

MODEL-BASED APPROACH
TO

THE FEDERATION OBJECT MODEL INDEPENDENCE PROBLEM

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

MEHMET FATĐH ULUAT

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

AUGUST 2007

Approval of the thesis:

MODEL-BASED APPROACH TO THE FEDERATION OBJECT MODEL

INDEPENDENCE PROBLEM

submitted by MEHMET FATĐH ULUAT in partial fulfillment of the

requirements for the degree of Master of Sciences in Computer Engineering

Department, Middle East Technical University by,

Prof. Dr. Canan Özgen _____________________

Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Volkan Atalay _____________________

Head of Department, Computer Engineering

Assoc. Prof. Dr. Halit Oğuztüzün _____________________

Supervisor, Computer Engineering Dept., METU

Examining Committee Members:

Assoc. Prof. Dr. Ferda Nur Alpaslan _____________________

Computer Engineering Dept., METU

Assoc. Prof. Dr. Halit Oğuztüzün _____________________

Computer Engineering Dept., METU

Assoc. Prof. Dr. Veysi Đşler _____________________

Computer Engineering Dept., METU

Dr. Ayşenur Birtürk _____________________

Computer Engineering Dept., METU

Sami Duman _____________________

Manager, ASELSAN

Date: 21/08/2007

 iii

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also
declare that, as required by these rules and conduct, I have fully cited and
referenced all material and results that are not original to this work.

Name, Last name : Mehmet Fatih Uluat

Signature

:

 iv

ABSTRACT

MODEL-BASED APPROACH TO THE FEDERATION OBJECT MODEL
INDEPENDENCE PROBLEM

Uluat, Mehmet Fatih

M.S., Department of Computer Engineering

Supervisor: Assoc. Prof. Dr. Halit Oğuztüzün

August 2007, 120 pages

One of the promises of High Level Architecture (HLA) is the reusability of

simulation components. Although HLA supports reusability to some extent with

mechanisms provided by Object Model Template (OMT), when the developer

wants to use an existing federate application within another federation with a

different Federation Object Model (FOM) problem arises. She usually has to

modify the federate code and rebuilt it. There have been some attempts to solve

this problem and they, in fact, accomplish this to some extent but usually they fall

short of providing flexible but also a complete mapping mechanism. In this work,

a model based approach that mainly focuses on Declaration, Object and

Federation Management services is explored. The proposed approach makes use

of Model Integrated Computing (MIC) and .NET 2.0 technologies by grouping

federate transitioning activities into three well-defined phases, namely, modeling,

automatic code generation and component generation. As a side product, a .NET

2.0 wrapper to Runtime Infrastructure (RTI) has been developed to help

developers create IEEE 1516 compatible .NET 2.0 federates in a programming

language independent way.

Keywords: Model-Based Approach, FOM Independence, HLA, .NET.

 v

ÖZ

FEDERASYON NESNE MODELĐ BAĞIMSIZLIĞI PROBLEMĐNE MODEL
TABANLI YAKLAŞIM

Uluat, Mehmet Fatih

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Assoc. Prof. Dr. Halit Oğuztüzün

Ağustos 2007, 120 sayfa

Yüksek Seviye Mimari (HLA)’nın vaad ettiği en önemli hususlardan birisi de

simülasyon unsurlarının tekrar kullanılabilirliğidir. HLA tekrar kullanılabilirlik

vaadini büyük bir ölçüde Nesne Yönetim Şablonu (OMT) ile sunulan

mekanizmalar ile sağlamış olsa da, geliştirici daha önceden geliştirmiş olduğu bir

federeyi farklı bir Federasyon Nesne Modeli (FOM)’a sahip bir federasyonda

kullanmaya kalktığı zaman, FOM Bağımsızlığı problemi ortaya çıkmaktadır. Bu

genellikle geliştiricinin federe kodunda değişiklik yapması veya federe yapısını

tekrar oluşturmasını gerektirmektedir. Daha önce yapılan çalışmalarda bu

problemin çözümüne yönelik çeşitli girişimlerde bulunulmuştur. Bu girişimlerin

çoğu problemi bir noktaya kadar çözmüşlerdir, fakat sunulan bu yöntemler genel

olarak esnek ve birbiri ile uyumlu tam bir çözüm sağlayamamaktadır. Bu

çalışmada Tanımlama, Nesne ve Federasyon Yönetimi servisleri üzerine

yoğunlaşan bir yaklaşım izlenmiştir. Sunulan yaklaşımda Model Bütünleşik

Hesaplama (MIC) ve .NET 2.0 teknolojileri kullanılmış, uygulanan adımlar ve

aktiviteler modelleme, otomatik kod ve bileşen üretme aşamaları altında

toplanmıştır. Bu çalışmada ayrıca Çalışma Zamanı Altyapısı (RTI) için .NET 2.0

kabuğu geliştirilerek, kullanıcıların IEEE 1516 uyumlu .NET 2.0 federelerini

programlama dilinden bağımsız bir şekilde geliştirmelerine olanak sağlanmıştır.

Anahtar Kelimeler: Model-Tabanlı Yaklaşım, FOM Bağımsızlığı HLA, .NET.

 vi

To My Parents

 vii

ACKNOWLEDGMENTS

The author wishes to gratefully thank his supervisor Assoc. Prof. Dr. Halit

Oğuztüzün for his invaluable guidance, advice and encouragements for this

research.

The author would also like to thank Assoc. Prof. Dr. Veysi Đşler for his support.

The technical assistance of Ph. D. students Mehmet Adak, Gürkan Özhan and

Okan Topçu are acknowledged.

The author would also like to thank his managers at ASELSAN, Mr. Sami Duman

and Mr. Ersel Ercek for their support.

Finally, the author wishes his special thanks to his family for their patience,

support and motivation.

 viii

TABLE OF CONTENTS

ABSTRACT... iv

ÖZ.. v

ACKNOWLEDGMENTS... vii

TABLE OF CONTENTS ... viii

LIST OF TABLES .. x

LIST OF FIGURES.. xi

LIST OF ABBREVIATIONS .. xiii

CHAPTER

1. INTRODUCTION.. 1

1.1 Related Work.. 4

1.2 Thesis Overview... 9

2. HIGH LEVEL ARCHITECTURE... 11

2.1 Short History of HLA... 12

2.2 IEEE Std. 1516-2000:Framework and Rules 12

2.3 IEEE Std. 1516.1-2000:Federate Interface (FI) Specification ... 14

2.4 IEEE Std. 1516.2-2000:Object Model Template

(OMT)Specification ... 16

3. MODEL DRIVEN SOFTWARE DEVELOPMENT 20

3.1 Model Driven Software Development (MDSD) 20

3.2 Model Driven Architecture (MDA) ... 21

3.3 Model Integrated Computing (MIC) .. 23

3.4 Metamodeling... 25

3.5 Generic Modeling Environment (GME) 26

3.6 HLA Object Model Metamodel (HOMM)................................. 28

4. .NET 2.0 TECHNOLOGY... 35

4.1 .NET 2.0 Framework Overview... 35

4.2 C++\CLI ... 39

 ix

4.3 Assemblies ... 39

5. MODEL BASED SOLUTION TO THE FOM INDEPENDENCE

PROBLEM.. 41

5.1 Problem Definition... 42

5.2 Three-Phased Solution ... 46

5.3 Case Study.. 75

6. DISCUSSION AND CONCLUSION.. 90

6.1 Achievements ... 90

6.2 Limitations of Current Work.. 91

6.3 Future Work ... 92

REFERENCES.. 93

APPNDICES

A. USER’S GUIDE.. 99

B. THE IMPLEMENTED RTI SERVICES FOR FIM........................ 104

C. INTERPRETER SOFTWARE.. 105

D. RTIDOTNET1516 LIBRARY.. 108

E. AUTOMATICALLY GENERATED FILES 113

 x

LIST OF TABLES

TABLES

Table 1.1 Object Class Structure Table... 8

Table 3.1 Mapping to layers of OMG. .. 25

Table 3.2 Brief descriptions of GME modeling concepts 27

Table 3.3 OMTClass Model Attributes... 32

Table 3.4 InteractionClass Model Attributes .. 32

Table 3.5 OMTAttribute Model Attributes ... 32

Table 3.6 Attribute Model Attributes .. 33

Table 3.7 Attribute Model Attributes .. 33

Table 3.8 Attribute Model Attributes (cont.) .. 34

Table 5.1 Three layers defined by BON2 [55].. 69

Table 5.2 The Object Class and Attributes for Environment Federate 84

Table 5.3 The Object Class and Attributes for Aircraft Federate 85

Table 5.4 The Object Class and Attributes for Meteorology Federate 87

Table 5.5 The Object Class and Attributes for Target Federate............................ 88

Table B.1 The implemented RTI services... 104

 xi

LIST OF FIGURES

FIGURES

Figure 1-1 Relationship between FOM and SOM .. 3

Figure 1-2 The FOM-specific API approach illustration [9] 5

Figure 1-3 The FOM-configurable Fixed API approach [9]................................... 6

Figure 2-1 The relationship of FI Specification, RTI, federates with each other.. 15

Figure 3-1 The illustration of basic principles of MDA.. 22

Figure 3-2 MIC Tools [46].. 23

Figure 3-3 Constraint View of GME... 28

Figure 3-4 GME class diagram of Federation Design Model [10] 30

Figure 3-5 The GME Object Models diagram [10]... 31

Figure 4-1 Architecture defined by CLI [64] .. 36

Figure 4-2 Simple view of how .NET framework works [68] 38

Figure 5-1 Target and Source Federation/Federate relationship 43

Figure 5-2 FIP Dependency Levels... 44

Figure 5-3 The three phases of proposed solution and their relationship 47

Figure 5-4 Overview of software components used in this study 48

Figure 5-5 The War Game Federation Design top level model 48

Figure 5-6 AttributeConverter Atom&other related metamodel elements 51

Figure 5-7 An example usage of AttributeConverter.. 52

Figure 5-8 ParameterConverter Atom&other related metamodel elements.......... 54

Figure 5-9 Synchronizations paradigm sheet .. 55

Figure 5-10 An example usage of SynchronizationPointMapper 56

Figure 5-11 CoordinateConverter mapping .. 59

Figure 5-12 Publish/Unpublish services scenario with many-to-many formation 60

Figure 5-13 Register/Discover services scenario with many-to-many formation. 62

Figure 5-14 Update service scenario with many-to-many formation 64

Figure 5-15 A scenario for Create service... 65

 xii

Figure 5-16 Constraints defined for FIM .. 67

Figure 5-17 Snapshot for Configuration Arguments... 74

Figure 5-18 War Game Federation, C3 Federation, their members and their

relationship with each other .. 76

Figure 5-19 Correspondence Models constructed for Environment & Meteorology

Federates.. 76

Figure 5-20 Conversion Method for TemperatureConverter 77

Figure 5-21 Publish Directed Conversion Method for WindDirectionConverter. 77

Figure 5-22 Subscribe Directed Conversion Method for WindDirectionConverter

... 78

Figure 5-23 Conversion Method for WindSpeedConverter 79

Figure 5-24 Correspondence Models constructed for Aircraft&Target Federates 79

Figure 5-25 Publish Directed Conversion Method for CoordinateConverter 81

Figure 5-26 Subscribe Directed Conversion Method for CoordinateConverter ... 82

Figure 5-27 Environment Federate GUI ... 84

Figure 5-28 Aircraft Federate GUI.. 85

Figure 5-29 C3 Federation Design Model... 86

Figure 5-30 Meteorology Federate GUI.. 87

Figure 5-31 Target Federate GUI.. 88

Figure 5-32 An example HLA Federation that shows possible scenarios 89

Figure A-1 Steps necessary to go related model where Correspondence Model

constructed .. 100

Figure A-2 The Part Browser Window for Attributes... 101

Figure A-3 The Object Inspector Window for Converter attributes 102

Figure A-4 The Control Panel of Interpreter... 103

Figure C-1 Illustration of Interpreter software in modeling environment........... 105

Figure C-2 A screenshot of FOM Conversion Interpreter 107

Figure D-1 Snapshot for Configuration Arguments.. 110

Figure D-2 A code portion related with exceptions .. 111

 xiii

LIST OF ABBREVIATIONS

Abbreviation or Symbol Text

API………………………………… Application Programming Interface

BON……………………….…......... Builder Object Network

C3………………………….…......... Command, Control and Communication

CF-RFOM……………….………… Common Foundation Reference FOM

CIL………………………………… Common Intermediate Language

CLI………………………………… Common Language Infrastructure

CLR………………………………...Common Language Runtime

CLS………………………………... Common Language Specification

CMDE……………………………... Correspondence Model Design Environment

COM………………………………. Component Object Model

CPU………………………….……..Central Processing Unit

CTS………………………………... Common Type System

DIS……………………………........ Distributed Interactive Simulation

DLL…………………………….….. Dynamic Link Library

DMSO……………………………... Defense Modeling and Simulation Office

DOD………………………….……. Department of Defense

DSL………………………………... Domain Specific Language

DSME……………………………... Domain-Specific MIPS Environment

ECMA……………………………... European Computer Manufacturers

Association

FCL……………………….……….. Framework Class Library

FCO……………………………….. First Class Object

FDD……………………………….. FOM Document Data

FEDEP…………………………….. Federation Development&Execution Process

FIM………………………….…….. FOM Independence Metamodel

FIP……………………….…………FOM Independence Problem

 xiv

FOM……………….………………. Federation Object Model

GME………………………………. Generic Modeling Environment

GUI………………………………... Graphical User Interface

HLA……………………………….. High Level Architecture

HOMM……………………………. HLA Object Model Metamodel

IEEE………………………….……. Institute of Electrical and Electronics

Engineers

JIT…………………………………. Just-in-Time

JVM……………………………….. Java Virtual Machine

LLDMS……………………………. Latitude Longitude Degrees Minutes Seconds

MDA………………………………. Model Driven Architecture

MDSD…………………….……...... Model Driven Software Development

MFC……………………………….. Microsoft Foundation Classes

MGRS…………………………....... Military Grid Reference System

MIC……………………….….......... Model Integrated Computing

MIPS………………………………. Model Integrated Program Synthesis

MOF………………………….……. Meta Object Facility

MOM……………………………… Management Object Model

MON………………………….…… Meta Object Network

OCL……………………….............. Object Constraint Language

OM…………………………….…... Object Model

OMG…………………………......... Object Management Group

OMT………………………………. Object Model Template

PC…………………………………. Personnel Computer

PDM…………………………….…. Platform Definition Model

PIM……………………………...… Platform Independent Model

PSM……………………………..... Platform Specific Model

POC……………………………….. Point of Contact

QVR Queries/Views/Transformations

RPR-FOM………………….…...…. Real-time Platform Reference Federation

Object Model

 xv

RTI………………………….……... RunTime Infrastructure

SISC……………………….……..... Simulation Interoperability Standards

Committee

SISO………………………….…..... Simulation Interoperability Standards

Organization

SOM……………………….………. Simulation Object Model

TENA…………………….………... Test Enabled Network Architecture

US……………………….……….... United States

USDAT………………….………… Under Secretary of Defense for Acquisition

and Technology

 1

CHAPTER 1

INTRODUCTION

1. CHAPTER 1

High Level Architecture (HLA) proposed as a common language and an

integrated software architecture that provides a general framework within which

Modeling & Simulation (M&S) developers can structure and describe their

distributed simulation applications [1]. After it is proposed at 1991 by United

States (US) Department of Defense (DoD), it started to attract many attentions.

The studies about HLA and community started to enlarge with this proposal. In

2001, HLA become an IEEE (Institute of Electrical and Electronic Engineers)

standard as the IEEE Std. 1516, 1516.1, 1516.2, 1516.3 specifications, which are

used extensively in this and similar studies [1], [2], [3], [4], [5]. In fact, it also

inspires other new distributed simulation technologies like Test Enabled Network

Architecture (TENA) which is another HLA-like standard [6].

The most important purposes of the HLA are reusability and interoperability that

is provided by Object Model Template (OMT) [3] and Federate Interface

Specification [2] respectively, which are two of three components of HLA. The

other one is HLA rules, which is described in chapter 2. The OMT provides a

standard mechanism to define and document the form, type and structure of data

that will be shared among federates in federation. To be able to make object

model reusable, OMT must include a minimum but sufficient degree of meta-level

information in the object model description. The HLA Federate Interface

Specification describes the runtime services offered to federates by the Run Time

Infrastructure (RTI) [2], a software that implements this interface specification. It

 2

provides services and functions, which are necessary to support an HLA

compliant simulation.

The HLA defines the whole distributed simulation as federation with its members,

which are called federate. Federates can be thought as the atomic executable units

of HLA federation which are usually used to simulate a given function,

monitoring, logging, visualization and for similar purposes. For example, a

federate can be a tank simulation which simulates whole tank functionality for one

federation or a federate can simulate only the turret control subsystem as a

federate for one federation. The federation is the collection of such federates, to

form a federation at least one federate is needed. The RTI is software which

implements IEEE 1516.1 Federate Interface Specification, and, thus, provides

necessary services for federates to communicate and share data with each other in

a federation during execution time.

The HLA has been used by many developers in various kinds of distributed

simulation projects more than eight years since it was first introduced at 1998 by

US DoD as version 1.3 [7]. As HLA become more prevalent, some part of it gone

under revision with some improvements and become an IEEE 1516 standard in

2000 [1], [2], [3], [4]. In fact there is an undergoing revision on IEEE 1516 [8].

Through this period, many federates and federations have been developed and

some problems related with reusability arouse with the practical usage of HLA.

Although reusability is one of the most important promises of HLA, how could it

be possible to experience such problems? HLA provide reusability through the

OMT Federation Object Model (FOM) and Simulation Object Model (SOM).

FOM describe and define the data that will be shared among federates in the

federation using Object Oriented fashion methods like inheritance. All federates

are required to agree on this FOM. SOM describe and define the data specific for

a federate and can also be provided to federation. The below Figure 1-1 shows the

relation between an Airplane and Radar SOM and C3 (Command Control and

Communication) FOM.

 3

Figure 1-1 Relationship between FOM and SOM

As it can be seen from above Figure 1-1, FOM contains data that described in

each federates’ SOM. A FOM might contain all data defined in SOM which

means that federate share all the data modeled in its SOM. A federate developer

can reuse these models, while developing a new federate.

At this point, now let us go back to the reusability question. HLA, in fact provide

mechanisms to developer for reusability through OMT and it accomplishes this

while developing new federates, but when federate developer wants to use her

already developed and well-defined federate within another federation that have

different FOM, the FOM Independence Problem (FIP) comes up. The most

obvious reason for this problem, discussed in [9], is the domain and the concepts

represented with these federations or federates might change from one federation

to another. The fidelity level of simulation and the need for usage of federates

with global-wide federation which can cause standard conflicts are some other

reasons for this problem.

Some studies have been performed to deal with this problem. Next section

introduces two of these important studies by discussing what they bring and what

they lack of. In this thesis, the HLA Object Model Metamodel (HOMM) [10],

which is a metamodel to define OMT Models, is used; to make it useful for FIP,

some additions have been made to create FOM Independence Metamodel (FIM).

The Generic Modeling Environment (GME) [11], which is used to define HOMM

and FIM, employed as the Metamodeling and Modeling Environment. A .NET 2.0

RTI interface is provided to developers to develop HLA compatible applications

in .NET 2.0 which is developed using C++\CLI programming language in Visual

 4

Studio .NET 2005 [12]. In addition to use of it as an RTI .NET wrapper, it is also

used for automatic code generation which is described in section 5.2.2. These

approaches, technologies, tools and rationale for selecting these are discussed in

forthcoming chapters.

This study proposes a model based solution for FIP using aforementioned

technologies.

1.1 Related Work

In this section, two important studies which share similar objective with this study

about FIP is discussed, what they provide and what they lack. There is also

another approach which makes use of a base FOM to solve FIP. This approach is

also discussed briefly by explaining an important example of related approach that

is called the Real-time Platform Reference Federation Object Model (RPR FOM,

pronounced “reaper fom”).

