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ABSTRACT

IDENTIFICATION OF INERTIA TENSOR OF VEHICLES

Kutluay, Emir
M.S., Department of Mechanical Engineering
Supervisor: Prof. Dr. Y. Samim UNLUSOY

September 2007, 149 Pages

The aim of this thesis is to develop a methodology for obtaining mass
properties of a vehicle using specific test rig. Investigated mass
properties are the mass, location of center of gravity and the inertia
tensor. Accurate measurement of mass properties of vehicles is crucial
for vehicle dynamics research. The test rig consists of a frame on which
the vehicle is fixed and which is suspended from the ceiling of the
laboratory using steel cables. Mass and location of center of gravity are
measured using the data from the test rig in equilibrium position and
basic static equations. Inertia tensor is measured using the data from
dynamical response of the system. For this purpose an identification
routine which employs prediction error method is developed using the
built—in functions from the System Identification Toolbox of MATLAB®.
The experiment was also simulated using Simmechanics Toolbox of
MATLAB®. Identification code is verified using the results of the

experiment simulations for various cases.

Keywords: ldentification, Parameter Estimation, Prediction Error, Inertia

Tensor, Vehicle Dynamics
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0z

ARACLARIN ATALET TENSORLERININ TANILANMASI

Kutluay, Emir
Yuksek Lisans, Makina Muhendisligi Bolumu
Tez Yoneticisi: Prof. Dr. Y. Samim UNLUSOY

Eyliil 2007, 149 Sayfa

Bu calismanin amaci araglarin kitle ozelliklerinin 6zel bir deney
duzenegi kullanilarak elde edilebilmesi igin bir method gelistirmektir.
Arastirilan kitle ozellikleri kitle, atirhik merkezinin konumu ve atalet
tensorudur. Araglarin kutle 6zelliklerinin dogru olgimu ara¢ dinamigi
arastirmalari icin ¢cok onemlidir. Deney duzenegi tavandan celik kablolar
vasitasiyla sarkitilmis ve Uzerine aracin sabitlendigi bir gergeveden
olusmaktadir. Kutle ve agirlik merkezi 6lcimU deney duzenegi denge
konumundayken toplanan veriler ve statik denklemleri vasitasiyla
Olcliimektedir. Atalet tensorl ise sistemin hareketli deneylerinden
toplanan veriler kullanilarak bulunmaktadir. Bu amagla MATLAB®
programinin  System Identification Toolbox fonksiyonlari aracihgi ile
tahmin hatasi methodunu kullanan bir tanilama programi yazilmigtir.
Deney dizenegi de yine MATLAB® programinin Simmechanics
Toolbox o6zellikleri kullanilarak simule edilmistir. Tanilama kodu farkl

durumlar i¢in yapilan deney simulasyonlari ile dogrulanmistir.

Anahtar Kelimeler: Tanilama, Parametre Tahmini, Kestirim Hatasi,

Atalet Tensoru, Arag¢ Dinamigi
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CHAPTER 1

INTRODUCTION

1.1 Introduction

There are many reasons for obtaining inertia measurements in the
field of Vehicle Dynamics. Car manufacturers, military organizations,
and heavy vehicle manufacturers require inertia properties for use in
their vehicle handling, ride, and stability models and simulations of
existing vehicles and in the development stages of new vehicle and

vehicle subsystem designs.

Accurate values of the dynamic parameters of a car are needed to
improve the dynamic control and simulation of a car. Vehicle center-
of-gravity height and roll inertia are often used to investigate vehicle’s
rollover tendency. They also affect response speed of the vehicle to
steer inputs. Racing companies rely on these properties for their
track time simulations. In order to simulate or identify other
parameters of a vehicle [1-4], mass and inertia properties must be

known.

Measuring the full inertia tensors of vehicles, or rigid bodies in
general has often been considered an involved task. “When classical
methods are applied [5,6], the tests require some special effort to
position in six different spatial orientations the oscillation axis around

which the body under consideration is forced to vibrate in order to



derive the inertia tensor components. Classical methods have been
developed many decades ago when numerical identification
algorithms were still not properly developed or could not be
employed due to the huge amounts of computations required.
Presently, computers have sufficient computation speed to obtain the
measurement of the full inertia tensor relatively quickly and simply by

means of procedures based on parameter identification algorithms”

[7].

A number of test rigs have been presented in the literature for the
measurement of inertial parameters (mass, center-of-gravity location,
inertia tensor) [2,3,4,8-16]. Almost in all of the early or “classical’
applications, the body (or vehicle) was either constrained to rotate
around one axis and, by measuring the frequency of oscillations, the
moment of inertia around that axis was measured or modal analysis

techniques were used [5].

1.2 Previous Work

Numerous studies were made on identification, measurement and
estimation of inertia tensor. In literature, there are three main

approaches to the measurement of inertia properties problem.

The first approach is the most fundamental one; which is simply
oscillating the body around the rotating axis for which the relevant
inertia property is sought after. In this case the frequency of the
oscillations are measured to calculate the inertia terms. However it is
hard to obtain the off-diagonal elements of the inertia tensor using

these techniques.



The second approach involves using the modal analysis and system
identification techniques. In system identification approach, the
researcher has the freedom of choosing both the mathematical
model which will simulate the response of the system and the
parameters of this user defined mathematical model [17]. However,
in parameter identification approach, which is the third approach to
the problem; the implementer’s aim is to identify the free parameters

of a predetermined mathematical model.

The main solution of a parameter identification problem is to
minimize the differences between the outputs of the mathematical
model and the experimental measurements, which will inherently
converge the free parameters in the system equations to actual
values. In order to achieve this goal, a cost function is defined as the
sum of the squares of the differences between the outputs of the
mathematical model and the measured values. Minimizing this cost
function will lead to the solution of the problem. These definitions
actually define a nonlinear least square problem, which can be

solved by using unconstrained optimization methods.

A detailed comparison of moment of inertia estimation techniques in
the literature can be found in [18]. Maclnnis et. al. compared many
estimation formulae; which relate dimensional parameters of vehicles
to their mass properties and used his findings to simulate vehicle
collision dynamics. It must be noted that the methods they employed

give moments of inertia estimates but not the actual values.

In 1997 a method was developed by Stebbins et. al. [19] to estimate
a rigid body’s inertia properties using a prototype six-axis load cell
designed to measure all loads and moments applied to the structure.

The body was fixed to the experimental set up; excited randomly in



all directions by an impact hammer. Several tri-axial accelerometers
were placed on the body (since location of CG was unknown, none of
them were placed on the CG). Despite the fact that the basis of the
model used in this research was Newton’s 2nd Law; the computation
process was much more complicated; as the aim of the research was
to identify all 10 parameters simultaneously. The method succeeded
in estimating all 10 parameters accurately, however because of the
prototype six-axis load cell; which was composed of 32 piezoelectric
sensing elements; the cost of this technique came out to be rather
high.

Metz et. al. [20] measured mass moment of inerta of passenger cars
and motorcycle tyres about the tyre spin axis using a torsional
pendulum technique, similar to trifilar pendulum method [21]. A pair
of linear correlation equations, one for mounted tyres and one for the
unmounted tyres, were derived which relate inertia values to tyre

diameters and weights.

Venture et. al. [22] developed a robotics approach in 2003. The
system was modeled as a multi-body (by using Modified Denavit and
Hartenberg notation), which allowed the automatic computation of
the dynamic identification model, which was linear with respect to the
inertial (mass, center of mass and inertia tensor) and the suspension
parameters. Every element of vehicles suspension and chasis were
modeled as joints (degrees of freedom). No special experimental
setup was required: the experiments were done by performing
various predetermined manouvers on test grounds. A total of 34
parameters were identified accurately. The shortcoming of this
technique was that the cost of the experimental tools was high due to

the number of sensors used. However this research succeeded in



obtaining the inertial parameters and suspension parameters

simultaneously.

In 2001 Heydinger et. al. [23] designed a new test rig for measuring
center-of-gravity height; roll, pitch, and yaw moments of inertia; and
roll/lyaw cross product of inertia for a broad range of vehicles and
vehicle components (e.g. tank turrets). This facility was capable of
handling vehicles up to 3 meters in width, up to 27,000 kg. The mass
and horizontal position of the center-of-gravity were measured using
a set of four floor scales. The vertical position of center-of-gravity
was found by adding an extra weight to a known position and
measuring the change in roll angle. The moments of inertia were
obtained by measuring the period of oscillations in about each axis.
Experiments were made seperately for each element of the inertia
tensor. Roll/lyaw product of inertia was derived by constraining the
roll motion of the vehicle and measuring the force required to keep
the vehicle’s yaw motion constrained during the yaw moment of

inertia test.

Rosenthal et. al. [24] analyzed how vehicle inertial properties relate
to typical dimensions (length, width and height) and how these
properties affect vehicle dynamics. They reached the conclusion that
the vehicle inertial properties were strongly correlated with standard
measures of length, width and height. They also correlated accident
database analysis with their findings about the handling — inertial
properties relations. Note that correlating the typical dimensions of a
vehicle with its mass properties resulted in reaching not the actual
values but estimates with reasonable error. The values obtained
through the techniques described in their work was not suitable for

full scale vehicle dynamics modelling and simulation purposes.



Mastinu et. al. [7] focused on the effects of inertia tensor components
on ride comfort and handling behaviour of the vehicle. Two multi-
body models were used for simulations in different road conditions
and to observe the effects on the driver and the handling of the
vehicle. Results of this theoretical investigation were used to
prescribe the measurement accuracy of the inertia tensor
components. Furthermore a new method [6] [25] for measuring the
inertia tensor of vehicles, meeting the accuracy determined on the

basis of the preliminary theoretical study was proposed.

In 1996 Heydinger et. al. [26] performed a study on determining not
only mass properties of a vehicle (mass, center-of-gravity location,
diagonal terms of the inertia tensor and roll/lyaw coupling term of the
inertia tensor), but also those of the sprung and unsprung bodies.
The method involved making several experiments and measuring
whole vehicle mass properties at different trim heights. Sprung and
unsprung mass properties are obtained by comparing and
processing the experimental results at different trim heights using

numerical algorithms.

A study was made in 1997 by Rizel et. al. [27] which included
measurement of human body mass properties (mass, center-of-
gravity position, inertia tensor), comparison of these values with
numerically estimated data and usage of the results in vehicle crash
simulations. The human body was modelled as a multibody of
ellipsoids in the computer simulations. Test subjects were secured to
the experimental setup (a specially designed chair design). The
inertial measurement was done by torsional pendulum technique.
Note that only the diagonal elements of the inertia tensor were

measured in this study.



In 2002 Mastinu et. al. [6] designed a test rig to measure the mass
properties of vehicles and their subsystems. The technique involved
suspending the vehicle from a fixed frame and exciting it in order to
obtain a motion complicated enough to observe the effects of each
component of the inertia tensor. Location of the center-of-gravity is
measured when the system is in static equilibrium. The results of the
experiment were used in full scale vehicle parameter identification

purposes. This test rig was further developed in [25].

Hahn and Niebergall [28,33] designed an experiment robot in order
identify ten inertial parameters simultaneously. The designed robot
experimentally identified the inertial parameters of a rigid body
automatically using the complete information hidden in the nonlinear
model equations of the test body. This task was solved in several
steps:

- Mathematical modelling of the special motions of a rigid body in
space. These model equations were mapped into a form suitable for
identification purposes.

- Design of a special measurement robot for performing the
identification experiments.

- Identification of the inertia parameters and accuracy tests.

The accuracy of the identified parameters were found to be
satisfactory. The designed robot was built for small bodies (i.e. not

for vehicles).

1.3 Aim and Scope of the Study

In this study a method to measure the mass properties of vehicles

using a specific test rig proposed by Mastinu et. al. [6]. The



measured properties are mass, coordinates of location of center-of-
gravity, and inertia tensor. Test rig consists of a frame, on which the
body whose properties are to be measured is to be fixed, suspended
from the ceiling of the laboratory by steel cables and an unbalanced

mass-motor assembly which is fixed to the frame.

A state space model is derived based on Newton’s Second Law.
Cables are assumed to be inflexible and massless. Also the effects
of the inertia and mass of unbalanced mass-motor assembly to the

total mass and inertia of the system is neglected.

The mass of the system is simply measured by using a ground scale.
The spatial coordinates of the center of gravity is located when the
system is in static equilibrium. Two direction cosines are measured;
and the resulting geometrical relations and equilibrium equations are

solved using non-linear algebraic solvers of MATLAB®.

In order to obtain the inertia tensor, the system is excited via the
unbalanced mass-motor assembly; and the resulting force is
measured as well as the tensions on the cables, translational
accelerations and rotational velocities of the test body. Collected data
is preprocessed by a code written in MATLAB® to find the
generalized forces on the system. Then using the derived
mathematical model and parameter identification toolbox commands
of MATLAB®, inertia tensor is identified.

