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İSMET YALABIK

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

JUNE 2007



Approval of the Graduate School of Natural and Applied Sciences.

Prof. Dr. Canan Özgen
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ABSTRACT

A PATTERN CLASSIFICATION APPROACH BOOSTED WITH GENETIC

ALGORITHMS

Yalabık, İsmet

M.S., Department of Computer Engineering

Supervisor : Prof. Dr. Fatoş Tünay Yarman-Vural

June 2007, 55 pages

Ensemble learning is a multiple-classifier machine learning approach which com-

bines, produces collections and ensembles statistical classifiers to build up more accu-

rate classifier than the individual classifiers. Bagging, boosting and voting methods

are the basic examples of ensemble learning. In this thesis, a novel boosting technique

targeting to solve partial problems of AdaBoost, a well-known boosting algorithm, is

proposed. The proposed systems find an elegant way of boosting a bunch of classi-

fiers successively to form a better classifier than each ensembled classifier. AdaBoost

algorithm employs a greedy search over hypothesis space to find a good suboptimal

solution. On the other hand, this work proposes an evolutionary search with genetic

algorithms instead of greedy search. Empirical results show that classification with

boosted evolutionary computing outperforms AdaBoost in equivalent experimental

environments.

Keywords: Boosting, AdaBoost, Genetic Algorithms, Evolutionary Computing, Clas-

sification, Pattern Recognition
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ÖZ

GENETİK ALGORİTMA İLE DESTEKLENMİŞ BİR ÖRÜNTÜ SINIFLANDIRMA

YAKLAŞIMI

Yalabık, İsmet

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Fatoş Tünay Yarman-Vural

Haziran 2007, 55 sayfa

Birleştirerek öğrenme, istatistiksel sınıflandırıcıları birleştirerek daha doğru bir sınıf-

landırıcı üreten, kolleksiyonlar oluşturan bir makina öğrenme yöntemidir. Çantala-

ma, destekleme ve oylama methodları bu yaklaşımın örneklerindendir. Bu çalışmada,

en iyi tanınan destekleme algoritmalarından olan Adaptif Destekleme’nin çeşitli prob-

lemlerini çözmeye çalışan yeni bir destekleme tekniği önerilmiştir. Önerilen sis-

temler, bir grup sınıflandırıcıyı birleştirmenin güzel bir yolunu bularak, birleştirilen

sınıflandırıcılardan daha kaliteli bir sınıflandırıcı bulmaktadır. Adaptif destekleme

daha iyi bir çözüm bulmak için buluşsal yöntemler kullanmaktadır. Öte yandan,

bu çalışma genetik algoritmalar ile evrimsel hesaplama yöntemi kullanarak daha iyi

bir eniyileme gerçekleştirmektedir. Deneysel sonuçlar, önerilen sistemlerin Adaptif

Destekleme yönteminden daha iyi performans sağladığını göstermektedir.

Anahtar Kelimeler: Destekleme, Adaptif Destekleme, Genetik Algoritmalar, Evrim-

sel Hesaplama, Sınıflandırma, Örüntü Tanıma
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CHAPTER 1

INTRODUCTION

Classification has always been a challenging task throughout the human history. Cat-

egorizing phenomenon like good and evil, black and white, poor and rich, healthy

and deadly, true and false, make human beings write books, do research and even

go war. Everyday life introduces people an enormous number of classification prob-

lems. Some of these classification problems are solved at sensory in a moment like

classification of objects, taste of a meat, smell of perfume, etc. On the other hand,

some problems like classifying cancer cells, military targets, etc. are hard and some-

times impossible problems to be solved.

Literally, in Webster Dictionary[1], classification is defined as the grouping of

things into classes or categories. These categories can change with respect to nature

of the problem and time.

In the domain of computer vision and pattern recognition, Duda et al. [2] define

pattern classification as the task of the classifier component is to use the feature vector

provided by the feature extractor and to assign the object to a category. Basically,

classification is the fundamental problem of pattern recognition.

The classical research on pattern classification gathers around designing single

classifier for a specific problem domain. Many approaches have been proposed from

simple methods to complex systems. Most of these methods perform well in small

sets having limited diversity. But, these methods could not carry on the same perfor-

mances in many real life problems. Another interesting point is that a set of classifiers

with similar training performances may have different generalization powers. Slight

or redundant changes in environment affect the performance and generalization abil-

ity of these classifiers drastically. In addition to these, “No free lunch theorem” claims

that it is impossible to design a single classifier that performs well in all of the search
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spaces of different classification tasks.

Based on many theoretical and practical reasons, a new learning paradigm, en-

semble learning, has emerged. Ensemble learning is the study of building collections

from a set of classifiers to form a more accurate classifier. Intelligent systems and

algorithms, which selects or fuses best classifiers with respect to nature of the data,

are produced under ensemble learning techniques: classifier fusion methods, termed

classifier selection, bagging and boosting [3]. Learning any data with combining sep-

arate and independent classifiers is called ensemble learning.

1.1 Related Work

Among all ensemble learning techniques, boosting has been attracted more attention

since mid-90’s. Boosting is originally inspired from Valiant’s PAC (Probably Ap-

proximately Correct) learning theory. Schapire et al. [4] define boosting as a general

problem of producing a very accurate prediction rule by combining rough, moderate

inaccurate rules of thumb. These rules are combined in such a way that at each step

moderate single classifier pays more attention on misclassified samples in previous

round. Based on this fact, error is reduced at each turn of the algorithm. Freund

and Schapire are the researchers that come up with the most successful and popular

boosting algorithm called AdaBoost.

AdaBoost algorithm starts with initializing equal weights to each sample. At each

stage of AdaBoost algorithm, moderate hypothesis with lowest error with respect to

weight distribution is selected for final classifier, than weights of each samples are

updated according to selected classifier as follows: weights of misclassified samples

are increased, on the contrary, weights of correctly classified samples are decreased.

Eventually, at each round, algorithm emphasizes misclassified samples like border

points, outliers [4]. Selection of the hypothesis with lowest error at each step provides

a greedy search over the search space. This work was later awarded with Gödel Prize

1 in 2003.

Viola et al. adapt AdaBoost algorithm with Haar-based features to make an excel-

lent face detector that can work almost real-time(up to 5 frame per second) [5].

1 The Godel prize has rewarded outstanding journal articles in theoretical computer science since
1993. For details, http://sigact.acm.org/prizes/godel/
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1.2 Motivation Behind the Proposed Systems

The main motivation in this thesis is the question that “Is it possible to find a more

accurate or optimal solution without starting or selecting a weak hypothesis that does

not have the lowest error among all hypotheses in boosting steps?” That is, whether

presence of another search technique other than greedy search used in AdaBoost

algorithm comes up to a more elegant final hypothesis with the same number of

boosted classifiers or not . Li et al. propose a less greedy approach than the classical

way of Schapire [4] by combining AdaBoost with floating search. This algorithms

deletes some of the selected hypotheses if in absence of these hypothesis performance

of final classifier increases [6].

In this study, an evolutionary search is proposed instead of greedy search that

the classical AdaBoost applies. Genetic Algorithms, successively boost hypothe-

ses which are coded as genes on the chromosomes (each chromosome represents

a boosted final classifier). Many performance evaluating functions calculating fit-

ness values are introduced to decide the strength of individuals in the population or

success of the solutions in the hypotheses space.

Proposed systems bear some superiorities compared to the classical AdaBoost al-

gorithms. Evolutionary search achieves higher classification rates in the same data

sets, however, complexity of combining boosting with evolutionary search is higher

than the complexity of AdaBoost itself. For that reason, performing evolutionary

search in problems with very large scales in terms of number of data and number of

feature dimension is almost impractical in absence of the high performance comput-

ing utilities.

1.3 Thesis Outline

Organization of this thesis is as follows, in Chapter 2, a literature survey on boosting,

AdaBoost and its variants are provided. Chapter 3 explains motivation of this work,

proposed systems and tools to accomplish proposed stems. In Chapter 4, after ex-

plaining experimental setup, results of proposed techniques compared to results of

AdaBoost. Finally, Chapter 5 concludes and gives future direction to this work and

general boosting theory.
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CHAPTER 2

BACKGROUND FOR BOOSTING AND EVOLUTIONARY

COMPUTING

In this chapter, the fundamental concepts of boosting and evolutionary computing,

which is necessary for the background of this study, will be presented. For this pur-

pose, the general problem of pattern classification will be presented and some pio-

neer works in boosting history will be discussed. The major goal of this chapter is to

give reader some fundamental material on boosting and lead to some problems that

this work provides addresses partial solutions.

2.1 Ensemble Learning: Multiple Classifier Systems

Throughout the development of pattern recognition systems, many classifiers have

been proposed under two fundamental views, namely, statistical (or decision theo-

retic) and syntactic (or structural). Statistical pattern recognition is based on statisti-

cal characterizations of patterns, assuming that the patterns are generated by proba-

bilistic sources. Examples for statistical pattern recognition systems are linear classi-

fiers such as Fishers Linear Discriminant, Naive Bayes Classifier, quadratic classifiers,

k-nearest neighbor, boosting, decision trees, Neural Networks, Bayesian Networks,

Support Vector Machines, Hidden Markov Models [2]. On the other hand, structural

pattern recognition is originated from the structural interrelationships and coherency

of features, items are presented pattern structures which can take into account more

complex interrelationships between features than simple numerical feature vectors

used in statistical classification [7]. Problems in syntactic pattern recognition are rep-

resented in strings of a formal language or graphs of relationships.

The learning algorithms, mentioned above, have successful applications and work
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well under restricted data characteristics. However, most of these techniques of-

fer single hypothesis over data distributions and basically suffer from three major

problems, namely, statistical problem, computational problem and representational

problem. Statistical problem arises when the search space is too large with respect

to the amount of data. A learning algorithm that suffers from the statistical prob-

lem is called high variance. Sometimes learning algorithm can not guarantee to find

the best hypothesis within the search space. In this case, the problem turns out to

be a computational one. A method that arises computational problem considered as

having computational variance. Finally, if the search space does not contain any hy-

potheses that are fairly good estimations to true solution, representational problem

arises [8]. An algorithm having representational problem is said to have high bias.

