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ABSTRACT

NUMERICALLY EFFICIENT ANALYSIS AND DESIGN OF
CONFORMAL PRINTED STRUCTURES IN CYLINDRICALLY
LAYERED MEDIA

Acar, Remzi Ciineyt
Ph.D., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Giilbin Dural

September 2007, 105 pages

The complete set of Green’s functions for cylindrically layered media is
presented. The formulations reported in the previously published work by
Tokgoz (M.S.Thesis, 1997) are recalculated, the missing components are added
and a solution to the problem when p = p' is proposed.

A hybrid method to calculate mutual coupling of electric or magnetic current
elements on a cylindrically layered structure using MoM is proposed. For the

calculation of MoM matrix entries, when p = p’, and ¢ is not close to ¢, the

closed-form Green’s functions are employed. When ¢ is close to ¢, since the
spectral-domain Green’s functions do not converge, MoM matrix elements are
calculated in the spectral domain. The technique is applied to both printed
dipoles and slots placed on a layered cylindrical structure. The computational

efficiency of the anaysis of mutual coupling of printed elements on a

v



cylindrically layered structure is increased with the use of proposed hybrid

method due to use of closed-form Green’s functions.

Keywords: Green’s function, closed-form Green’s function, cylindrically

layered medium, conformal antennas, MoM, mutual coupling.
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SILINDIRIK KATMANLI ORTAMDA YERLESTIRILMIS DUZ
OLMAYAN BASKI DEVRE ELEMANLARININ ETKIN NUMERIK
ANALIZI VE TASARIMI

Acar, Remzi Ciineyt
Doktora, Elektrik ve Elektronik Miihendisligi Boliimii
Tez Yoneticisi: Prof. Dr. Giilbin Dural

Eyliil 2007, 105 sayfa

Silindirik katmanli ortamdaki Green fonksiyonlar1 tamamlanmigtir. Tokgdz
tarafindan verilmis olan Green fonksiyonlar1 (Yiksek Lisans Tezi, 1997) tekrar
hesaplanmis, eksik olan Green fonksiyonlari eklenmis ve o= p problemi
¢Ozilmiistiir.

Moment Metod kullanilarak silindirik katmanli ortamdaki elektrik ve
manyetik akim elemanlarinin karsilikli etkilesimin hesaplanmast ig¢in hibrid
metod sunulmustur. Moment Metod matris elemanlarin hesaplanmasi igin

p=p kosulunda, ¢ ile ¢ birbirlerinden uzak iken, kapali-formdaki Green

fonksiyonlar1 kullanilmis, ¢ ile ¢ birbirlerine yakin iken, spektral uzaydaki
Green fonksiyonlar1 yakinsamadigindan Moment Metod matris elemanlart
spektral uzayda hesaplanmistir. Bu teknik, ¢ok katmanli silindirik yapilarin
iizerine yerlestirilmis dipol ve yariklara uygulanabilir. Cok katmanli silindirik

yapilardaki baski devre elemanlarmin karsilikli iletisim analizi hesaplama

vi



verimliligi, kapali- form Green fonksiyonlar1 yardimiyla 6nerilen hibrid metod

kullanimi sayesinde artirilmigtir.

Anahtar kelimeler: Green fonksiyonu, kapali-form Green fonksiyonu, silindirik

katmanli ortam, diiz olmayan antenler, Moment Metod, karsilikli etkilesim.
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CHAPTER |

INTRODUCTION

Due to the advantages of microstrip antennas such as their low weight, low
cost and flexibility, microstrip geometries mounted on multilayer structures have
become very popular in various applications ranging from satellite and vehicular
communications and remote sensing to radiators in biomedical applications [1],
[2].

The importance of cylindrically layered structures have led to the
investigation of the scattering from infinite conducting, dielectric or dielectric-
coated conducting cylinders and the radiation from patches, microstrip lines on
cylindrical structures and cylindrical-rectangular, wraparound microstrip
antennas [3]-[19].

The Method of Moments (MoM) is the most frequently used numerical
technique to solve the problems of microstrip geometries mounted on multilayer
structures. In this method, the integral equation is transformed into a matrix
equation by approximating the unknown function interms of known basis
functions, then using testing functions the boundary conditions are applied to
minimize the weighted error due to this approximation. The MoM procedure can
be applied either in the spatial domain or in the spectral domain. In the spectral
domain, the MoM matrix elements involve multi-dimensional integrals of
complex, oscillatory and slow-converging functions over an infinite domain. The
numerical evaluation of these elements is quite time-consuming that makes the
technique computationally inefficient. In contrast with the spectral domain
MoM, the spatial domain MoM can be considered to be a more general and
promising way for solving large and complex problem, as it can easily be applied
to objects of arbitrary shape and particularly when the Fourier transform can not

be applied to formulate and simplify the Green’s functions of the problem. The



spatial domain MoM has also more potential to enhance its capability to solve
real and large problem by computing with fast algorithms.

When MoM is applied in the spatial domain, matrix filling is very time-
consuming. The reason for that is the spatial domain Green’s functions have to
be calculated point by point by evaluating the Sommerfeld integral and the
numerical evaluation of the integral is neither easy nor fast. Hence, the closed-
form solution to the Green’s functions becomes necessary.

Several forms of Green’s functions for multilayer cylindrical structures are
present in the literature [20], [21]. The idea of closed-form spatial domain
Green’s functions was proposed by [22] and then extended to planarly layered
structures to avoid such an integration [23]-[25]. The derivation of the closed
form spatial domain Green’s function is a robust technique which is obtained by
approximating the spectral domain Green’s function in terms of complex
exponential functions in three consecutive steps on a deformed integration path
and then transforming these exponential functions into the spatial domain,
analytically [26] for a general cylindrically multilayered medium.

This technique eliminates the requirement of the tedious and time consuming
transformation by the numerical integration of the inverse Fourier integral along
the real axis on the complex k, plane where branch-point singularities are
encountered. Therefore, the spatial domain Green’s functions are obtained in
closed forms rather than integral representations. This increases the numerical
efficiency in the computation of the spatial domain Green’s functions. Therefore,
analysis of many problems such as the radiation from microstrips, patches and
slots mounted on cylindrical surfaces, and scattering from dielectric shells and
cylinders can be improved, considerably. Furthermore, analysis of conformal
structures that are extensively used in satellite and vehicular communications
become easier by the closed form spatial domain Green’s functions.

Under the scope of this thesis, the spectral domain Green’s functions were
derived from the beginning. Then the code is reproduced in MATLAB® to
obtain the spatial domain Green’s functions of the electric and magnetic fields

due to ¢ and z oriented electric and magnetic sources as [26]. The generated

code computes the spatial domain closed-forms of GE,G"

7 720

GE,G for an electric



and a magnetic dipole pointing in z direction, the spatial domain closed-forms of

GGGt

FHCHS ¢¢,é¢“¢ for an electric and a magnetic dipole pointing in ¢ direction

where GEI;H is the electric or magnetic spectral domain Green’s function in «
direction due to S —oriented source. They were found to be in good agreement

with those given in [26]. The spatial domain closed-forms of é;fz,é/'jz for an
electric and a magnetic dipole pointing in z direction, é,; ,é';j(ﬁ for an electric and

a magnetic dipole pointing in ¢ direction that are not provided in [26] were also

derived and evaluated by the generated code. Therefore for ¢ and z oriented
electric and magnetic sources the complete set is obtained.

In addition to these, GE G" GE .G" Gf

~H - -
..G,,,G,,,G,,,G,,,G,, for both electric and magnetic

dipole sources pointing in o direction were derived analytically and the spatial

domain closed-forms of these were evaluated by the generated code. Therefore,
the complete set of spatial domain dyadic Green’s function components has been
completed and is evaluated by that code. A new code is generated to evaluate
Sommerfeld integral numerically to compare the approximate closed-form
Green’s functions with the exact ones. The closed-form Green’s function
components can also be obtained for lossy dielectric media. The application
examples of the closed-form Green’s function components for lossy dielectric
media are shown in Chapter I1I.

In a previously reported work [27], an approach to overcome the problem for

p=p,ie, p=p and ¢=¢ is proposed. Using a similar procedure reported
in this work, Green’s functions when p = p are calculated and some closed-
form Green’s function results are presented. For small (¢ -¢#) values, the exact
and our closed-form Green’s functions are plotted together and it is observed that
they are in good agreement.

While using MoM to calculate mutual coupling of electric or magnetic

current elements on a cylindrically layered structure a hybrid method is used. For

the calculation of MoM matrix entries, when p=p', and ¢ is not close to ¢,

closed-form Green’s functions are employed. When ¢ is close to ¢, the problem



is handled by calculating MoM matrix elements in the spectral domain. The
technique is applied to both printed dipoles and slots placed on layered
cylindrical structures. The computational efficiency of the anaysis of mutual
coupling between printed elements on cylindrically layered structures is
increased with the use of proposed hybrid method due to use of closed-form
Green’s functions.

Additionally, the surface wave contribution in cylindrically stratified media is
investigated. In that study, the effect of the surface wave poles and the selection
of the deformed path parameters are studied. The observations include different

frequencies f , the cylinder radius a,, the dielectric constant &, . When the

deformed path parameters are selected in such a way that the deformed path
passes close to the surface wave poles, it is observed that the spectral domain
Green’s functions hence the spatial domain Green’s functions deteriorate. This
deterioration is overcome by removing the surface wave poles from the spectral
domain Green’s functions and adding their contributions in the spatial domain.
When a proper deformed path is used in evaluation of spatial-domain Green’s
functions, it is observed from the given plots that removing the surface wave
contributions from spectral-domain Green’s functions does not give an extra
benefit. Hence regarding our research, unlike planar layered medium, it is not a
critical issue to remove the surface wave contributions from the spectral-domain
Green’s functions if a proper deformed path is used.

Chapter Il deals with the spectral-domain Green’s functions of a cylindrical
multilayered media. In Chapter 111, the spatial-domain Green’s functions and the
numerical results are presented. In Chapter 1V, the work related with the surface
wave contribution is provided and some results are presented.

In Chapter V, the mutual coupling between electric and magnetic current
elements on a dielectric coated cylinder with different parameters and some
calculated results are compared with available results found in the literature.
Finally, concluding remarks are presented in Chapter VI. At last, four
Appendices are provided. In Appendix A, the Generalized Pencil of Function
(GPOF) method which was used in approximating Green’s functions with
complex exponentials, is given. The complete set of spectral domain dyadic



Green’s function components is given in Appendix B. In Appendix C, rooftop
current modes and their analytical evaluation of convolutional integral are

provided. In Appendix D, Newton-Raphson method is presented. Throughout the

analysis presented in this thesis, €' time dependence is assumed.



CHAPTER I

SPECTRAL DOMAIN GREEN’S FUNCTIONS IN
CYLINDRICALLY LAYERED MEDIA

I11.1. Introduction

In this chapter, the spectral domain Green’s functions reported in [26] are
evaluated using a generated code in MATLAB®. The remaining spectral domain
Green’s function components which are not given in [26] are also derived and
given. Hence, the complete set of dyadic Green’s function components for
cylindrically stratified media have been obtained. These spectral domain
expressions are transformed into spatial domain analytically in closed-forms to
be used in mutual coupling analysis of printed elements as will be mentioned in

Chapter III.

11.2. Field Expressions for Cylindrically Multilayered Media

A general cylindrically multilayered geometry is shown in Figure II.1. An
electric or magnetic source of p, z or ¢ orientation is embeded in region j and
the observation point may be located in any layer, denoted by region i. Layers
may vary in their electric or magnetic properties (g,u) as well as the thickness,
the layers may also be lossy. Moreover, a perfect electric conductor (PEC) or
perfect magnetic conductor (PMC) can be considered as a layer. Unlike in
planarly and spherically layered media, TE and TM waves are coupled together
at an interface in cylindrically layered media. This requires simultaneous
solution of the fields corresponding to TE and TM cases, the only exceptions are
the rotationally symmetric (n=0) and z-invariant (k,=0) cases for which separate

analyses of TE and TM modes are possible. Hence, the coupled-mode analysis



for cylindrically layered structures results in 2x2 reflection and transmission

matrices rather than reflection and transmission coefficients.
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Figure 1.1 General cylindrically multilayered medium

In general, a A oriented point electric or magnetic source is represented
by a current element
J(r)=11 BS(F —F") (IL1)
where ,3 may be z,¢ or p, Il is the current moment, 7 and 7' are the radial

vectors showing the locations of source and observation points, respectively.

A general multiple interface geometry of N layers which contains a
source in the /" layer at p = p, is shown in Figure I1.2, where the dispersion of

waves through the layers is demonstrated [28]-[35].



~ - . .
AP
(P’,[il’,Z’
£, 3y g, I En, Hn p
ay aj.y aj N )
i=l1 i=j i=N

Figure 11.2 Dispersion of waves through general multiple interface geometry

First, the axial components (i.e. z components) of the spectral-domain electric
and magnetic fields are derived for the coupled TE and TM modes in the source
layer, then these field components are transferred into the observation layer using
a recursive algorithm [26]. The axial components of the electric and magnetic
fields in the source layer j can be written as a sum of the direct term due to the
source, the standing and outgoing waves formed by the multiple reflections from
outer and inner boundaries of the source layer, respectively, represented by first-

kind Bessel and second-kind Hankel functions [26]

E © <
A 1l e /"9=9) J‘ dlc e %)
H, 87w =, LA

z.

