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ABSTRACT

CASCADE MODELING OF NONLINEAR SYSTEMS

Senalp, Erdem Tiirker
PhD., Department of Electrical and Electronics Engineering

Supervisor : Prof. Dr. Ersin Tulunay

August 2007, 188 pages

Modeling of nonlinear systems based on special Hammerstein forms has been
considered. In Hammerstein system modeling a static nonlinearity is connected

to a dynamic linearity in cascade form.

Fundamental contributions of this work are: 1) Introduction of Bezier curve
nonlinearity representations; 2) Introduction of B-Spline curve nonlinearity
representations instead of polynomials in cascade modeling. As a result, local
control in nonlinear system modeling is achieved. Thus, unexpected variations

of the output can be modeled more closely.
As an important demonstration case, a model is developed and named as

Middle East Technical University Neural Networks and Cascade Model
(METU-NN-C).
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Application examples are chosen by considering the Near-Earth space
processes, which are important for navigation, telecommunication and many
other technical applications. It is demonstrated that the models developed
based on the contributions of this work are especially more accurate under
disturbed conditions, which are quantified by considering Space Weather

parameters.

Examples include forecasting of Total Electron Content (TEC), and mapping;
estimation of joint angle of simple forced pendulum; estimation of joint angles
of spring loaded inverted double pendulum with forced table; identification of

Van der Pol oscillator; and identification of speakers.

The operation performance results of the International Reference Ionosphere
(IR1-2001), METU Neural Networks (METU-NN) and METU-NN-C models
are compared qualitatively and quantitatively. As a numerical example, in
forecasting the TEC by using the METU-NN-C having Bezier curves in

nonlinearity representation, the average absolute error is 1.11 TECu.
The new cascade models are shown to be promising for system designers and

operators.

Keywords: Cascade modeling, Hammerstein system modeling, Neural

Networks, Near-Earth space processes, telecommunication.
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DOGRUSAL OLMAYAN DiZGELERIN ARDISIK MODELLENMESIi

Senalp, Erdem Tiirker
Doktora, Elektrik ve Elektronik Miihendisligi Boliimii

Tez Yoneticisi : Prof. Dr. Ersin Tulunay

Agustos 2007, 188 sayfa

Dogrusal olmayan dizgelerin ©6zel Hammerstein bi¢imlerine dayanan
modellenmesi dikkate alinmistir. Hammerstein dizge modellemesinde bir dural

dogrusalsizlik bir devingen dogrusalliga ardisik sekilde baglanir.

Bu calismanin temel katkilari: 1) Ardisik modellemede polinomlar yerine
Bezier egri dogrusalsizlik gosterimlerinin tanitimi; 2) B-Spline egri
dogrusalsizlik gosterimlerinin tanittmidir. Sonu¢ olarak, dogrusal olmayan
dizge modellemesinde yerel denetim elde edilir. Boylece, c¢iktidaki

beklenmeyen degismeler daha yakin olarak modellenebilir.
Onemli bir gosterme durumu olarak bir model gelistirilir ve Orta Dogu Teknik

Universitesi  Sinirsel Aglar ve Ardisik Modeli (METU-NN-C) olarak

adlandirilir.
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Uygulama ornekleri sefer, iletisim ve diger bircok teknik uygulamalar icin
onemli olan Yer’e yakin uzay siirecleri dikkate alinarak secilir. Bu caligmanin
katkilarina dayanarak gelistirilen modellerin Uzay Havasi degistirgenleri
dikkate alinarak nicelenen bozuculu kosullar altinda o6zellikle daha dogru

oldugu gosterilir.

Ornekler Toplam Elektron Miktar1 (TEC) éngoriimiinii ve haritalamasini; basit
kuvvet etkili sarkacin eklem acisinin kestirimini; {izerine kuvvet uygulanan
masa iizerinde yayl ters ¢ift sarkacin eklem agilarinin kestirimini; Van der Pol

salinim yapicisinin taninmasini ve konugsmacilarin taninmasini icerir.

Uluslararas1 Referans Iyonosfer (IRI-2001), ODTU Sinirsel Aglar (METU-
NN) ve METU-NN-C modellerinin uygulama basarim sonuglar1 niteliksel ve
niceliksel karsilastirilir. Sayisal bir ornek olarak, dogrusalsizligi gostermede
Bezier egrilerine sahip METU-NN-C kullamilarak TEC 0ngoriilerinde
bulunmada ortalama mutlak yanilg: 1.11 TECu’dur.

Yeni ardisik modellerin dizge tasarimcilar1 ve uygulayicilart i¢in umut verici

oldugu gosterilir.

Anahtar Sozciikler: Ardisik modelleme, Hammerstein dizge modellemesi,

Sinirsel Aglar, Yer’e yakin uzay siirecleri, haberlesme.
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CHAPTER 1

INTRODUCTION

1.1 Objective

The forecasting of the Earth and near-Earth space processes by using the
structural methodologies of the Neural Networks techniques have been
developed and implemented since 1990’s in Middle East Technical University
(METU), Ankara [Tulunay E., 1991] [Altinay, 1996] [Altinay et al., 1997]
[Kumluca, 1997] [Ozkaptan, 1999] [Senalp, 2001] [Tulunay Y. et al., 2001a]
[Tulunay Y. et al., 2001b] [Senalp et al., 2002b] [Senalp et al., 2002c]
[Tulunay E. et al., 2002b] [Tulunay Y. et al., 2002a] [Tulunay Y. et al., 2002b]
[Tulunay E. et al., 2003] [Tulunay Y. et al., 2003a] [Tulunay Y. et al., 2003b]
[Senalp et al., 2004] [Tulunay E. et al., 2004a] [Tulunay E. et al., 2004b]
[Tulunay E. et al., 2004c] [Tulunay Y. et al., 2004a] [Tulunay Y. et al., 2004b]
[Tulunay Y. et al., 2004c] [Tulunay Y. et al., 2004d] [Tulunay Y. et al., 2005a]
[Tulunay Y. et al., 2005b] [Altuntas et al., 2006] [Tulunay E. et al., 2006a]
[Tulunay E. et al., 2006b] [Tulunay E. et al., 2006f] [Altuntas et al., 2007]
[Tulunay Y. et al., 2007a] [Tulunay Y. et al., 2007b] [Tulunay Y. et al., 2007c].
Experimental and measurement works on Near-Earth space processes were
performed as well [Ertac et al., 1979] [Tulunay E. et al., 2002a] [Tulunay E. et
al., 2006c] [Tulunay E. et al., 2006d] [Tulunay E. et al., 2006e]. The works
have also been presented in European Union (EU), European Cooperation in

the field of Scientific and Technical Research (COST) Actions: COST 238,



COST 251, COST 271, COST 296 and COST 724 [COST 238, 1999] [COST
251, 1999] [COST 271, 2004] [COST 296, 2007] [COST 724, 2007].

With such a background, in this current work, some design techniques of
parametric identification by cascade modeling of the nonlinear processes are
developed. The models designed and their performances in case studies are
presented in national and international scientific conferences, meetings and
international scientific journals [Senalp et al., 2005] [Senalp et al., 2006a]
[Senalp et al., 2006b] [Senalp et al., 2006c] [Senalp et al., 2006d] [Senalp et
al., 2006¢] [Tulunay et al., 2006a] [Senalp et al., 2007b] [Senalp et al., 2007d].
EU COST 296 and EU COST 724 Actions provided scientific international
platform in presenting the case studies [COST 296, 2007] [COST 724, 2007].

Modeling dynamic linear systems is relatively well developed [Ikonen and
Najim, 1999]. Linear modeling techniques approximate only the behavior of
the system around a fixed operating point. However, in reality, most of the
dynamical systems are nonlinear. Nonlinear system modeling is more
complicated due to the lack of general mathematical tools and also lack of
information on properties of those systems. However, most of the dynamical
systems can be represented by nonlinear modeling techniques. Nonlinear
modeling is capable of describing the global system behavior for the overall

operating range [Ikonen and Najim, 1999].

As the real processes present nonlinear characteristics, it is inevitable to have
some degree of approximation in linear modeling. This approach can be
satisfactory for few real applications [Ikonen and Najim, 1999]. Applying
nonlinear model identification is inevitable for most of the real complex

nonlinear processes including the near-Earth space processes.



In modeling of complex nonlinear processes, cascade modeling provides better
understanding of the monitoring of the system of interest. For example, the
system can be an industrial plant and in this case cascade modeling can be
employed in plant optimization. Interaction of the user with the model and
transparency are to be taken into account for real world modeling of complex
processes [lkonen and Najim, 1999]. In such cases there are some other
methods. For example, techniques based on Artificial Intelligence (Al) are
popular. In most of those techniques, black box modeling of the overall process
is the characteristics of the method, whereas in the cascade models the static
and dynamic components of the process are considered individually. Thus,
cascade modeling provides transparency to the internal variables [Ikonen and

Najim, 1999].

For many nonlinear dynamic processes it is required to express nonlinearities
in the gain of the processes and provide dynamics in a linear block [Narendra
and Gallman, 1966]. This can be achieved by cascade modeling. For many
nonlinear dynamic processes, cascade models based on Hammerstein system
modeling provide sufficient approximation [lkonen and Najim, 1999]. In
Hammerstein system modeling, a nonlinear static block is cascaded to a linear

dynamic block as shown in Figure 1.1 [Narendra and Gallman, 1966].

) Internal ] )
Inputs Nonlinear variables Linear dynamic Output:
—> . > —>
static block ; block
up(k) Xq(k-)) y(k)

Figure 1.1. Cascade modeling based on Hammerstein system modeling



In Wiener systems, the order of the blocks is reversed, i.e. for Wiener systems

the nonlinear static part follows the linear dynamic part [Zhu, 2002].

These types of dynamic nonlinear process modeling provide some important
features. Since the process identification task is simplified by modeling the
dynamic part in the linear block, data collection, computation of parameters
and dynamic system analysis are simplified [Ikonen and Najim, 1999]. Also, to
present nonlinearity in only the static gain decreases the degrees of freedom in
the nonlinear system identification and the cascade models based on
Hammerstein system modeling have got accurate and robust approximations

for a large class of real complex processes [Ikonen and Najim, 1999].

The objective of this work is to develop some special forms of nonlinearities
for cascade models based on Hammerstein system modeling and then to
calculate the parameters of the static nonlinear block and dynamic linear block
in cascade modeling by using some intelligent techniques so that high accuracy

and high sensitivity in process identification is to be attained.

Near-Earth space processes such as Total Electron Content (TEC) variations
are complex and nonlinear real processes to identify for various navigation and
telecommunication applications. TEC is the number of electrons in a column of
one meter-squared cross-section along a path through the ionosphere
[Chilbolton Weather Web, 2004]. The unit of TEC is TECu (1 TECu = 10 el /
m?). In the case studies, real processes are used to test the performance of the
models developed herewith. For example, TEC values and TEC maps are

forecast by using the models developed.



The International Reference Ionosphere (IRI) is an international project
sponsored by the Committee on Space Research (COSPAR) and the
International Union of Radio Science (URSI) [Bilitza, 2001] [IRI, 2007]. The
aim of this project is to develop and improve the international IRI standards for
the specification of ionospheric densities and temperatures [Bilitza, 2001]. In
one of the case studies within the Thesis, the TEC forecasting results of the
models developed herewith are compared with the TEC outputs of the IRI-
2001 Model during the Space Weather events of April 2002.

In order to further show the generalization capability of the modelling
technique, cascade models are also developed herewith for other nonlinear
dynamic processes including simple forced pendulum, spring loaded inverted
double pendulum with forced table, Van der Pol oscillator, and identification of

speakers.

Some advantages of the cascade modeling techniques employed in this work
can be summarized as follows:

1. The static nonlinearity in cascade modeling can also present
hysteresis or discontinuities [Alonge et al., 2003]. There is no
restriction in the cascade models developed herewith.

ii. In practice, the process identification tasks are problems of
parameter estimation under constraints [Ikonen and Najim, 1999]. A
cascade modeling technique, which has got intelligent optimization
algorithms for the appropriate cost functions and constraints of
complex nonlinear processes, is geared to be successful.

1il. Instead of having to deal with a single black box unit, cascade
modeling technique based on Hammerstein system modeling has

got the advantage of separability into a nonlinear static block and a



linear dynamic block in design of control systems [Ilkonen and
Najim, 1999].

iv. In contrast to the black box modeling of the nonlinear dynamic
systems, cascade models based on Hammerstein system modeling
have operational advantage of transparency of the internal stage
parameters for operators [Ikonen and Najim, 1999].

v. Some of the iterative optimization methods were constructed based
on the values of the cross-correlation coefficients. However, it is
difficult to have convergence in such methods [Westwick and
Kearney, 2000]. Cascade modeling with gradient-based parametric
optimization methods, as employed in this work, has got advantages
over the cross-correlation based ones. They serve both for

sensitivity and accuracy of optimization.

The main disadvantage of Hammerstein system modeling is that the
mathematical model obtained is still an approximation, as in all nonlinear
system identification approaches, and in some cases strictly accurate steady
state models can be difficult to obtain [Ikonen and Najim, 1999]. However, in

general, this is of minor importance when the advantages are considered.

1.2 Review of Previous Applications
In modeling the nonlinear part of the Hammerstein systems, polynomials,
sigmoid neural networks, fuzzy models and semi-physical models have been

used [Duwaish et al., 1997].

Finite Impulse Response (FIR) and Auto-Regressive with eXogenous input
(ARX) type of models have been considered for the linear dynamic part in

most of the previous studies [Ikonen and Najim, 1999]. In many cases, simple



linear dynamics are sufficient for control design or fault diagnosis purposes
and they provide simple and powerful techniques [Ikonen and Najim, 1999].
However, it is anticipated that modeling the nonlinear block is complicated.
Most of the Hammerstein system models reported in literature have got a no-
memory nonlinear gain of a polynomial form followed by a linear dynamic
system [Narendra and Gallman, 1966] [Fruzzetti et al., 1997] [Marchi et al.,
1999] [Bai and Fu, 2002] [Westwick and Kearney, 2000]. If the input is u(t) for
the nonlinear block of these models, the output of the nonlinear element is then

given by a series of (m+1) terms as given as,
)= flu®]=> 7,0’ O =y, + 74 O+ p 0’ O +.. 4y, u" @) (1.1)
i=0

where v; are coefficients to be determined.

Thus, for this case, the internal variable x(t) is represented as a power series of
the input variable u(t) as given in Equation 1.1. This representation is a special

case of a general form, which is given as,

fwmmmp&w:ﬁ%ﬁWmmw—m (1.2)

The dynamical behavior of the system is represented by a linear dynamic
element as given as,

(=Y h(j)atk—j).  where x(k)= f(u(k)) (1.3)

j=0

The number n in Equation 1.3 represents the past history of the stored internal
variables in memory. For the linear dynamic block, the impulse response h(j),
j=0,...,n, and for the polynomial representation of the nonlinear static block,

the parameters v; , i=1,...,m, should be determined.



For many industrial processes, the input/output models prove to be crucial in
process control applications [Fruzzetti et al., 1997]. Structured nonlinear
models can deal with stability, robustness and algorithmic efficiency problems.
Cascade modeling techniques, i.e. Wiener and Hammerstein system models,
have special architecture, which facilitates the nonlinear process analysis. They

also have potential for control design [Fruzzetti et al., 1997].

Most of the nonlinear industrial and chemical processes, i.e. distillation
columns, reactors, furnaces, heat exchangers, pH neutralization, and
electromechanical systems can be modeled by a static nonlinearity cascaded to
a dynamic linearity [Fruzzetti et al., 1997] [Kapoor et al., 1986] [Eskinat et al.,
1991].

Cascade modeling on signal processing and communications was reported long

time ago [Stapleton and Bass, 1985].

Biology is another science of real life. It possesses many nonlinear processes.
Modeling the stretch reflex EMG using Hammerstein system modeling is also
applicable in this area [Westwick and Kearney, 2000]. In identification of
muscular response Hammerstein system model was used to find a suitable
approach for Functional Electric Stimulation [Schultheiss and Re, 1998]. The
nature of the process is strongly nonlinear, time varying and has many
parameters. The combination of nonlinearities and time varying parameters
makes the use of standard and / or adaptive methods extremely dangerous,
because it is rarely possible to have convergence under poor excitation that is

allowable within the tests with patients [Schultheiss and Re, 1998].



Most of the previous Hammerstein system models have employed power series
representation in the nonlinear block [Narendra and Gallman, 1966] [Fruzzetti
et al., 1997] [Marchi et al., 1999] [Bai and Fu, 2002] [Westwick and Kearney,
2000]. Very few of them mentioned about the applicability of cubic splines in
representing the nonlinearities, e.g. [Dempsey and Westwick, 2004] [Guarnieri

et al., 1999] [Zhu, 2002].

Generally, cubic splines are well suited for representing sharp and smooth
curves [Rogers and Adams, 1990]. But the order is limited and it is three. Thus,
it has got both advantages and disadvantages compared to polynomial
representations. In polynomial representations, curves with sharp turnings are

difficult to be modeled. However, higher order polynomials are applicable.

On the other hand, the Voltera series employed in modeling the nonlinearity
limits cascade modeling to relatively low order systems, i.e. second order

nonlinearities [Westwick and Kearney, 2000].

