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ABSTRACT 

GENERALIZED AREA TRACKING 
USING COMPLEX DISCRETE  
WAVELET TRANSFORM: 

THE COMPLEX WAVELET TRACKER 

Yılmaz, Şener  

Ph.D., Department of Electrical and Electronics Engineering 

Supervisor: Prof. Dr. Mete Severcan 

 

July 2007, 207 Pages 

 

 

In this work, a new method is proposed that can be used for area tracking. This 

method is based on the Complex Discrete Wavelet Transform (CDWT) developed by 

Magarey and Kingsbury. The CDWT has its advantages over the traditional Discrete 

Wavelet Transform such as approximate shift invariance, improved directional 

selectivity, and robustness to noise and illumination changes.  

The proposed method is a generalization of the CDWT based motion estimation 

method developed by Magarey and Kingsbury. The Complex Wavelet Tracker 

extends the original method to estimate the true motion of regions according to a 

parametric motion model. In this way, rotation, scaling, and shear type of motions 

can be handled in addition to pure translation. 
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Simulations have been performed on the proposed method including both 

quantitative and qualitative tests. Quantitative tests are performed on synthetically 

created test sequences and results have been compared to true data. The performance 

is compared with intensity-based methods. Qualitative tests are performed on real 

sequences and evaluations are presented empirically. The results are compared with 

intensity-based methods.  

It is observed that the proposed method is very accurate in handling affine 

deformations for long term sequences and is robust to different target signatures and 

illumination changes. The accuracy of the proposed method is compatible with 

intensity-based methods. In addition to this, it can handle a wider range of cases and 

is robust to illuminaton changes compared to intensity-based methods.  

The method can be implemented in real-time and could be a powerful replacement of 

current area trackers.  

 

 

Keywords: Area Tracking, Generalized Motion Estimation, Parametric Motion 

Model, Optical Flow, Complex Wavelets. 
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ÖZ 

KARMAŞIK AYRIK DALGACIK 
DÖNÜŞÜMÜ TABANLI 

GENELLEŞTĐRĐLMĐŞ ALAN ĐZLEME: 
KARMAŞIK DALGACIK ĐZLEYĐCĐ 

Yılmaz, Şener  

Doktora, Elektrik ve Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Mete Severcan 

 

Temmuz 2007, 207 sayfa 

 

 

Bu çalışmada, yeni bir alan izleme yöntemi önerilmektedir. Bu yöntem, Magarey ve 

Kingsbury tarafından geliştirilen Karmaşık Ayrık Dalgacık Dönüşümünü (KADD) 

temel almaktadır. KADD’nin geleneksel Ayrık Dalgacık Dönüşümüne kıyasla 

avantajları vardır. KADD, yaklaşık olarak yer değişimlere karşı duyarsızdır, daha iyi 

bir yön seçiciliği sunar ve gürültü ile aydınlık değişimlerine karşı dayanıklıdır. 

Önerilen yöntem, Magarey ve Kingsbury tarafından geliştirilen KADD’ye dayalı 

hareket kestirim yönteminin, bölgelerin gerçek hareketinin parametrik bir hareket 

modeline göre kestirimini amaçlayan bir genelleştirmesidir. Bu sayede, düz yer 

değiştirmenin yanı sıra dönme, büyüme/küçülme ve kayma (shear) tipindeki 

hareketler de işlenebilmektedir. 
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Önerilen yöntem ile ilgili hem nicel hem de nitel testler gerçekleştirilmiştir. Nicel 

testler için yapay olarak oluşturulmuş test dizileri kullanılmış ve sonuçlar gerçek 

değerlerle karşılaştırılmıştır. Performans açısından görüntü-tabanlı yöntemlerle 

karşılaştırmalar yapılmıştır. Nitel testler gerçek diziler üzerinde gerçekleştirilmiş ve 

sonuçlar gözlemsel olarak yorumlanmıştır. Sonuçlar, görüntü-tabanlı yöntemlerle 

karşılaştırılmıştır.  

Önerilen yöntemin uzun dizilerde ilgin (affine) hareketleri kestirmekte çok hassas 

olduğu ve farklı hedef görüntüleri ile parlaklık değişimlerine karşı dayanıklı olduğu 

gözlenmiştir. Yöntemin hassasiyeti görüntü-tabanlı yöntemlere yakındır. Buna ek 

olarak, daha çeşitli hedefleri güvenle işleyebilmekte ve görüntü-tabanlı yöntemlere 

nazaran aydınlık değişimlerine karşı dayanıklıdır.  

Yöntem, gerçek zamanda çalıştırılabilmektir ve mevcut alan izleyiciler yerine güçlü 

bir alternatif olarak kullanılabileceği değerlendirilmektir. 

 

 

Anahtar Kelimeler: Alan Đzleme, Genelleştirilmiş Hareket Kestirimi, Parametrik 

Hareket Modeli, Optik Akış, Karmaşık Dalgacıklar. 
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CHAPTER 1 

INTRODUCTION 

Tracking is an important task that humans perform quite easily in their daily lives. 

The eyes start tracking as soon as they are opened, and the whole process continues 

until they are closed again, where, of course, blinking is an exception. It is very 

difficult to focus the eyes without locking them onto a specific object or point. Even 

if there is relative motion between the eyes and the target, the eyes are able to 

maintain the track easily. They even keep tracking when the object undergoes major 

changes.  

The brain creates a solution from the images acquired by our eyes. It controls the eye 

muscles in order to keep the target on the center of the line of sight of our eyes where 

the density of the receptors is greatest. It easily distinguishes the target from the 

background and in this way does not get affected from the background. Today’s 

modern video tracking systems have a similar mechanism. The target motion is 

computed from the images obtained from an electro-optical imaging source and are 

converted to commands to control the azimuth and elevation angles of the platform 

on which the camera is mounted. In this way, the target is kept at the line of sight of 

the camera. 

For machines, however, tracking is an enormously difficult task which is not yet 

solved completely despite the fact of over 30 years of effort. As the technology 

advances, more processing power and higher resolution sensors provides the 

researcher to implement more complex algorithms.  
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This research attempts to contribute to the area of vision-based tracking by supplying 

a new algorithmic base that is suitable for tracking any type of area that is selected 

by the operator in a direct way which is also robust and accurate. The proposed 

method in this thesis attempts to improve currently used area trackers especially in 

military applications. 

This chapter follows with an overview of tracking. Next, automatic video tracking 

systems and their use in military applications are introduced. Then, the Complex 

Wavelet Tracker is presented. The Chapter ends with a summary of the contributions 

and an outline of the thesis. 

1.1 Tracking 

Tracking systems dates back before electro-optical imaging systems were used. The 

need for tracking arose in early radar systems where a beam rotates continually 

through 360° with a typical period of 10 seconds [13]. Two types of information are 

obtained from the radar: range and azimuth. If for subsequent scans more than one 

target is detected, then a proper association should be established among these targets 

in order to correctly compute their velocity vector and estimate their trajectory. In 

other words, a target detected in one scan should be correctly identified among other 

targets in subsequent scans so that its trajectory could be followed. The chances of 

incorrect association could be greatly reduced if the new positions of the known 

targets could be predicted ahead of time [13]. The Kalman filter [45] is usually used 

for computing the running estimates of the new states of the targets. 

Unlike radars, imaging systems are passive devices which construct the image of the 

electromagnetic radiation entering the optics and ending in the focal plane. An 

example image is shown in Figure 1.1 of an infrared imaging system which is 

mounted on an aircraft.  

Imaging systems lack the valuable range information, but provide considerably faster 

scanning periods and extremely higher resolutions in contrast to radar systems. A 

typical imaging system operates in 25 or 30 frames/second with resolutions starting 

from 320 × 240 pixels. So, the targets are not any more point sources and the image 
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of the target consists of a set of pixels depending on the size of the target on the 

image plane. In this way, vision-based tracking approaches differ from the ones used 

for radar systems. If the target is greater than a simple blob and its shape could be 

identified, then, different targets could be distinguished from their corresponding 2-D 

projections on the frames. The relatively fast operating frequency also aids in 

identifying the targets that are detected in the previous frames. For most of the 

applications the appearance and position of the target changes only slightly. In this 

way, the use of predictors like the Kalman filter could be omitted as their necessity 

can change from application to application. 

 

 

Figure 1.1  An example image of a typical Automatic Video Tracking System (AVTS). The 
target is maintained in the center of the field of view of the sensor. For this example, the 
source is an infrared imaging source mounted on an aircraft. 
 

The imaging system could be on a stable platform or a moving one. In addition, the 

sensor could be mounted on gimbals which enable the camera to turn freely on two 

axes. So, ego-motion in addition to target motion should be handled as well 

depending on the application. For some platforms, gimbal data, azimuth and 

elevation as well as platform data, location in space and heading, is available and 

this data could be used by the tracking algorithm. Actually, for moving platforms, if 

such data is not available, then, using a predictor like the Kalman filter would be 

difficult, as the projection of the target motion onto the 2-D image plane will be a 
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combination of target motion and background motion (ego-motion). For such cases, 

if platform data is not available, ego-motion could be estimated from the video as 

well. 

Without the range information, distinguishing the target from the background is a 

difficult task, since all information should be extracted solely from pixel data without 

range information. In this case, different segmentation methods could be applied. For 

surveillance applications, where the background does not change, background 

learning algorithms could be used to detect and extract foreground objects. However, 

as with such methods, tracking also requires a correspondence to be established 

across the frames for the specific target of interest.  

Establishing a proper correspondence is another difficult problem that is dealt in the 

field of motion estimation. From this perspective, tracking algorithms are closely 

related with motion estimation methods. The problem of correspondence is an ill-

posed problem [81]. To find a solution to this problem some assumptions has to be 

made regarding the object of interest. Motion estimation methods incorporate some 

smoothness constraints assuming that neighbor pixels behave similarly so that they 

can be handled together [42][57]. A similar assumption is also used in tracking. The 

object of interest is assumed to change slowly so that this change can be ignored 

between successive frames and that all pixels belonging to the target behave 

similarly [39]. 

However, there are other problems in tracking that should be solved together. (a) The 

change in the target signature is one of the problems. If a target template is used, then 

the template should be updated accordingly. But, this update process has its own 

difficulties and introduces other problems like drifting [65]. (b) Occlusions are 

another major problem which must be detected, so that they can be handled. There 

can be partial or full occlusions. Once occlusion is detected the target location could 

be estimated using prior information. The Kalman filter [45] or the CONDENSATION 

filter [44] can be used for such cases. (c) Robustness is another aspect for tracking. 

The method should be robust to disturbances like noise and illumination changes, it 

should handle a diverse set of scenarios and should maintain track for a long period 
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of time. (d) Low or reasonable complexity is another issue. The algorithm should be 

able to operate in real-time with the minimum possible latency. Even a two-three 

frame delay in a standard video source which has a frame rate of 25 frames/sec 

results in more than 100 – 150 msec delay, which can be fatal for some military 

applications like fire control systems. 

1.2 Automatic Video Tracking Systems 

An Automatic Video Tracking System (AVTS) maintains the target at the line of 

sight (LOS) of the sensor automatically by controlling the gimbals with the aid of a 

tracker subsystem. AVTSs are widely used in a variety of applications including fire 

control, search and rescue (SAR), guidance, and surveillance. A simplified structure 

of a typical AVTS is shown in Figure 1.2. 

 

 

Figure 1.2  Basic structure of a typical Automatic Video Tracking System (AVTS). The new 
target location is estimated from the video acquired from the sensor unit. The sightline 
controller adjusts the gimbals in order to keep the target within the line of sight (LOS) of the 
camera. 
 

The purpose of an AVTS is to maintain a stable LOS from the sensor to the target 

automatically in the presence of target and platform motions. The target is initially 

located by the operator or by some other automatic target detection or recognition 
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system (ATD/R). Once the target is acquired, the tracker subsystem locks onto it and 

controls the LOS automatically to maintain it on the target.  
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Figure 1.3  Basic operating states of a typical Automatic Video Tracking System (AVTS). 
 

The sensors are mounted on a gimbal control unit. The gimbals can turn the sensor 

unit in two axes in order to change the LOS of the sensors. The tracker subsystem 

computes the new target location from the video acquired from the sensor unit. The 

sightline controller subsystem computes the required gimbal control commands from 

the data obtained by the tracker subsystem.  

The typical operating states for an AVTS are shown in Figure 1.3. A track gate, 

typically in a rectangular form is opened when the operator commands the tracker to 

select a target. After the target is selected, the tracker enters the acquire state where 

target data is collected from the video data within the track gate. After acquisition is 

completed the track state is entered. In the track state the new target location is 

estimated at every frame and the target data and track gate is updated accordingly. If 
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the quality of the track gets low, the warn state is entered. In this state, although new 

location is estimated, target data might not be updated. If track quality gets high 

again, the track state is reentered, otherwise, a timeout occurs and the target is 

assumed to be lost. This time the coast state is entered where location estimation is 

performed using a prediction algorithm by making use of previous data in order to 

control the track gate, or the gimbals. If the target is found within some period of 

time, the tracker reenters the acquire state, otherwise, breaklock occurs and the 

tracker goes to the off state. 

1.3 Military Trackers 

In military systems, two major types of trackers are crucial: The point tracker and the 

area tracker. The point tracker is used to track a bounded object that can be 

distinguished from the background. Centroid tracking is used to implement the point 

tracker. It is based on a successful segmentation of the target from the background. It 

also requires that the target is completely within the field of view, so that the track 

gate fully encloses the entire target area. The track gate is then adapted according to 

the size of the target during tracking. The Centroid tracker works well for infrared 

video where the target is hotter than the background and can easily be segmented. 

For grayscale video such a distinction cannot be made easily, but for color video, if 

the color of the target is different from the background, the centroid tracker could be 

used. Otherwise, more sophisticated segmentation algorithms should be employed. 

The Area tracker, on the other hand, could be used for many types of objects. It is 

usually implemented using the correlation tracker. It can be used for both bounded 

and unbounded objects, as well as to track any part of the scene. A template of the 

target is obtained in the acquisition phase and this template is used to search for in 

the subsequent frames. The search criterion is generally the correlation measure 

which is obtained by correlating the template with a set of search locations, thus 

obtaining a correlation surface. The success of the correlation tracker depends highly 

on the update strategy of the template. Since, the target appearance could change 

with time, the template should be updated accordingly, but this is a difficult task, as 

it is very likely that the template drifts from the actual target [65]. An improved 
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implementation of the correlation tracker is developed by Fitts [34]. A recent review 

of correlation trackers can be found in [86]. 

For area tracking, the target may not necessarily be a distinctive object, i.e. it can be 

unbounded. It can be a part of an object, a part of a landscape, or a part of the scene 

on which the camera is aimed at. This type of tracking is essential in moving 

platforms like aircrafts. An example is shown in Figure 1.1 where the target is a part 

of a building. Due to the highly cluttered background, the target cannot be segmented 

easily and hence the area tracker is used. 

Due to its nature, area tracking algorithms have based their approaches mostly on 

motion estimation methods.  

1.4 The Complex Wavelet Tracker 

This dissertation presents a new method that could be a powerful implementation of 

the area tracker. The proposed method is based on the motion estimation algorithm 

that uses the Complex Discrete Wavelet Transform (CDWT) developed by Magarey 

[59] in 1997. The base method is generalized to incorporate a set of pixels and allow 

deformations of this set according to a parametric motion model. The method 

operates in the CDWT domain and extracts the solution from the CDWT coefficients 

of the input frames. 

The CDWT developed by Magarey [59] has powerful features compared to the 

conventional Discrete Wavelet Transform (DWT). These features are specifically 

intended for the use of the CDWT for dense motion estimation. The benefits of using 

the CDWT are (a) approximate shift-invariance; (b) improved directional selectivity; 

(c) sub-pixel accuracy; and (d) robustness to noise and illumination changes. 

Approximate shift-invariance and improved directional selectivity is obtained by a 

limited redundancy of 4 to 1. The complex wavelet phase varies approximately 

linearly with changes in the input signal making it possible to be used for motion 

estimation.  

A phase-based method has several advantages over intensity-based methods. Phase-

based methods tend to be more robust to noise and illumination changes. Extensive 



 

 9

tests have also shown that the CDWT based motion estimation method is superior to 

other methods in creating a robust, reliable, accurate and dense motion field. (See 

Section 6.1 for the results) 

In this work we seek to improve the performance of AVTSs by extending the 

accuracy, robustness, and reliability of area tracking modes. For military systems, 

maintaining the LOS over the target is an important task, i.e. keeping the center of 

the target on the center of the video. From this point of view, a flow-based method 

has its advantages over matching-based techniques. Flow-based methods tend to be 

more robust to target appearance changes. We approach the problem by 

incorporating a parametric motion model. In this way, a more generic track gate can 

be used to maintain the track on the target. 

This work focuses on the tracking stage only, therefore the tracker is operator 

initiated. The target is defined by a rectangular region called the track gate. This gate 

is then deformed according to a parametric motion model based on the projected 

motion of the target onto the image plane. The parameters are estimated using the 

CDWT coefficients of the current and previous frames.  

With the Complex Wavelet Tracker we aim to address the following issues 

mentioned in Section 1.1. The first issue is the handling of the changes in target 

signature. The proposed method will take its advantage of being flow based to 

overcome this issue. As the parameters are estimated by making use of all target 

pixels, the cumulative solution will provide an adaptation to the target signature 

intrinsically. The second issue is robustness. Being a phase-based method, the 

Complex Wavelet Tracker will provide robustness, especially to illumination 

changes in contrast to intensity-based methods. The next issue we aim to address is 

low complexity. The proposed method is able to run in real-time. The issue we left 

out is the occlusion problem. The reason for this is that our sole aim is to develop a 

new algorithmic base for area tracking and thus, occlusion is left out of scope of this 

thesis. 
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The name “Complex Wavelet Tracker” is given to this algorithm since it operates 

purely in the complex wavelet domain. Hence, the abbreviation “CWT” will be used 

throughout this thesis. 

1.5 Contributions 

The major contributions of this thesis are as follows. 

1. The generalization of the original Complex Discrete Wavelet Transform 

(CDWT) based motion estimation algorithm developed by Magarey and 

Kingsbury [60]. In this way, the original dense motion field estimation 

algorithm is applied to regions instead of individual pixels. A parametric 

motion model is used to describe the motion of the region. Hence, by 

supplying a greater support, estimation accuracy and robustness is improved, 

especially for low textured, smooth regions.  

2. The introduction of the CDWT in the area of tracking. The development of a 

robust, phase-based, generalized area tracking algorithm that can be 

implemented in real-time. The benefits of the proposed method can be 

summarized as follows:  

□ Robustness to noise and illumination changes. Being a phase-based 

method, accurate results can still be obtained even under high noise 

and illumination changes. 

□ Sensitiveness even under low intensity patterns. It provides reliable 

results for low textured, smooth targets. 

□ Subpixel accuracy. The solution is obtained in fractional-pel accuracy. 

In this way, successful tracking can be performed for long-term 

sequences. 

□ Easy adaptation to target signature changes. Being flow-based, makes 

target adaptation possible in comparison to matching based methods. 
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□ The inclusion of a parametric motion model allows for accurate 

modeling of deformations of the track gate according to the specific 

requirements of the application. 

□ Robustness to the type of imaging source. Grayscale, color and 

infrared imaging sources can be handled without the need for any 

changes in the algorithm and similar performance is obtained with the 

same parameters. 

□ Solution is obtained directly without the need for iterations. 

3. The introduction of the base algorithm to other application areas such as 

global motion estimation, image mosaicking, image registration, and image 

alignment. 

4. The introduction of a complete multi-target tracking framework based on the 

Complex Wavelet Tracker that can be further developed and extended. The 

framework supplies common infrastructure for the combination of different 

aspects like background stabilization, moving target detection, and track 

parameter prediction. 

1.6 Outline of the Thesis 

The thesis consists of seven chapters and one appendix. The organization of the 

thesis is as follows: 

The next Chapter gives a review of the literature. It starts with an overview of motion 

estimation methods, which is followed by a review of tracking. An overview of 

wavelets and their use in motion estimated is provided at the end. 

Chapter 3 presents the Complex Discrete Wavelet Transform (CDWT) of Magarey 

and Kingsbury. It starts with a description of the transform which is followed by a 

presentation of the properties that are important for the derivation of the proposed 

algorithm. 

The Complex Wavelet Tracker is presented in Chapter 4. It first starts with a 

justification of the proposed method. Theoretical limits are defined that can be 
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handled by the CDWT across successive frames. Second, the definition of the 

tracking problem is stated which is followed by a description of parametric motion 

models. After these preliminaries, the theoretical derivation of the proposed Complex 

Wavelet Tracker is presented. The derivation starts with single level parameter 

estimation. The solutions according to the selected parametric models are also given. 

This is followed by the extension of the method to a hierarchical structure. 

Chapter 5 starts with some extensions to the base algorithm. Other possible 

application areas for the Complex Wavelet Tracker are covered next. The 

introduction of the Complex Wavelet Tracker Framework is given in the last section. 

Chapter 6 collects the results of the simulations performed in this work. It first starts 

with an investigation of the original CDWT based motion estimation method. It 

provides a summary of the comparison results to two other motion estimation 

methods. Tracking simulations are presented next. First, quantitative results are given. 

These results are obtained from the simulations exploring the practical limits that can 

be achieved by the proposed method. A number of tests addressing different aspects 

of the algorithm are covered in the subsequent sections. Second, qualitative results 

are presented. These results are obtained from real tracking sequences. Discussions 

of the results for each type of simulations are given at the end of each section. 

The last Chapter concludes with a discussion on the proposed algorithm and the 

results obtained from the simulations. This is followed by suggestions for further 

work. A conclusion is given at the end of this Chapter. 

The Appendix depicts the detailed results of the comparison of the CDWT based 

motion estimation method to Lucas-Kanade and Horn-Schunck motion estimation 

algorithms. 
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CHAPTER 2 

REVIEW 

This Chapter reviews the literature for motion estimation, tracking, and wavelets. 

First, a review of motion estimation approaches are given, which is followed by a 

presentation of a review of tracking algorithms. A review of wavelets and their use in 

motion estimation is given at the end. 

2.1 Motion Estimation 

Motion estimation can be referred to as the estimation of motion in a 2-D image-

plane [81] and is one of the fundamental problems in video processing. It is stated as 

either a correspondence or an optical flow estimation problem that is based on at 

least two frames, and is an ill-posed problem in the absence of any additional 

assumptions about the form of the motion [81]. It lacks from existence, uniqueness, 

and continuity problems. To solve the motion estimation problem, parametric and 

nonparametric models are used to provide additional assumptions on the structure of 

the motion field.  

Parametric models aim to describe the orthographic or perspective projection of 3-D 

motion of a rigid surface into the image plane [81]. Nonparametric models impose 

smoothness constraints on the 2-D motion field without considering 3-D rigid motion 

models [81]. Nonparametric approaches can be classified as gradient-based (optical- 

flow-based) methods, matching-based (correspondence) methods, and frequency-

based methods [52]. A detailed comparison of motion estimation methods can be 

found in [5]. 
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2.1.1 Gradient-Based Motion Estimation 

Gradient-based methods start with the assumption that the only changes in the image 

with time are due to the motion of 2-D intensity patterns [59]. Hence, motion 

estimation methods are based on the optical flow equation (OFE) in order to provide 

an estimation of the optical flow field in terms of spatio-temporal image gradients 

[81].  

The OFE is based on the assumption that the intensity remains constant along a 

motion trajectory. Let I(x, t) denote the continuous space-time intensity distribution 

where x denotes the 2-D pixel location defined as [x1 x2]
T. Then, this assumption can 

be expressed as 

  0
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=
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tdI x
 (2.1) 

where x varies with t according to the motion trajectory. This equation denotes the 

rate of change of the intensity along the motion trajectory. To convert this expression 

to include the velocity vector we can use the chain rule: 
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where v1(x, t) = dx1/dt and v2(x, t) = dx2/dt denote the components of the velocity 

vector in terms of continuous spatial coordinates. Equation (2.2) is known as the 

optical flow equation (OFE) or the optical flow constraint (OFC). 

The OFE involves two unknowns, namely the two components of the velocity vector, 

v = [v1 v2]
T. In addition to this, this equation provides only a solution to the 

component of v in the direction of the gradient of I(x, t) at time t, called the normal 

flow, where the perpendicular component is unconstrained. This is known as the 

aperture problem [81]. 

Several suggestions have been proposed to impose a constraint on the flow field. 

Lucas and Kanade [57] impose a local constraint on the flow field by assuming that 

the motion vector remains unchanged over a particular block of pixels (constant 
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local flow). Let W denote the set of pixels within this block, then this assumption can 

be expressed as 

  Wtt ∈= xvxv for    ,)(),( . (2.3) 

This model allows estimating a purely translational motion vector uniquely provided 

that the block of pixels contain sufficient intensity variations. Then, the problem 

converges to the minimization of the error in the OFE over the block of pixels W. 

Hence, the objective function can be written as 
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Differentiating the objective function with respect to the velocity vector, v, and 

equating to zero will yield a solution for v in the form: 
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Here, g1 = ∂I(x,t)/∂x1, g2 = ∂I(x,t)/∂x2 and gt = ∂I(x,t)/∂t denote the gradients. The 

accuracy of this method depends on the accuracy of the estimated spatial and 

temporal partial derivatives. 

Horn and Schunck [42] imposes a global smoothness constraint on the optical flow 

field. The aim is to minimize a weighted sum of the error in the OFE and a measure 

of pixel-to-pixel variation of the velocity field: 
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defined over a domain S, where 
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and α reflects the influence of the smoothness term. Iterative equations are used to 

minimize Equation (2.7) and obtain an estimate to the image velocity v.  

Bruhn et al [14] propose a new method that combines these two approaches, namely 

the combined local-global (CGL) method. They claim that this hybrid method 

combines the advantages of the local Lucas-Kanade algorithm with the global Horn-

Schunck algorithm. 

2.1.2 Matching-Based Motion Estimation 

Matching-based approaches are based on correspondence techniques, which are 

based on the identification of a set of sparse and well-identifiable features [52]. By 

tracking these features, an inter-frame correspondence is searched to estimate the 

motion of selected features on the image plane. These features can be high-level, like 

lines and shapes, or low-level, like corners and texture. These techniques are suitable 

for both motion estimation and tracking. 

Block-based motion estimation is one of the most popular approaches [81]. The 

block-motion model can either be simple translational or 2-D deformable. The 

current frame is divided into blocks and the displacement of each block is estimated 

from the previous frame (backward estimation). For motion estimation purposes, 

backward estimation is preferred. 

The translational block model can be characterized by a simple shift in the block of 

the pixels: 

  W∈+=′ xbxx for        (2.9) 

where x ́ denotes the location of a point in the next frame and b denotes the shift. 

This is known as the translational motion model. Then, according to the image-

constancy assumption [41] we can write (2.1) as 
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  ),(),( 12 tItI bxx += . (2.10) 

The block-matching method is a widely used method to estimate the displacement, 

where the block is searched in the previous frame by means of a matching criterion. 

Many different matching criteria can be used. Maximum cross-correlation, minimum 

mean-square error (MSE), minimum mean absolute difference (MAD), and 

maximum pel matching count (MPC) are among others [81]. The objective function 

to be minimized for the MSE criterion can be written as 
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over the block of pixels W where NW denotes the number of pixels within the set W. 

The size of the search window is selected as the maximum possible displacement that 

is expected between successive frames. Different search strategies can be applied to 

obtain the minimum. Full search, n-step search, or cross-search methods could be 

applied as well as hierarchical implementations could be used. 

Besides pure translational approaches, generalized block-motion estimation schemes 

can be applied to handle other types of deformations like rotation and scaling. These 

methods provide superior motion tracking in the presence of rotation and zooming 

compared to the translational motion model [81]. 

The affine motion can be characterized by an inclusion of a deformation term, A, to 

the translational motion and can be written as 

  W∈+=′ xbAxx for        (2.12) 

where x ́ denotes the location of a point in the next frame. This is known as the affine 

motion model. Similarly, we can write (2.1) as 

  ),(),( 12 tItI bAxx += . (2.13) 

As in the translational motion model, the frame is divided into triangular, rectangular, 

hexagonal, or some arbitrary subblocks. These methods aim to track the motion of all 

pixels within the subblock using pixel correspondences established at the corners of 

the subblock [81]. Thus, it is essential that the segmentation is matching individual 
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moving objects. Otherwise, local motion within these subblocks cannot be 

represented appropriately. Therefore, feature- or motion-based segmentation of the 

frame into adaptive meshes could be applied. 

The solution of the affine motion model, however, is not as easy as in the 

translational motion model. Obtaining a solution via searching is no longer a trivial 

task. Other search strategies [81] and iterative methods [3][79] that converge to the 

solution could be used for this case.  

2.1.3 Frequency-Based Motion Estimation 

Frequency-based methods estimate motion by transferring the images to the 

frequency domain, and performing operations on the transform coefficients rather 

than on the image intensities. 