(IL.2)

1, Gk, pOH® (k, p U+, (k, )AL, + H (K, p)As, 1S,

where 1 is the unit matrix, p. s the smaller of p and p', p. 1is the larger of

p and p' and k, and k, are, respectively, the axial wave number and radial

wave number of the i layer such that k, =\/k. +k’ .



S, is a2 x 1 matrix operator of the form

N Ry ARy
S =|¢ (I1.3)

- jwp-(@.xV"
for the fields due to an electric source,

Jwh- (@, xV")

S,=| 1 L. e IL4
! —(kfaZ +jk,V)- B {4
j
for the fields due to a magnetic source and V' is defined as
Voo 04490 440 (IL.5)

— +
P apv [ pva¢v a, oz'

A, and A,, are the amplitude matrices, respectively, for the n™ harmonic of the
standing and outgoing waves that are reflected from the lower and upper
boundaries. The fields at the interfaces which satisfies the boundary conditions

gives the amplitude matrices as [26]

Kn: = M_/— .Ej,jﬂ {Jn (kp/ p')i + Hn(z) (kp/ ,OV)E_;,_,A
(IL.6)

K”o =ﬁj+ .Ej,j—l[Hn(z)(kp/_p')i+Jn(kp/p')ﬁj,j+l

where R j.j7 1s the generalized reflection matrix and M T = (I_ ~R ol R )

1s a factor accounting for multiple reflections in the source region j. The

generalized reflection matrix R; ;1 contains multiple reflections from the inner

layers with respect to layer j, while R j.j+ contains multiple reflections from the

outer layers. The generalized reflection matrix can be defined as
. Eiil,iiZ fi,iil (117)

where i denotes an arbitrary layer between 1 and N.



~

T

iitl

is the generalized transmission matrix that transfers the amplitudes from the

source region to the observation region and is defined as

i,iﬂ = (i - Riil,iRiil,Hz )_1 Ti,iil (IL.8)

R and T in (IL.7) and (IL.8) are the local reflection and local transmission
matrices, respectively. These matrices contain interactions between the two
layers given in their subscripts.

The local reflection matrix R is defined as

E,Hl = 5i_l '[Hn(z) (kp,. ai )ﬁn(z) (kal ai) - Hn(z) (kal ai )ﬁn(z) (kp,. ai )] (II 9)
Ry =D,k a)d, (k, a)—J, Gk, a)T,(k, a)]
The local transmission matrix 7 is defined as

7o—2e paye 0

i,i+1 T kf) ai i O _ ﬂi
5 ’ 0 (I1.10)
— — E.
Ti+1,i = %Di_l |: i }
7 kpl+l a; 0 “Hin

where

D, = 1,7k, a)J, tk,a)~J,(k,a)H, "k, a)]  aL1D)

H”(Z) (x), ]7”(2) (x),J,(x) and J,(x), used in equations (IL.9)-(II.11), are given
as
1 _ja)gikpiaiBrIz(kp,ai) nszn(kpiai)

2 ‘ '
k,a, nk_B,(k,a;) jouk,aB,(k,a)

B, (k,a,)= (IL12)

where “ in (IL.12) is used for the derivative with respect to &, a, such that

0
ok, a,) ’

10



11.3. Spectral-domain Green’s Functions

Putting (I1.6) into (I1.2) gives the z-component fields in the source layer j as

£ __ 5 e Tdk e EDE (. ph). g
H, 87w =, o ! K
(IL13)
where

[Jn (k, P) +H.(k, PR, }

.Mj_.[Hf(kp,p')]_+Jn(kp/p')Rj)M}, p<p

F,(p.p" = ] - (IL.14)
2k, T+, IR, |
ML, T4, PR 1 | > 0

when source and observation points are in the same region, i.e. i =,
|:Jn (kp[. p)i + H: (kp’_ p)ﬁi,i—l:|

- Ty M [H,f (ky, P +J,(k, PR, ;. } i<

F(p.p) = (IL.15)

[Hf k, )T +J,(k, p)ﬁ,-,m}

l

~

T, .1\7.]4.[(1” (k, PN +H} (k, PR, ;| } i>]

when source and observation points are located in regions j and i, respectively.
The Fourier transformation of (II.13) gives the z-components of the fields in

spectral domain as [26]

Ezf e & i J
P 2. " F (p,p").S, (IL.16)

Zj

where F (p,p') can also be defined as

11



(IL.17)

Fn(p,p'){f“ f”}

f21 f22

The spectral domain fields can be defined as the multiplication of Green’s

~

function matrix G and the source matrix J such as E=G*.J and H=G".J.
Hence, using (I1.16) and knowing that Fourier transform of the current source

Jk.z'

given in (IL.1) is 7/ e’*" , electric or magnetic spectral domain Green’s function

in « direction due to f—oriented source, (N}fﬂ’H , can be defined as [26]

- 1 & e
Go' =" 2" E (p.p)S, (IL.18)

n=—0uo

(I1.18) can also be written interms of n™ harmonic Green’s function G/;"" as

~ 1 & . N~
E.H — n(¢7¢) En =Hn
Gaﬁ = —E _E_ e’ Gaﬁ (I1.19)

Then, n™ harmonic Green’s function in z direction due to S —oriented source is

Ch| = oo [h fole

zp ' 11 12
~ :Fn(p’p)Sn = Sn» (1120)
GZ};" ! fu Sfu !

The p component and ¢ component of the fields can be obtained,

respectively, from the z component of the fields as [26]

_wgn K 0
H “op | E
G L p[:} a121)
Ep k/), _jkzi w Hz
op p

__ jws; 0 nk, |
H k> op kip | E
= 7 R (I11.22)
E¢ nkz ja)ﬂli Hz

2 2
_kpip kpi ap_

12



Therefore, using (I1.21) and (I1.22), p and ¢ directed n"™ harmonic Green’s

functions, respectively, due to S —oriented source are given as

wen P
S H, - —J5 | G
Gy | 1 P op | Gz
~r | T 52 5 o ~ (I1.23)
Gp/)’ Pi _jkz_ ﬂ Gzﬂ
op p

__ Jwg; 0 nk, |
G k2 op K p | GE
N R s (I1.24)
Gy nk, jop; 0 | Gl

k> p k) op

In [26], z and ¢ directed spectral domain Green’s functions of electric and

magnetic fields, G7,G.,G,,G, , due to z-oriented electric and magnetic sources,

z and ¢ directed spectral domain Green’s functions of electric and magnetic

fields, G, G, G, Gy,

5 G Gl due to ¢-oriented electric and magnetic sources embedded
in an arbitrary layer are given for an arbitrary observation layer. The remaining

spatial domain Green’s function components which are not given in [26], p

directed spectral domain Green’s functions of electric and magnetic fields, CNr‘fZ , 52

and E;g ¢,(~};’¢ , due to z and g¢-oriented electric and magnetic sources, respectively,

are also derived analytically and evaluated.
The other remaining spatial domain Green’s function components which are

not given in [26], z, ¢ and p directed spectral domain Green’s functions of

electric and magnetic fields, G%, G, G2, GG, G"

GGy, G, G LG due to p -oriented electric
and magnetic sources are derived analytically. Therefore, the complete set of
spectral domain dyadic Green’s function components have been completed. The
remaining spatial domain Green’s function components that are not given in [26]
are also given in this chapter and the complete set of spectral domain dyadic

Green’s function components are presented in Appendix B for the sake of

completeness.

13



. . . th . .
For a z-oriented electric source, p directed n™ harmonic Green’s functions of

electric and magnetic fields are obtained as

-k o,

GE” —_Pi_ J Y I1.25
= 8_/.( kp op ( )
- k? k.

G o wen T Oy (11.26)

g k, p Tk

J Pi

. . . th . .
For a z—oriented magnetic source, p directed n~ harmonic Green’s functions

of electric and magnetic fields are obtained as

~ kK ik of, o

Gl = A g 2 (1.27)
J Pi
k2 —WE N j of.

Gy = ( ) o flz—k—a—;z) (11.28)

. . . h . .
Fora ¢-oriented electric source, p directed n" harmonic Green’s functions of

electric and magnetic fields are obtained as

e _TIEn o, okk, o of,  ounk, 7t @k, o (I1.29)
pé 8j/0'kp, op kp,- Gp' op p'kf,l_pgj 21 pk;‘_ ap' .
. 2 .
GI; _ —wen’ jogmk, of, _Jnk. of, a)kp,- 0 (afzz) (11.30)
; :

. + , ,
ps,pk’ " kXp op pk,s, dp k, op Op

For a ¢-oriented magnetic source, p directed n™ harmonic Green’s functions

of electric and magnetic fields are obtained as

Ok, 0 Oy, jnk. Ofy UMK, Of,  oun’

G = , , - f. (I1.31)
¢ ' 2 2 22
Tk, 00 0p mpk, O kyp Op upk,p
G jn@’ek, of,  wen’k, p Kok, 0 ot Jjkin oy (1132)
P9 2 72 12 ' ; .
ko 0P Pk, pu, ko, op Op  pk,u, p
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For a p—oriented electric dipole source, z, ¢ and p directed n™ harmonic

Green’s functions of electric and magnetic fields are obtained as

7.9
G = (LT 10y
g op p
~ [ kn jk @
Gy =— | = (L= Py —f12)+
k, AT op
1] k9
Gly = k(e 2O f
oL p s, p p
~ 7.9
GZ / A _fzz
g op P
~ i 8f
GH,, - _(.] z JI11 _f
okl T e 00 o0
~ i nwe,; ,jk, 0
Gl = | -2 L af“ 9 f -k
nl P& OP

ap(

ony,

Jk: & |
£; op

Jjk. ale

P

kn ]k%

(gj ap

gj op

(I1.33)
_fzz)} (IL34)
fzz):| (IL.35)

el
(1L.36)
—fzz) (I137)
fzz) (IL38)

For a p—oriented magnetic dipole source, z, ¢ and p directed n™ harmonic

Green’s functions of electric and magnetic fields are obtained as

~ nw kO
Gi: = (12 g, 4 2 T
p u; op
~ 1 J
GH =— : z
” ky| P p H

z ﬁ2)

I 0 no
ap)+ JOU ( f21

g, _ | ., 0, no Jjk
Gpp = ___ .]kz %(_Fﬁl

J

s
op’

~ naw
G:;” =(——/fu+
P

J
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(I1.39)

Jk: ﬁf—?)} (11.40)
op

J

Jk, af—ﬂ{)} (IL41)
op

J

(11.42)



1 , 0, now k. O kn, no k. O
Glr =— _.]a)gi_(__vﬁl + / f12)+ (——.f21 + / &) (H'43)
9 M, op - p p u; op

Pi -

~ 1 nws, . nw k. O ., 0  no k. O
G:O” =—| - (—/fu+ / L%)_sz_(__'fZI + / &) (IL.44)
k,, p P u; op o p H; Op |

where f,’s are given in (II.14), (I1.15) and (I1.17).
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CHAPTER III

CLOSED-FORM GREEN’S FUNCTIONS IN
CYLINDRICALLY LAYERED MEDIA

III.1 Introduction

In this chapter, the closed-form Green’s functions are presented. The
spectral-domain Green’s functions which are given in Chapter II are transformed
into spatial domain analytically in closed-forms as will be mentioned in this

chapter to be used in mutual coupling analysis of printed elements.
III.2 Spatial Domain Green’s Functions in Closed-form

Spectral domain Green’s functions can be transformed into spatial domain by

evaluating the Sommerfeld integral,

Gl (z—2)= % [e 2GR (k yak, (IIL.1)
T

—o0

where G*" denotes spatial domain Green’s function. Since the numerical
evaluation of (III.1) has difficulties and is very time consuming, to improve
computational efficiency the deformed path [26] given in Figure III.1 is used as
the path of integration in (II.1). To obtain the spatial domain Green’s functions
in closed forms for a cylindrically layered medium, a three-step technique is
developed as shown in Figure III.1. The spectral domain Green’s functions are
approximated in terms of complex exponential functions in three consecutive
steps and then these exponential functions are transformed into the spatial
domain, analytically.

These spectral domain Green’s functions are sampled and approximated in
two regions in terms of complex exponentials by using Generalized Pencil of

Function (GPOF) method. In the first region, corresponding to the path I'; the

17



large argument behaviour of the zero-order Hankel functions enables complex
exponentials of k, to be represented in terms of Hankel functions. The
Sommerfeld identity is used to transform Green’s functions into the spatial
domain. Green’s functions represented by Hankel functions in this region are
subtracted from the original Green’s functions in the full domain, resulting in
Green’s functions vanishing outside a limited region. These Green’s functions
are then approximated in terms of complex exponentials along the two contours
I'y and I'; shown in Figure III.1. The path of integration is obtained by deforming
the original Sommerfeld integration path [26] to avoid the branch-point
singularity associated with a branch-cut and the surface wave pole singularities
encountered along the real axis on the complex 4, plane. In this second region,
transformation into the spatial domain turns out to be analytical evaluation of
two simple contour integrals of exponential functions. Finally, addition of the
contributions of each step gives the spatial domain Green’s functions in closed

forms.

k, =k 1+T;

Figure III.1 Deformed path.
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In (IIL.1) since G** is chosen to be an even function of k,, G=" is either G**/
or GE/ k. depending on whether G%" is an even or odd function of k.,

respectively. Hence the inverse Fourier integral (III.1) can be folded as

GE(z-2) = %Tcos(kz (z—2)G" (k,)dk, (111.2)
0
The spectral domain Green’s functions are sampled and approximated interms of
complex exponentials on this deformed path using the GPOF method and then
transformed into the spatial domain by applying a three-step approximation
technique outlined as follows [26].
1) The spectral domain Green’s functions are sampled uniformly along the

path
kps = _jks(t3 +T2)

k, =k 1+, +T,)

where ks and &, are the wave numbers of the sampling region that is chosen as

}0 <t,<T,-T, (I11.3)

the source layer.

