
A CLASSIFICATION SYSTEM FOR THE PROBLEM OF PROTEIN

SUBCELLULAR LOCALIZATION

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

GÖKÇEN ALAY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCES
IN

COMPUTER ENGINEERING

SEPTEMBER 2007

Approval of the thesis

�A CLASSIFICATION SYSTEM FOR THE PROBLEM OF PROTEIN
SUBCELLULAR LOCALIZATION�

submitted by Gökçen Alay in partial full�llment of the requirements for the degree
of Master of Sciences in Computer Engineering by,

Prof. Dr. Canan Özgen
Dean,Graduate School of Natural and Applied Sciences

Prof. Dr. Volkan Atalay
Head of Department,Computer Engineering

Prof. Dr. Volkan Atalay
Supervisor,Computer Engineering, METU

Assist. Prof. Tolga Can
Co-supervisor,Computer Engineering, METU

Examining Committee Members:

Prof. Dr. Ismail Hakk� Toroslu
Computer Engineering, METU

Prof. Dr. Volkan Atalay
Computer Engineering, METU

Assist. Prof. Tolga Can
Computer Engineering, METU

Assist. Prof. Özlen Konu
Molecular Biology and Genetics, Bilkent University

Y�ld�ray Kabak (M.Sc.)
Computer Engineering, METU

Date:

I hereby declare that all information in this document has been obtained

and presented in accordance with academic rules and ethical conduct. I

also declare that, as required by these rules and conduct, I have fully cited

and referenced all material and results that are not original to this work.

Name, Last name : Gökçen Alay

Signature :

iii

ABSTRACT

A CLASSIFICATION SYSTEM FOR THE PROBLEM OF PROTEIN SUBCELLULAR

LOCALIZATION

Alay, Gökçen

M.S., Department of Computer Engineering

Supervisor: Prof. Dr. Volkan Atalay

Co-Supervisor: Assist. Prof. Tolga Can

September 2007, 85 pages

The focus of this study is on predicting the subcellular localization of a protein. Subcellular

localization information is important for protein function annotation which is a fundamental

problem in computational biology. For this problem, a classi�cation system is built that

has two main parts: a predictor that is based on a feature mapping technique to extract

biologically meaningful information from protein sequences and a client/server architecture

for searching and predicting subcellular localizations. In the �rst part of the thesis, we

describe a feature mapping technique based on frequent patterns. In the feature mapping

technique we describe, frequent patterns in a protein sequence dataset were identi�ed using

a search technique based on a priori property and the distribution of these patterns over

a new sample is used as a feature vector for classi�cation. The e�ect of a number of fea-

ture selection methods on the classi�cation performance is investigated and the best one is

applied. The method is assessed on the subcellular localization prediction problem with 4

compartments (Endoplasmic reticulum (ER) targeted, cytosolic, mitochondrial, and nuclear)

and the dataset is the same used in P2SL. Our method improved the overall accuracy to

91.71% which was originally 81.96% by P2SL. In the second part of the thesis, a client/server

architecture is designed and implemented based on Simple Object Access Protocol (SOAP)

technology which provides a user-friendly interface for accessing the protein subcellular lo-

iv

calization predictions. Client part is in fact a Cytoscape plug-in that is used for functional

enrichment of biological networks. Instead of the individual use of subcellular localization

information, this plug-in lets biologists to analyze a set of genes/proteins under system view.

Keywords: protein classi�cation, subcellular localization, frequent pattern mining, cytoscape

plug-in

v

ÖZ

PROTEINLERIN HUCRE ICI YERLESIMLERINI BULMAK ICIN BIR

SINIFLANDIRMA SISTEMI

Alay, Gökçen

Yüksek Lisans, Bilgisayar Mühendisli§i Bölümü

Tez Yöneticisi: Prof. Dr. Volkan Atalay

Ortak Tez Yöneticisi: Yar. Doç. Tolga Can

Eylül 2007, 85 sayfa

Bu çal�³man�n odak noktas� proteinlerin hücre içi yerle³imlerini bulmakt�r. Hesaba dayal�

biyolojide temel bir problem olan proteinlerin i³levlerinin belirlenmesinde, hücre içi yerle³im

bilgisi önemlidir. Bu problem için, 2 ana bölümden olu³an bir s�n��and�rma sistemi ku-

ruldu: protein dizilerinden biyolojik olarak anlaml� verileri ç�karmak üzere tan�mlanm�³ bir

öznitelik e³leme yöntemine dayal� bir öngörücü ve hücre içi yerle³im bilgilerinin aranmas�

ve öngörülmesi için in³a edilmi³ bir istemci/sunucu mimarisi. Tezin ilk k�sm�nda, yayg�n

örüntülere dayal� bir öznitelik e³leme yöntemi tan�mlamaktay�z. Tan�mlad�§�m�z öznitelik

e³leme yönteminde, yayg�n örüntüler, bir protein veri kümesinden birincil özelli§e dayal� bir

arama tekni§i kullan�larak ç�kart�ld� ve bu örüntülerin yeni bir sekans üzerindeki da§�l�m-

lar� s�n��and�rmada öznitelik vektörü olarak kullan�ld�. Bir kaç öznitelik seçme metodunun

s�n��and�rma performans�na etkisi ara³t�r�larak, en iyi olan uyguland�. Metod, 4 bölümlü

protein hücre içi yerle³imi öngörülmesi probleminde (Golgi ayg�t�na, stoplazmaya, mitokon-

driye ve çekirde§e yerle³en) ve P2SL için kullan�lan veri kümesi üzerinde de§erlendirildi.

Bizim metodumuz, yüzde 81.96 olan toplam do§ruluk yüzdesini yüzde 91.71 e ç�kard�. Tezin

ikinci bölümünde, protein hücre içi yerle³im öngörülerine kullan�c� dostu bir arayüzle er-

i³im sa§layan Basit Obje Eri³im Protokolune (BOEP) dayal� bir istemci/sunucu mimarisi

vi

tasarland� ve gerçekle³tirildi. Istemci taraf� asl�nda biyolojik a§larin fonksiyonel zenginle³tir-

ilmesinde kullan�lan bir Cytoscape eklentisidir. Bu eklenti, hücre içi yerle³im bilgisinin tek

ba³�na kullan�lmas� yerine, biyologlara gen ya da protein kümelerini toplu biçimde analiz

etme imkan� sunuyor.

Anahtar Kelimeler: protein s�n��and�rmas�, hücre içi yerle³im, yayg�n örüntü bulma, cy-

toscape eklentisi

vii

ACKNOWLEDGMENTS

I would like to state my sincere gratitude to my supervisor Prof. Dr. Volkan ATALAY for his

supervision, guidance and invaluable suggestions throughout the development of this thesis.

I deeply thank my co-supervisor Assist. Prof. Dr. Tolga CAN for his guidance and invalu-

able suggestions.

I deeply thank Assist. Prof. Dr. Rengül Çetin ATALAY for her "biological" guidance and

suggestions.

I deeply thank Y�ld�ray Kabak (M.Sc.) for his assistance and patience.

I deeply thank the members of the Department of Computer Engineering and my friends for

their suggestions during the period of writing the thesis.

This work is partially supported by TUBITAK EEEAG-105E035 and TUBITAK 2210-

Scholarship program.

I deeply thank my family for their encouragement and their support.

And �nally, it is my pleasure to express my deepest gratitude to my husband for his help,

understanding and encouragement.

viii

To my family

ix

TABLE OF CONTENTS

ABSTRACT . iv

ÖZ . vi

ACKNOWLEDGMENTS . viii

DEDICATON . ix

TABLE OF CONTENTS . x

LIST OF FIGURES . xiii

LIST OF TABLES . xv

LIST OF SYMBOLS . xvii

CHAPTER

1 INTRODUCTION 1

1.1 Problem De�nition and Motivation . 1

1.1.1 Feature mapping technique . 1

1.1.2 Client /server architecture . 2

1.2 An Overview of Related Systems and Contribution 3

1.3 Organization of the Thesis . 5

2 BACKGROUND 7

2.1 Feature Selection . 7

2.1.1 Basic concepts and de�nitions . 7

2.1.2 Feature selection methods . 9

2.2 Association Measures . 10

2.2.1 Contingency tables . 11

2.2.2 Random sample model . 12

2.2.3 Statistical inference by maximum-likelihood estimates of population

parameters and hypothesis tests . 13

x

2.2.4 Null hypothesis of independence . 13

2.2.5 Likelihood measures . 14

2.2.6 Exact hypothesis tests . 14

2.2.7 Asymptotic hypothesis tests . 15

2.2.8 Point estimates of association strength 16

2.2.9 Heuristic measures . 17

2.2.10 Precision-recall binning . 17

2.3 Boosting Approach and the Adaboost Algorithm 18

2.4 Support Vector Machines . 20

3 SYSTEM AND MODULES 22

3.1 System . 22

3.2 Modules . 25

3.2.1 Finding frequent patterns . 26

3.2.2 Feature quanti�cation . 29

3.2.3 Feature selection . 30

3.2.4 Classi�cation . 32

4 RESULTS AND DISCUSSION 33

4.1 Feature mapping without feature selection 34

4.2 Feature selection with chi-squared test and precision-recall binning 34

4.3 Comparing ranking methods . 37

4.4 Feature selection with t-test . 38

4.5 Feature selection with Relief algorithm . 38

4.6 Feature selection with Adaboost algorithm 39

4.7 Comparison of the results of the algorithm 41

4.8 Comparison of the results with other systems 42

4.9 Investigation of frequent patterns . 43

4.10 Discussion . 45

5 DESIGN AND IMPLEMENTATION OF THE CYTOSCAPE PLUG-IN 47

5.1 Background information . 48

5.1.1 The Cytoscape tool and plug-in development 48

5.1.2 UniProt . 49

5.1.3 Model Organisms Proteome Subcellular Localization Database (MEP2SL) 50

xi

5.1.4 Prediction of protein subcellular localization (P2SL) 51

5.1.5 Web services . 52

5.2 Design and implementation details of PlugP2SL 55

5.3 Use cases . 56

5.4 Sequence diagrams . 57

5.4.1 Prediction request . 57

5.4.2 P2SL prediction . 58

5.4.3 Organism list request . 59

5.4.4 Update internal database . 60

5.5 Class diagrams . 60

5.6 Implementation . 61

5.6.1 SOAP server functions . 61

5.6.2 Installation directives of PlugP2SL 62

5.7 PlugP2SL usage . 62

6 CONCLUSION 69

REFERENCES . 71

A CLASS DIAGRAMS 77

A.1 PlugP2SL . 78

A.1.1 Methods . 78

A.2 WebService . 78

A.2.1 Methods . 79

A.3 DbHandler . 80

A.3.1 Methods . 80

A.4 Predictor . 82

A.4.1 Methods . 82

A.5 DbUpdater . 83

A.5.1 Methods . 83

A.6 XMLParser . 84

A.6.1 Methods . 84

A.7 DbCreator . 84

A.7.1 Methods . 84

xii

LIST OF FIGURES

FIGURES

Figure 2.1 Precision-recall binning method (adopted from [9]). 18

Figure 2.2 The boosting algorithm, AdaBoost (adopted from [24]). 19

Figure 2.3 A separating hyperplane (adopted from [63]). 20

Figure 3.1 General system architecture. 23

Figure 3.2 Classi�cation module in training phase. 24

Figure 3.3 Classi�cation module in testing phase. 24

Figure 3.4 Pseudo code for level-wise string-mining algorithm (adopted from [9]). 28

Figure 3.5 Pseudo code for ReliefF algorithm (adopted from [50]). 32

Figure 5.1 General system �ow for PlugP2SL plug-in. 48

Figure 5.2 Web services model (adopted from [69]). 53

Figure 5.3 SOAP message model (adopted from [57]). 53

Figure 5.4 Detailed system �ow for PlugP2SL plug-in. 55

Figure 5.5 Use case diagram for PlugP2SL. 57

Figure 5.6 Prediction request. 58

Figure 5.7 P2SL prediction. 59

Figure 5.8 Organism list request. 60

Figure 5.9 Update internal database. 61

Figure 5.10 PlugP2SL main window. 63

Figure 5.11 Attribute association form. 63

Figure 5.12 Organism selection. 63

Figure 5.13 Individual prediction retrieval. 64

Figure 5.14 Batch prediction retrieval. 65

Figure 5.15 Attribute addition. 66

xiii

Figure 5.16 An example network analysis. 67

Figure A.1 Class Diagram Relations. 77

Figure A.2 PlugP2SL Class. 78

Figure A.3 WebService Class. 79

Figure A.4 DbHandler Class. 80

Figure A.5 Predictor Class. 82

Figure A.6 DbUpdater Class. 83

Figure A.7 XMLParser Class. 84

Figure A.8 DbCreator Class. 85

xiv

LIST OF TABLES

TABLES

Table 2.1 Contingency Table . 11

Table 2.2 Expected frequencies. 14

Table 4.1 Module accuracies with feature mapping without feature selection. . . . 35

Table 4.2 Confusion matrix for using the feature mapping method without feature

selection. 35

Table 4.3 Confusion matrix for using the feature mapping method with chi-squared

test and precision-recall binning. 36

Table 4.4 Module accuracies with chi-squared test. 36

Table 4.5 Confusion matrix for the chi-squared test. 36

Table 4.6 Module accuracies of ranking methods. 37

Table 4.7 Prediction accuracies of ranking methods. 38

Table 4.8 Module accuracies with the t-test. 39

Table 4.9 Confusion matrix for the t-test. 39

Table 4.10Module accuracies with the Relief algorithm. 40

Table 4.11Confusion matrix for the Relief algorithm. 40

Table 4.12Module accuracies with the Adaboost algorithm. 41

Table 4.13Confusion matrix for the Adaboost algorithm. 41

Table 4.14 Individual classi�er accuracies for all methods. 41

Table 4.15Total prediction accuracies of methods. 42

Table 4.16Precision and recall rates for chi-squared method. 42

Table 4.17Comparison of P2SL and our system. 42

Table 4.18Comparison of TargetP and our system. 43

Table 4.19Number of features used in the modules for all methods. 43

xv

Table 4.20Pattern length distributions of modules. 43

Table 4.21Partial coverage of patterns for the 3rd motif of Chymotrypsin �ngerprint 44

xvi

LIST OF SYMBOLS

S Training data set

C Label set corresponding to S

m Cardinality of S and C sets

P ′ Initial frequent pattern set

F ′ Initial feature set

n Cardinality of P ′ and F ′ sets

P Final frequent pattern set

F Initial feature set

t Cardinality of P and F sets

vi Feature vector for sequence si

V Feature vector set used in train-
ing

D Set of qanti�cation parameters

xvii

CHAPTER 1

INTRODUCTION

1.1 Problem De�nition and Motivation

Eukaryotic cells are divided into several di�erent compartments called subcellular localiza-

tions. After the translation process is completed, a protein is targeted to the appropriate

compartment to perform the proper function. The operation environment of proteins is de-

cided by the subcellular localizations. Thus, the subcellular localization of a protein is one

of the key characteristics that determine its cellular function. Experimental analysis of sub-

cellular localization is a costly and time consuming process. Therefore, automated tools for

classifying proteins into their subcellular localizations are highly needed in order to annotate

the newly discovered or unknown proteins. In the scope of this thesis work, a classi�cation

system is built that has two main parts: a subcellular localization prediction tool that is

based on a feature mapping technique to extract biologically meaningful information from

protein sequences and a client/server architecture for searching and predicting subcellular

localizations.

1.1.1 Feature mapping technique

Classi�cation of proteins into functional classes according to their primary sequences is an

important problem in computational biology. Since, functionally important regions (catalytic

sites, binding sites, structural motifs) are conserved over much wider taxonomic distances

than the sequences themselves, conserved subsequences among di�erent protein sequences

are strong indicators of functional similarity [54].

Our assumption is that, in a set of protein sequences with the same subcellular local-

ization, frequent subsequences, in fact a certain distribution of frequent subsequences deter-

mines the function or subcellular localization. The method described in this study uses the

1

distribution of frequent subsequences as features for classifying the given sequences into one

of the subcellular localization classes. There are 4 kinds of subcellular localization classes:

ER targeted (ER), mitochondrial (M), cytosolic (C) and nuclear (N).

In the �rst part of the thesis, a feature mapping technique is described. This technique

is adapted from Birzele and Kramer [9] which was originally designed for protein secondary

structure prediction. As a supervised learning method, discriminative features are �rst

extracted from the training set. Using these features, test samples are mapped to the feature

space and they are then classi�ed. Mapping is performed based on frequent patterns of

successive amino acids and there are three main steps. In the �rst step, frequent patterns

in a protein sequence family are identi�ed using level-wise string-mining algorithm [40]. At

the second step, feature selection is performed by �ltering where a statistical test is applied

on the initial feature set. In fact, the e�ect of a number of feature selection methods on the

classi�cation performance is investigated and the best one is applied. Finally, a frequency

based metric is used for feature quanti�cation. Feature mapping of an input protein sequence

is formed by the occurrence (frequency) of selected features. We assessed the method on

the subcellular localization prediction problem with 4 compartments: ER targeted (ER),

mitochondrial (M), cytosolic (C) and nuclear (N). The dataset is the same used in P2SL [4].

Our method improved the overall accuracy to 91.71% which was originally 81.96% by P2SL.

