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ABSTRACT 
 
 

IDENTIFICATION OF INERTIA TENSOR OF VEHICLES 

 
 

Kutluay, Emir 

M.S., Department of Mechanical Engineering 

Supervisor: Prof. Dr. Y. Samim ÜNLÜSOY 

 

September 2007, 149 Pages 

 
 
The aim of this thesis is to develop a methodology for obtaining mass 

properties of a vehicle using specific test rig. Investigated mass 

properties are the mass, location of center of gravity and the inertia 

tensor. Accurate measurement of mass properties of vehicles is crucial 

for vehicle dynamics research. The test rig consists of a frame on which 

the vehicle is fixed and which is suspended from the ceiling of the 

laboratory using steel cables. Mass and location of center of gravity are 

measured using the data from the test rig in equilibrium position and 

basic static equations. Inertia tensor is measured using the data from 

dynamical response of the system. For this purpose an identification 

routine which employs prediction error method is developed using the 

built–in functions from the System Identification Toolbox of MATLAB®. 

The experiment was also simulated using Simmechanics Toolbox of 

MATLAB®. Identification code is verified using the results of the 

experiment simulations for various cases.  

 

Keywords: Identification, Parameter Estimation, Prediction Error, Inertia 

Tensor, Vehicle Dynamics 
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ÖZ 
 
 

ARAÇLARIN ATALET TENSÖRLERİNİN TANILANMASI 

 
 

Kutluay, Emir 

Yüksek Lisans, Makina Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Y. Samim ÜNLÜSOY 

 

Eylül 2007, 149 Sayfa 

 
 
Bu çalışmanın amacı araçların kütle özelliklerinin özel bir deney 

düzeneği kullanılarak elde edilebilmesi için bir method geliştirmektir. 

Araştırılan kütle özellikleri kütle, aüırlık merkezinin konumu ve atalet 

tensörüdür. Araçların kütle özelliklerinin doğru ölçümü araç dinamiği 

araştırmaları için çok önemlidir. Deney düzeneği tavandan çelik kablolar 

vasıtasıyla sarkıtılmış ve üzerine aracın sabitlendiği bir çerçeveden 

oluşmaktadır. Kütle ve ağırlık merkezi ölçümü deney düzeneği denge 

konumundayken toplanan veriler ve statik denklemleri vasıtasıyla 

ölçülmektedir. Atalet tensörü ise sistemin hareketli deneylerinden 

toplanan veriler kullanılarak bulunmaktadır. Bu amaçla MATLAB® 

programının System Identification Toolbox fonksiyonları aracılığı ile 

tahmin hatası methodunu kullanan bir tanılama programı yazılmıştır. 

Deney düzeneği de yine MATLAB® programının Simmechanics  

Toolbox özellikleri kullanılarak simüle edilmiştir. Tanılama kodu farklı 

durumlar için yapılan deney simülasyonları ile doğrulanmıştır. 

 

Anahtar Kelimeler: Tanılama, Parametre Tahmini, Kestirim Hatası, 

Atalet Tensörü, Araç Dinamiği 
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CHAPTER 1 
 

 

INTRODUCTION 

 
 

 

1.1 Introduction 

 

There are many reasons for obtaining inertia measurements in the 

field of Vehicle Dynamics. Car manufacturers, military organizations, 

and heavy vehicle manufacturers require inertia properties for use in 

their vehicle handling, ride, and stability models and simulations of 

existing vehicles and in the development stages of new vehicle and 

vehicle subsystem designs. 

 

Accurate values of the dynamic parameters of a car are needed to 

improve the dynamic control and simulation of a car. Vehicle center-

of-gravity height and roll inertia are often used to investigate vehicle’s 

rollover tendency. They also affect response speed of the vehicle to 

steer inputs. Racing companies rely on these properties for their 

track time simulations. In order to simulate or identify other 

parameters of a vehicle [1-4], mass and inertia properties must be 

known.  

 

Measuring the full inertia tensors of vehicles, or rigid bodies in 

general has often been considered an involved task. “When classical 

methods are applied [5,6], the tests require some special effort to 

position in six different spatial orientations the oscillation axis around 

which the body under consideration is forced to vibrate in order to 
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derive the inertia tensor components. Classical methods have been 

developed many decades ago when numerical identification 

algorithms were still not properly developed or could not be 

employed due to the huge amounts of computations required. 

Presently, computers have sufficient computation speed to obtain the 

measurement of the full inertia tensor relatively quickly and simply by 

means of procedures based on parameter identification algorithms” 

[7].   

 

A number of test rigs have been presented in the literature for the 

measurement of inertial parameters (mass, center-of-gravity location, 

inertia tensor) [2,3,4,8-16]. Almost in all of the early or “classical” 

applications, the body (or vehicle) was either constrained to rotate 

around one axis and, by measuring the frequency of oscillations, the 

moment of inertia around that axis was measured or modal analysis 

techniques were used [5]. 

 

1.2 Previous Work 

 

Numerous studies were made on identification, measurement and 

estimation of inertia tensor. In literature, there are three main 

approaches to the measurement of inertia properties problem. 

 

The first approach is the most fundamental one; which is simply 

oscillating the body around the rotating axis for which the relevant 

inertia property is sought after. In this case the frequency of the 

oscillations are measured to calculate the inertia terms. However it is 

hard to obtain the off-diagonal elements of the inertia tensor using 

these techniques. 
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The second approach involves using the modal analysis and system 

identification techniques. In system identification approach, the 

researcher has the freedom of choosing both the mathematical 

model which will simulate the response of the system and the 

parameters of this user defined mathematical model [17]. However, 

in parameter identification approach, which is the third approach to 

the problem; the implementer’s aim is to identify the free parameters 

of a predetermined mathematical model.  

 

The main solution of a parameter identification problem is to 

minimize the differences between the outputs of the mathematical 

model and the experimental measurements, which will inherently 

converge the free parameters in the system equations to actual 

values. In order to achieve this goal, a cost function is defined as the 

sum of the squares of the differences between the outputs of the 

mathematical model and the measured values. Minimizing this cost 

function will lead to the solution of the problem. These definitions 

actually define a nonlinear least square problem, which can be 

solved by using unconstrained optimization methods. 

 

A detailed comparison of moment of inertia estimation techniques in 

the literature can be found in [18]. MacInnis et. al. compared many 

estimation formulae; which relate dimensional parameters of vehicles 

to their mass properties and used his findings to simulate vehicle 

collision dynamics. It must be noted that the methods they employed 

give moments of inertia estimates but not the actual values.  

 

In 1997 a method was developed by Stebbins et. al. [19] to estimate 

a rigid body’s inertia properties using a prototype six-axis load cell 

designed to measure all loads and moments applied to the structure. 

The body was fixed to the experimental set up; excited randomly in 
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all directions by an impact hammer. Several tri-axial accelerometers 

were placed on the body (since location of CG was unknown, none of 

them were placed on the CG). Despite the fact that the basis of the 

model used in this research was Newton’s 2nd Law; the computation 

process was much more complicated; as the aim of the research was 

to identify all 10 parameters simultaneously. The method succeeded 

in estimating all 10 parameters accurately, however because of the 

prototype six-axis load cell; which was composed of 32 piezoelectric 

sensing elements; the cost of this technique came out to be rather 

high.     

 

Metz et. al. [20] measured mass moment of inerta of passenger cars 

and motorcycle tyres about the tyre spin axis using a torsional 

pendulum technique, similar to trifilar pendulum method [21]. A pair 

of linear correlation equations, one for mounted tyres and one for the 

unmounted tyres, were derived which relate inertia values to tyre 

diameters and weights.  

 

Venture et. al. [22] developed a robotics approach in 2003. The 

system was modeled as a multi-body (by using Modified Denavit and 

Hartenberg notation), which allowed the automatic computation of 

the dynamic identification model, which was linear with respect to the 

inertial (mass, center of mass and inertia tensor) and the suspension 

parameters. Every element of vehicles suspension and chasis were 

modeled as joints (degrees of freedom). No special experimental 

setup was required: the experiments were done by performing 

various predetermined manouvers on test grounds. A total of 34 

parameters were identified accurately. The shortcoming of this 

technique was that the cost of the experimental tools was high due to 

the number of sensors used. However this research succeeded in 
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obtaining the inertial parameters and suspension parameters 

simultaneously.  

 

In 2001 Heydinger et. al. [23] designed a new test rig for measuring 

center-of-gravity height; roll, pitch, and yaw moments of inertia; and 

roll/yaw cross product of inertia for a broad range of vehicles and 

vehicle components (e.g. tank turrets). This facility was capable of 

handling vehicles up to 3 meters in width, up to 27,000 kg. The mass 

and horizontal position of the center-of-gravity were measured using 

a set of four floor scales. The vertical position of center-of-gravity 

was found by adding an extra weight to a known position and 

measuring the change in roll angle. The moments of inertia were 

obtained by measuring the period of oscillations in about each axis. 

Experiments were made seperately for each element of the inertia 

tensor. Roll/yaw product of inertia was derived by constraining the 

roll motion of the vehicle and measuring the force required to keep 

the vehicle’s yaw motion constrained during the yaw moment of 

inertia test. 

 

Rosenthal et. al. [24] analyzed how vehicle inertial properties relate 

to typical dimensions (length, width and height) and how these 

properties affect vehicle dynamics. They reached the conclusion that 

the vehicle inertial properties were strongly correlated with standard 

measures of length, width and height. They also correlated accident 

database analysis with their findings about the handling – inertial 

properties relations. Note that correlating the typical dimensions of a 

vehicle with its mass properties resulted in reaching not the actual 

values but estimates with reasonable error. The values obtained 

through the techniques described in their work was not suitable for 

full scale vehicle dynamics modelling and simulation purposes. 
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Mastinu et. al. [7] focused on the effects of inertia tensor components 

on ride comfort and handling behaviour of the vehicle. Two multi-

body models were used for simulations in different road conditions 

and to observe the effects on the driver and the handling of the 

vehicle. Results of this theoretical investigation were used to 

prescribe the measurement accuracy of the inertia tensor 

components. Furthermore a new method [6] [25] for measuring the 

inertia tensor of vehicles, meeting the accuracy determined on the 

basis of the preliminary theoretical study was proposed. 

 

In 1996 Heydinger et. al. [26] performed a study  on determining not 

only mass properties of a vehicle (mass, center-of-gravity location, 

diagonal terms of the inertia tensor and roll/yaw coupling term of the 

inertia tensor), but also those of the sprung and unsprung bodies. 

The method involved making several experiments and measuring 

whole vehicle mass properties at different trim heights. Sprung and 

unsprung mass properties are obtained by comparing and 

processing the experimental results at different trim heights using 

numerical algorithms. 

 

A study was made in 1997 by Rizel et. al. [27] which included 

measurement of human body mass properties (mass, center-of-

gravity position, inertia tensor), comparison of these values with 

numerically estimated data and usage of the results in vehicle crash 

simulations. The human body was modelled as a multibody of 

ellipsoids in the computer simulations. Test subjects were secured to 

the experimental setup (a specially designed chair design). The 

inertial measurement was done by torsional pendulum technique. 

Note that only the diagonal elements of the inertia tensor were 

measured in this study.  
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In 2002 Mastinu et. al. [6] designed a test rig to measure the mass 

properties of vehicles and their subsystems. The technique involved 

suspending the vehicle from a fixed frame and exciting it in order to 

obtain a motion complicated enough to observe the effects of each 

component of the inertia tensor. Location of the center-of-gravity is 

measured when the system is in static equilibrium. The results of the 

experiment were used in full scale vehicle parameter identification 

purposes. This test rig was further developed in [25]. 

 

Hahn and Niebergall [28,33] designed an experiment robot in order 

identify ten inertial parameters simultaneously. The designed robot 

experimentally identified the inertial parameters of a rigid body 

automatically using the complete information hidden in the nonlinear 

model equations of the test body. This task was solved in several 

steps: 

- Mathematical modelling of the special motions of a rigid body in 

space. These model equations were mapped into a form suitable for 

identification purposes. 

- Design of a special measurement robot for performing the 

identification experiments. 

- Identification of the inertia parameters and accuracy tests. 

The accuracy of the identified parameters were found to be 

satisfactory. The designed robot was built for small bodies (i.e. not 

for vehicles). 

 

 

1.3 Aim and Scope of the Study 

 

In this study a method to measure the mass properties of vehicles 

using a specific test rig proposed by Mastinu et. al. [6]. The 
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measured properties are mass, coordinates of location of center-of-

gravity, and inertia tensor. Test rig consists of a frame, on which the 

body whose properties are to be measured is to be fixed, suspended 

from the ceiling of the laboratory by steel cables and an unbalanced 

mass-motor assembly which is fixed to the frame.  

 

A state space model is derived based on Newton’s Second Law. 

Cables are assumed to be inflexible and massless. Also the effects 

of the inertia and mass of unbalanced mass-motor assembly to the 

total mass and inertia of the system is neglected.  

 

The mass of the system is simply measured by using a ground scale. 

The spatial coordinates of the center of gravity is located when the 

system is in static equilibrium. Two direction cosines are measured; 

and the resulting geometrical relations and equilibrium equations are 

solved using non-linear algebraic solvers of MATLAB®. 

