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ABSTRACT 

 

 

COMBINATORIAL AUCTION PROBLEMS 

 

 

 

BAYKAL, Şafak 

 

M.S., Department of Industrial Engineering 

Supervisor: Prof. Dr. Murat Köksalan 

 

August 2007,79 pages 

 

 

 

Electronic commerce is becoming more important day by day. Many transactions 

and business are done electronically and many people do not want paper work 

anymore. When a firm wants to buy raw materials or components, it announces 

its need to related websites or in the newspapers. Similar demands and 

announcements can be seen almost everywhere nowadays. In this way, it needs to 

perform fast and reliable auctions as much as possible. On the other hand, buyers 

not only consider cost but also consider a lot of different aspects like quality, 

warranty period, lead time etc when they want to purchase something. This 

situation leads to more complex problems in the purchasing process. 

 

As a consequence, some researchers started to consider auction mechanisms that 

support bids characterized by several attributes in addition to the price (quality of 
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the product, quantity, terms of delivery, quality of the supplier etc.). These are 

referred to as multi-attribute combinatorial auctions. 

 

In this thesis, Combinatorial Auctions are analyzed. Single-attribute multi-unit, 

multi-attribute multi-unit combinatorial auction models are studied and an 

interactive method is applied for solving the multi-attribute multi-unit 

combinatorial auction problem. 

 

Keywords: Combinatorial Auctions, Multi-attribute, Interactive Method        
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ÖZ 

 

 

KOMBİNATORYAL AÇIK ARTTIRMA PROBLEMLERİ 

 

 

 

BAYKAL, Şafak 

 

Yüksek Lisans, Endüstri Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Murat Köksalan 

 

Ağustos 2007, 79 Sayfa 

 

Elektronik ticaret günden güne önem kazanmaktadır. Çoğu işlem ve ticaret 

elektronik olarak yapılmakta olup birçok insan artık evrak işleri istememektedir. 

Bir firma hammadde veya gerekli aksamı almak istediğinde, bu işle ilgili web 

sitelerine veya gazetelere ilan vermektedir. Benzeri ihtiyaçları ve duyuruları 

günümüzde birçok yerde görmekteyiz. Bu sebeple hızlı ve güvenilir açık arttırma 

(ihale) süreçlerine ihtiyaç vardır. Diğer taraftan alıcılar bir şey almak 

istediklerinde artık sadece maliyete değil, kalite, garanti dönemi, tedarik zamanı 

gibi başka niteliklere de önem vermektedirler. Bu durum da satın alma sürecinde 

daha karmaşık problemlere sebep olmaktadır.  

 

Bu nedenle, bazı araştırmacılar maliyet dışında diğer faktörlerin (ürünün kalitesi, 

teslimat zamanı, tedarikçinin kalitesi vb.) de önemli olduğu açık arttırma (ihale) 

sürecini incelemeye başlamışlardır. Bu tip açık arttırmalara çoğul-nitelikli 

kombinatoryal açık arttırmalar da denir. 
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Bu tezde kombinatoryal açık arttırmalar incelenmiştir. Tekil-nitelikli çoğul-

birimli ve çoğul-nitelikli çoğul-birimli kombinatoryal açık arttırmalar ve 

modelleri üzerinde çalışılmış ve etkileşimli bir metodun çoğul- nitelikli çoğul-

birimli kombinatoryal açık arttırmalar üzerinde uygulaması yapılmıştır. 

 

Anahtar Kelimeler: Kombinatoryal Açık Arttırmalar, Çoğul-nitelik, İnteraktif 

Metod  
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CHAPTER 1 

 

 

1 INTRODUCTION 

 

 

 

Because people have used auctions to make trade since ancient times, auctions are 

very important for us. Auctions have many advantages when one wants to buy or 

sell something. For example, if he is not sure of the value of an item, auctions are 

one of the alternative ways to determine this item’s value. Moreover, this item’s 

value may change depending on the buyer. This situation is called valuation that 

is explained in section 2.3. 

 

After Internet has become popular, online auctions were introduced. Online 

auctions have created a large marketplace where people can buy or sell whatever 

and whenever they want. One advantage is that one can easily sell or buy 

immediately whatever they want. He does not need to walk around a lot of places 

because it is enough to visit different websites by using a computer.  

 

Auctions are also used by ministries around the world. US Federal 

Communications Commission (FCC) made an auction (spectrum auctions) in 

1994 (Cramton, 1997) then many governments made spectrum auctions like third-

generation mobile phone (UMTS) licenses. The Dutch government, for example, 

has auctioned spectrum for both DCS1800 and UMTS networks but also has 

considered using auctions for the allocation of slots for highway gas stations, 

wireless local loop spectrum and telephone numbers (Goeree et al., 2006). 
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In this thesis, a multi objective mixed integer model for combinatorial auctions is 

proposed. The structure and rules of this auction are determined with respect to 

the application. Auctions are conducted with singleton bids and bundled bids. The 

assumptions are inspired by the real cases. The solutions and performances are 

analyzed with respect to some indicators. In addition, an interactive method is 

proposed for solving the multi objective combinatorial auction. The method is 

applied with implicit utility functions and the solutions are compared with the 

explicit case. 

 

The content of the thesis is as follows: Related literature and background of 

auctions are given in detail and discussed in Chapter 2. In Chapter 3, some 

models for combinatorial auctions are presented from the literature. The proposed 

mixed integer models for combinatorial auctions are given in Chapter 4. The 

performance of these models is analyzed and evaluated. In Chapter 5, an 

interactive method for multi objective combinatorial auctions is proposed. 

Finally, conclusive remarks are provided and future research directions are 

discussed in Chapter 6.  
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CHAPTER 2 

Equation Section (Next) 

 

2 BACKGROUND OF AUCTION THEORY 

 

 

 

2.1 AUCTIONS 

 

2.1.1 Why Auctions? 

 

World is becoming crowded, business is becoming more important and there are 

many ways to conduct business. Auctions are one of the popular ways of buying 

and selling. Auctions’ popularity can be attributed to several reasons. For 

example, sellers and buyers discuss face to face and carry on business in a win-

win strategy. Moreover, all sellers have equal chance in an auction. 

 

Auctions also have some extra advantages. According to Wolfstetter (1996) 

auctions are used for three reasons: 

o Speed of sale, 

o To reveal information about buyers' valuations, 

o To prevent dishonest dealing between the seller's agent and 

the buyer. 

 

In short, auctions are advantageous and used in several kinds of situations. 

Auctions’ structure is mainly based on equal chance of each bidder.  According to 

Rothkopf et al. (2001), the most important advantages are fairness and the 
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appearance of fairness. They claim that auctions give advantages when 

negotiation and posted price actions do not work properly. In the auctions the 

seller does not have to wait or negotiate until someone accepts these prices. In the 

auctions, units usually do not have a posted price. Auctioneer keeps announcing 

new prices until a single bidder accepts to sell/buy the units at the last announced 

price. Moreover, Internet based auctions reduce transaction costs because there 

are no overhead costs, staff costs or investments costs.  

 

2.1.2 Auctioned units  

 

The first decision in an auction is what is to be sold or purchased. There are many 

possible units to sell or buy in an auction. You can sell a new unit or a second 

hand unit or both at the same time. Rothkopf et al. (2001) said that you have to 

decide on the specifications of the unit. For example, is the product sold as is or 

with a warranty period? Or if you want to sell a territory, you have to decide to 

sell in one-piece or multi-piece. These specifications affect the auction and buyers 

private values. 

 

2.1.3 Who may be the Bidder?  

 

Another decision in the auction is who may be a bidder?  Depending on the type 

of auctions explained in section 2.2, some additional requirements may be 

needed. For example, in the Internet, if you want to sell something at an auction, 

you have to be a member of a website like Gittigidiyor.com. Only website 

member sell or buy from this website. If a website member wants to sell or buy 

something from a different website, one has to join this website too. On the other 

hand, if a big and important thing is auctioned like airport construction, the 

bidders may have to be approved or controlled by government. Alternatively, 

government may invite only approved bidders.  
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2.2 COMMON AUCTION FORMS  

 

Auctions have become more important recently and we can see easily many 

applications in the world. For example one differentiation is between oral and 

written auctions. In oral auctions, for example antiques auctions, bidders hear 

each other's bids, and can make counteroffers; each bidder knows his rivals. In a 

written or closed seal bid, bidders submit their bids simultaneously without 

revealing them to others. For example airport construction bidding, bidders 

submit their bids at the same time in a closed seal and they do not know others’ 

bids. After that, auctioneer announces sometimes either only winner bids and 

bidder, or all bids and bidders.  

  

The best-known and most frequently used auctions are shown in Table 2.1. They 

are English, Dutch, First Price Sealed Bid and Second Price Sealed Bid Auctions. 

 

 

 

Table 2.1- The best-known and most frequently used auctions 

 

Oral Written (sealed-bid) 

Ascending Price 

(English) 
Second Price 

Descending Price 

(Dutch) 
First Price 
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Moreover Teich et al. (2003) listed 18 important characteristics of practical 

auction situations in Table 2.2. 

 

 

 

Table 2.2 - Classification of Auction Situations Based on Their Characteristics 

(Teich et al. 2003) 

 

Characteristic Range 

1. Number of Units of a Certain Good  One to Many 

2. Number of Goods Auctioned One to Many 

3. Nature of Goods Homogeneous to Heterogeneous 

4. Attributes One to Many 

5. Type of Auction Reverse vs. Forward 

6. Nature of Auction One-Round vs. Progressive 

7. English Vs. Dutch Auction Ascending, Descending Price 

8. Participation By Invitation vs. Open  

9. Use of Agents Agent Mediated Vs. Manual Mode 

10. Price Paid by Winner  First Price vs. Second Price vs. nth Price 

11. Price Discrimination Yes, No 

12. Constraints Exist Implicitly, Explicitly 

13. Follow-up Negotiation Yes, No 

14. Value Function Elicitation Yes, No 

15. Nature of Bids Open-Cry vs. Semi-Sealed vs. Sealed 

16. Bid Vector 1, 2, or n-dimensional 

17. Bids divisible Yes, No 

18. Bundle Bids Allowed Yes, No 
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In Table 2.2, characteristic 1 and 2 are related with the number of goods to be 

auctioned. Characteristic 3 shows the nature of the goods. This means that the 

auctioned units can be one type of unit (like 3 µΩ resistant) or multi-type units (3 

µΩ, 5 µΩ, 10 µΩ resistant). Teich et al. (2003) say that characteristics 5-14 

concern the auction rules and format. Characteristics 15-18 concern the nature 

and composition of bids. For example characteristic 16 shows that a bid can be 

more than one dimensional such that it has dimensions like cost, quality, warranty 

period etc. 

 

In the auctions, usually an agent is used (characteristic 9). For example, in antique 

auctions there is an auctioneer to increase the price with the rise of hands. On the 

other hand, in commercial sites a primitive type of agent is used. This type of 

agent follows an auto bidding procedure or only control who bids and decide who 

the winner is.  