1.1.2 Client /server architecture

Subcellular localization prediction tools are in fact developed for biologists to ease their

work. Therefore, providing a web based service is a must for the developers of prediction

tools. Developing a user interface that is built on web browsers only let biologists access the

prediction information and does not help on the usage or analysis of the data; leaves the rest

of the work to the user. Most of the time, subcellular localization prediction information

does not assist biologists as a single fact. Making analysis of a set of genes/proteins under

a system view by integrating information from a number of domains provide more reliable

information.

Cytoscape [47] is an open-source software program for network visualization and analysis.

It provides basic functionality to visually integrate biomolecular interaction networks with

databases of functional annotations and it is extensible through the plug-in architecture

constructed under the core application. There are already a number of Cytoscape plug-ins

for functional enrichment of biological networks with predicted or experimentally curated

information [1].

2

In the second part of the thesis, a client/server architecture is designed and implemented

based on Simple Object Access Protocol (SOAP) technology which provides a user-friendly

interface for accessing the protein subcellular localization predictions. Client part is in

fact a Cytoscape plug-in that is used for integrating functional annotations with biological

networks. Instead of the individual use of subcellular localization information, this plug-in

lets biologists to analyze a set of genes/proteins under system view.

1.2 An Overview of Related Systems and Contribution

Frequent patterns in biological sequences have been investigated for several reasons and they

are often used for feature extraction in classi�cation algorithms. Sometimes, focus of interest

is not on the whole classi�cation model but speci�cally on the pattern �nding algorithm as

it is in [20] and [34]. Ester and Zhang [20] introduce a top-down method for mining most

speci�c frequent patterns. The use of concept graphs for extending the amino acid alphabet

and the followed top-down strategy leads to �nd the most speci�c frequent patterns from

which all other frequent patterns can be derived. Ye et al. [34] introduce novel approaches for

e�cient pattern mining. 3 types of patterns are de�ned in which certain kind of replacements

and gaps are allowed and six di�erent pattern mining algorithms are developed for their

identi�cation. For the evaluation of the discovered patterns, a number of reference patterns

are computationally determined using multiple sequence alignments and they are used as

gold standards.

Frequent patterns are used for numerous problems in bioinformatics. Birzele and Kramer

[9] utilize frequent subsequences in the feature extraction stage of a secondary structure pre-

diction algorithm. A level-wise string mining algorithm is used for extracting patterns. An

extended alphabet de�nition is introduced which includes additional ten amino acid groups

that share common chemical, structural and evolutionary properties. A frequency based

metric, term-frequency inverted document frequency (TFIDF) is employed in the feature

quanti�cation stage. Zaiane et al. [46] use frequent subsequences for the protein localiza-

tion prediction problem into two classes: intracellular and extracellular. Frequent patterns

are extracted by using generalized su�x trees. Gaps are allowed in patterns but up to a

de�ned maximum length. A binary representation is used in feature quanti�cation. The

described method which is a rule-based classi�cation algorithm is compared with support

vector machines (SVM) and Boosting methods. It is emphasized that results of a rule based

classi�cation algorithm is more understandable and readable compared to SVM where the

3

learned decision functions are often di�cult for people to understand and extract further bio-

logical information other than the prediction result. She et al. [52] use frequent subsequences

for the prediction of outer membrane proteins. The proposed association rule based method

outperforms SVM in the experiments they performed. They also emphasize the advantage

of a rule-based algorithm in providing biological insights that helps on the understanding of

the structures and functions of the proteins.

Various methods have been introduced for predicting subcellular localization of proteins.

TargetP [44] is one of the popular methods. It is a neural network-based prediction tool

for subcellular location prediction. Using protein sequence information, it predicts over 4

localization classes: mitochondrion, chloroplast, secretory pathway, and 'other' localizations.

For nonplant predictor predicts over 3 classes, excluding chloroplast localization. Besides the

predicted localization class, TargetP outputs a reliability class for indicating the prediction

quality. P2SL [4] is a system that predicts the subcellular localization of proteins in eukary-

otic organisms based on implicit motif frequency distribution of protein sequences. P2SL

is a hybrid computational system that predicts over ER targeted, cytosolic, mitochondrial

and nuclear protein localization classes. Self-organizing maps (SOM) are used for feature

extraction, and for classi�cation a set of support vector machines (SVM) are employed. Only

using protein sequence information, P2SL outputs one or more subcellular localization(s) as

prediction with the computed possibilities associated to these localizations.

Based on a speci�c or a number of prediction methods, subcellular localization databases

and web servers have been constructed that collects annotations of subcellular localization

predictions. They can be large scale or speci�c to an organism. LOCtarget [42], SUBA [33]

and DbSubLoc [60] are the recent ones. LOCtarget [42] is a web server and database that

predicts and annotates subcellular localization for targets taken from TargetDB, a central

registration database for structural genomics. It uses a combination of four di�erent methods

for prediction which use nuclear localization signals (PredictNLS), homology-based transfer

of experimental annotations (LOChom), automatic text analysis of SWISS-PROT keywords

(LOCkey) and neural networks (LOCnet). SUBA [33] is a database of predicted subcellular

localizations for most Arabidopsis proteins. They combine various data sources including

direct experimental datasets of MS, FP and AmiGO and Swiss-Prot and Description data for

the annotation of proteins into 12 subcellular localizations. SUBA includes a web-browser

based graphical user interface (GUI) like most of the prediction databases. DBSubLoc [60]

di�ers from other databases on the user interface it provides. Instead of a web-browser based

GUI, which is only useful for human accession, they develop a server/client suit, SubLoc [27],

4

that is based on SOAP technology to make easier the automated information retrieval done by

machines. DbSubLoc SOAP server provides a number of functions including the prediction

of subcellular localization for eukaryotic and prokaryotic proteins. They do prediction by

support vector machines (SVM) [28] and PSORT [43].

Biological Networks Gene Ontology (BINGO) [58] and GOlorize [45] are two Cytoscape

plug-ins entitled under the 'functional enrichment of networks' category. BINGO is a tool

developed for determining signi�cantly overrepresented Gene Ontology (GO) terms on sub-

graphs of biological networks visualized in Cytoscape. GOlorize is a plug-in for advanced

network visualization, which use GO annotations with a class-directed layout algorithm to

enhance visualization by exposing GO class structure on biological networks. Cerebral is a

recently developed plug-in that works on interaction networks annotated with subcellular

localization information. It is a plug-in for network visualization and it provides a layout

that ease searching biological pathways or systems. Localization information does not need

to be complete, since nodes without annotation can be positioned in the network by looking

at the localizations of their neighbors.

In this thesis, frequent patterns are used for subcellular localization prediction problem of

proteins into 4 compartments. Frequent pattern mining is done by a level-wise string mining

algorithm [40]. The focus of the study is on the model described for classi�cation, not on the

pattern mining process. For the web end of the prediction tool, a client/server architecture

is designed and implemented which is based on SOAP technology. Automated information

retrieval is supported with the help of the functions provided by the SOAP server. In

addition to that, a Cytoscape plug-in, PlugP2SL, is developed as a client application, which

helps users to retrieve subcellular localization predictions and annotate biological networks

visualized in Cytoscape with this information. PlugP2SL plug-in can be used in conjunction

with Cerebral plug-in which provides a layout that ease searching biological pathways on

interaction networks annotated with subcellular localizations. Predictions are performed by

P2SL tool and MEP2SL database is used for retrieving stored predictions done by P2SL.

1.3 Organization of the Thesis

This thesis is organized in �ve main chapters, including this introduction chapter as the �rst

chapter. Second, third and forth chapters are related with the �rst part of the thesis where

a feature mapping technique is presented for the problem of protein subcellular localization

prediction. In the second chapter, background information is given. In the third chapter

5

proposed method is presented. First, a general view of the system is given. Then main parts

of the system are described in detail. The results obtained by the conducted experiments

are presented in the forth chapter. Detailed explanation of the system performance on the

dataset and comparisons with other prediction tools is given together with a discussion. In

the �fth chapter design and implementation of the PlugP2SL plug-in is explained. First,

background information is given. Next, P2SL plug-in design is explained in detail with use

case, sequence and class diagrams. Finally, implementation details and usage of the plug-in

are presented. The 6th and the last chapter contains the conclusion and the future work.

6

CHAPTER 2

BACKGROUND

2.1 Feature Selection

2.1.1 Basic concepts and de�nitions

Feature selection is one of the important issues in machine learning problems. Machine

learning is an area of arti�cial intelligence and as the name implies, it allows computers

to learn using example data or past experience to solve a given problem. In a typical

supervised machine learning problem, the goal is to �nd a relationship between the data

and the outcomes, given the training examples associated with the desired outcomes. In the

process of achieving this goal, it is important to determine the features to use, and select

the most discriminative, informative features among the possible ones.

Feature extraction problem can be decomposed into two steps: feature construction

and feature selection [30]. For the aim of having a set of features representing the data

points, at the feature construction step, one decides on the data representation, measurement

techniques to use, and quanti�cation schema to apply. If there are a few features in the

feature set, and if there is no need to select among them, then feature extraction step

terminates once the features are constructed. As the number of features increases, there

will be a crucial need to apply a feature selection method. Although feature selection is

primarily performed for selecting discriminative features, one can have other objectives to

use a feature selection method, including:

1. visualization of the data, data understanding,

2. reduction of data collection time/cost, computation time; gaining e�ciency,

3. improvement of prediction performance by defying the curse of dimensionality.

7

The curse of dimensionality is a term introduced by Bellman [7], and from the machine

learning point of view, it is describing the problem caused by the exponential growth of

the required number of samples with the increasing number of features to achieve the same

predictive accuracy. Since in practice, number of training examples is �xed, using large

number of features will degrade the classi�er's performance.

In literature, both feature selection and feature extraction methods are referred as dimen-

sionality reduction techniques. Given a set of features, feature selection problem is dealing

with �nding a subset of it. On the other hand, by feature extraction a set of measurements

is mapped into a set of features. Taking a subset of a set can be viewed as a kind of transfor-

mation; therefore feature extraction de�nition subsumes feature selection de�nition. Feature

selection is also referred as variable/attribute selection or variable/feature subset selection in

the literature. Before going into a detailed description of feature selection methods, related

de�nitions should be given.

Feature selection can be de�ned as a process that chooses a minimum subset ofM features

from the original set of N features(M ≤ N), so that the feature space is optimally reduced

according to a certain criterion [25]. According to this de�nition the goal of feature selection

is to �nd an optimal feature subset (maximizes the given criteria). Optimal feature subset

is de�ned by Kohavi and John [51] as follows:

De�nition 1 (Optimal feature subset)
Given an inducer I, and a dataset D with features X1, X2, . . . Xn from a distribution
D over the labeled instance space, an optimal feature subset, Xopt, is a subset of the
features such that the accuracy of the induced classi�er C = I(D) is maximal.

The criterion for the optimality is given as the classi�er accuracy in this de�nition. Here,

an optimal feature subset need not to be unique, since using di�erent feature subsets, one

could achieve the same accuracy. Finding Xopt is usually computationally intractable.

Relevancy and non-redundancy are two properties of a feature which are generally per-

ceived as being necessary to obtain the optimal classi�cation accuracy [15]. Their de�nitions

and the arguments on the relation between them and optimal features are given in [51] and

[37]. Kohavi & John showed by examples that:

• relevance does not imply optimality

• optimality does not imply relevance

Although there is no implication relation between relevance and optimality because of some

exceptional examples (which are rare), these two concepts are related. In practice, by re-

8

moving the irrelevant features, suboptimal solutions can be reached for the optimal feature

subset problem [30]. For the calculation of feature redundancy, feature correlation is widely

used as a metric. If two features are completely correlated, then they are accepted to be

redundant to each other. But, Guyon and Elissee� [29] showed that correlation does not

always imply redundancy.

2.1.2 Feature selection methods

There are basically three main categories for feature selection methods: �lters, wrappers,

and embedded methods [30].

Filters

Filters select important features as a pre-processing step before classi�cation; therefore they

are independent of the classi�er being used. Variable ranking methods are the simplest

form of the �lter methods. By variable ranking methods, according to a scoring function,

features are ranked, and the k highest ranked features are selected. Obtained feature subset

is not usually optimal; however these methods are preferred because of their computational

e�ciency. Scoring functions used by variable ranking methods are explained in detail in

Section 2.1.2.

Individual feature ranking methods have limitations, because they don't take into ac-

count feature dependencies [30]. In these methods, there is no need to know about other

features while calculating a feature's score by which they are ranked. This kind of feature

ranking methods called univariate methods. There are some multivariate methods which take

into account feature dependencies. In practice, most of the feature sets contain dependen-

cies. Therefore, assuming feature independence is a simplifying assumption and multivariate

methods probably achieve better results since they don't make this assumption.

Two of the most well-known multivariate �lter methods are RELIEF and FOCUS. Relief

algorithm [35] uses a multivariate relevance criterion to rank individual features according

to their relevance to the target concept. The algorithm is based on the k-nearest-neighbor

approach. For each data point, the k closest point of the same class (nearest hits) and

the k closest point of a di�erent class (nearest misses) are selected. Each feature's score

is computed by averaging the di�erences between the distances to the nearest hits and the

distances to the nearest misses on the projection of the feature and taking their ratio [30].

A detailed algorithm is given at RELIEF Algorithm Section 3.2.3.

9

FOCUS algorithm [2] starts with an empty set of features and carries out an exhaustive

search until it �nds a minimal set of features. It is very sensitive to noise and because of

the conducted exhaustive search, it is impractical to use for domains containing more than

25-30 features [15].

Wrappers

Wrappers search the space of feature subsets by using the prediction performance of the

given learning machine as a scoring function until there is no feature subset which has a

score better than the one achieved [51]. According to their search strategies, they can be

divided into two classes: backward elimination and forward elimination. One can obtain

better results with wrapper methods than �lter methods. However, wrapper methods are

very expensive in terms of computational cost. Wrapper methods are also criticized for

producing feature subsets only speci�c to a given learning machine, not the optimal feature

subset which is independent of the classi�er used [29].

Embedded methods

Embedded methods perform feature selection in the training phase. In other words learning

process implicitly comprises feature selection. This is the point where embedded methods

di�er from the other two feature selection methods. Filter methods are not involved in the

learning process, their role �nishes before the learning process begins. Wrapper methods

use a learning machine, actually its prediction performance for assessing the quality of the

feature subsets, but feature selection is not involved in the learning process, it is performed

after feature selection step �nishes. In contrast to �lter and wrapper methods, embedded

methods incorporates learning and feature selection processes. Decision trees, boosting and

an extension of SVMs which is called recursive feature elimination - SVM (RFE-SVM) can

be given as examples of embedded methods.

2.2 Association Measures

Association measures are mathematical formulae that compute an association score which

indicates the amount of (statistical) association between the subjected variables [22]. An

association measure can be one-sided or two-sided depending on whether it distinguishes

between positive and negative association or not.

10

For one-sided association measures, high scores indicate strong positive association and

low scores mean that either there is negative association or the components are indepen-

dent. On the other hand, high scores indicate any kind of strong association (positive or

negative) for two-sided association measures, and low scores mean that the components are

independent regardless of the sign of the score.

Association scores are computed by di�erent measures such as measures based on sta-

tistical hypothesis tests, maximum-likelihood estimates for various coe�cients of association

strength, measures from information theory and measures based on heuristic combinations of

the observed joint and marginal frequencies [22]. In general, the association scores computed

by di�erent measures cannot be compared directly. Since their typical usage is for ranking

pair types, direct comparison of the scores is not necessary most of the time.

Association measures are generally de�ned on datasets that are represented by contin-

gency tables. Before going into details, it is worth to introduce contingency tables.

2.2.1 Contingency tables

Contingency tables are statistical tables that show the frequencies of data elements in which

the row entries tabulate the data according to one variable and the column entries tabulate

it according to another variable [59]. Contingency tables are used to record and analyse the

relationship between two variables. In the sequel, we follow the notation of von Evert [22].

In Figure Table 2.1, data is classi�ed by two variables: U and V . For simpli�cation, they

Table 2.1: (a) Contingency table of observed frequencies (b) Contingency table with marginal

frequencies.

V = v V 6= v

U = u O11 O12

U 6= U O21 O22

O11 +O12 +O21 +O22 = N

(a)

V = v V 6= v

U = u O11 + O12 = R1

+ +

U 6= U O21 + O22 = R2

= C1 = C1

(b)

are chosen to be categorical variables with two categories. The cell counts O11, . . . , O22 of

the contingency table are called the observed frequencies and they add up to the sample size

11

N . The row sums R1, R2 and column sums C1, C2 are referred to as marginal frequencies.

O11 is also called the joint frequency of the pair type (u, v).

2.2.2 Random sample model

Statistical interpretation of data summarized by a contingency table is based on a random

sample model, which assumes that the observed data is a sample and it is drawn randomly

from an in�nite population. Such an in�nite population can be described by a model with

parameters. The sample, which is the real data at hand, can then be examined in terms of

its convenience to the assumed model. For the case of co-occurrence data, we need a model

described with a set of random variables and their relative probability distribution in the

population. For being consistent with Section 2.2.1, the dataset described with two variables

U and V will be used. Random sample model contains two random variables, U and V and

the sampling distribution is determined by the probability parameters τ11, . . . , τ22 which are

described in the following equations.

