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ABSTRACT 
 
 

HOW DOES THE STOCK MARKET VOLATILITY CHANGE AFTER 

INCEPTION OF FUTURES TRADING? THE CASE OF THE ISE NATIONAL 30 

STOCK INDEX FUTURES MARKET 

 
 

Esen, Đnci  

M.Sc., Department of Financial Mathematics 

Supervisor : Assist. Prof. Dr. Seza Danışoğlu 

 
September 2007, 85 pages 

 
 
As the trading volume in TURKDEX, the first and only options and futures exchange 

in Turkey, increases, it becomes more important to have an understanding of the 

effect of stock index futures trading on the underlying spot market volatility. In this 

respect, this thesis analyzes the effect of ISE-National 30 index futures contract 

trading on the underlying stocks’ volatility. In this thesis, spot portfolio volatility is 

decomposed into two components and this decomposition is applied to a single-

factor return-generating model to focus on the relationships among the volatility 

components rather than on the components in isolation. In order to measure the 

average volatility and the cross-sectional dispersion of the component securities and 

the portfolio volatility for each day in the sample period, a simple filtering procedure 

to recover a series of realized volatilities from a discrete time realization of a 

continuous time diffusion process is used. Results reveal that inception of futures 

trading has no significant effect on the volatility of the underlying ISE National 30 

index stock market. 

 
 
Keywords : Stock Market Volatility, Derivatives, Futures, Diffusion Function 

Estimation 
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ÖZ 
 
 
VADEL Đ ĐŞLEMLER BAŞLADIKTAN SONRA HĐSSE SENEDĐ PĐYASASININ 

OYNAKLIĞI NASIL DEĞĐŞTĐ? ĐMKB ULUSAL 30 ENDEKSĐNE DAYALI 

VADEL Đ ĐŞLEM SÖZLEŞMELERĐ ÜZERĐNE BĐR ÇALIŞMA 

 
 

Esen, Đnci 

Yüksek Lisans, Finansal Matematik Bölümü 

Tez Yöneticisi : Yard. Doç. Dr. Seza Danışoğlu 

 
Eylül 2007, 85 sayfa 

 
 
Türkiye’deki ilk ve tek vadeli işlemler ve opsiyon borsası olan VOBAŞ’ta işlem 

hacmi arttıkça vadeli işlemlerin dayanak spot piyasanın oynaklığına etkilerini 

anlamak önem kazanmakta olup bu tezde IMKB Ulusal 30 endeksine dayalı vadeli 

işlem sözleşmelerinin işlem görmesi sonucu dayanak hisse senetlerinden oluşturulan 

bir portföyün oynaklığındaki değişiklikler araştırılmıştır. Söz konusu etkileşimin 

araştırılması amacıyla spot portföy oynaklığı bileşenlerine ayrılmış ve vadeli işlem 

alım satımı sonucu bileşenler arasındaki bağıntılarda bir değişiklik olup olmadığının 

tespitine yönelik olarak, bu ayrım tek faktörlü bir getiri modeline uygulanmıştır. Spot 

portföy oynaklığının bileşenlerinin günlük bazda hesaplanmasında ise sürekli 

diffizyonların kesikli zamandaki gerçekleşmelerine basit bir filtreleme yöntemi 

uygulanmıştır. Sonuçlar ĐMKB Ulusal 30 endeksine dayalı vadeli işlem 

sözleşmelerinin işlem görmesinin ĐMKB Ulusal 30 endeksinde yer alan hisse 

senetlerinin oynaklığı üzerinde bir etkisi bulunmadığına işaret etmektedir.  

 
 
Anahtar Kelimeler: Hisse Senedi Piyasası Oynaklığı, Vadeli Đşlem Sözleşmeleri, 

Türev Araçlar, Diffizyon Fonksiyonu Tahmini  
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CHAPTER 1 

 

 

INTRODUCTION 

 

Origins of organized securities markets in Turkey date back to the second 

half of the 19th century. The very first securities market was named “Dersaadet 

Tahvilat Borsası (Đstanbul Bond Exchange)” and it was established during the 

Ottoman Empire period in 1866 (ISE web site). Following the foundation of the 

Turkish Republic, “Securities and Foreign Exchange Law No. 1447”was passed in 

1929 and it provided a basis for an organized Stock Exchange under the name of 

“Istanbul Securities and Foreign Exchange Bourse.” This new stock exchange grew 

in a short period of time and contributed considerably to the financing of the real 

sector. Unfortunately, both the 1929 economic crisis and the outbreak of the Second 

World War ended up hampering the success of the stock exchange. Still, during the 

post-war period, as a result of the rapidly growing industrial sector, an increasing 

number of companies offered their shares to the public and faced strong demand 

from individual investors. 

During the first half of 1980s, the Turkish securities markets experienced 

serious developments in terms of setting up of the legal and institutional 

infrastructure necessary for sound capital movements within a financial system. The 

Capital Markets Law (CML) was passed in 1981, and the Decree by Law No.91 

establishing the basic principles concerning the foundation and operations of 

securities exchanges was passed in October 1983. In the following year, the 

Regulation concerning the foundation and operations of the securities exchanges was 

published in the Official Gazette. Following the adoption of related regulations in the 

subsequent period, in December 1985 the Istanbul Stock Exchange (ISE) was 

officially established and started its operations on January 3, 1986. Currently ISE is 

comprised of an equities market, a bonds and bills market and an international 

securities market.  
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Despite certain macro-economic imbalances, Turkish capital markets have 

made considerable progress both qualitatively and quantitatively during their 

relatively short history. This fact reveals itself in the trend of capital market 

indicators throughout last two decades. The number of corporations with shares 

traded on the ISE equities market was 80 by the end of 1986, the year in which the 

ISE was established. As of the end of 2006, the number of corporations registered 

with the CMB is 604, and 316 of these corporations are listed on the ISE. Despite the 

dominance of the government as a participant in the Turkish financial markets, the 

funds that are transferred to the private sector via stock issues have accumulated to as 

much as US $ 29 billion between 1986 and the year-end 2005 . As of the end of 

2006, the number of investors in the ISE has reached 1,068,584 (CMB 2005 year 

book). 

Although the Turkish capital markets have undergone a great progress as an 

emerging economy, what is evident regarding the economy as a whole is also evident 

for the capital markets as well: the prices of financial securities are very volatile due 

to macro-economic imbalances as well as domestic factors such as political stability 

and international factors such as exchange rates. This fact is supported if the market 

capitalization and market index level figures are examined. Total market 

capitalization in accordance with volatility in prices has shown a very uneven pattern 

over the years. Market capitalization, which was only 938 million US Dollars (0.7 

million YTL) by the end of 1986, reached the level of 163.8 billion US Dollars (230 

billion YTL) at the end of 2006. When annual changes in market capitalization are 

analyzed, it is seen that market capitalization had the highest increase in dollar terms 

during 1999 (236%). Following this increase, market capitalization decreased by 

39%, 31% and 27.9% in 2000, 2001 and 2002 respectively and then increased by 

100.6% in 2003, 42.1% in 2004, 66% in 2005 and 0.6% in 2006 (CMB 2006 year 

book). Moreover, in a general pattern of cyclical fluctuations, ISE indices, composed 

in order to calculate price and return performances of all shares as well as on the 

basis of relative markets and sectors, both in terms of New Turkish Lira and US 

dollar were volatile. The following figure presents the percentage return series of ISE 

National-100 Index closing values for the last 7 years. The return series should be 
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interpreted as the main indicator of volatility in the prices of shares quoted on the 

National Market. 
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Figure 1: ISE-National 100 Index Daily Percentage Return Series 

 
 
 
In the above figure, it is clearly seen that the daily percentage return of ISE-

National 100 Index has oscillated in a wide band around 0, implying that the stock 

market as a whole was volatile. Recall that volatility refers to the standard deviation 

of the change in the value of a financial instrument within a specific time horizon and 

is often used to quantify the risk of the instrument over that time period. According 

to the figure, investors have realized returns that were different from their expected 

returns so, the riskiness of investing in Turkish capital markets has been more that of 

most of the other developing markets. This type of an investment environment is 

only preferable if the investor is a risk taker. However, the theory of investment 

suggests that different investors may have different choices regarding the level of 

risk to assume, and even that same investor may prefer to take different risk levels at 

different times. In order to accommodate these different risk preferences, the 

financial system has to offer a means by which investors can manage and adjust the 

level of risk that they take. The derivative markets and derivative instruments are one 

of the best possible ways of achieving this objective.  



 

 
 
4 

In finance, a derivative is a financial instrument the value of which depends 

on the value of an underlying asset's value. With such an instrument, rather than 

trading or exchanging the asset itself, market participants enter into an agreement to 

exchange money, assets or some other value at some future date based on the 

underlying asset. Examples of underlying assets range from cotton, to shares of 

common stock, to interest rates. One of the simplest derivative instruments is a 

futures contract. This is an agreement to buy or sell the underlying asset (or the 

equivalent cash flows) at a future date. The buying or selling price, the amount of the 

underlying asset to be exchanged and the date on which the exchange will take place 

are all determined on the day that the futures contract is created. The exact terms of 

the derivative (the payments between the counter parties) depend on, but may or may 

not exactly correspond to, the behavior or performance of the underlying asset. The 

diverse range of potential underlying assets and payoff alternatives leads to a very 

large number of different derivative contracts that can be traded in the markets. The 

main types of derivatives are futures, forwards, options and swaps. 

Forward contracts are negotiated between two parties, with no formal 

regulation or exchange and involve the purchasing (long position) or selling (short 

position) of a specific quantity of a commodity (e.g., corn or gold), foreign currency, 

or financial instrument (e.g., bonds or stocks) at a specified price (delivery price), 

with delivery or settlement at a specified future date (maturity date). The price of the 

underlying asset for immediate delivery is known as the spot price. 

Futures contracts are standardized forward contracts that are traded on an 

organized exchange and involve the making or taking delivery of a specified quantity 

of a commodity, a foreign currency, or a financial instrument at a specified price, 

with delivery or settlement at a specified future date.  

A futures contract is entered into through an organized exchange, using banks 

and brokers. These organized exchanges have clearinghouses, which may be 

financial institutions or part of the futures exchange. They interpose themselves 

between the buyer and the seller, guarantee obligations, and make futures liquid with 

low credit risk. The changes in the value of the underlying asset  require a daily 

mark-to-marking and a cash settlement (i.e. disbursed gains and daily collected 
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losses) for both sides of a futures contract.  

Options are the other commonly used derivative instruments and give the 

holder the right and not the obligation to buy or sell an underlying asset at a specific 

price on or before a future date. The two main types of option contracts are call 

options and put options, while some others include stock (or equity) options, foreign 

currency options, options on futures, caps, floors, collars, and swaptions (options 

written on swap contracts). 

A swap, on the other hand, is a flexible, private, forward-based contract or 

agreement between two counter parties to exchange streams of cash flows based on 

an agreed-on (or notional) principal amount over a specified period of time in the 

future. Swaps are usually entered into through brokers or dealers who take an up-

front cash payment or who adjust the interest rates to bare default risk. The two most 

prevalent swaps are interest rate swaps and foreign currency swaps, while others 

include equity swaps and commodity swaps. 

The derivatives market serves the needs of several groups of users, including 

those parties who wish to hedge, those who wish to speculate, and arbitrageurs. 

• A hedger enters the market to reduce risk. Hedging usually involves 

taking a position in a derivative financial instrument, which has opposite 

return characteristics of the asset or position being hedged, and has the 

purpose of offsetting losses or gains in order to eliminate return volatility.  

• A speculator enters the derivatives market in search of profits, and is 

willing to accept risk. A speculator takes an open position in a derivative 

product (i.e. there is no offsetting cash flow exposure to offset losses on 

the position taken in the derivative product).  

• An arbitrageur is a speculator who attempts to lock in near-riskless profits 

that can be earned from price differences by simultaneously buying and 

selling  identical financial instruments at two different prices. 

TurkDex, the very first and only options and futures exchange in Turkey, was 

launched and began its operations on 4 February 2005. The objective of founding the 

futures and options exchange was to satisfy the hedging, speculation or arbitrage 

needs of Turkish investors. As of the end of May 2007, only 4 kinds of futures 
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contracts are traded on the TurkDex, although it was launched with the purpose of 

offering both futures and options. The kinds of futures traded on TurkDex are as 

follows (Official website of TurkDex): 

1) Currency Futures Contracts written either on YTL/EURO rate or 

YTL/DOLLAR exchange rate 

2) Equity Index Futures Contracts written either on ISE National 30 Index or 

ISE National 100 Index 

3) Interest Rate Futures Contracts written either on 91-Day T-Bill interest 

rates or 365-Day T-Bill interest rates or T-Benchmark 

4) Commodity Futures Contracts written on either cotton or wheat or gold. 

