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ABSTRACT

HOW DOES THE STOCK MARKET VOLATILITY CHANGE AFTER
INCEPTION OF FUTURES TRADING? THE CASE OF THE ISATNIONAL 30
STOCK INDEX FUTURES MARKET

Esen,inci
M.Sc., Department of Financial Mathematics
Supervisor : Assist. Prof. Dr. Seza Dagiu

September 2007, 85 pages

As the trading volume in TURKDEX, the first and plptions and futures exchange
in Turkey, increases, it becomes more importanbhdaee an understanding of the
effect of stock index futures trading on the ungilad spot market volatility. In this
respect, this thesis analyzes the effect of ISEeNat 30 index futures contract
trading on the underlying stocks’ volatility. Inishthesis, spot portfolio volatility is
decomposed into two components and this decomposisi applied to a single-
factor return-generating model to focus on theti@bahips among the volatility
components rather than on the components in isolatn order to measure the
average volatility and the cross-sectional dispersif the component securities and
the portfolio volatility for each day in the sameriod, a simple filtering procedure
to recover a series of realized volatilities fromdscrete time realization of a
continuous time diffusion process is used. Resdt®al that inception of futures
trading has no significant effect on the volatildfthe underlying ISE National 30
index stock market.

Keywords : Stock Market Volatility, Derivatives, femes, Diffusion Function

Estimation
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VADELI ISLEMLER BASLADIKTAN SONRA HISSE SENEDPIYASASININ
OYNAKLI Gl NASIL DEGIiSTIi? IMKB ULUSAL 30 ENDEKSINE DAYALI
VADELI ISLEM SOZLESMELERI UZERINE BIR CALISMA

Esen,nci
Yuksek Lisans, Finansal Matematik Bolumu
Tez Yoneticisi : Yard. Dog. Dr. Seza Dswglu

Eylul 2007, 85 sayfa

Tarkiye'deki ilk ve tek vadeli slemler ve opsiyon borsasi olan VOBAa islem
hacmi arttikca vadelisiemlerin dayanak spot piyasanin oyngkia etkilerini
anlamak onem kazanmakta olup bu tezde IMKB UlugakBdeksine dayali vadeli
islem sozlgmelerinin glem gérmesi sonucu dayanak hisse senetlerindetuallan

bir portfoyin oynakkiindaki deisiklikler arastiriimistir. S6z konusu etkikmin
arastiriimasi amaciyla spot portféy oynagklibilesenlerine ayrilmyg ve vadeli lem
alim satimi sonucu bienler arasindaki gntilarda bir d@isiklik olup olmadginin
tespitine yonelik olarak, bu ayrim tek faktorl betiri modeline uygulanmgir. Spot
portféy oynaklginin bilesenlerinin gunlik bazda hesaplanmasinda ise surekli
diffizyonlarin kesikli zamandaki gerceklaelerine basit bir filtreleme yo6ntemi
uygulanmgtir. Sonuclar IMKB Ulusal 30 endeksine dayali vadelisldm
sozlamelerinin slem gormesininIMKB Ulusal 30 endeksinde yer alan hisse

senetlerinin oynak@ tzerinde bir etkisi bulunmagina saret etmektedir.

Anahtar Kelimeler: Hisse Senedi Piyasasi OymakiVadeli islem Sozlgmeleri,

Tarev Araclar, Diffizyon Fonksiyonu Tahmini
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CHAPTER 1

INTRODUCTION

Origins of organized securities markets in Turkeyedback to the second
half of the 18 century. The very first securities market was nariBersaadet
Tahvilat Borsasi Igtanbul Bond Exchange)’ and it was established nduthe
Ottoman Empire period in 1866 (ISE web site). Reitgy the foundation of the
Turkish Republic, “Securities and Foreign Exchahge No. 1447"was passed in
1929 and it provided a basis for an organized Stexghange under the name of
“Istanbul Securities and Foreign Exchange Bour$éis new stock exchange grew
in a short period of time and contributed consibdirdo the financing of the real
sector. Unfortunately, both the 1929 economic €r&sid the outbreak of the Second
World War ended up hampering the success of thek siwechange. Still, during the
post-war period, as a result of the rapidly growindustrial sector, an increasing
number of companies offered their shares to thdipand faced strong demand
from individual investors.

During the first half of 1980s, the Turkish sedest markets experienced
serious developments in terms of setting up of tegal and institutional
infrastructure necessary for sound capital movemetithin a financial system. The
Capital Markets Law (CML) was passed in 1981, dmel Decree by Law No.91
establishing the basic principles concerning thenétation and operations of
securities exchanges was passed in October 1983henfollowing year, the
Regulation concerning the foundation and operatajribe securities exchanges was
published in the Official Gazette. Following theoation of related regulations in the
subsequent period, in December 1985 the IstanbotkSExchange (ISE) was
officially established and started its operationsJanuary 3, 1986. Currently ISE is
comprised of an equities market, a bonds and hilisket and an international

securities market.



Despite certain macro-economic imbalances, Turkigpital markets have
made considerable progress both qualitatively amdntatively during their
relatively short history. This fact reveals itseif the trend of capital market
indicators throughout last two decades. The nundfecorporations with shares
traded on the ISE equities market was 80 by theo#ri®86, the year in which the
ISE was established. As of the end of 2006, thebaunof corporations registered
with the CMB is 604, and 316 of these corporatiareslisted on the ISE. Despite the
dominance of the government as a participant inTilmkish financial markets, the
funds that are transferred to the private sec@stock issues have accumulated to as
much as US $ 29 billion between 1986 and the yedr2005 . As of the end of
2006, the number of investors in the ISE has rehdhe68,584 (CMB 2005 year
book).

Although the Turkish capital markets have undergargreat progress as an
emerging economy, what is evident regarding the@@ay as a whole is also evident
for the capital markets as well: the prices of ficial securities are very volatile due
to macro-economic imbalances as well as domestiora such as political stability
and international factors such as exchange ratas.fact is supported if the market
capitalization and market index level figures argamined. Total market
capitalization in accordance with volatility in peis has shown a very uneven pattern
over the years. Market capitalization, which wasy@88 million US Dollars (0.7
million YTL) by the end of 1986, reached the lewéll63.8 billion US Dollars (230
billion YTL) at the end of 2006. When annual chaage market capitalization are
analyzed, it is seen that market capitalization thadhighest increase in dollar terms
during 1999 (236%). Following this increase, markapitalization decreased by
39%, 31% and 27.9% in 2000, 2001 and 2002 resmdgtand then increased by
100.6% in 2003, 42.1% in 2004, 66% in 2005 and 0i6%006 (CMB 2006 year
book). Moreover, in a general pattern of cyclidatfuations, ISE indices, composed
in order to calculate price and return performanakeall shares as well as on the
basis of relative markets and sectors, both in $eomNew Turkish Lira and US
dollar were volatile. The following figure preseinl® percentage return series of ISE
National-100 Index closing values for the last arge The return series should be



interpreted as the main indicator of volatility time prices of shares quoted on the
National Market.

ISE-National 100 Index Daily Percentage ReturneSeri
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Figure 1: ISE-National 100 Index Daily Percentage Bturn Series

In the above figure, it is clearly seen that thdydaercentage return of ISE-
National 100 Index has oscillated in a wide barmbiad O, implying that the stock
market as a whole was volatile. Recall that vatgtilefers to the standard deviation
of the change in the value of a financial instrumeithin a specific time horizon and
is often used to quantify the risk of the instrumewer that time period. According
to the figure, investors have realized returns Wexte different from their expected
returns so, the riskiness of investing in Turkigipital markets has been more that of
most of the other developing markets. This typeanfinvestment environment is
only preferable if the investor is a risk taker.vi#wer, the theory of investment
suggests that different investors may have diffecdices regarding the level of
risk to assume, and even that same investor mdgrpcetake different risk levels at
different times. In order to accommodate theseethfiit risk preferences, the
financial system has to offer a means by which stmes can manage and adjust the
level of risk that they take. The derivative maskahd derivative instruments are one

of the best possible ways of achieving this obyecti



In finance, a derivative is a financial instrumém value of which depends
on the value of an underlying asset's value. Witbhsan instrument, rather than
trading or exchanging the asset itself, marketigipeints enter into an agreement to
exchange money, assets or some other value at fdome date based on the
underlying asset. Examples of underlying assetgerdnom cotton, to shares of
common stock, to interest rates. One of the simplesivative instruments is a
futures contract. This is an agreement to buy drtee underlying asset (or the
equivalent cash flows) at a future date. The buwingelling price, the amount of the
underlying asset to be exchanged and the date ahwie exchange will take place
are all determined on the day that the futuresrachis created. The exact terms of
the derivative (the payments between the counteieppdepend on, but may or may
not exactly correspond to, the behavior or perfareeaof the underlying asset. The
diverse range of potential underlying assets anafpalternatives leads to a very
large number of different derivative contracts tbam be traded in the markets. The
main types of derivatives are futures, forwardgsioos and swaps.

Forward contracts are negotiated between two partigth no formal
regulation or exchange and involve the purchasiogg(position) or selling (short
position) of a specific quantity of a commodityge.corn or gold), foreign currency,
or financial instrument (e.g., bonds or stockspatpecified price (delivery price),
with delivery or settlement at a specified futueged(maturity date). The price of the
underlying asset for immediate delivery is knowrltesspot price.

Futures contracts are standardized forward costréct are traded on an
organized exchange and involve the making or tallgltyery of a specified quantity
of a commodity, a foreign currency, or a finandr@trument at a specified price,
with delivery or settlement at a specified futueted

A futures contract is entered into through an oiggohexchange, using banks
and brokers. These organized exchanges have dbatises, which may be
financial institutions or part of the futures exoba. They interpose themselves
between the buyer and the seller, guarantee oldigatand make futures liquid with
low credit risk. The changes in the value of thelertying asset require a daily
mark-to-marking and a cash settlement (i.e. digmurgains and daily collected



losses) for both sides of a futures contract.

Options are the other commonly used derivativerunsénts and give the
holder the right and not the obligation to buy elt an underlying asset at a specific
price on or before a future date. The two main $ypé option contracts are call
options and put options, while some others inclstdek (or equity) options, foreign
currency options, options on futures, caps, floodlars, and swaptions (options
written on swap contracts).

A swap, on the other hand, is a flexible, privditeyward-based contract or
agreement between two counter parties to exchangenss of cash flows based on
an agreed-on (or notional) principal amount ovepacified period of time in the
future. Swaps are usually entered into through énolor dealers who take an up-
front cash payment or who adjust the interest ratdmre default risk. The two most
prevalent swaps are interest rate swaps and for@igency swaps, while others
include equity swaps and commodity swaps.

The derivatives market serves the needs of segevaps of users, including
those parties who wish to hedge, those who wisipézulate, and arbitrageurs.

* A hedger enters the market to reduce risk. Hedgisgally involves
taking a position in a derivative financial instrent, which has opposite
return characteristics of the asset or positiomdpdiedged, and has the
purpose of offsetting losses or gains in ordeditaieate return volatility.

* A speculator enters the derivatives market in $eardcprofits, and is
willing to accept risk. A speculator takes an opesition in a derivative
product (i.e. there is no offsetting cash flow esyre to offset losses on
the position taken in the derivative product).

* An arbitrageur is a speculator who attempts to loakear-riskless profits
that can be earned from price differences by semelbusly buying and
selling identical financial instruments at twofdrent prices.

TurkDex, the very first and only options and fusiexchange in Turkey, was

launched and began its operations on 4 February.20@ objective of founding the
futures and options exchange was to satisfy theyihgd speculation or arbitrage

needs of Turkish investors. As of the end of Ma@YZ0only 4 kinds of futures



contracts are traded on the TurkDex, although & V@anched with the purpose of
offering both futures and options. The kinds ofufes traded on TurkDex are as
follows (Official website of TurkDex):
1) Currency Futures Contracts written either on MHWRO rate or
YTL/DOLLAR exchange rate
2) Equity Index Futures Contracts written eitherl8& National 30 Index or
ISE National 100 Index
3) Interest Rate Futures Contracts written either9@-Day T-Bill interest
rates or 365-Day T-Bill interest rates or T-Benchkna
4) Commodity Futures Contracts written on eithetaoor wheat or gold.
Among these contracts, the equity index futurestreots is of most
relevance for this thesis, since the stock indéxrés are deemed as one of the most
successful financial innovations of the 1980s (Rgad Smith, 2004). Today, stock
index futures and options trade in developed firdnmarkets all over the world,
with new contracts launched nearly every year. dntast, much of the futures
trading in emerging markets is a relatively regaménomenon. Although Turkey is
one of the growing emerging markets, it was notl nEebruary 2005 that futures
contracts based on the ISE National 30 Index arkl N&tional 100 Index were
introduced. However, since the introduction of fimeires contracts on interest rates,
indices, commodities and exchange rates, the wmadiolumes have grown
remarkably. The following tables provide the tragimolume figures. Table 1
presents the yearly trading volume figures for y2@05 and 2006 at each category
of futures contracts, and Table 2 presents thengaeblume figures for each of the

equity index futures contracts since the inceptibmurkDex.



Table 1: The yearly trading volume figures for year2005 and 2006 for each class of futures
written on an different underlying asset category

Category of Year 2005 Year 2006 Total (YTL) percentage

Underlying Asset (YTL) (YTL) (04.02.2005- Change (from
31.12.2006) 2005 to 2006)

Equity Indices 658,743,565 10,608,360,610 11,264 1115 1510.39
Interest Rates 19,945,793 26,049,053 45,994,846 593
Exchange Rates 2,240,018,049 6,747,504,822 8,988 B2 201.22
Commodities 771,525 4,240,704 5,012,229 444
Total (YTL) 2,919,478,931 17,386,155,189 20,305,630 495,52

Table 2: The trading volume figures for each of theequity index futures contract

Contract Code Magj(;'r%gi: he Underlying Equity Index Y??;_i;) 05 Y??;_i;) 06
101F_IX1001205 December 05* ISE National 100 Index 72,669,060
101F_1X1000206 February 06 ISE National 100 Index 9,250,703
101F _1X1000406 April 06 ISE National 100 Index 3403
111F 1X0300205 February 05* ISE National 30 Index  ,25D,016
111F 1X0300405 April 05* ISE National 30 Index 1841085
111F 1X0300605 June 05* ISE National 30 Index 46,829
111F 1X0300805 August 05* ISE National 30 Index 3B,941
111F 1X0301005 October 05* ISE National 30 Index 9,525,652
111F 1X0301205 December 05* ISE National 30 Index 30,220,949
111F 1X0300206 February 06 ISE National 30 Index ,639,990
111F_IX0300406 April 06 ISE National 30 Index 16740
101F_IX1000206  February 06** ISE National 100 Index 60,063,853
101F_IX1000406 April 06* ISE National 100 Index ,B925,678
101F_IX1000606 June 06** ISE National 100 Index ,351.,840
101F _1X1000806 August 06** ISE National 100 Index 749,085
101F 1X1001006 October 06** ISE National 100 Index 6,025,955
101F 1X1001206 December 06** ISE National 100 Index 4,617,085
101F _1X1000207 February 07 ISE National 100 Index 38,300
101F _1X1000407 April 07 ISE National 100 Index 514053)
111F 1X0300206  February 06** ISE National 30 Index 390,930,918
111F_IX0300406 April 06** ISE National 30 Index BR37,368
111F_IX0300606 June 06** ISE National 30 Index 2B584,573
111F_IX0300806 August 06** ISE National 30 Index ,802,671,575
111F_IX0301006  October 06** ISE National 30 Index 2,013,930,633
111F_IX0301206 December 06** ISE National 30 Index 3,461,245,768
111F 1X0300207 February 07 ISE National 30 Index 77,239,813
111F 1X0300407 April 07 ISE National 30 Index 6811875

* Contracts closed between 4 Feb-30 Dec 2005
** Contracts closed between 2 Jan-29 Dec 2006

.65



What is evident from the above tables is that guwritten on stock indexes
have been the most frequently traded contractses#ti)5 and that the trading
volume in equity index future contracts is dominlabg contracts written on the ISE-
National 30 Index. In year 2005, the trading volumeutures contracts with the
underlying asset as ISE National 30 Index has Bé&390,702 YTL and this figure
has increased to 10,446,702,523 YTL by the end66Za 1,754% increase). On the
other hand, 2005 annual trading volume of ISE-NeticdB0 Index stocks has been
269,970,134,449 YTL and 2006 annual trading volurhéSE-National 30 Index
stocks has been 325,157,131,314 YTL, showing thatttading volumes of the
futures contracts on ISE-National 30 Index as @qrgage of the trading volume in
the underlying asset were realized as %0.2 andre@D05 and 2006, respectively.
Although the percentage of the trading volume efeluity index futures compared
to trading volume of the underlying instrument haen low until the end of 2006,
the progress of the trading volume in futures cmtfr written on ISE-National 30
Index is promising. It looks like as the tradinglwmoe in TURKDEX increases, it
becomes even more important to have an understamdithe interaction between
futures and spot markets, and specifically of thece of stock index futures trading
on the underlying spot market.