1.1.1 MÄK Technologies VR-Link Tool

One of these studies was carried out by MÄK Technologies [13]. In this study, the

problem is briefly defined, two prevalent solutions mentioned and the solution

they employ in their VR-Link tool is described [14]. It is stated in [9] that the

solution for this problem is classified into two groups; the first one is “FOM-

specific Code Generation Approach” and the second one is “FOM-configurable

Fixed-API Middleware Approach”. The first approach in fact is the most obvious

way in which such a way that developer develops an Application Program

Interface (API) for a specific FOM. What these do is take FOM files, produce

code specific to this FOM and then generate code that make use of these FOM for

HLA specific calls. An example code that will be generated for an attribute in a

given FOM which state status of number of bullets will be like below;

void RelatedHLAObjectClass::setNumberOfBullets(int iNumberOfbullets);
int RelatedHLAObjectClass::getNumberOfBullets();

However, as stated before when a FOM changes, the API and depending on this

the federate code needs to be modified and recompiled. Although this approach

 5

might be useful for federations of whom FOM do not change frequently and could

abstract details of HLA from developers, it will not be useful if FOM changes

frequently. Although this approach reduces HLA developers programming

burden, it does not provide a FOM independent solution as stated in [9], and it

does not solve the FIP. This approach is illustrated in Figure 1-2.

Application Code Tailored for

FOM #1

FOM #1 Specific

Middleware API

RTI

Application Code Tailored for

FOM #2

FOM #2 Specific

Middleware API

RTI

Must be modified when FOM changes

Regenerated when FOM changes

Figure 1-2 The FOM-specific API approach illustration [9]

This approach is used in many other commercial HLA products which make use

of FOM to generate HLA code [15], [16], [17] as well.

The second approach mentioned looks more promising than the first one as it

provides a mechanism for the developer to develop the federate code once and use

it without any change for new federations. As stated in [9], in this approach a

fixed FOM-Configurable API is provided to developer and when FOM changes a

new FOM mapper is generated and used without changing federate code. Here the

developer develops its federate code without considering future FOM changes, the

rest is done by fixed API and FOM Mapper. The one key application here from

FOM Independence point of view is FOM Mapper. The implementation provided

by MÄK, uses a table of encoding, checking, and decoding functions, one set of

functions for each attribute of each class. The mechanism applied by this

implementation is summarized in [9] as;

When generating an outgoing attribute update, the middleware toolkit
asks the FOM Mapper for a checking function that checks whether the
update condition holds for a particular attribute, and an encoding
function that converts the attribute from the FOM-independent API's

 6

representation to the current FOM's representation. When the
middleware toolkit receives an incoming attribute update, it asks the
FOM Mapper for a decoding function that does the opposite
conversion.

The second approach is illustrated in

Figure 1-3 as below;

Figure 1-3 The FOM-configurable Fixed API approach [9]

This approach is used in MÄK’s VR-Link product [14]. MÄK uses a propriety

API for VR-Link to support other technologies besides HLA.

1.1.2 AEgis OMni Tool

The other study is provided by AEgis with OMni tool and it also targeted the same

issue by employing an API [18], [19]. Different from FOM mapping approach that

is mentioned in previous section, OMni provides developer a programming

language for mapping called OMLink with its compiler. This language contains

C++ like declarative atoms and SQL like procedural concepts. Below OMLink

code portion shows an example mapping from [19] for “Detonate” and “Impact”

which are stated as two different interactions that are used in different federations;

receive (Detonate(MunitionType Distance)) as (Impact(Damage))
{
 // Code to translate MunitionType & Distance to Impact.Damage
 // ...
}

 7

They also provide a FOM mapper to use FOM/SOM elements and convert them to

OMLink statements. Similar to shown receive statement in above code portion,

there are three other statements for send, update and reflect. Similar to MÄK’s

VR-Link, OMni inspects and uses only update/receive/reflect/send services, the

other services are not mentioned.

1.1.3 Real-time Platform Reference FOM (RPR-FOM)

A different approach to solve FIP is to agree on a common FOM and use it for all

federates and federations like RPR FOM. As stated in [20], RPR-FOM was

designed to organize the attributes and interactions of Distributed Interactive

Simulation (DIS), which is another well-known IEEE distributed simulation

standard [21], into a robust HLA object hierarchy. The motivation for developing

such a design is listed as:

1. Support transition of legacy DIS systems to the HLA.

2. Enhance a-priori interoperability among RPR FOM users.

3. Support newly developed federates with similar requirements.

From the FOM Independence point of view the second and third items are

apparently important to provide interoperability, but as discussed in the following

section they can be limited.

The RPR FOM is an instance of a Common Foundation Reference FOM (CF-

RFOM) as defined by the Simulation Interoperability Standards Organization's

(SISO) Reference FOM Study Group [20]. A CF-RFOM is different from normal

FOMs, because it refers to a notional FOM rather than an actual collection of

federates. As stated in [20] the goal of a CF-RFOM is to enhance a-priori

interoperability by specifying content standards for commonly used attributes and

interactions. Federate developer build her Reference FOM using CF-RFOM

according to her problem specific needs of federation and because federations that

do not require interoperability beyond the basic level of the CF-RFOM can

participate into federations, without software modification.

 8

The RPR-FOM is developing in parallel to HLA, the Version 1.0 of the RPR

FOM aims to provide an HLA conversion path for DIS capabilities as defined in

IEEE 1278.1-1995 and it supports Version 1.3 of the HLA [20]. The Version 2.0

of the RPR FOM is planned to add the functionality of the IEEE 1278.1A-1998

standard [22] and also be compatible with the IEEE 1516 HLA standard [1]. In

[20] it is stated that when transitioning of existing DIS functionality transition is

completed, the RPR FOM Version 3.0 is planned to be release to capture new

real-time simulation data exchange solutions compliant with IEEE 1516 standard.

RPR-FOM – Object Class Structure Table is given in Table 1.1.

Table 1.1 Object Class Structure Table

Class 1 Class 2 Class 3 Class 4

Aircraft
AmphibiousVehicle
GroundVehicle
Spacecraft
SurfaceVessel
SubmersibleVessel

Platform

MultiDomainPlatform
Human Lifeform
NonHuman

Sensor
Radio
Munitions
CulturalFeature
Expendables

PhysicalEntity

Supplies

BaseEntity

EnvironmentalEntity

Designator
EmitterSystem
RadioReceiver

EmbeddedSystem

RadioTransmitter
RadarBeam EmitterBeam
JammerBeam

1.1.4 Discussion

When we look at the approaches discussed in [9], the most feasible solution seems

to be the FOM-Configurable Fixed API approach. Although it solves FIP in many

ways, it can compel developer to stick with a propriety API rather than HLA

standard which increase time to learn related API like in VR-Link case. As seen

 9

from the applied examples like VR-Link, usually tables are used for mapping

which might limit its capability, configurability and understandability. Moreover,

the mentioned usage of FOM Mapper and their middleware which make use of

checking attributes with given functions at run-time might cause problems for

mappings that involve more than one attributes owned by different object classes.

The approach proposed by AEgis solves the propriety API problem by providing

an HLA like API which has similar function signatures as HLA standard.

Although the OMni Link programming language is more intuitive than MÄK’s

table filling approach, as the previous approach the mapping mechanism

employed by them is not so much developer friendly, even though a supporting

FOM Mapper Graphical User Interface (GUI) is provided.

A rather different approach is explained through RPR-FOM. Although this might

solve the problem to some extent for federations that uses RPR-FOM, in reality,

there are various kinds of applications and specific concepts which are very

difficult and sometimes impossible to capture them with only one FOM. In fact,

for even more prevalent concepts; such as, geographical coordinates, which can

have many different representations that resulted from standards or specific

constraints. There are also some ongoing studies to enhance prior-FOM agreement

for interoperability which share similar approach to [23], but it is not completed

and available yet.

When all these studies are examined, it is seen that all of them solves FIP to some

extent but usually they are lack of providing an easy, flexible but also a complete

mapping mechanism which is in fact the most important motivation of this study.

1.2 Thesis Overview

The introduction chapter gives brief background information and mentions related

studies about topic, the thesis continues with Chapter 2 which introduces HLA

(IEEE 1516). The Model Driven Software development, GME and modified

HOMM is explained in Chapter 3. The Chapter 4 is about .NET 2.0 and its

features used in this study. Chapter 5 presents the contribution of thesis to FIP

 10

with example federation that modeled and implemented in this approach. The

summary and future works are given in Chapter 6. In Appendix A, a short user

guide for constructing correspondence map in GME is described. The table of

implemented services is given in Appendix B. The Interpreter software is

described in Appendix C and RTIDotNet1516 library is explained in Appendix

D. Finally the details of source code generated in automatic code generation phase

is given in Appendix E.

 11

CHAPTER 2

HIGH LEVEL ARCHITECTURE

2. CHAPTER 2

The HLA is the one of most significant distributed simulation technology and the

specific domain that is used for this study. It is defined by IEEE 1516 for

simulation developers to structure and define their applications using this as a

common language and integrated software architecture. It is not merely an

implementation, an API or similar software construct but a software architecture

that defines some rules and protocols to compose independently developed

simulations into one larger simulation with minimal effort and time [24]. A well

known definition for software architecture is given by Shaw and Garlan [25];

Abstractly, software architecture involves the description of elements
from which systems are built, interactions among those elements,
patterns that guide their composition, and constraints on these patterns.

Kuhl at [24] gave us mapping of element, interactions and pattern concepts of

software architecture given in this definition to HLA standard which surely gave

us a better understanding. In HLA world, the HLA federation elements (members)

are federates, an RTI, and a common object model are defined by rules and

interface specification. The interactions are defined between federates and the

RTI, and between federates through RTI of whom data is defined by federation’s

object model. The allowed patterns of composition in the HLA are constrained by

the rules and defined in the federate interface specification. Kuhl also illustrate

some architectural styles that HLA exhibits in [24] which are Layered, Data

Abstraction and Event-Based architecture. All these concepts are described in

following sections in detail, now a brief history of HLA is given.

 12

2.1 Short History of HLA

The HLA was first issued by the Defense Modeling and Simulation Office

(DMSO) of US DoD, in order to support reuse and interoperability across the

large numbers of different types of simulations and to reduce the cost of the

projects [26]. The HLA Baseline Definition, HLA 1.0, was completed and

approved by the Under Secretary of Defense for Acquisition and Technology

(USDAT) in 1996. This approval not only defines a standard but also mandate all

DoD simulations to use this standard. The other important release was happened

in 1998 as HLA specification 1.3 which was also made publicly available. Then

OMG [27] considered HLA as the Facility for Distributed Simulation Systems in

1998 and updated it in 2001 to reflect the changes resulting from commercial

standardization of the specification. Finally, the HLA was approved as an open

standard through the IEEE, namely IEEE Standard 1516, in September 2000.

After this time, SISO [28] has also proposed some improvements for HLA IEEE

1516. In fact there is an undergoing revision on IEEE 1516 [8], [23] currently

which is not resulted at the time of this thesis being written.

The full name of the standard is IEEE Std. 1516-2000 Standard for Modeling and

Simulation (M&S) High Level Architecture (HLA). It was prepared by the HLA

Working Group, sponsored by the Simulation Interoperability Standards

Committee (SISC) of the IEEE Computer Society. This standard consists of four

related standards which are IEEE Std. 1516-2000: IEEE Standard for M&S HLA

Framework and Rules [1], IEEE Std. 1516.1-2000: IEEE Standard for M&S HLA

Federate Interface Specification [2], IEEE Std. 1516.2-2000: IEEE Standard for

M&S HLA Object Model Template (OMT) Specification [3] and IEEE Std.

1516.3: IEEE Recommended Practice for HLA Federation Development and

Execution Process (FEDEP) [4].

2.2 IEEE Std. 1516-2000: Framework and Rules

This standard gives an overview of the HLA, HLA concepts and defines a set of

rules that apply to HLA federations and federates [1]. These are the rules that all

 13

HLA compliant federates and federations should comply. There are ten rules, five

of these are defined for federation, and the other five rules are defined for

federates. The rules apply for federations are given with brief explanations below:

• “Federations shall have an HLA FOM, documented in accordance with the

HLA OMT”. This rule state an agreement on the information defined

syntactically.

• “In a federation, all simulation-associated object instance representation

shall be in federates, not in the RTI”. RTI will be responsible for

coordination and management of federation execution according to

Interface Specification [2]. It will not hold any state information about

federation or federate in itself which obviously break interoperability and

reusability.

• “During a federation execution, all exchange of FOM data among joined

federates shall occur via the RTI”. This rule again defined to assure

interoperability. Some possible unacceptable example for this rule can be a

socket connection between two federates in addition to RTI.

• “During a federation execution, joined federates shall interact with the RTI

in accordance with the HLA federate interface specification”. The member

federates should not only communicate through RTI but also comply with

interface specification. This rule also ensure the successful execution of

federates with different RTI implementations.

• “During a federation execution, an instance attribute shall be owned by at

most one joined federate at any given time”. This rule ensure one

ownership for one object instance attribute which will be responsible from

updating state of that attribute, but there are some services provided to

transfer this ownership from one federate to other or perform similar

actions during federation execution in Data Distribution Management

services.

The rules for federates are as follows:

 14

• “Federates shall have an HLA SOM, documented in accordance with the

HLA OMT”. As stated in federation rule 1, federates that want to comply

with HLA should expose their minimal simulation functionality in their

SOM.

• “Federates shall be able to update and/or reflect any instance attributes and

send and/or receive interactions, as specified in their SOMs”. This rule

specifies that federate should be able to initiate appropriate behavior

through RTI as long as it stick with its SOM.

• “Federates shall be able to transfer and/or accept ownership of instance

attributes dynamically during a federation execution, as specified in their

SOMs”. Every federate should implement necessary ownership protocol

through services that are defined in the interface specification, it is also

necessary to state whether federate will transfer ownership during

federation execution in its SOM.

• “Federates shall be able to vary the conditions under which they provide

updates of instance attributes, as specified in their SOMs”. As stated in

standard, different federations may exhibit different conditions for update

of instance attributes (e.g., specified update rate or threshold for update).

The applicable conditions for update of specific instance attributes owned

by a federate should be documented in federate’s SOM.

• “Federates shall be able to manage local time in a way that will allow them

to coordinate data exchange with other members of a federation”. This rule

specify that each federate may use functions provided by RTI’s Time

Management Services to manage its logical time or may not use at all.

Most of the rules quoted above are addressing the FOM/SOM to enforce the

reusability.

2.3 IEEE Std. 1516.1-2000: Federate Interface (FI) Specification

HLA interface specification describes the standard runtime services and interfaces

offered to federates which are necessary to support an HLA compliant simulation

and make it possible for federates to be able to interact and share data with other

 15

federates in a distributed federation execution. Federate interface specification

extends the HLA Rules and also describe the HLA concepts in detail. The

software that implements and provide these services called RTI. This software

allows federates to interact with each other through the implemented interface

specification.

Physically, federates interact only with RTI, no other interaction mechanism with

other federates is possible under standard. The HLA federate interface

specification defines the services that the RTI software should provide to

federates. Figure 2-1 shows relationship of Federate Interface Specification, RTI,

federates with each other.

Figure 2-1 The relationship of FI Specification, RTI, federates with each other

The services defined by the interface specification are divided into seven service

groups which are described as below;

• Federation Management Services: This group of services is responsible

from creation, modification, deletion and dynamic control of a federation

execution. It also contain services for federate to join or resign from a

federation and for synchronization point management services.

• Declaration Management Services: This group of services is responsible

from services that are used by federates to declare their interest to an

object class attribute or an interaction class. These are also used to declare

 16

intention to generate information through publish/unpublish and

subscribe/unsubscribe services. This group of services is also handled in

this study.

• Object Management Services: This group of services is mainly

responsible from exchange of data through registration, modification, and

deletion of object instances and the sending and receiving of interactions.

This group also includes services that deal with how data are transported.

• Ownership Management Services: This group of services is responsible

from transferring ownership of instance attributes among joined federates

during federation execution. This group of services may not be used at all

if no ownership transfer related capability is need for federation

• Time Management Services: This group of services is responsible from

coordination of logical time among federates during federation execution.

Similar to Ownership Management services this group of services may not

be used by federates.

• Data Distribution Management Services: This group of services is

responsible from providing information on data relevance at different

levels and allows refining the data requirements.

• Support Services: This group of services includes miscellaneous services

like setting advisory switches, manipulating regions, or getting

attribute/interaction handles and names.

This specification also introduces Management Object Model (MOM) which is

not studied in this study.

2.4 IEEE Std. 1516.2-2000: Object Model Template (OMT)

Specification

The OMT Specification provides a standard mechanism to define and document

the form, type and structure of data that will be shared among federates through

federation. To be able to make object model reusable, OMT must include a

minimum but sufficient degree of meta-level information in the object model

 17

description. Moreover in specification [3], it is stated that such specification does

not only provide, a commonly understood mechanism for specifying the exchange

of data but also a standard mechanism for describing the capabilities of potential

federation members and facilitation of common tool sets for development of HLA

object models.

OMT standard introduces two types of object models: HLA Simulation Object

Model (SOM) and Federation Object Model (FOM).

The SOM describe and define the information that a federate can provide to other

HLA federations and the information that it can receive from other federates in

HLA federations. It is usually a specification of federate specific capabilities that

an individual simulation that modeled by federate could provide to HLA

federations, in other words it focuses on federate’s internal operation. It is defined

for each federate and can also be used to determine the suitability of federates for

participation in a federation.

The FOM describe and define the data that will be shared among federates in

HLA federation using Object Oriented fashion and enforce all federates to agree

on this FOM. FOM is defined for each federation and usually provided to each

federate execution physically through FOM Document Data (FDD) files. This

FDD files contains information derived from the FOM and used by the RTI at

runtime in XML format.

The OMT Specification presents object models in OMT tabular format. The OMT

consists of fourteen components that presented as tables:

• Object Model Identification Table: This table contains information about

the name, type, version, modification date, purpose, application domain,

sponsor, POC (point of contact) name, POC organization, POC telephone,

POC E-mail address, references and some other information about the

object model.

• Object Class Structure Table: Object class structure table define all

federate or federation object classes and their class-subclass relationship.

 18

An object class can be considered as a collection of objects with certain

characteristics or attributes in common [3]. Object Class Structure Table

also contains attributes publishing/subscribing behavior with “P”, “S” or

“PS” markings. “P” is used for publish behavior, “S” is used for subscribe

behavior and “PS” for attributes which exhibits both of these behaviors.

There is also “N/A” for attributes which do not exhibit any of these

behaviors.

• Interaction Class Structure Table: Interaction class structure table

contains all federate or federation interaction classes and their class-

subclass relationships like in Object Class Structure Table. This table also

contains interactions’ publishing/subscribing behavior with “P”, “S” or

“PS” markings.

• Attribute Table: This table contains features of object attributes in a

federate or federation.

• Parameter Table: This table contains features of interaction parameters in

a federate or federation.

• Dimension Table: This component specifies the dimensions that are

defined by Attributes and Interactions to filter the ones out of

given dimensions at run-time.

• Time Representation Table: This table determine the usage of time

stamps and look ahead characteristics of both federates and federations.

• User-supplied Tag Table: As stated in [3], federates can supply tags with

certain of the HLA services to provide additional coordination and control

over these services. This table defines these tags.

• Synchronization Table: This table defines the representation and data

types used in HLA synchronization services.

• Transportation Type Table: This table describes mechanisms used for

the transportation of data.

 19

• Switches Table: This table contains initial settings for some parameters

defined in federate interface specification.

• Datatype Tables: Basic Data Representation Table, Simple Datatype

Table, Enumerated Datatype Table, Fixed Record Datatype Table, Array

Datatype Table, and Variant Record Datatype Table specify the details of

data representation in the object model.

• Notes Table: Additional information can be added to any element of the

object model. This table is used for this purpose.

• FOM/SOM Lexicon: This table contains descriptive definitions for all of

the objects, attributes, interactions, and parameters used in the HLA object

model.

As described in the next chapter, these tables are provided to developer through

the GME modeling environment defined by HOMM.

The detail of FEDEP is not given here as it is not directly related with FIP. More

information about High Level Architecture can be found in [7], [24].

 20

CHAPTER 3

MODEL DRIVEN SOFTWARE DEVELOPMENT

3. CHAPTER 3

This chapter provides information about Model Driven Software Development

(MDSD) and related technologies which are the key technologies behind this

thesis. HLA Object Model Metamodel (HOMM) which is taken as a base for this

study will also be described. The important technologies and tools that are used in

study are Model Driven Architecture (MDA), Domain Specific (DS) MDA which

is also known as Model Integrated Computing, Metamodeling and GME. These

are described in following sections, but before that little background information

about Model Driven Software Development and its role in Modeling and

Simulation (M&S) will be given.

3.1 Model Driven Software Development (MDSD)

The first thing that needs to be described for MDSD is surely the concept of

model. Although there are many definitions for model, the one that is provided

from [29] is given below;

A model is a simplification of a system built with an intended goal in mind.
The model should be able to answer questions in place of the actual system.

