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ABSTRACT 

 

 

MODEL-BASED CODE GENERATION FOR THE HIGH LEVEL ARCHITECTURE 
FEDERATES 

 

 

Adak, Bülent Mehmet 

Ph.D., Department of Computer Engineering 

Supervisor: Assoc. Prof. Dr. Halit Oğuztüzün 

 

December 2007, 261 pages 

 

 

We tackle the problem of automated code generation for a High Level Architecture (HLA)-

compliant federate application, given a model of the federation architecture including the 

federate’s behavior model. The behavior model is based on Live Sequence Charts (LSCs), 

adopted as the behavioral specification formalism in the Federation Architecture Metamodel  

(FAMM). The FAMM is constructed conforming to metaGME, the meta-metamodel offered 

by Generic Modeling Environment (GME). FAMM serves as a formal language for 

describing federation architectures. We present a code generator that generates Java/AspectJ 

code directly from a federation architecture model. An objective is to help verify a federation 

architecture by testing it early in the development lifecycle. Another objective is to help 

developers construct complete federate applications. Our approach to achieve these 

objectives is aspect-oriented in that the code generated from the LSC in conjunction with the 

Federation Object Model (FOM) serves as the base code on which the computation logic is 

weaved as an aspect. 

 

Keywords: Code Generation, High Level Architecture, Live Sequence Charts, Aspect 

Oriented Programming, Model-Driven Engineering 
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ÖZ 

 

 

YÜKSEK SEVİYE MİMARİ FEDERELERİ İÇİN MODEL TABANLI KOD ÜRETİMİ 

 

 

Adak, Bülent Mehmet 

Doktora, Bilgisayar Mühendisliği Bölümü 

Tez Yöneticisi: Doç. Dr. Halit Oğuztüzün 

 

Aralık 2007, 261 sayfa 

 

 

Biz, federenin davranış modelini de içeren  federasyon mimari modeli verilen, yüksek seviye 

mimari (HLA) uyumlu bir federe uygulaması için kod üretiminin otomasyonu problemi ile 

uğraşmaktayız. Federe davranış modeli, Federasyon Mimari Meta-modeli (FAMM) içinde 

davranışsal spesifikasyon biçimselleşmesi için adapte edilmiş Canlı Sıralama Çizgelerini baz 

almaktadır. FAMM meta-GME meta-metamodeline uyumlu olarak inşa edilmiştir. Meta-

GME, Jenerik Modelleme Ortamı (GME) tarafından ortaya atılmış bir meta-metamodeldir. 

FAMM federasyon mimarilerinin betimlenmesi için biçimsel bir dil sunmaktadır. Biz 

federasyon mimari modelinden direk olarak Java/AspectJ kodu üreten bir kod üreteci 

sunmaktayız. Bu çalışmanın bir amacı, bir federasyon mimarisini geliştirme yaşam 

döngüsünün henüz başında test ederek doğrulamaya yardım etmektir. Bir diğer amaç da 

komple federe uygulamaları oluşturmada geliştiricilere yardım etmektir. Bu amaçlara 

ulaşmada bizim yaklaşımımız ilgiye odaklı yaklaşımdır.  Bu yaklaşımda, Federe Obje 

Modeli (FOM) ile bütünleşik LSC’den üretilen kod, hesaplama mantığı üzerine bir ilgi 

olarak örülen, taban kodu olmaktadır. 

  

Anahtar Kelimeler: Kod Üretimi, Yüksek Seviye Mimari Simülasyon, Canlı Sıralama 

Çizgeleri, İlgi Odaklı Programlama, Model-Güdümlü Mühendislik 
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CHAPTER I 
 
 

 INTRODUCTION 
 
 
 

This chapter introduces the motivation and scope of the study, presents the context of the 

generator and then outlines the organization of the thesis. 

1.1. Motivation and Scope 

We investigate the applicability of model-based code generation to HLA-compliant 

federation development.  This approach is promising in regards to rapid prototyping of 

federation designs and semi-automated construction of federate applications. First and 

foremost, this requires the availability of suitable models, behavioral models in particular. 

One of the main objectives of modeling is to provide a representation appropriate to identify, 

analyze and design the systems. The system representation must be clear-cut adequate to 

support automated processing, specifically, generation of useful artifacts, such as the source 

code. Modeling the observable behavior of a system is considered as an important part of the 

system specification. In our preceding work [Topçu et al. 2007] we introduced a 

comprehensive metamodel for the description of federation architectures. A salient feature of 

the metamodel, FAMM (Federation Architecture Metamodel) adopts (Live Sequence Charts) 

LSCs to specify the communication behavior of federates. 

 The model of a particular federation architecture constitutes the input to the code 

generation process. The output is obtained one member federate at a time: An HLA-

compliant federate application code that is capable of generating any sequence of 

communications conforming to the specification, but that lacks the logic to carry out the 

required computations. Thus, if it were to run as is, it would exhibit a randomized 

communication pattern conforming to the specification as long as it did not rely on any 

correctly computed value. To turn it into an appropriate application one would need to 

provide the algorithms to compute the correct values.  In this dissertation we introduce an 

automated tool that carries out this automated code generation process.    

 Note that the generated federate application code is HLA-compliant in the sense that its 

interaction with the RTI complies with the Federate Interface Specification and the 

Federation Object Model. Further compliance of the federate, as a federation member, with 
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the HLA Rules can be guaranteed by the designer, who specifies the federate’s behavior 

using FAMM (in particular, Behavioral Metamodel - BMM). The developer, who is 

providing the computation logic, cannot break the federate’s compliance unless his 

calculations disrupt the control flow within the federate.    

 The generated code consists of federate base code and computation aspect code, where 

the latter is weaved onto the former. The federate base code handles the communication 

between the federate and the RTI, and the computation aspect code allows the user to code 

the federate’s algorithms for computation. To produce an intended federate application, the 

developer should edit the computation aspect. By providing a simple computation logic (e.g. 

line-of-sight calculation for radars) the user can obtain prototype federates, thus a prototype 

federation. This should serve for the verification of the federation architecture. By providing 

the sophisticated logic as required by the end product (e.g. finite element method 

calculations for radars) the user can proceed with actual federate application development.    

1.2. Context of the Generator 

Adopting the Model Driven Engineering (MDE) approach, the system development process 

can be viewed as a sequence of model transformations [Bezivin 2005].  From this point of 

view, HLA-based distributed simulation development essentially involves the conceptual 

model, the federation architecture model, the detailed design model, and the federation in 

executable form, as illustrated in Figure 1.1. Each layer of models reflects a particular level 

of abstraction. The conceptual model layer deals with the problem domain entities (for 

example, a ship); federation architecture deals with concepts of HLA (for example, a ship 

federate), and the detailed design model layer deals with software objects within federate 

applications (for example, a component diagram for the ship’s hydrodynamic model 

computations). Finally, we have the federation in some executable form, possibly in some 

programming language (for example, implementation of the hydrodynamics as a software 

unit within some federate).  
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Figure 1.1 Development Methodology for HLA-Based Distributed Simulations, adapted 
from  [Topçu et al. 2007] 

 
 
 

 “Federate Application Base Code Generation” step is completely automated by the 

present work. “Federate Computation Aspect Coding” step of the process is to be completed 

by the developer, based on the Detailed Design Model for each federate. The code generator, 

without the benefit of a detailed design model for each federate, can only provide the 

developer with a preliminary computation aspect, which he must edit to introduce code 

based on the detailed design of the federate.      

 A federation developer can utilize our work in the following manner: 

i. Model the federation architecture, including the behaviors of the new member 

federates. 

ii. Automatically generate code for each new member federate.  

iii. Edit the computation aspect in the federate code. 

iv. Automatically generate FOM Document Data (FDD).  

v. Compile the new federates and run the federation. 

 

1.3 Organization of the Thesis 

The preceding sections of this chapter introduce the motivation and scope of the study and 

present the context of the generator. The remaining chapters are broken down as follows: 

• Chapter 2 provides related background information to understand the following 

chapter.  

• Chapter 3 explains how to generate code from a federation architecture model. 

• Chapter 4 and Chapter 5 describe code generation from live sequence charts. 

• Chapter 6 presents an extensive case-study for a real simulation application. 
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• Chapter 7 outlines the conclusions reached as a result of this research as well as 

presenting the way ahead.  

• Appendix A explains model patterns and their related codes in the code generation.  

• Appendix B gives details of the intermediate form and its generation from input 

model in the code generation process. 

• Appendix C describes the java code generation from the intermediate form in the 

code generation process. 

• Appendix D presents an example to show how the code is generation from model to 

code in the process. 

• Appendix E introduces LSC examples and their code equivalency from the literature 

for every construct defined in the FAMM. 

• Appendix F and Appendix G explain how a domain-specific data model especially 

HLA methods are integrated with LSC. 

• Appendix H is a user guide that describes how the generator is used for code 

generation. 
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CHAPTER II 
 
 

 BACKGROUND 
 
 
 

In this chapter, background information from the related literature is summarized to help the 

reader follow the developments in the subsequent chapters more easily. First, generative 

software development terminology, which is the basis of automated software generation, is 

discussed. Second, model-driven architecture and model-driven engineering concepts are 

summarized. In the context of model-driven development, a code generator offers a special 

kind of transformation from a platform specific model to source code. Third, High Level 

Architecture which is the domain of our code generator is described. Fourth, Federation 

Architecture Metamodel (FAMM), which is the metamodel on which our code generator is 

based, is introduced. Fifth, Generic Modeling Environment tool by which metamodel and 

input models are constructed is discussed. Sixth, aspect-oriented programming which is the 

primary approach for the separation of communication behavior and computation concerns 

of the generated code is outlined. Finally, elementary code generation terminology used in 

the thesis is defined. 

2.1. Generative Software Development 

Generative software development [Czarnecki 2005] focuses on automating the creation of 

software. A required piece of software can be automatically generated from a specification 

written in some textual or graphical domain-specific language (DSL). A key concept in 

generative software development is that of a mapping between problem space and solution 

space, which is also referred to as a generative domain model. Problem space is a set of 

domain-specific abstractions that can be used to specify the desired system. The solution 

space, on the other hand, consists of implementation-oriented abstractions, which can be 

instantiated to create implementations of the specifications expressed using the domain-

specific abstractions from the problem space. The mapping (see Figure 2.1) between these 

two spaces takes a specification and yields the corresponding implementation. In our case, 

the mapping is done from the federation architecture model to the federate application source 

code. 
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Figure 2.1. Mapping between domain model and implementation-oriented abstractions  

[Czarnecki 2005] 

 

 

2.2. Code Generation 

Code generation is the technique of writing and using programs that build application code. 

Typically, it reads in the design, and then builds output code that implements the design. In 

Figure 2.2, code generation is represented graphically. 

 

 

Figure 2.2. Code generation 

 

 

 
Code generation, when it is accomplished properly, offers four benefits: 

• Quality: output code is as good as having written by hand. It can be standards-

compliant. 

• Consistency: output code uses consistent class, method, and argument names. 

• Productivity: it is faster to generate the code than to write it by hand. 

• Abstraction: the design is specified in an abstract form, free of many implementation 

details. 
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2.3. Model Driven Architecture (MDA) and Model Driven Engineering (MDE) 

“The Model-Driven Architecture starts with the well-known and long established idea of 

separating the specification of the operation of a system from the details of the way that 

system uses the capabilities of its platform” [Kleppe et al. 2003].  MDA provides an 

approach for, and enables tools to be provided for: 

• specifying a system independently of the platform that supports it, 

• specifying platforms, 

• choosing a particular platform for the system, and transforming the system 

specification into one for a particular platform  

The primary goals of MDA are portability, interoperability and reusability in the course of 

architectural separation of concerns.  The Model Driven Architecture (MDA) [OMG 2003] is 

a framework for software development put forth by the Object Management Group (OMG). 

The MDA development life cycle, which is shown in Figure 2.3 does not look very different 

from the traditional life cycle in that the same phases are identified. A remarkable difference 

is the artifacts that are created during the development process. The artifacts are formal 

models that can be processed by the computers. The following three models are at the core of 

the MDA. 

 

Figure 2.3. MDA software development life cycle [Kleppe et al. 2003] 

 

 
 Platform Independent Model (PIM): It is a model with a high level of abstraction so that 

it is independent of any implementation technology. The base PIM expresses only business 

functionality and behavior. 
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 Platform Specific Model (PSM): A PSM is customized to specify a system in terms of 

implementation constructs that are in one specific implementation technology. MDA 

proposes that a PIM be transformed into one or more PSMs. It is clear that a PSM will only 

seem sensible to a developer who has knowledge about the specific platform.  

 Code: The final step in the development is the transformation of each PSM to code. 

 MDA promises productivity, interoperability and maintainability improvements in the 

software development lifecycle. 

 [Kent 2002] remarks that MDA focuses on architecture, on artifacts, on models. Although 

MDA declares there might be a richer modeling space, it chooses to focus on just one 

dimension, the transformation between platform independent and platform specific models. 

 The OMG MDA strategy imagines a world where models play a more direct role in 

software production, being amenable to manipulation and transformation by machine. Model 

Driven Engineering (MDE) is wider in scope than MDA. MDE combines process and 

analysis with architecture. 

 [Schmidt 2006] states that MDE technology is a promising approach to address platform 

complexity. Domain-specific modeling languages formalize the application structure, 

behavior, and requirements within particular domains. DSMLs are described using 

metamodels, which define the relationships among concepts in a domain and precisely 

specify the key semantics and constraints associated with these domain concepts. Developers 

use DSMLs to build applications using elements of the type system captured by metamodels 

and express design intent declaratively rather than imperatively. 

 Generators and transformation engines analyze certain aspects of models and then 

produce various types of artifacts, such as source code, simulation inputs, test cases or 

alternative model representations. The ability to produce artifacts from models helps ensure 

the consistency between application implementations and analysis information associated 

with functional and quality requirements captured by models. This automated transformation 

process is often referred to as “correct-by-construction,” in place of conventional 

handcrafted “construct-by-correction” software development processes. 

 MDE tools force domain-specific constraints and perform model checking that can detect 

and prevent many errors early in the life cycle. In addition, MDE tool generators need not be 

as complicated since they can produce artifacts that map onto higher-level, often 

standardized, middleware platform APIs and frameworks, rather than lower-level operating 

system APIs. As a result, it is often much easier to develop, debug, and evolve MDE tools 

and applications created with these tools. 

 An earlier manifestation of MDE is Model Integrated Computing (MIC), which relies on 

metamodeling to define domain-specific modeling languages and model integrity 
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constraints. The domain-specific language is then used to automatically compose a domain-

specific model building environment [Ledezci et al 2001]. 

2.4 High Level Architecture (HLA) 

HLA related background material in the section has been extracted from [IEEE 2000a-c, 

IEEE 2003]. The HLA is common architecture to combine simulations (federates) into a 

larger simulation (federation). It is based on the publish/subscribe paradigm. A federation 

execution is a session of a federation executing together. A federation has a name, and 

involves: 

• supporting middleware called Runtime Infrastructure (RTI) 

• a common object model for the data exchanged between federates, called FOM 

• member federates 

 A federate is a member of a federation, one point of attachment to the RTI. A federate 

may correspond to one platform, such as a cockpit simulator, or a combined simulation, such 

as an entire national air traffic flow simulation. 

 Federates and the RTI are software. The FOM is data created by the federation developer 

typically by using a tool. The FOM states agreement on data among the participant federates. 

 The relationship between the software components is presented in Figure 2.4. Federates 

are shown in the figure as either simulations, surrogates for live players, or tools for 

distributed simulation such as data collector, passive viewer. A federate might consist of 

several processes, perhaps running on several computers. A federate might model a single 

entity, like a vehicle, or many entities, like all the vehicles in a city.  

 A federate might have other purposes other than modeling entities: It might be a data 

collector or viewer, passively receiving data from other federates and generating none for the 

others, or it might act as a surrogate for human participants in a simulation. 

  

 

Figure 2.4. Software Components in the HLA [IEEE 2000a]  
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 The HLA is foremost a software architecture, rather than a particular implementation of 

an infrastructure or tools designed to work with it. The HLA standard supports a variety of 

implementations. Therefore, it is defined not by software, but by a set of documents. The 

HLA standard has three parts: 

• Object Model Template (OMT) 

• HLA Rules 

• Interface Specification 

 For the moment, there are two parallel efforts in progress to follow the adoption of the 

HLA by standards bodies. One standards adoption effort is through the Object Management 

Group (OMG), which has adopted version 1.3 of the HLA interface specification as “Facility 

for Distributed Simulation Systems (FDSS)”. The other standards adoption effort is through 

the IEEE, of whose standards are HLA Framework and Rules [IEEE 2000a], Federate 

Interface Specification [IEEE 2000b], and OMT [IEEE 2000c].  

 
The Object Model Template (OMT) 

The OMT advises the structure of all Federation Object Models (FOMs). The FOM is the 

vocabulary of data exchanged through the RTI for an execution of the federation. Hence, the 

FOM does not describe data internal to a single federate, only data that are shared with other 

federates. The main components of the OMT are: interaction classes, and Object classes. 

 An interaction is a collection of data sent by a federate at one time through the RTI to 

other federates. An interaction may represent an occurrence or event in the simulation model 

of interest to more than one federate. An interaction may be defined to occur at a point in 

simulation time. A federate sends an interaction; other (interested) federates receive the 

interaction. The interaction is transitory in that it has no continued existence after it has been 

received. Each interaction carries with it a series of named data called parameters. 

 Objects in the RTI refer to simulated entities that are of interest to more than one federate. 

They persist or endure for some interval of simulated time. 

 The OMT defines classes’ objects. Each class has a name, and defines a set of named data 

called attributes. Federates create instances of these classes, and change the state of an object 

instance in simulation time by supplying new values for its attributes. Federates talk with the 

RTI, and hence indirectly with each other, in terms of interactions and objects. Each federate 

must make some conversion from its internal representation of simulated entities to HLA 

objects as specified in the FOM. If the federate is HLA-compliant, the translation may be 

very straightforward; otherwise it may be more complicated. The FOM represents the 

common, agreed vocabulary between members of a federation. 
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HLA Rules 

The HLA rules express design goals and constraints on HLA-compliant federates and 

federations. The first five rules deal with federations, the latter five with federates. 

 
The Management Object Model (MOM) 

HLA federations are typically distributed systems. Federates often run on many computers. 

Thus federations are subject to the usual difficulties associated with distributed systems. The 

RTI offers facilities to maintain and manage a shared view of federation as a distributed 

system. Management data can be described and distributed just like simulation data. It allows 

the RTI to describe and manage the state of a federation. 

 The RTI itself creates the instances and updates attribute values associated with the 

MOM. System management can be accomplished through the use of federates designed for 

the purpose. Because the MOM is the same in all federations (since it is RTI managed), 

management federates can be reused. 

 The MOM also defines a set of interactions that can be used to affect the state of other 

federates. The RTI is required to respond correctly to MOM interactions. These interactions 

are used to regulate federation operation, request information, and report on federate activity. 

 

The HLA Services 

HLA services fall into six groups that are defined by the commonality of interest. 

 

(i) Federation Management 

Federation services manage a federation in to ways: 

• By defining a federation execution in terms of existence and membership 

• By accomplishing federation-wide operations. 

 To define a federation, there are services to create a federation execution and to allow a 

federate to join the execution or resign from it. Every federate must join a federation 

execution.  

 Federation-wide operations include the coordination of federation saves and restores. 

There are also services to allow a federation to define and meet a federation-wide 

synchronization point. 

 

(ii) Declaration Management 

The declaration management services are the way for federates to declare their intent to 

produce (publish) or consume (subscribe to) data. The RTI uses these declarations for 

routing data, transforming data, and interest management. On the subject of routing, the RTI 
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uses subscriptions to decide what federates should be informed of the creation or update of 

entities. Received data go through reduction and re-labeling in accordance with the 

federate’s subscriptions before being delivered. Finally, the RTI uses declarations to indicate 

interest to publishing federates. The RTI can tell a federate whether any other federate is 

subscribed to data it intends to produce, so that it can stop producing when no other federate 

needs the information. 

 

(iii) Object Management 

Object management services are used for the actual exchange of data. A federate uses 

services from this group to send and receive interactions. These services are also used to 

register new instances of an object class and to update its attributes. Other federates will 

have services from this group invoked on them to receive interactions, discover new 

instances, and receive updates of instance attributes. Other services of this group are used to 

control how data are transported, to ask for new updates of attribute values, and to inform a 

federate whether it should expect data. 

 

(iv) Ownership Management 

The ownership management services in the RTI implement the HLA’s notion of 

responsibility for simulating an entity. The RTI ensures that at most one federate at a time 

owns a given instance attribute. Responsibility for simulating an entity can be shared 

between federates in two ways.  

• First the complete modeling of an entity may be shared among federates.  

• Second, the modeling of entities may pass from one federate to another in the course 

of a federation execution.  

Ownership management can be ignored if a federation does not need it. 

 

(v) Time Management 

While federates executing in their own threads of control, the proper ordering of events 

between federates is an important problem to be solved. In HLA, ordering of events is 

expressed in “logical time”. Logical time is an abstract concept; it is not necessarily fixed to 

any representation or unit of time. The RTI’s time management services do two things: 

• They allow each federate to advance its logical time in coordination with other 

federates. 

• They control the delivery of time-stamped events so the federate need never receive 

events from other federates in its past. 
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(vi) Data Distribution Management 

Data distribution management (DDM) services control the producer-consumer relationships 

among federates. Whereas the declaration management services manage those relationships 

in terms of interaction and object classes, DDM manages in terms of instances and abstract 

routing spaces. 

 
(vii) Support Services 

Support services utilized by joined federates for performing name-to-handle and handle-to-

name transformation, setting advisory switches, manipulating regions and RTI start-

up/shutdown. 

2.5. Federation Architecture Metamodel (FAMM) 

FAMM is a proposed metamodel for specifying the architecture of an HLA-compliant 

federation [Topçu et al 2007]. FAMM formalizes the standard Object Model and Federate 

Interface Specification. Beyond formalizing the existing HLA standard, FAMM allows the 

behavioral description of federates based on LSCs. Having the behavioral models of the 

participating federates gives us the ability to test the federation architecture by executing the 

federation. 

 Federation Architecture is a major portion of the federation design documentation in 

HLA based distributed simulations. Federation design includes the activities for: 

• Forming HLA Object Model (federation and simulation object models): 

• Specifying the behaviors of participating federates so that they can fulfill their 

responsibilities within the  federation 

 The Federation Architecture Model (FAM) for a particular federation conforms to 

FAMM. It involves the Federation Model (Federation Structure, Federation Object Model 

and related HLA Services) and the Behavior Models for each participating federate. 

 FAMM (Figure 2.5) involves two main sub-metamodels: One for specifying the 

observable behaviors, and the other for defining the HLA FOM and the HLA service 

interface.  
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Figure 2.5. Federation Architecture Metamodel Structure ([Topcu et al. 2007]) 

 
 
 
 Figure 2.6 depicts the relationship between FAMM and Federation Architecture. Each 

participating federate’s behavior is modeled using the behavioral metamodel while the FOM 

is described by using the HLA Object Metamodel.  

 

Figure 2.6. Relationship between a Federation Architecture Model and the Metamodel  

[Topcu et al. 2007] 

 

 HLA Object Metamodel (HOMM) is a formalization of HLA Object Model Template 

(OMT) [IEEE 2000c]. OMT Core folder includes the table contents specified in HLA OMT. 

 Federation Structure Metamodel (FSMM) represents the structural aspect of the 

federation. This metamodel allows the developer to define a federation and its participating 

federate applications, and to readily connect them to their respective FOM and SOMs. In this 

sub-metamodel, the participating federate applications are emphasized and their 



15 

corresponding SOM’s can be specified in addition to the FOM. The FOM and SOMs that are 

referred by FSMM are prepared with HOMM. 

 The HLA Services Metamodel (HSMM) defines the interface of the standard services of 

Runtime Infrastructure (RTI). These management services provide a functional interface 

between federates and the RTI. These interfaces arranged into seven basic groups are as 

follows: Federation management, declaration management, object management, ownership 

management, time management, data distribution management, and support services [IEEE 

2000b].  

 Behavioral Metamodel (BMM) provides an abstract syntax for specifying the dynamic 

and the observable behaviors of a federate. Modeling the behavior of a federate can involve 

not only the HLA-specific behavior such as creating regions, but also the interactions 

between the components of the federate and the live entities (e.g., the user) in the 

environment. The observable behaviors of a federate are represented using Message 

Sequence Charts (MSCs) and Live Sequence Charts (LSCs) in the metamodel.  

 LSC is a graphical language introduced by David Harel and his colleagues [Harel 2001, 

Damm and Harel 2001, Brill et al. 2004], as an extension of MSC, for specifying the patterns 

of interactions between components in a concurrent system. MSCs are widely used in the 

specification of telecommunication systems. The MSC language is standardized by ITU 

[ITU-T 1998], the most recent standard being Recommendation Z.120 [ITU-T 2004]. Many 

features of MSCs are adopted in the UML sequence diagrams. LSC extends MSC by 

providing notations for distinguishing mandatory and optional behavior and by promoting 

conditions to first class elements. 

 LSC metamodel, defines basic LSC concerns such as instance, event, message, parallel, 

alternative, loop and interconnection between these concerns in the meta-level.   These 

concerns are matched to the first class objects such as folder, atom, model, reference, 

connection which are defined in the Generic Modeling Environment (GME). 

 LSC instances can represent federation executions, federates (possibly, with their 

constituent modules), live entities such as interactive users and environments. An LSC 

document which includes one or more LSC diagrams represents a federate’s behavior. 

Federate application code is generated for the given LSC document. A federate may have 

some constituent modules whose behavior we might prefer to model explicitly. Each such 

module is represented by an instance in the LSC model, and code is generated specifically 

for it. 

2.6. Generic Modeling Environment (GME) 

GME serves as a metamodel development environment as well as a customized model 

building environment once the developed and registered metamodel is invoked. In other 
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words, GME is a configurable toolkit for creating domain-specific modeling and program 

synthesis (code generation) environments. It puts the MIC [Ledezci et al 2001] vision into 

practice. The configuration is achieved through metamodels specifying the modeling 

language of the application domain. The modeling language contains the syntactic, semantic, 

and presentation information of the domain. The modeling language defines the family of 

models that can be created using the resultant modeling environment. The metamodels 

specifying the modeling language are used to automatically generate the target modeling 

environment. The generated environment is then used to build domain models. These models 

can be input to all kinds of model-driven processing, including model transformation and 

code generation. This kind of process is called model interpretation in GME parlance. There 

is a metamodeling language, called MetaGME, which configures GME for creating 

metamodels, called paradigms in GME jargon. These models are then automatically 

translated into GME configuration information through model interpretation. [GME 2006] 

 MetaGME meta-metamodel plays the similar role as Meta Object Facility (MOF). MOF 

is a sister-standard of UML and is maintained by the same standards-publishing body, the 

Object Management Group (OMG). A metamodel which is an instance of MOF formally 

specifies the abstract syntax of the set of modeling constructs which constitute a modeling 

language. In the MOF support context, carries out some research on the direct transformation 

from MetaGME to MOF [Emerson 2005]. 

 In the code generation, GME BON2 application interface (API) is used. This API enables 

the developer to walk on the input model. API supports both C++ and Java programming 

languages. We use Eclipse development environment [Eclipse 2007] for the programming. 

2.7. Aspect-oriented Programming (AOP) 

AOP [Kiczales et al. 1997] supports modularity of cross-cutting concerns in existing 

languages, particularly object-oriented programming languages. Some concerns do not align 

well with existing module boundaries; these are called “cross-cutting concerns”.  Well 

known examples of cross cutting concerns are: error checking/handling, synchronization, 

performance optimization, monitoring/logging, and debugging support [Elrad et al. 2001]. 

 AspectJ [AspectJ 2007] is an extension of Java that allows modular separation of 

concerns. Here are some key concepts of AOP couched in AspectJ terms: Aspects are special 

Java classes that serve as modules to encapsulate concerns in source code. They behave 

somewhat like Java classes, but may also include pointcuts, advice and inter-type 

declarations. 

 A joinpoint is a well-defined point in the program (base code) such as a method 

declaration, a method call, and an assignment statement. 
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A pointcut is a set of joinpoints. There is a syntactical mechanism for specifying pointcuts. 

For example, a pointcut can be specified with a regular expression, and the method 

declarations with matching method names will be picked as the joinpoints.  

Advice is AspectJ’s mechanism for affecting the behavior at joinpoints. An advice definition 

comprises a block of code, a pointcut and a specification of whether the block should run 

before, after or in place of occurrences of the joinpoints in the pointcut when they occur. 

These options are indicated by the keywords before, after, and around, respectively.    

 A key idea in our work is to handle computation as an aspect to be weaved onto the base 

code that handles communication and data model access. A problem with the AOP is that 

when base code is changed, aspects may become useless. This does not concern our work 

because the code generator generates both pointcuts and joinpoints. Thus their matching is 

guaranteed by the code generator. 
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CHAPTER III 
 
 

CODE GENERATION FROM A FEDERATION ARCHITECTURE MODEL 
 
 
 

This chapter presents the proposed code generation process from the federate or federation 

developer’s point of view. First, we introduce a simple federation to be used as a running 

example throughout the chapter. Then overview of the code generator and generated code 

structure is explained. Incorporating HLA related information into code is discussed. How 

the generated code runs is expressed. After that code generation process from model to code 

is explained in the running example. Finally, discussion of the example and related works are 

mentioned. 

3.1. Running Example: Strait Traffic Monitoring Simulation 

In this section we introduce Strait Traffic Monitoring Simulation (STMS), which will serve 

as our running example. Later sections will introduce code generation in detail, accompanied 

by this example.  

 A traffic monitoring station tracks the ships passing through the strait. Any ship entering 

the strait announces her name and then periodically reports her position to the station and to 

the other ships in the strait using the radio channels. Channel-1 is used for ship-to-ship and 

channel-2 is used for ship-to-shore communication. The traffic monitoring station tracks 

ships and ships track each other through these communication channels. All radio messages 

are time-stamped to preserve the transmission order.  

 The traffic monitoring station and the ships are represented with two types of 

applications: a station application and a ship application, respectively. The ship application is 

an interactive federate allowing the player to pick up a unique ship name, a direction 

(eastward or westward), and a constant speed by means of a textual interface. When a ship 

application joins the federation, this corresponds to entering the strait. When it resigns from 

the federation, this corresponds to leaving the strait. The station application is a monitoring 

federate, which merely displays the ships (in the strait) and their positions. The federation 

has a time management policy where each ship application is both time regulating and time 

constrained and station application is only time constrained. Clearly, the essence of this 

simple federation is an example of a set of objects tracking each other making it a common 
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scenario/interaction for most distributed simulations. The conceptual view of the STMS is 

illustrated in Figure 3.1. 

 

Figure 3.1. Strait Traffic Monitoring Simulation Conceptual View  

[Topcu et al. 2007] 
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Figure 3.2. Behavior Model for the Ship Federate in LSC Graphical Notation [Topcu et al. 
2007] 

  

 

 

 Focusing on the ship federate in STMS, we identify three LSC instances, representing the 

behaviors of the federate, the user, the ship federate called ShipFd, and the federation 
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execution called BosporusFederation. The behavior model of the ship federate is presented 

in Figure 3.2 in LSC graphical notation.  

 Figure 3.2 depicts a pre-chart, which consists of two parts: the pre-part (diamond shaped), 

attached to the body-part (rectangle shaped). The events in the body-part depend on the 

completion of the event occurrences in the pre-part. Thus, unless federation creation, time 

management initialization, declaration capability and regions creation complete successfully, 

the federate must not progress. Time management initialization, declaration capability and 

regions creation methods are modeled in the separate charts for reasons of modularity, thus, 

references to them are included in the pre-chart. 

 There is a parallel inline expression in the body-part, marked by “Par” indicator, and 

drawn as a rectangular shape that is divided by horizontal dashed lines to identify its 

operands. The operands run in parallel. (This is handled by a separate thread implementation 

for each operand.) In the example, there are two operands, handling of federate simulation 

loop called “main thread” and handling of call-back events which may arrive any time, 

called “callback thread”. There are repeat-until (do-while) and while-do constructs in the 

first operand, and a while-do in the second operand.  Ship name is selected (reserve object 

instance name) in the repeat-until construct and then radio messages (interactions) are sent to 

the BosporusFederation execution in the while-do. When the federate execution ends, 

ExitFederation condition is set to true in the first operand.  