Near-Earth space processes are important for navigation, telecommunication
and many other technical application system planners, developers and
operators. The forecasting of the Earth and near-Earth space processes by using
Neural Network models have been taking place since 1990’s in METU.
[Tulunay E., 1991] [Altinay, 1996] [Altinay et al., 1997] [Kumluca, 1997]
[Ozkaptan, 1999] [Senalp, 2001] [Tulunay Y. et al., 2001a] [Tulunay Y. et al.,
2001b] [Senalp et al., 2002b] [Senalp et al., 2002¢c] [Tulunay E. et al., 2002b]
[Tulunay Y. et al., 2002a] [Tulunay Y. et al., 2002b] [Tulunay E. et al., 2003]
[Tulunay Y. et al., 2003a] [Tulunay Y. et al., 2003b] [Senalp et al., 2004]
[Tulunay E. et al., 2004a] [Tulunay E. et al., 2004b] [Tulunay E. et al., 2004c]
[Tulunay Y. et al., 2004a] [Tulunay Y. et al., 2004b] [Tulunay Y. et al., 2004c]



[Tulunay Y. et al., 2004d] [Tulunay Y. et al., 2005a] [Tulunay Y. et al., 2005b]
[Altuntas et al., 2006] [Tulunay E. et al., 2006a] [Tulunay E. et al., 2006b]
[Tulunay E. et al., 2006f] [Altuntas et al., 2007] [Tulunay Y. et al., 2007a]
[Tulunay Y. et al., 2007b] [Tulunay Y. et al., 2007c].

In order to increase the performance of the Neural Network models, new
techniques in Cascade Models based on Hammerstein system modeling have
been achieved herewith. These have also enabled the author to check the
performance of the Hammerstein system modeling which is an interesting

approach.

1.3 Models

Referring to the cascade modeling based on Hammerstein system modeling of
the static nonlinearity and the dynamic linearity as illustrated in Figure 1.1,
first of all, the internal variables, x(k), which are the outputs of the static
nonlinear block and the inputs of the dynamic linear block, are obtained by an
estimator. Then, using the information of the inputs, u(k), and the internal
variables, x(k), the static nonlinearity is estimated. And then, using the internal
variables at present time and history of the internal variables, x(k),...,x(k-n), as
inputs to the dynamic linear block and using the outputs, y(k), the dynamic
linearity is estimated. It is to be noted that the memory takes place at the

second block, which is in the linear dynamic block only.

Let a general continuous dynamic linear block be represented by a state-space

equation as,

(1) = Aq(t) +b.x(r) (1.4)
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y(1) =c.q(t) (1.5)

where q(t) is the state vector of size qs; x(t) is a single input; y(t) is a single
output; A is a square matrix of size qs by qs; b and ¢’ are vectors of size gs.
The general equivalent discrete time equation with a given sampling time, T, is

depicted as,

gl(k + DT )= K glkT]+ L.x[kT] (1.6)

y[kT )= c.q[kT] (1.7)

A general discrete transfer function, G(z), from x(k) to y(k) can be expressed

as,

_ bz '+b,z+..+b 7"
G()=clzd —K)'L=—25 7% nt

(1.8)

—-n

-1 -2
l-a,z7 —a,z " —...—a,z

Y(2)=G(2).X(2) (1.9)

It is to be noted that different processes with the same inputs could produce
similar outputs at the sampling instants, kT, in discrete time system
identification. To avoid such a problem, fast sampling at the output can be
performed and blind identification with the output measurements can be done

[Bai and Fu, 2002].

When the internal variables are obtained by an estimator with the given inputs
and output of the overall system, the static nonlinearity and the dynamic

linearity can be obtained. Also the inverse transfer function of the general

11



dynamic linearity block can be obtained as follows from the point of system

analysis [Bai and Fu, 2002],

X(2)=G"(2)Y(2) (1.10)

x[kT]= bi(— b,x[(k=DT]~...=b x[(k —n+DT))

1

(1.11)
+bi (y[(k +1)T]— aly[kT]—...—a”y[(k —n+1)T])

1

In order to identify the results of the cascade form in static and steady state
models, the static nonlinear block is used. The linear dynamic block behaves as
a filter. A steady state model can be achieved from the overall dynamical
considerations of the system. In practice, a far better understanding and
experience of the steady state performance do exist as in all nonlinear system
identification approaches. This is evident if we consider the validation and
initialization of nonlinear dynamic systems [lkonen and Najim, 1999]. The
important goal, however, is to satisfy the requirement of determining the model
coefficients and the order of the model without a priori information on the
process. Also for Multi Input Single Output (MISO) or Multi Input Multi
Output (MIMO) systems it should be noted that the inputs are commonly
parameterized. Each output may be a function of all the inputs and the past
values of the internal variables [Fruzzetti et al., 1997]. This general form
requires smart and complex techniques in determination of the input
parameters. The order of the model can be determined by some expert systems
or trial and error methods with the advantage of high-speed computer

capabilities.

12



Even though the time required in optimizations for process identification with
cascade modeling seems long from the practical point of view, it can be

shortened by employing some parallel architectures inside the blocks.

Ad hoc experiments need to be performed for system identification [Alonge et
al., 2003]. The experimental input/output data should represent the overall
process in such cases. If this is not possible, more than one model can be

developed for different operating regions of the process.

For optimization of the parameters of the cascade models some cost functions
and constraints are used in optimization algorithms. It is to be noted that some
approximation errors occurred can prevent convergence of the parameters. In
such cases, the problems arisen can be controlled by using random
initialization and smart optimization technique. For example, the Levenberg-
Marquardt optimization algorithm for optimizing the mean square error of the

cost function of the parameters in the cascaded blocks is one such method.

In an Artificial Intelligent optimization algorithm such as the Backpropagation
Algorithm, it may be possible to converge to several local optima instead of
global optimum. Backpropagation Algorithm has two major drawbacks. It may
lead suboptimal approximations because of the probable existing local
optimums as mentioned. In addition to this, the convergence of the
Backpropagation Algorithm is slow and it is inadequate for online operations.
The drawbacks can be removed by using Levenberg-Marquardt optimization
method and by introducing validation stops [Senalp, 2001] [Tulunay Y. et al.,
2001a] [Tulunay Y. et al., 2004a] [Tulunay Y. et al., 2004b] [Tulunay Y. et al.,
2005a]. It is possible to use this optimization method in near real time

applications by the support of the high-speed computers of today, provided that

13



an efficient implementation of the algorithm and representative determination

of the inputs to the nonlinear block of the possible cascade model are available.

Cascade modeling based on Hammerstein system modeling is used for the
forecast of the ionospheric-plasmaspheric processes in the selected case studies
of this work. As a case study, the most common nonlinearity representation in
Hammerstein system model literature, the polynomial representation, is

employed in cascade modeling.

In this work, two new techniques are presented for building the nonlinear block
of the cascade modeling. In the first new technique the static nonlinearity is
modeled by using Bezier curves in the input representations. In the second new
technique, B-Spline curves in the input representations are used to model the

nonlinearity.

Both of these techniques have local control in contrast to the previous works.
Neither polynomials nor cubic splines have local control. However for Bezier
curves and B-Spline curves the more defining polygon vertices you introduce,

the more local control you obtain.

In addition to this, B-Splines have more elasticity. Multiple points may be put

for the common vertices of the defining polygons in B-Splines.
Those advantages of Bezier curves and B-Splines are introduced into the

nonlinear static block of the cascade modeling with the intelligent parameter

optimization methods.
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The background and the theory of the models developed are given herewith in

Chapter 1.

Forecasting the TEC values and maps are vital near-Earth space processes for
various navigation and telecommunication applications via ionosphere. In
Chapters 2 to 7, the case studies on forecasting TEC values and TEC maps by

using the models developed herewith are given.

Models are also developed for other nonlinear dynamic processes including
simple forced pendulum, spring loaded inverted double pendulum with forced
table, Van der Pol oscillator, and identification of speakers. Those case studies

are given in Chapter 8.

In the performance results of the case studies, Absolute Errors (AE),
Normalized Errors (NE), Root Mean Square Errors (RMSE), and Cross
Correlation Coefficients (ry,) of the observed and forecast values of process

parameters of interest are calculated by using the well-known definitions as,

AE - ;(ﬁ _Oi) (1.12)
N
> (fz _Oi)
Z 0 (1.13)
NE=“1 " '
N
RMSE = —;[ﬁ_Oi] (1.14)
N
C(f,
o (,0) (1.15)

~JC(. ) C0.0)
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where i is the forecast time order, f; is the forecast value at time i, o; is the
observed value at time i, N is the total number of forecast or observed instants,

and C is the covariance function.

A general conclusion and some comments on the thesis are given in Chapter 9.

1.3.1 Middle East Technical University Neural Networks and Cascade
Models (METU-NN-C)

Middle East Technical University Neural Networks and Cascade Models
(METU-NN-C) are developed herewith. First of all, the METU-NN model is
used to estimate the internal variables of the METU-C models. Then, the block
parameters of the METU-C models are obtained [Senalp et al., 2005] [Senalp
et al., 2006b] [Senalp et al., 2006¢] [Senalp et al., 2006d] [Senalp et al., 2006¢]
[Senalp, 2007a] [Senalp et al., 2007b] [Senalp et al., 2007d]. Figure 1.2
illustrates the development modes of the METU-NN-C model blocks, which
will be discussed in this and in the next sections, i.e. Sections 1.3.1 to 1.3.4.
Later, in the operation mode, the METU-C models are ready to be used in

operation.
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Figure 1.2. Development of the METU-NN-C Models

In the METU-NN model, Feedforward Neural Network architecture with
neurons in one hidden layer is used. The basic architecture of the METU-NN

model is demonstrated in Figure 1.3.
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Figure 1.3. Architecture of the Neural Network Model

The activation functions in the hidden layer are hyperbolic tangent sigmoid
functions and the activation function in the output layer is a linear function, so
that the hidden layer outputs, x(k), can represent the static part of the state-like
internal variables in cascade modeling. Hyperbolic tangent sigmoid functions,

‘Tansig’, and linear transfer functions, ‘Purelin’, are as follows,

Tansig(n) = " -1 (1.16)

e—2.n

Purelin(n) = a.n (1.17)

Levenberg-Marquardt Backpropagation algorithm is used during training
[Hagan and Menhaj, 1994] [Haykin, 1999]. Levenberg-Marquardt algorithm is

an approximation to Newton’s method [Hagan and Menhaj, 1994] [Haykin,
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1999]. Instead of the basic backpropagation algorithm the Levenberg-
Marquardt Backpropagation algorithm using the approximation to Newton’s
method is faster in terms of computation time and more accurate near an error
minimum. The Newton’s method modification to the steepest descent
algorithm, and random initialisations of the model parameters provide the

model parameters to reach near global optimum values in the training.

The METU-NN is used to estimate the internal variables. The outputs of the
hidden layer in METU-NN are the internal variables for the METU-C.

1.3.2 Representing Nonlinearity by Polynomials

Representing the nonlinearity by polynomials is the most common nonlinearity
representation in Hammerstein system modeling [Narendra and Gallman,
1966] [Fruzzetti et al., 1997] [Marchi et al.,, 1999] [Bai and Fu, 2002]
[Westwick and Kearney, 2000]. Figure 1.1 illustrates the architecture of the
special Hammerstein form, the Middle East Technical University Cascade

Model (METU-C).

The polynomial representations of the inputs are considered to model the static
nonlinearity [Senalp et al., 2005] [Senalp et al., 2006¢c]. Let the inputs be
denoted as uy(k), then the outputs of the nonlinear element, i.e. the internal
variables x4(k), may be expressed as,
R R m
%, = flu,]=D 7, ul k) =
) ~ e (1.18)
= Z;[ypo Yt (R)+ Yy 12 (K)+ .t (K)]
=

where R is the number of inputs, m+1 is the length of the series, and vy,; are

coefficients to be determined.
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The output y(k) is represented by using a dynamic linearity which is obtained
by optimizing a linear relationship for the internal variables x4(k) and their past
values x4(k-j), as,
Y= Y 3, (e, (k= ) (1.19)
g=1 j=0

where S is the number of the static internal variables and n is the number
representing the history of the stored internal variables in memory. Thus, the
product S(n+1) gives the number of dynamic internal variables. The
coefficients of the linearity in Equation 1.19, i.e. hy(j), are also determined in

the development mode.

1.3.3 Representing Nonlinearity by Bezier Curves

Cubic splines, Bezier curves, and B-splines are space curves used in computer
graphics applications, i.e. skin of vehicles, platforms, fuselage of aircrafts,
wings, hull of ships, engine manifolds, mechanical and structural parts etc
[Rogers and Adams, 1990]. In cubic spline technique the curves pass through
the existing data points. Practical usage of cubic spline curves suffers the
necessity of specifying precise, non-intuitive mathematical information such as
position, tangent and twist vectors [Rogers and Adams, 1990]. These
difficulties are overcome by using Bezier curves. In contrast to the cubic spline
representation of nonlinearities, Bezier curves satisfy functional requirements.
The mathematical basis of this alternate method of shape description for design
of free form curves and surfaces was derived from geometrical considerations
by Pierre Bézier [Rogers and Adams, 1990] [Bézier, P.E., 1972]. Bézier also

named them as Unisurf curves.

Bezier curves are determined by defining polygons. Defining polygon points

may also be called local control points. In practice, it is possible to have more
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local control on the results by introducing more defining polygon points. Thus,
representing nonlinearities by using Bezier curves is promising and provides
some advantages [Rogers and Adams, 1990]. By local control we mean to be
able to include variations in a small segment of interest around a local control
point without interfering other localities in the whole curve, which are spatially
distant to the local segment of interest [Tulunay E. et al., 2006a]. Bezier curves

provide more local control in contrast to the polynomial representations.

The Bezier basis is also the Bernstein basis. The basis functions of Bezier
curves are real. The curves generally follow the shape of the defining polygons.
Their start and end points are coincident with the start and end points of the
defining polygons. The tangent vectors at the ends have the same direction as
the spans of the first and the last polygons. The curves take place in the convex
hulls of the defining polygons, and they are invariant under affine
transformations [Rogers and Adams, 1990]. Formulation of the Bezier curves

is as follows,
P(u)=YB,.J, {u} (1.20)
i=0

where
(m+1) is the number of defining polygon points,
u 1is the normalized variable,

B, are the defining polygon points,

J {u} are the Bernstein Basis Functions as,

m, i

7, u} ( j M-u]™ =——— '(m [1 u]™” (1.21)

The number (m-1) represents the degree of the defining polygon. The first

three defining polygon points define the curvature at the beginning, and the last
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three define the curvature at the end of the Bezier curve. If high flexibility is
required, the degree of the defining polygon can be increased by increasing the
number of defining polygon points [Rogers and Adams, 1990]. Thus, more
defining polygon points mean more local control on the shape of the Bezier

curve.

Additional flexibility can also be achieved by dividing a Bezier curve into two
Bezier curves. When those two curves are combined the resultant curve is
identical with the original curve [Rogers and Adams, 1990].

It is evident that since J,, {0}=1 only the first defining polygon point, i.e. B,,
is defining the start point on Bezier curve, i.e. P(0). Similarly, since

Jwm {i}=1 only the last defining polygon point, i.e. B, , is defining the end

point on Bezier curve, i.e. P(1).

To visualize Bezier curves and their defining polygons on Cartesian space,
Figure 1.4 shows graphical output examples obtained by Computer Graphics
software developed by the author within a graduate course in his department,

i.e. METU — EE642 Computer Graphics.

22



Bl Computer, Graphics by E.T.Senalp EE 642 Homeworks
Draw Redraw Al Edit Save Load Exit  About

10 unitsfgrid

Figure 1.4. Examples of Bezier curves and their defining polygons on

Cartesian space

To the best knowledge of the author, in this work, static nonlinear block of a
cascade model, METU-C, based on Hammerstein system modeling is
represented by Bezier curves for the first time [Senalp et al., 2006b]. The

internal variables of the METU-C model, i.e. X, (k), may be formulated as

follows,
R R m
x, (0= flu,0]=>>B,., @)} (1.22)
p=1 p=1i=0
where
R is the number of inputs,

(m+1) is the number of defining polygon points,
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u , (k) are the normalized input variables.
B i are the coefficients to be determined,

Jm,i{u,,ac)}:(Tjuj,(k)[l—u,,(k)]’""' - " -, (123)

i\(m—i)!

Thus, the product R(m+1) gives the number of static block coefficients,

i.e.B yis 1O be determined.

The output y(k) is represented as

v =Y h (), (k= j) (1.24)

q=1 j=0
where S 1s the number of the static internal variables, n is the number

representing the history of the stored internal variables in memory.

In Equation 1.24, the output y(k) is represented by using a dynamic linearity
and by optimizing a linear relationship for the internal variables x, (k) and
their past values x, (k—j) which constitute their history. Thus, the product
S(n+1) gives the number of dynamic internal variables. The coefficients of
the linearity in Equation 1.24, i.e. h (j), are also to be determined in the

development stage.

1.3.4 Representing Nonlinearity by B-Splines

A curve generated by defining polygon vertices is dependent on the
approximation to form a relationship between the curve and the polygon by
choosing the basis function. For Bezier curves the basis function is the

Bernstein function [Rogers and Adams, 1990].
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In Bezier curves, the number of defining polygon vertices determines the order
of the curve representation. Also in Bezier curves, the Bernstein basis function
is nonzero and representing local changes on the curve is limited [Rogers and

Adams, 1990].

Schoenberg suggested the B-Spline curves [Schoenberg, 1946] [Rogers and
Adams, 1990]. In B-Spline curves, B-Spline bases (Basis splines) are used. B-
Spline basis is nonglobal, because each vertex has its correspondent unique
basis function and affects the curve where the correspondent basis function is
nonzero. The degree of the B-Spline curve or the order of the basis function is
not dependent on the number of the defining polygon vertices, which is not the
case in Bezier curves [Rogers and Adams, 1990]. However, formation of a B-
Spline curve has more computations than formation of a Bezier curve, which

can be a drawback for complex systems.
To visualize B-Spline curves and their defining polygons on Cartesian space,

Figure 1.5 shows graphical output examples obtained by the Computer

Graphics software mentioned in the Section 1.3.3.
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Figure 1.5. Examples of B-Spline curves and their defining polygons on

Cartesian space

Formulation of the B-Spline curves is as follows,
P(u)=Y B.N, {u} (1.25)
i=0

where
(m+1) is the number of defining polygon points,
u 1is the normalized variable between 0 and Uy,

Umax 1S the maximum value of u, i.e.