P (U = u ∧ V = v) = τ11

P (U 6= u ∧ V = v) = τ21

P (U = u ∧ V 6= v) = τ12

P (U 6= u ∧ V 6= v) = τ22

Since probability parameters add up to one, only three of the four probability parameters

are free. Therefore, it is more convenient to use an equivalent set of three parameters, given

by the equations:

π = P (U = u ∧ V = v) = τ11

π1 = P (U = u) = τ11 + τ12

π2 = P (V = v) = τ11 + τ21

Although it is obvious that the amount of association between the variables U and V de-

pends one these three probability parameters, there is no exact way of combination of the

probability parameters to form an association strength coe�cient. It is clear that, having a

larger value of π and smaller values of π1 and π2 indicates stronger association. Two mostly

used combinations are as follows:

• mu-value coe�cient, µ = π
π1π2

• odds ratio coe�cient, θ = τ11τ22
τ12τ21

12

Maximum-likelihood estimates for this kind of coe�cients of association strength are used

as an association measure [21]. These measures will be investigated in Section 2.2.8.

2.2.3 Statistical inference by maximum-likelihood estimates of population

parameters and hypothesis tests

Using observed data, one can make inferences about the population parameters. The simplest

form of inference is direct �point� estimates for the probability parameters, which maximize

the likelihood of the observed contingency table among the set of all parameter values. These

kinds of estimates are known as maximum-likelihood estimates (MLE). MLE for probability

parameters π, π1 and π2 are given by frequencies p, p1 and p2 in the following equations:

p =
O11

N

p1 =
O11 +O12

N
=
R1

N

p1 =
O11 +O21

N
=
C1

N

Another approach to statistical inference compares observed relative frequencies with the ex-

pected relative frequencies by assuming a model, given some hypothesis about the parameter

values of the model. If the observed data correspond to an unlikely outcome of the assumed

model, the null hypothesis is rejected [21]. This procedure is called a statistical hypothesis

test.

2.2.4 Null hypothesis of independence

Most of the hypothesis tests that are used for investigating cooccurence data are based on the

null hypothesis of independence, H0, whose de�nition is derived from a well-de�ned concept

for the complete absence of association: statistical independence, as seen below:

H0 : π = π1 · π2 ≈ p1 · p2

Since the hypothesis contains parameter values whose values are not exactly known, maximum-

likelihood estimates of these parameters are used in the equation, and so point hypothesis

is formed. Using this hypothesis, expected frequency values are calculated as it is given in

Figure Table 2.2 and they are compared with the observed frequencies to reject or accept the

hypothesis. In other words the amount of evidence against the null hypothesis of indepen-

dence is used as an association score. This amount can be quanti�ed by the likelihood of the

observed data or by the p − value of a statistical hypothesis tests [21]. Since both of these

13

values are probability values in the range [0, 1], smaller values indicate strong association. If

the negative base 10 logarithm of the likelihood or p− value is used as an association score,

then larger values indicate strong association.

Table 2.2: Expected frequencies.

V = v V 6= v

U = u E11 = R1C1
N E12 = R1C2

N

U 6= U E21 = R2C1
N E22 = R2C2

N

2.2.5 Likelihood measures

Likelihood measures use the probability of the observed frequencies as the amount of evidence

against the null hypothesis of independence. They are two-sided measures, and some of them

are given in Equations (2.1), (2.2).

Poisson likelihood = eE11
(E11)O11

O11!
(2.1)

Poisson stirlinglog = O11 · (logO11 − logE11 − 1) (2.2)

Poisson-Stirling measure (Equation 2.2) is an approximation to the negative logarithm of

Poisson-likelihood measure. Poisson-Stirling measure is described by Quastho� and Wol�

[49] and it is the most widely used one among the other likelihood measures.

2.2.6 Exact hypothesis tests

Since likelihood measures consider only a single outcome, which is the observed contingency

table, their values cannot be used as a direct measure of the amount of the evidence against

H0. But, on the other hand, statistical hypothesis tests compute a measure called p-value

which is the total probability of all possible outcomes that are similar to or more �extreme�

than the observed contingency table [21]. Low values of p-value indicate signi�cant evi-

dence against the null hypothesis, and so its negative base 10 logarithm can be used as an

association score.

14

Among exact hypothesis tests Fisher's exact test (Equeation 2.3) is accepted as the most

appropriate test for independence in 2-by-2 contingency tables[68]. But, for large samples,

none of the exact hypothesis tests is computationally intractable.

Fisher =
min{R1,C1}∑
k=O11

(
C1

k

)
·
(
C2

R1−k
)(

N
R1

) (2.3)

2.2.7 Asymptotic hypothesis tests

Instead of the exact p − value, asymptotic hypothesis tests use a much simpler association

score called test statistic. The distribution of the test statistic under the null hypothesis

converges to a known limiting distribution for N → ∞, and the limiting distribution can

then be used to approximate the p− value.

z-score and t-score

The z − score measure (Equation 2.4) is an asymptotic version of the binomial exact hy-

pothesis test. It was used by Dennis [17] and later by Berry-Rogghe [8]

z− score =
O11 − E11√

E11
(2.4)

When the expected frequency E11 is small, z−score values smaller expected frequency pairs

become can become very large. By estimating the variance from the sample rather than

using the expected value, Church et al [11] obtain better results from Student′st− test. The

resulting test statistic is called t− score. The equation is given below.

t− score =
O11 − E11√

O11
(2.5)

Both z − score and t− score are one-sided measures.

Pearson's chi-squared test

In the �eld of mathematical statistics, the standard asymptotic hypothesis test for indepen-

dence in 2-by-2 contingency tables is Pearson's chi-squared test [16]. Its test statistic is a

kind of mean square error between the observed frequencies Oij and the expected frequen-

cies Eij scaled by the expected variances of the cell frequencies. In the limiting case, the

test statistic of Pearson's chi-squared test has an asymptotic χ2 (chi-squared) distribution

with one degree of freedom. The test is two-sided with non-negative association scores. The

15

equation is given in two forms; the �rst one is the one which Edmundson [19] suggested in

1965 and the former/latter one is its normal form.

chi− squaredi =
∑
i,j

(Oij − Eij)2

Eij
(2.6)

chi− squared =
N(O11 − E11)2

E11E22
(2.7)

Likelihood ratio test

Another class of test statistics is likelihood ratio tests, which are based on the ratio between

the maximum probability of the observed data under two di�erent hypothesis; null hypoth-

esis, no hypothesis (null hypothesis constraint relaxed). The use of log − likelihood as an

association measure was originally suggested by Dunning [18]. Here is the standard form of

the log − likelihood association measure:

log − likelihood = 2
∑
ij

Oij log
Oij
Eij

(2.8)

2.2.8 Point estimates of association strength

As it is introduced in Section 2.2.2, the two most common coe�cients of association strength

are the mu-value, µ and the odds ratio, θ. Church and Hanks [10] used the maximum −

likelihood estimate for the logarithm of µ as an association measure, which is mutual infor-

mation (MI), a concept from information theory.

MI = log
O11

E11
(2.9)

Maximum likelihood estimate of θ which is called the odds-ratio measure is as follows:

odds− ratio = log
O11O22

O12O21
(2.10)

The value of odds-ratio is unde�ned when O12 or O21 is zero. A discounting technique can

be used to avoid such scores, by adding 0.5 to each observed frequency before the calculation

of the ratio [21]

odds− ratiodisc = log
(O11 + 1/2)(O22 + 1/2)
(O12 + 1/2)(O21 + 1/2)

(2.11)

Liddell [39] suggests a di�erent association strength coe�cient where the di�erence of the

column proportions is used. Liddell coe�cient and its maximum likelihood estimate are

given below:

Liddell =
N(O11 − E11)

C1C2
=
O11O22 −O12O21

C1C2
(2.12)

16

It is clear that two parameter ratios have to be combined in some way to obtain an association

strength coe�cient. Di�erent link functions are used for this combination; such as minimum

is used as a link function to obtain minimum sensitivity (MS) measure [48], geometric mean

is used to obtain gmean measure, harmonic mean is used to obtain Dice coe�cient [56]. The

best-known coe�cient from this group is the Dice coe�cient, which is as follows:

Dice =
2O11

R1 + C1
(2.13)

2.2.9 Heuristic measures

There are some association measures rely on heuristics or heuristic variants of other measures.

The simplest possible association measure that can be categorized in this section is the

frequency of the pair types.

Frequency = O11 (2.14)

MI2 and MI3 are heuristic variants of MI. They both try to increase the in�uence of

O11 in the numerator to reduce the overestimation of low-frequency data. MI3 measure was

suggested by Daille [13], because of the fact that it is the one that gives the best performance

among the possible versions of MI with (O11)k in the numerator for k = 2 . . . 10.

MI2 = log
(O11)2

E11
(2.15)

MI3 = log
(O11)3

E11
(2.16)

2.2.10 Precision-recall binning

Precision and recall are common measures of interestingness of a feature and can be de�ned

from Table Table 2.1 as follows.

precision =
O1i

R1
(2.17)

recall =
O1i

Ci
(2.18)

Precision-recall binning method's basic principle is shown in Figure Figure 2.1. Given the

precision and recall values of all features with respect to a given class, the recall dimension

is subdivided into equal width intervals (bins) and in terms of precision, the top percent of

features is selected from each bin [9]. For binary classi�cation problems, the union of the

sets which are determined to be signi�cant for each class can be taken as the �nal feature

set.

17

(a) Precision recall values of all fea-

ture.

(b) Features above the solid lines are

selected.

Figure 2.1: Precision-recall binning method (adopted from [9]).

2.3 Boosting Approach and the Adaboost Algorithm

Boosting is a machine learning approach for performing supervised learning. It is a general

method of combining rough rules of thumb for obtaining a highly accurate prediction rule.

Boosting occurs in iterations; at each iteration a weak learner learns a distribution of training

data (data is weighted with a distribution). After determining the weight of the weak learner

by considering its learning accuracy, the weak learner is added to the �nal strong learner. At

the beginning of each iteration, training data is reweighed in such a way that misclassi�ed

data points gain weight and correctly classi�ed ones lose weight in order to make the next

weak learner focus on the most misclassi�ed data points by the previous weak learners.

There are many boosting algorithms. They mainly vary in the method they use for

weighting training data points and weak learners. AdaBoost algorithm which is introduced

in 1995 by Freund and Schapire [23] is the most popular one among the other boosting

algorithms. Pseudocode for AdaBoost algorithm is given in Figure Figure 2.2.

In the given AdaBoost algorithm, iteration starts at the time point 1 (when t = 1). The

vector Dt(i) which contains weights of training examples is initialized with equal weights.

At each iteration weak learner �nds a weak hypothesis ht with error et. The goodness of a

weak hypothesis is measured by its error and quanti�ed by the given formula for αt. Weight

vector for training examples, Dt(i), is updated in a way that the weights of the incorrectly

classi�ed examples are increased, and the weights of the correctly classi�ed examples are

decreased. At the end of T iterations, weighted sum of the entire weak hypothesis is taken

to form the �nal hypothesis.

18

Given: (x1, y1), . . . , (xm, ym)
where xi ∈ X, yi ∈ Y = {−1, 1}

Initialize D1(i) = 1/m
For t = 1 . . . , T :

• Train weak learner using distribution Dt.

• Get weak hypothesis ht : X → {−1, +1} with error

εt = Pri∼Dt [ht(xi) 6= yi]

• Choose αt = 1
2 ln

(
1− εt
εt

)
• Update:

Dt+1(i) = Dt(i)
Zt
×
{
ε−αt if ht(xi) = yi
εαt if ht(xi) 6= yi

=
Dt(i) exp(−αtyiht(xi))

Zt

where Zt is a normalization factor (chosen so that Dt+1

will be a distribution).

Output the �nal hypothesis:

H(x) = sign
(T∑
t=1

αtht(x)
)

Figure 2.2: The boosting algorithm, AdaBoost (adopted from [24]).

19

As mentioned in Section 2.1.2, AdaBoost algorithm is categorized under the embedded

feature selection methods. If the weak learner is chosen as a tresholding method on a

selected feature, at each iteration the best feature and the threshold value is chosen as the

weak hypothesis. Being a combination of weak hypothesis, the �nal hypothesis can then

be seen as the selected feature subset. With a constraint on the weak learner, AdaBoost

algorithm can be seen as a learning algorithm in which an implicit feature selection process

is embedded.

2.4 Support Vector Machines

Support Vector Machines are a set of supervised learning algorithms that can perform clas-

si�cation and regression. They belong to a family of generalized linear classi�ers and they

perform the structural risk minimization principle. In a linearly separable dataset, there

is usually more than one linear classi�er which correctly classi�es the set. Following the

results of statistical learning theory, by using SVM, one can minimize the empirical risk and

maximize the geometric margin simultaneously. Therefore among all possible separating

hyperplanes, the one with the largest margin, in other words the hyperplane that maximizes

the distance between itself and the nearest vectors from each class is chosen. This hyperplane

is called the optimal hyperplane. In the sequel, we follow the notation of von Vert [63].

Figure 2.3: A separating hyperplane (adopted from [63]).

A separating hyperplane is given in Figure Figure 2.3. Consider there is a training data

20

set S = {(x1, y1), . . . , (xn, yn)} where xi is a data point and yi is the corresponding class

label where yi ∈ {+1,−1}. The pair (~w, b) must satisfy the following equation for the given

separating hyperplane being an optimal hyperplane:

 ~w · ~xi + b ≥ 1 if yi = +1

~w · ~xi + b ≤ −1 if yi = −1
(2.19)

and for which the norm ‖~w‖ is minimum. This is actually a constrained optimization

problem. For the solution of constrained optimization problems, introducing the Lagrangian

function and using the dual form of the equation are classical approaches. For the details

of the solution of this constrained optimization problems, please refer to [63]. Here is the

decision function of SVM where the mapping is done via a kernel function K(xi, xj):

f(x) = sgn(
N∑
i=1

yiαi ·K(x, xi) + b) (2.20)

where αi can be obtained solving the following equation:

Maximize
N∑
i=1

αi −
1
2

N∑
i=1

N∑
j=1

αiαj · yiyj ·K(xi, xj) (2.21)

subject to 0 ≤ αi ≤ C,
N∑
i=1

αici

In the equation 2.21, C controls the trade-o� between training error and margin. Support

vectors are the closest vectors to the optimal hyperplane from each class and they can be

de�ned using equation 2.20. The xi with corresponding αi > 0 are called the support vectors.

There are several di�erent types of kernel functions. These include linear, polynomial,

radial basis function (RBF) and sigmoid. The RBF is one of the most popular kernels used

in SVM. Its equation is given in Equation 2.22.

K(xi, xj) = e−γ‖xi−xj‖2 (2.22)

21

CHAPTER 3

SYSTEM AND MODULES

3.1 System

Classi�cation of proteins using only primary sequences is often performed by transferring

annotations after sequence alignment. Similarity between proteins can also be identi�ed

by examining conserved regions. Conserved regions (patterns or motifs) are shared sub-

sequences among di�erent protein sequences and they are strong indicators of functional

similarity. Our assumption is that, in a set of protein sequences targeted to the same sub-

cellular localization, a certain distribution of frequent subsequences determines the function

or subcellular localization. The method described in this study uses the distribution of fre-

quent subsequences as features for classifying the given sequences into one of the subcellular

localization classes. There are 4 kinds of subcellular localization classes: ER targeted (ER),

mitochondrial (M), cytosolic (C) and nuclear (N).

In this part of the thesis, we describe a feature mapping technique based on frequent

subsequences to extract biologically meaningful information from protein sequences for clas-

si�cation purposes. The feature mapping technique is adapted from Birzele and Kramer [9]

which was originally designed for protein secondary structure prediction. As a supervised

learning method, discriminative features are �rst extracted from the training set. Using these

features, protein sequences are mapped to the feature space and they are then classi�ed by

the classi�ers which are trained with the training examples.

As it is observed in Figure Figure 3.1, the system for the prediction of subcellular localiza-

tion is composed of classi�cation modules and a decision combination module. Classi�cation

modules are forming the core of the system. Since each module contains a binary classi�er,

in order to cover di�erent combinations of pairs of 4 classes, 6 classi�cation modules are used

in the system. These modules are responsible for investigating the given protein sequence

22

and labeling it with one of the two classes. Sub-decisions given by the classi�cation modules

are combined by Decision Combination Module and the �nal decision is formed. Decision

Combination Module is basically performing majority voting in the current implementation.

A classi�cation module consists of two main phases: training and testing. General struc-

Protein
Sequences

ER vs Cytoplasm

ER vs Mitochondria

ER vs Nucleus

Mitochondria vs Cytoplasm

Mitochondria vs Nucleus

Nucleus vs Mitochondria

Decision
Combination

Module

Final
Decision

Classification Modules

Figure 3.1: General system architecture.

ture of classi�cation modules in training and testing phases are shown in Figure Figure 3.2

and Figure Figure 3.3. The training phase of classi�cation modules basically consists of two

main parts: feature extraction and classi�er training. In feature extraction part, feature

vectors are determined and they are used to train the classi�er. Feature extractor module

consists of three submodules: Frequent Pattern Extraction, Feature Selection, and Feature

Quanti�cation. Leaving the details of these submodules to the following sections, the basic

�ow of the training phase can be summarized as follows:

1. Training sequences are read.

2. Frequent patterns in the training dataset are identi�ed.

3. Initial feature set is constructed by de�ning the features as the occurrences of the

patterns in a protein sequence.