Some real world problems having thousands dimensional feature vectors and

thousands of data points decline the performance of classifiers that has impressive

accuracies in toy data sets. This fact drives scientist to make up larger training sets.

Notwithstanding, researchers have found themselves into a trade of that either rela-

tively simpler methods have to be introduced in order to reduce computational com-

plexity or high degree of computationally complex algorithms are produced to over-

come high bias and variance. Due to sharp development in computational power

and imaging technologies in last decades, more and more complex systems, even

combination of various learning algorithms, are proposed to the literature. Another

drawback commonly observed is that base methods (single classifier systems) show

varying accuracy due to the changing characteristics of given data. For example,

some classifiers can handle nonlinear data distributions, on the other hand, other al-

gorithms are not capable of handling nonlinear data distribution, but very robust to

outliers. These variations cause to emerge a new learning schema: Ensemble Learn-

ing combines multiple learning methods under the assumption that “two (or more)

heads are better than one”. The decisions of multiple hypotheses are combined in

ensemble learning to produce “better” results than the hypotheses alone.

Ensemble learning brings some partial solutions to the problems mentioned above.

In statistical pattern recognition, single classifier systems can generate a suboptimal

solution in consideration of insufficient amount of data. An optimal solution with

small amount of training data turns out to be a local minima in the real world data.

In such cases, ensemble learning has the ability to choose appropriate solution from
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several different hypotheses that all give same accuracy on the training data or sim-

ple voting schema of ensemble learning algorithm proposes better solutions. In case

of computational problem, forming the best hypothesis that fits the tens of thousands

training samples with Neural Networks or decision tree methods is almost impracti-

cal process. For this reason, many heuristics are applied to lower dimensionality and

complexity of the problem. Bagging and Boosting are two main approaches of En-

semble Learning that basically provides computationally simpler answers. Ensemble

learning addresses solution to representation problem by spanning the search space

with combining search spaces of base learners. Strategies like weighted voting, ma-

jority voting are able to form more accurate approximations [8].

Hereafter, Boosting, an Ensemble Learning Method, is discussed in various as-

pect.

2.2 Boosting

Boosting was first inspired from Valiant’s Probably Approximately Correct Theory

[9]. In this approach the learner gets samples that are classified according to a func-

tion from a certain class. The aim of the learner is to find a bounded approximation

of the function with high probability. The learner must be able to learn the concept

given any arbitrary approximation ratio, probability of success, or distribution of

the training samples [9]. In 1988, Micheal Kearns and Leslie G. Valiant first raise a

question of investigating whether a “weak” learning algorithm that is slightly better

than random guessing can be boosted into an arbitrarily accurate “strong” learning

algorithm [10]. It was 1989, when Schapire was able to come up with first polyno-

mial time boosting algorithm [11], then Freund improved much more efficient algo-

rithm that purifies Shapire’s algorithm form the certain practical drawbacks [12]. The

first experiments with these early boosting algorithms were carried out by Drucker,

Schapire and Simard on an Optical Character Recognition task [13].

Schapire summarizes boosting in his famous work “The Boosting Approach to

Machine Learning: An overview”. In this way, boosting “refers to a general and

provably effective method of producing a very accurate prediction rule by combining

rough and moderately inaccurate rules of thumb” [14]. This approach has many

connections with swarm robotics. Swarm robotics is a coordination of multi-robot

6



systems (boosting weak hypotheses) which consists of large numbers of relatively

simple physical robots (rough and modaretely inaccurate rules of thumbs : weak

hypotheses). The goal of swarm robotics is to design a massive number of simple

robots to obtain a collective behavior, just like, boosting is designed to combine many

weak hypothesis to obtain a strong, more accurate, more general single hypothesis.

Boosting is defined formally as follows: Let, Z be a set of labelled N training ex-

amples. Z = (x1, y1), (x2, y2), ..., (xN , yN ), where xi is the feature vector and yi where

yi = 0, 1 is the label associated with instance of xi. On each round t = 1, 2, ..., T ,

a distribution Dt over a set of examples is devised and this distribution (selection

of hypothesis left unspecified in boosting) forms a weak hypothesis hi with low error

εt with respect to Dt. Therefore, distribution Dt plays an important role in the dis-

tribution of next hypothesis to be selected in next round. After T rounds, booster

combines the weak hypotheses into a single prediction rule: strong hypothesis.

Note that the bound on the performance of the final hypothesis, strong hypothesis,

improves when any weak hypothesis is improved.

2.3 Adaptive Boosting Theory

In this section AdaBoost, one of the most important outcome of boosting theory is

discussed. In the first part, advantages of AdaBoost is given with original procedure

proposed by Freund-Schapire[12]. In the second part, Viola-Jones’s version of Ad-

aBoost is analyzed in detail to show the strength of the learning algorithm. Some

proposed problems about AdaBoost are also discussed. In the final section, many

boosting techniques that improve AdaBoost procedure are examined in detail.

2.3.1 AdaBoost: Freund-Schapire

Adaptive Boosting Theory is first introduced in 1997 by Freund and Schapire [4]. Ad-

aBoost is one of the earliest well-formed boosting algorithms. Prefix “Ada-” comes

from the word “Adaptive”, because the algorithm has the ability to adjust adaptively

to the errors of the weak hypotheses hi with respect to distribution of training data.

AdaBoost starts with weight initialization phase. The algorithm assigns equal

weights wi to all samples. On each round ti, weak hypotheses are made up with re-

spect to these weights and data distribution. Selection of a certain weak hypotheses is

7



Algorithm 1 ADABOOST(Freund and Schapire Version)

Require: sequence of N labelled examples (x1, y1), (x2, y2), ..., (xN , yN )

distribution D over N examples

weak learning algorithm WeakLearn

integer T specifying number of iterations

Ensure: a strong classifier that decides label for given unlabeled data

Initialize the weight vector w1
i = D(i) for i = 1, 2, ...,N .

Repeat [1-5] for t = 1, 2, ..., T

1: Set

pt =
wt

∑i=1
N wt

i

2: Call WeakLearn, providing it with the distribution pt; get back a hypothesis ht :

X → [0, 1].

3: Calculate the error of ht : εt =
∑i=1

N pt
i|ht(xi)− yi|.

4: Set βt = εt

(1−εt)
.

5: Set the new weights vector to be

wt+1
i = wt

iβ
1−|ht(xi)−yi|
t

Output the hypothesis

hf (x) =







1 if
∑T

t=1(log
1
βt

)ht(x) ≥ 1
2

∑T
t=1(log

1
βt

)

0 otherwise

followed by weight updating schema : wt+1
i = wt

iβ
1−|ht(xi)−yi|
t . After each round, cor-

rectly classified samples get low weights, misclassified samples have higher weights.

As a result of this fact, misclassified samples are more effective than the correctly

classified samples in selection of weak hypothesis on the next round. In other words,

the weights tend to concentrate on hard examples. For this reason, hard samples

(outliers, border points, noisy data) are closely involved with deciding strong classi-

fier. This approach has many common aspects with bootstrapping method in pattern

recognition. A bootstrap data set is created by randomly selecting from the training

set with replacement. Bootstrap data set eliminates duplication of individual points,

this leads to prevent aggregation of training samples, make training data more ho-

8



mogeneous and force learning algorithm to pay more attention on border point and

outliers than ordinary points.

(a) (b)

Figure 2.1: Bootstrapping (a) Original Data (b) A bootstrap data

AdaBoost is a good feature selector with minimizing the upper bound of the

error. Boosted hypothesis selects only small set of hypothesis among large set of

hypothesis. Suppose the weak learning algorithm WeakLearn, when called by Ad-

aBoost, generates a set of hypotheses with errors ε1, ε2, ..., εt. Then the error ε =

Pri D⌊hf (xi) 6= yi⌋ of the final hypothesis hf output by AdaBoost is bounded above

by

ε =
T

∏

t=1

2
√

εt(1− εt)

Note that the errors generated by WeakLearn are not uniform, and the final error

depends on the error of all of the weak hypotheses.

Number of data points always leads to a trade of. More data points represent

original data much likely than less data, on the other hand, running algorithms with

less amount of data requires lower computational power. Moreover, algorithms us-

ing heuristics to avoid exponential search suffers to find optimal solutions and stucks

to suboptimal solutions, because heuristic based search methods prune the search

space to make algorithms pay more attention to find a better solutions and some-

times they cut the paths that lead optimal solutions. AdaBoost is one of the heuristic

based methods. Selecting correct or optimal over entire data is a NP-Complete pro-

cess. Heuristic that is selection of hypothesis with the lowest error enables AdaBoost

to work on higher (180, 000) dimensional feature spaces and large amount (20, 000) of

data samples [5]. Although AdaBoost performs a heuristic based search, the method

is O(HTN) time algorithm where H is the number of classifiers in hypotheses set,

9



T is the number of rounds that algorithm iterates and O(N) is the complexity of a

hypothesis to calculate error. On the other hand, AdaBoost has a very fast decision

making mechanism, O(T ), basically, it requires checking several values and sign of a

summation, this fact reduces testing time drastically. For that reason, AdaBoost leads

applications to achieve respectable success in real-time.

Implementation of AdaBoost algorithm is quite easy. Except WeakLearn proce-

dures, algorithm consists of finding lowest error value among all weak classifiers,

updating floating point weights of each sample and calculation of βt and (log 1
βt

)

values. Testing of the final classifier is based on only calculation of equation below.

hf (x) =







1 if
∑T

t=1(log
1
βt

)ht(x) ≥ 1
2

∑T
t=1(log

1
βt

)

0 otherwise

AdaBoost almost requires no parameter to tune (except T ) and no prior knowl-

edge about weak classifiers, so that any method for finding a distribution over data

can flexibly combined. These methods can be any techniques from simple threshold

classifiers to complex systems like Support Vector Machines or Neural Networks.