Among these contracts, the equity index futures contracts is of most 

relevance for this thesis, since the stock index futures are deemed as one of the most 

successful financial innovations of the 1980s (Ryoo and Smith, 2004). Today, stock 

index futures and options trade in developed financial markets all over the world, 

with new contracts launched nearly every year. In contrast, much of the futures 

trading in emerging markets is a relatively recent phenomenon. Although Turkey is 

one of the growing emerging markets, it was not until 4 February 2005 that futures 

contracts based on the ISE National 30 Index and ISE National 100 Index were 

introduced. However, since the introduction of the futures contracts on interest rates, 

indices, commodities and exchange rates, the trading volumes have grown 

remarkably. The following tables provide the trading volume figures. Table 1 

presents the yearly trading volume figures for year 2005 and 2006 at each category 

of futures contracts, and Table 2 presents the trading volume figures for each of the 

equity index futures contracts since the inception of TurkDex. 
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Table 1: The yearly trading volume figures for year 2005 and 2006 for each class of futures 
written on an different underlying asset category 

 

Category of 
Underlying Asset 

Year 2005 
(YTL) 

Year 2006 
(YTL) 

Total (YTL) 
(04.02.2005-
31.12.2006) 

Percentage 
Change (from 
2005 to 2006) 

Equity Indices 658,743,565 10,608,360,610 11,267,104,175 1510.39 
Interest Rates 19,945,793 26,049,053 45,994,846 30.59 

Exchange Rates 2,240,018,049 6,747,504,822 8,987,522,871 201.22 
Commodities 771,525 4,240,704 5,012,229 449.65 
Total (YTL) 2,919,478,931 17,386,155,189 20,305,634,120 495.52 

 
 
 

Table 2: The trading volume figures for each of the equity index futures contract 
 

Contract Code 
Maturity of the 

Contract 
Underlying Equity Index 

Year 2005 
(YTL) 

Year 2006 
(YTL) 

101F_IX1001205 December 05* ISE National 100 Index 72,669,060  
101F_IX1000206 February 06 ISE National 100 Index 19,250,703  
101F_IX1000406 April 06 ISE National 100 Index 3,433,103  
111F_IX0300205 February 05* ISE National 30 Index 2,250,016  
111F_IX0300405 April 05* ISE National 30 Index 18,154,085  
111F_IX0300605 June 05* ISE National 30 Index 40,816,329  
111F_IX0300805 August 05* ISE National 30 Index 61,593,941  
111F_IX0301005 October 05* ISE National 30 Index 169,525,652  
111F_IX0301205 December 05* ISE National 30 Index 230,720,949  
111F_IX0300206 February 06 ISE National 30 Index 29,657,990  
111F_IX0300406 April 06 ISE National 30 Index 10,671,740  
101F_IX1000206 February 06** ISE National 100 Index  60,063,853 
101F_IX1000406 April 06* ISE National 100 Index  62,295,678 
101F_IX1000606 June 06** ISE National 100 Index  27,361,840 
101F_IX1000806 August 06** ISE National 100 Index  749,085 
101F_IX1001006 October 06** ISE National 100 Index  6,025,955 
101F_IX1001206 December 06** ISE National 100 Index  4,617,085 
101F_IX1000207 February 07 ISE National 100 Index  38,300 
101F_IX1000407 April 07 ISE National 100 Index  506,295 
111F_IX0300206 February 06** ISE National 30 Index  390,930,918 
111F_IX0300406 April 06** ISE National 30 Index  907,237,368 
111F_IX0300606 June 06** ISE National 30 Index  1,528,584,573 
111F_IX0300806 August 06** ISE National 30 Index  1,802,671,575 
111F_IX0301006 October 06** ISE National 30 Index  2,013,930,633 
111F_IX0301206 December 06** ISE National 30 Index  3,461,245,768 
111F_IX0300207 February 07 ISE National 30 Index  277,239,813 
111F_IX0300407 April 07 ISE National 30 Index  64,861,875 

* Contracts closed between 4 Feb-30 Dec 2005 
** Contracts closed between 2 Jan-29 Dec 2006 
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What is evident from the above tables is that futures written on stock indexes 

have been the most frequently traded contracts since 2005 and that the trading 

volume in equity index future contracts is dominated by contracts written on the ISE- 

National 30 Index. In year 2005, the trading volume in futures contracts with the 

underlying asset as ISE National 30 Index has been 563,390,702 YTL and this figure 

has increased to 10,446,702,523 YTL by the end of 2006 (a 1,754% increase). On the 

other hand, 2005 annual trading volume of ISE-National 30 Index stocks has been 

269,970,134,449 YTL and 2006 annual trading volume of ISE-National 30 Index 

stocks has been 325,157,131,314 YTL, showing that the trading volumes of the 

futures contracts on ISE-National 30 Index as a percentage of the trading volume in 

the underlying asset were realized as %0.2 and %3 in 2005 and 2006, respectively. 

Although the percentage of the trading volume of the equity index futures compared 

to trading volume of the underlying instrument has been low until the end of 2006, 

the progress of the trading volume in futures contracts written on ISE-National 30 

Index is promising. It looks like as the trading volume in TURKDEX increases, it 

becomes even more important to have an understanding of the interaction between 

futures and spot markets, and specifically of the effect of stock index futures trading 

on the underlying spot market.  

Before continuing with the literature survey about the effect of stock index 

futures trading on the underlying spot market, a detailed description of the ISE-

National 30 Index futures contract is given below in order to provide a better 

understanding of futures trading on TurkDex.  

First, let’s focus on the forces that derive an investor to buy or sell the ISE-

National 30 Index futures contract. All risk-averse investors like investing their 

savings in alternatives that provide  the highest return for a given level of risk. The 

stock market is one of these alternatives. Typically, most of the stocks and therefore 

the stock indexes increase in value when the economy is in an expansionary phase 

and decline in value when the economy is in a recessionary phase. If an investors, for 

instance, makes an investment in a portfolio of stocks that also make up the ISE 

National 30 index, this investor’s holding period return will fluctuate with the phases 

of the economy. In other words, his returns will increase while the economy is 
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expanding and will decrease while the economy is contracting. This typical volatility 

in the returns may discourage a lot of risk averse individuals and they may refrain 

from investing in the stock market because of its high expected risk. However, if the 

same investors can find a way to decrease or completely eliminate this risk, the stock 

market may once again become a viable investment alternative, even for the most 

risk averse investor. The ISE-30 Index Futures contract provides the investors with 

the opportunity to invest in the stock market based on their expectations regarding 

the direction of overall economy while hedging themselves against the return 

volatility by taking an appropriate position in the futures market. If the investor 

expects that the economy is going to have an expansionary movement, then he can 

buy a portfolio of stocks that mimic the ISE-30 index and then he can take a short 

position in the ISE-30 futures contract. With such a combined position, the investor’s 

return volatility will be decreased since the cash market position and the futures 

market position are constructed to move in opposite directions under all possible 

scenarios. Therefore, the offsetting positions will generate a return whose volatility is 

a lot lower than the return that the investor can earn if he took a position only in the 

stock market and not in the futures market.  

The underlying asset of this futures contract, the ISE National-30 index, is 

composed of National Market companies, except for investment trusts. The 

constituent 30 companies are selected on the basis of pre-determined criteria 

determined by the ISE administration. The stocks are ranked according to their  

market values and their daily average trading values. Those stocks which have the 

highest market values and daily average trading values are included in the ISE 

National-30, ISE National-50 and ISE National-100 indices (official website of ISE).  

The ISE indices are weighted by the market capitalization of the publicly held 

portion (the stocks kept in custody at Takasbank, except for those kept in non-

fungible accounts) of each constituent stock. All of the indices have varying base 

values and the continuity of the indices is maintained by adjusting these base values 

(the divisor of the index formula). 

The following table provides the contract specifications for the futures 

contract written on the ISE-National 30 Index.  
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Table 3: Contract specifications of a future contract on ISE-National 30 Index 
 

Contract Size Value calculated by dividing the index value by 1.000 and multiplying the 
quotient by YTL 100  (ISE National-30 Index/1,000)*YTL 100 (Example: 
47.325*100=YTL 4,732.5)  

Price Quotation ISE National-30 Index value, divided by 1,000 shall be quoted significant 
to  three decimals. 

Daily Price Limit ±%10 of the established Base Price for each contract with a different 
contract month 

Minimum Price 
Fluctuation (Tick) 

0.025 (25 ISE National-30 Index points) Value of one tick corresponds to 
YTL 2.5 

Margins Initial margin is 600 YTL and maintenance margin is 450 YTL where 
maintenance level is 75%. 

Contract Months February, April, June, October and December (Contracts with three 
different expiration months nearest to the current month shall be traded 
concurrently)  

Final Settlement 
Day 

Last business day of each contract month  

Last Trading Day Last business day of each contract month  
Settlement Method Cash Settlement 
Final Settlement 
Price 

Arithmetic average of 10 randomly selected, less than 30 seconds apart, ISE 
National-30 Index values executed at the ISE within the last 15 minutes 
before the closing of the trading session of the Exchange on the last trading 
day shall be used as the last settlement price of the futures contract. If the 
ISE trading session closes before that of the Exchange, calculation method 
being the same, calculations shall be made based on the ISE National-30 
Index values executed during the last 15 minutes before the closing of the 
ISE trading session  

Daily Settlement 
Price  

Daily settlement price is established at the closing of each trading session as 
follows: 

1. Weighted average price of all the transactions performed within the 
last 10 minutes before the closing of the trading session based on 
the quantity thereof shall be established as the daily settlement 
price.      

2. If number of transactions performed within the last 10 minutes 
before the closing of the trading session is less than 10, weighted 
average of the last 10 transactions before the closing shall be 
calculated instead.  
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The rest of this thesis is organized as follows: Chapter Two presents the 

literature survey on the effects of futures trading on the volatility of the underlying 

spot market. Chapter Three provides a detailed discussion of the methodology used. 

Chapter Four presents the data, preliminary statistics and analysis results. Finally, 

Chapter Five provides conclusions. 
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CHAPTER 2 

 

 

LITERATURE SURVEY

 

 

The trading of futures on equity indices aims to provide a hedging alternative 

for the risk taken in the spot market. Therefore, the effect of such trading on the 

volatility and riskiness of the spot market has critical importance from the point of 

view of both investors of the stock market, the stock index futures and the regulators 

such as the CMB.  In fact, this is one of the most widely debated issues in the finance 

literature. There are arguments for and against the introduction of derivative 

instruments. The main argument against stock index futures trading claims that the 

existence of a futures market may increase volatility of the stock market which 

provides the underlying assets for the contracts. This argument is based on the 

assumption that, because of their high degree of leverage, futures markets are likely 

to attract risk takers and speculators. The investor is able to take a futures position by 

only depositing a small percentage of the contract size. For example, to open a 

position on a ISE-National 30 Index futures, the investor is required to deposit only 

600 YTL. The speculative investment strategies of risk takers and speculators are 

likely to increase the volatility in the market. Another argument against futures 

trading is that futures markets provide otherwise unattainable trading strategies like 

index arbitrage and portfolio insurance. Index arbitrage, for example, attempts to 

detect temporary deviations in futures prices from the theoretical no-arbitrage values 

found by use of current spot prices. Specifically, arbitragers buy (sell or short sell) 

the spot stock portfolio and simultaneously sell (buy) the index futures contracts 

when the futures prices exceed (fall short of) the spot price of the index, net of 

carrying costs (Chang et al, 1999). Therefore, arbitragers drive spot prices up or 

down. These investment strategies are also likely to increase the underlying stock 
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market volatility. 

There are also arguments that support the introduction of derivative 

instruments. These arguments claim that futures markets play an important role in 

price discovery and have a beneficial effect on the underlying spot markets. This 

viewpoint asserts that speculation in the futures market tends to stabilize cash prices. 

Futures trading adds more informed traders to the cash market, making it more liquid 

and, therefore, less volatile. Both of the arguments against and in favor of futures 

market trading have some theoretical and empirical support. Here are some of the 

studies that address this issue. 

Edwards (1988) is the first to study the effect of S&P500 stock index futures 

trading on the volatility of the underlying S&P500 index. He searches for the effect 

between 1972 and 1987 using daily price volatility series of the index by simply 

comparing the estimated volatility of the S&P500 index before and after the 

inception of futures trading. Edwards finds a statistically significant decrease in stock 

market volatility after the introduction of the stock index futures contract.  

Lockwood and Linn (1990) study the variance of hourly market returns 

computed from opening, closing, and intraday hourly values of the Dow Jones 

Industrial Average (DJIA) for the January 1964-February 1989 period. They perform 

tests for homoscedasticity (equality of variances between different periods). Contrary 

to the findings of Edwards (1988), their results indicate that return volatility fell from 

the opening hour until early afternoon and rose thereafter and was significantly 

greater for intraday versus overnight periods. Market variance was also shown to 

change significantly over time: rising after NASDAQ’s start in 1971, rising after 

trading in stock options began trading in 1973, falling after fixed commissions were 

eliminated in 1975, rising after trading in stock index futures was introduced in 1982, 

and falling after margin requirements for stock index futures became larger in 1988. 

Bessembinder and Seguin (1992) examine whether greater futures-trading 

activity is associated with greater equity volatility by using the daily data of S&P500 

between January 1978 and September 1989. They decompose each trading activity 

series into expected and unexpected components and estimate a conditional expected 

return and a conditional standard deviation for the return data. Bessembinder and 
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Seguin find evidence that unexpected S&P500 futures trading is positively related 

with spot market volatility but the relationship between spot market volatility and 

expected futures volume is negative. This means that active futures markets are 

associated with decreased rather than increased equity market volatility. These 

findings are consistent with the theories which predict that active futures markets 

enhance the liquidity and depth of  equity markets. 

Darrat and Rahman (1995) focus on the jump volatility and use the 

FPE/multivariate Granger-causality model to examine whether activities in the 

futures market and other relevant factors have Granger-caused jump volatility of 

stock prices. Monthly data on the S&P 500 index spot prices and the S&P 500 index 

futures trading volume and open interest spanning the period May 1982 through June 

1991 are used. The empirical results of this study suggest that futures trading 

activity, no matter how it is measured,  is not a force behind the recent episodes of 

jump volatility. Darrat and Rahman conclude that S&P 500 index futures volume did 

not affect the spot market volatility. 

Antoniou and Holmes (1995) examine the impact of trading in the FTSE-100 

Stock Index Futures on the volatility of the underlying spot market for the case of 

England. The GARCH family of techniques, suggested first by Bollerslev (1986), is 

used. Their results suggest that futures trading has led to increased volatility, but that 

the nature of volatility did not change post-futures. Based on their finding that price 

changes are integrated pre-futures, but are stationary post-futures, they conclude that 

the introduction of futures has improved the speed and quality of information flow in 

the spot market.  

Chang et al (1999) study the effects of futures trading on the Nikkei 225 

index for the period of September, 1982 to December, 1991. They propose new tests 

to examine whether stock index futures affect stock market volatility. In their study, 

spot portfolio volatility is decomposed into two components: the cross-sectional 

dispersion and the average volatility of returns on the portfolio's constituent 

securities. They apply the decomposition to a single-factor return-generating model 

to focus on the relationships among the volatility components rather than (as in 

traditional tests) on the components in isolation. In order to measure the average 
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volatility and the cross-sectional dispersion of the component securities and the 

portfolio volatility for each day in the sample period, they use a simple filtering 

procedure to recover a series of realized volatilities from a discrete time realization 

of a continuous time diffusion process. This procedure is outlined in papers by 

Chesney, Elliott, Madan and Yang (Chesney et al., 1993) and Pastorello (1996). The 

Chang et. al. findings are consistent with the hypotheses that futures trading 

increases spot portfolio volatility but that there is no volatility ``spillover'' to stocks 

against which futures are not traded. The increase in volatility attributable to futures 

trading is small compared with volatility shifts induced by changes in broad 

economic factors. 

