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ABSTRACT 
 
 

COMPUTATIONAL ANALYSIS OF ADVANCED 
COMPOSITE ARMOR SYSTEMS 

 
 

BAŞARAN, Mustafa Bülent 

M.Sc., Department of Mechanical Engineering 

Supervisor: Prof. Dr. Levend PARNAS 

September 2007, (116 Pages) 

 
 

Achieving light weight armor design has become an important engineering 

challenge in the last three decades. As weapons becoming highly sophisticated, 

so does the ammunition, potential targets have to be well protected against such 

threats. In order to provide mobility, light and effective armor protection 

materials should be used. 

 

In this thesis, numerical simulation of the silicon carbide armor backed by 

KevlarTM composite and orthogonally impacted by 7.62mm armor piercing (AP) 

projectile at an initial velocity of 850 m/s is analyzed by using AUTODYN 

hydrocode. As a first step, ceramic material behavior under impact conditions is 

validated numerically by comparing the numerical simulation result with the test 

result which is obtained from the literature. Then, different numerical simulations 

are performed by changing the backing material thickness, i.e. 2, 4, 6 and 8mm, 

while the thickness of the ceramic is held constant, i.e. 8mm. At the end of the 

simulations, optimum ceramic/composite thickness ratio is sought.  

 

The results of the simulations showed that for the backing thickness values of 4, 6 

and 8mm, the projectile could not perforate the armor system. On the contrary, 

the projectile could penetrate and perforate the armor system for the backing 

thickness value of 2mm and it has still some residual velocity. From these results, 
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it is inferred that the optimum ceramic/composite thickness ratio is equal to about 

2 for the silicon carbide and kevlar configuration.  

 

Keywords: Composite armor, numerical impact simulation, silicon carbide, 

kevlar, aramid, ceramic/composite thickness ratio. 
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ÖZ 

 
 

İLERİ KOMPOZİT ZIRH SİSTEMLERİNİN HESAPLAMALI 
YÖNTEMLERLE ANALİZİ 

 
 

BAŞARAN, Mustafa Bülent 

Yüksek Lisans, Makine Mühendisliği Ana Bilim Dalı 

Tez Yöneticisi: Prof. Dr. Levend PARNAS 

Eylül 2007, (116 Sayfa) 

 
 

Hafif zırh tasarımı son otuz yılda mühendisliğin önemli bir dalı olmuştur. Silahlar 

ve kullanılan mühimmat geliştikçe araçların da bu tehditlere karşı daha iyi 

korunması gereği ortaya çıkmıştır. Araçların hareket kabiliyetinin korunması için 

hem hafif hem de etkin zırh malzemelerinin kullanılması gerekmektedir. 

 

Bu çalışmada AUTODYN programı kullanılarak 850 m/s’lik ilk hız verilmiş olan 

7.62mm zırh delici mermi çarptırılan KevlarTM ile güçlendirilmiş silikon karbür 

zırhın nümerik benzeşim analizi yapılmıştır. İlk olarak, darbeye maruz kalan 

seramik malzeme davranışı, nümerik analiz sonuçlarının literatürden bulunan test 

sonuçlarıyla karşılaştırılmasıyla doğrulanmıştır. Daha sonra sabit kalınlıktaki 

(8mm) seramik malzemesi kullanılarak ve destek malzeme kalınlığı değiştirilerek 

(2, 4, 6, 8mm) değişik nümerik simülasyonlar yapılmış ve optimum 

seramik/kompozit kalınlık oranı incelenmiştir. Simulasyon sonuçları göstermiştir 

ki; 4, 6 ve 8mm kalınlığındaki destek plakaya sahip zırh sistemi atılan mermi 

tarafindan delinememiştir. Ancak, 2mm destek plaka kalınlığına sahip olan zırh 

sistemi mermi tarafından delinebilmiştir ve bu delinme sonrasında merminin hala 

belirli bir hıza sahip olduğu görülmüştür. Bu sonuçlar ışığında, silikon karbür ve 

kevlar zırh birleşimi için optimum seramik/kompozit kalınlık oranı yaklaşık 2 

olarak bulunmuştur. 
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Anahtar Kelimeler: Kompozit zırh, sayısal darbe simülasyonu, silikon karbür, 

kevlar, aramid,  seramik/kompozit kalınlık oranı. 
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CHAPTER 1 
 
 

1 INTRODUCTION 
 
 
1.1 Motivation 
 

People have always attempted to protect themselves against their enemies and the 

weapons being used, but this has always been balanced by their need to be 

mobile. The earliest form of armor was not intended to protect any form of 

transportation but to protect the person. From the middle ages, the foot soldier 

was protected with some kind of body vest, a helmet and a shield. When the scale 

of attack was dramatically increased with the advent of fire arms, any form of 

protection was easily overmatched and it was soon abandoned in favor of the 

greater mobility given to the individual. When the need for fighting vehicles was 

arisen, the importance of achieving lightweight protection has also been 

recognized. [1]. 

 

If an ideal armor material is sought, there would be several factors to consider; 

but the major consideration would be that the armor should be effective. It must 

do the job it is designed to do, and it should be light. A generally applicable 

characteristic of armor is areal density, which is defined as the weight per square 

meter of its area normal to the direction of attack. Areal density ranges from 40 

kg/m2 for very light vehicles to 3.5 tonnes/m2 for the frontal armor of battle tanks 

[2].  

 

Ceramics are materials that have been extensively used for body armor protection 

and they are particularly interesting to the vehicle designer as they show most 

promise as armor protection for light vehicles. They originated in 1960s as 

protection of US helicopter crews in Vietnam and only began to be used on light 
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Armored Fighting Vehicles (AFV) around 1990. Table 1.1 shows the density and 

hardness (Vickers) values of steel (as Rolled Homogenous Armor and Dual Hard 

Steel Face), aluminum and various ceramic materials. There are several candidate 

ceramic materials, but the most common are boron carbide, silicon carbide and 

alumina (aluminum oxide). Armor Piercing (AP) bullet design favors high-

density, high-hardness core materials such as tungsten carbide, so in order to 

shatter bullets made of this material the candidate armor materials must exceed 

this hardness.  

 

All ceramic materials are extremely hard, but they are also too brittle. They 

provide protection because extreme hardness causes the projectile to shatter as 

the ceramic itself shatters. Ceramic materials, as armor, are commonly used as 

tiles (100x100 mm) so that cracks caused by a hit are confined to one tile, and 

they are no or very little multi hit capability. They are too brittle to be used by 

itself so they have to be mounted other types of armor, i.e. the backing plate [2]. 

 
 
 

Table 1.1 Material properties of various metals and ceramics [2]. 

 

Material 
Density  
(kg/m3) 

Vickers 
hardness 

Specific hardness 

RHA (Rolled 
Homogeneous Armor) 

7850 240-380 0.031-0.048 

Dual hard steel, face 7850 600-750 0.076-0.096 

7039 aluminum 2780 150 0.054 

Alumina 85% 3450 900-970 0.261-0.281 

Alumina 99% 3900 1500-1700 0.385-0.436 

Silicon carbide 3150 2200-2500 0.698-0.794 

Titanium diboride 4250 2500-2700 0.588-0.635 

Boron carbide 2450 3000 1.224 
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If further reduction in weight is desired, as in the case of protection of airplane 

cockpits or a helicopter seat, it is reasonable to select a backing material that is 

efficient in ballistic performance and also has low density. Fiber-reinforced 

composite materials have become an important class of engineering materials 

over the last three decades, this being due to their outstanding mechanical 

properties, flexibility in design capabilities, and ease of fabrication. Additional 

advantages include high strength-to-weight and stiffness-to-weight ratios, good 

corrosion, wear and impact resistance, and excellent thermal and acoustical 

insulation. Fiber composites are used routinely in such diverse applications as the 

automobile, aircraft, piping, offshore and space industries. Due to the light weight 

of fiber-reinforced plastic materials, they are being used increasingly in the 

military applications as armor [3]. 

 

The modern composite armor, typically consisting of a combination of a hard 

facing layer of ceramic tiles and a fiber reinforced composite backing plate, is 

under development to satisfy ballistic and structural requirements, while 

providing weight savings of approximately 30–40%. The function of the ceramic 

layer is to deform and erode the projectile and thereby reduce the local pressure 

in the composite backing plate. The composite layer holds the fragmented 

ceramic particles while absorbing a significant part of the kinetic energy of the 

projectile by a variety of deformation processes [4]. 

 

Armor design and analysis has been approached from three analysis perspectives, 

namely: empirically, analytically, and numerically. Empirical analyses generally 

include tests. These tests regarding penetration and perforation studies can be 

divided into three main categories when the impact velocity of the projectile is 

concerned, i.e. Vi, namely low velocity impact (Vi < 50 m/s), ordnance velocity 

regime (50 < Vi < 1300 m/s), and finally high velocity penetration (Vi > 1300 m/s) 

[5]. The classification of the penetration and perforation studies is summarized in 

Table 1.2. However, by its nature the tests are time consuming and are not cost 

effective. Furthermore experimental approach does not yield detailed information 

of the impact event; i.e. the history of the projectile, the trends when changing the 



 
4 

configurations of the armor system. Moreover, the complexity of impact 

problems caused by the high number of involving parameters like relative 

velocity of impact, shape of impacting objects, dimensions and material 

characteristics, etc., increases when composite materials are involved, due to the 

orthotropic properties and distinct failure modes that may occur. [5,6]  

 
 
 

Table 1.2 Impact response of materials [7] 

 

έ Vi Effect Method of Loading 

108 >12 km/s 
Explosive Impact 
Colliding Solids 
Vaporized 

- 

3-12 km/s 
Hydrodynamic Material 
Compressibility not 
negligible 

Explosive 
Acceleration 

106 

1-3 km/s 

Fluid Behavior in 
Materials; Pressures 
Approach or Exceed 
Material Strength; 
Density a Dominant 
Parameter 

Powder Guns, Gas 
Guns 

104 500-1000 m/s 
Viscous-Material Strength 
Still Significant 

Powder Guns 

102 50-500 m/s Primarily Plastic 
Mechanical Devices, 
Compressed Air Gun 

100 <50 m/s 
Primarily Elastic Some 
Local Plasticity 

Mechanical Devices, 
Compressed Air Gun 

 
 
 
As with analytical models, the most famous one that deals with two component 

armors is the Florence model [8]. This model assumes a ceramic hard facing and 

a ductile backing plate impacted by a rigid projectile. It predicts the protection 

ballistic limit velocity which is defined as the minimum velocity at which a 

particular projectile is expected to consistently, completely penetrate armor of 
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given thickness at a specified angle of obliquity. It is a measurement of the 

resistance of protective armor to projectile penetration [9]. 

 
 
 

 

Figure 1.1 Florence impact model [9]. 

 
 
 
The Florence model is described by: 
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where 

  

pV : predicted ballistic velocity, 

2ε : breaking strain of the backing plate, 

2σ : ultimate tensile strength of backing plate (UTS), 

2ρ : density of the backing plate, 

2h : thickness of the backing plate, 

1ρ : density of the front plate, 

1h : thickness of the front plate, 
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pM : mass of the projectile, 

pa : radius of the projectile. 

 

Nevertheless, the complexity of many impact problems often makes it very 

difficult or sometimes impossible to use closed-form analytical solutions. 

Numerical models, based on solving all the governing equations over a spatial 

grid at successive time increments, have proven to be valuable design tools since 

they can help achieve a comprehensive understanding of the ballistic impact 

process. A number of numerical models simulating the ballistic impact process on 

two-component ceramic–metal and ceramic–composite armors have been 

published since the early 90s [10]. 

 

Although simulation of ballistic impact event is a complicated job due to complex 

material parameters and the need for the definition of advanced strength and 

failure models for the interaction between the projectile and the armor materials, 

once these aspects are well defined various different impact problems (different 

armor thickness, different impact velocity of the projectile etc.) can be solved 

without further effort.   

 

1.2 Impact Event 

 

Impact may be defined as the relatively sudden application of impulsive force, to 

a limited volume of material or part of a structure. Results of an impact can be 

largely elastic, with some energy dissipated as heat, sound, internally in the 

material etc. Alternatively there may be deformation, permanent damage, entry of 

the projectile into the target (penetration) or passing through of the projectile 

through the target (perforation) [11]. Figure 1.2 summarizes the various failure 

mechanisms of armors. 
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Figure 1.2 Mechanisms of penetration of armor [12]. 

 
 
 

Spalling, tensile failure as a result of the reflection of the initial compressive 

wave from the rear surface of a finite-thickness plate, is a commonplace 

mechanism under explosive and intense impact loads, especially for materials 

that are stronger in compression than they are in tension (e.g. ceramics) [12]. 

 

Impact by a blunt or hemispherical-nosed striker at a velocity close to the ballistic 

limit (the minimum velocity required for perforation) of a finite-thickness target 

results in the formation of a nearly cylindrical slug of approximately the same 

diameter as the projectile which is termed as the plugging failure [12]. 

 

Petalling is produced by high radial and circumferential tensile stresses after the 

passage of the initial stress wave. The intense-stress fields occur near the tip of 

the projectile. Bending moments created by the forward motion of the plate 

material pushed by the striker cause the characteristic deformation pattern. It is 

most frequently observed in thin plates struck by conical bullets at relatively low-

impact velocities or by blunt projectiles near the ballistic limit [12]. 
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1.3 Literature Survey 

 

1.3.1 Mechanics 

 

There are various mechanisms that contribute to the penetration/perforation of 

armor plates. When different types of armor plates are used together, i.e. ceramic 

tiles backed by composite plates, the mechanisms get more complex. Therefore 

the history of the analysis of impact on armor plates starts with the studies on the 

mechanics of penetration and perforation. 

 

Cristescu et al. [13] analyzed the failure mechanisms of glass/epoxy 0/90 

composite targets perforation by 1 cm-diameter cylindrical steel projectiles. This 

study suggested that the typical failure mechanism was indentation of the 

projectile in the first lamina, which caused fiber stretching while cutting-out the 

lamina. The stretching resulted in strain-induced delamination that progressed 

over the fiber stretch area. The process developed lamina-by-lamina. The more 

layers within a lamina, the stronger its resistance to plugging and the larger the 

corresponding delamination area. 

