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Assoc. Prof. Dr. Azize HAYFAVİ
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Abstract

VALUATION OF LIFE INSURANCE CONTRACTS

USING STOCHASTIC MORTALITY RATE

AND

RISK PROCESS MODELING

ÇETİNKAYA, Şirzat

M.Sc., Department of Financial Mathematics

Supervisor: Assoc. Prof. Dr. Azize HAYFAVİ

February 2007, 74 pages

In life insurance contracts, actuaries generally value premiums using determin-

istic mortality rates and interest rates. They have ignored them stochastically in

most of the studies. However it is known that neither interest rates nor mortality

rates are constant. It is also known that companies may encounter insolvency

problems such as ruin, so the ruin probability need to be added to the valuation

of the life insurance contracts process. Insurance companies should model their

surplus processes to price some types of life insurance contracts and to see risk

position. In this study, mortality rates and surplus processes are modeled and

financial strength of companies are utilized when pricing life insurance contracts.

Keywords: Stochastic mortality rate, risk process, the Kalman filter, life insur-

ance contract, affine term structure, jump diffusion models, participating life

insurance contract, credit rating.
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Öz

HAYAT SİGORTASI POLİÇELERİNİN

STOKASTİK ÖLÜM ORANINA GÖRE FİYATLANMASI

VE

RİSK SÜRECİ MODELLEMESİ

ÇETİNKAYA, Şirzat

Yüksek Lisans, Finansal Matematik Bölümü

Tez Yöneticisi: Doç. Dr. Azize HAYFAVİ

Şubat 2007, 74 sayfa

Hayat sigortası poliçelerinin prim hesaplamaları yapılırken genellikle deter-

ministik ölüm oranı ve faiz oranı kullanılır, stokastik olarak modellemeler çoğu

zaman yapılmaz. Sabit faiz ve ölüm oranı düşünülerek hesaplamalar yapılmasına

rağmen iki oran da sabit yapıya sahip değildir. Sigorta şirketlerinin risk süreçleri

modellenirken başlangıç sermayesi, prim ve hasar büyüklükleri kullanılır. Sigorta

şirketleri yükümlülüklerini karşılayacakları kadar sermaye tutmalarına rağmen

yükümlülüklerini karşılama konusunda bir takım problemlerle karşılaşabilirler.

Bu çalışmada ölüm oranı stokastik olarak modellenmeye, risk süreci için stokastik

bir model oluşturulmaya ve şirketlerin finansal durumları göz önünde bulunduru-

larak çeşitli poliçelerin fiyatlandırılması yapılmaya çalışılmıştır.

Anahtar kelimeler: Stokastik ölüm oranı, risk süreci, iştirakli hayat poliçeleri,

kredi derecesi, hayat sigortası kontratı, Kalman filtresi.
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Chapter 1

INTRODUCTION

1.1 Introduction

An insurance can be considered under two aspects, economic and legal. From

an economic aspect, insurance has a financial intermediation function. It covers

individuals from events damaging them financially. From this point of view, in-

dividuals buy the right to compensate their losses from the pool if the insured

contingency occurs. Hence, insurance is a contingent claim contract on the pool’s

asset. From a legal aspect, insurance is an agreement between insurance com-

pany and insurer. Insureds pay a certain amount of money called premium to

the insurer to protect him against the losses from unexpected situations. If the

covered event occurs whose objects can be life, health or property, the insurer

must provide money or service according to the policy [40].

An insurance contract can be classified as a life insurance contract or a non-

life insurance contract. In the life insurance contract, the risk assumed by the

insurer is the risk of death of the insured. Life insurance contracts have many

advantages. Some of them are as follows: a life insurance contract compensates

the losses due to the death of insured; it can be used to pay insured’s debts after

the insured dies; or in many businesses, the death of a person can affect the

business life, so a life insurance contract can be used to help the company with
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benefit payment [2].

In life insurance contracts, actuaries generally value premiums using deter-

ministic mortality rates and interest rates. They are not given stochastically

many times. However it is a well known fact that neither the interest rates nor

the mortality intensities are deterministic or constant.

There are three important risks for insurance companies [16],

• The financial risk,

• The systematic mortality risk,

• The unsystematic mortality risk.

The financial risk refers to the uncertainty related to financial factors, the

systematic mortality risk refers to the future development of the underlying mor-

tality intensity and the unsystematic mortality risk refers to a possible adverse

development of the policyholders mortality (insured portfolio). Insurance com-

panies have the advantage of selecting mortality tables or mortality intensities

and interest rates, which are appropriate for their contracts and institutions.

Therefore they can protect themselves from unexpected situations like extreme

interest rate changes or extreme mortality improvements. Because the insurance

contracts have generally long maturities, five years, ten years or more long, the

interest and the mortality rates selected at the beginning of the contract may not

protect them throughout the contract maturity. It is known that financial assets

are very volatile, so the financial risk is an immediate problem for the investors

or insurance companies, on the other hand mortality intensity is not very volatile

but it can cause some solvency problems for the company in the long term, and

it becomes more permanent problem for the companies.
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Insurance companies may encounter some difficulties to meet their liabilities,

although they hold enough capital to cover their losses. In recent years, there are

some bad experiences about this issue. One of the ways to see whether companies

meet their liabilities or not is to examine companies’ ratings. If the companies

consider their ratings and then determine the premiums of life insurance contracts,

the premiums will be different for every rating class. This satisfies investors to

buy the contracts according to their risk profile.

The thesis is organized as follows: In Chapter 2, the basics of mortality mod-

eling are explained. Survival probabilities are modeled by affine term structures.

The survival probability and the force of mortality (or mortality intensity) are

modeled with a jump process. The Kalman filter technique is used to estimate

parameters of the force of mortality, which is modeled by N.M.R.CIR (non mean

reverting Cox Ingersoll Ross). In Chapter 3, the basics of the surplus modeling are

explained. A jump diffusion process is used to model the surplus process. Some

life insurance contracts are explained in Chapter 4. Chapter 5 discusses further

applications of the specific models in Chapter 2 and 3. Chapter 6 concludes.
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Chapter 2

MORTALITY MODELING

2.1 Literature Review

In recent years, stochastic mortality modeling has been more and more im-

portant, because of the following reasons:

• To prevent insolvency problems:

The change in the mortality structure can cause very important problems.

Especially, life insurance and pension foundations should give more atten-

tion, because changes in the mortality structure directly affect their pre-

miums and benefits. Predicting the mortality structure, they may prevent

their solvency problems.

• To price mortality derivatives:

Some mortality derivatives are as follows: Survivor swaps, survivor bonds,

mortality options, annuity futures, mortality linked securities [13].

The topic of stochastic mortality modeling has been handled by different au-

thors. Some of them and their assumptions are as follows: Milevsky and Promis-

low in [34] assumed that the mortality intensity has the Gompertz form with a

mean reverting diffusion process. Dahl in [16] used the affine forms. Biffis, Denuit
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and Devolder in [6] specified the behaviour of Lee Carter model. Biffis in [7] used

a jump component in mortality assumptions. Luciano and Vigna in [29] used

affine processes to model the mortality. Schrager in [39] assumed the mortality

intensity as Gaussian Thiele model and used affine term structure.

2.2 The Basics of Mortality Models

The terminologies and the notations commonly used in life insurance are as

follows [20]:

• One’s future life time is denoted by T(x) or for simplicity by T.

• The probability that a person aged x will die within t years is denoted by

tqx.

• The probability that a person aged x will attain age x+ t is denoted by tpx.

• The person with age x will survive t years and die within the following u

years. another words the person with age x will die between ages x+t and

x+t+u is denoted by t|uqx.

• The mortality intensity (or the instantaneous rate of mortality, the force of

mortality) is denoted by µx(t).

The future lifetime T is a r.v. with a probability distribution function,

Gx(t) = Pr[T (x) ≤ t], t ≥ 0, (2.2.1)

gx(t) = G′
x(t). (2.2.2)
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Gx(t) gives the probability that the person with age x will die within t years,

for any fixed t. This probability can also be denoted by the symbol tqx,

tqx = Gx(t) = Pr[T (x) ≤ t], t ≥ 0. (2.2.3)

Let tpx denote the probability that a person aged x will survive at least t years,

tpx = 1−t qx = 1−Gx(t) = Pr[T (x) > t], t ≥ 0.3 (2.2.4)

t|uqx = Gx(t+ u)−Gx(t) = Pr[t < T (x) ≤ t+ u] (2.2.5)

denotes the person with age x will survive t years and die within the following u

years

The approximation,

cqx+t ≈ µx(s)c, (2.2.6)

is valid for small values of c. At the age of x the mortality intensity for the age

x+t is defined as

µx(t) = µx+t =
gx(t)

1−Gx(t)
= − d

dt
ln[1−Gx(t)], (2.2.7)

µx(t) = − d

dt
lntpx, (2.2.8)

tpx = e−
∫ t
0 µx(s)ds. (2.2.9)

In the literature, some authors suggested analytical distributions for Gx(t).

Some of them are given here [20]:
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De Moivre(1724) postulated the existence of maximum age w, and g(t) was

the density of the uniform distributed between the ages of 0 and w-x,

gx(t) =
1

w − x
, 0 < t < w − x, (2.2.10)

µx(t) =
1

w − x− t
, (2.2.11)

where the mortality intensity is an increasing function of t.

Gombertz (1824) suggested the model for the mortality intensity. It is defined

as

µx(t) = Bcx+t. (2.2.12)

This model satisfies that the mortality intensity increases exponentially.

Makeham(1860) generalized Gompertz law. The model is as follows:

µx(t) = A+Bcx+t, (2.2.13)

where A > 0 to satisfy the exponentially growing.