2.3.2 AdaBoost: Viola-Jones

AdaBoost has been implemented in wide range of application areas with a great va-

rieties [13], [15], [16]. Among experiments, Viola et al. application of AdaBoost on

face detection problem has been attracted much attention. Viola et al. achieved one

of the best detector in face detection literature [5].

The first contribution of Viola’s et al. work is the creation of integral image. In-

tegral image at location x, y contains sum of the pixels both upper and left of x, y,

inclusive:

ii(x, y) =
∑

x′≤x,y′≤y

i(x′, y′)
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Algorithm 2 ADABOOST(Viola and Jones Version)

Require: training images (x1, y1), (x2, y2), ..., (xN , yN ) where yi = 0, 1 for negative

and positive examples respectively.

Ensure: a strong classifier that decides label for given unlabeled data

Initialize weights w1,i = 1
2m

, 1
2l

for yi = 0, 1 respectively, where m an l are the

number of negatives and positives respectively.

Repeat [1-4] for t = 1, 2, ..., T :

1: Normalize weights,

wt,i ←
wt,i

∑n
j=i wt,j

so that wt is a probability distribution.

2: For each feature, j, train a classifier hj is restricted to using a single feature. The

error is evaluated with respect to wt, εj =
∑

i wi|hj(xi)− yi|.

3: Choose the classifier, ht, with lowest error, εt.

4: Update weights:

wt+1,i = wt,iβ
1−ei

t

where ei = 0 if example xi is classified correctly, ei = 1 otherwise, and βt = εt

1−εt
.

The final strong classifier is:

h(x) =







1 if
∑T

t=1 αtht(x) ≥ 1
2

∑T
t=1 αt

0 otherwise

where αt = log 1
βt
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Figure 2.2: Integral Image: The sum of the pixels within rectangle D can be computed
with four array references. The value of the integral image at location 1 is the sum of
the pixels in rectangle A. The value at location 2 is A+B, at location 3 is A+C and at
location 4 is A+B +C +D. The sum within D can be computed as I4 + I1− (I2 + I3).

Complexity Analysis: Let, N be the number of training samples and H be the

number of hypotheses to be chosen on each round. Initialization is a O(N) opera-

tion, recursive step-1 is an O(N) time, recursive step-2 requires to train H classifiers

to compute respective errors. Simple threshold based classifiers are used, there are

O(N) methods to find optimum threshold method. For that reason, step-2 complex-

ity is O(HN). Step-3 and step-4 are both O(N) time algorithms. Recursive steps

are repeated T times. Therefore, complexity of training AdaBoost is O(HNT ). To

conclude, the complexity of AdaBoost is directly proportional to complexity of weak

classifier.

Integral image is used for fast computation of simple Haar based features. Figure

2.2 shows the usage of integral image. Any Haar coefficient of any N -rectangle fea-

ture can easily calculated by few number of summation and subtraction over integral

image. Viola-Jones extracted 180, 000 simple features form 24×24 face images. Figure

2.3 depicts Haar basis function used by Viola et al. [5], [17], [18].

Viola et al. reported that a frontal face classifier constructed from 200 features

yields a detection rate 95% with a false positive rate 1 in 14084. The speed of final

classifier on a 700 MHz Pentium III processor scanning 384 by 288 pixel image is

about 0.64 seconds [5].

One sine qua non principle of AdaBoost is that weak hypotheses have to classify

data better than chance (in binary classification, error rate has to be lower than 0.5).

In other words, if the performance of weak hypotheses are not better than chance, no

12



Figure 2.3: Haar Basis Functions: Example rectangle features are shown relative to
the enclosing detection window. The sum of the pixels which lie within the white
rectangles are subtracted from the sum of the pixels in the grey rectangles. Two-
rectangle features are shown in (A) and (B). Figure (C) shows a three-rectangle fea-
ture, and (D) a four-rectangle feature.

strong match between problem and model is obtained.

(a) (b)

Figure 2.4: Overfitting (a) Final classifier over toy training data when T = 20 (b) Final
classifier over toy training data when T = 300

When T gets larger and larger, overfitting problem is observed [19]. Simulation

experiments in Figure 2.4 that are accomplished over toy data set shows that over-

fitting generally occurs even when T is extremely large. Moreover, there is no sys-

tematic approach for choosing appropriate T . In general, T is calculated using an

upper limit on the error over training data.

Hypothesis selection on each round depends weight distributions of training data

with respect to weak classifiers in data. Based on this fact, selections on very first

rounds determines the general behavior of the algorithm, if the emphasis is on learn-

ing positive samples, final classifier ends up with high detection rate but also rel-

atively high false alarm rate, if the emphasis is on learning negative samples, final
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classifier ends up with low false alarm rate but also relatively low detection rate.

2.3.3 Other Boosting Algorithms

Since Freund and Schapire first proposed AdaBoost in 1995, many research such as

[20], [6], [17], [18], [21], [22] are accomplished to fix problems of AdaBoost mentioned

in previous sections. In this section, brief summary of these algorithms is provided.

• FloatBoost: FloatBoost was first proposed in 2002 by S. Li, Z. Zhang, H. Shum

and H. Zhang [6]. Algorithm is almost the same in the initialization and feature

selection stage. However, a backtracking mechanism named conditional exclu-

sion is proposed to remove unfavorable weak classifiers from existing classi-

fiers to achieve a low error rate. The idea of backtracking originally comes

from Floating Search. The floating search procedure allows some number of

backtracking steps to be checked before a fixed beforehand. Due to extension

of floating search, algorithm is named as FloatBoost. Li et al. reported that

FloatBoost comes up with less number of weak classifiers building strong clas-

sifiers at the same error rates or lower error rates with same number of weak

classifiers. For example, on the test set, by combining 1000 weak classifiers, the

false alarm of FloatBoost is 0.427 versus 0.485 of AdaBoost. The lowest test er-

ror for AdaBoost is 0.481 with 800 weak classifiers, whereas FloatBoost needs

only 230 weak classifiers to achieve the same performance[6].

Initialization and first three steps of the algorithm is the same as the classical

AdaBoost, at step-4 a weak classifier is removed from selected classifiers and

error is recalculated. If the new error value is not smaller than previous one,

a previously removed classifier is randomly selected and re-included to strong

classifier. Otherwise, new strong classifier is one left weak classifier less than

previous classifier.

One drawback of this approach is increased time complexity training stage,

Li reports that FloatBoost is 5 times slower that AdaBoost in term of training

time[6].

14



Algorithm 3 FLOATBOOST

Require: training images (x1, y1), (x2, y2), ..., (xN , yN ) where yi = −1, 1 for negative

and positive examples respectively.

Ensure: a strong classifier that decides label for given unlabeled data

Initialize weights w1,i = 1
2m

, 1
2l

for yi = −1, 1 respectively, where m an l are the

number of negatives and positives respectively.

set the maximum number Mmax of weak classifiers

set the error rate ε(HM ), and acceptance threshold e∗

M = 0, H = {}

1: M ←M + 1

2: Choose the hM according to εt = 1
2 log P (y=+1|x,wM−1)

P (y=−1|x,wM−1)
.

3: Update weights w
(M)
i ← exp[−yiHM(xi)] and normalize to

∑

i w
(M)
i = 1

4: HM = HM−1 ∪ hM ; If εmin
M > ε(HM ), then εmin

M = ε(HM );

5: h′ = argminhε(HM − h)

6: If ε(HM − h) < εm
M−1in, then HM−1 = HM −h′; εmin

M−1 = ε(HM −h′); M = M − 1;

HM =
∑

h h; goto step 5.

7: If M = Mmax or J(HM ) < J∗, then finalize.

8: w
(M)
i ← exp[−yiHM (xi)]; goto step 1.

The final strong classifier is:

H(x) = sign[

HM
∑

h(x)

h(x)]

• LogitBoost: LogitBoost is an adaptive algorithm for fitting a additive logis-

tic regression model by step-wise optimization of the Bernoulli log-likelihood

during the hypothesis selection. Due to additive logistic regression model, al-

gorithm is named LogitBoost. The LogitBoost algorithm tries to fit a regression

model with respect to working responses and weights [17]. It is claimed that

performance of LogitBoost is usually better on noisy data and or when there

are misspecification or inhomogeneities of the class labels in the training data

[21]. Friedman et al. complete experiments that training error of LogitBoost is

0.096 in satellite images where AdaBoost performs 0.106 [17].
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Algorithm 4 LOGITBOOST

Require: training images (x1, y1), (x2, y2), ..., (xN , yN ) where yi = 0, 1 for negative

and positive examples respectively.

Ensure: a strong classifier that decides label for given unlabeled data

Initialize weights w1,i = 1
n

for yi = −1, 1 respectively, where n is the number of

training samples and p(xi) = 1
2

Repeat [1-3] for t = 1, 2, ..., T :

1: Compute the working response and weights

zi =
y∗i − p(xi)

(p(xi)(1 − p(xi))
wi = p(xi)(1 − p(xi))

2: Fit the function hm(x) by a weighted least-squares regression of zi to xi using

weights wi.

3: Update H(x)← H(x) + 1
2hm(x) and p(x)← eH(x)

eH(x)+e−H(x) .

The final strong classifier is:

sign[H(x)] = sign[

T
∑

t=1

ht(x)]

• GentleBoost: In the original AdaBoost algorithm, the hypotheses with lowest

error with respect to weight distribution is selected on each round, t by max-

imizing likelihood. Name GentleBoost comes from the fact that in this algo-

rithm, solution is explored with a “gentler” version that instead takes adaptive

Newton steps much like the LogitBoost algorithm just described. GentleBoost

can be considered as an application of of Newton-Raphson algorithm optimiza-

tion algorithm to minimize chi-square error. As the number of examples are

increased, minimizing the chi-square error converges to maximizing the likeli-

hood. However, when there exists insufficient number of samples, chi-square

estimators are more accurate than maximum likelihood estimators [17], [18].

