MODEL-BASED CODE GENERATION
FOR THE HIGH LEVEL ARCHITECTURE FEDERATES

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

BULENT MEHMET ADAK

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR
THE DEGREE OF DOCTOR OF PHILOSOPHY
IN

COMPUTER ENGINEERING

DECEMBER 2007

Approval of the thesis:

MODEL-BASED CODE GENERATION
FOR THE HIGH LEVEL ARCHITECTURE FEDERATES

Submitted by BULENT MEHMET ADAK in partial fulfillment of the requirements for the
degree of Doctor of Philosophy in Computer Engineering Department, Middle East

Technical University by,

Prof. Dr. Canan Ozgen

Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Volkan Atalay

Head of Department, Computer Engineering

Assoc. Prof. Dr. Halit Oguztiiziin

Supervisor, Computer Engineering Dept., METU

Examining Committee Members:

Prof. Dr. Hakk: Toroslu

Computer Engineering Dept., METU

Assoc. Prof. Dr. Halit Oguztiiziin

Computer Engineering Dept., METU

Assoc. Prof. Dr. Cem Bozgsahin

Computer Engineering Dept., METU

Assoc. Prof. Dr. ilyas Cicekli

Computer Engineering Dept., Bilkent University

Assoc. Prof. Dr. Ali Dogru

Computer Engineering Dept., METU

Date:

I hereby declare that the information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced
all material and results that are not original to this work.

Name, Last name: Biilent Mehmet Adak

Signature

iii

ABSTRACT

MODEL-BASED CODE GENERATION FOR THE HIGH LEVEL ARCHITECTURE
FEDERATES

Adak, Biilent Mehmet
Ph.D., Department of Computer Engineering

Supervisor: Assoc. Prof. Dr. Halit Oguztiiziin

December 2007, 261 pages

We tackle the problem of automated code generation for a High Level Architecture (HLA)-
compliant federate application, given a model of the federation architecture including the
federate’s behavior model. The behavior model is based on Live Sequence Charts (LSCs),
adopted as the behavioral specification formalism in the Federation Architecture Metamodel
(FAMM). The FAMM is constructed conforming to metaGME, the meta-metamodel offered
by Generic Modeling Environment (GME). FAMM serves as a formal language for
describing federation architectures. We present a code generator that generates Java/Aspect]
code directly from a federation architecture model. An objective is to help verify a federation
architecture by testing it early in the development lifecycle. Another objective is to help
developers construct complete federate applications. Our approach to achieve these
objectives is aspect-oriented in that the code generated from the LSC in conjunction with the
Federation Object Model (FOM) serves as the base code on which the computation logic is

weaved as an aspect.

Keywords: Code Generation, High Level Architecture, Live Sequence Charts, Aspect

Oriented Programming, Model-Driven Engineering

v

0z

YUKSEK SEVIYE MiIMARI FEDERELERI iCIN MODEL TABANLI KOD URETIMI

Adak, Biilent Mehmet
Doktora, Bilgisayar Miihendisligi Boliimii
Tez Yoneticisi: Dog¢. Dr. Halit Oguztiiziin

Aralik 2007, 261 sayfa

Biz, federenin davranis modelini de iceren federasyon mimari modeli verilen, yliksek seviye
mimari (HLA) uyumlu bir federe uygulamasi i¢in kod iiretiminin otomasyonu problemi ile
ugragmaktayiz. Federe davranig modeli, Federasyon Mimari Meta-modeli (FAMM) icinde
davranigsal spesifikasyon bicimsellesmesi i¢in adapte edilmis Canli Siralama Cizgelerini baz
almaktadir. FAMM meta-GME meta-metamodeline uyumlu olarak insa edilmistir. Meta-
GME, Jenerik Modelleme Ortami (GME) tarafindan ortaya atilmis bir meta-metamodeldir.
FAMM federasyon mimarilerinin betimlenmesi i¢in bicimsel bir dil sunmaktadir. Biz
federasyon mimari modelinden direk olarak Java/Aspect] kodu iireten bir kod iireteci
sunmaktayiz. Bu c¢alismanin bir amaci, bir federasyon mimarisini gelistirme yasam
dongiistiniin heniiz basinda test ederek dogrulamaya yardim etmektir. Bir diger amac da
komple federe uygulamalar1 olusturmada gelistiricilere yardim etmektir. Bu amaclara
ulasmada bizim yaklasimimiz ilgiye odakli yaklasimdir. Bu yaklasimda, Federe Obje
Modeli (FOM) ile biitiinlesik LSC’den {iretilen kod, hesaplama mantig1 iizerine bir ilgi

olarak oriilen, taban kodu olmaktadir.

Anahtar Kelimeler: Kod Uretimi, Yiiksek Seviye Mimari Simiilasyon, Canli Siralama

Cizgeleri, ilgi Odakli Programlama, Model-Giidiimlii Miihendislik

To My Family

vi

ACKNOWLEDGEMENTS

I especially thanks to, my supervisor, Assoc. Prof. Dr. Halit Oguztiiziin for supervising me,
providing resources, subjects, also offering direction and insightful critism.

Thanks to Assoc. Prof.Dr. Cem Bozsahin and Assoc. Prof.Dr. ilyas Cigekli for their valuable
supervision during my thesis.

I would like to thank to collaborative work with the fellow PhD student Okan Topgu, who
developed the Federation Architecture Metamodel. Also thanks to Osman Efe, Kaan
Sarioglu, Ayhan Molla, Giirkan Ozhan, and Deniz Cetinkaya for many supporting
comments. I thank Aselsan Inc. for providing a working environment conducive to research.

Finally, I would like to thank my wife and my parents, for their support against all the
difficulties that I met.

vii

TABLE OF CONTENTS

ABSTRACT ...ttt sttt ettt e s bt e s bt e sat e sab e et sbe e bt e beenae iv

OFZ ettt v

ACKNOWLEDGEMENTS ..ottt sttt ettt sttt vii

TABLE OF CONTENTS ...ttt ettt st st e e viii

LIST OF TABLES ...ttt ettt st sttt ettt esaeesaae st eas xi

LIST OF FIGURES ...ttt sttt ettt ettt sttt e b xii

LIST OF ABBREVIATIONS ..ottt ettt st s s Xix
CHAPTER

1. INTRODUCTION ...ttt ettt sttt ettt sttt e sbe s ene s 1

1.1. MOtivation and SCOPEc.ceueuiiiriririniriiieieteicitttr ettt ettt ees 1

1.2. Context Of the GENETALOTcc.eveirieieiirieieeietee ettt 2

1.3 Organization of the TRESIS ...t s 3

2. BACKGROUNDoiiiiiiiiettetetet ettt sttt ettt sttt ettt e sbe e s s sane e 5

2.1. Generative Software DevelOPmMEntcceiiirirnniniiereceeitrneeeee s 5

P @7oTa [N € 1<) 13 21 5 o) 1 USROS 6

2.3. Model Driven Architecture (MDA) and Model Driven Engineering (MDE)........... 7

2.4 High Level Architecture (HLA)ooviiiiieeie e 9

2.5. Federation Architecture Metamodel (FAMM)........cccooooiiiiiiieeeieeeeeeeeeeeeeeeenan 13

2.6. Generic Modeling Environment (GME)ccooiiiiiiiiiieeeceeeeeaes 15

2.7. Aspect-oriented Programming (AOP)ccccooeonnnrnineeeeie s 16

3. CODE GENERATION FROM A FEDERATION ARCHITECTURE MODEL......... 18

3.1. Running Example: Strait Traffic Monitoring Simulation...........c.c.coceceeeiiiinnnenene. 18

3.2. Federation Application Code generation from FAMccccoonnnnieeccnennneene 22

3.2.1. Overview of the Code GENEratorcccceovvriieeererninniicieiererenere e 22

3.2.2. Structure of the Generated Codeccccevrrriieiennnniceeeenr e, 23

3.2.3. Incorporating HLA Object Model and Services into Codecceueueuueee 25

3.2.4. How a Generated Federate RUNScccoeiiiieiiineiceceee e 27

3.3. More On The Code GENETALOTccveueueirieeiirieeeieeeie et 31

3.3.1. Participating in Multiple Federationscccocovvveeeeiieinnnnnnneeeeceeeee 31

viii

3.3.2. Retargeting another RTT ... 31

3.3.3. COdE CIATILY ...cuveiiiieieiicieicterer ettt 32
3.3.4. Support for Model-Code Traceabilitycccovrieeeieiiinnnnnneeeecieeee 32
3.3.5. Availability of the GEeneratorcccccceveeirinnnninicccccccer e 32
3.4. Code Generation EXamPIEc.oveueuiiiiinnniiccccc et 32
3.4.1. Steps in Using the Code GeNerator:..........c.cocoevrrrrerreeereueieinirnenenneeeneneneeeeene 33
3.4.2. Discussion of the Case StUd..........coceeueureiinnnreee e 41
3.5. Related WOTKS......c.cueuiiiiiiiiieieieiin ettt 43
4. CODE GENERATION FROM LIVE SEQUENCE CHARTS........ccccocevininieinenne. 46
4.1. Motivation and SCOPEcceeiririririririeieieieiettr ettt 47
4.2. Context Of the GENETALOTc.cceeueiririiiiieieiiirir ettt 47
4.3. €O GENETALOTeevtriiieciieiereis ettt sttt ettt s ettt s s eseneacs 48
4.3.1 Running Example: ATM Money Withdrawal Applicationc.cccovvureneee 49
4.3.2. Structure of the Generated Codecoovieeeueierninnnicieieenrccceeeereeeae 50
4.3.3. Running the Generated LSC Instance Code Aloneccccceeeeininnnnininnnnee 51
4.3.4 Running the Generated Aspect Code with the Base Code..........ccccovnnnunenee 52
4.3.5. Editing the Computation ASPECTc.vvuvurueueueieuiiiiriririrneerereteeieieeeeseseseseeaenenes 54
4.3.6. Weaving the Computation ASPECLccueveueveveuiiririririninieierereieieieeeeseseseseeaenenes 55
4.3.7. Metamodel Support for Code Generation.............cocevrvrerrererereueecrinnnneseenenes 55
4.3.8. Integration with Domain-Specific Data Modelsc.c.cooeveeeicccinnnnnnnnenes 56
4.4. ATM Money Withdrawal Applicationc.covvvrierereueeicninnnneereeccceenens 57
AT SEEPS ettt ettt ettt 57
4.4.2. Related WOTKc.ouiieiee s 63

5. IMPLEMENTATION VIEW OF CODE GENERATION.......ccccccevininiiininienienenens 65
5.1. Intermediate FOIT.......c.coiiiiiiiiriiiiiiciceirrcceete ettt 65
5.2. Intermediate Form Generation - Front End ... 70
5.3. Target Code Generation — Back End..........ccccooooniniiiiiiieeeeeeees 70
5.4. Dictionary Usage in the Generated Code...........cocovrrireueueeiininnreeeeeceeeas 71
5.5. Multi-threaded Realization of INStANCEScoceeeueuereirnniiiicicieirrcceeeresrcenees 72
5.0, EVEIILS ...ttt 72
5.7. Buffering of Received MeSSages.......cvvurueueuiuiuiiininirinisieieieeeieee st 74
5.8. TemMPErature PrOPEILYcceueuiuieiiiniirieieete ettt 75
5.9. Resolving Non-determinism by Randomization..............ccceceeoennnnnrcccccncncneene 76
5.10. Inline EXPIESSIONS ...c.cvvvviiiiiiiiirinirietetetetcct ettt 77
5.11. Barrier SyNnChronizationc.cccocvveieeiieiininnirnneeeieeciee st enees 79
5120 PTECRATT. ...ttt 80

iX

5.130COTEION ..ttt ettt 81

5.14. General Ordering.......ocovveveueueuiiiirinirinieeeieteieici ettt ettt 83

5.15. Simultaneous REGIONccciiiiniiiiicicit et 84

516, GALE ..ttt s ettt ne st eenene 85

5.17. LoCal INVATIANL........c.ooiieeiiiieiecce ettt 86

5.18. NAMESPACINGc.vemiiiiiieteieteicitt ettt 87

5.19. LSC/MSC COMPOSILION ...ttt ettt eees 87

5.20. High Level MSC (HMSC) ..ottt 87

6. CASE STUDY: CONSTRUCTION OF A FEDERATION MONITOR FEDERATE .89

6.1 Introduction t0 CaSE-StUAYcceoiririririrerieieieieietererr ettt ees 89

6.2. Federation Architecture Model Featuring FedMonFd ... 90

6.3. Code Generation for the FedMOnFd..........c.c.ocooiieiiiinnniiceinnccceeiesnccens 104

7. CONCLUSION ...ttt ettt ettt sttt st ese st se e st nesreesne b saeenes 119

REFERENCES ..ottt ettt st sttt ettt s st s 122
APPENDICES

A. PATTERNS AND RELATED CODEScociiiiiiiiiiininteenteeeeteeeseeee e 126

B. INTERMEDIATE FORM GENERATIONccceiiiiiiiniinieieneeieieeteieseeie e 148

C. JAVA CODE GENERATOR.......ccctititiitiienenteesttetee ettt st 160

D. A CODE GENERATION EXAMPLEccccooiiiiiininientnteeneeteeeteee st 172

E. LSC EXAMPLES AND THEIRS CODE EQUIVALENCYccccccceiiriininieienieneens 177

F. INTEGRATION OF HLA METHODS WITH LSC MODEL: FRONT END 209

G. INTEGRATION OF HLA METHODS WITH LSC MODEL: BACK END............. 221

H. CODE GENERATOR USER GUIDEcccccoiiiiiiniiniiniinieeseeeeeteie st 223

CURRICULUM VITAEc..oitiititeeteetete ettt sttt sttt s 239

LIST OF TABLES

TABLES

Table 3-1. Information Retrieved from FAM and Placed in the Generated Code................. 27
Table 3-2. STMS Code Metrics (N LOC)ouvveeiiiiiiieeeeeeee e 42
Table 6-1. FedMonFd Code Metrics (in LOC)coovviiiieiiieieeeeeeeeee e 118

Xi

LIST OF FIGURES

FIGURES

Figure 1.1 Development Methodology for HLA-Based Distributed Simulations, adapted
from [Topgu €t al. 2007] ...coveeiiieniinieeieeie ettt ettt st st 3
Figure 2.1. Mapping between domain model and implementation-oriented abstractions 6
Figure 2.2. Code ZENEration.........cccueruiriiiniieniieniieneente et ettt ettt et ere e b e sieesanesane e 6
Figure 2.3. MDA software development life cycle [Kleppe et al. 2003].......cccccooceerieriennene 7
Figure 2.4. Software Components in the HLA [IEEE 2000a]cccccevviiieinennienienienenne 9
Figure 2.5. Federation Architecture Metamodel Structure ([Topcu et al. 2007])c..cc...... 14
Figure 2.6. Relationship between a Federation Architecture Model and the Metamodel...... 14
Figure 3.1. Strait Traffic Monitoring Simulation Conceptual View.........cccccovveiriiincinennene 19

Figure 3.2. Behavior Model for the Ship Federate in LSC Graphical Notation [Topcu et al.

2007T vttt ettt ettt sttt sttt s h et bbbttt h e et e ae e nenreeanenne e 20
Figure 3.3. Code Generator Data Flow Diagramcc.ccoeceeriiiiiiiiiinienienienieeieeeeieeiene 23
Figure 3.4. Structure of the Generated Federate Applicationcccccevveenieniiniieniienneeneen. 25
Figure 3.5 CreateFederationExecution Method (advice) in Computation Aspect Code....... 26

Figure 3.6 Collaboration Diagram of Calling RTI Ambassador Method in the Generated

FEARTALE ...ttt sttt ettt a b e st st e e s sene e 28
Figure 3.7. RTI Ambassador Method in the LSCRULIDc.cccccovniiiiiiiinnecces 29
Figure 3.8. Federate Ambassador Call-back Method in the RTIFederateAmbassador............ 30
Figure 3.9. Federate Ambassador Call-back Method (advice) in the Federation Execution
ASPECE .ttt bbbttt bbbt 31
Figure 3.10. XML Configuration File for the Code Generator for ShipFd Application........ 33
Figure 3.11. Class Diagram of the Ship Federate............ccccccccvvnnniiiiiiinnnnneeeenes 34
Figure 3.12. Excerpts from the Generated Java Code of Ship Federate Application.............. 35
Figure 3.13. A Sample SendInteraction RTT Ambassador Method in Federate Base Code
(SRIPE) ..ottt 37
Figure 3.14 A sample RTI Ambassador Method (advice) in Computation Aspect
(SRIPEFAASPECE) ...ttt bbbttt ettt bbbt b et 38

Figure 3.15. A LscRTILib Definition and a Sample Advice in Federation Execution Aspect
(BosporusFederationLIDASPECL)c.ceueuiuiiiiiriririeieieieecee et 40

Xii

Figure 3.16. Adding a Computation to User Ship Name Selection Method in User’s

COMPULATION ASPECE. ...ttt sttt ettt ettt b bbbttt sttt bbbttt sttt bebebebenes 40
Figure 3.17. A View of the Ship Federate Running (pRTI snapshot)..........cccccceeuervieevcenncene 41
Figure 4.1. Development Methodology for an Application..........ccccceeeeveenienveenniernieeneeneen. 48
Figure 4.2. ATM Money Withdrawal Scenario Conceptual Viewc.ccocevveerviirvceneencne 50
Figure 4.3. Structure of the Generated Codeccooeereiriiiriiiiiiniiiicceceeeee e 51
Figure 4.4 A Sample Sending Method in the Client LSC Instance Code...........ccceceerueennn. 52
Figure 4.5 A Sample Receiving Method in the Client LSC Instance Code............cccceeuee. 52
Figure 4.6 Collaboration Diagram of Receiving method..........c.cccoceeiieiiiniiniiniiniiiceee 53
Figure 4.7 A Sample Sending Method’s Pointcut in the Client ASpect........cc.ccceeuervueerueennenne 53
Figure 4.8 A Sample Receiving Method’s Pointcut in the Client Aspect.........cccccevueereenneee 54
Figure 4.9 Editing Auxiliary ChooseAlt Method in the ASpect........c.ccceeveeviiniiniiinnicnnennen. 55
Figure 4.10 Integration with Domain-Specific Data Model Exampleccccccocervienennnenn. 56
Figure 4.11. LSC for ATM Money Withdrawal at Topmost VIEWc..ccccevveerviennieeneeneen. 58
Figure 4.12. XML Configuration File for the Code Generator for ATM Money Withdrawal

APPIICALION. c...cenieiiieriieete ettt ettt ettt ettt ettt et e s bt sae e sttt e it ereens 59
Figure 4.13. Class Diagram of the Money Drawccocccocevviiiiiniiiiiinieniinienieeieceeieens 60
Figure 4.14. A Part of the Client Do-While LOOD.....c..ccocerviiriiiiiniiiiiieicneceecceciene 61
Figure 4.15. Adding a Sample Computation to the Sending Method’s Advice..................... 62
Figure 4.16. A View of the Money Withdrawal Application Running (Eclipse Screenshot) 63
Figure 5.1 Class Diagram of the Intermediate FOrm.........c..ccoccoviiiiiiiininiininiiceieceene 66
Figure 5.2 LSC Diagram of the Example for Intermediate Form Representation Aim......... 67
Figure 5.3 Object Diagram of the Example in Figure 5.2.........ccccoiiiiiininiinniniiciieceens 68
Figure 5.4. Activity Diagram of the Front-End Modulecccccociviiiiiininninniniieeneene 69
Figure 5.5 Activity Diagram of the Back End Module.............cccccooiiiiiniiniininiiiiiiiccee 71
Figure 5.6 Hot Condition EXample..........cocuoiiiiiiiiiiiniiiiiiieeiceeeeeeete et 72
Figure 5.7 Instance Creation/Stop EXampleccccoviiiiiiiiiiiiiiiiieeteeeeeeeeeiene 73
Figure 5.8 Example for Timer EVENtS.coccoiviiiiiniiiiiiiiiceeceeetete e 74
Figure 5.9 A Buffering EXample..........cocoiiiiiiiiiiiiiiiieceeceeete et 75
Figure 5.10 Receiving a Cold EVENt.....c.cooiiiiiiiiiiiiiiienteeceteeeeete et 76
Figure 5.11 Alternative Inline Expression Example in Figure 5.2ccccoooiiiiiiiniininnen. 77
Figure 5.12 Parallel Inline Expression EXample..........ccoccovviiiiiiiiiiiiiiienieienieeeeeeeeiene 78
Figure 5.13 Loop Inline Expression Example in Figure 11.......c.ccoocoiiiiiinininiiiieeee 79
Figure 5.14 Barrier Synchronization EXamplecc..ccocoiviniiiiiniiiiiiecceccieceene 80
Figure 5.15 Prechart EXample.......c.cooviiiiiiiiiiiiiiiicceccecieeeetese e 81
Figure 5.16 Coregion EXampleccccoviiriiiiiiiiiiiiincnicceccececeeeecse e 83

Figure 5.17 General Order Example (InStance)c.ccceveervuervieriernieeneeneenieneeseeeeeeeeenieens 84

Figure 5.18 Simultaneous Region EXample.........ccccccoeeriiriiiniiiiinniiiiceeieneeeeeeeeeieeieene 85
Figure 5.19 Gate EXaMPIEcocuiiiiiiiiiiiiiiiiiieeeenecste ettt 86
Figure 5.20 Local Invariant EXamplecccccoviiiiiniiniiniiniciiececeesccse e 87
Figure 5.21 HMSC’s corresponding MSC Composition (B35 in [ITU-T 1998))) 88
Figure 6.1. FedMonFd Federation Structure (FSMM)........cccccoiiiiiniiinniiiniieeiieeiee e, 90
Figure 6.2. FedMonFd Object Classes (HOMM)cooceiiiiriiiiiiiiieienteniesteeee e 91
Figure 6.3. FedMonFd Behavioral Modelccccoiiiiiiiiiiiiiieeeeeeeeeeeeiene 94
Figure 6.4. FedMonFd Main Chart in FAMM..........ccoccoiiiiiiiiiiiieeeeeeee e 103
Figure 6.5. Sequential Operator in Pre-chart in Figure 6-4...........ccoccovviiiiiniininninnicnee 103
Figure 6.6. Initialize Federation Operand in Figure 6-5c...cccccoiviiiiiniiiniinieeniciieee 104
Figure 6.7. XML Configuration File for the Code Generator for FedMonFd Application. 105
Figure 6.8. Class Diagram of the FedMonFd Federate............cccccoooueriiniiiiniinennienieeee 106
Figure 6.9. Excerpts from the Generated Java Code of Monitor Federate (Continue) 112
Figure 6.10. Sample SendInteraction RTI Ambassador Methodccccceoveeneeniincncee 113
Figure 6.11. A Sample Receivelnteraction Federate Ambassador Call-back Method......... 113
Figure 6.12. A sample RTI Ambassador Method (adViCe)ccccceveerierrieeneenecnecnncnnennn 114
Figure 6.13. A sample Federate Ambassador Method (advice).........coceeveeeveeneenecnncnncnne. 115
Figure 6.14. A LscRTILib Definition and A Sample AdViCe........cccccrvuvrveieniineenicnicnnennn 116
Figure 6.15. Adding a Computation to the RTI Ambassador Method (Modifications to the

AAVICE AT TN TLALIC). c.vveiiieiiiieeecieee et e ettt ettt e et e e e e re e e e e tae e e e ebbeeeeennreeeesnsaaeeesnsseeeennnees 116
Figure 6.16. A View of the FedMonFd Application Running (pRTI snapshot) 117
Figure A.1 Code Generated for C1-hot........ccccceoiiriiriiiiiniiiieee e 127
Figure A.2 Code Generated for C1-COld.......cccemiiriiriiriiniiiieicieceeeceeee e 128
Figure A.3 Code Generated for cold MEeSSAZEcoveruerierriiiniieniiiieeeeeee et 128
Figure A.4 Cold Location Patternc.coviiiiiiiiiiiiiieieeecetete ettt 128
Figure A.5 Code Generated for cold 10Cationcocueeieeiiinieiiinieieeeeeeeeee e 129
Figure A.6 Existential-Chart Inline Expression Pattern............ccoccovveeiveniiinieinieenienienienn 129
Figure A.7 Code Generated for Chart..........cocceiieiiiiiiiiiieie e 130
Figure A.8 Barrier Synchronization Patternccoceeviriiiiiiiiiniiniiiceeeeesee e 130
Figure A.9 Code Generated for the Pattern...........coceevuiiiiiiiiiieiiiiiieeeeeeeee e 130
Figure A.10. Composition Patterncoceeiiiiiiiiiiiieiieceieteee et 131
Figure A.11. Code Generated for INStance “i”.........covueeveeiienienienieneeeeeeeesee e 131
Figure A.12. Coregion Patlerncocooviiiiiiiniiniiniiiiceeeeeeeeeeee et 132
Figure A.13. Code Generated for Coregion in inStance Acccceceevieeveeeneeneeneeneennennne 133
Figure A.14. ALTernative Inline Expression Patterncccceeeeriiniinnienencnecnicnnenn 134

Xiv

Figure A.15. Code Generated for ALTcc.cooiiiiiiiiiiiiieeeeeeeeceece e 135
Figure A.16. PARallel Inline Expression Patterncccccoeeevieiiininiinniencnecnecrceeene 135
Figure A.17. Code Generated for PARcooooiiiiiiiiiiiieeceeeeeee e 136
Figure A.18. LOOP Inline Expression Patternccccocceevieiieniiniiinninnieneeneeneceeceeeene 137
Figure A.19. Code Generated for LOOPc..ccociiiiiiiiiiiiiiiieieeeeeeeeeeece e 137
Figure A.20. SEQential Inline Expression Pattern............ccccceeieiiiniinniinnienencnecniceeeene 138
Figure A.21. Code Generated for SEQcoiiiiiiiiiiiiiiieeeee et 138
Figure A.22. EXCeption Inline Expression Pattern..........coccceveeiiiniiniiinniinnieenienierie e 139
Figure A.23. Code Generated for EXC........cooiiiiiiiiiiiiiiieeteeeeeeeeee et 139
Figure A.24. OPTional Inline Expression Patterncocccevieiiiiiiniiinnieeneeneeneeeeeeeane 140
Figure A.25. Code Generated for OPTcoociiiiiiiiiiiiiee et 140
Figure A.26. Do-While Inline Expression Pattern............cocccevieiiiiiiniinieenieneenieie e 141
Figure A.27. Code Generated for Do-While.........c.ccoooiiiiiiiiniiiiieeeeee e 141
Figure A.28. While-Do Inline Expression Pattern............cocccevieiiiiiiniiniieniineeniecieeee 141
Figure A.29. Code Generated for While-Do.........cccoiiiiiiiiiiiiiniiiiiiieeceeeeeee e 142
Figure A.30. If-Then Inline Expression Pattern............cccccoeievieiiiniinninnieneenecnecric e 142
Figure A.31. Code Generated for If=-Then........cc..ccoceriiriiniiiiiinieececece e 142
Figure A.32. If-Then-Else Inline Expression Pattern............cccccoeceviiniinninnencncncnncnn 143
Figure A.33. Code Generated for If-Then-EISeccccceriiiiiniininiiiieenecnecceeene 143
Figure A.34. Local General Ordering Pattern...........cccccoceeiiiiieiiiniinninieeeneeneceeceeene 144
Figure A.35. Code Generated for Local General Ordering...........ccocceeeeeeveeeneeneenecneennennn 144
Figure A.36. Multi-Instance (Shared) Local General Ordering Pattern............ccocceeeeeneene. 145
Figure A.37. Code Generated for Multi-instance General Ordering in Instance i............... 145
Figure A.38. Pre-Chart Inline Expression Patterncccocceevieriinniinninniieneenecnecncecene 145
Figure A.39. Code Generated for Pre-Chartc..cooieiiiiiiiieiiiiiiiieeeeeeee e 146
Figure A.40. Local Invariant Patternccoceiiiiiiiiiiiiiiieeeeeeeceeeee e 146
Figure A.41. Code Generated for Local Invariantccccceeieiiiniinniinnieenieeneenieeieeeene 146
Figure A.42. Simultaneous Region Pattern..........ccocoeviiiiiiiiiiiiiiniiieeeeeeee e 147
Figure A.43. Code Generated for Simultaneous Region...........cccccoocuerviiiiiniinenicnicnene 147
Figure B.1. Intermediate form of LSC......ccccoooiiiiiiiiiiiiiiee et 148
Figure B.2. Call-graph of the Intermediate Form Generation Module (Front End)............. 153
Figure C.1. Call-graph of the Java Code Generation Module (Back End)c...c........ 161
Figure D.1. B29in Z120 ANNB ..ottt e 172
Figure D.2. GME Model of Instance Alt Inline EXPressionccocceeceeveeeneeneenecneennennn 173
Figure D.3. GME Model of First Operand of the ALT Inline Expression.........cc..cccccoue.... 173
Figure D.4. Intermediate Form of INStance i.........c.cccoeeeveriiinieniiniiniiiicciecnecneceee e 174

Figure D.5. Intermediate Form of INStance j.........c.cccooeeviriiinieniiniiniiniceecnecneceec e 175

Figure D.6. Generated Main Loop Code of INStance i......c.ccceeeeveereeriernieeneeneeneeneenienn 176
Figure D.7. Generated Main Loop Code of INStance j......c.c.cceveeveereeriernieeneeneenecneennenne 176
Figure E.1. B291in Z120 ANnBccoooiiiiiiieecteee e 177
Figure E.2. Code Of INSLANCE 1.....cevuiriiriieiiiiieniiciicec ettt ettt 177
Figure E.3. Code Of INSLANCE J.....ceouiriiriiiiiiniieniienieete ettt sttt 178
Figure E.4. B291in Z120 ANNB ...cooiiiiiiiie et 178
Figure E.5. Code Of INSLANCE 1..c..eeiutiriiiriiiiieniieniie ettt ettt s s 179
Figure E.6. COde Of INSLANCE J.....eeiutiriiiiiiiienieeniieeite ettt sttt et s s 180
Figure E.7. B31in Z120 ANNBcoiiiiiiiiii ettt 181
Figure E.8. Code Of INSLANCE 1.....eeiutiiiiriiiiieniieiiieiie ettt ettt st s 181
Figure E.9. Code Of INSLANCE J.....eevtiruiiriiiiieniieniie ettt sttt et st s 182
Figure E.10. Derived from B29 in Z120 AnnBcoccoiiiiiiiiiiieeeeeeee e 182
Figure E.11. Code Of INSTANCE 1....cc.uiiuiiiiiiiiiiieniieiie ettt s s 183
Figure E.12. Code Of INSTANCE J....ccviriiiiiiiiiiieniie ittt ettt st 183
Figure E.13. Derived from B29 in Z120 AnnBcccooiiiiiiiiiieeeececee e 183
Figure E.14. Code Of INSTANCE 1....ccuiriiriirriiiniienienieeceieeiceieeiee sttt 184
Figure E.15. Code Of INSTANCE J....cccviriiriiriiiiieniierieeiceieeteeieeitese ettt 184
Figure E.16. Derived from B31 in Z120 AnnBcocooiiiiiiiiiiieecececee e 185
Figure E.17. Code Of INSTANCE 1....ccueriiriiriiiiriiiniienieeiceieeieeieeieese sttt 185
Figure E.18. Code Of INSTANCE J....cccueriiriirriiiniiiniienieeiceiceteeieeieese ettt 186
Figure E.19. Madsen paper — (Existential chart Figure2.9)c..ccoccevvirviiniinencnicnncnn 186
Figure E.20. Code Of INSTANCE Acccecoiiiiiiiiiiinienieeieeeeeeieetesee sttt 187
Figure E.21. Code of inStance Bccccoviiiiiniiniiiiiiieccececeeeeeeee e 187
Figure E.22. Damm paper (FIQUIeS)......c.cooiiiiiiiiiiiiieeieie ettt 188
Figure E.23. Code of inStance ProXSeNnSOT........c.uertirieerierriieniieniieniee st eteeieesieesieesiee e 188
Figure E.24. Code Of INSTANCE CAT........eruiiiiiriieniieeiieeie ettt st s 189
Figure E.25. Code of instance carHandlerccooeeiiriiiiiiiiiniiiieeeeeeeee e 190
Figure E.26. Madsen paper (FIgUre2.13)cooiiiieiiiiiieieieeeteee et 190
Figure E.27. Code Of INSTANCE Acceiiiiiiiiiieiieeiie ettt st 191
Figure E.28. Code of inStance Bcccccoiiiiiiiiiiiiiieeeete et 191
Figure E.29. Madsen paper (FIUIe2.14)cocooiiiiiiiiiiiieieeteee ettt 191
Figure E.30. Code Of INSTANCE Accceiiiiiiiiiiienieiieee ettt ettt st 192
Figure E.31. Code of inStance Bcccccoviiiiiniiniiiiiiieecececeeeeeeee et 192
Figure E.32. Madsen paper (FIUIre2.15)cooiiriiriiniiiiiicececeeeeeteeeesie e 192
Figure E.33. Code Of INSTANCE Accceoiiiiiiiiiniiiniienieiceceteeieeseese ettt 193

Figure E.34. Code of inStance Bccccoviiiiiniiniiiiiiccececeeeeeeee et 193
Figure E.35. Madsen paper (FIgUre2.160)c.cccoieriiriiriiiiiiieecneeeeeteeeeseenee e 193
Figure E.36. Code Of INSTANCE Acc.coviiiiiiiiiiniiiiieiceeeeeeesite ettt 194
Figure E.37. Code of inStance Bcccoiiiiiiniiiiiiiiiiiicceceeeeeeeseesee e 194
Figure E.38. B6In Z120 ANNBc.ooiiiiiiiiieeecteee et e 195
Figure E.39. Code Of INSTANCE 1....cceeriiriieriiiniienierieiiceieeteeieeeesee et 195
Figure E.40. Code Of INSTANCE J....ccuiriiriiiiierieeniieeiie ettt st s 195
Figure E.41. Code of INStance K.........cccovuieiiiniinieiieiie ettt 195
Figure E.42. B131in Z120 ANNBoiiiiiiiie et 196
Figure E.43. Code Of INSTANCE 1....ccuuiiiiiiiiiiiiieniieiie ettt st e e 196
Figure E.44. Code of INStanCe K.......c.coovuiiiiiiniiiiiiieiieeiceceteete e e 196
Figure E.45. Brill Papercooooiiiiiiiiiee ettt st e e 197
Figure E.46. Code of inStance inSt1cocceoviiiiiiiiiiiiiiiee ettt 198
Figure E.47. Code of INStance iNSt2ccceevierieriiiiieeiieieeitesite sttt st 199
Figure E.48. B111in Z120 ANNBoiiiiiiiie ettt 199
Figure E.49. Code Of INSTANCE 1....ccueriiriiriiiiiienieniceiceteeieeieeieese et s 200
Figure E.50 Code Of INSTANCE J....eivviriiriiiiiieiieniienieeieet ettt et e 200
Figure E.51. B18in Z120 ANNBcooiiiiiiiieeectcece e 200
Figure E.52. Code Of INSTANCE 1....ccuiriiriiiriiiriieniienieeieeieeieeieeeese et 200
Figure E.53. Code Of INSTANCE J....cccviriiriiriiiiieniienieececeeeicertese ettt 201
Figure E.54. Code of INStanCe K.........cccocieviiiniiniiniiiiiiiceieecececete et 201
Figure E.55. B161in Z120 ANNBooiiiiiiiii et 201
Figure E.56. Code Of INSTANCE 1....cceeriiriiriiiiniieniiinieeieeieeieeieeseese et 202
Figure E.57. Code Of INSTANCE J....ccoueriiriiriiiniienienieetceieeteeieeieese sttt 203
Figure E.58. Harel Paper FIgure-5cccooioiiiiiiiiiiicieeeetee et e 203
Figure E.59. Code of inStance USETccceerieriiriiiiiiiieieeieeite ettt 203
Figure E.60. Code of instance Phonelcc.ccooiiiiiiiiiiiiiiiieieceeeeeee e 204
Figure E.61. Code of instance Chanlcc.ccooiiiiiiiiiiiiiiiieeeceeeee e 205
Figure E.62. Code of cold chart (Existential Chart) example...........ccocerveineinieenieniiennienne 205
Figure E.63. B33 in Z120 AnnB (D=A seq B) «e.eeiiiiiiiieeeeeeeeee 206
Figure E.64. Code Of INSTANCE 1....cc.eiiiiiiiiiiiiieniieiie ettt e 206
Figure E.65. Code Of INSTANCE J....ccviriiriiiiiiieeiieiie ettt st 206
Figure E.66. Code Of INSTANCE J....ccueriiriiiiiiiieniieeiie ettt s 207
Figure E.67. Code of INStaNnCe K.......ccceoviieiiiiriiniiniiiceiecceeciececee et 207
Figure E.68. Code Of INSTANCE 1....cc.viriiriiiiiiiiieniienieeieeieeieeeeitesie ettt 207
Figure E.69. Code Of INSTANCE J....cccueviiriiiiiiiiieniieniienceceieerceie ettt 207

Figure E.70. Code of iNStanCe K.........ccovieriiiniiniiiiiiiiceieeccctesecee e 208

Figure E.71. B38in Z120 ANNBcooiiiiiiiiieeecteeecee et 208
Figure E.72. Code Of INSTANCE J....cccuiriiriiiriiiniienieeiieeiceieeieeieestesee ettt 208
Figure H.1 Eclipse Java JRE Installation Windowccccceevieiiiniiniinnieneeneenecniceeeene 224
Figure H.2. Adding External Library Jar Files into the Eclipse.........cccccooceeviinienicnicnnncnne 225
Figure H.3 Component Register WindOW.........c.cccooiiriiiriiiiiiiiiiiinienieeceeesieenee e 226
Figure H.4. Registered Components WindOwcocccevueeriienieniinienienieeneenee st 227
Figure H.5. XML Configuration File for the Code Generator for ShipFd........................ 228
Figure H.6. Class Diagram of the Ship Federatecoccoiieiiiniiniiniiiiineeice 229
Figure H.7. Excerpts from the Generated Java Code of Ship Federate (Continue)............. 231

Figure H.8 A Sample SendInteraction RTI Ambassador Method in Federate Base Code
(SRIPEF) ..ttt ettt 232
Figure H.9 A sample RTI Ambassador Method (advice) in Computation Aspect
(SRIPEFAASPECE) ...ttt bbbttt ettt 233
Figure H.10. A LscRTILib Definition and a Sample Advice in Federation Execution Aspect
(BosporusFederationLLIDASPECL)c.c.ceiiirnmininiiicicicici et 235
Figure H.11. Adding a Computation to User Ship Name Selection Method in User’s

COMPULATION ASPECE. ...ttt ettt bbbttt sttt b bttt st bebebebenes 236
Figure H.12. Select Java Application Windowc.ccceceeviiiienieniinniennieeneeneeneceee e 237
Figure H.13. A View of the Ship Federate Running (pRTI snapshot)..........cceccereerucnnnne 237

XViil

LIST OF ABBREVIATIONS

ACM Association for Computing Machinery

ADT Abstract Data Type

ALT Alternative

AOP Aspect Oriented Programming

API Application Programmer’s Interface

ATM Automated Teller Machine

BMM Behavioral Metamodel

CENG Computer Engineering

DDM Data Distribution Management

DDSOS Dynamic Distributed Service-Oriented Simulation
DMSO Defense Modeling and Simulation Office

DSL Domain Specific Language

DSOCS Dynamic Service-Oriented Collaboration Simulation
EXC Exception

FAM Federation Architecture Model

FAMM Federation Architecture Metamodel

FDD FOM Document Data

FED Federation Execution Data

FedMonFd Federation Monitor Federate

FIFO First in First out

FOM Federation Object Model

FSMM Federation Structure Metamodel

GME Generic Modeling Environment

HOMM HLA Object Metamodel

HFMM HLA Federation Metamodel

HLA High Level Architecture

HMLib HLA Methods Library

HMSC High Level MSC

HSMM HLA Services Metamodel

IEEE Institute of Electrical and Electronic Engineers

ITU-T International Telecommunication Union

XiX

ISCIS
JDK
JSS
JVM
LOC
LSC
LscRTILib
MSC
MDA
MDE
MetaGME
MIC
METU
MOF
MOM
Mé&S
NSTMSS
OMG
OMT
OPT
OOAD
PAR
PIM
PSML-S
PSM
pRTI
RTI
RTILib
SDK
SEQ
SIW
SOA
SOM
SoSym
STMS
TSE

International Symposium on Computer and Information Sciences
Java Development Kit

Journal of Systems and Software
Java Virtual Machine

Lines of code

Live Sequence Chart

LSC RTI Library

Message Sequence Chart

Model Driven Architecture

Model Driven Engineering

GME Metamodel

Model Integrated Computing

Middle East Technical University
Meta Object Facility

Management Object Model

Modeling and Simulation

Naval Surface Tactical Maneuvering Simulation System
Object Modeling Group

Object Model Template

Option

Object Oriented Analysis and Design
Parallel

Platform Independent Model

Process Specification and Modeling Language for Services
Platform Specific Model

Pitch RTI

Runtime Infrastructure

RTI Library

Software Development Kit

Sequential

Simulation Interoperability Workshop
Service Oriented Architecture
Simulation Object Model

Software and System Modeling

Strait Traffic Monitoring Simulation

Transactions on Software Engineering

XX

UML Unified Modeling Language

UYMS Ulusal Yazilim Miihendisligi Sempozyumu
XML Extendible Markup Language

XMSF Extendible Modeling and Simulation Framework

XX1

CHAPTER1

INTRODUCTION

This chapter introduces the motivation and scope of the study, presents the context of the

generator and then outlines the organization of the thesis.

