

METAMODELING

FOR
THE HLA FEDERATION ARCHITECTURES

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCIES

 OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

OKAN TOPÇU

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR
THE DEGREE OF DOCTOR OF PHILOSOPHY

IN
COMPUTER ENGINEERING

DECEMBER 2007

Approval of the thesis:

METAMODELING FOR THE HLA FEDERATION ARCHITECTURES

Submitted by OKAN TOPÇU in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Engineering Department, Middle East Technical

University by,

Prof. Dr. Canan Özgen

Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Volkan Atalay

Head of Department, Computer Engineering

Assoc. Prof. Dr. Halit Oğuztüzün

Supervisor, Computer Engineering Dept., METU

Examining Committee Members:

Prof. Dr. Ġsmail Hakkı Toroslu

Computer Engineering Dept., METU

Assoc. Prof. Dr. Halit Oğuztüzün

Computer Engineering Dept., METU

Prof. Dr. Levent Kandiller

Industrial Engineering Dept., Çankaya University

Assoc. Prof. Dr. Ali Doğru

Computer Engineering Dept., METU

Assoc. Prof. Dr. Cem Bozşahin

Computer Engineering Dept., METU

Date:

iii

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also
declare that, as required by these rules and conduct, I have fully cited and
referenced all material and results that are not original to this work.

 Name, Last name : Okan Topçu

Signature :

iv

ABSTRACT

METAMODELING FOR THE HLA FEDERATION ARCHITECTURES

Topçu, Okan

Ph.D., Department of Computer Engineering

Supervisor: Assoc. Prof. Dr. Halit OĞUZTÜZÜN

December 2007, 194 pages

This study proposes a metamodel, named Federation Architecture Metamodel

(FAMM), for describing the architecture of a High Level Architecture (HLA)

compliant federation. The metamodel provides a domain specific language and a

formal representation for the federation adopting Domain Specific Metamodeling

approach to HLA-compliant federations. The metamodel supports the definitions of

transformations both as source and as target. Specifically, it supports federate

base code generation from a described federate behavior, and it supports

transformations from a simulation conceptual model. A salient feature of FAMM is

the behavioral description of federates based on live sequence charts (LSCs). It is

formulated in metaGME, the meta-metamodel for the Generic Modeling

Environment (GME).

This thesis discusses specifically the following points: the approach to building the

metamodel, metamodel extension from Message Sequence Chart (MSC) to LSC,

support for model-based code generation, and action model and domain-specific

data model integration.

Lastly, this thesis presents, through a series of modeling case studies, the

Federation Architecture Modeling Environment (FAME), which is a domain-specific

model-building environment provided by GME once FAMM is invoked as the base

paradigm.

Keywords: Domain Specific Architectures, High Level Architecture, Metamodeling,

Generic Modeling Environment, Live Sequence Charts

v

ÖZ

HLA FEDERASYON MĠMARĠLERĠ ĠÇĠN METAMODELLEME

Topçu, Okan

Doktora, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Halit OĞUZTÜZÜN

Aralık 2007, 194 sayfa

Bu çalışma, Yüksek Seviye Mimarisi (HLA) uyumlu bir federasyon mimarisinin

tanımlanabilmesine olanak sağlayan ve Federasyon Mimari Metamodeli (FAMM)

olarak adlandırılan bir metamodel önermektedir. Önerilen metamodel, Alan Özel

Metamodelleme yaklaşımının HLA uyumlu federasyonlarına uyarlanmasıyla

federasyon için biçimsel bir gösterim ve uygulama alanına yönelik bir dil

sağlamaktadır. Metamodel, transformasyonlarıın tanımlanmasını hem kaynak

hemde hedef model olarak desteklemektedir. Özellikle, simülasyon kavramsal

modelinden transformasyon yapılmasını ve tanımlanmış federe davranışlarından

federe temel kodunun üretilmesini desteklemektedir. FAMM’ın öne çıkan özelliği

Canlı Sıralama Çizelgelerine (LSC) dayalı olarak federelerin davranışlarının

tanımlanabilmesine olanak vermesidir. Jenerik Modelleme Ortamının (GME) meta

metamodeli olan MetaGME kullanılarak oluşturulmuştur.

Bu tez özellikle şu noktaları tartışmaktadır: metamodel oluşturulmasında ki

yaklaşımlar, Mesaj Sıralama Çizelgelesinden (MSC) LSC’lere metamodelin

genişletilmesi, model tabanlı kod üretimi için sağlanan destek ve aksiyon modeli ile

alan özel veri modelinin bütünleştirilmesi.

Son olarak, bu tez, FAMM’ın temel model olarak çağrılmasıyla GME tarafından

sağlanan alan özel model oluşturma ortamı olan Federasyon Mimarisi Modelleme

Ortamını (FAME) bir dizi örnekle desteklenmiş olarak sunmaktadır.

Anahtar Kelimeler: Alan Özel Mimariler, Yüksek Seviye Mimarisi, Metamodelleme,

Jenerik Modelleme Ortamı, Canlı Sıralama Çizelgeleri

vi

To My Family

vii

ACKNOWLEDGMENTS

If I have seen further, it is by standing on

ye shoulders of Giants.

– Isaac Newton

I express sincere appreciation to Assoc. Prof. Dr. Halit Oğuztüzün for his guidance,

unique support, and insight throughout the research.

Thanks go to Assoc.Prof.Dr. Ali Doğru and Prof.Dr. Levent Kandiller for their

valuable supervision during my thesis.

I also would like to thank Gürkan Özhan, Ayhan Molla, Kaan Sarıoğlu, Burak

Yolaçan, and Deniz Çetinkaya for many fruitful discussions. In particular,

collaborative work with the fellow PhD student Mehmet Adak, who developed the

HLA federate code generator, has provided invaluable feedback.

Finally, I cannot say enough to express my gratitude to my wife for her endless

patience during my thesis study and for her support and assistance in every aspect

of my life.

viii

TABLE OF CONTENTS

ABSTRACT ... iv

ÖZ .. v

ACKNOWLEDGMENTS .. vii

TABLE OF CONTENTS... viii

LIST OF TABLES .. xi

LIST OF FIGURES.. xii

LIST OF ABBREVIATIONS .. xvi

CHAPTER

1. INTRODUCTION.. 1

1.1 Motivation and Background ..1

1.2 Development Context ...2

1.3 Related Work...5

1.4 Objectives and Scope ...7

1.5 Technology Overview ..8

1.6 Typeface Conventions ..10

1.7 Summary of Chapters ...11

2. FRAMEWORK FOR HLA FEDERATION DESIGN AND DEVELOPMENT 12

2.1 Methodology ...12

3. FEDERATION ARCHITECTURE METAMODEL ... 18

3.1 FAMM Structure..18

3.2 User Perspective ..21

ix

3.3 Behavioral Metamodel ...22

4. LSC/MSC METAMODEL.. 25

4.1 Metamodeling Approach and Design Principles ...26

4.2 MSC Metamodel..33

4.3 LSC Metamodel ...72

5. HLA FEDERATION METAMODEL.. 84

5.1 HLA Object Metamodel ...84

5.2 Federation Structure Metamodel ...85

5.3 Publish/Subscribe Metamodel ...85

5.4 HLA Services Metamodel...86

6. MODEL INTEGRATION AND EXTENSIBILITY.. 99

6.1 Integration by Extension ...99

6.2 Accommodating Future Integrations .. 101

6.3 Console Input Output Library ... 103

7. FAMM ASSESSMENT ...105

7.1 Completeness (Scope) .. 105

7.2 Traceability ... 106

7.3 Modularity ... 106

7.4 Layering ... 106

7.5 Partioning ... 107

7.6 Extensibility .. 109

7.7 Reusability ... 109

7.8 Usability ... 110

7.9 Other Criteria... 111

8. RESULTS, DISCUSSIONS, AND FUTURE WORK ..112

8.1 Accomplishments and Discussions .. 112

8.2 Future Work .. 114

REFERENCES ...117

x

APPENDICES

A. FEDERATION ARCHITECTURE MODELING ENVIRONMENT121

B. CASE STUDY: NAVAL SURFACE TACTICAL MANEUVERING

SIMULATION SYSTEM ..151

C. TRANSITION BETWEEN HLA METHODS LIBRARY AND IEEE 1516.1

FEDERATE INTERFACE SPECIFICATION ..170

D. HLA ARGUMENTS ..190

CURRICULUM VITAE..193

xi

LIST OF TABLES

TABLES

Table 1. FAMM Correlated with OMG’s Four-layer Metamodel Hierarchy 5

Table 2. IEEE 1516 Standards .. 9

Table 3. Transformations.. 17

Table 4. Size of FAMM and Its Sub-metamodels ... 20

Table 5. Inline Operators .. 53

Table 6. The Event Groups ... 71

Table 7. Interpretation of Location and Event Temperature Pairs 76

Table 8. Federation Management Services ... 170

Table 9. Declaration Management Services ... 174

Table 10. Object Management Services ... 175

Table 11. Ownership Management Services... 179

Table 12. Time Management Services ... 182

Table 13. Data Distribution Management Services ... 184

Table 14. Support Services ... 186

Table 15. Arguments for IEEE Interface Specification.. 190

Table 16. Additional Arguments for DMSO RTI NG 1.3v6 .. 192

xii

LIST OF FIGURES

FIGURES

Figure 1. Development Methodology for HLA-Based Distributed Simulations................... 3

Figure 2. GME Screenshot.. 10

Figure 3. Development Methodology for HLA-Based Distributed Simulations................. 13

Figure 4. Static Federation Design Verification .. 15

Figure 5. Federation Architecture Metamodel Structure .. 19

Figure 6. Federation Architecture Metamodel in GME ... 19

Figure 7. Relationship Between a Federation Architecture and the Metamodel 20

Figure 8. Federation Architecture Modeling Environment (FAME) 22

Figure 9. Graphical and Textual Representation of an MSC Diagram 24

Figure 10. Graphical and Textual Representations of an MSC Diagram 27

Figure 11. Modeling Multi-instance Elements.. 30

Figure 12. Cardinality Constraint .. 31

Figure 13. GME Constraint Manager Screenshot.. 31

Figure 14. Multiple Braches for Instance Axis ... 33

Figure 15. The MMM Implementation View (GME Screenshot) 34

Figure 16. The Structure of MSC Document Model Element .. 36

Figure 17. Example from (Figure 23 of) [36]. .. 36

Figure 18. Corresponding Model for Document Example (GME Screenshot)................... 37

Figure 19. Chart Paradigm Sheet... 38

Figure 20. The Structure of Instance Model Element .. 39

Figure 21. The Structure of Message Model Element ... 41

Figure 22. Example B.11 from [35]. .. 42

Figure 23. Corresponding Behavioral Model for B.11 .. 42

Figure 24. Example for Method Call. .. 43

Figure 25. Corresponding Behavioral Model for Method Call in Figure 24. 44

Figure 26. Example B.18 from [35]. .. 45

Figure 27. Corresponding Behavioral Model for B.18 .. 45

Figure 28. Example B.20 from [35]. .. 46

Figure 29. Corresponding Behavioral Model for B.20 .. 46

Figure 30. Paradigm Sheet for Condition ... 47

xiii

Figure 31. Example B.13 from [35] ... 47

Figure 32. Corresponding Behavioral Model for B.16 (GME Screenshot) 48

Figure 33. Timer and Timer Events Model... 49

Figure 34. Example B.9 from [35]... 49

Figure 35. Corresponding Behavioral Model for B.9 .. 49

Figure 36. The Structure of Action Model Element .. 50

Figure 37. Example B.6 and B.7 from [35]. ... 51

Figure 38. Corresponding Behavioral Model for B.6 .. 51

Figure 39. Example B.16 from [35]. .. 52

Figure 40. Corresponding Behavioral Model for B. 16.. 52

Figure 41. The Structure of the Inline Expressions ... 53

Figure 42. Example B.29 (msc A) from [35]. ... 54

Figure 43. Corresponding Behavioral Model for B.29 “msc A”. 55

Figure 44. An Example for Inline Operators with Gates. ... 56

Figure 45. Corresponding Model for Inline Operators with Gates (GME Screenshot) 56

Figure 46. The Structure of the Reference Model Element. ... 57

Figure 47. Conceptual View of the Corresponding Model for Referencing. 58

Figure 48. An Example for MSC Reference with Gates. ... 58

Figure 49. Corresponding Model for MSC Reference with Gates. 58

Figure 50. Declaration of a Message (GME Screenshot) ... 59

Figure 51. The Structure of an Argument... 60

Figure 52. Using a Message Declaration (GME Screenshot) ... 61

Figure 53. Inheritance Tab of GME Model Browser ... 62

Figure 54. The Structure of Data Type Model Element ... 63

Figure 55. The Expressions... 64

Figure 56. Data Definitions Model .. 65

Figure 57. The Structure of Time Offset Model Element .. 65

Figure 58. (a) Measurement Model Element (b) Time Point Model Element 66

Figure 59. The Structure of Time Interval Model Element .. 67

Figure 60. Example for Time Destinations ... 68

Figure 61. The Structure of the HMSC Nodes. ... 69

Figure 62. The Structure of the HMSC Connections. .. 69

Figure 63. The HMSC Example Fig.59 from [36]... 70

Figure 64. The Corresponding Model for HMSC Example.. 70

Figure 65. Address Connection and Time Address Connection. 72

Figure 66. The LMM Implementation View (GME Screenshot) 74

xiv

Figure 67. Extending MSC Body for LSC ... 75

Figure 68. LSC Simultaneous Region Metamodel .. 77

Figure 69. LSC Invariant Metamodel .. 78

Figure 70. LSC Invariant and Simultaneous Region Example ... 78

Figure 71. LSC Invariant and Simultaneous Region Corresponding Model 79

Figure 72. Fixed Iteration Example ... 80

Figure 73. LSC for Process Menu Selection ... 81

Figure 74. The Structure of Inline Operands and LSC Pre-Charts 82

Figure 75. Repeat-Until LSC .. 82

Figure 76. Corresponding models for Repeat-Until .. 83

Figure 77. Object Model Top View [34] .. 84

Figure 78. Federation Structure Paradigm Sheet (modified from [34]) 85

Figure 79. PSMM .. 86

Figure 80. RTI/Federate-initiated Methods .. 88

Figure 81. HLA Method of HSMM ... 89

Figure 82. Method Arguments Model .. 89

Figure 83. Pairs Model ... 90

Figure 84. Exceptions Model .. 91

Figure 85. Using Message Retraction Designator ... 93

Figure 86. Using Federates ... 94

Figure 87. HLA Methods Libraries ... 96

Figure 88. IEEE 1516.1 HLA Methods Base Library (GME Screenshot) 97

Figure 89. Development Methodology for HLA-Based Distributed Simulations............. 100

Figure 90. Extending MSC Message as HLA methods.. 100

Figure 91. Extending MSC Instance to Integrate Some HLA Model Elements 101

Figure 92. Integration of a Probabilistic Boolean Expression .. 102

Figure 93. Integration of MSC Data Types and HLA Data Types 103

Figure 94. Example for the integration of an External Data Model and HLA Methods 104

Figure 95. Layers in a Federation Architecture Model ... 107

Figure 96. FAMM Partioning ... 108

Figure 97. Transformation .. 114

Figure 98. LSC Decomposition Example ... 116

Figure 99. Strait Traffic Monitoring Simulation Conceptual View................................. 122

Figure 100. Registering the FAMM... 124

Figure 101. Federation Architecture Modeling Environment (FAME) 125

Figure 102. A Part of the STMS FOM (GME Screenshot) .. 126

xv

Figure 103. The Strait Traffic Monitoring Federation Structure Model 128

Figure 104. MSC/LSC Model Building Environment .. 129

Figure 105. Behavior Model for the Ship Federate in LSC’ Graphical Notation 130

Figure 106. Pre-chart Part of Ship Federate’s Behavior Model in Abstract Syntax 131

Figure 107. Creating Federates and Federation Executions ... 133

Figure 108. LSC for Reserving The Object Instance Names .. 134

Figure 109. Model for Reserving the Object Instance Names .. 134

Figure 110. DDM Example... 136

Figure 111. Creating Regions and Dimensions ... 136

Figure 112. Object Discovery ... 137

Figure 113. Setting the Temperature of a Location and a Message (GME Screenshot) 138

Figure 114. Console Input Output Model Library (GME Screenshot) 142

Figure 115. Upgrading the Models – Method I (GME Screenshot) 143

Figure 116. Upgrading the Models – Method II (GME Screenshot) 144

Figure 117. Setting Port Label Lengths (GME Screenshot) ... 145

Figure 118. P/S Model Generator Configuration Utility .. 147

Figure 119. Ship Federate Application P/S Model (GME Screenshot) 147

Figure 120. P/S Model Generator Warning .. 148

Figure 121. Excerpts from the Generated Java Code of Ship Application [53] 150

Figure 122. Federation Structure [25] .. 154

Figure 123. NSTMSS Federation Structure .. 156

Figure 124. Object Class Hierarchy of NSTMSS.. 157

Figure 125. Interaction Class Hierarchy of NSTMSS.. 157

Figure 126. Parameters of a WeatherReport Interaction Class 158

Figure 127. MekoFd Main LSC .. 160

Figure 128. MekoFd Main LSC in FAMM .. 161

Figure 129. Send Ship Status Report Sub-chart .. 161

Figure 130. Send Ship Status Report Sub-chart in FAMM .. 162

Figure 131. Receive Interactions Sub-chart .. 163

Figure 132. NSTMSS Federation Architecture in GME .. 164

Figure 133. MekoFd-Based P/S Model .. 165

Figure 134. Ship Status Report P/S Model ... 166

xvi

LIST OF ABBREVIATIONS

API Application Programmer’s Interface

BMM Behavioral Metamodel

BNF Backus-Naur Form

BOM Base Object Model

CIOMLib Console Input Output Model Library

CM Conceptual Model

DDM Data Distribution Management

DM Declaration Management

DMLib DMSO 1.3 Methods Library

DMSO Defense Modeling and Simulation Office

EnviFd Environment Federate

ExPFd Exercise Planner Federate

FAME Federation Architecture Modeling Environment

FAM Federation Architecture Model

FAMM Federation Architecture Metamodel

FCO First Class Object

FDD FOM Document Data

FEDEP Federation Development and Execution Process

FedMonFd Federation Monitor Federate

FM Federation Management

FOM Federation Object Model

FRG Federation Rapid Generation

FSMM Federation Structure Metamodel

GME Generic Modeling Environment

xvii

HDefLib HLA Defaults Library

HeliFd Helicopter Federate

HMOMLib HLA MOM Library

HOMM HLA Object Metamodel

HFMM HLA Federation Metamodel

HLA High Level Architecture

HMSC High Level MSC

HSMM HLA Services Metamodel

IDE Integrated Development Environment

IEEE Institute of Electrical and Electronic Engineers

IMLib IEEE 1516 HLA Methods Library

ITU-T International Telecommunication Union

KnoxFd Knox Federate

LMM LSC Metamodel

LSC(s) Live Sequence Chart(s)

MSC(s) Message Sequence Chart(s)

MDA Model Driven Architecture

MDE Model Driven Engineering

MekoFd Meko Federate

MetaGME GME Metamodel

MIC Model Integrated Computing

MMM MSC Metamodel

MOM Management Object Model

M&S Modeling and Simulation

NSTMSS Naval Surface Tactical Maneuvering Simulation System

OCL Object Constraint Language

OM Object Management

OMG Object Modeling Group

xviii

OMT Object Model Template

OwM Ownership Management

PIM Platform Independent Model

PSM Platform Specific Model

PSMM P/S Metamodel

P/S Publish/Subscribe

pRTI Pitch RTI

RTI Runtime Infrastructure

ShipFd Ship Federate

SOM Simulation Object Model

STMS Strait Traffic Monitoring Simulation

TacPicFd Tactical Picture Federate

TM Time Management

UML Unified Modeling Language

V&V Verification and Validation

1

CHAPTER 1

CHAPTERS

1. INTRODUCTION

This chapter presents the motivation and background for the study, presents the

development context and objectives, discusses the related work, and then provides

an overview of the relevant technology and tools used during the study.

1.1 Motivation and Background

High Level Architecture (HLA) provides a framework for distributed simulations with

special emphasis on interoperability and reusability of simulation components [1, 2,

3]. It became a widely accepted standard in the area of distributed modeling and

simulation over the last decade, and it is not surprising to see that the majority of

new distributed simulations in both the civilian and military context are being built to

be HLA compliant while HLA itself evolves. Although much effort has been spent

on developing HLA federations, the state-of-the-art in federation design

representation and documentation still does not provide adequate support for full

automation of the federation development process with user guidance [4].

The Federation Development and Execution Process (FEDEP) [5] assists and

guides the activities of developing an HLA federation. Although it has defined some

design activities, it has left design notations and documentation methods to the

designers. With respect to the HLA object model, the Object Model Template

(OMT) standard [3] is adequate for representing the static view of a federation.

OMT, however, does not attempt to capture the dynamic view of a federation or

member federates (e.g., creation/deletion of object instances and regions,

transfer/accept ownership of instance attributes).

This thesis proposes a metamodel for specifying the architecture of an HLA-

compliant federation by adopting the Domain Specific Metamodeling approach to

facilitate tool support for federation development. The metamodel treats the

structural and dynamic views of a federation on equal footing. The dynamic view of

2

a federate is tantamount to its interactions with the HLA Runtime Infrastructure

(RTI), the middleware implementing the HLA Interface Specification. The dynamic

view of the federation emerges as the joined federates interact with each other

over the RTI as the federation execution unfolds.

Model Driven Engineering (MDE) is a promising approach in software industry and

academia, which views the system development as a series of models and

transformations among the models [6, 7]. A known MDE initiative is the Model

Driven Architecture (MDA) of Object Management Group (OMG). MDA advocates

separating the specification and the implementation of a software-intensive system,

in terms of Platform Independent Model (PIM) and Platform Specific Model (PSM),

respectively. Most prominently, MDA promotes automated transformations

between models. In particular, the PIM of a system to be constructed is to be

transformed into a PSM. Automated tools, then, could carry out code generation

from a PSM.

An earlier manifestation of MDE is Model Integrated Computing (MIC). As stated in

[8], MIC relies on metamodeling to define domain-specific modeling languages and

model integrity constraints. The domain-specific language is then used to

automatically compose a domain-specific model-building environment for creating,

analyzing, and evolving the system through modeling and generation [9].

The proposed metamodel, Federation Architecture Metamodel (FAMM), provides a

domain-specific language for the formal representation of the federation

architecture. Serving both as a source and a target, the metamodel supports the

definitions of transformations. Specifically, it supports federate base code

generation from a described federate behavior and transformations from a

simulation conceptual model (which could be regarded as a PIM).

1.2 Development Context

To elucidate the purpose and the use of the metamodel, we clarify the

development context where this metamodel fits by articulating a methodological

view emphasizing models and transformations. Adopting the MDE approach,

development steps can be seen as a series of model transformations. In our view,

HLA-based distributed simulation development basically is comprised of a

conceptual model, federation architecture model, detailed design model, and

federation (in some executable form). Figure 1 sketches the roles of the models.

Each model layer corresponds to a distinct level of abstraction, for example, the

3

conceptual model layer pertains to domain entities while the detailed design model

layer pertains to software objects.

Figure 1. Development Methodology for HLA-Based Distributed Simulations

The Conceptual Model (CM) is a PIM of the reality with which the simulation is

concerned. A CM can also address simulation capabilities and limitations. It serves

as an agreement among project stakeholders about what is to be developed and

represents how developers understand the problem domain. Conceptual models

and their validation, with respect to the presented methodology, are discussed in

[10].

The Detailed Design Model outlines the internal structure (computational model) of

the federate components. It helps generate the software skeleton for the

computational part.

Federation Architecture Model (FAM), which is the main concern of this thesis, is a

major portion of the federation design documentation. Federation design for HLA

based distributed simulations includes the following activities:

 Forming a federation object model and possibly simulation object models:

o Designing static information interests of federates (related to declaration

management interface),

o Designing dynamic information interests of federates (related to object

management interface),

4

o Designing dynamic object flows (related to data distribution and

ownership management interfaces),

o Designing synchronization scheme (related to time management

interface)

 Specifying the behaviors of participating federates (so that they can fulfill

their responsibilities within the federation)

The Federation Architecture
1
 is a PSM where, in our case, the platform is the RTI,

and it comprises the Federation Model (Federation Structure, Federation Object

Model, and HLA Services) and the Behavioral Models for each participating

federate. The model of a particular federation architecture conforms to the

Federation Architecture Metamodel.

Both tasks, metamodeling and modeling, are accomplished using the Generic

Modeling Environment (GME) developed and maintained by Institute for Software

Integrated Systems at Vanderbilt University, as a tool to put the MIC vision into

practice. Formalism is due to the conformance of FAMM to the MetaGME, the

metamodel (i.e., meta-metamodel) provided by GME. GME is an open source

modeling tool that supports domain-specific modeling, where, in our case, the

domain is HLA [8, 11]. GME initially serves as a metamodel development

environment for domain analysts, and then, based on the metamodel; it provides a

domain-specific model-building environment for the developers. GME is chosen in

this study both for being open source and academic research tool, and for

providing Application Programmer’s Interface (API) (i.e., the GME generic BON2

API) for model traversing and manipulation to develop model interpreters2. For the

complete characteristics of the GME why it is chosen in (meta)modeling, see [12].

It is also worth to note that whenever a minor bug is found in GME, a fix is received

immediately.

“Domain specific (meta)modeling is an approach to modeling that emphasizes the

terminology and concepts specific to the domain [13], where data types and logic

are abstracted beyond programming” [12]. OMG introduces a four-layer metamodel

hierarchy for defining modeling, metamodeling, and meta-metamodeling languages

and activities in [14]. Table 1 relates the HLA Federation Architecture Metamodel to

1
 “Federation Architecture” is used as replaceable with “Federat ion Architecture Model”.

2
 A model interpreter is a plug-in software component to traverse and interpret a domain-specific

model in GME.

5

OMG’s four-layer metamodel hierarchy. Each layer is an instance of the layer

above. For example, a particular federation architecture is an instance of FAMM.

Table 1. FAMM Correlated with OMG’s Four-layer Metamodel Hierarchy

OMG’s Four-layer Metamodel

Hierarchy

Related Model

Meta-Metamodel (M3 Layer) GME Metamodel (MetaGME)

Metamodel (M2 Layer) Federation Architecture Metamodel

(referred to as a “paradigm” in GME vernacular)

Model (M1 Layer) Federation Architecture of a particular federation (e.g., St rait

Traffic Monitoring Federation Architecture)

Run-time Instance (M0 Layer) Federation Runtime Instance (e.g., a particu lar execution of

the Strait Traffic Monitoring Federation. For instance,

Bosporus Federation, which is given as an example in this

thesis)

1.3 Related Work

Recently, there have been numerous calls to apply MDA to HLA-based distributed

simulations, see, for example, [15, 16, 17]. These papers provide an account of the

tenets of MDE/MDA and the potential benefits of applying it to simulation

development. Some go on discussing how these benefits can be achieved.

In the scope of this thesis, we indeed do not argue for the desirability of applying

MDE to HLA, instead, we rely on the cogent arguments made in the relevant

literature. We adopt the view that model integrated computing is well suited for HLA

development and we go on to actually build a workable domain-specific metamodel

to realize the vision, where the domain is HLA. Contrariwise, our contribution is

unique in that it is the first metamodel fully accounting for HLA compliant federation

architectures from both static and dynamic points of view. Hence, a point-by-point

detailed comparison with the earlier literature does not seem fruitful.

Some recent studies [18, 19], albeit limited in scope, represent attempts at building

and utilizing metamodels to realize the potential of MDA/MDE. One is the Capsule

study which aims to apply the MDE methodology to the simulation study. In this

work, a metamodel for HLA related to the other simulation platforms (e.g., LIGASE

and ESCADRE) is created, but the metamodel is not intended to be a universal

metamodel of HLA, rather it is specific to its intended project and apparently not

appropriate for other needs [18]. In the words of the authors,

6

Please note that the HLA Meta-PSM presented here is not the

unique meta-representation of HLA, but it is the most suitable one

to be aligned with the other two simulation platforms for a generic

meta-modeling in the COCA study. That’s why this representation

is not the universal meta-model of HLA, and may not be

appropriate for other needs.

The other one [19] mentions a metamodel for HLA without elaboration, but it seems

geared toward the needs of a specific project. They discuss, in a paragraph, their

“FRG (Federation Rapid Generation) metamodel”, which is based on the HLA

metamodel. Further, “One of the main components of the FRG is the HLA

framework called RAL, which stands for RTI Abstract Layer”. These remarks, in

connection with other information in the paper, lead us to think that their

metamodel is also project specific. Please, note that we make a point of not

providing any abstraction layers on top of RTI. This would be effectively redefining

the standard interface within the confines of a particular organization. We

understand that some developers can find this approach convenient for their

specific projects. They can still benefit from our modeling technique for bringing in

their own metamodels.

The most important gap in the literature we reviewed is the lack of modeling

formalisms specifically addressing the behavioral description of HLA-compliant

federates. Sharing the MDE vision put forth in the recent literature, we lay the

groundwork to realize it. This thesis propounds a full-fledged metamodel for

federation architectures. The metamodel covers not only the static view reflected in

the OMT standard, but also the proposed dynamic view, based on Live Sequence

Charts (LSCs) and Message Sequence Charts (MSCs).

Providing both static and dynamic views of a federation is a tenet of the Base

Object Model (BOM) as well [20]. BOMs are reusable model components and “they

provide a mechanism for defining a simulation conceptual model and optionally

mapping to the interface elements of a simulation or federation using HLA OMT

constructs” [20]. BOM effort aims to support component-based development of

simulations, starting with the simulation conceptual model, while our work is

concerned with the architectural description of federations, formalized in sufficient

detail to allow model-based processing -code generation, in particular. The

following phrase is taken from [20].

7

While events and BOMs are used to represent pattern actions,

variations, and exceptions, the actual behavior modeling required in

carrying out a pattern action, variation, or exception by a federate is

an implementation focus, which is outside the scope of this

specification.

BOM template specification extends the HLA OMT to cover the conceptual entities

and events, and contains information on how such entities relate and interact with

each other. The BOM can be integrated to our proposed metamodel by replacing

the HLA OMT model part of the metamodel with a new BOM template metamodel.

The nested structure of our metamodel supports that kind of integrations.

Supporting component-based development within our metamodeling framework

would be worthwhile track to pursue in later studies.

An earlier use of MSCs in the HLA realm has been reported in [21], where MSCs

are used to specify the procedures to test individual federates for HLA Interface

Specification compliance.