Before continuing with the literature survey abthg effect of stock index
futures trading on the underlying spot market, &aitkdl description of the ISE-
National 30 Index futures contract is given belaw drder to provide a better
understanding of futures trading on TurkDex.

First, let's focus on the forces that derive anester to buy or sell the ISE-
National 30 Index futures contract. All risk-averseestors like investing their
savings in alternatives that provide the highesirn for a given level of risk. The
stock market is one of these alternatives. Typrcatiost of the stocks and therefore
the stock indexes increase in value when the ecgrisim an expansionary phase
and decline in value when the economy is in a ®oerary phase. If an investors, for
instance, makes an investment in a portfolio otlsdathat also make up the ISE
National 30 index, this investor’s holding perieadurn will fluctuate with the phases

of the economy. In other words, his returns wiltrease while the economy is



expanding and will decrease while the economy mgregting. This typical volatility
in the returns may discourage a lot of risk avenskviduals and they may refrain
from investing in the stock market because of it lexpected risk. However, if the
same investors can find a way to decrease or coehpleliminate this risk, the stock
market may once again become a viable investméatnative, even for the most
risk averse investor. The ISE-30 Index Futures reahtprovides the investors with
the opportunity to invest in the stock market basedheir expectations regarding
the direction of overall economy while hedging tlsetwes against the return
volatility by taking an appropriate position in tlfetures market. If the investor
expects that the economy is going to have an expany movement, then he can
buy a portfolio of stocks that mimic the ISE-30 exdand then he can take a short
position in the ISE-30 futures contract. With sactombined position, the investor’s
return volatility will be decreased since the casrket position and the futures
market position are constructed to move in oppaditections under all possible
scenarios. Therefore, the offsetting positions galherate a return whose volatility is
a lot lower than the return that the investor camef he took a position only in the
stock market and not in the futures market.

The underlying asset of this futures contract, Il National-30 index, is
composed of National Market companies, except forestment trusts. The
constituent 30 companies are selected on the hafsipre-determined criteria
determined by the ISE administration. The stocks @nked according to their
market values and their daily average trading \&lUddose stocks which have the
highest market values and daily average tradingieglare included in the ISE
National-30, ISE National-50 and ISE National-166ices (official website of ISE).

The ISE indices are weighted by the market capd#ibn of the publicly held
portion (the stocks kept in custody at Takasbamikept for those kept in non-
fungible accounts) of each constituent stock. Alltlee indices have varying base
values and the continuity of the indices is mamgdi by adjusting these base values
(the divisor of the index formula).

The following table provides the contract speciimas for the futures
contract written on the ISE-National 30 Index.



Table 3: Contract specifications of a future contrat on ISE-National 30 Index

Contract Size

Value calculated by dividing the index value by@DQand multiplying the
quotient by YTL 100 (ISE National-30 Index/1,009)FL 100 (Example:
47.325*100=YTL 4,732.5)

Price Quotation

ISE National-30 Index value, divided by 1,000 shwl quoted significant
to three decimals.

Daily Price Limit

+%10 of the established Base Price for each contnih a different
contract month

Minimum Price
Fluctuation (Tick)

0.025 (25 ISE National-30 Index points) Value okdick corresponds tp
YTL 2.5

Margins

Initial margin is 600 YTL and maintenancergin is 450 YTL wherg
maintenance level is 75%.

Contract Months

February, April, June, October and December (Cotgrawith three
different expiration months nearest to the curnemnth shall be traded
concurrently)

Final Settlement

Day

Last business day of each contract month

Last Trading Day

Last business day of each contract month

Settlement Method

Cash Settlement

Final Settlement
Price

Arithmetic average of 10 randomly selected, leastBO seconds apart, IS
National-30 Index values executed at the ISE withie last 15 minute
before the closing of the trading session of theharge on the last tradirn
day shall be used as the last settlement pricbeofutures contract. If th
ISE trading session closes before that of the Engbacalculation metho
being the same, calculations shall be made basetieofSE National-3G
Index values executed during the last 15 minutdsrbehe closing of the
ISE trading session

LW ag v

Daily Settlement]
Price

Daily settlement price is established at the clpsiheach trading session
follows:

1. Weighted average price of all the transactionsgoeréd within the|
last 10 minutes before the closing of the tradiegs®n based op
the quantity thereof shall be established as thby dattlement
price.

2. If number of transactions performed within the |48t minutes
before the closing of the trading session is less t10, weighted
average of the last 10 transactions before theingoshall be
calculated instead.

10



The rest of this thesis is organized as followsapiar Two presents the
literature survey on the effects of futures tradargthe volatility of the underlying
spot market. Chapter Three provides a detailedudgson of the methodology used.
Chapter Four presents the data, preliminary siaistnd analysis results. Finally,

Chapter Five provides conclusions.
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CHAPTER 2

LITERATURE SURVEY

The trading of futures on equity indices aims tovte a hedging alternative
for the risk taken in the spot market. Therefore effect of such trading on the
volatility and riskiness of the spot market hagicai importance from the point of
view of both investors of the stock market, thecktmdex futures and the regulators
such as the CMB. In fact, this is one of the madely debated issues in the finance
literature. There are arguments for and against itttieoduction of derivative
instruments. The main argument against stock ifdexes trading claims that the
existence of a futures market may increase vdhatdi the stock market which
provides the underlying assets for the contractss Brgument is based on the
assumption that, because of their high degreevefrdge, futures markets are likely
to attract risk takers and speculators. The invastable to take a futures position by
only depositing a small percentage of the conteme. For example, to open a
position on a ISE-National 30 Index futures, theestor is required to deposit only
600 YTL. The speculative investment strategiesisi takers and speculators are
likely to increase the volatility in the market. éther argument against futures
trading is that futures markets provide otherwisattainable trading strategies like
index arbitrage and portfolio insurance. Index taslgie, for example, attempts to
detect temporary deviations in futures prices ftbmtheoretical no-arbitrage values
found by use of current spot prices. Specificadispitragers buy (sell or short sell)
the spot stock portfolio and simultaneously seliyjbthe index futures contracts
when the futures prices exceed (fall short of) ¢spet price of the index, net of
carrying costs (Chang et al, 1999). Therefore,ti@ters drive spot prices up or

down. These investment strategies are also likelin¢rease the underlying stock
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market volatility.

There are also arguments that support the intramtucof derivative
instruments. These arguments claim that futureketsmplay an important role in
price discovery and have a beneficial effect on uhderlying spot markets. This
viewpoint asserts that speculation in the futuresket tends to stabilize cash prices.
Futures trading adds more informed traders to #sk enarket, making it more liquid
and, therefore, less volatile. Both of the argummegainst and in favor of futures
market trading have some theoretical and empisaglport. Here are some of the
studies that address this issue.

Edwards (1988) is the first to study the effecS8fP500 stock index futures
trading on the volatility of the underlying S&P50@ex. He searches for the effect
between 1972 and 1987 using daily price volatitigries of the index by simply
comparing the estimated volatility of the S&P50@ler before and after the
inception of futures trading. Edwards finds a statally significant decrease in stock
market volatility after the introduction of the skoindex futures contract.

Lockwood and Linn (1990) study the variance of hpunarket returns
computed from opening, closing, and intraday how&ues of the Dow Jones
Industrial Average (DJIA) for the January 1964-keloy 1989 period. They perform
tests for homoscedasticity (equality of variancesveen different periods). Contrary
to the findings of Edwards (1988), their resuldidate that return volatility fell from
the opening hour until early afternoon and roseedier and was significantly
greater for intraday versus overnight periods. Manariance was also shown to
change significantly over time: rising after NASDAQstart in 1971, rising after
trading in stock options began trading in 1973jrfglafter fixed commissions were
eliminated in 1975, rising after trading in stookléx futures was introduced in 1982,
and falling after margin requirements for stockerdutures became larger in 1988.

Bessembinder and Seguin (1992) examine whethetegréatures-trading
activity is associated with greater equity volafilby using the daily data of S&P500
between January 1978 and September 1989. They geseneach trading activity
series into expected and unexpected componentssdimiate a conditional expected
return and a conditional standard deviation for reirn data. Bessembinder and
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Seguin find evidence that unexpected S&P500 futtneding is positively related
with spot market volatility but the relationshiptiveen spot market volatility and
expected futures volume is negative. This means dbtive futures markets are
associated with decreased rather than increaseiy emarket volatility. These

findings are consistent with the theories whichdmethat active futures markets
enhance the liquidity and depth of equity markets.

Darrat and Rahman (1995) focus on the jump vdiatiand use the
FPE/multivariate Granger-causality model to examwleether activities in the
futures market and other relevant factors have @manaused jump volatility of
stock prices. Monthly data on the S&P 500 index gpices and the S&P 500 index
futures trading volume and open interest spanriegeriod May 1982 through June
1991 are used. The empirical results of this stadggest that futures trading
activity, no matter how it is measured, is nobecé behind the recent episodes of
jump volatility. Darrat and Rahman conclude thatPFS800 index futures volume did
not affect the spot market volatility.

Antoniou and Holmes (1995) examine the impact adlitrg in the FTSE-100
Stock Index Futures on the volatility of the ungiery spot market for the case of
England. The GARCH family of techniques, suggestet by Bollerslev (1986), is
used. Their results suggest that futures tradirsgdthto increased volatility, but that
the nature of volatility did not change post-fusirBased on their finding that price
changes are integrated pre-futures, but are stayigrost-futures, they conclude that
the introduction of futures has improved the spaedl quality of information flow in
the spot market.

Chang et al (1999) study the effects of futureslitriga on the Nikkei 225
index for the period of September, 1982 to Decemt@91. They propose new tests
to examine whether stock index futures affect stoekket volatility. In their study,
spot portfolio volatility is decomposed into twongponents: the cross-sectional
dispersion and the average volatility of returns the portfolio's constituent
securities. They apply the decomposition to a sHigttor return-generating model
to focus on the relationships among the volatiitymponents rather than (as in
traditional tests) on the components in isolationorder to measure the average
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volatility and the cross-sectional dispersion oé ttomponent securities and the
portfolio volatility for each day in the sample e, they use a simple filtering
procedure to recover a series of realized volia#ifrom a discrete time realization
of a continuous time diffusion process. This pracedis outlined in papers by
Chesney, Elliott, Madan and Yang (Chesney et 8B3) and Pastorello (1996). The
Chang et. al. findings are consistent with the Mhypses that futures trading
increases spot portfolio volatility but that théseno volatility ““spillover” to stocks
against which futures are not traded. The incr@aselatility attributable to futures
trading is small compared with volatility shiftsdimced by changes in broad
economic factors.

Bologna (1999) analyzes the effect of the introauncbf stock index futures
(a futures contract on the MIB30 stock index) oe tolatility of the Italian Stock
Exchange for the period of November, 1994 to De@miP97. His study addresses
two issues: First, the study analyses whetherdtdaation of stock market volatility
evidenced in the post-futures period is effectivdlye to the introduction of the
futures contract. Second, the study analyzes whéikefutures effect’, if confirmed,
is immediate or delayed with respect to the moneérihe futures trading onset. In
his paper, the GARCH family methods are used tavsti@t the introduction of
stock index futures per se has led to diminishedkstnarket volatility and no other
contingent cause seems to have a systematic redeffect. Further, the results also
suggest that the impact of futures onset on thenlyidg market volatility is likely
to be immediate. These findings are consistent thitise theories stating that active
and developed futures markets enhance the effigiefcthe corresponding spot
markets.

Most of these studies examine the impact of th@dhiction of index futures
in one market and thus are unable to make a cosgradcross markets. Gulen and
Mayhew (2000) examine stock market volatility bef@and after the introduction of
index futures trading in twenty-five countries, ngsivarious GARCH models
augmented with either additive and/or multiplicatdummy. Their statistical model
takes care of asynchronous data, conditional h&tedasticity, asymmetric volatility
responses, and the joint dynamics of each couningex with the world market
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portfolio. They find that futures trading is reldtéo an increase in conditional
volatility in the U.S. and Japan, but in nearly gvether country, no significant
effect can be found.

Wu Yu (2001) also examines the effect of stock xfigures trading on the
stock markets of US (S&P 500 Index), UK (FT-SE 100ex), Japan (Nikkei 225
Index), France (General Share Index), Australid @ddinaries Share Index) and
Hong Kong (Hang Seng Index) by using the modifieevéne statistic and a
switching GARCH model for a period of 500 days befand 500 days after the
futures trading inception for each index. He finttat stock market volatility
increases significantly after the stock index fatuare listed on the underlying index
with the exception of the London and Hong Kongktmarkets.

More recently, Bae et al (2004) examine the effdcthe introduction of
index futures trading in the Korean markets on gpate volatility and the market
efficiency of the underlying KOSPI 200 stocks. Tleynpare this effect relative to
the carefully matched non-KOSPI 200 stocks. Empigyboth an event study
approach and a matching-sample approach for thkemndata during the period of
January 1990 to December 1998, they find that ttr@duction of the KOSPI 200
index futures trading is associated with greaterketaefficiency but, at the same
time, greater spot price volatility in the undenlyistock market. They also report
that KOSPI 200 stocks experience lower spot pricktility and higher trading
efficiency compared to non-KOSPI 200 stocks aftez tntroduction of futures
trading. They claim that the trading efficiency dagiween the two groups of stocks,
however, declines over time and vanishes follovilng addition of options trading.
Overall, their results suggest that while futumegling in Korea increases spot price
volatility and market efficiency, there exists Milty spillovers to stocks against
which futures are not traded.