Bologna (1999) analyzes the effect of the introduction of stock index futures 

(a futures contract on the MIB30 stock index) on the volatility of the Italian Stock 

Exchange for the period of November, 1994 to December, 1997. His study addresses 

two issues: First, the study analyses whether the reduction of stock market volatility 

evidenced in the post-futures period is effectively due to the introduction of the 

futures contract. Second, the study analyzes whether the `futures effect', if confirmed, 

is immediate or delayed with respect to the moment of the futures trading onset. In 

his paper, the GARCH family methods are used to show that the introduction of 

stock index futures per se has led to diminished stock market volatility and no other 

contingent cause seems to have a systematic reducing effect. Further, the results also 

suggest that the impact of futures onset on the underlying market volatility is likely 

to be immediate. These findings are consistent with those theories stating that active 

and developed futures markets enhance the efficiency of the corresponding spot 

markets.  

Most of these studies examine the impact of the introduction of index futures 

in one market and thus are unable to make a comparison across markets. Gulen and 

Mayhew (2000) examine stock market volatility before and after the introduction of 

index futures trading in twenty-five countries, using various GARCH models 

augmented with either additive and/or multiplicative dummy. Their statistical model 

takes care of asynchronous data, conditional heteroscedasticity, asymmetric volatility 

responses, and the joint dynamics of each country’s index with the world market 
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portfolio. They find that futures trading is related to an increase in conditional 

volatility in the U.S. and Japan, but in nearly every other country, no significant 

effect can be found.  

Wu Yu (2001) also examines the effect of stock index futures trading on the 

stock markets of US (S&P 500 Index), UK (FT-SE 100 Index), Japan (Nikkei 225 

Index), France (General Share Index), Australia (All Ordinaries Share Index) and 

Hong Kong (Hang Seng Index) by using the modified Levene statistic and a 

switching GARCH model for a period of 500 days before and 500 days after the 

futures trading inception for each index. He finds that stock market volatility 

increases significantly after the stock index futures are listed on the underlying index 

with the exception of the London and  Hong Kong stock markets. 

More recently, Bae et al (2004) examine the effect of the introduction of 

index futures trading in the Korean markets on spot price volatility and the market 

efficiency of the underlying KOSPI 200 stocks. They compare this effect  relative to 

the carefully matched non-KOSPI 200 stocks. Employing both an event study 

approach and a matching-sample approach for the market data during the period of 

January 1990 to December 1998, they find that the introduction of the KOSPI 200 

index futures trading is associated with greater market efficiency but, at the same 

time, greater spot price volatility in the underlying stock market. They also report 

that KOSPI 200 stocks experience lower spot price volatility and higher trading 

efficiency compared to non-KOSPI 200 stocks after the introduction of futures 

trading. They claim that the trading efficiency gap between the two groups of stocks, 

however, declines over time and vanishes following the addition of options trading. 

Overall, their results suggest that while futures trading in Korea increases spot price 

volatility and market efficiency, there exists volatility spillovers to stocks against 

which futures are not traded.  

Ryoo and Smith (2004) also investigate the impact of stock index futures 

trading on the Korean stock market by employing GARCH-type methods for the 

daily and five-minute frequency data for the period between September 1993 and 

December 1998. They find an increase in volatility and a decrease in the persistence 

of volatility following the introduction of stock index futures.  
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As exchange-traded stock index futures and other derivatives continue to play 

a greater role in financial markets, it is increasingly important to understand the 

effect of derivatives trading on the underlying spot markets. However, the existent 

literature on the effects of stock index futures trading on spot market volatility has 

focused primarily on developed markets, and it is unclear to what extent these results 

are applicable to emerging markets. Therefore, this thesis aims to produce a 

contribution to this literature by analyzing the volatility of the stock market after the 

inception of stock index futures trading for the case of Turkey. 
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CHAPTER 3 

 

 

METHODOLOGY 

 

 

The typical approach adopted in the literature to examine the effect of futures 

trading on spot market volatility is to compare the spot price volatility prior to the 

event with that of post-futures. In this thesis, a methodology based on the technique 

proposed by Chang et.al.(1999)  is employed in order to make the carry out a similar 

before and after comparison on the volatility of the ISE National 30 Index. The 

model also and examines the sources of the effect of stock index futures trading on 

the ISE National 30 Index portfolio in detail. This thesis is the first study that 

analyzes the Turkish financial markets in this context. 

Chang et al (1999) propose that the total volatility of a spot portfolio can be 

decomposed into the components of a cross-sectional dispersion (weighted deviation 

of each portfolio asset’s return from the portfolio return) and average volatility of 

returns of the portfolio's constituent securities. The decomposition is applied to a 

single-factor return-generating model to determine the relationships among the 

volatility components. In this model, a shift in broad economic factors induces 

proportional shifts in spot portfolio and average volatility. However, futures-related 

volatility shifts change the proportionality of this relation in a predictable fashion. 

The predictions regarding the direction of the shifts in the proportionality of 

components is discussed in detail in the next section. The model also predicts 

structural shifts in the relationship between cross-sectional dispersion and spot 

portfolio (and average) volatility when futures trading begins. 

The model is empirically estimated using data from the Turkish financial 

markets. More specifically, the volatility of the ISE National 30 index stocks and the 

volatility of non-ISE National 100 index stocks are analyzed and compared against 
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each other during periods that precede and follow the introduction of the ISE 

National 30 index futures trading on the TURKDEX. The logic behind this 

comparison is that both set of stocks are susceptible to broad economic disturbances, 

but only the ISE National 30 index stocks are impacted directly by futures trading. 

Thus, for the model based on volatility decomposition, shifts in the relationship 

between the volatility components for the ISE National 30 index stocks but not for 

the non-ISE National 100 index stocks, are unlikely to be explained by changes in 

broad economic factors and are more than likely due to the start of futures trading. 

3.1. THE DECOMPOSITION 

In this section, the relationship driven by Chang et al. between the volatility 

of a portfolio (PVOL), average volatility (AVOL) of securities in the portfolio and the 

expected cross-sectional dispersion (E(CSD)) of those securities is discussed. Let’s 

begin with the definition of cross-sectional dispersion at time t. 
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In Equation (1), r it (rpt) is the return of security i (portfolio p) at time t, Wit is 

the weight of each stock in the portfolio, and rpt =Σ Wit*r it (a weighted average of 

individual stock returns within the portfolio). If the returns of all securities in the 

portfolio move in unison, CSDt is equal to zero. Conversely, CSDt is large if the 

distribution of r it is dispersed. Therefore, CSDt quantifies the average proximity of 

individual returns to the realized average portfolio return (Chang et al., 1999). Let’s 

drop the time subscript for convenience and take expectations on both sides of 

Equation (1): 
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where  
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The first term on the right-hand-side of Equation (2) can be rewritten as 

follows: 
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In Equation (3), σ2(r i) is the variance of security i’s returns. Let’s define Σi 

Wiσ
2(r i) as the weighted average volatility (AVOL) of the securities of portfolio p and 

rewrite Equation (3) as follows: 

 

( )[ ] .
2

11

2 ∑∑
==

+=






 n

Đ
ii

n

i
ii rEWAVOLrWE  

 

The term E(rp
2) can be rewritten as well: 
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If the above equation is solved for PVOL, the final decomposition is obtained 

as follows: 
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In Equation (4), PVOL stands for portfolio volatility, AVOL stands for 

average volatilities of the securities in the portfolio, E(CSD) stands for expected 

cross-sectional dispersion, W stands for weight of individual securities within the 

porfolio, r stands for return, and n stands for number of securities in the portfolio. 

The decomposition of PVOL provides a comprehensible framework for 

understanding the determinants of the volatility of a stock index. As seen from 

Equation (4), portfolio volatility (PVOL) is positively related to the average volatility 

of securities in the portfolio (AVOL) but negatively related to the expected cross-

sectional dispersion [E(CSD)] of component security returns. PVOL is also positively 

related to a third term, which is the cross-sectional variance of mean returns 

(CSVOM) (Chang et al., 1999). Chang et al. state that in tests not shown in their 

paper, they found that the cross sectional variance of mean returns (the third term) 

accounts for less than one percent of the variation in PVOL, and, therefore, this term 

has only a second-order impact on PVOL and should be ignored in the analysis that 

follows. In order to adopt the same methodology as Chang et.al, the third term is 

shown to have an insignificant effect on the volatility of the ISE National 30 

portfolio and is also dropped from the analysis.  

The price of each asset i in the portfolio is assumed to have the Markov 

property. This means that the distribution of ttX ∆+  depends only on the current state 

tX  and not on the whole history. In other words, given the history, the Markov 
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property suggests that the current state is enough to determine all the distributions of 

the future, but distribution of current state cannot be calculated over tX . Therefore, 

it is not possible to calculate E(CSD) or CSVOM at time t. So, we assume that CSD 

proxies for E(CSD) and  
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at time t. 

Two separate regression models are estimated, one with PVOL as the 

dependent variable and AVOL and CSD as explanatory variables, and the other with 

PVOL as the dependent variable and AVOL, CSD and CSVOM as explanatory 

variables. The results are presented in Tables 4 and 5. In both tables, the results in 

Panel A are for the sample of securities included in the ISE-National 30 index and 

the results in Panel B are for the sample of securities that were never a part of the 

ISE-National 100 index throughout the sample period. Not only, R2 for panel B, in 

two regressions has taken value of nearly 0.0606 and revealed that explanatory 

power of these regressions for panel B data is poor, but also do the results for panel 

A, show that R2, indicating what proportion of the total variation in response is 

explained by the model, increased marginally by addition of cross sectional variance 

of mean returns to the model. However, the increase in R2 is ignorable since it is very 

small (from 0.729 to 0.732). More specifically, CSVOM is shown to account for less 

than one percent of the variation in PVOL, and, therefore, just like in the study by 

Chang et.al., this variable is dropped from the model. 
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Table 4: Regression of components of PVOL excluding CSVOM 
 

Model : 

tttt CSDcAVOLccPVOL ε+++= 210   
(Sample period: 07.01.2003-30.05.2006) 
(t statistics are in parenthesis) 

c0 c1 c2 R2 
Panel A: Results for a portfolio of ISE 30 National Index Stocks 

0.000207 0.276343 0.063918 0.729587 
(1.336961) (28.64840) (3.874566)  

Panel B: Results for a portfolio of Non-ISE 100 National Index Stocks 
0.001235 -0.130261 0.199526 0.060652 

(1.972134) (-1.850893) (6.387899)  
 
 
 

Table 5: Regression of components of PVOL including CSVOM 
 

. 
Model : 

ttttt CSVOMcCSDcAVOLccPVOL ε++++= 3210   

(Sample period: 07.01.2003-30.05.2006) 
(t statistics are in parenthesis) 

c0 c1 c2 c3 R2 
Panel A: Results for a portfolio of ISE 30 National Index Stocks 

0.000179 0.276876 0.114532 -0.021727 0.732935 
1.161232 28.85457 4.703145 -2.812632  

Panel B: Results for a portfolio of Non-ISE 100 National Index Stocks 
0.001235 -0.129946 0.199399 -0.001065 0.060666 
1.970089 -1.842958 6.373009 -0.095219  

 
 
 

3.2. ESTIMATING ASSET I’S RETURN VOLATILITY  

The next step in methodology construction addresses the question of how to 

measure the average volatility and the cross sectional dispersion of the component 

securities and the portfolio volatility for each day in the sample period.  

For many years economists, statisticians, and teachers of finance have been 

involved in developing and testing models of stock price behavior. The most 

prominent model among these has spun from  the theory of random walk (Fama, 

1965). Random-walk theorists usually start from the postulate that the major security 

exchanges can be given as good examples of efficient markets (Fama, 1965). An 

efficient market is defined as a market where large numbers of rational profit-
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maximizers actively compete with each other with the objective of predicting the 

future market values of individual securities. If this competitive environment is truly 

efficient, then important current information about the securities should be freely 

available to all market participants (Fama, 1965). In other words, in an efficient 

market, at any given point in time, the actual price of an asset is the best estimate of 

its intrinsic, or true economic, value (Fama, 1965). In practice, as a result of market 

imperfections and uncertainty involved in trading, market participants may not all 

agree upon the same intrinsic value for an asset. Therefore, discrepancies between 

actual prices and intrinsic values may be observed. Still, if the markets are efficient, , 

the number of buy and sell transactions is so large that the actual price of a security is 

expected to oscillate around the security’s intrinsic value (Fama, 1965). This 

expectation further implies that market efficiency does not require the market price 

to be equal to the asset’s intrinsic value at every point in time. All it requires is that 

errors in the market price be unbiased, i.e., that prices can be greater than or less than 

true value, as long as these deviations are random. Hence, the random walk 

hypothesis claims that successive price changes are identically distributed, 

independent random variables. Most of the early empirical studies support the 

random-walk behavior of stock prices: Kendall (1953), Roberts (1959), Alexander 

(1961), Cootner (1964) and Fama (1965), among many others. 

In recent years, it has become increasingly interesting for researchers to use 

the theory of stochastic processes for describing the uncertainty in financial markets. 

The random behavior of financial asset prices is a very good candidate for such an 

endeavor (Kijima, 2003). The following sections of methodology construction make 

use of  the essentials of probability theory, stochastic processes and stochastic 

differential equations to model the portfolio volatility decomposition.  

The most basic probability concept used in financial analysis is the Brownian 

motion. This concept was first defined to model the random movement of pollens 

immersed in fluids. It was then applied to the analysis of the behavior of random 

variables. The use of Brownian motion for modeling in this context assumes that the 

price of a financial asset i follows a diffusion process which is itself a solution to a 

stochastic differential equation.  
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In probability theory, the set of possible outcomes is called the sample space 

and is generally denoted by Ω. Each outcome ω belonging to the sample space Ω is 

called an elementary event, whereas a subset A of Ω is called an event. In the 

terminology of set theory, Ω is the universal set, Ω∈ω  is an element, and Ω∈A  is 

a set (Kijima, 2003). In order to make such a probability model more precise, a 

family of events, F, namely the σ-field generated by Ω, needs to be defined 

(Kijima,2003). The family F of events satisfies the following properties in order to 

be classified as the σ-field generated by Ω: 

1. F∈Ω , 

2. If Ω⊂A  is in F then FAc ∈ , and 

3. If ,...,2,1, =Ω⊂ nAn  are in F then FA
n

n ∈
∞

=
U

1

. 