1.1. Motivation and Scope

We investigate the applicability of model-based code generation to HLA-compliant
federation development. This approach is promising in regards to rapid prototyping of
federation designs and semi-automated construction of federate applications. First and
foremost, this requires the availability of suitable models, behavioral models in particular.
One of the main objectives of modeling is to provide a representation appropriate to identify,
analyze and design the systems. The system representation must be clear-cut adequate to
support automated processing, specifically, generation of useful artifacts, such as the source
code. Modeling the observable behavior of a system is considered as an important part of the
system specification. In our preceding work [Topcu et al. 2007] we introduced a
comprehensive metamodel for the description of federation architectures. A salient feature of
the metamodel, FAMM (Federation Architecture Metamodel) adopts (Live Sequence Charts)
LSC:s to specify the communication behavior of federates.

The model of a particular federation architecture constitutes the input to the code
generation process. The output is obtained one member federate at a time: An HLA-
compliant federate application code that is capable of generating any sequence of
communications conforming to the specification, but that lacks the logic to carry out the
required computations. Thus, if it were to run as is, it would exhibit a randomized
communication pattern conforming to the specification as long as it did not rely on any
correctly computed value. To turn it into an appropriate application one would need to
provide the algorithms to compute the correct values. In this dissertation we introduce an
automated tool that carries out this automated code generation process.

Note that the generated federate application code is HLA-compliant in the sense that its
interaction with the RTI complies with the Federate Interface Specification and the

Federation Object Model. Further compliance of the federate, as a federation member, with

the HLA Rules can be guaranteed by the designer, who specifies the federate’s behavior
using FAMM (in particular, Behavioral Metamodel - BMM). The developer, who is
providing the computation logic, cannot break the federate’s compliance unless his
calculations disrupt the control flow within the federate.

The generated code consists of federate base code and computation aspect code, where
the latter is weaved onto the former. The federate base code handles the communication
between the federate and the RTI, and the computation aspect code allows the user to code
the federate’s algorithms for computation. To produce an intended federate application, the
developer should edit the computation aspect. By providing a simple computation logic (e.g.
line-of-sight calculation for radars) the user can obtain prototype federates, thus a prototype
federation. This should serve for the verification of the federation architecture. By providing
the sophisticated logic as required by the end product (e.g. finite element method

calculations for radars) the user can proceed with actual federate application development.

1.2. Context of the Generator

Adopting the Model Driven Engineering (MDE) approach, the system development process
can be viewed as a sequence of model transformations [Bezivin 2005]. From this point of
view, HLA-based distributed simulation development essentially involves the conceptual
model, the federation architecture model, the detailed design model, and the federation in
executable form, as illustrated in Figure 1.1. Each layer of models reflects a particular level
of abstraction. The conceptual model layer deals with the problem domain entities (for
example, a ship); federation architecture deals with concepts of HLA (for example, a ship
federate), and the detailed design model layer deals with software objects within federate
applications (for example, a component diagram for the ship’s hydrodynamic model
computations). Finally, we have the federation in some executable form, possibly in some
programming language (for example, implementation of the hydrodynamics as a software

unit within some federate).

Problem
Domain

I Real Life Entities - Simulation Objects - Software Objects >

Simulation
Domain

CONCEPTUAL i i DETAILED
MODEL DESIGN MODEL FEDERATION

FEDERATION i
ARCHITECTURE

MODEL Executable

Form

— Federate Computation
Federate Application Base | |4 cpect Coding (manual)

Code Generation (automated,

Figure 1.1 Development Methodology for HLLA-Based Distributed Simulations, adapted
from [Topgu et al. 2007]

“Federate Application Base Code Generation” step is completely automated by the
present work. “Federate Computation Aspect Coding” step of the process is to be completed
by the developer, based on the Detailed Design Model for each federate. The code generator,
without the benefit of a detailed design model for each federate, can only provide the
developer with a preliminary computation aspect, which he must edit to introduce code
based on the detailed design of the federate.

A federation developer can utilize our work in the following manner:

1. Model the federation architecture, including the behaviors of the new member

federates.
ii. Automatically generate code for each new member federate.
iii. Edit the computation aspect in the federate code.
iv. Automatically generate FOM Document Data (FDD).

v. Compile the new federates and run the federation.

1.3 Organization of the Thesis
The preceding sections of this chapter introduce the motivation and scope of the study and
present the context of the generator. The remaining chapters are broken down as follows:
e Chapter 2 provides related background information to understand the following
chapter.
e Chapter 3 explains how to generate code from a federation architecture model.
e Chapter 4 and Chapter 5 describe code generation from live sequence charts.

e Chapter 6 presents an extensive case-study for a real simulation application.
3

Chapter 7 outlines the conclusions reached as a result of this research as well as
presenting the way ahead.
Appendix A explains model patterns and their related codes in the code generation.

. Appendix B gives details of the intermediate form and its generation from input
model in the code generation process.
Appendix C describes the java code generation from the intermediate form in the
code generation process.
Appendix D presents an example to show how the code is generation from model to
code in the process.
Appendix E introduces LSC examples and their code equivalency from the literature
for every construct defined in the FAMM.
Appendix F and Appendix G explain how a domain-specific data model especially
HLA methods are integrated with LSC.
Appendix H is a user guide that describes how the generator is used for code

generation.

CHAPTER 11

BACKGROUND

In this chapter, background information from the related literature is summarized to help the
reader follow the developments in the subsequent chapters more easily. First, generative
software development terminology, which is the basis of automated software generation, is
discussed. Second, model-driven architecture and model-driven engineering concepts are
summarized. In the context of model-driven development, a code generator offers a special
kind of transformation from a platform specific model to source code. Third, High Level
Architecture which is the domain of our code generator is described. Fourth, Federation
Architecture Metamodel (FAMM), which is the metamodel on which our code generator is
based, is introduced. Fifth, Generic Modeling Environment tool by which metamodel and
input models are constructed is discussed. Sixth, aspect-oriented programming which is the
primary approach for the separation of communication behavior and computation concerns
of the generated code is outlined. Finally, elementary code generation terminology used in

the thesis is defined.

2.1. Generative Software Development

Generative software development [Czarnecki 2005] focuses on automating the creation of
software. A required piece of software can be automatically generated from a specification
written in some textual or graphical domain-specific language (DSL). A key concept in
generative software development is that of a mapping between problem space and solution
space, which is also referred to as a generative domain model. Problem space is a set of
domain-specific abstractions that can be used to specify the desired system. The solution
space, on the other hand, consists of implementation-oriented abstractions, which can be
instantiated to create implementations of the specifications expressed using the domain-
specific abstractions from the problem space. The mapping (see Figure 2.1) between these
two spaces takes a specification and yields the corresponding implementation. In our case,
the mapping is done from the federation architecture model to the federate application source

code.

Solution space
Problem space

. A implementation
domain—specific Mapping
abstractions

oriented
abstractions

Figure 2.1. Mapping between domain model and implementation-oriented abstractions

[Czarnecki 2005]

2.2. Code Generation
Code generation is the technique of writing and using programs that build application code.
Typically, it reads in the design, and then builds output code that implements the design. In

Figure 2.2, code generation is represented graphically.

— — — —

Templates |
—_ —

Code

ieneratar Code

Design

Figure 2.2. Code generation

Code generation, when it is accomplished properly, offers four benefits:
e (Quality: output code is as good as having written by hand. It can be standards-
compliant.
¢ Consistency: output code uses consistent class, method, and argument names.
e Productivity: it is faster to generate the code than to write it by hand.
e Abstraction: the design is specified in an abstract form, free of many implementation

details.

2.3. Model Driven Architecture (MDA) and Model Driven Engineering (MDE)
“The Model-Driven Architecture starts with the well-known and long established idea of
separating the specification of the operation of a system from the details of the way that
system uses the capabilities of its platform™ [Kleppe et al. 2003]. MDA provides an
approach for, and enables tools to be provided for:

e specifying a system independently of the platform that supports it,

¢ specifying platforms,

e choosing a particular platform for the system, and transforming the system

specification into one for a particular platform

The primary goals of MDA are portability, interoperability and reusability in the course of
architectural separation of concerns. The Model Driven Architecture (MDA) [OMG 2003] is
a framework for software development put forth by the Object Management Group (OMG).
The MDA development life cycle, which is shown in Figure 2.3 does not look very different
from the traditional life cycle in that the same phases are identified. A remarkable difference
is the artifacts that are created during the development process. The artifacts are formal
models that can be processed by the computers. The following three models are at the core of

the MDA.

x)
mostly text
LIDA PIM
process /
lowr-levwel-design
T P
Come
‘-H'_""‘"---). code
'""""‘---q.,, code
deployment

Figure 2.3. MDA software development life cycle [Kleppe et al. 2003]

Platform Independent Model (PIM): It is a model with a high level of abstraction so that
it is independent of any implementation technology. The base PIM expresses only business

functionality and behavior.

Platform Specific Model (PSM): A PSM is customized to specify a system in terms of
implementation constructs that are in one specific implementation technology. MDA
proposes that a PIM be transformed into one or more PSMs. It is clear that a PSM will only
seem sensible to a developer who has knowledge about the specific platform.

Code: The final step in the development is the transformation of each PSM to code.

MDA promises productivity, interoperability and maintainability improvements in the
software development lifecycle.

[Kent 2002] remarks that MDA focuses on architecture, on artifacts, on models. Although
MDA declares there might be a richer modeling space, it chooses to focus on just one
dimension, the transformation between platform independent and platform specific models.

The OMG MDA strategy imagines a world where models play a more direct role in
software production, being amenable to manipulation and transformation by machine. Model
Driven Engineering (MDE) is wider in scope than MDA. MDE combines process and
analysis with architecture.

[Schmidt 2006] states that MDE technology is a promising approach to address platform
complexity. Domain-specific modeling languages formalize the application structure,
behavior, and requirements within particular domains. DSMLs are described using
metamodels, which define the relationships among concepts in a domain and precisely
specify the key semantics and constraints associated with these domain concepts. Developers
use DSMLs to build applications using elements of the type system captured by metamodels
and express design intent declaratively rather than imperatively.

Generators and transformation engines analyze certain aspects of models and then
produce various types of artifacts, such as source code, simulation inputs, test cases or
alternative model representations. The ability to produce artifacts from models helps ensure
the consistency between application implementations and analysis information associated
with functional and quality requirements captured by models. This automated transformation
process is often referred to as “correct-by-construction,” in place of conventional
handcrafted “construct-by-correction” software development processes.

MDE tools force domain-specific constraints and perform model checking that can detect
and prevent many errors early in the life cycle. In addition, MDE tool generators need not be
as complicated since they can produce artifacts that map onto higher-level, often
standardized, middleware platform APIs and frameworks, rather than lower-level operating
system APIs. As a result, it is often much easier to develop, debug, and evolve MDE tools
and applications created with these tools.

An earlier manifestation of MDE is Model Integrated Computing (MIC), which relies on

metamodeling to define domain-specific modeling languages and model integrity

8

constraints. The domain-specific language is then used to automatically compose a domain-

specific model building environment [Ledezci et al 2001].

2.4 High Level Architecture (HLA)
HLA related background material in the section has been extracted from [IEEE 2000a-c,
IEEE 2003]. The HLA is common architecture to combine simulations (federates) into a
larger simulation (federation). It is based on the publish/subscribe paradigm. A federation
execution is a session of a federation executing together. A federation has a name, and
involves:
¢ supporting middleware called Runtime Infrastructure (RTI)
® acommon object model for the data exchanged between federates, called FOM
* member federates
A federate is a member of a federation, one point of attachment to the RTI. A federate
may correspond to one platform, such as a cockpit simulator, or a combined simulation, such
as an entire national air traffic flow simulation.
Federates and the RTI are software. The FOM is data created by the federation developer
typically by using a tool. The FOM states agreement on data among the participant federates.
The relationship between the software components is presented in Figure 2.4. Federates
are shown in the figure as either simulations, surrogates for live players, or tools for
distributed simulation such as data collector, passive viewer. A federate might consist of
several processes, perhaps running on several computers. A federate might model a single
entity, like a vehicle, or many entities, like all the vehicles in a city.
A federate might have other purposes other than modeling entities: It might be a data
collector or viewer, passively receiving data from other federates and generating none for the

others, or it might act as a surrogate for human participants in a simulation.

Live
Farticipants
Data Collectot! it lations Siteorlation
Pasgive Viewer Surrogate

Interface

Funtime Infrastructure

Figure 2.4. Software Components in the HLA [IEEE 2000a]

The HLA is foremost a software architecture, rather than a particular implementation of
an infrastructure or tools designed to work with it. The HLA standard supports a variety of
implementations. Therefore, it is defined not by software, but by a set of documents. The
HLA standard has three parts:

® Object Model Template (OMT)
e HLA Rules
e Interface Specification

For the moment, there are two parallel efforts in progress to follow the adoption of the
HLA by standards bodies. One standards adoption effort is through the Object Management
Group (OMG), which has adopted version 1.3 of the HLA interface specification as “Facility
for Distributed Simulation Systems (FDSS)”. The other standards adoption effort is through
the IEEE, of whose standards are HLA Framework and Rules [IEEE 2000a], Federate
Interface Specification [IEEE 2000b], and OMT [IEEE 2000c].

The Object Model Template (OMT)

The OMT advises the structure of all Federation Object Models (FOMs). The FOM is the
vocabulary of data exchanged through the RTI for an execution of the federation. Hence, the
FOM does not describe data internal to a single federate, only data that are shared with other
federates. The main components of the OMT are: interaction classes, and Object classes.

An interaction is a collection of data sent by a federate at one time through the RTI to
other federates. An interaction may represent an occurrence or event in the simulation model
of interest to more than one federate. An interaction may be defined to occur at a point in
simulation time. A federate sends an interaction; other (interested) federates receive the
interaction. The interaction is transitory in that it has no continued existence after it has been
received. Each interaction carries with it a series of named data called parameters.

Objects in the RTI refer to simulated entities that are of interest to more than one federate.
They persist or endure for some interval of simulated time.

The OMT defines classes’ objects. Each class has a name, and defines a set of named data
called attributes. Federates create instances of these classes, and change the state of an object
instance in simulation time by supplying new values for its attributes. Federates talk with the
RTI, and hence indirectly with each other, in terms of interactions and objects. Each federate
must make some conversion from its internal representation of simulated entities to HLA
objects as specified in the FOM. If the federate is HLA-compliant, the translation may be
very straightforward; otherwise it may be more complicated. The FOM represents the

common, agreed vocabulary between members of a federation.

10

HLA Rules
The HLA rules express design goals and constraints on HLA-compliant federates and

federations. The first five rules deal with federations, the latter five with federates.

The Management Object Model (MOM)

HLA federations are typically distributed systems. Federates often run on many computers.
Thus federations are subject to the usual difficulties associated with distributed systems. The
RTT offers facilities to maintain and manage a shared view of federation as a distributed
system. Management data can be described and distributed just like simulation data. It allows
the RTI to describe and manage the state of a federation.

The RTI itself creates the instances and updates attribute values associated with the
MOM. System management can be accomplished through the use of federates designed for
the purpose. Because the MOM is the same in all federations (since it is RTI managed),
management federates can be reused.

The MOM also defines a set of interactions that can be used to affect the state of other
federates. The RTI is required to respond correctly to MOM interactions. These interactions

are used to regulate federation operation, request information, and report on federate activity.

The HLA Services

HLA services fall into six groups that are defined by the commonality of interest.

(i) Federation Management

Federation services manage a federation in to ways:
e By defining a federation execution in terms of existence and membership
¢ By accomplishing federation-wide operations.

To define a federation, there are services to create a federation execution and to allow a
federate to join the execution or resign from it. Every federate must join a federation
execution.

Federation-wide operations include the coordination of federation saves and restores.
There are also services to allow a federation to define and meet a federation-wide

synchronization point.

(ii) Declaration Management
The declaration management services are the way for federates to declare their intent to
produce (publish) or consume (subscribe to) data. The RTI uses these declarations for

routing data, transforming data, and interest management. On the subject of routing, the RTI

11

uses subscriptions to decide what federates should be informed of the creation or update of
entities. Received data go through reduction and re-labeling in accordance with the
federate’s subscriptions before being delivered. Finally, the RTI uses declarations to indicate
interest to publishing federates. The RTI can tell a federate whether any other federate is
subscribed to data it intends to produce, so that it can stop producing when no other federate

needs the information.

(ii1) Object Management

Object management services are used for the actual exchange of data. A federate uses
services from this group to send and receive interactions. These services are also used to
register new instances of an object class and to update its attributes. Other federates will
have services from this group invoked on them to receive interactions, discover new
instances, and receive updates of instance attributes. Other services of this group are used to
control how data are transported, to ask for new updates of attribute values, and to inform a

federate whether it should expect data.

(iv) Ownership Management
The ownership management services in the RTI implement the HLA’s notion of
responsibility for simulating an entity. The RTI ensures that at most one federate at a time
owns a given instance attribute. Responsibility for simulating an entity can be shared
between federates in two ways.

¢ First the complete modeling of an entity may be shared among federates.

e Second, the modeling of entities may pass from one federate to another in the course

of a federation execution.

Ownership management can be ignored if a federation does not need it.

(v) Time Management
While federates executing in their own threads of control, the proper ordering of events
between federates is an important problem to be solved. In HLA, ordering of events is
expressed in “logical time”. Logical time is an abstract concept; it is not necessarily fixed to
any representation or unit of time. The RTI’s time management services do two things:

e They allow each federate to advance its logical time in coordination with other

federates.
e They control the delivery of time-stamped events so the federate need never receive

events from other federates in its past.

12

(vi) Data Distribution Management

Data distribution management (DDM) services control the producer-consumer relationships
among federates. Whereas the declaration management services manage those relationships
in terms of interaction and object classes, DDM manages in terms of instances and abstract

routing spaces.

(vii) Support Services
Support services utilized by joined federates for performing name-to-handle and handle-to-
name transformation, setting advisory switches, manipulating regions and RTI start-

up/shutdown.

2.5. Federation Architecture Metamodel (FAMM)
FAMM is a proposed metamodel for specifying the architecture of an HLA-compliant
federation [Topcu et al 2007]. FAMM formalizes the standard Object Model and Federate
Interface Specification. Beyond formalizing the existing HLA standard, FAMM allows the
behavioral description of federates based on LSCs. Having the behavioral models of the
participating federates gives us the ability to test the federation architecture by executing the
federation.

Federation Architecture is a major portion of the federation design documentation in
HLA based distributed simulations. Federation design includes the activities for:

e Forming HLA Object Model (federation and simulation object models):

e Specifying the behaviors of participating federates so that they can fulfill their

responsibilities within the federation

The Federation Architecture Model (FAM) for a particular federation conforms to
FAMM. It involves the Federation Model (Federation Structure, Federation Object Model
and related HLA Services) and the Behavior Models for each participating federate.

FAMM (Figure 2.5) involves two main sub-metamodels: One for specifying the
observable behaviors, and the other for defining the HLA FOM and the HLA service

interface.

13

HLA& Federation Metamodel (HF MM

hetamodel
(FShihf)

ORAT Core
: hletamod el
— HLA Services B
Mets model Object hiodel
[HS hihd)

Federaﬁonﬁtrumrj (HLA Cbject Metamodel (HOMM) |

Federation
Architecture

tletam odel Metamo del

(F AN

i

o Tfetamoidel

Behavioral Metamodel (Biik)

B buhudes Relation
(LSC Metamadel (M) |

Library
MELC hdetamodel
(hodhil by Logical Model

Figure 2.5. Federation Architecture Metamodel Structure ([Topcu et al. 2007])

%,

Figure 2.6 depicts the relationship between FAMM and Federation Architecture. Each
participating federate’s behavior is modeled using the behavioral metamodel while the FOM

1s described by using the HLA Object Metamodel.

HLA Federation
Architecture

HOMM + FSM BhM + HSMM

In GME Metamodel
A I {FAMM)
Conforms to Conforms to
Federation
Federation Object Mode| " n ¥ Federate Live Architecture
(FOM) Saquence Charts (LSC) Model
{FAM)

Figure 2.6. Relationship between a Federation Architecture Model and the Metamodel

[Topcu et al. 2007]

HLA Object Metamodel (HOMM) is a formalization of HLA Object Model Template
(OMT) [IEEE 2000c]. OMT Core folder includes the table contents specified in HLA OMT.
Federation Structure Metamodel (FSMM) represents the structural aspect of the
federation. This metamodel allows the developer to define a federation and its participating
federate applications, and to readily connect them to their respective FOM and SOMs. In this

sub-metamodel, the participating federate applications are emphasized and their

14

corresponding SOM’s can be specified in addition to the FOM. The FOM and SOMs that are
referred by FSMM are prepared with HOMM.

The HLA Services Metamodel (HSMM) defines the interface of the standard services of
Runtime Infrastructure (RTI). These management services provide a functional interface
between federates and the RTI. These interfaces arranged into seven basic groups are as
follows: Federation management, declaration management, object management, ownership
management, time management, data distribution management, and support services [IEEE
2000b].

Behavioral Metamodel (BMM) provides an abstract syntax for specifying the dynamic
and the observable behaviors of a federate. Modeling the behavior of a federate can involve
not only the HLA-specific behavior such as creating regions, but also the interactions
between the components of the federate and the live entities (e.g., the user) in the
environment. The observable behaviors of a federate are represented using Message
Sequence Charts (MSCs) and Live Sequence Charts (LSCs) in the metamodel.

LSC is a graphical language introduced by David Harel and his colleagues [Harel 2001,
Damm and Harel 2001, Brill et al. 2004], as an extension of MSC, for specifying the patterns
of interactions between components in a concurrent system. MSCs are widely used in the
specification of telecommunication systems. The MSC language is standardized by ITU
[ITU-T 1998], the most recent standard being Recommendation Z.120 [ITU-T 2004]. Many
features of MSCs are adopted in the UML sequence diagrams. LSC extends MSC by
providing notations for distinguishing mandatory and optional behavior and by promoting
conditions to first class elements.

LSC metamodel, defines basic LSC concerns such as instance, event, message, parallel,
alternative, loop and interconnection between these concerns in the meta-level. These
concerns are matched to the first class objects such as folder, atom, model, reference,
connection which are defined in the Generic Modeling Environment (GME).

LSC instances can represent federation executions, federates (possibly, with their
constituent modules), live entities such as interactive users and environments. An LSC
document which includes one or more LSC diagrams represents a federate’s behavior.
Federate application code is generated for the given LSC document. A federate may have
some constituent modules whose behavior we might prefer to model explicitly. Each such
module is represented by an instance in the LSC model, and code is generated specifically

for it.

2.6. Generic Modeling Environment (GME)
GME serves as a metamodel development environment as well as a customized model

building environment once the developed and registered metamodel is invoked. In other
15

words, GME is a configurable toolkit for creating domain-specific modeling and program
synthesis (code generation) environments. It puts the MIC [Ledezci et al 2001] vision into
practice. The configuration is achieved through metamodels specifying the modeling
language of the application domain. The modeling language contains the syntactic, semantic,
and presentation information of the domain. The modeling language defines the family of
models that can be created using the resultant modeling environment. The metamodels
specifying the modeling language are used to automatically generate the target modeling
environment. The generated environment is then used to build domain models. These models
can be input to all kinds of model-driven processing, including model transformation and
code generation. This kind of process is called model interpretation in GME parlance. There
is a metamodeling language, called MetaGME, which configures GME for creating
metamodels, called paradigms in GME jargon. These models are then automatically
translated into GME configuration information through model interpretation. [GME 2006]

MetaGME meta-metamodel plays the similar role as Meta Object Facility (MOF). MOF
is a sister-standard of UML and is maintained by the same standards-publishing body, the
Object Management Group (OMG). A metamodel which is an instance of MOF formally
specifies the abstract syntax of the set of modeling constructs which constitute a modeling
language. In the MOF support context, carries out some research on the direct transformation
from MetaGME to MOF [Emerson 2005].

In the code generation, GME BON?2 application interface (API) is used. This API enables
the developer to walk on the input model. API supports both C++ and Java programming

languages. We use Eclipse development environment [Eclipse 2007] for the programming.

2.7. Aspect-oriented Programming (AOP)
AOP [Kiczales et al. 1997] supports modularity of cross-cutting concerns in existing
languages, particularly object-oriented programming languages. Some concerns do not align
well with existing module boundaries; these are called “cross-cutting concerns”. Well
known examples of cross cutting concerns are: error checking/handling, synchronization,
performance optimization, monitoring/logging, and debugging support [Elrad et al. 2001].
Aspect] [Aspect] 2007] is an extension of Java that allows modular separation of
concerns. Here are some key concepts of AOP couched in Aspect] terms: Aspects are special
Java classes that serve as modules to encapsulate concerns in source code. They behave
somewhat like Java classes, but may also include pointcuts, advice and inter-type
declarations.
A joinpoint is a well-defined point in the program (base code) such as a method

declaration, a method call, and an assignment statement.

16

A pointcut is a set of joinpoints. There is a syntactical mechanism for specifying pointcuts.
For example, a pointcut can be specified with a regular expression, and the method
declarations with matching method names will be picked as the joinpoints.

Advice is Aspect)’s mechanism for affecting the behavior at joinpoints. An advice definition
comprises a block of code, a pointcut and a specification of whether the block should run
before, after or in place of occurrences of the joinpoints in the pointcut when they occur.
These options are indicated by the keywords before, after, and around, respectively.

A key idea in our work is to handle computation as an aspect to be weaved onto the base
code that handles communication and data model access. A problem with the AOP is that
when base code is changed, aspects may become useless. This does not concern our work
because the code generator generates both pointcuts and joinpoints. Thus their matching is

guaranteed by the code generator.

17

CHAPTER 111

CODE GENERATION FROM A FEDERATION ARCHITECTURE MODEL

This chapter presents the proposed code generation process from the federate or federation
developer’s point of view. First, we introduce a simple federation to be used as a running
example throughout the chapter. Then overview of the code generator and generated code
structure is explained. Incorporating HLA related information into code is discussed. How
the generated code runs is expressed. After that code generation process from model to code
is explained in the running example. Finally, discussion of the example and related works are

mentioned.

3.1. Running Example: Strait Traffic Monitoring Simulation

In this section we introduce Strait Traffic Monitoring Simulation (STMS), which will serve
as our running example. Later sections will introduce code generation in detail, accompanied
by this example.

A traffic monitoring station tracks the ships passing through the strait. Any ship entering
the strait announces her name and then periodically reports her position to the station and to
the other ships in the strait using the radio channels. Channel-1 is used for ship-to-ship and
channel-2 is used for ship-to-shore communication. The traffic monitoring station tracks
ships and ships track each other through these communication channels. All radio messages
are time-stamped to preserve the transmission order.

The traffic monitoring station and the ships are represented with two types of
applications: a station application and a ship application, respectively. The ship application is
an interactive federate allowing the player to pick up a unique ship name, a direction
(eastward or westward), and a constant speed by means of a textual interface. When a ship
application joins the federation, this corresponds to entering the strait. When it resigns from
the federation, this corresponds to leaving the strait. The station application is a monitoring
federate, which merely displays the ships (in the strait) and their positions. The federation
has a time management policy where each ship application is both time regulating and time
constrained and station application is only time constrained. Clearly, the essence of this

simple federation is an example of a set of objects tracking each other making it a common

18

scenario/interaction for most distributed simulations. The conceptual view of the STMS is

illustrated in Figure 3.1.

Ship
Federate |

Traffic Monitoring Station (TMS) Federate

Figure 3.1. Strait Traffic Monitoring Simulation Conceptual View

[Topcu et al. 2007]

19

Isc ShipFd_behavior MainChart

BosporusFederation:

user ShipFd Federation Execution

CreateFederationExecution(“BosporusFederation”,"Strait Traffic.xml”)

JoinFederationExecution(“ShipFd”, “BosporusFederation”)

(Reference: Initialize TimeManagement

Reference: DeclareCapability

(Reference: CreateRegions

Par [Redeat-Until (Name Selection)
Input ship’s name ReserveObjectinstanceName(ShipName)
ObjectinstanceNameReserved()

< NameAccepted

=}

Input ship’s directio
Input ship’s speed RegisterObjectinstance(Ship)
UpdateAttributeValues(Ship, Name)

vd RequestAttributeValueUpdate(Ship, Name)

—)XStart MessageTimer

A 4

A 4

peaiyl ulep

While-dolgl\llain Simulation Loop)
<.

I

(Reference: SendRadioMessage

ExitCondition) f

TimeAdvanceRequest(Logical Time)

\4

TimeAdvanceGrant(LogicalTime)

(Reference: ExitFederation

While-do|(Callbacks)

A
\,

——

ExitCondition I»

Reference: DiscoverObjects)

Reference: ProvideAttributeValues

Receivelnteraction(RadioMessage)
e e
ReflectAttributeValues()

peaIyL Peqied

EemveObjectlnstance()

\J
\!
e

Figure 3.2. Behavior Model for the Ship Federate in LSC Graphical Notation [Topcu et al.
2007]

Focusing on the ship federate in STMS, we identify three LSC instances, representing the
behaviors of the federate, the user, the ship federate called ShipFd, and the federation

20

execution called BosporusFederation. The behavior model of the ship federate is presented
in Figure 3.2 in LSC graphical notation.

Figure 3.2 depicts a pre-chart, which consists of two parts: the pre-part (diamond shaped),
attached to the body-part (rectangle shaped). The events in the body-part depend on the
completion of the event occurrences in the pre-part. Thus, unless federation creation, time
management initialization, declaration capability and regions creation complete successfully,
the federate must not progress. Time management initialization, declaration capability and
regions creation methods are modeled in the separate charts for reasons of modularity, thus,
references to them are included in the pre-chart.

There is a parallel inline expression in the body-part, marked by ‘“Par” indicator, and
drawn as a rectangular shape that is divided by horizontal dashed lines to identify its
operands. The operands run in parallel. (This is handled by a separate thread implementation
for each operand.) In the example, there are two operands, handling of federate simulation
loop called “main thread” and handling of call-back events which may arrive any time,
called “callback thread”. There are repeat-until (do-while) and while-do constructs in the
first operand, and a while-do in the second operand. Ship name is selected (reserve object
instance name) in the repeat-until construct and then radio messages (interactions) are sent to
the BosporusFederation execution in the while-do. When the federate execution ends,
ExitFederation condition is set to true in the first operand.

A repeat-until construct is marked by a “Repeat-Until” indicator and drawn as a
rectangular shape. At the bottom of the rectangle is a dashed-diamond shape that denotes the
loop condition. The loop is repeated until the condition is satisfied, in our case, until the
unique ship name is selected by the interactive user.

A while-do construct is marked by a “While-Do” indicator and drawn as a rectangular
shape. The loop condition is located at the top portion of the rectangle indicating that the
loop is to be repeated as long as the condition is satisfied. In this example, the loop is
repeated while the ExitCondition is not true. (ExitCondition is set when the federate resigns).

In the second operand of the parallel construct, call-back events are received in arbitrary
order from the federation execution in the while-do. This loop is repeated until the federate is
resigned from the federation. Unordered receiving of callbacks is specified by a coregion,
which is indicated by a vertical dashed line parallel to the location. There are two references
in the while-do construct (DiscoverObjects reference and ProvideAttributeValues). LSC
cold messages are indicated by horizontal dashed arrows, and hot ones by solid arrows. Cold
messages are not guaranteed to arrive. For this reason, all the events coming from the

federation execution have cold designation.

21

In the context of the example, some LSC concerns are discussed. Except for them,
complete LSC structures and their semantic meanings are reached from [Harel 2001, Damm

and Harel 2001, Brill et al. 2004].

3.2. Federation Application Code generation from FAM
In this section we introduce our code generator from the viewpoint of a federate application
developer. We address the more technical behavioral model oriented issues (LSC) in Chapter

4 and Chapter 5.

3.2.1. Overview of the Code Generator
The input FAM includes the behavioral models of the participating federates as well as the
FOM they have in common. The behavioral model of a federate is presented as a single LSC
document consisting of one or more LSC diagrams.
Here are some highlights of the features of the code generator:

e All RTI interface specification methods in the standard

e All MSC/LSC features with few exceptions such as synchronous messages
Following the classical schema, there are two sequentially connected modules forming our
generator, namely, Intermediate Form Generation Module (the front end) and Java Code
Generation Module (the back end). Figure 3.3 shows the overall data flow diagram of the
generator. The Intermediate Form Generation module walks on the source FAM model,
using the model interpreter API of GME, and constructs the intermediate form that holds the
model in a convenient internal form. Then the Java Code Generation module walks on the
intermediate form and produces the diagram class, the federate class, the computation aspect,
and the federation execution aspect. The produced codes are fed into the Aspect] compiler.
Further details about front end and back end modules are presented in Appendix B and
Appendix C respectively. An example which follows this code generation process is also
presented in Appendix D. In this appendix, the example’s concrete model, GME-model,

intermediate form, and code are illustrated.

22

Federation "I#era.l'ﬂspecﬂ /
Architecture Codez for a
Model Federaie /
F

Intermediate Form Inie diate Java Code
Ceneration Module o Ceneration Module
{Front End) y {Back End)

Figure 3.3. Code Generator Data Flow Diagram

The current version of our code generator generates Java and Aspect] codes. However,
only the Java Code Generation Module needs to be re-implemented if another target

language is desired.

3.2.2. Structure of the Generated Code
One LSC Document is assumed per federate application. For each LSC Diagram in the
document a diagram class is generated. An instance class is generated for each LSC instance
in the diagram. In case an LSC instance occurs in multiple diagrams an LSC instance class is
generated for each occurrence. Code for each LSC instance in a diagram is started by the
diagram class, and runs in its own thread.

In an LSC instance, in regards to federate — federation execution communication, an RTI
Ambassador Method call is generated for every LSC message-out event, and similarly, a
Federate Ambassador call-back for every LSC message-in event. An LSC Instance Aspect
class (i.e. a computation aspect) code is generated for every LSC instance to handle the
standard RTI Ambassador methods and Federate Ambassador call-back methods, and the
LSC-specific auxiliary methods for the preliminary computation. The latter essentially help
resolve, in a randomized fashion, the nondeterminism inherent in an LSC specification. For
example, auxiliary methods randomly determine loop counts (within bounds), choice of
alternatives, order of sending events in a coregion, etc.

A dictionary structure guides nondeterministic choices regarding conditions and
temperatures. Specifically, it holds

a) conditions (whose names are keys) and whether they are satisfied or not (which are

associated values),

b) LSC model elements (whose names are keys) and their temperatures (which are

associated values).
23

The dictionary is defined in the computation aspect. The developer can edit it so that the
choices (i.e. values associated with keys) are determined according to the simulation logic
(rather than randomly).

Declarations of both RTI methods and auxiliary methods in LSC instance code (federate
base code) constitute the join points targeted by the LSC instance aspect (computation
aspect). For every join point in the federate’s base code an advice code is generated in the
computation aspect code. The developer can change the preliminary computation by editing
advices associated with the pointcuts, and then weave the edited aspect onto the base code,
which requires the use of Aspect] [Aspect] 2007] compiler. In AOP terminology, this is
called production aspect usage. This is the only place where the developer’s intervention is
needed to produce a properly functioning federate. In other words, only the LSC instance
aspect can be edited by the developer; all other generated codes are read-only. Well-known
examples of cross-cutting concerns are non-functional, e.g. logging, authentication, etc. In
our use of AOP, however, we take a functional concern (addressed by the computation
aspect) as a cross-cutting concern.

All argument information of FAM events (Ambassador Methods) that flow between
instances (federates, federation execution) are carried by LSCObjects. For example, object
classes, interaction classes and their attribute and parameter information are all held by this
data structure.

LscRTILib library essentially serves as an RTI interface layer. This library takes an
LSCObject, unpacks it into the actual RTI method parameters, and calls the actual RTI
method. In other words, generated federate codes and LscRTILib communicate with each
other over LSCObject. Thus, the generated federate application code is independent of the
vendor specific implementation of the RTI APIL This library is in fact an adapter, in the
sense of a design pattern, between federate code and the specific RTI, such as Pitch pRTI
1516 [Pitch RTI 2007]. Note that LscRTILib does not attempt to redefine the programming
model offered by the RTI or simplify its programming interface.

A Federation Execution Aspect class is generated for each federation execution in which
this federate can participate. This aspect code catches the Federate Ambassador call-back
methods of the RTI by using LscRTILib library and forwards them to the generated federate
base code. Handling of call-backs is discussed in section 3.2.4.2.

In Figure 3.4, the static structure of the generated federate code is presented as a class

diagram.

24

<<override computation=>=>

LSC Diagram | ... oo [LSC Instance L5C Instance Aspect
| Y
==
| | <« forward callback ==

<< RTI Amthassador method call >> = e— = _|
|

Faderation Execution Aspect

I
<= catch call-hack =>
I

b
LscRTILib

|
|
|
|
|
l

>

I
<< handle actual RTI =

\I/

wulility s
RTI

Figure 3.4. Structure of the Generated Federate Application

Let us now revisit the generated code in AOP terms referring to Figure 3.4. LSC Diagram
and LSC Instance codes constitute the federate base code, which brings about the federate’s
communication behavior as specified by the BMM of FAM (see Figure 2.4). Each LSC
Instance Aspect, which implements the preliminary computation, is weaved onto the related
LSC Instance. Separately, Federation Execution Aspect, generated per federation execution,
is weaved onto LscRTILib library. Aspect weaving is carried out by the Aspect] compiler
[Aspect] 2007], which produces the “weaved intermediate Java byte code”, which is then run

on the Java Virtual Machine [JVM 2007].

3.2.3. Incorporating HLA Object Model and Services into Code
In this subsection we discuss how HLA Object Model (FOM or SOM) and Federate
Interface Specification (RTI methods along with their parameters, called in the federate base
code) are reflected to the generated code. At the metamodel level these issues are represented
in HFMM (see Figure 2.4).

Information to weave is obtained from the input FAM. For example, in order to create a
federation, the federation name and the path for the FDD file are required. These are
obtained from the FAM (specifically, from HSMM) and then they are included in the

computation aspect. (See CreateFederationExecution method’s advice in Figure 3.5a) Then,
25

it is weaved onto the federate’s base code, specifically, it replaces the body of
CreateFederationExecution method, a joinpoint shown in Figure 3.5b. Thus,

CreateFederationExecution method will be called with appropriate parameters.

pointcut pcSendCreateFederationExecutionCFEBosporusFederation(...)//pointcut definition
{//advice block begin
FederationName="BosporusFederation";// from FAM
FedFile="c:\\eclipse-SDK-3.0.1-
win32\\eclipse\\workspace\\FedCodeGen1516\\StraitTraffic.xml";// from FAM
(...) \\proceed and return

}H/advice block end

Figure 3.5 a. CreateFederationExecution Method (advice) in

Computation Aspect Code

Public static boolean SendCreateFederationExecutionCFEBosporusFederation(String
FederationName,String FedFile)

//corresponding joinpoint

{

/* dummy code */ // It is overridden by the (Figure 3.5a) computation aspect

Figure 3.5 b. CreateFederationExecution Method (join point) in

Federate Base Code.

In Table 3.1, the retrieved information and its source in the FAM is described with
respect to the RTI Interface Specification service areas. The information retrieved from FAM
by the code generator front end is then placed in the preliminary computation aspect by the
back end (see Figure 3.3). In general, RTI methods along with their parameters information

are retrieved from HSMM in the following service areas.

26

Table 3-1. Information Retrieved from FAM and Placed in the Generated Code

Service Area Information Source in
FAMM
Federation federation name, federate name and related FSMM and
Management federation execution instance name, Synchronization | HSMM
points
Declaration interaction and object classes HOMM and
Management HSMM
Object interaction and object classes, dynamic object HOMM and
Management instances HSMM
Ownership Object classes HOMM and
Management HSMM
Data Distribution Dimensions, dynamic regions, HOMM and
Management HSMM
Time Management | Timestamps, lookaheads and receive/timestamp HOMM and
orders HSMM
Support Service Evoke time periods HSMM

3.2.4. How a Generated Federate Runs

In Figure 3.6a and 3.6b, collaboration diagrams of the generated federate is illustrated.
Figure 3.6a shows how an RTI Ambassador method is called. First, the RTI Ambassador
Method declared in LscRTILib is called by the federate (i.e. the LSC Instance class). At this
time, LSC Instance Aspect interferes and catches the RTI method (in LSC Instance class)
calls. Then it overrides the arguments of the method. After that, RTI Ambassador Method
call proceeds to LscRTILib. Finally, LscRTILib calls the actual RTI Ambassador Method

with the actual arguments. This RTI method calling process is exemplified in section 3.2.4.1

In Figure 3.6b, how a call-back is received from RTI is sketched. First, LscRTILib

receives the call-back from RTI and calls its own method (with the same name) which has a

single LSCObject type argument. This method call is caught by federation execution aspect,

which then forwards this call to federate’s LSC instance. Thus, the call-back reaches the

27

federate. Finally, LSC Instance aspect also catches the forwarded call-back and presents it

for overriding. This handling process is exemplified in section 3.2.4.2

1 catch RTI method

LSCInstance:I — LSCInstanceAspect:
Class || — Aspect

2 override RTI method

l 3 call RTI method

LscRTILib:
Class

\Lfl call actual RT| method

RTL
Utiliy

Figure 3.6 a. Collaboration Diagram of Calling RTT Ambassador

Method in the Generated Federate

ETI
Litiliy
l 1 call-back
2 catch call-back
E;EI h > Faderation Exec. Aspect
Class Aspect
J/ 3 forward call-back
4 catch call-back and override
LSCInstance: — LSCInstancelspect:
Class Aspect

Figure 3.6 b. Collaboration Diagram of Handling Federate Ambassador
Call-back in the Generated Federate

28

3.2.4.1. Handling the RTI Methods

In the federate’s RTI Ambassador Method call, related LscRTILib
(BosporusFederationRTILib) method is called (cf. Figure 3.6a, action 3) with the LSCObject
argument. Example code is presented in Figure 3.13a.