Ryoo and Smith (2004) also investigate the impdcstock index futures
trading on the Korean stock market by employing @ARtype methods for the
daily and five-minute frequency data for the perlmetween September 1993 and
December 1998. They find an increase in volatdityl a decrease in the persistence
of volatility following the introduction of stockidex futures.
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As exchange-traded stock index futures and othevateres continue to play
a greater role in financial markets, it is incregy important to understand the
effect of derivatives trading on the underlying tsparkets. However, the existent
literature on the effects of stock index futuresding on spot market volatility has
focused primarily on developed markets, and itnslear to what extent these results
are applicable to emerging markets. Therefore, thissis aims to produce a
contribution to this literature by analyzing thdatdity of the stock market after the

inception of stock index futures trading for theeaf Turkey.
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CHAPTER 3

METHODOLOGY

The typical approach adopted in the literaturextangine the effect of futures
trading on spot market volatility is to compare 8pot price volatility prior to the
event with that of post-futures. In this thesisnethodology based on the technique
proposed by Chang et.al.(1999) is employed inraimenake the carry out a similar
before and after comparison on the volatility oé t8E National 30 Index. The
model also and examines the sources of the effestibok index futures trading on
the ISE National 30 Index portfolio in detail. Thikesis is the first study that
analyzes the Turkish financial markets in this eant

Chang et al (1999) propose that the total volgtoit a spot portfolio can be
decomposed into the components of a cross-sectilisdrsion (weighted deviation
of each portfolio asset’s return from the portfoteturn) and average volatility of
returns of the portfolio's constituent securiti#&e decomposition is applied to a
single-factor return-generating model to determthe relationships among the
volatility components. In this model, a shift inoad economic factors induces
proportional shifts in spot portfolio and averag®atility. However, futures-related
volatility shifts change the proportionality of shrelation in a predictable fashion.
The predictions regarding the direction of the tshiin the proportionality of
components is discussed in detail in the next @ectifhe model also predicts
structural shifts in the relationship between ciesstional dispersion and spot
portfolio (and average) volatility when futuresdirag begins.

The model is empirically estimated using data frtma Turkish financial
markets. More specifically, the volatility of thEE National 30 index stocks and the

volatility of non-ISE National 100 index stocks aealyzed and compared against
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each other during periods that precede and follbe introduction of the ISE
National 30 index futures trading on the TURKDEXheT logic behind this
comparison is that both set of stocks are susdeqthkbroad economic disturbances,
but only the ISE National 30 index stocks are imgadlirectly by futures trading.
Thus, for the model based on volatility decompositishifts in the relationship
between the volatility components for the ISE Naailo30 index stocks but not for
the non-ISE National 100 index stocks, are unlikelyoe explained by changes in

broad economic factors and are more than likelytdube start of futures trading.
3.1. THE DECOMPOSITION

In this section, the relationship driven by Changle between the volatility
of a portfolio PVOL), average volatilityAVOL) of securities in the portfolio and the
expected cross-sectional dispersi@{GSD) of those securities is discussed. Let's

begin with the definition of cross-sectional dispen at time.

n 2

csn =YW, (r, -r,) (1)

i=1

In Equation (1)ri (rpy) is the return of securitly(portfolio p) at timet, W is
the weight of each stock in the portfolio, and=2" W*ri; (a weighted average of
individual stock returns within the portfolio)f the returns of all securities in the
portfolio move in unisonCSD is equal to zero. ConverselgSD is large if the
distribution ofr;; is dispersed. Therefor€SD quantifies the average proximity of
individual returns to the realized average portfokturn (Chang et al., 1999). Let’s
drop the time subscript for convenience and takeeetations on both sides of
Equation (1):

E(csD)= E(Zn:V\/i rfj + E[Zn:V\/i rjj - ZE[Zn:Wi ror, J
@)
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where

e[ Swr; |- el:)
ZE( In V\/irprij = ZE(rpZn:V\/i rij = 2E(rprp) = 2E(rp2).

i=1 i=1

The first term on the right-hand-side of Equati@) ¢an be rewritten as

follows:

=

n

e Swir = Swel)= Swhe)+ € )]
i=1 i=1 i= ) (:3)
)+ Swes

r—

E(r )]

+

1
:E:
=1

2
Vvio-z(ri
1

In Equation (3)%(ri) is the variance of securii{s returns. Let's define;
Wia“(r;) as the weighted average volatili§\(OL) of the securities of portfolip and

rewrite Equation (3) as follows:

E[Zn:VVi rf} = AVOL+ Zw [E(r, )]2.

i=1 =1
The termE(rpz) can be rewritten as well:
Elr7)=0(r, )+ [Elr, ) = PvoL+ [E(r,

Then,
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E(CSD) = E( ) Wr»zj -E(r?)

i
i=1

= AVOL+ ZN:W [(r )2 - PvoL-[E(r, ).

If the above equation is solved for PVOL, the fidatomposition is obtained

as follows:

PvOL= AvoL-E(csD)+ Y WIE( ) - [, | (4)

i=1

In Equation (4),PVOL stands for portfolio volatility, AVOL stands for
average volatilities of the securities in the paitf, E(CSD) stands for expected
cross-sectional dispersioly stands for weight of individual securities withinet
porfolio, r stands for return, amistands for number of securities in the portfolio.

The decomposition of PVOL provides a comprehensibdenework for
understanding the determinants of the volatility eofstock index. As seen from
Equation (4), portfolio volatility PVOL) is positively related to the average volatility
of securities in the portfolioAVOL) but negatively related to the expected cross-
sectional dispersiorE[CSD) of component security returnBVOL is also positively
related to a third term, which is the cross-seciowariance of mean returns
(CSVON (Chang et al., 1999). Chang et al. state thaests not shown in their
paper, they found that the cross sectional variaiameean returns (the third term)
accounts for less than one percent of the variatid?VOL, and, therefore, this term
has only a second-order impact BWOL and should be ignored in the analysis that
follows. In order to adopt the same methodologyCasng et.al, the third term is
shown to have an insignificant effect on the vdtgtiof the ISE National 30
portfolio and is also dropped from the analysis.

The price of each assetin the portfolio is assumed to have the Markov

property. This means that the distributionXf,,, depends only on the current state

X, and not on the whole history. In other words, gitbe history, the Markov
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property suggests that the current state is entugetermine all the distributions of

the future, but distribution of current state canbe calculated ovek, . Therefore,

it is not possible to calculat&(CSD)or CSVOMat timet. So, we assume th&SD
proxies forE(CSD)and

SW) - (1, )
proxies for
> wleq ) -[Ec,

at timet.

Two separate regression models are estimated, otie RMOL as the
dependent variable ardVOL andCSD as explanatory variables, and the other with
PVOL as the dependent variable aA¥OL, CSD and CSVOM as explanatory
variables. The results are presented in Tables 4baid both tables, the results in
Panel A are for the sample of securities includethe ISE-National 30 index and
the results in Panel B are for the sample of seearthat were never a part of the
ISE-National 100 index throughout the sample perNdt only, R? for panel B, in
two regressions has taken value of nearly 0.0606 renealed that explanatory
power of these regressions for panel B data is,dmdralso do the results for panel
A, show thatR?, indicating what proportion of the total variatiém response is
explained by the model, increased marginally byitamdof cross sectional variance
of mean returns to the model. However, the incr@a& is ignorable since it is very
small (from 0.729 to 0.732). More specificalySVOMis shown to account for less
than one percent of the variation RVOL, and, therefore, just like in the study by
Chang et.al., this variable is dropped from the ehod
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Table 4: Regression of components of PVOL excludingSVOM

Model :
PVOL, =c, +c,AVOL, +¢,CSD +¢&,
(Sample period: 07.01.2003-30.05.2006)
(t statistics are in parenthesis)
Co G C R
Panel A: Results for a portfolio of ISE 30 Natiotradlex Stocks
0.000207 0.276343 0.063918 0.729587
(1.336961) (28.64840) (3.874566)
Panel B: Results for a portfolio of Non-ISE 100 iNa&l Index Stocks
0.001235 -0.130261 0.199526 0.060652
(1.972134) (-1.850893) (6.387899)

Table 5: Regression of components &fVOL including CSVOM

Model :

PVOL, =c¢, +¢,AVOL +c,CSQ +¢c,CSVOM +¢,
(Sample period: 07.01.2003-30.05.2006)

(t statistics are in parenthesis)

Co c C Cs R?
Panel A: Results for a portfolio of ISE 30 Natiohadlex Stocks
0.000179 0.276876 0.114532 -0.021727 0.732935
1.161232 28.85457 4.703145 -2.812632
Panel B: Results for a portfolio of Non-ISE 100iNa&l Index Stocks
0.001235 -0.129946 0.199399 -0.001065 0.060666
1.970089 -1.842958 6.373009 -0.095219

3.2. ESTIMATING ASSET I'S RETURN VOLATILITY

The next step in methodology construction addregsegjuestion of how to
measure the average volatility and the cross gatidispersion of the component
securities and the portfolio volatility for eachyda the sample period.

For many years economists, statisticians, and &aabf finance have been
involved in developing and testing models of stquikce behavior. The most
prominent model among these has spun from therytheforandom walk (Fama,
1965). Random-walk theorists usually start frompbstulate that the major security
exchanges can be given as good examples of effioramkets (Fama, 1965). An

efficient market is defined as a market where langenbers of rational profit-
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maximizers actively compete with each other witk tibjective of predicting the
future market values of individual securities.Hist competitive environment is truly
efficient, then important current information abdbe securities should be freely
available to all market participants (Fama, 196B).other words, in an efficient
market, at any given point in time, the actual @ra¢ an asset is the best estimate of
its intrinsic, or true economic, value (Fama, 1968)practice, as a result of market
imperfections and uncertainty involved in tradimgarket participants may not all
agree upon the same intrinsic value for an assedrefdre, discrepancies between
actual prices and intrinsic values may be obser8&t, if the markets are efficient, ,
the number of buy and sell transactions is so ldrgethe actual price of a security is
expected to oscillate around the security’s intcngalue (Fama, 1965). This
expectation further implies that market efficierdges not require the market price
to be equal to the asset’s intrinsic value at eysint in time. All it requires is that
errors in the market price be unbiased, i.e.,phaes can be greater than or less than
true value, as long as these deviations are randdéemce, the random walk
hypothesis claims that successive price changes ideatically distributed,
independent random variables. Most of the early ieo@ studies support the
random-walk behavior of stock prices: Kendall (1933oberts (1959), Alexander
(1961), Cootner (1964) and Fama (1965), among ro#rers.

In recent years, it has become increasingly intexggor researchers to use
the theory of stochastic processes for descrisieguncertainty in financial markets.
The random behavior of financial asset prices iy good candidate for such an
endeavor (Kijima, 2003). The following sections oétimodology construction make
use of the essentials of probability theory, séstic processes and stochastic
differential equations to model the portfolio vdiat decomposition.

The most basic probability concept used in finanaralysis is the Brownian
motion. This concept was first defined to model taedom movement of pollens
immersed in fluids. It was then applied to the gsial of the behavior of random
variables. The use of Brownian motion for modelinghis context assumes that the
price of a financial asset i follows a diffusioropess which is itself a solution to a
stochastic differential equation.
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In probability theory, the set of possible outcorsesalled the sample space
and is generally denoted 6y Each outcome belonging to the sample spa@es
called an elementary event, whereas a suBsef Q is called an event. In the
terminology of set theory is the universal setx [1Q is an element, and[1Q is
a set (Kijima, 2003). In order to make such a pbiitg model more precise, a
family of events,F, namely thec-field generated byQ, needs to be defined
(Kijima,2003). The familyF of events satisfies the following properties inlerto
be classified as thefield generated by:

1.Q0OF,

2. f ADOQ isinFthenA*OF, and

3.If A, 0Q,n=12,..., are inF thenCJA1 OF.

n=1

For each everAJF , the probability of evenA is denoted byP(A). In
modern probability theory, probability representsset function, defined orf,
satisfying the following properties (Kijima,2003):

1. P(Q)=1,

2.0<P(A) <1, forany eventAJF , and

3. For mutually exclusive eventg, 0 F,n=12 ,ie. AnA =¢ for

i %],
P(ALDAQD...)=2P(A1).

Given a sample spac¢e and ac-field F, if a set of functiorP defined onF
satisfies the aforementioned propertiess called a probability measure. The triplet
(Q, F, P) is called a probability space (Kijima, 2003).

Given a probability space)( F, P), let X denote a mapping froi® to an
interval | of the real lineR. The mapping is called a random variable if foy an
a< b,{a): a< X(w) < b}D Fis true (Kijima, 2003). In other words, since the

probability P is a set function defined da X is said to be a random variable if the

25



probability P{a):a< X(a))sb} for any a<b is known, which means, X is a
random variable, then the probability that theimedion of X is in the interval(a, b]
is known in principle (Kijima, 2003).

A random variableX is continuous, if the set of realizationsXois an interval

| of the real line and there exists a non negativetionf(x), such that
b
Pla< X <b} =] f(x)dx

for any [a, b] O 1 andf(x) is the density function of. Conversely, the density

functionf(x), x| defines the continuous random variaKléAlso, if we define

P{X<x}=F(x) = ff(y)dy, xO1

—00

wheref(x)=0 for xO1 , F(x) is called the distribution function and we get
d
f(X) =—F(x), xOlI.
dx

Before continuing with stochastic processes, thpeetation of random
variables needs to be discussed. The expected @hhieontinuous random variable
is defined in terms of the density function (Kijim2003). Letf(x) be the density
function of random variableX. Then, for any real-valued functioh(x), the

expectation is defined as the following:

E[h(X)] = Th(x) f (x)dx

provided that
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+j:o|h(x)| f (X)dx<oo,

Otherwise, the expectation does not exist. Notieg the mean of the random

variable X, if any, is
E[X]= Ixf(x)dx
while the variance oX is defined by
V[x]= I(x— E[X])* f (x)dx

Now consider two continuous random variabkésndY, defined fromQ to
R. The probability thak is in the interval(x,, x2] andYisin the(yl, y2] is denoted
by the probability (Kijima, 2003)

P{x < X <%,y <Y < y,}.

The conditional expectation &funder the evenb( = y} Is given by

E[X|Y = y]= [xdF(y), yOR.
provided that

[[XdF({y) <o,
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where

F(xy) = P{X < XY =y}

denotes the conditional distribution of X undg¥ =y}. Notice that

E[X|Y:y] is a function ofY. Since, Y(w) for some « 0Q, the conditional

expectation can be thought of as a composed funcfia, whence E[X|Y(a))] is a
random variable.
A family of random variabledX,;t =0} (or {X} shortly) with index set

t>0 representing time is called a continuous stochagtbcess. A stochastic
process is a widely used tool to model a systerh \thdes randomly in time, for
instance in modeling the price behavior of seasit{Kijima, 2003). On the other

hand, for each 1 Q, X, (w) is a realization oK;, and a function of timé The real

valued function is called a sample path or a ratibn of the process¥{}.