 

Mechanics of penetration and perforation is analyzed in detailed by Wilkins [14]. 

Wilkins offers two types of material failure that are involved in the impact 

problems. One of them is when the elastic limit is exceeded and the plastic flow 

occurs. The other one is when the cohesive strength of the material is exceeded 

and fracture occurs. He also explained the stress wave phenomenon when a 

projectile strikes a target; first wave into the target is a compression wave 

followed by a release wave. An additional release wave is generated when the 

compression wave reaches the free boundary of the target opposite the impact. 

The interaction of the two release waves can cause very high tensile stresses to 

develop in the target. Finally tensile failure what is called as spall which is the 

first failure mode can occur in the target. 
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Wilkins gave some important parameters of target plates to resist penetration as 

bulk and shear moduli, strength, density, and thickness. 

 

He stated that one of the most important parameters for a target to defeat a 

pointed projectile is to break off the point as early as possible. The target property 

that could satisfy this is a large resistance to deformation. The material properties 

responsible for resisting deformation are high moduli and high shear strength. 

The shear strength is a volume effect and to utilize this property the thickness of 

the target must be sufficiently large compared to the projectile dimensions. 

 

Wilkins [14] also mentioned the composite armors which are comprised of two or 

more armor plates. He explained the required armor properties to defeat a 

projectile as being thick plates, high bulk and shear moduli, high yield stress to 

maintain the resistance to deformation at high stress levels, and resistance to 

fracture when large tensile stresses (spall) occur. Nevertheless it is not possible to 

find one material that maximizes all of these properties when the total areal 

density of the target must be minimized. He suggests using ceramic plates backed 

by some other material which is resistant to tensile stresses in contrast to 

ceramics. In his analysis, he pointed to the formation of fracture conoid in the 

ceramic material at the impact surface and spread of the conoid to the interface 

between the ceramic and the backup plate. Figure 1.3 represents the formation of 

the fracture conoid in the ceramic target. 

 
 
 

 

Figure 1.3 Fracture conoid formation [15].  
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Finally Wilkins [14] emphasized the conoid formation event. He explained the 

effect of the conoid as being to limit the amount of ceramic that participates in 

transmitting the load to the backup plate. In his analysis he found the highest 

stress level on the backup plate occurred at the center of impact where greatest 

compression occurs. 

 

Sierakowski and Takeda [16] studied in-plane failure mechanisms of glass/epoxy 

composite systems due to impact by 9.5 mm, blunt and hemi-spherically-nosed 

steel projectiles. Hemispherical nose impactors generated localized delamination, 

at the same time generating a single crack. For the blunt nosed projectiles a 

generator strip (a piece of lamina delaminated from the target along the fiber 

direction) of width 2D (D is projectile’s diameter) ran along the fibers at the rear 

(distal) side of the target. 

 

Sun and Wang [17] performed pendulum ball impact tests on graphite/epoxy 

laminated samples. Matrix cracking and delamination were prevailing damage 

modes for low velocity impact, and fiber breakage is observed at projectile 

velocity of about 10-100m/s. The material response of a composite target to 

ballistic impact is characterized by a shorter time of applied load (the projectile-

target interaction time), when compared with the low velocity impact load time. 

Hence the studies on the damage of composite materials under ballistic impact 

are focused on the localized damages (damage concentration). 

 

Ruiz and Duffin [18] studied the localized damage of reinforced carbon/epoxy 

laminates impacted by 10g impactor launched with a velocity up to 600 m/s at an 

angle of 40o. The following failure modes on plates impacted by projectiles were 

observed: 

 

• Total destruction at an impact velocity of 280 m/s, 

• Extensive cracking and delamination at an impact velocity of 240 m/s, 

• Small damage at an impact velocity of 200 m/s. 
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They observed relatively large area of plastic deformation at sub critical 

velocities of impact. An increase in the impact velocity resulted in stronger 

localization of the damage area around the impact point. 

 

Bruchey and Horwath [19] expressed the importance of utilizing the backing and 

the surrounding plates to the ceramic facing layer. They explained the function of 

the ceramic material in the armor system as being the breaking up of the Armor 

Piercing (AP) threat while terminating of fragment energy in the backing 

material. It was postulated that the performance of these “composite” armor 

systems was influenced by the ability of the ceramic to shatter and destroy some 

portion of the AP threat on the tile surface -interface defeat of the AP projectile 

or dwell- by forcing the projectile flow radially outward without penetrating 

significantly, with some harder ceramics being considerably more effective armor 

components. 

 

Gellert et al. [20] analyzed the ballistic impact of conical and flat projectiles 

against glass-fiber plastics. The test results reveal that the dependence of impact 

energy at the ballistic limit velocity (this critical energy can be reduced to the 

perforation energy) is a bilinear function of the target thickness. The fracture 

analysis showed that indentation and dishing (disc shape removal of the target 

material which is larger in diameter than the projectile) are two main deformation 

mechanisms, which are responsible for perforation. The indentation and dishing 

energies are linear functions of the target thickness, so the perforation energy, 

which is just a sum of those, is a bilinear function. The dishing effect is observed 

mainly at small thicknesses of the targets and a combination of indentation that is 

associated with the fiber breakage and dishing is observed for thick targets.  

 

Fink and Kaufmann et al. [21, 22] emphasized the roles of ceramic tiles and fiber 

composite backing plates as follows: ceramics destroy the tip of the projectile and 

distribute the impact load over a large area of the composite, and decelerate the 

projectile. The composite layer, however, supports the ceramic tiles and acts as a 

barrier against the ceramic fragments and while further resisting the projectile. 
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Dechaene et al. [23] identified important mechanisms of fiber composite 

materials under low velocity impact. Initially, the damage starts with matrix 

cracking on the back of a laminate, where tensile stresses are dominant. The 

matrix-cracking gradually develops radially over a larger area and in the through-

the-thickness direction, starting from the point at the back of a laminate, which is 

opposite to the projectile-target contact point, but the damage does not usually 

reach projectile-target contact point, where the compression stress state is 

established. Delamination develops concurrently with matrix damage and the 

extent of this damage in laminated structural material depends on the interfacial 

strength between laminas. Finally, fiber breakage occurs, when the tensile stress 

achieves extreme magnitude in the fibers.  

 

In the paper by Fujii et al. [24] Carbon Fiber Reinforced Plastic (CFRP) samples 

with different fiber strength are analyzed. Study has shown that impact 

delamination for laminates with stronger fibers and larger failure strain is larger 

and deeper. This study has also revealed that within the range of high velocities 

(from 500 up to 1230 m/s), fracture occurs in a fluid manner for 2 mm-samples. 

For 6 mm-samples, the front layers were damaged as the 2 mm-samples did, 

however, the rear layers were damaged in an extrusive manner with delamination 

and plugging mechanism. Plugging develops as a result of a nearly cylindrical 

slug of approximately the same diameter as the projectile being set in motion by 

the projectile. Failure occurs due to large shears produced around the moving 

slug. The delamination width increased with impact energy for thick laminates 

but remained constant for thin laminates. The failure mechanism for thin targets 

in this velocity range is fluid-like and the fracture is smaller.  

 

Hammond et al. [25] studied impact of 12.7 mm steel projectiles onto the carbon-

fiber composites. Observations revealed that the target damage was in the vicinity 

of the projectile diameter at the moment of the projectile’s entrance into the 

target. After the target was fully exited, cracking occurred in the outer ply both in 

the fiber direction and orthogonally to the fiber direction resulting in the ply’s 

delamination. 
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1.3.2 Analytical Models 

 

Analytical models that turn the impact problem into a mathematical model 

generally give insight about some parameters/properties of the armors. The basic 

form of the analytical model was proposed by Florence [8] the details of which 

were given previously. 

 

Hetherington [26] study aimed at seeking the ratio of front plate thickness ratio to 

back plate thickness which will provide a specified level of protection at 

minimum weight by using the Florence model [8]. He kept the armor material 

properties ( 2ε , 2σ , 1ρ , 2ρ ), areal density of the armor system )( 2211 hh ρρ +  and 

the threat parameters ( pM , pa ) while changing the ratio of ceramic to backing 

plate thickness ( 21 / hh ). At the end of his work, an insight is obtained into the 

factors governing the optimum value of ( 21 / hh ) by seeking an optimum to the 

Florence equation analytically: 

 

1

2

2

1 4
ρ

ρ
≈

h

h
 (1.3) 

 

Equation (1.3) reveals that the ratio of ceramic to backing plate thickness is 

determined principally by the density of the materials employed. Hetherington 

suggested that optimum 21 / hh  for alumina/aluminum combination is in the 

region of 2.9, that for alumina/Glass Fiber Reinforced Plastic (GFRP) is about 

2.5, and that for alumina/Kevlar is about 1.6. 

 

Wang and Lu [27] studied the same problem. They kept the total thickness of the 

armor plates constant rather than areal density and sought a solution to find the 

ratio of the front plate thickness to that of backing plate. 

 

Benloulo and Gálvez [28] developed a very simple one-dimensional and fully 

analytical model of ballistic impact against ceramic/composite armors. The model 
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made it possible to calculate the residual velocity, residual mass, the projectile 

velocity and the deflection or the strain histories of the backup material. The 

authors also checked the validity of the analytical model both with ballistic tests 

and numerical simulations giving good predictions in good agreement with them. 

 

Ben-Dor et al. [29] investigated the problem considered in Hetherington’s [26] 

study for an arbitrary two-component armor. The aim of this study was to find the 

thickness of the plates that provide the maximum ballistic limit velocity for a 

given areal density of the armor. It was shown that the thickness of the plates can 

be changed in a quite broad range in the neighborhood of the optimal design of 

the armor without decline in its defense properties. 

 
1.3.3 Numerical Studies 

 

As stated previously, analyzing the ballistic event with numerical models gives 

detailed information about the impact problem in various aspects. However, it is a 

valuable tool as long as the solution (or findings) is confirmed with tests or some 

agreed behaviors of the involving materials. 

 

Nandlall et al. [30] studied on the ballistic response of glass-fiber-reinforced 

plastic (GFRP) laminates by numerical simulations. A new constitutive model is 

implemented into the finite element code LS-DYNA2D. The ballistic limit 

velocities obtained numerically compare well with experimental ballistic limit 

data. The model enables the strain softening feature and thus providing the ability 

to simulate energy absorption due to fracture. The ability to display the level of 

damage in a spatially continuous fashion is an attractive feature of the model 

developed in this study. 

 

Mahfuz et al. [31] analyzed the high velocity-impact on Al2O3 ceramic backed by 

S2-glass fiber composites by fragment simulating projectiles (FSP). The 

numerical study was performed using the LS-DYNA3D, which is an explicit 

finite element code dedicated to analyze dynamic problem associated with large 
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deformation, low and high velocity impact, ballistic penetration and wave 

propagation. The main objective of the finite element analysis was to investigate 

the response of the armor in the event of a projectile striking at a velocity close to 

V50 ballistic limit velocity which is defined as the velocity at which the 

probability of perforation of an armor material is 50 percent. The energy histories 

of the projectile, target and the total system were analyzed.  

 

In the paper by Jovicic and Zavaliangos [32], the finite element (FE) analysis was 

performed to simulate the structural behavior of composite armors, and assess the 

effect of materials selection and fiber architecture. Baseline performance of the 

model was evaluated by the 2D simulation of the impact on a ceramic plate. 

Residual velocity and back-plane displacement time history were evaluated as a 

function of different impact site and the projectile incident angle. The effect of 

the ceramic facing size on the projectile residual velocity and displacement of the 

backing plate was investigated, and it was found that projectile impact between 

two spheres, and smaller facing size compared to projectile size, lower residual 

velocity and back-plane displacement. 

 

Lamina failure model for fabric composites was extended to model progressive 

post failure by Yen [33]. Continuum damage mechanics (CDM) model which 

characterizes the growth of damage by decreasing the material stiffness was used 

in this respect. Simulations of the ballistic impact of S2-Glass/Epoxy composite 

panels were conducted by taking account for the strain-rate sensitivity properties 

by using LS-DYNA. The implemented model was successfully utilized to predict 

the ballistic limit composite laminates subjected to high velocity ballistic impact 

conditions. 

 

Numerical simulation of impact, for both low and moderately high speed, of 5mm 

radius steel sphere on composite laminate plates reinforced with Kevlar 29 was 

studied by Silva et al. [5]. All the simulations presented in the paper were carried 

out by using the hydrocode AUTODYN, which is specially designed for non-

linear, transient, dynamic events. Deflection history of the head of the striker, 
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maximum impact load obtained from the numerical simulation were in good 

agreement with those obtained from the experimental results. Another numerical 

study of ballistic impact of a simulated fragment on Kevlar fiber reinforced panel 

was held in order to determine the V50 and the global damage. The simulation 

result for predicting the V50 was in an good correlation with the test result. Very 

similar trends were also observed for the global damage and delamination 

patterns. 

 

A combined numerical and experimental study for the analysis of Ceramic/Kevlar 

29 composite armor system against 4.0g NATO 5.56 mm calibre bullet has been 

performed [34]. The simulations were performed using hydrocode AUTODYN, 

and all simulations were done by changing the thickness of the ceramic tiles 

while keeping the areal density of the armor system constant. It was shown that 

the results obtained from the present simulation match fairly well with the 

theoretical ones obtained by the Florence model. 

 

Another study was held by Mahdi and Gillespie [35]. In this study, the 

mechanism of load transfer and deformation of alumina (Al2O3) ceramic layer 

backed by fiber composite subjected to bending loads were investigated. The 

numerical simulations were performed using both 2D and 3D models. The results 

from the 2D model were shown to compare well with that of the 3D model. 