This RTI method (in LSCinstance class) is caught (cf. Figure 3.6a, action 1) by LSC
Instance Aspect and the arguments of the call can be overridden (cf. Figure 3.6a, action 2).
In our example in Figure 3.14a, the values assigned to the message and CallSign interaction
class parameters in the base code are to be overridden. The overriding code is shown in italic
form in the figure. In the corresponding LscRTILib method, actual RTT Ambassador Method
is called (cf. Figure 3.6a, action 4) with the particular RTI (Pitch RTT in our case) specific

arguments (Figure 3.7).

public void sendInteractionWithRegion (LSCLib.LSCObject procUpdate)

{
(...)//procUpdate is adapted to the vendor specific RTI method parameters
mRtiAmb.sendInteractionWithRegions(proc.iHandle,phvpset,rSet,null,lt);
/factual RTI method

(...)//method exception and other code details

Figure 3.7. RTI Ambassador Method in the LscRtiLib

3.2.4.2. Handling the Call-back Methods
When a Federate Ambassador call-back event occurs, related LscRTILib method (same
named) is called (cf. Figure 3.6b, action 1). Example code is presented in Figure 3.8a.

In the method of LscRTILib, arguments of method are packed into our common data
structure, namely LSCObject. Then, the same named method in the library that has an

LSCObject argument is called. Example code is presented in Figure 3.8b.

29

public final void receivelnteraction (...)//parameter definitions

{

ambLib.receivelnteraction(iClassHandle,phvpset, sendOrder,tType,lt, recvOrder, mrh);

//LscRTILib method is called when the events come

}

Figure 3.8. a Federate Ambassador Call-back Method in the
RTIFederateAmbassador

public void receivelnteraction(...)//parameter definitions

{
(...)//proc is declared and callback method parameters are packed into it.
receivelnteraction(proc);//same named method is called with the LSCObject as argument
(...)//return code

}

public void receivelnteraction(LSCLib.LSCObject proc)//same named callback method

{ }//this method is caught by federate execution aspect since it is a joinpoint for it.

Figure 3.8. b. Federate Ambassador Call-back Method in the LscRtiLib

When this calling is done, federation execution aspect (Example advice code is shown in
Figure 3.9a.) catches this method call (cf. Figure 3.6b, action 2) and forwards (cf. Figure
3.6b, action 3) it to the corresponding method in the federate base code. Example federate

Ambassador call-back code is presented in Figure 3.9b.

30

pointcut Receivelnteraction(...) //pointcut definition

{

ShipFd.Receivelnteraction(proc);//calling the same named method in base code

Figure 3.9. a. Federate Ambassador Call-back Method (advice) in the

Federation Execution Aspect

public static void Receivelnteraction(LSCLib.LSCObject proc)
{
if (proc.name.compareTo("RadioMessage")==0)
//received interaction is compared with the interaction class names of the federate
{
/lreceive the interaction:

RecvReceivelnteractionRadioMessageBosporusFederation(proc);

Figure 3.9. b. Federate Ambassador Call-back Method in Federate Base
Code

And finally code to receive interaction is introduced (cf. Figure 3.6b, action 4) to the
developer (Figure 3.14b).

3.3. More On The Code Generator

3.3.1. Participating in Multiple Federations
A federate may be a member of more than one federation at the same time. For each joined
federation a federation execution aspect is generated. An LscRTILib is declared and
instantiated for accessing the actual RTI in a federation execution aspect code.

For example, if we have two federation executions, we have two different aspects, in
which an LscRTILib library is declared (ShipFd.BosporusFederationRTILib). Example

library declaration is presented in Figure 3.15 and its usage is presented in Figure 3.13a.

3.3.2. Retargeting another RTI

Developers use different RTIs offered by various vendors. Although the current RTIs must
conform to the IEEE 1516 standard, their APIs exhibit minor differences (e.g. variations to
the HLA standard data types) among the vendors. The code generator can target vendor

specific RTIs by customizing the LscRTILib library, which serves an RTI adapter layer.
31

In cases of methods and data types outside IEEE 1516, modifications to the HSMM will
be necessary. In fact a vendor-specific version of HSMM can be constructed. Consider a
vendor-specific method, say Mnew, not mentioned in the standard. Definition of Mnrew must
be introduced to HSMM, and LscRtiLib must be extended with the mapping from Mnew

method definition in HSMM to constituents of a Mnew method call.

3.3.3. Code Clarity

The readability of the generated code is crucial as the application developers deal with it
directly. Therefore, care is taken to generate understandable codes that closely reflect the
model structure and to separate and hide those parts that are not subject to aspect weaving.
Code generation follows the coding standard CamelCase. Moreover, user-supplied

comments on the input model are carried to the code to ease the task of navigating the code.

3.3.4. Support for Model-Code Traceability

Developer can attach comments to model elements; the comments are carried over to the
generated code in the code generation. Therefore traceability is provided according to the
comments. Comment support also gives us more readable and qualified codes.

Model element names are used as the keys for the dictionaries (implemented as a
hashtable). For example, in the implementation of an alternative inline expression,
alternative choice value is hold in the dictionary where alternative inline expression model
element name is a key. In addition, some model element names are used directly as variable
names in the generated code. These types of usages give us a capability to establish a

traceability between model and code.

3.3.5. Availability of the Generator
The presented code generator is under GNU Public License, and detailed documentation can
be obtained from “http://www.ceng.metu.edu.tr/~e73883.

Our generator source code is almost 15.000 lines of code (LOC). It is developed in
Eclipse 3.3 environment with Java programming language [Eclipse 2007]. It is packaged as a
GME model interpreter.

Generated codes are Java and AspectJ, and can be compiled and run in Eclipse. Eclipse
Aspect] plug-in [Aspect] 2007] is used for compiling Aspect] codes. The generator
currently supports Pitch RTI (certified for IEEE-1516).

3.4. Code Generation Example
We now return to our example STMS federation to walk through the code generation

process.

32

3.4.1. Steps in Using the Code Generator:

Step i: Constructing the FAM
The STMS FAM is built as conforming to FAMM.

Step ii: Configuring the Generator

A configuration document based on XML, called GeneratorConf.xml, is provided with initial
values for configuration parameters.

STMS is configured by setting values of the following parameters:

— Seed for the random number generator,

— The path for the generated code,

— Maximum poll count for receiving an optional (cold) message, and

— Waiting (sleep) time between two successive polls.

So final configuration XML file is presented (Figure 3.10) as:

<?xml version="1.0" encoding="1SO-8859-1"7>

<Confs>

<Random seed="123456"> <!— for random number generator -->

</Random>

<Sleep time="100" passes="50">

<!—sleep time and number of passes for cold message receiving-->

</Sleep>

<PATH>

<Generated path="c:\eclipse-SDK-3.0.1-win32\eclipse\workspace\FedCodeGen\">
</Generated> <!—destination path for the generated code-->

<Generator path="c:\eclipse-SDK-3.0.1-win32\eclipse\workspace\NewCodeGenProject\">
</Generator> <!— path of the generator code-->

</PATH>

<External-InstanceLibs>

<InstanceLib name="RTILib" prefix="RTI"> <!— external library used in the generator-->
</InstanceLib>

</External-InstanceLibs>

</Confs>

Figure 3.10. XML Configuration File for the Code Generator for
ShipFd Application

Step iii: Running the Generator
The code generator is run in GME as a model interpreter [GME 2006]. The generated code
files are placed in the folder specified in the configuration file. In our case: Ship_MSC

33

(Diagram class), ShipFd (Ship federate class), User (Live entity class), ShipFdAspect
(computation aspect of ship federate), UserAspect (computation aspect of user) and
BosporusFederationLibAspect (federation execution aspect) are generated. Generated three

classes and three aspects are shown with a class diagram in Figure 3.11. This class diagram

reflects the static structure of a generated federate application, cf.Figure 3.4.

swwse]
ShipFaThread

UsgrThread

Alt_0450 : CyclicBarrier
altChoices : Hashtable
coldChoices © Hashtable
LSC_02bb : CyclicBarrier
Par_02ed : CyclicBartier
pShipFd : ShipFdThread

pUser ; UserThread
Repeatlntil_02ef : CyclicBarrier
addAfChalcestString, int)
addColdChoices(String, boolean)
mein String(])

Cover

aftChoices . Hashtahle

coldChoices : Hasttable

objectDIDs : Hashtable

addfChoices(String, int)
addColdChoices(String, hoolean)
chooseAkl(int, String)

choozeCond(String)

chooseOne(ArrayList, Hashtable, String)
getloopCount(String, String, String)
main{Stringl])
Sendhvessagelinput_03e0Shipkd(String)
SendvessagelnputDirection_0520ShipFd(String)
SendMessagelinputSpeed_051 dShipFd(String)
SleepThread(int)

Userhdainkethod()

override computation T

UserAspect

chooseCond()

UsgerAspecthaintethod)
_Direction_0525 : String
o_InputString_03e2 : Object
o_InputString_0511 : Ohject
g_Inputstring_0522 : Object

o_Name : String

o_Speed 0526 String

in: BufferedReader

tdain)

prchooseAt(int, String)
pechooseCond(Sting

prchooseCnel ArrayList, Hashtable, String)
proetloopCount(String, String, String)
pesendMessageinput_03e0ShipFCString)
prSendessageinputDirection_0520ShipFd(String)

prsendessageinputSpeed 051 dShipFd(String)

BosporusFederationLibA

DizcoverObjectnstancelLSCObject)
ObjectinstanceMameReserved(LSCObject)
ProvideAttribute’aluelpdate(LSCOkject)
Receivelrteraction(LSCObjzct)
Reflectattribute’alues(LSCObject)
RemoveChjectinstance(LSCObject)
TimeddvanceGrant(LECObject)
TimeConstrainedEnabledLSCOkject)
TimeRegulationErablzdLSCOkect)

forward callbacks
Cover
override compuiation
ShipFdAspect
altChoices : Hashtable [¢—— choozeCond()
coldChoices ; Hashtable ShipFdaspectMaintethod)
timetFlaghessageTimer_03cE : boolean Mbin)
timerhessageTimer_03cE : Timer pechooseAR(int, String)
addAtChoicesi String, int) pechooseCond(String)

addColdChoices(String, boolean)

choozeAt(int, Stringg)

chooseCond(String)

chooseOne(ArayList, Hashtable, String)
DiscoverObjectinstance(L SCObject)
doLaterMessageTimer_03cGllong)
getLoopCount(String, String, String)

main(String[])
COhjectinstancenameReserved(LSC0Object)
ProvideAftribute'alueUlpdate(LSCObect)
Receivelnteraction(LSCObject)
Reflectaftribute v alues(LSCObjsct)
RemoveOkectinstance(LSC0bect)
SendCreateRegionChannel BosporusFeder ation(String)
SendDestroyFederationExecutionDFEBosporusFederationt String))
SendEnableTimeConstrainedETCBosporusFederation()
SendEnableTimeRegulationlookaheadBosporusFederation(Object)
ShipFatainkethocd()

TimeAdvanceGrant(LSCObject)
TimeConstrainedEnakled(LSC0Okject)
TimeRegulstionEnabledLSCOkject)

pochooseOne(ArrayList, Hashiable, String)
peogetLoopCountString, String, String)
pcRecvObjectinstanceNameReservedShipABosporus...
poRecvProvidedttributeValueUpdsteRegisteredShipObject...
pcRecvReceivelnteractionRadioMessageBosporusFederation
pcRecvReflectAttribute'sluesDiscoveredShipObjectBosporus ..
peRecvRemovedbjectinstanceDiscoveredShipObjectBosporus...
pesendCreateRedionChannel! BosporusFederation(String)
pesendDestroyFederationExecutionDF EBosporusF ederation....
peEendEnsbleTimeConstr sinedETCBosporusFedersation()
pesendEnableTimeRegulstionlookaheadBosporusFederation
peSendPublishinteractionClassRadioMessayeBosporus
pesendPublishObjectClassAttributesShipBosporusFeder ation...
peiendRegisterObiectinstanceRegisteredShipObjectBosporus ..
poSendRequestattributeYalusUpdateDiscoveredShipOhject ..
pesendReserveCbjectinstanceMameShip ABosporusFederation
peiend3etRangeBoundsChannel BosporusFederation...
peSendSubscribeinteractionClassithRedionsRadioMessage
pesendsSubscribeOhjectClassattributesShipBosporus
pesendTimeAdvanceRequestFederstel ogicalTimeBosporus..
pesendUpdateSttribute' sluesRegisteredShipObjectBosporus ..

Figure 3.11. Class Diagram of the Ship Federate

a) Base Codes

The Ship_MSC, ShipFd and User classes constitute the base code of the ship federate
application as shown in Figure 3.11. Ship_MSC is a diagram code in which the ShipFd and
User threads are defined and run. ShipFd is an instance code where federate RTI methods
and LSC-specific auxiliary methods are generated. User is also an instance code in which

user sends ship name, direction and speed to the ship federate.

34

public static void ShipFdMainMethod (){
(...) // prechart code for federation management, initialization time management,
//declaration management, and region creation

class MainThread_02ee extends Thread { //thread for the first operand of the parallel structure.

MainThread_02ee() {}

public void run() {

do { //loop is repeated until the ReserveObjectInstanceName (ROIN) is succeeded.
condRecvMessagelnput_03e0User(); // ship’s name comes from the user
// Reserve Object Instance Name is sent to RTI:
SendReserveObjectInstanceNameROINBosporusFederation("s0");
/1 “s0” is to be overridden by the computation aspect which will take ship name from user
/I Object Instance Name Reserved (OINR) is received from RTI
condRecvObjectInstanceNameReservedOINRBosporusFederation();
(...) //1f OINR succeeds leave the loop
} while (!((Boolean)Ship_MSC.coldChoices.get("until_0300")).booleanValue());
(...)/1 Other Inputs: direction and speed come from the user.
SendRegisterObjectInstanceRegisteredShipObjectBosporusFederation(...);
// Register Object Instance is sent to RTI for the Ship object
SendUpdateAttributeValuesRegisteredShipObjectBosporusFederation(...);
// Update Attribute Values is sent to RTI for the Ship object
SendRequestAttributeValueUpdateDiscoveredShipObjectBosporusFederation(...);
/I Request Attribute values Update is sent to RTI for the Ship object
doLaterMessageTimer_03c6(100); //timer is started for periodically send interactions
// While-Do Main Simulation Loop begins
while (((Boolean)Ship_MSC.coldChoices.get("ExitCondition_040f")).booleanValue()) {
/Noop is repeated until the federate is resigned.
(...) // The code generated for SendRadioMessage chart is inserted here.
// when a timeout occurs radio message interactions are sent and timer is restarted
// Time Management methods begin

SendTimeAdvanceRequestT ARBosporusFederation(new Double(55.0));

// Timestamp type Double comes from FAM. Timestamp value (55) should be overridden.
condRecvTimeAdvanceGrantTAGBosporusFederation();
// Time Advance Grant is received from RTL

}/end of main simulation loop.

(...) /l The code generated for Exit Federation chart goes in here.

/lfederate is resigned and federation is destroyed.

}//end of the main thread

Figure 3.12. Excerpts from the Generated Java Code of Ship Federate
Application

To give a sense of the generated code, a part of the ship federate’s (see Figure 3.12) and a

sample RTI Ambassador Method (sendinteraction in Figure 3.13a) and a federate
35

Ambassador method (receiveinteraction in Figure 3.13b) are shown in the figures. The first
operand (main thread) of the parallel inline expression (see Figure 3.2) of the generated
shipFd code is exemplified in Figure 3.12. For every operand in a parallel inline expression
occurring in the LSC, a thread (e.g. MainThread_02ee and CallbackThread_032c) is
generated. For loop idioms, “while-do” or “repeat-until” code statements are generated.
Values of loop conditions are retrieved from the dictionary (implemented as hashtable
named coldChoices) defined in the computation aspect. In place of the chart references in the
LSC model, the referenced charts’ codes are generated. For example, for CreateRegions
reference, CreateRegion and SetRangeBounds methods are generated.

In Figure 3.13a, interaction parameters are packed into an object of LSCObject. Then the
corresponding LscRTILib method (in this case, sendiInteraction) is called. In Figure 3.13b, a
federate Ambassador method (in this case, receiveinteraction) example in the federate base

code is shown.

36

public static boolean
SendSendlInteractionWithRegions_0536RadioMessageBosporusFederation(...)//parameters
{
LSCLib.LSCObject proc= new LSCLib.LSCObject();
/finteraction class information comes from HOMM.
proc.name="RadioMessage"; //interaction class name
proc.pars=new ArrayList(); //parameter list of the interaction class
LSCLib.LSCAttribute parNew(O =new LSCLib.LSCAttribute();
/lparameterl is declared
parNew0.name="CallSign"; //parameter1’s name
parNewO.type="Object"; //parameter1’s type in Java
parNew0.objClass="HLAASClIIstring"; //parameter1’s type in HLA datatype
parNew0.objVal=CallSign; //parameter1’s value
proc.pars.add(parNew0); //parameter] is added to the parameter list
(...)//parameter2 is added.
//dimension and region data is added to the parameter list
//time stamp data is added to the parameter list
BosporusFederationRTILib.sendInteractionWithRegion(proc);
//same named LscRTILib method is called

}

Figure 3.13. a. A Sample SendInteraction RTI Ambassador Method in
Federate Base Code (ShipFd)

public static void RecvReceivelnteractionRadioMessageBosporusFederation
(LSCLib.LSCObject iClass,String TimeStamp,int SentOrderType,int ReceiveOrderType,String
TransportationType)

{ }//received interaction parameter values are held in iClass.

Figure 3.13. b. A Sample Receivelnteraction Federate Ambassador

Callback Method in Federate Base Code (ShipFd)

b) Codes for Aspects
Two computation aspects and a federation execution aspect are generated, namely
ShipFdAspect, UserAspect, and BosporusFederationLibAspect. ShipFdAspect overrides all
RTI methods in the ShipFd federate base code. In ShipFdAspect, dictionaries and LSC-
specific auxiliary methods’ (i.e. chooseOne, getLoopount) advices are also generated.

Two sample advices, namely, RTI Ambassador Method’s (send interaction) advice and a
federate Ambassador method’s (receive interaction) advice, are shown in Figure 3.14a and

Figure 3.14b, respectively. In Figure 3.14a, federate send interaction method (cf. Figure
37

3.13a) is caught in the ShipFd base code and preliminary logic (in italic) is filled in. The
developer can edit this advice as described in the subsequent “Editing the Computation
Aspect” section.

In Figure 3.14b, federate receive interaction method (cf. Figure 3.13b) is found on the
ShipFd base code and received data is placed in its advice in the ShipFdAspect. This
received data is the values of all parameters of the interaction class. In this example, the

interaction class is RadioMessage with parameters callsign and message.

pointcut pcSendSendInteractionWithRegions_0536RadioMessageBosporusFederation()
{//pointcut definition
CallSign=new Boolean(true);
//call sign is given as preliminary computation in the computation aspect
Message="Radio Message Sample”; //message is given as preliminary computation
(...) //declaration detail of dimension is get outed
parChannelDimension2_0.strVal="ChannelDimension"; //dimension comes from FAM
(...) //declaration details of region
parChannell3_0.strVal="Channell"; // region comes from FAM
(...) /lother details of dimension and region
TimeStamp=new Double(2.0),;//must be overridden
proceed(CallSign,Message,RadioMessagewithRgnsDims, TimeStamp);

return true;

Figure 3.14 a. A sample RTI Ambassador Method (advice) in
Computation Aspect (ShipFdAspect)

38

pointcut pcRecvReceivelnteractionRadioMessageBosporusFederation (...)//pointcut definition
{
Object CallSign= (Object)((LSCLib.LSCAttribute)iClass.pars.get(0)).objVal;
System.out.println("Received CallSign Parameter:"+CallSign);
//callsign interaction class parameter is printed.
Object Message= (Object)((LSCLib.LSCAttribute)iClass.pars.get(1)).objVal;
System.out.println("Received Message Parameter:"+Message);
//Message interaction class parameter is printed.
System.out.println("Received TimeStamp:"+TimeStamp);
System.out.println("Received SentOrderType:"+SentOrderType);
System.out.println("Received ReceiveOrderType:"+ReceiveOrderType);
System.out.println("Received TransportationType:"+TransportationType);

proceed(iClass, TimeStamp,SentOrderType,ReceiveOrderType, TransportationType);

Figure 3.14 b. A sample Federate Ambassador Method (advice) in
Computation Aspect (ShipFdAspect)

BosporusFederationLibAspect (federation execution aspect) is mainly used to catch call-
back methods from the Bosporus federation execution. A BosporusFederationRTILib object
is instantiated from LscRtiLib in this aspect and it is used to reach actual RTI. A sample
LscLibRTI definition (BosporusFederationRTILib) and a sample (Receivelnteraction) advice
are presented in Figure 3.15.

In Figure 3.15, Receivelnteraction call-back method is caught by the federation execution
aspect (BosporusFederationLibAspect) and forwarded to the federate
(ShipFd.Receivelnteraction).

39

public static RTILib ShipFd.BosporusFederationRTILib= new RTILib(); // LscRtiLib declaration for
the federate
(...)//unrelated code
pointcut Receivelnteraction(...)//pointcut definition
{
RTILib rtiLib = (RTILib)thisJoinPoint.getThis();
// compare received callback with federation name as there might be other federations
if (rtiLib.federatename.compareTo("BosporusFederation")==0)

ShipFd.Receivelnteraction(proc); //federate method in the base code is called

Figure 3.15. A LscRTILib Definition and a Sample Advice in Federation

Execution Aspect (BosporusFederationLibAspect)

Step iv: Editing the Computation Aspect
After running the generator, ShipFdAspect and UserAspect (generated preliminary
computation) can be edited by the developer in order to effect the desired computation.
Consider, for example, how ship name is retrieved from the user to send a
reserveobjectinstance event to the federation. In the automatically generated preliminary
computation, a “sample string” is sent to the ShipFd as a ship name by UserAspect. Naturally
we would like the name to be entered by the user. User types in a name in the advice. The

corresponding edited code is illustrated as italic form in Figure 3.16.

pointcut pcSendMessagelnput_03e0ShipFd(...)//pointcut definition
{

System.out.print("Name:> ");
ry {
g_Name = in.readLine(); //name is read from console
} catch (Exception ignored) {}
Name=g_Name;
proceed(Name);

return true;

Figure 3.16. Adding a Computation to User Ship Name Selection
Method in User’s Computation Aspect

(Modifications to the generated preliminary advice are in italic)

40

Step v: Running the Generated Code
With the editing of ShipFdAspect and UserAspect completed, the ship federate is ready to be
compiled by Aspect]. Then the federate runs and joins the Bosporus Federation with the
station federate joined as well. Preparation of the station federate follows the same steps. A

view from the running ship federate is presented in Figure 3.17.

& Java - FedCodeGen1516/RTILib/RTILib.java - Eclipse SDK

File Edit Source Refactor Mawigate Search Project Run Window Help

] PR -0-Q- BEFC I SB®P & | & 1ava |

: " [resource

[# Package Explorer 2 = O || # BosporusFederationLi Iﬂ RTILib.java &5 1 = [m|
= <)===> } catch (FederationExecutionlilres A

s 0OD0 Auto-generated catch
e.printStackTrace ()
return false:

} catch (CouldNotOpenFDD =) |

=58 ship_MsC

= E EosporusFeder ationLibasg
-] Ship_MSC.java

4] ShipFd.java

8 ShipFdaspact. aj T Auto-generated catch
I] e.vrintI3tackTrace (1 VG
[E=) m User.java : < 5
[E Useraspect.aj
=58 Station_MsC 35 Debug 52 G Expressions = |l
'L_ti E EosporusFeder ationLibasg S‘& . S e % I_ﬁil -
= m BosporusSkation. jawa L=—=]
¥ Daemon Thread [MOM interaction thread] (Running) -~

[E2] @ BosporusStationAspect . aj
- [J] Station_MSC.java
[e2] m User.java

[E E Useraspect.aj v e o o i ot

< > < >

¥ Daemon Thread [Timer-1] (RUnning)
=y Thread [Thread-7] {Suspended {exception MullPointerExceptioni)
= aM.evokeMultipleCallbacksidouble, double) line: not available

El console &3 & =] uglﬁlﬁl e O
Zesfierm FETE (el irs Anpiie=fitn] Sz eerem Hlsisreyel 1L USRS, 2o (22, 1o 210 GTHTEET
ReflectAttribute TransportationType: TransportationType (1)

FeceiveInteraction Message:Hello-2

ReceiveInteraction CallSign: Ok

Receivelnteraction TimeStamp:LogicalTimelDouble<l1l.000000:

ReceivelInteraction SentOrderType:Z et
< b

SRS

Figure 3.17. A View of the Ship Federate Running (pRTI snapshot)

3.4.2. Discussion of the Case Study
Final STMS code has over 4100 LOC (lines of code). Federate application code metrics (in
terms of LOC) are given in Table 3.2 according to the generated classes and aspects, where
those for ShipFd are shown in Figure 3.11. Manually introduced computation code (shown in
column 3) is a small fraction, less than 2%, of the whole federate code (shown in column 2).
This figure could be taken as an indication for the developer’s manual contribution to a first-
cut prototype. Of course, with a sophisticated computational logic (e.g. a high fidelity
hydrodynamics model for the ship) this figure could boost up dramatically. Presumably,
specialized computational codes of this nature are utilized as a library, and should not be
included in the LOC count.

The automatically generated federate code size is estimated one fourth larger than that of

the corresponding hand-crafted code, which does not carry any aspect-orientation

41

(essentially, pointcuts) overhead. = Regardless of the code size, as aspect weaving takes
place at compile time there is no execution time overhead.

In comparison with developing a single federate from scratch, most effort is now spent on
constructing the model. The real benefit of aspect-orientation is expected to be manifest in
the course of maintenance. Changes to an algorithm, for instance, can be made in one place
(i.e. the relevant advice in the computation aspect) without being bothered with the rest of
the code.

The metamodel enforces required references from the behavioral model to the object
model (SOM or FOM). The intellectual effort to be spent by the programmer while coding
the computation to keep the code consistent with the object model is saved. Changes to
SOM/FOM, e.g. adding a new attribute to some object class, is reflected to the whole

federate automatically. The programmer needs only to update the affected computations.

Table 3-2. STMS Code Metrics (in LOC)

Class/Aspect Federate Edited
Application | Portion

Ship_ MSC (LSC Diagram Class) 50 -
ShipFd (LSC Instance Class) 1448 -
ShipFdAspect (LSC Instance Aspect) 520 27

User (LSC Instance Class) 116 -
UserAspect (LSC Instance Aspect) 134 30
BosporusFederationLibAspect (Federation | 65 -

Execution Aspect)

Total (Ship Federate) 2333 57
Station_MSC (LSC Diagram Class) 51 -
BosporusStation (LSC Instance Class) 1130 -
BosporusStationAspect (LSC Instance Aspect) 372 16
User (LSC Instance Class) 112 -
UserAspect (LSC Instance Aspect) 88 2
BosporusFederationLibAspect (Federation | 63 -

Execution Aspect)
Total (Station Federate) 1816 18
STMS Total 4149 75

42

3.5. Related Works

Although there are many useful HLA federation development tools in the marketplace, they
fall short of generating code for federate behavior. Existing tools can generate class
declarations corresponding, essentially, to the structural part of FAMM, which is the HLA
Object Model. For example, most closely related tool, Calytrix SIMplicity [Simplicity 2007]
does not support code generation for dynamic behavior of federates. Because, from a model-
based point of view, no workable metamodel that accounts for federate dynamics and
supports executable code generation was available until FAMM.

A promising approach to federate and federation development is component-based
development, as proposed by [Radeski and Parr 2002]. They present a component-based
development framework and a set of tools that can be used to simplify the development
effort. The simulation framework provides the services that enable the bi-directional
communications between applications and the RTI. During the generation and
implementation phase of the framework, the component descriptor is processed by a code
generator to create the appropriate source file stubs. Once the stubs are generated, the
developer must insert the “simulation logic”, using appropriate callback methods, into the
generated code. In our AOP approach, the user provides the same logic in terms of advices in
the computation aspect. Further, as a benefit of our behavior modeling facility, simulation
control flow is determined by the user specifically for each federate, rather than being the
“integration logic” part of some framework.

In [Yuan et al. 2003], a framework for designing and executing parallel simulation using
the RTI is introduced. With the code library from the framework, the modeler is able to
complete the design of a parallel simulation that runs on RTI by specifying the simulation
configuration and the handling detail of each event. The modeler can specify the “logical
processes” in the simulation and the events that are sent or received by the LPs. The federate
model hides the HLA implementation from the parallel simulation modeler. The framework
incorporates automatic code generation. Code generator will generate the Federation
Execution Data (FED) file and the executable federate code based on the modeler’s
specifications.

[Tsai et al. 2006] presents the DDSOS (Dynamic Distributed Service-Oriented
Simulation) framework, which supports the simulation, development, and evaluation of large
scale distributed systems such as network-centric and system-of-systems applications. The
framework features automated simulation code generation from a specification. The DDSOS
framework provides two layers of modeling support. The upper layer, the target system’s

components and the relationship among the components are specified. At the lower layer,
43

PSML-S (Process Specification and Modeling Language for Services) is utilized to specify
the more detailed system specifications. The upper layer system architecture specified can be
automatically converted into PSML-S model. Once the simulation tasks are specified in the
PSML-S language, the automated code generation service can be applied to translate the
processes into executable. They [Tsai et al. 2007] also present the Dynamic Service-Oriented
Collaboration Simulation (DSOCS) framework, which supports the dynamic collaboration,
development, simulation, and evaluation of large scale SOA systems. It also features
automated simulation code generation from the specification based on the PSML-S. The
relation of this work to HLA is through XMSF.

A common point in the above cited works is that each proposes a setting for simulation
construction that is at a higher level of abstraction than what is offered by the HLA standard.
Our present work, clearly, has no such ambitions. Additional expressive power due to
behavioral description of federates with LSCs comes about at the level of abstraction
provided by the standard. We contend that the abstraction issue could be addressed in a
model-driven way, by means of transformations from conceptual models to architectural
models.

In the recent modeling and simulation literature there have been numerous calls to apply
model-driven engineering to distributed simulation systems. In particular, Tolk [Tolk 2002]
publicizes the potential advantages of adopting MDA for development of HLA-compliant
federations. Clearly, to realize the touted benefits one needs model-based tools, and to start
building them the metamodels they rely on must be available.

[Parr and Russell 2003] also argue that applying the MDA to HLA is the next step for
simulation development. UML notations, UML profiles, a component model and tools must
all be developed if HLA is to align itself with the goals of MDA. HLA is technically well
positioned to leverage the advantages of MDA. Our work adopts the same line, although we
do not necessarily commit to UML.

At the heart of the federate code generator is our MSC/LSC code generator, which
handles all the essential features required for federate communication behavior specification.
Executable code generation from behavioral specifications in LSC is an ongoing quest, see
[Homme and Ramsland 2003, Maoz and Harel 2006]. There is also a body of literature
dealing with transforming LSCs to some executable form, in particular, statecharts
[Bontemps et al 2005, Kruger et al 1999]. We favor executable code generation directly from
LSC as this approach tends to yield more readable code.

44

To sum up, the edge the present generator has over existing efforts can be traced back to
the behavioral modeling facility afforded by FAMM. Furthermore, existing tools do not take
advantage of AOP, most prominently, modularity of cross-cutting concerns. In our approach
to code generation, computation and communication are separated, yet under complete

control of the developer.

45

CHAPTER IV

CODE GENERATION FROM LIVE SEQUENCE CHARTS

Generation of code for a federate’s communication behavior is based on code generation
from an LSC as LSC is the language we adopt for the behavioral specification of federates.
Code generation from LSCs, however, is a topic of independent interest. This chapter
presents code generation from LSCs in its own right from the application developer’s
viewpoint. Structure of the generated code, running of the generated code, integration with
the domain-specific data model is mentioned mainly in this chapter. Also a running example,
ATM money withdrawal is used to give the code generation process.

Automatic code generation using the system specifications is one of the important goals of
the software engineering since the emergence of the third generation programming languages
and the visual modeling languages. The more software engineering practices emphasize the
analysis and design, the more modeling of software gained importance. Initially, visual
modeling languages are used in software engineering only as a representation of the system
in analysis and design. The code and its model were two different artifacts that must be
treated equally. For example, maintenance of software is generally carried out in the code
level, rarely in the model level. This caused a gap between a model and its code, where the
latter transforms into a complete another system during the years. But soon it is understood
that the gap between a model and its code is a problem area that must be addressed. The
modern approaches anticipate only the maintenance of the model, where the code is
generated automatically from the model. As a result, coding is leaving its importance to
modeling day by day.

Visual modeling languages such as LSC are more often used in representation of the
observed behavior of systems. In this respect, automatic code generation from the behavioral
specification, LSC in our case, is the major goal of this study. LSCs are used to specify the
communication behaviors of a distributed system. It has a powerful specification for this
manner. But, in literature there is no complete code generation solution for the LSC.

LSCs are used to specify or describe the communication behaviors of a distributed system.
It has a powerful specification for this manner. But, in literature there is no complete

metamodel and code generation solution for the LSC. By using our solution, developer can

46

model the behaviors of his application in conjunction with an object model, generate the base
code, and develop his application in an aspect oriented way. Basically, code generator
generates code directly from LSC models. The input of the generator is an LSC model with

an abstract syntax. This abstract syntax is declared by a metamodel for LSC models.

4.1. Motivation and Scope

We investigate the applicability of model-based code generation for application
development—not restricted to HLA. This approach is promising in regards to rapid
prototyping of an application design and semi-automated construction of applications. First
and foremost, this requires the availability of suitable models, behavioral models in
particular. LSCs can be used to specify the communication behavior of components of an
application, which might be distributed.

A behavioral specification in the language of LSC along with an associated object model
constitutes the input to the code generation process. Input model specifies the behavior and
provides the data model associated with the interactions (events). The output is an
application code that is capable of generating any sequence of communications conforming
to the specification, but that lacks the logic to carry out the required computations for the
targeted application. Thus, if it were to run as is, it would exhibit a randomized
communication pattern conforming to the specification as long as it did not rely on any
correctly computed value. To turn it into an appropriate application, one would need to
supply the algorithms to compute the correct values. In this chapter, we elaborate our
approach to code generation from LSCs and introduce a semi-automated tool that carries out
this code generation process.

The generated code consists of application base code and computation aspect code, where
the latter is weaved onto the former. The application base code handles the communication
between the application and other external applications, which have interfaces to the
application, and the computation aspect is the place where the user puts the codes for the
application’s algorithms for computation. To produce the intended application, the developer
should edit the preliminary computation aspect. By providing a simple computation logic
(e.g. line-of-sight calculation for radars), the user can obtain a prototype application. By
advancing to a sophisticated logic (e.g. solving the radar equation) as required by the end

product, the user can proceed with actual application development.

4.2. Context of the Generator

Adopting the Model Driven Engineering (MDE) approach, the system development process
can be viewed as a sequence of model transformations [Bezivin 2005]. From this point of
view, an application development essentially involves the platform independent model

47

(PIM), platform specific model (PSM), and the executable code. Each layer of models
reflects a particular level of abstraction. A PSM is customized to specify an application in
terms of implementation constructs that are in one specific implementation technology. It is
clear that a PSM will only seem sensible to a developer who has knowledge about the
specific platform. In our case, the PSM corresponds to an LSC model, which conforms to the

LSC metamodel. Finally, code presents the application in some executable form.

Model Code

Transformations Generation

Figure 4.1Development Methodology for an Application

“Code Generation” step is semi-automated by the present work. The code generator can
only provide the developer with a preliminary computation aspect, which he must edit to
introduce code based on the detailed design of the intended application. Detailed design
describes the computation logic of the application in addition to the behavioral specification
and its object model. Object model presents the type information for the parameters of the
events in the behavioral specification. Correct values of these parameters are to be computed
by the computation logic. The behavioral specification pertains to the communication
patterns where the message parameters must conform to the object model.

A developer can utilize our work in the following manner:

i. Model the system’s observable behavior and the object model it refers to.

ii. Automatically generate code.
iii. Edit the computation aspect.

Lastly, compile and run the application.

4.3. Code Generator

The current version of the code generator handles LSC/MSC features found in [ITU-T 2004,
Brill et al. 2004, Damm and Harel 2001, Harel 20001]. Implementation detail for the
handling of LSC/MSC features is described in Chapter 5.

Here are some highlights of the features of the code generator:

48

¢ Asynchronous messages

¢ Conditions

e Inline expressions and idioms (i.e., frequently used constructs that are packaged as
idioms in the LSC metamodel such as while-do)

¢ Timer events

e Temperature for LSC elements. Messages, conditions, inline expressions and
locations, can be hot (mandatory) or cold (optional); charts can be universal or
existential.

e Coregions

¢ Local and multi-instance general ordering

e Composition of diagrams by using the MSC references

e Local invariants

® Simultaneous regions

e High Level MSCs (HMSCs)

e (ates

In Figure 3.3 The Intermediate Form Generation module walks on the source LSC
model, using the model interpreter BON2 API of GME, and constructs the intermediate form
that holds the model in a convenient internal form. Then the Java Code Generation module
walks on the intermediate form and produces the diagram class, the instance class, and the
computation aspect. The generated codes are fed into the Aspect] compiler. The current
version of our code generator generates Java and Aspect] codes. However, only the back-end
needs to be re-implemented if another target language is desired.

The LSC metamodel is based on the instance-oriented textual representation in which an
MSC/LSC can be completely defined by giving the behavior of each instance separately.
Thus, the model traversing is instance-oriented. The code generator walks on each instance
of the diagram separately and generates the instance base code and the instance aspect code
(preliminary computation aspect). While generating the codes for all instances in the
diagram, the generator also generates a base code for the whole diagram. Diagram base code
contains instance threads that are declared and started, and the shared (multi-instance)

variables, which are declared.

4.3.1 Running Example: ATM Money Withdrawal Application
In this section, how code generation is applied is showed on a simple example. In this
example, the behavioral description of drawing money from an Automatic Teller Machine

(ATM) is specified. First, the client inserts his bank card into the card slot of the machine.

49

Then, a password entry window appears and the client enters his password. If the password

is valid, an operations menu is displayed. If it is not valid, the password entry window

appears again. This operation can be repeated at most three times. If the third attempt also

fails, the card gets blocked.

In the operations menu, money withdrawal option is chosen. A box to enter money

amount is presented, and the client enters the amount. If the entered amount exceeds the

balance of the client’s account, the box is presented again. If the amount is less than or equal

to the balance, the client draws the money from the machine. The operations menu appears

again to take the next request. Finally, the client selects the quit option from the menu, and

removes his card (Figure 4-2).

@ B.ank Card |

-|-
\‘_:/ a_".__ b]

Money

Figure 4.2. ATM Money Withdrawal Scenario Conceptual View

4.3.2. Structure of the Generated Code

The automatically generated base code consists of a diagram code, an instance code, and an

aspect code (computation aspect). In the instance base code:

Sending/receiving method definitions of events (every event in the model
corresponds to a method in the code such as SendMessagelnput_0026ATM and
RecvMessageOutput 003cATM,

Empty method bodies of randomization (auxiliary) methods such as chooseOne and
getLoopount,

Message queue class definitions for receiving messages,

Dictionary definitions for temperature property of events, conditions and locations,
Some variable definitions used for the implementation of barrier synchronization of

inline expressions, general ordering of events, coregion,

50

¢ The main function of the instance (i.e., ATMMainMethod and ClientMainMethod in
Figure 4.13), where method calls correspond to the LSC event sequences, is
generated.

In the diagram base code, thread definitions in which instances are run; dictionary and
condition definitions shared by two or more instances (multi-instance) are generated.

An LSC Instance Aspect code is generated for every LSC instance to handle the
sending/receiving methods and the LSC-specific auxiliary methods of the base code for the
preliminary computation. The latter (auxiliary methods) essentially help resolve, in a
randomized fashion, the non-determinism inherent in an LSC specification. For example,
auxiliary methods randomly determine loop counts (within bounds), choice of alternatives,
order of sending events in a coregion, etc

In Figure 4.3, the structure of the generated base code is represented as a class diagram.

Z=weave computaton==

N
LSC Diagram |==includes==| 8¢ Instance LEC Instance Aspact

L5SC Instance Aspect is used to weave [;\
computation Inta LSC Instanca
{Catch all infout calls of LSC Instanco)

Figure 4.3. Structure of the Generated Code

4.3.3. Running the Generated LSC Instance Code Alone

This section describes how sending and receiving methods behave at run-time.

a. Handling the Sending Methods in the LSC Instance Code

In the body of sending method, an object (LSCObject type) is created from the method
arguments. The receive method of the target LSC instance is called with the created object
parameter (i.e. ATM.RecvMessagelnput_0026Client(proc) in Figure 4.4). In the called
method, sending object is received and put in the queue of receiving event of that
application. (For asynchronous event receiving, a message queue is defined and used for
every receiving event. See chapter 5 section 5.7 for more detail.). But in case of sending a
cold event, sending method draws lots whether to send the message or not before calling.
Note that in the generated code, some numeric values, such as _0026, are used in the
function and variable declarations. Function and variable names comes from the model. In

the model, name of the model element is given by the modeler and there may be model

51

elements that share the same names. But, in the code, it is not acceptable. So model element
name and numeric model id which is created by the GME becomes unique in the model. This

combination is used in the code.

public static boolean SendMessagelnput_0026 ATM(String Password_0029) {
LSCLib.LSCObject proc= new LSCLib.LSCObject();
(...)/1proc (LSC Object) object is set.
ATM.RecvMessagelnput_0026Client(proc);
/Itarget (ATM) receive method is called

return true;

Figure 4.4 A Sample Sending Method in the Client LSC Instance Code

b. Handling the Receiving Methods in the LSC Instance Code

At execution time, the receiving method of instance class first looks at the queue of the
received event. If queue is not empty, the front message is taken from the queue and it is
introduced to the user in a method. If queue is empty and received event is hot, receiving
method waits the message until the message is put in the queue. However, if the received
event is cold, receiving method checks the queue in pre-defined intervals specified as a
configuration parameter. If the waiting event comes in this period, the receiving method
received the event; otherwise, the receiving method stops waiting and proceeds with the next
event. A sample receiving method in the client LSC instance code is depicted in the

following Figure 4.5.

public static void RecvMessageOutput_003cATM(Object obj)
{

/lreceived data is introduced to the user in the computation aspect.
//Because of this, empty —body function is generated.