Frequency domain techniques are mainly based on the Fourier shift theorem which 

states that a shift in the time domain causes a phase shift in the frequency domain. 

Hence, the Fourier transform of the translational motion model in (2.10) will be 

  }2exp{)()(
12

bfff T

tt jSS π=  (2.14) 

where St(f) denotes the Fourier transform of image I(x, t). However, the Fourier 

transform by itself describes behavior over all time, hence, shifts that are localized to 

a particular time interval cannot be estimated by this method. To overcome this 

problem, the Short-Time Fourier Transform (STFT) is introduced. The STFT 

windows the Fourier basis function to provide a time-frequency description of the 

signal.  

Phase correlation is derived from the Fourier shift theorem as well. The phase 

correlation method estimates the relative shift between the two images by means of a 

normalized cross-correlation function that is computed in the Fourier domain [81]: 
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where C denotes the normalized complex-valued cross-power spectrum. Substituting 

(2.14) into this equation yields 



 

 19
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Taking the inverse Fourier transform we obtain the phase-correlation function 
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The location of the impulse yields the displacement vector b [81].  

Estimation of motion in the Fourier domain is based on the affine Fourier theorem 

[11]. Bracewell showed that the Fourier transform of two images undergoing affine 

motion (2.13) will be  
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where ∆ = det(A) and fA = ∆(A
-1f). From the affine Fourier theorem [11], it becomes 

evident that the affine and translation components of the motion are separated so that 

the rotation, scale, and shear effect the magnitude; and translation effects the phase 

of the Fourier space.  

Work has been conducted to obtain an estimate of the affine parameters from the 

frequency domain. Kumar et al [51] resampled Fourier magnitude spectrum and used 

log-polar mapping in order obtain an estimate for the affine parameters. Lucchese 

[58] used 1-D radial projections of the energy spectra of the segmented images in 

order to obtain an affine estimate. The parameters are estimated by minimizing the 

difference between the radial projections of the two images using the Levenberg-

Marquardt minimization algorithm. 

2.2 Tracking 

Tracking is a broad research area. There are basically two types of tracking systems: 

Radar trackers and video trackers. Radar trackers operate on radar signals and try to 

track the trajectory of multiple objects. The target signatures are almost the same for 

all targets within the vicinity. The major problem is clutter. At each scan of the radar, 

the locations of the target points change and motion models should be incorporated 

in order to make correct associations between tracked targets and the detected points, 

especially for crossing targets. Video trackers, on the other hand, operate on video 
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frames. Targets are represented by a set of pixels which correspond to the 2-D 

projection of the appearance of the target depending on the type of the imaging 

sensor. Visible, infrared, hyperspectral, synthetic aperture radar (SAR), and laser-

radar (LADAR) are most common sensors for imaging. The tracking algorithms 

operate on the pixels to estimate the target state. So, the concepts of the two systems 

are different, and hence the approaches are different. 

There are two main approaches to vision-based tracking [71][68]. The first is based 

on the optical flow field, where the flow field is analyzed to infer structure, motion, 

or both for the objects in the image. It is based on low-level descriptors, like intensity. 

The second approach is based on the correspondences of discrete features, where 

features of an object are extracted and correspondences are established in subsequent 

frames. This is a high-level approach which relies on image analysis and typically 

searches for features in an image, and then infers object motion from these 

correspondences. 

2.2.1 Flow-Based Tracking 

Optical flow based approaches first derive an optical flow field using the methods 

introduced in the previous section. This flow field is then analyzed to recover 

information about the dynamic scene and to make inferences about motion of 3-D 

objects in the scene [68]. 

Lucas and Kanade [57] proposed an image registration technique based on the spatial 

intensity gradient (See also Section 2.1.1). A type of Newton-Rhaphson iteration is 

used to find a match of an image block between the frames. This registration method 

is later used by Shi and Tomasi [79] for tracking point features. They also extended 

the pure translational motion model of Lucas and Kanade [57] and proposed a 

method for determining affine changes in a similar Newton-Raphson style 

minimization procedure. They proposed to use an affine motion field in order to have 

a better representation of the motion of the pixels within the feature window W. They 

defined tracking as the estimation of the six affine parameters given two frames [79]: 

  WtItI ∈=+ xxbAx for       ),(),( 21  (2.19) 
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Then, the parameters A and b could be determined by minimizing the objective 

function 

  [ ]∫∫ −+=
W

dwtItIO xxxbAxbA )(),(),(),( 2
21  (2.20) 

where w(x) is a weighting function. The objective function is minimized by 

differentiating it with respect to the six affine parameters and setting the result to 

zero. The resulting system is linearized by the truncated Taylor expansion, yielding a 

6 × 6 linear system: 

  Tp = a (2.21) 

where p = [a11, a21, a12, a22, b1, b2]
T is the affine parameter vector. The error vector a 

depends on the difference between the two images 
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where g1 = ∂I(x,t)/∂x1 and g2 = ∂I(x,t)/∂x2 are the gradients and 
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Note that, the pure translational motion model corresponds to a subset of these 

equations: 

  Zb = e (2.25) 

where e collects only the last two entries of a in Equation (2.22).  

Hager and Belhumeur [39] proposed a region tracking method using a parametric 

model for geometry and illumination. They started with the same goal as Shi and 

Tomasi [79] algorithm, which is also a generalization of the Lucas-Kanade algorithm, 

defined in Equation (2.20) with a change of the affine motion model with a more 

generic warping function, M(x;p). They defined this function as the parametric 

motion model; and tracking as recovering the parameters p throughout the input 

frame sequence [39].  

At the beginning, the target is defined by a rectangular region at time t0. Then, for an 

arbitrary time t > t0, as the geometry of the target would change, the motion of this 

rectangular region is defined by this parametric motion model with parameters p(t) 

with respect to t0. In this way, the problem is converted to the estimation of a vector 

of offsets, ∆p. Then, at each iteration, p will be updated as 

  p   ←   p + ∆p.  (2.26) 

Baker and Matthews [3] addressed this method as the inverse additive algorithm and 

proposed the forwards compositional and inverse compositional algorithms to 

overcome such limitations. They reformulated the iteration steps such that the 
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algorithm solves for an incremental warp M(x; ∆p) rather than an additive update to 

the parameters ∆p: 

  M(x; p)   ←   M(M(x; ∆p); p). (2.27) 

They claim that although the computational cost is equivalent to Hager-Belhumeur 

algorithm, the restriction on the allowed warp is loosened. Together with the LK 

algorithm, which they refer to as the forwards additive algorithm, they showed that 

these four methods yield the same results as a means of convergence [3]. They added 

that in case of additive noise, this similarity breaks in favor of forwards algorithms 

which have performed slightly better. 

2.2.2 Feature-Based Tracking 

Feature-based tracking is based on the correspondence of discrete features of an 

object in one frame with those features in a subsequent frame. Unlike flow-based 

methods, this approach relies on discrete features, instead of processing the whole 

target area. A feature can be any easily observable characteristic of the object being 

tracked. Any measurable relationship in an image could be used as features. For 

tracking, commonly; points, edges, corners, textures, and regions are used as features. 

After the features are extracted, inter-frame correspondences are established among 

them. Constraints can also be established based on the assumptions on the motion of 

the object to be tracked [72]. 

Computation of new invariants has been introduced recently for using as features in 

tracking [71]. Instead of standard features such as corners and lines, projective 

invariants as well as parametric measures that are insensitive to both changes in 

geometry and illumination can be used which are image features independent from 

camera position. 

For Point Tracking, Davies et al [27] presented a Kalman tracking algorithm that 

can track a number of very small, low contrast objects. The objects are detected by 

the Daubechies wavelet filter and segmented using morphological operations. Due to 

the small size of the objects, they are represented by points. Multiple track 

hypotheses are created and a Kalman filter is used to track the targets. Caefer et al 
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[15] used a triple temporal filter (TTF) with six input parameters for detecting and 

tracking point targets in consecutive frame data acquired with staring infrared 

cameras. The generic form of the filter weights the data of each pixel in time by a 

zero-mean damped sinusoid. 

Corners are used as good feature points in tracking. Nassif [67] used corner tracking 

algorithm as one of the two methods he used in his tracking framework. Behrad et al 

[7] used future points selected from the edge of the target. These feature points are 

then matched with points in the region of interest in the next frame using fuzzy-edge-

based feature matching for tracking.  

A Blob Tracking algorithm computes the state of a target based on pixelwise 

operators which identify every pixel in a tracking window as being either a part of or 

not a part of the target object [84]. Blob tracking is adequate for tracking in 

structured environments where one has considerable control over the visual 

environment and the object to be tracked. Its advantages include speed and simplicity. 

For Edge Tracking, lines and edges are popular choices as features due to their 

robustness to illumination variance and ease of extraction from the image. Line 

extraction is less sensitive to noise than point extraction, and line correspondence is 

usually an easier problem to solve than point correspondence. The edge tracking 

procedure is divided into two stages: feature detection and state updating. In the 

detection stage, rotational image warping can be used to acquire a window which, if 

the prior estimate is correct, leads to an edge that appears vertical within the warped 

window [84]. 

For Contour Tracking, Schoepflin et al [75] proposed an algorithm that applies a 

sequence of hierarchical deformations to find a match for a dynamic template in a 

video frame. They use hierarchy of separate deformation stages: global affine 

deformations, local (piecewise) deformations, and snake-based continuous 

deformations. A snake is an active contour adapted by minimizing its energy. The 

internal energy of the snake seeks to maintain the shape of the contour, opposing 

deformation, and its external energy, on the other hand, seeks to place the snake 

along the edges of the image defined between an object and its background [36]. 



 

 25

Koller et al [49] employed a contour tracker based on intensity and motion 

boundaries to track multiple 3-D objects in a known environment with occlusion 

reasoning. They assumed that the motion of a contour enclosing the image of a 

vehicle to be well describable by an affine motion model with a translation and a 

change in scale. The contour is based on motion and intensity boundaries. They used 

a closed cubic spline with twelve control points to approximate the extracted convex 

polygon. 

In Region-Based Tracking, a region, often defined as a maximal homogeneous 

image patch, is tracked as a feature [68]. Vigus [85] used region split and merge 

method and Kalman filtering to track video objects. He assumed video objects to be 

groups of image pixels coherent spatially as well as in their values of luminance. Lim 

et al [54] proposed a semantic object tracking scheme based on re-estimation of a 

morphological region-based segmentation approach for tracking. Previous work of 

Lim [55] with Ra was based on a three-step boundary projection scheme: object 

boundary projection, uncertain area extraction, and boundary refinement. Region 

growing is utilized to merge uncertain pixels and the pixels near the uncertain area. 

Region growing is based on color information. 

Bremond and Thonnat [12] tracked moving regions detected from a fixed camera 

using a five-point dynamic target model. Cohen and Medioni [20][21][22] used 

moving regions to detect and track moving objects in airborne image sequences. 

They detected moving regions by estimating egomotion and represented them by a 

graph in order to create relations among them. Hwang et al [43] used spatial 

segmentation for tracking independently moving objects, called video object planes 

(VOPs) in visual coding. He performed spatial segmentation using distributed 

genetic algorithms. Once moving objects are extracted from each frame, object 

tracking is automatically performed by tracking on the spatial segmentation level. 

In Template-Based Tracking a stored reference template is matched to a region of 

the image. The reference is either a region taken from the scene itself, or a pre-

supplied target template [84]. A feature template may also be used to detect a feature 

in an image. A feature template contains some representation of the feature and is 
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compared against portions of an image to locate that feature in the image [68]. Lipton 

et al [56] used adaptive templates for tracking targets. Moving regions are detected 

by temporal differencing and then used as training templates for the tracker. The 

template is updated adaptively by merging previous instance with current 

information. Canals et al [16] used a multi-block technique for tracking deformable 

objects. Since a square block cannot cover the whole object without including 

nontarget points in the model, they chose a multi-block solution in which several 

square blocks are used to model the target. The size of each subblock is updated 

depending on its size at the previous moment and on the evolution of the distances 

among the subblocks. 

Deformable templates are commonly used as the 2-D model of the object. If the 

object is known, one can design a deformable template to appropriately constrain the 

object segmentation. Deformable templates can model a wide variety of objects, 

ranging from those with known geometry to instances where the allowable 

deformations are unknown, in which case very flexible templates, such as snakes 

[76] must be used.  

Cohen and Medioni [20][21][22] used dynamic templates for tracking objects. A 

dynamic template is obtained for each detected region by applying a median filter 

over the last five detected frames of the region. Bremond and Thonnat [12] used a 

five-point dynamic target model to track moving regions. The tracking is performed 

in a prediction-matching-update loop. The target trajectory is represented by a 

polygonal approximated. 

In Model-Based Tracking, most of the approaches assume that there is a model 

given as known a priori information. The goal is to find a match that minimizes a 

cost function between the model and image features. A work on model-based 

tracking of articulated objects is conducted by Nickels [68]. The assumption is that 

the appearance model and the kinematics structure of the object are given. The 

observations from the image and the knowledge of the previous configuration of the 

object are combined to estimate the new configuration using the Extended Kalman 

filter. The tracker observers a monocular grayscale image of the scene and combines 
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information gathered from this image with knowledge of the previous configuration 

of the object to estimate the configuration of the object at the time the picture was 

taken. 

Nassif [67] chose a model-based tracking algorithm for one of the two methods he 

used in his framework for tracking. He et al [40] presented an object tracking method 

which uses the 2-D Gabor wavelet transform (GWT) and a 2-D golden section 

algorithm. The feature points are stochastically selected based on the energy of their 

GWT coefficients. The global placement of the feature points is determined by a 2-D 

mesh whose feature is the area of the triangles formed by the feature points. In order 

to find the corresponding object in the next frame, the 2-D golden section algorithm 

is employed. Nummiaro et al [69] proposed an adaptive color-based particle filter for 

tracking objects. A particle filter tracks several hypotheses simultaneously and 

weights them according to their similarity to the target model. The proposed method 

adds an adaptive appearance model based on color distributions to particle filtering. 

As multiple hypotheses are processed, objects are able to be tracked in case of 

occlusion and clutter. Foresti [33] proposed an integrated framework for recognition 

and tracking. He used the statistical morphological skeleton (SMS) of the object as a 

shape descriptor and compared it with other model objects stored in a database. He 

then derived observable quantities from the detected SMS and applied an extended 

Kalman filter to them to track the moving object. 

Comaniciu [24] developed the Mean Shift Tracker where he used a target model 

that is obtained from image statistics. The statistics are also weighted with an 

isotropic kernel according to its location on frame. This kernel induces spatially 

smooth similarity functions suitable for gradient-based optimization. In this way, the 

target localization problem is formulated using the basin of attraction of the local 

maxima [23]. The Bhattacharyya coefficient is used as a similarity measure and the 

mean shift procedure is used to perform the optimization.  

The mean-shift procedure [24] can be summarized as follows: First, the target model 

and candidate models are created using an m-bin histogram. Then, the ratio 

histogram is obtained by normalizing target bins with candidate bins. This ratio 
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histogram is then used to create the backprojected image where the mean shift 

iterations are performed. Scale adaptation [23] is performed by running the algorithm 

three times for different target scales: smaller, equal, and larger size; and by selecting 

the one resulting in the largest Bhattacharyya coefficient. Filtering [23] can be used 

to avoid oversensitive scale adaptation. 

2.3 Wavelets 

The wavelet transform has become a popular tool for image analysis in the recent 

decade. Unlike the Fourier transform, it provides time-frequency localization of 

signals. It may be regarded as equivalent to filtering the input signal with a bank of 

bandpass filters, whose impulse responses are approximately scaled versions of a 

mother wavelet. This section gives a brief introduction of the wavelet transform 

followed by a review of the use of wavelets for motion estimation. 

2.3.1 The Continuous Wavelet Transform 

The Continuous Wavelet Transform of a one-dimensional signal I(t) can be defined 

as 
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where D is used for the wavelet transform referring to detailed subbands and ψτα(t) 

represents a set of wavelets, generated from the mother wavelet ψ(t) by a change of 

scale and a translation in time. The scale of ψ(t) is conventionally 1, and that of ψτα(t) 

is α > 0. The function ψ(t) is conventionally centered around 0, and ψτα(t) is then 

centered around τ. Thus we have 
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where R∈τα , . The scale factor α represents the scaling of the wavelet function 

where a large scale mean stretched wavelets for global views and a small scale 

means shrunk wavelets for detailed views. 
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2.3.2 The Discrete Wavelet Transform 

The Continuous Wavelet Transform is highly redundant, and hence, the scale and 

translation parameters could be sampled to obtain the Discrete Wavelet Transform 

(DWT). Usually, a dyadic sampling is used for α and a linear (proportional to the 

scale) sampling for p, i.e., α = 2mα0 and τ = kα, where Ζ∈km, . Then, the DWT can 

be written as a set of integer-indexed coefficients: 
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with Ζ∈km, . When the signal is also sampled in time (I = I(n), Ζ∈n ), which is the 

case in most signal processing applications, we obtain the Discrete-Time Wavelet 

Transform (DTWT) defined as 
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A subband decomposition tree structure could be used to implement the DTWT. 

Referring to Figure 2.1, a pair of halfband filters, {h0, h1} could be used for the 

analysis. The highpass filter h1 provides the detail coefficients D
(m) and the lowpass 

filter h0 creates the coarse approximation of I(t). The equivalent wavelet filters 

ψ
(m)(n) of Equation (2.32) can be written in terms of h0 and h1 as follows: 
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where the Z-transform is used to describe the digital filters. To represent the lowpass 

outputs I(m) the scaling filters )(nφ  are used which are defined in a similar manner 

as 
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For images, the wavelet transform should be extended to 2-D. This is accomplished 

by extending the subband decomposition tree to implement a separable wavelet 
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transform [64]. Hence, a 2-D DWT1 applies the 1-D building block, shown in Figure 

2.1, first to the rows, then along the columns of the resulting two half-sized 

subimages, resulting in three detailed subimages D(s,m) and one lowpass subimage I(m). 

This structure is shown in Figure 2.3. Here, s refers to the subband, 1 through 3, and 

m represents the level of the decomposition. 

 

h0 ↓2

h1 ↓2

I
(1)

D
(1)

I

 

Figure 2.1  Basic 2-band building block for dyadic DTWT of a subband decomposition tree 
using the filter pair {h0, h1} where h0 is low-pass and h1 is high-pass. The filtering operations 
are followed by a downsampling operation. The next block continues from I(1) which is the 
low-pass version of the input signal I(t) and D(1) is the detailed subband signal. 
 

The subimages for level m can be written similar to Equation (2.32) as  
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where ψ(s,m) is the wavelet filter for subband s and level m and )(mφ  is the scaling 

filter for level m. Here, x = [x1, x2]
T refers to the spatial coordinates where x1 is the 

vertical and x2 the horizontal component. Positive directions are down and to the 

right. Since these filters are separable, they can be written as products of 1-D wavelet 

and scaling filters as follows: 
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1 As a common convention, from here on, the DWT will be used to refer to the discrete space or time 
signals instead of DTWT. 
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The corresponding partitioning of the unit frequency cell is shown in Figure 2.2. 

Since the transform is separable, the regions are rectangular. 

 

Figure 2.2  Tiling of the 2-D unit frequency cell by the Discrete Wavelet Transform (DWT). 
Only the first level is shown. The subsequent levels tile further the low-pass subimage I(1).  
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Figure 2.3  Building block for separable 2-D DWT for images. The same filter pair {h0, h1} 
as in the 1-D DWT is used first for the rows than for the columns. The next block continues 
from the lowpass subimage I(1). Here, D(s,1)’s are the detailed subimages for level 1. 
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2.3.3 Wavelets for Motion Estimation 

The Discrete Wavelet Transform (DWT) is successfully used for image analysis; 

however, due to its limitations it is not adequate for motion estimation and video 

processing. The two major disadvantages of the DWT are shift variance and poor 

directional selectivity [19][46][1][17][25][31][35][70][77][82][90]. It is shift variant 

because the transform coefficients behave unpredictably under shifts of the input 

signal. This is because the DWT is critically sampled, i.e. N coefficients are 

produced for N pixels. The two-dimensional DWT has poor directional selectivity 

because it cannot distinguish between the two diagonal orientations: +45° and -45°. 

It can only distinguish between three different spatial orientations, namely, the 

horizontal, vertical and diagonal. For motion estimation, however, these two features 

are crucial.  

The shift-dependency of the discrete wavelet transform hinders its use for motion 

estimation. Therefore, several modifications to the DWT have been proposed to 

make the transform suitable for motion-estimation. Most of the modifications are in 

the way to make the transform shift-invariant. One of these methods is the redundant, 

or, overcomplete wavelet transform. The redundant DWT (RDWT) removes the 

downsampling operation from the traditional DWT to ensure shift invariance at the 

cost of a redundant, or overcomplete representation [60]. The RDWT is also called 

the “undecimated wavelet transform”. 

Cui et al [25][26] demonstrated that the redundant (overcomplete) wavelet domain 

facilitates the placement of an irregular triangular mesh to video images to 

implement geometries for motion estimation. In addition, they present a new form of 

multihypothesis prediction, namely the redundant wavelet multihypothesis. 

DeVore et al [28] also presents another redundant wavelet transform, namely the 

Redundant Haar Transform. DeVore also claims that it is highly computationally 

efficient. 

Fernandes et al [32] proposed a complex, directional double-density wavelet 

transform (CDDWT) that is almost shift-invariant with redundancy of 2.67 for two-

dimensions. They based their transform on the double density wavelet transform 
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(DDWT) proposed by Selesnick. The CDDWT is created by performing a non-

redundant post projection on the double density wavelet transform (DDWT) 

coefficients.  

Wu et al [87][88] proposed an iterative motion estimation algorithm that uses 

wavelet approximation as an optical flow model. The wavelet motion model, 

originally presented by Cai and Wang, represents motion vectors by a linear 

combination of hierarchical basis functions. The general idea is to recover the 

associated wavelet coefficients from the coarsest level to the current level by 

minimizing the SSD, then reconstruct motion vectors via interpolation and use them 

to warp the first image toward the second. The wavelet basis functions play triple 

roles in the algorithm, to construct motion vectors from coarse-to-fine, select 

multiple large-to-small regions for image matching and impose smoothness. The 

results are robust and accurate. 

Sebe et al [77] proposes the Overcomplete Discrete Wavelet Transform (ODWT) to 

overcome the shift-variant property of the DWT. They demonstrated the possibility 

to obtain for a given function f in the wavelet space, the displaced function f with any 

integer value of the sampling period. They state that it is always possible to obtain 

any translated version of the original discrete function from one of the ODWT 

members.  

Bernard [8][9] describes a new way to compute the optical flow, based on a discrete 

wavelet basis analysis. The optical flow is estimated locally by the projection of the 

differential optic flow equation onto wavelets. The approach has low complexity and 

permits the measurement of illumination changes, making the optical flow 

computation more robust.  

Cai and Adjouadi [17][18] proposes an efficient approach, called “level-refined 

motion estimation and subband compensation” (LRSC) method for fast motion 

estimation and compensation in the wavelet domain. Wavelet domain motion 

estimation is processed by searching the best matching block between the current 

subframe and the corresponding reference subframe, from coarse to fine resolutions 
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hierarchically. They apply DWT on the current frame and the reference frame before 

motion estimations between the subframe pyramids.  

Li [53] generalized Lucas and Kanade’s scheme [57] into the wavelet space. He 

discovered that odd-phased and even-phased coefficients of the DWT can be 

recovered from each other. In this way, the negative artifact of the downsampling 

operation could be overcome. Thus, he proposed an iterative phase estimation 

scheme in the wavelet space for the estimation of motion. He constrains its solution 

space to block-based translational motion models.  

Park and Kim [70] proposed the “low-band-shift” (LBS) method to overcome the 

shift-variant property of the discrete wavelet transform and presented a motion 

estimation and compensation method in the wavelet domain. In this method, the 

reference frame is shifted by one pixel along the x, the y, and the diagonal directions, 

respectively, in the spatial domain. The shifted frames are transformed to the wavelet 

domain for motion estimation. This process is then repeated iteratively in the next 

level and so on. The motion vector is then found by selecting the block who gives the 

minimum mean absolute difference (MAD) between the current wavelet block and 

the reference wavelet block. Fu et al [35] modified this method in order to improve 

its performance around image boundaries and proposed the “Symmetric Padding 

Low-Band-Shift Motion Estimation” (LBSME-SP) algorithm. Yuan and Mandal [90] 

also based their work on LBS and proposed a multi-hypothesis hierarchical backward 

motion estimation and compensation framework. 

Auwera et al [2] proposed a block based motion estimation and compensation 

technique applied on the detail images of the wavelet pyramidal decomposition. The 

algorithm performs full-search motion estimation on every level of the wavelet 

decomposition and extracts integer shifts of each block. Methods changes depending 

on whether the shift is odd or even.  

Tjoa et al [82] proposed a motion compensation (MC) method in the DWT domain 

to realize a hierarchical MC. They applied a locally adaptive interpolation filter to 

dissolve the shift-invariant problem caused by down sampling in DWT. The filter 

predicts DWT coefficients in the current frame from the coarsely motion 
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compensated DWT coefficients in the reference frame, using the motion vectors 

estimated from the lower resolution image. 

Ates [1] proposed a modified block matching algorithm based on the idea of 

representing motion information at different resolution levels which are obtained by 

using biorthogonal wavelet filter pairs.  

Xiong et al. [89] presents a new approach to deal with the translation- and scale-

invariant problem of discrete wavelet transform. They base their approach on the 

theory of interpolation in the wavelet subspace and adaptively renormalize the 

original signal by using an orthonormal scale function and the first two moments of 

the signal. The renormalized signal is then decomposed according to conventional 

wavelet decomposition, and the final wavelet coefficients are proved to be both 

translation- and scale-invariant. They use their approach in texture identification. 

Mujica et al. [66] presents a novel motion parameter estimation algorithm based on 

the spatio-temporal continuous wavelet transform (CWT). They use the CWT to map 

the input signal space to a physically meaningful parameter space, which allows for 

the accurate estimation of motion parameters. 

Şendur and Güleryüz [37][38] proposed new interscale edge and occlusion models 

that are incorporated in a wavelet-based probabilistic motion estimation framework. 

They formulated the estimation of the motion field as a maximum likelihood 

optimization problem that allows the use of dynamic programming algorithm in 

order to find the globally optimum solution.  

To summarize, wavelets are being used increasingly for the estimation of motion. 

Since the DWT is not directly suitable for motion estimation, several methods have 

been developed to make them suitable for motion estimation. One of such 

modifications which we preferred in this work is the Complex Discrete Wavelet 

Transform developed by Magarey and Kingsbury, which will be covered in detail in 

the next chapter. 
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CHAPTER 3 

THE COMPLEX DISCRETE 
WAVELET TRANSFORM 

3.1 Introduction 

The wavelet transform is a suitable tool for analyzing images. However, for video 

processing, where consecutive frames have only slight variations of each other, the 

wavelet transform can not be used effectively, since the wavelet transforms of these 

frames would be highly different from each other. This is because the wavelet 

transform is not shift-invariant like the Fourier Transform. Its sensitivity to signal 

position makes the analysis of video frames a difficult task.  

In 1997, Magarey and Kingsbury [60] have developed the Complex Discrete 

Wavelet Transform (CDWT) in order to efficiently implement the accurate phase-

based motion estimation method of Fleet and Jepson [30]. Motion estimation would 

only be possible if a correspondence on the wavelet coefficients could be established 

for the moving pixels, which, in its simplest case requires the wavelet transform to be 

shift invariant. This is the basic principle behind the CDWT. The fact that DWT is 

critically sampled, which is the result of the downsampling operation performed at 

each level, causes the transform to be shift-variant. The Continuous Wavelet 

Transform, on the other hand, does not suffer from this artifact as there is no 

downsampling operation. 

The CDWT is a compact, multiresolutional, orientation-tuned decomposition of an 

image. The superiority of this method lies in the fact that it combines the shifting 
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property of the Fourier Transform with the scale-independence and localization 

features of the Wavelet Transform. 

The most important features of the CDWT can be summarized as: (a) approximate 

shift-invariance; (b) good directional selectivity; (c) sub-pixel accuracy; (d) limited 

redundancy; and (e) Gabor-like complex-valued filters. 

The next section briefly describes the CDWT of Magarey. A detailed description can 

be found in [59]. At the end of this chapter, a presentation of the properties of the 

CDWT required for the development of the Complex Wavelet Tracker is given. 

3.2 The Complex Discrete Wavelet Transform 

The structure of the 2-D Complex Discrete Wavelet Transform (CDWT) is given in 

Figure 3.1. It has a similar structure to the 2-D Discrete Wavelet Transform (DWT) 

with two major differences: (a) the basis filters {h0, h1} are complex-valued, and, (b) 

there is a mirror branch for the 2-D CDWT to cover the second quadrant of the unit 

frequency cell (See below). 