Weibull(1939) postulated that the mortality intensity grows a power of t,

µx(t) = k(x+ t)n, (2.2.14)

where k > 0 and n > 0.

Mortality modeling in life insurance and default modeling in the credit litera-

ture are very similar [29]. The mortality intensity can be thought of as a hazard

rate in the Cox process approach. When N is considered as a doubly stochastic

7



process, i.e. Cox process random time dependent intensity driven by the µ, the

counting process N is Poisson inhomogeneous with the parameter
∫ .

t
µx(s)ds.

The conditional distribution of N is defined by, ∀ T ≥ t ≥ 0 and k ≥ 0 [7],

P (NT −Nt = k|Ft) =
(
∫ T

t
µx(s)ds)

k

k!
e−

∫ T
t µx(s)ds. (2.2.15)

If k is taken zero, the conditional probability of survival from time t to T, for

the age x+t at time t, is obtained as

P (T > t|T > 0) = e−
∫ T

t µx(s)ds. (2.2.16)

The time of death of a person is modeled as a stopping time τ with respect

to the filtration, Ft containing both financial and mortality information. Ft =

F τ
t ∨Ht and F τ

t is defined as

xt = {1{τx≤t}, t ≥ 0},

F τ
t = ∨

x
Fx
t .

Ht is a sub filtration and contains the all information except a person’s life

status (alive or death). Ft = F τ
t ∨ Ht and Ht = Mt ∨ Gt where Mt contains

the information about mortality market, and Gt contains the information about

financial market.

When insurance companies calculate life insurance premiums and reserves,

they generally use a deterministic mortality intensity. This is a drawback for

insurance companies. Deterministic rates may cause financial insolvencies due to

life insurance contracts generally having longer maturities. If they use determin-

istic mortality rates, they do not consider mortality risk properly. This situation

8



may negatively affect companies’ financial positions in the long run. Some mor-

tality modeling techniques are discussed in the next sections to calculate more

accurate premiums and reserves.

2.3 Survival Probability Modeling with Affine

Term Structures

The mortality intensity process is defined on the probability space (Ω,F , P )

and modeled under the objective measure. The P dynamics of the mortality

intensity is given by [16],

dµx(t) = αµ(t, µx(t))dt+ σµ(t, µx(t))dw
P,µ
t , (2.3.17)

where dwP,µt is the increment of the standard Wiener process. Parameters αµ

and σµ specify the drift term and diffusion term, respectively. The coefficients of

the model are functions of the current value of the mortality intensity, therefore

the mortality intensity is a Markov Process under the conditions of existence and

uniqueness of the solution [27].

If the mortality intensity is known, the survival probability from time 0 to t,

for the age x at time 0, can be calculated as follows:

tpx = e−
∫ t
0 µx(s)ds. (2.3.18)

Despite the fact that the future development of the mortality intensity is not

known, it is taken as the expectation of the mortality intensity with respect to

the development of the current time.

9



In the interest rate theory some interest rate models can be formulated in

an affine form. The survival probabilities can be formulated like a bond price.

Instead of using instantaneous interest rate in bond pricing, instantaneous mor-

tality rate is used. Modeling mortality in an affine form is very useful, because

when applying the stochastic mortality to different contracts, affine form satisfies

analytical tractability.

T−tpx+t = EP
t [e−

∫ T
t µx(s)ds] = p(µx(t), t, T ) = eA(t,T )−B(t,T )µx(t). (2.3.19)

(2.3.19) gives the survival probability from time t to T for the age x + t. In

an arbitrage free market, p(µx(t), t, T ) will satisfy the term structure equation.

Feynman-Kac stochastic representation formula of (2.3.19) is as follows:

∂p(µx(t), t, T )

∂t
+ αµ

∂p(µx(t), t, T )

∂µ
+

1

2
σ2
µ

∂2p(µx(t), t, T )

∂µ2
− µxp(µx(t), t, T ) = 0,

(2.3.20)

p(µx(t), T, T ) = 1 (2.3.21)

and it is obtained:

At(t, T )− (1 +Bt(t, T ))µ− αµ(t, µ[x]+t)B(t, T ) +
1

2
σ2
µB

2(t, T ) = 0. (2.3.22)

The boundary value of pt(µx(t), T, T ) = 1 implies A(T,T)=0 and B(T,T)=0.

A, B, αµ and σµ should satisfy (2.3.20) to exist an ATS. If αµ and σ2
µ are both

10



affine functions of µ, then (2.3.22) becomes a separable differential equation for

the unknown functions A and B. αµ and σ2
µ are assumed to have the following

forms:

αµ(t, µ) = η(t)µ+ ϑ(t), (2.3.23)

σµ(t, µ) =
√
υ(t)µ+ ψ(t). (2.3.24)

When (2.3.22) is arranged, it transforms into

At(t, T ) − ϑ(t)B(t, T ) +
1

2
ψ(t)B2(t, T ),

− [1 +Bt(t, T ) + η(t)B(t, T )− 1

2
υ(t)B2(t, T )]µ = 0. (2.3.25)

This equation holds for all t, T and µ. Because of the equation holding for all

values of µ, the coefficients of µ should be zero. Therefore, the below equation is

obtained,

Bt(t, T ) + η(t)B(t, T )− 1

2
υ(t)B2(t, T ) = −1. (2.3.26)

Since the coefficient of µ is zero, the other terms must be equal to zero. This

gives the equation:

At(t, T ) = ϑ(t)B(t, T )− 1

2
ψ(t)B2(t, T ). (2.3.27)

In conclusion, the equations are as follows:

 αµ(t, µ) = η(t)µ+ ϑ(t),

σµ(t, µ) =
√
υ(t)µ+ ψ(t).

(2.3.28)
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 Bt(t, T ) + η(t)B(t, T )− 1
2
υ(t)B2(t, T ) = −1,

B(T, T ) = 0.
(2.3.29)

 At(t, T ) = ϑ(t)B(t, T )− 1
2
ψ(t)B2(t, T ),

A(T, T ) = 0.
(2.3.30)

(2.3.29) is a Ricatti equation for the determination of B not involve A. Having

solved (2.3.29) is inserted the solution B into (2.3.30) and integrate to obtain A.

When A(t, T ) and B(t, T ) are deterministic functions, the model is termed an

affine term-structure model. Generally, A and B are demonstrated as functions

of two arguments, t and T. Let τ is T − t, then it is shown that A(t, T ) = A(τ)

and B(t, T ) = B(τ). The survival probability is as follows:

p(µx(t), t, T ) = eA(τ)−B(τ)µx(t). (2.3.31)

This model is for a special age x. If the mortality intensity is assumed the same

for all ages then it can be formulated without specific age x, but this assumption

will be unrealistic.

When the mortality intensity is modeled by [42],

dµx(t) = (β − αµx(t))dt+ σdwP,µt (2.3.32)
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 Bt(t, T )− αB(t, T ) = −1

B(T, T ) = 0
(2.3.33)

 At(t, T ) = βB(t, T )− 1
2
σ2B2(t, T )

A(T, T ) = 0
(2.3.34)

When B(t, T ) is solved and At(t, T ) is integrated, the following equations are

obtained

A(t, T ) = A(τ) =
(B(t, T )− T + t)(αβ − 1

2
σ2)

α2
− σ2B2(t, T )

4α
, (2.3.35)

B(t, T ) = B(τ) =
1

α
[1− e−α(T−t)]. (2.3.36)

When the mortality intensity is modeled by [15],

dµx(t) = κ(θ − µx(t))dt+ σ
√
µx(t)dwt,

P,µ (2.3.37)

A(t, T ) = A(τ) =
2κθ

σ2
ln(

2he(κ+h)(T−t)/2

2h+ (κ+ h)(e(T−t)h − 1)
), (2.3.38)

B(t, T ) = B(τ) =
2(e(T−t)h − 1)

2h+ (κ+ h)(e(T−t)h − 1)
, (2.3.39)

h =
√
κ2 + 2σ2. (2.3.40)

More information about affine term structures can be found in [9]. It should

be remembered that using affine term structures satisfies some advantages such as

analytical tractability, clear interpretation of the factors and compatibility with

13



option pricing.

2.4 Survival Probability and Mortality Model-

ing With Jump Process

Biffis in [7] explained the use of a discontinuous setup for modeling the in-

tensity of mortality as follows: “The use of a discontinuous setup for modeling

the intensity of mortality may sound unfamiliar. However, we note that neither

the size nor the frequency of discontinuity shocks need be unreasonably large.

Moreover, the gain in flexibility and distributional richness that can be achieved

by adding a discontinuous source of risk in the dynamics of µ can justify the

abuse made in terms of path by path behaviour.”

Survival probability can change extremely due to the development of the

health area, i.e. if one cured AIDS, survival probabilities of people would in-

crease or due to the bird flu pandemic, probabilities may decrease. Due to the

reasons mentioned by Biffis in [7], a jump component can be added to the model

of the survival probability and the mortality intensity.

The probability that a person aged x at year t will attain age x+1 is denoted

by px. The probability is modeled as a jump diffusion process such that for every

fixed x ≥ 0 the probability has dynamics of the form

dpx(t) = k(θ − px(t))dt+ σdwP,µt + Jdπt(h), (2.4.41)

where k is the mean reversion coefficient, θ is a central tendency parameter for
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the survival probability, t is the time parameter, σ is the diffusion coefficient, and

dπ is the increment of the Poisson process with intensity rate h. J is a random

variable independent of wP,µt and π having finite fourth moment.

2.4.1 Estimation of The Jump Model Parameters

The parameters of (2.4.41) can be estimated by the method of moments and

maximum likelihood method. Maximum likelihood method can be used when the

jumps are normally distributed.