Let’s fix the dateT such thatt D[O,T], andT D[O,oo) where trading horizon

T is treated as the terminal date of the economiwigc being modeled. The
information structure available to the investorsgigen by an increasing (finite)

sequence of sub-field of F: it is assumed thaF, is trivial, that is, it contains only

sets of P-measure from O to 1 (Elliot and Kopp, 2005). Italso assumed that

(Q, FO) is complete (i.e. any subset of a null set idfitsell and F, contains allP-
null sets) and thaF, O F, O...00 F, =F (Elliot and Koop, 2005). An increasing
family of o-fields is called a filtration”= (F,),7]- F. can be thought as containing

the information available to investors at titnévestors learn without forgetting, but
insider trading is not possible (Elliot and Koop03).

A random variableX is F,-measurable (or measurable with respecEtpif
{x, < X < x,}OF, for any x, < x, (Kijima, 2003). If the random variabl¥ is F,-
measurable, then it is possible to determine whathaot the even{x, < X < x,}

occurs just by examining, for any x, <X,, which is roughly speaking to know the
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value ofX given the informatiorf, (Kijima, 2003).
A stochastic proces§X,;t =0} is said to be adapted to the filtratich if
eachX; is measurable with respect E§ (Kijima, 2003).

For two distinct time epochs> <, the random variabl; - X is called an

increment of ¥J. If s=t+At,At>0, the increment is denoted by
AX, = X, — X, (Kijima, 2003). The time intervals(s,,ti],i =12,--- are non-

overlapping if

s, <t £8,<t,<..<s <t <---.

The process{xt;t > O} has independent increments, if the increments
X, — X4 over non-overlapping interva(s ,ti] are independent (Kijima, 2003).

The definitions of probability spacessfields, continuous random variables,
stochastic processes, filtration and stochasticgeees that are adapted to filtrations
are all given in order to define the Brownian motidhis process is named after
Robert Brown, a Scottish botanist who studied maetnof pollens in fluids. He
observed that these particles were performing g keerdom movement and claimed
that this was because pollens were alive (Elliotl doop, 2005). The first
approaches to mathematically modeling the Browniawstion were made by L
Bachelier and A. Einstein in the first half of 19%0However, it was N. Wiener who
was the first to present a general mathematicatrtrent of the Brownian motion in
1918 (Beichelt, 2006). The Brownian motion processiply the Brownian motion,
is an essential ingredient in stochastic calcuhg @lays a vital role in mathematics
of finance. It also provides the basis for definomg of the most important classes of
Markov processes, namely the diffusion processes.

Let {Bt,t > O} be a stochastic process defined on the probabjiace Q, F,

P). The proceséBt} is a standard Brownian motion if the following amee:

1. It has independent increments,

2. The incremenB,, + B, is normally distributed with mean 0 and variance
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s, independently of timg and

3. Its sample paths are continuous BgeD (Kijima, 2003).

The first property above implies that the incremBpt + B, is independent of
the historyF,. Moreover, one of the most important propertiea &rownian motion
is that its paths are nowhere differentiable (Lartdreand Lapeyre, 2000). In other
words, if B, is a Brownian motion, it can be proved that fanest everya 0Q,

there is not any time OR" such thatdB, /dt exists. However, by the help of

stochastic calculus, it is possible to wr@B, /dt in terms of differentials

(da )2 = (Bt+dt - B )2 =dt

and in terms of integrals

We will not the make the proofs of these relatiogsisce such proofs are
beyond the scope of this thesis.

For real numberg ando , the processXi}
X, =X, +ut+oB, t=0

is called a Brownian motion with drift and diffusion coefficient (Kijima,
2003) Recall that for any random variabk with meanu and variances?, the
transformation given by
X-u
o

Y =

is called the standardization Xfand ifY~N(0,1), then
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X = u+oY ~Ndd.

Since B, ~N(0.,t), the random variabl¥; is distributed byN(ut,6%). Therefore,
the diffusion coefficientc can be interpreted as the standard deviation of an
increment over the unit of time interval (Kijima)@3).

Since B, ~N(0,t), the random variabl¥; is distributed byN(ut,6%). Therefore,
the diffusion coefficiente can be interpreted as the standard deviation of an
increment over the unit of time interval (Kijima)@3). This conclusion is crucial to
understanding the theory behind construction oéstmator regarding the volatility
of an asset’s return. The Brownian motion can besshto be a special diffusion
process and if an estimator for a diffusion funtti@n be found, then it is possible to
estimate the volatility of an asset’s return.

In order to start defining diffusion processess ihecessary to first define the
continuous Markov processes since diffusion prazessre continuous Markov
processes with special characteristics. Furthermorerder to understand Markov
processes, Borel measurable functions should b&idened first.

Let G (respectivelyM) be the family of all open (respectively closedbsets
of R". Theno-field generated by: is equal to thes-field generated by This
generated-field is called the Boreb-field of R", denoted byB,.. (Kdrezlioglu and

Hayfavi, 2001). If the functior is defined a$ : Q - R"whereas @, F) and R,

B..) are measurable spaces and

. -1
DEOB,, : f Y(E)0Q

thenf is Borel-measurable (Capasso and Bacstein, 2005).
In order to define the Markov process, |, ¢, P) be a probability space

with filtration 7= (F,)0r)- An adapted process<{ is a continuous-time Markov

process with respect to the filtratign if
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E(f (X JF.) = E(f (X, )}X.) aimostsurelyfor allt > s> 0.

for every bounded real-valued Borel-measurdhiefined onR" (Elliot and
Koop, 2005). The Markov property asserts that tis¢ridution of X,,, depends
only on the current stat¥, and not on the whole history. In other words, gitlee

history, the Markov property suggests that theenirstate is enough to determine all
the distributions of the future. In the literatwkfinancial engineering, it is common
to model a continuous time price process (in thsecthe diffusion process) in terms
of a stochastic differential equation. The stodbadifferential equations can be
explained as a limit of stochastic difference emunat and it is then possible to show
how diffusion processes can be represented asastiicidifferential equations.

Let At >0 be sufficiently small, and consider the stochagliftference

equation given that > 0
AX, = X = X, = u(X, )At+o(X, t)AB, (5)

where u(X,,t) anda(X,,t) are given functions with enough smoothness and
where AB, =B, — B, is the increment of standard Brownian motion (i,
2003). Suppose thaX, = x. Then, the limiting processx{} as At — 0, if it exists,

Is a strong Markov process with continuous sampté$ since the Brownian motion

{Bt} has similar properties (Kijima, 2003). In additiadhe following limits from the

above stochastic difference equation can be olataine
p(x,t) = lim — E[aX,[X, = %]
at-0 At He
and

a?(xt) = lim i E[{Axt}zlxt = X]

At-0
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A Markov process X} in continuous time is called a diffusion procgss

diffusion in short) if it has continuous samplelEaand the limits regarding(xt,t)

and o%(X,,t) exists witha(X,,t) # 0 (Kijima, 2003).
X, = X+ u(X, th+o(X, )B,, (6)

wheret is nonnegative. In Equation (6), the functialﬁxt,t) is called the
drift function, whereass(X,,t) is called the diffusion function. Moreover, from

above equation, it is possible to formally obtdie following stochastic differential

equation
dX, = u(X,,t)dt+a(X,,t)dB,

under some regularity conditions, whebe<t <T andT is the given time
horizon. This stochastic differential equation iglarstood to be the differential form

of the integral equation
t t
X, = Xo = [ u(X,,u)du+ [o(X,,u)dB (7)
0 0

where only the first term on the right-hand sidéhis ordinary (path-by-path)
integral, and the second term cannot be calculasedn ordinary integral, in other
words in the Riemann-Stielties sense, because Baowmotions are nowhere
differentiable. The second term can be calculatelddp of an Ito integral.

Let {Xt;t > O} be adapted to Brownian moti&p on [O,T], l.e. X is function

of B,,s<t, and
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.
[ElX JPds<e.

0

Now, it is possible to define the Ito stochastitegral of{Xt } It is denoted

t
[x.B,, tO[0T]
0

Note that the definition of the Ito stochastic g is not enough to write the
above integral in terms of a Brownian motion. N&weétss, by the help of Ito’s
lemma, it is possible to obtain explicit formulae fto stochastic integrals (Mikosch,
1998).

Ito’s lemma can be considered as the stochastitogua of the classical
chain rule of the differentiation. Létandg be two differentiable functions. Recall

from basic calculus that the classical chain mlthe integral form is as follows:

t t

f(g.) = 1(g,) = | flg,)gids =] flg,)dg,.

0 0

Now, assume thdtis a twice-differentiable function, but replagewith a

sample path of a Brownian moti& The formula
t t
I 1 n
f(B) = 1(B,) = f'(B)dB()+ [ "(B)dx

wheres < t, becomes a simple form of Ito’s lemma or of tlefiérmula. For

later use, a more general version of the far(X,,t is needed wher¥; is given by

Equation (7) and is a diffusion process. It is atatled an Ito process because the

second term on the left-hand-side is defined imgeof the Ito integral.
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Let {Xt} be an Ito process with representation in Equafrand f (X,,t )

be a function whose second order partial derivatas® continuous. Then giver<
t,

f(X,t)- f(X,.)=

0 C—y

t t
£, (X, Yy + [ £,(X,.y)x, +%j fa(X,.y)d(X, Xy,
t t t
= [ 1,0, Yy + [ 1,06, y)ulx,, vy + [ £.(x,.y)o(x,, y)aB,

+%j fu(X,.¥)(o(x,. y)P dy

In papers by Chesney, Elliot, Madan and Yang (CEMXhesney et
al.,1993) and Pastorello (1996), a simple filterprgcedure to recover a series of
realized volatilities from a discrete time realimat of a continuous time diffusion
process is proposed. CEMY use the measure progosttir paper to construct
point estimates of time-varying asset volatilitydacovariation with risk factors to
test Merton’s Intertemporal Capital Asset Pricingdé@l (Merton, 1973). Chang et
al. (1998) use the same measure to construct peiithates of volatility for each
asset at timet. Following Chang et al. (1998), the same unbiastonator of asset
i‘s return volatility at time t is used in this syutb measure the average volatility and
the cross sectional dispersion of the componentrges and the portfolio volatility
for each day in the sample periods.

Let {X;, t > O} represent the price of asseand be a real-valued process
defined as the solution of a stochastic differémtguation (SDE)

dX, = u(X, t)dt+o(X, t)dB, 8)

where0<t<T, X, =x, {B;, t >0} is a real Brownian motion defined on a
probability space, F, P), u(X,,t) and o(X,,t) are drift and diffusion functions,

which are deterministic. ) is known Xt is given by Ito formula as follows
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t+at t+4t

X =X + [ X u)du+ [o(X,,u)dB,, 9)

t

given 0<t<T. In order to investigate for the values of a cambuns time
stochastic process defined 08,T] at the discretization times, a discrete time
approximation of the process given is needed. Two tlee time-discrete
approximation schemes, namely Euler and Milsteig, @nsidered to construct an
estimator for the volatility of assis return.

The Euler or Euler-Maruyama approximation is knotenbe one of the

simplest of approximation methods. For a givenréigzation
O:[‘O <I'l<...<z'n <...<[‘N =T

of the time interval ,T], an Euler approximation is a continuous time

stochastic procesé={Y;, 0<t < T} satisfying the iterative scheme
Yn+1 = Yn + f (Tn’Yn )(Tn+1 T ) + g(rn ’Yn )(Brn+l - Brn )

for n=012,---,N -1 with initial valueY, = x andY¥, =Y(r,).

We shall also write

for the d" time increment and define the maximum time step as
o=max,A, .

Since most of the financial data, especially timeetiseries are observed at
points in time such that the distance between taiatp is equal for all successive

pairs of points, an equidistant time discretizatisnconsidered in the following
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manner:
t, =0+no

with 6 =A, =A =(T —0)/N for some integer large enough so #at(07).

Before continuing with other approximation schemamely the Milstein
approximation (Milstein, 1974), it is necessaryntention why other time discrete
approximation methods have been developed and t@vbest approximation
scheme can be inferred.

There are two criteria, strong convergence and weakergence to compare
the Euler approximation and other approximatiorit \wach other.

A general time discrete approximati¥hwith maximum step sizé s said to

converge strongly tX at timeT if
lim E([X; =Y’(T)) = 0.
ol0

Kloeden and Platen (1992) state that although thlerEapproximation is the
simplest useful time discrete approximation, in@ efficient in numerical sense.
Therefore, other time discrete approximation meshsiould also be considered to
compare different time discrete approximationsoriter to make this comparison the
approximations’ rates of strong convergence nedxtnown.

A time discrete approximatioW converges strongly with order> 0 at time
T if there exists a positive constadf which does not depend @nandd, > 0 such
that

£(0) = E(X; —Yﬁ(T)()scay foreachd0(0,4,).

On the other hand, a time discrete approxima¥doonverges weakly with

orderp > 0 toX at timeT asd approaches 0 if for each
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g 0 C,*™(R*R)

there exists a positive constadt which is independent from, and a finite
00>0 such that

[EQ@(X: )-E(@(Y'(T)} <Co”  foreachd0(0,5,)

where R? denotes the d-dimensional Euclidean space @R4™ (Rd,R)
denotes the space ofp2(1) times continuously differentiable functions defthfrom
R toR.

Strong and weak convergence criteria lead to theldpment of different
time discrete approximations that are only efficiaiith respect to one of the two
criteria. In particular, time discrete approximasoderived with respect to strong
convergence criterion using stochastic Taylor espars are called strong Taylor
expansions. Considering the Euler approximatiois, known to converge with weak
order = 1, in contrast with the strong order= 0.5 and represents the simplest
strong Taylor approximation (Kloeden and Plater§2)9

Now, the scheme proposed by Milstein, which turosto be an order 1.0
strong Taylor scheme, will be examined. As beftie, stochastic integral equation

given 0<t<T

X =X, + jﬂ(xs,s) ds+ ja(Xs,S)st. (10)

T
-1 -1

is considered.

The Euler approximation is based on the discretimabf the integrals in
Equation (10). On the other hand, the Milstein agpnation exploits a Taylor-Ito
expansion of Equation (10). The Milstein approxim@tis constructed by applying
the Ito’s lemma to integrandg(X,,t) and o(X,,t) in Equation (10) and is given as

follows:
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Xn+1 = Xn +lLl(xI"I’TI"I) (Tn+1 _Tn)+0(xn’rn)(Bfn+1 a Bfn)

oo, -a,)

1
+ Zo(X, .1,
20(nf)

n

for n=012,---,N —1 with initial value X, = x and X, = X(r, ).

It must be noticed that the Milstein approximatischeme is the Euler
approximation with an additional correction terrmtaning the squared increments
of the Brownian motion.

Suppose that the state of the system is given®Pm as in Equation (9) and
define a stochastic procegsas follows:

t

t
Y, = expX, = expX, exp{jﬂ(s,xs)ds +Ia(s,xs)st} (11)
0

0

given 0<t<T. Notice thaty;, given in Equation (11), is defined #§B),
which is a function of class € (f is one time continuously differentiable with
respect tot and two times continuously differentiable with pest to B;). Then

application of Ito formula gives the following:

f(t8) = 7(0;) +}[f1(s,85)+%f22(s,85)}ds+ f.(sB)B.  (12)

[ S——

Then, given0<t<T,

t t
=Y # ], + S0, dot ol Sa,
0 0

dy, =Yt(u(xt,t)+%02(xt,t)j dt+Y,o(X,,t)dB.
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By applying Ito formula in Equation (12) again fanse twice differentiable

functiong that g" # 0, then

dg(Y) = {g’(m )Y, [u(xt ,t)+§02(xt m)j +% g"(Y,)Y o (X, m)}dt

+9'(Y,)Y,o(X, t)dB.