 

In order to obtain the inertia tensor, the system is excited via the 

unbalanced mass-motor assembly; and the resulting force is 

measured as well as the tensions on the cables, translational 

accelerations and rotational velocities of the test body. Collected data 

is preprocessed by a code written in MATLAB® to find the 

generalized forces on the system. Then using the derived 

mathematical model and parameter identification toolbox commands 

of MATLAB®, inertia tensor is identified. 

 

Two graphical user interfaces (GUIs) are developed for two phases 

of measurement, which can be seen on Figures 2.2, 3.4 and 3.5. 
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CHAPTER 2 
 

 

MEASUREMENT OF MASS AND CENTER-OF-GRAVITY (CG) 

 
 

 

2.1 Measurement of Mass 

 

The mass of the frame and the test body are measured using a 

ground scale. Since the frame is a symmetrical structure; the location 

of its CG is inherently known. 

 

Although the horizontal position of the CG of the test body can be 

found simply by using four ground scales and writing the static 

equilibrium equations [23]; they are found simultaneously with the 

vertical coordinate of the CG in the following section. 

 

2.2 Determination of the Location of CG 

 

According to Baruh [29], “The mass of a rigid body is defined by: 

 

body

m rdm= ∫
 (2.1) 

 

Location of CG is defined as: 

 

1
G

body

r rdm
m

= ∫
 (2.2) 
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where r is the vector from the origin to the differential element dm. 

 

Then, one can define any point in the body as: 

 

Gr r ρ= +  (2.3) 

 

Introducing (2.3) to (2.2); following is obtained: 

 

1 1 1( )G G G
body body body

r rdm r dm r dm
m m m

ρ ρ= = + = +∫ ∫ ∫
 (2.4) 

 

Leading to the conclusion that: 

 

0
body

dmρ =∫  (2.5) 

 

This equation indicates that the weighted average of the 

displacement vector about the center of mass is zero. Considering 

the concepts from statics, one can refer to the definition of the center 

of mass as the first moment of the mass distribution.” 

 

At equilibrium, the position of the body in space is unique, and is a 

function of mass of body, position of CG, cable lengths, locations of 

hinge points on body and on frame. Using this information, one can 

solve static equilibrium equations for coordinates of CG. 

 

In order to determine the location of CG, an experiment is designed. 

The experiment body and the frame are to be suspended from the 

ceiling of the laboratory using steel cables. After the system reaches 

the static equilibrium; the angles between the roll and pitch axes of 

the body reference frame and the vertical axis of the global frame are 
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measured using inclinometers. Then using only these two readings, 

and using the static equilibrium equations, geometric constraint 

equations and orthonormality equations of the transformation matrix; 

orientation of the body, cable forces and the location of center of 

gravity are computed. 

 

Because of the fact that the number of equations are inadequate to 

compute all the unknowns; two experiments are to be made with the 

same test body: one with the test body and the carrying frame alone, 

and one with a dummy mass added to the system. 

 

2.2.1 The Experimental Set-up 

 

In the experiment; the rigid body with unknown CG position is fixed 

onto a carrying frame, then the carrying frame is swung by four 

cables which are hinged to four points on carrying frame at one end, 

and to four points on the ceiling (or a frame fixed to the ceiling) at the 

other end.  

 

For the sake of simplicity; the points on ceiling frame and carrying 

frame are taken to be located on rectangles. Moreover the rigid body 

and the carrying frame are shown as one body on Figure 2.1. 

 

2.2.2 Locating the Body in Space 

 

In order to locate the rigid body in space, one must know the 

coordinates of body reference frame (which is shown to be located at 

point A in Figure 2.1) and its Euler angles. However, in this study the 

angles that x’ and y’ make with z axis (vertical) are to be measured 
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using inclinometers. Thus, transformation matrix T will be written in 

terms of direction cosines instead of Euler angles. 

 

 
 

 

 

 

T=
















333231

232221

131211

ccc
ccc
ccc

 (2.6) 

 

 

Using the orthonormality property of T [29], one can derive six 

equations as: 

 

012
13

2
12

2
11 =−++ ccc  (2.7) 

 

012
23

2
22

2
21 =−++ ccc  (2.8) 

A 

B 

C 

D 

x

y

z

αβ

θ

x’
y’

z’ 

A’ 

B’ 

C’ 

D’ 

Figure 2.1 Suspended rigid body with known geometry 
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2 2 2

31 32 33 1 0c c c+ + − =  (2.9) 

 

0... 231322122111 =++ cccccc   (2.10) 

 

0... 331332123111 =++ cccccc  (2.11) 

 

0... 332332223121 =++ cccccc  (2.12) 

 

where c31 and c32 are to be obtained from inclinometer 

measurements (Thus there are six equations and seven unknowns). 

 

Knowing the coordinates of fixed points on the ceiling and the lengths 

of the cables; four constraint equations can be written for four 

connection points, A, B, C, D; assuming inextensible cables as: 

 

0)()()( 2
'

2
'

2
'

2 =−+−+−− AAAAAAA zzyyxxl  (2.13) 

 

0)()()( 2
'

2
'

2
'

2 =−+−+−− BBBBBBB zzyyxxl  (2.14) 

 

0)()()( 2
'

2
'

2
'

2 =−+−+−− CCCCCCC zzyyxxl  (2.15) 

 

0)()()( 2
'

2
'

2
'

2 =−+−+−− DDDDDDD zzyyxxl  (2.16) 

 

 

Since the frame body is a rigid body with known geometry, the 

coordinates of points B, C and D can be written in terms of 

coordinates of point A as: 
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 k) .z  j .y î  .( T.k) .z  j .y î .(  k) .z  j .y î .( ''
B

''
B

''
ABB +++++=++ BAAB xxx  

 (2.17) 

 

 k) .z  j .y î  .( T.k) .z  j .y î .(  k) .z  j .y î .( ''
C

''
C

''
ACC +++++=++ CAAC xxx  

 (2.18) 

 

 k) .z  j .y î  .( T.k) .z  j .y î .(  k) .z  j .y î .( ''
D

''
D

''
ADD +++++=++ DAAD xxx  

 (2.19) 

 

Note that k) .z  j .y î  .( ''
B

''
B

'' ++Bx  vector stands for position of point B, 

with respect to the body reference frame, which is located at A. 

 

(2.14), (2.15) and (2.16) can be rewritten in terms of coordinates of 

point A with respect to the global reference frame only using (2.17), 

(2.18) and (2.19). 

 

Adding the four constraint equations to the six equations that are 

obtained from orthonormality relations, a total of ten equations are 

obtained for ten unknowns (xA, yA, zA, c11, c12, c13, c21, c22, c23, c33). 

 

 

2.2.3 Computing the Cable Forces and the Location of CG 

 

After finding the location of body reference frame and transformation 

matrix; one can write force and moment equilibrium equations as 

follows: 
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Σ Fx = 0  (2.20) 

 

Σ Fy = 0 (2.21) 

 

Σ Fz = 0 (2.22) 

 

Σ Mx = 0 (2.23) 

 

Σ My = 0 (2.24) 

 

Σ Mz  = 0 (2.25) 

 

There are four unknown forces and three unknown coordinates. It is 

clear that these six equations are not enough to reach a solution.  

 

Moreover, coordinates of the CG (xcg, ycg, zcg) appear neither in 

equations (2.20), (2.21), (2.22) (force equilibrium equations); nor in 

(2.25), since weight vector is also in z-direction. It is concluded that 

one can find four unknown forces using the (2.20), (2.21), (2.22) and 

(2.25). 

 

To find coordinates of center of gravity, at least one more equation is 

needed. This equation can be obtained by making a second 

experiment, in which a known mass with known center of gravity is 

positioned at a specified point on the carrying frame. In this case, the 

center of gravity of the system will be: 

 

 

k)} .z  j .y î  .x).(m(mk) .z  j .y î  .x).({( cgcgcgframe
d

cg
d

cg
d

cg ++++++dm  

            (md + m + mframe) 
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Where d sub- and superscript denote the relevant properties of the 

dummy mass and mframe denotes mass of the carying frame.  

 

Rewriting (2.20), (2.21), (2.22) and (2.25) for the new measurements, 

cable forces for this case can be computed. However it can easily be 

seen that center of gravity coordinates of this new system with the 

dummy mass is a function of the coordinates of center of gravity of 

the system without the dummy mass. Thus; either one of the 

remaining moment equilibrium equations ((2.23) or (2.24)) can be 

selected to solve with the two moment equilibrium equations of the 

system without the dummy mass. 

 

2.3 The Code 

 

In order to solve the stated problem, a computer code is written using 

MATLAB®. Further, in order to verify the results another code is 

written to generate the system to be solved, with known center of 

gravity coordinates. 

 

Case study code calculates the equilibrium position and Euler angles 

(XYZ sequence) of a given body with user defined shape and 

experimental set-up parameters.  

 

The aim of the solver code is to calculate the center of gravity; for 

given mass, dummy mass, coordinates of center of gravity of dummy 

mass, cable lengths, system geometry and angles between x’ – z 

and y’ – z. 
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The code first computes the position and orientation of the body in 

space; then calculates the cable forces and finally the coordinates of 

center of gravity.  The code is used through a graphical user 

interface written in MATLAB, Figure 2.2. 

 

 
 

Figure 2.2 Interface of the Solver 

 

2.4 Case Study 

 
In order to verify the developed software a sample case study is 

solved. In this study a body with known center of gravity is simulated 

and the location of center of gravity is numerically calculated. The 

input data is presented in Table 2.1. Calculated coordinates of the 

center of gravity are: 
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x = 1771.011 mm 

y = 1122.978 mm 

z = 609.860 mm 

 

whereas the actual values were: 

 

x = 1771 mm 

y = 1123 mm 

z = 612 mm 

 

The percentage error between the calculated and actual values are: 

 

0.0006
% 0.002

0.3497
Error

 
 =  
  

 

 

These error values show that the solution technique is satisfactory. 

The respectively higher error percentage in one of the components is 

related with the three moments selected for the calculation. Error in 

this component is always the largest because of the fact that the 

errors included in the first two terms are involved in the calculation of 

the third term, resulting in the accumulation of errors. 

 

Maximum absolute error is less than 2.5 milimeters, which is 

practically zero, since this location will be used to align the ropes for 

the second experiment, and to fix the accelerometers and 

gyroscopes if it lies in an accessible and mountable location in the 

vehicle; and error in experimental set up will most probably be larger 

than 2.5 milimeters. 
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Table 2.1 Data for Case Study 

 

Lengths of Cables [mm]: 
1500 

Dimensions of ceiling frame [m]: 
5 x 3  

Dimensions of carrying frame [m]: 
4 x 2 x2 

Mass of carrying frame [kg]: 
262 

Mass of test body [kg]: 
1072 

Center of gravity of test body (w.r.t. b.r.f.) [mm]: 
x 1771 
y 1123 
z 612 

Combined center of gravity of test body + carrying frame (w.r.t. b.r.f.) [mm]: 
x 1816 
y 1099 
z 688 

Mass of dummy mass [kg]: 
50 

Center of gravity of dummy mass (w.r.t. b.r.f.) [mm]: 
x 0 
y 0 
z 0 

Initial guess for Location of body reference frame [mm]: 
x 500 
y 500 
z 500 

Initial guess for Euler angles [rad]: 
0 
0 
0 

Initial guess for Cable forces [N]: 
2000 

Initial guess for center of gravity of whole system (w/o dummy mass) [kg]: 
x 1000 
y 1000 
z 1000 
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CHAPTER 3 
 

 

MEASUREMENT OF INERTIA TENSOR 

 

 

 

3.1 Inertia Tensor 

 

Although the knowledge of mass and center of mass provide 

valuable information for the simulation and analysis of translational 

motion, it gives no insight of how the mass is distributed throughout 

the body. Baruh [29] defined mass as “The amount of matter 

contained in the body and the resistance of the body to translational 

motion. On the other hand the resistance of the body to a rotational 

motion is dependent on how the mass is distributed”. Thus, as the 

first moment of mass distribution defines the center of mass, the 

second moment of mass distribution defines the moment of inertia of 

the body. Moment of inertia represents the resistance of the body to 

rotational motion. 

 

The distribution of mass with respect to an axis is called the mass 

moment of inertia about that axis. Consider x axis for example. The 

mass moment of inertia about x axis is defined as: 

 
2

xx x
body

I R dm= ∫  (3.1) 

 

Where Rx represents the perpendicular distance between a 

differential element located at (xR, yR, zR) and the x axis. It is simply: 
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2 2( )x R RR y z= +  (3.2) 

 

Then one can rewrite (3.1) as: 

 
2 2( )xx R R

body

I y z dm= +∫  (3.3) 

 

Similarly mass moment of inertia about y and z axes are defined in 

the same fashion: 

 
2 2( )yy R R

body

I x z dm= +∫  (3.4) 

 
2 2( )zz R R

body

I x y dm= +∫  (3.5) 

 

These three terms form the diagonal elements of the so called inertia 

tensor. As seen from (3.3), (3.4) and (3.5), diagonal elements of the 

inertia tensor are definitely positive for a rigid body, since the terms 

inside the integral can not be negative and are non-zero. The 

diagonal elements of the inertia tensor are measures of the body’s 

resistance to rotation around corresponding axes.  