 

In the study of Fawaz et al. [36], several sets of 3-D finite element models were 

developed to investigate the response of a ceramic–composite integral armor 

system to normal and oblique penetrating projectiles (7.62 AP round). 

Comparison of the energy histories as well as stress and force distributions of 

armors subjected to normal and oblique impacts have been conducted by using 

the finite element code LS DYNA3D. Developed models were able to simulate 

projectile erosion, ceramic conoid formation, as well as the failure of ceramic and 

composite plates. The interlaminar stresses at the ceramic–composite interface 

and the forces at the projectile-ceramic interface for oblique impact were found to 

be smaller than those for normal impact. Furthermore, it was found that when a 
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projectile impacts obliquely on the armor, it changes its angle during the 

perforation, forming an elliptical cavity at the tip of projectile. Finally, it was 

observed that the projectile erosion in oblique impact is slightly greater than that 

in normal impact. It was also shown that the preliminary computations 

demonstrated reasonable correlation with existing experimental data. 

 

A three-dimensional model to provide a reasonable predictions of the 

deformation response of polymer matrix composites including strain rate effects 

developed in the study of Ala et al. [37]. This model is implemented into the 

explicit dynamic finite element code LS-DYNA. Simulations included the 

behavior of composite structures under various loads such as impact and tensile 

loading. Examples of composite materials under crash and tensile loading are 

used to validate the model. The predicted results compared well to experimentally 

obtained stress–strain curves. 

 

The ballistic performance of low weight Al2O3 Ceramic-Glass Fiber Reinforced 

Plastic (GFRP) laminated armor system against 7.62 mm AP rounds is 

investigated by using AUTODYN hydrocode by Aydınel, Ögel and Yıldırım 

[38]. In this analysis the thickness of the ceramic plate kept at a constant value of 

8mm while the thickness of the GFRP was changed between 1 to 20 mm and the 

residual velocity of the projectile was analyzed. The results of the numerical 

simulations were compared with those of the experimental work and Florence’s 

analytical studies. 

 

Grujicic et al. [39] carried out a detailed computational analysis of the ballistic 

performance of composite and hybrid armor panels hard-faced with Al2O3 

ceramic tiles by using AUTODYN software. The initial simulations were 

performed to validate the composite material model. In these simulations, there 

was an agreement between the V50 values obtained from the numerical 

simulations and those from the experimental results. Next, the simulations were 

done by considering the whole armor system, i.e. composite panels hard-faced 
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with alumina ceramic tiles. Again the overall agreement between the 

experimental and computational results is quite good.  

 

1.4 Scope of the Study 

 

In this thesis, the numerical analysis of the advanced composite armor system 

impacted by an AP bullet will be performed. The composite armor is composed 

of two main layers which include two different materials. In the front layer, there 

is silicon carbide (SiC) ceramic. KevlarTM fiber reinforced plastic (KFRP) will be 

used as the backing plate for the ceramic, which is highly brittle. The projectile to 

be used in the numerical simulations will be of 7.62 mm. In all of the simulations 

the ceramic plate thickness is held constant, while different KFRP plate 

thicknesses are used to propose an optimum thickness values for these materials 

in armor applications. After getting the simulation results, areal densities of 

different configurations of the armor system will be compared. At the end, weight 

saving in the armor system will be discussed when the armor configuration has 

the optimum ceramic/composite ratio. Details of these studies will be explained 

in the following chapters  
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CHAPTER 2 
 
 

2PROBLEM DEFINITION 
 
 
2.1.Introduction 
 

The response of materials and structures to intense impulsive loading is quite 

complex. The behavior of impacted solids may be divided into three regimes. 

First one is for loading conditions that result in stresses below the yield point, 

materials behave elastically and for metals Hooke’ s law is applicable. The 

second regime includes the events when the intensity of the applied loading is 

increased and the material is driven into the plastic range. The behavior here 

involves large deformations, heat generation, and often material failure of the 

colliding solids through a variety of mechanisms. The third and the last behavior 

may be the following one: Loading intensity further increases, pressures are 

generated that exceed the strength of the colliding solids by several orders of 

magnitude, and as a consequence the material behaves hydrodynamically. 

 

For low intensity excitations, both the geometry of the entire structure as well as 

the nature of the material from which it is made play a major role in resisting 

external forces. As loading intensity increases, the response tends to become 

highly localized and is more affected by the constitution of the material in the 

vicinity of load application than the geometry of the total structure [40]. 

 

2.2 Impact Theory 

 

Impact processes are encountered when bodies are subjected to rapid impulsive 

loading, whose duration of application is short compared to the time for the body 

to respond inertially. The inertial responses are stress pulses propagating through 
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the body to communicate the presence of loads to interior points. In our everyday 

experience, such loadings are the result of ballistic impact or explosion [41]. 

 

In the evolution of impact theory, four major aspects emerged as distinct subjects 

of interest. These four aspects are: 

 

• Classical mechanics 

• Elastic stress wave propagation 

• Contact mechanics 

• Plastic deformation 

 

The impulse-momentum approach can address the relationship between the 

velocities before and after impact, given the knowledge of the coefficient of 

restitution. Nevertheless, it is incapable of calculating the force at the impact 

point. The wave propagation theory is necessary to predict stresses inside the 

solid. The contact mechanics approach offers the possibility of treating the 

contact region as a spring damper system, making it possible to treat the impact 

as a continuous-time dynamic phenomenon. The large plastic strain theory is 

most useful in the domain of perforation by projectiles, as in ballistics. [41]  

 

Classical mechanics: This involves the application of the fundamental laws of 

mechanics to predict the velocities after impact. The impulse-momentum law 

forms the core of this approach. The algebraic nature of this method makes the 

mathematical development easy and accessible to most engineers. The loss of 

energy in any real impact process is taken into account by means of the 

coefficient of restitution. The accuracy of this coefficient is crucial to obtaining 

sufficiently good results. Unfortunately, this approach is unable to predict the 

contact force between bodies or the stresses in them. 

 

Two limit cases are considered in the elementary theory of impact: a perfectly 

elastic impact, and a perfectly inelastic impact. The former case implies that the 

kinetic energy of the system is conserved. The latter case assumes that the two 
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bodies coalesce, to move as a single mass, after impact. The velocity of the 

combined mass can then be predicted using only the conservation of momentum. 

However, most impacts are neither fully elastic nor fully inelastic. This partial 

loss of the initial kinetic energy is expressed in terms of the restitution 

coefficient, e, first introduced by Newton. This coefficient relates the relative 

velocities before and after impact according to the equation: 

 

)( 2121 iiff VVeVV −−=−  (2.1) 

 

where 

 

fV1 : final velocity of the colliding body 1, 

fV2 : final velocity of the colliding body 2, 

iV1  : initial velocity of the colliding body 1, 

iV2  : initial velocity of the colliding body 2, 

e    : coefficient of restitution. 

 

The quantity e is a dimensionless coefficient between 0 and 1 where 0 

corresponds to a totally inelastic impact and 1 to a perfectly elastic impact. The 

restitution coefficient is a global measure of the energy loss during impact and 

may incorporate different forms of dissipation such as viscoelastic work 

performed on the materials of the impacting bodies, plastic deformation of 

contact surfaces and vibration in the two bodies. The restitution coefficient is not 

an internal material property. It depends on the materials of the bodies, their 

surface geometry and the relative impact velocity. 

 

Elastic wave propagation: Impact is accompanied by a stress wave that 

propagates in the impacting bodies away from the region of impact. If the energy 

transformed into vibrations becomes an important fraction of the total energy, 

then the classical approach becomes insufficient to examine an impact problem.  
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The system of equations governing the motion of a homogeneous, isotropic, 

linearly elastic body consists of the stress equation of motion, Hooke’ s  law, and 

the strain-displacement relations is given by Achenbach [42]: 

 

iijij uf &&ρρσ =+,  (2.2) 

ijijkkij εµδελσ 2+=  (2.3) 

( )
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2

1
+=ε  (2.4) 

 

where 

 

λ  and µ : Lame constants, 

ijσ : components of the stress tensor, 

ijε : components of the strain tensor, 

iu  : components of the displacement vector, 

ρ  : density, 

if  : body forces, 

ijδ  : Kronecker’s delta where 




≠

=
=

ji

ji
ij

K

K

,0

,1
δ . 

 

In the above equations, the indicial notation is utilized such that the repeated 

subscripts denote summation. The comma denotes partial differentiation with 

respect to coordinates whereas the dot indicates a time derivative. 

 

Equations (2.2) – (2.4) may be combined to yield equations of motion: 

 

( )
iijijjji ufuu &&ρρµλµ =+++ ,,  (2.5) 

 

Equations (2.2) – (2.5) must be satisfied at every interior point of the undeformed 

body. With the specification of boundary conditions on the surface of the body as 
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well as initial conditions, the statement of the elastodynamic problem is 

complete. 

 

In Equation (2.5), body forces can be neglected when compared to other applied 

loads, which reduces (2.5) to 

 

( )
iijji uu &&ρµλµ =∆++ ,,  (by letting jju ,=∆ )                                        (2.6) 

 

Differentiating (2.6) with respect to the spatial variables in respective order gives 
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                                (2.7) 

 

Since λ , µ , and ρ  are constants, (2.7) takes the form of classical wave equation 

as 
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 (2.8) 

 

where ( )tx,Ψ  is the dependent variable and is a measure of some property of the 

disturbance such as displacement or velocity and c is the wave speed. 

 

Contact mechanics: The contact stresses resulting from the impact of two bodies 

are another area of interest in the study of impact. Conventional contact 

mechanics is mainly concerned with static contact although it has been extended 

to approximate solutions when impact is involved. For spheroidal surfaces, Hertz 

theory is used to obtain the force-deformation relation needed to calculate the 

duration of impact and the maximum indentation. This approach has been 

extended to the cases where contained plastic deformation occurs, generally with 

the assumption of a material having a yield point. Numerical models of the 

contact zone are also used when Hertz theory is not applicable. The force-

deformation equation is often augmented with a damping term to reflect 
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dissipation in the contact area, thus allowing one to effectively model the contact 

area as a spring-damper system. 

 

For conventional materials, Hertz theory predicts the stress distribution in the 

contact zone between two bodies having a surface of revolution. It also allows 

one to calculate the normal and shear stress distribution inside the solid. This 

reveals some interesting and important facts. For example, the maximum shear 

stress, which is directly related to the material failure, occurs below the contact 

surface, potentially causing undetected plastic yielding. A very commonly used 

result is the force-indentation relation for the sphere-to-sphere contact 

 

2/3δKF =  (2.9) 

 

where 

 

F : normal force pressing the solids together, 

δ : total of deformation of surfaces in contact, 

K: constant depending on the sphere radii and elastic properties of the sphere 

materials. 

 

This equation was combined with the equations of motion by Timoshenko [43] to 

treat the impact of two spheres. The maximum indentation and the impact 

duration were calculated. A similar treatment is also found in Goldsmith [44] and 

Johnson [45]. This analysis constitutes what is known as Hertz theory of impact. 

Equation (2.9) above is also valid for any 3D contact of solids.  

 

Plastic deformation: When plastic strains go beyond the scale of contained 

deformation, the elastic wave propagation model can no longer be applied to 

analyze impact problems. This is the domain of high velocity impact generally 

associated with explosives and projectiles. Goldsmith [44] presented an extended 

study of the subject using two approaches: the hydrodynamic theory of the 

behavior of solid bodies and the theory of plastic wave propagation.  
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In the hydrodynamic theory, the stress tensor may be separated into a uniform 

hydrostatic pressure (all three normal stresses equal) and a stress deviatoric tensor 

associated with the resistance of the material to shear distortion and the 

permanent deformation is considered to be a result of a change in the body's 

density. An equation of state, which is defined as the relationship between the 

hydrostatic pressure, the local density (or specific volume) and the local specific 

energy (or temperature), is used together with the laws of conservation of 

momentum, energy and mass.  

 

The first convincing one dimensional, finite amplitude plastic wave propagation 

theory was developed independently by Karman [46], Taylor [47], and 

Rakhmatulin [48]. This theory assumed that the behavior of a material could be 

described by a single-valued relation between stress and strain in uniaxial stress 

and that stress-strain curve was concave toward the stress-axis. The theory further 

implied that the stress-strain relation was the one obtained in a conventional 

quasistatic tensile test. The theory was totally uniaxial in nature, neglecting any 

three-dimensional effects such as those that might arise because of lateral inertia. 

Only axial stresses were considered. Consider an element of rod of original 

length dx as shown in Figure 2.1. The unbalanced force in the x-direction is 

 

dx
x

AdF
∂

∂
=

σ
                                                                                                 (2.10) 

 
 
 

 
 

Figure 2.1 Nomenclature for a rod element 
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and it acts on the element whose mass is Adxρ , where ρ and A are the mass 

density and the cross-sectional area of the element respectively, and σ is the axial 

engineering stress. It is assumed that the material behavior can be described by a 

single-valued relation of the form  

 

)(εσσ =            (2.11) 

 

where ε  is the engineering strain and it can be related to displacements in the x-

direction, u 
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where v is the particle velocity. The equation of motion for longitudinal stress in 

a bar or rod is then 
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Substituting Equation (2.12) into the Equation (2.14) yields the wave equation as 
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where 

 

( )
ε

σ

ρ
ε

d

d
c

12 =   (2.16) 

 

Three solutions to Equation (2.14) could be found and pieced together to give the 

total solution by Karman and Duwez [49] with the following boundary conditions 
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1vu =  at x=0   and    0=u at x −∞→                                                             (2.17a) 

for tcx 1< , 1
1

1. εε ===
c

v
cons                                                                    (2.17b) 

for tcxtc 01. << , ( )
2

2

t

x
E =ε                                                                       (2.17c) 

for tcx 0> , 0=ε                                                                                         (2.17d) 

 

The solution for strain as a function of tx /=ξ  is presented in Figure 2.2 which 

shows the two wave fronts traveling at different velocities.  