MDSD [30] is the one of the latest popular approach in software development

which aims developing software from higher abstraction levels like from domain-

specific models and make uses of the models as first class entities like source

code. In fact, many attempts have been done till MDSD to increase abstraction

level especially in languages, platforms and tools.

Although all of these seem to solve problems initially, the problems arouse again

after using these over time like in the middleware approach. The middleware

 21

approach provides a software layer that provides some common services for

software components or applications from different platforms, operating systems.

As middleware approach becomes common among software developers, many

middleware platforms came out, moreover these middleware standards also

changed in time. The cost of porting an application from one middleware to other

is also requires high cost even the business logic does not change. Consequently it

is also seen unrealistic to standardize on a single middleware platform.

After all these attempts, MDSD aim to separate Computing, i.e. Solution Domain

from Problem Domain while increasing abstraction level and make use of models

as the first class entities in software development process rather than a blueprint

for documentation. In MDSD, models not used merely for documentation, they

are considered equal to source code as their implementation is automated.

The most obvious promise of MDSD is the increase in productivity. The other

important benefits are increasing development speed, managing complexity

through abstraction, increasing portability, reusability and interoperability, and

automating software construction with no or minimum coding.

As MDSD become popular in Software Development world, some attempts to

apply this approach through MDA to HLA compliant distributed simulations has

been made like [31], [32], [33], [34] to show the benefits of employing this

approach.

For this study, the models are FOM, SOM and Correspondence Models,

the system is HLA federation and goal is to solve FIP using these models.

Moreover, HOMM [10], described in section 3.6, is used for FIP with some

additions to this metamodel.

3.2 Model Driven Architecture (MDA)

Although the HOMM and this study mostly use MIC, for the sake of

completeness, background information about MDA will also be given here.

 22

The Model Driven Architecture (MDA) [35] is defined by the Object

Management Group (OMG) [27] to achieve portability, interoperability and

reusability to integrate distributed applications by focusing on the importance of

models in the software development process [36]. The primary focus of MDA is

the on the functional and behavioral aspects of a distributed application or system,

not the technology in which it will be developed [37]. MDA achieved this by

separating these two and define them as Platform Independent Model (PIM) and

Platform Specific Model (PSM). First system functionality is defined by PIM,

then by using a Platform Definition Model (PDM), which define target model, in

collaboration with transformations the PIM is transformed to PSM and finally

executable code is generated again using transformations for corresponding

platform and Platform Models. The basic principles of MDA can be seen in Figure

3-1.

Figure 3-1 The illustration of basic principles of MDA

It is also worth to mention how new models can be obtained by using the existing

ones before closing this section. Although there are various ways of obtaining new

models, the model transformation is the most prevalent way of obtaining new

models from old ones in model driven approaches. There are two major categories

of transformations which are Model to Model and Model to Text or Code as

illustrated in Figure 3-1 [38]. In addition to these two categories, other

transformation categorizations and approaches belonging to these categories can

be seen in related studies like [39], [40], [41]. As the interest for model

 23

transformation increase and the importance of it become more apparent, the OMG

defined QVT (Queries/Views/Transformations) as a standard for model

transformation which can be obtained from [42].

In this study, the model linking and model transformations are heavily used. The

model linking is used in construction of Correspondence Model among two

different FOMs to show relation of Attributes/Parameters among source

and target federation. Moreover, the automatic code generation phase use Model-

to-Code Transformation to generate .NET compatible source code from

Correspondence Model and FOMs. Chapter 5 describes these in detail.

3.3 Model Integrated Computing (MIC)

Many model driven approaches have appeared since MDSD first introduced like

MDA and Software Factories [43]. Model integrated computing is one of these

methodologies for developing domain-specific software that uses MDA concepts

and metamodeling approach [44]. As mentioned, it is also known as Domain

Specific (DS) MDA which is proposed to be an effective and efficient way of

developing large-scale, domain-specific software. The tools that will be used in

MIC are introduced by Karsai and his colleagues in [45] and [46] which are also

shown as in Figure 3-2.

Figure 3-2 MIC Tools [46]

 24

Before describing details of MIC process, it is beneficial to describe frequently

used concepts like domain.

Domain can be described as a collection of entities that share the same

characteristic or exhibit similar functionality [47]. Domain Specific Modeling is a

software engineering methodology which models a system using the common

terminology and concepts that are obtained from a domain analysis [48]. These

terminology and concepts are usually belongs to problem domain rather than

solution domain like programming language constructs. To represent and

implement these concepts and terminology Domain Specific Language (DSL) are

used. A DSL definition from [49] is given below;

A DSL can be viewed as a programming language dedicated to a
particular domain or problem. It provides appropriate built-in
abstractions and notations; it is usually small, more declarative than
imperative, less expressive than general-purpose language.

MIC let generation of applications from models by using customized domain-

specific Model Integrated Program Synthesis (MIPS) environments. To do this,

first DSL is defined formally for related domain, then a meta-level translation

performed using this DSL to synthesize the Domain-Specific MIPS Environment

(DSME) [50] from this metamodel. After creation of DSME, it can be used to

create different domain specific models. These models are then used by model

interpreters to perform semantic translations to generate executable models or

programs [44].

As stated in [44], a MIPS environment operates according to a modeling paradigm

which is a set of requirements that define the way systems within the domain are

to be modeled. In other words, it defines the language for modeling systems in the

domain. The modeling paradigm is then captured in the form of formal modeling

language specifications called a metamodel which is also used commonly in other

MDSD approaches. MIC applies this metamodel based approach to domain

specific applications which are HLA applications in our case.

 25

The HOMM study applies MIC for distributed simulations domain through HLA

and in our study we use this approach to solve FIP.

3.4 Metamodeling

In previous sections, it is stated that modeling describes the concepts and

terminology of a domain through a modeling language. Similarly, it can be said

that metamodeling allows us to model the modeling language. It is also stated that

model is an abstraction or simplification of a system in the real world, and

metamodel is a higher abstraction that focus on features of the model itself. It can

be considered as the language for expressing a model that describes relevant

concepts of a domain. There are many benefits of metamodel. With metamodels,

domain specific modeling become possible, models are validated against the

constraints defined in the metamodel level, model transformations can be

generalized through metamodel level rules and finally automatic code generation

can be performed through templates that refer to the metamodel. There also exist

Meta-metamodels which are used to describe the language of meta-models. Meta-

metamodels are also important for defining languages and tool integration. The

most important difference between modeling and metamodeling is the level of

abstraction, the rest of these two activities are very similar.

Modeling, metamodeling, and meta-metamodeling languages and related actives

are defined as four-layer metamodeling architecture by OMG [27], [51]. Table 3.1

shows the metamodeling layers for this study which mapped to OMG’s four-layer

framework.

Table 3.1 Mapping to layers of OMG.

 26

3.5 Generic Modeling Environment (GME)

For all modeling and metamodeling activities, Generic Modeling Environment

(GME) which is an open-source meta-programmable modeling tool developed by

Vanderbilt University [11] is used. The motivation for choosing GME as tool can

be listed as below which are also mentioned in [10];

• It provides generic modeling primitives [52], which are necessary to create

the domain-specific modeling concepts through meta-modeling.

• GME paradigms are generated from formal modeling environment

specifications like stated in MIPS at section 3.3.

• In addition to generic metamodeling primitives, it also provides an

environment containing all of the modeling elements and valid

relationships that can be constructed in a specific domain, after a modeling

paradigm is defined.

• It contains some integrated model interpreters through plug-in architecture

that perform translation and analysis of models and provides defining new

interpreters.

• The models are formed as graphical, multi-aspect, attributed entity-

relationship diagrams. The semantics behind the model is determined

during the model interpretation process which correspond to automatic

code generation phase for our study.

• It supports multiple paradigms and enables meta-model composition.

• With Windows based and well organized graphical user interfaces used

make it user friendly and easy to use.

• The tool is open source which can be used for academic purposes and have

strong community support.

• It contains a constraint manager which is compliant with the Object

Constraint Language (OCL) 1.4 specification [53] and its metamodel is

implemented using Meta Object Facility (MOF) 1.4 specification [54].

 27

The details of GME architecture can be found in [55], [56]. Here some important

modeling concepts that are used in this study are explained. Some important

modeling concepts and their brief descriptions are given in Table 3.2.

Table 3.2 Brief descriptions of GME modeling concepts

Modeling
Concept

Definition

Project The root container class.

Folder Containers that help to organize models.

FCO First-class objects which must be abstract but can serve as the base
type of an element of any other stereotype.

Model Compound objects that can contain model elements.

Atom Atomic objects which are not containing other model elements but
have attributes.

Set Specify a relationship among a group of objects whose parent
objects are same and visible in the same aspect.

Connection Used to construct a relationship between two objects.

Reference Make other objects except connection to be able to be used in
other models.

Attribute Property of an object which is expressed in text.

Aspect Construct that provides logical visibility partitioning to present
different views which are explained in below.

Constraint Construct used to check correctness of a model using OCL like
expressions.

As mentioned with Aspect concept, GME provides developer four different views

which are classes, visualization, constraints and attributes. The most frequently

used view is Classes View which allows developers to define its domain specific

models with models, references, atoms and other elements. Creation of aspects

and relating the model elements with these aspects is done in Visualization View.

Constrains, constraint expression and relating these with model elements are

performed in Constraints View. Finally, attributes for modeling elements are

defined in Attributes View Figure 3-3 shows Constraint View of GME.

 28

Figure 3-3 Constraint View of GME

3.6 HLA Object Model Metamodel (HOMM)

To solve FIP in HLA by using model driven approach, first of all a modeling

capability for HLA domain is needed. The HLA Object Model Metamodel

(HOMM) is chosen for modeling activities in this study and some additions have

been made to it to use it in this study which is described in the next section [10].

The full compliance with IEEE 1516 HLA OMT and provided IEEE HLA

Defaults library, which is extensively used in automatic code generation phase are

the most important reasons for HOMM usage.

In addition to these, the HLA specific modeling environment created by GME tool

which also used for defining HOMM is plays a significant role in decision. It does

not only provide a more understandable and user friendly design environment than

tabular or text based data modeling, but also an easily configurable MDA

compliant HLA modeling tool for this study.

The HOMM is composed of Object Model (OM) paradigm sheet, Federation

Design paradigm sheet and OMT Core folder. Paradigm sheets are used for

 29

separation in metamodel. The definitions for classes, data types, dimensions,

switches, synchronization points, user-supplied tags, time representations and

transportations are included in OMT Core folder and separate paradigm sheets are

defined for each of them. The OM paradigm sheet provides a metamodel for HLA

OM which includes three types of object models, FOM, SOM and Other. In

addition to HLA OM, another metamodel is created as Federation Design

paradigm to form a high level modeling for federation federates and necessary

modeling entities to connect them with related FOM’s or SOM’s.

Some rules made effective on whole metamodel in HOMM [10]. They also

followed in developed metamodel with some additions. All these constraints and

rules are written in OCL [53]. For this study, some additions have been made to

these rules, some of which are defined in OCL as HOMM and some others are

defined programmatically to be used in the beginning of automatic code

generation phase.

Next sub-sections explain Federation Design model, Object Model and OMT Core

folders in detail.

3.6.1 Federation Design Model

As stated in [10] Federation Design Model provides a higher level interface for

modeling federates, federation and their connection with related FOMs or SOMs.

This model can contain more than one federates and SOMs but there should be

only one federation and one FOM. The connection with FOMs and SOMs are

done through reference entity which is described in previous section.

“MemberOf” relationship is used to define connection between federations and

federates. The Figure 3-4 shows the GME class diagram of Federation Design

Model.

 30

Figure 3-4 GME class diagram of Federation Design Model [10]

This model is not used in this study, but not excluded from metamodel also and

preserved to be used for illustrative purposes.

3.6.2 Object Model

The Object Model (OM) paradigm sheet includes the main diagram for object

models. As stated before, there are three types of object models, which are FOM,

SOM and Other. FOM and SOM are correspondence of HLA object models that

defined in HLA OMT specification. The “Other” type is provides as template for

temporary object models which can not be included in Federation Design model

[10]. The GME diagram of OM is given in Figure 3-5. As it can be seen in figure,

Object Model class is the parent of FOM, SOM and Other. The parent-child

relationship, which is similar to Object Oriented inheritance, is illustrated by a

special triangle operator. There are also five aspects defined to model related

OMT components which are Classes, User-Supplied Tags, Synchronization,

Switches and Time Representation.

 31

Figure 3-5 The GME Object Models diagram [10]

3.6.3 OMT Core Elements

OMT Core folder provides OMT Core elements which are necessary to model an

object model [10]. It contains classes, data types, dimensions, normalization

functions, notes, switches, synchronization points, user supplied tags, time

representations and transportations models as stated before. Here brief

descriptions of elements which are heavily used in our study is given, [10] can be

consulted for detailed descriptions.

3.6.3.1 OMT Core Elements

The classes’ paradigm sheet provides object class, interaction class, attribute, and

parameter definitions for the HLA object models. These elements used to define

object class structure table, interaction class structure table, attribute table, and

parameter table which are specified in HLA OMT specification. Moreover, most

of the elements have attributes. The attributes for OMTClass, InteractionClass,

 32

OMTAttribute and Parameter model are given with their descriptions in Table 3.3,

Table 3.4, Table 3.5 and Table 3.6. The attributes for ObjectClass and Parameters

are inherited from their parents so they are not given.

Table 3.3 OMTClass Model Attributes

Attribute
Name

Definition

Sharing
Publication (“P”) / Subscription (“S”) capabilities. The valid
inputs are “P”, “S”, “PS”, “N (Netiher)”.

Definition Information about the class.
Semantics Semantics for the class.
Notes Additional user notes.

Table 3.4 InteractionClass Model Attributes

Attribute Name Definition

Order
Specifies the order of delivery. The valid inputs are
“Receive” and “TimeStamp”.

Dimension Available dimension.
Transportation Specifies the type of transportation. “HLAbestEffort” and

“HLAreliable” are valid inputs. These are provided
through IEEE default library.

Table 3.5 OMTAttribute Model Attributes

Attribute Name Definition
Datatype The datatype of the attribute.

Definition Information about the attribute or parameter.
Semantics Semantics for the attribute or parameter.
Notes Additional user notes.

 33

Table 3.6 Attribute Model Attributes

Attribute Name Definition

Dimension Available dimension.
Transportation Specifies the type of transportation.
UpdateType Policy for updating instance of the class attributes. The

valid inputs are “Static”, “Periodic”, “Conditional” &
“N/A”.

UpdateCondition Expanded and explained policies for updating an instance
of the class attribute.

DivestAcquire Indicates whether ownership of an instance of the class
attribute can be divested or acquired. The valid inputs are
“D (Divest)”, “A (Acquire)”, “N (NoTransfer)” and “DA
(DivestAcquire)”.

Sharing Same as Table 3.3 sharing description.

3.6.3.2 Synchronizations

This diagram is provided to support OMT synchronization points specified in

section 2.3.

3.6.3.3 Data types

The data types are defined as shared model and used through all models like

object class attributes, interaction class parameters, dimensions, time

representations, user-supplied tags, and synchronization points. These data types

are used in automatic code generation phase to generate data type in .NET to be

used for conversion purposes. Table 3.7 gives these data type elements with brief

descriptions.

Table 3.7 Attribute Model Attributes

Element Name Definition

DatatypeModel Abstract model stands on the top of other data types.

basicData Forms the basis of the data types, not used directly
(e.g. HLAfloat32LE, HLAinteger32BE).

simpleData Used to describe simple, scalar data items (e.g. Integer,
Float).

enumeratedData Used to describe data elements that can take on a finite
discrete set of possible values (e.g. HLAboolean).

 34

Table 3.8 Attribute Model Attributes (cont.)

Element Name Definition

arrayData Used to describe indexed homogenous collections
(e.g. HLAASCIIstring).

fixedRecordData

Used to describe heterogeneous collections of types
known as records or structures. The fields can be
defined in other types such as simple data types,
fixed records, arrays, enumerations, or variant
records (e.g. Vec3f, GPSData).

variantRecordData
Used to describe discriminated unions of types
known as variant or choice records.

A previously defined set of basic data representations, predefined simple,

enumerated and predefined array data types are defined in IEEE default library

and provided to developer to be used in creation of models. These libraries are

defined by developer and attached to the model if needed. Moreover some default

transportations for HLA is also modeled provided with HOMM.

In HOMM there is also a metamodel for Management Object Model (MOM)

which is defined in federate interface specification and provides additional

facilities for access to RTI services during federation execution. In this study,

MOM is not used, but it is left in this metamodel also as Federation Design Model

to be able to be used by developers.

In this chapter, information about HOMM that used as base for this study and

other technologies that made use in this study is described. The detail of

metamodel for this study is given in chapter 5.

 35

CHAPTER 4

.NET 2.0 TECHNOLOGY

4. CHAPTER 4

The solution proposed for HLA FIP employs Model Based approach mentioned

above and .NET 2.0 technologies. Note however, that this model-based approach,

by its very nature, does not rely on any particular implementation technology, be

it .NET or J2EE. When it comes to demonstrate the approach, however, a

particular implementation technology has to be selected and .NET 2.0 is selected.

The most important reason to choose this technology is the lack of extensive HLA

usage with .NET 2.0. There are many examples of Java usage which is very

similar to .NET technology but we encounter with very few example studies that

have been made in HLA world with .NET [57]. In addition to this, the provided

programming languages and platform independent infrastructure, wide support of

libraries, and a new programming language which let developers to use C++

programming language power with .NET 2.0 technology, C++\CLI [58], are other

important reasons for our choice.

In this chapter, brief information about .NET 2.0 and related technologies that are

employed in study are given. In the following sections .NET 2.0, programming

language and platform independency, C++\CLI, assemblies and different .NET

implementations are described.

4.1 .NET 2.0 Framework Overview

The motivation behind.NET 2.0 is providing an integrated environment for

developing and executing applications on the Internet, on desktop PCs and on

other platforms like pocket PC and smart phones easily. The .NET framework is

separated into two parts to achieve these objectives; the Framework Class Library

 36

(FCL) and the Common Language Runtime (CLR). Before describing these two,

it is better to define Common Language Infrastructure (CLI) first.

To provide a portable environment that can be hosted by any operating system the

Common Language Infrastructure is developed by Microsoft as an open

specification and also becomes an International Standard Organization (ISO)

European Computer Manufacturers Association (ECMA) ECMA-335 standard

[59] that describes the executable code and runtime environment that form the

core of the Microsoft .NET framework. This specification defines an environment

that allows multiple high-level programming languages to be used on different

platforms without being rewritten for specific architectures and in fact there exist

other implementations of CLI for various platforms and operating systems (OS) in

addition to Microsoft implementation for Windows based PC’s, such as the Mono

Project [60], DotGNU Portable .NET [61] and, .NET Compact Framework [62]. A

list of .NET compatible programming languages can be found at [63].

As stated in [64], the CLI describes a platform-independent virtual code execution

environment. The most important parts of the standard are the definition for a

Common Intermediate Language (CIL) which must be generated by CLI

compliant compilers and a type system, Common Type System (CTS) that defines

the data types supported by any compliant language. The Figure 4-1 shows the

architecture defined by CLI.

Figure 4-1 Architecture defined by CLI [64]

 37

As illustrated in Figure 4.1, the CLI defines two profiles; the minimal conforming

implementation of the CLI is called Kernel Profile, the profile that contains

additional features useful for applications targeting a more resource-rich set of

devices is called Compact Profile [65]. The details of these profiles can be found

in [65].

As mentioned above CLI also define the CTS, which is an integral part of the

CLR and provides a base set of data types for each language that runs on the .NET

platform.

There exists a more restricted specification for programming language

interoperability which is called Common Language Specification (CLS). As stated

in [64], CTS itself is not enough to make languages comply with each other, and

CLS is provided to solve this issue by providing minimal features for compilers

that targeting CLR and language interoperability.

As stated in the beginning there are two parts of .NET framework. The first part is

Framework Class Library (FCL) which is a collection of classes and other

necessary types (enumerations, structures, and interfaces) that are available to the

managed code. For more detailed information about these namespaces and classes

[66] can be consulted.

The other and more important part is CLR which is simply as stated in [67], the

virtual machine component of Microsoft .NET analogue to Java Virtual Machine

(JVM) in Java. It coordinates the entire life cycle of a .NET application like

locating code, compiling it, loading associated classes, managing its execution,

and ensuring automatic memory management and security. In addition to this, it

provides support for cross-language integration which permits code generated by

different programming languages to interact seamlessly.

