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ABSTRACT 

 

 

 

AN INTEGRATED INCIDENT DETECTION METHODOLOGY WITH 

GPS-EQUIPPED VEHICLES 

 

 

 

Demiroluk, Sami 

M.S., Department of Civil Engineering 

Supervisor: Dr. Hediye Tüydeş 

 

August 2007, 109 pages 

 

Recurrent congestion in urban traffic networks, especially on arterials, is a growing 

problem. Non-recurrent congestion, mainly due to incidents, only aggravates the 

problem. Any solution requires monitoring of the network, for which many 

developing countries, such as Turkey, do not have the traditional surveillance 

systems on arterials mainly due to high costs. An alternative solution is the 

utilization of Global Positioning System (GPS) technology, which is increasingly 

used in traffic monitoring. It is easy and cheap to obtain the GPS track information, 

even in real-time, from a probe-vehicle or a fleet of vehicles; and spatial variation of 

speed and travel time of the vehicle(s) in a network can be determined. GPS-based 

data, especially with only one probe-vehicle, would not provide information on the 

concurrent states of upstream and downstream traffic, needed to define the state of 

traffic in a network. To overcome this obstacle, a methodology based on statistical 

analysis of archival traffic conditions obtained through different sources is proposed 

to analyze traffic fluctuations and identify daily traffic pattern. As a result, bottleneck 
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and resulting queues can be detected on a corridor. Thus, it enables detection of non-

recurrent congestion and queues that may result from incidents.  

 

The proposed methodology is tested on a corridor the roadway between METU and 

Kızılay of İnönü Boulevard. The results show that the methodology can effectively 

identify bottleneck locations on the corridor and also an incident observed during the 

data collection is detected correctly by the proposed algorithm. 

 

 

Keywords: Incident detection, Bottlenecks, Intelligent Transportation Systems, GPS, 

GIS 

 



 

vi 

ÖZ 

 

 

 

GPS TEÇHİZATLI ARAÇLARLA BÜTÜNLEŞİK VAKA TESPİTİ YÖNTEMİ 

 

 

 

Demiroluk, Sami 

Yüksek Lisans, İnşaat Mühendisliği Bölümü 

Tez Yöneticisi: Dr. Hediye Tüydeş 

 

Ağustos 2007, 109 sayfa 

 

Kentsel trafik ağlarında, özellikle de arterlerde tekrarlayan sıkışıklıklar artan bir 

sorun teşkil etmektedir. Genellikle vakalardan kaynaklanan tekrarlanmayan 

sıkışıklıklar ise bu sorunu daha da kötüleştirmektedir. Bu konuda önerilebilecek 

herhangi bir çözüm trafik ağının izlenmesini ve Türkiye gibi gelişmekte olan 

ülkelerde ana arterlerinde yüksek maliyet nedeniyle mevcut olmayan trafik denetim 

sistemlerini gerektirmektedir. Trafik izlemede artarak kullanılan alternatif bir çözüm 

ise Küresel Konumlandırma Sistemi (GPS) teknolojisinin uygulanmasıdır. GPS takip 

verisinin bir tahkikat aracından yada araç filolarından gerçek zamanlı olarak bile elde 

edilmesi kolay ve ucuzdur; aynı zamanda araçların hız ve seyahat sürelerinin 

mekansal değişimi de belirlenebilir. GPS verisi, özellikle tek bir tahkikat aracıyla, 

traffik durumunun belirlenmesi için gerekli olan aşağı ve yukarı akım trafik 

koşullarının eş zamanlı durum bilgisini sağlamaz. Bu engelin üstesinden gelmek için, 

trafikdeki dalgalanmaları analiz etmek ve günlük trafik şablonunu belirlemek için, 

değişik kaynaklardan elde edilen arşivsel trafik durumlarının istatistiksel analizine 

dayanan bir metodoloji önerilmiştir 
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Böylelikle bir koridorda dar boğazlar ve bunun sonucu olarak oluşan kuyruklar 

belirlenebilir. Bu sayede tekrarlanmayan sıkışıklıklar ve vakalardan kaynaklanan 

kuyruklarin belirlenmesi de sağlanılabilir. 

 

Önerilen metodoloji, İnönü Bulvarının ODTÜ ve Kızılay arasındaki kalan bölümü 

üzerindeki koridorda test edilmiştir. Sonuçlar, metodolojinin koridordaki 

darboğazları etkili bir şekilde belirlediğini göstermiş, hatta veri toplama işlemi 

sırasında karşılaşılan bir vakanın tesbiti önerilen algoritmayla doğru şekilde 

yapılmıştır. 

 

 

Anahtar Kelimeler: Vaka tespiti,Dar boğazlar, Akıllı Ulaşım Sistemleri, GPS, CBS 
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CHAPTER 1 

 

INTRODUCTION 

 

 

 

Congestion in urban traffic networks, especially on arterials, is a growing problem. 

Congestion due to incidents only exacerbates the problem. But, the major difference 

between everyday traffic congestion and incident induced one is that the former is 

recurrent while the latter, non-recurrent. Although both results from situation of 

“flow exceeding capacity”, daily congestion is generally due to regular high demand 

levels, whereas, incidents are mostly due to capacity losses, irregular and can not be 

forecasted a priori. Therefore, different strategies are needed for recurrent and non-

recurrent congestion. Recurrent congestion might be solved by demand management 

policies such as diverting vehicles to an alternative route, or by supply management 

strategies, such as lane reversals, etc. Such solutions unfortunately cannot be used for 

incident-based congestion as they require preplanning and organized deployment, 

most likely location-based. 

 

Incidents may cause long queues on the roadway, slowing down or even stopping of 

traffic flow. Previous research by Sullivan (1997) and Ozbay et al. (1997) shows that 

delays due to incidents are related with the type and duration of the incident, the 

number of lanes blocked, and the number of vehicles involved. When an incident 

blocks one or more lanes of traffic flow, a queue builds in the upstream of the 

incident. This queue grows and so do the delays until the incident is cleared and 

traffic flow is restored. Developing any strategies for incident management requires 

the understanding of basic characteristics of traffic flow and their interactions under 

incident conditions. 
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Incident detection can be regarded as the most crucial step of the overall incident 

management activities. Because, any delay in this step can cause longer queues, 

consequently longer incident recovery period and secondary accidents. Incident 

detection necessitates a reliable surveillance system, which may include one or more 

of available incident detection technologies; sensor-based, probe-based and driver-

based. 

 

Among various incident detection technologies, sensor-based ones are generally 

integrated in the roadway infrastructure system. Since they are embedded in 

pavement or installed roadside, they give fixed point or short-section traffic 

information extracted from vehicles passing the sensors (Parkany and Xie, 2005). 

Most popular of these technologies is the loop detectors and they are primary 

component of traffic management and incident detection systems on freeways in 

developed countries such as the USA. Even in the USA, they are not generally 

extended to arterials and for a developing country such as Turkey; the problem is 

more difficult, due to lack of availability of such technologies except for very limited 

use. Probe-based technologies are mobile and use sensors carried in vehicles to 

gather traffic information. In addition to sensor-based and probe-based technologies, 

incident detection can be made via mobile reports which are reports of incidents from 

drivers and service patrols. 

 

1.1  Problem Definition 

 

Although they are widely used, there are some drawbacks of sensor-based 

technologies. First, they are not easily expandable and adding more measuring 

devices to a surveillance system is extremely costly (Petty, 1997). Secondly, there 

are high maintenance costs due to excessive wear as they are installed in or near a 

roadway. Third and most important disadvantage of these systems is that they are 

fixed at one point, so information from a sensor is location based. This information is 
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not sufficient to realize traffic flow on arterials where spatial variation of traffic flow 

is very complex. Therefore, there is a need for an incident detection system which is 

cheap and capable of capturing the spatial variation of traffic flow on arterials.  

 

With current advances in information, computing and communication technologies, 

GPS-based traffic data collection is becoming a cheaper way when compared with 

cost of installing sroadway based sensors. Furthermore, Quiroga & Bullock (1999) 

states that GPS provides consistency, automation, finer levels of resolution, and 

better accuracy in measuring travel time and speed than traditional techniques 

(Quiroga & Bullock, 1999). From this perspective, probe vehicle methods using 

Global Positioning System (GPS) devices, provide a good alternative to traditional 

point-based sensors. A GPS device in a probe vehicle can transmit the vehicle’s 

position and velocity information with time tag at a pre-selected frequency to a 

control center. When this GPS track data is associated with the underlying traffic 

network the obtained traffic information can be used for traffic monitoring and even 

for incident detection.  

 

The main drawback of traffic surveillance with GPS especially by a single probe 

vehicle is that while spatial variation of traffic flow in the network can be monitored, 

downstream and upstream traffic conditions cannot be determined concurrently. In 

other words, unlike fixed sensors, the traffic flow cannot be monitored at multiple 

locations simultaneously. However, historical traffic information of network can be 

used to forecast expected traffic conditions and compared with current conditions to 

overcome this shortcoming. In such an approach, bottlenecks causing recurrent 

congestion must be detected in order to differentiate between queues due to incidents 

and recurrent ones. 

 

The goal of this study is to develop an integrated and low-cost incident detection 

methodology, applicable for both freeways and arterials using GPS equipped probe 

vehicles. Such a method requires selection of a corridor to be studied. It might be 
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reasonable to choose a main corridor since it can be monitored without further 

investment for dedicated probe vehicles and has a high possibility and priority for 

incidents. The network representation of the corridor is important, as well as the 

segmentation of it, which should be performed based on physical and operational 

changes, characteristic reasons such as “black spots” along it. 

 

An essential part of the proposed methodology is the creation of an archival database 

for the corridor. The archival data needed includes determination of time-dependent 

traffic characteristics of the corridor links for selected time windows and confidence 

intervals for them, link speed variation parameters, slow regime parameters. These 

data are needed mainly to perform a retrospective bottleneck analysis necessary to 

determine recurrent congestion locations in the corridor. In this step, bottlenecks and 

their impact zones are detected by a search algorithm to avoid detecting a recurrent 

bottleneck falsely as an incident. Finally, a real-time incident detection algorithm is 

proposed which utilizes and integrates information produced in previous steps to 

detect incident with a single GPS equipped vehicle. 

 

1.2 Organization of the Thesis 

 

In Chapter 2, first, the review of incident management and necessary steps are 

summarized and the popular technologies and techniques used in incident detection 

are presented. Then, the literature on incident detection algorithms is reviewed in 

detail, followed by a review of GPS/Geographic Information Systems (GIS) use in 

traffic management and incident detection. 

 

In Chapter 3, challenges in incident detection are discussed and the proposed 

methodology is described in detail. The steps to develop an integrated methodology 

for incident detection with GPS equipped vehicles are presented. The proposed 
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algorithms for bottleneck and incident detection are studied step-by-step in this 

section. 

 

In Chapter 4, the developed methodology is tested for a selected study corridor, a 

portion of İnönü Boulevard in Ankara. The probe vehicle data analyzed to derive to 

corridor characteristics is checked. The methodology is tested using the corridor 

characteristics and the results of bottleneck analysis. Finally, incident detection 

algorithm is tested by a real-life incident witnessed during data collection. 

 

Chapter 5 presents conclusions and recommendations for future research. The 

improvements to increase the applicability of the methodology are discussed. 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

 

 

Traffic congestion and delays are two major problems that we face in traffic 

management. Increasing rate of car ownership exacerbates the situation and makes it 

an everyday problem. Building new roads or increasing the capacity of the existing 

ones offers a partial solution, however a) it may not be economically and physically 

feasible for the most urban arterial roadways and b) the delays may not stem from 

persistent lack of capacity, such as in the case of incidents. 

 

Before suggesting any long-term and big-budgeted solutions for incident 

management, it is important to study the traffic congestion phenomenon and its 

possible causes. One way to classify traffic congestion is to look at the frequency of 

the problem categorized as i) recurrent and ii) non-recurrent congestion. Recurrent 

congestion is the delays in the peak-hour traffic mostly due to high demand 

compared to existing capacity, while non-recurrent congestion is caused by traffic 

incidents, such as vehicle disablements, cargo spills, and accidents (Ozbay and 

Bartin, 2003). Incident management efforts deal with minimization of non-recurrent 

congestion, as non-recurrent congestion can be decreased by proper utilization of 

resources. 

 

In this chapter, first the steps of incident management are summarized. Then, the 

technologies used in incident detection are briefly explained. Literature on freeway 

and arterial incident detection algorithms is reviewed and finally potential of GPS in 

transportation studies are investigated and the studies on GPS-based incident 

detection are reviewed. 
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2.1 Incident Management 

 

Incident management aims minimization of impacts of an incident (such as lack of 

safety and delay). Four stages of an incident management approach are commonly 

defined as: i) incident detection, ii) incident response, iii) incident clearance, and iv) 

incident recovery which are summarized in Figure 2.1 and discussed in further detail 

below. 

 

At first, these four stages can be seen only sequential but they, in most cases, may be 

carried out at the same time. For example, while an incident response team is 

dispatched; alternative routes can be offered to motorists. Figure 2.2 shows the flow 

of incident management process. 

 

 
 

Figure 2.1 Steps of incident management (Ozbay & Kachroo, 1999) 

On scene traffic management 

Detection/ 

verification 

Response Clearance Recovery 

Traveler information dissemination 

Incident 

occurred 

Incident 

verified 

Incident 

response 

Incident 

cleared 

Traffic flow 

restored to 

normal

Detection  Time Response Time Clearance Time Recevery Time 

Time



 8

 

 
 

Figure 2.2 Incident Management Framework                                                      

(adapted from Ozbay and Kachroo, 1999) 
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i) Incident Detection/Verification 

 

This phase is the start point of incident management activities. To generate a 

response strategy, first the incident should be detected. Detection can be automatized 

by using relevant traffic data processed by computer-based algorithms. Such 

algorithms mostly use detector data from freeways comparing traffic conditions 

between upstream and downstream flows to decide about a potential incident at a 

given location. Alternatively, detection can be made by other drivers passing through 

or by police patrols. Reports made by other drivers, mostly via cell phones, are not 

always reliable, as certain specific information on an incident is necessary for 

generating quick and proper response. On the other hand, whenever available, closed 

circuit cameras might be very useful for verification of incident information, which 

provides exact location, severity, type, existing traffic conditions.    

 

One major aspect in this phase is the congestion effecting and effected by the 

detection. Most major incidents are detected within 5-15 minutes; however, minor 

incidents may go unreported for 30 minutes or more (Cambridge Systematics, 1990). 

On the other hand, early detection of an incident is important for preventing 

congestion, since early detection allows early response and recovery actions. 

Otherwise, significant traffic queues build up due to lane blockage and bottlenecking 

in case of incidents, especially during peak hours.  

 

ii) Incident Response 

 

In Traffic Incident Management Handbook (2000), incident response is defined as 

“dispatching the appropriate personnel and equipment, and activating the appropriate 

communication links and motorist information media as soon as there is reasonable 

certainty that an incident is present”. Since the most important objective is safety, 

whenever needed, emergency response teams and equipment should be dispatched to 
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an incident scene as soon as incident verified. This may require interagency 

communication between police, fire department, rescue units, and others.  

 

In current incident management practice, the process of calling in different agencies 

is carried out by a dispatcher at traffic operations center (Ozbay and Kachroo, 1999). 

Meanwhile, incident-related information can be disseminated by means of 

commercial radio broadcasts, variable message signs, route guidance systems, etc. 

Moreover, the decision should be made on whether any traffic flow would be 

diverted, based on estimated incident delay, number of lanes blocked, and type and 

severity of the incident. During off-peak hours and minor incidents, demand may not 

exceed the capacity and the impact would be less. In such cases, although the flow is 

disrupted, it may not be necessary to divert if the remaining capacity is enough for 

traffic operations to continue. In the case of major incidents, diverting traffic flow 

can be important for network efficiency and public safety, as well as to protect the 

incident scene and provide for rapid and safe clearance (Sawaya et al., 2005). If the 

flow is to be diverted, it is important to choose alternative routes with enough 

capacity in order not to create excessive congestion on the alternative routes.  