Two graphical user interfaces (GUIs) are developed for two phases

of measurement, which can be seen on Figures 2.2, 3.4 and 3.5.



CHAPTER 2

MEASUREMENT OF MASS AND CENTER-OF-GRAVITY (CG)

2.1 Measurement of Mass

The mass of the frame and the test body are measured using a
ground scale. Since the frame is a symmetrical structure; the location

of its CG is inherently known.
Although the horizontal position of the CG of the test body can be
found simply by using four ground scales and writing the static

equilibrium equations [23]; they are found simultaneously with the

vertical coordinate of the CG in the following section.

2.2 Determination of the Location of CG
According to Baruh [29], “The mass of a rigid body is defined by:

m= .[ rdm
body (2.1)

Location of CG is defined as:

7 :l J- rdm
m )
body (22)



where r is the vector from the origin to the differential element dm.

Then, one can define any point in the body as:
rEltp (2.3)

Introducing (2.3) to (2.2); following is obtained:

rG:l I m'm:l I (rG+p)dm:rG+l I pdm
m

body body body (24)
Leading to the conclusion that:

pdm =0 (2.5)
|

body

This equation indicates that the weighted average of the
displacement vector about the center of mass is zero. Considering
the concepts from statics, one can refer to the definition of the center

of mass as the first moment of the mass distribution.”

At equilibrium, the position of the body in space is unique, and is a
function of mass of body, position of CG, cable lengths, locations of
hinge points on body and on frame. Using this information, one can

solve static equilibrium equations for coordinates of CG.

In order to determine the location of CG, an experiment is designed.
The experiment body and the frame are to be suspended from the
ceiling of the laboratory using steel cables. After the system reaches
the static equilibrium; the angles between the roll and pitch axes of

the body reference frame and the vertical axis of the global frame are
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measured using inclinometers. Then using only these two readings,
and using the static equilibrium equations, geometric constraint
equations and orthonormality equations of the transformation matrix;
orientation of the body, cable forces and the location of center of

gravity are computed.

Because of the fact that the number of equations are inadequate to
compute all the unknowns; two experiments are to be made with the
same test body: one with the test body and the carrying frame alone,

and one with a dummy mass added to the system.

2.2.1 The Experimental Set-up

In the experiment; the rigid body with unknown CG position is fixed
onto a carrying frame, then the carrying frame is swung by four
cables which are hinged to four points on carrying frame at one end,
and to four points on the ceiling (or a frame fixed to the ceiling) at the

other end.

For the sake of simplicity; the points on ceiling frame and carrying
frame are taken to be located on rectangles. Moreover the rigid body

and the carrying frame are shown as one body on Figure 2.1.

2.2.2 Locating the Body in Space

In order to locate the rigid body in space, one must know the
coordinates of body reference frame (which is shown to be located at
point A in Figure 2.1) and its Euler angles. However, in this study the

angles that x’ and y’ make with z axis (vertical) are to be measured

11



using inclinometers. Thus, transformation matrix T will be written in

terms of direction cosines instead of Euler angles.

L\ N

Figure 2.1 Suspended rigid body with known geometry

T=lcy oy oy (2.6)

Using the orthonormality property of T [29], one can derive six

equations as:

2 2 2
¢, +c, +c5 —1=0

(2.7)

2 2 2
¢, FCy ey —1=0

(2.8)
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cy ey, ey —1=0 (2.9)

C1Cy +Cp.Cyp +C 15603 =0 (2.10)
C1C3y +CppCyp +C13.055 =0 (2.11)
Cy1C3 +CpCyy +Cp3.633 =0 (2.12)

where c3y and c3» are to be obtained from inclinometer

measurements (Thus there are six equations and seven unknowns).

Knowing the coordinates of fixed points on the ceiling and the lengths
of the cables; four constraint equations can be written for four

connection points, A, B, C, D; assuming inextensible cables as:

IAZ_(xA'_xA)Z+(yA'_yA)2+(ZA'_ZA)2 =0 (2.13)
2 2 2 2

Iy =(xp —=x5) + (Vg —yp) + (25 —25)" =0 (2.14)

10 = (%0 =xc) + (Ve —ye) +(z0—20)7 =0 (2.15)
2 2 2 2

ZD _(xD'_xD) +(yD'_yD) +(ZD'_ZD) =0 (216)

Since the frame body is a rigid body with known geometry, the
coordinates of points B, C and D can be written in terms of

coordinates of point A as:
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(g i+yp.i+25.0=(x, +y,.j+2, K)+T.(x, .i+y, .j+2p .K)

(2.17)
(X i+ Yo j+ze K)=(x, d+y,.j+2, K +T.(xo 1+Yyc . j+2zc .K)

(2.18)
(pi+yp.j+2p. K)=(x, d+y,.j+2, . 0+T.(x, .i+y, .j+2z, .K)

(2.19)

Note that (x,.i+y,.j+z,.K) vector stands for position of point B,

with respect to the body reference frame, which is located at A.

(2.14), (2.15) and (2.16) can be rewritten in terms of coordinates of
point A with respect to the global reference frame only using (2.17),
(2.18) and (2.19).

Adding the four constraint equations to the six equations that are

obtained from orthonormality relations, a total of ten equations are

obtained for ten unknowns (Xa, Ya, Za, C11, C12, C13, C21, C22, C23, C33).

2.2.3 Computing the Cable Forces and the Location of CG

After finding the location of body reference frame and transformation
matrix; one can write force and moment equilibrium equations as

follows:
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SFx=0 (2.20)

YFy=0 (2.21)
>Fz=0 (2.22)
>Mx=0 (2.23)
>My=0 (2.24)
>Mz =0 (2.25)

There are four unknown forces and three unknown coordinates. It is

clear that these six equations are not enough to reach a solution.

Moreover, coordinates of the CG (Xcg, Yeog, Zcg) a@ppear neither in
equations (2.20), (2.21), (2.22) (force equilibrium equations); nor in
(2.25), since weight vector is also in z-direction. It is concluded that
one can find four unknown forces using the (2.20), (2.21), (2.22) and
(2.25).

To find coordinates of center of gravity, at least one more equation is
needed. This equation can be obtained by making a second
experiment, in which a known mass with known center of gravity is
positioned at a specified point on the carrying frame. In this case, the

center of gravity of the system will be:

{(md).(xcgd.i+ ycgd.j+ zcgd.k) (M + My ) (X T+ Yo+ 2, K}

(md +m+ mframe)
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Where d sub- and superscript denote the relevant properties of the

dummy mass and m¢ame denotes mass of the carying frame.

Rewriting (2.20), (2.21), (2.22) and (2.25) for the new measurements,
cable forces for this case can be computed. However it can easily be
seen that center of gravity coordinates of this new system with the
dummy mass is a function of the coordinates of center of gravity of
the system without the dummy mass. Thus; either one of the
remaining moment equilibrium equations ((2.23) or (2.24)) can be
selected to solve with the two moment equilibrium equations of the

system without the dummy mass.

2.3 The Code

In order to solve the stated problem, a computer code is written using
MATLAB®. Further, in order to verify the results another code is
written to generate the system to be solved, with known center of

gravity coordinates.

Case study code calculates the equilibrium position and Euler angles
(XYZ sequence) of a given body with user defined shape and

experimental set-up parameters.

The aim of the solver code is to calculate the center of gravity; for
given mass, dummy mass, coordinates of center of gravity of dummy
mass, cable lengths, system geometry and angles between x’ — z

andy —z.
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The code first computes the position and orientation of the body in
space; then calculates the cable forces and finally the coordinates of
center of gravity. The code is used through a graphical user
interface written in MATLAB, Figure 2.2.

-} CG_gui Al=3

All lengths in [mm], all messes in kg, sll angles in [dedg]

Lengths of Cahles
| Length of A& Cable | | Mass of Carrying Frame Messured Angles
. (o Dumimy Mass)
| Lencth of BE' Cablz | Mass of Test Body Help for Preparing Data
= i - Eetween x'- 2
Length of CC' Cabl
| Lendgho e Mass of Dummy i
F ; = e Bietween y' -2
| LR : | U Load Data fram File
- L Position of Center of Gravity of Dummy Mass
Length Ceiling Frame (A'C) we .t . Body Reference Frame
Measured Angles Save Data to File
Wiicth of Ceiling Frame (48" ) (el Dy Mass)
x 1
Length of Carrying 2 = Betweeen x'- z
Frame (AC) T : g . Clear Data
iiddth of Carrying = Heiiestivics
Frarme (4B | | z
Height of Carrying Frame
Initial Guesses
Cable Forces Center of Gravity of the System
(el dummy mass) GaLCU-ATH
Location of Body Reference Frame [ 1st Cable
| | .
* 2nd Cable
¥
Y 3l Cable
I
z
4th Cable

Figure 2.2 Interface of the Solver

2.4 Case Study

In order to verify the developed software a sample case study is
solved. In this study a body with known center of gravity is simulated
and the location of center of gravity is numerically calculated. The
input data is presented in Table 2.1. Calculated coordinates of the

center of gravity are:
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x=1771.011 mm
y =1122.978 mm
z = 609.860 mm

whereas the actual values were:

x=1771 mm
y = 1123 mm
Zz=612 mm

The percentage error between the calculated and actual values are:

0.0006
%Error =| 0.002
0.3497

These error values show that the solution technique is satisfactory.
The respectively higher error percentage in one of the components is
related with the three moments selected for the calculation. Error in
this component is always the largest because of the fact that the
errors included in the first two terms are involved in the calculation of

the third term, resulting in the accumulation of errors.

Maximum absolute error is less than 2.5 milimeters, which is
practically zero, since this location will be used to align the ropes for
the second experiment, and to fix the accelerometers and
gyroscopes if it lies in an accessible and mountable location in the
vehicle; and error in experimental set up will most probably be larger

than 2.5 milimeters.
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Table 2.1 Data for Case Study

Lengths of Cables [mm]:

1500
Dimensions of ceiling frame [m]:
5x3
Dimensions of carrying frame [m]:
4x2x2
Mass of carrying frame [kg]:
262
Mass of test body [kg]:
1072
Center of gravity of test body (w.r.t. b.r.f.) [mm]:
X 1771
y 1123
z 612
Combined center of gravity of test body + carrying frame (w.r.t. b.r.f.) [mm]:
X 1816
y 1099
z 688
Mass of dummy mass [kg]:
50
Center of gravity of dummy mass (w.r.t. b.r.f.) [mm]:
X 0
y 0
z 0
Initial guess for Location of body reference frame [mm]:
X 500
y 500
z 500
Initial guess for Euler angles [rad]:
0
0
0
Initial guess for Cable forces [N]:
2000
Initial guess for center of gravity of whole system (w/o dummy mass) [kg]:
X 1000
y 1000
z 1000
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CHAPTER 3

MEASUREMENT OF INERTIA TENSOR

3.1 Inertia Tensor

Although the knowledge of mass and center of mass provide
valuable information for the simulation and analysis of translational
motion, it gives no insight of how the mass is distributed throughout
the body. Baruh [29] defined mass as “The amount of matter
contained in the body and the resistance of the body to translational
motion. On the other hand the resistance of the body to a rotational
motion is dependent on how the mass is distributed”. Thus, as the
first moment of mass distribution defines the center of mass, the
second moment of mass distribution defines the moment of inertia of
the body. Moment of inertia represents the resistance of the body to

rotational motion.

The distribution of mass with respect to an axis is called the mass
moment of inertia about that axis. Consider x axis for example. The

mass moment of inertia about x axis is defined as:

I.= [ Ridm (3.1)

body

Where Ry represents the perpendicular distance between a

differential element located at (xr yr, zr) and the x axis. It is simply:
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R =\(yz +z3) (3.2)

Then one can rewrite (3.1) as:

.= [ (h+z3)dm (3.3)

body

Similarly mass moment of inertia about y and z axes are defined in

the same fashion:

L= | (+z)dm (3.4)

»
body

L= [ (5 +yp)dm (3.5)

body

These three terms form the diagonal elements of the so called inertia
tensor. As seen from (3.3), (3.4) and (3.5), diagonal elements of the
inertia tensor are definitely positive for a rigid body, since the terms
inside the integral can not be negative and are non-zero. The
diagonal elements of the inertia tensor are measures of the body’s

resistance to rotation around corresponding axes.