The value of 7, should be large enough to avoid the pole and branch-point

singularities and in order for the large argument approximation of the zeroth-
order Hankel functions to be valid. Hence, a choice of 7, such that k 1+ 7, is

greater than the wavenumbers of all layers should be appropriate. Once 7, is
chosen, the value of 7, =1.17, is sufficient to capture the behaviour of the
Green’s functions in the sampling interval.

The sampled Green’s functions are multiplied by ,/k, and approximated in

terms of N3 complex exponentials of &, by the GPOF method [36] as

~ & S, & N
\/E G, = ;bz, e" =;blkek”“‘ ‘ (111.4)

where 5kp represents the spectral domain Green’s functions approximated in

this region.
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a) The resulting exponential functions are represented by the
zeroth-order Hankel functions using the large argument

approximation as

N3 kpysiy N3

~ e

G, = 2 Sy ) s
=1 Py =1

b) Then, by using the Sommerfeld identity

— s |77 | w
e‘]—_. =—j j cos(k,(z—2)H(k, |p - p|)dk, (I11.6)
0

r—r

—_ — ' p— 12 . . .
where ‘r -7 ‘ = \/ (z—z) + ‘ ) ‘ , the spatial domain Green’s functions ka

are obtained as

(11L.7)

where |77,| = J(z=z2)? +s,i .

2) The spectral domain Green’s functions CN?kp approximated in the first step
are subtracted from the original Green’s functions G to yield the Green’s
functions 5@ vanishing for k> ksm .

a) The resulting Green’s functions (N?kz are sampled uniformly

along the two contours I';and I',, which are shown in Figure

II1.1 and given respectively as

k. = ks(1+jT1)tT—1, 0<t,<T (IIL8)
1
k. :k{1+jTl + QT 15T ZZT} 0<, <T,~T, (IIL9)
2 4

b) Along the paths (II1.8) and (III.9), the maximum deviation

from the original path occurs at ¢, =7, or ¢, = 0. Therefore the
deformation of the path can be controlled by choosing T,

properly. This parameter should be sufficiently large to

20



overcome the effects of the pole and branch-point singularities

and small enough to avoid numerical difficulties. For a robust
and safe approximation, 7; should be chosen that £ 7, = 0.1k,
where k,is the wavenumber of free space.

¢) The sampled Green’s functions are approximated in terms of
N; and N, complex exponentials of k& by GPOF method,
respectively, on paths (II1.8) and (I11.9) as

Nl
G, =Y b, +an/e
e i (I11.10)

k & k
ZSNI L'Sﬂ
e " + E b e
k
n=l1

d) Transformation of the approximated Green’s functions into

N,

N

m=1

the spatial domain turns out to be a simple contour integral of

exponential functions as

G, = 1 j cos(k,(z—2)G,_dk. (IIL11)

I +I,

Addition of the contributions given in (II1.7) and (III.11) of the three steps yields

the spatial domain Green’s functions in closed forms as follows:

| kTl iG] _p o kel iG] g
E.H
G (z 2)22—2 me ( , N ; ,
7Tt S, +Jj(z=z2) S, —J(z=2)
| & k12 s D] kTl 2]
+—>'b, ( :
2 +j(z—2)
T n=1 Snk _]
111.12
o Vi1 [s,, - j(z-2)] 3 eké(l-*—jTl)[snk —j(z=2)] ( )
+ ; ; )
s, —J(z-2)

A e—jk“ (z—z')2+s,2h

In [26], z and ¢ directed spatial domain Green’s functions of electric and

magnetic fields, G, G.,G;,G; , due to z-oriented electric and magnetic sources,

zz% Tzz?
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z and ¢ directed spatial domain Green’s functions of electric and magnetic fields,
Gf;j, GZZ,G@, G(Zj , due to ¢g-oriented electric and magnetic sources embedded in an
arbitrary layer are given for an arbitrary observation layer. The remaining spatial

domain Green’s function components which are not given in [26], p directed

spatial domain Green’s functions of electric and magnetic fields, G”

GG

PP g 2

H
G,. and
due to z and ¢g-oriented electric and magnetic sources, respectively, are
also evaluated.
The other remaining spatial domain Green’s function components which are

not given in [26], z, ¢ and p directed spatial domain Green’s functions of

electric and magnetic fields, G-,,G" .G ,G",G. ,G"

.0,.G,,G,,, G, pp,due to p -oriented electric

and magnetic sources are evaluated. Therefore, the complete set of spatial
domain dyadic Green’s function components have been completed. The plots of
remaining spatial domain Green’s function components which are not given in

[26] are shown in Section II1.4.

IIL3 Closed-form Green’s Functions when p = p'

The spatial domain Green’s functions in [26] can only be evaluated when o
is not equal to p'. However, when MoM is applied in the spatial domain, the
spatial domain Green’s functions at p=p' is needed.

If p is far away from p', the cylindrical eigenmodes in the summation in (I1.19)
form a fast convergent series. However, it is not the case when p and p' are
close to each other. When p and p' are close to each other, the convergence

behaviour of the series is very poor and a large amount of eigenmodes are

needed to achieve a convergent result. To make the series representations of
these Green’s functions convergent in spectral domain when p = p a similar

procedure reported in [27] is employed.

To demonstrate the procedure, the spectral domain Green’s function G* can

be considered, where G” has a summation term g =Y f,e"¢¢ that has a

—o0
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convergence problem when p = p , therefore infinite number of terms are
needed to obtain a convergent result. It is realized that the quasistatic

components of f;, are slowly convergent, on the other hand the inverse Fourier

transform of the quasistatic components has a closed form. After the quasistatic
components are completely extracted from the Green’s functions in spectral
domain, the remaining parts have good convergence behaviours which can be
used to speed up the calculation of the inverse Fourier transform. Then the
quasistatic components are transformed into spatial domain analytically and their

contributions are added in closed form [27].

The summation term, S; can be expressed as

_ N i H \\, /(P4 _ N H \\1¢-¢) (111.13
5=2. ) Jn(kﬂp>)( P, PR = CH ke, M, (K, e (IIL.13)

The coefficient C; depends on n and k; ; if k, is fixed then C; only depends on n.
With increasing n, C) has an asymptotic value denoted as C; . C| is independent

of n, but depends on k,.

lim C/(n,k,)=Cy(k,) (111.14)

n—x0

While moving along the Sommerfeld integration path on T, path, C," is found to
be almost a constant that is denoted as C,”; hence C,” is independent of n and
k.

lim Ci(k,)=C/" (IL.15)
S, = 2(C = CD|H ke, )7,k 20 [ L D (h, 2, K, o0

= (C-COHD K, p)I, (k, pe" ) [+ CTHD (k, |5 - P
(I1L.16)
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where Addition theorem, given in (3.17), is used to obtain the last term of

(I11.16)

HO (k, [p-p )= 2" H (k, p)J,(k, p') (I11.17)

n=—00

The series in (I11.16) is fast decaying, since the asymptotic term C, is subtracted.

In (II1.18), C;” is subtracted from C; for a better convergence.
In order to obtain G, the integral / should be evaluated.

0

I = J.Sle*jk_y(Z—z')dkz = J._w ZCI [H;Z) (kpjp)‘]n (kpjp')ejn(qﬁfd) efjk_,(zfz')dkz

0

- ,[ Y(C -C)H? (k, p)J , (k, pH)]en e gy

—op =%
© ©

n J‘(Cl* _ Cl**)Héz) (kp, ‘ﬁ_ﬁ'be—jkxz—z‘)dkz n J‘C;*Héz) (kp, ‘/3_'5")e—jkz<z—z‘)dkz

(I11.18)

The last integral in (I11.18) has a closed form solution as (III.19) using the

Sommerfeld identity given in (II1.6) and this term is called as the direct term.

Sl

[CrHP k, o -5 e dk, =2jC;" (II1.19)

=7

As a summary, the complete procedure can be outlined as follows:

I. The spectral domain Green’s functions are evaluated uniformly along the
deformed path given in (II.8), (II1.9) and (IIl.3), corresponding to
pathsI’,I’,,I7, respectively.

II. The asymptotic terms C; and C,"are subtracted to make the remains of the
Green’s function vanishing on path I', and are transformed into those in

spatial domain in closed form.
III. The resultant Green’s functions are sampled uniformly along two deformed
paths I} and I', and approximated in terms of N; and N, and the complex

exponentials of k, by the GPOF method given by (I11.10).
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IV. Transforming the approximated Green’s functions 5kz in the form of

(II1.10) into the spatial domain turns out to be a simple contour integral of

exponentials which have closed form.
II1.4 Numerical Results

IIL.4.1 Closed-form Green’s Function Results for 5 » ,7'

The first set of numerical results belongs to a case for p # p’ which was

presented in [26]. The same results are given to verify the accuracy of our code.

Figure I11.2 is a dielectric-coated cylinder which is represented by a 3-layer

structure in our model. The point electric source is located at the air-dielectric

interface p =a;=21mm and the observation point is at o =40mm.

7
/-_-_—__,.-——————-._\__\
h""-—-—___——---/
point .
electric observation
SOLICE point
oo,
PEC | diclectric| free space
, P
a a
Region | Region | Region
0 1 2
—_— ke d

Figure IIL.2 Region 0: PEC, Region 1: ¢, = 2.3, U, = 1, Region 2: free space,
ag=20mm, a,=21mm, p =2Ilmm, ¢ =0°, p =40mm, ¢ =30, f=4.7 GHz.
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Our generated code computes the spatial domain closed-forms of spectral

domain Green’s functions G°,G",GE,G for an electric and a magnetic dipole

2z Tzz 0 gz 0 Tpz

pointing in z direction, the spatial domain closed-forms of (N}z@ , CNr’Z’; , QZ, ,QZ, for an

electric and a magnetic dipole pointing in ¢ direction. They are found to be in
good agreement with the ones given in [26] as seen in Figure I11.3-Figure II1.6.

Besides, the remaining spatial domain Green’s function components that are not
given in [26], which are derived analytically and given in Chapter II as (I1.25)-
(I1.32), the spatial domain closed-forms of p directed spectral domain Green’s

functions of electric and magnetic fields, G* (N?,’fz and 5;,6;, due to z and ¢

pz?
oriented electric and magnetic sources, respectively, are also given in Figure
IT1.7-Figure 1II.10. These are compared with the exact Green’s functions
obtained by the numerical evaluation of the Sommerfeld integral.

To assess the accuracy of the method developed in this thesis, the obtained
(approximate) closed-form spatial domain Green’s function results are compared
with the exact Green’s function results. Exact Green’s function is calculated
using the direct numerical integration of Sommerfeld integral in (III.1) which is

also given here for the sake of completeness

G (z-2)= 2L [ G5 (k, Yk,
T

Direct numerical integration is a tedious and time consuming numerical
integration of the inverse Fourier integral along the real axis on the complex £
plane (Sommerfeld integration path) where branch-point singularities and the
surface wave poles are encountered. A code is generated which evaluates the
spatial-domain Green’s function using the direct numerical integration that
compares the exact and the approximate closed-form Green’s functions.

The other remaining spatial domain Green’s function components that are not
given in [26], which are derived analytically and given in Chapter II as (I1.33)-

(I.44), the spatial domain closed-forms of z, ¢ and p directed spectral domain
Green’s functions of electric and magnetic fields, G°,,G",GE,G",G" , G, due

P2 "zZp 2 Sgpd Sgpd Sppd Spp

to p -oriented electric and magnetic sources are given in Figure III.11-Figure
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II1.16. Therefore, the complete set of the spatial domain dyadic Green’s function
components have been completed. They are again compared and found to be in
good agreement with the exact ones.

The closed-form Green’s function components can also be obtained for lossy
dielectric media where different spatial domain Green’s functions are given in
Figure III.17-Figure II1.20 for the geometry of Figure II.2 for the dielectric

constant ¢, =2.3-0.1.

loglo‘Gi
4"‘1 T T T T T T T
—— — — e — — — — & —
4.2°F & A
N
af =Y 1
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O Numerical results given in [26] (i

S __ Our generated code ﬁﬁf ]
7 4
&

28 1 1 1 1 1 1 1
-3 2.5 -2 -1.5 -1 -0.5 0 0.5 1

logm‘kO (z - z)‘

Figure 111.3 logm‘GZEz
shown in Figure I11.2 (N;=4, N,=5, N;=1, T,=0.1, T,=4.5, T;=5).

for an electric dipole pointing in z direction, for the geometry
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Figure 1114 log,, U G ; dZ‘ for an electric dipole pointing in z direction, for the geometry
shown in Figure 1.2 (N|=5, N,=5, N;=1, T,=0.1, T,=3.5, T5=4).