If the Milstein approximation scheme is applied Yoand g(Y;) then the

following is produced:

You =Y, +Y{u(xt,t)+§02(xt,t)jm + Yo(X,, )8,

0a(X,,1) (13)

+% {Ytaz(xt,t)”f cf(Xt,t)} ((ABt)2 ‘At)

and

9(%..) = 90Y) + (V) Ya(X,,t)AB,

+ {g'(vt )Y{u(xt 1) +§02(><t .t)] + % 9" (%)Y (X, ,t)} At

1{ag'(}%) .. 2
+ 2( 29(Y) 9'(¥) Yo (X.,1) (14)

' 2 aYt 2
+(9'(Y)) Yt—ag(ma (X,1)

297X i
HEON o) a(xt,t)]((ABt) )

Notice that

09'(Y) vy —
2000) 7 g0v) v,

0g'(Y) 9g9(Y) _ g"(Y)
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oY, _09(Y,)9g(Y,) 0Y,

@) o= A0 2900 B g
e 000X ) 9G(Y) 000Y) oK) o Bo(Xo)
OO a0ty ~av, av, ooty 90 ey,

Then g(Y,,, ) becomes

9(Y.s) = 9(Y) + 9'(Y) Yo (X, t)AB

{g‘(vt )Y{u(xt,t)%f(xt,t)]+§g"(vt )YfaZ(xt,t)} At

+%[@J"(Yt Y2 AX, )+ g'(Y)Y, (X, t

+ gl(Y )Y2 aO-(Xt ’t)
t t

a(X, ,t)}((ABt Y - at)

t
From Approximation (13) we have

Yt+AtY_Yt ~ [,U(Xt,t)*'%gz(xt’t)jAt +0‘(Xt,t)ABt
t

- 2oy, 2
2 Y

a(X, ,t)} ((AB,)*-At) .

From Approximation (14) we have

9(Yeen )= 9(%) H (X 0)+ % o(X. ’t)j . %

g'(%)y Uz(xt,t)} A
g(v)Y, |

g'(Y)
+0(X,,t)AB,

+%(gu(Y‘ 02X, 0+ 02 iy Y, 278D ,t)j((ABt)z - at)

g(Y) ay,

Therefore the following approximation can be wntte
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g(tht)_ g(Yt) _Yt+At -V, ~ 1 g"(Yt )Y 0'2(X t)(AB )2 (15)
g'(v)Y, Y, 29() " VT

If Approximation (15) is solved fas?(X; ,t), the following result is produced:

9002 | (%) =900 _ Yeew =Y | 2y (16)
@BYg' Y| gV, Y o

Before taking conditional expectation (Taking anpeotation is about
estimating the value of* which is a function of time and price. Since nothis
known about the deterministic continuous func@bits values at discrete times are
tried to be found and that is the reason the appration is produced in the first
place. Moreover, parameter estimation of the distron of a random variable) by
common methods such as maximum likelihood methedi:menformation about the
distribution and there is no knowledge about thikee. After the approximation,
taking the expectation generates a point estimatdeo unknown function. More
information on the estimation of diffusion modebncbe found in Gourieroux and
Jasiak, 2001) of the left hand side of the equati®givenX;, recall from probability
theory that if thes-field generated by the random variablés contained irF, then

E(Y[F) =Y. In particular, ifY is a function o, o(Y)O o(X), thusE(Y|F ) =Y.

Then,

Elg'(v)|X.]= g'(%),
Elg" (V)%= g"(Y,),
EN|x,] =Y.

Since by definition of Brownian motiorE[(ABt)2|XtJ:At, an estimate of

a?(t, %) is given by
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_ 92 | 9(Mea) - 9(M) _ Yea Y (17)
(A1) g" V)Y, g' (Y)Y, Y

CEMY suppose thag=y"*¥ and use the Euler approximation before taking
expectations regarding the mean and varianag iof order to show that the estimate
constructed is the minimum variance unbiased estimBlowever, Pastorello (1996)
show that these results can be improved withoutute of the less precise Euler
approximation. Therefore, the approach adopted #&stePollo is followed in this
thesis as well.

Let's substitute two Milstein approximations ofYis) and Yu from

Approximation (15) in Equation (17), then

g g2 F g'(Y)y, Jz(t,xt)(ABt)z}:\Z _MXI@B) g
(B0g" (Y)Y, [ 2 g(Y,) (ay

An interesting feature of Equation (18) is thahalds independently of the
function g chosen. To strengthen the results, let's suppaaehtandz are twice

continuously differentiable functions and

h: 0 - O whereh'(x) =M,h”(x) — oh(x)
()4 ox

z:0 - O wherez'(x) :az_(x),z--(x) _ 07(x) .
()4 ox

By help of Ito’'s lemma, the following equations damwritten

h(X....) = h(X,)
t+At

+ j o(X,,s)h'(X, )dB, (19)

t+at

| {u(xs,s)h'(xs)+%02(xs,s)h"(xs>} ds,
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Z(Xi\ ) = 2(X,)
t4 At

+ Ja(X,,8)2(X, )dB,

t+4t

+ | [u(xs,s)z'(xs)%a%xs,s)z"(xs)} ds

(20)

where 0<t<t+At<T.
Now, let's apply Milstein approximation to both tife Equations (19) and
(20), then

h(X.,)=h(X;)+ {/«t(xt (X, +%02(Xt Hh*(X, )}At + h'(X,)AB,

+%h'(xt ) o(X, ,t){h"(xt Yo (X, ,t)+h(X, )M} (4B, )*-At)

t

2(X,,, ) = z(xt){u(xt,t)z%xt)+%02(xt,t>z"(xt )}At + Z(X,)AB

+1 20 )o(x,.1) [z"(xt Jo(X, 1)+ z'(xt)a"(x“ﬂ (08, -4
2 X,
and
h(X,.a) =h(X,) {ﬂ(t x )+ Lo X DX, )} At+ o(X, 1)0B,
m(x,) 2 h(X,)
+ oK, ON"(X, (X, 1) (880 (21)

0a(X,,1)

1 , 2
+§0(tht)h(xt) X ((AB,)"-At)

t
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Z(X,u) = Z(X) _ [ﬂ(xt 0+ 107X, H2"(X,) At + o(X,,t)AB,
Z-(xt) 2 Zl(xt)

# 2 otX)2' (X, Jo(X, (@B, Y- (22)
9o(X,,1)

t

+%a(t,xt>z'(xt) ((AB,)™-At)

Let’s subtract Approximation (22) from Approximati¢21), then

h(xt+At ) - h(xt ) _ Z(xt+At ) - Z(xt ) ~ (X t) +£ Jz(xt !t)h“(xt ) At
(X,) 2(X,) AT )

: 1 a*(X,,H2"(X,)
(,Lt(xt,t)+2 00) JAt
+0(X,,0)AB, — (X, ,)AB,

éa(xt,t)h"(xt)a(t,xt)((ABJz-At)

90X, Y) (8B, )2-at)

+%a(xt,t)h'(xt)

‘%a(xt,t)z%xt Jo (X, tX(AB, )*-At)

da(X,,1)

1 , 2
‘EG(XU'[)Z (X,) ™ ((AB,)"-At)

t

hXea) “hX) _ 2(6e0) = 2(X) B o t{h“(xt ) _Z'(% )}

(X,) Z%) 2 (%) Z(X)
2 00X "X Dol X, (2B )00

1 do(X,,t)

Y ox, (4B, )"-A1)

‘%a(xt,t)z"(x Jo( X, tN(B, )*-A1)

1 0o(X,,t)

—Ea(xt,t)z'(X) ox. (4B, )"-A1),
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Recall that if ther-field generated by the random variables contained irf,

then E(Y|F) =Y. By this token,

E[N(X )| X ] = h(Xeon0),
E[h(X,)|X]= h(X,).
El (X)X ]=h(x,),
E[2(Xa)| X = 2(X o),
Elz(x)[X.] = 2(X,),
E[zh(X,)[X,] = z(X,).

Since the definition of Brownian motion impIieE[(ABt)2|XtJ=At, if we

take conditional expectation of difference of Apgmations (22) and (21), we can
conclude that a generd] given as follows is an estimatedf(provided that the first

denominator is nonzero):

} (23)

i = 2 {NKMJ-NXJ_KXMJ-KXJ
‘ Ad %) _Z(X) h'(X,) Z(X,)
h(X)  Z(X,)

Notice that \¢" is approximated to the same order\ﬁy and hence it has

(approximately) the same properties (Pastorell®6)L9Pastorello used the general
framework provided by Kloeden and Platen (1992§¢oive the strong Ito-Taylor
approximations of a desired ordewith the aim to find the difference between the
two estimators in Equation (23). However, sincepseimentary terms in a strong Ito-
Taylor approximation scheme with an order higheanti depend on unknown
values of functiongt ando , this attempt to improve the estimator given quétion
(23) has failed (Pastorello, 1996). Since the deiovm of strong Ito-Taylor
approximations of a desired order is out of thepscof this thesis, the proof
regarding Pastorello’s (1996) findings is not pd®d here. Therefore, let's continue

with a pair ofh andz such that their choice does not depen&atself.
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Let

h:0 - Oandh(x) = e#*
z:0 - O wherez(x) = e~

wheref anda are the parameters to be defined. If we defiras follows:

Zt = Xt+At - xt
then
Ve = 2 gl Vea gl gl _ g%
t (ﬁ + a)z e(/fm)xt ﬁz e/fxt (ﬁ + a)e(/f+a)x1 ﬂe/%
At Bra)X,  papX
B +a)e” ™ pe™

2 | V-1 en-1
Calt| (B+a) B

Before taking conditional expectation of the abegs@émate, let's focus on the
expectation of exg) for anN(0,1) random variablg

r: —72 2/ 1 < (7 — 2/
je“e z lde :eA 2 je (z A)/de: ea /2, A0R

(277)1/2 2 (277)1/2 a

E(eAZ) -

Moreover, the Brownian motion is 0.5 self-simildrat is:
TY2B,,.... TV?B,_)d (By,.--.B )

for every T>0, any choice oft, 20,i=1,...,nandn= 1.Then it follows

immediately that
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E()(t ) = ellt E(eert ) - e,ut E(e,,tl/ZBl) - e(”+0'502)t .

Therefore,

e(ﬂ+ﬂ)z1 = e(ﬂ’rﬂ)/-ﬂ”(ﬂ‘fﬂ)ﬂﬂ&

E(e(ﬁw)z‘) — e(,B+a)yAt+O.5(,8+a)zazAt (24)

Then the conditional expectation and variance ef\ffi* can be written as

follows:

BV

_ 2 e(ﬁ+a)/LAt+O.5(,[f+a)2a2A’[ -1 e/fum+o.5/;202m -1
X, )= - ,
alAt

A (B +0a) B

Var(v* X))

X,) = E((" ) X,) - (E(%™
_ 4
(BB +a)

+(ﬁ + a)2e2/)’;4At+/)’2r;2At(e/)’2r;2At _1)

— DB(B + o) & 2 HNBHOSET B ) fip oA _q )

2 2 2_2
[ﬂZeZ(/)’+a)ﬂAt+(,b’+a) o At(e(/)’+a) o “At _1)

Let
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A=(B+a)u
B=(B+a)’c”
C=pu

D =ﬁ20-2
E=(28+a)u
F=(@*+({+a)?)*
G=pp+a)”

| = g(2A+BIt
= e*-1
I“ - e(2C+D)Att
vV =eP2-1

e(c +% )At

V =
VI =e®-1

Therefore,Varh/f”|XtJ can be rewritten as follows:

— 4 2 2AAt+BAt, BAt _
X gy VD
+(ﬂ +a)2€2CAt+DAt(eDAt _1) (25)

_ Zﬁ(ﬂ + a)eEAHO.SFAt(eGAt _1)]

Var(V,/*

Let’s define the expression in square brackets asNth is a function oAt.
Then, a Taylor expansion of order 3 (aroutictO) of the expression in squared
brackets in Equation (25) is:

0°M At>  9°M At®
+ +

+o(At 26
oAt? 2 oAt® 6 () (26)

oM
M (At) = M(0O At
(at) = M( )+

If Atis zero then MAt), II, IV, VI equal to zero and |, lll and V equi one.

Now, the derivation of the remaining expressiongduation (26) is possible.

49



a—M=ﬁ2I N+ B2 +(B+a)? 'V +(B+a)’ IV

oAt
—2B(B + o)VNI = 2B(B + a)VI V.

2
—‘;A':/i = B2+ B2+ BRI+ BTN+ (B +a) 1V
+(B+a)’ VU +(B+a)* IV +(B+a)’IVILT =288 +a)VVI'
=288 + oa)VI'NV = 2B + a)VVI' = 28( + o)V "VI.
0°M

PYYE = B2(1I 1T 1+ T+ 1T+ 1+ 107

+(B+0)2(IN1"IV + VA" + IV + IV + V)
+(B+a)(N'IV"+ IV + VT
=288 +a)" (V"™VI +VI'V +VVI' +VI'V' +VI"™V +VVI" +VVI" +V'VI")

If Atis zero then,

oM

%(At :0):[ﬁZB+(ﬂ+a)2D—2ﬁ(ﬂ+a)G]=0
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32\; (At =0)=2821"1"+ BA1" + 208 + @) VU " + (B + ) IV'III
—4B(B + a)VVI' = 2B(B + a)VI'V
= 24°B(2A+ B)+ 2(8 + «)*D(2C + D)+ (8 + a)?D? + §°B?
=288 + a)(2E + F)G - 25(8 + &) G?
= [ﬂZB(4A+ 3B)+ (5 +«)?D(4C +3D) - 248 + a)(2E+ F + G)G]
= 528 +afo?(a(p + a)u+ 3B +afo?)+ (B + a2 pPo? (4 + 34%2)
~ 2B + (4 + 20)u + B0% + (B + afo? + BB +a)o?)
= p(p+afo?l(alp + a)u+ 3+ o)
+(4pu +38%0%) - 2(4p + 20)u
-4 +a)’c® - 4p%c? - APac® — 4p%6° ]
= B(B + o o? [Bu +daw + (B + ao? + o
~8uf - doyt - 2%6% - 2fac?)
= p(B+afo'a’
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(At=0)= 2B 1"+ + ")+ (B + )2 (BIVIT" +3IVIH" +11™")

—2B(B +a)' (QVVI' +3VI'V' +VI")
= ﬂ2(35(2A+ B +3B%(2A+B)+ BS)
+(B+ oc)z(SD(ZC +DY +3D?(2C+ D)+ D3)

-2B(B +a){3G(E+%j +3(32(E +gj+GSJ

,32(3B(ZA+ B +3B%(2A+B)+ B3)
+(f+ oc)z(SD(ZC +D) +3D?%(2C + D)+ D3)

-2B(B +a)(BG(E +%) +3G2(E+EJ+G3}

/323(3(2A+ B)’ +3B(2A+ B)+ BZ)
+(8 +a)D(3(2C + DY +3D(2C + D) + D?)