U =m—s+2 (1.26)

max
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s is the order of the correspondent basis function; s-1 is the degree,
1is vertex number of the defining polygon,

B, are the defining polygon points,

N, {u} are the normalized B-Spline basis functions,

N[,s{”}: (u—z)N, {u}+ (Zigy =N {u}

(1.27)
Livs1 — % Zivs —Zin
L, if z,fu<gz,
N. ur= ' " 1.28
”1{ J {0, otherwise (1.28)
z 18 the knot vector,
0, if i<s
z,=qi—=s+1l, if s<i<m (1.29)

m—s+2, if i>m

Similar to the Bezier curves, B-Spine curves lie within the convex hull of their

defining polygons. All points of a B-Spline curve lie in convex hull defined by

taking defining polygon vertices following each other [Rogers and Adams,

1990].

To the best knowledge of the author, in this work, static nonlinear block of a

cascade model is represented by B-Spline curves for the first time [Senalp et

al., 2006d]. The internal variables of the METU-C model, i.e. x, (k), may be

formulated as follows,
R R m
x, (0= flu,0]=>>B, N, fu, @)} (1.30)
p=1 p=1i=0
where
R is the number of inputs,

(m+1) is the number of defining polygon points,
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u, (k) are the normalized input variables between 0 and up,x,

Upmax 18 the maximum value of u as in Equation 1.26,
s is the order of the correspondent basis function; s-1 is the degree,
1 1s vertex number of the defining polygon,

B, are the coefficients to be determined,

N, {u » (k)} are the normalized B-Spline basis functions,

1o 0= 2N by, B | Gy =, CDNy e, ()

Ny, o (1.31)
Cips—1 — % Civs ~ i
L if z;su,(k)<z,
N..w (K= ! P " 1.32
"l{ o )} {O, otherwise ( )

z is the knot vector as in Equation 1.29.

Thus, the product R(m+1) gives the number of static block coefficients,

i.e. B ., to be determined.

pi’

The output y(k) is represented as,

S n

y(k)=D>"h,(j)x, (k- j) (1.33)

g=1 j=0
where S is the number of the static internal variables, n is the number
representing the history of the stored internal variables in memory. The output
y(k) 1s represented by using a dynamic linearity and by optimizing a linear
relationship for the internal variables x, (k) and their past values x, (k- j)
which constitute their history. Thus, the product S(n+1) gives the number of
dynamic internal variables. The coefficients of the linearity in Equation 1.33,

ie. h,(j), are also to be determined in the development stage.
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CHAPTER 2

FORECASTING THE GPS TOTAL ELECTRON CONTENT
VALUES BY A CASCADE MODELING TECHNIQUE WITH
POLYNOMIAL NONLINEARITY REPRESENTATION

2.1 Introduction

Unpredictable variability of the ionospheric parameters due to disturbances
limits the efficiency of communications, radar and navigation systems, which
employ especially HF radio waves propagating via ionosphere. It also limits
other frequency bands, i.e. the communication bands with the satellites. The
Total Electron Content (TEC) is the number of electrons in a column of one
meter-squared cross-section along a path through the ionosphere [Chilbolton
Weather Web, 2004]. Forecasting TEC is crucial for satellite based navigation

systems especially in the stormy space weather conditions.

The use of the Middle East Technical University Neural Network and Cascade
Modeling (METU-NN-C) technique to forecast the 10 minutes values of the
TEC, one hour ahead, during high solar activity in the solar cycle have been
examined [Senalp et al., 2005] [Senalp et al., 2006c]. The model is designed to
forecast TEC data evaluated from GPS measurements. The performance results
of the cascade modeling of the near-Earth space processes are discussed in

terms of system identification.
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Applying nonlinear model identification is inevitable for most of the real
complex nonlinear processes including the near-Earth space processes. The
author has studies on structural methodologies, i.e. Neural Network based
approaches, in modeling of the ionospheric processes [Senalp, 2001], [Tulunay
E. et al., 2000], [Tulunay Y. et al., 2000], [Tulunay E. et al., 2001], [Tulunay
Y. et al., 2001a], [Senalp et al., 2002a], [Tulunay Y. et al., 2004b], [Tulunay E.
et al., 2004a] [Tulunay Y. et al., 2005a] [Tulunay E. et al., 2006a]. Those
studies have provided insight on the system identification of the near-Earth
space processes. In these previous studies, the processes were modeled in black

box forms.

In this work, to the best knowledge of the author, it is the first time special
models based on Hammerstein system modeling have been developed for near-

Earth space processes [Senalp et al., 2005] [Senalp et al., 2006c].

The internal variables of the METU-C model have memory. They store the
internal values of the present, one hour past, and two hours past. In the
development mode, first of all, the internal variables of the METU-C model are
estimated by using the METU-NN model [Tulunay Y. et al., 2004a] [Tulunay
Y. et al., 2004b]. Then the estimated internal variables, and inputs and outputs
of the METU-C model in development mode are used to optimize the

parameters of the METU-C.

The METU-C model based on Hammerstein system modeling is designed and
trained with significant inputs. In our approach, the basic inputs for the METU-
C are temporal inputs and the polynomial representation of the present TEC
value. In addition, the model also contains intrinsic information about the solar

activity.
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The development of the METU-NN-C models is demonstrated in Figure 1.2 in
Chapter 1. The METU-C architecture has one static nonlinear block and one
dynamic linear block cascaded as shown in Figure 1.1 in Chapter 1.
Levenberg-Marquardt optimization algorithm 1is used in optimizing the
nonlinear and linear block parameters. Then such trained model is used to

forecast the TEC values 1 hour in advance.

This chapter outlines the TEC forecasting problem and preparation of data,
explains the METU-C models based on Hammerstein system modeling as a
system identification approach for forecasting ionospheric processes, gives the
results with error tables, cross correlation coefficients and scatter diagrams, and
discusses the generalized and fast learning and operation of the METU-C

Models.

2.2 Preparation of Data

GPS TEC data for Chilbolton (51.8° N; 1.26° W) and Hailsham (50.9° N; 0.3°
E) are used [COST271 WG 4 STSM, 2002]. For the training, test and
validation within the development modes of the METU Neural Network and
Cascade Models, TEC data evaluated from GPS measurements from 2000 to
2001 at Chilbolton receiving station are used. Operation has been performed on
another validation data set by producing the forecast TEC values at Hailsham
GPS receiving station for selected months in 2002. Table 2.1 summarizes
selected training, validation within development and validation within

operation time intervals.
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Table 2.1. The time periods for the input data

Year Month
Train 2000 | April and May

Test and validation in the development procedure | 2001 | April and May

Validation in the operational use 2002 | April and May

The chosen years correspond to the similar solar activity. This is the basic
criterion in the selection of the train, test and validation years. The current high
solar activity time periods, i.e. years with high sunspot number values, are

selected in the time intervals.

2.3 Construction of the Neural Network Model
The basic architecture of the METU-NN model is demonstrated in Figure 1.3
in Chapter 1. In METU-NN, for the current process, Feedforward Neural

Network architecture with six neurons in one hidden layer is used.

The activation functions in the hidden layer are hyperbolic tangent sigmoid
functions and the activation function in the output layer is a linear function, so
that the hidden layer outputs represent the static part of the state-like internal
variables in cascade modeling. Levenberg-Marquardt Backpropagation
algorithm is used during training [Hagan and Menhaj, 1994] [Haykin, 1999].
The METU-NN is used to estimate the internal variables. The 5 inputs used for
the METU-NN are as follows,

1. The present value of the TEC:

u, (k)= f(k) 2.1)
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2. Cosine component of the minute, m, of the day:
u, (k)= C, = —Cos(2.m.m/ 1440) (2.2)
3. Sine component of the minute of the day:
us (k)= S,, = Sin(2.w.m / 1440) (2.3)
4. Cosine component of the day, d, of the year:
u,(k)y=Cy=—-Cos(2.m.d/ 366) (2.4)
5. Sine component of the day of the year:

us(k)=S8q = Sin(2.7w.d/ 366) (2.5)

The output layer of the METU-NN hosts the value of the TEC being observed
60 minutes later than the present time. The outputs of the hidden layer in

METU-NN are six of the internal variables for the METU-C.

2.4 Construction of the Cascade Model

In the development mode, the construction work of the METU-C model is
carried out. It is composed of “training phase” and “test phase” as in the Neural
Network approach [Tulunay Y. et al., 2004a]. In the training phase the
parameters of the cascaded static nonlinear block and dynamic linear block are
optimized. For training and validation within development procedure, data sets
of same month but different year are used as shown on Table 2.1 to take the

seasonal dependency into account.
The “Levenberg-Marquardt” optimization algorithm is used within training for

fast learning of the process with input data of very large size. If training data

were used alone during training then the training error would go to zero
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corresponding to the memorization. Memorization means the loss of the
generalization capability in system identification. For preventing the
memorization, independent validation data are used. The decrease in the
validation error is noted during the development. When the gradient of the
error in the validation within development becomes near zero, a “stop training”
signal is produced, and thus the training is terminated. The optimized
parameters of the cascade model are saved. The model is then ready for its use
in the operation mode for forecasting of the TEC values. In the operation mode
another validation data set is used for calculating the errors, point by point, to

measure the performance of the model.

For considering the first, second and third order terms in the polynomial
representation, i.e. the Equation 1.18, m is selected to be 3 for the TEC input.
Thus, m=3 for p=1 in the model. For the temporal inputs m is selected to be 1,
i.e. m=1 for p>1 in the model. The value of the TEC at the time instant k is
designated by f(k). The 7 inputs used for the METU Cascade Model are as

follows,

1. 1. The present value of the TEC: u, (k)= f(k),

1. ii. Second Power: u?>(k) = f *(k),

1.iii. Third Power: u; (k)= f(k),

2. Cosine component of minute, m, of the day: u, (k)=C,,= —Cos(2rx.m / 1440),
3. Sine component of the minute of the day: u; (k)=S,,= Sin(2z.m / 1440),

4. Cosine component of day, d, of the year: u, (k)=Cyq= —Cos(2r.d / 366),

5. Sine component of the day of the year: u, (k)=S,= Sin(2r.d / 366),

34



The outputs of the first stage, i.e. 6 outputs for the static nonlinear block
designated by x,(k),..., X¢(k), and their one hour past and two hours past values
are stored as internal variables so that S=6 and n=2 in Equation 1.19. These
internal variables are the inputs to the second stage of the cascade model, i.e.
18 inputs for the dynamic linear block of the METU-C model, which are
designated by x;(k),..., Xe(k), xi(k-1),..., xe¢(k-1), x;(k-2),..., Xe¢(k-2) in
Equation 1.19. However, since the unit of the time instant k is minutes instead
of hours, the internal variables are designated by x;(k),..., X¢(k), X1(k-60),...,
X6(k-60), x1(k-120),..., X¢(k-120).

The output of the cascade model is designated by y(k) = f(k+60) which is the

value of the TEC to be observed 60 minutes later than the present time.

2.5 Results

The operation mode performance analyses and results of the TEC forecast
cover the time interval between April and May 2002 for the Hailsham
receiving station. Forecast of the TEC values one hour in advance is performed
for the validation data set in 10 minutes interval. Then the cross correlation
coefficients between the observed GPS TEC and forecast TEC are calculated.
The root mean square, normalized and absolute error values are also calculated.
Table 2.2 is the error table displaying the results. Figure 2.1 is the scatter
diagram of the forecast and observed TEC values for Hailsham GPS receiving
station for April and May 2002. Forecast and observed TEC values versus the
order of data points in April and May 2002 for Hailsham GPS receiving station
are plotted in Figure 2.2 where 1 hour in advance forecast values of the TEC

are plotted with the solid line.
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Table 2.2. Error Table

Absolute Error (TECu) 1.17
Normalized Error (%) 6.39

Root Mean Square Error (TECu) 1.79
Cross Correlation Coefficient (xlO"z) 98.63

Forecast vs Observed:Dots linear fit:line
100

a0

80

70

1 h ahead Forecast TEC values (TECLY

a 20 4 B0 a0 100
Obszerved TEC values (TECLD

Figure 2.1. One hour ahead Forecast TEC versus Observed GPS TEC values
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Figure 2.2. Observed GPS TEC (dotted) and 1 hour ahead Forecast (solid) TEC
values for the whole time of validation period: April-May 2002 for Halisham.

In the scatter diagram in Figure 2.1, the fitted line has a slope close to one, i.e.
it has ~ 45° of angle with respect to the observed TEC axis, and it passes
through the origin. Therefore the forecasting errors are small. This fact is the
indication of the system reaching the correct operating point within the system
identification. In other terminology, the system is prevented to reach local
minima and it is succeeded to reach the global minimum of the error cost

function. The correlation coefficients are very close to unity, which means that
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the METU-C model learned the shape of the inherent nonlinearities. Therefore,

the deviations from straight line are small in the scatter diagram.
The daily solar-terrestrial indices for the geomagnetically quiet, 5-7 April

2002, and disturbed, 18-21 April 2002, periods of interest are summarized on
Table 2.3 [Tulunay E. et al., 2004a].

Table 2.3 Solar-terrestrial indices for the considered validation periods

Date RC | 10CM | Ak | BKG | M | X
05 Apr 2002 | 213 217 004 | C1.3
06 Apr 2002 | 249 206 004 | Cl1.1
07 Apr 2002 | 211 208 010 | C1.5
18 Apr 2002 | 155 188 043 | C1.3
19 Apr 2002 | 147 180 045 | B8.6
20 Apr 2002 | 224 177 056 | C1.0
21 Apr 2002 | 142 173 006 | C1.3

S| O o o o ©

S| O O O o o O

[S—

The Solar-terrestrial indices in Table 2.3 are as follows:

RC: Sunspot index from Catania Observatory (Italy),

10cm: 10.7 cm radioflux (DRAOQO, Canada)

Ak: Ak Index Wingst (Germany)

BKG: Background GOES X-ray level (NOAA, USA)

M, X: Number of X-ray flares in M and X class, (NOAA, USA)
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Figure 2.3 and 2.4 are the enlarged portions of some data points of Figure 2.2,
i.e. the diurnal variations of the observed, and forecast TEC values during 18-
22 April 2002 and 5-7 April 2002, respectively. That is, the horizontal axes are

expanded.

Observed{dotted),1 h ahead Forecast{solid) TEC (18-22 April 2002
EI:I T T T T T T T
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=
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25 26 27 28 2.9 3 3.1
time for period{minute) w0

Figure 2.3. Observed GPS TEC values for disturbed solar-terrestrial conditions
(dotted), and 1 hour ahead Forecast TEC values (solid) for the enlarged portion
of the time of validation period: 18-22 April 2002.

39



Obszened(dotted) 1 h ahead Forecast(=olid) TEC (57 April 2002
EI:I T T T T T T T T T

a0

TEG (TECU)
(W] =
(] _

]
]

| | | | 1 | | | |
BO00  B500 7000 7500 S00O0 8500 9000 9500 10000
time far penodi{minute)

Figure 2.4. Observed GPS TEC values for quiet solar-terrestrial conditions
(dotted), and 1 hour ahead Forecast TEC values (solid) for the enlarged portion

of the time of validation period: 5-7 April 2002.

It can be concluded that the model gives accurate forecasts before, during and

after the disturbed solar-terrestrial conditions.

2.6 Conclusions
Forecasting of the TEC values, especially in the stormy space weather

conditions, is crucial for communication, radar and navigation systems
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employing HF radio waves to cope with the effects of unpredictable variability

of the ionospheric parameters.

In this work, to the best knowledge of the author, cascade modeling based on
Hammerstein system modeling has been used first time for the forecast of an
ionospheric-plasmaspheric process, namely the TEC variation 1 hour in
advance [Senalp et al., 2005] [Senalp et al., 2006c]. The model learned the
shape of the inherent nonlinearities and the system reached the correct
operating point. The cascade modeling of the process is also capable of

forecasting the TEC values for disturbed solar-terrestrial conditions.

It is demonstrated that the identification of the complex nonlinear processes,
such as the TEC variation, can be achieved by cascading a static nonlinear

block and a linear dynamic block as in the Hammerstein system modeling.

Summary of the main contributions of this work may be given as follows:

1) Organization of representable data for learning complex processes,

2) Cascade modeling of a highly complex nonlinear process such as the TEC
variation, and

3) General demonstration of learning capability by calculating cross
correlations and general demonstration of reaching a proper operating point

by calculating errors.
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CHAPTER 3

FORECASTING THE GPS TOTAL ELECTRON CONTENT
VALUES BY A CASCADE MODELING TECHNIQUE WITH
BEZIER CURVE NONLINEARITY REPRESENTATION

3.1 Introduction

The use of the Middle East Technical University Neural Networks and Cascade
Modeling (METU-NN-C) technique to forecast the 10 minutes values of the
total electron content (TEC), one hour ahead, during high solar activity in the
solar cycle have been examined with the emphasis on Bezier curves in
repsesenting the nonlinearities. To the best knowledge of the author, static
nonlinear block of a cascade model, METU-C, based on Hammerstein system
modeling is represented by Bezier curves for the first time [Senalp et al.,

2006b] [Senalp et al., 2006d].

In this approach, the basic inputs for the model are the Bezier curve
representation of the temporal inputs and the Bezier curve representation of the
present TEC value. The internal variables store the internal values of the
present, one hour past, and two hours past. They are estimated by METU-NN.
Using the inputs, outputs, and estimated internal variables, Levenberg-
Marquardt optimization algorithm is employed in optimizing the nonlinear and

linear block parameters of the METU-C model in development mode. The
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development of the METU-NN-C models is demonstrated in Figure 1.2 in
Chapter 1. Then such trained model is used in operation mode to forecast the

TEC values 1 hour in advance.