23

Training
Sequences

Feature Extractor

Frequent Pattern
Extraction

Feature
Selection

Set of frequent
patterns

Quantification
constants

for features

Binary Classifier Decisions

Classification Module

Feature
Quantification

Feature vectors

Figure 3.2: Classi�cation module in training phase.

Protein
Sequences

Feature Vector Generator

Frequent Pattern
Identifier

Feature
Quantifier

Set of frequent
patterns

Quantification
constants
for features

Binary Classifier Decisions

Classification Module

Feature vectors

Figure 3.3: Classi�cation module in testing phase.

24

4. A feature selection method is applied on the initial feature set. Selected features form

the �nal feature set.

5. Features are quanti�ed by using a feature quanti�cation method and the feature vectors

are formed.

6. Binary classi�er is trained with the feature vectors corresponding to the training se-

quences.

In the training phase, some parameter values that are used in the testing phase are

determined. These are set of frequent patterns and quanti�cation parameter for features.

These parameters are speci�c to each classi�cation module.

In the testing phase, a classi�cation module takes a protein sequence as input and out-

puts the predicted label of that sequence. Main submodules in this phase are Feature Vector

Generator and Binary Classi�er. Feature Vector Generator extracts features from the pro-

tein sequence, generates a feature vector and the binary classi�er classi�es into one of the

two classes. Feature vector generator module contains submodules which are Frequent Pat-

tern Identi�er and Feature Quanti�er. Frequent Pattern Identi�er uses the set of frequent

patterns which are determined in the training phase. It identi�es the occurrences of these

patterns in the protein sequence. Feature Quanti�er quanti�es the feature values using a

frequency based metric which has parameters whose values determined in the training phase.

After the frequent pattern identi�er module generates the feature vector corresponding to

the given protein sequence, Binary Classi�er module outputs the predicted label of that

sequence.

3.2 Modules

Main modules of the system are Classi�cation Modules and Decision Combination Module.

Combining decisions of binary classi�ers is a widely used solution for handling multiclass clas-

si�cation problems. Decision Combination Module is basically for combining the decisions

of binary classi�ers, and it is based on majority voting strategy.

Classi�cation Modules consists of two main phases: training and testing. In the training

phase, the input is a training dataset S = {s1, . . . , sm} where m is the cardinality of the

set and the corresponding label set is C = {c1, . . . , cm} where ci is the label of the protein

sequence si and ci ∈ C = {+1,−1}. The outputs of the training phase are a set of frequent

25

patterns, quanti�cation constants for features, and a trained binary classi�er. The steps

carried out in the training phase are as follows.

1. Frequent patterns are identi�ed using level-wise string-mining algorithm [40]. Frequent

pattern set is denoted by P ′ = {p1, . . . , pn} where n is the cardinality of the set.

2. Features are de�ned in a way that a feature fi encodes the presence of a pattern pi.

Initial feature set is denoted by F ′ = {f1, . . . , fn}.

3. A feature selection method is applied on F ′. Selected features form the �nal feature

set F = {f1, . . . , ft}. The corresponding frequent pattern set is denoted by P =

{p1, . . . , pt} where t < n.

4. A frequency based quanti�cation method is used for determining the numerical values

of the features for each sequence. A protein sequence si is mapped to a feature vector

vi = {vi1, . . . , vit} where vij denotes the value of fj for protein sequence si.

5. The binary classi�er is trained with the feature vectors V = {v1, . . . , vm}.

The quanti�cation method is based on the term-frequency inverted document frequency fT-

FIDF) [53] weighting scheme. By using TFIDF weight, features that appear more in a

sequence are rewarded and that are common in all sequences are penalized. Training set is

used for determining the commonness measure of features. This measure can be denoted by

d and D = {d1, . . . , dt} is the set of these constants that is output at the end of the training

phase.

At the end of the training phase, frequent pattern set P = {p1, . . . , pt} and quanti�cation

constant set D = {d1, . . . , dt} are determined and the classi�er is trained. By taking these

as inputs, Classi�cation Module of the test phase begins. The following steps are carried out

in the test phase:

1. Input sequence is examined to seek for the frequencies of patterns in the pattern set

P .

2. Feature vector is constructed using the quanti�cation method with the constant set D.

3. This feature vector is given to the already trained classi�er to get a decision.

3.2.1 Finding frequent patterns

Our method uses frequent patterns of successive amino acids at the feature extraction stage.

A level-wise search strategy [40] which is based on a priori property is used to �nd frequent

26

patterns in a protein dataset.A priori property is used by most frequent pattern mining

algorithms. Its basic principle is stated as follows: If an itemset A is frequent, then every

subset of A must be frequent. On the other hand, if an itemset A is infrequent, then any

superset of A is also infrequent. All level-wise search algorithms use this property as a base.

By using a priori property, search space is narrowed down level by level since the candidate

itemset for the next level only grows from previous level's itemset [66].

For the formalization of the problem, some de�nitions and explanations are necessary.

In the sequel, we follow the notation of von Birzele and Kramer [9].

Let Σ be the alphabet of the 20 amino acids with Σ ={A, C, D, E, F, G, H, I, K, L, M, N,

P, Q, R, S, T, V, W, Y }. A protein sequence s ∈ Σ∗ is de�ned as any length string over the

alphabet Σ and the protein dataset S ⊂ Σ∗ is a subset of all possible strings over Σ. Without

expanding the alphabet with some amino acid groups that share common characteristics, the

problem turns to be a simple text classi�cation problem. Embedding of biological information

is achieved by de�ning groups. Let G be a set of amino acid groups that share common

chemical, structural or evolutionary properties. Group de�nitions are in similar syntax with

a regular expression, e.g., [DR] means either D or R has to match the sequence. These are the

de�ned groups, G ={[HKR], [DE], [FYW], [VIL], [STDNGA], [DENQRS], [VILMFA], [EAL],

[VIYWF], [PGND]} following the Taylor classi�cation [67] with three additional groups of

amino acids frequently found in α-helices ([EAL]), β-sheets([VIYWF]) and coil segments

([PGND]). Pattern alphabet is expanded by these groups, so the alphabet de�nition becomes,

A = Σ ∪G and a pattern is now de�ned over the alphabet p.

Our aim is to identify all patterns p in a protein dataset S that are frequent by looking

at the minimal support minSup which is speci�ed by the user. The frequency of a pattern

in a dataset is de�ned as freq(p, S) =
∑

s∈S number of occurrences of p in s.

A pattern p = p1, p2, . . . , pn can only be frequent if its two subpatterns p1, . . . , pn−1 and

p2, . . . , pn have already been found to be frequent. As we stated earlier, this holds because of

the a priori property. Because of this fact, the algorithm searches the space in a level-wise

manner and all the other parts of the search space that doesn't contain frequent subpatterns

can be pruned. The pseudo code of the level-wise string-mining [40] algorithm is given in

Figure Figure 3.4.

User initiates the process by providing the �rst level candidate frequent set (i.e. the

alphabet elements), dataset and initial minimum support value. In the original form of the

algorithm, minimum support value does not change throughout the search; but we observed

in our experiments that relaxing the constraint as the level increases leads to better results.

27

Input: Initial �rst-level candidate pattern list P , data set S, initial minimum
support value initialMinSup

Output: Frequent-pattern list
begin

level← 1;
Clevel ← {{p}|p ∈ P};
Fall ← {};
while Clevel 6= {} do

// determine frequent candidates

Flevel ← {};
CANDIDATE : forall candidates c ∈ Clevel do

occ← 0;
forall sequencess ∈ D do

occ← occ+ #occurences of c in s;
if (occ >= minSup) then

Flevel ∪ c;
go to CANDIDATE ;

end

end

end
// generate candidates for next level

Cnextlevel ← {};
index←all frequent candidate pre�xes of length (level-1) as keys and
lists of their extensions as values;

forall f ∈ Flevel do
suffix←su�x of length (level-1) of f ;
if (index contains suffix) then

extensions← list of extensions for su�x from index ;
forall e ∈ extensions do

CnextLevel∪concat(f, e);
end

end

end
level← level + 1;
Fall ∪ Flevel;

end
return Fall ;

end
Figure 3.4: Pseudo code for level-wise string-mining algorithm (adopted from [9]).

28

This is because of the fact that having a longer common pattern is more di�cult than having

a short common pattern. So, the reduction on the value of the initial minimum support value

helps on �nding longer common patterns. Reduction begins after the �fth level and up to

tenth level, initial value is reduced by twenty percent, and after the tenth level it is not

changed anymore.

At each iteration of the algorithm, candidate pattern set is investigated and the ones that

are frequent are added to the �nal frequent pattern set. In addition, the candidate pattern

set for the next level is constructed by using the frequent patterns found in previous levels.

Iterations continue until there are no more patterns in the candidate pattern set.

3.2.2 Feature quanti�cation

The initial step of a learning algorithm is to de�ne discriminative features. In this study,

discriminative features are thought to be the occurrences of frequent patterns. The next

step is feature quanti�cation, which is de�ned as deciding how to assign a numerical value to

every feature. A very basic approach will be assigning the feature values as the frequencies

of the patterns in a given sequence. By this approach, each feature is taken to have the same

importance. However, the commonness of a feature at a dataset can be used to evaluate

the importance of the feature. Based on the term-frequency inverted document frequency

(TFIDF)[53] weighting scheme, features that are common in all sequences are penalized and

the ones appear more in a sequence are rewarded.

Given a pattern p,

• its corresponding feature is denoted by f ,

• the total number of sequences in the training dataset S is de�ned as ‖S‖,

• a particular feature vector for the sequence in the training dataset is denoted by F ,

• TFf denotes the number of occurrence of feature f in the feature vector F and

• SFp denotes the number of feature vectors in S that contain pattern p at least once.

We can de�ne the TFIDF value as follows:

TFIDF(f) = log(TFf + 1.0) ∗ log(|S|/SFp) (3.1)

Here, TFf is measuring how frequent the feature is in the sequence, and SFp is measuring

how common the feature is in the dataset. Clearly, TFIDF (f) is proportional to TFf , and

29

inversely proportional to SFp values. TFIDF value of every feature is calculated for each

sequence.

D = {d1, . . . , dt} was de�ned as the set of quanti�cation constants that are output

at the end of the training phase. di is equal to log(|S|/SFp) value of the feature fi, the

second multiplicand of the Equation 3.1. Since di values are independent of the sequence

it is calculated for, and dependent only on the training dataset, they are accepted as the

constants for Equation 3.1, and therefore calculated and �xed in the training phase.

3.2.3 Feature selection

Feature selection is the most important step of feature extraction. The method used for

feature selection in this study is a �lter method: Pearson's chi-squared test (independence

test version). For �nding an alternative �lter method, a number of ranking methods are also

implemented. Among likelihood measures Poisson-stirling which is the most widely used

one among the likelihood measures is employed. Among asymtotic hypothesis tests, t-test

and likelihood ratio test are implemented. Pearson's chi-squared test also belongs to the

asymptotic hypothesis tests class. Besides the hypothesis tests, direct ("point") estimates of

association strength coe�cients are used. The two most common coe�cients of association

strength are the mu-value, µ and the odds ratio, θ. In addition to themaximum−likelihood

estimates of these two coe�cients, mutual information (MI) and log odds-ratio, dice and

liddell are implemented. Finally, from heuristic measures, MI2 and MI3 are decided to be

used. After a set of experiments where best treshold values for each measure are determined,

their classi�cation accuracies are compared on a reduced set of data. The best among them,

t-test is chosen to be used as an alternative �lter method on the real dataset. Besides, we

implemented the most popular multivariate �lter method, Relief [35]. Among embedded

methods, AdaBoost is employed.

Chi-squared test

Chi-squared test is the standard test for independence in 2-by-2 contingency tables. It is an

asymptotic hypothesis test which uses the amount of evidence against the null hypothesis

of independence as an association score. This amount can be quanti�ed by the p-value of

a statistical hypothesis test. Chi-squared test is based on a comparison of the observed

frequencies with the expected frequencies under the point null hypothesis of independence.

Chi-squared test is a sort of mean squared error formula which is scaled by the expected

30

variances of the frequencies. Chi-squared test statistic can be calculated from the values in

Table Table 2.1 and Table Table 2.2 by the Equation 2.6.

The distribution of the chi-squared statistics is chi-square with (r − 1) ∗ (c− 1) degrees

of freedom, where r is the row number and c is the column number of the contingency table.

After determining the degrees of freedom, p − value must also be determined for getting

meaningful results. It is the probability of observing a value at least as extreme as the test

statistic for the chi-square distribution with (r − 1) ∗ (c − 1) degrees of freedom. In our

experiments, we have tried popularly used p− values: 0.05, 0.01 and 0.001.

t-test

t-test is also an asymptotic hypothesis test that also uses the amount of evidence against

the null hypothesis of independence as an association score. t-test is based on a comparison

of the observed frequencies with the expected frequencies. t-test statistics can be calculated

from the values in Table Table 2.1 and Table Table 2.2 by the Equation 2.5.

Relief Algorithm

Relief algorithm which is developed by Kira and Rendell [35] has some extensions de�ned by

Kononenko [36]. ReliefF is one of these extensions. It is not limited to two class problems

as Relief algorithm is, and it is more robust and can deal with incomplete and noisy data.

The pseudo code of the ReliefF algorithm is given in Figure Figure 3.5.

In ReliefF algorithm, a set of feature vectors for the training instances and their labels

is taken and the vector W which contains the estimations of the qualities of the features is

output. Initially, all the weights are set to be zero. For the randomly selected instance si

in the training set S, k nearest hits Hj , which are the k nearest instances that belong to

the same class that si belongs are found. And also, for each class that si does not belong, k

nearest missesMj are found. Then, for each feature, the quality estimation W [f] is updated

by the given formula where the projections of the distances between si and Hj (for all j)

on the feature f are subtracted from W [f], and the projections of the distances between si

and Mj (for all j) on the feature f are added to W [f]. If si and instances of H have nearly

same values on the feature f and si and instances M have di�erent values on the feature f ,

then the feature f will get a high weight at that iteration. The iterations continue up to m,

where m is a user-de�ned parameter.

31

Input: for each training instance a vector of feature values and the class value
Output: the vector W of estimations of the qualities of features
begin

W [f]← 0.0;
for i← 1 to m do

Randomly select an instance Si;
�nd k nearest hits Hj ;
foreach class C 6= class(Ri) do

from class C �nd k nearest misses Mj(C);
end
for f ← 1 to t do

W [f]←W [f]−
∑k

j=1 diff(f, Si, Hj) +∑
C 6=class(Si)

[
P (C)

1−P (class(Si))

∑k
j=1 diff(f, Si,Mj(C))

]
end

end
end

Figure 3.5: Pseudo code for ReliefF algorithm (adopted from [50]).

3.2.4 Classi�cation

Support Vector Machines [61] are used at the classi�cation stage of this study in most of the

experiment settings. In other settings, Adaboost is used as an embedded feature selection

method for comparison.

For the multiclass classi�cation problem we have, binary classi�ers are decided to be used

in a one-versus-one setting. This setting is more favorable to one-against-all setting [26]. For

every possible di�erent pair of classes, there must be a classi�er in a one-versus-one setting.

Therefore, for the subcellular localization problem with 4 compartments, 6 classi�ers need

to be used to cover the possible pairs formed by 4 classes.

32

CHAPTER 4

RESULTS AND DISCUSSION

The proposed system for the prediction of subcellular localization is composed of mainly

three parts: feature extraction, feature selection (optional) and classi�cation. The described

feature extraction technique is adapted from a protein secondary structure prediction sys-

tem proposed by Birzele and Kramer [9]. In this system, feature extraction stage is based

on �nding frequent subsequences and in the feature selection stage, chi-squared test and

precision-recall binning is used in combination. In the system we describe, feature extrac-

tion is also based on �nding frequent subsequences, but for the feature selection stage, a

number of feature selection strategies are tested on the top of the basic strategy including

the one proposed by Birzele and Kramer which is a combination of two statistical tests.

We also investigate the without feature selection condition as a reference. Support Vector

Machines (SVM) are used as the classi�er in all the experiment settings except the one

where the Adaboost algorithm is applied as an embedded feature selection method. For

SVM, SVMlight software [32] with a radial basis function (RBF) kernel is employed. For

Adaboost, GML AdaBoost Matlab Toolbox [64] is preferred.

The dataset consists of 3115 ER targeted (ER) , 1780 cytoplasmic(C), 1148 mitochondrial

(M) and 2225 nuclear (N) animal protein sequences derived from Swiss-Prot database. It is

the same database used in P2SL tool [4]. For all the experiment setting except a single one,

this dataset is used. For this exceptional setting, where the ranking methods are compared

against each other, a reduced set with 200 randomly selected sequences for each of the classes

is used.

Conducted experiments can be grouped under six titles which are:

• Feature mapping without feature selection

• Feature selection with chi-squared and precision-recall binning tests

33

• Comparing ranking methods

• Feature selection with t-test

• Feature selection with Relief

• Feature selection with Adaboost

We performed a 4-fold cross validation while searching the best parameters for both the

feature extraction and classi�cation stages in all these experiments. Searched parameters

are speci�c to the experiments and investigated in detail in the following sections. For each

of the experiments classi�cation accuracies in individual modules and confusion matrices

representing the overall system performance are given. Results are presented as the average

accuracy values of 4-fold cross-validation.