For each event FA∈ , the probability of event A is denoted by P(A). In 

modern probability theory, probability represents a set function, defined on F, 

satisfying the following properties (Kijima,2003): 

1. P(Ω)=1, 

2. 1)(0 ≤≤ AP , for any event FA∈ , and 

3. For mutually exclusive events ,...,2,1, =⊂ nFAn  i.e. φ=∩ ji AA  for 

ji ≠ , 
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Given a sample space Ω and a σ-field F, if a set of function P defined on F 

satisfies the aforementioned properties, P is called a probability measure. The triplet 

(Ω, F, P) is called a probability space (Kijima, 2003). 

Given a probability space (Ω, F, P), let X denote a mapping from Ω to an 

interval I of the real line R. The mapping is called a random variable if for any 

{ } FbXaba ∈≤<< )(:, ωω is true (Kijima, 2003). In other words, since the 

probability P is a set function defined on F, X is said to be a random variable if the 
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probability { }bXaP ≤< )(: ωω  for any ba <  is known, which means, if X is a 

random variable, then the probability that the realization of X is in the interval ]( ba,  

is known in principle (Kijima, 2003).  

A random variable X is continuous, if the set of realizations of X is an interval 

I of the real line and there exists a non negative function f(x), such that 
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for any [ ] Iba ⊂,  and f(x) is the density function of X. Conversely, the density 

function f(x), Ix∈  defines the continuous random variable X. Also, if we define 
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where f(x)=0 for Ix∉ , F(x) is called the distribution function and we get 
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Before continuing with stochastic processes, the expectation of random 

variables needs to be discussed. The expected value of a continuous random variable 

is defined in terms of the density function (Kijima, 2003). Let f(x) be the density 

function of random variable X. Then, for any real-valued function h(x), the 

expectation is defined as the following: 

[ ]  )()()( ∫
+∞

∞−

= dxxfxhXhE  

 

provided that 
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∞<∫
+∞

∞−

dxxfxh )()( . 

 

Otherwise, the expectation does not exist. Notice that the mean of the random 

variable X, if any, is 

 

[ ]   )(∫
+∞

∞−

= dxxxfXE  

 

while the variance of X is defined by 

 

[ ] [ ]( )  .)(2

∫
+∞

∞−

−= dxxfXExXV  

 

Now consider two continuous random variables, X and Y, defined from Ω to 

R2. The probability that X is in the interval ( ]21, xx  and Y is in the ( ]21, yy  is denoted 

by the probability (Kijima, 2003) 

 

{ }  . , 2121 yYyxXxP ≤<≤<  

 

The conditional expectation of X under the event { }yY =  is given by 

 

[ ]  .    ,)( RyyxxdFyYXE ∈== ∫
+∞

∞−

 

 

provided that  

 

∞<∫
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∞−

)( yxdFx , 
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where 

 

{ }yYxXPyxF =≤=)(  

 

denotes the conditional distribution of X under { }yY = . Notice that 

[ ]yYXE =  is a function of Y. Since, Y(ω) for some Ω∈ω , the conditional 

expectation can be thought of as a composed function of ω, whence [ ])(ωYXE  is a 

random variable.  

A family of random variables { }0; ≥tX t  (or {Xt} shortly) with index set 

0≥t  representing time is called a continuous stochastic process. A stochastic 

process is a widely used tool to model a system that varies randomly in time, for 

instance in modeling the price behavior of securities (Kijima, 2003). On the other 

hand, for each Ω∈ω , )(ωtX  is a realization of Xt, and a function of time t. The real 

valued function is called a sample path or a realization of the process {Xt}. 

Let’s fix the date T such that [ ]Tt ,0∈ , and [ )∞∈ ,0T  where trading horizon 

T is treated as the terminal date of the economic activity being modeled. The 

information structure available to the investors is given by an increasing (finite) 

sequence of sub-σ-field of F: it is assumed that 0F  is trivial, that is, it contains only 

sets of P-measure from 0 to 1 (Elliot and Kopp, 2005). It is also assumed that 

( )0,FΩ  is complete (i.e. any subset of a null set is itself null and 0F  contains all P-

null sets) and that FFFF T =⊂⊂⊂ ...10  (Elliot and Koop, 2005). An increasing 

family of σ-fields is called a filtration F = [ ]TttF ,0)( ∈ . tF  can be thought as containing 

the information available to investors at time t: investors learn without forgetting, but 

insider trading is not possible (Elliot and Koop, 2005).  

A random variable X is tF -measurable (or measurable with respect to tF ) if 

{ } tFxXx ∈≤< 21  for any 21 xx < (Kijima, 2003). If the random variable X is tF -

measurable, then it is possible to determine whether or not the event { }21 xXx ≤<  

occurs just by examining tF  for any 21 xx < , which is roughly speaking to know the 
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value of X given the information tF  (Kijima, 2003). 

A stochastic process { }0; ≥tX t  is said to be adapted to the filtration F, if 

each Xt is measurable with respect to tF  (Kijima, 2003). 

For two distinct time epochs st > , the random variable Xt - Xs is called an 

increment of {Xt}. If 0, >∆∆+= ttts , the increment is denoted by 

tttt XXX −=∆ ∆+  (Kijima, 2003). The time intervals ( ] L,2,1 ,, =its ii  are non-

overlapping if  

 

....2211 L≤<≤≤<≤< ii tststs  

 

The process { }0; ≥tX t has independent increments, if the increments 

ii st XX −  over non-overlapping intervals ( ]ii ts ,  are independent (Kijima, 2003).  

The definitions of probability spaces, σ-fields, continuous random variables, 

stochastic processes, filtration and stochastic processes that are adapted to filtrations 

are all given in order to define the Brownian motion. This process is named after 

Robert Brown, a Scottish botanist who studied movement of pollens in fluids. He 

observed that these particles were performing a very random movement and claimed 

that this was because pollens were alive (Elliot and Koop, 2005). The first 

approaches to mathematically modeling the Brownian motion were made by L 

Bachelier and A. Einstein in the first half of 1900’s. However, it was N. Wiener who 

was the first to present a general mathematical treatment of the Brownian motion in 

1918 (Beichelt, 2006). The Brownian motion process, simply the Brownian motion, 

is an essential ingredient in stochastic calculus and plays a vital role in mathematics 

of finance. It also provides the basis for defining one of the most important classes of 

Markov processes, namely the diffusion processes. 

Let { }0, ≥tBt  be a stochastic process defined on the probability space (Ω, F, 

P). The process { }tB  is a standard Brownian motion if the following are true: 

1. It has independent increments, 

2. The increment tst BB ++  is normally distributed with mean 0 and variance 
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s, independently of time t, and 

3. Its sample paths are continuous and B0=0 (Kijima, 2003). 

The first property above implies that the increment tst BB ++ is independent of 

the history tF . Moreover, one of the most important properties of a Brownian motion 

is that its paths are nowhere differentiable (Lamberton and Lapeyre, 2000). In other 

words, if tB  is a Brownian motion, it can be proved that for almost every Ω∈ω , 

there is not any time +∈ Rt  such that tBt d/d  exists. However, by the help of 

stochastic calculus, it is possible to write tBt d/d  in terms of differentials 

 

( ) ( ) dtBBdB tdttt =−= +
22  

 

and in terms of integrals 

 

( )  . 
00

2 tdsdB
tt

s == ∫∫  

 

We will not the make the proofs of these relations, since such proofs are 

beyond the scope of this thesis. 

For real numbers µ and σ , the process {Xt} 

 

0                  0 ≥++=  t,σBµtXX tt  

 

is called a Brownian motion with drift µ and diffusion coefficient σ (Kijima, 

2003). Recall that for any random variable X with mean µ and variance σ2, the 

transformation given by  

σ

µX
Y

−=  

 

is called the standardization of X and if Y~N(0,1), then  
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σYµX +=  ~ N(µ,σ2). 

 

Since tB ~N(0,t), the random variable Xt is distributed by N(µt,σ2t). Therefore, 

the diffusion coefficient σ can be interpreted as the standard deviation of an 

increment over the unit of time interval (Kijima, 2003).  

Since tB ~N(0,t), the random variable Xt is distributed by N(µt,σ2t). Therefore, 

the diffusion coefficient σ can be interpreted as the standard deviation of an 

increment over the unit of time interval (Kijima, 2003). This conclusion is crucial to 

understanding the theory behind construction of an estimator regarding the volatility 

of an asset’s return. The Brownian motion can be shown to be a special diffusion 

process and if an estimator for a diffusion function can be found, then it is possible to 

estimate the volatility of an asset’s return.  

In order to start defining diffusion processes, it is necessary to first define the 

continuous Markov processes since diffusion processes are continuous Markov 

processes with special characteristics. Furthermore, in order to understand Markov 

processes, Borel measurable functions should be considered first.  

Let G (respectively M) be the family of all open (respectively closed) subsets 

of Rn. Then σ-field generated by G  is equal to the σ-field generated by M. This 

generated σ-field is called the Borel σ-field of Rn, denoted by nR
B (Körezlioğlu and 

Hayfavi, 2001). If the function f is defined as nRf →Ω: whereas (Ω, F) and (Rn, 

nR
B ) are measurable spaces and  

 

 )(: 1 Ω∈∈∀ − EfBE nR
 

 

then f is Borel-measurable (Capasso and Bacstein, 2005). 

In order to define the Markov process, let (Ω, F, P) be a probability space 

with filtration F = [ ]TttF ,0)( ∈ . An adapted process {Xt} is a continuous-time Markov 

process with respect to the filtration F   if 
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( )( ) ( )( )  .0 allfor surely almost   ≥≥= stXXfEFXfE stst  

 

for every bounded real-valued Borel-measurable f defined on Rn (Elliot and 

Koop, 2005). The Markov property asserts that the distribution of ttX ∆+  depends 

only on the current state tX  and not on the whole history. In other words, given the 

history, the Markov property suggests that the current state is enough to determine all 

the distributions of the future. In the literature of financial engineering, it is common 

to model a continuous time price process (in this case the diffusion process) in terms 

of a stochastic differential equation. The stochastic differential equations can be 

explained as a limit of stochastic difference equations and it is then possible to show 

how diffusion processes can be represented as stochastic differential equations.  

Let 0>∆t  be sufficiently small, and consider the stochastic difference 

equation given that 0 ≥t  

 

( ) ( )  ∆∆∆ ,B,tXσt,tXµXXX tttt∆ttt +=−= +                            (5) 

 

where ( ),tXµ t  and ( ),tXσ t  are given functions with enough smoothness and 

where tttt BBB −≡∆ ∆+  is the increment of standard Brownian motion (Kijima, 

2003). Suppose that xX t = . Then, the limiting process {Xt} as 0→∆t , if it exists, 

is a strong Markov process with continuous sample paths, since the Brownian motion 

{ }tB  has similar properties (Kijima, 2003). In addition, the following limits from the 

above stochastic difference equation can be obtained: 

 

( ) [ ]xXXE
t

tx tt
t

=∆
∆

=
→∆

1
lim,

0
µ   

 

and 

 

( ) { }[ ]xXXE
t

tx tt
t

=∆
∆

=
→∆
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2 1
lim,σ  
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A Markov process {Xt} in continuous time is called a diffusion process (or 

diffusion in short) if it has continuous sample paths and the limits regarding ( ),tXµ t  

and ( ),tXσ t
2  exists with ( ) 02 ≠,tXσ t  (Kijima, 2003).  

 

( ) ( )  0 ,B,tXσt,tXµXX tttt ++=                                      (6) 

 

where t is nonnegative. In Equation (6), the function ( ),tXµ t  is called the 

drift function, whereas ( ),tXσ t  is called the diffusion function. Moreover, from 

above equation, it is possible to formally obtain the following stochastic differential 

equation 

 

( ) ( ) ,dB,tXσdt,tXµdX tttt +=  

 

under some regularity conditions, where Tt ≤≤0  and T is the given time 

horizon. This stochastic differential equation is understood to be the differential form 

of the integral equation 

 

∫ ∫+=−
t t

uuut ,u)dBσ(X,u)duµ(XXX
0 0

0                               (7) 

 

where only the first term on the right-hand side is the ordinary (path-by-path) 

integral, and the second term cannot be calculated as an ordinary integral, in other 

words in the Riemann-Stieltjes sense, because Brownian motions are nowhere 

differentiable. The second term can be calculated by help of an Ito integral.  

Let { }0; ≥tX t  be adapted to Brownian motiontB  on [ ]T,0 , i.e. Xt is function 

of sB , ts ≤ , and  
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[ ]   .
0

2

∫ ∞<
T

s dsXE  

 

Now, it is possible to define the Ito stochastic integral of { }tX . It is denoted 

by 

 

[ ]∫ ∈
t

ss TtdBX
0

 .,0  ,  

 

Note that the definition of the Ito stochastic integral is not enough to write the 

above integral in terms of a Brownian motion. Nonetheless, by the help of Ito’s 

lemma, it is possible to obtain explicit formulae for Ito stochastic integrals (Mikosch, 

1998).  

Ito’s lemma can be considered as the stochastic analogue of the classical 

chain rule of the differentiation. Let f and g be two differentiable functions. Recall 

from basic calculus that the classical chain rule in the integral form is as follows: 

 

 
00

0 .)dg(gfdsg)(gf)f(g)f(g
t

ss

t

sst ∫∫ ′=′′=−  

 

Now, assume that f is a twice-differentiable function, but replace gt with a 

sample path of a Brownian motion Bt. The formula 

 

 ,)(
2

1
)()()()( ∫∫ ′′+′=−

t

s

x

t

s

xst dxBfxdBBfBfBf  

 

where s < t, becomes a simple form of Ito’s lemma or of the Ito formula. For 

later use, a more general version of the form ),( tXf t  is needed where Xt  is given by 

Equation (7) and is a diffusion process. It is also called an Ito process because the 

second term on the left-hand-side is defined in terms of the Ito integral. 
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Let { }tX  be an Ito process with representation in Equation (7) and ),( tXf t  

be a function whose second order partial derivatives are continuous. Then given s < 

t, 

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )( )    , 
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In papers by Chesney, Elliot, Madan and Yang (CEMY) (Chesney et 

al.,1993) and Pastorello (1996), a simple filtering procedure to recover a series of 

realized volatilities from a discrete time realization of a continuous time diffusion 

process is proposed. CEMY use the measure proposed in their paper to construct 

point estimates of time-varying asset volatility and covariation with risk factors to 

test Merton’s Intertemporal Capital Asset Pricing Model (Merton, 1973). Chang et 

al. (1998) use the same measure to construct point estimates of volatility for each 

asset i at time t. Following Chang et al. (1998), the same unbiased estimator of asset 

i‘s return volatility at time t is used in this study to measure the average volatility and 

the cross sectional dispersion of the component securities and the portfolio volatility 

for each day in the sample periods. 