 

Other than the mass moment of inertia about an axis; one can also 

define mass moment of inertia with respect to a plane. In this case 

the resultant quantities are called the products of inertia. Products of 

inertia are defined as: 

 

( . )xy R R
body

I x y dm= ∫  (3.6) 
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( . )xz R R
body

I x z dm= ∫  (3.7) 

 

( . )yz R R
body

I y z dm= ∫  (3.8) 

It can clearly be seen that Ixy = Iyx, Ixz = Izx, Iyz = Izy. These terms can be 

considered as measures of how asymmetrical the mass is distributed 

throughout the body and are the off-diagonal elements of the inertia 

tensor which is defined as:  

 

[ ]
xx xy xz

yx yy yz

zx zy zz

I I I
I I I I

I I I

 − −
 = − − 
 − − 

 (3.9) 

 

When the body is symmetrical with respect to any of the planes; the 

product of inertia terms associated with the axis perpendicular to that 

plane vanish. As an example to this property, consider an 

automobile. Usually automobiles have a certain symmetry both in 

shape and mass distribution with respect to roll/yaw plane (Figure 

3.1). Because of this symmetry, Ixy and Iyz are usually very small in 

quantity, and the effects of roll/yaw product of inertia Ixz to vehicle 

dynamics problems are much more considerable. 

 

3.2 Experimental Setup 

 

The experimental setup is nearly the same as the one used for the 

measurement of center of mass. The test body is fixed to the carrying 

frame, which is suspended from the ceiling of the laboratory using 

four steel cables. An unbalanced mass-motor assembly is fixed to 
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one of the corners of the carrying frame. The experiment starts from 

equilibrium position with initial conditions all zero.   

 

 

 
 
 
 
 
 

Figure 3.1 Car is symmetrical with respect to roll/yaw axis 

 

 

Three translational accelerometers and three gyros, measuring the 

angular velocities are placed at the CG. Cable lengths are so 

selected that their direction vectors intersect as closely as possible to 

the CG. Tensions on the cables are also measured as well as the 

force applied by the unbalanced mass. 

 

x

x

z

y



 
 

 24

When the experiment starts; the unbalanced mass-motor assembly 

apply a sinusoidal force; which can be resolved into two components 

with a phase difference of π/2.  

 

In the experiment a total of 3 translational accelerometers, 3 

gyroscopes, 6 load cells (4 load cells to measure the load on the 

cables, 2 for the unbalanced mass-motor assembly) are to be used. 

 

The schematic drawing of the experiment set up can be found in 

Appendix A. 

 

3.3 Mathematical Model 

 

Newton-Euler Equations can be written for the model neglecting the 

gyroscopic terms. 

 
..

..

..

..
1

1
2 ..

23
..

3

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

*
0 0 0
0 0 0
0 0 0

x

y

z

xx xy xz

xy yy yz

xz yz zz

x
mF

ymF
mF z

J J JM
J J JM
J J JM

θ

θ

θ

 
 

    
    
    
    

=     − −    
    − −
      − −      

  
 

 (3.10) 

 

Mass inertia coupling terms are taken as zero since body reference 

frame is located at the center of gravity [30]. If the body reference 

frame is located in another position on the body, these terms must be 

calculated accordingly.  
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In (3.10), Fx , Fy , Fz are components of the total force on the system 

resolved in body reference frame. M1, M2 , M3 are components of 

total moment on the system  resolved in body reference frame.  

 

This system can be represented in state space as:  

 
.
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 (3.11) 

 

 

Where; 
2

1 yy zz yz

2 xz yz xy zz

3 xy yz xz yy

2
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2
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and the state variables are: 

 

1
.

2

3

x x

x x
x y

=

=
=

 

.

4

5
.

6

7 1
_

18

9 2
_

210

11 3
_

312

x y
x z

x z
x

x
x

x
x

x

θ

ω
θ

ω
θ

ω

=
=

=
=

=
=

=

=

=

 

 

3.4 MATLAB® Codes 

 

Two codes and a Simulink® model are developed for the 

identification of inertia tensor part of the thesis.  

 

An experimental model is developed using the SimMechanics® 

toolbox of Simulink®, which simulates the the experimental model, 

which is made up of input block, body block, sensors and a tracker 

block to track the orientation and position of the body with respect to 

the global frame is provided in Appendix A. 
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First of the developed MATLAB® codes is a pre-processor which is 

used to process the data collected from the experiment. Its inputs are 

the readings of the load cells on the cables and on the unbalanced 

mass-motor assembly. The load cells measure only the magnitudes 

of the forces, so in order to calculate the moments one needs to 

compute the force vectors. The position and orientation history of the 

test body is computed by the tracker block in the Simulink® model. 

The output of the code is the generalized force vector which consists 

of three translational forces and three moments.  

 

 

 

 

 

 

Figure 3.2 Flow Diagram of the System 

 

Second of the developed codes is the identification code. The inputs 

for this code are the history of the measured outputs of the system 

(which are selected as the translational and angular accelerations), 

the history of the generalized force vector and the initial guess 

vector. The code uses the parameter identification toolbox functions 

of MATLAB® to identify the elements of the input matrix of the state 

space representation, and then solves the identified parameters for 

the elements of the inertia tensor. 

EXPERIMENT 
MODEL MOTION SENSORS

FORCE SENSORS

TRACKER 

GENERALIZED 
FORCES 

IDENTIFICATION 
CODE 
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Figure 3.3 Flow Diagram of Pre-processor Code 

 

The used functions are “iddata”, “idgray” and “pem”. The function 

“iddata” creates a data object from the experimental measurement. 

The input and measured output and sampling time are the inputs for 

this function. “idgray” function is used to define the state space model 

of the system. Although “idss” function can also be used to define the 

state space models, the models defined by “idss” have uncoupled 

parameter structure, which is not the case for this study. “idgrey” 

function is used instead in order to model the state space model with 

coupled parameters. “pem” is the general parameter identification 

function of the toolbox. It uses prediction error methods to identify the 

unknown parameters. The methods used by “pem” are explained in 

Section 3.5. 
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Figure 3.4 Simulink Diagram of the System 

 

3.5 Parameter Estimation 

 

The three main approaches to the measurement of inertia properties 

problem are mentioned in Chapter 1. These three approaches are 

oscillating the body around the rotating axis for which the relevant 

inertia property is sought after and measuring the frequency of the 

oscillations; using modal analysis and system identification 

techniques; parameter estimation techniques.   

 

The main difference between the latter two of these three methods is 

that in system identification approach, the researcher can choose the 
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mathematical model of the system as well as the parameters of this 

mathematical model. In parameter identification methods, the 

mathematical model is predefined and only some of the parameters 

of this model are unknown.   

The solution of a parameter estimation problem is done by 

minimizing the difference between the outputs of the mathematical 

model and the experimental measurements. A cost function is 

defined as the sum of the squares of the difference between the 

outputs of the mathematical model and the measured values. 

Minimizing this cost function will lead to the solution of the problem. 

These definitions actually define a least square problem, which can 

be solved by using unconstrained optimization methods. 

The methods used in this M.Sc. study are commonly known as 

Prediction Error Methods. Prediction Error Methods constitute a 

broad family of parameter estimation methods which have a close 

relationship with Maximum Likelihood method; a statistical method 

used in system identification and parameter estimation. In both cases 

the cost function is defined in terms of output error [35]. 

According to Ljung [34]; “The idea behind the prediction error 

approach is simple: 

- Describe the model as a predictor of the next output: 

1( 1) ( )t
my n n f Z

∧
−− =  (3.12) 

 

Here ( 1)my n n
∧

−  denotes the one-step ahead prediction of the output, 

and f is an arbitrary function of past, observed data. 
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- Parameterize the predictor in terms of a finite dimensional 

parameter vector θ: 

1( ) ( , )ty n f Zθ θ
∧

−=  (3.13) 

- Determine an estimate of θ (denoted Nθ
∧

) from the model 

parameterization and the observed data set ZN, so that the distance 

between (1 ), , ( )y y Nθ θ
∧ ∧

K  and (1), , ( )y y NK is minimized in a suitable 

norm. 

In case the above norm is chosen such as to match the assumed 

probability density functions, the estimate Nθ
∧

 will coincide with the 

Maximum Likelihood estimate.” 

In short, the main idea is to predict the output of the next step using a 

function, which includes the measured outputs of the current time 

step and the unknown parameters. Once this function is defined 

using the derived mathematical model and measurements are made, 

the problem reduces to minimizing the distance between the 

predicted outputs, which are functions of unknown parameters, and 

the measured ones [42]. 

1

1
( ) ( ( ) ( , ))

N
t

N
n

y n f ZV θ θ−

=

= −∑ l  (3.14) 

Here l  is a suitable distance measure, such as 2( )ε ε=l , in which 

case the problem becomes a least squares optimization problem. 

The numerical search for the minimum can be carried out using any 

of the many methods available such as Gauss-Newton Method, or 
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Lavenberg-Marquardt Method. Note that the first derivative of the 

difference of outputs has to be derived to use these methods.  

In this study prediction error estimator of MATLAB® is used to 

estimate the unknown parameters, which is also programmed by 

Ljung. 

To implement this method; the first thing to do is to discretize the 

state space model (Equation 3.11). 

The derivative of the states with respect to time is defined as: 

0

( ) ( )( ) lim
T

x t T x tx t
T→

+ −′ =  (3.15) 

In state space: 

0

( ) ( )lim ( ) ( )
T

x t T x t Ax t Bu t
T→

+ −
= +  (3.16) 

The limit in (3.16) equation can be removed in state space system 

equations since the sampling time (T) is positive and non-negligible. 

By definition, a discrete system is only defined at certain time points, 

and not at all time points as the limit would have indicated otherwise. 

Rearranging the system equations in state space gives: 

( ) ( ) ( ) ( )x t T x T T Ax t T Bu t+ = + ⋅ + ⋅  (3.17) 

Then: 

( ) (1 ) ( ) ( )x t T T A x t T Bu t+ = + ⋅ + ⋅  (3.18) 

In the case of constant sampling time throughout the measurement, 

time can be expressed as: 
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t n T= ⋅  (3.19) 

Inserting (3.19) into (3.18) gives: 

( ) (1 ) ( ) ( )x n T T T A x n T T Bu n T⋅ + = + ⋅ ⋅ + ⋅ ⋅  (3.20) 

Equation (3.20) can further be simplified by removing sampling time 

terms in state indices. 

( 1) (1 ) ( ) ( )x n T A x n T Bu n+ = + ⋅ + ⋅ ⋅  

So the state space equations are redefined as: 

( 1) ( ) ( )

( ) ( ) ( )

d dx n A x n B u n

y n Cx n Du n

+ = +

= +
 (3.21) 

Next an equation which relates the output of the next step to the 

measurements of the current state is to be derived. Normally: 

 ( 1) ( 1) ( 1)y n Cx n Du n
∧

+ = + + +  (3.22) 

Inserting the x(n+1) equation found in (3.21) into (3.22): 

( 1) ( ( ) ( )) ( 1)d dy n C A x n B u n Du n
∧

+ = + + +  (3.23) 

x(n) can also be rewritten using the output part of (3.21) (provided 

that the output matrix C is invertible) as: 

1 1( ) ( ) ( )x n C y n C Du n− −= −  (3.24) 

Inserting (3.24) into (3.23) leads to: 

1 1( 1) ( ) ( ) ( ) ( 1)d d dy n CA C y n CB CA C D u n Du n
∧

− −+ = + − + +  (3.25) 
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Equation (3.25) represents the predicted output in terms of the 

measured output and input data. The coefficient matrices are all 

nonlinear functions of the unknown parameters. Note that: 

(1 )dA T A= + ⋅  (3.26) 

dB T B= ⋅  (3.27) 

Equation (3.25) is actually what is implied by equation (3.13), since it 

relates the output predictor to previous observed data and unknown 

parameters.  

The next step is defining the cost function simply as the difference 

between the measured outputs and predicted outputs and minimizing 

the cost function using a proper optimization algorithm. 

The equation defined in (3.14) can easily be turned into a least 

squares problem by using the definition 
2( )ε ε=l or 21( )

2
ε ε=l  and 

then can be minimized using the Gauss-Newton algorithm or 

Levenberg-Marquardt method. 

The Levenberg-Marquardt algorithm provides a numerical solution to 

the mathematical problem of minimizing a function, generally 

nonlinear, over a space of parameters of the function. 

In this method the parameter vector θ is replaced by a new estimate 

θ + δ at each iteration step. To determine δ, the predictor equation is 

approximated by its linearization. 

( ) ( )y y Jθ δ θ δ
∧ ∧

+ ≈ +  (3.28) 
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where J is the Jacobian of y
∧

 with respect to the vector θ at given 

step. 

Differentiating the square of the right hand side of the equation above 

and setting to zero leads to: 

( ) ( ( ))T TJ J J y nδ θ
∧

= −  (3.29) 

from which δ can be obtained by inverting JTJ. Then using (3.28) the 

predictor function is updated. The key to the Levenberg-Marquardt 

algorithm is to replace this equation by a 'damped version'. 

( ) ( )T TJ J I J yλ δ θ
∧

− = −  (3.30) 

The (non-negative) damping factor λ is adjusted at each iteration.  