}

Figure 4.5 A Sample Receiving Method in the Client LSC Instance Code

4.3.4 Running the Generated Aspect Code with the Base Code
In this section, how sending and receiving methods of the base code are captured by the

computation aspect and how the application logic is overridden in the aspect are explained:

52

1 catch Send method

LSCInstance: —
Class “—

2 overnde Zend method

L5CInstanceAspect:

Aspect

Figure 4.6.a. Collaboration Diagram of Sending Method

1 catch Recerve methad

L5CInstance:

—
Class e
2 overnde Recewe method

Receve

L5CInstancefspect:
Aspect

Figure 4.6 b. Collaboration Diagram of Receiving method

a. Handling the sending Methods in the Aspect

Sending method in the LSC instance code is caught (cf. Figure 4.6a, action 1) by the Aspect
(computation aspect) and arguments of the method can be overridden (cf. Figure 4.6a, action
2). In AOP terminology, an aspect pointcut definition catches the joinpoints in the base code
and then weaves its advice on the caught joinpoints. In our case, matching a pointcut
definition is exactly one joinpoint, which is a method definition whose body is replaced by
the advice in the pointcut. In our example (see Figure 4.7), password is edited. Then, edited

aspect is weaved on the LSC instance code in the execution time and so modified password

1s sent.

pointcut pcSendMessageInput_0026 ATM(String Password_0029):

execution(static boolean Client.SendMessagelnput_0026ATM

(String))& & args(Password_0029); boolean around(String Password_0029):
pcSendMessagelnput_0026 ATM(Password_0029)

{

/Ipassword is edited as the following
String _password = in.readLine();
password=_password; //preliminary computation

(...)//proceed and return

Figure 4.7 A Sample Sending Method’s Pointcut in the Client Aspect

b. Handling the Receiving Methods in the Aspect

Receive methods in the LSC instance base code are also captured (cf. Figure 4.6b, action 1)
by the computation aspect in a similar way and introduced to (cf. Figure 4.6b, action 1) the

developer. Developer can edit the advices of the methods to apply his application logic. For

53

example, receiving messages are printed on the console. In this example, edited aspect is
weaved on the LSC instance base code at the run-time and received messages are printed on

the console (see Figure 4.8).

pointcut pcRecvMessageOutput_002aATM(Object obj):
execution(static void Client.RecvMessageOutput_002aATM(Object))& & args(obj);
void around(Object obj):pcRecvMessageOutput_002aATM(obj)
{
System.out.println("Received message:"+obj); //received message is printed on the console

proceed(obj);

Figure 4.8 A Sample Receiving Method’s Pointcut in the Client Aspect

4.3.5. Editing the Computation Aspect

In the aspect code editing process, generated base code (LSC instance code and diagram
code) is not to be touched; all modifications and additions must be made on the advices of
base code’s methods in the computation aspect. Note that this constraint is not forced as the
developer has the generated code at his disposal so that the developer should be carefully on
the modification process. Also generator marks the mandatory editing points in the
computation aspect by giving comments such as “must be edited”. For instance, sending
method of the LSC base code can be changed in its advice and the changed advice body is
run instead of the method body in the base code. However, the pointcut definitions must not
be touched in editing because if they change, aspect may not catch the intended joinpoint in
the base code.

Furthermore, in the computation aspect, advices of the randomization methods whose
empty bodies are generated in the base code can be edited and application specific logic can
be replaced with the preliminary randomization logic. For example, generated preliminary
random logic for alternative inline expression that selects an alternative randomly from the
all possible alternatives can be edited in the advice of the randomization method
(ChooseAlt). Instead of the random selection logic, user can select the alternative from the

console (see Figure 4.9).

54

pointcut pcchooseOne(ArrayList selectedList, Hashtable orderList,String tag):
execution(static int ATM.chooseOne(..)) && args(selectedList,orderList,tag);
int around(ArrayList selectedList, Hashtable orderList,String tag):
pcchooseOne(selectedList,orderList,tag)
{
int ch=0;
int choice=0;
/*Random r = new Random(123456);
ch=r.nextlnt(selectedList.size());
choice=((Integer)selectedList.get(ch)).intValue();*/ //preliminary code is commented
System.out.println("enter the choice please:> "); //new logic is added
ry {

choice = in.readLine(); // choice is read

} catch (Exception ignored) {}

(...)
return choice;
}

Figure 4.9 Editing Auxiliary ChooseAlt Method in the Aspect

4.3.6. Weaving the Computation Aspect

Aspect] parser weaves the Aspect] codes on the Java base codes at compile time either as
they are generated or after editing the computation aspect, and produces a native Java byte
code. After compilation, the generated Java byte code can be run on the Java virtual

machine.

4.3.7. Metamodel Support for Code Generation

Since the input model conforming to LSC metamodel is instance based, code generator
generates instance codes (i.e. for every instance a Java class is generated) separately (see
Figure 4.3). Reference usage is a key facility in traversing the model. Generator can reach
desired model elements such as atoms, models, and connections in the model by using only
references of them.

Using global lists such as instance list and condition list, allows and makes easy for the
generator to reach instances and condition in the model by using references. For example, in
instance based code generation, instance codes are generated according to the global instance
list one by one. While traversing the input model, especially the nested model elements, only
references of the instance are located. Generator readily reaches the global instance by using

these references. In contrast, without a global instance list, an LSC instance could be met
55

anywhere in any nested model hierarchy level. For example, an LSC instance of the LSC
diagram may be in topmost LSC diagram, or, in case the LSC instance has one or more
inline expressions, it may be in one of the inline expression’s operand. This situation would
have caused to implement a messy case analysis for the generator to generate instance based
code.

If a domain specific data model is not integrated into the model, then the code generator
generates standard code for the MSC/LSC messages. However, if the domain specific
messages are available as specializations of MSC/LSC message then the generator reaches
them through references and generates the specific method bodies. Method parameter
information and other related data is retrieved from the data model of the domain. For
example, in HLA based code generation [Adak et al. 2007], the HLA methods and related

data are obtained from the federation architecture model.

4.3.8. Integration with Domain-Specific Data Models

LSC metamodel, (in its pure form) only describes the receive and send events but it does not
deal with the internal parameters of the events. These internal parameters of the events can
also be modeled as a domain specific data model. We provide an integration interface to the
domain specific data models. However, if the domain specific data model has a metamodel,
integration of LSC model and data model is possible. In this case, generator can retrieve
parameter information of the events from the data model.

Furthermore, in case parameter values are entered to the model, these values are put in the
computation aspect as preliminary in the code generation. For example, we assume
SendPassword event has a string typed parameter. The value of the parameter comes from
the data model and its value is “hello world” (see Figure 4.10). Code generator, in the LSC
instance base code, generates a method which has a string typed parameter and in the

computation aspect, an advice that overrides the parameter value with “hello world”.

pointcut pcSendMessagelnput_0026 ATM(String Password_0029):execution(

static boolean Client.SendMessageInput_0026 ATM(String))& & args(Password_0029);
boolean around(String Password_0029):pcSendMessagelnput_0026 ATM(Password_0029)
{

password="hello world”; //edit the method of instance base code in the advice.

(..)

Figure 4.10 Integration with Domain-Specific Data Model Example

56

This approach is applied in the FAMM where LSC metamodel (BMM) and HLA
metamodels (HOMM, HFMM) are integrated [Topcu et al. 2007]. There are two extensions
on the front end and back end modules (Figure 3.3) of the generator. In the first extension,
domain specific information is reflected to the intermediate form, and in the second
extension, domain specific code segments (data model related) are produced form the
domain-specific part of the intermediate form. Further details about front end and back end

extension modules’ are presented in Appendix F and Appendix G respectively.

4.4. ATM Money Withdrawal Application

In this example, two instances namely a Client and an ATM is modeled. Their LSC models
are presented in concrete syntax in Figure 4.11. After the proper installation, the generator
can be used. In the following, code generation is described on the running example step by

step.
4.4.1 Steps
Step i. Modeling
The ATM Money Withdrawal model is built as a model of the LSC metamodel.

Step ii. Configuring the Generator

In our generator, a configuration document based on XML, called GeneratorConf.xml, is
provided with initial values for configuration parameters. Generator generates code

according to the parameters which are:

a. Seed for the random number generator function for randomization process,

b. The path for the generator,

c. The path for the generated code,

d. Maximum poll count for receiving an optional (cold) message, and
Waiting (sleep) time between to successive polls.

f. External library name of the domain specific model.

57

| Jeyd-aid |

| nusy suonessdo |

Isc ATM MainChart

Client

ATM

Card.Inserted

C Reference: PasswordValidation D)
Password.Valid
- 1. Withdrawal
Repeat-Until Output (Display Menu) T 2.
| 3.
(Reference: ProcessMenuSelection Ol 4. Exit
I I
Selection.Exit
L I

Figure 4.11. a. LSC for ATM Money Withdrawal at Topmost View

Isc Password Validation

Client

ATM

Loop 3 times

Output (“Enter Password”)

Input (Password)

Output (“Invalid Password”)

Validate Password

If-Then

Output (“Card Blocked”)

If-Then
Not Password.Valid

Block Bank Card

L
Figure 4.11. b. LSC for Password Validation Reference

58

Client ATM

Par
o Input(Selection.Withdrawal) >

! Cold Message |

Output(Enter Amount)

[a]
=1
a
=
o
a
Q
=3
<)
S

Input(WithdrawalAmount)

A 4

Check Amount
and Give Money

« Input(Selection.Exit)

Figure 4.11. c. LSC for Process Menu Selection Reference

Our example’s configuration XML file is presented in Figure 4.11 as:

<?xml version="1.0" encoding="1SO-8859-1"7>

<Confs>

<Random seed="123456">

</Random>

<Sleep time="5" passes="5">

</Sleep>

<PATH>

<Generated path="C:\eclipse-SDK-3.0.1-win32\eclipse\workspace\AtmCodeGen\">
</Generated>

<Generator path=
"c:\eclipse-SDK-3.0.1-win32\eclipse\workspace\NewCodeGenProject\">
</Generator>

</PATH>

</Confs>

Figure 4.12. XML Configuration File for the Code Generator for ATM
Money Withdrawal Application

59

Step iii. Runnig the Generator

After completing the configuration, the generator is run in GME as a model interpreter as

defined in GME documentation [GME 2006]. The generated code files are placed in the

folder specified in the configuration file.

In our case: MainChart, ATM, Client, ATMAspect and ClientAspect are generated in the
folder. Three classes and two aspects are generated. Generated classes and aspects are
represented in a class diagram in Figure 4.13. The class diagram reflects the static structure
of the application represented in Figure 4.3.

a) Base Code
Class MainChart is the diagram code where ATM and Client (LSC instances) threads are
defined and run. Class ATM and Client are instance codes where sending methods,

receiving methods and main-loop method (main function) of application are generated.

ClientAspect

AT specttainkiethod()

Mlzin)

pcRecvMessagelnput_0026Ckent! String)

poRecyMessagelinput_0048CHert(Chject)

peRecvMessagelnput_004fClient(String)
cRecvMessagelinput_0035Client! String)

poSendiessagedction_Check_Smount_..

receive password

Cligrtaspecttainkiethod()

Main)
pcRecyMessageizg_007aATMIObject)
peRecyMessageOutput_002aLTh{Ohjsch
peRecyMessageOutput_002dA T Object
pcRecyMessageOutput_D03cA T Chiect)
pcRecvMassageOuﬂpLﬂ_DD*tbATM(ObjeD\

receive withdrawal amount .
weave |computation
receive withdrawal selecetion
) _ AThMaindethod()
receive exit selection ming Stringl]]

Recvhiessagelinput_0026Clent ...
Recvhessagelnput_0043Clent...
ecvhlessagelnput_004fClient...
Recvhiessagelnput_0055Client ...
enohessagedction_Check_Amaourt...

check amount action

weave lcomputaﬁon

Client
ClienthMainbethocd()
mainStringlJ1
RecvMessageMsy_007as T Chject)
RecyMessageOutput_002a8TM{Object
RecyMessageCutput_002dATMObject:
RecvMessageOutput_003cATh{Ohjsct
RecvMessageCutput_004bATMLSCORECE

ATM thread
\\ATMThread

———CliertThread
tChoices : Hashtable
Aoldchoices: Hashtakle
ATH : ATMThresd

/ Cliert : CliertThread
/‘Jnain(string[])

Client Thread
Hagh tables
AT thread pointer

Client Thread pointer

l <<mclde=>

MainChart

receive card bloc
receive enter pas
receive invalid pas
receive display

receive enter am

Figure 4.13. Class Diagram of the Money Draw

To give a sense of the generated code, the first do-while (password query) inline expression
(Figure 4.11) of the generated Client code are exemplified in Figure 4.14. And also a sample

sending method (sendpassword) (Figure 4.4) and a receiving method (receiveloginWindow)

(Figure 4.5) are shown in the following figures.

60

In the operand of the do-while inline expression, password menu method is received from
the ATM and user password method is sent to the ATM. Value of the do-while condition is
retrieved from the dictionary named coldChoices by using condition model element name

that is defined in the computation aspect.

public static void ClientMainLoop(){
(...)//code from the beginning
do
{ /Nloop, user sends password
condReceiveLoginWindow();
SendPasswordATM ("123");
} while(((Boolean)coldChoices.get("PasswordOK")).booleanValue())
(...)//code from while-do to the end.

}

Figure 4.14. A Part of the Client Do-While Loop

b) Computation Aspects

Two computation aspects namely ATMAspect and ClientAspect are generated. In these
aspects, all methods of the LSC instances (natural joinpoints) are accessed and their method
bodies are overridden in their corresponding advices. In this computation aspect, also
dictionaries and other related support methods bodies such as chooseOne, getLoopount are
overridden in their advices of the methods.

A sample sending method’s (sendpassword) and a receiving method’s
(receiveloginWindow) pointcuts (accessing methods) and corresponding advices are shown
in Figure 4.7 and Figure 4.8, respectively. In Figure 4.7, sendpassword method is caught and
then preliminary logic fills in the method advice. The developer can edit this method advice
as described in the next section.

In Figure 4.8, the receiving method is caught from the LSC instance code and received
data is displayed in the preliminary computation aspect. This received data is the values of

all parameters of the method.
Step iv. Editing the Computation Aspect

After the running of the generator, automatically generated preliminary computation can be
edited by the developer in order to effect the desired computation. Consider, for example,
how sendpassword method is handled. In the preliminary computation, a sample password
string (“123”) is sent to the ATM, as shown in Figure 4.7. Naturally we would like the
password to be entered by the user. User types in a password and hits the enter key, thus
password is sent. When user types right password the do-while condition (MSCGuard?2)

becomes true and Client is continued. Otherwise, password entering process repeated three
61

times more. Corresponding code is illustrated in the following Figure 4.15. Italic codes in the

figure are edited.

pointcut pcSendMessagelnput_0026 ATM(String Password_0029):execution
(static boolean Client.SendMessageInput_0026 ATM(String))&& args(Password_0029);
boolean around(String Password_0029):
pcSendMessagelnput_0026 ATM(Password_0029) {

String _password="";

System.out.print("enter the password please:> ");

try {

_password= in.readLine(); //password is read

} catch (Exception ignored) {}

Password_0029=_password; //password is edited

System.out.println(_password+" send to ATM");

proceed(Password_0029);

return true;

Figure 4.15.Adding a Sample Computation to the Sending Method’s
Advice

Step v. Running the Generated Code

With the computation aspect edited, the application code is ready to run. The code is copied
into the Eclipse workspace. Eclipse is run and added codes are open as an Aspect] project.
After that, code is compiled (Aspects are weaved on the LSC instance base codes by the

aspect compiler) and run. A view from the running application is represented in Figure 4.19.

62

= Jawva - Chatter.java - Fclipse P

Fie Edt Scurce Refactor [laswigste Sssrch Project Run Window Help

| sy T o - i.l, - | A B - I E"Jja".ra L Pesource

i) :'H

i
I

[E Package Explorer 12 = 0 || [X] Chatbiagram. java] Chatter java 51

== g package ChatDlagrsen} A~ =
T aspectjTest A B Fimport sun.misc.Cuene]
L] ebe2401 2006
T hat H Tpuhlie class Chatesr :
¥ [=4 CodeGenProject g
LT compossstar = public static veid Chaccer¥MainLoop ()
7 FedCodeGzan SendCreateFederacionExecut ionCFERoomE
- ’j;l FedCodeGeniSi6 SZepdCreateFadsrationExecut ionCFERoomB
¥ 14 BlEDeagram ZendloinFederarionEsecut ionIFERoaml B
¥ E2eCaagram SendJoinFederationExecut Lond FERoomE_B
¥ E2sCuagramRgn SendPublishInteractions lagsCommnicac
=g ChatDisgram SendPublishInteractiont lassCommnicat
+ 4] ChatDiagram.java SendSubscribsInteractiont lassCamnunic

*)] Chatterjava ZendSubser ibeInteract iond LassComenmnie ™

+ 1] Chatberfspect.aj £ S

+ | J] Roomd_RTILbAspe:

4 [J] RoomS_ATILibAsper Preblems | Javadoc | Declaration Debiug =0
¥ 5L chatter [Aspect]flava Applcation] C:\Program FilesiJavaijdkl 5.0_01 \binkjavaw. exe
= 3 RTILUb =] - o =

41 |J] RHFederatedmbass: - 72

41 1] RTILD. java Received from ATM: Enter Password
£--H3 org.aspect)

+ m, JE System Library [1.5
+ ! ATPECTIRT LIB - Dele] M
£ » 4 »

Figure 4.16. A View of the Money Withdrawal Application Running
(Eclipse Screenshot)

4.4.2. Related Work

Executable code generation from behavioral specifications in LSC/MSC is an ongoing and
an open challenge quest for researchers. Automatic code generation plays an important role
in early validation of the model after the behavior of a system is described using the
MSC/LSC. Despite the fact that a play engine is proposed in [Harel 2001] as an
implementation mechanism for LSC, it only provides a simulation of the execution of the
LSC diagrams by playing out different scenarios and thus helps testing and observing of
system behaviors; but it does not attempt to generate code, and more importantly, it is not
extendible due to its fixed data model, and not customizable for domain specific modeling.
In contrast, our metamodeling approach, due to its data model integration capability, gives
power to the user to extend or tailor his application code generator or interpreter in
accordance with his data model. In literature, few studies address the issue of code
generation from LSCs: one master thesis’s [Homme and Ramsland 2003] and a new

published conference papers [Maoz and Harel 2006].

63

The Homme-Ramsland thesis studies how code generation can be applied in different
stages of system development. It explores the possibility of synthesizing system behavior in
the form of state-charts from LSCs, and from there using available tools to generate the
actual code. It also proposes a way of generating code directly from an LSC specification
with certain constraints.

In Maoz paper, the LSC model becomes an aspect and it is weaved on the computation
application, on the other hand, in ours work, computation is as an aspect and it is weaved on
the LSC base code that represents the LSC behavioral model. Our approach allows complete
control over the process of matching the pointcut definitions (in aspect code) with the
joinpoints (in base code). This is the major difference of our work. They said that they did
not support multi-threading application development in their work and it is the future work
for them. However, we support multi-threading and it is the major base point for us in the
code generation. While no study we perused claims to cover LSC completely, the present
one covers LSC and MSC almost completely, with respect to the current MSC standard
[ITU-T 2004], and our interpretation of the LSC references [Damm et al. 2003 and Brill et
al. 2004. Also our domain is different from the Maoz’s. Although they concentrate on
scenario development and model the inter-objects behavior, we focus on outer behaviors of
system rather than inner objects. In general, we look at the system from outside, they
examine the system internally.

There is also a body of literature dealing with transforming LSCs to some executable
form, in particular, statecharts [Bontemps et al 2005, Kruger et al 1999]. We favor
executable code generation directly from LSC as this approach tends to yield more readable
and traceable code. Structure of the input models is reflected in the structure of the generated
code.

Furthermore, we could not see any explicit metamodel component in these related works.
We hold that in any model-based approach, an explicit metamodel must be presented to the

users.

64

CHAPTER V

IMPLEMENTATION VIEW OF CODE GENERATION

In this chapter, implementation details of code generation are presented. First, the
intermediate form is described, and then, LSC constructs and their corresponding
implementation approach is introduced. How the constructs are handled, how their code’s
are generated, how their operational semantics are considered are explained. Further details
about LSC/MSC code generation of constructs are presented in Appendix A by giving
module patterns and their corresponding codes. In the implementation perspective, for the
federate code generation, only the LSC message model element is inherited and HLA
method model is obtained from it. In this HLA method model element, method parameters
are retrieved from the FAMM as explained in Chapter 3. Further details are delegated to
Appendix F and Appendix G.

5.1. Intermediate Form

Basically, code generator generates code directly from LSC models. The input of the
generator is an LSC model with an abstract syntax. This abstract syntax is defined by a
metamodel for LSC models [Topcu et al. 2007].

Intermediate form is implemented as a dynamic list (list of Block) structure called blockList.
The Block class has simple-typed class members such as name, type and also a dynamic list
structure (list of Operand) called Operands. Operand class has class members such as name
and two dynamic lists: Messages (list of LSCObject) and blockList (list of Block) for nested
inline expressions. LSCObject class has simple typed class members such as name, type,
cold condition, composed typed class members such as order and a dynamic list (list of
LSCAttribute). LSCAttribute class has only simple typed class members such as name, type
and value. Order class also has only simple typed class members such as owner instance
name, name of the ordered event. Class diagram of the intermediate form is depicted in

Figure 5.1

65

blockList [] :Block

1 nchde
LSCObject |
inchide i Lo LSCAttribute
EMame : stringildl) FMame 51r1fg[l¢l]
’ Lidessages [: LSCObjoce], 1 inchude kCramer « stringlidl) EMarme : siring(idl}
Biock LhlockList [] - Block '_IT_Hrﬂﬂt '-tsm[ugi;dl} rlul:{rur; :lubjﬁglmu
I — L . kType : stinglid) Flintval : longiidl)
_;‘l“""’. ;:‘"?f‘i:]'} Serce : shoriel) |1 LLcoid - boolean(idi) Lstrival - stringlict)
Gk - boolean(idl) * Lattributes [) : LSCAsibute Hype * sting(idl)
| Operands || : Block| inchude . Rordar ;| Order 1 FebiClass @ siringlidl}
I ! { ropprecedence | shorfidl) £ L
- 0.1 e
I inchade)
—'l inchide
Order
Corder : shor(l)

Fmame - siringfid)

reavner © atringldl)

sl ; boolean(idl)
Lishdutilnstance - boolean(idl)

Figure 5.1 Class Diagram of the Intermediate Form

BlockList structure that holds the blocks is implemented as a dictionary data structure (i.e.,
a kind of dynamic list data type). A block represents a referencing environment, which
constitutes a scope for a local declaration (as defined in between curly braces (“{” and “}” in
Java, C and its descendents). Corresponding to an LSC chart is a block. Corresponding to
each operand of a nested inline expression in the LSC chart is also a block. We consider the
LSC chart as a sequential inline expression that has one operand. Thus an operand addresses
a block. Operand (or block) structure holds the message list where event structures are
inserted and nested-block list where nested block structures of inline expressions are added.

Events are defined in LSCObject class, which is the primary class for holding event
information in the model. An object of this class holds mainly event name, event type such
as sending or receiving, cold condition, order information and attributes/parameters of it.
Attributes/parameters are defined in LSCAftibute class that holds the event attribute
information such as name, type and value.

Order class is used for general ordering. Order class holds desired new order of the event,
the owner instance of the event, whether the event is multi-instance or single-instance, name
of the ordering model element and finally whether the event is sending or receiving. It is
instantiated for each event that is to be ordered.

An example LSC diagram to describe the object model which corresponds to the class

diagram of the intermediate form is represented Figure 5.2, in which an ALT (alternative)
66

inline expression has two operands. Both operands include only an event m and n
respectively. LSC chart of the example (msc A) is considered as a SEQ (sequential) inline
expression at the top of the ALT inline expression. Resulting object model of the example is

depicted in Figure 5.3. Note that further details about intermediate form generation are

presented in Appendix B.

msc A

loop<2=)
P

Figure 5.2 LSC Diagram of the Example for Intermediate Form

Representation Aim

67

dummytdsgiorSeq . LECObject

iCvwime - string{idl) = nul
Target : stnng(idl) = nul
Type : alring(idl)= null

Cold : boolear(idl) = null

dar : Ordar = null
ecedence ; shortfdl) =1

ame ; siring(idly = MSCAIL

tributes) : LSCAtribute = mul

chlist : biockList f] Block

block - Block

ame ; sting(id]) = msch
Type : string(idl) = MSCSED
Kook : boolean(idl) = false

Operands (| : Block = operandSeg

clumyPsaforloc - LECOHeC)

opirandSeq - Operand

Mame ; stringlic) = mscAQpemand
Mastsages [] - LSCObject = dummyhisg
Ihlocklist [] : Block = blockAlt blockLoop
precedence - shor(idl) = 1

—]

plockAl Block

ame - string(idl) = alt

Type - siring(idl) = MSCAR
Cold : baolean(idl) = false
Operands [] - Block = operandit operandAli2

blockList [) : Block = null

precedence - shart(idl)=1

Mama : string(idl) = operandi
IMessages [| : LSCObject=m

messane m: LECObjsct
Marme stringfidl) = m
Ciwnes - string{ldl) = §
[Targe! : siringlidl) =
[Type : stinglidl) = Send
Cald : bookeaniidl) = false
attributes [] : LSCAtribute
lorder : Crder = null
precedence : shorid) = 1

atrribute m * LSCAitribute
amme : stringlid(} = Dulput
ot al - objact{idl) = null
intval : long{id) = 0

istrval ; stringdidl) = m

type ; strrg(idl) = Siring
obiClass : string(icl) = Siring

Name : slring{idl) = MSCLoop
}owmer : string(idl) = null
Tanget ; stringticl) = rull
Type : string(idl) = null
ok : boolean(idl) = null
fribwites [] - LSCAfributa = null
der : Order = null
recedence ; shor(idl) = 2

blockioop Block

Manme : string{idl) = loop
Cold : boolean(idl) = falsa

Type ; stringlidi) = M5CLoop

Dperands [: Block = operandLoop

Target : stringlidl) = |
Type sting(idl) = Send
1Codd : Boolean(idl) = false
|atiributes [] : LSCAttribute

Target ; string(idl} = i
Type : sirnglidi} = Receive

Cold : boolsan(idl) = false
tributes [] : LSCAtiribute

|
11 : Operan operandAR2 | Opsrand operandLoop ; Operand
Pame : Etling[idTh = gperand2 Mame : sring(idl) = cperandi
Messages] :LSCObject=np IMessages [] - LSCObject = p
blockLest [© Block = null biockList [] : Block = null
precedance : shori(idl) = 2 precadence : shortiidl) = 1
| | _
IMama : sring(idl) = n Mame ; sting(idl} = o Mame : string(idl) = p
Owines : siringlidl)= | (Dainer : stringfidl) = | e : string(idl) = |

Target : siring(idl) = |

Typa ; sinng(idl} = Send

Cold : boolean(idl) = true
ibutes [] : LSCAtiributa

obiClass | stiing(idl) = Stang

inrder : Order = null : Orddex = rull : Order = null
iprecedence | shofidl) = 1 ce : short(id) = 2 rence | shor(id) = 1
alinbute n : LSCANGDY aliribute o LSCAlrta

Rl - smngiidl) = Cuipul [ame - smngid) = Input ey e e

bVl + abject(idl) = il lob]Val : abject(idl) = null PRVl ; obleci(cl) =
riVal - long(idl) = 0 inival < lang{idl] = © "&’“’I ' '“r;‘ﬂ["'gl'_':'

a1al - etringlidl) = n sriVal | siring(ic) = o EuVal ; stringf]_'S“"

bype - stringlicl) = String bype : stringlicl) = String fype : siring{idl) = Suing

objClass : string(idl) = String

kobiClass : stnng(idl) = String

Figure 5.3 Object Diagram of the Example in Figure 5.2

68

Traverse Model

Traverse Document l
I Traverse MSC Chart Traverse Reference

LSC or T = Travarse MSC InstamasJ

MSC

(Tmm LSC IHEWS)

Traversa Instance

Event
or Mot

N
N
~

Inlire
or Refarence

Sy
Traverse Inlive | {Tmmse Irlire OpeandJ

Y

I Traverse Event

th

j)

Teaverss Message)@

Figure 5.4. Activity Diagram of the Front-End Module

69

5.2. Intermediate Form Generation - Front End

In Figure 5.4, an activity diagram of the model walking module (front end in Figure 3.3) is
represented. In this figure, generator starts to traverse from LSC model (top) to LSC message
(bottom). For every instance in the chart (diagram), an intermediate form is constructed.
There are two selections in the walking. First selection is carried out in the chart for LSC and
MSC cases of the chart. Especially for the LSC case, universal/existential chart attribute of
the Block object is filled. Second selection is made in the instance for event, inline
expression and reference cases. When generator meets an event, LSCObject object is
instantiated.

When generator meets an inline expression, it creates a Block object and adds the block
object whose key is the precedence value of the inline expression (precedence on the
connection between the inline expression and the instance in the model) into the blocklist for
the inline expression. It also adds a dummy event into the message list (Messages).
Therefore, a binary relation, such as <dummyMsgForSeg,blockAlt>, between the dummy
event in the message list and the inline expression block in blocklist can be established by
using the precedence value. When the Back End module meets an empty event object, it
interprets that an inline expressing is handled. Note that precedence value, which is entered

to the LSC model by the modeler, expresses the execution order of the event in the time slot.

5.3. Target Code Generation — Back End
Back End module (Figure 3.3) generates the Java codes from the constructed intermediate
form. Activity diagram of the back end module is depicted in Figure 5.5 back end module
first generates function declarations such as sending, receiving, auxiliary and timer
declaration and aspect advices of the methods. After the method declaration, main function
of the instance code (made up of inline expressions and method calls) is generated. For every
inline expression block object in the intermediate form, different code is generated. For
example, “while clause” code segment is generated from the operand (block object) of the
loop inline expression. These selections are represented decision markers in the activity
diagram.

When code generation meets an empty event which matches an inline expression, it
retrieves the inline expression block from blocklist by using the empty event’s precedence
value. And generator recursively continues to generate nested inline expression code by

using the block.

70

Gimer Codes

(ﬁxuxilan‘r Methods
Send Methods

Generate Instance Main Function Generate Function Declarations

Generate Inline Blocks

Aspect Receive Methods Aspect Auilary Methods '

SEQ or

Generate Inline Block
=

ALT or Mot PAR ar Nat Chart or
Mat Mat
Loop or Mot
Parallel Sequential
O A Generate Event Cods

IThenElse

While Da or Do While ar If Then ar If Then Else
Praechart Mat Mot ar Not

Figure 5.5 Activity Diagram of the Back End Module

5.4. Dictionary Usage in the Generated Code

A dictionary is a collection of pairs such that in each pair there is a key and its corresponding
information. Java hashtable data structure is used for the dictionary implementation.
Dictionary is used for choice operations in the generated code. Name of the model elements

such as conditions, alternative inline expressions becomes a key for the dictionary.

71

In the generated preliminary computation aspect, this value is determined randomly.
However, this value can be edited in the computation aspect by using its key. Sample usage

is given in the figures of section 5.7.

5.5. Multi-threaded Realization of Instances
We employ threads for realizing instances and diagrams. For each instance and each

diagram, a thread is allocated. There are two types of instance in the LSC: static and
dynamic. Although static events are created at the beginning, dynamic instances are created
by a create-instance event Threads of both static and dynamic instances are declared in the
diagram base code. The threads of an static instance is started at the point of declaration in
the diagram code while a dynamic instance thread is started when an LSC create-instance
event is received, and stopped when an stop-instance event is received.

Moreover, threads are also used in parallel inline expression (PAR) and LSC simultaneous
region implementations. More detailed explanations are given for inline expressions in

section 5.10, and for simultaneous region in section 5.15.

5.6. Events
Typical events are either a sending or a receiving. Sending and receiving events are

specialized such as in, out, call, receive, replyin and replyout. There are also conditions,
create-instance/stop-instance events, and timer events

A condition can be local or multi-instance. Local condition is confined to a single
instance. A multi-instance condition is shared between two or more instances.

In the code generation time, when a local condition event is met, an “if clause” (see Figure
5.6) code is generated. Condition value of “if-clause” comes from the dictionary of the
instance whose key is the name (i.e. Condition (Card.Inserted)_000f in Figure 5.6) of the
condition model element. Also an “if-clause” is generated for multi-instance condition. But,
in this case, value of the condition comes from the diagram’s dictionary because the diagram
is common for all participant instances.

If condition event comes from an instance, condition is valid until to the end of the chart
where instance is located. If the condition event comes from nested inline expressions, it is

valid until to the end of the inline expression’s operand block.

if (((Boolean)coldChoices.get("Condition (Card.Inserted)_000f")).booleanValue())
//Condition is model element name and comes from the model

(....)//codes in the condition block
else //for only the hot conditions

return; //if condition is not satisfied, the nearest method is exited

Figure 5.6 Hot Condition Example
72

Instance creation may be desirable to divide the “application instance” into many sub-
instances in case of instance decomposition property in LSC. Sub-instances are also
implemented by using threads similar to native instances. Every sub-instance will be located
in a separate thread also.

In the generated code execution time, when a create-instance method is called, related
thread (target instance of event in the model) is started (i.e. ClientDiagram.pClient.start() in
Figure 5.7). On the other hand, when a stop-instance method is called related thread is

stopped.

(...) //other unrelated codes
ClientDiagram.pClient.start();//create-instance event
(...)//unrelated code
ClientDiagram.pClient.stop();//stop-instance event

(...)//unrelated code

Figure 5.7 Instance Creation/Stop Example

There are three timer events, namely starttimer, stoptimer and timeout in the model. A
Java Timer class is used for timer event implementation. Java timer class definition and timer
functions’ codes are generated in the LSC instance code. For every Java timer, there is a
timer function that runs whenever a timer event such as timeout, starttimer occurs.

In the code generation time, when a starttimer event’s model element is met, the timer set
value is read from the model and then the timer’s setter code is generated according to this
value. When a re-starttimer event’s model element is met, timer’s stopper and then re-starter
(reset) codes are generated. Timer’s reset value is treated in the same manner timer’s set
value.

At run time, when the timer’s setting time is passed, timer’s function is called. When the
timer’s timeout time is elapsed, timer’s function is called and also a timer flag (i.e.
timerFlagTimerl in Figure 5.8) is set to true in it. (Timer flag is a boolean variable that
indicates whether the timeout has occurred or not) When reaching the timeout method
execution in the LSC instance code, the timeout received warning may be introduced to the

user if flag is true in the timeout method (i.e. RecvTimerITimeout()).

73

doLaterTimer1(1000); // Start Timer

(...)/[codes between start and reset timer events
stopTimer1();//Stop Timer

doLaterTimer1(1000); //first stop then re-start timer.
(...)/[codes between reset timer and timeout events
if(timerFlagTimer1)//timer flag to be set

{

RecvTimer1Timeout();// Timeout function

Figure 5.8 Example for Timer Events

When a lost or a found attribute of a message or a method call event is met in the code
generation time; only a method definition which has an empty body is generated for the
message in the LSC instance code. Action is also a kind of local event similar to lost and

found. When an action event’s model element is met, only a method definition is generated.

5.7. Buffering of Received Messages

Buffering is used for receiving events of instance. For every event, a FIFO (first in first out)
message queue is declared and used. In the implementation, a standard queue (i.e.,
sun.misc.Queue in Java) class is used for the FIFO data structure.

When an event is received, it is put into its queue (i.e.
queMessagelnput_0026Client.enqueue(proc) in Figure 5.9). When executing the LSC model
and meeting a received event, an event is de-queued. But if the queue is empty (i.e. while
(!boolMessagelnput_0026Client())), event receiving is waited in a “while” loop statement
for next receiving events that are mandatory (i.e.: hot event). If received event is declared a
hot event, loop is only broken when an event comes. However, if received event is cold,
declared number of polls in the configuration file is applied. If this waited event is received
in these polls, it is accepted. If not, loop is broken and LSC execution is continued.

In this approach, all received messages are put in a queue dedicated for the reception of
this message and they are taken from the queue one by one. This capability enables the
receiving asynchronous messages because asynchronous messages are sent or received at
any time and only buffering is used to handle this uncertainty. Code generations for

synchronous messages are left as a future work.

74

public static void RecvMessageInput_0026Client(LSCLib.LSCObject proc)
{
queMessagelnput_0026Client.enqueue(proc);

}// Received event is put into the queue

public static boolean condRecvMessagelnput_0026Client()
{

while (!boolMessagelnput_0026Client())
SleepThread(100);

LSCLib.LSCObject proc=null;

try {
proc = (LSCLib.LSCObject) queMessagelnput_0026Client.dequeue();

} catch (InterruptedException e) {
e.printStackTrace();
return false;

}

ProcessRecvMessagelnput_0026Client(proc);

return true;

}//Dequeue example

Figure 5.9 A Buffering Example

5.8. Temperature Property

Conditions, events, charts (universal/existential), locations and timers can be hot or cold. All
these are hot except for conditions in the generated preliminary computation aspect.
Condition defines a block which surrounds the events on which condition is applied. The
events are in such as chart and operand.

In the generated code execution time, if a cold condition is satisfied, all other events from
the condition to the end of the block are executed. If it is not, the events are not executed.
However, if the condition is hot and not satisfied, events in the condition block are not
executed and instance code is exited from the closest method where the condition is in. This
is done by generating a “return statement” (see Figure 5.6) at the end of the block in the code
generation time.

Behavior of a hot/cold event is different whether it is sending or receiving in the
generated code execution time. If the sending event is hot, it must be sent; but if it is cold, a
lot is drawn and the event is sent or not according to the result. If a receiving event is hot, the

event must be waited until it comes. But, if the event is cold, the event is waited for

75

according to the parameters (i.e. 50 and /00 in Figure 5.10) of the configuration file. If it
does not arrive within this waiting period, instance code stops waiting and continues the

execution for next event in the LSC.

for (int i=0;i<50;i++) //loop count retrieved from configuration file

{
if (boolMessagelnput_004fClient())//if the event in the queue, if condition is satisfied.

{

condRecvMessagelnput_004fClient();//event is retrieved from the queue.
break;
}

SleepThread(100); //waiting time comes from the configuration file.

}

Figure 5.10 Receiving a Cold Event

If a chart is hot or universal, the inner events of the chart must always be executed, but if
it is cold or existential, also a lot is drawn and according to the result, the events of the chart
are executed or not. If a location is hot, all events on the location behave as described earlier
in this section. If the location is cold, sending hot/cold events and receiving hot events
behave also the same. In the cold event receiving, the events are also waited according to the
parameters of the configuration file as the hot location case. But differently if they are not
come in this waiting period, instance code stops waiting and do not continue the execution
for next statement in the LSC. In the code generation time, a “return statement” is added to
the end of the location so instance code is exited from the closest method where the events
are in.

In timer events, starttimer and stoptimer events act the same behavior as the standard
sending events. Only the timeout event acts different behavior in the generated code
execution time. If a timer is cold and timeout time is elapsed, the timeout event is received
and only warning message which says “a timeout is occur” is presented to the user.
However, a hot timeout is violated, similar to the hot condition, it is exited from the method

in which timer is active.

5.9. Resolving Non-determinism by Randomization
Non-determinism is inherent in the LSC/MSC operational semantics. For example,
receiving/sending cold events, loop count in a range for loop inline expression, and alterative

inline operand selection all involve nondeterministic choices.

76

We apply randomization for cold event sending, for alternative inline operand selection,
and for loop inline expressions, fixing iteration count within the range between the
prescribed min and max. The random number seed can be set in the configuration file to
support repeatability. If this seed number is not set, seed number becomes the “current time”
in initial.

The randomization logic is coded within the preliminary computation aspect. Methods in
which randomization is applied can be edited in the corresponding advices of the methods of
the computation aspect by the developer according to the appropriate application logic

(Figure 4.9).

5.10. Inline Expressions

Code generation for MSC/LSC inline expressions in the LSC instance base code is explained
in this section. For the alternative (ALT) inline expression, a “switch case clause” code (see
Figure 5.11) is generated. In generated code execution time, according to the making choice

(i.e. Altl in Figure 5.11), chosen operand (block) code is executed.

int Altl=chooseAlt(2,"Alt1_0065");
switch(Alt1){
case 0:
SendEventM(); //alternative 1
break;
case 1:
SendEventN(); //alternative 2
condRecvEventO();//
break;

}

Figure 5.11 Alternative Inline Expression Example in Figure 5.2

For the parallel inline expression, a thread code is generated for each operand (i.e.
opl_0041 in Figure 5.12) of the parallel inline expression. In the generated code execution

time, these threads are run in parallel.

77

class op1_0041 extends Thread { //inline thread definition for the operand of PAR.
opl_0041 () {}
public void run() {// thread running function
(...)//codes in the operand of the parallel
stop();
}

}
opl_0041 p0 = new opl_0041 ();//thread is declared
pO.start();//thread is started

Figure 5.12 Parallel Inline Expression Example

For the loop (LOOP) inline expression, a “while clause” which uses the min and max
parameter values, code is generated. If these parameters are “inf, inf’, an infinite loop
(“while(true)”); if they are “x, inf’, a loop that iterates a number of times between x and
infinite; if they are “inf, Xx”, a loop that iterates a number of times between 0 and x; if they
are “x, y” (i.e. in Figure 5.13 x=0 and y=2), a loop that iterates a number of times between x
and y and finally if they are “x, x”, a loop iterates exactly x times is generated. All this
selection is made randomly in the generated preliminary computation aspect.

Besides the Loop inline expression, for “while-do” and “do-while” structures called
idiom, code is generated. For the while-do idiom, a “while clause”, for the do-while idiom, a

“do while clause” code is produced in the code generation time.