Now how .NET works is described from developer perspective. Developer

develops its application in CLI compliant programming language such as C# or

C++\CLI without focusing on specific Central Processing Unit (CPU) or OS.

 38

Then a CLR compliant compiler compiles this code into managed code which is

also known as CIL or MSIL for Microsoft Compilers. It also generates metadata

to be embedded with code which contains information about the content of the

code. CIL is analogue to byte code which is the code generated by Java compilers.

This code is not an executable code, it is stored in an .EXE or .DLL file. When

related code is executed, CLR’s Just-in-Time (JIT) compiler converts this CIL

code into the code that native to the OS and CPU.

The CIL here is important in such a way that it is the key construct that meets

.NET’s programming language independency objective. Due to CIL, CLR do not

need to know the programming language that application is developed. Another

important objective of .NET is platform independency. It is achieved by use of JIT

compiler in such a way that when CIL is produced, it can be run on any other

platform that has its own .NET framework and a JIT compiler that generate

machine code specific for that platform. The Figure 4-2 shows a simple view of

how .NET framework works.

Figure 4-2 Simple view of how .NET framework works [68]

 39

This whole process like in Java comes with an overhead of JIT compilation

processes. Although it is argued that this difference is not too much, this could be

a problem for critical cases. To avoid this overhead, tools like Native Image

Generator can be used. This tool can skip the whole CIL code generation phase

and convert whole code directly into native code for specific CPU before runtime

[69] which accelerate the application with respect to normal usage.

4.2 C++\CLI

The C++\CLI is Microsoft’s new programming language that comes with .NET

2.0 which let developers to use C++ programming language power with managed

code technology. C++\CLI is also under process of being standardizes as ECMA

standard [70]. In this study C++\CLI is used for the development of

RTIDotNet1516 library. The automatically generated code is in C++\CLI as

well.

After deciding to implement the solution in .NET, it is needed to use .NET 2.0

compatible RTI software. Although there are many Java bindings for RTI, we

only came across with [57] which are developed for .NET 1.1. So it is decided to

develop a .NET 2.0 compatible RTI wrapper which means that all types, classes

and methods should be ported to .NET 2.0. Till C++\CLI, the only ways to this

use of marshalling related operations, P/Invoke or COM Interoperability related

mechanism which is not performance-effective usually, very difficult to program

and maintain. C++\CLI provides features needed to develop managed wrapper

over the legacy C++ RTI library by using C++ like syntax. There are many

features of this new programming language which can be found in [58], [68], [71].

4.3 Assemblies

As mentioned in [72] every modern execution environment has a notion of

“Software Component”, which is called assembly for this .NET based solution. In

CLR, an assembly can be an executable (“.EXE”) or a library (“.DLL”). The use

of .NET assembly is similar to managed code in such a way that the code in an

assembly is first compiled into CIL that makes up the assembly, and then

 40

compiled into machine language at runtime by CLR. For our study, we use it as a

Dynamic Link Library (DLL) which is in fact a CIL code with a manifest file that

contains information about itself and its content. Every assembly should have a

file that contains manifest which is a set of tables containing metadata that lists the

names of all files in the assembly, references to external assemblies, and

information such as name and version that identify the assembly [64].

The assembly in .NET plays three important roles. The first one is code

deployment. Independent from the kind of application, e.g. a stand-alone program,

a user interface control, or a DLL library as in our case, all CIL code is packaged

into an assembly. Second role is version control. The version information is

another field that manifest file contain in itself. The third role is security. The

access to members and types that exist in assembly can be set through modifiers

provided by programming.

.NET Assemblies are selected by means of easy deployment (e.g. simple

copy/remove commands can be used to transfer/delete them), self-informative

structure (e.g. containing version info in itself) and, most importantly for our

purposes the capabilities provided for dynamic loading of assemblies at run-time.

 41

CHAPTER 5

MODEL BASED SOLUTION TO THE FOM INDEPENDENCE
PROBLEM

5. CHAPTER 5

In this chapter a model-based solution to the FOM Independence problem (FIP) is

introduced in detail. The metamodel proposed in [10] is utilized as the basis.

HOMM is extended with the addition of new model elements, constraints and an

additional Interpreter which is described in Appendix-C. While doing this, model

based approach is used as in HOMM and applies it to FIP with employing .NET

2.0 technologies as well. A .NET 2.0 compatible RTIDotNet1516 library,

which is described in Appendix-D in detail, is developed to make developing

.NET compliant applications possible. Most importantly, the Conversion

Component that is responsible from performing necessary conversion operations

is automatically generated after the developer enters the custom conversion code

for the correspondence maps.

In this chapter, the model based solution to FOM Independence problem is

expounded with detailed descriptions. First, the details of FOM Independence

Problem is described with some common terminology that is used in this study are

described. After introducing the problem definition, the three-phased solution is

proposed with the description of example that illustrates the solution method. In

modeling phase, FOM Independence Metamodel (FIM) is explained along with

related modeling activities, then automatic code generation phase is explained

with model analysis and source code generation steps, and finally component

generation phase is described. Fourth section describes the example which is also

used to illustrate solution steps in detail with alternative usage scenarios.

 42

5.1 Problem Definition

In this section, the FIP is analyzed and some supporting definitions like

Dependency Levels are given in details.

The FIP is a common problem in HLA community. It becomes more pronounced

as HLA adoption is increased and more HLA applications are developed. As

described before, the FIP is encountered when a federate which is developed for

previously designed federation is required to be reused in newly developed

federation. Here, the mentioned reuse does not involve change in federate code. In

fact, by changing the federate application source code it can readily join into new

federation. However, this federate now can not join to previous federation because

of changes. Nevertheless change of federate code may not be possible or easy for

complex legacy federates.

A note on terminology: In HLA standard, the terms federate and federate

applications have different meaning. Yet for the sake of brevity we use “federate

code” instead of “federate application code” as no confusion can arise.

The most obvious reason for this problem to occur is that the business domain and

the concepts represented with these federations or federates might change from

one federation to another.

The most important result of this problem is necessity to change federate code and

model according to new federation and rebuilt the federate application. This might

not be an effort for small federates and federates that are not being probably

participated in more than two federations, but it could be really a big problem for

large and dynamic federates which possibly be used with more than one

federation. There could also be some cases in which federate could easily join into

new federation just by changing some configuration files or FDD file where no

recompilation or built of federate code is needed.

The FIP appears between two federations, which are designated as the Source

Federation and Target Federation. The Source Federation is the federation which

 43

contains the Source Federate, which is required to join into Target Federation as

Target Federate. Usually the Source Federation and Source Federates are

developed before and desired to be reused with the newly developed Target

Federation. The new role that Source Federate performs in this Target Federation

is stated as Target Federate. This relationship is illustrated in Figure 5-1.

Figure 5-1 Target and Source Federation/Federate relationship

The FOMs of these two federations are different, which are called the Source

FOM and Target FOM respectively. To be able to reuse Source Federate as Target

Federate in Target Federation, the developer needs to define the relationship

between the Attributes/Parameters of Source and Target federates that are

defined in their FOMs.

To draw the boundaries of the problem, we define the problem in three

dependency levels where increase in level of dependency with complexity and

difficulty causes more effort, time and cost. The Figure 5-2 depicts these three

layers.

 44

Figure 5-2 FIP Dependency Levels

• Level 1. Syntactic Differences

Syntactic Differences is the first level of dependency. This level contains the

dependency which is resulting from differences in names of HLA Object/

Interaction Classes, Attributes and Parameters which are

semantically same and in fact represented with same data structures and types for

in both Source and Target Federations. This kind of differences can easily be

solved initially by developing federate code independent from HLA

Object/Interaction Class, Attribute and Parameter names through reading FDD or

similar file if the federate make uses of these string values. Consequently, when a

federate attempts to join into a new federation where only these names change, the

source code does not needed to be recompiled or built, only the FDD or

configuration files used needed to be changed. For instance, assume that, there is a

Source Federate in which the temperature Attribute is named as “Temperature”

and defined as floating number. Now this federate wants to join to another

federation in which temperature attribute is named as “AverageTemperature”, but

it is still defined as floating number. This federate can not be used directly with

Target Federation and federate code needs to be changed and rebuilt, if this

“Temperature” Attribute name is hard coded and used in their code. But obviously

this can easily be avoided by employing some programming tricks that employ

mentioned configuration files or FDD files like reading attribute names before

using them with HLA services.

• Level 2. Syntactic and Representation Differences

The second level of dependency is caused by the Syntactic and Representational

Differences. These differences come out when the same concept that is used in

 45

one federation represented with different data types, names or representations

(units) without changing its semantics in other federation. The most obvious

difference is caused from the use of different data types for Attributes or

Parameters. For instance, in our Source Federation, “Temperature” is

represented as Celsius and defined as floating point. In Target Federation it is still

defined as Celsius but it is defined as integer. For floating point and integer case,

federate code change may not be necessary, but if it is defined as user defined type

or complex data type, the code change might be needed. The difference at this

level might also be resulted from differences in representation. For instance, in

Source Federation “Temperature” is defined as integer and represented as Celsius

and in Target Federation it is defined as user defined Real Number type and

represented as Fahrenheit. In this case, at least a conversion between Celsius and

Fahrenheit is needed in addition to data type conversions between integer and

Real Number type.

• Level 3. Semantic & Syntactic Differences

The third and most problematic level of dependency is resulting from Semantic &

Syntactic Differences These differences are mainly resulted from changes in

semantics, and parallel to this, the syntactic changes happen. At this level of

dependency, although the concepts used in different federations are related, the

semantics, representation and consequently syntax might change drastically from

Source to Target Federation. For instance, “Location” is represented as Military

Grid Reference System (MGRS) in Source Federation and in Target Federation it

is represented as floating number Latitude and Longitude. Both of these two

coordinate systems used for showing and representing locations; however their

semantics are very different from each other. In this case, federate code needed to

be changed to both handle new coordinate system and data types which might also

affect the internals of federates that depend on this coordinates system.

Nevertheless, the conversion among different kinds of coordinate systems might

need third party libraries to be involved in federate code to convert coordinate

from one to another. As it can be seen, all these cause chain affect on federate

code which make it necessary to change federate code.

 46

This study proposes a model based solution for FIP which might be occurred at

different levels as shown above. In addition to these dependency levels, developer

can always construct mappings among irrelevant Source and Target Federation

Attributes and feed necessary data to Target Federation or use incoming data

from Federation through Conversion Method mechanism. This approach can

be useful for federation that required to be fed with constant data.

5.2 Three-Phased Solution

The solution proposed for FIP employ Model Based approach mentioned in

chapter 3 and .NET 2.0 technologies in chapter 4. The scope of this study contains

four groups of federation services, Federation, Declaration, Object Management

and some of Supporting services. Moreover some of services provided more than

one service alternatives like service “UpdateAttributeValues” of Object

Management that uses Time and Data Distribution Managements are also

excluded. The complete list of implemented services can be found in Appendix B.

To solve the problem we decided to define logically separated group of steps,

phases, to make process easy to follow, so the solution is grouped into three

sequential phases which are modeling, automatic code and component generation

phases. The modeling phase contains activities like Modeling of Federation and

construction of Correspondence Model, then automatic code related with

this and federation related model is generated by developed Interpreter

software and finally the Conversion Component that will be used in Federation

Execution is generated by taking the developer-filled Conversion Method

templates.

In this section, these three phases are described in detail with accompanied

activities. In section 5.3.1, in addition to modeling phase activities, the FIM,

correspondence model verification and some constraints are explained. In section

5.3.2, the automatic code generation phase is detailed through model analyze and

source code generation sub-phases in which generated source codes and their

 47

usage is described briefly. In section 5.3.3, the usage of Conversion Methods and

generation of Conversion Component is explained.

The three-phased solution is illustrated in Figure 5-3. In this figure, important

activities that performed for each phases, inputs and outputs are illustrated. The

upper part represents modeling phase, bottom-right circle represents automatic

code generation phase and bottom-left circle represents component generation

phase. The phases that need user involvement are shown with person icon, the rest

is performed automatically.

Figure 5-3 The three phases of proposed solution and their relationship

The Figure 5-4 shows overview of software components used in this study and

their relationship with each other. In a typical HLA application only Native RTI

and federate code is used. The other parts represent software components

developed for this study. Whenever federation change is needed, only Conversion

Component is changed no source code is changed. The darker numbers represent

the path that federate initiated calls follow and the other numbers represent the

path that RTI initiated callbacks follow.

 48

Figure 5-4 Overview of software components used in this study

Before starting to next section, example used to describe technical solution is

described here. The example contains two federations; War Game, the source

federation, and Command, Control and Communication (C3) Federation, the

target federation. The War Game federation which contains Aircraft, Air Defense

System and Environment federates is Source Federation and the C3 federation

which contains Radar, Command Control, Target and Meteorology federates is

Target Federation. The federation developer wants to use her Source,

Environment and Aircraft Federates as Meteorology and Target Federate in C3

federation. The solution that solves FIP at different levels is explored in

succeeding sections. Figure 5-5 shows the high level War Game federation design

model.

Figure 5-5 The War Game Federation Design top level model

 49

5.2.1 Modeling Phase

The modeling phase covers Modeling of Federations, Correspondence

Models and verification of Correspondence Models. The

Correspondence Model is simply model representation of mapping from

Source FOM Attributes/Parameters to Target FOM

Attributes/Parameters which are modeled according to FIM. Theses

mappings are created among two or more Attributes/Parameters

according to semantics of Attributes/Parameters. The collections of all

these Correspondence Models make up Adaptation Model. One

Adaptation Model is created for each new federation.

In this thesis, nothing is done related with Modeling of Federations which is

already made in HOMM, but new constructs are added. As a result of using

HOMM, developer can also model her Federations through the modeling

environment provided by GME that uses FIM. Moreover, developer can bring and

import her already modeled federations into FOM modeling environment and start

to construct Correspondence Models. She can also model either Source or

Target Federations or both of them from scratch and then construct

Correspondence Models. The steps necessary to import HOMM

compatible models are described in Appendix A.

The studies related with FIP are either providing a table or list based mapping,

which is not very intuitive and flexible. A significant attention is paid on the

mechanism that is used for building relationship among Attributes

/Parameters to make is easy but also simple to describe. We provide a simple

mapping mechanism to create Correspondence Model through our FIM

based modeling environment. Different from previous approaches, the mappings

are models and they called Correspondence Model in our approach. This is

not only easy, but also very intuitive to use in which you just decide on attributes

and then by using mouse create a relation/mapping between them. The most

important factor lies behind this easiness and flexibility is the modeling

 50

environment which is based on FIM. The next section explains FIM through

additions that we have made to HOMM and then mechanism employed to verify

Correspondence Model and constraints that defined in FIM are described.

5.2.1.1 FOM Independence Metamodel (FIM)

As mentioned before, FIM is based on HOMM which is described in section 3.6.

To be able to construct Correspondence Model and make use of HOMM,

some additions have been made to original HOMM as described below, these

additions are made to OMT Core folder and Object Model paradigm.

o AttributeConverter Atom

The AttributeConverter Atom (for definition of Atom section 3.5 can be

consulted) is defined under HOMM’s Classes paradigm sheet of OMT Core

Elements. It is used to construct correspondence among Attributes owned by

Object Classes defined in FOM. To build correspondence, developer

decides on related Attributes for Source and Target FOM which will be

inputs and outputs to AttributeConverter respectively. The each input to

this AttributeConverter comes from Attributes of Source FOM and

they can be from one or more Object Classes. The each output is provided

to Attributes of Target FOM and they can also be from one or more Object

Classes. Each AttributeConverter need at least one input and one

output from Attributes. The metamodel portion that illustrates this atom and

its relationship with other metamodel elements is shown in Figure 5-6.

 51

Figure 5-6 AttributeConverter Atom & other related metamodel elements

AttributeConverter Atom Attributes:

• Execution Mechanism: The execution mechanism of Attribute-

Converter can be one of Publish/Subscribe Directed or Bi-directional

mechanisms. According to this choice, the Conversion Method templates are

generated in next phase. Conversion Method is used to define the conversion

logic among the mappings constructed above. The number of templates is

determined at modeling phase according to chosen Execution Mechanism.

When Publish Directed is chosen, the RTI Ambassador Services that are called

with the attributes come from Source Federates are interfered and these attributes

are fed into developer defined Conversion Methods, processed at runtime

and then sent through RTI Ambassador services to interested federates

automatically. The Target Federation originated calls that goes to source federate

through Federate Ambassador are not fed into Conversion Methods and also

not provided to source federate to prevent any unexpected behavior. For this

option only one Conversion Method Template, “[AttributeConverter-

Name]PublishDirectedFunc” is generated.

The Subscribe Directed mechanism is similar but applied for opposite direction. In

other words, Target Federate originated calls that comes to Source Federate

through Federate Ambassador callbacks are interfered and these are fed into

 52

developer defined Conversion Methods, processed at runtime and then

converted attributes are provided to Source Federate through Federate

Ambassador callback functions automatically. Similar to previous option, one

Conversion Method Template is generated, “[AttributeConverterName]-

SubscribeDirectedFunc”.

The Bidirectional Mechanism interferes with all services without considering

where it originated from and fed Attributes into related developer defined

Conversion Methods and then passes converted values. Although the

Bidirectional Mechanism is ideal for FIP, the other options are also added for sake

of completeness. The both of Conversion Method Templates are generated

for this option.

• Definition: This attribute contain information about this Atom.

• Semantics: Semantics for AttributeConverter can be given.

• Notes: Additional notes related with AttributeConverter.

The Figure 5-7 shows an example usage of AttributeConverter in which a

mapping between two Attributes that represent temperature from

Environment and Meteorology Federates are constructed.

Figure 5-7 An example usage of AttributeConverter

o AttributeReference Reference

The AttributeReference Reference (for definition of Reference section 3.5 can be

consulted) is defined under HOMM’s Classes paradigm sheet of OMT Core

Elements. This item is created to make it possible to use an Attribute in other

models than it originally defined. Usually, Attributes that will be used for

mapping are stay in different places and they need to be brought together to relate

 53

them with each other. An AttributeReference can be used and behave as if it is

original Attribute. The only thing that is needed to use AttributeReference is

dragging the original Attribute item onto AttributeReference. The developer can

go to the model where original Attribute stay by clicking on corresponding

AttributeReference. Figure 5-7 shows an example usage of AttributeReference

where it is used to refer Temperature Attribute as TemperatureInFahrenheit.

AttributeReference can be named differently from the Attribute it refers, the

default name is set as AttributeReference and its default shape can be seen in

Figure 5-7. The relationship of AttributeReference with Attribute-

Converter is illustrated in Figure 5-6.

o InputAttributeConnection & OutputAttributeConnection Connections

The InputAttributeConnection & OutputAttributeConnection Connections are

defined under HOMM’s Classes paradigm sheet of OMT Core Elements. These

items are created to connect AttributeConverter with Attributes and

AttributeReferences. These are defined separately to make inputs and outputs of

AttributeConverter distinct and also the names of arguments of

Conversion Methods are generated according to names of these connections.

These two types of connections are shown in different colors and direction of

arrows; InputAttributeConnections which connect source Attributes or

AttributeReferences to AttributeConverter are shown in green and

OutputAttributeConnections which connect AttributeConverter to Target

Attributes or AttributeReferences are shown in Red. The Figure 5-7 shows

these two kinds of connections where arguments names of generated method

templates will be “iArg” and “oArg”.

While creating connections, the kind of connection that developer made is

determined according to order of item selection. For instance, if developer first

clicks on an Attribute and then clicks on AttributeConverter it is

determined as InputAttributeConnection and OutputAttributeConnection if she

selects in reverse order.

 54

The possible connection combinations are defined in FIM as shown in Figure 5-6

which only permits to use these connections among AttributeConverters,

Attributes and AttributeReferences. An attempt to connect an Attribute-

Converter with itself or any inappropriate combination is prohibited by

constraints defined.

o ParameterConverter Atom

The ParameterConverter Atom is defined under HOMM’s Classes

paradigm sheet of OMT Core Elements. It is used like AttributeConverter,

but defined to construct correspondence among Parameters owned by

Interaction Classes. All attributes of AttributeConverter are also

created for ParameterConverter. The metamodel portion that illustrates this

atom and its relationship with other metamodel elements is shown in Figure 5-8.

Figure 5-8 ParameterConverter Atom&other related metamodel elements

o ParameterReference Reference

The ParameterReference Reference is defined under HOMM’s Classes paradigm

sheet of OMT Core Elements. It is created for same purpose with

AttributeReference, but specifically for Parameters.