Similarly the Gauss-Newton algorithm is also an iterative procedure. 

In Gauss-Newton algorithm, the new guess for the parameter vector 

is computed using the following relation instead of the linearization of 

the predctor function as in Levenberg – Marquardt Method:  

1( 1) ( ) ( ) ( ( ))T Tn n J J J y nθ θ θ
∧

−+ = −  (3.31) 

J denotes the Jacobian of y
∧

 with respect to the parameter vector at 

n. 

However equation (3.31) is usually reduced to (3.32) in order to avoid 

the inversion. 

( 1) ( )n nθ θ δ+ = +  (3.32) 

where δ is computed according to the solution of the following 

equation: 
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( ( ))T TJ J J y nδ θ
∧

= −  (3.33) 

Another implementation of the Gauss-Newton algorithm also 

employs a line search algorithm in which equation (3.33) is altered 

as: 

( 1) ( )n nθ θ α δ+ = + ⋅  (3.34) 

Here α  is a scalar, adjusted according to the criterion ( 1) ( )V n V n+ < . 

 

Figure 3.5 Flow Diagram of Identification Code 

 

For the case studied in this thesis, the measured outputs are three 

linear accelerations and three rotational velocities of the CG. 

Discretizing the system in (3.11) and rewriting according to (3.25), 

output predictor is obtained in terms of unknown parameters. Then 

using either one of the Levenberg-Marquardt method or Gauss-

Newton algorithm, the distance between the actual outputs and the 

predicted outputs is minimized. 
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The inputs for the developed code are the input and output 

measurements which are obtained from the simulation of the 

experimental system, the state space system defined as (3.11) and 

the initial guess vector for the parameters. 

 

In this study prediction error estimator of MATLAB® is used to 

estimate the unknown parameters. This estimator allows user to 

choose between different line search algorithms. Possible choices 

are Gauss-Newton, a regularized version of the Gauss-Newton 

direction in which eigenvalues less than a user defined value of the 

Hessian are neglected and the Levenberg-Marquardt method. [43]. 

 

The code first the simulates the motion of the body under user 

defined forcing and calculates the generalised forces of the system 

and then identifies the inertia tensor using the prediction error 

method. The code is used through a graphical user interface written 

in MATLAB, Figures 3.6 

 

 
 

Figure 3.6 Simulator GUI 
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CHAPTER 4 

 

 

CASE STUDIES AND RESULTS 

 

 

 

Several case studies has been investigated in the development stage 

of the thesis and several more were inspected to ensure that the 

procedure is working properly. 

 

The case studies 1-9 are done in the process of development of the 

thesis. These studies demonstrate various initial condition and 

forcing techniques, and the results of these studies are analysed in 

order to determine the most suitable test setup and initial conditions. 

In most of these cases, theoretical bodies are used. The case studies 

10-17 are carried out using measured data from literature [31,32]. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

 39

4.1 Case Study 1 

     

Table 4.1 Data for Case Study 1  
 

CASE   1 
 

Cable Lengths [m] 2.5 
Coordinates of CG (initially) [m] [ 2; 2.5; -2.5616] 

Mass [kg] 250 
Jxx [N.m2] 1000 

 
Jyy [N.m2] 1000 
Jzz [N.m2] 1000 
Jxy [N.m2] 50 
Jxz [N.m2] 50 
Jyz [N.m2] 50 

Coordinates of Hinge Points on the Ceiling [m] 
[0;0;0] 
[4;0;0] 
[0;5;0] 
[4;5;0] 

Body Dimensions [m] 
3x2x1 (Rectangular Prism) 

Coordinates of Hinge Points on the Body (wrt to their respective hinge 
points on the ceiling) 

[1;1;-2.0616] 
[1;-1;-2.0616] 
[-1;1;-2.0616] 
[-1;-1;-2.0616] 

Initial Conditions 
No Initial Displacement 

Applied Forces 

Force Vector [N] 
Point of Action 

[m] 

Time 
interval 

[s] 
[200;0;0] [0;-1.5;0] [0.1,1.1] 
[0;200;0] [0;-1.5;0] [4.1,5.1] 

Initial Guess Vector for Inertia Tensor [N.m2] 
[750;300;300;750;300;750] 

Length of the Experiment [s] Sampling [s] 
10 0.01 
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4.1.1 Data Consistency Check for Case Study 1 

 

The simulink model has two sensors both mounted on the CG. First 

sensor (world sensor) measures the quantities with respect to world 

coordinates whereas the other one (body sensor) with respect to the. 

body reference frame; which is the real case. The readings from the 

world sensor is used for verification purposes only. All the data to be 

used in identification are either read directly from the body sensor, or 

derived from its readings. 

 

 
Figure 4.1 Percentage Error of Measured CG Coordinates 
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The percentage difference between the world sensor and body 

sensor readings of position of center of gravity (3 components) and 

the components of the transformation matrix (9 components) can be 

seen in Figures 4.1 and 4.2 respectively. Note that body sensor 

readings are processed in the “Tracker” to obtain position data.  

 

 
Figure 4.2 Percentage Error of Transformation Matrix Components 

 
As can be seen from the Figures 3.2 and 3.3; percentage error 

between the real values and the calculated values are extremely low. 

Collected data are consistent with the readings of world sensor. 

Thus, the function of the “Tracker” block is validated. 
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The error caused by the “Tracker” is important because of the fact 

that the force vectors are found using this position and transformation 

matrix data and measured force magnitudes. Considerable error in 

position data at this stage will lead to inadequate accuracy in force 

vectors and identification results.  

 

4.1.2 The Results of the Experiment of Case Study 1 

 

The resulting motion of the experiment can be observed in Figures 

4.3, 4.4 and 4.5. 

 
Figure 4.3 Position of CG 
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Figure 4.4 Acceleration of CG 

 

 
Figure 4.5 Rotational Velocity of the Body with respect to CG 
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Since the input force has started to act on the system at t= 0.1 s; all 

graphs stay at initial conditions until 0.1s. The effects of the exciting 

force can be seen clearly in Figure 4.4; as discontinuities in 

accelerations. 

 

4.1.3 The Results of the Identification Run for Case Study 1 

 
After the experiment run; collected data are processed to compute 

the generalized force vector. Then the acceleration history, rotational 

velocity history and the generalized force vector history are fed to the 

identification code.  

 

Identification code calculated the following inertia tensor: 

 

1005.4 48.6 53.4
48.6 1004.2 46.0
53.4 46.0 1004.0

J
 
 =  
    

 

Whereas the original tensor was: 

 

1000 50 50
50 1000 50
50 50 1000

J
 
 =  
  

 

 

Percentage error of the components are: 

 

0.54 2.8 6.8
% 2.8 0.42 8

6.8 8 0.40
Error

 
 =  
    
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With a maximum error of 8 percent for off diagonal elements and 

0.54 percent for diagonal elements, the results are found to be 

satisfactory for most vehicle dynamics studies.  

 

Figure 4.6 shows the comparison of the identified system and the 

measured system’s output measurements. 

 
Figure 4.6 Comparison of the Identified System and the Measured 

System 



 
 

 46

4.2 Case Study 2 

     

Table 4.2 Data for Case Study 2  
 

CASE   2 
 

Cable Lengths [m] 2.5 
Coordinates of CG (initially) [m] [ 2; 2.5; -2.5616] 

Mass [kg] 200 
Jxx [N.m2] 160.2 
Jyy [N.m2] 826.3 
Jzz [N.m2] 756.7 
Jxy [N.m2] 0 
Jxz [N.m2] 92.4 
Jyz [N.m2] 0 

Coordinates of Hinge Points on the Ceiling [m] 
[0;0;0] 
[4;0;0] 
[0;5;0] 
[4;5;0] 

Body Dimensions [m] 
3x2x1 (Rectangular Prism) 

Coordinates of Hinge Points on the Body (wrt to their respective hinge 
points on the ceiling) 

[1;1;-2.0616] 
[1;-1;-2.0616] 
[-1;1;-2.0616] 
[-1;-1;-2.0616] 

Initial Conditions 
No Initial Displacement 

Applied Forces 

Force Vector [N] 
Point of Action 

[m] 

Time 
interval 

[s] 
[200;0;0] [0;-1.5;0] [0.1,1.1] 
[0;200;0] [0;-1.5;0] [4.1,5.1] 

Initial Guess Vector for Inertia Tensor [N.m2] 
[250;0;150;750;0;750] 

Length of the Experiment [s] Sampling [s] 
10 0.01 
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This data set is based on a real system. The mass and inertia 

properties are that of a tractor, scaled by 0.1. 

 

4.2.1 The Results of the Experiment of Case Study 2 

The resulting motion of the experiment can be observed in Figures 

4.7, 4.8 and 4.9. 

 
Figure 4.7 Position of CG 
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Figure 4.8 Acceleration of CG 

 
Figure 4.9 Rotational Velocity of the Body with respect to CG 
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4.2.2 The Results of the Identification Run for Case Study 2 

 
In case study 2; the data of a real system were used. As stated in 

Section 3.1; pitch/yaw and roll/pitch product of inertia terms are 

inherently zero. 

 

Identification code calculated the following inertia tensor: 

 

163.56 0.44 96.24
0.44 836.72 1.53

96.24 1.53 789.88
J

− 
 = − 
  

 

 

Whereas the original tensor was: 

 

160.2 0 92.4
0 826.3 0

92.4 0 756.7
J

 
 =  
  

 

 

 

Percentage error is: 

 

2.10 0.44 4.16
% 0.44 1.26 1.53

4.16 1.53 4.39
Error

± 
 = ± ± 
 ± 

 

 

(Note that absolute error is given for zero terms) 

 

In this case, yaw inertia error came out to be more than 4 percent. 

Although the other identified terms are acceptable in terms of vehicle 

dynamics studies; better accuracy can be obtained in diagonal 

elements, namely yaw inertia, using other, simpler methods.  
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Figure 4.10 shows the comparison of the identified system and the 

measured system’s output measurements. 

 
Figure 4.10 Comparison of the Identified System and the Measured 

System 
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4.3 Case Study 3 

     

Table 4.3 Data for Case Study 3  
 

CASE   3 
 

Cable Lengths [m] 2.5 
Coordinates of CG (initially) [m] [ 2; 2.5; -2.5616] 

Mass [kg] 250 
Jxx [N.m2] 1000 
Jyy [N.m2] 1000 
Jzz [N.m2] 1000 
Jxy [N.m2] 50 
Jxz [N.m2] 50 
Jyz [N.m2] 50 

Coordinates of Hinge Points on the Ceiling [m] 
[0;0;0] 
[4;0;0] 
[0;5;0] 
[4;5;0] 

Body Dimensions [m] 
3x2x1 (Rectangular Prism) 

Coordinates of Hinge Points on the Body (wrt to their respective hinge 
points on the ceiling) 

[1;1;-2.0616] 
[1;-1;-2.0616] 
[-1;1;-2.0616] 
[-1;-1;-2.0616] 

Initial Conditions 
No Initial Displacement 

Applied Forces 

Force Vector [N] 
Point of Action 

[m] 

Time 
interval 

[s] 
[200;0;0] [0;-1.5;0] [0.1,1.1] 
[0;200;0] [0;-1.5;0] [4.1,5.1] 

Initial Guess Vector for Inertia Tensor [N.m2] 
[750;200;200;750;200;750] 

Length of the Experiment [s] Sampling [s] 
10 0.01 
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In this case; the same data set which was used in case study 1 was 

used with the same forcing. Thus, the motion of the body is the same 

as that case. No graph are given to demonstrate the motion of the 

test body in the experiment of case study 3. 

 

However, in this case; the externally applied forcing is not measured. 

Because of this, the generalized force vector is composed of only the 

tension forces in the cables, which are in fact affected by the external 

loading. This simplification will introduce some error to the 

identification results. The aim of this experiment is to find out if 

accuracy of the results will be acceptable or not. If they are found to 

be acceptable; this experiment method brings considerable ease to 

the implementation of the test setup.   

 

4.3.1 The Results of the Identification Run for Case Study 3 

 
Identification code calculated the following inertia tensor: 

 

1003.7 50.5 47.4
50.5 1001.5 43.7
47.4 43.7 1300.7

J
 
 =  
  

 

 

Whereas the original tensor was: 

 

1000 50 50
50 1000 50
50 50 1000

J
 
 =  
  

 

 

Percentage error is: 
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0.37 1 5.2
% 1 0.15 12.6

5.2 12.6 30.07
Error

 
 =  
  

 

 

Four of the six parameters are identified with acceptable accuracy in 

this case. Although 12.6 percent looks somewhat inaccurate, the 

contribution of this  element to the dynamics of the vehicle is relatively 

low with respect to the diagonal elements and this amount of error can 

be consşdered “good enough”. However 30 percent error in yaw 

inertia shows that the method used in this case is inapplicaple, since 

yaw inertia plays an  important role in rollover research in vehicle 

dynamics.    

 

Figure 4.11 shows the comparison of the identified system and the 

measured system’s output measurements. 