 

iii) Incident Clearance 

 

Incident clearance involves timely handling of incident scene. This operation may 

include tow truck operations, the removal of wreckage, and the cleanup of material 

spills and debris. In case of some special incidents, like hazardous material 

(HAZMAT) spills, incident clearance takes more than usual cases as HAZMAT 

teams are required for response.  

 

iv) Incident Recovery  

 

Recovery consists of three tasks: a) restoring traffic flow at the site of the incident;  

b) preventing more traffic from flowing into the area and c) preventing congestion 
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from spilling across the traffic network (PB Farradyne, 2000). Diverting upstream 

traffic to an alternative route(s) in the response step can decrease recovery period. 

However, capacity of an alternative route may not be sufficient; or there may not be 

an alternative route at all. At this point, other steps become more vital, as decreasing 

recovery period totally depends on duration of other steps. 

 

2.2 Technologies Used in Incident Detection 

 

Incident detection requires collection and processing of traffic data. Type of 

technologies used in data collection affects the reliability of the data and, 

consequently the reliability of incident detection. In this section, data collection 

technologies are classified based on the source of information as sensor-based, 

probe-based and mobile reports. Capabilities and characteristics of these are 

discussed in detail below. 

 

2.2.1 Sensor-based Technologies 

 

These technologies are generally built as a part of infrastructure system. They might 

be embedded into pavement, or installed near roadside. Sensor-based technologies 

provide fixed point or short section traffic information from the vehicles passing over 

them. 

 

Loop Detectors 

 

The oldest and most widely used sensor technology is the inductive loop detector. 

This sensor is composed of two main parts: a controller cabinet and an inductive loop 

which is embedded beneath the pavement (Petty, 1997). When a vehicle passes over 

the loop, the electrical properties of loop changes (PB Farradyne, 2000) and then this 

change is recorded by controller. This record can be used to calculate volume and 
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occupancy. Occupancy, related to density, can be defined as the percent of time that 

a detector is indicating a vehicle presence over a total time period, and it can change 

depending on vehicle spacing (FHWA, 1990). Although they are in use for decades, 

they suffer from poor reliability due to continuous weathering and their maintenance 

might lead to serious disruption of traffic flow especially at congested roadways 

(Petty, 1997). 

 

Magnetometers 

 

This technology was initially developed as an alternative to loop detectors for special 

locations where steel adversely affects loop detector performance such as bridges 

(PB Farradyne, 2000). Similar to loop detectors, they detect presence of a vehicle 

when the earth’s magnetic field around them is disturbed. Magnetometers are easier 

to install and more maintainable than loop detectors (Parkany & Xie, 2005). 

However, their main disadvantage is that they cannot measure occupancy. 

 

Microwave Radar 

 

Microwave radar detectors mainly have been used in law enforcement and traffic 

management to monitor vehicle speeds (FHWA, 1997). These sensors transmit 

microwave energy onto a detection area and vehicle presence and speed are detected 

by frequency changes in the return signal (FHWA, 1997 & PB Farradyne, 2000). 

Unlike aforementioned sensors which require dismantling the pavement, microwave 

radar is a non-intrusive detector, which can be mounted on a structure above the 

roadway surface. They are relatively smaller, and easier to install than loop detectors 

and magnetometers and they can detect traffic flow on multiple lanes. However, they 

can interfere with other microwave devices in their vicinity (Parkany & Xie, 2005). 
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Infrared Sensors 

 

Infrared sensors are also non-intrusive detectors. There are two types: active and 

passive sensors. Active infrared sensors direct a beam of energy toward a 

background and a portion of that beam is directed back to its source, which detects 

vehicles according to changes in returning signal. On the contrary, passive infrared 

sensors do not transmit energy but measures amount of energy emitted by objects to 

sense vehicles in their field of view. Active infrared sensors can measure presence, 

speed, volume, and occupancy and vehicle classification. Passive infrared sensors 

measure the same traffic parameters except for speed. Although they may give very 

accurate information, infrared sensors are very sensitive to environmental conditions 

such as vibrations, fog, rain, and dust (PB Farradyne, 2000). 

 

Ultrasonic Sensors 

 

Ultrasonic sensors transmit electronic sound wave signals and a receiving unit 

detects vehicles. Similar to microwave radar, they detect presence of a vehicle on the 

basis of shifts in the return signal (FHWA, 1990). These sensors can measure speed, 

presence and classification of vehicles. Ultrasonic sensors are reliable, durable and 

require little maintenance (Parkany & Xie, 2005). However, their performance can 

be affected by air turbulence and environmental conditions. 

 

Acoustic Sensors 

 

These passive sensors utilize microphones along with signal processing technology 

to associate audible sounds with vehicles for detection. These sensors can measure 

presence, speed, volume and occupancy. They work well under all lighting 

conditions and in wide temperature and humidity ranges. Inference between the 

noises of multiple vehicles is the main drawback of this technology (FHWA, 1997). 
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Video Image Processing 

 

Video image processing (VIP) systems sense presence of vehicles by monitoring 

specific zones in the video image of a traffic flow to determine changes between 

successive frames. VIP systems include one or more video cameras, a 

microprocessor system to digitize and to process the video images and software to 

interpret this data and to detect vehicles in traffic flow. The life cycle cost of VIP 

system is lower than loop detectors for most cases. Moreover, their installation and 

maintenance is easy and also their location is flexible. However, their performance 

can be affected by shadows from vehicles in adjacent lanes and light reflections from 

other objects. Also, the vehicles hidden by another vehicle cannot be detected by 

these systems. 

 

2.2.2 Probe-based Technologies 

 

These technologies employ devices such as GPS or electronic toll collection tags that 

have capability to locate position of probe vehicles carrying them and to transmit this 

information to roadside readers or a traffic management center. Their most important 

feature is that they can easily detect spatial variations in the traffic which cannot be 

captured by fixed point sensors.  

 

Automatic Vehicle Location 

 

Automatic Vehicle Location (AVL) systems are used for tracking location of a 

vehicle at a particular time. These systems include in-vehicle transponders which 

communicate with a reference point such as cellular phone towers, signposts or 

satellites to locate position of a vehicle. Travel time information can be computed at 

an information center by comparing the vehicles position at certain intervals and this 

information might be used as input for incident detection. The main advantage of 



 15

these systems is that they can be easily expanded by increasing the number of 

equipped vehicles (Wang and Sisiopiku, 1998). AVL systems use following 

technologies for locating vehicles: 

 

• Dead reckoning and map-matching: These systems make use of the 

internal compass and odometer, indicating distance traveled, of a vehicle and 

calculate its position by measuring its distance from a known starting point. 

Due to low accuracy compared to other AVL technologies, dead reckoning 

and map-matching are not widely used. 

• Signpost: This is a relatively accurate and inexpensive AVL system used by 

vehicles which have a fixed route such as transit vehicles. Antennas which 

are placed on places on the vehicle’s route record the time at which vehicle 

passes by.  

• Ground-based Radio Navigation: These systems are based on series of a 

series of receiving antennas within a metropolitan area installed by an AVL 

vendor. AVL equipped vehicles broadcast a radio frequency signal to nearby 

receiving antennas. By measuring the time it takes for the signal to travel to 

the antenna, the distance between vehicle and antenna can be determined. 

• Global Positioning System: The most commonly used AVL system is the 

global positioning system (GPS), operated by U.S. Department of Defense. 

GPS uses a network of 24 satellites to locate objects on earth. The position of 

an object is determined measuring how long a radio signal takes to reach the 

object from multiple satellites. 

 

Automatic Vehicle Identification 

 

Automatic Vehicle Identification (AVI) systems use an in-vehicle unit such as a tag 

or transponder and roadside transmitters to uniquely identify vehicles when they pass 

through a detection zone. This technology is used for electronic toll collection, 

electronic congestion pricing and fleet control (Parkany and Xie, 2005). Electronic 
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toll collection systems are used in incident detection by Mouskos et al. (1999) and 

Hellinga and Knapp (2000) suggesting that AVI based incident detection can provide 

comparable performance to loop detector based incident detection methods. 

 

2.2.3 Mobile Reports 

 

This category includes the manual incident reports from service patrols and road 

users. 

 

Highway Service Patrols 

 

Highway service patrols are trained drivers who cover a particular area of highway, 

report a problem, monitor traffic operations (FHWA, 1997). Service patrols are used 

to monitor and assist vehicles and generally operate on freeways in the USA. The 

most important advantage of service patrols is that an incident is detected and 

verified at the same time. Moreover, service patrols can respond to incidents and this 

greatly minimizes verification, response and clearance time. However, due to the 

high cost of service patrols, this service cannot be expanded easily. Therefore, their 

coverage is generally very limited and the limitations on the number of service 

patrols result in long incident response time (Parkany & Xie, 2005). 

 

Cellular Phone Reports 

 

Since coverage and number of cellular phones used along roads increase everyday, 

cellular phone reports offer an alternative method for incident detection. There are 

several studies that evaluated the effectiveness of using cellular phones for incident 

detection (Skabardonis et al., 1998; Tavana et al., 1999; Mussa and Upchurch, 1999), 

showing that detection rate is closely related to traffic flow conditions, penetration of 
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cellular phone ownership among drivers, willingness to report an incident and 

number of erroneous calls.  

 

2.3 Incident Detection Algorithms 

 

Incident detection algorithms can be divided into two categories: i) algorithms for 

freeway, which generally employ sensor-based technologies, and ii) arterials, which 

generally use probe-based technologies. Freeway incident detection algorithm studies 

starts as early as 1960s in the USA and many of incident detection algorithms are 

developed for freeways until 1980s. After that time, incident detection on arterials is 

started to be studied, since most of freeway algorithms cannot be readily transferred 

to arterial roadways. In this section these two categories are reviewed and the 

traditional technique for algorithm performance evaluation is discussed. 

 

2.3.1 Freeway Incident Detection Algorithms 

 

These algorithms generally utilize traffic measurements at one location to predict 

incidents. There is an extensive literature on freeway incident detection algorithms, 

of which some major studies are reviewed in this section. 

 

Comparative Algorithms 

 

Comparative incident detection algorithms compare the value of measured traffic 

characteristics at upstream and downstream detectors, such as occupancy or speed, to 

a pre-defined threshold value. These algorithms check occupancies at upstream and 

downstream detectors. The basic idea is that an incident causes significant increase in 

upstream occupancy while downstream occupancy decreases at the same time. The 

current values are compared with predefined threshold values using decision trees. 

An incident is declared by the algorithm, if threshold values are exceeded.  
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California algorithms are the most widely known comparative algorithms. In these 

algorithms, occupancy differences between two neighboring fixed detectors are 

analyzed in a decision tree structure. First, the occupancy difference between 

upstream and downstream detectors is compared. Then, the relative difference 

between upstream and downstream detector, which is the ratio between them, is 

compared with the upstream occupancy and the downstream occupancy. There are 

ten versions of California algorithm, among which some are reported to produce 

better results for detection with less time to detect (FHWA, 1990). 

 

Statistical Algorithms 

 

These algorithms utilize statistical techniques to investigate whether observed loop 

detector data is significantly different from predicted traffic characteristics. The two 

important statistical algorithms are the standard normal deviate (SND) algorithm 

(Dudek et al., 1974) and Bayesian algorithm (Levin and Krause, 1978). 

 

The working principle of SND algorithm is that a sudden change in the traffic state 

suggests the occurrence of an incident. The SND is defined as the number of 

deviations of a value traffic control variable from its mean. The algorithm compares 

one minute average occupancy measurements with archival values of mean and the 

SND. If the SND exceeds a critical value, occurrence of an incident is reported. 

 

The Bayesian algorithm uses Bayesian statistical techniques to determine the 

likelihood of an incident signal caused by a real incident. Like California algorithms, 

relative difference of the occupancies of upstream and downstream detectors used as 

traffic characteristic, however, conditional probability using Bayesian statistics is 

calculated in this case. 
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Time Series Algorithms 

 

These algorithms assume that traffic flow follows a predictable temporal pattern and 

compare short-term predictions with the current traffic state. Two well-known time 

series algorithms are AutoRegressive Integrated Moving Average (ARIMA) model 

(Ahmet and Cook, 1980) and High Occupancy (HIOCC) algorithm (reviewed in 

Parkany and Xie, 2005). 

 

In the ARIMA model, it is assumed that differences between a current traffic 

characteristic such as volume or occupancy and the characteristic in the last period 

can be predicted by averaging errors between the predicted and observed traffic 

characteristic in the last three time periods. The errors are expected to follow a 

normal pattern, whereas an abnormal error suggests occurrence of an incident. The 

confidence intervals are attached to short-term traffic forecasts and incident is 

detected if the observed values are outside the confidence interval. 

 

Similarly HIOCC algorithm monitors the changes on detector data (occupancy), 

however, using a one-second time interval. The algorithm assumes that a vehicle 

moves slowly over a detector only if it is in a queue caused by an incident. However, 

traffic queues might be also related to shock waves or bottlenecks, this algorithm fail 

to identify the cause of a queue (Parkany and Xie, 2005). 

 

Smoothing/Filtering Algorithms 

 

These techniques try to eliminate short-term noises and irregularities which might 

cause false alarms from traffic data. After extracting short-term noises, such as 

compression waves, it becomes easier to detect incidents. The well-known 

algorithms in this category are double exponential smoothing algorithm, low-pass 

filter algorithm (Stephanedes and Chassiakos, 1993) and the discrete wavelet 

transform and linear discriminant analysis algorithm (Samant and Adeli, 2000). 
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The double exponential smoothing algorithm, proposed by Cook and Cleveland 

(1974), involves forecasting a traffic characteristic and comparing it to real 

observation. Incidents are detected using a tracking signal, which is the sum of errors 

between previous observations and forecasted values. The basic idea is that the 

tracking signal would be around zero under incident-free conditions (Petty, 1997). 

 

The low pass algorithms, which are also known as Minnesota algorithms, discard 

sharp and high frequency characteristic fluctuations from the data and tolerate low 

frequency fluctuations which are related to incidents to pass through a filter. The 

algorithm basically compares the occupancy levels of two neighboring station 

according to 3-minute and 5-minute moving average occupancies and smoothing 

techniques reapplied to occupancies to better distinguish between incident and 

bottlenecks. 

 

Discrete wavelet transform and linear discriminant analysis algorithm extracts 

incident-related conditions from the data to minimize false alarms. First, discrete 

wavelet transform, an effective tool used in signal and image processing, is applied 

to raw data and the finest resolution coefficients which represents random 

fluctuations in the traffic are discarded. Then, linear discriminant analysis is used on 

the filtered signal for further feature extraction and reducing the dimensionality of 

input data for incident detection. 

 

Traffic Modeling/Theoretical Algorithms 

 

Traffic modeling algorithms utilize the basic concepts of traffic flow characteristics 

to predict traffic behavior under incident conditions. The dynamic model (Willsky et 

al., 1980) and the McMaster algorithm (Forbes and Hall, 1990) are the main 

representatives of this category.  
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The dynamic model is based on the use of macroscopic dynamic model to predict 

traffic characteristics over sections of a freeway. Two methods are used in this model 

to describe flow-density relationships: the multiple model method for system 

identification and the generalized likelihood ratio method for detecting abrupt 

changes (incidents) in dynamic traffic system.  

 

The McMaster algorithm, which employs the catastrophe theory to model abrupt 

changes in the flow, requires two dimensional analysis of traffic data. Catastrophe 

theory takes its name from the sudden discrete changes that occur in one variable of 

interest while other related variables exhibit smooth and continuous changes (Black 

and Sreedevi, 2001). This algorithm use the assumption that speed changes sharply 

when traffic changes between a congested state and free flow state while volume and 

occupancy changes smoothly to detect incidents which result in congestion on the 

roadway. 