Some studies propose extending Unified Modeling Language (UML) using its

extension mechanisms (a.k.a. profiling). Such a study, carried out by the author of

this thesis, is UML Profile for HLA Federation Design, which can be seen as

development of HLA-specific extensions to UML to support a more formalized and

standardized description of the federation, federate design, and documentation

issues [22, 23]. The work is not completed because the authors shifted stance on

UML profiling approach to a more powerful metamodeling approach. Another

similar study [24] presents an extension as stereotyped in Rational Rose for the

HLA OMT. The model is simply another rendering of OMT, where stereotyping is a

mechanism of UML profiling. This study only sketches the static OMT. For a

discussion of metamodeling vs. UML Profiling, see [12].

1.4 Objectives and Scope

The main objective of this thesis is to formalize the federation architectures, so that

a federation architecture can be put into a machine processable form, thereby

enabling tool support for the code generation and the early verification of the

federation architectures.

One of the requirements anticipated is to eliminate the limitations of OMT and

FEDEP and thus to bring dynamism into the architectural descriptions.

8

The benefits of applying MDA to HLA-based distributed simulation area has been

discussed in literature but our contribution is unique in that it is the first metamodel

fully accounting for HLA compliant federation architectures from both static and

dynamic points of view. While realizing this, domain specific metamodeling, which

is one of the current research threads, is adopted.

The overall effort is directed towards building an HLA Federation Design and

Development Framework.

As a by-product, the MSC and LSC metamodels that cover the entire standard

MSC and LSC features are prepared separately from FAMM. Thus, they can be

used in other research and development areas.

Moreover, FAMM can be used to extract usable views to support federation

designers. Such a usable view is the Publish and Subscribe (P/S) Diagrams, which

are design artifacts to focus on the object/interaction interests among the

federates. From a federation architecture conforming to FAMM, the P/S models

can be automatically generated using the P/S model builder developed in this

study.

The metamodel presentation is accompanied by an example: the Strait Traffic

Monitoring Simulation (STMS). On a larger scale, the architectural modeling of

Naval Surface Tactical Maneuvering Simulation System (NSTMSS) [25], a

distributed interactive simulation, is carried out using FAMM and is presented in

Appendix B.

1.5 Technology Overview

1.5.1 High Level Architecture

“HLA provides a common framework and approach for distributed simulations and

virtual worlds to share information and capabilities, to expand interoperability, and

to promote reuse and extensibility” [26]. HLA is a set of specifications which include

the HLA Rules, Interface Specification and the Object Model Template.

HLA was developed under leadership of the U.S. Defense Modeling and

Simulation Office (DMSO). The HLA was approved as an open standard through

the Institute of Electrical and Electronic Engineers (IEEE), namely IEEE Standard

1516, in September 2000. The standard embodies four related standards shown in

Table 2.

9

Table 2. IEEE 1516 Standards

STANDARD EXPLANATION

IEEE 1516-2000 IEEE Standard for Modeling and Simulation (M&S) HLA Framework
and Rules.

IEEE 1516.1-2000

Errata to IEEE 1516.1

IEEE Standard for M&S HLA Federate Interface Specification.

Correction Sheet issuued 16 October 2003

IEEE 1516.2-2000 IEEE Standard for M&S HLA Object Model Template Specification.

IEEE 1516.3-2003 IEEE Recommended Practice for HLA Federation Development and
Execution Process

The HLA is mainly comprised of three elements:

HLA Rules: “A set of rules that must be followed to achieve proper interaction of

simulations (federates) in a federation. These describe the responsibilities of

simulations and of RTI in HLA federations” [1].

Interface Specification: “The HLA Interface Specification defines the interface

between the simulation and the software that will provide the network and

simulation management services. RTI is the software that provides these services”

[2].

Object Model Template: “The OMT describes a common method for recording the

information that will be produced and communicated by each simulation

participating in the distributed exercise” [3].

1.5.2 Tools

1.5.2.1 Generic Modeling Environment

GME is touted as “a domain-specific, model-integrated program synthesis tool for

creating and evolving domain-specific, multi-aspect models of large-scale

engineering systems” in [11]. GME is an ongoing academic research project at

Vanderbilt University, in which the source codes are public.

GME is used as the primary tool for both metamodels and models introduced in

this thesis. Metamodels are defined in modeling paradigms using MetaGME, the

GME meta-metamodel. After describing the metamodel, the GME creates a design

environment for domain models once this metamodel is invoked. Then the

generated design environment can be used to design domain specific models (e.g.,

FAM).

10

Currently, GME version 7.6.29 is used in this study. Figure 2 depicts a typical GME

user interface.

Figure 2. GME Screenshot

A detailed explanation of the GME and its concepts can be found in [11].

1.5.2.2 Microsoft Visual Studio .NET Integrated Development Environment

Microsoft Visual Studio .NET provides a complete set of development tools for

building applications. Visual Basic .NET, Visual C++ .NET, Visual C# .NET, and

Visual J# .NET all use the same integrated development environment (IDE), which

allows them to share tools and facilitates in the creation of mixed-language

solutions.

Microsoft Visual Studio .NET is used as the primary IDE tool to develop a model

interpreter for the metamodels and the models introduced in this thesis. Currently,

version 8.0 (2005) is used.

1.6 Typeface Conventions

This thesis uses the following typeface conventions:

 All code examples/snippets are printed in a Book Antiqua Font.

11

 At the first introduction or definition of a major term, the term is shown in

italics.

 All references to classes, attributes, and other elements of a model are

shown in Courier New Font.

 General emphasis is shown in italics.

1.7 Summary of Chapters

The preceding sections of this chapter outline the motivation and background of

the study, presents the development context and the objectives, discusses the

related work, and then gives a technology overview and tools used during the

study. The remaining chapters are broken down as follows:

 Chapter 2 provides at-a-glance information about the HLA development

vision, including a methodological and a lifecycle view.

 Chapter 3 through Chapter 5 expounds upon the proposed Federation

Architecture Metamodel by giving detailed examples of the metamodel

elements.

 Chapter 6 presents the model integration and extensibility capabilities of

the proposed metamodel.

 Chapter 7 lays out an assessment for FAMM.

 Chapter 8 outlines the results achieved as a result of this work and points

the way ahead.

 Appendix A explains the Federation Architecture Modeling Environment

(FAME) and presents a running example: Strait Traffic Monitoring

Simulation.

 Appendix B presents a modeling study, a case study with NSTMSS.

 Appendix C gives an analysis for the HLA services and presents the

transition tables between the HLA services and the HLA methods library.

 Appendix D presents the details of the HLA arguments for the library

developers.

12

CHAPTER 2

2. FRAMEWORK FOR HLA FEDERATION DESIGN AND
DEVELOPMENT

The material in this chapter is adapted from [10]. A supporting life cycle for the

framework is presented in [25].

2.1 Methodology

It is important to explicitly state the development context, where this metamodel

fits, in order to clarify the purpose and the use of the metamodel. The development

context is put forth by articulating a methodological view emphasizing models and

transformations.

Adopting the Model Driven Engineering approach [6], development steps can be

seen as a series of model transformations. In our view, HLA-based distributed

simulation development basically comprises a conceptual model, federation

architecture model, detailed design model, and federation (in executable form).

Figure 3 depicts the basic models. Each layer of models corresponds to a distinct

level of abstraction, for example, while the conceptual model layer is related to

domain entities, detailed design model layer is related to software objects.

13

CONCEPTUAL

MODEL

Representation:

Formal: Domain Metamodel

Informal: Paper-based Approach

FEDERATION

ARCHITECTURE

MODEL

Representation:

Federation Architecture

Metamodel (FAMM)

Cfrigate

Cmeko

CcommCen Chelm Ceot Cgps Chydrodynamics

CUIcommCen CUIgpsCUIshipConCen

CmsgDispatcher

CUIcontroller

1

*

1

1

1

1

1

1

1

1

1
*

aggregation

inheritance

Cofficer -OOW

*

-navigates

1
*

*

Cradar

CUIradar

1

1One-way association

C3DmainVP C3DcVP C3DradarVP C3DctiVP

C3D

DETAILED

DESIGN

MODEL

For

Computational

Part

Real Life Problem

Federation

Architecture Verification

Informal

CM

SME Review

Informal CMFormal CM

Scenario-based Validation

Simulation Scenario DB

FEDERATION

in

Executable

Form

Real Life

Entites

Simulation

Objects

Software

Objects

Simulation

Domain

Problem

Domain

Transformation-1

Legend

Transformation

V&V Activity

Abstraction

Layer

Federate Application

Base Code Generation

(automated)

Federate

Computation Aspect

Coding (manual)

Input/Output

Federation Scenario DB

Abstraction

Line

AFdAFd
For (int i=0;i<100;i++){

C++;
This-

>GetHandle();
}l

Code Generation

Figure 3. Development Methodology for HLA-Based Distributed Simulations

2.1.1 Conceptual Model

CM is the model of the reality with which the simulation is concerned. Simulation

Conceptual Models serve a variety of purposes. From the users perspective,

conceptual model provides a documentation to understand the simulation

capabilities and limitations. From the developers’ perspective, conceptual model

serves as an agreement about what is to be developed. It represents how

developers understand the problem domain. From a communication perspective,

conceptual model serves as a communications link between users and developers.

The methodology suggests two representations of conceptual model; namely,

informal conceptual model and formal conceptual model.

14

Informal CM will be used especially by the sponsor and the user group, which we

can call CM users. Informal CM will help CM users to assess the capabilities and

the intended focus of the simulation without any technical background. Informal CM

can easily be validated by a domain expert, who generally has no technical

background of the simulations and the software. We can accept this as the main

technique for conceptual model validation. Meanwhile, being informal does not

imply being unformatted. The scientific paper-based approach [28, 29], promoted

by DMSO, can be used for representation of the informal CM.

On the other hand, formal CM representation will be directly used by the CM

developers, who may modify or redevelop the conceptual model. At the same time,

formal CM can be applied to solve disputes when there is an uncertainty or a

disagreement in the informal CM (e.g., two people can infer different things by

reading the same sentence in informal CM). Another main objective of formal CM is

to transform a conceptual model into machine-processable form. In this respect, it

will be possible to provide the conceptual model to all kinds of software tools (e.g.,

verification and validation (V&V) tools, HLA federates) and software agents (e.g.

web robots). Note that it may not always be practical to formalize the entire

conceptual model (e.g., CM may include some photos, charts, etc.).

Conceptual models, in the view of the presented methodology, are elucidated and

discussed in [10].

2.1.2 CM Validation Using Scenarios

Scenarios can be used as a supporting validation technique for formal CM

validation. Simulation requirements are captured as use cases by using use case

requirements analysis techniques [30]. These use cases (a.k.a. use case

scenarios) provide the main part of the simulation scenarios. Then, CM will be

meaningful according to its level of support for scenarios. The meaning of support

should be defined operationally within the overall problem domain. Simply, entities,

actions, relationships, states, and parameters implied by scenarios should exist in

CM representation.

Scenario-based CM Validation is discussed and explained in [10].

2.1.3 Federation Architecture Model

Federation Architectural Metamodel, which is the main concern of this thesis, will

be discussed at length in the subsequent chapters.

15

2.1.4 Federation Architecture Verification

Federation architecture verification is to check that FAM does what it promises and

whether it is consistent within itself.

2.1.4.1 Static Verification

The federation scenarios can be used to verify the federation architecture. The

main idea is that if the federation scenarios can be “played” with the current

federation architecture, then it can be asserted that the FAM is a reliable model.

Playing the scenario in the design phase means static model checking

(decomposition of Federation Scenario LSC into the corresponding federate HLA-

specific LSCs).

Both Federation scenario(s) and FAM can be represented using LSCs. Therefore,

the static model checking can be performed using the model interpretation over

both LSCs where Federate LSCs must include the Federation Scenario LSC.

As seen in Figure 4, the FAM in the representation layer is used to model FOM and

federate behaviors, domain scenarios in the conceptual layer are used to model

the federation scenarios.

The ideas presented here for the static verification of a FAM is noted as a future

work.

Federation Layer

Representation Layer

Instance of

FOM
+ n x Federate LSCs

HLA Federation

Metamodel
LSC Metamodel

Federation

Architecture

Metamodel

Federation

Architecture Model

m x Domain Scenario

LSCs

m x Federation Scenario

LSCs

Conceptual Layer

Static Model Check

Figure 4. Static Federation Design Verification

16

2.1.4.2 Dynamic Verification (Runtime Verification, Monitoring)

Verification can be interpreted in the dynamic (federation execution) sense.

Dynamic verification is based on the automatic code generation.

Model-based code generation for HLA federates from the given FAM that conforms

to FAMM is discussed and explained in [31].

2.1.5 Detailed Design Model

Detailed design briefly depicts the internal structure (computational model) of the

federate components in detail and it is the critical design effort before the

implementation, and can be seen as the skeleton of the components.

At the end of the federation design activity, if the components, which compose the

distributed simulation, are ready at hand, then there is no need for a detailed

design. However, if federation design model implies a requirement to develop a

new component or to modify an existing component, then a detailed analysis and

design that is focused on the component must be conducted.

It will be a complementary approach to use object oriented analysis and design

techniques and UML in designing each federate’s internal structure.

A typical internal structure of a federate is recommended in [10] and this internal

architecture has been applied successfully in the development of some naval

federations [25 and 32].

2.1.6 Transformations and Code Generation

“A transformation is the automatic generation of a target model from a source

model, according to a transformation definition, which is a set of transformation

rules that together describe how a model in the source language can be

transformed into a model in the target language” [33]. The transformations

(including code generations) defined in this framework are summarized in Table 3X.

17

 Table 3. Transformations

TRANSFORMATION SOURCE MODEL TARGET MODEL

Transformation – 1 (T1) Domain Model (e.g., a model
conforming to Field Artillery
Metamodel)

FAM (conforming to FAMM)

Code Generation for HLA FAM (conforming to FAMM) Aspect Java Code (by the
generator)

Code Generation for
Computational Model

FAM (conforming to FAMM) Java Code (by the user)

FAM is being used to generate RTI related code automatically. For the

computational parts, standard programming techniques can be used. Detailed

design model is the major source model that helps generate the software skeleton

for federate’s computational part [31].

18

CHAPTER 3

3. FEDERATION ARCHITECTURE METAMODEL

FAMM provides a domain-specific language for the formal representation of the

HLA-compliant federation architectures. This chapter outlines its structure,

presents the behavioral metamodel and gives a user perspective.

3.1 FAMM Structure

The Federation Architecture Metamodel is comprised of two main sub-metamodels:

the Behavioral Metamodel (BMM) for specifying the observable behaviors of the

federates and the HLA Federation Metamodel (HFMM) for defining both the HLA

Federation Object Model (FOM) and the service interface. These two metamodels,

included as GME libraries, are connected through a GME paradigm, named Model

Integration. The structure of FAMM is depicted in Figure 5. BMM is a logical

container for the LSC Metamodel (LMM), which is extended from the MSC

Metamodel (MMM). HFMM is composed of the HLA Object Metamodel (HOMM),

Federation Structure Metamodel (FSMM), and HLA Services Metamodel (HSMM).

Lastly, the Publish/Subscribe Metamodel (PSMM) is included as a derivative

metamodel in order to illustrate the extraction of utility metamodels from the core

FAMM. Once the federation architecture is modeled conforming to FAMM, a model

interpreter can traverse this model to extract the federation publish and subscribe

view and then display it as P/S diagrams [22, 23].

Metamodels support each other in a way that an element defined in one model can

be used in other models. For example, any method parameter that occurs in

HSMM is accounted for by HOMM. Nevertheless, each sub-metamodel can be

used independently. This was a main concern in devising the structure of FAMM. In

particular, the Metamodel for Message Sequence Charts as well as Live Sequence

Charts can be used to model the MSCs/LSCs for any system of communicating

components, not only for distributed simulation components. In the same vein, the

19

HOMM stands on its own and can be used to generate useful artifacts, such as the

FOM Document Data (FDD) [34].

Federation

Architecture

Metamodel

(FAMM)

Behavioral Metamodel (BMM)

HLA Federation Metamodel (HFMM)

Publish/Subscribe

Metamodel

(PSMM)

HLA Services

Metamodel

(HSMM)

Federation Structure

Metamodel

(FSMM)

xxx (Meta)Model

Library

“includes” relation

LegendModel Integration

Metamodel

HLA Object Metamodel (HOMM)

Object Model

OMT Core

Metamodel

LSC Metamodel (LMM)

MSC Metamodel

(MMM)
--- Logical Model

Figure 5. Federation Architecture Metamodel Structure

The implementation of FAMM in GME is depicted in Figure 6. HFMM and LMM are

included as GME libraries.

Figure 6. Federation Architecture Metamodel in GME

20

One may visualize a (meta)model as a graph whose nodes correspond to concepts

and edges to relationships. Thus, the following table should give a rough idea

about the size of FAMM. Concepts include the GME stereotypes: atom (models,

atoms, FCOs, attributes, references, and inheritances), model (paradigm sheet),

set (aspects), and folder. Reference stereotype (proxy) is excluded. Relationships

include GME connections.

Table 4. Size of FAMM
1
 and Its Sub-metamodels

Sub-metamodel Number of Concepts Number of Relationships

BMM 326 397

HFMM 454 369

Model Integration 20 35

Total 800 801

Figure 7 depicts the “conforms to” relationship between the Federation Architecture

and FAMM. A Federation Architecture encompasses an object model and LSCs for

each participating federate. The LSCs of a federate manifest its interaction with the

RTI and possibly with other entities (e.g., users and live entities), and so they

describe the federate’s observable behavior. The Federation Architecture

Metamodel provides the underlying language to describe the federation

architectures. Each participating federate’s behavior is modeled conforming to

BMM and HSMM. The FOM is constructed in conformance with the HLA Object

Metamodel and the Federation Structure Metamodel.

FOM + n x Federate LSC

HOMM + FSMM BMM + HSMM FAMM

FAM

Conforms to Conforms to

Figure 7. Relationship Between a Federation Architecture and the Metamodel

1
 For FAMM version 20071217.

21

3.2 User Perspective

The Federation Architecture Modeling Environment for users is made available by

GME once FAMM is invoked as the base paradigm. The screen shot in Figure 8

shows an example-modeling environment, for FAMM users, who are typically

federation designers. GME allows creation of a project for developing a new

federation architecture. Figure 8 presents a screen shot of the project for the STMS

federation architecture. The root folder (e.g.,

StraitTrafficMonitoringSimulation in the screen shot) serves as a project

container for the federation architecture. It includes three major sub-folders,

namely, federation structure, behavioral models, and federation models. The

federation structure folder contains information about the federation, such as the

location of the FOM Document Data file, the link for the related FOM, and the

structure of the federation, where the participating federate applications and their

corresponding Simulation Object Models are linked. The folder for behavioral

models includes an MSC document for each participating federate. The federation

model folder includes the FOM, SOMs, and the other Object Model Template

related information (e.g., data types, dimensions, etc.). In the example, SOMs for

ship and station applications and a FOM for the STMS federation are provided.

There are auxiliary libraries that can be readily attached to a project. Three libraries

are currently provided: IEEE 1516.1 Methods Library, IEEE 1516.1 Management

Object Model (MOM) Library, and IEEE1516.2 HLA Defaults Library. In the

example, the methods library (designated with a book icon) is attached to the

project.

Detailed explanation for FAME is provided in Appendix A.

22

Root folder is the main project

folder. It contains all the

models for federation

architecture

Behavioral models folder

embodies the behaviors of the

participating federates. It

includes the MSC documents

and the sequence charts.

Federation model folder

contains the FOM, SOMs, and

other object model related info

(e.g., dimensions)

Federation structure folder

includes the federation

structure where the static

structure of the federation is

specified.

HLA Services folder is

attached as a GME library. It

includes all the management

services in HLA interface spec.

P/S model is an utility model,

which depicts the federation P/

S structure.

Info about the project

Figure 8. Federation Architecture Modeling Environment (FAME)

3.3 Behavioral Metamodel

The Behavioral Metamodel provides an abstract syntax for specifying the

observable (primarily, as witnessed by the RTI) behaviors of a federate. Forming

precise behavior models of the participating federates along with their object

models gives us the ability to exercise a federation architecture. In a fully

automated exercise, intra-federation communication will follow the specified

patterns; the communicated values, however, will not be correct. Taking a step

23

towards complete federate application generation, the developer can weave the

computation logic onto the generated code.

Modeling the behavior of a federate can involve not only the HLA-specific behavior

(e.g., creating regions in runtime, exchanging ownership of the objects, etc.), but

also the interactions between the components of the federate and the actors (e.g.,

interactive users and live entities) in the environment.

A fundamental decision is to adopt Live Sequence Charts, and in turn, Message

Sequence Charts as the basis for the behavioral modeling of the federates. LSCs

are chosen among the alternatives such as UML sequence charts and activity

diagrams, to model the federate’s behavior because (1) they are currently active

research topic, (2) they are suitable to extend and customize, (3) LSCs allow a

distinction to be made between mandatory and possible behavior, which is

believed important for the behavior specification for federate and federation.

The observable behaviors of a federate are represented by means of LSCs,

specialized for HLA federates. Specialization involves, in essence, formulating the

RTI methods as MSC/LSC messages and integrating the HLA Object Model as the

data language of MSC/LSC. Initially, MSC is formalized as the basis of the

behavioral metamodel, and then LSC extensions are added on top of the MSC

metamodel. Note that BMM covers all the standard MSC features [36] and the

proposed LSC extensions [37] as long as they do not conflict with the MSC

standard (e.g., an MSC loop is used instead of LSC iteration).

As an example, consider the graphical and textual representation of an MSC

diagram presented in Figure 9, where the basic MSC elements such as instance,

message, action, and condition are depicted. Here, instance i creates the instance

j. Afterwards, j performs some initialization action and then if condition C is true, j

sends a message to i and terminates.

24

Graphical RepresentationGraphical Representation

i

j

A

message

action

instance

instance end

Condition C

Instance

creation

Instance

termination

Textual RepresentationTextual Representation

msc example;

 instance i;

 create j;

 condition C;

 in message from j;

 endinstance;

 instance j;

 action A;

 condition C;

 out message to i;

 stop;

endmsc;

Figure 9. Graphical and Textual Representation of an MSC Diagram

The technical details of the main sub-metamodels of BMM: MSC and LSC

Metamodel and the utility of MSC/LSCs in behavioral specifications are presented

and discussed in Chapter 4. HLA Federation Metamodel is presented in Chapter 5.

Integrating the HLA Federation Metamodel (i.e., data model) and the Behavioral

Metamodel (i.e., action model) is presented in Chapter 6.

25

CHAPTER 4

4. LSC/MSC METAMODEL

One of the main objectives of visual modeling languages is to provide a

representation suitable to specify, design, and analyze systems. The system

representation must be precise enough to support automated processing,

specifically, generation of useful artifacts, such as the source code. Modeling the

observable behavior of a system is considered as an important part of the system’s

specification. There are some visual modeling languages that are aimed at

behavior specification, such as UML Sequence Diagrams, Message Sequence

Charts, and Live Sequence Charts.

In this respect, MSC, which is standardized by ITU, is a formal language that

enables one to specify the interactions among the components of a system. MSCs

are commonly used in the telecommunication area [35, 36] for protocol and service

specification. LSCs [39] have been proposed as an extension to MSCs so as to

allow distinguishing between the mandatory and the possible behavior of the

system.

The proposed metamodel defines a domain-specific language for the formal

representation of MSCs and LSCs. The metamodel supports the definitions of

transformations. Specifically, it supports base code generation from a described

behavior. The metamodel’s facility of integration with domain-specific data models

plays a critical role to achieve useful transformations.

To the best of our knowledge, a metamodel that would admit particular

MSCs/LSCs as models, has not been put forth in the literature.

Code generation from MSC/LSC is still an on going and an open challenge for

researchers. Automatic code generation plays an important role in early validation

of the model after the behavior of a system is described using the MSC/LSC.

Despite the fact that a play engine is proposed in [42] as an implementation

26

mechanism for LSC, it only provides a simulation of the execution of the LSC

diagrams by playing out scenarios and thus helps testing and observing of system

behaviors; but it does not attempt to generate code, and more importantly, it is not

extendible due to its fixed data model, and not customizable for domain specific

modeling. In contrast, our metamodeling approach, due to its data model

integration capability, gives power to the user to extend or tailor his1 application

code generator or interpreter in accordance with his data model.

The metamodeling study is conducted by taking textual language for MSCs as a

starting point. A feedback loop is established between metamodeling and code

generator development activities. Each one proceeds in parallel: metamodeling

provide the input to code generation and the latter provides the feedback to the

former.

This chapter first presents and discusses the challenges in making the major

modeling decisions, then MMM is presented. Extending MMM for LSC Metamodel

is discussed afterwards. The material in this chapter has appeared as a technical

report [55].

Examples of actual use of the metamodel elements are provided while introducing

the metamodel instead of presenting them in a distinct section.

4.1 Metamodeling Approach and Design Principles

This section expounds various design decisions, principles, and metamodeling

approach taken concerned with the code generation support.

As a summary, the following metamodeling design decisions and principles are

taken:

 For modeling level,

 For constructing a syntax tree for each instance,

 For employing references for the design of the multi-instance elements,

 For supporting cardinality constraints by design,

 For element uniqueness,

 For dispersing abstract syntax trees for each chart.

1
 “He” and “his” is used as replaceable with “she” and “her”, respectively.

27

4.1.1 Modeling Level

In this study, we adopt a syntactical view of metamodeling in that the metamodel

serves as a metalanguage (or grammar) for the object language, which, in our

case, consists of syntax for MSC/LSC based on their concrete textual syntax,

which has a formal standard in case of MSC.

The semantics of a chart is defined in the standard [36] as a partial order of events.

Of course, the code generation process must guarantee that any event sequence

observed while the generated code is running respects the partial order specified

by the chart.

Message Sequence Charts and Live Sequence Charts can be represented, in a

standard way, graphically or textually. The textual form is intended to facilitate

exchange between tools and to serve as a basis for automated analysis.

The MSC/LSC language definition offers two principal means for the textual

description. First, an MSC/LSC can be described by giving the behavior of all

instances separately, which is called instance-oriented textual syntax. The other

one is called event-oriented textual syntax where events are listed as they are

encountered while scanning the MSC/LSC from top to bottom [35]. As an example,

the graphical and textual representation of an MSC diagram is presented in Figure

10.

Figure 10. Graphical and Textual Representations of an MSC Diagram

While constructing the metamodel, instance-oriented textual syntax, which is based

on the concrete textual grammar and lexical rules defined in Backus-Naur Form

(BNF) [36], is assumed as the concrete syntax. In addition, some non-terminals,

GRAPHICAL REPRESENTATIONGRAPHICAL REPRESENTATION EVENT-ORIENTED TEXTUAL REPRESENTATIONEVENT-ORIENTED TEXTUAL REPRESENTATION INSTANCE-ORIENTED TEXTUAL REPRESENTATIONINSTANCE-ORIENTED TEXTUAL REPRESENTATION

A B

m1

m2

a1

msc ex1;
 A: out m1 to B;
 B: in m1 from A;
 B: action a1;
 B: out m2 to A;
 A: in m2 from B;
end msc;

msc ex1;
 instance A
 out m1 to B;
 in m2 from B;
 end instance;
 instance B
 in m1 from A;
 action a1;
 out m2 to A;
 end instance;
end msc;

28

defined in the textual grammar and in the lexical rules, are carried over to the

metamodel.

One of the modeling issues was to decide which non-terminals would be included.

The problem is to select the “essential” versus “nonessential” non-terminals so that

only the essential ones are carried over to the metamodel.

As a rule of thumb, the essential non-terminals are identified as those constituting a

“building block”, from the syntactical perspective a significant syntactic category

and from the semantical perspective, having an intuitive meaning. For example, the

non-terminal, Input Address, is defined by a production rule expressed below

[36]:

 <input address>::=<instance name>|{env|<reference identification>}[via<gate name>]

The input address specifies the MSC elements that can be connected to an MSC

message. As it is regarded as an essential non-terminal in the sense described, a

metamodel element, Address Connection, for representing a connection

between a message model element and an input/output address element (e.g.,

environment), is created. Another example, Orderable Event, is defined in the

textual grammar. Most events are categorized as orderable according to their

connectability with the instance axis. Furthermore, some lexical rules refer to

orderable events, for instance, a rule states that the MSC general ordering

elements (i.e., before and after) could be connected with the orderable events.

Eventually, the orderable event constitutes a building block and a corresponding

modeling element is constructed (as an abstract element) in the metamodel. Thus,

to express the aforementioned rule, it is sufficient to define a connection between

the “general ordering element” and the “orderable event” modeling elements.

In contrast, the nonessential non-terminals can be seen merely as BNF artifacts,

serving as stepping stones to define the essential ones. For example, Action

Statement is regarded as a non-essential non-terminal as it is simply used to

define the actions.

Note that those non-terminals included in the metamodel serve as abstract

modeling elements, so that the modeler cannot use them in constructing an

MSC/LSC model directly. They are used to structure the metamodel and to provide

traceability of the MSC metamodel with the BNF grammar for the textual syntax

given in the standard.

29

4.1.2 Using Abstract Syntax Trees for Each MSC/LSC Instance

Constructing an abstract syntax tree for each instance (representing a system

component whose behavior is under observation), was a major metamodeling

design decision. Instance-oriented representation leads to isolated trees for each

instance due to its definition. Although this approach simplifies the code

generation, when two or more instances are involved, it adds superfluous modeling

work (e.g., modeling the interactions for each instance separately) for the modeler.

4.1.3 Designing Multi-instance Elements

Some MSC/LSC elements may be connected to more than one instance. These

are called Multi-instance Elements (a.k.a., shared elements). They are inline

expressions, reference expressions, conditions, pre- and sub-charts. Separate

instances make it hard to interpret the shared elements between the instances.

The metamodel must reflect a shared element as a unique element to both the

modeler and the code generator.

The use of copies of the multi-instance elements in each shared instance model as

distinct modeling elements is not appropriate. If a multi-instance element is shared

among multiple instances, each modeling element corresponding to multi-instance

element must be the same. For instance, if an attribute value (e.g., name of the

element) is changed in one instance, then the other copies must be changed

automatically.

A straightforward design approach for such elements is to connect directly the

shared events with the instances that share them. So, the metamodel allows

multiple connections for shared events. This approach is called multiple connection

method. However, for complex charts that have many instances and shared

events, this approach will hinder the readability of the chart because of many

connections between the shared events and instances. Consequently, to overcome

this obstacle, the references (“pointers” to other model elements) between

modeling elements are devised in the metamodel. Actually, there must be only one

multi-instance event to be shared by instances. This sharing is done via GME built-

in references and this mechanism is called Referencing Mechanism, which works

as follows: the multi-event element must only be used in one of the instances. In

the other instances, references to this element are used for sharing. As all the

references point to the same element, they share the properties with the

30

referenced element. If an attribute value is changed (at model building time) in the

multi-instance event, then the references reflect this change.

The examples for the usage of multiple connection method and referencing

mechanism are presented in (a) and (b) of Figure 11 respectively. In the figure,

condition is a shared element between instances i and j. In (a), instances are

directly connected to the condition, while in (b), a condition reference element is

used to substitute the original one.