This chapter explains the METU-C model based on Hammerstein system
modeling with Bezier curves as a system identification approach for
forecasting ionospheric processes, gives the results with error tables, cross
correlation coefficients and scatter diagrams, and discusses the generalized and

fast learning and operation of the METU-C Models.

3.2 Preparation of Data

As in Chapter 2, for the training, test and validation within the development
mode of the METU-NN-C, TEC data evaluated from GPS measurements in 1
April — 31 May 2000 and 2001 at Chilbolton (51.8° N; 1.26° W) receiving
station are used. Operation has been performed on another data set by
producing the forecast TEC values at Hailsham (50.9° N; 0.3° E) GPS receiving

station for selected months in 2002.

In the model, again intrinsic information about the solar activity is achieved by
choosing the time periods for input data with the similar solar activity. Also the
seasonal dependency is again taken into account. Table 2.1 in Chapter 2
summarizes selected training, validation within development and validation

within operation time intervals.
3.3 Construction of the Neural Network Based Model

The METU-NN model explained in Chapter 2 is used to estimate the internal
variables of the METU-C model herewith. For more details refer Chapter 2.
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3.4 Construction of the Cascade Model

The 5 inputs used for the METU-C are as follows,

1. The present value of the TEC: see Equation 2.1 in Chapter 2

2. Cosine component of minute, m, of the day: see Equation 2.2 in Chapter 2
3. Sine component of the minute of the day: see Equation 2.3 in Chapter 2

4. Cosine component of day, d, of the year: see Equation 2.4 in Chapter 2

5. Sine component of the day of the year: see Equation 2.5 in Chapter 2

The inputs are normalized so that they can be used in Bezier curve
representation of the static nonlinearity in the METU-C model as in Equations
1.22 and 1.23 in Chapter 1. The output of the METU-C hosts the value of the

TEC being observed 60 minutes later than the present time.

In this work, the internal variables of the METU-C model, i.e. xq(k), are

formulated as in Equation 1.22, in Chapter 1. In Equation 1.22, R =35 is the
number of inputs, m+1=34+1=4 is the number of defining polygon points.

Thus, the product R(m+1)=5(3+1)=20 gives the number of static block

coefficients, i.e. B ., to be determined.

pi’
The output y(k) is represented as shown in Equation 1.24 in Chapter 1. It is
represented by using a dynamic linearity obtained by optimizing a linear
relationship for the internal variables, x, (k), and their past values, x (k- j).
In the Equation 1.24, S =6 is the number of the static internal variables, n =2

is the number representing the history of the stored internal variables in

memory. Thus, the product S(n+1)=6(2+1)=18 gives the number of
dynamic internal variables. The coefficients of the linearity in Equation 1.24,

ie. h,(j), are also determined in the development mode.
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In the development mode, the parameters of the METU-C are determined using
the internal variable estimates of the METU-C obtained by the METU-NN, and
the inputs and outputs of the METU-C. Levenberg-Marquardt optimization

method is used in training.

3.5 Results

As in Chapter 2, the operation mode performance analyses and results of the
TEC forecast cover the time interval between April and May 2002 for the
Hailsham receiving station. Forecast of the TEC values one hour in advance is
performed for the validation data set in 10 minutes interval. Then the cross
correlation coefficients between the observed GPS TEC and forecast TEC are
calculated. The root mean square, normalized and absolute error values are also

calculated. Table 3.1 is the error table displaying the results.

Table 3.1. Error Table

Absolute Error (TECu) 1.11
Normalized Error (%) 5.51

Root Mean Square Error (TECu) 1.75
Cross Correlation Coefficient (x10'2) 98.69

It is to be noted that the error values in this work are smaller than the ones in
Chapter 2. Also the cross-correlation coefficient is larger than the one in
Chapter 2. Thus, modeling the nonlinearity by using Bezier curves provide

remarkable increase in the operation performance with higher accuracy and
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higher sensitivity when compared with the operation results of the METU-C

model with polynomial nonlinearity representation discussed in Chapter 2.

Figure 3.1 is the scatter diagram of the forecast and observed TEC values for
Hailsham GPS receiving station for April and May 2002. Forecast and
observed TEC values versus the order of data points in April and May 2002 for
Hailsham GPS receiving station are plotted in Figure 3.2 where 1 hour in

advance forecast values of the TEC are plotted with the solid line.
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Figure 3.1. One hour ahead Forecast TEC versus Observed GPS TEC values
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Figure 3.2. Observed GPS TEC (dotted) and 1 hour ahead Forecast (solid) TEC
values for the whole time of validation period: April-May 2002 for Halisham.

The system reached the correct operating point within the system
identification. Thus the fitted line in the scatter diagram in Figure 3.1 has a
slope close to one, passes through the origin, and the forecasting errors are
small. Also the METU-C model learned the shape of the inherent
nonlinearities. Thus the deviations from straight line are small in the scatter

diagram, and the correlation coefficients are very close to unity.
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The daily solar-terrestrial indices for the geomagnetically quiet, 5-7 April
2002, and disturbed, 18-21 April 2002, periods of interest are summarized on
Table 2.3 in Chapter 2. Figures 3.3 and 3.4 are the enlarged portions of some
data points of Figure 3.2, i.e. the diurnal variations of the observed, and

forecast TEC values during 18-22 April 2002 and 5-7 April 2002, respectively.
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=
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Figure 3.3. Observed GPS TEC values for disturbed solar-terrestrial conditions
(dotted), and 1 hour ahead Forecast TEC values (solid) for the enlarged portion
of the time of validation period: 18-22 April 2002.
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Figure 3.4. Observed GPS TEC values for quiet solar-terrestrial conditions
(dotted), and 1 hour ahead Forecast TEC values (solid) for the enlarged portion
of the time of validation period: 5-7 April 2002.

The model gives accurate forecasts before, during and after the disturbed solar-

terrestrial conditions.
3.6 Conclusions

In this work, to the best knowledge of the author, static nonlinear block of a

cascade model, METU-C, based on Hammerstein system modeling is

49



represented by Bezier curves for the first time [Senalp et al., 2006b] [Senalp et
al., 2006d]. The forecast of the ionospheric-plasmaspheric process, namely the
TEC variation 1 hour in advance is performed. The model learned the shape of
the inherent nonlinearities and the system reached the correct operating point.
The cascade modeling of the process is also capable of forecasting the TEC

values for disturbed solar-terrestrial conditions.
It is demonstrated that the identification of the complex nonlinear processes,

such as the TEC variation, can be achieved by cascading a static nonlinear

block of Bezier curve representations and a linear dynamic block.
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CHAPTER 4

FORECASTING THE GPS TOTAL ELECTRON CONTENT
VALUES BY A CASCADE MODELING TECHNIQUE WITH
B-SPLINE CURVE NONLINEARITY REPRESENTATION

4.1 Introduction

The use of the Middle East Technical University Neural Networks and Cascade
Modeling (METU-NN-C) technique to forecast the 10 minutes values of the
total electron content (TEC), one hour ahead, during high solar activity in the
solar cycle have been examined with the emphasis on B-Spline curves in
repsesenting the nonlinearities. To the best knowledge of the author, static
nonlinear block of a cascade model, METU-C, based on Hammerstein system

modeling is represented by B-Spline curves for the first time [Senalp et al.,

2006d].

In this approach, the basic inputs for the model are the B-Spline curve
representation of the temporal inputs and the B-Spline curve representation of
the present TEC value. The internal variables store the internal values of the
present, one hour past, and two hours past. They are estimated by METU-NN.
Using the inputs, outputs, and estimated internal variables, Levenberg-
Marquardt optimization algorithm is employed in optimizing the nonlinear and

linear block parameters of the METU-C model in development mode. The
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development of the METU-NN-C models is demonstrated in Figure 1.2 in
Chapter 1. Then such trained model is used in operation mode to forecast the
TEC values 1 hour in advance. This chapter explains the METU-C model
based on Hammerstein system modeling with B-Spline curves as a system
identification approach for forecasting ionospheric processes, gives the results
with error tables, cross correlation coefficients and scatter diagrams, and
discusses the generalized and fast learning and operation of the METU-C

Models.

4.2 Preparation of Data

As in Chapter 2, for the training and validation within development mode of
the METU-NN-C, TEC data evaluated from GPS measurements at Chilbolton
(51.8° N; 1.26° W) receiving station in 1 April — 31 May 2000 and 2001 are
used, respectively. Operation has been performed on another data set by
producing the forecast TEC values at Hailsham (50.9° N; 0.3° E) GPS receiving

station for selected months in 2002.

In the model, again intrinsic information about the solar activity is achieved by
choosing the time periods for input data with the similar solar activity. Also the
seasonal dependency is again taken into account. Table 2.1 in Chapter 2
summarizes selected training, validation within development and validation

within operation time intervals.
4.3 Construction of the Neural Network Based Model

The METU-NN model explained in Chapter 2 is used to estimate the internal
variables of the METU-C model. For more details refer Chapter 2.
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4.4 Construction of the Cascade Model

The 5 inputs used for the METU-C are as follows,

1. The present value of the TEC: see Equation 2.1 in Chapter 2

2. Cosine component of minute, m, of the day: see Equation 2.2 in Chapter 2
3. Sine component of the minute of the day: see Equation 2.3 in Chapter 2

4. Cosine component of day, d, of the year: see Equation 2.4 in Chapter 2

5. Sine component of the day of the year: see Equation 2.5 in Chapter 2

The inputs are normalized so that they can be used in B-Spline curve
representation of the static nonlinearity in the METU-C model as in Equations
1.30, 1.31 and 1.32 in Chapter 1. The output of the METU-C hosts the value of

the TEC being observed 60 minutes later than the present time.

In this work, the internal variables of the METU-C model, i.e. xq(k), are

formulated as in Equation 1.30, in Chapter 1. In Equation 1.30, s = 4 is the
order of the correspondent basis function, s-1 = 3 is the degree, R =35 is the
number of inputs, m+1=34+1=4 is the number of defining polygon points.

Thus, the product R(m+1)=5(3+1)=20 gives the number of static block

coefficients, i.e. B ., to be determined.

pi’
The output y(k) is represented as shown in Equation 1.33 in Chapter 1. It is
represented using a dynamic linearity which is obtained by optimizing a linear
relationship for the internal variables, x, (k), and their past values, x (k- j).
In the Equation 1.33, § =6 is the number of the static internal variables, n =2

is the number representing the history of the stored internal variables in

memory. Thus, the product S(n+1)=6(2+1)=18 gives the number of
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dynamic internal variables. The coefficients of the linearity in Equation 1.33,

Le. h,(j), are also determined in the development mode.

In the development mode, the parameters of the METU-C are determined using
the internal variable estimates of the METU-C obtained by the METU-NN, and
the inputs and outputs of the METU-C model. Levenberg-Marquardt

optimization method is used in training.

4.5 Results

As in Chapter 2, the operation mode performance analyses and results of the
TEC forecast cover the time interval between April and May 2002 for the
Hailsham receiving station. Forecast of the TEC values one hour in advance is
performed for the validation data set in 10 minutes interval. Then the cross
correlation coefficients between the observed GPS TEC and forecast TEC are
calculated. The root mean square, normalized and absolute error values are also

calculated. Table 4.1 is the error table displaying the results.

Table 4.1. Error Table

Absolute Error (TECu) 1.10
Normalized Error (%) 5.5
Root Mean Square Error (TECu) 1.75

Cross Correlation Coefficient (xlO"z) 99
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It is to be noted that the error values in this work are smaller than the ones in
Chapter 2. Also the cross-correlation coefficient is larger than the one in
Chapter 2. Thus, modeling the nonlinearity by using B-Spline curves provide
remarkable increase in the operation performance with higher accuracy and
higher sensitivity when compared with the operation results of the METU-C
model with polynomial nonlinearity representation discussed in Chapter 2.
When the results of the model using B-Spline curves are compared with the
results of the model using Bezier curves in Chapter 3, it is noted that two
models have similar performance. However, the METU-C model with B-
Spline curve nonlinearity representations has higher number of calculations
than the model using Bezier curves because of the high complexity in the
formulations of the B-Spline curves and their basis functions. It can be a

drawback for very complex processes.

Figure 4.1 is the scatter diagram of the forecast and observed TEC values for

Hailsham GPS receiving station for April and May 2002.
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Figure 4.1. One hour ahead Forecast TEC versus Observed GPS TEC values

Forecast and observed TEC values versus the order of data points in April and
May 2002 for Hailsham GPS receiving station are plotted in Figure 4.2 where 1

hour in advance forecast values of the TEC are plotted with the solid line.
In METU-C modeling with B-Spline curve nonlinearity representations, the

system reached the correct operating point within the system identification and

the METU-C model learned the shape of the inherent nonlinearities, as well.
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Figure 4.2. Observed GPS TEC (dotted) and 1 hour ahead Forecast (solid) TEC
values for the whole time of validation period: April-May 2002 for Halisham.

The daily solar-terrestrial indices for the geomagnetically quiet, 5-7 April
2002, and disturbed, 18-21 April 2002, periods of interest are summarized on
Table 2.3 in Chapter 2.

Figures 4.3 and 4.4 are the enlarged portions of some data points of Figure 4.2,
i.e. the diurnal variations of the observed, and forecast TEC values during 18-

22 April 2002 and 5-7 April 2002, respectively. It can again be concluded that
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the model gives accurate forecasts before, during and after the disturbed solar-

terrestrial conditions.
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Figure 4.3. Observed GPS TEC values for disturbed solar-terrestrial conditions
(dotted), and 1 hour ahead Forecast TEC values (solid) for the enlarged portion
of the time of validation period: 18-22 April 2002.
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Figure 4.4. Observed GPS TEC values for quiet solar-terrestrial conditions
(dotted), and 1 hour ahead Forecast TEC values (solid) for the enlarged portion
of the time of validation period: 5-7 April 2002.

4.6 Conclusions

In this work, to the best knowledge of the author, static nonlinear block of a
cascade model, METU-C, based on Hammerstein system modeling is
represented by B-Spline curves for the first time [Senalp et al., 2006d]. The
forecast of the ionospheric-plasmaspheric process, namely the TEC variation 1

hour in advance is performed. The model learned the shape of the inherent
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nonlinearities and the system reached the correct operating point. The cascade
modeling of the process is capable of forecasting the TEC values for disturbed

conditions, as well.
It is demonstrated that the identification of the complex nonlinear processes,

such as the TEC variation, can be achieved by cascading a static nonlinear

block of B-Spline curve representations and a linear dynamic block.
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CHAPTER 5

ERROR COMPARISON AND ANALYSIS FOR THE
MODELS: METU-NN, METU-C WITH POLYNOMIAL,
BEZIER AND B-SPLINE CURVE NONLINEARITY
REPRESENTATIONS

5.1 Introduction

The use of the Middle East Technical University Neural Networks (METU-
NN) technique and Middle East Technical University Neural Networks and
Cascade Modeling (METU-NN-C) techniques to forecast the 10 minutes
values of the total electron content (TEC), one hour ahead, during high solar
activity in the solar cycle have been examined with the emphasis on
Polynomials, Bezier curves and B-Spline curves in repsesenting the

nonlinearities.

International Reference lonosphere (IRI) is an important international project
sponsored by the Committee on Space Research (COSPAR) and the
International Union of Radio Science (URSI) [Bilitza, 2001] [IRIL, 2007]. The
aim of the project is to develop and improve the international IRI standards for
the specification of ionospheric densities and temperatures [Bilitza, 2001]. The
Center for Atmospheric Research in the University of Massachusetts Lowell

(UMLCAR) adapted the IRI-2001 model to be used in MS-Windows platform
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[UMLCAR, 2007]. In order to show the capabilities of the models, the results
of the METU-C models have been compared with the UMLCAR edition of the
IRI-2001 model results for the time period of interest during well-known Space
Weather events of April 2002 [Senalp et al., 2007d]. The results have also been
compared with the results of the METU-NN model.

The case study of METU-NN-C Model with Polynomial representation in
nonlinearity was presented in Chapter 2. The case studies of METU-NN-C
Models with Bezier Curve representation and B-Spline Curve representation in

nonlinearity were presented in Chapter 3 and 4, respectively.

The construction work of the METU-NN and METU-NN-C models are carried
out in the development mode. It is composed of “training phase or learning
phase” and “test phase” [Tulunay Y. et al., 2004a]. METU-NN model for
forecasting TEC and a case study using the model were presented [Tulunay E.

et al., 2004a].

As in Chapter 2, 3 and 4, for the training and validation within the development
mode of the METU-NN model, TEC data evaluated from GPS measurements
in 1 April — 31 May 2000 and 2001 at Chilbolton (51.8° N; 1.26° W) receiving
station have been used. Operation has been performed on another data set by
producing the forecast TEC values at Hailsham (50.9° N; 0.3° E) GPS receiving
station for selected months in 2002. The intrinsic information about the solar
activity is again achieved by choosing the time periods for input data with the
similar solar activity. Also the seasonal dependency is again taken into
account. Table 2.1 in Chapter 2 summarizes selected training, validation within

development and validation within operation time intervals.
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The value of the TEC at the time instant k is designated by f(k). The output is
f(k+60). It is the value of the TEC to be observed 60 minutes later than the
present time. There are eight inputs fed into the METU-NN model. The eight

input parameters are explained as follows,

p—

. The present value of the TEC, f(k): see Equation 2.1 in Chapter 2
2. First Difference,

A,(k) = fk) - fik-60) (.1
3. Second Difference,
M(k)=4,(k) - 4; (k-60) (5.2)
4. Relative Difference,
RA(k) = Ay(k) / fik) (5.3)

. Cosine component of minute, m, of the day: see Equation 2.2 in Chapter 2
. Sine component of the minute of the day: see Equation 2.3 in Chapter 2

. Cosine component of day, d, of the year: see Equation 2.4 in Chapter 2

(o< BENEN BN e NV

. Sine component of the day of the year: see Equation 2.5 in Chapter 2

Among the various Neural Network structures the best configuration is found
to be the one with one hidden layer. In the previous study [Tulunay E. et al.,
2004a] 8 neurons were used in the hidden layer. In this study 6 hidden neurons
were tried. No significant increases in the errors were observed. Therefore, in
this work, the structure with 6 hidden neurons is preferred for the METU-NN
instead of 8 for the sake of similar architecture as in the METU-NN-C models.
There are eight inputs, six hidden neurons and 1 output in the feed-forward
structure. Figure 1.3 in Chapter 1 shows the architecture of the Neural Network
model. Here, the activation functions in the hidden layer are hyperbolic tangent

sigmoid transfer functions and the activation function in the output layer is
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pure linear transfer function. Levenberg-Marquardt Backpropagation algorithm

is used in training.