 

 
Figure 4.11 Comparison of the Identified System and the Measured 

System 
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4.4 Case Study 4 

     

Table 4.4 Data for Case Study 4  
 

CASE  4 
 

Cable Lengths [m] 2.5 
Coordinates of CG (initially) [m] [ 2; 2.5; -2.5616] 

Mass [kg] 250 
Jxx [N.m2] 1000 
Jyy [N.m2] 1000 
Jzz [N.m2] 1000 
Jxy [N.m2] 50 
Jxz [N.m2] 50 
Jyz [N.m2] 50 

Coordinates of Hinge Points on the Ceiling [m] 
[0;0;0] 
[4;0;0] 
[0;5;0] 
[4;5;0] 

Body Dimensions [m] 
3x2x1 (Rectangular Prism) 

Coordinates of Hinge Points on the Body (wrt to their respective hinge 
points on the ceiling) 

[1;1;-2.0616] 
[1;-1;-2.0616] 
[-1;1;-2.0616] 
[-1;-1;-2.0616] 

Initial Conditions 
No Initial Displacement 

Applied Forces 

Force Vector [N] 
Point of Action 

[m] 

Time 
interval 

[s] 
[200;0;0] [0;-1.5;0] [0.1,1.1] 
[0;200;0] [0;-1.5;0] [4.1,5.1] 

Initial Guess Vector for Inertia Tensor [N.m2] 
[750;200;200;750;200;750] 

Length of the Experiment [s] Sampling [s] 
15 0.01 
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4.4.1 The Results of the Experiment of Case Study 4 

The resulting motion of the experiment can be observed in Figures 

4.12, 4.13 and 4.14. 

 
Figure 4.12 Position of CG 

 

 
Figure 4.13 Acceleration of CG 
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Figure 4.14 Rotational Velocity of the Body with respect to CG 

 

 

4.4.2 The Results of the Identification Run for Case Study 4 

 

In case study 4, the same data set which was used in case study 1 

was used with the same forcing. However on this occasion; the 

experimental was held for 15 seconds. The aim is to apply the 

external forces in the first 5.1 seconds of the experiment; and then 

use the data which is taken during rest of the 15 seconds.  

 

Among the collected experimental data; only those taken between 

the time interval [5.1s, 15s] are used in the identification run. In the 

specified interval, there are no external forces on the system. The 

states of the system at t=5.1 s are given as initial conditions for the 
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identification run mathematical model. In this experiment it is aimed 

to see whether it is possible to identify the required parameters with 

good accuray without measuring the external force applied on the 

system. If the aim is reached; the implementation cost of the test 

setup will decrease considerably. 

 

Identification code calculated the following inertia tensor: 

 

870.9 244.3 58.4
244.3 865.3 41.9
58.4 41.9 1002.0

J
 
 =  
    

 

Whereas the original tensor was: 

 

1000 50 50
50 1000 50
50 50 1000

J
 
 =  
    

 

Percentage error is: 

 

12.91 388.6 16.8
% 388.6 13.47 16.2

16.8 16.2 0.2
Error

 
 =  
    

 

In this case, all the elements of the tensor, except for the yaw inertia 

are unacceptably inaccurate. However error of the yaw inertia is very 

low. It is concluded that this method can be applied in conjunction 

with the technique in the previous case. 

 

Figure 4.15 shows the comparison of the identified system and the 

measured system’s output measurements. 
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Figure 4.15 Comparison of the Identified System and the Measured 

System 
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4.5 Case Study 5 

     

Table 4.5 Data for Case Study 5  
 

CASE  5 
 

Cable Lengths [m] 2.5 
Coordinates of CG (initially) [m] [ 2; 2.5; -2.5616] 

Mass [kg] 250 
Jxx [N.m2] 1000 
Jyy [N.m2] 1000 
Jzz [N.m2] 1000 
Jxy [N.m2] 50 
Jxz [N.m2] 50 
Jyz [N.m2] 50 

Coordinates of Hinge Points on the Ceiling [m] 
[0;0;0] 
[4;0;0] 
[0;5;0] 
[4;5;0] 

Body Dimensions [m] 
3x2x1 (Rectangular Prism) 

Coordinates of Hinge Points on the Body (wrt to their respective hinge 
points on the ceiling) 

[1;1;-2.0616] 
[1;-1;-2.0616] 
[-1;1;-2.0616] 
[-1;-1;-2.0616] 

Initial Conditions 
No Initial Displacement 

Applied Forces 

Force Vector [N] 
Point of Action 

[m] 

Time 
interval 

[s] 
[200;0;0] [0;-1.5;0] [0.1,1.1] 
[0;200;0] [0;-1.5;0] [4.1,5.1] 

Initial Guess Vector for Inertia Tensor [N.m2] 
[750;200;200;750;200;750] 

Length of the Experiment [s] Sampling [s] 
10 0.01 
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In this case; 990 identification runs were made with the same data 

used for the case study 1. The identification code is put into a “for” 

loop and the code was run 990 times; every time starting from 

another data point to start and using the data between that point and 

the end of data (1000th data point). i.e. starts from [1,1000], [2,1000], 

[3,1000] ... [989,1000], [990,1000]. The initial conditions for the 

mathematical model was also changed with the values of the states 

at that data point.  

 

The results were plotted in the fashion which will reveal the 

convergence and divergence zones in the solution history. The aim 

of this experiment and identification run is to obtain a better 

understanding of the identification routine. The solution history 

includes the cases in which the forces were measured; and the 

cases in which the identification started after the external forces were 

released. Thus the results for both of the situation can be seen on 

the same graphs which will help with the comparison of the 

techniques. 

 

Figure 4.16 shows the solution history for all six parameters. Figure 

4.17 shows only the diagonal terms and Figure 4.18 shows only the 

off-diagonal terms. 

 

According to the results, it can be said that the solution is unstable 

for the runs that start after the application of the seconf force. It is 

seen that, for the runs that start after 650th data point, the solution 

run is enden before the convergence is reached.  
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Figure 4.16 Solution History for Case 5 

 
Figure 4.17 Solution History for Case 5 - Diagonal Terms 
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Figure 4.18 Solution History for Case 5 – Off-Diagonal Terms 

 

4.6 Case Study 6 

 
In this case; t=[75.1s,100s] was used for identification (2490 data 

points). 

Thus, no external force was applied on the system in the data used 

for the identification run. The data set was the same as the data set 

used for the case study 1. 

 

The expected results of the experiment were: 

 

- The system will reach an equilibrium position where the external 

forces applied on the system are equal to cable forces and the 

weight 
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- After the system is released (t=75.1 s); the system will oscillate 

freely from this newly reached equilibrium position. Thus; the velocity 

terms of the initial conditions for the identification run would be zero.  

 

 

Table 4.6 Data for Case Study 6 
 

CASE  6 
 

Cable Lengths [m] 2.5 
Coordinates of CG (initially) [m] [ 2; 2.5; -2.5616] 

Mass [kg] 250 
Jxx [N.m2] 1000 
Jyy [N.m2] 1000 
Jzz [N.m2] 1000 
Jxy [N.m2] 50 
Jxz [N.m2] 50 
Jyz [N.m2] 50 

Coordinates of Hinge Points on the Ceiling [m] 
[0;0;0] 
[4;0;0] 
[0;5;0] 
[4;5;0] 

Body Dimensions [m] 
3x2x1 (Rectangular Prism) 

Coordinates of Hinge Points on the Body (wrt to their respective hinge 
points on the ceiling) 

[1;1;-2.0616] 
[1;-1;-2.0616] 
[-1;1;-2.0616] 
[-1;-1;-2.0616] 

Initial Conditions 
No Initial Displacement 

Applied Forces 

Force Vector [N] 
Point of Action 

[m] 

Time 
interval 

[s] 
[50;0;0] [0;-1.5;0] [0.1,75.1] 
[0;50;0] [0;-1.5;0] [0.1,75.1] 

Initial Guess Vector for Inertia Tensor [N.m2] 
[750;200;200;750;200;750] 

Length of the Experiment [s] Sampling [s] 
100 0.01 

 

 



 
 

 64

However it was observed that, as the force acts on the system, the 

system oscillates around an equilibrium position; and when the force 

is zero; the system oscillates around its initial equilibrium position 

(free equilibrium position), but this time makes larger oscillations. 

 

It is concluded that; this result is obtained due to the fact that the 

experimental model had no damping. No identification run is made 

for case study 6. 

 

 
Figure 4.19 The Motion of the Body for Case 6 
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4.7 Case Study 7 

 
Table 4.7 Data for Case Study 7  

 
CASE  7 

 
Cable Lengths [m] 2.5 

Coordinates of CG (initially) [m] [ 2; 2.5; -2.5616] 
Mass [kg] 250 
Jxx [N.m2] 1000 
Jyy [N.m2] 1000 
Jzz [N.m2] 1000 
Jxy [N.m2] 50 
Jxz [N.m2] 50 
Jyz [N.m2] 50 

Coordinates of Hinge Points on the Ceiling [m] 
[0;0;0] 
[4;0;0] 
[0;5;0] 
[4;5;0] 

Body Dimensions [m] 
3x2x1 (Rectangular Prism) 

Coordinates of Hinge Points on the Body (wrt to their respective hinge 
points on the ceiling) 

[1;1;-2.0616] 
[1;-1;-2.0616] 
[-1;1;-2.0616] 
[-1;-1;-2.0616] 

Initial Conditions 
No Initial Displacement 

Applied Forces 

Force Vector [N] 
Point of Action 

[m] 

Time 
interval 

[s] 
[300;0;0] [0;-1.5;0] [0.1, 1] 
[0;300;0] [0;-1.5;0] [0.1, 1] 
[0;0;300] [0;-1.5;0] [0.1, 0.6] 

Initial Guess Vector for Inertia Tensor [N.m2] 
[750;200;200;750;200;750] 

Length of the Experiment [s] Sampling [s] 
10 0.01 

 
 

 



 
 

 66

In this case study; a larger force with components in three directions is 

used to excite the system. The aim of the experiment is to obtain a 

greater deflection from the equilibrium position; in order to use as the 

initial condition for the case study 8. 

 

 
Figure 4.20 The Motion of the Body for Case 7 

(with respect to body reference frame) 

 

t=1.2 s is selected; where x=2.1614; y=2.772; z=-2.4937 and 

 

0.989 0.0752 0.1273
0.0627 0.993 0.0997
0.134 0.0906 0.9868

T
− − 

 = − 
  

 

 

Then the Euler Angles are [-0.0759; 0.1276; -0.1007] radians. 
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4.8 Case Study 8 

 
Table 4.8 Data for Case Study 8  

 
CASE 8 

 
Cable Lengths [m] 2.5 

Coordinates of CG (initially) [m] [2.1614; 2.772; -2.4937] 
Mass [kg] 250 
Jxx [N.m2] 1000 
Jyy [N.m2] 1000 
Jzz [N.m2] 1000 
Jxy [N.m2] 50 
Jxz [N.m2] 50 
Jyz [N.m2] 50 

Coordinates of Hinge Points on the Ceiling [m] 
[0;0;0] 
[4;0;0] 
[0;5;0] 
[4;5;0] 

Body Dimensions [m] 
3x2x1 (Rectangular Prism) 

Coordinates of Hinge Points on the Body (wrt to their respective hinge 
points on the ceiling) 

[1;1;-2.0616] 
[1;-1;-2.0616] 
[-1;1;-2.0616] 
[-1;-1;-2.0616] 

Initial Conditions 
Initial Displacement Euler Angles [radians] 

See Coordinates of CG [-0.0759; 0.1276; -0.1007] 
Applied Forces 

No External Force on the System 
Initial Guess Vector for Inertia Tensor [N.m2] 

[750;200;200;750;200;750] 
Length of the Experiment [s] Sampling [s] 

10 0.01 
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4.8.1 The Results of the Experiment of Case Study 8 

The resulting motion of the experiment can be observed in Figures 

4.21, 4.22 and 4.23. 

 
Figure 4.21 Position of CG 

 
Figure 4.22 Acceleration of CG 
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Figure 4.23 Rotational Velocity of the Body with respect to CG 

 

 

4.8.2 The Results of the Identification Run for Case Study 8 

 

Identification code calculated the following inertia tensor: 

 

1032.0 88.6 12
88.6 1037.6 35.9

12 35.9 1006.8
J

− 
 = − 
 − −   

 

Whereas the original tensor was: 

 

1000 50 50
50 1000 50
50 50 1000

J
 
 =  
  
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Percentage error is: 

 

3.2 77.27 124.04
% 77.27 3.76 171.89

124.04 171.89 0.68
Error

 
 =  
    

 

The accuracy of diagonal elements are satisfactory for the vehicle 

dynamics studies. However error of the off diagonal terms are 

extremely high. This method can not be used, sşnce there are 

relatively easier methods to obtain the diagonal elements of the 

inertia tensor. 

 

Figure 4.24 shows the comparison of the identified system and the 

measured system’s output measurements. 