78

boolean loopCond=false;

int countLoop1=0;

int loopCount = getLoopCount("0","2");//loop iterates at most two times.
if(loopCount==-1)

loopCond=true;

while(countLoop1 <loopCount Il loopCond)

{
(...)//cold message sending related code
SendEventP();
(...)//cold message sending related code
countLoopl++;
}/end of loop

Figure 5.13 Loop Inline Expression Example in Figure 5.2

In the same way, code is generated for “if-then” and “if-then-else” idioms. For “if-then”
idiom, an “if clause”, and for “if-then-else” idiom, an “if-then-else clause” code is produced.

For the exception (EXC) inline expression, a “try-catch” clause code is generated.
According to the try body code execution, exception part is run at the generated code
execution time.

For the option (OPT) inline expression, operand (block) of the option inline expression is
surrounded with an “if-then” clause and according to the condition value; operand code is
executed or not executed at the generated code execution time. At last, for sequential (SEQ)
inline expression, all generated operand codes of the inline expression are appended

sequentially.

5.11. Barrier Synchronization

Barrier synchronization is used for executing multi-instance inline expressions
synchronously at generated code execution time. CyclicBarriers (a Java class for the barriers
synchronization) are used for this aim. For every multi-instance inline expression, a
CyclicBarrier (i.e. RepeatUntil_02ef in Figure 5.14) is declared in the diagram code. When
an instance reaches to the end of the multi-instance inline expression, it calls await method
so the CyclicBarrier blocks the thread until the all other instance’s threads call the await
method. If all instance threads reach the end of the inline expression, blocking is broken and

the multi-instance inline expression is synchronized properly.

79

do {
(...)//other unrelated code in the while block
try {
Ship_MSC.RepeatUntil_02ef.await();
//do-while (or repeat-until) idiom is blocked.
} catch (...)
} while (!((Boolean)Ship_MSC.coldChoices.get("until_0300")).booleanValue());

Figure 5.14 Barrier Synchronization Example

5.12. Prechart

Pre-chart is consists of two separate blocks (pre and body blocks). In pre-chart semantic, if
any events of the pre-block were executed, then the events of the body block are executed. In
the generated LSC instance base code, all methods return a boolean argument whether to
indicate they are executed successfully or not. To determine the occurrences of the any
events of the pre block, a flag (i.e. condPar_0040 in Figure 5.15) is used. Initially the flag is
set to false. An “if-then” clause code is generated for the body block.

In the generated code execution time, returned argument of every event in the pre block
and the flag is compared by OR (Il) operator and new flag value is set. This is repeated to
last event of the pre-part. Finally, with respect to the obtained flag value, body block is
executed or not executed. .

Pre-chart is handled as an inline expression that have two operands (blocks), first operand

points out the pre block, second operand does the body block.

80

boolean condPar_0040=false; //pre-chart condition flag
for (int i=0;i<50;1++)
{
if (boolMessagelnput_004{Client())
{
condPar_(0040=condRecvMessagelnput_004fClient() Il condPar_0040;
/lcold message
break;
}
SleepThread(100);
}//cold message received in the pre-part
if (condPar_0040) //if flag is true, body of the prechart is executed
{//start of body
SendMessageOutput_004bClient(new Object());
condRecvMessagelnput_0048Client();
SendMessageAction_Check_Amount_and_Give_MoneyACTION(new Object());
}/lend of body

Figure 5.15 Prechart Example

5.13. Coregion

The events in the coregion happen in arbitrary ordering. Messages to be sent in the coregion
are sent in a randomly generated order. In the sending algorithm, there is a while loop. In this
loop, randomly a number is selected in the range of event count and corresponding event is
executed. This loop iterates until the all events are executed. If sending event is cold, before
sending, a lot is drawn and event is send or not in the generated execution time.

Round-robin algorithm is used to receive events in the coregion when they are come. In
this algorithm, there is a while loop and in this loop, all message-in events are checked one
by one whether they come in the queue or not. If an event came, this message is received
from the queue. This algorithm also guarantees to give an equal chance to all events (i.e.
chooseOne method achieves this in Figure 5.16). Loop iteration count depends on the
number of hot and cold events (i.e. nHot=3 and nCold=0 in Figure 5.16) in the coregion.
When the coregion has at least one hot event, loop iteration continues until the all hot events
are received. On the other hand, when the coregion has only cold events, loop iterates finite
number of times which is determined by the polling count and period time in the

configuration file.

81

Regarding to the MSC standards, local general ordering is only applied in the coregion. In
local general ordering, orders of the two events of the same instance can be changed. Local
general ordering process differs whether events are sending or receiving.

For the sending events, rules that indicate the event order are defined. A rule dictates a
binary relation. This binary relation says that first event occurs before the second event. It is
represented as a vector (a, b). In the randomly sending events process of the coregion, first,
rules are looked at, if the rules are satisfied, the event is sent. But, if any rule is violated,
random selection is repeated until the rules are satisfied.

For the receiving events, before the former coming event (el) is received, the latter event
(e2) is not controlled by the round-robin algorithm whether it comes or not in the queue. (el
> e2: means el occurs before e2) Therefore, after the former (el) is received, algorithm
starts to control latter event (e2). This queue control restriction does not cause any data loss
because of the event queue mechanism. If the latter event (e2) comes first, it is put and
waited in the queue. When the former event (el) is arrives first, it is executed and then the
latter event (e2) is retrieved from the queue and executed. Consequently, general ordering is

ensured for both sending and receiving events.

82

ArrayList selectedList = new ArrayList();
(...)//other declarations such as nHot, iHot, nCold, iCold etc
nHot=3; iHot=0; //we assume that there are three hot sending events in the coregion
nCold=0;iCold=0; //we assume that there is no cold sending events in the coregion
while(iHot+iCold<nHot+nCold) //round-robin algorithm
{
int choice=chooseOne(selectedList,null);
/1 select random message from the selected list.
// This function guarantees to select a different choice for every iteration
switch(choice)
{//switch
case 1:
SendEvent1();
break;
case 2:
SendEvent2();
break;
case 3:
SendEvent3();
break;
H/switch
iHot++;
}

selectedList.clear();

Figure 5.16 Coregion Example

5.14. General Ordering

In this section multi-instance general ordering is described. Local general ordering is

explained in the coregion (5.13) section. In the multi-instance general ordering (el>e2), if

the latter receiving event (e2) comes first, it is waited until the former event (el) comes. To

establish waiting, before the latter event (e2), a while loop is added to the code. Loop

condition is false at the beginning. When the former event (el) comes first, it changes the

condition of the loop to true and this breaks the loop of latter event (e2). This loop condition

is declared in the diagram shared by the two instances. As a result, multi-instance general

ordering property is provided (see Figure 5.17).

83

SendEvent1();//former event: el

Diagraml.setgeneralorder 1 =true;

Figure 5.17 a General Order Example (instance 1)

while(!Diagram]1. setgeneralorderl);

CondRecvEventl1();//latter event:e2

Figure 5.17 b General Order Example (instance j)

5.15. Simultaneous Region

Events in a simultaneous region are perceived as simultaneous, i.e. happening at the same
instant of time. In other words, these events are executed at the same time and before all of
them are finished, any other event does not happen. Threads are used in the simultaneous
region implementation. In this implementation, each event of the region is executed in a
separate thread (i.e. SimultaneousRegionl thread in Figure 5.18). While these events
execute, other event executions are waited. After all the threads stop, waiting is ended, and

LSC execution continues.

84

class SimultaneousRegion1 extends Thread
{ //simultaneous region thread.
SimultaneousRegion1() {}
public void run()
{
SendEvent1();
stop();

}

/Iwe assumes that there are two events in the simultaneous region. So two threads is defined and
started.

SimultaneousRegion] pSimultaneousRegionl = new SimultaneousRegion1();
pSimultaneousRegion|.start(); //thread of the first event is started

(...)//thread code of the second event.

SimultaneousRegion2 pSimultaneousRegion2 = new SimultaneousRegion2();
pSimultaneousRegion2.start();//thread of the second event is started
while(!pSimultaneousRegion]1.alive()& & !pSimultaneousRegion2.alive());

//wait for threads and other events are not executed.

Figure 5.18 Simultaneous Region Example

5.16. Gate

In the MSC chart structure, gates are used to send an event to outside of the chart and receive
an event from the outside of the chart. Events are sent to gate and received from the gate. We
also use queue solution for the gate implementation similar to event. In this solution, a
message queue is defined for each gate. Sending messages are put in the gate’s queue (i.e.
queMessageTextGate.enqueue(proc) in Figure 5.19); receiving events are retrieved from the
queue. These queues are declared in the LSC diagram code, different from the event’s

queues. Hence, all instances of the diagram can use the same gate’s queue.

85

/MIn LSC instance base code
public static boolean SendMessageTextGate(Object obj)
{
LSCLib.LSCObject proc= new LSCLib.LSCObject();
(...)l/proc (LSC Object) object is set.
MSC.RecvMessageTextGate(proc);//gate queue is declared in the diagram base code.
return true;
}
//in LSC diagram base code
public static void RecvMessageTextGate(LSCLib.LSCObject proc)
{

queMessageTextGate.enqueue(proc);//sending event is put into the queue.

}

Figure 5.19 Gate Example

5.17. Local Invariant
Invariant is a property that must be satisfied at each point in the interval over which it is
defined. Hence, it must be checked before and after each event in the interval. In the code
generation time, when a start invariant event is met, in the front of the all subsequent events,
an “if-then-else” clause code is appended. In the “else” part of the clause, a “return
statement” is added (i.e. Invariant] in Figure 5.20). When an end of invariant event is seen,
appending is stopped. This invariant condition is handled similarly as the standard
(horizontal) condition. Because, invariant is a kind of vertical condition.

When the generated code runs, events are executed according to the invariant condition
value. If the condition is violated, the closest method of the instance base code that encloses

the condition is exited.

86

if(((Boolean)coldChoices.get("Invariant1")).booleanValue()){ //invariant condition
SendMessageOutj(new Integer(0));
SendMessageActionACTION(new Integer(0));

}

else //if condition is not satisfied, it is aborted.

return;

//end of invariant

Figure 5.20 Local Invariant Example

5.18. Namespacing
In the generated base code, every diagram code is generated in a separate namespace. In Java
programming language, every namespace indicated a different folder (directory). As a result,

there can be LSC instance classes named the same in different diagrams in the application.

5.19. LSC/MSC Composition

LSC charts are composed in parallel, sequentially or alternatively by using their references.
In the code generation time, whenever a reference to a chart is encountered in the input
model, the referenced chart model is traversed and finally code for it is generated at the point

of reference in the base code.

5.20. High Level MSC (HMSC)

HMSC is a kind of representation of the composition of the diagrams by using references of
them. In the MSC composition operation, LSC diagrams of the MSC/LSC document are
composed in parallel, alternatively and sequentially. HMSC shows these compositions more
clear, understandable and simple form. Thus, code generation for MSC composition is used
for the code generation for the HMSC similarly. In the following figure, an HMSC and

corresponding MSC composition model is represented.

87

MSC Cycle

MSCI

Figure 5.21 a High-Level MSC (B35 in [ITU-T 1998])

MSC Cycle i
I

locp=inf mf-)

)

Figure 5.21 b HMSC’s corresponding MSC Composition (B35 in [ITU-T 1998]))

88

CHAPTER VI

CASE STUDY: CONSTRUCTION OF A FEDERATION MONITOR
FEDERATE

In this chapter, more comprehensive example is introduced. Firstly, the simulation system is
described, and then code generation process is applied on its architecture model throughout

the chapter.

6.1 Introduction to Case-study

Naval Surface Tactical Maneuvering Simulation System (NSTMSS, see
http://www.ceng.metu.edu.tr/~otopcu/nstmss/) is a HLA based distributed simulation system
that is composed of 3-dimensional ship handling simulators, a tactical level simulation of
operational area, a virtual environment manager, and simulation management processes (i.e.,
scenario management and simulation monitoring).

NSTMSS has been developed by using the concepts of HLA, which provides a structural
basis for interoperability and reusability. NSTMSS uses Runtime Infrastructure (RTI) for
data communication and object exchange, SGI OpenGL Performer for 3D graphical
interfaces and virtual environment. UML has been used for Object Oriented Analysis and
Design (OOAD).

Federation Monitor Federate (FedMonFd) is NSTMSS’ stealth observer federate.
FedMonFd enables generic data collection and reporting on HLA federates about their usage
of underlying RTI services by using HLA Management Object Model (MOM) interface.

FedMonFd provides user interfaces to monitor the status of the federation and the
federates. FedMonFd collects the federate specific RTI data and presents them in tables.
FedMonFd also provides detailed reports for review of the monitoring activity.

FedMonFd provides displays to monitor the status of the federation and the federates.
Federation Monitor Federate displays the federation name, Federation Definition Data
(FDD) file name used in the federation, RTI version used in the federation, federates in the
federation, federation save names (i.e., Last Save Name and Next Save Name), and
federation save times (i.e., Last Save Time and Next Save Time).

Monitor federate displays the info about federates in the federation. The information

displayed consists of federate id, federate name, the host computer name on which the
&9

federate is running, the status of the federate, and the federate handle, which is used by RTL
The information on the displays is automatically updated according to the update period,

which is set by the user.

6.2. Federation Architecture Model Featuring FedMonFd

Federation Monitor Federate has a simple structure. Federation is connected to federate
application to denote the members of the federation. Federation is connected FOMReference.
The FOMReference references to MOM. Moreover FedMonFed’s structure has a minor
difference from other NSTMSS federates. Other federates has a connection between
FederationApplication and SOMReference, but FedMonFd has not SOMReference so there is

no such a connection.

Federation) =
= M
Fedefation FOMReference

Federate Application

Figure 6.1. FedMonFd Federation Structure (FSMM)

In FedMonFd, IEEE 1516.1 Management Object Model (MOM) Library is used in place
of Federation Object Model. This library provides the required object models for HLA
MOM.

90

HLAohECtR oot

HLAMEnager

HL Afederate HL Afederation

Figure 6.2. FedMonFd Object Classes (HOMM)

The Management Object Model (MOM) was designed to provide management
information and control of the RTI, federation, and individual federates through objects and
interactions. In addition to obtaining management information about the federation, the
MOM provides federates with the ability to control the federation through interactions.
Under this mechanism, the federates initiate control interactions that are sensed and reacted
to by the RTL
Using the MOM a federate can,

e Obtain management data directly from the RTL

¢ Control the federation through interactions.

e Extend the MOM to provide federation-specific management functions.
MOM Objects
The MOM consists of two object classes that are used to provide persistent data about the
federation, the RTI, and individual federates: a Manager.Federation, and a
Manager.Federate
The attributes of Manager.Federation provide federation information, such as:

¢ Federation name

e List of federates

91

e FED file ID
e RTI Version
e Save Status
The attributes of Manager.Federate provide federate information such as:
¢ Federate type and ID
® Host name of computer
¢ Time management information
e State of the federate
® Object and interaction information
o Number of objects and interactions sent
o Number of interactions sent and received
o Number of objects updated and reflected
o Number of objects owned
MOM Interactions
There are four classes of MOM interactions:
¢ Adjust interactions control aspects of the federation, federate, and the RTI
e Request interactions obtain RTI information from another federate
e Report interactions report RTI data about a federate; the RTI issues them in reply to
Request interactions
e Service interactions are used to invoke RTI services on behalf of another federate
The type of control available through the Adjust interactions include
e Timing of attribute updates
e Ownership of attributes
e Setting service and reporting logging
The type of information available through the Report and Request interactions include
e Subscription and publication information
® Ownership information
e Update and Reflection information
e Alert status
The types of control available through the Service interactions include
¢ Resignation of federates
e Saving and restoring of a federation
e Publication and subscriptions of federates
e Setting ownership and transportation of attributes

e Setting federates time management parameters

92

To understand the behavioral model of the FedMonFd, the legacy FedMonFd
application’s code is analyzed. This application was written as a one of the federate of
NSTMSS application. To start out, the FedMonFd application was analyzed to understand
the behavior of the Federation Monitor Federate.

In the second phase of the work, LSCs were drawn with MS Visio. In this phase,
modeling was refined and got ready to transfer to the GME environment. In written
FedMonFd application, DMSO RTI NG 1.3 was used. But we planned to model Federation
Monitor Federate according to IEEE 1516 Standard. So a mapping was done between
DMSO RTI and IEEE 1516 Specification.

In the third phase of the work, behavior modeling was realized in GME according to
these drawings.

FedMonFd is constructed following parts:
® Federate Initialization
e Refreshing All Monitors
* Timer interactions
e RTI callbacks interactions
¢ Federate resign and federation destruction
FedMonFd behavioral model (BMM) can be seen in the following live sequence charts (in

Figure 6.3).

93

FedMonFd

Create and Join Federation

input

>

NSTMSS

Create Federate

EnableAsynchronousDelivery()

par |

repeatUntil

»

alt |

Refresh All Monitors

input=1

Resign and Destroy Federation

input=2

exit=true

exit=true

Discover Object Instance

ReflectAttributeValues()

exit=true

Start RTI Data Monitor Timer,

X
pAN

RTI Data Monitor Timer
Stop RTI Data Monitor Timer\/

exit=true

Start Status Timer

Stop Status Timer ; i

Status Timer

Figure 6.3. FedMonFd Behavioral Model

94

User EedMonFd

NSTMSS

seq

createFederation

CreateFederationExecution("NSTMSS", "nstmss.fed")

EvokeCallback()

initializeFederation

JoinFederationExecution("FedMonFd", "NSTMSS")

EvokeCallback()

EnableAttribureRelevanceAdvisorySwitch()

publishAndSubscribe

GetObjectClassHandle("Manager.Federation™)

GetAttributeHandle(federationHandle, NULL)

SubscribeObjectClassAttributes(federationHandle)

GetObjectClassHandle("Manager.Federate")

GetAttributeHandle(federateHandle, "Federateld")

GetAttributeHandle(federateHandle,"FederateState")

GetAttributeHandle(federateHandle,"FederateHost")

GetAttributeHandle(federateHandle, "FederateType")

SubscribeObjectClassAttributes(federateHandle)

GetlnteractionClassHandle("Manager. Federate. Request. RequestPublications")

GetlnteractionClassHandle("Manager.Federate.Request.RequestSubscriptions")

GetlnteractionClassHandle("Manager.Federate Request.RequestinteractionsSent")

GetlinteractionClassHandle("Manager.Federate.Request. RequestinteractionsReceived")

GetlnteractionClassHandle("Manager.Federate.Request.RequestObjectinstancesReflected")

GetlinteractionClassHandle("Manager.Federate.Request. RequestObjectinstancesUpdated")

GetlInteractionClassHandle("Manager.Federate.Report. ReportObjectClassPublication")

GetlnteractionClassHandle("Manager.Federate.Report.ReportObjectClassSubscription)

GetlnteractionClassHandle("Manager.Federate.Report.ReportinteractionPublication")

GetlnteractionClassHandle("Manager.Federate. Report. ReportinteractionSubscription")

GetlInteractionClassHandle("Manager.Federate.Report.ReportinteractionsSent")

GetlinteractionClassHandle("Manager.Federate.Report.ReportinteractionsReceived")

GetlinteractionClassHandle("Manager.Federate.Report.ReportObjectinstancesReflected")

GetlnteractionClassHandle("Manager.Federate. Report. ReportObjectinstancesUpdated")

GetlnteractionClassHandle("Manager.Federate. Report. ReportServicelnvocation")

GetlnteractionClassHandle("Manager.Federate. Adjust. SetTiming")

GetlnteractionClassHandle("Manager.Federate. Adjust.SetServiceReporting")

Figure 6.3 FedMonFd Behavioral Model (Continued)

95

EedMonFd

NSTMSS

seq

GetParameterHandle(requestPublicationsHandle)

GetParameterHandle(requestSubscriptionsHandle)

GetParameterHandle(requestinteractionSentHandle)

GetParameterHandle(requestinteractionReceivedHandle)

GetParameterHandle(requestObjectinstancesReflectedHandle)

GetParameterHandle(requestObjectinstancesUpdatedHandle)

GetParameterHandle(reportObjectClassPublicationHandle)

GetParameterHandle(reportObjectClassSubscriptionHandle)

GetParameterHandle(reportinteractionPublicationHandle)

GetParameterHandle(reportinteractionSubscriptionHandle)

GetParameterHandle(reportinteractionSentHandle)

GetParameterHandle(reportinteractionReceivedHandle)

GetParameterHandle(reportObjectinstancesReflectedHandle)

GetParameterHandle(reportObjectinstancesUpdatedHandle)

GetParameterHandle(reportServicelnvocationHandle)

GetParameterHandle(setTimingHandle)

GetParameterHandle(serviceReportingHandle)

Figure 6.3 FedMonFd Behavioral Model (Continued)

96

User FedMonFd NSTMSS

seq

PublishinteractionClass(requestPublicationsHandle)

PublishinteractionClass(requestSubscriptionsHandle)

PublishinteractionClass(requestinteractionSentHandle)

PublishinteractionClass(requestinteractionReceivedHandle)

PublishinteractionClass(requestObjectinstancesReflectedHandle)

PublishinteractionClass(requestObjectinstancesUpdatedHandle)

PublishinteractionClass(adjustSetTimingHandle)

PublishinteractionClass(adjustServiceReportingHandle)

SubscribelnteractionClass(reportObjectClassPublicationHandle)

SubscribelnteractionClass(reportObjectClassSubscriptionHandle)

SubscribelnteractionClass(reportinteractionPublicationHandle)

SubscribelnteractionClass(reportinteractionSubscriptionHandle)

SubscribelnteractionClass(reportinteractionSentHandle)

SubscribelnteractionClass(reportinteractionReceivedHandle)

SubscribelnteractionClass(reportObjectinstancesReflectedHandle)

SubscribelnteractionClass(reportObjectinstancesUpdatedHandle)

SubscribelnteractionClass(reportServicelnvocationHandle)

RequestAttributeValueUpdate RequestAttributeVValueUpdate(federationHandle)

RequestAttributeValueUpdate(federateHandle)

Figure 6.3. FedMonFd Behavioral Model (Continued)

97

FedMonFd

NSTMSS

seq

RTI Data Monitor Timer

Status Timer

Figure 6.3. FedMonFd Behavioral Model (Continued)

98

User

input

FedMonFd

requestReports

Figure 6.3. FedMonFd Behavioral Model (Continued)

EvokeCallback()

NSTMSS

Sendinteraction("RequestPublications")

SendInteraction("RequestSubscriptions™)

Sendinteraction("RequestObjectinstancesUpdated")

SendInteraction("RequestObjectinstancesReflected")

Sendinteraction("RequestinteractionSent")

Sendlnteraction("RequestinteractionReceived")

99

EedMonFd

EvokeCallback()

NSTMSS

requestFederationInformation ﬁ

RequestAttributeValueUpdate(federationHandle)

EvokeCallback()

requestFederatelnformation ﬁ

RequestAttributeValueUpdate(federateHandle)

Figure 6.3 FedMonFd Behavioral Model (Continued)

100

FedMonFd NSTMSS

et
/ DiscoverObjectinstance() \\
\ //

RequestAttributeValueUpdate()

Figure 6.3 FedMonFd Behavioral Model (Continued)

101

User FedMonFd NSTMSS

exit

N
»

Resign Federation

ResignFederationExecution(DELETE_OBJECTS_AND_RELEASE_ATTRIBUTES)

Destroy Federation

DestroyFederationExecution("NSTMSS")

Figure 6.3 FedMonFd Behavioral Model (Continued)

Note that there is no modeling element related to user interface. After completing the last

phase of the study, the generated code will have not user interface functionality. But to

102

complete the Federation Monitor Federate, user interface functionality must be included. For
readability issues, abstraction is used. One can focus on the next phase by drilling down on

the model element.

Prechart

InstanceRef-=FedionFd

Federation]

"""""""""" }\}/}
InstanceRef-=NSTMSS
ot EnableAsynchronousDelivery
Par InstanceRef-=lser

ll

Endinstance

Figure 6.4. FedMonFd Main Chart in FAMM

Seq

Figure 6.5. Sequential Operator in Pre-chart in Figure 6.4

103

InstanceRef->FedMorF out CreateFederationExecuticin

ot EvokeCallback

ot JoinFederationExecution

ot EvokeCallback

Figure 6.6. Initialize Federation Operand in Figure 6.5

6.3. Code Generation for the FedMonFd

We now represent a walkthrough of the code generation process.

6.3.1. Steps in Using the Code Generator:

Step i: Construct the FAM

Federation
> S

InstanceRef->NSTMSS

The FedMonFd FAM is built conforming to the metamodel FAMM as described above in

section 6.2.

Step ii: Configure the Generator
Final configuration XML file is presented (Figure 6.7) as:

104

<?xml version="1.0" encoding="ISO-8859-1"7>

<Confs>

<Random seed="123456">

</Random>

<Sleep time="100" passes="50">

</Sleep>

<PATH>

<Generated path="c:\eclipse-SDK-3.0.1-win32\eclipse\workspace\FedCodeGen\">
</Generated>

<Generator path="c:\eclipse-SDK-3.0.1-win32\eclipse\workspace\NewCodeGenProject\">
</Generator>

</PATH>

<External-InstanceLibs>

<InstanceLib name="RTILib" prefix="RTI">

</InstanceLib>

</External-InstanceLibs>

</Confs>

Figure 6.7. XML Configuration File for the Code Generator for FedMonFd Application

Step iii: Run the Generator
After completing the configuration, the generator is run [GME 2006]. The generated code
files are placed in the folder specified in the configuration file. In our case:
FedMonFdChart (Diagram class), FedMonFd (monitor federate class), User (Live entity
class), FedMonFdAspect (computation aspect of monitor federate), UserAspect (computation
aspect of user) and NTSMSSLibAspect (federation execution aspect) are generated in the
output folder. Generated three classes and three aspects are shown with a class diagram in

Figure 6.8.

105

feMonracht

FedhonFdThread

UserThread

Aft_0450 : CyclicBarrier
altChoices : Hashtable
coldChoices : Hashtable
L=C_1_02a3: CyclicBarrier
Opt_0854 : CyclicBarrier
Par_03cE : CyclicBarrier
pFedMonFd : FedMonFdThread
pUser : UserThread
Repestlntil_0675 : CyclicBarrier
Seq_03cc : CyclicBarrier
Seq_03fk: CyclicBarrier
Seq_0785: CyclicBarrier
addAtChoices(String, int)
addColdChoices(String, hoolean)

main(StringlT)
Cover T

altChoices | Hashtable

coldChoices | Hashtahle

objectQIDs | Hashtable

add At Choices(String, int)
addColdChoices(String, boolean)
chooseAt(int, String)

chooseCond(String)
chooseOnelArrayList, Hashtable, String)
getLoopCourt(String, String, String)
miain(String[])
Sendvessagelnput_078dFedhonFo(Object)
Sendviessagelinput_03caFedanFo(Object)
SleepThread(int)

UszerMaintethod()

Cover

override computation

UserAspect

choogeCond()

UserAzpecthainhethod)

g_InputString_076T : Object
o_InputString_08cc : Ohject

MainC)

pochooseAltdnt, String)
pechooseCondString)

pcchooseOne ArrayList, Hashtable, String)
peoetloopCount(String, String, Strinc)
poSenddessagelnout_07EdFedMonFd(Ohject)
poSendMessagelnput_08caFedMonFd{Ohject)

Figure 6.8.

a) Base Code

FedMonFdChart, FedMonFd and User are the base code of the monitor federate application
in Figure 6.8. FedMonFdChart is a diagram code where FedMonFd and User thread is
defined and run. FedMonFd is an instance code where federate RTI methods, and LSC-

HTSMSSLibAspect

DiscoverObjectinstance(LSCObject)
Receivelnteraction/L SCOhject)
Reflectattributeyaluss(LECOkjeCt)

caich and forward callbacks

override compuiation

aftChoices | Hashtable

coldChoices | Hashtahle

objectDIDs : Hashtable

timerFlagRTIDatakonitor Timer_03be : boolzan
timerFlagStatusTimer_03c1 : boolean

timerRTIDatatMonitor Timer_03he : Timer

timerStatusTimer _03c1 : Timer

addAtChoices(String, irt)

addColdChoicesString, boolean)

main(String[)

Receivelnteraction(LSCOhject)

Reflectattribute’ alues(LECObject)
SendCresteFederationExecutionCFENTSMSS(String, String)
SendDestroyFederationExecutionDFENTSMSS(String)
SendEnahletsynchronousDeliveryEADNTSMSS()
SendEnabletttribiteRelevanceddvisarySwitchEARASNTEMSS()
SendEvokeCallbackECNTSMESOhject)

SendJoinF ederationExecution FEMTSMSS!String, String, String)
SendPublishinteractionClassHLAreguestinteractionsReceived
SendPublishinteractionClassHLArequestinteractions...
SendPublishinteractionClazsHLAreguestObjectinstances
SendPublishinteractionClazsHLAreguestObjectinstances
SendPublishinteractionClassHLArequestPublicationshTSMES()
SendPublishinteractionClassHLAregquest SubscriptionsNTSMSS()
SendPublishinteractionClazsHLAset ServiceReportingMTSMSS ..
SendPublishinteractionClazsHLA st TimingMTSMSS(String)

FedMonFdAspect

[Main()

pochooseARON, String)
pechooseCond(String)
pochooseCne(Arraylist, Hashtable, String)
pegetloopCount(String, String, String)

pcRecvDiscoverObjectinstanceHLAfedersteNTSMSS. .

pocRecviessagelnout_076dUser(Ohbject)
pocRecvMessagelnout_08callser(Ohject)
poRecvReceiveinteractionHL AmanagerNTSMSS.

pcRecvReflectAttribute’YaluesHL AfedersteNTSMSS .

pcRecvRTIDatabonitorTimer _03beTimeout()
poRecyStatusTimer _03c1 Timeout)

peSendCreateFederationExecutionCFENTSMSS{String, String)
poSendDestroyFederationExecutionDFENT SMSS(String)
pcSendEnabledsynchronousDeliver yEADNTSMSS()

peSendEnabledttribiteRelevanced dvisary Switch
pcSendEvokeCallbackECHTSME S Ohject)
pcSendJoinFederationExecution JFENTSMSS ..

peSendPublishinteractionClassHLArequestinteractions...
poSendPublishirteractionClassHLArequestinter actions:
pcSendPublishinteractionClassHLArequestObjectinstances .
pcSendPublishinteractionClassHLArequestObjectinstances .
pcEendPublishinteractionClassHLArequestPublications...
peSendPublishinteractionClassHLArequestSubscriptions...
poSendPublishirteractionClassHLAsetServiceReporting
peSendPublishinteractionClassHLAs et TimingMTSMS S String)

Class Diagram of the FedMonFd Federate

specific auxiliary methods are generated.

106

public static void FedMonFdMainMethod() {
if (((Boolean)FedMonFdChart.coldChoices.get(“LSC_1_02a3")).booleanValue()) {
boolean condLLSC_1_02a3=false;
condLSC_1_02a3=SendCreateFederationExecutionCFENTSMSS(“s0”,”s1”) Il condLSC_1_02a3;
condLSC_1_02a3=SendEvokeCallbackECNTSMSS(new Object()) Il condLSC_1_02a3;
condLSC_1_02a3=SendJoinFederationExecutionJFENTSMSS(*“s0”,”’s1”,”s2”) |l condLSC_1_02a3;
condLSC_1_02a3=SendEvokeCallbackECNTSMSS(new Object()) Il condLSC_1_02a3;
condLSC_1_02a3=SendEnableAttributeRelevance AdvisorySwitchEARASNTSMSS()
Il condLSC_1_02a3;
condLSC_1_02a3=SendSubscribeObjectClassAttributes_04b8HLAfederationNTSMSS
(“s07,7s17,7s2”,7s37,7s4”,7s57,7s6”,s7”,7s8”,7s9”) Il condLSC_1_02a3;
condLSC_1_02a3=SendSubscribeObjectClassAttributes_04bdHLAfederateNTSMSS
(“s07,7s17,7s27,7s37,7s47,7857,7’s6”,7s7”,7s87,7s97,’s10”,7s117,’s12”,7s137,’s14”,’s 157,
“s167,7s177,7s18”,7s197,7s207,7s217,7s22”,75237,7s24”,7s257,7s26”,7s27”,7s28”) Il condLSC_1_02a3;
condLSC_1_02a3=SendPublishInteractionClassHLArequestPublicationsNTSMSS()
Il condLSC_1_02a3;
condLSC_1_02a3=SendPublishInteractionClassHL ArequestSubscriptionsNTSMSS()
Il condLSC_1_02a3;
condLSC_1_02a3=SendPublishInteractionClassHL ArequestInteractionsSentNTSMSS()
Il condLSC_1_02a3;
condLSC_1_02a3=SendPublishInteractionClassHLArequestInteractionsReceivedNTSMSS()
Il condLSC_1_02a3;
condLSC_1_02a3=SendPublishInteractionClassHL ArequestObjectInstancesReflectedNTSMSS()
Il condLSC_1_02a3;
condLSC_1_02a3=SendPublishInteractionClassHLArequestObjectInstancesUpdatedNTSMSS()
Il condLSC_1_02a3;
condLSC_1_02a3=SendPublishInteractionClassHLAsetTimingNTSMSS(“s0”) Il condLSC_1_02a3;
condLSC_1_02a3=SendPublishInteractionClassHLAsetServiceReportingNTSMSS(“s0”)
I condLSC_1_02a3;
condLSC_1_02a3=SendSubscribelnteractionClassHLAreportInteractionPublicationNTSMSS(*“s0”)
Il condLSC_1_02a3;
condLSC_1_02a3=SendSubscribelnteractionClassHL AreportObjectClassPublicationNTSMSS
“s0”,7s17,7s2”)
Il condLSC_1_02a3;
condLSC_1_02a3=SendSubscribelnteractionClassHL AreportInteractionSubscriptionNTSMSS(“s0”)
Il condLSC_1_02a3;
condLSC_1_02a3=SendSubscribelnteractionClassHLAreportObjectClassSubscriptionNTSMSS
“s07,7s17,7s27,7s3”)
Il condLSC_1_02a3;
condLSC_1_02a3=SendSubscribelnteractionClassHL AreportInteractionsSentNTSMSS(“s0","s1")
Il condLSC_1_02a3;

Figure 6-9. Excerpts from the Generated Java Code of Monitor Federate

107

condLSC_1_02a3=SendSubscribelnteractionClassHL AreportInteractionsReceivedNTSMSS("s0","s1")
Il condLSC_1_02a3;
condLSC_1_02a3=SendSubscribelnteractionClassHLAreportObjectInstancesUpdatedNTSMSS("s0")
Il condLSC_1_02a3;
condLSC_1_02a3=SendSubscribelnteractionClassHL AreportServiceInvocationNTSMSS
("s0","s1","s2","s3","s4","s5") Il condLSC_1_02a3;
condLSC_1_02a3=SendRequestAttributeValueUpdate_066bHLAfederationNTSMSS
("s0","s1","s2","s3","s4","s5","s6","s7","s8","s9") Il condLSC_1_02a3;
condLSC_1_02a3=SendRequestAttributeValueUpdate_0670HLAfederateNTSMSS
("s0","s1","s2","s3","s4","s5","s6","s7","s8","s9","s10","s11","s12","s13","s14",
"s15","s16","s17","s18","s19","s20","s21","s22","s23","s24","s25","s26","s27","s28")
Il condLSC_1_02a3;
if (condLSC_1_02a3) {//if clause start
SendEnableAsynchronousDeliveryEADNTSMSS();
class op1_RefreshAllMonitors_03d0 extends Thread {
opl_RefreshAllMonitors_03d0() {}
public void run() {
do {
if ((Boolean)coldChoices.get("Opt_0884")).booleanValue()) {
{
condRecvMessagelnput_08caNTSMSS();
SendEvokeCallbackECNTSMSS(new Object());
SendSendInteraction_08bdHL ArequestPublicationsNTSMSS(new Object());
SendSendInteraction_08b7HLArequestSubscriptionsNTSMSS(new Object());
SendSendInteraction_08b1HLArequestObjectInstancesUpdatedNTSMSS (new Object());
SendSendInteraction_08a4HLArequestObjectInstancesReflectedNTSMSS
(new Object());
SendSendInteraction_089eHLArequestInteractionsSentNTSMSS(new Object());
SendSendInteraction_0898HL ArequestInteractionsReceivedNTSMSS(new Object());
SendEvokeCallbackECNTSMSS (new Object());
SendRequestAttributeValueUpdate_0886HLAfederationNTSMSS
"s0","s1","s2","s3","s4","s5","s6","s7","s8","s9");
SendEvokeCallbackECNTSMSS(new Object());
SendRequestAttributeValueUpdate_088bHLAfederateNTSMSS
"s0","s1","s2","s3","s4","s5","s6","s7","s8","s9","s10","s11","s12","s13","s 14",
"s15","s16","s17","s18","s19","s20","s21","s22","s23","s24","s25","s26","s27","s28");

}

try {
FedMonFdChart.RepeatUntil_0675.await();

} catch (InterruptedException e) {
e.printStackTrace();

Figure 6-9. Excerpts from the Generated Java Code of Monitor Federate (Continue)

108

} catch (BrokenBarrierException e) {
e.printStackTrace();

1
} while (!((Boolean)FedMonFdChart.coldChoices.get("Condition_0883")).booleanValue());

stop();

}
opl_RefreshAllMonitors_03d0 p0O = new op1_RefreshAllMonitors_03d0();

pO.start();
class op2_Callbacks_03d1 extends Thread {
op2_Callbacks_03d1() {}
public void run() {
while (((Boolean)FedMonFdChart.coldChoices.get("Condition_0883")).booleanValue()) {
int nWhileDo_06£80;
int iHotWhileDo_06£80;
int iColdWhileDo_06£80;
int passWhileDo_06{80;
int recvChoiceWhileDo_06f80;
ArrayList selectedListWhileDo_06{80 = new ArrayList();
selectedListWhileDo_06f80.add(new Integer(2));
selectedListWhileDo_06f80.add(new Integer(5));
iHotWhileDo_06f80=0;
iColdWhileDo_06f80=0;
nWhileDo_06{80=4;
passWhileDo_06£80=0;
recvChoiceWhileDo_06f80=0;
while (iHotWhileDo_06f80+iColdWhileDo_06f80<nWhileDo_06{80) {
int choiceWhileDo_06f80=-1;
if (selectedListWhileDo_06£80.size()>0)
choiceWhileDo_06f80=chooseOne(selectedListWhileDo_06f80,null,"WhileDo_06f80");
switch (choiceWhileDo_06f80) {//switch
case 2:
if (((Boolean)coldChoices.get("LSC_2_02a4")).booleanValue()) {
boolean condLLSC_2_02a4=false;
condLSC_2_02a4=condRecvDiscoverObjectInstanceHLAfederateNTSMSS()
Il condLSC_2_02a4;
if (condLSC_2_02a4) {//if clause start
SendRequestAttributeValueUpdate_0774HLAfederateNTSMSS
"s0","s1","s2","s3","s4","s5","s6","s7","s8","s9","s10","s11","s12",
"s13","s14","s15","s16","s17","s18","s19","s20","s21",
"$22","s23","s24","s25","s26","s27","s28");

Figure 6-9. Excerpts from the Generated Java Code of Monitor Federate (Continue)

109

HIIf closed end
}/end of cold condition
iColdWhileDo_06f80++;
break;

case 5:
SendEvokeCallbackECNTSMSS (new Object());

iHotWhileDo_06f80++;
break;
H/switch
switch (recvChoiceWhileDo_06f80) {//switch

case 0:
if (boolReflectAttributeValuesHLAfederateNTSMSS()) {

condRecvReflectAttributeValuesHLAfederateNTSMSS();
iHotWhileDo_06f80++;

1

break;

case 1:
if (boolReceivelnteractionHLAmanagerNTSMSS()) {

condRecvReceivelnteractionHLAmanagerNTSMSS();
iHotWhileDo_06f80++;

1

break;

HIswitch
recvChoiceWhileDo_06f80=(recvChoiceWhileDo_06f80+1)%?2;

if (iHotWhileDo_06f80==nWhileDo_06f80-1&&iColdWhileDo_06f80<1)

/Mm-number of cold
{
SleepThread(100);
passWhileDo_06{80++;
if (passWhileDo_06£80==50)
break;

1
selectedListWhileDo_06{80.clear();

}
stop();

}
op2_Callbacks_03d1 p1 = new op2_Callbacks_03d1();

pl.start();
class op3_RTIDataMonitorTimer_03d2 extends Thread {

Figure 6-9. Excerpts from the Generated Java Code of Monitor Federate (Continue)

110

op3_RTIDataMonitorTimer_03d2() {}
public void run() {
while (((Boolean)FedMonFdChart.coldChoices.get("Condition_0883")).booleanValue()) {
doLaterRTIDataMonitorTimer_03be(666);
SendEvokeCallbackECNTSMSS (new Object());
SendSendlInteraction_0722HL ArequestPublicationsNTSMSS(new Object());
SendSendInteraction_0728HLArequestSubscriptionsNTSMSS(new Object());
SendSendInteraction_072eHLArequestObjectInstancesUpdatedNTSMSS(new Object());
SendSendlInteraction_0734HLArequestObjectInstancesReflectedNTSMSS(new Object());
SendSendInteraction_073aHLArequestInteractionsSentNTSMSS(new Object());
SendSendlInteraction_0740HLArequestInteractionsReceivedNTSMSS (new Object());
calcelRTIDataMonitorTimer_03be();
}
stop();

}
op3_RTIDataMonitorTimer_03d2 p2 = new op3_RTIDataMonitorTimer_03d2();
p2.start();
class op4_StatusTimer_03d3 extends Thread {
op4_StatusTimer_03d3() {}
public void run() {
if ((Boolean)FedMonFdChart.coldChoices.get("Condition_0883")).booleanValue()) {
//cond start
doLaterStatusTimer_03c1(66);
SendEvokeCallbackECNTSMSS (new Object());
SendRequestAttributeValueUpdate_075aHLAfederationNTSMSS
"s0","s1","s2","s3","s4","s5","s6","s7","s8","s9");
SendEvokeCallbackECNTSMSS(new Object());
SendRequestAttributeValueUpdate_075fHLAfederateNTSMSS
"s0","s1","s2","s3","s4","s5","s6","s7","s8","s9","s10","s11","s12",
"s13","s14","s15","s16","s17","s18","s19","s20","s21",
"s22","s23","s24","s25","s26","s27","s28");
calcelStatusTimer_03c1();
stop(;
H/cond end
else//Hot cond

return;//Hot cond

}
op4_StatusTimer_03d3 p3 = new op4_StatusTimer_03d3();
p3.start();

Figure 6-9. Excerpts from the Generated Java Code of Monitor Federate (Continue)

111

while (p3.isAlive()llp2.isAlive()llp1.isAlive()llp0.isAlive())
SleepThread(100);
condRecvMessagelnput_076dUser();
SendResignFederationExecutionRFENTSMSS(0);
SendDestroyFederationExecutionDFENTSMSS("s0");
IS closed end
Hlend of cold condition

}

Figure 6.9. Excerpts from the Generated Java Code of Monitor Federate (Continue)

To give a sense of the generated code, a part of the monitor federate’s base code (see
Figure 6.9) and a sample RTI Ambassador method (sendinteraction in Figure 6.10) and a
federate Ambassador method (receiveinteraction in Figure 6.11) are shown in the respective
figures.