In this chapter, the results of the models have been compared.

5.2 Test of Hypothesis

It is useful to make assumptions about the populations involved in order to
reach statistical decisions on error values [Spiegel et al., 2000]. Such
assumptions are called “statistical hypotheses”. A “null hypothesis” denoted by
Ho occures when there is no difference between two decisions, i.e. any
observed difference is due to fluctuations in sampling from the same
population. Any hypothesis different from Hp is called an ‘“alternative
hypothesis” and denoted by H,;. For example, if the null hypothesis is Hy:
population mean: p = 0.01, then one possible alternative hypothesis may be H;:

pn#0.01 [Spiegel et al., 2000].

Procedures that help us to decide whether to accept or reject null hypothesis are
called “tests of hypotheses” [Spiegel et al., 2000]. In testing a null hypothesis,
the maximum probability with which we can risk an error is named as “level of
significance” of the test. For example, a = 0.05 level of significance means

95% confidence. [Spiegel et al., 2000].

One of the “tests of hypotheses” is “t-test” [MATLAB, 2002]. One tailed or
two tailed t-tests can be used. Depending on the number of tails and the level of
significance, critical values or z scores on the distribution plots can be found in

lookup tables. As an example, Table 5.1 gives some of the critical values of z

[Spiegel et al., 2000].
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Table 5.1. Critical Values of z [Spiegel et al., 2000]

Level of
0.10 0.05 0.01 0.005 0.002
Significance, o
Critical values of z -1.28 -1.645 -2.33 -2.58 -2.88
for one-tailed tests orl1.28 |and1.645| or2.33 | or2.58 | or2.88
Critical values of z -1.645 -1.96 -2.58 -2.81 -3.08
for two-tailed tests | and 1.645 | and 1.96 |and 2.58 | and 2.81 | and 3.08

To determine whether a sample from a normal distribution (x: i.e. errors) could
have mean p, t-test can be used [MATLAB, 2002]. In t-test, the test statistic is

chosen to be as follows [Spiegel et al., 2000],

I
o

5.4

where p is the population mean, x is the sample mean, ¢ is the sample

standard deviation, i.e. square root of varience, and n is the sample size.

As an example, if the level of significance, a, is 0.05, and two-tailed test is to
be performed, then by using the Table 5.1 and the Equation 5.4, the interval of
z can be obtained as,

—196<*"* [ <196
o

(5.5

If z is not in the interval, then the result, h, is 1 and you can reject the null
hypothesis that a sample from a normal distribution (x: errors) could have
mean L, at the significance level o. If h is 0, then you can not reject the null

hypothesis at the a level of significance [MATLAB, 2002].
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5.3 Error Distributions for METU-NN and METU-C Models

The error values, i.e. the difference of observed and forecast TEC values, are
used in observing the distributions for the results of the four of the models. The
models are METU-NN, METU-C with Polynomial nonlinearity, METU-C with
Bezier nonlinearity, and METU-C with B-Spline nonlinearity.

The error histograms for four of the model results are plotted. In addition to
those, the histograms of random samples from normal distributions with the
same means and same standard deviations are plotted for four of the cases.
Figures 5.1, 5.3, 5.5 and 5.7 are the error histograms for METU-NN, METU-C
with polynomial nonlinearity, METU-C with Bezier curve nonlinearity, and
METU-C with B-Spline curve nonlinearity model results, respectively. Figures
5.2, 5.4, 5.6 and 5.8 are the histograms of random samples from normal
distributions with the same means and same standard deviations for four of the

cases in Figures 5.1, 5.3, 5.5 and 5.7, respectively.
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Figure 5.1. The error histogram for METU-NN model results.
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Figure 5.2. The histogram of a random sample from a normal distribution with

the same mean and same standard deviation for the case in Figure 5.1.
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Figure 5.3. The error histogram for METU-C with Polynomial nonlinearity

representation model results.
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Figure 5.4. The histogram of a random sample from a normal distribution with

the same mean and same standard deviation for the case in Figure 5.3.
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Figure 5.5. The error histogram for METU-C with Bezier curve nonlinearity

representation model results.
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Figure 5.6. The histogram of a random sample from a normal distribution with

the same mean and same standard deviation for the case in Figure 5.5.
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Figure 5.7. The error histogram for METU-C with B-Spline curve nonlinearity

representation model results.
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Error Histogram for a Rand.Mormal Distr. (dashed)(mu=0.124, std=1.755)
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Figure 5.8. The histogram of a random sample from a normal distribution with

the same mean and same standard deviation for the case in Figure 5.7.

The empirical cumulative distribution function (CDF) plots have qualitative
visual values. In addition to those, they are useful for general-purpose
goodness-of-fit hypothesis testing, such as the Kolmogorov-Smirnov tests. In
those tests the test statistic is the largest deviation of the empirical CDF from a
hypothesized theoretical CDF [MATLAB, 2002]. For each of the model,
empirical cumulative distribution function (CDF) of the error values in the data
sample is plotted. Superimposeed to this, the CDF of a random sample from a
normal distribution with the same mean and same standard deviation is plotted
for each case. Figures 5.9, 5.10, 5.11, and 5.12 have the empirical CDF plots
(in solid) for METU-NN, METU-C with polynomial nonlinearity, METU-C
with Bezier curve nonlinearity, and METU-C with B-Spline curve nonlinearity
model results, respectively. Superimposed to those, the empirical CDF plots (in
dashed) for random samples from normal distributions with the same means

and same standard deviations for four of the cases.

70



1.827) and Rand.Mor.Distr.(dashed)

-0.204, std

Fx)of Err.Hist. for METU-NM{=olid){mu

Figure 5.9. The empirical CDF plots for METU-NN model results (solid), and

for random sample from a normal distr. with the same p and same ¢ (dashed).
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Figure 5.10. The empirical CDF plots for METU-C with Polynomial
nonlinearity representation model results (solid), and for random sample from a

normal distr. with the same p and same 6 (dashed) for the case.
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Fixiof Err.Hist.for METU-C:Bez.nl.(solidi{imu=0.125, std=1.750} and Rand.Mor. Distr.(dashed)
1

09

0.8

0.7

0B

0.5

Flx)

0.4

0.3

0z

0.1

Figure 5.11. The empirical CDF plots for METU-C with Bezier curve
nonlinearity representation model results (solid), and for random sample from a

normal distr. with the same p and same ¢ (dashed) for the case.
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Fix)of Err.Hist.for METU-C:BSp.nl.(solid){mu=0.108, std=1.750) and Rand.Mor.Distr. (dashed)
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Figure 5.12. The empirical CDF plots for METU-C with B-Spline curve
nonlinearity representation model results (solid), and for random sample from a

normal distr. with the same p and same ¢ (dashed) for the case.

When the empirical CDF are plotted, it is observed that the error distributions
for the model results do not exactly fit to corresponding normal distributions,

but a rough assumption that they fit to the normal distributions can be made.

In order to observe the deviations, each cumulative distribution can be plotted
on the same x axis but this time on specially scaled y axis so that the normal
distributions will fit to a line. Thus, when the plot is linear, it indicates that the
sample can be modeled by a normal distribution. The plot is named as normal

probability plot [MATLAB, 2002]. Each plot has the error statistic of the
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corresponding model displayed with the symbol '+'. Superimposed is a robust
linear fit of the sample order statistics [MATLAB, 2002]. To sum up, the
purpose of a normal probability plot is to graphically decide whether the data
in x could come from a normal distribution. If the data are normal the plot will

be linear, otherwise there will be curvatures in the plot [MATLAB, 2002].

Figures 5.13, 5.14, 5.15, and 5.16 have the normal probability plots (in +) for
METU-NN, METU-C with polynomial nonlinearity, METU-C with Bezier
curve nonlinearity, and METU-C with B-Spline curve nonlinearity model

results, respectively. Superimposed to those, linear fits (in dashed) are plotted.

Mormal Prob. Plot of Err Hist.for METU-MM{mu=-0.204, std=1.827)
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Figure 5.13. The normal probability plot (in +) for METU-NN model results,
and the linear fit (in dashed)
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Marmal Prob. Plat of Err Hist.for METU-C:Polyn.nl. (mu=-0.038, std=1.7391)
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Figure 5.14. The normal probability plot (in +) for METU-C with polynomial

nonlinearity model results, and the linear fit (in dashed)
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Marmal Prob. Plot of Err.Hist.for METU-C:Bez.nl.(mu=0.125, std=1.750)
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Figure 5.15. The normal probability plot (in +) for METU-C with Bezier curve

nonlinearity model results, and the linear fit (in dashed)
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Marmal Prob. Plat of Er.Hist.for METU-C:BSp.nl.(mu=0.108, std=1.750)
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Figure 5.16. The normal probability plot (in +) for METU-C with B-Spline

curve nonlinearity model results, and the linear fit (in dashed)

When the normal probability plots are plotted, it is observed that the error
distributions for the model results have curvatures and do not exactly fit to the
superimposed lines. Thus, they do not exactly fit to corresponding normal
distributions, but a rough assumption that they fit to the normal distributions

can be made, as it has been made in observing the empirical CDF plots.

In Figures 5.15 and 5.16, for the METU-C models with Bezier and B-Spline
nonlinearity representations, the distributions of the error statistic values are
more condansed in small absolute error regions when compared with the ones
in Figures 5.13 and 5.14 which are for the METU-NN model and METU-C

model with Polynomial nonlinearity representation, respectively. Thus, the
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METU-C model results with Bezier and B-Spline nonlinearity representations

are successful.

5.4 Test of Hypothesis for METU-NN and METU-C Models

In the error comparison and analysis, the error values, i.e. the differences of
observed and forecast values, are used in t-tests for four of the models. The
models are METU-NN, METU-C with Polynomial nonlinearity, METU-C with
Bezier nonlinearity, and METU-C with B-Spline nonlinearity. First of all, the
population mean is assumed to be zero, i.e. p = 0. The sample sizes are n =
7942 for four of the model results. The sample means and standard deviations
are calculated. Then, using the Equation 5.4, the intervals of hypotheses are

calculated.

In the t-test, let the null hypothesis be Hy: pn = 0.

We have assumed that the error distributions were normal. With this
assumption, according to the t-tests applied when the result, h is 1 and you can
reject the null hypothesis at the significance level a. When h is 0, then you
cannot reject the null hypothesis at the a level of significance [MATLAB,
2002].

Table 5.2 gives the t-test results of the models for o = 10™°. Similarly, Table

5.3 gives the error statistics when a = 0.05. Also, upper and lower bounds of

the hypotheses are given.
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Table 5.2. Error Statistics Table for o = 107°

METU- | METU-C with | METU-C with | METU-C with
NN (Polynomial | (Bezier C.n.l.)| (B-Spline C.
Forecast | n.l.) Forecast Forecast n.l.) Forecast
t-test result
h=1 h=0 h=0 h=0
(boolean)
Upper bound
-0.072 0.092 0.253 0.235
of hyp.(TECu)
Lower bound
-0.337 -0.168 -0.002 -0.019
of hyp.(TECu)
Table 5.3. Error Statistics Table for a = 0.05
METU- | METU-C with | METU-C with | METU-C with
NN (Polynomial | (Bezier C.n.l.)| (B-Spline C.
Forecast | n.l.) Forecast Forecast n.l.) Forecast
t-test result
h=1 h=0 h=1 h=1
(boolean)
Upper bound
-0.164 0.002 0.164 0.146
of hyp.(TECu)
Lower bound
-0.245 -0.077 0.087 0.069
of hyp.(TECu)

When the t-test results for o = 0.05 are computed, it is observed that only the

hypothesis for METU-C with polynomial nonlinearity representation model
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results can not be rejected. Thus, when the confidence is decreased, i.e. when a
is increased, it is observed that the null hypotheses tend to be rejected. It can be

due to the fact that the distributions are not exactly normal.

5.5 Upper and Lower Bounds of the Cross Correlation Coefficients

Confidence limits of the cross correlation coefficient can be calculated for
normal distributions [Spiegel et al., 2000]. Let n be the sample size, r be the
cross correlation coefficient, Z be a statistic, Z, be the positive critical value of
Z for two-tailed tests. With a rough approximation, the Z statistic is normally
distributed with mean, ,, and standard deviation, o, [Spiegel et al., 2000]. The

confidence limits for , are as follows [Spiegel et al., 2000],

I+r 1
U =72+7,o. =1.1513.10g( jiZN.( j 5.6
| | =) a3 oo

The confidence limits for upper and lower bounds of cross correlation

coefficient, p, are as follows [Spiegel et al., 2000],

I = 1.1513.10g(1+—p1j (5.7)
1-p,

i =1.1513.10g(mj (5.8)
1-p,

Thus, the upper and lower bounds for cross correlation coefficients can be
computed. In our case studies, n = 7942. Let Z.. = 1.96 which is the positive
critical value of Z for two-tailed tests for 95% confidence. Then, using the

cross correlation coefficients, i.e. r values, and Equations 5.6 to 5.8, the upper
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and lower bounds of the cross correlation coefficients for four of the case

studies are calculated.

Error table for comparison of the METU-NN model operation performance
with the METU-C models is given on Table 5.4. The lower and upper bounds
of cross correlation coefficients at the 95% confidence limits, i.e. the level of

significance 1s a=0.05 [Spiegel et al., 2000], are also given.

Table 5.4. Error Table

METU- | METU-C with | METU-C with | METU-C with
NN (Polynomial | (Bezier C. n.l.) | (B-Spline C.
Forecast| n.l.) Forecast Forecast n.l.) Forecast
Absolute Error
1.22 1.17 1.11 1.10
(TECu)
Normalized Error
6.95 6.39 5.51 5.51
(%)
RMS Error
1.84 1.79 1.75 1.75
(TECu)
Cross Correlation
5 98.6 98.6 98.7 98.7
Coeff. (x10™)
upper bound when
5 98.6 98.7 98.8 98.8
0=0.05(x107)
lower bound when
5 98.5 98.6 98.6 98.6
0=0.05(x107)
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At the significance level of a=0.05, the cross correlation coefficients are
significant. METU-C models with Bezier and B-Spline curve nonlinearity
representations have higher performance results with smaller error values
[Senalp et al., 2006d]. For example, the absolute error value for the METU-C
model with B-Spline nonlinearity representation is 10% smaller than the

absolute error value for the METU-NN model performance.

5.6 Performance Comparison of METU-NN and METU-C Models

A performance table is prepared and given in Table 5.5 in order to compare the
METU-NN model with METU-C models in qualitative and quantitative
manner. The absolute error values and the cross-correlation coefficients
between one hour ahead forecast and observed TEC values in April-May 2002
at Hailsham as the quantitative performance values, the improvements of the
results of the METU-C models with respect to the METU-NN model results,

and the qualitative advantages of the models are given in the table.
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Table 5.5. Performance Table

METU-
METU-C
NN
Z Z Z
METU-| METU-C % METU-C % METU—C%
NN with |2 | with |2 | with | 2
5 5 5
(Polynomial g (Bezier C. g (B-Spline g
> > >
n.l) 2 n.l) S | Cnl)| g
2 e o
Forecast| Forecast E Forecast E Forecast E
Absolute Error
1.22 1.17 4% 1.11 9% 1.10 |10%
(TECu)
Normalized
6.95 6.39 8% 551 (21%]| 5.51 (21%
Error (%)
Cross Corr.
5 98.6 98.6 0% | 98.7 A% | 987 |.1%
Coeff. (x10™)
Need for past
YES NO + NO + NO +
input data
Transparency of
NO YES + YES + YES +
internal var.
Computation
time in operation| D A + B + C +
A<B<C<D

When the performance table is examined, after qualitative and quantitative
performance comparisons are made it can easily be concluded that METU-C

models are superior to the METU-NN model, which is also successful. Among
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the models presented the optimum one is the METU-C model with Bezier
curve nonlinearity representations. It has advantages. The results of it have
small error values and large cross-correlation coefficient. It has simple inputs
because it does not need past inputs. It has transparent internal variables, which
can be observed and used by the system designers or operators. It is fast in

terms of the computation time in operation.

5.7 Comparison of IRI-2001, METU-NN and METU-C Models

International Reference Ionosphere (IRI) is an international project sponsored
by the COSPAR and URSI [Bilitza, 2001] [IRI, 2007]. UMLCAR adapted the
IRI-2001 model to be used in MS-Windows platform [UMLCAR, 2007]. The
results of the METU-C models have been compared with the UMLCAR
edition of the IRI-2001 model results for the time period of interest during
well-known Space Weather events of April 2002 [Senalp et al., 2007d]. The

results have also been compared with the results of the METU-NN model.

The program of the IRI-2001 model gives a single TEC value of a location of
interest at a time of interest at a run. The usable locations cover the whole
geographic regions of the Earth in 0.1-degree intervals of latititudes and
longitudes. The usable time is of 15-minute intervals in terms of Universal

Time (UT) or Local Time (LT).

