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ABSTRACT 

 

INVERSE DYNAMICS CONTROL OF FLEXIBLE JOINT  

PARALLEL MANIPULATORS 

 

KORKMAZ, Ozan 

M.S., Department of Mechanical Engineering 

Supervisor: Prof. Dr. Kemal İDER 

December 2006, 112 pages 

 

The purpose of this thesis is to develop a position control method for parallel 

manipulators so that the end effector can follow a desired trajectory specified in the 

task space where joint flexibility that occurs at the actuated joints is also taken into 

consideration.  

 

At the beginning of the study, a flexible joint is modeled, and the equations of 

motion of the parallel manipulators are derived for both actuator variables and joint 

variables by using the Lagrange formulation under three assumptions regarding 

dynamic coupling between the links and the actuators. These equations of motion 

are transformed to an input/output relation between the actuator torques and the 

actuated joint variables to achieve the trajectory tracking control. Moreover, the 

singular configurations of the parallel manipulators are explained. 

 

As a case study, a three degree of freedom, two legged planar parallel manipulator is 

simulated considering joint flexibility. The structural damping of the active joints, 

viscous friction at the passive joints and the rotor damping are also considered 

throughout the study. Matlab® and Simulink® softwares are used for the simulations. 

The results of the simulations reveal that steady state errors are negligibly small and 

good tracking performances can be achieved. 

 
Keywords: Flexible joint, parallel manipulator, inverse dynamics control, 

singularity analysis 
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ÖZ 

 

ESNEK EKLEMLİ PARALEL MANİPÜLATÖRLERİN  

TERS DİNAMİK KONTROLÜ 

 

KORKMAZ, Ozan 

Yüksek Lisans, Makine Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Kemal İDER 

Aralık 2006, 112 sayfa 

 

Bu tezin amacı eklem esnekliği de göz önüne alınarak paralel manipülatörlere ait uç 

işlemcinin görev uzayında belirlenen bir yörüngeyi izleyebilmesi için bir konum 

kontrol yöntemi geliştirmektir. 

 

Çalışmanın başında esnek bir eklem modellenmiş ve paralel manipülatörün hareket 

denklemleri Lagrange formülasyonu kullanılarak hem eyletici hem de eklem 

değişkenleri cinsinden olmak üzere eyletici ve uzuvlar arasındaki dinamik bağlantı 

ile ilgili olarak üç varsayım ile türetilmiştir. Bu hareket denklemleri analitik ters 

dinamik kontrolü yaklaşımıyla eyletici torkları ve aktif eklem değişkenleri arasında 

bir giriş/çıkış denklemine dönüştürülerek yörünge takip kontrolü sağlanmıştır. 

Bunun yanı sıra paralel manipülatörlerin tekil durum analizleri anlatılmıştır. 

 

Örnek olarak üç serbestlik dereceli, iki bacaklı bir düzlemsel paralel manipülatör 

eklem esnekliği ile beraber ele alınmıştır. Aynı zamanda aktif eklemlerdeki yapısal 

sönüm, pasif eklemlerdeki viskoz sürtünme ve eyletici rotorunun sönümü de dikkate 

alınmıştır. Benzetim için Matlab® ve Simulink® yazılımları kullanılmıştır. Elde 

edilen sonuçlarda kararlı hal hataların ihmal edilebilir düzeyde olduğu saptanmış ve 

iyi bir yörünge takibi sağlanmıştır. 

 

Anahtar Kelimeler: Esnek eklem, paralel manipülatör, ters dinamik kontrol, tekil 

durum analizi 
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CHAPTER 
 

CHAPTER I 
 

INTRODUCTION 
 

1.1 Literature Survey 

Parallel manipulators have been an intensive area of research for over a decade since 

they have some advantages over the serial ones. Parallel manipulators can carry 

heavier loads with their closed loop structure more precisely. These mechanisms are 

most commonly used in industrial applications such as flight simulators and 

earthquake simulators, micro-motion manipulations where high load capability and 

high motion accuracy are needed. However these manipulators face with the 

problem of having relatively small functional workspace and difficulties in design 

and control. For this reason, the parallel manipulators have become a focus of 

interest in various fields of research.   

 

On the other hand, joint flexibility is important in manipulator dynamics and control 

system design since their drives exhibit this behavior. In order to handle high 

precision manipulations, the joint flexibility should be taken into consideration in 

the control system.   

 

There are many researchers who studied the control of flexible joint serial 

manipulators taking their starting point from the flexible joint model derivation of 

Spong [1].  

  

Among the motion control methods for flexible joints two nonlinear control schemes 

are put forward which are called the feedback linearization and singular perturbation 

approaches [1]. The feedback linearization control of flexible-joint robots is also 

called the analytical inverse dynamics control and is studied by various authors. In 

this approach the intermediate variables are analytically eliminated and the input 

torques are found as functions of the end-effector motion up to the fourth derivative. 
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The elimination requires the differentiation of the equations of motion and the 

acceleration level task equations twice.  

 

The singular perturbation approach uses the advantage of order reduction by 

decomposing the system into two subsystems namely a fast subsystem (flexible 

joints) and a slow subsystem (rigid manipulator). The model order is lowered by 

first neglecting the fast phenomena. Then corrections due to the fast phenomena are 

reintroduced by calculating them in a separate time scale in which the slow variables 

are assumed to be constant. However this approach is limited in applicability since it 

is valid only when the joint springs are sufficiently stiff. 

 

Forrest-Barlach and Babcock [2] used the inverse dynamics control method for the 

cylindrical coordinate arm with drive train compliance and actuator dynamics in the 

radial and each of the revolute degree of freedom. 

 

Jankowski and Van Brussel [3] applied inverse dynamics control in discrete time 

where solution of the singular sets of differential equations is used to avoid the 

further differentiations of the system equations of motion. 

 

İder and Özgören [4] utilized inverse dynamics control at the acceleration level  by 

using implicit numerical integration methods that account for the higher order 

derivative information for solving the singular set of differential equations. The 

asymptotic stability is achieved by the feedback of joint positions, velocities and 

rotor velocities.  

 

All of the above studies focused on the control of flexible joint serial manipulators. 

There are limited numbers of studies in the literature concerning control of parallel 

manipulators. Most of these studies did not take the joint flexibility into their control 

strategies. 

 

Dado and Al-Huniti [5] studied dynamic simulation model for mixed-loop planar 

robots with flexible joint drive. The mathematical model of a five-link, three degree 



 
 

3

of freedom manipulator was derived using the virtual work method. The drive signal 

at the motor was based on the error between the desired and actual motions using 

proper position and velocity gains. 
 
Parallel manipulators possess drive singular positions in addition to the kinematic 

singular positions that serial manipulators also have. Singularity analysis of parallel 

manipulators has been the subject of many studies in the last years.  

 

İder [6] examined the singularities that occur in the parallel manipulators and 

showed that the manipulator can pass through the singular positions while the 

actuator forces and the system motion remain stable by modifying the system 

equations of motion. 

 

Ji [7] studied on the singular configurations that planar parallel manipulators have in 

general. 

 

 Liu [8] designed a new spatial parallel manipulator and looked for the singular 

positions that this parallel manipulator has. 

 

1.2 Objective 

This thesis aims at trajectory tracking control of the end effector of a parallel 

manipulator by using the analytical inverse dynamics approach taking joint 

flexibility into consideration.  

 

To facilitate the solution, the system equations of motion are transformed to an 

input/output relation between the actuator torques and the actuated joint variables. 

System constraints are utilized to eliminate the unactuated joint variables of the 

system. Since the structural damping of the active joints, viscous friction at the 

passive joints and the rotor damping characteristics are also included, an additional 

complexity occurs due to the presence of torque rate in this relation. 
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Another aim of the study is to find out the singular positions of the parallel 

manipulators to avoid them in trajectory planning stage. Since the parallel 

manipulators have additional singularities due to their closed loop structures, it is 

important to emphasize the existence of these configurations that arise both inside 

the workspace and at the workspace boundaries. 

 

1.3 Outline of the Study 

In this thesis, the following chapters are organized to explain the control theory and 

the case study. 

 

In Chapter 2, the dynamics of a parallel manipulator is explained when the joint 

flexibility is added into the analysis. The system equations of motion and system 

constraint equations are derived. 

 

Chapter 3 is related to the inverse dynamics control approach. The control law and 

task space equations are introduced. The procedures for the elimination of the 

unactuated joint variables from the system constraint equations and the elimination 

of actuator variables from the equations of motion are considered to get the 

input/output relation 

 

Chapter 4 presents the concept of singularity in parallel manipulators. Types of 

singularities and the physical results of the singular positions are discussed. 

 

In Chapter 5, a parallel manipulator is analyzed as a case study. All of the theoretical 

knowledge presented in Chapters 2–4 is applied to this example. The equations of 

motion are derived, the singular configurations are identified and simulations are 

performed via the proposed inverse dynamics control method.  