The main method of the monitor federate (see Figure 6.3) of the generated FedMonFd
code is exemplified in Figure 6.9. For every operand in a parallel inline expression occurring
in the LSC, a thread (e.g. opl_RefreshAllMonitors_03d0, op2_Callbacks_03dl,
op3_RTIDataMonitorTimer_03d2 and op4_StatusTimer_03d3) is generated. For loop
idioms, “while-do” or “repeat-until” code statements are generated. Values of loop
conditions are retrieved from the dictionary (implemented as hashtable named coldChoices)
defined in the computation aspect. In place of the references in the LSC model,
corresponding referenced charts code are generated and added. For example, for
FedMonFdChart2, corresponding methods are generated.

In Figure 6.10, interaction information is put together in an object of the common data
type LSCObject. Then the corresponding LscRTILib method (in this case, sendInteraction)

is called.

112

public static boolean SendSendInteraction_08b7HLArequestSubscriptionsNTSMSS(Object Time)
{
LSCLib.LSCObject proc= new LSCLib.LSCObject();
proc.name="HLArequestSubscriptions";
proc.pars=new ArrayList();
LSCLib.LSCAttribute parNew0O =new LSCLib.LSCAttribute();
parNew(O.name="Time";
parNewO0.type="Object";
parNew0.objClass="Double";
parNew0.objVal=Time;
proc.pars.add(parNewO0);
NTSMSSRTILib.sendInteraction(proc);
return true;

Figure 6.10. Sample SendInteraction RTT Ambassador Method

In Figure 6.11, a federate Ambassador method (in this case, receiveinteraction) example in

the federate base code is shown.

public static void RecvReceivelnteractionHLAmanagerNTSMSS(LSCLib.LSCObject iClass, String
TimeStamp, int SentOrderType, int ReceiveOrderType, String MessageRetractionDesignator, String

TransportationType)
{}

Figure 6.11. A Sample Receivelnteraction Federate Ambassador Call-back Method

b) Default Aspect Code
Two computation aspect and a federation execution aspects are generated, namely
FedMonFdAspect, UserAspect, and NTSMSSLibAspect. In FedMonFdAspect, all methods of
the federate are accessed and method bodies of them are overridden in their corresponding
advices. In FedMonFdAspect, dictionaries and LSC-specific auxiliary methods’ (i.e.

chooseOne, getLoopount) advices are also generated.

113

pointcut pcSendSendInteraction_0728 HLArequestSubscriptionsNTSMSS
(Object Time):execution(static boolean
FedMonFd.SendSendInteraction_0728HLArequestSubscriptionsNTSMSS(Object))&& args(Time);
boolean around(Object Time):
pcSendSendInteraction_0728HLArequestSubscriptionsNTSMSS(Time)
{

Time=new Object();

proceed(Time);

return true;

Figure 6.12. A sample RTI Ambassador Method (advice)

A sample RTI Ambassador method’s advice (send interaction) and a federate
Ambassador method’s (receive interaction) advices (accessing methods) are shown in Figure
6.12 and Figure 6.13, respectively. In Figure 6.12, federate send interaction method (cf.
Figure 6.10) is caught in the FedMonFd base code and default logic filled in its advice. The
developer can edit this advice as described in the next “Editing the Default Computation
Aspect” section.

In Figure 6.13, federate receive interaction method (cf. Figure 6.11) is found on the
FedMonFd base code and received data is displayed in the its advice in the
FedMonFdAspect. This received data is interaction class and its parameters’ values. In our

case, interaction class is HLArequestSubscriptions.

114

pointcut pcRecvReceivelnteractionHLAmanagerNTSMSS(LSCLib.LSCObject iClass,String
TimeStamp,int SentOrderType,int ReceiveOrderType, String MessageRetractionDesignator,String
TransportationType):execution(static void FedMonFd.RecvReceivelnteractionHLAmanagerNTSMSS
(LSCLib.LSCObject,String,int,int,String,String)) &&
args(iClass, TimeStamp,SentOrderType,ReceiveOrderType,
MessageRetractionDesignator, TransportationType);
void around(LSCLib.LSCObject iClass,String TimeStamp,int SentOrderType,int
ReceiveOrderType,String MessageRetractionDesignator,String TransportationType):
pcRecvReceivelnteractionHLAmanagerNTSMSS(iClass, TimeStamp,SentOrderType,ReceiveOrderT
ype, MessageRetractionDesignator, TransportationType)
{

System.out.println("Received message:"+TimeStamp);

System.out.println("Received message:"+SentOrderType);

System.out.println("Received message:"+ReceiveOrderType);

System.out.println("Received message:"+MessageRetractionDesignator);

System.out.println("Received message:"+TransportationType);

proceed(iClass, TimeStamp,SentOrderType,ReceiveOrderType,

MessageRetractionDesignator, TransportationType);

Figure 6.13. A sample Federate Ambassador Method (advice)

NTSMSSLibAspect (federation execution aspects) is mainly used to catch call-back
methods from the respective federation executions. In our case, only an aspect is generated
since a monitor federate can join in a federation. NTSMSSRTILib (LscRTILib) is declared in
this aspect and it is used to reach actual RTI. A sample LscRTILib definition
(NTSMSSRTILib) and a sample (Receivelnteraction) advice are presented in Figure 6.14

In Figure 6.14, Receivelnteraction call-back method is caught by the federation execution

aspect (NTSMSSLibAspect) and forwarded to the federate (FedMonFd.Receivelnteraction).

115

public static RTILib FedMonFd.NTSMSSRTILib= new RTILib();; // LscRTILib Definition
(...)

pointcut Receivelnteraction(LSCLib.LSCObject proc):
execution(public void RTILib.receivelnteraction(..))&& args(proc); //LscRTILib method is caught
after(LSCLib.LSCObject proc):Receivelnteraction(proc)
{
RTILib rtiLib = (RTILib)thisJoinPoint.getThis();
if (rtiLib.federatename.compareTo("NTSMSS")==0)
FedMonFd.Receivelnteraction(proc); //federate method is called

Figure 6.14. A LscRTILib Definition and A Sample Advice

Step iv: Edit the Default Computation Aspect (Optional)
After running the generator, FedMonFdAspect (generated default computation) can be edited
by the developer in order to effect the desired computation. Consider, for example, how
timestamp is retrieved to send a send-interaction event to the federation. In the automatically
generated default computation, a ‘“new Object ()” is sent to the federation. The

corresponding edited code is illustrated in the figure as italic form in Figure 6.15.

pointcut pcSendSendInteraction_0728HLArequestSubscriptionsNTSMSS(Object Time):
execution(static boolean FedMonFd.
SendSendInteraction_0728HLArequestSubscriptionsNTSMSS(Object))&& args(Time);
boolean around(Object Time):

pcSendSendInteraction_0728HLArequestSubscriptionsNTSMSS(Time)

{
/[Time=new Object();
Time=g_TimeStamp;
proceed(Time);
return true;

}

Figure 6.15. Adding a Computation to the RTI Ambassador Method

(Modifications to the advice are in italic).

In this example, the advice that catches the method of
SendSendlnteraction_0728HLArequestSubscriptionsNTSMSS in the federate base code is
edited. Generated code statement (Time=new Object ()) is commented and new statement

that provides sending of the timestamp is added (Time=g_TimeStamp).

116

Step v: Run the Generated
With the FedMonFdAspect
application) code is ready to

weaves the aspects on the ba

Code
(computation aspect) edited, the FedMonFd (federate
run. After that, code is compiled and the Aspect] compiler

se code. After the compiling, code is run. A view from the

running FedMonFd is represented in Figure 6.16.

& Java - FedCodeGen/FedMonF dChart/FedMonF dAspect.aj - Eclipse SDK

EBX

=-iH FedMonFdChart

= 4J] FedMonFd.java
& ﬂ FedMonFd

@ FedMonFdAspect. aj
m FedMonFdChart, java
W NTSMSSLibAspect.aj
4] User.java
E serdspect, aj

4B FedMonFdChart?
B 1mmsmokeDiagram

- LSC

£

El conscle 2

Mo consoles ko display at this time,

=k

File Edit Source FRefactor Mavigate Search Project Run Window Help
m -0 I BEE G- B | & Java |
N N B : e T [Resource
% Package Explorer i3 = O|| B FedmonFdaspect.aj &2 . [J] User.java i =
= Q:“D 2 return true; ~
B chatDiagram b '

pointout pelendSendInteraction
bhoolean around (Chiject Time) :peoZ
Time=new Chiject();
proceed [Timwe) ;
return true;
H
pointcut peSend3endInteraction
boolean around (Chject Time) :pes
Time=new Ohbject():
proceed (Time) ;
return true;

Figure 6.16. A View of

the FedMonFd Application Running (pRTI
snapshot)

117

6.3.2. Discussion of the Case Study

There are some points that must be discussed after the study. One of major drawback of this
study is remodeling from the beginning when a major update is realized in the metamodel or
library. Until FAMM become mature, these updates will potentially be problematic.

This study is important for Federation Design Verification. This can be done by two
ways: Static checking and dynamic verification. Both Federation scenario(s) and Federation
Design Model is represented using LSCs. So, the static model checking is performed using
the model interpretation over both LSCs where Federate LSCs must include the Federation
Scenario LSC. But Verification can be interpreted in the dynamic (federation execution)
sense. Dynamic model checking is based on the automatic code generation.

Generated code has almost 3000 LOC. Detailed generated code statistics are given the
following table. This case study gives us a hint in the code generation of larger application.
FedMonFd models and corresponding codes are obtained from our Web site
(www.ceng.metu.edu.tr/~e73883). Also in Appendix E, an example for each LSC/MSC

construct such as ALT, SEQ and its corresponding generated code is presented.

Table 6-1. FedMonFd Code Metrics (in LOC)

Class/Aspect Line of Codes
FedMonFdChart (Diagram base code) 53

FedMonFd (Federate Base Code) 1978
FedMonFdAspect (Federate Computation | 664

Aspect)

User 108
UserAspect 95
NTSMSSLibAspect 25

Total 2923

118

CHAPTER VII

CONCLUSION

The primary contribution of this thesis is automatic generation of a federate application code
from a model of the federation architecture and a model of the federate behavior. The
federate code generator offers the ability for early prototyping of a federation with the ability
to proceed with full-fledged implementation. As a core part of this work, but generic in its
nature, we present a code generator that generates Java base code directly from Live
Sequence Charts (LSCs). This is the secondary contribution of this thesis.

The generated federate code carries out the communication behaviors of a federate in an
HLA 1516 compliant federation. The code generator is built upon the foundation of a
metamodel, namely FAMM, for describing both the static and dynamic views of the
architecture of a federation.

Details of code generation from the federate developer’s perspective have been illustrated
with the help of a running example, STMS. On a larger scale, a Federation Monitor Federate
(FedMonFd) is modeled and its code is generated [Sarioglu et al. 2007]. Supplementary
material and produced code can be obtained from our Web site.

Adopting the aspect-oriented approach, communication-related base code and
computation-related aspect codes are separated. The developer can edit the latter so that the
particular computation (in general, non-communication) logic can be weaved onto the
generated base code. An obvious advantage is applying variations on the algorithms by
editing only the computation aspect without touching the federate base code. Generally
speaking, the whole spectrum of AOP techniques is at the disposal of the federate developer.
If a new pattern of communication is desired the behavior model of the federate must be
modified accordingly and then the federate base code must be generated again. There is no
need to modify the computation aspect provided that the method arguments that are used in
the base code remain the same. In other words, pointcut definitions (method declarations in
the base code) must not be touched during aspect editing.

The developer works on the federate’s communication behavior at the model level rather
than at the code level. Modeling provides an abstract view of the federation and the

participating federates to the developer. Developer, for example, can add a new event

119

between two instances in the LSC model. During code generation, the related pointcut
definition and the corresponding method are automatically generated. Developer is not
forced to dealing with implementation details of code. Only the advices of the computation
aspect code needs to be edited. Editing points are marked by comments in the generated code
so these advices should be easy to locate in the code. Behavioral codes and all related
method definitions are generated in the base code automatically. Corresponding pointcut
definitions and advices that access the data model is also generated as an aspect.

Generation of federate code from the model takes negligible time. Developer’s time is
consumed by constructing the architecture model plus coding the computational logic by
aspect editing. The compliance of the computational code to the SOM is dictated by the
automatically generated portions of the aspect code thanks to the referencing mechanism
employed in the metamodel FAMM. Using the techniques reported here, full generation of
utility federates, e.g. for testing, monitoring, logging, etc. looks feasible.

In a more general setting, this work has achieved code generation for communication
behaviors of applications described in LSC. The LSC code generator is built upon the
foundation of an LSC metamodel, for describing both the static and dynamic views of the
application. The MSC/LSC metamodel provides a flexible and extendible input specification
for code generator. The offered code generator covers both MSC and LSC specifications. For
example, for LSC chart, it generates LSC based code, for MSC chart it generates MSC based
code. In the LSC base code, existential chart properties and universal chart properties are
handled.

Code generation from LSCs and MSCs allows the execution of the behavioral model
supporting an early validation of a behavioral specification expressed in MSC or LSC.
Modeling also enables developer to understand behaviors of the application.

Regarding the semantics of MSCs and LSCs, we had to do many clarifications as the
relevant literature is obscure on many points. For instance, timer semantics have been
defined rather tersely in Z.120.

The clarity of the generated code is crucial as the application developer may have to deal
with it directly. This is also important for editing. Moreover, comments are added to the
code to help the developer navigate the code. The developer can trace the comments from
model to code as well.

Only Java and Aspect] codes are generated presently by our generator. However, the back
end (Java code generator module) can be re-implemented to target another programming
language. Most important obstacle to achieve retargeting is the AOP language maturity.
Only a few of the programming languages are mature enough such as Aspect] and AspectC

[AspectC 2007] till now.

120

Details of LSC code generation from the developer’s perspective have been illustrated
with the help of a running example, ATM Machine Money Withdrawal. Another case study
has been carried out to animate the behavioral specifications [Efe 2007]. The message
exchanges among the components of the specified system are modeled as LSCs. The subject
of modeling in that study is the radio communications among the members of a field artillery
team, which are the fire control center, the firing unit, and the forward observer. Using the
code generator, the Java and Aspect] codes are automatically generated from the
communications model. The animation code is weaved on the generated base code.
Execution of the generated code animates the radio messages as a sequence of events
respecting to the partial order specified in the LSC. Animation can help validate conceptual
models, e.g. in face validation, and clarify system specifications. The generated code can

also be utilized as a first-cut prototype for the intended simulation.

121

REFERENCES

ADAK M. AND OGUZTUZUN H. 2007. A Code Generator for Live Sequence Charts
and Message Sequence Charts. Technical Report (METU-CENG-TR-2007-4), Middle East
Technical University, May 2007.

ADAK M., TOPCU O., AND OGUZTUZUN H. 2007, Model-Based Code Generation
for HLA Federates, submitted to ACM Transactions on Modeling and Simulation, 2007

ASPECTC. 2007. AspectC. http://www.cs.ubc.ca/labs/spl/aspects/aspectc.htmlj. Last
accessed at August 8, 2007.

ASPECTJ. 2007. Aspect] Project. http://www.eclipse.org/aspectj. Last accessed at
August 8, 2007.

BEZIVIN J. 2005. On the Unification Power of Models. Springer Verlag. In Journal of
Software and Systems Modeling, vol.4 no.2, pp. 171-188.

BONTEMPS Y., HEYMANS P. AND SCHOBBENS P.Y. 2005. From live sequence
charts to state machines and back: a guided tour, IEEE Transactions on Software
Engineering, doi.ieeecomputersociety.org

BRILL M., DAMM W., KLOSE J., WESTPHAL B. AND WITTKE H. 2004. Live
Sequence Charts: An Introduction to Lines, Arrows, and Strange Boxes in the Context of
Formal Verification. Springer-Verlag LNCS 3147, 374-399.

CZARNECKI K. 2005. Overview of Generative Software Development. In J.-P. Banatre
et al. (Eds.): Unconventional Programming Paradigms (UPP) 2004, Mont Saint-Michel,
France, LNCS 3566, pp. 313-328

DAMM W. AND HAREL D. 2001. LSCs: Breathing Life Into Message Sequence
Charts. In Formal Methods in System Design, 19, 45-80.

EFE O. 2007. Animation of Behavioral Specification through Code Generation. Project
Report, Department of Computer Engineering, METU, Ankara

ELRAD T., AKSIT M., KICZALES G., LIEBERHERR K. AND OSSHER H. 2001.
Discussing Aspects of AOP. Communications of the ACM, vol. 44 no.10, pp. 33-38.

ECLIPSE. 2007. Eclipse Project. http://www.eclipse.org/. Last accessed at August
8,2007

122

EMERSON, J. M. 2005. GME-MOF: An MDA Metamodeling Environment For GME,
Thesis Submitted to the Faculty of the Graduate School of Vanderbilt University in partial
fulfillment of the requirements for the degree of Master of Science in Computer Science,
Nashville, Tennessee.

GME. 2006. A Generic Modeling Environment GME 6 User’s Manual v6.0, Institute for
Software Integrated Systems (ISIS) Vanderbilt University

HAREL D. 2001. From play-in scenarios to code: an achievable dream, Fac. of Math. &
Comput. Sci., Weizmann Inst. of Sci., Rehovot, Computer 53-60

HOMME T. AND RAMSLAND J.E. 2003. From Live Sequence Charts to
Implementation, A study of the LSC specification, the execution of behavioral requirements
and exploring the possibilities to use an LSC model to generate Java code, Masters thesis in
Information and Communication Technology, Grimstad

IEEE 2000a. IEEE 1516 Standard for Modeling and Simulation (M&S) High Level
Architecture (HLA) — Framework and Rules. 21 September.

IEEE 2000b. Standard for Modeling and Simulation (M&S) High Level Architecture
(HLA) — Federate Interface Specification (IEEE 1516.1).

IEEE 2000c. Standard for Modeling and Simulation (M&S) High Level Architecture
(HLA) — Object Model Template Specification (IEEE 1516.2).

IEEE 2003. Standard for IEEE Recommended Practice for High Level Architecture
(HLA) Federation Development and Execution Process (FEDEP- IEEE 1516.3).

ITU-T 1998. Z.120 — Annex B, “Formal Semantics of Message Sequence Charts.
Recommendation of Telecommunication Standardization Sector of International
Telecommunication Union (ITU-T).

ITU-T 2004. Z.120, “Formal Description Techniques (FDT) - Message Sequence
Charts. Pre-published Recommendation Telecommunication Standardization Sector of
International Telecommunication Union (ITU-T).

JVM. Java Virtual Machine. 2007. http://java.sun.com/docs/books/jvms. Last accessed at
August 8, 2007.

KENT S. 2002. Model Driven Engineering. Lecture Notes In Computer Science; Vol.
2335 Proceedings of the Third International Conference on Integrated Formal Methods,
286 - 298

KICZALES G., LAMPING J., MENHDHEKAR A., MAEDA C., LOPES C,
LOINGTIER J. M. AND IRWIN J. 1997. Aspect-oriented programming. In M. Aksit and S.
Matsuoka, editors, Proc. European Conf. on Object-Oriented Programming, volume 1241

of LNCS. Springer-Verlag, Berlin, Heidelberg, and New York, 220-242.

123

KLEPPE A., WARMER J. and BAST W. 2003, MDA Explained: Practice and Promise,
Addison

Weslesy.

KRUGER I, GROSU R., SCHOLZ P. AND BROY M. 1999. From MSCs to
Statecharts. Distributed and Parallel Embedded Systems. informatik.tu-muenchen.de

LEDEZCI A., BAKAY A., MAROTI M., VOLGVESI P., NORDSTORM G.,
SPRINKLE J., KARSAI G. 2001. Composing Domain-Specific Design Environments. In
IEEE Computer, vol.34 no.11, pp. 44-51

MAOZ S AND HAREL D. 2006. From multi-model scenarios to code: compiling LSCs
into Aspect]. Procedings of the 14" ACM SIGSOFT International symposium on
Foundations of the software engineering, Portland, Oregon, 219-230.

OMG 2002. Meta Object Facility (MOF), 1.4, OMG Document formal/02-04-03,
http://www.omg.org/cgi-bin/doc?formal/2002-04-03, Last accessed at August 8, 2007

OMG 2003. MDA Guide Version 1.0.1. Object Management Group.
http://www.omg.org/mda Last accessed at August 8, 2007

PARR S. AND RUSSELL K.M. 2003. The Next Step - Applying the Model Driven
Architecture to HLA, Proceedings of the 2003 Spring Workshop[C]. Paper ID: 03S-SIW-
123 Calytrix Technologies Pty Ltd.

PITCH RTI. 2007. Pitch Technologies AB. pRTI 1516 v3.1.1 certified for IEEE 1516.
http://www.pitch.se. Last accessed at August 8, 2007.

RADESKI A. AND PARR S. 2002. Towards a Simulation Component Model for HLA.
2002 Fall Simulation Interoperability Workshop

SARIOGLU K., ADAK M. AND OGUZTUZUN H. 2007. Fedaration Monitoring
Federate, Technical Report (METU-CENG-TR-2007-7), Middle East Technical University,
June 2007

SCHMIDT D.C. 2006. Guest Editor's Introduction: Model-Driven Engineering
Computer, 2006 - csdl.computer.org

SIMPLICITY. 2007. http://www.calytrix.com/siteContent/SIMplicity/intro.php. Last
accessed at August 8, 2007.

TOLK A. 2002. Avoiding Another Green Elephant — A Proposal for the Next generation
HLA based on the Model Driven Architecture. In Proceedings of 2002 Fall Simulation
Interoperability Workshop (SIW).

TOPCU O., ADAK M. AND OGUZTUZUN H. 2007. A Metamodel for Federation
Architectures, accepted from ACM Transactions on Modeling and Simulation (TOMACS),
September 2007.

124

TOPCU, O. AND OGUZTUZUN H. 2007. A Metamodel for Live Sequence Charts and
Message Sequence Charts, Technical Report (METU-CENG-TR-2007-03), Middle East
Technical University, May 2007

TSAI W.T., FAN C., CHEN Y. AND PAUL R. 2006. DDSOS: A Dynamic Distributed
Service-Oriented Simulation Framework, In 39th Annual Simulation Symposium, 160--167.
Huntsville, AL, USA

TSAI W.T., HUANG Q., SUN X. AND CHEN Y. 2007. Dynamic Collaboration
Simulation in Service-Oriented Computing Paradigm, In Proceedings of 40th Annual
Simulation Symposium (ANSS), March 2007, Norfolk, VA, USA, pp.41-48

YUAN Z., CAI W. AND LOW M.Y.H. 2003. A Framework for Executing Parallel
Simulation using RTI, Proceedings of the Seventh IEEE International Symposium on
Distributed Simulation and Real-Time Applications (DS-RT’03)

125

APPENDIX A

PATTERNS AND RELATED CODES

In this appendix, model patterns and their corresponding generated code segments are
presented exhaustively. For example, M1 represents a message pattern, and it may be

sending message, start timer event, etc.

1. Messages

Pattern:

M4

Code Generated for Pattern:

(a) Send Message

Send[name of messagel[target instance](new Object());

(b) Receive Message

Recv[name of message][target instance] ();

(©) Dynamic instance Create

[name of diagram).p[name of instance].start();

(d) Dynamic instance Stop

[name of diagram].p[name of instance].stop();

(e) Start Timer

doLater[name of timer|([timer set value));

126

) Reset Timer

cancel[name of timer] ();

doLater[name of timer] ([timer set valuel));

(2) Timeout

if(timerFlag[name of timer]){Revc[name of timer]Timeout(); }

(h) Lost Message

Send[name of message]LOST(new Object ());

@) Found Message

contract[name of message] FOUND();

) Action

Send[name of message] ACTION(new Object ());

2.4.2. Conditions

Pattern:

c1

(Hot)

Code Generated for Pattern:

if (((Boolean)coldChoices.get("C1")).booleanValue())// model elements name is key.
(...)

else

return; //if condition is not satisfied, the most nearest method is aborted

Figure A.1 Code Generated for C1-hot

Pattern:

| _c; . |

| 1
[—(Cold)

127

Code Generated for Pattern:

if (((Boolean)coldChoices.get("C1")).booleanValue())

Figure A.2 Code Generated for C1-cold

2.4.4. Temperature Property

Cold Message Pattern:

Code Generated for Pattern M1:

if(((Boolean)coldChoices.get("M1")).booleanValue()){

M1

Hl/cold

Figure A.3 Code Generated for cold message

Cold Location Pattern:

M4

Figure A.4 Cold Location Pattern

128

Code Generated for Pattern:

boolean cold[name of location]=false;
for (int i=0;i<50;i++) {

if (bool[name of event)) {

M4

cold[name of location]=true;

break;

}

if(!cold[rame of location])//for cold receive message in cold location

return;

Figure A.5 Code Generated for cold location

Existential-Chart Pattern:

Figure A.6 Existential-Chart Inline Expression Pattern

129

if(((Boolean)coldChoices.get("[name of chart]")).booleanValue())

{

M1

Figure A.7 Code Generated for Chart

2.4.8. Barrier Synchronization

Pattern:

Figure A.8 Barrier Synchronization Pattern

Code Generated for Pattern:

do {
M1
try {
Ship_MSC.RepeatUntil_02ef.await();//cyclic barrier is used
//wait other instances calling “await” method.
}catch (...)
) while(tL— -1 __),

Figure A.9 Code Generated for the Pattern

130

2.4.9. LSC/MSC composition

Pattern:

mse 4 msc B
i i] k
— 1
M M2
|
msc D
f &

Rit

H

Figure A.10. Composition Pattern

Code Generated for Pattern:

M4

Figure A.11. a Code Generated for Instance “i”
M2

Figure A.11. b Code Generated for Instance “k”
M4
M2

Figure A.11. ¢ Code Generated for Instance j (composition)

131

2.4.10. Coregion

Pattern:

M

M2

M3

Figure A.12. Coregion Pattern

Code Generated for Pattern:

Assume that all events are send messages. Receiving case is not presented in here.

132

Order is changed randomly in A

ArrayList selectedList = new ArrayList();

int n;

int i;

selectedList.add(new Integer(1));

selectedList.add(new Integer(2));

selectedList.add(new Integer(3));

n=3;

1=1;

while(i<=n) //round-robin algorithm

{
int choice=chooseOne(selectedList,null);// select random message
switch(choice)
{//switch

case 1:

M4

break;

case 2:

M2

break;

case 3:

M3

break;
}/switch
1++;
}

selectedList.clear();

Figure A.13. a Code Generated for Coregion in instance A

133

Order is not changed in B

M1

M2

M3

Figure A.13.b Code Generated for Coregion in Instance B

2.4.11. Inline Expressions

Alternative Pattern:

msc A

Figure A.14. ALTernative Inline Expression Pattern

Switch blocks are chosen in the computation aspect randomly. The name of ALT is put in
the hashtable as a key. Value of the key is set randomly at the run-time. According to

random choices, an alternative part of the operator code is run.

134

Code Generated for Pattern:

int [model name of alternative inlinel=
((Integer)altChoices.get("[model name of alternative inline]")).intValue();
switch([model name of alternative inline]){

case O:

M4

break;

case 1:

M2

break;

Figure A.15. Code Generated for ALT

Parallel Pattern:

Figure A.16. PARallel Inline Expression Pattern

135

This expression is represented by threads that contain parallel blocks of the operator in the

code. So the parallel blocks are run in parallel threads.

Code Generated for Pattern:

class [name of operandl] extends Thread {
[name of operandl] () {}

public void run() {

M4

stop();

}

[name of operandl] p0 = new [name of operandl] ();

pO.start();
class [name of operand?2] extends Thread {
[name of operand2] () {}

public void run() {

M2

stop();

}
[name of operand2] p1 = new [name of operand?2] ();
pl.start();

while(p1.isAlive()llp0.isAlive());

Figure A.17. Code Generated for PAR

136

Loop Pattern:

msc B

loop 7:.JD,2.

v

M1 |

Figure A.18. LOOP Inline Expression Pattern

If loop is infinite (loop<inf, inf>), a “while (true)” code is generated. However, if the loop
is definite, counter variables are randomly selected and loop is iterated according to those

variables.

Code Generated for Pattern:

boolean loopCond=false;

int count[name of loop]=0;

int loopCount = getLoopCount("0","2");
if(loopCount==-1)

loopCond=true;

while(count[name of loop <loopCount Il loopCond)

{

M4

count[name of loop]++;

}//end of loop

Figure A.19. Code Generated for LOOP

137

Sequential Pattern:

Figure A.20. SEQential Inline Expression Pattern

This expression is represented simply by adding sequential parts successively.

Code Generated for Pattern:

M1

M2

Figure A.21. Code Generated for SEQ

Exception Pattern:

138

msc 4

eMC

Figure A.22. EXCeption Inline Expression Pattern

This expression is specialized by an EXC operator. There are two operands in this
expression. First operand presents the message traffics (try block) and second operand

presents the exceptional message traffics (catch block) when an exception is raised in the
LSC.

Code Generated for Pattern:

try{

M1

}catch(Exception ex)

{

M2

Figure A.23. Code Generated for EXC

139

Optional Pattern:

mse 5

opt

M1

Figure A.24. OPTional Inline Expression Pattern

Opt operand is surrounded with an if-clause and if the condition is satisfied, operand is

executed otherwise it is not. Condition is randomly selected in the aspect.

Code Generated for Pattern:

if(((Boolean)coldChoices.get("[name of optional inline]")).booleanValue())

{

M4

Figure A.25. Code Generated for OPT

140

Do-While Pattern:

Figure A.26. Do-While Inline Expression Pattern

This expression is represented by a “do-while loop” clause.

Code Generated for Pattern:

do {

Vwhile(tL— 81 __ 1y,

Figure A.27. Code Generated for Do-While

While-Do Pattern:

e

Figure A.28. While-Do Inline Expression Pattern

141

This expression is represented by a “while loop” clause.

Code Generated for Pattern:

| 1
while(r — - - — — - —){
M1
}
Figure A.29. Code Generated for While-Do
If-Then Pattern:

Figure A.30. If-Then Inline Expression Pattern

This expression is represented by an “if-then” clause.

Code Generated for Pattern:

Figure A.31. Code Generated for If-Then

142

If-Then-Else Pattern:

A B
L1 [
=== 1
L S
M-
M2

Figure A.32. If-Then-Else Inline Expression Pattern

This expression is represented by an “if-then-else” clause.

Code Generated for Pattern:

=== =
o G
M1
}
else {
M2

Figure A.33. Code Generated for If-Then-Else

2.4.13. General Ordering

Local general order is only defined in a coregion.

143

General Ordering (Local) Pattern:

mse superfheous
i

M1

l

Figure A.34. Local General Ordering Pattern

Code Generated for Pattern:

(...)
Hashtable orderList = new Hashtable ();

orderList.put(new Integer(2),new Integer(1)); /1 happens earlier than 2

while(i<=n) //round-robin algorithm

{
int choice=chooseOne(selectedList,orderList);// orderList indicates the order
switch(choice)
{//switch

case 1:

M4

break;

case 2:

M2

break;
}/switch
1++;
}

selectedList.clear();

Figure A.35. Code Generated for Local General Ordering

144

General Ordering (Multi-Instance) Pattern:

il

i i

C 1 [

M1

Figure A.36. Multi-Instance (Shared) Local General Ordering Pattern

Code Generated for Pattern:

M1

[name of diagram).set[name of general order]=true;

Figure A.37. a Code Generated for Multi-instance General Ordering in Instance i

while(![name of diagram].set[name of general order]);

M2

Figure A.37. b Code Generated for Multi-instance General Ordering in Instance k

2.4.14 Pre-chart

Pattern:

Figure A.38. Pre-Chart Inline Expression Pattern

145

Code Generated for Pattern:

boolean cond[name of Prechard]=true;

condo[name of Prechard]= L Il condo[name of Prechard));

if(cond[name of Prechard]){

M2

HIIf closed end

Figure A.39. Code Generated for Pre-Chart

2.4.15. Local Invariant

Local Invariant Pattern:

A B
M1
. M2
M3
AV

Figure A.40. Local Invariant Pattern

Code Generated for Pattern:

if(((Boolean)coldChoices.get("[name of InvI]")).booleanValue()){

M4

M2

M3

}H/end of invariant

Figure A.41. Code Generated for Local Invariant

146

2.4.16. Simultaneous Region

Simultaneous Region Pattern:

11

Figure A.42. Simultaneous Region Pattern

Code Generated for Pattern:

class [name of simultaneous region] extends Thread {
[name of simultaneous region]() {}

public void run()

{

M4

stop();

}

[name of simultaneous region] p[name of simultaneous region]=
new [name of simultaneous region]();

p[name of simultaneous region].start();

Figure A.43. Code Generated for Simultaneous Region

147

APPENDIX B

INTERMEDIATE FORM GENERATION

Main class and traversing method definitions are presented in the following. This

presentation is kind of abstract data type (ADT) of the intermediate form. ADT defines an

encapsulation of a data structure (Figure B.1) by giving the main classes/methods and their

explanation in a formal way.

LSCObject

Mame: MSCAIL

Cravmar mull

blockList

1Block

Mame; i

Type: MSCSEQ

Cold: false

b Operands: List

Instance

Targat: mull

Type: null

Cald: falze

inatList: List -
Tag:™
Passed false
Block
Operand Name: MSCAlL
¥ Mame: Instance Typa: MSCAl
Massages: List Cald: false
blockList: List » Operands: List 4 rull
Order instList List g—a il |
Orcdar: 1 Tag: ™
O i Passed false

Mamve: ordari

Mame: object1

Pariype: objact

objVal: 6

LSCAttribute

Figure B.1. Intermediate Form Data Structure

148

Block Structure

A block holds the main block and the nested sub-blocks thereof in the time axis. Nested sub-
blocks are inline expressions of the instance. Main block is the main body of instance.
Classes:

1. Block

Object of this class holds the main block (as a kind of sequential inline expression) and

nested inline expressions such as parallel, sequential.

Attributes
String name Block name
String type Block type such as alternative, parallel, optional
boolean cold Whether block is hot or cold
boolean passed Indicate whether block is visited or not
Hashtable operands List holds the operands of block. (Operand objects list)
ArrayList insList List holds LSC instances where block is located.
String minCount For the loop inline expression minimum count number
String maxCount For the loop inline expression maximum count number
boolean isMultilns Block is multi-instance or not
String For the activation chart case, condition name
activationCondName

Operand

Object of this class holds the messages of operand.

Attributes

String name Operand name (copied from the input model)

Hashtable messages List holds the messages in the operand (LSCObject objects list)
Hashtable blockList List holds the nested blocks located in the operand. For example,

alternative block in parallel block.
1.1.1 LSCObject
This class is the primary class for holding event (message) information in the model. An
object of this class holds mainly event name, and event type such as sending, receiving,

condition.

149

Attributes

String name

boolean inCoregion

ArrayList pars

String blockName

String targetInstance
String ownerInstance
boolean coldCond
String insname
ArrayList timerList
ArrayList newOrder

boolean isMultilns

ArrayList instList

boolean boolRecv
boolean boolSend
boolean boolCrep
boolean boolStop
boolean boolActn
boolean boolSetT
boolean boolRstT
boolean boolTout
boolean boolCond
boolean boolGuard
boolean boolCrgn
boolean boolLost
boolean boolFound
boolean boolCall
boolean boolReplyin
boolean boolReceive

boolean boolCallMtd

Event name generated by the code generator in the application
(it does not occur in the model.)

Whether event is in a coregion or not.

Holds the event parameters. Parameter information is declared
as LSCAttribute object and it is stored in the “pars”.
(LSCAttribute objects list)

Name of the innermost block name of the event. Block may be
a main loop or an inline expression.

Name of the destination instance of the event.

Name of the source instance of the event.

Whether event is cold or hot.

Event name (object name) is copied from the model

List holds all the outer timers.

If event is subject to general ordering, order information is held
here. (Order objects list)

Whether event is multi-instance or not

If event 1s multi-instance event, other instances are stored in
this list.

Whether event is receiving event or not

Whether event is sending event or not

Whether event is process creation event or not

Whether event is process stop (termination) event or not
Whether event is local action event or not

Whether event is timer set event or not

Whether event is timer reset event or not

Whether event is timer timeout event or not

Whether event is condition event or not

Whether event is guarding condition event or not

Whether event is coregion event or not or not

Whether event is a lost event or not

Whether event is a found event or not

Whether event is reference calling event or not

Whether event is a reply-in event or not

Whether event is a receive event or not

Whether event is a method call event or not

150

boolean boolReplyout
boolean boolMethod
boolean boolSetting
boolean isLocStart
boolean isLocStop
boolean isCrgnStart
boolean isCrgnStop
boolean
isSuspensionStart
boolean
isSuspensionStop
boolean isInvariantStart

boolean isInvariantStop

Whether event is a reply-out event or not

Whether event is a method event or not

Whether event is a setting condition event or not
Whether event is cold location starting event or not
Whether event is cold location ending event or not
Coregion starting event

Coregion stopping event

Suspension starting event

Suspension stopping event

Invariant starting event

Invariant stopping event

int timerSemanticMethod If event is timer event, timer semantic is assigned to it.

String msg It is used to pass information from the first pass to the second.
String sid Symbolic id of the LSCObject
boolean isGateRelated Whether event is gate related or not
String eventName Event name comes from model
String msgName Message name if event is a message
String mtdKind If event is a method, kind of the method

String simultaneousName If event is in a simultaneous region, indicate region name

1.1.1.1 LSCAttribute
This class is the primary class for holding the event parameter information in the model. An

object of this class holds mainly parameter name and parameter type.

Attributes
String name Attribute name.
String type Attribute type such as int, string, object (similar to union)

String strVal If attribute type is string, string value of attribute

int intVal If attribute type is integer, integer value of attribute
Object objVal If attribute type is object, object value of attribute
int value Holds the timer set value if event is a timer event.
String objClass If attribute is object, class name of the object

boolean isGlobal

Object [] arrVal

Whether attribute is global for instance or not

If attribute type is array, array value of attribute

151

LSCObject
LSCObjectVal

1.1.1.2 Order

If attribute type is LSCObject, LSCObject value of attribute

This class is used to order events in general ordering of LSC. Object of this class holds the

event precedence such as order, instance of events such as owner, whether events is multi-

instance or single-instance, name of the ordering model element and finally whether event is

sending or receiving. It is instantiated for each event that is to be ordered.

Attributes
int order
String owner

String name
boolean isMultilnstance
boolean isSingleInstance

boolean 1sOut

Global Lists:

Precedence of event (copied from the model).

Instance name of event

Name of general ordering model element that copied from the
model

Indicates whether event is multi-instance or not

Indicates whether event is single-instance or not

Indicates whether event is sending or receiving

These global lists are constructed by using above classes for every instance.

ArrayList
sendListObjectHandlers

ArrayList
recvListObjectHandlers

ArrayList
sendListClassHandlers

ArrayList

recvListClassHandlers

ArrayList allTimerList
ArrayList

orderedEventList

List holds all the sending events (same events may be
repeated) on the instance. Events are added to the list as
LSCObject instances.

List holds the all receiving events (same events may be
repeated) on the instance. Events are added to the list as
LSCObject instances.

List holds the all different sending events on the instance.
Events are unique and repetitions are removed. Events are
added to the list as LSCObject instances.

List holds the all receiving events on the instance. Events are
unique and repetitions are removed. Events are added to the
list as LSCObject instances.

List holds the all timers on the instance.

List holds the all events that are ordered according to the

general ordering principles

152

ArrayList Lists all blocks located on the executing instance.
blocksForInstance
ArrayList Lists all model variables located on the executing instance.

variablesForInstance

Traversing Methods

These methods traverses on the LSC input model and creates the intermediate form
(Intermediate Form Generation Module in Figure 3.3). These methods are described in the
calling order. Other word, call graph is represented in Figure B-2 and orders of the methods
are presented by using the numbered bullets. For example, traverseOnModel method

(numbered bullet 1) calls the traverseDocument (numbered bullet 1.1) method.

traverseOnhdodel
'
traverseDocument
'
trawverselvlsc
traverselnstances L3C traverselnstances generate DiagramCode
trawverselnstance generateCode
l * traversEeference
processEvent traversInline
I ;
traversEvent traverselnOperand
I
traverselessage traverseldessageRef

Figure B.2. Call-graph of the Intermediate Form Generation Module (Front End)

153

1. traverseOnModel
This method traverses the input LSC model and gets all the diagrams. After that it calls the
traverse document method (namely traverseDocument) one by one. It also creates the block

list that holds the blocks of the diagrams in the model.