Other than the mass moment of inertia about an axis; one can also
define mass moment of inertia with respect to a plane. In this case
the resultant quantities are called the products of inertia. Products of

inertia are defined as:

I, = I (Xz.yg)dm (3.6)

body
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I.= [ (xpzp)dm (3.7)

body

I.= [ (vpz)dm (3.8)

body
It can clearly be seen that lyy = lyx, Ixz = l2x, lyz = lzy. These terms can be
considered as measures of how asymmetrical the mass is distributed
throughout the body and are the off-diagonal elements of the inertia

tensor which is defined as:

Ixx _Ixy _Ixz
[7]=|-1. 1, -I. (3.9)
N

When the body is symmetrical with respect to any of the planes; the
product of inertia terms associated with the axis perpendicular to that
plane vanish. As an example to this property, consider an
automobile. Usually automobiles have a certain symmetry both in
shape and mass distribution with respect to roll/lyaw plane (Figure
3.1). Because of this symmetry, I, and |y, are usually very small in
quantity, and the effects of roll/'yaw product of inertia Iy, to vehicle

dynamics problems are much more considerable.

3.2 Experimental Setup

The experimental setup is nearly the same as the one used for the
measurement of center of mass. The test body is fixed to the carrying
frame, which is suspended from the ceiling of the laboratory using

four steel cables. An unbalanced mass-motor assembly is fixed to
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one of the corners of the carrying frame. The experiment starts from

equilibrium position with initial conditions all zero.

Figure 3.1 Car is symmetrical with respect to roll/yaw axis

Three translational accelerometers and three gyros, measuring the
angular velocities are placed at the CG. Cable lengths are so
selected that their direction vectors intersect as closely as possible to
the CG. Tensions on the cables are also measured as well as the

force applied by the unbalanced mass.
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When the experiment starts; the unbalanced mass-motor assembly
apply a sinusoidal force; which can be resolved into two components

with a phase difference of /2.
In the experiment a total of 3 translational accelerometers, 3
gyroscopes, 6 load cells (4 load cells to measure the load on the

cables, 2 for the unbalanced mass-motor assembly) are to be used.

The schematic drawing of the experiment set up can be found in

Appendix A.

3.3 Mathematical Model

Newton-Euler Equations can be written for the model neglecting the

gyroscopic terms.

) | x
FY[m 0 0 0o 0 0
Fllomo o o o0]]|”
FE|_|00m 0 0 0|z (3.10)
M |00 0 J Ty =) s
M,| |00 0 -, J, -J,
M) |0 0 0 I —J. J_ ||
0,

Mass inertia coupling terms are taken as zero since body reference
frame is located at the center of gravity [30]. If the body reference
frame is located in another position on the body, these terms must be

calculated accordingly.
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In (3.10), Fx, Fy, F, are components of the total force on the system

resolved in body reference frame. M4, M2 , M3 are components of

total moment on the system resolved in body reference frame.

This system can be represented in state space as:

X1

x2 |

_ 010000
X110 0000 0
Wl o001 00
_ 0000000
Sl 100000 1
x(,_oooooo
11000000
X7

‘ 0000000
X110 00000
w| 000000
_ 0000000
M1 lo0oo0000
X11

X12

Where;

4,=0,*,,-T,)
A4, =(sz*Jyz+ny*Jzz)
A4, :(ny*JyZJrJXZ*Jyy)
A, =0, M%)
A= M+ K
A= M- T3)

S O O O O O o o o o o o

S O O O O = O O o o o <o

S OO O O O O O o o o o

S O O = O O O O o o o o

S O O O O O O O o o o o

S = O O O O o o o o o o

o3|~ o

(e

o3|~ o o

S

o3|~ o o

S

2 2 2
Den=-J >l<Jyz 'Jyy el *ny -2 ny T >X<ny + >l<Jyy 1.,
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and the state variables are:

X=X
X, =X

X3 = y

X, =Yy

Xs =2z

Xe =2

x, =0,

Xg = W

X, =0,

X0 = (0))

X =05

X, = W3

3.4 MATLAB® Codes

Two codes and a Simulink® model are developed for the

identification of inertia tensor part of the thesis.

An experimental model is developed using the SimMechanics®
toolbox of Simulink®, which simulates the the experimental model,
which is made up of input block, body block, sensors and a tracker
block to track the orientation and position of the body with respect to

the global frame is provided in Appendix A.
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First of the developed MATLAB® codes is a pre-processor which is
used to process the data collected from the experiment. Its inputs are
the readings of the load cells on the cables and on the unbalanced
mass-motor assembly. The load cells measure only the magnitudes
of the forces, so in order to calculate the moments one needs to
compute the force vectors. The position and orientation history of the
test body is computed by the tracker block in the Simulink® model.
The output of the code is the generalized force vector which consists

of three translational forces and three moments.

EXPERIMENT |
MODEL MOTION SENSORS |—{ TRACKER

A 4
>[ FORCE SENSORS GENERALIZED
FORCES

N
{ IDENTIFICATION

A

CODE

Figure 3.2 Flow Diagram of the System

Second of the developed codes is the identification code. The inputs
for this code are the history of the measured outputs of the system
(which are selected as the translational and angular accelerations),
the history of the generalized force vector and the initial guess
vector. The code uses the parameter identification toolbox functions
of MATLAB® to identify the elements of the input matrix of the state
space representation, and then solves the identified parameters for

the elements of the inertia tensor.
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CABLE }
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{ FORCE GENERALIZED }

HISTORY FORCES

Figure 3.3 Flow Diagram of Pre-processor Code

” “®

The used functions are “iddata”, “idgray” and “pem”. The function
“‘iddata” creates a data object from the experimental measurement.
The input and measured output and sampling time are the inputs for
this function. “idgray” function is used to define the state space model
of the system. Although “idss” function can also be used to define the
state space models, the models defined by “idss” have uncoupled
parameter structure, which is not the case for this study. “idgrey”
function is used instead in order to model the state space model with
coupled parameters. “pem” is the general parameter identification
function of the toolbox. It uses prediction error methods to identify the
unknown parameters. The methods used by “pem” are explained in

Section 3.5.
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Figure 3.4 Simulink Diagram of the System

3.5 Parameter Estimation

The three main approaches to the measurement of inertia properties
problem are mentioned in Chapter 1. These three approaches are
oscillating the body around the rotating axis for which the relevant
inertia property is sought after and measuring the frequency of the
oscillations; using modal analysis and system identification

techniques; parameter estimation techniques.

The main difference between the latter two of these three methods is

that in system identification approach, the researcher can choose the
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mathematical model of the system as well as the parameters of this
mathematical model. In parameter identification methods, the
mathematical model is predefined and only some of the parameters

of this model are unknown.

The solution of a parameter estimation problem is done by
minimizing the difference between the outputs of the mathematical
model and the experimental measurements. A cost function is
defined as the sum of the squares of the difference between the
outputs of the mathematical model and the measured values.
Minimizing this cost function will lead to the solution of the problem.
These definitions actually define a least square problem, which can

be solved by using unconstrained optimization methods.

The methods used in this M.Sc. study are commonly known as
Prediction Error Methods. Prediction Error Methods constitute a
broad family of parameter estimation methods which have a close
relationship with Maximum Likelihood method; a statistical method
used in system identification and parameter estimation. In both cases

the cost function is defined in terms of output error [35].

According to Ljung [34]; “The idea behind the prediction error

approach is simple:

- Describe the model as a predictor of the next output:

v, (nln=1= £z (3.12)

Here )A/ (n|n—1) denotes the one-step ahead prediction of the output,

and f is an arbitrary function of past, observed data.
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- Parameterize the predictor in terms of a finite dimensional

parameter vector 6:

¥nl0) = £(2,0) (3.13)

- Determine an estimate of 6 (denoted gN) from the model
parameterization and the observed data set Z", so that the distance
between ;(1|0),K ,JA/(N|9) and y(1),K , y(N)is minimized in a suitable

norm.

In case the above norm is chosen such as to match the assumed

probability density functions, the estimate éN will coincide with the

Maximum Likelihood estimate.”

In short, the main idea is to predict the output of the next step using a
function, which includes the measured outputs of the current time
step and the unknown parameters. Once this function is defined
using the derived mathematical model and measurements are made,
the problem reduces to minimizing the distance between the
predicted outputs, which are functions of unknown parameters, and

the measured ones [42].
V()= Zl (y(m)—~ f(Z",6)) (3.14)

Here 1 is a suitable distance measure, such as 1(¢)=|é[, in which

case the problem becomes a least squares optimization problem.

The numerical search for the minimum can be carried out using any

of the many methods available such as Gauss-Newton Method, or
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Lavenberg-Marquardt Method. Note that the first derivative of the

difference of outputs has to be derived to use these methods.

In this study prediction error estimator of MATLAB® is used to
estimate the unknown parameters, which is also programmed by

Ljung.

To implement this method; the first thing to do is to discretize the

state space model (Equation 3.11).
The derivative of the states with respect to time is defined as:

x(t+T)—x(1)

xX'(t)= lTii% T (3.15)
In state space:
lrir%w — Ax(t)+ Bu(?) (3.16)

The limit in (3.16) equation can be removed in state space system
equations since the sampling time (T) is positive and non-negligible.
By definition, a discrete system is only defined at certain time points,

and not at all time points as the limit would have indicated otherwise.

Rearranging the system equations in state space gives:

xt+T)=x(T)+T-Ax(t)+T - Bu(t) (3.17)
Then:
x(t+T)=(1+T-A)x(t)+T - Bu(t) (3.18)

In the case of constant sampling time throughout the measurement,

time can be expressed as:
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t=n-T (3.19)
Inserting (3.19) into (3.18) gives:
x(n-T+T)=Q1+T -A)x(n-T)+T-Bu(n-T) (3.20)

Equation (3.20) can further be simplified by removing sampling time

terms in state indices.
x(n+1)=1+T-A)x(n)+T - Bu(n-)
So the state space equations are redefined as:

x(n+1)=A,x(n)+ B,u(n)
(3.21)
y(n)=Cx(n)+ Du(n)

Next an equation which relates the output of the next step to the

measurements of the current state is to be derived. Normally:
Y(n+1)=Cx(n+1)+ Du(n+1) (3.22)
Inserting the x(n+1) equation found in (3.21) into (3.22):

y(n+1)= C(4,x(n)+ B,u(n))+ Du(n+1) (3.23)

x(n) can also be rewritten using the output part of (3.21) (provided

that the output matrix C is invertible) as:
x(n) = C'y(n)—C ™' Du(n) (3.24)

Inserting (3.24) into (3.23) leads to:

Y(n+1)=CA,C™y(n)+(CB, — CA,C”' Dyu(n)+ Du(n+1) (3.25)
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Equation (3.25) represents the predicted output in terms of the
measured output and input data. The coefficient matrices are all

nonlinear functions of the unknown parameters. Note that:
A, =(1+T-4) (3.26)

B

d

=T-B (3.27)

Equation (3.25) is actually what is implied by equation (3.13), since it
relates the output predictor to previous observed data and unknown

parameters.

The next step is defining the cost function simply as the difference
between the measured outputs and predicted outputs and minimizing

the cost function using a proper optimization algorithm.

The equation defined in (3.14) can easily be turned into a least
squares problem by using the definition 1(£) = |¢| or 1(¢) :%”g”2 and

then can be minimized using the Gauss-Newton algorithm or

Levenberg-Marquardt method.

The Levenberg-Marquardt algorithm provides a numerical solution to
the mathematical problem of minimizing a function, generally

nonlinear, over a space of parameters of the function.

In this method the parameter vector 0 is replaced by a new estimate
B + & at each iteration step. To determine 6, the predictor equation is

approximated by its linearization.

Y(O+35) = y(O)+J5 (3.28)
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where J is the Jacobian of ; with respect to the vector 8 at given

step.

Differentiating the square of the right hand side of the equation above

and setting to zero leads to:

(JTNS ==J" W(O(n) (3.29)

from which & can be obtained by inverting J'J. Then using (3.28) the
predictor function is updated. The key to the Levenberg-Marquardt

algorithm is to replace this equation by a 'damped version'.

(JTT=AD)S =-J" y(0) (3.30)
The (non-negative) damping factor A is adjusted at each iteration.

Similarly the Gauss-Newton algorithm is also an iterative procedure.
In Gauss-Newton algorithm, the new guess for the parameter vector
is computed using the following relation instead of the linearization of

the predctor function as in Levenberg — Marquardt Method:
O(n+1) = O(n)— (J7 TV " W(O(n)) (3.31)
J denotes the Jacobian of ; with respect to the parameter vector at

n.

However equation (3.31) is usually reduced to (3.32) in order to avoid

the inversion.
On+1)=0(n)+0o (3.32)

where & is computed according to the solution of the following

equation:
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JTJS = —J7 p(0(n)) (3.33)

Another implementation of the Gauss-Newton algorithm also
employs a line search algorithm in which equation (3.33) is altered

as:
On+)=0(n)+a-o (3.34)

Here « is a scalar, adjusted according to the criterionV (n+1) <V (n).