The use of the METU-NN-C technique to forecast the 10 minutes values of the
TEC at 5th, 15th, 25th, 35th, 45th and 55th minutes of the hours, one hour
ahead, during high solar activity in the solar cycle were examined and the

results were presented in Chapters 2, 3, 4, and 5.
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In order to use the common location and common time instants within the
comparison of the IRI-2001, METU-NN and METU-C model results, the 15th
and 45th minutes of hours during 18-19 April 2002 at the location of Hailsham
(50.9° N; 0.3° E) GPS receiving station are selected.

The observed TEC data was provided by RAL, UK [COST271 WG 4 STSM,
2002]. One hour in advance forecast TEC values were obtained by using
METU-NN model [Tulunay E. et al., 2004a] [Senalp et al., 2006d]. One hour
in advance forecast TEC values were also obtained by using METU-C models
and the results were presented in Chapters 2, 3, 4 and 5. The TEC values of the

time and location of interest are obtained by using the IRI-2001 model as well.
Table 5.6 gives the absolute error values and the cross correlation coefficients

between the observed and forecast TEC values at Hailsham in 18-19 April
2002.

Table 5.6. Error Table

IRI- | METU- [METU-C with| METU-C with  METU-C with
2001 NN (Polynomial |(Bezier C. n.l.)| (B-Spline C.
Output |Forecast| n.1.) Forecast Forecast n.l.) Forecast
Absolute
15.04 | 2.09 1.95 1.61 1.62
Error (TECu)
Cross Corr.
, | 83.8 98.6 98.8 98.4 98.4
Coeff.(x10™)
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When the absolute error values are compared, it is seen that the results of the
METU models have smaller error values than the IRI-2001 model results. Also
the cross-correlation coefficients of the observed and forecast TEC values by
METU models are higher than the result obtained by IRI-2001 model. The
optimum model is the METU-C model with Bezier curve nonlinearity

representation.

Figure 5.17 gives the superimposed variations of the observed TEC values at
Hailsham in 18-19 April 2002, TEC outputs of the IRI-2001, forecast TEC
values by METU-NN and forecast TEC values by METU-C with Bezier curve

nonlinearity representation.
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Figure 5.17. Observed GPS TEC values for disturbed solar-terrestrial
conditions (solid), IRI-2001 TEC outputs (dash-dotted) 1 hour ahead Forecast
TEC values by METU-NN (large dotted) and 1 hour ahead Forecast TEC
values by METU-C with Bezier curve nonlinearity representations (small
dotted) for the enlarged portion of the time of validation period: 18-19 April
2002 at Hailsham.

When the superimposed TEC variations are compared, it is seen that the
variation of one hour in advance forecast TEC values by METU-C with Bezier
curve nonlinearity representation follows the observed TEC variation with

small error values.
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Figure 5.18 gives the scatter diagram for the observed TEC values and IRI-
2001 outputs with best-fit line. Figure 5.19 gives the scatter diagram and best-
fit line for the observed and forecast TEC values by METU-C with Bezier

curve nonlinearity representations.
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Figure 5.18. Scatter diagram with best-fit line for observed TEC values and
IRI-2001 TEC outputs in 18-19 April 2002 at Hailsham.
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Figure 5.19. Scatter diagram with best-fit line for observed TEC values and one
hour ahead forecast TEC values by METU-C with Bezier curve nonlinearity
representations in 18-19 April 2002 at Hailsham.

When the scatter diagrams are compared it is seen that the deviations of the
scatter points are small for the results of METU-C with Bezier curve
nonlinearity. Also, the best-fit line in the scatter diagram for the results of the
METU-C has a slope near 45° and passes through the origin. Thus, the system
reached the correct operating point within the system identification by METU
models and the forecasting errors are small. Also the METU-C model learned

the shape of the inherent nonlinearities. Thus the deviations from straight line
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are small in the scatter diagram, and the correlation coefficients are very close

to unity.

To sum up, the METU-C models in the case studies are competitive and they
have high performance results when compared with the internationally popular
ionospheric model, IRI-2001. The results provide important achievements of
the METU-C models. Among the models presented, METU-C with Bezier

curve nonlinearity representation is outstanding.
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CHAPTER 6

FORECASTING TEC MAPS BY USING METU-NN AND
BEZIER SURFACE PATCHES

6.1 Introduction

The model developed is called the Middle East Technical University Neural
Network (METU-NN) Model. In order to understand more about the complex
response of the magnetosphere and ionosphere to extreme solar events, this
time the series of space weather events in November 2003 are chosen. Total
Electron Content (TEC) values of the ionosphere are forecast during these
space weather events. In order to facilitate an easier interpretation of the
forecast TEC values, maps of TEC are produced by using the Bezier surface

fitting technique [Tulunay E. et al., 2006a] [Senalp et al., 2006a].

It is most desirable to drive mathematical ionospheric forecasting and mapping
models based on physics to incorporate them in ionospheric services and

activities. However, this is a very complex and prohibitively difficult task.

In general, mapping of an ionospheric quantity such as ionospheric critical
frequency (foF2) or TEC means that a surface fitting is performed based on
known values of that quantity on specified points of a surface. Mapping carried

out by using a certain method, extrapolates the known discrete values
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continuously to the whole surface. There are various widely used ionospheric
mapping techniques using both the ionosonde-derived TEC and the GPS-TEC
[Samardjiev et al., 1993] [Cander, 2003] [Jakowski et al., 2004] [Stamper et
al., 2004] [Zolesi et al., 2004]. Samardjiev et al. (1993) used contouring
techniques for ionospheric mapping including Kriging technique, which
performs best when compared with inverse distance squared technique and
minimum curvature technique. Cander (2003) discussed the findings of the EU
Action COST 251 and plans for the COST 271 on TEC forecast and mapping.
Jakowski et al. (2004) and Stamper et al. (2004) presented near real time and
real time TEC mappings over Europe. Zolesi et al. (2004) presented a method
based on a regional model of the standard vertical incidence monthly median
ionospheric characteristics, which was updated with real-time ionospheric
observations for mapping of ionospheric conditions over Europe. It is suitable
to be used in real time for operational applications. These studies did not report

mapping based on forecasts.

In this work, a method has been developed to perform TEC forecast mapping
by using METU-NN and Bezier surfaces for the first time [Tulunay E. et al.,
2006a]. The METU-NN model [Tulunay Y. et al., 2004a] is used to produce
TEC forecast maps over Europe using Bezier surfaces which are being used for
surface generation in computer graphics [Rogers and Adams, 1990]. Brief
information concerning mapping and Bezier surfaces is presented in section
6.4. In this work, one hour in advance forecast of the 10 minute TEC maps
over Europe during November 2003 space weather events has been introduced

and the results are presented.

Neural Network models are designed and trained with significant inputs. In this

approach, the basic inputs for the model are the past TEC values and the
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temporal inputs as explained in section 6.3. The forecast results are promising
for system operators. This work leads availability of TEC forecast mapping
results by METU-NN for making comparisons with the results by METU-NN-
C in Chapter 7. The Neural Network architecture of METU-NN is modular.
Due to modularity, the model and its input parameters are open to new
developments depending on future requirements. The sub blocks in the METU-
NN have got one input layer, one hidden layer with the neurons and one output
layer. The Neural Network is trained and used to forecast the TEC values for
the grids located over Europe. Using these forecast TEC values of the grids,

TEC maps as Bezier surfaces are presented.

The main contributions of this work are organization of data for teaching
complex processes, Neural Network based modeling of a highly complex
nonlinear process such as the TEC forecast mapping, and general
demonstration of learning capability and reaching a proper operating point by

calculating cross correlations and errors, respectively.

6.2 Preparation of Data for the METU-NN

Ten minute vertical TEC data were evaluated from the GPS measurements that
took place between 1st of November and the 11th of December 2003 over
Europe centered over Italy based on slant TEC data [Ciraolo, 2004] [Radicella,
2004]. The geographic coverage of the TEC data is between latitudes of (35.5°
N; 47.5° N) and longitudes of (5.5° E; 19.5° E). The data belong to the 104 grid
locations spaced every 2° longitude by 1° latitude intervals in space. These data
consist of the training, test and validation subsets during the development and

operation modes of the modeling process.

Table 6.1 illustrates how the data were assigned to be employed by the METU-

NN model during the ‘training’, ‘test’, and ‘validation’ modes.

94



Table 6.1. Selection of the time periods for the input data

PHASE YEAR DAYS

Train 2003 1-15 Nov.

Test 2003 30 Nov. — 11 Dec.
Validation 2003 16-29 Nov.

In particular, the period of major space weather events were chosen for the
‘validation’ mode. That is, the solar active region, the sunspot group 484 (or
near the sunspot group 501) was the seat of a major coronal mass ejection
(CME) on 18th of November 2003. This CME triggered a geomagnetic storm
on 20th of November 2003 at around 08:00 UT. This storm was qualified by
the three-hour planetary magnetic index of Kp as 8+ [SpaceWeather, 2007]
[NGDC, 2007]. However, in principle all the data subsets were chosen from
periods of similar Zurich sunspot numbers. The models contain intrinsic

information about the solar activity.

6.3 Construction of the Neural Network Based Model

The construction work of the Neural Network based model is carried out in the
development mode. It is composed of “training phase or learning phase” and
“test phase” [Y. Tulunay et al., 2004a]. Training and test phases are best
performed with independent but statistically similar data sets. It is natural that
the nonlinear inherent processes are to be learned by the model during the
learning phase as fast as possible. The Levenberg-Marquardt Backpropagation
algorithm is chosen to be the most convenient one during the training for this

work.
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The model parameters are optimized and fixed at the end of the construction
procedure. In the operation mode the validation data are used for calculating

the errors, point by point, to measure the performance of the model.

The value of the TEC at the time instant k is designated by f(k). The output is
f(k+60) in 60 minutes in advance forecast. It is the value of the TEC to be
observed 1 hour later than the present time for this work. There are 419 inputs
fed into the METU-NN model. 3 of the inputs are the temporal inputs; i.e. dnd,
Cm, and Sm. The rest of the input parameters are the inputs related to the
history of the TEC values for the grids over Europe, i.e. 104 f(k) values, 104
Ai(k) values, 104 Ay(k) values, and 104 RA(k) values. Inputs for each METU-

NN module are as follows,

1. The present value of the TEC, f(k): see Equation 2.1 in Chapter 2

. First Difference of the TEC, A;(k): see Equation 5.1 in Chapter 5

. Second Difference of the TEC, A,(k): see Equation 5.2 in Chapter 5

. Relative Difference of the TEC, RA(k): see Equation 5.3 in Chapter 5

hn B~ W

. Serial date number difference, dnd,
dnd = Present date number — The first d.n. of the data of interest (6.1)
6. Cosine component of minute of the day, Cm: see Equation 2.2 in Chapter 2

7. Sine component of the minute of the day, Sm: see Equation 2.3 in Chapter 2

Date numbers start with 1% Jan. of year 0, as date number 1. By calculating the
serial date number difference the start value is shifted to the first date of the
data of interest. In this study, the first date of the data of interest is 1 Nov.
2003, 00:05 UT.
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Figure 1.3 in Chapter 1 shows the architecture of each of the Neural Network
module. The modular structure of the METU-NN provides the development
and operation modes to be fast and robust. In this work, the METU-NN model
has got 104 modules of Neural Networks. The number of modules corresponds
to the number of grids for the region of interest. The inputs of the modules are
the present TEC values (#:104) and the first differences (#:104) for each grid;
first, second and the relative differences (#:3) for the grid of interest; the
present date number difference (#:1) and the present trigonometric components
(#:2) of minute of the day. Thus, for each module there are 214 inputs. When
common inputs of the modules are not counted, the overall number of the
inputs for the METU-NN model is 419. During training the parameters, i.e. the
weights, of the METU-NN modules are determined for each grid. METU-NN
model has 104 outputs corresponding to 104 modules. The output of each
module is the forecast value of TEC for the grid of interest. For the modules,
among the various Neural Network structures the best configurations are found
to be the ones with one hidden layer. 6 neurons are used in the hidden layer of

the modules.

6.4 Brief Information Concerning Mapping and Bezier Surfaces

Mapping covers a portion of land. As an example consider a portion of
European area which is bounded by the latitudes (35.5° N; 47.5° N) and
longitudes (5.5° E; 19.5° E). This area is partitioned by using a grid structure.

Grid points or local control points are thus defined.

In practice, the number of control points can be increased by increasing the
number of defining polygon vertices. Local control provides the capability of
including possible variations around a local control point without interfering

other distant localities of the mapping area.
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Bezier surfaces, which are used in such mapping for the first time, have some
advantages [Rogers and Adams, 1990]. The availability of the GPS data to be
used for TEC evaluation provides larger number of polygon vertices for Bezier

surfaces. Thus, better surface fit is achieved.

TEC values are forecast by using METU-NN model. Mapping is performed
over the area of interest by using Bezier surface. Bezier surface is
advantageous since it can provide more control points to increase the quality of
fit as compared with other surface patches such as bilinear, ruled, linear Coons,
and Coons bicubic surface patches. Coons bicubic surface needs the
specification of precise, nonintuitive mathematical information such as
position, tangent and twist vectors as in the cubic spline curves [Rogers and
Adams, 1990]. Therefore there are difficulties limiting its use in practice.

These difficulties are overcome by using Bezier surfaces.

In this work, 104 grid locations corresponding to 104 defining polygon vertices
are used to obtain sufficient control in mapping. The TEC forecast value at any

location on the Bezier surface can be calculated as,

TEC(u,w) = Zn:Zm:BHLjH o (u)‘Km,j (w) (6.2)
where
n) . 4
J, ()= Ou A-u)" (6.3)
m) . 4
K, (w) =(jjw’(l—w)m_’ (6.4)

B matrix values correspond to the METU-NN outputs for the grids,
n+1 = 8 is the number of longitude grids for each latitude,

m+1 = 13 is the number of latitude grids for each longitude,
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u is the normalized longitude variable in the region of interest,

w is the normalized latitude variable in the region of interest.

6.5 Results

The TEC trained METU-NN model is used for forecasting TEC values 1 hour
in advance during 16-29 November 2003. The time period includes the major
November 2003 space weather event. Then, maps of TEC are constructed by
using the Bezier surface mapping technique. Observed TEC values are used
only for the grid locations. METU-NN is trained with the observed TEC data to
give the outputs, the forecast TEC values, for the grid locations. The TEC
mapping is not performed during training because the observed TEC values for
the whole region are not a priori except the grid locations. After the forecast
operation TEC mapping is performed. Figure 6.1a illustrates the variations of
both the 1 hour in advance forecast and observed TEC values for the grid
location: (13.5° E; 41.5° N), during 16-29 November 2003. Figure 6.1b,
covering the period 19-21 November 2003, is a subset of Figure 6.1a. The
diurnal minute long variation of the TEC values is shown in the vertical axis
and the horizontal axis is the days of the November 2003 in minute intervals.
To a first approximation the forecast and observed GPS TEC values are in very
good agreement on visual inspection. In 20 November 2003, the three hour
planetary magnetic indices of Kp = 6+ during 09:00 — 12:00 UT, Kp = 8-
during 12:00 — 15:00 UT, Kp = 9- during 15:00 — 18:00 UT, Kp = 9- during
18:00 — 21:00 UT, and Kp = 8 during 21:00 — 24:00 UT indicate effects of the
extreme events [SpaceWeather, 2007] [NGDC, 2007]. Thus, the forecast and
observed TEC values are daytime high TEC values during the daytime of 20
November 2003. The forecast TEC values during the afternoon of 20
November 2003 are afternoon-time high TEC values as expected, but the

observed TEC values for the period are not afternoon-time high TEC values.
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This may be due to lack of actual data in calculation of the observed GPS-TEC

values due to communication cut offs during the extreme events.

EI:I 1 1 1 T 1 1

TEG (TECU)

| | 1 | |
a &0 100 1580 200 250 300 350
time for validation period(hour)

Figure 6.1a. Observed (dotted) and 1 hour ahead forecast (solid) TEC during
16 Nov.2003 01:10UT-29 Nov.2003 24:00UT for the grid point (13.5°E;

41.5°N)
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Figure 6.1b. Observed (dotted) and 1 hour ahead forecast (solid) TEC during
19 Nov.2003 00:00UT-21 Nov.2003 24:00UT for the grid point (13.5°E;
41.5°N)

Figure 6.2 illustrates the variations of the observed TEC values and 1 hour in
advance forecast TEC maps for the big geomagnetic storms of 20™ November

2003, at 09:30, 13:40, 15:30, and 17:20 UT, respectively.
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Figure 6.2. Observed TEC values and 1 hour ahead forecast TEC Map

examples during 20 Nov. 2003
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Figure 6.3a presents the scatter diagram of the 1 hour in advance forecast and
observed TEC data for whole of the 104 grid locations during 16-29 November
2003. Figures 6.3b, 6.3c, and 6.3d present the scatter diagrams of the forecast
and the observed TEC data at the grid locations: (11.5° E; 38.5° N); (13.5" E;
41.5° N); and (15.5° E; 44.5° N) respectively during 16 November to 29
November 2003.
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Figure 6.3a. Scatter Diagram (dots) with best-fit line (solid) for the 1 hour

ahead Forecast mapping and Observed TEC values for all grid points for the
validation time 16-29 November 2003.

103



100

a0 ¢ .

a0 .

60 .

1 h ahead Forecast TEC values (TECL

a 20 40 B0 a0 100
Observed TEC values (TECU)

Figure 6.3b. Scatter Diagram (dots) with best-fit line (solid) for the 1 hour

ahead Forecast mapping and Observed TEC values for the single grid point
(11.5° E; 38.5° N) for the validation time 16-29 November 2003.
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Figure 6.3c. Scatter Diagram (dots) with best-fit line (solid) for the 1 hour

ahead Forecast mapping and Observed TEC values for the single grid point
(13.5° E; 41.5° N) for the validation time 16-29 November 2003.
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Figure 6.3d. Scatter Diagram (dots) with best-fit line (solid) for the 1 hour

ahead Forecast mapping and Observed TEC values for the single grid point
(15.5° E; 44.5° N) for the validation time 16-29 November 2003.