4.1 Feature mapping without feature selection

Searched parameters in this experiment setting are explained below.

• Level-wise string mining algorithm (see Table Figure 3.4) parameters:

� Frequency threshold parameter minSup

• SVM parameters:

� Trade-o� between training error and margin, c

� Gamma parameter in radial basis function (RBF) kernel, g

These parameter values di�er in classi�er modules. The best minSup values vary in the

range 1500 to 3900. The best {c, g} value pairs are {4, 0.01} and {4, 0.001}. Individual

module accuracies are given in Table Table 4.1. Overall system performance is represented by

a confusion matrix which is given in Table 4.1. The overall accuracy of the system is 91.54%

on the average (weighted on sequence numbers in each class) with a standard deviation of

0.24.

4.2 Feature selection with chi-squared test and precision-recall

binning

Searched parameters in this experiment setting are explained below.

34

Table 4.1: Module accuracies with feature mapping without feature selection.

Without Selection (%)
ER-C 96.04
ER-M 98.48
ER-N 96.06
M-C 95.35
M-N 96.50
N-C 91.31

Table 4.2: Confusion matrix for using the feature mapping method without feature selection.

Actual Predicted (%)
C ER M N

C 88.26 3.54 1.29 6.91
ER 2.98 94.09 0.35 2.58
M 7.58 2.00 89.02 1.39
N 7.39 2.81 0.90 88.90

• Level-wise string mining algorithm (see Table Figure 3.4) parameters:

� Frequency threshold parameter minSup

• chi-squared test

� p-value, ρ

• Precision-recall binning

� Total bin number, bin

� Precision percentage parameter, precTresh

• SVM parameters:

� Trade-o� between training error and margin, c

� Gamma parameter in radial basis function (RBF) kernel, g

These parameter values di�er in classi�er modules. The best minSup values change in

the range 1500 to 3900. The best {c, g} value pairs are {4, 0.01} and {4, 0.001}.The best ρ

values are 0.05, 0.01. The total bin number is chosen to be 100 and the precision percentage

parameter is determined to be 70. Overall system performance is represented by a confusion

matrix which is given in Table Table 4.3.

35

Table 4.3: Confusion matrix for using the feature mapping method with chi-squared test
and precision-recall binning.

Actual Predicted (%)
C ER M N

C 87.13 3.88 1.91 7.08
ER 2.84 93.76 0.56 2.84
M 6.44 2.70 89.37 1.48
N 7.78 2.70 1.15 88.31

Table 4.4: Module accuracies with chi-squared test.

chi-squared (%)
ER-C 95.94
ER-M 98.50
ER-N 96.06
M-C 95.39
M-N 96.45
N-C 91.40

The overall accuracy of the system is 91.10% on the average with a standard deviation of

0.37. Since the overall accuracy is below the one achieved with the feature mapping technique

without feature selection, we decided to change the feature selection strategy. Chi-squared

test and precision-recall binning are applied individually, not subsequently. Chi-squared test,

this time, improved the accuracies that are achieved with the feature mapping technique

without feature selection, but precision-recall binning test did not improve the results. The

results obtained by using chi-squared test are given are given in Table Table 4.4 and Table

Table 4.5. The overall accuracy of the system is 91.71% on the average (weighted on sequence

numbers in each class) with a standard deviation of 0.4.

Table 4.5: Confusion matrix for the chi-squared test.

Actual Predicted (%)
C ER M N

C 87.92 3.31 1.97 6.80
ER 2.60 94.10 0.42 2.88
M 6.01 1.92 90.51 1.57
N 6.99 2.67 1.09 89.24

36

Table 4.6: Module accuracies of ranking methods.

ER-C ER-M ER-N M-C M-N N-C (%)
MI 85.75 91.12 86.12 81.37 91.5 83.87
Odds Ratio 85.5 90.87 84.87 80.25 90.62 84.37
Dice 84.87 90.5 86.12 80.87 90.62 84.37
Poisson Stirling 85.62 91 85.87 81.62 91.5 84.12
T-test 85.87 91.25 86.25 81.5 91.62 83.87
Log-likelihood 84.75 90.37 85.37 81.5 92 83.75
Liddell 86.12 91.12 86.25 81.25 92 84.12
MI2 84.62 90.5 86.12 80.87 90.75 84.87

MI3 84.5 90.12 86.12 80.87 91 84.37

4.3 Comparing ranking methods

Searched parameters in this experiment setting are explained below.

• Level-wise string mining algorithm (see Table Figure 3.4) parameters:

� Frequency threshold parameter minSup

• Ranking method

� Percentage parameter, percent

• SVM parameters:

� Trade-o� between training error and margin, c

� Gamma parameter in radial basis function (RBF) kernel, g

These parameter values di�er in classi�er modules. The best minSup values change in

the range 245 to 315. The best percent values change in the range 50 to 90. The best {c,

g} value pair is {4, 0.01}.

Individual module accuracies are given in Table Table 4.6. The italic ones are best

accuracies in the column and the bold ones are in the best three. Prediction accuracies of

the classes and the overall accuracy are given in Table Table 4.7 for all methods. The bold

ones are best accuracies in the column.

As it is observed in Table Table 4.7, t-test achieves the best accuracy among the other

methods. Therefore, we decided to conduct an experiment with t-test in the real dataset.

37

Table 4.7: Prediction accuracies of ranking methods.

C ER M N Overall (%)
MI 68.75 76.25 71.75 77 75.08
Odds Ratio 69.25 77.5 71.75 75.5 75.41
Dice 66.5 78.75 72.75 77.25 76.25
Poisson Stirling 70.25 76.25 72.25 77.5 75.45
T-test 69.75 79.25 72.75 77.5 77
Log-likelihood 69.5 75.25 71.75 76.5 74.53
Liddell 70 76 72.5 77.5 75.31
MI2 68.5 78.25 72 77.25 76.18
MI3 68 77.25 72.25 76.5 75.42

4.4 Feature selection with t-test

Searched parameters in this experiment setting are explained below.

• Level-wise string mining algorithm (Table Figure 3.4) parameters:

� Frequency threshold parameter minSup

• T-test

� Threshold parameter, tresh

• SVM parameters:

� Trade-o� between training error and margin, c

� Gamma parameter in radial basis function (RBF) kernel, g

These parameter values di�er in classi�er modules. The best minSup values change in

the range 1500 to 3900. The best {c, g} value pairs are {4, 0.01} and {4, 0.001}. The

best tresh values change in the range 0.4 to 1.6. Individual module accuracies are given in

Table 4.8. Overall system performance is represented by a confusion matrix which is given

in Table 4.4. The overall accuracy of the system is 91.39% on the average (weighted on

sequence numbers in each class) with a standard deviation of 0.35.

4.5 Feature selection with Relief algorithm

Searched parameters in this experiment setting are explained below.

• Level-wise string mining algorithm (see Table Figure 3.4) parameters:

38

Table 4.8: Module accuracies with the t-test.

t-test (%)
ER-C 95.93
ER-M 98.53
ER-N 95.73
M-C 94.94
M-N 96.60
N-C 90.99

Table 4.9: Confusion matrix for the t-test.

Actual Predicted (%)
C ER M N

C 87.70 3.31 1.85 7.13
ER 2.70 93.81 0.43 3.06
M 6.44 2.00 90.07 1.48
N 7.44 2.58 1.15 88.82

� Frequency threshold parameter minSup

• Relief algorithm parameters

� Number of nearest neighborhoods, k

� Percentage parameter, percent

• SVM parameters:

� Trade-o� between training error and margin, c

� Gamma parameter in radial basis function (RBF) kernel, g

The parameter k is chosen to be 10. The best minSup values change in the range 1400

to 3900. The best percent values change in the range 86 to 96. The best {c, g} value pairs

are {4, 0.01} and {4, 0.001}. Individual module accuracies are given in Table Table 4.10.

Overall system performance is represented by a confusion matrix which is given in Table 4.5.

The overall accuracy of the system is 91.31% on the average (weighted on sequence numbers

in each class) with a standard deviation of 0.23.

4.6 Feature selection with Adaboost algorithm

Searched parameters in this experiment setting are explained below.

39

Table 4.10: Module accuracies with the Relief algorithm.

Relief (%)
ER-C 95.79
ER-M 98.32
ER-N 95.94
M-C 95.35
M-N 96.62
N-C 91.24

Table 4.11: Confusion matrix for the Relief algorithm.

Actual Predicted (%)
C ER M N

C 87.81 3.43 1.52 7.25
ER 2.85 93.64 0.56 2.95
M 6.71 2.35 89.55 1.39
N 7.39 2.61 1.04 88.96

• Level-wise string mining algorithm (see Table Figure 3.4) parameters:

� Frequency threshold parameter minSup

• Adaboost algorithm parameters

� Number of maximum splits of the tree learner, maxSplit

� Number of maximum iterations, maxIter

• SVM parameters:

� Trade-o� between training error and margin, c

� Gamma parameter in radial basis function (RBF) kernel, g

A tree learner with 3 maximum splits is used as the weak learner. The best maxIter

values change in the range 270 to 390. The best minSup values change in the range 1500 to

4000. The best {c, g} value pairs are {4, 0.01} and {4, 0.001}. Individual module accuracies

are given in Table Table 4.12. Overall system performance is represented by a confusion

matrix which is given in Table Table 4.13. The overall accuracy of the system is 90.60% on

the average (weighted on sequence numbers in each class) with a standard deviation of 0.26.

40

Table 4.12: Module accuracies with the Adaboost algorithm.

Adaboost (%)
ER-C 94.21
ER-M 97.59
ER-N 95.11
M-C 93.92
M-N 96.26
N-C 90.28

Table 4.13: Confusion matrix for the Adaboost algorithm.

Actual Predicted (%)
C ER M N

C 87.36 2.81 2.30 7.53
ER 3.78 92.54 0.88 2.79
M 6.27 1.92 90.16 1.65
N 7.75 2.61 1.15 88.48

4.7 Comparison of the results of the algorithm

For comparison, individual module accuracies for all methods are given in Table Table 4.14.

The bold accuracies are in best two. The prediction accuracies of the classes and the over-

all accuracy are given in Table Table 4.15 for all methods. As it is observed from Table

Table 4.15, chi-squared test achieves the best accuracies among the other feature selection

methods. For the method with chi-squared test, precision and recall values for each class are

given in Table Table 4.16

In addition to confusion matrix for each class the evaluation of the P2SL prediction

results was presented by four statistical measures de�ned as: precision, recall, F-score and

speci�city.

Table 4.14: Individual classi�er accuracies for all methods.

Without Selection Chi-squared T-Test Relief Adaboost
ER-C 96.04 95.94 95.93 95.79 94.21
ER-M 98.49 98.5 98.53 98.32 97.59
ER-N 96.06 96.06 95.73 95.94 95.11
M-C 95.35 95.39 94.94 95.35 93.92
M-N 96.50 96.45 96.60 96.62 96.26
N-C 91.31 91.40 90.99 91.24 90.28

41

Table 4.15: Total prediction accuracies of methods.

Without Selection Chi-squared T-Test Relief Adaboost
C 88.26 87.92 87.70 87.81 87.36
ER 94.09 94.10 93.81 93.64 92.54
M 89.02 90.51 90.07 89.55 90.16
N 88.90 89.24 88.82 88.96 88.48
overall 91.54 91.71 91.39 91.31 90.60

Table 4.16: Precision and recall rates for chi-squared method.

C ER M N (%)
precision 84.93 92.25 96.30 88.80
recall 87.92 94.10 90.51 89.24

4.8 Comparison of the results with other systems

We compared the results obtained with the proposed method with P2SL [4]. P2SL is also a

subcellular localization prediction tool which is designed for the same 4 classes in our system.

The results for both systems are given in Table Table 4.17.

We also compared the results obtained with the proposed method with TargetP [44].

TargetP is a subcellular localization prediction tool which is based on neural networks. It is

designed for 3-class classi�cation where classes are ER, Mitochondria and Other. The results

for both systems are given in Table Table 4.18. In terms of training and testing execution

times, our method is comparable with P2SL and TargetP in the order of magnitude.

Table 4.17: Comparison of P2SL and our system.

Actual Predicted (%)
C ER M N

C Our Sys. 87.92 3.31 1.97 6.80
P2SL 79.68 3.81 3.56 12.93

ER Our Sys. 2.60 94.10 0.42 2.88
P2SL 8.21 83.97 3.99 3.81

M Our Sys. 6.01 1.92 90.51 1.57
P2SL 16.02 6.59 75.45 1.93

N Our Sys. 6.99 2.67 1.09 89.24
P2SL 30.10 3.51 3.10 63.27

42

Table 4.18: Comparison of TargetP and our system.

Actual Predicted (%)
ER M Other

ER Our Sys. 94.10 0.42 5.44
TargetP 85.21 2.06 12.73

M Our Sys. 1.92 90.51 7.58
TargetP 3.64 77.84 18.52

Other Our Sys. 5.98 3.06 90.96
TargetP 1.88 8.86 89.27

Table 4.19: Number of features used in the modules for all methods.

Without Selection Chi-squared T-test Adaboost Relief
ER-C 2746 2738 2559 930 3089
ER-M 2583 2574 2060 1170 2557
ER-N 8066 7405 7592 900 8519
M-C 5383 2925 1809 810 4730
M-N 5791 3914 2716 960 6920
N-C 13538 9678 7379 840 12267

4.9 Investigation of frequent patterns

Number of features used in modules depend on the feature selection algorithm employed

and are given in Table Table 4.19 for all methods averaged on for 4 folds. These are also

the number of frequent patterns. Frequent pattern distribution of a module is an interesting

information and it is given in Table Table 4.20 for the case where no feature selection

algorithm is applied.

If frequent patterns are ranked over their e�ect on classi�cation performance, then top

ranked ones can be examined for �nding a biological meaning under the classi�cation perfor-

mance of the method. However, in the method we describe, support vector machines (SVM)

Table 4.20: Pattern length distributions of modules.

Module Pattern Length
2 3 4 5 6 7 8 9 10

ER-C 435 1243 1014 23
ER-M 433 1182 856 81
ER-N 621 2801 3339 1212 60 2
M-C 550 2173 2197 433
M-N 563 2234 2271 653 38 1
N-C 686 3739 5694 2738 588 34 13 14 1

43

Table 4.21: Partial coverage of patterns for the 3rd motif of Chymotrypsin �ngerprint

Pattern Partial coverage
[STDNGA]C KD..KGDSGGPLI

[PGND][PGND][STDNGA][STDNGA] KDSCK....GPLI

G[STDNGA] KDSCK..S..PLI

P [V ILMFA][V ILMFA] KDSCKGDSGG...

[STDNGA][STDNGA][HKR][STDNGA] ..SCKGDSGGPLI

combination of all patternsK........

are used and in SVM classi�cation, the learned decision functions are often di�cult for peo-

ple to understand and extract further biological information other than the prediction result.

Being a rule based classi�cation algorithm, Adaboost results are more understandable and

readable compared to SVM. Therefore, we decided to analyze Adaboost results. Features

are ranked over their e�ect on classi�cation performance for each classi�cation module and

the patterns corresponding to these features are tried to be matched with known biological

motifs. Since the average length of the patterns, which is about 3-4, are short compared to

known motifs we think that a number of patterns may cover a known motif in combination.

PRINTS database's FPScan tool is used for the analysis. Top ranked patterns are marked

on a given sequence and marked �ngerprints by FPScan tool on the same sequence are ex-

amined for assessing the coverage percent. Here is an example protein sequence on which 3

motifs of top ranked �ngerprint (which is Chymotrypsin) are shown in bold.

MVLIRVLANLLILQLSYAQKSSELVIGGDECNINEHRSLV

VLFNSSGVLCGGTLINQEYVLTAAHCDMPNMQILLGVHSA

SVLNDDEQARDPEEKYFCLSSNNDTEWDKDIMLIRLNRSV

NNSVHIAPLSLPSSPPRLGSVCRVMGWGAITSPNETYPDV

PHCANINILRYSLCRAVYLGMPVQSRILCAGILRGGKDSC

KGDSGGPLICNGQLQGIVSAGSDPCAKPRVPNLYIKVFDY

TDWIQSIIAGNTTVTCPQ

In Table Table 4.21 partial coverage of top ranked patterns are given for the 3rd motif of

Chymotrypsin �ngerprint. Patterns are in regular expression format and partially covered

area of the �ngerprint is shown with dots. As it is observed from the last row, combination

of the given patterns covers the 92% of the original motif.

Although true positive rates are high, because of the very high false positive rates, the

44

results are not seen meaningful. Due to the extended alphabet de�nition, the patterns we

found are matching with so many subsequences of a protein sequence which leads to the fact

that not only the �ngerprints marked by FPScan tool, but almost whole sequence is covered

by the patterns.

4.10 Discussion

Considering the results presented in this chapter, we see that:

• Feature selection methods do not help to increase the classi�cation accuracy of ER-C

and ER-N modules. For the other modules, employing feature selection methods leads

to increases in classi�cation accuracies.

• Among feature selection methods, Adaboost is the one that uses the least number of

features. In addition, it is the one that has the lowest classi�cation accuracy.

• For ER-C and ER-M modules, all the feature selection methods use about 2000-3000

features, except Adaboost with nearly 1000 features. For ER-N module, average num-

ber of features that feature selection methods use is about 8000. Adaboost use 900

features for ER-N module for getting the best accuracy. N-C module is the one where

the highest number of features must be used for achieving better classi�cation rates.

