is used to 

model the basic user input output via a simple console. There are two interactions; 

Input and Output, and two arguments; InputString and OutputString. The 

interactions are modeled as MSC messages. 

First and foremost, as described before, create a new FAMM project, and model 

the interactions as message declarations having seen in the following figure. After 

saving this project, you can attach it as a library in your other modeling projects. 

For example, it is used in STMS Federation for modeling the user interactions. 

 

 

Figure 114. Console Input Output Model Library (GME Screenshot) 
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A.10 How to Upgrade Models 

When the version of a base metamodel or a library is changed, GME allows the 

upgrade of the related models. The upgrade methods are threefold: 

A.10.1 First Method – Default Upgrade Mechanism 

The first method is to use the GME default upgrade mechanism. After installing the 

newer version of the base metamodel, click your project (model in mga format) to 

open it, a dialog box will ask you to upgrade the model or not. Choose Yes. GME 

will attempt to upgrade the model. If this operation does not succeed, follow the 

other methods. 

 

 

Figure 115. Upgrading the Models – Method I (GME Screenshot) 

 

A.10.2 Second Method – Using Update through XML 

If the first upgrade method does not succeed and if you do not have an export (in 

XME format – special XML format for GME) of your model, then you can use this 

method. Try the first method, when the upgrade dialog appears, say No this time. 

The model will be opened as usual without upgrading (using its old paradigm – 

therefore, do not delete the base paradigm). Then, select Update through XML 

method in File menu as depicted in Figure 116. This command allows updating 

the models by automatically exporting to XML and importing from it.  
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Figure 116. Upgrading the Models – Method II (GME Screenshot) 

 

Please note what the GME Manual [11] commends on upgrading: 

New paradigm versions are not always compatible with existing 

binary models. If a model is reopened, GME offers the option to 

upgrade it to the new paradigm. If the upgrade fails, XML export 

and re-import is needed (the previous generation of the paradigm 

is to be used for export). XML is usually the more robust technique 

for model migration; it only fails if the changes in the paradigm 

make the model invalid. In such a situation the paradigm should be 

temporarily reverted to support the existing model, edited to 

eliminate the inconsistencies, and then reopened with the final 

version of the paradigm.  

A.10.3 Third Method – Using Import/Export Mechanism 

Before registering the new base paradigm, export your model, then register the 

newer paradigm, and import your model into a new project based on the newer 

paradigm.  
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A.11 Practical Matters 

A.11.1 Setting Port Label Length 

In FAMM, some modeling elements are designed as GME ports. By default, only 

three letters of the port names are appeared inside the model. Port label length can 

be changed by selecting the preferences of the model that contains the ports and 

then setting the PortLabelLength to zero. 

 

 

Figure 117. Setting Port Label Lengths (GME Screenshot) 

 

A.11.2 Using the Icons 

In order to use the icons provided with the FAMM for model elements instead of the 

standard GME icons, first create “icons” folder in project folder (this is where the 
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GME project file resides), and then copy the icon library into this folder. When the 

project is reopened, the icons will be changed automatically by the GME. 

Please not that if the icons are not used in the project, then the name of the 

elements under the FOM folder will be blank. 

A.12 Creating Publish/Subscribe Models 

The P/S model visualizes the capabilities and interests of the ship application and 

PSMM models are generated from the behavioral part of the federation architecture 

by analyzing the HLA declaration management services.  

After completing the federation architecture, the modeler can use the P/S Model 

Generator, which is an interpreter supplied with FAMM, to generate automatically 

the P/S models for the federation.  

A.13 P/S Model Generator 

A.13.1 Registering the P/S Model Generator 

In order to use the P/S Model Generator (i.e., an interpreter), first the interpreter 

must be registered in GME. To register, open the federation architecture in GME, 

select File and Register Components. In Components panel, press Install 

New button, and select the interpreter “.dll” file.  

A.13.2 Using the P/S Model Generator 

After registration, an interpreter icon appears in the toolbar. Clicking this icon 

executes the P/S Model Generator. The first interface panel seen is the panel of 

the configuration utility (in Figure 118). Here, the modeler can choose the types of 

the P/S models (i.e., Federate-based or Class-based). Pressing Generate button 

generates the chosen type models. 

 



   

147 

 

Figure 118. P/S Model Generator Configuration Utility 

 

An example P/S model for ship application is presented in Figure 119. In the right 

pane, the generated P/S models according to their categories can be seen. The left 

pane depicts the inside of the selected P/S model (i.e., ShipFd_PSModel). Here, 

the publish and subscribe interests of the selected ship application federate are 

seen in a neatly formatted view. One can easily interpret from the figure that ship 

federate has the ability to generate radio messages and ships as it has interest in 

stations, other radio messages, and other ships. 

  

 

Figure 119. Ship Federate Application P/S Model (GME Screenshot) 
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A.13.3 Features 

Some prominent features of the P/S Model Generator are as follows: 

 It allows the modeler to choose the category of the P/S Model via its 

configuration utility written in .NET 2.0. 

 It checks the HFMM and LMM are included as GME libraries. Publish and 

subscribe method structures used in the federation architecture where each 

P/S method has a class reference and connected to a federate reference. If 

one of these references is null, then it generates a warning and depicts the 

path of the null reference to the modeler. 

 

 

Figure 120. P/S Model Generator Warning 

 

 As creating the model elements, the interpreter colors and positions the 

model elements to obtain a formatted view. 

 It formats the name of the references according to their referred elements 

(e.g., OCRef->Station). Thus, it provides views that are more readable. 

 It names the associations between elements (e.g., Publish Interaction) for a 

comfortable review. 

 It uses the GME generic BON2 API for model (i.e., a federation 

architecture) traversing and manipulation. 

 It is written in C++ using Microsoft Visual Studio 2005. 

 The size of the handcrafted code is approximately about 324 lines of code 

(loc). 
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A.14 Code Generation 

Based on the proposed metamodel, ongoing experimental work with the federate 

base code generator tests the utility of RTI-related code generation in the early 

prototyping of federation designs. Moreover, code generation facilitates the 

dynamic verification of the architecture. For instance, a retraction designator may 

become invalid during federation execution due to some design error. Then a 

retract method call will raise an exception. For the sake of not shifting the focus of 

the present paper, only the strategy for code generation is outlined. For further 

details, please refer to [31, 53]. 

In principal, the code generation strategy is based on the Aspect Oriented 

Programming approach [21], which allows us to generate code to exercise LSCs in 

a computation-free manner. Then the user can weave, using AspectJ [52], 

application-specific computational (and other non-communication) aspects onto the 

generated base code. In fact, the HLA-specific portions of the code are 

automatically weaved onto the base code generated from the LSC, but the 

federate programmer does not need to be aware of this process.  

The LSC instance is a critical element in code generation. Interactive users, 

federation execution, the environment, federates, and, if desired, the components 

of a federate are all instantiated from the LSC instance element. In case of multiple 

federations on the same RTI, we have one instance per federation execution. The 

code generator generates code only for the federate application. Note that code 

generation for the environment, live entities, interactive users, and federate 

application components (e.g. federate graphical user interface) would require 

special data models to be integrated with BMM. All LSC instances are generated in 

separated class files and they are declared and used in the diagram code 

generated from the LSC diagram.  

An example of the generated code for the strait monitoring federation is presented 

in Figure 121. For the sake of brevity, only the first operand of the parallel structure 

(in Figure 105) is presented.  
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public static void ShipFdMainMethod (){ 

(…) // Pre-chart code for federation management, initialization time management, declaration management, 

and region creation 

class MainThread_02ee extends Thread { //Thread for the first operand of the parallel structure. 