 

Artificial Intelligence Algorithms 

 

Artificial intelligence techniques include a set of procedures that apply inexact or 

black box reasoning and uncertainty in decision making and data-analysis processes 

(Parkany & Xie, 2005). Most widely used artificial intelligence technique in incident 

detection is the artificial neural networks (ANNs). There are many researchers 

developed incident detection algorithms using ANNs (Ritchie and Cheu, 1993; Dia 

and Rose, 1997; Abdulhai and Ritchie, 1999; Adeli and Samant, 2000). ANNs 

contain many simple processing elements and neurons that are densely 

interconnected. The idea is to train the ANN by feeding it with input and 

corresponding output data like a human brain. Training process enable ANN to 

develop relation rules among its neurons. In the case incident detection, input data is 

traffic characteristics such as volume, speed or occupancy at upstream and 

downstream detectors and output data is decision about the state of traffic derived 

from the input data (Ozbay & Kachroo, 1999) 
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2.3.2 Arterial Incident Detection Algorithms 

 

Unlike freeways, urban arterials feature a variety of traffic signals, turning 

movements and easy lane changing of vehicles; hence, they create a more complex 

and challenging conditions for incident detection (Khan and Ritchie, 1998). So far, 

there are a few studies in this area. 

 

Han and May (1989) developed a comparative algorithm to detect incidents on 

arterial roadways using volume and occupancy data from loop detectors. The 

detector data is smoothed and passed through a module to identify problems from 

detector malfunctions. This algorithm has capability to detect type of operational 

problems (lane blockage, approach blockage, arterial blockage) from operating 

conditions of detectors in adjacent lanes.  

 

The most well known study on arterial incident detection is the ADVANCE project 

(Bhandari et al., 1995). In this study, a data fusion algorithm used to process the data 

from three different data sources (loop detector, probe vehicle, anecdotal source) for 

incident detection, in which three sources are integrated and overall likelihood of 

occurrence of an incident is determined. The system also estimates the duration and 

the impact of incidents on link travel times as a function of the type of incident.  

 

Khan and Ritchie (1998) used artificial neural networks in a modular architecture to 

detect different types of operational problems such as lane-blocking incidents, 

special events and detector malfunctions on signalized arterials. This algorithm is 

developed based on loop detector data collected cyclic basis. The modularity concept 

enables to decompose the task of detecting type of problems and produce an overall 

system of models which individually outperforms single neural network models. 

 

A fuzzy logic-based incident detection algorithm for signalized diamond 

interchanges is developed by Lee et al. (1998). This algorithm is capable of detecting 
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lane-blocking incidents as a part of a real-time traffic-adaptive control system. 

Fuzzy-logic approach is chosen to develop an effective solution to these systems 

which must operate in real-time, require approximate reasoning and exhibit 

uncertainty. 

 

Most recently, Lee and Hwang (2001) utilize the multinomial logit model in arterial 

incident detection. They assume incident detection process as a discrete choice 

problem, where incident and incident-free conditions are two choices. In this 

algorithm, an incident index, representing the probability of occurrence of an 

incident, expressed as the utility of a multinomial logit model (Parkany and Xie, 

2005). Volume and occupancy are used as traffic variables and the error term 

assumed to follow Gumbel distribution to estimate the probability of an incident. 

 

Although the above algorithms produce good results, they are tested with specific 

detector configurations and in a particular network. The sensors may not always be 

installed to all arterials and the characteristics of traffic networks might be very 

different from others.  

 

2.3.3 Performance Evaluation and Measures 

 

There are three traditional measures used to evaluate the performance of incident 

detection algorithms: detection rate (DR), false alarm rate (FAR), and time to detect 

(TTD). DR can be defined as the ratio of the detected number of incidents to the 

actual number of incidents during a certain time period. FAR is number of incorrect 

detected incidents to the total number of algorithm applications. TTD is the average 

time between the occurrence of an incident and until the actual detection of it. 

Ideally, an effective incident detection algorithm is expected to minimize FAR and 

TTD at the same time to maximize DR. 

 



 24

These measures of performance cannot be treated as they are completely 

independent. There is tradeoff between shortening TTD and lowering false alarm 

rates. Another concern is that there is no standard in the evaluation methodology of 

incident detection algorithms. Therefore, it is not rational to compare the algorithm 

evaluation results (Ozbay and Kachroo, 1999). California Center for Innovative 

Transportation ITS Decision web page gives a summary of reported performance 

measures of different incident detection algorithms as can be seen in Table 2.1. It 

must be stated that there is no standard procedure for evaluation; therefore, actual 

performance of these algorithms can significantly vary from reported. Because, there 

are variety of factors may affect the performance of the algorithms in real life such as 

operating conditions, geometric conditions, environmental factors, etc. (Weil et al., 

1998). 

 

 

 

Table 2.1 Summary of reported performance measures of well-known 
algorithms (Black and Sreedevi, 2001) 

 

California (Basic) 82 1,73 0,85
California #7 67 0,134 2,91
California #8 68 0,177 3,04
Standard Normal Deviate 92 1,3 1,1
Bayesian 100 0 3,9
Time Series ARIMA 100 1,5 0,4
Exponential Smoothing 92 1,87 0,7
Low-Pass Filter 80 0,3 4
Modified McMaster 68 0,0018 2,2
Multi-layer Feed Forward 
Neural Networks 89 0,01 0,96
Probabilistic Neural Networks 89 0,012 0,9
Fuzzy Set Good Good Up to 3 minutes quicker

than conventional algorithms
Logit- Based 96.3 5,3 Good

Algorithm DR (%) FAR (%) TTD (minutes)
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2.4 GIS/GPS Use in Incident Detection 

 

GIS are computer-based systems which enable storage, manipulation, display and 

analysis of geospatial information. The integration of multiple functionalities within 

a seamless environment eliminates necessity to conquer all of the functions 

individually by users (Thill, 2000). Different from other database management tools, 

GIS can add geographic referencing to data and then visually display it with spatial 

distribution over a region. User-friendly environment and geospatial capabilities 

makes GIS a popular tool widely used by different disciplines such as geography, 

transportation, and city planning, archeology, etc. 

 

GIS can create a suitable environment for conducting spatial analyses necessary for 

transportation management systems especially as a part of intelligent transportation 

systems (ITS). ITS require collecting and integrating large amounts of data and this 

data can be easily handled, accessed and displayed by a GIS if it is geographically 

referenced. GIS allow users to integrate transportation data such as accidents, 

pavement conditions and speed and relates those data to a point or a link in a 

geospatial referencing system (Ozbay and Kachroo, 1999). 

 

GPS is a satellite-based navigation system which provides position, velocity and time 

information anywhere on the earth. The baseline constellation comprises 24 satellites 

uniformly distributed in six orbital planes approximately 20200 km above the earth. 

This configuration ensures that at least four satellites are visible at any time and 

anywhere on the earth. The current constellation has 27 satellites and guarantees at 

least seven satellites are visible at any location (Ochieng and Sauer, 2002). Although 

in the past, the system provided two different services, Standard Positioning Service 

for civilians and Precise Positioning Service for military users, today, civilians can 

access GPS signals free with an increased accuracy from 100 meters to 20 meters for 

95 percent of time. Taylor et al. (2001) reported that this error is often much lower 

than this. 
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GPS receivers provide a fast and easy method for obtaining position information in 

real-time and this information can be easily employed within a GIS, since the basic 

GPS position data is compatible with common GIS location specifications (Taylor et 

al., 2000). It should be noted that position data can be referenced to roadway with the 

help of a GIS, whenever a digital road map is available. 

 

2.4.1 GIS/GPS for Transportation 

 

Due to ability to give spatio-temporal information in real-time, GPS is a good 

alternative for traffic congestion and management studies. Moreover, with current 

advances in information, computing and communication technologies, GPS-based 

traffic data collection is becoming a cheaper way when compared with traditional 

methods. Using the position and time information from GPS receivers, it is easy to 

obtain the travel time and speed data, and from this data additional congestion 

measures such as congestion index, acceleration noise, and mean velocity gradient 

can be derived (D’Este et al., 1999).  

 

In transportation studies GPS receivers are used in probe vehicles to collect travel 

time and speed data. The probe vehicles can be either “active”, equipped specifically 

for data collection or “passive”, already in the traffic for other purposes. Generally, 

active probe vehicles are employed for data collection since a specific corridor or 

region chosen in traffic studies. Many researchers used GPS equipped probe vehicles 

for travel time studies (Quiroga, 1997; Quiroga and Bullock, 1998) and measuring 

traffic system performance (D’Este et al., 1999). In each of these studies, single 

active probe vehicle is employed to collect position and speed data assuming a probe 

vehicle represents average characteristics of traffic flow. Time dependent traffic 

characteristics, such as average speed, running time and acceleration noise are 

calculated by repeatedly running probe vehicle on a chosen route.  
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Nonetheless, GPS-based systems have some weaknesses as well. For example, 

satellite visibility is a must in order to use GPS devices. Obstructions such as high-

rise buildings or clouds can easily affect satellite visibility and so the precision of 

GPS. New methods such as dead reckoning method, differential GPS method and 

map-matching method help to improve accuracy and reliability of GPS data and thus 

make GPS data more consistent (Guo et al., 2000).  

 

2.4.2 GIS/GPS Use in Incident Detection 

 

There is very limited research on the use of GPS equipped vehicles in incident 

detection. The first example of GPS-equipped probe vehicle use in incident detection 

is the ADVANCE (Advanced Driver and Vehicle Advisory Navigation Concept) 

project in Chicago (Bhandari et al., 1995). In this project, Bhandari and his 

colleagues used GPS equipped probe vehicles to collect travel time information and 

fused this information with loop detector data and anecdotal information. The data 

fusion proved to be more effective for incident detection than each source 

individually. 

 

Li (2004) employed GPS equipped probe vehicles to collect traffic data and for 

incident detection. She used real-time GPS data for estimating travel time for 

incident detection and found that ral-time link travel times and differences in travel 

times between two adjacent time intervals were distributed bivariate-normally in 

incident free conditions. The outliers of the distribution were considered as incident. 

She developed a bivariate model for incident detection and reported satisfactory 

detection and false alarm rates. Moreover, she investigated the minimum number of 

probe vehicles for reliable travel time estimation. The results showed that in different 

traffic conditions, the sample size of probe vehicles is different and if the speed 

profile of probe vehicles is analyzed for travel time estimation, fewer probe vehicles 

than normally required are needed. Then, a fuzzy model was developed to analysis 
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speed profiles, and travel time could be estimated using a single probe vehicle. 

Satisfactory estimates were obtained in both non-incident and incident conditions.  

 

Another recent study in incident detection with GPS equipped vehicles is conducted 

by Basnayake (2004). In this study an automated incident detection system using 

transit vehicle equipped with GPS as a passive probe vehicle fleet was developed. 

The two important problems were addressed, namely the need for a GPS positioning 

technique that provides better performance in urban environments and an accurate 

probe-based incident detection algorithm. In the study High Sensitivity GPS, which 

offers better performance by providing higher level of system availability from 

conventional GPS, is suggested for positioning of transit probes in the city. Then, the 

bias introduced by using transit vehicles as passive probe vehicles minimized by 

proposed transit travel time modification algorithms which estimated total dwelling 

time at stops. The results of study showed that the algorithm was capable of detecting 

incidents less than 5 minutes and with a comparable detection rate to well-known 

incident detection algorithms but false alarm rate was very high. 

 

Besides the potential in incident detection, GPS has some drawbacks: while spatial 

variation of traffic flow in the network can be monitored by GPS, downstream and 

upstream traffic conditions cannot be determined concurrently by a single probe 

vehicle and also GPS cannot give occupancy or volume data. These two problems 

make it difficult to apply and to adapt well-established incident detection algorithms 

which generally detect incidents using volume and occupancy data from two adjacent 

loop detectors. Therefore, there is a need for a GPS-based incident detection 

algorithm, which is capable of predicting current traffic state by using historical 

traffic data such as link speeds. 
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CHAPTER 3 

 

 METHODOLOGY 

 

 

 

Incident management starts with incident detection, which can be performed in 

various ways including loop detectors, highway service patrols, etc. However, these 

methods and technologies are not always applicable everywhere either due to high 

installation costs or traffic conditions such as complex arterial flow patterns. In this 

chapter, the challenges of incident detection will be discussed first. Later, a method 

based on traffic monitoring via GPS equipped probe vehicles is proposed. As such a 

method requires constant comparisons with historical traffic conditions, an archival 

database of time-dependent traffic characteristics is needed, which is discussed in 

further detail.  

 

3.1 Challenges of Incident Detection 

 

There are several challenges in incident detection. Due their complex behavior of 

traffic flow on arterials, incident detection on these roadways is not as easy as 

controlled freeways. Moreover, due to the budget constraints, developing countries 

cannot invest on ITS, which are essential in incident detection. Although GPS might 

offer a cost-effective alternative in incident detection, it has some limitations that 

need additional consideration. Even above challenges are overcome, the cause of a 

queue (whether bottleneck related or incident related) is needed to be determined. In 

this section, these major issues of an incident detection algorithm are discussed. 
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3.1.1 Freeway versus Arterial Incidents 

 

Much of the previous work on incident detection has focused on limited access 

highways. Since traffic flow generally is not interrupted much by geometric and 

operational constraints, it is expected that traffic on a freeway moves with a uniform 

speed. An unexpected event can alter this situation and irregularities occur in speed, 

occupancy and volume on a section of a freeway. Using the sensors densely installed 

on freeways along with an incident detection algorithm, incident can be easily 

detected  

 

Although, types of incidents on arterials are not different than on freeways, there are 

factors that make it harder to develop incident detection methods for the former. Han 

and May (1989) identify the following differences between highways and arterial 

those prevent application of existing incident detection algorithms developed for 

freeways to arterial roadway: 

• limited access points and reduced median and marginal friction on 

freeways 

• fewer geometric constraints and a more homogenous vehicle mix on 

freeways than surface streets.  

• more uniform traffic speed and flow on freeways than on arterials. 

• more complex problem of managing incidents on arterials than on 

freeways.  

Nonetheless, non-recurrent congestion due to incidents on arterials should be 

handled. Because, during the peak travel hours, traffic demand on the arterial roads 

in urban networks are used at or above capacity, and even a small disturbance can 

generate significant delay (Raub and Schofer, 1998). Moreover, delay brings 

associated costs of increased fuel consumption and pollution. 
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3.1.2 Case of Developing Countries 

 

In developed countries with mostly complete transportation infrastructures and 

increasing use of ITS, such as in the USA, incident management can be handled 

efficiently on freeways and automated for certain tasks. For example, in California, 

closed circuit TV cameras, loop detectors and changable message sign units are used 

for assisting to incident management efforts. (Hall & Mehta, 1998)  

 

However, these technologies are expensive to implement and to maintain. In addition 

to their high cost, there are other constraints for application of ITS. In Yokota (2004), 

these constraints are stated as follow: a) an underdeveloped road network, b) severe 

budged restrictions, c) explosive urbanization and growth, d) lack of human and 

physical resources for complicated maintenance and operation, e) high employment, 

coupled with less demand for automation. In addition to above problems, lack of 

archival traffic information on traffic network makes it difficult to employ ITS 

technologies even above problems are got over. This is because archival data is 

essential for calibration and proper operation of ITS tools. Thus, in order to able to 

apply ITS technologies in developing countries, a cheap and easy way should be 

found.  Utilization of GPS, cellular phone networks and GIS might be a solution for 

developing countries to overcome the constraints above.  

 

3.1.3 Incident Detection with GPS Technology 

 

To develop incident detection tools using high technology with low cost options, 

probe vehicles might be equipped with GPS receivers. The collected GPS data can be 

automatically transferred to a traffic information center via cellular phone network, 

even in real-time. Using transit vehicle fleets might be a cost effective way of the 

data collection, since they are continuously moving in the network and mostly 

equipped with GPS devices for monitoring purposes already. The data can be related 
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to roadway network in the information center using GIS and link speeds and travel 

times might be estimated and using special algorithms even incidents can be 

detected. There are some examples of usage of these systems in transportation in 

developing countries. 100 taxis equipped with GPS are used in a study of arterial 

speeds in Guangzhou, China, and the technique is found to be very powerful for 

estimating travel time (Zou et al., 2005). 

 

One simple example, which can be related to incident detection, could be automatic 

crash notification (ACN) systems, which is introduced by automobile manufacturers 

to increase automobile attractiveness. In this system, when the airbags activate, an 

on-board cell phone automatically calls the emergency center and provides relevant 

authorities with the exact location of the crash by GPS, the name of the vehicle 

owner, and other registration information (Yokota, 2004). Bachman and Preziotti 

(2001) evaluated the ACN Field Operational Test conducted by National Highway 

Traffic Safety Administration and they reported potential benefits of an ACN system 

as reduced emergency center notification times, improved knowledge of the vehicle 

location, and estimates of crash severity and the probability of serious injury. 