 
Figure 4.24 Comparison of the Identified System and the Measured 

System 
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4.9 Case Study 9 

 
Table 4.9 Data for Case Study 9  

 
CASE  9 

 
Cable Lengths [m] 2.5 

Coordinates of CG (initially) [m] [ 2; 2.5; -2.5616] 
Mass [kg] 250 
Jxx [N.m2] 1000 
Jyy [N.m2] 1000 
Jzz [N.m2] 1000 
Jxy [N.m2] 50 
Jxz [N.m2] 50 
Jyz [N.m2] 50 

Coordinates of Hinge Points on the Ceiling [m] 
[0;0;0] 
[4;0;0] 
[0;5;0] 
[4;5;0] 

Body Dimensions [m] 
3x2x1 (Rectangular Prism) 

Coordinates of Hinge Points on the Body (wrt to their respective hinge 
points on the ceiling) 

[1;1;-2.0616] 
[1;-1;-2.0616] 
[-1;1;-2.0616] 
[-1;-1;-2.0616] 

Initial Conditions 
No Initial Displacement 

Applied Forces 

Force Magnitude [N] 
Point of Action 

[m] 

Time 
interval 

[s] 
200 [0;-1.5;0] [0.1,1.1] 

Frequency of Forcing [Hz] 
0.7 

Initial Guess Vector for Inertia Tensor [N.m2] 
[750;200;200;750;200;750] 

Length of the Experiment [s] Sampling [s] 
100 0.01 
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4.9.1 The Results of the Experiment of Case Study 9 

 
The resulting motion of the experiment can be observed in Figures 

4.25, 4.26 and 4.27. 

 
Figure 4.25 Position of CG 

 
Figure 4.26 Acceleration of CG 
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Figure 4.27 Rotational Velocity of the Body with respect to CG 

 

4.9.2 The Results of the Identification Run for Case Study 9 

 

Identification code calculated the following inertia tensor: 

 

999.2 45.4 50.7
45.4 1004 48.4
50.7 48.4 1002

J
 
 =  
    

 

Whereas the original tensor was: 

 

1000 50 50
50 1000 50
50 50 1000

J
 
 =  
    
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Percentage error is: 

 

0.08 9.2 1.4
% 9.2 0.4 3.2

1.4 3.2 0.2
Error

 
 =  
    

 

Results of this case are found to be highly satisfactory. Error of the 

diagonal elements are less than 0.5 percent and the largest error of 

the off diagonal terms is less than 10 percent for a terms, which is 

usually negligibly small for real world cases.  

 

Figure 4.28 shows the comparison of the identified system and the 

measured system’s output measurements. 

 
Figure 4.28 Comparison of the Identified System and the Measured 

System 
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4.10 Case Study 10 

 
In this case the mass properties of 1998 Chevrolet Acura with one 

occupant and full fuel tank are used [32]. 

 
Table 4.10 Data for Case Study 10  

 
CASE  10 

 
Coordinates of CG (initially) [m] [ 1.97; 2.75; -2.874] 

Mass [kg] 1975 
Jxx [N.m2] 3741 
Jyy [N.m2] 963 
Jzz [N.m2] 3973 
Jxy [N.m2] 0 
Jxz [N.m2] 0 
Jyz [N.m2] 168 

Coordinates of Hinge Points on the Ceiling [m] 
[0;0;0] 
[4;0;0] 

[0;7.75;0] 
[4;7.75;0] 

Body Dimensions [m] 
2x5x2 (Rectangular Prism) 

Coordinates of Hinge Points on the Body (wrt to CG) 
[-0.985;-1.375;1.437] 
[1.015;-1.375;1.437] 
[-0.985;3.625;1.437] 
[1.015;3.625;1.437] 
Initial Conditions 

No Initial Displacement 
Applied Forces 

Force Magnitude [N] Point of Action (wrt CG) [m] 
200 [-0.985;-1.375;-0.563] 

Frequency of Forcing [Hz] 
2.1 

Initial Guess Vector for Inertia Tensor [N.m2] 
[3000; 50; 50; 1250; 500; 3000] 

Length of the Experiment [s] Sampling [s] 
250 0.01 
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4.10.1 The Results of the Experiment of Case Study 10 

 
The resulting motion of the experiment can be observed in Figures 

4.29, 4.30, 4.31, 4.32, 4.33, 4.34, 4.35 and 4.36. 

 
Figure 4.29 Position of x coordinate of CG 

 
Figure 4.30 Position of y coordinate of CG 
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Figure 4.31 Figure 4.30 between [0,10]s 

 
Figure 4.32 Position of z coordinate of CG 
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Figure 4.33 Figure 4.32 between [0,5]s 

 
Figure 4.34 Acceleration of CG in x direction 
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Figure 4.35 Acceleration of CG in y and z directions 

 
Figure 4.36 Rotational Velocity of the Body with respect to CG 
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4.10.2 The Results of the Identification Run for Case Study 10 

 

Identification code calculated the following inertia tensor: 

 

3768.1 2 2
2 969.1 162.4

2 162.4 3837.2
J

− 
 = − 
  

 

 

Whereas the original tensor was: 

 

3741 0 0
0 963 168
0 168 3973

J
 
 =  
  

 

 

 

Percentage error is: 

 

0.72 2 2
% 2 0.63 3.32

2 3.32 3.42
Error

± ± 
 = ± 
 ± 

 

 

The vehicle used for this run is a sports utility vehicle (SUV). Results 

of this case are found to be highly satisfactory. The largest error of 

the diagonal elements is less than 3.5 percent and is acceptable for 

vehicle dynamics studies. Error of the off diagonal elements is well 

above required accuracy.  

 

Figure 4.37 shows the comparison of the identified system and the 

measured system’s output measurements. 
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Figure 4.37 Comparison of the Identified System and the Measured 

System 
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4.11 Case Study 11 

 
In this case the mass properties of 1998 Chevrolet Acura with one 

occupant and full fuel tank are used [32]. 

 
Table 4.11 Data for Case Study 11  

 
CASE  11 

 
Coordinates of CG (initially) [m] [ 1.97; 2.75; -2.874] 

Mass [kg] 1975 
Jxx [N.m2] 3741 
Jyy [N.m2] 963 
Jzz [N.m2] 3973 
Jxy [N.m2] 0 
Jxz [N.m2] 0 
Jyz [N.m2] 168 

Coordinates of Hinge Points on the Ceiling [m] 
[0;0;0] 
[4;0;0] 

[0;7.75;0] 
[4;7.75;0] 

Body Dimensions [m] 
2x5x2 (Rectangular Prism) 

Coordinates of Hinge Points on the Body (wrt to CG) 
[-0.985;-1.375;1.437] 
[1.015;-1.375;1.437] 
[-0.985;3.625;1.437] 
[1.015;3.625;1.437] 
Initial Conditions 

No Initial Displacement 
Applied Forces 

Force Magnitude [N] Point of Action (wrt CG) [m] 
400 [-0.985;-1.375;-0.563] 

Frequency of Forcing [Hz] 
2.1 

Initial Guess Vector for Inertia Tensor [N.m2] 
[3000; 50; 50; 1250; 500; 3000] 

Length of the Experiment [s] Sampling [s] 
250 0.01 
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4.11.1 The Results of the Experiment of Case Study 11 

 
The resulting motion of the experiment can be observed in Figures 

4.38, 4.39, 4.40, 4.41, 4.42, 4.43, 4.44, 4.45 and 4.46. 

 
Figure 4.38 Position of x coordinate of CG 

 
Figure 4.39 Position of y coordinate of CG 
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Figure 4.40 Figure 4.39 between [0,10]s 

 
Figure 4.41 Position of z coordinate of CG 
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Figure 4.42 Figure 4.41 between [0,10]s 

 
Figure 4.43 Acceleration of CG in x direction 
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Figure 4.44 Acceleration of CG in y direction between [0,15]s 

 
Figure 4.45 Acceleration of CG in z direction between [0,15]s 
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Figure 4.46 Rotational Velocity of the Body with respect to CG 

between [0,50]s 

 

4.11.2 The Results of the Identification Run for Case Study 11 

 

Identification code calculated the following inertia tensor: 

 

3772.7 3 13
3 969.3 165.8

13 165.8 3831.4
J

− 
 = − 
  

 

 

Whereas the original tensor was: 

 

3741 0 0
0 963 168
0 168 3973

J
 
 =  
  
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Percentage error is: 

 

0.85 3 13
% 3 0.65 1.3

13 1.3 3.56
Error

± ± 
 = ± 
 ± 

 

 

Accuray of this case is in acceptable range. The largest error of the 

diagonal elements is less than 4 percent and is acceptable for 

vehicle dynamics studies. Error of the off diagonal elements is less 

tha 1.5 percent. 

 

Figure 4.47 shows the comparison of the identified system and the 

measured system’s output measurements. 

 
Figure 4.47 Comparison of the Identified System and the Measured 

System 
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4.12 Case Study 12 

 
In this case the mass properties of 1998 Chevrolet Metro (Suzuki 

Swift) with one occupant and full fuel tank are used [32]. 

 
Table 4.12 Data for Case Study 12  

 
CASE  12 

 
Coordinates of CG (initially) [m] [ 1.4; 2.065; -2.252] 

Mass [kg] 880 
Jxx [N.m2] 987 
Jyy [N.m2] 274 
Jzz [N.m2] 1102 
Jxy [N.m2] 0 
Jxz [N.m2] 0 
Jyz [N.m2] 32 

Coordinates of Hinge Points on the Ceiling [m] 
[0;0;0] 

[3.5;0;0] 
[0;5;0] 

[3.5;5;0] 
Body Dimensions [m] 

1.5x2.5x1.5 (Rectangular Prism) 

Coordinates of Hinge Points on the Body (wrt to CG) 
[-0.7;-1.0325;1.126] 
[0.8;-1.0325;1.126] 
[-0.7;1..4675;1.126] 
[0.8;1.4675;1.126] 
Initial Conditions 

No Initial Displacement 
Applied Forces 

Force Magnitude [N] Point of Action (wrt CG) [m] 
200 [-0.7;-1.0325;-0.374] 

Frequency of Forcing [Hz] 
2.1 

Initial Guess Vector for Inertia Tensor [N.m2] 
[700; 10; 10; 350; 50; 1000] 

Length of the Experiment [s] Sampling [s] 
250 0.01 
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4.12.1 The Results of the Experiment of Case Study 12 

 
The resulting motion of the experiment can be observed in Figures 

4.48, 4.49, 4.50, 4.51, 4.52, 4.53, 4.54. 

 
Figure 4.48 Position of x coordinate of CG between [0,25] s 

 
Figure 4.49 Position of y coordinate of CG between [0,50] s 
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Figure 4.50 Position of z coordinate of CG between [0,15]s 

 
Figure 4.51 Acceleration of CG in x direction between [0,60]s 
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Figure 4.52 Acceleration of CG in y direction between [0,50]s 

 
Figure 4.53 Acceleration of CG in z direction between [0,25]s 
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Figure 4.54 Rotational Velocity of the Body with respect to CG 

between [0,50]s 

 

4.12.2 The Results of the Identification Run for Case Study 12 

 

Identification code calculated the following inertia tensor: 

 

987 0 0
0 274 32
0 32 1102

J
 
 =  
  

 

 

Whereas the original tensor was: 

 

971.5 6 5.1
6 287.2 36.9

5.1 36.9 1082.1
J

 
 =  
  
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Percentage error is: 

 

1.57 6 5.1
% 6 4.82 15.3

5.1 15.3 1.81
Error

± ± 
 = ± 
 ± 

 

 

Although 15 percent error in off diagonal elements look high, 

absolute value of that components is very low when compared to 

diagonal elements, thus the error is not significant and the alues are 

still good enough for vehicle dynamics studies. 

 

Figure 4.55 shows the comparison of the identified system and the 

measured system’s output measurements. 

 

 
Figure 4.55 Comparison of the Identified System and the Measured 

System 
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4.13 Case Study 13 

 
In this case the mass properties of 1998 Chevrolet Metro (Suzuki 

Swift) with one occupant and full fuel tank are used [32]. 

 
 

Table 4.13 Data for Case Study 13  
 

CASE  13 
 

Coordinates of CG (initially) [m] [ 1.4; 2.065; -2.252] 
Mass [kg] 880 
Jxx [N.m2] 987 
Jyy [N.m2] 274 
Jzz [N.m2] 1102 
Jxy [N.m2] 0 
Jxz [N.m2] 0 
Jyz [N.m2] 32 

Coordinates of Hinge Points on the Ceiling [m] 
[0;0;0] 

[3.5;0;0] 
[0;5;0] 

[3.5;5;0] 
Body Dimensions [m] 

1.5x2.5x1.5 (Rectangular Prism) 

Coordinates of Hinge Points on the Body (wrt to CG) 
[-0.7;-1.0325;1.126] 
[0.8;-1.0325;1.126] 
[-0.7;1..4675;1.126] 
[0.8;1.4675;1.126] 
Initial Conditions 

No Initial Displacement 
Applied Forces 

Force Magnitude [N] Point of Action (wrt CG) [m] 
200 [-0.7;-1.0325;-0.374] 

Frequency of Forcing [Hz] 
1.05 

Initial Guess Vector for Inertia Tensor [N.m2] 
[700; 10; 10; 350; 50; 1000] 

Length of the Experiment [s] Sampling [s] 
250 0.01 
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4.13.1 The Results of the Experiment of Case Study 13 

 
The resulting motion of the experiment can be observed in Figures 

4.56, 4.57, 4.58, 4.59, 4.60, 4.61, 4.62, 4.63 and 4.64. 

