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ABSTRACT 
 

 

NUMERICALLY EFFICIENT ANALYSIS AND DESIGN OF 

CONFORMAL PRINTED STRUCTURES IN CYLINDRICALLY 

LAYERED MEDIA 

 

 

 

Acar, Remzi Cüneyt 

Ph.D., Department of Electrical and Electronics Engineering 

Supervisor: Prof. Dr. Gülbin Dural 

 

September 2007, 105 pages 

 

 

 

The complete set of Green’s functions for cylindrically layered media is 

presented. The formulations reported in the previously published work by 

Tokgöz (M.S.Thesis, 1997) are recalculated, the missing components are added 

and a solution to the problem when  is proposed. 'ρρ =

A hybrid method to calculate mutual coupling of electric or magnetic current 

elements on a cylindrically layered structure using MoM is proposed. For the 

calculation of MoM matrix entries, when , and φ is not close to φ', the 

closed-form Green’s functions are employed. When φ is close to φ', since the 

spectral-domain Green’s functions do not converge, MoM matrix elements are 

calculated in the spectral domain. The technique is applied to both printed 

dipoles and slots placed on a layered cylindrical structure. The computational 

efficiency of the anaysis of mutual coupling of printed elements on a 

'ρρ =

 iv



cylindrically layered structure is increased with the use of proposed hybrid 

method due to use of closed-form Green’s functions. 

 

Keywords: Green’s function, closed-form Green’s function, cylindrically 

layered medium, conformal antennas, MoM, mutual coupling. 
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ÖZ 
 

 

SİLİNDİRİK KATMANLI ORTAMDA YERLEŞTİRİLMİŞ DÜZ 

OLMAYAN BASKI DEVRE ELEMANLARININ ETKİN NUMERİK 

ANALİZİ VE TASARIMI 

 

 

 

Acar, Remzi Cüneyt  

Doktora, Elektrik ve Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Gülbin Dural 

 

Eylül 2007, 105 sayfa 

 

 

 

Silindirik katmanlı ortamdaki Green fonksiyonları tamamlanmıştır. Tokgöz 

tarafından verilmiş olan Green fonksiyonları (Yüksek Lisans Tezi, 1997) tekrar 

hesaplanmış, eksik olan Green fonksiyonları eklenmiş ve  problemi 

çözülmüştür.  

'ρρ =

Moment Metod kullanılarak silindirik katmanlı ortamdaki elektrik ve 

manyetik akım elemanlarının karşılıklı etkileşimin hesaplanması için hibrid 

metod sunulmuştur. Moment Metod matris elemanlarının hesaplanması için 

 koşulunda, φ  ile φ'  birbirlerinden uzak iken, kapalı-formdaki Green 

fonksiyonları kullanılmış, φ  ile φ' birbirlerine yakın iken, spektral uzaydaki 

Green fonksiyonları yakınsamadığından Moment Metod matris elemanları 

spektral uzayda hesaplanmıştır. Bu teknik, çok katmanlı silindirik yapıların 

üzerine yerleştirilmiş dipol ve yarıklara uygulanabilir. Çok katmanlı silindirik 

yapılardaki baskı devre elemanlarının karşılıklı iletişim analizi hesaplama 

'ρρ =

 vi



verimliliği, kapalı- form Green fonksiyonları yardımıyla önerilen hibrid metod 

kullanımı sayesinde artırılmıştır. 

 

Anahtar kelimeler: Green fonksiyonu, kapalı-form Green fonksiyonu, silindirik 

katmanlı ortam, düz olmayan antenler, Moment Metod, karşılıklı etkileşim. 
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CHAPTER I 

 
 

INTRODUCTION 
 
 
 

Due to the advantages of microstrip antennas such as their low weight, low 

cost and flexibility, microstrip geometries mounted on multilayer structures have 

become very popular in various applications ranging from satellite and vehicular 

communications and remote sensing to radiators in biomedical applications [1], 

[2]. 

The importance of cylindrically layered structures have led to the 

investigation of the scattering from infinite conducting, dielectric or dielectric-

coated conducting cylinders and the radiation from patches, microstrip lines on 

cylindrical structures and cylindrical-rectangular, wraparound microstrip 

antennas [3]-[19]. 

The Method of Moments (MoM) is the most frequently used numerical 

technique to solve the problems of microstrip geometries mounted on multilayer 

structures. In this method, the integral equation is transformed into a matrix 

equation by approximating the unknown function interms of known basis 

functions, then using testing functions the boundary conditions are applied to 

minimize the weighted error due to this approximation. The MoM procedure can 

be applied either in the spatial domain or in the spectral domain. In the spectral 

domain, the MoM matrix elements involve multi-dimensional integrals of 

complex, oscillatory and slow-converging functions over an infinite domain. The 

numerical evaluation of these elements is quite time-consuming that makes the 

technique computationally inefficient. In contrast with the spectral domain 

MoM, the spatial domain MoM can be considered to be a more general and 

promising way for solving large and complex problem, as it can easily be applied 

to objects of arbitrary shape and particularly when the Fourier transform can not 

be applied to formulate and simplify the Green’s functions of the problem. The 
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spatial domain MoM has also more potential to enhance its capability to solve 

real and large problem by computing with fast algorithms. 

When MoM is applied in the spatial domain, matrix filling is very time-

consuming. The reason for that is the spatial domain Green’s functions have to 

be calculated point by point by evaluating the Sommerfeld integral and the 

numerical evaluation of the integral is neither easy nor fast. Hence, the closed- 

form solution to the Green’s functions becomes necessary.  

Several forms of Green’s functions for multilayer cylindrical structures are 

present in the literature [20], [21]. The idea of closed-form spatial domain 

Green’s functions was proposed by [22] and then extended to planarly layered 

structures to avoid such an integration [23]-[25]. The derivation of the closed 

form spatial domain Green’s function is a robust technique which is obtained by 

approximating the spectral domain Green’s function in terms of complex 

exponential functions in three consecutive steps on a deformed integration path 

and then transforming these exponential functions into the spatial domain, 

analytically [26] for a general cylindrically multilayered medium. 

This technique eliminates the requirement of the tedious and time consuming 

transformation by the numerical integration of the inverse Fourier integral along 

the real axis on the complex  kz  plane where branch-point singularities are 

encountered. Therefore, the spatial domain Green’s functions are obtained in 

closed forms rather than integral representations. This increases the numerical 

efficiency in the computation of the spatial domain Green’s functions. Therefore, 

analysis of many problems such as the radiation from microstrips, patches and 

slots mounted on cylindrical surfaces, and scattering from dielectric shells and 

cylinders can be improved, considerably. Furthermore, analysis of conformal 

structures that are extensively used in satellite and vehicular communications 

become easier by the closed form spatial domain Green’s functions. 

Under the scope of this thesis, the spectral domain Green’s functions were 

derived from the beginning. Then the code is reproduced in MATLAB®  to 

obtain the spatial domain Green’s functions of the electric and magnetic fields 

due to and  z oriented electric and magnetic sources as [26]. The generated 

code computes the spatial domain closed-forms of  

φ

  ~ , ~, ~ , ~ H
z

E
z

H
zz

E
zz GGGG φφ for an electric 
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and  a magnetic dipole pointing in z direction, the spatial domain closed-forms of 

 ~ , ~, ~ , ~ HEH
z

E
z GGGG φφφφφφ  for an electric and a magnetic dipole pointing in direction 

where 

φ

HEG ,~
αβ  is the electric or magnetic spectral domain Green’s function in α  

direction due toβ –oriented source. They were found to be in good agreement 

with those given in [26]. The spatial domain closed-forms of    ~ , ~
  

H
z

E
z GG ρρ for an 

electric and a magnetic dipole pointing in z direction,    ~ ,  ~ HE GG ρφρφ for an electric and 

a magnetic dipole pointing in direction that are not provided in [26] were also 

derived and evaluated by the generated code. Therefore for and  z oriented 

electric and magnetic sources the complete set is obtained. 

φ

φ

In addition to these,  ~ , ~ , ~ , ~, ~ , ~ HEHEH
z

E
z GGGGGG ρρρρφρφρρρ  for both electric and  magnetic 

dipole sources pointing in ρ direction were derived analytically and the spatial 

domain closed-forms of these were evaluated by the generated code. Therefore, 

the complete set of spatial domain dyadic Green’s function components has been 

completed and is evaluated by that code. A new code is generated to evaluate 

Sommerfeld integral numerically to compare the approximate closed-form 

Green’s functions with the exact ones. The closed-form Green’s function 

components can also be obtained for lossy dielectric media. The application 

examples of the closed-form Green’s function components for lossy dielectric 

media are shown in Chapter III. 

In a previously reported work [27], an approach to overcome the problem for 
'ρρ = , i.e.,  and  is proposed. Using a similar procedure reported 

in this work, Green’s functions when  are calculated and some closed-

form Green’s function results are presented. For small (φ -φ') values, the exact 

and our closed-form Green’s functions are plotted together and it is observed that 

they are in good agreement.  

'ρρ = 'φφ =

'ρρ =

While using MoM to calculate mutual coupling of electric or magnetic 

current elements on a cylindrically layered structure a hybrid method is used. For 

the calculation of MoM matrix entries, when , and φ  is not close to φ', 

closed-form Green’s functions are employed. When φ is close to φ', the problem 

'ρρ =

 3



is handled by calculating MoM matrix elements in the spectral domain. The 

technique is applied to both printed dipoles and slots placed on layered 

cylindrical structures. The computational efficiency of the anaysis of mutual 

coupling between printed elements on cylindrically layered structures is 

increased with the use of proposed hybrid method due to use of closed-form 

Green’s functions. 

Additionally, the surface wave contribution in cylindrically stratified media is 

investigated. In that study, the effect of  the surface wave poles and the selection 

of  the deformed path parameters are studied. The  observations include different 

frequencies  f , the cylinder radius , the dielectric constant 1a
1r

ε . When the 

deformed path parameters are selected in such a way that the deformed path 

passes close to the surface wave poles, it is observed that the spectral domain 

Green’s functions hence the spatial domain Green’s functions deteriorate. This 

deterioration is overcome by removing the surface wave poles from the spectral 

domain Green’s functions and adding their contributions in the spatial domain. 

When a proper deformed path is used in evaluation of spatial-domain Green’s 

functions, it is observed from the given plots that removing the surface wave 

contributions from spectral-domain Green’s functions does not give an extra 

benefit. Hence regarding our research, unlike planar layered medium, it is not a 

critical issue to remove the surface wave contributions from the spectral-domain 

Green’s functions if a proper deformed path is used.  

Chapter II deals with the spectral-domain Green’s functions of a cylindrical 

multilayered media. In Chapter III, the spatial-domain Green’s functions and the 

numerical results are presented. In Chapter IV, the work related with the surface 

wave contribution is provided and some results are presented. 

In Chapter V, the mutual coupling between electric and magnetic current 

elements on a dielectric coated cylinder with different parameters and some 

calculated results are compared with available results found in the literature. 

Finally, concluding remarks are presented in Chapter VI. At last, four 

Appendices are provided. In Appendix A, the Generalized Pencil of Function 

(GPOF) method which was used in approximating Green’s functions with 

complex exponentials, is given. The complete set of spectral domain dyadic 
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Green’s function components is given in Appendix B. In Appendix C, rooftop 

current modes and their analytical evaluation of convolutional integral are 

provided. In Appendix D, Newton-Raphson method is presented. Throughout the 

analysis presented in this thesis,  time dependence is assumed.    tje ω
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CHAPTER II 
 
 

SPECTRAL DOMAIN GREEN’S FUNCTIONS IN 
CYLINDRICALLY LAYERED MEDIA 

 
 

 
II.1. Introduction 

 

In this chapter, the spectral domain Green’s functions reported in [26] are 

evaluated using a generated code in MATLAB®. The remaining spectral domain 

Green’s function components which are not given in [26] are also derived and 

given. Hence, the complete set of dyadic Green’s function components for 

cylindrically stratified media have been obtained. These spectral domain 

expressions are transformed into spatial domain analytically in closed-forms to 

be used in mutual coupling analysis of printed elements as will be mentioned in 

Chapter III. 

 

II.2. Field Expressions for Cylindrically Multilayered Media 

 

A general cylindrically multilayered geometry is shown in Figure II.1. An 

electric or magnetic source of  ρ, z or φ orientation is embeded in region  j and 

the observation point may be located in any layer, denoted by region i. Layers 

may vary in their electric or magnetic properties (ε,µ) as well as the thickness, 

the layers may also be lossy. Moreover, a perfect electric conductor (PEC) or 

perfect magnetic conductor (PMC) can be considered as a layer. Unlike in 

planarly and spherically layered media, TE and TM waves are coupled together 

at an interface in cylindrically layered media. This requires simultaneous 

solution of the fields corresponding to TE and TM cases, the only exceptions are 

the rotationally symmetric (n=0) and z-invariant (kz=0) cases for which separate 

analyses of TE and TM modes are possible. Hence, the coupled-mode analysis 
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for cylindrically layered structures results in 2x2 reflection and transmission 

matrices rather than reflection and transmission coefficients.  