The CDWT is based on a pair of complex-valued even-length FIR filters with 

approximate Gabor form [60] 
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with x0 set to 2
1−  to position the Gaussian window symmetrically in the interval [–L, 

L – 1]. As in the DWT (See Section 2.3.2), h0 is the lowpass and h1 is the highpass 

filter. Here, a0 and a1 are amplitudes, ω0 and ω1 are modulation frequencies, σ0 and 

σ1 are window standard deviations, and L represents the half-length of the window. 
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Figure 3.1  The hierarchical structure of the Complex Discrete Wavelet Transform (CDWT)  
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The CDWT is implemented using these filters in the standard subband 

decomposition tree [60] as the DWT. Since h0 and h1 are Gabor-like, the wavelet and 

scaling filters, ψ(m) and )(mφ , are designed to be Gabor-like with even length as well. 
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The parameters of the wavelet and scaling filters are computable from h0 and h1 [60]. 

Here, am and âm are amplitudes, mω  and mω̂  are modulation frequencies, mσ  and mσ̂  

are window standard deviations of the wavelet and scaling filters, respectively. 

The 2-D CDWT is a separable transform whose filters are products of 1-D wavelet 

and scaling filters [59]. The wavelet filters for the top branch of Figure 3.1 are 
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and the filters for the bottom (mirror) branch are 
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Each of these wavelet filters emphasizes edges on one direction. Thus, six directions 

can be handled compared to the DWT which can handle only horizontal, vertical and 

diagonal directions with no distinction among the two diagonals. A grayscale plot of 

the impulses responses of the wavelet filters for level 4 is shown in Figure 3.2 with 

gray representing 0. 
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(a) 

 

(b) 

 

Figure 3.2  Impulse responses of the six wavelet filters ψ(s,4) for level 4 of the 2-D CDWT. 
The filters are the rotation-invariant filter pair defined in Equation (3.18) and (3.19). (a) Real 
part. (b) Imaginary part. From left to right, the order of orientations are s = 2, 3, 1, 4, 6, 5. 
(This Figure is reproduced from [59].) 
 

The 2-D CDWT equivalent wavelet filters can also be written as 2-D Gabor filters 

[59]: 
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where N(x|xm,Λ) is an unnormalized bivariate Gaussian in x with mean xm and 

covariance Λ: 
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Because the transform is separable, the covariance matrix Λs,m is always diagonal 

[59] with entries either 2
mσ  or 2ˆ

mσ . Here, ),( msΩ  represents the center spatial 

frequency of subband s of level m. Referring to Equations (3.7) through (3.12) we 

can write 
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The center frequency ),( msΩ  of each filter specifies its direction of constant phase. 

These orientations are shown in Figure 3.2. 

The 1-D wavelet and scaling filters are Hardy-like filters [59], i.e. they eliminate 

negative frequencies. This is shown in Figure 3.3 for the first 4 levels. Therefore, for 

2-D, only the first quadrant of the unit frequency cell is covered. However, for real 

images, the second quadrant is needed as well [59]. In order to cover the second 

quadrant, a mirror branch is implemented using the complex conjugates of the h0 and 

h1 filters for the columns. As a result, the overall redundancy of the 2-D CDWT is 

4:1. 2:1 because it is complex valued and another 2:1 due to the mirror branch, 

resulting in two low-pass and six detailed complex subimages at each level. 

 

 

Figure 3.3  Magnitude frequency responses of CDWT wavelet (m = 1, 2, 3, 4) and scaling 
filter (m = 4), using {h0, h1} with parameters: a0 = 0.39, a1 = 0.39j, ω0 = π/6, ω1 = 5π/6, σ0 = 
1.27, σ1 = 1.27, and L = 4. Note that the negative frequencies are approximately neglected for 
m > 1. (This Figure is reproduced from [59].) 
 

A prefilter f is used for the first level filters in order to form a perfectly scaled 

wavelet decomposition [59]. Then, the first level filters become 

  fhh f ∗= 00  (3.16) 
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  fhh f ∗= 11  (3.17) 

The f-modified wavelet and scaling filters are still in Gabor form [59]. The effect of 

the prefilter is that it scales the maximum amplitudes of the wavelet and scaling 

filters shown in Figure 3.3 to the same level. 

The approximate partitioning of the frequency is shown in Figure 3.4 for the first 

level. In contrast to DWT, the partitions are elliptical centered on ),( msΩ . 

 

  

Figure 3.4  Tiling of the 2-D unit frequency cell by the Complex Discrete Wavelet 
Transform (CDWT). Only the first two levels are shown. The inner circles are for the second 
level. The subsequent levels tile further the low-pass subimages I(1,m) and I(2,m) in the same 
manner. The subimages on the left hand side are produced by the mirror filters. 
 

The following rotation-invariant (RI) filter pair defined in [59] is used for this work: 

  h0   =  [(1 – j)   (4 – j)   (4 + j)   (1 + j)]  /  10 (3.18) 

  h1  =  [(–1 – 2j)   (5 + 2j)   (–5 + 2j)   (1 – 2j)]  /  14 (3.19) 
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The corresponding prefilter for perfect scaling is given by 

  f  =  [–j    5    j]  /  5 (3.20) 

This filter pair can be approximated with the following Gabor parameters a0 = 0.47, 

a1 = 0.43j, ω0 = π / 6, ω1 = 0.76π, σ0 = 0.97, σ1 = 1.07, and L = 2 using Equations 

(3.1) and (3.2). The RI filter pair has several advantages. (a) It has a length of 4 

which is which quite low and important in decreasing computational cost. (b) The 

coefficients of h0, h1, and f are rational-valued making a fixed-point implementation 

possible. (c) The wavelet filters are Hardy-like, i.e. they neglect negative frequencies. 

(d) The frequency cell tiling is optimal and independent of m. (e) the orientations of 

the filters are 19°, 45°, 71°, 109°, 135°, and 161° which is very close to optimum 

spacing. 

3.3 Properties of the CDWT 

The CDWT has several properties which makes it suitable for motion estimation and 

tracking. This Section reviews some of these properties as required in the context of 

this thesis.  

3.3.1 Shiftability and Coefficient Interpolation 

The feature that makes CDWT based motion estimation possible is the approximate 

shift-invariance feature. This feature is accomplished by the shiftability property of 

the CDWT. The shiftability is defined by Simoncelli et al. [80] and used by Magarey 

[59][60]. A transform is said to be shiftable if the transform of the shifted input is 

computable as a weighted sum over the original transform coefficients. This applies 

to CDWT as 

  ∑ +≈+
k

f kxkfx )()()( ),(),(),( msmsms DWD  (3.21) 

where ),( msWf  is a lowpass kernel modulated to the center frequency of the equivalent 

wavelet filter: 
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and Hf is a lowpass kernel, which can be separable given that the transform is 

separable: 

  )()()( 2211
khkhH ff=kf . (3.23) 

Magarey [59] showed that the key to the interpolability of the wavelet coefficients is 

the interpolability of its equivalent wavelet filter after downsampling. Real-valued 

critically-sampled transforms cannot be shiftable in this sense. 

Among several types of interpolators suggested by Magarey in [59] two of which are 

of interest for us: The windowed sinc function and the staircase interpolator. 

3.3.1.1 Windowed Sinc Interpolator 

The four-tap windowed sinc function is defined as [59] 
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where the windowing function gf(k) is given by 
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for k =  –2, …, 1. This kernel is used in the coefficient interpolation phase during the 

coarse to fine approach.  

3.3.1.2 Staircase Interpolator 

The staircase interpolator is the Lagrange interpolator of length 1, which is defined 

as 
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The CDWT subband interpolation formula (3.21), using the staircase interpolator, 

will then be 
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where 

  ( ) ff
Tmsmms ),(),( 2)( Ω=θ  (3.28) 

for 
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Equation (3.27) gives the relation between input shifts and CDWT behavior. It shows 

that the CDWT phase changes linearly with shifts in the input where the magnitude 

remains approximately the same. This is the key for the motion estimation algorithm 

developed by Magarey. This linear relationship provides a model for the phase 

behavior around an integer-indexed CDWT subband coefficient as a plane whose 

gradient is the center frequency of the associated wavelet filter, scaled up by 2m. 

3.3.2 Energy of Wavelet Filters 

The energy of the wavelet filter ψ(s,m) is denoted as P(s,m) and defined by [59] 
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It is shown in [59] that the only m-dependence of P(s,m) is a factor of (4λ4)m, where, λ 

is a scaling factor obtained by computing the prefilter f which is equal to |H0(0)| / 2. 

3.3.3 CDWT Subband Noise 

Assuming that the original frame noise is Gaussian then the CDWT subband noise 

e
(s,m) in subband s of level m is also Gaussian. It is shown in [59] that the CDWT 

subband noise pdf becomes 
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where 
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Here, σ2 denotes the original frame noise variance and P(s,m) denotes the energy of the 

wavelet filter ψ(s,m), which is given in Equation (3.30) (See Section 3.3.2). 

3.4 Summary 

The Complex Discrete Wavelet Transform (CDWT) developed by Magarey and 

Kingsbury is presented. The CDWT uses a complex-valued Gabor-like basis filter 

pair. The filters are approximate Hardy-like, which neglect the negative frequencies. 

For images, this causes only the first quadrant of the unit frequency cell to be 

covered. In order to include the second quadrant as well, a mirror filtering branch is 

used. A prefilter is applied to convert the transform to a perfectly scaled structure. At 

each levels six detailed and two lowpass subimages are produced. The redundancy of 

the CDWT is four transform coefficients for one pixel. 

The shiftability property is introduced which is the key in the interpolation of the 

CDWT coefficients, thus, given the CDWT its approximate shift-invariance property. 

The energy of the wavelet filter and the CDWT subband noise properties are 

presented at last. 
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CHAPTER 4 

THE COMPLEX WAVELET TRACKER 

4.1 Introduction 

The Complex Wavelet Tracker is a vision based tracking algorithm that uses a 

parametric motion model to adapt the track gate to the motion of the target 

throughout the image sequence. The parametric motion model allows modeling the 

expected deformations of the target resulting on the 2-D image plane. The algorithm 

operates in the complex discrete wavelet domain and uses the Complex Discrete 

Wavelet Transform (CDWT) developed by Magarey [60]. 

The CDWT is based on the local translational motion model [60]. Therefore, 

Castellano [19] proposed to modify the CDWT in order to accommodate for affine 

deformations. In her work, the effect of an affine transformation applied in the spatial 

domain on the corresponding wavelet domain has been analyzed. The initial steps for 

deriving an orientation-shiftable CDWT were shown. However, it was mentioned 

that the design of an orientation-shiftable CDWT even for semi-affine motion 

estimation would not be a trivial task. 

The CDWT is an elegant and compact transformation that allows for estimating true 

motion vectors [60] in a very precise and robust manner. Taking into account this 

fact, we explored several alternatives to adapt this powerful tool in the area of 

tracking. Instead of modifying the CDWT itself to accommodate for affine 

deformations, we explored the possibility of using the CDWT as is and reformulated 

the motion estimation method accordingly. So, we based our approach on the CDWT 

based motion estimation method developed by Magarey [60]. 
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The CDWT based motion estimation (CDWT-ME) algorithm is developed with an 

analogy to the block matching based approach [59]. Magarey has stated the 

differences between these two approaches. The most important difference for the 

context of this thesis is the fact that estimation in the CDWT domain using matching 

at only one pixel is possible rather than over a region of pixels as in block matching 

schemes. This is the key for the success of the CDWT-ME algorithm in producing a 

robust and dense optical flow field.  

This unique property allows for deriving motion parameters at a direct, single step, 

without the need for iterations. The displacement for each pixel is computed from the 

minimum of a quadratic surface defined over the CDWT subbands. Hence, the 

surfaces for each individual target pixel can be combined to obtain a unique solution 

for the track parameters of the target. In this way, the resulting motion will be the 

true motion of the target pixels. This is not the case when applied in the spatial 

domain. For Lucas-Kanade [57], Hager and Belhumeur [39] and Baker-Matthews [3], 

iteration is required to converge to a solution.  

Another point that is stated by Magarey is that the confidence of the CDWT-ME 

method is reduced if the contributing region undergoes significant affine motion, as 

the method was developed for estimating translational motion. However, extensive 

simulations on the CDWT-ME method showed that the dense flow field is quite 

successful even under affine deformations of the input frames. These motion 

estimation results are given in Section 6.1. 

The theoretical estimation range for the CDWT-ME method is ±0.5 pels for a subpel2, 

which results in a total of ±0.5 × 2m pixels for the original frame. This will be equal 

to ±8 pixels for a four level pyramid. This is quite a good value for tracking, since, 

the resulting target motion between successive frames captured at 25 Hz or 30 Hz is 

quite limited. Hence, the theoretical limits of maximum affine deformation for a 

region can be obtained using the limits for pixel displacement. The next Section 

captures these limits and the results are given in Section 6.2.3. 

                                                 
2 According to Magarey’s use a subpel refers to a pixel location at a lower resolution (m > 0). Thus, 
subpel at level m corresponds a block of 2m × 2m pixels in the original image. 
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The high-level structure of the Complex Wavelet Tracker (CWT) is shown in Figure 

4.1. Frames are first entering the gate adjustment block where they are clipped 

according to the track gate. Then the CDWT is of the frames are computed. Finally, 

the track parameters are estimated using the last two frames. 

 

Figure 4.1  The high-level structure of the Complex Wavelet Tracker. The CDWT of the 
input frames are used in computing the target motion parameters. 
 

The next Section explores the theoretical limits of deformation that can be handled 

by the CDWT. This also serves as the justification of our approach. This Section is 

then followed by the definition of the tracking problem for the purpose of this thesis. 

After the introduction of parametric motion models, the structure of the CWT 

algorithm is presented. The formulation of the tracking algorithm starts with Section 

4.6. This is presented in two sections. First, single level estimation of the track 

parameters is described, which is followed by the extension to hierarchical tracking. 

4.2 CDWT Limits of Deformation 

In order to have an overall feeling of the deformation handling capacity of the 

CDWT, the theoretical deformation limits for a 4-level CDWT pyramid will be 

investigated. An affine deformation includes translation, scaling, rotation and shear 
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type of motion. A four level CDWT allows for a ±8 pixel maximum pixel 

displacement. 

For translation, this limit corresponds to the amount of motion relative to the size of 

the object. Figure 4.2 depicts this case. The translation is limited to the ratio of the 

size of the object to the amount of the displacement. For a maximum displacement of 

8 pixels for an object of size 64 pixels, the amount of translation will be 12.5%. 

 

rR

  

 

Figure 4.2  Maximum translation allowed for an object of size R in the direction of motion. 
  

For scaling, this limit corresponds to the amount of change in the size of an object 

relative its original size. Figure 4.3 shows this case. The amount of scaling is limited 

by the motion of the pixels at the outer boundary of the object. For a maximum 

displacement of 8 pixels for an object of size 64 pixels, the maximum amount of 

scaling will be 25%. 
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Figure 4.3  Maximum scaling allowed for an object of size 2R. 
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For rotation, this limit corresponds to the amount of rotation angle with respect to 

the size of the object. Figure 4.4 shows this case. The amount of rotation is limited to 

the maximum displacement of the pixels at the outer region of the object. For a 

maximum displacement of 8 pixels for an object of size 64 pixels, the maximum 

amount of rotation will be 14°. 
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Figure 4.4  Maximum rotation allowed for an object of size 2R. 

 

For shear, this limit corresponds to the amount of motion relative to the size of the 

object. Figure 4.5 depicts this case. The shear is limited to the maximum 

displacement of the pixels at the outer edge of the object. For a maximum 

displacement of 8 pixels for an object of size 64 pixels, the amount of shear will be 

12.5%. 
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Figure 4.5  Maximum shear allowed for an object of size R in the direction of motion 
perpendicular to the perpendicular edge. 
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A summary of the theoretical limits for representative object sizes are given in Table 

4.1. Although practical limits might be less than these values the amounts are quite 

promising. 

 
Table 4.1  Amount of deformation allowed for representative object sizes when a 4-level 
CDWT pyramid is used, which theoretically corresponds to a maximum displacement of 8 
pixels. 
 

Object Size Translation Scale Rotation Shear 

32 × 32 pixels 25% 50% 29° 25% 

64 × 64 pixels 12.5% 25% 14° 12.5% 

160 × 160 pixels 5% 10% 5° 5% 

 

Simulations related with these limits have been performed and the results obtained 

are presented in Section 6.2.3. 

4.3 The Tracking Problem 

Visual tracking can be defined in many different ways depending on the specific 

application it is developed for, as there is no universal tracking algorithm that can be 

used for all cases. For our purpose, we prefer the definition of Hager and Belhumeur. 

In [39], they define tracking equivalent to recovering the motion parameter vector of 

the target region for each image in the tracking sequence.  

We define the target by an enclosing region named the track gate. The motion of the 

track gate is modeled by a parametric motion model, i.e. we describe the motion of 

the track gate in terms of a parametric motion model. We assume that the changes in 

the track gate within two consecutive frames can be completely described by this 

motion model. The problem then converges to the estimation of these parameters. 

Hence, we define tracking as the estimation of these parameters throughout the 

image sequence.  

The tracker is initiated by the operator by selecting the target via a rectangular track 

gate. Throughout the frames, the tracker maintains the track gate on the target. The 
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CDWT coefficients are used to estimate the motion parameters of the track gate. 

Figure 4.6 shows samples of the track gate starting from the first frame where it is a 

rectangle and in frames later on where it has undergone affine changes. 

Figure 4.6  Possible changes in the track gate throughout successive frames during tracking. 
At time t0, the operator selects the target by enclosing it inside a rectangular region. Then, 
the tracker adjusts the shape of the track gate according to the changes of the target to 
maintain the gate upon the target. 
 

Let I(x, tn) denote the brightness value of the pixel at the location x = [x1, x2]
T on the 

frame acquired at time tn. Let W(tn) = {x1, … , xN} be the set of N target pixels that 

constitute the target within the track gate for time tn. Over time, the 2-D projected 

image of the target may translate and deform. The track gate is defined in subpixel 

accuracy. So, as W(tn) actually represents the pixels within the track gate of frame tn, 

the number of pixels N might change as the gate area increases or decreases during 

the track. This will be denoted by N(tn), as necessary. Figure 4.6 depicts the case for 

the changes of the track gate throughout the track. 

For simplicity, we define the track gate as a rectangle and use a mask w(x) for 

)( ntW∈∀x to distinguish between target and background pixels. The track gate is 

described by the location of its four corners in subpixel accuracy. The mask w(x) is 

then a weighting function which accompanies each pixel within the track gate. 

We model the motion of the track gate by a parametric motion model M(x; p) 

parameterized by p = [p1, … , pk,]
T. We call p as the track parameter vector where k 

is the number of parameters used in the motion model. The parameters are estimated 

on a frame by frame basis, so a time index will be used to distinguish among the 

parameter vectors, p(tn-1), as required. The function M(x; p) takes the pixel at 

Frames I(t0) I(t34) I(t96) I(t273) 

 W(t0) W(t34) W(t96) W(t273) 
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location x of the frame I(x, tn-1) and maps it to a subpixel location on the next frame 

I(x, tn) using the parameters p(tn-1). For p = 0, let M(x; 0) = x. To obtain a unique 

solution, it is required that the number of target pixel N(tn) within the track gate W(tn) 

are greater or equal to the number of parameters k, namely, N(tn) ≥ k. In other words, 

the size of the track gate should be larger than the number of parameters in order to 

obtain a unique solution. Assume that M is differentiable in both x and p. Then, 

recovering the track parameter vector for each frame in the image sequence will be 

considered equivalent to “tracking the object” [39]. 

The image sequence will be denoted as I(tn) where tn depicts the time at which the 

frame is acquired. For simplicity we will start the time for the image sequence with n 

= 0 at the frame the target is selected. Then, the first estimation will be performed 

from frame I(t0) to frame I(t1) and the track parameters will be p(t0). 

4.4 Parametric Motion Models 

Parametric motion models aim to describe the projection of 3-D motion of a surface 

into the 2-D image plane [81]. We define the motion model using the warping 

function M. The warp M(x;p) takes the pixel at location x of the frame I(x, tn-1) at 

and maps it to a subpixel location on the next frame I(x, tn). The set of allowed warps 

depends on the type of motions expected from the object being tracked. Three types 

of motion models will be presented here: (a) translational motion model, (b) 

similarity motion model, and (c) affine motion model. 

4.4.1 Translational Motion Model 

The translational motion model represents pure displacements of the track gate. If 

the object is a roughly planar object and its shape remains approximately constant, 

then the translational motion model could be used. This model is defined as 

   








+

+
=

22

11);(
px

px
pxM . (4.1) 

Two parameters are used by this model to define the displacement of the track gate in 

two directions. 
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4.4.2 Similarity Motion Model 

The similarity motion model defines a set of similarity warps where the shape of the 

object remains fixed but its size and orientation changes in addition to location. More 

specifically, the aspect ratio of the rectangle remains constant. Scaling, rotation and 

translation are defined. Then, the model will be 

  

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+++

+−+
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);(

pxpxp

pxpxp
pxM .  (4.2) 

Four parameters are required for this type of motion. Note that scaling is equal for 

both dimensions. 

4.4.3 Affine Motion Model 

The affine motion model is used to describe the 2-D motion resulting from a 3-D 

rigid motion of a planar surface under orthographic projection [81]. This is a more 

general representation which includes shear type of deformations as well, in addition 

to translation, scaling and rotation. The affine motion model is defined as 

   
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);(

pxpxp
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This model requires six parameters. In this model, scaling and shear rates can be 

different for each dimension. 

4.5 Structure of the Tracking Algorithm 

The Complex Wavelet Tracker is a hierarchical algorithm where the estimation is 

performed on the CDWT coefficients in a hierarchical way from coarse to fine 

resolution levels. At each level, estimation is performed in the same way and the 

parameter estimates are propagated to the next finer resolution level where they are 

used as a starting point. The hierarchical structure of the tracking algorithm is shown 

in Figure 4.7. 

The estimation is performed over two frames: the previous and the current frame 

observations. Therefore, the track parameter vector p gives only the solution from 
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the previous frame to the current frame. Hence, the warping function M(x;p) gives 

the motion of the track gate from frame I(tn-1) to frame I(tn). 

 

Figure 4.7  The hierarchical structure of the Complex Wavelet Tracker. Here, only two 
levels are shown.  
 

The Complex Wavelet Tracker is based on the CDWT-ME algorithm developed by 

Magarey. The six detailed subbands are used for the estimation of the track 

parameters. The subbands in the next finer levels are warped according to the 

estimates of the previous level in order to have a better estimation performance. This 

is referred as the refining strategy in [59]. The steps of the tracking algorithm are as 

follows:  

1. Compute the CDWT’s of the two input frames I(tn-1) and I(tn). (See Section 

3.2) 

2. For the coarsest level (m = mmax), compute the track parameters (see Section 

4.6.5) and store these parameters as cumulative track parameters. 

3. For the next finer level (mmax > m ≥ mmin): 

a. Scale the cumulative track parameters to the current level m. (See 

Section 4.7.1) 
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b. Warp D(s,m)(x, tn-1) of this level according to the scaled parameter 

vector p. (See Section 4.7.2) 

c. Compute the track parameters. (See Section 4.6.5) 

d. Invert the warping process in step b and obtain the track parameters as 

if there were no warping. (See Section 4.7.3) 

e. Add the track parameters to the previously accumulated parameters to 

obtain the cumulative track parameters. (See Section 4.7.4) 

4. Repeat step 3 until the finest level is reached (m = mmin) 

5. Scale the cumulative track parameters to the original frame resolution (m = 0). 

4.6 Single Level Track Parameter Estimation 

The development of the Complex Wavelet Tracker is based on the formulation of the 

motion estimation method developed by Magarey and Kingsbury [60]. We will start 

with a Bayesian formulation of the problem and arrive to an analytical solution. 

4.6.1 Motion Model 

The formulation of Magarey and Kingsbury’s CDWT-ME starts with the local 

translation model which may be written as3 

  )),((),( 1 nn tAtA xdxx +=−  (4.4) 

  for )()( xx mW∈  (4.5) 

where A is the true underlying image and A(x, tn) denotes the true brightness value of 

the pixel at the location x = [x1, x2]
T on the frame at time tn. Here, the window 

W
(m)(x) represents the contributing region of subpel x of level m on the frame at time 

tn-1. This means that, the motion of the set of pixels at the original frame (m = 0) that 

are contributing to the subpel x at level m depend on the displacement of that subpel4. 

Here, it is assumed that the only changes in A with time are due to the motion of 2-D 

                                                 
3 In his work [58][60] Magarey was considering backward motion vectors, in tracking, however, 
forward motion is required. Therefore, the original formulation is changed accordingly. 
4 A subpel at level m corresponds to 2m × 2m pixels at level 0. 
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projected intensity patterns. We changed the simple translational motion model with 

a generic parametric motion model which can be written as 

  )),;((),( 1 nn tAtA pxMx =−  (4.6) 

  for )( 1−∈ ntWx  (4.7) 

where W(tn-1) is the set of pixels within the track gate on the frame acquired at time 

tn-1. Here, M(x;p) denotes the parameterized set of allowed deformations of the track 

gate, where p = [p1, …, pk]
T is the track parameter vector. The warp M(x;p) takes 

the pixel at location x and moves it to a subpixel location M(x;p) with respect to the 

frame coordinates. In order to have a parallel formulation with Magarey we define 

also the differential warping function that gives the displacement vector of the 

current pixel x relative to its previous location. The differential warp for each pixel 

within the track gate is then defined as 

  xpxMpxM −= );();(
~

 (4.8) 

Before continuing with the formulation of the estimates of p, note the two main 

differences in this formulation with the one from Magarey. First difference is the 

increase in the contributing region, and second, the inclusion of the motion model. 

4.6.2 Bayesian Approach 

Our aim is to estimate the track parameter vector p given two frame observations. 

Generally, we can only observe a frame I(x, t) that is corrupted by additive noise [81]. 

So, we assume that the observed image has been acquired by a process in which 

zero-mean additive white Gaussian noise e with variance σ2 corrupts A: 

  ),(),(),( tetAtI xxx += . (4.9) 

Then, applying this to the model in Equation (4.6) we obtain 

  ),()),;((),(),( 11 nnnn tetItetI xpxMxx −=− −− . (4.10) 

We will first derive an estimate for a single subpel in a single subband, then, using 

all six subbands we derive the estimate for one subpel in a level. Finally, for our case, 

we will extend this estimate to cover the set of subpels that are within the track gate. 
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4.6.2.1 Parameter Estimation for a Single Subband 

Since we are interested in the CDWT subbands, we require this relation to be 

transferred to the complex wavelet domain. As the CDWT is a linear transform [60], 

we can write Equation (4.10) for subband s of level m as  

  ),()),;((),(),( ),(),(),(
1

),(
1

),(
n

ms

n

msms

n

ms

n

ms tetDtetD xpxMxx −=− −−  (4.11) 

  )()),;((),( ),(),(),(
1

),( xpxMx ms

n

msms

n

ms etDtD =−−  (4.12) 

  for s = 1, …, 6 and )( 1
)(

−∈ n

m tWx  (4.13) 

where D(s,m)(x,tn) denotes the detailed CDWT subband s of level m. Here, p(s,m) 

denotes the parameter vector that is valid for subband s of level m. W(m) represents 

the set of subpels within the track gate scaled down to level m. The differential noise 

e
(s,m)(x) = e(s,m)(x,tn-1)

 – e(s,m)(x,tn) in subband s of level m is the CDWT of the original 

frame differential noise and is shown to be Gaussian in [59]. The CDWT subband 

differential noise probability density function is given in Equation (3.31) (See 

Section 3.3.3). 

The goal is to determine the most likely p(s,m). To obtain the maximum a posteriori 

(MAP) estimate of the track parameters p(s,m) of x for subband s of level m, the 

posterior distribution of p(s,m) given the CDWT of the two frame observations are 

required [50][81]. Then the MAP estimate of the track parameters can be written as 
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msmsms tDtDp xxpxp
p

−=  (4.14) 

where p(·) denotes the probability density function (pdf). Applying Bayes’ rule to the 

posterior pdf, it can be shown that 
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 (4.15) 

where, the first term in the nominator is the conditional probability, or likelihood. It 

is a measure of our knowledge of the current frame observation that can be deduced 

from the previous frame observation and the parameter vector p. The second term on 
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the nominator is the a priori distribution of the parameters that reflect our knowledge 

about the actual parameters given the previous frame observation. The term in the 

denominator is the conditional probability of the current frame observation given the 

previous one. 

Assuming that the track parameters and the frame observation at time tn-1 are 

independent, we can write  

  ( ) ( )),(
1

),(),( ),( ms

n

msms ptDp pxp =− .  (4.16) 

Since the probability in the denominator is not a function of the track parameters, it 

can be ignored and the MAP estimate of p(s,m) will become 

  ( ) ( ){ }),(
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msms ptDtDp pxpxxp
p

−= . (4.17) 

Here, the first factor on the right is the likelihood. For subband s of level m, the 

likelihood function of subpel x is the pdf of the differential noise signal e(s,m)(x) [59]: 

  ( ) ( ))(),(,),( ),(
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n

ms eptDtDp =− . (4.18) 

Using Equation (3.31) and substituting for the CDWT subband differential noise pdf 

we obtain 
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where 2
,msσ  is the variance of the subband differential noise and is defined in 

Equation (3.32) (See Section 3.3.3).  