H
loglo‘Gw
16 T T T T T T T
- — — e — — — — & — — ___
1.4+ ! 4
\
12+ Q\ -
1+ y .
08 (‘;e -
o6t (\3? -
&
04l 0 Numerical results given in [26] & |
__ Our generated code %
021 F
D 1 1 1 1 1 1 1
-3 -2.5 -2 -1.5 -1 0.5 0 0.5 1

logw‘ko (z - z)‘

Figure IIL.5 log10 ‘GZ‘ for an electric dipole pointing in ¢ direction, for the geometry
shown in Figure I11.2 (N;=5, N,=5, N;=1, T,=0.1, T,=3.5, T5=4).
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Figure I11.6 loglo U G;;;dz‘ for an electric dipole pointing in ¢ direction, for the

geometry shown in Figure I11.2 (N;=4, N,=4, N;=1, T,=0.1, T,=3, T5=3.5).
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Figure 1117 log,, J.sz dz| for an electric dipole pointing in z direction, for the geometry

shown in Figure I11.2 (N;=4, N,=4, N;=1, T,=0.1, T,=3, T;=3.5).
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Figure II1.8 log10 ‘Gi‘ for a magnetic dipole pointing in z direction, for the geometry
shown in Figure II1.2 (N;=4, N,=4, N;=1, T,=0.1, T,=3, T5=3.5).
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geometry shown in Figure I11.2 (N;=4, N,=4, N;=1, T,=0.1, T,=3, T5=3.5).

for an electric dipole pointing in ¢ direction, for the
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geometry shown in Figure I11.2 (N;=4, N,=4, N;=1, T,=0.1, T,=3, T5=3.5).
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Figure 11111 log,,

j Gidz‘ for an electric dipole pointing in p direction, for the
geometry shown in Figure II1.2 (N;=5, N,=4, N;=1, T,=0.1, T,=3, T5=3.5).
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Figure I11.12 log]0 for an electric dipole pointing in p direction, for the

H
[Gyaz
geometry shown in Figure I11.2 (N;=5, N,=4, N;=1, T,=0.1, T,=3, T5=3.5).
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Figure I11.13 logw‘Gfp‘ for an electric dipole pointing in o direction, for the geometry
shown in Figure I11.2 (N;=5, N,=4, N;=1, T,=0.1, T,=3, T5=3.5).

32



0L o0 Exact

04+t _ Closed-form -

0z2r

=] 24 -2 —1.I5 -1 0.4 o 0.4a 1
logl() ‘ko (Z _Z')‘

Figure I11.14 logm‘Gi‘ for a magnetic dipole pointing in o direction, for the geometry
shown in Figure I11.2 (N;=5, N,=4, N;=1, T,=0.1, T,=3, T5=3.5).
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Figure II1.15 loglo‘G;‘ for a magnetic dipole pointing in o direction, for the geometry
shown in Figure II1.2 (N;=5, N,=4, N;=1, T,=0.1, T,=3, T5=3.5).
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Figure I11.16 log10 for a magnetic dipole pointing in p direction, for the geometry
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shown in Figure II1.2 (N;=5, N,=4, N;=1, T,=0.1, T,=3, T5=3.5).
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in Figure II1.2 (N;=4, N,=5, N;=1, T,=0.1, T,=4.5, T;=5) when the dielectric is lossy
g, =23-;0.1.

for an electric dipole pointing in z direction, for the geometry shown
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Figure II1.18 log10 U sz dz‘ for an electric dipole pointing in z direction, for the geometry
shown in Figure II1.2 (N,=5, N,=5, N;=1, T\=0.1, T,=3.5, T;=4) when the dielectric is lossy

g, =23-;0.1.
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shown in Figure II1.2 (N,=5, N,=5, N;=1, T,=0.1, T,=3.5, T;=4) when the dielectric is lossy
g, =23-;0.1.

for an electric dipole pointing in ¢ direction, for the geometry
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Figure I11.20 log,, J‘qudz‘ for an electric dipole pointing in ¢ direction, for the

geometry shown in Figure II1.2 (N=4, N,=4, N;=1, T\=0.1, T,=3, T;=3.5) when the
dielectric is lossy &, =2.3—j0.1.

II1.4.2 Closed-form Green’s Function Results for p =p’

The closed-form Green’s functions when p = p  are evaluated using the

procedure given in Section III.3.
The closed-form Green’s functions are calculated for the geometry shown in

Figure II1.2. Both the electric point source and the observation point are located
at the air-dielectric interface such that p =p =a;=21mm. The results are given
for different (¢ — ¢') values and compared with the exact ones in Figure I11.21-

Figure I11.23. In our simulations, at most 110-120 eigenmodes are needed.
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for an electric dipole pointing in z direction, for the geometry shown

in Figure [11.2, p = p’=21mm, ¢ — ¢'=50°.
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Figure I11.23 loglO‘Gi

for an electric dipole pointing in z direction, for the geometry shown

in Figure [I1.2, p = p’=21mm, ¢ — ¢'=40°.

The exact and the closed-form Green’s function of G for an electric point
source are plotted together when f=6.8 GHz and ¢, =10 for various (¢ —g¢")

values and they are found to be in good agreement as seen in Figure I11.24-

Figure I11.27.
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For the geometry shown in Figure III.2, the spatial-domain Green’s

function of different components due to different source types are given when

p=p for various dielectric constants ¢, , frequency f and (¢ —¢') values as

seen in Figure II1.28-Figure III1.33. For lower (¢—¢') values, numerical

difficulties start to appear.
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Figure I11.28. log,, U Gf;) dz‘ for an electric dipole pointing in p direction, for the geometry

shown in Figure 1112, p = p’=21mm, ¢ —¢'=15°, &, =23, f[=10GHz.
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CHAPTER 1V

SURFACE WAVE CONTRIBUTION

IV.1 Introduction

As mentioned in Chapter III, the Sommerfeld path contains a certain number
of poles and branch-point singularities [37] which are associated with surface
and leaky waves launched by the source. Among these, the surface waves play a
rather significant role since they are guided along the interface without leaking
energy.

In planar layered medium, a number of studies have been reported about the
contribution of surface waves in the literature.

A. K. Bhattacharyya in his work [38], important characteristics of the surface
wave modes in a planar multilayered grounded dielectric substrate are explored.
It is shown how these characteristics can be utilized to determine the surface
wave fields of an arbitrary shaped source. It is also stated that the study may find
application for millimeter-wave printed antennas where the surface wave play an
important role in determining the radiation and the impedance characteristics.

In planar layered medium, the surface wave pole singularities are located on the
real axis of the k,-plane. Even if Sommerfeld integration path is deformed such
that it is not too close to the surface wave pole singularities, their presence still
affects the value of the integral for small values of k,. Hence, it may be helpful to
extract these surface wave pole singularities from the integrand before
employing GPOF, since it helps smooth the integrand and makes it easy to
approximate by GPOF. It has been shown in [39], [40] that if the surface wave
poles are not extracted prior to exponential fitting (GPOF) DCIM approximation
seems to deteriorate violently, even for moderate distances from the source.

Hence, knowing that the surface wave contribution approaches its theoretical

limit (1/ \/; ), even for moderate distances from the source, it is obvious that for
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such cases, if these poles are not extracted and represented interms of complex
exponentials, the discrete complex images are not sufficient, since they exhibit
exponential decay (1/p).

I. Aksun and G. Dural in their work [40] give a brief of the development of

the closed-form Green’s functions for planarly layered medium. The closed-form
Green’s functions which are derived for the vector and scalar potentials using
DCIM for planarly layered media are revisited to clarify some issues and
misunderstandings on the use of DCIM. Among these issues, it is shown that the
deviations of the approximations of the Green’s function start at the distances
where the spherical wave approximations of the surface wave pole contribution
deviate from the exact surface wave contribution. It is also suggested to subtract
the surface wave poles from the spectral-domain Green’s functions before the
approximation (GPOF), and to add their contribution analytically after GPOF.
In cylindrical layered medium, A. Y. Svezhentsev and G. A. E. Vandenbosch
dealed with the contribution of surface wave poles. In their research [41], they
used mixed-potential Green’s functions for the printed elements over metal-
dielectric cylindrical structure. While trying to calculate directly IFT (Inverse
Fourier Transform) of spectral-domain Green’s function in their work, they faced
with singular behaviours of spectral-domain Green’s functions one of which is
the surface wave poles. Using Newton-Raphson method they found these surface
wave poles which make the spectral domain Green’s functions go to infinity and
then extracted them before calculating Sommerfeld integral.

A. Y. Svezhentsev in his own work [42] dealing with cylindrical layered
medium, takes a step further and seeks to recognize the leaky wave contributions
in the case when the cylinder is electrically large and the source is widely
separated from the observation point, even though stating that this approach has
some restrictions. In this work it is stated that at a fixed frequency there is
always an infinite number of leaky waves of which have non zero imaginary
component in their propagation constants, therefore the leaky waves decay
exponentially as the distance between the source and the observation points

increases.
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IV.2 Surface Wave Poles

The surface wave poles exist symmetrically in the interval k;
e (k,.k, M) and k; € (—k,,—K, M) in the positive and negative parts of
the real k; axis, respectively, seen in Figure IV.1 if loss is absent. K, is the wave
number of free space, K is the wave number of the source layer which is

selected as K, in our analysis.

Surface wave ¢
poles

k, =k I+T;

Figure IV.1 Location of the surface wave poles

The number and the location of the surface wave poles is dependent on the

radius a,, the wave number ko (frequency of operation), the dielectric constant

¢, of the dielectric layer, the thickness ty of the dielectric layer involved.

IV.3 Finding the Location of Surface Wave Poles

The location of the surface wave poles in the spectral domain can be found

by finding the roots of the denominator of the spectral domain Green’s functions.
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To find the roots of a function, two different kinds of methods called bracketing
and open are used in the literature which are Newton-Raphson method, Bisection
method, Secant method, False-Position Method, Ragula Falsi method.

Methods such as Bisection method, Ragula Falsi method and the False-
Position method of finding roots of a nonlinear equation f(x)=0 require
bracketing of the root by two guesses. Such methods are called bracketing
methods. These methods are always convergent since they are based on reducing
the interval between the two guesses to zero on the root.

Perhaps the most widely used root-finding method is the Newton-Raphson
method which is also used in our analysis (given in Appendix D). In the Newton-
Raphson method, the root is not bracketed. Only one initial guess of the root is
needed to get the iterative process started to find the root of an equation. Hence,
the method falls in the category of open methods as Secant method.

Although the Newton-Raphson method is often very efficient, its
convergence depends on the nature of the function and on the accuracy of the
initial guess. The only solution is to have an initial guess that is “sufficiently”

close to the root. This is the reason why a two-stage procedure is applied to find

the roots of the denominator of the spectral domain Green’s function G while

using the Newton-Raphson method. Because of the discontinuous behaviour of

spectral domain Green’s function G, it may not converge if the starting point is
not selected as close to a root. That may cause the program to fail or cause too
many iterations before exceeding the preset maximum number of iterations.
Hence, the golden search procedure is used in conjunction with Newton-
Raphson method. On the other hand, the golden search procedure is very robust
to locate the minima. Therefore, the two-stage procedure can overcome the
difficulty of the Newton-Raphson method.
The algorithm of a two-stage procedure can be given as follows:

1. For a given interval on the real axis of k, plane, the golden search procedure

is used to minimize ‘CNS‘ . A local minimum point is then found.

2. This minimum point is then used as the starting point for a Newton-Raphson

procedure for finding the roots of G denominator.
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To find all the roots, the interval between the minimum and maximum wave
number of all layers (K,,Ky+/&, na ) 18 divided uniformly into number of sections.
For each section, the golden search procedure is applied first to find the

minimum of |G|,

which is used as the starting point for the Newton-Raphson
method.

When the surface wave poles are found, since they occur in complex conjugate

pairs, they can be represented mathematically as [41]

M, 2Res k

ZZ (IV.3)

nOmlkz (an)

where K, is the surface wave pole and Re s is the residue of the spectral-

domain Green’s function at that pole. N is the maximum number of n (starting
from zero) for surface waves exist for given geometrical parameters and
frequency. M,, that starts from 1, is the full number of surface waves which

corresponds to the same value of n.
The residue of the spectral Green’s function G at a surface wave pole kzr: can

be found as

Res) =lim,__ , (k,—k,)G (IV.4)

The inverse Fourier transform of (IV.3) is calculated using residue theorem.

Residue Theorem [43]: states that if a function f has only a finite number of
singular points interior to some simple closed contour C, then the value of the
integral of f around C is 2xj times the sum of the residues associated with those
singular points.

Hence, using the residue theorem the spatial-domain of the surface wave

contribution is given as
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IV.4 Numerical Results

=3 3'r, cos(np- ) Resp) &40

nﬁ;z 7, c08(N(¢—¢))

n

{

1 n=0
2 n2>1

(IV.5)

In this section, the surface wave contribution in cylindrically stratified media

is investigated. In that investigation, the effect of the surface wave poles and the

deformed path are studied. The effect of the deformed path is studied by

changing the deformed path parameters.