Feature selection methods are more successful in M-C and M-N modules compared

to other modules. In these modules, early half of the initial feature set is pruned by

feature selection methods with a 0.1 percent gain of classi�cation accuracy.

• In terms of execution times, Adaboost is the slowest one in training and the fastest

one in testing.

• System can classify the ER targeted proteins correctly at higher rates. The lowest

accuracies are on cytoplasmic and nuclear proteins and it is because of the fact that

they are the ones mostly confused with each other.

• For all the classi�cation compartments, our system outperformed TargetP in terms of

classi�cation rates. For ER targeted and mitochondrial proteins, our system increased

the classi�cation rates of TargetP by nearly 10 percent. For Other class, 1.7 percent

increase is gained.

45

• Our system has better classi�cation rates for all 4 compartments compared to P2SL.

In the overall performance, our method improved the P2SL classi�cation rate which is

81.96 by nearly 10 percent.

• In terms of training and testing execution times, our method is comparable with P2SL

and TargetP in the order of magnitude.

46

CHAPTER 5

DESIGN AND IMPLEMENTATION OF

THE CYTOSCAPE PLUG-IN

We design and implement a plug-in for the Cytoscape tool, named PlugP2SL. It annotates

biological networks visualized in Cytoscape with subcellular localization predictions per-

formed by Prediction of protein subcellular localization (P2SL) [4]. The main functionality

of the system is to retrieve subcellular localization predictions of the selected nodes and

to add a number of attributes to the nodes related with localization prediction. Attribute

addition helps on the analysis of protein/gene networks, since Cytoscape lets users to de�ne

a mapping from data attributes to visual attributes like color, shape, and size.

A client-server architecture is established based on Simple Object Access Protocol (SOAP)

technology with the Cytoscape plug-in PlugP2SL which is working as client. On the server

side, there is Model Organisms Proteome Subcellular Localization Database (MEP2SL) [5]

database which stores subcellular localization information of nine model organisms which

are predicted by P2SL tool. For the other proteins that do not belong to one of the nine

organisms collected in MEP2SL, there is also on demand prediction possibility. General

system �ow is shown in Figure Figure 5.1.

User must provide gene name and organism name related to the selected protein in

order to use PlugP2SL. As it is observed in Figure Figure 5.1, subcellular localization pre-

dictor, which is P2SL in the current system, demands sequence information and MEP2SL

database demands UniRef100 id. In order to obtain the association between these attributes

UniprotKB and UniRef100 databases are used for constructing an internal database. Before

going into design and implementation details of rhe system, some background information

is provided in the following section.

47

PlugP2SL
plug-in

Web
Server

MEP2SL
database

Subcellular
Localization

Predictor

Gene name (GN)and
organism name (ON)

Prediction

[Organism name belongs
to 9 model organisms]

UniRef100 Id and ON

Sequence

[Organism name does not
belong to 9 model organisms]

Prediction

Prediction

Figure 5.1: General system �ow for PlugP2SL plug-in.

5.1 Background information

5.1.1 The Cytoscape tool and plug-in development

Cytoscape [47] is an open-source software program for network visualization and analysis.

It provides basic functionality to visualize and query biomolecular interaction networks and

to integrate them with any kind of annotations. The most important feature of the Cy-

toscape tool is its extendibility through the plug-in architecture constructed under the core

application. There are lots of plug-ins [1] that are available for analyzing existing networks,

importing networks and attributes in di�erent �le formats, inferring new networks, connect-

ing with databases and functional enrichment of networks.

A typical biomolecular interaction network contains genes, proteins, some other biomolecules

and interactions de�ned between these elements. Cytoscape uses nodes for representing net-

work molecules and edges for representing interactions between them. It stores interaction

graphs in two simple ASCII text formats, Simple Interaction File (SIF) and Graph Markup

Language (GML). Each line in a SIF speci�es a source node, a relationship type, and one

or more target nodes. Some common relationship types are protein-protein interaction (pp),

48

protein-DNA interaction (pd), etc. GML �le stores the interaction data with the information

about how to view it such as layout, colors, etc.

Cytoscape allows user to integrate arbitrary information with interaction networks by

adding attributes to nodes, to edges or to the network. User is allowed to de�ne a mapping

from data attributes to visual attributes like colors, shapes [47]. By this way, integrated

data is used for analyzing the network. Adding attributes to nodes and edges can be done

by importing node and edge attribute �les.

5.1.2 UniProt

Universal Protein Resource (UniProt) [3] is a central repository of protein data. It is a

freely accessible, centralized resource for protein sequences and functional information. It

is originated from merging three databases: Swiss-Prot, TrEMBL, and PIR. UniProt is

composed of three components: UniProt Knowledgebase (UniProtKB), UniProt Archive

(UniParc), and UniProt Reference Clusters (UniRef).

UniProtKB constitutes the core of the UniProt and contains expertly curated protein in-

formation, including function annotations, cross-references to multiple sources [12]. UniPro-

tKB consists of two sections, which are UniProtKB/Swiss-Prot and UniProtKB/TrEMBL.

The former contains manually annotated records with information extracted from litera-

ture and computational analysis while the latter contains records that are computationally

analyzed by classi�cation and automatic annotation.

UniParc is a comprehensive non-redundant protein sequence collection that includes his-

torical information on all protein sequences [38]. Protein sequences are revised daily from

many publicly available sources, not only the UniProt Consortium databases Swiss-Prot,

TrEMBL and PIR-PSD, but also EMBL, Ensembl, IPI, PDB, RefSeq, FlyBase, WormBase,

Patent O�ces, etc. UniParc assigns a unique UniParc identi�er to each unique sequence.

Furthermore cross-references to the source databases with source accession numbers and

sequence versions are provided.

UniRef databases combine closely related sequences based on sequence identity to speed

up searches. They provide three clustered sets of sequences from UniProtKB and selected

UniParc records: UniRef100, UniRef90, and UniRef50. The UniRef100 database combines

identical sequences into a single UniRef entry, which contains representative protein's se-

quence information, accession numbers of the UniProtKB entries and links to the UniPro-

tKB and UniParc records that constitutes the UniRef entry. UniRef90 and UniRef50 are

built by clustering UniRef100 sequences. UniRef90 contains clusters in which sequences have

49

at least 90 percent sequence identity to the representative sequence [12]. UniRef50 is like

UniRef90 with a constraint of 50 percent sequence identity.

UniProtKB/Swiss-Prot database

Each UniProtKB/Swiss-Prot database entry consists of elements which are: accession, name,

protein, gene, organism, organismHost, geneLocation, reference, comment, dbReference, key-

word, feature, evidence, sequence and dataset [41]. In this study, we are interested in acces-

sion, gene, organism and sequence elements.

Accession numbers provide a stable way of identifying entries from release to release.

Entries will have more than one accession number if they have been merged or split. The

�rst accession number is the primary accession number, and it is the one used when the

entry is referenced from other database sources.

Gene element contains the name(s) of the gene(s) that code for the stored protein se-

quence. A gene name can be in one of the following types: primary, synonym, ordered locus

and ORF. Primary gene names are the major concern in this work. Entries can have more

than one gene element.

Organism element describes the source of the stored protein sequence. An organism

name can be in one of the following types: common, full, scienti�c, synonym, abbreviation.

Organism names in scienti�c type are the major concern in this work.

Sequence element basically contains the stored sequence information.

UniRef100 database

Each UniRef100 database entry consists of elements which are: name, property, representa-

tive member and member. There is only one representative member in an entry, but there

are a number of members. Representative member and member elements contain references

to databases UniProtKB, UniParc, UniRef90, UniRef50. They also contain source organism

name and sequence information.

5.1.3 Model Organisms Proteome Subcellular Localization Database (MEP2SL)

MEP2SL is an automatically updated, downloadable, and searchable database which con-

tains protein localization distribution information of H. sapiens and other eight model organ-

isms from UniRef100 database [5]. Protein localization distribution information is obtained

by prediction using P2SL tool. P2SL is a hybrid computational system that predicts over

50

ER targeted, cytosolic, mitochondrial and nuclear protein localization classes. Section 5.1.4

gives more detailed information on P2SL tool. In MEP2SL, localization distribution is cross

referenced to UniProt and NCBI to get additional features and homologous sequences.

MEP2SL database contains the following eukaryotic organisms:

• Homo sapiens (Human)

• Mus musculus (Mouse)

• Rattus norvegicus (Rat)

• Drosophila melanogaster (Fruit �y)

• Brachydanio rerio (Zebra�sh) (Danio rerio)

• Saccharomyces cerevisiae (Baker's yeast)

• Xenopus tropicalis (Western clawed frog) (Silurana tropicalis)

• Dictyostelium discoideum (Slime mold)

• Caenorhabditis elegans

For the construction of the MEP2SL database, UniRef100 database is automatically

downloaded and parsed for identifying the proteins from the concerned organisms and achiev-

ing the data about proteins including sequence information and UniRef100 id. Then using

P2SL tool, which utilizes protein sequence information for prediction, protein localization

distribution information is associated with each protein.

MEP2SL database o�ers the distribution potential of a protein into more than one com-

partment; therefore multi-compartmental proteins are predicted in addition to their localiza-

tion classes. Hence, it provides a reference source for eukaryotic proteome scale subcellular

localization information.

5.1.4 Prediction of protein subcellular localization (P2SL)

P2SL is a system that predicts the subcellular localization of proteins in eukaryotic organisms

based on implicit motif frequency distribution of protein sequences [4]. Self-organizing maps

(SOM) are used for feature extraction and the boundaries among the classes are determined

by a set of support vector machines (SVM). P2SL is a hybrid computational system that

predicts over ER targeted, cytosolic, mitochondrial and nuclear protein localization classes.

51

P2SL uses protein sequence information as input and outputs one or more subcellular

localization(s) as prediction with the computed possibilities associated to these localizations.

5.1.5 Web services

The o�cial de�nition of the term "Web Service" which is speci�ed by the World Wide Web

Consortium (W3C) whose aim is to create standards and speci�cations for the web-related

technologies, is as follows [14]:

�A Web service is a software system identi�ed by a URI whose public interfaces and bind-

ings are de�ned and described using XML. Its de�nition can be discovered by other software

systems. These systems may then interact with the web service in a manner prescribed by

its de�nition, using XML based messages conveyed by Internet protocols.�

A web service is usually identi�ed by a Uni�ed Recourse Identi�er (URI) which is a

formatted string that represents the address or location of resources available on the Inter-

net. A web service has Web Service Description Language (WSDL) de�nitions. A WSDL

document is written in XML, and it basically describes a web service by specifying the lo-

cation of the service and the methods service provides. To communicate with web services

we need to use SOAP messages, which are XML based messages transported over Internet

protocols like HTTP, SMTP, and FTP [69]. Web services can be better described with the

Figure Figure 5.2. Here, the service requester is the client of the web service, and the service

provider is the host of the web service. A requester makes requests to the provider and the

provider responses accordingly. A service registry is a sort of database of web services which

contains de�nitions and URIs for web services. Universal Description, Discovery, and Inte-

gration (UDDI) de�nes the standards for registries on storing and publishing descriptions of

network services in terms of XML messages [69]. A web service developer usually publishes

the WSDL for the constructed web services in the registry. A client can query the registry

using UDDI and get the WSDL from the registry.

Web services are generally used when there is a need to access the functionality provided

by a remote server through the Internet. They can be seen as an abstraction layer positioned

between the application code which serves the needed functionality to the user and the user

of that code, the client. By the help of web services, consumers and providers can easily

connect in a language-independent and platform-independent way [6]. The three core web

services standards and technologies for building and enabling web services are SOAP, WSDL

and UDDI. An overview of each technology is presented in the following sections.

52

 Service
Registry

 Service
Provider

Service
Requester

Find
Service

Publish
Service

Invoke Service
through SOAP

Figure 5.2: Web services model (adopted from [69]).

Simple Object Access Protocol (SOAP)

SOAP [65] is used for communication between applications through the Internet. It is a

simple XML based envelope to transfer the information and a set of rules to translate the

application and platform speci�c data types into the XML representation. XML message is

shown in Figure Figure 5.3.

SOAP Envelope

SOAP Header

Header block

SOAP Body

Message Body

Header block

Figure 5.3: SOAP message model (adopted from [57]).

Each SOAP message has a mandatory SOAP envelope which consists of an optional

53

SOAP header, and a mandatory body. The envelope element may contain a header element,

which must be the �rst element after the envelope element. The purpose of the header block

is to communicate context speci�c information relevant for the processing of the SOAP

message. The envelope must contain exactly one body element. The content of the body

element is the original message [57].

Since XML document can be created on any platform with any operating system running

on it and by any programming language, SOAP is platform and language independent.

SOAP can be used in a variety of messaging systems and can be transported over a variety of

Internet protocols like HTTP, SMTP, and FTP. In the web service architecture, it represents

a cornerstone because of the fact that it enables diverse applications to easily exchange

services and data by de�ning a way to perform remote procedure calls.

Web Service Description Language (WSDL)

WSDL is a speci�cation which de�nes how to describe web services in a common XML

grammar [31]. WSDL is used to describe what a web service can do, where it is located, how

it is invoked. WSDL document uses the following elements in the de�nition of web services

[62]:

• Types: A container for data type de�nitions using some type system (such as XSD).

• Message: An abstract, typed de�nitions of data being exchanged.

• Operation: An abstract description of an action supported by the service.

• Port type: An abstract set of operations supported by one or more endpoints.

• Binding: A concrete protocol and data format speci�cation for a particular port type.

• Port: A single endpoint de�ned as a combination of a binding and a network address.

• Service: A collection of related endpoints.

Universal Description Discovery and Integration (UDDI)

UDDI de�nes the standards for registries on storing and publishing descriptions of web

services in terms of XML messages [69]. It is a directory where web services can be registered

and assigned to service providers. UDDI communicates via SOAP messages.

54

5.2 Design and implementation details of PlugP2SL

PlugP2SL is a Cytoscape plug-in which works as client in the constructed client-server ar-

chitecture. Server side of this architecture is based on SOAP technology. On the server side,

there is MEP2SL database which stores subcellular localization information of nine model

organisms which are predicted by P2SL tool and P2SL predictor that is used for on demand

prediction of proteins that do not belong to one of the nine organisms collected in MEP2SL.

As it is observed in Figure Figure 5.4 which elaborates Figure Figure 5.1, internal database

PlugP2SL
plug-in

Web
Service

MEP2SL
database

Subcellular
Localization

Predictor

Gene name (GN) and
organism name (ON)

Prediction

[Organism name belongs
to 9 model organisms]

GN and ON

Prediction

Prediction

ReducedUniprot
(GN, ON, Sequence,
Accession number)

ReducedUniref
(Accession number,

UniRef100 id)
Accession number

UniRef100 id

UniRef100 id
and ON

ReducedUniprot
(GN, ON, Sequence,
Accession number)

[Organism name does
not belong

to 9 model organisms]

GN and ON
Sequence

Sequence

Figure 5.4: Detailed system �ow for PlugP2SL plug-in.

tables reducedUniprot and reducedUniRef are used for the association problem of given and

needed attributes. UniprotKB database is a central repository of protein data which con-

tains various information about proteins, including gene name, organism name and sequence

information. By downloading and parsing the UniprotKB database, a database table reduce-

dUniprot is constructed in the internal database.

55

As it is explained in detail in Section 5.1.3, MEP2SL [5] is an automatically updated,

downloadable, and searchable database which contains protein localization distribution in-

formation of H. sapiens and eight other model organisms from UniRef100 database. MEP2SL

database can be queried with UniRef100 id to retrieve the subcellular localization predic-

tion. UniRef100 is a database that combines identical sequences into a single entry, which

contains representative protein's sequence information, accession numbers of the UniProtKB

and UniParc entries and links to the UniProtKB and UniParc records that constitutes the

UniRef entry. It is possible to reach UniRef100 id if the accession number of a UniProtKB

entry is retained. Therefore, for associating the user inputs gene name and organism name

with UniRef100 id, both UniprotKB and UniRef100 databases are needed. By download-

ing and parsing the UniRef100 database, a database table reducedUniRef is constructed in

the internal database. Keeping the internal database up to date, a process is initiated that

periodically updates the constructed tables.

For better understanding of the design elements of the PlugP2SL plug-in, Uni�ed Mod-

eling Language (UML) diagrams [55] are given in Section 5.3, Section 5.4, and Section 5.5.

5.3 Use cases

Use case diagram is given in Figure Figure 5.5. There are �ve actors de�ned in the system:

• User

• MEP2SL

• Predictor

• Timer

Retrieving subcellular localization predictions for the selected nodes is the main use case

in the system. Retrieving organism list for the selected node (this use case is applicable for

single node selections) is another use case in which the PlugP2SL user involved. Retrieving

subcellular localization predictions can be done either querying the MEP2SL database, or

using the P2SL tool. Internal database is updated periodically by downloding Uniprot

databases; UniRef100 and UniProtKB/Swiss-Prot.

56

Figure 5.5: Use case diagram for PlugP2SL.

5.4 Sequence diagrams

5.4.1 Prediction request

After providing the gene name and the organism name to the plug-in, user initiates the

process of getting the subcellular localization prediction. PlugP2SL calls the web service

method GetPrediction with a string argument which is the concatenation of the gene name

and the organism name separated with the special character `'.