 55

o InputParameterConnection & OutputParameterConnection Connections

The InputParameterConnection & OutputParameterConnection Connections are

defined under HOMM’s Classes paradigm sheet of OMT Core Elements. These

items are created for same purpose with InputAttributeConnection and

OutputAttributeConnection, but specifically for Parameters.

o SynchronizationPointMapper Atom

The SynchronizationPointMapper Atom is defined under HOMM’s

Synchronizations paradigm sheet of OMT Core Elements. The Synchronization

Points are stated as strings and provided to RTI. The Synchronization-

PointMapper accepts Synchronization Points from Source and Target

Federation as input and output respectively. Its usage is similar to

AttributeConverter and ParameterConverter, but Synch-

ronizationPointMapper do not accept more than one incoming or outgoing

connections. The Figure 5-9 shows related paradigm sheet with

SynchronizationPointMapper and its relationship with other elements;

Figure 5-9 Synchronizations paradigm sheet

 56

SynchronizationMapper Atom Attributes:

• Semantics: Semantics for SynchronizationMapper if needed can be given.

• Notes: Additional notes related with SynchronizationMapper.

The Figure 5-10 shows an example usage of SynchronizationPoint-

Mapper in which an example mapping between two Synchronization Points that

represent start event are constructed.

Figure 5-10 An example usage of SynchronizationPointMapper

o IncomingSyncConnection & OutgoingSyncConnection Connections

The IncomingSyncConnection & OutgoingSyncConnection Connections (are

defined under HOMM’s Synchronizations paradigm sheet of OMT Core

Elements. These items are created to connect Synchronization-

PointMapper with Synchronization, SynchronizationNA and Synchronization-

NAReference. These two types of connections are shown in different colors and

direction of arrows; IncomingSyncConnection which connect source

Synchronization to SynchronizationPointMapper are shown in green and

OutgoingSyncConnection which connect SynchronizationPointMapper

to destination are shown in Red.

The possible connection combinations are defined in FIM as illustrated in Figure

5-9 which only permits to use these connections among Synchronization-

PointMapper and Synchronization or SynchronizationNA or Synchronization-

NAReference.

 57

5.2.1.2 Mapping Formations

The one important issue encountered in modeling phase is how Attributes

and Parameters can be mapped during modeling phase and performs necessary

conversions during runtime according to this Correspondence Model. When

possible scenarios are analyzed according to no of different Object

Classes/Interactions that owns Attributes/Parameters involved in

mapping, four different formations are realized. These are one-to-one, many-to-

one, one-to-many and many-to-many mappings. The factor that used to determine

the corresponding mapping formation is the number of the different Object

Classes and Interactions that provide Attributes/Parameters to

AttributeConverter/ParameterConverter. The Interaction

Classes are usually used like events in HLA Federations so the mappings other

than one-to-one are not common like Object Classes so the other mapping

formations are not given in detail here.

o One-to-one Mapping

The one-to-one mapping simply processes the one Object/Interaction

Class owned one or more Attributes/Parameters that come from Source

Federate and generate similar RTI calls to Target Federation with corresponding

Attributes/Parameters and vice versa for calls originated from Target

Federation to Source Federate. At first glance, it may seem that all possible FIPs

can be solved by using this one-to-one mapping mechanism but there also exist

many other situations where data representation or concepts are distributed among

many Object Classes in one federation and differently in other federations

which make it necessary to handle the other mapping cases. The mappings shown

in Figure 5-7 is an example of one-to-one formation.

o One-to-many and Many-to-one Mapping

In one-to-many case the converters process the one Object Class owned one

or more Attributes that come from Source Federate and generate multiple

RTI Ambassador service calls for each different Object Class with

 58

corresponding Attributes in Target Federation. When necessary services are

executed in Target Federation which is usually more than one, there will be only

one Federate Ambassador callback for Object Class owned Attributes in

Source Federate.

Many-to-one mapping is similar to one-to-many case, but in this case Source

Federate makes multiple RTI Ambassador service calls and only one Federate

Ambassador callback is generated for Target Federation.

o Many-to-many Mapping

The most complicated case is many-to-many mapping. In this case, all source

federation originated RTI Ambassador calls (e.g. Publish, Subscribe, Update,

Send, etc) should be handled according to Correspondence Model for each

Attribute. The Target Federation originated Federate Ambassador calls (e.g.

Discovery, Receive, Reflect, etc should be handled similarly. The all information

necessary for this RTI Ambassador and Federate Ambassador service calls are

obtained from the models constructed. What and how all these generated are

explained in the next title.

Many-to-many mapping case, in fact, contains the other mapping mechanisms in

itself, so in following lines, how HLA services handled according to many-to-

many mapping case is described by using War Game and C3 federations with

CoordinateConverter mapping that given in Figure 5-11.

 59

Figure 5-11 CoordinateConverter mapping

First group of services which belongs to Object and Declaration Management are

the most important and frequently used services that need to be handled for FIP,

so they are given in detail. The rest of the interfered services are described briefly

under the service groups they belong.

[Publish|Unpublish]ObjectClassAttributes & [Subscribe|Unsubscribe]Object-

ClassAttributes Services:

These four services are belonging to Declaration Management and their

corresponding service numbers are 5.2, 5.3, 5.6 and 5.7. In many-to-many

formation, developer map more than one Object Class owned Attributes

from Source Federate, so it is assumed that the code necessary to publish and

subscribe all these attributes already exist in source federate code. In other words,

the Attributes provided by Source Federate to Target Federation are being

published or subscribed, the order of these service calls is not important.

When necessary publish or subscribe services to all these Attributes that

owned by Source Federate are called then necessary publish and subscribe RTI

Ambassador calls for corresponding Attributes as Target Federate will be

 60

made automatically. As stated above, the calls for Target Federation will not be

called till all Source Federate Attributes subscribed or published.

The case for unpublish and unsubscribe services is different. If a Source Federate

calls unpublish or unsubscribe services for any one of Attributes it published

or subscribed, than unpublish or unsubscribe services will be called for all

corresponding Target Federate Attributes. Publish or subscribe calls for

Target Federation will not be generated till all Source Federate Attributes are

published or subscribed as stated above. This is done on purpose; because it is

assumed that the user-defined Conversion Method will need all these

Attributes to perform necessary conversions for publish directed execution

mechanism.

The information like which Source Federate owned Attributes are used as

input for a AttributeConverter, their Object Classes and all other

necessary data for all these services executions and control are automatically

generated before run-time in automatic code generation phase.

A probable scenario of PublishObjectClassAttributes/UnpublishObjectClass-

Attributes for CoordinateConverter is given in Figure 5-12.

Figure 5-12 Publish/Unpublish services scenario with many-to-many formation

Native RTI

Publish Compass Object Class Attr.

Aircraft Federate

Publish GPS Object Class

Publish Compass Object Class Attr.

RTIDotNet1516 with
FOMConverter Library

Publish Coordinate Object Class Attr.

No Target Federation RTI
Publish calls made till here.

Unpublish GPS Object Class
Unpublish Compass Object Class Attr.

Unpublish Coordinate Object Class Attr. Unpublish service called automatically
for each of Object Class Attr. published
for Target Federation.

 61

The scenario for Subscribe and Unsubscribe services are similar.

RegisterObjectInstance & DiscoverObjectInstance Services:

These two services are belonging to Object Management and their corresponding

service numbers are 6.4 and 6.5. The register RTI Ambassador service is called by

Source Federate to register Object Class Instances of previously

published Object Classes and other one is initiated by Federate Ambassador

to inform Source Federate that a new Object Class Instance of

previously subscribed Object Class is discovered.

For one-to-one formation case, when a Source Federate registers an Object

Class Instance the same call for corresponding instance in Target

Federation is called automatically. For many-to-many case, we follow similar

approach as we did in Publish/Subscribe services where we wait for Source

Federate to register Object Instances for all Object Classes it

published and then make necessary register Object Instance calls to Target

Federation for each set of Object Classes in it. Assume that we have two

Object Classes that provide Attributes as input to Attribute-

Converter and three Object Classes of whom Attributes used by

Target Federation. Whenever Source Federate registers two Object

Instances, three Object Instances will be registered for Target

Federation automatically.

Similar approach is pursued for DiscoverObjectInstance in such a way that the

wait will be done for Federate Ambassador initiated DiscoverObject callbacks till

Target Federation register all Object Instances that Source Federate

subscribed before and then Source Federate will be informed through Federate

Ambassador callbacks. A probable scenario for these two services is shown in

Figure 5-13 using CoordinateConverter mapping.

 62

Figure 5-13 Register/Discover services scenario with many-to-many formation

UpdateAttributeValues & ReflectAttributeValues Services:

These two services are belonging to Object Management and their corresponding

service numbers are 6.6 and 6.7. These are the key services in FIP that commonly

used in HLA applications. These are also the services that make use of user-

defined Conversion Methods. These services are called and applied for each

Object Instances that are registered or subscribed as mentioned above.

These calls will be discarded if all necessary Object Instances are not

registered by Source or Target Federate to prevent any anomalies.

The application of Conversion Methods to one-to-one formation is straight-

forward for these services in such a way that when an update or reflect service is

initiated, the corresponding Conversion Method will be called for given

instance. The situation is a little bit different for many-to-many formations. The

most crucial point of using these services with many-to-many mapping is the time

when user-defined Conversion Methods will be called, i.e., should we call

conversion method for each new set of Object Instance Attribute values or should

we call Conversion Methods whenever one of Attribute value is updated? In

this study we employ second approach by allowing this update after all related

Register DetailedTargetInfo Object Instance

Aircraft
Federate

Register GPS Object Instance

Register Compass Object Instance

RTIDotNet1516 with
FOMConverter Library

Register Coordinate Object Instance

No RTI Register calls done for
Target Federation till here

Discovery services called automatically
for each of Object Class Attr. Registered
by Source Federate

Native RTI

Register DetailedTargetInfo Object Instance

Register Coordinate Object Instance

GPS Object Instance Discovered

Compass Object Instance Discovered

 63

Attributes updated their values once, and then the Conversion Methods

are triggered with each UpdateAttributeValues call and corresponding service

calls done automatically with each of these calls. We choose this approach,

because HLA permit us to use these two services with only one Object Instance’s

attributes update for each call (i.e. you cannot update two object instance

attributes in one call, you need to make two distinct calls) and also the first

approach might cause inconsistencies and long waits if Attributes are not

updated at regular periods.

Another approach considered but not chosen is use of counters for each Attribute

in such a way that counters are increased with each update and the Conversion

Method will be triggered when certain counter values are reached. Although

these counter values might be determined according to update period of each

corresponding Attribute, it can be very difficult to find correct values and

combination for each Attributes owned by Object Classes. Each Object

Instance and corresponding Attribute Values is kept and Conversion

Methods are called with related Object Instance’s values.

ReflectAttributeValues service call works similarly, just in the opposite direction

and triggered with Federate Ambassador ReflectAttributeValues.

A probable scenario of UpdateAttributeValues service for CoordinateConverter is

shown in Figure 5-14.

 64

Figure 5-14 Update service scenario with many-to-many formation

SendInteraction & ReceiveInteraction Services:

These two services are belonging to Object Management and their corresponding

service numbers are 6.8 and 6.9. These are other two important services that make

use of user-defined Conversion Methods. The Conversion Methods

are called in a similar way to update and reflect services, but different from

Object Classes, Interactions do not have an instance so when these

Conversion Methods should be called is not a problem. The necessary

Conversion Methods will be called when developer publishes or subscribes

to all necessary Parameters like in Attributes.

Federation Management Services:

This group of services is not affected from the kind of mapping formations, but

there are still issues that need to be interfered. There are two kinds of interferences

with these RTI Ambassador calls.

The first kind of the interference is usually done to string values that represent

some arguments like “Federation Execution Name”, “FDD File Path”. When a

Source Federate, which uses a different FDD file from Target Federation, initiates

a CreateFederationExecution service to create Target Federation, the Federation

Update DetailedTargetInfo Object Instance
with converted Attr. Values

Aircraft Federate

Update GPS Object Instance Attributes

Update Compass Object Instance

RTIDotNet1516 with
FOMConverter Library

Update Coordinate Object Instance with
converter Attr. values

No RTI Update calls for Target
Federation done till here

Hereafter RTI Update calls for Target
Federation will be triggered with any
related Source Federate Update calls

Native RTI

Update Compass Object Instance Update DetailedTargetInfo Object Instance
with converted Attr. values

Update Coordinate Object Instance with
converted Attr. values

 65

Name and FDD file path are automatically provided with additional RTI call. This

approach is also used for other similar services like DestroyFederationExecution

and JoinFederationExecution. A probable scenario of CreateFederationExecution

service for CoordinateConverter is shown in Figure 5-15.

Figure 5-15 A scenario for Create service

The second kind of the interference is done for synchronization point related RTI

services like RegisterFederationSynchronizationPoint. After developer defines the

mapping points among Source and Target Federation, whenever a service uses this

mapping is called, the other member of mapping which defined as string is

provided to Source or Target Federate with additional corresponding RTI call.

Object Management Services:

The approach employed for these services belong to this group is explained above

in detailed. The approach for other services in this group is similar. For instance,

consider ChangeAttributeTransportationType service when developer calls this

service all AttributeConverters are checked whether they use any of

Attributes given with this service call. If they contain, then this service is

called for all corresponding Attributes belongs to Target Federation.

Similarly, when Target Federation initiated a ProvideAttributeValueUpdate

service call, all related Source Federates are informed through Federate

Ambassador ProvideAttributeValueUpdate callbacks.

Create “C3” Federation with “C3.xml” FDD
file.

Create “WarGame” Federation with
“WarGame.xml” FDD file.

RTIDotNet1516 with
FOMConverter Library

Native RTI Aircraft Federate

 66

RTI Support Services:

As mentioned in section 2.3, only some services of this group are handled in this

study like GetObjectClassHandle or GetAttributeName. This kind of services are

usually called by federate code to identify or request the information that RTI

implementation assigned for Object Classes and Instances,

Interactions, Attributes and Parameters. To be able to behave like

Target Federate in Target Federation, the Source Federate should be supplied with

this information which is different from the values hold by RTI because of

different FDD files and FOMs. To solve this, FOMConverter library behave

like RTI and assign unique identifiers to all necessary elements. This assignment

is not performed at execution time because of performance considerations, so

these are determined at automatic code generation phase and loaded to memory

with start of Federation Execution. Whenever Source Federate calls any of

services belongs to this group, the predetermined values are returned. These

predetermined values are also used to hash Source and corresponding Target

Federate Attributes and Parameters.

5.2.1.3 Model Verification and Constraints

The other important issue in modeling phase is the Model Verification. The most

important purpose of this verification process is to prevent developer to construct

an inappropriate or potentially problematic Correspondence Models. The

verification of this model can be performed using the infrastructure provided by

GME or it can be verified programmatically when developer complete modeling.

In our study, both of these approaches are employed.

While developing the metamodel, GME allows developer to define constraints

and relate them with metamodel elements to be used in modeling. The constraints

are defined with a OCL like language. There are many default options for defining

constraints and events that will trigger the check of these constraints. For instance,

developer can define a constraint which will be checked when developer saves her

model or immediately after the model element is inserted. For details of constraint

creation in GME, [55] can be consulted. An example constraint that we define for

 67

AttributeConverter and ParameterConverter is “HasAtLeastOneOut

goingArgument”. This constraint controls whether created AttributeConverters or

ParameterConverters have at least one outgoing connection to Attributes or

Parameters when model closed. The equations, constraints definitions, are

like;

 “self.attachingConnections(OutputAttributeConnection) -> size >= 1”
 “self.attachingConnections(OutputParameterConnection) -> size >= 1”

The other constraints defined for AttributeConverter and Parameter-

Converter are;

• “HasAtLeastOneInputArgument”, which make same control for input

connections. The equations for this constraints are;

“self.attachingConnections(InputAttributeConnection) -> size >= 1”
“self.attachingConnections(InputParameterConnection) -> size >= 1”

• “UniqueConverterNamecontrols”, which controls Attribute-

Converter and ParameterConverter names for uniqueness. The

equations for this constraints are;

“project.isNameUnique(self.name, AttributeConverter)”
“project.isNameUnique(self.name, ParameterConverter)”

The Figure 5-16 shows FIM a portion related with these constraints.

Figure 5-16 Constraints defined for FIM

 68

There is also a verification step in the beginning of automatic code generation

phase which is done programmatically by Interpreter software. When

developer commits her model, it is being checked by walking on models

constructed and informs developer about the issues detected. The one verification

made at this step is the recursive connections among converters and

Attributes or Parameters. The developer might define both input and

output connections among same converter and Attribute which is not legal, so

developer is warned about this problem. The control of connections that made

from one Attribute or Parameter to multiple converters and connections

that made from different converters to same Attribute or Parameter is also

made at this step. The final control is made for uniqueness of connection names.

As stated in previous section, the names of connections are used in Conversion

Method templates as argument names so they should be unique to prevent

compilations errors in component generation phase.

5.2.2 Automatic Code Generation Phase

The next phase that comes after modeling phase is automatic code generation

phase. This phase is responsible from gathering necessary information from

models constructed and automatically generates source codes for conversion

components. Automatic code generation and next phase are mostly controlled by

model Interpreter software developed and no modeling activity is necessary.

This phase is started after developer complete construction of

Correspondence Model. Then she executes the program that is responsible

from the activities performed in this phase which called Interpreter [55]. The

Interpreter is an add-in software that can be integrated into GME modeling

environment through plug-in mechanism provided. It is provided to developer

through a graphical user interface like button component, click of which starts the

execution of Interpreter and consequently this phase. The programmatic and

other technical details of this software is given in Appendix C, here its capabilities

in the scope of automatic code generation is described.

 69

5.2.2.1 Model Analyze Sub-phase

Code generation from a PSM typically employs transformations that contain rules

about these transformations, e.g. produce a class for each item in model with its

corresponding name. Some studies like [41] illustrate some of these patterns like

Templates + Filtering, Templates + Metamodel, Code Attributes and API Based

Generation. Details of these and other patterns and their comparison can be found

in [41]. In this study, API Based Generation is employed. In this pattern, an API

which is based on a specific metamodel and target language is provided to write

applications to be used in generation of source code. In this study, we employ a

very similar approach to API-based pattern, but it does not restrict us to a specific

target programming language which is the case for API-Based Generation pattern.

This approached is used for this study through the API provided by GME. The

classes and methods provided by this API are used to gather information from

models. Additional code is written to generates source code in a brute force way,

i.e. the code is generated using methods and constructs provided by I/O libraries

like “fstream.h”.

The GME provides three APIs. These are Builder Object Network (BON) version

1.0 and 2.0, and Meta Object Network (MON). In this study, BON2 which defined

as a three-layered architecture is used because of its easy and comprehensive

programming interface. These three layers are described briefly in Table 5.1.

Table 5.1 Three layers defined by BON2 [55]

Layers Layer Description
Layer 0 (COM Layer) Programmable interface of GME which is the

lowest level.
Layer 1.a (Implementation
Layer)

The core of BON2 which contains COM
operations.

Layer 1.b (Interface Layer) This sub-layer contains classes and operations
which are exposed to the user.

Layer 2 (Wrapper Layer) This layer contains the high level wrappers
which handles the objects’ references.

The BON 2 is based on MON and in fact, it depends tightly to the classes defined

in it. The provided BON 2 interface is in C++ programming language.

 70

5.2.2.2 Source Code Generation Sub-phase

The automatically generated code at this phase is based on .NET 2.0 technologies

which described in chapter 4. The Interpreter generates code in C++\CLI

programming language as distributed in more than seven files. The brief

descriptions about these files are given below. The detailed descriptions and

snapshots can be found in Appendix E.

o “ConverterLib.h”

This header file contains data type declarations about Attributes and

Parameters.

o ConverterLib.cpp

This file contains the empty body blocks of Conversion Methods whose

prototypes are generated in “ConverterLib.h” file.

o ConverterTypeLib.cpp

This file contains implementation of data type support methods whose

declarations are generated in “ConverterLib.h”.

o FOMConverterMgr.cpp

This file contains the implementation of FOMConveterMgr methods like class

constructor and internal service processing methods.

o AttributeConverterIDs.h, ParameterConverterIDs.h

These files contain identifiers that assigned to each of AttributeConverter

and InteractionConverter created in modeling phase for internal

purposes.

o ConverterLibCommon.h, ConverterLibCommon.cpp

These files contain supporting function declaration and implementations for

developer to convert given byte array to Simple Data Types.