—Zﬁ(ﬂ+a)G(3(E+%j2+3G(E+%]+GZJ
= BB + a)’c? {— 2(3(E+%j +3G(E+%j+G2H

+ %8 + a)%*(32C + D)’ +3D(2C + D)+ D?)
+ BB+ a)202(3(2A+ B) +3B(2A+B)+ BZ)
= BB + a0’ [L2A? +18AB+ 7B? +12C? +18CD + 7D

- 6E” - 6EF —ng -6EG-3FG —262}

where

12A° +12C° +18AB+18CD + 7B + 7D =124%(28° + o + 2Ba)
+18u02(26° +36% + 307 + o°)
+75°(2p" + 4% + 65%% + 40’ + o)

and
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6E2 + 6EF +§F2 +BEG +3FG + 2G = 6,2(45% + o> + 40)

+ 60 (6% + 9% +5p0 + o°)
+146* " + 280" pa + 230" p20

+90" fa’® + 20'404

Therefore,

*M
oAt3

(at =0)= %tsﬁzaz(ﬁ +al[6u2(ap? + 202 + 4p0 - 4% o - 4p0)

+ 60 (B° +9p%0+ 90 p +3a® — 6° —9B% —5po? - o)
+o*(14* + 286% + 428%0° + 280’ + Ta*)

+ 04[—14ﬁ4 - 28p% — 23p%a* - 9p0° —ga“ﬂ

= %tsﬁzaz(ﬁ + a)Z[G,uz(az)+ 6/102(4a2ﬂ + 2a3)

+ 04(19ﬂ2a2 +198a° + 1—21014H

As a conclusion, Taylor expansion of M of order@uadAt=0 is as follows:
2
M(At) = A—; Boo* (B +afa?
3
+ %ﬂzaz(ﬂ + a6 (%) + Buc? (407 + 20¢)

+ 0'4[19ﬁ2a2 +19pa° + 1—210:4H +0(At).

Then we have
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Var(\/*

— 4 A_t3 2 2 2( 2 o 4o
Xt)_(At)zazﬂz(ﬁ+a){ Al +a{6ﬂ )+ euo (+2a3D]

1 [A—tg B’ (p + a)(a“[lgﬁzaz +19f0° + %a‘jﬂ

+
MY pAB+a)’| 6
4 At?

oG 27 ° (B+a) o +ola)

= 25" + gAt{Quz + 04(1%2 +19a + %azj + uc?(248 + 1204)} +o(At).

Var(V,/*

X,) 026" +gAt{6,u2 + 04(1%2 +198a +1—21a2j + uc? (24 +12a)}

Minimization of the Varb/f”|XtJ requires that derivatives with respect to

every variable in the Taylor expansion be equalOtdfirst order conditions).

Derivatives of\/arb/f"|xtj with respect t@ anda are given as follows:

fa
NarTIX,) _ 2fa85 +100)0 + (24)0 )t 27)
B 3
and
Pa
T = Haop 110l + (20 (28)
a

The solution of Equations (27) and (28) gixed. However, forn=0, V/* is

not defined. Therefore, let's apply L'Hopital’s euaind take the limit 0%,”* whena
approaches 0.

. 2
lim V=V = {pz.e™ +1-e}

a-0 ﬁzAt
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By using the findings in Equation (24), the mead aariance of the/,” are

found as follows

Eb/tﬂ|xt]:E{ 2 {ﬁzteﬂzl +1_eﬂ2t)(xt}

B2t

= ﬁzzAt (1-E e/ |Xt]+ E[ﬁzteﬂzt |xt])
_ 522& + @Pubt+054% %t (,B,UAt + 202Nt —1))

varV/|X, | = E((V/)?[X, ) = (E(V/|X, )

4 [eenatsn [(ﬁﬂAt +2p%0° M -1 + 202Nt
PO | - g2rm2s e (gt + 287520t ~1)

Let

A= pu,

B = %72,
C =((A+2B)At -1)° + BAt,
D = ((A+B)At 1),

K = eZAt(A+B)

L = eAt(2A+B)

e2,b’/zAt+2/)’2z72At[ At + 252 2At—12+ 2520t
Rz[ (puot+25% ) + 5% = KC-LD.

— @2 gt + 28262t ~ 1)
The first and second derivatives of C and D witkpest toAt are as follows:

2
9 _3B-2A+ 2At(A+2BY, 0 c:2
PN, G

=2(A+2B),
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2
9D _ p-2p+ 20t (A+ B)Z,a—D2 =2(A+B)".
At OAt

A Taylor expansion of order 3 (arount=0) of the expression R is

2 2 3 3
R(at) = R0) + R ar+ 2 RAU, 0 R4
At AZ 2 9t 6

+ o(At)

If At=0, then

UOX}_U\
1 I I XN
|—\l—‘_|—\'|'|’
=)
Il
o

1,

Qo ™

C

——=-3B-2A,
0At
0°C

=2(A+2B),

0At?
90 _ -2B - 2A,
OAt

0°D
oAt?

=2(A+B)’.

Now, let’s take the first, second and third deiived of R with respect tat
atAt=0:

% =2(A+B)KC+KC'-(2A+B)LD - LD’

R
0At

(At =0)=2(A+B)+(-2A-3B)-(2A+B)+2(A+B)=0
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0°R
ING

=2(A+B)K'C+2(A+B)KC'+K'C' +KC"
-(2A+B)L'D-(2A+B)LD' - L'D' - LD"

= 4(A+B)’KC +2(A+B)KC' +K'C' +KC"
-(2A+B)’D-(2A+B)LD' - L'D' - LD"

2
gAtRz (At =0) = 4(A+B) +2(A+B)(-2A-3B)+2(A+2B)

+2(A+B)(-2A-3B)-(2A+B)’

+2(A+B)(2A+B)+2(A+B)2A+B)-2(A+B)
= 4(A+B)* +4(A+B)(-2A-3B)+ 2(A+ 2By

—(2A+B) +4(A+B)(2A+B)-2(A+BY

= 4A? - 4B? - 4A%? - B2 -4AB-2A%? - 4AB-2B? + 2A% + 8AB + 8B?
=B?.

o°R
oAt3

= 4(A+B)K'C+4(A+B)KC +2(A+B)K'C'

+2(A+B)KC" +K'C" +KC" - (2A+BYL'D
-(2A+B) LD - (2A+B)L'D' - (2A+ B)LD"
-L'D"-L'D'-L'D"-LD" +K'C' +K'C"
=g(A+B)’C +4(A+B)’K(-2A-3B)- LD"
+4(A+B)(-2A-3B)+2(A+B)K2(A+2B)
+4(A+B)’(-2A-3B)+2(A+B)2(A+2B)
+2(A+B)2(A+2B) - (2A+ B)2(A+ B)
-(2A+Bf’D +(2A+B)’L2(A+B)
+(2Aa+B)2(A+B)-(2A+B)L2(A+B)
+(2A+B)’2(A+B)-(2A+B)2(A+ BY + KC"
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d°R

e (At =0)=8(A+B)’ +4(A+ Bf(- 2A-3B)

+4(A+B)*(-2A-3B)- (2A+B)’
+2(A+B)2(A+2B) +(2A+B)2(A+B)
+2(A+B)2(A+2B) - (2A+ B)2(A+B)
+(2A+B)2(A+B)-(2A+B)2(A+B)
+(2A+B)2(A+B)-(2A+B)2(A+B)
+2(A+B)2(A+2B) +4(A+B)*(- 2A-3B)
=8(A+B)’ +12(A+B)*(- 2A-3B) +12(A+ B)(A+ 2By
-(2A+B)* +6(2A+B)*(A+ B)-6(2A+ B)(A+ B)
=2(A+B)(4(A+B)-6(2A+3B)-3(2A+B))
+(2A+B)(6(A+B)-2A-B)-12(A+ B)(A+2B)
= 2(A+B)’(-14A-17B)+(2A+ B)*(4A+5B)
-12(A+B)(A+2BY

Therefore the Taylor expansion of R of order 3 athAt=0 is as follows:
2 3
RAY) :%/3404 +%[6u2ﬁ402 +24uc* B +18ﬁ606]+ o(At).

Then,

4 At? At®
Val’h/tﬂxt]zm ( 2 ﬂ40_4 +?[6,U2ﬂ40-2 +24,u0-4ﬂ3 +18ﬂ60_6]+0(At)j

VarlV/|X, | 020 + 402t (u? + 4puc? +38%6°)

Since the estimator that is both unbiased (expeotaf the estimator equals

the parameter) and has the minimum variance (th@anee of the estimator is

minimum among the variance of all estimators) iedwl,Varb/fﬂXtJ needs to be

minimized. The first order condition with respeajstis as follows:
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avar(V/“|X,)
o

VarlV/#|X, | is minimized wherg is equal to -g/3¢%. Then, Var[v,*|X |

=85(2u +3p0% At =0,

can be rewritten as:
varv/|x, | 020 —gaz,uzAt.

Therefore, following Chang et al. (1998), the fallnog formulas are
employed to calculate the volatility of both anetssand a portfolio’s returns. These
findings are also used to calculate £¢OL

2 (X =X (X =X
— _2 1_eﬁ|(xu,x+1 Xm) +ﬂi (Xi't+1 — Xi't)eﬁu(xu,ul Xm)

V.

it

where g =-24 /307, ut denotes the mean of daily returns of asseter the

sample periodg; denotes the standard deviation of daily returnassieti over the
sample period an¥; denotes the log of daily closing pricés/OL at timet will be
calculated as follows:
AVOL, = 1Zn“vit
no=
PVOL is calculated using the same formulaA8&L with only the difference
that In(,) is substituted by, wherel; denotes the closing prices of the ISE-National
30 index stocks (or the Non-ISE-National 100 ind&ocks)

3.3. THE MODEL

In order to test whether the introduction of stankex futures contracts
change the underlying stock market volatility, pital test that is performed comes
in the following format:

PVOL{ =a + apostDpostt t& (29)

In Equation (29)Dpostrequals 1 (0) after (before) the futures tradingiteg
and the null hypothesis is thal,s: =0. Significantly positive (negative) estimates of
apost IMply that futures trading induces higher (lowgspsmarket volatility (Chang
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et al, 1999). A major deficiency of this type okttas the absence of a control
variable for the extraneous influences on the stowkket volatility. Therefore,
decomposition of portfolio volatility into its coropents is used in forming a single-
factor return-generating model, namely the clasdioaar regression method, to
differentiate the volatility impacts caused by feétsl trading and those caused by
changes in broad economic factors. In their papbang et al (1999) propose that
the decomposition of spot portfolio volatility intbe components of cross- sectional
dispersion and average volatility of the portfadi@onstituent securities can be used
to control for broad market influences. It is assednthat, with the suppression of
time subscripts, the return generating proces$eaepresented as follows:

It is assumed that, with the suppression of timessupts, the return

generating process can be represented as
R=a +BF +¢ (30)

In Equation (30),R is the realized return on securityq; is the expected
return on securityi, F is the realization of a zero-mean common factoickvh
represents the broad market facgris the time-invariant factor loading of security
I, and ¢ represents the effect of zero-mean firm-specifiorimation, which is
assumed to be independent of the effect of thedbroarket factors (Chang et al,
1999).

If W represents the weight of securityin a portfolio consisting oiN
securities,AVOL, PVOL and E(CSD) can be expressed, respectively, in terms of
Equation (30) in the following manner:

N N
AVOLz{ vvibf}aﬁ +> Wof,
=1 i=1

N N N N
PVOL{ W07+ Zzwiwjbibj}aﬁZWzaz (31)

i i 6l !
i=1 =1 =l i=1

E(CSD W (@, -a,)’ +[ > W, (b, —bﬂaﬁ £>Wo?

i=1 i=1 i=1
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In Equation (31),b, is the weighted average of factor loadings of all
securities in the portfolio. The last terms in Bgwa (31) show the contributions of
firm-specific information to the respective volatilmeasures (Chang et al, 1999).
They are identical foAVOL andE(CSD) but smaller foPVOL (Chang et al, 1999).
The first terms forAVOL and PVOL and the second term f&(CSD)in Equation
(31) represent the contributions of the broad ntafidketor to the volatility measures
(Chang et al, 1999). With the assumption that talings I6;’s) and weights\(i’s)
in Equation (31) are time-invariant (an assumptieguired by the classical linear
regression model), the contributions of the broatket factor are the products of
o2 and the three different constants (Chang et al9)l @artials of each expression

with respect ta? yield:

@:{iw (b —b )2}:[iwib?}—b§ >0.

do}

First, ceteris paribus, increases in the volatibfythe broad market factor
increases each of the volatility measures (Changl,efi999). Thus, conclusions
drawn from models based on Equation (29) that dccaotrol for changes in broad
market influences can be seriously defective (Chanhal, 1999). Second, the
increments for the volatility measures are the eeipe bracketed terms in Equation
(31) suggesting that, ceteris paribussdf increases, the increments in the volatility
measures are proportional to the measures’ systemamponents (Chang et al,
1999). If, for example, the bracketed terms £vOL and PVOL equal 2 and 1
respectively, then the exposure to systematic emites ofAVOL are twice as large
as the exposure d?VOL before and after a volatility shift in the broadoromic
factor (Chang et al, 1999). Therefore, extraneduftssin broad market factors can

be controlled for by includindVOL as a regressor in Equation (29) (Chang et al,
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1999).

The ex-post realization of the volatility measuie®pen to disturbances in
both systematic and unsystematic risk, and probalsly to random interventions by
arbitragers (Chang et al, 1999). Thus, the effe€tarbitrage-motivated program
trading (program trading is the execution on alsto@arket of a large number of
simultaneous buy or sell orders and is generaiggéred by a computer program
that detects an arbitrage opportunity or suggesisesother reason for quickly
establishing a large portfolio of stock) on theustural relations between the
volatility measures are contrasted with the effdobuced by changes in broad
economic factors (Chang et al, 1999). As prograding is typically independent of
information specific to individual securities, pegcof all securities in a basket tend to
move simultaneously in the same way (Chang et39) The arbitrage factor A
can be assumed to affect the return-generatingepsoior securities in the basket as

follows:

R=a +BF +A+¢

In order to capture the nature of arbitrage-mogdatrading, Chang et al.
(1999) also assume that all securities in the hdskee the same loading relative to
the arbitrage force. Since index arbitrage appeardomly, factor A’s presence in
the return-generating process is also random. Tihesuncertainty of the arbitrage
factor is an additional source of return volatility securities in the basket (Chang et
al., 1999). This implies the following:

AVOL

Swi loz + o2+ 3w,
i=1

i=1

PVOL{iwfbf + i izvviwj bb }aﬁ +op+ ivvizaj :

i=1 =1 =l i=1

E(CSD =YW (a, - ,)? +[ W, (b —bp)ﬂaé 002+ Wo?

i el
i=1 i=1 i=1
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The effects of an increase i’ on AVOL PVOL and E(CSD) differ
substantially from those due to an increagsein two prominent ways. First, since
uncertainty caused by arbitrage effects cannotivesified, an increase s’ is not
diversifiable (Chang et al., 1999). That is,

0AVOL oPVOL 0AVOL oPVOL
= =1>0 whereas > >

0 32
d00; 00’ d0? 0o’ (32)

Second, though an increase ég° has a positive effect oE(CSD) an

increase > has no effect (Chang et al., 1999). Hence,

0E(CSD) _
——= =0,
00,

These comparative statics leads us to the factftined single-factor model
changes inPVOL and E(CSD) due either to arbitrage or to broad market factors
equals the change WVOL (Chang et al., 1999). This result stems direaty the
decomposition of PVOL At the same time, diversifiable broad economic
disturbances trigger larger (but proportional) tshifil AVOL than inPVOL; whereas,
the nondiversifiable effects of program tradinggger identical shifts in both
volatility measures (Chang et al., 1999). When ithentical effects of program
trading are summed with the proportional effectdodad economic disturbances,
PVOL should increase proportionately more thaWOL becausePVOL is smaller
than AVOL due to diversification (Chang et al., 1999). Rerhemthe previous
example in which the exposures A¥OL and PVOL to unit changes ia:> were 2
and 1, respectively. Equation (34) indicates thatexposures &A&VOL andPVOL to
a unit change ims” are both 1. Therefore, the exposure&¥DL andPVOL to total
volatility shifts (induced by broad market fact@sd arbitrage activities) become 3
and 2, respectively (Chang et al., 1999). The ratitotal exposure (1.50) is smaller
compared to the ratio of the exposure to broad @oaninfluences (2.00) because
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the exposure from arbitrage is not diversifiableinping to a structural shift in the
relationship betwee®VOL and PVOL when futures trading starts (Chang et al.,
1999). Similar arguments also hold for a structstaft in the relationship between
E(CSD) and AVOL (or PVOL (Chang et al., 1999). Based on these arguments,
Chang et al. (1999) predict that futures tradirggeases the spot portfolio volatility.
In their study, Chang et al. (1999) empirically ttésr the validity of such a
prediction and claim that their findings supporistiprediction. It should also be
remembered that the literature presents confliatesylts about the effect of futures
trading on the volatility of the underlying stoclarket. Therefore, in this study, the
comparative statics above lead to the followingr f@stable implications (Chang et
al., 1999):

H1: Volatility shifts in broad economic factors induce proportional shifts
in PVOL and AVOL, but PVOL increases relative t)AVOL when futures trading
begins.