At �rst, organism name is checked to see if it is one of the organisms MEP2SL database

contains. If it is, then reducedUniprot database is queried to �nd the accession number

corresponding to the given gene name and organism name. Subsequently, reducedUniRef

database is queried to �nd the UniRef100 id corresponding to the given accession number

and organism name. After UniRef100 id is reached, MEP2SL database can be queried to

get the prediction.

If the organism name does not belong to MEP2SL organism list, then P2SL tool must

be used. Details of the prediction stage are left to the next section. User must con�rm

to continue before the execution of this process, since it takes about 2-3 minutes for a

protein to predict. After a prediction value is reached, forcePredictNeed method is called to

determine that whether there is a need for prediction by P2SL or not. This method basically

57

looks for the case where the prediction is null and it is taken by querying the MEP2SL

database. MEP2SL database sometimes does not contain a stored prediction for a protein

which belongs to one of the organisms MEP2SL database contains. In this case, user is asked

for a con�rmation to predict and if con�rmed the web service method GetForcedPrediction

is called. In any stage of the execution, if an error occurs, then the web service response

transmits the error details to the plug-in. The prediction request sequence diagram is given

in Figure Figure 5.6.

sd getPrediction

User

:P lug_P2SL :DbHandler :Predictor:WebService

getPrediction(organism ,geneNam e)

GetPrediction(m essage)
isInM EP2SLOrganism List(organism)

[is in M EP2SL organism l ist]:
getPredictionFrom M EP2SL(organism ,geneNam e)

connectT oCytoscape()

getAccession_Uniprot(organism ,geneNam e) :accessionList

getUniRefId(organism ,accessionNo) :un iRefId

d isconnectT oCytoscape()

connectT oM EP2SL()

queryPrediction_M EP2SL(organism ,uniRefId) :prediction

disconnectM EP2SL()

pred iction

[is not in MEP2SL organism l ist]:
confi rmT oContinuePrediction()

[confi rmed to continue]:
pred ict(organism ,geneNam e) :prediction

forcePrectionNeed(organism,prediction)

[pred iction is needed]:
confi rm T oContinuePrediction()

[confi rmed to continue]:
GetForcedPrediction(m essage)

predict(organism ,geneNam e) :prediction

prediction

prediction

Figure 5.6: Prediction request.

5.4.2 P2SL prediction

Multiuser case is handled in P2SL prediction by the methods newUserCome and newUserGo.

Since P2SL prediction tool needs a separate working environment at each call, with these

methods, for each user, a new environment is created. Since P2SL needs sequence information

for prediction, at �rst, reducedUniprot database is queried to �nd the protein sequence

58

corresponding to the given gene name and organism name. Then P2SL tool is initiated for

prediction. The related sequence diagram is given in Figure Figure 5.7.

sd predict

:WebService :DbHandler:Predictor

predict(organism ,geneNam e)

newUserCom e()

getSequence_Uniprot(organism ,geneName)

connectToCytoscape()

querySequence_Uniprot(organism ,geneName)

disconnectToCytoscape()

sequence

cal lP2SL(userId) :prediction

newUserGo()

prediction

Figure 5.7: P2SL prediction.

5.4.3 Organism list request

User may want to see the organisms related with the gene name of the selected node. After

user initiates the process by using the PlugP2SL plug-in, the web service method getMatchin-

gOrganismList is called with a string argument which is the gene name itself. reducedUniprot

database is queried and the obtained organism list is packed into a string by separating each

organism name with the special character `'. And this string is sent to the plug-in as a

response of the web service. The organism list request sequence diagram is given in Figure

Figure 5.8.

59

sd getOrganismList

:Plug_P2SL :WebService

User

:DbHandler

getOrganismList(geneName)

GetMatch ingOrganismNames(message)

getOrganismList_Uniprot(geneName)

connectToCytoscape()

queryOrganismList(geneName)

d isconnectToCytoscape()

organismList

organismList

organismList

Figure 5.8: Organism list request.

5.4.4 Update internal database

The internal database including the tables reducedUniprot and reducedUniRef is periodically

updated. A timer initiates the update checking process periodically. In this process, UniRef

release �le is downloaded and compared with the release �le that is stored in the last update.

If there is a release change until the last update, then update process begins. The initial step

is downloading the UniRef100 and UniProtKB/Swiss-Prot databases in xml format. Then,

these �les are parsed to get the desired �elds in the records which are: primary accession

number, gene name, organism name and sequence information for UniProtKB/Swiss-Prot

database, and Uniref100 id, accession number, organism name for UniRef100 database. After

the interested �elds are parsed, the internal database is updated with the new records. The

related sequence diagram is given in Figure Figure 5.9.

5.5 Class diagrams

Class diagrams are presented in the Appendix A.

60

sd updateInternalDatabases

T im er

:DbUpdater :XM LParser :DbCreator

checkUpdate()

un ipro tReleaseFi leCom pare()
:boolean

[true]: downloadUnip rot()

parse(xm lFi le)

updateDb()
dropT able(tab le) :boolean

createT ab le(tab le) :boo lean

insertIn toT able(tab le ,a ttributeL ist)

Figure 5.9: Update internal database.

5.6 Implementation

The SOAP server is implemented with Java using Apache AXIS version 1.4. MySQL is used

for the database back end and Apache Tomcat is used as the HTTP server daemon. In the

construction of the internal database, an XML parser is needed to be employed. SAX API

and Piccola XML parser is used for the parser code which is written in Java. PlugP2SL is

also implemented with Java. For the graphical user interface, Java Swing libraries are used.

5.6.1 SOAP server functions

SOAP server provides 3 functions for remote users which are as follows:

• GetPrediction : It takes a string argument which is the concatenation of gene name

and organism name separated by a special character `@' and outputs the prediction

result.

• GetMatchingOrganismList : It takes gene name as the parameter and outputs the

related organism names which are concatenated and separated by a special character

'@'.

61

• GetForcedPrediction : It is same as GetPrediction, but output is forced to be the online

prediction result of P2SL, not the MEP2SL query result.

5.6.2 Installation directives of PlugP2SL

To install the plug-in download PlugP2SL.rar from

http://www.ceng.metu.edu.tr/ gokcen/PlugP2SL.rar. The compressed archive includes

PlugP2SL.jar and its depended libraries. All these �les must reside in the "plugin" sub-folder

of the Cytoscape program folder. After Cytoscape is started, the plug-in named "PlugP2SL"

will appear in the plug-ins list.

5.7 PlugP2SL usage

Before employing PlugP2SL, user must start Cytoscape, import a network, and import an

attribute �le which includes the gene name attribute. There is no constraint on the name

of the attribute, since the attribute which corresponds to the gene name attribute can be

speci�ed using PlugP2SL plug-in. After selecting one or more nodes, PlugP2SL can be

started. The initial PlugP2SL window is given in Figure Figure 5.10(a) where node and

query attributes are not de�ned yet. If there is no de�ned query and node attributes, plug-

in does not let user to do anything before de�ning the association between query and node

attributes. User can de�ne an association using Attribute Association form (given in Figure

Figure 5.11) that can be reached by De�ne query/node attribute button. Possible query

and node attributes are o�ered in this form. Gene name is the only attribute that can

be queried now, but thinking of the future versions, query attribute concept is introduced.

After an association is de�ned, the inactive parts of the plug-in form are activated and

the selected nodes are listed in the table with columns: de�ned node attribute, organism

type, and subcellular localization prediction. PlugP2SL main window is look like as in

Figure Figure 5.10(b) after an association is de�ned. Plug-in provides users two types

of prediction retrieval possibility: individual and batch retrieval. By clicking on a row of

the selected nodes table Individual Retrieval form is reached. Using this form organism

type can be speci�ed. One way of specifying the organism type is to select it from model

organisms. The other way is to retrieve the organism list related with the given gene name

and then to select the organism type from that list. Individual Retrieval form is given in

Figure Figure 5.12 in two states showing the two types of organism selection. After organism

type is speci�ed, subcellular localization prediction can be fetched. User may prefer to use

62

(a) Main window with no association

de�nition.

(b) Main window with an association

de�nition.

Figure 5.10: PlugP2SL main window.

Figure 5.11: Attribute association form.

(a) Model organisms. (b) Organism list retrieval.

Figure 5.12: Organism selection.

63

(a) during prediction. (b) after prediction.

Figure 5.13: Individual prediction retrieval.

Individual Retrieval form for only specifying organism types of the nodes and close the form

before prediction. This is done when user wants to perform batch prediction with nodes

having di�erent organism type speci�cations. During the prediction fetching process, most

features of the Individual Retrieval form is deactivated for preventing the user from producing

more calls to the system which may confuse the plug-in. Individual Retrieval form is given in

Figure Figure 5.13 in two phases showing: 'during prediction', and 'after prediction'. Batch

prediction retrieval can be done using the main PlugP2SL plug-in window. For all the selected

nodes listed in the table, an organism type can be speci�ed using the organism type selection

combo box. If di�erent organism types are wanted to be speci�ed for one or more nodes,

by clicking on the rows of the selected nodes table, Individual Retrieval form is reached by

which organism type selection can be done. Prediction result is displayed on the last column

of the selected nodes table. Since prediction results are abbreviations, Information form is

displayed after the prediciton for giving information on the abbreviations. Main window

of PlugP2SL plug-in after batch prediction and the Information form is given in Figure

Figure 5.14.

When subcellular localization prediction is not found in the MEP2SL database (i.e.

organism type does not belong to the MEP2SL organism list), it must be predicted by

P2SL tool on line. Since the process of prediction takes 2-3 minutes, a con�rmation is taken

from the user for continuing the process. If for a node, the prediction cannot be found in

MEP2SL database, but the sequence information can be reached, then in its localization

column PREDICT keyword is displayed. If for a node, the prediction cannot be found in

MEP2SL database and the sequence information cannot be reached, then in its localization

64

(a) Main window of PlugP2SL plug-in

after batch prediction.

(b) Information form.

Figure 5.14: Batch prediction retrieval.

column NOT FOUND keyword is displayed. No attribute values set for these kinds of

nodes. After subcellular localization prediction retrieval is performed, a number of attributes

are de�ned and added to the selected nodes. Besides the Localization attribute, 8 more

attributes are added for better analysis of the network. The Localization attribute can

have 26 di�erent values, i.e. E3, E3N2, E2C2N2, etc. Every value indicates the possible

localization predictions, for example, E3N2 means that for the localization prediction of

the selected protein, there are 3 votes (which is the maximum vote count a localization

compartment can have) to Endoplasmic Reticulum and 2 votes to Nucleus. Each Localization

attribute contains compartments that take 2 or 3 votes. An additional attribute is de�ned

for each possibility of counts of compartment votes (there are 2 possibilities: 2 or 3). These

are: E2, E3, N2, N3, C2, C3, M2, M3. The ones that constitute the Localization attribute

take the value 1, and the others take 0 value. The added attributes can be observed from

CytoPanel 2 of the Cytoscape window given in Figure Figure 5.15. PlugP2SL plug-in is used

for annotating biological networks. Cytoscape provides useful functionality for the analysis

of the annotated network such as de�ning a visual style by mapping node colors, shapes,

sizes, labels to node attributes, changing the layout of the network by grouping the nodes

according to node attributes. An example network on which a number of visual mappings

are de�ned is given in Figure Figure 5.16. In the given network, there are some mapping are

de�ned between node attributes and visual attributes. These are:

• Localization attribute and color of the node. Red nodes are C3N2, blue nodes are

N3C2, yellow nodes are N3E2, green are E2C2N2, purple are N3M2, etc.

65

Figure 5.15: Attribute addition.

66

Figure 5.16: An example network analysis.

67

• C2 attribute and shape of the node. Circle nodes are 0, square nodes are 1.

• C3 attribute and size of the node. Smaller nodes are 0, bigger nodes are 1.

• N2 attribute and line type of the node. Thinner lines are 0, thicker nodes are 1.

68

CHAPTER 6

CONCLUSION

In the scope of this thesis work, a classi�cation system is built that has two main parts:

a subcellular localization prediction tool based on a feature mapping technique to extract

biologically meaningful information from protein sequences and a client/server architecture

for searching and predicting subcellular localizations. In the �rst part of the thesis, a feature

mapping technique is described which is based on frequent patterns. Frequent patterns in a

protein sequence family are identi�ed using a level-wise string-mining algorithm. After the

initial feature set is constructed by de�ning the features as the occurrences of the frequent

patterns in a protein sequence, Pearson's chi-squared test is applied on the initial feature

set as a feature selection method. A frequency based quanti�cation method is used for

determining the numerical values of the features for each sequence. The quanti�cation

method is based on the term-frequency inverted document frequency (TFIDF) weighting

scheme. Support vector machines (SVM) is used for classi�cation. The method is assessed

on the subcellular localization prediction problem with 4 compartments: ER targeted (ER),

mitochondrial (M), cytosolic (C) and nuclear (N). The dataset is the same used in P2SL.

Our method improved the overall accuracy nearly 10 percent which was originally 81.96%

by P2SL.

Some alternative feature selection methods are examined including t-test, precision-recall

binning, Relief, Adaboost. Pearson's chi-squared test outperforms the other methods in the

conducted experiments. Since Adaboost is an embedded feature selection method, instead of

SVM, Adaboost is used as the classi�er in one of the experiment settings. Being a rule based

classi�cation algorithm, Adaboost results are more understandable and readable compared

to SVM. We analyzed the Adaboost results for extracting further biological information

other than the prediction result. The features that e�ect the classi�cation result more are

extracted for each classi�cation module and the patterns corresponding to these features

69

are tried to be matched with known biological motifs. The average pattern length changes

module to module but it is about 3-4. Since the length of the patterns is short compared

to known motifs, we think a number of patterns may cover a known motif in combination.

PRINTS database's FPScan tool is used for the analysis. Top ranked patterns (ranked over

their e�ects on classi�cation) are marked on a given sequence and marked �ngerprints by

FPScan tool on the same sequence are examined for assessing the coverage percent. Although

true positive rates are high, which is the �ngerprint coverage percent of top ranked patterns,

because of the very high false positive rates, the results are not seen meaningful. Due to the

extended alphabet de�nition, the patterns we found are matching with so many subsequences

of a protein sequence which leads to the fact that not only the �ngerprints marked by FPScan

tool, but almost whole sequence is covered by the patterns.

In the second part of the thesis, a client /server architecture is designed and implemented

based on Simple Object Access Protocol (SOAP) technology. For the client side of the

architecture, a Cytoscape plug-in, PlugP2SL, is developed which helps users to retrieve

protein subcellular localization predictions and annotate biological networks visualized in

Cytoscape with these information. Most of the time, subcellular localization prediction

information does not assist biologists individually. Making analysis of a set of genes/proteins

under a system view by integrating information from a number of domains provide more

reliable information. Instead of the individual use of subcellular localization information, this

plug-in lets biologists to analyze a set of genes/proteins under a system view. Predictions are

performed by P2SL tool and MEP2SL database is used for retrieving stored predictions done

by P2SL. Predictor unit is designed as a replaceable unit in the system, therefore, instead

of P2SL, any predictor can be used.

As future work, frequent pattern search algorithm can be extended to handle gaps, inser-

tions and deletions. In addition to that, some work can be done on the extended alphabet

de�nition to obtain more speci�c frequent patterns. By means of that, obtained patterns can

be validated by using feature rankings acquired from Adaboost results. For the client/server

architecture we designed and implemented, it is possible to enhance SOAP server function-

alities. For example, besides the 'gene name' identi�er, some more identi�ers can be added

for querying.

70

REFERENCES

[1] Cytoscape 2.x Plugins. http://www.cytoscape.org/plugins2.php.

[2] Dietterich T. G. Almuallim H. Learning with many irrelevent features. pages 547�552.

MIT Press, 1991.

[3] Wu C.H. Barker W.C. Boeckmann B. Ferro S. Gasteiger E. Huang H. Lopez R. Magrane

M. Martin M.J. Natale D.A. O'Donovan C. Redaschi N. Apweiler R., Bairoch A. and Yeh

L.S. Uniprot: the universal protein knowledgebase. Nucleic Acids Research, 32:115�119,

2004.

[4] V. Atalay and R. Cetin-Atalay. Implicit motif distribution based hybrid computational

kernel for sequence classi�cation. Bioinformatics, 21(8):1429�1436, 2005.

[5] M. Ozturk R. Cetin-Atalay B. Bilen, V. Atalay. http://www.i-cancer.org/mep2sl/.

[6] Greg Barish. Getting started with web services using apache axis.

http://www.javaranch.com/newsletter/May2002/axis.html, May 2002.

[7] R. Bellman. Adaptive Control Processes: A Guided Tour. Princeton University Press,

1961.

[8] Godelieve L. M Berry-Rogghe. The computation of collocations and their relevance to

lexical studies. Edinburgh University Press, 1973.

[9] Fabian Birzele and Stefan Kramer. A new representation for protein secondary structure

prediction based on frequent patterns. Bioinformatics, 2006.

[10] Kenneth W. Church and Patrick Hanks. Word association norms, mutual information,

and lexicography. Computational Linguistics, 16(1):22�29, 1990.

[11] Hindle D. Church K. W., Hanks P. Using Statistics in Lexical Analysis. 1991.

71

[12] The UniProt Consortium. The universal protein resource (uniprot). Nucleic Acids Res.,

35:193�197, 2007.