 
 

 
Figure II.1  General cylindrically multilayered medium 

 

 

In general, a  oriented  point electric or magnetic source is represented 

by a current element 

β̂

)'( ˆ )( rrIlrJ rrr
−= δβ       (II.1) 

where  may be β̂ φ,z  or ρ ,  is the current moment, Il rr and 'rr  are the radial 

vectors showing the locations of source and observation points, respectively. 

A general multiple interface geometry of N layers which contains a 

source  in the jth layer at , is shown in Figure II.2, where the dispersion of 

waves through the layers is demonstrated [28]-[35].   

'ρρ =
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β̂  

Figure II.2   Dispersion of waves through general mu

 

 

First, the axial components (i.e. z components) of

and magnetic fields are derived for the coupled TE a

layer, then these field components are transferred int

a recursive algorithm [26]. The axial components o

fields in the source layer  j  can be written as a sum

source, the standing and outgoing waves formed by 

outer and inner boundaries of the source layer, respe

kind Bessel and second-kind Hankel functions [26] 
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where I  is the unit matrix, <ρ   is the smaller of  ρ

ρ  and  and  and  are, respectively, the ax

wave number of the i

'ρ zk
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k ρ

th layer such that  22 kkk zi ρ+=
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ltiple interface geometry 

 the spectral-domain electric 

nd TM modes in the source 

o the observation layer using 

f the electric and magnetic 

 of the direct term due to the 

the multiple reflections from 

ctively, represented by first-

} ←

nn So . A)ρ

  (II.2) 

 and ,  'ρ >ρ  is the larger of 

ial wave number and radial 

i
.   



←

nS  is a 2 x 1 matrix operator of the form                                                                                          

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
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=

←

)ˆ(ˆ

ˆ)ˆ(1
 

'

'2

r

r

z

zzj
jn

ajw

jkak
S

β

β
ε       (II.3) 

for the fields due to an electric source, 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⋅∇+

∇×⋅
=

←

β
µ

β

ˆ)ˆ(1
)ˆ(ˆ

 '2

'

r

r

zzj
j

z

n jkak

ajw
S       (II.4) 

for the fields due to a magnetic source and '∇
r

 is defined as 

'
ˆ

''
ˆ

'
ˆ'

z
aaa z ∂

∂
+

∂
∂

+
∂
∂

=∇
φρρ φρ

r
    (II.5) 

snA and onA  are the amplitude matrices, respectively, for the nth harmonic of the 

standing and outgoing waves that are reflected from the lower and upper 

boundaries. The fields at the interfaces which satisfies the boundary conditions 

gives the amplitude matrices as [26] 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+=

+−+

−+−

1,

~
'')2(

1,

~~

1,

~
')2('

1,

~~

)(I)(.A

)(I)(.A

jjnnjjjn

jjnnjjjn

RkJkHRM

RkHkJRM

jjo

jjs

ρρ

ρρ

ρρ

ρρ

           (II.6) 

where 1,

~

mjjR  is the generalized reflection matrix and 1
1,

~

1,

~~

).( −
±−= mm jjjjj RRIM  

is a factor accounting for multiple reflections in the source region j. The 

generalized reflection matrix 1,

~

−jjR  contains multiple reflections from the inner 

layers with respect to layer j, while 1,

~

+jjR  contains multiple reflections from the 

outer layers. The generalized reflection matrix can be defined as  

1,

~

2,1

~

,11,1,

~

±±±±±± += iiiiiiiiii TRTRR     (II.7) 

where i denotes an arbitrary layer between 1 and N. 

 9



1,

~
±iiT  is the generalized transmission matrix that transfers the amplitudes from the 

source region to the observation region and is defined as 

1,
1

2,1,11, )
~

(
~

±
−

±±±± −= iiiiiiii TRRIT     (II.8) 

R  and  T  in (II.7) and (II.8) are the local reflection and local transmission 

matrices, respectively. These matrices contain interactions between the two 

layers given in their subscripts.  

The local reflection matrix R  is defined as  

[ ]
[ ])()()()(.

)()()()(.

11

11

1
,1

)2()2()2()2(1
1,

ininininiii

ininininiii
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ρρρρ

ρρρρ
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−=
−

+

−
+

 (II.9) 

The local transmission matrix T  is defined as  
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⎦
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ε

π
ω

µ
ε

π
ω

ρ

ρ
    (II.10) 

where  

[ ])()()()(
11

)2()2(
inininini akHakJakJakHD

iiii ++
−= ρρρρ  (II.11) 

)()2( xH n , )()2( xH n , )  and (xJ n )(xJ n , used in equations (II.9)-(II.11), are given 

as  

⎥
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where  ´  in (II.12) is used for the derivative with respect to  such that iak
iρ

)( iak
iρ

∂
∂ . 
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II.3. Spectral-domain Green’s Functions 

 

Putting (II.6) into (II.2) gives the z-component fields in the source layer  j  as 
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when source and observation points are in the same region, i.e. i = j,  
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when source and observation points are located in regions  j and  i, respectively.  

The Fourier transformation of (II.13) gives the z-components of the fields in 

spectral domain as [26] 
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where )',( ρρnF  can also be defined as 
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The spectral domain fields can be defined as the multiplication of Green’s 

function matrix  
~
G  and the source matrix  

~
J such as  JGE E ~

 . 
~~

=  and JGH H ~
 . 

~~
= . 

Hence, using (II.16) and knowing that Fourier transform of the current source 

given in (II.1) is , electric or magnetic spectral domain Green’s function 

in 

' zjk zeIl

α  direction due toβ –oriented source, HEG ,~
αβ , can be defined as [26] 
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(II.18) can also be written interms of nth harmonic Green’s function nn HEG ,~
αβ  as  

nn HE

n

jnHE Ge
ω

G ,)(, ~
4
1~ '

αβ
φφ

αβ ∑
∞

−∞=

−−=      (II.19) 

Then, nth harmonic Green’s function in z direction due to β –oriented source is 
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The ρ component and φ component of the fields can be obtained, 

respectively, from the z component of the fields as [26] 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

∂
∂

−

∂
∂

−−
=

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

z

z

i

i

H

E
n

jk

jk
n

kE

H

i

~

~

        

       
 1

~

~

z

z

2

ρ
ωµ

ρ

ρρ
ωε

ρρ

ρ    (II.21) 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

∂
∂

∂
∂

−

=
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

z

z

i

i

H

E

k
j

k
nk

k
nk

k
j

E

H

ii

ii

~

~

             

          

 ~

~

22
z

2
z

2

ρ
ωµ

ρ

ρρ
ωε

ρρ

ρρ

φ

φ    (II.22) 

 

 12



Therefore, using (II.21) and (II.22), ρ and φ directed nth harmonic Green’s 

functions, respectively, due to β –oriented source are given as 
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In [26], z and φ directed spectral domain Green’s functions of electric and 

magnetic fields,  ~ ,~,~ ,~ H
z

E
z

H
zz

E
zz GGGG φφ , due to z-oriented electric and magnetic sources,  

z and φ directed spectral domain Green’s functions of electric and magnetic 

fields, HEH
z

E
z GGGG φφφφφφ

~ ,~,~ ,~ , due to φ-oriented electric and magnetic sources embedded 

in an arbitrary layer are given for an arbitrary observation layer. The remaining 

spatial domain Green’s function components which are not given in [26], ρ 

directed spectral domain Green’s functions of electric and magnetic fields, H
z

E
z GG ρρ

~ ,~  

and  ~ ,~ HE GG ρφρφ , due to z and φ-oriented electric and magnetic sources, respectively, 

are also derived analytically and evaluated. 

The other remaining spatial domain Green’s function components which are 

not given in [26],  z, φ  and ρ directed spectral domain Green’s functions of 

electric and magnetic fields, HEHEH
z

E
z GGGGGG ρρρρφρφρρρ

~ ,~ , ~ ,~,~ ,~  , due to ρ -oriented electric 

and magnetic sources are derived analytically. Therefore, the complete set of 

spectral domain dyadic Green’s function components have been completed. The 

remaining spatial domain Green’s function components that are not given in [26] 

are also given in this chapter and the complete set of spectral domain dyadic 

Green’s function components are presented in Appendix B for the sake of 

completeness. 
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For a  z-oriented electric source, ρ directed nth harmonic Green’s functions of 

electric and magnetic fields are obtained as 
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For a  z–oriented magnetic source, ρ directed nth harmonic Green’s functions 

of electric and magnetic fields are obtained as 
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For a  φ–oriented electric source, ρ directed nth harmonic Green’s functions of 

electric and magnetic fields are obtained as  
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For a  φ–oriented magnetic source, ρ directed nth harmonic Green’s functions 

of electric and magnetic fields are obtained as  
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For a  ρ–oriented electric dipole source, z, φ and  ρ directed nth harmonic 

Green’s functions of electric and magnetic fields are obtained as 
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For a ρ–oriented magnetic dipole source, z, φ and ρ directed nth harmonic 

Green’s functions of electric and magnetic fields are obtained as 
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where ’s  are given in (II.14), (II.15) and (II.17). ijf
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CHAPTER III 
 
 

CLOSED-FORM GREEN’S FUNCTIONS IN 
CYLINDRICALLY LAYERED MEDIA 

 
 
 

III.1   Introduction 

 

In this chapter, the closed-form Green’s functions are presented. The 

spectral-domain Green’s functions which are given in Chapter II are transformed 

into spatial domain analytically in closed-forms as will be mentioned in this 

chapter to be used in mutual coupling analysis of printed elements. 

 

III.2   Spatial Domain Green’s Functions in Closed-form 

 

Spectral domain Green’s functions can be transformed into spatial domain by 

evaluating the Sommerfeld integral, 

zz
HEzzjkHE kdkGezzG z∫

∞

∞−

−−=− )(~
2
1)( ,)(', '

π
         (III.1) 

where HEG , denotes spatial domain Green’s function. Since the numerical 

evaluation of (III.1) has difficulties and is very time consuming, to improve 

computational efficiency  the deformed path [26] given in Figure III.1 is used as 

the path of integration in (III.1). To obtain the spatial domain Green’s functions 

in closed forms for a cylindrically layered medium, a three-step technique is 

developed as shown in Figure III.1. The spectral domain Green’s functions are 

approximated in terms of complex exponential functions in three consecutive 

steps and then these exponential functions are transformed into the spatial 

domain, analytically. 

These spectral domain Green’s functions are sampled and approximated in 

two regions in terms of complex exponentials by using Generalized Pencil of 

Function (GPOF) method. In the first region, corresponding to the path Г3  the 
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large argument behaviour of the zero-order Hankel functions enables complex 

exponentials of kρ to be represented in terms of Hankel functions. The  

Sommerfeld identity is used to transform Green’s functions into the spatial 

domain. Green’s functions represented by Hankel functions in this region are 

subtracted from the original Green’s functions in the full domain, resulting in 

Green’s functions vanishing outside a limited region. These Green’s functions 

are then approximated in terms of complex exponentials along the two contours 

Г1 and Г2 shown in Figure III.1. The path of integration is obtained by deforming 

the original Sommerfeld integration path [26] to avoid the branch-point 

singularity associated with a branch-cut and the surface wave pole singularities 

encountered along the real axis on the complex kz plane. In this second region, 

transformation into the spatial domain turns out to be analytical evaluation of 

two simple contour integrals of exponential functions. Finally, addition of the 

contributions of each step gives the spatial domain Green’s functions in closed 

forms. 

 

 
 

 

Г3

Figure III.1  Deformed path. 

 18



In (III.1) since HEG ,~  is chosen to be an even function of kz , HEG ,~  is either HEG ,~  

or HEG ,~ /  depending on whether zk HEG ,~  is an even or odd function of , 

respectively. Hence the inverse Fourier integral (III.1) can be folded as 

zk

 zz
HE

z
HE kdkGzzkzzG ∫

∞

−=−
0

,'', )(~)(cos(1)(
π

                 (III.2) 

The spectral domain Green’s functions are sampled and approximated interms of 

complex exponentials on this deformed path using the GPOF method and then 

transformed into the spatial domain by applying a three-step approximation 

technique outlined as follows [26]. 