Friedman et al. report that GentleBoost achieves 0.036 training error where Ad-

aBoost achieves 0.037 in breast data set [17].
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Algorithm 5 GENTLEBOOST

Require: training images (x1, y1), (x2, y2), ..., (xN , yN ) where yi = 0, 1 for negative

and positive examples respectively.

Ensure: a strong classifier that decides label for given unlabeled data

Initialize weights w1,i = 1
n

for yi = −1, 1 respectively, where n is the number of

training samples.

Repeat [1-3] for t = 1, 2, ..., T :

1: Fit the regression function ht(x) by weighted least-squares of yi to xi with

weights wi.

2: Update H(x)← H(x) + Ht(x)

3: Update wi ← wie
−yiht(xi) and re-normalize.

The final strong classifier is:

sign[H(x)] = sign[

T
∑

t=1

ht(x)]

• MadaBoost: MadaBoost stands for “A Modification of AdaBoost”, in presence

of outliers and noisy data, misclassified samples have more influence on se-

lection of weak hypothesis. After a certain t some misclassified samples have

enormously higher weights than other training samples. Based on this fact,

MadaBoost introduces a saturation bound D0(x) that weight wi(x) can not be

increased beyond D0(x) [22]. No experimental results are being reported by

authors.
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Algorithm 6 MADABOOST

Require: training images (x1, y1), (x2, y2), ..., (xN , yN ) where yi = 0, 1 for negative

and positive examples respectively.

Ensure: a strong classifier that decides label for given unlabeled data

Initialize weights w1,i = 1
2m

, 1
2l

for yi = 0, 1 respectively, where m an l are the

number of negatives and positives respectively.

Repeat [1-4] for t = 1, 2, ..., T :

1: Normalize weights,

wt,i ←
wt,i

∑n
j=i wt,j

so that wt is a probability distribution.

2: For each feature, j, train a classifier hj is restricted to using a single feature. The

error is evaluated with respect to wt, εj =
∑

i wi|hj(xi)− yi|.

3: Choose the classifier, ht, with lowest error, εt.

4: Update weights:

wt+1,i =







D0(x)×
∏

1≤i≤t+1 β
cons(hi,x)
i if

∏

1≤i≤t+1 β
cons(hi,x)
i < 1

D0(x) otherwise

where D0(x) is the initial weight.

The final strong classifier is:

h(x) =







1 if
∑T

t=1 αtht(x) ≥ 1
2

∑T
t=1 αt

0 otherwise

where αt = log 1
βt

• BrownBoost: BrownBoost is another boosting algorithm that can handle noisy

data sets. Freund et al. claim that “The method used for making boost-by-

majority adaptive is to consider the limit in which each of the boosting iter-

ations makes an infinitesimally small contribution to the process as a whole.

This limit can be modeled using the differential equations that govern Brow-

nian motion”. BrownBoost is based on finding solutions to these differential

equations. Original version of AdaBoost does not perform well in noisy data

sets, that is the result of behavior that AdaBoost concentrates more on misclas-
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sified samples at each round. In contrast, BrownBoost effectively “gives up”

on examples that are repeatedly misclassified. In preliminary experimental re-

sults, BrownBoost outperformed AdaBoost; however, LogitBoost performed as

well as BrownBoost [23].

Algorithm 7 BROWNBOOST

Require: training images (x1, y1), (x2, y2), ..., (xN , yN ) where yi = −1, 1 for negative

and positive examples respectively.

Ensure: a strong classifier that decides label for given unlabeled data

Initialize s = c, r1(xj) = 0

Repeat [1-4] until s > 0:

1: Set weights of each example,

Wi(xj) = exp−
(ri(xj )+s)2

c

where ri(xj) is the margin of of example.

2: Find a classifier h : X → −1,+1 such that

∑

j

Wi(xj)h(xj)yj > 0

3: Find values α∗, t∗ that satisfy the differential equation.

dt

dα
=

∑

j

exp−
(ri(xj )+αh(xj)yj+s−t)2

c = 0

4: Update margins for each sample: ri+1(xj) = r(xj) + αh(xj)yj

5: Update time remaining: s = s− t

The final strong classifier is:

H(x) = sign(
∑

i

αihi(x))
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2.4 Evolutionary Computing

In this thesis, evolutionary search is applied to address partial solutions to the prob-

lems in AdaBoost which is explained in previous chapters. In this section, firstly a

brief introduction to evolutionary computing is given to prepare reader for the algo-

rithms to be proposed in the next chapter. In Chapter 3 the proposed methods that

combine AdaBoost and evolutionary search is discussed.

2.4.1 Background for Evolutionary Computing

Every organism in the universe has a set of rules, a blueprint of its architecture de-

scribing how that organism built up from various sizes of building blocks of life.

These rules are encoded in the genes of Deoxyribonucleic acid, shortly DNA. DNA is

made up of chromosomes as chromosomes are made up of genes. Genetic makeup

of an individual organism is called genotype. On the other hand, phenotype of an indi-

vidual organism describes one of traits or characteristics that is measurable and that

is expressed in only a subset of individuals within that population. Combination of

genes represents genotype, however, features like “blue eyes”, “brown hair” is the

characteristics that phenotype represents.

In biology, the change in a population’s inherited trait from generation to gener-

ation is called evolution. As it is mentioned before, traits are the expression of genes

that are produced, copied and passed from ancestor to offsprings. Due to repro-

duction, different combinations of genes are observed, this fact reinforces diversity

among population. Another factor that cause diversity is mutation. Mutations are

the changes to the base pair sequences of genetic material. Most of the mutations are

the copying error observed during cell division although cell division is an accurate

process. Evolution occurs in three ways, natural selection which measures the differ-

ence in reproductive success, genetic drift indicating the statistical effect that decides

change of survival alleles and finally gene flow modelling the movement of genes

between populations) [24].

2.4.2 Genetic Algorithms

In computer science, evolutionary computation is a subset of Artificial Intelligence

that involves combinatorial optimization problems. Genetic algorithm is a subfield
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of evolutionary computation, generally involves with implementation of evolution

steps such as reproduction, mutation, recombination, natural selection and survival

of fittest. These method are inspired from Biology mentioned in previous section.

Genetic algorithms are search techniques to find optimal or approximate solu-

tions to optimization or search problems. Implementation of these algorithms are the

computer simulations which includes abstract representations (chromosomes, geno-

type of genes) of candidate solutions (individuals, phenotype), mutation strategies,

reproduction methods and fitness functions that decides which individual survives

to next generation.

Biogenetics, computer science, engineering, economics, chemistry, manufactur-

ing, mathematics and physics are the main application areas of Genetic Algorithms.

Two important building blocks for a genetic algorithm is:

• A genetic representation of the solution: Representation of a solution can be an ar-

ray of bits, integers, floating point numbers or strings, trees, etc. Each represen-

tation is designed with respect to spirit of the problem. Encoding represents ba-

sic composition of a solution. Composition of basic structures(bits,integers,...)

forms an individual like, combination of nucleotides based forms DNA in biol-

ogy. Representation is the genotype of the solution.

• A fitness function to evaluate performance of the solution: Fitness function decides

which solution achieves higher performance as natural selection determines

which individual survive with respect to environmental factors.
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Simple Genetic Algorithm is as follows:

Algorithm 8 SIMPLE GENETIC ALGORITHM

Require: Θc: crossover probability, Θm:mutation probability

Ensure: A solution or a population of solution after termination condition

Let Iλ:parent population, Iµ: offspring population, pt: population at generation

t.

Initialize: t← 0, p0 = randompopulation()

Repeat [1-5] until termination condition is satisfied Termination condition can

be a fixed number of iterations or local optima.

1: Iµ ← selecttomate(pt, λc) : Sexual Selection

2: Ik ← crossover(Iµ) : Crossover

3: Iλ ← mutate(Ik,Θm) : Mutation

4: pt+1 ← selecttosurvive(Iµ, Iλ) : Ecological Selection, Elitism

5: t← t + 1

Output: Final population PT and fittest individual of all populations FT

Genetic algorithms work in many situations as “The Schema Theorem”. Theo-

rem proposes that “Short, low-order, above average fitness schemata receive expo-

nentially increasing trails in subsequent generations”.

2.4.3 AdaBoost and Evolutionary Algorithms

Increasing popularity of boosting techniques, especially AdaBoost, inspires many

researchers to find algorithms that outperforms or improves the classical AdaBoost.

In evolutionary computing, there also exists some works on boosting [25], [26], [27].

In this section, a brief descriptions of these methods are discussed.

• AdaBoost algorithm searches exhaustively to find a hypotheses with the low-

est training error at each round. Treptow et al. propose an evolutionary search

instead of exhaustive search [25]. Proposed system is suitable for the experi-

ments that have sufficiently large datasets like Viola et al. use [5]. Types and

coordinates of the Haar based features in Figure 2.3 are coded in chromosomes

as genes. Thresholds on 1D histograms based on Haar features are the weak
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learners of proposed algorithm. Training error is used as fitness function. Train-

ing time for AdaBoost the reported is 42040 seconds, whereas their proposed

system runs 10868 seconds on training set, Treptow et al. also report slight clas-

sification performance [25].

• In genetic algorithms, when number of generations to be evolved and num-

ber of individuals in the population gets larger and larger, running these algo-

rithms takes more time. Liu et al. [26] propose an boosting method to combine

genetic classifiers that are trained with sufficiently and practically less number

of individuals and generations. Final classifiers is the boosted genetic classi-

fiers. Idea is to build up a genetic classifier from genetic classifiers with small

scaled parameters. This idea has analogy with original boosting that combines

weak classifiers to build up a strong classifier. It is reported that 93% classifi-

cation rate achieves by boosting 3 genetic classifiers 25% less generations and

50% less individuals. On the other hand, single genetic classifier has 90% clas-

sification rate [26].