 A repeat-until construct is marked by a “Repeat-Until” indicator and drawn as a 

rectangular shape. At the bottom of the rectangle is a dashed-diamond shape that denotes the 

loop condition. The loop is repeated until the condition is satisfied, in our case, until the 

unique ship name is selected by the interactive user. 

 A while-do construct is marked by a “While-Do” indicator and drawn as a rectangular 

shape. The loop condition is located at the top portion of the rectangle indicating that the 

loop is to be repeated as long as the condition is satisfied. In this example, the loop is 

repeated while the ExitCondition is not true. (ExitCondition is set when the federate resigns). 

 In the second operand of the parallel construct, call-back events are received in arbitrary 

order from the federation execution in the while-do. This loop is repeated until the federate is 

resigned from the federation. Unordered receiving of callbacks is specified by a coregion, 

which is indicated by a vertical dashed line parallel to the location. There are two references 

in the while-do construct (DiscoverObjects reference and ProvideAttributeValues). LSC 

cold messages are indicated by horizontal dashed arrows, and hot ones by solid arrows. Cold 

messages are not guaranteed to arrive. For this reason, all the events coming from the 

federation execution have cold designation. 
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 In the context of the example, some LSC concerns are discussed. Except for them, 

complete LSC structures and their semantic meanings are reached from [Harel 2001, Damm 

and Harel 2001, Brill et al. 2004].  

3.2. Federation Application Code generation from FAM  

In this section we introduce our code generator from the viewpoint of a federate application 

developer. We address the more technical behavioral model oriented issues (LSC) in Chapter 

4 and Chapter 5.  

3.2.1. Overview of the Code Generator 

The input FAM includes the behavioral models of the participating federates as well as the 

FOM they have in common. The behavioral model of a federate is presented as a single LSC 

document consisting of one or more LSC diagrams.  

Here are some highlights of the features of the code generator: 

• All RTI interface specification methods in the standard 

• All MSC/LSC features with few exceptions such as synchronous messages  

Following the classical schema, there are two sequentially connected modules forming our 

generator, namely, Intermediate Form Generation Module (the front end) and Java Code 

Generation Module (the back end). Figure 3.3 shows the overall data flow diagram of the 

generator.  The Intermediate Form Generation module walks on the source FAM model, 

using the model interpreter API of GME, and constructs the intermediate form that holds the 

model in a convenient internal form. Then the Java Code Generation module walks on the 

intermediate form and produces the diagram class, the federate class, the computation aspect, 

and the federation execution aspect.  The produced codes are fed into the AspectJ compiler. 

Further details about front end and back end modules are presented in Appendix B and 

Appendix C respectively. An example which follows this code generation process is also 

presented in Appendix D. In this appendix, the example’s concrete model, GME-model, 

intermediate form, and code are illustrated. 
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Figure 3.3. Code Generator Data Flow Diagram 

 

 
 
 The current version of our code generator generates Java and AspectJ codes. However, 

only the Java Code Generation Module needs to be re-implemented if another target 

language is desired.  

3.2.2. Structure of the Generated Code  

One LSC Document is assumed per federate application. For each LSC Diagram in the 

document a diagram class is generated.  An instance class is generated for each LSC instance 

in the diagram. In case an LSC instance occurs in multiple diagrams an LSC instance class is 

generated for each occurrence. Code for each LSC instance in a diagram is started by the 

diagram class, and runs in its own thread.  

 In an LSC instance, in regards to federate – federation execution communication, an RTI 

Ambassador Method call is generated for every LSC message-out event, and similarly, a 

Federate Ambassador call-back for every LSC message-in event. An LSC Instance Aspect 

class (i.e. a computation aspect) code is generated for every LSC instance to handle the 

standard RTI Ambassador methods and Federate Ambassador call-back methods, and the 

LSC-specific auxiliary methods for the preliminary computation. The latter essentially help 

resolve, in a randomized fashion, the nondeterminism inherent in an LSC specification.  For 

example, auxiliary methods randomly determine loop counts (within bounds), choice of 

alternatives, order of sending events in a coregion, etc.  

 A dictionary structure guides nondeterministic choices regarding conditions and 

temperatures. Specifically, it holds  

a) conditions (whose names are keys) and whether they are satisfied or not (which are 

associated values),  

b) LSC model elements (whose names are keys) and their temperatures (which are 

associated values).  
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 The dictionary is defined in the computation aspect. The developer can edit it so that the 

choices (i.e. values associated with keys) are determined according to the simulation logic 

(rather than randomly).  

  Declarations of both RTI methods and auxiliary methods in LSC instance code (federate 

base code) constitute the join points targeted by the LSC instance aspect (computation 

aspect). For every join point in the federate’s base code an advice code is generated in the 

computation aspect code. The developer can change the preliminary computation by editing 

advices associated with the pointcuts, and then weave the edited aspect onto the base code, 

which requires the use of AspectJ [AspectJ 2007] compiler. In AOP terminology, this is 

called production aspect usage. This is the only place where the developer’s intervention is 

needed to produce a properly functioning federate. In other words, only the LSC instance 

aspect can be edited by the developer; all other generated codes are read-only. Well-known 

examples of cross-cutting concerns are non-functional, e.g. logging, authentication, etc. In 

our use of AOP, however, we take a functional concern (addressed by the computation 

aspect) as a cross-cutting concern. 

 All argument information of FAM events (Ambassador Methods) that flow between 

instances (federates, federation execution) are carried by LSCObjects. For example, object 

classes, interaction classes and their attribute and parameter information are all held by this 

data structure. 

 LscRTILib library essentially serves as an RTI interface layer. This library takes an 

LSCObject, unpacks it into the actual RTI method parameters, and calls the actual RTI 

method. In other words, generated federate codes and LscRTILib communicate with each 

other over LSCObject. Thus, the generated federate application code is independent of the 

vendor specific implementation of the RTI API. This library is in fact an adapter, in the 

sense of a design pattern, between federate code and the specific RTI, such as Pitch pRTI 

1516 [Pitch RTI 2007]. Note that LscRTILib does not attempt to redefine the programming 

model offered by the RTI or simplify its programming interface.  

 A Federation Execution Aspect class is generated for each federation execution in which 

this federate can participate. This aspect code catches the Federate Ambassador call-back 

methods of the RTI by using LscRTILib library and forwards them to the generated federate 

base code. Handling of call-backs is discussed in section 3.2.4.2.     

 In Figure 3.4, the static structure of the generated federate code is presented as a class 

diagram.  
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Figure 3.4. Structure of the Generated Federate Application 

 

 Let us now revisit the generated code in AOP terms referring to Figure 3.4. LSC Diagram 

and LSC Instance codes constitute the federate base code, which brings about the federate’s 

communication behavior as specified by the BMM of FAM (see Figure 2.4). Each LSC 

Instance Aspect, which implements the preliminary computation, is weaved onto the related 

LSC Instance.  Separately, Federation Execution Aspect, generated per federation execution, 

is weaved onto LscRTILib library.  Aspect weaving is carried out by the AspectJ compiler 

[AspectJ 2007], which produces the “weaved intermediate Java byte code”, which is then run 

on the Java Virtual Machine [JVM 2007].  

3.2.3. Incorporating HLA Object Model and Services into Code  

In this subsection we discuss how HLA Object Model (FOM or SOM) and Federate 

Interface Specification (RTI methods along with their parameters, called in the federate base 

code) are reflected to the generated code. At the metamodel level these issues are represented 

in HFMM (see Figure 2.4).  

 Information to weave is obtained from the input FAM. For example, in order to create a 

federation, the federation name and the path for the FDD file are required. These are 

obtained from the FAM (specifically, from HSMM) and then they are included in the 

computation aspect. (See CreateFederationExecution method’s advice in Figure 3.5a) Then, 
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it is weaved onto the federate’s base code, specifically, it replaces the body of 

CreateFederationExecution method, a joinpoint shown in Figure 3.5b. Thus, 

CreateFederationExecution method will be called with appropriate parameters. 

 

pointcut pcSendCreateFederationExecutionCFEBosporusFederation(…)//pointcut definition 

{//advice block begin 

        FederationName="BosporusFederation";// from FAM 

        FedFile="c:\\eclipse-SDK-3.0.1- 

         win32\\eclipse\\workspace\\FedCodeGen1516\\StraitTraffic.xml";// from FAM 

        (…) \\proceed and return  

}//advice block end 

Figure 3.5 a. CreateFederationExecution  Method (advice) in 

Computation Aspect Code 

 
Public static boolean SendCreateFederationExecutionCFEBosporusFederation(String 

FederationName,String FedFile) 

//corresponding joinpoint 

{ 

 /* dummy code */  // It is overridden by the (Figure 3.5a) computation aspect 

} 

Figure 3.5 b. CreateFederationExecution Method (join point) in 

Federate Base Code.  

 

 

 

 In Table 3.1, the retrieved information and its source in the FAM is described with 

respect to the RTI Interface Specification service areas. The information retrieved from FAM 

by the code generator front end is then placed in the preliminary computation aspect by the 

back end (see Figure 3.3). In general, RTI methods along with their parameters information 

are retrieved from HSMM in the following service areas.  
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Table 3-1. Information Retrieved from FAM and Placed in the Generated Code 

 

 

3.2.4. How a Generated Federate Runs 

In Figure 3.6a and 3.6b, collaboration diagrams of the generated federate is illustrated. 

Figure 3.6a shows how an RTI Ambassador method is called. First, the RTI Ambassador 

Method declared in LscRTILib is called by the federate (i.e. the LSC Instance class).  At this 

time, LSC Instance Aspect interferes and catches the RTI method (in LSC Instance class) 

calls.  Then it overrides the arguments of the method. After that, RTI Ambassador Method 

call proceeds to LscRTILib. Finally, LscRTILib calls the actual RTI Ambassador Method 

with the actual arguments. This RTI method calling process is exemplified in section 3.2.4.1 

 In Figure 3.6b, how a call-back is received from RTI is sketched. First, LscRTILib 

receives the call-back from RTI and calls its own method (with the same name) which has a 

single LSCObject type argument. This method call is caught by federation execution aspect, 

which then forwards this call to federate’s LSC instance. Thus, the call-back reaches the 
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federate. Finally, LSC Instance aspect also catches the forwarded call-back and presents it 

for overriding. This handling process is exemplified in section 3.2.4.2 

 

 
 

Figure 3.6 a. Collaboration Diagram of Calling RTI Ambassador 

Method in the Generated Federate 

 
Figure 3.6 b. Collaboration Diagram of Handling Federate Ambassador 

Call-back in the Generated Federate 
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3.2.4.1. Handling the RTI Methods 

In the federate’s RTI Ambassador Method call, related LscRTILib 

(BosporusFederationRTILib) method is called (cf. Figure 3.6a, action 3) with the LSCObject 

argument. Example code is presented in Figure 3.13a. 

 This RTI method (in LSCInstance class) is caught (cf. Figure 3.6a, action 1) by LSC 

Instance Aspect and the arguments of the call can be overridden (cf. Figure 3.6a, action 2). 

In our example in Figure 3.14a, the values assigned to the message and CallSign interaction 

class parameters in the base code are to be overridden. The overriding code is shown in italic 

form in the figure. In the corresponding LscRTILib method, actual RTI Ambassador Method 

is called (cf. Figure 3.6a, action 4) with the particular RTI (Pitch RTI in our case) specific 

arguments (Figure 3.7). 

 
public  void sendInteractionWithRegion (LSCLib.LSCObject procUpdate)  

{ 

(…)//procUpdate is adapted to the vendor specific RTI method parameters 

mRtiAmb.sendInteractionWithRegions(proc.iHandle,phvpset,rSet,null,lt);  

//actual RTI method 

(…)//method exception and other code details 

} 

Figure 3.7. RTI Ambassador Method in the LscRtiLib 

 

 
 

3.2.4.2. Handling the Call-back Methods 

When a Federate Ambassador call-back event occurs, related LscRTILib method (same 

named) is called (cf. Figure 3.6b, action 1). Example code is presented in Figure 3.8a.  

 In the method of LscRTILib, arguments of method are packed into our common data 

structure, namely LSCObject. Then, the same named method in the library that has an 

LSCObject argument is called. Example code is presented in Figure 3.8b. 
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public final void receiveInteraction (…)//parameter definitions 

{ 

ambLib.receiveInteraction(iClassHandle,phvpset, sendOrder,tType,lt, recvOrder, mrh); 

//LscRTILib method is called when the events come 

} 

Figure 3.8. a Federate Ambassador Call-back Method in the 

RTIFederateAmbassador 

public  void receiveInteraction(…)//parameter definitions 

{ 

(…)//proc is declared and callback method parameters are packed into it. 

receiveInteraction(proc);//same named method is called with the LSCObject as argument 

(…)//return code 

} 

public  void receiveInteraction(LSCLib.LSCObject proc)//same named callback method 

{}//this method is caught by federate execution aspect since it is a joinpoint for it. 

Figure 3.8. b. Federate Ambassador Call-back Method in the LscRtiLib 

  

 

 

 When this calling is done, federation execution aspect (Example advice code is shown in 

Figure 3.9a.) catches this method call (cf. Figure 3.6b, action 2) and forwards (cf. Figure 

3.6b, action 3) it to the corresponding method in the federate base code. Example federate 

Ambassador call-back code is presented in Figure 3.9b. 
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pointcut ReceiveInteraction(…) //pointcut definition 

{         

ShipFd.ReceiveInteraction(proc);//calling the same named method in  base code 

} 

Figure 3.9. a. Federate Ambassador Call-back Method (advice) in the 

Federation Execution Aspect 

 

public static void ReceiveInteraction(LSCLib.LSCObject proc)  

{ 

if (proc.name.compareTo("RadioMessage")==0)  

//received interaction is compared with the interaction class names of the federate 

{ 

     //receive the interaction:  

    RecvReceiveInteractionRadioMessageBosporusFederation(proc); 

} 

} 

Figure 3.9. b. Federate Ambassador Call-back Method in Federate Base 

Code 

 

 
 
And finally code to receive interaction is introduced (cf. Figure 3.6b, action 4) to the 
developer (Figure 3.14b). 

 

3.3. More On The Code Generator 

3.3.1. Participating in Multiple Federations 

A federate may be a member of more than one federation at the same time. For each joined 

federation a federation execution aspect is generated. An LscRTILib is declared and 

instantiated for accessing the actual RTI in a federation execution aspect code. 

 For example, if we have two federation executions, we have two different aspects, in 

which an LscRTILib library is declared (ShipFd.BosporusFederationRTILib). Example 

library declaration is presented in Figure 3.15 and its usage is presented in Figure 3.13a. 

3.3.2. Retargeting another RTI 

Developers use different RTIs offered by various vendors. Although the current RTIs must 

conform to the IEEE 1516 standard, their APIs exhibit minor differences (e.g. variations to 

the HLA standard data types) among the vendors. The code generator can target vendor 

specific RTIs by customizing the LscRTILib library, which serves an RTI adapter layer.   
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 In cases of methods and data types outside IEEE 1516, modifications to the HSMM will 

be necessary.  In fact a vendor-specific version of HSMM can be constructed.  Consider a 

vendor-specific method, say Mnew, not mentioned in the standard. Definition of Mnew must 

be introduced to HSMM, and LscRtiLib must be extended with the mapping from Mnew 

method definition in HSMM to constituents of a Mnew method call.  

3.3.3. Code Clarity 

The readability of the generated code is crucial as the application developers deal with it 

directly. Therefore, care is taken to generate understandable codes that closely reflect the 

model structure and to separate and hide those parts that are not subject to aspect weaving.  

Code generation follows the coding standard CamelCase. Moreover, user-supplied 

comments on the input model are carried to the code to ease the task of navigating the code.  

3.3.4. Support for Model-Code Traceability 

Developer can attach comments to model elements; the comments are carried over to the 

generated code in the code generation. Therefore traceability is provided according to the 

comments. Comment support also gives us more readable and qualified codes. 

Model element names are used as the keys for the dictionaries (implemented as a 

hashtable). For example, in the implementation of an alternative inline expression, 

alternative choice value is hold in the dictionary where alternative inline expression model 

element name is a key. In addition, some model element names are used directly as variable 

names in the generated code. These types of usages give us a capability to establish a 

traceability between model and code. 

3.3.5. Availability of the Generator 

The presented code generator is under GNU Public License, and detailed documentation can 

be obtained from “http://www.ceng.metu.edu.tr/~e73883“.  

 Our generator source code is almost 15.000 lines of code (LOC). It is developed in 

Eclipse 3.3 environment with Java programming language [Eclipse 2007]. It is packaged as a 

GME model interpreter.  

 Generated codes are Java and AspectJ, and can be compiled and run in Eclipse. Eclipse 

AspectJ plug-in [AspectJ 2007] is used for compiling AspectJ codes.  The generator 

currently supports Pitch RTI (certified for IEEE-1516). 

3.4. Code Generation Example 

We now return to our example STMS federation to walk through the code generation 

process. 
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3.4.1. Steps in Using the Code Generator: 

Step i: Constructing the FAM  

The STMS FAM is built as conforming to FAMM. 

Step ii: Configuring the Generator 

A configuration document based on XML, called GeneratorConf.xml, is provided with initial 

values for configuration parameters.  

 STMS is configured by setting values of the following parameters:  

– Seed for the random number generator, 

– The path for the generated code, 

– Maximum poll count for receiving an optional (cold) message, and 

– Waiting (sleep) time between two successive polls. 

So final configuration XML file is presented (Figure 3.10) as: 

<?xml version="1.0" encoding="ISO-8859-1"?> 

<Confs> 

<Random seed="123456">  <!— for random number generator -->  

</Random> 

<Sleep time="100" passes="50">   

<!—sleep time and number of passes for cold message receiving--> 

</Sleep>  

<PATH> 

<Generated path="c:\eclipse-SDK-3.0.1-win32\eclipse\workspace\FedCodeGen\">  

</Generated>  <!—destination path for the generated code--> 

<Generator path="c:\eclipse-SDK-3.0.1-win32\eclipse\workspace\NewCodeGenProject\">  

</Generator> <!— path of the generator code--> 

</PATH> 

<External-InstanceLibs> 

 <InstanceLib name="RTILib" prefix="RTI"> <!— external library used in the generator--> 

</InstanceLib>  

</External-InstanceLibs> 

</Confs> 

Figure 3.10. XML Configuration File for the Code Generator for  

ShipFd Application  

 

Step iii: Running the Generator 

The code generator is run in GME as a model interpreter [GME 2006].  The generated code 

files are placed in the folder specified in the configuration file. In our case: Ship_MSC 



34 

(Diagram class), ShipFd (Ship federate class), User (Live entity class), ShipFdAspect 

(computation aspect of ship federate), UserAspect (computation aspect of user) and 

BosporusFederationLibAspect (federation execution aspect) are generated. Generated three 

classes and three aspects are shown with a class diagram in Figure 3.11. This class diagram 

reflects the static structure of a generated federate application, cf.Figure 3.4.  

 

Figure 3.11.  Class Diagram of the Ship Federate 

 

 

 a) Base Codes 

The Ship_MSC, ShipFd and User classes constitute the base code of the ship federate 

application as shown in Figure 3.11. Ship_MSC is a diagram code in which the ShipFd and 

User threads are defined and run. ShipFd is an instance code where federate RTI methods 

and LSC-specific auxiliary methods are generated.  User is also an instance code in which 

user sends ship name, direction and speed to the ship federate. 
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public static void ShipFdMainMethod (){ 

  (…) // prechart code for federation management, initialization time management,  

         //declaration management, and  region creation 

  class MainThread_02ee extends Thread { //thread for the first operand of the parallel structure. 

  MainThread_02ee() {} 

  public void run() { 

  do { //loop is repeated until the ReserveObjectInstanceName (ROIN) is succeeded. 

    condRecvMessageInput_03e0User(); // ship’s name comes from the user 

    // Reserve Object Instance Name is sent to RTI: 

    SendReserveObjectInstanceNameROINBosporusFederation("s0");  

    // “s0” is to be overridden by the computation aspect which will take ship name from user 

    // Object Instance Name Reserved (OINR) is received from RTI 

    condRecvObjectInstanceNameReservedOINRBosporusFederation(); 

    (…) //If OINR succeeds leave the loop 

    } while (!((Boolean)Ship_MSC.coldChoices.get("until_0300")).booleanValue());  

    (…)// Other Inputs: direction and speed come from the user. 

    SendRegisterObjectInstanceRegisteredShipObjectBosporusFederation(...); 

    // Register Object Instance is sent to RTI for the Ship object 

    SendUpdateAttributeValuesRegisteredShipObjectBosporusFederation(…); 

    // Update Attribute Values is sent to RTI for the Ship object 

    SendRequestAttributeValueUpdateDiscoveredShipObjectBosporusFederation(…);  

    // Request Attribute values Update is sent to RTI for the Ship object 

    doLaterMessageTimer_03c6(100); //timer is started for periodically send interactions 

    // While-Do Main Simulation Loop begins 

    while (((Boolean)Ship_MSC.coldChoices.get("ExitCondition_040f")).booleanValue()) { 

     //loop is repeated until the federate is resigned. 

     (…) // The code generated for SendRadioMessage chart is inserted here.  

     // when a timeout occurs radio message interactions are sent and timer is restarted 

     // Time Management  methods begin 

      SendTimeAdvanceRequestTARBosporusFederation(new Double(55.0));  

     // Timestamp type Double comes from FAM.  Timestamp value (55) should be overridden. 

    condRecvTimeAdvanceGrantTAGBosporusFederation();  

    // Time Advance Grant is received from RTI. 

  }//end of main simulation loop. 

  (…) // The code generated for Exit Federation chart goes in here. 

  //federate is resigned and federation is destroyed. 

}//end of the main thread 

Figure 3.12. Excerpts from the Generated Java Code of Ship Federate 

Application 

  

 To give a sense of the generated code, a part of the ship federate’s (see Figure 3.12) and a 

sample RTI Ambassador Method (sendinteraction in Figure 3.13a) and a federate 
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Ambassador method (receiveinteraction in Figure 3.13b) are shown in the figures. The first 

operand (main thread) of the parallel inline expression (see Figure 3.2) of the generated 

shipFd code is exemplified in Figure 3.12. For every operand in a parallel inline expression 

occurring in the LSC, a thread (e.g. MainThread_02ee and CallbackThread_032c) is 

generated. For loop idioms, “while-do” or “repeat-until” code statements are generated. 

Values of loop conditions are retrieved from the dictionary (implemented as hashtable 

named coldChoices) defined in the computation aspect. In place of the chart references in the 

LSC model, the referenced charts’ codes are generated. For example, for CreateRegions 

reference,   CreateRegion and SetRangeBounds methods are generated. 

 In Figure 3.13a, interaction parameters are packed into an object of LSCObject.  Then the 

corresponding LscRTILib method (in this case, sendInteraction) is called. In Figure 3.13b, a 

federate Ambassador method (in this case, receiveinteraction) example in the federate base 

code is shown. 
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public static boolean 

SendSendInteractionWithRegions_0536RadioMessageBosporusFederation(…)//parameters 

{ 

        LSCLib.LSCObject proc= new LSCLib.LSCObject(); 

        //interaction class information comes from HOMM. 

        proc.name="RadioMessage"; //interaction class name 

        proc.pars=new ArrayList(); //parameter list of the interaction class 

        LSCLib.LSCAttribute parNew0 =new LSCLib.LSCAttribute();  

        //parameter1 is declared 

        parNew0.name="CallSign"; //parameter1’s name 

        parNew0.type="Object"; //parameter1’s type in Java 

        parNew0.objClass="HLAASCIIstring"; //parameter1’s type in HLA datatype 

        parNew0.objVal=CallSign; //parameter1’s value 

        proc.pars.add(parNew0); //parameter1 is added to the parameter list 

        (…)//parameter2 is added. 

               //dimension and region data is added to the parameter list 

               //time stamp data is added to the parameter list 

        BosporusFederationRTILib.sendInteractionWithRegion(proc); 

        //same named LscRTILib method is called 

} 

Figure 3.13. a. A Sample SendInteraction RTI Ambassador Method in 

Federate Base Code (ShipFd) 

 
public static void RecvReceiveInteractionRadioMessageBosporusFederation 

(LSCLib.LSCObject iClass,String TimeStamp,int SentOrderType,int ReceiveOrderType,String 

TransportationType)  

{}//received interaction parameter values are held in iClass. 

 Figure 3.13. b. A Sample ReceiveInteraction Federate Ambassador 

Callback Method in Federate Base Code (ShipFd) 

 

 

 b) Codes for Aspects 

Two computation aspects and a federation execution aspect are generated, namely 

ShipFdAspect, UserAspect, and BosporusFederationLibAspect. ShipFdAspect overrides all 

RTI methods in the ShipFd federate base code. In ShipFdAspect, dictionaries and LSC-

specific auxiliary methods’ (i.e. chooseOne, getLoopount) advices are also generated. 

 Two sample advices, namely, RTI Ambassador Method’s (send interaction) advice and a 

federate Ambassador method’s (receive interaction) advice, are shown in Figure 3.14a and 

Figure 3.14b, respectively. In Figure 3.14a, federate send interaction method (cf. Figure 
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3.13a) is caught in the ShipFd base code and preliminary logic (in italic) is filled in. The 

developer can edit this advice as described in the subsequent “Editing the Computation 

Aspect” section.  

 In Figure 3.14b, federate receive interaction method (cf. Figure 3.13b) is found on the 

ShipFd base code and received data is placed in its advice in the ShipFdAspect. This 

received data is the values of all parameters of the interaction class. In this example, the 

interaction class is RadioMessage with parameters callsign and message. 

 

pointcut pcSendSendInteractionWithRegions_0536RadioMessageBosporusFederation() 

{//pointcut definition 

        CallSign=new Boolean(true);  

        //call sign is given  as preliminary computation in the computation aspect 

        Message=”Radio Message Sample”; //message is given as preliminary computation 

        (…) //declaration detail of dimension  is get outed 

        parChannelDimension2_0.strVal="ChannelDimension"; //dimension comes from FAM 

        (…) //declaration details of region  

        parChannel13_0.strVal="Channel1"; // region comes from FAM 

        (…) //other  details of dimension and region  

        TimeStamp=new Double(2.0);//must be overridden 

        proceed(CallSign,Message,RadioMessagewithRgnsDims,TimeStamp);  

        return true;  

} 

Figure 3.14 a. A sample RTI Ambassador Method (advice) in 

Computation Aspect (ShipFdAspect) 
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pointcut pcRecvReceiveInteractionRadioMessageBosporusFederation (…)//pointcut definition 

{ 

        Object CallSign= (Object)((LSCLib.LSCAttribute)iClass.pars.get(0)).objVal; 

        System.out.println("Received CallSign Parameter:"+CallSign); 

       //callsign interaction class parameter is printed. 

        Object Message= (Object)((LSCLib.LSCAttribute)iClass.pars.get(1)).objVal; 

        System.out.println("Received Message Parameter:"+Message);  

       //Message interaction class parameter is printed. 

        System.out.println("Received TimeStamp:"+TimeStamp); 

        System.out.println("Received SentOrderType:"+SentOrderType); 

        System.out.println("Received ReceiveOrderType:"+ReceiveOrderType); 

        System.out.println("Received TransportationType:"+TransportationType); 

        proceed(iClass,TimeStamp,SentOrderType,ReceiveOrderType,TransportationType); 

} 

Figure 3.14 b. A sample Federate Ambassador Method (advice) in 

Computation Aspect (ShipFdAspect) 

 

 

 BosporusFederationLibAspect (federation execution aspect) is mainly used to catch call-

back methods from the Bosporus federation execution. A BosporusFederationRTILib object 

is instantiated from LscRtiLib in this aspect and it is used to reach actual RTI. A sample 

LscLibRTI definition (BosporusFederationRTILib) and a sample (ReceiveInteraction) advice 

are presented in Figure 3.15.  

 In Figure 3.15, ReceiveInteraction call-back method is caught by the federation execution 

aspect (BosporusFederationLibAspect) and forwarded to the federate 

(ShipFd.ReceiveInteraction). 
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public static RTILib ShipFd.BosporusFederationRTILib= new RTILib(); // LscRtiLib declaration for 

the federate 

(…)//unrelated code 

pointcut ReceiveInteraction(…)//pointcut definition  

{ 

        RTILib rtiLib = (RTILib)thisJoinPoint.getThis(); 

        // compare received callback with federation name as there might be other federations  

        if (rtiLib.federatename.compareTo("BosporusFederation")==0)  

            ShipFd.ReceiveInteraction(proc); //federate method in the base code is called 

} 

Figure 3.15. A LscRTILib Definition and a Sample Advice in Federation 

Execution Aspect (BosporusFederationLibAspect) 

 

 

 

Step iv: Editing the Computation Aspect  

After running the generator, ShipFdAspect and UserAspect (generated preliminary 

computation) can be edited by the developer in order to effect the desired computation. 

Consider, for example, how ship name is retrieved from the user to send a 

reserveobjectinstance event to the federation. In the automatically generated preliminary 

computation, a “sample string” is sent to the ShipFd as a ship name by UserAspect. Naturally 

we would like the name to be entered by the user. User types in a name in the advice.  The 

corresponding edited code is illustrated as italic form in Figure 3.16.  

pointcut pcSendMessageInput_03e0ShipFd(…)//pointcut definition  

{ 

    System.out.print("Name:> "); 

   try { 

         g_Name = in.readLine(); //name is read from console  

   } catch (Exception ignored)   { } 

   Name=g_Name; 

   proceed(Name); 

   return true; 

} 

Figure 3.16. Adding a Computation to User Ship Name Selection 

Method in User’s Computation Aspect 

(Modifications to the generated preliminary advice are in italic) 
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 Step v: Running the Generated Code 

With the editing of ShipFdAspect and UserAspect completed, the ship federate is ready to be 

compiled by AspectJ. Then the federate runs and joins the Bosporus Federation with the 

station federate joined as well. Preparation of the station federate follows the same steps. A 

view from the running ship federate is presented in Figure 3.17.  

 

 

Figure 3.17. A View of the Ship  Federate Running (pRTI snapshot) 

 

3.4.2. Discussion of the Case Study 

Final STMS code has over 4100 LOC (lines of code). Federate application code metrics (in 

terms of LOC) are given in Table 3.2 according to the generated classes and aspects, where 

those for ShipFd are shown in Figure 3.11. Manually introduced computation code (shown in 

column 3) is a small fraction, less than 2%, of the whole federate code (shown in column 2). 

This figure could be taken as an indication for the developer’s manual contribution to a first-

cut prototype. Of course, with a sophisticated computational logic (e.g. a high fidelity 

hydrodynamics model for the ship) this figure could boost up dramatically. Presumably, 

specialized computational codes of this nature are utilized as a library, and should not be 

included in the LOC count.  

 The automatically generated federate code size is estimated one fourth larger than that of 

the corresponding hand-crafted code, which does not carry any aspect-orientation 
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(essentially, pointcuts) overhead.    Regardless of the code size, as aspect weaving takes 

place at compile time there is no execution time overhead. 

 In comparison with developing a single federate from scratch, most effort is now spent on 

constructing the model. The real benefit of aspect-orientation is expected to be manifest in 

the course of maintenance.  Changes to an algorithm, for instance, can be made in one place 

(i.e. the relevant advice in the computation aspect) without being bothered with the rest of 

the code.  

 The metamodel enforces required references from the behavioral model to the object 

model (SOM or FOM). The intellectual effort to be spent by the programmer while coding 

the computation to keep the code consistent with the object model is saved.   Changes to 

SOM/FOM, e.g. adding a new attribute to some object class, is reflected to the whole 

federate automatically. The programmer needs only to update the affected computations. 