( )
SYSTEM j ERROR
| MODEL DISCRETIZATION L PREDICTOR
( )
INITIAL GUESS
VECTOR
(S J
JACOBIAN
vV Vv VL
MINIMIZATION L ( COST
J‘ L FUNCTION

Figure 3.5 Flow Diagram of Identification Code

For the case studied in this thesis, the measured outputs are three
linear accelerations and three rotational velocities of the CG.
Discretizing the system in (3.11) and rewriting according to (3.25),
output predictor is obtained in terms of unknown parameters. Then
using either one of the Levenberg-Marquardt method or Gauss-
Newton algorithm, the distance between the actual outputs and the

predicted outputs is minimized.
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The inputs for the developed code are the input and output
measurements which are obtained from the simulation of the
experimental system, the state space system defined as (3.11) and

the initial guess vector for the parameters.

In this study prediction error estimator of MATLAB® is used to
estimate the unknown parameters. This estimator allows user to
choose between different line search algorithms. Possible choices
are Gauss-Newton, a regularized version of the Gauss-Newton
direction in which eigenvalues less than a user defined value of the

Hessian are neglected and the Levenberg-Marquardt method. [43].

The code first the simulates the motion of the body under user
defined forcing and calculates the generalised forces of the system
and then identifies the inertia tensor using the prediction error
method. The code is used through a graphical user interface written
in MATLAB, Figures 3.6

<) Simulation... E|E|@

HELF

Load Simulation Parameters

SIMULATE!

Save Results

Figure 3.6 Simulator GUI
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CHAPTER 4

CASE STUDIES AND RESULTS

Several case studies has been investigated in the development stage
of the thesis and several more were inspected to ensure that the

procedure is working properly.

The case studies 1-9 are done in the process of development of the
thesis. These studies demonstrate various initial condition and
forcing techniques, and the results of these studies are analysed in
order to determine the most suitable test setup and initial conditions.
In most of these cases, theoretical bodies are used. The case studies

10-17 are carried out using measured data from literature [31,32].
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4.1 Case Study 1

Table 4.1 Data for Case Study 1

CASE 1
Cable Lengths [m] 2.5
Coordinates of CG (initially) [m] [2; 2.5; -2.5616]
Mass [kg] 250
Jxx [N.m?] 1000
Jyy [N.m?] 1000
Jzz [N.m?] 1000
Jxy [N.m?] 50
Jxz [N.m?] 50
Jyz [N.m?] 50
Coordinates of Hinge Points on the Ceiling [m]
[0;0;0]
[4,0,0]
[0;5;0]
[4,5,0]

Body Dimensions [m]

3x2x1 (Rectangular Prism)

Coordinates of Hinge Points on the Body (wrt to their respective hinge
points on the ceiling)

[1;1;-2.0616]

[1:-1;-2.0616]

[-1;1;-2.0616]

[-1;-1;-2.0616]

Initial Conditions

No Initial Displacement

Applied Forces

Time
Point of Action interval
Force Vector [N] [m] [s]
[200;0;0] [0;-1.5;0] [0.1,1.1]
[0;200;0] [0;-1.5;0] [4.1,5.1]
Initial Guess Vector for Inertia Tensor [N.m2]
[750;300;300;750;300;750]
Length of the Experiment [s] Sampling [s]
10 0.01
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4.1.1 Data Consistency Check for Case Study 1

The simulink model has two sensors both mounted on the CG. First
sensor (world sensor) measures the quantities with respect to world
coordinates whereas the other one (body sensor) with respect to the.
body reference frame; which is the real case. The readings from the
world sensor is used for verification purposes only. All the data to be
used in identification are either read directly from the body sensor, or

derived from its readings.

10’

CGx
— UGy
CiGz

1] 200 400 600 800 1000 1200
Time Step [0.01 5]

Figure 4.1 Percentage Error of Measured CG Coordinates
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0.035
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0.02

0.015

0.01

(0.005
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]

The percentage difference between the world sensor and body
sensor readings of position of center of gravity (3 components) and
the components of the transformation matrix (9 components) can be
seen in Figures 4.1 and 4.2 respectively. Note that body sensor

readings are processed in the “Tracker” to obtain position data.

— T
— T2
— M3
— 121
— T2

— T3
—T32
— 133

i I i I I
200 400 600 800 1000 1200
Tirme Step [0.01 8]

Figure 4.2 Percentage Error of Transformation Matrix Components

As can be seen from the Figures 3.2 and 3.3; percentage error
between the real values and the calculated values are extremely low.
Collected data are consistent with the readings of world sensor.

Thus, the function of the “Tracker” block is validated.
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Position [m]

The error caused by the “Tracker” is important because of the fact
that the force vectors are found using this position and transformation
matrix data and measured force magnitudes. Considerable error in
position data at this stage will lead to inadequate accuracy in force

vectors and identification results.

4.1.2 The Results of the Experiment of Case Study 1

The resulting motion of the experiment can be observed in Figures
4.3,4.4 and 4.5.

3
N U S e S -
CGx
? ? £ey
[ o R RGRREREE e ET I T e et ST TLEERRRPI e, CGz -
N U S e S -
N S e S -
5 i | i i i
] 200 400 500 500 1000 1200

Time Step [0.01 5]

Figure 4.3 Position of CG
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Acceleration [misZ)

Rotational Yelocity [1/s]

0.2

200 400 600 800 1000 1200
Time Step [0.01 5]
Figure 4.4 Acceleration of CG
Around x
Around y
Around z
200 400 a0 1000 1200

500
Time Step [0.01 5]

Figure 4.5 Rotational Velocity of the Body with respect to CG

43



Since the input force has started to act on the system at t= 0.1 s; all
graphs stay at initial conditions until 0.1s. The effects of the exciting
force can be seen clearly in Figure 4.4; as discontinuities in

accelerations.

4.1.3 The Results of the Identification Run for Case Study 1

After the experiment run; collected data are processed to compute
the generalized force vector. Then the acceleration history, rotational
velocity history and the generalized force vector history are fed to the

identification code.

|dentification code calculated the following inertia tensor:

1005.4 48.6 53.4
J=| 48.6 1004.2 46.0
534 46.0 1004.0

Whereas the original tensor was:

1000 50 50
J=| 50 1000 50
50 50 1000

Percentage error of the components are:

054 28 6.8
%Error=| 2.8 0.42 8
6.8 8 040
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With a maximum error of 8 percent for off diagonal elements and

0.54 percent for diagonal elements, the results are found to be

satisfactory for most vehicle dynamics studies.

Figure 4.6 shows the comparison of the identified system and the

measured system’s output measurements.

Weasured Output and Simulated Model Cutput

o | | | | | | | | |
0 a1 02 03 04 Ik 06 07 0a ng 1

Time[10g]

— Measured Output

[ —InFit: 99.48%

— Measured Output
—InFit 99.7%

— Measured Output
—InFit 91.44%

— Measured Output
—InFit %6.17%

— Measured Output

| —InFit: %.73%

— Measured Output
— InFit: 96.75%

Figure 4.6 Comparison of the Identified System and the Measured

System
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4.2 Case Study 2

Table 4.2 Data for Case Study 2

CASE 2
Cable Lengths [m] 2.5
Coordinates of CG (initially) [m] [2; 2.5; -2.5616]
Mass [kg] 200
Jxx [N.m?] 160.2
Jyy [N.m?] 826.3
Jzz [N.m?] 756.7
Jxy [N.m?] 0
Jxz [N.m?] 92.4
Jyz [N.m?] 0
Coordinates of Hinge Points on the Ceiling [m]
[0;0;0]
[4;0,0]
[0;5;0]
[4;5;0]

Body Dimensions [m]

3x2x1 (Rectangular Prism)

Coordinates of Hinge Points on the Body (wrt to their respective hinge
points on the ceiling)

[1;1;-2.0616]

[1;-1;-2.0616]

[-1;1;-2.0616]

[-1:-1;-2.0616]

Initial Conditions

No Initial Displacement

Applied Forces

Time
Point of Action interval
Force Vector [N] [m] [s]
[200;0;0] [0;-1.5;0] [0.1,1.1]
[0;200;0] [0;-1.5;0] [4.1,5.1]
Initial Guess Vector for Inertia Tensor [N.m2]
[250;0;150;750;0;750]
Length of the Experiment [s] Sampling [s]
10 0.01
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Position [m]

This data set is based on a real system. The mass and inertia

properties are that of a tractor, scaled by 0.1.

4.2.1 The Results of the Experiment of Case Study 2

The resulting motion of the experiment can be observed in Figures
4.7,4.8 and 4.9.

CGx

CGy

CGz

3 I I I | |
0 200 400 600 800 1000 1200
Time Step [0.01 5]

Figure 4.7 Position of CG
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Acceleration [mis2]

Rotational Yelocity [1/s]

a 200 400 500 800 1000
Time Step [0.01 5]

Figure 4.8 Acceleration of CG

1200

Around x
Around y

Around z

200 400 500 800 1000
Time Step [0.01 5]

Figure 4.9 Rotational Velocity of the Body with respect to CG
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4.2.2 The Results of the Identification Run for Case Study 2

In case study 2; the data of a real system were used. As stated in
Section 3.1; pitch/yaw and roll/pitch product of inertia terms are

inherently zero.

Identification code calculated the following inertia tensor:

163.56 —-0.44 96.24
J=|-044 836.72 1.53
96.24 1.53  789.88

Whereas the original tensor was:

160.2 0 92.4
J=| 0 8263 0
92.4 0 756.7

Percentage error is:

2.10 10.44 4.16
Y%Error=| 1044 126 +1.53
4.16 =+1.53 4.39

(Note that absolute error is given for zero terms)

In this case, yaw inertia error came out to be more than 4 percent.
Although the other identified terms are acceptable in terms of vehicle
dynamics studies; better accuracy can be obtained in diagonal

elements, namely yaw inertia, using other, simpler methods.
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Figure 4.10 shows the comparison of the identified system and the

measured system’s output measurements.

Measured Cutput and Simulated Madel Output

[
\ \ I
— Measured Output

| hFit%.18%

w1
=

— Measured Cutput
— I Fit 9963%
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— Measured Output
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— Measured Output
—hFit %529%

— Measured Output
— I Fit: 94.92%

1 | | | | | | | | |
0 01 02 03 04 05 06 07 08 08 [

Time[10g)

Figure 4.10 Comparison of the Identified System and the Measured

System
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4.3 Case Study 3

Table 4.3 Data for Case Study 3

CASE 3
Cable Lengths [m] 2.5
Coordinates of CG (initially) [m] [2; 2.5; -2.5616]
Mass [kg] 250
Jxx [N.m?] 1000
Jyy [N.m?] 1000
Jzz [N.m?] 1000
Jxy [N.m?] 50
Jxz [N.m?] 50
Jyz [N.m?] 50
Coordinates of Hinge Points on the Ceiling [m]
[0;0;0]
[4,0;0]
[0;5;0]
[4,5;0]

Body Dimensions [m]

3x2x1 (Rectangular Prism)

Coordinates of Hinge Points on the Body (wrt to their respective hinge
points on the ceiling)

[1;1;-2.0616]

[1;-1;-2.0616]

[-1;1;-2.0616]

[-1:-1;-2.0616]

Initial Conditions

No Initial Displacement

Applied Forces

Time
Point of Action interval
Force Vector [N] [m] [s]
[200;0;0] [0;-1.5;0] [0.1,1.1]
[0;200;0] [0;-1.5;0] [4.1,5.1]
Initial Guess Vector for Inertia Tensor [N.m2]
[750;200;200;750;200;750]
Length of the Experiment [s] Sampling [s]
10 0.01
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In this case; the same data set which was used in case study 1 was
used with the same forcing. Thus, the motion of the body is the same
as that case. No graph are given to demonstrate the motion of the

test body in the experiment of case study 3.

However, in this case; the externally applied forcing is not measured.
Because of this, the generalized force vector is composed of only the
tension forces in the cables, which are in fact affected by the external
loading. This simplification will introduce some error to the
identification results. The aim of this experiment is to find out if
accuracy of the results will be acceptable or not. If they are found to
be acceptable; this experiment method brings considerable ease to

the implementation of the test setup.

4.3.1 The Results of the Identification Run for Case Study 3

Identification code calculated the following inertia tensor:

1003.7  50.5 47.4
J=| 50.5 1001.5 43.7
474 4377 1300.7

Whereas the original tensor was:

1000 50 50
J=| 50 1000 50
50 50 1000

Percentage error is:
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0.37 1 5.2
Y%Error=| 1 0.15 12.6
52 12.6 30.07

Four of the six parameters are identified with acceptable accuracy in
this case. Although 12.6 percent looks somewhat inaccurate, the
contribution of this element to the dynamics of the vehicle is relatively
low with respect to the diagonal elements and this amount of error can
be conssdered “good enough”. However 30 percent error in yaw
inertia shows that the method used in this case is inapplicaple, since
yaw inertia plays an important role in rollover research in vehicle

dynamics.