 

Chapter 6 reviews and concludes the comparisons of the simulations and presents 

recommendations for future work.   
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CHAPTER II 
 

MANIPULATOR DYNAMICS WITH FLEXIBLE JOINTS 
 

2.1 Overview 

Consider an n degree of freedom parallel manipulator. Let this system be converted 

into an open-tree structure by disconnecting a sufficient number of unactuated joints 

and the degree of freedom of the open-tree system be m, i.e., the number of 

independent loop closure constraints in the parallel manipulator be m-n. Let the set 

of the generalized coordinates corresponding to the manipulator joint variables 

which express the relative joint positions be defined as  

 

{ }1 1,....., mG θ θ=                                                                                                      (2.1) 

 

Hence the vector of manipulator joint variables of the rigid links that contains both 

the actuated and unactuated joint variables is 

  

[ ]1,.....,
T

mθ θ θ=                                                                                 (2.2) 

 

In the parallel manipulator as many joints as the degree of freedom of the 

manipulator are actuated. Due to the elasticity of the transmission elements, joint 

elasticity occurs at the actuated joints. The sources of elasticity at the joints are 

generally couplings, harmonic drives, thin shafts used in drive trains. Since joint 

flexibility is the main source contributing to overall robot flexibility as 

experimentally verified by ref.[9], it is important to take joint flexibility into account 

in order to get higher performance from the controller.  

 

Joint elasticity and structural damping of the power transmission elements at an 

actuated joint are modeled as a torsional spring and a torsional damper respectively.  
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For the ith transmission, iK  stand for the spring constant and iD  is used for the 

damping constant as seen in Figure 2.1.  

 

 
Figure 2.1 A Flexible Joint Dynamic Model 

        

In the figure, 
ikθ  is the manipulator joint variable which corresponds to angular 

position of the driven link of the manipulator with respect to the link that the ith 

actuator is mounted. ik  is link number of the link which is driven by the ith actuator 

and il  is link number of the link on which the actuator is mounted. 

 

 For this flexible joint model, the second set of generalized coordinates 

corresponding to the actuator variables are written as 

 

{ }2 1,....., nG φ φ=                                                                                           (2.3) 

 

Hence, and the vector of the actuator variables of the flexible joints is 

 

[ ]1,....., T
nφ φ φ=                                                                                          (2.4) 

Link ki 

Link li 

iτ

iφ

ki
θ 

iT

ir

iD

iK
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The angles in the second set of generalized coordinates are obtained as 

i
i

ir
τφ =              1,...,=i n                                                                (2.5) 

where ir  is the speed reduction ratio. 

 

Actuator variable iτ  in Equation 2.5 is the angular position of the ith actuator’s rotor 

with respect to the link that the actuator is mounted. On the other hand, the torques 

supplied by the actuators are denoted by  a
iT  and the torques iT  after the speed 

reduction are  

 

= a
i i iT r T        1,...,=i n                                                                                   (2.6)                         

 

2.2 Manipulator Dynamics 

The dynamic model of parallel manipulators with flexible joints can be derived with 

the following assumptions which simplify the equations of motion considerably and 

were first stated by ref. [1]. 

 

The assumptions are as follows: 

• The links of the parallel manipulator are rigid. 

• The kinetic energy of the rotor is due mainly to its own rotation. In other 

words, the motion of the rotor is a pure rotation with respect to the inertial 

reference frame provided that the gear ratio is sufficiently large. 

• The rotor inertia is symmetric about the rotor axis of rotation so that the 

velocity of the rotor center of mass is independent of the rotor position.  

 

Elasticity at each of the joints creates an additional degree of freedom to the whole 

system. Therefore rotors of the actuators are modeled as fictitious rigid links with 

their own inertial parameters. When an n degree of freedom parallel manipulator 

with n number of actuators is considered, the whole system turns out to be a 2n 

degree of freedom system.  
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The equations of motion corresponding to both sets of generalized coordinates that 

were stated in Equations 2.1 and 2.3 can be derived by using the Lagrange’s 

equations. 

 

The Lagrange’s equation for the set of manipulator joint variables 

 

j j
j j j j

d K K D U Q Q
dt θ θ θ θ

⎛ ⎞∂ ∂ ∂ ∂ ′− + + = +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
               1,...,j m=                                   (2.7) 

 

The Lagrange’s equation for the set of actuator variables 

 

i m
i i i i

d K K D U Q
dt φ φ φ φ +

⎛ ⎞∂ ∂ ∂ ∂
− + + =⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

                   1,...,i n=                                     (2.8) 

 

where K , D ,U ,Q ,Q′  stand for kinetic energy, dissipation function, potential 

energy, generalized non-potentialized force and  the generalized constraint force 

terms respectively.  

 

2.2.1 Kinetic Energy 

Kinetic energy of a link can be written as 

 

1 1 ˆ( ) ( )
2 2

ω ω= +
i i

L L T L L T L L
Li i G G i i iKE m V V I      1,...,i m=                                          (2.9) 

 

where 

1
θ

=

= ∑i

m
L L

G ij j
j

V W  1,...,i m=               (2.10) 

1
ω θ

=

= Ω∑
m

L L
i ij j

j
  1,...,i m=                         (2.11) 

(0, ) (0, )ˆ ˆˆ ˆ⎡ ⎤ ⎡ ⎤= ⎣ ⎦ ⎣ ⎦
TL i L i

i iI C I C  1,...,i m=                            (2.12) 
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In Equations 2.9 – 2.12, 

 
L

im  is the mass of the ith link. 

i

L
GV  is the mass center velocity vector of the ith link as expressed in fixed 

reference frame. 
L
ijW  is the velocity influence coefficient vector. 

ω L
i  is the angular velocity of the ith link as expressed in fixed reference frame. 

ΩL
ij  is the angular velocity influence coefficient vector. 

ˆ L
iI  is the moment of inertia matrix of the ith link as expressed in fixed reference 

frame. 
(0, )ˆ iC  is the transformation matrix from the reference frame attached to the ith link 

to the fixed reference frame. 

ˆ L
iI  is the moment of inertia matrix of the ith link as expressed in its body 

reference frame. 

 

Kinetic energy of a link can be rewritten by combining the Equations 2.9, 2.10 and 

2.11 in more compact form as below. 

 

1 1

m m
L

Li jk i j k
j k

KE m θ θ
= =

= ∑∑               1,...,i m=                                             (2.13) 

 

where 

1 1 ˆ( ) ( )
2 2

= + Ω ΩL L L T L L T L L
ijk i ij ik ij i ikm m W W I             (2.14) 

 

In similar manner, kinetic energy of an actuator can be written as: 

 

1 1 ˆ( ) ( )
2 2

ω ω= +
i i

A A T A A T A A
Ai i G G i i iKE m V V I   1,...,i n=                            (2.15) 

 

 



 
 

10

where 

1
i

m
A A

G ij j
j

V W θ
=

= ∑  1,...,i n=                  (2.16) 

(0, )
,

1

ˆ i

i

n
lA L

i l j j i i
j

C uω θ τ
=

= Ω +∑   1,...,i n=                        (2.17) 

(0, ) (0, )ˆ ˆˆ ˆ⎡ ⎤ ⎡ ⎤= ⎣ ⎦ ⎣ ⎦
TA i A i

i iI C I C  1,...,i n=                          (2.18) 

 

In Equations 2.15 – 2.18, 

 
A

im  is the mass of the ith actuator rotor. 

i

A
GV  is the mass center velocity vector of the ith actuator rotor as expressed in 

fixed reference frame. 
A
ijW  is the velocity influence coefficient vector. 

ω A
i  is the angular velocity of the ith actuator rotor as expressed in fixed reference 

frame. 

,i

A
l jΩ  is the angular velocity influence coefficient vector of the previous link. 

(0, )ˆ ilC  is the transformation matrix from the reference frame attached to the il
th 

actuator rotor to the fixed reference frame. 

iu  is the unit vector along rotation axis of the ith actuator rotor in the link frame 

on which the actuator is mounted. 

ˆ A
iI  is the moment of inertia matrix of the ith actuator rotor as expressed in fixed 

reference frame. 
(0, )ˆ iC  is the transformation matrix from the reference frame attached to the ith 

actuator rotor to the fixed reference frame. 

ˆ A
iI  is the moment of inertia matrix of the ith actuator rotor as expressed in its 

body reference frame. 
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At this point, Assumption-2 which was put forward in Section 2.1 is invoked to the 

formulation and angular velocity expression of the actuator turns out to be as in 

Equation 2.19. 

 
(0, )ˆ ilA

i i iC uω τ=   1,...,i n=                                   (2.19) 

 

Therefore kinetic energy of an actuator can be rewritten in more compact form as  

 

21 1( )
2 2i i

A A T A A
Ai i G G i iKE m V V I τ= +   1,...,i n=                              (2.20) 

 

Assumption-3 is related to the mass distribution of the rotor. With that assumption 

symmetric mass distribution is assumed and principality of the axes of rotation is 

guaranteed. Therefore matrix representation of the inertia dyadic forms a diagonal 

matrix. In addition, mass center velocity of the actuator rotor becomes independent 

of the rotor position since mass center velocity is the translational velocity of the 

fixed point at the il
th link. 

 

Total kinetic energy of the manipulator is formulated as 

1 1

m n

Li Ai
i i

K KE KE
= =

= +∑ ∑                (2.21) 

 

2.2.2 Potential Energy 

Potential energy is caused by the gravity for rigid links and can be derived as 

 
T L L

Li i iPE g m r= −              1,...,i m=                                                (2.22) 

 

where 

g  is the gravitational acceleration vector 
L

ir  is the mass center position of the link as expressed in the fixed reference 

frame. 
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Potential energy is caused by the gravity and the elastic potential for the actuators 

and can be derived as 

 

21 ( )
2 i

T A A
Ai i i i k iPE g m r K θ φ= − + −   1,...,i n=                             (2.23) 

 

where 
A

ir  is the mass center position of actuator as expressed in the fixed reference 

frame. 

iK  is the joint spring constant of  ith transmission. 