 
 
 

 

Figure 2.2 Strain distribution in a rod produced by constant velocity impact at end 
[7] 

 
 
 
Nevertheless there were some aspects of wave theory that cannot be readily 

explained by the rate independent theory and Malvern [50, 51] also proposed a 

strain-rate dependent version of this theory. 
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2.3 Shock Waves in Solids 

 

The conventional uniaxial stress-strain curve does not adequately represent the 

state of stress and strain to which a material is subjected under shock loading. 

Therefore, the quantities associated with such a curve (elastic modulus, yield 

strength, ultimate strength and elongation) are not by themselves appropriate to 

describe the relative behavior of materials [52]. 

 

The stresses and strains which occur for 1D deformation can be analyzed to 

understand how materials behave under shock loading. The principle strains in 

three principal directions can be separated into their elastic and plastic 

components as 

 

pe
111 εεε +=    (2.18a) 

pe
222 εεε +=                                                                                                   (2.18b) 

pe
333 εεε +=                                                                                                    (2.18c) 

 

For 1-D deformation and due to the symmetry 

 

032 == εε           and pp
22 εε =                                                             (2.19) 

 

and therefore 

 

ep
22 εε −=           and ep

33 εε −=                                                           (2.20) 

The plastic portion of the strain is taken to be incompressible, so that  

 

0321 =++ ppp εεε  or           pppp
2321 .2 εεεε −=−−=                    (2.21) 

 

By combining Equations (2.18), (2.19) and (2.21)  
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ee
211 .2 εεε +=                                                                           (2.22) 

 

The elastic strain in terms of the stresses and elastic constants is given by 
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EEEE
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Using Equation (2.22) together with Equations (2.23a) and (2.23b) gives 

 

EE

)21(2)21( 21
1

νσνσ
ε

−
+

−
=                                                                          (2.24) 

 

The plasticity condition for von Mises condition for this case is  

 

021 Y=−σσ                                                                             (2.25) 

 

where 0Y is the static yield strength. 

 

Using Equation (2.25) for 2σ gives 

 

  

                                                                             (2.26a) 

 

or 
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3
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YK += εσ                                                                                              (2.26b) 
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where 
)21(3 ν−

=
E

K  is called the bulk modulus and is defined as the pressure 

increase needed to effect a given relative decrease in volume. Equation (2.26) is 

the stress-strain relation for uniaxial strain [52]. 

 

For the special case of elastic strain where all related plastic strain components of 

principle strains are all “0”, above equations are rearranged by Zukas [52] and 

yield 

 

( )ν

σ
ν

σ
ε

−
−=

1
.2 121

1
EE

 or     11
)1()21(

)1(
ε

νν

ν
σ E

+−

−
=                          (2.27) 

 
 
 

 

Figure 2.3 Details of uniaxial strain behavior [7]. 

 
 
 
Figure 2.3 shows representative stress-strain curves for uniaxial strain states, 

respectively. From this figure following remarks can be concluded [7] 

 

• There is an increase in modulus for the uniaxial strain curve by a factor 

of ( ) ( )( )[ ]ννν +−− 121/1  

• The yield point for uniaxial strain is referred to as the Hugoniot Elastic 

Limit ( HELσ )  
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• Uniaxial strain curve is also called as Hugoniot curve. There is a constant 

deviation from the Hugoniot curve of the stress 1σ  by 3/2 0Y   

 

Figure 2.4 shows the uniaxial stress-strain curve taken to much higher load levels. 

If the loading does not exceed the Hugoniot elastic limit, a single, elastic wave 

will propagate in the material. 

 
 
 

 

Figure 2.4 Regions of elastic, elasto-plastic and shock wave propagation [52]. 

 
 
 
 
If the magnitude of the applied stress pulse exceeds HELσ , two waves will 

propagate through the medium. The elastic wave will move with a speed  
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E
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This will be followed by a plastic wave moving with a speed that is a function of 

the slope of the stress-strain curve at a given value of strain and the plastic wave 

speed is given by 

 

ε

σ

ρ d

d
c p

0

2 1
=                                                                                    (2.29) 

 

2.3.1 Conservation Equations Under Shock Loading 

 

Let us consider a uniform pressure 1P  suddenly applied at one face of plate made 

of compressible material in Figure 2.5. The material is initially at a pressure 0P . 

The pressure pulse propagates at a velocity SU . 

 
 
 

 

Figure 2.5 Progress of a plane shock wave [7]. 

 
 
 
The position of the shock front at some instant of time of time is indicated by the 

line AA. Some dt time later, the shock front advances to BB line while the matter 

initially at line AA moves to line CC. Across the shock front, mass, momentum 

and energy are conserved [7]. 
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Conservation of mass across the shock front may be expressed by noting that the 

mass of material surrounded by the shock wave dtU S0ρ  now occupies the 

volume ( )dtuU pS .−  at a density 1ρ  

 

( )
pSSs uUU −= 1ρρ                                                                              (2.30) 

 

Conservation of momentum is expressed by noting that the rate of change of 

momentum of a mass of material dtU S0ρ  in time dt accelerated to a velocity pu  

by a net force 01 PP −  is given by  

 

01 PP − = pS uU0ρ                                                                             (2.31) 

 

Conservation of energy across the shock front is obtained by equating the work 

done by the shock wave with the sum of the increase of both kinetic and internal 

energy of the system. Thus  

 

( )010

2

01
2

1
EEUuUuP SpSp −+= ρρ ,                                                              (2.32) 

 

Eliminating SU and pu in Equation (2.32) resulting Rankie-Hugoniot relation as 
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2.4 Mechanics of Composite Materials 

 

Fundamental understanding of the composite material behavior under impact 

loading starts with the understanding of the mechanics of the composite 

materials. Composite materials have directional dependent mechanical properties 
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by their nature. Hence it is necessary to give special consideration when 

analyzing the mechanics of composite materials. 

 

2.4.1 Definitions 

 

A material is said to be homogeneous if the material properties remain unchanged 

throughout. In a heterogeneous system, however, the material properties are a 

function of position. Having defined these, next definitions would be the 

difference between the isotropy and the anisotropy. A material is isotropic if all 

its material properties at a point are independent of the direction and anisotropic 

if the material exhibits material properties that are directionally dependent, i.e., a 

given material property can have different values in different directions [53]. 

 
 
 

 

 

Figure 2.6 Definition of isotropic and anisotropic materials [53]. 

 
 
 

The generalized Hooke’ s law which is a linear relation between relation between 

six stresses and six strains can be expressed as,  

 

jkjk C εσ =    ( )6,...,2,1, =jk                                                                            (2.34) 

 

where 
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kσ : Stress tensor 

jε : Strain tensor   

kjC : Elastic coefficients. 

 

There are 36 kjC  terms in Equation (2.34) but they are not all independent of each 

other. Ochoa and Reddy [53] showed that jkkj CC = and the number of 

independent elastic constants reduces to 21 from 36 for anisotropic materials. In 

matrix form Equation (2.34) can be expressed as, 
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In Equation (2.35), single subscript notation for stress and strain components are 

given according to the following relations 

 

111 σσ = , 222 σσ = , 333 σσ = , 234 σσ = , 135 σσ = , 126 σσ =                   (2.36) 

111 εε = , 222 εε = , 333 εε = , 234 .2 εε = , 135 .2 εε = , 126 .2 εε =                   (2.37) 

 

There occur some special cases for anisotropic materials in that they may have 

material symmetry and their behavior can be explained with less independent 

elastic constants. This situation is described by Ochoa and Reddy [53] as follows 

 

“When the elastic coefficients at a point have the same values for every pair of 

coordinate systems which are mirror images of each other in a certain plane, that 

plane is called a plane of elastic symmetry for the material at that point.”  
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If a material has three orthogonal planes of elastic symmetry, which reduces the 

number of elastic constants to 9, then that material is said to be orthotropic. The 

stress-strain relation for the orthotropic materials in matrix form is given by 

Ochoa and Reddy [53] as 
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Elastic constants for an orthotropic material is expressed in terms of engineering 

constants by Reddy [54] 
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2344 GC = , 1355 GC = , 1266 GC =                                      (2.39d) 
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The inverse of the [ ]C  matrix is called the compliance matrix [ ]S  where 
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and Equation (2.38) can be written in as the strain-stress relation in the following 

form 

 

jkjk S σε =                                                                                       (2.42) 

 

The stress-strain relations represent a mathematical formulation that describes the 

behavior of a mathematical model of a physical problem. Hence, the elastic 

constants should have values that will not violate certain basic physical 

principles. For example, a tensile force is bound to produce an extension in the 

direction of the applied force, or a hydrostatic pressure cannot cause an expansion 

in the material. As a result, some constraints should be imposed on the elastic 

constants of an orthotropic material and these constraints are obtained by 

Lempriere [55]: 
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2.4.2 Impact Damage Modeling of Composites 

 

In general, beam and plate models are commonly used as structural elements for 

evaluating composite damage due to impact. Nevertheless, in the analysis of 

damage development in composites, emphasize should be given to the following 

items [56]: 

 

• Determination of the load-time history of the impact force 

• Determination of the stress-time history of the target internal stresses 

• Determining the failure modes in the target  

 

One of the failure modes occurring in laminated composites under impact loads is 

delamination. Delamination is driven by transverse shear and transverse normal 

stresses bearing at the interlaminar planes of a laminate. Dobyns [57] studied the 

dynamic loading of a simply supported plate. The loading is distributed over a 

small area of contact so that this region could simulate the projected cross 

sectional area of the striker. For the analysis, the plate is assumed to be specially 

orthotropic, and there exists uniform initial stress. Having given all of these, the 

assumed displacement field, including shear effect is given by 

 

( ) ( )tyxztyxuu x ,,,,0 Ψ+=                                                                            (2.46a) 

( ) ( )tyxztyxvv y ,,,,0 Ψ+=                                                                            (2.46b) 

( )tyxww ,,=                                                                                                  (2.46c) 

 

where 0
u , 0

v  and w represent the displacements at the mid-plane of the plate in 

the x, y, and z directions, respectively, xΨ  and yΨ  represent the shear rotations 

in the x and y directions, respectively [57] 
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Whitney and Pagano [58] gave the equations of motion as  

 

xyyyyxxxx DDDD ,6612,66,11 )( Ψ++Ψ+Ψ  

xxxx ImwkAkA Ψ=+−Ψ− &&,5555                                                                      (2.47a) 

yyyxxyxyx DDDD ,22,66,6612 )( Ψ+Ψ+Ψ+  

yyyy ImwkAkA Ψ=+−Ψ− &&,4444                                                                    (2.47b) 

yyxxxxx kAwNkAkA ,44,
0

55,55 )( Ψ+++Ψ           

wPKwPwNkA zyyy
&&=++++ ,

0
44 )(                                                               (2.47c) 

 

and the boundary conditions for the rectangular plate having uniform thickness 

with dimensions ( )ba ×  is given by 

0, =Ψ= xxw  at ax ,0=                                                         (2.48a) 

0, =Ψ= yyw  at by ,0=                                                         (2.48b) 

 

where  
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2

2,,
h

h ijijij dzzIQDA   ( 6,2,1, =ji )                                                     (2.49a) 

∫−= 2

2

h

h ijij dzCA  ( 5,4, =ji )                                                       (2.49b) 

( ) ( )∫−= 2

2

2,1,
h

h
dzzIP ρ                                                                                    (2.49c) 

 

zP , xm and ym : the distributed loads, 

k : Mindlin shear correction factor, 

h: plate thickness  

ijQ : reduced in-plane stiffness, 

ijC : transverse shear stiffness. 

 



 
40 

Solutions for w, xΨ , yΨ  are given by Sierakowski and Chaturvedi [59]  
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where 
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( )( )( )bnamDDL /./661212 ππ+=                                                                   (2.51b) 
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20
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mnq : load distribution on the plate, 

mnw : natural frequencies of the target plate, 

)(tF : loading distributed force. 
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The response of an orthotropic plate by the impact of an non-rigid striker is given 

by Goldsmith [44] 

 

( ) ( )cwFdtdtmtvcww

t t

i ∫ ∫ −−=−=
0 0

112 /1α                                                    (2.52) 

 

where α  is the difference between the displacement of the striker and deflection 

of the structure at the contact point (Figure (2.7)). 

 
 
 

 

Figure 2.7 Response of an orthotropic plate by the impact of an non-rigid striker 
[60]. 
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CHAPTER 3 
 
 

3 NUMERICAL ANALYSIS OF THE BALLISTIC 
IMPACT PROBLEM 

 
 
3.1 Introduction 
 

The finite element method (FEM) is the most powerful numerical technique for 

solving solid and structural mechanics problems in geometrically complicated 

regions. The finite element analysis (FEA) of a problem is so systematic that it 

can be divided into a set of logical steps that can be implemented on a digital 

computer and can be used to solve variety of problems. Different solutions to 

different problems (having the same geometry) can be obtained by only changing 

input data that defines the domain of the problem, e.g. physical properties of the 

system, initial and boundary conditions. 

 

The domain of the problem is the collection of nonintersecting simple 

subdomains which are called finite elements. The subdivision of a domain into 

elements is called the finite element discretization and the collection of the 

elements is called the finite element mesh of the domain which can be viewed as 

an approximation to the domain. Over each finite element, the solution of the 

governing equations is approximated by a linear combination of undetermined 

parameters and preselected approximation functions, almost always polynomials. 

 

Since the solution is represented by polynomials on each element, a continuous 

approximation of the solution can be obtained only by requiring the continuity of 

the finite element solution, and possibly its derivatives, at element interfaces. The 

procedure of putting the elements together is called the assembly of elements 

[53]. 
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3.2 Finite Element Analysis of the Impact Event 
 

3.2.1 Nonlinear Dynamic Problems and Explicit Method 
 

Nonlinearity means that response is not directly proportional to the action that 

produces it. In reality, nonlinearity is always present, but in many cases those 

nonlinearities can be ignored. When nonlinearity is important, software does not 

automatically detect that it should be taken into account and proceed to do the 

appropriate analysis.  