(a) Using Multiple Connections to

refer a shared element

(b) Using Referencing Mechanism to

refer a shared element

Figure 11. Modeling Multi-instance Elements

The referencing mechanism is also used in event referencing. General ordering

elements may point out to the events defined in the other instances found in the

chart. This is done connecting the ordering element with the event references.

Moreover, the input and output message events between instances are shared by

using the event references. To facilitate this, each event has also a corresponding

reference (e.g., message output event has a reference to itself).

4.1.4 Cardinality Constraints

The metamodel supports cardinalities. The cardinality constraints for the

relationships are preserved by the metamodel structure. For example, Figure 12

depicts two kinds of cardinality constraint for relationships: (1) an instance must

have only one instance end, (2) instance end must be connected only once to the

instance.

31

Figure 12. Cardinality Constraint

If the modeler violates a cardinality constraint, then GME Constraint Manager

automatically generates a warning as seen in Figure 13.

Figure 13. GME Constraint Manager Screenshot

Further constraints that cannot be enforced by metamodel structure, such as

semantic/business/domain constraints, can be formulated using the Object

Constraint Language (OCL) [27]. GME allows the constraints in OCL to be included

First Case: Part-of relation

cardinality constraint
Second Case: Connection

cardinality constraint

32

in the metamodel. OCL utilization in the LSC/MSC metamodel is noted as a future

work.

4.1.5 Element Uniqueness, Naming, and Naming Scope

In the MSC standard, naming provides element uniqueness to distinguish among

the same type of MSC/LSC elements. At the model level, for uniqueness of model

elements, using unique names is not necessary. Because, the metamodel does not

depend on the naming constraint for uniqueness, but rather it uses stronger

constraint mechanisms (i.e., using references and connections). The modeler is

free to use the same names for the same kind of elements. This approach also

eliminates the message-overtaking problem, which occurs in textual

representations of MSCs. The problem is that when two messages with the same

name are sent, message instance naming is required for a unique correspondence

between message input and output [36].

Note that when a modeling element is created in GME, GME automatically assigns

the type of the element as the default name. Therefore, a separate name attribute

is not defined for each modeling element. Uniqueness of model element names in

the generated code is guaranteed by appending a portion of the GME-provided ID

to the name in the model.

On the other hand, naming scope has an impact on code generators. Therefore,

the MSC metamodel conforms to the naming scope specified in [36] in terms of

declarations of elements. The root folder of the model is the scope for defining the

MSC documents. An MSC document is the scope for defining charts, instances,

conditions, timers, messages, and variables. An MSC is the scope for gates and

MSC formal data parameters. Metamodel only allows legal declarations according

to the scoping rules. Declaration of elements is discussed in MSC data concepts

section.

4.1.6 Multiple Branches of an Instance in Different Charts

Axis of an instance may be scattered among more than one chart. Figure 14

presents an example. In LSC charts, pre-chart and body are in fact two sub-charts.

Thus, the axes of both instances A and B are dispersed between these sub-charts.

33

Figure 14. Multiple Braches for Instance Axis

Owing to the events that are dispersed into the sub-charts, each chart must be

traversed by the model interpreters (e.g., code generator) to generate a complete

abstract syntax tree for an instance.

4.2 MSC Metamodel

The MSC Metamodel is the basis for the Behavioral Metamodel where MSCs can

be used to model the observable federate behavior. MMM includes all the MSC

constituents, time concepts, data concepts, and High-level MSCs (HMSC)

specified in [35, 36].

The hierarchical structure of MMM is depicted in Figure 15. MMM is formed by four

main containers (i.e., folder in GME parlance), namely, Auxiliaries, Basic

Constituents, Data Concepts, and Time Concepts.

Main LSC Chart

A B

m1

m2

Prechart

Body

34

Figure 15. The MMM Implementation View (GME Screenshot)

The MSC documents, diagrams, instances, messages, comments, ordering

elements, coregions, actions, references, inline expressions, gates, and timers are

all defined in the Basic Constituents folder. Time concepts folder includes time

measurement, time interval, time offset, and time point modeling elements.

Auxiliaries folder includes the associations and events (e.g., message events: in

and out) between the MSC elements. Data Concepts folder includes the data

related elements such as arguments and expressions.

In the following sections, the basic constituents, data concepts, time concepts, and

lastly the auxiliary metamodel elements are introduced. Elementary knowledge on

MSCs, as provided in [40 and 41], is required for the succeeding discussion.

35

4.2.1 Constituents

4.2.1.1 MSC Documents

An MSC document (mscdocument) groups a number of MSCs and determines a

namespace. An MSC document has two major model elements: the document

head and body. As GME allows us to define roles for associations, body acts as

both a defining container and a utility container.

The document head contains the declaration lists of messages, instances, and

timers, which are used as types for the counter-part elements (instances) in the

charts whereas the charts (i.e., MSCs) are defined in the defining or in the utility

part. MSC documents define an instance kind for the other MSC elements. A

document may use or inherit the other instance kinds by referring to the document

by means of the “Using” and “Inherit” model elements. The document head also

contains a data definition part, which specifies the data language, data, and the

wildcards for referencing an external data model/language.

The charts in the defining part are the public charts while the ones in the utility part

behave like private charts, which are used merely by the defining charts.

Model interpreters, particularly the code generator, traverse the MSCs in the

defining part for each instance found in the instance list of the MSC document. For

the modeler, an attribute, named Chart Order Index, is defined to guide the

chart execution/interpretation order of the model interpreters. If required, this

attribute can be set by the modeler. Similarly, for multiple documents in a model,

the order of the documents may be specified by the Document Order Index.

Lastly, the MSC document contains an optional attribute related to specify the

pathname of the document, to which the MSCs refer. The structure of the

document model element is depicted in Figure 16. Additionally, the right pane of

the screen shot gives a top folder view of the MSC metamodel.

36

Figure 16. The Structure of MSC Document Model Element

Figure 17 and Figure 18 present an example about the usage of MSC documents.

The examples are mostly taken from [35, 36]. Corresponding model for Figure 17 is

presented in Figure 18.

mscdocument ACContext

inst ACSystem, inst User, inst Supervisor, inst NewUser

language C; wildcards __; data #include cdefs.h;

UserAccess

PIN_Change

NewUser

EstablishAccess

OpenDoor

GivePIN

Figure 17. Example from (Figure 23 of) [36].

In Figure 18, the right top pane depicts a tree structure of the MSC document, the

left top pane shows only the document head model, the right down pane shows the

37

data definition attributes, and the left down pane shows the model elements that

can be used in document head model.

Figure 18. Corresponding Model for Document Example (GME Screenshot)

4.2.1.2 Charts

A Message Sequence Chart determines a partial order on the events that

constitute the behavior of a system. The behavioral description given by an MSC,

however, may not be complete description. MSC is the main model where most of

the model elements (e.g., events, messages, conditions etc.) are contained. MSC

model is presented in Figure 19.

MSC has two parts: the head and the body. The head, which is optional, contains

the MSC parameters and an offset for time. The body, which is compulsory,

contains either an MSC body or a HMSC. MSC body (also can be seen as the

MSC itself) contains the abstract syntax trees of each instances where the

interactions (a.k.a. events) of an instance are specified. The instances, messages,

38

and timers that declared in the MSC document are used in the MSC body. The

instance (or instance reference) is the root node for the abstract syntax tree.

Figure 19. Chart Paradigm Sheet

To enforce the constraint “MSC must have a body as either an MSCBody or HMSC”,

first, the cardinality of association between MSC and body elements is set to one

and then, a new element (i.e., body) is introduced as a GME First Class Object

(FCO) class which is mandatorily abstract, to group the “either/or” elements (i.e.,

MSCBody and HMSC respectively).

4.2.1.3 Instances and Instance Decomposition

An instance is the root for the abstract syntax tree ended with one instance end

(endinstance). Instance is an entity on which events can be specified. They are

declared in the enclosing MSC document.

All model elements and events can be connected to the instance via the

connection element OrderedConnection. Only this type of connection is allowed

with the instance. The order of events (connections to the instance) is specified by

the help of the attribute Precedence. The modeler must manually specify the

39

order of the events in the instance axis by assigning values to this attribute. For

example, the connection between instance and endinstance must have the

last precedence order expected.

The structure of the instance element is depicted in Figure 20. Instance kind, which

is an MSC document, may be specified in addition to the instance and an instance

may inherit from an instance kind. Finally, instances may define a variable list

where instance variables are declared.

Figure 20. The Structure of Instance Model Element

An instance may be decomposed into another MSC. The decomposed modeling

element includes a reference that refers to the decomposed MSC. When the

decomposed model element is used, then an MSC reference must certainly be

included.

InstanceTypeElement is an abstract class to group instance and instance

reference to simplify the connection structure in metamodel and to ensure that

instance references are also behaved as instances. For example, when a

connection is defined for an instance element, then generally it will be legal for an

instance reference too. So, while metamodeling, the connection is defined between

an element and InstanceTypeElement, instead of defining it explicitly both for

40

instance and instance reference. This kind of generalization (grouping element and

its reference) is used mostly for the other elements in the metamodel.

4.2.1.4 Comments

Comments are used to enhance documentation in the behavior model. They can

be utilized to help with traceability, e.g., traceability between the generated code

and the source model.

Two different kinds of comments, videlicet text and comment, are used.

Comment is associated with the most of the MSC elements. Instead of adding the

comment as an attribute for each element, an abstract base class

(ElementHasComment) is created and a GME string attribute for comment is

added only to this base class. Finally, the elements that have a comment are

inherited from this base class.

The text, for that matter, can be associated merely with the MSC or HMSC

diagrams for the purpose of global explanations.

4.2.1.5 Message and Message Events

A message is the main entity, sent or received, between the message events (i.e.,

message output out and message input in) and between the method call events

(i.e., call/receive and reply out/reply in). Messages may have

arguments. Message types are declared in the message declaration list of the MSC

document. The structure of message model is depicted in Figure 21. Arguments

are discussed in Data Concepts (section 4.2.2).

41

Figure 21. The Structure of Message Model Element

While designing the message exchange, it is taken into consideration that

message/method call events must refer to a message and must point out the

recipient or sender of the message. Therefore, the metamodel enables this kind of

connections.

Message and method call events can be completed or uncompleted. Each event

has a Boolean attribute in order to specify an incomplete message, which means

that a message can be found or lost. The outgoing message events (i.e., out,

call, and reply out) has a Boolean attribute lost to indicate the message is

lost or not, while the incoming events (i.e., in, receive, and reply in) has

found to indicate the message is found or not.

An example for incomplete messages, first, the MSC example is presented in

Figure 22, and then the corresponding model for instance i is presented in Figure

23.

42

Figure 22. Example B.11 from [35].

Notice in Figure 23 that the lost attribute of out event of instance i is set to true to

indicate that the message m is lost after sent to instance j.

Figure 23. Corresponding Behavioral Model for B.11

4.2.1.6 Control Flow Using Method Call Events

MSC may describe control flows by the means of calls and replies. A method is a

named unit of behavior inside an instance. Methods are modeled with method

and suspension elements. Suspension regions indicate the regions where no

43

events occur till the reply of the call returns (that is to say a synchronizing call). On

the other hand, an asynchronous call implies the method regions where the caller

may continue without waiting for the reply of the call. Method and Suspension are

non-orderable events.

Some elements such as method and suspension define regions; such elements

have modeled as a start and an end element to indicate the region. The events

connected to the instance axis between a region start (e.g., Method) and a region

end (EndMethod) must be interpreted as the events occurring in the region. For

example, a method region can contain any events while a suspension region

cannot.

A method may be invoked remotely (callout and receive) and the results of

the calculations of the method may be returned through a reply to the caller

(replyout and replyin). As used in message events, incomplete method calls

can be used. An example for the usage of the control flow elements is depicted in

Figure 24.

Figure 24. Example for Method Call.

44

Method

Region

Figure 25. Corresponding Behavioral Model for Method Call in Figure 24.

4.2.1.7 Environment and Gates

The outside region of an MSC frame is called as its environment. Environment is

inherited from an MSC instance. While inheriting the environment element from the

MSC instance, instead of using the usual inheritance operator, the GME interface

inheritance1 is used, so that the environment becomes a black box. Thus, the

environment does not contain any MSC/LSC instance constituents such as a

variable list.

As expected, only one environment can exist in an MSC chart.

The gates represent an entry point between the enclosing chart (i.e., MSC) and its

environment. The gates are defined in MSC reference or inline expression frame

as well as in environment. The message events, the order events, and the process

creation event can be connected to the gates. Gates are implemented in the

metamodel as GME ports, which behave like an interface (connection points) for

the model element.

1
 Interface inheritance is described as “Interface inheritance allows no attribute inheritance but does

allow fu ll association inheritance” [37].

45

4.2.1.8 General Ordering

MSC general ordering elements, namely, before and after, are modeled as

GME ports, which are contained in the orderable events (e.g., timer events, actions

etc.).

In the MSC, the preceding/following events are specified via their names, but the

metamodel enables us to directly establish a link between the ordering element

and the events. Therefore, the general ordering elements can be connected to the

preceding/following (according to the ordering type) events (or references of

events), environment, or gates.

An example is given in the following figures. First, in Figure 26, the example MSC

chart, taken from [35] is presented and then the corresponding model is given.

Figure 26. Example B.18 from [35].

The general ordering element before embodied as a port in the message out

event is connected to the action local event of instance k. So, the interpretation

should be that sending message m by instance i shall occur before the action a of

instance k.

Figure 27. Corresponding Behavioral Model for B.18

46

Another example with a coregion is provided in the following figures.

Figure 28. Example B.20 from [35].

Figure 29. Corresponding Behavioral Model for B.20

4.2.1.9 Conditions

Conditions describe a state that is common to a subset of instances in an MSC.

They are multi-instance modeling elements.

Condition has a type, which can be set as setting condition or guarding condition.

Setting condition is the default type for a condition. When condition is a guarding

47

condition, then an expression field, which evaluates to a Boolean value, is required

to be filled. For setting conditions, expression attribute value should be null.

Otherwise is a specialized condition used as a guarding condition just in one of

the operands of an alternative inline expression. It is evaluated as true if only the

other conditions defined in the alternative expression evaluate to false. The

condition paradigm sheet is presented in Figure 30.

Figure 30. Paradigm Sheet for Condition
1

An example for the usage of conditions is depicted in the following figures.

Figure 31. Example B.13 from [35]

Note that instance i and k uses the same condition where condition type is a

setting condition and expression attribute is null. It is also possible to link a

condition reference to the instance k referring the condition of instance i instead of

using the same condition.

1
 The triangle with black dot represents a GME implementation inheritance, where “the subclass

inherits all of the base class’ attributes, but only those containment associations where the base class

functions as the container” [37].

48

Figure 32. Corresponding Behavioral Model for B.16 (GME Screenshot)

4.2.1.10 Timers and Timer Events

Timers are used in MSC diagrams and they can be controlled using the basic timer

events, namely start (starttimer), reset/stop (stoptimer), and time-out

(timeout) events. A timer event has a timer identifier (a reference to the declared

timer) to specify which timer the event refers. The timer identifier represents a timer

instance. Each timer has arguments and furthermore maximum and minimum

durations in the form of a time expression. Time expressions are discusses in

Time Concepts section.

The timer events are local to an instance and they can be used stand-alone or in

combinations, where timer set event is allowed to be connected to timer reset and

time-out events.

The modeler may explicitly pair off the timer events at design time, if required. Note

that if the timer event pairs (i.e., set-reset, set-timeout, and set-reset-timeout) are

contained in co-regions, then unifying those events is compulsory. The timer and

timer events model is depicted in Figure 33.

49

(a) Timer Paradigm Sheet (b) Timer Events (from Events Paradigm Sheet)

Figure 33. Timer and Timer Events Model.

Examples about timers and timer events are presented in the following figures.

(b)(a)

T

T(d)

Figure 34. Example B.9 from [35].

In the corresponding model, the timer T(d) is declared in the declaration list of the

enclosing MSC document. In Figure 35, the right pane shows the timer declaration

list. In the MSC diagram, the start timer event includes a reference (aka, timer

instance) to the timer T(d).

Figure 35. Corresponding Behavioral Model for B.9

50

4.2.1.11 Actions

Actions are events that are local to an instance where local indicates a connection

specific to one instance. An action is an atomic event used to specify some

computation. Figure 27 presents a simple example for the usage of action model

element.

The name of the action model element acts as an informal action string. Moreover,

an action may have a data statement list which contains a defined (e.g., def x) or

an undefined (e.g., undef x) statement with a collection of variables (e.g., the “x”

is a variable in def x or undef x). An undefined statement is used to indicate is

used to indicate that a variable has named out of scope and cannot be referenced

furthermore. The structure of action model element is given in Figure 36.

Figure 36. The Structure of Action Model Element

4.2.1.12 Instance Creation and Termination

Instance creation and termination events (i.e., create and stop) are used to handle

process lifetime. A create event must be connected to an instance where a

termination event behaves like an instance end for the created process. An

instance can merely terminate itself whereas an instance is created by another

instance.

The created instances are also declared in the instance declaration list of the MSC

document. Therefore, the references are used in the MSC.

While creating an instance, a parameter list can be specified in the created

instance. An example for the instance creation and deletion is provided in the

following figures.

51

Figure 37. Example B.6 and B.7 from [35].

Figure 38. Corresponding Behavioral Model for B.6

4.2.1.13 Coregions

A coregion, specified with the start and the end events (concurrent and

endconcurrent respectively), is a part of the instance axis for which the events

connected to that part are assumed unordered. Only orderable events can be

connected to a coregion. An example is presented through Figure 39 and Figure

40.

52

Figure 39. Example B.16 from [35].

Figure 40. Corresponding Behavioral Model for B. 16

4.2.1.14 Inline Expressions

Inline expressions provide a means for the composition of event structures. The

inline operators and their semantics are presented in Table 5. In addition to their

usage in the MSC, they are also used with the MSC references and in the High-

level MCSs.

53

Table 5. Inline Operators

OPERATOR EXPLANATION OPERANDS

Seq Sequential operation. One or more

Par Parallel execution. It refers to a horizontal composition. One or more

Alt For alternative runs for MSC sections. It refers to an
alternative composition.

One or more

Loop The loop structure. It indicates iteration of the events within
the inline expression.

One

Exc It represents an exception. One

Opt It represents an optional (zero or one time) execution. One

Figure 41 depicts the structure of the inline expression model. External attribute

indicates the MSC keyword “external” in the textual notation.

Figure 41. The Structure of the Inline Expressions

Inline operators must have one or more operands according to its model type.

Operands are indeed MSC bodies, which contain all the basic MSC events. The

metamodel reflects this multiplicity; for example, a loop expression has exactly one

54

operand. If an inline operator has more than one operand, then it is essential to

specify the precedence of its operands. Thus, each operand has an order index to

specify the interpretation order.

Inline operators are multi-instance elements, meaning that they can be connected

more than one instance axis. In order to share, one inline operator between

instances, referencing mechanism is used. Each inline operator has a

corresponding reference element (InlineExpressionRef).

An example for alt inline operator in an MSC is presented through Figure 43.

Figure 42. Example B.29 (msc A) from [35].

Corresponding model for Figure 42 is presented in Figure 43. The main chart is

seen in (a) where an inline model element can be referenced in two ways. First, a

reference element is used (in the left side); second, both instances are directly

connected to the inline expression. Inline expression has two operands, where

each operand behaves like a sub-chart (or MSC body). The “inside” of each

operand is presented in (b) and (c) respectively.

55

(a) OR

(b)

(c)

Figure 43. Corresponding Behavioral Model for B.29 “msc A”.

Loops have a loop boundary (NaturalNumberExpression) in order to indicate

the minimum and maximum iteration values for looping behavior. Loop operand is

executed at least “minimum” times and at most “maximum” times. The values or

minimum and maximum can either be the keyword inf, representing infinity, or a

sequence of digits. Loop boundary values are initially (1, inf). An example for

the practice of loop inline operator in HMSCs is given in Figure 64.

Inline expressions define regions. Gates are also used as the entry points for the

inline expressions. An example for inline operators with gates appears in Figure 44.

56

alt

i j

m1m1

m2

m1

g1

g1

Figure 44. An Example for Inline Operators with Gates.

The instance j sends a message to the alt inline expression of instance i via gate

g1. The MSC statement corresponding that is j: out m1 to inline alt via

g1. The first operand of the alt operator receives m1 via its gate g1, while the

second operator receives it via the environment.

Figure 45. Corresponding Model for Inline Operators with Gates (GME Screenshot)

4.2.1.15 References

An MSC reference expression can be used to refer to other MSCs in an MSC

document. Reference model structure is depicted in Figure 46. A reference

structure can include other MSC diagrams as well as composition operators for

57

complex referencing mechanisms. Examples of MSC reference expressions are

reference A, reference (A alt B) seq C where A, B, and C are MSC

diagrams referenced.

The actual reference parameters are used to call the referred MSC declaration

parameters with actual values. The actual reference parameters include the data,

instance, message, and timer parameters.

Figure 46. The Structure of the Reference Model Element.

If the MSC reference element does not contain any MSC, then it means that it is a

null reference corresponding to the MSC keyword empty.

MSC references are also multi instance events. Therefore, a reference element

(ReferenceRef) for the MSC reference is created.

For the usage of the complex reference expressions, such as reference (A

alt B) seq C, a conceptual view of the corresponding model is depicted in

Figure 47.

58

reference
seq

operand

operand

reference
A

alt

operand

operand

Figure 47. Conceptual View of the Corresponding Model for Referencing.

Gates are also used with references. An example is depicted in the following

figures.

msc A

j i

m1

msc B

Reference to

msc B
m2

i
m1

m2

Figure 48. An Example for MSC Reference with Gates.

The message m1 comes from the environment. In MSC A, there is no connection to

the gate g1. This represents an environment gate.

Figure 49. Corresponding Model for MSC Reference with Gates.

59

4.2.2 Data Concepts

The MSC specification, in addition to an action model, introduces a preliminary

data model via some predefined elements, such as messages, actions, and MSC

references. Basic data concepts as defined in MSC specification [36] are included

in the metamodel to enable the declaration and the use of the static and the

dynamic data.

4.2.2.1 Declaring Data and Using Declarations

Messages, timers, instances, and variables are declared via declaration lists as

specified in [36]. The declaration lists are message list, timer list, instance list (has

variable list), and dynamic variable list. The first three are declared in the MSC

document whilst the last one specifies the MSC parameter types. In declaration

lists, type, number, and order of the arguments are defined. Declaration lists are

used for type checking. For example, messages that have parameters are declared

so that the type and number of parameters are defined.

In Figure 50, an example is provided for a message declaration. A message sum is

declared in the message declaration list of an MSC document header. Sum has two

arguments; first and second having the type of natural number.

GME Aspects

(views)

Declaration List

Argument

Argument Type

Argument Value

Figure 50. Declaration of a Message (GME Screenshot)

60

For the representation of both actual and formal parameters, an argument model is

devised. The structure of an argument is presented in Figure 51. An argument has

a data type and a value. Actually, two GME aspects (i.e., views for the modeler)

are defined to separate the data type view and value view as seen in the lower

pane of Figure 50. While declaring an element (i.e., message, instance, timer, and

variable), the number and the type of arguments are provided. It is also important

to specify the order of the arguments. An attribute (OrderIndex) is provided for

this purpose. Values of arguments may be left unspecified or an initial value may

be provided.

Note that for parameterless elements (e.g., a parameterless message), there is no

need for a declaration.

A variable is an element that has a specific data type and value. Variables are

represented using the arguments. Variable lists are used by the MSC in instances

and in wildcards.

Data types and value expressions are discussed in the following sections.

Figure 51. The Structure of an Argument

61

4.2.2.2 Type Checking

A declaration provides a template (a type model) for the actual use (an instance

model). After declaring the element, the instance of the declared element can be

used in the MSC diagrams (In GME, an instance model can be created by dragging

the type model icon and dropping it to the behavioral model [11]). The modeler

cannot change the number and type of the arguments, but can only set the

argument values. Figure 52 presents the actual use of message sum in a MSC

chart. The modeler can assign any natural number expression for the argument

values (e.g., Sum (5, 4)). GME marks the sum as an instance model and

automatically provides the type of the instance (the red oval marking in the figure)

as “type of sum” in the example.

Instance Model

Element

(marked with “I”)

Type Model

Element

Type of the

Instance

Figure 52. Using a Message Declaration (GME Screenshot)

A clear advantage of this approach is that it eliminates the need for a type checking

mechanism to be integrated to the metamodel (e.g., by creating specialized

elements for type checking). While creating an instance from a type model

element, thanks to GME instantiation mechanism, GME automatically provides the

type for the instance. Further type checking is left to the model interpreters.

62

GME model browser has the Inheritance tab used explicitly for visualizing the

type inheritance hierarchy. For example, in Figure 53, Input message is used

(instantiated) two times in the model as Input_Msg and Input_Name.

Type Model

Instance

Models

Inheritance

Tab

Figure 53. Inheritance Tab of GME Model Browser

4.2.2.3 Data Types

Data types are used to define the kind of model elements. MSC specification

defines three predefined basic data types, namely, natural number expressions,

Boolean valued expressions, and time expressions [36].

The structure of the data type metamodel is depicted in Figure 54. Data type

reference is used to share the declared data types in an MSC. First Class Object

(FCO), atom, and reference are all GME built-in stereotypes. The abstract model

DataTypeFromDataModel is created to support for the integration of the user

data models, which will be discussed in Chapter 6.

63

Figure 54. The Structure of Data Type Model Element

4.2.2.4 Expression

Expressions are used in certain MSC elements, such as arguments, conditions, the

boundaries of a loop, and the time intervals. Expressions are domain-specific

structures that occur in the data model; they might be arbitrarily complex. In the

present metamodel, merely the basic expressions (e.g.,

MSCBooleanExpression) are defined. The categorization of the expressions

(e.g., BooleanExpression) is also defined to support for the user data model.

Figure 55 depicts the expressions model structure. Evaluating expressions is up to

the model interpreters.

64

Figure 55. The Expressions

Please, note that an extension is made to the expression model in the model

integration part of FAMM for string type expressions in order to express the

integrability of the model with external data models. Moreover, an example is given

to illustrate how to extend the expression model to use a domain-specific Boolean

expression model in Chapter 6.

4.2.2.5 Data Definitions

Data definitions include the text for an external data language and a data field to

point the external data as well as wildcards. Data definition element is used in the

MSC document to declare the external data connections. A wildcard represents a

“don’t care” value, and it is modeled as an argument. The model is depicted in

Figure 56. DataStatementList is used in actions (and is explained in section

4.2.1.11).

65

Figure 56. Data Definitions Model

4.2.3 Time Concepts

Time concepts, introduced in MSC, support the notion of quantified time [36].

Absolute or relative timing can be specified by the use of the default type time.

Static and dynamic time variables are like any other variables except that they are

of the type time.

Time offset is used as an offset to all absolute time values within that MSC. A time

offset is defined in the head of the MSC. The structure is given in Figure 57. If the

MSC has no time offset model element, then it means that the offset is equal to

zero.

Figure 57. The Structure of Time Offset Model Element

In addition, time constraints can be defined as time points, time intervals, and

measurements. Measurements and time points are used in time intervals. The

structure of a measurement and a time point is presented in Figure 58 while the

structure of a time interval is presented in Figure 59.

66

Measurement is a time observation that has a measurement type and a reference

to a time variable (i.e., a variable with a default type time). Measurement type is

either absolute or relative where the latter means duration.

Time point represents a concrete time value. The absolute mark, when set to true,

indicates absolute timing. Time value is expressed in time expression attribute.

Inclusion mode is only used when a time point is used in a time interval.

(a) (b)

Figure 58. (a) Measurement Model Element (b) Time Point Model Element

Time intervals are used to define constraints on the timing for the occurrence of

events. A time interval may include a measurement, a singular time that is either a

time point or a measurement, and a bounded time. Minimal or maximal bounds can

be defined as time points for the delay between two events. The inclusion mode

indicates whether the bound is included or excluded.

67

Figure 59. The Structure of Time Interval Model Element

Time intervals can be defined for any two events within an MSC document. Time

intervals can be connected to the orderable events, Top or Bottom of an MSC

reference or an inline expression. This connection is called Time Address

Connection and it specifies the source and the destination events by the

connection order. When an event is connected to a time interval, the event

becomes a source for the time interval. Conversely, when a time interval is

connected to an event, then the event becomes a destination for the time interval.

Thus, the origin of the time interval is specified. Therefore, no element is required

for the origin MSC keyword.

An example is provided in Figure 60 for the use of time constraints for MSC

references. The time destination connection that shows the destination (i.e.,

reference element) for the time interval defined in par parallel inline operator

has a bottom attribute set to true indicating the top of the reference region.

68

Figure 60. Example for Time Destinations

Time constraints can also be used in the High-level MSCs.

4.2.4 High-level MSC

High-level MSCs provide a way to compose MSCs. The HMSCs can be embodied

in the MSC in place of MSC bodies. The structure of the HMSC is depicted in

Figure 61.

An HMSC includes a start and an end node (initial and final respectively) as well as

MSC references, inline expressions, and conditions. Conceptually, the inline

expression and reference nodes are called timeable nodes meaning that those

nodes include time intervals.

69

Figure 61. The Structure of the HMSC Nodes.

Each HMSC element can be connected to others to specify the composition order.

In order to provide this, a directed connection is defined between the HMSC nodes

(i.e., model elements). The inline expressions specify the operands that are also

connected to the other HMSC nodes. For this reason, another connection is

defined between the operands of the inline expression and the HMSC nodes. The

former connection is called “HMSC Main Connection” while the other is called

“HMSC Operand Connection”. Connection structure is depicted in Figure 62.

Figure 62. The Structure of the HMSC Connections.

70

An example is provided in the following figures showing different composition

techniques using the HMSCs. First, the HMSC is given, and then the

corresponding model in FAMM notation is presented.

Figure 63. The HMSC Example Fig.59 from [36].

Figure 64. The Corresponding Model for HMSC Example.

71

4.2.5 Auxiliary Models

4.2.5.1 Events

In the metamodel, the MSC instance events are grouped as orderable events and

non-orderable events as classified in the MSC specification in order to simplify the

connection between MSC elements.

The classification groups are presented in Table 6.

Table 6. The Event Groups

GROUP MEMBERS

Orderable Events Message events, method call events, actions, timer events, and process
creation

Non-orderable
Events

Multiple Events, method, end method, suspension, end suspension,
concurrent, end concurrent, process stop, and instance end

Multi Instance Events Condition, Inline Expressions, and MSC reference

Message Events In and out

Method Call Events Call, receive, reply out, and reply in

Timer Events Start timer, stop timer, and time-out

4.2.5.2 MSC Connections

Connection elements are used to connect and associate modeling elements with

each other. There are mainly four connection types allowed in the current

metamodel: Ordered Connection, Special Connection, Address Connection, and

Time Address Connection.