Figure 4.11 shows the comparison of the identified system and the

measured system’s output measurements.

Measured Output and Simulated Model Output
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— Measured Output
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Measured Output
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Figure 4.11 Comparison of the Identified System and the Measured

System
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4.4 Case Study 4

Table 4.4 Data for Case Study 4

CASE 4
Cable Lengths [m] 2.5
Coordinates of CG (initially) [m] [2; 2.5; -2.5616]
Mass [kg] 250
Jxx [N.m?] 1000
Jyy [N.m?] 1000
Jzz [N.m?] 1000
Jxy [N.m?] 50
Jxz [N.m?] 50
Jyz [N.m?] 50
Coordinates of Hinge Points on the Ceiling [m]
[0;0;0]
[4,0;0]
[0;5;0]
[4,5;0]

Body Dimensions [m]

3x2x1 (Rectangular Prism)

Coordinates of Hinge Points on the Body (wrt to their respective hinge
points on the ceiling)

[1;1;-2.0616]

[1;-1;-2.0616]

[-1;1;-2.0616]

[-1:-1;-2.0616]

Initial Conditions

No Initial Displacement

Applied Forces

Time
Point of Action interval
Force Vector [N] [m] [s]
[200;0;0] [0;-1.5;0] [0.1,1.1]
[0;200;0] [0;-1.5;0] [4.1,5.1]
Initial Guess Vector for Inertia Tensor [N.m2]
[750;200;200;750;200;750]
Length of the Experiment [s] Sampling [s]
15 0.01
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Acceleration [mis2)

4.4.1 The Results of the Experiment of Case Study 4

The resulting motion of the experiment can be observed in Figures
4.12,4.13 and 4.14.
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Figure 4.12 Position of CG
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Figure 4.13 Acceleration of CG
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Rotational Velocity [1/5]
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Figure 4.14 Rotational Velocity of the Body with respect to CG

4.4.2 The Results of the Identification Run for Case Study 4

In case study 4, the same data set which was used in case study 1
was used with the same forcing. However on this occasion; the
experimental was held for 15 seconds. The aim is to apply the
external forces in the first 5.1 seconds of the experiment; and then

use the data which is taken during rest of the 15 seconds.

Among the collected experimental data; only those taken between
the time interval [5.1s, 15s] are used in the identification run. In the
specified interval, there are no external forces on the system. The

states of the system at t=5.1 s are given as initial conditions for the
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identification run mathematical model. In this experiment it is aimed
to see whether it is possible to identify the required parameters with
good accuray without measuring the external force applied on the
system. If the aim is reached; the implementation cost of the test

setup will decrease considerably.

Identification code calculated the following inertia tensor:

870.9 2443 584
J=|2443 8653 419
584 419 1002.0

Whereas the original tensor was:

1000 50 50
J=| 50 1000 50
50 50 1000

Percentage error is:

1291 388.6 16.8
Y%Error =|388.6 13.47 16.2
16.8 162 0.2

In this case, all the elements of the tensor, except for the yaw inertia
are unacceptably inaccurate. However error of the yaw inertia is very
low. It is concluded that this method can be applied in conjunction

with the technique in the previous case.

Figure 4.15 shows the comparison of the identified system and the

measured system’s output measurements.
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Figure 4.15 Comparison of the Identified System and the Measured




4.5 Case Study 5

Table 4.5 Data for Case Study 5

CASE 5
Cable Lengths [m] 2.5
Coordinates of CG (initially) [m] [2; 2.5; -2.5616]
Mass [kg] 250
Jxx [N.m?] 1000
Jyy [N.m?] 1000
Jzz [N.m?] 1000
Jxy [N.m?] 50
Jxz [N.m?] 50
Jyz [N.m?] 50
Coordinates of Hinge Points on the Ceiling [m]
[0;0;0]
[4,0;0]
[0;5;0]
[4,5;0]

Body Dimensions [m]

3x2x1 (Rectangular Prism)

Coordinates of Hinge Points on the Body (wrt to their respective hinge
points on the ceiling)

[1;1;-2.0616]

[1;-1;-2.0616]

[-1;1;-2.0616]

[-1:-1;-2.0616]

Initial Conditions

No Initial Displacement

Applied Forces

Time
Point of Action interval
Force Vector [N] [m] [s]
[200;0;0] [0;-1.5;0] [0.1,1.1]
[0;200;0] [0;-1.5;0] [4.1,5.1]
Initial Guess Vector for Inertia Tensor [N.m2]
[750;200;200;750;200;750]
Length of the Experiment [s] Sampling [s]
10 0.01
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In this case; 990 identification runs were made with the same data
used for the case study 1. The identification code is put into a “for”
loop and the code was run 990 times; every time starting from
another data point to start and using the data between that point and
the end of data (1000th data point). i.e. starts from [1,1000], [2,1000],
[3,1000] ... [989,1000], [990,1000]. The initial conditions for the
mathematical model was also changed with the values of the states

at that data point.

The results were plotted in the fashion which will reveal the
convergence and divergence zones in the solution history. The aim
of this experiment and identification run is to obtain a better
understanding of the identification routine. The solution history
includes the cases in which the forces were measured; and the
cases in which the identification started after the external forces were
released. Thus the results for both of the situation can be seen on
the same graphs which will help with the comparison of the

techniques.

Figure 4.16 shows the solution history for all six parameters. Figure
4.17 shows only the diagonal terms and Figure 4.18 shows only the

off-diagonal terms.

According to the results, it can be said that the solution is unstable
for the runs that start after the application of the seconf force. It is
seen that, for the runs that start after 650th data point, the solution

run is enden before the convergence is reached.
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Figure 4.16 Solution History for Case 5
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Figure 4.17 Solution History for Case 5 - Diagonal Terms
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Inertia [N.m2]
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Figure 4.18 Solution History for Case 5 — Off-Diagonal Terms

4.6 Case Study 6

In this case; t=[75.1s,100s] was used for identification (2490 data
points).

Thus, no external force was applied on the system in the data used
for the identification run. The data set was the same as the data set

used for the case study 1.
The expected results of the experiment were:
- The system will reach an equilibrium position where the external

forces applied on the system are equal to cable forces and the

weight
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- After the system is released (t=75.1 s); the system will oscillate
freely from this newly reached equilibrium position. Thus; the velocity

terms of the initial conditions for the identification run would be zero.

Table 4.6 Data for Case Study 6

CASE 6
Cable Lengths [m] 2.5
Coordinates of CG (initially) [m] [2; 2.5;-2.5616]
Mass [kg] 250
Jxx [N.m?] 1000
Jyy [N.m?] 1000
Jzz [N.m?] 1000
Jxy [N.m?] 50
Jxz [N.m?] 50
Jyz [N.m?] 50
Coordinates of Hinge Points on the Ceiling [m]
[0;0;0]
[4,0;0]
[0;5;0]
[4;5;0]

Body Dimensions [m]
3x2x1 (Rectangular Prism)
Coordinates of Hinge Points on the Body (wrt to their respective hinge
points on the ceiling)
[1;1;-2.0616]
[1;-1;-2.0616]
[-1;1;-2.0616]
[-1;-1;-2.0616]
Initial Conditions
No Initial Displacement
Applied Forces

Time
Point of Action interval
Force Vector [N] [m] [s]
[50;0;0] [0;-1.5;0] [0.1,75.1]
[0;50;0] [0;-1.5;0] [0.1,75.1]

Initial Guess Vector for Inertia Tensor [N.m2]
[750;200;200;750;200;750]
Length of the Experiment [s] Sampling [s]
100 0.01
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However it was observed that, as the force acts on the system, the

system oscillates around an equilibrium position; and when the force

is zero; the system oscillates around its initial equilibrium position

(free equilibrium position), but this time makes larger oscillations.

It is concluded that; this result is obtained due to the fact that the

experimental model had no damping. No identification run is made

for case study 6.

Time [0.14]

10000

! .I,H.l.nun llllnmmnn i ”l!llh i
” "”“'"""""w i i

Figure 4.19 The Motion of the Body for Case 6
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4.7 Case Study 7

Table 4.7 Data for Case Study 7

CASE 7
Cable Lengths [m] 2.5
Coordinates of CG (initially) [m] [2; 2.5;-2.5616]
Mass [kg] 250
Jxx [N.m?] 1000
Jyy [N.m?] 1000
Jzz [N.m?] 1000
Jxy [N.m?] 50
Jxz [N.m?] 50
Jyz [N.m?] 50
Coordinates of Hinge Points on the Ceiling [m]
[0;0;0]
[4,0;0]
[0;5;0]
[4,5;0]

Body Dimensions [m]

3x2x1 (Rectangular Prism)

Coordinates of Hinge Points on the Body (wrt to their respective hinge
points on the ceiling)

[1;1;-2.0616]

[1;-1;-2.0616]

[-1;1;-2.0616]

[-1;-1;-2.0616]

Initial Conditions

No Initial Displacement

Applied Forces

Time
Point of Action interval
Force Vector [N] [m] [s]
[300;0;0] [0;-1.5;0] [0.1, 1]
[0;300;0] [0;-1.5;0] [0.1, 1]
[0;0;300] [0;-1.5;0] [0.1, 0.6]

Initial Guess Vector for Inertia Tensor [N.m2]

[750,200;200,750;200;750]

Length of the Experiment [s] Sampling [s]

10 0.01
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Position [m]

0.4

-0.4
u]

In this case study; a larger force with components in three directions is
used to excite the system. The aim of the experiment is to obtain a
greater deflection from the equilibrium position; in order to use as the

initial condition for the case study 8.

200 400 600 800 1000 1200

Time Step [0.01 5]

Figure 4.20 The Motion of the Body for Case 7

(with respect to body reference frame)

t=1.2 s is selected; where x=2.1614; y=2.772; z=-2.4937 and

0.989 -0.0752 -0.1273
T=|0.0627 0993 -0.0997
0.134  0.0906 0.9868

Then the Euler Angles are [-0.0759; 0.1276; -0.1007] radians.
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4.8 Case Study 8

Table 4.8 Data for Case Study 8

CASE 8
Cable Lengths [m] 2.5
Coordinates of CG (initially) [m] [2.1614; 2.772; -2.4937]
Mass [kg] 250
Jxx [N.m?] 1000
Jyy [N.m?] 1000
Jzz [N.m?] 1000
Jxy [N.m?] 50
Jxz [N.m?] 50
Jyz [N.m?] 50
Coordinates of Hinge Points on the Ceiling [m]
[0;0;0]
[4,0,0]
[0;5;0]
[4,5;0]

Body Dimensions [m]

3x2x1 (Rectangular Prism)

Coordinates of Hinge Points on the Body (wrt to their respective hinge
points on the ceiling)

[1;1;-2.0616]
[1;-1;-2.0616]
[-1;1;-2.0616]
[-1;-1;-2.0616]
Initial Conditions
Initial Displacement Euler Angles [radians]
See Coordinates of CG [-0.0759; 0.1276; -0.1007]

Applied Forces

No External Force on the System

Initial Guess Vector for Inertia Tensor [N.m2]

[750;200;200,750;200;750]

Length of the Experiment [s] Sampling [s]

10 0.01
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Position [m]

Acceleration [m/s2)

4.8.1 The Results of the Experiment of Case Study 8

The resulting motion of the experiment can be observed in

4.21,4.22 and 4.23.

Figures

~o 200

1
400 600 600
Time Step [0.01 5]

Figure 4.21 Position of CG

I
1000

1200

Time Step [0.01 5]

Figure 4.22 Acceleration of CG
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Rotational Velacity [1/s]

0.4
0

200 400 500 800 1000
Time [0.1 5]

Figure 4.23 Rotational Velocity of the Body with respect to CG

4.8.2 The Results of the Identification Run for Case Study 8

Identification code calculated the following inertia tensor:

1032.0 88.6 —-12
J=| 88.6 1037.6 -35.9
-12 =359 1006.8

Whereas the original tensor was:

1000 50 50
J=| 50 1000 50
50 50 1000
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Percentage error is:

3.2 77.27 124.04
Y%Error=| 7727  3.76  171.89
124.04 171.89 0.68

The accuracy of diagonal elements are satisfactory for the vehicle
dynamics studies. However error of the off diagonal terms are
extremely high. This method can not be used, ssnce there are
relatively easier methods to obtain the diagonal elements of the

inertia tensor.

Figure 4.24 shows the comparison of the identified system and the

measured system’s output measurements.