 

 

Table 3-2. STMS Code Metrics (in LOC) 

Class/Aspect Federate 

Application 

Edited 

Portion 

Ship_MSC (LSC Diagram Class) 50 - 

ShipFd (LSC Instance Class) 1448 - 

ShipFdAspect (LSC Instance Aspect) 520 27 

User (LSC Instance Class) 116 - 

UserAspect (LSC Instance Aspect) 134 30 

BosporusFederationLibAspect (Federation 

Execution Aspect) 

65 - 

Total (Ship Federate) 2333 57 

Station_MSC (LSC Diagram Class) 51 - 

BosporusStation (LSC Instance Class) 1130 - 

BosporusStationAspect (LSC Instance Aspect) 372 16 

User (LSC Instance Class) 112 - 

UserAspect (LSC Instance Aspect) 88 2 

BosporusFederationLibAspect (Federation 

Execution Aspect) 

63 - 

Total (Station Federate) 1816 18 

STMS Total 4149 75 
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3.5. Related Works 

Although there are many useful HLA federation development tools in the marketplace, they 

fall short of generating code for federate behavior. Existing tools can generate class 

declarations corresponding, essentially, to the structural part of FAMM, which is the HLA 

Object Model. For example, most closely related tool, Calytrix SIMplicity [Simplicity 2007] 

does not support code generation for dynamic behavior of federates. Because, from a model-

based point of view, no workable metamodel that accounts for federate dynamics and 

supports executable code generation was available until FAMM.    

 A promising approach to federate and federation development is component-based 

development, as proposed by [Radeski and Parr 2002]. They present a component-based 

development framework and a set of tools that can be used to simplify the development 

effort. The simulation framework provides the services that enable the bi-directional 

communications between applications and the RTI. During the generation and 

implementation phase of the framework, the component descriptor is processed by a code 

generator to create the appropriate source file stubs. Once the stubs are generated, the 

developer must insert the “simulation logic”, using appropriate callback methods, into the 

generated code. In our AOP approach, the user provides the same logic in terms of advices in 

the computation aspect.  Further, as a benefit of our behavior modeling facility, simulation 

control flow is determined by the user specifically for each federate, rather than being the 

“integration logic” part of some framework. 

 In [Yuan et al. 2003], a framework for designing and executing parallel simulation using 

the RTI is introduced. With the code library from the framework, the modeler is able to 

complete the design of a parallel simulation that runs on RTI by specifying the simulation 

configuration and the handling detail of each event.  The modeler can specify the “logical 

processes” in the simulation and the events that are sent or received by the LPs. The federate 

model hides the HLA implementation from the parallel simulation modeler. The framework 

incorporates automatic code generation. Code generator will generate the Federation 

Execution Data (FED) file and the executable federate code based on the modeler’s 

specifications.  

 [Tsai et al. 2006] presents the DDSOS (Dynamic Distributed Service-Oriented 

Simulation) framework, which supports the simulation, development, and evaluation of large 

scale distributed systems such as network-centric and system-of-systems applications. The 

framework features automated simulation code generation from a specification. The DDSOS 

framework provides two layers of modeling support. The upper layer, the target system’s 

components and the relationship among the components are specified. At the lower layer, 
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PSML-S (Process Specification and Modeling Language for Services) is utilized to specify 

the more detailed system specifications. The upper layer system architecture specified can be 

automatically converted into PSML-S model. Once the simulation tasks are specified in the 

PSML-S language, the automated code generation service can be applied to translate the 

processes into executable. They [Tsai et al. 2007] also present the Dynamic Service-Oriented 

Collaboration Simulation (DSOCS) framework, which supports the dynamic collaboration, 

development, simulation, and evaluation of large scale SOA systems. It also features 

automated simulation code generation from the specification based on the PSML-S. The 

relation of this work to HLA is through XMSF.   

 A common point in the above cited works is that each proposes a setting for simulation 

construction that is at a higher level of abstraction than what is offered by the HLA standard.  

Our present work, clearly, has no such ambitions. Additional expressive power due to 

behavioral description of federates with LSCs comes about at the level of abstraction 

provided by the standard. We contend that the abstraction issue could be addressed in a 

model-driven way, by means of transformations from conceptual models to architectural 

models.   

 In the recent modeling and simulation literature there have been numerous calls to apply 

model-driven engineering to distributed simulation systems.  In particular, Tolk [Tolk 2002] 

publicizes the potential advantages of adopting MDA for development of HLA-compliant 

federations.  Clearly, to realize the touted benefits one needs model-based tools, and to start 

building them the metamodels they rely on must be available.   

 [Parr and Russell 2003] also argue that applying the MDA to HLA is the next step for 

simulation development. UML notations, UML profiles, a component model and tools must 

all be developed if HLA is to align itself with the goals of MDA. HLA is technically well 

positioned to leverage the advantages of MDA. Our work adopts the same line, although we 

do not necessarily commit to UML. 

 At the heart of the federate code generator is our MSC/LSC code generator, which 

handles all the essential features required for federate communication behavior specification.  

Executable code generation from behavioral specifications in LSC is an ongoing quest, see 

[Homme and Ramsland 2003, Maoz and Harel 2006]. There is also a body of literature 

dealing with transforming LSCs to some executable form, in particular, statecharts 

[Bontemps et al 2005, Kruger et al 1999]. We favor executable code generation directly from 

LSC as this approach tends to yield more readable code. 
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 To sum up, the edge the present generator has over existing efforts can be traced back to 

the behavioral modeling facility afforded by FAMM. Furthermore, existing tools do not take 

advantage of AOP, most prominently, modularity of cross-cutting concerns. In our approach 

to code generation, computation and communication are separated, yet under complete 

control of the developer.  
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CHAPTER IV 

 
 

CODE GENERATION FROM LIVE SEQUENCE CHARTS 
 
 
 

Generation of code for a federate’s communication behavior is based on code generation 

from an LSC as LSC is the language we adopt for the behavioral specification of federates. 

Code generation from LSCs, however, is a topic of independent interest. This chapter 

presents code generation from LSCs in its own right from the application developer’s 

viewpoint.  Structure of the generated code, running of the generated code, integration with 

the domain-specific data model is mentioned mainly in this chapter. Also a running example, 

ATM money withdrawal is used to give the code generation process. 

Automatic code generation using the system specifications is one of the important goals of 

the software engineering since the emergence of the third generation programming languages 

and the visual modeling languages. The more software engineering practices emphasize the 

analysis and design, the more modeling of software gained importance. Initially, visual 

modeling languages are used in software engineering only as a representation of the system 

in analysis and design. The code and its model were two different artifacts that must be 

treated equally. For example, maintenance of software is generally carried out in the code 

level, rarely in the model level. This caused a gap between a model and its code, where the 

latter transforms into a complete another system during the years. But soon it is understood 

that the gap between a model and its code is a problem area that must be addressed. The 

modern approaches anticipate only the maintenance of the model, where the code is 

generated automatically from the model. As a result, coding is leaving its importance to 

modeling day by day.  

Visual modeling languages such as LSC are more often used in representation of the 

observed behavior of systems. In this respect, automatic code generation from the behavioral 

specification, LSC in our case, is the major goal of this study. LSCs are used to specify the 

communication behaviors of a distributed system. It has a powerful specification for this 

manner. But, in literature there is no complete code generation solution for the LSC.  

LSCs are used to specify or describe the communication behaviors of a distributed system. 

It has a powerful specification for this manner. But, in literature there is no complete 

metamodel and code generation solution for the LSC. By using our solution, developer can 
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model the behaviors of his application in conjunction with an object model, generate the base 

code, and develop his application in an aspect oriented way. Basically, code generator 

generates code directly from LSC models. The input of the generator is an LSC model with 

an abstract syntax. This abstract syntax is declared by a metamodel for LSC models. 

4.1. Motivation and Scope 

We investigate the applicability of model-based code generation for application 

development—not restricted to HLA. This approach is promising in regards to rapid 

prototyping of an application design and semi-automated construction of applications. First 

and foremost, this requires the availability of suitable models, behavioral models in 

particular. LSCs can be used to specify the communication behavior of components of an 

application, which might be distributed.   

A behavioral specification in the language of LSC along with an associated object model 

constitutes the input to the code generation process. Input model specifies the behavior and 

provides the data model associated with the interactions (events). The output is an 

application code that is capable of generating any sequence of communications conforming 

to the specification, but that lacks the logic to carry out the required computations for the 

targeted application. Thus, if it were to run as is, it would exhibit a randomized 

communication pattern conforming to the specification as long as it did not rely on any 

correctly computed value. To turn it into an appropriate application, one would need to 

supply the algorithms to compute the correct values.  In this chapter, we elaborate our 

approach to code generation from LSCs and introduce a semi-automated tool that carries out 

this code generation process.    

The generated code consists of application base code and computation aspect code, where 

the latter is weaved onto the former. The application base code handles the communication 

between the application and other external applications, which have interfaces to the 

application, and the computation aspect is the place where the user puts the codes for the 

application’s algorithms for computation. To produce the intended application, the developer 

should edit the preliminary computation aspect. By providing a simple computation logic 

(e.g. line-of-sight calculation for radars), the user can obtain a prototype application. By 

advancing to a sophisticated logic (e.g. solving the radar equation) as required by the end 

product, the user can proceed with actual application development. 

4.2. Context of the Generator 

Adopting the Model Driven Engineering (MDE) approach, the system development process 

can be viewed as a sequence of model transformations [Bezivin 2005].  From this point of 

view, an application development essentially involves the platform independent model 
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(PIM), platform specific model (PSM), and the executable code. Each layer of models 

reflects a particular level of abstraction. A PSM is customized to specify an application in 

terms of implementation constructs that are in one specific implementation technology. It is 

clear that a PSM will only seem sensible to a developer who has knowledge about the 

specific platform. In our case, the PSM corresponds to an LSC model, which conforms to the 

LSC metamodel. Finally, code presents the application in some executable form.  

 

 

Figure 4.1Development Methodology for an Application 

 

 
 “Code Generation” step is semi-automated by the present work. The code generator can 

only provide the developer with a preliminary computation aspect, which he must edit to 

introduce code based on the detailed design of the intended application. Detailed design 

describes the computation logic of the application in addition to the behavioral specification 

and its object model. Object model presents the type information for the parameters of the 

events in the behavioral specification.  Correct values of these parameters are to be computed 

by the computation logic. The behavioral specification pertains to the communication 

patterns where the message parameters must conform to the object model.     

 A developer can utilize our work in the following manner: 

i. Model the system’s observable behavior and the object model it refers to. 

ii. Automatically generate code.  

iii. Edit the computation aspect. 

Lastly, compile and run the application. 

4.3. Code Generator 

The current version of the code generator handles LSC/MSC features found in [ITU-T 2004, 

Brill et al. 2004, Damm and Harel 2001, Harel 20001]. Implementation detail for the 

handling of LSC/MSC features is described in Chapter 5. 

Here are some highlights of the features of the code generator: 
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• Asynchronous messages  

• Conditions 

• Inline expressions and idioms (i.e., frequently used constructs that are packaged as 

idioms in the LSC metamodel such as while-do) 

• Timer events 

• Temperature for LSC elements. Messages, conditions, inline expressions and 

locations, can be hot (mandatory) or cold (optional); charts can be universal or 

existential. 

• Coregions  

• Local and multi-instance general ordering 

• Composition of  diagrams by using the MSC references 

• Local invariants  

• Simultaneous regions 

• High Level MSCs (HMSCs)  

• Gates 

 

In Figure 3.3 The Intermediate Form Generation module walks on the source LSC 

model, using the model interpreter BON2 API of GME, and constructs the intermediate form 

that holds the model in a convenient internal form. Then the Java Code Generation module 

walks on the intermediate form and produces the diagram class, the instance class, and the 

computation aspect.  The generated codes are fed into the AspectJ compiler. The current 

version of our code generator generates Java and AspectJ codes. However, only the back-end 

needs to be re-implemented if another target language is desired. 

The LSC metamodel is based on the instance-oriented textual representation in which an 

MSC/LSC can be completely defined by giving the behavior of each instance separately. 

Thus, the model traversing is instance-oriented. The code generator walks on each instance 

of the diagram separately and generates the instance base code and the instance aspect code 

(preliminary computation aspect). While generating the codes for all instances in the 

diagram, the generator also generates a base code for the whole diagram. Diagram base code 

contains instance threads that are declared and started, and the shared (multi-instance) 

variables, which are declared. 

4.3.1 Running Example: ATM Money Withdrawal Application 

In this section, how code generation is applied is showed on a simple example.  In this 

example, the behavioral description of drawing money from an Automatic Teller Machine 

(ATM) is specified. First, the client inserts his bank card into the card slot of the machine. 
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Then, a password entry window appears and the client enters his password. If the password 

is valid, an operations menu is displayed. If it is not valid, the password entry window 

appears again. This operation can be repeated at most three times. If the third attempt also 

fails, the card gets blocked. 

 In the operations menu, money withdrawal option is chosen. A box to enter money 

amount is presented, and the client enters the amount. If the entered amount exceeds the 

balance of the client’s account, the box is presented again. If the amount is less than or equal 

to the balance, the client draws the money from the machine. The operations menu appears 

again to take the next request. Finally, the client selects the quit option from the menu, and 

removes his card (Figure 4-2). 

 

Figure 4.2. ATM Money Withdrawal Scenario Conceptual View 

 

 

4.3.2. Structure of the Generated Code 

The automatically generated base code consists of a diagram code, an instance code, and an 

aspect code (computation aspect). In the instance base code:  

• Sending/receiving method definitions of events (every event in the model 

corresponds to a method in the code such as SendMessageInput_0026ATM and 

RecvMessageOutput_003cATM,   

• Empty method bodies of randomization (auxiliary) methods such as chooseOne and 

getLoopount,  

• Message queue class definitions for receiving messages,  

• Dictionary definitions for temperature property of events, conditions and locations,  

• Some variable definitions used for the implementation of barrier synchronization of 

inline expressions, general ordering of events, coregion,  
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• The main function of the instance (i.e., ATMMainMethod and ClientMainMethod in 

Figure 4.13), where method calls correspond to the LSC event sequences, is 

generated. 

 In the diagram base code, thread definitions in which instances are run; dictionary and 

condition definitions shared by two or more instances (multi-instance) are generated.  

 An LSC Instance Aspect code is generated for every LSC instance to handle the 

sending/receiving methods and the LSC-specific auxiliary methods of the base code for the 

preliminary computation. The latter (auxiliary methods) essentially help resolve, in a 

randomized fashion, the non-determinism inherent in an LSC specification.  For example, 

auxiliary methods randomly determine loop counts (within bounds), choice of alternatives, 

order of sending events in a coregion, etc 

 In Figure 4.3, the structure of the generated base code is represented as a class diagram. 

 

 

Figure 4.3. Structure of the Generated Code 

 
 

4.3.3. Running the Generated LSC Instance Code Alone 

This section describes how sending and receiving methods behave at run-time.  

a. Handling the Sending Methods in the LSC Instance Code 

In the body of sending method, an object (LSCObject type) is created from the method 

arguments. The receive method of the target LSC instance is called with the created object 

parameter (i.e. ATM.RecvMessageInput_0026Client(proc) in Figure 4.4). In the called 

method, sending object is received and put in the queue of receiving event of that 

application. (For asynchronous event receiving, a message queue is defined and used for 

every receiving event. See chapter 5 section 5.7 for more detail.). But in case of sending a 

cold event, sending method draws lots whether to send the message or not before calling. 

Note that in the generated code, some numeric values, such as _0026, are used in the 

function and variable declarations. Function and variable names comes from the model. In 

the model, name of the model element is given by the modeler and there may be model 
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elements that share the same names. But, in the code, it is not acceptable. So model element 

name and numeric model id which is created by the GME becomes unique in the model. This 

combination is used in the code. 

 

public static boolean SendMessageInput_0026ATM(String Password_0029) { 

        LSCLib.LSCObject proc= new LSCLib.LSCObject(); 

        (...)//proc (LSC Object) object is set. 

        ATM.RecvMessageInput_0026Client(proc); 

        //target (ATM) receive method is called 

        return true; 

} 

Figure 4.4 A Sample Sending Method in the Client LSC Instance Code 

 

 

b. Handling the Receiving Methods in the LSC Instance Code 

At execution time, the receiving method of instance class first looks at the queue of the 

received event. If queue is not empty, the front message is taken from the queue and it is 

introduced to the user in a method. If queue is empty and received event is hot, receiving 

method waits the message until the message is put in the queue. However, if the received 

event is cold, receiving method checks the queue in pre-defined intervals specified as a 

configuration parameter. If the waiting event comes in this period, the receiving method 

received the event; otherwise, the receiving method stops waiting and proceeds with the next 

event. A sample receiving method in the client LSC instance code is depicted in the 

following Figure 4.5. 

  
 

public static void  RecvMessageOutput_003cATM(Object obj) 

{ 

  //received data is introduced to the user in the computation aspect.  

   //Because of this, empty –body function is generated. 

} 

 Figure 4.5 A Sample Receiving  Method in the Client LSC Instance Code 

 

4.3.4 Running the Generated Aspect Code with the Base Code 

In this section, how sending and receiving methods of the base code are captured by the 

computation aspect and how the application logic is overridden in the aspect are explained: 
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Figure 4.6.a. Collaboration Diagram of Sending Method 

 

 
Figure 4.6 b. Collaboration Diagram of Receiving method 

 

a. Handling the sending Methods in the Aspect 

Sending method in the LSC instance code is caught (cf. Figure 4.6a, action 1) by the Aspect 

(computation aspect) and arguments of the method can be overridden (cf. Figure 4.6a, action 

2). In AOP terminology, an aspect pointcut definition catches the joinpoints in the base code 

and then weaves its advice on the caught joinpoints. In our case, matching a pointcut 

definition is exactly one joinpoint, which is a method definition whose body is replaced by 

the advice in the pointcut. In our example (see Figure 4.7), password is edited. Then, edited 

aspect is weaved on the LSC instance code in the execution time and so modified password 

is sent. 

 

pointcut pcSendMessageInput_0026ATM(String Password_0029): 

execution(static boolean Client.SendMessageInput_0026ATM 

(String))&& args(Password_0029); boolean around(String Password_0029): 

pcSendMessageInput_0026ATM(Password_0029)  

{ 

              //password is edited as the following  

             String _password = in.readLine(); 

 password=_password; //preliminary computation 

                 (…)//proceed and return 

} 

Figure 4.7 A Sample Sending Method’s Pointcut in the Client Aspect 

 

b. Handling the Receiving Methods in the Aspect 

Receive methods in the LSC instance base code are also captured (cf. Figure 4.6b, action 1) 

by the computation aspect in a similar way and introduced to (cf. Figure 4.6b, action 1) the 

developer. Developer can edit the advices of the methods to apply his application logic. For 
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example, receiving messages are printed on the console. In this example, edited aspect is 

weaved on the LSC instance base code at the run-time and received messages are printed on 

the console (see Figure 4.8). 

 

pointcut pcRecvMessageOutput_002aATM(Object obj): 

execution(static void Client.RecvMessageOutput_002aATM(Object))&& args(obj); 

void around(Object obj):pcRecvMessageOutput_002aATM(obj)  

{ 

        System.out.println("Received message:"+obj);    //received message is printed on the  console 

        proceed(obj); 

} 

Figure 4.8 A Sample Receiving Method’s Pointcut in the Client Aspect  

 

4.3.5. Editing the Computation Aspect 

In the aspect code editing process, generated base code (LSC instance code and diagram 

code) is not to be touched; all modifications and additions must be made on the advices of 

base code’s methods in the computation aspect. Note that this constraint is not forced as the 

developer has the generated code at his disposal so that the developer should be carefully on 

the modification process. Also generator marks the mandatory editing points in the 

computation aspect by giving comments such as “must be edited”. For instance, sending 

method of the LSC base code can be changed in its advice and the changed advice body is 

run instead of the method body in the base code. However, the pointcut definitions must not 

be touched in editing because if they change, aspect may not catch the intended joinpoint in 

the base code.  

 Furthermore, in the computation aspect, advices of the randomization methods whose 

empty bodies are generated in the base code can be edited and application specific logic can 

be replaced with the preliminary randomization logic. For example, generated preliminary 

random logic for alternative inline expression that selects an alternative randomly from the 

all possible alternatives can be edited in the advice of the randomization method 

(ChooseAlt). Instead of the random selection logic, user can select the alternative from the 

console (see Figure 4.9). 
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pointcut pcchooseOne(ArrayList selectedList, Hashtable orderList,String tag): 

execution(static int ATM.chooseOne(..)) && args(selectedList,orderList,tag); 

int around(ArrayList selectedList, Hashtable orderList,String tag): 

pcchooseOne(selectedList,orderList,tag) 

{ 

 int ch=0; 

 int choice=0; 

 /*Random r = new Random(123456); 

 ch=r.nextInt(selectedList.size()); 

 choice=((Integer)selectedList.get(ch)).intValue();*/ //preliminary  code is commented 

 System.out.println("enter the choice please:> "); //new logic is added 

 try { 

   choice = in.readLine(); // choice is read 

 } catch (Exception ignored) {} 

 (…) 

 return choice; 

} 

Figure 4.9 Editing Auxiliary ChooseAlt Method in the Aspect 

 

4.3.6. Weaving the Computation Aspect 

AspectJ parser weaves the AspectJ codes on the Java base codes at compile time either as 

they are generated or after editing the computation aspect, and produces a native Java byte 

code. After compilation, the generated Java byte code can be run on the Java virtual 

machine. 

4.3.7. Metamodel Support for Code Generation 

Since the input model conforming to LSC metamodel is instance based, code generator 

generates instance codes (i.e. for every instance a Java class is generated) separately (see 

Figure 4.3). Reference usage is a key facility in traversing the model. Generator can reach 

desired model elements such as atoms, models, and connections in the model by using only 

references of them. 

Using global lists such as instance list and condition list, allows and makes easy for the 

generator to reach instances and condition in the model by using references. For example, in 

instance based code generation, instance codes are generated according to the global instance 

list one by one. While traversing the input model, especially the nested model elements, only 

references of the instance are located. Generator readily reaches the global instance by using 

these references. In contrast, without a global instance list, an LSC instance could be met 
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anywhere in any nested model hierarchy level. For example, an LSC instance of the LSC 

diagram may be in topmost LSC diagram, or, in case the LSC instance has one or more 

inline expressions, it may be in one of the inline expression’s operand. This situation would 

have caused to implement a messy case analysis for the generator to generate instance based 

code. 

If a domain specific data model is not integrated into the model, then the code generator 

generates standard code for the MSC/LSC messages. However, if the domain specific 

messages are available as specializations of MSC/LSC message then the generator reaches 

them through references and generates the specific method bodies. Method parameter 

information and other related data is retrieved from the data model of the domain. For 

example, in HLA based code generation [Adak et al. 2007], the HLA methods and related 

data are obtained from the federation architecture model. 

4.3.8. Integration with Domain-Specific Data Models 

LSC metamodel, (in its pure form) only describes the receive and send events but it does not 

deal with the internal parameters of the events. These internal parameters of the events can 

also be modeled as a domain specific data model. We provide an integration interface to the 

domain specific data models. However, if the domain specific data model has a metamodel, 

integration of LSC model and data model is possible. In this case, generator can retrieve 

parameter information of the events from the data model. 

Furthermore, in case parameter values are entered to the model, these values are put in the 

computation aspect as preliminary in the code generation. For example, we assume 

SendPassword event has a string typed parameter. The value of the parameter comes from 

the data model and its value is “hello world” (see Figure 4.10). Code generator, in the LSC 

instance base code, generates a method which has a string typed parameter and in the 

computation aspect, an advice that overrides the parameter value with “hello world”. 

 

pointcut pcSendMessageInput_0026ATM(String Password_0029):execution( 

static boolean Client.SendMessageInput_0026ATM(String))&& args(Password_0029); 

boolean around(String Password_0029):pcSendMessageInput_0026ATM(Password_0029) 

{ 

 password=“hello world”; //edit  the method of instance base code in the advice. 

                  (…) 

} 

Figure 4.10 Integration with Domain-Specific Data Model Example 
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This approach is applied in the FAMM where LSC metamodel (BMM) and HLA 

metamodels (HOMM, HFMM) are integrated [Topcu et al. 2007]. There are two extensions 

on the front end and back end modules (Figure 3.3) of the generator. In the first extension, 

domain specific information is reflected to the intermediate form, and in the second 

extension, domain specific code segments (data model related) are produced form the 

domain-specific part of the intermediate form. Further details about front end and back end 

extension modules’ are presented in Appendix F and Appendix G respectively. 

4.4. ATM Money Withdrawal Application 

In this example, two instances namely a Client and an ATM is modeled. Their LSC models 

are presented in concrete syntax in Figure 4.11.  After the proper installation, the generator 

can be used. In the following, code generation is described on the running example step by 

step. 

4.4.1 Steps 

Step i. Modeling 

The ATM Money Withdrawal model is built as a model of the LSC metamodel. 

Step ii. Configuring the Generator 

In our generator, a configuration document based on XML, called GeneratorConf.xml, is 

provided with initial values for configuration parameters. Generator generates code 

according to the parameters which are: 

a. Seed for the random number generator function for randomization process, 

b. The path for the generator, 

c. The path for the generated code, 

d. Maximum poll count for receiving an optional (cold) message, and 

e. Waiting (sleep) time between to successive polls. 

f. External library name of the domain specific model. 
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Figure 4.11. a. LSC for ATM Money Withdrawal at Topmost View 
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Figure 4.11. b. LSC for Password Validation Reference 
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Figure 4.11. c. LSC for Process Menu Selection Reference 

 

 

Our example’s configuration XML file is presented in Figure 4.11 as: 

 

<?xml version="1.0" encoding="ISO-8859-1"?> 

<Confs> 

<Random seed="123456">  

</Random>  

<Sleep time="5" passes="5">  

</Sleep>  

<PATH> 

<Generated path="C:\eclipse-SDK-3.0.1-win32\eclipse\workspace\AtmCodeGen\">  

</Generated>  

<Generator path= 

"c:\eclipse-SDK-3.0.1-win32\eclipse\workspace\NewCodeGenProject\">  

</Generator> 

</PATH> 

</Confs> 

Figure 4.12. XML Configuration File for the Code Generator for ATM 

Money Withdrawal Application  
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Step iii. Runnig the Generator 

After completing the configuration, the generator is run in GME as a model interpreter as 

defined in GME documentation [GME 2006].  The generated code files are placed in the 

folder specified in the configuration file. 

 In our case: MainChart, ATM, Client, ATMAspect and ClientAspect are generated in the 

folder. Three classes and two aspects are generated. Generated classes and aspects are 

represented in a class diagram in Figure 4.13. The class diagram reflects the static structure 

of the application represented in Figure 4.3.  

 a) Base Code 

Class MainChart is the diagram code where ATM and Client (LSC instances) threads are 

defined and run. Class ATM and Client are instance codes where sending methods, 

receiving methods and main-loop method (main function) of application are generated. 

 

 

Figure 4.13.  Class Diagram of the Money Draw 

  

 

To give a sense of the generated code, the first do-while (password query) inline expression 

(Figure 4.11) of the generated Client code are exemplified in Figure 4.14. And also a sample 

sending method (sendpassword) (Figure 4.4) and a receiving method (receiveloginWindow) 

(Figure 4.5) are shown in the following figures.  
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 In the operand of the do-while inline expression, password menu method is received from 

the ATM and user password method is sent to the ATM. Value of the do-while condition is 

retrieved from the dictionary named coldChoices by using condition model element name 

that is defined in the computation aspect. 

 

public static void ClientMainLoop(){ 
 (…)//code from the beginning 
  do 
 { //loop, user sends password 
  condReceiveLoginWindow(); 
  SendPasswordATM ("123");  
 } while(((Boolean)coldChoices.get("PasswordOK")).booleanValue()) 
(…)//code from while-do to the end. 
}  

Figure 4.14. A Part of the Client Do-While Loop 

 

  

b) Computation Aspects 

Two computation aspects namely ATMAspect and ClientAspect are generated. In these 

aspects, all methods of the LSC instances (natural joinpoints) are accessed and their method 

bodies are overridden in their corresponding advices. In this computation aspect, also 

dictionaries and other related support methods bodies such as chooseOne, getLoopount are 

overridden in their advices of the methods. 

 A sample sending method’s (sendpassword) and a receiving method’s 

(receiveloginWindow) pointcuts (accessing methods) and corresponding advices are shown 

in Figure 4.7 and Figure 4.8, respectively. In Figure 4.7, sendpassword method is caught and 

then preliminary logic fills in the method advice. The developer can edit this method advice 

as described in the next section.  

 In Figure 4.8, the receiving method is caught from the LSC instance code and received 

data is displayed in the preliminary computation aspect. This received data is the values of 

all parameters of the method.  

Step iv. Editing the   Computation Aspect 

After the running of the generator, automatically generated preliminary computation can be 

edited by the developer in order to effect the desired computation. Consider, for example, 

how sendpassword method is handled. In the preliminary computation, a sample password 

string (“123”) is sent to the ATM, as shown in Figure 4.7. Naturally we would like the 

password to be entered by the user. User types in a password and hits the enter key, thus 

password is sent.  When user types right password the do-while condition (MSCGuard2) 

becomes true and Client is continued. Otherwise, password entering process repeated three 
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times more. Corresponding code is illustrated in the following Figure 4.15. Italic codes in the 

figure are edited. 

 
 

pointcut pcSendMessageInput_0026ATM(String Password_0029):execution 

(static boolean Client.SendMessageInput_0026ATM(String))&& args(Password_0029); 

boolean around(String Password_0029): 

pcSendMessageInput_0026ATM(Password_0029) { 

 String _password=""; 

 System.out.print("enter the password please:> "); 

 try { 

  _password= in.readLine(); //password is read 

 } catch (Exception ignored) {} 

  Password_0029=_password; //password is edited 

 System.out.println(_password+" send to ATM"); 

 proceed(Password_0029); 

 return true; 

} 

Figure 4.15.Adding a Sample Computation to the Sending Method’s 

Advice 

 

Step v. Running the Generated Code 

With the computation aspect edited, the application code is ready to run. The code is copied 

into the Eclipse workspace. Eclipse is run and added codes are open as an AspectJ project. 

After that, code is compiled (Aspects are weaved on the LSC instance base codes by the 

aspect compiler) and run. A view from the running application is represented in Figure 4.19.  
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Figure 4.16. A View of the Money Withdrawal Application Running 

(Eclipse Screenshot) 

 

4.4.2. Related Work 

Executable code generation from behavioral specifications in LSC/MSC is an ongoing and 

an open challenge quest for researchers. Automatic code generation plays an important role 

in early validation of the model after the behavior of a system is described using the 

MSC/LSC. Despite the fact that a play engine is proposed in [Harel 2001] as an 

implementation mechanism for LSC, it only provides a simulation of the execution of the 

LSC diagrams by playing out different scenarios and thus helps testing and observing of 

system behaviors; but it does not attempt to generate code, and more importantly, it is not 

extendible due to its fixed data model, and not customizable for domain specific modeling. 

In contrast, our metamodeling approach, due to its data model integration capability, gives 

power to the user to extend or tailor his application code generator or interpreter in 

accordance with his data model. In literature, few studies address the issue of code 

generation from LSCs: one master thesis’s [Homme and Ramsland 2003] and a new 

published conference papers [Maoz and Harel 2006].   
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  The Homme-Ramsland thesis studies how code generation can be applied in different 

stages of system development. It explores the possibility of synthesizing system behavior in 

the form of state-charts from LSCs, and from there using available tools to generate the 

actual code. It also proposes a way of generating code directly from an LSC specification 

with certain constraints.  

 In Maoz paper, the LSC model becomes an aspect and it is weaved on the computation 

application, on the other hand, in ours work, computation is as an aspect and it is weaved on 

the LSC base code that represents the LSC behavioral model. Our approach allows complete 

control over the process of matching the pointcut definitions (in aspect code) with the 

joinpoints (in base code). This is the major difference of our work. They said that they did 

not support multi-threading application development in their work and it is the future work 

for them. However, we support multi-threading and it is the major base point for us in the 

code generation. While no study we perused claims to cover LSC completely, the present 

one covers LSC and MSC almost completely, with respect to the current MSC standard 

[ITU-T 2004], and our interpretation of the LSC references [Damm et al. 2003 and Brill et 

al. 2004. Also our domain is different from the Maoz’s. Although they concentrate on 

scenario development and model the inter-objects behavior, we focus on outer behaviors of 

system rather than inner objects. In general, we look at the system from outside, they 

examine the system internally.  