2.4.2 The Method of Moments

In order to derive the T interval characteristic function F (p, T ; s) of px in

the interval [0,T], Kolmogrov backward equation (KBE) is solved subject to the

boundary condition which is defined by

F (p, T = 0; s) = eisp, (2.4.42)

where p is the initial value, px(0) and i =
√
−1. The backward equation is as

follows [17]:

0 =
∂F

∂p
k(θ − px) +

1

2

∂F

∂r2
σ2 − ∂F

∂T
+ hE(F (p+ J)− F (p)). (2.4.43)

The last term comes from the effect of the Poisson shock. The characteristic

function is defined as

F (p, T ; s) = eA(T ;s)+pB(T ;s). (2.4.44)
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Das in [17] developed the stochastic differential equation with jump’s moments

by differentiating the characteristic function with respect to s and valuing the

derivative at s = 0. µn shows the nth moment, and Fn is the nth derivative

of F with respect to s, i.e. Fn = ∂nF
∂sn . Based on above explanations, µn can be

obtained as follows [17]:

µn =
1

sn
Fn(s = 0). (2.4.45)

An and Bn are the nth derivative of A and B with respect to s.

A(T ; s) =

∫
(kθise−kT − 1

2
σ2s2e−2kT + hE[eisJe

−kT − 1])dT, (2.4.46)

dA

ds
=

∫
(kθie−kT − σ2se−2kT + hie−kTE[JeisJe

−kT

])dT, (2.4.47)

d2A

ds2
=

∫
(−σ2e−2kT − he−2kTE[J2eisJe

−kT

])dT, (2.4.48)

d3A

ds3
=

∫
(−ihe−3kTE[J3eisJe

−kT

])dT, (2.4.49)

d4A

ds4
=

∫
(−ihe−4kTE[J4eisJe

−kT

])dT. (2.4.50)

The integrals and E[.] are bounded. It can be obtained that when the deriva-

tives are evaluated at s = 0, they are as follows:

(
dA

ds

)
s=0

=

∫
i(kθe−kT+he−kTE[J ])dT = i(−θe−kT−h

k
e−kTE[J ])+c1. (2.4.51)

A(T = 0; s) is equal to zero, therefore c1 = θ + h
k
E[J ], when it is substituted
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this to equation then

(
dA

ds

)
s=0

= i((θ +
h

k
E[J ])(1− e−kT )). (2.4.52)

Other derivatives can be obtained similarly;

(
d2A

ds2

)
s=0

= −(
σ2 + hE[J2]

2k
)(1− e−2kT ), (2.4.53)

(
d3A

ds3

)
s=0

= −ihE[J3](
1− e−3kT

3k
), (2.4.54)

(
d4A

ds4

)
s=0

= hE[J4](
1− e−4kT

4k
). (2.4.55)

These steps can be also done for B. The derivatives of B are obtained as

follows:

(
dB

ds
) = ie−kT , (2.4.56)

(
d2B

ds2
) = (

d3B

ds3
) = (

d4B

ds4
) = 0. (2.4.57)

The following derivative is frequently used in the expressions of the moments,

(
dA

ds
+ p

dB

ds

)
s=0

= i((θ +
h

k
E[J ])(1− e−kT ) + pe−kT ) = iµ1. (2.4.58)

The moments for the distribution of the probability are defined as

µn =
1

in
Fn(s = 0). (2.4.59)
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The first, second, third and the fourth moments can be evaluated as follows:

The first moment is defined by

µ1 =
1

i
(
dF

ds
)s=0 =

1

i
(
dA

ds
+ p

dB

ds
)s=0. (2.4.60)

Because of A(s = 0) = 0 and B(s = 0) = 0, and using above results the first

moment can be rewritten as

µ1 = (θ +
h

k
E[J ])(1− e−kT ) + pe−kT . (2.4.61)

The second moment is defined by

µ2 =
1

i2
(
d2F

ds2
)s=0

=
1

i2
(eA+pB[

d2A

ds2
+ (

dA

ds
+ p

dB

ds
)2])s=0

= −(
d2A

ds2
)s=0 − [(

dA

ds
+ p

dB

ds
)2]s=0

=
σ2 + hE[J2]

2k
(1− e−2kT ) + ((θ +

h

k
E[J ])(1− e−kT ) + pe−kT )2

=
σ2 + hE[J2]

2k
(1− e−2kT ) + µ2

1. (2.4.62)

The third moment is defined by

µ3 =
1

i3
(
d3A

ds3
+ 3

d2A

ds2
(
dA

ds
+ p

dB

ds
) + (

dA

ds
+ p

dB

ds
)3)s=0

= hE[J3](
1− e−3kT

3k
) + 3µ1(σ

2 + hE[J2])(
1− e−2kT

2k
) + µ3

1. (2.4.63)
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Lastly the fourth moment is defined by

µ4 =
1

i4
[
d4A

ds4
+ 3(

d2A

ds2
)2 + 4

d3A

ds3
(
dA

ds
+ p

dB

ds
) + 6

d2A

ds2
(
dA

ds
+ p

dB

ds
)2

+ (
dA

ds
+ p

dB

ds
)4]s=0

= hE[J4](
1− e−4kT

4k
) + 3((σ2 + hE[J2])(

1− e−2kT

2k
))2

+ 4µ1hE[J3](
1− e−3kT

3k
)

+ 6µ2
1((σ

2 + hE[J2])(
1− e−2kT

2k
))

+ µ4
1. (2.4.64)

These results can be used to estimate the model parameters, in other words,

for the method of moment estimation.

To sum up, the moments are as follows:

µ1 = (θ +
hE[J ]

k
)(1− e−kT ) + pe−kT , (2.4.65)

µ2 =
σ2 + hE[J2]

2k
(1− e−2kT ) + µ2

1, (2.4.66)

µ3 = hE[J3](
1− e−3kT

3k
) + 3µ1(σ

2 + hE[J2])(
1− e−2kT

2k
) + µ3

1, (2.4.67)
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µ4 = hE[J4](
1− e−4kT

4k
) + 3((σ2 + hE[J2])(

1− e−2kT

2k
))2

+ 4µ1hE[J3](
1− e−3kT

3k
) + 6µ2

1((σ
2 + hE[J2])(

1− e−2kT

2k
))

+ µ4
1. (2.4.68)

Diagnostics:

The variance of the jump diffusion process is as follows:

V = µ2 − µ2
1 =

σ2 + hE[J2]

2k
(1− e−2kT ). (2.4.69)

The skewness is as follows:

S = Skewness =
E(J − µ1)

3

(µ2 − µ2
1)

3/2

=
2
√

2ke−kT (1 + ekT + e2kT )hE(J3)

3(1 + ekT )(σ2 + hE(J2))
√

(1− e−2kT )(σ2 + hE(J2))
.

(2.4.70)

The kurtosis is as follows:

K = Kurtosis =
E(J − µ1)

4

(µ2 − µ2
1)

2

=
(e2kT − 1)(3h2E(J2)2 + 6hσ2E(J2) + 3σ4) + khE(J4)(e2kT + 1)

(e2kT − 1)(σ2 + hE(J2))2
.

(2.4.71)
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min
(ψ)




V − V̂

S − Ŝ

K − K̂




V − V̂

S − Ŝ

K − K̂


T,

where ψ includes k, h, σ, E(J2), E(J3), the square of the differences is minimized

with respect to ψ. Parameters of the model can be found by this way.

One year survival probabilities are only obtained by (2.4.41). The survival

probabilities within small intervals are obtained by the modeling with the mor-

tality intensity. For this purpose, the mortality intensity is modeled by a jump

diffusion process. The bond prices for the interest rate model having jump com-

ponent were modeled and obtained approximated formula for the bond prices in

[19]. The mortality intensity has dynamics as the form

dµx(t) = k(θ − µx(t))dt+ σdwP,µt + Jdπt(h), (2.4.72)

where k is the mean reversion coefficient, θ is the long term mortality intensity, t

is time, σ is the volatility coefficient, dwp,µt is the increment of Brownian motion,

J is the jump size, dπ is the increment in a Poisson process with intensity rate

h, and τ is the (T − t). The survival probability is a function of time to maturity

and the mortality intensity. It is assumed that all time dependences comes from

µ. The dynamics of the survival probability is denoted by using Ito’s formula for

jump diffusion processes. Ito’s formula is as follows:

dp(µx(t), t, T ) = (
∂p(µ, t, T )

∂µ
k(θ − µ) +

1

2
σ2∂

2p(µ, t, T )

∂µ2
)dt

+ σ
∂p(µ, t, T )

∂µ
dwp,µt + [p(µ+ J, t)− p(µ, t)]dπ(h).(2.4.73)
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The PDDE for the survival probability is as follows:

0 = [k(θ − µ)− λσ]
∂p(µ, t, T )

∂µ
+
∂p(µ, t, T )

∂t
+

1

2
σ2∂

2p(µ, t, T )

∂µ2
− µp(µ, t, T )

+ hEt[p(µ+ J, t)− p(µ, t)]

with the boundary condition, p(µ, τ = 0) = 1. The boundary value implies

A(0) = 1 and B(0) = 0. λ is the market price of mortality risk. The market price

of jump risk is unsystematic and diversifiable. Given the proposed affine solu-

tion, p(µ, t, T ) = A(τ)e−B(τ)µ, the PDDE (partial difference differential equation)

becomes

0 = [k(θ − µ)− λσ]
∂p(µ, τ)

∂µ
− ∂p(µ, τ)

∂τ
+

1

2
σ2∂

2p(µ, τ)

∂µ2
− µp(µ, τ)

+ hp(µ, τ)Et[e
−B(τ)J − 1] (2.4.74)

and

1 =
∂B

∂τ
+ kB, (2.4.75)