Measured Output and Simulated Model Output

Measured Output
In Fit: 77.12%

Measured Output
In Fit: 86.45%

Measured Output
In Fit, -33.88%

Measured Output
In Fit: 89.64%

Measured Output
In Fit: 86.01%

Measured Output
In Fit. 83.03%

1
1) 01 0.2 0.3 0.4 o0& [1h=] o7 o8 o9 1
Time [10 5]

Figure 4.24 Comparison of the Identified System and the Measured

System
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4.9 Case Study 9

Table 4.9 Data for Case Study 9

CASE 9
Cable Lengths [m] 2.5
Coordinates of CG (initially) [m] [2; 2.5;-2.5616]
Mass [kg] 250
Jxx [N.m?] 1000
Jyy [N.m?] 1000
Jzz [N.m?] 1000
Jxy [N.m?] 50
Jxz [N.m?] 50
Jyz [N.m?] 50
Coordinates of Hinge Points on the Ceiling [m]
[0;0;0]
[4,0;0]
[0;5;0]
[4:5;0]

Body Dimensions [m]

3x2x1 (Rectangular Prism)

Coordinates of Hinge Points on the Body (wrt to their respective hinge
points on the ceiling)

[1;1;-2.0616]

[1;-1;-2.0616]

[-1:1;-2.0616]

[-1;-1;-2.0616]

Initial Conditions

No Initial Displacement

Applied Forces

Time
Point of Action interval
Force Magnitude [N] [m] [s]

200 [0;-1.5;0] [0.1,1.1]

Frequency of Forcing [Hz]
0.7
Initial Guess Vector for Inertia Tensor [N.m2]
[750;200;200;750;200;750]
Length of the Experiment [s] Sampling [s]

100 0.01
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4.9.1 The Results of the Experiment of Case Study 9

The resulting motion of the experiment can be observed in Figures
4.25,4.26 and 4.27.
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-EEI 100 200 300 400 500 600 700 800 800 1000
Time [0.01 5]
Figure 4.25 Position of CG
1

Acceleration [m/fs2]

|
500
Time [0.01 =]

Figure 4.26 Acceleration of CG
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Rotational Velocity [1/s]

0.1

(=]

-0.05

-0.1

0.z
o

100 200 300 400 500 500 700 800 900
Time [0.01 5]

Figure 4.27 Rotational Velocity of the Body with respect to CG

4.9.2 The Results of the Identification Run for Case Study 9

Identification code calculated the following inertia tensor:

999.2 454 50.7
J=| 454 1004 484
50.7 48.4 1002

Whereas the original tensor was:

1000 50 50
J=| 50 1000 50
50 50 1000
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Percentage error is:

0.08 92 14
%Error=| 92 04 32
14 32 02

Results of this case are found to be highly satisfactory. Error of the
diagonal elements are less than 0.5 percent and the largest error of
the off diagonal terms is less than 10 percent for a terms, which is

usually negligibly small for real world cases.

Figure 4.28 shows the comparison of the identified system and the

measured system’s output measurements.

Measured Output and Simulated Model Cutput

' ' ' ‘ ‘ Measured Output
= oA MMM AN Ao el Al
q | I | | |
0 2 4 6 ] 10 12
Time [10 5]
1 T T T
Measured Output
@0 - In Fit: 99 67%
|
q | I | | |
0 2 4 5 ] 10 12

Measured Qutput
In Fit: 53.29%

)

Measured Output
In Fit: 97 4%

r

Measured Output
- In Fit: 98.44%

)

Measured Output
| In Fit: 96.93%

02 | | | | |
i

8]
=
@
@
=
o

Figure 4.28 Comparison of the Identified System and the Measured

System
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4.10 Case Study 10

In this case the mass properties of 1998 Chevrolet Acura with one

occupant and full fuel tank are used [32].

Table 4.10 Data for Case Study 10

CASE 10
Coordinates of CG (initially) [m] [1.97; 2.75; -2.874]
Mass [kg] 1975
Jxx [N.m?] 3741
Jyy [N.m?] 963
Jzz [N.m?] 3973
Jxy [N.m?] 0
Jxz [N.m?] 0
Jyz [N.m?] 168
Coordinates of Hinge Points on the Ceiling [m]
[0;0,0]
[4,0,0]
[0:;7.75:0]
[4;7.75;0]

Body Dimensions [m]
2x5x2 (Rectangular Prism)

Coordinates of Hinge Points on the Body (wrt to CG)
[-0.985;-1.375;1.437]
[1.015;-1.375;1.437]
[-0.985;3.625;1.437]
[1.015;3.625;1.437]

Initial Conditions
No Initial Displacement
Applied Forces

Force Magnitude [N] Point of Action (wrt CG) [m]
200 [-0.985;-1.375;-0.563]
Frequency of Forcing [Hz]
2.1

Initial Guess Vector for Inertia Tensor [N.m2]
[3000; 50; 50; 1250; 500; 3000]
Length of the Experiment [s] Sampling [s]
250 0.01

75



|
‘|
(=2
|
N
-

"

i

|
[

H‘I"N.

Figure 4.29 Position of x coordinate of CG

The resulting motion of the experiment can be observed in Figures

4.29,4.30, 4.31, 4.32, 4.33, 4.34, 4.35 and 4.36.

4.10.1 The Results of the Experiment of Case Study 10
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Figure 4.30 Position of y coordinate of CG
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Figure 4.32 Position of z coordinate of CG
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Figure 4.36 Rotational Velocity of the Body with respect to CG

79



4.10.2 The Results of the Identification Run for Case Study 10

Identification code calculated the following inertia tensor:

3768.1 -2 2
J=| -2 969.1 1624
2 162.4 3837.2

Whereas the original tensor was:

3741 0 0
J=| 0 963 168
0 168 3973

Percentage error is:

072 2 +2
Y%Error=| 2 0.63 3.32
+2 332 342

The vehicle used for this run is a sports utility vehicle (SUV). Results
of this case are found to be highly satisfactory. The largest error of
the diagonal elements is less than 3.5 percent and is acceptable for
vehicle dynamics studies. Error of the off diagonal elements is well

above required accuracy.

Figure 4.37 shows the comparison of the identified system and the

measured system’s output measurements.
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Measured Output and Simulated Model Output

05 T T T
: | ! ! — Measured Output
o 0 A L AL L e B L AR B L | [T InFit382%
& ] i r
o | | | | |
0 5 10 15 Pl i k|
Time
— Measured Quiput

y2

LRI

\
10

AR

20

—InFit: 38.27%

— Measured Output
—InFit: 97.73%

5 | | | | |
0 5 10 15 i P k|
Tirme
5 T T T T T
i | . | — Measured Qutput
O M O R | [==InFi k%
=7 A O A< e \ \ \ | et
5 \ | |
0 5 10 15 A A 1
Time
1

— Measured Output
— InFit: 34.01%

— Measured Qutput
—InFit: 82.89%

Figure 4.37 Comparison of the Identified System and the Measured

System
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4.11 Case Study 11

In this case the mass properties of 1998 Chevrolet Acura with one

occupant and full fuel tank are used [32].

Table 4.11 Data for Case Study 11

CASE 11
Coordinates of CG (initially) [m] [1.97; 2.75; -2.874]
Mass [kg] 1975
Jxx [N.m?] 3741
Jyy [N.m?] 963
Jzz [N.m?] 3973
Jxy [N.m?] 0
Jxz [N.m?] 0
Jyz [N.m?] 168
Coordinates of Hinge Points on the Ceiling [m]
[0;0,0]
[4,0,0]
[0:;7.75:0]
[4;7.75;0]

Body Dimensions [m]
2x5x2 (Rectangular Prism)

Coordinates of Hinge Points on the Body (wrt to CG)
[-0.985;-1.375;1.437]
[1.015;-1.375;1.437]
[-0.985;3.625;1.437]
[1.015;3.625;1.437]

Initial Conditions
No Initial Displacement
Applied Forces

Force Magnitude [N] Point of Action (wrt CG) [m]
400 [-0.985;-1.375;-0.563]
Frequency of Forcing [Hz]
2.1

Initial Guess Vector for Inertia Tensor [N.m2]
[3000; 50; 50; 1250; 500; 3000]
Length of the Experiment [s] Sampling [s]
250 0.01
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The resulting motion of the experiment can be observed in Figures

4.11.1 The Results of the Experiment of Case Study 11
4.38,4.39,4.40,4.41,4.42,4.43,4.44, 4 45 and 4.46.
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Figure 4.38 Position of x coordinate of CG

Figure 4.39 Position of y coordinate of CG
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Figure 4.41 Position of z coordinate of CG
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Figure 4.43 Acceleration of CG in x direction

85



Figure 4.45 Acceleration of CG in z direction between [0,15]s
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Retational Yelocity [1/5]
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Figure 4.46 Rotational Velocity of the Body with respect to CG
between [0,50]s

4.11.2 The Results of the Identification Run for Case Study 11

Identification code calculated the following inertia tensor:

37727 -3 13
J=| -3 9693 165.8
13 165.8 38314

Whereas the original tensor was:

3741 0 0
J=| 0 963 168
0 168 3973
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Percentage error is:

085 +3 +13
Y%Error=| 3 0.65 1.3
+13 1.3 3.56

Accuray of this case is in acceptable range. The largest error of the
diagonal elements is less than 4 percent and is acceptable for
vehicle dynamics studies. Error of the off diagonal elements is less

tha 1.5 percent.

Figure 4.47 shows the comparison of the identified system and the

measured system’s output measurements.

Measured Output and Simulated Model Output

Measured Output
In Fit: 88.01%

Measured Output
In Fit: 98.19%

Measured Output
In Fit: 97 63%

Time

Measured Output
In Fit: 95.81%
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vd

Measured Output
In Fit: 94.16%

Measured Output
In Fit: 90.07 %

Figure 4.47 Comparison of the Identified System and the Measured

System
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4.12 Case Study 12

In this case the mass properties of 1998 Chevrolet Metro (Suzuki

Swift) with one occupant and full fuel tank are used [32].

Table 4.12 Data for Case Study 12

CASE 12
Coordinates of CG (initially) [m] [ 1.4; 2.065; -2.252]
Mass [kg] 880
Jxx [N.m?] 987
Jyy [N.m?] 274
Jzz [N.m?] 1102
Jxy [N.m?] 0
Jxz [N.m?] 0
Jyz [N.m?] 32
Coordinates of Hinge Points on the Ceiling [m]
[0;0,0]
[3.5;0;0]
[0;5;0]
[3.5;5;0]

Body Dimensions [m]
1.5x2.5x1.5 (Rectangular Prism)

Coordinates of Hinge Points on the Body (wrt to CG)
[-0.7;-1.0325;1.126]
[0.8;-1.0325;1.126]
[-0.7;1..4675;1.126]
[0.8;1.4675;1.126]

Initial Conditions
No Initial Displacement
Applied Forces

Force Magnitude [N] Point of Action (wrt CG) [m]
200 [-0.7;-1.0325;-0.374]
Frequency of Forcing [Hz]
2.1

Initial Guess Vector for Inertia Tensor [N.m2]
[700; 10; 10; 350; 50; 1000]
Length of the Experiment [s] Sampling [s]
250 0.01
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4.12.1 The Results of the Experiment of Case Study 12

The resulting motion of the experiment can be observed in Figures
448, 4.49, 4.50, 4.51,4.52, 453, 4.54.
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Figure 4.49 Position of y coordinate of CG between [0,50] s
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Figure 4.51 Acceleration of CG in x direction between [0,60]s
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Figure 4.52 Acceleration of CG in y direction between [0,50]s
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Figure 4.53 Acceleration of CG in z direction between [0,25]s
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Figure 4.54 Rotational Velocity of the Body with respect to CG
between [0,50]s

4.12.2 The Results of the Identification Run for Case Study 12

Identification code calculated the following inertia tensor:

987 0 0
J=| 0 274 32
0 32 1102

Whereas the original tensor was:

971.5 6 5.1
J=| 6 2872 369
51 369 1082.1
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Percentage error is:

1.57 46 15.1
%Error=| 6 4.82 15.3
+5.1 153 1.81

Although 15 percent error in off diagonal elements look high,
absolute value of that components is very low when compared to
diagonal elements, thus the error is not significant and the alues are

still good enough for vehicle dynamics studies.

Figure 4.55 shows the comparison of the identified system and the

measured system’s output measurements.

Measured Output and Simulated Model Output

Measured Output
In Fit: 99.65%

Time

—— Measured Output
In Fit: 97.52%

Measured Output
In Fit: 97.49%

Time

Measured Output
In Fit: 85.5%

Tirme

Measured Output
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Time

In Fit: §9.26%

Tirme

Figure 4.55 Comparison of the Identified System and the Measured

System
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4.13 Case Study 13

In this case the mass properties of 1998 Chevrolet Metro (Suzuki

Swift) with one occupant and full fuel tank are used [32].