 

In structural mechanics, nonlinearity is usually classified as material or 

geometric. In addition to these causes, changing status (including contact) can be 

viewed as a reason for the nonlinearity to occur. Material nonlinearity includes 

yielding and it is a result of nonlinear stress-strain relationship of the material. 

Geometric nonlinearity is a result of large deformations that a structure 

experiences. Many common structural features exhibit nonlinear behavior that is 

status-dependent. Status changes might be directly related to load or they might 

be determined by some external cause. Situations in which contact occurs are 

common to many different nonlinear applications. Contact is a distinctive and 

important category of changing-status nonlinearities. 

 

Explicit and implicit time integration methods can be applied when nonlinearity 

is present. Explicit methods accommodate nonlinearity more easily than implicit 

methods do. Explicit methods require little computation time per step but demand 

a small time step as they are conditionally stable, and hence are best suited to 

short-duration loads such as impact. [61]. 

 

Although engineering processes can be considered as quasi-static processes, the 

dynamic explicit approach handles these processes as dynamic problems. To 

understand the basic approach, let’s consider a simple mass-spring-damper 

system as in Figure 3.1. 
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Figure 3.1 Mass-Spring-Damper system [62] 

 
 
 
The equation of motion for mass-spring-damper system can be written in the 

following form: 

 

)(tFkuucum =++ &&&                                                                               (3.1) 

 

where 

 

m: mass, 

c: damping constant, 

k: spring constant. 

 

The motion equation can be re-written by dividing the whole equation by the 

mass m 

 

)(2 2 tfuwuwu =++ &&& ζ                                                                                   (3.2) 

where 

 

m

k
w =   (natural frequency)                                                                          (3.3a) 
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( )km

c

2
=ζ   (damping factor)                                                                       (3.3b) 

m

tF
tf

)(
)( =                                                                              (3.3c) 

 

At this points following points should be emphasized: 

 

• 1>ζ  for overdamped systems, 

• 1=ζ  for critically damped systems, 

• 1<ζ  for critically damped systems, 

• For a given initial excitation a critically damped system tends to approach 

the equilibrium position the fastest. 

 
 
 

 

Figure 3.2 Displacement versus time graph [62]. 
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Figure 3.2 represents the central difference method with constant time step. From 

this graph, the first and the second time derivatives at time t of the displacement 

can be inferred in the following form [62]: 

 

( )ttttt
uu

t
u

∆−∆+ −
∆

=
2

1
&                                                                             (3.4a) 











−

∆
=

∆
−

∆
+

22
1

t
t

t
t

t
uu

t
u &&&&                                                                             (3.4b) 

 

where 
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Combining Equation (3.4b) with Equation (3.5a) and Equation (3.5b) yields 
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The equation of motion can be solved by applying the finite (central) difference 

method with Equation (3.4a) and (3.6) and yields 
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Since the solution for time t+∆t is only depending on the displacements of the 

known states at times t and t−∆t , this approach is named as dynamic explicit 

integration of the motion equations [62]. 
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3.3 Theory Behind the Numerical Analysis 

 

The numerical analyses are performed using AUTODYN software [63, 64] which 

is used in non-linear dynamics. This type of program is sometimes referred to as 

a hydrocode. The phenomena to be studied with this program can be 

characterized as highly time dependent with both geometric non-linearities (e.g. 

large strains and deformations) and material non-linearities (e.g. plasticity, 

failure, strain-hardening and softening, multiphase equation of state). 

 

In the numerical analysis, the motion of the system (continuum) is described by: 

 

• Conservation of mass, 

• Conservation of momentum, 

• Conservation of energy, 

• Material model, 

• Initial conditions, 

• Boundary conditions. 

 

Once the above descriptions are made, the equations are solved numerically using 

explicit time integration and various solution techniques. 

 

3.3.1 Conservation of Mass 

 

Material associated with a Lagrangian zone stays with that zone (as opposed to 

the Euler zone where the zone remains unchanged and the material flows through 

it) under any deformation. Thus, a Lagrangian grid moves and distorts with the 

material it models and conservation of mass is automatically satisfied. The 

density at any time can be determined from the current volume of the zone and its 

initial mass 

 

V

m

V

Vo == 0ρ
ρ                                                                                                    (3.8) 
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where 

 

=0ρ initial density, 

=0V initial volume, 

=ρ density at time t>0, 

=V volume at time t>0. 

 

3.3.2 Conservation of Momentum 

 

The partial differential equations which express the conservation of momentum 

relate the acceleration to the stress tensor ijσ  
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The stress tensor is separated into a hydrostatic component p and a deviatoric 

component 

 

xxxx sqp ++−= )(σ                                                                                        (3.10a) 

yyyy sqp ++−= )(σ                                                                                        (3.10b) 

zzzz sqp ++−= )(σ                                                                                        (3.10c) 

xyxy s=σ                                                                                                         (3.10d) 

yzyz s=σ                                                                                                         (3.10e) 

zxzx s=σ                                                                                                         (3.10f) 
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The negative sign for the hydrostatic pressure p follows from the usual notation 

that stresses are positive in tension and negative in compression (the opposite to 

that for pressure). 

 

The strain tensor ijε  is determined from the relation between the strain rates and 

the velocities ( zyx &&& ,, ) 
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and these strain rates are related to the rate of change of volume by: 

 

zzyyxx
V

V
εεε &&&

&

++=                                                                                          (3.12) 

 

Derivation of the elastic behavior of the material can be derived by using 

Equation (3.12) and Hooke’ s Law relations between the deviatoric stress rates 

and strain rates 
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xyxy Gs ε2=&                                                                                                   (3.13d) 

yzyz Gs ε2=&                                                                                                   (3.13e) 

zxzx Gs ε2=&                                                                                                    (3.13f) 

 

3.3.3 Conservation of Energy 

 

The pressure p is related to the density ρ  and specific internal energy e through 

an equation of state 

 

),( efp ρ=                                                                                                       (3.14) 

 

Equation (3.14) must be solved simultaneously with the equation expressing 

conservation of energy: 

 

( )
zxzxyzyzxyxyzzzzyyyyxxxxe εσεσεσεσεσεσ

ρ
&&&&&&& 222

1
+++++=      (3.15) 

 

3.3.4 Material Model 

 

In most cases, the stress tensor may be separated into a uniform hydrostatic 

pressure (all three normal stresses equal) and a stress deviatoric tensor and these 

stress components are responsible for two different material deformations under 

impact conditions. First one is the volumetric-stress due to changes in volume 

(pressure) which is defined by the equation of state (EOS). The second one is 

deviatoric-stress due to changes in shape and it is defined by the strength model. 
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Figure 3.3 Material deformation histories [64]. 

 
 
 

In addition to these, for a solid, it is necessary to specify a failure criterion as 

materials can only sustain limited tensile stresses. 

 

The state of stress (in 3D) on a material subject to small, linear, elastic strains 

(reversible deformation) can be described by six stress components 

( xzyzxyzzyyxx σσσσσσ ,,,,, ). It is always possible to choose a coordinate system 

such that the shear stresses are zero ( 0312312 === σσσ ) at the point under 

consideration which is known as the Principal Axes. The stresses in the direction 

of the principal axes on the surfaces normal to these axes are known as the 

Principal Stresses and are denoted as 21 ,σσ  and 3σ . 

 

A perfectly elastic material has a linear relationship between stress and strain, and 

Hooke’s law relates the stress at a point to the strain at the point.  In terms of an 

incremental strain resulting in an incremental stress this may be written as 

 

ii G
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ελσ &
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& 2+
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
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


=  i=1,2,3.                                                              (3.16) 
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where λ and G are the Lame constants (G is also known as the Shear Modulus), 

ε1, ε2, ε3 are the strain rates in the directions of the principal axes, and V is the 

volume. The dot describes a time derivative along a particle path. 

 

As mentioned earlier, the stresses can be decomposed into a hydrostatic and a 

deviatoric component 

 

ii sP +−=σ                                                                           (3.17a) 

( )321
3

1
σσσ ++−=P  .3,2,1=i                                                         (3.17b) 

 

where P is then hydrostatic pressure and is ’ s are the stress deviators. 

 

As with the stresses the strain components are defined as the sum of a mean 

normal strain ε and deviatoric strain components iθ , 2θ  and 3θ  where 

 

V

V&
&&& =++ 321 εεε                                                                                             (3.18a) 

0321 =++ θθθ &&&                                                                                              (3.18b) 

V

V

3

&
& =ε                                                                                                          (3.18c) 

 

With the above definitions Hooke’s law may be rewritten: 
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µ.KP =                                                                                                          (3.19b) 

where 
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It also follows that: 

 

0321 =++ sss &&&                                                                                                 (3.21) 

 

and hence 

 

0321 =++ sss                                                                                                 (3.22) 

 

which may be interpreted as stating that the deviatoric components of the stresses 

do not contribute to the average (hydrostatic) pressure but only to distortion of 

the volume. 

 

The concept of elastic distortion is that if the material is loaded and subsequently 

unloaded all the distortion energy is recovered and the material will revert to its 

initial configuration. However, real materials are unable to support arbitrarily 

large shear stresses so if the distortion is too great the material will reach its 

elastic limit and begins to distort plastically. If the material is subsequently 

unloaded only the elastic distortion energy will be recovered and the material will 

suffer permanent plastic strain.  

 

Several proposed yield criteria are to be found in the literature, e.g. the Tresca 

condition which puts a predefined limit on the shear stress. This however does 

not define a smooth yield surface. 

 

The differences between the various yield criteria are usually much smaller than 

the uncertainties in the applicable material constants. The Von Mises yield 

criterion is used in AUTODYN (as in most hydrocodes) to describe the elastic 

limit and transition to plastic flow. 
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This is a simple and convenient criterion to apply, defines a smooth and 

continuous yield surface and is a good approximation at high stress levels. This 

states that, given the principal stresses ( 321 ,, σσσ ), the local yield condition is 

 

( ) ( ) ( ) 22

13

2

32

2

21 .2 Y=−+−+− σσσσσσ                                                   (3.23) 

 

where Y is the yield strength in simple tension. This can be also written as 
 

( ) ( ) ( ) 22
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2

32

2

21 2Yssssss =−+−+−                                                        (3.24) 

 

and with Equation 3.22, Equation 3.24 reduces to 
 

3

2 2
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2

1

Y
sss =++                                                                                     (3.25) 

 

Thus the onset of yielding, i.e. of plastic flow, is purely a function of the 

deviatoric stresses (distortion) and does not depend upon the value of the local 

hydrostatic pressure unless the yield stress Y itself is a function of pressure. The 

left hand side of Equation 3.25 is proportional to the elastic energy of distortion 

per unit volume or the energy required to change shape as opposed to the energy 

that causes a volume change. The expression states therefore that plastic flow 

begins when the elastic distortion energy reaches a limiting value {Y
2
 / 6G} and 

that this energy remains constant during the plastic flow when plastic work (i.e. 

irrecoverable work) will be done. 

 

In ( 321 ,, σσσ ) space, this equation describes the surface of a straight circular 

cylinder whose axis is equally inclined to the 321 ,, σσσ  system of coordinates as 

shown in Figure 3.4. 
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Figure 3.4 Yield criteria [63]. 

 
 
 
The relationship 0321 =++ sss  defines a plane, known as the octahedral plane, 

through the axes of the principal stresses whose normal is the axis of the cylinder 

and the intersection of this plane with the cylinder results in a circle. If the stress 

deviators, 1s , 2s  and 3s  give a point inside the circle, the material is within its 

elastic limit. 

 

3.3.4.1 Equation of State 

 

The relationship between the hydrostatic pressure, the local density (or specific 

volume) and local specific energy (or temperature) is known as an equation of 

state. 

 

An object subjected to impact, deformation at high strain rates, energy input or 

other constraints will obviously suffer large changes in the thermodynamic states 

of its material throughout its volume. It may at any time have regions which are 

solid, liquid, gaseous or even mixed phases of gas and liquid. Historically most 

equations of state have been restricted to the compression phase ad much less 
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consideration has been given to the behavior of materials for densities less than 

normal. 

 

The ideal equation of state would cover all regions in the phase plane as shown in 

Figure 3.5. The two-phase states should cover both the liquid-vapor regions at 

high temperatures and positive pressures and cavitated states where gaseous 

bubbles can form in a liquid when the pressure falls below a reference state and 

the temperature is also low. To determine a single analytic relationship to 

encompass all these greatly different regions of phase space would be impossible 

and many approaches have been made to provide analytic fits which are valid 

only in limited regions of the values of internal energy and volume, i.e. in (e,v) 

space. 

 
 
 

 

Figure 3.5 Phase Diagram, Hugoniot and Adiabats [64]. 

 
 
 
Since many of the early problems were of materials deformed by strong dynamic 

impact (or shocks), thee forms of early equations of state concentrated on the 

material behavior on or near the region of states to which the material may reach 

if it is shocked from its initial state. The locus in the pressure-volume (p,v) plane 
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of all states achievable by shocking the material from an initial state ),( 00 vp  is 

known as the shock Hugoniot. 

 

The experimental fact is that for most solids and many liquids, which do not 

undergo a phase change, the values on the shock Hugoniot for shock velocity U 

and material  

 

velocity behind the shock pu  can be adequately fitted to a straight line 

 

psucU += 0                                                                                                     (3.26) 

 

where 0c is the sound speed and s is the slope of the U-up relation. 

 

This is the case even up to shock velocities around twice the initial sound speed 

and shock pressures of order 100 GPa. For materials where a linear fit is not 

adequate a quadratic form in pu  has sometimes been used or at other times 

piecewise linear or piecewise quadratic (U, pu ) forms have been used. 

 

The equation of state can be determined from the knowledge of the 

thermodynamic properties of the material and ideally should not require dynamic 

data to build up the relationship. However, in practice, the only way to obtain the 

data on the behavior of the material at high strain rates is to carry out well-

characterized dynamic experiments. 