∂A
∂τ

A
= (λσ − kθ)B +

1

2
σ2B2 + hEt[e

−B(τ)J − 1], (2.4.76)

where Et[e
−B(τ)J ] is the moment generating function of the distribution of jump

sizes. The jump sizes are assumed normally distributed with mean α and γ2
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variance by [4] and [1]. The PDDE is as follows:

0 = [k(θ − µ)− λσ]
∂p(µ, τ)

∂µ
− ∂p(µ, τ)

∂τ
+

1

2
σ2∂

2p(µ, τ)

∂µ2

− µp(µ, τ) + hp(µ, τ)(e(−αB(τ)+ 1
2
γ2B2(τ)) − 1)

with

∂B

∂τ
+ kB = 1

and

∂A
∂τ

A
= (λσ − kθ)B +

1

2
σ2B2 + h(e(−αB(τ)+ 1

2
γ2B2(τ)) − 1) (2.4.77)

As mentioned in [19], [4] and [1] used two term Taylor series approximation

of the exponential function within (2.4.74), exp(−B(τ)J). After two term Taylor

series approximation, (2.4.74) will be as follows:

0 = [k(θ − µ)− λσ]
∂p(µ, τ)

∂µ
− ∂p(µ, τ)

∂τ
+

1

2
σ2∂

2p(µ, τ)

∂µ2
− µp(µ, τ)

+ hp(µ, τ)Et[(1− JB +
J2B2

2
)− 1]. (2.4.78)

There is no assumption about the distribution of jump sizes. First and second

moments of the distribution are only needed.
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0 = [k(θ − µ)− λσ]
∂p(µ, τ)

∂µ
− ∂p(µ, τ)

∂τ
+

1

2
σ2∂

2p(µ, τ)

∂µ2
− µp(µ, τ)

+ hp(µ, τ)(−αB +
(µ2 + γ2)B2

2
), (2.4.79)

where α and γ2 are the mean and variance of the distribution, respectively, and

1 =
∂B

∂τ
+ kB (2.4.80)

∂A
∂τ

A
= (λσ − kθ − hα)B +

1

2
[σ2 + h(α2 + γ2)]B2, (2.4.81)

where A(0)=1 and B(0)=0, and the approximate closed form solution for survival

probability is as follows:

p(µ, τ) = exp{−1− e−kτ

k
µ+

M1k +M2

k2
τ

+
M1k + 2M2

k3
(e−kτ − 1)− M2

2k3
(e−2kτ − 1)}, (2.4.82)

where M1 = −kθ + λσ − hα and M2 = 1
2
(σ2 + h(α2 + γ2)). The condition

M1k +M2 < 0 should be satisfied to satisfy lim
τ→∞

(p(µ, τ)) = 0.

2.4.3 Maximum Likelihood Estimation

When (2.4.41) is discretized, the new equation will be as follows:

4p = k(θ − p)4t+ σ4wP,µ + J(µ, γ2)4π(q). (2.4.83)

If the jumps are normally distributed, the Poisson-Gaussian model can be

24



estimated by using a Bernoulli approximation [17]. Important point is that at

most one jump can be occurred in each time interval.

f [p(s)|p(t)] = q exp(
−(p(s)− p(t)− k(θ − p(t))4t− µ)2

2(σ24t+ γ2)
)

1√
2π(σ24t+ γ2)

+(1− q) exp(
−(p(s)− p(t)− k(θ − p(t))4t)2

2σ24t
)

1√
2πσ24t

,

(2.4.84)

where q = h4t + O(4t). This approximates the true Poisson-Gaussian density

with a mixture of normal distributions. The aim is to maximize the function L,

max
Ω=[k,σ,θ,µ,γ2,q]

(L) = max
Ω=[k,σ,θ,µ,γ2,q]

(
T∑
t=1

(log(f [p(t+4t)|p(t)]))). (2.4.85)

2.5 The Kalman Filter Technique

This section introduces a very useful tool named after the contributions of

R. E. Kalman(1960). The Kalman filter technique is very useful when the un-

derlying state variables are not observable. The one year probability of survival

can be generated by a certain group of lives which has been under observation

for a certain period. The one year survival probabilities are observable, but the

underlying state variables may be unobservable. The Kalman filter technique can

be applied to determine parameters of the survival probabilities.

The Kalman filter begins with a measurement system that represents the

relationship between logarithmic survival probabilities and a transition system
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which is the model of state variables.

The measurement and transition equations are the state space form of the

model. The Kalman filter uses the state space formulation recursively to make

inferences about the unobserved values of the state variables by conditioning on

the observed values. Finally, maximum likelihood function is used to find the

model parameter by using recursive inferences. Theoretical side of the technique

is found in [22].

Application of the Kalman filter technique to the interest rates can be found

in the literature, for instance [10]. For example, if the mortality intensity are

modeled by CIR, the Kalman filter’s steps will be as follows:

Measurement Equation:

ln(p(µx(t), t, T )) = at + btYt|t−1 + vt. (2.5.86)

Transition Equation:

Yt|t−1 = θ(1− e(−κdt)) + e−κdtYt−1|t−1 + ut, (2.5.87)

Yt|t−1 = d(ψ) + φ(ψ)Yt−1|t−1 + ut, (2.5.88)

ut ∼ N(0, Qt),

vt ∼ N(0, R),

Qt =
θσ2

2κ
(1− e−kdt)2 +

σ2

κ
(e−kdt − e−2kdt)Yt−1, (2.5.89)

d(ψ) = θ(1− e(−κdt)), (2.5.90)

φ(ψ) = e−κdt, (2.5.91)

where ψ is the parameter set.
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Step 1: Initializing the state vector

The appropriate initial values must be found to start the recursion, for this

purpose the unconditional mean and variance of the transition system can be

used. The unconditional mean and variance are

E(Y1) = θ, (2.5.92)

V ar(Y1) =
σ2θ

2κ
. (2.5.93)

Step 2: Forecasting the measurement equation

Transition system is used to estimate mean and variance of the measurement

equation. The mean and variance are defined as

E(p(µx(t), τ)|Ft−1) = A+BE(Yt|Ft−1), (2.5.94)

V ar(p(µx(t), τ)|Ft−1) = BV ar(Yt|Ft−1)H
T +R. (2.5.95)

Step 3: Updating the inference about the state vector

The real value of the measurement system is observed and then the prediction

error is evaluated,

ζt = p(µx(t), τ)− E(p(µx(t), τ)|Ft−1). (2.5.96)

The prediction error is used to update the inference about the unobserved

transition system. The conditional expectation is revised by using prediction

27



error,

E(Yt|Ft) = E(Yt|Ft−1) +Ktςt, (2.5.97)

Kt = V ar(Yt|Ft−1)B
TV ar(Yt|Ft−1)

−1, (2.5.98)

where Kt is called the Kalman gain matrix. It determines the weight is given to

the new observation in the updated state system forecast.

The conditional variance of the state system is

V ar(Yt|Ft) = (I −KtB)V ar(Yt|Ft−1). (2.5.99)

Step 4: Forecasting the state vector

The next step is the finding the unknown values of the state system.

The conditional expectation:

E(Yt+1|Ft) = d+ φE(Yt|Ft). (2.5.100)

The conditional variance:

V ar(Yt+1|Ft) = V ar(Yt|Ft−1)− FV ar(Yt|Ft)F T +Qt. (2.5.101)

Step 5: Constructing the likelihood function

Previous four steps must be repeated for each discrete time step in the data

sample.
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Using V ar(Yt|Ft−1) and ςt the log likelihood function is constructed as

LogL(ψ) = −nN
2
log2π − 1

2

N∑
t=1

log(det(V ar(Yt|Ft−1)))

− 1

2
ςTt V ar(Yt|Ft−1)

−1ςt. (2.5.102)

2.6 The Market Price of Mortality Risk

In the literature, the market price of mortality risk is discussed by [16], [13],

[39] and [6]. The filtered probability space (Ω,F , F, P ) is fixed, and F = (Ft)06t6T

contains all available information. F is a filtration generated by two independent

Brownian motions wP,µ and w and jump process M supposed independent from

Brownian motions. wP,µ drives the mortality intensity, and w drives the financial

market, Mt = σ(wP,µu , u ≤ t) and Gt = σ(wu, u ≤ t).

The insurance company experiences both systematic and unsystematic mor-

tality risk. It is known that the life insurance contracts are not fully tradable

in the financial markets or in the reinsurance markets. This leads to find an

Equivalent Martingale Measure.

The probability measures P and Q are said to be equivalent, if

∀AεF , P (A) = 0 ⇔ Q(A) = 0.

An insurance contract is described by the process Nxi
(t) which starts with

value 1 at time 0 and jumps to zero at τi, Nxi
(t) = 1{τi≤t} for an insured aged xi

at time 0. The compensated process is defined by

Mxi
(t) = Nxi

(t)−
t∫

0

1{τi<t}µxi
(s)ds (2.6.103)
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is a martingale.

The measure could be changed from P to Q by the Radon Nikodym density

process ∧t characterized by

d∧t
∧t−

= d ln(
dQ

dP
) = −kµt dw

µ
t −

N∑
i=1

ρitdMxi
(t). (2.6.104)

It should be noted that the systematic mortality risk is not diversifiable for

the insurance companies, on the other hand the unsystematic mortality risk is

diversifiable when the size of portfolio increased. This satisfies to change the mea-

sure for all ages, because ρit does not needed to be specified for every individual.