 MainThread_02ee() {} 

 public void run() { 

 do { // Loop is repeated until the ReserveObjectInstanceName (ROIN) is succeeded. 

   condRecvMessageInput_03e0User(); // Input of ship’s name from the user 

  // Reserve object instance name 

   SendReserveObjectInstanceNameROINBosporusFederation("s0"); // “s0” is to be overridden by aspect 

  // Object instance name Rreserved 

   condRecvObjectInstanceNameReservedOINRBosporusFederation(); // Get the ROIN result 

  (…) //If  ROIN succeeded, while condition is satisfied 

  } while (!((Boolean)Ship_MSC.coldChoices.get("until_0300")).booleanValue());  

 (…)// Other inputs, direction and speed, from the user 

  SendRegisterObjectInstanceRegisteredShipObjectBosporusFederation(...);// Register Object Instance 

  SendUpdateAttributeValuesRegisteredShipObjectBosporusFederation(…);// Update Attributes 

  SendRequestAttributeValueUpdateDiscoveredShipObjectBosporusFederation(…); // Request Attribute 

Update 

  doLaterMessageTimer_03c6(100); //Start timer 

          // While-Do (Main simulation loop)  

          while (((Boolean)Ship_MSC.coldChoices.get("ExitCondition_040f")).booleanValue()) { 

    (…) // The code generated for SendRadioMessage chart is inserted here. 

    condLSC_02ec=condLSC_02ec&& // Condition of the pre-chart is established 

    condRecvProvideAttributeValueUpdateRegisteredShipObjectBosporusFederation();//Received cold 

message 

    (…) // Detailed code for receiving a cold message 

    if (condLSC_02ec) {// If pre-part is satisfied, body part of the pre-chart is executed. 

     SendUpdateAttributeValuesRegisteredShipObjectBosporusFederation(…);// Update attribute values 

    }// End of pre-chart condition 

   // Time management   

   SendTimeAdvanceRequestTARBosporusFederation(new Double(55.0)); // Request time advance 

   condRecvTimeAdvanceGrantTAGBosporusFederation(); // Time advance granted 

  }// End of loop. 

  // Exit federation reference 

   SendDeleteObjectInstanceRegisteredShipObjectBosporusFederation(…); // Delete local objects 

   SendResignFederationExecutionRFEBosporusFederation(0); // Resign federation 

   SendDestroyFederationExecutionDFEBosporusFederation("s0"); // Destroy federation 

}// End of main thread 

Figure 121. Excerpts from the Generated Java Code of Ship Application [53]  
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APPENDIX B 

 

 

B. CASE STUDY: NAVAL SURFACE TACTICAL 
MANEUVERING SIMULATION SYSTEM 

 

 

 

This case study presents the work of modeling the architecture of a real life case 

study, Naval Surface Tactical Maneuvering Simulation System conforming to 

FAMM. 

The introduction section introduces a case study while presenting its components. 

The following section, federation architecture model, presents the federation 

architecture and the behaviors of the federates. The last section presents the P/S 

models generated automatically from the NSTMSS FAM. 

This appendix is mostly summarized from [25, 48, 49, 50]. 

B.1 Introduction 

Conceptually, Naval Surface Tactical Maneuvering Simulation System (NSTMSS, 

pronounced “NiSTMiSS”) is a distributed virtual environment, where a group of 

players controls the virtual frigates (either Meko or Knox class) in real time and 

some players behave as tactical players that command the groups of the frigates. 

All shares a common virtual environment, which its environment characteristics 

(e.g., time of day) and parameters (e.g., the wind direction) are forced by an 

environment application, obeying a common scenario that is distributed (e.g., role 

casting), controlled (e.g., injection messages), and monitored by an exercise 

planner. 

Technically, NSTMSS is a High Level Architecture (HLA) based distributed 

simulation system that is composed of 3-Dimensional ship-handling simulators, a 

tactical level simulation of operational area, a virtual environment manager, and 

simulation management processes. It has been developed by using the concepts 

of HLA, which provides a structural basis for interoperability and reusability. 
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NSTMSS provides a Networked Virtual Environment testbed for naval surface 

actions in which new formations can be evaluated and tested as well as the 

present ones can be practiced and analyzed. A potential application is training, 

where naval college cadets can practice formations [25]. 

B.1.1 System Components 

Software components can be classified into three groups according their 

functionality: 

 Simulation Entity Components  

 Federation Management Components 

 Environment Generation Components  

During federation execution a process is created (by the host operating system) 

corresponding to each of the components mentioned.  

Simulation Entity Group consists of the counterparts of real life entities in the virtual 

environment. There are three different kinds of federates in Simulation Entity 

Group:  

 Meko Federate (MekoFd): The ships are brought into federation by the 

Meko and Knox Class Frigate Federates (KnoxFd), which are platform 

level simulations allowing a person to steer the ship in (nearly) real-time. 

The frigate federates implement a three-dimensional ship handling 

interactive simulator of a frigate with a single user interface. 

 Helicopter federate (HeliFd): HeliFd is an interactive simulation that 

simulates a helicopter operated in the ships [32]. Helicopter federate is a 

six degree-of-freedom flight federate, which is controlled by a user.  

 Tactical Picture Federate (TacPicFd): Tactical Picture Federate 

(TacPicFd) is a tactical level interactive simulation that maintains the 

tactical picture of the operational area, including task group formations 

and maneuvers. TacPicFd provides interfaces to the user (i.e., Officer in 

Tactical Command (OTC)) to control and order the formations of the 

surface task group to achieve a given operational objective.  

Federation Management Group provide facilities for controlling and monitoring the 

federation activity as well as distributing roles and scenarios to players. They are:  
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 Exercise Planner Federate (ExPFd): Exercise Planner Federate, also 

called Scenario Manager, in short, selects the training scenario and 

distributes it to the participants (i.e., TacPicFd and ship federates), injects 

events defined in the scenario into the federation execution; collects data 

and generates a report about the federation execution. ExPFd simulates 

the Officer Scheduling the Exercise (OSE) functionality and operates as 

the orchestra conductor. 

 Federation Monitor Federate (FedMonFd): Federation Monitor Federate 

enables generic data collection and reporting on HLA federates about their 

usage of underlying Run-time Infrastructure (RTI) services by using HLA 

Management Object Model interface. FedMonFd is a stealth federate that 

also controls the federation reporting behaviors. FedMonFd provides a 

basis for implementation of an observer federate and provides user 

interfaces to monitor the status of the federation and the federates. 

FedMonFd collects the federate specific RTI data and presents them in 

tables. FedMonFd also provides detailed reports for review of the 

monitoring activity. 

Environment Generation Group consists of one federate: 

 Environment Generation Federate (EnviFd): Environment Federate is 

designed to control the atmospheric and sea state of the virtual 

environment. Environment Federate enables for the user to control the 

virtual environment atmospheric effects (e.g., fog, time of day, sea state), 

and publishes the weather reports to the entities in the virtual environment 

at scheduled intervals specified in scenario file. 

 Figure 122 graphically depicts the software components of NSTMSS. 

Multiplicity information in the figure indicates that while many Meko, Knox, 

Helicopter, and OTC federates can participate in the environment, at most 

one ExPFd, FedMonFd, and EnviFd can participate. 
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Figure 122. Federation Structure [25]  

B.1.2 Scope of the Case Study 

Due to large numbers of federates in NSTMSS federation; this case study does not 

attempt to cover all the NSTMSS federates, but it selects the interesting federates 

which differentiate in terms of behavior and architecture. Eventually, all the 

federates in the federation management group and only the Meko Federate in the 

simulation entity group are covered. The federates in the federation management 

group are good candidates for a re-modeling study because they represent 

common federates in a typical HLA federation. FedMonFd is a generic federate 

that represents the stealth monitoring federates and is independent from any 

specific federation. ExPFd is a simulation planner federate that is typical in most of 

the distributed interactive simulations. On the other hand, MekoFd represents 

platform federates and has the same pattern (in terms of behavior and architecture) 

with the other federates in the simulation entity group. 