 

According to Teich et al. (2003) first price auctions are more preferential than 

second price. First price and second price auctions are explained in sections 2.2.3 

and 2.2.4. For both auction types, neutrality trust is an important factor. Many 

auction sites collect the reliability votes of bidders and sellers. After a buyer buys 

a unit from a seller, the buyer evaluates the seller according to reliability. From 

the buyer’s side, if a buyer bids and wins the auction but does not  pay , then the 

auctioneer warns the buyer for this behavior and decreases the reliability credit of 

the buyer. Thus each side, buyer and seller, easily judge whether to trust each 

other to sell or buy.  

 

Valuation or price discrimination means that everyone appreciates different 

values for the same unit because this unit does not have the same value for every 

one. Someone may overvalue the unit because it is really needed, someone may 

undervalue because it may not be so critical to buy it or not. Teich et al. claim 
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that “price discrimination increases the monopoly power, leading to potentially 

higher profits than uniform pricing”. Valuation phenomenon is explained in 

section 2.3. 

 

When we talk about characteristic 15, it gives us the nature of bids. “Open-cry” 

means that when a bidder states his bid, all rivals hear or know what he bids and 

if anyone wants to increase that bid, one says his increased bid and again all rivals 

hear/know this increment. “Sealed” bids mean bidders give their bids in a seal and 

rivals do not know anything about other bids. At the end of the auction, only the 

winner is announced. “Semi-sealed” bids are between “Open-cry” and “Sealed”. 

For example, when a bidder gives a bid, he only knows his rank among other 

bidders. Same situations hold true for all bidders. They only know the current 

rank of their own bid in the bid-stream.   

 

When we put together characteristics 5 and 7, four main auction types can be 

seen: 1) Forward Dutch (or just Dutch), 2) Forward English (just English), 3) 

Reverse Dutch and 4) Reverse English (or just Reverse).  According to Teich et 

al., Reverse Dutch is apparently the least common of the four. Also they claim 

that, with respect to characteristics 6 and 13, auctions may consist of different 

stages like progressive multi-stage auction and they conclude in two-party 

negotiations. 

 

Up to now, we talked about some characteristics of auctions. Hereafter, four main 

auction types will be discussed. 

 

2.2.1 English Auction 

 

English auction is the oldest version of auction types. Its other name is open 

ascending price auction. We can see many applications of the English auction. 

For example, an antique sale is made usually by this type of auction. Auctioneer 

starts auction with a beginning price (usually low price) and raises the price in 
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small increments. The auction stops when only one bidder is interested and the 

unit is sold to this bidder according to the latest price.  

 

Krishna (2002) illustrated another application of English auction. Auctioneer 

proposes a price and rises continuously until only one hand of bidder is raised up, 

because, bidders show their interest at that price in purchasing by raising a hand 

in this application. If the bidder finds the price too high, he lowers his hand and 

withdraws from the auction. Last bidder who still raises his hand wins the auction 

and pays the price at which the second-last bidder stopped-out.    

 

2.2.2 Dutch Auction 

 

This type of auction’s name comes from Netherlands because Dutch auctions 

originally were used in Netherlands for flower sales. In this type, the auctioneer 

announces the prices and decreases it continuously until a bidder accepts the 

price. Krishna (2002) says that Dutch auctions are very economical for time and 

effort and that is why a version of Dutch auction is still used in Netherlands.    

 

2.2.3 The Sealed-bid First Price 

 

This type of auction can be seen easily in everyday life. Most of the governmental 

issues are auctioned using this type of auction process. In the process, bidders 

submit sealed bids and any bidders do not know others’ bids. The bidder, who 

submitted the highest bid wins the auction and pays what he bids if auctioneer 

does not want to negotiate. If he wants to negotiate, it means that he wants to 

decrease (increase) the price if he is purchasing (selling). The auctioneer 

announces the winner price and invokes bidders once more to re-submit their new 

bids. If at the second iteration, the winner price does not change, the winner and 

the price will be declared. If it changes, the announcer will renew his 

announcement and new bid submission will be done again until the winner price 

does not change any more. 
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2.2.4 The Sealed-bid Second Price 

 

This type of auction is very similar to the First Price Auctions. As its name 

suggests, bidders submit their bids in seals. But, different from First Price 

Auctions, the winner who submits the highest bid pays the second-highest bid 

value. Because Vickrey (1961) proved that under certain circumstances the 

second price auctions result in the same average revenue for the auctioneer as in a 

first price sealed-bid auction,  this auction type in the literature is also known as 

Vickrey Auction . 

 

2.3 VALUATION 

 

Valuation phenomena come from the nature of the auctions that there are one or 

more sellers and buyers and both of the sides who want to maximize their gains. 

However none of them knows what the unit is valued for each other. If one of 

them knew the value of this unit for each bidder, he could have forced the other 

bidders to pay more.    

 

Krishna (2002) describes three different valuation situations which change 

depending on the bidders. They are private value, common value, and 

interdependent value auctions. 

 

If every bidder knows the value of the auctioned unit to himself in the auction, the 

situation is called private values. Put another way, none of the bidders know 

private values of other bidders and their private values would not affect the worth 

of the auctioned units to a bidder. 
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In many situations, the bidder does not know exactly how much the object is 

worth at the time of the auction. The bidder only realizes the value of the object 

from expert’s estimate or some test results. Actually, certain bidders may have 

some extra information about the value of the object and they may attach a value 

to the object. Thus values are unknown at the time of the auction and may be 

affected by information available to other bidders. Such a specification is called 

one of the interdependent values and Krishna (2002) says interdependent values 

are suited for situations in which the object being sold that can possibly be resold 

after the auction. 

 

Common value auction is the last type of valuation. It is not seen frequently 

because in this situation, the value of the object is the same for all bidders despite 

they do not know their private values for this object. Krishna (2002) gives an 

example for a common value model such that the value of the object can be 

evaluated from market price when in the auction its value is unknown. 

 

2.4 SOME TYPES OF AUCTIONS        

 

Single or Double Auctions: In single auctions, the bidders are either “buyers” or 

“sellers”. If an auction is related with procurement, the auctioneer is usually the 

buyer, if it is related with sale, the auctioneer is usually the seller. English, Dutch, 

first-price sealed-bid, and second-price sealed-bid auctions are typically single 

auctions. On the other hand, double auctions are double-sided. They allow 

multiple buyers and sellers at once. Figure 2.1 shows us the single or double 

auction mechanisms. Continuous double auctions (CDA) are the general model 

for commodity and stock markets. Mostly, in the market there are many sellers 

and buyers. They want to maximize/minimize their profit/cost. These CDAs 

provide more negotiation and more competition. A buyer can bargain effectively 

when there exist more than one seller or vice versa. 
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Sealed-bid or Out-cry Auctions: In sealed-bid auctions the bids submitted by 

the bidders are not known until the auction ends. On the other hand, in the out-cry 

(or open-cry) auctions the bids are made public and every bidder knows what is 

the current winner bid during the auction. 

 

 

 

 

 

Figure 2.1 Single and Double Auction Mechanism    

 

 

 

Sequential or Parallel Auctions:  In sequential auctions, bidders give their bids 

sequentially because units are auctioned one after the other. Sandholm (2002) 

says that there is an easy way to determine the winner such as selecting the 

highest bid for each unit. However, if the bidders have same preferences over 

bundles, the auctioneer cannot easily select the winning bids because the 

auctioneer has to consider the later auctions in order to maximize his gain. Owing 

Seller 

Buyer 

Buyer 

Buyer 

Seller 

Seller 

Seller 

Buyer 

Single Auction 

Seller 

Seller 

Seller 

Seller 

Buyer 

Buyer 

Buyer 

Buyer 

Buyer 
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to the fact that bidder preferences depend on the auctioneer selections, 

speculations affect the future bids. This situation causes more computational cost 

and overhead cost. When someone bids rationally, one should consider the trade 

off of the computational cost against the gain, but of course it depends on the 

other bids. Thus bidding having preferences with respect to other bids is not 

meaningful in the sequential auction.       

 

In parallel auctions, units are auctioned simultaneously. Bidders give their bids in 

a certain period and after this time all bids are made public. This application gives 

a chance to bidders to re-evaluate their bids. This specification of parallel auction 

decreases the uncertainty of the auction compared to sequential auctions, however 

similar problems arise as in sequential auctions. For example each bidder would 

like to wait until the end of the auction in order to see what the price is and give a 

bid to maximize his gain. Every bidder wants to be the last to bid and hence win 

the auction. According to Sandholm (2002), in order to handle this situation, 

some auction rules have been introduced. For example, each bidder has to bid at 

least a certain volume or increase the bid at a certain level.  

 

Reverse or Forward Auctions: In a reverse auction or descending auction, the 

rule is that the bids go down. For example the seller (or the auctioneer) begins 

with a higher price and lowers it continuously until someone bids on it like Dutch 

auctions. In a forward auction the bid price goes up, that is, the bids begin low 

and keep increasing until a deal is made; here the bids are made by the buyer’s 

agents. Online reverse auctions are very popular in e-business and e-sourcing 

(electronic sourcing) area. In online reverse auctions, multiple suppliers (i.e. 

sellers in the industry) bid for a contract from a buyer (the buyer submits a 

request for purchase (RFP)) for selling goods and/or services. Reverse and 

forward auctions generally include multiple rounds of bidding. 
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2.5 APPLICATIONS IN THE WORLD MARKET 

 

Many auction applications can be seen easily all over the world. People always 

want to buy something and sell something. Moreover, increasing demand as a 

result of increasing population creates greater amount of work. Fortunately the 

changing world and improving technology give a lot of opportunities to use 

speedy computers, complex and intelligent electronic devices. Thus, people try to 

do these works fast, easily and optimally. Below some examples are given about 

auction applications over the world. 

 

In March 2001, Motorola began a program called MINT (Motorola Internet 

Negotiation Tool) to implement negotiation software platform. As all known, 

Motorola is a big company that has a very large variety of products.  For that 

reason, they use a large number of products. However according to Metty et al. 

(2005), they use negotiation process by meeting all potential suppliers for a 

particular commodity group. After meeting, commodity managers try to generate 

scenarios for different selections. After Motorola used MINT, it provided quick 

work flow, multiple online negotiations and optimization-based bid analysis.     

Metty et al. (2005) say that they started this program in 2001 within one sector 

and they obtained to 15 to 20 percent saving in indirect material cost and 25 to 50 

percent saving in direct material cost. Furthermore, this program and Motorola 

were rewarded and they were the winner of the 2004 Edelman Award for 

Management Science Achievement is Motorola, Inc. for the project, "Reinventing 

the Supplier Negotiation Process at Motorola." 

 

Another successful application is REV, used by Procter&Gamble (P&G) one of 

the biggest marketing companies that produce fast-moving consumer goods. P&G 

consists of over 135,000 employees working in over 80 countries worldwide and 

distributes its products in 140 countries. P&G managers gave much importance to 

supply chain and they wanted to create a consumer-driven supply chain. 