Figure IV.2 is a cylindrically

multilayered structure used in our calculations. The innermost layer is perfect

electric conductor (PEC), the radius of the cylinder is @, and the thickness of the

dielectric coating is t, (hence a, =a, +t,). Both the point electric source and

the observation point are located at the air-dielectric interface such that

p = p=a,. The observations include different frequency f, the cylinder outer

radius &, , the dielectric constant &, .

BEC

dielectric

free space

Region
0

g

Region

ay

Region
2

Figure IV.2 Region 0: PEC, Region 1: &y My = 1, Region 2: free space,

p=p.¢=0°, § =30".
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Figure IV.3 and Figure IV.4 show the exact and the spatial domain Green’s
function G,, with and without extraction of surface wave poles when the

deformed path parameters are changed such that T,=0.1, T,=0.3, Ts=5, when the

frequency  f=6.8 GHz, the dielectric constant ¢, =10, p =p =047 Ao, the

cylinder outer radius a;= 0.47 Ag and the dielectric thickness t, = 0.02 Ao for

source and observation point differences log,, ‘ko (z -7 )‘ up to 1 and 2.

43 T T T T T T T
[«
42F -
A41F -
41 i
33r _ log10]|Gz| with extraction of SW poles T
-.-.- 10910| G| without extraction of SW poles
381 AN
O exact 10g:0|Gz| y
37F .
36 | | | 1 | | |
-3 -2.5 -2 -1.5 -1 0.5 0 05 1

loglo‘ko (Z - Z']

Figure IV.3 The exact and the spatial domain Green’s function G,, with and without extraction
of surface wave poles for source and observation point difference log,, ‘ko (z - z)‘ up to 1 when

the deformed path parameters are changed (T,=0.1, T,=0.3, T;=5), f =6.8GHz, &, = 10, p'= p=
0.47)\0, a= 047)\0, th = 002)\0
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32 | | 1 1 1 1 1 1 1
-3 2.5 -2 -1.5 -1 0.5 0 0.5 1 15 2
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Figure IV.4 The exact and the spatial domain Green’s function G,, with and without extraction
of surface wave poles for source and observation point difference logw‘ko (z - z)‘ up to 2 when

the deformed path parameters are changed (T,;=0.1, T,=0.3, Ts=5), f =6.8GHz,
£, =10, p=p =047k, a=0.47\q, t, = 0.02),.

Figure IV.5 and Figure IV.6 show the spatial domain Green’s function G,
with and without extraction of surface wave poles when the deformed path

parameters are changed such that T;=0.1, T,=0.3, Ts=5, when the frequency

f =4.7GHz, the dielectric constant & =23, p =p =042 Ao, the cylinder outer

radius a;= 0.42 A9 and the dielectric thickness t, = 0.02 A9 for source and

observation point differences 10g10‘k0 (z-7 )‘ up to 1 and 2.
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-.-.- l0g10] G| without extraction of SW poles
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loglo‘ko(z -z ]
Figure IV.5 The spatial domain Green’s function G,, with and without extraction of surface
wave poles for source and observation point difference loglo‘ko(z—z'}up to 1 when the

deformed path parameters are changed (T,=0.1, T,=0.3, T5=5), f=4.7GHz, &, = 2.3, p': p=
0.42hg, a;=0.42A¢, ty, = 0.02A,.

38+

34F

32F

0g __ 10910/ G| with extraction of SW poles

-.-.- 10910] G| without extraction of SW poles
2BF

24 1 1 1 1 1 1 1 1 1
-3 -25 -2 -1.5 -1 -0.5 a 0.5 1 1.5 2

loglo‘ko (Z - Z']

Figure IV.6 The spatial domain Green’s function G,, with and without extraction of surface
wave poles for source and observation point difference loglo‘ko(z—z']up to 2 when the

deformed path parameters are changed (T;=0.1, T,=0.3, T5=5), f=4.7GHz, & = 2.3, p'= p=
0.42Ag, a;=0.42Ag, t, = 0.02A,.
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Figure IV.7 and Figure IV.8 show the spatial domain Green’s function G,
with and without extraction of surface wave poles when the deformed path

parameters are changed such that T,=0.1, T,=0.3, T5=5, when the frequency

f =6.8GHz, the dielectric constant ¢, =10, p =p =047 N, the cylinder outer

radius a;= 0.47 A¢ and the dielectric thickness t, = 0.02 Ag for source and

observation point differences loglo‘ko (z -7 )‘ up to 1 and 2.

52 T T T T T T T

48+

4.4

42l _logio] G| with extraction of SW poles

-.-.- l0g10|Gz,| without extraction of SW poles

38 1 1 1 1 1 1 1
-3 25 -2 -1.5 -1 0.5 a 0.5 1

loglo‘ko (Z - Z']

Figure IV.7 The spatial domain Green’s function G,, with and without extraction of surface
wave poles for source and observation point difference loglo‘ko(z—z']up to 1 when the

deformed path parameters are changed (T,=0.1, T,=0.3, T;=5), f =4.7GHz, & = 10, p'= p=
0.24)\0, ar= 024)\0, th :004)\0
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Figure IV.8 The spatial domain Green’s function G,, with and without extraction of surface
wave poles for source and observation point difference loglo‘ko(z—z']up to 2 when the

deformed path parameters are changed (T,=0.1, T,=0.3, T5=5), f=4.7GHz, & = 10, p': p=
0.24Ng, a;= 0.24Ag, t, = 0.04A,.

When the deformed path parameters are changed such that the deformed path
passes close to the surface wave poles, it is observed from the given figures that
the spectral Green’s functions hence the spatial domain Green’s functions
deteriorate. This deterioration is overcome by extracting the surface wave poles
from the spectral domain Green’s functions and adding their contributions in the
spatial domain.

Figure IV.9 shows the exact and the spatial domain Green’s function G,
without extraction of surface wave poles when the proper deformed path
(T1=0.1, T,=4.5, T3=5) is used, when the frequency f =6.8GHz, the dielectric
constant &, = 10, p'= p = 0.47 Ao, the cylinder outer radius a;= 0.47 Ag and

the dielectric thickness t, = 0.02 Ag for source and observation point difference

logm‘ko(z - z)‘ up to 2.
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Figure IV.9 The exact and the spatial domain Green’s function G,, without extraction of surface
wave poles, f=6.8GHz, £, =10, p =p =0.47Ao, 2= 0.47\o, t, = 0.02),.

Figure IV.10 shows the exact and the spatial-domain Green’s function G,
without extraction of surface wave poles when the proper deformed path
(T,=0.1, T,=3.5, T5=4) is used, when the frequency f =4.7GHz, the dielectric
constant &, =2.3, p =p =042 N\, the cylinder outer radius a;= 0.42 Ag and
the dielectric thickness t, = 0.02 Ag for source and observation point difference
logw‘ko(z - z)‘ up to 2.

Figure IV.11 shows the exact and the spatial domain Green’s function G,
without extraction of surface wave poles when the proper deformed path
(T,=0.1, T,=3.5, Ts=4) is used, when the frequency f =4.7 GHz, the dielectric
constant &, = 2.3, p'= p =0.34 Ay, the cylinder outer radius a;= 0.34 Ap and
the dielectric thickness t, = 0.04 Ao for source and observation point difference

loglo‘ko(z - z)‘ up to 2.
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Figure IV.10 The exact and the spatial domain Green’s function G,, without extraction of
surface wave poles, f=4.7GHz, & = 2.3, pl =p =0.42M\y, a;=0.42A, t, = 0.02A,.
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Figure IV.11 The exact and the spatial domain Green’s function G,, without extraction of
surface wave poles, f=4.7GHz, & = 2.3, ,0': p =0.34Ng, a;=0.34Ag, t, = 0.04\,.
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When a proper deformed path is used in the evaluation of spatial domain
Green’s functions, it is observed from the given figures that removing the surface
wave contributions from spectral domain Green’s functions does not give an
extra benefit. Hence regarding our research, unlike planar layered medium, it is
not a critical issue to remove the surface wave contributions from the spectral

domain Green’s functions if a proper deformed path is used.
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CHAPTER V

MUTUAL COUPLING BETWEEN ELECTRIC/MAGNETIC
CURRENT ELEMENTS

In this chapter, the analysis of mutual coupling between two narrow strips
and between two narrow slots placed on a cylindrically layered medium using
Method of Moments (MoM) incorporation with the closed-form Green’s
functions is presented. Mutual impedance and mutual coupling coefficient
formulations are also provided for both strip and slot example to demonstrate the
use of both electric and magnetic type Green’s functions in cylindrically layered
media. Hence, it is preferred to explain Method of Moments (MoM) briefly, at
first.

V.1 The Method of Moments (MoM)

The MoM is a numerical technique that is used to solve the problems stated as:

Lifi=g (V.1)
where L is a linear operator which may be differential, integral (which is in our
analysis) and g is the known function.

In order to solve the problem, the unknown function to be determined f(x) is

approximated by series of known N basis or expansion functions f,(x),
N
f() =2 a,f,(x) (V.2)
n=1

where ¢, ’s are the unknown coefficients that are to be solved. (V.3) is obtained

by substituting (V.2) into (V.1),

L{Z a,f, (x)} = g(x) (V.3)

Since L is a linear operator, (V.3) can be expressed as,
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N

> a,Lif,(x)}=g(x) (V.4)

n=1

The remainder function R(x) is defined as

R) =2 e, L{f, (1)} -g(x)#0 (V-5)

The remainder function R(x) is tested with the weighting (or testing) function w,

in order to have a zero inner product,
(w,,R)=0 form=1,2,.N (V.6)

Hence (V.6) is obtained as,

<wm,2anL{f,, (x)}- g(x)> =0 (V.7)

Using the linearity of L, (V.7) can be expressed as

<wm , ﬁ: a, L{f, (x)}> =(w,,,g(x)) form=1,2,.N (V.8)

Using the linearity property of the inner product, (V.8) can also be written as

ian<wm LS (0)) = (w,,, g(x)) form=1,2,..N (V.9

This set of equations can be written in the matrix form as

12, e, 1= 17,.] (V.10)
where Z,, = <wm,Lfn> and V, = <wm, g>. Z is called the MoM matrix and V' is

caled the excitation vector. When the basis and the testing functions are same,
the method is called as Galerkin’s method (the method used in our analysis of
mutual coupling).

V.2 Mutual Coupling Between Two Narrow Strips

For the analysis of the mutual coupling between two narrow strips on a

multilayer cylinder, a structure which is given in Figure V.1 is used.
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Figure V.1 A 3-layer structure with Region 0: PEC, Region 1: &, =23, p_ =1, Region 2:

free space, the first and second strips on p =a, are placed at ¢; and ¢,, respectively.

According to MoM procedure, one starts with the boundary condition that the

total tangential electric field on the conductor is zero,

iix E =0 on a strip. (V.11)
Then the total electric fieldis, £ =E° + E', where E' is the field generated by
a known probe current density J “and E° is the field generated by an unknown
induced current J " that is to be determined.

Ax(E'+E")=0 (V.12)

The unit normal to the surface is denoted by 7 which is @, for this problem.

Knowing that £' =G " *J and E' =G " *J”, (V.12) can be written as
Ax(GE*J )y =—ax(GE*J") (V.13)

where * denotes convolution, J' is the known current density and J" is the total

surface current density on the narrow strips that is to be determined.

According to MoM, the total surface current density J' can be expressed

interms of N subsectional basis functions as
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~I

' = Zanljnl + ZzarﬂjnZ (V14)

nl

where J, is basis function of the first strip, J,;; is the basis function of the second
strip.
Hence, putting the total surface current density J" in (5.4) into (5.3) gives

Sa (G +J )+Ya (G *T )=—G"+J") (V.15)

n2

Testing (V.15) with the testing functions J,,; and J,;,, gives equations with inner

product terms such as

DURCARGENAED (7,.G"+7,)=~7,,G"+J") (V.16)
S, (7nG" *T)+ e, (7,6 T ) =~7,,.G" +T") (V.17)

Since the strips are narrow, the basis and testing functions of each strip J, and J,,

are selected as rooftop functions shown in Figure V.2

Lh[(l—n)hﬁz] (n—Dh. <z<nh, J|<=
J,(z,0) = . (V.18)

L ta—wyh 4 2] b <z<@mevn i<V
wh, 2

where w is the width of each strip.

S /80,

e

Figure V.2 Rooftop functions
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For the spatial domain MoM formulation, the typical matrix equation can be

formed by using (V.16) and (V.17)

(&2 (G T o) [T,
(7,0:G"#7,) (7,0, G 5 ,) | a2 |7,,,G ) |

where mi,n; =1,..N, i=1,2 , * denotes convolution, J " is taken as a delta gap

source, J,,, J,, andJ,,, J,, are testing and basis functions of the first strip and

ml >
the second strip, respectively.

The matrix entries in (V.19) can be written in the following form
Z,,=[[ dzdl J,.(z1)([ dz'dl' Giz=2,1-1) T, .(2.1") (V.20)
where [ and [ are the “arc length” variables which are given as [ = a,¢ and
I'=a¢.
Galerkin’s procedure is employed in the mutual coupling analysis with the

selection of testing function J, and basis function J, of each strip same. This

choice results in a symmetric matrix, hence considerably reduces the
computation time of Z,,,. Once a proper column or row is calculated, since the
matrix entries are the same whenever |[m-nj=s, where m is the row and n is the
column number, the entire matrix is filled. If N basis functions are employed,
even though the dimension of the resulting matrix is NxN, the number of
calculated matrix entry is only N.