B.2 Federation Architecture Model 

In an HLA based distributed simulation, federation design, which aims at having 

federates cooperate to achieve the federation objectives, involves two major 
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activities. The first one is forming the federation model (i.e., the structure and the 

object model of the federation), presumably by reviewing the simulation object 

models. This part covers designing information interests of federates as well as 

object flows such as data distribution and ownership management of objects. The 

second activity is specifying the behavior of the participating federates so that they 

can fulfill their responsibilities in the federation scenario [48].  

Federation structure establishes the links among the federates, the federation, 

FOM, SOM, and MOM. Definitions of FOM, SOM, MOM, federation-wide data 

types, and HLA specific objects are included in Federation Model. Eventually, 

Behavioral Models folder contains the behavioral descriptions of federates. 

Libraries based on FAMM can be attached to the project as well. For example, 

Figure 132 shows three such libraries, namely the CIOMLib, IMLib, HDefLib, and 

HMOMLib. 

B.2.1 Federation Model 

NSTMSS federation model includes the federation structure model and federation 

object model. 

B.2.1.1 Federation Structure 

The federation structure model represents the federation overall structure in terms 

of federate applications. It shows the software components of NSTMSS. It also 

presents a multiplicity information how many federates of a certain type can join in 

the federation.  

Relationships between the federation, federate, SOM, and FOM are described 

using the FAMM notation.  

The model in Figure 123 corresponds to the architectural view in Figure 122. 
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Figure 123. NSTMSS Federation Structure 

 

B.2.1.2 Federation Model 

NSTMSS Federation Object Model (FOM) includes the all the information needed 

in HLA Object Model Template Specification [3]. In this study, no separate SOM 

model for the federates is provided as the same set of object classes and 

interactions in FOM are assumed by all federates in the NSTMSS federation.  

The modeler only models the application specific HLA classes. For a monitoring 

federate such as FedMonFd, which additionally uses the MOM as the object 

model, the MOM classes are provided by adding the HMOMLib to the project. 

Thus, no extra effort is needed. 

NSTMSS federation object class hierarchy is depicted in Figure 124, and 

interaction class hierarchy is depicted in Figure 125.  

OTC class represents the tactical officers in the virtual environment. Knox and 

Meko classes are inherited from the Frigate class. They represent the Knox-

class and Meko-class frigates respectively. Environment class represents the 

characteristics of the virtual environment. It includes time of day, sea state, wind 

state, and fog state data. Scenario class includes the federation scenario 

information such as scenario start time and scenario location. Helicopter class 

represents a generic chopper in the virtual environment. HLAObjectRoot is the 

root class by default for all the HLA classes. 
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Figure 124. Object Class Hierarchy of NSTMSS  

 

BeginToPlay interaction is used to signal the federations to indicate the start of 

the federation scenario. Communication class is used to represent the tactical 

messages (e.g., task order and formation message) in the virtual environment. 

  

 

Figure 125. Interaction Class Hierarchy of NSTMSS 

 

Each class is a model where it means that there is a structure in it ( i.e., object class 

models have attributes and interaction class models have parameters). The 

parameters of a WeatherReport interaction are seen in the following figure. It is  

used to report and change the environment data in the virtual environment. 
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Figure 126. Parameters of a WeatherReport Interaction Class 

 

In addition to the object models, the NSTMSS data types and dimensions are also 

defined in the federation model. A frequency spectrum dimension is defined in 

NSTMSS. The UHF and HF regions based on this dimension are created for radio 

communications in the virtual environment. 

As enumerated data types, FogTypeEnum, SeaStateEnum, and ShipType are 

defined as well as simple data types such as float and int. 

Again, HMOMLib provides its own pre-defined data types and dimensions. 

B.2.2 Behavioral Models 

The behavioral model of NSTMSS federates are obtained mostly by reviewing the 

C++ source code and sometimes by observing the run-time action. The behavioral 

models are first formulated in the LSC graphical representation and then manually 

transferred to FAMM. 

The LSC specification is a simplification of the actual federate’ behavior. Because, 

the main focus was on the interaction between the federate and the RTI. The 

federate’s computation logic is intended to be weaved into the base code using the 

Aspect Oriented Programming (AOP) [51] techniques after the federate base code 

generation step [48]. 

Here, only the behavior model of MekoFd is presented and discussed. For the 

presentation and discussion of behavior models of ExPFd and FedMonFd, see [49] 

and [50] respectively. 

B.2.2.1 Behavior Model for MekoFd 

MekoFd is a typical platform-level and interactive simulation, where the player 

drives a platform.  
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Program flow of MekoFd is divided into three phases: initialization, main simulation 

loop, and system termination. In initialization phase, MekoFd tries to create the 

federation, joins it, and then declares its interests (i.e., publish and subscribes its 

object and interactions). In main simulation loop, MekoFd creates its object (i.e., 

the type of Meko object class), sends interaction (i.e., ship status reports), and 

discovers objects (i.e., other frigates in the environment, scenario, or environment). 

In final phase, MekoFd resigns federation, deletes its created objects, and tries to 

destroy the federation. 

Although the program flow dictates three phases, the behavior model of the 

MekoFd is dispersed into two main charts, the pre-chart and the main chart, as 

seen in Figure 127. The pre-chart mainly involves the initialization phase activities. 

Pre-chart behaves as a prerequisite. Unless it is satisfied, the main chart is never 

activated. In other words, unless MekoFd successfully completes its initialization 

phase, it will never execute its main simulation loop. The main chart includes two 

parts; the main and the callback threads. The main thread covers the main 

simulation loop as the loopback covers the federate ambassador methods (i.e., the 

HLA callback methods initiated by the RTI).  
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As a modeling principle, the details of interactions (events) between the MekoFd 

and the RTI are encapsulated in sub-charts (e.g., CreateRegions and 

ExitFederation), which are referenced from the main chart. Each sub-chart is a 

functional part of the behavior. Dividing the main LSC into sub-charts increases the 

readability, understandability, and modularity of the architecture. 

The main chart in FAMM notation is depicted in Figure 128. The parts of the main 

chart are modeled using operands in a parallel structure. Thus, the main thread 

and the callback thread runs in parallel. 
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CreateFederationExecution(“NSTMSS”,”nstmss.xml”)
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Figure 127. MekoFd Main LSC 
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An interesting part of the behavior is sending the ship status report. After the 

scenario has begun, the ship periodically broadcasts a status message to the 

environment (i.e., send an interaction). The transmitting period is defined in the 

attribute (i.e., ReportInterval) of the scenario object. To model the report 

interval, a timer is set when scenario-begin interaction (i.e., BeginToPlay) has 

received. Whenever the timer ticks, a ship-status-report interaction is sent. 

Figure 129 presents the send-ship-status sub-chart. Figure 130 presents the 

corresponding model in FAMM notation. 

 

 

 

Figure 128. MekoFd Main LSC in FAMM 

MekoFd
NSTMSS:

Federation Execution

SendInteractionWithRegions(ShipStatusReport, HFRegion)

FederateClock timeout

FederateClock start

 

Figure 129. Send Ship Status Report Sub-chart  
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Figure 131 presents the receive interactions sub-chart. As seen in the last operand 

of the figure, when the federate receives a BeginToPlay interaction, it sets its 

federate clock (i.e., starts a timer). The sub-chart also depicts the events between 

the federate and the user. Whenever an interaction is received, the federate 

reports the event to the user using a basic console interface. 