 

GPS equipped vehicles can fail to detect in two ways. First, an incident cannot be 

detected if it has little or no impact on the traffic, as the speed of GPS equipped 

vehicle is not affected by the incident. Secondly, incidents cannot be detected if no 

probe vehicle passes through the impacted zone of the incident while the fluctuations 

due to the incident last in the network. It is very difficult to detect incidents if it does 

not significantly affect traffic, or there are not enough probe vehicles covering the 

area of interest spatially and temporally. If the number of GPS equipped vehicles 

increase, their spatial distribution might improve and the probability of missing 

incidents in the space could be decreased. 
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3.1.4 Bottlenecks versus Incident Related Congestion 

 

Another challenge that incident detection algorithms are faced with is that it might 

not always possible to predict the cause of slow traffic regime and queue formation 

on a section of a roadway. Actually, there might be two possible reasons: 

bottlenecks, activated at the same place at the same time due to recurrent congestion, 

and incidents, which are random events mostly decreasing capacity of roadways. A 

probe vehicle hitting a queue in the traffic would not know, if there is an incident in 

the downstream locations or simply daily congestion. Any method to separate 

chronic bottlenecks from incident related congestion should utilize historical 

information of traffic conditions at a location.  

 

One critical issue on this subject is the time-dependent nature of bottlenecks. Due to 

time-dependent variability in the demand, bottlenecks can occur and cease in a time-

dependent manner. While there may be regular congestion related queues during 

peak hours at a location, there may be incident-related ones at the same location 

during off-peak periods. Thus, existence and impact of bottlenecks have to be treated 

as time-dependent concepts, and consequently variables. After a time-dependent 

analysis of bottlenecks, a better distinction between them and incident related 

congestions might be made. 

 

3.2 A Framework for Incident Detection Using GPS-Equipped Probe 

Vehicles 

 

Using GPS technology in incident detection assumes that one or more probe vehicles 

equipped with GPS devices travel in the network. The required number of probe 

vehicle in the network is an open ended question. Ideally, if all vehicles in the 

network are probe vehicles equipped with GPS, we would not miss a single incident 

in the network (Parkany and Xie, 2005; Petty, 1997). This is very unlikely as even 
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the most advanced computer systems currently cannot store and process such data. It 

is possible to have only one dedicated probe vehicle covering whole or a portion of 

the network, in which case it may take a long time to collect required traffic 

information. As an alternative, a fleet of vehicles equipped with GPS can give further 

information and even enables to determine the traffic conditions at different 

locations. It is very likely to have GPS data from vehicles that travel randomly in the 

network (such as, from taxi fleets or private cars) or along certain routes in the 

network (such as transit bus fleets). 

 

When the number of probe vehicles on the same corridor increases, a better picture 

can be drawn due to better concurrent spatial information from the probe vehicles. 

The potential of multi-vehicle GPS traffic data collection producing a “temporary 

virtual loop detector couple” is a complex phenomenon which would depend on, the 

gap between vehicles, mean speed of the vehicles in the segment, and stimulus 

response functions of drivers, etc. Figure 3.1, depicts a schematic representation of 

multiple probe vehicle case, where some of their routes overlap along the same 

corridor. At certain points, where the headway between Probe 1 and Probe 2 is small 

enough, temporarily they can act as a couple for certain time periods and give 

simultaneous information about current state of traffic; this is very similar to loop 

detectors except the fact probe vehicles are moving, as well. 

 

Unless Probe 1 and Probe 2 are dedicated vehicles to follow each other, they would 

have different routes with certain time/space headway on the same corridor, and the 

coupled behavior would cease after certain time/points, when the headway between 

the probe vehicles increases or one of them diverges from the shared route. In that 

case, they would act as two single probe vehicles. Therefore, even it is intended to 

use multiple probe vehicles on a corridor; first, an algorithm for a single probe 

vehicle data should be developed. 
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Figure 3.1 Coupling effect between two GPS-equipped probe vehicles 

 

 

 

The GPS-based incident detection framework proposed in this study starts with the 

selection of a corridor to be monitored (see Figure 3.2). It is important to choose a 

corridor, which is continuously traveled by vehicles equipped by GPS devices 

already in order to minimize cost of monitoring and increase the probability of 

having a probe vehicle on the corridor. If any part of the corridor is not covered or 

traveled frequently enough by the available GPS equipped vehicles, dedicated probe 

vehicles are needed. 
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Then the selected corridor is divided into links (or even smaller segments) 

considering geographic and operational features of the network. This step is 

necessary to control and to limit the level of the detail lost by averaging the traffic 

measures over long links. This step is followed by corridor characterization using 

archival traffic data, which is necessary for a probe vehicle based methodology. It 

should be noted that, due to time-dependent nature of the traffic conditions as well 

bottlenecks and incident related queues, the traffic data collection and the required 

database has to be designed in a “time-dependent” fashion, as well. Time-dependent 

corridor characteristics database (TCCD) should include traffic measures, at 

minimum, travel times, link speeds, slow regime parameter, link, etc., which can be 

generalized to store more parameters regarding traffic safety measures, incident 

locations for further studies. 

 

Retrospective bottleneck analysis enables the determination of chronic bottleneck 

locations. This step is crucial in incident detection, since the chronic bottlenecks 

might be falsely detected as incidents. Then, real-time data from the probe vehicles 

utilized to detect incidents. There might be two options: single source incident 

detection algorithm where multiple probe vehicles can be treated separately as single 

probe vehicles or multiple source incident detection algorithm where coupling effect 

between them is employed. As mentioned earlier, the coupling effect is a very 

complex and also a temporary phenomenon. Therefore, in this study, only single 

source incident detection algorithm will be developed. The incident detection 

algorithm will detect incidents using an acceptable lower limit for link speed, a 

statistical and time-dependent value derived for each link in time-dependent corridor 

characteristics database. Finally, an incident is reported if real-time link speed is 

considerable smaller than the acceptable lower limit in a link at a time when 

bottleneck is not expected. 
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Figure 3.2  Proposed framework for incident detection with GPS technology 
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3.2.1 Corridor Selection 

 

There might be links on a corridor covered by multiple vehicles, which is preferred 

from the point of statistical analysis. Also, the corridors studied are most probably 

main corridors on a network and can be monitored without further investment for 

dedicated probe vehicles, and possibility of congestion on those corridors is high. 

 

One consideration in the selection of a corridor might be the level of service 

provided on the corridor. If the corridor includes a main arterial, most of the links are 

expected to be congested resulting in a low level of service. In such a corridor, an 

incident will definitely lead to long queues and even stoppage of service since 

congestion. Also the low level of service is associated with high traffic flow value, 

which is expected to be associated with high incident rate to some extend.  

 

3.2.2 Corridor Representation and Segmentation 

 

Once the corridor is selected, a proper traffic network preparation for it is necessary. 

While we can work with many representative graphs for certain traffic problems, a 

study based on GPS technology requires a geographically correct digital traffic 

network which can be obtained from registered satellite imagery or GPS track data 

collected on the study corridor. Because, the collected GPS data is going to be 

mapped on the network to derive link characteristics. Also, it is very crucial to 

include all physical and operational changes on this map which might be a possible 

reason for traffic queues. Moreover, some links on a corridor might be divided to 

smaller segments due to their length or characteristic reasons such as “black spots”. 

 

Segmentation on a corridor would be based on geographic features such as, 

interchanges, ramps, intersections, roundabouts, etc as well as operational features 

such as traffic signals, one-way regime start and end points, etc. Besides such 
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measures, the length of a link itself is an important factor affecting the success of 

incident detection. While it is practical and meaningful to exclude minor conflict 

points (such as, parking lot entrance/exit points to the corridor, or stop/yield signs) in 

the traffic flow, the level of aggregation should not exceed certain levels. According 

to Quiroga & Bullock (1998), traditional approach based on long segments 

connecting contiguous physical discontinuities (or links) is not sufficient to 

characterize localized effects of congestion properly with GPS. Especially, on 

highways, where entrance and exit points are very limited, long traffic queues can be 

stay undetected for an unacceptable time unless small segments are chosen as links. 

 

Black spots might also be used as nodes to divide links into small segments. Since 

the probability of occurrence of an accident on these locations is higher than the 

other links, the probability of incident and lane blockage is also high. Hence, 

according to characteristics of a corridor, a more discrete traffic network might be 

generated if it is necessary. 

3.2.3 Archival Data Warehousing 

 

Without the archival data, probe vehicle information is only a route-based travel 

data. To identify current traffic state on a link –or a segment of a link- historical 

traffic conditions and patterns of the link –or the segment- has to be determined as a 

base case. While it is possible to get archival traffic data via other traffic 

measurement techniques, such as loop detectors, or infrared sensors, it is also 

possible and probably cheaper to generate it from track logs of GPS-equipped 

vehicles. There might be previous GPS data from fleets such as transit buses, taxis, 

cargo trucks, etc., where the vehicles are continuously tracked; if not, as a starting 

step, probe vehicles can be used to collect data to create a data warehouse for an 

acceptable time period. Data by GPS receivers cannot provide meaningful 

information that can be used directly to compute link speeds. The track data should 

be mapped onto a digital road map, for which a separate algorithm is needed. 
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Time-dependent Corridor Characteristics Database (TCCD) 

 

As mentioned above, most of the data would be time-dependent, which requires a 

“time-dependent” data warehouse design. Time-dependent link speeds and their 

variation due to link characteristics are the main parameters for this study. In this 

methodology, an algorithm developed by Unsal (2006) is used to calculate time-

dependent link travel times, used in the calculations of following parameters: 

• Link Speeds: Instantaneous speed of a vehicle might fluctuate over the link 

length as well as over time as in “time of the day”. While the latter captures 

the randomness of traffic conditions over time, the former represents a 

relatively small and negligible information in terms of traffic conditions, if 

link definitions are made appropriately. Therefore, for a chosen link of a 

selected length, the speed of a probe vehicle can be assumed constant with an 

average value equal to “length over link travel time (difference of link 

entrance and exit times as shown in Figure 3.3)”. For the sake of simplicity, 

this “average link speed” value assumed constant along the link i itself, for a 

selected time window τ , will be called “link speed” from this point forward.  

• Slow Traffic Regime Parameter: This parameter ( i
τγ ) is derived for 

retrospective bottleneck analysis, which is a control function taking Boolean 

values. 1i
τγ =  indicates slow traffic regime on link i at time τ  , if link speed 

is less than a limit value λ  ( ivτ λ≤ ) and other cases by 0. 

• Link Speed Variation Parameter: This parameter ( i
τδ ) is derived for 

bottleneck detection algorithm and it defines the change in the link speeds 

between two consecutive links at time τ . It is calculated for every travel data 

as “0”, “1” and “-1” corresponding to cases of constant speed, jump in speed, 

drop in speed between two consecutive links. Later, the average of the 

individual route-based speed variations is calculated to get the characteristic 

link speed variation values, i
τδ . 
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For every travel of the probe vehicle over the same link at a selected time window, 

the link speed may change due to uncertainties in the demand, traffic operation. To 

represent the characteristics of traffic on the selected link the statistical average of 

the link speeds can be selected, calculated from multiple trips of probe vehicles. In 

these calculations, link travel time is defined as the time required for a vehicle to 

enter and exit from a link. An enter time (tin) and an exit time (tout) is needed to be 

determined using map-matched tracked data for link travel time calculation. These tin 

and tout can be detected, interpolated or estimated according to spatial distribution of 

GPS track data (see Figure 3.4). If there are GPS track data points matched to nodes 

at link entrance or link exit points, then tin and tout can be detected. Enter time might 

also be calculated by linearly interpolating the last GPS track data before the entering 

the link and first data on the link using the shortest path connecting these two points. 

Exit time might be calculated in the same manner, using last GPS track data on the 

link and the first data after the exit node. The worst case in travel time calculation 

occurs when no GPS track data can be matched to a link, which might be because of 

its short length or high speeds of the probe vehicle. In this case, the last GPS track 

data on the route before entering a link and the consecutive GPS track data after link 

exit are used to estimate enter and exit time. Further details of this algorithm are 

available in Unsal (2006). 

 

Using time-dependent link travel times from multiple observations calculated by 

TDA and link lengths, archival average link speed a iv τ and sample variance s for link 

i can be computed for a chosen time window τ  by 

 

1

1 ( )
n

a i i j
j

v v
n

τ τ

=

= ∑  (3.1) 
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Figure 3.3 GPS track data on a link representing different traffic conditions 

(from Unsal, 2006)  

 

 

 

where n is number of observations and subscript a  stands for archival values, and 

the sample variance is 
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The average link speed a iv τ  is a random variable that depends on the state of traffic, 

number of observations and other fluctuations along the link. True mean link speed 

for chosen time window can be estimated from observations. As sample size 

increases, the sampling distribution of sample means approaches that of a normal 

distribution. Therefore, if the sample size is large, it can be assumed a iv τ  follows a 

normal distribution ( , )i
iN n

τ
τ σμ  with a mean link speed of i

τμ  and standard 

deviation of i
τσ . a iv τ  and 2( )a isτ  are unbiased point estimators of mean i

τμ  and 

standard deviation i
τσ , respectively. But, if an interval value for the mean link 

speeds is needed, α-percent confidence interval can be determined where the *z  

tin
1 
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2 
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n 
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1
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value corresponds to z-score limits for / 2α  making the area under the normal curve 

between *z−  and *z  equal to α . 

 

* *( ) ( )Pr ( )a i a i
a i i a i

s sv z v z
n n

τ τ
τ τ τμ α

⎛ ⎞
− < < + =⎜ ⎟

⎝ ⎠
 (3.3) 

 

For every link, the estimated mean link speed and its standard deviation might differ 

resulting in different α-percent confidence intervals as shown in. Figure 3.4. 

 

Time-dependent corridor characteristics are calculated from the archival traffic data. 

However, traffic characteristics can evolve over time. Therefore, all values in the 

corridor characteristics are needed to be updated when there is a new data input such 

as real-time GPS track data which makes it easier to represent traffic characteristics 

more realistically. 

 

 
 

Figure 3.4 Average link speeds and their estimated confidence levels 
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3.2.4 Retrospective Bottleneck Analysis 

 

Cassidy and Bertini (1999) states that flow rate can be 10% lower than that of prior 

to queue formation. At some locations a queue formed by a bottleneck affects other 

links so the perturbation in the network propagates to the other upstream links and 

even queues might be formed at these links which makes harder to characterize the 

traffic flow at the links. Also, locations of the bottlenecks on the corridor should be 

determined so that the algorithm will distinguish between recurrent bottlenecks and 

the non-recurrent incidents. This step is crucial in order to decrease false alarm rate 

of the algorithm. 

 

In this methodology, a procedure for bottleneck detection is proposed in order to flag 

bottleneck locations and their approximate impact zones by a cross-link analysis. 

Bottlenecks are expected to cause low speeds or congested traffic conditions in the 

upstream followed by a sudden jump in the speed in the downstream. For this step, 

the data from the time-dependent corridor characteristics database is utilized. The 

proposed bottleneck algorithm is basically a search algorithm, which tries to detect 

bottlenecks by looking at the probability of a sudden speed jump at downstream. 

Then the detected bottlenecks are confirmed by the slow traffic regime on the 

upstream of the bottlenecks and slow traffic regime zone behind the bottleneck 

release is reported as bottleneck impact zone. 

 

As introduced previously, link speed variation parameter ( i
τδ ) is a step function 

showing speed difference between two consecutive links at τ . For the jth observation 

over a link l with a predecessor link k, if there is a jump in the speed of link l lvτ  

compared to link k kvτ , the function is equal to 1; if speed is approximately constant 

(that is within an interval of ( )k ivτ ψ± ), it is equal to 0, and if there is drop, it is equal 

to -1 as shown in Eq. (3.4) 
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For the above function, a threshold for significant change in speedψ  is defined to 

surpass temporal irregularities in traffic. Consequently, the link speed variation 

parameter a i
τδ  is calculated by 

( )
1

1 n

l l j
jn

τ τδ θ
=

= ∑  (3.5) 

 

As the constant speed is represented by “0” and a speed variation by “1” and “-1” 

which the resulting average parameter enables us to observe the significant jumps or 

drops in speed over the observations. Since bottlenecks are recurrent in nature, j
l
τδ  is 

expected to generate high positive value, by which a potential bottleneck location can 

be detected. Similarly, a high negative value ( l
τδ  close to “-1”) might suggest joining 

a queue. 