 
Figure 4.56 Position of x coordinate of CG between [0,40] s 

 
Figure 4.57 Position of y coordinate of CG between [0,80] s 
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Figure 4.58 Position of z coordinate of CG 

 
Figure 4.59 Position of z coordinate of CG between [0,50] s 
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Figure 4.60 Acceleration of CG in x direction between [0,25]s 

 
Figure 4.61 Acceleration of CG in y direction 
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Figure 4.62 Acceleration of CG in y direction between [0,50]s 

 
Figure 4.63 Acceleration of CG in z direction between [0,60]s 
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Figure 4.64 Rotational Velocity of the Body with respect to CG 

between [0,50]s 

 

4.13.2 The Results of the Identification Run for Case Study 13 

 

Identification code calculated the following inertia tensor: 

 

968.2 0.4 10.2
0.4 279.3 34.4

10.2 34.4 1082.6
J

− 
 = − 
  

 

 

Whereas the original tensor was: 
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987 0 0
0 274 32
0 32 1102

J
 
 =  
  

 

 

Percentage error is: 

 

1.90 0.4 10.2
% 0.4 1.93 7.5

10.2 7.5 1.76
Error

± ± 
 = ± 
 ± 

 

 

The same data set from the previous case is used with halved 

frequency. The error of off diagonal elements is not high in this case, 

with a maximum of 7.5 percent. Diagonal elements are very 

accurately identified. igure 4.65 shows the comparison of the 

identified system and the measured system’s output measurements. 

 

 
Figure 4.65 Comparison of the Identified System and the Measured 

System 
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4.14 Case Study 14 

 
In this case the mass properties of 1998 Honda Civic with one 

occupant and full fuel tank are used  [32]. 

 

 
Table 4.14 Data for Case Study 14  

 
CASE  14 

 
Coordinates of CG (initially) [m] [1.6; 2.256; -2.274] 

Mass [kg] 1145 
Jxx [N.m2] 1617 
Jyy [N.m2] 365 
Jzz [N.m2] 1785 
Jxy [N.m2] 0 
Jxz [N.m2] 0 
Jyz [N.m2] 70 

Coordinates of Hinge Points on the Ceiling [m] 
[0;0;0] 
[4;0;0] 
[0;6;0] 
[4;6;0] 

Body Dimensions [m] 
1.6x3x1.5 (Rectangular Prism) 

Coordinates of Hinge Points on the Body (wrt to CG) 
[-0.8;-1.128;1.137] 
[0.8;-1.128;1.137] 
[-0.8;1.672;1.137] 
[0.8;1.672;1.137] 

Initial Conditions 
No Initial Displacement 

Applied Forces 
Force Magnitude [N] Point of Action (wrt CG) [m] 

200 [-0.8;-1.128;-0.363] 
Frequency of Forcing [Hz] 

1.05 
Initial Guess Vector for Inertia Tensor [N.m2] 

[1000; 10; 10; 300; 40; 1000] 
Length of the Experiment [s] Sampling [s] 

250 0.01 
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4.14.1 The Results of the Experiment of Case Study 14 

 
The resulting motion of the experiment can be observed in Figures 

4.66, 4.67, 4.68, 4.69, 4.70, 4.71, 4.72, 4.73, 4.74, 4.75, 4.76, 4.77. 

 

 
Figure 4.66 Position of x coordinate of CG between [0,50] s 

 
Figure 4.67 Position of y coordinate of CG between [0,50] s 



 
 

 104

 
Figure 4.68 Position of z coordinate of CG 

 
Figure 4.69 Position of z coordinate of CG between [0,25] s 
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Figure 4.70 Acceleration of CG in between [0,10]s 

 
Figure 4.71 Acceleration of CG in x direction between [0,125] s 
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Figure 4.72 Acceleration of CG in y direction 

 
Figure 4.73 Acceleration of CG in z direction 
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Figure 4.74 Rotational Velocity of the Body with respect to CG 

between [0,20]s 

 
Figure 4.75 Rotational Velocity of the Body with respect to CG 

around x axis 



 
 

 108

 
Figure 4.76 Rotational Velocity of the Body with respect to CG 

around y axis 

 
Figure 4.77 Rotational Velocity of the Body with respect to CG 

around z axis 
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4.14.2 The Results of the Identification Run for Case Study 14 

 

Identification code calculated the following inertia tensor: 

 

1542.4 1.4 0.8
1.4 364.9 63
0.8 63 1731

J
− − 

 = − 
 − 

 

 

Whereas the original tensor was: 

 

1617 0 0
0 365 70
0 70 1785

J
 
 =  
  

 

 

Percentage error is: 

 

4.61 1.4 0.8
% 1.4 0.03 10

0.8 10 3.03
Error

± ± 
 = ± 
 ± 

 

 

In this case, the mass properties of Honda Civic [32] is used, which is 

a car that is also available on Turkish market. Maximum error of 

diagonal elements is again lower than 5 percent and maximum error 

of off diagonal elements is 10 percent. The results are satisfying in 

terms of vehicle dynamics studies. 

 

Figure 4.78 shows the comparison of the identified system and the 

measured system’s output measurements. 
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Figure 4.78 Comparison of the Identified System and the Measured 

System 
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4.15 Case Study 15 

 
In this case the mass properties of 1998 Honda Civic with one 

occupant and full fuel tank are used [32]. 

 
Table 4.15 Data for Case Study 15  

 
CASE  15 

 
Coordinates of CG (initially) [m] [1.6; 2.256; -2.274] 

Mass [kg] 1145 
Jxx [N.m2] 1617 
Jyy [N.m2] 365 
Jzz [N.m2] 1785 
Jxy [N.m2] 0 
Jxz [N.m2] 0 
Jyz [N.m2] 70 

Coordinates of Hinge Points Points on the Ceiling [m] 
[0;0;0] 
[4;0;0] 
[0;6;0] 
[4;6;0] 

Body Dimensions [m] 
1.6x3x1.5 (Rectangular Prism) 

Coordinates of Hinge Points on the Body (wrt to CG) 
[-0.8;-1.128;1.137] 
[0.8;-1.128;1.137] 
[-0.8;1.672;1.137] 
[0.8;1.672;1.137] 

Initial Conditions 
No Initial Displacement 

Applied Forces 
Force Magnitude [N] Point of Action (wrt CG) [m] 

200 [-0.8;-1.128;-0.363] 
Frequency of Forcing [Hz] 

2.1 
Initial Guess Vector for Inertia Tensor [N.m2] 

[1000; 10; 10; 300; 40; 1000] 
Length of the Experiment [s] Sampling [s] 

250 0.01 
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4.15.1 The Results of the Experiment of Case Study 15 

 
The resulting motion of the experiment can be observed in Figures 

4.79, 4.80, 4.81, 4.82, 4.83, 4.84, 4.85, 4.86, 4.87, 4.88, 4.89. 

 

 
Figure 4.79 Position of x coordinate of CG between [0,150] s 

 
Figure 4.80 Position of y coordinate of CG between [0,75] s 
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Figure 4.81 Position of z coordinate of CG 

 
Figure 4.82 Acceleration of CG in between [0,10]s 
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Figure 4.83 Acceleration of CG in x direction 

 
Figure 4.84 Acceleration of CG in y direction 
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Figure 4.85 Acceleration of CG in z direction 

 
Figure 4.86 Rotational Velocity of the Body with respect to CG 

between [0,20]s 
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Figure 4.87 Rotational Velocity of the Body with respect to CG 

around x axis 

 
Figure 4.88 Rotational Velocity of the Body with respect to CG 

around y axis 
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Figure 4.89 Rotational Velocity of the Body with respect to CG 

around z axis 

 

4.15.2 The Results of the Identification Run for Case Study 15 

 

Identification code calculated the following inertia tensor: 

 

1594.5 2.7 4.3
2.7 369.9 54.4

4.3 54.4 1675.4
J

− 
 = − 
  

 

 

Whereas the original tensor was: 

 

1617 0 0
0 365 70
0 70 1785

J
 
 =  
  
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Percentage error is: 

 

1.39 2.7 4.3
% 2.7 1.34 22.3

4.3 22.3 6.14
Error

± ± 
 = ± 
 ± 

 

 

This case uses the same data set from the previous case except for 

the fact that the forcing frequency is doubled. The error on the first 

two diagonal elements decreased whereas the error on the yaw 

moment of inertia and roll/yaw product of inertia increased. Still the 

accuracy is acceptable for most vehicle studies. 

 

Figure 4.90 shows the comparison of the identified system and the 

measured system’s output measurements. 

 
Figure 4.90 Comparison of the Identified System and the Measured 

System 
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4.16 Case Study 16 

 
In this case the mass properties of 1998 Jeep Cherokee with one 

occupant and full fuel tank are used [32]. 

 
Table 4.16 Data for Case Study 16  

 
CASE  16 

 
Coordinates of CG (initially) [m] [1.6; 2.5; -2.58] 

Mass [kg] 1810 
Jxx [N.m2] 2894 
Jyy [N.m2] 695 
Jzz [N.m2] 3101 
Jxy [N.m2] 0 
Jxz [N.m2] 0 
Jyz [N.m2] 102 

Coordinates of Hinge Points on the Ceiling [m] 
[0;0;0] 
[4;0;0] 

[0;5.2;0] 
[4;5.2;0] 

Body Dimensions [m] 
1.6x2.5x1.75 (Rectangular Prism) 

Coordinates of Hinge Points on the Body (wrt to CG) 
[-0.8;-1.25;1.29] 
[0.8;-1.25;1.29] 
[-0.8;1.25;1.29] 
[0.8;1.25;1.29] 

Initial Conditions 
No Initial Displacement 

Applied Forces 
Force Magnitude [N] Point of Action (wrt CG) [m] 

200 [-0.8;-1.25;-0.46] 
Frequency of Forcing [Hz] 

1.05 
Initial Guess Vector for Inertia Tensor [N.m2] 

[1000; 10; 10; 300; 40; 1000] 
Length of the Experiment [s] Sampling [s] 

150 0.01 
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4.16.1 The Results of the Experiment of Case Study 16 

 
The resulting motion of the experiment can be observed in Figures 

4.91, 4.92, 4.93, 4.94, 4.95, 4.96, 4.97, 4.98, 4.99, 4.100, 4.101, 

4.102, 4.103. 

 

 
Figure 4.91 Position of x coordinate of CG 

 
Figure 4.92 Position of y coordinate of CG 
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Figure 4.93 Position of y coordinate of CG between [0,40] s 

 
Figure 4.94 Position of z coordinate of CG 
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Figure 4.95 Position of z coordinate of CG between [0,30] s 

 
Figure 4.96 Acceleration of CG in between [0,15]s 
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Figure 4.97 Acceleration of CG in x direction 

 
Figure 4.98 Acceleration of CG in y direction 



 
 

 124

 
Figure 4.99 Acceleration of CG in z direction 

 
Figure 4.100 Rotational Velocity of the Body with respect to CG 

between [0,25]s 
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Figure 4.101 Rotational Velocity of the Body with respect to CG 

around x axis 

 
Figure 4.102 Rotational Velocity of the Body with respect to CG 

around y axis 
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Figure 4.103 Rotational Velocity of the Body with respect to CG 

around z axis 

 

4.16.2 The Results of the Identification Run for Case Study 16 

 

Identification code calculated the following inertia tensor: 

 

2778.2 2.5 1.0
2.5 691.9 93.9

1.0 93.9 2984.8
J

− 
 = − 
  

 

 

Whereas the original tensor was: 

 

2894 0 0
0 695 102
0 102 3101

J
 
 =  
  
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Percentage error is: 

 

4.00 2.5 1.0
% 2.5 0.45 7.94

1.0 7.94 3.75
Error

± ± 
 = ± 
 ± 

 

 

The vehicle used in this case is Jeep Cherokee, and is available on 

Turkish market. The cas is a SUV class vehicle. Accuray of all 

components of the inertia tensor are acceptable to used on other 

vehicle dynamics studies. 

  

Figure 4.104 shows the comparison of the identified system and the 

measured system’s output measurements. 

 

 
Figure 4.104 Comparison of the Identified System and the Measured 

System 
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4.17 Case Study 17 

 
In this case the mass properties of 1998 Jeep Cherokee with one 

occupant and full fuel tank are used [32]. 

 
Table 4.17 Data for Case Study 17  

 
CASE  17 

 
Coordinates of CG (initially) [m] [1.6; 2.5; -2.58] 

Mass [kg] 1810 
Jxx [N.m2] 2894 
Jyy [N.m2] 695 
Jzz [N.m2] 3101 
Jxy [N.m2] 0 
Jxz [N.m2] 0 
Jyz [N.m2] 102 

Coordinates of Hinge Points on the Ceiling [m] 
[0;0;0] 
[4;0;0] 

[0;5.2;0] 
[4;5.2;0] 

Body Dimensions [m] 
1.6x2.5x1.75 (Rectangular Prism) 

Coordinates of Hinge Points on the Body (wrt to CG) 
[-0.8;-1.25;1.29] 
[0.8;-1.25;1.29] 
[-0.8;1.25;1.29] 
[0.8;1.25;1.29] 

Initial Conditions 
No Initial Displacement 

Applied Forces 
Force Magnitude [N] Point of Action (wrt CG) [m] 

200 [-0.8;-1.25;-0.46] 
Frequency of Forcing [Hz] 

1.05 
Initial Guess Vector for Inertia Tensor [N.m2] 

[1000; 10; 10; 300; 40; 1000] 
Length of the Experiment [s] Sampling [s] 

100 0.01 
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4.17.1 The Results of the Experiment of Case Study 17 

 
The resulting motion is the same as that of Case Study 16 in first 100 

seconds. 