If kµ = 0 and ρit = 0 for all i, the working probability P coincides with the risk

neutral probability Q.
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Chapter 3

SURPLUS MODELING

Insurance companies may be in difficulty to meet their liabilities. Some of the

factors contributing to the financial difficulties are as follows [38]:

• Incorrect pricing

• Insufficient reserving

• Incorrect underwriting and management decisions

• Losses on investment

• Random fluctuation of claims

• The fluctuation of the basic probabilities of the claims and their trends

• Catastrophic events like hurricanes, earthquakes

• The insolvency of the reinsurer

• Guaranteed rates to insureds

There are some bad experiences in history, although insurance companies

seemed nondefaultable. As mentioned [14], the topic of insolvency risk in connec-

tion with life insurance companies has recently attracted a great deal of attention.
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Some companies having solvency problems are as follows:

Company Year

Pacific Standard Life Ins. Co. (US) 1989

Mutual Security Life Ins. Co. (US) 1990

First Executive Life Ins. Company (US) 1991

Fidelity Bankers Life Ins. Co. (US) 1991

Monarch Life Ins.Co. (US) 1994

Confederation Life Ins. Co. (US) 1994

Nissan Mutual Life (Jap.) 1997

Chiyoda Mutual Life Ins. Co. (Jap.) 2000

Kyoei Life Ins. Co. (Jap.) 2000

Equitable Life (UK) 2000

Tokyo Mutual Life Ins. (Jap.) 2001

HIH Ins. (Aus.) 2001

One of the main aims of modeling the surplus is obtain the ruin probability.

It is a good indication of whether the insurer’s assets are matched to liabilities of

the insurance company sufficiently well [24]. If the company has positive surplus,

it can collect less premium or if the company has negative surplus, it should raise

some premiums or it should transfer some risks to reinsurance. These decisions

can be done by analyzing the surplus (risk) process and these decisions affect

competition between the companies.
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3.1 Surplus Modeling

The surplus at time t of the insurer with an initial capital of u > 0 is given

by

Ut = u+ ct − St, t ≥ 0,

where Ut denotes the surplus process or risk process at time t, ct denotes premiums

collected through time t, u is the initial surplus and St denotes aggregate claims

process paid through time t [11]. Fig. 3.1 is an example graph of surplus process,

i.e. risk process.

Figure 3.1: Risk process.
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For a certain portfolio of insurance, let Nt denote the number of claims, St

denote aggregate claims up to time t and Xi denote the amount of ith claim. By

assumption initial number of claims, N0, is zero. If Nt is equal to zero, St will be

zero.

Then the aggregate claim process and the risk process can be written as

follows:

St = X1 +X2 +X3 +X4 + ...+XNt ,

Ut = u+ ct −
∑Nt

i=1Xi.

The claim number process generally assumed to be a Poisson process, so it

can be said that the aggregate claim process is a compound Poisson process,

Pr(Nt+h −Nt = k|Ns, s ≤ t) =
e−λh(λh)k

k!
, k = 0, 1, 2, 3, ... ∀t ≥ 0 and h > 0.

(3.1.1)

The premiums are payable continuously at constant rate c per unit time,

ignored interest. The total premium is ct. Premiums with a security loading will

satisfy ct > E(St) and c is defined as

c = (1 + θ)λµ.

The properties of the Poisson process [11]:

1. The increments are stationary. The distribution of Nt+h − Nt, which is
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Poisson with parameter λh, depends on the length of the interval but not

its location, t.

2. For any set of disjoint time intervals, the increments are independent.

t1 < t1 + h1 < t2 < t2 + h2 < t3, the increments Nt1+h1 − Nt1 , Nt2+h2 −

Nt2 , ..., Ntn+hn −Ntn are mutually independent.

3. The probability of simultaneous claims are zero,

Pr[Nt+h −Nt > 1] = 0, h −→ 0.

In the classical Cramer-Lundberg process, the rate of premium income re-

ceived by the insurance company is assumed to be constant. In real life, inflows

of the company are supposed to be regular, but outflows are not. It can be ir-

regular due to unknown events, for example accidents, catastrophic events etc.

There are two reasons for why the outflows are stochastic: It is not known when

the claim occurs, and how much it will cost.

The time of ruin is defined as

T = min{t : t ≥ 0 and Ut < 0}. (3.1.3)

ψu(t) = Pr(T < t) is the probability of ruin before time t. The adjustment

coefficient, R, is the smallest positive solution to the equation,

1 + (1 + θ)µR = MX(R), (3.1.4)

where MX(R) is the moment generating function of the claim severity random

variable X, µ is the mean of claim amounts, θ is the premium loading factor or
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relative security loading. If R is known, Cramer’s asymptotic ruin formula is

defined as [26]

ψ(u) ≈ µθe−Ru

M
′
X(R)− µ(1 + θ)

, u→∞. (3.1.5)

Details can be found in [26], [11], [31] and [33]. The more realistic approach is

that outflows and inflows being stochastic. Surplus data can be obtained directly

from the company since the collected premiums and paid benefits are already

given. Modeling of the surplus process with using historical data as discussed in

this thesis brings some easiness. That is, it is not needed to define the distribu-

tion for claim sizes and number of claims, and also simulations are done more

realistically and easily. For this purpose, the approach in [30] is used. They intro-

duced nonparametric estimators of the coefficients of a univariate jump diffusion

process when observations, U, are recorded discretely. The model parameters,

drift, diffusion and intensity, are supposed to be dependent on U. After the time

discretization of U, the jumps are detected while the square of the increment

(∆Ut) between successive observations, (∆Ut)
2, exceeds a predetermined level.

The filtered probability space is (Ω,F , F, P ) as in paragraph (2.2).

The model is defined as

dUt = µ(Ut)dt+ σ(Ut)dw
U
t + dJt, tε[0, T ], (3.1.6)

where wU is a Brownian motion and J is a pure jump independent of wU . It is

assumed that (Ut)t∈[0,T ] is a real process, and the time interval should be fixed [0,

T]. The stochastic process U can describe the evolution of an economic variable,

as an interest rate or a logarithmic asset price, as well as any diffusion. In this

thesis, Ut is thought as the surplus of an insurance company. The drift, µ, the
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volatility, σ and the intensity of jumps depend on Ut.

The jump process can be decomposed as the sum of two jumps bigger than

one and the sum of the compensated jumps smaller than one. It can be showed

as follows J ≡ J1 + J̄2, and

J1s =

s∫
0

∫
|u|>1

um(dt, du),

J̄2s =

s∫
0

∫
|u|≤1

u[m(dt, du)− v(du)dt],

where m is the jumps random measure of U, and v is the Levy measure of J. J1s

represents the sum of the jumps bigger than one and it is a compound Poisson

process which can be written as J1s =
N1

s∑
l=1

X1
l .

The method in [30] is followed to model the surplus of an insurance company.

The surplus process can be separated into two parts Υt and J1,t,

Ut = Υt + J1,t, (3.1.7)

where

Υt =

∫ t

0

µudu+

∫ t

0

σudwu, (3.1.8)

J1,t =
Nt∑
k=1

Xk, J1,0− = 0. (3.1.9)

Some related notations are as follows :

• 4iL = Lti − Lti−1
is the increase of L between ti and ti−1.
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• 4Lt = Lt − Lt− is the size of the jump at any time t.

• (τj)j∈N is the jump instants of J1 and τ (i) is the instant of the first jump in

]ti−1, ti], if 4iN > 0.

• h is the bandwidth parameter. It has the properties that when n goes to

infinity, h goes to zero and nh→∞.

• m̄ is the compensated measure of the jump process; m̄(dt, du) = m(dt, du)−

v(du)dt.

• b(u) is a real deterministic function such that lim
n→∞

b(δ) = 0 and

lim
n→∞

δ log 1
δ

b(δ)
= 0 where δ = T/n.

∀i = 1, ..., n, 1{4iN=0}(w) = 1{(4iU)2≤b(δ)}(w) (3.1.10)

(3.1.10) shows that if (∆iU)2 is greater than b(u), it can be said that a jump

occurred within ]ti−1, ti].

The whole jump process, J, can be estimated by using Ûτ (i) = (∆iU)1(∆iU)2>b(u),

and from the practical perspective Ĵ1,t =
ti∧t∑
i=1

4iU 1{(4iU)2>b(δ)} is an appropriate

approximation of the jump part of Ut, and then the approximation of the diffusion

part will be as Υ̂ = U − Ĵ1.

3.1.1 Estimation of The Jump Process Parameters

As mentioned in [23], the kernel estimation can be used when estimating the

model parameters. A kernel function, a map K(.) : [−1, 1] → R, is generally used

with a bandwidth parameter, h. A Gaussian kernel is usually used in estimation

38



of interest rate procedures. A kernel function is set as follows:

Kh(z) =
1

h
K(

z

h
). (3.1.11)

Let h determine the efficient width of the Kh, and the smoothness level. The

higher h the more smoothness will be. If h is large, the width of the Kh :

[−h, h] → R will be large, and this h gives more smoothing. If h is small, the

width of the Kh : [−h, h] → R will be small, and so the smoothness will be little.

There is a problem to select the appropriate bandwidth parameter, h. It is a

very important process to select h. It can be done by a process containing trial

and error and experience, but more practical approach is selecting h as follows:

h = hsσN
−1/5, (3.1.12)

where N is the number of data points in the sample and σ is a constant that

practitioners determine.