However, their wide product variety and huge supply chain had not allowed the 
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firm to react quickly and made true decisions considering all conditions until they 

implemented an optimization-based software called REV which supplies a fast 

solution about supply chain problems (Sandholm et al. 2006).  

 

REV enables companies to create their own bids. For example, sellers can express 

their bid as bundled offers, or conditional volume discount or unit specifications 

in the bid. After bidding period, REV provides possible solutions by taking into 

consideration buyer preferences and cost rules. Between 2001 and 2005, not only 

REV helped P&G save $1 billion but also strong evidences show that the 

suppliers of P&G also benefited in a win-win strategy. 

 

Mars Company is another big company to use optimization software in their 

supply chain management. Mars-IBM team made an auction web site that 

provides procurement process with complex bid structures. Hohner et al. (2003) 

say that Mars firstly wanted to not only have long-term and reliable suppliers but 

also obtain cost-effective procurement without adversely affecting its long-term 

relationships. However their procurement process was based on negotiations and 

single sealed-bid tenders. Also they have some problems related with 

negotiations. At the end, Mars started a project to support strategic purchases such 

as small supply pools, long-term suppliers and business integration.  

 

Hohner et al. (2003) designed an auction process to provide a fair negotiation 

process and establish long-term relationships.  The iterative auction design used 

by Mars is illustrated in Figure 2.2. By using this auction process, they provided 

fairness and optimality which are the main desirable properties. Because their 

auction is iterative, they gave a time stamp for each bid. In this way, they 

optimized two objectives such as minimizing total procurement cost and 

minimizing the sum of the time stamp for the selected bids.  
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Figure 2.2 Process flow for iterative procurement auction (Hohner et al., 2003) 
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CHAPTER 3 

 

 

3 MODELS FOR COMBINATORIAL AUCTION TYPES 

 

 

 

The literature about auctions began to grow after the paper written by Vickrey 

(1961). In recent years, the academic literature has begun to pay attention to 

design of auctions for selling large number of units with interrelated values. Due 

to the increase in Business-to-Business electronic commerce (B2B eCommerce) 

and low transaction costs on the Internet, an interest in the design of new auction 

mechanisms has arisen. Recently many researchers in computer science, 

economics, business, and game theory have presented many valuable studies on 

the subject of online auctions, and auction theory. From the computational 

perspective, combinatorial auctions are perhaps the most challenging ones.  In 

combinatorial auctions, bidders desire to sell or buy bundles of goods rather than 

a single unit. (Rothkopf et al., 1998). Since determination of an optimal winner 

combination in combinatorial auctions is an NP-hard problem (Rothkopf et al., 

1998), such combinatorial auctions have been of considerable interest to 

researchers. More information about combinatorial auctions will be given in 

Section 3.1. 

  

When we consider the auction problem, its similarity to “Winner Determination 

Problem (WDP)” is seen easily. As is known, all auctions aim to have the best 

allocation and WDP is based on finding the winner with the best allocation. 

Research like Lehman et al. (2006), Sandholm (2002) or Sandholm et al. (2003) 

show computational challenges in solving the WDP and how the WDP can be 

applied to combinatorial auctions. 
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In this chapter, a brief explanation and introduction of the basic algorithm of the 

combinatorial auction mechanism is given. In the following chapter, some mixed 

integer programming models about combinatorial auctions are given.   

 

3.1 COMBINATORIAL AUCTIONS 

 

There have been several extensions to the traditional auctions in recent years 

(especially through growing Internet usage). One of the main active research 

areas has been multiple unit auctions. In a simple traditional auction, a seller sells 

goods to several potential buyers. Determining the auction’s winner and its 

payment is trivial in single-unit auctions. The problem is also computationally 

tractable in multi-unit (homogeneous or heterogeneous) auctions when agents’ 

valuations for 2 different units are additive, meaning that total valuation can be 

determined in an additive manner by their valuations for single units. In the more 

realistic case, the problem starts when bidder (buyer) agents have preferences 

over bundles, i.e. a bidder’s valuation for the bundle need not be equal to the sum 

of his valuations of the individual units in the bundle, that is valuation need not to 

be additive. This problem is referred to as the combinatorial auction problem. In a 

combinatorial auction, a seller is faced with a set of price offers for various 

bundles of goods, and his aim is to allocate the goods in a way that maximizes his 

revenue. A combinatorial auction is desirable since it allows the bidders to 

express their true preferences, and thus may lead to better allocations. However, 

the exponential number of possible combinations usually results in computational 

intractability of dealing with such auctions. Due to these difficulties, only a small 

number of combinatorial auctions have been implemented to date. Moreover, 

today bidders set their bundles’ quality values, delivery time or warranty terms 

that all need to be incorporated through the auction mechanism. According to 

Andersson et al. (2000), combinatorial auction problem can be formulated as a 

mixed integer problem and may include many features like  

 



  

 19 

o The model can be solved by standard commercial optimization software 

like CPLEX. 

o There may be many items for each type of units 

o Bids can be constructed mutually exclusively. 

o Sellers may not want preserve-prices 

o One can buy and sell at the same time 

o Complex bids can be expressed. 

 

Sandholm (2002) proposes an algorithm for determining the winner and the final 

allocation in a combinatorial auction mechanism. He uses two main bidding 

languages by which bidders can express general preferences. In the first of the 

bidding languages, bidder offers a set of bids and bid prices can be additive when 

any combination is selected. For example the total price is basically sum of the 

selected bid prices. For the other bidding language, the set of bids is not divisible 

and price of the set of bids are additive.     

 

Andersson et al. (2000) compare the traditional algorithms (partitioning) for 

computationally identical problems like set packing, propose and discuss a mixed 

integer program and the significance of the probability distribution of the test sets 

used for benchmarking in their research. 

 

In the following section, three types of combinatorial auction models, single unit 

auction, single-attribute multi-unit auction and multi-attribute multi-unit auction, 

are given. Single unit auction is the most basic one and previous works are mostly 

related with this type of auction. (Sandholm 2002, Vries et al. 2003)  Other two 

types, single-attribute multi-unit auction and multi-attribute multi-unit auction, 

are most known and applicable combinatorial auction types. Their structures and 

objectives are more complicated than the single unit auction.   
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3.1.1 Single-Unit Auction 

 

This type of auction can be given as an example of a version of WDP. In this 

auction, like WDP, only one is sold and the aim is to maximize the auctioneer's 

revenue.  The auctioneer has one set of units to sell and bidders submit a bid for 

each unit.  

 

Parameters:  

- N is the total number of units to be auctioned, 

- M is the total number of bidders 

- ijp is the price of unit j given from bidder i  

 

Variables: 

- ijx  is the decision variable which shows that if unit j  is assigned to 

bidder i , its value is 1; otherwise 0. 

 

Max 
1 1

M N

ij ij

i j

p x
= =

∑∑  

Subject to 

 

1

1
M

ij

i

x
=

≤∑         ∀  j=1,2,...,N                                           (3.1) 

{ }0,1ijx ∈  

 

According to Sandholm et al. (2001) if it is a free disposal auction (auctioneer 

does not want to keep any unit and bidders do not want to take extra units), the 

solution is trivial such that selecting maximum price for each unit.  
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3.1.2 Single-Attribute Multi-Unit Auction 

 

This type of auction is the basic version of the multi-unit combinatorial auctions. 

The auctioneer has a set of units to sell, and the bidders submit a bundled bid that 

includes which units they wish to buy. The price they assign to their bid ( ip ) is 

the attribute of this set of units .These types of bids contain at least one unit and 

the buyer cannot buy these units individually. This type of bid is called bundled 

bid.  

 

The single-attribute multi-unit auction is to label the bids as winner or loser so as 

to maximize the auctioneer's revenue under the constraint that each unit can be 

allocated to at most one bidder: 

 

Parameters: 

- M is the total number of bids 

- N is the total number of units to be auctioned, 

- ip is the price of bundled bid i  

- ijbund is the parameter that if its value is 1, bid i  includes unit j ; if its 

value is 0, bid i does not include unit j   

 

Variables: 

-  ix  is the decision variable which shows that if bid i  is assigned, its value 

is 1; otherwise 0. 

 

Max 
1

M

i i

i

p x
=

∑  

Subject to 

1

1
M

ij i

i

bund x
=

≤∑        ∀  j=1, 2,... N             (3.2) 

{ }0,1ix ∈  
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When there are multiple indistinguishable goods for sale, Sandholm et al. (2002) 

suggest to represent these goods as multiple items of a single unit, rather than as 

multiple units. Different units can have multiple items in the auction. Items of one 

unit are indistinguishable but items of different units are distinguishable. This 

representation allows a bidder to place a single bid requesting the amount of each 

unit that he wants.  

 

In addition, the auctioneer may have multiple items of each unit type available 

{ }1 2, ... NU u u u= and the bidder’s bid may consist of the number of items of unit k 

that the bid requests ( 0ijλ ≥ ) and price ( ip ). The auction can be modeled in order 

to label the bids as winning or losing so as to maximize the auctioneer's revenue 

under the constraint that each unit of a unit can be allocated to at most one bidder: 

 

Parameters: 

- M is the total number of bids 

- N is the total number of units to be auctioned, 

- ip is the price of bundled bid i  

- ijλ is the number of items of unit j  that the bundled bid i  requests 

- ju  is the demand of unit j  

 

Variables: 

-  ix  is the decision variable which shows that if bid i  is assigned, its value 

is 1; otherwise 0. 

 

 

Max 
1

M

i i

i

p x
=

∑  

subject to     
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1

M

ij i j

i

x uλ
=

≤∑          j=1,2,...,N          (3.3)      

 { }0,1ix ∈  

 

One extension for combinatorial auctions is multidimensional auction (sometimes 

it is called as multi-attribute auction). Many researchers (Che, 1993; De Smet, 

2005; Teich et al., 2003) review and analyze the multi-attribute auctions in their 

research. In multi-attribute auctions, there are multi dimensions to a transaction, 

such as cost, quality, delivery time and warranty period that all need to be 

incorporated simultaneously in the auction mechanism. 

 

3.1.3 Multi-Attribute Multi-Unit Auctions 

 

This type of auction is the most challenging auction type. Again the auctioneer 

has a set of units to sell, and the bidders submit their bundled bids for these units. 

In this auction, bundled bids have more than one attribute. For example attributes 

can be defined as price, quality, lead time, warranty period etc. Each bundle can 

have different attribute values and the auctioneer chooses the “best” according to 

these attribute values. 

 

Parameters: 

- M is the total number of bid 

- N is the total number of units to be auctioned, 

- k

iatt is the kth attribute of bundled bid i  

- ijbund is the parameter that if its value is 1, bid i  includes unit j ; if its 

value is 0, bid i does not include unit j   

 

Variables: 

-  ix  is the decision variable which shows that if bid i  is assigned, its value 

is 1; otherwise 0. 
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Max 
1 1

p M
k k

i i

k i

w att x
= =

∑∑  

Subject to 

1

1
M

ij i

i

bund x
=

≤∑        ∀  j=1, 2,..., N             (3.4) 

1

1
p

k

k

w
=

=∑          (3.5) 

{ }0,1ix ∈  

 

In the real case, DM choices are not clear.  A major difficulty associated with the 

analysis of multi-objective problems is the identification and selection of the most 

preferred option from the set of non-dominated solutions. In the MCDM 

literature, the idea of solving multi-objective optimization problem is understood 

as helping DM in considering the multi criteria simultaneously and in finding a 

nondominated solution that the DM prefers considering his/her preferences.  