 

Total potential energy of the manipulator is formulated as 

1 1

m n

Li Ai
i i

U PE PE
= =

= +∑ ∑                  (2.24) 

 

2.2.3 Dissipation Function 

There exists a positive definite dissipation function when a dissipative force occurs 

in the system. Causes of dissipative forces in the manipulator system are the 

structural damping of the actuated joints, the viscous friction that take place at the 

unactuated joints and the damping at the rotors. The dissipative functions can be 

formulated for each of the cases in a different way. 

 
Dissipation function due to structural damping at the actuated joints, 
 

2

1

1 ( )
2 i

n
a a

i k i
i

D D θ φ
=

= −∑                (2.25) 

 

where 
a
iD  is the joint damping constant of  ith  transmission. 

 
Dissipation function due to damping that occurs at the rotors of the actuators, 
 

2

1

1 ( )
2

n
r r

i i i
i

D D rφ
=

= ∑                   (2.26) 
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where 
r
iD  is the damping constant of  ith  actuator. 

 
Dissipation function due to viscous friction at the unactuated joints, 
 

2

1

1
2 i

m n
u u

i l
i

D D θ
−

=

= ∑                                                     (2.27) 

 

where 
u
iD  is the joint damping constant of  ith unactuated joint. 

 

Similarly, the dissipation function due to viscous friction at the disconnected joints 

can be written and denoted by dD . As a result, the dissipation function that gives 

the total dissipative force of the manipulator is apparently equal to the sum of the 

individual dissipative forces at the rotors and joints. 

 
a r u dD D D D D= + + +                                         (2.28) 

 

2.2.4 Generalized Forces 

In the system model, generalized forces consist of two types of forces. First type of 

forces are the non-potentialized ones which are supplied by the drive trains and 

second type of the forces are the constraint forces that are imposed on the system by 

disconnecting a sufficient number of the unactuated joints. 

 

Non-potentialized forces are obtained by writing the work done by the manipulator 

in virtual form. The virtual work done by the manipulator that corresponds to the 

first set of generalized coordinates, i.e. the manipulator variables is zero if there is 

no external generalized force applied. On the other hand, the virtual work done by 

the manipulator that corresponds to the second set of generalized coordinates, i.e. the 

actuator variables is simply the torques after speed reduction. This fact can be 

formulated as in Equations 2.29 and 2.30. 
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0iWδ =  1,...,i m=                 (2.29) 

 

+ =i m i iW Tδ δφ     1,...,i n=                 (2.30) 

 

Therefore the non-potentialized force terms obtained from the virtual work 

equations are found as 

 

0iQ =  1,...,i m=                 (2.31) 

 

+ =i m iQ T  1,...,i n=                 (2.32) 

 

In most of the situations the m-n loop closure constraint equations at position level 

which are obtained by reconnecting the disconnected joints can be expressed as  

 

1( ,..., ) 0i mψ θ θ =  1,..., ( )i m n= −                                                           (2.33) 

 

and at velocity level they can be written as, 

 

1
0

m

ij j
j

B θ
=

=∑               1,..., ( )i m n= −                                                                 (2.34) 

 

In matrix form, 

 

ˆ 0jBθ =   1,...,j m=                                                                        (2.35) 

 
where 
 

i
ij

j

B ψ
θ

∂
=

∂
  1,..., ( )i m n= − , 1,...,j m=                                               (2.36) 

 
Generalized constraint forces are obtained by writing the velocity level constraint 

equations in virtual form. 
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1
0

m

ij j
j

B δθ
=

=∑   1,..., ( )i m n= −                                                                 (2.37) 

 

One can also write, 

 

1 1
0

m n m

i ij j
i j

Bλ δθ
−

= =

⎡ ⎤
=⎢ ⎥

⎣ ⎦
∑ ∑                                                  (2.38) 

 

1 1

0
m m n

i ij j
j i

Bλ δθ
−

= =

⎡ ⎤ =⎢ ⎥⎣ ⎦
∑ ∑                                                  (2.39) 

 

Expression in the brackets of Equation 2.39 leads to the definition of the constraint 

forces corresponding to the manipulator variables. 

 

1

m n

j ij i
i

Q B λ
−

=

′ = ∑  1,...,j m=                                                                    (2.40) 

 

where iλ , 1,...,= −i m n  are the Lagrange multipliers. 

 

2.3 System Equations of Motion 

Two sets of equations of motion are derived corresponding to the two sets of 

generalized coordinates for this system model. First one belongs to manipulator 

variables while the second one belongs to the actuator variables. After the 

expressions are substituted into Equations 2.7 and 2.8 and manipulated for each of 

the sets, the final forms of the equations of motion are obtained as follows. 

 

The equations of motion for the first set of generalized coordinates are 

 

1 1
0

m m n

ik i i i i k ki
k k

M Q Da St Bθ λ
−

= =

+ + + − =∑ ∑  1,...,i m=                                     (2.41) 
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The equations of motion for the second set of generalized coordinates are 

 
2 2 ( ) ( )r r

i i i i i i i i i i i i iI r D r D K Tφ φ θ φ θ φ+ − − − − =  1,...,i n=                             (2.42) 

 

The Equations (2.41) and (2.42) are rewritten in matrix form as 

 

ˆ ˆ( ) ( , ) ( , ) ( , ) ( ) 0
T

M Q Da St Bθ θ θ θ θ φ θ φ θ λ+ + + − =            (2.43) 

 

where  

ˆ ( )M θ  is the m m× symmetric positive definite generalized mass matrix,  

( , )Q θ θ  is the 1m×  vector which contains Coriolis, centrifugal and gravitational 

terms, 

( , )Da θ φ is the 1m× vector which contains damping terms, 

( , )St θ φ  is the 1m× vector which contains stiffness terms, 

ˆ( )B θ  is the ( )m n m− ×  matrix generalized force matrix. 

λ  is the ( ) 1m n− ×  vector whose elements consist of the Lagrange 

multipliers which mean the constraint forces imposed on the disconnected joint  and 

 

ˆ ˆ ˆ ˆ( ) ( )r r aI D D q K q Tφ φ φ φ+ − − − − =                                   (2.44) 

 

where 

ˆrI  is an n n×  matrix whose elements are the inertial parameters of the links and 

can be expressed as 

 

 2ˆ [ ]r r
i iI diag I r=   1,...,i n=                                                                            (2.45) 

 

ˆ rD  is an n n×  matrix whose elements are the inertial parameters of the rotors and 

can be expressed as 
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2ˆ [ ]r r
i iD diag D r=   1,...,i n=                                                                            (2.46) 

 

K̂  is an n n×  matrix whose elements are spring constants of the actuated joints 

and can be expressed as 

  

ˆ [ ]iK diag K=    1,...,i n=                                                                            (2.47) 

 

T  is an 1n×  vector whose elements are control torques after speed reduction. 

 

2.4 Closed Loop Constraints 

As explained in Section 2.2.4, the system constraint equations are necessary for the 

derivation of generalized constraint forces which physically mean the net torque 

applied by the joint forces at the disconnected joint(s) about the rotation axis of the 

joints. 

 

On the other hand constraint equations are also necessary for writing the unactuated 

joint coordinates in terms of the actuated ones. 

 

Let the joint coordinates vector of the rigid links [ ]1,.....,
T

mθ θ θ=  be separated into 

two subvectors, which correspond to variables of the actuated joints q  ( 1)n×  and 

the variables of the unactuated joints uθ  [( ) 1]m n− × , respectively. 

 

After the constraint equations of the manipulator when it is disconnected are written 

as in Equation 2.34, ( )m n m− ×  matrix B̂  is constructed. However, when the 

unactuated joint variables are written in terms of the actuated ones, matrix B̂  is 

subdivided into an ( ) ( )m n m n− × −  matrix ˆ uB  and ( )m n n− ×  matrix aB  as the 

coefficient matrices of the joint variables to which they correspond. Hence, Equation 

2.35 can be written as 

 

ˆ ˆu u aB B qθ = −                                                                                                        (2.48) 
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One can solve for uθ  as below 
 

ˆu Cqθ =                                                                                                                (2.49) 

 

where Ĉ  is an ( )m n n− ×  matrix and expressed as 

 
1ˆ ˆ ˆ( )u aC B B−= −                                                                                                      (2.50) 

 

Further differentiation of Equation 2.49 up to jerk level yields 

 

ˆ ˆu Cq Cqθ = +                                                                                                        (2.51) 

 

where 

( )1 1ˆ ˆ ˆ ˆ ˆ( ) ( )u a u aC B B B B− −= − +                                                                                 (2.52) 

 

ˆ ˆ ˆ2u Cq Cq Cqθ = + +                                                                                             (2.53) 

 

where 

( )1 1 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) 2( ) ( )u a u a u aC B B B B B B− − −= − + +                                                            (2.54) 
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CHAPTER III 
 

INVERSE DYNAMICS CONTROL 
 

3.1 Task Space Equations 

The control method to be used for the parallel manipulator which has m links and n 

actuators at the joints is based on obtaining an equation between the inputs and the 

outputs. The inputs for the robot manipulators can be joint torques/forces or voltages 

supplied to the actuators. Since end effector position tracking is aimed in the control 

problem, the outputs become the joint positions either in task space or in the joint 

space. 