 There is also a body of literature dealing with transforming LSCs to some executable 

form, in particular, statecharts [Bontemps et al 2005, Kruger et al 1999]. We favor 

executable code generation directly from LSC as this approach tends to yield more readable 

and traceable code. Structure of the input models is reflected in the structure of the generated 

code. 

 Furthermore, we could not see any explicit metamodel component in these related works. 

We hold that in any model-based approach, an explicit metamodel must be presented to the 

users. 
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CHAPTER V 
 
 

IMPLEMENTATION VIEW OF CODE GENERATION 
 
 
 

In this chapter, implementation details of code generation are presented. First, the 

intermediate form is described, and then, LSC constructs and their corresponding 

implementation approach is introduced. How the constructs are handled, how their code’s 

are generated, how their operational semantics are considered are explained. Further details 

about LSC/MSC code generation of constructs are presented in Appendix A by giving 

module patterns and their corresponding codes. In the implementation perspective, for the 

federate code generation, only the LSC message model element is inherited and HLA 

method model is obtained from it. In this HLA method model element, method parameters 

are retrieved from the FAMM as explained in Chapter 3. Further details are delegated to 

Appendix F and Appendix G.  

5.1. Intermediate Form 

Basically, code generator generates code directly from LSC models. The input of the 

generator is an LSC model with an abstract syntax. This abstract syntax is defined by a 

metamodel for LSC models [Topcu et al. 2007]. 

Intermediate form is implemented as a dynamic list (list of Block) structure  called blockList. 

The Block class has simple-typed class members such as name, type and also a dynamic list 

structure (list of Operand) called Operands. Operand class has class members such as name 

and two dynamic lists: Messages (list of LSCObject) and blockList (list of Block) for nested 

inline expressions. LSCObject class has simple typed class members such as name, type, 

cold condition, composed typed class members such as order and a dynamic list (list of 

LSCAttribute). LSCAttribute class has only simple typed class members such as name, type 

and value. Order class also has only simple typed class members such as owner instance 

name, name of the ordered event. Class diagram of the intermediate form is depicted in 

Figure 5.1 
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Figure 5.1 Class Diagram of the Intermediate Form 

 
 

 

BlockList structure that holds the blocks is implemented as a dictionary data structure (i.e., 

a kind of dynamic list data type). A block represents a referencing environment, which 

constitutes a scope for a local declaration (as defined in between curly braces (“{” and “}” in 

Java, C and its descendents). Corresponding to an LSC chart is a block.  Corresponding to 

each operand of a nested inline expression in the LSC chart is also a block. We consider the 

LSC chart as a sequential inline expression that has one operand. Thus an operand addresses 

a block. Operand (or block) structure holds the message list where event structures are 

inserted and nested-block list where nested block structures of inline expressions are added.  

Events are defined in LSCObject class, which is the primary class for holding event 

information in the model. An object of this class holds mainly event name, event type such 

as sending or receiving, cold condition, order information and attributes/parameters of it. 

Attributes/parameters are defined in LSCAttibute class that holds the event attribute 

information such as name, type and value. 

Order class is used for general ordering.  Order class holds desired new order of the event, 

the owner instance of the event, whether the event is multi-instance or single-instance, name 

of the ordering model element and finally whether the event is sending or receiving. It is 

instantiated for each event that is to be ordered. 

An example LSC diagram to describe the object model which corresponds to the class 

diagram of the intermediate form is represented Figure 5.2, in which an ALT (alternative) 
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inline expression has two operands. Both operands include only an event m and n 

respectively. LSC chart of the example (msc A) is considered as a SEQ (sequential) inline 

expression at the top of the ALT inline expression. Resulting object model of the example is 

depicted in Figure 5.3. Note that further details about intermediate form generation are 

presented in Appendix B. 

 

Figure 5.2 LSC Diagram of the Example for Intermediate Form 

Representation Aim 
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Figure 5.3 Object Diagram of the Example in Figure 5.2 
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Figure 5.4. Activity Diagram of the Front-End Module 
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5.2.  Intermediate Form Generation - Front End 

In Figure 5.4, an activity diagram of the model walking module (front end in Figure 3.3) is 

represented. In this figure, generator starts to traverse from LSC model (top) to LSC message 

(bottom). For every instance in the chart (diagram), an intermediate form is constructed. 

There are two selections in the walking. First selection is carried out in the chart for LSC and 

MSC cases of the chart. Especially for the LSC case, universal/existential chart attribute of 

the Block object is filled. Second selection is made in the instance for event, inline 

expression and reference cases. When generator meets an event, LSCObject object is 

instantiated. 

When generator meets an inline expression, it creates a Block object and adds the block 

object whose key is the precedence value of the inline expression (precedence on the 

connection between the inline expression and the instance in the model) into the blocklist for 

the inline expression.  It also adds a dummy event into the message list (Messages). 

Therefore, a binary relation, such as <dummyMsgForSeg,blockAlt>, between the dummy 

event in the message list and the inline expression block in blocklist can be established by 

using the precedence value. When the Back End module meets an empty event object, it 

interprets that an inline expressing is handled. Note that precedence value, which is entered 

to the LSC model by the modeler, expresses the execution order of the event in the time slot.  

5.3. Target Code Generation – Back End 

Back End module (Figure 3.3) generates the Java codes from the constructed intermediate 

form. Activity diagram of the back end module is depicted in Figure 5.5 back end module 

first generates function declarations such as sending, receiving, auxiliary and timer 

declaration and aspect advices of the methods. After the method declaration, main function 

of the instance code (made up of inline expressions and method calls) is generated. For every 

inline expression block object in the intermediate form, different code is generated. For 

example, “while clause” code segment is generated from the operand (block object) of the 

loop inline expression. These selections are represented decision markers in the activity 

diagram. 

When code generation meets an empty event which matches an inline expression, it 

retrieves the inline expression block from blocklist by using the empty event’s precedence 

value. And generator recursively continues to generate nested inline expression code by 

using the block. 
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Figure 5.5 Activity Diagram of the Back End Module 

 

 

5.4. Dictionary Usage in the Generated Code 

A dictionary is a collection of pairs such that in each pair there is a key and its corresponding 

information. Java hashtable data structure is used for the dictionary implementation. 

Dictionary is used for choice operations in the generated code. Name of the model elements 

such as conditions, alternative inline expressions becomes a key for the dictionary.  
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In the generated preliminary computation aspect, this value is determined randomly. 

However, this value can be edited in the computation aspect by using its key.  Sample usage 

is given in the figures of section 5.7. 

5.5. Multi-threaded Realization of Instances  

We employ threads for realizing instances and diagrams. For each instance and each 

diagram, a thread is allocated. There are two types of instance in the LSC: static and 

dynamic. Although static events are created at the beginning, dynamic instances are created 

by a create-instance event Threads of both static and dynamic instances are declared in the 

diagram base code. The threads of an static instance is started at the point of declaration in 

the diagram code while a dynamic instance thread is started when an LSC create-instance 

event is received, and stopped when an stop-instance event is received. 

Moreover, threads are also used in parallel inline expression (PAR) and LSC simultaneous 

region implementations. More detailed explanations are given for inline expressions in 

section 5.10, and for simultaneous region in section 5.15.  

5.6. Events 

Typical events are either a sending or a receiving. Sending and receiving events are 

specialized such as in, out, call, receive, replyin and replyout. There are also conditions, 

create-instance/stop-instance events, and timer events  

A condition can be local or multi-instance. Local condition is confined to a single 

instance. A multi-instance condition is shared between two or more instances. 

In the code generation time, when a local condition event is met, an “if clause” (see Figure 

5.6) code is generated. Condition value of “if-clause” comes from the dictionary of the 

instance whose key is the name (i.e. Condition (Card.Inserted)_000f in Figure 5.6) of the 

condition model element. Also an “if-clause” is generated for multi-instance condition. But, 

in this case, value of the condition comes from the diagram’s dictionary because the diagram 

is common for all participant instances.  

If condition event comes from an instance, condition is valid until to the end of the chart 

where instance is located. If the condition event comes from nested inline expressions, it is 

valid until to the end of the inline expression’s operand block.   

 

if (((Boolean)coldChoices.get("Condition (Card.Inserted)_000f")).booleanValue())  

//Condition is model element name and comes from the model 

  (….)//codes in the condition block 

else //for only the hot conditions 

   return; //if condition is not satisfied, the nearest method is exited 

Figure 5.6 Hot Condition Example  
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 Instance creation may be desirable to divide the “application instance” into many sub-

instances in case of instance decomposition property in LSC. Sub-instances are also 

implemented by using threads similar to native instances. Every sub-instance will be located 

in a separate thread also.  

 In the generated code execution time, when a create-instance method is called, related 

thread (target instance of event in the model) is started (i.e. ClientDiagram.pClient.start() in 

Figure 5.7). On the other hand, when a stop-instance method is called related thread is 

stopped. 

 
(…) //other unrelated codes 

ClientDiagram.pClient.start();//create-instance event 

(…)//unrelated code 

ClientDiagram.pClient.stop();//stop-instance event 

(…)//unrelated code 

Figure 5.7 Instance Creation/Stop Example 

 

 

 There are three timer events, namely starttimer, stoptimer and timeout in the model. A 

Java Timer class is used for timer event implementation. Java timer class definition and timer 

functions’ codes are generated in the LSC instance code. For every Java timer, there is a 

timer function that runs whenever a timer event such as timeout, starttimer occurs.  

 In the code generation time, when a starttimer event’s model element is met, the timer set 

value is read from the model and then the timer’s setter code is generated according to this 

value. When a re-starttimer event’s model element is met, timer’s stopper and then re-starter 

(reset) codes are generated. Timer’s reset value is treated in the same manner timer’s set 

value.  

 At run time, when the timer’s setting time is passed, timer’s function is called. When the 

timer’s timeout time is elapsed, timer’s function is called and also a timer flag (i.e. 

timerFlagTimer1 in Figure 5.8) is set to true in it. (Timer flag is a boolean variable that 

indicates whether the timeout has occurred or not)  When reaching the timeout method 

execution in the LSC instance code, the timeout received warning may be introduced to the 

user if flag is true in the timeout method (i.e. RecvTimer1Timeout()). 
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doLaterTimer1(1000); // Start Timer 

(...)//codes between start and reset timer events 

stopTimer1();//Stop Timer 

doLaterTimer1(1000); //first stop then re-start timer. 

(...)//codes between reset timer and timeout events 

if(timerFlagTimer1)//timer flag to be set 

{ 

    RecvTimer1Timeout();// Timeout function 

}  

Figure 5.8 Example for Timer Events 

 
 

 

 When a lost or a found attribute of a message or a method call event is met in the code 

generation time; only a method definition which has an empty body is generated for the 

message in the LSC instance code. Action is also a kind of local event similar to lost and 

found. When an action event’s model element is met, only a method definition is generated. 

5.7. Buffering of Received Messages 

Buffering is used for receiving events of instance. For every event, a FIFO (first in first out) 

message queue is declared and used. In the implementation, a standard queue (i.e., 

sun.misc.Queue in Java) class is used for the FIFO data structure. 

  When an event is received, it is put into its queue (i.e. 

queMessageInput_0026Client.enqueue(proc) in Figure 5.9). When executing the LSC model 

and meeting a received event, an event is de-queued. But if the queue is empty (i.e. while 

(!boolMessageInput_0026Client())), event receiving is waited in a “while” loop statement 

for next receiving events  that are mandatory (i.e.: hot event). If received event is declared a 

hot event, loop is only broken when an event comes. However, if received event is cold, 

declared number of polls in the configuration file is applied. If this waited event is received 

in these polls, it is accepted. If not, loop is broken and LSC execution is continued. 

 In this approach, all received messages are put in a queue dedicated for the reception of 

this message and they are taken from the queue one by one. This capability enables the 

receiving asynchronous messages because asynchronous messages are sent or received at 

any time and only buffering is used to handle this uncertainty. Code generations for 

synchronous messages are left as a future work. 
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public static void RecvMessageInput_0026Client(LSCLib.LSCObject proc)  

{ 

        queMessageInput_0026Client.enqueue(proc); 

}// Received event is put into the queue 

 

public static boolean condRecvMessageInput_0026Client() 

 { 

        while (!boolMessageInput_0026Client()) 

            SleepThread(100); 

        LSCLib.LSCObject proc=null; 

        try { 

            proc = (LSCLib.LSCObject) queMessageInput_0026Client.dequeue(); 

        } catch (InterruptedException e) { 

            e.printStackTrace(); 

            return  false; 

        } 

        ProcessRecvMessageInput_0026Client(proc); 

        return  true; 

    }//Dequeue example 

Figure 5.9 A Buffering Example 

 

5.8. Temperature Property 

Conditions, events, charts (universal/existential), locations and timers can be hot or cold. All 

these are hot except for conditions in the generated preliminary computation aspect. 

Condition defines a block which surrounds the events on which condition is applied. The 

events are in such as chart and operand. 

 In the generated code execution time, if a cold condition is satisfied, all other events from 

the condition to the end of the block are executed. If it is not, the events are not executed. 

However, if the condition is hot and not satisfied, events in the condition block are not 

executed and instance code is exited from the closest method where the condition is in.  This 

is done by generating a “return statement” (see Figure 5.6) at the end of the block in the code 

generation time.  

 Behavior of a hot/cold event is different whether it is sending or receiving in the 

generated code execution time. If the sending event is hot, it must be sent; but if it is cold, a 

lot is drawn and the event is sent or not according to the result. If a receiving event is hot, the 

event must be waited until it comes. But, if the event is cold, the event is waited for 
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according to the parameters (i.e. 50 and 100 in Figure 5.10 ) of the configuration file. If it 

does not arrive within this waiting period, instance code stops waiting and continues the 

execution for next event in the LSC. 

 

for (int i=0;i<50;i++) //loop count retrieved from configuration file 

{ 

 if (boolMessageInput_004fClient())//if the event in the queue, if condition is satisfied. 

  { 

         condRecvMessageInput_004fClient();//event is retrieved from the queue. 

         break; 

    } 

   SleepThread(100); //waiting time comes from the configuration file. 

 } 

Figure 5.10 Receiving a Cold Event 

 

 

 If a chart is hot or universal, the inner events of the chart must always be executed, but if 

it is cold or existential, also a lot is drawn and according to the result, the events of the chart 

are executed or not. If a location is hot, all events on the location behave as described earlier 

in this section. If the location is cold, sending hot/cold events and receiving hot events 

behave also the same. In the cold event receiving, the events are also waited according to the 

parameters of the configuration file as the hot location case. But differently if they are not 

come in this waiting period, instance code stops waiting and do not continue the execution 

for next statement in the LSC. In the code generation time, a “return statement” is added to 

the end of the location so instance code is exited from the closest method where the events 

are in. 

 In timer events, starttimer and stoptimer events act the same behavior as the standard 

sending events. Only the timeout event acts different behavior in the generated code 

execution time. If a timer is cold and timeout time is elapsed, the timeout event is received 

and only warning message which says “a timeout is occur” is presented to the user. 

However, a hot timeout is violated, similar to the hot condition, it is exited from the method 

in which timer is active.  

5.9. Resolving Non-determinism by Randomization  

Non-determinism is inherent in the LSC/MSC operational semantics. For example, 

receiving/sending cold events, loop count in a range for loop inline expression, and alterative 

inline operand selection all involve nondeterministic choices.  
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 We apply randomization for cold event sending, for alternative inline operand selection, 

and for loop inline expressions, fixing iteration count within the range between the 

prescribed min and max. The random number seed can be set in the configuration file to 

support repeatability. If this seed number is not set, seed number becomes the “current time” 

in initial.  

 The randomization logic is coded within the preliminary computation aspect. Methods in 

which randomization is applied can be edited in the corresponding advices of the methods of 

the computation aspect by the developer according to the appropriate application logic 

(Figure 4.9). 

5.10. Inline Expressions 

Code generation for MSC/LSC inline expressions in the LSC instance base code is explained 

in this section. For the alternative (ALT) inline expression, a “switch case clause” code (see 

Figure 5.11) is generated. In generated code execution time, according to the making choice 

(i.e. Alt1 in Figure 5.11), chosen operand (block) code is executed.  

 

int Alt1=chooseAlt(2,"Alt1_0065"); 

switch(Alt1){ 

 case 0:  

   SendEventM(); //alternative 1 

   break; 

 case 1:  

   SendEventN(); //alternative  2 

   condRecvEventO();// 

   break;  

} 

Figure 5.11 Alternative Inline Expression Example in Figure 5.2 

 

 

 For the parallel inline expression, a thread code is generated for each operand (i.e. 

op1_0041  in Figure 5.12) of the parallel inline expression. In the generated code execution 

time, these threads are run in parallel. 
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class op1_0041 extends Thread { //inline thread definition for the operand of PAR. 

  op1_0041 () {}   

  public void run() {// thread running function 

      (…)//codes in the operand of the parallel 

      stop();  

   } 

} 

op1_0041 p0 = new op1_0041 ();//thread is declared 

p0.start();//thread is started 

Figure 5.12 Parallel Inline Expression Example  

 

 

 For the loop (LOOP) inline expression, a “while clause” which uses the min and max 

parameter values, code is generated. If these parameters are “inf, inf”, an infinite loop 

(“while(true)”); if they are “x, inf”, a loop that iterates a number of times between x and 

infinite; if they are “inf, x”, a loop that iterates a number of times between 0 and x; if they 

are “x, y” (i.e. in Figure 5.13 x=0 and y=2), a loop that iterates a number of times between x 

and y and finally if they are “x, x”, a loop iterates exactly x times is generated. All this 

selection is made randomly in the generated preliminary computation aspect.  

 Besides the Loop inline expression, for “while-do” and “do-while” structures called 

idiom, code is generated. For the while-do idiom, a “while clause”, for the do-while idiom, a 

“do while clause” code is produced in the code generation time. 
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boolean loopCond=false; 

int countLoop1=0; 

int loopCount = getLoopCount("0","2");//loop iterates at most two times. 

if(loopCount==-1) 

loopCond=true; 

while(countLoop1 <loopCount || loopCond) 

{ 

                 (…)//cold message sending related code 

 SendEventP(); 

                  (…)//cold message sending related code 

 countLoop1++; 

}//end of loop 

Figure 5.13 Loop Inline Expression Example in Figure 5.2 

  
 
 
In the same way, code is generated for “if-then” and “if-then-else” idioms. For “if-then” 

idiom, an “if clause”, and for “if-then-else” idiom, an “if-then-else clause” code is produced. 

 For the exception (EXC) inline expression, a “try-catch” clause code is generated. 

According to the try body code execution, exception part is run at the generated code 

execution time. 

 For the option (OPT) inline expression, operand (block) of the option inline expression is 

surrounded with an “if-then” clause and according to the condition value; operand code is 

executed or not executed at the generated code execution time. At last, for sequential (SEQ) 

inline expression, all generated operand codes of the inline expression are appended 

sequentially. 

 

5.11. Barrier Synchronization 

Barrier synchronization is used for executing multi-instance inline expressions 

synchronously at generated code execution time. CyclicBarriers (a Java class for the barriers 

synchronization) are used for this aim. For every multi-instance inline expression, a 

CyclicBarrier (i.e. RepeatUntil_02ef in Figure 5.14) is declared in the diagram code. When 

an instance reaches to the end of the multi-instance inline expression, it calls await method 

so the CyclicBarrier blocks the thread until the all other instance’s threads call the await 

method. If all instance threads reach the end of the inline expression, blocking is broken and 

the multi-instance inline expression is synchronized properly. 
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do { 

            (…)//other unrelated code in the while block 

             try { 

              Ship_MSC.RepeatUntil_02ef.await(); 

              //do-while  (or repeat-until) idiom is blocked. 

              } catch (…) 

} while (!((Boolean)Ship_MSC.coldChoices.get("until_0300")).booleanValue()); 

Figure 5.14 Barrier Synchronization Example 

 

5.12. Prechart 

Pre-chart is consists of two separate blocks (pre and body blocks). In pre-chart semantic, if 

any events of the pre-block were executed, then the events of the body block are executed. In 

the generated LSC instance base code, all methods return a boolean argument whether to 

indicate they are executed successfully or not. To determine the occurrences of the any 

events of the pre block, a flag (i.e. condPar_0040 in Figure 5.15) is used. Initially the flag is 

set to false. An “if-then” clause code is generated for the body block. 

 In the generated code execution time, returned argument of every event in the pre block 

and the flag is compared by OR ( || )  operator and new flag value is set. This is repeated to 

last event of the pre-part. Finally, with respect to the obtained flag value, body block is 

executed or not executed.  .  

 Pre-chart is handled as an inline expression that have two operands (blocks), first operand 

points out the pre block, second operand does the body block.  
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boolean condPar_0040=false; //pre-chart condition flag 

 for (int i=0;i<50;i++)  

 { 

  if (boolMessageInput_004fClient())  

    { 

       condPar_0040=condRecvMessageInput_004fClient() || condPar_0040; 

       //cold message 

       break; 

     } 

   SleepThread(100); 

   }//cold message received in the pre-part 

   if (condPar_0040) //if flag is true, body of the prechart is executed 

   {//start of body 

      SendMessageOutput_004bClient(new Object()); 

      condRecvMessageInput_0048Client(); 

      SendMessageAction_Check_Amount_and_Give_MoneyACTION(new Object()); 

   }//end of body 

Figure 5.15 Prechart Example 

 
 
 

5.13. Coregion  

The events in the coregion happen in arbitrary ordering. Messages to be sent in the coregion 

are sent in a randomly generated order. In the sending algorithm, there is a while loop. In this 

loop, randomly a number is selected in the range of event count and corresponding event is 

executed. This loop iterates until the all events are executed. If sending event is cold, before 

sending, a lot is drawn and event is send or not in the generated execution time.  

 Round-robin algorithm is used to receive events in the coregion when they are come. In 

this algorithm, there is a while loop and in this loop, all message-in events are checked one 

by one whether they come in the queue or not. If an event came, this message is received 

from the queue. This algorithm also guarantees to give an equal chance to all events (i.e. 

chooseOne method achieves this in Figure 5.16). Loop iteration count depends on the 

number of hot and cold events (i.e. nHot=3 and nCold=0 in Figure 5.16) in the coregion. 

When the coregion has at least one hot event, loop iteration continues until the all hot events 

are received. On the other hand, when the coregion has only cold events, loop iterates finite 

number of times which is determined by the polling count and period time in the 

configuration file.  
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 Regarding to the MSC standards, local general ordering is only applied in the coregion. In 

local general ordering, orders of the two events of the same instance can be changed. Local 

general ordering process differs whether events are sending or receiving.  

 For the sending events, rules that indicate the event order are defined. A rule dictates a 

binary relation. This binary relation says that first event occurs before the second event. It is 

represented as a vector (a, b). In the randomly sending events process of the coregion, first, 

rules are looked at, if the rules are satisfied, the event is sent. But, if any rule is violated, 

random selection is repeated until the rules are satisfied. 

 For the receiving events, before the former coming event (e1) is received, the latter event 

(e2) is not controlled by the round-robin algorithm whether it comes or not in the queue. (e1 

> e2:  means e1 occurs before e2) Therefore, after the former (e1) is received, algorithm 

starts to control latter event (e2). This queue control restriction does not cause any data loss 

because of the event queue mechanism. If the latter event (e2) comes first, it is put and 

waited in the queue. When the former event (e1) is arrives first, it is executed and then the 

latter event (e2) is retrieved from the queue and executed. Consequently, general ordering is 

ensured for both sending and receiving events. 
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ArrayList selectedList = new ArrayList(); 

(…)//other declarations such as nHot, iHot, nCold, iCold etc 

nHot=3; iHot=0; //we  assume that there are  three hot sending events in the coregion 

nCold=0;iCold=0; //we  assume that there is no cold  sending events in the coregion 

while(iHot+iCold<nHot+nCold) //round-robin algorithm 

{ 

 int choice=chooseOne(selectedList,null); 

                 // select random message from the selected list.  

                 // This function guarantees to select a different choice for every iteration  

 switch(choice) 

 {//switch 

 case 1: 

  SendEvent1(); 

  break; 

 case 2: 

  SendEvent2(); 

  break; 

 case 3: 

  SendEvent3(); 

  break; 

 }//switch 

 iHot++; 

} 

selectedList.clear(); 

Figure 5.16 Coregion Example 

 

 

5.14. General Ordering 

In this section multi-instance general ordering is described. Local general ordering is 

explained in the coregion (5.13) section. In the multi-instance general ordering (e1>e2), if 

the latter receiving event (e2) comes first, it is waited until the former event (e1) comes. To 

establish waiting, before the latter event (e2), a while loop is added to the code. Loop 

condition is false at the beginning. When the former event (e1) comes first, it changes the 

condition of the loop to true and this breaks the loop of latter event (e2). This loop condition 

is declared in the diagram shared by the two instances. As a result, multi-instance general 

ordering property is provided (see Figure 5.17). 
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SendEvent1();//former event: e1 

Diagram1.setgeneralorder1=true; 

Figure 5.17 a General Order Example (instance i) 

 
while(!Diagram1. setgeneralorder1); 

CondRecvEvent1();//latter event:e2 

Figure 5.17 b General Order Example (instance j) 

 

 

5.15. Simultaneous Region 

Events in a simultaneous region are perceived as simultaneous, i.e. happening at the same 

instant of time.  In other words, these events are executed at the same time and before all of 

them are finished, any other event does not happen. Threads are used in the simultaneous 

region implementation. In this implementation, each event of the region is executed in a 

separate thread (i.e. SimultaneousRegion1 thread in Figure 5.18). While these events 

execute, other event executions are waited. After all the threads stop, waiting is ended, and 

LSC execution continues. 
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class SimultaneousRegion1 extends Thread  

{ //simultaneous region thread. 

  SimultaneousRegion1() {} 

  public void run()  

  { 

        SendEvent1(); 

         stop(); 

   } 

} 

//we assumes that there are two events in the simultaneous region. So two threads is defined and 

started. 

SimultaneousRegion1 pSimultaneousRegion1 = new SimultaneousRegion1(); 

pSimultaneousRegion1.start(); //thread of the first event is started 

(…)//thread code of the second event. 

SimultaneousRegion2 pSimultaneousRegion2 = new SimultaneousRegion2(); 

pSimultaneousRegion2.start();//thread of the  second event is started 

while(!pSimultaneousRegion1.alive()&&!pSimultaneousRegion2.alive()); 

//wait for threads and other events are not executed. 

Figure 5.18 Simultaneous Region Example  

 

5.16. Gate 

In the MSC chart structure, gates are used to send an event to outside of the chart and receive 

an event from the outside of the chart. Events are sent to gate and received from the gate. We 

also use queue solution for the gate implementation similar to event. In this solution, a 

message queue is defined for each gate. Sending messages are put in the gate’s queue (i.e. 

queMessageTextGate.enqueue(proc) in Figure 5.19); receiving events are retrieved from the 

queue. These queues are declared in the LSC diagram code, different from the event’s 

queues. Hence, all instances of the diagram can use the same gate’s queue.  
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//In LSC instance base  code 

public static boolean SendMessageTextGate(Object obj) 

{ 

  LSCLib.LSCObject proc= new LSCLib.LSCObject(); 

  (…)//proc (LSC Object) object is set. 

  MSC.RecvMessageTextGate(proc);//gate queue  is declared in the diagram base code. 

  return true; 

  } 

//in LSC diagram base code 

public static void RecvMessageTextGate(LSCLib.LSCObject proc) 

{ 

   queMessageTextGate.enqueue(proc);//sending event is put into the queue. 

} 

Figure 5.19 Gate Example 

 

5.17. Local Invariant 

Invariant is a property that must be satisfied at each point in the interval over which it is 

defined. Hence, it must be checked before and after each event in the interval. In the code 

generation time, when a start invariant event is met, in the front of the all subsequent events, 

an “if-then-else” clause code is appended. In the “else” part of the clause, a “return 

statement” is added (i.e. Invariant1 in Figure 5.20). When an end of invariant event is seen, 

appending is stopped. This invariant condition is handled similarly as the standard 

(horizontal) condition. Because, invariant is a kind of vertical condition.  

 When the generated code runs, events are executed according to the invariant condition 

value. If the condition is violated, the closest method of the instance base code that encloses 

the condition is exited.  
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if(((Boolean)coldChoices.get("Invariant1")).booleanValue()){ //invariant condition 

   SendMessageOutj(new Integer(0)); 

   SendMessageActionACTION(new Integer(0)); 

} 

else //if condition is not satisfied, it is aborted. 

 return; 

//end of invariant 

Figure 5.20 Local Invariant Example 

 
 

5.18. Namespacing 

In the generated base code, every diagram code is generated in a separate namespace. In Java 

programming language, every namespace indicated a different folder (directory). As a result, 

there can be LSC instance classes named the same in different diagrams in the application.  

 

5.19. LSC/MSC Composition 

LSC charts are composed in parallel, sequentially or alternatively by using their references. 

In the code generation time, whenever a reference to a chart is encountered in the input 

model, the referenced chart model is traversed and finally code for it is generated at the point 

of reference in the base code.  

5.20. High Level MSC (HMSC) 

HMSC is a kind of representation of the composition of the diagrams by using references of 

them. In the MSC composition operation, LSC diagrams of the MSC/LSC document are 

composed in parallel, alternatively and sequentially. HMSC shows these compositions more 

clear, understandable and simple form. Thus, code generation for MSC composition is used 

for the code generation for the HMSC similarly. In the following figure, an HMSC and 

corresponding MSC composition model is represented. 
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Figure 5.21 a High-Level MSC (B35 in [ITU-T 1998]) 

 

  

Figure 5.21 b HMSC’s corresponding MSC Composition (B35 in [ITU-T 1998])) 
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CHAPTER VI 
 
 

CASE STUDY: CONSTRUCTION OF A FEDERATION MONITOR 
FEDERATE 

 
 
 

In this chapter, more comprehensive example is introduced. Firstly, the simulation system is 

described, and then code generation process is applied on its architecture model throughout 

the chapter.  

6.1 Introduction to Case-study 

Naval Surface Tactical Maneuvering Simulation System (NSTMSS, see 

http://www.ceng.metu.edu.tr/~otopcu/nstmss/) is a HLA based distributed simulation system 

that is composed of 3-dimensional ship handling simulators, a tactical level simulation of 

operational area, a virtual environment manager, and simulation management processes (i.e., 

scenario management and simulation monitoring). 

 NSTMSS has been developed by using the concepts of HLA, which provides a structural 

basis for interoperability and reusability. NSTMSS uses Runtime Infrastructure (RTI) for 

data communication and object exchange, SGI OpenGL Performer for 3D graphical 

interfaces and virtual environment. UML has been used for Object Oriented Analysis and 

Design (OOAD). 

 Federation Monitor Federate (FedMonFd) is NSTMSS’ stealth observer federate. 

FedMonFd enables generic data collection and reporting on HLA federates about their usage 

of underlying RTI services by using HLA Management Object Model (MOM) interface.  

 FedMonFd provides user interfaces to monitor the status of the federation and the 

federates. FedMonFd collects the federate specific RTI data and presents them in tables. 

FedMonFd also provides detailed reports for review of the monitoring activity.  

 FedMonFd provides displays to monitor the status of the federation and the federates. 

Federation Monitor Federate displays the federation name, Federation Definition Data 

(FDD) file name used in the federation, RTI version used in the federation, federates in the 

federation, federation save names (i.e., Last Save Name and Next Save Name), and 

federation save times (i.e., Last Save Time and Next Save Time). 

 Monitor federate displays the info about federates in the federation. The information 

displayed consists of federate id, federate name, the host computer name on which the 
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federate is running, the status of the federate, and the federate handle, which is used by RTI. 

The information on the displays is automatically updated according to the update period, 

which is set by the user. 

6.2. Federation Architecture Model Featuring FedMonFd 

Federation Monitor Federate has a simple structure. Federation is connected to federate 

application to denote the members of the federation. Federation is connected FOMReference. 

The FOMReference references to MOM. Moreover FedMonFed’s structure has a minor 

difference from other NSTMSS federates. Other federates has a connection between 

FederationApplication and SOMReference, but FedMonFd has not SOMReference so there is 

no such a connection. 