By changing of variables wu=z-z'and v=/-/', (V.20) can be written as
Z,, =|[dzdl [[dudv GZ(u,v) J,.(z.1) J,.(z—u,l - V) (V.21)

Rooftop functions, which are triangular in longitudinal direction and uniform in
the transverse direction are suitable for our mutual coupling analysis. Selecting
rooftop functions for the testing and the basis functions, reduces the quadruple
integrals in (V.21) to two dimensional integrals (z and v integration) by carrying
out the convolutional integral over testing and basis functions analytically,
therefore this selection also reduces the computational time of Z,, as a

consequence of getting rid of numerically integration of two dimensional
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convolutional integral. The analytical evaluation of this convolutional integral is
given in Appendix C.

Putting the closed-form of G, [26] given in (V.22) into (V.21), (V.23) is
obtained,

—Jjk.(z=2"

| o
GE(uv) :Z_J'dkz e > G (p=p'k)e (V.22)
T k

=[[ dzat [[ duav {21n [ dk, e‘f"z“‘z')(ZG" k@~ ¢))}sz(z 0 J, (z—u,l-v)(V.23)

Expressing the current density J,, by a rooftop function, i.e., a Triangular

function in z direction and a Pulse function in ¢ direction, i.e. J,_=T (z) P (/) and

changing the order of integrals, (V.24) is obtained,
Z,,= || dudv {27Z [k, e I G‘ ék(“’“’”)} [al 2O P 0-)[dz T Tz—w) (V.24)

While calculating Zy, in (V.24), an integral subroutine in MATLAB® called
Gaussian Quadrature is used for the numerical integration.

For the calculation of (V.24), a hybrid method is used, depending on whether
@ is close to ¢ or not. If ¢ is not close to ¢ the closed-form Green’s functions
are employed. When ¢ is close to ¢, since the spectral-domain Green’s
functions do not converge, (¢ - ¢) difference term is handled with the
convolutional integral in the spectral-domain in the calculation of MoM matrix
element Z,,.

To be more explanatory, the last integral in (V.24), which is a convolution
integral, is evaluated analytically. For the rest of the calculation of the matrix
entry Zmn, @ hybrid method is used:

-when ¢ is not close to ¢, the ¢ integration and the closed-form of G,, are
evaluated independently;

-when ¢ is close to ¢, (V.25) is obtained from (V.24) and used for the
calculation for the matrix entry Z,, such as: first, Pulse functions are integrated
giving an analytical result interms of v, then the multiplication of this analytical

Jkv

term with e’ is used as an integrand in v integration, at the last step, the

spectral domain k; integral is calculated in closed-form.
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1 —jk_u -
Z=] du{zﬁf k& {3 [av Pw(z)P,@(z—v))}}{f dz T, Tz (V.25)

V.3 Mutual Coupling Between Two Narrow Slots

&
"""-—_.,E Tegion Iy Region 1) Region 2
#
é#
FPEC
[l vl
Fee pave
"a a P

\'H..._______ _______..-"'

Figure V.3 A 3-layer structure with Region O: £, =2, H, =1, Region 1: £,=5 U1, =1, Region

2: free space.

Each aperture in Figure V.3 can be closed and then replaced by an equivalent

magnetic surface current density J” by using the equivalence principle. When

the field in a region of space is interested, there is no need to know the actual
sources. Since many source distributions outside a given region can produce the
same field inside the region, equivalent sources will serve as well. Figure V.4
represents two figures of which the left problem is the original problem, the right
one is the equivalent problem. The original figure represents a source internal to

S and free space external to S. The equivalent problem can be set as follows: Let
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there exists the null field internal to S and the original field exists external to S.
To support this field, there must exist J, and M on S.

J, =ixH M, =Exn
where E and H are the original fields over S. From the uniqueness theorem we

know that the field calculated will be the originally postulated field.

o n e n
EH  / L EH i

/ EH X / \

\ \

l I

\S‘Mél ! \ zero field , L <
\ ATV /

P

\
St ;h///m

Figure V.4  Equivalence Principle

A cylindrical 3-layer medium with two narrow slots placed on p =a; is given in

Figure V.3. For this geometry, the aperture (slot) is closed and represented by an
equivalent magnetic-current distribution J” by using the equivalence principle.

Since the tangential electric field across the slot can be represented by the equivalent

magnetic-current distribution
J"=Exi=Exa, (V.26)
The unit normal to the surface is denoted by 7 which is @, for this problem.

The equivalent magnetic-current distributions inside and outside of PEC can be

written as
For p>a,, J), =Exa,=E,,xa,=-E,. (V.27)
For p<a,, J)' =Ex(-a,)=E,a,x(-4,)=E,a, (V.28)
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#  PEC

Figure V.5 Equivalent magnetic current distributions on each slot

Using the boundary condition that the tangential magnetic field is continous

across the aperture,

H'(J"Y=H" (" )+J.6(z—d) at p=a,. (V.29)

out

where J, is the known probe current density at z =d.

Knowing that H" =G TxJ " andH™ =G TxJ ", (V.29) can be written as
(Gzz *J7 )=(Gzz *J7 )+J5(z—d) at p=a,. (V.30)

Here, G, is the magnetic type Green’s function in z direction due to z-oriented
magnetic current source.

According to MoM, the total surface current density ./, can be expressed

interms of N subsectional basis functions as

Jg ==J; = Zl:anlJnl + zzzaannz (V.31)
where J,; 1s basis function of the first slot, J,,» is the basis function of the second
slot.
Since the slots are narrow, the basis and testing functions of each slot J, and J,

are selected as rooftop functions such that
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L fa=mh 2] =1, <z<nh, Y <=
wh, 2
J_(z,]) = (V.32)

—[a=mh, +z] nh, <z<m+Dh, <=
wh

z

where w is the width of each slot.

Hence, putting the total surface current density J, in (V.31) into (V.30) gives

—H —H — —H —H — —
20,(G +Gp V6T, +30,,(G,, G, )#J, =J,5(z-d)  (V.33)
nl n2 mn

ZZOUt

Testing (V.33) with the testing functions J,,; and J,, gives equations with inner

product terms such as

— J— J— — — —H —H —
leanl <Jm1,(GZHZm +GZHZout)*Jﬂl>+Zzla)12<Jml’(GZZm +Gzzom)*‘]n2> < J 1, J,0(z— )>
(V.34)

leanl<imz,((72”zm +EZHZM)*J,,1>+Z2;a < n2,(G szt)*jﬂ> (72, J,6(z—d))
(V.35)

For the spatial domain MoM formulation, the typical matrix equation can be

formed by using (V.34) and (V.35)

(7,0 (Goz +Goz )#J,) (1,1, +Ge V%) H F J . 8(z—d)

(V.36)
(T Gz +G V5T) (7,0 (Glz +Glz )#J,.) (Jor ] 0z = d)J

an2

where m;,n; =1,..N, i=1,2, * denotes convolution, .75 is taken as a delta gap

source, J

ml >

J,, andJ,,, J,, are testing and basis functions of the first slot and

nl

the second slot, respectively.

The matrix entries in (V.36) can be written in the following form
Z,=[[ dzdl ], D[ d2'dg' GLL(z—2,1-1") J,.(=",1") (V.37)

In this application, the matrix entries Z,,, given in (V.37) are evaluated using the

same procedure applied in (V.20)-( V.25).
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V.4 Mutual Impedance and Coupling Coefficient of Two Current Elements

Ly I,
_’— _<—
p
" Vi Z \'%%) "

Figure V.6 Definitions of two-port parameters

Based on the two-port configuration given in Figure V.6, we can write [44],

V,=Zh1, + 751,

Zi=2  zh=t
111,=0 2ln=0 (V.39)
Zr =2 4 _E
22 I =21
2 ;=0 1 1,=0

Z| is the input impedance of element one (element two open-circuited), can be

written as
1 1
p —J,E ).J,;)dv

. (1,)

where E) is the total electric field at port one (port two open) due to impressed

(V.40)

current density J ,S) at port one with a terminal current 7, =1A. Using (V.41)
gives (V.42)

V =-lids,J, E' (V.41)

S

n
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zh =31y (V.42)
n=1
where I, are the expansion mode coefficients found from [Z][I]=[V] equation.

V' are the induced voltages at port one due to current modes J, in both

patches.

The mutual impedance between ports one and two Z,, can be written as

, —LEVJIPay

P = . V.43
@) (V.43)

where E is the total electric field at port two, induced by impressed current

density J S) at port one (port two open) and J;f) is an impressed current source

at port two, with impressed sources have terminal currents 7, =1A. Again, using
(V.41) gives
zh =S y® (V.44)
n=l1

where Vn(z) are the induced voltages at port two due to current modes J, in both

patches.
As a result of reciprocity theorem, ZJ = Z[.

The input impedance for a single strip can be calculated using (V.42) with
replacing 2N by N, since the second antenna is not present.

Another way of calculating the mutual impedance is given by [45]
Zay = dsiJy () ([1ds G (7,75) 7 5(72)) (V.45)
1 2

The coupling coefficient matrix S can be defined as [46],[47],[48]

q_ S S (7 7 \X7.7 )
S{Sm Szj_(z Z)z+Z,) (V.46)

Hence it can be written as,
-1
§ — |:Sll S12j| — (|:le ZlZi| _ |:ZO O :DU:ZII ZlZi| + |:ZO O :|] ( V47)
S21 S22 ZZI 222 O ZO ZZI 222 0 ZO
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After some manipulations, the mutual coupling coefficient S;; can be found as
[49]

B 27,7,
(le + Zo)(Zzz + Zo) - lezzl

(V.48)

S21

where Z is the characteristic impedance of the feeding coax which is assumed to

be 50Q.

V.5 Numerical Results

In this section, numerical results in the form of mutual coupling between two
narrow strips and between two narrow slots placed on a cylindrically layered
medium using MoM incorporation with the closed-form Green’s functions is
presented. The current distributions on each printed element and the mutual
impedance and the mutual coupling coefficient results are provided. Mutual
impedance and mutual coupling coefficient results are also provided for both
strip and slot example to demonstrate the use of both electric and magnetic type
Green’s functions in cylindrically layered media. Besides, to assess the accuracy
of the method developed in this thesis, the obtained results for the mutual
coupling between two narrow strips are compared with an eigenfunction solution

given by [50].

V.5.1 Mutual Coupling Between Two Narrow Strips

Mutual coupling between two z-directed narrow strips placed on a multilayer
cylindrical geometry presented in Figure V.7 is evaluated using the procedure
discussed in Section V.2. The innermost layer is perfect electric conductor
(PEC), the radius of the cylinder is a; and the thickness of the dielectric coating
is ty (hence a; = ap* ty ). The first and second narrow strip on p =a; are placed at
@ =¢ and ¢ =@, respectively. Each narrow strip a length as L= Ay/2 and width as
w=0.025 XA . The excitation is done by a probe on the first strip with different

feed locations. Figure V.8 and Figure V.9 show the magnitude of the current
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Magnitude of
Current Distribution (A/cm)

distributions on the first strip and the second strip, respectively, for different feed

positions, when (¢; - ¢#,)=n/24 radians.

-

—
T =¢
=
diclectric) frec space
w P
dg R
Fegon | Region
| .
T I__-.- -
__.——'"""-#

Figure V.7 A 3-layer structure with Region 0: PEC, Region 1: &, =23, p =1, Region 2: free

space, a;=20mm, a;=21mm, f=4.7GHz, the first and second strip on p=a, are placed at ¢=¢,

and ¢= ¢y, respectively.

96 :
zf1 =5X/20
84 L zf2 =4%/20 N
z£3 =314/20
72 F 2f4 =2%,/20 -
2f5= %/20
60 - /\ _
48 - -
36 .
24 .
12 1 .
0 0 0.0bS Ol.Ol 0.615 O.I()2 0.025 0.03 0.035
z(cm)

Figure V.8 The magnitude of the electric current distribution on the first strip, L= Ao/2,

w=0.025 Ao, (¢; - ¢r)=n/24 radians, for different feed positions, where zfi is the i’th feed location
of the first strip.
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Magnitude of
Current Distribution (A/cm)

1 . . . . .
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zf2 =4)/20
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0.8 \ 24 =224/20
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0.4 -
0.2} \ .
0 1 1 1 1 1
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035
z(cm)

Figure V.9 The magnitude of the electric current distribution on the second strip, L= A¢/2,
w=0.025 Ao, (@; - ¢2)=m/24 radians, for different feed positions, where zfi is the i’th feed location
of the first strip.

For the validity of the proposed method in Section V.2, the results given in [50]
which uses eigenfunction solution are reproduced. These results with the
proposed ones together are shown in Figure V.10-Figure V.12. The structure
given in Figure V.7 is used, each strip having A(/2 length and 0.002 A, width, the

dielectric constant &, =2.

The mutual impedance Z,; is calculated using the equation given by (V.45)
Zy = gdsljl (’i)(ydsza(’a afz)jz(Fz))
1 2
and the mutual coupling coefficient S, is evaluated using (V.48)

B 27,7,
(Zn+Z N2y +Z))-2,,Z,,

SZl

where Z is the characteristic impedance of the feeding coax which is assumed to
be 50Q.