• Another approach proposed by Wang et al. is to ensemble base classifiers in

such a form that initial weights of samples are calculated by a genetic algo-

rithm [27]. Each chromosomes are the strings of initial weights of the base clas-

sifier, as the population evolves discriminative samples such as border points

gets higher weight values than common points. Based on this fact, selected hy-

pothesis concentrates more on discriminative points. This approach has many

similarities like support vector points in this context. Fitness function is again

classification rate over training samples. Wang et al. report 93.5% detection rate

with 41 false alarms at CMU Face Set1, whereas, AdaBoost has 94.1% detection

rate with 32 false alarms [27].

2.5 Summary

AdaBoost is one of the most popular and successful boosting algorithms that can

handle data with any size and dimension. Simple decision making strategy enables

algorithm to be integrated in real time systems. AdaBoost provides a linear classifier

with a good generalization ability. Despite of these elegant properties, AdaBoost still

1 CMU Face set is one of the widely face detection benchmark set created by Rowley et al. [28].
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has some weaknesses. In literature, many researchers have accomplished to to find

partial solutions to problems addressed. In the next chapter, proposed methods are

provided in detail.
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CHAPTER 3

A PATTERN CLASSIFICATION APPROACH BOOSTED

WITH GENETIC ALGORITHMS

In Chapter 2, boosting algorithms, especially AdaBoost, is discussed in various as-

pects. Successive error reduction at each stage, ability of dimensionality reduction

and straight forward heuristic that make algorithm to classify in remarkably large

data sets [5] are proofs for strength of AdaBoost. The original AdaBoost provides a

linear classifier with all desirable properties. On the other hand, AdaBoost does not

guarantee the optimal solution and can overfit in the presence of noise.

In this chapter, proposed systems which try to answer the questions that “How

can AdaBoost be improved without corrupting algorithm’s good properties?” or

“Is there another boosting schema that can be alternative to original AdaBoost algo-

rithm?” are described in detail.

Organization of this chapter is as follows: first of all, motivation and inspira-

tion behind this thesis are described, then representation and fitness functions that

are necessary in evolutionary computing are discussed and proposed initialization

schemas are provided in detail.

3.1 Motivation

Among the boosting techniques described in Chapter 2, AdaBoost draws more atten-

tion and praise. In 2003, Freund and Schapire are rewarded with Gödel Price.

AdaBoost is able to combine rough, moderate learning algorithms that perform

slightly better than random classifier to generate more accurate, strong learning al-

gorithm. In order to combine weak learners, at every step of the algorithm, it chooses

a learner with lowest error and partitions the search space with respect to this learner.
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AdaBoost proposes a greedy search in hypotheses space by selecting hypotheses with

lowest error as heuristic. At this point, there comes a question that whether select-

ing ONLY the best classifiers at each steps leads algorithm to find optimum solution

or not. Li et al. attack this question with inserting a floating search after boosting

steps to perform less greedy search in their respectful work FloatBoost [6]. Float-

Boost combines floating search with boosting to crop out some hypotheses chosen

at some certain steps of the algorithm that reduce performance of final classifier. At

each round of Algorithm , a previously selected classifier is removed from strong

classifier if general training error without removed classifier decreases. Removing

a selected classifier proves that at any rounds of AdaBoost, selection of a hypoth-

esis without the constraint that hypothesis has to have the lowest error on weight

distribution, may lead to a better solution.

Fundamental motivation that this thesis is founded on is the question that “is it

possible to find a more accurate or optimum solution without starting or selecting a

weak hypothesis that does not have the lowest error constraint among all hypotheses

in boosting steps?”. In other words, this work claims that selection of not best hy-

potheses at each round leads better solutions compared with heuristic that chooses

hypothesis with lowest error. Another fulcrum of this approach is the experiments

of Treptow et al. [25]. Their system searches best classifier in hypothesis space with a

genetic algorithm and boosts these classifiers, they achieve better classification rates

with same number of boosted classifiers. Obviously genetic algorithm finds a clas-

sifier other than the classifier with the lowest training error. If evolutionary search

finds the lowest one, Treptow’s algorithm can not outperform the original AdaBoost

algorithm.

Li et al. and Treptow et al. practically prove that it is possible to find a more ac-

curate solution without heuristic that is used by AdaBoost. At this point, this thesis

proposes another point of view to this problem. Let H be the number of weak clas-

sifiers in hypotheses space and T is the number of boosting steps in the Algorithm

1. When boosted hypotheses in strong classifier is coded as string of integers, first

integer value of string represents first selected classifier in the first round, second in-

teger value represents, second selected classifier in the second round, . . . , T th integer

value of string represents T th selected classifier at T th round. Final classifier that Ad-

aBoost produces a single permutation of weak learners from HT possible solutions.
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It is almost impossible to search exhaustively in HT sized-space to find such a per-

mutation that outperforms the original AdaBoost algorithm and also using another

heuristic to form such a permutation suffers from the problem mentioned above.

Based on this fact, evolutionary search is proposed in order to greedy search that

AdaBoost uses. Due to fitness function genetic algorithm is another search algorithm

that is more general that greedy search and more restricted than exhaustive search.

Mutation and crossover make genetic algorithm to search randomly in search space.

However, selection of appropriate fitness function provides a more restricted search.

For that reason, evolutionary search can be considered as a middle layer between

greedy search and exhaustive search.

In this work, genetic algorithms are used as evolutionary search technique to

propose a search strategy among the all possible combination and permutations of

possible weak classifiers that outperform greedy search. Genetic algorithm is a com-

putational model of machine learning that derives its behavior from a metaphor of

the process of evolution in nature. In order to produce closer to exact solutions rather

than AdaBoost, candidate solutions are represented in terms of individuals and per-

formance of these individuals are calculated on samples of training set. As candidate

solutions surmount through generations, more successful solutions survive. Finally,

fittest individual at final population would lead a better solution.

3.2 Evolutionary Search and Boosting

As mentioned in section 2.4.2, representation and fitness function are the two fun-

damental requirements to form a genetic algorithm. In section 3.1, finding a more

accurate strong classifier problem is redefined as finding a permutation in HT di-

mensional search space.

3.2.1 Representation

In order to use genetic algorithms, every individual has to be successfully repre-

sented. In connection with biology, representation is the genotype of a chromosome

that encodes appearance, behavior and physical capabilities of individuals. Genetic

representation is a way of expressing solutions of the problems in evolutionary com-

puting context. A good design of a genetic representation make genetic algorithm
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to converge rapidly and make evolutionary search more intelligent. Representations

can be array of bits, arrays of integers and even trees. Basic elements of these struc-

tures are called genes. Each gene is traditionally a bit, but in more complex represen-

tations, it can be an integer, floating point or character. A good representation has

to be closed under genetic operations and preserve locality. Representations in this

thesis can be described as follows.

Every hypothesis that AdaBoost select at each round ti is an element of hypothe-

ses sets, H . That is hi = h1, h2, ..., hM , where M is the number of hypotheses and

ti = t1, t2, ..., tT where T is the number of rounds. These hypotheses can be com-

plex learners like Neural Networks, Support Vector Machines or simple learners

like thresholds on 1D histograms, nearest neighborhood classifier, k-means classi-

fier. Throughout this thesis, a hypothesis is the adaptive threshold on 1D histograms

generated by a pre-defined feature.

• Fixed Length Encoding: This encoding includes a string of T integer values,

each value or each gene of an individual represents a hypothesis hi. T is num-

ber of rounds that boosting to be performed. Each element of individual is a

weak learner from set H that boosting process selects at each step successively.

Mutation and crossover operations change the order and values of gene per-

mutations that produces different individuals. Representation is closed under

genetic operators like mutation and crossover, mutation can change single gene

value ti to tj where i, j = 1, 2, · · · , T . Fixed length encoding has only one draw-

back that length of the encoding is given as parameter to learning algorithm.

It is not always possible to predict suitable length in advance. For that reason,

some of the training set can be used as the validation set to decide suitable pa-

rameter for length of coding.

Figure 3.1: Length of the encoding is T which is the number of rounds of boosting
steps.
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• Variable Length Encoding: Length of this encoding depends on the first value

of the integer string. First gene of the individual can be any number that rep-

resents number of genes of the individual, rest of the individuals are in same

structure as the individuals in fixed length coding. First element of the indi-

vidual decides the number of boosting steps. Based on this fact, genetic algo-

rithm finds optimum number of classifiers to be boosted. This representation

proposes a parameterless classification. Variable length coding provides a pa-

rameterless search methodology because optimum length of coding is decided

by evolutionary search.

Figure 3.2: Length of this encoding is T + 1 that is the number of rounds of boosting
steps.

3.2.2 Fitness Function

Fitness function is an objective function that quantifies the quality of individuals in

population. In other words, fitness function is a transition from genotype (represen-

tation) to phenotype (solution). An eligible fitness function revolves around algo-

rithms goal, execution speed of a fitness algorithm is also important. Higher valued

fitness functions come up with more accurate solutions. It is also important that well-

formed fitness functions make genetic algorithm to converge more rapidly. In case of

classification problems, classification rate based fitness function is more suitable.

Let, Ii be an individual from a population at generation Gj where i = 1, 2, ...,K,

K is the number of individuals in the population and j = 1, 2, ..., G is the number

of generations that population evolves. General structure of a fitness function is as

follows:
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Algorithm 9 FITNESS FUNCTION

Require: training images TR = (x1, y1), (x2, y2), ..., (xN , yN ) where yi = 0, 1 for neg-

ative and positive examples respectively.

An individual Ii from population at certain generation where Ii,j is the element

(gene) of the individual.