 

 

Figure 6.1. FedMonFd Federation Structure (FSMM) 

 
 

 

 In FedMonFd, IEEE 1516.1 Management Object Model (MOM) Library is used in place 

of Federation Object Model. This library provides the required object models for HLA 

MOM.  
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Figure 6.2. FedMonFd Object Classes (HOMM) 

 
 

 

 The Management Object Model (MOM) was designed to provide management 

information and control of the RTI, federation, and individual federates through objects and 

interactions. In addition to obtaining management information about the federation, the 

MOM provides federates with the ability to control the federation through interactions. 

Under this mechanism, the federates initiate control interactions that are sensed and reacted 

to by the RTI. 

Using the MOM a federate can, 

• Obtain management data directly from the RTI. 

• Control the federation through interactions. 

• Extend the MOM to provide federation-specific management functions. 

MOM Objects 

The MOM consists of two object classes that are used to provide persistent data about the 

federation, the RTI, and individual federates: a Manager.Federation, and a 

Manager.Federate 

The attributes of Manager.Federation provide federation information, such as: 

• Federation name 

• List of federates 



92 

• FED file ID 

• RTI Version 

• Save Status 

The attributes of Manager.Federate provide federate information such as: 

• Federate type and ID 

• Host name of computer 

• Time management information 

• State of the federate 

• Object and interaction information 

o Number of objects and interactions sent 

o Number of interactions sent and received 

o Number of objects updated and reflected 

o Number of objects owned 

MOM Interactions 

There are four classes of MOM interactions: 

• Adjust interactions control aspects of the federation, federate, and the RTI 

• Request interactions obtain RTI information from another federate 

• Report interactions report RTI data about a federate; the RTI issues them in reply to 

Request interactions 

• Service interactions are used to invoke RTI services on behalf of another federate 

The type of control available through the Adjust interactions include 

• Timing of attribute updates 

• Ownership of attributes 

• Setting service and reporting logging 

The type of information available through the Report and Request interactions include 

• Subscription and publication information 

• Ownership information 

• Update and Reflection information 

• Alert status 

The types of control available through the Service interactions include 

• Resignation of federates 

• Saving and restoring of a federation 

• Publication and subscriptions of federates 

• Setting ownership and transportation of attributes 

• Setting federates time management parameters 
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 To understand the behavioral model of the FedMonFd, the legacy FedMonFd 

application’s code is analyzed. This application was written as a one of the federate of 

NSTMSS application. To start out, the FedMonFd application was analyzed to understand 

the behavior of the Federation Monitor Federate.  

 In the second phase of the work, LSCs were drawn with MS Visio. In this phase, 

modeling was refined and got ready to transfer to the GME environment. In written 

FedMonFd application, DMSO RTI NG 1.3 was used. But we planned to model Federation 

Monitor Federate according to IEEE 1516 Standard. So a mapping was done between 

DMSO RTI and IEEE 1516 Specification. 

 In the third phase of the work, behavior modeling was realized in GME according to 

these drawings. 

FedMonFd is constructed following parts: 

• Federate Initialization 

• Refreshing All Monitors 

• Timer interactions 

• RTI callbacks interactions 

• Federate resign and federation destruction 

FedMonFd behavioral model (BMM) can be seen in the following live sequence charts (in 

Figure 6.3). 
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Figure 6.3. FedMonFd Behavioral Model 
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Figure 6.3 FedMonFd Behavioral Model (Continued) 
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Figure 6.3 FedMonFd Behavioral Model (Continued) 
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Figure 6.3. FedMonFd Behavioral Model (Continued) 
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Figure 6.3. FedMonFd Behavioral Model (Continued) 
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Figure 6.3. FedMonFd Behavioral Model (Continued) 
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Figure 6.3 FedMonFd Behavioral Model (Continued) 

 



101 

 

Figure 6.3 FedMonFd Behavioral Model (Continued) 
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Figure 6.3 FedMonFd Behavioral Model (Continued) 

 
 Note that there is no modeling element related to user interface. After completing the last 

phase of the study, the generated code will have not user interface functionality. But to 
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complete the Federation Monitor Federate, user interface functionality must be included. For 

readability issues, abstraction is used. One can focus on the next phase by drilling down on 

the model element. 

 

Figure 6.4. FedMonFd Main Chart in FAMM 

 

 

Figure 6.5. Sequential Operator in Pre-chart in Figure 6.4 
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Figure 6.6. Initialize Federation Operand in Figure 6.5 

 

 

6.3. Code Generation for the FedMonFd 

We now represent a walkthrough of the code generation process. 

6.3.1. Steps in Using the Code Generator: 

Step i: Construct the FAM  

The FedMonFd FAM is built conforming to the metamodel FAMM as described above in 

section 6.2. 

Step ii: Configure the Generator 

Final configuration XML file is presented (Figure 6.7) as: 
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<?xml version="1.0" encoding="ISO-8859-1"?> 

<Confs> 

<Random seed="123456">  

</Random> 

<Sleep time="100" passes="50">  

</Sleep>  

<PATH> 

<Generated path="c:\eclipse-SDK-3.0.1-win32\eclipse\workspace\FedCodeGen\">  

</Generated>  

<Generator path="c:\eclipse-SDK-3.0.1-win32\eclipse\workspace\NewCodeGenProject\">  

</Generator> 

</PATH> 

<External-InstanceLibs> 

 <InstanceLib name="RTILib" prefix="RTI"> 

</InstanceLib>  

</External-InstanceLibs> 

</Confs> 

Figure 6.7. XML Configuration File for the Code Generator for  FedMonFd Application  

 

Step iii: Run the Generator 

After completing the configuration, the generator is run [GME 2006].  The generated code 

files are placed in the folder specified in the configuration file. In our case: 

FedMonFdChart (Diagram class), FedMonFd (monitor federate class), User (Live entity 

class), FedMonFdAspect (computation aspect of monitor federate), UserAspect (computation 

aspect of user) and NTSMSSLibAspect (federation execution aspect) are generated in the 

output folder. Generated three classes and three aspects are shown with a class diagram in 

Figure 6.8.  
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Figure 6.8.  Class Diagram of the FedMonFd Federate 

 

 

 a) Base Code 

FedMonFdChart, FedMonFd and User are the base code of the monitor federate application 

in Figure 6.8. FedMonFdChart is a diagram code where FedMonFd and User thread is 

defined and run. FedMonFd is an instance code where federate RTI methods, and LSC-

specific auxiliary methods are generated.  
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public static void FedMonFdMainMethod() { 

        if (((Boolean)FedMonFdChart.coldChoices.get(“LSC_1_02a3”)).booleanValue()) { 

            boolean condLSC_1_02a3=false; 

            condLSC_1_02a3=SendCreateFederationExecutionCFENTSMSS(“s0”,”s1”) || condLSC_1_02a3; 

            condLSC_1_02a3=SendEvokeCallbackECNTSMSS(new Object()) || condLSC_1_02a3; 

            condLSC_1_02a3=SendJoinFederationExecutionJFENTSMSS(“s0”,”s1”,”s2”) || condLSC_1_02a3; 

            condLSC_1_02a3=SendEvokeCallbackECNTSMSS(new Object()) || condLSC_1_02a3; 

            condLSC_1_02a3=SendEnableAttributeRelevanceAdvisorySwitchEARASNTSMSS()  

            || condLSC_1_02a3; 

            condLSC_1_02a3=SendSubscribeObjectClassAttributes_04b8HLAfederationNTSMSS  

            (“s0”,”s1”,”s2”,”s3”,”s4”,”s5”,”s6”,”s7”,”s8”,”s9”) || condLSC_1_02a3; 

            condLSC_1_02a3=SendSubscribeObjectClassAttributes_04bdHLAfederateNTSMSS 

             (“s0”,”s1”,”s2”,”s3”,”s4”,”s5”,”s6”,”s7”,”s8”,”s9”,”s10”,”s11”,”s12”,”s13”,”s14”,”s15”, 

              “s16”,”s17”,”s18”,”s19”,”s20”,”s21”,”s22”,”s23”,”s24”,”s25”,”s26”,”s27”,”s28”) || condLSC_1_02a3; 

            condLSC_1_02a3=SendPublishInteractionClassHLArequestPublicationsNTSMSS()  

            || condLSC_1_02a3; 

            condLSC_1_02a3=SendPublishInteractionClassHLArequestSubscriptionsNTSMSS()  

            || condLSC_1_02a3; 

            condLSC_1_02a3=SendPublishInteractionClassHLArequestInteractionsSentNTSMSS()  

            || condLSC_1_02a3; 

            condLSC_1_02a3=SendPublishInteractionClassHLArequestInteractionsReceivedNTSMSS()  

            || condLSC_1_02a3; 

            condLSC_1_02a3=SendPublishInteractionClassHLArequestObjectInstancesReflectedNTSMSS()  

            || condLSC_1_02a3; 

            condLSC_1_02a3=SendPublishInteractionClassHLArequestObjectInstancesUpdatedNTSMSS()  

            || condLSC_1_02a3; 

            condLSC_1_02a3=SendPublishInteractionClassHLAsetTimingNTSMSS(“s0”) || condLSC_1_02a3; 

            condLSC_1_02a3=SendPublishInteractionClassHLAsetServiceReportingNTSMSS(“s0”)  

            || condLSC_1_02a3; 

            condLSC_1_02a3=SendSubscribeInteractionClassHLAreportInteractionPublicationNTSMSS(“s0”)  

            || condLSC_1_02a3; 

            condLSC_1_02a3=SendSubscribeInteractionClassHLAreportObjectClassPublicationNTSMSS 

             (“s0”,”s1”,”s2”)  

             || condLSC_1_02a3; 

            condLSC_1_02a3=SendSubscribeInteractionClassHLAreportInteractionSubscriptionNTSMSS(“s0”)  

            || condLSC_1_02a3; 

             condLSC_1_02a3=SendSubscribeInteractionClassHLAreportObjectClassSubscriptionNTSMSS 

                    (“s0”,”s1”,”s2”,”s3”)  

             || condLSC_1_02a3; 

            condLSC_1_02a3=SendSubscribeInteractionClassHLAreportInteractionsSentNTSMSS(“s0","s1") 

             || condLSC_1_02a3; 

Figure 6-9. Excerpts from the Generated Java Code of Monitor Federate 
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            condLSC_1_02a3=SendSubscribeInteractionClassHLAreportInteractionsReceivedNTSMSS("s0","s1")  

             || condLSC_1_02a3; 

            condLSC_1_02a3=SendSubscribeInteractionClassHLAreportObjectInstancesUpdatedNTSMSS("s0")  

             || condLSC_1_02a3; 

            condLSC_1_02a3=SendSubscribeInteractionClassHLAreportServiceInvocationNTSMSS 

              ("s0","s1","s2","s3","s4","s5") || condLSC_1_02a3; 

            condLSC_1_02a3=SendRequestAttributeValueUpdate_066bHLAfederationNTSMSS 

             ("s0","s1","s2","s3","s4","s5","s6","s7","s8","s9") || condLSC_1_02a3; 

            condLSC_1_02a3=SendRequestAttributeValueUpdate_0670HLAfederateNTSMSS 

            ("s0","s1","s2","s3","s4","s5","s6","s7","s8","s9","s10","s11","s12","s13","s14", 

             "s15","s16","s17","s18","s19","s20","s21","s22","s23","s24","s25","s26","s27","s28")  

            || condLSC_1_02a3; 

            if (condLSC_1_02a3) {//if clause start 

                SendEnableAsynchronousDeliveryEADNTSMSS(); 

                class op1_RefreshAllMonitors_03d0 extends Thread { 

                    op1_RefreshAllMonitors_03d0() {} 

                    public void run() { 

                        do { 

                            if (((Boolean)coldChoices.get("Opt_0884")).booleanValue()) { 

                                { 

                                    condRecvMessageInput_08caNTSMSS(); 

                                    SendEvokeCallbackECNTSMSS(new Object()); 

                                    SendSendInteraction_08bdHLArequestPublicationsNTSMSS(new Object()); 

                                    SendSendInteraction_08b7HLArequestSubscriptionsNTSMSS(new Object()); 

                                    SendSendInteraction_08b1HLArequestObjectInstancesUpdatedNTSMSS(new Object()); 

                                    SendSendInteraction_08a4HLArequestObjectInstancesReflectedNTSMSS 

                                    (new Object()); 

                                    SendSendInteraction_089eHLArequestInteractionsSentNTSMSS(new Object()); 

                                    SendSendInteraction_0898HLArequestInteractionsReceivedNTSMSS(new Object()); 

                                    SendEvokeCallbackECNTSMSS(new Object()); 

                                    SendRequestAttributeValueUpdate_0886HLAfederationNTSMSS 

                                    ("s0","s1","s2","s3","s4","s5","s6","s7","s8","s9"); 

                                    SendEvokeCallbackECNTSMSS(new Object()); 

                                    SendRequestAttributeValueUpdate_088bHLAfederateNTSMSS 

                                     ("s0","s1","s2","s3","s4","s5","s6","s7","s8","s9","s10","s11","s12","s13","s14", 

                                     "s15","s16","s17","s18","s19","s20","s21","s22","s23","s24","s25","s26","s27","s28"); 

                                } 

                            } 

                            try { 

                                FedMonFdChart.RepeatUntil_0675.await(); 

                            } catch (InterruptedException e) { 

                                e.printStackTrace(); 

Figure 6-9. Excerpts from the Generated Java Code of Monitor Federate (Continue) 
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                            } catch (BrokenBarrierException e) { 

                                e.printStackTrace(); 

                            } 

                        } while (!((Boolean)FedMonFdChart.coldChoices.get("Condition_0883")).booleanValue()); 

                        stop(); 

                    } 

                } 

                op1_RefreshAllMonitors_03d0 p0 = new op1_RefreshAllMonitors_03d0(); 

                p0.start(); 

                class op2_Callbacks_03d1 extends Thread { 

                    op2_Callbacks_03d1() {} 

                    public void run() { 

                        while (((Boolean)FedMonFdChart.coldChoices.get("Condition_0883")).booleanValue()) { 

                            int nWhileDo_06f80; 

                            int iHotWhileDo_06f80; 

                            int iColdWhileDo_06f80; 

                            int passWhileDo_06f80; 

                            int recvChoiceWhileDo_06f80; 

                            ArrayList selectedListWhileDo_06f80 = new ArrayList(); 

                            selectedListWhileDo_06f80.add(new Integer(2)); 

                            selectedListWhileDo_06f80.add(new Integer(5)); 

                            iHotWhileDo_06f80=0; 

                            iColdWhileDo_06f80=0; 

                            nWhileDo_06f80=4; 

                            passWhileDo_06f80=0; 

                            recvChoiceWhileDo_06f80=0; 

                            while (iHotWhileDo_06f80+iColdWhileDo_06f80<nWhileDo_06f80) { 

                                int choiceWhileDo_06f80=-1; 

                                if (selectedListWhileDo_06f80.size()>0) 

                                    choiceWhileDo_06f80=chooseOne(selectedListWhileDo_06f80,null,"WhileDo_06f80"); 

                                switch (choiceWhileDo_06f80) {//switch 

                                case 2: 

                                    if (((Boolean)coldChoices.get("LSC_2_02a4")).booleanValue()) { 

                                        boolean condLSC_2_02a4=false; 

                                        condLSC_2_02a4=condRecvDiscoverObjectInstanceHLAfederateNTSMSS()  

                                        || condLSC_2_02a4; 

                                        if (condLSC_2_02a4) {//if clause start 

                                            SendRequestAttributeValueUpdate_0774HLAfederateNTSMSS 

                                             ("s0","s1","s2","s3","s4","s5","s6","s7","s8","s9","s10","s11","s12", 

                                             "s13","s14","s15","s16","s17","s18","s19","s20","s21", 

                                              "s22","s23","s24","s25","s26","s27","s28"); 

 

Figure 6-9. Excerpts from the Generated Java Code of Monitor Federate (Continue) 
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                                        }////if closed end 

                                    }//end of cold condition 

                                    iColdWhileDo_06f80++; 

                                    break; 

                                case 5: 

                                    SendEvokeCallbackECNTSMSS(new Object()); 

                                    iHotWhileDo_06f80++; 

                                    break; 

                                }//switch 

                                switch (recvChoiceWhileDo_06f80) {//switch 

                                case 0: 

                                    if (boolReflectAttributeValuesHLAfederateNTSMSS()) { 

                                        condRecvReflectAttributeValuesHLAfederateNTSMSS(); 

                                        iHotWhileDo_06f80++; 

                                    } 

                                    break; 

                                case 1: 

                                    if (boolReceiveInteractionHLAmanagerNTSMSS()) { 

                                        condRecvReceiveInteractionHLAmanagerNTSMSS(); 

                                        iHotWhileDo_06f80++; 

                                    } 

                                    break; 

                                }//switch 

                                recvChoiceWhileDo_06f80=(recvChoiceWhileDo_06f80+1)%2; 

                                if (iHotWhileDo_06f80==nWhileDo_06f80-1&&iColdWhileDo_06f80<1) 

                                //n-number of cold 

                                { 

                                    SleepThread(100); 

                                    passWhileDo_06f80++; 

                                    if (passWhileDo_06f80==50) 

                                        break; 

                                } 

                            } 

                            selectedListWhileDo_06f80.clear(); 

                        } 

                        stop(); 

                    } 

                } 

                op2_Callbacks_03d1 p1 = new op2_Callbacks_03d1(); 

                p1.start(); 

                class op3_RTIDataMonitorTimer_03d2 extends Thread { 

 

Figure 6-9. Excerpts from the Generated Java Code of Monitor Federate (Continue) 
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                    op3_RTIDataMonitorTimer_03d2() {} 

                    public void run() { 

                        while (((Boolean)FedMonFdChart.coldChoices.get("Condition_0883")).booleanValue()) { 

                            doLaterRTIDataMonitorTimer_03be(666); 

                            SendEvokeCallbackECNTSMSS(new Object()); 

                            SendSendInteraction_0722HLArequestPublicationsNTSMSS(new Object()); 

                            SendSendInteraction_0728HLArequestSubscriptionsNTSMSS(new Object()); 

                            SendSendInteraction_072eHLArequestObjectInstancesUpdatedNTSMSS(new Object()); 

                            SendSendInteraction_0734HLArequestObjectInstancesReflectedNTSMSS(new Object()); 

                            SendSendInteraction_073aHLArequestInteractionsSentNTSMSS(new Object()); 

                            SendSendInteraction_0740HLArequestInteractionsReceivedNTSMSS(new Object()); 

                            calcelRTIDataMonitorTimer_03be(); 

                        } 

                        stop(); 

                    } 

                } 

                op3_RTIDataMonitorTimer_03d2 p2 = new op3_RTIDataMonitorTimer_03d2(); 

                p2.start(); 

                class op4_StatusTimer_03d3 extends Thread { 

                    op4_StatusTimer_03d3() {} 

                    public void run() { 

                        if (((Boolean)FedMonFdChart.coldChoices.get("Condition_0883")).booleanValue()) { 

                          //cond start 

                            doLaterStatusTimer_03c1(66); 

                            SendEvokeCallbackECNTSMSS(new Object()); 

                            SendRequestAttributeValueUpdate_075aHLAfederationNTSMSS 

                            ("s0","s1","s2","s3","s4","s5","s6","s7","s8","s9"); 

                            SendEvokeCallbackECNTSMSS(new Object()); 

                            SendRequestAttributeValueUpdate_075fHLAfederateNTSMSS 

                            ("s0","s1","s2","s3","s4","s5","s6","s7","s8","s9","s10","s11","s12", 

                            "s13","s14","s15","s16","s17","s18","s19","s20","s21", 

                             "s22","s23","s24","s25","s26","s27","s28"); 

                            calcelStatusTimer_03c1(); 

                            stop(); 

                        }//cond end 

                        else//Hot cond 

                            return;//Hot cond 

                    } 

                } 

                op4_StatusTimer_03d3 p3 = new op4_StatusTimer_03d3(); 

                p3.start(); 

 

Figure 6-9. Excerpts from the Generated Java Code of Monitor Federate (Continue) 
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                while (p3.isAlive()||p2.isAlive()||p1.isAlive()||p0.isAlive()) 

                    SleepThread(100); 

                condRecvMessageInput_076dUser(); 

                SendResignFederationExecutionRFENTSMSS(0); 

                SendDestroyFederationExecutionDFENTSMSS("s0"); 

            }////if closed end 

        }//end of cold condition 

    } 

Figure 6.9. Excerpts from the Generated Java Code of Monitor Federate (Continue) 

 

 

To give a sense of the generated code, a part of the monitor federate’s base code (see 

Figure 6.9) and a sample RTI Ambassador method (sendinteraction in Figure 6.10) and a 

federate Ambassador method (receiveinteraction in Figure 6.11) are shown in the respective 

figures.  

The main method of the monitor federate (see Figure 6.3) of the generated FedMonFd 

code is exemplified in Figure 6.9. For every operand in a parallel inline expression occurring 

in the LSC, a thread (e.g. op1_RefreshAllMonitors_03d0, op2_Callbacks_03d1, 

op3_RTIDataMonitorTimer_03d2 and op4_StatusTimer_03d3) is generated. For loop 

idioms, “while-do” or “repeat-until” code statements are generated. Values of loop 

conditions are retrieved from the dictionary (implemented as hashtable named coldChoices) 

defined in the computation aspect. In place of the references in the LSC model, 

corresponding referenced charts code are generated and added. For example, for 

FedMonFdChart2, corresponding methods are generated. 

In Figure 6.10, interaction information is put together in an object of the common data 

type LSCObject.  Then the corresponding LscRTILib method (in this case, sendInteraction) 

is called. 
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public static boolean SendSendInteraction_08b7HLArequestSubscriptionsNTSMSS(Object Time)  
{ 
        LSCLib.LSCObject proc= new LSCLib.LSCObject(); 
        proc.name="HLArequestSubscriptions"; 
        proc.pars=new ArrayList(); 
        LSCLib.LSCAttribute parNew0 =new LSCLib.LSCAttribute(); 
        parNew0.name="Time"; 
        parNew0.type="Object"; 
        parNew0.objClass="Double"; 
        parNew0.objVal=Time; 
        proc.pars.add(parNew0); 
        NTSMSSRTILib.sendInteraction(proc); 
        return true; 
 } 

Figure 6.10. Sample SendInteraction RTI Ambassador Method 

 

 
In Figure 6.11, a federate Ambassador method (in this case, receiveinteraction) example in 

the federate base code is shown.  

 
public static void RecvReceiveInteractionHLAmanagerNTSMSS(LSCLib.LSCObject iClass, String 

TimeStamp, int SentOrderType, int ReceiveOrderType, String MessageRetractionDesignator, String 

TransportationType) 

{} 

Figure 6.11. A Sample ReceiveInteraction Federate Ambassador Call-back Method 

 

 

 b) Default Aspect Code 

Two computation aspect and a federation execution aspects are generated, namely 

FedMonFdAspect, UserAspect, and NTSMSSLibAspect. In FedMonFdAspect, all methods of 

the federate are accessed and method bodies of them are overridden in their corresponding 

advices. In FedMonFdAspect, dictionaries and LSC-specific auxiliary methods’ (i.e. 

chooseOne, getLoopount) advices are also generated. 
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pointcut pcSendSendInteraction_0728HLArequestSubscriptionsNTSMSS 

(Object Time):execution(static boolean 

 FedMonFd.SendSendInteraction_0728HLArequestSubscriptionsNTSMSS(Object))&& args(Time); 

boolean around(Object Time): 

pcSendSendInteraction_0728HLArequestSubscriptionsNTSMSS(Time)  

{ 

        Time=new Object(); 

        proceed(Time); 

        return true; 

} 

Figure 6.12. A sample RTI Ambassador Method (advice) 

 

 

A sample RTI Ambassador method’s advice (send interaction) and a federate 

Ambassador method’s (receive interaction) advices (accessing methods) are shown in Figure 

6.12 and Figure 6.13, respectively. In Figure 6.12, federate send interaction method (cf. 

Figure 6.10) is caught in the FedMonFd base code and default logic filled in its advice. The 

developer can edit this advice as described in the next “Editing the Default Computation 

Aspect” section.  

In Figure 6.13, federate receive interaction method (cf. Figure 6.11) is found on the 

FedMonFd base code and received data is displayed in the its advice in the 

FedMonFdAspect. This received data is interaction class and its parameters’ values. In our 

case, interaction class is HLArequestSubscriptions. 
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pointcut pcRecvReceiveInteractionHLAmanagerNTSMSS(LSCLib.LSCObject iClass,String 

TimeStamp,int SentOrderType,int ReceiveOrderType,  String MessageRetractionDesignator,String 

TransportationType):execution(static void FedMonFd.RecvReceiveInteractionHLAmanagerNTSMSS 

(LSCLib.LSCObject,String,int,int,String,String)) && 

args(iClass,TimeStamp,SentOrderType,ReceiveOrderType, 

MessageRetractionDesignator,TransportationType); 

 void around(LSCLib.LSCObject iClass,String TimeStamp,int SentOrderType,int 

ReceiveOrderType,String MessageRetractionDesignator,String TransportationType): 

pcRecvReceiveInteractionHLAmanagerNTSMSS(iClass,TimeStamp,SentOrderType,ReceiveOrderT

ype, MessageRetractionDesignator,TransportationType)  

{ 

        System.out.println("Received message:"+TimeStamp); 

        System.out.println("Received message:"+SentOrderType); 

        System.out.println("Received message:"+ReceiveOrderType); 

        System.out.println("Received message:"+MessageRetractionDesignator); 

        System.out.println("Received message:"+TransportationType); 

        proceed(iClass,TimeStamp,SentOrderType,ReceiveOrderType, 

        MessageRetractionDesignator,TransportationType); 

} 

Figure 6.13. A sample Federate Ambassador Method (advice) 

 

 

 NTSMSSLibAspect (federation execution aspects) is mainly used to catch call-back 

methods from the respective federation executions. In our case, only an aspect is generated 

since a monitor federate can join in a federation. NTSMSSRTILib (LscRTILib) is declared in 

this aspect and it is used to reach actual RTI. A sample LscRTILib definition 

(NTSMSSRTILib) and a sample (ReceiveInteraction) advice are presented in Figure 6.14  

 In Figure 6.14, ReceiveInteraction call-back method is caught by the federation execution 

aspect (NTSMSSLibAspect) and forwarded to the federate (FedMonFd.ReceiveInteraction). 
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public static RTILib FedMonFd.NTSMSSRTILib= new RTILib();; // LscRTILib Definition 

(…) 

pointcut ReceiveInteraction(LSCLib.LSCObject proc): 
execution(public void RTILib.receiveInteraction(..))&& args(proc); //LscRTILib method is caught 
    after(LSCLib.LSCObject proc):ReceiveInteraction(proc)  
{ 
        RTILib rtiLib = (RTILib)thisJoinPoint.getThis(); 
        if (rtiLib.federatename.compareTo("NTSMSS")==0) 
            FedMonFd.ReceiveInteraction(proc); //federate method is called 
} 

Figure 6.14. A LscRTILib Definition and A Sample Advice 

 

 

Step iv: Edit the Default Computation Aspect (Optional) 

After running the generator, FedMonFdAspect (generated default computation) can be edited 

by the developer in order to effect the desired computation. Consider, for example, how 

timestamp is retrieved to send a send-interaction event to the federation. In the automatically 

generated default computation, a “new Object ()” is sent to the federation. The 

corresponding edited code is illustrated in the figure as italic form in Figure 6.15.  

 
pointcut pcSendSendInteraction_0728HLArequestSubscriptionsNTSMSS(Object Time): 

execution(static boolean FedMonFd. 

SendSendInteraction_0728HLArequestSubscriptionsNTSMSS(Object))&& args(Time); 

boolean around(Object Time): 

pcSendSendInteraction_0728HLArequestSubscriptionsNTSMSS(Time)  

{ 

        //Time=new Object(); 

        Time=g_TimeStamp; 

        proceed(Time); 

        return true; 

} 

Figure 6.15. Adding a Computation to the RTI Ambassador Method 

(Modifications to the advice are in italic). 

 

 
In this example, the advice that catches the method of 

SendSendInteraction_0728HLArequestSubscriptionsNTSMSS in the federate base code is 

edited. Generated code statement (Time=new Object ()) is commented and new statement 

that provides sending of the timestamp is added (Time=g_TimeStamp). 
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Step v: Run the Generated Code 

With the FedMonFdAspect (computation aspect) edited, the FedMonFd (federate 

application) code is ready to run. After that, code is compiled and the AspectJ compiler 

weaves the aspects on the base code. After the compiling, code is run. A view from the 

running FedMonFd is represented in Figure 6.16.  

 

 

Figure 6.16. A View of the FedMonFd Application Running (pRTI 

snapshot) 
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6.3.2. Discussion of the Case Study 

There are some points that must be discussed after the study. One of major drawback of this 

study is remodeling from the beginning when a major update is realized in the metamodel or 

library. Until FAMM become mature, these updates will potentially be problematic. 

This study is important for Federation Design Verification. This can be done by two 

ways: Static checking and dynamic verification. Both Federation scenario(s) and Federation 

Design Model is represented using LSCs. So, the static model checking is performed using 

the model interpretation over both LSCs where Federate LSCs must include the Federation 

Scenario LSC. But Verification can be interpreted in the dynamic (federation execution) 

sense. Dynamic model checking is based on the automatic code generation.  

Generated code has almost 3000 LOC. Detailed generated code statistics are given the 

following table. This case study gives us a hint in the code generation of larger application. 

FedMonFd models and corresponding codes are obtained from our Web site 

(www.ceng.metu.edu.tr/~e73883). Also in Appendix E, an example for each LSC/MSC 

construct such as ALT, SEQ and its corresponding generated code is presented. 

 

 

Table 6-1. FedMonFd Code Metrics (in LOC) 

Class/Aspect Line of Codes 

FedMonFdChart (Diagram base code) 53 

FedMonFd (Federate Base Code) 1978 

FedMonFdAspect (Federate Computation 

Aspect) 

664 

User 108 

UserAspect 95 

NTSMSSLibAspect 25 

Total 2923 
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CHAPTER VII 
 
 

CONCLUSION 
 
 
 

The primary contribution of this thesis is automatic generation of a federate application code 

from a model of the federation architecture and a model of the federate behavior. The 

federate code generator offers the ability for early prototyping of a federation with the ability 

to proceed with full-fledged implementation. As a core part of this work, but generic in its 

nature, we present a code generator that generates Java base code directly from Live 

Sequence Charts (LSCs). This is the secondary contribution of this thesis. 

 The generated federate code carries out the communication behaviors of a federate in an 

HLA 1516 compliant federation.  The code generator is built upon the foundation of a 

metamodel, namely FAMM, for describing both the static and dynamic views of the 

architecture of a federation.   

 Details of code generation from the federate developer’s perspective have been illustrated 

with the help of a running example, STMS. On a larger scale, a Federation Monitor Federate 

(FedMonFd) is modeled and its code is generated [Sarioglu et al. 2007].  Supplementary 

material and produced code can be obtained from our Web site.  

 Adopting the aspect-oriented approach, communication-related base code and 

computation-related aspect codes are separated. The developer can edit the latter so that the 

particular computation (in general, non-communication) logic can be weaved onto the 

generated base code. An obvious advantage is applying variations on the algorithms by 

editing only the computation aspect without touching the federate base code. Generally 

speaking, the whole spectrum of AOP techniques is at the disposal of the federate developer. 

If a new pattern of communication is desired the behavior model of the federate must be 

modified accordingly and then the federate base code must be generated again.  There is no 

need to modify the computation aspect provided that the method arguments that are used in 

the base code remain the same. In other words, pointcut definitions (method declarations in 

the base code) must not be touched during aspect editing. 

 The developer works on the federate’s communication behavior at the model level rather 

than at the code level. Modeling provides an abstract view of the federation and the 

participating federates to the developer. Developer, for example, can add a new event 
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between two instances in the LSC model. During code generation, the related pointcut 

definition and the corresponding method are automatically generated. Developer is not 

forced to dealing with implementation details of code. Only the advices of the computation 

aspect code needs to be edited. Editing points are marked by comments in the generated code 

so these advices should be easy to locate in the code. Behavioral codes and all related 

method definitions are generated in the base code automatically. Corresponding pointcut 

definitions and advices that access the data model is also generated as an aspect.  