Table 4.13 Data for Case Study 13

CASE 13
Coordinates of CG (initially) [m] [ 1.4; 2.065; -2.252]
Mass [kg] 880
Jxx [N.m?] 987
Jyy [N.m?] 274
Jzz [N.m?] 1102
Jxy [N.m?] 0
Jxz [N.m?] 0
Jyz [N.m?] 32
Coordinates of Hinge Points on the Ceiling [m]
[0;0;0]
[3.5;0;0]
[0;5;0]
[3.5;5;0]

Body Dimensions [m]
1.5x2.5x1.5 (Rectangular Prism)

Coordinates of Hinge Points on the Body (wrt to CG)
[-0.7;-1.0325;1.126]
[0.8;-1.0325;1.126]
[-0.7;1..4675;1.126]
[0.8;1.4675;1.126]

Initial Conditions
No Initial Displacement
Applied Forces

Force Magnitude [N] Point of Action (wrt CG) [m]
200 [-0.7;-1.0325;-0.374]
Frequency of Forcing [Hz]
1.05

Initial Guess Vector for Inertia Tensor [N.m2]
[700; 10; 10; 350; 50; 1000]
Length of the Experiment [s] Sampling [s]
250 0.01
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Position [m]

4.13.1 The Results of the Experiment of Case Study 13

The resulting motion of the experiment can be observed in Figures
4.56, 4.57, 4.58, 4.59, 4.60, 4.61, 4.62, 4.63 and 4.64.
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Figure 4.57 Position of y coordinate of CG between [0,80] s
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Figure 4.60 Acceleration of CG in x direction between [0,25]s
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Figure 4.61 Acceleration of CG in y direction
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Figure 4.64 Rotational Velocity of the Body with respect to CG
between [0,50]s

4.13.2 The Results of the Identification Run for Case Study 13

Identification code calculated the following inertia tensor:

J=

9682 -04 10.2
-04 2793 344
102 344 1082.6

Whereas the original tensor was:
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J=| 0 274 32
0 32 1102

Percentage error is:

1.90 04 +10.2
%Error=| 0.4 1.93 7.5
+10.2 7.5 1.76

The same data set from the previous case is used with halved
frequency. The error of off diagonal elements is not high in this case,
with a maximum of 7.5 percent. Diagonal elements are very
accurately identified. igure 4.65 shows the comparison of the

identified system and the measured system’s output measurements.

Measured Output and Simulated Model Output

Measured Output
In Fit: 99.63%

Measured Output
In Fit: 97.61%

Measured Output
In Fit: 94.82%

Time

Measured Output
In Fit: 95.47 %

Measured Output
In Fit: 92.08%

Figure 4.65 Comparison of the Identified System and the Measured
System
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4.14 Case Study 14

In this case the mass properties of 1998 Honda Civic with one

occupant and full fuel tank are used [32].

Table 4.14 Data for Case Study 14

CASE 14
Coordinates of CG (initially) [m] [1.6; 2.256; -2.274]
Mass [kg] 1145
Jxx [N.m?] 1617
Jyy [N.m?] 365
Jzz [N.m?] 1785
Jxy [N.m?] 0
Jxz [N.m?] 0
Jyz [N.m?] 70
Coordinates of Hinge Points on the Ceiling [m]
[0;0;0]
[4,0;0]
[0;6:0]
[4,6;0]

Body Dimensions [m]
1.6x3x1.5 (Rectangular Prism)

Coordinates of Hinge Points on the Body (wrt to CG)

[-0.8;-1.128;1.137]

[0.8;-1.128;1.137]

[-0.8;1.672;1.137]

[0.8;1.672;1.137]

Initial Conditions

No Initial Displacement
Applied Forces

Force Magnitude [N] Point of Action (wrt CG) [m]
200 [-0.8;-1.128;-0.363]
Frequency of Forcing [Hz]
1.05

Initial Guess Vector for Inertia Tensor [N.m2]
[1000; 10; 10; 300; 40; 1000]
Length of the Experiment [s] Sampling [s]
250 0.01
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Paostion [rn]

Pasition [m]

4.14.1 The Results of the Experiment of Case Study 14

The resulting motion of the experiment can be observed in Figures
4.66, 4.67,4.68,4.69,4.70,4.71,4.72,4.73,4.74,4.75, 4.76, 4.77.

i

. S00 1000 1500 2000 25iDD 3000 3500 4000 4500 S000
Time [0.01 s]
Figure 4.66 Position of x coordinate of CG between [0,50] s
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Figure 4.67 Position of y coordinate of CG between [0,50] s
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Figure 4.69 Position of z coordinate of CG between [0,25] s
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Figure 4.70 Acceleration of CG in between [0,10]s
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Figure 4.71 Acceleration of CG in x direction between [0,125] s
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Figure 4.72 Acceleration of CG in y direction
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Figure 4.73 Acceleration of CG in z direction
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Figure 4.74 Rotational Velocity of the Body with respect to CG
between [0,20]s
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Figure 4.75 Rotational Velocity of the Body with respect to CG

around x axis

107



s]

ime [0.01

Figure 4.76 Rotational Velocity of the Body with respect to CG

around y axis
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Figure 4.77 Rotational Velocity of the Body with respect to CG

around z axis
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4.14.2 The Results of the Identification Run for Case Study 14

Identification code calculated the following inertia tensor:

15424 -14 -0.8
J=| =14 3649 63
-0.8 63 1731

Whereas the original tensor was:

1617 0 0
J=| 0 365 70
0 70 1785

Percentage error is:

461 1.4 0.8
Y%Error=|*t1.4 0.03 10
+0.8 10 3.03

In this case, the mass properties of Honda Civic [32] is used, which is
a car that is also available on Turkish market. Maximum error of
diagonal elements is again lower than 5 percent and maximum error
of off diagonal elements is 10 percent. The results are satisfying in

terms of vehicle dynamics studies.

Figure 4.78 shows the comparison of the identified system and the

measured system’s output measurements.
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Figure 4.78 Comparison of the Identified System and the Measured

System
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4.15 Case Study 15

In this case the mass properties of 1998 Honda Civic with one

occupant and full fuel tank are used [32].

Table 4.15 Data for Case Study 15

CASE 15
Coordinates of CG (initially) [m] [1.6; 2.256; -2.274]
Mass [kg] 1145
Jxx [N.m?] 1617
Jyy [N.m?] 365
Jzz [N.m?] 1785
Jxy [N.m?] 0
Jxz [N.m?] 0
Jyz [N.m?] 70
Coordinates of Hinge Points Points on the Ceiling [m]

[0;0,0]

[4,0;0]

[0;6;0]

[4,6:0]

Body Dimensions [m]
1.6x3x1.5 (Rectangular Prism)

Coordinates of Hinge Points on the Body (wrt to CG)

[-0.8;-1.128;1.137]

[0.8;-1.128;1.137]

[-0.8;1.672;1.137]

[0.8;1.672;1.137]

Initial Conditions

No Initial Displacement
Applied Forces

Force Magnitude [N] Point of Action (wrt CG) [m]
200 [-0.8;-1.128;-0.363]
Frequency of Forcing [Hz]
2.1

Initial Guess Vector for Inertia Tensor [N.m2]
[1000; 10; 10; 300; 40; 1000]
Length of the Experiment [s] Sampling [s]
250 0.01
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The resulting motion of the experiment can be observed in Figures

4.15.1 The Results of the Experiment of Case Study 15
4.79, 4.80, 4.81,4.82, 4.83, 4.84, 4.85, 4.86, 4.87, 4.88, 4.89.
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Figure 4.79 Position of x coordinate of CG between [0,150] s

Figure 4.80 Position of y coordinate of CG between [0,75] s
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Figure 4.81 Position of z coordinate of CG
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Figure 4.82 Acceleration of CG in between [0,10]s
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Figure 4.83 Acceleration of CG in x direction
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Figure 4.84 Acceleration of CG in y direction
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Figure 4.86 Rotational Velocity of the Body with respect to CG
between [0,20]s
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Figure 4.88 Rotational Velocity of the Body with respect to CG

around y axis
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Figure 4.89 Rotational Velocity of the Body with respect to CG

around z axis

4.15.2 The Results of the Identification Run for Case Study 15

Identification code calculated the following inertia tensor:

15945 2.7 43
J=| 2.7 3699 544
43 544 16754

Whereas the original tensor was:

1617 0 0
J= 0 365 70
0 70 1785
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Percentage error is:

1.39 +2.7 143
Y%Error=|+2.7 134 223
+43 223 6.14

This case uses the same data set from the previous case except for

the fact that the forcing frequency is doubled. The error on the first

two diagonal elements decreased whereas the error on the yaw

moment of inertia and roll/yaw product of inertia increased. Still the

accuracy is acceptable for most vehicle studies.

Figure 4.90 shows the comparison of the identified system and the

measured system’s output measurements.

Measured QOutput and Simulated Model Output

Measured Output
In Fit: B2.46%

a 5] 10 15 20 25
Time
T T T T T
1kF Measured Output
ok In Fit: -11.22%
A
2 1 1 1 I 1
475 48 485 49 495
Time
5 T T T T T
Measured Output
In Fit: B5.3%
o
5 | | 1 1 1
o 10 15 20 25
Time
5 T T T T T
Measured Output
5 In Fit: B8.29%
5 | L L 1 |
o 10 15 20 25

Measured Output
In Fit: 68.09%

Measured Output
In Fit: 87.63%

Figure 4.90 Comparison of the Identified System and the Measured

System
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4.16 Case Study 16

In this case the mass properties of 1998 Jeep Cherokee with one

occupant and full fuel tank are used [32].

Table 4.16 Data for Case Study 16

CASE 16
Coordinates of CG (initially) [m] [1.6; 2.5; -2.58]
Mass [kg] 1810
Jxx [N.m?] 2894
Jyy [N.m?] 695
Jzz [N.m?] 3101
Jxy [N.m?] 0
Jxz [N.m?] 0
Jyz [N.m?] 102
Coordinates of Hinge Points on the Ceiling [m]
[0;0,0]
[4,0,0]
[0;5.2;0]
[4;5.2;0]

Body Dimensions [m]
1.6x2.5x1.75 (Rectangular Prism)

Coordinates of Hinge Points on the Body (wrt to CG)

[-0.8;-1.25;1.29]
[0.8;-1.25;1.29]
[-0.8;1.25;1.29]
[0.8;1.25;1.29]

Initial Conditions

No Initial Displacement
Applied Forces

Force Magnitude [N] Point of Action (wrt CG) [m]
200 [-0.8;-1.25;-0.46]
Frequency of Forcing [Hz]
1.05

Initial Guess Vector for Inertia Tensor [N.m2]
[1000; 10; 10; 300; 40; 1000]
Length of the Experiment [s] Sampling [s]
150 0.01
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Iting motion of the experiment can be observed in Figures
4.91, 4.92, 493, 4.94, 4.95, 496, 4.97, 4.98, 4.99, 4.100, 4.101,

4.16.1 The Results of the Experiment of Case Study 16
4.102, 4.103.
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Figure 4.92 Position of y coordinate of CG
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Figure 4.93 Position of y coordinate of CG between [0,40] s
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Figure 4.94 Position of z coordinate of CG
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Pasition [m]
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Figure 4.95 Position of z coordinate of CG between [0,30] s
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Figure 4.96 Acceleration of CG in between [0,15]s
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Figure 4.98 Acceleration of CG in y direction
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Figure 4.99 Acceleration of CG in z direction
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Figure 4.100 Rotational Velocity of the Body with respect to CG

between [0,25]s
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Rotational Yelocity [1/5]

Time [0.071 &]

Figure 4.103 Rotational Velocity of the Body with respect to CG

around z axis

4.16.2 The Results of the Identification Run for Case Study 16

Identification code calculated the following inertia tensor:

27782 -2.5 1.0
J=| =25 6919 939
1.0 93.9 2984.8

Whereas the original tensor was:

2894 0 0
J=| 0 695 102
0 102 3101
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Percentage error is:

4.00 =25 =£1.0
2.5 045 7.94
+1.0 794 3.75

Y% Error =

The vehicle used in this case is Jeep Cherokee, and is available on

Turkish market. The cas is a SUV class vehicle. Accuray of all

components of the inertia tensor are acceptable to used on other

vehicle dynamics studies.

Figure 4.104 shows the comparison of the identified system and the

measured system’s output measurements.

Measured QOutput and Simulated Model Output
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Figure 4.104 Comparison of the Identified System and the Measured

System
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4.17 Case Study 17

In this case the mass properties of 1998 Jeep Cherokee with one

occupant and full fuel tank are used [32].