Ensure: a value f(Ii) that represents fitness(strength) of individual Ii

Initialize weights w1,i = 1
2m

, 1
2l

for yi = 0, 1 respectively, where m an l are the

number of negatives and positives respectively.

Initialize if representation is variable length encoding, T = Ii,0, otherwise T =

LENGTH(Ii)

Repeat [1-3] for t = 1, 2, ..., T :

1: Normalize weights,

wt,i ←
wt,i

∑n
j=i wt,j

so that wt is a probability distribution.

2: Train classifier hj is restricted to using single feature Ii,t. The error is evaluated

with respect to wt, εj =
∑

i wi|hj(xi)− yi|.

3: Update weights:

wt+1,i = wt,iβ
1−ei

t

where ei = 0 if example xi is classified correctly, ei = 1 otherwise, and βt = εt

1−εt
.

Form final strong classifier

Evaluate a function with respect to final strong classifier.

f(Ii) = FFUNCTION(Ii, h(x), TR)
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In this study, two approaches are used to define the fittest function FFUNCTION(Ii, h(x), TR),

first one is based on the detection and false alarm rates of the classifier.

• Mathematically, form the final classifier as follows

h(x) =







1 if
∑T

t=1 αtht(x) ≥ 1
2

∑T
t=1 αt

0 otherwise

where αt = log 1
βt

• Compute detection rate DR and false alarm rate FA of final classifier with re-

spect to training set TR.

f(Ii) = FFUNCTION(Ii, h(x), TR) = β1DR− β2FA

where DR = numberoftruepositives
numberofpositivesamples

, FA = numberoffalsepositives
numberofnegativesamples

and β1 + β2 = 1.

As mentioned in section 3.2.1, representation are fixed-length or variable-length

permutations over HT dimensional space. Quantities of representation qualities are

easily computed in boosting context. Another ability of fitness function above is that

β1 and β2 values are configurable and these parameters provides researchers to form

a final classifier in nature of application. For example, in case of such applications

like cancer cell detection, detection rate is more important than false alarm rate. In-

creasing β1 makes algorithm concentrate more on increasing detection rate. Another

point that reader has to pay more attention on is the computational complexity of

the fitness function. Although it is strongly advised that fitness function has to be as

simple as possible, fitness function has O(NT ) time complexity where O(N) is the

complexity of calculating error of a certain classifier and T is the number of boosting

steps or length of the representation. This fitness function schema is the most suitable

fitness evaluation method for boosting.

The second approach to define fitness function is based on Receiver Operating

Characteristic(ROC) Analysis, confidence rates of each training samples can be cal-

culated by formula below.

• Mathematically, form the final classifier as follows

h(x) =
T

∑

t=1

αtht(x)−
1

2

T
∑

t=1

αt
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where αt = log 1
βt

• Compute confidence rates of each sample in training set TR with final classifier.

• Form Receiver Operating Characteristic curve ROC with respect to confidence

rates.

f(Ii) = FFUNCTION(Ii, h(x), TR) = AREA UNDER CURV E(TRROC)

This approach has several drawbacks. First one is the calculation of area under

roc curve has an extra computational load. Another drawback is that ROC curve

analysis is more challenging problem. Because requires a projection to M dimen-

sional feature space to one dimensional space. After projection, detection rates are

calculated with respect to false alarm rates. Thus, positions of points in one dimen-

sional position is more important than position with respect to certain threshold.

3.2.3 Initialization

Random Initialization: Genetic algorithms are more general heuristic methods. Ran-

domization and mutations are the fundamental factors that make genetic algorithm

perform much like exhaustive search. Many genetic algorithms start with a purely

random population. Random initialization is a method that is widely used in exper-

iments in Chapter 4.

Partial Initialization:Viola et al. report that, it is observed that AdaBoost has a

good classification ability in even very first selections of weak hypothesis. Another

approach proposed in this work is to initialize all individuals in initial population

with some proportion of final classifier that AdaBoost produces after certain number

of iterations. This approach starts genetic algorithm with a more qualified initial

population and enhances solution of AdaBoost.

Initialization of Population by Unselected Hypotheses:To find accurate solu-

tions, more initial population has to large enough to cover all possible hypothesis in

genetic pool. This requirement inspires to propose a new initialization schema. At

each stage of AdaBoost, all hypothesis are sorted and recorded with respect to their

error rates. Every round, AdaBoost selects a hypothesis with lowest error. However,

there exist such hypotheses that are slightly different from hypothesis with lowest
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error. These hypotheses are injected to genetic pool as initialization step. In initial-

ization phase, first individual is initialized by hypotheses with lowest errors, second

individual is initialized by hypotheses with second lowest errors, and so on. This

initialization schema is expected to improve performance of AdaBoost.

3.3 Summary

In this chapter, evolutionary search by using genetic algorithms is proposed instead

of heuristic based search that the classical AdaBoost uses. This approach sacrifices

some of the best solutions in prior or middle selections of strong classifier and tries to

find better solutions. With variable length encoding, suitable number of rounds T is

selected by genetic algorithm. Initialization schema improves the classical AdaBoost

in terms of classification ability.
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CHAPTER 4

EMPIRICAL STUDY

In this chapter, the experimental setup for the methods proposed in Chapter 3, in

which evolutionary search is combined with boosting, is presented. An empirical

analysis is conducted to demonstrate strengths and weaknesses of the proposed al-

gorithms compared to the classical AdaBoost. In experiments, performance of algo-

rithms are discussed for the binary classification problem.

For this purpose, two data sets are used as training and testings environments.

The first data set is a face-nonface dataset, which is used by Viola et al. [5] during

training of AdaBoost. Face detection is one of the benchmark problems in computer

vision literature [27], [5], [6], [28], [29]. An important characteristic of this data set

is that number training samples are relatively high compared to the dimension of

feature space. Other data set, which is from Bioinformatics area, composed of two

classes, nucleic proteins and cytoplasmic proteins. Biologically, classification of this

data set is harder because there exists some proteins that can be travel form cyto-

plasm to nucleus or vice versa.

All experiments conducted in this work are conducted on GNU/Linux 2.6 and

GNU/Linux 2.4, 2.4 GHz Dual core and Pentium-4 3.0 GHz platforms. GAlib [30] is

used as the genetic algorithms library. C++ and C programming languages are the

cores of implementation of proposed algorithms. MatLab language is, also, used in

feature extraction phase of the implementation.

Organization of this chapter is as follows, in the first section, general informa-

tion about data sets and feature extraction methods used in experimental setup is

discussed. Then, weak hypotheses used in this thesis is represented. Finally, experi-

mental results with their discussion are provided.
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Table 4.1: Notations and Abbreviations

Basic Notations
Ii : ith individual
N : number of training samples
Np : number of positive training samples
Nn : number of negative training samples
Pmut : mutation Probability
Pcross : crossover Probability
NG : number of Generations
NP : number of Individuals in the population
Gi : ith generation of the population
F (Ii, Gj): fitness value of ith individual

in jth generation

Classification Methods
AB : AdaBoost
EB : evolutionary boosting with fixed-sized encoding
V EB : evolutionary boosting with variable-sized encoding
SEB : evolutionary boosting initialized with partial

results of AdaBoost and with fixed-sized encoding
MSEB : evolutionary boosting with initialized population

of ranked classifiers of AdaBoost
ALGi an algorithm ALG is boosted with i number of

weak hypothesis where ALG = AB,EB, V EB,SEB

Fitness Functions
FFCR: classification rate fitness evaluation schema
FFROC : area under ROC curve fitness evaluation schema

Evaluation Abbreviations
DR: detection rate
FA: false alarm
CR : classification rate
ROC : receiver operating characteristics curve
AROC : area under receiver operating characteristics curve
AVj(I): average fitness value in ith generation
Bi: best fitness value in ith generation

35



Table 4.2: Distribution of Samples in Bioinformatics Data Set

Training Data Testing Data

Nuclear Proteins 1335 890
Cytoplasmic Proteins 1335 445

4.1 Data Sets

In this work, two data sets are extensively used to evaluate and compare perfor-

mances of proposed systems and the classical AdaBoost. In this section, general

information of data sets, feature extraction techniques and weak classifiers used in

these data sets are provided.

4.1.1 Bioinformatics Data Set and the Features

Bioinformatics data set is composed of features from two kinds of proteins, nuclear

proteins and cytoplasmic proteins. Throughout this work, nuclear proteins are used

as positive samples and cytoplasmic proteins are used as negative samples. Organi-

zation of data set is as follows:

Construction of fixed dimensional vectors requires two steps. At the first step, a

subsequent profile map is constructed. All possible subsequences of a given length

are extracted from positive training sequences. These subsequences are clustered as

similar subsequences fall into same clusters. Then a probabilistic profile for each

cluster is generated. At the second step, each subsequence of proteins that occupy

a place in feature space as subsequence distributions over generated profile maps is

compared with each probabilistic profile and a probability is calculated as,

P (x|PPk) =
l

∑

i=0

PPk(i, x(i)),

where l is the length of subsequences and x is a single subsequence. The value for

kth dimension of the feature vector is set to

Pmax(S) = max
xi

P (xi|PPk)

probability of highest scoring subsequence of protein S on probabilistic profile PPk.
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(a) Face Images (b) Nonface Images

Figure 4.1: Subset of images in face-nonface data set

4.1.2 Face-Nonface Data Set and the Features

Face and nonface data set is the same training set as the one used by Viola et al. used

to train the original AdaBoost algorithm. All of these images are cropped, scaled

to 32×32 resolution and histogram equalized to enhance from certain undesirable

lighting conditions. Mirror images of all face images are taken in order to increase

the amount of face images. Entire data is split up into two data set for training and

testing purposes.