 

When the commanded motion is specified in task space, then a relation ought to be 

derived between the joint space coordinates and task space coordinates. 

 

Let ix , 1,...,i n=  represent the Cartesian end effector position variables. Then the 

functions that are used to relate each coordinate of the end effector to the joint 

coordinates, jθ , 1,...,j m= , i.e. so called task equations are written as  

 

1( ,..., )i i mx f θ θ=   1,...,i n=                                                (3.1) 

where m is the number of coordinates as expressed in the joint space. 

 

Taking one step differentiation of Equation 3.1 yields the following velocity 

relation. 

 

1

m
P

i ij j
j

x θ
=

= Γ∑  1,...,i n=                                                (3.2) 

where 

P i
ij

j

f
θ

∂
Γ =

∂
                                                                                    (3.3) 
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Equation 3.2 can be written in matrix form as 

 

ˆ Px θ= Γ                                                                                     (3.4) 

where ˆ PΓ  is the n m×  manipulator Jacobian matrix. 

 

The manipulator Jacobian matrix derived in Equation 3.4 can be written in terms of 

only the actuated variables by making use of Equation 2.49. Therefore the same 

procedure is followed to find n n×  matrix ˆ aPΓ and ( )n m n× −  matrix ˆ Pu
Γ  as the 

coefficient matrices of the joint variables to which they correspond. This can be 

formulated as follows. 

 

ˆ ˆa uP P uq xθΓ + Γ =                                                                         (3.5) 

 

Substituting Equation 2.49 into Equation 3.5 gives 

 

( ) 1ˆ ˆˆ ˆa uP P u aq B B q x
−⎡ ⎤Γ + Γ − =⎢ ⎥⎣ ⎦

                                                           (3.6) 

 

Factoring out the joint coordinates vector of the actuated variables gives 

 

ˆx Jq=                                                                                                          (3.7) 

 

where Ĵ  is n n×  manipulator Jacobian matrix expressed as 

 
1ˆ ˆ ˆˆ ˆP P u aa u

J B B
−

= Γ − Γ                                                                                               (3.8) 

 

The Equation 3.7 is differentiated up to snap level as below. 

   

ˆ ˆx Jq Jq= +                                                                                               (3.9)
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ˆ ˆ ˆ2x Jq Jq Jq= + +                                                                                  (3.10)

  

ˆ ˆ ˆ ˆ3 3x Jq Jq Jq Jq= + + +                                                                                      (3.11) 

 

Hence, 

1ˆ ˆ ˆ ˆ( 3 3 )q J x Jq Jq Jq−= − − −                                                                                (3.12) 

 

At this point, system equations of motion should be written in terms of the actuated 

joint variables and the Lagrange multipliers should be eliminated by using the 

constraint equations. 

 

To realize this, first u
iθ  and u

iθ , 1,..., ( )i m n= −  are eliminated by using the 

Equations 2.49 and 2.51 from the Equation 2.43. Among the m number of scalar 

equations obtained, the n  number of equations that correspond to the actuated joint 

variables can be written in matrix form as below. 

 

*ˆ ˆ ˆ ˆ ˆ( ) ( ) 0
Ta a a a aM q R q Q D q K q Bφ φ λ+ + + − + − − =                                          (3.13) 

 

where  
*ˆ aM  is an n n×  submatrix generated from symmetric generalized mass matrix 

whose elements consist of all of the joint positions. 

ˆ aR  is an n n×  bias matrix whose elements consist of all of the joint position and 

velocities. 
aQ  is an 1n×  subvector of the 1m×  Q  vector that contains centrifugal, Coriolis 

and gravitational terms. 

ˆ aD  is an n n×  matrix whose elements consist of the joint damping constants of 

the actuated joints which can be expressed as 

 

ˆ [ ]a
iD diag D=    1...i n=                                                             (3.14) 
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K̂   is an n n×  matrix whose elements consist of the joint spring constants of the 

actuated joints which can be expressed as 

 

ˆ [ ]iK diag K=    1...i n=                                                                         (3.15) 

 

ˆ aB  is an ( )m n n− ×  submatrix of the matrix B̂ . 

λ  is the ( ) 1m n− ×  vector of Lagrange multipliers. 

 

The remaining m n−  equations that correspond to the unactuated joint variables can 

be written as below. 

 
*ˆ ˆ ˆ 0

Tu u u uM q R q Q B λ+ + − =                                                                                (3.16) 

 

where  
*ˆ uM  is an ( )m n n− ×  submatrix generated from symmetric generalized mass 

matrix M̂  whose elements consist of all of the joint positions. 

ˆ uR  is an ( )m n n− ×  bias matrix whose elements consist of all of the joint 

position and velocities. 
uQ  is an ( ) 1m n− ×  subvector of the 1m×  Q  vector that contains centrifugal, 

Coriolis and gravitational terms . 

ˆ uB  is an ( ) ( )m n m n− × −  submatrix of the matrix B̂ . 

λ  is the ( ) 1m n− ×  vector of Lagrange multipliers. 

 

As a second part of the elimination procedure, the Lagrange multipliers in the 

equations are solved from Equation 3.16 as below. 

 

( ) { }1
*ˆ ˆ ˆTu u u uB M q R q Qλ

−
= + +                                                                           (3.17) 
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Then, the Equation 3.17 is substituted into Equation 3.13. 

 

** * *ˆ ˆ ˆ ˆ( ) ( ) 0aM q R q Q D q K qφ φ+ + + − + − =                                                       (3.18) 

 

In this way, the manipulator system in concern with constraints is transformed to a 

system without constraints. In this final form of the equations of motion for the first 

set of generalized coordinates, the unactuated joint variables at the acceleration and 

velocity levels and the constraint forces disappear. 

 

The matrix form of the equations of motion for the second set of generalized 

coordinates, i.e. actuator variables are rewritten below for the sake of convenience. 

 

ˆ ˆ ˆ ˆ( ) ( )r r aI D D q K q Tφ φ φ φ+ − − − − =                                                                (3.19) 

 
As far as the inverse dynamics control law is considered, one needs to obtain an 

input-output relation using the equations of motion stated in Equations 3.18 and 

3.19. Here, the inputs are the joint torques applied by the actuators and the outputs 

are the task space positions of the tip point of the end effector and the orientation of 

the end effector with respect to the fixed reference frame. In order to get a relation 

between the task space location of the end effector and the joint torques, the 

intermediate variables φ  and q  should be eliminated. To facilitate the solution, the 

following steps are followed. 

 
Step-1 : Factoring out  dissipative and inductive part of Equation 3.18.  
 

** * *ˆ ˆ ˆ ˆ( ) ( )aD q K q M q R q Q⎡ ⎤− + − = − + +⎣ ⎦φ φ                                                      (3.20) 

 
Step-2 : Substituting Equation 3.20 into Equation 3.19. 
 

( )** * *ˆ ˆ ˆ ˆr rI D M q R q Q Tφ φ+ + + + =                                                                     (3.21) 

 
Step-3 : Taking time derivative of Equation 3.21. 
 

** ** * * *ˆ ˆ ˆ ˆ ˆ ˆr rI D M q M q R q R q Q Tφ φ+ + + + + + =                                                  (3.22) 
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Step-4 : Multiplying Equation 3.21 by K̂  and Equation 3.22 by ˆ aD and adding them 
up 
 

 
 
In simplified form, 
 

** ** * * *

** * *

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( )
ˆ ˆ ˆ ˆ ˆ ˆ ˆ                (3.24)

r a r a a

a

I D K D D K D M q M q R q R q Q

KM q KR q KQ D T KT

φ φ φ φ+ + + + + + + +

+ + + = +
  
 
Step-5: Factoring out dissipative and inductive part of Equation 3.18 associated with 

actuator variables and taking time derivatives 

 
** * *ˆ ˆ ˆ ˆ ˆ ˆa aD K M q R q Q D q Kqφ φ+ = + + + +              (3.25) 

 
** ** * * *ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆa aD K M q M q R q R q Q D q Kqφ φ+ = + + + + + +            (3.26) 

 
** ** ** * * * *ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ2 2a aD K M q M q M q R q R q R q Q D q Kqφ φ+ = + + + + + + + +          (3.27) 

 
 
Step-6 : Multiplying Equation 3.24 by 1K̂ −  

 
1 1 1 ** ** * * *

** * * 1

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( )
ˆ ˆ ˆ ˆ( )                                                    (3.28)

r a r a a

a

K I D K K D D K K D M q M q R q R q Q

M q R q Q K D T T

φ φ φ φ− − −

−

+ + + + + + + +

+ + + = +
 
Step-7 : Substituting Equations 3.26 and 3.27 into Equation 3.28. 