 

4.17.1 The Results of the Identification Run for Case Study 17 

 

Identification code calculated the following inertia tensor: 

 

2778.3 1.9 2.2
1.9 690 94.4

2.2 94.4 2985.0
J

− 
 = − 
  

 

 

Whereas the original tensor was: 

 

2894 0 0
0 695 102
0 102 3101

J
 
 =  
  

 

 

Percentage error is: 

 

4.0 1.9 2.2
% 1.9 0.72 7.45

2.2 7.45 3.74
Error

± ± 
 = ± 
 ± 

 

 

Same data set and the same forcing in the pervious case is used, but 

the time interval used in identification is shortened. The amount of 

error for all elements are nearly the same as the last case. 

 



 
 

 130

Figure 4.105 shows the comparison of the identified system and the 

measured system’s output measurements. 

 
Figure 4.105 Comparison of the Identified System and the Measured 

System 
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4.18 Case Study 18 

 

In this case study, the data of Honda Civic is used and is the same 

data set used in case studies 14 and 15. However the forcing is 

applied in yz and xz planes to investigate the effects of different 

excitations.  

 

The error obtained for harmonic excitation of 200 N at 1.05 Hz in xz 

plane is: 

 

5.78 1.78 3.93
% 1.78 0.14 10.47

3.93 10.47 3.16
Error

± ± 
 = ± 
 ± 

 

 

The error obtained for harmonic excitation of 200 N at 1.05 Hz in yz 

plane is: 

 

4.02 2.64 2.0
% 2.64 0.03 11.86

2.0 11.86 3.31
Error

± ± 
 = ± 
 ± 

 

 

When compared to case study 14 (200 N forcing in xy plane at 1.05 

Hz)  there is no considerable improvement in accuracy.  

 

The error obtained for harmonic excitation of 200 N at 2.1 Hz in xz 

plane is: 

 

1.76 3.87 11.01
% 3.87 1.15 20.15

11.01 20.15 4.87
Error

± ± 
 = ± 
 ± 
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The error obtained for harmonic excitation of 200 N at 1.05 Hz in yz 

plane is: 

 

3.20 2.92 10.03
% 2.92 1.22 22.47

10.03 22.47 7.13
Error

± ± 
 = ± 
 ± 

 

 

When compared to case study 14 (200 N forcing in xy plane at 2.1 

Hz)  the same can be said for the 1.05 Hz case.  

 

It is concluded that changing the direction of the forcing does not 

effect the accuracy of the results considerably. 

 

4.19 Discussion of Case Study Results 

 

Seventeen case studies were studied in total. The first nine case 

studies demonstrate the evolution of the development stage of the 

experimental set up, whereas the last eight cases are run with data 

of commercially available vehicles.  

 

In general, it is seen that the measurement of external forces have 

direct effect on the convergence. For the linear forcing cases, the 

best results were obtained in the first two cases, where the applied 

forces were measured. However applying a translational force is not 

practical when compared to the application of a harmonic forcing 

using an unbalanced mass – motor assembly. 

 

All 6 elements of the inertia matrix are identified with good accuracy  

when the applied forces are measured as in cases 1 and 2. The 

highest error was 8 % in roll/yaw product of inertia value.  
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In the third case, where applied forces were not measured, all the 

elements of the inertia tensor except Jyz and Jzz are measured up to 

an acceptable error interval. However the error came out to be 12.6 

% for Jyz and 30 % for Jzz.  Although 12.6 % error can be considered 

to be reasonable, 30 % error in a diagonal element of the inertia 

tensor is unacceptable, since diagonal elements can be measured 

using other simpler tehniques with very high accuracy. 

 

It is concluded that; these errors can be decreased to an acceptable 

level by estimating the forces; instead of measuring them. In this 

case, the accuracy of the estimation will have a direct effect on the 

error. However, it is seen that even without measuring the forces and 

without estimating them, four of the six elements of the tensor are 

identified with high accuracy. 

 

In case 4; only the data points after the application of the forces were 

considered, i.e. no forces were applied in the part of the data used 

for the identification. In this case only Jzz was measured with good 

accuracy. Error in the other diagonal elements came out to be less 

than 13.5 %. As mentioned above, this amount of error is considered 

high for diagonal elements. 

 

The technique used in case 4 can be considered to be used in 

conjunction with case 3, which gives good accuracy for Jxx and Jyy 

(with maximum error 0.37 %) in order to measure diagonal elements.  

 

In case 5; a convergence map was plotted.  According to this plot; it 

can be seen that a reasonable degree of convergence can even be 

achieved by measuring only the second applied force; and running 
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the identification code with the data starting from a data point just 

after the first force. However vast regions of divergence can also be 

observed for certain intervals of starting data points. 

 

In case 8; the experiment was started from another position 

according to the findings of the 7th case. No external force was 

applied. 10 seconds of motion was recorded with 0.01 s sampling. In 

this case, good level of accuracy was achieved in the diagonal terms, 

with a maximum error of 3.76%. 

 

According to the results of the 8th case, it can be concluded that 

diagonal terms can be identified with good accuracy without using 

externally applied and measured forces, but starting with an initial 

displacement. However it must be noted that in this case 

unacceptably high errors are observed for the off-diagonal elements. 

 

In case 9; a sinusoidal forcing is applied and measured. The error in 

results are less than 0.5% in diagonal terms; and in acceptable range 

for off-diagonal terms.  

 

Interestingly,  when case 1 was experimented with longer time range, 

it was observed that although convergence was achieved, the 

accuracy of the results decreased. Best results were obtained with a 

data set total of 7 seconds (i.e. only 1.9 seconds after the release of 

the second external force) whereas accuracy decreased regularly 

with 10, 15, 20 and 50 seconds time range. However, since the 

system has no damping, the motion is always the same, no matter 

how long the time range is. The only difference is that with longer 

time range; more oscillations are observed.  
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The increase in accuracy as the time range decreases and the end of 

the data set approaches to the release of the second external forcing 

is most probably because of the fact that the mathematical model 

used in the identification is a force based model. Although the cable 

forces are considered as external forces in the system model; the 

externally applied forces are the driving force of the experiment. 

Thus, as the collected data has less percentage information about 

the user applied force, worse results are obtained. The enforced 

motion of the body is more critical than the free motion of the body 

after the forcing is released. 

 

This argument is supported by the 9th case as well. In this case the 

forces are applied continuously throughout the experiment. It is 

observed that as the length of the experiment increases; the 

accuracy, especially for the off-diagonal terms get better. It can be 

said that 9th case is the most applicable and probably the most 

feasible case for real life application. 

 

In the cases 10-17; real data sets are used in order to verify the 

identification technique. The technique gives low percentage error for 

diagonal elements for every case. However the percentage error for 

the identified off-diagonal element is found to be higher than 15 % for 

certain cases. In these cases, the value of the off-diagonal element 

happens to be very low, which increases the percentage error 

despite the fact that absolute error between the identified and the 

real values of the parameter is acceptable. 

 

In cases 10 and 11; the same vehicle was excited with an harmonic 

forcing of same frequency but different amplitudes to observe the 

effect of different forcings. In case 11, amplitude was doubled. 
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Although both of the identified tensors were found to be satisfactory, 

the results of the case 10 is slightly more accurate. 

 

In cases 12,13 and 14, 15 the same vehicle was subjected to the 

forcings with same amplitudes but different frequencies, in order to 

observe if the frequency effects the identification process. In these 

cases accurcy of the identified tensor was better for the lower 

frequency cases. It is clear that the frequency of the forcing has a 

strong effect on the results. 

 

In case 18, forcings in different directions are applied to investigate 

the effects of excitation in other planes. It is concluded that, although 

percentage error was decreased in certain elements of the tensor; 

there was no great improvement in overall accuracy.  
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CHAPTER 5 
 

 

DISCUSSION AND CONCLUSION 

 

 

5.1 Discussion 

 

In this study, an simulink model of an experimental set up and a set 

of codes were developed in order to identify the mass properties of 

vehicles to be used in further vehicle dynamics research. 

 

The simulink model simulates a certain experimental set up, which 

consists of a frame which is suspended by four steel cables from the 

ceiling of the laboratory. The body, the mass properties of which is to 

be measured is fixed into the frame. 

 

The experimental set up in its statical equilibrium position is used to 

calculate the location of center of gravity of the vehicle. For this 

process, two experiments are made; one with a dummy mass with 

known center of gravity location, fixed to a known position on the 

frame. 

 

In order to identify the inertia tensor of the vehicles, the experimental 

set up must be excited and the resulting motion must be recorded. 

After several case studies it is decided to use an unbalanced mass – 

motor assembly to excite the system. Translational accelerations and 

rotational velocities of the center of gravity are to be measured using 

accelerometers and gyroscopes. The tensions on the steel cables 
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and the harmonic forcing which is applied to a known position on the 

body must also be measured. Using the recorded motion data, the 

position and the orientation history of the body and the force vector 

histories are calculated in order to obtain the generalised force vector 

history.   

 

The equation of motion of the system is derived using Newton’s 

Second Law of Motion and a state space model is obtained using 

these equations. Elements of the mass moment of inertia matrix are 

introduced as free parameters of this model. Measured motion data 

and generalised force vector history are fed as input to the 

identification code.  

 

In real life application instead of the experiment simulation, the actual 

experiment is going to be made. Thus the measured data must be 

transfered into MATLAB® workspace. Then the codes must be run in 

following order: Position tracking code, preprocessing code and 

identification code. Note that the user must have enough knowledge 

on the code and system dynamics to update the code according to 

possible changes in the experimental set up or measured data. 

 

The case studies in Chapter 4 are presented in the order they were 

studied. They demonstrate the development of the study. In the first 

nine cases, the most feasible and applicable method is sought, 

whereas in the last ones, the decided method is further tested and 

verified.  

 

The resulting identification code of this study has some limitations, 

one of which is that the code works only with one specific 

experimental configuration. The code must be modified in case of a 

change in number of suspending cables or a change in actuating 
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method. Also the successful identification of the inertia parameters 

and the convergence of the code is strongly dependent on the initial 

guess vector. Thus the user should use sensible figures for the initial 

guess vector for ensurence of the convergence. Different estimation 

methods can be found in the literature [18]. 

 

5.2 Conclusion 

 
In conclusion, the major objective of this thesis, which is to develop a 

code and methodology that will identify the mass properties of 

vehicles using a specified test rig, for further vehicle dynamics 

studies, is achieved successfully. For this purpose, a methodology 

which provides a successful approach to the problem of modelling of 

the experimental system is derived. The center of mass is calculated 

using the equilibrium position of the set up. A Simulink model is 

developed to simulate the dynamic response of the experiment. 

 

Final configuration of the experimental set up employs an 

unbalanced mass – motor assembly. This configuration is decided 

because of the better accuracy it offers and relatively easy 

application when compared to linear forcing case. The experimental 

set up consists of a carrying frame, four steel cables, three 

accelerometers, three gyroscopes, four load cells, and an 

unbalanced mass-motor assembly with two load cells to measure the 

forcing it exerts on the body. 

 

Different cases were studied, six of which were taken from real life 

vehicles. The results of the experiment simulations were used as 

input for identification code. The results are found to be highly 

satisfactory both for diagonal elemnts and off-diagonal elements. 
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Although it has some limitations as stated above, designed 

identification code is a very useful tool and will satisfy the needs of 

the further vehicle dynamics studies. By using this code, the mass 

properties of vehicles will be obtained in shorter time when compared 

to conventional natural frequency methods.  

 

5.3 Future Work 

 

Some or all of the above mentioned limitations may be overcome in 

the future work, since the foundations of the design methodology is 

derived successfully in this thesis. 

 

First limitation, need to use Matlab, can be removed by coding the 

identification code on a different development platform and making it 

a stand alone application. However, this would require development 

of the optimization routines instead of the MATLAB® functions used 

in this study. Other functions of the identification code can be directly 

used or modified depending on the selected development platform. 

The development platform can be a high level language such as 

Delphi or Visual Basic. 

 

Detailed design and optimization of the test rig is another subject and 

may be examined in a future M.Sc. study. 

 

The error introduced by the unbalanced mass – motor assembly is 

rather small and was neglected in this study. However since the 

position of the motor is fixed on the frame and the motion of the 

unbalanced mass is easy to track, its effect on the center of mass 

and inertia can be estimated, neglecting the change of inertia with 

time introduced by the rotating mass or remodelling the system with 
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a time dependent inertia model. The accuracy of the method would 

increase considerably in this case. 

 

Another future work may be the addition of a module to estimate the 

natural frequencies of the experimental model and a study to 

investigate the optimum rotational speed for the unbalanced mass – 

motor assembly using the natural frequency data. According to the 

findings of this thesis; changing frequency of the loading leads to 

different results in terms of accuracy. 
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APPENDIX A 

 
 

 
 

Figure A-1 Experiment Model  
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Figure A-2 Tracker Box 

 
 
 

 
 
 

Figure A-3 Test Setup with Unbalanced Mass-Motor 
 