Table 4.3: Distribution of Samples in Face-Nonface Data Set

Training Data Testing Data

Face Images 4916 4916
Nonface Images 4916 4916

Ten randomly generated training and testing sets are produced to evaluate the

performances of proposed methods and compare them with the classical AdaBoost

algorithm.
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Table 4.4: Convolution matrices of simple Haar wavelet transformation

1/4 1/4

1/4 1/4

1/2 1/2

−1/2 −1/2

(a) Averaging (b) Alpha

1/2 −1/2

1/2 −1/2

1/2 −1/2

−1/2 1/2

(c) Beta (d) Gamma

4.1.3 Feature Extraction

Simple Haar wavelet transformation of the images are used as features of face-nonface

data set. Haar wavelet transformation provides multi-resolutional, simple intensity

difference in based features for image compression, noise removal and filtering.

At each stage, upper-left quarter of the image holds down-sampled version of

original image (averaging), upper-right quarter of the image holds vertical intensity

changes, lower-left quarter holds horizontal intensity changes and lower-right quar-

ter holds diagonal intensity changes. Computed intensity differences is simple 2×2

convolution matrices emphasizing changes of intensity values in horizontal, vertical

and diagonal fashion [31].

Computational load of extracting haar features is negligible compared to com-

plexities of learning algorithms. Application of simple Haar wavelet transformation

produces N2 wavelet coefficients from N ×N image. Thus, 32×32 face and nonface

images in this data set have 1024 dimensional feature vectors.

4.2 Weak Hypothesis

Throughout the experiments thresholding technique over 1D histograms is exten-

sively used. Finding an optimum threshold over one dimensional data is reduced to

O(N) with a bucket sort approach. First of all, histograms of positive and negative

samples are formed, then cumulative histograms are calculated. Finally, the best de-

tection and false alarm rate are computed by traversing on cumulative histograms of

positive and negative samples at the same time.
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Algorithm 10 SIMPLE HAAR WAVELET DECOMPOSITION

Require: n× n square imageIm

intensity value Im(i, j) at a single point coordinated i in x axis, j in y axis

t number of steps

Ensure: HIm simple haar wavelet decomposition of given input image

Initialize T = log(n
2 ) + 1

1: for all t such that t = 1, 2, · · · , T do

2: size = 2T−t

3: for all i such that i = 0, 2, · · · , size do

4: for all j such that j = 0, 2, · · · , size do

5: offset = size/2

6: A = Im(i, j)

7: B = Im(i + 1, j)

8: C = Im(i, j + 1)

9: D = Im(i + 1, j + 1)

10: HIm(i/2, j/2) = A+B+C+D
4 : averaging

11: HIm(offset + i/2, j/2) = A−B+C−D
2 : alpha

12: HIm(i/2, offsetj/2) = A+B−C−D
2 : beta

13: HIm(offset + i/2, offsetj/2) = A−B−C+D
2 : gamma

14: end for

15: end for

16: end for
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(a) (b)

(c) (d)

Figure 4.2: (a) Level-1 Transformation (b) Level-2 Transformation (c) Level-3 Trans-
formation (d) Level-4 Transformation

4.3 Experiment Results

In this section experiment results are provided for Bioinformatics data set and Face-

nonface data set, consecutively.

4.3.1 Bioinformatics Data Set

In Table 4.5, AdaBoost(AB), fixed length encoding(EB), variable length encoding(VEB)

and fixed length encoding initialized with the partial results of AdaBoost(SEB) is

compared. In evolutionary algorithms, classification rate based fitness function is

used to search over hypotheses space. Detection rate is computed by

DR =
numberoftruepositives

numberofpositivesamples

False alarm rate is computed with

FA =
numberoffalsepositives

numberofnegativesamples
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Table 4.5: Experiment-1 on Bioinformatics Data Set

Algorithm CR DR FA

AB46 0.635 0.645 0.010

V EB37 0.638 0.759 0.120
AB37 0.610 0.626 0.016

EB30 0.665 0.788 0.122
SEB30 0.693 0.807 0.113
AB30 0.606 0.640 0.033

Algorithm CR DR FA

AB46 0.541 0.597 0.056

V EB37 0.564 0.712 0.148
AB37 0.515 0.583 0.067

EB30 0.603 0.767 0.164
SEB30 0.585 0.760 0.175
AB30 0.541 0.622 0.080

(a) Performances in Training Set (b) Performances in Testing Set

NP : 600(SEB-400) NG: 300(SEB-200)
Pmut: 0.1 Pcross: 0.9
FitnessFunction: FFCR Selection: Roulette-Wheel
Mutation: Swap Mutation Crossover: Single Point

(c) Parameters
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(d) Mean Fitness - Generation Curve (e) Best Fitness - Generation Curve

Classification rate is CR = DR− FA.

AB (AB46) combines 46 classifiers to achieve best performance on training set. On

the other hand, VEB (V EB37) boosts 37 weak classifiers in order to achieve almost

same performance that AdaBoost does. 30 weak classifiers are boosted in EB (EB30)

and SEB (SEB30). In training set, SEB achieves best performance in classification and

detection rate by 0.693 and 0.807, respectively. On the other hand, best false alarm

rate is found by AB (AB46) with 0.010. In case of testing set, best performance is

gathered by EB (EB30) with 0.603 classification rate and 0.767 detection rate. Best

false alarm rate is again achieved by AB (AB46).

Remarkable point in this experiments are all evolutionary search boosts better

permutations than AdaBoost does. For example, in 30 weak classifier boosted clas-

sifiers, SEB (SEB30), EB (EB30) and AB (AB30) perform 0.693, 0.665 and 0.606 clas-

sification rates in training set respectively. Moreover, same classifiers achieves 0.585,
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Table 4.6: Comparison of AdaBoost and fixed length encoding genetic algorithm in
the training set

AdaBoost Fixed Length Encoding
T DR FA CR DR FA CR

2 0.614232 0.219476 0.394757 0.773783 0.416479 0.357303
3 0.707116 0.199251 0.507865 0.643446 0.241199 0.402247
4 0.701873 0.213483 0.48839 0.692884 0.25618 0.436704
5 0.715356 0.183521 0.531835 0.645693 0.233708 0.411985
6 0.68839 0.161798 0.526592 0.722846 0.199251 0.523596
7 0.6397 0.116105 0.523596 0.770787 0.259176 0.51161
8 0.652434 0.102622 0.549813 0.752809 0.220974 0.531835
9 0.6397 0.100375 0.539326 0.713109 0.179026 0.534082
10 0.659925 0.10412 0.555805 0.720599 0.172285 0.548315

T is the number of boosted weak classifiers

0.603 and 0.541 in testing set, successively. This experiment proves that better per-

mutations with same number of classifiers can be formed other that AdaBoost does

with greedy search.

Mean fitness - generation curve represents average value of individuals fitness

scores in generations, best fitness - generation curve represents best fitness valued

individual at generation g.

Another interesting point is that AdaBoost achieves lowest false alarms rates,

whereas, evolutionary algorithms concentrate on high detection rates. Table 4.6 de-

picts that this behavior difference is basically depends on the selection of hypothesis

in very first iterations. Fixed length encoding starts with a group of hypothesis that

cares more on detection rate than on false alarm rate, otherwise is true for AdaBoost.

Another experiment conducted on Bioinformatics data set is the procedure of ini-

tialization of population by unselected hypotheses proposed in Section 3.2.3. Experi-

mental results show that proposed system performs slightly better than AdaBoost

with relatively less number of classifiers. However, there is a drastic difference

in testing data (AdaBoost has 0.541 classification rate, Genetic Algorithm achieves

0.632).

In Table 4.8, same experiments are done with same parameters except a different

fitness function is used. This time, area under Receiver Operating Analysis(ROC)

curve is used instead of classification rates. In all cases, AdaBoost outperforms the

evolutionary algorithms. One of the reason for this is that computing ROC curve
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Table 4.7: Comparison of AdaBoost and fixed length encoding with initialization of
unselected hypotheses

Training Data Set Testing Data Set
Algorithm DR FA CR DR FA CR

AB46 0.645693 0.0104869 0.635206 0.597753 0.0561798 0.541573
EB25 0.783521 0.14382 0.6397 0.762921 0.130337 0.632584

AB25 0.613483 0.0374532 0.57603 0.583146 0.0808989 0.502247

requires a projection from feature hyper-planes to one dimensional confidence rates.

This is even a harder problem than classification and the search for a better ROC

curve is almost impractical with these parameters of genetic algorithms. Other rea-

son is that in very first steps of the algorithm, AdaBoost concentrates on general

behavior of the data, then at later stages, classifiers are successively chosen for hard

samples. Confidence rates that are needed to draw ROC curves are calculated by

T
∑

t=1

αtht(x)−
1

2

T
∑

t=1

αt

where αt = εt

1−εt
. As training error rate decreases, the value αt also decreases. In

first iterations, AdaBoost assigns large αt values to correctly classified samples and

this approach provides a good projection on one dimensional confidence rate space.

Genetic algorithm counterparts, there is no such behavior. Thus, in terms of ROC

curves, AdaBoost will be better than any other methods that this work proposes.