 

Below we give some definitions related with MCDM literature. For these 

definitions, we assumed that we have p objectives and without loss of generality 

all objectives ( ( )if x ) are maximization type. 

 

Definition 1: A vector ( )f x , x X∈ , is said to dominate another vector ( )f y , 

y X∈ , if ( ) ( )i if x f y≥ for all i =1,2,...,p where the inequality is strict for at least 

one i . If  ( )f x  is dominated then x  is inefficient. 

 

Definiton 2:  A vector ( ')f x , 'x X∈ , is nondominated if there does not exist 

another x X∈  such that ( )f x  dominates ( ')f x . If  ( )f x  is nondominated then 

x  is efficient. 
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A nondominated solution is supported if it is not convex dominated by other 

solutions. If a nondominated solution is dominated by convex combination of 

other solutions then it is said to be unsupported. Any supported efficient solution 

can be found by a weighted linear combination of objectives, choosing the 

weights suitably. This is not true for unsupported solutions. We can find 

unsupported solutions by minimizing a weighted Tchebycheff distance from the 

ideal point, where the ideal point is a vector obtained by optimizing each 

objective individually.   

 

Most of the time, we do not know the DM’s utility function. Due to the 

potentially large size of the non-dominated set and the undesirability of many of 

its elements, interactive methods have been developed which enable the DM to 

guide the search to more promising regions of the non-dominated set. In the 

MCDM literature, interactive methods have been developed since 1970’s (see for 

example Geoffrion et al. 1972, Zionts and Wallenius 1976, Steuer 1986). In 

chapter 5, we will give an interactive method and its application to the multi-

attribute multi-unit combinatorial auction process. But firstly, we will discuss the 

mixed integer programming models for combinatorial auctions in Chapter 4.    
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CHAPTER 4 

Equation Section (Next) 

 

4 PROPOSED MIXED INTEGER PROGRAMMING MODELS FOR 

COMBINATORIAL AUCTIONS 

 

 

 

In this chapter, first, the proposed multi objective mixed integer models as an 

example of reverse auction for singleton bids and bundled bids are discussed. 

Next, input data generation algorithm is given. This data is used in the proposed 

mixed integer program models for combinatorial auctions. Finally, the 

computational results of these models are analyzed.  

 

4.1 MODELS FOR SINGLE-ATTRIBUTE MULTI-UNIT AUCTION 

 

The proposed model for single-attribute multi-unit auction structure is mainly 

based on the model given in section 3.1.2. Below Model-1 is a discount based 

model. The bidder has a chance for discount according to its account. In this 

model, below parameters are used: 

 

Parameters: 

- M is the total number of bidders, 

- N is the total number of units to be auctioned, 

- ijc  is the cost of unit j of bidder i  

- {D0, D1, D2} are discount amounts, 

- {M0, M1, M2, M3} are discount zone limit points. 
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Variables: 

- ijx  is the decision variable which shows that if unit j  is assigned to bidder i , its 

value is 1; otherwise 0. 

- id  shows the discount ratio of bidder i  

- iy  shows the number of units assigned to bidder i  

- ikz  shows the discount range k  of bidder i  

- int  controls the discount range n  of bidder i  

 

Model-1: 

Min 
1 1

(1 )
N M

ij ij i

j i

c x d
= =

−∑∑   

subject to 

 

1

1
M

ij

i

x
=

=∑     j∀                 (4.1)    

1

0
N

ij i

j

x y
=

− =∑     i∀           (4.2)   

0 0 1 1 2 2i i i id d z d z d z= ⋅ + ⋅ + ⋅       i∀                (4.3)   

0 0 1 1 2 2 3 3i i i i i
y t m t m t m t m= ⋅ + ⋅ + ⋅ + ⋅       i∀                 (4.4)  

0 0i it z≤        i∀                  (4.5) 

1 0 1i i it z z≤ +       i∀            (4.6) 

2 1 2i i it z z≤ +     i∀                                                                                           (4.7) 

3 2i it z≤           i∀                                                                                               (4.8) 

3

0

1in

n

t
=

=∑        i∀              (4.9) 

2

0

1ik

k

z
=

=∑        i∀               (4.10) 
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{ }, 0,1ij ikx z ∈  ,   , , , 0i i in ijd y t c ≥   

 

In the model, first constraint (4.1) aims that every unit should be assigned. Other 

constraints are related with determination of discount ratio applied to each bidder. 

Model firstly counts the assigned units on every bidder (4.2) then determines the 

discount ratio id  (4.3) of each bidder. For example, if r number of items are 

assigned (M1<r<M2) to a bidder, the bidder will discount D1% on the total 

amount. Rest of the constraints (4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 4.10) determine the 

discount range of each bidder and control the discount ratio applied to bidders. 

 

The objective function of the this model aims to calculate the total cost with 

respect to the assigned items’ cost and determined bidder’s discount ratio and  

this objective  is nonlinear because two variables ( ijx  and id ) are multiplied with 

each other. In order to eliminate this non-linearity, replace this multiplication with 

a new variable ijo  such that ijx * id = ijo . This linear model Model-2 is given 

below. Model-1 and Model-2 are similar models with respect to properties of the 

auction: 

 

Model-2: 

 

Min 
1 1 1 1

. .
N M N M

ij ij ij ij

j i j i

c x c o
= = = =

−∑∑ ∑∑   

 

subject to 

 

1

1
M

ij

i

x
=

=∑     j∀  (4.11)                  
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1

0
N

ij i

j

x y
=

− =∑            i∀  (4.12)                 

 0 0 1 1 2 2i i i id d z d z d z= ⋅ + ⋅ + ⋅  (4.13)                         

 

0 0 1 1 2 2 3 3i i i i i
y t m t m t m t m= ⋅ + ⋅ + ⋅ + ⋅  (4.14)  

 

0 0i it z≤       i∀  (4.15) 

1 0 1i i it z z≤ +        i∀  (4.16) 

2 1 2i i it z z≤ +        i∀  (4.17) 

3 2i it z≤        i∀  (4.18) 

3

0

1in

n

t
=

=∑        i∀  (4.19) 

2

0

1ik

k

z
=

=∑          i∀  (4.20) 

ij ijo x L≤ ⋅
                       ,i j∀                    (4.21)         

ij io d≤
                             ,i j∀                    (4.22)         

{ }, 0,1ij ikx z ∈  ,   , , , 0in i ij ijt y c o ≥   

 

In this model, variables are the same except ijo , ijx  and id . In order to limit ijo , 

we can add two constraints like 4.21 and 4.22. These constraints control the value 

of ijo  according to our variables ijx  and id  (L is very large number). When one 

of the two variables’ ( ijx  and id ) value is zero, ijo ’s value becomes zero. 

 

This model can also be constructed with some additional side constraints like 

maximum/minimum trade constraints. The constraints on the minimum and 

maximum number of winning bidders limit the number of winning bidders. To 
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achieve this, we can introduce a new variable iwb  for each bidder i  which takes 

the value 1 if the bidder has any winning bids and 0 otherwise (Hohner et al., 

2003). These constraints (4.23 and 4.24) can be written (L is a very large number) 

such that: 

 

0

*
N

ij i

j

x wb L
=

≤∑          i∀                        (4.23) 

min max
0

M

i

i

W wb W
=

< <∑          i∀            (4.24)      

 

Moreover Hohner et al. (2003) propose to decide the range of winning bidders’ 

revenues. For example if any units are assigned to bidder i , then the amount of 

revenue of bidder i  can be restricted in the decided range [ ],i iL U . iL  is the lower 

limit of revenue of bidder i  and iU  is the upper limit of revenue of bidder i . This 

limitation provides economy of scale because much more bidders mean that much 

more transaction costs and time. This constraint (4.25) can be expressed in the 

following way: 

 

0

* ( * ) *
N

i i ij ij i i

j

wb L c x wb U
=

≤ ≤∑                i∀       (4.25) 

 

Constraints 4.23, 4.24 and 4.25 can be used altogether depending on the firm’s 

strategy. 

 

4.2 MODELS FOR MULTI-ATTRIBUTE MULTI-UNIT AUCTION 

 

Multi-attribute multi-unit auctions can be considered as the most challenging 

auction types. A bidder can define any attribute for the proposed unit. For 

example a bidder can define a quality attribute for his unit because he trusts his 

unit with respect to quality however he may deliver this unit very late. Because of 

similar reasons, the auctioneer needs to define attributes for different aspects in 
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the auction. On the other hand, the auctioneer should define which attributes are 

important for him because more attributes mean more complex problem. This 

causes assignment and generation of different scenarios hard. Therefore 

auctioneer should avoid defining much more attributes. 

 

In this part of the thesis, two-attribute multi-unit auction programs (Model-3 and 

Model-4) are written and solved. The two attributes are defined as cost and lead 

time. The generation of the value of the attributes is explained in section 4.3.  

ththe th 

Two-attribute multi-unit auction model (Model -3) and its parameters and 

variables are given below: 

   

Parameters: 

- M is the number of bundled bids, 

- N is the number of units to be auctioned, 

- w is the weight of cost attribute 

- ic is the cost of bundled bid i  

- ilt  is the lead time of bundled bid i  

- ijbund is the parameter that if its value is 1, bid i  includes unit j ; if its 

value is 0, bid i does not include unit j  

  

 

Variables: 

- iy  is the decision variable which shows that if bundle bid i  is assigned, its 

value is 1; otherwise 0. 

- cost  is the total cost of auction 

- leadtime  is the total lead time of auction  
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Model-3 

 

Min * (1 )*w cost w leadtime+ −        

 

Subject to      

 

*
M

i i

i

cost c y=∑         (4.26) 

*
M

i i

i

leadtime lt y=∑         (4.27)                                                                                                                                                                   

* 1
M

ij i

i

bund y ≥∑              j N∀ ∈       (4.28) 

 

In this model, constraint 4.26 and 4.27 calculate the total cost and lead time of 

auction according to assignment of bids respectively. Constraint 4.28 guarantees 

that at least one unit for each unit is bought. The objective function aims to 

minimize cost and lead time according to bid assignment.  

 
With Model-3, we can find the supported efficient solutions. Furthermore, if we 

want to find unsupported efficient solutions, we can apply the weighted 

Tchebycheff method (Steuer 1986, 419-435). The model for augmented weighted 

Tchebycheff method (Model-4) and its parameters and variables are given below:  

 

Parameters: 

- M is the number of bundled bids, 

- N is the number of units to be auctioned, 

- w is the weight of cost attribute 

- zc is the ideal point for cost 

- zl  is the ideal point for lead time 

- ic is the cost of bundled bid i  

- ilt  is the lead time of bundled bid i  
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- ijbund is the parameter that if its value is 1, bid i  includes unit j ; if its 

value is 0, bid i does not include unit j   

 

 

 

Variables: 

- iy  is the decision variable which shows that if bundle bid i  is assigned, its 

value is 1; otherwise 0. 