[13] Béatrice Daille. Approche mixte pour l'extraction automatique de terminologie: statis-

tiques lexicales et �ltres linguistiques. PhD thesis, Université Paris, 1994.

[14] Christopher Ferris Sharad Garg (eds.) Daniel Austin, Abbie Barbir.

http://www.w3.org/TR/wsa-reqs.

[15] Mehran Sahami Daphne Koller. Toward optimal feature selection. In Proceedings of the

13. ICML, pages 248�292, 1996.

[16] Morris H. DeGroot and Mark J. Schervish. Probability and Statistics. Addison Wesley,

3 edition, 2002.

[17] Sally F. Dennis. The feature selection problem: Traditional methods and a new algo-

rithm. In Proceedings of the Symposium on Statistical Association Methods For Mech-

anized Documentation, pages 61�148, 1965.

[18] Ted Dunning. Accurate methods for the statistics of surprise and coincidence. Compu-

tational Linguistics, 19(1):61�74, 1993.

[19] H. P Edmundson. A correlation coe�cient for attributes or events. In Proceedings of the

Symposium on Statistical Association Methods For Mechanized Documentation, pages

41 � 44, 1965.

[20] Martin Ester and Xiang Zhang. A top-down method for mining most speci�c frequent

patterns in biological sequence data. In Proceedings of the 4th SIAM International

Conference on Data Mining (SDM), April 2004.

[21] Stefan Evert. Association measures. http://www.collocations.de/AM/.

[22] Stefan Evert. The Statistics of Word Cooccurrences: Word Pairs and Collocations. PhD

thesis, University of Stuttgart, 2004.

[23] Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-line

learning and an application to boosting. Journal of Computer and System Sciences,

55(1):119�139, 1997.

[24] Yoav Freund and Robert E. Schapire. A short introduction to boosting. Journal of

Japanese Society for Arti�cial Intelligence, 14(5):771�780, September 1999.

72

[25] L. Yu H. Liu. Feature selection for data mining. Technical report, Arizona State

University, 2002.

[26] C. W. Hsu and C. J. Lin. A comparison of methods for multiclass support vector

machines. IEEE Transactions on Neural Networks, 13(2):415�425, 2002.

[27] Ni Huang Hu Chen and Zhirong Sun. Subloc: a server/client suite for protein subcellular

location based on soap. Bioinformatics, 22(3):376�377, 2005.

[28] Sujun Hua and Zhirong Sun. Support vector machine approach for protein subcellular

localization prediction. Bioinformatics, 17:721�728, 2001.

[29] Andre Elissee� Isabelle Guyon. An introduction to variable and feature selection. Jour-

nal of Machine Learning Research, 3:1157�1182, 2003.

[30] Masoud Nikravesh Isabelle Guyon, Steve Gunn and ed. Lofti Zadeh. Feature Extraction:

Foundations and Applications. Physica-Verlag, Springer, 2006.

[31] E. Jerami. Web services essentials. O�eilly Press, 2002.

[32] T. Joachims. Making large-scale SVM learning practical. MIT Press, 1999.

[33] Julian Tonti Filippini Ian Small Joshua L.Heazlewood, Robert E. Verboom and A. Har-

vey Millar. Suba: the arabidopsis subcellular database. Nucleic Acids Research, 35:213�

218, 2007.

[34] Walter A. Kosters Kai Ye and Adriaan P. IJzerman. An e�cient, versatile and scalable

pattern growth approach to mine frequent patterns in unaligned protein sequences.

Bioinformatics, 23:687�693, 2007.

[35] K. Kira and L. A. Rendell. The feature selection problem: Traditional methods and a

new algorithm. In San Jose, editor, Proceedings of the National Conference on Arti�cial

Intelligence (AAAI), pages 129�134, 1992.

[36] I. Kononenko. Estimating attributes: Analysis and extensions of relief. In L. De Raedt

and F. Bergadano, editors, Proceedings of the European Conference on Machine Learn-

ing, pages 171�182. Springer Verlag, 1994.

[37] Huan Liu Lei Yu. E�cient feature selection via analysis of relevance and redundancy.

Journal of Machine Learning Research, 5:1205�1224, 2004.

73

[38] Binns D. Fleischmann W. Lopez R. Apweiler R Leinonen R., Diez F.G. Uniprot archive.

Bioinformatics, 20:3236�3237, 2004.

[39] Douglas Liddell. Practical tests of 2 x 2 contingency tables. The Statistician, 25(4):295�

304, 1976.

[40] H Mannila and H Toivonen. Level-wise search and borders of theories in knowledge

discovery. Data Mining and Knowledge Discovery, 3(1):241�258, 1997.

[41] The UniProtKB User Manual. http://www.expasy.org/sprot/userman.html.

[42] Rajesh Nair and Burkhard Rost. Locnet and loctarget: sub-cellular localization for

structural genomics targets. Nucleic Acids Research, 32:517�521, 2004.

[43] Horton P. Nakai K. Psort: a program for detecting sorting signals in proteins and

predicting their subcellular localization. Trends Biochem Sci., 24(1):34�36, January

1999.

[44] S. Brunak O. Emanuelsson, H. Nielsen and G. von Heijne. Predicting subcellular local-

ization of proteins based on their n-terminal amino acid sequence. Journal of Molecular

Biology, 300:1005�1016, 2000.

[45] Melissa Cline Micheline Fromont Racine Alain Jacquier Benno Schwikowski Olivier Gar-

cia, Cosmin Saveanu and Tero Aittokallio. Golorize: a cytoscape plug-in for network

visualization with gene ontology-based layout and coloring. Bioinformatics, 23(3):394�

396, 2006.

[46] Randy Goebel Gregory Taylor Osmar R. Zaiane, Yang Wang. Frequent subsequence-

based protein localization. pages 35�47. Springer Verlag, 2007.

[47] Owen Ozier Nitin S. Baliga Jonathan T. Wang Daniel Ramage Nada Amin

Benno Schwikowski Paul Shannon, Andrew Markiel and Trey Ideker. Cytoscape: A soft-

ware environment for integrated models of biomolecular interaction networks. Genome

Res., 13(11):2498�2504, 2003.

[48] Ted Pedersen and Rebecca Bruce. What to infer from a description. Technical Report

96-CSE-04, Southern Methodist University, Dallas, 1996.

[49] Uwe Quastho� and Christian Wol�. The poisson collocation measure and its application.

2002.

74

[50] Marko Robnik-Sikonja and Igor Kononenko. Theoretical and empirical analysis of relie�

and rrelie�. Machine Learning Journal, 53:23�69, 2003.

[51] George H. John Ron Kohavi. Wrappers for feature subset selection. Arti�cial Intelli-

gence, 97:273�374, 1997.

[52] Ke Wang Martin Ester Jennifer L. Gardy Fiona S. L. Brinkman Rong She, Fei Chen.

Frequent-subsequence-based prediction of outer membrane proteins. In Proceedings of

the ninth ACM SIGKDD international conference on Knowledge discovery and data

mining table of contents, pages 436�445, 2003.

[53] G Salton and C Buckley. Term weighting approaches in automatic text retrieval. In-

formation Processing and Management, 513(24), 1988.

[54] Gursoy-Yuzugullu O. Cetin-Atalay R. Sarac, O.S. and V. Atalay. Protein function

annotation by subsequence based feature map. 2007.

[55] Uni�ed Modeling Language Web Site. http://www.uml.org.

[56] Frank Smadja. Retrieving collocations from text: Xtract. Computational Linguistics,

19(1):143�177, 1993.

[57] Doug; Kulchenko Pavel Snell, James; Tidwell. Programming WebServices with SOAP.

O�eilly Press, 1 edition, 2002.

[58] Karel Heymans Steven Maere and Martin Kuiper. Bingo: a cytoscape plugin to assess

overrepresentation of gene ontology categories in biological networks. Bioinformatics,

21(16):3448�3449, 2005.

[59] Contingency table de�nition. http://www.answers.com/topic/contingency-

table?cat=biz-�n.

[60] Xinglai Ji Tao Guo, Sujun Hua and Zhirong Sun. Dbsubloc: database of protein sub-

cellular localization. Nucleic Acids Research, 32:122�124, 2004.

[61] V Vapnik. Statistical learning theory. Wiley-Interscience, 1998.

[62] V. Vasudevan. A web services primer. http://webservices.xml.com/pub/a/ws/2001/04/04/webservices/index.html,

2001.

[63] Jean-Philippe Vert. Introduction to support vector machines and applications to com-

putational biology. DRAFT, 2001.

75

[64] Alexander Vezhnevets. http://research.graphicon.ru/machine-learning/gml-adaboost-

matlab-toolbox.html.

[65] World Wide Web Consortium (W3C). Soap version 1.2: Messaging framework.

http://www.w3.org/TR/SOAP, 2003.

[66] Wei Wang and Jiong Yang. Mining high dimensional data, mining sequential patterns

from large data sets. The Kluwer International Series on Advances in Database Systems,

28, 2005.

[67] W.R.Taylor. The classi�cation of amino acid conservation. J Theor Biol., 119(2):205�

218, March 1986.

[68] F. Yates. Tests of signi�cance for 2 x 2 contingency tables. Journal of the Royal

Statistical Society, Series A, 147(3):426�463, 1984.

[69] Mamun Zaman. An introduction to web services.

http://www.devarticles.com/c/a/Web-Services/An-Introduction-to-Web-Services,

May 2007.

76

Appendix A

CLASS DIAGRAMS

class System

WebService

- forcePrectionNeed(organism, prediction) : boolean
+ GetForcedPrediction(message) : predici ton
+ GetM atchingOrganismList(message) : organismList
+ GetPrediction(message) : prediction
- isInMEP2SLOrganism List(organism) : boolean

Plug_P2SL

+ confi rmT oContinuePrediction() : boolean
+ getOrganism List(geneNam e) : organismList
+ getPrediction(organism , geneName) : prediction

DbHandler

- connectT oCytoscape() : void
- connectT oMEP2SL() : void
- disconnectMEP2SL() : void
- disconnectT oCytoscape() : vo id
+ getAccession_Uniprot(organism , geneName) : accessionList
+ getOrganismList_Uniprot(geneNam e) : organismList
+ getPredictionFromMEP2SL(organism, geneName) : prediction
+ getSequence_Uniprot(organism , geneName) : sequence
+ getUniRefId(organism , accessionNo) : uniRefId
- queryOrganismList(geneNam e) : organismList
- queryPrediction_M EP2SL(organism, uniRefId) : prediction
- querySequence_Uniprot(organism , geneName) : sequence

Predictor

- cal lP2SL(userId) : prediction
- newUserCome() : void
- newUserGo() : void
+ predict(organism , geneName) : prediction

DbUpdater

+ checkUpdate() : void
- downloadUniprot() : void
- uniprotReleaseFi leCompare() : void

XMLParser

+ parse(xm lFi le) : vo id

DbCreator

+ createT able(table) : boolean
- dropT able(table) : boolean
- insertIntoT able(table, attributeList) : void
- updateDb() : void

Figure A.1: Class Diagram Relations.

77

A.1 PlugP2SL

This class works on the client side. It basically takes user requests and preferences, calls the

provided web services, and outputs the web service responses to the user.

Figure A.2: PlugP2SL Class.

A.1.1 Methods

boolean con�rmToContinuePrediction()

This method asks user for a con�rmation to continue the prediction process by P2SL. If user

con�rms to continue, then the web service method GetForcedPrediction is called.

organismList getOrganismList(geneName)

By this method, the web service method GetMatchingOrganismList is called with a gene

name parameter. The called web service method returns the organism list as output. The

list is output to the user.

prediction getPrediction(organism, geneName)

By this method, the web service methodGetPrediction is called with gene name and organism

name parameters. The called web service method returns the prediction as output. The

prediction is output to the user.

A.2 WebService

This class works on the server side. It provides a number of web services for remote usage,

and ful�ls the main functionality of the system by using DbHandler and Predictor classes.

78

Figure A.3: WebService Class.

A.2.1 Methods

boolean forcePredictionNeed(organism, prediction)

This method examines the prediction and the organism name. If the prediciton is null and

the organism name belongs to the organisms MEP2SL database contains, then there is a

possibility to �nd the predicition by using P2SL tool. But before continuing the process,

user is asked for con�rmation.

prediction GetForcedPrediction(message)

This method directly initiates the prediction process. predict method which is provided by

the Predictor class is called. The output of this method, which is the prediction, is output

to web service caller.

organismList GetMatchingOrganismList(message)

This method retrieves the related organism list with the given gene name. getOrganismLis-

tUniprot method which is provided by the DbHandler class is called. The result is output

to web service caller.

prediction GetPrediction(message)

This is the general method for retrieving prediction. At �rst, the organism name is examined

by isInMEP2SLOrganismList method. If the given organism name belongs to the organisms

MEP2SL database contains, then getPredictionFromMEP2SL method which is provided by

the DbHandler class is called, else predict method of the Predictor class is called. The result

is output to web service caller.

79

boolean isInMEP2SLOrganismList(organism)

If the given organism name belongs to the organisms MEP2SL database contains,this method

returns true, else returns false.

A.3 DbHandler

This class works on the server side. It provides access to the internal database including the

tables reducedUniprot and reducedUniRef and to the external database MEP2SL.

Figure A.4: DbHandler Class.

A.3.1 Methods

void connectToCytoscape()

This method connects to the internal database.

void disconnectToCytoscape()

This method disconnects from the internal database.

void connectToMEP2SL()

This method connects to the external database MEP2SL.

80

void disconnectMEP2SL()

This method disconnects from the internal database.

organismList getOrganismListUniprot(geneName)

This method is called by the WebService class when a request comes on retrieving the

organism list related with the given gene name. After the connection is established to the

internal database, reducedUniprot table is queried by the queryOrganismList method and

the connection is closed. The retrieved list is then output to the caller method.

prediction getPredictionFromMEP2SL(organism, geneName)

This method is called by the WebService class when GetPrediction method is called and

isInMEP2SLOrganismList method gives 'true' as an output. It initiates the process of

retrieving the prediction from MEP2SL database. Internal database is used for accessing

the uniRef id of the related record and then by using this id MEP2SL database is queried

for the prediciton. The retrieved prediction is then output to the caller method.

sequence getSequenceUniprot(organism, geneName)

This method is called by the Predictor class when predict method is called. After the con-

nection is established to the internal database,reducedUniprot table is queried by the query-

SequenceUniprot method and the connection is closed. The retrieved sequence information

is then output to the caller method.

accessionList getAccessionUniprot(organism, geneName)

This method queries the reducedUniprot table for accessing the accession numbers related

with the given protein. These numbers are then used for �nding the uniref id of the related

record.

uniRefId getUniRefId(organism, accessionNo)

This method queries the reducedUniRef table for accessing the uniRef id of a protein with

the given accession number and organism name.

81

prediction queryPredictionMEP2SL(organism, uniRefId)

This method queries the MEP2SL database for accessing the subcellular localization predic-

tion of a protein with the given uniRef id and organism name.

organismList queryOrganismList(geneName)

This method queries the reducedUniprot table for accessing the organism names related with

the given protein.

sequence querySequenceUniprot(organism, geneName)

This method queries the reducedUniprot table for accessing the sequence information related

with the given protein.

A.4 Predictor

This class works on the server side. It provides access to the P2SL predictor, handles

multiuser usage of the predictor and outputs the retrieved predicition to the caller method.

Figure A.5: Predictor Class.

A.4.1 Methods

prediction predict(organism, geneName)

This is the main method of this class. After accessing the sequence information of the given

protein by using the getSequenceUniprot method of the DbHandler class, callP2SL is called

for initiating the P2SL prediction process. newUserCome and newUserGo methods are

called at the beginning and at the end of the method respectively for handling the multiuser

usage of the P2SL tool.

82

prediction callP2SL(userId)

This method initiates the P2SL prediction process. Outputs the result given by the P2SL

tool.

void newUserCome()

This method creates a seperate working environment for each user, before calling the P2SL

tool.

void newUserGo()

This method destroys the created working environment after calling the P2SL tool.

A.5 DbUpdater

Figure A.6: DbUpdater Class.

This class works on the server side. It handles the regular update of the internal database

tables.

A.5.1 Methods

void checkUpdate()

This method checks whether there is a need for update by calling the uniprotReleaseFile-

Compare method. If a new release is announced, then it initializes the update process by

calling the downloadUniprot method and parse method of the XMLParser class.

83

boolean uniprotReleaseFileCompare()

This method downloads the release �le of Uniprot and compares it with the �le stored in the

system since the last update. If version number is changed, then it returns true, else returns

false.

void downloadUniprot()

This method downloads the UniRef100 and UniProtKB/Swiss-Prot databases in xml format.

A.6 XMLParser

This class works on the server side. It parses the given XML �les.

Figure A.7: XMLParser Class.

A.6.1 Methods

void parse(xmlFile)

This method basically parses the given XML �le.

A.7 DbCreator

This class works on the server side. It handles the reconstruction of the internal database

tables in the update process.

A.7.1 Methods

boolean createTable(table)

This method is used for the creation of the internal database tables.

84

Figure A.8: DbCreator Class.

boolean dropTable(table)

This method is used for the deletion of the internal database tables.

void insertIntoTable(table, attributeList)

This method is used for inserting the records with the given �elds to the speci�ed tables.

void updateDb()

This method initiates the reconstruction of the internal database tables.

85