Moreover, AdaBoost classifies most of the common data in very few iterations. Then

algorithm concentrates on difficult samples. In proposed systems, some of the easily

classifiable data is sacrificed in order to achieve better classification rates. In addi-

tion to this, constructing a ROC curve over training set requires a projection from M

dimensional space to one dimensional space. Finding a suitable projection over one

dimensional space from a hyperspace is more challenging task than classification of

data. To outperform the classical AdaBoost, more individuals has to be present in the

initial population and more generations population has to be evolved.
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Table 4.8: Experiment-2 on Bioinformatics Data Set

NP : 600 NG: 300
Pmut: 0.1 Pcross: 0.9
FitnessFunction: FFROC Selection: Roulette-Wheel
Mutation: Swap Mutation Crossover: Single Point

(a) Parameters
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(b) Mean Fitness - Generation Curve (c) Best Fitness - Generation Curve
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Table 4.9: Experiments on Face-Nonface Data Set(Average) with classification rate
based fitness function

Training Set Testing Set
Algorithm CR DR FA CR DR FA

AB42 0.871 0.988 0.117 0.852 0.980 0.128

EB20 0.880 0.939 0.059 0.864 0.932 0.067
AB20 0.873 0.965 0.091 0.860 0.960 0.100

V EB37 0.885 0.940 0.055 0.871 0.933 0.062

AB37 0.873 0.988 0.115 0.853 0.980 0.127
(a) Average Classification, Detection, False Alarm Rates

Training Set Testing Set
Algorithm CR DR FA CR DR FA

AB42 0.026 0.009 0.032 0.025 0.008 0.031

EB20 0.004 0.006 0.005 0.005 0.009 0.007
AB20 0.010 0.011 0.020 0.010 0.012 0.020

V EB37 0.005 0.008 0.010 0.006 0.009 0.010
AB37 0.015 0.003 0.017 0.016 0.004 0.019

(b) Standard Deviation of Classification, Detection, False Alarm Rates

4.3.2 Face-Nonface Data Set

Table 4.9 shows average values of 10 experiments performed on face-nonface data

set. Classification rate is used as fitness function. The first row AB42 is the best av-

erage AdaBoost performance achieved on training set. Average number of boosted

weak classifiers in all experiments is 42. The second and third rows EB20 and AB20

are the performances of fixed length encoding genetic algorithm and AdaBoost by

20 boosted weak classifiers,respectively. Finally last two rows V EB37 and AB37 are

variable length encoding genetic algorithm and AdaBoost. In last two rows, variable

length encoding genetic algorithm and AdaBoost with same number of weak classi-

fiers are compared. Genetic algorithms achieve better performances even with same

and less number of boosted weak classifiers.

In this data set, AB accomplishes 0.988 detection rate which is higher than EB

and VEB, 0.939 and 0.940, respectively. This is opposite behavior observed in Bioin-

formatics data set. Details of some selected experiments are given below.
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Table 4.10: Experiments on Face-Nonface Data Set-1

Algorithm CR DR FA

AB32 0.889 0.977 0.088

EB20 0.881 0.941 0.059
AB20 0.878 0.965 0.086

V EB38 0.876 0.927 0.051

AB38 0.867 0.985 0.117

Algorithm CR DR FA

AB36 0.870 0.974 0.104

EB20 0.864 0.935 0.070
AB20 0.865 0.963 0.098

V EB40 0.865 0.925 0.060

AB40 0.847 0.985 0.137
(a) Performances in Training Set (b) Performances in Testing Set

NP : 600 NG: 300
Pmut: 0.1 Pcross: 0.9
Fitness Function: FFCR Selection: Roulette-Wheel

(c) Parameters
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Table 4.11: Experiments on Face-Nonface Data Set-2

Algorithm CR DR FA

AB30 0.840 0.988 0.147

EB20 0.878 0.943 0.065
AB20 0.862 0.970 0.107

V EB36 0.890 0.927 0.037

AB36 0.858 0.989 0.130

Algorithm CR DR FA

AB30 0.819 0.980 0.161

EB20 0.865 0.938 0.073
AB20 0.859 0.966 0.107

V EB36 0.870 0.912 0.042

AB36 0.836 0.982 0.145
(a) Performances in Training Set (b) Performances in Testing Set

NP : 600 NG: 300
Pmut: 0.1 Pcross: 0.9
Fitness Function: FFCR Selection: Roulette-Wheel

(c) Parameters
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Table 4.12: Experiments on Face-Nonface Data Set-3

Algorithm CR DR FA

AB34 0.880 0.984 0.104

EB20 0.879 0.941 0.061
AB20 0.883 0.943 0.060

V EB34 0.891 0.937 0.045

AB34 0.880 0.984 0.104

Algorithm CR DR FA

AB34 0.861 0.973 0.112

EB20 0.864 0.930 0.066
AB20 0.868 0.938 0.069

V EB34 0.879 0.932 0.052

AB34 0.861 0.973 0.112
(a) Performances in Training Set (b) Performances in Testing Set

NP : 600 NG: 300
Pmut: 0.1 Pcross: 0.9
Fitness Function: FFCR Selection: Roulette-Wheel

(c) Parameters
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Figure 4.3: Performance Rates vs. Number of Boosted Weak Classifiers Graph. (a)

Training Set (b) Testing Set

4.4 Comparison of AdaBoost and Proposed Methods

In this section, a comparison of AdaBoost and proposed genetic algorithms is dis-

cussed under several title, generalization vs. overfitting, dimension of feature space,

size of data set and complexity.

4.4.1 Generalization vs. Overfitting

Boosting algorithms suffer from overfitting, when the number of hypotheses to be

selected T gets larger and larger. There exists no rule of thumb that decides suitable

number of boosting steps. When overfitting happens, generalization capability of the

algorithms drops sharply. Because algorithm memorizes the training data.

In Figure 4.3, after ensembling 46 classifiers, performance of AdaBoost either re-

mains the same or decreases. Moreover, testing performance decreases rapidly as the

number of ensembled classifiers increased. On the other hand, independent of num-

ber of boosted classifiers, genetic algorithms try to maximize classification function.

In Table 4.10, AdaBoost ensembles 32 weak classifiers to achieve 0.889 classification

rate on the training set and classification rate drops 0.867 with 38 boosted weak hy-

potheses, however variable length encoding still performs 0.876 classification rate

with 38 ensembled classifiers. One drawback of increasing number of hypotheses is

increasing complexity and search space of the problem.

Table 4.7 shows that the performance of evolutionary search differs less slightly

than AdaBoost does from training data to testing data. This indicates that the pro-
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posed methods have stronger generalization ability.

4.4.2 Dimension of The Feature Space

Dimension of feature space is the same as to the number of weak hypotheses. Be-

cause of greedy search methodology, AdaBoost does not face any difficulty in train-

ing. However, when the number of hypothesis gets larger and larger, search space

(permutation space mentioned at Section 3.1) also grows exponentially. For that rea-

son, population size and number of evolving generations parameters of genetic algo-

rithms have also been increased, this operation can be impractical without presence

of high performance computing systems.

4.4.3 Complexities of Algorithms

At first glance, combining boosting idea with evolutionary search seems to be a good

alternative to AdaBoost the existence of better permutations in search space enables

one to find it by evolving generations. Let H be the number of classifiers in the hy-

pothesis space and T be the number boosted weak classifiers. AdaBoost forms a

solution from HT dimensional space. Fixed length solution tries to find fittest indi-

vidual in this space. As H and T becomes larger and larger, hypothesis space grows

exponentially.

In case of variable length encoding, dimension of search space is
∑T

i=1 H i because

first gene of the encoding can be any value from 1 to T . Variable length encoding

searches in a drastically larger space. In order to find good solutions, more and more

individual has to be in populations and there has to exist more and more generations.

On the contrary, wider space means more diversity and more possible solutions.

In terms of complexities, AdaBoost tries to form a strong classifier by T iterations,

among H hypotheses. Complexity for AdaBoost is O(HTN), where N is the num-

ber of samples and O(N) is the complexity for calculating error of a classifier. In the

proposed method, complexity for fitness function is O(TN), where T is the number

of boosted classifiers and again O(N) is the complexity for calculating error of a clas-

sifier. For this reason, complexity of the genetic algorithm is O(GPTN), where G

is the number of evolving generations and P is the number of populations. Com-

plexities of proposed systems and AdaBoost differs from two entities, PG and H . In
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experiments, PG(600 individuals with 300 generations) is far larger that H (1445 in

Bioinformatics data set and 1024 in Face-Nonface data set).

Empirical results show that training time for AdaBoost is about 20 minutes on

average, whereas evolutionary algorithms need 70 hours on average.
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CHAPTER 5

CONCLUSIONS AND FUTURE DIRECTIONS

In this thesis, a novel approach to boosting is proposed. This approach presents a

disciplined evolutionary search that can be alternative to both exhaustive and greedy

search in hypothesis space. Boosting provides a good dimensionality reduction and

a linear classifier with all desired properties. After forming final classifier, boosting

concentrates on only selected hypotheses among all possible hypotheses.

In Chapter 2, AdaBoost and Boosting theory are discussed with both superiorities

and weaknesses. Other proposed systems in the literature which try to solve partial

problems of AdaBoost is also considered.

In Chapter 3, idea of combining evolutionary search with genetic algorithms in

boosting is provided with both representations, fitness functions and initialization

schema. All modifications in these concepts are done to find solutions to the prob-

lems of the classical AdaBoost.

Throughout the experiments demonstrated in Chapter 4, proposed system achieves

better performances compared to the classical AdaBoost. In case of fixed length cod-

ing, evolutionary search finds good solutions compared to AdaBoost at the same

number of boosting rounds and almost same solutions with low number of boosted

classifier. Although complexity of evolutionary search at high number of boosting

steps make evolutionary search impractical, in small sets or medium problems evo-

lutionary search is a good alternative to AdaBoost.

Variable length encoding suffers from complexity of the search space. However,

it provides a classifier without parameters, even number of rounds. According to

experiments, evolutionary boosting achieves better classification rates, but AdaBoost

is capable of generating better ROC curves. To achieve such curves, more individuals

in the initial population with high number of generations to be evolved are needed.
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For the future work, pattern classification for boosting with genetic algorithms

can be improved in several ways,

• In the current system, with the genetic algorithms, computational complexity

of fitness function is high, this makes evolutionary search almost impractical

in very high dimensional feature spaces and large amount of training data.

On the other hand, computation of fitness values are completely independent

tasks, based on this task, algorithm can be implemented in parallel computing

fashion. Computation of each fitness value in grid, cluster like systems enables

to attempt more complex problems.

• New representations that are compatible with nature of genetic algorithms can

be proposed in this context. Due to new representations, new mutation and

crossover function that favor more qualified individuals can be defined. Good

representation with appropriate operations produces good results.

• Fitness functions can be adjusted to perform more accurate solutions. Different

selection strategies may also be applied.
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