 71

5.2.3 Component Generation Phase

The final phase that comes after automatic code generation phase is component

generation phase. This phase is about generation of Conversion Component

from automatically generated codes in previous phase. This component is used for

conversions and handling of RTI services during federation execution. Two

important steps exist in this phase, the first one covers filling of Conversion

Method Templates by developer and the second one is about generation of

Conversion Component. As stated in section 4.3, .NET 2.0 assemblies are

chosen to define libraries in our study. There are two important assemblies,

developed and used in our study. The first one is RTIDotNet1516 library and

described in Appendix D and the other one is Conversion Component as

FOMConverter library which is described in this section.

The one critical point in FIP is how, where and when we should define the

relationship among Attributes and Parameters for Source and Target

Federation. The answer for how question is in fact answered in previous sections

where we choose to provide developer Conversion Method templates to be

filled by her in any .NET compatible programming language rather than a table or

specific language which provides a great flexibility. These templates are generated

automatically in automatic code generation phase and filled in this phase.

These Conversion Methods are created and embedded into Conversion

Component not into RTI or any other files. Such approach not only prevents

any unnecessary dependency for federates which do not use these Conversion

Methods or related capabilities, but also an easy way of deployment through

these assemblies to use with similar federates. For instance, if these

Conversion Methods are placed into RTI, or in our case RTIDotNet1516,

then whenever a conversion operation changes, this library should be compiled

and rebuilt which obviously not only affect all federates uses this library but also

the federates that uses this RTI library but not Conversion Methods. This

also concludes our answer for where question.

 72

The final and most important question is when to define these Conversion

Methods. We decided to let developer define these methods after all modeling

and automatic code generation related activities are finished. It is also possible to

provide a mechanism which let developer define conversion method itself in

modeling phase. Although it is not a problem for small or straightforward

conversion operations, it could be very limiting and not flexible to define more

complex conversion operations which might also need to make use of other third

party libraries. The other reason to leave this definition operation to end is to

minimize and, if possible, prevent any redundant effort. For instance, if it was

embedded into modeling phase whenever developer need to change the

conversion operation whole model need to be re-analyzed, even no change is

made to model, and the code related with model should be regenerated. However,

in our case developer can change a conversion method and only thing she need to

do is regenerate Conversion Component which can also be replaced with

previous one without terminating ongoing Federation Execution.

The first step in this phase is the filling or development of Conversion

Method templates generated in previous phase. These templates are generated in

“ConverterLib.cpp” file with their input and output arguments, only the body of

function is needed to be filled. The arguments names are given according to

connection names given in modeling phase. These methods are generated

according to AttributeConverter, ParameterConverter and other

modeling elements connected with these converters. The number of these methods

are depends on the attribute value selected provided in these converters which is

named as “ExecutionMechanism”. The execution mechanism of Attribute-

Converter and ParameterConverter can be Publish/Subscribe Directed or

Bidirectional mechanisms. If developer selects either one of Publish or Subscribe

Directed mechanism only one Conversion Method template is generated

according to choice. If bidirectional mechanism is selected, two Conversion

Methods are generated. The developer should fill both of these methods;

otherwise unexpected or inappropriate behavior might be observed.

 73

The default programming language that should be used for filling Conversion

Method is the language chosen for automatic code generation which is C++\CLI

for our study, but developer can use other programming languages in three other

ways. In first way, developer can define a whole new set of transformations to

generate source code with given programming language by modifying

Interpreter software and then put her conversion code into newly generated

Conversion Method template. The developer can also develop her

conversion logic in other programming language which might be a non-.NET

compatible language, then embed this code into a .NET assembly and use it

directly in generated code through newly introduced C++\CLI “include”

mechanism which let developer to include external assemblies by writing

“#include <userDefinedAssembly.dll>” at the beginning of file [12]. In the third

way, user can inherit Conversion Methods from the classes generated for

Conversion Component from any .NET compatible programming language.

While developing the Conversion Methods, there are some points that

should be taken into consideration. First of all, if Conversion Method will

be used only for mapping like situations mentioned in first level of dependency,

the developer only need to assign incoming argument to outgoing argument for

publish directed calls and vice versa for subscribe directed calls. The other issue is

about multidimensional arrays. The corresponding size of each dimension of array

is not known previously in modeling phase so some methods’ source code could

not be generated. If such case is encountered in automatic code generation phase,

generator put arbitrary identifiers like “PleaseEnterSizeOfArray” to these places

which cause errors in compilation. The developer needs to fill these places by

hand manually. This is also necessary for GetBytes, SetBytes and GetSize

methods for these multidimensional arrays. The developer also should allocate

necessary memory for outgoing arguments which can cause errors otherwise

during federation execution. The developer is responsible from all exception and

error handling for Conversion Methods.

 74

As mentioned before, some third party libraries might be needed for

Conversion Methods and they can easily be used by including them directly

into this library by following approaches mentioned above for different

programming languages. The developer can also customize these automatically

generated files or methods according to her requirements as long as complies with

the provided interface.

While filling these Conversion Methods, developer can feed any output

arguments directly without using input arguments which might be very useful for

unrelated attributes that are necessary to be supplied for Target Federation.

The second step in this phase is the generation of Conversion Component.

The generation of this library is nothing but a build process. The interpreter

provide makefiles to developer to built this assembly but developer can also built

this Conversion Component by using her tools like Visual Studio .NET 2005 with

generated Visual Studio files..

The developer can use Conversion Component with its default name

“FOMConverterLibrary.dll” which is recognized by RTIDotNet1516 library if

it is located in same directory. She can also change its name as long as it is given

to RTIambassador through configuration arguments as shown in Figure 5.17.

A note on code snapshots: The italic texts in code snapshots are filled by

developer and the other parts are generated automatically.

Figure 5-17 Snapshot for Configuration Arguments

array<String^>^ args = gcnew array<String^>(4);
args[0] = "crcHost = " + CRCHostAddress->Text;
args[1] = "crcPort = " + CRCHostPort->Text;

/// Define custom converter library name
args[2] = "converterLibrary = UserDefinedConverterLibrary";

/// Define custom converter library path
args[3] = "converterLibraryPath = ./";

/// Create a rti ambassador
mRTIAmbassador=rtiAmbassadorFactory->CreateRTIAmbassador(args);

 75

Once this library is generated, only thing left to developer is placing this

Conversion Component to federate application executables folder. This

component can only be used by Source Federates, but necessary precautions are

taken by RTIDotNet1516 library and it is discarded even though it is placed into

Target Federate’s working directory. The developer can make use of these

components without stopping federation execution by reloading them and she can

also use more than one library within same federate application to be a member of

different federations simultaneously. Moreover, one library can be used more than

one Source Federates of same federation.

5.3 Case Study

To illustrate the method proposed in this thesis, four federates are considered in

two federations and then developed. The federations are War Game which

contains Environment and Aircraft federates, and C3 which contains Meteorology

and Target federates. The Environment and Aircraft federates are already

developed and required to be used in C3 federation, so necessary

Correspondence Models among War Game and C3 federations should be

constructed. The classes and attribute names are chosen in such a way that it make

easy to see the related attributes among different federates with similar semantics.

Moreover, no additional programming is devoted for the parts that are not related

with the study like three-dimensional visualization or unrelated HLA services. All

necessary models like SOMs, FOMs and data types used in this example are

developed using FIM.

The Target Federation is C3 federation and the Source Federation is War Game

federation. The setup of these federates and their relationship with each other is

given in Figure 5-18.

 76

Figure 5-18 War Game Federation, C3 Federation, their members and their
relationship with each other

In this section, mostly the related Object Classes are given as example

which in fact covers all mentioned capabilities in the thesis. Each federate is

described separately with owner federation. The related Correspondence

Models of War Game & C3 Adaptation Model constructed for

Environment and Meteorology federate are shown in Figure 5-19.

Figure 5-19 Correspondence Models constructed for Environment &

Meteorology Federates

 77

The filled Conversion Method for TemperatureConverter is given in Figure

5-20. This converter converts temperature values to each other which are defined

in Celsius for one federate and in Fahrenheit for other federate.

Figure 5-20 Conversion Method for TemperatureConverter

The filled Conversion Method for WindDirectionConverter is given in

Figure 5-21 and Figure 5-22. This converter multiplies or divides Wind Direction

values to 10 according to direction of call.

Figure 5-21 Publish Directed Conversion Method for

WindDirectionConverter

/// Conversion method used for publish directed Calls
void FOMConverterMgr::TemperatureConverterPublishDirectedFunc(

Float% InputAttributeConnection,
 Float% OutputAttributeConnection)
{ /// Write your conversion code here
 OutputAttributeConnection = InputAttributeConnection*1.8f +

32 ;
}
/// Conversion method used for subscribe directed Calls
Void FOMConverterMgr::TemperatureConverterSubscribeDirectedFunc(

Float% OutputAttributeConnection,
 Float% InputAttributeConnection)
{
 /// Write your conversion code here
 InputAttributeConnection = (OutputAttributeConnection - 32)

/ 1.8f;
}

/// Conversion method used for publish directed Calls
void FOMConverterMgr::WindDirectionConverterPublishDirectedFunc(

FloatArray3f % InputAttributeConnection,
 Vec3f% OutputAttributeConnection)
{

/// Write your conversion code here
 OutputAttributeConnection.X = InputAttributeConnection[0] *

10.0f;
 OutputAttributeConnection.Y = InputAttributeConnection[1] *

10.0f;
 OutputAttributeConnection.Z = InputAttributeConnection[2] *

10.0f;
}

 78

Figure 5-22 Subscribe Directed Conversion Method for

WindDirectionConverter

The filled Conversion Method for WindSpeedConverter is given in Figure 5-

23. This converter converts speed values to each other which are defined in miles

per hour (mph) for one federate and kilometers per hour (km/h) for other federate.

There is also a scaled data for Meteorology Federate which is defined as Wind

Category. It is calculated according to Wind Speed value updated by Environment

Federate and there are four categories which are calm, breeze, storm and

hurricane. This category information is not used by Environment Federate, so

nothing is done for subscribe directed Conversion Method.

/// Conversion method used for subscribe directed Calls
void FOMConverterMgr::WindDirectionConverterSubscribeDirectedFunc(

Vec3f% OutputAttributeConnection,
 FloatArray3f% InputAttributeConnection)
{
 InputAttributeConnection = gcnew array<Float>(3);

 /// Write your conversion code here
 InputAttributeConnection[0] = OutputAttributeConnection.X /

10.0f;
 InputAttributeConnection[1] = OutputAttributeConnection.Y /

10.0f;
 InputAttributeConnection[2] = OutputAttributeConnection.Z /

10.0f;
}

 79

Figure 5-23 Conversion Method for WindSpeedConverter

The related Correspondence Model that is constructed for Aircraft and

Target federates is shown in Figure 5-24.

Figure 5-24 Correspondence Models constructed for Aircraft & Target

Federates

/// Conversion method used for publish directed Calls
void FOMConverterMgr::WindSpeedConverterPublishDirectedFunc(

Float% InputAttributeConnection,
 Float% OutputAttributeConnection)
{

/// Write your conversion code here
 oSpeedOfWind = InputAttributeConnection * 1.609f;

 if(oSpeedOfWind < 100) oWindCategory = CALM;
 else if(oSpeedOfWind < 200) oWindCategory = BREEZE;
 else if(oSpeedOfWind < 300) oWindCategory = STORM;
 else oWindCategory = HURRICANE;
}

/// Conversion method used for subscribe directed Calls
void FOMConverterMgr::WindSpeedConverterSubscribeDirectedFunc(

Float% OutputAttributeConnection,
 Float% InputAttributeConnection)
{

/// Write your conversion code here
 InputAttributeConnection = OutputAttributeConnection /

1.609f;
}

 80

The filled Conversion Method for CoordinateConverter is given in Figure 5-

25 and Figure 5-26. This converter converts coordinates values to each other

which are defined in MGRS, and GeoCentric for one federate and LLDMS for

other federate. This Conversion Methods shown in Figure 5-25 and Figure

5-26 are also example to use of non .NET 3rd party libraries for this solution.

Some of methods that used from this library for conversion logic are

“Set_MGRS_Parameters”, “Convert_Geodetic_To_Geocentric”, etc.

 81

Figure 5-25 Publish Directed Conversion Method for CoordinateConverter

/// Conversion method used for publish directed Calls
void FOMConverterMgr::CoordinateConverterPublishDirectedFunc(

Float% iLatitude, Float% iLongitude, Float% iRoll,
 Float% iHeading, Float% iPitch, Float% iAltitude,
 HLAASCIIstring% oMGRSString, Double% oCartesianZ,

Double% oCartesianX, Float% oAngleWRTNorth,
Double% oCartesianY)

{
/// Write your conversion code here

 char MGRSText[22] = {0};
 double a = 6378137.0;
 double f = 1.0 / 298.257223563;
 char *Ellipsoid_Code = "WGE";

 /// Set MGRS Parameters for conversion
 long status = Set_MGRS_Parameters(a, f, Ellipsoid_Code);
 long Precision = 5;
 double LatitudeInRadian = DEGREE_TO_RADIAN(iLatitude);
 double LongitudeInRadian = DEGREE_TO_RADIAN(iLongitude);

 /// Convert given LLDMS coordinates into MGRS

Convert_Geodetic_To_MGRS(LatitudeInRadian,
LongitudeInRadian, Precision, MGRSText);

 /// Pass MGRS string
 oMGRSString = gcnew array<HLAASCIIchar>(22);

 /// Copy the unmanaged array to managed array.
 Marshal::Copy((IntPtr) MGRSText, oMGRSString, 0,

 strlen(MGRSText));

/// figure out cartesian coord. through geocentric coord.
 double x, y, z;
 Convert_Geodetic_To_Geocentric(LatitudeInRadian,

LongitudeInRadian, iAltitude, &x, &y, &z);

 oCartesianX = x;
 oCartesianY = y;
 oCartesianZ = z;
 oAngleWRTNorth = iHeading;
}

 82

Figure 5-26 Subscribe Directed Conversion Method for

CoordinateConverter

/// Conversion method used for subscribe directed Calls
void FOMConverterMgr::CoordinateConverterSubscribeDirectedFunc(

HLAASCIIstring% oMGRSString, Double% oCartesianZ,
Double% oCartesianX, Float% oAngleWRTNorth,
Double% oCartesianY, Float% iLatitude,
Float% iLongitude, Float% iRoll, Float% iHeading,
Float% iPitch, Float% iAltitude)

{
/// Write your conversion code here

 char MGRSString[20];

 /// Convert from MGRS to LLDMS
 double a = 6378137.0;
 double f = 1.0 / 298.257223563;
 char *Ellipsoid_Code = "WGE";
 long status = Set_MGRS_Parameters(a, f, Ellipsoid_Code);

 /// Copy the unmanaged array to managed array.
 Marshal::Copy(oMGRSString, 0, (IntPtr)MGRSString,

oMGRSString->Length);

 double latitude, longitude;
 status = Convert_MGRS_To_Geodetic(MGRSString, &latitude,

&longitude);
 iLatitude = (float)RADIAN_TO_DEGREE(latitude);
 iLongitude = (float)RADIAN_TO_DEGREE(longitude);

 /// We dont have enough data for roll,

/// pitch and altitude so a predecided values will be feeded
 iRoll = 35.0f;
 iPitch = 45.0f;
 iAltitude = 1000.0f;

 /// We will assign incoming AngleWrtNorth to heading value
 iHeading = oAngleWRTNorth;
}

 83

o War Game Federation

This federation contains federates necessary to simulate a War Game simulation

which contains Aircrafts, Air Defense Systems and Environment Federates. In our

study, we only make use of Aircraft and Environment federates. Figure 5-5 shows

War Game Federation Design model.

• Environment Federate

This federate is responsible from coordinating, as its name implies, environmental

activities. These activities are controlling and monitoring of time, date,

temperature, fog and wind. The federate is developed using C++\CLI in Visual

Studio .NET 2005 with Windows Forms [73] for GUI. The Object Classes with

their corresponding Attributes is given in Table 5.2. Figure 5-27 shows an

example screenshot of this federate. In this screenshot, most functionality needed

for a simple federate is illustrated.

The upper left part of form contains information about general federation related

data like federate name, FDD file path and RTI parameters. The upper right part

of form contains handles (unique identifiers that given by RTI) of classes,

interactions, attributes and parameters. The handle values shown with “N\A”

means that those attributes or parameters are not used for that federation. There

are three important buttons at middle-right part of form called

“CREATE/DESTROY/JOIN/LEAVE/INITIALIZE FEDERATION”. The

“CREATE/DESTROY FEDERATION” creates or destroys federation according

to given parameters if it is not created. “JOIN/LEAVE FEDERATION” performs

necessary calls to join or leave from federation stated in upper-left part of form

with given federate name. “INITIALIZE FEDERATION” button performs

necessary HLA initialization according to chosen federate behavior (Publisher or

Subscriber). The mentioned elements of user interface are similar for all federates

developed, only names are changed, so these are not repeated for other federates.

The lower part contains federate specific capabilities. For this federate, Time,

Date, Temperature in Celsius, Environment Fog Status and Wind speed with its

 84

direction can be provided to federation for publisher behavior and all these can be

observed for subscriber behavior.

Table 5.2 The Object Class and Attributes for Environment Federate

Class Name Attribute Name

Temperature
Time
Date
Fog
WindSpeed

Environment

WindDirection

Figure 5-27 Environment Federate GUI

The used Object Classes, Instances, Attributes and their handles are shown in

GUI.

• Aircraft Federate

This federate is responsible from simulating an aircraft entity. For our study, we

only define the coordinate and orientation related features which are used to

illustrate many-to-many mapping formation. The Object Classes with their

corresponding Attributes are given in Table 5.3. The federate is developed

using C#. Figure 5-28 shows an example screenshot of this federate.

 85

The user interface elements are similar to environment federate, so they are not

repeated. The lower part contains federate specific capabilities. For this federate,

user can specify the coordinate of aircraft in LLDMS format and also the heading,

pitch and roll data can be provided to federation for publisher behavior and all

these can be observed for subscriber behavior. Under “CREATE FEDERATION”

button, there is also a text box that shows whether a Conversion Component is

found or not. This control is reflected to text box after user clicks “CREATE

FEDERATION” button.

Table 5.3 The Object Class and Attributes for Aircraft Federate

Class Name Attribute Name

Latitude
Longitude

GPS

Altitude
Heading
Pitch

Compass (HPR)

Roll

Figure 5-28 Aircraft Federate GUI

 86

o C3 Federation

This federation contains federates necessary to simulate a rather simplified

Command, Control and Communication simulation which contains Command

Center, Radar, Targets and Meteorology federates. In our study, we only make use

of Target and Meteorology federates. Figure 5-29 shows C3 Federation Design

model.

Figure 5-29 C3 Federation Design Model

• Meteorology Federate

This federate is responsible from simulating meteorology related activities that are

involved for a C3 simulation like. The Object Classes with their

corresponding Attributes are given in Table 5.4. The federate is developed

using C#. Figure 5-30 shows an example screenshot of this federate.

The upper part of federate contains similar information to previous federates, so

they are not repeated here. The lower part contains federate specific capabilities.

For this federate, user can specify humidity, atmosphere pressure, temperature and

wind related parameters here. These data can be provided to federation for

publisher behavior and all these can also be observed for subscriber behavior.

 87

Table 5.4 The Object Class and Attributes for Meteorology Federate

Class Name Attribute Name

AverageTemperature
Humidity
SpeedOfWind
DirectionOfWind
WindSpeedCategory

Meteorology

AtmospherePressure

Figure 5-30 Meteorology Federate GUI

• Target Federate

This federate is responsible from simulating an entity which can be a ground, sea

or air unit that is detected by the radars in C3 simulation. The Object

Classes with their corresponding Attributes are given in Table 5.5. The

federate is developed using C++\CLI. Figure 5-31 shows an example screenshot

of this federate.

 88

The upper part of federate contains similar information to previous federates, so

they are not repeated here. The lower part contains federate specific capabilities.

For this federate, user can specify Cartesian coordinates and angle with respect to

north under “Target Detailed Data” control panel and coordinates of target in

MGRS position. The interaction target hit status can also be stated here. All these

data can be provided to federation for publisher behavior and can also be observed

for subscriber behavior.

Table 5.5 The Object Class and Attributes for Target Federate

Class Name Attribute Name

CartesianX
CartesianY
CartesianZ

DetailedTargetData

AngleWithRespectToNorth
Coordinate MGRSCoordinateString

Figure 5-31 Target Federate GUI

The mentioned example illustrated only one possible usage of this solution for

FIP. There are also some other possible scenarios that make use of libraries

mentioned in previous sections as illustrated in Figure 5-32.