PVOL =c¢, + ¢, AVOL + oD postt * ;5 (33)

postt

In Equation (33),Dyostt is the dummy variable that equals 1 for the post-
futures period and O for the pre-futures periodthVi constant, the structural shift
betweenAVOL andPVOL should show itself in the intercept and will bgttaed by
the coefficient on the dummy variable (Chang et B999). Therefore, a positive
estimate ofcyes: Would be consistent with the hypothesis of anteabe-induced
increase in volatility related to futures tradifigh@ng et al., 1999).

H2: Volatility shifts in broad economic factors induce proportional shifts
in E(CSD) and AVOL, but E(CSD) decreases relative toAVOL when futures
trading begins.

CSQ =c¢, + ¢, AVOL +C oD oy * & (34)

postt

In Equation (34)CSD proxies for the unobservabl§CSD) A significantly

negative estimate @fos:would be consistent with H2. The model predictegative
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shift in CSD because witlt; constant, théAVOL correction overstates the volatility
effect of a shift in broad economic factors ©8D (sinceCSDis influenced only by
broad economic factors, where@¥OL is influenced both by broad factors and by
futures-related arbitrage activity) (Chang et 2999).

H3: Volatility shifts in broad economic factors induce proportional shifts
in E(CSD) and PVOL, but E(CSD) decreases relative toPVOL when futures
trading begins.

CSD =¢, +¢,PVOL +¢ oD pos +& (35)

postt t

Since, as a result of diversificatié®VOL is influenced less by idiosyncratic
factors compared tAVOL, it should control better for broad market inflaes than
AVOL in tests of arbitrage-induced shifts in the stk relations betweeB(CSD)
and these other volatility components. Thus, afemioned shifts in the intercept
should be more obvious for Equation (35) than fgud&ion (34) (Chang et al.,
1999).

H4: Following the start of futures trading, changesin E(CSD) are

smaller relative to changes in PVOL.
CSD = C0 + C1PVOLr + Cpost(Dpost,t * PVOLr)+ gt ' (36)

H1 through H3 test for shifts in the intercept wille slope coefficient held
constant. If the intercept is held constant, howeki predicts that the slope will
change if futures trading affects stock market wiaha (Chang et al.,, 1999). A
significantly negative estimate ofs would be consistent with H4 (Chang et al.,
1999).

The above hypotheses are tested by using data tonthm ISE-National 30
and non-ISE-National 100 stocks. Both groups aseeqtible to general economic
disturbances; however, only the ISE National 3@kstacare impacted directly from
futures trading. Thus, changes in the relationshipsng the volatility components

for ISE National 30 stocks but not for the non-IS&tional 100 stocks are unlikely
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to be explained by changes in broad factors anthdur these changes can be
attributed to the influence of futures trading.
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CHAPTER 4

RESULTS AND ANALYSIS

4.1. DATA

This study analyzes whether futures trading affabes volatility of the
underlying stock market by examining the volatilaf the ISE-30 National Index
while controlling for broad economic factors. Thethodology adopted calls for the
creation of two stock portfolios. The first porifolcontains those stocks that have
been included in the ISE-30 National Index for #mtire sample period (from
January 2, 2003 to May 30, 2006). There are 1&stthat satisfy this condition. The
volatility of the underlying stock market is progidy the volatility of this portfolio.
The second portfolio contains those stocks thaewewrer included in either the ISE-
30 or the ISE-100 National Indices during the ensample period. There are 140
stocks that satisfy this condition. This portfolid stocks serves as the “control
portfolio.” By measuring the volatility changes ftinis particular portfolio, it is
possible to account for the impact of broad ecowofactors on stock market
volatility. Since these stocks are not includeckitier of the national indices, they
are not expected to be influenced by futures tpdm there are no futures contracts
being traded on these particular stocks.

The closing prices of the 158 stocks that make hg ttvo portfolios are
obtained from the database of the ISE. The samwledis from 2% January 2003 to
30" May 2006. The data set includes a total of 636enkions. 369 of these
observations are from the first sub-period priorthe introduction of stock index
futures trading and the remaining 267 observatemesfrom the second sub-period

subsequent to the introduction of stock index fesurading.
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Two equally-weighted portfolios are constructed fmach sub-period. If
weights are not constant over time, the classinabt regression used for estimating
the volatility decomposition would produce meanasyl results. Moreover, the
weight of each stock is assumed to be equal inromecapture the nature of
arbitrage-motivated trading.

Continuously-compounded daily percentage retureseatimated as the log
price relative for each portfolio. That is, for argolio with daily closing price ofP;
(equally-weighted daily closing prices of firms the portfolio), the returrR; is
defined adog(Pt/P.1).

Table 6 provides basic descriptive statistics f@ kbbg-return series of ISE
National 30 Index and the Non-ISE National 100 ingertfolios. The Jarque-Bera
tests reveal that the skewness and kurtosis figioesach of the return series
(including sub-periods) are different than thoserfra normal distribution. This test
evaluates the hypothesis that X has a normal bligtan with unspecified mean and
variance against the alternative that X does ne¢ l@anormal distribution. The test is
based on the sample skewness and kurtosis of Xa e normal distribution, the
sample skewness should be near 0 and the samptesikushould be near 3. The
Jarque-Bera test determines whether the samplenglssvand kurtosis are unusually
different from their expected values as measured bki-square statistic. Since the
Jarque-Bera probability for each of the return eseris nearly zero, the null
hypotheses that the series fit a normal distrilouéice rejected.

Also in Table 6, the variance figures provide artiah indication of the
volatility the ISE National 30 Index portfolio. The-futures ISE National 30 Index
portfolio volatility is greater than that of posttires. Based on an F-Variance ratio
test, this reduction in variance is statisticalignificant at the %1 level (Table 7
provides the test results). This result is anahitdication that the introduction of
index futures did not destabilize the spot mark&iwever, inferences cannot be
drawn from these figures alone, as these variamteulations do not take into

account the market-wide movements and the timekvauyature of volatility.
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Table 6: Summary statistics of return series of ISENational 30 Index stocks portfolio and of
Non-ISE National 100 Index stocks portfolio for befre and after the futures periods

ISE National Non-ISE ISE National ISE Non-ISE Non-ISE
30 Index National 100 30Index National National 100 National
Portfolio Index Portfolio  Portfolio 30 Index Index Portfolio 100 Index

Return Return Return Before Portfolio Return Before Portfolio
Futures Return Futures Trading Return
Trading After After
Futures Futures
Trading Trading
Mean -0.0000250 0.0029670 -0.00007070.0000381 0.00400100.0015370
Median 0.0014010 0.0021860 0.00165500.0006920 0.00232200.0018050
Maximum 0.1049700 0.4681430 0.10497000.0472120 0.46814300.0923290
Minimum -0.3478100 -0.0895430 -0.3478100 - -0.0749160 -
0.0816220 0.0895430
Std. Dev. 0.0266630 0.0288450 0.03164100.0176630 0.03253600.0227620
Skewness -3.8386850 6.7154510 -3.8965830 - 8.1099790 -
0.5253510 0.3237290

Kurtosis 49.5991700 109.0819000 42.86654004.4624940 114.34870005.7634340

Jarque-Bera 59106.26000 302994.80000 25369.90000 36.07687 2O4BU00 89.62044
Probability  0.0000000 0.0000000 0.0000000 0.0000000.0000000  0.00000Q0

Observations 636 636 369 267 369 267

Table 7: Test for equality of variances between ISBlational 30 Index stocks portfolio return
series before futures trading and ISE National 30ridex stocks portfolio return series after
futures trading

Method df Value Probability

F-test (266, 3.208954 0.0000
368)

Siegel-Tukey 3.194275 0.0014

Bartlett 1 93.90893 0.0000

Levene (1,634) 12.74495 0.0004

Brown-Forsythe (1, 634) 12.26443 0.0005

Category Statistics

Mean Abs. Mean Abs. Mean Tukeyt

Variable CountStd. Dev. Mean Diff. Median Diff. Siegel Rank
IMKB30_PORT_RET_AFTER 267 0.017663 0.013501 0.013498 345.8614
IMKB30_PORT_RET_BEFORE 369 0.031641 0.019359 0.019272 298.7019
All 636 0.026663 0.016900 0.016848 318.500(

Bartlett weighted standard deviation: 0.026683
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4.2. RESULTS AND ANALYSIS

Table 8 presents mean daily estimates and standaxdations (in
parenthesis) oAVOL andPVOL for the total sample and for the two subperiodse T
ISE National 30 Index portfolio includes 18 stock#éh no missing data over the
sample period. The Non- ISE National 100 Index fpba consists of 140 stocks,
also with no missing data over the sample periodahMPVOL estimates are higher
for pre-futures period compared to the estimatemfthe post-futures period. This
result supports the conclusions driven from theireg in Tables 6 and 7. At first
glance, the introduction of futures trading doe$ s®em to have a destabilizing
effect on the volatility of the underlying asse¢tlISE National 30 Index. However,
as stated earlier, this result needs to be analyzddrther detail by taking into
account the effect of market-wide factors and thespge of time on the volatility of

the stock market.

Table 8: Summary statistics of portfolio volatilities, average volatilities for ISE National 30
Index stocks portfolio and Non-ISE National 100 In@x stocks portfolio

Portfolio of ISE 30 National Portfolio of Non-ISE 100
Sample Period Index Stocks National Index Stocks

A. Total period

PVOL 0.001354(0.007365) 0.001595(0.014622)

AVOL 0.003860(0.020827) 0.003958(0.008351)
B.Pre-futures period

PVOL 0.001876(0.009599) 0.002119(0.019122)

AVOL 0.004519(0.024907) 0.004550(0.008442)
C.Post-futures period

PVOL 0.000634(0.001118) 0.000872(0.002050)

AVOL 0.002955(0.013310) 0.003162(0.008186)

The next step in the analysis is to estimate amdrdpose volatilities based
on the Chang et.al.’s methodology that is descrinedhapter 3. Recall that Chang
et. al.’s (1998) a priori expectation is that, undermal conditions, futures trading
should destabilize the underlying spot market. Hmwvethis study has no such a

priori expectation, based on the conflicting resditbom the literature regarding the
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issue. This thesis decomposes the spot portfoliatility into two components:
cross-sectional dispersion and average volatilitseturns. In this model, on the one
hand, a shift in broad economic factors causesagptiomal shifts in spot portfolio
and average volatility. On the other hand, futuedated volatility shifts change the
proportionality of this relationship. The model @algredicts structural shifts in the
relationship between cross-sectional dispersion spat portfolio (and average)
volatility when futures trading begins. The maigwnent of the decomposition is
that if there volatility shifts that are observen the ISE National 30 Index portfolio
but not for the Non- ISE National 100 Index porithplthen these shifts cannot be
explained solely by the influence of market-widectéas but, instead, the
introduction of futures trading must be the sowtthe shifts in volatility.

A formal analysis of structural shifts in the reatship betweerPVOL and
AVOLis presented in Table 9. In Table 9, the null ligpsis H1 that volatility shifts
in broad economic factors induce proportional shiftPvVOL andAVOL, butPVOL
increases relative tAVOL when futures trading begins, is tested. Withestimated
as a single value for each portfolio for the whekmple period, constant the
structural shift betweeAVOL andPVOL should show itself in the intercept and be
captured by the coefficient on the dummy variallberefore, a significant and
positive estimate of,.s for the ISE National 30 Index portfolio and anigmsficant
estimate ofc,ost for the Non- ISE National 100 Index portfolio wdube consistent
with the hypothesis of an arbitrage-induced inaeeasvolatility related to futures
trading. In Table 9, it is observed thats takes a value of -0.000773 for the ISE
National 30 Index portfolio and a value of -0.000Z6r the Non- ISE National 100
Index portfolio. The values in parenthesis areatistics and neither of theyos
estimates are statistically significant. The ingfigant cpost €Stimates imply that the
introduction of futures trading did not have a dbégizing effect on the underlying

stock market.
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Table 9. Test of H1 that the volatility shifts in broad ecormmic factors induce proportional shifts
in PVOL and AVOL, but PVOL increases relative to AVOL when futures trading begins

Model A:
PVOL[ = CO + ClAVOL[ + CpOStDpOSt + gt

(Sample period: 07.01.2003-30.05.2006)
(t statistics are in parenthesis)

Co G Coost R
Panel A: Results for a portfolio of ISE 30 Natiotradlex Stocks
0.000521 0.300027 -0.000773 0.725849
(2.5521) (40.7096) (-2.4884)
Panel A: Results for a portfolio of Non-ISE 100 iNa&l Index Stocks
0.002161 -0.009175 -0.001260 0,001804
(2.6162) (-0.1314) (-1.0677)

The second null hypothesis H2 states that vohatlitifts in broad economic
factors induce proportional shifts IB(CSD) (CSD proxies for E(CSD) because
E(CSD)is unobservable) andVOL, but E(CSD)decreases relative #®VOL when
futures trading begins. According to earlier argategwhile futures-related basket
trading strategies may increase spot portfolio tddlg they may have little effect on
the cross-sectional dispersion of constituent sgcreturns. Thus, if the estimate of
Coost IS Negative and significant for the ISE NatioB@l Index portfolio but not for
the Non- ISE National 100 Index portfolio, thensthiesult would imply that the
introduction of futures trading increases the \ubitatof the underlying stock market.
In Table 9, it is seen that the estimatesygf are negative and insignificant for both
portfolios. This finding once again implies thag tintroduction of futures trading did
not have a destabilizing effect on the underlyitugls market; in fact, futures trading

seems to have no effect of the volatility of th& ISational 30 Index portfolio.
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Table 10: Test of H2 that volatility shifts in broad economic factors induce proportional shifts in
E(CSD) and AVOL, but E(CSD) decreases relative to YXOL when futures trading begins

Model B:
CSD = CO + ClAVOL[ + CpostDpost + gt

(Sample period: 07.01.2003-30.05.2006)
(t statistics are in parenthesis)

Co G Coost R
Panel A: Results for a portfolio of ISE 30 Natiotradlex Stocks
-0.000011 0.380761 -0.000488 0.425392
(-0.0230) (21.5812) (-0.6566)
Panel A: Results for a portfolio of Non-ISE 100 iNa&l Index Stocks
0.002321 0.632468 -0.001037 0.080791
(2.2755) (7.3356) (-0.7118)

Table 11 reports the results of testing for thedthull hypothesis, H3, which
states that shifts in broad economic factors induoportional shifts ire(CSD)and
PVOL butE(CSD)decreases relative RWVOL when futures trading begins. Just like
H2, if the estimate of,.s:iS negative and significant for the ISE Nation@lIBdex
portfolio but not for the Non- ISE National 100 &d portfolio, then this result
implies that the introduction of futures tradingcreases the volatility of the
underlying stock market. Theos: estimates for both portfolios is statistically
insignificant. This result is consistent with thedings in Tables 9 and 10 and
implies that the inception of futures trading oe tRURKDEX had no effect on the

portfolio volatility or the cross-sectional dispers of the underlying stock market.