 
1 ** ** ** * * * *

1 ** ** * * *

1 ** ** * * *

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ2 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ

r a

r a

a

K I M q M q M q R q R q R q Q D q Kq

K D M q M q R q R q Q D q Kq

K D M q M q R q R q Q M

−

−

−

⎡ ⎤+ + + + + + + +⎢ ⎥⎣ ⎦
⎡ ⎤+ + + + + + +⎢ ⎥⎣ ⎦
⎡ ⎤+ + + + + +⎢ ⎥⎣ ⎦

** * *

1

ˆ

ˆ ˆ                             (3.29)a

q R q Q

K D T T−

+ +

⎡ ⎤= +⎣ ⎦
 

 

** * * ** **

* * *

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ                                        (3.23)

r r a r a r a a

a a a a

KI KD KM q KR q KQ D I D D D M q D M q

D R q D R q D Q D T KT

φ φ φ φ+ + + + + + + +

+ + + = +
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In rearranged form 
 

( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

1 ** ** * ** * * *

1 ** ** * * *

1 ** ** * * * ** * *

1

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ2 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ

r a

r a

a

a

K I M q M R D q M R K q R q Q

K D M q M R D q R K q Q

K D M q M R q R q Q M q R q Q

K D

−

−

−

−

⎡ ⎤+ + + + + + + +⎢ ⎥⎣ ⎦
⎡ ⎤+ + + + + + +⎢ ⎥⎣ ⎦
⎡ ⎤+ + + + + + + +⎢ ⎥⎣ ⎦

⎡ ⎤= ⎣                                                                                                 (3.30)T T+⎦

  

 

Step-8 : Substituting Equation 3.12 into Equation 3.30. 

 

( ) ( ) ( )
( ) ( )

( )

1 ** 1 ** * ** *

* * 1 ** ** * * *

1 ** ** * * *

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( 3 3 ) 2 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ

r a

r a

a

K I M J x Jq Jq Jq M R D q M R K q

R q Q K D M q M R D q R K q Q

K D M q M R q R q Q

− −

−

−

⎡ − − − + + + + + +⎢⎣
⎡ ⎤⎤+ + + + + + + + +⎥ ⎢ ⎥⎦ ⎣ ⎦

⎡+ + + + +
⎣

** * *

1

ˆ ˆ

ˆ ˆ                                                                                                 (3.31)a

M q R q Q

T K D T−

⎤ + + +⎢ ⎥⎦
⎡ ⎤= + ⎣ ⎦

 

 

where q , q , q , q  can be written in terms of x , x , x , x  using the task space 

equations 3.1, 3.7, 3.9 – 3.11. 

 

3.2 Control Law 

Equation 3.31 gives a relation between inputs and outputs after the elimination of 

the intermediate variables φ  and q . This equation can be written in more compact 

form as 

 

ˆˆ ( ) ( , , , )N x x P x x x x T ST+ = +               (3.32) 

 

where 

 
-1 ** 1ˆ ˆ ˆ ˆ ˆrN K I M J −=                                      (3.33) 
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-1ˆ ˆ ˆ aS K D=                                                  (3.34) 

 

( ) ( )
( ) ( ) ( )

( )

1 ** 1 ** * ** 1 ** *

** 1 * * 1 ** ** * * *

1 ** ** * *

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ3 2 3 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ

r a

r a

a

P K I M J J M R D q M J J M R K q

M J J R q Q K D M q M R D q R K q Q

K D M q M R q R q

− − −

− −

−

⎡= − + + + + − + + +⎢⎣
⎤ ⎡ ⎤+ − + + + + + + + + +⎥ ⎢ ⎥⎦ ⎣ ⎦

+ + + + + * ** * *ˆ ˆ                           (3.35)Q M q R q Q⎡ ⎤ + + +⎢ ⎥⎣ ⎦

 

 

The basic principle of inverse dynamics control is to find a control input vector 

which will linearize and decouple the Equation 3.32. Therefore ˆT ST+ is chosen as 

 

ˆ ˆT ST Nu P+ = +                                                 (3.36) 

 

Then Equation 3.32 yields 

 

x u=                                                                         (3.37) 

 

where u is nx1 control input vector that represents the command snaps. 

 

In the inverse dynamics solution, matrix Ŝ  has to be inverted. If the matrix ˆ aD  

which contains damping constants at the active joints is not invertible, then some 

entries of the diagonal matrix Ŝ  become zero and this leads matrix Ŝ  to be singular. 

To overcome this problem, the Equation 3.36 can be written as n number of scalar 

equations. The equations in which the Ŝ  matrix entries are zero give directly the 

corresponding torques. On the other hand, nonzero entries cause the appearance of 

the torque rates in the equations. In this case, the torque rates are numerically 

integrated and the remaining torque values are calculated. 
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3.3 Position Error Dynamics 

New control variable u  can be chosen by using the error states as 

 

1 2 3 4 5
ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )d d d d d du x C x x C x x C x x C x x C x x dt= + − + − + − + − + −∫     (3.38) 

 

where the superscript d is used for the desired values and ˆ
iC , 1,...,5i =  are diagonal 

feedback gain matrices. 

 

When Equation 3.38 is substituted into Equation 3.37, the following linear error 

dynamics is obtained after the computed torques are applied on the system without 

considering any modeling error or disturbance. 

 

1 2 3 4 5
ˆ ˆ ˆ ˆ ˆ 0p p p p p pe C e C e C e C e C e dt+ + + + + =∫                                                        (3.39) 

 
where pe  is the vector of errors describing how much the system is deviated from its 

actual task position and can be expressed as 

 
d

pe x x= −                                                                                                            (3.40) 
 
Asymptotic stability is achieved by an appropriate selection of the feedback gains. 

For this purpose, pole placement technique or some norms like ISE, ITAE, IAE, etc. 

can be utilized. In this study Integral of Time Multiplied by the Absolute Value of 

Error (ITAE) performance index is used.  

 

This performance index has such an effect that the weight of the absolute error 

decreases as the time goes by. Therefore at the small values of time, the errors 

become large and as time increases, the absolute error gets smaller. 

 

In general, the characteristic equation of a feedback control system has the form 
1 2

1 2 ...n n n
ns C s C s C− −+ + + + . The coefficients for the fourth and the fifth order 

systems are given according to ITAE norm as in Table 3.1. 

 



 
 

28

Table 3.1 Feedback Gains 

Feedback Gains Without Integral Control With Integral Control 

1C  2.1 oω  2.8 oω  

2C  23.4 oω  25.0 oω  

3C  32.7 oω  35.5 oω  

4C  4
oω  43.4 oω  

5C  - 5
oω  

 

where oω  is a positive constant value. 

 

System poles for the fourth order system are obtained by using ITAE norm as 

 
1,2 0.4240 1.2630o op jω ω= − ±                                                                               (3.41) 

 
3,4 0.6260 0.4141o op jω ω= − ±                                                                              (3.42) 

 

Similarly, system poles for the fifth order system are 

 
1,2 0.3764 1.2920o op jω ω= − ±                                                                              (3.43) 

 
3 0.8955 op ω= −                                                                                                     (3.44) 

 
4,5 0.5758 0.5339o op jω ω= − ±                                                                              (3.45) 
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CHAPTER IV 
 

THE CONCEPT OF SINGULARITY 
 

4.1 Singularity in Manipulators 

Singularity in both serial and parallel manipulators is a very significant issue since it 

creates some singular configurations for the manipulators. These are defined to be 

configurations when manipulator Jacobian matrix in Equation 3.7 has less than full 

rank. Physically, these configurations correspond to situations where the joints have 

been aligned in such a way that there is at least one direction of motion for the end 

effector that physically cannot be achieved by the mechanism just because of the 

extended or folded positions of the links. Singular configurations occur at workspace 

boundaries for the serial and parallel manipulators and inside the workspace volume 

only for the parallel manipulators due to their closed loop structure. When the axes 

of two or more joints line up and consequently the links are in extended or folded 

positions, another end effector degree of freedom gets lost.  

 

All robotic manipulators have singular configurations. In other words, the existence 

of singularities cannot be eliminated even by careful design. For this reason, 

singularities are a serious cause of drawbacks in robotic analysis and control to be 

handled only by a proper trajectory generation. 

 

Motions have to be carefully planned in the region of singularities to avoid them. 

This is not only because at the singularities there will be an unobtainable motion at 

the end effector, but also because many real time motion planning and control 

algorithms make use of the manipulator Jacobian. For the reasons above, the 

analysis of singularities is an important issue in robotics and continues to be the 

interest of research. In the following sections the types of these singularities will be 

explained in detail. 
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4.2 Types of Singularities 

Since this study covers the analysis of parallel manipulators, the following two 

sections will explain the singular cases that the researchers come across most 

commonly. 

 

4.2.1 Drive Singularity 

As previously stated, the closed loop structure produce a special type of degeneracy 

to the parallel manipulators which can be called drive singularity, where the motion 

control ability becomes lost and the actuator forces grow unboundedly. Since some 

of the joints are unactuated, at certain positions the actuators of the system may 

become unable to control the moving platform. As the system approaches to  a drive 

singularity the actuator forces grow without bounds. [6] 

 

Therefore the studies related to the drive singularities mostly aim at finding only the 

locations of the singular positions for the purpose of avoiding them in the motion 

planning stage.  

 

Drive singularity occurs while solving for the actuator forces. At a drive singularity 

the actuators cannot realize the assigned snap values and influence the end effector 

snaps. Consequently they lose control in one or more degrees of freedom. 

 

In this study, the condition where drive singularity prevails is obtained by using the 

equation below as stated in [6]. 

 

ˆdet( ) 0uB =                    (4.1) 

 

where ˆ uB  is ( ) ( )m n m n− × − matrix composed of the columns of the coefficient 

matrix B̂  as explained in Chapter II. 

 

 

 



 
 

31

4.2.2 Inverse Kinematic Singularity 

Inverse kinematic singular configurations exist for both parallel and serial 

manipulators when the desired motion is expressed in Cartesian reference frame. For 

the prescribed x , q can be calculated using Equation 3.12, q  from Equation 3.10, 

q  from Equation 3.9, q  from Equation 3.7 and finally q from equation 3.1. 