 Generation of federate code from the model takes negligible time. Developer’s time is 

consumed by constructing the architecture model plus coding the computational logic by 

aspect editing. The compliance of the computational code to the SOM is dictated by the 

automatically generated portions of the aspect code thanks to the referencing mechanism 

employed in the metamodel FAMM. Using the techniques reported here, full generation of 

utility federates, e.g. for testing, monitoring, logging, etc. looks feasible.  

 In a more general setting, this work has achieved code generation for communication 

behaviors of applications described in LSC.  The LSC code generator is built upon the 

foundation of an LSC metamodel, for describing both the static and dynamic views of the 

application. The MSC/LSC metamodel provides a flexible and extendible input specification 

for code generator. The offered code generator covers both MSC and LSC specifications. For 

example, for LSC chart, it generates LSC based code, for MSC chart it generates MSC based 

code. In the LSC base code, existential chart properties and universal chart properties are 

handled. 

 Code generation from LSCs and MSCs allows the execution of the behavioral model 

supporting an early validation of a behavioral specification expressed in MSC or LSC. 

Modeling also enables developer to understand behaviors of the application. 

 Regarding the semantics of MSCs and LSCs, we had to do many clarifications as the 

relevant literature is obscure on many points. For instance, timer semantics have been 

defined rather tersely in Z.120. 

 The clarity of the generated code is crucial as the application developer may have to deal 

with it directly. This is also important for editing.  Moreover, comments are added to the 

code to help the developer navigate the code. The developer can trace the comments from 

model to code as well. 

 Only Java and AspectJ codes are generated presently by our generator. However, the back 

end (Java code generator module) can be re-implemented to target another programming 

language. Most important obstacle to achieve retargeting is the AOP language maturity. 

Only a few of the programming languages are mature enough such as AspectJ and AspectC 

[AspectC 2007] till now. 
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 Details of LSC code generation from the developer’s perspective have been illustrated 

with the help of a running example, ATM Machine Money Withdrawal. Another case study 

has been carried out to animate the behavioral specifications [Efe 2007]. The message 

exchanges among the components of the specified system are modeled as LSCs. The subject 

of modeling in that study is the radio communications among the members of a field artillery 

team, which are the fire control center, the firing unit, and the forward observer. Using the 

code generator, the Java and AspectJ codes are automatically generated from the 

communications model. The animation code is weaved on the generated base code. 

Execution of the generated code animates the radio messages as a sequence of events 

respecting to the partial order specified in the LSC. Animation can help validate conceptual 

models, e.g. in face validation, and clarify system specifications. The generated code can 

also be utilized as a first-cut prototype for the intended simulation. 
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APPENDIX A 
 
 

PATTERNS AND RELATED CODES 
 
 
 

In this appendix, model patterns and their corresponding generated code segments are 

presented exhaustively. For example, M1 represents a message pattern, and it may be 

sending message, start timer event, etc.   

 
1. Messages 

 

Pattern: 

 

 

Code Generated for Pattern: 

(a) Send Message 

Send[name of message][target instance](new Object()); 

 

(b) Receive Message 

Recv[name of message][target instance] ();  

 

(c) Dynamic instance Create 

[name of diagram].p[name of instance].start(); 

 

(d) Dynamic instance Stop 

[name of diagram].p[name of instance].stop(); 

 

(e) Start Timer 

doLater[name of timer]([timer set value]); 
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(f) Reset Timer 

cancel[name of timer] (); 

doLater[name of timer] ([timer set value]); 

 

(g) Timeout 

if(timerFlag[name of timer]){Revc[name of timer]Timeout();} 

 

(h) Lost Message 

Send[name of message]LOST(new Object ()); 

 

(i) Found Message 

contract[name of message]FOUND(); 

 

(j) Action 

Send[name of message]ACTION(new Object ()); 

 

 

2.4.2. Conditions 

 

Pattern: 

(Hot) 

 

Code Generated for Pattern: 

 

if (((Boolean)coldChoices.get("C1")).booleanValue())// model elements name is key. 

   (…) 

else 

   return; //if condition is not satisfied, the most nearest method is aborted 

Figure A.1 Code Generated for C1-hot 

 

 

Pattern: 

(Cold) 
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Code Generated for Pattern: 

 

if (((Boolean)coldChoices.get("C1")).booleanValue()) 

   …. 

 

Figure A.2 Code Generated for C1-cold 

 

 

2.4.4. Temperature Property 

 

Cold Message Pattern: 

 

 

Code Generated for Pattern M1: 

 

if(((Boolean)coldChoices.get("M1")).booleanValue()){ 

  

}//cold 

Figure A.3 Code Generated for cold message 

 

 

Cold Location Pattern: 

 

 

Figure A.4 Cold Location Pattern 
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Code Generated for Pattern: 

 

                boolean cold[name of location]=false; 

               for (int i=0;i<50;i++) { 

                 if (bool[name of event]) { 

                     

                                cold[name of location]=true; 

                               break; 

                    } 

                  } 

                  if(!cold[name of location])//for cold receive message in cold location 

                     return; 

Figure A.5 Code Generated for cold location 

 

 

Existential-Chart Pattern:  

 

Figure A.6 Existential-Chart Inline Expression Pattern 
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if(((Boolean)coldChoices.get("[name of chart]")).booleanValue()) 

{ 

  

} 

Figure A.7 Code Generated for Chart 

 

 

 

2.4.8. Barrier Synchronization 

 

Pattern: 

 

Figure A.8 Barrier Synchronization Pattern 

 

 

Code Generated for Pattern: 

do { 

  

             try { 

                    Ship_MSC.RepeatUntil_02ef.await();//cyclic barrier is used 

                    //wait other instances calling “await” method. 

              } catch (…) 

} while(! ); 

Figure A.9 Code Generated for the Pattern 
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2.4.9. LSC/MSC composition 

 

Pattern:  

 

 

 

Figure A.10. Composition Pattern 

 

 

Code Generated for Pattern: 

  

Figure A.11. a Code Generated for Instance “i” 

 

Figure A.11. b Code Generated for Instance “k” 

  

 

Figure A.11. c Code Generated for Instance j (composition) 
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2.4.10. Coregion  

 

Pattern: 

 

Figure A.12. Coregion Pattern 

 

 

Code Generated for Pattern: 

Assume that all events are send messages. Receiving case is not presented in here. 
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Order is changed randomly in A 

ArrayList selectedList = new ArrayList(); 

int n; 

int i; 

selectedList.add(new Integer(1)); 

selectedList.add(new Integer(2)); 

selectedList.add(new Integer(3)); 

n=3; 

i=1; 

while(i<=n) //round-robin algorithm 

{ 

 int choice=chooseOne(selectedList,null);// select random message 

 switch(choice) 

 {//switch 

 case 1: 

   

  break; 

 case 2: 

   

  break; 

 case 3: 

   

  break; 

 }//switch 

 i++; 

} 

selectedList.clear(); 

Figure A.13. a Code Generated for Coregion in instance A 
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Order is not changed in B 

 

 

 

 

 

Figure  A.13. b Code Generated for Coregion in Instance B 

 

 

2.4.11. Inline Expressions 

 

Alternative Pattern: 

 

 

 

Figure A.14. ALTernative Inline Expression Pattern 

 

 

Switch blocks are chosen in the computation aspect randomly. The name of ALT is put in 

the hashtable as a key. Value of the key is set randomly at the run-time. According to 

random choices, an alternative part of the operator code is run.  
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Code Generated for Pattern: 

int [model name of alternative inline]= 

((Integer)altChoices.get("[model name of alternative inline]")).intValue(); 

switch([model name of alternative inline]){ 

case 0: 

  

 break; 

case 1: 

  

 break;  

} 

Figure A.15. Code Generated for ALT 

 

 

Parallel Pattern: 

 

 

 

Figure A.16. PARallel Inline Expression Pattern 
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This expression is represented by threads that contain parallel blocks of the operator in the 

code. So the parallel blocks are run in parallel threads. 

 

Code Generated for Pattern: 

class [name of operand1] extends Thread { 

 [name of operand1] () {}   

 public void run() { 

   

  stop();  

 } 

} 

[name of operand1] p0 = new [name of operand1] (); 

p0.start(); 

class [name of operand2] extends Thread { 

 [name of operand2] () {}  

 public void run() { 

   

  stop();  

 } 

} 

[name of operand2] p1 = new [name of operand2] (); 

p1.start(); 

while(p1.isAlive()||p0.isAlive()); 

Figure A.17. Code Generated for PAR 
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Loop Pattern: 

 

 

 

Figure A.18. LOOP Inline Expression Pattern 

 

 

If loop is infinite (loop<inf, inf>), a “while (true)” code is generated. However, if the loop 

is definite, counter variables are randomly selected and loop is iterated according to those 

variables. 

 

Code Generated for Pattern: 

boolean loopCond=false; 

int count[name of loop]=0; 

int loopCount = getLoopCount("0","2"); 

if(loopCount==-1) 

loopCond=true; 

while(count[name of loop <loopCount || loopCond) 

{ 

  

 count[name of loop]++; 

}//end of loop 

Figure A.19. Code Generated for LOOP 
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Sequential Pattern: 

 

 

 

Figure A.20. SEQential Inline Expression Pattern 

 

 

This expression is represented simply by adding sequential parts successively. 

 

Code Generated for Pattern: 

 

 

 

Figure A.21. Code Generated for SEQ 

 

 

 

Exception Pattern: 
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Figure A.22. EXCeption Inline Expression Pattern 

 

 

This expression is specialized by an EXC operator. There are two operands in this 

expression. First operand presents the message traffics (try block) and second operand 

presents the exceptional message traffics (catch block) when an exception is raised in the 

LSC. 

 

Code Generated for Pattern: 

try{ 

  

}catch(Exception ex) 

{ 

   

} 

Figure A.23. Code Generated for EXC 
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Optional Pattern: 

 

 

 

Figure A.24. OPTional Inline Expression Pattern 

 

 

Opt operand is surrounded with an if-clause and if the condition is satisfied, operand is 

executed otherwise it is not. Condition is randomly selected in the aspect. 

 

Code Generated for Pattern: 

if(((Boolean)coldChoices.get("[name of optional inline]")).booleanValue()) 

{ 

  

} 

Figure A.25. Code Generated for OPT 
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Do-While Pattern: 

 

 

Figure A.26. Do-While Inline Expression Pattern 

 

This expression is represented by a “do-while loop” clause. 

 

Code Generated for Pattern: 

do { 

  

} while(! ); 

Figure A.27. Code Generated for Do-While 

 

 

While-Do Pattern: 

 

 

 

Figure A.28. While-Do Inline Expression Pattern 
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This expression is represented by a “while loop” clause. 

 

Code Generated for Pattern: 

while( ){ 

  

} 

Figure A.29. Code Generated for While-Do 

 

 

If-Then Pattern: 

 

 

Figure A.30. If-Then Inline Expression Pattern 

 

 

This expression is represented by an “if-then” clause. 

 

Code Generated for Pattern: 

if( ){ 

  

} 

Figure A.31. Code Generated for If-Then 
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If-Then-Else Pattern: 

 

 

Figure A.32. If-Then-Else Inline Expression Pattern 

 

This expression is represented by an “if-then-else” clause.  

 

Code Generated for Pattern: 

if( ){ 

  

} 

else { 

  

} 

Figure A.33. Code Generated for If-Then-Else 

 

 

2.4.13. General Ordering 

Local general order is only defined in a coregion. 
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General Ordering (Local) Pattern: 

 

Figure A.34. Local General Ordering Pattern 

 

 

Code Generated for Pattern: 

(…) 

Hashtable orderList = new Hashtable (); 

orderList.put(new Integer(2),new Integer(1)); //1 happens earlier than 2 

while(i<=n) //round-robin algorithm 

{ 

 int choice=chooseOne(selectedList,orderList);// orderList indicates the order 

 switch(choice) 

 {//switch 

 case 1: 

   

  break; 

 case 2: 

   

  break; 

 }//switch 

 i++; 

} 

selectedList.clear(); 

Figure A.35. Code Generated for Local General Ordering 
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General Ordering (Multi-Instance) Pattern: 

 

 

Figure A.36. Multi-Instance (Shared) Local General Ordering Pattern 

 
 
 
Code Generated for Pattern: 

 

[name of diagram].set[name of general order]=true; 

Figure A.37. a Code Generated for Multi-instance General Ordering in Instance i 

 

while(![name of diagram].set[name of general order]); 

 

Figure A.37. b Code Generated for Multi-instance General Ordering in Instance k 

 

 

2.4.14 Pre-chart 

 

Pattern: 

 

Figure A.38. Pre-Chart Inline Expression Pattern 
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Code Generated for Pattern: 

boolean cond[name of Prechard]=true; 

condo[name of Prechard]=  || condo[name of Prechard]); 

if(cond[name of Prechard]){ 

  

}////if closed end 

Figure A.39. Code Generated for Pre-Chart 

 

 

2.4.15. Local Invariant 

 

Local Invariant Pattern: 

 

 

Figure A.40. Local Invariant Pattern 

 

 

Code Generated for Pattern: 

if(((Boolean)coldChoices.get("[name of Inv1]")).booleanValue()){ 

  

  

  

}//end of invariant 

Figure A.41. Code Generated for Local Invariant 
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2.4.16. Simultaneous Region 

 

Simultaneous Region Pattern: 

 

 

Figure A.42. Simultaneous Region Pattern  

 

 

Code Generated for Pattern: 

 

class [name of simultaneous region] extends Thread { 

 [name of simultaneous region]() {} 

 public void run()  

  { 

  

      stop(); 

  } 

} 

[name of simultaneous region] p[name of simultaneous region]=  

new [name of simultaneous region](); 

p[name of simultaneous region].start(); 

Figure A.43. Code Generated for Simultaneous Region 
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APPENDIX B 
 
 

INTERMEDIATE FORM GENERATION 
 
 
 

Main class and traversing method definitions are presented in the following. This 

presentation is kind of abstract data type (ADT) of the intermediate form. ADT defines an 

encapsulation of a data structure (Figure B.1) by giving the main classes/methods and their 

explanation in a formal way.  

 

 

Figure B.1. Intermediate Form Data Structure 



149 

 

Block Structure  

A block holds the main block and the nested sub-blocks thereof in the time axis. Nested sub-

blocks are inline expressions of the instance. Main block is the main body of instance. 

Classes:  

1. Block 

Object of this class holds the main block (as a kind of sequential inline expression) and 

nested inline expressions such as parallel, sequential. 

 

Attributes 

String name Block name 

String type Block type such as alternative, parallel, optional 

boolean cold Whether block is hot or cold    

boolean passed Indicate whether block is visited or not 

Hashtable operands List holds the operands of block. (Operand objects list) 

ArrayList insList List holds LSC instances where block is located. 

String minCount For the loop inline expression minimum count number 

String maxCount For the loop inline expression maximum count number 

boolean isMultiIns Block is multi-instance or not 

String 

activationCondName 

For the activation chart case, condition name 

 

 Operand 

Object of this class holds the messages of operand. 

 

Attributes 

String name Operand name (copied from the input model) 

Hashtable messages List holds the messages in the operand (LSCObject objects list) 

Hashtable blockList List holds the nested blocks located in the operand. For example, 

alternative block in parallel block. 

1.1.1 LSCObject 

This class is the primary class for holding event (message) information in the model. An 

object of this class holds mainly event name, and event type such as sending, receiving, 

condition. 
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Attributes 

String name Event name generated by the code generator in the application 

(it does not occur in the model.) 

boolean inCoregion Whether event is in a coregion or not. 

ArrayList pars Holds the event parameters. Parameter information is declared 

as LSCAttribute object and it is stored in the “pars”. 

(LSCAttribute objects list) 

String blockName Name of the innermost block name of the event. Block may be 

a main loop or an inline expression. 

String targetInstance Name of the destination instance of the event. 

String ownerInstance Name of the source instance of the event. 

boolean coldCond Whether event is cold or hot. 

String insname Event name (object name) is copied from the model  

ArrayList timerList List holds all the outer timers. 

ArrayList newOrder If event is subject to general ordering, order information is held 

here. (Order objects list) 

boolean isMultiIns Whether event is multi-instance or not 

ArrayList instList If event is multi-instance event, other instances are stored in 

this list. 

boolean boolRecv Whether event is receiving event or not 

boolean boolSend Whether event is sending event or not 

boolean boolCrep Whether event is process creation event or not 

boolean boolStop Whether event is process stop (termination) event or not 

boolean boolActn Whether event is local action event or not 

boolean boolSetT Whether event is timer set event or not 

boolean boolRstT Whether event is timer reset event or not 

boolean boolTout Whether event is timer timeout event or not 

boolean boolCond Whether event is condition event or not 

boolean boolGuard Whether event is guarding condition event or not 

boolean boolCrgn Whether event is coregion event or not or not 

boolean boolLost Whether event is a lost event or not 

boolean boolFound Whether event is a found event or not 

boolean boolCall Whether event is reference calling event or not 

boolean boolReplyin Whether event is a reply-in event or not 

boolean boolReceive Whether event is a receive event or not 

boolean boolCallMtd Whether event is a method call event or not 
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boolean boolReplyout Whether event is a reply-out event or not 

boolean boolMethod Whether event is a method event or not 

boolean boolSetting Whether event is a setting condition event or not 

boolean isLocStart Whether event is cold location starting event or not 

boolean isLocStop Whether event is cold location ending event or not 

boolean isCrgnStart Coregion starting event 

boolean isCrgnStop Coregion stopping event 

boolean 

isSuspensionStart 

Suspension starting event 

boolean 

isSuspensionStop 

Suspension stopping event 

boolean isInvariantStart Invariant starting event 

boolean isInvariantStop Invariant stopping event 

int timerSemanticMethod If event is timer event, timer semantic is assigned to it. 

String msg It is used to pass information from the first pass to the second. 

String sid Symbolic id of the LSCObject 

boolean isGateRelated Whether event is gate related or not 

String eventName Event name comes from model 

String msgName Message name if event is a message 

String mtdKind If event is a method, kind of the method 

String simultaneousName If event is in a simultaneous region, indicate region name 

 

1.1.1.1 LSCAttribute 

This class is the primary class for holding the event parameter information in the model. An 

object of this class holds mainly parameter name and parameter type.  

 

Attributes 

String name Attribute name. 

String type Attribute type such as int, string, object (similar to union) 

String strVal If attribute type is string, string value of attribute 

int intVal If attribute type is integer, integer value of attribute 

Object objVal If attribute type is object, object value of attribute 

int value Holds the timer set value if event is a timer event. 

String objClass If attribute is object, class name of the object 

boolean isGlobal Whether attribute is global for instance or not 

Object [] arrVal If attribute type is array, array value of attribute 
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LSCObject 

LSCObjectVal 

If attribute type is LSCObject, LSCObject value of attribute 

 

1.1.1.2 Order 

This class is used to order events in general ordering of LSC. Object of this class holds the 

event precedence such as order, instance of events such as owner, whether events is multi-

instance or single-instance, name of the ordering model element and finally whether event is 

sending or receiving. It is instantiated for each event that is to be ordered. 

 

Attributes 

int order Precedence of event (copied from the model). 

String owner Instance name of event 

String name Name of general ordering model element that copied from the 

model 

boolean isMultiInstance Indicates whether event is multi-instance or not 

boolean isSingleInstance Indicates whether event is single-instance or not 

boolean isOut Indicates whether event is sending or receiving 

 

Global Lists:  

These global lists are constructed by using above classes for every instance. 

 

ArrayList 

sendListObjectHandlers 

List holds all the sending events (same events may be 

repeated) on the instance. Events are added to the list as 

LSCObject instances. 

ArrayList 

recvListObjectHandlers 

List holds the all receiving events (same events may be 

repeated) on the instance. Events are added to the list as 

LSCObject instances. 

ArrayList 

sendListClassHandlers 

List holds the all different sending events on the instance. 

Events are unique and repetitions are removed. Events are 

added to the list as LSCObject instances. 

ArrayList 

recvListClassHandlers 

List holds the all receiving events on the instance. Events are 

unique and repetitions are removed. Events are added to the 

list as LSCObject instances. 

ArrayList allTimerList List holds the all timers on the instance. 

ArrayList 

orderedEventList  

List holds the all events that are ordered according to the 

general ordering principles 
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ArrayList 

blocksForInstance 

Lists all blocks located on the executing instance. 

ArrayList 

variablesForInstance 

Lists all model variables located on the executing instance. 

 

Traversing Methods 

These methods traverses on the LSC input model and creates the intermediate form 

(Intermediate Form Generation Module in Figure 3.3). These methods are described in the 

calling order. Other word, call graph is represented in Figure B-2 and orders of the methods 

are presented by using the numbered bullets. For example, traverseOnModel method 

(numbered bullet 1) calls the traverseDocument (numbered bullet 1.1) method. 

 

 

Figure B.2. Call-graph of the Intermediate Form Generation Module (Front End) 
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1. traverseOnModel 

This method traverses the input LSC model and gets all the diagrams. After that it calls the 

traverse document method (namely traverseDocument) one by one. It also creates the block 

list that holds the blocks of the diagrams in the model. 

 

Parameters 

Model builder Main model element 

 

1.1. traverseDocument 

This method walks on the document model and retrieves the all diagram found in it. Then it 

calls the traverse diagram method for each of them. 

 

Parameters 

JBuilderModel 

mscDocument 

Document model element  

Hashtable blockList List holds blocks 

int index Precedence of reference model element in case of reference 

model composition 

 

1.1.1. traverseMsc 

This method traverses the diagram model and it calls the traverse instances method (namely 

traverseInstances and traverseInstancesLSC) that walks on all instances in the diagram. 

After that it calls the generateCode method to generate corresponding source code segment 

for the diagram from the intermediate form. 

 

Parameters 

JBuilderModel MSC Diagram model element  

Hashtable blockList List holds blocks 

int index Precedence of reference model element in case of reference 

model composition 

 

1.1.1.1. traverseInstancesLSC 

This method traverses the LSC diagram model and gets the all instances located in it. Then 

it calls the traverse instance method (namely traverseInstance) for each of them. 

 



155 

Parameters 

JBuilderModel Lsc Diagram model element  

Hashtable blockList List holds blocks 

int index Precedence of reference model element in case of reference 

model composition 

boolean coldCond Indicate whether diagram is existential or universal chart 

 

1.1.1.2. traverseInstances 

This method traverses the MSC diagram model and gets the all instances located in it. Then 

it calls the traverse instance method (namely traverseInstance) for each of them 

Parameters 

JBuilderModel 

MscBody 

Diagram model element  

Hashtable blockList List holds blocks 

int index Precedence of reference model element in case of reference 

model composition 

 

1.1.2. generateDiagramCode 

Recall that a separate thread is provided in a separate source file for every instance in the 

model, and that a diagram consists of instances. The threads of instances are declared and 

started if they are not dynamic instances. (An instance is dynamic if it is started when 

process creation event occurs.) In the diagram code, diagrams have also own threads. These 

diagram codes are generated by this method. Moreover, the preliminary computation aspect 

codes for the diagram are generated in it. 

 

Parameters 

ArrayList InstanceList List holds instances in the diagram 

String diagramName Diagram name copied from the model 

ArrayList 

dynInstanceList 

List holds dynamic instances in the diagram 

ArrayList 

blocksForInstance 

List holds blocks in the current instance. 

 

1.1.1.1.1 traverseInstance 

This method traverses the instance and gets the events, inline expressions, and composition 

reference calls; and then forwards them to the related methods, namely, processEvent, 

traversInline, and traversReference. 
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Parameters 

Model lscInstance Instance model element 

JBuilderReference 

InstanceRef 

Instance model reference 

Hashtable blockList List holds blocks. 

ArrayList 

dynInstanceList 

List holds dynamic instances. 

int index Precedence of diagram reference in composition. In case of 

composition, diagram references are connected to the instance 

time-line. 

ArrayList targetList List holds target instances 

JBuilderModel RefInline If this method called from a inline expression, it is inline’s 

model element 

 

1.1.1.1.2 generateCode 

Recall that an instance in the model is handled by a thread in a separate source file as a 

separate class definition. The instance codes (Class definitions, main blocks, messages, and 

message declarations) are generated in this method. Also, aspect codes for the instance are 

generated by generator in a separate aspect file as an aspect. Developer can catch the join 

points (obvious point cuts in the base code) in the application and can weave the advice code 

into these points to impose the computation logic in the aspect codes. In the code generation, 

a preliminary is generated randomly. 

 

Parameters 

String FedName Instance name 

Hashtable blockList List holding blocks. 

String 

activeDiagramName 

Diagram name of instance (copied from the input model). 

 

1.1.1.1.1.1 LSCObject processEvent 

This method gets event details and constructs the event objects. (namely LSCObject) It is 

called by traverseEvent method. 

 

Parameters 

Model Event Event model element 
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String instanceName Instance name of the event 

ArrayList dynFedList List holding the dynamic instances 

ArrayList targetList List holds target instances  

 

1.1.1.1.1.1.1 LSCObject traversEvent 

This method traverses through to the event model element (namely traverseMessage) and 

gets the event information. Process creation events are also caught in this method. If events 

are multi-instance, instance names are obtained (from the input model).  

 

Parameters 

Model Event Event model element 

LSCObject obj Event object 

ArrayList dynFedList List of dynamic instance 

ArrayList targetList List holds target instances 

 

1.1.1.1.1.1.1.1 LSCObject traverseMessage 

This method traverses through to the message model elements. But, message parameters of 

object details are not handled in the present work. Only target instance name is returned by 

this method. Because, messages are connected to the target instances in the model. 

 

Parameters 

Model Message Message model element 

LSCObject obj Source event object. (Events are connected to messages in the 

model) 

ArrayList targetList List holds target instances 

 

1.1.1.1.1.1.1.2 LSCObject traverseMessageRef 

This method traverses through to the message model by using reference’s of it. But, message 

parameters of object details are not handled in the present work. Only target instance name is 

returned by this method. Because, messages are connected to the target instances in the 

model 

 

Parameters 

JBuilderReference 

MessageRef 

Message model reference 

Model Message Message model element 
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LSCObject obj Source event object. (Events are connected to messages in the 

model) 

ArrayList targetList List holds target instances 

 

 

1.1.1.1.1.2 traversInline 

It traverses recursively the inline expressions, which could be nested, (traversInline method).  

 

Parameters 

Model Inline Inline expression model element 

Hashtable blockList Block list where constructed blocks are inserted 

String instName Instance name of the block 

ArrayList 

dynInstanceList 

Dynamic instance list 

int index Precedence of the block (inline expression) 

ArrayList targetList List holds target instances 

JBuilderModel 

ownerInstance 

Owner instance of the inline 

boolean isLSC Inline’s temperature value 

 

1.1.1.1.1.2.1 traverseInOperand 

This method traverses the operand of the inline. And constructs the block data structure 

(processEvent method) for each operand. 

 

Parameters 

JBuilderModel 

MSCOperand 

Operand model element 

String instName Current instance name 

Block instBlock Block structure for the operand model 

Operand instOperand Operand structure for the operand model 

ArrayList 

dynInstanceList 

Dynamic instance list 

ArrayList targetList List holds target instances 

JBuilderModel RefInline If inline is nested, parent inline model element 

boolean isLSC Inline’s temperature value 
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1.1.1.1.1.3 traversReference 

This method traverses the reference composition model elements and gets the referenced 

diagram. Then it calls the related diagrams. Reference has also own instance and diagrams. 

Also separate thread and file are generated for it. In the instance code, methods of referenced 

diagram are called. Although same instance may occur in other diagrams, different threads 

are created for it.  

 

Parameters 

Model Reference Reference model element 

Hashtable blockList List holds blocks. 

String instName Instance name of diagram reference. 

Operand operand Parent operand. References are put in the parent hashtable. 

ArrayList dynFedList List holds the dynamic instances 

int index Precedence of reference model element. 

ArrayList targetList List holds target instances 

JBuilderModel 

lscInstance 

Instance model element 

JBuilderModel RefInline If this method called from a inline expression, it is inline’s 

model element 
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APPENDIX C 
 
 

JAVA CODE GENERATOR 
 
 
 

Source code of the input LSC is generated from the intermediate form of the LSC (Java 

Code Generation Module in Figure 3.3). In this section, main generating methods are 

described. These methods are expressed according to the call order. Other word, call graph is 

represented n Figure C-1. Orders of methods are illustrated by using the numbered bullets. 

For example, createHeadSourceCodes method (numbered bullet 1) calls the 

writeInstanceLoopMethod (numbered bullet 1.1) method. 

 

Attributes 

boolean locationIsCold Indicate whether location is cold or hot. 

boolean 

coregionIsStarted 

Indicate whether coregion is started. 

 

Global Lists:  

These global lists are constructed by using above classes for every instance. 

 

currTimerList List the current timers during the emitting process 

currConList List the current conditions during the emitting 

process 

 

1.1 LSCTimer 

Object of this class holds the timer information. 

  

Attributes 

String name Timer name (copied from the input model) 

Int time Time interval value 

int timerSemanticMethod Timer semantics for different implementation 
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Figure C.1. Call-graph of the Java Code Generation Module (Back End) 

 

 

Generating Methods 

 

1. createHeadSourceCodes 

This method writes the global declarations and main body codes of the instance into the Java 

source file and related aspect source file. It is also the main compositional method that calls 

the all emitting methods. An other word, this method generates the Java and AspectJ code of 

the instance. 
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Parameters 

ArrayList 

sendListClassHandlers 

List holds sending events of the instance. 

ArrayList 

recvListClassHandlers 

List holds receiving events of the instance. 

boolean ExternalEnabled Indicate external library usage for the domain-specific model 

integration 

String LSClib  Namespace of the LSCObject class 

String className Name of the instance as a class name 

String ExternalLib External library name 

ArrayList allTimerList List holds the timers of the instance 

Hashtable blockList List holds the blocks of the instance 

String 

activeDiagramName 

Name of the diagram is copied from input LSC model. 

ArrayList 

variablesForInstance 

List holds the instances of block. 

 

1.1. writeInstanceLoopMethod 

This method writes the main loop method declaration and related aspect code of the instance. 

 

Parameters 

Hashtable blockList List holds the blocks. 

String className Name of the instance as class name 

String 

activeDiagramName 

Name of the diagram is copied from input LSC model. 

 

 

1.1.1. createBodies 

This method scans the block list and it calls the inline expression writer method for each. 

 

Parameters 

Hashtable blockList List holds blocks of the instance 

String className Name of the instance as class name 

String 

activeDiagramName 

Name of the diagram is copied from input LSC model. 
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1.1.1.1 createBody 

This method writes an inline expression (block) content that consists of events. It calls the 

inline expression writer method according to the block type such as loop, parallel.  

 

Parameters 

Block block Block of the inline expression. 

String className Name of the instance as class name 

String 

activeDiagramName 

Name of the diagram is copied from input LSC model. 

LSCObject prc Input event  

Block pcBlock Parent block of the block for nested case 

 

1.1.1.1.1 createLOOPExpr 

This method writes the codes of loop inline expression. 

 

Parameters 

Block block Block of the inline expression 

String className Name of the instance as class name 

String 

activeDiagramName 

Name of the diagram is copied from input LSC model. 

LSCObject proc Input event  

Block pcBlock Parent block of the block for nested case 

 

1.1.1.1.1.1 existInfiniteLoopInBlock  

This method determine infinite loop occurrence in the block 

 

Parameters 

Block block Block of the inline expression 

 

 

1.1.1.1.1.2 writeExprs   

This method determines emits the code statements which corresponds the model events. For 

example, sending method calls are emitted in it. 

 

Parameters 

Hashtable list Event list that holds the events. 
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Operand operand If this method is called in a operand, operand model element 

String className Name of the instance as class name 

String 

activeDiagramName 

Name of the diagram is copied from input LSC model. 

String blockName If this method is called in a operand, block model element 

Block pcBlock Parent block of the block for nested case 

 

1.1.1.1.2 createALTExpr 

This method writes the codes of alternative inline expression. 

 

Parameters 

Block block Block of the inline expression 

String className Name of the instance as class name 

String 

activeDiagramName 

Name of the diagram comes from input LSC model. 

Block pcBlock Parent block of the block for nested case 

 

1.1.1.1.3 createChartExpr 

This method writes the codes of universal and existential charts. 

 

Parameters 

Block block Block of the inline expression 

String className Name of the instance as class name 

String 

activeDiagramName 

Name of the diagram comes from input LSC model. 