 

Finally, the algorithm matches the identified potential bottleneck locations with slow 

traffic regime at the upstream of these locations, using slow regime parameter l
τγ . 

The potential bottleneck locations without slow traffic upstream are discarded in the 

analysis. If there are multiple consecutive upstream links, where slow traffic regime 

is identified, these links are considered as the impact zone of the bottleneck, since it 

suggests that bottleneck related queue extends to those links. Bottleneck possibility 

index l
τφ at those links are set to “1”, and the procedure ends. 

 

 The steps included in retrospective bottleneck analysis can be summarized as 

follows: 
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Step 1. Check speed variations between consecutive links 

 If there is constant jump, define a bottleneck release 

Step 2. Check slow traffic regime on the upstream of bottlenecks  

 Match slow traffic regime with bottlenecks  

 Refine bottleneck locations by discarding unmatched locations  

Step 3. Check continuous slow traffic regime upstream of bottlenecks 

 Add the consecutive links with slow regime to bottleneck impact zone 

 Set bottleneck possibility index to “1” for the links in the impact zone 

 

Actually, it might be possible to estimate the length of probable impact zone of a 

bottleneck using probabilistic methods; however, this requires complex analyses and 

it is out of scope of this study. 

 

3.3 An Incident Detection Algorithm 

 

The final part of the methodology is the real-time incident detection algorithm. 

Similar to bottleneck analysis, where traffic state in the current link is compared with 

predecessor link, in the incident detection algorithm, basically current (real-time) 

link speed ivτ  is compared with a lower limit derived from archival link speeds ,a i lvτ . 

Unusual decrease in link speed is reported as a possible incident, if the location does 

not show a regular bottleneck potential for the given time window τ . 

 

For this part, first, location of an active (moving) probe vehicle is needed to be 

checked against the boundaries of the selected corridor. If the probe vehicle is inside 

the boundaries of the corridor, a spatial search can be employed to determine the link 

at which it is traveling. As soon as the link travel time is observed, the real time link 

speed ivτ  is computed for the most recent traveled link i, ivτ  is checked against the 

acceptable lower limit ,a i lvτ  which is defined as lower limit for α-percent confidence 
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interval calculated in TCCD below which the probability occurrence of an 

observation is (100-α) percent. If the real-time average link speed is less than the 

acceptable lower limit, this means that the traffic flow is unexpectedly slow at that 

link. Then, the algorithm checks whether there is a bottleneck possibility index i
τφ  

associated to that link at that time of day or not. If the link is a known bottleneck 

location, then the algorithm reports bottleneck or incident related queue, which 

cannot be known conclusively. Otherwise incident possibility index i
τη is set to “1” at 

that link. 

 

When incident possibility index is set to “1” at a link by the algorithm, an additional 

check is needed to determine whether the vehicle is really at the link where incident 

occurred or it is in the impact zone of a incident at the downstream. For this purpose, 

when possibility of incident is set to “1” by the algorithm at a link, this index is 

stored until a incident possibility index at a downstream link speed is “0”. Then, the 

real-time link speed of consecutive link is checked against archival lower limit.If it is  

below the acceptable lower limit, then the incident possibility index set to “1” for this 

link. For the following downstream links same procedure is applied by keeping the 

incident possibility index of upstream links. When the real-time link speed exceeds 

the acceptable lower limit at a downstream link, the location of incident is reported 

as the last upstream link and the consecutive upstream links with incident possibility 

index “1” are considered as “impact zone” of the incident then the procedure is 

terminated. The pseudo code for the incident detection algorithm can be seen in 

Figure 3.5. 

 

Incident detection based on real-time link speed compared to a confidence interval of 

the mean link speeds and bottleneck possibility may not be distinctive enough for 

certain traffic conditions: seasonal change in the demand levels and consequently the 

level of service on a link may result in significant low speeds below the lower limits, 

setting incident detection possibility index to “1” falsely. To avoid such false alarms, 

the time-dependent link speed lower limits defined based on the time-of-the-day 
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(such as morning peak, noon off-peak, etc.) can be replaced by more precise 

measures that take additionally day-of-the-week, or the seasonal characteristics into 

account. 

 

 

 

 
 
For the currently traveled link i in the time period τ ,  
 

Step 1: Calculate link speed ivτ  and check against the archival lower limit, ,a i lvτ  

      Check the 1i
τη −  value to see if the link is in the impact zone of an incident      

Step 2a: If  ivτ <  ,a i lvτ , 

check bottleneck possibility value i
τφ  

If 1i
τφ = ,  

       report “Bottleneck OR Incident related queue” 
Otherwise, 
       Set incident possibility 1i

τη =  
                                              Select the consecutive link, go to Step 1 

  Step 2b: Otherwise  
If the predecessor link 1 1i

τη − =  
-Report possible incident for Link (i-1) 
-Check k

τη s for every upstream link k until the first 0k
τη = ; 

- report the impact zone as the sequence of links with 1k
τη =  

 
 

 

Figure 3.5 Pseudo-code for the proposed Incident Detection Algorithm  
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CHAPTER 4 

 

CASE STUDY: İNÖNÜ BOULEVARD 

 

 

 

The methodology developed in the previous chapter is tested on a corridor with high 

demand monitored via two probe vehicles equipped with GPS devices. In this 

chapter, after a brief description of the corridor and the data collection process, 

traffic characteristics of it are determined from GPS track data for morning and 

evening peaks and noon off-peak period. Later, the GPS track data is analyzed with 

proposed methodology, locating recurrent bottleneck locations and their impact 

zones as a base for incident detection on the corridor in the future. 

 

4.1. Description of the Corridor 
 

The study corridor, Inonu Boulevard, starts from A1 entrance of METU and extends 

to Kızılay with a total length of 11060 meters, mostly consisting of arterial roads, 

grade-separated intersections and some surface streets. Many of the governmental 

agencies and business centers are located in Kızılay make this region one of the main 

attraction zones in Ankara. Traffic flow patterns towards and from Kızılay differ 

significantly, thus will be studied separately. While METU to Kizilay direction is 

denoted as the “inbound” direction, Kizilay to METU direction denoted as the 

“outbound” direction from this point on. (see Figure 4.1a and Figure 4.1b) 
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Figure 4.1a The Study Corridor from METU to BM3 
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Figure 4.1b The Study Corridor from BM3 to Kizilay 
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The start point of the study corridor is selected as the start of the boulevard right after 

the interchange in front of the entrance of METU in inbound direction. The curved 

parts of the intersection is excluded for sake of simplicity and for cross analysis of 

inbound and outbound directions.  

 

The map of the corridor includes selected benchmark (BM) points where bottlenecks, 

physical or operational changes exist on the road. The result of a parallel study on 

traffic safety showed that there is a black spot region between BM3 and BM2 in 

outbound direction. Therefore, at this location, segmentation is performed, as 

discussed in Chapter 3 and an additional link is created.  

 

First benchmark point (BM1) is selected as the Söğütözü interchange where vehicles 

diverge to 48th Street and merge from Söğütözü Street via ramps. The second 

benchmark (BM2) is selected as the start of a cloverleaf interchange connecting the 

İnönü Boulevard and the Konya Road, which is a state highway carrying everyday 

commuter traffic as well as intercity freight and passenger traffic. Between BM1 and 

BM2, there are three attraction zones: Armada, which is a popular shopping mall in 

Ankara, Ulusoy and Varan, which are the hubs of two well-known intercity bus 

service companies in Turkey (see Figure 4.1a).  

 

The third benchmark (BM3) is the intersection in Bahçelievler, a highly populated 

neighborhood with residential and business attractions, which connects 4th street to 

Inönü Boulevard. BM4 is another intersection connecting 7th street, Türk Ocağı 

Street and İnönü Boulevard. During the data collection, traffic was rerouted due to 

work zone at the link connecting BM3 and BM4 (see Appendix A, Figure A-1). 

Therefore, inbound traffic follows the links on 4th Street, Akdeniz Street, and 7th 

Street, which are all controlled by signalization, and it is longer than outbound 

direction between BM3 and BM4. 
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BM5, BM6, BM9, and BM10 are entrance and exit points of grade-separated 

intersections, one of which is shown in Figure 4.2. Since the special lanes for the 

grade-separated intersections are not used in this study, they are not shown on the 

traffic network. However, the locations of the special lanes are shown the figures on 

Figures 4.1a (with yellow color) and 4.1b. At BM7 and BM8, traffic is controlled by 

signalization. 

 

 

 

 
Figure 4.2 Grade-separated intersection at Bahcelievler 

 

 

 

4.2 Control Data Collection 
 

Data collection is performed by two different probe vehicles during morning peak (at 

08:30-09:30), noon off-peak (at 12:30-13:30) and evening peak (at 17:30-18:30) periods 



 

 54

in three different days. To obtain simultaneous data in the inbound and the outbound 

directions, one of the vehicles start to collect data from METU in the inbound direction 

while the other from Kızılay in the outbound direction, at the same time. The probe 

vehicles completed three laps during off-peak period and two laps during peak periods 

on the corridor. During the three-day data collection period, no special case or incident 

was reported and resulting in developing base case traffic analysis with everyday traffic 

congestion. The probe vehicles are accessorized with Magellan GPS receivers (Explorer 

400 and Explorer XL) connected to laptop computers providing track data with one-

second epochs.  

 

4.3 Corridor Analysis 
 

While the GPS track data can be displayed in a network, it does not provide any 

traffic data unless it is associated with a traffic network. Thus, first the track data is 

matched to the traffic network of the corridor, using a software called Track Data 

Analyst (TDA) developed according to the methodology proposed by Unsal (2006). 

This software comprises four sub modules: the first module enables users to convert 

a digital map of a traffic network to a geographical database; the second module 

imports GPS track data to a database, the third module matches GPS track data to the 

traffic network and the last module reports statistical measures on the average link 

travel times. 

 

First, a general corridor characterization is performed based on the average link 

speed values. Since the traffic patterns are very different for different time periods, 

the corridor speed profiles are developed for all three periods: morning peak, noon 

off-peak and evening peak periods. For every analysis, two graphs showing inbound 

and outbound traffic conditions are used to compare the effect of the demand at the 

same locations. Later, in addition to link speeds, slow regime and speed variation 

parameter are determined in a time-dependent fashion, as well. Later, all the derived 

traffic characteristics are used in the retrospective bottleneck detection algorithm, 
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which is utilized in incident detection methodology. Some sensitivity analyses on 

selected decision parameters are provided as a part of these analyses as well. 

4.3.1 Corridor Characterization 
 

Before employing the incident management methodology, the corridor characteristics 

are compared against on-site observations to verify the collected data. To 

characterize the study corridor, first, average time-dependent link speeds for morning 

peak, noon off-peak and evening peak periods are analyzed (see Figures 4.3a and 

4.3b). 

 

Inbound Traffic Characteristics 

 

In Figure 4.3a, it can be easily noticed that off-peak link speeds make an envelope 

over peak values which indicate effect of severe peak hour congestion for the 

inbound traffic. 

 

• At the beginning of the corridor, the average speeds during these three 

periods keep almost constant. In all three graphs, before BM2, at about 1800 

meters from the start, a major drop in speed (off-peak hour values drop from 

65 kph to 50 kph, peak hour values drop from 50 kph to 40 kph) is observed, 

even though it is not depicted as benchmark. Thus, it is labeled as point of 

interest (POI1). The reason of this drop is most probably the capacity 

decrease after BM1 around Ulusoy (see Appendix A, Figure A-2). 

 

• By BM2, the link speed reaches up back to nearly 60 kph after the ramp at 

that section and up to 70 kph showing an almost constant increase until about 

2600 meters from the start, then, link speeds are decrease constantly as the 

vehicles approach the intersection at BM3. 
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• Between BM3 and BM4, there is a slow traffic regime with some fluctuations 

over small distances. This is due to work zone on İnönü Boulevard, which 

causes to traffic flow to be rerouted to low capacity streets which are 

controlled by traffic signals at three different points. (For the sake of 

simplicity in representation, we will use same lengths for inbound and 

outbound direction between these two points. However, in the calculations, 

original link lengths in inbound direction are used.) 

 

• Between BM4 and BM5, at the end of the first link, where the traffic flow on 

a single lane, there is a relaxation and a drastic jump in average link speeds 

which suggests another point of interest (POI2) and indicates another 

bottleneck possibility on the upstream of the location.  

 

• Between BM5 and BM6, average link speeds increase which might be a 

continuous acceleration after the potential bottleneck point between BM4 and 

BM5.  

 

• Average link speeds decrease between BM6 and BM7, related to capacity 

decrease due to entrance of grade-separated intersection and traffic signals at 

BM7 (see Appendix A, Figure A-3). 

 

• Between BM7 and BM8, link speeds continue to drop due to separated traffic 

lanes and another traffic signal at BM8. After BM8, link speeds increase until 

the end of BM10 , at the end of which drop to low speeds might result from 

multiple sources, such as due to cars trying to enter to grade-separated 

intersection, or long waiting times and queues due to traffic signals on the 

intersection in front of Türkiye Büyük  Millet Meclisi (TBMM). 
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Figure 4.3a Overall 3-day link speeds averages in inbound direction

inbound 
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Outbound Traffic Characteristics 

 

As in the inbound direction, in the outbound direction, again off-peak link speeds 

make an envelope over peak values, which is sign of peak hour congestion in 

outbound direction as well. 

 

• First link outbound direction is the right after traffic signal in front of TBMM 

and vehicles increase their speeds until they join the traffic flow in the 

outbound direction of the corridor. Between BM10 and BM9, average peak 

hour link speeds are under 20 kph suggesting slow traffic regime ( seeFigure 

4.3b) This might be related to increase in demand due to vehicles joining to 

traffic flow from the exit of grade-separated intersection at BM10 or it might 

be caused by interaction between vehicles while they are trying to enter 

another grade-separated intersection at BM9. 

 

• Between BM9 and BM8, off-peak and peak averages are under 30 kph and 

again peak hour averages are lower, most likely due to queue at the traffic 

signal at BM9. 

 

• On the link connecting BM8 and BM7, there is a sudden drop in the link 

speeds in three time periods. Between BM8 and BM7, traffic is slower than 

the upstream, which might be effect of traffic lights at BM8, as vehicles 

generally waits at traffic signal at BM7 after traffic signal at BM8. 

 

•  After the traffic signal at BM7, there is a significant jump in average link 

speeds which suggest a release from a potential bottleneck at BM7.  

 

• Between BM6 and BM4, the link speeds of all three periods tend to decrease 

significantly. This might be the combined effect of traffic lights and the 

entrance of grade separated intersection before BM4. 
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Figure 4.3b Overall 3-day link speeds averages in outbound direction

outbound 
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• The declining trend in average link speeds continues between BM4 and BM3. 

The reasons of this slow traffic regime (around 20 kph) on this link might be 

multiple transit vehicle stop points, and traffic signal at BM3. 

 
• After slow regime on the link between BM4 and BM3, significant jump at 

first link between BM3 and BM2 suggests another bottleneck location at 

BM3. 

 

• After BM3, average link speeds increase continuously and after BM2, traffic 

flows at 80 kph on the average and this can be assumed as free flow speed for 

the arterial since there is no sign of congestion in observations.  

 
Comparison of Inbound and Outbound Traffic Characteristics 

 

Comparison of Figure 4.3a and 4.3b clearly shows that the average link speeds in 

inbound direction are generally slower than outbound direction. Moreover, peak and 

off-peak averages in the outbound do not deviate as much as in the inbound 

direction. These two properties indicate that there is always high demand in the 

inbound direction while outbound demand is lower than that. 