An ordered connection has a Precedence attribute to specify the order in the

connections. For example, all the connections made to the instance are ordered

connections. Some modeling elements need special connections with each other,

such as the set timer event, which can be connected to the other timer events. The

requirements for this connection type are modeled as special connections. The

address connection is used to connect the messages to the destination addresses

as the time address connection is used to connect the time intervals with the

source and destination events. The metamodel is depicted in Figure 65.

72

Figure 65. Address Connection and Time Address Connection.

4.3 LSC Metamodel

LSCs are introduced in [39] as an extension to MSCs primarily to enable a

distinction to be made between mandatory and possible behaviors in sequence

charts. Later studies [37, 42] proposed some extensions to the basic LSC.

4.3.1 Extending MSC to LSC

Before introducing the LMM extensions, we need to clarify how the LSCs are

understood in conjunction with MSCs.

The LSC Metamodel is constructed on top of the MSC Metamodel. Although LSC

is proposed as an extension to the MSC, some incongruity problems were revealed

while extending the MSC metamodel to form the LSC metamodel (this can be cited

as a side benefit of the metamodeling exercise).

First, there are minor disparities among the LSC papers. As there is no official

standard for LSCs to date, the references [37, 49, 42] are taken as the principal

specification documents. When a disparity arises, the latest dated reference is

given priority. Some disparities are as follows:

 The activation modes for charts are defined as “Preactive and Active” in

[42], and changed as “Initial, Invariant, and Iterative” in [37].

 A pre-chart seems mandatory in universal charts in [42], but in [37], the

activation conditions are introduced for simple conditions to express an

activation point for an LSC.

73

Furthermore, LSC is originally extended from MSC-96 specification. In our study,

we base our metamodel on the MSC-2004 specification [36], the current

recommendation for MSC, which improves MSC in many ways such as data and

time concepts. It is unclear how LSC incorporates all the MSC artifacts such as

gates, inline operators, and MSC composition techniques (MSC references and

HMSC).

Such data concepts as symbolic messages, variables, assignments, classes, and

symbolic instances, which are incorporated to the basic LSCs by [42] for play-out

mechanism, are not included in the metamodel as the data model is inherently

domain specific and can be supplied separately by the modeler. We thus achieve a

separation of behavioral and data-related concerns in the metamodel. Additionally,

the modeler can use the MSC data and time concepts with LSCs.

4.3.2 Extending MMM for LMM

In order to construct a new metamodel as an extension of an existing one (e.g.

extending the MSC metamodel to the LSC metamodel), one could copy the

existing metamodel and afterwards make modifications and additions to it.

Alternatively, one may attach the existing metamodel as a library and then build the

new model on top of it without any modifications to the attached library elements.

The latter method, using the nested libraries feature of GME, yields better model

encapsulation.

The structure of LMM is depicted in Figure 66. As seen in the figure, MMM is

attached as a library (indicated with a book icon).

74

Figure 66. The LMM Implementation View (GME Screenshot)

LSC metamodel uses MMM library to extend its own model elements. GME

inheritance is used as the mechanism for extending the MSC. The following

sections explain how the extension is done and introduce the structure of LMM.

4.3.3 Live Sequence Charts

A live sequence chart is the main containment for the instance interactions. It

matches the MSC body where all the events are defined. MSC Body, a model

proxy, is an element from MMM, where events of an instance are specified. Thus,

we allowed the modeler to use all the MSC elements. For example, the modeler

may declare message types (templates) as he does in MSCs. The other proxy

elements, condition, inline operand, and reference are also the members of MMM.

LSC has an enumerated attribute where it represents the distinction between

mandatory (universal) and possible (existential) behavior on the chart level. The

default value is “existential”. LSC also has an attribute to specify the activation

mode defined in [37].

LSCs (for universal charts) may include a simple activation condition or a pre-chart

or both wherein they behave like a precondition so that if evaluates to true, it

activates the body of the LSC [37]. Activation condition for a sub-chart acts as a

top-level condition [39]. A pre-chart is always existential by definition.

75

LSC may also include one or more sub-charts to support composition of charts.

The sub-chart and the pre-chart is indeed an LSC, but its semantics is different.

The structure of LSC is depicted in Figure 67.

Figure 67. Extending MSC Body for LSC

4.3.4 Temperatures

Temperature of an element shows its liveliness. It can be hot meaning mandatory

or cold meaning possible behavior. Charts, locations, conditions, messages, and

local invariants have temperature, which is added as an enumerated attribute. The

meaning of temperature has to be tailored to the element for which it is specified.

4.3.5 Locations

Temperature represents the mandatory or possible behavior. Charts, conditions,

messages, and local invariants have temperature. Moreover, when an event is

connected to an instance, this connection represents a location and it can also be

marked as cold or hot. Thus, some interesting combinations of temperatures can

occur. For example, a hot message can be connected to a cold location.

The combinations between the temperature of the location and the temperature of

the event that is connected to that location need some clarifications. We adopt the

76

fairness assumption that an enabled event cannot be delayed indefinitely. Table 7

explains the interpretations for such combinations with an emphasis on code

generation.

Table 7. Interpretation of Location and Event Temperature Pairs

 HOT LOCATION COLD LOCATION

HOT EVENT
(MESSAGE)

Event must occur (e.g., a message is
sent or a message is received) and
progress is forced to the next event.

Event must occur (e.g., a message is
sent or a message is received) and
progress is forced to the next event.

COLD
EVENT
(MESSAGE)

Wait for a pre-defined (as a
configuration parameter)
duration/number-of-trials for the event
to occur. When the event has occurred
(e.g., a message is received) or the trial
period is over without the event
occurrence, continue to the next event.

For sending a message, code
generator randomly decides to send or
not. Not sending amounts to message
getting lost. For receiving messages,
generated instance code waits for a
pre-defined period of time, if the
message has not received till then, it is
assumed to be lost.

Wait for a pre-defined duration/number-
of-try for the event to occur. If the event
has occurred, continue to the next
event. Else, abort (break) the chart.

For sending a message, generated
instance code randomly decides to
send or not. For receiving messages,
generated instance code waits for a
pre-defined period of time. If the
message has not been received till
then, it is assumed that progress
beyond this event is not possible, so
the chart is aborted.

The combination of a cold event and a cold location is especially useful for pre-

charts to characterize the pre-conditional events. As an example, see the LSC in

Figure 112.

4.3.6 Conditions

Conditions can be selected as hot or cold, where a hot condition must be satisfied

(violation is an error) and a cold condition simply means an exit from the enclosing

chart. A condition also acts as a synchronizing point if and only if it is connected to

more than one instance.

4.3.7 Messages

Messages are the same as MSC messages except for two extra attributes. One is

for specifying the temperature of the message, and the other is for specifying

whether the message is time delayed (i.e., asynchronous) or instantaneous (i.e.,

synchronous).

77

4.3.8 Simultaneous Regions

Simultaneous regions are used to group several elements, which should be

observed at the same time. As far as the simultaneous regions are reference

points, they are represented with one modeling element rather than as a region

with start and end nodes such as in the coregion element.

Figure 68. LSC Simultaneous Region Metamodel

An example for the usage of the simultaneous regions is given in Figure 71.

4.3.9 Local Invariants

A local invariant expresses the satisfaction of a condition over a period. They can

have temperature, with the same interpretation as for conditions. Since they cover

a period, they need reference points for the start (Invariant) and the end

(EndInvariant) [37]. The start element has an expression just as conditions do.

It can be possible or mandatory, with the same interpretation as for a condition.

When the start element marked as cold or hot, then the same is assumed for the

end element. Furthermore, start and end elements can be marked as included or

excluded using the inclusion mode attribute.

The structure of the invariants is presented in Figure 69.

78

Figure 69. LSC Invariant Metamodel

An example is presented in Figure 70. In the figure, instance A has an invariant

through its instance lifeline connected with the simultaneous regions denoted as

black dots.

Invariant and Simultaneous Region ExampleInvariant and Simultaneous Region Example

A B

m1

m2

m3

in
v
a

ri
a

n
t

Simultaneous

region

Figure 70. LSC Invariant and Simultaneous Region Example

The corresponding model for instance A is presented in Figure 71.

79

Figure 71. LSC Invariant and Simultaneous Region Corresponding Model

4.3.10 Time (Timing Intervals)

For the specification of time concepts of LSC, reference [37] is taken into

consideration while reference [42] also offers another time concept.

In LSCs, MSC timers and time concepts can be used as they are. In addition, time

constraints can be specified with a timing interval. Timing intervals with lower and

upper bound are used to give both a minimum and a maximum delay between two

directly consecutive events (i.e., message out, message in, instance axis, and

instance end).

4.3.11 Iteration and Conditional Execution

Interestingly, LSC iterations are not based on MSC loops. We have chosen to

provide iteration in LSC as the loop construct in MSC. Thus, another iteration

model element is not needed; instead the MSC loop is extended to cover the

dynamic loops (for which the loop count is to be entered by the user at execution

time).

80

In [42], three kinds of loops are defined, namely, fixed loops, unbounded loops,

and dynamic loops. The MSC loops cover the first two kinds where iteration can be

fixed by defining the min and max iteration bounds or can be unlimited using inf

keyword as opposed to using an asterisk specified in [42]. For the third kind of

loops, the MSC loop is extended by creating a Boolean attribute to specify that the

loop is dynamic or not. If this attribute is set to true, then the iteration of the loop

will be defined in run time and the iteration bounds become “don’t care” attributes.

The value is false by default.

An LSC chart for fixed iteration taken from [38] is modeled and presented in Figure

72.

Limited IterationLimited Iteration

A B

m1

60

(b) Chart view where loop has one

operand and one boundary element
(c) Inside of the loop operand

Figure 72. Fixed Iteration Example

4.3.12 Additional LMM Elements

While constructing LMM, two minor extensions are done to LSC. One is to extend

the usage of LSC pre-charts (e.g., using pre-charts in inline operands) and the

other is to package some well-known constructs as idioms (e.g., while-do iteration).

4.3.12.1 Extended Pre-charts

Pre-charts, in their original manner, can only be used with the universal LSCs

wherein they behave as a precondition in that if a pre-chart completes its specified

behavior; the body of the LSC is activated [37]. In some behavioral patterns;

however, it is essential to use pre-charts within the inline operands. Thus, one can

specify a conditional behavior pattern in inline operands.

For instance, a bank client can interact with an Automatic Teller Machine (ATM) by

selecting money-withdraw operation or exit operation. According to each type of

action, the ATM responds with a series of events. When the client selects the

81

withdrawal, then the ATM asks the amount of the withdrawal request. The behavior

model for processing the menu is seen in Figure 73.

Par

Client ATM

Output(Enter Amount)

Input(Selection.Withdrawal)

Input(Selection.Exit)

C
o
ld

 L
o
ca

tio
n

Cold Message

Input(WithdrawalAmount)

Check Amount

and Give Money

Figure 73. LSC for Process Menu Selection

Consequently, the pre-charts are extended so that they can be nested in the

metamodel and can be used within the inline operands. Moreover, the pre-charts

can be nested in the pre-charts.

The inline operands are instantiated from the MSCBody and LSC so that they

become charts where many MSC and LSC elements can be defined. The structure

of the inline operand element and the pre-chart is depicted in Figure 74.

82

MSC

MSCBody

LSC InlineOperand

The GME interface

inheritance operator

suppresses the inline

operand to be

included in the MSC.

Thus, MSC only

includes the

MSCBody, LSC, and

HMSC (not seen in

the figure).

Pre-chart Sub-chart

Using the GME

implementation inheritance,

the inline operands can

include the pre-charts and

the sub-charts.

Figure 74. The Structure of Inline Operands and LSC Pre-Charts

4.3.12.2 Idioms

By combining iterations and cold conditions, conditional and repetitive execution

(i.e., Repeat-Until (a.k.a., Do-While), While-Do, If-Then, If-Then-Else) can be

created [38]. In order to simplify these combinations, an idiom for each is

constructed as a new modeling element for conditional and repetitive execution.

The set of idioms is expected to enlarge as more experience is gained with the

FAMM usage.

The following example illustrates the Repeat_Until construct. This sample chart

is taken from [38].

Repeat UntilRepeat Until

A B

m1

*

B.Response=False

Figure 75. Repeat-Until LSC

83

The corresponding model is given both by using the idioms and by using the loop

construction. The main difference is the location of the condition. When using the

idiom element (i.e., repeat_until), the condition is provided in the element body

while when using the loop, the condition is attached to the instances.

(a) Chart view where Repeat-Until

has one operand and one condition
(b) Inside of the operand

I. Using Idiom Construction (Repeat-Until)

II. Using Loop Construction

(a) Chart view where loop has one

operand and one boundary element

(1,inf)

Figure 76. Corresponding models for Repeat-Until

84

CHAPTER 5

5. HLA FEDERATION METAMODEL

This chapter introduces the HLA federation metamodel and its sub-metamodels.

The material in this chapter is based on [53].

5.1 HLA Object Metamodel

The HLA Object Metamodel is constructed to provide a domain specific (i.e., HLA

in our case) data model for the behavioral models. HOMM fully accounts for [3] and

can be regarded as an alternative rendering of the HLA OMT [34].

The HLA OM paradigm includes the Object Model paradigm sheet and the OMT

Core folder. Paradigm sheets are separate portions of metamodels. The OM

paradigm sheet includes the main diagram for object models. The OMT Core folder

includes the table contents specified in the HLA Object Model Template. Top view

is presented in Figure 77.

Figure 77. Object Model Top View [34]

85

Note that based on this metamodel, the IEEE HLA Defaults library (HDefLib) and

HLA Management Object Model library (HMOMLib) are modeled as helper

libraries. For further details, please refer to [34].

5.2 Federation Structure Metamodel

The Federation Structure Metamodel represents the structural aspect of the

federation. This metamodel is created for the developer to define a federation and

its participating federate applications, and to easily connect them to their respective

FOM and SOMs. In this metamodel, the participating federate applications are

emphasized and their corresponding SOM’s can be specified in addition to the

FOM. The FOM and SOMs that are referred by this model are prepared based on

HOMM.

Each federation structure can include only one federation and one FOM, while

there may be any number of federates and SOMs. Figure 78 shows the GME

paradigm sheet of FSMM. There is a MemberOf association between the

federation and federates, indicating potential federation execution members.

Federate application is discussed in Section 5.4.5.4 and an example for the use of

the FSMM is provided in Figure 103.

Figure 78. Federation Structure Paradigm Sheet (modified from [34])

5.3 Publish/Subscribe Metamodel

Publish and Subscribe diagrams are introduced in [23] as design artifacts to focus

on the object/interaction interests among the federates. In the current metamodel,

some minor modifications were made to connect it with the HLA object model.

86

PSMM is not a core metamodel of FAMM, instead, it is devised to illustrate that

FAMM can be used to generate useful views for the federation designers. After the

federation architecture is modeled using FAMM, an interpreter, called P/S Model

Generator, traverses the FAM to extract the federation publish and subscribe

interests of the federates, and then builds the P/S models of the federation.

Publish/Subscribe metamodel is depicted in Figure 79. Metamodel allows

interpreter to generate the Federate-based P/S Diagrams as well as the Class-

based P/S Diagrams.

Figure 79. PSMM

5.4 HLA Services Metamodel

The HLA Federate Interface Specification defines the standard services of and

interfaces to the RTI. These management services provide a functional interface

between federates and the RTI. They are arranged into seven groups: federation

management (FM), declaration management (DM), object management (OM),

ownership management (OwM), time management (TM), data distribution

management (DDM), and support services [2].

The HLA Services Metamodel includes the necessary modeling elements to model

the HLA services interface. The primary modeling approach for constructing HSMM

is to separate the HLA method specifications and the concepts that constitute the

87

HLA services. An HLA service defines an interface, where an HLA method is a

realization of that service. For example, the “Reflect Attribute Values” service can

be mapped to more than one “Reflect Attribute Values” methods with different

argument sets due to the optional arguments in the service specification. The HLA

Services Metamodel merely provides the constructs, namely, methods, arguments,

and exceptions to model the HLA services specified in [2]. Afterwards, the HLA

methods are defined as a GME library based on this metamodel. This approach

offers the following advantages:

 First, it supports modeling different HLA interface specifications in forms of

GME libraries such as IEEE 1516 and 1.3 along with the DoD

interpretations to both, without changing the metamodel. The IEEE 1516

Methods and DMSO RTI NG 1.3 library are included in the present work.

 More specifically, it enables construction of the “method” libraries for

particular RTI implementations such as Pitch RTI (pRTI). For instance, the

pRTI library has methods attributeIsNotOwned and

attributeIsOwnedByRTI.

 It also has the potential to support project-specific RTI abstraction layers.

 As the HLA interface specification evolves, it will be easy to modify the

metamodel to support the new libraries.

Regarding another metamodeling issue, it is worth noting that cardinalit y

constraints in the standard are preserved in the metamodel. For instance, as seen

in Figure 81, an HLA method shall have exactly one “exceptions” model that

accounts for the method exceptions.

5.4.1 Connection to the Other Metamodels

Some RTI methods require a connection to the HLA Object Model. HSMM allows

the required connections to be made between the behavioral model and the HLA

Object Model by offering reference elements that refer to the other metamodel

elements. This referencing mechanism links the method parameters to the related

model elements.

For example, the “publish interaction class” method requires an “interaction class

handle” to specify which interaction class, defined in the FOM, will be published. In

88

modeling, this argument is provided to the user as a reference to the interaction

class element in the FOM. Thus, the interaction class to be published is specified.

When generating code, thanks to this referencing mechanism, it is easy to traverse

the model. GME provides the necessary API for model traversing.

5.4.2 Methods

The labels of the messages in a generic MSC/LSC are un-interpreted; they are just

symbols. In the context of a federation architecture, though, the labels must be

interpreted. That is, the messages must correspond to the RTI method calls

(including callbacks), and refer to the HLA objects and interactions defined in the

FOM. HLA methods are simply modeled as interpreted LSC messages which can

be exchanged with simple message events (i.e., in and out) or method call

events (i.e., call, receive, reply out, and reply in).

In the metamodel, the HLA services are indicated as being RTI-initiated or

federate-initiated by means of the enumerated attribute initiator of HLAMethod

element as sketched in Figure 80. This attribute is devised to create verification

points to help consistency checking in model verification. For example, if a federate

initiates an RTI-initiated method, which indeed it should not; an interpreter may

catch this design error by merely checking the initiator attribute.

Federate RTI

RTI-initiated

Method Calls,

also known as

“Callbacks”

Federate-

initiated Method

Calls

Figure 80. RTI/Federate-initiated Methods

The top view of HSMM is presented in Figure 81.

89

Figure 81. HLA Method of HSMM

5.4.3 Arguments

Each HLA method has arguments, either in “Supplied Arguments” form or in

“Returned Arguments” form. Accordingly, a container modeling element is

introduced for each of them, called SuppliedArguments and

ReturnedArguments, respectively. Arguments model contain all the arguments

of the services specified in [2] as well as the additional arguments for DMSO RTI

NG 1.3.The structure of the arguments model is presented in Figure 82.

Figure 82. Method Arguments Model

90

Many of the arguments are references to the other modeling elements (e.g.,

lookahead reference, synchronization reference, transportation reference, etc.), but

some are made up by us, namely, indicator, order type, numeric type, resign

federation action, and string type arguments. The Indicator element is created

for the representation of Boolean arguments such as registration-success indicator.

The OrderType element is created for the representation of the order type

arguments such as the sent message order type. The StringType element is

created for the representations of the label type arguments such as the federation

save label. The NumericType element is created for the representation of numeric

arguments such as the region bounds and normalized values. Resign federation

action argument is an enumerated element that represents the actions taken by the

federate when resigning federation. The details of arguments for the library

developers are given in Appendix D.

Each argument element has an Optional attribute to indicate whether the

argument is optional or not in the method call and a ParameterOrder attribute to

specify the order of the parameter in the method call.

For null arguments in an HLA method call, it is enough to leave the returned or the

supplied argument containers empty.

Set, List, and Collection models correspond to their counterparts in the HLA

interface specification. Sets and lists include pairs such as a federate and restore

status pair while the collections include only the sets. The pair structure is depicted

in Figure 83.

Figure 83. Pairs Model

Synchronization references are used to make the connection between HLA

interface method parameters and HLA object model element. For example, one

91

can introduce static synchronization points in the object model, and then design the

dynamic synchronization behavior of the federation in connection with federation

object model.

5.4.4 Exceptions

For each exception of HLA services, there is only one modeling element, called

Exception, in the Exceptions container model. In the HLA Methods library, the

exception modeling element is named according to the exception name in the

standard. For instance, the “RTI internal error” and “restore in progress” exceptions

of method “join federation execution” are the same type of exception, the only

difference lies in their names. The structure for exceptions is depicted in Figure 84.

The Common Exceptions folder is used to group common exceptions, which can

be thrown by more than one method, for instance, the “RTI internal error”

exception. Therefore, only one exception is created and located in the “Exceptions”

folder and then the reference to this exception is used in the HLA methods.

Figure 84. Exceptions Model

Exception modeling element may contain an MSC reference. Thus, the modeler

can define a behavior (in terms of an MSC chart) handling the exception.

5.4.5 Runtime HLA Instances

The method arguments can be classified as static or dynamic according to their

creation time. A static argument generally refers to the static objects in the object

model such as an HLA object class (defined at design time) while a dynamic object

(i.e., instance) is created at runtime to refer to a runtime instance such as an object

instance, message retraction designator, federate, or region.

92

Dynamic arguments that are used by other methods during design and judged as

being primary modeling elements for the federate’s behavior are logically classified

into two groups: those with static counterparts in the metamodel and those without .

The former ones can be instantiated directly from the counterpart model using the

GME built-in instantiation mechanism. The static counterparts act as template

classes for instantiation. These arguments are object instances and federate

instances. An object instance is an instance of an HLA object class found in the

object model and this element can only be created by instantiating the

ObjectClass. Other method calls can reference this object instance via the

ObjectClassReference modeling element as the object instance designator.

The federate instance is discussed in Section 5.4.5.3.

For those that do not have static counterparts in the object model (i.e., message

retraction designators and regions), a new modeling element is devised in the

auxiliary metamodel. These dynamic elements are modeled as symbolic instances

that represent the actual values produced by the RTI. The rationale for modeling

message retraction designators and regions is presented in the following

paragraphs, along with some examples.

5.4.5.1 Message Retraction Designator

Some OM methods use message retraction designators to keep track of the

messages sent to the other federates. During runtime, the RTI automatically

assigns a message retraction designator after “Update Attribute Values”, “Send

Interaction”, “Send Interaction with Regions”, and “Delete Object Instance” calls.

This runtime instance must be referred to symbolically in the design time to keep

track of the message calls made. Thereupon, a

MessageRetractionDesignator modeling element is added to the metamodel.

This element corresponds to the assigned designators; however, the object

management and time management methods that need this designator use “the

designator references” to point the assigned designator. For example, as seen in

Figure 85, the Retract and RequestRetraction methods use the “Message

Retraction Designator” references resulting from some object management calls

(e.g., send interaction and receive interaction).

93

Federate_B

mrd1=sendInteraction(msg1)

Federate_A Federation Execution

mrd2=sendInteraction(msg2)

receiveInteraction(msg1, mrd1)

receiveInteraction(msg2, mrd2)

Retract(mrd1)

requestRetraction(mrd1)

Figure 85. Using Message Retraction Designator

5.4.5.2 Region

Some HLA data distribution management methods define and use regions during

run time. The HLA Object Model allows defining dimensions, which are static

elements and used by federates to define regions. To use the regions at federation

design time, a Region modeling element is introduced. The “Create Region”

method call creates the region designator while other DDM method calls (e.g.,

“Delete Region” call, which deletes a created region) refer to it by using the

RegionReference modeling element.

5.4.5.3 Federate and Federate Application

The HLA standard makes a distinction between federate and federate application.

Federate application is akin to component type (in Architecture Description

Languages parlance, see [43]) and is associated with an HLA SOM, while a

federate is akin to a component, which exists at federation execution time. When a

federate joins a federation execution, the RTI generates a federate handle for it. All

federate handles are unique in a federation execution. As an example, a virtual

“Ship” which is capable of joining a federation is a federate application. This

federate application may join a federation (more than one federation, for that

matter) as many federates, say ship A, ship B, and so on, during federation

execution.

Hence, it seems appropriate to maintain this distinction in the metamodel. The

FederateApplication represents the software elements, which are connected

to a SOM in the federation architecture and it helps to describe the federation

structure in the static view. A federate is created by instantiating the

94

FederateApplication and it is referred to in HLA methods such as

JoinFederationExecution method. This modeling element has a reference

(named FederateApplicationReference) to be used by the FM calls that

need the federate handle. For example, RegisterSynchronizationPoint

requires knowledge of which federates are currently joined to the federation, as

seen in Figure 86.

Federate_B

RegisterSyncPoint

(“Sync1”, Federate_A,Federate_B)

Federate_A Federation Execution

ConfirmSyncPoint (“Sync1”, True)

AnnounceSyncPoint (“Sync1”) AnnounceSyncPoint (“Sync1”)

Set of Joined

Federates

Figure 86. Using Federates

There is a difference between the concepts of federation and federation execution

in parallel with federate application and federate, respectively. Federation

executions are instantiated from the Federation model element, which is created

in the Federation Structure Model. Consult [2] for further clarifications of the

terminology.

Federation and federate application are specialized from LSC instances using

GME inheritance (denoted by a triangle) [11].

5.4.6 HLA Runtime Infrastructure and Federation Executions

HLA Runtime Infrastructure is not explicitly referred in the metamodel. Federation

execution, though, is an instance model element of Federation. A federation

execution is the primary instance the federate interacts with (e.g., joining the

federation, receiving an interaction etc.). A federation is modeled as an LSC

instance rather than as the MSC/LSC environment. This decision leaves the

environment concept at the disposal of the modeler and allows multiple federation

executions in a model. While inheriting the federation element from the LSC

instance, instead of the usual inheritance operator, the GME interface inheritance

95

is used, so that the federation execution becomes a black box. Thus, the federation

execution does not contain any MSC/LSC instance constituents such as a variable

list.

5.4.7 Live Entities

In interactive and live simulations, the users (players) and live entities, such as a

real ship, play an essential role in the federation and federate’s behavior.

Therefore, a modeling element is created as an LSC instance using GME interface

inheritance to represent live entities.

5.4.8 Libraries for HLA Methods

The HSMM supports modeling of the HLA methods as GME libraries. In this

respect, two libraries are constructed for representing the HLA methods, namely

IEEE 1516 HLA Methods library and DMSO 1.3 Methods library, using the HSMM

in order to test the metamodel and to prepare the required methods to model the

federate behavior both for IEEE 1516 and DMSO 1.3 compatible federations.

As seen in Figure 87, DMSO 1.3 Methods library is a programming language

specific library whereas IEEE 1516 HLA Methods library is an abstract library,

which is language unspecific. Both are provided in this study providing the

evidence of HSMM support for HLA specifications. Furthermore, the modelers can

also model the programming language specific libraries that conform to the IEEE

1516 specification, such as pRTI library.

96

Figure 87. HLA Methods Libraries

5.4.8.1 IEEE 1516 HLA Methods Library

An IEEE 1516.1 HLA Methods library (IMLib) is providing an abstract view (i.e.,

programming language unspecific) of HLA services defined in [2] and it is the

library required to model the federate behavior for IEEE 1516 federations. A screen

shot of the library is presented in Figure 88. There are 811 concepts1 (elements

with a kind of model, atom, and folder stereotypes in GME parlance) defined in the

library. The mapping of the HSMM elements to the method arguments of the IMLib

is presented in Appendix C.

1
 For IMLib version 20071217_01.

97

Figure 88. IEEE 1516.1 HLA Methods Base Library (GME Screenshot)

In order to use this library, we simply attach it to the model concerned and then

instantiate the required method in the model (in a drag-and-drop fashion). It is also

possible to refer to a method by the GME referencing mechanism.

Although the HLA management services are defined in full detail in [2]; it might

make sense to at least recap what they are.

HLA Federation Management Interface refers to the creation, dynamic control,

modification, and deletion of a federation execution. HLA Declaration Management

Interface is used to coordinate data exchange between federates, to specify the

data a federate will send and receive, and to control where data are sent. HLA

Object Management Interface Methods deal with the registration, modification, and

deletion of object instances and the sending and receipt of interactions. HLA

Ownership Management Interface is used by joined federates and the RTI to

transfer ownership of instance attributes among joined federates [2].

The OwM method “Inform Attribute Ownership” has an attribute

FederateReference type to inform the ownership status of the queried attribute.

This status can be a “Federate”, RTI, or un-owned. If the ownership is a federate,

then a federate instance reference must be included in the model to point to the

98

owner, or a null pointer refers to un-owned or a federation execution reference to

point to the RTI.

The Time Management services and associated mechanisms permit messages

sent by joined federates to be delivered in a consistent order to any joined federate

in the federation execution that is to receive those messages. Data Distribution

Management services serve to filter the data communicated between federates at

the class attribute level and the interaction level. HLA Support Services are defined

in HLA interface specification to be utilized by joined federates for performing such

actions as name-to-handle transformation (and vice versa), controlling advisory

switches, manipulating regions, and RTI start-up/shutdown [2].

The set argument has only one element (i.e., a reference to an argument) by

default. If this reference is null, then it is assumed an empty set. The user may add

new elements to the set. For example,

RegisterFederationSynchronizationPoint method has a set argument,

called “set of joined federate designators”, the HLA methods library provide only

one reference inside the set (i.e., a federate application reference). The user can

subtype this method and then can add any number of federate application

references.

5.4.8.2 DMSO 1.3 Methods Library

DMSO 1.3 Methods library (DMLib) provides the methods for the DMSO RTI API1

to model the federate behavior for DMSO 1.3 federations. Its structure is very

similar to IMLib. There are 815 concepts2 defined in it.

1
 For DMSO RTI NG 1.3 v6 API.

2
 For DMLib version 20071217_01.

99

CHAPTER 6

6. MODEL INTEGRATION AND EXTENSIBILITY

The MSC specification, in addition to an action model, introduces a rudimentary

data model via some predefined elements, such as messages, actions, and MSC

references. Basic data concepts as defined in MSC specification [36] are included

in the metamodel to enable the declaration and the use of the static and the

dynamic data.

However, it is certainly needed to build a domain-specific data model for many real-

life applications and to integrate it with the MSC. Therefore, the LSC/MSC

metamodel must provide by design a flexible structure for such future integrations.

While designing the data concepts in BMM, the facility for model integration was a

main design principle. Therefore, as explained later, some explicit integration

model elements are devised. This approach enables the user to supply a domain-

specific data model.

6.1 Integration by Extension

FAMM is a typical example of how to integrate the domain-specific data model

(HFMM) and action model (LMM) by using extensions as depicted in Figure 89.