Best-fit lines of near to 45° slopes, almost passing through the origins in the

Figures 6.3a to 6.3d, indicate small forecasting errors.

In order to examine the performance of the METU-NN during the geomagnetic
storm on 20 November 2003, reference can be made to Figures 6.4a and 6.4b.
Figure 6.4a illustrates the scatter diagram of the 1 hour in advance forecast and
observed TEC data for whole of the 104 grid locations during 20 November
2003. Figure 6.4b presents the scatter diagram of the forecast and the observed
TEC data at the grid location: (13.5° E; 41.5° N) during 20 November 2003.
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Figure 6.4a. Scatter Diagram (dots) with best-fit line (solid) for the 1 hour
ahead Forecast mapping and Observed TEC values for all grid points for the
day 20 November 2003.
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Figure 6.4b. Scatter Diagram (dots) with best-fit line (solid) for the 1 hour

ahead Forecast mapping and Observed TEC values for the single grid point
(13.5° E; 41.5° N) for the day 20 Nov. 2003.

Summarizing the results, the METU-NN model with Bezier surface TEC
mapping learned the shape of the inherent nonlinearities during the severe
space weather conditions of the November 2003 period. In other words, the
system reached the global error minimum by reaching the correct operating

point.
The overall Absolute TEC error map for 1 hour in advance forecasts is plotted

in the Figure 6.5. The quantified performance of the model can be studied in

terms of the values of errors presented in Tables 6.2 and 6.3.
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Figure 6.5. Absolute Error Map of observed and 1 hour ahead forecast TEC for
16-29 Nov. 2003.

It is interesting to note that forecasts inside the region of interest exhibit a
better match with the observed data leading smaller error values in the inner
grids when compared with the corner grids. The reason is that the presence of
the neighbor grids increases the learning performance of the model for
forecasting. Selecting a wider area in training than the area in operation can be
proposed. This may be achieved by discarding the outermost grids of the area
of interest during operation and performance analysis. In the current work none
of the grids are discarded and the overall performance of the model is

presented for discussion.
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Table 6.2. Error Table for 1 h in advance forecasts for 16-29 Nov. 2003

11.5°E 13.5°E | 15.5°E Overall
Location
38.5°N | 41.5°N | 44.5°N | TEC Map
Absolute Error
1.58 1.49 1.52 1.65
(TECu)
Normalized Error
14.29 15.22 16.30 15.63
(%)
Root Mean Square
2.16 2.05 2.14 2.30
Error (TECu)
Cross Correlation
97.75 97.46 96.96 96.99

Coefficient (x107?)

Table 6.3. Error Table for 1 h in advance forecasts for the day: 20 Nov. 2003

11.5°E 13.5°E 15.5°E Overall
Location
38.5°N | 41.5°N | 44.5°N | TEC Map
Absolute Error
2.90 3.29 3.15 3.26
(TECu)
Normalized Error
19.45 27.32 26.84 29.98
(%)
Root Mean Square
4.07 4.39 4.34 4.50
Error (TECu)
Cross Correlation
97.64 96.94 96.45 96.40

Coefficient (x107?)
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Tables 6.2 and 6.3 present the average error values for 1 hour in advance
forecasts during 16 to 29 November 2003, and during 20 November 2003,
respectively. The first three columns of the tables present the error values for
the grid locations: (11.5° E; 38.5° N), (13.5° E; 41.5° N), and (15.5° E; 44.5° N)
respectively. For the overall TEC forecast mapping, error values in the fourth
columns of Tables 6.2 and 6.3 are presented. They are small. The average
absolute error, for example, in Table 6.2 for the 1 hour in advance forecast, is
less than 2 TEC units (TECu), which is important for practical applications.
The forecast mapping error values are within operational tolerance [Radicella,
2004]. The cross correlation coefficients between the computed and observed

TEC values are high as noted in Tables 6.2 and 6.3.

6.6 Conclusions

Characteristics of near-Earth space play vital roles in the ionospheric and trans-
1onospheric propagation of radio waves. These parameters are subject to drastic
variations depending on the space weather conditions. Thus the reliable
operations of radio communication as well as navigation systems and
spacecraft control systems largely depend on the reliable information
concerning the ionospheric parameters such as TEC. Especially forecast of
TEC values are essential in high frequency (HF) and other type of

telecommunication system planning.

Space weather conditions also affect Earth bound systems, such as pipelines
and electric power networks. By receiving alerts and warnings, pipeline
managers can provide efficient systems decreasing the resultant corrosion rate

on the pipes, and power companies can minimize resultant power damages.
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Mapping is required in telecommunication planning as it involves the whole

land, such as Europe in this case.

In this work, a data driven, Neural Network model forecasting the TEC values
on the grids is offered, and then Bezier surfaces are used in obtaining the
forecast TEC maps over Europe, which 1is very important for
telecommunication and navigation especially during disturbed ionospheric

conditions [Tulunay E. et al., 2006a].

Forecasts of an ionospheric process, the TEC variation, using Neural Network
based METU-NN model was employed in order to forecast the TEC values 1
hour in advance. The model learned the shape of the inherent nonlinearities and
the system reached the correct operating point in the operation time period of
16-29 November 2003. Forecasting errors are small. This fact is the indication
of the system reaching the correct operating point within training. In other
terminology, the system is prevented to reach local minima and it is succeeded
to reach the global minimum of the error cost function. The correlation
coefficients are very close to unity, which means that the METU-NN model
learned the shape of the inherent nonlinearities. Therefore, the deviations from
straight line are small in the scatter diagrams. In other words, it is shown that
METU-NN modules, trained and tested with properly organized data are
promising in modeling the complex nonlinear processes, such as the

unpredictable variability of the ionospheric TEC values.

Briefly, it is the first time that METU-NN modules and Bezier surfaces are

used to forecast and map TEC values over Europe [Tulunay E. et al., 2006a].
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CHAPTER 7

FORECASTING TEC MAPS BY USING METU-NN-C AND
BEZIER SURFACE PATCHES

7.1 Introduction

Middle East Technical University Neural Network and Cascade Modeling
(METU-NN-C) technique by using polynomial, Bezier curve and B-Spline
curve nonlinearity representations to forecast Total Electron Content (TEC)
values for single station were presented in Chapters 2, 3 and 4. In Chapter 6,
forecasting TEC maps by METU-NN model was presented. In this chapter, the
use of METU-NN-C technique based on Hammerstein system modeling with
Bezier curve nonlinearity representation in system identification to forecast
complex nonlinear processes, TEC grid values; and the use of the Bezier
surface in mapping of the METU-NN-C outputs, i.e. mapping of the forecast
grid data values, are presented [Senalp et al., 2006b]. In order to compare the
METU-NN-C results with the METU-NN results presented in Chapter 6, the
series of space weather events in November 2003 are chosen again. 1 hour

ahead forecast mapping of the TEC values during disturbances is performed.

This chapter also outlines preparation of data, gives the results with error
tables, cross correlation coefficients and scatter diagrams. It discusses the

generalized and fast learning and operation of the METU-NN-C models with
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Bezier curve nonlinearities, and mapping by using Bezier surfaces [Rogers and

Adams, 1990].

In our approach, the basic inputs for the model are the Bezier curve
representation of the present TEC values on the grids and the temporal inputs.
The state-like internal variables are estimated by METU-NN. The static
nonlinearity of METU-C represented by Bezier curves, and the dynamic
linearity of METU-C are estimated by using the cascade modeling technique.
The outputs are 1 hour in advance forecast TEC grid values. Then, those values

are used to obtain TEC forecast maps by employing Bezier surfaces.

7.2 Preparation of Data for the METU-NN

As in Chapter 6, ten-minute vertical TEC data, which were evaluated from the
GPS measurements of the time interval, 1 November - 11 December 2003, over
a portion of the European area centered over Italy, based on slant TEC data
were used herewith [Ciraolo, 2004] [Radicella, 2004]. Again the data belong to
the 104 grid locations spaced every 2° longitude by 1° latitude intervals in

space between latitudes of (35.5°N; 47.5°N) and longitudes of (5.5°E; 19.5°E).

Table 6.1 in Chapter 6 illustrates how the data were assigned to be employed
by the METU-NN and METU-NN-C models during the training, test and

validation within development and within operation.

In this chapter, the period of major space weather events in November 2003
were chosen for the ‘validation’ mode again. In principle all the data subsets
were chosen from periods of similar Zurich sunspot numbers. Thus, the models

contain intrinsic information about the solar activity.
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7.3 Construction of the METU-NN

The METU-NN-C model has 104 METU-C modules. Each module has its
state-like variable estimator module, the METU-NN module. For the process of
interest, Feedforward Neural Network architecture with four neurons in one
hidden layer is used in each of the METU-NN module. The description
continues by considering any one of the 104 METU-NN modules. Hyperbolic
tangent sigmoids in the hidden layer and a linear function in the output layer
are the activation functions. The hidden layer outputs of each of the METU-
NN module can represent the static part of the state-like internal variables in
cascade modeling. During training Levenberg-Marquardt Backpropagation
algorithm is used [Hagan and Menhaj, 1994] [Haykin, 1999]. Each METU-NN
module is used to estimate the internal variables of its corresponding METU-C
module with Bezier curve nonlinearity. The 107 inputs used for each METU-

NN module are as follows,

1 - 104. The present grid values of the TEC, f(k): see Equation 2.1 in Chapter 2
105. Cosine component of minute, m, of the day: see Equation 2.2 in Chapter 2
106. Sine component of the minute of the day: see Equation 2.3 in Chapter 2

107. Serial date number difference, dnd: see Equation 6.1 in Chapter 6

While the output layer of each METU-NN hosts the TEC value being observed
60 minutes later than the present time in a grid location, the outputs of the
hidden layer in each METU-NN are four of the internal variables for each
METU-C.

7.4 Construction of the METU- C

The METU-NN-C model has 104 METU-C modules. In the development

mode, the construction work of each METU-C module is carried out in
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“training phase” and “test phase” as in the Neural Network approach [Tulunay
Y. et al., 2004a]. The parameters of the cascaded static nonlinear block and
dynamic linear block in each METU-C module are optimized in the training
phase. The description continues by considering any one of the 104 METU-C
modules. In each METU-C, the inputs, uy(k), are normalized in order to use
them in Bezier curve representation of the nonlinearity. The outputs of the
nonlinear element in each METU-C, 1i.e. the internal variables x4(k), can be
expressed as Bezier curves as in Equation 1.22 in Chapter 1. In the equation, R
= 107 is the number of inputs, m+1 = 3+1 = 4 is the number of defining
polygon points. Thus, the product R(m+1) = 428 gives the number of static
block coefficients, By, to be determined. The defining polygon points are the

local control points [Rogers and Adams, 1990].

The output y;(k) is represented as in Equation 1.24 in Chapter 1 by using a
dynamic linearity relationship for the internal variables x4(k) and their past
values x4(k-j). For the equation, the product S.(n+1) gives the number of
dynamic internal variables. The coefficients of the linearity, i.e. hy(j), are also

determined.

The outputs of the first stage, i.e. 4 outputs of the static nonlinear block, x4(k),
and their one hour and two hours past values are stored as internal variables so
that S=4 and n=2 in Equation 1.24 in Chapter 1. These internal variables are
the inputs to the second stage of the cascade model, i.e. 12 inputs for the

dynamic linear block of the METU-C model.
For fast learning of the process with large sized input data the “Levenberg-

Marquardt” optimization algorithm has been used within training again.

Memorization is prevented by using independent validation data and by
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terminating training when the gradient of the validation within development
error becomes near zero. In the operation mode another data set is used for

calculating the errors, point by point, to measure the performance of the model.

The output of each METU-C module is the value of the TEC to be observed 60
minutes later than the present time in one of the 104 grid locations. Then with
the 104 outputs of the METU-NN-C model, 1 hour ahead TEC forecast maps

over Europe are obtained by using Bezier surfaces [Rogers and Adams, 1990].

TEC forecast value at any location on the map can be computed by using
Bezier surfaces as in Equation 6.2 in Chapter 6. In the equation, B matrix

values correspond to the METU-NN-C outputs for the grids.

7.5 Results

Operation has been performed on validation data set by producing the forecast
TEC maps over Europe for 16-29 November 2003. The cross correlation
coefficients between the observed TEC and forecast TEC at 104 grid locations
have been calculated. The root mean square, normalized and absolute error
values have also been calculated. Tables 7.1 and 7.2 are the error tables
displaying the results for three grid locations and for the overall TEC map. The
time period includes the major November 2003 space weather (SW) event,
which caused disturbance on TEC variation on 20 November 2003

[SpaceWeather, 2007].
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Table 7.1. Error Table for 1 h in advance TEC forecasts on 16-29 Nov. 2003

11.5°E 13.5°E | 15.5°E Overall
Location
38.5°N | 41.5°N | 44.5°N | TEC Map
Absolute Error
1.42 1.32 1.38 1.50
(TECu)
Normalized Error
13.09 13.88 15.27 14.75
(%)
Root Mean Square
2.03 1.89 1.95 2.14
Error (TECu)
Cross Correlation
97.74 97.56 97.27 97.08

Coefficient (x107?)

Table 7.2. Error Table for 1 h in advance TEC forecasts on 19-21 Nov. 2003

11.5°E 13.5°E 15.5°E Overall
Location
38.5°N | 41.5°N | 44.5°N | TEC Map
Absolute Error
1.89 1.98 1.99 2.12
(TECu)
Normalized Error
15.72 18.25 18.67 20.29
(%)
Root Mean Square
2.90 291 2.94 3.16
Error (TECu)
Cross Correlation
97.56 97.20 97.03 96.71

Coefficient (x107?)
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Figure 7.1 shows the observed and forecast TEC variation at the location:
13.5°E, 41.5°N for 16-29 Nov. 2003. Figure 7.2 shows the scatter diagram for
the same location and for 16-29 Nov. 2003. Figure 7.3 gives the variations of
the observed TEC values and 1 hour in advance forecast TEC maps for the SW
event of 20" Noyv. 2003, at 13:00, 15:30 and 17:20 UT, respectively.

In the scatter diagram in Figure 7.2, the fitted line has a slope close to one and
the forecasting errors are small for system operators. Thus, the system reached
the correct operating point or the global minimum of the error cost function in
system identification. Deviations from straight line are small in the scatter
diagram and the correlation coefficients are very close to unity. Thus, the
METU-NN-C model learned the shape of the inherent nonlinearities. The
model gives accurate TEC forecast values and maps before, during and after

the disturbed conditions as in Figures 7.1 and 7.3.
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Figure 7.1. Location: 13.5°E, 41.5°N: Observed (dotted) and 1 hour in advance
forecast (solid) TEC variation for 16-29 Nov. 2003.
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Figure 7.2. Location: 13.5°E, 41.5°N: Scatter diagram for 16-29 Nov. 2003
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Figure 7.3. Observed TEC values and 1 hour ahead forecast TEC Map
examples for 20 Nov. 2003.
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The overall Absolute TEC error map is plotted in the Figure 7.4. The
occurrence of the neighbor grids increases the learning performance of the

model for forecasting.

Absolute Errar Walue (TECLI

Latitude { ®) 36 B Longitude ()

Figure 7.4. Absolute error map for observed and 1 h. ahead forecast TEC
during 16-29 Nov. 2003

7.6 Conclusions
Since the reliable operations of radio communication as well as navigation

systems and spacecraft control systems largely depend on the reliable
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information concerning the ionospheric parameters such as TEC, developing
new techniques to identify those processes with higher accuracy is the basic
requirement, and forecast mapping of TEC values are essential in high
frequency (HF) telecommunication system planning as it involves the whole

land, such as Europe in this and previous cases.

In this work, Hammerstein system modeling based METU-NN-C to forecast
the TEC values on the grids is offered, and then Bezier surfaces are used in
obtaining the forecast TEC maps over Europe. This is very important for
telecommunication and navigation especially during disturbed ionospheric

conditions.

In this work, the developed METU-NN-C model has 104 METU-NN and 104
METU-C modules for the process of interest. The METU-NN modules
estimated the state-like variables of the METU-C modules. The METU-NN-C
learned the shape of the inherent nonlinearities and reached the correct
operating points even in the disturbed Space Weather conditions. It can be
concluded that the identification of the complex nonlinear processes, such as
the TEC forecast mapping, can be achieved by Hammerstein forms in which a
static nonlinear block and a linear dynamic block are cascaded. The inner
locations on the forecast maps gave higher performance results because those

have more neighbor grids increasing the learning performance.

The METU-NN-C model results are compared with the METU-NN model

results being presented in Chapter 6.

Considering the error tables and scatter diagrams in Chapter 6 and 7, it is

concluded that METU-NN-C models are successful in process identification.
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Error values in Table 7.1 are smaller than the ones in Table 6.2, and cross
correlation coefficients in Table 7.1 are higher. For the overall TEC forecast
mapping, error values in the fourth columns of Tables 7.1 and 7.2 are small.
The forecast mapping error values are within operational tolerance [Radicella,

2004].

Briefly, it is the first time that METU-NN-C modules and Bezier surfaces are

used to forecast and map TEC values over Europe.
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CHAPTER 8

THE USE OF METU-NN-C FOR KNOWN NONLINEAR
DYNAMIC PROCESSES

8.1 Introduction

Middle East Technical University Neural Network and Cascade Modeling
(METU-NN-C) technique with Bezier curve nonlinearity is used to identify a
simple forced pendulum; a spring loaded inverted double pendulum with a
forced table; two speakers; and a Van der Pol oscillator in order to further show
generalized usage of METU-NN-C [Senalp et al., 2006e] [Senalp et al., 2007b]
[Senalp, 2007a] [Senalp, 2007c].