Block pcBlock Parent block of the block for nested case 

 

1.1.1.1.4 createIfThenElseExpr 

This method writes the codes of “if-then-else” inline expression. 

 

Parameters 

Block block Block of the inline expression 

String className Name of the instance as class name 

String 

activeDiagramName 

Name of the diagram comes from input LSC model. 

Block pcBlock Parent block of the block for nested case 
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1.1.1.1.5 createIfThenExpr 

This method writes the codes of “if-then” inline expression. 

 

Parameters 

Block block Block of the inline expression 

String className Name of the instance as class name 

String 

activeDiagramName 

Name of the diagram comes from input LSC model. 

Block pcBlock Parent block of the block for nested case 

 

1.1.1.1.6 createDoWhileExpr 

This method writes the codes of “do-while” inline expression. 

 

Parameters 

Block block Block of the inline expression 

String className Name of the instance as class name 

String 

activeDiagramName 

Name of the diagram comes from input LSC model. 

Block pcBlock Parent block of the block for nested case 

 

1.1.1.1.7 createWhileDoExpr 

This method writes the codes of “while-do” inline expression. 

 

Parameters 

Block block Block of the inline expression 

String className Name of the instance as class name 

String 

activeDiagramName 

Name of the diagram comes from input LSC model. 

Block pcBlock Parent block of the block for nested case 

 

1.1.1.1.8 createPreChartExpr 

This method writes the codes of pre-chart inline expression. 

 

Parameters 

Block block Block of the inline expression 

String className Name of the instance as class name 
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String 

activeDiagramName 

Name of the diagram comes from input LSC model. 

Block pcBlock Parent block of the block for nested case 

 

1.1.1.1.9 createPARExpr 

This method writes the codes of parallel inline expression. 

 

Parameters 

Block block Block of the inline expression 

String className Name of the instance as class name 

String 

activeDiagramName 

Name of the diagram comes from input LSC model. 

LSCObject proc Input event object 

Block pcBlock Parent block of the block for nested case 

 

1.1.1.1.10 createSEQExpr 

This method writes the codes of sequential inline expression. 

 

Parameters 

Block block Block of the inline expression. 

String className Name of the instance as class name 

String 

activeDiagramName 

Name of the diagram comes from input LSC model. 

Block pcBlock Parent block of the block for nested case 

 

1.1.1.1.1.1.1 boolean sendOrReceive 

This method writes the event codes. Event may be sending, receiving, or condition event. 

For every defined case (event type), different codes are generated. If defined event type is 

not found, it returns false, otherwise true. 

 

Parameters 

LSCObject prc Input event object 

String className Name of the instance as class name 

String 

activeDiagramName 

Name of the diagram comes from input LSC model. 

Block block block of the event 
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1.1.1.1.1.1.1.1 insertOutOrderRelatedCode 

This method emits out-order code of the event that is a source event fort the ordering. 

 

Parameters 

LSCCodeGen.LSCObject 

prc 

LSCObject structure to hold the event 

String 

activeDiagramName 

Name of the diagram comes from input LSC model. 

 

1.1.1.1.1.1.1.2 insertInOrderRelatedCode 

 

This method emits in-order code of the event that is a target event fort he ordering. 

 

Parameters 

LSCCodeGen.LSCObject 

prc 

LSCObject structure to hold the event 

String 

activeDiagramName 

Name of the diagram comes from input LSC model. 

 

1.1.1.1.1.1.1.3 WriteEndBarrierSynCode 

For multi-instance case, loops are synchronized. This method emits the synchronization 

related barrier codes to the generated code. 

 

Parameters 

ArrayList instList List to hold other LSC instances to be synchronized. 

String 

activeDiagramName 

Name of the diagram comes from input LSC model. 

 

1.1.1.1.1.1.1.4 closeCondBrackets 

This method emit the condition closing code (“}”) at the end of the if-clause. 

 

Parameters 

boolean isInline Indicate whether it is in a inline or not. 

 

1.1.1.1.1.1.1.5 LSCTimer findInLSCTimerList 

This method finds the timer in the timer list. 
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Parameters 

ArrayList list List to hold timers 

String elem Timer name to be found in the list. 

 

1.2. writeTimerCodes 

This method writes the all timer declaration codes of instance. 

 

Parameters 

ArrayList allTimerList List holds all timers. 

String className Name of the instance as class name 

 

1.2.1 createTimerCode 

This method writes the definition of the timer and related timer methods/properties. 

 

Parameters 

String ID Timer name comes from input LSC model. 

String className Name of the instance as class name 

 

1.3. writeSendMethods 

This method writes the sending procedure declaration codes. It also writes related aspect 

codes that catches the join point of Java code (all procedure definitions of sending and 

receiving events are sample join points) into the aspect source file. 

 

Parameters 

ArrayList 

sendListClassHandlers 

List holds sending events of the instance. 

String libraryStr Namespace of the LSCObject class 

String className Name of the instance as class name 

String ExternalLib Name of the external library for model integration 

String 

activeDiagramName 

Name of the active LSC diagram name. 

 

1.4. writeReceiveMethods 

This method writes the receiving procedure declaration codes.  
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Parameters 

ArrayList 

recvListClassHandlers 

List holds receiving events of the instance. 

String libraryStr Namespace of the LSCObject class 

String ExternalLib Name of the external library for model integration 

String 

activeDiagramName 

Name of the active LSC diagram name. 

 

1.5. writeReceiveAspectMethods 

This method writes aspect codes that catches the join point of Java code (procedure 

definitions are join point) into the aspect source file. 

 

Parameters 

ArrayList 

recvListClassHandlers 

List holds receiving events of the instance. 

String className Name of the instance as class name 

 

1.6. writeBlockDecs 

This method writes the boolean flag definition for each block into the diagram code. This 

flag is used for the barrier synchronization of the inline expression. 

 

Parameters 

ArrayList 

blocksForInstance 

List holds the blocks of instance 

String className Name of the instance as class name 

 
1.7. writeChooseCondAspect 

This method emits the catching code of the choose condition auxiliary method for the 

random condition selection. 

 

Parameters 

String className Name of the instance as class name 

 
1.8. writeChooseLoopCountAspect 

This method emits the catching code of the choose loop count auxiliary method for the 

random count selection in the loop inline expression. 
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Parameters 

String className Name of the instance as class name 

String diagramName Name of the active LSC diagram name. 

 

1.9. writeChooseCoregionAspect 

This method emits the catching code of the choose next message selecting method randomly 

in the coregion. In the coregion, next sending event is selected in this method. 

 

Parameters 

String className Name of the instance as class name 

 

1.10. writeChooseAltAspect 

This method emits the catching code of the choose alternative auxiliary method for the 

random selection in the alternative inline expression 

 

Parameters 

String className Name of the instance as class name 

String diagramName Name of the active LSC diagram name. 

 

1.11. writeVariableDeclarationsAspect 

 

This method emits the variable declarations coming from the model in the LSC instance. 

 

Parameters 

ArrayList 

variablesForInstance 

List holds the variables in the current instance 

 

 

1.12. writeChooseCond 

This method emits the choose condition auxiliary method for the random condition selection 

 

1.13. writeChooseAlt 

This method emits the choose alternative auxiliary method for the random selection in the 

alternative inline expression 
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1.14. writeChooseCoregion 

This method emits the choose next message selecting method randomly in the coregion. In 

the coregion, next sending event is selected in this method. 

  
1.15. writeChooseLoopCount 

This method emits the loop count auxiliary method for the random count selection in the 

loop inline expression. 
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APPENDIX D 
 
 

A CODE GENERATION EXAMPLE 
 
 
 

In this section, concrete model of an example LSC is presented. Then this concrete model is 

modeled in GME by using LSC metamodel developed by Topçu. After the modeling, our 

generator is run. Generator first constructs corresponding intermediate form of the model 

then second it generates corresponding source codes of the intermediate form. In this section 

briefly all process (in four view namely concrete model view, GME model view, 

intermediate form view and code view) of LSC code generation is presented step by step.  

1. Concrete Model View 

 

Figure D.1. B29 in Z120 AnnB 
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2. GME Model View 

 

Figure D.2. GME Model of Instance Alt Inline Expression 

 

Figure D.3. GME Model of First Operand of the ALT Inline Expression 
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3. Intermediate Form View (Data Structure/Memory Heap) 

 

Figure D.4. Intermediate Form of Instance i 
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Figure D.5. Intermediate Form of Instance j 
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4. Code View 

public static void iMainLoop(){ 

 int MSCAlt=((Integer)altChoices.get("MSCAlt")).intValue(); 

 switch(MSCAlt){ 

 case 0: 

  Sendmj(new Integer(0)); 

  break; 

 case 1: 

  Sendnj(new Integer(0)); 

  break;  

 } 

} 

Figure D.6. Generated Main Loop Code of Instance i 

 

 

public static void jMainLoop(){ 

 int MSCAlt=((Integer)altChoices.get("MSCAlt")).intValue(); 

 switch(MSCAlt){ 

 case 0: 

  condRecvmi(); 

  break; 

 case 1: 

  condRecvni(); 

  break; 

 } 

} 

Figure D.7. Generated Main Loop Code of Instance j  
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APPENDIX E 
 
 

LSC EXAMPLES AND THEIRS CODE EQUIVALENCY 
 
 
 

In this appendix, LSC/MSC models which are retrieved from the literature and their 

corresponding source code is presented. All variety of MSC/LSC constructs is included such 

as ALT, LOOP, SEQ inline expressions, Gate, general ordering. 

 ALT (Alternative) 

 

Figure E.1. B29 in Z120 AnnB 

 
 
 
 

public static void iMainLoop(){ 

  int MSCAlt=((Integer)altChoices.get("MSCAlt")).intValue(); 

  switch(MSCAlt){ 

  case 0: 

   Sendmj(new Integer(0)); 

   break; 

  case 1: 

   Sendnj(new Integer(0)); 

   break;  

  } 

 } 

Figure E.2. Code of instance i 
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public static void jMainLoop(){ 

  int MSCAlt=((Integer)altChoices.get("MSCAlt")).intValue(); 

  switch(MSCAlt){ 

  case 0: 

   condRecvmi(); 

   break; 

  case 1: 

   condRecvni(); 

   break; 

  } 

 } 

Figure E.3. Code of instance j 

 

 

PAR (Parallel) 

 

Figure E.4. B29 in Z120 AnnB 
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public static void iMainLoop(){   

  class MSCOperand1 extends Thread { 

   MSCOperand1() {} 

   public void run() { 

    Sendmj(new Integer(0)); 

    condRecvnj(); 

    stop();  

   } 

  } 

  MSCOperand1 p0 = new MSCOperand1(); 

  p0.start(); 

  class MSCOperand2 extends Thread { 

   MSCOperand2() {}  

   public void run() { 

    Sendoj(new Integer(0)); 

    condRecvpj(); 

    stop();  

   } 

  } 

  MSCOperand2 p1 = new MSCOperand2(); 

  p1.start(); 

  while(p1.isAlive()||p0.isAlive()); 

 } 

Figure E.5. Code of instance i 
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public static void jMainLoop(){ 

  class MSCOperand1 extends Thread { 

   MSCOperand1() {} 

   public void run() { 

    condRecvmi(); 

    Sendni(new Integer(0)); 

    stop();  

   } 

  } 

  MSCOperand1 p0 = new MSCOperand1(); 

  p0.start(); 

  class MSCOperand2 extends Thread { 

   MSCOperand2() {} 

    

   public void run() { 

    condRecvoi(); 

    Sendpi(new Integer(0)); 

    stop(); 

   } 

  } 

  MSCOperand2 p1 = new MSCOperand2(); 

  p1.start(); 

  while(p1.isAlive()||p0.isAlive()); 

 } 

Figure E.6. Code of instance j 

 

 

 



181 

LOOP (Loop) 

 

Figure E.7. B31 in Z120 AnnB 

 

 

public static void iMainLoop(){ 

  boolean loopCond=false; 

  int countMSCLoop=0; 

  int loopCount = getLoopCount("0","2"); 

  if(loopCount==-1) 

   loopCond=true; 

  while(countMSCLoop<loopCount || loopCond) 

  { 

   Sendmj(new Integer(0)); 

   countMSCLoop++; 

  }//end of loop 

  condRecvpj(); 

 } 

Figure E.8. Code of instance i 
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public static void jMainLoop(){ 

  boolean loopCond=false; 

  int countMSCLoop=0; 

  int loopCount = getLoopCount("0","2"); 

  if(loopCount==-1) 

   loopCond=true;   

  while(countMSCLoop<loopCount || loopCond) 

  { 

   condRecvmi(); 

   countMSCLoop++; 

  }//end of loop 

  Sendpi(new Integer(0)); 

 } 

Figure E.9. Code of instance j 

 

 

SEQ (Sequential) 

 

Figure E.10. Derived from B29 in Z120 AnnB 
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public static void iMainLoop(){  

  Sendmj(new Integer(0)); 

  Sendnj(new Integer(0)); 

 } 

Figure E.11. Code of instance i 

 

public static void jMainLoop(){ 

  condRecvmi(); 

  condRecvni(); 

 } 

Figure E.12. Code of instance j 

 

 

EXC (Exclusion) 

 

Figure E.13. Derived from B29 in Z120 AnnB 
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public static void iMainLoop(){ 

  try{ 

   Sendmj(new Integer(0)); 

  } 

  catch(Exception ex) 

                           { 

   Sendnj(new Integer(0)); 

  } 

 } 

Figure E.14. Code of instance i 

 

 

public static void jMainLoop(){ 

  try{ 

   condRecvmi(); 

  } 

  catch(Exception ex) 

                          { 

   condRecvni(); 

  } 

 } 

Figure E.15. Code of instance j 
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OPT (Optional) 

 

Figure E.16. Derived from B31 in Z120 AnnB 

 
 
 
 

public static void iMainLoop(){ 

  if(((Boolean)coldChoices.get("MSCOpt")).booleanValue()){ 

   { 

    Sendmj(new Integer(0)); 

   } 

  } 

  condRecvpj(); 

 } 

Figure E.17. Code of instance i 
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public static void jMainLoop(){ 

  if(((Boolean)coldChoices.get("MSCOpt")).booleanValue()){ 

   { 

    condRecvmi(); 

   } 

  } 

  Sendpi(new Integer(0)); 

 } 

Figure E.18. Code of instance j 

 

Chart 

 

Figure E.19. Madsen paper – (Existential chart Figure2.9) 
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public static void AMainLoop(){ 

  if(((Boolean)coldChoices.get("A")).booleanValue()){ 

   { 

    Sendm1B(new Integer(0)); 

    condRecvm2B(); 

   } 

  } 

 } 

Figure E.20. Code of instance A 

 

 

public static void BMainLoop(){ 

  if(((Boolean)coldChoices.get("B")).booleanValue()){ 

   { 

    condRecvm1A(); 

    Sendm2A(new Integer(0)); 

   } 

  } 

 } 

Figure E.21. Code of instance B 
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Pre-chart  

 

Figure E.22. Damm paper (Figure5) 

 

 

public static void proxSensorMainLoop(){ 

 boolean condPreChart=false; 

 condPreChart= Sendalert100car(new Integer(0)) || condPreChart; 

 if(condPreChart){ 

  //if clause start 

 }////if closed end 

} 

Figure E.23. Code of instance proxSensor 
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public static void carMainLoop(){ 

 boolean condPreChart=false; 

 condPreChart= condRecvdepartAckcarHandler() || condPreChart; 

 condPreChart= condRecvalert100proxSensor() || condPreChart; 

 if(condPreChart){ 

  //if clause start 

  if(((Boolean)coldChoices.get("arrivReq")).booleanValue()){ 

   SendarrivReqcarHandler(new Integer(0)); 

  }//cold 

  if(((Boolean)coldChoices.get("arrivAck")).booleanValue()){ 

   condRecvarrivAckcarHandler(); 

  }//cold 

 }////if closed end 

} 

Figure E.24. Code of instance car 
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public static void carHandlerMainLoop(){ 

 boolean condPreChart=false; 

 condPreChart= SenddepartAckcar(new Integer(0)) || condPreChart; 

 if(condPreChart){ 

  //if clause start 

  condRecvarrivReqcar(); 

  if(((Boolean)coldChoices.get("arrivAck")).booleanValue()){ 

   SendarrivAckcar(new Integer(0)); 

  }//cold   

 }////if closed end 

} 

Figure E.25. Code of instance carHandler 

 

 

DoWhile 

 

Figure E.26. Madsen paper (Figure2.13) 
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public static void AMainLoop(){ 

  do { 

   Sendm1B(new Integer(0)); 

  } while(!((Boolean)coldChoices.get("BResponse")).booleanValue()); 

 } 

Figure E.27. Code of instance A 

 

 

public static void BMainLoop(){ 

  do { 

   condRecvm1A(); 

  } while(!((Boolean)coldChoices.get("BResponse")).booleanValue()); 

 } 

Figure E.28. Code of instance B 

 

WhileDo 

 

Figure E.29. Madsen paper (Figure2.14) 
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public static void AMainLoop(){ 

  while(((Boolean)coldChoices.get("BResponse")).booleanValue()){ 

   Sendm1B(new Integer(0)); 

  } 

 } 

Figure E.30. Code of instance A 

 

 

public static void BMainLoop(){ 

  while(((Boolean)coldChoices.get("BResponse")).booleanValue()){ 

   condRecvm1A(); 

  } 

 } 

Figure E.31. Code of instance B 

 

 

IfThen 

 

Figure E.32. Madsen paper (Figure2.15) 
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public static void AMainLoop(){ 

  if(((Boolean)coldChoices.get("BResponse")).booleanValue()){ 

   Sendm1B(new Integer(0)); 

  } 

 } 

Figure E.33. Code of instance A 

 

 

public static void BMainLoop(){ 

  if(((Boolean)coldChoices.get("BResponse")).booleanValue()){ 

   condRecvm1A();   

  } 

 } 

Figure E.34. Code of instance B 

 

 

IfThenElse 

 

Figure E.35. Madsen paper (Figure2.16) 
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public static void AMainLoop(){ 

  if(((Boolean)coldChoices.get("BResponse")).booleanValue()){ 

   SendterminateB(new Integer(0)); 

  } 

  else { 

   SendcontinueB(new Integer(0)); 

  } 

 } 

Figure E.36. Code of instance A 

 
 
 
 

public static void BMainLoop(){ 

  if(((Boolean)coldChoices.get("BResponse")).booleanValue()){ 

   condRecvterminateA(); 

  } 

  else { 

   condRecvcontinueA(); 

  } 

 } 

Figure E.37. Code of instance B 
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Dynamic Instance Creation 

 

Figure E.38. B6 in Z120 AnnB 

 

 

public static void iMainLoop(){ 

  B6Diagram.pj.start();  

 } 

Figure E.39. Code of instance i 

 

 

public static void jMainLoop(){ 

  condRecvmk(); 

  B6Diagram.pj.stop();  

 } 

Figure E.40. Code of instance j 

 

 

public static void kMainLoop(){ 

  Sendmj(new Integer(0)); 

 } 

Figure E.41. Code of instance k 
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Condition  

 

Figure E.42. B13 in Z120 AnnB 

 

 

Example condition is hot condition. 

public static void iMainLoop(){ 
 if(((Boolean)B13Diagram.coldChoices.get("MSCCondition")).booleanValue()) 

              {//condo start 

    }//condo end 

 else//Hot condition 

  return;//Hot condo 

 } 

Figure E.43. Code of instance i 

 
 
 
 

public static void kMainLoop(){ 

 if(((Boolean)B13Diagram.coldChoices.get("MSCCondition")).booleanValue()) 

 {//condo start 

 }//condo end 

 else//Hot condo 

  return;//Hot condo 

 } 

Figure E.44. Code of instance k 
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Timing 

 

Figure E.45. Brill Paper 

 
 
 

public static void inst1MainLoop(){ 

  doLaterT1(7); 

  condRecvmsg1inst2(); 

  condRecvmsg3inst3(); 

  calcelT1(); 

  doLaterT1(7); 

 } 

 static Timer timerT1= new Timer(); 

 static boolean timerFlagT1=false; 

 public static void  doLaterT1( long delayInMillis ) 

 { 

  ScheduleRunnerT1 scheduleRunner = new ScheduleRunnerT1(); 

  timerT1.schedule( scheduleRunner, delayInMillis ); 

 } 

Figure E.46. Code of instance inst1 
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 public static void  calcelT1() 

 { 

  timerT1.cancel(); 

 } 

 static class ScheduleRunnerT1 extends TimerTask 

 { 

  public void run() 

  { 

   timerFlagT1=true; 

  } 

 } 

Figure E.46. Code of instance inst1 (continue) 

 

 

public static void inst2MainLoop(){ 

  doLaterT2(12); 

  Sendmsg1inst1(new Integer(0)); 

  Sendmsg2inst3(new Integer(0)); 

  Sendmsg4inst3(new Integer(0)); 

  if(timerFlagT2) 

  { 

   RecvT2Timeout(); 

  } 

 } 

 

Figure E.47. Code of instance inst2 
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 static Timer timerT2= new Timer(); 

 static boolean timerFlagT2=false; 

 public static void  doLaterT2( long delayInMillis ) 

 { 

  ScheduleRunnerT2 scheduleRunner = new ScheduleRunnerT2(); 

  timerT2.schedule( scheduleRunner, delayInMillis ); 

 } 

 public static void  calcelT2() 

 { 

  timerT2.cancel(); 

 } 

 static class ScheduleRunnerT2 extends TimerTask 

 { 

  public void run() 

  { 

   timerFlagT2=true; 

  } 

 } 

Figure E.47. Code of instance inst2 (Continue) 

 

 

Lost/Found Messages/Action 

 

Figure E.48. B11 in Z120 AnnB 
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public static void iMainLoop(){ 

  SendmLOST(new Integer(0)); 

} 

Figure E.49. Code of instance i 

 

 

public static void jMainLoop(){ 

  condRecvnFOND(); 

} 

Figure E.50 Code of instance j 

 

 

General Ordering  

 

Figure E.51. B18 in Z120 AnnB 

 

 

public static void iMainLoop(){ 

  Sendmj(new Integer(0)); 

  B18Diagram.setMSCGeneralOrder=true; 

 } 

Figure E.52. Code of instance i 
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public static void jMainLoop(){ 

  condRecvmi(); 

 } 

Figure E.53. Code of instance j 

 

 

public static void kMainLoop(){ 

  while(!B18Diagram.setMSCGeneralOrder); 

  SendaACTN(new Integer(0)); 

 } 

Figure E.54. Code of instance k 

 

 

Coregion  

 

Figure E.55. B16 in Z120 AnnB 
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public static void iMainLoop(){ 

  Sendkj(new Integer(0)); 

  ArrayList selectedList = new ArrayList(); 

  int n; 

  int i; 

  selectedList.add(new Integer(2));  

  selectedList.add(new Integer(3)); 

  n=2; 

  i=1; 

  while(i<=n) 

  { 

   int choice=chooseOne(selectedList,orderList); 

   switch(choice) 

   {//switch 

   case 2: 

                                                  if (boolmj())  

                                                  { 

                                                       condRecvmj() ; 

                                                   } 

    break; 

   case 3: 

    Sendnj(new Integer(0)); 

    break; 

   }//switch 

   i++; 

  } 

  selectedList.clear(); 

  condRecvlj(); 

 } 

Figure E.56. Code of instance i 
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public static void jMainLoop(){ 

  condRecvki(); 

  Sendmi(new Integer(0)); 

  condRecvni(); 

  Sendli(new Integer(0)); 

 } 

Figure E.57. Code of instance j 

 

 

Temperature Property  

 

Figure E.58. Harel Paper Figure-5 

 

 

public static void UserMainLoop(){ 

 boolean condPreChart=true; 

            if(((Boolean)coldChoices.get("Dial")).booleanValue(){ 

  condPreChart= SendDialPhone1(new Integer(0)) || condPreChart ; 

 } 

            if(((Boolean)coldChoices.get("Click")).booleanValue()){ 

  condPreChart= SendClickPhone1(new Integer(0))||condPreChart; 

 } 

 if(condPreChart){ 

  //if clause start 

 }////if closed end 

} 

Figure E.59. Code of instance User 
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public static void Phone1MainLoop(){ 

 boolean condPreChart=true; 

             for (int i=0;i<50;i++) { 

                 if (boolDialUser()) { 

                              condPreChart= condRecvDialUser() ||condPreChart; 

                               break; 

                    } 

                     SleepThread(100); 

                  }//cold 

               for (int i=0;i<50;i++) { 

                 if (boolClickUser ()) { 

                    condPreChart= condRecvClickUser() || condPreChart; 

                               break; 

                    } 

                     SleepThread(100); 

                  }//cold 

 if(condPreChart){ 

  //if clause start 

  if(((Boolean)coldChoices.get("Call")).booleanValue()){ 

   SendCallChan1(new Integer(0)); 

  }//cold 

 }////if closed  

} 

Figure E.60. Code of instance Phone1 
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public static void Chan1MainLoop(){ 

                boolean coldLoc=false; 

               for (int i=0;i<50;i++) { 

                 if (boolCallPhone1()) { 

                    condRecvCallPhone1(); 

                                coldLoc=true; 

                               break; 

                    } 

                  if(coldLoc)//for cold receive message in cold location 

                     return; 

} 

Figure E.61. Code of instance Chan1 

 

 

An example of cold inline expression is presented in Existential-Chart part and 

related code segment is shown below. 

if(((Boolean)coldChoices.get("A")).booleanValue()){ 

   { 

    Sendm1B(new Integer(0)); 

    condRecvm2B(); 

   } 

  } 

Figure E.62. Code of cold chart (Existential Chart) example 

 

An example of cold location is presented in Pre-Chart part and related code segment 

is shown in Figure E-61. 
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Composite LSC Structures 

 

 

Figure E.63. B33 in Z120 AnnB (D=A seq B) 

 

 

Diagram A codes: 

public static void iMainLoop(){   

  Sendmj(new Integer(0)); 

 } 

Figure E.64. Code of instance i 

 

 

public static void jMainLoop(){ 

  condRecvmi(); 

 } 

Figure E.65. Code of instance j 
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Diagram B codes: 

public static void jMainLoop(){ 

  Sendnk(new Integer(0)); 

 } 

Figure E.66. Code of instance j 

 

 

public static void kMainLoop(){ 

  condRecvnj(); 

 } 

Figure E.67. Code of instance k 

 

 

Diagram D codes: 

public static void iMainLoop(){ 

  Sendmj(new Integer(0)); 

 } 

Figure E.68. Code of instance i 

 
 
 

 

Figure E.69. Code of instance j 

 
 

public static void iMainLoop(){ 

  condRecvmi(); 

                         Sendnk(new Integer(0)); 

 } 
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public static void kMainLoop(){ 

  condRecvnj();         

 } 

Figure E.70. Code of instance k 

 

 

Gate 

 

Figure E.71. B38 in Z120 AnnB 

 
 
 

 

Figure E.72. Code of instance j 

 

public static void iMainLoop(){ 

  A.condRecvmg(); 

                         Sendnh(new Integer(0)); 

 } 
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APPENDIX F 
 
 

INTEGRATION OF HLA METHODS WITH LSC MODEL: FRONT END 
 
 
 

Intermediate form generation continued in the external library’s input model. In our example 

case, generator also walks on the HFMM, HOMM models in the FAMM. In this appendix, 

traversing methods and their explanation is given. This is the extension of intermediate from 

generation module (front end) in Figure 3.3. 

 
LSCCodeGen.LSCObject generateExternalLibAspectCodes 

This method generates the federation execution aspects to be used for receiving call-back 

events from the RTI for every federation execution 

 

Parameters 

ArrayList targetList List holds the federation executions 

String InstanceName Current LSC instance name. 

String diagramName Current diagram name in which to be traversed 

String PATH Path of the generated aspect. 

 
 

LSCCodeGen.LSCObject traverseExternalObject 

This method traverses the HSMM method’s one by one. It is called from the LSCCodeGen. 

This method is the integration point for external library and LSC. Instead of the LSCMessage 

model element in the LSC, this method is called. This HSMM method (also called 

HLAMethod) is derived from the LSCMessage.  HLAMethod information is retrieved from 

FAMM especially HSMM, FSMM and HOMM. 

 

Parameters 

LSCCodeGen.LSCObject 

obj 

Input LSCObject of the message.  

JBuilderModel Message Message model element 
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LSCCodeGen.LSCObject getSuppliedArguments 

This method traverses the HSMM method’s supplementary argument model element and 

retrieves the supplementary argument’s model element.  

 

Parameters 

LSCCodeGen.LSCObject 

obj 

Input LSCObject of the message.  

JBuilderModel Message Message model element 

 
 
LSCCodeGen.LSCObject getReturnedArguments 

This method traverses the HSMM method’s returned argument model element and retrieves 

the returned argument’s model element.  

 

Parameters 

LSCCodeGen.LSCObject 

obj 

Input LSCObject of the message.  

JBuilderModel Message Message model element 

 
 
 

LSCCodeGen.LSCObject getIndicator 

This method traverses the HSMM method’s argument which is an indicator model element 

and retrieves the indicator parameter information.  

 

Parameters 

LSCCodeGen.LSCObject 

obj 

Input LSCObject of the message.  

JBuilderModel Message Message model element 

 
 
LSCCodeGen.LSCObject getOrderType 

This method traverses the HSMM method’s argument which is an order model element and 

retrieves the order parameter information.  

 

Parameters 

LSCCodeGen.LSCObject 

obj 

Input LSCObject of the message.  

JBuilderModel Message Message model element 
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LSCCodeGen.LSCObject getStringType 

This method traverses the HSMM method’s argument which is a string model element and 

retrieves the string parameter information.  

 

Parameters 

LSCCodeGen.LSCObject 

obj 

Input LSCObject of the message.  

JBuilderModel Message Message model element 

 
 
 
FEDERATION MANAGEMENT 

LSCCodeGen.LSCObject getCreateFederationExecutionData 

This method traverses the Create Federation Execution HSMM method and retrieves the 

method parameter information.  

 

Parameters 

LSCCodeGen.LSCObject 

obj 

Input LSCObject of the message.  

JBuilderModel Message Message model element 

 
 
LSCCodeGen.LSCObject getFederate 

This method traverses the federate model element in FSMM and retrieves the method 

parameter information.  

 

Parameters 

LSCCodeGen.LSCObject 

obj 

Input LSCObject of the message.  

JBuilderModel Message Message model element 

 
LSCCodeGen.LSCObject getFederateSet 

This method used in the methods of HSMM whose supplementary arguments have a federate 

set. It traverses the set and retrieves the method parameter information.  

 

Parameters 

LSCCodeGen.LSCObject 

obj 

Input LSCObject of the message.  
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JBuilderModel Message Message model element 

 
LSCCodeGen.LSCObject getFederateResponsePairs 

This method used in the methods of HSMM whose supplementary arguments have a federate 

responses pairs set. It traverses the set and retrieves the method parameter information.  

 

Parameters 

LSCCodeGen.LSCObject 

obj 

Input LSCObject of the message.  

JBuilderModel Message Message model element 

 
LSCCodeGen.LSCObject getFederateSavePairs 

This method used in the methods of HSMM whose supplementary arguments have a federate 

save pairs set. It traverses the set and retrieves the method parameter information.  

 

Parameters 

LSCCodeGen.LSCObject 

obj 

Input LSCObject of the message.  

JBuilderModel Message Message model element 

 
LSCCodeGen.LSCObject getJoinFederationExecutionData 

This method traverses the Join Federation Execution HSMM method and retrieves the 

method parameter information.  

 

Parameters 

LSCCodeGen.LSCObject 

obj 

Input LSCObject of the message.  

JBuilderModel Message Message model element 

 
LSCCodeGen.LSCObject getResignFederationExecutionData 

This method traverses the Resign Federation Execution HSMM method and retrieves the 

method parameter information.  

 

Parameters 

LSCCodeGen.LSCObject 

obj 

Input LSCObject of the message.  

JBuilderModel Message Message model element 
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LSCCodeGen.LSCObject getSynchronizationData 

This method used in the methods of HSMM whose supplementary arguments have a 

synchronization label. It traverses the label and retrieves the method parameter information.  

 

Parameters 

LSCCodeGen.LSCObject 

obj 

Input LSCObject of the message.  