100

Figure 89. Development Methodology for HLA -Based Distributed Simulations

A model can be integrated by extending any element defined in the MSC/LSC

metamodel. For example, the MSC/LSC message can be extended to provide a

domain-specific meaning to it. The HLA interface methods are a specialization of

the MSC/LSC message as seen in Figure 90. Thus, HLA methods are allowed to

be used in MSC/LSC charts in place of the MSC messages.

Figure 90. Extending MSC Message as HLA methods

Using the same approach, the HLA model elements, federate application,

federation, and live entity, are all instantiated from the MSC instance model

element. The integration is depicted in Figure 91. Federate application is inherited

using normal inheritance operator because some properties of MSC instance

element such as “decomposed” can also be used for federates. The others are

101

inherited using the interface inheritance operator. Therefore, they behave as a

black box.

Figure 91. Extending MSC Instance to Integrate Some HLA Model Elements

6.2 Accommodating Future Integrations

Explicit integration points in LMM are created with the purpose of easing the

(meta)model integration. These integration points are defined in expressions, in

data types, and in arguments. Integration points are intentionally designed as

abstract GME FCO (First Class Object) classes so that any kind of GME class

(e.g., atom, reference, etc.) can easily be inherited.

A data model may define a probabilistic kind of Boolean expression, to account for

the occurrence probability of the truth, to be used in the conditions. After modeling

this special Boolean expression, it is enough to inherit it from the

BooleanExpression FCO class defined in the MSC metamodel. As a result,

while modeling a condition, modeler can select either the default Boolean

expression or the new probabilistic Boolean expression.

102

(1) Extending boolean expressions in metamodel using the explicitly

defined integration point

Integration Point

for Boolean

Expressions

The new

extended

Boolean

Expression

(2) The modeler may choose the default or extended boolean

expression while modeling

Default Boolean

Expression

Extended

Boolean

Expression

Figure 92. Integration of a Probabilistic Boolean Expression

The same approach is also used for message arguments and data types. For

arguments the Argument FCO class, and for data types the

DataTypeFromDataModel FCO classes are created as integration points. As

seen in Figure 93, the domain data types (HLA) are instantiated as MSC data

types. Thus, the modeler can use the HLA data types in MSC/LSC charts as well.

103

Integrated

Data Type

model from

the HLA

Metamodel

Integration

Point for

external data

types

Figure 93. Integration of MSC Data Types and HLA Data Types

6.3 Console Input Output Library

To illustrate the integration of the external data models, a basic Console Input

Output Model Library (CIOMLib) is created using the default MSC data concepts.

This library is used to model the basic user input output via a simple console.

There are two interactions; Input and Output, and two arguments, bearing the

names, InputString and OutputString respectively. The interactions are

modeled as MSC messages. The arguments can be easily used as arguments of

HLA methods. For instance, in Figure 94, the user inputs a name using Input

message and then its argument, InputString, is used in

ReserveObjectInstanceName method call.

104

Reference to

InputString

In Input

message

HLA

Argument

Input

Message

Figure 94. Example for the integration of an External Data Model and HLA Methods

The use of this library demonstrates that a data modeling element defined with the

MSC model can be used in the HLA model.

105

CHAPTER 7

7. FAMM ASSESSMENT

FAMM assessment can be carried out, in qualitative terms, based on the criteria of

completeness, traceability, modularity, layering, partioning, extensibility , reusability

and usability (adapted from Section 7.1 of [14] and from [44]). It is believed that all

the criteria defined here determines the metamodel quality.

The assessment is based on the case studies and architecturing a real world

federation, NSTMSS, which is presented in Appendix B. Though this assessment

can be seen as a self-assesment and can be judged as being subjective, the

assessment is open to discussion. Of course, architecting and modeling more real

world federations using FAMM will bring out a more objective assessment of

FAMM.

7.1 Completeness (Scope)

Completeness criterion answers whether the metamodel includes all the relevant

concepts and entities of the intended domain [44, 45, 46]. The completeness of the

metamodel can be checked using the specifications and the standards of the

intended domain.

Completeness refers to the scope of the FAMM. FAMM offers a formalization of a

significant portion of the IEEE 1516 standard (the HLA Framework and Rules

specification and the pre/post conditions of the interface services are excluded). In

particular, HOMM formalizes the HLA OMT (IEEE 1516.2), and HSMM formalizes

HLA Federate Interface Specification (IEEE 1516.1). Another benefit of formalizing

the HLA standard is that vendors' deviations from the official standard become

manifest from library. For example, in Pitch RTI implementation, the indicator

argument is absent in SubscribeInteractionClass method call. This should

also help, for example, in porting a federate to a different RTI. Further, FAMM

106

covers the complete MSC/LSC specification in its Behavioral Metamodel. FAMM is

checked with each of the examples found in [35 and 38].

7.2 Traceability

Traceability between the domain specific concepts and the metamodel elements is

important for the proposed metamodels. Because the modelers generally tend to

expect to see the same concepts, which they are familiar from the domain. For

example, in LSC domain, the modelers would like to see the coregion construct

instead of a new devised construct doing the same work. This situation also

alleviates the learning and adaptation period. Therefore, keeping traceability

between the standardization documents and the metamodel elements

straightforward was a (meta)modeling guideline.

Another traceability issue is between the model and the generated code.

Traceability via comments is significant because the application developer works

over the generated code (e.g., he/she weaves the application logic code after

automatic base code generation).

7.3 Modularity

The modularity (Section 7.1 of [14]) principle addresses high coherence and low

coupling between the modules. It should be evident from the FAMM presentation,

as seen in Figure 5, that modularity principle is adhered to so that each concern

area is addressed by a self-functional (high coherence) sub-metamodel (e.g., LMM

and HFMM) as these sub-metamodels are connected loosely through Integration

Metamodel. Moreover, each sub-metamodel is also separated into sub-

metamodels (e.g., LMM is separated to MMM). By separating FAMM into sub-

metamodels provides the modularity. In terms of GME, this modularity is provided

by using libraries where each sub-metamodel (i.e., module) is a GME library.

7.4 Layering

Layering is defined as (1) separating the core constructs from the higher-level

constructs that use them, (2) separating concerns by a four-layer metamodel

architectural pattern [14].

The correlation of FAMM with OMG’s four-layer metamodel hierarchy has already

been presented in Table 1.

107

FAMM structure separates the core constructs and higher level constructs by using

the GME folder and the GME paradigm sheet structures. For example, the HOMM

encompasses the OMT Core folder and the Object Model paradigm sheet where

the former includes the core OMT elements and the latter includes the elements,

which use the core elements. Another example for layering is the structure of the

LSC idioms, which are created using the LSC/MSC core constructs such as the

inline expressions and the conditions.

Layering property of FAMM becomes more pronounced in a Federation

Architecture Model, which conforms to FAMM. In a federation architecture, two

levels become visible by separating the model specific (i.e., federation/federate

specific) and non-specific (i.e., HLA specific) concerns. The base layer is the HLA-

specific layer. The top layer is the federation/federate specific layer. The top layer

uses the constructs found in the base layer.

This layering is done via the GME libraries. The libraries, provided with FAMM such

as IMLib, are all specific to HLA standard rather than to a specific model. These

libraries provide the core constructs and form the base layer in a federation

architecture project. The top layer, which is formed by the behavior models, the

federation structure model, and the federation model in the project use the core

constructs provided with the libraries. The layers are depicted in Figure 95.

Base Layer:

These are all model non-specific libraries.

Top Layer:

These are all model specific (i.e., federation/federate

specific) constructs. They use the base layer elements.

Figure 95. Layers in a Federation Architecture Model

7.5 Partioning

As specified in [14], partioning is used to organize the conceptual areas within the

same layer. In the case of FAMM, partioning is provided by grouping constructs

108

into folders for each sub-metamodel. For example, considering MMM, it organizes

the MSC constructions in four folders, namely, Auxiliaries, Basic Constituents, Data

Concepts, and Time Concepts. In each folder, by using the GME paradigm sheets,

the constructs are grouped. For instance, in Basic Constituents folder, there are

actions, charts, comments, gates, etc paradigm sheets and in Time Concepts

folder, there is measurement, time interval, time offset, etc. paradigm sheets. Each

paradigm sheets include the model constructs and the structure of these

constructs.

Figure 96. FAMM Partioning

Partioning is conducted according to the specifications and standards of the

intended domain (e.g., for MMM, the MSC specification is taken into consideration)

109

to support the traceability between FAMM and the domain specific concepts. Thus,

the conceptual areas are organized according to the domain authoritative

documentation.

7.6 Extensibility

In order to construct a new metamodel as an extension of an existing one (e.g.

extending the MSC metamodel to the LSC metamodel), one could copy the

existing metamodel and then make modifications and additions to it. Alternat ively,

one may attach the existing metamodel as a library and then build the new model

on top of it without any modifications to the attached library elements. The latter

method, using the nested libraries feature of GME, yields better model

encapsulation. An example is provided in Section 4.3.2.

Attaching a metamodel into another metamodel as a library can be seen as an

analogy to the class inheritance in object-oriented languages. Moreover, read-only

metamodel elements resemble the protected attributes in a class where, model

elements to be extended resemble the public attributes.

Extensibility [14 and 44] emphasizes modifiable metamodels. Extension to a

metamodel is inevitable because the requirements and the expectations from a

metamodel will change from time to time. In case of FAMM, for specific domains, it

is essential to provide a domain-specific data model, which extends the basic MSC

data model. The proposed metamodel’s facility of integration with domain-specific

data models plays a critical role to achieve code generation.

UML specification dictates two kinds of extension mechanism: (1) using profiling

mechanism (i.e., profiles are used to customize the language for specific domains)

and (2) reusing part of the infrastructure package and augmenting it [14].

FAMM does not provide a profiling mechanism; instead, it has built-in explicit

integration points for model extensions. Reusing infrastructure package strategy is

also followed for instance, in extending MMM for LMM.

Extensibility support of FAMM and model integration are explained in detail in

Chapter 6.

7.7 Reusability

Reusability (Section 7.1 of [14]) will take a longer period of time to assess.

Presently, we note that the LSC/MSC metamodel is already being utilized in

110

performance modeling of network-based information systems. The MSC/LSC

metamodel is used to model the traffic generation behavior of the software and is

extended to include performance-related concepts, such as probability distributions

over the messages.

Another study employs the HOMM to attack the FOM independence problem. The

existing FOM and the new FOM are both modeled in HOMM, and a third model,

called the Correspondance Model, specifies the mappings from the former to the

latter. From this trio of models, the skeleton code for transitioning the federate to

the new FOM is automatically generated [47].

7.8 Usability

The usability of FAMM is evaluated in re-modeling of NSTMSS and some of its

federates, namely, Federation Monitor Federate (FedMonFd) and Exercise Planner

Federate (ExPFd) [48]. Both are fairly common types of federates in HLA

federations, where FedMonFd serves as a stealth observer by using the HLA

MOM, and ExPFd serves as federation scenario manager. Modeling the

architectures of each federate took one person-month. Most of the effort was spent

on learning the MSC/LSC and the FAMM basics, and reverse engineering of the

existing federate application.

In the matter of usability, the granularity of modeling matters. At present, the user

must model all the RTI interactions in full detail. For example, the number of

concepts (elements with a kind of model, atom, and folder stereotypes in GME

parlance) and connections (association in GME parlance) that constitute the STMS

model is about 634 and 243, respectively.

One means of alleviating this situation is to reduce the size of the handcrafted

model with the help of model transformation. The idea is that the designer (or an

automated conceptual model transformer) will need to specify only the essential

interactions in the behavior model, and then an auxiliary model transformer will fill

in the implied message exchanges taking the method pre- and post-conditions into

account. Static analysis of the behavior model is, of course, a prerequisite for such

model manipulations.

A complementary approach is to isolate the users as much as possible from FAMM

details. A graphical front-end that supports the LSC graphical syntax would

111

facilitate more intuitive behavior specification as well as prevent easy mistakes in

modeling.

7.9 Other Criteria

The criteria that are often applied as the quality criteria for the conceptual models

can also be applied to assess the metamodels. Especially, two criteria among

them: being analyzable and executable [46], which is an expected effect of Model

Integrated Computing, is important for models that conform to FAMM. The code

generation study over FAMM proves that the federation architecture models (that

conform to FAMM) are executable [31].

The quality of definitions of the documentation [44] criterion leads us to give

importance to the documentation for a metamodel. In this sense, FAMM is well

documented both in defining the metamodel (i.e., FAMM) constructs and in

explaining the domain-specific modeling environment (i.e., FAME), which use

FAMM.

The correctness criterion [14, 45, and 46] is an indispensable characteristic of a

metamodel. This criterion must be evaluated by objective studies and it will take

longer time to assess.

Consistency [45 and 46] criterion emphasizes that the metamodel constructs are

not in conflict with any other constructs. Due to compound structure of FAMM,

which integrates specifications from interdisciplinary domains (i.e., HLA, MSC, and

LSC), consistency was a major design principle. Especially, while (1) extending the

MSC metamodel to form the LSC metamodel and (2) while integrating HLA and

behavioral sub-metamodels, eliminating the conflicts was a design principle. As a

result, the constructs in the sub-metamodels of FAMM are not in conflict with any

other constructs.

Comprehension criterion [46] addresses the need for understandable models. It is

clear that if a metamodel is not understandable, then no one will use it.

112

CHAPTER 8

8. RESULTS, DISCUSSIONS, AND FUTURE WORK

8.1 Accomplishments and Discussions

This study proposes a metamodel, designated FAMM, for federation architectures

to enable a broad range of tool support for the HLA federation development

process. A significant part of this proposal is adoption of Live Sequence Charts for

the behavioral specification of federates. FAMM can be regarded as a domain

specific architecture description language for HLA federations. A federation

architecture model comforming to FAMM is in a machine-processable form, thus

enabling tool support.

Specifically, FAMM offers the following benefits to federation developers:

 FAMM serves both as a basis for source models for code generation [31]

and as a basis for target models for transformation from the domain-related

models (e.g., conceptual models of mission space) [9]. An interpreter,

called Code Generator, for automatic code generation is supplied with

FAMM. The interpreter takes a model (i.e., a FAM) including a federate

behavior specification as input and produces the federate application base

code as output [31].

 FAMM brings forth the expressive power to represent not only the static

view of the federation but also the behavior of the federates. It relates

behavior with the structure. This power comes from the Behavioral

Metamodel, which is integrated with the HLA Object Model and HLA

Services Metamodel. Thus, it eliminates a significant limitation of the OMT

and FEDEP.

 FAMM lays the groundwork for implementing model interpreters in order to

generate useful artifacts, such as FDD files and to extract interesting views,

113

such as publish/subscribe diagrams. An interpreter, called P/S Model

Generator, for the automatic generation of P/S models is implemented and

an interpreter, called FDD Generator, for automatic FDD file generation is

supplied.

 FAMM provides support for the verification and validation activities due to

the increased precision in the description of the federation.

o Constraints support early verification (in the sense of consistency

checking) in the architectural design phase. Cardinality constraints

are supported by design. Further constraints that cannot be

enforced by metamodel structure can be formulated using the OCL

[27]. Note that currently the HLA Object Model contraints are

formulated in the OCL. Formulating the constraints for the MSC/LSC

and the HLA interface specification is left as a future work.

o Generating codes for member federate applications and executing

the federation serve as a test for validity of the federation

architecture. Thus, it supports a dynamic verification of the

federation design.

 FAMM enables static analysis of the federation architecture. This can be

helpful, for example, in collecting metrics for assessing the complexity of

federation architectures. An interpreter, called Model Metrics Collector, for

collecting the metrics over FAM is supplied with FAMM.

 FAMM can help improve the communication among simulation engineers,

software engineers and programmers, again due to increased precision.

The metamodel, along with the libraries, the interpreters, and documentation for

sample case studies, including the federation architecture and the automatically

generated code of the Strait Traffic Monitoring Simulation, and NSTMSS models

are available from the FAMM web page:

http://www.ceng.metu.edu.tr/~otopcu/famm/index.html, last accessed December

25, 2007.

http://www.ceng.metu.edu.tr/~otopcu/famm/index.html

114

8.2 Future Work

8.2.1 From a User-friendly Trimmed Model to a RTI-friendly Full Model

It is also aimed to minimize the behavioral modeling effort without loosing any

details in federate’s behavior in order to simplify the designer’s work. Work is

aimed at reducing the initial model size with the help of model transformation. The

idea is that, the designer or the conceptual model transformer will specify only the

essential interactions in the behavior model, and then an auxiliary model

transformer will fill in the implied message exchanges taking method pre- and post-

conditions into account. Static analysis of the behavioral model is, of course,

essential to lay the groundwork for such model manipulations. The designer can

specify the minimal and basic behaviors in model (behavioral model in trimmed

form – user friendly), and then the model transformer can fill the standard model

elements to generate an RTI-friendly full model by the help of pre-defined

transformation rules as exemplified in Figure 97.

Trimmed ModelTrimmed Model

Fd RTI

SendInteraction(Message)

Full ModelFull Model

Fd RTI

GetParameterHandle(“Header”,Message)

GetInteractionClassHandle(Message)

GetParameterHandle(“Subject”,Message)

GetParameterHandle(“Time”,Message)

GetParameterHandle(“Body”,Message)

PublishInteractionClass(Message)

EnableAsyncDelivery()

SendInteraction(Message)

Set Parameters

Model

Transformation

Transformation

Rules

Figure 97. Transformation

Some potential objectives/issues to be addressed and covered are:

 The static analysis of a federate to determine the observed state of the

federate from RTI’s viewpoint.

 The transformation rules for RTI methods.

 The determination of the correct position for the generated elements in the

model.

115

8.2.2 Graphical Front-end (from LSC to BMM)

Future work will address improving (meta)model usability. A graphical front-end,

supporting, in particular, the LSC graphical syntax, is certainly desirable to improve

the usability of the metamodel.

Abstract syntax is, clearly, not for human consumption. Understandability of the

models is harder than that of graphical representation. Moreover, from our

experience, the metamodel usage is error-prone. Each visual element in LSC

corresponds to one (sometimes two) modeling element(s), which ostensibly results

in cluttered models. This drawback can be circumvented with a front-end that

converts the LSC in concrete syntax (in graphical notation) to the LSC in abstract

syntax (in our metamodel).

8.2.3 Federation Scenario

The scenarios and federation executions are closely interrelated. Developing a

scenario specification related to the Federation Architecture Metamodel will ease

the transformation of the conceptual models into federation architectures.

Moreover, the federation scenarios can be used to generate test cases for both

integration testing and operational testing of federations.

In a simplistic approach, federate developers may not care about federation

scenarios but the federation developers have a concern to enforce a specific

scenario during federation executions. The solution for enforcing a scenario will

affect the federate design. Consequently, the computational aspect may be

weaved according to the scenario.

8.2.4 Extraction of Usable Views of Federation Architecture

Another application area of the proposed metamodel will be to extract some usable

views such as filters (e.g., filtering the architecture to show only the interactions)

from the federation architecture.

8.2.5 Defining Metrics for Metamodel Quality Assessment

A research to specify generic assessment parameters for metamodel quality can

be conducted. The assessment parameters may be discussed with respect to the

proposed metamodels.

116

8.2.6 Constraint Checking Over FAMM (Through the OCL Constraints)

There are many constraints defined in the MSC/LSC and the HLA interface

specifications by prose. FAMM maintains the structural constraints of these by

design. For example, “a loop element has exactly one operand” is a structural

constraint. The others rather than the structural ones can be expressed using the

OCL and can be added to the metamodel. For example, name of the elements

must be unique in an MSC document.

The constraints for the HLA interface specification and MSC/LSC specification

must be formulated. The constraints provide robust models. The more the

constraints are added to FAMM, the fewer mistakes the modeler does.

8.2.7 Decomposition of a Federate Application

MSC decomposition can be automatically done via model transformations. Both the

source and target model are based on the same MSC metamodel. Model

transformation rules defined in this scope may also support the transformations

from scenario to federate LSCs. To explain decomposition more clearly, an

example for the decomposition of federation scenario LSC into federate RTI-

specific LSCs is given in Figure 98. The scenario is very simple where entity A is

sending an interaction m1 to entity B. When decomposition is applied, federate AFd

LSC and federate BFd LSC can be generated as shown in the figure. Message m1

is decomposed into RTI specific interface method calls where AFd sends an

interaction and BFd receives an interaction.

A B

m1

AFd RTILib

SendInteraction(m1)

AFd RTI-specific LSC

RTILib BFd

BFd RTI-specific LSC

ReceiveInteraction(m1)

Tick()

Decomposition

Federation Scenario LSC

m1

m1

Process

Interaction

Figure 98. LSC Decomposition Example

117

REFERENCES

1. IEEE 1516 Standard for Modeling and Simulation (M&S) High Level
Architecture (HLA) – Framework and Rules, 21 September 2000.

2. IEEE 1516.1 Standard for Modeling and Simulation (M&S) High Level
Architecture (HLA) – Federate Interface Specification, 21 September 2000.

3. IEEE 1516.2 Standard for Modeling and Simulation (M&S) High Level
Architecture (HLA) – Object Model Template Specification, 21 September
2000.

4. Stytz M. R. and Banks S. B. “Enhancing The Design and Documentation of
High Level Architecture Simulations Using the Unified Modeling Language”, In
the Proceedings of 2001 Spring Simulation Interoperability Workshop (SIW),
2001.

5. IEEE 1516.3 Standard for IEEE Recommended Practice for High Level
Architecture (HLA) Federation Development and Execution Process (FEDEP),
Apr 23, 2003.

6. Bezivin J. On the Unification Power of Models.Springer Verlag. In Journal of
Software and Systems Modeling, vol.4 no.2, pp. 171-188, 2005.

7. Schmidt D.C., “Model-Driven Engineering”, IEEE Computer, vol.39 no.2, pp.
25-32, 2006.

8. Ledezci A., Bakay A., Maroti M., Volgvesi P., Nordstorm G., Sprinkle J., and
Karsai G., “Composing Domain-Specific Design Environments”, in IEEE
Computer, vol.34 no.11, pp. 44-51, 2001.

9. Özhan Gürkan and Oğuztüzün Halit, "Model-Integrated Development of HLA-
Based Field Artillery Simulation", Proceedings of 2006 European Simulation
Interoperability Workshop, Stockholm, Sweden, June19-22, 2006.

10. Topçu Okan, “Development, Representation, and Validation of Conceptual
Models in Distributed Simulation”, Defence R&D Canada – Atlantic (DRDC
Atlantic) Technical Memorandum (TM 2003-142), Halifax, NS, Canada,
February 2004.

11. ISIS, “A Generic Modeling Environment GME 7 User’s Manual v7.0”. Institute
for Software Integrated Systems (ISIS) Vanderbilt University, 2007.

12. Çetinkaya Deniz, “A Metamodel for the High Level Architecture Object Model”,
Master’s Thesis, The Graduate School of Natural and Applied Sciences, Middle
East Technical University, August 2005.

118

13. Gray J., Bapty T., Neema S., and Tuck J., “Handling Crosscutting Constraints
in Domain-specific Modeling”, in Communications of the ACM Journal, vol.44
no.10, pp.87-93, 2001.

14. OMG, “UML 2, Unified Modeling Language: Infrastructure, Object Management
Group”, February 2007.

15. Tolk A., “Avoiding another Green Elephant – A Proposal for the Next
generation HLA based on the Model Driven Architecture”, in the Proceedings of
2002 Fall Simulation Interoperability Workshop (SIW), 2002.

16. Tolk A., “Metamodels and Mappings – Ending the Interoperability War”, In the
Proceedings of 2004 Fall Simulation Interoperability Workshop (SIW), 2004.

17. Parr S. and Keith-Magee R., “Making the Case for MDA”, in the Proceedings of
2003 Fall Simulation Interoperability Workshop (SIW), 2003.

18. Guiffard E., Kadi D., Mochet J., and Mauget R., “CAPSULE: Application of the
MDA Methodology to the Simulation Domain”, In the Proceedings of 2006
European Simulation Interoperability Workshop (SIW), 2006.

19. Etienne S., Xavier L., and Olivier V., “Applying MDE for HLA Federation Rapid
Generation”, in Proceedings of 2006 European Simulation Interoperability
Workshop (SIW), 2006.

20. SISO, “Base Object Model (BOM) Template Specification”, SISO-STD-003-
2006, 2006.

21. Loper, M.L., “Test Procedures for High Level Architecture Interface
Specification”, Technical Report, Georgia Tech Research Institute, Georgia
Institute of Technology, 1998.

22. Topçu Okan and Oğuztüzün Halit, “Towards a UML Extension for HLA
Federation Design”, in the Proceedings of 2nd Conference on Simulation
Methods and Applications (CSMA-2000), pp 204-213, Orlando, FL, USA, Oct.
29-31, 2000.

23. Topçu Okan, Oğuztüzün H., and Hazen G. M., “Towards a UML Profile for HLA
Federation Design, Part II”, in the Proceedings of Summer Computer
Simulation Conference (SCSC-2003), pp. 874-879, Montreal, Canada, July 19-
24, 2003.

24. Dobbs V., "Managing a federation Object Model with rational Rose: Bridging
the Gap between Specification and Implementation", In Proceedings of the
2000 Fall Simulation Interoperability Workshop, 00F-SIW-010, 2000.

25. Topçu Okan and Oğuztüzün Halit, “Developing an HLA Based Naval
Maneuvering Simulation”, in Naval Engineers Journal by American Society of
Naval Engineers (ASNE), vol.117 no.1, pp. 23-40, winter 2005.

26. Dahmann J., “High Level Architecture for Simulation”, Defense Modeling and
Simulation Office, 1998.

119

27. OMG. Object Constraint Language (OCL), Object Management Group (OMG),
May 01, 2006.

28. DoD VV&A Recommended Practices Guide (DOD VVA RPG Build 2) in
Hhttp://vva.dmso.milH, last accessed November 04, 2007.

29. Pace Dale K., “Conceptual Model Descriptions”, Simulation Interoperability
Workshop (SIW) Spring (99S-SIW-025), 1999.

30. Jacobson I., Christerson M., Jonsson M., and Overgaard G., “Object-Oriented
Software Engineering: A Use Case Driven Approach”, Addison-Wesley, ACM
Press, 1993.

31. Adak M., Topçu O., and Oğuztüzün H., “Model-based Code Generation for HLA
Federates”, submitted, 2007.

32. Savaşan Hakan and Oğuztüzün Halit, "Distributed Simulation of Helicopter
Recovery Operations At Sea", Proceedings of Military, Government, and
Aerospace Simulation (MGA02), Advanced Simulation Technologies
Conference Simulation Series Volume 34 number 3 pp.120-125, April 2002.

33. Kleppe A., Warmer S., and Bast W., “MDA Explained: The Model Driven
Architecture, Practice and Promise”, Addison-Wesley, 2003.

34. Çetinkaya Deniz and Oğuztüzün Halit, “A Metamodel for the HLA Object
Model”, in the Proceedings of the 20th European Conference on Modeling and
Simulation (ECMS), pp. 207-213, Bonn, Germany, May 28-31, 2006.

35. ITU-T Recommendation Z.120 – Annex B, “Formal Semantics of Message
Sequence Charts”, Telecommunication Standardization Sector of International
Telecommunication Union (ITU-T), April 1998.

36. ITU-T Recommendation Z.120, “Formal Description Techniques (FDT) -
Message Sequence Charts. Pre-published Recommendation
Telecommunication Standardization Sector of International Telecommunication
Union (ITU-T), 2004.

37. Brill M., Damm W., Klose J., Westphal B., and Wittke H., “Live Sequence
Charts: An Introduction to Lines, Arrows, and Strange Boxes in the Context of
Formal Verification”, Springer-Verlag LNCS 3147, pp. 374-399, 2004.

38. Madsen C.K., “Integration of Specification Techniques”, Master of Science
Thesis, Computer Science and Engineering Division of Department of
Informatics and Mathemetical Modeling (IMM) at the Technical University of
Denmark (DTU), Nov 2003.

39. Damm, W. and Harel, D., “LSCs: Breathing Life Into Message Sequence
Charts”, in Formal Methods in System Design, 19, 45-80, 2001.

40. Haugen Ø., “MSC-2000 Interaction Diagrams for the New Millennium”,
Computer Networks. 35(6): 721-732, May 2001.

41. Rudolph E., Grabowski J., and Graubmann P., “Tutorial on Message Sequence
Charts”, in Computer Networks and ISDN Systems, 28(12):1629-1641, 1996.

http://vva.dmso.mil/

120

42. Harel D. and Marelly R., “Come, Let’s Play: Scenario-Based Programming
Using LSCs and the Play-Engine”, Springer-Verlag, 2003.

43. Medvidovic N. and Taylor R.N. A Classification and Comparison Framework for
Software Architecture Description Languages. In IEEE Transactions on
Software Engineering Journal, vol.26 no.1, pp. 70-93, 2000.

44. Community Site for Metamodeling, “http://www.metamodel.com/”, last
accessed November 04, 2007.

45. Pace Dale K., “Ideas About Simulation Conceptual Model Development”, John
Hopkins APL Technical Digest, Volume 21, Number 3, pp.327-336, 2000.

46. Lindland, O.I., Sindre, G., and Solvberg A., “Understanding Quality in
Conceptual Modeling”, IEEE Software 11(2), 42-49, Mar 1994.

47. Uluat, M.F., “Model-based Approach to the Federation Object Model
Independence Problem”, MS thesis, Department of Computer Engineering,
Middle East Technical University, Ankara, Turkey, August 2007.

48. Molla A., Sarıoğlu K., Topçu O., Adak M., and Oğuztüzün H., “Federation
Architecture Modeling: A Case Study with NSTMSS”, in the Proceedings of
2007 Fall Simulation Interoperability Workshop (SIW), 2007.

49. Molla Ayhan, “Modelling of Exercise Planner Federate with Federation
Architecture Metamodel”, Graduation Project Report, Department of Computer
Engineering of Middle East Technical University, June, 2007.

50. Sarıoğlu Kaan, “Modeling Federation Monitor Federate”, Graduation Project
Report, Department of Computer Engineering of Middle East Technical
University, June, 2007.

51. Elrad T., Aksit M., Kiczales G., Lieberherr K., and Ossher H., “Discussing
Aspects of AOP”, Communications of the ACM, vol. 44 no.10, pp. 33-38, 2001.

52. AspectJ, Project web site, “http://www.eclipse.org/aspectj”, last accessed at
November 04, 2007.

53. Topçu Okan, Adak Mehmet, and Oğuztüzün Halit, “A Metamodel for Federation
Architectures”, will appear in ACM TOMACS, September 12, 2007.

54. Sarıoğlu, K., Adak, M. and Oğuztüzün, H., “Modeling and Code Generation for
a Federation Monitor Federate”, Technical Report METU-CENG-TR-07-07,
Department of Computer Engineering, Middle East Technical University, 2007.