 

3.3.5 Failure Models 

 

Most materials can only withstand relatively small tensile stresses and/or strains 

before they fail. The post-failure behavior of a cell can either be instantaneous 

(failure occurs the cycle the criteria is reached) or gradual (the ability of the 

material to sustain future tensile stresses is gradually reduced). 
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3.3.6 Lagrange Meshes 

 

A specific region of interest covered by a set (or grid) of brick shaped zones, 

elements or cells on which the flow and state variables (position, velocity, 

pressure etc.) is known as Lagrange subgrid  and it is defined within a 

Lagrangian coordinate system. A subgrid is a group of cells (or zones) which is 

regular in index space (I, J, K space) although it may form an irregular volume in 

(x,y,z) space. Each brick element within the subgrid has eight corner (3D) nodes 

forming in (x,y,z,) space a generalized hexahedral shape with, in general, non-

planar faces. The index space of each subgrid is independent of any of the other 

subgrids defined in the problem. As shown in Figure 3.6, each subgrid node is 

identified by its unique (I,J,K) index while each zone interior is defined by a 

unique (I,J,K) index which is identified with the upper-rightmost (in (I,J,K) 

space) node of the zone. 

 
 
 

 

Figure 3.6 Lagrange subgrid [63]. 

 
 
 
The partial differential equations are replaced by the finite difference equations, 

based on cells of the subgrid, and these difference equations are solved to update 

the solution by successive time steps. 
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The series of calculations that are carried out in each incremental time step (or 

cycle) in a Lagrange subgrid are described in Figure 3.7. The boundary and/or 

interactive forces are updated and combined with the forces for inner zones 

computed during the previous time cycle. Then, for all non-interactive 

Langrangian nodes the accelerations, velocities and positions are computed from 

the momentum equation and a further integration. From these values the new 

zonal volumes and strain rates maybe calculated. With the use of a material 

model together with the energy equation the zonal pressures, stresses and 

energies may be calculated, providing forces for use at the start of next 

integration cycle. 

 
 
 

 

Figure 3.7 Calculation cycle [63]. 
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3.3.7 Time Step 

 

Since the numerical algorithm used in the software is an explicit scheme, there is 

a maximum time step of integration which must be observed if the numerical 

solution obtained is to be a reasonable representation of the true solution. The 

value of this time step depends on several parameters of the numerical method 

and solution so the local time step ensuring stability is calculated for each mesh 

point. The minimum value of all these local values is multiplied by a safety factor 

and this is chosen as the time step for the next update. 

 

In a Lagrangian mesh, the time step must satisfy the CFL or Courant Condition, 

 

c

d
t ≤∆                                                                                                              (3.27) 

where d is a typical length of a zone (defined as the volume of the zone divided 

by the square of the longest diagonal of the zone and scaled by 3/2 ) and c is 

the local sound speed. This ensures that a disturbance does not propagate across a 

zone in a single time step. 

 

3.3.8 Smoothed Particle Hydrodynamics (SPH) Solver 

 

SPH is a Lagrangian technique having the potential to be both efficient and 

accurate at modeling material deformation and flexible in terms of the inclusions 

of specific material models. In addition, SPH is a gridless technique so it does not 

suffer from the normal problem of grid tangling in large deformation problems.  

 

The main potential advantages of SPH technique are: 

 

• It does not require a numerical grid  

• No grid tangling problems as in standard grid based Lagrangian 

techniques 

• Efficient tracking of material deformation and history dependent behavior 
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The name SPH includes the term “Particle”. Although this is appropriate for 

describing the Lagrangian motion of mass points in SPH, it is misleading because 

the “Particles” are really interpolation points. Consider a rod of steel that is 

represented by a series of SPH particles as shown in Figure 3.8. 

 

The density at particle I can be calculated using an expression such as 

 

( )hxxWm
JI

N

j

IJJI −=∑
=1

ρ                                                                                (3.28) 

 

where  

 

J
m : the mass of particle J, 

IJ
W : a weighting function, 

x     : the position of the center of a particle, 

h     : smoothing length or particle size.  

 
 
 

 

Figure 3.8 Rod of steel with SPH particles [63]. 
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To calculate the value of a function at particle I, in this case the density, the value 

of the function at all neighboring particles (interpolation points J1, J2, I, J3, J4) 

multiplied by a weighting function. Hence, the SPH particles are not simply 

interacting mass points but they are interpolation points from which values of 

functions, and their derivatives, can be estimated at discrete points in the 

continuum. In SPH, the particle points at which all quantities are evaluated are 

placed at the center of the SPH particles. 

The basic steps used in each calculation cycle in SPH are shown in Figure 3.9. 

 
 
 

 

Figure 3.9 Calculation cycle (SPH).[63] 
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3.4 Description of the Material Models Used In Numerical 

Simulations 

 

3.4.1 Johnson-Cook Strength Model For The Projectile 

 

The model [65] for the von Mises flow stress, σ , is expressed as 

 

( )( )( )mn
TCBA

∗

−++= ∗ 1.ln1 εεσ &                                                                   (3.29) 

 

where ε  is the equivalent plastic strain, 0/ ∗∗∗ = εεε&  s the dimensionless plastic 

strain rate for 1
0 0.1 −∗ = sε  and 

∗

T  is the homologous temperature, 
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−
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=

∗

                                                                                              (3.30) 

 

The five material constants are A, B, n, C and m. A is the yield stress and B and n 

represent the effects of strain hardening and C is the strain rate constant. The 

expression in the first bracket gives the stress as a function of strain rate for 

0.1=∗ε&  and 0=
∗

T . The expressions in the second and third bracket represent 

the effects of strain rate and temperature, respectively. The constants in these 

expressions were obtained by Johnson and Cook empirically by means of 

dynamic Hopkinson bar tensile tests over a range of temperatures and some other 

tests and checked by calculations of Taylor tests of impacting metal cylinders on 

rigid metal targets which provided strain rates in excess of 105 s-1 and strains in 

excess of 2.0 [65]. 
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3.4.2 Johnson-Cook Failure Model For The Projectile 

 

The damage to an element is defined [66], 

 

∑
∆

=
f

D
ε

ε
                                                                                                       (3.31) 

 

where ε∆  is the increment of equivalent plastic strain which occurs during an 

integration cycle, and fε  is the equivalent strain to fracture, under the current 

conditions of strain rate, temperature, pressure and equivalent stress. Fracture is 

then allowed to occur when 0.1=D . 

 

The general expression for the strain at fracture is given by 

 

( ) )1)(ln1( 54
.

21
3 ∗∗ +++=

∗

TDDeDD
Df εε σ

&                                                    (3.32) 

 

The dimensionless pressure stress ratio is defined as σσσ /m=∗  where mσ  is 

the average of the three normal stresses and σ  is the von Mises equivalent stress. 

The dimensionless strain rate, ∗ε& , and homologous temperature, ∗T , are identical 

to those used in the Johnson-Cook Strength Model. 

 

The expression in the first brackets reveals the pressure dependence of the 

fracture. It essentially says that the strain to fracture decreases as the hydrostatic 

tension, mσ  increases. The expression in the second set of brackets represents the 

effect of strain rate, and that in the third set of brackets represents the effect of 

temperature. 
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3.4.3 Johnson-Holmquist (JH) Strength Model For The Ceramic 

Armor 

 

Ceramic materials have been considered for armor applications for many years. 

They are generally strong in compression, weak in tension, and can have 

considerable strength after failure when they are under compression [67]. 

 

The JH ceramic model is summarized in Figure 3.10, 3.11 and 3.12. Equivalent 

strength, σ , is dependent on the pressure, the dimensionless strain rate 

0/ ∗∗∗ = εεε&  (for 1
0 0.1 −∗ = sε ), and the damage, D. For undamaged material, 

0.0=D ; for partially damaged material, 0.10 <=< D ; and for totally damaged 

(failed) material, 0.1=D . The strength is greatly reduced after the material fail, 

but it can be significant ant cannot be ignored. T is the maximum tensile 

hydrostatic pressure the material ca experience, and S1 and S2 are the strengths of 

the intact (undamaged) material (for 0.1=∗ε& ) at compressive pressures P1 and P2, 

respectively. After the material has failed ( 0.1=D ), the slope of the strength of 

the failed material is given by α , and the maximum failure strength is 

f
Smax (for 0.1=∗ε& ). 

 
 
 



 
66 

 

Figure 3.10 JH-1 Strength Model [67]. 

 
 
 

 

Figure 3.11 JH-1 Damage Model [67]. 
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Figure 3.12 Pressure-volumetric strain [67]. 

 
 
 

The strain rate constant is C. If 0σ  is the available strength at 0.1=∗ε& ,then the 

strength at the other strain rates is 

 

)ln0.1(0
∗+= εσσ &                                                                                           (3.33) 

 

It can be seen that the strength increases significantly with pressure, which is 

consistent with well-known fact that brittle materials are much stronger in 

compression. 

 

3.4.4 Johnson-Holmquist (JH) Fracture Model For The Ceramic 

Armor 

 

The damage for fracture [68] is accumulated in a similar manner to that used in 

the Johnson-Cook fracture model. It is expressed as 

 

∑
∆
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D
ε

ε
                                                                                                    (3.34) 
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where pε∆  is the plastic strain during a cycle of integration and )(Pf
f

p =ε  is the 

plastic strain to fracture under a constant pressure, P. From Figure 3.11, the 

material cannot undergo any plastic strain at the maximum hydrostatic tension, T, 

but it increases to ff

p maxεε =  at a compressive pressure of P=P3.  

 

The hydrostatic pressure before failure ( 0.1<D ) is simply 

 

3
3

2
21 µµµ KKKP ++=                                                                                  (3.35) 

 

where 1K , 2K  and 3K are constants ( 1K  is the bulk modulus); and 1/0 −= VVµ  

1/ 0 −= ρρ  for current volume V, initial volume V0, current density ρ , and 

initial density 0ρ . For tensile pressures ( µ <0), Equation 3.35 is replaced by 

 

µ1KP =                                                                                                           (3.36) 

 

After failure (when D=1.0) bulking (pressure increase and/or volumetric strain 

increase) can occur. This provides an additional incremental pressure P∆ , such 

that 

 

PKKKP ∆+++= 3
3

2
21 µµµ .                                                                      (3.37) 

 

The pressure increment is determined from energy considerations. From Figure 

3.10, it can be seen that there is a drop in strength when the material goes from an 

intact state ( 0.1<D ) to a failed state (D=1.0). This represents a loss in the elastic 

internal energy of the deviator and shear stress. The general expression for this 

internal energy is 

 

( ) ( )( )[ ] ( )EsssssssssU zxyzxyxzzyyxzyx 2/122 222222 τττυυ ++++++−++= ,    (3.38) 
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where zyx sss ,, are the normal deviator stresses; zxyzxy τττ ,,  are the shear stresses; 

υ  is the Poisson’ s ratio; and E is the modulus of elasticity. 

 

The loss in this elastic internal energy can be expressed as 

 

fi UUU −=∆                                                                                                  (3.39) 

 

where iU  is the elastic energy of the intact material before failure ( 0.1<D ) and 

fU  is the elastic energy immediately after failure (D=1.0). 

 

This energy loss (of deviator and shear stresses) can be converted to potential 

hydrostatic energy by adding P∆ . An approximate equation for the energy 

conversion is 

 

UKPP f ∆=∆+∆ .)2/( 1 βµ                                                                              (3.40) 

 

where fµ is µ at fracture and β  is the fraction ( 0.10 ≤≤ β ) of the elastic 

energy loss converted to potential hydrostatic energy. The first term ( fP µ.∆ ) in 

Equation 3.40 is the approximate potential energy for 0>µ , and the second 

term ( ).2/( 1KP∆ ) is the corresponding potential energy for 0<µ . Solving for 

P∆  gives 

 

( ) UKKKP ff ∆++−=∆ 1

2

11 2βµµ                                                             (3.41) 

 

Note that 0=∆P  for 0=β  and that P∆  increases as U∆  increases and/or 

fµ decreases. 
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3.4.5 Orthotropic Material Model For The Composite Armor 

 

In general the behavior of composite laminates can be represented through a set 

of orthotropic constitutive relations. Some of the relationships are described 

which assume the material behavior remains elastic and the volumetric response 

linear. For more complicated material response a methodology was developed 

[69] which allows a non-linear equation of state to be used in conjunction with an 

orthotropic stiffness matrix. This is important when modeling applications such 

as hypervelocity impacts. In order to model such observed non-linear behavior an 

orthotropic hardening model has been implemented [70]. 

 
 
 

 

Figure 3.13 Typical in-plane stress-strain behavior of KevlarTM-epoxy [70]. 

 
 
 
For composites, the macroscopic properties are not identical in all directions. In 

general, the behavior of such materials is represented through a set of orthotropic 

constitutive relations. Constitutive relations for this type of material are 

conventionally based on a total stress formulation, as opposed to dividing the 

total stress into hydrostatic and deviatoric components. Thus, the incremental 

stress-strain relations can be expressed as 
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[ ] [ ] [ ][ ] tC
nn

∆+=
+ εσσ &

1                                                                                  (3.42) 

 

where [ ]C  is the stiffness matrix, [ ]ε&  strain rate tensor and t∆  is the time step. 

 

The material model developed in [71] provides a mechanism in an orthotropic 
material to calculate:  
 

• The contributions to pressure from the isotropic and deviatoric strain 
components, 

• The contributions to the deviatoric stress from the deviatoric strains.  
 

Further, this methodology gives rise to the possibility for incorporating non-linear 

effects (such as shock effects) that can be attributed to the volumetric straining in 

the material. To use this model ‘Ortho’ is selected as the equation state for the 

material and either ‘Polynomial’ or ‘Shock’ for the volumetric response option. 