The model parameters estimated by the kernel estimation are defined as fol-

lows [30]:

σ̂2
n,h(u) =

n
∑n

i=1K(
Uti−Ĵ1,ti

−u
h

)(∆iU)21{(∆iU)2≤b(δ)}

T
∑n

i=1K(
Uti−Ĵ1,ti

−u
h

)
, (3.1.13)

µ̂n,T (u) =

∑n
i=1K(

Uti−Ĵ1,ti
−u

h
)(∆iU)1{(∆iU)2≤b(δ)}

δ
∑n

i=1K(
Uti−Ĵ1,ti

−u
h

)
, (3.1.14)

λ̂n,T (u) =

∑n
i=1K(

Uti−u
h

)1{(∆iU)2≥b(δ)}

δ
∑n

i=1K(
Uti−u
h

)
, (3.1.15)
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and the kernel function is defined as

K(z) =
e−z

2/2

√
2π

. (3.1.16)
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Chapter 4

LIFE INSURANCE

CONTRACTS

Life insurance companies sell various contracts, such as life annuities, pure

endowment contracts. An annuity contract satisfies its owner a series of payments

for a fixed period or during the owner’s life time. A whole life insurance provides

for a payment following the death of the insured regardless of when it occurs.

If the policy covers a certain set of time, it is called a term life insurance or an

endowment insurance. Term life insurance and endowment are not alike, because

term life insurance contracts pay benefit to insured, if he/she dies during the

policy term, otherwise nothing pays to insured. Contrary to the term insurance

contracts, endowments pay benefit to insureds, if the policy owner dies during the

policy term and also pays benefits if the policy owner survives the policy term.

A pure endowment pays the benefit, if the insured is living at the end of the

maturity. Therefore an endowment insurance is the sum of a term life insurance

and a pure endowment.

Besides these simple contracts, life insurance companies offer many other

complex contracts such as bonus options, equity linked policies, participating

life insurance contracts, guaranteed annuity options. Participating life insurance

contracts provides a bonus, which is credited to the mathematical reserve and
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depends on the performance of a special investment portfolio and guarantees a

minimum interest rate. Guaranteed annuity options provide the policyholder

with the right to convert a deferred survival benefit into an annuity at a fixed

conversion rate [8].

Main difference between the financial and actuarial valuation is the probability

of survival. In actuarial valuation, a probability of survival and an interest rate

are used. The actuarial discount rate (ADR) is as follows [39]:

ADRx(t) = rt + µx(t). (4.0.1)

This discount rate depends not only on the survival rate but also the interest

rate. It is used when evaluating the different insurance contracts. There are a

lot of types of insurance contracts. Some of the valuation methods are explained

below. When experimenting numerical examples, it is assumed that the market

price of mortality risk is zero, so that the cash flows can be priced using real

world mortality intensities.

4.1 Pure Endowments

A pure endowment of maturity n provides for payment of the sum insured

only if the insured is alive at the end of the contract maturity ([20], [32]). The

value of a pure endowment contract, nEx(t), for a x -year old is given by (under

the risk neutral measure) [39]

nEx(t) = EQ
t [exp(−

n∫
0

ADRx+s(t+ s)ds)]. (4.1.2)
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If the independence between financial market and mortality is assumed, the

expectation can be factorized. The premium for the pure endowment with benefit

C0 is defined as

nEx(t) = C0P (t, t+ n)pQ(µx(t), t, T ), (4.1.3)

where P(t,T) is the price of a zero coupon bond with maturity T at time t.

4.2 Life Annuities

A life annuity provides for periodic payments, usually equal size, each payment

contingent upon the survival of a policyholder. In a temporary life annuity,

payments cease at the end of a specified period [32]. Let ax:n| denote the present

value of this payment stream.

ax:n| =
n∑
i=1

iEx(t) =
n∑
i=1

P (t, t+ i)pQ(µx(t), t, t+ i). (4.2.4)

4.3 Participating Life Insurance Contracts

In participating life insurance contracts, at the end of each policy calendar,

the insurance company grants a bonus, which is credited to the mathematical

reserve and depends on the performance of a special investment portfolio. In

other words, the policyholder is guaranteed a fixed interest rate rg. On top of

this fixed rate, the policy holder is entitled to a share δ of the assets of the life

insurance company. The guaranteed rate rg is usually less than the market rate

for a risk free asset of the same maturity as the policy.

Some recent contributions in this direction are Briys and Varenne in [12],

43



Grosen and Jorgensen in [21], Bacinello in [3], Miltersen and Persson in [35],

Bernard, Olivier Le Courtois and François Quittard-Pinon in [5].

Let Ut denote the value of the underlying fund at time t and rt denote the

riskless short rate process. Under the risk neutral measure Q, Ut follows the jump

diffusion process and rt has the Vasicek dynamics:

drt = a(θ − rt)dt+ vdwQ1,t, (4.3.5)

dUt
Ut

= (rt − q(t)k)dt+ σ(Ut)dw
U,Q
t + (eY − 1)dJt. (4.3.6)

Jt is a Poisson process with intensity function q(t). The term q(t)k is sub-

tracted from the instantaneous mean rate of return in order to adjust the effect

from random jumps. Y is normally distributed with mean µY and variance σ2
Y ,

and k is defined by

k = E[eY − 1] = e(µY +σ2
Y /2) − 1. (4.3.7)

Jt, Y and wU,Qt are independent. wU,Qt and wQ1,t are correlated Brownian mo-

tions with correlation coefficient ρ,

dwU,Qt dwQ1,t = ρdt. (4.3.8)

Under the risk-neutral probability measure Q, the zero-coupon bond price

with expiry date T, P (t, T ), has the process

dP (t, T )

P (t, T )
= rtdt− σP (t, T )dwQ1,t, (4.3.9)

σP (t, T ) =
v

a
(1− e−a(T−t)). (4.3.10)
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wQ1,t and wQ2,t are independent Brownian motions, and wU,Qt can be defined as

dwU,Qt = ρdwQ1,t +
√

(1− ρ2)dwQ2,t. (4.3.11)

When (4.3.11) is shifted into (4.3.6), Ut has the dynamics

dUt
Ut

= rtdt+ ρσ(Ut)dw
Q
1,t + σ(Ut)

√
(1− ρ2)dwQ2,t + (eY − 1)dJt. (4.3.12)

The Radon Nikodym derivative of the T -forward-neutral measure can be writ-

ten as

dQT

dQ
= exp(−

T∫
0

σP (s, T )dwQ1,s − 1/2

T∫
0

σ2
P (s, T )ds).(4.3.13)

Girsanov’s theorem states that

dwQ
T

1,t = dwQ1,t + σP (t, T )dt. (4.3.14)

Under QT the bond price process, P (t, T ) follow the stochastic differential

equation

dP (t, T )

P (t, T )
= (rt + σ2

P (t, T ))dt− σP (t, T )dwQ
T

1,t . (4.3.15)

Under the T-forward measure QT where the discount bond price P (0, T ) is

used as the numeraire, Ut has the process

dUt
Ut

= (rt − ρσ(Ut)σP (t, T )− kλ(t))dt

+ ρσ(Ut)dw
QT

1,t +
√

1− ρ2σ(Ut)dw
QT

2,t + (eY − 1)dJt. (4.3.16)
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The instantaneous interest rate process under the forward neutral probability

can be written as

drt = a(θt − rt)dt+ vdwQ
T

1,t , (4.3.17)

where θt = θ − (v2/a2)(1− e−a(T−t)).

Up to now, relevant theoretical substructures are given. Now, how the partic-

ipating life insurance contracts are valued will be explained. Let U0 denote the

assets initial value, L0 denote the policyholders investment which is equal to αU0

and E0 = (1 − α)U0 denote the initial equity. The insurance company guaran-

tees to invest the policyholder’s investment with the rate rg, so the guaranteed

amount at the end of the period is LgT = L0e
rgT . This amount may change the

financial position of the firm. If the default occurs this amount could be lower,

whereas the company performs better asset management this amount might be

higher. If assuming no bankruptcy prior the maturity, policy owner receive at

the maturity,

ΘL(T )=


UT , UT < LGT

LGT , LGT ≤ UT ≤
LG

T

α

LGT + δ(αUT − LGT ), UT >
LG

T

α

ΘL(T ) = LGT + δ(αUT − LGT )+ − (LGT − UT )+, (4.3.18)

where the first term is the guaranteed amount, the second term is the bonus

option and the last part is the put option associated with the default risk. Poli-

cyholder will receive, if the default occurs,
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ΘL(τ) =

 L0e
rgτ , λThr. ≥ 1

λThr.L0e
rgτ , if λThr. < 1

where λThr. is the coefficient which the insurance company decides, if it is greater

than unity that is good for insureds, since policyholders can take minimum guar-

anteed amount. The contract value at time t is defined in [5] as follows:

VL(t) = Et
Q[e

−
T∫
t
rsds

[LGT + δ(αUT − LGT )+ − (LGT − UT )+]1{τ≥T}

+ e
−

τ∫
t
rsds

min(λThr., 1)Lgτ1{τ<T}]. (4.3.19)

Given the fact that the relative prices are martingale under the T-forward risk

neutral equivalent martingale measure. (4.3.19) can be rewritten as

VL(0) = P (0, T )Et
QT [[LGT + δ(αUT − LGT )+ − (LGT − UT )+]1{τ≥T}

+ e
−

T∫
τ
rsds

min(λThr., 1)Lgτ1{τ<T}]. (4.3.20)
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Chapter 5

APPLICATIONS

In this section, previously explained models for mortality modeling are used

to model the mortality. The market price of mortality risk is assumed to be zero

so cash flows can be priced using real world mortality intensities. The method

of surplus process modeling is applied to ISE-100 index, USD and Euro series

because insurance companies’ surplus data set could not be reached.

Some mortality model parameters are determined by minimizing the mean

square error,

min(
T∑
t=1

( pox(t)− pex(t))
2

n
), (5.0.1)

where pox(t) is the observed survival probability from age x to age x+t, and pex(t)

is the expected survival probability from age x to age x+t.