55. Topçu Okan and Oğuztüzün Halit, “A Metamodel for Live Sequence Charts and
Message Sequence Charts”. Technical Report (METU-CENG-TR-2007-3),
Middle East Technical University, May 2007.

http://www.metamodel.com/
http://www.eclipse.org/aspectj

121

APPENDIX A

APPENDICES

A. FEDERATION ARCHITECTURE MODELING
ENVIRONMENT

A.1 Overview

The model of a particular federation architecture is an instance of the Federation

Architecture Metamodel (FAMM). Both tasks, metamodeling and modeling, are

accomplished using Generic Modeling Environment (GME) developed and

maintained by Vanderbilt University. GME is an open source, meta-programmable

modeling tool that supports domain-specific modeling where domain is HLA in our

case [8, 11].

GME initially serves as a metamodel development environment for domain

analysts, and then it provides a domain-specific model-building environment, called

Federation Architecture Modeling Environment (FAME), for the developers and the

modelers.

The screen shot in Figure 101 shows an example modeling environment for FAMM

users, who are typically federation designers.

Please refer to GME Manual and User Guide [11] for an explicit understanding of

GME tool and to FAMM website (http://www.ceng.metu.edu.tr/~otopcu/famm/

index.html, last accessed at December 25, 2007) for the example architectures

introduced here.

A.2 Introduction to Example

The subsequent sections introduce the metamodel in detail, accompanied by a

simple example: the Strait Traffic Monitoring Simulation (STMS). On a larger scale,

the architectural modeling of Naval Surface Tactical Maneuvering Simulation

System (NSTMSS) [25], a distributed interactive simulation, is carried out using the

metamodel and is presented in Appendix B and in [48, 49, 50].

http://www.ceng.metu.edu.tr/~otopcu/famm/%20index.html
http://www.ceng.metu.edu.tr/~otopcu/famm/%20index.html
http://www.ceng.metu.edu.tr/~otopcu/famm/%20index.html

122

A traffic monitoring station tracks the ships passing through the strait. Any ship

entering the strait announces her name and then periodically reports her position to

the station and to the other ships in the strait using the radio channels. Channel-1

is used for ship-to-ship and channel-2 is used for ship-to-shore communication.

The traffic monitoring station tracks ships and ships track each other through these

communication channels. All radio messages are time-stamped to preserve the

transmission order.

The traffic monitoring station and the ships are represented with two types of

applications1: a station application and a ship application, respectively. The ship

application is an interactive federate allowing the player to pick up a unique ship

name, a direction (eastward or westward), and a constant speed by means of a

textual interface. Joining a federation corresponds to entering the strait, and

resigning from the federation corresponds to leaving the strait. The station

application is a monitoring federate, which merely displays the ships (in the strait)

and their positions. The federation has a time management policy where each ship

application is both time regulating and time constrained and station application is

only time constrained.

The conceptual view of the application is presented in Figure 99.

Figure 99. Strait Traffic Monitoring Simulation Conceptual View

While selecting this example, the following highlights were in mind:

1
 Application is used as a substitute for “federate application”.

123

 Clearly, the essence of this simple federation is an example of a set of

objects tracking each other making it a common scenario/interaction for

most distributed simulations.

 It is believed that this example has a simple conceptual model, which will

make it easily understandable and capture the reader’s attention

immediately. Thus, it will force the user focus on the modeling part than the

example itself.

 Moreover, the sample federation naturally includes time management,

ownership management, and data distribution management services in

addition to the base services (e.g., federation management services).

 The sample federation involves two distinct federate applications and it has

a potential to support multiple federations.

 It is an interactive simulation. Thus, it presents how to model the user

interactions in FAME.

For the complete federation architecture and metamodels, along with other

supporting material, the reader is referred to the FAMM web site

(http://www.ceng.metu.edu.tr/~otopcu/famm/index.html, last accessed at

December 25, 2007).

A.3 Registering the FAMM

FAME is provided by GME once FAMM is invoked as the base paradigm. First, it is

required to register the FAMM paradigm to configure the GME as the FAME.

Run the GME. Click File and then select Register Paradigms. A dialog box

will be opened as seen in Figure 100. Click Add from File; select the

FAMM.xmp file obtained from the FAMM web site. Please, take care to check the

version.

http://www.ceng.metu.edu.tr/~otopcu/famm/index.html

124

Figure 100. Registering the FAMM

A.4 Creating a New Project

GME allows creation of a project for developing a new federation architecture. Start

GME, and select “File/New Project”. A dialog box asks you to choose the paradigm

that the new project will be based on. Select FAMM and press the Create New

button. The next dialog asks you to specify the data storage. Simple models are

usually stored in project files. Click Next and name your project file. The standard

extension is “.mga”. GME has now created and opened an empty project that is

named and associated with the FAMM paradigm. The FAME is ready to use now.

Figure 101 presents a screen shot of the project for the STMS federation

architecture. The root folder (e.g., “Strait Traffic Monitoring Simulation” in the

screen shot) serves as a project container for the federation architecture. It

includes three major sub-folders, namely, federation structure, behavioral models,

and federation models. The federation structure folder contains information about

the federation, such as the location of the FOM Document Data file, the link for the

related FOM, and the structure of the federation, where the participating federate

applications and their corresponding Simulation Object Models (SOMs) are linked.

The folder for behavioral models includes an MSC document for each participating

federate. The federation model folder includes the FOM, SOMs, and the other

125

Object Model Template related information (e.g., data types, dimensions, etc.). In

the example, SOMs for ship and station applications and a FOM for the STMS

federation are provided.

Root folder is the main project

folder. It contains all the

models for federation

architecture

Behavioral models folder

embodies the behaviors of the

participating federates. It

includes the MSC documents

and the sequence charts.

Federation model folder

contains the FOM, SOMs, and

other object model related info

(e.g., dimensions)

Federation structure folder

includes the federation

structure where the static

structure of the federation is

specified.

HLA Services folder is

attached as a GME library. It

includes all the management

services in HLA interface spec.

P/S model is an utility model,

which depicts the federation P/

S structure.

Info about the project

Figure 101. Federation Architecture Modeling Environment (FAME)

126

A.5 Creating the Federation Model

Federation Model is a folder that includes all the federation specific models and

related data (e.g., data types). First, create a federation model folder.

A.5.1 Creating the Object Models

Creating the object models are explained in [12]..

An appropriate FOM for the STMS federation is prepared conforming to the

HOMM. The object class and interaction class hierarchies of the object model are

presented in Figure 102. The FOM involves two object classes, namely “ship” and

“station”, and one interaction class, namely “radio message”. The ship object has

four attributes, namely “name”, “course”, “speed”, and “position”, and the station

object has two attributes, namely “name” and “location” as the radio message

interaction class has two parameters, namely, the “call sign” and “message”

parameters, indicating “the name of the entity that sent the message” and “the

content of the message (i.e., the position data)”, respectively.

Object Classes Interaction Classes
Ship Attributes and Their

Properties

Figure 102. A Part of the STMS FOM (GME Screenshot)

A.5.2 Creating Other Elements

Right click on the federation model folder in the browser window within the “Insert

Folder” option you can select Dimensions, Transportations, Data Types or Notes.

After the selection, a new folder is created under the root. By right clicking on the

new folder, you can select the related model elements. In addition, in the same way

127

with object models and federation design model, you can define the model

elements.

For adding HLA notes, define notes under the Notes folder and give references to

them; or directly add notes to the notes attribute of each modeling element. For

adding design notes, use annotation facility of GME.

Lastly, we can add a few points. References used in the model shall not be null, if

you want to denote “NA”, then simply use no reference element. If you want to

check the validity of your model, you can use Check facility of GME, by selecting

“File-> Check” option.

A.6 Creating Federation Structure Model

Right click on the root folder in the Browser window (the one usually positioned at

the right side), and select the option “Federation Structure” within the “Insert

Folder” option. Then create a new model named “New Federation Structure” is

created under the federation structure folder; you may change the name from

Attributes browser. Double click on the model to open it. An empty window appears

in the user-area.

The Part Browser, a small window in the lower left portion of the program, displays

the model elements that can be inserted into the model in its current aspect. The

elements in this browser are Federation, FederateApplication,

FOMReference and SOMReference. You can use them by dragging from the Part

Browser onto the main window. You can connect federation to federate

applications to denote the members of the federation; federation to

FOMReference; and FederateApplication to SOMReference. When using

references, you drag the referred element over the reference and drop it when the

mouse icon changes. But before referring elements you should first define FOM

and SOM object models. Copy and paste operations on elements are supported by

GME and all elements can be created, moved, or copied by drag and drop as

usual.

In the federation structure model of STMS, the connection is made for the

federation and federate applications with the FOM and SOMs, respectively. The

model is depicted in Figure 103. The federation is named “Traffic Monitoring

Federation”. The multiplicity information is also supplied while connecting the

applications to the federation. The ship application may join the federation multiple

128

times while the station application is limited to one in this specific scenario. The

lower pane of the screen shot shows this multiplicity.

Figure 103. The Strait Traffic Monitoring Federation Structure Model

A.7 Creating Behavioral Models

You can create a behavioral models folder under the root folder. This folder

groups all the behavioral models of the federates in the federation.

The folder for behavioral models defines the whole system of MSC documents and

includes MSC documents for each participating federate. The behavior model

folder includes a detailed structure; a screen shot for MSC/LSC building

environment is presented in Figure 104. A document consists of head, utility, and

defining parts where defining and utility parts include the (MSC) charts. A chart

includes an MSC body, an HMSC, or an LSC. Charts also have precedence order

indexes to specify the interpretation order. The document head includes the

declaration lists.

129

Behavioral Folder is the

main folder for a BMM

project. It includes one or

more (MSC) documents.

Document consists of head,

defining, and utility parts.

Defining and utility parts

include the charts. Head

includes the declaration lists.

Chart includes the MSC

body, LSC, or HMSC.

Figure 104. MSC/LSC Model Building Environment

To illustrate the usage of MMM, referring back to the STMS federation, there are

four actors that contribute to the overall behavior of the federation. These are the

ship and station applications, the user, and the federation execution (with the RTI

“behind the scene”). The ship application can join the federation execution multiple

times as distinct federates. Hence, it will be the focal point for the code generation

process. The behavior model of the ship application will be presented first in LSC

graphical form (Figure 105), and then in FAMM form (Figure 106).

130

Figure 105. Behavior Model for the Ship Federate in LSC’ Graphical Notation

The behavior model for the Ship Federate (ShipFd), which is an instance of ship

application, includes the federation execution and user interactions as well as the

application logic. There are three instances (represented as rectangles): User,

ShipFd, and Bosporus Federation (i.e., an instance of strait monitoring federation).

The code generator only generates code for the federate instance (i.e., ShipFd).

The vertical lines represent the lifelines for the instances. A typical LSC includes

mainly two charts: a pre-chart (the diamond-shaped area on top) and a main chart

(the rest of the chart). The pre-chart behaves like a conditional. If it is satisfied, the

131

main chart is executed. In the pre-chart of the diagram, the ship federate first

creates the Bosporus federation and then keeps interacting with it as it initializes its

time management policy, declares its data interests, and creates data distribution

regions. The behavior for these interactions is defined in separate LSC diagrams

(not shown), namely, InitializeTimeManagement, DeclareCapability,

and CreateRegions, and is referred to by references (the oval shapes) within the

pre-chart. If the ship federate successfully completes the pre-chart, then the

diagram proceeds with a parallel execution structure covering the rest of

interactions with the user and the federation execution. This structure includes two

operands that run in parallel: the main thread and the callbacks thread. A condition

(ExitCondition) synchronizes the exit for these threads. In the callbacks part,

the callbacks can occur in any order, and therefore they are connected to a

coregion (designated by the vertical dotted line).

Figure 106 depicts the corresponding model of the pre-chart part of the diagram in

abstract syntax. The right pane shows the structure of the project while the left

pane depicts the behavior model of the ShipFd corresponding to the pre-chart. The

abstract syntax is in a one-to-one correspondence with the LSC. Therefore, the

traceability is straightforward. As seen, the message-out events are connected to

the HLA methods (specified in the methods library). The reference modeling

elements are used to point to other LSCs.

Figure 106. Pre-chart Part of Ship Federate’s Behavior Model in Abstract Syntax

132

The HLA methods can only be connected to the MSC message events (out and in)

and method call events (call out, receive, reply in, and reply out).

A.7.1 Creating Federates and Federation Executions

Federates and federation executions are the main instances that interacts in a

behavioral model. Federate corresponds to the joined federates. It is created by

instantiating the FederateApplication element. Federation execution

corresponds to the federation executions created by RTI. A federation execution is

the primary instance the federate interacts with (e.g., joining the federation,

receiving an interaction etc.). It is created by instantiating the Federation

element. For example, Figure 107 presents how to create federates and federation

executions. ShipFd and Bosporus Station, which represent two different types of

joined federates, are instantiated from the federate applications: ship and station

applications, respectively; while Bosporus Federation, a federation execution, is

instantiated from the Traffic Monitoring Federation

FederateApplication and Federation modeling elements in Federation

Structure Model provide a template (type model) for the federate and federation

execution, respectively. To create a federate and federation execution;

 First, design the Federation Structure Model as described in the previous

sections,

 Create an Instance Declaration List under the Document Head of the MSC

Document,

 Instantiate the federate and federation execution elements by dragging the

type models (i.e., FederateApplication and Federation) while pressing the

[Alt] key, and dropping them into the Instance Declaration List,

 Rename their names as appropriate, for example, in STMS federation,

federate, named ShipFd is created.

 Now, they are ready to be used in the behavior charts. In the behavior

charts (e.g., LSC), use only the instance reference elements that refer to

the instantiated models. They are also used in HLA method calls such as

JoinFederationExecution and CreateFederationExecution

method calls.

133

It is also possible to instantiate federation multiple times and thus to create multiple

federation executions.

Federate: This element is a reference to

the ShipFd which is instantiated from the

Federate Application, ShipApplication.

FederateExecution: This element is a

reference to the BosporusFederation

which is instantiated from the Traffic

Monitoring Federation.

ShipFd is instantiated from Ship Application

where BosporusFederation is instantiated

from TrafficMonitoringFederation

Figure 107. Creating Federates and Federation Executions

A.7.2 Reserving Object Instance Names

After joining the federation, a federate may reserve object instance names with

RTI. Although this step is not a compulsory step for a federate, sometimes, it is

important to reserve unique names through federation executions. For example, in

our running example, it is important to have unique ship names in the federation.

Therefore, after joining the federation, first we seek a unique ship name and then

try to reserve it (using a repeat-until block).

This part of the federate’s behavior also presents an example for how to connect a

repeat-until block condition (i.e., until condition) with a Boolean indicator of an HLA

method.

The LSC portion, extracted from Figure 105, for reserving the object instance

names is depicted in Figure 108. If ObjectInstanceNameReserved callback

returns a true indicator, then the repeat-until loop will be exited reserving the name

successfully. Else, the loop will start over (i.e., the user will input a new name and

the federate will try to reserve it again).

134

ReserveObjectInstanceName(ShipName)

ObjectInstanceNameReserved()

Repeat-Until (Name Selection)

NameAccepted

Input ship’s name

Figure 108. LSC for Reserving The Object Instance Names

To preserve this semantic, the condition NameAccepted for the repeat-until loop

must be connected to the indicator provided by the

ObjectInstanceNameReserved callback. To do this, the modeler must define

an indicator variable in the federate’s variable list. For example, in Figure 109, an

indicator (Indicator_True) is defined to represent the true valued indicators. As

seen in Figure 109, both the callback method argument and the repeat-until

construction condition refers to the same indicator. Thus, if callback returns true,

then the loop is exited successfully.

NameAccepted

condition of Repeat-

Until loop is a

reference to the

Indicator defined in

the ShipFd variable

list.

The argument

“success indicator” of

the object instance

name reserved also

refers to the indicator

defined in ShipFd

variable list.

Figure 109. Model for Reserving the Object Instance Names

A.7.1 Creating Elements for the Variable List

FAMM allows declaring the elements: message retraction designator, region,

timestamp, lookahead, and object instance in the variable list of the federate

Instance. Message retraction designator and region are directly created inhere

135

while others are instantiated from the templates (e.g., object instances are

instantiated from the object classes).

A.7.1.1 Creating Object Instances

Object instances are created by instantiating the ObjectClass elements declared in

FOM. They are placed in the variable list of a federate application. The method

calls that use or refer to the object instances have a reference to point to the

instance declared in the variable list.

A.7.1.2 Creating Timestamp and Lookahead

All federations shall document their use of time stamp and lookahead via the time

representation table in OMT [3]. When using FAMM; timestamp, lookahead, and

their data types are created in FOM folder. These provide a static template. The

instance of these static templates can be created in the Variable List folder of

the federate application (i.e., MSC Instance). After creating instance of timestamp

or lookahead, one can assign a value to it.

The instances declared in variable lists can be used in the method calls that

include “timestamp/lookahead” references as arguments, such as

EvokeCallback.

A.7.1.3 Creating Regions and Dimensions

First, the dimensions, which constitute a region, must be defined in the federation

object model. To do this, under the Federation Model Folder, create a

Dimensions folder. Herein, we can create the dimensions. Each dimension has a

type and a normalization function as described in [3]. Type is a reference to a pre-

defined type in Data Types folder. In the normalization function element, one can

specify the upper and lower limits.

Second, in the Variable List of the federate under concern, the Region

element can be created. Each region element has a reference to the dimension

elements. Now, regions are ready to be used in the behavioral charts.

Regions are handled via the HLA DDM methods such as CreateRegion and

CommitRegionModifications calls. All these methods have a reference to the

regions defined in the variable lists. CreateRegion method call creates the

regions while SetRangeBounds method call sets the boundaries for the regions.

136

An example, a one dimensional communication space for radios, is created to

illustrate a distribution region. In our example, radio communication is carried out

using the radio channels: channel-1 for ship-to-ship communication and channel-2

for ship-to-shore communication. Channels are regions over the channel dimension

(there are two channels from zero to 3). Channels are defined by the dimension

numbers as shown in Figure 110.

Lower

Bound

Upper

Bound

Channel Dimension

0 1 2

Channel-2Channel-1

Figure 110. DDM Example

Figure 111 presents the model.

Methods use the regions

defined in the variable

list of the federate

Regions are defined

here.

Two regions, channel-1

and channel-2 are

defined.

Dimensions are defined

here

A ChannelDimension is

defined for the radio

transmissions

Figure 111. Creating Regions and Dimensions

137

A.7.2 Modeling Callbacks

A.7.2.1 Discovering Objects

Discovering objects are done via the DiscoverObjectInstance method. A

federate may discover many objects; it is the user responsibility to specify what the

federate will do after object discovery. There are two modeling approaches for

object discovery:

A loosely modeling approach is not to model the behavior after the federate

discovers an object. If modeling each object discovery has no impact over the

design, then it is sufficient to put only one DiscoverObjectInstance call to the

model and to leave the arguments empty. After code generation, the modeler can

weave the object discovery codes.

If the modeler wants to model each object-discovery and what-to-do-afterwards,

then the modeler can use PAR operator for each object discovery. In Figure 112,

object discovery for two different object classes: Ship and Station are modeled.

After discovering the objects, the federate requests object updates for each of

them. DiscoverObjectInstance calls are marked as cold messages as well

as their locations in order to indicate that the call “may” be received.

Par

ShipFd
BosporusFederation:

Federation Execution

RequestAttributeValueUpdate(Ship)

RequestAttributeValueUpdate(Station)

DiscoverObjectInstance(Ship)

DiscoverObjectInstance(Station)

C
o
ld

 L
o
ca

tio
n

C
o
ld

 L
o
ca

tio
n

Cold Message

Cold Message

Figure 112. Object Discovery

138

A.7.3 Setting the Temperatures

The temperature of a location can be specified by setting the temperature attribute

of the event connection. For example, as seen in Figure 113, to set the location

temperature of the discover object instance message input, first click the

connection between the input event and the instance reference, and then set the

temperature attribute found in the attributes pane. In the same way, to specify a

message/condition temperature, first select the message, and then set the

attribute.

To set the

location

temperature,

first click the

connection

between the

event and the

instance, and

then set the

temperature

attribute.

To set the

temperature of a

message. First,

click the

message, and

then set the

temperature

attribute in the

attributes pane

Figure 113. Setting the Temperature of a Location and a Message (GME
Screenshot)

A.8 Using the Libraries

GME supports model libraries, which are ordinary GME projects. Each GME

project can be used as a library if both the library and the target project are based

on the same version metamodel (i.e., FAMM). The primary ways of using libraries

is to create sub-types and instances from the library objects. It is also possible to

refer library objects through references. Apart from being read-only, objects

imported through the library are equivalent to objects created from scratch [11].

There are auxiliary libraries that can be readily attached to a project. Three libraries

are currently provided: IEEE 1516.1 Services Library, IEEE 1516.1 Management

Object Model Library, and IEEE1516.2 HLA Defaults Library.

139

Libraries are provided in “.mga” format. In order to attach a library into a project,

right click to the root folder, and select Attach Library option. Choose the

library file in the opened dialog box.

Please, note that before attaching a library, first register the base paradigm of the

library that will be attached to the project. The base paradigm for IEEE 1516.1

Services Library, IEEE 1516.1 Management Object Model Library, and IEEE1516.2

HLA Defaults Library is HLA Federation Metamodel (HFMM).

When a library version is changed, it is sufficient to refresh the library in the project,

do not re-attach or delete the library. To do this, select the library in the project,

right click, and select Refresh Library option.

A.8.1 IEEE 1516.1 Methods Library

An IEEE 1516.1 HLA Methods library serves the template methods (a type model)

of the HLA services specified in [2] for the actual use (an instance model). This

library is required to model the federate behavior. In order to use this library, we

simply attach it to the model concerned.

A.8.1.1 Using Template Methods Defined in the Library

There are three ways to use the template methods found in the library.

First and the common way to use the library is the Instantiation Approach. In this

approach, whenever the modeler wants to use a template method in the library,

he/she instantiates the template method (in other words, he/she creates an

instance model from the type model). In GME, instance models can be created by

dragging the type model and dropping it while pressing alt key. The modeler

cannot change the number and type of the arguments, but only the argument

values. This approach is the common way to use the HLA methods in the library

and must be preferred to the other approaches in general. An example for the

usage of this library is already presented in Figure 106 for STMS federation. The

method calls, such as CreateFederationExecution and

JoinFederationExecution, are instantiated from the template models

specified in the HLA Services Library attached to the project.

Another way is to use a Method Reference to refer to a template method in the

library. This approach can be preferred only if the argument values are not specific

for each method call and where the template method is appropriate for each call.

140

The non-argument HLA methods are typical examples for such a use. For instance,

QueryFederationRestoreStatus method has no supplied and returned

arguments. So, when calling it, instead of instantiating it each time, the modeler

may choose to use a reference pointed to it.

The last way to use a template method is to sub-type it first, and then instantiating

it. As presented in the first approach, the instantiation of a template method does

not allow changing the number of arguments in a call. But, some HLA methods use

the sets, collections and lists as supplied or returned arguments. These containers

may include a number of elements. Since the template method provides only one

element for these containers, the modeler may need to modify the number of the

elements in the template method. Therefore, first a sub-type of the template

method must be created in the declaration list of the MSC document head. Then,

the modeler can modify the number and type of the arguments as needed. Lastly,

the sub-type can be instantiated as described in instantiation approach. For

example, PublishObjectClassAttributes method has a “set of attributes”

supplied argument to specify the attributes to be published. The library provides a

template method for it, but the set argument of the method has only one attribute

reference. To add new attribute references, the modeler must sub-type it to add

needed attribute references and then use (instantiate) it in the model.

A.8.1.2 Using Arguments of the Template Methods

The modeler must be familiar with the HLA methods and their arguments.

Arguments are provided to the modeler inside the template methods.

Most of the arguments are provided as null references for the object model such as

federation reference, federate application reference, and object class reference.

While modeling the federation architecture, the modeler must (re)direct the

reference at any time by dropping a new target modeling element on top of them.

For instance, CreateFederationExecution method has a federation

reference, as a supplied argument. This argument is provided as a null reference in

the template method. The modeler must manually direct which federation execution

this null reference refers to.

Some arguments are provided in form of the Boolean and string type values. These

are the indicator and string type arguments. When a method has this type of

argument, the library provides both the element itself and its reference in the

arguments of the template method. Only one must be utilized in modeling where

141

the modeler may prefer to use the element itself in case specifying the value

directly or its reference in case referring to other arguments defined in another

method. A code interpreter must check the reference first, if it is null, then it must

interpret the value assigned to the element itself. Example in Figure 94 provides a

sample usage for StringTypeReference arguments.

The order type element provides an enumerated list for the representation of the

order type arguments such as the sent message order type. Message retraction

designator, object instance, and region are new model elements used to represent

the counterpart arguments. The modeler can use these arguments as described in

chapter 5.

Appendix B provides a quick reference document for mapping the HLA services

and their arguments in the library.

A.8.1.3 Exception Handling

Each exception of an HLA method found in the library is empty by default. The

code generator only generates the skeleton for the exception (i.e., catch block),

and the user introduces the advice code by hand.

If the modeler wants to specify a behavior for handling the exception instead of

coding, then he can add an MSC reference to the exception in order to point a

behavior chart.

A.8.2 IEEE 1516.1 Management Object Model Library

This library provides the required object models, specified in [2], to model HLA

MOM.

Whenever HMOMLib is attached to a FAM project, MOM automatically becomes a

part of the FOM. There is no need an additional association among federation,

MOM, and FOM. Which federates are using MOM is easily understood from the

behavioral model.

After attaching this library, predefined object and interaction classes are loaded,

and then they can be used just as the federation object models do.

If there is no need for a FOM, for example, in case of modeling the architecture of a

federation monitor, it is just sufficient to attach the MOM library as the object

model. Federation element can be attached to the MOM instead of FOM.

142

A.8.3 IEEE1516.2 HLA Defaults Library

This library provides the predefined object model elements specified in [3].

A.9 Creating a New Library

Using FAMM, one can also create a new library for future use. As an example, a

basic Console Input Output Model (CIOM) Library is created. This library is used to

model the basic user input output via a simple console. There are two interactions;

Input and Output, and two arguments; InputString and OutputString. The

interactions are modeled as MSC messages.

First and foremost, as described before, create a new FAMM project, and model

the interactions as message declarations having seen in the following figure. After

saving this project, you can attach it as a library in your other modeling projects.

For example, it is used in STMS Federation for modeling the user interactions.

Figure 114. Console Input Output Model Library (GME Screenshot)

143

A.10 How to Upgrade Models

When the version of a base metamodel or a library is changed, GME allows the

upgrade of the related models. The upgrade methods are threefold:

A.10.1 First Method – Default Upgrade Mechanism

The first method is to use the GME default upgrade mechanism. After installing the

newer version of the base metamodel, click your project (model in mga format) to

open it, a dialog box will ask you to upgrade the model or not. Choose Yes. GME

will attempt to upgrade the model. If this operation does not succeed, follow the

other methods.

Figure 115. Upgrading the Models – Method I (GME Screenshot)

A.10.2 Second Method – Using Update through XML

If the first upgrade method does not succeed and if you do not have an export (in

XME format – special XML format for GME) of your model, then you can use this

method. Try the first method, when the upgrade dialog appears, say No this time.

The model will be opened as usual without upgrading (using its old paradigm –

therefore, do not delete the base paradigm). Then, select Update through XML

method in File menu as depicted in Figure 116. This command allows updating

the models by automatically exporting to XML and importing from it.

144

Figure 116. Upgrading the Models – Method II (GME Screenshot)

Please note what the GME Manual [11] commends on upgrading:

New paradigm versions are not always compatible with existing

binary models. If a model is reopened, GME offers the option to

upgrade it to the new paradigm. If the upgrade fails, XML export

and re-import is needed (the previous generation of the paradigm

is to be used for export). XML is usually the more robust technique

for model migration; it only fails if the changes in the paradigm

make the model invalid. In such a situation the paradigm should be

temporarily reverted to support the existing model, edited to

eliminate the inconsistencies, and then reopened with the final

version of the paradigm.

A.10.3 Third Method – Using Import/Export Mechanism

Before registering the new base paradigm, export your model, then register the

newer paradigm, and import your model into a new project based on the newer

paradigm.

145

A.11 Practical Matters

A.11.1 Setting Port Label Length

In FAMM, some modeling elements are designed as GME ports. By default, only

three letters of the port names are appeared inside the model. Port label length can

be changed by selecting the preferences of the model that contains the ports and

then setting the PortLabelLength to zero.

Figure 117. Setting Port Label Lengths (GME Screenshot)

A.11.2 Using the Icons

In order to use the icons provided with the FAMM for model elements instead of the

standard GME icons, first create “icons” folder in project folder (this is where the

146

GME project file resides), and then copy the icon library into this folder. When the

project is reopened, the icons will be changed automatically by the GME.

Please not that if the icons are not used in the project, then the name of the

elements under the FOM folder will be blank.

A.12 Creating Publish/Subscribe Models

The P/S model visualizes the capabilities and interests of the ship application and

PSMM models are generated from the behavioral part of the federation architecture

by analyzing the HLA declaration management services.

After completing the federation architecture, the modeler can use the P/S Model

Generator, which is an interpreter supplied with FAMM, to generate automatically

the P/S models for the federation.

A.13 P/S Model Generator

A.13.1 Registering the P/S Model Generator

In order to use the P/S Model Generator (i.e., an interpreter), first the interpreter

must be registered in GME. To register, open the federation architecture in GME,

select File and Register Components. In Components panel, press Install

New button, and select the interpreter “.dll” file.

A.13.2 Using the P/S Model Generator

After registration, an interpreter icon appears in the toolbar. Clicking this icon

executes the P/S Model Generator. The first interface panel seen is the panel of

the configuration utility (in Figure 118). Here, the modeler can choose the types of

the P/S models (i.e., Federate-based or Class-based). Pressing Generate button

generates the chosen type models.

147

Figure 118. P/S Model Generator Configuration Utility

An example P/S model for ship application is presented in Figure 119. In the right

pane, the generated P/S models according to their categories can be seen. The left

pane depicts the inside of the selected P/S model (i.e., ShipFd_PSModel). Here,

the publish and subscribe interests of the selected ship application federate are

seen in a neatly formatted view. One can easily interpret from the figure that ship

federate has the ability to generate radio messages and ships as it has interest in

stations, other radio messages, and other ships.

Figure 119. Ship Federate Application P/S Model (GME Screenshot)

148

A.13.3 Features

Some prominent features of the P/S Model Generator are as follows:

 It allows the modeler to choose the category of the P/S Model via its

configuration utility written in .NET 2.0.

 It checks the HFMM and LMM are included as GME libraries. Publish and

subscribe method structures used in the federation architecture where each

P/S method has a class reference and connected to a federate reference. If

one of these references is null, then it generates a warning and depicts the

path of the null reference to the modeler.

Figure 120. P/S Model Generator Warning

 As creating the model elements, the interpreter colors and positions the

model elements to obtain a formatted view.