 

Another important finding, obtained from the comparative analysis of the inbound 

and outbound, is the opposite behavior between BM2 and BM3. Vehicles slowed 

down gradually in the inbound direction and speeded up gradually in the outbound 

direction, suggesting the existence of a “transition zone” from arterial to surface 

streets and vice versa, This behavior can be supported by the first signalized 

intersection at BM3, while there are only interchanges on corridor between the 

starting point of corridor and BM3. 

 

Between BM3 and BM4, slow traffic regime is present in both directions. Although 

there are two traffic signals in outbound direction, due to rerouting in the inbound 

direction traffic flow is controlled by signalization at four different locations. There 
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are multiple transit stops on the link between BM4 and BM3 in the outbound 

direction. 

 

Between BM4 and BM6, there are two links in inbound direction, while there is one 

link in outbound direction. The average of two links is very close the average link 

speed in outbound link. Between BM6 and BM7, outbound traffic is faster than 

inbound traffic due to tendency of vehicles to accelerate after the traffic light at 

BM7. After BM7, inbound and outbound average link speeds are similar and slow 

traffic regime is present both directions, especially in the peak hours. The last link in 

inbound direction after BM10 is significantly slower than the first link in outbound 

direction before BM10. This might be explained by same behavior between BM6 and 

BM7, which is the delay at traffic signal in inbound direction and acceleration after 

the traffic signal in outbound direction. 

 

4.3.2 Consistency of Link Speeds 

 

In addition to benchmark locations, the points which are considered as potential 

bottleneck locations are tagged as POIs. These potential locations will be analyzed 

more in detail here, using graphs of daily link speeds from two probe vehicles, as 

some of the traffic characteristics might be lost due to averaging over multiple day 

data. Actually, to observe the different patterns in the traffic flow at different time 

windows, we analyzed the lap-based link speeds; however, for the sake of simplicity 

in representation, instead of displaying many lap-based speed profiles in a single 

graph, the data collection period averages (average of 2-3 lapses) are displayed while 

the lap-based values are used in the quantified speed variation parameters. 

 

In the inbound direction, the average link speed graphs (see Figure 4.5a, 4.6a, and 

4.7a) show that the links before BM1 are sometimes traveled with slow speeds in 

peak hours, which means that demand is high in the inbound direction during peak 
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periods. However, this information cannot be generalized conclusively since link 

speeds on this link can be as high as 70 kph during the same period on different days. 

 

After POI1, there is a drop in average link speeds without an exception in any 

periods of any day, which might be due to capacity decrease in the link after POI1 or 

due to attraction zones between BM1 and BM2. Between BM2 and BM3, there is a 

tendency to increase in average link speeds but with no distinct pattern regardless of 

time of day. 

 

 Between BM3 and BM4, traffic is diverted to low capacity streets and they are 

always congested due to this special case which make that section a chronicle 

bottleneck location even in off-peak hours. 

 

After BM4, on the link which ends at POI2, there is a slow traffic regime. Therefore, 

this portion is considered as bottleneck Onsite observations show that this link is 

indeed a chronicle bottleneck location due to very low capacity. 

 

When the Figure 4.4a, 4.5a, and 4.6a are analyzed at the same time, it can be seen 

that traffic patters are very similar between POI2 and BM6. However, after BM6, 

only traffic patterns of morning peak and noon off-peak, which is slow traffic regime 

most of the time, remain similar until the end of the corridor, while there is more 

deviation in average link speeds in evening peak values. The reason might be 

demand is higher at working hours in inbound direction but in the evening; the 

demand is high in the outbound direction as the return trips from work or attraction 

zone start. 

 

In the outbound direction, between BM10 and BM7, the link speeds are very close in 

the morning peak and noon off-peak, while slow traffic regime is consistently present 

in evening peak. The jump after BM7 suggests a demand related bottleneck in this 

section activated in the evening peak hour (see Figures 4.4b, 4.5b and 4.6b). 
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Figure 4.4a Link speed versus distance in inbound direction in the morning peak 

inbound, am 
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Figure 4.4b Link speed versus distance in outbound direction in the morning peak 

outbound, am 
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Figure 4.5a Link speed versus distance in inbound direction in noon off-peak 

inbound, noon 
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Figure 4.5b Link speed versus distance in outbound direction in noon off-peak 

outbound, noon 
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Figure 4.6a Link speed versus distance in inbound direction in the evening peak 

inbound, pm 
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Figure 4.6b Link speed versus distance in outbound direction in the evening peak 

outbound, pm 
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Between BM6 and BM3, link speeds are similar and a gradual decrease is followed 

by a significant jump in link speed at BM3. Therefore, BM3 is regarded as another 

chronicle bottleneck location. 

 
After BM3, link speeds increase consistently in all time windows until BM2. After 

that point link speeds are high and around 80 kph. 

4.3.3 Probe Vehicle Biasedness 
 

Since we have two probe vehicles traveling at the same time, biasedness of data due 

to possible driver pattern should be checked against daily averages in the inbound 

and the outbound direction. As an illustrative example, average period speeds during 

all three periods (morning peak, noon off-peak and evening peak) for Vehicle 1 and 

Vehicle 2, respectively, traveling in the inbound direction are shown in Figures 4.7a 

and 4.7b. In these figures, neither of the drivers shows a constant slow or fast driving 

pattern compared to the overall average speed values. This suggests that the data 

collection process was not biased due to driver patterns. 

 

4.4 Time-dependent Corridor Characteristics Database 

 

Due to its dynamic nature, traffic flow should be analyzed using time windows in 

which the traffic characteristics can be assumed homogenous. In this study, three 

time windows, morning peak ( 1τ ), noon off-peak ( 2τ ), and evening peak ( 3τ ), are 

chosen prior to the control data collection. After data collection, GPS data is 

processed using TDA and link travel times are calculated for each lap. Then using 

the link lengths from the digital map, average archival link speeds a iv τ are calculated 

for each link i, and each time window from Eq (3.1) and (3.2) 
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Figure 4.7a Overall link speeds versus average speed of Vehicle 1 for the three periods 

inbound 
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Figure 4.7b Overall link speeds versus average speed of Vehicle 2 for the three periods 

inbound 
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In this study, sample size for link speeds is limited ( 20n < ), and both population 

mean μ  and standard deviation σ  are unknown. Therefore, t-distribution is assumed 

while estimating the population mean from the sample. Similarly, α -percent 

confidence interval for μ  for each link i , which is needed for defining an acceptable 

lower limit for link speeds ,a i lv τ in incident detection algorithm, is estimated from 

 

1 1
2 2

, 1 , 1
( ) ( )Pr ( ) ( )a i n a i n

a i n n i a i n n
s sv t v t
n nα α

τ τ
τ τ τμ α

− −− −

⎛ ⎞
− < < + =⎜ ⎟

⎝ ⎠
 (4.1) 

 

As an example, 95 percent confidence interval is chosen; however, the confidence 

interval in reality should be confirmed by on site observations. 

 

Tables 4.1, 4.2 and 4.3 show mean values and standard deviation of link speeds and, 

upper and lower limits for 95-percent confidence interval. Although the probe 

vehicles continuously moved along the corridor, it might be noticed that the number 

of observations on some link might be differ from others. These are the locations 

where GPS is disconnected or the locations where TDA cannot match GPS track data 

on to links. 
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Table 4.1 Corridor characteristics in the morning peak ( 1τ ) 

 

*LL(kph) *UL(kph)
1 10 43,29 17,74 30,6 55,98
2 10 48,88 12,95 39,62 58,14
3 10 56,66 10,69 49,01 64,31
4 10 44,88 8,87 38,53 51,23
5 10 48,28 8,19 42,42 54,14
6 10 56,05 9,01 19,6 62,5
7 10 60,91 6,57 56,21 65,61
8 10 65,24 8,66 59,05 71,43
9 10 65,47 8,87 59,12 71,82
10 10 51,79 19,68 37,71 65,87
11 10 12,25 6,37 7,69 16,81
12 8 10,14 3,76 7 13,28
13 10 21,50 13,50 11,84 31,16
14 10 20,31 13,14 10,91 29,71
15 10 16,20 11,76 7,79 24,61
16 10 12,55 3,31 10,18 14,92
17 10 31,27 9,25 24,65 37,89
18 10 46,24 13,64 36,48 56
19 10 23,31 12,94 14,05 32,57
20 10 20,05 12,76 10,92 29,18
21 10 28,10 10,94 20,27 35,93
22 10 39,22 6,07 34,88 43,56
23 10 15,99 12,45 7,08 24,9

25 9 37,00 6,05 32,35 41,65
26 10 29,57 17,84 16,81 42,33
27 10 21,85 10,57 14,29 29,41
28 9 27,56 10,11 19,79 35,33
29 9 13,06 7,39 7,38 18,74
30 10 42,79 4,61 39,49 46,09
31 10 27,88 10,96 20,04 35,72
32 9 22,07 6,91 16,76 27,38
33 9 36,78 13,93 26,07 47,49
34 9 41,75 6,21 36,98 46,52
35 9 57,16 5,43 52,99 61,33
36 9 74,97 6,61 69,89 80,05
37 9 79,22 8,27 72,86 85,58
38 9 75,77 6,40 70,85 80,69
39 9 78,57 7,31 72,95 84,19
40 9 84,85 5,69 80,48 89,22
41 9 78,62 9,71 71,16 86,08
42 9 77,21 6,88 71,92 82,5
43 8 61,05 5,61 56,36 65,74

95% Confidence 
Interval

O
U
T
B
O
U
N
D

I
N
B
O
U
N
D

Link Id n (kph) (kph)

1
a iv τ

1
a isτ

 
  (*) LL: lower limit 
       UL: upper limit 
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Table 4.2 Corridor characteristics in the noon off-peak ( 2τ ) 

 

*LL(kph) *UL(kph)
1 11 64,03 6,46 59,69 68,37
2 11 64,65 6,47 60,3 69
3 11 64,72 6,00 60,69 68,75
4 11 55,39 15,88 44,72 66,06
5 11 53,18 15,28 42,91 63,45
6 10 54,63 9,47 47,86 61,4
7 10 63,30 10,04 56,12 70,48
8 10 67,73 7,76 62,18 73,28
9 10 71,80 13,76 61,96 81,64
10 10 67,68 7,34 62,43 72,93
11 10 32,83 15,20 21,96 43,7
12 10 16,44 7,63 10,98 21,9
13 11 31,89 10,14 25,08 38,7
14 11 25,23 5,85 21,3 29,16
15 11 22,28 9,78 15,71 28,85
16 9 13,40 2,15 11,75 15,05
17 11 35,88 4,10 33,13 38,63
18 11 58,44 4,83 55,2 61,68
19 11 41,94 13,90 32,6 51,28
20 11 29,75 12,59 21,29 38,21
21 11 32,80 5,59 29,04 36,56
22 11 41,70 5,68 37,88 45,52
23 9 23,41 15,79 11,27 35,55

25 11 44,20 4,88 40,92 47,48
26 11 48,66 13,69 39,46 57,86
27 11 37,27 11,56 29,5 45,04
28 11 33,56 10,92 26,22 40,9
29 11 21,97 14,14 12,47 31,47
30 11 49,34 4,22 46,5 52,18
31 11 37,29 11,68 29,44 45,14
32 11 19,34 10,20 12,49 26,19
33 10 44,33 4,01 41,46 47,2
34 10 51,45 10,89 43,66 59,24
35 11 59,63 6,59 55,2 64,06
36 11 76,86 8,22 71,34 82,38
37 11 81,42 9,52 75,02 87,82
38 11 81,12 11,62 73,31 88,93
39 10 82,32 9,72 75,37 89,27
40 9 89,10 6,61 84,02 94,18
41 9 86,01 6,38 81,11 90,91
42 10 82,83 6,23 78,37 87,29
43 11 61,49 9,14 55,35 67,63

I
N
B
O
U
N
D

O
U
T
B
O
U
N
D

95% Confidence 
Interval

Link Id n (kph) (kph)

2
a iv τ

2
iSτ2

a iv τ
2

a isτ

 
  (*) LL: lower limit 
       UL: upper limit 
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Table 4.3 Corridor characteristics in the evening peak ( 3τ ) 

 

*LL(kph) *UL(kph)
1 10 55,57 13,78 45,71 65,43
2 10 56,84 13,15 47,43 66,25
3 8 53,85 12,77 43,17 64,53
4 9 43,02 10,14 35,23 50,81
5 10 43,89 7,13 38,79 48,99
6 10 52,28 4,28 49,22 55,34
7 11 61,61 7,20 56,77 66,45
8 11 65,93 6,00 61,9 69,96
9 9 71,66 8,68 64,99 78,33
10 9 62,52 6,75 57,33 67,71
11 10 21,42 15,04 10,66 32,18
12 11 14,82 8,48 9,12 20,52
13 11 24,94 11,51 17,21 32,67
14 11 20,59 8,03 15,2 25,98
15 11 17,58 9,78 11,01 24,15
16 11 13,83 4,37 10,89 16,77
17 11 36,87 4,11 34,11 39,63
18 11 52,97 4,58 49,89 56,05
19 11 28,55 17,60 16,73 40,37
20 11 10,17 6,21 6 14,34
21 11 23,63 10,37 16,66 30,6
22 11 31,38 13,85 22,08 40,68
23 9 9,95 3,11 7,56 12,34

25 11 26,83 10,96 19,47 34,19
26 11 15,70 10,97 8,33 23,07
27 11 15,06 6,99 10,36 19,76
28 11 20,05 9,79 13,47 26,63
29 11 14,97 6,80 10,4 19,54
30 11 43,81 6,38 39,52 48,1
31 11 30,41 7,33 25,49 35,33
32 11 17,80 8,13 12,34 23,26
33 10 41,16 7,09 36,09 46,23
34 10 39,62 6,24 35,16 44,08
35 10 52,20 7,22 47,04 57,36
36 10 63,76 8,57 57,63 69,89
37 10 67,41 8,29 61,48 73,34
38 10 67,27 9,37 60,57 73,97
39 9 71,82 7,00 66,44 77,2
40 9 81,49 11,34 72,77 90,21
41 8 81,90 7,44 75,68 88,12
42 8 79,57 8,70 72,3 86,84

I
N
B
O
U
N
D

O
U
T
B
O
U
N
D

95% Confidence 
Interval

Link Id n (kph) (kph)

3
a iv τ

3
iSτ3

a iv τ
3

a isτ

 
  (*) LL: lower limit 
       UL: upper limit 
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4.5 Bottleneck Location Detection 

 

One of the objectives of this study is to detect potential bottleneck locations with an 

intelligent search algorithm. At this part, the results of proposed bottleneck algorithm 

will be checked against the observed bottleneck locations in data analysis part for 

validation. 

 

For this step, time-dependent average speeds for consecutive links from Tables 4.1-

4.3 used to search for speed variation according to difference function i
τθ , given in 

Eq.(3.4). The significant change in speed parameter ψ , is defined as 5 kph for this 

study, meaning that changes within ±5 kph in average link speed are disregarded 

surpassing small temporal irregularities in traffic. ψ  can be assumed a greater value, 

if the variation between consecutive links is expected larger. i
τφ  values are calculated 

for every lap of probe vehicles for every link in every τ  period, providing relative 

frequencies of jump or drop in speed, or constant speed. From these relative 

frequencies, the speed variation parameter i
τδ , which carries directional information 

is derived for each link by finding the mean of change where jump is represented by 

“1”, constant speed by “0” and drop by “-1”. Then, the slow traffic regime parameter 

i
τγ  is generated for each link on the study corridor for each time window. 

 

After detecting bottleneck locations by i
τδ , the algorithm carried out the search for 

extent of impact zone by looking at consecutive upstream links. The upstream links 

are added to bottleneck impact zone, if slow traffic regime ( 1i
τγ = ) is on them 

without interruption and bottleneck possibility index i
τφ at these links are set to “1”. 

Tables 4.4-4.6 show the detected bottlenecks and their impact zones for the three 

time periods separately. In these tables, while dark shaded links show the bottleneck 

release points at the start of the link, light shaded links show the bottleneck impact 

zones and also the links which are tagged as potential locations due to speed 
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variation are shaded in the tables. The detected bottleneck and their impact zones are 

shown on the map in Figures 4.8-4.10. 