 

 

Figure 130. Send Ship Status Report Sub-chart in FAMM 
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The passage of time between sending and receiving of messages is ignored. 

Therefore, instantaneous messages are used to represent the calls.  

All the sub-charts are placed into the utility part of the MSC document as seen in 

Figure 132. Ship_MSC is the main LSC and is placed in the defining part.  

 

Par

MekoFd
NSTMSS:

Federation Execution

Decode Message

ReceiveInteraction(FormationMessage)

C
o
ld

 L
o
ca

tio
n

Cold Message

User

Output(“Formation message 

is received”)

Decode Message

ReceiveInteraction(TaskOrder)

Output(“Task order is 

received”)

Decode Message

ReceiveInteraction(InjectionMessage)

Output(“Injection message is 

received”)

Decode Message

ReceiveInteraction(WeatherReport)

Output(“Weather report is 

received”)

ReceiveInteraction(BeginToPlay)

Output(“Begin-to-play is 

received”)

Start FederateClock

 

Figure 131. Receive Interactions Sub-chart  
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Figure 132. NSTMSS Federation Architecture in GME  

 

B.3 Publish/Subscribe Models 

The P/S models are generated by extracting the P/S interests of federates using 

the P/S Model Generator. The generated models help the modeler to analyze the 

P/S interests. 

In Figure 133, the MekoFd-based P/S model is depicted. A careful analysis of the 

model has revealed that MekoFd never subscribes to the OTC object class where 

in fact it should. This was noted as a bug in the current MekoFd implementation.  
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Figure 133. MekoFd-Based P/S Model  

 

Moreover, using the class-based P/S models, in a quick view, the modeler can see, 

for example, which federates publish or subscribes to the ship status report. The 

P/S model for ship status report is depicted in Figure 134. Here, we can see that 

only MekoFd has the capability to send a ship status report while the ExPFd has an 

interest on it. 
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Figure 134. Ship Status Report P/S Model  

 

B.4 Discussions 

FAMM serves well as a representation language for the HLA federation 

architectures. Its success comes from its representation power for the federation 

model (object model and structure) and the behavior of the federates, providing a 

complete cover for the federation. 

To provide an objective assessment of FAMM [54] by the modelers of NSTMSS 

federates; ExPFd and FedMonFd, is presented first, then the author provides a 

discussion. 

Using FAMM, modeling federate behavior plays an important role 

in terms of employing model driven approach to federation and 

federate development. FAMM provides a facility to achieve that. 

However, there are some challenges that we have encountered 

during this work. It should be noted that these are not result of a 

thorough evaluation of FAMM, but rather feedbacks derived from 

our experiences in using FAMM.  

Using IMLib provided with FAMM, instead of building a more 

specialized one relieved the modeling effort; however, there are 

some differences between the library and the standard interface 

specification such as the differences in the number of arguments to 

HLA methods. This caused frequent lookups to the IEEE 
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documentations and additional adaptation effort to map an HLA 

service to the method provided by the IMLib.  

Specifying behavior in terms of LSCs was not a very hard task, 

since only the federates’ interactions with the outside (RTI and 

interactive users) were concerned. However, we spent 

considerable time in transferring LSCs into FAMM in GME 

environment. Since GME environment only provides boxes and 

connectors, transferring an LSC into FAMM involves inserting 

instances, LSC keywords, HLA functions and then providing 

connections and enumerating them in time order. Even though 

modeling tasks can be comfortably handled for simple behaviors, it 

can quickly get complex and unmanageable for complicated 

behaviors. Lack of some navigational aids in GME (e.g. it only 

provides a rudimentary view of structural elements and does not 

show the depths of the charts) caused loss of time.  

A full person-month of effort was spent on the modeling of each of 

MekoFd, ExPFd, and FedMonFd in FAMM, including the overall 

NSTMSS federation structure. 

By its very nature model is strictly tied to the underlying 

metamodel. For this reason, apparently slight changes in FAMM 

may completely invalidate the existing modeling efforts. We believe 

that coping with (meta) model evolution is a serious issue for any 

nontrivial model driven development effort. 

It would be worthwhile developing a front-end interface for utilizing 

FAMM’s expressive power in a more user friendly way.  With the 

help of such a tool user can synthesize live sequence charts in 

their usual graphical notation instead of inserting boxes and 

connecting them. Such a front end would then automatically 

generate FAMM conforming behavioral models. 

Actually, there are three important issues emphasized in above text. The first issue 

concerns with the usability of FAMM. As discussed in Chapter 7, FAMM is not 

created targeting handy modeling, instead; it is created with the automatic 

generation idea in mind. As specified in future work, a user-friendly front-end tool 
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will ease the modeler work and decrease the modeling time and effort. This tool will 

also overcome the GME usage problems. 

On the other hand, it is useful to emphasize that once the architecture is specified 

conforming to FAMM, the modeler harvests the goods; code generation, FDD 

generation, and P/S model generation. Each adds a remarkable value. Code 

generation plays an important role to dynamically verify the federation architecture. 

It shows the errors made by the modeler (e.g., modeler forgets to publish an 

interaction while federate tries to send it) as well as the program logic errors (e.g., 

federate never discovers OTC objects because of no subscription to it). 

Automatically generated P/S models provide the modeler a useful view of the 

architecture. For example, after re-engineering the MekoFd code, the P/S models 

generated by the P/S Model Generator showed us that MekoFd never subscribes 

to the OTC object.  

The second issue is not about FAMM directly, but about the HLA Methods Library. 

The modelers point out that: 

 In some methods, the “number” of parameters in IMLib and in IEEE 

Interface specification is different. For example, 

DiscoverObjectInstance service specification requires three 

parameters, which are Object Instance Handle, Object Class 

Designator, and Object Instance Name. FAMM HLA Methods library 

on the other hand requires only Object Class Reference in supplied 

parameters. 

 In some methods, the “type” of parameters is different. For example, 

GetObjectClassName returns the name of the object. However, the 

counterpart in IMLib returns an object class reference. 

Actually, the library provides the services based on a using-minimum-element 

approach where this approach can be defined as “if an FAMM element is capable 

of expressing more than one argument, then it is sufficient to use only that 

element”. If we return to the DiscoverObjectInstance method given as an 

example above, all its arguments; Object Instance Handle, Object Class 

Designator, and Object Instance Name, can be expressed by giving only 

one Object Class Reference, which refers to an object instantiated from the 

object class. The interpreters can obtain all the three arguments by traversing this  

reference. If the library had provided three references for each of them, the 
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modeler must have pointed all to the same object causing a more error-prone 

modeling. 

Names of objects or interactions are generally obtained from the model element 

itself. Therefore, instead of providing a string value for names, a reference to the 

model element is provided.  

The mappings that show which arguments in HLA interface specification 

correspond to which elements in IMLib are provided in Appendix C. Of course, the 

modeler spends a time to be familiar with the mappings. This can be seen as 

decreasing the usability. Nevertheless, note that IMLib is provided with FAMM as a 

convenience to the modeler. The modeler can always create his/her own library.  

The last issue is about the changes in the metamodel, which can be frequently 

seen in non-mature metamodels. In fact, this is a serious issue as the models 

conforming to FAMM are increasing. Each change or update in FAMM may 

invalidate the current models. Accordingly, as FAMM evolves, this issue mandates 

that each update or change in FAMM must be backward compatible.  
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APPENDIX C 

 

 

C. TRANSITION BETWEEN HLA METHODS 
LIBRARY AND IEEE 1516.1 FEDERATE INTERFACE 

SPECIFICATION 

 

 

 

This appendix provides the mapping between the elements of the HLA methods 

library and the arguments specified in IEEE 1516.1 Federate Interface 

Specification [2]. It also gives an analysis and a quick overview of HLA Services. 