Figure.V.10 shows the mutual impedance Z,; between two z-directed narrow
strips versus S, when frequency f is 4.7 GHz and the outer cylinder radius a, is
0.5 Ao, dielectric thickness t, is 0.06 A9 S, is the angular spacing between two z-

directed strips with respect to free-space wavelength A.
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Figure V.11 shows the mutual impedance Z,; between two z-directed narrow
strips versus S, when frequency f is 4.7 GHz and the outer cylinder radius a; is
0.3 Ao, dielectric thickness ty, is 0.06 Ay . Figure V.12 shows the mutual impedance
71 between two z-directed narrow strips versus S, when frequency f is 2 GHz

and the outer cylinder radius a, is 0.5 A, dielectric thickness t is 0.06 Ao It is

clearly seen that the results for eigenfunction solution [50] and the proposed

method in this paper are in good agreement with each other.
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Figure V.10 Real and Imaginary parts of the mutual impedance Z,, between two z-directed

narrow strips versus separation when f=4.7 GHz, a;=0.5 .
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Figure V.11 Real and Imaginary parts of the mutual impedance Z,, between two z-directed

narrow strips versus separation, when f=4.7 GHz, a;=0.3 A,.
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Figure V.12 Real and Imaginary parts of the mutual impedance Z;, between two z-directed

narrow strips versus separation when f=2 GHz, a,;=0.5 A,.

Mutual coupling between two z-directed narrow strips on a cylindrical 3-layer
medium given in Figure V.7 is evaluated using the method discussed in Section
V.2. The excitation is done by a probe. Each strip has X¢/2 length and 0.04 A
width.

Figure V.13 and Figure V.14 show the mutual impedance Z,, and the mutual
coupling coefficient S;; of two z-directed narrow strips versus the angular

spacing Se when f=4.7 GHz, ¢, =2.3.

|Z21/dB

28 1 1 1
0.15 0z 0.25 03 0.35 0.4

Sel Ao

Figure V.13 Mutual impedance Z,; for H-plane coupling case of two z-directed narrow strips at f=4.7

GHz, a;2=20mm, a;=21mm, g, =2.3, L=h/2.
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Figure V.14 Mutual coupling coefficient S,; for H-plane coupling case of two z-directed
narrow strips at f=4.7 GHz, a,=20mm, a,;=21mm, g, =2.3, L=A/2.

V.5.2 Mutual Coupling Between Two Narrow Slots

Mutual coupling between two narrow slots placed on a multilayer cylindrical

geometry presented in Figure V.15 is evaluated using the procedure discussed in
Section V.3.

z

.
“'""'—_.,E e Ih Region T Region 2

@
&
FEC
[l r g
Fee pave
"a, a, S0

- -

Figure V.15 A 3-layer structure with Region 0: g, =5, H, =1 Region 1: g, =2, u =1, Region
2: free space, ag=20mm, a;= 21mm, =2 GHz.
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Magnitude of
Current Distribution (V/cm)

Magnitude of
Current Distribution (V/cm)

For this application, the first and second narrow slot on p =a; are placed at ¢ =¢;
and ¢ =¢, respectively. The excitation is done by a coax on the first slot with
different feed locations. Each slot has a length as L=A/2 and width as w=0.025
Ao. Figure V.16 and Figure V.17 show the current distributions on the first slot

and the second slot, respectively.

44 :
40 L 2f1 =50/20 -
36| S
2|
28} -
24} i
20 -
16 -
12+ -
ok _
09 0.01 0.02  0.03 0.04 005 006 007 008

z(cm)

Figure V.16 The magnetic current distribution on the first slot for different feed locations when
(¢ - ¢)=n/48, where zfi is the i’th feed location of the first slot.

1.2
zf1 =5)/20
1F 22 =40/20 |
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08F 2f5=10/20 .
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0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
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Figure V.17 The magnetic current distribution on the second slot for different feed locations
when (¢, - ¢)=1/48, where zfi is the i’th feed location of the first slot.
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Mutual coupling between two z-directed narrow slots on a cylindrical statified
media given in Figure V.15 is evaluated using the method discussed in Section
V.3. The geometry in Figure V.18 is used for the mutual coupling evaluation.
The excitation is done by a coax. Each slot has length as L=A¢/2 and width as
w=0.042, .

z PEC
/i ;
. z
AT AN
i AZ\V—;—

Li |12 |4
e 9
: Z1 +->
Y% .

<> J 7o
W
- >
w

Figure V.18 Geometry used for mutual coupling between two z-directed narrow slots

Figure V.19 and Figure V.20 show the mutual impedance Z,; of two z-directed
narrow slots versus the angular spacing Sy, for Az=0 (the slots are parallel in z

direction) and Az=M¢/4 values when [ =2 GHz, ¢, =2 and ¢, =5.
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Figure V.19 Mutual impedance Z,, for H-plane coupling case of two z-directed narrow slots
at f=2 GHz, a)=20mm, a,=21mm, Az =0 , &, =2, &, =5, L=\o/2.

|Z,1|dB

1 1 1
01 0.15 02 0.25 0.3 0.35 0.4
Sl Ao

Figure V.20 Mutual impedance Z,, for H-plane coupling case of two z-directed narrow slots

at f=2 GHz, a;=20mm, a,=21mm, Az=1,14, &, :2’8r1 =5, L=Ao/2.

Figure V.21 and Figure V.22 show the mutual coupling coefficient S,; of two z-
directed narrow slots versus the angular spacing S, for Az=0 (the slots are

parallel in z direction) and Az =A¢/4 values when f =2 GHz, ¢, =2 and ¢, =5.
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Figure V.21 Mutual coupling coefficient S, for H-plane coupling case of two z-directed
narrow slots at /=2 GHz, a,=20mm, a,=21mm, Az =0 , £, =2, g, =5, L=\o/2.

|S21[*dB

1 1
2 0.25 0.3 0.35 0.4
Sol Ao

1
0.1 0.1a 0

Figure V.22 Mutual coupling coefficient S,; for H-plane coupling case of two z-directed
narrow slots at /=2 GHz, a,=20mm, a,=21mm, Az = 4, /4 , g, =2, &, =5, L=\o/2.
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CHAPTER VI

CONCLUSION

Under the scope of this thesis, numerically efficient analysis and design of
conformal printed structures in cyindrically layered media using closed-form
Green’s functions is investigated. For this purpose the spectral domain Green’s
functions which were reported in the previously published work [26] were
derived from the beginning. Then a code is reproduced in MATLAB® to obtain

the spatial domain Green’s functions of the electric and magnetic fields due to

¢ and z oriented electric and magnetic sources as [26]. The generated code

computes the spatial domain closed-forms of GG C}f@f for an electric and a

magnetic dipole pointing in z direction, the spatial domain closed-forms of

GG GE

5 Gy G 5;; for an electric and a magnetic dipole pointing in ¢ direction.

They are found to be in good agreement with those given in [26]. The remaining
spatial domain Green’s function components which are not provided in [26], the

spatial domain closed-forms of p directed spectral domain Green’s functions of

electric and magnetic fields 555;’ for an electric and a magnetic dipole
pointing in z direction, 5;,5;; for an electric and a magnetic dipole pointing in

¢ direction were also derived analytically and evaluated by the generated code.

Therefore for ¢ and z oriented electric and magnetic sources the complete set is

obtained.
The remaining spatial domain Green’s function components which are not

given in [26], the spatial domain closed-forms of z, ¢ and p directed spectral

: ’ ; ; in fi ~E ~H E ~H o oF
domain Green’s functions of electric and magnetic fields, G, G.,.G,,.G,,.G,,

~H
GPP
for both electric and magnetic dipole sources pointing in o direction were

derived analytically and evaluated by the generated code. Therefore, the

complete set of spatial domain dyadic Green’s function components has been
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obtained and is evaluated by the generated code. A new code is generated for the
numerical integration to compare the exact and the approximate closed-form

Green’s functions.
The closed-form Green’s functions when p= p are calculated using a

similar procedure reported in a recently published work [27] and some results are

presented for different closed-form Green’s functions. To assess the accuracy of
the procedure, for small (¢—¢ ) values, the exact and different closed-form

spatial-domain Green’s function components of electric and magnetic fields due
to different oriented electric and magnetic dipole sources are plotted together
and it is observed that they are in good agreement.

In addition, a computationally efficient hybrid method is presented in
conjunction with method of moments (MoM) technique which analyzes the
mutual coupling between electric/magnetic current elements placed on a

cylindrically layered medium. The hybrid method depends on the angular

distance (¢ — ¢ ) between the source and the observation point. If ¢ is not close
to ¢ the closed-form Green’s functions are directly employed. Otherwise, the

angular difference term (¢ —¢') is handled with the convolutional integral in the

spectral-domain in the calculation of MoM matrix element Zy,. Employing
Galerkin’s procedure and selecting testing and basis functions which allows to
carry out the convolutional integral between the current elements analytically
reduces the computational time of the matrix element Z,,. Mutual impedance
and mutual coupling coefficient results are also provided for printed electric and
magnetic current elements to demonstrate the use of both electric and magnetic
type Green’s functions in cylindrically layered media. Besides, to assess the
accuracy of the method developed in this thesis, the results obtained for the
mutual coupling between two narrow electric current elements are compared
with an eigenfunction solution given by [50]. It is clearly observed that the
results for eigenfunction solution [50] and the presented method in this thesis are
in good agreement with each other. The analysis and design of microstrip
structures mounted on conformal structures that are extensively used in aircraft,

spacecraft and mobile communication applications, where low cost, leight
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weight and direct integrability with other devices are important, become easier
by the hybrid method. Using the proposed hybrid method in conjunction with
MoM technique, the analysis of multilayer coupling geometries such as slot-
coupled microstrip patch antennas and slot antenna with microstrip feeding can
be research topics for further studies.

In the scope of the study of surface wave contribution in cylindrically
stratified media, the effect of the surface wave poles and the selection of the
deformed path parameters are studied. When the deformed path parameters are
selected in such a way that the deformed path passes close to the surface wave
poles, it is observed that the spectral Green’s functions hence the spatial domain
Green’s functions deteriorate. This deterioration is overcome by removing the
surface wave poles from the spectral domain Green’s functions and adding their
contributions in the spatial domain. When a proper deformed path is used in
evaluation of spatial-domain Green’s functions, it is observed that removing the
surface wave contributions from spectral-domain Green’s functions does not
give an extra benefit. Hence regarding our research, unlike planar layered
medium, it is not a critical issue to remove the surface wave contributions from
the spectral-domain Green’s functions if a proper deformed path is used.

As a concluding remark, for future study, developing of the appropriate form

of the spectral domain Green’s functions which will be well behaved for
(p=¢) when p=p is recommended. In that case, there may be no need to
use the proposed hybrid method. Hence, the calculation of MoM matrix

elements will be evaluated in closed-form for all possible |,5 —p'| values.
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APPENDIX A

GENERALIZED PENCIL OF FUNCTION METHOD

The generalized pencil of function method (GPOF) [36] is used to
approximate the spectral domain Green’s functions with complex exponentials.
Since this method is an important step in approximating the spectral domain
Green’s functions, it is given in this appendix.

The Prony Method and its variants can be used to extract the poles [51],[52]
of a EM system. The pencil of function (POF) method [53] is an alternative
method to the Prony method to find the system poles. In POF, the poles are
found from the solution of a generalized eigenvalue problem, whereas the Prony
method contains two step process where the first step involves the solution of a
matrix equation and the second step involves finding roots of a polynomial. The
generalized pencil of function method is a generalization to the POF method and
it is used to estimate the poles of EM system from its transient response [36].
The GPOF method is more robust and less noise sensitive compared to the
Prony method.

An EM transient signal with the samples y, can be approximated as

M M
Y= he"" =2 hy k=01,....,N-1 (A1)
=) =)

where b, are the complex residues, s; are the complex poles and & is the

sampling interval. The method can be given as follows

1. The following matrices are constructed,
Yy =[Vo, Vi Yl (A2)

Y, = [V, Vpreeren Y, ] (A3)

where
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Yi = [yu Vit s 7i+N—L—l]T (A4)
L is the pencil parameter and its optimal choice is around L=N/2 [36].

2. Finda Z matrix as

VDU " =svD(Y,) (A.5)

where V', D" and U™ are (N-L)x(N-L), (N-L)xL and LxL matrices.

SVD(.) is the singular value decomposition process and the subscript H is
the complex conjugate transpose of a matrix. The Z matrix is
Z=D'U"YV (A.6)
3. The poles of the system are obtained as

s =19% yo M (A7)
&

where z;’s are the eigenvalues of the Z matrix.

4. The residues are found from the least-squares solution of the following

system.
11 1 b ] [y, |
Z, Z, .. Iy |b, A
= (A.8)
2tz Lzt by [ Y
or
AB=Y (A.9)

so the b;’s are found by using the pseudo-inverse of the A matrix as
B=A"Y.
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APPENDIX B

SPECTRAL-DOMAIN GREEN’S FUNCTION COMPONENTS

For the sake of completeness, the complete-set of spectral-domain Green’s
functions are given as a reference. Among the spectral-domain Green’s functions
listed below, (B.1)-(B.4), (B.7)-(B.10), (B.19)-(B.22), (B.25)-(B.28) are given in
[26]. The remaining spectral-domain Green’s functions (B.11)-(B.18), (B.23),
(B.24), (B.29)-(B.33), (B.36) are given in [54] as corrections.

z-oriented electric dipole :

GzF;n =L f11 (B-l)
j

_ 2

G, =L far (B.2)
j

~ k? i oL

G;Zn _ A nzkz f11+ Ja)z,u| a1:21) (B.3)
8] kPi kPi ap

~ k. joe, of nk

Gz" _i(_ k2 : all k2 - f21) (B.4)
gJ Pi P Pip

_ k2 . .