 It formats the name of the references according to their referred elements

(e.g., OCRef->Station). Thus, it provides views that are more readable.

 It names the associations between elements (e.g., Publish Interaction) for a

comfortable review.

 It uses the GME generic BON2 API for model (i.e., a federation

architecture) traversing and manipulation.

 It is written in C++ using Microsoft Visual Studio 2005.

 The size of the handcrafted code is approximately about 324 lines of code

(loc).

149

A.14 Code Generation

Based on the proposed metamodel, ongoing experimental work with the federate

base code generator tests the utility of RTI-related code generation in the early

prototyping of federation designs. Moreover, code generation facilitates the

dynamic verification of the architecture. For instance, a retraction designator may

become invalid during federation execution due to some design error. Then a

retract method call will raise an exception. For the sake of not shifting the focus of

the present paper, only the strategy for code generation is outlined. For further

details, please refer to [31, 53].

In principal, the code generation strategy is based on the Aspect Oriented

Programming approach [21], which allows us to generate code to exercise LSCs in

a computation-free manner. Then the user can weave, using AspectJ [52],

application-specific computational (and other non-communication) aspects onto the

generated base code. In fact, the HLA-specific portions of the code are

automatically weaved onto the base code generated from the LSC, but the

federate programmer does not need to be aware of this process.

The LSC instance is a critical element in code generation. Interactive users,

federation execution, the environment, federates, and, if desired, the components

of a federate are all instantiated from the LSC instance element. In case of multiple

federations on the same RTI, we have one instance per federation execution. The

code generator generates code only for the federate application. Note that code

generation for the environment, live entities, interactive users, and federate

application components (e.g. federate graphical user interface) would require

special data models to be integrated with BMM. All LSC instances are generated in

separated class files and they are declared and used in the diagram code

generated from the LSC diagram.

An example of the generated code for the strait monitoring federation is presented

in Figure 121. For the sake of brevity, only the first operand of the parallel structure

(in Figure 105) is presented.

150

public static void ShipFdMainMethod (){

(…) // Pre-chart code for federation management, initialization time management, declaration management,

and region creation

class MainThread_02ee extends Thread { //Thread for the first operand of the parallel structure.

 MainThread_02ee() {}

 public void run() {

 do { // Loop is repeated until the ReserveObjectInstanceName (ROIN) is succeeded.

 condRecvMessageInput_03e0User(); // Input of ship’s name from the user

 // Reserve object instance name

 SendReserveObjectInstanceNameROINBosporusFederation("s0"); // “s0” is to be overridden by aspect

 // Object instance name Rreserved

 condRecvObjectInstanceNameReservedOINRBosporusFederation(); // Get the ROIN result

 (…) //If ROIN succeeded, while condition is satisfied

 } while (!((Boolean)Ship_MSC.coldChoices.get("until_0300")).booleanValue());

 (…)// Other inputs, direction and speed, from the user

 SendRegisterObjectInstanceRegisteredShipObjectBosporusFederation(...);// Register Object Instance

 SendUpdateAttributeValuesRegisteredShipObjectBosporusFederation(…);// Update Attributes

 SendRequestAttributeValueUpdateDiscoveredShipObjectBosporusFederation(…); // Request Attribute

Update

 doLaterMessageTimer_03c6(100); //Start timer

 // While-Do (Main simulation loop)

 while (((Boolean)Ship_MSC.coldChoices.get("ExitCondition_040f")).booleanValue()) {

 (…) // The code generated for SendRadioMessage chart is inserted here.

 condLSC_02ec=condLSC_02ec&& // Condition of the pre-chart is established

 condRecvProvideAttributeValueUpdateRegisteredShipObjectBosporusFederation();//Received cold

message

 (…) // Detailed code for receiving a cold message

 if (condLSC_02ec) {// If pre-part is satisfied, body part of the pre-chart is executed.

 SendUpdateAttributeValuesRegisteredShipObjectBosporusFederation(…);// Update attribute values

 }// End of pre-chart condition

 // Time management

 SendTimeAdvanceRequestTARBosporusFederation(new Double(55.0)); // Request time advance

 condRecvTimeAdvanceGrantTAGBosporusFederation(); // Time advance granted

 }// End of loop.

 // Exit federation reference

 SendDeleteObjectInstanceRegisteredShipObjectBosporusFederation(…); // Delete local objects

 SendResignFederationExecutionRFEBosporusFederation(0); // Resign federation

 SendDestroyFederationExecutionDFEBosporusFederation("s0"); // Destroy federation

}// End of main thread

Figure 121. Excerpts from the Generated Java Code of Ship Application [53]

151

APPENDIX B

B. CASE STUDY: NAVAL SURFACE TACTICAL
MANEUVERING SIMULATION SYSTEM

This case study presents the work of modeling the architecture of a real life case

study, Naval Surface Tactical Maneuvering Simulation System conforming to

FAMM.

The introduction section introduces a case study while presenting its components.

The following section, federation architecture model, presents the federation

architecture and the behaviors of the federates. The last section presents the P/S

models generated automatically from the NSTMSS FAM.

This appendix is mostly summarized from [25, 48, 49, 50].

B.1 Introduction

Conceptually, Naval Surface Tactical Maneuvering Simulation System (NSTMSS,

pronounced “NiSTMiSS”) is a distributed virtual environment, where a group of

players controls the virtual frigates (either Meko or Knox class) in real time and

some players behave as tactical players that command the groups of the frigates.

All shares a common virtual environment, which its environment characteristics

(e.g., time of day) and parameters (e.g., the wind direction) are forced by an

environment application, obeying a common scenario that is distributed (e.g., role

casting), controlled (e.g., injection messages), and monitored by an exercise

planner.

Technically, NSTMSS is a High Level Architecture (HLA) based distributed

simulation system that is composed of 3-Dimensional ship-handling simulators, a

tactical level simulation of operational area, a virtual environment manager, and

simulation management processes. It has been developed by using the concepts

of HLA, which provides a structural basis for interoperability and reusability.

152

NSTMSS provides a Networked Virtual Environment testbed for naval surface

actions in which new formations can be evaluated and tested as well as the

present ones can be practiced and analyzed. A potential application is training,

where naval college cadets can practice formations [25].

B.1.1 System Components

Software components can be classified into three groups according their

functionality:

 Simulation Entity Components

 Federation Management Components

 Environment Generation Components

During federation execution a process is created (by the host operating system)

corresponding to each of the components mentioned.

Simulation Entity Group consists of the counterparts of real life entities in the virtual

environment. There are three different kinds of federates in Simulation Entity

Group:

 Meko Federate (MekoFd): The ships are brought into federation by the

Meko and Knox Class Frigate Federates (KnoxFd), which are platform

level simulations allowing a person to steer the ship in (nearly) real-time.

The frigate federates implement a three-dimensional ship handling

interactive simulator of a frigate with a single user interface.

 Helicopter federate (HeliFd): HeliFd is an interactive simulation that

simulates a helicopter operated in the ships [32]. Helicopter federate is a

six degree-of-freedom flight federate, which is controlled by a user.

 Tactical Picture Federate (TacPicFd): Tactical Picture Federate

(TacPicFd) is a tactical level interactive simulation that maintains the

tactical picture of the operational area, including task group formations

and maneuvers. TacPicFd provides interfaces to the user (i.e., Officer in

Tactical Command (OTC)) to control and order the formations of the

surface task group to achieve a given operational objective.

Federation Management Group provide facilities for controlling and monitoring the

federation activity as well as distributing roles and scenarios to players. They are:

153

 Exercise Planner Federate (ExPFd): Exercise Planner Federate, also

called Scenario Manager, in short, selects the training scenario and

distributes it to the participants (i.e., TacPicFd and ship federates), injects

events defined in the scenario into the federation execution; collects data

and generates a report about the federation execution. ExPFd simulates

the Officer Scheduling the Exercise (OSE) functionality and operates as

the orchestra conductor.

 Federation Monitor Federate (FedMonFd): Federation Monitor Federate

enables generic data collection and reporting on HLA federates about their

usage of underlying Run-time Infrastructure (RTI) services by using HLA

Management Object Model interface. FedMonFd is a stealth federate that

also controls the federation reporting behaviors. FedMonFd provides a

basis for implementation of an observer federate and provides user

interfaces to monitor the status of the federation and the federates.

FedMonFd collects the federate specific RTI data and presents them in

tables. FedMonFd also provides detailed reports for review of the

monitoring activity.

Environment Generation Group consists of one federate:

 Environment Generation Federate (EnviFd): Environment Federate is

designed to control the atmospheric and sea state of the virtual

environment. Environment Federate enables for the user to control the

virtual environment atmospheric effects (e.g., fog, time of day, sea state),

and publishes the weather reports to the entities in the virtual environment

at scheduled intervals specified in scenario file.

 Figure 122 graphically depicts the software components of NSTMSS.

Multiplicity information in the figure indicates that while many Meko, Knox,

Helicopter, and OTC federates can participate in the environment, at most

one ExPFd, FedMonFd, and EnviFd can participate.

154

SIMULATION ENTITY PROCESSES

MEKOFdMEKOFdMEKOFd
MEKOFdMEKOFdMEKOFdKNOXFd

ExPFd FedMonFd

RUNTIME INFRASTRUCTURE

Scenario

Database

Critical

Performance

Data

Database

E
n

v
iF

d
Environment

Database

RTIExec

0..1

0
..
1

0..*

MEKOFdMEKOFdHeliFd MEKOFdTacPicFd

RTI Usage

DataBase

FEDERATION MANAGEMENT PROCESSES

Scenario

Editor

E
N

V
IR

O
N

M
E

N
T

 G
E

N
E

R
A

T
IO

N
 F

E
D

E
R

A
T

E
S

Figure 122. Federation Structure [25]

B.1.2 Scope of the Case Study

Due to large numbers of federates in NSTMSS federation; this case study does not

attempt to cover all the NSTMSS federates, but it selects the interesting federates

which differentiate in terms of behavior and architecture. Eventually, all the

federates in the federation management group and only the Meko Federate in the

simulation entity group are covered. The federates in the federation management

group are good candidates for a re-modeling study because they represent

common federates in a typical HLA federation. FedMonFd is a generic federate

that represents the stealth monitoring federates and is independent from any

specific federation. ExPFd is a simulation planner federate that is typical in most of

the distributed interactive simulations. On the other hand, MekoFd represents

platform federates and has the same pattern (in terms of behavior and architecture)

with the other federates in the simulation entity group.

B.2 Federation Architecture Model

In an HLA based distributed simulation, federation design, which aims at having

federates cooperate to achieve the federation objectives, involves two major

155

activities. The first one is forming the federation model (i.e., the structure and the

object model of the federation), presumably by reviewing the simulation object

models. This part covers designing information interests of federates as well as

object flows such as data distribution and ownership management of objects. The

second activity is specifying the behavior of the participating federates so that they

can fulfill their responsibilities in the federation scenario [48].

Federation structure establishes the links among the federates, the federation,

FOM, SOM, and MOM. Definitions of FOM, SOM, MOM, federation-wide data

types, and HLA specific objects are included in Federation Model. Eventually,

Behavioral Models folder contains the behavioral descriptions of federates.

Libraries based on FAMM can be attached to the project as well. For example,

Figure 132 shows three such libraries, namely the CIOMLib, IMLib, HDefLib, and

HMOMLib.

B.2.1 Federation Model

NSTMSS federation model includes the federation structure model and federation

object model.

B.2.1.1 Federation Structure

The federation structure model represents the federation overall structure in terms

of federate applications. It shows the software components of NSTMSS. It also

presents a multiplicity information how many federates of a certain type can join in

the federation.

Relationships between the federation, federate, SOM, and FOM are described

using the FAMM notation.

The model in Figure 123 corresponds to the architectural view in Figure 122.

156

Figure 123. NSTMSS Federation Structure

B.2.1.2 Federation Model

NSTMSS Federation Object Model (FOM) includes the all the information needed

in HLA Object Model Template Specification [3]. In this study, no separate SOM

model for the federates is provided as the same set of object classes and

interactions in FOM are assumed by all federates in the NSTMSS federation.

The modeler only models the application specific HLA classes. For a monitoring

federate such as FedMonFd, which additionally uses the MOM as the object

model, the MOM classes are provided by adding the HMOMLib to the project.

Thus, no extra effort is needed.

NSTMSS federation object class hierarchy is depicted in Figure 124, and

interaction class hierarchy is depicted in Figure 125.

OTC class represents the tactical officers in the virtual environment. Knox and

Meko classes are inherited from the Frigate class. They represent the Knox-

class and Meko-class frigates respectively. Environment class represents the

characteristics of the virtual environment. It includes time of day, sea state, wind

state, and fog state data. Scenario class includes the federation scenario

information such as scenario start time and scenario location. Helicopter class

represents a generic chopper in the virtual environment. HLAObjectRoot is the

root class by default for all the HLA classes.

157

Figure 124. Object Class Hierarchy of NSTMSS

BeginToPlay interaction is used to signal the federations to indicate the start of

the federation scenario. Communication class is used to represent the tactical

messages (e.g., task order and formation message) in the virtual environment.

Figure 125. Interaction Class Hierarchy of NSTMSS

Each class is a model where it means that there is a structure in it (i.e., object class

models have attributes and interaction class models have parameters). The

parameters of a WeatherReport interaction are seen in the following figure. It is

used to report and change the environment data in the virtual environment.

158

Figure 126. Parameters of a WeatherReport Interaction Class

In addition to the object models, the NSTMSS data types and dimensions are also

defined in the federation model. A frequency spectrum dimension is defined in

NSTMSS. The UHF and HF regions based on this dimension are created for radio

communications in the virtual environment.

As enumerated data types, FogTypeEnum, SeaStateEnum, and ShipType are

defined as well as simple data types such as float and int.

Again, HMOMLib provides its own pre-defined data types and dimensions.

B.2.2 Behavioral Models

The behavioral model of NSTMSS federates are obtained mostly by reviewing the

C++ source code and sometimes by observing the run-time action. The behavioral

models are first formulated in the LSC graphical representation and then manually

transferred to FAMM.

The LSC specification is a simplification of the actual federate’ behavior. Because,

the main focus was on the interaction between the federate and the RTI. The

federate’s computation logic is intended to be weaved into the base code using the

Aspect Oriented Programming (AOP) [51] techniques after the federate base code

generation step [48].

Here, only the behavior model of MekoFd is presented and discussed. For the

presentation and discussion of behavior models of ExPFd and FedMonFd, see [49]

and [50] respectively.

B.2.2.1 Behavior Model for MekoFd

MekoFd is a typical platform-level and interactive simulation, where the player

drives a platform.

159

Program flow of MekoFd is divided into three phases: initialization, main simulation

loop, and system termination. In initialization phase, MekoFd tries to create the

federation, joins it, and then declares its interests (i.e., publish and subscribes its

object and interactions). In main simulation loop, MekoFd creates its object (i.e.,

the type of Meko object class), sends interaction (i.e., ship status reports), and

discovers objects (i.e., other frigates in the environment, scenario, or environment).

In final phase, MekoFd resigns federation, deletes its created objects, and tries to

destroy the federation.

Although the program flow dictates three phases, the behavior model of the

MekoFd is dispersed into two main charts, the pre-chart and the main chart, as

seen in Figure 127. The pre-chart mainly involves the initialization phase activities.

Pre-chart behaves as a prerequisite. Unless it is satisfied, the main chart is never

activated. In other words, unless MekoFd successfully completes its initialization

phase, it will never execute its main simulation loop. The main chart includes two

parts; the main and the callback threads. The main thread covers the main

simulation loop as the loopback covers the federate ambassador methods (i.e., the

HLA callback methods initiated by the RTI).

160

As a modeling principle, the details of interactions (events) between the MekoFd

and the RTI are encapsulated in sub-charts (e.g., CreateRegions and

ExitFederation), which are referenced from the main chart. Each sub-chart is a

functional part of the behavior. Dividing the main LSC into sub-charts increases the

readability, understandability, and modularity of the architecture.

The main chart in FAMM notation is depicted in Figure 128. The parts of the main

chart are modeled using operands in a parallel structure. Thus, the main thread

and the callback thread runs in parallel.

NSTMSS:

Federation Execution

CreateFederationExecution(“NSTMSS”,”nstmss.xml”)

JoinFederationExecution(“MekoFd”, “NSTMSS”)

lsc MekoFd_behavior

MainChart

RegisterObjectInstance(Ship)par

While-do (Main Simulation Loop)

ExitCondition

User

While-do (Callbacks)

ExitCondition

Reference: CreateRegions

Reference: ExitFederation

Reference: DeclareCapability

MekoFd

Reference: DiscoverObjects

Reference: ProvideAttributeValues

M
a
in

 T
h
re

a
d

C
a
llb

a
ck T

h
re

a
d

UpdateAttributeValues(Ship)

Reference: ReceiveInteractions

Reference: RemoveObjectInstances

Reference: SendShipStatusReport

ReflectAttributeValues()

Figure 127. MekoFd Main LSC

161

An interesting part of the behavior is sending the ship status report. After the

scenario has begun, the ship periodically broadcasts a status message to the

environment (i.e., send an interaction). The transmitting period is defined in the

attribute (i.e., ReportInterval) of the scenario object. To model the report

interval, a timer is set when scenario-begin interaction (i.e., BeginToPlay) has

received. Whenever the timer ticks, a ship-status-report interaction is sent.

Figure 129 presents the send-ship-status sub-chart. Figure 130 presents the

corresponding model in FAMM notation.

Figure 128. MekoFd Main LSC in FAMM

MekoFd
NSTMSS:

Federation Execution

SendInteractionWithRegions(ShipStatusReport, HFRegion)

FederateClock timeout

FederateClock start

Figure 129. Send Ship Status Report Sub-chart

162

Figure 131 presents the receive interactions sub-chart. As seen in the last operand

of the figure, when the federate receives a BeginToPlay interaction, it sets its

federate clock (i.e., starts a timer). The sub-chart also depicts the events between

the federate and the user. Whenever an interaction is received, the federate

reports the event to the user using a basic console interface.

Figure 130. Send Ship Status Report Sub-chart in FAMM

163

The passage of time between sending and receiving of messages is ignored.

Therefore, instantaneous messages are used to represent the calls.

All the sub-charts are placed into the utility part of the MSC document as seen in

Figure 132. Ship_MSC is the main LSC and is placed in the defining part.

Par

MekoFd
NSTMSS:

Federation Execution

Decode Message

ReceiveInteraction(FormationMessage)

C
o
ld

 L
o
ca

tio
n

Cold Message

User

Output(“Formation message

is received”)

Decode Message

ReceiveInteraction(TaskOrder)

Output(“Task order is

received”)

Decode Message

ReceiveInteraction(InjectionMessage)

Output(“Injection message is

received”)

Decode Message

ReceiveInteraction(WeatherReport)

Output(“Weather report is

received”)

ReceiveInteraction(BeginToPlay)

Output(“Begin-to-play is

received”)

Start FederateClock

Figure 131. Receive Interactions Sub-chart

164

Figure 132. NSTMSS Federation Architecture in GME

B.3 Publish/Subscribe Models

The P/S models are generated by extracting the P/S interests of federates using

the P/S Model Generator. The generated models help the modeler to analyze the

P/S interests.

In Figure 133, the MekoFd-based P/S model is depicted. A careful analysis of the

model has revealed that MekoFd never subscribes to the OTC object class where

in fact it should. This was noted as a bug in the current MekoFd implementation.

165

Figure 133. MekoFd-Based P/S Model

Moreover, using the class-based P/S models, in a quick view, the modeler can see,

for example, which federates publish or subscribes to the ship status report. The

P/S model for ship status report is depicted in Figure 134. Here, we can see that

only MekoFd has the capability to send a ship status report while the ExPFd has an

interest on it.

166

Figure 134. Ship Status Report P/S Model

B.4 Discussions

FAMM serves well as a representation language for the HLA federation

architectures. Its success comes from its representation power for the federation

model (object model and structure) and the behavior of the federates, providing a

complete cover for the federation.

To provide an objective assessment of FAMM [54] by the modelers of NSTMSS

federates; ExPFd and FedMonFd, is presented first, then the author provides a

discussion.

Using FAMM, modeling federate behavior plays an important role

in terms of employing model driven approach to federation and

federate development. FAMM provides a facility to achieve that.

However, there are some challenges that we have encountered

during this work. It should be noted that these are not result of a

thorough evaluation of FAMM, but rather feedbacks derived from

our experiences in using FAMM.

Using IMLib provided with FAMM, instead of building a more

specialized one relieved the modeling effort; however, there are

some differences between the library and the standard interface

specification such as the differences in the number of arguments to

HLA methods. This caused frequent lookups to the IEEE

167

documentations and additional adaptation effort to map an HLA

service to the method provided by the IMLib.

Specifying behavior in terms of LSCs was not a very hard task,

since only the federates’ interactions with the outside (RTI and

interactive users) were concerned. However, we spent

considerable time in transferring LSCs into FAMM in GME

environment. Since GME environment only provides boxes and

connectors, transferring an LSC into FAMM involves inserting

instances, LSC keywords, HLA functions and then providing

connections and enumerating them in time order. Even though

modeling tasks can be comfortably handled for simple behaviors, it

can quickly get complex and unmanageable for complicated

behaviors. Lack of some navigational aids in GME (e.g. it only

provides a rudimentary view of structural elements and does not

show the depths of the charts) caused loss of time.

A full person-month of effort was spent on the modeling of each of

MekoFd, ExPFd, and FedMonFd in FAMM, including the overall

NSTMSS federation structure.

By its very nature model is strictly tied to the underlying

metamodel. For this reason, apparently slight changes in FAMM

may completely invalidate the existing modeling efforts. We believe

that coping with (meta) model evolution is a serious issue for any

nontrivial model driven development effort.

It would be worthwhile developing a front-end interface for utilizing

FAMM’s expressive power in a more user friendly way. With the

help of such a tool user can synthesize live sequence charts in

their usual graphical notation instead of inserting boxes and

connecting them. Such a front end would then automatically

generate FAMM conforming behavioral models.

Actually, there are three important issues emphasized in above text. The first issue

concerns with the usability of FAMM. As discussed in Chapter 7, FAMM is not

created targeting handy modeling, instead; it is created with the automatic

generation idea in mind. As specified in future work, a user-friendly front-end tool

168

will ease the modeler work and decrease the modeling time and effort. This tool will

also overcome the GME usage problems.

On the other hand, it is useful to emphasize that once the architecture is specified

conforming to FAMM, the modeler harvests the goods; code generation, FDD

generation, and P/S model generation. Each adds a remarkable value. Code

generation plays an important role to dynamically verify the federation architecture.

It shows the errors made by the modeler (e.g., modeler forgets to publish an

interaction while federate tries to send it) as well as the program logic errors (e.g.,

federate never discovers OTC objects because of no subscription to it).

Automatically generated P/S models provide the modeler a useful view of the

architecture. For example, after re-engineering the MekoFd code, the P/S models

generated by the P/S Model Generator showed us that MekoFd never subscribes

to the OTC object.

The second issue is not about FAMM directly, but about the HLA Methods Library.

The modelers point out that:

 In some methods, the “number” of parameters in IMLib and in IEEE

Interface specification is different. For example,

DiscoverObjectInstance service specification requires three

parameters, which are Object Instance Handle, Object Class

Designator, and Object Instance Name. FAMM HLA Methods library

on the other hand requires only Object Class Reference in supplied

parameters.

 In some methods, the “type” of parameters is different. For example,

GetObjectClassName returns the name of the object. However, the

counterpart in IMLib returns an object class reference.

Actually, the library provides the services based on a using-minimum-element

approach where this approach can be defined as “if an FAMM element is capable

of expressing more than one argument, then it is sufficient to use only that

element”. If we return to the DiscoverObjectInstance method given as an

example above, all its arguments; Object Instance Handle, Object Class

Designator, and Object Instance Name, can be expressed by giving only

one Object Class Reference, which refers to an object instantiated from the

object class. The interpreters can obtain all the three arguments by traversing this

reference. If the library had provided three references for each of them, the

169

modeler must have pointed all to the same object causing a more error-prone

modeling.

Names of objects or interactions are generally obtained from the model element

itself. Therefore, instead of providing a string value for names, a reference to the

model element is provided.

The mappings that show which arguments in HLA interface specification

correspond to which elements in IMLib are provided in Appendix C. Of course, the

modeler spends a time to be familiar with the mappings. This can be seen as

decreasing the usability. Nevertheless, note that IMLib is provided with FAMM as a

convenience to the modeler. The modeler can always create his/her own library.

The last issue is about the changes in the metamodel, which can be frequently

seen in non-mature metamodels. In fact, this is a serious issue as the models

conforming to FAMM are increasing. Each change or update in FAMM may

invalidate the current models. Accordingly, as FAMM evolves, this issue mandates

that each update or change in FAMM must be backward compatible.

170

APPENDIX C

C. TRANSITION BETWEEN HLA METHODS
LIBRARY AND IEEE 1516.1 FEDERATE INTERFACE

SPECIFICATION

This appendix provides the mapping between the elements of the HLA methods

library and the arguments specified in IEEE 1516.1 Federate Interface

Specification [2]. It also gives an analysis and a quick overview of HLA Services.

Tables are presented according to the HLA management groups and they are

summarized from [2]. The first column presents the service number. The second

column presents the service name. The third column presents the arguments of the

service as specified in [2] as the last column presents the metamodel element

found in the HLA methods library corresponding to the argument specified in [2].

The bold cells in tables represent the returned arguments while the white ones

represent the supplied arguments.

C.1 Federation Management

Federation management includes the necessary services for the creation, dynamic

control, modification, and deletion of a federation execution.

Federation management services, 24 in total, are presented in Table 8.

Table 8. Federation Management Services

N
O

SERVICE ARGUMENT METAMODEL ELEMENT

1
Create Federation
Execution

Federation Execution Name

Federation Execution
Reference (FedRef)

The name of the Federation
element to which “FedRef”
refers

171

Table 8 (cont ’d)

FOM Document Designator

The value of the attribute
“FDD Designator” of
“Federation” element to
which “FedRef” refers.

None None

2
Destroy Federation
Execution

Federation Execution Name

FedRef

The name of the instance
from “Federation” element

None None

3
Join Federation
Execution

Federate Type StringTypeReference

Federation Execution Name

FedRef

The name of the Federation
element to which “FedRef”
refers.

Joined Federate Designator
Federate Application
Reference (FdAppRef)

4
Resign Federation
Execution

Action Argument (see the
standard [2])

ResignFederationActionArgu
ment

[1] Unconditionally divest
ownership of all owned
instance attributes

[2] Delete all object
instances for which the
joined federate has the
delete privilege

[3] Cancel all pending
instance attribute ownership
acquisitions

[4] Perform action [2] and
then action [1]

[5] Perform action [3], action
[2], and then action [1]

[6] Perform no actions.

None None

5
Register Federation
Synchronization Point

Sync Point Label
SynchronizationNAReferenc
e

User-supplied Tag TagsReference

Optional Set of Joined Federate
Designators

Set of FdAppRef

None
None

172

Table 8 (cont ’d)

6
Confirm Synchronization
Point Registration

1
 †

Sync Point Label
SynchronizationNAReferenc
e

Registration-success indicator IndicatorReference

Optional Failure Reason StringTypeReference

None None

7
Announce
Synchronization Point †

Sync Point Label
SynchronizationNAReferenc
e

User-supplied Tag TagsReference

None None

8
Synchronization Point
Achieved

Sync Point Label
SynchronizationNAReferenc
e

None None

9
Federation Synchronized
†

Sync Point Label
SynchronizationNAReferenc
e

None None

10 Request Federation Save

Federation Save Label StringTypeReference

Optional Time Stamp TimeStampReference

None None

11 Initiate Federate Save †

Federation Save String StringTypeReference

Optional Time Stamp TimeStampReference

None None

12 Federate Save Begun

None None

None None

13 Federate Save Complete

Federate Save-success
indicator

IndicatorReference

None None

14 Federation Saved †

Federation Save-Success
Indicator

IndicatorReference

Optional Failure Reason StringTypeReference

None None

1
 All RTI in itiated services are denoted with a † (printer’s dagger) after the service name

173

Table 8 (cont ’d)

15
Query Federation Save
Status

None None

None None

16
Federation Save Status
Response

List of Joined Federates and
Save Status for Each

List of Federate_SaveStatus

None None

17
Request Federation
Restore

Federation Save String StringTypeReference

None None

18
Confirm Federation
Restoration Request †

Federation Save String StringTypeReference

Request Success Indicator IndicatorReference

None None

19
Federation Restore
Begun †

None None

None None

20
Initiate Federate Restore
†

Federation Save String StringTypeReference

Joined Federate Designator FdAppRef

None None

21
Federate Restore
Complete

Federate Restore-Success
Indicator

IndicatorReference

None None

22 Federation Restored †

Federation Restore-Success
Indicator

IndicatorReference

Optional Failure Reason StringTypeReference

None None

23
Query Federation
Restore Status

None None

None None

24
Federation Restore
Status Response †

List of Joined Federates and
Restore Status for Each

List of
Federate_RestoreStatus

None None

174

C.2 Declaration Management

Declaration management services, 12 in total, are presented in Table 9.

Table 9. Declaration Management Services

N
O

SERVICE ARGUMENT METAMODEL ELEMENT

1
Publish Object Class
Attributes

Object Class Designator OCReference

Set of Attribute Designators Set of AttributeReference

None None

2
Unpublish Object Class
Attributes

Object Class Designator OCReference

Optional Set of Attribute
Designators

Set of AttributeReference

None None

3 Publish Interaction Class

Interaction Class Designator ICReference

None None

4
Unpublish Interaction
Class

Interaction Class Designator ICReference

None None

5
Subscribe Object Class
Attributes

Object Class Designator OCReference

Set of Attribute Designators Set of AttributeReference

Optional Passive Subscription
Indicator

IndicatorReference

True means active
subscription, false means
indicator is not present

None None

6
Unsubscribe Object
Class Attributes

Object Class Designator OCReference

Optional Set of Attribute
Designators

Set of AttributeReference

None None

7
Subscribe Interaction
Class

Interaction Class Designator ICReference

Optional Passive Subscription
Indicator

IndicatorReference

None None

175

Table 9 (cont ’d)

8
Unsubscribe Interaction
Class

Interaction Class Designator ICReference

None None

9
Start Registration For
Object Class †

Object Class Designator OCReference

None None

10
Stop Registration For
Object Class †

Interaction Class Designator ICReference

None None

11 Turn Interactions On †

Interaction Class Designator ICReference

None None

12 Turn Interactions Off †

Interaction Class Designator ICReference

None None

C.3 Object Management

Object management services, 19 in total, are presented in Table 10.