1) The spectral domain Green’s functions are sampled uniformly along the 

path 

2332
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23
0 

)(1

)(
TTt

Ttkk

Ttjkk

sz
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⎪
⎬
⎫

++=

+−=ρ
   (III.3) 

where ks and   are the wave numbers of the sampling region that is chosen as 

the source layer. 

s
kρ

The value of  should be large enough to avoid the pole and branch-point 

singularities and in order for the large argument approximation of the zeroth-

order Hankel functions to be valid. Hence, a choice of  such that 

2T

2T 2
21 Tks + is 

greater than the wavenumbers of all layers should be appropriate. Once  is 

chosen, the value of 

2T

23  1.1 TT ≅  is sufficient to capture the behaviour of the 

Green’s functions in the sampling interval. 

The sampled Green’s functions are multiplied by 
s

kρ and approximated in 

terms of N3 complex exponentials of by the GPOF method [36] as 
s

kρ

 ~ 33
3

11
∑∑
==

=≅
N

l

sk
l

N

l

ts
lk

kls

k

tl

ts
ebebGk ρ

ρρ     (III.4) 

where 
ρkG~  represents the spectral domain Green’s functions approximated in 

this region. 
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a) The resulting exponential functions are represented by the 

zeroth-order Hankel functions using the large argument 

approximation as 
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   (III.5) 

b) Then, by using the Sommerfeld identity 
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where  
2'2'' )( ρρ −+−=− zzrr , the spatial domain Green’s functions  

are obtained as 

ρkG

∑
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≅
3

1

N

l l

rjk

lk r
ebjG

ls

hπρ
      (III.7)  

where 22' )(
hll szzr +−= . 

2) The spectral domain Green’s functions 
ρkG~  approximated in the first step 

are subtracted from the original Green’s functions G~  to yield the Green’s 

functions 
zkG~  vanishing for 2

21 Tkk sz +≥ . 

a) The resulting Green’s functions 
zkG~  are sampled uniformly 

along the two contours 1Γ and 2Γ , which are shown in Figure 

III.1 and given respectively as 

11
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1
1 0                     ,)1( Tt

T
tjTkk sz ≤≤+=   (III.8) 
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b) Along the paths (III.8) and (III.9), the maximum deviation 

from the original path occurs at 11 Tt =  or . Therefore the 

deformation of the path can be controlled by choosing  

properly. This parameter should be sufficiently large to 

02 =t

1T
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overcome the effects of the pole and branch-point singularities 

and small enough to avoid numerical difficulties. For a robust 

and safe approximation,  should be chosen that , 

where is the wavenumber of free space. 

1T 01 1.0 kTks ≅

0k

c) The sampled Green’s functions are approximated in terms of 

N1 and N2 complex exponentials of by GPOF method, 

respectively, on paths (III.8) and (III.9) as 
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d) Transformation of the approximated Green’s functions into 

the spatial domain turns out to be a simple contour integral of 

exponential functions as  
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zkzk dkGzzkG

zz π
           (III.11)

                  
Addition of the contributions given in (III.7) and (III.11) of the three steps yields 

the spatial domain Green’s functions in closed forms as follows: 
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In [26], z and φ directed spatial domain Green’s functions of electric and 

magnetic fields, , due to z-oriented electric and magnetic sources,    ,, , H
z

E
z

H
zz

E
zz GGGG φφ
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z and φ directed spatial domain Green’s functions of electric and magnetic fields, 

 , due to φ-oriented electric and magnetic sources embedded in an 

arbitrary layer are given for an arbitrary observation layer. The remaining spatial 

domain Green’s function components which are not given in [26], ρ directed 

spatial domain Green’s functions of electric and magnetic fields,  and 

, due to z and φ-oriented electric and magnetic sources, respectively, are 

also evaluated. 

HEH
z

E
z GGGG φφφφφφ  ,, ,

H
z

E
z GG    , ρρ

  , HE GG ρφρφ

The other remaining spatial domain Green’s function components which are 

not given in [26],  z, φ  and ρ directed spatial domain Green’s functions of 

electric and magnetic fields,  , due toHEHEH
z

E
z GGGGGG ρρρρφρφρρρ  ,  ,  , ,  , ρ -oriented electric 

and magnetic sources are evaluated. Therefore, the complete set of spatial 

domain dyadic Green’s function components have been completed. The plots of 

remaining spatial domain Green’s function components which are not given in 

[26] are shown in Section III.4. 

 

III.3 Closed-form Green’s Functions when ρ'ρ =  

 

The spatial domain Green’s functions in [26] can only be evaluated when ρ   

is not equal to 'ρ .  However, when MoM is applied in the spatial domain, the 

spatial domain Green’s functions at ρ = 'ρ  is needed. 

If ρ  is far away from 'ρ , the cylindrical eigenmodes in the summation in (II.19) 

form a fast convergent series. However, it is not the case when ρ  and 'ρ  are 

close to each other. When ρ  and 'ρ  are close to each other, the convergence 

behaviour of the series is very poor and a large amount of eigenmodes are 

needed to achieve a convergent result. To make the series representations of 

these Green’s functions convergent in spectral domain when  a similar 

procedure reported in [27] is employed.  

'ρρ =

To demonstrate the procedure, the spectral domain Green’s function E
zzG~  can 

be considered, where E
zzG~  has a summation term  that has a ∑

∞

∞−

−= )(
111

'φφjnefS
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convergence problem when , therefore infinite number of terms are 

needed to obtain a convergent result. It is realized that the quasistatic 

components of 

'ρρ =

11f   are slowly convergent, on the other hand the inverse Fourier 

transform of the quasistatic components has a closed form. After the quasistatic 

components are completely extracted from the Green’s functions in spectral 

domain, the remaining parts have good convergence behaviours which can be 

used to speed up the calculation of the inverse Fourier transform. Then the 

quasistatic components are transformed into spatial domain analytically and their 

contributions are added in closed form [27].  

The summation term,  can be expressed as 1S
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The coefficient C1 depends on n and kz ; if kz is fixed then C1 only depends on n. 

With increasing n, C1 has an asymptotic value denoted as .  is independent 

of n, but depends on k

∗
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z.  

)(),(  11 zz
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≅             (III.14) 

While moving along the Sommerfeld integration path on 3Γ  path,  is found to 

be almost a constant that is denoted as ; hence  is independent of n and 

k
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where Addition theorem, given in (3.17), is used to obtain the last term of 

(III.16)  
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The series in (III.16) is fast decaying, since the asymptotic term  is subtracted. 

In (III.18),  is subtracted from  for a better convergence. 
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The last integral in (III.18) has a  closed form solution as (III.19) using the 

Sommerfeld identity given in (III.6) and this term is called as the direct term. 
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As a summary, the complete procedure can be outlined as follows: 

I. The spectral domain Green’s functions are evaluated uniformly along the 

deformed path given in (III.8), (III.9) and (III.3), corresponding to 

paths 1Γ , , , respectively. 2Γ 3Γ

II. The asymptotic terms and are subtracted to make the remains of the 

Green’s function vanishing on path 

∗
1C ∗∗

1C

3Γ  and are transformed into those in 

spatial domain in closed form. 

III. The resultant Green’s functions are sampled uniformly along two deformed 

paths  and  and approximated in terms of N1Γ 2Γ 1 and N2 and the complex 

exponentials of  kz by the GPOF method given by (III.10). 
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IV. Transforming the approximated Green’s functions 
zkG~ in the form of 

(III.10) into the spatial domain turns out to be a simple contour integral of 

exponentials which have closed form. 

 

III.4 Numerical Results 

 

III.4.1   Closed-form Green’s Function Results for 'ρρ ≠   
 

The first set of numerical results belongs to a case for ρ ≠ ρ'  which was 

presented in [26]. The same results are given to verify the accuracy of our code.  

Figure III.2 is a dielectric-coated cylinder which is represented by a 3-layer 

structure in our model. The point electric source is located at the air-dielectric 

interface  = a'ρ 1=21mm and the observation point is at = 40mm. ρ

 
 
 

 
Figure III.2  Region 0: PEC,  Region 1: 3.2

1
=rε , 1

1
=rµ ,  Region 2: free space,   

 a0= 20mm, a1= 21mm,  = 21mm, =0˚, = 40mm, =30˚,  f = 4.7 GHz. 'ρ 'φ ρ φ
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Our generated code computes the spatial domain closed-forms of  spectral 

domain Green’s functions  ~ , ~, ~ , ~
  
H
z

E
z

H
zz

E
zz GGGG φφ  for an electric and a magnetic dipole 

pointing in z direction, the spatial domain closed-forms of  ~ ,  ~, ~ , ~ HEH
z

E
z GGGG φφφφφφ  for an 

electric and a magnetic dipole pointing in direction. They are found to be in 

good agreement with the ones given in [26] as seen in Figure III.3-Figure III.6. 

φ

Besides, the remaining spatial domain Green’s function components that are not 

given in [26], which are derived analytically and given in Chapter II as (II.25)- 

(II.32), the spatial domain closed-forms of  ρ directed spectral domain Green’s 

functions of electric and magnetic fields, H
z

E
z GG   

~ , ~
ρρ  and  ~ ,  ~ HE GG ρφρφ , due to z and φ-

oriented electric and magnetic sources, respectively, are also given in Figure 

III.7-Figure III.10. These are compared with the exact Green’s functions 

obtained by the numerical evaluation of the Sommerfeld integral. 

To assess the accuracy of the method developed in this thesis, the obtained 

(approximate) closed-form spatial domain Green’s function results are compared 

with the exact Green’s function results. Exact Green’s function is calculated 

using the direct numerical integration of Sommerfeld integral in (III.1) which is 

also given here for the sake of completeness 

zz
HEzzjkHE kdkGezzG z∫

∞

∞−

−−=− )(~
2
1)( ,)(', '

π
               

Direct numerical integration is a tedious and time consuming numerical 

integration of the inverse Fourier integral along the real axis on the complex  kz  

plane (Sommerfeld integration path)  where branch-point singularities and the 

surface wave poles are encountered. A code is generated which evaluates the 

spatial-domain Green’s function using the direct numerical integration that 

compares the exact and the approximate closed-form Green’s functions. 

The other remaining spatial domain Green’s function components that are not 

given in [26], which are derived analytically and given in Chapter II as (II.33)- 

(II.44),  the spatial domain closed-forms of  z, φ  and ρ directed spectral domain 

Green’s functions of electric and magnetic fields, HEHEH
z

E
z GGGGGG ρρρρφρφρρρ

~ , ~ , ~ , ~, ~ , ~  , due 

to ρ -oriented electric and magnetic sources are given in Figure III.11–Figure 
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III.16. Therefore, the complete set of the spatial domain dyadic Green’s function 

components have been completed. They are again compared and found to be in 

good agreement with the exact ones. 

The closed-form Green’s function components can also be obtained for lossy 

dielectric media where different spatial domain Green’s functions are given in 

Figure III.17–Figure III.20 for the geometry of Figure III.2 for the dielectric 

constant . 1.0 3.2
1

jr −=ε

 

 

E
zzG10log  

 

O    Numerical results given in [26]  

__   Our generated code 

( ) log '
010 zzk −  
 

Figure III.3 E
zzG10log   for an electric dipole pointing in z direction, for the geometry 

shown in Figure III.2 (N1=4, N2=5, N3=1, T1=0.1, T2=4.5, T3=5). 
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∫ dzG E
zφ10log  

 

O    Numerical results given in [26]  

__   Our generated code 

( ) log '
010 zzk −  

 

Figure III.4 ∫ dzG E
zφ10log   for an electric dipole pointing in z direction, for the geometry 

shown in Figure III.2 (N1=5, N2=5, N3=1, T1=0.1, T2=3.5, T3=4). 
 

 
 

H
zG φ10log  

 

O    Numerical results given in [26]  

__   Our generated code 

( ) log '
010 zzk −  

 

Figure III.5 H
zG φ10log   for an electric dipole pointing in φ  direction, for the geometry 

shown in Figure III.2 (N1=5, N2=5, N3=1, T1=0.1, T2=3.5, T3=4). 
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∫ dzG H
φφ10log  

 

O    Numerical results given in [26]  

__   Our generated code 

( ) log '
010 zzk −  

 

Figure III.6 ∫ dzG H
φφ10log   for an electric dipole pointing in φ  direction, for the 

geometry shown in Figure III.2 (N1=4, N2=4, N3=1, T1=0.1, T2=3, T3=3.5). 
 

 
 

∫ dzG E
zρ10log  

 

O    Exact  
 
__   Closed-form 

( ) log '
010 zzk −  

 

Figure III.7 ∫ dzG E
zρ10log   for an electric dipole pointing in z direction, for the geometry 

shown in Figure III.2 (N1=4, N2=4, N3=1, T1=0.1, T2=3, T3=3.5). 
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E
zGρ10log  

 

O    Exact  
 
__   Closed-form 

( ) log '
010 zzk −  

 

Figure III.8 E
zGρ10log   for a magnetic dipole pointing in z direction, for the geometry 

shown in Figure III.2 (N1=4, N2=4, N3=1, T1=0.1, T2=3, T3=3.5). 
 