 

In the morning peak period, start of Link 17 is detected as bottleneck release and it is 

impact zone includes Links 16-11 (see Table 4.4 and Figure 4.8). Also the start node 

of Link 30 is identified as bottleneck release and its impact zone is Link 29. These 

two bottleneck locations can be validated by the observed bottleneck locations at 

BM3 in inbound direction and BM7 in outbound direction in section 4.3. 

 

In the noon off-peak period, , the impact zone of the bottleneck at the upstream of 

Link 17 shortens to Links 16 and 15, which is probably due to lower demand at off-

peak time (see Table 4.5 and Figure 4.9). The bottleneck release at Link 30 and its 

impact zone is again detected in this period. Furthermore, a bottleneck release at 

Link 33 is located and with impact zone extending to Link 32. This bottleneck was 

also observed at BM3 in section 4.3 

 

In the evening peak period, the same bottleneck locations are detected as in noon off-

peak (see Table 4.7 and Figure 4.10). However, the impact zones of bottleneck at 

Link 17 and at Link 30 are extended to Links 16-11 and to Link 29-26, respectively, 

which might be related to heavy evening peak traffic in both directions on the 

corridor. The results can also be seen on the map of the study corridor. 
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Table 4.4 Bottleneck locations and their impact zones in the morning peak 

vi>vi-1 vi<vi-1 vi≈vi-1

1 * * * * 43,29 0 0
2 0,50 0,00 0,50 0,50 48,88 0 0
3 0,70 0,10 0,20 0,60 56,66 0 0
4 0,00 0,90 0,10 -0,90 44,88 0 0
5 0,40 0,00 0,60 0,40 48,28 0 0
6 0,50 0,00 0,50 0,50 56,05 0 0
7 0,60 0,00 0,40 0,60 60,91 0 0
8 0,60 0,20 0,20 0,40 65,24 0 0
9 0,10 0,20 0,70 -0,10 65,47 0 0
10 0,00 0,70 0,30 -0,70 51,79 0 0
11 0,00 1,00 0,00 -1,00 12,25 1 1
12 0,13 0,25 0,63 -0,13 10,14 1 1
13 0,75 0,00 0,25 0,75 21,50 1 1
14 0,20 0,30 0,50 -0,10 20,31 1 1
15 0,20 0,40 0,40 -0,20 16,20 1 1
16 0,10 0,30 0,60 -0,20 12,55 1 1
17 1,00 0,00 0,00 1,00 31,27 0 0
18 0,90 0,00 0,10 0,90 46,24 0 0
19 0,00 0,90 0,10 -0,90 23,31 1 0
20 0,20 0,40 0,40 -0,20 20,05 1 0
21 0,70 0,10 0,20 0,60 28,10 0 0
22 0,70 0,00 0,30 0,70 39,22 0 0
23 0,00 0,80 0,20 -0,80 15,99 1 0

25 * * * * 37,00 0 0
26 0,22 0,44 0,33 -0,22 29,57 0 0
27 0,10 0,50 0,40 -0,40 21,85 1 0
28 0,44 0,22 0,33 0,22 27,56 0 0
29 0,11 0,89 0,00 -0,78 13,06 1 1
30 1,00 0,00 0,00 1,00 42,79 0 0
31 0,10 0,70 0,20 -0,60 27,88 0 0
32 0,22 0,33 0,44 -0,11 22,07 1 0
33 0,89 0,11 0,00 0,78 36,78 0 0
34 0,44 0,22 0,33 0,22 41,75 0 0
35 0,89 0,00 0,11 0,89 57,16 0 0
36 1,00 0,00 0,00 1,00 74,97 0 0
37 0,56 0,11 0,33 0,44 79,22 0 0
38 0,22 0,44 0,33 -0,22 75,77 0 0
39 0,44 0,22 0,33 0,22 78,57 0 0
40 0,67 0,00 0,33 0,67 84,85 0 0
41 0,00 0,67 0,33 -0,67 78,62 0 0
42 0,11 0,33 0,56 -0,22 77,21 0 0

(kph)
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         (*) Difference function is calculated starting from second link in each direction
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Figure 4.8 Bottlenecks and their possible impact zones in the morning peak  



 

 80

Table 4.5 Bottleneck locations and their impact zones in the noon off-peak 

vi>vi-1 vi<vi-1 vi≈vi-1

1 * * * * 64,03 0 0
2 0,09 0,09 0,82 0,00 64,65 0 0
3 0,18 0,18 0,64 0,00 64,72 0 0
4 0,09 0,82 0,09 -0,73 55,39 0 0
5 0,27 0,36 0,36 -0,09 53,18 0 0
6 0,30 0,20 0,50 0,10 54,63 0 0
7 0,70 0,00 0,30 0,70 63,30 0 0
8 0,60 0,30 0,10 0,30 67,73 0 0
9 0,40 0,10 0,50 0,30 71,80 0 0
10 0,30 0,40 0,30 -0,10 67,68 0 0
11 0,00 1,00 0,00 -1,00 32,83 0 0
12 0,00 0,89 0,11 -0,89 16,44 1 0
13 0,70 0,20 0,10 0,50 31,89 0 0
14 0,09 0,45 0,45 -0,36 25,23 0 0
15 0,18 0,45 0,36 -0,27 22,28 1 1
16 0,00 0,67 0,33 -0,67 13,40 1 1
17 1,00 0,00 0,00 1,00 35,88 0 0
18 1,00 0,00 0,00 1,00 58,44 0 0
19 0,09 0,73 0,18 -0,64 41,94 0 0
20 0,27 0,64 0,09 -0,36 29,75 0 0
21 0,45 0,27 0,27 0,18 32,80 0 0
22 0,73 0,00 0,27 0,73 41,70 0 0
23 0,11 0,67 0,22 -0,56 23,41 1 0

25 * * * * 44,20 0 0
26 0,45 0,09 0,45 0,36 48,66 0 0
27 0,00 0,73 0,27 -0,73 37,27 0 0
28 0,82 0,45 -0,27 0,36 33,56 0 0
29 0,18 0,64 0,18 -0,45 21,97 1 1
30 1,00 0,00 0,00 1,00 49,34 0 0
31 0,18 0,64 0,18 -0,45 37,29 0 0
32 0,00 0,91 0,09 -0,91 19,34 1 1
33 0,90 0,00 0,10 0,90 44,33 0 0
34 0,50 0,10 0,40 0,40 51,45 0 0
35 0,50 0,00 0,50 0,50 59,63 0 0
36 0,91 0,09 0,00 0,82 76,86 0 0
37 0,45 0,00 0,55 0,45 81,42 0 0
38 0,00 0,36 0,64 -0,36 81,12 0 0
39 0,30 0,00 0,70 0,30 82,32 0 0
40 0,67 0,00 0,33 0,67 89,10 0 0
41 0,11 0,44 0,44 -0,33 86,01 0 0
42 0,00 0,44 0,56 -0,44 82,83 0 0
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          (*) Difference function is calculated starting from second link in each direction
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Figure 4.9 Bottlenecks and their possible impact zones in the noon off-peak 
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Table 4.6 Bottleneck locations and their impact zones in the evening peak 

Speed variation relative frequencies
vi+1-vi>5 vi+1-vi<-5 5>vi+1-vi>-5

1 * * * * 55,57 0 0
2 0,25 0,33 0,42 -0,08 56,84 0 0
3 0,30 0,30 0,40 0,00 53,85 0 0
4 0,10 0,90 0,00 -0,80 43,02 0 0
5 0,27 0,09 0,64 0,18 43,89 0 0
6 0,75 0,08 0,17 0,67 52,28 0 0
7 0,50 0,00 0,50 0,50 61,61 0 0
8 0,75 0,17 0,08 0,58 65,93 0 0
9 0,45 0,09 0,45 0,36 71,66 0 0

10 0,00 0,64 0,36 -0,64 62,52 0 0
11 0,00 0,91 0,09 -0,91 21,42 1 1
12 0,08 0,42 0,50 -0,33 14,82 1 1
13 0,62 0,15 0,23 0,46 24,94 1 1
14 0,23 0,46 0,31 -0,23 20,59 1 1
15 0,15 0,46 0,38 -0,31 17,58 1 1
16 0,08 0,38 0,54 -0,31 13,83 1 1
17 1,00 0,00 0,00 1,00 36,87 0 0
18 1,00 0,00 0,00 1,00 52,97 0 0
19 0,08 0,77 0,15 -0,69 28,55 0 0
20 0,08 0,77 0,15 -0,69 10,17 1 0
21 0,77 0,08 0,15 0,69 23,63 1 0
22 0,54 0,08 0,38 0,46 31,38 0 0
23 0,00 0,91 0,09 -0,91 9,95 1 0

25 * * * * 26,83 0 0
26 0,00 0,77 0,23 -0,77 15,70 1 1
27 0,23 0,23 0,54 0,00 15,06 1 1
28 0,38 0,15 0,46 0,23 20,05 1 1
29 0,15 0,54 0,31 -0,38 14,97 1 1
30 1,00 0,00 0,00 1,00 43,81 0 0
31 0,08 0,77 0,15 -0,69 30,41 0 0
32 0,08 0,69 0,23 -0,62 17,80 1 1
33 1,00 0,00 0,00 1,00 41,16 0 0
34 0,17 0,33 0,50 -0,17 39,62 0 0
35 0,75 0,00 0,25 0,75 52,20 0 0
36 0,92 0,00 0,08 0,92 63,76 0 0
37 0,33 0,17 0,50 0,17 67,41 0 0
38 0,25 0,25 0,50 0,00 67,27 0 0
39 0,45 0,18 0,36 0,27 71,82 0 0
40 0,73 0,09 0,18 0,64 81,49 0 0
41 0,30 0,30 0,40 0,00 81,90 0 0
42 0,00 0,40 0,60 -0,40 79,57 0 0
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          (*) Difference function is calculated starting from second link in each direction 
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Figure 4.10 Bottlenecks and their possible impact zones in the evening peak 
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The location which is labeled as POI1 in the Section 4.3, is not detected by the 

algorithm. Because, although, average link speeds drop at this section, the speed 

jump at a bottleneck release is not identified after POI1 suggesting congestion due to 

effect of in city traffic. 

 

4.6 Sensitivity Analysis for Speed Variation and Slow Regime 

Parameters 

 

While identifying potential bottleneck locations and their impact zones, the speed 

variation and slow regime parameters are assigned cut-off values of 0,9 and 25 kph, 

respectively, based on prior knowledge on the corridor. However, the sensitivity of 

the algorithm for these threshold values must be checked. For this purpose, different 

threshold values for both parameters are selected as 1 30λ = kph and 1 25λ = kph for 

slow regime parameter γ ; and 1 0,7δ =  and 2 0,9δ =  for the speed variation 

parameter. The scenario analysis for two sets of parameters yield in 4 different 

bottleneck searches for each time window, 0.7,25
τφ , 0.7,30

τφ , 0.9,25
τφ , 0.9,30

τφ , where the two 

subscripts represent the selected value of i
τδ and i

τγ , respectively.  

 

Using a lower cut-off limit for speed variation such as 0.70 leads to 4 more possible 

bottleneck release points (Links 13 and 22 in the inbound and Links 33 and 35  in the 

outbound direction) in the morning peak period (see Table 4.7). At the Link 33, the 

bottleneck is confirmed for both 25 kph or 30 kph for slow regime limit; with an 

impact zone of Link 32 for the former case, and impact zone of Links 32 and 31 for 

the latter. At Link 22, a bottleneck release is confirmed with slow regime limit of 30 

kph, suggesting that even if Link 22 is a possible bottleneck location, the upstream 

conditions are not as severe as the other bottleneck situations and detected only when 

the slow regime threshold is extended. On Link 13, while a possible bottleneck is  
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Table 4.7 Sensitivity of the threshold value of speed variation and slow regime 

parameter in the morning peak 

  

1 * * 0 0 * * * *
2 0,50 0,50 0 0 0 0 0 0
3 0,60 0,60 0 0 0 0 0 0
4 -0,90 -0,90 0 0 0 0 0 0
5 0,40 0,40 0 0 0 0 0 0
6 0,50 0,50 0 0 0 0 0 0
7 0,60 0,60 0 0 0 0 0 0
8 0,40 0,40 0 0 0 0 0 0
9 -0,10 -0,10 0 0 0 0 0 0
10 -0,70 -0,70 0 0 0 0 0 0
11 -1,00 -1,00 1 1 1 1 1 1
12 -0,13 -0,13 1 1 1 1 1 1
13 0,75 0,75 1 1 1 1 1 1
14 -0,10 -0,10 1 1 1 1 1 1
15 -0,20 -0,20 1 1 1 1 1 1
16 -0,20 -0,20 1 1 1 1 1 1
17 1,00 1,00 0 0 0 0 0 0
18 0,90 0,90 0 0 0 0 0 0
19 -0,90 -0,90 1 1 0 0 0 0
20 -0,20 -0,20 1 1 0 0 0 0
21 0,60 0,60 0 1 0 0 0 0
22 0,70 0,70 0 0 0 0 0 0
23 -0,80 -0,80 1 1 0 0 0 0

25 * * 0 0 * * * *
26 -0,22 -0,22 0 1 0 1 0 1
27 -0,40 -0,40 1 1 0 1 0 1
28 0,22 0,22 0 1 0 1 0 1
29 -0,78 -0,78 1 1 1 1 1 1
30 1,00 1,00 0 0 0 0 0 0
31 -0,60 -0,60 0 1 0 1 0 0
32 -0,11 -0,11 1 1 1 1 0 0
33 0,78 0,78 0 0 0 0 0 0
34 0,22 0,22 0 0 0 0 0 0
35 0,89 0,89 0 0 0 0 0 0
36 1,00 1,00 0 0 0 0 0 0
37 0,44 0,44 0 0 0 0 0 0
38 -0,22 -0,22 0 0 0 0 0 0
39 0,22 0,22 0 0 0 0 0 0
40 0,67 0,67 0 0 0 0 0 0
41 -0,67 -0,67 0 0 0 0 0 0
42 -0,22 -0,22 0 0 0 0 0 0
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   (*) Difference function is calculated starting from second link in each direction 



 

 86

Table 4.8 Sensitivity of the threshold value of speed variation and slow regime 

parameter in the noon off-peak 

 

1 * * 0 0 0 0 0 0
2 0,00 0,00 0 0 0 0 0 0
3 0,00 0,00 0 0 0 0 0 0
4 -0,73 -0,73 0 0 0 0 0 0
5 -0,09 -0,09 0 0 0 0 0 0
6 0,10 0,10 0 0 0 0 0 0
7 0,70 0,70 0 0 0 0 0 0
8 0,30 0,30 0 0 0 0 0 0
9 0,30 0,30 0 0 0 0 0 0

10 -0,10 -0,10 0 0 0 0 0 0
11 -1,00 -1,00 0 0 0 0 0 0
12 -0,89 -0,89 1 1 0 0 0 0
13 0,50 0,50 0 0 0 0 0 0
14 -0,36 -0,36 0 0 0 0 0 0
15 -0,27 -0,27 1 1 1 1 1 1
16 -0,67 -0,67 1 1 1 1 1 1
17 1,00 1,00 0 0 0 0 0 0
18 1,00 1,00 0 0 0 0 0 0
19 -0,64 -0,64 0 0 0 0 0 0
20 -0,36 -0,36 0 1 0 0 0 0
21 0,18 0,18 0 0 0 0 0 0
22 0,73 0,73 0 0 0 0 0 0
23 -0,56 -0,56 1 1 0 0 0 0

25 * * 0 0 0 0 0 0
26 0,36 0,36 0 0 0 0 0 0
27 -0,73 -0,73 0 0 0 0 0 0
28 0,36 0,36 0 0 0 0 0 0
29 -0,45 -0,45 1 1 1 1 1 1
30 1,00 1,00 0 0 0 0 0 0
31 -0,45 -0,45 0 0 0 0 0 0
32 -0,91 -0,91 1 1 1 1 1 1
33 0,90 0,90 0 0 0 0 0 0
34 0,40 0,40 0 0 0 0 0 0
35 0,50 0,50 0 0 0 0 0 0
36 0,82 0,82 0 0 0 0 0 0
37 0,45 0,45 0 0 0 0 0 0
38 -0,36 -0,36 0 0 0 0 0 0
39 0,30 0,30 0 0 0 0 0 0
40 0,67 0,67 0 0 0 0 0 0
41 -0,33 -0,33 0 0 0 0 0 0
42 -0,44 -0,44 0 0 0 0 0 0
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   (*) Difference function is calculated starting from second link in each direction 
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Table 4.9 Sensitivity of the threshold value of speed variation and slow regime 

parameter in the evening peak 

 