Let {Xt, t ≥ 0} represent the price of asset i and be a real-valued process 

defined as the solution of a stochastic differential equation (SDE) 

 

( ) ( ) , dB,tXσdt,tXµdX tttt +=                                      (8) 

 

where    ,0 0 xXTt =≤≤ , {Bt, t ≥ 0} is a real Brownian motion defined on a 

probability space (Ω, F, P), ( ),tXµ t  and ( ),tXσ t  are drift and diffusion functions, 

which are deterministic. If Xt is known, Xt+∆t is given by Ito formula as follows 
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 ,∫ ∫
+ +

∆+ ++=
∆tt

t

∆tt

t

uuuttt ,u)dBσ(X,u)duµ(XXX                            (9) 

 

given .0 Tt ≤≤  In order to investigate for the values of a continuous time 

stochastic process defined on [0,T] at the discretization times, a discrete time 

approximation of the process given is needed. Two of the time-discrete 

approximation schemes, namely Euler and Milstein, are considered to construct an 

estimator for the volatility of asset i’s return. 

The Euler or Euler-Maruyama approximation is known to be one of the 

simplest of approximation methods. For a given discretization  

 

TNn =<<<<<= ττττ LL100  

 

of the time interval [0,T], an Euler approximation is a continuous time 

stochastic process Y={Yt, 0 ≤ t ≤ T} satisfying the iterative scheme 

 

( )( ) ( )( ) BB,Yτgττ,YτfYY
nn ττnnnnnnnn −+−+≈

+++ 111  

 

for 1,210 −= N,,,n L  with initial value xY =0  and ( )nn YY τ= . 

We shall also write  

 

 ∆ 1 nnn ττ −= +  

 

for the nth time increment and define the maximum time step as 

 

  ∆max  .δ nn=  

 

Since most of the financial data, especially the time series are observed at 

points in time such that the distance between two points is equal for all successive 

pairs of points, an equidistant time discretization is considered in the following 
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manner: 

 

nδτn += 0  

 

with ( )/NTδ n 0∆∆ −=≡=  for some integer large enough so that( )1,0∈δ . 

Before continuing with other approximation scheme, namely the Milstein 

approximation (Milstein, 1974), it is necessary to mention why other time discrete 

approximation methods have been developed and how the best approximation 

scheme can be inferred.  

There are two criteria, strong convergence and weak convergence to compare 

the Euler approximation and other approximations with each other.  

A general time discrete approximation Yδ with maximum step size δ is said to 

converge strongly to X at time T if 

 

.0 lim
0

=−
↓

)(T)YXE( δ
T

δ
 

 

Kloeden and Platen (1992) state that although the Euler approximation is the 

simplest useful time discrete approximation, it is not efficient in numerical sense. 

Therefore, other time discrete approximation methods should also be considered to 

compare different time discrete approximations. In order to make this comparison the 

approximations’ rates of strong convergence need to be known. 

A time discrete approximation Yδ converges strongly with order γ > 0 at time 

T if there exists a positive constant C, which does not depend on δ, and δ0 > 0 such 

that 

 

. )(0, each  for       0δδ ∈≤−= γδ
T Cδ)(T)YX E(ε(δ)  

 

On the other hand, a time discrete approximation Yδ converges weakly with 

order β > 0 to X at time T as δ approaches 0 if for each  
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,R)  (R Cg d)(β
P

12 +∈  

 

there exists a positive constant C, which is independent from δ, and a finite 

δ0>0 such that 

 

 )(0, each  for        0δδ ∈≤ βδ
T Cδ (T)))))-E(g(YE(g(X  

 

where dR  denotes the d-dimensional Euclidean space and ( )RRC d ,)1(2 +β  

denotes the space of 2(β+1) times continuously differentiable functions defined from 

dR  to R. 

Strong and weak convergence criteria lead to the development of different 

time discrete approximations that are only efficient with respect to one of the two 

criteria. In particular, time discrete approximations derived with respect to strong 

convergence criterion using stochastic Taylor expansions are called strong Taylor 

expansions. Considering the Euler approximation, it is known to converge with weak 

order β = 1, in contrast with the strong order γ = 0.5 and represents the simplest 

strong Taylor approximation (Kloeden and Platen, 1992). 

Now, the scheme proposed by Milstein, which turns out to be an order 1.0 

strong Taylor scheme, will be examined. As before, the stochastic integral equation 

given Tτ ≤≤0  

 

( ) ( ) .,
11

1 ∫∫ ++= −

τ

τ-

ss

τ

τ-

sττ dB,sXσ dssXµXX                            (10) 

 

is considered. 

The Euler approximation is based on the discretization of the integrals in 

Equation (10). On the other hand, the Milstein approximation exploits a Taylor-Ito 

expansion of Equation (10). The Milstein approximation is constructed by applying 

the Ito’s lemma to integrands ( ),tXµ t  and ( ),tXσ t  in Equation (10) and is given as 

follows:  
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for 1,210 −= N,,,n L  with initial value xX =0  and ( )nn XX τ= . 

It must be noticed that the Milstein approximation scheme is the Euler 

approximation with an additional correction term containing the squared increments 

of the Brownian motion. 

Suppose that the state of the system is given by a SDE as in Equation (9) and 

define a stochastic process Yt as follows: 
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stt dBs,Xσ dss,XµXXY
00
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given .0 Tt ≤≤  Notice that Yt, given in Equation (11), is defined as f(t,Bt), 

which is a function of class C1,2 (f is one time continuously differentiable with 

respect to t and two times continuously differentiable with respect to Bt). Then 

application of Ito formula gives the following: 
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Then, given T,t ≤≤0  
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By applying Ito formula in Equation (12) again for some twice differentiable 

function g that 0≠′′g , then 
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If the Milstein approximation scheme is applied to Yt and g(Yt) then the 

following is produced: 
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and 
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Notice that 
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Then )g(Y tt ∆+  becomes 

 

( )

( )

[

( )( ).tBt)σ(X
Y

t)σ(X
)Yg'(Y

t(Xσ)Yg'(Yt)(Xσ)Yg''(Y                

t t)(Xσ)Yg''(Yt)(XσtXµ)Yg'(Y                

BtXσ)Yg'(Y)g(Y)g(Y

tt
t

t
tt

tttttt

ttttttt

ttttttt

∆−∆




∂
∂+

++

∆






 +






 ++

∆+≈∆+

22

222

222

,
,

                 

,,
2

1

,
2

1
,

2

1
,

,

 

 

From Approximation (13) we have 
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From Approximation (14) we have 
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Therefore the following approximation can be written: 
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If Approximation (15) is solved for σ2(Xt ,t), the following result is produced: 
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Before taking conditional expectation (Taking an expectation is about 

estimating the value of σ2 which is a function of time and price. Since nothing is 

known about the deterministic continuous function σ2, its values at discrete times are 

tried to be found and that is the reason the approximation is produced in the first 

place. Moreover, parameter estimation of the distribution of a random variable (σ) by 

common methods such as maximum likelihood method needs information about the 

distribution and there is no knowledge about this either. After the approximation, 

taking the expectation generates a point estimate of the unknown function. More 

information on the estimation of diffusion models can be found in Gourieroux and 

Jasiak, 2001) of the left hand side of the equation 16 given Xt, recall from probability 

theory that if the σ-field generated by the random variable Y is contained in F, then 

Y) FE(Y = . In particular, if Y is a function of X, Y.)FE(Yσ(X)σ(Y) =⊂  thus,  

Then, 
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Since by definition of Brownian motion [ ] tX)B(E tt ∆=∆ 2 , an estimate of 

σ2(t,Xt) is given by 
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CEMY suppose that g=y(1+α) and use the Euler approximation before taking 

expectations regarding the mean and variance of Vt in order to show that the estimate 

constructed is the minimum variance unbiased estimator. However, Pastorello (1996) 

show that these results can be improved without the use of the less precise Euler 

approximation. Therefore, the approach adopted by Pasterollo is followed in this 

thesis as well. 

Let’s substitute two Milstein approximations of g(Yt+∆t) and Yt+∆t from 

Approximation (15) in Equation (17), then 
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An interesting feature of Equation (18) is that it holds independently of the 

function g chosen. To strengthen the results, let’s suppose that h and z are twice 

continuously differentiable functions and  
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By help of Ito’s lemma, the following equations can be written 
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where  0   T.  ttt ≤∆+≤≤  

Now, let’s apply Milstein approximation to both of the Equations (19) and 

(20), then 
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Let’s subtract Approximation (22) from Approximation (21), then 
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Recall that if the σ-field generated by the random variable Y is contained in F, 

then Y) FE(Y = . By this token,  
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Since the definition of Brownian motion implies [ ] tXBE tt ∆=∆ 2)( , if we 

take conditional expectation of difference of Approximations (22) and (21), we can 

conclude that a general Vt given as follows is an estimate of σ2 (provided that the first 

denominator is nonzero):  
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Notice that Vt
hz is approximated to the same order by tV

~
, and hence it has 

(approximately) the same properties (Pastorello, 1996). Pastorello  used the general 

framework provided by Kloeden and Platen (1992) to derive the strong Ito-Taylor 

approximations of a desired order γ with the aim to find the difference between the 

two estimators in Equation (23). However, since supplementary terms in a strong Ito-

Taylor approximation scheme with an order higher than 1 depend on unknown 

values of functions µ and σ , this attempt to improve the estimator given in Equation 

(23) has failed (Pastorello, 1996). Since the derivation of strong Ito-Taylor 

approximations of a desired order is out of the scope of this thesis, the proof 

regarding Pastorello’s (1996) findings is not provided here. Therefore, let’s continue 

with a pair of h and z such that their choice does not depend on Xt itself. 



 

 
 

47 

Let 

 

x

x

exzz

exhh
)(

)(

)(  where:

)( and :
β

αβ

=ℜ→ℜ
=ℜ→ℜ +

 

 

where β and α are the parameters to be defined. If we define Zt as follows: 
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Before taking conditional expectation of the above estimate, let’s focus on the 

expectation of exp(λZ) for an N(0,1) random variable Z 
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Moreover, the Brownian motion is 0.5 self-similar, that is: 
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for every T>0, any choice of .1 and 10 ≥=≥ n,...,n,iti  Then it follows 

immediately that 
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Then the conditional expectation and variance of the Vt
βα can be written as 

follows: 
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Therefore, [ ]tt XVVar βα  can be rewritten as follows: 
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Let’s define the expression in square brackets as M, which is a function of ∆t. 

Then, a Taylor expansion of order 3 (around ∆t=0) of the expression in squared 

brackets in Equation (25) is:  
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If ∆t is zero then M(∆t), II, IV, VI equal to zero and I, III and V equal to one. 

Now, the derivation of the remaining expressions in Equation (26) is possible.  
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If ∆t is zero then, 
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As a conclusion, Taylor expansion of M of order 3 around ∆t=0 is as follows: 
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Minimization of the [ ]tt XVVar βα  requires that derivatives with respect to 

every variable in the Taylor expansion be equal to 0 (first order conditions). 

Derivatives of [ ]tt XVVar βα  with respect to β and α are given as follows: 
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The solution of Equations (27) and (28) give α=0. However, for α=0, βα
tV  is 

not defined. Therefore, let’s apply L’Hopital’s rule and take the limit of βα
tV  when α 

approaches 0. 
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By using the findings in Equation (24), the mean and variance of the β
tV are 

found as follows  
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The first and second derivatives of C and D with respect to ∆t are as follows: 
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A Taylor expansion of order 3 (around ∆t=0) of the expression R is  
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If ∆t=0, then 
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Now, let’s take the first, second and third derivatives of R with respect to ∆t 

at ∆t=0: 
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Therefore the Taylor expansion of R of order 3 around ∆t=0 is as follows: 
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Since the estimator that is both unbiased (expectation of the estimator equals 

the parameter) and has the minimum variance (the variance of the estimator is 

minimum among the variance of all estimators) is needed, [ ]tt XVVar βα  needs to be 

minimized. The first order condition with respect to β is as follows: 



 

 
 

59 

( )  0328 24 . t βσµσ
β

)XVar(V t
βα

t =∆+=
∂

∂
 

[ ]tt XVVar βα  is minimized when β is equal to -2µ/3σ2. Then, [ ]tt XVVar βα  

can be rewritten as: 
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Therefore, following Chang et al. (1998), the following formulas are 

employed to calculate the volatility of both an asset’s and a portfolio’s returns. These 

findings are also used to calculate the AVOL. 
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where 23/2 iii σµβ −= , µt denotes the mean of daily returns of asset i over the 

sample period, σt denotes the standard deviation of daily returns of asset i over the 

sample period and Xt denotes the log of daily closing prices. AVOL at time t will be 

calculated as follows:  
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PVOL is calculated using the same formula as AVOL with only the difference 

that ln(It) is substituted by Xt, where It denotes the closing prices of the ISE-National 

30 index stocks (or the Non-ISE-National 100 index stocks) 

3.3. THE MODEL  

In order to test whether the introduction of stock index futures contracts 

change the underlying stock market volatility, a typical test that is performed comes 

in the following format: 

 

  ,1 ttpostpostt DaaPVOL ε++=                                    (29) 

 

In Equation (29), Dpost,t equals 1 (0) after (before) the futures trading begins 

and the null hypothesis is that apost =0. Significantly positive (negative) estimates of 

apost imply that futures trading induces higher (lower) spot market volatility (Chang 
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et al, 1999). A major deficiency of this type of test is the absence of a control 

variable for the extraneous influences on the stock market volatility. Therefore, 

decomposition of portfolio volatility into its components is used in forming a single-

factor return-generating model, namely the classical linear regression method, to 

differentiate the volatility impacts caused by futures trading and those caused by 

changes in broad economic factors. In their paper, Chang et al (1999) propose that 

the decomposition of spot portfolio volatility into the components of cross- sectional 

dispersion and average volatility of the portfolio’s constituent securities can be used 

to control for broad market influences. It is assumed that, with the suppression of 

time subscripts, the return generating process can be represented as follows: 

It is assumed that, with the suppression of time subscripts, the return 

generating process can be represented as 

 

   iiiii FR εβα ++=                                              (30) 

 

In Equation (30), Ri is the realized return on security i, αi is the expected 

return on security i, F is the realization of a zero-mean common factor which 

represents the broad market factor, βi is the time-invariant factor loading of security 

i, and εi represents the effect of zero-mean firm-specific information, which is 

assumed to be independent of the effect of the broad market factors (Chang et al, 

1999).  