The maximum likelihood (ML) estimate of the track parameters can then be obtained 

by substituting Equation (4.12) into Equation (4.19) and using the relation in 

Equation (3.32): 
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where  
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2),(

1
),(),( )),;((),(),( n

ms

n

msms tDtDSD pxMxpx −= −  (4.21) 

is the “subband squared difference” (SSD) as defined by Magarey in [60] and P(s,m) 

denotes the energy of the corresponding wavelet filter ψ(s,m) of subband s of level m 

(See Section 3.3.2). There is a small difference between this definition and its 

original one. We changed the simple displacement parameter in the function 

arguments with the track parameter vector p and used the warping function M(x;p) 

instead of pure translation in the CDWT subband at time tn. 

4.6.2.2 Parameter Estimate over Six Subbands 

In order to extend this formulation over the six subbands, the joint CDWT noise pdf 

p(e(m)) is required [59], where e(m) = [e(1,m)  ·  ·  ·  e(6,m)]T. Since the six subband filters 

of the CDWT are approximately disjoint in the frequency domain (See Figure 3.4), 

the noise in each subband is approximately independent of the noise in other 

subbands [59]. The joint pdf is therefore the product of the individual CDWT 

subband noise pdfs given in Equation (3.31): 
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Extending the likelihood given in Equation (4.18) to cover all the six subbands, we 

obtain 
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So, the likelihood will now be equal to the joint CDWT noise. Substituting (4.22) we 

obtain 
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Further propagating the product to the exponent as summation we can write 
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Then, the ML estimate over the six subbands will be 
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is the combined SSD surface [59]. Magarey approximated this surface by a second 

degree polynomial function using the CDWT subband coefficients of the two frames. 

He showed that the minimum of this surface corresponds to the displacement of the 

subpel. In fact, only two subbands (orientations) are enough to obtain a unique 

solution; however, all six are used to gain robustness [59]. 

4.6.2.3 Parameter Estimate over a Region 

Up to this point, we have a similar formulation with Magarey [59][60]. Since, we are 

interested in the set of pixels located within the track gate; we have to extend this to 

obtain a unique estimate over all target pixels (subpels). We assume that the 

parametric motion model fully describes the motion of the target pixels within the 

track gate. Under this assumption, the likelihood of p over the region )( 1
)(

−∈ n

m tWx  

can be written as 
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Assuming that noise is independent among neighboring pixels we can extend the 

noise distribution given in Equation (4.22) as 
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Then, combining Equations (4.28) and (4.29), and converting the products to 

summations within the exponent, the ML estimate of p will be 
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Here, we included also a weighting function w(m)(x) in order to be able to weight the 

subpels within the target region according to some criterion. The use of the 

weighting function will be explained later in Section 4.7.5. For simplicity, it will be 

assumed to be equal to 1. 

4.6.3 The Objective Function 

The tracking problem therefore converges to finding the minimizing argument p(m) of 

the objective function 
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Substituting the definitions (4.27) and (4.21) into the objective function we obtain 
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Rearranging the terms will yield 
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This objective function is also similar to the subband squared difference (SSD) 

definition of Magarey in his CDWT based motion estimation formulation in [59], 

except by the inclusion of an extra summation term and the use of the warping 

function M instead of a displacement parameter. This allows us to proceed in a 

similar way as in [59].  
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4.6.4 Minimization of the Objective Function 

Expanding the objective function (Equation (4.34)) further we obtain 
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 (4.35) 

Referring to the shiftability property of the CDWT coefficients explained in Section 

3.3.1 we can rewrite the staircase interpolation formula given in Equations (3.27) as 
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or, using the differential warp defined in Equation (4.8), as 
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Assuming that 
2)(),( )),;(( n

mms tD pxM  in Equation (4.35) stays relatively constant 

with M(x;p(m)), then, minimizing the objective function O
(m)(p(m)) implies 

maximizing the cross-correlation term [59]. Using the staircase interpolation formula 

(4.36) in Equation (4.35) will yield 
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Evaluating the second term by taking the real part of complex exponential we obtain 
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Expanding the phase term will yield 
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for ]5.0,5.0[]5.0,5.0[);(
~ )( −×−∈mpxM  and for all )( 1

)(
−∈ n

m tWx  where ),( 1
),(

−n
ms txφ  

and )),;(( )(),(
n

mms tpxMφ  are phases of ),( 1
),(

−n
ms tD x  and )),;(( )(),(

n

mms tD pxM , 

respectively. Then, the objective function can be minimized by maximizing the 

phase correlation between the two sets of subpels within the target region. The phase 

correlation of each subpel is weighted by the term called “activity” [59] which is 

defined as 
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The minimum of the objective function is specified by the equiphase equation [59]: 
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which should be solved for p(m) over s = 1,…,6 and over all )( 1
)(

−∈ n

m tWx . This 

equiphase equation is similar to the one in the solution of CDWT-ME [59], with only 

a difference in the displacement term. Using the planar model in Equations (4.36) 

and (3.28) we can write  
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and ),( msΩ  is the center frequency of the corresponding wavelet filter (See Equation 

(3.15)). Since the CDWT pyramid is perfectly scaled the components of 2mΩ(s,m) are 

independent of m [59]: 
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Substituting (4.43) into Equation (4.39) and further approximating the objective 

function using 2

2

1)cos( xx −≈  we obtain [59] 
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This equation is again similar to Magarey’s solution [59]. We have an extra 

summation term and have used the warping function instead of a displacement term. 

The objective function can be characterized by a second order quadratic surface [59]. 

The solution of this objective function can be found by differentiating the objective 

function with respect to each parameter and equating them to zero: 

  0)( )()( =∇ mmO p  (4.47) 

where  
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If we define 
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and use (4.45) we may write Equation (4.46) as 
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Then, the solution (4.47) could be obtained using the chain rule 
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Substituting Equation (4.50) into (4.51) and ignoring the constant 2 coming from the 

derivatives will yield 
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whose solution depends on the motion model M(x;p). Solutions for three types of 

models are given in the next Section. 

4.6.5 Solutions According to Motion Models 

Closer inspection of Equation (4.52) shows that it can be converted to a set of linear 

equations in the form: 

  Tp = a (4.53) 

whose solution can be obtained by inverting the coefficient matrix T: 

  p = T-1a (4.54) 

We introduced three types of motion models in Section 4.4 whose solutions are given 

below. 

4.6.5.1 Solution of the Translational Motion Model 

In the translational motion model we have two parameters: 
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Substituting this model into Equation (4.52) we obtain 
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By rearranging the terms as in the form given in (4.53) we obtain 
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The solution of these equations for (4.58) gives the estimate of the track parameters p. 

Note that, if we limit the target region to one pixel, then we obtain the same solution 

for a single pixel as Magarey [59][60]. 

4.6.5.2 Solution of the Similarity Motion Model 

For the similarity motion model we have four parameters: 
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Substituting this into Equation (4.52) we obtain 
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Then, using the form in Equation (4.53) 
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where 
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The solution of these equations will give the track parameter estimates of the 

similarity motion model. 

4.6.5.3 Solution of the Affine Motion Model 

For the affine motion model we have six parameters: 
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Using this model in Equation (4.52) we obtain 
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Arranging the terms as in the form given in Equation (4.53) we obtain the following 

equations: 

 







=∑ ∑

= ∈

−

−
ZV

VU
x

x
T

x
T

s tW

nn

ms

ms

m

n
m

ttE
P

w6

1 )(
1

),(
),(

)(

1
)(

),,(
)(  (4.70) 

 [ ]Tpppppp 654321=p   (4.71) 



 

 70

  ∑ ∑
= ∈

−

−



























Ω

Ω

Ω

Ω

Ω

Ω

=
6

1 )(

2

1

22

21

12

11

),(
1

),(
),(

)(

1
)(

)(),,(
)(

s tW

ms

nn

ms

ms

m

n
m x

x

x

x

ttE
P

w

x

xx
x

a θ  (4.72) 

where 
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The solution of these equations for p will give the estimate of the track parameter 

vector p given in Equation (4.71). 

4.7 Hierarchical Tracking 

Parameter estimation starts at the coarsest level and is refined hierarchically in a 

similar manner as the motion estimation algorithm of Magarey [59][60]. The track 

parameters T, p, and a have to be passed to the next finer level in an appropriate way 

to constitute the cumulative track parameters. The steps are summarized in Section 

4.5. This section describes each step in detail. 

4.7.1 Scaling of the Track Parameters 

The cumulative track parameters T , p , and ā need to be scaled from the previous 

level to the current level in order to accommodate for scale changes due to the 
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change in resolution. The coordinate frame is scaled by 2-m. So, while moving at a 

finer level, the x1 and x2 should be scaled by 2. 

4.7.1.1 Scaling of the Translational Motion Model Parameters 

The track parameters T, p, and a for the translational motion model have to be 

scaled as follows: 

  T  →  T / 4  

  p  →  2p (4.76) 

  a  →  a / 2  

In the translational motion model, the parameters p are pure translation and depend 

upon the coordinates. Therefore they should be scaled by 2. 

4.7.1.2 Scaling of the Similarity Motion Model Parameters 

The track parameters T, p, and a for the similarity motion model have to be scaled as 

follows: 

  U  →  U  

  V  →  V / 2  

  Z  →  Z / 4  

  a1, a2  →  a1, a2 (4.77) 

  a3, a4  →  a3 / 2, a4 / 2  

  p1, p2  →  p1, p2  

  p3, p4  →  2p3, 2p4  

Here, U, V, and Z are submatrices of T as defined in Equation (4.62), and, ai and pi 

are elements of the vectors a and p. In this model, p1 and p2 are elements of the 

deformation matrix therefore, they remain unchanged. However, as in the 

translational motion model, p3 and p4 refer to the displacement and should be scaled 

by 2. 



 

 72

4.7.1.3 Scaling of the Affine Motion Model Parameters 

The track parameters T, p, and a for the affine motion model have to be scaled as 

follows: 

  U  →  U  

  V  →  V / 2  

  Z  →  Z / 4  

  a1, a2, a3, a4 →  a1, a2, a3, a4 (4.78) 

  a5, a6  →  a5 / 2, a6 / 2  

  p1, p2, p3, p4 →  p1, p2, p3, p4  

  p5, p6  →  2p5, 2p6  

Here, U, V, and Z are submatrices of T as defined in Equation (4.70), and, ai and pi 

are elements of the vectors a and p. For the model, p1 – p4 are elements of the 

deformation matrix therefore, they remain unchanged. However, as in the 

translational motion model, p5 and p6 refer to the displacement and should be scaled 

by 2. 

4.7.2 Warping of CDWT Subband Coefficients 

The CDWT subbands of frame at time tn-1 are pre-warped according to the 

cumulative track parameters p estimated at the previous levels and scaled to this 

level. This pre-warping has a great effect in the precision of the algorithm. It 

considerably simplifies the matching process at finer levels. The windowed sinc 

interpolator (Section 3.3.1.1) is used to obtain the CDWT coefficients at non-integer 

coordinates. This deformation is inverted back as explained in the next Section. 

4.7.3 Recovering Original Track Parameters 

After the track parameters p are estimated for this level, the effect of pre-warping the 

CDWT subband coefficients should be inverted back in order to obtain original p 

values rather than relative ones. This is achieved by adjusting the parameters a as 

follows: 
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  a  →  a + Tp (4.79) 

where T is the one obtained for this current level, but p is the cumulative one used 

for pre-warping the CDWT subband as explained in the previous section. This 

modification eliminates the effect of the pre-warping process. 

4.7.4 Accumulating the Track Parameters 

The parameters computed at each level are added in order to form the cumulative 

parameters and obtain a unique, combined estimate of the track parameters p. After 

recovering original parameters as explained in the previous Section the parameters T 

and a are accumulated as follows: 
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Then, the solution to the equation Tp = a using the cumulative parameters  T , p , 

and ā gives the new track parameters p. 

4.7.5 Computing the Weights 

The weights, w(m)(x), are used for several purposes. The first use is that they enable 

to select an arbitrary shape within the rectangular region, and hence, function as a 

mask. This provides ease of implementation as the CDWT is obtained for rectangular 

regions only. In this way, the weights are used to select only the complex wavelet 

coefficients of the target pixels that are within the affine track gate. 

The second use is that they can provide coefficient weighting at the gate boundary 

while going to coarser resolution levels where one subpel corresponds to 2m × 2m 

pixels, where possibly not all of them would be target pixels. 

A third use could be a windowing function, or, a kernel in order to give more weights 

to the center of the track gate. A predefined kernel could be used for this purpose. 
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Another use would be to provide an arbitrary shape to describe the target. Since, the 

rectangular track gate rarely would fit completely to the target and, if available, a 

description of the shape of the target would be helpful to aid the tracker. So, the 

weights could be adjusted according to the shape. 

4.8 Summary 

In this Chapter, the Complex Wavelet Tracker is presented. Although developed for 

the translational motion model, the CDWT can handle affine deformations to some 

extend, on which we based our method. Different parametric motion models can be 

used to model the motion of the track gate. We define tracking as the estimation of 

these parameters throughout the tracking sequence. The method is hierarchical in 

structure and the parameters estimated in one level are propagated into the finer level. 

Solutions according to translational, similarity and affine motion models are 

provided at the end of this Chapter. 
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CHAPTER 5 

EXTENSIONS AND  
OTHER APPLICATION AREAS 

This Chapter captures some extensions to the base algorithm and explores other 

application areas that the proposed method could be used for. The first section 

presents some extension and modifications to the base method. Based on these 

modifications, other application areas other than tracking are presented. A complete 

multi-target tracking framework combining different aspects of tracking systems is 

introduced in the last section of this Chapter. 

5.1 Extensions to the CWT 

This section coveres several extension and modifications to the base algorithm. The 

purpose is to improve and extend the application areas of the Complex Wavelet 

Tracker.  

5.1.1 Color Tracking 

The Complex Wavelet Tracker operates on single intensity values. For color video, it 

is sufficient for most cases to convert the color information to grayscale and perform 

the tracking on intensities. For some other cases, however, color information could 

be more distinguishing than simple intensity.  

We can start in parallel with the derivation Magarey had performed for the CDWT 

based motion estimation algorithm [59] for color images. Let the input image, A(x,t) 

be a vector image A(x,t) with three color components: 
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The CDWT of all components should be computed separately. The detailed 

subimages would then be also in vector form: 
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In the same way, the differential subband noise in (4.12) will also be in vector form 

as follows: 
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Assuming white Gaussian noise in the vector images, the joint pdf of the differential 

subband noise can be written as 
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where R(s,m) is the 3 × 3 component noise covariance matrix in subband s of level m, 

and will be given by [59] 

  R(s,m) = P(s,m) R (5.5) 

where P(s,m) is the energy of the corresponding wavelet filter (See Section 3.3.2). 

Equation (5.5) states that inter-field noise statistics are unchanged by the CDWT, 

apart from a scaling by the corresponding subband energy [59]. 

Assuming that noise in each subband is approximately uncorrelated with that in other 

subbands, R will be diagonal [59]. Assuming further that the noise in each color 

component is uncorrelated then R will be [59]: 
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Continuing with the derivation, the objective function given in (4.31) will now be 
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where SDk
(m) is the SSD of the kth color component. To summarize, if the component 

noise is uncorrelated, then, an estimate can be obtained simply by the addition of the 

three color components’ SSD surfaces, weighted by the inverse of the noise variance 

in that component. 

5.1.2 Confidence Measure 

With an analogy to the base work of Magarey [59], a confidence measure could be 

established in order to obtain a measure for the quality of the estimate.  

The measure is based on the steepness of the quadratic surface. The closer the 

minimum lines of the six subbands, the steeper the surface will be. When the 

minimum lines of each subband are far apart, as will be in the case when the signals 

are unrelated, then the surface will be spread [59]. The measure will therefore be a 

measure of the spread of the minimum lines and will be used to define the confidence 

measure.  

This will not change when applied to regions. Since, according to the derivations, the 

solution is obtained from the same surface. So, the steepness of this surface could 

reflect the confidence for the proposed method as well.  

The confidence measure is defined as [59] 

  
2

),);((
1),);(( 11

)()(

11
)()( nnn

mm

nnn

mm tttWr
tttWC −−

−− −=  (5.8) 

where W(m) is the set of subpels in level m. The residual r(m) is defines as [59] 
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and is normalized by the activity  

  ∑ ∑
= ∈

−−−

−

=
6

1 )(
1

),(
),(

)(

11
)()(

1
)(

),;(
)(

),);((
s tW

nn

ms

ms

m

nnn

mm

n
m

ttE
P

w
tttWE

x

x
x

 (5.10) 

where w(m)(x) are the weights and E(s,m)(x;tn-1,tn) is defined in (4.41). The discrepancy 

[59], ∆, in (5.9) is the first term on the right of Equation (4.50) and is defined as 

    [ ]∑ ∑
= ∈

−−−

−

−=∆
6

1 )(

2),(
1

),(
),(

)(

11
)()(

1
)(

),(),(
)(

),);((
s tW

n

ms

n

ms

ms

m

nnn

mm

n
m

tDtD
P

w
tttW

x

xx
x

 (5.11) 

The term δ in (5.9) is the surface minimum value and can be obtained from the 

objective function as follows [59]: 

  ( ))(
0

)( mmO p=δ  (5.12) 

where )(
0
mp  is the track parameter vector that minimized the objective function. The 

range of the confidence measure is (–∞, 1]. 

5.1.3 Tracking by using a Target Template 

The track gate is continuously updated throughout the tracking sequence and the new 

pixels within the estimated track gate are used as a basis for the next estimation. 

Assuming that the set of pixels within the current track gate is the target template, 

then, this template is updated at every frame as it is completely replaced with the 

previous one. This is desired for the purpose of this thesis where the target is allowed 

to undergo drastic changes in its appearance, and any limitation to this, might result 

in a degradation of the algorithm. However, for other applications, where the target 

signature remains stable within some limits, then, a fixed, or slowly updating 

template would be more preferable. 

For this purpose, two approaches are possible. For the first one, the CDWT of the 

target within the track gate on the first frame is used as the template. For every 

estimation, instead of using the previous frame observation, the coefficients of the 

template are used. The track gate is updated in a same way according to the 

estimated track parameters. This is the non-warping approach. Here, the template is 
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held fixed. To increase performance, the location of the template could be updated 

using the translational component of the estimated track parameters, if necessary. 

The second approach is the warping approach. In this case, the template itself is also 

warped according to the estimated track parameters. This time, the CDWT 

coefficients could not be used directly and should be computed from the warped 

template for every frame. 

The first approach should be used when the total deformation is limited to the affine 

deformation limits that the CDWT can handle. These limits are explored in Section 0. 

Otherwise, the warping approach should be used to handle more extensive 

deformations. 

For the second approach, instead of keeping the template image totally fixed, the 

template could be smoothed in time using previous and new target templates. The 

filtering should be applied on the warpped template images in order to have a proper 

spatial match.  

5.1.4 Tracking on a Fixed Track Gate 

The track gate is continuously updated throughout the tracking sequence and the new 

pixels within the estimated track gate are used as a basis for the next estimation. 

Instead of updating the track gate, the parameters could be passed to another 

application and the position and shape of the track gate could remain fixed. 

This can be viewed as a window (the track gate) behind which information is flowing. 

Since the window is fixed, in this way, we obtain the motion information of what is 

moving through the window. 

This type of operation could be required for some motion estimation applications 

such as global motion estimation or scene stabilization where small windows 

throughout the image are used to obtain motion information and in this way extract 

the cumulative (global) motion of the image itself. 
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5.1.5 Fusion with Intensity-Based Methods 

Fusion with an appearance- or intensity-based method would improve performance. 

The image registration method of Lucas and Kanade [57] using the same motion 

model could be used for this purpose. 

The robustness of the Complex Wavelet Tracker and the accuracy of the Lucas-

Kanade could be merged to obtain a superior algorithm that combines spatial and 

frequency domain methods. This can be established in the following way: 

The fusion is based on the hierarchical structure of the CDWT. As the CDWT is 

pyramidal, the hierarchical version of Lucas-Kanade [57] should be employed. For 

every resolution level, Lucas-Kanade algorithm is performed on the lowpass 

subimage, I(1,m), of the CDWT pyramid. These estimates can be combined with the 

estimates of the Complex Wavelet Tracker in a number of ways. Either the estimates 

can be merged at every level, or, merging can be performed at the highest level only. 

Different merging strategies can be applied to both cases.  

5.2 Other Application Areas 

This section will cover application areas other than tracking for the proposed 

algorithm. The application may use the Complex Wavelet Tracker directly or benefit 

from the extensions mentioned in the previous section. 

5.2.1 Generalized Block Motion Estimation  

The Complex Wavelet Tracker is a base algorithm developed for area tracking. 

Hence, simulations and tests are directed to this purpose. However, this base also 

directly contributes to the area of generalized or deformable block motion estimation. 

Generalized block motion estimation is the generalization of the translational block 

motion estimation (See Section 2.1.2).  

The most popular use of block motion estimation is for digital video compression 

(H.261 and MPEG-1, MPEG-2). The current frame is divided into blocks where each 

block is to be constructed from other frames. Both uniform and non-uniform grids 

could be used to tile the frame into blocks. Also, different shapes other than 
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rectangular blocks can be used for the block to best suit the application. Blocks can 

be triangular, rectangular, hexagonal, or arbitrary quadrilateral in shape. 

Block motion estimation is then performed on each block using previous or feature 

frames. For coding, the motion parameters for each block are used instead of the 

intensity information of the block itself. 

The Complex Wavelet Tracker could be used to estimate the motion parameters for 

each block. For this purpose, the track gate should be initiated at each block. The 

weights can be used as a mask to match the arbitrary shape of the block. Since, the 

complexity of the Complex Wavelet Tracker is O(N), the size and number of the 

blocks will have little effect on the overall computation time. 

5.2.2 Global Motion Estimation and Background Stabilization 

Global Motion Estimation (GME) refers to the estimation of the relative motion 

among successive frames. This motion is generally caused by the imaging source 

itself due to motions in the imaging source or the platform itself. In this way, it is 

also referred to as ego-motion.  

One purpose to perform GME is to understand the motion caused by the camera or 

the platform itself. And the other would be to stabilize the image which is referred to 

as background stabilization. For either purpose, the estimation effort is the same. 

GME can be performed in two ways using the Complex Wavelet Transform by using 

the fixed track gate solution explained in Section 5.1.4. The first way would be to use 

the whole frame as the track gate and perform the estimation. This approach would 

be more suitable for backgrounds where there would be no moving objects present 

disturbing the overall motion of the scene.  

A solution would be to use a mask to eliminate moving objects interfering the 

solution. For this case, however, the detection of the moving objects is required. It 

would be sufficient if a subregion could be determined where the moving objects will 

be present. Then, this subregion could be masked out from the solution using the 

weights. 
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However, using the whole frame to obtain a solution could be costly in complexity. 

To overcome this, the image could be first downsized to a more appropriate size and 

estimation could be performed on this resized image. This would also eliminate the 

effect of small foreground moving objects as their sizes would also be downsized. 

Since the proposed method has sub-pixel accuracy this resizing would have a 

negligible effect on the estimation, as far as enough patterns remain in the downsized 

image for confident estimation. 

 

 

Figure 5.1  Background stabilization can be performed using small track gates and by 
computing the overall motion from the individual displacement estimates of the gates. 
 

The other way for GME would be to use small gates near the border of the frame as 

shown in Figure 5.1. Then, the overall motion could be computed from the individual 

displacement estimates of the gates. The translational component of each gate would 

be enough for the solution. A parametric motion model can then be employed using 

the gates. The solution of this model can be obtained using least squares estimation. 

So, in order to obtain a unique solution, at least one gate is required for the 

translational motion model, and a minimum of three gates for the affine motion 

model. Note that, more gates than the minimum required would increase the 

robustness of the solution. 
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The confidence measure described in Section 5.1.2 could be used eliminate non-

confident gates to effect the overall solution. These gate are shown with a red gate in 

Figure 5.1. 

5.2.3 Feature Tracking 

The Complex Wavelet Tracker can easily be used to track point-features like the Shi-

Tomasi’s feature tracker5 in [79]. Features can be selected in the same way and a 

track gate be opened on each feature. The size of the features can be 8 × 8 pixels, for 

which a 2 or 3 level pyramid would be enough. Both affine and translational motion 

models could be used to track and/or monitor track quality.  

For tracking the features, the Complex Wavelet Tracker could either be used directly, 

or, the target template extension explained in Section 5.1.3 could be used, depending 

on the application. The latter would be more preferable for applications similar to 

[79] where point features over the whole frame are extracted and tracked to obtain 

information for the motion of the camera itself. 

5.2.4 Face, Eye, and Car Tracking 

Face tracking, eye tracking, and car tracking are special areas for tracking. The 

shapes are known beforehand, or are set at the beginning of the tracking. For these 

kinds of applications, using a fixed template would improve the performance. Hence, 

the Complex Wavelet Tracker with the target template extension explained in 

Section 5.1.3 could be used for such applications. 

5.2.5 Image Alignment, Image Mosaicking, and Image Registration 

Image alignment, image mosaicking, and image registration techniques require the 

matching of image regions. The Complex Wavelet Tracker could be used directly by 

opening setting the track gate on the region of interest on the first image and 

estimating the warp parameters for the second.  

If the non-overlapping regions of the frames are larger than the Complex Wavelet 

Tracker can handle, then a two-stage algorithm could be used. In the first stage, a 

                                                 
5 This feature tracker is also known as the “Kanade-Lucas-Tomasi (KLT) Feature Tracker”. 
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rough alignment of the two images could be performed using some other simpler 

methods. In the second stage, the Complex Wavelet Tracker could be employed to 

fine adjust the warping parameters. 

5.3 The CWT Framework 

The initial basis for a “Complex Wavelet Tracker Framework” is introduced. The 

framework incorporates background stabilization, moving target detection, aided 

track gate initialization, and prediction algorithms which are based on the Complex 

Wavelet Tracker. An overview of the framework is given next which is followed by 

the presentation of the blocks in the subsequent sections. 

 

 

Figure 5.2  The structure of the Complex Wavelet Tracker Framework. 
 

5.3.1 Overview of the Framework 

The Complex Wavelet Tracker Framework consists of several functional blocks, 

which are background stabilization, moving target detection, aided track gate 

initialization and track parameter prediction. Background stabilization is needed to 

eliminate background motion from target motion. This is necessary in order to use a 

predictor, and background stabilization is required for the moving target detection 

and aiding track gate initialization blocks. Utilizing background stabilization also 

improves the performance of the tracker. All functional blocks, except the predictor 
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block, are based on the Complex Wavelet Tracker. The structure of the framework is 

given in Figure 5.2. 

5.3.2 Background Stabilization 

Background stabilization is performed using the second method explained in Section 

5.2.2 where a number of small gates are used. The solution is then obtained from 

these gates according to two motion models: translational and affine. For the tracker 

and the predictor, translational motion is sufficient. The affine solution is used for the 

moving target detection and track gate initialization blocks.  

Background motion is extracted from ten (10) fixed track gates that are located near 

the frame boundary. A sample placement of the regions is shown in Figure 5.1. The 

motion of each gate is computed using the Complex Wavelet Tracker.  

The translational motion model is simpler and is sufficient to stabilize the 

background for the predictor and tracker blocks. The displacement is obtained using 

least squares estimation. The estimation is performed at every frame. 

The translational motion model is not accurate enough for the detection of moving 

objects. Therefore the affine motion model is used for this purpose. The affine 

parameters are estimated using least squares method. Affine estimation can be 

performed at a lower pace, like every five or ten frames, depending on the dynamics 

of the scene. 

5.3.3 Moving Target Detection 

Moving targets are detected using the affine motion model in the background 

stabilization block. The second frame is warped according to the affine parameters 

and is subtracted from the reference frame to obtain a frame difference. The moving 

regions could then be extracted using some other method. The computation is 

performed at a lower pace like every five or ten frames in order to allow for 

sufficient motion between frames. 

Any detection scheme that is suitable could be used for the estimation of moving 

objects for this block. For the scope of this thesis, only the alignment of the frames is 

computed in order to be used in frame differencing.  
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5.3.4 Aided Track Gate Initialization 

A track gate could be opened automatically, manually or semi-automatically. In the 

automatic mode, a track gate is initiated automatically on the moving objects that are 

detected by the moving target detection block. In the manual mode, the track gates 

are initiated manually. 

The semi-automatic mode, which we also call aided track gated initialization, 

operates in two ways. The moving targets are still detected and displayed to the 

operator, but the tracker is not activated. The first way is to manually activate the 

tracker by selecting the highlighted track gate. 