5.1 Applications of Mortality Modeling

US mortality rates from 1946 to 2003 are used for the estimation of the model

parameters, for this aim relevant data is obtained from The Human Mortality

Database (www.mortality.org), and the data includes one year death probabilities

from the age 0 to 110, but the age 65 is selected for the mortality modeling,

because in many countries this is the retirement age.
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Fig. 5.1 shows the mortality rates for the age from 0 to 100 for the US

population from 1946 to 2003. Fig. 5.2 shows the historical development of the

survival probabilities for the age 65.

Figure 5.1: Mortality rates of the US population from 1946 to 2003.
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Figure 5.2: Survival probabilities for the age 65 from 1946 to 2003.
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The shape of survival probabilities has a time varying property. The mortality

trends affecting the shape of the survival probabilities are as follows [36]:

1. An increasing density of deaths around the mode (at old ages) of the curve

of deaths is evident; therefore the graph of the survival function looks like

a rectangle. The term “rectangularization” denotes this process.

2. The mode of the curve of deaths moves towards very old ages; it is called

“expansion” of the survival function.

3. It is seen that higher levels and a larger dispersion of deaths at young ages.

The mortality trends, above mentioned, affect directly life insurance products

valuation. (1) and (2) affect living benefits, and (3) affects death benefits. Be-

cause of these reasons, the correct estimation of mortality is very important to

correct actuarial valuation.

Affine term structures for CIR and Vasicek models are mentioned before.

In CIR model, if θ is taken zero, the new model will be non mean reverting

CIR (N.M.R.CIR), a non mean reverting model. It gives a smaller mean square

error than CIR, so it fits to the observed survival probabilities better than CIR.

The estimated parameter set for CIR and N.M.R.CIR can be found in Table

5.1. µ65(0) is assumed 0.015 for N.M.R.CIR process and 4.1e-5 for the equation

(2.4.82) and CIR process. Fig. 5.3 and Fig. 5.4 show expected and observed

survival probabilities graph for CIR and N.M.R.CIR respectively.

51



k θ σ2 MSE
CIR 0.004782 0.989243 1e-006 0.001114

(0.042747) ( 0.377195) ( 0.178630)
N.M.R.CIR 0.090596 0 1e-006 6.307721e-005

(0.78188) (0.035747)

Table 5.1: Estimated parameters of CIR and N.M.R.CIR models.

Figure 5.3: Estimated survival probabilities of CIR model for the age 65.
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Figure 5.4: Estimated survival probabilities of N.M.R.CIR model for the age 65.
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After modeling the mortality intensity with CIR and N.M.R.CIR, it is modeled

the processes having a jump component. The results can be found in Table 5.2,

Table 5.3 and Table 5.4.

q k θ µ v γ MSE
0.92512 0.000286 0.060985 0.005126 5.099e-005 1e-006 0.00104
(0.1078) (0.0054) (0.1418) (0.0122) (0.2824) (0.3712)

Table 5.2: Estimated parameters of (2.4.82).

Figure 5.5: Estimated survival probabilities of (2.4.82) for the age 65.
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v h k θ MSE
0.0067905 3.2799e-005 0.99999 0.97695
(1.007) (0.8028) (0.9621) (0.1367)
E[J ] E[J2] E[J3] E[J4] 3.5411e-011

5.3574e-006 0.000286 0.000566 0.00089
(0.8407) (1.124) (1.154) (1.2708)

Table 5.3: Estimated parameters of (2.4.41) by using the method of moment.

q k θ Likelihood V alue
0.018203 0.01134 0.99
(0.29167) ( 0.2436) ( 0.3856)

µ σ γ 333.09
0.002553 0.000644 1.78e-007
(0.00088) (0.001516) (0.020506)

Table 5.4: Estimated parameters of the model (2.4.83).

Figure 5.6: One year estimated survival probabilities for the age 65 by using
(2.4.83).
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k σ2 R Likelihood V alue
N.M.R.CIR 0.094119 9.93e-007 0.001026 6.699e+015

(1.957e-013) (9.668e-014) (1.099e-013)

Table 5.5: Estimated parameters of N.M.R.CIR model using the Kalman filter.

Figure 5.7: Estimated survival probabilities by using the Kalman filter for the
age 65.
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Some mortality modeling techniques are explained in Chapter 2, and some

of these modeling techniques are used to model mortality. Evaluated parameter

values and standard deviations are given in Table 5.1, Table 5.2, Table 5.3, Table

5.4 and Table 5.5. N.M.R.CIR process gives the best fit among various modeling

techniques. The most important point here is that N.M.R.CIR process is a non

mean reverting process. Some parameters are unreliable because of their standard

deviations, such as jump size parameters in Table 5.3.

5.2 Applications of Surplus Modeling

Istanbul Stock Exchange 100 composite index, Euro and USD price series are

used to show the disentangling of the jumps from the data, since the real data

about any insurance company’s surplus could not be reached. The related data

is obtained from the web site of Central Bank of The Republic of Turkey.

A threshold is needed to define the jumps. The threshold should be a changing

one over to obtain more accurate results. Let bt denote the threshold

bt = c σ2
t , (5.2.2)

σ̂2
t = K + Pσ̂2

t−1 +Qε̂2
t , (5.2.3)

where c is a constant to be calibrated, and ε̂ estimated innovations. σ2
t follows

a GARCH(1,1) process. The new observation should be satisfy (5.2.4), if it is a

jump.
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Jt = {∆logUt|(∆logUt)2 > bt} (5.2.4)

In this application, c is selected as 9. Jumps are detected the variations which

are three conditional standard deviations away from zero. hs is selected 3, because

the model fits the data better. Table 5.6 reports the estimated parameters.

µ σ2 λ
ISE100 0.00166 0.00032 0.00244
Dollar 0.00131 0.000103 0.00913
Euro 0.000514 9.152e-005 0.00603

Table 5.6: Kernel Parameter Estimation Results for the series ISE-100, USD and
Euro.

It is seen that there are 27 jumps in “ISE-100 Index” from 02.01.1997 to

15.11.2006, when Euro series are investigated, there are 13 jumps from 04.01.1999

to 20.11.2006, when USD series are investigated, there are 17 jumps from 26.02.2001

to 16.11.2006. Fig. 5.8, Fig. 5.9 and Fig. 5.10 show the logarithmic asset prices,

jumps’ sizes and returns for the ISE-100, Euro and USD series respectively.

The model can be used to determine the ruin probability. Monte Carlo method

could be used to estimate the ruin probability and to see the insurance companies’

risk position over the long term. The number of simulation is the main drawback

to find the ruin probability. Many attempts may be needed to find it.
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Figure 5.8: Logarithmic asset prices, jump sizes and returns of ISE series.
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Figure 5.9: Logarithmic asset prices, jump sizes and returns of Euro series.
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Figure 5.10: Logarithmic asset prices, jump sizes and returns of USD series.
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5.3 Applications of Life Insurance Contracts

Every company has a different financial strength, so the best way to show

the financial strength is to use credit ratings of companies. Standard and Poors

defines the credit rating as follows: “Credit rating is a current opinion of the

creditworthiness of an obligor with respect to a specific financial obligation, a

specific class of financial obligations, or a specific financial program (including

ratings on medium-term note programs and commercial paper programs). It takes

into consideration the creditworthiness of guarantors, insurers, or other forms of

credit enhancement on the obligation and takes into account the currency in which

the obligation is denominated. The issue of credit rating is not a recommendation

to purchase, sell, or hold a financial obligation, inasmuch as it does not comment

as to market price or suitability for a particular investor.” Ratings satisfy some

advantages to insurance companies some of them are as follows [41]:

• A high rated firm can borrow more easily and cheaply.

• Reinsurance companies look for highly rated insurance companies.

• Agents and brokers investigate ratings before recommend a firm to their

clients.

• Investors investigate the rating reports before investing in an insurance

company.

Although insurance companies have enough amount of assets to meet their

liabilities, they may have solvency or liquidity problems. So, based on the above

results, insurance companies should consider their ratings when determining the

value of their life insurance contracts. For this purpose, corporate bond default

62



rates examined by S&P are used, however these default rates includes overall

universes of bond ratings not specifically for insurers (Table 5.7).

1-year default rate 5-year default rate 10-year default rate
AAA 0.00 0.10 0.48
AA+ 0.00 0.17 0.38
AA 0.00 0.14 0.71
AA- 0.02 0.46 1.20
A+ 0.06 0.58 1.60
A 0.05 0.51 1.67
A- 0.04 0.85 2.31

BBB+ 0.35 2.33 4.66
BBB 0.34 2.24 5.46
BBB- 0.43 5.59 10.88
BB+ 0.52 7.56 14.00
BB 1.16 10.86 18.73
BB- 2.07 16.30 26.45
B+ 3.29 21.45 31.48
B 9.31 31.68 39.56
B- 13.15 40.18 49.23

CCC 27.87 50.46 57.21

Table 5.7: Corporate bond default rates (in percent) by rating class, 1981-2002,
[41].

In this section, valuations of pure endowment and participating life insurance

contracts are approximately done. Mortality rates obtained by N.M.R.CIR pro-

cess is used for the pure endowment contract valuation. P(0,5) is assumed to be

0.54. Corporate bond default rates are added to valuation. It is assumed that

any life insurance companies’ ratings and default rates are the same as corporate

bond default rates. 5-year default probability is added to (4.1.3) and 5-year pure

endowment contract is priced as

5Ex(0) = (1− Pr(τ < 5))P (0, 5)5p
Q
x (5.3.5)

63



where τ is the default time.

AAA AA A BBB BB B CCC

5E65 0.4879 0.4877 0.4859 0.4774 0.4353 0.3336 0.2419

Table 5.8: Price of the 5-year pure endowment.