However during this inverse kinematic solution, this type of singularities takes 

place. 

 

To implement this fact, let an m m×  matrix Γ̂  is defined as 

 

ˆ
ˆ

ˆ P

B⎡ ⎤
Γ = ⎢ ⎥

Γ⎢ ⎥⎣ ⎦
                   (4.2) 

 

which is composed of ( )m n m− ×  matrix B̂  and n m×  matrix ˆ PΓ  as described in 

Chapter II and III. 

 

Then the condition where inverse kinematic singularity prevails is obtained by using 

the equation below as derived in [6]. 

 

ˆdet( ) 0Γ =                    (4.3) 

 

The condition above leads to a few singular configurations that affect the links being 

extended or folded positions. As a result of that some of the joint positions become 

undistinguishable. 
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CHAPTER V  
 

CASE STUDY AND SIMULATIONS 
 

5.1 Case Study 

In this chapter, a planar parallel manipulator is considered as a case study in order to 

check out the performance of the control law. Parallel manipulators are generally 

classified with respect to their number of legs and type of joints that these legs have 

beginning from the fixed base to the moving platform. The parallel manipulator to 

be analyzed has two legs and each of them has three revolute joints from the fixed 

base to the moving platform. Therefore it is said to be 2-RRR planar manipulator 

which is shown in Figure 5.1. 

 

Figure 5.1 2-RRR Planar Manipulator with Three Flexible Joint Actuation 
 

This planar parallel manipulator has six links including the fixed link and six 

revolute joints. It is actuated by three actuators located at A, B and C whose joint 
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variables are 1θ , 2θ  and 3θ . The rotation axes of the joints are perpendicular to the 

plane of motion. The manipulator is a three degree of freedom one excluding the 

additional degrees of freedom that arise due to the flexible joints. Considering three 

flexible joint actuation, the degree of freedom of the system increases to six. 

 

The viscous damping of the actuators and the torsional damping characteristics of 

joints are considered in the system.  

 

In the following sections, the Lagrangian formulation of the manipulator is going to 

be derived to find the system equations of motion as explained in Chapter II. Before 

that the sets of generalized coordinates need to be defined. 

 

Let the sets of the generalized coordinates corresponding to the manipulator 

variables and actuator variables be defined respectively as  

 

{ }1 1 2 3 4 5, , , ,G θ θ θ θ θ=                                        (5.1) 
 

{ }2 1 2 3, ,G φ φ φ=                                                   (5.2) 
 

Then vector of manipulator variables of the rigid links become 

 

[ ]1 2 3 4 5
Tθ θ θ θ θ θ=                                                             (5.3) 

 

which is subdivided into vector of actuated and unactuated joint variables as 

[ ]1 2 3
Tq θ θ θ=                                                                                    (5.4) 

 

[ ]4 5
Tuθ θ θ=                                                                        (5.5)  

and vector of actuator variables of the flexible joints turn out to be  

 

[ ]1 2 3
Tφ φ φ φ=                                                                        (5.6)  
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Since five joint variables are assigned, i.e. m=5 and degree of freedom of the 

manipulator excluding the additional degree of freedom caused by flexibility is 

three, i.e. n=3, one need to disconnect the joint at Point-F and get two open 

kinematic chains and therefore two constraint equations associated with this 

disconnection. These open chains with the unit vectors assigned to the links and 

actuators are illustrated in Figures 5.2 and 5.3. 

 

Figure 5.2 Open Kinematic Chain-1 
 

In both of the figures iλ , 1, 2i =  show the forces applied at the disconnected joint in 

horizontal and vertical directions physically.  
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Figure 5.3 Open Kinematic Chain-2 

 
 

5.1.1 Kinetic Energy Expressions 

Angular and translational velocity components that lead to the kinetic energy 

expressions are going to be written firstly. 

 

Link-1: 
 

1

(0) 1
1 1 2 1( )

2G
Lr u c u sθ θ= +                                                                      (5.7) 

1 1

1
1 1

(0) (0) 1 1
1 1 1 2 1 1 1 1

2

( )
2 2

0

G G

L s

L LV r u s u c c

θ θ

θ θ θ θ θ θ

⎡ ⎤−⎢ ⎥
⎢ ⎥
⎢ ⎥= = − + = ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

                                             (5.8) 

 

(0)
1 1 3

1

0
0uω θ
θ

⎡ ⎤
⎢ ⎥= = ⎢ ⎥
⎢ ⎥⎣ ⎦

                                                                                (5.9) 

 

F

D

4

2

B

 

4θ
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3u

(2)
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3u

2λ
1λ
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Link-2: 
 

2

(0) 2
0 1 1 2 2 2( )

2G
Lr d u u c u sθ θ= + +                                                                           (5.10) 

 

2 2

2
2 2

(0) (0) 2 2
1 2 2 2 2 2 2 2

2

( )
2 2

0

G G

L s

L LV r u s u c c

θ θ

θ θ θ θ θ θ

⎡ ⎤−⎢ ⎥
⎢ ⎥
⎢ ⎥= = − + = ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

                                         (5.11) 

 
 

(0)
2 2 3

2

0
0uω θ

θ

⎡ ⎤
⎢ ⎥= = ⎢ ⎥
⎢ ⎥⎣ ⎦

                                                    (5.12) 

 

Link-3: 
 

3

(0) 3
1 1 1 2 1 1 13 2 13( ) ( )

2G
Lr L u c u s u c u sθ θ θ θ= + + +                 (5.13) 

 

3 3

3
1 1 1 13 13

(0) (0) 3 3
1 1 1 1 2 1 1 1 13 13 2 13 13 1 1 1 13 13

2

( ) ( )
2 2

0

G G

LL s s

L LV r L u s u c u s u c L c c

θ θ θ θ

θ θ θ θ θ θ θ θ θ θ θ θ

⎡ ⎤− −⎢ ⎥
⎢ ⎥
⎢ ⎥= = − + + − + = +⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

   

               (5.14) 
 

(0)
3 1 3 3 3

13

0
0u uω θ θ

θ

⎡ ⎤
⎢ ⎥= + = ⎢ ⎥
⎢ ⎥⎣ ⎦

                                                                                     (5.15) 

 

Link-4: 
 

4

(0) 4
0 1 2 1 2 2 2 1 24 2 24( ) ( )

2G
Lr d u L u c u s u c u sθ θ θ θ= + + + +                       (5.16) 
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4 4

4
2 2 2 24 24

(0) (0) 4 4
2 1 2 2 2 2 2 1 24 24 2 24 24 2 2 2 24 24

2

( ) ( )
2 2

0

G G

LL s s

L LV r L u s u c u s u c L c c

θ θ θ θ

θ θ θ θ θ θ θ θ θ θ θ θ

⎡ ⎤− −⎢ ⎥
⎢ ⎥
⎢ ⎥= = − + + − + = +⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

                                        (5.17) 
 
 

(0)
5 2 3 4 3

24

0
0u uω θ θ

θ

⎡ ⎤
⎢ ⎥= + = ⎢ ⎥
⎢ ⎥⎣ ⎦

               (5.18) 

 
 

Link-5: 
 

5

(0)
1 1 1 2 1 3 1 13 2 13 5 1 135 2 135( ) ( ) [ ( ) ( )]Gr L u c u s L u c u s g u c u sθ θ θ θ θ β θ β= + + + + + + +              (5.19) 

 
 

5 5

(0) (0)
1 1 1 1 2 1 1 3 1 13 13 2 13 13

1 1 1 3 13 13 5 135 135

5 1 135 135 2 135 135 1 1 1 3 13 13 5 135 135

( ) ( )

( )
( ( ) ( ) ) ( )

0

G GV r L u s u c L u s u c

L s L s g s
g u s u c L c L c g c

θ θ θ θ θ θ θ θ

θ θ θ θ θ β θ
θ β θ θ β θ θ θ θ θ θ β θ

= = − + + − +

⎡ ⎤− − − +
⎢ ⎥+ − + + + = + + +⎢ ⎥
⎢ ⎥⎣ ⎦

 

                                        (5.20) 
 
 

(0)
5 1 3 3 3 5 3

135

0
0u u uω θ θ θ

θ

⎡ ⎤
⎢ ⎥= + + = ⎢ ⎥
⎢ ⎥⎣ ⎦

                         (5.21) 

 
Actuator-1: 
 

1 0AV =                                                                (5.22)   
      
 

1

1 1

0
0A

r
ω

φ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

                                                            (5.23) 
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Actuator-2: 
 

2 0AV =                                                                (5.24)      
 
 

2

2 2

0
0A

r
ω

φ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

                                                            (5.25) 

 
 
 
Actuator-3: 
 

1 1 1

3 1 1 1

0

A

L s
V L c

θ θ
θ θ

⎡ ⎤−
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

                                                (5.26) 

 
 

3

3 3

0
0A

r
ω

φ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

                                                            (5.27) 

 
 

The kinetic energy expressions are obtained by substituting the translational and 

angular components into Equations 2.9 and 2.20 as follows 

 
2

21
1 1 1 1

1 [ ]
2 4

L
L zz

LKE m I θ= +                                                                      (5.28) 

 
2

22
2 2 2 2

1 [ ]
2 4

L
L zz

LKE m I θ= +                                                                      (5.29) 