If Wi represents the weight of security i in a portfolio consisting of N 

securities, AVOL, PVOL and E(CSD) can be expressed, respectively, in terms of 

Equation (30) in the following manner: 
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In Equation (31), bp is the weighted average of factor loadings of all 

securities in the portfolio. The last terms in Equation (31) show the contributions of 

firm-specific information to the respective volatility measures (Chang et al, 1999). 

They are identical for AVOL and E(CSD), but smaller for PVOL (Chang et al, 1999). 

The first terms for AVOL and PVOL and the second term for E(CSD) in Equation 

(31) represent the contributions of the broad market factor to the volatility measures 

(Chang et al, 1999). With the assumption that the loadings (bi’s) and weights (Wi’s) 

in Equation (31) are time-invariant (an assumption required by the classical linear 

regression model), the contributions of the broad market factor are the products of 

σF
2 and the three different constants (Chang et al, 1999). Partials of each expression 

with respect to σF
2 yield: 
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First, ceteris paribus, increases in the volatility of the broad market factor 

increases each of the volatility measures (Chang et al, 1999). Thus, conclusions 

drawn from models based on Equation (29) that do not control for changes in broad 

market influences can be seriously defective (Chang et al, 1999). Second, the 

increments for the volatility measures are the respective bracketed terms in Equation 

(31) suggesting that, ceteris paribus, if σF
2 increases, the increments in the volatility 

measures are proportional to the measures’ systematic components (Chang et al, 

1999). If, for example, the bracketed terms for AVOL and PVOL equal 2 and 1 

respectively, then the exposure to systematic influences of AVOL are twice as large 

as the exposure of PVOL before and after a volatility shift in the broad economic 

factor (Chang et al, 1999). Therefore, extraneous shifts in broad market factors can 

be controlled for by including AVOL as a regressor in Equation (29) (Chang et al, 
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1999). 

The ex-post realization of the volatility measures is open to disturbances in 

both systematic and unsystematic risk, and probably also to random interventions by 

arbitragers (Chang et al, 1999). Thus, the effects of arbitrage-motivated program 

trading (program trading is the execution on a stock market of a large number of 

simultaneous buy or sell orders and is generally triggered by a computer program 

that detects an arbitrage opportunity or suggests some other reason for quickly 

establishing a large portfolio of stock) on the structural relations between the 

volatility measures are contrasted with the effects induced by changes in broad 

economic factors (Chang et al, 1999). As program trading is typically independent of 

information specific to individual securities, prices of all securities in a basket tend to 

move simultaneously in the same way (Chang et al, 1999). The arbitrage factor A 

can be assumed to affect the return-generating process for securities in the basket as 

follows: 

 

 iiiii AFR εβα +++=  

 

 

In order to capture the nature of arbitrage-motivated trading, Chang et al. 

(1999) also assume that all securities in the basket have the same loading relative to 

the arbitrage force. Since index arbitrage appears randomly, factor A’s presence in 

the return-generating process is also random. Thus, the uncertainty of the arbitrage 

factor is an additional source of return volatility for securities in the basket (Chang et 

al., 1999). This implies the following: 
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The effects of an increase in σA
2 on AVOL, PVOL and E(CSD) differ 

substantially from those due to an increase σF
2 in two prominent ways. First, since 

uncertainty caused by arbitrage effects cannot be diversified, an increase in σA
2 is not 

diversifiable (Chang et al., 1999). That is, 
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Second, though an increase in σF
2 has a positive effect on E(CSD), an 

increase in σA
2 has no effect (Chang et al., 1999). Hence, 
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These comparative statics leads us to the fact that for a single-factor model 

changes in PVOL and E(CSD) due either to arbitrage or to broad market factors 

equals the change in AVOL (Chang et al., 1999). This result stems directly from the 

decomposition of PVOL. At the same time, diversifiable broad economic 

disturbances trigger larger (but proportional) shifts in AVOL than in PVOL; whereas, 

the nondiversifiable effects of program trading trigger identical shifts in both 

volatility measures (Chang et al., 1999). When the identical effects of program 

trading are summed with the proportional effects of broad economic disturbances, 

PVOL should increase proportionately more than AVOL because PVOL is smaller 

than AVOL due to diversification (Chang et al., 1999). Remember the previous 

example in which the exposures of AVOL and PVOL to unit changes in σF
2 were 2 

and 1, respectively. Equation (34) indicates that the exposures of AVOL and PVOL to 

a unit change in σA
2 are both 1. Therefore, the exposures of AVOL and PVOL to total 

volatility shifts (induced by broad market factors and arbitrage activities) become 3 

and 2, respectively (Chang et al., 1999). The ratio of total exposure (1.50) is smaller 

compared to the ratio of the exposure to broad economic influences (2.00) because 
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the exposure from arbitrage is not diversifiable, pointing to a structural shift in the 

relationship between AVOL and PVOL when futures trading starts (Chang et al., 

1999). Similar arguments also hold for a structural shift in the relationship between 

E(CSD) and AVOL (or PVOL) (Chang et al., 1999). Based on these arguments, 

Chang et al. (1999) predict that futures trading increases the spot portfolio volatility. 

In their study, Chang et al. (1999) empirically test for the validity of such a 

prediction and claim that their findings support this prediction. It should also be 

remembered that the literature presents conflicting results about the effect of futures 

trading on the volatility of the underlying stock market. Therefore, in this study, the 

comparative statics above lead to the following four testable implications (Chang et 

al., 1999): 

H1: Volatility shifts in broad economic factors induce proportional shifts 

in PVOL and AVOL, but PVOL increases relative to AVOL when futures trading 

begins.  

 

,,10 ttpostposttt DcAVOLccPVOL ε+++=                            (33) 

 

In Equation (33), Dpost,t is the dummy variable that equals 1 for the post-

futures period and 0 for the pre-futures period. With c1 constant, the structural shift 

between AVOL and PVOL should show itself in the intercept and will be captured by 

the coefficient on the dummy variable (Chang et al., 1999). Therefore, a positive 

estimate of cpost would be consistent with the hypothesis of an arbitrage-induced 

increase in volatility related to futures trading (Chang et al., 1999). 

H2: Volatility shifts in broad economic factors induce proportional shifts 

in E(CSD) and AVOL, but E(CSD) decreases relative to AVOL when futures 

trading begins. 

 

,,10 ttpostposttt DcAVOLccCSD ε+++=                               (34) 

 

In Equation (34), CSD proxies for the unobservable E(CSD). A significantly 

negative estimate of cpost would be consistent with H2. The model predicts a negative 
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shift in CSD because with c1 constant, the AVOL correction overstates the volatility 

effect of a shift in broad economic factors on CSD (since CSD is influenced only by 

broad economic factors, whereas AVOL is influenced both by broad factors and by 

futures-related arbitrage activity) (Chang et al., 1999). 

H3: Volatility shifts in broad economic factors induce proportional shifts 

in E(CSD) and PVOL, but E(CSD) decreases relative to PVOL when futures 

trading begins.  

 

,,10 ttpostposttt DcPVOLccCSD ε+++=                               (35) 

 

Since, as a result of diversification PVOL is influenced less by idiosyncratic 

factors compared to AVOL, it should control better for broad market influences than 

AVOL in tests of arbitrage-induced shifts in the structural relations between E(CSD) 

and these other volatility components. Thus, aforementioned shifts in the intercept 

should be more obvious for Equation (35) than for Equation (34) (Chang et al., 

1999). 

H4: Following the start of futures trading, changes in E(CSD) are 

smaller relative to changes in PVOL.  

 

( ) ,*,10 tttpostposttt PVOLDcPVOLccCSD ε+++=                       (36) 

 

H1 through H3 test for shifts in the intercept with the slope coefficient held 

constant. If the intercept is held constant, however, H4 predicts that the slope will 

change if futures trading affects stock market volatility (Chang et al., 1999). A 

significantly negative estimate of cpost would be consistent with H4 (Chang et al., 

1999). 

The above hypotheses are tested by using data on both the ISE-National 30 

and non-ISE-National 100 stocks. Both groups are susceptible to general economic 

disturbances; however, only the ISE National 30 stocks are impacted directly from 

futures trading. Thus, changes in the relationships among the volatility components 

for ISE National 30 stocks but not for the non-ISE National 100 stocks are unlikely 
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to be explained by changes in broad factors and further, these changes can be 

attributed to the influence of futures trading. 
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CHAPTER 4 

 

 

RESULTS AND ANALYSIS

 

 

4.1. DATA 

This study analyzes whether futures trading affects the volatility of the 

underlying stock market by examining the volatility of the ISE-30 National Index 

while controlling for broad economic factors. The methodology adopted calls for the 

creation of two stock portfolios. The first portfolio contains those stocks that have 

been included in the ISE-30 National Index for the entire sample period (from 

January 2, 2003 to May 30, 2006). There are 18 stocks that satisfy this condition. The 

volatility of the underlying stock market is proxied by the volatility of this portfolio. 

The second portfolio contains those stocks that were never included in either the ISE-

30 or the ISE-100 National Indices during the entire sample period. There are 140 

stocks that satisfy this condition. This portfolio of stocks serves as the “control 

portfolio.” By measuring the volatility changes for this particular portfolio, it is 

possible to account for the impact of broad economic factors on stock market 

volatility. Since these stocks are not included in either of the national indices, they 

are not expected to be influenced by futures trading as there are no futures contracts 

being traded on these particular stocks.  

The closing prices of the 158 stocks that make up the two portfolios are 

obtained from the database of the ISE. The sample period is from 2nd January 2003 to 

30th May 2006. The data set includes a total of 636 observations. 369 of these 

observations are from the first sub-period prior to the introduction of stock index 

futures trading and the remaining 267 observations are from the second sub-period 

subsequent to the introduction of stock index futures trading.  
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Two equally-weighted portfolios are constructed for each sub-period. If 

weights are not constant over time, the classical linear regression used for estimating 

the volatility decomposition would produce meaningless results. Moreover, the 

weight of each stock is assumed to be equal in order to capture the nature of 

arbitrage-motivated trading.  

Continuously-compounded daily percentage returns are estimated as the log 

price relative for each portfolio. That is, for a portfolio with daily closing price of Pt 

(equally-weighted daily closing prices of firms in the portfolio), the return Rt is 

defined as log(Pt/Pt-1). 

Table 6 provides basic descriptive statistics for the log-return series of ISE 

National 30 Index and the Non-ISE National 100 Index portfolios. The Jarque-Bera 

tests reveal that the skewness and kurtosis figures for each of the return series 

(including sub-periods) are different than those from a normal distribution. This test 

evaluates the hypothesis that X has a normal distribution with unspecified mean and 

variance against the alternative that X does not have a normal distribution. The test is 

based on the sample skewness and kurtosis of X. For a true normal distribution, the 

sample skewness should be near 0 and the sample kurtosis should be near 3. The 

Jarque-Bera test determines whether the sample skewness and kurtosis are unusually 

different from their expected values as measured by a chi-square statistic. Since the 

Jarque-Bera probability for each of the return series is nearly zero, the null 

hypotheses that the series fit a normal distribution are rejected. 

Also in Table 6, the variance figures provide an initial indication of the 

volatility the ISE National 30 Index portfolio. The pre-futures ISE National 30 Index 

portfolio volatility is greater than that of post-futures. Based on an F-Variance ratio 

test, this reduction in variance is statistically significant at the %1  level (Table 7 

provides the test results). This result is an initial indication that  the introduction of 

index futures did not destabilize the spot market. However, inferences cannot be 

drawn from these figures alone, as these variance calculations do not take into 

account the market-wide movements and the time-varying nature of volatility. 
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Table 6: Summary statistics of return series of ISE National 30 Index stocks portfolio and of 
Non-ISE National 100 Index stocks portfolio for before and after the futures periods  

 
 ISE National 

30 Index 
Portfolio 
Return 

Non-ISE 
National 100 

Index Portfolio 
Return 

ISE  National 
30Index 
Portfolio 

Return Before 
Futures 
Trading 

ISE 
National 
30 Index 
Portfolio 
Return 
After 

Futures 
Trading 

Non-ISE  
National 100 

Index Portfolio 
Return Before 

Futures Trading 

Non-ISE 
National 

100 Index 
Portfolio 
Return 
After 

Futures 
Trading 

Mean -0.0000250 0.0029670 -0.0000707 0.0000381 0.0040010 0.0015370 
Median 0.0014010 0.0021860 0.0016550 0.0006920 0.0023220 0.0018050 

Maximum 0.1049700 0.4681430 0.1049700 0.0472120 0.4681430 0.0923290 
Minimum -0.3478100 -0.0895430 -0.3478100 -

0.0816220 
-0.0749160 -

0.0895430 
Std. Dev. 0.0266630 0.0288450 0.0316410 0.0176630 0.0325360 0.0227620 
Skewness -3.8386850 6.7154510 -3.8965830 -

0.5253510 
8.1099790 -

0.3237290 
Kurtosis 49.5991700 109.0819000 42.8665400 4.4624940 114.3487000 5.7634340 

         
Jarque-Bera 59106.26000 302994.80000 25369.90000 36.07687 194672.40000 89.62044 
Probability 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 

         
Observations 636 636 369 267 369 267 
 
 
 

Table 7: Test for equality of variances between ISE National 30 Index stocks portfolio return 
series before futures trading and ISE National 30 Index stocks portfolio return series after 

futures trading 
 
      
Method df Value Probability  
      
F-test (266, 

368) 
3.208954 0.0000  

Siegel-Tukey 3.194275 0.0014  
Bartlett 1 93.90893 0.0000  
Levene (1, 634) 12.74495 0.0004  
Brown-Forsythe (1, 634) 12.26443 0.0005  
      

      
Category Statistics 
   Mean Abs. Mean Abs. Mean Tukey- 

Variable Count Std. Dev. Mean Diff. Median Diff. Siegel Rank 
IMKB30_PORT_RET_AFTER 267 0.017663 0.013501 0.013498 345.8614 

IMKB30_PORT_RET_BEFORE 369 0.031641 0.019359 0.019272 298.7019 
All 636 0.026663 0.016900 0.016848 318.5000 

Bartlett weighted standard deviation:  0.026683 
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4.2. RESULTS AND ANALYSIS 

Table 8 presents mean daily estimates and standard deviations (in 

parenthesis) of AVOL and PVOL for the total sample and for the two subperiods. The 

ISE National 30 Index portfolio includes 18 stocks with no missing data over the 

sample period. The Non- ISE National 100 Index portfolio consists of 140 stocks, 

also with no missing data over the sample period. Mean PVOL estimates are higher 

for pre-futures period compared to the estimates from the post-futures period. This 

result supports the conclusions driven from the figures in Tables 6 and 7. At first 

glance, the introduction of futures trading does not seem to have a destabilizing 

effect on the volatility of the underlying asset-the ISE National 30 Index. However, 

as stated earlier, this result needs to be analyzed in further detail by taking into 

account the effect of market-wide factors and the passage of time on the volatility of 

the stock market.  