The values of parameters in Table 5.3 are used valuation of the participating

life insurance contract. Contract values are obtained by Monte Carlo simulations.

The impact of some parameters are examined. The following results can be

detected when the graphs are investigated. The contract price and the probability

that the value of assets being under the threshold increase, when the guaranteed

rate and the volatility are increased. The higher the participating level, the

higher the price of the contract. The graphs show that the other parameters do

not influence the contract price and the probability that the value of assets being

under the threshold.

r0 = 0.03 σr = 0.008 ρ = −0.02 P (0, 10) = 0.27
α = 0.85 a = 0.4 σj = 0.001 U0 = 100
λU = 10 rg = 0.026 θ = 0.06 λThr. = 0.8
σU = 0.1 µj = −0.005 VL(0) = 42.09 P (τ < T ) = 0.053

Table 5.9: Parameter values, the contract value and the default probability.
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Figure 5.11: Contract values and the probability of being under the threshold
(w.r.t δ).

Figure 5.12: Contract values and the probability of being under the threshold
(w.r.t. λU).
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Figure 5.13: Contract values and the probability of being under the threshold
(w.r.t. µj).

Figure 5.14: Contract values and the probability of being under the threshold
(w.r.t. rg).
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Figure 5.15: Contract values and the probability of being under the threshold
(w.r.t. σU).
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Chapter 6

CONCLUSION

In this thesis, we mainly concentrate on stochastic modeling of mortality,

stochastic modeling of the surplus process of an insurance company, and a dif-

ferent approach to valuation of life insurance contracts taking into account the

financial strength of the company.

In the literature, some authors discussed the mortality intensity as a stochas-

tic process. Some stochastic models are investigated and model parameters are

estimated. Some models which are used to model interest rates are also used

to model the mortality. Given parameter values and standard deviations, a non

mean reverting process N.M.R.CIR, gives the best fit among various modeling

techniques. Some parameters are found to be unreliable because of their stan-

dard deviations such as jump size parameters.

Corporate bond ratings are utilized when the pure endowment contract is

priced. By this approach, financial strengths of companies are reflected to the

contract prices. Participating life insurance contracts are explained and the price

of contracts are approximately done by the method in [5]. A jump component

is added to the asset process differently from the authors’ method, so the asset

process includes some unexpected fluctuations. Some sensitivity analyses are per-

formed to see how the prices of participating life insurance contract and default

probabilities depend on the volatility of asset, jump intensity, guaranteed rate,
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participation rate and the mean of jump size. It is concluded that when the

guaranteed rate and the volatility are increased, the contract price and the prob-

ability that the value of assets being under the threshold increase. The higher

the participating level, the higher the price of the contract. Other parameters do

not influence the contract price and the probability that the value of assets being

under the threshold.

The surplus process of an insurance company is approximated as a jump diffu-

sion process. It is thought that insurance companies can use it easily for different

purposes such as determining the minimum amount of capital requirement and

pricing some contracts.

The market price of mortality risk is not considered in the applications and

the parameters of the surplus process could not be estimated by real data. These

drawbacks can be considered and this study can be extended in further research.

69



References

[1] Ahn, C.M. and H.E. Thompson, Jump-Diffusion Processes and the Term

Structure of Interest Rates, Journal of Finance, 43(1), 155-74, (1988).

[2] Atkinson, D., Dallas, J., Life Insurance Products and Finance, Society of

Actuaries, (2000).

[3] Bacinello, A., Fair Pricing Of Life Insurance Participating Policies with a

Minimum Interest Rate Guaranteed, Astin Bull., 31(2), 275-297, (2001).

[4] Baz, J., Das S., Analytical Approximations of the Term Structure for Jump-

Diffusion Processes: A Numerical Analysis, Journal of Fixed Income, 78-86,

(1996).

[5] Bernard, C., Courtois O., Quittard-Pinona, F., Market Value of Life Insur-

ance Contracts Under Stochastic Interest Rates and Default Risk, Insurance:

Mathematics and Economics, 36, 499-516, (2005).

[6] Biffis, Denuit and Devolder, Stochastic Mortality Under Measure Changes,

Universite Catholique de Louvain, (2006).

[7] Biffis, E., Affine Processes for Dynamic Mortality and Actuarial Valuations,

Insurance: Mathematics and Economics, 37, 443-468, (2005).

[8] Biffis, E., Millossovich, P., The Fair Value of Guaranteed Annuity Options,

Scandinavian Actuarial Journal, 1, 23-41, (2006).

70



[9] Björk T., Arbitrage Theory in Continuous Time, Oxford University Press,

(1998).

[10] Bolder, D., J., Affine Term-Structure Models: Theory and Implementation,

Bank of Canada Working Paper, 15, (2001).

[11] Bowers, N., Gerber, H., Hickman, J., Jones, D., Nesbitt, C., Actuarial Math-

ematics, 2nd ed., The Society of Actuaries, Schaumburg, IL, (1997).

[12] Briys, E., de Varenne, F., On the Risk of Life Insurance Liabilities: De-

bunking Some Common Pitfalls, Journal of Risk Insurance, 64(4), 673-694,

(1997).

[13] Cairns, Blake and Dowd, Pricing Death: Frameworks for the Valuation and

Securitization of Mortality Risk, ASTIN Bulletin, 36, 79-120, (2004).

[14] Chen, A., Suchanecki, M., Default risk, Bankruptcy Procedures and the Mar-

ket Value of Life Insurance Liabilities, Insurance: Mathematics and Eco-

nomics, 40, 231-255, (2007).

[15] Cox C.C., Ingersoll E.J. and Ross A.S., A Theory of the Term Structure of

Interest Rates, Econometrica, 53, 385-407, (1985).

[16] Dahl, M., Stochastic Mortality in Life Insurance: Market Reserves and

Mortality-Linked Insurance Contracts, Insurance: Mathematics and Eco-

nomics, 35, 113-136, (2004).

[17] Das, Sanjiv Ranjan, The Surprise Element: Jumps in Interest Rates, Journal

of Econometrics, 106, 27-65, (2002).

71



[18] Denuit, Devolder and Goderniaux, Securitization of longevity risk: Pricing of

survival bonds with Wang transform in the Lee Carter framework, Preprint,

Universite Catholique de Louvain, (2004).

[19] Durham, J. Benson, Jump-Diffusion Processes and Affine Term Structure

Models: Additional Closed-Form Approximate Solutions, Distributional As-

sumptions for Jumps, and Parameter Estimates, Finance and Economics

Discussion Series Divisions of Research Statistics and Monetary Affairs Fed-

eral Reserve Board, 53, (2005).

[20] Gerber, H., Life Insurance Mathematics, Springer, (1997).

[21] Grosen, A., Jørgensen, P., Fair Valuation of Life Insurance Liabilities: the

Impact of Interest Rate Guarantees, Surrender Options, and Bonus Policies,

Insurance: Mathematics and Economics, 26, 37-57, (2000).

[22] Hamilton, J., Time Series Analysis, Princeton University Press, (1994).

[23] James, J. and Webber, N., Interest Rate Modelling, Wiley, (2000).

[24] Kaas, R., Goovaerts, M., Dhaene, J., Denuit, M., Modern Actuarial Risk

Theory, Kluwer Academic Publishers, Boston, (2001).

[25] Kalman, R., E., A New Approach to Linear Filtering and Prediction Prob-

lems, Transaction of the ASME-Journal of Basic Engineering, 35-45, (1960).

[26] Klugman, S. ,A. ,Panjer, H., Willmot G., Loss Models From Data to Deci-

sions, Wiley, (2004).

[27] Lamberton D., Lapeyre B., Introduction to Stochastic Calculus, CRC Press

(2000).

72



[28] Lin, Y., Cox, S., Securitization of Mortality Risk in Life Annuities, Journal

of Risk and Insurance, 72, 227-252, (2005).

[29] Luciano, E., Vigna, E., Non Mean Reverting Affine Processes for Stochastic

Mortality, International Centre for Economic Research, Working Paper, 4,

(2005).

[30] Mancini, C., Reno, R., Threshold Estimation of Jump-Diffusion Models and

Interest Rate Modeling, Working Paper, (2006).

[31] Melnikov, A., Risk Analysis in Finance and Insurance, ChapmanHall/CRC,

(2003).

[32] Menge, W., Fischer, C., The Mathematics of Life Insurance, Ulrich’s Book-

store, (1965).

[33] Mikosch, T., Non-Life Insurance Mathematics, Springer, (2004).

[34] Milevsky, M.A., Promislow, S.D., Mortality Derivatives and the Option to

Annuitize, Insurance Mathematics and Economics, 29, 299-318, (2001).

[35] Miltersen, K., Persson, S., Guaranteed Investment Contracts: Distributed

and Undistributed Excess Return, Scand. Actuarial J., 4, 257279, (2003).

[36] Olivieri, A., Uncertainty in Mortality Projections: An Actuarial Perspective,

Insurance: Mathematics and Economics, 29, 231245, (2001).

[37] Pelsser, A., Pricing and Hedging Guaranteed Annuity Options via Static

Option Replication, Insurance: Mathematics and Economics, 33, 283296,

(2003).

73



[38] Pentikainen, T., On The Solvency of Insurance Companies, Astin Bulletin,

4(3), (1967).

[39] Schrager, D., Affine Stochastic Mortality, Insurance: Mathematics and Eco-

nomics, 38, 81-97, (2006).

[40] Skipper, H., Black K., Life and Health Insurance, Prentice Hall, (1999).

[41] Swiss-Re, Insurance company ratings, 4, (2003).

[42] Vasicek O., An Equilibrium Characterization of the Term Structure, Journal

of Financial Econometrics, 5, 177-188, (1977).

74