8.2 Simple Forced Pendulum
The simple forced pendulum in Figure 8.1 is a well-known nonlinear problem,

whose state equations are known as follows [Franklin et al., 1990],

@=—-bw-Q* sinﬁ+LT. 8.1)
ml* "

d=w (8.2)
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where Ti, is the input torque generated by a buffeting wind, 0 is the output

angular position, b is the coefficient of drag, and Q = ,/‘% is the oscillation

frequency for small initial conditions, small angles [Franklin et al., 1990].

Figure 8.1. Schematic of a simple pendulum [Franklin et al., 1990]

8.2.1 Data for METU-NN-C

The response of the simple forced pendulum angle to a complex input torque
generated by a buffeting wind was obtained [Franklin et al, 1990]. Figure 8.2
shows the input representing random wind force acting on the pendulum,

whereas Figure 8.3 shows the response of the pendulum angle [Franklin et al,

1990].
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Figure 8.2. Torque generated by a buffeting wind [Franklin et al., 1990]
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Figure 8.3. Response of the pendulum angle to the torque given in Figure 8.2.

128



Those input and response data are used to identify the process by METU-NN-C
model. The sampling time is selected as 0.05 sec. By giving the initial
conditions, the 0.05 sec in advance values of the response of the pendulum are

to be obtained by using the METU-NN-C model [Senalp et al., 2007b].

8.2.2 Construction of the METU-NN

The METU-NN-C model has one METU-C module. The module has its state-
like variable estimator module, the METU-NN module. The 2 inputs used for
the METU-NN module are the initial angle and the present torque. For the
process of interest, Feedforward Neural Network architecture with two neurons
in one hidden layer is used in the METU-NN module. Hyperbolic tangent
sigmoids in the hidden layer and a linear function in the output layer are the
activation functions. The hidden layer outputs of the METU-NN module can
represent the static part of the state-like internal variables in cascade modeling.
During training Levenberg-Marquardt Backpropagation algorithm has been

used [Hagan and Menhaj, 1994] [Haykin, 1999].

The METU-NN module is used to estimate the internal variables of the METU-
C module with Bezier curve nonlinearity. While the output layer of the METU-
NN hosts the response of the pendulum angle value being observed 0.05 sec
later than the initial time, the outputs of the hidden layer in the METU-NN are
two of the internal variables for the METU-C.

8.2.3 Construction of the METU-C

The METU-NN-C model has one METU-C module. The parameters of the
cascaded static nonlinear block and dynamic linear block in the METU-C
module are optimized in the training phase. The inputs are normalized in order
to use them in Bezier curve representation of the static nonlinearity. The

outputs of the nonlinear element in each METU-C, i.e. the internal variables
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xq(k), can be expressed as Bezier curves as in Equation 1.22 in Chapter 1. In
the equation, R = 2 is the number of inputs, m+1 = 3+1 = 4 is the number of
defining polygon points. Thus, the product R(m+1) = 8 gives the number of

static block coefficients, By, to be determined.

The output y(k) is represented as in Equation 1.24 in Chapter 1. The

coefficients of the linearity, i.e. hy(j), are also determined.

The outputs of the first stage, i.e. 2 outputs of the static nonlinear block, x4(k),
and their one step and two step past values are stored as internal variables so
that S=2 and n=2 in Equation 1.24 in Chapter 1. These internal variables are
the inputs to the second stage of the cascade model, i.e. S.(n+1) = 6 inputs for

the dynamic linear block of the METU-C model.

The “Levenberg-Marquardt” optimization algorithm has been used within

training again.

The output of the METU-C module is the value of the response of the
pendulum angle to be observed 0.05 sec later than the initial time. In the
operation mode the data set is used for calculating the errors, point by point, to

measure the performance of the model.

8.2.4 Results

The root mean square, normalized and absolute error values; the cross
correlation coefficients between the observed angles and estimated angles have
been calculated [Senalp et al., 2007b]. Table 8.1 is the error table displaying
the results. Figure 8.4 shows the observed and estimated angle variation. Figure

8.5 shows the scatter diagram.
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Table 8.1. Error Table for estimating the response of the pendulum angle

Absolute Error (rad) 0.0007
Normalized Error (%) 9.45

Root Mean Square Error (rad)  0.0009
Cross Corr. Coeff. (x107?) 98.12

0.015

0.01

0.005

Theta (rad)
[

-0.005

001 F

1 1 | 1
0.5 1 1.4 2 25 3 34 4 45 5
tire for validation period (sec)

-0.015 L L
]

Figure 8.4. Estimated (solid), and observed angle variation (dotted).
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Figure 8.5. Scatter diagram for the estimated and observed angle values

In the scatter diagram the fitted line has a slope close to one and the forecasting
errors are small. Thus, the system reached the correct operating point. METU-
NN-C model learned the shape of the inherent nonlinearities because
deviations from straight line are small in the scatter diagram and the correlation

coefficients are very close to unity.

8.3 Spring Loaded Inverted Double Pendulum with a Forced Table

The inverted double pendulum is an important example for model developers
[Aristoff et al., 2003]. In this section, the joint angles of a spring loaded
inverted double pendulum with a forced table are estimated by using METU-
NN-C with Bezier nonlinearity representations [Senalp et al., 2006e] [Senalp et
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al., 2007b]. In Figure 8.6, spring loaded inverted double pendulum with a

forced table is shown schematically.

Figure 8.6. Inverted double pendulum

The positions of gravity centers of the pendulum rods, s; and s;, in terms of the

base table position, sy, and pendulum joint angles, ®; and ®,, are as follows,

o |50 +1,5in®, ()
ST s, k) (8.3)
|8, (k) +1,.sin®, (k) +1,.5in ©, (k)
Sz(k)_{ l,.cos®,(k)+1,.cos®, (k) } ®4)

The torques, T; and T,, generated by the springs in the system are as follows,
T.(k)=K.0O,(k) (8.5)

where K is the spring constant.
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8.3.1 Data for METU-NN-C

By using MATLAB SimMechanics simulations of inverted double pendulums
are performed [MATLAB, 2002]. Performing those simulations creates input
data and observed data for inverted pendulum systems to be used in

development and operation of the METU-NN-C model.

As a first input data set, pendulum joint angle values, ®; and ®;; generated
torques of the springs at the pendulum joints, T} and T5; and the external force
values applied to the base table in the system, F;,, are observed after 10-second
simulations with 0.02 seconds sampling time. For the time interval of 0.1 and
0.15 seconds, Fj, is adjusted to 160N in x direction; for the time interval of 5

and 5.05 seconds, Fj, is adjusted to 320N in the —x direction.

To obtain a second input data set, the same simulation procedure is performed
after changing the external force values to be applied on the base table of the
system. For the time interval of 0.1 and 0.15 seconds, Fj, is adjusted to 80N in
x direction; for the time interval of 5 and 5.05 seconds, Fj, is adjusted to 160N

in the —x direction.

In the simulations, two of the thin pendulum rod (B, B») masses, m; and mj,
are chosen to be 1 kg.; two of the thin pendulum rod lengths, /; and [,, are
chosen to be 1 m.; and the base table (By) mass, m, is chosen to be 5 kg. The
spring constants, K, of the springs at the pendulum joints are chosen to be —0.9.
The damper constants at the pendulum joints are chosen to be zero. The

simulation blocks are given in Figure 8.7 [MATLAB, 2002].
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8.3.2 Construction of the METU-NN

The METU-NN-C model has one METU-C module. The module has its state-
like variable estimator module, the METU-NN module. The 5 inputs used for
the METU-NN module are 2 initial angle values, ®; and ®,, for two joints, 2
present torque values, T and T,, for the joints, and 1 external force value, Fj,,
applied on the base table. For the process of interest, Feedforward Neural
Network architecture with six neurons in one hidden layer is used in the
METU-NN module. Hyperbolic tangent sigmoids in the hidden layer and a
linear function in the output layer are the activation functions. The hidden layer
outputs of the METU-NN module can represent the static part of the state-like
internal variables in cascade modeling. During training Levenberg-Marquardt
Backpropagation algorithm has been used [Hagan and Menhaj, 1994] [Haykin,
1999].

The METU-NN module is used to estimate the internal variables of the METU-
C module with Bezier curve nonlinearity. While the output layer of the METU-
NN hosts the response of the pendulum angle values being observed 0.02 sec
later than the initial time, the outputs of the hidden layer in the METU-NN are
six of the internal variables for the METU-C.

8.3.3 Construction of the METU-C

The METU-NN-C model has one METU-C module. The parameters of the
cascaded static nonlinear block and dynamic linear block in the METU-C
module are optimized in the training phase. The inputs are normalized in order
to use them in Bezier curve representation of the static nonlinearity. The
outputs of the nonlinear element in each METU-C, i.e. the internal variables
Xq(k), can be expressed as Bezier curves as in Equation 1.22 in Chapter 1. In

the equation, R = 5 is the number of inputs, m+1 = 3+1 = 4 is the number of
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defining polygon points. Thus, the product R(m+1) = 20 gives the number of

static block coefficients, By, to be determined.

The output y(k) is represented as in Equation 1.24 in Chapter 1. The

coefficients of the linearity, i.e. hy(j), are also determined.

The outputs of the first stage, i.e. 6 outputs of the static nonlinear block, x4(k),
and their one step and two step past values are stored as internal variables so
that S=6 and n=2 in Equation 1.24 in Chapter 1. These internal variables are
the inputs to the second stage of the cascade model, i.e. S.(n+1) = 18 inputs for

the dynamic linear block of the METU-C model.

The “Levenberg-Marquardt” optimization algorithm has been used within

training again.

In the operation mode the data set is used for calculating the errors, point by
point, to measure the performance of the model. The output of the METU-C
module is the value of the response of the pendulum angle to be observed 0.02

sec later than the initial time.

8.3.4 Results

For the performance analysis, the METU-C model is operated with the second
data set. Also another METU-NN model with additional inputs, i.e. first and
second differences of the present inputs, is developed and operated for
performance analysis. The cross correlation coefficients between the observed
angles and estimated angles have been calculated. The root mean square,
normalized and absolute error values have also been calculated [Senalp et al.,

2006e]. Tables 8.2 and 8.3 are the error tables displaying the results for joints 1
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and 2, respectively. Figures 8.8 and 8.9 show the observed and estimated angle
variations by METU-NN for the two joints. Figures 8.10 and 8.11 show the
observed and estimated angle variations by METU-NN-C for the two joints.
Scatter diagrams for the same cases are given in Figures 8.12, 8.13, 8.14, and

8.15.

Table 8.2. Error Table for estimating the response of the pendulum angle, ©,

METU-C
METU-NN
(Bezier)
Absolute Error (°) 0.296 0.038
Root Mean Square Error (°) 0.493 0.103
Cross Corr. Coeff. (x107) 99.7 99.9

Table 8.3. Error Table for estimating the response of the pendulum angle, ®,

METU-C
METU-NN
(Bezier)
Absolute Error (°) 0.327 0.103
Root Mean Square Error (°) 0.534 0.226
Cross Corr. Coeff. (xlO"z) 99.2 99.8
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In the scatter diagrams the fitted lines have slope close to one and the
forecasting errors are small. Thus, the systems reached the correct operating
points. Deviations from straight line are small in the scatter diagrams and the
correlation coefficients are very close to unity. Thus, the models learned the
shape of the inherent nonlinearities. When the performance results of METU-
NN and METU-NN-C models are compared it is observed that the error values
for the METU-NN-C model are smaller, thus the scatter diagrams for the
METU-NN-C model have slopes closer to one. Also, the cross-correlation
coefficients for the METU-NN-C performance results are higher and the
deviations of the scatter points for the METU-NN-C performance results are

smaller when they are compared with the METU-NN performance results.

8.4 Identification of Speakers by METU-NN-C

The objective of this section is to give the results of the first attempt on
identification of speakers by using cascade modeling technique. In this work
the METU-NN-C model is used to identify speakers by using some features
related to speech of the speakers [Senalp, 2007a]. The speech features used are
normalized Mel Frequency Cepstrum Coefficients (MFCC) and (Moving
Picture Expert Group) MPEG frames of the speakers.

8.4.1. Inputs and Outputs for METU-NN-C

The raw input data have been organized by Dr. C. Ergun under supervision of
Assoc. Prof. Dr. T. Ciloglu [Ciloglu and Ergun, 2007]. It consists of MFCC
and MPEG frames of speakes. Each MFCC frame is of size 16 and each MPEG
frame is of size 24. The harmonic components of one MPEG frame are of size
8. The raw data consist of normalized MFCC frames of size 16 and normalized
harmonic components of the MPEG frames of size 8. Thus, one total frame

consists of 16+8=24 components [Ciloglu and Ergun, 2007].
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By using the raw input data, the inputs and outputs for the METU-NN-C are
organized by E.T. Senalp. Training data set of two speakers with 793 feature
vectors, validation in training data set of two speakers with 428 feature vectors,
and validation in operation data set of two speakers with 8555 feature vectors

are prepared.

The outputs of the METU-NN-C model are the identification codes for the
speakers. The identification code targets for the Speakers A and B are 0 and 1,

respectively.

8.4.2. METU-NN-C Model for Speaker Identification

A small group at the METU in Ankara has works on data driven generic
modeling of near-Earth space processes since 1990’s. The Neural Network
based model is the METU-NN model [Tulunay, 1991] [Altinay et al., 1997]
[Tulunay Y. et al., 2004a] [Tulunay Y. et al., 2004b] [Tulunay E. et al., 2006a].
Cascade modeling of several natural, nonlinear, dynamic processes have been
performed and presented in this Thesis and in national and international journal
and conferences cited in the Thesis. The Hammerstein system modeling based
cascade model, METU-NN-C, has been developed and employed [Senalp et
al., 2006c]. METU-NN has been used as one of the important modules of the
METU-NN-C to estimate the state-like interior variables of METU-C. The
nonlinearities have been represented by using several representations including
the Bezier curves [Senalp et al., 2006b] [Senalp et al., 2006d] [Senalp et al.,
2006e] [Senalp et al., 2007b].

In this work, METU-NN-C with Bezier curve nonlinearity representations are

used to identify speakers. The model has 24 inputs, 12 interior variables and

one output. First, the interior variables are estimated by using METU-NN.
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METU-NN is a feed-forward NN having 24 inputs, 12 hidden neurons in one
hidden layer and one output. Hyperbolic tangent sigmoid activation functions
are used in the first layer and linear transfer function is used in the second

layer. Levenberg-Marquardt Backpropagation algorithm is used within training

of the METU-NN.

Using the estimates of the interior variables of the METU-C, and using the
Bezier curve nonlinearity representations of the inputs, the parameters of the
nonlinear static block METU-C are identified by Levenberg-Marquardt
optimization. The internal variables x4(k), are expressed by using the Bezier
curve representations as in Equation 1.22 in Chapter 1. The number of defining

polygon points is chosen to be 4 in the Bezier curves.

Using the interior variables and training set outputs; the parameters of the
linear block of the METU-C are identified by Levenberg-Marquardt
optimization as well. Then, the METU-C is ready to be operated by using the

validation in operation data set.

8.4.3. Results

The performance of the model is visualized by obtaining the observed and
estimated outputs of the METU-C using the validation in operation data set
[Senalp, 2007a]. The observed identification codes for the Speakers A and B

are 0 and 1, respectively.

Figure 8.16 gives the observed (targets, dashed) and estimated (METU-C
outputs, solid) identification values for the frames of the speakers. Figure 8.17
gives the observed (targets, dashed) and limited average values of the estimated

(METU-C outputs, solid) identification values for the frames of the speakers.
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The speakers are identified successfully. As a first attempt, the performance of

the METU-NN-C model to identify the speakers is shown to be promising.

8.5 Van der Pol Oscillator

Van der Pol oscillator is an important basic example for unforced nonlinear
second order systems having limit cycles in their solution space [MATLAB,
2002] [Uraz, 2007]. In this section, the solution values of a Van der Pol
oscillator are estimated by using METU-NN-C with Bezier nonlinearity
representations [Senalp, 2007c].
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The equation of a Van der Pol oscillator is as follows,
y—p1=y)y+y=0 (8.6)

where >0 is a scalar parameter. The Van der Pol oscillator equation when p =

1 is given as follows,

y1_(1_)’12)).’1+y1=0 (8.7)

The system as first order differential equations is given as follows,

V=Y, (8.8)

yzz_Y1+(1_Y12)Y2 (8.9)

8.5.1 Data for METU-NN-C

By using MATLAB, simulations of Van der Pol oscillators with different
initial conditions are performed [MATLAB, 2002]. Performing those
simulations creates input data and observed data for Van der Pol oscillator

systems to be used in development and operation of the METU-NN-C model.

As a first input data set, solutions of the Van der Pol oscillators with initial
conditions, yai2 (t=0) = {-1, 1}; yoi2 (€ =0) = {0, 1}; ya2 (t=0) = {1, 1};
vaiz2 (t =0) = {-1, -1}; ye12 (t = 0) = {0, -1}; and ys1» (t = 0) = {1, -1}, are
simulated. Those data are used in ‘training’ phase. Then, as another input data
set, solutions of the Van der Pol oscillators with initial condition, ygi (t =0) =
{-0.5, 0}; and yn12 (t = 0) = {0.5, 0}, are simulated. Those data are used in

‘validation within training’ and ‘validation within operation’ phases.

Solutions are observed after 20-second simulations with 0.1 seconds sampling

time [MATLAB, 2002].
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8.5.2 Construction of the METU-NN

The METU-NN-C model has one METU-C module. The module has its state-
like variable estimator module, the METU-NN module. The 2 inputs used for
the METU-NN module are 2 solution values, y; and y,. For the process of
interest, Feedforward Neural Network architecture with two neurons in one
hidden layer is used in the METU-NN module. Hyperbolic tangent sigmoids in
the hidden layer and a linear function in the output layer 