The other way is necessary for occasions when the target could not be detected by 

the moving target detector. For this case, the operator simply points to the target 

without opening a track gate. The track gate initialization block searches for a target 

starting from this point and opens a gate around the segmented region. This block 

should be capable of extracting both moving and stable targets. 

In this way, easy track gate initialization is performed. This is important in defense 

applications where the platform is not stable and the target is moving. It is difficult in 

such conditions to manually open a track gate on the targets. This algorithm is aimed 

to aid the operator in such situations. 

5.3.5 Prediction 

The prediction block is used to filter and estimate the track parameters in the absence 

of observations throughout the tracking. Prediction is performed on the track 

parameters according to previous estimates and frame observations. 

In order to use a predictor successfully, platform data together with relative camera 

motion (azimuth and elevation) are required. In the absence of this data, this 

information should be extracted from the frames as well. The first step is to separate 

target motion from background motion. Background motion is mainly caused due to 

ego-motion, which is the motion of the camera and/or platform itself. This can be 

accomplished using the background stabilization block. Finally, the stabilized target 

motion can be used by the predictor. 
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Any prediction algorithm suitable for the specific application can be used. The 

Kalman [45] or the CONDENSATION [44] filter are among many other prediction 

algorithms. 
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CHAPTER 6 

RESULTS 

This Chapter presents the simulations performed for the evaluation of the proposed 

algorithm. The first simulations are related with the motion estimation performance 

of the original CDWT-ME algorithm of Magarey and Kingsbury. A summary of the 

results are provided in the first section.  

After these preliminary investigations, quantitative evaluations are performed on the 

proposed algorithm to obtain quantitative results on the accuracy, robustness, and 

limits of the Complex Wavelet Tracker. The results are compared with Lucas-

Kanade. The second section presents these quantitative results. 

These evaluations are followed by qualitative simulations to test the performance of 

the proposed method on real sequences. A number of real sequences have been used 

to evaluate the tracking performance on different scenarios using different video 

sources like infrared and day video. The results are given in the last section. 

6.1 Preliminary Tests: Motion Estimation 

In this section the motion estimation performance of the original CDWT-ME 

algorithm of Magarey and Kingsbury [60] will be compared to Lucas-Kanade [57] 

and Horn-Schunck [42] motion estimation algorithms. This evaluation is important 

since the proposed method is based on the original CDWT-ME algorithm. As both 

methods depend upon the phase of the complex wavelet transform, this initial 

evaluation will present the potential performance of the algorithm. In other words, to 

understand the adequacy of the CDWT in determining moving pixels or regions and 
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its ability to relate them among successive frames is important for the success of the 

proposed tracking algorithm. 

For the evaluation of the performance of the dense flow field generated by the 

CDWT-ME algorithm, we used the Lucas-Kanade [57] and Horn-Schunck [42] 

algorithms for comparison. These algorithms have been chosen according to the 

evaluations performed by Barron et al [5] on a wide range of optical flow estimation 

methods. In his work in [5], Barron et al observed that the most successful and 

precise algorithm were the phase-based algorithm of Fleet and Jepson [30]. Then, the 

next two were Lucas-Kanade and Horn-Schunck algorithms. Since the CDWT-ME is 

an implementation of Fleet and Jepson’s algorithm, we chose the next two for 

comparison. 

The performance of both algorithms is based mainly on the computation of the 

gradients. Hence, different implementations can yield different results. Therefore, 

among several implementations of Lucas-Kanade and Horn-Schunck algorithms we 

observed that the implementation of Barron [6] resulted in the best performance. 

Hence, we reused this implementation. In this implementation, 5 frames are used to 

compute the gradients. For most cases, prior to the gradient computation, a 3-D 

Gaussian filter with sigma = 1.5 is used, which requires the use of 15 frames. 

In the tests, we included both thresholded and full versions of the results for all three 

algorithms in order to evaluate the performance of the methods at low confident 

pixels. For the CDWT-ME, we used the confidence measure defined in Equation 

(5.8) over a single pixel; and for the other two methods, the threshold Tau [5] is used. 

For Tau = 0.0, no thresholding is applied and the flow field and errors are computed 

for the whole image. 

The next Section will present the error measures. A summary and discussion on the 

results is presented afterwards. The test sequences used in the evaluations together 

with the test results are given in Appendix A. 
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6.1.1 Error Measures for Motion Estimation 

Two error measurements have been used, one for angular error and the other for 

magnitude error. The angular error measure [5] is defined by 
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and the magnitude measure is defined by 
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where Txxdxxd )],(),,([)( 212211=xd  is the correct flow vector and )(ˆ xd is the 

estimated flow vector. For each image pair the mean and standard deviation of the 

angle and magnitude errors have been computed. 

6.1.2 Summary of the Results 

Simulations have been performed in order to examine the estimation performance of 

the CDWT-ME algorithm. The results have been compared with the results of the 

LK and HS methods. (See Appendix A for the results.) 

For the Sinusoid sequences, the CDWT-ME has a lower performance than the LK 

and HS methods. However, for the Square sequence, it performed better and than the 

others. For the Translating and Diverging Tree Sequences the CDWT-ME was slight 

behind the LK and HS methods. For the Yosemite Sequence, all three methods 

produced similar error results. However, on the overall, the CDWT-ME was more 

reasonable especially on the clouds region of the sequence. Finally, for the four real 

sequences, the CDWT-ME produced a more reasonable flow field than the other 

methods. 

To understand the advantages of the CDWT-ME to the other two methods we 

compared the results in a different way. Table 6.1 presents the results of the 

Translating and Diverging Tree Sequences and the Yosemite Sequence from another 

perspective. It gives the percentage of the number of pixels having errors within a 

certain range.  The first column gives the percentage of the pixels for which a flow is  
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Table 6.1  Error distributions for the Translating and Diverging Tree, and Yosemite 

Sequences. 

 

Density 

Angle Error 

Distribution 

(%) 

Magnitude Error 

Distribution 

(Normalized) 

(%) 

S
eq

u
en

ce
 

Algorithm 

Total % ≤ 1° ≤ 3° ≤ 5° ≤ 1% ≤ 3% ≤ 5% 

CDWT-ME (Conf. T. = 0.00) 73888 92.8 7.9 36.3 55.2 6.1 17.7 28.1 

CDWT-ME (Conf. T. = 0.95) 39104 49.1 5.5 22.4 32.6 3.8 10.9 17 

Lucas-Kanade (Tau = 1.0) 25669 32.2 8.6 23.1 27.4 4.2 11.8 17.3 

Lucas-Kanade (Tau = 0.0) 64512 81.0 12.6 38.8 49.5 6.9 19.6 29.8 

Horn-Schunck (Tau = 5.0) 21216 26.6 6.6 16.6 20.3 3.2 9.0 13.1 

Horn-Schunck (Tau = 0.0) 64512 81.0 11.3 35.8 47.5 6.4 18.4 28.2 

Y
o
se
m
it
e 

CDWT-ME (at LK Tau = 1.0) 25554 32.1 3.6 15.4 22.8 2.7 7.7 11.8 

CDWT-ME (Conf. T. = 0.00) 20108 89.4 32 71.5 80.9 17.4 46.5 64.2 

CDWT-ME (Conf. T. = 0.95) 17528 77.9 30.8 65.9 73.3 16.3 43.5 59.4 

Lucas-Kanade (Tau = 1.0) 6845 30.4 24.6 30 30.4 15.2 27.4 29.6 

Lucas-Kanade (Tau = 0.0) 14884 66.2 44.3 62.6 65.1 24.2 49.7 58.5 

Horn-Schunck (Tau = 5.0) 7913 35.2 17 28.9 31.8 11.0 22.7 27.5 

Horn-Schunck (Tau = 0.0) 14884 66.2 27.8 52.5 59.9 16.9 38.5 48.6 

T
ra

n
sl
a
ti
n
g
 T
re
e 

CDWT-ME (at LK Tau = 1.0) 6841 30.4 10.4 25.4 28.3 5.8 16.8 23.8 

CDWT-ME (Conf. T. = 0.00) 19934 88.6 6.9 38.6 61.3 7.0 20.6 33.7 

CDWT-ME (Conf. T. = 0.95) 11479 51.0 5.0 26.5 39.9 4.6 13.7 22.3 

Lucas-Kanade (Tau = 1.0) 8090 36.0 10.9 30.2 34 7.6 18.8 25.5 

Lucas-Kanade (Tau = 0.0) 14884 66.2 15.0 48.9 59.6 11.7 29.6 41.5 

Horn-Schunck (Tau = 5.0) 7967 35.4 11.5 28.0 32.2 7.2 18.8 25.1 

Horn-Schunck (Tau = 0.0) 14884 66.2 17.9 51.5 60.7 11.7 31.8 43.7 

D
iv
er
g
in
g
 T
re
e 

CDWT-ME (at LK Tau = 1.0) 8044 35.8 3.3 18.5 28.7 3.3 9.6 15.7 
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computed, the second column gives the percentage of angle errors smaller than 1°, 3°, 

and 5°, and the third column gives the percentage of normalized magnitude errors 

smaller than 1%, 3% and 5%. 

For all three sequences, the CDWT-ME produced the highest number of flows. In 

most of the cases LK produced the most accurate results. The HS with no 

thresholding performed better in the Diverging Tree sequence in both angle and 

magnitude. The CDWT-ME performed the best for the angle error within 5° for all 

three sequences. 

In the overall, the CDWT-ME produced reasonable flow fields for all the sequence. 

It also performed very successfully in low textured regions where the HS and LK 

algorithms performed poorly. This is important for our purpose as we require the 

tracking algorithm to track even under worse conditions. In addition to this, the 

CDWT-ME has produced highly more dense results than the other methods.  

Another fact to note is that the CDWT-ME algorithm has produced these results 

using only 2 frames, whereas the LK and HS algorithms required 15 frames. This is 

important for tracking since it should run in real-time. Actually, the LK and HS 

methods could be implemented to run with 2 frames only, but, as we mentioned 

before, the performance of these methods rely highly on the estimation of the 

gradients and the implementation of Barron were the one yielding the best results 

among other implementations.  

As a result, we can say that, even not as accurate as the LK and HS for some 

conditions, the CDWT-ME produced quite accurate results for all the sequence with 

reasonable flow fields even for difficult scenes. 

6.2 Quantitative Tests 

Quantitative Tests include the test where the true motion parameters are known. The 

test sequences have been created synthetically by deforming a real still image under 

various affine deformations. The purpose of these tests is to obtain a quantitative 

evaluation of the Complex Wavelet Tracker. Comparisons have been performed 
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using the Lucas-Kanade 6  [57] method with the affine motion model. The 

implementation of Baker and Matthews [4] for the Lucas-Kanade method is used in 

the simulations. 

The following tests have been performed for the evaluation of the proposed 

algorithm: 

1. Tests for exploring affine estimation limits 

2. Tests for understanding the effect of changing the number of levels used 

3. Tests to compare the performance of the three motion models 

4. Tests for evaluating the robustness to illumination changes 

5. Tests for evaluating the performance under noise 

6. Tests to understand the effect of the target intensity pattern 

7. Tests to evaluate performance under random deformations and perturbations 

Three types of motion models for the Complex Wavelet Tracker has been explored: 

the translational motion model, the similarity motion model, and the affine motion 

model. In addition to this, the effect of different target sizes and the role of the 

number of levels used have been examined. Finally, robustness tests have been 

performed in terms of illumination changes, noise, and texture dependency. 

In order to quantify the results, error measures have been defined which are given in 

the following section. According to these measures, the error range is segmented into 

three quality criteria regions: (1) the “precise” tracking region, where the error is 

negligible; (2) the “acceptable” tracking region where the algorithm manages to 

maintain the track gate on the target, although not precise; (3) the “lost” region where 

                                                 
6 The original version of the Lucas-Kanade [54] is an image registration method and the use of Lucas-
Kanade for tracking is later proposed by Shi and Tomasi [79]. They extended this method by 
including the affine motion model and used it for tracking point features. This tracker is known as the 
“Lucas-Kanade Feature Tracker” or “KLT (Kanade-Lucas-Tomasi) Tracker”.  

In this work, however, we preferred to keep the original version of Lucas-Kanade [54] and used the 
affine motion model. This is consistent with the definition of tracking of Hager and Belhumeur [39]. 
Recently, Baker and Matthews [3] showed that Lucas-Kanade [54] and Hager-Belhumeur [39] are 
related. (See Section 2.2.1 for a review of these methods in the context of this work). This is the 
reason of choosing the original method of Lucas-Kanade [54] as an intensity-based approach in 
contrast to the proposed method, which is phase-based. 
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the target has been lost. These error levels for each criterion are defined in the next 

section (See Table 6.2). 

The next section defines the error measures used for the quantitative evaluations. The 

test sequences that have been produced and used for the quantitative tests are 

presented next which is followed by a number of subsequent sections presenting the 

results of the quantitative tests. 

6.2.1 Error Measures 

Besides the definition of the affine motion model in Equation (4.3), a rearrangement 

of terms will yield a more known definition of the affine motion model as follows: 

  x' = Ax + b. (6.3) 

If the present position from A is taken out, we obtain 

  x' = (1 + D)x + b = x + (Dx + b) (6.4) 

where A = 1 + D and the elements of D are equal to the first four parameters p1 – p4. 

D defines the affine portion, namely, rotation, shear and scale type of deformations, 

whereas b corresponds to the last two parameters p5 and p6 and gives the translation 

portion. 

In order to have a compact representation of the errors, we combine the six 

parameters into two terms, namely the D and b, corresponding to the affine and 

translational components of motion. This also helps us in collecting the same type of 

parameters on the same term, since the order of magnitude of the errors for the affine 

and translation parameters are different.  

The relation between the parameters and A and b for each motion model is as 

follows: 

Affine Motion Model: 








+

+
=

42

31

1

1

pp

pp
A  








=

6

5

p

p
b  (6.5) 

Similarity Motion Model: 








+

−+
=

12

21

1

1

pp

pp
A  








=

4

3

p

p
b  (6.6) 



 

 95

Translational Motion Model: 

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Then, for the error in the affine parameters, A, the following measure [59] will be 

used: 

  1ˆ −−= AA1Ae  (6.8) 

where ||…|| is the L2 norm. Here, A is used instead of D and 1 is subtracted explicitly. 

Similarly, for the parameters p5 and p6 the error measure will be 

  bbb −= ˆe . (6.9) 

In these measures, Â and b̂ denote the estimated parameters, whereas A and b denote 

the true parameters. For the evaluations, both instantaneous and cumulative 

parameter errors are computed. Instantaneous parameters are estimated from two 

consecutive frames, whereas cumulative ones are accumulated from the very first 

frame. The cumulative parameters define the motion with respect to the track gate in 

the first frame of the tracking sequence. 

A compositional approach [3] is used to obtain the cumulative parameters. Based on 

the affine motion model given in Equation (6.3), the cumulative parameters are 

computed as follows: 
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which yields 

  
nnnn

nnn

bbAb

AAA

+=

=

−

−

1

1  (6.11) 

where 1A =0  and 0b =0 . Here, A and b  denote the cumulative parameters. 
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Technically, the parameters A and b are not affected from the origin of the 

coordinate system, independently. However, the origin of an affine motion directly 

affects the translational parameter b. Since, all types of affine motion like rotation 

and scale are with respect to the origin of the coordinate system. If the origin of the 

affine motion is not at the origin of the coordinate system, which is the case in all our 

test sequences, the translational parameter b compensates for this difference, yielding 

larger values. So, in order to eliminate this, the origin of the coordinate frame is 

shifted to the origin of the track gate at each frame for the error computations. 

Based on these, the following error measures have been used for performance 

evaluations: 

 

Instantaneous Error in A for the n
th
 frame: 

  1ˆ −−= nne AA1A  (6.12) 

Instantaneous Error in b for the nth frame: 

  nne bbb −= ˆ  (6.13) 

Average Instantaneous Error for A over N frames: 

  ∑
=

−=
N

n

nn
N

e
1

~ ˆ1
AA

A
 (6.14) 

Average Instantaneous Error for b over N frames: 

  ∑
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−=
N

n

nn
N

e
1
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b
 (6.15) 

Error in cumulative A for the n
th
 frame: 

  nne AA
A

−= ˆ  (6.16) 

Error in cumulative b for the nth frame: 

  nne bb
b

−= ˆ  (6.17) 



 

 97

Error in Track Gate for the n
th
 frame: 
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nGe gggggggg −+−+−+−=  (6.18) 

Note that in the last equation the track gate is defined by its four corners: upper-left 

(UL), upper-right (UR), lower-left (LL), and lower-right (LR), which are represented 

with g(UL), g(UR), g(LL), and g(LR), respectively. Then, the error in the track gate is 

defined by the average of the distance of the corner points. 

Referring to the criteria for the track quality defined in the previous section, we will 

quantify the regions using the error measures of A and b defined in Equations (6.8) 

and (6.9), respectively, as given in Table 6.2. 

 

Table 6.2  Quantitative limits of parameters A and b for tracking criteria. 
 

Criteria Limits for A Limits for b 

Precise eA  ≤  0.005 eb  ≤  0.05 

Acceptable 0.005  ≤  eA  ≤  0.05 0.05 ≤  eb  ≤  0.5 

Lost 0.05  ≤  eA 0.5  ≤  eb 

 

When the limits for A and b conflict for some cases, we will decide in favor of A, i.e. 

if A is within limits, and b is slightly out of limit, then we will choose the criteria 

where A fits in. These limits roughly mean the following: For A, 0.005 corresponds 

to 0.5% of scaling, 0.5% of shearing or about 0.3° of rotation; 0.05 corresponds to 

5% of scaling, 5% of shearing, or about 3° of rotation. For b, the value directly 

converts to frame coordinates. So, 0.05 refers to 0.05 pixels of difference and 0.5 

refers to a half pixel error. So, these limits will be used to obtain the practical limits 

for the Complex Wavelet Tracker in the subsequent sections. 

6.2.2 Test Sequences 

Test sequences have been created to measure the performance of the proposed 

algorithm. These sequences have been created by deforming still images under 
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controlled affine deformations. We used three different still images: Lenna, Grass, 

and Cloud, shown in Figure 6.1, each of which has its own properties and represent 

different difficulty levels for motion estimation.  

The famous “Lenna” image represents a nice texture where the intensity levels are 

covering the full range. The “Grass” image is created to represent a random-like 

pattern that is similar and monotonic over the whole image. The “Cloud” image is 

created to represent a smooth low-contrast surface which is especially difficult to 

track under illumination changes. All images are 256 × 256 pixels in size. The range 

of the intensity values are 0 – 255. 

The sequences are created for the four basic motion types: translation, scale, shear, 

and rotation. For each motion type, a number of sequences have been produced for 

different degrees of the specific deformation. 

The affine motion model defined in Equation (6.3) is used to deform the reference 

image. The affine parameters A and b are computed for each sequence. Each frame 

in the sequence is warped according to the cumulative affine parameters (6.11) with 

respect to the first frame using bilinear interpolation.  

 

   
 (a) (b) (c) 

Figure 6.1  Still images used to create the test sequences. (a) The famous “Lenna” image. (b) 
The “Grass” image, showing repetitive similar monotonic texture. (c) The “Cloud” image, 
showing a very soft texture having very low contrast. 
 

For translation, 24 test sequences have been created for displacements ranging from 

0.25 pixels to 12.00 pixels with a step of 0.25 pixels for the range up to 4.00 pixes 

and a step of 1.00 pixels thereafter. All the translating sequences are 25 frames long. 
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In order to keep the track gate within frame limits, the sequence has been extended to 

512 × 256 pixels. A sample frame is shown in Figure 6.2 (b) where we clipped the 

frame to its original size for demonstration purposes. 

For scaling, 40 test sequences have been created for scale ratios ranging from –20% 

to +20% with a step of 1%. All of the scaling sequences are 20 frames long. In order 

to keep the target within frame borders, the sequence for scaling up is extended to 

512 × 512 pixels. A sample frames is shown in Figure 6.2 (d) and (e) where the 

frame for the up scaling sequence is clipped to its original size for demonstration 

purposes. 

 

   
 (a) (b) (c) 

   
 (d) (e) (f) 

Figure 6.2  Test sequences for affine deformations. (a) First frame of the Lenna Sequences. 
(b) Translation. (c) Shear. (d) Up scaling. (e) Down scaling. (f) Rotation. 
 

For shear, 20 test sequences have been created for shear ratio ranging from 1% to 

20% with a step pf 1%. All of the shear sequences are 30 frames long. In order to 

keep the track gate within frame limits, the sequence has been extended to 512 × 256 
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pixels. A sample frame is shown in Figure 6.2 (c) where we clipped the frame to its 

original size for demonstration purposes. 

For rotation, 20 test sequences have been created for rotation angles ranging from 1° 

to 10° with a step of 1°. All of the rotation sequences are 360 frames long. A sample 

frame is shown in Figure 6.2 (f). 

Perturbations have also been added for the robustness tests. Three types of 

perturbations are used: brightness change, contrast change, and noise. For brightness, 

an offset is added to the pixel intensity values. For contrast, the pixel intensity values 

are scaled. The additive offset is varied from 0 to 25, and the scaling factor from 0.75 

to 1.25. For noise, additive Gaussian noise is added to each pixel intensity value. 

Noise standard deviation is varied from 0 to 20 where the mean is set to 0. For all 

perturbations, clipping is performed on saturating entries to prevent over- and 

underflows of data. 

A total of 1.434 Test Sequences have been created and 15.774 simulations have been 

performed. The subsequent sections will present the results. 

6.2.3 Test 1: Exploring Affine Limits – Effect of Gate Size 

The purpose of this test is to explore the practical limits of the Complex Wavelet 

Tracker to the following types of deformations: translation, scale, shear, and rotation. 

These practical limits are compared to the theoretical ones presented in Section 4.2 at 

the end of this section. 

The Lenna Test Sequences presented in Section 6.2.2 are used. For the measurement 

of errors, the average instantaneous errors for the parameters A and b, namely (6.14) 

and (6.15), are used. The affine motion model is used to perform these tests. The 

results of each type of motion are given in the following subsections. 

The simulations have been performed for three different target sizes: 32 × 32 pixels, 

64 × 64 pixels, and 160 × 160 pixels, considered as “small”, “medium” and “large” 

size targets, respectively. These are the same sizes used in the theoretical calculations 

in Section 4.2.  



 

 101 

6.2.3.1 Translation 

The Translating Lenna Test Sequences are used for the simulations. All of the 25 

frames are covered in the error calculations. The results are shown in Figure 6.3 and 

Figure 6.4. 

For a target size of 32 × 32 pixels, the error starts increasing slightly after 5 pixel 

displacement and breaks down at 8 pixels. For a target size of 64 × 64 pixels, very 

accurate tracking is performed up to 9 pixels, which is slightly above the theoretical 

limit (which is 8 pixels). The track breaks down after 10 pixels. For a target size of 

160 × 160 pixels, even a translation of 11 pixels is estimated with very high precision 

and the algorithm breaks down thereafter.  

As a result, for translation, the larger the target size, the more accurate the results are. 

For translations up to 5 pixels, the average instantaneous errors in A are around 

0.0025 for 32 × 32 pixels, 0.0015 for 64 × 64 pixels, and 0.0002 for 160 × 160 pixels 

target size. This result shows that by increasing the support and incorporating more 

pixels into the solution, the accuracy of the algorithm increases. Moreover, the 

estimation limits exceed the theoretical ones, which is also a positive outcome of the 

increase in the support. 

6.2.3.2 Scale 

The Scaling Lenna Test Sequences are used for the simulations. The average 

instantaneous errors are computed over the first five frames. The results are depicted 

in Figure 6.5 and Figure 6.6. 

For 32 × 32 and 64 × 64 pixels target sizes, the accuracy remained within the 

acceptable range in between ±20% scale ratios where the scaling tests were 

performed. The estimates for the 64 × 64 pixel target were accurate in the range from 

−9% to +8%, whereas, for the 32 × 32 pixel target, it were accurate only in between 

−1% to +2%. For the 160 × 160 pixel target, however, the estimates were accurate 

from −12% to +10%, and acceptable for −16% to +12%. 

On the overall, it is observed that, as the target size increases, the practical limits 

tend to exceed theoretical ones. This is the benefit of increasing the support. In 
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addition to this, by comparing the accuracies at lower ratios, it is observed clearly 

that the accuracy of the algorithm increases as well with increasing target size, which 

is also an outcome of the increasing support. 

6.2.3.3 Shear 

The Shearing Lenna Test Sequences are used for the simulations. The errors are 

computed over the first ten frames. The results are shown in Figure 6.7 and Figure 

6.8. 

The results for all target sizes are very accurate. For target sizes of 32 × 32 and 64 × 

64 pixels, accurate estimation of the parameters have been obtained for up to 20% 

shear ratios. For the 160 × 160 pixel target the algorithm remained in the accurate 

region up to 16% shear ratio and gave acceptable results for 17%, but broke down 

after that.  

On the overall, a clear increase in the accuracy of the algorithm is observed with 

increasing target size. The error in parameters p1 – p4 is around 0.0001 for a 160 × 

160 pixel target for shear ratios up to 10%. The increase in the support has caused an 

increase in the accuracy of the estimation as more pixels contribute to the solution. 

For large target, the practical estimation limit has exceeded the theoretical one, 

which is also a benefit of the increase in the support. 

6.2.3.4 Rotation 

The Rotating Lenna Test Sequences are used for the simulations. The first 25 frames 

are used in the error calculations. The results are depicted in Figure 6.9 and Figure 

6.10.  

Accurate results are obtained for rotation angles up to 6°, 10°, and 7° for target sizes 

32 × 32, 64 × 64, and 160 × 160 pixels, respectively. Acceptable results are obtained 

for 32 × 32 pixels thereafter; and for 160 × 160 pixels target, acceptable tracking is 

performed until 8° and the track breaks down with 9° of rotation.  

On the overall, by comparing the errors, it is observed that the accuracy of the 

estimation increases with an increase in target size. This is the positive effect of 

incorporating more pixels in the solution. Hence, for large targets, the theoretical 
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limit of 5° rotation is exceeded, whereas, for the medium and small targets, the 

practical limit remained far below the theoretical ones.  

6.2.3.5 Summary of the Results 

Simulations have been performed in order to explore the practical deformation limits 

of the proposed algorithm for different target sizes. The summary of the practical 

limits in comparison to the theoretical ones are collected in Table 6.3. The values in 

the tables are computed according to the definitions given in Section 4.2. The 

calculations are based on a maximum 8-pixel displacement for the 4-level pyramid. 

 

Table 6.3  Practical deformation limits for representative object sizes when a 4-level CDWT 
pyramid is used. Theoretically, a 4-level pyramid corresponds to a maximum displacement 
of 8 pixels. The values inside the parentheses are theoretical limits given in Table 4.1 of 
Section 4.2. The meanings of the values are explained in 4.2. 
 

Object Size Translation Scale Rotation Shear 

32 × 32 pixels 25% (25%) >20% (50%) 6° (29°) >20% (25%) 

64 × 64 pixels 16% (12.5%) >20% (25%) 10° (14°) >20% (12.5%) 

160 × 160 pixels 7% (5%) 12% (10%) 7° (5°) 17% (5%) 

 

For translation and shear type of motions, the theoretical limits have been met. For 

scale and rotation types, however, these limits were met only for large target sizes. 

For medium and small targets, the performance remained below the theoretical limits.  

The reason for this is related with the fact that the CDWT has been designed 

according to the local translational model [59], which means that it is approximately 

invariant for translations only. Hence, for affine deformations, it is not invariant in 

the first place. However, increasing the support and incorporating a set of pixels 

instead of a single one extends the algorithm to handle affine deformations to an 

acceptable degree. Note that, although below the theoretical ones, the limits are 

actually quite high from an applicational point of view. For tracking, the application 
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will run on real-time video sequences at rates corresponding to 33 msec (30 Hz) or 

40 msec (25 Hz) time intervals between consecutive frames.  

For all motion types, it is observed that the accuracy is increasing with an increase in 

the target size. The increase in the target size means that more pixels contribute to 

the solution, and hence, a better estimation is obtained. This increase in the support 

also enables the practical limits to exceed theoretical ones. This is observed for all 

motion types, as the limits for medium and small targets remained below the 

theoretical limits. 