 
 

∫ dzG H
ρφ10log  

 

O    Exact  
 
__   Closed-form 

( ) log '
010 zzk −  

 

Figure III.9 ∫ dzG H
ρφ10log   for an electric dipole pointing in φ  direction, for the 

geometry shown in Figure III.2 (N1=4, N2=4, N3=1, T1=0.1, T2=3, T3=3.5). 
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∫ dzG E
ρφ10log  

 

O    Exact  
 
__   Closed-form 

( ) log '
010 zzk −  

 

Figure III.10 ∫ dzG E
ρφ10log   for a magnetic dipole pointing in φ  direction, for the 

geometry shown in Figure III.2 (N1=4, N2=4, N3=1, T1=0.1, T2=3, T3=3.5). 
 

 
 

∫ dzG E
zρ10log  

 

O    Exact  
 
__   Closed-form 

( ) log '
010 zzk −  

 

Figure III.11 ∫ dzG E
zρ10log   for an electric dipole pointing in ρ  direction, for the 

geometry shown in Figure III.2 (N1=5, N2=4, N3=1, T1=0.1, T2=3, T3=3.5). 
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∫ dzG H
φρ10log

( ) log '
010 zzk −  

O    Exact  
 
__   Closed-form 

 

Figure III.12 ∫ dzG H
φρ10log   for an electric dipole pointing in ρ  direction, for the 

geometry shown in Figure III.2 (N1=5, N2=4, N3=1, T1=0.1, T2=3, T3=3.5). 
 

 
 

EGρρ10log  

 

O    Exact  
 
__   Closed-form 

( ) log '
010 zzk −  

 

Figure III.13 EGρρ10log   for an electric dipole pointing in ρ direction, for the geometry 

shown in Figure III.2 (N1=5, N2=4, N3=1, T1=0.1, T2=3, T3=3.5). 
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E
zG ρ10log  

( ) log '
010 zzk −  

O    Exact  
 
__   Closed-form 

 

Figure III.14 E
zG ρ10log   for a magnetic dipole pointing in ρ  direction, for the geometry 

shown in Figure III.2 (N1=5, N2=4, N3=1, T1=0.1, T2=3, T3=3.5). 
 

 
 

HGφρ10log  

  

O    Exact  
 
__   Closed-form 

( ) log '
010 zzk −  

 

Figure III.15 HGφρ10log   for a magnetic dipole pointing in ρ direction, for the geometry 

shown in Figure III.2 (N1=5, N2=4, N3=1, T1=0.1, T2=3, T3=3.5). 
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∫ dzG E
ρρ10log  

 

O    Exact  
 
__   Closed-form 

( ) log '
010 zzk −  

 

Figure III.16 ∫ dzG E
ρρ10log   for a magnetic dipole pointing in ρ direction, for the geometry 

shown in Figure III.2 (N1=5, N2=4, N3=1, T1=0.1, T2=3, T3=3.5). 
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O    Exact  
 
__   Closed-form 
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Figure III.17 E
zzG10log   for an electric dipole pointing in z direction, for the geometry shown 

in Figure III.2 (N1=4, N2=5, N3=1, T1=0.1, T2=4.5, T3=5) when  the dielectric is lossy 
. 1.0 3.2

1
jr −=ε
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∫ dzG E
zφ10log  

 

O    Exact  
 
__   Closed-form 

( ) log '
010 zzk −  

 

Figure III.18 ∫ dzG E
zφ10log   for an electric dipole pointing in z direction, for the geometry 

shown in Figure III.2 (N1=5, N2=5, N3=1, T1=0.1, T2=3.5, T3=4) when  the dielectric is lossy 
. 1.0 3.2

1
jr −=ε

 
 
 

H
zG φ10log  

 

O    Exact  
 
__   Closed-form 

( ) log '
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Figure III.19 H
zG φ10log   for an electric dipole pointing in φ  direction, for the geometry 

shown in Figure III.2 (N1=5, N2=5, N3=1, T1=0.1, T2=3.5, T3=4) when  the dielectric is lossy 
. 1.0 3.2

1
jr −=ε
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∫ dzG H
φφ10log  

 

O    Exact  
 
__   Closed-form 

( ) log '
010 zzk −  

 

Figure III.20 ∫ dzG H
φφ10log   for an electric dipole pointing in φ  direction, for the 

geometry shown in Figure III.2 (N1=4, N2=4, N3=1, T1=0.1, T2=3, T3=3.5) when  the 
dielectric is lossy . 1.0 3.2

1
jr −=ε

 

 
 

III.4.2   Closed-form Green’s Function Results for  ρ = ρ'  
 

The closed-form Green’s functions when  are evaluated  using the 

procedure given in Section III.3.  

'ρρ =

The closed-form Green’s functions are calculated for the geometry shown in 

Figure III.2. Both the electric point source and the observation point are located 

at the air-dielectric interface  such that  = = aρ 'ρ 1=21mm.  The results are given 

for  different ( 'φφ − ) values and compared with the exact ones in Figure III.21-

Figure III.23.  In our simulations, at most 110-120 eigenmodes are needed.  
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E
zzG10log  

  

O    Exact  
 
__   Closed-form 
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Figure III.21. E
zzG10log  for an electric dipole pointing in z direction, for the 

geometry shown in Figure III.2, ρ = ρ’=21mm,  'φφ − = 60°. 
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Figure III.22 E
zzG10log  for an electric dipole pointing in z direction, for the geometry shown 

in Figure III.2, ρ = ρ’=21mm,  'φφ − = 50°. 
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__   Closed-form 

( ) log '
010 zzk −  
 

Figure III.23 E
zzG10log  for an electric dipole pointing in z direction, for the geometry shown  

in Figure III.2, ρ = ρ’=21mm,  'φφ − = 40°.  
 
 
 

The exact and the closed-form Green’s function of  for an electric point 

source are plotted together when f =6.8 GHz and 

E
zzG

10
1
=rε  for  various ( 'φφ − ) 

values and they are found to be in good agreement as seen in Figure III.24-

Figure III.27. 
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ure III.24 E
zzG10log  for an electric dipole pointing in z direction, for the geometry shown  

in Figure III.2, ρ = ρ’=21mm,  'φφ − = 30°.      
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re III.25  E
zzG10log  for an electric dipole pointing in z direction, for the geometry shown  

in Figure III.2, ρ = ρ’=21mm,  'φφ − = 20°. 
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O    Exact  
 
__   Closed-form 
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Figure III.26 E
zzG10log  for an electric dipole pointing in z direction, for the geometry shown  

in Figure III.2, ρ = ρ’=21mm,  'φφ − = 15°.   
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e III.27 E
zzG10log  for an electric dipole pointing in z direction, for the geometry shown   

 in Figure III.2, ρ = ρ’=21mm,  'φφ − = 10°. 
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For the geometry shown in Figure III.2, the spatial-domain Green’s 

function of different components due to different source types are given when 

 for various dielectric constants 'ρρ =
1r

ε , frequency f  and ( 'φφ − ) values as 

seen in Figure III.28-Figure III.33. For lower ( 'φφ − ) values, numerical 

difficulties start to appear. 
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zρ10log  

 

O    Exact  
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Figure III.28. ∫ dzG E
zρ10log  for an electric dipole pointing in  ρ  direction, for the geometry   

shown in Figure III.2, ρ = ρ’=21mm,  'φφ − = 15°, 
1r

ε =2.3,  f =10GHz. 
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∫ dzG H
zρ10log  

 

O    Exact  
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010 zzk −  
 

Figure III.29. ∫ dzG H
zρ10log  for a magnetic dipole pointing in ρ  direction, for the geometry 

shown in Figure III.2, ρ = ρ’=21mm,  'φφ − = 15°,  
1r

ε =2.3,   f =10GHz. 
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Figure III.30 E
zG ρ10log  for a magnetic dipole pointing in ρ  direction, for the geometry shown 

in Figure III.2, ρ = ρ’=21mm,  'φφ − = 10°, 
1r

ε =5,  f =10GHz. 
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Figure III.31 E

zG φ10log  for a magnetic dipole pointing in φ   direction, for the geometry shown  

in Figure III.2, ρ = ρ’=21mm,  'φφ − = 10°,
1r

ε =2.3,   f =10GHz. 
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Figure III.32. H

zzG10log  for a magnetic dipole pointing in z  direction, for the geometry shown  

in Figure III.2, ρ = ρ’=21mm, 'φφ − = 15°, 
1r

ε =2.3,  f =10GHz. 
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∫ dzG H
zφ10log

      

O    Exact  
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( ) log '
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Figure III.33. ∫ dzG H

zφ10log  for a magnetic dipole pointing in φ  direction, for the geometry 

shown in Figure III.2, ρ = ρ’=21mm, 'φφ − = 15°, 
1r

ε =5,  f =10GHz.      
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 CHAPTER IV 
 
 

SURFACE WAVE CONTRIBUTION 
 
 
 

IV.1 Introduction 

 

As mentioned in Chapter III, the Sommerfeld path contains a certain number 

of poles and branch-point singularities [37] which are associated with surface 

and leaky waves launched by the source. Among these, the surface waves play a 

rather significant role since they are guided along the interface without leaking 

energy. 

In planar layered medium, a number of studies have been reported about the 

contribution of surface waves in the literature.  

A. K. Bhattacharyya in his work [38], important characteristics of the surface 

wave modes in a planar multilayered grounded dielectric substrate are explored. 

It is shown how these characteristics can be utilized to determine the surface 

wave fields of an arbitrary shaped source. It is also stated that the study may find 

application for millimeter-wave printed antennas where the surface wave play an 

important role in determining the radiation and the impedance characteristics. 

In planar layered medium, the surface wave pole singularities are located on the 

real axis of the kρ-plane. Even if Sommerfeld integration path is deformed such 

that it is not too close to the surface wave pole singularities, their presence still 

affects the value of the integral for small values of kρ. Hence, it may be helpful to 

extract these surface wave pole singularities from the integrand before 

employing GPOF, since it helps smooth the integrand and makes it easy to 

approximate by GPOF. It has been shown in [39], [40] that if the surface wave 

poles are not extracted prior to exponential fitting (GPOF) DCIM approximation 

seems to deteriorate violently, even for moderate distances from the source. 

Hence, knowing that the surface wave contribution approaches its theoretical 

limit ( ρ1 ), even for moderate distances from the source, it is obvious that for 
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such cases, if these poles are not extracted and represented interms of complex 

exponentials, the discrete complex images are not sufficient, since they exhibit 

exponential decay ( ρ1 ). 

I. Aksun  and G. Dural in their work [40] give a brief of the development of 

the closed-form Green’s functions for planarly layered medium. The closed-form 

Green’s functions which are derived for the vector and scalar potentials using 

DCIM for planarly layered media are revisited to clarify some issues and 

misunderstandings on the use of DCIM. Among these issues, it is shown that the 

deviations of the approximations of the Green’s function start at the distances 

where the spherical wave approximations of the surface wave pole contribution 

deviate from the exact surface wave contribution. It is also suggested to subtract 

the surface wave poles from the spectral-domain Green’s functions before the 

approximation (GPOF), and to add their contribution analytically after GPOF. 

In cylindrical layered medium, A. Y. Svezhentsev and G. A. E. Vandenbosch 

dealed with the contribution of surface wave poles. In their research [41], they 

used mixed-potential Green’s functions for the printed elements over metal-

dielectric cylindrical structure. While trying to calculate directly IFT (Inverse 

Fourier Transform) of spectral-domain Green’s function in their work, they faced 

with singular behaviours of spectral-domain Green’s functions one of which is 

the surface wave poles. Using Newton-Raphson method they found these surface 

wave poles which make the spectral domain Green’s functions go to infinity and 

then extracted them before calculating Sommerfeld integral.   

A. Y. Svezhentsev in his own work [42] dealing with cylindrical layered 

medium, takes a step further and seeks to recognize the leaky wave contributions 

in the case when the cylinder is electrically large and the source is widely 

separated from the observation point, even though stating that this approach has 

some restrictions. In this work it is stated that  at a fixed frequency there is 

always an infinite number of leaky waves of which have non zero imaginary 

component in their propagation constants, therefore the leaky waves decay 

exponentially as the distance between the source and the observation points 

increases. 
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IV.2 Surface Wave Poles 

 

The surface wave poles exist symmetrically in the interval kz 

∈ ),( max00 rkk ε and  kz ∈ ),( max00 rkk ε−−  in the positive and negative parts of 

the real kz  axis, respectively, seen in Figure IV.1 if loss is absent.  is the wave 

number of free space,  is the wave number of the source layer which is 

selected as  in our analysis. 

0k

sk

0k

 

 

 

Г3.......... 
 