Parameters
Model builder Main model element
1.1. traverseDocument

This method walks on the document model and retrieves the all diagram found in it. Then it

calls the traverse diagram method for each of them.

Parameters
JBuilderModel Document model element
mscDocument
Hashtable blockList List holds blocks
int index Precedence of reference model element in case of reference
model composition
1.1.1. traverseMsc

This method traverses the diagram model and it calls the traverse instances method (namely
traverselnstances and traverselnstancesLSC) that walks on all instances in the diagram.
After that it calls the generateCode method to generate corresponding source code segment

for the diagram from the intermediate form.

Parameters
JBuilderModel MSC Diagram model element
Hashtable blockList List holds blocks
int index Precedence of reference model element in case of reference
model composition
1.1.1.1. traverselnstancesL.SC

This method traverses the LSC diagram model and gets the all instances located in it. Then

it calls the traverse instance method (namely traverselnstance) for each of them.

154

Parameters

JBuilderModel Lsc Diagram model element
Hashtable blockList List holds blocks
int index Precedence of reference model element in case of reference

model composition

boolean coldCond Indicate whether diagram is existential or universal chart

1.1.1.2. traverselnstances
This method traverses the MSC diagram model and gets the all instances located in it. Then

it calls the traverse instance method (namely traverselnstance) for each of them

Parameters
JBuilderModel Diagram model element
MscBody
Hashtable blockList List holds blocks
int index Precedence of reference model element in case of reference
model composition
1.1.2. generateDiagramCode

Recall that a separate thread is provided in a separate source file for every instance in the
model, and that a diagram consists of instances. The threads of instances are declared and
started if they are not dynamic instances. (An instance is dynamic if it is started when
process creation event occurs.) In the diagram code, diagrams have also own threads. These
diagram codes are generated by this method. Moreover, the preliminary computation aspect

codes for the diagram are generated in it.

Parameters

ArrayList InstanceList List holds instances in the diagram

String diagramName Diagram name copied from the model
ArrayList List holds dynamic instances in the diagram
dynInstanceList

ArrayList List holds blocks in the current instance.
blocksForInstance

1.1.1.1.1 traverselnstance
This method traverses the instance and gets the events, inline expressions, and composition
reference calls; and then forwards them to the related methods, namely, processEvent,

traversinline, and traversReference.

155

Parameters

Model IscInstance Instance model element

JBuilderReference Instance model reference

InstanceRef

Hashtable blockList List holds blocks.

ArrayList List holds dynamic instances.

dynInstanceList

int index Precedence of diagram reference in composition. In case of

composition, diagram references are connected to the instance
time-line.

ArrayList targetList List holds target instances

JBuilderModel Reflnline If this method called from a inline expression, it is inline’s

model element

1.1.1.1.2 generateCode

Recall that an instance in the model is handled by a thread in a separate source file as a
separate class definition. The instance codes (Class definitions, main blocks, messages, and
message declarations) are generated in this method. Also, aspect codes for the instance are
generated by generator in a separate aspect file as an aspect. Developer can catch the join
points (obvious point cuts in the base code) in the application and can weave the advice code
into these points to impose the computation logic in the aspect codes. In the code generation,

a preliminary is generated randomly.

Parameters
String FedName Instance name
Hashtable blockList List holding blocks.
String Diagram name of instance (copied from the input model).
activeDiagramName
1.1.1.1.1.1 LSCObject processEvent

This method gets event details and constructs the event objects. (namely LSCObject) 1t is

called by traverseEvent method.

Parameters

Model Event Event model element

156

String instanceName Instance name of the event
ArrayList dynFedList List holding the dynamic instances

ArrayList targetList List holds target instances

1.1.1.1.1.1.1 LSCObject traversEvent
This method traverses through to the event model element (namely traverseMessage) and
gets the event information. Process creation events are also caught in this method. If events

are multi-instance, instance names are obtained (from the input model).

Parameters

Model Event Event model element

LSCObject obj Event object

ArrayList dynFedList List of dynamic instance

ArrayList targetList List holds target instances
1.1.1.1.1.1.1.1 LSCObject traverseMessage

This method traverses through to the message model elements. But, message parameters of
object details are not handled in the present work. Only target instance name is returned by

this method. Because, messages are connected to the target instances in the model.

Parameters
Model Message Message model element
LSCObject obj Source event object. (Events are connected to messages in the
model)
ArrayList targetList List holds target instances
1.1.1.1.1.1.1.2 LSCObject traverseMessageRef

This method traverses through to the message model by using reference’s of it. But, message
parameters of object details are not handled in the present work. Only target instance name is

returned by this method. Because, messages are connected to the target instances in the

model
Parameters
JBuilderReference Message model reference
MessageRef
Model Message Message model element

157

LSCObject obj Source event object. (Events are connected to messages in the
model)

ArrayList targetList List holds target instances

1.1.1.1.1.2 traverslnline

It traverses recursively the inline expressions, which could be nested, (traversinline method).

Parameters
Model Inline Inline expression model element
Hashtable blockList Block list where constructed blocks are inserted
String instName Instance name of the block
ArrayList Dynamic instance list
dynInstanceList
int index Precedence of the block (inline expression)
ArrayList targetList List holds target instances
JBuilderModel Owner instance of the inline
ownerInstance
boolean isLSC Inline’s temperature value

1.1.1.1.1.2.1 traverseInOperand

This method traverses the operand of the inline. And constructs the block data structure

(processEvent method) for each operand.

Parameters

JBuilderModel Operand model element

MSCOperand

String instName Current instance name

Block instBlock Block structure for the operand model
Operand instOperand Operand structure for the operand model
ArrayList Dynamic instance list

dynInstanceList

ArrayList targetList List holds target instances

JBuilderModel RefInline If inline is nested, parent inline model element

boolean isLSC Inline’s temperature value

158

1.1.1.1.1.3 traversReference

This method traverses the reference composition model elements and gets the referenced

diagram. Then it calls the related diagrams. Reference has also own instance and diagrams.

Also separate thread and file are generated for it. In the instance code, methods of referenced

diagram are called. Although same instance may occur in other diagrams, different threads

are created for it.

Parameters

Model Reference
Hashtable blockList
String instName
Operand operand
ArrayList dynFedList
int index

ArrayList targetList
JBuilderModel
IscInstance

JBuilderModel RefInline

Reference model element

List holds blocks.

Instance name of diagram reference.

Parent operand. References are put in the parent hashtable.
List holds the dynamic instances

Precedence of reference model element.

List holds target instances

Instance model element

If this method called from a inline expression, it is inline’s

model element

159

APPENDIX C

JAVA CODE GENERATOR

Source code of the input LSC is generated from the intermediate form of the LSC (Java
Code Generation Module in Figure 3.3). In this section, main generating methods are
described. These methods are expressed according to the call order. Other word, call graph is
represented n Figure C-1. Orders of methods are illustrated by using the numbered bullets.
For example, createHeadSourceCodes method (numbered bullet 1) calls the

writelnstanceLoopMethod (numbered bullet 1.1) method.

Attributes
boolean locationIsCold Indicate whether location is cold or hot.
boolean Indicate whether coregion is started.

coregionlsStarted

Global Lists:

These global lists are constructed by using above classes for every instance.

currTimerList List the current timers during the emitting process
currConList List the current conditions during the emitting
process

1.1 LSCTimer

Object of this class holds the timer information.

Attributes
String name Timer name (copied from the input model)
Int time Time interval value

int timerSemanticMethod Timer semantics for different implementation

160

create HeadSourceCodes

A 4
writelnstance Loopldethod
A 4
createBodies createWhileDoEzpr createPreChart createP AR Expr create SEQEzpr
g ’ —-"7
v / > L A
create Body write Expre
v .\
_— Ll Ll Ll
create LOOPExpr create ALT createChart createIlfThenExpr createIfThenElse createDoWhileE
\ 4
existInfinite LooplnBlock sendOrEeceive P findlnLSCTimer
— 15—
insertOutCrderRelatedCode insertlnOrderBelate WriteEndBartierSynCode closeCondBrackets
createTimerCode
‘ writeTimerCodes ‘ ‘ wiite SendMethods ‘ ‘ writeRecewebethods ‘ ‘ write Recetve Aspecthlethods ‘ ‘ writeBlockDecs
Iy
‘ wiiteVaniableDeclarations Aspect writeChooseCoregion ‘
writeChooseCond < | createHeadSourceCodes ';I writeChooseLoopCount
e
A 4
‘ writeChooseCondAspect ‘ ‘ writeChooseLoopCountAspect ‘ ‘ writeChooseCoregiondspect ‘ writeChooseAltAspect ‘

Figure C.1. Call-graph of the Java Code Generation Module (Back End)

Generating Methods

1.

This method writes the global declarations and main body codes of the instance into the Java
source file and related aspect source file. It is also the main compositional method that calls

the all emitting methods. An other word, this method generates the Java and Aspect] code of

the instance.

createHeadSourceCodes

161

Parameters

ArrayList
sendListClassHandlers
ArrayList
recvListClassHandlers

boolean ExternalEnabled

String LSClib

String className
String ExternalLib
ArrayList allTimerList
Hashtable blockList
String
activeDiagramName
ArrayList

variablesForInstance

1.1.

List holds sending events of the instance.

List holds receiving events of the instance.

Indicate external library usage for the domain-specific model
integration

Namespace of the LSCObject class

Name of the instance as a class name

External library name

List holds the timers of the instance

List holds the blocks of the instance

Name of the diagram is copied from input LSC model.

List holds the instances of block.

writeInstanceLoopMethod

This method writes the main loop method declaration and related aspect code of the instance.

Parameters
Hashtable blockList

String className

String
activeDiagramName
1.1.1. createBodies

List holds the blocks.
Name of the instance as class name

Name of the diagram is copied from input LSC model.

This method scans the block list and it calls the inline expression writer method for each.

Parameters
Hashtable blockList
String className
String

activeDiagramName

List holds blocks of the instance
Name of the instance as class name

Name of the diagram is copied from input LSC model.

162

1.1.1.1 createBody
This method writes an inline expression (block) content that consists of events. It calls the

inline expression writer method according to the block type such as loop, parallel.

Parameters

Block block Block of the inline expression.

String className Name of the instance as class name

String Name of the diagram is copied from input LSC model.
activeDiagramName

LSCObject prc Input event

Block pcBlock Parent block of the block for nested case

1.1.1.1.1 createLOOPExpr

This method writes the codes of loop inline expression.

Parameters
Block block Block of the inline expression
String className Name of the instance as class name
String Name of the diagram is copied from input LSC model.
activeDiagramName
LSCObject proc Input event
Block pcBlock Parent block of the block for nested case
1.1.1.1.1.1 existInfiniteLoopInBlock

This method determine infinite loop occurrence in the block

Parameters

Block block Block of the inline expression

1.1.1.1.1.2 writeExprs
This method determines emits the code statements which corresponds the model events. For

example, sending method calls are emitted in it.

Parameters

Hashtable list Event list that holds the events.

163

Operand operand
String className
String
activeDiagramName
String blockName
Block pcBlock

If this method is called in a operand, operand model element
Name of the instance as class name

Name of the diagram is copied from input LSC model.

If this method is called in a operand, block model element

Parent block of the block for nested case

1.1.1.1.2 createALTExpr

This method writes the codes of alternative inline expression.

Parameters

Block block

String className
String
activeDiagramName

Block pcBlock

Block of the inline expression
Name of the instance as class name

Name of the diagram comes from input LSC model.

Parent block of the block for nested case

1.1.1.1.3 createChartExpr

This method writes the codes of universal and existential charts.

Parameters

Block block

String className
String
activeDiagramName

Block pcBlock

Block of the inline expression
Name of the instance as class name

Name of the diagram comes from input LSC model.

Parent block of the block for nested case

1.1.1.1.4 createlfThenElseExpr

This method writes the codes of “if-then-else” inline expression.

Parameters

Block block

String className
String
activeDiagramName

Block pcBlock

Block of the inline expression
Name of the instance as class name

Name of the diagram comes from input LSC model.

Parent block of the block for nested case

164

1.1.1.1.5 createlfThenExpr

This method writes the codes of “if-then” inline expression.

Parameters

Block block Block of the inline expression

String className Name of the instance as class name

String Name of the diagram comes from input LSC model.
activeDiagramName

Block pcBlock Parent block of the block for nested case

1.1.1.1.6 createDoWhileExpr

This method writes the codes of “do-while” inline expression.

Parameters

Block block Block of the inline expression

String className Name of the instance as class name

String Name of the diagram comes from input LSC model.
activeDiagramName

Block pcBlock Parent block of the block for nested case

1.1.1.1.7 createWhileDoExpr

This method writes the codes of “while-do” inline expression.

Parameters

Block block Block of the inline expression

String className Name of the instance as class name

String Name of the diagram comes from input LSC model.
activeDiagramName

Block pcBlock Parent block of the block for nested case

1.1.1.1.8 createPreChartExpr

This method writes the codes of pre-chart inline expression.

Parameters
Block block Block of the inline expression
String className Name of the instance as class name

165

String Name of the diagram comes from input LSC model.
activeDiagramName

Block pcBlock Parent block of the block for nested case

1.1.1.1.9 createPARExpr

This method writes the codes of parallel inline expression.

Parameters

Block block Block of the inline expression

String className Name of the instance as class name

String Name of the diagram comes from input LSC model.
activeDiagramName

LSCObject proc Input event object

Block pcBlock Parent block of the block for nested case

1.1.1.1.10 createSEQExpr

This method writes the codes of sequential inline expression.

Parameters

Block block Block of the inline expression.

String className Name of the instance as class name

String Name of the diagram comes from input LSC model.

activeDiagramName

Block pcBlock Parent block of the block for nested case
1.1.1.1.1.1.1 boolean sendOrReceive

This method writes the event codes. Event may be sending, receiving, or condition event.
For every defined case (event type), different codes are generated. If defined event type is

not found, it returns false, otherwise true.

Parameters

LSCObject prc Input event object

String className Name of the instance as class name

String Name of the diagram comes from input LSC model.
activeDiagramName

Block block block of the event

166

1.1.1.1.1.1.1.1 insertOutOrderRelatedCode

This method emits out-order code of the event that is a source event fort the ordering.

Parameters

LSCCodeGen.LSCObject LSCObject structure to hold the event

prc

String Name of the diagram comes from input LSC model.
activeDiagramName

1.1.1.1.1.1.1.2 insertInOrderRelatedCode

This method emits in-order code of the event that is a target event fort he ordering.

Parameters

LSCCodeGen.LSCObject LSCObject structure to hold the event

prc

String Name of the diagram comes from input LSC model.
activeDiagramName

1.1.1.1.1.1.1.3 WriteEndBarrierSynCode

For multi-instance case, loops are synchronized. This method emits the synchronization

related barrier codes to the generated code.

Parameters
ArrayList instList List to hold other LSC instances to be synchronized.
String Name of the diagram comes from input LSC model.
activeDiagramName

1.1.1.1.1.1.1.4 closeCondBrackets

This method emit the condition closing code (“}”) at the end of the if-clause.

Parameters
boolean isInline Indicate whether it is in a inline or not.
1.1.1.1.1.1.1.5 LSCTimer findInLSCTimerList

This method finds the timer in the timer list.

167

Parameters

ArrayList list List to hold timers
String elem Timer name to be found in the list.
1.2 writeTimerCodes

This method writes the all timer declaration codes of instance.

Parameters
ArrayList allTimerList ~ List holds all timers.

String className Name of the instance as class name

1.2.1 createTimerCode

This method writes the definition of the timer and related timer methods/properties.

Parameters
String ID Timer name comes from input LSC model.
String className Name of the instance as class name

1.3. writeSendMethods
This method writes the sending procedure declaration codes. It also writes related aspect
codes that catches the join point of Java code (all procedure definitions of sending and

receiving events are sample join points) into the aspect source file.

Parameters
ArrayList List holds sending events of the instance.

sendListClassHandlers

String libraryStr Namespace of the LSCObject class

String className Name of the instance as class name

String ExternalLib Name of the external library for model integration
String Name of the active LSC diagram name.
activeDiagramName

1.4. writeReceiveMethods

This method writes the receiving procedure declaration codes.

168

Parameters
ArrayList List holds receiving events of the instance.

recvListClassHandlers

String libraryStr Namespace of the LSCObject class

String ExternalLib Name of the external library for model integration
String Name of the active LSC diagram name.
activeDiagramName

1.5. writeReceiveAspectMethods
This method writes aspect codes that catches the join point of Java code (procedure

definitions are join point) into the aspect source file.

Parameters
ArrayList List holds receiving events of the instance.
recvListClassHandlers

String className Name of the instance as class name

1.6. writeBlockDecs
This method writes the boolean flag definition for each block into the diagram code. This

flag is used for the barrier synchronization of the inline expression.

Parameters

ArrayList List holds the blocks of instance
blocksForInstance

String className Name of the instance as class name

1.7. writeChooseCondAspect
This method emits the catching code of the choose condition auxiliary method for the

random condition selection.

Parameters

String className Name of the instance as class name

1.8. writeChooseLoopCountAspect
This method emits the catching code of the choose loop count auxiliary method for the

random count selection in the loop inline expression.

169

Parameters

String className Name of the instance as class name
String diagramName Name of the active LSC diagram name.
1.9. writeChooseCoregionAspect

This method emits the catching code of the choose next message selecting method randomly

in the coregion. In the coregion, next sending event is selected in this method.

Parameters

String className Name of the instance as class name

1.10. writeChooseAltAspect
This method emits the catching code of the choose alternative auxiliary method for the

random selection in the alternative inline expression

Parameters
String className Name of the instance as class name
String diagramName Name of the active LSC diagram name.

1.11. writeVariableDeclarationsAspect

This method emits the variable declarations coming from the model in the LSC instance.

Parameters

ArrayList List holds the variables in the current instance

variablesForInstance
1.12. writeChooseCond
This method emits the choose condition auxiliary method for the random condition selection
1.13. writeChooseAlt

This method emits the choose alternative auxiliary method for the random selection in the

alternative inline expression

170

1.14. writeChooseCoregion
This method emits the choose next message selecting method randomly in the coregion. In

the coregion, next sending event is selected in this method.

1.15. writeChooseLoopCount

This method emits the loop count auxiliary method for the random count selection in the

loop inline expression.

171

APPENDIX D

A CODE GENERATION EXAMPLE

In this section, concrete model of an example LSC is presented. Then this concrete model is
modeled in GME by using LSC metamodel developed by Topcu. After the modeling, our
generator is run. Generator first constructs corresponding intermediate form of the model
then second it generates corresponding source codes of the intermediate form. In this section
briefly all process (in four view namely concrete model view, GME model view,

intermediate form view and code view) of LSC code generation is presented step by step.

1. Concrete Model View

msc A4

M

Figure D.1. B29 in Z120 AnnB

172

2. GME Model View

Figure D.2. GME Model of Instance Alt Inline Expression

LISy 2= =P

n_message

Figure D.3. GME Model of First Operand of the ALT Inline Expression

173

blockList
+ block
Mame: i
Type: MSCSEQ
Cold: false
Operands: List
+ operand
Name: Instance
Messages: List
message/ blockList: List
Mame: MSCAIt
Owner: null blockList
Target: null
Type: null
d v block
Cold: false Mame: MSCAIL
Type: MSCARI
Cold: false
Operands: List
operand
Name: oprd1

3. Intermediate Form View (Data Structure/Memory Heap)

Messages: List
messag‘;V‘
blockList: List

Mame: m

Owrwar: |

Target: |

Type: boolSend

Cold: false

¥

| rull
blockList

operand

Marma: oprd2

Messages: List

blockList List

\@gsege

blockList

Figure D.4. Intermediate Form of Instance i

174

Mame: n

Cwner: i

Target: j

Type: boolSend

Cold: false

blockList

+ block
Mame: j
Type: MSCSEQ
Cold: false
COpearands: List

operand

Mame: Instance

Messages: List
mESSHQE/ blockList: List

Name: MSCAI
Orwenar: rull
Target: null
Type: null
4 +» block
Cold: false Name: MSCAIL
Type: MSCAl
Cold: false
Oparands: List
operand
Mame: oprd1
¢ MMessages: List
messaV
IockList: List
Marme: m
Owner: | ¥
l rull
Target: | ;
9 blockList
Type: boolRecy
Cold: false

operand

Mame: oprd2

Messages: List
blockList List

¥

blockList

Figure D.5. Intermediate Form of Instance j

175

Mame: n

Cwner j

Target: i

Type: boolRecy

Cold: false

4. Code View

public static void iMainLoop(){
int MSCAIlt=((Integer)altChoices.get("MSCAIt")).intValue();
switch(MSCALIt){
case 0:
Sendmj(new Integer(0));
break;
case 1:
Sendnj(new Integer(0));

break;

Figure D.6. Generated Main Loop Code of Instance i

public static void jMainLoop(){
int MSCAIlt=((Integer)altChoices.get("MSCAIt")).intValue();
switch(MSCAIt){
case 0:
condRecvmi();
break;
case 1:
condRecvni();

break;

Figure D.7. Generated Main Loop Code of Instance j

176

APPENDIX E

LSC EXAMPLES AND THEIRS CODE EQUIVALENCY

In this appendix, LSC/MSC models which are retrieved from the literature and their
corresponding source code is presented. All variety of MSC/LSC constructs is included such
as ALT, LOOP, SEQ inline expressions, Gate, general ordering.

ALT (Alternative)

msc 4

m

Figure E.1. B29 in Z120 AnnB

public static void iMainLoop(){
int MSCAIlt=((Integer)altChoices.get("MSCAIt")).intValue();
switch(MSCAIt){
case 0:

Sendmj(new Integer(0));

break;

case 1:
Sendnj(new Integer(0));
break;

}

Figure E.2. Code of instance i

177

public static void jMainLoop(){
int MSCAIlt=((Integer)altChoices.get("MSCAIt")).intValue();
switch(MSCAIt){
case 0:
condRecvmi();
break;
case 1:
condRecvni();

break;

Figure E.3. Code of instance j

PAR (Parallel)

msc B

Figure E.4. B29 in Z120 AnnB

178

public static void iMainLoop(){

class MSCOperand1 extends Thread {
MSCOperand1() {}
public void run() {
Sendmj(new Integer(0));
condRecvnj();

stop();

}
MSCOperand]1 p0 = new MSCOperand1();

pO.start();
class MSCOperand?2 extends Thread {
MSCOperand2() {}
public void run() {
Sendoj(new Integer(0));
condRecvpj();

stop();

}
MSCOperand2 pl = new MSCOperand2();

pl.start();

while(pl.isAlive()llp0.isAlive());

Figure E.5. Code of instance i

179

public static void jMainLoop(){
class MSCOperand1 extends Thread {
MSCOperand1() {}
public void run() {
condRecvmi();

Sendni(new Integer(0));

stop();

}
MSCOperand]1 p0 = new MSCOperand1();

pO.start();
class MSCOperand?2 extends Thread {

MSCOperand2() {}

public void run() {
condRecvoi();
Sendpi(new Integer(0));

stop();

}
MSCOperand2 pl = new MSCOperand2();

pl.start();

while(pl.isAlive()llp0.isAlive());

Figure E.6. Code of instance j

180

LOOP (Loop)

m

Figure E.7. B31 in Z120 AnnB

public static void iMainLoop(){
boolean loopCond=false;
int countMSCLoop=0;
int loopCount = getLoopCount("0","2");
if(loopCount==-1)
loopCond=true;
while(countMSCLoop<loopCount Il loopCond)
{
Sendmj(new Integer(0));
countMSCLoop++;
}//end of loop

condRecvpj();

Figure E.8. Code of instance i

181

public static void jMainLoop(){
boolean loopCond=false;
int countMSCLoop=0;
int loopCount = getLoopCount("0","2");
if(loopCount==-1)
loopCond=true;
while(countMSCLoop<loopCount Il loopCond)
{
condRecvmi();
countMSCLoop++;
}//end of loop

Sendpi(new Integer(0));

Figure E.9. Code of instance j

SEQ (Sequential)

msc 4

i

Figure E.10. Derived from B29 in Z120 AnnB

182

public static void iMainLoop(){
Sendmj(new Integer(0));

Sendnj(new Integer(0));

Figure E.11. Code of instance i

public static void jMainLoop(){
condRecvmi();

condRecvni();

Figure E.12. Code of instance j

EXC (Exclusion)

msc A
—

i

eNc

Figure E.13. Derived from B29 in Z120 AnnB

183

public static void iMainLoop(){
try{
Sendmj(new Integer(0));
}

catch(Exception ex)

{

Sendnj(new Integer(0));

Figure E.14. Code of instance i

public static void jMainLoop(){

try{

condRecvmi();

}

catch(Exception ex)

{

condRecvni();

Figure E.15. Code of instance j

184

OPT (Optional)

msc 5

opt
m

Figure E.16. Derived from B31 in Z120 AnnB

public static void iMainLoop(){

if((Boolean)coldChoices.get("MSCOpt")).booleanValue()){

{
Sendmj(new Integer(0));
}
}
condRecvpj();

Figure E.17. Code of instance i

185

public static void jMainLoop(){

{

}

if(((Boolean)coldChoices.get("MSCOpt")).booleanValue()){

condRecvmi();

Sendpi(new Integer(0));

Figure E.18. Code of instance j

Chart

Figure E.19. Madsen paper — (Existential chart Figure2.9)

186

public static void AMainLoop(){
if((Boolean)coldChoices.get("A")).booleanValue()){
{
Sendm1B(new Integer(0));

condRecvm2B();

Figure E.20. Code of instance A

public static void BMainLoop(){
if(((Boolean)coldChoices.get("B")).booleanValue()){
{
condRecvm1A();

Sendm2A(new Integer(0));

Figure E.21. Code of instance B

187

Pre-chart

T] A .
' A
s b
b proxSensor car carHandler e
y ‘\
s, Al
+
‘ departAck *
‘ N -+ K '
‘\ ala‘llOG ¢ ’
S - L
A #
\\. L
arrivReq
—
! . I
o arivAck i
| I
]]
[
] i
I i
]]

Figure E.22. Damm paper (Figure5)

public static void proxSensorMainLoop(){
boolean condPreChart=false;
condPreChart= Sendalert1 00car(new Integer(0)) Il condPreChart;
if(condPreChart){
//if clause start

HIIf closed end

Figure E.23. Code of instance proxSensor

188

public static void carMainLoop(){
boolean condPreChart=false;
condPreChart= condRecvdepartAckcarHandler() || condPreChart;
condPreChart= condRecvalert100proxSensor() Il condPreChart;
if(condPreChart){
//if clause start
if((Boolean)coldChoices.get("arrivReq")).booleanValue()) {
SendarrivReqcarHandler(new Integer(0));
H/cold
if(((Boolean)coldChoices.get("arrivAck")).booleanValue()){
condRecvarrivAckcarHandler();
H/cold

HIIf closed end

Figure E.24. Code of instance car

189

public static void carHandlerMainLoop(){
boolean condPreChart=false;
condPreChart= SenddepartAckcar(new Integer(0)) Il condPreChart;
if(condPreChart){
//if clause start
condRecvarrivReqcar();
if(((Boolean)coldChoices.get("arrivAck")).booleanValue()){
SendarrivAckcar(new Integer(0));
H/cold

HIIf closed end

Figure E.25. Code of instance carHandler

DoWhile
A B
- f'l'l1
¢ B.response = false.
B - i — .

Figure E.26. Madsen paper (Figure2.13)

190

public static void AMainLoop(){
do {
Sendm1B(new Integer(0));

} while(!((Boolean)coldChoices.get("BResponse")).booleanValue());

Figure E.27. Code of instance A

public static void BMainLoop(){
do {
condRecvml1A();

} while(!((Boolean)coldChoices.get("BResponse")).booleanValue());

Figure E.28. Code of instance B

WhileDo

W

Ty T T T e e o Y
¢ “Bresponse = false
== == == = P
m

Figure E.29. Madsen paper (Figure2.14)

191

public static void AMainLoop(){
while(((Boolean)coldChoices.get("BResponse")).booleanValue()){

Sendm1B(new Integer(0));

Figure E.30. Code of instance A

public static void BMainLoop(){
while(((Boolean)coldChoices.get("BResponse")).booleanValue()){

condRecvml1A();

Figure E.31. Code of instance B

IfThen

I R

—_ g —————— — 4ok
¢ “Bresponse = false .
s === == = .
m

Figure E.32. Madsen paper (Figure2.15)

192

public static void AMainLoop(){
if((Boolean)coldChoices.get("BResponse")).booleanValue()){

Sendm1B(new Integer(0));

Figure E.33. Code of instance A

public static void BMainLoop(){
if((Boolean)coldChoices.get("BResponse")).booleanValue()){

condRecvml1A();

Figure E.34. Code of instance B

IfThenElse

I R

W T T T — = W,
< “B.response =false
Tl e e ———— o
terminate
continue

Figure E.35. Madsen paper (Figure2.16)

193

public static void AMainLoop(){
if((Boolean)coldChoices.get("BResponse")).booleanValue()){

SendterminateB(new Integer(0));

else {

SendcontinueB(new Integer(0));

Figure E.36. Code of instance A

public static void BMainLoop(){

if((Boolean)coldChoices.get("BResponse")).booleanValue()){

condRecvterminate A();
}
else {

condRecvcontinueA();
}

Figure E.37. Code of instance B

194

Dynamic Instance Creation

msC Creation

1 k
] A
----- S —
m
>< []

Figure E.38. B6 in Z120 AnnB

public static void iMainLoop(){

B6Diagram.pj.start();

Figure E.39. Code of instance i

public static void jMainLoop(){
condRecvmk();

B6Diagram.pj.stop();

Figure E.40. Code of instance j

public static void kMainLoop(){

Sendmj(new Integer(0));

Figure E.41. Code of instance k

195

Condition

msc example
i g k

Figure E.42. B13 in Z120 AnnB

Example condition is hot condition.

public static void iMainLoop(){
if(((Boolean)B13Diagram.coldChoices.get("MSCCondition")).booleanValue())

{//condo start
}/condo end
else//Hot condition

return;//Hot condo

Figure E.43. Code of instance i

public static void kMainLoop(){
if(((Boolean)B13Diagram.coldChoices.get("MSCCondition")).booleanValue())
{//condo start
}/condo end
else//Hot condo

return;//Hot condo

Figure E.44. Code of instance k

196

Timing

LSC: Timer Examgle
AC: Act
AM: Invariant

Insti [In=t2] [rata]

TA(T)

0 e iz

mag2[2,3]

“*-_k_\ﬂ

magd 1.5

2 K-

Figure E.45. Brill Paper

public static void instIMainLoop(){
doLaterT1(7);
condRecvmsglinst2();
condRecvmsg3inst3();
calcelT1();
doLaterT1(7);
}
static Timer timerT 1= new Timer();
static boolean timerFlagT 1=false;
public static void doLaterT1(long delayInMillis)
{
ScheduleRunnerT1 scheduleRunner = new ScheduleRunnerT1();

timerT1.schedule(scheduleRunner, delayInMillis);

Figure E.46. Code of instance inst1

197

public static void calcelT1()

{

timerT 1.cancel();

}

static class ScheduleRunnerT1 extends TimerTask

{
public void run()
{
timerFlagT 1=true;
}
}

Figure E.46. Code of instance inst1 (continue)

public static void inst2MainLoop(){
doLaterT2(12);
Sendmsglinstl(new Integer(0));
Sendmsg2inst3(new Integer(0));
Sendmsg4inst3(new Integer(0));

if(timerFlagT?2)
{

RecvT2Timeout();
}

Figure E.47. Code of instance inst2

198

static Timer timerT2= new Timer();
static boolean timerFlagT2=false;
public static void doLaterT2(long delayInMillis)
{
ScheduleRunnerT?2 scheduleRunner = new ScheduleRunnerT2();
timerT2.schedule(scheduleRunner, delayInMillis);
}
public static void calcelT2()
{
timerT2.cancel();
}
static class ScheduleRunnerT?2 extends TimerTask
{

public void run()

{
timerFlagT2=true;

Figure E.47. Code of instance inst2 (Continue)

Lost/Found Messages/Action

mse example lost_found

Figure E.48. B11 in Z120 AnnB

199

public static void iMainLoop(){

SendmLOST(new Integer(0));

Figure E.49. Code of instance i

public static void jMainLoop(){

condRecvnFOND();

Figure E.50 Code of instance j

General Ordering

Figure E.51. B18 in Z120 AnnB

public static void iMainLoop(){
Sendmj(new Integer(0));

B18Diagram.setMSCGeneralOrder=true;

Figure E.52. Code of instance i

200

public static void jMainLoop(){

condRecvmi();

Figure E.53. Code of instance j

public static void kMainLoop(){
while(!B18Diagram.setMSCGeneralOrder);

SendaACTN(new Integer(0));

Figure E.54. Code of instance k

Coregion

msc cotegion

Figure E.55. B16 in Z120 AnnB

201

public static void iMainLoop(){
Sendkj(new Integer(0));
ArrayList selectedList = new ArrayList();
int n;
int i;
selectedList.add(new Integer(2));
selectedList.add(new Integer(3));

n=2;
1=1;
while(i<=n)
{
int choice=chooseOne(selectedList,orderList);
switch(choice)
{//switch
case 2:
if (boolmj())
{
condRecvmj() ;
}
break;
case 3:
Sendnj(new Integer(0));
break;
}/switch
i++;
}

selectedList.clear();

condRecvlj();

Figure E.56. Code of instance i

202

public static void jMainLoop(){
condRecvki();
Sendmi(new Integer(0));
condRecvni();

Sendli(new Integer(0));

Figure E.57. Code of instance j

Temperature Property

% Fhonel Chan

; | De

{ | ClickiCall) p
_— 0

| ; | Call2)_

Figure E.58. Harel Paper Figure-5

public static void UserMainLoop(){

boolean condPreChart=true;

if(((Boolean)coldChoices.get("Dial")).booleanValue(){
condPreChart= SendDialPhonel(new Integer(0)) Il condPreChart ;
}

if(((Boolean)coldChoices.get("Click")).booleanValue()) {
condPreChart= SendClickPhonel(new Integer(0))llcondPreChart;
}

if(condPreChart){

//if clause start

HIf closed end

Figure E.59. Code of instance User

203

public static void PhonelMainLoop(){
boolean condPreChart=true;
for (int 1=0;1<50;1++) {
if (boolDialUser()) {
condPreChart= condRecvDialUser() llcondPreChart;
break;
}
SleepThread(100);
H/cold
for (int i=0;i<50;i++) {
if (boolClickUser ()) {
condPreChart= condRecvClickUser() || condPreChart;
break;
}
SleepThread(100);
}/cold
if(condPreChart){
//if clause start
if(((Boolean)coldChoices.get("Call")).booleanValue()){
SendCallChanl(new Integer(0));
}lcold

I/t closed

Figure E.60. Code of instance Phonel

204

public static void Chan1MainLoop(){
boolean coldLoc=false;
for (int 1=0;1<50;i++) {
if (boolCallPhone1()) {
condRecvCallPhonel();
coldLoc=true;
break;
}
if(coldLoc)//for cold receive message in cold location

return;

Figure E.61. Code of instance Chanl

An example of cold inline expression is presented in Existential-Chart part and

related code segment is shown below.

if(((Boolean)coldChoices.get("A")).booleanValue()){

{

Sendm1B(new Integer(0));

condRecvm2B();

Figure E.62. Code of cold chart (Existential Chart) example

An example of cold location is presented in Pre-Chart part and related code segment

is shown in Figure E-61.

205

Composite LSC Structures

Figure E.63. B33 in Z120 AnnB (D=A seq B)

Diagram A codes:

mse A4 msc 5
i k

— — — —

m I
|| || || ||

msc D)
. .":|_'
1

public static void iMainLoop(){

Sendmj(new Integer(0));

Figure E.64. Code of instance i

public static void jMainLoop(){

condRecvmi();

Figure E.65. Code of instance j

206

Diagram B codes:

public static void jMainLoop(){

Sendnk(new Integer(0));

Figure E.66. Code of instance j

public static void kMainLoop(){

condRecvnj();

Figure E.67. Code of instance k

Diagram D codes:

public static void iMainLoop(){

Sendmj(new Integer(0));

Figure E.68. Code of instance i

public static void iMainLoop(){
condRecvmi();

Sendnk(new Integer(0));

Figure E.69. Code of instance j

207

public static void kMainLoop(){

condRecvnj();
}
Figure E.70. Code of instance k
Gate
mse A

5
1

i -

D ol

I

Figure E.71. B38 in Z120 AnnB

public static void iMainLoop(){
A.condRecvmg();

Sendnh(new Integer(0));

Figure E.72. Code of instance j

208

APPENDIX F

INTEGRATION OF HLA METHODS WITH LSC MODEL: FRONT END

Intermediate form generation continued in the external library’s input model. In our example
case, generator also walks on the HFMM, HOMM models in the FAMM. In this appendix,
traversing methods and their explanation is given. This is the extension of intermediate from

generation module (front end) in Figure 3.3.

LSCCodeGen.LSCObject generateExternalLibAspectCodes
This method generates the federation execution aspects to be used for receiving call-back

events from the RTI for every federation execution

Parameters

ArrayList targetList List holds the federation executions

String InstanceName Current LSC instance name.

String diagramName Current diagram name in which to be traversed
String PATH Path of the generated aspect.

LSCCodeGen.LSCObject traverseExternalObject

This method traverses the HSMM method’s one by one. It is called from the LSCCodeGen.
This method is the integration point for external library and LSC. Instead of the LSCMessage
model element in the LSC, this method is called. This HSMM method (also called
HLAMethod) is derived from the LSCMessage. HLAMethod information is retrieved from
FAMM especially HSMM, FSMM and HOMM.

Parameters

LSCCodeGen.LSCObject Input LSCObject of the message.
obj

JBuilderModel Message Message model element

209

LSCCodeGen.LSCObject getSuppliedArguments
This method traverses the HSMM method’s supplementary argument model element and

retrieves the supplementary argument’s model element.

Parameters

LSCCodeGen.LSCObject Input LSCObject of the message.
obj

JBuilderModel Message Message model element

LSCCodeGen.LSCObject getReturnedArguments
This method traverses the HSMM method’s returned argument model element and retrieves

the returned argument’s model element.

Parameters

LSCCodeGen.LSCObject Input LSCObject of the message.
obj

JBuilderModel Message Message model element

LSCCodeGen.LSCObject getIndicator
This method traverses the HSMM method’s argument which is an indicator model element

and retrieves the indicator parameter information.

Parameters

LSCCodeGen.LSCObject Input LSCObject of the message.
obj

JBuilderModel Message Message model element

LSCCodeGen.LSCObject getOrderType
This method traverses the HSMM method’s argument which is an order model element and

retrieves the order parameter information.

Parameters

LSCCodeGen.LSCObject Input LSCObject of the message.
obj

JBuilderModel Message Message model element

210

LSCCodeGen.LSCObject getStringType
This method traverses the HSMM method’s argument which is a string model element and

retrieves the string parameter information.

Parameters

LSCCodeGen.LSCObject Input LSCObject of the message.
obj

JBuilderModel Message Message model element

FEDERATION MANAGEMENT
LSCCodeGen.LSCObject getCreateFederationExecutionData
This method traverses the Create Federation Execution HSMM method and retrieves the

method parameter information.

Parameters

LSCCodeGen.LSCObject Input LSCObject of the message.
obj

JBuilderModel Message Message model element

LSCCodeGen.LSCObject getFederate
This method traverses the federate model element in FSMM and retrieves the method

parameter information.

Parameters

LSCCodeGen.LSCObject Input LSCObject of the message.
obj

JBuilderModel Message Message model element

LSCCodeGen.LSCObject getFederateSet
This method used in the methods of HSMM whose supplementary arguments have a federate

set. It traverses the set and retrieves the method parameter information.
Parameters

LSCCodeGen.LSCObject Input LSCObject of the message.
obj

211

JBuilderModel Message Message model element

LSCCodeGen.LSCObject getFederateResponsePairs
This method used in the methods of HSMM whose supplementary arguments have a federate

responses pairs set. It traverses the set and retrieves the method parameter information.

Parameters

LSCCodeGen.LSCObject Input LSCObject of the message.
obj

JBuilderModel Message Message model element

LSCCodeGen.LSCObject getFederateSavePairs
This method used in the methods of HSMM whose supplementary arguments have a federate

save pairs set. It traverses the set and retrieves the method parameter information.

Parameters

LSCCodeGen.LSCObject Input LSCObject of the message.
obj

JBuilderModel Message Message model element

LSCCodeGen.LSCObject getJoinFederationExecutionData
This method traverses the Join Federation Execution HSMM method and retrieves the

method parameter information.

Parameters

LSCCodeGen.LSCObject Input LSCObject of the message.
obj

JBuilderModel Message Message model element

LSCCodeGen.LSCObject getResignFederationExecutionData
This method traverses the Resign Federation Execution HSMM method and retrieves the

method parameter information.

Parameters

LSCCodeGen.LSCObject Input LSCObject of the message.
obj

JBuilderModel Message Message model element

212

LSCCodeGen.LSCObject getSynchronizationData
This method used in the methods of HSMM whose supplementary arguments have a

synchronization label. It traverses the label and retrieves the method parameter information.

Parameters

LSCCodeGen.LSCObject Input LSCObject of the message.

obj

JBuilderModel Message Message model element

isObjName Label is used as a name for the synchronization object name
DECLARATION MANAGEMENT

LSCCodeGen.LSCObject getInteractionClassFromMessage
This method used in the methods of HSMM whose supplementary arguments have an

interaction class. It traverses the class and retrieves the method parameter information.

Parameters

LSCCodeGen.LSCObject Input LSCObject of the message.

obj

JBuilderModel Message Message model element

isObjName Label is used as a name for the synchronization object name

boolean regionlsEnabled Region is enabling or not.

LSCCodeGen.LSCObject getObjectClassFromMessage
This method used in the methods of HSMM whose supplementary arguments have an object

class. It traverses the class and retrieves the method parameter information.