Tables are presented according to the HLA management groups and they are 

summarized from [2]. The first column presents the service number. The second 

column presents the service name. The third column presents the arguments of the 

service as specified in [2] as the last column presents the metamodel element 

found in the HLA methods library corresponding to the argument specified in [2]. 

The bold cells in tables represent the returned arguments while the white ones 

represent the supplied arguments. 

C.1 Federation Management 

Federation management includes the necessary services for the creation, dynamic 

control, modification, and deletion of a federation execution. 

Federation management services, 24 in total, are presented in Table 8. 

 

Table 8. Federation Management Services  

N
O 

SERVICE ARGUMENT METAMODEL ELEMENT 

1 
Create Federation 
Execution 

Federation Execution Name 

Federation Execution 
Reference (FedRef) 

The name of the Federation 
element to which “FedRef” 
refers 
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Table 8 (cont ’d) 

  

FOM Document Designator 

The value of the attribute 
“FDD Designator” of 
“Federation” element to 
which “FedRef” refers. 

None None 

2 
Destroy Federation 
Execution 

Federation Execution Name 

FedRef  

The name of the instance 
from “Federation” element 

None None 

3 
Join Federation 
Execution 

Federate Type  StringTypeReference 

Federation Execution Name 

FedRef 

The name of the Federation 
element to which “FedRef” 
refers. 

Joined Federate Designator 
Federate Application 
Reference (FdAppRef) 

4 
Resign Federation 
Execution 

Action Argument (see the 
standard [2]) 

ResignFederationActionArgu
ment 

[1] Unconditionally divest 
ownership of all owned 
instance attributes 

[2] Delete all object 
instances for which the 
joined federate has the 
delete privilege 

[3] Cancel all pending 
instance attribute ownership 
acquisitions 

[4] Perform action [2] and 
then action [1] 

[5] Perform action [3], action 
[2], and then action [1] 

[6] Perform no actions. 

None None 

5 
Register Federation 
Synchronization Point 

Sync Point Label 
SynchronizationNAReferenc
e 

User-supplied Tag TagsReference 

Optional Set of Joined Federate 
Designators 

Set of FdAppRef 

None 
None 
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Table 8 (cont ’d) 

6 
Confirm Synchronization 
Point Registration

1
 † 

Sync Point Label 
SynchronizationNAReferenc
e 

Registration-success indicator IndicatorReference 

Optional Failure Reason StringTypeReference 

None None 

7 
Announce 
Synchronization Point † 

Sync Point Label 
SynchronizationNAReferenc
e 

User-supplied Tag TagsReference 

None None 

8 
Synchronization Point 
Achieved 

Sync Point Label 
SynchronizationNAReferenc
e 

None None 

9 
Federation Synchronized 
† 

Sync Point Label 
SynchronizationNAReferenc
e 

None None 

10 Request Federation Save 

Federation Save Label StringTypeReference 

Optional Time Stamp TimeStampReference 

None None 

11 Initiate Federate Save † 

Federation Save String StringTypeReference 

Optional Time Stamp TimeStampReference 

None None 

12 Federate Save Begun 

None None 

None None 

13 Federate Save Complete 

Federate Save-success 
indicator 

IndicatorReference 

None None 

14 Federation Saved † 

Federation Save-Success 
Indicator 

IndicatorReference 

Optional Failure Reason StringTypeReference 

None None 

                                                 

1
 All RTI in itiated services are denoted with a † (printer’s dagger) after the service name  
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Table 8 (cont ’d) 

15 
Query Federation Save 
Status 

None None 

None None 

16 
Federation Save Status 
Response 

List of Joined Federates and 
Save Status for Each 

List of Federate_SaveStatus 

None None 

17 
Request Federation 
Restore 

Federation Save String StringTypeReference 

None None 

18 
Confirm Federation 
Restoration Request † 

Federation Save String StringTypeReference 

Request Success Indicator IndicatorReference 

None None 

19 
Federation Restore 
Begun † 

None None 

None None 

20 
Initiate Federate Restore 
† 

Federation Save String StringTypeReference 

Joined Federate Designator FdAppRef 

None None 

21 
Federate Restore 
Complete 

Federate Restore-Success 
Indicator 

IndicatorReference 

None None 

22 Federation Restored † 

Federation Restore-Success 
Indicator 

IndicatorReference 

Optional Failure Reason StringTypeReference 

None None 

23 
Query Federation 
Restore Status 

None None 

None None 

24 
Federation Restore 
Status Response † 

List of Joined Federates and 
Restore Status for Each 

List of 
Federate_RestoreStatus 

None None 
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C.2 Declaration Management 

Declaration management services, 12 in total, are presented in Table 9.  

 

Table 9. Declaration Management Services  

N
O 

SERVICE ARGUMENT METAMODEL ELEMENT 

1 
Publish Object Class 
Attributes 

Object Class Designator OCReference 

Set of Attribute Designators Set of AttributeReference 

None None 

2 
Unpublish Object Class 
Attributes 

Object Class Designator OCReference 

Optional Set of Attribute 
Designators 

Set of AttributeReference 

None None 

3 Publish Interaction Class 

Interaction Class Designator ICReference 

None None 

4 
Unpublish Interaction 
Class 

Interaction Class Designator ICReference 

None None 

5 
Subscribe Object Class 
Attributes 

Object Class Designator OCReference 

Set of Attribute Designators Set of AttributeReference 

Optional Passive Subscription 
Indicator 

IndicatorReference  

True means active 
subscription, false means 
indicator is not present 

None None 

6 
Unsubscribe Object 
Class Attributes 

Object Class Designator OCReference 

Optional Set of Attribute 
Designators 

Set of AttributeReference 

None None 

7 
Subscribe Interaction 
Class 

Interaction Class Designator ICReference 

Optional Passive Subscription 
Indicator 

IndicatorReference  

None None 
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Table 9 (cont ’d) 

8 
Unsubscribe Interaction 
Class 

Interaction Class Designator ICReference 

None None 

9 
Start Registration For 
Object Class † 

Object Class Designator OCReference 

None None 

10 
Stop Registration For 
Object Class † 

Interaction Class Designator ICReference 

None None 

11 Turn Interactions On † 

Interaction Class Designator ICReference 

None None 

12 Turn Interactions Off †  

Interaction Class Designator ICReference 

None None 

 

C.3 Object Management 

Object management services, 19 in total, are presented in Table 10.  