 
Surface wave  
    poles 

Figure IV.1   Location of the surface wave poles  

 

 

The number and the location of the surface wave poles is dependent on the 

radius , the wave number k1a 0 (frequency of operation), the dielectric constant 

1r
ε of the dielectric layer, the thickness th of the dielectric layer involved. 

 

IV.3 Finding the Location of  Surface Wave Poles 

 

The location of the surface wave poles in the spectral domain can be found 

by finding the roots of the denominator of the spectral domain Green’s functions. 
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To find the roots of a function, two different kinds of methods called bracketing 

and open are used in the literature which are Newton-Raphson method, Bisection 

method, Secant method, False-Position Method, Ragula Falsi method.  

 Methods such as Bisection method, Ragula Falsi method and the False- 

Position method of finding roots of a nonlinear equation f(x)=0 require 

bracketing of the root by two guesses. Such methods are called bracketing 

methods. These methods are always convergent since they are based on reducing 

the interval between the two guesses to zero on the root. 

Perhaps the most widely used root-finding method is the Newton-Raphson 

method which is also used in our analysis (given in Appendix D). In the Newton-

Raphson method, the root is not bracketed.  Only one initial guess of the root is 

needed to get the iterative process started to find the root of an equation.  Hence, 

the method falls in the category of open methods as Secant method. 

Although the Newton-Raphson method is often very efficient, its 

convergence depends on the nature of the function and on the accuracy of the 

initial guess. The only solution is to have an initial guess that is “sufficiently” 

close to the root. This is the reason why a two-stage procedure is applied to find 

the roots of the denominator of the spectral domain Green’s function G~  while 

using the Newton-Raphson method. Because of the discontinuous behaviour of 

spectral domain Green’s function G~ , it may not converge if the starting point is 

not selected as close to a root. That may cause the program to fail or cause too 

many iterations before exceeding the preset maximum number of iterations. 

Hence, the golden search procedure is used in conjunction with Newton-

Raphson method. On the other hand, the golden search procedure is very robust 

to locate the minima. Therefore, the two-stage procedure can overcome the 

difficulty of the Newton-Raphson method. 

 The algorithm of a two-stage procedure can be given as follows: 

1. For a given interval on the real axis of kz plane, the golden search procedure 

is used to minimize G~ . A local minimum point is then found. 

2. This minimum point is then used as the starting point for a Newton-Raphson 

procedure for finding the roots of G~ denominator. 
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To find all the roots, the interval between the minimum and maximum wave 

number of all layers ),( max00 rkk ε is divided uniformly into number of sections. 

For each section, the golden search procedure is applied first to find the 

minimum of G~ , which is used as the starting point for the Newton-Raphson 

method. 

When the surface wave poles are found, since they occur in complex conjugate 

pairs, they can be represented mathematically as [41] 
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where  is the surface wave pole and   is the residue of the spectral-

domain Green’s function at that pole. N is the maximum number of n (starting 

from zero) for surface waves exist for given geometrical parameters and 

frequency. M

m
nzk m

nsRe

n, that starts from 1, is the full number of surface waves which 

corresponds to the same value of n. 

The residue of  the spectral Green’s function G~  at a surface wave pole  can 

be found as 

m
nzk

  Gks m
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→

    (IV.4) 

The inverse Fourier transform of (IV.3) is calculated using residue theorem.  

Residue Theorem [43]: states that  if a function f  has only a finite number of 

singular points interior to some simple closed contour C, then the value of the 

integral of  f  around C  is 2πj times the sum of the residues associated with those 

singular points. 

Hence, using the residue theorem the spatial-domain of the surface wave 

contribution is given as 
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IV.4 Numerical Results 

 

In this section, the surface wave contribution in cylindrically stratified media 

is investigated. In that investigation, the effect of  the surface wave poles and the 

deformed path are studied. The effect of the deformed path is studied by 

changing the deformed path parameters. Figure IV.2 is a cylindrically 

multilayered structure used in our calculations. The innermost layer is perfect 

electric conductor (PEC), the radius of the cylinder is  and the thickness of the 

dielectric coating is  (hence 

1a

ht htaa += 01 ). Both the point electric source and 

the observation point are located at the air-dielectric interface such that 

. The observations include different frequency  f , the cylinder outer 

radius , the dielectric constant 

1
' a== ρρ

1a
1r

ε .  

 

 
Figure IV.2    Region 0: PEC,  Region 1: 

1r
ε , 1

1
=rµ ,  Region 2: free space,   

'ρ = ρ , 'φ =0˚ =30˚. , φ
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Figure IV.3 and Figure IV.4 h  xa  the spatial domain Green’s 

fun

 s ow the e ct and

ction Gzz with and without extraction of surface wave poles when the 

deformed path parameters are changed such that T1=0.1, T2=0.3, T3=5,  when the 

frequency       f =6.8 GHz, the dielectric constant  10
1
=rε , 'ρ = ρ = 0.47 λ0,  the 

cylinder outer radius a1= 0.47 λ0 and the dielectr = 0.02 λic thickness th 0 for 

source and observation point differences ( ) log '
010 zzk −  up to 1 and 2. 

 
 
 

 
( )'010log zzk −  

 
Figure IV.3    The exact and the spatial domain Green’s function G with and without extraction zz 
of surface  wave poles for source and observation point difference ( )'010log zzk −  up to 1 when 

the deformed path parameters are changed (T1=0.1, T2=0.3, T3=5), 10=f =6.8GHz, 
1r

ε , 'ρ = ρ =
0.47λ

 

___ log10|Gzz| with extraction of SW poles 
 

s 

0,  a1= 0.47λ0, th = 0.02λ0. 

-.-.- log10|Gzz| without extraction of SW pole
  
O    exact  log10|Gzz| 
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___ log10|Gzz| with extraction of SW poles 
 
-.-.- log10|Gzz| without extraction of SW poles 
  
O    exact  log10|Gzz| 

( )'010log zzk −  
 

Figure IV.4    The exact and the spatial domain Green’s function Gzz with and without extraction 
of surface wave poles for source and observation point difference ( )'010log zzk − up to 2 when 
the deformed path parameters are changed (T1=0.1, T2=0.3, T3=5),  f =6.8GHz, 

10
1
=rε , ='ρ ρ = 0.47λ0,  a1= 0.47λ0, th = 0.02λ0. 

 

 

Figure IV.5 and Figure IV.6 show the spatial domain Green’s function Gzz 

with and without extraction of surface wave poles when the deformed path 

parameters are changed such that T1=0.1, T2=0.3, T3=5,  when the frequency       

f =4.7GHz, the dielectric constant 3.2
1
=rε , = = 0.42 λ'ρ ρ 0,  the cylinder outer 

radius a1= 0.42 λ0 and the dielectric thickness th = 0.02 λ0 for source and 

observation point differences ( ) log '
010 zzk −  up to 1 and 2. 
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___ log10|Gzz| with extraction of SW poles 
 
-.-.- log10|Gzz| without extraction of SW poles 
  

( )'010log zzk −  
 

Figure IV.5  The spatial domain Green’s function Gzz with and without extraction of surface       
wave poles for source and observation point difference ( )'010log zzk − up to 1 when the 

deformed path parameters are changed (T1=0.1, T2=0.3, T3=5),  f =4.7GHz, 3.2
1
=rε , ' =ρ ρ = 

0.42λ0,  a1= 0.42λ0, th = 0.02λ0. 
 
 
 

 

___ log10|Gzz| with extraction of SW poles 
 
-.-.- log10|Gzz| without extraction of SW poles 
  

( )'010log zzk −  
 

Figure IV.6  The spatial domain Green’s function Gzz with and without extraction of surface 
wave poles for source and observation point difference ( )'010log zzk − up to 2 when the 

deformed path parameters are changed (T1=0.1, T2=0.3, T3=5),  f =4.7GHz, 3.2
1
=rε , ='ρ ρ = 

0.42λ0,  a1= 0.42λ0, th = 0.02λ0. 
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Figure IV.7 and Figure IV.8 show the spatial domain Green’s function Gzz 

with and without extraction of surface wave poles when the deformed path 

parameters are changed such that T1=0.1, T2=0.3, T3=5,  when the frequency       

f =6.8GHz, the dielectric constant  10
1
=rε , = = 0.47 λ'ρ ρ 0,  the cylinder outer 

radius a1= 0.47 λ0 and the dielectric thickness th = 0.02 λ0 for source and 

observation point differences ( ) log '
010 zzk −  up to 1 and 2. 

 

 

 

___ log10|Gzz| with extraction of SW poles 
 
-.-.- log10|Gzz| without extraction of SW poles 
  

( )'010log zzk −  

 
Figure IV.7  The spatial domain Green’s function Gzz with and without extraction of surface   
wave poles for source and observation point difference ( )'010log zzk − up to 1 when the 

deformed path parameters are changed (T1=0.1, T2=0.3, T3=5), f =4.7GHz,     10
1
=rε , ='ρ ρ = 

0.24λ0, a1= 0.24λ0, th =0.04λ0. 
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___ log10|Gzz| with extraction of SW poles 
 
-.-.- log10|Gzz| without extraction of SW poles 
  

( )'010log zzk −  
 

Figure IV.8  The spatial domain Green’s function Gzz with and without extraction of surface   
wave poles for source and observation point difference ( )'010log zzk − up to 2 when the 

deformed path parameters are changed (T1=0.1, T2=0.3, T3=5),  f =4.7GHz, 10
1
=rε , ='ρ ρ = 

0.24λ0,  a1= 0.24λ0, th = 0.04λ0. 
 

 

When the deformed path parameters are changed such that the deformed path 

passes close to the surface wave poles, it is observed from the given figures that 

the spectral Green’s functions hence the spatial domain Green’s functions 

deteriorate. This deterioration is overcome by extracting the surface wave poles 

from the spectral domain Green’s functions and adding their contributions in the 

spatial domain.  

Figure IV.9 shows the exact and the spatial domain Green’s function Gzz 

without extraction of surface wave poles when the proper deformed path 

(T1=0.1, T2=4.5, T3=5) is used, when the frequency f =6.8GHz, the dielectric 

constant  10
1
=rε , = = 0.47 λ'ρ ρ 0,  the cylinder outer radius a1= 0.47 λ0 and 

the dielectric thickness th = 0.02 λ0 for source and observation point difference 

( ) log '
010 zzk −  up to 2. 
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O    exact log10|Gzz| 
 
__  log10|Gzz| without extraction of SW poles 
 
 

( )'010log zzk −  

 
Figure IV.9  The exact and the spatial domain Green’s function Gzz without extraction of surface 
wave poles,  f =6.8GHz, 10

1
=rε , ='ρ ρ = 0.47λ0,  a1= 0.47λ0, th = 0.02λ0. 

 

 

Figure IV.10 shows the exact and the spatial-domain Green’s function Gzz 

without extraction of surface wave poles when the proper deformed path 

(T1=0.1, T2=3.5, T3=4) is used, when the frequency f =4.7GHz, the dielectric 

constant  3.2
1
=rε , = = 0.42 λ'ρ ρ 0,  the cylinder outer radius a1= 0.42 λ0 and 

the dielectric thickness th = 0.02 λ0 for source and observation point difference 

( ) log '
010 zzk −  up to 2. 

Figure IV.11 shows the exact and the spatial domain Green’s function Gzz 

without extraction of surface wave poles when the proper deformed path 

(T1=0.1, T2=3.5, T3=4) is used, when the frequency f =4.7 GHz, the dielectric 

constant  3.2
1
=rε , = = 0.34 λ'ρ ρ 0,  the cylinder outer radius a1= 0.34 λ0 and 

the dielectric thickness th = 0.04 λ0 for source and observation point difference 

( ) log '
010 zzk −  up to 2. 
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O    exact log10|Gzz| 
 
__   log10|Gzz| without extraction of SW poles 
 
 

( )'010log zzk −  
 

Figure IV.10  The exact and the spatial domain Green’s function Gzz without extraction of 
surface wave poles,  f =4.7GHz, 3.2

1
=rε , ='ρ ρ = 0.42λ0,  a1= 0.42λ0, th = 0.02λ0. 

 

 

 

 
O    exact  log10|Gzz| 
 
__   log10|Gzz| without extraction of SW poles 
 
 

( )'010log zzk −  
 

Figure IV.11  The exact and the spatial domain Green’s function Gzz without extraction of 
surface wave poles,  f =4.7GHz, 3.2

1
=rε , ='ρ ρ = 0.34λ0,  a1= 0.34λ0, th = 0.04λ0. 
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When a proper deformed path is used in the evaluation of spatial domain 

Green’s functions, it is observed from the given figures that removing the surface 

wave contributions from spectral domain Green’s functions does not give an 

extra benefit. Hence regarding our research, unlike planar layered medium, it is 

not a critical issue to remove the surface wave contributions from the spectral 

domain Green’s functions if a proper deformed path is used. 