As a result, the accuracy of the algorithm increases with an increase in the target size 

due to an increase in the support leading to the correct solution. The maximum pixel 

displacement that can be handled does also increase with the increase in the support.  
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Figure 6.3  Test 1 – Translation (A): Average error in the instantaneous parameters p1 – p4 
for the Translating Lenna Test sequence for different target sizes. The errors are computed 
for translations between 0.25 – 12 pixels. The average is computed over 25 frames. 
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Figure 6.4  Test 1 – Translation (b): Average error in the instantaneous parameters p5 and p6 
for the Translating Lenna Test sequence for different target sizes. The errors are computed 
for translations between 0.25 – 12 pixels. The average is computed over 25 frames. 
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Figure 6.5  Test 1 – Scale (A): Average error in the instantaneous parameters p1 – p4 for the 
Scaling Lenna Test sequence for different target sizes. The errors are computed for scale 
ratios -20% – +20%. The average is computed over 5 frames. 
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Figure 6.6  Test 1 – Scale (b): Average error in the instantaneous parameters p5 and p6 for 
the Scaling Lenna Test sequence for different target sizes. The errors are computed for scale 
ratios -20% – +20%. The average is computed over 5 frames. 
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Figure 6.7  Test 1 – Shear (A): Average error in the instantaneous parameters p1 – p4 for the 
Shearing Lenna Test sequence for different target sizes. The errors are computed for shear 
ratios 1% – 20%. The average is computed over 10 frames. 
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Figure 6.8  Test 1 – Shear (b): Average error in the instantaneous parameters p5 and p6 for 
the Shearing Lenna Test sequence for different target sizes. The errors are computed for 
shear ratios 1% –20%. The average is computed over 10 frames. 
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Figure 6.9  Test 1 – Rotation (A): Average error in the instantaneous parameters p1 – p4 for 
the Rotating Lenna Test sequence for different target sizes. The errors are computed for 
rotation angles 1° – 10°. The average is computed over 25 frames. 
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Figure 6.10  Test 1 – Rotation (b): Average error in the instantaneous parameters p5 and p6 
for the Rotating Lenna Test sequence for different target sizes. The errors are computed for 
rotation angles 1° – 10°. The average is computed over 25 frames. 
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6.2.4 Test 2: Exploring Affine Limits – Effect of Number of Levels 

These tests are performed to investigate the effect of the number of levels (mmax) to 

the affine limits investigated in Test 1. The number of levels is varied from 3 to 6. 

The estimations are performed up to the first the level (mmin = 1) for all tests. So, the 

number of levels in the CDWT pyramid will be equal to mmax. 

The Lenna Test Sequences are used with the 160 × 160 pixels size target. For the 

measurement of errors, the average instantaneous errors for the parameters A and b 

given by expressions (6.14) and (6.15) are used. For scaling, however, the 

instantaneous error measures (6.12) and (6.13) are preferred. The affine motion 

model is used in the tests. The results of each type of motion are given from Figure 

6.11 to Figure 6.18. 

For translation, when 3 levels are used, the track breaks down after 5 pixels whereas 

for 4 levels, the limit is 11 pixels. If the level is increased to 5 and 6, it is observed 

that the limit exceeds 12 pixels with an acceptable performance. Hence, a clear 

increase in the limits is observed with an increase in the number of levels used. 

For scale, with an increase in the levels, a clear improvement is observed as well, 

especially in the affine parameter A. For 3 levels, a break occurs after ±7%, and for 4 

levels, after around ±12%. For 5 and 6 levels, this break exceeds ±20%, leading to a 

clear improvement in the limits for scaling. 

For shear, again, an improvement with an increase in the number of levels is 

observed. For this case, the track breaks after 8% with 3 levels, and 15% with 4 

levels. With 5 and 6 levels, the limits go beyond 20%.  

For rotation, the same improved is observed as well. With 3 levels, tracking is 

performed accurately until 4°, and with 4 levels up to 8°. With 5 and 6 levels, the 

limits exceed 10°. 

As a summary, it is observed clearly that by increasing the number of levels (mmax) 

the estimation limits have increased for all motion types, which is consistent with the 

theoretical outcomes. Furthermore, a very slight improvement in the estimation 

accuracy is observed as well.  
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Figure 6.11  Test 2 – Translation (A): Average error in the instantaneous parameters p1 – p4 
for the Translating Lenna Test sequence for different number of levels. The errors are 
computed for translations between 0.25 – 12 pixels. The average is computed over 25 frames. 
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Figure 6.12  Test 2 – Translation (b): Average error in the instantaneous parameters p5 and 
p6 for the Translating Lenna Test sequence for different number of levels. The errors are 
computed for translations between 0.25 – 12 pixels. The average is computed over 25 frames. 
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Figure 6.13  Test 2 – Scale (A): Error in the instantaneous parameters p1 – p4 for the Scaling 
Lenna Test sequence for different number of levels. The errors are computed for scale ratios 
-20% – +20%.  
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Figure 6.14  Test 2 – Scale (b): Error in the instantaneous parameters p5 and p6 for the 
Scaling Lenna Test sequence for different number of levels. The errors are computed for 
scale ratios -20% – +20%.  
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Figure 6.15  Test 2 – Shear (A): Average error in the instantaneous parameters p1 – p4 for 
the Shearing Lenna Test sequence for different number of levels. The errors are computed 
for shear ratios 1% – 20%. The average is computed over 10 frames. 
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Figure 6.16  Test 2 – Shear (b): Average error in the instantaneous parameters p5 and p6 for 
the Shearing Lenna Test sequence for different number of levels. The errors are computed 
for shear ratios 1% –20%. The average is computed over 10 frames. 
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Figure 6.17  Test 2 – Rotation (A): Average error in the instantaneous parameters p1 – p4 for 
the Rotating Lenna Test sequence for different number of levels. The errors are computed for 
rotation angles 1° – 10°. The average is computed over 25 frames. 
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Figure 6.18  Test 2 – Rotation (b): Average error in the instantaneous parameters p5 and p6 
for the Rotating Lenna Test sequence for different number of levels. The errors are computed 
for rotation angles 1° – 10°. The average is computed over 25 frames. 
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6.2.5 Test 3: Comparison of Motion Models 

The purpose of these tests is to compare the performance of the motion models with 

each other and with Lucas-Kanade [57]. The comparison of the different motion 

models will be in terms of both accuracy and estimation limits; however, the 

comparision of the models with Lucas-Kanade will be in terms of accuracy only. 

The Lenna Test Sequences are used for the tests with a target size of 64 × 64 pixels. 

For the measurement of errors, the average instantaneous errors for the parameters A 

and b, namely (6.14) and (6.15) are used. The results for each motion type are given 

from Figure 6.20 to Figure 6.27. The relation with the parameters pk and the affine 

motion parameters A and b are given in expressions from (6.5) through (6.7). 

For translation, similar performance is obtained for all motion types. In terms of 

accuracy, Lucas-Kanade showed the best performance by taking its advantages of 

being intensity-based. The Complex Wavelet Tracker, operating in the complex 

wavelet domain and being approximately shift-invariant, showed a compatible 

performance to Lucas-Kanade. 

For scale, the similarity motion model performed much better than the affine motion 

model and had similar performance with Lucas-Kanade. This is due to the fact that 

the similarity motion model is simpler than the affine motion model, which allows 

for different scaling of x and y axes and includes shear motion as well, allowing the 

solution to drift away from pure scaling. For the translational motion model, as it 

does not support scaling, it is expected that it keeps the track gate at the center. From 

this point of view, the center is maintained within 1 pixel range for scale ratios up to 

±10%. 

For shear, the affine motion model performed similar to Lucas-Kanade; whereas the 

similarity motion model had a significant increasing error due to the fact that it does 

not support shear type of motion. For the translational motion model, the target 

center is maintained within 1 pixel range for shear ratios up to 10%.  

In spite of the fact that shear motion is only supported by the affine motion model, it 

is expected from the Complex Wavelet Tracker that the other two models maintain 

track as much as possible and keep the track gate at the center of the target. For the 
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Similarity motion model, the track gate is rotated and scaled down to match the target 

as much as possible, which is a notable adaptation of this model. This is depicted in 

Figure 6.19.  

For rotation, as with scale, the similarity motion model showed a much better 

performance than the affine motion model; and this performance was compatible to 

Lucas-Kanade. Same reasoning for scale applies to this type as well. For the 

translational motion model, the track gate center is maintained within 1 pixel for 

only up to 4° of rotation. 

 

   
 (a) (b) (c) 

Figure 6.19  Representative frames from the Shearing Lenna Test Sequence showing the 
track gate for different motion models. The shear ratio is 5% and the target size is 64 × 64 
pixels. The track gate as is initiated at the first frame on the center of the target. The images 
show the track gate after the 15th frame for (a) the affine motion model, (b) the similarity 
motion model, and (c) the translational motion model. 
 

On the overall, it is observed that the Complex Wavelet Tracker showed a 

compatible performance to Lucas-Kanade. The similarity motion model performed 

better for scale and rotation. This can be explained by the fact that the similarity 

motion model is especially designed to reflect scale and rotation and hence the 

parameters are restricted to a subset of deformations allowed by the affine motion 

model. Therefore, these limitations lead to more accurate estimates by restricting the 

solution to drift to other types of motion. The translational motion model maintained 

the track gate on the target center within reasonable limits for affine motions.  

Generally, for these types of tests where the deformations are perfect where no 

disturbances are present, the Lucas-Kanade takes advantage of being intensity-based 
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and its iterative nature leads to converge to the correct solution eventually. The 

Complex Wavelet Tracker, however, operates in the complex wavelet domain, which 

is approximately shift-invariant and hence approaches to the solution within some 

limits only.  
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Figure 6.20  Test 3 – Translation (A): Average error in the instantaneous parameters p1 – p4 
for the Translating Lenna Test sequence for different motion models and Lucas-Kanade. 
Errors are computed for translations between 0.25 – 12 pixels. Average is over 25 frames. 
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Figure 6.21  Test 3 – Translation (b): Average error in the instantaneous parameters p5 and 
p6 for the Translating Lenna Test sequence for different motion models and Lucas-Kanade. 
The errors are computed for translations between 0.25 – 12 pixels. The average is over 25 
frames. 
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Figure 6.22  Test 3 – Scale (A): Average error in the instantaneous parameters p1 – p4 for the 
Scaling Lenna Test sequence for different motion models and Lucas-Kanade. The errors are 
computed for scale ratios -20% – +20%. The average is computed over 5 frames. 
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Figure 6.23  Test 3 – Scale (b): Average error in the instantaneous parameters p5 and p6 for 
the Scaling Lenna Test sequence for different motion models and Lucas-Kanade. The errors 
are computed for scale ratios -20% – +20%. The average is computed over 5 frames. 
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Figure 6.24  Test 3 – Shear (A): Average error in the instantaneous parameters p1 – p4 for 
the Shearing Lenna Test sequence for different motion models and Lucas-Kanade. The errors 
are computed for shear ratios 1% – 20%. The average is computed over 10 frames. 
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Figure 6.25  Test 3 – Shear (b): Average error in the instantaneous parameters p5 and p6 for 
the Shearing Lenna Test sequence for different motion models and Lucas-Kanade. The errors 
are computed for shear ratios 1% –20%. The average is computed over 10 frames. 
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Figure 6.26  Test 3 – Rotation (A): Average error in the instantaneous parameters p1 – p4 for 
the Rotating Lenna Test sequence for different motion models and Lucas-Kanade. The errors 
are computed for rotation angles 1° – 10°. The average is computed over 25 frames. 
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Figure 6.27  Test 3 – Rotation (b): Average error in the instantaneous parameters p5 and p6 
for the Rotating Lenna Test sequence for different motion models and Lucas-Kanade. The 
errors are computed for rotation angles 1° – 10°. The average is computed over 25 frames. 



 

 121 

6.2.6 Test 4: Robustness to Illumination Changes 

The purpose of these tests is to explore the robustness of the proposed algorithm to 

illumination changes. All three series, the Lenna, Grass, and Cloud Test Sequences 

are used for the tests. The Lucas-Kanade [57] algorithm is used to compare the 

results. 

The affine motion model with 64 × 64 pixels target size is used to perform these tests. 

The tests are all performed for the four types of motion. For the evaluations, the 

instantaneous error measures, given in Equations (6.12) and (6.13), are used.  

In order to simplify the graphics, we picked one representative case for each motion 

type: 4 pixels for translation, 5% for scale, 5% for shear, and 4° for rotation. The 

errors of each motion type are then averaged to obtain a single error value for each 

disturbance value. The results are given in the next two subsections for each series 

separately with comparison to the Lucas-Kanade algorithm. 

6.2.6.1.1 Brightness: Additive Offset  

An offset ranging from 0 to 25 is added to the sequences at each frame. The results 

are shown in Figure 6.28 through Figure 6.33 for Lenna, Grass, and Cloud series. 

It is observed that for the Complex Wavelet Tracker, the accuracy in the track 

parameters are not affected for all the three series. Being a phase-based approach, 

this type of disturbance to some extend does not affect the performance of the 

Complex Wavelet Tracker, as expected. However, for the Lucas-Kanade algorithm, 

although more precise at very low brightness disturbance levels, the performance 

gradually decreases as the additive offset increases. In the Cloud series, the track is 

lost above an offset value around 10 for Lucas-Kanade. This behaviour is normal for 

intensity-based methds, as the intensity is being changed in these types of 

disturbances. 

6.2.6.1.2 Contrast: Intensity Scaling 

The intensity of the sequences is scaled by a factor ranging from 0.75 to 1.25. The 

results are shown in Figure 6.34 through Figure 6.39 for the Lenna, Grass, and Cloud 

series. 
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It is observed that for the Complex Wavelet Tracker, the accuracy in the track 

parameters are not affected for all the three series. However, for the Lucas-Kanade 

algorithm, although more precise at low scaling factors, the performance gradually 

decreases as the scaling factor increases. In the Cloud series, the track is lost above 

an intensity factor around ±0.10 for Lucas-Kanade. This shows again that phase-

based approaches are robust to intensity-perturbations in contrast to intensty-based 

approaches, as expected. 

6.2.6.1.3 Summary of the Results 

Simulations have been performed in order to explore the affects of brightness and 

contrast changes on the performance of the Complex Wavelet Tracker. The results 

are compared with the Lucas-Kanade [57] algorithm.  

On the overall, it is observed that for both brightness and contrast changes the 

proposed algorithm showed excellent robustness by showing no degradation in the 

accuracy of its estimations to a large extend. In comparison, the performance of the 

Lucas-Kanade method, however, showed a gradual decrease in the precision of its 

estimations with increasing perturbations. For the Cloud sequence, it showed loss of 

track after some degree of disturbance. Since the Cloud series, in contrast to the other 

two series, is a very smooth image with no edges or corners, is not suitable for 

Lucas-Kanade in the first case. And, the addition of intensity perturbations creates 

these losses. 

This outcome is somehow expected. The Complex Wavelet Tracker operates in the 

complex wavelet domain and bases its estimations on the phase information. The 

phase information is known to be immune to illumination changes [30], which makes 

the Complex Wavelet Tracker robust to illumination. The Lucas-Kanade [57] 

algorithm, however, uses the intensity information to perform its estimations and 

hence, is easily affected by illumination changes. 
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Figure 6.28  Test 4 Lenna – Brightness (A): Robustness to brightness changes. The error in 
the instantaneous parameters A, averaged from the errors for 4.00 pixel translation, 5% 
scaling, 5% shear, and 4° rotation.  
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Figure 6.29  Test 4 Lenna – Brightness (b): Robustness to brightness changes. The error in 
the instantaneous parameters b, averaged from the errors for 4.00 pixel translation, 5% 
scaling, 5% shear, and 4° rotation. 
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Figure 6.30  Test 4 Grass – Brightness (A): Robustness to brightness changes. The error in 
the instantaneous parameters A, averaged from the errors for 4.00 pixel translation, 5% 
scaling, 5% shear, and 4° rotation.  
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Figure 6.31  Test 4 Grass – Brightness (b): Robustness to brightness changes. The error in 
the instantaneous parameters b, averaged from the errors for 4.00 pixel translation, 5% 
scaling, 5% shear, and 4° rotation. 
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Figure 6.32  Test 4 Cloud – Brightness (A): Robustness to brightness changes. The error in 
the instantaneous parameters A, averaged from the errors for 4.00 pixel translation, 5% 
scaling, 5% shear, and 4° rotation.  
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Figure 6.33  Test 4 Cloud – Brightness (b): Robustness to brightness changes. The error in 
the instantaneous parameters b, averaged from the errors for 4.00 pixel translation, 5% 
scaling, 5% shear, and 4° rotation. 
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Figure 6.34  Test 4 Lenna – Contrast (A): Robustness to contrast changes. The error in the 
instantaneous parameters A, averaged from the errors for 4.00 pixel translation, 5% scaling, 
5% shear, and 4° rotation.  
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Figure 6.35  Test 4 Lenna – Contrast (b): Robustness to contrast changes. The error in the 
instantaneous parameters b, averaged from the errors for 4.00 pixel translation, 5% scaling, 
5% shear, and 4° rotation. 
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Figure 6.36  Test 4 Grass – Contrast (A): Robustness to contrast changes. The error in the 
instantaneous parameters A, averaged from the errors for 4.00 pixel translation, 5% scaling, 
5% shear, and 4° rotation.  
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Figure 6.37  Test 4 Grass – Contrast (b): Robustness to contrast changes. The error in the 
instantaneous parameters b, averaged from the errors for 4.00 pixel translation, 5% scaling, 
5% shear, and 4° rotation. 
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Figure 6.38  Test 4 Cloud – Contrast (A): Robustness to contrast changes. The error in the 
instantaneous parameters A, averaged from the errors for 4.00 pixel translation, 5% scaling, 
5% shear, and 4° rotation.  
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Figure 6.39  Test 4 Cloud – Contrast (b): Robustness to contrast changes. The error in the 
instantaneous parameters b, averaged from the errors for 4.00 pixel translation, 5% scaling, 
5% shear, and 4° rotation. 
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6.2.7 Test 5: Robustness to Noise 

The purpose of these tests is to explore the robustness of the proposed algorithm to 

additive white Gaussian noise. All three series, the Lenna, Grass, and Cloud Test 

Sequences are used for the tests. The Lucas-Kanade [57] algorithm is used to 

compare the results. 

Additive zero-mean white Gaussian noise with standard deviation varying from 0 to 

20 is added to the sequences. The affine motion model with 64 × 64 pixels target size 

is used to perform these tests. The tests are all performed for the four types of motion. 

For the evaluations, the average instantaneous error measures, given in Equations 

(6.14) and (6.15), are used.  

In order to simplify the graphics, we picked one special example for each motion 

type: 4 pixels for translation, 5% for scale, 5% for shear, and 4° for rotation. The 

errors of each motion type are then averaged to obtain a single error value for each 

noise level. The results are given for each series separately with comparison to the 

Lucas-Kanade algorithm in Figure 6.40 through Figure 6.45. 

It is observed that for all the motion types and for all test series, the error in the track 

parameters increases gradually as the noise increases. This behavior is similar for the 

Lucas-Kanade algorithm. The overall precision of Lucas-Kanade is better. With 

increasing noise; this situation does not change for the Lenna series, where Lucas-

Kanade performs quite robustly. However, for the Grass and Cloud series, the error 

in the affine parameter A is similar for both algorithms, where for low noise levels 

Lucas-Kanade, and for high noise levels the Complex Wavelet Tracker peforms 

slightly better.  

As a summary, the robustness of the proposed method to additive noise is similar to 

Lucas-Kanade [57]. The estimation error increases as the noise standard deviation 

increases. The Complex Wavelet Tracker shows more immunity to noise for smooth 

intensity regions as in the Cloud series, in contrast to Lucas-Kanade. 
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Figure 6.40  Test 5 Lenna – Noise (A): Robustness to noise. The average error in the 
instantaneous parameters A, averaged from the errors for 4.00 pixel translation, 5% scaling, 
5% shear, and 4° rotation. 
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Figure 6.41  Test 5 Lenna – Noise (b): Robustness to noise. The average error in the 
instantaneous parameters b, averaged from the errors for 4.00 pixel translation, 5% scaling, 
5% shear, and 4° rotation. 
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Figure 6.42  Test 5 Grass – Noise (A): Robustness to noise. The average error in the 
instantaneous parameters A, averaged from the errors for 4.00 pixel translation, 5% scaling, 
5% shear, and 4° rotation. 
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Figure 6.43  Test 5 Grass – Noise (b): Robustness to noise. The average error in the 
instantaneous parameters b, averaged from the errors for 4.00 pixel translation, 5% scaling, 
5% shear, and 4° rotation. 
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Figure 6.44  Test 5 Cloud – Noise (A): Robustness to noise. The average error in the 
instantaneous parameters A, averaged from the errors for 4.00 pixel translation, 5% scaling, 
5% shear, and 4° rotation. 
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Figure 6.45  Test 5 Cloud – Noise (b): Robustness to noise. The average error in the 
instantaneous parameters b, averaged from the errors for 4.00 pixel translation, 5% scaling, 
5% shear, and 4° rotation. 
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6.2.8 Test 6: Robustness to Intensity Patterns 

The purpose of these tests is to explore the robustness of the accuracy of the 

Complex Wavelet Tracker under different intensity patterns, or textures. The Lenna, 

Grass, and Cloud Test Sequences are used for the tests to reflect different intensity 

patterns. The results are compared with the results of the Lucas-Kanade [57] 

algorithm.  

The affine motion model with 64 × 64 pixels target size is used to perform these tests. 

Three different types of test are performed. First, the effect of intensity patterns on 

the affine estimation limits is examined for each motion type. Second and third, tests 

are performed to explore the effect on the robustness of the algorithm to noise and 

illumination changes. The results for each test are given in the following subsections. 

6.2.8.1 Effect of Intensity Patterns to Affine Limits 

The purpose of these tests is to evaluate the change in the accuracy and affine 

estimation limits of the algorithm under different intensity patterns, or textures. 

For the measurement of errors, the average instantaneous errors for the parameters A 

and b, namely (6.14) and (6.15), are used. The affine motion model is used to 

perform these tests. A comparison to Lucas-Kanade [57] method is also provided. 

Simulations have been performed on the Lenna, Grass, and Cloud series using a 64 × 

64 pixel-size target. 

Results are presented from Figure 6.46 to Figure 6.61 for each motion type one by 

one. First, the results for the Complex Wavelet Tracker are given, which are 

followed by the results for Lucas-Kanade. The results are presented for the 

parameters A and b separately.  

For translation, the performance of the Complex Wavelet Tracker for all the series 

is similar. For the Lucas-Kanade, a break for the Grass series occurs earlier (after 7 

pixels) than the other two. This break can be caused due to the repetitive texture of 

the Grass Series. Besides this break, the performance is close over the full test range.  

For scale, the Complex Wavelet Tracker behaves similarly from –20% to +10%, but 

after +10%, the algorithm breaks up for Lenna first, Cloud second, and Grass at last. 
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This behavior shows that repetitive texture as in the Grass series favors for 

estimating scale type of deformations. For Lucas-Kanade, however, the performance 

is similar for all three series.  

For shear, both algorithms behave similarly for all series. The Complex Wavelet 

Tracker experiences difficulty for the Cloud series after around 15%. The proposed 

method performs slightly more accurate for the Grass series than the Lenna series. 

For rotation, both algorithms present similar results among the three series. For the 

Complex Wavelet Tracker, the accuracy is much better for the Grass series than the 

other two series, as in the scale case. 

On the overall, it is observed that the affine motion estimation performance of the 

Complex Wavelet Tracker is similar for different types of textures like the Lenna, 

Grass, and the Cloud series. There is a small difference in the errors for scale and 

shear; and for rotation, the error in the Grass series is quite smaller than the others. 

For the Lucas-Kanade, similar differences are also observed for scale, shear, and 

rotation. Early breaks occur for Lenna in scale, and for Cloud in shear for the 

Complex Wavelet Tracker; and for Grass in translation for Lucas-Kanade. 

Differences in the accuracies show that phase-based methods perform little more 

confident in repetitive type textures than intensity-based methods. As a result, both 

methods show compatible performance in terms of robustness to different intensity 

patterns. 
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Figure 6.46  Test 6 CWT – Translation (A): Average error in the instantaneous parameters 
p1 – p4 for the Translating Test sequence for Lenna, Grass, and Cloud. The errors are 
computed for translations between 0.25 – 12 pixels. The average is computed over 25 frames. 
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Figure 6.47  Test 6 CWT – Translation (b): Average error in the instantaneous parameters p5 
and p6 for the Translating Test sequence for Lenna, Grass, and Cloud. The errors are 
computed for translations between 0.25 – 12 pixels. The average is computed over 25 frames. 
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Figure 6.48  Test 6 LK – Translation (A): Average error in the instantaneous parameters p1 – 
p4 for the Translating Test sequence for Lenna, Grass, and Cloud. The errors are computed 
for translations between 0.25 – 12 pixels. The average is computed over 25 frames. 
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Figure 6.49  Test 6 LK – Translation (b): Average error in the instantaneous parameters p5 
and p6 for the Translating Test sequence for Lenna, Grass, and Cloud. The errors are 
computed for translations between 0.25 – 12 pixels. The average is computed over 25 frames. 
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Figure 6.50  Test 6 CWT – Scale (A): Average error in the instantaneous parameters p1 – p4 
for the Scaling Test sequence for Lenna, Grass, and Cloud. The errors are computed for scale 
ratios -20% – +20%. The average is computed over 5 frames. 
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Figure 6.51  Test 6 CWT – Scale (b): Average error in the instantaneous parameters p5 and 
p6 for the Scaling Test sequence for Lenna, Grass, and Cloud. The errors are computed for 
scale ratios -20% – +20%. The average is computed over 5 frames. 
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Figure 6.52  Test 6 LK – Scale (A): Average error in the instantaneous parameters p1 – p4 
for the Scaling Test sequence for Lenna, Grass, and Cloud. The errors are computed for scale 
ratios -20% – +20%. The average is computed over 5 frames. 
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Figure 6.53  Test 6 LK – Scale (b): Average error in the instantaneous parameters p5 and p6 
for the Scaling Test sequence for Lenna, Grass, and Cloud. The errors are computed for scale 
ratios -20% – +20%. The average is computed over 5 frames. 
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Figure 6.54  Test 6 CWT – Shear (A): Average error in the instantaneous parameters p1 – p4 
for the Shearing Test sequence for Lenna, Grass, and Cloud. The errors are computed for 
shear ratios 1% – 20%. The average is computed over 10 frames. 
 
 

2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Average Error in Instantenous Parameters b

Shear Ratio (%)

E
rr
o
r 
(P

ix
e
ls

)

 

 

Lenna

Grass

Cloud

 

Figure 6.55  Test 6 CWT – Shear (b): Average error in the instantaneous parameters p5 and 
p6 for the Shearing Test sequence for Lenna, Grass, and Cloud. The errors are computed for 
shear ratios 1% –20%. The average is computed over 10 frames. 
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Figure 6.56  Test 6 LK – Shear (A): Average error in the instantaneous parameters p1 – p4 
for the Shearing Test sequence for Lenna, Grass, and Cloud. The errors are computed for 
shear ratios 1% – 20%. The average is computed over 10 frames. 
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Figure 6.57  Test 6 LK – Shear (b): Average error in the instantaneous parameters p5 and p6 
for the Shearing Test sequence for Lenna, Grass, and Cloud. The errors are computed for 
shear ratios 1% –20%. The average is computed over 10 frames. 
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Figure 6.58  Test 6 CWT – Rotation (A): Average error in the instantaneous parameters p1 – 
p4 for the Rotating Test sequence for Lenna, Grass, and Cloud. The errors are computed for 
rotation angles 1° – 10°. The average is computed over 25 frames. 
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Figure 6.59  Test 6 CWT – Rotation (b): Average error in the instantaneous parameters p5 
and p6 for the Rotating Test sequence for Lenna, Grass, and Cloud. The errors are computed 
for rotation angles 1° – 10°. The average is computed over 25 frames. 
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Figure 6.60  Test 6 LK – Rotation (A): Average error in the instantaneous parameters p1 – p4 
for the Rotating Test sequence for Lenna, Grass, and Cloud. The errors are computed for 
rotation angles 1° – 10°. The average is computed over 25 frames. 
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Figure 6.61  Test 6 LK – Rotation (b): Average error in the instantaneous parameters p5 and 
p6 for the Rotating Test sequence for Lenna, Grass, and Cloud. The errors are computed for 
rotation angles 1° – 10°. The average is computed over 25 frames. 
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6.2.8.2 Effect of Intensity Patterns to Illumination Change Robustness 

The purpose of these tests is to examine the change in the behavior of the algorithm 

under illumination changes for different types of intensity patterns, or textures. 

Two different tests are performed for the evaluations: additive offset (brightness) and 

intensity scaling (contrast). For brightness, an offset ranging from 0 to 25 is added to 

the sequences at each frame. For contrast, the intensity of the sequences is scaled by 

a factor ranging from 0.75 to 1.25.  

The affine motion model with 64 × 64 pixels target size is used for the tests. The tests 

are all performed for the four types of motion. For the evaluations, the instantaneous 

error measures, given in Equations (6.12) and (6.13), are used. A comparison to 

Lucas-Kanade [57] method is also provided. 

In order to simplify the graphics, we picked one representative case for each motion 

type: 4 pixels for translation, 5% for scale, 5% for shear, and 4° for rotation. The 

errors of each motion type are then averaged to obtain a single error value for each 

disturbance value. The results are given for brightness and contrast separately, for the 

Complex Wavelet Tracker first, and for Lucas-Kanade next from Figure 6.62 to Figure 

6.69. 