 
 
 

Table 8: Summary statistics of portfolio volatilities, average volatilities for ISE National 30 
Index stocks portfolio and Non-ISE National 100 Index stocks portfolio 

 

Sample Period  
Portfolio of ISE 30 National 

Index Stocks  
Portfolio of Non-ISE 100 

National Index Stocks 
A. Total period 

PVOL 0.001354(0.007365) 0.001595(0.014622) 
AVOL 0.003860(0.020827) 0.003958(0.008351) 

B.Pre-futures period 
PVOL 0.001876(0.009599) 0.002119(0.019122) 
AVOL 0.004519(0.024907) 0.004550(0.008442) 

C.Post-futures period 
PVOL 0.000634(0.001118) 0.000872(0.002050) 
AVOL 0.002955(0.013310) 0.003162(0.008186) 

 
 
 
The next step in the analysis is to estimate and decompose volatilities based 

on the Chang et.al.’s methodology that is described in Chapter 3. Recall that Chang 

et. al.’s (1998) a priori expectation is that, under normal conditions, futures trading 

should destabilize the underlying spot market. However, this study has no such a 

priori expectation, based on the conflicting results from the literature regarding the 
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issue. This thesis decomposes the spot portfolio volatility into two components: 

cross-sectional dispersion and average volatility of returns. In this model, on the one 

hand, a shift in broad economic factors causes proportional shifts in spot portfolio 

and average volatility. On the other hand, futures-related volatility shifts change the 

proportionality of this relationship. The model also predicts structural shifts in the 

relationship between cross-sectional dispersion and spot portfolio (and average) 

volatility when futures trading begins. The main argument of the decomposition is 

that if there volatility shifts that are observed for the ISE National 30 Index portfolio 

but not for the Non- ISE National 100 Index portfolio, then these shifts cannot be 

explained solely by the influence of market-wide factors but, instead, the 

introduction of futures trading must be the source of the shifts in volatility. 

A formal analysis of structural shifts in the relationship between PVOL and 

AVOL is presented in Table 9. In Table 9, the null hypothesis H1 that volatility shifts 

in broad economic factors induce proportional shifts in PVOL and AVOL, but PVOL 

increases relative to AVOL when futures trading begins, is tested. With c1, estimated 

as a single value for each portfolio for the whole sample period, constant the 

structural shift between AVOL and PVOL should show itself in the intercept and be 

captured by the coefficient on the dummy variable. Therefore, a significant and 

positive estimate of cpost for the ISE National 30 Index portfolio and an insignificant 

estimate of cpost for the Non- ISE National 100 Index portfolio would be consistent 

with the hypothesis of an arbitrage-induced increase in volatility related to futures 

trading. In Table 9, it is observed that cpost takes a value of -0.000773 for the ISE 

National 30 Index portfolio and a value of -0.001260 for the Non- ISE National 100 

Index portfolio. The values in parenthesis are t-statistics and neither of the cpost 

estimates are statistically significant. The insignificant cpost estimates imply that the 

introduction of futures trading did not have a destabilizing effect on the underlying 

stock market.  
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Table 9: Test of H1 that the volatility shifts in broad economic factors induce proportional shifts 
in PVOL and AVOL, but PVOL increases relative to AVOL when futures trading begins 

 
Model A: 

tpostposttt DcAVOLccPVOL ε+++= 10   

(Sample period: 07.01.2003-30.05.2006)  
(t statistics are in parenthesis) 

c0 c1 cpost R2 
Panel A: Results for a portfolio of ISE 30 National Index Stocks 

0.000521 0.300027 -0.000773 0.725849 
(2.5521) (40.7096) (-2.4884)  

Panel A: Results for a portfolio of Non-ISE 100 National Index Stocks 
0.002161 -0.009175 -0.001260 0,001804 
(2.6162) (-0.1314) (-1.0677)  

 
 
 
The second null hypothesis H2 states that volatility shifts in broad economic 

factors induce proportional shifts in E(CSD) (CSD proxies for E(CSD), because 

E(CSD) is unobservable) and AVOL, but E(CSD) decreases relative to AVOL when 

futures trading begins. According to earlier arguments, while futures-related basket 

trading strategies may increase spot portfolio volatility, they may have little effect on 

the cross-sectional dispersion of constituent security returns. Thus, if the estimate of 

cpost  is negative and significant for the ISE National 30 Index portfolio but not for 

the Non- ISE National 100 Index portfolio, then this result would imply that  the 

introduction of futures trading increases the volatility of the underlying stock market. 

In Table 9, it is seen that the estimates of cpost are negative and insignificant for both 

portfolios. This finding once again implies that the introduction of futures trading did 

not have a destabilizing effect on the underlying stock market; in fact, futures trading 

seems to have no effect of the volatility of the ISE National 30 Index portfolio.  
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Table 10: Test of H2 that volatility shifts in broad economic factors induce proportional shifts in 
E(CSD) and AVOL, but E(CSD) decreases relative to AVOL when futures trading begins 

 
Model B: 

tpostposttt DcAVOLccCSD ε+++= 10   

(Sample period: 07.01.2003-30.05.2006) 
(t statistics are in parenthesis) 

c0 c1 cpost R2 
Panel A: Results for a portfolio of ISE 30 National Index Stocks 

-0.000011 0.380761 -0.000488 0.425392 
(-0.0230) (21.5812) (-0.6566)  

Panel A: Results for a portfolio of Non-ISE 100 National Index Stocks 
0.002321 0.632468 -0.001037 0.080791 
(2.2755) (7.3356) (-0.7118)  

 
 
 
Table 11 reports the results of testing for the third null hypothesis, H3, which 

states that shifts in broad economic factors induce proportional shifts in E(CSD) and 

PVOL, but E(CSD) decreases relative to PVOL when futures trading begins. Just like 

H2, if the estimate of cpost is negative and significant for the ISE National 30 Index 

portfolio but not for the Non- ISE National 100 Index portfolio, then this result 

implies that the introduction of futures trading increases the volatility of the 

underlying stock market. The cpost estimates for both portfolios is statistically 

insignificant. This result is consistent with the findings in Tables 9 and 10 and 

implies that the inception of futures trading on the TURKDEX had no effect on the 

portfolio volatility or the cross-sectional dispersion of the underlying stock market.  

 
 
 

Table 11: Test of H3 that shifts in broad economic factors induce proportional shifts in E(CSD) 
and PVOL, but E(CSD) decreases relative to PVOL when futures trading begins 
 

Model C: 

tpostposttt DcPVOLccCSD ε+++= 10   

(Sample period: 07.01.2003-30.05.2006)  
(t statistics are in parenthesis) 

c0 c1 cpost R2 
Panel A: Results for a portfolio of ISE 30 National Index Stocks 

-0.000201 1.018222 0.000181 0.378475 
(-0.3944) (19.5674) (0.2332)  

Panel A: Results for a portfolio of Non-ISE 100 National Index Stocks 
0.004555 0.301138 -0.001538 0.057189 
(4.7459) (6.0533) (-1.0448)  
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Tests of H4, which states that relative to changes in PVOL, changes in 

E(CSD) will be smaller after futures trading begins, are reported in Table 12. Recall 

that the first three hypotheses are related to shifts in the intercept of the volatility 

model while the slope coefficient is held constant. If the intercept is held constant 

instead, the fourth null hypothesis, H4, predicts that the slope changes if futures 

trading affects stock market volatility. A significant and negative estimate of cpost 

would be consistent with H4. Although they are similar, regressions (35) and (36) 

test slightly different versions of the stability of the relationship between CSD and 

PVOL. Regression (35) holds the covariance constant and tests for shifts in the mean 

of CSD as trading regimes change. Regression (36) holds the mean constant and tests 

for shifts in the covariance. Other things equal, the model predicts that the covariance 

between CSD and PVOL will decline if futures-related trading increases the volatility 

of PVOL but not CSD. The cpost estimates for both portfolios are insignificant. This 

finding does not support the claim that futures trading on the TURKDEX increased 

spot portfolio volatility. 

 
 
 

Table 12: Test of H3 that relative to changes in PVOL, changes in E(CSD) will be smaller after 
futures trading begins than before 

 
Model D: 

ttpostposttt PVOLDcPVOLccCSD ε+++= )*(10   

(Sample period: 07.01.2003-30.05.2006) 
(t statistics are in parenthesis) 

c0 c1 cpost R2 
Panel A: Results for a portfolio of ISE 30 National Index Stocks 

0.000044 1.021190 -0.652918 0.380200 
(0.1093) (19.6884) (-1.3466)  

Panel A: Results for a portfolio of Non-ISE 100 National Index Stocks 
0.004065 0.306471 -0.450317 0.056667 
(5.3907) (6.1477) (-0.8611)  

 
 
 
One noteworthy observation about the results in the above tables is the 

difference in the R2 values between the two portfolios. Recall that R2 indicates what 

proportion of the total variation in PVOL is explained by the model (Myers et al, 

2002). R2 changes between zero and one with values closer to one implying a good 
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fit of the model, whereas values close to zero point to a poor fit. Within the context 

of the models estimated in this study, it is plausible to expect that macroeconomic 

disturbances explain a greater portion of the portfolio variance compared to futures 

trading. Therefore, in the case of either portfolio, an explanatory variable which is 

affected by macroeconomic disturbances, namely AVOL, can reasonably be expected 

to generate an above- average explanatory power for the model (should reveal itself 

as an R2 close to one). In Table 9, the R2 for the ISE National 30 Index portfolio is 

0.725, pointing to a successful fit, whereas the R2is only 0.001 for the Non-ISE 

National 100 Index portfolio. Similar differences are observed for the other three 

hypothesis tests in Tables 10, 11, and 12, respectively. The difference in R2 values 

implies that the estimated models have a much higher explanatory power when the 

portfolio consists of ISE-30 stocks but not when the portfolio consists of Non-ISE-

100 stocks This difference in explanatory model can be explained by the fact that the 

Non-ISE-100 stocks happen to be those stocks that are not included in any of the 

national indices during the entire sample period due to their small market 

capitalization and low trading volume. As such, these stocks are claimed to be 

susceptible to manipulation which could explain the failure of the models in 

explaining the volatility changes in this group of stocks. If these stocks are indeed 

subject to manipulation, this would mean that the return-generating process for these 

stocks is not a result of the interaction between the market forces of supply and 

demand, which are themselves shaped by broad economic factors. Hence, a model 

that decomposes stock return volatility based on broad economic factors cannot be 

expected to work well in explaining the volatility changes for such a group of stocks. 

Generally speaking, the test results imply that the inception of futures trading 

on the TURKDEX had no effect on the volatility of the underlying stock market, 

ISE. The models seem to have a much higher explanatory model for the portfolio of 

ISE-30 stocks compared to the portfolio of Non-ISE-100 stocks. These results are 

likely to be caused by the extremely small volume of futures trading compared to the 

volume of trading in the stock market. Also, possible manipulative influences, 

especially on the Non-ISE-100 stocks, may give way to the failure of models in 

explaining the changes in the volatility of this group of stocks. It seems like unless 
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the trading volume and the depth of the futures markets reach high levels compared 

to the underlying stock market, finding a link between the volatility of the stock 

market and trading of the futures is going to prove to be an almost impossible task.  
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CHAPTER 5 

 

 

CONCLUSION

 

 

Although Turkish capital markets, as an emerging economy, have undergone 

a great progress, what is evident regarding the economy as a whole is also evident for 

the capital markets: the prices of the securities are extremely volatile due to macro-

economic imbalances as well as domestic factors such as political instability and 

international factors like fluctuating exchange rates. Recall that volatility refers to the 

standard deviation of the change in the value of a financial instrument within a 

specific time horizon and is often used to quantify the risk of the instrument over that 

time period. The Turkish capital markets are categorized as emerging financial 

markets and expose domestic and foreign investors to a great deal of risk due to high 

volatility. In such an environment, financial instruments, such as futures contracts, 

that may offer hedging opportunities attract even more attention.  