- cost  is the total cost of auction 

- leadtime  is the total lead time of auction  

 

Model-4 

 

Min *(( ) ( ))cost zc leadtime zlα ε+ − + −        

Subject to  

 

*( )w cost zcα ≥ −         (4.29) 

(1 )*( )w leadtime zlα ≥ − −        (4.30)  

*
M

i i

i

cost c y=∑         (4.31) 

*
M

i i

i

leadtime lt y=∑         (4.32)                                                                                                                                                                                                                                                   

* 1
M

ij i

i

bund y ≥∑              j N∀ ∈       (4.33) 

 

This model is very similar to Model-3 with respect to variables and parameters. 

However the main aim for Model-4 is minimizing the weighted Tchebycheff 

distance (i.e. minimizing the maximum weighted distance from ideal point) 

between ideal point and the solution. Constraints 4.29 and 4.30 help minimizing 

distance between cost and lead time objective values and their respective ideal 

points. We found these ideal points for cost and lead time by solving the each 
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objective independently. In the objective function part, the differences of 

solutions and ideal points are multiplied with a small positive constant (ε ). This 

part prevents obtaining weakly efficient but inefficient solutions.  

 
As a matter of fact, auction process may need to contain multiple attributes for 

decision making. Multiple attributes allow auctioneer to decide accurately which 

bidders should win but it should be also considered that much more attributes  

cause more complex problem. Because of this, auctioneer firstly should decide 

which attributes are used. For multiple attributes, we can write a multi objective 

programming model given below. 

 

Parameters: 

- M is the number of bundled bids, 

- N is the number of units to be auctioned, 

- kw is the weight of k th attribute 

- ikatt is the value of attribute k  of bundled bid i  

- ijbund is the parameter that if its value is 1, bid i  includes unit j ; if its 

value is 0, bid i does not include unit j  

 

Variables: 

- iy  is the decision variable which shows that if bundle bid i  is assigned, its 

value is 1; otherwise 0. 

- ktotatt is the total value of attribute k  of the auction 

 

 

Min 
1

*
p

k k

k

w totatt
=

∑    

 

Subject to      

 



  

 35 

1

*
M

k ik i

i

totatt attr y
=

=∑           k∀       (4.34) 

                                                                                                                                                                                                                                                      

1

* 1
M

ij i

i

bund y
=

≥∑              j N∀ ∈       (4.35) 

1

1
p

k

k

w
=

=∑          (4.36) 

 

There are p attributes in the auction and kw ’s are the weights of the attributes. In 

order to write the weights of each attribute, the auctioneer should decide the value 

of the weights firstly, it means that the relative importance of each attribute 

should be decided then the solution can be found according to these attributes. 

Without loss of generality, all attributes are to be minimized.  The constraint 4.34 

calculates the total value of the each attribute of the current bid assignment. All 

bundled bids should be assigned (Constraint 4.35). Constraint 4.36 maintains 

normalization of weights. 

 

More attributes provide more accurate decision among these bids; however in 

order to decide which bids should be assigned, either we should search the whole 

solution space or know auctioneer (buyer) preferences. In practice, the auctioneer 

preferences are implicit and in order to elicit preferences their utility functions are 

required. Basic approach is coming from decision analysis techniques such as 

MAUT (Keeny et al., 1993), SMART (Edwards, 1977) and AHP (Saaty, 1980). 

These techniques mostly use linear, weighted value functions. In the auction 

process, weights of the attributes are very important because the solution depends 

on these weights, so deciding on the weights are the key point of the auction. 

Several techniques have been proposed to help users assign reasonable weights. 

One approach is called pricing out used in MAUT. This approach is based on 

determining the value of the objective in terms of another. For example, one may 

say that ten days faster delivery time is worth $600. Another approach for weight 

determination is used by AHP. This approach is based on pair-wise comparisons 
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of attributes. A consistent matrix is formed from this comparison and it generates 

the weights from eigenvectors’ of this matrix. 

 

Many researches and studies investigated these approaches. For example Bichler 

et al.(2005) studied a bid evaluation technique in multi-attribute auction with an 

additive utility function and concept of multi-attribute winner determination with 

multi sourcing and configurable offers. Teich et al. (1999) proposed an algorithm 

for multiple unit auctions. In their algorithm, bidders want to buy units and 

submit their bid including quantity and cost for desired unit. When a bidder 

outbid, other bidders are informed and invited to resubmit. Another approach for 

combinatorial auctions is Park et al. (2005) study. In their approach, bidders are 

allowed to determine combination of units and they proposed that using bidder-

combination bids provides fairness and realization of economically-important 

combinations. 

 

In the next section, we will give an example of an interactive method 

(Achievement Scalarizing Function) and its application to the multi-attribute 

multi-unit combinatorial auctions. 

 

 
4.3 INPUT DATA GENERATION 

 

Bids’ structure and specifications are important issues in the auction process. 

These issues are based upon the nature of the auction. For example if an auction is 

related with antique sales, it is a single unit auction and each bidder can only bid 

for each commodity. On the other hand, if the auction is related with a 

procurement process, most probably the auction type is multi-attribute multi-unit 

auction and bidders offer bundled bids.  

 

In this thesis, singleton and bundled bids are used. Singleton bids consist of 

attributes for each unit individually and when a buyer wants to buy more than one 

unit, the attributes’ properties stay the same, without converting them into 
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something else. For example cost attribute is an additive attribute and the total 

amount of auction is basically the summation of cost of assigned bids. However, 

bundled bids have different structures. The bundled bid is not basically equal to 

the sum of attributes’ values of the bid, because the bidder can have preferences 

over units. It means that the bidder may have preference over bundle of units. For 

example a seller can prefer to sell units a and b only. Moreover, the price of 

bundled bid {a,b} can be less than the sum of prices of a and b for this seller. 

Bundled bid structure is more realistic than other bid structures, because in the 

real world, bidders have own “private prices” for each unit and valuation can be 

different when two units are sold together or separately and need not be additive. 

Valuation is explained in detail in Section 2.3. 

 

In order to use as input data in the models, singleton and bundled bids are 

generated. The structure of bundled bids consist of proposed units, cost and lead 

time. This structure is shown below in Table 4.1 where {a1,a2,…,a50} are 

auctioned units. If any unit is proposed by bidder, the value is 1, otherwise 0. In 

the below example, bidder 7 gives a bid including units 9 and 47, these two units’ 

cost 16.98 and bidder 7 will deliver these two units in 9 unit-time. We called this 

bid as bundled bid with sized 2. Detailed input data and singleton and bundled 

bids generation algorithm is explained in Appendix A. 

 

 

 

Table 4.1 - Bundled Bid structure 

 

   

 

 
 

 

 

 

Bidder 

No. 
a1 a2 a3 ….. a9 a10 ….. a46 a47 a48 a49 a50 Cost Lead time 

7 0 0 0 …. 1 0 ….. 0 1 0 0 0 16.98 9 
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4.4 EXAMPLE SOLUTIONS OF MODEL-3 AND MODEL-4 

 

In the proposed Model-3 and Model-4, there are 900 bundled bids (150 bundled 

bids with size 5, 450 bundled bids with size 6 and 300 bundled bids with size 7) 

and each bid has two attributes such as cost and lead time. Model-3 is solved in 

GAMS 22.2 and by changing w  systematically between 0 and 1, we obtained the 

solutions in Figures 4.1 and 4.2. When we solved the Model-4 again by changing 

w  systematically between 0 and 1, we obtained many unsupported efficient 

solutions. The resulting supported and unsupported solutions are compared in 

Figure 4.3. 
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Figure 4.1 - Chart of Two Attributes Multi Unit Auction 
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0

20

40

60

80

100

120

100 150 200 250 300

Cost

L
e
a
d
 t
im

e

  

Figure 4.2 – Relation Between Two Attributes  

 

 

 
According to Figure 4.1 and Figure 4.2, cost and lead time attributes conflict with 

each other.  As we expect that when cost gets smaller, lead time increases.  

 
Up to now, we solved four different models for multi-attribute multi-unit auctions 

where the input data included bundles of size 5, 6 and 7. For the bundle size 5, the 

bundled bid consists of 5 different units and the bid’s cost and lead time are 

related to these five units.  
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Figure 4.3 Comparative Chart 

 

 

 

Firstly we run Model-3 with 900 bundled bids (150 bundled bids with size 5, 450 

bundled bids with size 6 and 300 bundled bids with size 7) by changing w  (the 

weight of cost) systematically between 0 and 1 with increments of 0.01.  For each 

w  value, approximately 10 bids are assigned (i.e., there are about 10 winning 

bids). Out of the 100 runs with different w  values, the frequency of assignment of 

each of the 900 bids is given in Figure 4.4. According to the figure, over 40 

different bundled bids are assigned more than three times. This means that the 

auctioneer shall have many alternatives corresponding to differentw  values.  On 

the other hand, when we change the bundle size and solve Model-3 (with 150 

bundled bids of size 7, 450 bundled bids of size 9 and 300 bundled bids of size 

10) again by changing w  systematically between 0 and 1, Only 18 different 

bundled bids are assigned more than three times (see Figure 4.5). These two 

figures (Figure 4.4 and Figure 4.5) show us how bundle size affects the solution 
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space. When the bundle sizes get larger, the number of efficient solutions 

decreases.  This can also be observed from Figure 4.6. 

 

Moreover high frequencies lead to dependency of the auctioneer to bidders. When 

we look at the Figures 4.4 and 4.5, we can easily detect the popular bidders from 

among other bidders. In order to avoid this situation, most auction processes over 

the Internet (Sandholm et al. 2006, Hohner et al., 2003) prevent supplier 

dependency. According to Hohner et al. (2003), they control the assignment of 

the bids with respect to previously determined minimum and maximum winning 

suppliers in the solution. Moreover, they can limit the quantity of units supplied 

from a bidder in a range of minimum and maximum quantity level. In the winning 

allocation, if a bidder has any allocation, it must lie in this range. We have already 

given an example for this issue in section 4.2.   
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Figure 4.4 - Frequency of 5-6-7 sized Bundled Bids 
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Figure 4.5 - Frequency of 7-9-10 sized Bundled Bids 

 

 

 

When we compared these two different bundled sized models, we recognize 

easily the difference of objective values and how many efficient solutions exist. 