 89

Figure 5-32 An example HLA Federation that shows possible scenarios

Four federates are used to illustrate the possible scenarios. Although it is not

shown, federates using RTIDotNet1516 library can be in any .NET compatible

programming languages. The federate A shows a typical usage of

RTIDotNet1516 library and Conversion Component (FOMConverter

Library). It is not developed especially for this federation, so it uses

FOMConverter library for conversions. The federate B developed for this

federation using RTIDotNet1516 library and do not need to use any conversion

related routines, consequently not using any Conversion Component. The

federate C developed again for this federation in native RTI library so not using

both of RTIDotNet1516 and Conversion Component. The federate D

shows a possible usage of 3rd party libraries with RTIDotNet1516 and

FOMConverter Library. These 3rd party libraries can be .NET compatible or

non .NET compatible libraries.

 90

CHAPTER 6

DISCUSSION AND CONCLUSION

6. CHAPTER 6

6.1 Achievements

In this study, a Model Based Solution which employs MIC and .NET 2.0

technologies is analyzed to solve a well-known FIP that frequently encountered in

HLA compliant distributed simulation applications.

First of all, previous approaches are studied by examining what they provide or

lack and than their comparison have been done with proposed solution. After that,

the technologies and tools are examined with their role in overall solution. The

problem is described and solution is defined by grouping related activities into

three well-defined phases which are modeling, automatic code and component

generation. While describing problem and solution, new supporting definitions

like dependency levels and mapping formations are given and how proposed

solution handle these cases are illustrated by examples. Finally, case study that

illustrates the practical usage of the solution and approach is described.

The modeling environment depends on FIM which is derived from previously

developed HOMM by adding new elements to solve FIP. GME is used as meta-

programmable modeling tool for all Metamodeling and Modeling activities.

In this approach, not only the FIP solution is provided, but also benefits of MDSD

and user friendly Modeling Environment of GME is offered to developer with

.NET 2.0 technologies. The RTIDotNet1516 library helps developer to develop

IEEE 1516 compatible platform and programming language independent .NET

 91

federate applications. In this study, automatically generated code is fully

complying with rules defined in CLS, so that it can be used from any other .NET

compatible programming languages.

6.2 Limitations of Current Work

There are also some limitations which are not handled in this study. The first one

is the Time, Data Distribution and Ownership Management services. These

services are usually executed during federation execution and modeling of these

services and behaviors are difficult to model so they are not handled in this study.

As a result of this, developer currently cannot use related services.

The second one is the assumption of proper development of federate code. In

other words, developer is expected to develop its federate code so that necessary

attributes/parameters are provided to other federations. For instance, if user want

to use Attribute A and B to as Attribute C for Destination Federation through a

Conversion Method, but do not publish/update one of Attribute A or B, the

Attribute C will not be represented properly in Target Federation.

The other one is about programmatic details like multidimensional arrays. The

current metamodel does not provide necessary information about sizes of

multidimensional arrays.

In addition to all these, there are also some other limitations which prevent us to

solve the FIP with a hundred percent and can not be tackled for the time being.

The most important one is the fully automatic solution. The current approaches

and our solution need developer to define, at least, the relationship among Source

and Target Federation by hand. In other words, a mapping or Correspondence

Model for our case cannot be generated automatically from given new FOM. This

is mainly stemmed from the fact that each federation has its own semantics and

for a possible mapping a manual interference is needed. The additional function or

service calls are also unavoidable. Although this can be minimized by embedding

this into core RTI, there will be still some overhead. This is done with

 92

RTIDotNet1516 library in this study which can be seen as an RTI Abstraction

layer.

6.3 Future Work

Based on findings from this study, this approach can successfully be adapted for

many forthcoming Modeling Driven HLA Application development tools. To

make use of this approach tools must adopt our Metamodel, FIM. The approach

might also be improved by employing some other behavioral modeling

approaches for model conversion routines. Moreover this approach could easily be

applied to other distributed simulation standards or software problems.

Some other obvious improvements are generation of codes in other .NET

compatible programming languages and porting solution to Java or native C++

platforms and providing a higher level API that hides HLA details from developer

who are not familiar to HLA.

 93

REFERENCES

[1] IEEE Std. 1516, “IEEE Standard for Modeling and Simulation (M&S)

High Level Architecture (HLA) - Framework and Rules”, IEEE, 2000.

[2] IEEE Std. 1516.1, “IEEE Standard for Modeling and Simulation (M&S)
High Level Architecture (HLA) - Federate Interface Specification”, IEEE,
2000.

[3] IEEE Std. 1516.2, “IEEE Standard for Modeling and Simulation (M&S)
High Level Architecture (HLA) - Object Model Template Specification”,
IEEE, 2000.

[4] IEEE Std. 1516.3, “IEEE Recommended Practice for High Level
Architecture (HLA) Federation Development and Execution Process
(FEDEP)”, IEEE, 2003.

[5] IEEE web site, “The world's leading professional association for the
advancement of technology”, http://www.ieee.org, last accessed
18.07.2007.

[6] Test and Training Enabling Architecture (TENA), “Home – TENA:
Introduction – TENA SDA Website”, https://www.tena-
sda.org/display/intro/Home, last accessed 18.07.2007.

[7] DMSO web site, “Defense Modeling and Simulation Office”,
https://www.dmso.mil, last accessed 18.07.2007.

[8] IEEE, “IEEE Begins to Revise Four Simulation Standards”,
http://standards.ieee.org/announcements/pr_simulation.html, last accessed
10.06.2007.

[9] Granowetter, L., “Solving the FOM-Independence Problem”, 1999 Spring
Simulation Interoperability Workshop (SIW).

[10] Cetinkaya D., Oguztuzun H., “A Metamodel for the HLA Object Model”,
20th European Conference on Modeling and Simulation (ECMS), pp 207-
213, 2006.

[11] Ledeczi A., Maroti M., Bakay A., Karsai G., Garrett J., Thomason C.,
Nordstrom G., Sprinkle J., Volgyesi P., “The Generic Modeling
Environment”, IEEE International Workshop on Intelligent Signal
Processing (WISP'2001), Budapest, Hungary, 2001.

 94

[12] Microsoft web site, “Visual Studio 2005 Developer Center”,
http://msdn2.microsoft.com/en-us/vstudio/default.aspx, last accessed
18.07.2007.

[13] MÄK Technologies, Inc., “MÄK Technologies, Inc.”, https://www.mak.
com, last accessed 05.06.2007.

[14] MÄK Technologies, “VR-Link®”, http://www.mak.com/products/
vrlink.php, last accessed 09.06.2007.

[15] Graham J., Foscue J., Cutts D., “HLA Object Models as Software Object
Models: An approach to Automatic Software Generation from HLA Object
Models”, 1998 Spring Simulation Interoperability Workshop (SIW), 1998.

[16] Calytrix Technologies, “SIMplicity”, http://simplicity.calytrix.com, last
accessed 01.08.2007.

[17] Çelik T., Sütbaş R., Đmre K., “HLA için Modelleme, Otomatik Kod
Üretme, Đzleme ve Sınama Araçları”, USMOS 2005, Ankara, Turkey,
2005.

[18] AEgis Technologies, “AEgis Technologies Modeling and Simulation
Advanced small business for modeling and simulation Huntsville AL”,
http://www.aegistg.com, last accessed 26.07.2007.

[19] Hunt K., Graham J., “Using OMni as an Interface to the HLA RTI”,
http://www.hlalabworks.com/papers/OMni-WP.pdf, last accessed
26.08.2006.

[20] Simulation Interoperability Standards Organization, “SISO Standards”,
http://www.sisostds.org/index.php?tg=fileman&idx=get&id=5&gr=Y&pat
h=SISO+Products%2FSISO+Standards&file=GRIM_RPR-FOM_1-
0v2.pdf , last accessed 18.07.2007.

[21] IEEE Std. IEEE 1278.1, “IEEE Standard for Distributed Interactive
Simulation - Application Protocols”, IEEE, 1995.

[22] IEEE Std. IEEE 1278.1a, “Supplement to IEEE Std 1278.1-1995, IEEE
Standard for Distributed Interactive Simulation - Application Protocols”,
IEEE, 1998.

[23] Möller B., Löfstrand B., Karlsson M., “An Overview of the HLA Evolved
Modular FOMs”, 2007 Spring Simulation Interoperability Workshop
(SIW), 2007.

[24] Kuhl F., Weatherly R., Dahmann J., “Creating Computer Simulation
Systems: An Introduction to the High Level Architecture”, Prentice Hall,
New Jersey, 1999.

 95

[25] Shaw M., Garlan D., “Software Architecture: Perspectives on an
Emerging Discipline”, Prentice-Hall, New Jersey, 1996.

[26] Fujimoto R. M., “Parallel and Distributed Simulation Systems”, Wiley,
New York, 2000.

[27] OMG web site,”Object Management Group”, http://www.omg.org, last
accessed 06.06.2007.

[28] Simulation Interoperability Standards Organization, “SISO”,
http://www.sisostds.org/index.php, last accessed 18.07.2007.

[29] B´ezivin J., Gerbé O., "Towards a Precise Definition of the OMG/MDA
Framework”, ASE'01, Automated Software Engineering, San Diego,
USA, November 26-29, 2001.

[30] Völter M., Stahl T., Bettin J., Haase A., Helsen S., Czarnecki K., “Model-
Driven Software Development”, Wiley, 2006.

[31] Özhan, G., Oğuztüzün, H., “Model-Integrated Development of HLA-Based
Field Artillery Simulation”, 2006 European Simulation Interoperability
Workshop (SIW), Sweden, 2006.

[32] Tolk A., “Avoiding Another Green Elephant –A Proposal for the Next
generation HLA based on the Model Driven Architecture”, 2002 Fall
Simulation Interoperability Workshop (SIW), 2002.

[33] Tolk A., “Metamodels and Mappings – Ending the Interoperability War”,
2004 Fall Simulation Interoperability Workshop (SIW), 2004.

[34] Parr S., Keith-Magee R., “Making the Case for MDA”, 2003 Fall
Simulation Interoperability Workshop (SIW), 2003.

[35] Kleppe A., Warmer S., Bast W., “MDA Explained - The Model Driven
Architecture: Practice and Promise”, Addison-Wesley, Boston, 2003.

[36] OMG web site, “MDA Guide v1.0.1”, http://www.omg.org/docs/omg/03-
06-01.pdf, last accessed 06.06.2007.

[37] OMG web site, “MDA FAQ”, http://www.omg.org/mda/faq_mda.htm, last
accessed 10.06.2007.

[38] Czarnecki K., Helsen S., “Classification of Model Transformation
Approaches”, OOPSLA’03 Workshop on Generative Techniques in the
Context of Model-Driven Architecture, Anaheim, California, USA, 2003.

[39] Mens T., Czarnecki K., Gorp P. V., “A Taxonomy of Model
Transformations”, Language Engineering for Model-Driven Software
Development, Dagstuhl, Germany, 2004.

 96

[40] Czarnecki K., Helsen S., “Feature-based survey of model transformation
approaches”, IBM Systems Journal, vol. 45, no. 3, pp 621-645, 2006.

[41] Voelter M., “A Catalog of Patterns for Program Generation”, Eighth
European Conference on Pattern Languages of Programs, Irsee, Germany,
2003.

[42] OMG Web Site, “Object Management Group: MOF QVT Final Adopted
Specification”, http://www.omg.org/docs/ptc/05-11-01.pdf, last accessed
18.07.2007.

[43] Greenfield J. and Short K., “Software Factories: Assembling Applications
with Patterns, Models, Frameworks, and Tools”, John Wiley and Sons,
Indianapolis, 2004.

[44] Nordstrom G., Sztipanovits J., Karsai G., Ledeczi A., “Metamodeling –
Rapid Design and Evolution of Domain-Specific Modeling Environments”,
IEEE ECBS'99 Conference, Tennessee, 1999.

[45] Karsai G., Agrawal A., “Graph Transformations in OMG’s Model-Driven
Architecture”, Applications of Graph Transformations with Industrial
Relevance International Workshop, Virginia, 2003.

[46] Karsai G., Agrawal A., Ledeczi A., “A Metamodel-Driven MDA Process
and its Tools,” in WISME, UML 2003 Conference, San Francisco, 2003.

[47] Sudarsan R., Gray J., “Meta-Model Search: Using XPath to Search
Domain-Specific Models”, International Conference on Software
Engineering Research and Practice, Nevada, 2005.

[48] Gray J., Bapty T., Neema S., Tuck J., “Handling Crosscutting Constraints
in Domain-Specific Modeling”, Communications of the ACM Journal, vol.
44 no. 10, pp. 87-93, 2001.

[49] Consel C., Marlet R., “Architecturing software using a methodology for
language development”, 10th International Symposium on Programming
Language Implementation and Logic Programming, Pisa, Italy, September,
1998.

[50] Karsai G., Agrawal A., Shi F., Sprinkle J., “On the Use of Graph
Transformations for the Formal Specification of Model Interpreters”,
Universal Computer Science Journal, vol. 9, no. 11, pp. 1296-1321, 2003.

[51] OMG web site, “UML Infrastructure v2.1.1”, http://www.omg.org/cgi-
bin/apps/doc?formal/07-02-06.pdf, last accessed 06.06.2007.

[52] Karsai G., Maroti M., Ledeczi A., Gray J., Sztipanovits J., “Composition
and Cloning in Modeling and Meta-Modeling”, IEEE Transactions on
Control System Technology, vol.12 no.2, pp. 263-278, 2004.

 97

[53] OMG Web Site, “OMG Document”, http://www.omg.org/cgi-
bin/doc?formal/01-09-67, last accessed 18.07.2007.

[54] OMG Web Site, “Meta-Object Facility (MOF™), version 1.4”,
http://www.omg.org/technology/documents/formal/mof.htm, last accessed
18.07.2007.

[55] Institute for Software Integrated Systems Vanderbilt University, “GME 6
User’s Manual Version 6.0”, pp 12, Vanderbilt University, 2006.

[56] Emerson M.J., “GME-MOF: An MDA Metamodeling Environment for
GME”, MSc Thesis in Computer Science at Vanderbilt University,
Tennessee, 2005.

[57] Magnetar Games, Chronos, http://www.magnetargames.com/Products/
Chronos, last accessed 10.06.2007.

[58] Sutter H., “A Design Rationale for C++\CLI”, http://www.gotw.ca/
publications/C++CLIRationale.pdf, 2006.

[59] ISO, “ISO/IEC 2327, Common Language Infrastructure”
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUM
BER=42927, last accessed 10.06.2007

[60] Mono, “Mono Project”, http://www.mono-project.com, last accessed
09.05.2007.

[61] DotGNU Portable.NET, “DotGNU Project”, http://dotgnu.org/pnet.html,
last accessed 09.05.2007.

[62] Microsoft, “.NET Compact Framework”, http://msdn2.microsoft.com/en-
us/netframework/aa497273.aspx, last accessed 10.06.2007.

[63] StartVbDotNet.com, “.NET Framework Supported Languages”,
http://www.startvbdotnet.com/dotnet/languages.aspx, last accessed
18.07.2007.

[64] Perry S. C., “Core C# and .NET”, Prentice Hall PTR, 2005.

[65] ECMA International, “Standard ECMA-335: Common Language
Infrastructure (CLI)”, http://www.ecma-international.org/publications/
standards/Ecma-335.htm, last accessed 10.06.2007.

[66] Abrams B., “.NET Framework Standard Library Annotated Reference,
Volume 1/2 Base Class Library and Extended Numerics Library”, Addison
Wesley, 2004.

 98

[67] Meijer E., Gouh J., “Technical Overview of the Common Language
Runtime”, http://research.microsoft.com/~emeijer/Papers/CLR.pdf, last
accessed 10.06.2007.

[68] Fraser S. R. G., “Pro Visual C++ CLI and the .NET 2.0 Platform”,
Apress, New York, USA, 2005.

[69] Microsoft Web Site, “NGEN Tool”, http://msdn.microsoft.com/msdnmag
/issues/05/04/NGen/default.aspx, last accessed 09.05.2007.

[70] ECMA International, “Standard ECMA-372: C++/CLI Language
Specification”, http://www.ecma-international.org/publications/files/
ECMA-ST/ECMA-372.pdf , last accessed 18.07.2007.

[71] Lippmann S., “Pure C++: Hello, C++/CLI”, MSDN Magazine, February
2005.

[72] Szyperski C., “Component Software: Beyond Object-Oriented
Programming”, ACM Press and Addison-Wesley, New York, 1998.

[73] Microsoft Web Site, “Windows Forms”, http://msdn2.microsoft.com/en-
us/netframework/aa497342.aspx, last accessed 18.07.2007.

[74] Microsoft Web Site, “MFC Reference (MFC)”,
http://msdn2.microsoft.com/en-us/library/d06h2x6e(VS.80).aspx, last
accessed 18.07.2007.

[75] Pitch Technologies, “Pitch RTI (pRTI)”, http://www.pitch.se, last accessed
01.08.2005.

[76] SGI, “Standard Template Library Programmer's Guide”,
http://www.sgi.com/tech/stl/, last accessed 18.07.2007.

 99

APPENDIX A

USER’S GUIDE

A Appendix A

This is the User’s Guide of the Correspondence Model Design Environment

(CMDE) which is automatically generated by GME according to FIM. It explains

how to use the GME to construct Corresponding Models among Source and

Target Federation object models.

To be able to use the CMDE, first of all FIM should be registered. Open GME,

click on File Menu and then click Add from File button on Select Paradigm dialog

and then select FIM metamodel .xmp file which will register the metamodel.

In this User’s Guide, creating a new HLA OMT project, Federation Model and

Object model is not described which can be found in [10] with details. In this

guide, the steps necessary to construct a Correspondence Model and

execution of Interpreter is described.

To construct Correspondence Models, two federation models are needed

one which will belong to Source Federation and other will belong to Target

Federation. These two models can be constructed from scratch using CMDE by

separating modeling elements with Folders.

Two federation models can also be imported into one Modeling Environment

which is usually the more preferable for already modeled federations. To do so, a

new CMDE project can be created and then by using File/Import XML utility the

other two Federation Models can be imported into the same Modeling

Environment or an existing model can be opened then the model can be imported

 100

into same Modeling Environment by following just mentioned procedure. Here

there is one point need to be taken into consideration, when these two models are

imported into same modeling environment, there will be two IEEE 1516 library

which is same with each other, so one of this libraries can be deleted by hand.

There could also be inconsistencies with data types of these two federation model

which can also be merged to one Data Type folder to prevent these.

After Source and Target Federation Models are present in the same modeling

environment, the Correspondence Models can be constructed. First, the

related Object Model Folder, then FOM Model and finally the Objects Model

(Interaction folder for Interaction Correspondence Models) are opened.

Under this model, the Objects or Interactions Object Oriented hierarchy can

be seen. The steps necessary to go related model where Correspondence

Model is constructed shown in Figure A-1 below;

Figure A-1 Steps necessary to go related model where Correspondence

Model constructed

 101

The object that will be used for Correspondence Model is opened than. The

Meteorology Object Class is selected in Figure A-1 shown above. When this

model is opened, the Attributes owned by this class are shown. To construct

a Correspondence Model, at least two Attributes one which comes

from Source Federate and the other from Target Federate and one Converter is

needed. Converter atoms can be dragged into Modeling Environment from Part

Browser which is shown in Figure A-2 for Attributes.

Figure A-2 The Part Browser Window for Attributes

One final element necessary to construct Correspondence Model is other

Attribute that will be used with Converter. To bring other Attributes, the

provided AttributeReference element can be used. For each Attribute that will be

brought into environment one of these AttributeReferences should be dragged.

After dragging these elements, the only thing that needs to be done is drag

corresponding Attribute from Browser tree onto AttributeReference.

When Attributes or Parameters and Converters are brought into

environment, the final step is to connect these items with each other and make

necessary settings to Converters. The connections are built using the interface

provided by GME. The restrictions related with these connections are described in

section 5.2.1.1 . To change the attributes of Converters, the Object Inspector

Dialog (View->Attribute Panel) can be used which is shown in Figure A-3.

 102

After all Correspondence Models are constructed, automatic code

generation can be initiated. This can be done by clicking Interpreter icon on

toolbox of GME which is shown in Figure C-1. There are also some settings need

to be done on Interpreter dialog which is grouped into Control Panel bottom

right side of dialog as shown in Figure A-4.