1 * * 0 0 0 0 0 0
2 -0,08 -0,08 0 0 0 0 0 0
3 0,00 0,00 0 0 0 0 0 0
4 -0,80 -0,80 0 0 0 0 0 0
5 0,18 0,18 0 0 0 0 0 0
6 0,67 0,67 0 0 0 0 0 0
7 0,50 0,50 0 0 0 0 0 0
8 0,58 0,58 0 0 0 0 0 0
9 0,36 0,36 0 0 0 0 0 0
10 -0,64 -0,64 0 0 0 0 0 0
11 -0,91 -0,91 1 1 1 1 1 1
12 -0,33 -0,33 1 1 1 1 1 1
13 0,46 0,46 1 1 1 1 1 1
14 -0,23 -0,23 1 1 1 1 1 1
15 -0,31 -0,31 1 1 1 1 1 1
16 -0,31 -0,31 1 1 1 1 1 1
17 1,00 1,00 0 0 0 0 0 0
18 1,00 1,00 0 0 0 0 0 0
19 -0,69 -0,69 0 1 0 0 0 0
20 -0,69 -0,69 1 1 0 0 0 0
21 0,69 0,69 1 1 0 0 0 0
22 0,46 0,46 0 0 0 0 0 0
23 -0,91 -0,91 1 1 0 0 0 0

1
25 * * 0 1 0 1 0 1
26 -0,77 -0,77 1 1 1 1 1 1
27 0,00 0,00 1 1 1 1 1 1
28 0,23 0,23 1 1 1 1 1 1
29 -0,38 -0,38 1 1 1 1 1 1
30 1,00 1,00 0 0 0 0 0 0
31 -0,69 -0,69 0 0 0 0 0 0
32 -0,62 -0,62 1 1 1 1 1 1
33 1,00 1,00 0 0 0 0 0 0
34 -0,17 -0,17 0 0 0 0 0 0
35 0,75 0,75 0 0 0 0 0 0
36 0,92 0,92 0 0 0 0 0 0
37 0,17 0,17 0 0 0 0 0 0
38 0,00 0,00 0 0 0 0 0 0
39 0,27 0,27 0 0 0 0 0 0
40 0,64 0,64 0 0 0 0 0 0
41 0,00 0,00 0 0 0 0 0 0
42 -0,40 -0,40 0 0 0 0 0 0
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   (*) Difference function is calculated starting from second link in each direction 
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confirmed, it can be also seen that this is a part of a bottleneck queue starting from 

Link 16. The other possible location (Link 35) can not be confirmed as bottlenecks as 

the upstream conditions do not suggest severe limits. 

 

Similar analysis for the noon off-peak and evening peak periods presents a) two 

additional possible bottleneck locations for the former (Links 36, 22 and 7) and b) 

one additional location for the latter (Link 35). However, none of these locations was 

confirmed as bottlenecks as the upstream conditions were not detected as slow 

regimes with either of the limits, 25 kph or 30 kph (see Tables 4.8 and 4.9).  

 

Among the four combinations, definitely 0,9δ =  and 25γ =  is the most 

conservative case while 0,7δ =  and 30γ =  is the least conservative one. Even the 

most conservative case does not detect bottleneck locations very different than the 

others or inconsistent with on-site observations, suggesting that on the İnönü 

Boulevard corridor, slow regime can be chosen as either limit, 25 kph or 30 kph. 

This also suggests that the bottlenecks on this corridor are chronic situations that are 

not defined by some mathematical limits only.  

 

Looking at the number of possible bottleneck locations and their impacts as a 

function of the threshold values for slow regime and speed variation parameters, it 

can be concluded that a) a lower cut-off limit for speed variation results in detection 

of more bottleneck releases and b) a higher value for slow traffic regime parameter 

results in detection of longer impact zones of bottlenecks or confirmation of more 

bottleneck locations. 

 

4.7 Incident Detection from Control Data 

 

Since incidents are generally random events, it is very difficult to encounter an 

incident while collecting traffic control data. Luckily, in a previous data collection 
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attempt (on the May 30th, 2007) in the selected corridor using same time periods, 

unannounced road maintenance resulting in a lane blocking incident at Link 42 was 

observed (see Figure 4.11). The incident caused a capacity loss of approximately 2 

lanes and 1 lane during the morning peak and noon off-peak periods, respectively. 

By the evening peak data collection time, the maintenance was finished. This non-

recurrent event can be used as an exercise to test the proposed incident detection 

algorithm. Unfortunately, the data collection routes for the incident day and incident 

free days had minor differences at the start and end points; such that the former route 

goes straight through the METU intersection, while the latter merges on to the 

Anadolu Boulevard to loop. The impact of these different movements in the link 

speed calculations is expected to be negligible, if there is any. Link 43 is added to the 

network (see Figure 4.11) to represent this part of the corridor that was previously 

discarded to study the inbound and outbound segment comparatively.  

 

The incident detection algorithm compares the real-time link speed values against 

pre-defined archival link speeds and lower limits to foresee an incident. In this 

control example, the incident day link speeds can be treated as the “real time” values 

retrospectively and checked against archival link values from incident free days (see 

Figure 4.12 -4.14). 

 

The archival link speeds suggest an almost constant travel speed through Links 41 

and 42 ( around 75-80 kph) followed by drop in speed at Link 43 down to close to 60 

kph (possibly due a merge movement at the end of the data collection route). This 

travel pattern is observed persistently through all three time periods. Based on the 

calculated link speeds, the 95-percent confidence intervals for the link speeds are 

calculated proving a lower limit (LL) for each link (see Table 4.8). i
τφ  values show 

that historically these 3 links are not expected to be in a bottleneck impact zone. 
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Figure 4.11 Links used in incident detection 
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Figure 4.12 Link speeds in the morning peak period on the day of incident 

versus archival values (incident-free days) 

outbound 
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Figure 4.13 Link speeds in the noon off-peak period on the day of incident 

versus archival values (incident-free days) 
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Figure 4.14 Link speeds in the evening peak period on the day of incident versus 

archival values (incident-free days) 

outbound 

outbound 
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When the two lanes were blocked by the incident the morning, the speed at link 42 is 

the least and the behavior in the traffic can be recognized at the link, which is drop in 

speed at the link entrance and jump in speed at the end of the link (see Figure 4.12). 

Then, the effect of work zone lessens when a single is blocked; however, drop and 

jump in speed is still distinctive (see Figure 4.13). 

 

As stated before, the impact of the incident was cleared by the evening peak period, 

where the incident day and archival link speed values would represent the 

uncertainty in the traffic conditions except for incidents. Supporting this, in Figure 

4.14, the speeds for Links 41 and 42, for the incident day and the archival values, are 

almost constant at around 70 kph and 80 kph, respectively. This approximately 10 

kph difference may be due to seasonal change in demand between spring and 

summer.  Later, on Link 43, the difference in the speed for the day of the incident 

and the archival value can be explained by the different movements of the routes in 

the link as explained before (thru versus diverge to off-ramp).  

 

Tracing and Evaluation of the Proposed Incident Detection Algorithm 

 

As proposed in Section 3.3, to detect an incident in the network along the followed 

route for a given time period, the real-time traffic measures are used in association 

with the archival values and information. This algorithm is employed for the 3-link 

corridor for the three time periods. The results are shown in Table 4.9. 

 

In the morning peak, real-time link speed is less than the lower limit; therefore 

incident detection algorithm is executed. First, bottleneck possibility index is 

checked at the link. Since the bottleneck possibility index is “0”, the algorithm set 

incident possibility index as “1”.At Link 42, the link speed is again less than 

acceptable lower limit; therefore, bottleneck possibility is checked and incident 

possibility index is set to “1”. The link speed exceeds the lower limit at Link 43 so 

the location of incident is reported as Link 42 and Link 41 is considered as impact 
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zone then procedure is terminated. The incident is detected by the algorithm in 

approximately 181 seconds. 

 

In the afternoon, the real-time link speed of Link 41 is again less than the lower limit,  

therefore algorithm checked bottleneck possibility index and incident possibility 

index is set to “1” The speed at Link 42 is also less than lower limit so bottleneck 

possibility index is checked and incident possibility index is set to “1” for this link. 

At Link 43, the real-time speed is higher than the lower limit for the link so the 

location of incident is reported as Link 42 and Link 41 is considered as impact zone  

then procedure is terminated. The incident is detected in 99 seconds. 

 

 

 

Table 4.10 The parameters used in the algorithm at different time periods 

41 65,00 71,16 0 1
42 39,68 71,92 0 1
43 66,64 56,36 0 0

41 66,86 81,11 0 1
42 58,31 78,37 0 1
43 66,64 55,35 0 0

41 73,13 75,68 0 1
42 72,61 72,30 0 0
43 74,04 55,52 0 0

 Noon

Evening

Link Id         *

Link Id           *

Link Id           *

Morning

ivτ
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,a i lvτ

,a i lvτ
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i
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        (*) lower limit for 95-percent confidence interval 
 

 

 

In the evening, since the real-time link speed is slightly less than the lower limit, 

bottleneck possibility index is checked at the link and then incident possibility index 
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is set to “1”. The speed at Link 42 is slightly higher than lower limit. Therefore, the 

algorithm falsely detects the location of incident as Link 41. 
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CHAPTER 5 

 

CONCLUSION 

 

 

 

In this study a comprehensive methodology for incident detection with GPS 

equipped vehicles is developed. This methodology depends mainly on detection of 

certain link speed patterns along a corridor, such as sudden jumps in the speeds of 

consecutive links after a slow regime, suggesting a queue formation. However, it is 

also important to distinguish the causing phenomenon behind a possible queue, as it 

can be due to a recurrent congestion such as a chronic bottleneck case, as well as an 

incident. Since the probe-based detection technologies are not always capable of 

collecting data on both the upstream and downstream condition of a location 

(especially in a single probe vehicle case), archival values for certain traffic measures 

can be used as a guideline to make this distinction. For either case, the queues will be 

time-dependent as a result of a) time-dependent demand characteristics in recurrent 

congestions or b) time-dependent capacity loss in case of incidents. Thus, the 

proposed methodology has to be a time-dependent analysis inherently. 

 

In this study, the proposed incident detection methodology using GPS-equipped 

probe vehicles pre-requires development of  

• a time-dependent corridor characteristics database (TCCD) 

• a retrospective bottleneck analysis 

• an incident detection algorithm 

which are individually developed. These sub modules use selected traffic measures 

such as average link speeds and probabilistic distributions, speed variations between 

two consecutive links, slow regime characteristics, and produce bottleneck and 
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incident detection possibility measures for every link in any time window in the 

corridor. Comparative analysis of these two measures along consecutive links also 

yield information on the possible location and impact zones of bottlenecks or 

incidents. The methodology and individual modules are tested over a selected study 

corridor in the City of Ankara with control GPS data. The highlights of the study is 

given in the next section while further improvement and research possibilities are 

discussed in the last section of this chapter.  

 

 

5.1 Conclusions 

In the development of the methodology, the major issues addressed can be 

summarized as follows:  

 The methodology proposed foresees use of GPS track data to calculate link 

speeds. Thus, network representation of the study region has to comply with 

the data format and precision of GPS devices used. As the GPS track data 

will be mapped on the traffic network, the more precise representation of the 

geometric features of the network will contribute to the success of the whole 

methodology. 

 On a corridor, where demand characteristics vary significantly over a day, 

this must be stored in the archival values properly. Thus, the time-dependent 

nature of the conditions must be represented by as many time windows, as 

need (such as morning peak, noon off-peak, evening peak, nighttime or even 

hourly) to avoid any loss of traffic characteristics due to unnecessary 

averaging. If there are significant changes between different days, or periods 

of the year, such as weekdays versus weekends or seasonal changes, the 

TCCD has to provide appropriate dimensions for the selected measure  

 The threshold values for decision parameters (such as lower limits for links 

speeds, cut-off limits on speed variation parameter for bottleneck detection, 

slow traffic regime limit, etc.) have to be selected and calibrated by on-site 
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observations, as these values are products of many features of the flow and 

infrastructure characteristic.  

 Even though, the numeric analysis in the case study here is based on very 

limited control data, it includes a real life incident data as well as data 

collections on incident-free days, which enables us to test the developed 

algorithm numerically.  

 However, to produce more generalizable results and more reliable decision 

criteria, a larger TCCD is necessary. Also, the more mature the TCCD of a 

network, the more conclusive statistical analyses in the methodology will be. 

 

The major findings of the case study of a major arterial in Ankara, İnönü Boulevard, 

suggest the following conclusions:  

 The selected corridor serves different demand levels not only in the inbound 

and outbound directions but also during different time windows of the day. 

This can be seen in average link speed graphs shown in Figures 4.3a and 4.3b  

 In the analysis of the corridor, the link definitions are made based on 

geometric and operational features as well as some level of segmentation due 

to traffic safety measures such as observed “black spots”. Major traffic 

pattern changes are denoted by either benchmark points (BM) as foreseen a 

priori and by additional Point-of Interest (POIs), as the link speed data 

suggested.  

 The derived average link speed patterns were able to capture correctly 

different roadway classes, such as surface streets versus arterial, as the 

corridor includes both. 

 The retrospective bottleneck analysis detected different bottleneck locations 

for different time windows, consistent with on-site observations and road 

capacities. The calculated impact zones for these bottlenecks rely on very 

limited data, which can not be conclusively defended statistically, although 

the do not conflict with on-site observations.  
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 Using the traffic measurements from a day with an actual incident 

encountered in comparison with TCCD values with incident-free data, the 

proposed incident detection algorithm is tested numerically. While the 

incident possibility during morning peak and noon off-period periods are 

consistent with the observations, the forecasted incident possibility during the 

evening peak is a false alarm, probably caused by seasonal differences in the 

demand patterns  on the day of the incident and days of control data 

collection for the TCCD. This false alarm case can be avoided with the use of  

more precise measures and checks of more complex queue formation 

patterns. 

 

5.2 Recommendations for Future Research 

 

There are some limitations of the proposed methodology. This methodology is 

applicable to non-transit vehicles as the dwelling times that may occur on the route 

of transit vehicles such as at bus stops cannot be detected. If it is intended to use 

transit vehicles as probe vehicles, a proper dwelling time algorithm that calculates 

time spend at the stops separately is needed. Moreover, by using GPS equipped 

transit vehicles, a huge data warehouse can be created easily so that statistical 

significance in analyses will increase.  

 

Another concern might be the applicability of this methodology to highways. On 

highways, entrance and exits are very limited and hence the link lengths are very 

long. On such links, link based approach most probably will become inadequate. 

Therefore, by further developing the segmentation step, a methodological approach 

can be generated to divide links to small segments. This will enable to calculate the 

average speed on smaller distances so the variation on long highway links would be 

better represented. 
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Although the incident detection algorithm in the proposed methodology successfully 

detected a real-life incident and its impact zone, this part is needed to be verified by 

more incidents. This might be possible if the incident are reported and checked with 

the GPS data while creating a data warehouse on a corridor. A simulation study 

might be another alternative for the verification of incident detection algorithm. In 

this study, only one observed incident is detected but with help of a simulation, 

severity, duration and location of an incident can be altered so that in those cases, 

detection rate and false alarm rate parameters can be calculated for incident detection 

algorithm. 
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APPENDIX  

CRITICAL LOCATIONS ON THE CORRIDOR 

 

 
 

Figure A-1 Work zone on the corridor 

 

 
 

Figure A-2 Capacity decrease around Ulusoy 
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Figure A-3 Capacity decrease due to entrance of grade-separated intersection 

 

 
 

Figure A-2 Traffic queue due traffic light on Akdeniz Street 