 

Table 10. Object Management Services 

N
O 

SERVICE ARGUMENT METAMODEL ELEMENT 

1 
Reserve Object Instance 
Name 

Name StringTypeReference 

None None 

2 
Object Instance Name 
Reserved † 

Name StringTypeReference 

Reservation Success Indicator IndicatorReference 

None None 

3 Register Object Instance 

Object Class Designator OCReference 

Optional Object Instance Name 
OCReference (name of 
Instance of OC that this 
reference refers) 

Object Instance Handle 
OCReference (refers to the 
Instance of OC) 
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Table 10 (cont’d) 

4 
Discover Object Instance 
† 

Object Instance Handle 
OCReference (refers to the 
Instance of OC) 

Object Class Designator (Type of ) OCReference 

Object Instance Name 
OCReference (name of 
Instance of OC that this 
reference refers) 

None None 

5 Update Attribute Values 

Object Instance Designator 
OCReference (refers to the 
Instance of OC) 

Constrained Set of Attribute 
Designator and Value Pairs 

Set of Attribute_Value 

User-supplied Tag TagsReference 

Optional Time Stamp TimeStampReference 

Optional Message Retraction 
Designator 

MessageRetractionDesignat
orReference 

6 Reflect Attribute Values † 

Object Instance Designator 
OCReference (refers to the 
Instance of OC) 

Constrained Set of Attribute 
Designator and Value Pairs 

Set of Attribute_Value 

User-supplied Tag TagsReference 

Sent Message Order Type OrderType 

Transportation Type TransportationRef 

Optional Time Stamp 
TimeStampReference 

 

Optional Receive Message 
Order Type 

OrderType 

Optional Message Retraction 
Designator 

MessageRetractionDesignat
orReference 

 

Optional Set of Sent Region 
Designators 

Set of RegionReference 

None 

 

None 
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Table 10 (cont’d) 

7 Send Interaction 

Interaction Class Designator ICReference 

Constrained Set of Interaction 
Parameter Designator and 
Value Pairs 

Set of Parameter_Value 

User-supplied Tag TagsReference 

Optional Time Stamp TimeStampReference 

Optional Message Retraction 
Designator 

MessageRetractionDesignat
orReference 

8 Receive Interaction † 

Interaction Class Designator ICReference 

Constrained Set of Interaction 
Parameter Designator and 
Value Pairs 

Set of Parameter_Value 

User-supplied Tag TagsReference 

Sent Message Order Type OrderType 

Transportation Type TransportationRef 

Optional Time Stamp TimeStampReference 

Optional Receive Message 
Order Type 

OrderType 

Optional Message Retraction 
Designator 

MessageRetractionDesignat
orReference 

Optional Set of Sent Region 
Designators 

Set of RegionReference 

None None 

9 Delete Object Instance 

Object Instance Designator 

OCReference (refers to the 
Instance of OC) 

 

User-supplied Tag 

 

TagsReference 

 

Optional Time Stamp TimeStampReference 

Optional Message Retraction 
Designator 

MessageRetractionDesignat
orReference 
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Table 10 (cont’d) 

10 
Remove Object Instance 
† 

Object Instance Designator 
OCReference (refers to the 
Instance of OC) 

User-supplied Tag TagsReference 

Sent Message Order Type OrderType 

Optional Time Stamp TimeStampReference 

Optional Receive Message 
Order Type 

OrderType 

Optional Message Retraction 
Designator 

MessageRetractionDesignat
orReference 

None None 

11 
Local Delete Object 
Instance 

Object Instance Designator 
OCReference (refers to the 
Instance of OC) 

None None 

12 
Change Attribute 
Transportation Type 

Object Instance Designator 
OCReference (refers to the 
Instance of OC) 

Set of Attribute Designators Set of AttributeReference 

Transportation Type TransportationRef 

None None 

13 
Change Interaction 
Transportation Type 

Interaction Class Designator ICReference 

Transportation Type TransportationRef 

None None 

14 Attributes In Scope † 

Object Instance Designator 
OCReference (refers to the 
Instance of OC) 

Set of Attribute Designators Set of AttributeReference 

None None 

15 Attributes Out Of Scope † 

Object Instance Designator 

OCReference (refers to the 
Instance of OC) 

 

Set of Attribute Designators Set of AttributeReference 

 

None 

 

None 
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Table 10 (cont’d) 

16 
Request Attribute Value 
Update 

Object Instance Designator or 
Object Class Designator 

OCReference 

Set of Attribute Designators Set of AttributeReference 

User-supplied Tag TagsReference 

None None 

17 
Provide Attribute Value 
Update † 

Object Instance Designator  
OCReference (refers to the 
Instance of OC)  

Set of Attribute Designators Set of AttributeReference 

User-supplied Tag TagsReference 

None None 

18 
Turn Updates On For 
Object Instance † 

Object Instance Designator OCReference 

Set of Attribute Designators Set of AttributeReference 

None None 

19 
Turn Updates Off For 
Object Instance † 

Object Instance Designator 
OCReference (refers to the 
Instance of OC) 

Set of Attribute Designators Set of AttributeReference 

None None 

 

C.4 Ownership Management 

Ownership management services, 17 in total, are presented in Table 11. 

Table 11. Ownership Management Services  

N
O 

SERVICE ARGUMENT METAMODEL ELEMENT 

1 
Unconditional Attribute 
Ownership Divestiture 

Object Instance Designator OCReference  

Set of Attribute Designators Set of AttributeReference 

None None 

2 
Negotiated Attribute 
Ownership Divestiture 

Object Instance Designator  OCReference  

Set of Attribute Designators Set of AttributeReference 

User-supplied Tag TagsReference 

None None 
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Table 11 (cont’d) 

3 
Request Attribute 
Ownership Assumption † 

Object Instance Designator  
OCReference (refers to the 
Instance of OC)  

Set of Attribute Designators Set of AttributeReference 

User-supplied Tag TagsReference 

None None 

4 
Request Divestiture 
Confirmation † 

Object Instance Designator  
OCReference (refers to the 
Instance of OC)  

Set of Attribute Designators Set of AttributeReference 

None None 

5 Confirm Divestiture 

Object Instance Designator  
OCReference (refers to the 
Instance of OC)  

Set of Attribute Designators Set of AttributeReference 

User-supplied Tag TagsReference 

None None 

6 
Attribute Ownership 
Acquisition Notification † 

Object Instance Designator  
OCReference (refers to the 
Instance of OC)  

Set of Attribute Designators Set of AttributeReference 

User-supplied Tag TagsReference 

None None 

7 
Attribute Ownership 
Acquisition 

Object Instance Designator  
OCReference (refers to the 
Instance of OC)  

Set of Attribute Designators Set of AttributeReference 

User-supplied Tag TagsReference 

None None 

8 
Attribute Ownership 
Acquisition If Available 

Object Instance Designator  
OCReference (refers to the 
Instance of OC)  

Set of Attribute Designators Set of AttributeReference 

None None 

9 
Attribute Ownership 
Unavailable † 

Object Instance Designator  
OCReference (refers to the 
Instance of OC)  

Set of Attribute Designators Set of AttributeReference 

None None 
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Table 11 (cont’d) 

10 
Request Attribute 
Ownership Release 

Object Instance Designator  
OCReference (refers to the 
Instance of OC)  

Set of Attribute Designators Set of AttributeReference 

User-supplied Tag TagsReference 

None None 

11 
Attribute Ownership 
Divestiture If Wanted 

Object Instance Designator  
OCReference (refers to the 
Instance of OC)  

Set of Attribute Designators (for 
which the joined federate is 
willing to divest ownership) 

Set of AttributeReference 

Set of Attribute Designators (for 
which ownership has actually 
been divested) 

Set of AttributeReference 

12 
Cancel Negotiated 
Attribute Ownership 
Divestiture 

Object Instance Designator  
OCReference (refers to the 
Instance of OC)  

Set of Attribute Designators Set of AttributeReference 

None None 

13 
Cancel Attribute 
Ownership Acquisition 

Object Instance Designator  
OCReference (refers to the 
Instance of OC)  

Set of Attribute Designators Set of AttributeReference 

None None 

14 
Confirm Attribute 
Ownership Acquisition 
Cancellation † 

Object Instance Designator  
OCReference (refers to the 
Instance of OC)  

Set of Attribute Designators Set of AttributeReference 

None None 

15 
Query Attribute 
Ownership 

Object Instance Designator  
OCReference (refers to the 
Instance of OC)  

Attribute Designator AttributeReference 

None None 

16 
Inform Attribute 
Ownership † 

Object Instance Designator  
OCReference (refers to the 
Instance of OC)  

Attribute Designator AttributeReference 
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Ownership Designator (could be 
a joined federate, RTI, or 
unowned) 

Either FdAppRef (i.e., Joined 
Federate) or FedRef (i.e., 
RTI) 

If  both are null then it means 
an indication that the 
instance attribute is available 
for acquisition (i.e., un-
owned) 

None None 

17 
Is Attribute Owned By 
Federate 

Object Instance Designator  
OCReference (refers to the 
Instance of OC)  

Attribute Designator AttributeReference 

Instance Attribute Ownership 
Indicator 

IndicatorReference 

 

C.5 Time Management 

Time management services, 23 in total, are presented in Table 12. 