 

 58



 

CHAPTER V 
 
 

MUTUAL COUPLING BETWEEN ELECTRIC/MAGNETIC 
CURRENT ELEMENTS 

 
 
 

In this chapter, the analysis of mutual coupling between two narrow strips 

and between two narrow slots placed on a cylindrically layered medium using 

Method of Moments (MoM) incorporation with the closed-form Green’s 

functions is presented. Mutual impedance and mutual coupling coefficient 

formulations are also provided for both strip and slot example to demonstrate the 

use of both electric and magnetic type Green’s functions in cylindrically layered 

media. Hence, it is preferred to explain Method of Moments (MoM) briefly, at 

first. 

 

V.1  The Method of Moments (MoM) 

 

The MoM is a numerical technique that is used to solve the problems stated as: 

{ } gfL =           (V.1) 

where L is a linear operator which may be differential, integral (which is in our 

analysis) and  g is the known function. 

In order to solve the problem, the unknown function to be determined  f (x) is  

approximated by series of known N  basis or expansion functions  fn(x),   

∑
=

=
N

n
nn xfxf

1
)()( α        (V.2) 

where nα ’s are the unknown coefficients that are to be solved. (V.3) is obtained 

by substituting  (V.2) into (V.1),  

)()(
1

xgxfL n

N

n
n =

⎭
⎬
⎫

⎩
⎨
⎧∑

=

α      (V.3) 

Since L is a linear operator, (V.3) can be expressed as, 
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{ } )()(
1

xgxfL n

N

n
n =∑

=

α       (V.4) 

The remainder function R(x) is defined as 

{ } 0)()()(
1

≠−=∑
=

xgxfLxR n

N

n
nα      (V.5) 

The remainder function R(x) is tested with the weighting (or testing) function wm 

in order to have a zero inner product,  

1,2,...Nmfor        0, ==Rwm     (V.6) 

Hence (V.6) is obtained as, 

{ } 0)()(,
1

=−∑
=

xgxfLw n

N

n
nm α     (V.7) 

Using the linearity of L, (V.7) can be expressed as 

{ } 1,2,...Nmfor            )(,)(,
1

==∑
=

xgwxfLw mn

N

n
nm α  (V.8) 

Using the linearity property of the inner product, (V.8) can also be written as 

{ } 1,2,...Nmfor                    )(,)(,
1

==∑
=

xgwxfLw mnm

N

n
nα  (V.9) 

This set of equations can be written in the matrix form as 

[ ][ ] [ ]mnmn VZ =α                (V.10) 

where nmmn LfwZ ,=  and gwV mm ,= . Z  is called the MoM matrix and V  is 

caled the excitation vector. When the basis and the testing functions are same, 

the method is called as Galerkin’s method (the method used in our analysis of 

mutual coupling).  

 

V.2  Mutual Coupling Between Two Narrow Strips 

 

For the analysis of the mutual coupling between two narrow strips on a 

multilayer cylinder, a structure which is given in Figure V.1 is used.  
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φ1
φ2

Figure V.1  A 3-layer structure with Region 0: PEC, Region 1: 
1r

ε =2.3, 
1r

µ =1, Region 2: 

free space, the first and second strips on ρ =a1 are placed at φ1 and φ2, respectively. 

 

 
According to MoM procedure, one starts with the boundary condition that the 

total tangential electric field on the conductor is zero,  

0ˆ =× En  on a strip.             (V.11) 

Then the total electric field is,  is EEE += , where iE  is the field generated by  

a known probe current density iJ  and  sE  is the field generated by an unknown 

induced current sJ  that is to be determined. 

0)(ˆ =+× is EEn            (V.12) 

The unit normal to the surface is denoted by  which is  for this problem. n̂ ρâ

Knowing that  iEi JGE ∗=  and sEs JGE ∗= ,  (V.12) can be written as   

)(ˆ)(ˆ iEsE JGnJGn ∗×−=∗×              (V.13)
 

where  denotes convolution, ∗ iJ is the known current density and sJ  is the total 

surface current density on the narrow strips that is to be determined. 

According to MoM, the total surface current density sJ  can be expressed 

interms of N subsectional basis functions as 
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∑+∑=
2

22
1

11
n

nn
n

nn
s JaJaJ                (V.14) 

where Jn1 is basis function of the first strip, Jn2  is the basis function of the second 

strip.  

Hence, putting the total surface current density sJ in (5.4) into (5.3) gives 

)()()(
2

22
1

11
iE

n
n

E

n
n

n

E

n JGJGaJGa ∗−=∗+∗ ∑∑             (V.15) 

Testing (V.15) with  the testing functions Jm1  and  Jm2, gives equations with inner 

product terms such as 

iE
m

n
n

E

mnn
E

m
n

n JGJJGJaJGJa ∗−=∗+∗ ∑∑ ,,, 1
2

21211
1

1            (V.16) 

iE
m

n
n

E

mnn
E

m
n

n JGJJGJaJGJa ∗−=∗+∗ ∑∑ ,,, 2
2

22212
1

1             (V.17) 

Since the strips are narrow, the basis and testing functions of each strip Jn and Jm  

are selected as rooftop functions shown in Figure V.2 

[ ]

[ ]
⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

≤+≤≤+−

≤≤≤−+−
=

2
,   )1(   )1(1

2
,   )1(   )1(1

),(
wlhnznhzhn

wh

wlnhzhnzhn
wh

lzJ

zzz
z

zzz
z

zn           (V.18) 

where w  is the width of each strip. 

 

   

  φ        

z

 z         

       Figure V.2   Rooftop functions 
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For the spatial domain MoM formulation, the typical matrix equation can be 

formed by using (V.16) and (V.17) 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∗−

∗−
=⎥⎦

⎤
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⎡
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∗∗

∗∗
iE

m

iE
m

n

n

n
E
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E

m

n
E

mn
E

m

JGJ

JGJ

a
a

JGJJGJ

JGJJGJ

,

,
  

,,

,,

2

1

2

1

2212

2111

  
  

             (V.19) 

where mi,ni =1,...N, i=1,2 , ∗  denotes convolution, iJ  is taken as a delta gap 

source, 1mJ , 1nJ  and 2mJ , 2nJ  are testing and basis functions of the first strip and 

the second strip, respectively. 

The matrix entries in (V.19) can be written in the following form 

)' ,'( )' ,'( ' '  ) ,(    lzJllzzGdldzlzJdldz nz
E
zzmzmn −−= ∫∫∫∫Z             (V.20) 

where  and are the “arc length” variables which are given as l 'l φ1al =   and 

. '
1

' φal =

Galerkin’s procedure is employed in the mutual coupling analysis with the 

selection of testing function mJ  and basis function nJ  of each strip same. This 

choice results in a symmetric matrix, hence considerably reduces the 

computation time of Zmn. Once a proper column or row is calculated, since the 

matrix entries are the same whenever |m-n|=s, where m is the row and n is the 

column number, the entire matrix is filled. If  N basis functions are employed, 

even though the dimension of the resulting matrix is NxN, the number of 

calculated matrix entry is only N.  

By changing of variables   u=z-z' and   v=l-l', (V.20) can be written as 

),(),(),(  vluzJlzJvuGudvddlzd nzmz
E
zzmn −−= ∫∫∫∫Z  (V.21) 

Rooftop functions, which are triangular in longitudinal direction and uniform in 

the transverse direction are suitable for our mutual coupling analysis. Selecting 

rooftop functions for the testing and the basis functions, reduces the quadruple 

integrals in (V.21) to two dimensional integrals (u and v integration) by carrying 

out the convolutional integral over testing and basis functions analytically, 

therefore this selection also reduces the computational time of Zmn as a 

consequence of getting rid of numerically integration of two dimensional 
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convolutional integral. The analytical evaluation of this convolutional integral is 

given in Appendix C. 

Putting the closed-form of Gzz [26] given in (V.22) into (V.21), (V.23) is 

obtained,   

)'( )'(
 )'(

π
1)(  φφ −−−

∫ ∑ == jk
z

k

k

zz

zzjk

z
E
zz e,kρρGedk

2
u,vG z

           (V.22) 

),(),()(  
2π
1         )' ( )'(

z vluzJlzJeGedkdvuddlzd nzmz
k

jkk
zz

zzzjk
mn −−

⎭
⎬
⎫

⎩
⎨
⎧

∫= ∑∫∫∫∫ −−− φφZ (V.23)  

Expressing the current density Jmz by a rooftop function, i.e., a Triangular 

function in z direction and a Pulse function in φ direction, i.e.  and 

changing the order of integrals, (V.24) is obtained, 

)(P)( mz lzTJ mzmz=

    }{     )( )(    )(P  )(P        )' (    
2
1 )(  

z uzTzTdzvllldeGedkdudv nzmznm
k

jkk
zz

uzjk
mn −−= ∫∫∑∫∫∫

−−

φφ
φφ

π
Z   (V.24)  

While calculating Zmn in (V.24), an integral subroutine in MATLAB® called 

Gaussian Quadrature is used for the numerical integration. 

For the calculation of (V.24), a hybrid method is used, depending on whether 

φ  is close to φ' or not. If φ is not close to φ'  the closed-form Green’s functions 

are employed. When φ  is close to φ', since the spectral-domain Green’s 

functions do not converge, (φ - φ') difference term is handled with the 

convolutional integral in the spectral-domain in the calculation of MoM matrix 

element Zmn. 

To be more explanatory, the last integral in (V.24), which is a convolution 

integral, is evaluated analytically. For the rest of the calculation of the matrix 

entry Zmn, a hybrid method is used:  

-when φ is not close to φ', the φ integration and the closed-form of Gzz are 

evaluated independently;  

-when φ is close to φ', (V.25) is obtained from (V.24) and used for the 

calculation for the matrix entry Zmn such as: first, Pulse functions are integrated 

giving an analytical result interms of v, then the multiplication of this analytical 

term with  is used as an integrand in v integration, at the last step, the 

spectral domain k

jkve

z integral is calculated in closed-form. 
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V.3   Mutual Coupling Between Two Narrow Slots 
 

 

 

Figure V.3   A 3-layer structure with Region 0:
0r

ε
2: free spa

 

 

Each aperture in Figure V.3 can be closed

magnetic surface current density  mJ   by u

the field in a region of space is interested

sources. Since many source distributions o

same field inside the region, equivalent so

represents two figures of which the left pro

one is the equivalent problem. The origina

S and free space external to S. The equival
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=2, 
0r

µ =1, Region 1: 
1r

ε = 5, 
1r

µ =1, Region 

ce. 

 and then replaced by an equivalent 

sing the equivalence principle. When 

, there is no need to know the actual 

utside a given region can produce the 

urces will serve as well. Figure V.4 

blem is the original problem, the right 

l figure represents a source internal to 

ent problem can be set as follows: Let 



there exists the null field internal to S and the original field exists external to S. 

To support this field, there must exist sJ  and sM  on S.  

              HnJ s ×= ˆ            nEM s ˆ×=  

where  E  and H are the original fields over S. From the uniqueness theorem we 

know that the field calculated will be the originally postulated field. 

 
 

 
Figure V.4     Equivalence Principle 

 

 

A cylindrical 3-layer medium with two narrow slots placed on ρ =a1 is given in 

Figure V.3. For this geometry, the aperture (slot) is closed and represented by an 

equivalent magnetic-current distribution mJ   by using the equivalence principle. 

Since the tangential electric field across the slot can be represented by the equivalent 

magnetic-current distribution 

ρaEnEJ m ˆˆ ×=×=               (V.26) 

The unit normal to the surface is denoted by  which is  for this problem. n̂ ρâ

The equivalent magnetic-current distributions  inside and outside of PEC can be 

written as  

For 1a>ρ ,   z
m
out aEaaEaEJ ˆˆˆˆ φρφφρ −=×=×=              (V.27) 

For 1a<ρ ,  z
m
in aEaaEaEJ ˆ)ˆ(ˆ)ˆ( φρφφρ =−×=−×=               (V.28) 
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PEC φ1

 φ2

m
zJ 1

m
zJ 2

Figure V.5     Equivalent magnetic current distributions on each slot 

 

 
Using the boundary condition that the tangential magnetic field is continous 

across the aperture, 

)()()( dzJJHJH s
m
out

out
z

m
in

in
z −+= δ  at 1a=ρ .                (V.29) 

where sJ  is the known probe current density at z =d. 

Knowing that  m
in

Hin JGH ∗=  and m
out

Hout JGH ∗= ,  (V.29) can be written as   

)()()( dzJzJzzGzJzzG s
m

out

H

out

m

in

H

in
−+∗=∗ δ      at 1a=ρ .             (V.30) 

Here, H
zzG  is the magnetic type Green’s function in z direction due to  z-oriented 

magnetic current source. 