 

The incremental linear elastic constitutive relations for an orthotropic material 

can be expressed as 
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In order to include non-linear shock effects in the above linear relations, it is first 

desirable to separate the volumetric (thermodynamic) response of the material 

from its ability to carry shear loads (strength). Hence, it is convenient to split the 

strain increments into their average, aveε∆ , and deviatoric, d

ijε∆ , components; 

 

ave

d

ijij εεε ∆+∆=∆                                                                                           (3.44) 
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Now, defining the average direct strain increment, aveε∆ , as a third of the trace of 

the strain tensor; 

 

( )332211
3

1
εεεε ++=∆ ave                                                                                 (3.45) 

 

and assuming, for small strain increments, the volumetric strain increment is 

defined as 

 

332211 εεεε ++≈∆ vol                                                                                       (3.46) 

 

The total strain increments can be expressed in terms of the volumetric and 

deviatoric strain increments resulting in the following orthotropic constitutive 

relation 
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To find the equivalent pressure increment, the pressure is defined as a third of the 

trace of the stress increment tensor 

 

( )332211
3

1
σσσ ++−=∆P                                                                                (3.48) 

 

If Equation 3.47 are expanded, the deviatoric and volumetric terms grouped and 

the direct stress increments are substituted in Equation 3.48: 
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from which the contributions to the pressure from volumetric and deviatoric 

components of strain can clearly be identified. 

 

The first term in Equation 3.49 can be used to define the volumetric 

(thermodynamic) response of an orthotropic material in which the effective bulk 

modulus of the material K’  is, 
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1
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For the inclusion of non-linear shock effects, the contribution to pressure from 

volumetric strain is modified to include non-linear terms. The final incremental 

pressure calculation becomes 
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where the pressure contribution EOSP∆  from volumetric strains can include the 

non-linear shock (thermodynamic) effects and energy dependence as in a 

conventional equation of state. 

 

The quadratic yield/flow surface was selected to represent non-linear hardening 

effects 
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              kaa =+ 2
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3155 22 σσ  

 

The yield function is quadratic in material stress space and includes nine material 

constants, ija , to represent the degree of anisotropy in the material behavior. The 

parameter K varies with the effective inelastic strain in the material and can be 

used to represent hardening behavior. 

 

After initial yielding, material behavior will be partly elastic and partly plastic. In 

order to derive the relationship between the plastic strain increment and the stress 

increment it is necessary to make a further assumption about the material 

behavior. The incremental plastic strains are defined as follows: 
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These are the Prandtl-Reuss equations, often called an associated flow rule, and 

state that the plastic strain increments are proportional to the stress gradient of the 

yield function. The proportionality constant, λd , is known as the plastic strain-

rate multiplier. Written out explicitly the plastic strain increments are given by 
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3.4.6 Orthotropic Failure Model For The Composite Armor 

 

For the fiber failure and matrix cracking criteria out of plane shear stresses are 

included. The failure initiation criteria are listed below 
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Failure is initiated when the stress reaches the value required for failure failσ . At 

this point the crack strain, crε , is zero. A linear softening slope is assumed and 

therefore the ultimate crack strain, uε , the strain at which tensile stresses can no 

longer be sustained, is calculated as: 
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where 

 

fG : fracture energy, 

failσ : failure stress, 

L: characteristic cell dimension in the direction of failure. 

 

The gradient of the linear softening slope is given by: 

 

f

fail

G

L
h

2

2σ
=                                                                                                       (3.57) 

 

In Figure 3.14, the area under the softening portion of the stress/strain curve is 
related to fG , which is a material property. 

 
 
 

 

Figure 3.14 Schematic illustration of crack softening algorithm [71]. 
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3.5 Validation of Material Models 

 

3.5.1 Validation of Ceramic Model 

 

The ceramic layer (front plate) of composite armor shall be of silicon carbide 

(SiC). As the reference for the validation of SiC model, the study of Straßurger et 

al.[72] shall be used. In this study, thin ceramic plate of silicon carbide is 

impacted by a blunt cylindrical projectile. The plate is of the dimensions 100 mm 

x 100 mm x 10 mm. The steel projectile has a diameter of 30 mm and a length of 

23 mm. The objective of this study was to obtain damage/failure velocities in the 

thin ceramic target.  

 

The model created in Ansys-Autodyn is shown in Figure 3.15. In order to save 

computation time, the planar symmetry conditions in a quarter model is used, i.e. 

x=0 and y=0 planes are used as planes of symmetry. 

 
 
 

 

 

Figure 3.15 Edge-on impact (quarter) model. 
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Figure 3.16 Edge-on impact (full) model. 

 
 
 
As a start point the ceramic plate is meshed with 98,000 8-noded brick elements. 

The impact area is meshed with elements having a side length of 0.5 mm. The 

mesh is made coarser to the outer rim of the target (in the positive y-direction) 

and to the non-impact zone (in the negative z-direction). Computations with this 

model did not yield satisfactory results. Then, the ceramic plate is modeled by 

using 225,000 8-noded brick elements. The impact area is meshed with elements 

having a side length of 0.3 mm. The mesh is made coarser to the outer rim of the 

target (in the positive y-direction) and to the non-impact zone (in the negative z-

direction). The projectile is meshed with 59,840 8-noded brick elements. Again, 

mesh intensity is decreased to the non-impact zone (in the positive z-direction). 
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Figure 3.17 Meshed (quarter) model. 

 
 
 
The boundary conditions on the ceramic plate are applied in such a way that 

upper and lower faces of the plate are firmly clamped. 

 

The material constants for silicon carbide and steel projectile (4340 steel is 

assumed) used in the computations are given in Table 3.1 and Table 3.2 

respectively.  
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Table 3.1 Material properties and constants for SiC [73] 

 

SiC 

Density (g/cm3) 3.215 

Equation of State Data (Linear) 

Bulk Modulus-A1 (GPa) 220.0 

Strength Data 

Shear Modulus (GPa) 193.0 

Hugoniot Elastic Limit-HEL (GPa) 11.7 

Intact Strength Constant-S1 (GPa) 7.1 

Intact Strength Constant-P1 (GPa) 2.5 

Intact Strength Constant-S2 (GPa) 12.2 

Intact Strength Constant-P2 (GPa) 10.0 

Strain Rate Constant-C 0.009 

Max. Fracture Strength-Sfmax (GPa) 1.3 

Failed Strength Constant-α 0.40 

Failure Data 

Hydro Tensile Limit-T (GPa) -0.75 

Damage Constant- Efmax 1.2 

Damage Constant- P3 (GPa) 99.75 

Bulking Constant-β 1.0 
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Table 3.2 Material properties and constants for 4340 steel [74] 

 

4340 Steel 

Density (g/cm3) 7.850 

Equation of State Data (Linear) 

Bulk Modulus-A1 (GPa) 164.0 

Strength Data 

Shear Modulus (GPa) 78.0 

Yield Stress-A (GPa) 0.91 

Hardening Constant-B (GPa) 0.586 

Hardening Exponent-n 0.26 

Strain Rate Constant-C 0.014 

Thermal Softening Exponent-m 1.03 

Failure Data 

Damage Constant-D1 -0.8 

Damage Constant-D2 2.1 

Damage Constant-D3 -0.5 

Damage Constant-D4 0.002 

Damage Constant-D5 0.61 

 
 
 
In both of the materials linear equation of state (EOS) is used, i.e. there is a linear 

relation between the bulk modulus and the volumetric strain. In order to have a 

non-linear relation between these quantities (using e.g. a Mie-Gruneisen type of 

EOS which is much used), both the pressures and the impact velocities need to be 

higher. A much used rule-of-thumb is that if the impact velocity is less than 2000 

m/s a non-linear EOS is unnecessary. For higher impact velocities a non-linear 

EOS should be used [75]. 

 

Three numerical analyzes are performed and the initial velocity of the steel 

projectile is varied as 400 m/s, 700 m/s, 900 m/s, respectively.  
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For the experimental data, Straßurger et al. obtained the damage/failure velocities 

using a Cranz-Schardin camera. For the computed results herein, the 

damage/failure velocity is based on the leading edge of the damaged region at 

times of 4.0 and 6.0 µs. The experimental and computed results are summarized 

in Figure 3.18 and the damage plots at 4.0 and 6.0 µs for velocities 400 m/s, 700 

m/s and 900 m/s are given in Figure 3.19-3.24. 

 
 
 

 

Figure 3.18 Damage velocity versus impact velocity [72]. 
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Figure 3.19 Damage plot for initial velocity of 400 m/s at 4.0 µs. 

 
 
 

 
 

Figure 3.20 Damage plot for initial velocity of 400 m/s at 6.0 µs. 
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Figure 3.21 Damage plot for initial velocity of 700 m/s at 4.0 µs. 

 
 
 

 

 

Figure 3.22 Damage plot for initial velocity of 700 m/s at 6.0 µs. 
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Figure 3.23 Damage plot for initial velocity of 900 m/s at 4.0 µs. 

 
 
 

 

 

Figure 3.24 Damage plot for initial velocity of 900 m/s at 6.0 µs. 

 
 
 
In the computations, the initial velocity of the projectile is chosen as 400 m/s, 700 

m/s and 900 m/s. For the first computation, i.e. for the initial velocity of 400 m/s, 

the computed damage velocity is 9000 m/s, whereas the experimentally found 
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damage velocity for 400 m/s projectile velocity was 9200 m/s. The percentage 

error here is about 2.2%. For the 700 m/s initial velocity of the projectile, the 

damage velocity is calculated to be 9500 m/s. In the experimental study, the 

damage velocity for the same velocity was found to be about 10300 m/s. The 

percentage error between the computational and the experimental studies is 7.7%. 

For the initial velocity of 900 m/s for the projectile, the damage velocity is found 

as 10,000 m/s. In the study of Strasßurger et al., the damage velocity for 900 m/s 

projectile velocity was happened to be nearly 10,700 m/s. The percentage error 

between the computational and the experimental studies is 6.5%. 

 

The reasons for these errors may be listed as follows: 

 

• The steel projectile is chosen as 4340 steel. Nevertheless, Straßurger et al. 

did not mention any specific steel type for the projectile. 

• The SiC that is used in the experiments may include some imperfections 

like micro voids, non-homogeneity etc. 

• In the numerical analyzes, the projectile is assumed the hit the target at 

perfectly normal incident. But in the experiment, it is probable that 

perfectly normal impact conditions may have not been reached. 

• There are, of course, some errors coming from the instrumentation used in 

the experimental setup and numerical tool used. 

 

The damage velocity trends of the ceramic plate reported here is well correlation 

with the experimental results performed by Straßurger et al. This behavior of SiC 

shall be used in the computations in the following sections. The crack patterns, 

damage levels, however, could not have been validated since enough 

experimental data for these could not have been found in the literature; in fact 

there was no data available for the public use. 
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3.5.2 Validation of KevlarTM Model 

 

Material models suitable for anisotropic behavior have been developed in 

AUTODYN. Numerical simulations are performed by Century Dynamics Ltd. 

(CDL) in order to validate the developed material model. In one of these 

numerical simulations [76], KevlarTM Fiber Reinforced Panel (homogeneously 

distributed [0/90] fiber orientation) is impacted by 1.1g steel Fragment 

Simulating Projectile (FSP) having an initial velocity of 483 m/s. The 4340 

hardened steel is used for the projectile’s material and Johnson-Cook strength 

model [65] is used for FSP. The results of this numerical study are compared with 

instrumented ballistic impact experiments carried out at TNO Prins Maurits 

Laboratory. The findings of the numerical study and those of the experiments are 

summarized in Figure 3.25 and Figure 3.26. 

 
 
 

 

Figure 3.25 Simulated Damage Development [76]. 
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Figure 3.26 Back surface velocity [76]. 

 
 
 
From Figure 3.26, it is understood that the simulated velocity time history 

compares well with the experiment. 

 

3.6 Numerical Simulations of the Advanced Composite Armor 

 
In the simulations that will be presented, silicon carbide ceramic tile backed by 

KevlarTM fiber composite is impacted by 7.62mm armor piercing (AP) projectile 

orthogonally. In all of the simulations the initial velocity of the projectile is 

850m/s. Different backing thickness will be used to investigate the optimum 

ceramic/composite thickness ratio. 
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3.6.1 Finite Element Models of the Armor System and the Projectile 

 

The silicon carbide tile and the KevlarTM backing are selected to be 100x100mm 

and the silicon carbide has a thickness of 8mm.The thickness of KevlarTM 

backing is varied as 2mm, 4mm, 6mm and 8mm. The symmetry condition (about 

y=0 plane) is benefited for the complete model in order to reduce the computation 

time for the simulations. 

 
 
 

 

 

Figure 3.27 Finite element model (half model) of the composite armor system 

 
 
 
 

SPH elements 

Lagrangian 
elements 



 
90 

 
 

Figure 3.28 Finite element model (half model) of the projectile 

 
 
 
The projectile model is comprised of total 11 parts. There are 340 brick elements 

(in the half model) used for the projectile. The projectile model is meshed in such 

a way that the elements are made finer to the tip of the projectile. The half model 

for the projectile is shown in Figure 3.28. 

 

The silicon carbide ceramic tile is modeled both with Lagrangian and SPH 

elements. The center of the ceramic tile (a volume of 28x14x8mm in the half 

model) is modeled using 28,101 SPH elements of size 0.5mm. The reason for 

using SPH elements is that it enables to visualize main events in failure process 

of the ceramic tile like shattering of the ceramic tile and simulating the rejected 

ceramic particles through the analysis. The rest of the ceramic tile is modeled by 

19,856 Lagrangian elements. The elements are made coarser to the outer rim of 

the ceramic tile. The interaction between the SPH elements and Lagrangian 

elements is handled automatically by the Autodyn program [63]. 

 

The KevlarTM composite backing plate is modeled by using Lagrangian brick 

elements. The elements are made coarser to the outer rim of the KevlarTM 

composite. The number of elements for different backing thicknesses is given in 

Table 3.3. 
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Table 3.3 Number of elements for backing plates 

 
Configuration 

name 
Thickness of the 

backing plate (mm) 
Number of 
elements 

C1 2 16,200 
C2 4 32,400 
C3 6 48,600 
C4 8 64,800 

 
 
 
 

The projectile is modeled by Johnson-Cook [65, 66] strength and failure model. 