 

Table 12. Time Management Services 

N
O 

SERVICE ARGUMENT METAMODEL ELEMENT 

1 Enable Time Regulation 

Lookahead LookaheadReference 

None None 

2 
Time Regulation Enabled 
† 

Current Logical Time of the 
Joined Federate 

TimeStampReference 

None None 

3 Disable Time Regulation 

None None 

None None 

4 Enable Time Constrained 

None None 

None None 

5 
Time Constrained 
Enabled † 

Current Logical Time of the 
Joined Federate 

TimeStampReference 

None None 

6 
Disable Time 
Constrained 

None None 

None None 
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Table 12 (cont’d) 

7 Time Advance Request 

Logical Time TimeStampReference 

None None 

8 
Time Advance Request 
Available 

Logical Time TimeStampReference 

None None 

9 Next Message Request 

Logical Time TimeStampReference 

None None 

10 
Next Message Request 
Available 

Logical Time TimeStampReference 

None None 

11 Flush Queue Request 

Logical Time TimeStampReference 

None None 

12 Time Advance Grant † 

Logical Time TimeStampReference 

None None 

13 
Enable Asynchronous 
Delivery 

None None 

None None 

14 
Disable Asynchronous 
Delivery 

None None 

None None 

15 Query GALT 

None None 

GALT Definition Indicator IndicatorReference 

Optional Current Value of 
Invoking Joined Federate’s 
GALT 

TimeStampReference 

16 Query Logical Time 

None None 

The Invoking Joined Federate’s 
Current Logical Time 

TimeStampReference 

17 Query LITS 

None None 

LITS Definition Indicator IndicatorReference 

Optional Current Value of 
Invoking Joined Federate’s LITS 

TimeStampReference 

18 Modify Lookahead 

Requested Lookahead LookaheadReference 

None None 
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Table 12 (cont’d) 

19 Query Lookahead 

None None 

The Invoking Joined Federate’s 
Current Actual Lookahead 

LookaheadReference 

20 Retract 

Message Retraction Designator 
MessageRetractionDesignat
orReference 

None None 

21 Request Retraction † 

Message Retraction Designator 
MessageRetractionDesignat
orReference 

None None 

22 
Change Attribute Order 
Type 

Object Instance Designator  
OCReference (refers to the 
Instance of OC)  

Set of Attribute Designators Set of AttributeReference 

Order Type OrderType 

None None 

23 
Change Interaction Order 
Type 

Interaction Class Designator ICReference  

Order Type OrderType 

None None 

 

C.6 Data Distribution Management 

Data distribution management services, 12 in total, are presented in Table 13. 

  

Table 13. Data Distribution Management Services 

N
O 

SERVICE ARGUMENT METAMODEL ELEMENT 

1 Create Region 

Set of dimension designators Set of DimensionRef 

Region Designator RegionReference 

2 
Commit Region 
Modifications 

Set of region designators Set of RegionReference 

None None 

3 Delete Region 

Region designator RegionReference 

None None 
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Table 13 (cont’d) 

4 
Register Object Instance 
With Regions 

Object Class Designator OCReference 

Collection of attribute designator 
set and region designator set 
pairs 

Collection of “Set of 
Attributes” and “Set of 
RegionReference” 

Optional Object instance Name (Name of) OCReference 

Object Instance Designator 
OCReference (refers to the 
Instance of OC) 

5 
Associate Regions For 
Updates 

Object Instance Designator 
OCReference (refers to the 
Instance of OC) 

Collection of attribute designator 
set and region designator set 
pairs 

Collection of “Set of 
Attributes” and “Set of 
RegionReference” 

None None 

6 
Unassociate Regions For 
Updates 

Object Instance Designator 
OCReference (refers to the 
Instance of OC) 

Collection of attribute designator 
set and region designator set 
pairs 

Collection of “Set of 
Attributes” and “Set of 
RegionReference” 

None None 

7 
Subscribe Object Class 
Attributes With Regions 

Object Class Designator OCReference 

Collection of attribute designator 
set and region designator set 
pairs 

Collection of “Set of 
Attributes” and “Set of 
RegionReference” 

optional passive subscription 
indicator 

Indicator or 
IndicatorReference 

None None 

8 
Unsubscribe Object 
Class Attributes With 
Regions 

Object Class Designator OCReference 

Collection of attribute designator 
set and region designator set 
pairs 

Collection of “Set of 
Attributes” and “Set of 
RegionReference” 

None None 

9 
Subscribe Interaction 
Class With Regions 

Interaction class designator ICReference 

set of region designators Set of RegionReference 

optional passive subscription 
indicator 

IndicatorReference 

None None 
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Table 13 (cont’d) 

10 
Unsubscribe Interaction 
Class With Regions 

Interaction class designator ICReference 

set of region designators Set of RegionReference 

None None 

11 
Send Interaction With 
Regions 

Interaction class designator ICReference 

Constrained set of parameter 
designator and value pairs 

Set of Parameter_Value 

Set of region designators Set of RegionReference 

user-supplied tag TagsReference 

Optional time stamp TimeStampReference 

Optional Message Retraction 
Designator 

MessageRetractionDesignat
orReference 

12 
Request Attribute Value 
Update With Regions 

Object Class Designator OCReference 

Collection of attribute designator 
set and region designator set 
pairs 

Collection of “Set of 
Attributes” and “Set of 
RegionReference” 

user-supplied tag TagsReference 

None None 

C.7 Support Services 

Support services, 39 in total, are presented in Table 14. 

 

Table 14. Support Services  

N
O 

SERVICE ARGUMENT METAMODEL ELEMENT 

1 Get Object Class Handle 

Object Class Name OCReference 

Object Class Handle OCReference 

2 Get Object Class Name 

Object Class Handle OCReference 

Object Class Name OCReference 

3 Get Attribute Handle 

Object Class Handle OCReference 

Class Attribute Name AttributeReference 

Class Attribute Handle AttributeReference 
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Table 14 (cont’d) 

4 Get Attribute Name 

Object Class Handle OCReference 

Class Attribute Handle AttributeReference 

Class Attribute Name AttributeReference 

5 
Get Interaction Class 
Handle 

Interaction Class Name ICReference 

Interaction Class Handle ICReference 

6 
Get Interaction Class 
Name 

Interaction Class Handle ICReference 

Interaction Class Name ICReference 

7 Get Parameter Handle 

Interaction Class Handle ICReference 

Parameter Name ParameterReference 

Parameter Handle ParameterReference 

8 Get Parameter Name 

Interaction Class Handle ICReference 

Parameter Handle ParameterReference 

Parameter Name ParameterReference 

9 
Get Object Instance 
Handle 

Object Instance Name 
OCReference (refers to the 
Instance of OC) 

Object Instance Handle 
OCReference (refers to the 
Instance of OC) 

10 
Get Object Instance 
Name 

Object Instance Handle OCReference  

Object Instance Name OCReference  

11 Get Dimension Handle 

Dimension Name DimensionRef 

Dimension Handle DimensionRef 

12 Get Dimension Name 

Dimension Handle DimensionRef 

Dimension Name DimensionRef 

13 
Get Dimension Upper 
Bound 

Dimension Handle DimensionRef 

Dimension Upper Bound 

DimensionRef 

(upperBound attribute of 
Dimension) 