According to MoM, the total surface current density m
zJ  can be expressed 

interms of N subsectional basis functions as 

∑∑ +=−=
2

22
1

11
n

nn
n

nn
m

out

m

in
JaJazJzJ              (V.31) 

where Jn1 is basis function of the first slot, Jn2  is the basis function of the second 

slot.   

Since the slots are narrow, the basis and testing functions of each slot  Jn and Jm  

are selected as rooftop functions such that 
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where w  is the width of each slot. 

Hence, putting the total surface current density m
zJ in (V.31) into (V.30) gives 
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Testing (V.33) with  the testing functions Jm1  and  Jm2  gives equations with inner 

product terms such as 
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                    (V.34) 
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                    (V.35) 

For the spatial domain MoM formulation, the typical matrix equation can be 

formed by using (V.34) and (V.35) 
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where mi,ni =1,...N, i=1,2, ∗  denotes convolution, sJ is taken as a delta gap 

source, 1mJ , 1nJ  and 2mJ , 2nJ  are testing and basis functions of the first slot and 

the second slot, respectively. 

The matrix entries in (V.36) can be written in the following form 

)' ,' ( )' ,'( ' '  ),(   lzJllzzGddzlzJdldz nz
H

mzmn zz −−= ∫∫∫∫ φZ             (V.37) 

In this application, the matrix entries Zmn  given in (V.37) are evaluated using the 

same procedure applied in (V.20)-( V.25). 
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V.4  Mutual Impedance and Coupling Coefficient of Two  Current Elements V.4  Mutual Impedance and Coupling Coefficient of Two  Current Elements 
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Figure V.6   Definitions of two-port parameters Figure V.6   Definitions of two-port parameters 

  

  

Based on the two-port configuration given in Figure V.6, we can write [44], Based on the two-port configuration given in Figure V.6, we can write [44], 
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pZ11  is the input impedance of element one (element two open-circuited), can be 

written as 

2

)1()1(

11 )(
.

ip

v ipP

I
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Z
∫−

=
JE

               (V.40) 

where )1(E  is the total electric field at port one (port two open) due to impressed 

current density  at port one with a terminal current =1A. Using (V.41) 

gives (V.42) 

)1(
ipJ ipI

∫∫−=
nS

i
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where  are the expansion mode coefficients found from [Z][I]=[V] equation. 

are the induced voltages at port one due to current modes  in both 

patches. 

nI

)1(
nV nJ

The mutual impedance between ports one and two  can be written as  PZ 21
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v ipP
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=
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               (V.43) 

where )1(E  is the total electric field at port two, induced by impressed current 

density  at port one (port two open) and is an impressed current source 

at port two, with impressed sources have terminal currents =1A. Again, using 

(V.41)  gives 

)1(
ipJ )2(
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ipI
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n
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P VIZ ∑
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−=               (V.44) 

where are the induced voltages at port two due to current modes  in both 

patches. 

)2(
nV nJ

As a result of reciprocity theorem, . PP ZZ 1221 =

The input impedance for a single strip can be calculated using (V.42) with 

replacing 2N by N, since the second antenna is not present. 

Another way of calculating the mutual impedance is given by [45] 

))(.),((.)(
1 2

2221211121 ∫∫ ∫∫=
S S

rJrrGdsrJdsZ              (V.45) 

The coupling coefficient matrix S  can be defined as [46],[47],[48] 
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Hence it can be written as, 
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After some manipulations, the mutual coupling coefficient S21 can be found as 

[49] 

2112022011

012
21 ))((

2
ZZZZZZ

ZZ
S

−++
=               (V.48) 

where Z0 is the characteristic impedance of the feeding coax which is assumed to 

be 50Ω. 

 

V.5  Numerical Results 
 

In this section, numerical results in the form of  mutual coupling between two 

narrow strips and between two narrow slots placed on a cylindrically layered 

medium using MoM incorporation with the closed-form Green’s functions is 

presented. The current distributions on each printed element and the mutual 

impedance and the mutual coupling coefficient results are provided. Mutual 

impedance and mutual coupling coefficient results are also provided for both 

strip and slot example to demonstrate the use of both electric and magnetic type 

Green’s functions in cylindrically layered media. Besides, to assess the accuracy 

of the method developed in this thesis, the obtained results for the mutual 

coupling between two narrow strips are compared with an eigenfunction solution 

given by [50]. 

 

V.5.1  Mutual Coupling Between Two Narrow Strips 
 

Mutual coupling between two z-directed narrow strips placed on a multilayer 

cylindrical geometry presented in Figure V.7  is evaluated using the procedure 

discussed in Section V.2. The innermost layer is perfect electric conductor 

(PEC), the radius of the cylinder is a1 and the thickness of the dielectric coating 

is th (hence a1 = a0+ th ). The first and second narrow strip on ρ =a1 are placed at 

φ =φ1 and φ =φ2, respectively. Each narrow strip a length as L= λ0/2 and width as 

w=0.025 λ0 . The excitation is done by a probe on the first strip with different 

feed locations. Figure V.8 and Figure V.9 show the magnitude of the current 
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distributions on the first strip and the second strip, respectively, for different feed 

positions, when (φ1 - φ2)=π/24 radians. 

 
 

 

φ =φ1

φ =φ2

Figure V.7  A 3-layer structure with Region 0: PEC, Region 1: 
1r

ε =2.3, 
1r

µ =1, Region 2: free 

space,   a0= 20mm, a1= 21mm,  f =4.7GHz, the first and second strip on ρ =a1 are placed at φ=φ1 
and φ=φ2, respectively. 
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Figure V.8   The magnitude of the electric current distribution on the first strip, L= λ0/2,  
w=0.025 λ0, (φ1 - φ2)=π/24 radians,  for different feed positions, where zfi is the i’th feed location 
of the first strip. 
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Figure V.9   The magnitude of the electric current distribution on the second strip, L= λ0/2,  
w=0.025 λ0, (φ1 - φ2)=π/24 radians,  for different feed positions, where zfi is the  i’th feed location 
of the first strip. 

 
 
 
For the validity of the proposed method in Section V.2, the results given in [50] 

which uses eigenfunction solution are reproduced. These results with the 

proposed ones together are shown in Figure V.10-Figure V.12. The structure 

given in Figure V.7 is used, each strip having λ0/2 length and 0.002 λ0 width, the 

dielectric constant 
1r

ε =2.  

The mutual impedance Z21 is calculated using the equation given by (V.45) 

))(.),((.)(
1 2

2221211121 ∫∫ ∫∫=
S S

rJrrGdsrJdsZ    

and the mutual coupling coefficient S21 is evaluated using  (V.48) 
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=                

where Z0 is the characteristic impedance of the feeding coax which is assumed to 

be 50Ω.          

Figure.V.10 shows the mutual impedance Z21 between two z-directed narrow 

strips versus Sφ  when frequency  f  is 4.7 GHz and the outer cylinder radius  is 

0.5 λ

1a

0, dielectric thickness th is 0.06 λ0.  Sφ is the angular spacing between two z-

directed strips with respect to free-space wavelength λ0.   
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Figure V.11 shows the mutual impedance Z21 between two z-directed narrow 

strips versus Sφ  when frequency  f  is 4.7 GHz and the outer cylinder radius a1 is 

0.3 λ0, dielectric thickness th is 0.06 λ0 .  Figure V.12 shows the mutual impedance 

Z21 between two z-directed narrow strips versus Sφ  when frequency  f  is 2 GHz 

and the outer cylinder radius  is 0.5 λ1a 0, dielectric thickness th is 0.06 λ0.  It is 

clearly seen that the results for eigenfunction solution [50] and the proposed 

method in this paper are in good agreement with each other. 

 

 

Z
21  

---   Real PropMethod
O    Real (Eigenfunction Soln.)  
 
-.-.- Imag PropMethod 
x      Imag (Eigenfunction Soln.) 

Sφ/ λ0 
 

Figure V.10   Real and Imaginary parts of the mutual impedance Z21   between two z-directed 

narrow strips versus separation when f =4.7 GHz, a1=0.5 λ0. 
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Figure V.11   Real and Imaginary parts of the mutual impedance Z21 between two z-directed 

narrow strips  versus separation, when  f =4.7 GHz, a1=0.3 λ0. 
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Sφ/ λ0 

Figure V.12   Real and Imaginary parts of the mutual impedance Z12 between two z-directed 

narrow strips versus separation when  f =2 GHz, a1=0.5 λ0. 

 

Mutual coupling between two z-directed narrow strips on a cylindrical 3-layer 

medium given in Figure V.7 is evaluated using the method discussed in  Section 

V.2. The excitation is done by a probe. Each strip has λ0/2 length and 0.04 λ0  

width. 

Figure V.13 and Figure V.14 show the mutual impedance Z21 and the mutual 

coupling coefficient S21 of two z-directed narrow strips versus the angular 

spacing  Sφ when  f =4.7 GHz, 
1r

ε =2.3. 
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Figure V.13   Mutual impedance Z21  for H-plane coupling case of two z-directed narrow strips  at  f =4.7 

GHz, a0=20mm, a1=21mm, 
1r

ε =2.3, L=λ0/2. 
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Figure V.14   Mutual coupling coefficient S21 for H-plane coupling  case of two z-directed 
narrow strips at  f =4.7 GHz, a0=20mm, a1=21mm, 

1r
ε =2.3, L=λ0/2. 

 
 
 

V.5.2 Mutual Coupling Between Two Narrow Slots 
 
Mutual coupling between two narrow slots placed on a multilayer cylindrical 

geometry presented in Figure V.15  is evaluated using the procedure discussed in 

Section V.3. 

 
 

 

a0                  a1

Figure V.15  A 3-layer structure with Region 0: 
0r

ε =5, 
0r

µ =1 Region 1: 
1r

ε =2, 
1r

µ =1, Region 

2: free space, a0= 20mm, a1= 21mm,  f =2 GHz. 
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For this application, the first and second narrow slot on ρ =a1 are placed at φ =φ1 

and φ =φ2, respectively. The excitation is done by a coax on the first slot with 

different feed locations. Each slot has a length as L=λ0/2 and width as w=0.025 

λ0. Figure V.16 and Figure V.17 show the current distributions on the first slot 

and the second slot, respectively. 
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Figure V.16  The magnetic current distribution on the first slot for different feed locations when 
(φ1 - φ2)=π/48,   where zfi is the i’th feed location of the first slot. 
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Figure V.17  The magnetic current distribution on the second slot for different feed locations 
when (φ1 - φ2)=π/48,   where zfi is the i’th feed location of the first slot. 

 

 

 77



Mutual coupling between two z-directed narrow slots on a cylindrical statified 

media given in Figure V.15 is evaluated using the method discussed in Section 

V.3. The geometry in Figure V.18 is used for the mutual coupling evaluation. 

The excitation is done by a coax. Each slot has length as L=λ0/2 and width as 

w=0.04λ0 . 

 

 

m
zJ 1

m
zJ 2

z PEC 

                                     

Figure V.18  Geometry used for mutual coupling between two z-directed narrow slots 

 

 

Figure V.19  and Figure V.20 show the mutual impedance Z21 of two z-directed 

narrow slots versus the angular spacing  Sφ  for z∆ =0 (the slots are parallel in z 

direction) and =λz∆ 0/4 values when  f  =2 GHz, 
0r

ε =2 and
1r

ε =5. 
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Figure V.19  Mutual impedance Z21  for H-plane coupling case of two z-directed narrow slots   
                      at   f =2 GHz, a0=20mm, a1=21mm, 0=∆z  , 

0r
ε =2,

1r
ε =5, L=λ0/2.  
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Figure V.20   Mutual impedance Z21  for H-plane coupling case of two z-directed narrow slots   
                     at   f =2 GHz, a0=20mm, a1=21mm, 4/0λ=∆z  , 

0r
ε =2,

1r
ε =5, L=λ0/2.  

 
 
 

Figure V.21  and Figure V.22 show the mutual coupling coefficient S21 of two z-

directed narrow slots versus the angular spacing  Sφ  for =0 (the slots are 

parallel in z direction) and 

z∆

z∆ =λ0/4 values when  f  =2 GHz, 
0r

ε =2 and
1r

ε =5. 
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 Figure V.21   Mutual coupling coefficient  S21 for H-plane coupling case of  two z-directed  
narrow slots  at   f =2 GHz, a0=20mm, a1=21mm, 0=∆z  , 

0r
ε =2,

1r
ε =5, L=λ0/2.      
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Figure V.22   Mutual coupling coefficient S21 for H-plane coupling case of  two z-directed  
                      narrow slots at   f =2 GHz, a0=20mm, a1=21mm, 4/0λ=∆z  , 

0r
ε =2,

1r
ε =5, L=λ0/2.  
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CHAPTER VI 
 
 

CONCLUSION 
 
 
 

Under the scope of this thesis, numerically efficient analysis and design of 

conformal printed structures in cyindrically layered media using closed-form 

Green’s functions is investigated. For this purpose the spectral domain Green’s 

functions which were reported in the previously published work [26] were 

derived from the beginning. Then a code is reproduced in MATLAB®  to obtain 

the spatial domain Green’s functions of the electric and magnetic fields due to 

and  z oriented electric and magnetic sources as [26]. The generated code 

computes the spatial domain closed-forms of 

φ
H
z

E
z

H
zz

E
zz GGGG   

~ ,~,~ ,~
φφ  for an electric and a 

magnetic dipole pointing in z direction, the spatial domain closed-forms of 
HEH

z
E
z GGGG φφφφφφ

~ ,~,~ ,~   for an electric and a magnetic dipole pointing in direction. 