 
2

2 2 23
3 3 1 1 3 1 3 1 13 1 1 3 3 3 1 3

1 1 1( ) ( ) [ ]( )
2 2 2 4

L L L
L zz

LKE m L m L L c m Iθ θ θ θ θ θ θ θ= + − + + + +  

        (5.30) 
 
 
 
 
 



 
 

39

In expanded form 
 

2
2 2 2 23

3 3 1 1 3 1 3 3 1 3 1 3 3 1 3 3 3 1

2 2
23 3

3 3 1 3 3 3 3

1 1 1 1( ) ( ) [ ]
2 2 2 2 4

1[ ] [ ]                                                          (5.31)
4 2 4

L L L L
L zz

L L
zz zz

LKE m L m L L c m L L c m I

L Lm I m I

θ θ θ θ θ θ θ

θ θ θ

= + − + − + +

+ + + +
 

 
2

2 2 24
4 4 2 2 4 2 4 2 24 2 2 4 4 4 2 4

1 1 1( ) ( ) [ ]( )
2 2 2 4

L L L
L zz

LKE m L m L L c m Iθ θ θ θ θ θ θ θ= + − + + + +  

        (5.32) 
 
In expanded form 
 

2
2 2 2 24

4 4 2 2 4 2 4 4 2 4 2 4 4 2 4 4 4 2

2 2
24 4

4 4 2 4 4 4 4

1 1 1 1( ) ( ) [ ]
2 2 2 2 4

1[ ] [ ]                                                          (5.33)
4 2 4

L L L L
L zz

L L
zz zz

LKE m L m L L c m L L c m I

L Lm I m I

θ θ θ θ θ θ θ

θ θ θ

= + − + − + +

+ + + +

 
 

 

2 2 2 2 2 2
5 5 1 1 5 3 1 3 5 5 5 1 3 5

5 1 3 1 13 1 1 3 5 1 5 1 135 1 1 3 5

5 3 5 13 135 1 3 1 3 5

1 1 1( ) [ ]( )
2 2 2

( ) ( ) ( ) ( )

( )( )( )                          

L L L
L zz

L L

L

KE m L m L m g I

m L L c m L g c

m L g c

θ θ θ θ θ θ

θ θ θ θ θ θ θ β θ θ θ θ

θ θ β θ θ θ θ θ

= + + + + + +

+ − + + − − + +

+ − − + + +                            (5.34)
 
 
In expanded form 
  

2 2 2 2 2 2 2 2 2
5 5 1 1 5 3 1 5 3 1 3 5 3 3 5 5 5 1

2 2 2 2 2 2
5 5 5 3 5 5 5 5 5 5 5 1 3 5 5 5 1 5

2 2
5 5 5 3 5 5 1 3 3 1 5 1

1 1 1 1 [ ]
2 2 2 2

1 1[ ] [ ] [ ] [ ]
2 2

[ ] ( )

L L L L L
L zz

L L L L
zz zz zz zz

L L L
zz

KE m L m L m L m L m g I

m g I m g I m g I m g I

m g I m L L c m L

θ θ θ θ θ θ

θ θ θ θ θ θ

θ θ θ θ

= + + + + +

+ + + + + + + +

+ + + − + [ ]
[ ] [ ] [ ]
[ ] [ ] [ ]
[ ]

2
3 3 1 3 5 1 5 3 5 1

2
5 1 5 3 5 1 3 5 1 5 3 5 1 5 5 3 5 5 1

5 3 5 5 1 3 5 3 5 5 1 5 5 3 5 5 1 3

2
5 3 5 5 3 5 3

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( )

L

L L L

L L L

L L

L c m L g c

m L g c m L g c m L g c

m L g c m L g c m L g c

m L g c m L g

θ θ θ θ θ β θ

θ θ β θ θ θ θ β θ θ θ β θ

θ β θ θ θ β θ θ θ β θ θ

θ β θ

− + − + +

+ − + + + − + + + − +

+ − + + − + + − +

+ − + + [ ]5 5 3 5( )                                             (5.35)c θ β θ θ− +
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2 2
1 1 1 1

1 [ ]
2

r
A zzKE r I φ=                               (5.36) 

 
 

2 2
2 2 2 2

1 [ ]
2

r
A zzKE r I φ=                               (5.37) 

 
 

2 2 2 2
3 3 1 3 1 3 3 3

1 1[ ] [ ]
2 2

A r r
A zz zzKE m L I r Iθ φ= + +                         (5.38) 

 

It is clear that total kinetic energy is the sum of all the kinetic energy contributions 

of links and actuators and can be formulated in simplified form as below. 

 

{
[ ]

[ ] }

22
2 2 231

1 1 1 3 1 3 1 3 3 3 3 5 1

2 2
5 3 5 5 5 5 1 3 3 5 1 5 3 5

2
2 2 22

5 3 5 5 3 1 3 2 2 2 4 2

4 2 4 4

1 [ ] ( ) [ ]
2 4 4

[ ] 2 ( ) 2 ( )

12 ( ) [ ] [ ]
2 4

( ) [

L L L L L
zz zz

L L L L
zz

L A r L L
zz zz

L

LLK m I m L m L L c m I m L

m L m g I m L L c m L g c

Lm L g c m L I m I m L

m L L c

θ θ

θ θ θ β

θ β θ

θ

= + + + − + + +

+ + + + − + − + +

⎧
+ − + + + + + +⎨

⎩

+ − + {

[ ]}

}{ {

22
2 234

4 4 3 3 3 5 3

2
2 2 4

5 5 5 5 3 5 5 4 4 4

2
2 2 3

5 5 5 5 1 3 3 1 3 3 3 3

2 2
5 3 5 5 5 5 1 3 3 5

1] [ ]
4 2 4

1[ ] 2 ( ) [ ]
2 4

1 1[ ( ) [ ]
2 2 4

[ ] ( )

L L L
zz zz

L L L
zz zz

L L L
zz zz

L L L L
zz

LLm I m I m L

Lm g I m L g c m I

Lm g I m L L c m I

m L m g I m L L c m L

θ

θ β θ

θ θ θ θ

θ

⎫
+ + + +⎬

⎭
⎫⎧ ⎪+ + + − + + +⎨ ⎬
⎪⎩ ⎭

+ + + − + +

+ + + + − +

} { [ ]

} { }

{ }

1 5 3 5

2
5 3 5 5 1 5 5 5 5 5 1 5 3 5

2
5 3 5 5 3 5 5 5 5 5 3 5 5

2
2 24

2 4 4 2 4 4 4 4 1 1 1

2
2 2

[ ( )]

2 [ ( )] [ ] ( )

[ ( )] [ ] [ ( )]

1 1( ) [ ] [ ]
2 4 2

1 [
2

L L L
zz

L L L
zz

L L r
zz zz

g c

m L g c m g I m L g c

m L g c m g I m L g c

Lm L L c m I r I

r

θ θ β

θ β θ θ θ θ β

θ β θ θ θ β

θ θ θ φ

φ

− + +

+ − + + + + − + +

+ − + + + + − +

⎫⎧+ − + + +⎨ ⎬
⎩ ⎭

+ }{ }{2 2 2
2 3 3 3

1] [ ]                                                                 (5.39)
2

r r
zz zzI r Iφ+
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Therefore Lagrange components related to kinetic energy are obtained as  

 

{

} {

22
2 231

1 1 1 3 1 3 1 3 3 3 3 5 1
1

2 2
5 3 5 5 5 5 1 3 3 5 1 5 3 5

2
2 31

5 3 5 5 3 1 3 3 3 3 3 3 3

[ ] ( ) [ ]
4 4

[ ] 2 ( ) 2 [ ( )]

2 [ ( )] [ ] ( ) [
2 4

L L L L L
zz zz

L L L L
zz

L A r L L
zz

LLd K m I m L m L L c m I m L
dt

m L m g I m L L c m L g c

LLm L g c m L I m L c m I

θ θ
θ

θ θ θ β

θ β θ θ

⎛ ⎞∂
= + + + − + + +⎜ ⎟∂⎝ ⎠

+ + + + − + − + +

+ − + + + + − + +

} { [ ]
}

2 2
5 3 5 5 5 5 1 3 3 5 1 5 3 5

2
5 3 5 5 5 5 5 5 5 1 5 3 5

5 3 5 5

]

[ ] ( ) [ ( )]

2 [ ( )] [ ] ( )

[ ( )]                                                                    

zz

L L L L
zz

L L L
zz

L

m L m g I m L L c m L g c

m L g c m g I m L g c

m L g c

θ θ θ β

θ β θ θ θ β

θ β

+ + + + − + − + +

+ − + + + + − + +

+ − +                       (5.40)
 
 
 

2 2
22 4

2 2 2 4 2 4 2 4 4 4 4
2

2
4

4 4 2 4 4 4 4

[ ] ( ) [ ]
4 4

1 ( ) [ ]                                                      (5.41)
2 4

L L L L
zz zz

L L
zz

L Ld K m I m L m L L c m I
dt

Lm L L c m I

θ θ
θ

θ θ

⎛ ⎞ ⎧ ⎫∂
= + + + − + +⎨ ⎬⎜ ⎟∂ ⎩ ⎭⎝ ⎠

⎫⎧+ − + +⎨ ⎬
⎩ ⎭

 
 

[ ]