G/'fzn :i(_ szz oy + wfun ) (B.5)
gJ kPi ap kpi

~n ki wenf k, of

Gszn =2 (- S ey (B.6)
gJ kPi kPi 6’0
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g-oriented electric dipole :

éZE;ﬁn - nkz' fiy %
% op
éz‘:ﬁn: kz f—jo—2
% ap
~ nk, n Jou of o ,n Jou o
Gy =— (z_kZ fiy + 2M = _-(z_kZ fiy +—2M£
gip Kip k? 0 dp k.p k,, dp
~ n jog o, n .0, Jog o, nk
G¢H¢ = kz( Jz = zkz f)—jo—( 2 = 2 f2)
gp ki op Kk 0 ki, oo kip
~ nk, k, of,, oun .0, Jk, o, wun
G,E;_ ' J2 = ,2‘4’1 f,)— jo—( 2 - ,2L€ f,)
gp k., op Kk d k, op K.p
w nk, . wsgn Jk, Ay . 6 @5N jk, of,,
Gy =" 75 ( f, — 2
gp ki k, 0 p k., dp
p -oriented electric dipole :
~ jk, of,, now
GZI,E;:(J_i _flz)
£ 0p p
~ ik, jk, of
&5 - (Z”(‘ T D04 )+ jouy L (e Do Do
g op 8 g 0 p
~ 1 jk, of,, n ony; , jk, of nw
GpEpn =, (J — _wflz) ad (J 2 _-fzz))
k., 8p g op p p & op p
é’;_&% n_‘f’fzz
& o p
~ 1 jk, of,;, n k,n jk, of,, nw
G¢in w2 | i (J o _wf12) J_i +— fy)
K., £ op  p p & Op p
1, nowg jk o, no 0k oy ne
GH =77 ( L+ _flz) Z _fzz))
k, » ap p ap g op
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(B8)

(B9)

(B.10)

(B1)

(B.12)

(B.13)

(B.14)

(B.15)

(B.16)

(B.17)

(B.18)



z-oriented magnetic dipole :

G =11, (B.19)
H;

~ K2

G =11, (B.20)
H;j

_ k2 . .

GE = (Mo g, 0 O (B.21)
p; K2 k2 op

~ k? joe, of nk

Ghr =296 Ty T ¢y (B.22)

# k2 op kip *
’uJ Pi '0 Pi

~. kKo jk, of, wwn

Go = (- Ll DA ) (B.23)
ll’lj kp ap pkp

- k2. _ - .

G;n __ i az)gln - szz a1:22) (824)
Hj kp kpi op

g-oriented magnetic dipole :

G5 - joou+ " i, (829
g up

= ., N

Gzl;n =jo—= —kz f2 (B29
o P

~ . 0 ,n jou of n n jou of

G, = jo—( Zkz f, J 2’“ —2)y kz, Zkz f,H J 2’“ 22y (B27)
op kyp Tk, T opp Kp Tk Op

— . 0, Jogd, n n jowg o, n

G¢H¢n =Jo_—( 2‘2 — zkZ 21) kz ( zﬁ —= zkz 22) (B29
op kp, op kplp H;p kp. ap kplp

~ . 0, jk &, wun nk, , jk &, wun

GE;;:JCG '( J2 i+ ;L{ f21)+ kz-( JZ ii 2/“{ f22) (829)
ok, do K,p wp Koop Kp

~y . 0 , ogn jk, of n @&N jk, of

G;L; =Jo ( f fll Jg i)-i_ kZ( 26{ f12 JZ 22) (83(»
- kp T koo owp kp Tk dp
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p -oriented magnetic dipole :

nw JK, 8f12

Gy = v 520
P p J
1 k,n, no jk, of . 0, nw jk, of
s Lk ne fn+J L2y 4 oy — (<221, + )
ki o p Ky Op ap p 4 0
1 0, Nw jk, of OUN . Nw jK, 8f
GEn =_2 _ _(__‘ f11+'l l%)_i_ 4 ( : .I: J 22))
k2" "Top p M op- p o p ﬂ,
I i
J
~ ik, af jk, of
Gt = ( ch‘?—(—— fy 2yt )
P Hi G ,0 P 4 0
~ Nwe, ik, af Ik, Of
G =t (1A ey ) -k —( 0%, + )
k, o »p K 0 p K O
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APPENDIX C

CONVOLUTION OF TESTING AND BASIS FUNCTIONS

The basis and testing functions of each current element J, and Ji, are selected as

rooftop functions

1 w

—[(1-n)h ~Dh,<z<nh, <%

th[( mh, +z] (n-Dh, <z<nh, , 5
Ja(z) = .

—[d-mh, +z] nh,<z<m+Dh, <Y

wh, 2

where W is the width of each current element.

S/,

e

Figure C.1 Rooftop functions

e The convolution C, of the first testing function and the first basis

function is calculated as

Cl = ‘J_ml *J nl
T1L=(m- 1 )hZ‘Hl B1L=(n- 1 )hz
Tic=m h,+u Bic=nh,
Tiy=(m+1)h,+u Biu=(n+1)h,
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T,L indicates the left part of the first testing function,
TR indicates the right part of the first testing function,
B, L indicates the left part of the first basis function,

B/R indicates the right part of the first basis function.

- i i

- i ~ i

e H 5 H
- 1 Y !

2 1 ~ 1 ,
- 1 i hS
i i
i i
i i
i |l

1

Tio Tic Bi Tiwv Bic Biu

Figure C.2 Evaluation of Cy;

Ty
C,=1=|TR.BLdz

B1L

Tio BiL Tic Bic T Biu

Figure C.3 Evaluation of C;,

TIC BIC TIU
Cho=l,+l;+1,= [TL.BLdz+ [TR.BLdz+ [TR.BRdz
B Tic Bic
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Bir Tio Bic Tic By T

Figure C.4 Evaluation of C;

Bic Tic By
Ch=ls+l,+1,= [TL.BLdz+ [TL.BRdz+ [T,R.BRdz (C.3)
Tio Bic Tic

BiL Bic Ti By Tic T:IU

Figure C.5 Evaluation of C 4

C,=Ilg=[TL.BRdz (C.4)

The convolution C, = J, *J,, is the sum of the integrals evaluated in four

regions, therefore

Cl = C11 +C12 +Cl3 +C14
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The results of each type of integrals are given as follows

Z;'TTIR Bl|_ dz— (W;Z)z { Z, ;21 +Zz ;Zl [U+(m+n)hz]+(22 —zl)[u+(1+m)hz ][(l—n)hz ]}

[TL.BL dz= (W:DZ {ZZ_Z‘ 2t [—u+(2—m—n)hz]+(zz—z1>[—u+(1—m)m[<1—n>m}

7

ZJ%TIR.BIR dz:( :1)2 {ZZ_ZI ZZ;I [u+(2+m+n)hz]+(z2—zl)[u+(1+m)hz][(1+n)hz]}
7 W

TTIL. BR dz:(\mln2 { 5 ;Zl B ;Z‘ [u+m+mh, ]+(z, —2, f-u+(1-mh, ][(1+n)hz]}

(C.5)

e The convolution C, of the first testing function and the second basis

function is calculated as C, therefore only the results are given.

C,= J, m ¥ Jna
T1L=(m- 1 )hZ‘Hl BZL:(II- 1 ) h,+Az
Tic=m h,+u Boc=n h,+Az
T1U=(m+ 1 ) hZ+u BZU:(I’H‘ 1 ) hZ+AZ

The convolution C, = J_, *J_, is the sum of the integrals evaluated in four

regions. The results of each type of integrals are given as follows,

ZTR.BLdz:
I ’ (wh,)”

{_ Z, ;21 +Zz ;Zl [U+Az+(m+n)hz]+(zz—Zl)[u+(l+m)hz][—AZ+(1—n)hz]}
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[T.L.B,L dz= 1 >
Z (th)

{22;; M ;Zl [_u_m(z_m—n)hz]ﬂzz—zl>[—u+(1—m>hz][—AHG—”)“Z]}

[T,R.B,R dz= 1 .
7 (th)

{Zzgzl -aoa [u+Az+(2+m+n)hz]+(Zz—21)[U+(1+m)hz][AZ+(l+n)hz]}

[T.L.B,R dz= 1 -
Z (th)

{_ Z, ;Z] + Z, ;Z1 [u+AZ+(m+n)hz]+(Zz _Zl)[_u+(1—m)hz][Az+(1+n)hz]}

(C.6)

e The convolution C; of the second testing function and the first basis

function is calculated as C, therefore only the results are given.

C, = J, m2 * J, nl
T2L=(l’l’l- 1 )hz+u+AZ B, Lz(l’l- 1 )hz
Trc=m h,tut+Az Bic=nh,
Tou=(m+1)h+utAz Byu=(n+1)h,

The convolution C; = J_, *J , is the sum of the integrals evaluated in four

regions. The results of each type of integrals are given as follows,
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2

[T,R.BL dz= 1
7 (th)

{_ Z ;Zl 1L ;Zl [u+Az+(m+n)h, ]+(z, _21)[u+AZ+(1+m)hz][(1_n)hz]}

[T,L.BL dz= 1 .
7 (th)

{22 ;Zl Wb ;Zl [-u+Az+@2-m-nh, ]+(z, —z)[-u—Az+1-mh,][(1-nh, ]}

j'TzR.Blez:%
Z (th)

{Zz ;Zl 4 ;ZI [u+AZ+(m+n+2)hz]+(zz —Zl)[U+N+(1+m)hz][(l+n)hz]}

[T,L.BRdz= ! .
7 (th)

{_ 22;21 L2 ;ZI [u+Az+(m+n)hZ]+(22—Zl)[—U—AZ+(1—m)hz][(1+”)hz]}

(C.7)

e The convolution C,4 of the second testing function and the second basis

function is calculated as C,, therefore only the results are given.

C,=J_,%*J,
Tor=(m-1)h+ut+Az By =(n-1)h,+Az
Trc=m h,tut+Az Byc=n h,+Az
Tru=(m+1)h,+utAz Boy=(n+1)h,+Az

The convolution C, = J_, *J _, is the sum of the integrals evaluated in four

regions. The results of each type of integrals are given as follows,
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[T,R.B,L dz= ! ;
zl (wh,)
-1, 75-1;
{_ 23 Ly 22 ! [u+2Az+(m+n)hZ]+(zz—zl)[u+Az+(1+m)hz][—AZ+(1—n)hz]}

[T,L.B,L dz= 1 -
1 (wh,)
3 3 2 2

{22 —4 + L4 [—U—2A2+(2_m_n)hz]+(zz _21)[_u_AZ"'(I_m)hZ][_Az-i-(l_n)hZ ]}

3 2

[T,R.B,R dz=—

1 (wh,)’

{22 ~h 5 ;Zl [U+2Az+(m+n+2)h, ]+(z, —z)[u+Az+(1+m)h, ] [Az+(1+n)h, ]}

3

[T,L.B,R dz= ! :
2 (wh,)

{_ Z, -1, +Zz ;Zl [u_'_zAz_|_(m_|_n)hz:|_|_(z2 —Zl)[—U—AZ+(1—m)hz][AZ+(1+n)hz]}

(C.8)
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APPENDIX D

NEWTON-RAPHSON METHOD

Newton-Raphson method is based on the principle that if the initial guess
of the root of f(x)=0 is at x;, then if one draws the tangent to the curve at f(x;),
the point x;+1 where the tangent crosses the x-axis is an improved estimate of the
root (Figure D.1).

Using the definition of the slope of a function, at x = x;

fx)== )0 ©o.1)
Xi = Xin
which gives
_, _ f(x)
Xi+l - Xi f'(Xi ) (D2)

Equation (D.2) is called the Newton-Raphson formula for solving nonlinear
equations of the form f(x)=0. So starting with an initial guess, x;, one can find
the next guess, Xi+1, by using equation (D.2). One can repeat this process until
one finds the root within a desirable tolerance. An algorithm can be given to find

the root of an equation with Newton_Raphson method.
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f(x)

£(x;) [Xi, f (Xi )]

f(Xiv)

Xi+2 Xi+1 Xj

Figure D.1 Geometrical illustration of the Newton-Raphson method

Algorithm of Newton-Raphson method

The steps to apply Newton-Raphson method to find the root of an equation
f(x)=0 are:
1. Use an initial guess of the root, x;, to estimate the new value of the root
Xi+1 @S
f(x.
Xig =% - %XI,))

2. Find the absolute relative approximate error, |, |as

X1~ X

x 100

& =

i+1
3. Compare the absolute relative approximate error, |e,| with the pre-
specified relative error tolerance, .. If |ea| >e_, then go to step 1, else

stop the algorithm. Also, check if the number of iterations has exceeded

the maximum number of iterations.
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