Table 11: Test of H3 that shifts in broad economi€actors induce proportional shifts in E(CSD)
and PVOL, but E(CSD) decreases relative to PVOL whefutures trading begins

Model C:

CSD = C0 + C1PVOL( + CpostDpost + gt
(Sample period: 07.01.2003-30.05.2006)
(t statistics are in parenthesis)

Co C Coost R
Panel A: Results for a portfolio of ISE 30 Natiotradlex Stocks
-0.000201 1.018222 0.000181 0.378475
(-0.3944) (19.5674) (0.2332)
Panel A: Results for a portfolio of Non-ISE 100 iNa&l Index Stocks
0.004555 0.301138 -0.001538 0.057189
(4.7459) (6.0533) (-1.0448)
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Tests of H4, which states that relative to change®VOL, changes in
E(CSD)will be smaller after futures trading begiase reported in Table 12. Recall
that the first three hypotheses are related tdassiif the intercept of the volatility
model while the slope coefficient is held constdhthe intercept is held constant
instead, the fourth null hypothesis, H4, predidtattthe slope changes if futures
trading affects stock market volatility. A signidict and negative estimate Qfs:
would be consistent with H4. Although they are samiregressions (35) and (36)
test slightly different versions of the stability the relationship betwee@SD and
PVOL Regression (35) holds the covariance constantestd for shifts in the mean
of CSDas trading regimes change. Regression (36) hio&mean constant and tests
for shifts in the covariance. Other things equad, inodel predicts that the covariance
betweenCSDandPVOL will decline if futures-related trading increagbe volatility
of PVOL but notCSD: The cyost €Stimates for both portfolios are insignificanhis
finding does not support the claim that futureslitig on the TURKDEX increased

spot portfolio volatility.

Table 12: Test of H3 that relative to changes in PUL, changes in E(CSD) will be smaller after
futures trading begins than before

Model D:
CSOQ =c¢, +¢,PVOL +¢ (D0 * PVOL) + &,
(Sample period: 07.01.2003-30.05.2006)
(t statistics are in parenthesis)
Co C Coost R
Panel A: Results for a portfolio of ISE 30 Natiotradlex Stocks
0.000044 1.021190 -0.652918 0.380200
(0.1093) (19.6884) (-1.3466)
Panel A: Results for a portfolio of Non-ISE 100 iNa&l Index Stocks
0.004065 0.306471 -0.450317 0.056667
(5.3907) (6.1477) (-0.8611)

One noteworthy observation about the results in daheve tables is the
difference in theR? values between the two portfolios. Recall tRaindicates what
proportion of the total variation in PVOL is explad by the model (Myers et al,

2002).R? changes between zero and one with values closemgdmplying a good
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fit of the model, whereas values close to zero tpmira poor fit. Within the context
of the models estimated in this study, it is plhalesito expect that macroeconomic
disturbances explain a greater portion of the pbafvariance compared to futures
trading. Therefore, in the case of either portfoho explanatory variable which is
affected by macroeconomic disturbances, naA®IQL, can reasonably be expected
to generate an above- average explanatory powehéomodel (should reveal itself
as anR? close to one). In Table 9, th#& for the ISE National 30 Index portfolio is
0.725, pointing to a successful fit, whereas Bi&s only 0.001 for the Non-ISE
National 100 Index portfolio. Similar differenceseaobserved for the other three
hypothesis tests in Tables 10, 11, and 12, resetiThe difference iR values
implies that the estimated models have a much higkplanatory power when the
portfolio consists of ISE-30 stocks but not whea portfolio consists of Non-ISE-
100 stocks This difference in explanatory model lsarexplained by the fact that the
Non-ISE-100 stocks happen to be those stocks tieahat included in any of the
national indices during the entire sample perioce do their small market
capitalization and low trading volume. As such,sthestocks are claimed to be
susceptible to manipulation which could explain #adure of the models in
explaining the volatility changes in this group stbcks. If these stocks are indeed
subject to manipulation, this would mean that #teinn-generating process for these
stocks is not a result of the interaction betwess rnarket forces of supply and
demand, which are themselves shaped by broad edoraators. Hence, a model
that decomposes stock return volatility based aradbreconomic factors cannot be
expected to work well in explaining the volatilthanges for such a group of stocks.
Generally speaking, the test results imply thatitiseption of futures trading
on the TURKDEX had no effect on the volatility dfet underlying stock market,
ISE. The models seem to have a much higher explignatodel for the portfolio of
ISE-30 stocks compared to the portfolio of Non-I8E stocks. These results are
likely to be caused by the extremely small volurh&utures trading compared to the
volume of trading in the stock market. Also, pobsimanipulative influences,
especially on the Non-ISE-100 stocks, may give w@yhe failure of models in
explaining the changes in the volatility of thisogp of stocks. It seems like unless
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the trading volume and the depth of the futuresketarreach high levels compared
to the underlying stock market, finding a link beem the volatility of the stock

market and trading of the futures is going to prtavbe an almost impossible task.
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CHAPTER 5

CONCLUSION

Although Turkish capital markets, as an emergingnemy, have undergone
a great progress, what is evident regarding thesog as a whole is also evident for
the capital markets: the prices of the securitresextremely volatile due to macro-
economic imbalances as well as domestic factorh sgcpolitical instability and
international factors like fluctuating exchangesgtRecall that volatility refers to the
standard deviation of the change in the value dihancial instrument within a
specific time horizon and is often used to quarttiy risk of the instrument over that
time period. The Turkish capital markets are categd as emerging financial
markets and expose domestic and foreign investoasgreat deal of risk due to high
volatility. In such an environment, financial ingtnents, such as futures contracts,
that may offer hedging opportunities attract evemerattention.

In order to satisfy the hedging as well as spemdaheeds of investors,
TurkDex, the very first and only options and fusiexchange in Turkey, has been
launched and began its operations on 4 February. 289 of the end of May 2007,
only four futures contracts are traded on the Tak[although it was launched with
the purpose of offering both futures and optionke Tutures contracts traded on
TurkDex are as follows (Official website of TurkDex

1) Currency Futures Contracts written either on YHWRO rate or
YTL/DOLAR rate

2) Equity Index Futures Contracts written eitherl®& National 30 Index or
ISE National 100 Index

3) Interest Rate Futures Contracts written eithe9t Days T-Bill interest
rates or 365 Days T-Bill interest rates or T-Benahkn

4) Commodity Futures Contract written on eithett@otor wheat or gold.
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Among these contracts, the contracts written onl8te National 30 Index
are the focus point of this thesis. Stock indexifes are deemed to be one of the
most successful financial innovations of the 19806d parallel to this opinion, the
most actively traded contracts on the TurkDex Haaen the contracts written on the
ISE-30 and ISE-100 National Indices. As a mattefact, the trading volume in
equity index future contracts is dominated by cacts written on the ISE-National
30 Index.

In the year 2005, the trading volume of the ISEiB@ex futures was
563,390,702 YTL and this volume increased to 10,A36523 YTL by the end of
2006. During the same period, the 2005 tradingmelwf the ISE-National 30 Index
stocks was 269,970,134,449 YTL and this volumeeased to 325,157,131,314
YTL in 2006. These statistics show that the futdrading volume was 0.2% and 3%
of the stock trading volume in years 2005 and 2f#¥pectively. Although these
percentages are rather low, the progress of tligngavolume in futures contracts
written on the ISE-National 30 Index is promisiiigificreased by 20-fold from year
2005 to year 2006). Therefore, as the trading velum TURKDEX increases, it
becomes more important to understand the interadbetween future and spot
markets, and especially the potential impact otlstmdex futures trading on the
underlying spot market. Since the trading of fusuna equity indices aims to provide
a hedging outlet for the risk taken in the spotkegrthe effect of such trading on the
volatility and riskiness of the spot market is vanportant for both the investors of
stock index futures and the regulators of finanmiarkets. It is usually the case that
if futures trading increases the volatility in tepot market, thereby increasing the
level of risk faced by the investors in the spotrkes the regulatory body responds
by passing new regulations to help investors taqyadtiemselves against the risk in
spot market. However, the new regulation itself raagt up causing the risk assumed
in the spot market since now that it is possibldéoton hedged positions, investors
are more willing to take on risk in the spot markitis is a contradiction in and of
itself and therefore, it is worthwhile to investigahe possible influence of futures
trading on the volatility of the underlying stockarket. The main argument against
stock index futures trading claims that futures keirmay increase stock market

78



volatility. This argument is based on the assunmptioat, because of their high
degree of leverage (i.e. the investor is able tenop position by only depositing a
small percentage of the contract size at the baggpnfutures markets are likely to
attract risk takers and speculator traders. Thewatve investing strategies are
likely to increase the underlying asset volatiliyother point against futures trading
is that futures markets provide otherwise unattdadrading strategies, such as
index arbitrage and portfolio insurance with adugrs driving the spot prices up or
down continuously through the positions they takel aeverse. There are also
arguments claiming that futures markets play anomamt role in price discovery
and have a beneficial effect on the underlying aasinkets. This viewpoint holds
that speculation in the futures market tends tbilsta cash prices. Futures trading
adds more informed traders to the cash market,mgakimore liquid and, therefore,
less volatile. Both of the arguments against anéavwor of futures market trading
have some theoretical and empirical support anefibee the results in the literature
are conflicting. The existent literature on thesef of stock index futures trading on
spot market volatility focuses primarily on deveddpmarkets, and it is unclear to
what extent these results are applicable to emgmisxkets. Therefore, in this thesis
a marginal contribution to the literature is attéetpby analyzing the volatility of the
stock market before and after the introduction toicls index futures in Turkish
capital markets.

The study analyzes whether futures trading causesdlatility of the stocks
included in ISE 30 National Index to increase wtatmtrolling for the effect of
broad economic factors on such volatility. Two paibs are formed to examine the
possible sources of change in volatility. The fpsttfolio is made up of stocks that
were included in the ISE 30 National Index for weole sample period. The second
portfolio consists of stocks that were not includie@ny of the stock indices during
the entire sample period and therefore were notuthéerlying security of any
derivative instrument traded. There are a total®™8 stocks that satisfy the above
criteria. Among these stocks, 18 were included he tSE 30 National Index
throughout the sample period, whereas the remaibfigwere not included in any
index during the same period. Both sets of stockssasceptible to broad economic
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disturbances, but only the ISE 30 National Indexclst are impacted directly by
futures trading. Thus, shifts in the relationshgivieen the volatility components for
the ISE National 30 Index portfolio but not for thNon-ISE National 100 Index
portfolio are unlikely to be explained by changesbroad economic factors alone.
The closing prices of the 158 stocks are obtaimech the database of ISE over the
period from 2nd January 2003 to 30th May 2006. déa set includes a total of 636
observations, of which 369 observations belong he $ub-period prior to the
introduction of stock index futures and the remagn267 observations belong to the
second sub-period subsequent to the introductiostatk futures. Two equally-
weighted portfolios are constructed for each sullede and continuously-
compounded percentage returns are estimated akghprice relative for each
portfolio.

This thesis adopts the methodology proposed by €leaml (1999). Chang
et.al. propose new tests to examine whether stuaxi futures affect stock market
volatility by decomposing spot portfolio volatiliffeVVOL) is into three components:
average volatility of mean return@&\{OL), expected cross sectional dispersion
(E(CSD) and cross-sectional variance of mean retur@SMON. After the
decomposition, a formula is constructed for measguthe average volatility and the
cross-sectional dispersion of the component seéesi@nd the portfolio volatility for
each day in the sample period by using a simpteriflg procedure. This filter
recovers a series of realized volatilities from iacekte time realization of a
continuous-time diffusion process outlined in papey Chesney, Elliott, Madan and
Yang (Chesney et al.,, 1993) and Pastorello (1996)ing this stage of volatility
decomposition, it was observed that the crossaealtivariance of mean returns
accounts for less than one percent of the variatid?VOL and therefore this term
has only a second-order impactPYOL . Therefore, this component was ignored in
the analysis. After excludingSVOMfrom the analysis, the decomposition is applied
to a single-factor return-generating model to foousthe relationships among the
volatility components rather than on the componentssolation which was the
traditional method of analyses. The following hypses are tested:

H1: Volatility shifts in broad economic factors vk proportional shifts in
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PVOL and AVOL, but PVOL increases relative to AVQthen futures trading
begins.

H2: Volatility shifts in broad economic factors vk proportional shifts in
E(CSD) and AVOL, but E(CSD) decreases relative YOA when futures trading
begins.

H3: Volatility shifts in broad economic factors unck proportional shifts in
E(CSD) and PVOL, but E(CSD) decreases relativeMOIP when futures trading
begins.

H4: Relative to changes in PVOL, changes in E(C®ill)be smaller after
futures trading begins than before.

Generally speaking, the test results imply thatitiseption of futures trading
on the TURKDEX had no effect on the volatility dktunderlying stock market. The
models seem to have a much higher explanatory miodethe portfolio of ISE
National 30 Index stocks compared to the portfolicNon-ISE National 100 Index
stocks. These results are likely to be caused égxitremely small volume of futures
trading compared to the volume of trading in thecktmarket. Also, possible
manipulative influences, especially on the Non-IS&tonal 100 Index portfolio,
may give way to the failure of models in explainthg changes in the volatility of
this group of stocks. It seems like unless theitigadolume and the depth of the
futures markets reach high levels compared to tiienying stock market, finding a
link between the volatility of the stock market anading of the futures is going to
prove to be an almost impossible task.

For further research, it would be illuminating tody the same question by
the use of different methodologies such as GARQp¢-tynodels. It may also be
interesting to repeat the same tests once enooghpasses and stock index futures
trading in TurkDex reaches a high level of tradugdume. Moreover, lengthening

the sample period may increase the statisticalfgignce of the results.
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