Table 4.17 Data for Case Study 17

CASE 17
Coordinates of CG (initially) [m] [1.6; 2.5; -2.58]
Mass [kg] 1810
Jxx [N.m?] 2894
Jyy [N.m?] 695
Jzz [N.m?] 3101
Jxy [N.m?] 0
Jxz [N.m?] 0
Jyz [N.m?] 102
Coordinates of Hinge Points on the Ceiling [m]
[0;0,0]
[4,0,0]
[0;5.2;0]
[4;5.2;0]

Body Dimensions [m]
1.6x2.5x1.75 (Rectangular Prism)

Coordinates of Hinge Points on the Body (wrt to CG)

[-0.8;-1.25;1.29]
[0.8;-1.25;1.29]
[-0.8;1.25;1.29]
[0.8;1.25;1.29]

Initial Conditions

No Initial Displacement
Applied Forces

Force Magnitude [N] Point of Action (wrt CG) [m]
200 [-0.8;-1.25;-0.46]
Frequency of Forcing [Hz]
1.05

Initial Guess Vector for Inertia Tensor [N.m2]
[1000; 10; 10; 300; 40; 1000]
Length of the Experiment [s] Sampling [s]
100 0.01
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4.17.1 The Results of the Experiment of Case Study 17

The resulting motion is the same as that of Case Study 16 in first 100

seconds.

4.17.1 The Results of the Identification Run for Case Study 17

Identification code calculated the following inertia tensor:

27783 -19 22
J=| -1.9 690 944
22 944 2985.0

Whereas the original tensor was:

2894 0 0
J=| 0 695 102
0 102 3101

Percentage error is:

40 +1.9 +£2.2
%Error =119 0.72 7.45
+22 745 374

Same data set and the same forcing in the pervious case is used, but
the time interval used in identification is shortened. The amount of

error for all elements are nearly the same as the last case.
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Figure 4.105 shows the comparison of the identified system and the

measured system’s output measurements.
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Figure 4.105 Comparison of the Identified System and the Measured

System
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4.18 Case Study 18

In this case study, the data of Honda Civic is used and is the same
data set used in case studies 14 and 15. However the forcing is
applied in yz and xz planes to investigate the effects of different

excitations.

The error obtained for harmonic excitation of 200 N at 1.05 Hz in xz

plane is:

578 +£1.78 13.93
%Error=|£1.78 0.14 10.47
+393 1047 3.16

The error obtained for harmonic excitation of 200 N at 1.05 Hz in yz

plane is:

4.02 +42.64 2.0
Y%Error=|12.64 0.03 11.86
+2.0 11.86 3.31

When compared to case study 14 (200 N forcing in xy plane at 1.05

Hz) there is no considerable improvement in accuracy.

The error obtained for harmonic excitation of 200 N at 2.1 Hz in xz

plane is:

1.76  £3.87 +£11.01
%Error=| £3.87 1.15 20.15
+11.01 20.15 4.87
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The error obtained for harmonic excitation of 200 N at 1.05 Hz in yz

plane is:

320 £292 #£10.03
Y%Error=| £2.92 1.22 22.47
+10.03 2247 7.13

When compared to case study 14 (200 N forcing in xy plane at 2.1

Hz) the same can be said for the 1.05 Hz case.

It is concluded that changing the direction of the forcing does not

effect the accuracy of the results considerably.

4.19 Discussion of Case Study Results

Seventeen case studies were studied in total. The first nine case
studies demonstrate the evolution of the development stage of the
experimental set up, whereas the last eight cases are run with data

of commercially available vehicles.

In general, it is seen that the measurement of external forces have
direct effect on the convergence. For the linear forcing cases, the
best results were obtained in the first two cases, where the applied
forces were measured. However applying a translational force is not
practical when compared to the application of a harmonic forcing

using an unbalanced mass — motor assembly.
All 6 elements of the inertia matrix are identified with good accuracy

when the applied forces are measured as in cases 1 and 2. The

highest error was 8 % in roll/lyaw product of inertia value.
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In the third case, where applied forces were not measured, all the
elements of the inertia tensor except Jy, and J,, are measured up to
an acceptable error interval. However the error came out to be 12.6
% for Jy, and 30 % for J,,. Although 12.6 % error can be considered

to be reasonable, 30 % error in a diagonal element of the inertia
tensor is unacceptable, since diagonal elements can be measured

using other simpler tehniques with very high accuracy.

It is concluded that; these errors can be decreased to an acceptable
level by estimating the forces; instead of measuring them. In this
case, the accuracy of the estimation will have a direct effect on the
error. However, it is seen that even without measuring the forces and
without estimating them, four of the six elements of the tensor are

identified with high accuracy.

In case 4; only the data points after the application of the forces were
considered, i.e. no forces were applied in the part of the data used
for the identification. In this case only J,, was measured with good

accuracy. Error in the other diagonal elements came out to be less
than 13.5 %. As mentioned above, this amount of error is considered

high for diagonal elements.

The technique used in case 4 can be considered to be used in
conjunction with case 3, which gives good accuracy for Jyx and Jyy

(with maximum error 0.37 %) in order to measure diagonal elements.
In case 5; a convergence map was plotted. According to this plot; it

can be seen that a reasonable degree of convergence can even be

achieved by measuring only the second applied force; and running
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the identification code with the data starting from a data point just
after the first force. However vast regions of divergence can also be

observed for certain intervals of starting data points.

In case 8; the experiment was started from another position
according to the findings of the 7th case. No external force was
applied. 10 seconds of motion was recorded with 0.01 s sampling. In
this case, good level of accuracy was achieved in the diagonal terms,

with a maximum error of 3.76%.

According to the results of the 8th case, it can be concluded that
diagonal terms can be identified with good accuracy without using
externally applied and measured forces, but starting with an initial
displacement. However it must be noted that in this case

unacceptably high errors are observed for the off-diagonal elements.

In case 9; a sinusoidal forcing is applied and measured. The error in
results are less than 0.5% in diagonal terms; and in acceptable range

for off-diagonal terms.

Interestingly, when case 1 was experimented with longer time range,
it was observed that although convergence was achieved, the
accuracy of the results decreased. Best results were obtained with a
data set total of 7 seconds (i.e. only 1.9 seconds after the release of
the second external force) whereas accuracy decreased regularly
with 10, 15, 20 and 50 seconds time range. However, since the
system has no damping, the motion is always the same, no matter
how long the time range is. The only difference is that with longer

time range; more oscillations are observed.
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The increase in accuracy as the time range decreases and the end of
the data set approaches to the release of the second external forcing
is most probably because of the fact that the mathematical model
used in the identification is a force based model. Although the cable
forces are considered as external forces in the system model; the
externally applied forces are the driving force of the experiment.
Thus, as the collected data has less percentage information about
the user applied force, worse results are obtained. The enforced
motion of the body is more critical than the free motion of the body

after the forcing is released.

This argument is supported by the 9th case as well. In this case the
forces are applied continuously throughout the experiment. It is
observed that as the length of the experiment increases; the
accuracy, especially for the off-diagonal terms get better. It can be
said that 9th case is the most applicable and probably the most

feasible case for real life application.

In the cases 10-17; real data sets are used in order to verify the
identification technique. The technique gives low percentage error for
diagonal elements for every case. However the percentage error for
the identified off-diagonal element is found to be higher than 15 % for
certain cases. In these cases, the value of the off-diagonal element
happens to be very low, which increases the percentage error
despite the fact that absolute error between the identified and the

real values of the parameter is acceptable.
In cases 10 and 11; the same vehicle was excited with an harmonic

forcing of same frequency but different amplitudes to observe the

effect of different forcings. In case 11, amplitude was doubled.
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Although both of the identified tensors were found to be satisfactory,

the results of the case 10 is slightly more accurate.

In cases 12,13 and 14, 15 the same vehicle was subjected to the
forcings with same amplitudes but different frequencies, in order to
observe if the frequency effects the identification process. In these
cases accurcy of the identified tensor was better for the lower
frequency cases. It is clear that the frequency of the forcing has a

strong effect on the results.

In case 18, forcings in different directions are applied to investigate
the effects of excitation in other planes. It is concluded that, although
percentage error was decreased in certain elements of the tensor;

there was no great improvement in overall accuracy.
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CHAPTER 5

DISCUSSION AND CONCLUSION

5.1 Discussion

In this study, an simulink model of an experimental set up and a set
of codes were developed in order to identify the mass properties of

vehicles to be used in further vehicle dynamics research.

The simulink model simulates a certain experimental set up, which
consists of a frame which is suspended by four steel cables from the
ceiling of the laboratory. The body, the mass properties of which is to

be measured is fixed into the frame.

The experimental set up in its statical equilibrium position is used to
calculate the location of center of gravity of the vehicle. For this
process, two experiments are made; one with a dummy mass with
known center of gravity location, fixed to a known position on the

frame.

In order to identify the inertia tensor of the vehicles, the experimental
set up must be excited and the resulting motion must be recorded.
After several case studies it is decided to use an unbalanced mass —
motor assembly to excite the system. Translational accelerations and
rotational velocities of the center of gravity are to be measured using

accelerometers and gyroscopes. The tensions on the steel cables
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and the harmonic forcing which is applied to a known position on the
body must also be measured. Using the recorded motion data, the
position and the orientation history of the body and the force vector
histories are calculated in order to obtain the generalised force vector

history.

The equation of motion of the system is derived using Newton’s
Second Law of Motion and a state space model is obtained using
these equations. Elements of the mass moment of inertia matrix are
introduced as free parameters of this model. Measured motion data
and generalised force vector history are fed as input to the

identification code.

In real life application instead of the experiment simulation, the actual
experiment is going to be made. Thus the measured data must be
transfered into MATLAB® workspace. Then the codes must be run in
following order: Position tracking code, preprocessing code and
identification code. Note that the user must have enough knowledge
on the code and system dynamics to update the code according to

possible changes in the experimental set up or measured data.

The case studies in Chapter 4 are presented in the order they were
studied. They demonstrate the development of the study. In the first
nine cases, the most feasible and applicable method is sought,
whereas in the last ones, the decided method is further tested and

verified.

The resulting identification code of this study has some limitations,
one of which is that the code works only with one specific
experimental configuration. The code must be modified in case of a

change in number of suspending cables or a change in actuating
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method. Also the successful identification of the inertia parameters
and the convergence of the code is strongly dependent on the initial
guess vector. Thus the user should use sensible figures for the initial
guess vector for ensurence of the convergence. Different estimation

methods can be found in the literature [18].

5.2 Conclusion

In conclusion, the major objective of this thesis, which is to develop a
code and methodology that will identify the mass properties of
vehicles using a specified test rig, for further vehicle dynamics
studies, is achieved successfully. For this purpose, a methodology
which provides a successful approach to the problem of modelling of
the experimental system is derived. The center of mass is calculated
using the equilibrium position of the set up. A Simulink model is

developed to simulate the dynamic response of the experiment.

Final configuration of the experimental set up employs an
unbalanced mass — motor assembly. This configuration is decided
because of the better accuracy it offers and relatively easy
application when compared to linear forcing case. The experimental
set up consists of a carrying frame, four steel cables, three
accelerometers, three gyroscopes, four load cells, and an
unbalanced mass-motor assembly with two load cells to measure the

forcing it exerts on the body.

Different cases were studied, six of which were taken from real life
vehicles. The results of the experiment simulations were used as
input for identification code. The results are found to be highly

satisfactory both for diagonal elemnts and off-diagonal elements.
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Although it has some limitations as stated above, designed
identification code is a very useful tool and will satisfy the needs of
the further vehicle dynamics studies. By using this code, the mass
properties of vehicles will be obtained in shorter time when compared

to conventional natural frequency methods.

5.3 Future Work

Some or all of the above mentioned limitations may be overcome in
the future work, since the foundations of the design methodology is

derived successfully in this thesis.

First limitation, need to use Matlab, can be removed by coding the
identification code on a different development platform and making it
a stand alone application. However, this would require development
of the optimization routines instead of the MATLAB® functions used
in this study. Other functions of the identification code can be directly
used or modified depending on the selected development platform.
The development platform can be a high level language such as

Delphi or Visual Basic.

Detailed design and optimization of the test rig is another subject and

may be examined in a future M.Sc. study.

The error introduced by the unbalanced mass — motor assembly is
rather small and was neglected in this study. However since the
position of the motor is fixed on the frame and the motion of the
unbalanced mass is easy to track, its effect on the center of mass
and inertia can be estimated, neglecting the change of inertia with

time introduced by the rotating mass or remodelling the system with
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a time dependent inertia model. The accuracy of the method would

increase considerably in this case.

Another future work may be the addition of a module to estimate the
natural frequencies of the experimental model and a study to
investigate the optimum rotational speed for the unbalanced mass —
motor assembly using the natural frequency data. According to the
findings of this thesis; changing frequency of the loading leads to

different results in terms of accuracy.
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