Figure A-3 The Object Inspector Window for Converter attributes

 103

Figure A-4 The Control Panel of Interpreter

The control marked by 1 show the directory that conversion library code going to

be generated. The Target Federation name and FDD file that will be used by

converter library for Source Federation are entered through marking 2 and 3.

Marking 4 is enabled after developer enter directory for code that going to be

generated. These four controls are enough for automatic code generation. The rest

of the controls are put for developers who do not have Integrated Development

Environments and use makefiles. The button shown by marking 5 generates

makefiles to directory shown by control 7 according to entered compiler path in

marking 10 and compiler preference in marking 9. The marking 8 is put for

selection of programming language which currently C++\CLI by default.

 104

APPENDIX B

THE IMPLEMENTED RTI SERVICES FOR FIM

B Appendix B

Table B.1 The implemented RTI services

The Service Group Name The Service Name

Federation Management

Services

All services are implemented according to FIP.

Declaration Management

Services

All services are implemented according to FIP.

Object Management Services One of each UpdateAttributeValues,
SendInteraction and deleteObjectInstance
overloaded methods are implemented. The
other methods are containing arguments related
with Time and Data Distribution Management
so not implemented.

Ownership Management
Services

Not interfered.

Time Management Services Not interfered.
Data Distribution Services Not interfered.
Support Services getObjectClassHandle, getObjectClassName,

getAttributeHandle, getAttributeName,
getInteractionClassHandle,
getInteractionClassName,
getParameterHandle,
getParameterName,
getObjectInstanceHandle,
getObjectInstanceName,
getKnownObjectClassHandle,
getTransportationType,
getTransportationName,
getOrderType,
getOrderName services are implemented
according to FIP.

 105

APPENDIX C

INTERPRETER SOFTWARE

C Appendix C
In this chapter, the technical information about the Interpreter which is used

to automatically generate code is given. As stated in MIC, the interpreters are used

to perform semantic translations by using models to generate executable models

or a program which is source code in our case. The most important activities

performed by Interpreter are briefly analysis of model constructed,

programmatically verification of models and finally automatic generation of

source code. The Interpreter is add-in software that can be integrated into

GME modeling environment through plug-in mechanism provided by again GME.

Figure C-1 illustrates how interpreter is seen in modeling environment.

Figure C-1 Illustration of Interpreter software in modeling environment

To develop an Interpreter first a tool that comes with GME, Component

Configurator, is used to create necessary files needed for Interpreter

development. These files are configuration, Microsoft Foundation Classes (MFC)

[74] project and Interpreter Common files. The Interpreter is

developed by using these and additional files supplied by developer. It does not

need to have a Graphical User Interface (GUI), but GUI can also be added. Some

GUI elements are added into our Interpreter to make it easy for use.

 106

The Figure C-2 shows our Interpreter’s GUI that developer see when she

press the button shown in Figure C-1. The interpreter is explained through the red

markings made on Figure C-2. The list in marking 1 show the Attribute and

Parameter converters defined in Model. According to selection from this list, input

and output Attribute or Parameter and corresponding arguments names are listed

in lists shown in marking 2 and 3. The corresponding owner Object Class or

Interaction of these input and output Attributes or Parameters are shown

in lists illustrated by marking 4 and 5. The panel shown in marking 6 gives

detailed information collected about selected input or output Attribute or

Parameter lists like their name, type, owner Object Class or Interaction and

data type. The list shown by marking 7 lists all data types of Attribute or

Parameters related in Correspondence Model with their alias and data

type. The panel which is illustrated with marking 8 shows warnings, errors and

state of Interpreter execution. The panel illustrated with marking 9 shows

the information collected about SynchronizationPointMapper. The panel

illustrated by marking 10 contains controls about automatic code generation like

where the code will generated, Target Federation name and FDD file path text

boxes that will be used during Federation Execution. In addition to these, other

controls for generation of makefiles and compilation of Converter Library are

provided in this panel.

 107

Figure C-2 A screenshot of FOM Conversion Interpreter

This software developed using MS Visual Studio .NET 2003 and MFC in C++.

 108

APPENDIX D

RTIDOTNET1516 LIBRARY

D Appendix D

There are two important libraries developed in the scope of this study; one of

them, the FOMConverter Library as Conversion Component is described

in section 5.2. In this section, the other important library which is

RTIDotNet1516 is described. As FOMConverter library this is also

developed using .NET 2.0 assembly technology. This library can be seen as an

extensive wrapper to underlying native RTI library which not only provide us a

.NET 2.0 compatible RTI interface but also an abstraction layer for FIP. After all,

this can also be considered as an API which is mainly used by federate developers

to develop HLA and .NET 2.0 compliant applications.

The most important reason to develop this library is the lack of .NET 2.0

compatible RTI software. In fact, it appears to be there exists only a few RTI

implementations for .NET, in fact only one of them is found and evaluated [16],

and nevertheless it is based on .NET 1.1. So this library is developed from scratch

in .NET 2.0.

This library is developed using new C++\CLI programming language which not

only provide us to use the power of native C++ but also help us to easily port the

native RTI code to .NET world. The detail of this programming language is given

in section 4.2.

The developed wrapper is uses Pitch Technologies’ Portable RTI (pRTI) Light

Edition as underlying RTI library [75]. The other option was MÄK Technologies’

MÄK RTI. The MÄK is not chosen, because there is a restriction on the number

of federates which is only two and also no GUI that can help us to monitor

 109

federation is provided. We choose pRTI implementation, because the evaluation

version provides us a GUI in which the activities in Federation Execution can

easily be observed which is very critical for us. Moreover no limit on the number

of federates for a federation is exists. However, it also has some restrictions that

trouble us during development which is usually based on the number of services

called during federation execution and when this number is reached an RTI

exception is thrown and execution of federation is terminated.

The most important capabilities of this assembly are being an abstraction layer for

native RTI library by providing same service interfaces to developer and

containing base classes for FOMConverter Library mentioned in component

generation phase. While developing this library, special attention is paid to

preserve same interface with RTI services to prevent developers of this library to

learn new API which is the case for MÄK’s VR-Link tool as mentioned in chapter

1. We also do not develop services unrelated with our study which is mentioned in

section 2.3.

As developing RTIDotNet1516 library, the original method prototypes in

native pRTI library kept same. The data types, enumerations, exceptions and class

hierarchy used in native pRTI library is also ported to .NET 2.0. The

RTIDotNet1516 contains two groups of classes. The first group of classes is

mainly responsible from implementation pRTI services and necessary data types.

The second group of classes is responsible from providing base classes and data

types to FOMConverter library.

As stated above one group of classes and related constructs that developed are

responsible from implementation of pRTI. In this group, for each native pRTI

classes, a managed class that prefixed with “RTIDotNet” is developed. For

instance, for RTIambassador native class, RTIDotNetRTIambassador class is

developed. The other wrapped classes that similarly developed are

FederateAmbassador, LogicalTime, OrderType, RangeBounds, ResignAction,

RestoreFailureReason, RestoreStatus, RTIambassadorFactory, SaveFailureReason

SaveStatus, ServiceGroupIndicator, SynchronizationFailureReason, Trans-

 110

portationType, VariableLengthValueClass and all other Value, Handle, HandleSet

and HandleValueMap classes defined using VariableLengthValueClass. A

declaration of developed RTIDotNetRTIambassador class is given in Figure D-1.

Figure D-1 Snapshot for Configuration Arguments

Exceptions which defined as different classes in native RTI library are

implemented as one .NET managed class with enumerated exception types to

make usage of exception mechanism .NET compatible, easy and more user-

friendly. A code portion related with exceptions is given in Figure D-2.

public ref class RTIDotNetRTIambassador
{
 /// This member used to hold the conversion library loaded

/// dynamically
 Assembly^ mConverterAssembly;

 /// Conversion library handle
 FOMConverterMgrBase^ mConverterLibrary;

...

 /// Reference to Native RTI ambassador
 RTI::RTIambassador* mNativeMember;
 AutoWrapperClass<RTI::RTIambassador>* mRTIWrapper;
 ...
public:
 /// Constructor
 RTIDotNetRTIambassador(

std::auto_ptr< RTI::RTIambassador > iArg,
bool iIsConversionLibraryGiven,
String^ iConversionLibraryName,
String^ iConversionLibraryPath);

 ...
 /// Destructor
 ~RTIDotNetRTIambassador();

 /// Finalizer
 !RTIDotNetRTIambassador();

 /// 4.2 Federation Management service
 virtual void createFederationExecution
 (String^ federationExecutionName,
 String^ fullPathNameToTheFDDfile);
 ...
};

 111

/// Enumaration that define RTI exception types
public enum class ExceptionType
{
 AsynchronousDeliveryAlreadyDisabled,
 AsynchronousDeliveryAlreadyEnabled,
 AttributeAcquisitionWasNotCanceled,
 ...
};

/// Managed exception class
public ref class RTIDotNetException : Exception
{
public:
 /// Exception type
 ExceptionType mType;

 /// Reference to original exception
 RTI::exception* mException;

 /// Property to get type of exception
 property ExceptionType TypeOfException
 {

ExceptionType get() { return mType; }
 }
 ...
 };

Figure D-2 A code portion related with exceptions

The native pRTI make extensive use of the STL (Standard Template Library) [76]

container types, we port them to .NET 2.0 by making use of corresponding .NET

generic types (which are in fact introduced with .NET 2.0). For example, List<>

generic type used for std::set, std::vector and Dictionary<> generic type used for

std::map.

Finally, original namespace “RTI” changed to “RTIDotNetLibrary1516” to

prevent any confusion. However, original RTI namespace is still accessible which

let C++\CLI like native accessible .NET programming languages make use of this

interface and corresponding constructs.

The second group of classes is related with conversion operations. Most of these

classes are used for representing the model that developer created as described in

first title. Some of these are “HLAAttribute”, “HLAClass”, “HLAClassObject”,

 112

“HLAInteraction” and “HLAParameter” which represents the state of

corresponding HLA constructs. The AttributeConverter and

ParameterConverter classes are basic classes that perform conversions at

lowest level during federation execution. There is also a FOMConverter-

MgrBase abstract class which is responsible from controlling overall execution

of conversion calls and callbacks through inherited FOMConverterMgr class.

As a result of using C++\CLI for developing RTIDotNet1516 library make it

more rigid and effective in terms of performance rather than using marshalling

calls or p/invoke calls from C#/VB.NET which was in fact the only way of

porting a native library to .NET world.

 113

APPENDIX E

AUTOMATICALLY GENERATED FILES

E Appendix E

As discussed in 5.2.2.2 , the Interpreter software generates more than six files in

automatic code generation phase. These files are described below in detail with

snapshots.

o “ConverterLib.h”

This header file contains data type declarations about Attributes and

Parameters used in Correspondence map at modeling phase. These data types

is generated and provided to developer to be used in Conversion Methods to

prevent her from dealing with raw byte arrays and type conversion. The

Interpreter can produce Simple Data Types (e.g. Int16, Int32, Single,

Double), Enumerated Data Types (e.g. Boolean), Array Data Types (e.g.

HLAASCIIstring) and Fixed Record Data Types (e.g. GPS, Vec3f) with two

groups of supporting methods, which can be used in Conversion Methods or

can be used in Federate Code directly. These supporting methods are given below.

GetBytes, SetBytes, GetBytesArrayTypeName, SetBytesArrayTypeName:

These are used to create a new instance of corresponding type from its byte-wise

representation and get byte representation of related data type. They also used in

FOMConverterMgr library internally in byte conversions for RTI service calls.

These methods are generated for Fixed Record Data and Array Data Types.

GetSize, GetSizeArrayTypeName:

These methods are used to calculate the size of a Fixed Record Data or Array Data

types in bytes.

 114

In this file, a header of FOMConverterMgr class that responsible from holding

information necessary for conversion, performing conversions and related

initializations is also generated. For each of AttributeConverter and

ParameterConverter, member methods like, “AttributeNamePublish

DirectedFunc”, “InteractionNameSubscribeDirectedFunc” prototypes are

generated according to selected execution mechanisms. There are also some other

automatically generated methods which are used by FOMConverterMgr in

runtime, developer can also modify these methods. Some snapshots of this file are

given in Figure E-1 and Figure E-2.

Figure E-1 Sample code that illustrate Data Types from “ConverterLib.h”

….
/// User Defined Simple Data Types
typedef HLAfloat32LE Float;

/// User Defined Enumerated Data Types
public enum class HLAboolean { HLAfalse, HLAtrue };

/// User Defined Array Data Types
typedef array<HLAASCIIchar>^ HLAASCIIstring;

/// User Defined Fixed Record Data Types
public value struct Vec3f {

Float X; Float Y; Float Z;

 /// This method will be used for any initialization
 void Initialize();

 /// This method will be used to get the size of this FRD
 static int GetSize();

/// Used to get byte repres. of structure in a byte array
 array<Byte>^ GetBytes();

 /// Used to set corresponding value from byte array
 void SetBytes(array<Byte>^ iArg, int iStartIndex);
};
...
...

 115

Figure E-2 Sample code that illustrate FOMConverterMgr from “ConverterLib.h”

o ConverterLib.cpp

This file contains the empty body blocks of Conversion Methods whose

prototypes are generated in “ConverterLib.h” file. These methods with their

provided input/output arguments name and their modeled data types are provided

to developer who will fill these methods and use the provided arguments in her

conversion operations. These conversion operations can range from a simple

operation to complicated conversion calculations that make use of 3rd libraries. A

snapshot of this file is given in Figure E-3.

public ref class
FOMConverterMgr:RTIDotNetLibrary1516::FOMConverterMgrBase
{
 protected:
 FOMConverterMgr();

 ///@Begin Internal Methods!
 /// Auto generated Conversion Method prep. are done here

virtual void UpdateMethod(unsigned int iConverterID,
 Dictionary<String^, array<Byte>^>^

iConverterInput,
 Dictionary<String^, array<Byte>^>^
iConverterOutput) override;

virtual void ReflectMethod(unsigned int iConverterID,
 Dictionary<String^, array<Byte>^>^
iConverterInput,
 Dictionary<String^, array<Byte>^>^
iConverterOutput) override;

 ...
 ///@End Internal Methods!
 ...
 /// Conversion methods used for publish directed Calls
 Void TemperatureConverterPublishDirectedFunc(

 Float% InputAttributeConnection,
 Float% OutputAttributeConnection);

/// Conversion method used for subscribe directed HLA

Calls
 void TemperatureConverterSubscribeDirectedFunc(

 Float% OutputAttributeConnection,
 Float% InputAttributeConnection);
...

}

 116

Figure E-3 Sample code that illustrate Conversion Methods from

“ConverterLib.cpp”

o ConverterTypeLib.cpp

This file contains implementation of data type support methods whose

declarations are generated in “ConverterLib.h”. Some snapshots of this file are

given in Figure E-4 and Figure E-5.

...
/// Conversion method used for publish directed HLA Calls
void FOMConverterMgr::TemperatureConverterPublishDirectedFunc(
Float% InputAttributeConnection,Float% OutputAttributeConnection)
{

/// Write your conversion code here
 OutputAttributeConnection=InputAttributeConnection*1.8f+32;
}

/// Conversion method used for subscribe directed HLA Calls
void FOMConverterMgr::TemperatureConverterSubscribeDirectedFunc(
Float% OutputAttributeConnection,Float% InputAttributeConnection)
{
 /// Write your conversion code here

InputAttributeConnection=(OutputAttributeConnection-
32)/1.8f;

}
...

 117

void Vec3f::SetBytes(array<Byte>^ iArg, int iStartIndex){
 int currentDstIndex = iStartIndex;
 /// Put byte representation of all members

/// into given array.
SetValue(X, iArg, currentDstIndex);

 currentDstIndex += sizeof(HLAfloat32LE);
SetValue(Y, iArg, currentDstIndex);

 currentDstIndex += sizeof(HLAfloat32LE);
 SetValue(Z, iArg, currentDstIndex);
 currentDstIndex += sizeof(HLAfloat32LE);
}
...

int Vec3f::GetSize() {
 /// Calculate the size by adding all sizes of members
 return sizeof(Float) + sizeof(Float) + sizeof(Float);
}

array<Byte>^ Vec3f::GetBytes() {
 /// Allocate data for bytes
 array<Byte>^ result = gcnew array<Byte>(GetSize());

 int currentIndex = 0;
 /// Get byte representation of all members and copy them

/// into result array.
 Array::Copy(BitConverter::GetBytes(Z), 0, result,

currentIndex, sizeof(Z));
 currentIndex += sizeof(Z);

Array::Copy(BitConverter::GetBytes(Y), 0, result,
currentIndex, sizeof(Y));

 currentIndex += sizeof(Y);
 Array::Copy(BitConverter::GetBytes(X), 0, result,

currentIndex, sizeof(X));
 currentIndex += sizeof(X);

 ///Return byte representation of whole structure
 return result;
}

Figure E-4 Sample code that illustrate GetSize/GetBytes Methods from

“ConverterTypeLib.cpp”

Figure E-5 Sample code that illustrate SetBytes Method from “ConverterLib.cpp”

o FOMConverterMgr.cpp

These file contains the implementation of FOMConveterMgr methods like class

constructor and internal service processing methods. As stated before, for custom

 118

behavior, these methods can be modified. A snapshot of this file is given in Figure

E-6.

Figure E-6 Sample code that illustrate UpdateMethod from
“FOMConverterMgr.cpp”

o AttributeConverterIDs.h, ParameterConverterIDs.h

These file contains identifiers that assigned for each of AttributeConverter

and InteractionConverter created in modeling phase for internal

purposes. A snapshot of “AttributeConverterIDs.h” is given in Figure E-7.

void FOMConverterMgr::UpdateMethod(unsigned int iConverterID,
Dictionary<String^, array<Byte>^>^ iConverterInput,
Dictionary<String^, array<Byte>^>^ iConverterOutput)

{ switch(iConverterID)
 {...

/// When a temperature converter related member is
/// updated call necessary Conversion Method

 case TemperatureConverterID:
 {
 /// Prepare inputs/outputs for Conversion

/// Method
 Float inputArg0;
 SetValue(inputArg0,

iConverterInput["AverageTemperature"],
0);

Float outputArg0;

 /// Call Conversion Method
 TemperatureConverterPublishDirectedFunc(

inputArg0, outputArg0);

 /// Convert outputs to Byte array

iConverterOutput["Temperature"] =
BitConverter::GetBytes(outputArg0);

 }
 break;

} ...
} ...

 119

...
const unsigned int CoordinateConverterID = 0;
const unsigned int WindDirectionConverterID = 1;
const unsigned int WindSpeedConverterID = 2;
const unsigned int TemperatureConverterID = 3;

...

Figure E-7 Sample code from “AttributeConverterIDs.h”

o ConverterLibCommon.h, ConverterLibCommon.cpp

These files contain supporting function declaration and implementations for

developer to convert given byte array to Simple Data Types. Some snapshots of

“ConverterLibCommon.h” and “ConverterLibCommon.cpp” files are given in

Figure E-8 and Figure E-9.

Figure E-8 Sample code from “ConverterLibCommon.h”

...

/// Convert given byte array to Int32
extern void SetValue(System::Int32% iArg, array<Byte>^ iSrc,

int iIndex);

/// Convert given byte array to Int64
extern void SetValue(System::Int64% iArg, array<Byte>^ iSrc,

int iIndex);

/// Convert given byte array to Float
extern void SetValue(System::Single% iArg,

array<Byte>^ iSrc, int iIndex);

/// Convert given byte array to Double
extern void SetValue(System::Double% iArg,

array<Byte>^ iSrc, int iIndex);

...

 120

 Figure E-9 Sample code from “ConverterLibCommon.cpp”

o Other files

The interpreter also generates MS Visual Studio .NET 2005 project and other

necessary files for developers who have this tool with default settings needed for

compilation and makefile templates for developer who have only command line

tools.

/// Convert given byte array to Int32
void SetValue(System::Int32% iArg, array<Byte>^ iSrc,

int iIndex)
{
 iArg = BitConverter::ToInt32(iSrc, iIndex);
}

/// Convert given byte array to Int64
void SetValue(System::Int64% iArg, array<Byte>^ iSrc,

int iIndex)
{
 iArg = BitConverter::ToInt64(iSrc, iIndex);
}

/// Convert given byte array to Double
void SetValue(System::Double% iArg, array<Byte>^ iSrc,

int iIndex)
{
 iArg = BitConverter::ToDouble(iSrc, iIndex);
}

/// Convert given byte array to Single
void SetValue(System::Single% iArg, array<Byte>^ iSrc,

int iIndex)
{
 iArg = BitConverter::ToSingle(iSrc, iIndex);
}