On the overall, it is observed that, even though there are differences in the error 

levels, for both algorithms the behavior is similar for varying textures. For the 

Complex Wavelet Tracker the accuracy is not affected by brightness and contrast 

changes for all three series. For the Lucas-Kanade, an increase in the errors is 

observed with increasing intensity perturbations for all three series; especially for the 

Cloud series, the increase in the error is quite high. Both behaviors are consistent 

with our expectations. Phase-based methods tend to be robust to intensity 

perturbations in contrast to intensity-based methods. The Complex Wavelet Tracker 

takes its advantage of being phased for these tests. 
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Figure 6.62  Test 6 CWT – Brightness (A): Texture robustness to brightness changes. The 
error in the instantaneous parameters A, averaged from the errors for 4.00 pixel translation, 
5% scaling, 5% shear, and 4° rotation.  
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Figure 6.63  Test 6 CWT – Brightness (b): Texture robustness to brightness changes. The 
error in the instantaneous parameters b, averaged from the errors for 4.00 pixel translation, 
5% scaling, 5% shear, and 4° rotation. 
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Figure 6.64  Test 6 LK – Brightness (A): Texture robustness to brightness changes. The 
error in the instantaneous parameters A, averaged from the errors for 4.00 pixel translation, 
5% scaling, 5% shear, and 4° rotation.  
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Figure 6.65  Test 6 LK – Brightness (b): Texture robustness to brightness changes. The error 
in the instantaneous parameters b, averaged from the errors for 4.00 pixel translation, 5% 
scaling, 5% shear, and 4° rotation. 
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Figure 6.66  Test 6 CWT – Contrast (A): Texture robustness to contrast changes. The error 
in the instantaneous parameters A, averaged from the errors for 4.00 pixel translation, 5% 
scaling, 5% shear, and 4° rotation.  
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Figure 6.67  Test 6 CWT – Contrast (b): Texture robustness to contrast changes. The error 
in the instantaneous parameters b, averaged from the errors for 4.00 pixel translation, 5% 
scaling, 5% shear, and 4° rotation. 
 



 

 147 

0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
Error in Instantenous Parameters p1 - p4 for First Frame

Intensity Scaling Factor

E
rr
o
r

 

 

Lenna

Grass

Cloud

 

Figure 6.68  Test 6 LK – Contrast (A): Texture robustness to contrast changes. The error in 
the instantaneous parameters A, averaged from the errors for 4.00 pixel translation, 5% 
scaling, 5% shear, and 4° rotation.  
 
 

0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25
0

0.5

1

1.5

2

2.5

3

3.5
Error in Instantenous Parameters p5 - p6 for First Frame

Intensity Scaling Factor

E
rr
o
r 
(P

ix
e
ls

)

 

 

Lenna

Grass

Cloud

 

Figure 6.69  Test 6 LK – Contrast (b): Texture robustness to contrast changes. The error in 
the instantaneous parameters b, averaged from the errors for 4.00 pixel translation, 5% 
scaling, 5% shear, and 4° rotation. 
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6.2.8.3 Effect of Intensity Patterns to Noise Robustness 

The purpose of these tests is to evaluate the change in the behavior of the algorithm 

under additive white Gaussian noise for different types of intensity patterns, or 

textures. 

Additive zero-mean white Gaussian noise with standard deviation varying from 0 to 

20 is added to the sequences. The affine motion model with 64 × 64 pixels target size 

is used to perform these tests. The tests are all performed for the four types of motion. 

For the evaluations, the average instantaneous error measures, given in Equations 

(6.14) and (6.15), are used. A comparison to Lucas-Kanade [57] method is also 

provided. 

In order to simplify the graphics, we picked one special example for each motion 

type: 4 pixels for translation, 5% for scale, 5% for shear, and 4° for rotation. The 

errors of each motion type are then averaged to obtain a single error value for each 

noise level. The results are given for the Complex Wavelet Tracker and the Lucas-

Kanade algorithm separately from Figure 6.70 to Figure 6.73. 

On the overall, it is observed that the Complex Wavelet Tracker and the Lucas-

Kanade algorithms behave similarly under noise. For both algorithms, with 

increasing noise the error is gradually increasing for all series and their performances 

are similar for all three series. Their performances for Lenna and Grass are the same 

with a small increase in the error with noise, whereas for the Cloud series, both have 

a gradually increase in the error. As a result, both methods behave similarly under 

noise for different types of textures. Both show low performance for smooth textures 

under noise. 
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Figure 6.70  Test 6 CWT – Noise (A): Texture robustness to noise. The average error in the 
instantaneous parameters A, averaged from the errors for 4.00 pixel translation, 5% scaling, 
5% shear, and 4° rotation. 
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Figure 6.71  Test 6 CWT – Noise (b): Texture robustness to noise. The average error in the 
instantaneous parameters b, averaged from the errors for 4.00 pixel translation, 5% scaling, 
5% shear, and 4° rotation. 
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Figure 6.72  Test 6 LK – Noise (A): Texture robustness to noise. The average error in the 
instantaneous parameters A, averaged from the errors for 4.00 pixel translation, 5% scaling, 
5% shear, and 4° rotation. 
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Figure 6.73  Test 6 LK – Noise (b): Texture robustness to noise. The average error in the 
instantaneous parameters b, averaged from the errors for 4.00 pixel translation, 5% scaling, 
5% shear, and 4° rotation. 
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6.2.8.4 Summary of the Results 

Tests have been performed to evaluate the change in the performance of the Complex 

Wavelet Tracker when the underlying texture that is tracked is being changed. Three 

types of textures have been used: Lenna, Grass, and Cloud. By varying the series, 

three types of robustness tests have been performed: First tests evaluate the change in 

the accuracy and affine limits with no added perturbations. Second and third tests 

evaluate the performance change under intensity perturbations and noise, 

respectively. The results have been compared with Lucas-Kanade [57]. 

The first group of test explores the change in the accuracy with respect to texture. It 

is observed that the accuracy remained similar within some limits for all series. Some 

changes in the limits have been observed that causes earlier or later breaks, changing 

the limits explored in Test 1 (Section 6.2.3) by 1-2 units. The overall performance is 

compatible with Lucas-Kanade. 

The second group examines the change in the robustness under additive offset and 

intensity scaling. The Complex Wavelet Tracker proved its robustness for all three 

series by showing perfect immunity. Lucas-Kanade, however, being intensity based, 

showed several degrees of affect under these perturbations. 

The last group of tests evaluates the change in the robustness to noise under varying 

texture. Same behavior is observed for both algorithms: with increasing noise, the 

accuracy is decreasing in a similar linear form. 

As a result, it can be concluded that the Complex Wavelet Tracker performs 

approximately similar for different types of intensity patterns; hence, leading to a 

robust method under different types of targets. 
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6.2.9 Test 7: Random Affine Tests with Random Perturbations 

The purpose of these tests is to evaluate the long-term performance under random 

affine motion with random perturbations. New test sequences of 1000 frames are 

created for the test. All three test images, Lenna, Grass, and Cloud are used for the 

sequences. The Lucas-Kanade [57] algorithm is used to compare the results. 

The new test sequences are created in a similar way explained in Section 6.2.2. The 

motion parameters and the amount of perturbations, however, are obtained randomly 

for each frame in the sequence. For the affine parameters, 2 translation, 2 scale, 2 

shear, and 1 rotation parameter is randomly generated for each frame. For the 

perturbations, again, 1 offset for brightness, 1 scale for contrast, and 1 standard 

deviation for noise are randomly generated for every frame. The random numbers are 

selected from a uniform distribution with limits set for each parameter. These limits 

are given in Table 6.4. So, for each frame, 10 random numbers have been used, 

making a total of 10.000 random numbers. The same random pattern is used for all 

sequences. Sample frames from the Lenna sequence are shown in Figure 6.74.  

 

Table 6.4  Limits for uniform random values for each deformation and perturbation 
parameter used to create the random sequences. 
 

Parameter Limits for Random Values 

Translation –4 to +4 pixels for each axis 

Scale –2% to +2% for each axis 

Shear –2% to +2% for each axis 

Rotation –2° to +2° 

Noise Standard Deviation 10 

Additive Offset ±10 

Intensity Scale Factor 0.90 – 1.10 
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Four different test sequences are created with each image, making a total of 12 

sequences.  

The individual test cases are: 

1. Random affine motion without any perturbations [Affine] 

2. Random affine motion with random illumination change [Aff+Illum] 

3. Random affine motion with random additive noise [Aff+Noise] 

4. Random affine motion with both random illumination change and random 

additive noise [Aff+Ill+Noise] 

The reason for these different test cases is to evaluate the effect of disturbances to the 

pure estimation accuracy. 

 

    

Figure 6.74  Random Affine Test Sequence: A total of 1000 frames. Random affine motion, 
random noise and random illumination changes have been used to create the sequence. The 
size of the target selected on the first frame (left) is 85 × 102 pixels. The representative 
frames from left to right are 1st, 115th, and 1000th frame.      
 

The affine motion model with a five-level pyramid (mmax = 5) is used to perform 

these tests. For the evaluations, the average instantaneous error measures, (6.14) and 

(6.15), the cumulative error measures, (6.16) and (6.17), and the track gate error 

measure (6.18) is used.  

The results for all sequences are given in Figure 6.75 and Figure 6.76 showing the 

average instantaneous errors. For close inspection, the instantaneous errors together 

with the track gate error for the 4th Test Case of each sequence is given in Figure 

6.77 through Figure 6.85. 
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Figure 6.75  Test 7 Random (A): Average error in the instantaneous parameters A for the 
Complex Wavelet Tracker (CWT) and Lucas-Kanade (LK) with respect to Test Sequences. 
 
 
 

Average Instantaneous Error in b

0,000

0,100

0,200

0,300

0,400

0,500

A
ff
in

e

A
ff
+
Il
lu

m

A
ff
+
N

o
is

e

A
ff
+
Il
l+

N
o
is

e

A
ff
in

e

A
ff
+
Il
lu

m

A
ff
+
N

o
is

e

A
ff
+
Il
l+

N
o
is

e

A
ff
in

e

A
ff
+
Il
lu

m

A
ff
+
N

o
is

e

A
ff
+
Il
l+

N
o
is

e

Lenna Grass Cloud

Test Sequence

E
rr
o
r

Complex Wavelet Tracker Lucas-Kanade

 

Figure 6.76  Test 7 Random (b): Average error in the instantaneous parameters b for the 
Complex Wavelet Tracker (CWT) and Lucas-Kanade (LK) with respect to Test Sequences 
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Examining first the results summarized in Figure 6.75 and Figure 6.76 we observe that 

for all sequences the Complex Wavelet Tracker remained in the accurate tracking 

region. The Lucas-Kanade, except for two cases, performed similarly and remained 

in the accurate region as well. For the two cases, which were the Cloud sequences 

having illumination changes present, the tracking broke down. The Cloud sequence 

is a very smooth image which is not suitable for intensity-based methods. Together 

with intensity perturbations, the high error for Lucas-Kanade is not surprising. The 

proposed method, in contrast, takes its advantage of being phase-based and shows its 

robustness on this difficult case as well. 

For the Complex Wavelet Tracker, it is observed that it performed best for the Grass 

Sequences where the errors were below the Lucas-Kanade for all test cases. This 

shows that the Complex Wavelet Tracker operates more confidently on repetitive 

textures, or on texture-like targets. Comparing the errors of the 1st Test Case for 

Lenna and Cloud, we see that the error in the Cloud sequence is a bit smaller than the 

one in Lenna, which supports this argument when we take the Cloud image as being 

a texture-like surface as well. 

For the Lenna Sequences, the performance of the Complex Wavelet Tracker was 

equal for all four test cases, showing perfect robustness to intensity perturbations and 

noise. The results for Lucas-Kanade for the same sequence were highly better for the 

1st and 3rd Test Cases and slightly worse for the other two cases where illumination 

changes were present. 

The worst performance for the Complex Wavelet Tracker was the 4th Test Case of 

the Cloud sequence followed by the 3rd Test Case, but still the errors are within the 

accurate tracking region. The high error is stimuated by additive noise. This is the 

same for the Cloud sequence where error increase due to noise is significant. Both 

sequences are texture-like, so that we can conclude that noise is decreasing the 

accuracy for texture-like targets. One has to note however that, even with noise, the 

accuracy of the Grass sequence is better than the Lenna without noise. So, the 

increase in the accuracy for repetitive texture-like regions is degraded with noise. 
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To summarize, it is observed that the proposed method proves itself to be quite 

robust under illumination changes, but is affected by noise to some degree. In 

contrast to Lucas-Kanade, which is more robust to noise, whereas is highly affected 

by illumination changes. This shows also the difference of phase-based and intensity-

based-methods. 

Further examination of the detailed cumulative parameter errors reveals that the 

Lucas-Kanade experienced several jumps in the error throughout the Grass and 

Cloud sequences. The cumulative errors for the Complex Wavelet Tracker, however, 

were very smooth in comparison, which again shows the advantage of the proposed 

method to tracking even under difficult circumstances. 

As a result, it is observed that even if the accuracies are similar on the overall, the 

Complex Wavelet Tracker performed more robustly than the Lucas-Kanade for all 

test cases and proves to be suitable for tracking. 
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Figure 6.77  Test 7 Random – Lenna (A): Lenna Random Test Sequence with random 
illumination and random noise. The error in the instantaneous parameters A for the Complex 
Wavelet Tracker (CWT) and Lucas-Kanade (LK) with respect to frames is shown. 
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Figure 6.78  Test 7 Random – Lenna (b): Lenna Random Test Sequence with random 
illumination and random noise. The error in the instantaneous parameters b for the Complex 
Wavelet Tracker (CWT) and Lucas-Kanade (LK) with respect to frames is shown. 
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Figure 6.79  Test 7 Random – Lenna (Track Gate): Lenna Random Test Sequence with 
random illumination and random noise. The error in the track gate for the Complex Wavelet 
Tracker (CWT) and Lucas-Kanade (LK) with respect to frames is shown. 
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Figure 6.80  Test 7 Random – Grass (A): Grass Random Test Sequence with random 
illumination and random noise. The error in the instantaneous parameters A for the Complex 
Wavelet Tracker (CWT) and Lucas-Kanade (LK) with respect to frames is shown. 
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Figure 6.81  Test 7 Random – Grass (b): Grass Random Test Sequence with random 
illumination and random noise. The error in the instantaneous parameters b for the Complex 
Wavelet Tracker (CWT) and Lucas-Kanade (LK) with respect to frames is shown. 
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Figure 6.82  Test 7 Random – Grass (Track Gate): Grass Random Test Sequence with 
random illumination and random noise. The error in the track gate for the Complex Wavelet 
Tracker (CWT) and Lucas-Kanade (LK) with respect to frames is shown. 
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Figure 6.83  Test 7 Random – Cloud (A): Cloud Random Test Sequence with random 
illumination and random noise. The error in the instantaneous parameters A for the Complex 
Wavelet Tracker (CWT) and Lucas-Kanade (LK) with respect to frames is shown. 
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Figure 6.84  Test 7 Random – Cloud (b): Cloud Random Test Sequence with random 
illumination and random noise. The error in the instantaneous parameters b for the Complex 
Wavelet Tracker (CWT) and Lucas-Kanade (LK) with respect to frames is shown. 
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Figure 6.85  Test 7 Random – Cloud (Track Gate): Cloud Random Test Sequence with 
random illumination and random noise. The error in the track gate for the Complex Wavelet 
Tracker (CWT) and Lucas-Kanade (LK) with respect to frames is shown. 
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6.3 Qualitative Tests: Tracking 

Real sequences acquired from different imaging sources such as infrared, color and 

grayscale cameras are used for the qualitative evaluation of the proposed method. A 

wide area of applications is covered for the tests. The Lucas-Kanade [57] and the 

Mean Shift Tracker [24] are used for comparison.  

We used the Lucas-Kanade’s image registration method [57] with the affine motion 

model in the same way as the Complex Wavelet Tracker in order to have direct 

comparison of the two methods (See Section 0 for further explanations). The Mean 

Shift Tracker is implemented according to [24] and the target size adaptation method 

is performed as explained in [23]. The values used for the parameters for each 

sequence are given in the corresponding sections. 

6.3.1 Test 1: Air02 Color Sequence 

The first sequence is a color movie where a fighter aircraft maneuvers extensively in 

front of a blue sky background. The frames are 160 × 120 pixels and the sequence 

consists of 681 frames. Representative frames from the tracking sequence are shown 

in Figure 6.86 for the Complex Wavelet Tracker.  

The Complex Wavelet Tracker managed to track the target quite successfully until 

the 530th frame. The target selected on the first frame is 39 × 27 pixels. The size 

grows as large as 65 × 65 pixels and the track finally breaks when the size reduces to 

16 × 24 pixels. The target size at the final frame before the break occurs is 9 × 7 

pixels. The small size in combination with a decrease in the contrast caused the break 

to occur. 

For the same sequence, the Lucas-Kanade started in a similar way, but lost track at 

the 190th frame which is shown in Figure 6.87. Possibly due to low contrast, the gate 

size started to shrink around the 150th frame and eventually diminished as shown in 

the right-most frame of Figure 6.87.  

The Mean Shift Tracker, however, maintained the track throughout the full sequence, 

although the gate is not perfectly matched. Representative frames from the Mean  
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Figure 6.86  Test 1 CWT – Air02 Sequence: A total of 681 frames. The size of the target 
selected on the first frame (upper left) is 39 × 27 pixels. The representative frames from left 
to right and top to bottom are 1st, 25th, 67th, 205th, 530th and 681st. The target is tracked 
successfully until the 530th frame. 
 

 

    

Figure 6.87  Test 1 LK – Air02 Sequence: Lucas-Kanade managed to track successfully 
until the 190th frame which is shown on the right. The other two frames are the 25th (left) and 
67th (middle). 
 

 

    

Figure 6.88  Test 1 MS – Air02 Sequence: The Mean Shift Tracker managed to track the 
target successfully until the last frame. Representative frames from the tracking sequence are 
shown, which are from left to right, the 59th, 123rd, and 681st (last frame). 
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Shift Tracker is given in Figure 6.88. The parameters for the Mean Shift Tracker 

were set as follows: Number of Bins = 64, Size Ratio = 30%, Size Update = 0.05. 

6.3.2 Test 2: Air08 Color Sequence 

The second sequence is a color movie where a light aircraft maneuvers extensively in 

front of a blue sky background. The frames are 160 × 120 pixels and the sequence 

consists of 748 frames. Representative frames from the tracking sequence are shown 

in Figure 6.89 for the Complex Wavelet Tracker.  

The Complex Wavelet Tracker managed to track the target successfully throughout 

the whole sequence. The target size on the first frame is 19 × 35 pixels. The track 

gate grows as large as 65 × 61 pixels and shrinks as small as 13 × 20 pixels 

throughout the sequence. 

For the same sequence, the Lucas-Kanade started in a similar way, but lost track after 

the 411th frame which is shown in Figure 6.90. The small target size and low contrast 

caused difficulties for the method and starting from around the 350th frame, the gate 

adaptation was not confident and eventually diverged at the 411th frame. In the same 

period, the Complex Wavelet Tracker shows a quite confident adaptation of the gate 

and survives this difficult case. 

The Mean Shift Tracker, maintained the track throughout the whole sequence, 

although the gate was not perfectly maintained. Representative frames are shown in 

Figure 6.91. The parameters for the Mean Shift Tracker were set as follows: Number 

of Bins = 128, Size Ratio = 5%, Size Update = 0.25. 

6.3.3 Test 3: Air09 Color Sequence 

Another color movie is used for the third test where a light aircraft maneuvers 

extensively in front of a blue sky background. The frames are 352 × 288 pixels and 

the sequence consists of 887 frames. Representative frames from the tracking 

sequence are shown in Figure 6.92 for the Complex Wavelet Tracker.  

The Complex Wavelet Tracker maintains that track gate on the target until the last 

frame. The target size on the first frame is 31 × 33 pixels. The track gate grows as 

large as 228 × 144 pixels.  
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Figure 6.89  Test 2 CWT – Air08 Sequence: A total of 748 frames. The size of the target 
selected on the first frame (upper left) is 19 × 35 pixels. The representative frames from left 
to right and top to bottom are 1st, 52nd, 148th, 241st, 524th and 748th. The target is tracked 
successfully until the last frame. 
 

 

    

Figure 6.90  Test 2 LK – Air08 Sequence: Lucas-Kanade managed to track successfully 
until the 411th frame which is shown on the right. The other two frames are the 52nd (left) and 
148th (middle). 
 

 

    

Figure 6.91  Test 2 MS – Air08 Sequence: The Mean Shift Tracker managed to track the 
target successfully until the last frame. Representative frames from the tracking sequence are 
shown, which are from left to right, the 42nd, 160th, and 748th (last frame). 



 

 165 

For the same sequence, the Lucas-Kanade started in a similar way. However, the 

track gate started to grow after the 140th frame and continued growing until the 220th 

frame, from which on, even though the gate was updated accordingly, the size was 

too large to handle and eventually crossed frame boundaries and the track was 

broken.  

 

    

    

    

Figure 6.92  Test 3 CWT – Air09 Sequence: A total of 887 frames. The size of the target 
selected on the first frame (upper left) is 31 × 33 pixels. The representative frames from left 
to right and top to bottom are 1st, 102nd, 220th, 319th, 478th, 552nd, 623rd, 713th, and 887th. The 
target is tracked successfully until the last frame. 
 

The sequence starts with low contrast and small target size, which causes a small 

drift of the gate right at the initial period of the track. Due to this drift, in addition to 

a series of false updates after the 140th frames, which are possibly effected from the 

background due to the large gate size in comparison to the target size, eventually 
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leads to a loss of the target. In the same periods, the Complex Wavelet Tracker 

updates the gate quite confidently and overcomes this situation successfully. 

Representative frames for the Lucas-Kanade are shown in Figure 6.93. 

The Mean Shift Tracker maintained to track the target until the 627th frame. The 

tracker could not manage to update the track gate appropriately after the target 

became larger and had more contrast, thus making the match to the initial target 

model difficult and hence, a break occurs at the end. Representative frames from the 

Mean Shift Tracker are given in Figure 6.94. The parameters for the Mean Shift 

Tracker were set as follows: Number of Bins = 128, Size Ratio = 5%, Size Update = 

0.25. 

 

    

Figure 6.93  Test 3 LK – Air09 Sequence: Lucas-Kanade managed to track successfully 
until the 140th frame which is shown in the middle. From then on the track gate started to 
grow more than necessary. The other two frames are the 102nd (left), and 220th (right). 
 

 

    

Figure 6.94  Test 3 MS – Air09 Sequence: The Mean Shift Tracker managed to track the 
target successfully until the 627th frame which is shown on the right. Representative frames 
from the tracking sequence are shown, which are from left to right, the 70th, 319th, and 627th 
(last frame). 
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6.3.4 Test 4: Pursaklar03 Infrared Sequence 

The fourth sequence is taken from an infrared camera. A public bus is approaching 

the camera. There is a highly complex background behind the target. The contrast is 

low and the images are not sharp. Similar textures are present in target and 

background. The frames are 320 × 240 pixels. Representative frames from the 

tracking sequence are shown in Figure 6.95 together with the gate updated by the 

Complex Wavelet Tracker.  

The Complex Wavelet Tracker manages to track the target until the 269th frame. 

Although the scaling of the gate remained a bit less than the actual scaling of the 

target, the overall gate remained on the target with a slight drift in the target center.  

 

   

   

Figure 6.95  Test 4 CWT – Pursaklar03 Infrared: The tracking sequence is 269 frames. The 
representative frames show the 1st, 42nd, 138th and 269th (last) frame of the sequence.  
 

For the same sequence, the Lucas-Kanade performed in a similar way. The 

adaptation of the target size was better than the Complex Wavelet Tracker. The 
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target center was also maintained more appropriately. This superiority might be the 

advantage of being intensity-based where the intensities are matched appropriately in 

the spatial domain in contrast to the complex wavelet domain where a transformation 

is present and shift invariance is supplied only in the approximate sense. 

Representative frames from the tracking sequence for Lucas-Kanade are shown in 

Figure 6.96.  

 

   

Figure 6.96  Test 4 LK – Pursaklar03 Infrared: Lucas-Kanade managed to track successfully 
until the last frame which is shown on the right. The representative frames are the 138th (left) 
and 268th (right). 
 

   

Figure 6.97  Test 4 MS – Pursaklar03 Infrared: The Mean Shift Tracker managed to track 
the target successfully until the last frame. Representative frames from the tracking sequence 
are the 138nd (left) and 267th (right). 
 

The Mean Shift Tracker maintained the track throughout the full sequence, although 

drifts and mismatches occurred during the track. Representative frames from the 

Mean Shift Tracker are given in Figure 6.97. The parameters for the Mean Shift 
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Tracker were set as follows: Number of Bins = 64, Size Ratio = 30%, Size Update = 

0.05. 

6.3.5 Test 5: Pursaklar03 Color Sequence 

The fifth sequence is the same scene as the previous one, this time acquired by a 

color camera. A public bus is approaching the camera. The frames are 352 × 288 

pixels. Representative frames from the tracking sequence are shown in Figure 6.98 

for the Complex Wavelet Tracker.  

 

   

   

Figure 6.98  Test 5 CWT – Pursaklar03 Color Sequence: The tracking sequence is 226 
frames. The representative frames show the 1st, 52nd, 95th and 226th (last) frame of the 
sequence.  
 

The target is tracked successfully until the last frame. The scaling of the gate is more 

appropriate than the one performed on the infrared sequence. However, for this case, 
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the tilt at the beginning of the sequence caused an exaggerated rotation of the gate at 

the end of the sequence.  

For the same sequence, the Lucas-Kanade started in a similar way. However, right at 

the beginning it lost the target after 16th frame by shrinking the gate to the left. This 

unexpected shrinking starts with the motion of the camera to left, which might be a 

possible cause. This is shown in Figure 6.99.  

 

   

Figure 6.99  Test 5 LK – Pursaklar03 Color: Lucas-Kanade managed to track successfully 
until the 22nd frame which is shown on the left and suddenly lost the target. The 
representative frames are the 16th (left) and 22nd (right). 
 

 

   

Figure 6.100  Test 5 MS – Pursaklar03 Color: The Mean Shift Tracker managed to track the 
target until the 208th frame. It also had difficulties in maintaining the track gate on the target 
and updating the size accordingly. Representative frames from the tracking sequence are the 
52nd (left) and 208th (right). 
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The Mean Shift Tracker, confronted difficulties in maintaining the gate on the target. 

It also experienced difficulties in updating the gate appropriately. Representative 

frames from the Mean Shift Tracker are given in Figure 6.97. The parameters for the 

Mean Shift Tracker were set as follows: Number of Bins = 64, Size Ratio = 30%, 

Size Update = 0.05. 

6.3.6 Summary of the Results 

Tracking simulations using real video sequence are performed. The results are 

compared with the Lucas-Kanade [57] and the Mean Shift Tracker [24]. The target is 

selected by the operator. It is observed that the proposed method is successful in 

tracking the selected area for both cluttered and uncluttered scenes.  

For the air sequences it takes its advantage of being phase-based to overcome low 

contrast and illumination changes in comparison to intensity-based methods. For the 

pursaklar sequences, it performs compatible with Lucas-Kanade. The Mean Shift 

Tracker, although successful for most of the sequences, lacks accuracy and proper 

gate size adaptation which are important for the problems dealed in this work.  

On the overall, it is observed that, for the test sequences, the Complex Wavelet 

Tracker performed better than the other two methods, in terms of both accuracy and 

robustness. 
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CHAPTER 7 

DISCUSSION AND CONCLUSION 

This Chapter starts with discussions on the Complex Wavelet Tracker and the 

simulation results. It continues with suggestions for further work and ends with a 

conclusion of the thesis. 

7.1 Discussion on the Complex Wavelet Tracker 

A new tracking algorithm that is based on the Complex Discrete Wavelet Transform 

(CDWT) [59] is proposed. The target is defined by a rectangular region which is then 

updated by the tracker according to a parametric motion model. The algorithm 

estimates the track parameters in the complex wavelet domain. The complex wavelet 

phase is used to match the wavelet coefficients of successive frames. In this way, the 

algorithm can also be viewed as a generalization of the CDWT based motion 

estimation method [59] developed by Magarey and Kingsbury. Instead of estimating 

the motion of a pixel, the motion of a region is estimated according to a parametric 

motion model.  

The motion model can range from simple translation to affine motion, or, a subset of 

motion types can be defined in order to match the requirements of the specific 

application it is intended to be used for. We have investigated three types of motion 

models: the translational, the similarity, and the affine motion model. The solutions 

to these models are obtained as a linear equation solution in a least squares sense. 

Therefore, the selection of the motion model has little effect to the computational 

cost of the algorithm. The selection should be preferred rather to increase the 
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performance of the tracking by preventing redundant degrees of freedoms of the 

track gate. 