In our example, when we use 7-9-10 sized bundled bids, only 5 different efficient 

solutions can be found. On the other hand, when 5-6-7 sized bundled bids are 

used, efficient solutions go as high as 10 different ones. The comparison of these 

two models is given in Figure 4.6. According to this figure, efficient solutions of 

models that used large sized bundles dominates small sized bundles, partially 

because cost objective  coefficients of models that use large sized bundles are in 

general better than small ones due to cost discount when bundles are generated 

(see Appendix A). On the other hand, the DM has only five different efficient 

solutions to select the best when large bundle sizes are used. This situation is one 

of the trade-offs between large and small sized bundles.   
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Figure 4.6 – Objective Values of Two Different Sized Bundled Bids  

 

 
 
Other than the bundle size, many factors can affect results. For example if the 

number of bundles increase, we expect the efficient solutions to improve in all 

criteria because the solution space is expanded.  Moreover, solution time naturally 

depends on the number of bundles (since we have a binary variable for each 

bundle) and increases as the number of bundles increases. 
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   CHAPTER 5 

Equation Section (Next) 

 

5 INTERACTIVE METHODS FOR COMBINATORIAL AUCTIONS 

 

 

 

5.1 ACHIEVEMENT SCALARIZING FUNCTION (ASF) 

 

What can we do if we do not know the DM’s utility function? Korhonen and 

Laakso (1986) proposed a method for multi objective programs when DM’s 

utility function is not known. The method is not based on an explicitly known 

utility function; only assumes that the utility function is pseudoconcave. This 

method desires to help the DM to find improved solutions and enables to evaluate 

a subset of the efficient frontier.  

 

The method assumes that the DM specifies reasonable or desirable aspiration 

levels forming a reference point. An achievement scalarizing function (ASF) 

projects any given point (reference point) onto the efficient frontier. It means that 

the model searches on efficient frontier. The reference point consists of aspiration 

levels reflecting desirable values for the objective functions. It reflects the DM’s 

preference information and affects the next set of solution generated.   

 

ASF has been introduced by Wierzbicki in 1980. Also general framework is 

similar to GDF model (Geoffrion et al., 1972). But according to Korhonen and 

Laakso (1986), method of Wierzbicki does not help DM find improved solutions, 

only considers discrete set of alternatives and does not check the optimality of the 

current solution.  
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 5.1.1 The Algorithm 

 

Korhonen and Laakso (1986) summarize their algorithm as follows: 

 

Step 0: Find an arbitrary point 0q in the criterion space. Let k=1 ( 0q does not need 

to be efficient) 

Step 1: Specify a vector kg and take vector 1k k kd g q −= −  as the new reference 

vector. 

Step 2: Find the set kQ of efficient vectors q that solve the Achievement 

Scalarizing Program (ASP) 

 

Min ( , , )s q w z  

Subject to 

1k kz q dθ−= + ,  q Q∈        (5.1) 

 

θ  is increased from zero to infinity, s  is the achievement scalarizing function 

(ASF) and w  is a weighing vector. We can write s  as follows: 

 

{ }
1

( , , ) max ( )
p

i i i i

i

s q w z w q z zε
=

= − − ∑      (5.2) 

 

The last term is included to avoid weakly efficient but inefficient points. In order 

to project the point, we simply minimize the function s  in the solution space.  

 

Step 3: Find the most preferred solution kq  in kQ . 

Step 4: If 1k kq q− ≠ , let k=k+1 and return back to Step 1. Otherwise, check the 

optimality condition. If the conditions are satisfied, stop. kq  is an optimal 

solution. If the conditions are not satisfied, let k=k+1 and kd  is a new direction 

identified by the procedure. 
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If anyone wants to check whether *q  is an optimal solution, we have to assume 

the utility function of the DM is pseudoconcave on the set of all alternatives. Thus 

if 1k kq q− =  condition is satisfied, the projection of kd  vector is not an 

improvement direction and if any other improving directions are not found, then 

kq  is an optimal solution. The method can also be used to search the efficient 

solution space without explicitly trying to prove optimality. 

 

5.1.2 Examples 

 

In this section, we demonstrate an implementation of Korhonen and Laakso’s 

(1986) method on an auction process. Firstly, index sets, parameters, and decision 

variables are given. Then, the mixed integer programming model for the auction 

problem is given.  

 

Parameters:  

- M is the number of bundled bids, 

- N is the number of units to be auctioned, 

- ic  is the cost of bid i , 

- iq  is the quality of bid i , 

- ilt  is the lead time of bid i , 

- 1 2 3, ,q q q  are the reference points of cost, quality and lead time 

respectively. 

- 1 2 3, ,d d d  are the directions of reference points respectively. 

- ijbund is the parameter that if its value is 1, bid i  includes unit j ; if its 

value is 0, bid i does not include unit j . 

 

Variables: 

- iy  is the decision variable that takes a value of 1 if bundle bid i  is 

assigned, and 0 otherwise. 
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- cost  is the total cost of the auction 

- quality  is the total quality of the auction 

- leadtime  is the total lead time of the auction 

 

The mathematical model is given as follows.  

 

Min *( )cost quality leadtimeα ε+ − +   

Subject to 

1 1( ( * ))cost q dα θ≥ − +         (5.3)  

2 2( ( * ))q d qualityα θ≥ + −        (5.4) 

3 3( ( * ))leadtime q dα θ≥ − +        (5.5) 

0

c *
M

i i

i

cost y
=

=∑         (5.6) 

0

*
M

i i

i

quality q y
=

=∑         (5.7) 

0

*
M

i i

i

leadtime lt y
=

=∑         (5.8) 

0

* 1
M

ij i

i

bund y
=

=∑            j N∀ ∈       (5.9) 

 

According to the objective function, we want to minimize the total cost and lead 

time, maximize the total quality. The values of total cost, lead time and quality 

are calculated from the assigned (winning) bids. The cost, quality and lead time 

values of each unit are randomly generated and the rule which is explained in 

Appendix A is applied when the bundles are composed. 

 

In our example, there are 950 bundled bids which consist of 50 bundled bids 

having 1-unit, 150 bundled bids having 5-units, 450 bundled bids having 6-units 

and 200 bundled bids having 7-units. Totally we want to assign 950 units 

optimally with respect to cost, quality and lead time attributes of bundled bids. 

Model evaluated total cost, quality and lead time in constraints 5.6, 5.7 and 5.8 
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respectively. In order to minimizeα , we try to minimize total cost and lead time, 

maximize total quality by the constraints 5.3, 5.4 and 5.5. Note that we do not 

differentiate between the relative importance of criteria in the ASP (i.e. we use 

equal weights). With the last constraint 5.9, we guarantee that every unit is 

assigned only once.  

 

In the first example, to simulate the responses of a DM, we assumed that the DM 

has the following implicit linear utility function: 

 

4* 3.5* 10*u cost quality leadtime= − +          (5.10) 

 

While applying the method, the most preferred solution on the efficient curve is 

determined according to the utility function in 5.10. It means that the minimum 

utility function value of the solutions is the most preferred solution among the 

efficient points. These efficient points are found by changing θ  while we search 

the efficient frontier. But for higherθ  values, the same objective values are found. 

This situation is related with line search in the method and reaching a border of 

the efficient solution space. With maximum θ  value, reference vector shoots the 

last extreme point (last searching point in the piecewise line). Because of this, 

with the larger θ  values, the objective values get the same value (last supported 

efficient solution). A graphical representation of the search process on a 

hypothetical efficient frontier is shown in Figure 5.1. 
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Figure 5.1 A graphical representation of search process 

 

 

 

Let us define 1 2 3, ,α α α  as the (RHS) values of constraints 5.3, 5.4 and 5.5 

respectively. In order to find maxθ ,  at least two constraints (among constraint 5.3, 

5.4 and 5.5) are binding and the RHS values of two among three constraints are 

equal. For example if 1 2α α= , then 3α  should be less than both of them because 

the equal valued constraints should be binding.    

 

Cost vs. Quality ( 1 2α α= ): 
1 2

max 1 2

cost quality q q

d d
θ

+ − −
=

+
   (5.11) 

Cost vs. Lead Time ( 1 3α α= ): 
1 3

max 1 3

cost leadtime q q

d d
θ

− − +
=

−
  (5.12) 

Lead Time vs. Quality ( 3 2α α= ): 
2 3

max 2 3

leadtime quality q q

d d
θ

+ − −
=

+
 (5.13) 

 

d0 
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To find maxθ , firstly we run the model with a very high θ  and find the extreme 

point values of each objective in that reference direction. Then we substitute the 

objective values in each equation (5.11, 5.12 and 5.13) and calculate maxθ . 
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Figure 5.2 Graphical representation of changing 1 2 3, ,α α α  values with respect toθ  

 

 

 

For example in Figure 5.2, there are two intersection points between three α  

values. First intersection point is seen from equality of  1α  and 3α  at around 

θ =85 and at that θ value, 2α value is less than 1α  and 3α . Thus this θ  value is 

our maxθ . On the contrary, second intersection point is seen from equality of 2α  

and 3α  at around θ =95 but 1α value is higher than other two at that θ  value. So 

we keep maxθ =85. 
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Let us come back to our example and define the initial reference point as 0q = 

(200,170,100). Suppose that the DM’s reference vector is 0d =(-1, 1,0). It means 

that the DM wants to decrease total cost and increase the total quality values. The 

method is applied according to these two reference vectors. Firstly maxθ is found 

by the method explained above and we can find the efficient points on piecewise 

linear curve by changing θ  values. (The step size of changing θ  values depends 

on the maxθ because we aim to search the efficient frontier piece with minimum 10 

steps until we reach to maxθ .) 

 

In iteration 1, from the decided initial reference point and directions, we can find  

maxθ =82.21 and we solved the model by changing θ  with the step size increments 

of 10. Table 5.1 shows us the solutions on the efficient frontier. Rightmost 

column shows the (implicit) utility function values of the related solutions. So we 

can decide to select new reference point as 1q =(163.24, 231, 68.98) by 

considering the utility function values. 

 

 

 

Table 5.1 Efficient Points ( 0d =(-1, 1,0)) 

 

Theta 
(θ) 

cost quality leadtime 
DM’s utility 

function value 
0 163.24 231 68.98 534 

10 161.24 230 72.84 568 

20 151.00 227 73.57 545 

30 150.28 224 80.67 624 

40 150.25 228 87.99 683 

50 140.01 229 91.02 669 

60 140.01 229 91.02 669 

70 139.80 250 102.63 711 
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Table 5.1 (continued) 

 

Theta 
(θ) 

cost quality leadtime 
DM’s utility 

function value 
80 136.86 245 119.07 881 

90 136.86 245 119.07 881 

 

 

 

Continuing with the second iteration, let us assume that the DM defines the new 

reference direction (-1,0,-3) since he wants to decrease total cost and lead time 

values. maxθ  is found as 16.82.  That is, at maxθ =16.82 the last efficient solution is 

reached in the diagonal direction of the contours defined by the ASF.  Since this 

is a discrete problem, the same solution can be reached for some smaller θ  values 

and for all larger θ   values. Once more the model is solved with a step size of 2 

and the resulting solutions are given in Table 5.2.  