14 
Get Available 
Dimensions For Class 
Attribute 

Object Class Handle OCReference 

Class Attribute Name AttributeReference 

A Set of Dimension Handles Set of DimensionRef 
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Table 14 (cont’d) 

15 
Get Known Object Class 
Handle 

Object Instance Handle OCReference  

Object Class Handle OCReference 

16 
Get Available 
Dimensions For 
Interaction Class 

Interaction Class Handle ICReference 

A Set of Dimension Handles Set of DimensionRef 

17 Get Transportation Type 

Transportation Name TransportationRef 

Transportation Type TransportationRef 

18 Get Transportation Name 

Transportation Name TransportationRef 

Transportation Type TransportationRef 

19 Get Order Type 

Order Name OrderType 

Order Type OrderType 

20 Get Order Name 

Order Name OrderType 

Order Type OrderType 

21 
Enable Object Class 
Relevance Advisory 
Switch 

None None 

None None 

22 
Disable Object Class 
Relevance Advisory 
Switch 

None None 

None None 

23 
Enable Attribute 
Relevance Advisory 
Switch 

None None 

None None 

24 
Disable Attribute 
Relevance Advisory 
Switch 

None None 

None None 

25 
Enable Attribute Scope 
Advisory Switch 

None None 

None None 

26 
Disable Attribute Scope 
Advisory Switch 

None None 

None None 

27 
Enable Interaction 
Relevance Advisory 
Switch 

None None 

None None 

28 
Disable Interaction 
Relevance Advisory 
Switch 

None None 

None None 
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Table 14 (cont’d) 

29 
Get Dimension Handle 
Set 

Region Handle RegionReference 

A Set of Dimensions Set of DimensionRef 

30 Get Range Bounds 

Region Handle RegionReference 

Dimension Handle DimensionRef 

Range Lower Bound NumericType 

Range Upper Bound NumericType 

31 Set Range Bounds 

Region Handle RegionReference 

Dimension Handle DimensionRef 

Range Lower Bound NumericType 

Range Upper Bound NumericType 

32 
Normalize Federate 
Handle 

Federate Handle DimensionRef 

Normalized Value NumericType 

33 Normalize Service Group 

Service Group Indicator DimensionRef 

Normalized Value NumericType 

34 Initialize RTI 

Set of Strings Set of StringTypeReference 

Set of Strings  Set of StringTypeReference 

35 Finalize RTI 

None None 

None None 

36 Evoke Callback 

Minimum Amount of Wall-clock 
time 

TimeStampReference 

Pending Callback Indicator IndicatorReference 

37 Evoke Multiple Callbacks 

Min.Amount of Wall-clock time TimeStampReference 

Maximum Amount of clock time TimeStampReference 

Pending Callback Indicator IndicatorReference 

38 Enable Callbacks 

None None 

None None 

39 Disable Callbacks 

None None 

None None 
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APPENDIX D 

 

 

D. HLA ARGUMENTS 

 

 

 

This appendix provides the details of the arguments specified in the HLA Services 

Metamodel for the library developers. 

Table 15 presents the arguments specified in [2], while Table 16 presents the 

additional arguments created for DMSO RTI NG 1.3v6. 

 

Table 15. Arguments for IEEE Interface Specification 

N
O 

ARGUMENT EXPLANATION EXAMPLE FOR USAGE 

1 Federation 
It represents a federation or 
federation execution 
(instance of federation). 

Not used. 

2 FedRef 
It is a reference to a 
Federation. 

It can be used to extract 
the name of the federation 
execution and the FDD 
path and name. 

3 FederateApplication 
It represents a federate 
application or a joined 
federate. 

Not used. 

4 FdAppRef 
It is a reference to a 
FederateApplication. 

It can be used to represent 
the joined federate 
designators. 

5 Region It represents a region Not used. 

6 RegionReference It is a reference to a Region. 
It can be used to represent 
the region designators. 

7 ObjectClass 
It represents an HLA object 
class or an object. 

Not used. 

8 OCReference 
It is a reference to an 
ObjectClass. 

It can be used to represent 
both an object instance 
designator and an object 
class designator. 
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Table 15 (cont’d) 

9 AttributeReference 
It is a reference to an object 
class attribute. 

It can be used to represent 
the attribute designators. 

10 ICReference 
It is a reference to an 
interaction class. 

It can be used to represent 
an interaction class 
designator. 

11 DimensionRef 
It is a reference to a 
dimension in object model. 

It can be used to represent 
a dimension handle and 
name. 

12 TimeStampReference 
It is a reference to a time 
stamp in object model. 

It can be used to represent 
a pointer to a time stamp. 

13 SynchronizationNAReference 
It is a reference to a 
synchronizationNA in object 
model. 

It can be used to represent 
a pointer to a 
synchronization point label. 

14 MessageRetractionDesignator 
It represents a message 
retraction designator. 

Not used. 

15 
MessageRetractionDesignator
Reference 

It is a reference to a 
message retraction 
designator. 

It can be used to represent 
a message retraction 
designator. 

16 TransportationRef 
It is a reference to 
transportation in object 
model. 

It can be used to represent 
a transportation type. 

17 TagsReference 
It is a reference to a tag in 
object model. 

It can be used to represent 
a user-type tag. 

18 LookaheadReference 
It is a reference to a 
lookahead in object model. 

It can be used to represent 
a lookahead. 

19 ParameterReference 
It is a reference to an HLA 
interaction parameter 
specified in object model. 

It can be used to represent 
a parameter. 

20 Collection 
It represents a collection of 
two sets. 

For example, it is used for 
collection of attribute 
designator set and region 
designator set pairs . 

21 List 
It represents a list of 
federate-save status or 
federate-restore status. 

For example, it is used for 
list of 
Federate_SaveStatus. 

22 Set 

It represents a set of region 
references, or parameter and 
value pairs, or federate 
application references, or 
attribute and value pairs, or 
attribute references, or 
dimension references, or 
string  types, or string type 
references. 

For example, it is used for 
set of attribute designators. 
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Table 15 (cont’d) 

23 OrderType 
It represents an order type. It 
is either receive or time 
stamp order. 

For example, it is used to 
represent a sent message 
order type. 

24 
ResignFederationActionArgum
ent 

It represents the action 
arguments while resigning a 
federation execution. 

It is used in 
ResignFederationExec

ution. 

25 NumericType 
It represents numeric type 
arguments. 

It is used for bounds and 
normalized values. 

26 NumericTypeReference 
It is a reference to a numeric 
type. 

Not used. 

27 StringType 
It represents a string  type 
argument. 

Not used. 

28 StringTypeReference 
It is a reference to a string 
type. 

It is used for failure 
reasons, labels, strings, 
names, and a federate 
type. 

29 Indicator It represents a Boolean type. Not used. 

30 IndicatorReference 
It is a reference to an 
indicator. 

It is used for indicators 
such as passive 
subscription indicator. 

 

Table 16. Additional Arguments for DMSO RTI NG 1.3v6 

N
O 

ARGUMENT EXPLANATION EXAMPLE FOR USAGE 

1 DMSOActionArgument 
It represents the action 
arguments while resigning a 
federation execution. 

It is used in DMSO 
ResignFederationExec

ution 

2 DMSOFederateAmbassador 
It is used for the 
representation of Federate 
Ambassador. 

It is used in DMSO 
JoinFederationExecut

ion 

3 DMSORoutingSpace It represents a routing space. 
It is used in DMSO 
CreateRegion 

4 
DMSORoutingSpaceReferen
ce 

It represents a reference to 
DMSORoutingSpace  

In DMSO 
GetDimensionName  
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