JBuilderModel Message Message model element 

isObjName Label is used as a name for the synchronization object name 

 
 

DECLARATION MANAGEMENT 

 

LSCCodeGen.LSCObject getInteractionClassFromMessage 

This method used in the methods of HSMM whose supplementary arguments have an 

interaction class. It traverses the class and retrieves the method parameter information.  

 

Parameters 

LSCCodeGen.LSCObject 

obj 

Input LSCObject of the message.  

JBuilderModel Message Message model element 

isObjName Label is used as a name for the synchronization object name 

boolean regionIsEnabled Region is enabling or not. 

 
 
LSCCodeGen.LSCObject getObjectClassFromMessage 

This method used in the methods of HSMM whose supplementary arguments have an object 

class. It traverses the class and retrieves the method parameter information.  

 

Parameters 

LSCCodeGen.LSCObject 

obj 

Input LSCObject of the message.  

JBuilderModel Message Message model element 

isObjName Label is used as a name for the synchronization object name 

boolean regionIsEnabled Region is enabling or not. 
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LSCCodeGen.LSCObject getInteractionClassFromRetraction 

This method used in the methods of HSMM whose arguments have a retraction. It traverses 

the interaction class and retrieves the method parameter information.  

 

Parameters 

LSCCodeGen.LSCObject 

obj 

Input LSCObject of the message.  

JBuilderModel Message Message model element 

isObjName Label is used as a name for the synchronization object name 

boolean regionIsEnabled Region is enabling or not. 

 
 
LSCCodeGen.LSCObject getObjectClassFromMessage 

This method used in the methods of HSMM whose arguments have a retraction. It traverses 

the object class and retrieves the method parameter information.  

 

Parameters 

LSCCodeGen.LSCObject 

obj 

Input LSCObject of the message.  

JBuilderModel Message Message model element 

isObjName Label is used as a name for the synchronization object name 

boolean regionIsEnabled Region is enabling or not. 

 

LSCCodeGen.LSCObject getOnlyObjectAttributesFromMessage 

This method used in the methods of HSMM whose supplementary arguments have only 

object attributes. It traverses the attributes and retrieves the method parameter information.  

 

Parameters 

LSCCodeGen.LSCObject 

obj 

Input LSCObject of the message.  

JBuilderModel Message Message model element 

isObjName Label is used as a name for the synchronization object name 

boolean regionIsEnabled Region is enabling or not. 

 
LSCCodeGen.LSCObject getObjectAttributesFromMessage 

This method used in the methods of HSMM whose supplementary arguments have object 

class and its object attributes. It traverses the object class and its attributes and retrieves the 

method parameter information.  
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Parameters 

LSCCodeGen.LSCObject 

obj 

Input LSCObject of the message.  

JBuilderModel Message Message model element 

isObjName Label is used as a name for the synchronization object name 

boolean regionIsEnabled Region is enabling or not. 

 
 
LSCCodeGen.LSCObject getObjectAttributesAndRegionsFromMessage 

This method used in the methods of HSMM whose supplementary arguments have object 

attribute sets and region sets. It traverses the sets and retrieves the method parameter 

information.  

 

Parameters 

LSCCodeGen.LSCObject 

obj 

Input LSCObject of the message.  

JBuilderModel Message Message model element 

isObjName Label is used as a name for the synchronization object name 

boolean regionIsEnabled Region is enabling or not. 

 
LSCCodeGen.LSCObject getOnlyAttributeFromMessage 

This method used in the methods of HSMM whose supplementary arguments have only an 

object attribute. It traverses the attribute and retrieves the method parameter information.  

 

Parameters 

LSCCodeGen.LSCObject 

obj 

Input LSCObject of the message.  

JBuilderModel Message Message model element 

isObjName Label is used as a name for the synchronization object name 

boolean regionIsEnabled Region is enabling or not. 

 
OBJECT MANAGEMENT 

 
LSCCodeGen.LSCObject getChangeInteractionTransportationType 

This method used in the methods of HSMM whose supplementary arguments have an 

transportation type to be changed. It traverses the interaction class and retrieves the method 

parameter information.  
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Parameters 

LSCCodeGen.LSCObject 

obj 

Input LSCObject of the message.  

JBuilderModel Message Message model element 

 
LSCCodeGen.LSCObject getChangeAttributeTransportationType 

This method used in the methods of HSMM whose supplementary arguments have an 

transportation type to be changed. It traverses the object class and retrieves the method 

parameter information.  

 

Parameters 

LSCCodeGen.LSCObject 

obj 

Input LSCObject of the message.  

JBuilderModel Message Message model element 

 
 

LSCCodeGen.LSCObject getObjectAttributesOrderData 

This method used in the methods of HSMM whose supplementary arguments have an order 

type to be applied. It traverses the order model element and retrieves the method parameter 

information.  

 

Parameters 

LSCCodeGen.LSCObject 

obj 

Input LSCObject of the message.  

JBuilderModel Message Message model element 

 

LSCCodeGen.LSCObject getRemoveObjectInstance 

This method used in the methods of HSMM whose supplementary arguments have an object 

class to be removed. It traverses the object class and retrieves the method parameter 

information.  

 

Parameters 

LSCCodeGen.LSCObject 

obj 

Input LSCObject of the message.  

JBuilderModel Message Message model element 
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LSCCodeGen.LSCObject getReflectAttributeValues 

This method used in the methods of HSMM whose supplementary arguments have an object 

class to be reflected. It traverses the object class and retrieves the method parameter 

information.  

 

Parameters 

LSCCodeGen.LSCObject 

obj 

Input LSCObject of the message.  

JBuilderModel Message Message model element 

boolean regionIsEnabled Region is enabling or not. 

 
LSCCodeGen.LSCObject getReceiveInteraction 

This method used in the methods of HSMM whose supplementary arguments have an 

interaction class to be received. It traverses the interaction class and retrieves the method 

parameter information.  

 

Parameters 

LSCCodeGen.LSCObject 

obj 

Input LSCObject of the message.  

JBuilderModel Message Message model element 

boolean regionIsEnabled Region is enabling or not. 

 
LSCCodeGen.LSCObject getDeleteObjectInstance 

This method used in the methods of HSMM whose supplementary arguments have an object 

class to be deleted. It traverses the object class and retrieves the method parameter 

information.  

 

Parameters 

LSCCodeGen.LSCObject 

obj 

Input LSCObject of the message.  

JBuilderModel Message Message model element 

 
 

DATA DISTRIBUTION MANAGEMENT METHODS  

 

LSCCodeGen.LSCObject getRegionsFromMessage 

This method used in the methods of HSMM whose supplementary arguments have a region 

set. It traverses the set and retrieves the method parameter information.  
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Parameters 

LSCCodeGen.LSCObject 

obj 

Input LSCObject of the message.  

JBuilderModel Message Message model element 

 
LSCCodeGen.LSCObject getRegionDataFromRef 

This method used in the methods of HSMM whose supplementary arguments have a region 

reference. It traverses the reference and retrieves the method parameter information.  

 

Parameters 

LSCCodeGen.LSCObject 

obj 

Input LSCObject of the message.  

JBuilderModel Message Message model element 

 
 
LSCCodeGen.LSCObject addRegionDimension 

This method used in the interaction methods which has a dimension. It traverses the 

dimension and retrieves the method parameter information and adds to the interaction. 

 

Parameters 

JBuilderModel 

InteractionClass 

Input interaction class.  

JBuilderModel Message Message model element 

LSCObject obj Input LSCObject of the message 

 
LSCCodeGen.LSCObject addRegionDimension 

This method used in the object methods whose attribute has a dimension. It traverses the 

dimension and retrieves the method parameter information and adds to the attribute. 

 

Parameters 

JBuilderModel attribute Input object attribute.  

JBuilderModel Message Message model element 

LSCObject obj Input LSCObject of the message 

 
LSCCodeGen.LSCObject getDimData 

This method traverses the dimension and retrieves the dimension information. 
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Parameters 

LSCObject obj Input LSCObject of the message 

JBuilderModel Message Message model element 

 
LSCCodeGen.LSCObject getRegions 

This method traverses the region set and retrieves the region on it. This is used to 

createregion method. 

 

Parameters 

LSCObject obj Input LSCObject of the message 

JBuilderModel Message Message model element 

 
LSCCodeGen.LSCObject getRegion 

This method traverses the region and retrieves the region information. This is used in region 

related method. 

 

Parameters 

LSCObject obj Input LSCObject of the message 

JBuilderModel Message Message model element 

  
LSCCodeGen.LSCObject getRegion 

This method traverses the region reference and retrieves the region information. This is used 

in region related method. 

 

Parameters 

LSCObject obj Input LSCObject of the message 

JBuilderModel Message Message model element 

boolean isObjName Region is used as a LSC object name 

 
TIME MANAGEMENT METHODS  

 
LSCCodeGen.LSCObject getTimeData 

This method traverses the time model element in the supplementary arguments of the 

HSMM method and retrieves the time stamp information. 

 

Parameters 

LSCObject obj Input LSCObject of the message 

JBuilderModel Message Message model element 
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boolean isObjName Region is used as a LSC object name 

 

LSCCodeGen.LSCObject getLookahead 

This method traverses the lookhead model element in the supplementary arguments of the 

HSMM method and retrieves the lookhead information. 

 

Parameters 

LSCObject obj Input LSCObject of the message 

JBuilderModel Message Message model element 

boolean isObjName Region is used as a LSC object name 

  
SUPPORT SERVİCE 

 
LSCCodeGen.LSCObject getMultipleCallbacksData 

This method traverses the multiple callback model element in the supplementary arguments 

of the HSMM method and retrieves the callback information. 

 

Parameters 

LSCObject obj Input LSCObject of the message 

JBuilderModel Message Message model element 

 
LSCCodeGen.LSCObject getCallbackData 

This method traverses the callback model element in the supplementary arguments of the 

HSMM method and retrieves the callback information. 

 

Parameters 

LSCObject obj Input LSCObject of the message 

JBuilderModel Message Message model element 

 
LSCCodeGen.LSCObject getBoundsData 

This method traverses the region set bounds model element in the supplementary arguments 

of the HSMM method named setregionbounds and retrieves the bounds information. 

 

Parameters 

LSCObject obj Input LSCObject of the message 

JBuilderModel Message Message model element 
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APPENDIX G 
 

 

INTEGRATION OF HLA METHODS WITH LSC MODEL: BACK END 
 

 

In this appendix, code generator gets external library related intermediate form information 

and emits the corresponding code segments. This is the extension of Java code generation 

module (back end) in Figure 3.3. 

 

LSCCodeGen.LSCObject writeExternalLibAspect 

This method simply emits the federation execution aspect code for each federation 

execution. 

 

Parameters 

String fedName Federate name 

String RTILib External library name to reach external library in our case, 

LscRTILib name to reach actual pRTI. 

String rtiName Federation execution name 

String diagramName Current LSC diagram name 

String LSCLib Library in which LSCObject is declared. 

 
 
LSCCodeGen.LSCObject SendExternalMethods 

This method emits the external sending method’s definitions. In our case, RTI Ambassador 

method definitions are generated in the federate base code. 

 

Parameters 

LSCCodeGen.LSCObject 

proc 

Input LSCObject of the message 

String RTILib External library name to reach external library. 
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LSCCodeGen.LSCObject writeReceiveExternalMethods 

This method emits the external receiving method’s definitions. In our case, federate 

Ambassador method definitions are generated in the federate base code. But, method bodies 

are emitted by writeReceiveMethods method in the following. 

 

Parameters 

ArrayList 

recvListClassHandlers 

List holds the receiving events. 

boolean ExtLibEnabled Indicate whether external library is enabled or not. 

String libraryStr Library in which LSCObject is declared. 

String RTILib External library name to reach external library 

String className Instance name, in our case federate  name 

 
LSCCodeGen.LSCObject writeReceiveAspectMethods 

This method emits the catching aspect codes into the federation execution aspect to handle 

callback forwarding to the base code. 

 

Parameters 

ArrayList 

recvListClassHandlers 

List holds the receiving events. 

String className Instance name, in our case federate  name 

 
LSCCodeGen.LSCObject writeReceiveMethods 

This method emits the external receiving method’s bodies. 

 

Parameters 

ArrayList 

recvListClassHandlers 

List holds the receiving events. 

String libraryStr Library in which LSCObject is declared. 

String ExternalLib External library name to reach external library 

String activeDiagramName Current LSC diagram name 
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APPENDIX H 
 
 

 CODE GENERATOR USER GUIDE 
 
 
 

This documents presents information for the practical use of the code generator. Following 

the provided guidance the user can download and install the code generator and all required 

supplementary programs. After installation, user can run the generator and produce the 

source code of his/her input model. User may edit the generated code to reflect his/her 

computation logic into generated code. User then can run the generated code. Finally, critical 

modeling points for code generation are listed at the end. 

  

1. How to Download and Install GME, Java JRE, Eclipse, Aspectj Plug-in, and 
Pitch-RTI 

 

Downloading resources 

• Download GME 6.11.9 from the 

http://www.isis.vanderbilt.edu/projects/gme/ 

• Download Java JRE (Java Runtime Environment) version 5 or later from 

http://www.java.com/en/download/manual.jsp 

• Download Eclipse 3.x  from the http://www.eclipse.org/downloads/ 

• Download AspectJ Plug-in ajdt.1.4 for Eclipse 3.2 from 

http://www.eclipse.org/aspectj.  

• Download Pitch-RTI evaluation version from http://www.pitch.se 

• Download code Generator from http://www.ceng.metu.edu.tr/~e73883 

 

 

Installing GME 

Run GME 6.11.9’s setup file and install GME into the desired folder, e.g. c:\Program 

Files\GME. 

 

Installing Java JRE 

Extract the Java JRE compression file into the specified folder, e.g. C:\Program 

Files\Java\jre1.5.0. 
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Installing Eclipse 

1. Extract Eclipse compression file into the desired folder, e.g.  c:\eclipse-SDK-

3.0.1-win32. 

2. Run Eclipse.exe file in the extracted folder and start Eclipse. 

3. Choose workspace folder e.g. c:\eclipse-SDK-3.0.1-win32\workspace, 

while eclipse is started. 

4. Select Windows->Preferences… menu item and add previously installed Java 

JRE into the Eclipse (see Figure H-1) 

 

 

Figure H.1 Eclipse Java JRE Installation Window 

 

 

Installing Aspect J 

1. Extract the AspectJ compressed file (ajdt.1.4.zip) into the Eclipse folder (C:\ 

eclipse-SDK-3.0.1-win32). 

2. Alternatively, if extract the compressed file into another folder, plug-ins and 

features folder is created in it. Copy these two folders and paste them into the 

eclipse folder (c:\eclipse-SDK-3.0.1-win32). 
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Installing RTI middleware 

1. Run the downloaded RTI setup. In our example pitch-RTI setup namely 

prti1516le_v3.1.1.exe is run. 

2. Installed RTI libraries must be added into the Eclipse project. Select the project in 

which RTI is included and open properties of the project (see Figure H-2).  

3. Select Java Build Path and add jar files of the RTI libraries e.g. 

c:\Program Files\prti1516le\lib by pressing Add External 

JARs… button. 

 

 

Figure H.2. Adding External Library Jar Files into the Eclipse 

 

 

2. How to Install Code Generator as a GME Model Interpreter 
 

1. Extract the code generator compression file namely code_generator.zip into 

the desired folder, e.g. C:\eclipse-SDK-3.0.1-

win32\eclipse\workspace\NewCodeGenProject. 

2. Open Program Files\GME\SDK\Java folder. 

3. Run JavaCompRegister.exe model interpreter register program (Figure H-3). 
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4. Fill Name, Description, Menu/Tooltip fields as desired. An example filling 

is given in FigureH- 3. 

5. ClassPath must be the generator extracted folder (C:\eclipse-SDK-3.0.1-

win32\eclipse\workspace\NewCodeGenProject). 

6. Fill the Class field (org.isis.gme.bon.LSCCodeGen) exactly as in the 

Figure H-3. 

7. Then press the Register button. 

 

 

Figure H.3 Component Register Window 

 

 

8. Select input GME model (stms.mga in our example) by double-clicking on the 

input file so GME is started and opened with the input model. 

9. Select File->Register Components… menu item in GME. 

10. Select the code generator (LSCInterpreter in our example) in the components 

window in Figure H-4. 

11. Press the toggle button and enable the registered code generator in the GME 

environment toolbar. When mouse is moved on the toolbar element, name of the 

interpreter is shown. (Available components are indicated by an exclamation mark) 
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Figure H.4. Registered Components window 

 

 

3. How to Configure the Generator 
 

Generator provides a configuration document based on XML, called 

GeneratorConf.xml, with initial values for configuration parameters for the users.  

 

1. Define a path variable for the code generator namely GeneratorPath in the 

Environment Variables of the Windows XP operating system. 

Environment Variables are accessed in the control panel. This path presents 

the configuration file path that initially can be code generator path (C:\eclipse-

SDK-3.0.1-win32\eclipse\workspace\NewCodeGenProject). Note 

that for the other operating system this definition can be in different way. 

2. Configure our example STMS by setting values of the following parameters:  

– Seed for the random number generator, 

– The path for the generated code, 

– The path of the code generator 

– Maximum poll count for receiving an optional (cold) message, and 

– Waiting (sleep) time between two successive polls. 

– External library name and its prefix. 

 

So final configuration XML file can be presented (Figure H-5) as: 
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<?xml version="1.0" encoding="ISO-8859-1"?> 

<Confs> 

<Random seed="123456">  <!— for random number generator -->  

</Random> 

<Sleep time="100" passes="50">   

<!—sleep time and number of passes for cold message receiving--> 

</Sleep>  

<PATH> 

<Generated path="c:\eclipse-SDK-3.0.1-win32\eclipse\workspace\FedCodeGen1516\">  

</Generated>  <!—destination path for the generated code--> 

<Generator path="c:\eclipse-SDK-3.0.1-win32\eclipse\workspace\NewCodeGenProject   

\">  

</Generator> <!— path of the generator code--> 

</PATH> 

<External-InstanceLibs> 

 <InstanceLib name="RTILib" prefix="RTI"> <!— external library used in the generator--> 

</InstanceLib>  

</External-InstanceLibs> 

</Confs> 

Figure H.5. XML Configuration File for the Code Generator for  ShipFd  

 
 
4. How to Run the Generator 
 

1. After the GME input model is opened, run the code generator by clicking on the 

generator’s toolbar button in the GME.   

2. The generated code files are placed in the folder (c:\eclipse-SDK-3.0.1-

win32\eclipse\workspace\FedCodeGen1516 for our example) specified 

in the configuration file. In our example, Ship_MSC (Diagram class), ShipFd 

(Ship federate class), User (Live entity class), ShipFdAspect (computation 

aspect of ship federate), UserAspect (computation aspect of user) and 

BosporusFederationLibAspect (federation execution aspect) are 

generated. Generated three classes and three aspects are shown with a class diagram 

in Figure H-6. 

3. Copy the generated code folder into the Eclipse workspace folder (c:\eclipse-

SDK-3.0.1-win32\eclipse\workspace). If generated path is set to Eclipse 

workspace (in our example: c:\eclipse-SDK-3.0.1-
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win32\eclipse\workspace\ FedCodeGen1516 is set in the configuration 

file), it is not required. 

4. Open Eclipse and select File->New->AspectJ Project menu item. 

5. Give generated project folder name as a project name e.g. FedCodeGen1516. 

After that generated codes are appeared in the Eclipse.  

6. Add vendor specific RTI library (pRTI) into the project as described above (in our 

example Ship_MSC and Station_MSC). 

7. Copy the generated FDD file into the project folder (c:\eclipse-SDK-3.0.1-

win32\eclipse\workspace\FedCodeGen1516) described in the 

configuration file. In our example StraitTraffic.xml is copied.   

8. Copy LscRTILib library into the project folder. (Copy LscRTILib folder named 

RTIlib into the c:\eclipse-SDK-3.0.1-

win32\eclipse\workspace\FedCodeGen1516 in our example). 

 

Figure H.6.  Class Diagram of the Ship Federate 
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 a) Base Codes for our example 

The Ship_MSC, ShipFd and User classes constitute the base code of the ship 

federate application as shown in Figure H-6. Ship_MSC is a diagram code in which the 

ShipFd and User threads are defined and run. ShipFd is an instance code where 

federate RTI methods and LSC-specific auxiliary methods are generated.  User is also an 

instance code in which user sends ship name, direction and speed to the ship federate. 

public static void ShipFdMainMethod (){ 

  (…) // prechart code for federation management, initialization time management,  

         //declaration management, and  region creation 

  class MainThread_02ee extends Thread { //thread for the first operand of the parallel 

structure named MainThread. 

  MainThread_02ee() {} 

  public void run() { 

  do { //loop is repeated until the ReserveObjectInstanceName (ROIN) is succeeded. 

    condRecvMessageInput_03e0User(); // ship’s name comes from the user 

    // Reserve Object Instance Name is sent to RTI: 

    SendReserveObjectInstanceNameROINBosporusFederation("s0");  

    // “s0” is to be overridden by the computation aspect which will take ship name from user 

    // Object Instance Name Reserved (OINR) is received from RTI 

    condRecvObjectInstanceNameReservedOINRBosporusFederation(); 

    (…) //If OINR succeeds leave the loop 

    } while (!((Boolean)Ship_MSC.coldChoices.get("until_0300")).booleanValue());  

    (…)// Other Inputs: direction and speed come from the user. 

    SendRegisterObjectInstanceRegisteredShipObjectBosporusFederation(...); 

    // Register Object Instance is sent to RTI for the Ship object 

    SendUpdateAttributeValuesRegisteredShipObjectBosporusFederation(…); 

    // Update Attribute Values is sent to RTI for the Ship object 

    SendRequestAttributeValueUpdateDiscoveredShipObjectBosporusFederation(…);  

    // Request Attribute values Update is sent to RTI for the Ship object 

    doLaterMessageTimer_03c6(100); //timer is started for periodically send interactions 

    // While-Do Main Simulation Loop begins 

    while (((Boolean)Ship_MSC.coldChoices.get("ExitCondition_040f")).booleanValue()) { 

     //loop is repeated until the federate is resigned. 

Figure H-7. Excerpts from the Generated Java Code of Ship Federate 
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     (…) // The code generated for SendRadioMessage chart is inserted here.  

     // when a timeout occurs radio message interactions are sent and timer is restarted 

     // Time Management  methods begin 

      SendTimeAdvanceRequestTARBosporusFederation(new Double(55.0));  

     // Timestamp type Double comes from FAM.  Timestamp value (55) should be overridden. 

    condRecvTimeAdvanceGrantTAGBosporusFederation();  

    // Time Advance Grant is received from RTI. 

  }//end of main simulation loop. 

  (…) // The code generated for Exit Federation chart goes in here. 

  //federate is resigned and federation is destroyed. 

}//end of the main thread 

Figure H.7. Excerpts from the Generated Java Code of Ship Federate 

(Continue) 

 

 

To give a sense of the generated code, a part of the ship federate’s (see Figure H-7) and 

a sample RTI Ambassador Method (sendinteraction in Figure H-8a) and a 

federate Ambassador method (receiveinteraction in Figure H-8 b) are shown 

in the figures.  The first operand (main thread) of the parallel inline expression (see 

Figure 3.2) of the generated shipFd code is exemplified in Figure H-7. For every 

operand in a parallel inline expression occurring in the LSC, a thread (e.g. 

MainThread_02ee and CallbackThread_032c) is generated. For loop idioms, 

while-do or repeat-until code statements are generated. Values of loop 

conditions are retrieved from the dictionary (implemented as hashtable named 

coldChoices) defined in the computation aspect. In place of the chart references in 

the LSC model, the referenced charts’ codes are generated. For example, for 

CreateRegions reference,   CreateRegion and SetRangeBounds methods are 

generated. In Figure H-8a, interaction parameters are packed into an object of 

LSCObject.  Then the corresponding LscRTILib method (in this case, 

sendInteraction) is called. In Figure H-8b, a federate Ambassador method (in 

this case, receiveinteraction) example in the federate base code is shown. 
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public static boolean  

SendSendInteractionWithRegions_0536RadioMessageBosporusFederation(…) 

//parameters 

{ 

        LSCLib.LSCObject proc= new LSCLib.LSCObject(); 

        //interaction class information comes from HOMM. 

        proc.name="RadioMessage"; //interaction class name 

        proc.pars=new ArrayList(); //parameter list of the interaction class 

        LSCLib.LSCAttribute parNew0 =new LSCLib.LSCAttribute();  

       //parameter1 is declared 

        parNew0.name="CallSign"; //parameter1’s name 

        parNew0.type="Object"; //parameter1’s type in Java 

        parNew0.objClass="HLAASCIIstring"; //parameter1’s type in HLA datatype 

        parNew0.objVal=CallSign; //parameter1’s value 

        proc.pars.add(parNew0); //parameter1 is added to the parameter list 

        (…)//parameter2 is added. 

               //dimension and region data is added to the parameter list 

               //time stamp data is added to the parameter list 

        BosporusFederationRTILib.sendInteractionWithRegion(proc); 

       //same named LscRTILib method is called 

} 

Figure H.8 a. A Sample SendInteraction RTI Ambassador Method in 

Federate Base Code (ShipFd) 

  

 

public static void RecvReceiveInteractionRadioMessageBosporusFederation 

(LSCLib.LSCObject iClass,String TimeStamp,int SentOrderType,int ReceiveOrderType,String 

TransportationType)  

{}//received interaction parameter values are held in iClass. 

 Figure H.8 H. 8 b. A Sample ReceiveInteraction Federate Ambassador 

Call-back Method  in Federate Base Code (ShipFd) 
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 b) Codes for Aspects for our Example 

Two computation aspects and a federation execution aspect are generated, namely 

ShipFdAspect, UserAspect, and BosporusFederationLibAspect. 

ShipFdAspect overrides all RTI methods in the ShipFd federate base code. In 

ShipFdAspect, dictionaries and LSC-specific auxiliary methods’ (i.e. chooseOne, 

getLoopount) advices are also generated. 

 Two sample advices, namely, RTI Ambassador Method’s (send interaction) advice 

and a federate Ambassador method’s (receive interaction) advice, are shown in Figure 

H-9a and Figure H-9b, respectively. In Figure H-9a, federate send interaction method 

(cf. Figure H-8a) is caught in the ShipFd base code and preliminary logic (in italic) is 

filled in. The developer can edit this advice as described in the subsequent “Editing the 

Computation Aspect” section.  

 In Figure H-9b, federate receive interaction method (cf. Figure H-8b) is found on the 

ShipFd base code and received data is placed in its advice in the ShipFdAspect. 

This received data is the values of all parameters of the interaction class. In this example, 

the interaction class is RadioMessage with parameters callsign and message. 

 

pointcut pcSendSendInteractionWithRegions_0536RadioMessageBosporusFederation() 

//pointcut definition 

{ 

        CallSign=new Boolean(true);  

        //call sign is given  as preliminary computation in the computation aspect 

        Message=”Radio Message Sample”; //message is given as preliminary computation 

        (…) //declaration detail of dimension  is get outed 

        parChannelDimension2_0.strVal="ChannelDimension"; //dimension comes from FAM 

        (…) //declaration details of region  

        parChannel13_0.strVal="Channel1"; // region comes from FAM 

        (…) //other  details of dimension and region  

        TimeStamp=new Double(2.0);//must be overridden 

        proceed(CallSign,Message,RadioMessagewithRgnsDims,TimeStamp);  

        return true;  

} 

Figure H.9 a. A sample RTI Ambassador Method (advice) in Computation 

Aspect (ShipFdAspect) 
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pointcut pcRecvReceiveInteractionRadioMessageBosporusFederation (…) 

//pointcut definition 

{ 

        Object CallSign= (Object)((LSCLib.LSCAttribute)iClass.pars.get(0)).objVal; 

        System.out.println("Received CallSign Parameter:"+CallSign); 

        //callsign interaction class parameter is printed. 

        Object Message= (Object)((LSCLib.LSCAttribute)iClass.pars.get(1)).objVal; 

        System.out.println("Received Message Parameter:"+Message);  

        //Message interaction class parameter is printed. 

        System.out.println("Received TimeStamp:"+TimeStamp); 

        System.out.println("Received SentOrderType:"+SentOrderType); 

        System.out.println("Received ReceiveOrderType:"+ReceiveOrderType); 

        System.out.println("Received TransportationType:"+TransportationType); 

        proceed(iClass,TimeStamp,SentOrderType,ReceiveOrderType,TransportationType); 

} 

Figure H. 9 b. A sample Federate Ambassador Method (advice) in 

Computation Aspect (ShipFdAspect) 

 

 

BosporusFederationLibAspect (federation execution aspect) is mainly used 

to catch call-back methods from the Bosporus federation execution. A 

BosporusFederationRTILib object is instantiated from LscRtiLib in this 

aspect and it is used to reach actual RTI. A sample LscLibRTI definition 

(BosporusFederationRTILib) and a sample (ReceiveInteraction) advice 

are presented in Figure H-10.  

 In Figure H-10, ReceiveInteraction call-back method is caught by the 

federation execution aspect (BosporusFederationLibAspect) and forwarded to 

the federate (ShipFd.ReceiveInteraction). 
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public static RTILib ShipFd.BosporusFederationRTILib= new RTILib(); // LscRtiLib 

declaration for the federate 

(…)//unrelated code 

pointcut ReceiveInteraction(…)//pointcut definition  

{ 

        RTILib rtiLib = (RTILib)thisJoinPoint.getThis(); 

        // compare received callback with federation name as there might be other federations  

        if (rtiLib.federatename.compareTo("BosporusFederation")==0)  

            ShipFd.ReceiveInteraction(proc); //federate method in the base code is called 

} 

Figure H.10. A LscRTILib Definition and a Sample Advice in Federation 

Execution Aspect (BosporusFederationLibAspect) 

 

 

5. How to Edit and Navigate on the Generated Code: Especially the Computation 
Aspect  

 
• After running the generator, user can edit advices of ShipFdAspect and 

UserAspect (generated preliminary computation) in order to effect the desired 

computation. Pointcut definitions must be same otherwise advice codes are not 

weaved on the base code. Consider, for example, how ship name is retrieved from 

the user to send a reserveobjectinstance event to the federation. In the 

automatically generated preliminary computation, a sample string is sent to the 

ShipFd as a ship name by UserAspect. Naturally we would like the name to be 

entered by the user. User types in a name in the advice.  The corresponding edited 

code is illustrated in italic font in Figure H-11.  

• Generator marks the mandatory editing points in the computation aspect by giving 

comments such as must be edited. Specially, randomization logic and 

randomly generated variable values must be edited. 

• When user saves the edited aspect, (By pressing the save button in the Eclipse 

toolbar.), Eclipse automatically compiles and builds the project. If an error is 

occurred, Eclipse presents it by red markers on the code.  
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pointcut pcSendMessageInput_03e0ShipFd(…)//pointcut definition  

{ 

    System.out.print("Name:> "); 

   try { 

         g_Name = in.readLine(); //name is read from console  

   } catch (Exception ignored)   { } 

   Name=g_Name; 

   proceed(Name); 

   return true; 

} 

Figure H.11. Adding a Computation to User Ship Name Selection Method 

in User’s Computation Aspect 

(Modifications to the generated preliminary advice are in italic) 

 

  

6. How to Run the Generated Code 
 

• Having compiled the ship federate application, the ship federate is ready to be run. 

Select the generator project and activates the popup menu by clicking right mouse 

button. 

• In this menu, select Run As->AspectJ Java Application menu item. 

• Select Java Application window appears. In this window (Figure H-12), 

select the diagram name class which contains main function. In our example 

ShipFd-Ship_MSC is selected. And finally ship federate code is run. 
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Figure H.12. Select Java Application Window 

 

 

• Then the ship federate runs and joins the Bosporus federation with the station 

federate joined as well. Preparation of the station federate follows the same steps. A 

view from the running federation is presented in Figure H-13.  

 

 

Figure H.13. A View of the Ship Federate Running (pRTI snapshot) 
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7. What are the Critical Modeling Points for Code Generation 
 

• Model, atom, and reference names are used for variables in the code generation so 

names must be variable identification form. For example, they do not contain blank, 

slash, minus sign, bracket, etc and do not start with numbers. 

• Model must be complete and correct for syntactically and semantically. For example 

events’ precedence values must be ordered and correct. References in the model 

must be referred to the correct model elements. 
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