 

 

 

Table 5.2 Efficient Points ( 1d =(-1, 0,-3)) 

 

Theta (θ) cost quality leadtime 

DM’s utility 

function value 

0 163.24 231 68.98 534 

2 163.24 231 68.98 534 

4 170.85 244 64.75 477 

6 170.85 244 64.75 477 

8 173.01 261 61.99 398 

10 173.01 261 61.99 398 

12 173.01 261 61.99 398 

14 184.07 253 56.17 412 



  

 53 

Table 5.2 (continued) 

 

Theta (θ) cost quality leadtime 

DM’s utility 

function value 

16 184.07 253 56.17 412 

18 184.07 253 56.17 412 

 

 

 

If you look at the last three objective values for different θ , the objective values 

are seen to be fixed after θ =14. It means that last supported efficient solution is 

(184.07, 253, 56.17). Figure 5.3 shows us the procedure of finding the efficient 

points during searching.  

 

 

 

 

Figure 5.3 Procedure of finding the efficient points during the searching 

 

 

 

In the second step, the DM selects point (173.01, 261, 61.99) as the reference 

point with respect to the underlying utility function. The new reference point 
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becomes 2q = (173.01, 261, 61.99).  Let us assume that the DM wants to improve 

the quality objective and decides the new direction vector to be 2d = (-2, 3,-2). 

With the new reference point and direction, maxθ  is found as 138.16. The model is 

solved once more by changing the θ  values with the step size of 13 and the 

resulting efficient point values are given in Table 5.3. 

 

Among the values in Table 5.3, the DM selects point (180.41, 277, 63.5) based on 

his (implicit) utility function values. At this step, because the DM wants to 

improve the cost objective and the quality objective, assume that the new 

reference direction is 3d = (-3, 2,-1) and the new reference point is 3q = (180.41, 

277, 63.5). 

 

After maxθ is found as 75.55, the model is solved once more with the current 

reference point 3q = (180.41, 277, 63.5), the current direction vector 3d =(-3, 2,-1) 

and a step size of 8. The efficient points from this reference point with the 

determined reference vector can be seen in Table 5.4. However, the DM cannot 

find an improved solution among these values given in the table according to his 

utility function. He prefers the point (180.41, 277, 63.5) again.   

 

 

 

Table 5.3 Efficient Points ( 2d = (-2, 3,-2)) 

 

Theta (θ) cost quality leadtime 
DM’s utility 

function value 
0 173.01 261 61.99 398 

13 180.41 277 63.5 387 

26 180.41 277 63.5 387 

39 174.24 290 76.31 445 

52 189.3 303 76.59 463 
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Table 5.3 (continued) 

 

Theta (θ) cost quality leadtime 
DM’s utility 

function value 
65 191.17 305 80.22 499 

78 192.79 315 85.84 527 

91 184.45 324 95.96 563 

104 207.89 328 99.92 683 

117 217.1 330 100.51 719 

130 233.62 332 96.59 738 

138 237.17 335 117.18 948 

 

 

 

Table 5.4 Efficient Points ( 3d =(-3, 2,-1)) 

 

Theta 

(θ) cost quality leadtime 

DM’s utility 

function value 

0 180.41 277 63.5 387 

8 173.41 277 73.2 456 

16 166.12 279 79.68 485 

24 159.71 277 83.69 506 

32 150.81 273 91.24 560 

40 145.46 276 102.38 640 

48 145.46 276 102.38 640 

56 143.22 261 101.94 679 

64 141.08 253 128.75 966 

72 138.76 250 121.62 896 

80 136.86 245 119.07 881 
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Now it is time to check whether the current point 'q =(180.41, 277, 63.5) is 

optimal or not. According to Korhonen and Laakso (1986), if all the constraints 

and objective functions are linear, a cone can always be expressed in terms of 

feasible directions. At least one of these directions has to be improvement 

direction if the current solution is not optimal. Thus, we have to check all 

directions for improvement. The previous step, cost was tried to be improved but 

we did not see any improvement. Two more directions should be tried for quality 

and lead time. For quality, we can use dq=(0,1,0) and for lead time, we can use 

dl=(0,0,-1). 

 

With directions dq=(0,1,0) and dl=(0,0,-1), the current solution does not improve 

with respect to the DM’s utility function. Thus the current point *q =(180.41, 277, 

63.5) is the optimal solution for our problem. The directions and the best 

solutions identified at each iteration are depicted in Figures 5.4 and 5.5. 

Moreover, if the DM’s utility function was explicitly known, the optimal solution 

would be the same ( *q =(180.41, 277, 63.5)) as the solution found above.    
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Figure 5.4 The graph of how objective functions change in each iteration 
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Figure 5.5 Iterations for the first example  

 

 

 

Another example will be applied based on an implicit utility function that aims to 

minimize the Tchebycheff distance from ideal points of each objective. To 

simulate the DM’s decisions, we assumed that the implicit utility function is 

 

5(u cost - c*)+3(q* -quality)+4(leadtime - lt*)=      (5.14) 

 

In this example we want to show how the DM’s utility function changes the 

progress of the method. Let us start with the previous initial point 0q = 

(200,170,100) and previous initial direction 0d =(-1, 1,0). Note that for all future 

iterations, we will take the same directions as previous application and again we 

aim to search the efficient frontier in that direction with about 10 θ  values 
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between 0 and maxθ . After finding maxθ =82.21 and solving the model by changing 

θ  with the step size of 10, we find the efficient solutions shown in Table 5.5. 

 

 

 

Table 5.5 Efficient Points ( 0d =(-1, 1,0)) 

 

Theta 
(θ) 

cost quality 
Lead 
time 

DM’s utility 
function value 

0 163.24 231 68.98 495.15 

10 161.24 230 72.84 503.59 

20 151 227 73.57 464.31 

30 150.28 224 80.67 498.11 

40 150.25 228 87.99 515.24 

50 140.01 229 91.02 473.16 

60 140.01 229 91.02 473.16 

70 139.8 250 102.63 455.55 

80 136.86 245 119.07 521.61 

90 136.86 245 119.07 521.61 

 

 

 

From Table 5.5, the DM selects a new reference point 1q =(139.8, 250, 102.63) 

according to his utility function. With our previous 1d =(-1, 0, -3) and 1q , we find 

maxθ =45.37. Our model is solved with a step size of 5 and the resulting solutions 

are given in Table 5.6.  
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Table 5.6 Efficient Points ( 1d =(-1, 0,-3)) 

 

Theta 
(θ) 

cost quality 
Lead 
time 

DM’s utility 
function value 

0 139.8 250 102.63 455.55 

5 145.44 252 91.19 431.99 

10 145.44 252 91.19 431.99 

15 150.51 242 82.41 452.22 

20 151 227 73.57 464.31 

25 159.74 223 72.97 517.61 

30 163.24 231 68.98 495.15 

35 170.85 244 64.75 477.28 

40 173.01 261 61.99 426.04 

45 184.07 253 56.17 482.06 

50 184.07 253 56.17 482.06 

 

 

 

According to the DM’s utility function, the point 2q =(173.01, 261, 61.99) is 

selected. With the new reference point and the second iteration direction 2d =(-2, 

3,-2), maxθ  is found as 138.16. The model is solved by changing θ  values with a 

step size of 10 and the efficient solutions are given in Table 5.7. 

 

 

 

Table 5.7 Efficient Points ( 2d =(-2, 3,-2)) 

 

Theta (θ) cost quality 
Lead 
time 

DM’s utility 
function value 

0 173.01 261 61.99 426.04 

10 178.31 265 65.18 453.30 
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Table 5.7 (continued) 

 

Theta (θ) cost Quality 
Lead 
time 

DM’s utility 
function value 

20 180.41 277 63.5 421.08 

30 184.05 281 71.93 461.00 

40 174.24 290 76.31 402.47 

50 189.3 303 76.59 439.89 

60 189.3 303 76.59 439.89 

70 192.79 315 85.84 458.34 

80 192.79 315 85.84 458.34 

90 204.4 318 88.18 516.75 

100 184.45 324 95.96 430.12 

110 207.89 328 99.92 551.16 

120 217.1 330 100.51 593.57 

130 233.62 332 96.59 654.49 

140 237.17 335 117.18 745.60 

 

 

 

Among the values in Table 5.6, the DM selects the point 3q =(174.24, 290, 76.31) 

based on his (implicit) utility function. In this iteration, our new direction is 

3d =(-3, 2,-1). After maxθ is found as 82.38, the model is solved once more with a 

step size of 8. The new efficient solutions are given in Table 5.8. 

 

 

 

 

 

 



  

 61 

Table 5.8 Efficient Points ( 3d =(-3, 2,-1)) 

 

Theta 
(θ) cost quality 

Lead 
time 

DM’s utility 
function value 

0 174.24 290 76.31 402.47 

8 168.12 301 79.99 353.59 

16 162.54 288 87.67 395.41 

24 157.86 293 105.19 427.09 

32 153.83 292 113.67 443.86 

40 147.12 284 121.22 464.51 

48 145.3 273 130.89 527.09 

56 145.3 273 130.89 527.09 

64 143.22 261 101.94 436.89 

72 141.08 253 128.75 557.43 

80 138.76 250 121.62 526.31 

88 136.86 245 119.07 521.61 

 

 

 

The new reference point is selected as 4q = (168.12, 301, 79.99). Up to now, we 

have used the same directions we used for the underlying linear utility function 

case. Hereafter we will use new directions to search the efficient frontier. Let us 

assume the DM decides the new direction as 4d = (-4, 1, -1). With the new 

direction and the reference point we find maxθ =29.09. We solve the model once 

more with a step size 3 and the efficient solutions found are given in Table 5.9.   
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Table 5.9 Efficient Points ( 3d =(-4, 1,-1)) 

 

Theta 
(θ) cost quality 

Lead 
time 

DM’s utility 
function value 

0 168.12 301 79.99 353.59 

3 168.12 301 79.99 353.59 

6 162.54 288 87.67 395.41 

9 158.16 283 99.71 436.67 

12 155.2 278 101.28 443.15 

15 145.46 276 102.38 404.85 

18 145.46 276 102.38 404.85 

21 143.22 261 101.94 436.89 

24 142.05 257 126.6 541.68 

27 138.76 250 121.62 526.31 

30 136.86 245 119.07 521.61 

 

 

 

At this time, the DM cannot select a different solution because the last reference 

point is still the best solution for the DM according to his (implicit) utility 

function. Hereafter we have to check the optimality by conditions proposed by 

Korhonen and Laakso (1986). In the last step, the DM wanted to improve cost. 

Thus we have to check any improvement in quality and lead time. For quality, we 

can use dq=(0,1,0) and for lead time, we can use dl=(0,0,-1). After checking any 

improvement for each objective, we see that we keep our last efficient solution 

which is 4q =(168.12, 301, 79.99). When the solution is compared with the 

optimal solution which is *q =(162.253, 288, 87.67) (found by solving the model 

with the explicitly known utility function), we see some differences between 

optimal solution and selected solution. This is probably due to the discretized step 

size which does not cover all possible step sizes.  The iterations for the second 

example are given in Figure 5.6. 
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Although we tried to use the same directions in the two examples, in practice we 

will not do so.  The DM will indicate the direction in terms of the objectives he 

wishes to improve given the current reference solution.  Furthermore, we used 

somewhat different number of step sizes in different iterations.  It might be 

reasonable to fix the number of steps in different iterations or to use more steps at 

parts that are desired to be searched in more detail. 