Johnson-Holmquist strength and failure model is used for the silicon carbide tile. 

Finally KevlarTM
 backing plate is modeled by using the available Autodyn library 

data. Since the fiber orientation is unidirectional (homogeneously distributed 

[0/90] fibers), the principal material direction is coincident with the fiber 

directions with the through thickness direction being the 3rd principal direction. 

 
 
 

 

Figure 3.29 Principal material directions for the composite 

 
 
 

The material properties and constants for the projectile and for the silicon carbide 

were given in Table 3.1 and Table 3.2, respectively. The material constants for 

KevlarTM plate is given in Table 3.4.  
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Table 3.4 Material properties and constants for KevlarTM plate 

 
KevlarTM plate 

Density (g/cm3) 1.650 

Equation of State Data (Ortho) 

Young’s Modulus-11 (GPa) 13.06924 

Young’s Modulus-22 (GPa) 13.06924 

Young’s Modulus-33 (GPa) 3.248184 

Poisson’s ratio-12 0.062540 

Poisson’s ratio-23 0.077551 

Poisson’s ratio-31 0.312031 

Strength Data 

Shear Modulus (GPa) 1.00 

Failure Data 

Tensile failure strain 11 0.08 

Tensile failure strain 22 0.08 

Tensile failure strain 33 0.01 

 
 
 
The composite armor system is assumed to be perfectly clamped around its 

periphery, i.e. linear and rotational velocities of the peripheral nodes are bounded 

to be zero.  

 

Boundary conditions about the symmetry plane are not defined by the user since 

the program automatically accounts for symmetry boundary conditions once the 

symmetry plane (or axis) is defined. In words, translational motion has no 

component normal to a plane of symmetry and rotational vectors have no 

component in a symmetry plane. 

 
By its nature, very large deformations are involved in the impact events. But, the 

highly distorted elements have to be removed from the finite element model since 

the accuracy of the integration is heavily depended on the level of zonal 

deformation. Removal of the highly distorted elements is termed as erosion 
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technique. The erosion is a numerical procedure allowing the automatic deletion 

of the highly distorted elements from the finite element model. Degenerate 

projectile elements are allowed to erode at an instantaneous geometric strain of 

1.5 while heavily distorted silicon carbide tile elements are eroded at an 

instantaneous geometric strain of 1.0. The erosion strain for the KevlarTM plate 

elements is defined to be 2.5. 

 

3.6.2 Numerical Results 

 

The numerical simulations are performed by changing the backing thickness. All 

of the analyses are continued until the termination time, which is 100µs, is 

reached. Each simulation has lasted about 72 hours with a laptop equipped with 

Intel Core2 Duo T7200 (2.0 GHz) processor and has a 2.0 GB of RAM. Various 

results for different configurations of the composite armor system are presented 

below. 

 

 

 

 

 

 

. 

 
 
 
 
 
 
 
 
 
 
 



 
94 

 

 

 

 

 
 

Figure 3.30 Progress of the damage for configuration C1 

Tensile failure 

Delamination in the composite plate 

Fiber breakage 

Fracture conoid 
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Figure 3.31 Progress of the damage for configuration C2 

Tensile failure 

Delamination in the composite plate 

Fiber breakage 

Fracture conoid 
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Figure 3.32 Progress of the damage for configuration C3 

Tensile failure 

Delamination in the composite plate 

Fiber breakage 

Fracture conoid 
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Figure 3.33 Progress of the damage for configuration C4 

Tensile failure 

Delamination in the composite plate 

Fiber breakage 

Fracture conoid 
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Figure 3.34 Velocity history of the projectile for configuration C1 
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Figure 3.35 Velocity history of the projectile for configuration C2 
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Figure 3.36 Velocity history of the projectile for configuration C3 

 
 
 

-850

-800

-750

-700

-650

-600

-550

-500

-450

-400

-350

-300

-250

-200

-150

-100

-50

0

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

Time (ms)

P
ro

je
c

ti
le

 V
e

lo
c

it
y

 (
m

/s
)

 

Figure 3.37 Velocity history of the projectile for configuration C4 
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In all of the configurations through C1-C4, crack initiations in the ceramic tile are 

observed at the early stages of the analysis, i.e. at time 3.36µs. This situation is an 

expected behavior of the silicon carbide which is highly brittle. Moreover, the 

projectile tip is defeated and it becomes nearly blunt at the interface of the 

ceramic tile. No clear difference is observed between different configurations of 

the armor system. 

 
At time 12.5µs, the fracture conoid formation starts to develop in all of the 

configurations. The formation of conoid distributes the load over a larger area 

causing smaller stresses on the composite plate. There is also tensile failure of the 

silicon carbide at the ceramic/composite interface. Ceramic materials are weak in 

tension (but very strong under compression) and tensile waves at the 

ceramic/composite interface cause ceramic tile to fail.  

 
The projectile penetrates further (at time 26.3µs) and fracture conoid becomes 

clearer for all of the configurations. After this point on, KevlarTM plate starts to 

fail, i.e. delaminates, which is a characteristic failure mode for fiber composite 

materials. The level of delamination slightly decreases as the thickness of the 

composite backing plate is increased. For the configuration C1, the projectile 

advances much more into the ceramic plate than those for the other 

configurations. Progressive delamination is the most desirable failure mode in 

high energy impact situations [81]. High shear stresses cause the delamination 

between the neighboring layers. In the delamination zone, advancing crack is 

captured and its propagation is prevented. Hence, the plate has still capacity to 

carry further load until the fibers in the next layer fail in tension. Energy absorbed 

during delamination depends on the interlaminar shear fracture energy, the length 

of delamination and the number of delaminations. Progressive delamination 

causes a ductile material behavior in the composite and significant amount of 

impact energy is absorbed. 

 
The delamination of the composite backing plate progresses at nearly time 

53.7µs. In addition to delamination, fiber breakage, which is another failure mode 

in fiber composite materials under impact loading, occurs in the composite plate. 
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The degree of delamination decreases as the thickness of the backing plate is 

increased. 

 
The damage level for each configuration at the end of the simulation cycle is 

represented in the above figures. All of the configurations of the armor system, 

except that of C1, are able to stop the projectile (Figures 3.35-3.37). The 

configuration C1 is perforated by the projectile and the residual velocity of the 

projectile after perforation is happened to be about 100 m/s (Figure 3.34). The 

damage level on the surface of the ceramic tile is also given in the below figures. 

 

At time 19.4µs, the rear side of the ceramic plate is investigated (Figures 3.38-

3.41). In all of the configurations, the rear side of the ceramic plate is failed 

(cracked). The degree of damage progressively decreases as the thickness of the 

backing plate is increased. 

 
 
 

 
 

Figure 3.38 Crack propagation on the rear side of the ceramic tile for 
configuration C1 
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Figure 3.39 Crack propagation on the rear side of the ceramic tile for 
configuration C2 

 
 
 

 
 

Figure 3.40 Crack propagation on the reat side of the ceramic tile for 
configuration C3 
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Figure 3.41 Crack propagation on the rear side of the ceramic tile for 
configuration C4 

 
 
 

At the end of the simulations, the surface of the ceramic is investigated (Figures 

3.42-3.45). For all of the configurations, there are random surface cracks on the 

ceramic surface and the level of the cracking decreases as the backing thickness 

increases. 

 
 
 

 
 

Figure 3.42 Damage level on the surface of the ceramic tile at the end of the 
simulation for configuration C1 
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Figure 3.43 Damage level on the surface of the ceramic tile at the end of the 
simulation for configuration C2  

 
 
 

 
 

Figure 3.44 Damage level on the surface of the ceramic tile at the end of the 
simulation for configuration C3  
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Figure 3.45 Damage level on the surface of the ceramic tile at the end of the 
simulation for configuration C4  
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CHAPTER 4 
 
 

4 DISCUSSION AND CONCLUSION 
 
 
4.1 Discussion of Results 
 
In this study, the finite element analysis of the ballistic impact of 7.62mm.armor 

piercing (AP) projectile onto the silicon carbide ceramic tile backed by KevlarTM 

composite plate is performed by using AUTODYN hydrocode. The ceramic plate 

thickness is kept constant at 8mm and the backing plate thickness is gradually 

changed in order to find out the optimum ceramic/composite thickness ratio. 

 

Throughout the analyses, various damage mechanisms are observed in the 

participating materials. To begin with the silicon carbide ceramic; being highly 

brittle, ceramic materials tend to shatter (or cracks) upon impact. This tendency is 

mostly captured in the numerical simulations. The fracture conoid formation in 

the silicon carbide tile is also represented in all of the simulations. However, the 

conoid is not very intense at the beginning of the simulations, i.e. at the time of 

projectile defeat on the interface of the ceramic tile. It becomes clearer as the 

projectile penetrates into the ceramic plate. Due to the fact that ceramic materials 

are very weak in tension, the tensile waves that passes through the ceramic plate 

can easily cause it fail (like spallation) and such phenomena is also observed in 

the numerical simulations. If Figures 3.30-3.37 are carefully analyzed, it is easily 

seen that even if the ceramic material fails under impact, it has still some degree 

of strength to decelerate the projectile. This fact is summarized in the material 

model description of the silicon carbide [67]. It is well known that some of the 

shattered pieces of ceramic tile disperse around and such rejection of the ceramic 

particles is also represented by SPH particles in the numerical simulations. It 

would not be possible to simulate these rejected particles by using Lagrangian 

elements, and this is why the local impact area zone of the silicon carbide tile is 

modeled by using SPH elements. The surface damage of the ceramic plate is very 
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limited at the end of the simulations for all configurations which is an unexpected 

result. The ceramic tile should shatter (or crack) thoroughly on the surface. We 

can conclude with this behavior that the ceramic model used in the simulations is 

not able to well simulate the surface crack patterns which should actually be 

distributed all over the surface of the ceramic tile. There is not notable difference 

on the damage levels of ceramic plates for different configurations. This is not 

surprising since the ceramic plate thickness is the same for all configurations and 

slight differences are most probably due to the different thickness valued backing 

plates. 

 

Secondly, the projectile is analyzed. For the projectile material, 4340 hardened 

steel is used in the simulations. However, 7.62mm AP projectiles manufactured 

by MKE are made of Steel 100 Cr 6 (DIN 671). Johnson-Cook material model 

[65, 66] constants for this material are unavailable. For this reason, 4340 steel, 

which is commonly used as an AP projectile material in the literature, is used in 

all of the simulations. As a first notice, the projectile is defeated and its tip is 

made blunt by the ceramic plate. As the projectile advances in the silicon carbide, 

it assumes a shape like a mushroom, which is named as mushrooming [82]. The 

most important point that can be withdrawn from the projectile behavior lays in 

Figures 3.33-3.37. The projectile is mostly decelerated when it propagates in the 

ceramic material. These cases are consistent with the fact that the ceramic 

material in a composite armor system is mainly responsible for breaking the 

projectile tip and absorbing great amount of projectile’s kinetic energy. 

 

As for the backing material, KevlarTM, it exhibits characteristic failure modes that 

composite materials have like delamination and fiber breakage and these aspects 

are clearly observed in the numerical simulations for all different configurations 

of the armor system. The level of delamination increases as more and more 

ceramic particles in the conoid zone pushes the composite plate and when the 

tensile strength of the fiber is exceeded, fiber finally ruptures (fiber breakage). 

There is one more failure mode for composite materials which is matrix cracking. 

The model that is used in the simulations does not have the capability to simulate 
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such a failure mode. In order to be able to represent this behavior, fiber and 

matrix materials should be separately modeled and different material models be 

used for these two materials. 

 

From the simulations presented, the effect of target thickness becomes obvious 

only in the configuration C1, which corresponds a backing thickness of 2mm. All 

of the other configurations through C2-C4 are able to stop the projectile. Hence, 

from these results, the optimum ceramic/composite thickness ratio could easily be 

found. The thickness of the ceramic plate is 8mm, and the minimum backing 

thickness that can stop the projectile is 4mm. As a result, the optimum thickness 

ratio of the ceramic to backing plate is happened to be 2. 

 
4.2 Conclusion 
 
In this study, it is aimed at determining the optimum thickness ratio between the 

ceramic and the composite material and comparing this value with the analytical 

result obtained for the ceramic/composite armor system in the literature. For the 

ceramic material, silicon carbide and for the composite material KevlarTM is 

selected. After the materials are selected, armor systems having different backing 

thickness values are analyzed by performing numerical simulations. At the end of 

the simulations, the optimum thickness ratio of the ceramic/composite plates is 

found to be about 2. 

 

The areal densities corresponding different configurations of the armor system 

are represented in Table 4.1. Areal density of the armor system can be easily 

calculated by adding the multiplication of the density and thickness values of 

ceramic and composite materials. 
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Table 4.1 Areal densities of different configuration of the armor system 

 
Configuration Areal Density (kg/m2) 

C1 29.02 
C2 32.32 
C3 35.62 
C4 38.92 

 
 
 

From Table 4.1, it is concluded that using 2mm less thickness for the backing 

material saves 3.3 kg in every square meters of the armor. By performing such an 

analysis can greatly reduce the total weight of land vehicle or air vehicle, thus 

improving the vehicle’ s mobility to a great extent. 

 

The extensions of the present study can be lsted as follows: 

 

• In the simulations only the core of the AP projectile is used. The jacket 

and the antimon lead part of the AP projectile can also be modeled and the 

simulations can be performed with this projectile. 

• The material constants for silicon carbide, KevlarTM and the projectile can 

be obtained by performing tests on these materials and simulations can be 

performed by using these constants. 

• Firing tests can be held by using the same materials and same 

configuration. The results of these tests can be used to validate the 

numerical simulation results  

• In the real case, there exists some bonding material between the armor 

plates. This bonding material can also be modeled and simulations can be 

performed. 

• Multiple tiles can be added to the simulation in order to investigate the 

interaction between this tiles. Also some rubber materials can be used 

between this tiles in order to absorb shocks coming from neighboring 

tiles. 
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