They are found to be in good agreement with those given in [26]. The remaining 

spatial domain Green’s function components which are not provided in [26], the 

spatial domain closed-forms of  ρ directed spectral domain Green’s functions of 

electric and magnetic fields 

φ

H
z

E
z GG   

~ ,~
ρρ   for an electric and a magnetic dipole 

pointing in z direction,   ~ , ~ HE GG ρφρφ  for an electric and a magnetic dipole pointing in 

direction were also derived analytically and evaluated by the generated code. 

Therefore for and  z oriented electric and magnetic sources the complete set is 

obtained. 

φ

φ

The remaining spatial domain Green’s function components which are not 

given in [26], the spatial domain closed-forms of  z, φ  and  ρ directed spectral 

domain Green’s functions of electric and magnetic fields, HEHEH
z

E
z GGGGGG ρρρρφρφρρρ

~ ,~ , ~ , ~,~ ,~   

for both electric and  magnetic dipole sources pointing in ρ  direction were 

derived analytically and evaluated by the generated code. Therefore, the 

complete set of spatial domain dyadic Green’s function components has been 
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obtained and is evaluated by the generated code. A new code is generated for the 

numerical integration to compare the exact and the approximate closed-form 

Green’s functions.  

The closed-form Green’s functions when  are calculated  using a 

similar procedure reported in a recently published work [27] and some results are 

presented for different closed-form Green’s functions. To assess the accuracy of 

the procedure,  for  small ( ) values, the exact and different closed-form 

spatial-domain Green’s function components of electric and magnetic fields due 

to different oriented electric and  magnetic dipole sources are plotted together 

and it is observed that they are in good agreement. 

'ρρ =

'φφ −

In addition, a computationally efficient hybrid method is presented in 

conjunction with method of moments (MoM) technique which analyzes the 

mutual coupling between electric/magnetic current elements placed on a 

cylindrically layered medium.  The hybrid method depends on the angular 

distance ( ) between the source and the observation point. If φ  is not close 

to   the closed-form Green’s functions are directly employed. Otherwise, the 

angular difference term ( ) is handled with the convolutional integral in the 

spectral-domain in the calculation of MoM matrix element Z

'φφ −

'φ

'φφ −

mn. Employing 

Galerkin’s procedure and selecting testing and basis functions which allows to 

carry out the convolutional integral between the current elements analytically 

reduces the computational time of  the matrix element Zmn. Mutual impedance 

and mutual coupling coefficient results are also provided for printed electric and 

magnetic current elements  to demonstrate the use of both electric and magnetic 

type Green’s functions in cylindrically layered media. Besides, to assess the 

accuracy of the method developed in this thesis, the results obtained for the 

mutual coupling between two narrow electric current elements are compared 

with an eigenfunction solution given by [50]. It is clearly observed that the 

results for eigenfunction solution [50] and the presented method in this thesis are 

in good agreement with each other. The analysis and design of microstrip 

structures mounted on conformal structures that are extensively used in aircraft, 

spacecraft and mobile communication applications, where low cost, leight 
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weight and direct integrability with other devices are important, become easier 

by the hybrid method. Using the proposed hybrid method in conjunction with 

MoM technique, the analysis of multilayer coupling geometries such as slot-

coupled microstrip patch antennas and slot antenna with microstrip feeding can 

be research topics for further studies. 

In the scope of the study of surface wave contribution in cylindrically 

stratified media, the effect of  the surface wave poles and the selection of the 

deformed path parameters are studied. When the deformed path parameters are 

selected in such a way that the deformed path passes close to the surface wave 

poles, it is observed that the spectral Green’s functions hence the spatial domain 

Green’s functions deteriorate. This deterioration is overcome by removing the 

surface wave poles from the spectral domain Green’s functions and adding their 

contributions in the spatial domain. When a proper deformed path is used in 

evaluation of spatial-domain Green’s functions, it is observed that removing the 

surface wave contributions from spectral-domain Green’s functions does not 

give an extra benefit. Hence regarding our research, unlike planar layered 

medium, it is not a critical issue to remove the surface wave contributions from 

the spectral-domain Green’s functions if a proper deformed path is used. 

As a concluding remark, for future study, developing of  the appropriate form 

of the spectral domain Green’s functions  which will be well behaved for 

( )  when  is recommended. In that case, there may be no need to 

use the proposed hybrid method.  Hence, the calculation of MoM matrix 

elements will be evaluated in closed-form for all possible 

'φφ = 'ρρ =

ρρ ′−
rr

  values. 
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APPENDIX A 
 
 

GENERALIZED PENCIL OF FUNCTION METHOD 
 
 
 

The generalized pencil of function method (GPOF) [36] is used to 

approximate the spectral domain Green’s functions with complex exponentials. 

Since this method is an important step in approximating the spectral domain 

Green’s functions, it is given in this appendix. 

The Prony Method and its variants can be used to extract the poles [51],[52] 

of a EM system. The pencil of function (POF) method [53] is an alternative 

method to the Prony method to find the system poles. In POF, the poles are 

found from the solution of a generalized eigenvalue problem, whereas the Prony 

method contains two step process where the first step involves the solution of a 

matrix equation and the second step involves finding roots of a polynomial. The 

generalized pencil of function method is a generalization to the POF method and 

it is used to estimate the poles of EM system from its transient response [36]. 

The GPOF  method is more robust and less noise sensitive compared to the 

Prony method. 

An EM transient signal with the samples can be approximated as ky

1  ,....., 1 ,0                
1
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==
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k
ii

tks
M

i
ik

i δ   (A.1) 

where  are the complex residues,  are the complex poles and ib is tδ is the 

sampling interval. The method can be given as follows 

1. The following matrices are constructed, 

[ ]1101 ,........, −= LyyyY      (A.2) 

[ ]LyyyY ,........, 212 =      (A.3) 

where  
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[ ]TLNiiii yyyy 11 ,........,, −−++=      (A.4) 

L is the pencil parameter and its optimal choice is around L=N/2 [36]. 

2. Find a  Z  matrix as 

)( 1
1 YSVDUDV H =−     (A.5) 

where V , 1−D  and HU  are (N-L)x(N-L), (N-L)xL and LxL matrices. 

is the singular value decomposition process and the subscript H is 

the complex conjugate transpose of a matrix. The 

(.)SVD

Z  matrix is  

VYUDZ H
2

1−=     (A.6) 

3. The poles of the system are obtained as 

t
z

s i
i δ

log
=   i=1,2,...........M   (A.7) 

where zi’s are the eigenvalues of the  Z  matrix. 

4. The residues are found from the least-squares solution of the following 

system. 
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or  

   YBA =       (A.9) 

so the bi’s are found by using the pseudo-inverse of the A  matrix as 

YAB += . 
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APPENDIX B 
 
 

SPECTRAL-DOMAIN GREEN’S FUNCTION COMPONENTS 
 
 
 

For the sake of completeness, the complete-set of spectral-domain Green’s 

functions are given as a reference. Among the spectral-domain Green’s functions 

listed below, (B.1)-(B.4), (B.7)-(B.10), (B.19)-(B.22), (B.25)-(B.28) are given in 

[26]. The remaining spectral-domain Green’s functions (B.11)-(B.18), (B.23), 

(B.24), (B.29)-(B.33), (B.36) are given in [54] as corrections.  
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 φ-oriented electric dipole :  
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  ρ -oriented electric dipole : 
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 z-oriented magnetic dipole :      
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φ-oriented magnetic dipole : 
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ρ -oriented magnetic dipole : 
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APPENDIX C 

 
 

CONVOLUTION OF TESTING AND BASIS FUNCTIONS 
 
 
 

The basis and testing functions of each current element Jn and Jm  are selected as 

rooftop functions  
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where w  is the width of each current element. 

 

 

  φ        
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Figure C.1  Rooftop functions 

 

• The convolution C1 of the first testing function and the first ba

function is calculated as 

111 nm JJC ∗=  

T1L=(m-1)hz+u           B1L=(n-1)hz

         T1C=m hz+u         B1C=n hz

   T1U=(m+1)hz+u    B1U=(n+1)hz
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T1L indicates the left part of the first testing function,  

T1R indicates the right part of the first testing function,  

B1L indicates the left part of the first basis function, 

B1R indicates the right part of the first basis function.  
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Figure C.3  Evaluation of C12
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UU BT 11 >    AND  UC BT 11 ≤  
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Figure C.4  Evaluation of C13
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Figure C.5  Evaluation of C14
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The convolution 111 nm JJC ∗=  is the sum of the integrals evaluated in four 

regions, therefore 

141312111 CCCCC +++=  
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The results of each type of  integrals are given as follows 
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          (C.5) 

• The convolution C2 of the first testing function and the second basis 

function is calculated as C1, therefore only  the results are given. 

212 nm JJC ∗=  

 

T1L=(m-1)hz+u  B2L=(n-1) hz+∆z 

    T1C=m hz+u       B2C=n hz+∆z 

 T1U=(m+1) hz+u   B2U=(n+1) hz+∆z 

 

The convolution 212 nm JJC ∗=  is the sum of the integrals evaluated in four 

regions. The results of each type of  integrals are given as follows,  
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          (C.6) 

• The convolution C3 of the second testing function and the first basis 

function is calculated as C1, therefore only  the results are given. 

123 nm JJC ∗=  

 

T2L=(m-1)hz+u+∆z  B1L=(n-1)hz

       T2C=m hz+u+∆z         B1C=n hz

T2U=(m+1)hz+u+∆z  B1U=(n+1)hz

 

The convolution 123 nm JJC ∗=  is the sum of the integrals evaluated in four 

regions. The results of each type of  integrals are given as follows, 
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          (C.7) 

• The convolution C4 of the second testing function and the second basis 

function is calculated as C1, therefore only  the results are given. 

224 nm JJC ∗=  

 

T2L=(m-1)hz+u+∆z  B2L=(n-1)hz+∆z 

    T2C=m hz+u+∆z      B2C=n hz+∆z 

T2U=(m+1)hz+u+∆z  B2U=(n+1)hz+∆z 

 

The convolution 224 nm JJC ∗=  is the sum of the integrals evaluated in four 

regions. The results of each type of  integrals are given as follows, 
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          (C.8) 
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APPENDIX D 

 
 

NEWTON-RAPHSON METHOD 
 
 
 

Newton-Raphson method is based on the principle that if the initial guess 

of the root of  f(x)=0  is at xi, then if one draws the tangent to the curve at f(xi), 

the point xi+1 where the tangent crosses the x-axis is an improved estimate of the 

root (Figure D.1). 

 Using the definition of the slope of a function, at ixx =  

   
1

0

+−
−′
ii

i
i xx

)f(x
) = = (xf      (D.1) 

which gives 

   
)f'(x
)f(x

 -  = xx
i

i
ii 1+          (D.2) 

Equation (D.2) is called the Newton-Raphson formula for solving nonlinear 

equations of the form ( ) 0=xf .  So starting with an initial guess, xi, one can find 

the next guess, xi+1, by using equation (D.2).  One can repeat this process until 

one finds the root within a desirable tolerance. An algorithm can be given to find 

the root of an equation with Newton_Raphson method. 
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 f(x) 

 f(xi) 

 f(xi+1) 

xi+2 xi+1 xi  X 

  
( )[ ]ii xfx ,  

 

Figure D.1  Geometrical illustration of the Newton-Raphson method 
 

 

Algorithm of Newton-Raphson method 

 

The steps to apply Newton-Raphson method to find the root of an equation     

f(x) = 0  are : 

1. Use an initial guess of the root, xi, to estimate the new value of the root 

xi+1 as 

 
)f'(x
)f(x

 -  = xx
i

i
ii 1+  

2. Find the absolute relative approximate error, a∈ as 

010
1

1  x 
x

- xx
 = 

i

ii
a

+

+∈  

3. Compare the absolute relative approximate error, a∈  with the pre-

specified relative error tolerance, s∈ .  If a∈ > s∈ , then go to step 1, else 

stop the algorithm.  Also, check if the number of iterations has exceeded 

the maximum number of iterations. 
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