Parameters

LSCCodeGen.LSCObject Input LSCObject of the message.

obj

JBuilderModel Message Message model element

isObjName Label is used as a name for the synchronization object name

boolean regionlsEnabled Region is enabling or not.

213

LSCCodeGen.LSCObject getInteractionClassFromRetraction

This method used in the methods of HSMM whose arguments have a retraction. It traverses

the interaction class and retrieves the method parameter information.

Parameters
LSCCodeGen.LSCObject
obj

JBuilderModel Message
isObjName

boolean regionlsEnabled

Input LSCObject of the message.

Message model element
Label is used as a name for the synchronization object name

Region is enabling or not.

LSCCodeGen.LSCObject getObjectClassFromMessage

This method used in the methods of HSMM whose arguments have a retraction. It traverses

the object class and retrieves the method parameter information.

Parameters
LSCCodeGen.LSCObject
obj

JBuilderModel Message
isObjName

boolean regionlsEnabled

Input LSCObject of the message.

Message model element
Label is used as a name for the synchronization object name

Region is enabling or not.

LSCCodeGen.LSCObject getOnlyObjectAttributesFromMessage

This method used in the methods of HSMM whose supplementary arguments have only

object attributes. It traverses the attributes and retrieves the method parameter information.

Parameters
LSCCodeGen.LSCObject
obj

JBuilderModel Message
isObjName

boolean regionlsEnabled

Input LSCObject of the message.

Message model element
Label is used as a name for the synchronization object name

Region is enabling or not.

LSCCodeGen.LSCObject getObjectAttributesFromMessage

This method used in the methods of HSMM whose supplementary arguments have object

class and its object attributes. It traverses the object class and its attributes and retrieves the

method parameter information.

214

Parameters
LSCCodeGen.LSCObject
obj

JBuilderModel Message
isObjName

boolean regionlsEnabled

Input LSCObject of the message.

Message model element
Label is used as a name for the synchronization object name

Region is enabling or not.

LSCCodeGen.LSCObject getObjectAttributesAndRegionsFromMessage

This method used in the methods of HSMM whose supplementary arguments have object

attribute sets and region sets. It traverses the sets and retrieves the method parameter

information.

Parameters
LSCCodeGen.LSCObject
obj

JBuilderModel Message
isObjName

boolean regionlsEnabled

Input LSCObject of the message.

Message model element
Label is used as a name for the synchronization object name

Region is enabling or not.

LSCCodeGen.LSCObject getOnlyAttributeFromMessage

This method used in the methods of HSMM whose supplementary arguments have only an

object attribute. It traverses the attribute and retrieves the method parameter information.

Parameters
LSCCodeGen.LSCObject
obj

JBuilderModel Message
isObjName

boolean regionlsEnabled

OBJECT MANAGEMENT

Input LSCObject of the message.

Message model element
Label is used as a name for the synchronization object name

Region is enabling or not.

LSCCodeGen.LSCObject getChangelnteractionTransportationType

This method used in the methods of HSMM whose supplementary arguments have an

transportation type to be changed. It traverses the interaction class and retrieves the method

parameter information.

215

Parameters

LSCCodeGen.LSCObject Input LSCObject of the message.
obj

JBuilderModel Message Message model element

LSCCodeGen.LSCObject getChangeAttributeTransportationType
This method used in the methods of HSMM whose supplementary arguments have an
transportation type to be changed. It traverses the object class and retrieves the method

parameter information.

Parameters

LSCCodeGen.LSCObject Input LSCObject of the message.
obj

JBuilderModel Message Message model element

LSCCodeGen.LSCObject getObjectAttributesOrderData
This method used in the methods of HSMM whose supplementary arguments have an order
type to be applied. It traverses the order model element and retrieves the method parameter

information.

Parameters

LSCCodeGen.LSCObject Input LSCObject of the message.
obj

JBuilderModel Message Message model element

LSCCodeGen.LSCObject getRemoveObjectInstance
This method used in the methods of HSMM whose supplementary arguments have an object
class to be removed. It traverses the object class and retrieves the method parameter

information.

Parameters

LSCCodeGen.LSCObject Input LSCObject of the message.
obj

JBuilderModel Message Message model element

216

LSCCodeGen.LSCObject getReflectAttributeValues
This method used in the methods of HSMM whose supplementary arguments have an object
class to be reflected. It traverses the object class and retrieves the method parameter

information.

Parameters

LSCCodeGen.LSCObject Input LSCObject of the message.
obj

JBuilderModel Message Message model element

boolean regionlsEnabled Region is enabling or not.

LSCCodeGen.LSCObject getReceivelnteraction
This method used in the methods of HSMM whose supplementary arguments have an
interaction class to be received. It traverses the interaction class and retrieves the method

parameter information.

Parameters

LSCCodeGen.LSCObject Input LSCObject of the message.
obj

JBuilderModel Message Message model element

boolean regionlsEnabled Region is enabling or not.

LSCCodeGen.LSCObject getDeleteObjectInstance
This method used in the methods of HSMM whose supplementary arguments have an object
class to be deleted. It traverses the object class and retrieves the method parameter

information.

Parameters

LSCCodeGen.LSCObject Input LSCObject of the message.
obj

JBuilderModel Message Message model element

DATA DISTRIBUTION MANAGEMENT METHODS
LSCCodeGen.LSCObject getRegionsFromMessage

This method used in the methods of HSMM whose supplementary arguments have a region

set. It traverses the set and retrieves the method parameter information.

217

Parameters

LSCCodeGen.LSCObject Input LSCObject of the message.
obj

JBuilderModel Message Message model element

LSCCodeGen.LSCObject getRegionDataFromRef
This method used in the methods of HSMM whose supplementary arguments have a region

reference. It traverses the reference and retrieves the method parameter information.

Parameters

LSCCodeGen.LSCObject Input LSCObject of the message.
obj

JBuilderModel Message Message model element

LSCCodeGen.LSCObject addRegionDimension
This method used in the interaction methods which has a dimension. It traverses the

dimension and retrieves the method parameter information and adds to the interaction.

Parameters

JBuilderModel Input interaction class.
InteractionClass

JBuilderModel Message Message model element
LSCObject obj Input LSCObject of the message

LSCCodeGen.LSCObject addRegionDimension
This method used in the object methods whose attribute has a dimension. It traverses the

dimension and retrieves the method parameter information and adds to the attribute.

Parameters

JBuilderModel attribute ~ Input object attribute.
JBuilderModel Message = Message model element
LSCObject obj Input LSCObject of the message

LSCCodeGen.LSCObject getDimData

This method traverses the dimension and retrieves the dimension information.

218

Parameters
LSCObject obj Input LSCObject of the message

JBuilderModel Message = Message model element

LSCCodeGen.LSCObject getRegions
This method traverses the region set and retrieves the region on it. This is used to

createregion method.

Parameters
LSCObject obj Input LSCObject of the message
JBuilderModel Message Message model element

LSCCodeGen.LSCObject getRegion
This method traverses the region and retrieves the region information. This is used in region

related method.

Parameters
LSCObject obj Input LSCObject of the message
JBuilderModel Message = Message model element

LSCCodeGen.LSCObject getRegion
This method traverses the region reference and retrieves the region information. This is used

in region related method.

Parameters
LSCObject obj Input LSCObject of the message
JBuilderModel Message Message model element

boolean isObjName Region is used as a LSC object name
TIME MANAGEMENT METHODS

LSCCodeGen.LSCObject getTimeData
This method traverses the time model element in the supplementary arguments of the

HSMM method and retrieves the time stamp information.
Parameters

LSCObject obj Input LSCObject of the message
JBuilderModel Message Message model element

219

boolean isObjName Region is used as a LSC object name

LSCCodeGen.LSCObject getl.ookahead
This method traverses the lookhead model element in the supplementary arguments of the

HSMM method and retrieves the lookhead information.

Parameters

LSCObject obj Input LSCObject of the message

JBuilderModel Message Message model element

boolean isObjName Region is used as a LSC object name
SUPPORT SERVICE

LSCCodeGen.LSCObject getMultipleCallbacksData

This method traverses the multiple callback model element in the supplementary arguments

of the HSMM method and retrieves the callback information.

Parameters
LSCObject obj Input LSCObject of the message
JBuilderModel Message Message model element

LSCCodeGen.LSCObject getCallbackData
This method traverses the callback model element in the supplementary arguments of the

HSMM method and retrieves the callback information.

Parameters
LSCObject obj Input LSCObject of the message

JBuilderModel Message = Message model element

LSCCodeGen.LSCObject getBoundsData
This method traverses the region set bounds model element in the supplementary arguments

of the HSMM method named setregionbounds and retrieves the bounds information.
Parameters

LSCObject obj Input LSCObject of the message
JBuilderModel Message = Message model element

220

APPENDIX G

INTEGRATION OF HLA METHODS WITH LSC MODEL: BACK END

In this appendix, code generator gets external library related intermediate form information
and emits the corresponding code segments. This is the extension of Java code generation

module (back end) in Figure 3.3.

LSCCodeGen.LSCObject writeExternalLibAspect

This method simply emits the federation execution aspect code for each federation

execution.
Parameters
String fedName Federate name
String RTILib External library name to reach external library in our case,
LscRTILib name to reach actual pRTIL.
String rtiName Federation execution name
String diagramName Current LSC diagram name
String LSCLib Library in which LSCObject is declared.

LSCCodeGen.LSCObject SendExternalMethods
This method emits the external sending method’s definitions. In our case, RTT Ambassador

method definitions are generated in the federate base code.

Parameters
LSCCodeGen.LSCObject Input LSCObject of the message
proc

String RTILib External library name to reach external library.

221

LSCCodeGen.LSCObject writeReceiveExternalMethods
This method emits the external receiving method’s definitions. In our case, federate
Ambassador method definitions are generated in the federate base code. But, method bodies

are emitted by writeReceiveMethods method in the following.

Parameters
ArrayList List holds the receiving events.

recvListClassHandlers

boolean ExtLibEnabled Indicate whether external library is enabled or not.
String libraryStr Library in which LSCObject is declared.

String RTILib External library name to reach external library
String className Instance name, in our case federate name

LSCCodeGen.LSCObject writeReceiveAspectMethods
This method emits the catching aspect codes into the federation execution aspect to handle

callback forwarding to the base code.

Parameters
ArrayList List holds the receiving events.

recvListClassHandlers

String className Instance name, in our case federate name

LSCCodeGen.LSCObject writeReceiveMethods

This method emits the external receiving method’s bodies.

Parameters

ArrayList List holds the receiving events.
recvListClassHandlers

String libraryStr Library in which LSCObject is declared.
String ExternalLib External library name to reach external library

String activeDiagramName Current LSC diagram name

222

APPENDIX H

CODE GENERATOR USER GUIDE

This documents presents information for the practical use of the code generator. Following
the provided guidance the user can download and install the code generator and all required
supplementary programs. After installation, user can run the generator and produce the
source code of his/her input model. User may edit the generated code to reflect his/her
computation logic into generated code. User then can run the generated code. Finally, critical

modeling points for code generation are listed at the end.

1. How to Download and Install GME, Java JRE, Eclipse, Aspectj Plug-in, and
Pitch-RTI

Downloading resources
e Download GME 6.11.9 from the
http://www.isis.vanderbilt.edu/projects/gme/
e Download Java JRE (Java Runtime Environment) version 5 or later from

http://www.java.com/en/download/manual. jsp
e Download Eclipse 3.x from the http://www.eclipse.org/downloads/
® Download Aspect] Plug-in ajdt.1.4 for Eclipse 3.2 from
http://www.eclipse.org/aspect].
e Download Pitch-RTI evaluation version from http://www.pitch.se

e Download code Generator from http://www.ceng.metu.edu.tr/~e73883

Installing GME
Run GME 6.11.9’s setup file and install GME into the desired folder, e.g. c: \Program

Files\GME.

Installing Java JRE
Extract the Java JRE compression file into the specified folder, e.g. C:\Program

Files\Java\jrel.5.0.

223

Installing Eclipse

1. Extract Eclipse compression file into the desired folder, e.g. c:\eclipse—-SDK-

3.0.1-win32.

2. RunEclipse.exe file in the extracted folder and start Eclipse.

3. Choose workspace folder e.g. c: \eclipse—-SDK-3.0.1-win32\workspace,

while eclipse is started.

4. Select Windows->Preferences... menu item and add previously installed Java

JRE into the Eclipse (see Figure H-1)

[evpe fier test Installed JRES e
General Add, remove or edit JRE definitions. By default, the checked JRE is added to the build path of newly created Java
Anit projects.

Aspect] Campiler
Help Installed JREs:
Installipdate Harme Location Type add...
& Java [=hidki.4 CH\Program Files\Javaljzrel 4.2_04 Standard Vi
Appearance Ehidk1.5.6 C\Program Files\Javaljrel 5.0_06 Standard vM
Build Path
Code Style
Cormnpiler
Debug
Properties Files Editar
Plug-in Developrient
RunyDebug
Team
Visualiser
@

Figure H.1 Eclipse Java JRE Installation Window

Installing Aspect J

1. Extract the Aspect] compressed file (ajdt.1.4.zip) into the Eclipse folder (C: \

eclipse-SDK-3.0.1-win32).

2. Alternatively, if extract the compressed file into another folder, plug—ins and

features folder is created in it. Copy these two folders and paste them into the

eclipse folder (c:\eclipse—-SDK-3.0.1-win32).

224

Installing RTI middleware

1.

Run the downloaded RTI setup. In our example pitch-RTI setup namely
prtil5l6ele_v3.1.1.exeisrun.

Installed RTT libraries must be added into the Eclipse project. Select the project in
which RTI is included and open properties of the project (see Figure H-2).

Select Java Build Path and add jar files of the RTI libraries e.g.

c:\Program Files\prtil5lé6le\lib by pressing Add External

JARSs... button.

& Properties for FedCodeGen1516

| Java Build Path

Resource

Bispectd Build ## source | 1= ProjectSi = Libraries | %4 order and Export
Aspect] Campiler JARs and class falders an the build path:
?::d:éz”d Path E:I ewerk.jat - Cl\Program Files\priil516lel)ib Add JARs...
1 Cade Styl E‘ Ircguil516.jar - C:Program Files\priil 516lellib
g S pril516.jar - C:\Program Fles\prtilS1sle|in Add External JARs. .
Java Compiler !; p B HProg ni
Java Editor & wrappet.jar - C\Pragram FilesipriilS1elellib dd Yariable
Javadoc Location [+ B Aspect] Runtime Library =
Project References B JRE System Library [jdki.5.6] add Library...

Refactaring Hiskory
RunfDebug Settings __""\dd Class Folder...

3
]
=

l ’ Cancel

Figure H.2. Adding External Library Jar Files into the Eclipse

How to Install Code Generator as a GME Model Interpreter

Extract the code generator compression file namely code_generator.zip into
the desired folder, e.g. C:\eclipse-SDK-3.0.1-
win32\eclipse\workspace\NewCodeGenProject.

Open Program Files\GME\SDK\Java folder.

Run JavaCompRegister.exe model interpreter register program (Figure H-3).

225

10.

11.

Fill Name, Description, Menu/Tooltip fields as desired. An example filling
is given in FigureH- 3.

ClassPath must be the generator extracted folder (C: \eclipse-SDK-3.0.1-
win32\eclipse\workspace\NewCodeGenProject).

Fill the Class field (org.isis.gme.bon.LSCCodeGen) exactly as in the
Figure H-3.

Then press the Register button.

x|

Register Java Component

Mame |E0deﬁeneratur

Dregcription |EndeGenerat0r

ProglD tga.lnterpreter. CodelGenerator

GUID {8481 DFEA-BBAT-4502-954E 8585 232F 7BCE}

LClazzPath |E:\eclip$e-SDK-3. 0.7 -win32heclpeetwork space\M

Clasz |nrg.isis.gme.bnn.LSEEndeGerl

Paradigmsz |"

enu/Toollip |EndeGenerat0r

[Beagister systemwide

Reqister | Cancel |

Figure H.3 Component Register Window

Select input GME model (stms.mga in our example) by double-clicking on the
input file so GME is started and opened with the input model.

Select File—->Register Components.. menu item in GME.

Select the code generator (LSCInterpreter in our example) in the components
window in Figure H-4.

Press the toggle button and enable the registered code generator in the GME
environment toolbar. When mouse is moved on the toolbar element, name of the

interpreter is shown. (Available components are indicated by an exclamation mark)

226

X

Components

Fleasze select the component you want to work with

Marne Type FroglD
e»’-‘«utoLa_l,Jout Plug-in MGA Plugln.Autalapout

! 0 Constraintkd anager Add-on M ga.Add0n. Constrainttd anage
0 FDD Generator Interpreter tga. Interpreter FOD Generaton
e GMEMerge Interpreter MGA Interpreter. GMEMerge

1 Interpreter Mga.Interpreter, LS Clnkerpreter

0 todelE frortCounter Interpreter M ga.Interpreter. ModelEffortCo
e MOMT raverser Interpreter MGA Interpreter MOM T raverse
e PatternProcesszar Interpreter MGA Interpreter PatternProce:
e T able Editor Plug-in M GA Plugln. T able Editor

< >
Install New. | Femove | Fiegister: Show components:

" Systemwide " Active

" Far uzer only ' Activeldnactive
Cloge | Toaggle | ™ Bath oAl

Figure H.4. Registered Components window

3. How to Configure the Generator

Generator provides a configuration document based on XML, called

GeneratorConf .xml, with initial values for configuration parameters for the users.

1. Define a path variable for the code generator namely GeneratorPath in the
Environment Variables of the Windows XP operating system.
Environment Variables are accessed in the control panel. This path presents
the configuration file path that initially can be code generator path (C:\eclipse—
SDK-3.0.1-win32\eclipse\workspace\NewCodeGenProject). Note
that for the other operating system this definition can be in different way.

2. Configure our example STMS by setting values of the following parameters:

— Seed for the random number generator,

— The path for the generated code,

— The path of the code generator

— Maximum poll count for receiving an optional (cold) message, and
— Waiting (sleep) time between two successive polls.

— External library name and its prefix.

So final configuration XML file can be presented (Figure H-5) as:

227

<?xml version="1.0" encoding="ISO-8859-1"?>

<Confs>

<Random seed="123456"> <!— for random number generator -->

</Random>

<Sleep time="100" passes="50">

<!—sleep time and number of passes for cold message receiving-->

</Sleep>

<PATH>

<Generated path="c:\ eclipse-SDK-3.0.1-win32\ eclipse\ workspace\ FedCodeGen1516\ ">

</Generated> <!—destination path for the generated code-->

<Generator path="c:\ eclipse-SDK-3.0.1-win32\ eclipse\ workspace\ NewCodeGenProject
">

</Generator> <!— path of the generator code-->

</PATH>

<External-InstanceLibs>

<InstanceLib name="RTILib" prefix="RTI"> <! — external library used in the generator-->

</InstanceLib>

</External-InstanceLibs>

</Confs>

Figure H.5. XML Configuration File for the Code Generator for ShipFd

How to Run the Generator

1. After the GME input model is opened, run the code generator by clicking on the
generator’s toolbar button in the GME.

2. The generated code files are placed in the folder (c:\eclipse-SDK-3.0.1-
win32\eclipse\workspace\FedCodeGenl516 for our example) specified
in the configuration file. In our example, Ship_MSC (Diagram class), ShipFd
(Ship federate class), User (Live entity class), ShipFdAspect (computation
aspect of ship federate), UserAspect (computation aspect of user) and
BosporusFederationLibAspect (federation execution aspect) are
generated. Generated three classes and three aspects are shown with a class diagram

in Figure H-6.

3. Copy the generated code folder into the Eclipse workspace folder (c:\eclipse-
SDK-3.0.1-win32\eclipse\workspace). If generated path is set to Eclipse

workspace (in our example: c:\eclipse-SDK-3.0.1-

228

win32\eclipse\workspace\ FedCodeGenl516 is set in the configuration

file), it is not required.
4. Open Eclipse and select File->New->Aspectd Project menu item.

5. Give generated project folder name as a project name e.g. FedCodeGenl516.

After that generated codes are appeared in the Eclipse.

6. Add vendor specific RTI library (pRTI) into the project as described above (in our

example Ship_MSC and Station_MSC).

7. Copy the generated FDD file into the project folder (c: \eclipse-SDK-3.0.1-

win32\eclipse\workspace\FedCodeGenl1516) described in the

configuration file. In our example StraitTraffic.xml is copied.

8. Copy LscRTILib library into the project folder. (Copy LscRTILib folder named

RTI1lib into the c:\eclipse-SDK-3.0.1-

win32\eclipse\workspace\FedCodeGenl516 in our example).
smpwse |

ShipFdThresd

UserThread

Alt_0450: CyclicBarrier
aftChoices | Hashtable
coldChoices : Hashtable
LSC_02kb: CyclicBarrier
Par_02ed : CyclicBarrier
pEhipFd : ShipFdThread

plser : UserThread
Repesatlnti_02ef : CyclicBartier
addAlChoices(String, int)
addColdChoices(String, hoolean)

BosporusFederationLibAspect
DizcoverObjectinstance(L SCObject)
OhjectinstanceNameReserved(LSCObject)
ProvideAttribute’ slueUpdatefLSCObject)
Receivelnteraction(LSCObject)
Reflectattribute’alues(LSCObiect)
RemoveObjectinstance(LSCOkject)
TimeAdvanceGrartLSCOhject)
TimeConstrainedEnabled(LSCOkect)
TimeRegulstionEnabled(L SCOkject)

main(Etring()) forward callhacks
Cover
Cover override computation
ShipFdAspect
atChoices : Hashtable altChoices : Hashitable l—— chooseCand()
coldChoices | Hashtakle coldChoices : Hashtakle ShipFoaspectiaintethod?)
objectOIDs | Hashtable timetFlagMessageTimer_03c6 : boolean Maint)
addARChoices(String, int) timerMessageTimer_03cE : Timer pechooseAR(int, String)
addCaldChoices(String, boolean) addARChoices(Strng, int) peohooseCondString)

chooseAt(int, String)

chooseCaond(String)

chooseOnelArrayList, Hashtable, String)
getloopCourt(String, String, String)

maini Strina([)
SencMessageinout_03e0ShipFd(String)
SendMessageinputDirection_05205hipF ol String)
SendMessageinputSpeed_051dShipFd(String)

addColdChoices(String, bodlean)
chooseAb(int, String)
choogeCondlString)

chooseOnel ArrayList, Hashtakle, String)
DiscoverObjectinstanceLSCObject)
doLsterMessageTimer_03c6(long)
getLoopCount(String, String, String)
main(String])

pochooseCnelArrayList, Hashtable, String)
poetLoopCount(String, String, String)
pcRecvObjectinstanceMNsmeReservedShipABosporus ..
pcRecvProvidedttribute\alueUpdateRegisteredShipObject ..
pcRecvReceiveinteractionRadioMes sageBosporusF ederation ..
pcRecvReflectAttributealuesDiscoveredShipObjectBosporus ..
peRecvRemoveChjectinstanceDiscoveredshipObjectBospotus. .
pesendCresteRegionChannel1 BosporusFederation(String)

SleepThread(int) OhjectinstanceMameReserved(LSCOkject) pesendDestroyFederationExecutionDFEBosporusF ederation ..
Userhainbethad() ProvideAttribute'ialuelpdate(LSCORject) pesendEnableTimeConstrainedETCBosparusFederstion()
override computation T - ReceiveirteractionfLSCOhject) pesendEnableTimeRegulationiooksheadBosporusFederstion. ..
RetlectAttribute'alues(LECObject) pcSendPublishinteractionClassRadiohessageBosporus
UserAspect RemoveOhjectinstance(L SCObject) peSendPublishObjectClassAttributesShipBosporusFederation
EEIEEEEL) SendCreateRegionChannellBosporusFederation(String) peSendRegisterObjectinstanceRegisteredShipObjectBosporus
UserAspectmaintethac()

o_Direction_0525 : String
o_InputString_03e2 : Object
o_inputString_0511: Ohject
o_lnputString_0322 : Object

g_Mame : String

0_Speed_0326 : String

in: BufferedReader

hing)

pechoosedtlint, String)
pechooseCond(String)
pcchooseOnefArrayList, Hashtable, String)
pegetloopCounti String, String, String)
pcSendhessagelnput_03e0ShipFd(String)
peSendessagelnputDirection_0520ShipFd(String)

peSendMessageinput Speed_051 dShipFd(String)

SendDestroyFederstionExecutionDF EBosporusF ederation(String)
SendEnableTimeConstrainedET CBosporusFederation()
SendEnableTimeRegulationlookaheadBosporusF ederation[Ohbject)|
ShipFdMainMethoc()

TimeAdvanceGrartLSCObject)
TimeConstrainedEnabled(LSCORkject)
TimeRegulationEnabled(LSCObject]

pcSendReguestAttribute’alueUpdateDiscoveredShipObject
pcSendReserveObjectinstanceameShipABosporusFederation
pcSendSetRangeBoundsChannel BosporusFederation.
pcSendSubscribeinteractionClassWithRegionsRadioMessage.
pcSendSubscribeObjectClassAttributesShipBosporus:
posendTimeAdvanceReguestFederateLogicalTimeBosporus.
poSendUpdateAttribute v aluesRegisteredShipObjectBosporus. .

Figure H.6. Class Diagram of the Ship Federate

229

a) Base Codes for our example
The Ship_MSC, ShipFd and User classes constitute the base code of the ship
federate application as shown in Figure H-6. Ship_MSC is a diagram code in which the
ShipFd and User threads are defined and run. ShipFd is an instance code where
federate RTI methods and LSC-specific auxiliary methods are generated. User is also an

instance code in which user sends ship name, direction and speed to the ship federate.

public static void ShipFdMainMethod (){
(...) // prechart code for federation management, initialization time management,
/ /declaration management, and region creation
class MainThread_02ee extends Thread { //thread for the first operand of the parallel
structure named MainThread.

MainThread_02ee() {}

public void run() {

do { //loop is repeated until the ReserveObjectInstanceName (ROIN) is succeeded.
condRecvMessagelnput_03e0User(); // ship’s name comes from the user
// Reserve Object Instance Name is sent to RTI:
SendReserveObjectInstanceNameROINBosporusFederation("s0");
// 7s0” is to be overridden by the computation aspect which will take ship name from user
// Object Instance Name Reserved (OINR) is received from RTI
condRecvObjectInstanceNameReserved OINRBosporusFederation();
(...) //1f OINR succeeds leave the loop
} while (!((Boolean)Ship_MSC.coldChoices.get("until_0300")).booleanValue());
(...)// Other Inputs: direction and speed come from the user.
SendRegisterObjectInstanceRegisteredShipObjectBosporusFederation(...);
// Register Object Instance is sent to RTI for the Ship object
SendUpdateAttributeValuesRegisteredShipObjectBosporusFederation(...);
// Update Attribute Values is sent to RTI for the Ship object
SendRequestAttributeValueUpdateDiscoveredShipObjectBosporusFederation(...);
// Request Attribute values Update is sent to RTI for the Ship object
doLaterMessageTimer_03c6(100); / /timer is started for periodically send interactions
// While-Do Main Simulation Loop begins
while (((Boolean)Ship_MSC.coldChoices.get("ExitCondition_040f")).booleanValue()) {

/ /1loop is repeated until the federate is resigned.

Figure H-7. Excerpts from the Generated Java Code of Ship Federate

230

(...) // The code generated for SendRadioMessage chart is inserted here.
// when a timeout occurs radio message interactions are sent and timer is restarted
// Time Management methods begin
SendTimeAdvanceRequestT ARBosporusFederation(new Double(55.0));
// Timestamp type Double comes from FAM. Timestamp value (55) should be overridden.
condRecvTimeAdvanceGrantT AGBosporusFederation();
// Time Advance Grant is received from RTL
}/ /end of main simulation loop.
(...) // The code generated for Exit Federation chart goes in here.
/ /federate is resigned and federation is destroyed.

}/ /end of the main thread

Figure H.7. Excerpts from the Generated Java Code of Ship Federate

(Continue)

To give a sense of the generated code, a part of the ship federate’s (see Figure H-7) and
a sample RTI Ambassador Method (sendinteraction in Figure H-8a) and a
federate Ambassador method (receiveinteraction in Figure H-8 b) are shown
in the figures. The first operand (main thread) of the parallel inline expression (see
Figure 3.2) of the generated shipFd code is exemplified in Figure H-7. For every
operand in a parallel inline expression occurring in the LSC, a thread (e.g.
MainThread_02ee and CallbackThread_032c) is generated. For loop idioms,
while-do or repeat-until code statements are generated. Values of loop
conditions are retrieved from the dictionary (implemented as hashtable named
coldChoices) defined in the computation aspect. In place of the chart references in
the LSC model, the referenced charts’ codes are generated. For example, for
CreateRegions reference, CreateRegion and SetRangeBounds methods are
generated. In Figure H-8a, interaction parameters are packed into an object of
LSCObject. Then the corresponding LscRTILib method (in this case,
sendInteraction)iscalled. In Figure H-8b, a federate Ambassador method (in

this case, receiveinteraction) example in the federate base code is shown.

231

public static boolean
SendSendInteractionWithRegions_0536RadioMessageBosporusFederation(...)
/ /parameters
{
LSCLib.LSCObject proc= new LSCLib.LSCObject();
/ /interaction class information comes from HOMM.
proc.name="RadioMessage"; / /interaction class name
proc.pars=new ArrayList(); //parameter list of the interaction class
LSCLib.LSCAttribute parNew0 =new LSCLib.LSCAttribute();
/ /parameter] is declared
parNew(.name="CallSign"; / / parameterl’s name
parNew0.type="Object"; / /parameterl’s type in Java
parNew0.objClass="HLAASCllIstring"; / /parameter1’s type in HLA datatype
parNew0.objVal=CallSign; / /parameter]l’s value
proc.pars.add(parNew0); / /parameter] is added to the parameter list
(...)/ /parameter? is added.
//dimension and region data is added to the parameter list
//time stamp data is added to the parameter list
BosporusFederationRTILib.sendInteractionWithRegion(proc);
/ /same named LscRTILib method is called

Figure H.8 a. A Sample SendInteraction RTI Ambassador Method in
Federate Base Code (ShipFd)

public static void RecvReceivelnteractionRadioMessageBosporusFederation
(LSCLib.LSCObject iClass,String TimeStamp,int SentOrderType,int ReceiveOrderType,String
TransportationType)

{}/ /received interaction parameter values are held in iClass.

Figure H.8 H. 8 b. A Sample Receivelnteraction Federate Ambassador
Call-back Method in Federate Base Code (ShipFd)

232

b) Codes for Aspects for our Example
Two computation aspects and a federation execution aspect are generated, namely
ShipFdAspect, UserAspect, and BosporusFederationLibAspect.
ShipFdAspect overrides all RTI methods in the ShipFd federate base code. In
ShipFdAspect, dictionaries and LSC-specific auxiliary methods’ (i.e. chooseOne,
getLoopount) advices are also generated.

Two sample advices, namely, RTI Ambassador Method’s (send interaction) advice
and a federate Ambassador method’s (receive interaction) advice, are shown in Figure
H-9a and Figure H-9b, respectively. In Figure H-9a, federate send interaction method
(cf. Figure H-8a) is caught in the ShipFd base code and preliminary logic (in italic) is
filled in. The developer can edit this advice as described in the subsequent “Editing the
Computation Aspect” section.

In Figure H-9b, federate receive interaction method (cf. Figure H-8b) is found on the
ShipFd base code and received data is placed in its advice in the ShipFdAspect.
This received data is the values of all parameters of the interaction class. In this example,

the interaction class is RadioMessage with parameters callsign and message.

pointcut pcSendSendInteractionWithRegions_0536RadioMessageBosporusFederation()

/ /pointcut definition

{

CallSign=new Boolean(true);

//call sign is given as preliminary computation in the computation aspect
Message="Radio Message Sample”; //message is given as preliminary computation

(...) //declaration detail of dimension is get outed
parChannelDimension2_0.strVal="ChannelDimension"; //dimension comes from FAM
(...) //declaration details of region

parChannel13_0.strVal="Channell"; // region comes from FAM

(...) //other details of dimension and region

TimeStamp=new Double(2.0),//must be overridden

proceed(CallSign,Message, RadioMessagewithRgnsDims,TimeStamp);

return true;

Figure H.9 a. A sample RTI Ambassador Method (advice) in Computation
Aspect (ShipFdAspect)

233

pointcut pcRecvReceivelnteractionRadioMessageBosporusFederation (...)

/ /pointcut definition

{

Object CallSign= (Object)((LSCLib.LSCAttribute)iClass.pars.get(0)).objVal;
System.out.printIn("Received CallSign Parameter:"+CallSign);

/ /callsign interaction class parameter is printed.

Object Message= (Object)((LSCLib.LSCAttribute)iClass.pars.get(1)).objVal;
System.out.println("Received Message Parameter:"+Message);

/ /Message interaction class parameter is printed.
System.out.println("Received TimeStamp:"+TimeStamp);
System.out.println("Received SentOrderType:"+SentOrderType);
System.out.println("Received ReceiveOrderType:"+ReceiveOrderType);
System.out.println("Received TransportationType:"+TransportationType);

proceed(iClass, TimeStamp,SentOrderType,ReceiveOrderType, TransportationType);

Figure H. 9 b. A sample Federate Ambassador Method (advice) in
Computation Aspect (ShipFdAspect)

BosporusFederationLibAspect (federation execution aspect) is mainly used
to catch call-back methods from the Bosporus federation execution. A
BosporusFederationRTILib object is instantiated from LscRtiLib in this
aspect and it is used to reach actual RTI. A sample LscLibRTI definition
(BosporusFederationRTILib) and a sample (ReceiveInteraction) advice
are presented in Figure H-10.

In Figure H-10, ReceivelInteraction call-back method is caught by the
federation execution aspect (BosporusFederationLibAspect) and forwarded to

the federate (ShipFd.ReceivelInteraction).

234

public static RTILib ShipFd.BosporusFederationRTILib= new RTILib(); // LscRtiLib

declaration for the federate

(...)/ /unrelated code

pointcut Receivelnteraction(...)/ / pointcut definition

{
RTILib rtiLib = (RTILib)thisJoinPoint.getThis();
// compare received callback with federation name as there might be other federations
if (rtiLib.federatename.compareTo("BosporusFederation")==0)

ShipFd.Receivelnteraction(proc); / /federate method in the base code is called

Figure H.10. A LscRTILib Definition and a Sample Advice in Federation

Execution Aspect (BosporusFederationLibAspect)

S. How to Edit and Navigate on the Generated Code: Especially the Computation

Aspect

e After running the generator, user can edit advices of ShipFdAspect and
UserAspect (generated preliminary computation) in order to effect the desired
computation. Pointcut definitions must be same otherwise advice codes are not
weaved on the base code. Consider, for example, how ship name is retrieved from
the user to send a reserveobjectinstance event to the federation. In the
automatically generated preliminary computation, a sample string is sent to the
ShipFd as a ship name by UserAspect. Naturally we would like the name to be
entered by the user. User types in a name in the advice. The corresponding edited
code is illustrated in italic font in Figure H-11.

e Generator marks the mandatory editing points in the computation aspect by giving
comments such as must be edited. Specially, randomization logic and
randomly generated variable values must be edited.

® When user saves the edited aspect, (By pressing the save button in the Eclipse
toolbar.), Eclipse automatically compiles and builds the project. If an error is

occurred, Eclipse presents it by red markers on the code.

235

pointcut pcSendMessagelnput_03e0ShipFd(...)/ /pointcut definition
{
System.out.print(" Name:>");
try {
g_Name = in.readLine(); /name is read from console
} catch (Exception ignored) {}
Name=g_Name;
proceed(Name);

return true;

Figure H.11. Adding a Computation to User Ship Name Selection Method
in User’s Computation Aspect

(Modifications to the generated preliminary advice are in italic)

6. How to Run the Generated Code

¢ Having compiled the ship federate application, the ship federate is ready to be run.

Select the generator project and activates the popup menu by clicking right mouse

button.
¢ In this menu, select Run As->AspectJ Java Application menu item.

® Select Java Application window appears. In this window (Figure H-12),
select the diagram name class which contains main function. In our example

ShipFd-Ship_MSC is selected. And finally ship federate code is run.

236

& Select Java Application @

Select type (¥ = any character, * = any String, TZ = TimeZone): -
|
Matching items:

(& shipFd - ship_MsC
4 ship_MSC - Ship_MsC

(& User - ship_MsC

3 ship_msc

@ [QK l ’ Cancel

Figure H.12. Select Java Application Window

e Then the ship federate runs and joins the Bosporus federation with the station

federate joined as well. Preparation of the station federate follows the same steps. A

view from the running federation is presented in Figure H-13.

& Java - FedCodeGen1516/RTILib/RTILib.java - Eclipse SDK

File Edit Source Refactor Mavigate Search Project Run Window Help

T i - 0-Q- BEFCG- I BS | 87 dava |
i & et [\D Resource
5] Package Explorer &3 =] @ BosporusFederationLi m RTILib.java &2 = = (]

} catch (FederationExecutionlilrea s
/¢ TODD Auto-generated catch —
e.print3tackTrace ()
return false:

} catch (CouldNotOpenFDD e) {

/7 TODD Auto-genersted catcch

E &

= 3 ship_mMsc
B BosporusFederationLibase
AJ] Ship_MSC.java
m ShipFd.java
E shipFdaspect. aj

i = ~
A1 User java < =.vrintStackTrace (i : -
E Useraspect. aj — A5
=8 station_Msc 35 Debug 2 5 Expressions = m
) BosporusFederationLibast % [> %= |%| =
E BosporusStation. java = Soe e Els -
2 Daemon Thread [MOM inkeraction thread] (Running) B

@ BosporusStationdspect, aj
X Station_MSC.java
m User . java
E UserAspect. aj T T
< | > < | >
=

s Daemon Thread [Timer-1] (Funning)
=g Thread [Thread-7] (Suspended (exception MullPointerException))
ahl.evokerMultiplecallbacks{double, double) line: not available

£

El console &3 4 & 5" ;ElEIEl (wal (=] (i

Station_MSC [Aspectflava Application] C:iProgram Files)Javalirel .5.0_06\bintjavaw.exe (29. Tem. 2007 00:04:20)

Feflectittribute TransportationType: TransportationType (1) e
FeceiveInteraction Message:Hello-—-2

Receivelnteraction CallZign: Ok

Receivelnteraction TimeZ3teawp:LogicalTimeDouwlole<l1l.0000005
Receivelnteraction SentlrderType:2

< |

M

| ¥
6|

Figure H.13. A View of the Ship Federate Running (pRTI snapshot)

237

What are the Critical Modeling Points for Code Generation

Model, atom, and reference names are used for variables in the code generation so
names must be variable identification form. For example, they do not contain blank,
slash, minus sign, bracket, etc and do not start with numbers.

Model must be complete and correct for syntactically and semantically. For example
events’ precedence values must be ordered and correct. References in the model

must be referred to the correct model elements.

238

CURRICULUM VITAE

PERSONAL INFORMATION

Surname, Name: Adak Biilent Mehmet
Nationality: Turkish (TC)

Date and Place of Birth: 05 December 1974, Eregli
Marital Status: Married, one daughter.

Phone: +90 312 315 55 87

Email: bmadak @yahoo.com

EDUCATION
Degree Institution Year of Graduation
MS METU Computer 2000
Engineering
BS METU Computer 1997
Engineering
High School Eregli Cumhuriyet High 1992
School
WORK EXPERIENCE
Year Place Enrollment
1997-Present Aselsan Inc. Software Software Engineer
Engineering Department
FOREIGN LANGUAGES
English
PUBLICATIONS
Journals

1 Topcu Okan, Adak Mehmet, and Oguztiiziin Halit, “A Metamodel for Federation
Architectures”, ACM Transactions on Modeling and Computer Simulation (to appear).

2 Adak Mehmet, Topcu Okan, and Oguztiiziin Halit, “Model-based Code Generation for
HLA Federates”, ACM Transactions on Modeling and Computer Simulation (under
review).

3 Topcu Okan, Adak Mehmet, and Oguztiiziin Halit, “Metamodeling Live Sequence
Charts for Code Generation”, Software and Systems Modeling (under review).

239

4 Adak Mehmet, Topcu Okan, and Oguztiiziin Halit, “Code Generation for Live
Sequence Charts and Message Sequence Charts”, Journal of Systems and Software
(under review).

International Conferences

1. Molla Ayhan, Sarioglu Kaan, Topcu Okan, Adak Mehmet, and Oguztiiziin Halit,
“Federation Architecture Modeling: A Case Study with NSTMSS”, In Proceedings of
2007 Fall Simulation Interoperability Workshop (SIW), Orlando, Florida, USA,
September 16-21, 2007.

2. Adak Mehmet and Oguztiiziin Halit, “A Web-based Source Code Browser for Pascal”.

16th International Symposium on Computer and Information Sciences (ISCIS XVI),
Antalya, pp.87-96, 2001.

National Conferences

1. Efe Osman, Adak Mehmet and Oguztiiziin Halit, “Davranig Belirtimlerinin Kod
Uretimi Yoluyla Canlandiriimasi ve Bir Uygulama”, UYMS, Ankara, 2007

Technical Reports

1. Adak Mehmet and Oguztiiziin Halit, “A Code Generator for Live Sequence Charts
(LSC) and Message Sequence Charts (MSC)”, Technical Report (METU-CENG-07-04),
Middle East Technical University, May 2007

2. Sarioglu Kaan, Adak Mehmet and Oguztiiziin Halit, “Modeling and Code Generation
for Federation Federate Monitor (FedMonFd)”, Technical Report (METU-CENG-07-
07), Middle East Technical University, May 2007

Thesis

1. Adak Mehmet, “A Web-based Source Code Browser for Pascal”, MSc Thesis, The
Department of Computer Engineering, The Graduate School of Natural and Applied
Sciences, Middle East Technical University (METU), Ankara, Turkey, 2000.

HOBBIES

Painting

240