Table 10. Object Management Services

N
O

SERVICE ARGUMENT METAMODEL ELEMENT

1
Reserve Object Instance
Name

Name StringTypeReference

None None

2
Object Instance Name
Reserved †

Name StringTypeReference

Reservation Success Indicator IndicatorReference

None None

3 Register Object Instance

Object Class Designator OCReference

Optional Object Instance Name
OCReference (name of
Instance of OC that this
reference refers)

Object Instance Handle
OCReference (refers to the
Instance of OC)

176

Table 10 (cont’d)

4
Discover Object Instance
†

Object Instance Handle
OCReference (refers to the
Instance of OC)

Object Class Designator (Type of) OCReference

Object Instance Name
OCReference (name of
Instance of OC that this
reference refers)

None None

5 Update Attribute Values

Object Instance Designator
OCReference (refers to the
Instance of OC)

Constrained Set of Attribute
Designator and Value Pairs

Set of Attribute_Value

User-supplied Tag TagsReference

Optional Time Stamp TimeStampReference

Optional Message Retraction
Designator

MessageRetractionDesignat
orReference

6 Reflect Attribute Values †

Object Instance Designator
OCReference (refers to the
Instance of OC)

Constrained Set of Attribute
Designator and Value Pairs

Set of Attribute_Value

User-supplied Tag TagsReference

Sent Message Order Type OrderType

Transportation Type TransportationRef

Optional Time Stamp
TimeStampReference

Optional Receive Message
Order Type

OrderType

Optional Message Retraction
Designator

MessageRetractionDesignat
orReference

Optional Set of Sent Region
Designators

Set of RegionReference

None

None

177

Table 10 (cont’d)

7 Send Interaction

Interaction Class Designator ICReference

Constrained Set of Interaction
Parameter Designator and
Value Pairs

Set of Parameter_Value

User-supplied Tag TagsReference

Optional Time Stamp TimeStampReference

Optional Message Retraction
Designator

MessageRetractionDesignat
orReference

8 Receive Interaction †

Interaction Class Designator ICReference

Constrained Set of Interaction
Parameter Designator and
Value Pairs

Set of Parameter_Value

User-supplied Tag TagsReference

Sent Message Order Type OrderType

Transportation Type TransportationRef

Optional Time Stamp TimeStampReference

Optional Receive Message
Order Type

OrderType

Optional Message Retraction
Designator

MessageRetractionDesignat
orReference

Optional Set of Sent Region
Designators

Set of RegionReference

None None

9 Delete Object Instance

Object Instance Designator

OCReference (refers to the
Instance of OC)

User-supplied Tag

TagsReference

Optional Time Stamp TimeStampReference

Optional Message Retraction
Designator

MessageRetractionDesignat
orReference

178

Table 10 (cont’d)

10
Remove Object Instance
†

Object Instance Designator
OCReference (refers to the
Instance of OC)

User-supplied Tag TagsReference

Sent Message Order Type OrderType

Optional Time Stamp TimeStampReference

Optional Receive Message
Order Type

OrderType

Optional Message Retraction
Designator

MessageRetractionDesignat
orReference

None None

11
Local Delete Object
Instance

Object Instance Designator
OCReference (refers to the
Instance of OC)

None None

12
Change Attribute
Transportation Type

Object Instance Designator
OCReference (refers to the
Instance of OC)

Set of Attribute Designators Set of AttributeReference

Transportation Type TransportationRef

None None

13
Change Interaction
Transportation Type

Interaction Class Designator ICReference

Transportation Type TransportationRef

None None

14 Attributes In Scope †

Object Instance Designator
OCReference (refers to the
Instance of OC)

Set of Attribute Designators Set of AttributeReference

None None

15 Attributes Out Of Scope †

Object Instance Designator

OCReference (refers to the
Instance of OC)

Set of Attribute Designators Set of AttributeReference

None

None

179

Table 10 (cont’d)

16
Request Attribute Value
Update

Object Instance Designator or
Object Class Designator

OCReference

Set of Attribute Designators Set of AttributeReference

User-supplied Tag TagsReference

None None

17
Provide Attribute Value
Update †

Object Instance Designator
OCReference (refers to the
Instance of OC)

Set of Attribute Designators Set of AttributeReference

User-supplied Tag TagsReference

None None

18
Turn Updates On For
Object Instance †

Object Instance Designator OCReference

Set of Attribute Designators Set of AttributeReference

None None

19
Turn Updates Off For
Object Instance †

Object Instance Designator
OCReference (refers to the
Instance of OC)

Set of Attribute Designators Set of AttributeReference

None None

C.4 Ownership Management

Ownership management services, 17 in total, are presented in Table 11.

Table 11. Ownership Management Services

N
O

SERVICE ARGUMENT METAMODEL ELEMENT

1
Unconditional Attribute
Ownership Divestiture

Object Instance Designator OCReference

Set of Attribute Designators Set of AttributeReference

None None

2
Negotiated Attribute
Ownership Divestiture

Object Instance Designator OCReference

Set of Attribute Designators Set of AttributeReference

User-supplied Tag TagsReference

None None

180

Table 11 (cont’d)

3
Request Attribute
Ownership Assumption †

Object Instance Designator
OCReference (refers to the
Instance of OC)

Set of Attribute Designators Set of AttributeReference

User-supplied Tag TagsReference

None None

4
Request Divestiture
Confirmation †

Object Instance Designator
OCReference (refers to the
Instance of OC)

Set of Attribute Designators Set of AttributeReference

None None

5 Confirm Divestiture

Object Instance Designator
OCReference (refers to the
Instance of OC)

Set of Attribute Designators Set of AttributeReference

User-supplied Tag TagsReference

None None

6
Attribute Ownership
Acquisition Notification †

Object Instance Designator
OCReference (refers to the
Instance of OC)

Set of Attribute Designators Set of AttributeReference

User-supplied Tag TagsReference

None None

7
Attribute Ownership
Acquisition

Object Instance Designator
OCReference (refers to the
Instance of OC)

Set of Attribute Designators Set of AttributeReference

User-supplied Tag TagsReference

None None

8
Attribute Ownership
Acquisition If Available

Object Instance Designator
OCReference (refers to the
Instance of OC)

Set of Attribute Designators Set of AttributeReference

None None

9
Attribute Ownership
Unavailable †

Object Instance Designator
OCReference (refers to the
Instance of OC)

Set of Attribute Designators Set of AttributeReference

None None

181

Table 11 (cont’d)

10
Request Attribute
Ownership Release

Object Instance Designator
OCReference (refers to the
Instance of OC)

Set of Attribute Designators Set of AttributeReference

User-supplied Tag TagsReference

None None

11
Attribute Ownership
Divestiture If Wanted

Object Instance Designator
OCReference (refers to the
Instance of OC)

Set of Attribute Designators (for
which the joined federate is
willing to divest ownership)

Set of AttributeReference

Set of Attribute Designators (for
which ownership has actually
been divested)

Set of AttributeReference

12
Cancel Negotiated
Attribute Ownership
Divestiture

Object Instance Designator
OCReference (refers to the
Instance of OC)

Set of Attribute Designators Set of AttributeReference

None None

13
Cancel Attribute
Ownership Acquisition

Object Instance Designator
OCReference (refers to the
Instance of OC)

Set of Attribute Designators Set of AttributeReference

None None

14
Confirm Attribute
Ownership Acquisition
Cancellation †

Object Instance Designator
OCReference (refers to the
Instance of OC)

Set of Attribute Designators Set of AttributeReference

None None

15
Query Attribute
Ownership

Object Instance Designator
OCReference (refers to the
Instance of OC)

Attribute Designator AttributeReference

None None

16
Inform Attribute
Ownership †

Object Instance Designator
OCReference (refers to the
Instance of OC)

Attribute Designator AttributeReference

182

Ownership Designator (could be
a joined federate, RTI, or
unowned)

Either FdAppRef (i.e., Joined
Federate) or FedRef (i.e.,
RTI)

If both are null then it means
an indication that the
instance attribute is available
for acquisition (i.e., un-
owned)

None None

17
Is Attribute Owned By
Federate

Object Instance Designator
OCReference (refers to the
Instance of OC)

Attribute Designator AttributeReference

Instance Attribute Ownership
Indicator

IndicatorReference

C.5 Time Management

Time management services, 23 in total, are presented in Table 12.

Table 12. Time Management Services

N
O

SERVICE ARGUMENT METAMODEL ELEMENT

1 Enable Time Regulation

Lookahead LookaheadReference

None None

2
Time Regulation Enabled
†

Current Logical Time of the
Joined Federate

TimeStampReference

None None

3 Disable Time Regulation

None None

None None

4 Enable Time Constrained

None None

None None

5
Time Constrained
Enabled †

Current Logical Time of the
Joined Federate

TimeStampReference

None None

6
Disable Time
Constrained

None None

None None

183

Table 12 (cont’d)

7 Time Advance Request

Logical Time TimeStampReference

None None

8
Time Advance Request
Available

Logical Time TimeStampReference

None None

9 Next Message Request

Logical Time TimeStampReference

None None

10
Next Message Request
Available

Logical Time TimeStampReference

None None

11 Flush Queue Request

Logical Time TimeStampReference

None None

12 Time Advance Grant †

Logical Time TimeStampReference

None None

13
Enable Asynchronous
Delivery

None None

None None

14
Disable Asynchronous
Delivery

None None

None None

15 Query GALT

None None

GALT Definition Indicator IndicatorReference

Optional Current Value of
Invoking Joined Federate’s
GALT

TimeStampReference

16 Query Logical Time

None None

The Invoking Joined Federate’s
Current Logical Time

TimeStampReference

17 Query LITS

None None

LITS Definition Indicator IndicatorReference

Optional Current Value of
Invoking Joined Federate’s LITS

TimeStampReference

18 Modify Lookahead

Requested Lookahead LookaheadReference

None None

184

Table 12 (cont’d)

19 Query Lookahead

None None

The Invoking Joined Federate’s
Current Actual Lookahead

LookaheadReference

20 Retract

Message Retraction Designator
MessageRetractionDesignat
orReference

None None

21 Request Retraction †

Message Retraction Designator
MessageRetractionDesignat
orReference

None None

22
Change Attribute Order
Type

Object Instance Designator
OCReference (refers to the
Instance of OC)

Set of Attribute Designators Set of AttributeReference

Order Type OrderType

None None

23
Change Interaction Order
Type

Interaction Class Designator ICReference

Order Type OrderType

None None

C.6 Data Distribution Management

Data distribution management services, 12 in total, are presented in Table 13.

Table 13. Data Distribution Management Services

N
O

SERVICE ARGUMENT METAMODEL ELEMENT

1 Create Region

Set of dimension designators Set of DimensionRef

Region Designator RegionReference

2
Commit Region
Modifications

Set of region designators Set of RegionReference

None None

3 Delete Region

Region designator RegionReference

None None

185

Table 13 (cont’d)

4
Register Object Instance
With Regions

Object Class Designator OCReference

Collection of attribute designator
set and region designator set
pairs

Collection of “Set of
Attributes” and “Set of
RegionReference”

Optional Object instance Name (Name of) OCReference

Object Instance Designator
OCReference (refers to the
Instance of OC)

5
Associate Regions For
Updates

Object Instance Designator
OCReference (refers to the
Instance of OC)

Collection of attribute designator
set and region designator set
pairs

Collection of “Set of
Attributes” and “Set of
RegionReference”

None None

6
Unassociate Regions For
Updates

Object Instance Designator
OCReference (refers to the
Instance of OC)

Collection of attribute designator
set and region designator set
pairs

Collection of “Set of
Attributes” and “Set of
RegionReference”

None None

7
Subscribe Object Class
Attributes With Regions

Object Class Designator OCReference

Collection of attribute designator
set and region designator set
pairs

Collection of “Set of
Attributes” and “Set of
RegionReference”

optional passive subscription
indicator

Indicator or
IndicatorReference

None None

8
Unsubscribe Object
Class Attributes With
Regions

Object Class Designator OCReference

Collection of attribute designator
set and region designator set
pairs

Collection of “Set of
Attributes” and “Set of
RegionReference”

None None

9
Subscribe Interaction
Class With Regions

Interaction class designator ICReference

set of region designators Set of RegionReference

optional passive subscription
indicator

IndicatorReference

None None

186

Table 13 (cont’d)

10
Unsubscribe Interaction
Class With Regions

Interaction class designator ICReference

set of region designators Set of RegionReference

None None

11
Send Interaction With
Regions

Interaction class designator ICReference

Constrained set of parameter
designator and value pairs

Set of Parameter_Value

Set of region designators Set of RegionReference

user-supplied tag TagsReference

Optional time stamp TimeStampReference

Optional Message Retraction
Designator

MessageRetractionDesignat
orReference

12
Request Attribute Value
Update With Regions

Object Class Designator OCReference

Collection of attribute designator
set and region designator set
pairs

Collection of “Set of
Attributes” and “Set of
RegionReference”

user-supplied tag TagsReference

None None

C.7 Support Services

Support services, 39 in total, are presented in Table 14.

Table 14. Support Services

N
O

SERVICE ARGUMENT METAMODEL ELEMENT

1 Get Object Class Handle

Object Class Name OCReference

Object Class Handle OCReference

2 Get Object Class Name

Object Class Handle OCReference

Object Class Name OCReference

3 Get Attribute Handle

Object Class Handle OCReference

Class Attribute Name AttributeReference

Class Attribute Handle AttributeReference

187

Table 14 (cont’d)

4 Get Attribute Name

Object Class Handle OCReference

Class Attribute Handle AttributeReference

Class Attribute Name AttributeReference

5
Get Interaction Class
Handle

Interaction Class Name ICReference

Interaction Class Handle ICReference

6
Get Interaction Class
Name

Interaction Class Handle ICReference

Interaction Class Name ICReference

7 Get Parameter Handle

Interaction Class Handle ICReference

Parameter Name ParameterReference

Parameter Handle ParameterReference

8 Get Parameter Name

Interaction Class Handle ICReference

Parameter Handle ParameterReference

Parameter Name ParameterReference

9
Get Object Instance
Handle

Object Instance Name
OCReference (refers to the
Instance of OC)

Object Instance Handle
OCReference (refers to the
Instance of OC)

10
Get Object Instance
Name

Object Instance Handle OCReference

Object Instance Name OCReference

11 Get Dimension Handle

Dimension Name DimensionRef

Dimension Handle DimensionRef

12 Get Dimension Name

Dimension Handle DimensionRef

Dimension Name DimensionRef

13
Get Dimension Upper
Bound

Dimension Handle DimensionRef

Dimension Upper Bound

DimensionRef

(upperBound attribute of
Dimension)

14
Get Available
Dimensions For Class
Attribute

Object Class Handle OCReference

Class Attribute Name AttributeReference

A Set of Dimension Handles Set of DimensionRef

188

Table 14 (cont’d)

15
Get Known Object Class
Handle

Object Instance Handle OCReference

Object Class Handle OCReference

16
Get Available
Dimensions For
Interaction Class

Interaction Class Handle ICReference

A Set of Dimension Handles Set of DimensionRef

17 Get Transportation Type

Transportation Name TransportationRef

Transportation Type TransportationRef

18 Get Transportation Name

Transportation Name TransportationRef

Transportation Type TransportationRef

19 Get Order Type

Order Name OrderType

Order Type OrderType

20 Get Order Name

Order Name OrderType

Order Type OrderType

21
Enable Object Class
Relevance Advisory
Switch

None None

None None

22
Disable Object Class
Relevance Advisory
Switch

None None

None None

23
Enable Attribute
Relevance Advisory
Switch

None None

None None

24
Disable Attribute
Relevance Advisory
Switch

None None

None None

25
Enable Attribute Scope
Advisory Switch

None None

None None

26
Disable Attribute Scope
Advisory Switch

None None

None None

27
Enable Interaction
Relevance Advisory
Switch

None None

None None

28
Disable Interaction
Relevance Advisory
Switch

None None

None None

189

Table 14 (cont’d)

29
Get Dimension Handle
Set

Region Handle RegionReference

A Set of Dimensions Set of DimensionRef

30 Get Range Bounds

Region Handle RegionReference

Dimension Handle DimensionRef

Range Lower Bound NumericType

Range Upper Bound NumericType

31 Set Range Bounds

Region Handle RegionReference

Dimension Handle DimensionRef

Range Lower Bound NumericType

Range Upper Bound NumericType

32
Normalize Federate
Handle

Federate Handle DimensionRef

Normalized Value NumericType

33 Normalize Service Group

Service Group Indicator DimensionRef

Normalized Value NumericType

34 Initialize RTI

Set of Strings Set of StringTypeReference

Set of Strings Set of StringTypeReference

35 Finalize RTI

None None

None None

36 Evoke Callback

Minimum Amount of Wall-clock
time

TimeStampReference

Pending Callback Indicator IndicatorReference

37 Evoke Multiple Callbacks

Min.Amount of Wall-clock time TimeStampReference

Maximum Amount of clock time TimeStampReference

Pending Callback Indicator IndicatorReference

38 Enable Callbacks

None None

None None

39 Disable Callbacks

None None

None None

190

APPENDIX D

D. HLA ARGUMENTS

This appendix provides the details of the arguments specified in the HLA Services

Metamodel for the library developers.

Table 15 presents the arguments specified in [2], while Table 16 presents the

additional arguments created for DMSO RTI NG 1.3v6.

Table 15. Arguments for IEEE Interface Specification

N
O

ARGUMENT EXPLANATION EXAMPLE FOR USAGE

1 Federation
It represents a federation or
federation execution
(instance of federation).

Not used.

2 FedRef
It is a reference to a
Federation.

It can be used to extract
the name of the federation
execution and the FDD
path and name.

3 FederateApplication
It represents a federate
application or a joined
federate.

Not used.

4 FdAppRef
It is a reference to a
FederateApplication.

It can be used to represent
the joined federate
designators.

5 Region It represents a region Not used.

6 RegionReference It is a reference to a Region.
It can be used to represent
the region designators.

7 ObjectClass
It represents an HLA object
class or an object.

Not used.

8 OCReference
It is a reference to an
ObjectClass.

It can be used to represent
both an object instance
designator and an object
class designator.

191

Table 15 (cont’d)

9 AttributeReference
It is a reference to an object
class attribute.

It can be used to represent
the attribute designators.

10 ICReference
It is a reference to an
interaction class.

It can be used to represent
an interaction class
designator.

11 DimensionRef
It is a reference to a
dimension in object model.

It can be used to represent
a dimension handle and
name.

12 TimeStampReference
It is a reference to a time
stamp in object model.

It can be used to represent
a pointer to a time stamp.

13 SynchronizationNAReference
It is a reference to a
synchronizationNA in object
model.

It can be used to represent
a pointer to a
synchronization point label.

14 MessageRetractionDesignator
It represents a message
retraction designator.

Not used.

15
MessageRetractionDesignator
Reference

It is a reference to a
message retraction
designator.

It can be used to represent
a message retraction
designator.

16 TransportationRef
It is a reference to
transportation in object
model.

It can be used to represent
a transportation type.

17 TagsReference
It is a reference to a tag in
object model.

It can be used to represent
a user-type tag.

18 LookaheadReference
It is a reference to a
lookahead in object model.

It can be used to represent
a lookahead.

19 ParameterReference
It is a reference to an HLA
interaction parameter
specified in object model.

It can be used to represent
a parameter.

20 Collection
It represents a collection of
two sets.

For example, it is used for
collection of attribute
designator set and region
designator set pairs .

21 List
It represents a list of
federate-save status or
federate-restore status.

For example, it is used for
list of
Federate_SaveStatus.

22 Set

It represents a set of region
references, or parameter and
value pairs, or federate
application references, or
attribute and value pairs, or
attribute references, or
dimension references, or
string types, or string type
references.

For example, it is used for
set of attribute designators.

192

Table 15 (cont’d)

23 OrderType
It represents an order type. It
is either receive or time
stamp order.

For example, it is used to
represent a sent message
order type.

24
ResignFederationActionArgum
ent

It represents the action
arguments while resigning a
federation execution.

It is used in
ResignFederationExec

ution.

25 NumericType
It represents numeric type
arguments.

It is used for bounds and
normalized values.

26 NumericTypeReference
It is a reference to a numeric
type.

Not used.

27 StringType
It represents a string type
argument.

Not used.

28 StringTypeReference
It is a reference to a string
type.

It is used for failure
reasons, labels, strings,
names, and a federate
type.

29 Indicator It represents a Boolean type. Not used.

30 IndicatorReference
It is a reference to an
indicator.

It is used for indicators
such as passive
subscription indicator.

Table 16. Additional Arguments for DMSO RTI NG 1.3v6

N
O

ARGUMENT EXPLANATION EXAMPLE FOR USAGE

1 DMSOActionArgument
It represents the action
arguments while resigning a
federation execution.

It is used in DMSO
ResignFederationExec

ution

2 DMSOFederateAmbassador
It is used for the
representation of Federate
Ambassador.

It is used in DMSO
JoinFederationExecut

ion

3 DMSORoutingSpace It represents a routing space.
It is used in DMSO
CreateRegion

4
DMSORoutingSpaceReferen
ce

It represents a reference to
DMSORoutingSpace

In DMSO
GetDimensionName

193

CURRICULUM VITAE

PERSONAL INFORMATION

Surname, Name: Topçu Okan

Nationality: Turkish (TC)

Date and Place of Birth: 19 May 1971, Edirne

Marital Status: Married

Phone: +90 312 260 86 18

Email: okantopcu@gmail.com

EDUCATION

Degree Institution Year of Graduation

MS METU Computer Engineering 1999

BS Naval Academy 1993

High School Naval High School 1989

WORK EXPERIENCE

Year Place Enrollment

2003-
Present

Turkish General Staff Chief of System Administration
Branch

2002-2003 Canada Defense Research and
Development Center

NATO Exchange Officer

2000-2002 Turkish General Staff Network and System Administrator

1996-1999 Naval Forces Headquarter / METU MS Student

1993-1996 Navy Branch Officer in Various Naval Ships

FOREIGN LANGUAGES

Advanced English

PUBLICATIONS

Journals

1 Topçu Okan, Adak Mehmet, and Oğuztüzün Halit, “A Metamodel for Federation
Architectures”, ACM Transactions on Modeling and Computer Simulation (to appear).

2 Topçu Okan, Adak Mehmet, and Oğuztüzün Halit, “Metamodeling Live Sequence

Charts for Code Generation”, submitted, 2007.

194

3 Adak Mehmet, Topçu Okan, and Oğuztüzün Halit, “Model-based Code Generation for

HLA Federates”, submitted, 2007.

4 Adak Mehmet, Topçu Okan, and Oğuztüzün Halit, “Code Generation for Live
Sequence Charts and Message Sequence Charts”, submitted, 2007.

5 Topçu Okan and Oğuztüzün Halit, “Developing an HLA Based Naval Maneuvering
Simulation”, in Naval Engineers Journal by American Society of Naval Engineers
(ASNE), vol.117 no.1, pp. 23-40, Winter 2005.

International Conferences

1 Molla A., Sarıoğlu K., Topçu Okan, Adak M., and Oğuztüzün Halit, “Federation
Architecture Modeling: A Case Study with NSTMSS”, 07F-SIW-052, In the

Proceedings of 2007 Fall Simulation Interoperability Workshop (SIW), Orlando,
Florida, USA, September 16-21, 2007.

2 Topçu Okan, Oğuztüzün Halit, and Hazen G. M., “Towards a UML Profile for HLA

Federation Design, Part II”, in the Proceedings of Summer Computer Simulation
Conference (SCSC-2003), pp. 874-879, Montreal, Canada, July 19-24, 2003.

3 Topçu Okan and Oğuztüzün Halit, “Towards a UML Extension for HLA Federation

Design”, in the Proceedings of 2nd Conference on Simulation Methods and
Applications (CSMA-2000), pp 204-213, Orlando, FL, USA, Oct. 29-31, 2000.

4 Topçu Okan and Oğuztüzün Halit, “Design of a Naval Surface Tactical Maneuvering

Simulation System”, in the Proceedings of 31st Summer Computer and Simulation
Conference (SCSC-1999), pp 319-324, Chicago, Illinois, USA, July 11-15, 1999.

Technical Reports / Memoranda

1 Topçu Okan and Oğuztüzün Halit, “A Metamodel for Li ve Sequence Charts and
Message Sequence Charts”. Technical Report (METU -CENG-TR-2007-3), Middle
East Technical University, May 2007.

2 Topçu Okan, “Naval Surface Tactical Maneuvering Simulation System Technical
Report (Draft)”, manuscript, 2007.

3 Topçu Okan, “Development, Representation, and Validation of Conceptual Models in

Distributed Simulation”, Defence R&D Canada – Atlantic (DRDC Atlantic) Technical
Memorandum (TM 2003-142), Halifax, NS, Canada, February 2004.

4 Topçu Okan, “Review of Verification and Validation Methods in Simulation: Literature

Survey, Concepts, and Definitions”, Defence R&D Canada – Atlantic (DRDC Atlantic)
Technical Memorandum, TM 2003-055, Halifax, NS, Canada, April 2003.

Thesis

1 Topçu Okan, “Naval Surface Tactical Maneuvering Simulation System”, MSc Thesis,
The Department of Computer Engineering, The Graduate School of Natural and
Applied Sciences, Middle East Technical University (METU), Ankara, Turkey,

December 1999.

HOBBIES

Sailing, Scuba Diving, Swimming

http://www.ceng.metu.edu.tr/~otopcu/nstmss/docs/NSTMSS%20Technical%20Report.pdf
http://www.ceng.metu.edu.tr/~otopcu/nstmss/docs/NSTMSS%20Technical%20Report.pdf
http://cradpdf.drdc-rddc.gc.ca/PDFS/unc13/p520183.pdf
http://cradpdf.drdc-rddc.gc.ca/PDFS/unc13/p520183.pdf
http://cradpdf.drdc-rddc.gc.ca/PDFS/unc13/p520183.pdf

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	CHAPTERS
	INTRODUCTION
	Motivation and Background
	Development Context
	Related Work
	Objectives and Scope
	Technology Overview
	High Level Architecture
	Tools
	Generic Modeling Environment
	Microsoft Visual Studio .NET Integrated Development Environment

	Typeface Conventions
	Summary of Chapters

	FRAMEWORK FOR HLA FEDERATION DESIGN AND DEVELOPMENT
	Methodology
	Conceptual Model
	CM Validation Using Scenarios
	Federation Architecture Model
	Federation Architecture Verification
	Static Verification
	Dynamic Verification (Runtime Verification, Monitoring)

	Detailed Design Model
	Transformations and Code Generation

	FEDERATION ARCHITECTURE METAMODEL
	FAMM Structure
	User Perspective
	Behavioral Metamodel

	LSC/MSC METAMODEL
	Metamodeling Approach and Design Principles
	Modeling Level
	Using Abstract Syntax Trees for Each MSC/LSC Instance
	Designing Multi-instance Elements
	Cardinality Constraints
	Element Uniqueness, Naming, and Naming Scope
	Multiple Branches of an Instance in Different Charts

	MSC Metamodel
	Constituents
	MSC Documents
	Charts
	Instances and Instance Decomposition
	Comments
	Message and Message Events
	Control Flow Using Method Call Events
	Environment and Gates
	General Ordering
	Conditions
	Timers and Timer Events
	Actions
	Instance Creation and Termination
	Coregions
	Inline Expressions
	References

	Data Concepts
	Declaring Data and Using Declarations
	Type Checking
	Data Types
	Expression
	Data Definitions

	Time Concepts
	High-level MSC
	Auxiliary Models
	Events
	MSC Connections

	LSC Metamodel
	Extending MSC to LSC
	Extending MMM for LMM
	Live Sequence Charts
	Temperatures
	Locations
	Conditions
	Messages
	Simultaneous Regions
	Local Invariants
	Time (Timing Intervals)
	Iteration and Conditional Execution
	Additional LMM Elements
	Extended Pre-charts
	Idioms

	HLA FEDERATION METAMODEL
	HLA Object Metamodel
	Federation Structure Metamodel
	Publish/Subscribe Metamodel
	HLA Services Metamodel
	Connection to the Other Metamodels
	Methods
	Arguments
	Exceptions
	Runtime HLA Instances
	Message Retraction Designator
	Region
	Federate and Federate Application

	HLA Runtime Infrastructure and Federation Executions
	Live Entities
	Libraries for HLA Methods
	IEEE 1516 HLA Methods Library
	DMSO 1.3 Methods Library

	MODEL INTEGRATION AND EXTENSIBILITY
	Integration by Extension
	Accommodating Future Integrations
	Console Input Output Library

	FAMM ASSESSMENT
	Completeness (Scope)
	Traceability
	Modularity
	Layering
	Partioning
	Extensibility
	Reusability
	Usability
	Other Criteria

	RESULTS, DISCUSSIONS, AND FUTURE WORK
	Accomplishments and Discussions
	Future Work
	From a User-friendly Trimmed Model to a RTI-friendly Full Model
	Graphical Front-end (from LSC to BMM)
	Federation Scenario
	Extraction of Usable Views of Federation Architecture
	Defining Metrics for Metamodel Quality Assessment
	Constraint Checking Over FAMM (Through the OCL Constraints)
	Decomposition of a Federate Application

	REFERENCES
	APPENDICES
	FEDERATION ARCHITECTURE MODELING ENVIRONMENT
	Overview
	Introduction to Example
	Registering the FAMM
	Creating a New Project
	Creating the Federation Model
	Creating the Object Models
	Creating Other Elements

	Creating Federation Structure Model
	Creating Behavioral Models
	Creating Federates and Federation Executions
	Reserving Object Instance Names
	Creating Elements for the Variable List
	Creating Object Instances
	Creating Timestamp and Lookahead
	Creating Regions and Dimensions

	Modeling Callbacks
	Discovering Objects

	Setting the Temperatures

	Using the Libraries
	IEEE 1516.1 Methods Library
	Using Template Methods Defined in the Library
	Using Arguments of the Template Methods
	Exception Handling

	IEEE 1516.1 Management Object Model Library
	IEEE1516.2 HLA Defaults Library

	Creating a New Library
	How to Upgrade Models
	First Method – Default Upgrade Mechanism
	Second Method – Using Update through XML
	Third Method – Using Import/Export Mechanism

	Practical Matters
	Setting Port Label Length
	Using the Icons

	Creating Publish/Subscribe Models
	P/S Model Generator
	Registering the P/S Model Generator
	Using the P/S Model Generator
	Features

	Code Generation

	CASE STUDY: NAVAL SURFACE TACTICAL MANEUVERING SIMULATION SYSTEM
	Introduction
	System Components
	Scope of the Case Study

	Federation Architecture Model
	Federation Model
	Federation Structure
	Federation Model

	Behavioral Models
	Behavior Model for MekoFd

	Publish/Subscribe Models
	Discussions

	TRANSITION BETWEEN HLA METHODS LIBRARY AND IEEE 1516.1 FEDERATE INTERFACE SPECIFICATION
	Federation Management
	Declaration Management
	Object Management
	Ownership Management
	Time Management
	Data Distribution Management
	Support Services

	HLA ARGUMENTS
	CURRICULUM VITAE