The Complex Wavelet Tracker is a generalization of the original motion estimation 

method of Magarey [59]. Increasing the support has lead to a more generic algorithm 

that has more a diverse use like block motion estimation, image registration, image 

alignment and tracking. The increase in the support has also a positive effect on 

robustness and accuracy. 

The solution is obtained in a direct way, without the need for any iteration steps. This 

property leads to fixed computation times, where the only parameter is the number of 

pixels, N. Intensity-based methods, like Lucas-Kanade [57], Horn-Schunck [42], 

Hager-Belhumeur [39], require iterations to converge to a solution. Robustness is 

another superiority of phase-based methods to intensity-based ones. The Complex 

Wavelet Tracker proved itself immune to intensity perturbations in contrast to 

intensity-based methods.  

Although the target is enclosed by a rectangular region, an inclusion of a mask that 

selects target pixels within the gate can easily be incorporated into the algorithm by 

adjusting the pixel weights. These weights are already incorporated into the solution.  

The Complex Wavelet Tracker can be viewed as the phase-based alternative to the 

Lucas-Kanade’s original image registration method [57] with the affine motion 

model [79]: Compatible accuracy with the addition of robustness. 

7.2 Discussion on the Results 

Tests started with an evaluation of the performance of the original CDWT based 

motion estimation method [59]. The results are compared to the Lucas-Kanade [57] 

and Horn-Schunck [40] motion estimation methods. It is observed that the CDWT 

based motion estimation is compatible in accuracy but is better in providing 

reasonable solutions even for difficult cases such as low texture and intensity 

changes. 

Evaluations of the Complex Wavelet Tracker are performed in two ways. First, a set 

of quantitative tests are performed using controlled synthetic sequences in order to 
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obtain quantitative results of the performance of the proposed method. The results 

are also compared with Lucas-Kanade’s image registration method [57]. Second, 

qualitative tests are performed using real sequences acquired from different electro-

optical imaging sources. The results are compared with Lucas-Kanade [57] and the 

Mean Shift Tracker [24]. 

The first group of quantitative tests aimed to explore the limits of estimation for 

affine deformations that the proposed algorithm can handle together with the 

accuracy of the estimations. Various tests have been performed to explore the limits 

of estimation for different motion types: translation, scale, shear, and rotation. The 

effect of the target size, the number of CDWT pyramid levels, and the motion model 

on the limits and accuracy of the algorithm are investigated. The algorithm showed 

acceptable limits for affine deformations that are suitable for tracking. The limits for 

each motion type were close to the theoretically computed ones. This justified our 

claim in using the CDWT as is (without modifications) to incorporate affine 

deformations to some extend that is acceptable for tracking purposes. The accuracy 

of the Complex Wavelet Tracker was also compatible with the accuracy of Lucas-

Kanade [57]. 

The second group of tests aimed to explore the robustness of the algorithm to noise 

and intensity perturbations. Test data having different intensity patterns are used for 

the evaluations. The results are compared with Lucas-Kanade [57]. The proposed 

algorithm proved to be perfectly immune to intensity perturbations to a large extend 

in contrast to Lucas-Kanade [57] which, being intensity-based, experienced 

difficulties. For additive white Gaussian noise, a gradual increase in the estimation 

error is observed for both methods with increasing noise standard deviation. 

The third group of tests aimed to investigate the robustness of the algorithm to 

different intensity patterns. Results obtained from previous tests are compared with 

respect to the three different test series: Lenna, Grass, and Cloud which represent 

different intensity patterns, or textures. The algorithm proved to be quite robust from 

this perspective. The results are also compared with Lucas-Kanade [57].  
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The last group of quantitative tests aimed to evaluate the long-term performance of 

the proposed algorithm under random tracking sequences. Random noise and random 

intensity perturbations are also added to the sequences. The Complex Wavelet 

Tracker proved to be quite accurate and robust for these test in comparison to Lucas-

Kanade.  

After the quantitative tests, qualitative evaluations have been performed on various 

real sequences. The results are compared with Lucas-Kanade [57] and the Mean Shift 

Tracker [24].  

For the air sequences, the aircrafts were very dynamic targets resulting in a diverse 

set of deformations. The Complex Wavelet Tracker was very successful in updating 

the track gate according to the changes of the target and maintained track until the 

last frame for most of the sequences. The smoothness of the background actually 

favored the tracker for this kind of sequences. The Lucas-Kanade, however, 

experienced difficulties when there remained little contrast between the target and 

backgroung and during changes in the brightness of the scene. 

In the Pursaklar sequences, the targets were in front of a cluttered background. Both 

color and infrared versions of the same scene are used to observe also the change in 

the performance for different imaging sources. Compared to the color counterpart, 

the infrared sequence was smoother and lower in contrast. Small drifts are observed 

from the actual target, especially the scaling was less than the actual one, however, 

the gate was maintained on the target. For the color sequence, the tracking was more 

confident, with a small drift in the track gate. 

For all the real sequences, Lucas-Kanade performed similar to the Complex Wavelet 

Tracker. However, for half of the sequences, it lost the target before the last frame is 

reached. The Mean Shift Tracker maintained track for all sequences, but, it 

experienced difficulties in maintaining the gate continuously on the target and in 

updating the size of the gate appropriately. 

The computational complexity of the proposed algorithm is O(N) and can be 

implemented in real-time. Its computational time is larger than the Mean Shift 
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Tracker, but usually smaller than Lucas-Kanade depending on the number of 

iterations performed. 

On the overall, the proposed tracker proved to be a robust and accurate tracking 

algorithm suitable to track regions of a wide variety. It can be implemented in real-

time. It has its advantages of being robust to illumination changes in contrast to 

intensity-based methods and can handle a wider range of targets with compatible 

accuracy. 

7.3 Suggestions for Further Work 

Further work to improve the proposed Complex Wavelet Tracker can be conducted 

on the items captured in Chapter 5, especially for the use and adaptation of the 

algorithm to other application areas. In addition to this, further work can also be 

directed to the development of the Complex Wavelet Tracking Framework 

introduced in Chapter 5. 

Work can be directed to develop a more adequate quality measure to better reflect 

the confidence of the track parameter estimates. This measure could be directed to 

aid for both confidence and occlusion detection. An initial derivation of a confidence 

measure is given in Section 5.1.2. 

More work can be conducted on using a masking kernel to improve the tracking 

performance. A 2-D Gaussian or Epanechnikov kernel [23] can be used in order to 

give more weight to the center coefficients so that the estimations are least affected 

by background pixels that enter the track gate. The mask can also be updated to 

match the target shape if it can be extracted from the background by using a kind of 

detection or segmentation algorithm. Then, only the target pixels would be taken into 

account for the estimation of the track parameters. 

Work can be conducted in fusing the algorithm with an appearance- or intensity-

based technique like Lucas-Kanade [57]. The difficulty in the fusion process lies in 

the merging strategy. This fusion would combine the accuracy of the Lucas-Kanade 

with the robustness of the Complex Wavelet Tracker to obtain a superior method. 
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As the scope of this work was to establish an algorithmic base, no considerations 

have been made on improving the tracking process. So, work could be conducted on 

this area also. One necessity is to use a parameter filter in order to cancel out 

unreliable or out of limit estimates and replace those with an estimate based on the 

previous estimates. This filter might not be as complex as a Kalman filter [45] but 

should be relatively simple to allow fast and random changes of parameters through 

successive frames. 

7.4 Conclusion 

A new method is presented for the parametric tracking of areas based on the 

Complex Discrete Wavelet Transform (CDWT). The method is a generalization of 

the CDWT based motion estimation algorithm [60] developed by Magarey and 

Kingsbury. It incorporates a parametric motion model and estimates the motion of 

regions instead of individual pixels. In this way, with an increase in the support, 

robustness and accuracy of the estimation is increased as well. 

Numerous simulations have been performed, including both quantitative and 

qualitative tests, to evaluate the performance of the proposed method. Quantitative 

tests are performed using synthetic test sequences and the estimated results are 

compared with true data. The practical limits of deformation that the Complex 

Wavelet Tracker can handle are explored using tests for each motion type. It is 

observed that the results are close to theoretically computed ones and are sufficient 

for tracking. By increasing the CDWT levels used, the practical limits can also be 

increased. Robustness tests have been performed for noise and intensity perturbations. 

Results have been compared to Lucas-Kanade [57]. It is observed that, in contrast to 

intensity-based methods, the proposed method shows perfect robustness to 

illumination changes. 

Qualitative tests have been performed on real sequences. The results have been 

compared with Lucas-Kanade [57] and the Mean Shift Tracker [23]. It is observed 

that the tracker is quite successful for tracking a wide range of targets in a wide range 

of applications. It is compatible in accuracy to Lucas-Kanade [57] and is robust in 
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terms of intensity perturbations. Hence, the proposed method proves itself to be quite 

appropriate for tracking a wide range of targets.  

As this is only an algorithmic base, and nothing special is done to improve the 

tracking performance, further work can be directed to this aspect. Despite this fact, 

the proposed tracker showed superior tracking performance on various kinds of 

situations. 

As a result, we can conclude that the proposed method can be used quite successfully 

for area tracking. It is a robust tracker that can handle affine deformations and can be 

executed in real-time. It has provides compatible accuracy to its intensity-based 

counterparts with the addition of robustness to illumination changes. It can also 

handle more difficult cases like smooth, low textured regions. 
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APPENDIX A 

MOTION ESTIMATION RESULTS 

This Appendix presents the results of the motion estimation simulations of the 

CDWT-ME algorithm of Magarey and Kingsbury in comparison to Lucas-Kanade 

and Horn-Schunck motion estimation algorithms. The error measures used for the 

results are presented in Section 6.1.1. A discussion on the results is given in Section 

6.1.2. The Appendix starts with an introduction of the test sequences followed by a 

presentation of the results. 

A.1 Test Sequences for Motion Estimation 

For the comparison of the algorithms we used the test sequences Barron et al has 

used in [5] to compare the performances of several optical flow methods. There are 

seven synthetic sequences with known correct flows and four real sequences. The 

synthetic image sequences are: Sine-B, Sine-C, Square-1, Square-2, Yosemite Fly-

Through, Translating Tree and Diverging Tree; the real sequences are: NASA, 

Hamburg Taxi, Rubik and Trees. 

A.1.1 Synthetic Image Sequences 

There are seven synthetic image sequences used by Barron et al in [5]:  

Sinusoid-1: This sequence is created by superimposing two sinusoids moving with 

speeds 1.63 at 54° and 1.02 at -27° for a perceived velocity of (1.585, 0.863) 

pixels/frame. The spatial wavelength is 6 pixels per cycle. This sequence with its 

corresponding correct flow is shown in Figure A.1. 
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Figure A.1  The Sinusoid-1 Sequence with its correct flow field.  
 

Sinusoid-2: This sequence is created by superimposing two sinusoids both moving 

with speeds of 1.0 pixel/frame at 0° and 90° orientation for a perceived velocity of 

(1.0, 1.0) pixels/frame. The spatial wavelength is 16 pixels per cycle. This sequence 

with its corresponding correct flow is shown in Figure A.2. 

 

 

Figure A.2  The Sinusoid-2 Sequence with its correct flow field. 
 

Translating Square-1: In this sequence, a white square is moving with velocity (1.0, 

1.0) pixels/frame on a black background. This sequence with its corresponding 

correct flow is shown in Figure A.3. 
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Figure A.3  The Translating Square-1 Sequence with its correct flow field. 
 

Translating Square-2: In this sequence, a blurred black square is moving with 

velocity (4/3, 4/3) on a white background. This sequence with its corresponding 

correct flow is shown in Figure A.4. 

 

 

Figure A.4  The Translating Square-2 Sequence. 
 

Translating Tree: The translating Tree sequence is produced by David Fleet. The 

sequence is created by moving a synthetic camera relative to a planar image of a tree. 

The velocity ranges from (1.73, 0.0) pixels/frame on the left to (2.3, 0.0) pixels/frame 

on the right. The sequence with its corresponding correct flow is shown in Figure 

A.5. 

 



 

 190 

 

Figure A.5  The Translating Tree Sequence. 
 

Diverging Tree: The Diverging Tree sequence is also produced by David Fleet. The 

images are created by moving a synthetic camera relative to a planar image of a tree. 

The velocity speeds range from 0 in the middle (at the FOE) to 1.4 pixels/frame on 

the left and 2.0 pixels/frame on the right. The sequence with its corresponding 

correct flow is shown in Figure A.6. 

 

 

Figure A.6  The Diverging Tree Sequence. 
 

Yosemite Sequence: The Yosemite Fly-Through sequence is produced by Lynn 

Quam. The motion of the clouds is 2 pixels to the right while the rest of the flow is 

divergent, with speed of about 5 pixels/frame in the lower left corner. The sequence 

with its corresponding correct flow is shown in Figure A.7. 
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Figure A.7  The Yosemite Sequence. 
 

A.1.2 Real Image Sequences 

There are four real image sequences used by Barron et al:  

Rotating Rubik Cube: A rotating Rubik cube on a microwave turntable, produced 

by Richard Szeliski. The motion field induced by the rotation of the cube includes 

velocities less than 2 pixels/frame. The velocities on the turntable range from 1.2 to 

1.4 pixels/frame, and those on the cube are between 0.2 and 0.5 pixels/frame. 

Hamburg Taxi Sequence: The Hamburg taxi scene is from the University of 

Hamburg. There are four moving objects: a taxi turning the corner, a car in the lower 

left, driving from left to right, a van in the lower right driving from right to left and a 

pedestrian in the upper right. Image speeds of the four moving objects are 

approximately 1.0, 3.0, 3.0, and 0.3 pixels/frame, respectively. 

NASA Sequence: A subimage of the original NASA coke can sequence from Nasa-

Ames. This is a purely diverging sequence; the camera moves along its line of sight 

toward the coke can near the center of the image. Image velocities are typically less 

than 1 pixel/frame. 

SRI Sequence: The SRI trees sequence; the motion is translation in the fronto-

parallel plane. The camera translates parallel to the ground plane, perpendicular to its 

line of sight, in front of clusters of trees. Velocities are as large as 2 pixels/frame. 

These sequences are shown in Figure A.8. 
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Figure A.8  The Real Sequences. The Rotating Rubik Cube (upper left), the Hamburg Taxi 
Sequence (upper right), the NASA Sequence (lower left), and the SRI Sequence (lower right). 
 

A.2 Motion Estimation Performance of Magarey’s CDWT-ME 

The flow images have been displayed with flow vectors scaled by two for every 8th 

vector. The angle error is superimposed as a background image with white indicating 

no error and as the color gets darker, the error increases. A red dot represents a pixel 

where no flow is computed or is thresholded out. The thresholded out regions are 

also shown with a yellow background. 

Regarding the results given in the tables, for the CDWT-ME algorithm, although it 

produces results with 100% density, we excluded a four pixel boundary in computing 

the error statistics to eliminate boundary errors. 
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For the Lucas-Kanade [57] and Horn-Schunck [40] algorithms, we used the same 

parameters and smoothing values as Barron et al has used in his comparison in [5]. 

In addition to this, we included also non-thresholded values and flow fields as a 

comparison of the whole flow field. For a point-to-point comparison, we also gave 

the errors for those points that are thresholded out using Lucas-Kanade confidence 

values. These results are given in the last row of each table. 

In the tables, Tau shows the threshold for Lucas-Kanade and Horn-Schunck 

algorithms. For Tau = 0.0, no thresholding is applied and the errors are computed for 

the whole image. 

For the rest of this section, we will refer to the Lucas-Kanade [57] algorithm as “LK”, 

and to the Horn-Schunck [40] algorithm as “HS”. 

A.2.1 The Sinusoid-1 Sequence 

The results for the first sinusoid are shown in Figure A.9 and in Table A.1. The 

performance of the CDWT-ME for the sinusoid was worse than the other two 

algorithms. Although the mean angle error is close to the HS’s error, examining the 

flow field of CDWT-ME reveals a non-uniform flow field. The LK has produced a 

quite accurate flow field.  

 

Table A.1  Results of the Sinusoid-1 Sequence. 
 

Density Angle Error Magnitude Error 

Algorithm 

Total Percent mean std mean Std 

CDWT-ME (Conf. Thresh. = 0.00) 8464 84.6 4.8666 0.9700 0.2354 0.0498 

CDWT-ME (Conf. Thresh. = 0.95) 8464 84.6 4.8666 0.9700 0.2354 0.0498 

Lucas-Kanade (Tau = 1.0) 8464 84.6 2.4697 0.1244 0.1109 0.0047 

Horn-Schunck (Tau = 0.0) 8464 84.6 4.2531 0.4195 0.2005 0.0196 

CDWT-ME (at LK Tau = 1.0) 8464 84.6 4.8666 0.9700 0.2354 0.0498 

 



 

 194 

 

 

 

 

Figure A.9  Results of the Sinusoid-1 Sequence: The correct flow (upper left), the CDWT-
ME (upper right), Lucas-Kanade (lower left), and Horn-Schunck (lower right). 
 

 

A.2.2 The Sinusoid-2 Sequence 

The results for the second sinusoid are shown in Figure A.10 and in Table A.2. The 

CDWT-ME produced a similar result as in the first sinusoid. The LK and HS have 

produced a nearly perfect flow field.  
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Table A.2  Results of the Sinusoid-2 Sequence. 
 

Density Angle Error Magnitude Error 

Algorithm 

Total Percent mean std mean std 

CDWT-ME (Conf. Thresh. = 0.00) 8464 84.6 4.2247 2.2299 0.1660 0.0610 

CDWT-ME (Conf. Thresh. = 0.95) 8464 84.6 4.2247 2.2299 0.1660 0.0610 

Lucas-Kanade (Tau = 1.0) 8464 84.6 0.0001 0.0027 0.0000 0.0001 

Horn-Schunck (Tau = 0.0) 8464 84.6 0.0077 0.0170 0.0004 0.0009 

CDWT-ME (at LK Tau = 1.0) 8464 84.6 4.2247 2.2299 0.1660 0.0610 

 

 

 

Figure A.10  Results of the Sinusoid-2 Sequence: The correct flow (upper left), the CDWT 
ME (upper right), Lucas-Kanade (lower left), and Horn-Schunck (lower right). 
 



 

 196 

A.2.3 The Translating Square-1 Sequence 

In this sequence, since the square and the background have no texture and are in 

unique color level, flow has been produced only around the edges of the square. By 

examining the flow fields, the flow estimates of CDWT-ME are highly more 

reasonable than the ones produced by HS. The overall errors also support this 

observation. The mean error values are given in Table A.3. The flow fields are 

shown in Figure A.11. 

 

Table A.3  Results of the Translating Square-1 Sequence. 
 

Density Angle Error Magnitude Error 

Algorithm 

Total Percent mean std mean std 

CDWT-ME (Conf. Thresh. = 0.00) 960 9.6 8.3020 4.0317 0.1780 0.0777 

CDWT-ME (Conf. Thresh. = 0.95) 944 9.4 8.4205 3.9602 0.1805 0.0759 

Horn-Schunck (Tau = 1.0) 1836 18.4 24.2593 9.2389 0.3721 0.1368 

 

 

 

 

Figure A.11  Results of the Translating Square-1 Sequence: The CDWT-ME (left) and 
Horn-Schunck (right). 
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A.2.4 The Translating Square-2 Sequence 

In this sequence, the square is blurred, but both the background and square are still in 

unique color, except for the edges. The blurring increased the density for both 

methods, however, the resulting errors have increased. Since motion in smooth 

texture is more difficult to estimate. The flow computed by the CDWT-ME has 

produced a more reasonable flow field with lower errors than the HS algorithm. The 

flow images are shown in Figure A.12 and the corresponding results are given in 

Table A.4. 

 

Table A.4  Results of the Translating Square-2 Sequence. 
 

Density Angle Error Magnitude Error 

Algorithm 

Total Percent mean std mean std 

CDWT-ME (Conf. Thresh. = 0.00) 2528 25.3 17.9693 17.8374 0.6569 0.4951 

CDWT-ME (Conf. Thresh. = 0.95) 2424 24.2 18.3750 18.0898 0.6642 0.5030 

Horn-Schunck (Tau = 1.0) 2282 22.8 26.4638 10.8562 0.5191 0.2426 

 

 

 

 

Figure A.12  Results of the Translating Square-2 Sequence: The CDWT-ME (left) and 
Horn-Schunck (right). 
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A.2.5 The Translating Tree Sequence 

For the translating tree sequence, the LK has produced a quite accurate flow field. 

The performance of CDWT-ME was slightly better than the HS for the thresholded 

values. The gradient computations were quite accurate for this sequence whose only 

motion is the uniform translation of the whole image. Since the performance of the 

LK and HS algorithms highly depend upon the gradient computation, this sequence 

favored these methods. For the CDWT-ME, the errors were mostly near the borders 

of the image. The flow images are shown in Figure A.13 and the corresponding 

results are given in Table A.5. 

 

Table A.5  Results of the Translating Tree Sequence. 
 

Density Angle Error Magnitude Error 

Algorithm 

Total Percent mean std mean std 

CDWT-ME (Conf. Thresh. = 0.00) 20108 89.4 2.4879 4.3515 0.0966 0.1385 

CDWT-ME (Conf. Thresh. = 0.95) 17528 77.9 1.8694 2.2987 0.0790 0.0984 

Lucas-Kanade (Tau = 1.0) 6845 30.4 0.6486 0.6592 0.0272 0.0276 

Lucas-Kanade (Tau = 0.0) 14884 66.2 1.0151 1.2552 0.0471 0.0575 

Horn-Schunck (Tau = 5.0) 7913 35.2 1.8865 2.4110 0.0876 0.1396 

Horn-Schunck (Tau = 0.0) 14884 66.2 2.0185 2.2715 0.0924 0.1305 

CDWT-ME (at LK Tau = 1.0) 6841 30.4 1.9263 1.8257 0.0698 0.0659 
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Figure A.13  Results of the Translating Tree Sequence: The correct flow (top left), the 
CDWT-ME (top right), Lucas-Kanade with no thresholding (middle left), Lucas-Kanade 
with threshold = 1.0 (middle right), Horn-Schunck with no threshold (bottom left), and 
Horn-Schunck with threshold = 5.0 (bottom right). 
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A.2.6 The Diverging Tree Sequence 

The diverging tree sequence is a more difficult sequence than the translating tree 

sequence. This is due to the complexity of diverging motion over the translating 

motion. Hence, the overall errors have increased for all methods. The LK and HS 

showed similar performance. The CDWT-ME remained behind their performances. 

Here, again, the uniform diverging motion favored the LK and HS algorithms as they 

rely on the gradient computations. The flow images are shown in Figure A.14 and 

the corresponding results are given in Table A.6. 

 

Table A.6  Results of the Diverging Tree Sequence. 
 

Density Angle Error Magnitude Error 

Algorithm 

Total Percent mean std mean std 

CDWT-ME (Conf. Thresh. = 0.00) 19934 88.6 5.6783 7.7700 0.0972 0.1374 

CDWT-ME (Conf. Thresh. = 0.95) 11479 51.0 4.1904 5.0814 0.0736 0.1048 

Lucas-Kanade (Tau = 1.0) 8090 36.0 1.9911 1.9955 0.0286 0.0315 

Lucas-Kanade (Tau = 0.0) 14884 66.2 2.5295 2.5007 0.0360 0.0422 

Horn-Schunck (Tau = 5.0) 7967 35.4 2.1964 2.2926 0.0342 0.0500 

Horn-Schunck (Tau = 0.0) 14884 66.2 2.2867 2.3051 0.0358 0.0483 

CDWT-ME (at LK Tau = 1.0) 8044 35.8 3.4912 2.6272 0.0551 0.0533 
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Figure A.14  Results of the Diverging Tree Sequence: The correct flow (top left), the 
CDWT-ME (top right), Lucas-Kanade with no thresholding (middle left), Lucas-Kanade 
with threshold = 1.0 (middle right), Horn-Schunck with no threshold (bottom left), and 
Horn-Schunck with threshold = 5.0 (bottom right). 
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A.2.7 The Yosemite Sequence 

This is the most difficult sequence. It contains both translational and divergent 

motion. The motion of the clouds is translational while the rest of the motion is 

divergent. Also there are intensity changes in the clouds and in addition the clouds 

have very low texture. The error results are given in Table A.7 and the corresponding 

flow images are shown in Figure A.15. 

First, examining the thresholded values we see that the LK and HS were more 

accurate than the CDWT-ME. However, if we look at the overall results (no 

thresholding) we see that for the whole image, the CDWT-ME has performed better 

than the other methods. Second, examining the density values, we see that the 

CDWT-ME has created a more dense motion field than the other ones. 

Taking a look at the flow images it becomes more evident that after thresholding, the 

LK and HS have produced confident flows for only a small part of the image, 

whereas the CDWT-ME has covered a greater part. For the top part, where the 

translating clouds are, the flow field creates by HS and LK is irrelevant. However, 

the CDWT-ME has produced a quite reasonable flow field. 

 

Table A.7  Results of the Yosemite Sequence. 
 

Density Angle Error Magnitude Error 

Algorithm 

Total Percent mean std mean std 

CDWT-ME (Conf. Thresh. = 0.00) 73888 92.8 7.7314 12.5191 0.2950 0.4192 

CDWT-ME (Conf. Thresh. = 0.95) 39104 49.1 6.8730 12.6492 0.2390 0.3553 

Lucas-Kanade (Tau = 1.0) 25669 32.2 4.4875 12.1617 0.0952 0.2347 

Lucas-Kanade (Tau = 0.0) 64512 81.0 9.9308 17.8978 0.4968 1.0809 

Horn-Schunck (Tau = 5.0) 21216 26.6 5.4825 11.3074 0.1407 0.2712 

Horn-Schunck (Tau = 0.0) 64512 81.0 9.5685 15.8002 0.4548 0.9201 

CDWT-ME (at LK Tau = 1.0) 25554 32.1 6.2745 13.0863 0.1378 0.3044 
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Figure A.15  Results of the Yosemite Sequence: The correct flow (top left), the CDWT-ME 
(top right), Lucas-Kanade with no thresholding (middle left), Lucas-Kanade with threshold = 
1.0 (middle right), Horn-Schunck with no threshold (bottom left), and Horn-Schunck with 
threshold = 5.0 (bottom right). 
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A.2.8 The Rotating Rubik Cube Sequence 

The rotating cube is a real sequence. The resulting flow fields generated by CDWT-

ME and LK algorithms are shown in Figure A.16. Examining the flow fields we see 

that both the CDWT and the LK seem to have produced similar results. However, 

due to the uniform background, there is also flow assigned to the background where 

there is no actual flow.  

 

 

Figure A.16  Results of the Rotating Rubik Sequence: A frame from the original sequence 
(upper left), the CDWT-ME (upper right), Lucas-Kanade with no thresholding (lower left), 
Lucas-Kanade with threshold = 1.0 (lower right). 
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A.2.9 The Hamburg Taxi Sequence 

In the Hamburg Taxi Sequence, there are four different moving objects. Regarding 

the pedestrian walking on the upper left corner, both algorithms have missed this. For 

the black car on the left, CDWT-ME has produced a slightly better flow field. 

Regarding the white taxi turning, both algorithms produced similar results. Finally, 

for the vehicle on the right, which is partly covered by the tree, the CDWT-ME have 

produced a more reasonable flow field than the LK algorithm. Looking at the 

thresholded flow for the LK, only the flow of white taxi remains confident. The 

resulting flow fields are shown in Figure A.17. 

 

 

Figure A.17  Results of the Hamburg Taxi Sequence: A frame from the original sequence 
(upper left), the CDWT-ME (upper right), Lucas-Kanade with no thresholding (lower left), 
Lucas-Kanade with threshold = 1.0 (lower right). 
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A.2.10 The NASA Sequence 

The NASA Sequence is a divergent sequence. The flow field produced by the 

CDWT-ME and the LK algorithms is given in Figure A.18. The flow field generated 

by the CDWT-ME is very smooth and more reasonable than the flow generated by 

the LK algorithm, which has some irrelevant flow regions. 

 

 

 

Figure A.18  Results of the NASA Sequence: A frame from the original sequence (upper 
left), the CDWT-ME (upper right), Lucas-Kanade with no thresholding (lower left), Lucas-
Kanade with threshold = 1.0 (lower right). 
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A.2.11 The SRI Sequence 

The SRI Sequence is a difficult sequence since the camera is moving in one direction 

producing large relative motions in the front and small motions in the back of the 

image. There are different levels of motion within each other. The flow field 

generated by the CDWT-ME and the LK algorithms are given in Figure A.19.  

Comparing the flow fields, the CDWT-ME has produced a smoother and highly 

reasonable flow field compared to the LK algorithm. There are quite a lot irrelevant 

flows some of which remain even after thresholding. 

 

 

Figure A.19  Results of the SRI Sequence: A frame from the original sequence (upper left), 
the CDWT-ME (upper right), Lucas-Kanade with no thresholding (lower left), Lucas-
Kanade with threshold = 1.0 (lower right). 
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