 

Furthermore, when we discuss about the solution time, the execution time is 

reasonable to apply this method. For each θ  value, the model is solved in a few 

minutes. Moreover, we had alternative formulations to the above model that 

excluded the singleton bids.  We defined the objectives in a slightly different way.  

However, we decided not to pursue those models since the solution times were 

excessive.  We give the details of those models Appendix B.  
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Figure 5.6 Iterations for the second example 
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CHAPTER 6 

 

 

6 CONCLUSIONS 

 

 

 

6.1 CONCLUDING REMARKS  

 

In this thesis, the combinatorial auctions were analyzed.  Firstly we explained the 

auctions’ history and why people need auctions. In Chapter 2, common forms of 

auctions, their advantages and disadvantages are discussed. Also we give some 

examples of auctions in the world market. In Chapter 3, models for combinatorial 

auctions are analyzed. Single-unit, single-attribute multi-unit, multi-attribute 

multi-unit auction models are given and discussed how they differ from each 

other.  At the end, we apply a variation of Korhonen and Laakso’s (1986) method 

to solve a multi-attribute multi-unit auction using two different implicit utility 

functions. 

 

6.2 FUTURE WORK 

 

Based on the models proposed in Chapter 4 and implementation of Korhonen and 

Laakso (1986) method in Chapter 5, we can say that there are many future 

research issues in that area. With respect to the increasing Internet usage, auctions 

will be used in many areas. People want to make their transactions in a 

transparent environment and they want to trust the reliability of the system.  

 

E-commerce and its applications will probably be more popular in future. In 

Chapter 4, some mixed integer programming models are proposed. These types of 

models can be developed and implemented in real time applications. DMs can 
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add different constraints to the models and the models can be implemented in 

parallel or sequential auctions. 

 

Moreover, interactive multi objective decision making (MCDM) models can 

further be applied on auctions. We give an example of Korhonen and Laakso 

(1986) method to investigate the best solution on the efficient frontier. As a future 

work, different interactive MCDM methods can be applied to auction process and 

a new method for auctions can be developed for comparison among bidders.    
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APPENDIX A 

 

 

A INPUT DATA GENERATION 

 

 

 

In order to simulate and find a solution for auctions, we can generate singleton 

and bundled bids randomly. A singleton bid generation code is written in C. In the 

code, a cost range is defined randomly for all units because in the real world, all 

things have a cost range. This range can be large or small depending on the type 

of unit. For example, a basic type of electronic board (PCB) has a price range and 

people decide to buy whether the price of this PCB is suitable or not in relation to 

its properties (number of resistances, microprocessors, memory unit, capacitors 

…etc.). So according to the units’ properties, we can decide a price (cost) range 

for the units. Program firstly decides the price range of all units that some of units 

are more expensive than others, it means more important than others. Moreover, 

some units’ costs are generated to be “-”. This means that bidders do not want to 

sell these units; the singleton bids do not include these units. For example, in the 

Table A.1, bidder 7 does not sell unit a2, thus its cost value is zero.  

 

 

 

Table A.1 - Singleton bid of bidder 7 

        Unit 

Bidder 
a0 a1 a2 a3 a4 a5 

Bidder7 11 6 - 33 12 25 
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After the cost attribute is generated, there exist some scaling problems between 

cost and other attributes (quality and lead time) because quality and lead time 

vary between 0 and 10 but cost values vary in a larger range. To avoid this scaling 

issue, the cost attributes for each item is normalized to suit the scaling range of 0 

to 10. 

  

Bundled bids generation code is also written in C. Bundled bids are composed 

from singleton bids’ cost, quality and lead times. However, bundled bid 

attributes’ values are not simply the summation of the related attributes. For 

example cost of the bundle is the ‘private’ value of bidder on the bundle of the 

units, not the same as the summation of cost of units. For example when 5-unit, 6-

unit and 7-unit bundled bids are generated, bundled bids’ attributes are calculated 

according to the specified rules. Moreover bundled bids’ size can be changed if 

one wants to create different sized bids. Small and large bundled bids effects are 

analyzed in Section 4.3.  

 

In the program, the main way of the bundled bid generation is selecting bidders 

from the bidder list and forming bundled bid according to their bid items’ 

attributes. For example, in the program we decide to form 5-units, 6- units and 7-

units bundled bids according to following rules: 

 

Parameters: 

- jkucost is the cost of selected unit j  of bidder k  

- jkuquality  is the quality of selected unit j  of bidder k  

- jkuleadtime  is the lead time of selected unit j  of bidder k  

- ikc  is the cost of bundled bid i  of bidder k  

- ikq  is the quality of bundled bid i  of bidder k  

- iklt is the lead time of bundled bid i  of bidder k  
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Specifications: 

 

• Bundle size: 5-units, 6-units, 7-units 

 

• Discount 3% per unit in the bundle 

ikc : 
_

1

*(1 ( _ *0.03))
Bundle size

jk

j

ucost Bundle size
=

−∑  

 

• Sum up the quality attribute 

ikq :
_

1

Bundle size

jk

j

uquality
=

∑  

• Take maximum lead time throughout bundled units 

iklt :
1,2,.. _

{ }jk
j bundle size

Max leadtime
=

 

     

Attributes are chosen randomly and calculated in a specific way. These can 

naturally be used in different ways suiting different requirements of DMs. For 

example, quality can be measured by the minimum quality among the items’ 

qualities in the bundle or other measures can be developed depending on the 

DM’s wishes. 

   

When a random number is generated, firstly bidder is selected from this number, 

then units are started to select. In order to select unit from the list, a linked list is 

created. (N is the total number of units) 

 

 

 

Total unit number is N in the linked list 

       

For unit selection, first random number is generated then ‘pick’ the unit from the 

list. For example unit 3 is selected. 

1 2 3 ……… N-1 N 
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Total unit number is N-1 in the linked list  

 

For second unit, let the random number is 10, then 10th unit is selected from the 

list, it means that unit 11 is selected. 

 

  

 

Total unit number is N-2 in the linked list 

 

Bundled bids generation procedure continues until all bundled bids are generated. 

This procedure allows us to use all random numbers generated as exactly as 

generated. 

1 2 4 ……… N-1 N 

1 2 4 5 6 7 8 9 10 12 … N-1 N 
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APPENDIX B 

 

 

B SOME EXTENSIONS 

 

 

 

When we applied Korhonen and Laakso (1986) method for auction process, 

firstly we generated only the multi-unit bundled bids (5-units, 6-units and 7-units) 

for auction. However, the model cannot assign units only once because a feasible 

solution does not exist. If we allow assigning more than once for each unit, 

quality constraint cannot be a binding constraint because model assigns all 

bundled bid in order to maximize total quality and buyer has to buy all assigned 

units. Thus we add a new variable ( totitem ) to control the assignment and modify 

the model slightly.  

 

Parameters:  

- M is the number of bundled bids, 

- N is the number of units to be auctioned, 

- ic  is the cost of bid i , 

- iq  is the quality of bid i , 

- ilt  is the lead time of bid i , 

- 1 2 3, ,q q q  are the reference points of cost, quality and lead time 

respectively. 

- 1 2 3, ,d d d  are the directions of reference points respectively. 

- ijbund is the parameter that if its value is 1, bid i  includes unit j ; if its 

value is 0, bid i does not include unit j . 
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Variables: 

- iy  is the decision variable that takes a value of 1 if bundle bid i  is 

assigned, and 0 otherwise. 

- cost  is the total cost of the auction 

- quality  is the total quality of the auction 

- leadtime  is the total lead time of the auction 

- totitem  is the total number of assigned items in the auction 

 

 

Min *( ) *( * )cost leadtime quality totitemα ε ε ε+ + − −  

Subject to 

1 1( * )cost q dα θ≥ − +        (B.1) 

3 3( * )leadtime q dα θ≥ − +        (B.2) 

2 2* ( * )q d quality totitemα θ ε≥ + − −      (B.3) 

1

c *
M

i i

i

cost y
=

=∑         (B.4) 

1

*
M

i i

i

quality q y
=

=∑         (B.5) 

1

*
M

i i

i

leadtime lt y
=

=∑         (B.6) 

1

* 1
M

ij i

i

bund y
=

=∑            j N∀ ∈       (B.7) 

1 1

*
N M

ij i

j i

totitem bund y
= =

=∑∑        (B.8) 

 

The term “ *quality totitemε − ” provides an improvement in quality objective 

without increasing total number of bids uncontrolled. In constraint B.8, we find 

the total assigned units in the auction process then add this variable to the 

objective in order to control the assignment. 
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But when we run the model in GAMS 22.2, the model cannot find a feasible 

integer solution with 900 bundles (150 bids (5-units), 450 bids (6-units), 300 bids 

(7-units)). Because of this, we change the constraint B.7. Instead of “=”, we can 

use “≥” to find a feasible solution. However, in this time the memory of GAMS is 

not enough to solve this problem and we cannot find an optimum solution.  

 

Another attempt to find a solution from same problem set is about controlling the 

extra assigned units. For example, we have 50 units in our set and we should 

assign all kind of unit at least one. (Of course our aim is to assign all units only 

once). The modified model can be written like this: 

  

Min *( *( ))e cost leadtime qualityε α ε+ + + −  

Subject to 

1 1( * )cost q dα θ≥ − +        (B.9) 

3 3( * )leadtime q dα θ≥ − +        (B.10) 

2 2*q d qualityα θ≥ + −        (B.11) 

0

c *
M

i i

i

cost y
=

=∑         (B.12) 

0

*
M

i i

i

quality q y
=

=∑         (B.13) 

0

*
M

i i

i

leadtime lt y
=

=∑         (B.14) 

0

* 1
M

ij i

i

bund y
=

≥∑            j N∀ ∈       (B.15) 

0 0

50
N M

ij

j i

bund e
= =

− =∑∑         (B.16) 

 

For this model, the variable e  is the deviation variable calculated in constraint 

5.29. In order to minimize the deviation from 50 units, we can add the variable e  

into the objective and provide minimum extra assignment. When we solve the 

model, the execution time is much more than we want. For example, 900-
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bundled-bid model is solved in 1 hour and half. Execution time is important for us 

because we want to suggest at least 10 alternative solutions in each iteration to 

DM in order to select his “best” solution among these solutions and the procedure 

may consist of 5 to 20 iteration. 

   

Thus we can propose an alternative way in response to explained two models and 

find a set of solution to DM in order to select the “best” solution among them in a 

suitable time interval. We can generate 1-unit bids for all units (for 50 units, 

generated 50 bids). In this way, all units will be assigned only once (like 

constraint 5.9) and we can propose efficient solutions to DM to select his “best” 

solution. The model given in section 4.3 can be given as an example for multi-

unit and single-unit concurrent bundled-bid model.       