In order to satisfy the hedging as well as speculative needs of investors, 

TurkDex, the very first and only options and futures exchange in Turkey, has been 

launched and began its operations on 4 February 2005. As of the end of May 2007, 

only four futures contracts are traded on the TurkDex, although it was launched with 

the purpose of offering both futures and options. The futures contracts traded on 

TurkDex are as follows (Official website of TurkDex): 

1) Currency Futures Contracts written either on YTK/EURO rate or 

YTL/DOLAR rate 

2) Equity Index Futures Contracts written either on ISE National 30 Index or 

ISE National 100 Index 

3) Interest Rate Futures Contracts written either on 91 Days T-Bill interest 

rates or 365 Days T-Bill interest rates or T-Benchmark 

4) Commodity Futures Contract written on either cotton or wheat or gold. 
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Among these contracts, the contracts written on the ISE- National 30 Index 

are the focus point of this thesis. Stock index futures are deemed to be one of the 

most successful financial innovations of the 1980s and parallel to this opinion, the 

most actively traded contracts on the TurkDex have been the contracts written on the 

ISE-30 and ISE-100 National Indices. As a matter of fact, the trading volume in 

equity index future contracts is dominated by contracts written on the ISE-National 

30 Index. 

In the year 2005, the trading volume of the ISE-30 index futures was 

563,390,702 YTL and this volume increased to 10,446,702,523 YTL by the end of 

2006. During the same period, the 2005 trading volume of the ISE-National 30 Index 

stocks was 269,970,134,449 YTL and this volume increased to 325,157,131,314 

YTL in 2006. These statistics show that the futures trading volume was 0.2% and 3% 

of the stock trading volume in years 2005 and 2006 respectively. Although these 

percentages are rather low, the progress of the trading volume in futures contracts 

written on the ISE-National 30 Index is promising (it increased by 20-fold from year 

2005 to year 2006). Therefore, as the trading volume in TURKDEX increases, it 

becomes more important to understand the interaction between future and spot 

markets, and especially the potential impact of stock index futures trading on the 

underlying spot market. Since the trading of futures on equity indices aims to provide 

a hedging outlet for the risk taken in the spot market, the effect of such trading on the 

volatility and riskiness of the spot market is very important for both the investors of 

stock index futures and the regulators of financial markets. It is usually the case that 

if futures trading increases the volatility in the spot market, thereby increasing the 

level of risk faced by the investors in the spot market, the regulatory body responds 

by passing new regulations to help investors to hedge themselves against the risk in 

spot market. However, the new regulation itself may end up causing the risk assumed 

in the spot market since now that it is possible to form hedged positions, investors 

are more willing to take on risk in the spot market. This is a contradiction in and of 

itself and therefore, it is worthwhile to investigate the possible influence of futures 

trading on the volatility of the underlying stock market. The main argument against 

stock index futures trading claims that futures market may increase stock market 
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volatility. This argument is based on the assumption that, because of their high 

degree of leverage (i.e. the investor is able to open a position by only depositing a 

small percentage of the contract size at the beginning), futures markets are likely to 

attract risk takers and speculator traders. The speculative investing strategies are 

likely to increase the underlying asset volatility. Another point against futures trading 

is that futures markets provide otherwise unattainable trading strategies, such as 

index arbitrage and portfolio insurance with arbitragers driving the spot prices up or 

down continuously through the positions they take and reverse. There are also 

arguments claiming that futures markets play an important role in price discovery 

and have a beneficial effect on the underlying cash markets. This viewpoint holds 

that speculation in the futures market tends to stabilize cash prices. Futures trading 

adds more informed traders to the cash market, making it more liquid and, therefore, 

less volatile. Both of the arguments against and in favor of futures market trading 

have some theoretical and empirical support and therefore the results in the literature 

are conflicting. The existent literature on the effects of stock index futures trading on 

spot market volatility focuses primarily on developed markets, and it is unclear to 

what extent these results are applicable to emerging markets. Therefore, in this thesis 

a marginal contribution to the literature is attempted by analyzing the volatility of the 

stock market before and after the introduction of stock index futures in Turkish 

capital markets. 

The study analyzes whether futures trading causes the volatility of the stocks 

included in ISE 30 National Index to increase while controlling for the effect of 

broad economic factors on such volatility. Two portfolios are formed to examine the 

possible sources of change in volatility. The first portfolio is made up of stocks that 

were included in the ISE 30 National Index for the whole sample period. The second 

portfolio consists of stocks that were not included in any of the stock indices during 

the entire sample period and therefore were not the underlying security of any 

derivative instrument traded. There are a total of 158 stocks that satisfy the above 

criteria. Among these stocks, 18 were included in the ISE 30 National Index 

throughout the sample period, whereas the remaining 140 were not included in any 

index during the same period. Both sets of stocks are susceptible to broad economic 
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disturbances, but only the ISE 30 National Index stocks are impacted directly by 

futures trading. Thus, shifts in the relationship between the volatility components for 

the ISE National 30 Index portfolio but not for the Non-ISE National 100 Index 

portfolio are unlikely to be explained by changes in broad economic factors alone. 

The closing prices of the 158 stocks are obtained from the database of ISE over the 

period from 2nd January 2003 to 30th May 2006. The data set includes a total of 636 

observations, of which 369 observations belong to the sub-period prior to the 

introduction of stock index futures and the remaining 267 observations belong to the 

second sub-period subsequent to the introduction of stock futures. Two equally-

weighted portfolios are constructed for each sub-period and continuously-

compounded percentage returns are estimated as the log price relative for each 

portfolio.  

This thesis adopts the methodology proposed by Chang et al (1999). Chang 

et.al. propose new tests to examine whether stock index futures affect stock market 

volatility by decomposing spot portfolio volatility (PVOL) is into three components: 

average volatility of mean returns (AVOL), expected cross sectional dispersion 

(E(CSD)) and cross-sectional variance of mean returns (CSVOM). After the 

decomposition, a formula is constructed for measuring the average volatility and the 

cross-sectional dispersion of the component securities and the portfolio volatility for 

each day in the sample period by using a simple filtering procedure. This filter 

recovers a series of realized volatilities from a discrete time realization of a 

continuous-time diffusion process outlined in papers by Chesney, Elliott, Madan and 

Yang (Chesney et al., 1993) and Pastorello (1996). During this stage of volatility 

decomposition, it was observed that the cross-sectional variance of mean returns 

accounts for less than one percent of the variation in PVOL and therefore this term 

has only a second-order impact on PVOL . Therefore, this component was ignored in 

the analysis. After excluding CSVOM from the analysis, the decomposition is applied 

to a single-factor return-generating model to focus on the relationships among the 

volatility components rather than on the components in isolation which was the 

traditional method of analyses. The following hypotheses are tested: 

H1: Volatility shifts in broad economic factors induce proportional shifts in 
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PVOL and AVOL, but PVOL increases relative to AVOL when futures trading 

begins.  

H2: Volatility shifts in broad economic factors induce proportional shifts in 

E(CSD) and AVOL, but E(CSD) decreases relative to AVOL when futures trading 

begins. 

H3: Volatility shifts in broad economic factors induce proportional shifts in 

E(CSD) and PVOL, but E(CSD) decreases relative to PVOL when futures trading 

begins.  

H4: Relative to changes in PVOL, changes in E(CSD) will be smaller after 

futures trading begins than before.  

Generally speaking, the test results imply that the inception of futures trading 

on the TURKDEX had no effect on the volatility of the underlying stock market. The 

models seem to have a much higher explanatory model for the portfolio of ISE 

National 30 Index stocks compared to the portfolio of Non-ISE National 100 Index 

stocks. These results are likely to be caused by the extremely small volume of futures 

trading compared to the volume of trading in the stock market. Also, possible 

manipulative influences, especially on the Non-ISE National 100 Index portfolio, 

may give way to the failure of models in explaining the changes in the volatility of 

this group of stocks. It seems like unless the trading volume and the depth of the 

futures markets reach high levels compared to the underlying stock market, finding a 

link between the volatility of the stock market and trading of the futures is going to 

prove to be an almost impossible task.  

For further research, it would be illuminating to study the same question by 

the use of different methodologies such as GARCH-type models. It may also be 

interesting to repeat the same tests once enough time passes and stock index futures 

trading in TurkDex reaches a high level of trading volume. Moreover, lengthening 

the sample period may increase the statistical significance of the results. 

 

 



 

 
 

82 

BIBLIOGRAPHY

 

 

Alexander, S. (1961) Price Movements in Speculative Markets: Trends or 

Random Walks? in Cootner, P.H. (1964) The Random Character of Stock Market 

Prices, MIT Press, MA. 

Antoniou, A., & Holmes, P. (1995) Futures trading, information and spot 

price volatility: Evidence for the FTSE-100 stock index futures contract using 

GARCH, Journal of Banking and Finance, 19, 117–129. 

Bae, S. C., Kwon, T.H. and Park, J.W. (2004) Futures trading, spot market 

volatility, and market efficiency: The case of the Korean index futures markets, 

Journal of Futures Markets, 24 (12), 1195 - 1228 

Bae S. C., & Jo, H. (1999) The impact of information release on stock price 

volatility and trading volume: The rights offering case, Review of Quantitative 

Finance and Accounting, 13, 153–169. 

Beichelt, F. (2006) Stochastic processes in science, engineering, and finance, 

Chapman & Hall/CRC, Boca Raton 

Bessembinder, H., & Seguin, P. J. (1992) Futures trading activity and stock 

price volatility, Journal of Finance, 47, 2015–2034. 

Bollerslev, T. (1986) Generalized Autoregressive Conditional 

Heteroscedasticity, Journal of Econometrics, 31(3), 307-327. 

Bologna, P. (1999) The effect of stock index futures trading on the volatility 

of the Italian stock exchange: a GARCH examination, Ente per gli Studi Monetari 

Bancari e Finanziari Luigi Einaudi ± Temi di Ricerca, 12. 

Brenner, M., Subrahmanyam, M. and Uno, J. (1989) The Behavior of Price in 

the Nikkei Spot and Futures Market, The Journal of Finance Economics, 23, 363-

383. 

Brown, M. B., and Forsythe, A. B. (1974) Robust Tests for the Equality of 

Variance, Journal of the American Statistical Association, 69, 364-367. 

 



 

 
 

83 

Capasso, V., Bakstein, D. (2005) An introduction to Continuous Time 

Stochastic Processes, Birkhäuser. 

Chan, K. (1992) A further analysis of the lead-lag relationship between the 

cash market and stock index market, Review of Financial Studies, 5 (1), 123-152 

Chan, K., Chan, K. C. & Andrew K. (1991) Intraday volatility in the stock 

index and stock index futures market, Review of financial studies, 4, 657 – 684.  

Chang, E. C., Cheng, W. J. and Pinegar, J. M. (1999) Does Futures Trading 

Increase Stock Market Volatility? The Case of the Nikkei Stock Index Futures 

Markets, Journal of Banking and Finance, 23 (5), 727-753.  

Chang, E., Ray Y. C. and Edward F. N. (2000) Market Volatility and the 

Demand for Hedging in Stock Index Futures, Journal of Futures Markets, 20 (2), 

105-125.  

Cornell, B. and French, K.R. (1983) Texas and Pricing of Stock Index 

Futures, The Journal of Finance, 38 (3), 657-694. 

Cootner, P.H. (1964) The Random Character of Stock Market Prices, MIT 

Press, MA. 

Damodaran, A. (1990) Index futures and stock market volatility, Review of 

Futures Markets, 9, 442–457. 

Damodaran, A and Subrahmanyam, M.G. (1992) The Effects of Derivative 

Secuties on the Markets for the Underlying Assets in the United States: A survey, 

Financial Markets, Institutions and Instruments, December. 

Darrat, A. F., & Rahman, S. (1995) Has futures trading activity caused stock 

price volatility?, Journal of Futures Markets, 15, 537–557. 

Edwards, F. R. (1988) Does futures trading increase stock market volatility?, 

Financial Analysts Journal, 44, 63-69. 

Elliott, R. J., Kopp, P. E. (2005) Mathematics of financial markets, Springer, 

New York. 

Engle, R.F. & Ng, V. (1993) Measuring and Testing the Impact of News on 

Volatility, The Journal of Finance, 48, 1749-1778. 

Fama, E. (1965) The Behaviour of Stock Market Prices, Journal of Business, 

38, 34-105. 



 

 
 

84 

Figlewski, S. (1984) Hedging Performance and Basis Risk in Stock Index 

Futures, The Journal of Finance, 39 (3), 657-669. 

French, K. R. (1986) Detecting Spot Price Forecasts in Futures Prices, The 

Journal of Business, 59, 39-54. 

Gourieroux, C., Jasiak, J. (2001) Financial Econometrics, Princeton Series in 

Finance. 

Gulen, H. and Stewart M. (2000) Stock Index Futures Trading and Volatility 

in International Equity Markets, Working Paper, Purdue University.  

Harris, L. (1989) S&P 500 cash stock price volatilities, Journal of Finance, 

44, 1155–1175. 

Jegadeesh N., and Subrahmanyam A. (1993) Liquidity effects of the 

introduction of the S&P 500 index futures contracts on the underlying stocks, Journal 

of Business, 66, 171-187 

Kawaller, I. G, Koch, P. D. and Koch, T. W. (1987) The temporal price 

relationship between S&P 500 futures and S&P 500 index, Journal of Finance, 42, 

1309-1329. 

Kendall, M.G. (1953) The Analysis of Economic Time Series, Part 1: Prices, 

in Cootner (1964), ed., The Random Character of Stock Market Prices, MIT Press, 

MA. 

Kijima, M. (2003) Stochastic Processes with applications to Finance, 

Chapman& Hall/CRC. 

Kloeden, Peter E. (c1992) Numerical solution of stochastic differential 

equations”, Springer-Verlag, New York. 

Körezlioğlu, H., and Hayfavi, A.B. (2001) Elements of probability theory, 

ODTÜ Basım Đşliği. 

Laatsch, F. and Schwarz, T. (1988) Price Discovery and Risk Transfer in 

Stock Index Cash and Futures Markets, Review of Futures Markets, 7 (2), 272-289. 

Lee, S. B., & Ohk, K. Y. (1992) Stock index futures listing and structural 

changes in time-varying volatility. Journal of Futures Markets, 12, 493–509. 

 

 



 

 
 

85 

Lockwood, L. L., & Linn, S. C. (1990) An examination of stock market return 

volatility during overnight and intraday periods 1964–1989, Journal of Finance, 45, 

591–601. 

Mikosch, T. (1998) Elementary Stochstic Calculus with finance in view, 

World Scientific, MA. 

Modest, D. M. and Sundaresan, M. (1983) The Relationship Between Spot 

and Futures Prices in Stock Index Futures Markets: Some Preliminary Evidence, 

The Journal of Futures Markets, 3 (1), 15-41. 

Pagan, A. & Schwert, G. W. (1990) Alternative Models For Conditional 

Stock Volatility, Journal of Econometrics, 45, 267-290.  

Raju, M. T. and Karande, K. (2003) Price Discovery and Volatility on NSE 

Futures Market, Securities and Exchange Board of India, Working Paper Series No. 

7. 

Roberts, H.V. (1959) Stock Market ‘Patterns’ and Financial Analysis: 

Methodological Suggestions”, in Cootner (1964) ed., The Random Character of 

Stock Market Prices, MIT Press, MA. 

Ross, Stephen A. (1989) Institutional Markets, Financial Marketing and 

Financial Innovation”, Journal of Finance, July 1989. 

Ross, Stephen. A. (1989) Information and volatility: The no-arbitrage 

martingale approach to timing and resolution irrelevancy, Journal of Finance, 44, 1-

17 

Ryoo, H. and Smith, G. (2004) The impact of stock index futures on the 

Korean stock market, Applied Financial Economics, 14, 243–251. 

Wang, P. (2003) Financial Econometrics, Routledge Advanced Texts in 

Economics and Finance. 

Wu Yu, S. (2001) Index futures trading and spot price volatility, Applied 

Economics Letters, 8, 183–186 

 

 