{
}

2
2 23

3 3 3 5 3 5 5 5 5 3 5 5
3

2
2 231

1 3 3 3 3 3 5 3 5 5 5 5 1 3 3

5 1 5 3 5 5 3 5 5 5 5 5

[ ] [ ] 2 ( )
4

( ) [ ] [ ] ( )
2 4
[ ( )] 2 [ ( )] [

L L L L
zz zz

L L L L L
zz zz

L L L

Ld K m I m L m g I m L g c
dt

LLm L c m I m L m g I m L L c

m L g c m L g c m g

θ θ β
θ

θ θ θ

θ θ β θ β θ

⎫⎛ ⎞ ⎧∂ ⎪= + + + + + − +⎨ ⎬⎜ ⎟∂ ⎪⎩⎝ ⎠ ⎭

+ − + + + + + + −

+ − + + + − + + {
}

2
5

5 3 5 5

]

[ ( )]                                                                                           (5.42)

zz

L

I

m L g c θ β

+

+ − +

 
 

2 2
4 4

4 4 4 2 4 2 4 4 4 4
4

1[ ] ( ) [ ]
4 2 4

L L L
zz zz

L Ld K m I m L L c m I
dt

θ θ θ
θ

⎫⎛ ⎞ ⎧ ⎫∂ ⎪ ⎧= + + − + +⎨ ⎬ ⎨ ⎬⎜ ⎟∂ ⎩⎪⎩ ⎭⎝ ⎠ ⎭
         (5.43) 

 
 
 

}{ { [ ]

} { }

2 2
5 5 5 5 1 5 5 5 5 1 5 3 5

5

2
5 3 5 5 3 5 5 5 5 3 5 5

[ ] [ ] ( )

[ ( )] [ ] [ ( )]                       (5.44)

L L L
zz zz

L L L
zz

d K m g I m g I m L g c
dt

m L g c m g I m L g c

θ θ θ θ β
θ

θ β θ θ β

⎛ ⎞∂
= + + + + − + +⎜ ⎟∂⎝ ⎠

+ − + + + + − +
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{ }2
1 1 1

1

r
zz

d K r I
dt

φ
φ

⎛ ⎞∂
=⎜ ⎟∂⎝ ⎠

                                                                                          (5.45) 

 
 

{ }2
2 2 2

2

r
zz

d K r I
dt

φ
φ

⎛ ⎞∂
=⎜ ⎟∂⎝ ⎠

                                                                                        (5.46) 

 
 

{ }2
3 3 3

3

r
zz

d K r I
dt

φ
φ

⎛ ⎞∂
=⎜ ⎟∂⎝ ⎠

                                                                                         (5.47) 

 
 

1

0K
θ

∂
=

∂
                        (5.48) 

 

2

0K
θ

∂
=

∂
                        (5.49) 

 
 

{ }

{ }

2
1 3 1 3 3 5 1 3 3 5 1 5 3 5

3

1 3 3 1 3 3 5 1 3 3 5 1 5 3 5

1 5 5 1 5 3 5

1 ( ) 2 ( ) 2 [ ( )]
2
1 ( ) ( ) [ ( )]
2

[ ( )]                                                 

L L L

L L L

L

K m L L s m L L s m L g s

m L L s m L L s m L g s

m L g s

θ θ θ θ θ β
θ

θ θ θ θ θ θ β

θ θ θ θ β

∂
= − + − + − + +

∂

⎧ ⎫+ − + − + − + +⎨ ⎬
⎩ ⎭

+ − + +                           (5.50)
 
 
 

2
2 4 2 4 4 2 4 4 2 4 4

4

1 1( ) ( )
2 2

L LK m L L s m L L sθ θ θ θ θ
θ

∂
= − + −

∂
                  (5.51) 

 
    
 

{ } { }

{ } {
} { }

2 2
1 5 1 5 3 5 5 3 5 5 3 5 3 5 5

5

1 3 5 1 5 3 5 5 3 5 5 1 5 5 1 5 3 5

5 3 5 5 3 5 5 3 5 5

[ ( )] [ ( )] [ ( )]

[ ( )] 2 [ ( )] [ ( )]

[ ( ] [ ( )]                 

L L L

L L L

L L

K m L g s m L g s m L g s

m L g s m L g s m L g s

m L g s m L g s

θ θ θ β θ β θ θ β
θ

θ θ θ θ β θ β θ θ θ θ β

θ β θ θ θ β

∂
= − + + + − + + − +

∂

+ − + + + − + + − + +

+ − + + − +          (5.52)
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1

0K
φ

∂
=

∂
                        (5.53) 

 
 

2

0K
φ

∂
=

∂
                        (5.54) 

 
 

3

0K
φ

∂
=

∂
                        (5.55) 

 
 
5.1.2 Potential Energy Expressions 

Potential energy contributions for each of the links and actuators are formulated as 

 
1

1 1 1( )
2

L
L

LPE m g sθ=                            (5.56) 

 
2

2 2 2( )
2

L
L

LPE m g sθ=                                      (5.57) 

 
3

3 3 1 1 13( )
2

L
L

LPE m g L s sθ θ= +                           (5.58) 

 
4

4 4 2 2 24( )
2

L
L

LPE m g L s sθ θ= +                          (5.59) 

 
[ ]5 5 1 1 3 13 5 135( )L

LPE m g L s L s g sθ θ θ β= + + +                                   (5.60) 
 

2
1 1 1 1

1 ( )
2APE K φ θ= −                                                 (5.61) 

 
2

2 2 2 2
1 ( )
2APE K φ θ= −                           (5.62) 

 
2

3 3 3 3 3 1 1
1 ( ) ( )
2

A
APE K m g L sφ θ θ= − +                                               (5.63) 
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Total potential energy of the system is 

[ ]31
1 1 3 1 1 13 5 1 1 3 13 5 135

2 22 4
2 2 4 2 2 24 1 1 1 2 2 2

2
3 3 3 3 1 1

( ) ( ) ( )
2 2

1 1( ) ( ) ( ) ( )
2 2 2 2

1 ( ) ( )                                          (5.64)
2

L L L

L L

A

LLU m g s m g L s s m g L s L s g s

L Lm g s m g L s s K K

K m g L s

θ θ θ θ θ θ β

θ θ θ φ θ φ θ

φ θ θ

= + + + + + +

+ + + + − + −

+ − +

 

The Lagrange components associated with the total potential energy of the system 

are written as 

 

[ ]31
1 1 3 1 1 13 5 1 1 3 13 5 135

1

1 1 1 3 1 1

( ) ( )
2 2

( )                                                       (5.65)

L L L

A

LLU m g c m g L c c m g L c L c g c

K m gL c

θ θ θ θ θ θ β
θ

φ θ θ

∂
= + + + + + +

∂

− − +
 
 

2 4
2 2 4 2 2 24 2 2 2

2

( ) ( ) ( )
2 2

L LL LU m g c m g L c c Kθ θ θ φ θ
θ

∂
= + + − −

∂
           (5.66) 

 
 

[ ]3
3 13 5 3 13 5 135 3 3 3

3

( ) ( ) ( )
2

L LLU m g c m g L c g c Kθ θ θ β φ θ
θ

∂
= + + + − −

∂
                     (5.67) 

 
 

2 4
2 2 4 2 2 24

4

( ) ( )
2 2

L LL LU m g c m g L c cθ θ θ
θ

∂
= + +

∂
                                                       (5.68) 

  
 

[ ]5 5 135
5

( )LU m g g c θ β
θ

∂
= +

∂
                                                                                (5.69) 

 
 

1 1 1
1

( )U K φ θ
φ

∂
= −

∂
                                                                                           (5.70) 

 

2 2 2
2

( )U K φ θ
φ

∂
= −

∂
                                                                                           (5.71) 

 

3 3 3
3

( )U K φ θ
φ

∂
= −

∂
                                                                                           (5.72) 
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5.1.3 Dissipation Function Expressions 

As mentioned in Section 2.2.3 dissipation functions for the actuated joints, 

unactuated joints and rotors are described as 

 

2 2 2
1 1 1 2 2 2 3 3 3

1 1 1( ) ( ) ( )
2 2 2

aD D D Dθ φ θ φ θ φ= − + − + −                                            (5.73) 

 

2 2
4 4 5 5

1 1
2 2

uD D Dθ θ= +                                                                                         (5.74) 

 

2 2 2 2 2 2
1 1 1 2 2 2 3 3 3

1 1 1
2 2 2

r r r rD D r D r D rφ φ φ= + +                                                           (5.75) 

 

However there is also viscous friction at the disconnected joint when it is 

reconnected and the dissipation function for the disconnected joint can be written as 

 

2
6 4 5

1 ( )
2

dD D θ θ= −                                                                                               (5.76) 

 

Therefore the dissipation function of the whole system is the sum of all of the 

individual contributions. 

 

2 2 2 2 2 2
1 1 1 2 2 2 3 3 3 4 4 5 5 6 4 5

2 2 2 2 2 2
1 1 1 2 2 2 3 3 3

1 1 1 1 1 1( ) ( ) ( ) ( )
2 2 2 2 2 2

1 1 1                                                                (5.77)
2 2 2

r r r

D D D D D D D

D r D r D r

θ φ θ φ θ φ θ θ θ θ

φ φ φ

= − + − + − + + + −

+ + +

 

Lagrange components are written as 

 

1 1 1
1

( )D D θ φ
θ

∂
= −

∂
                                                                                                  (5.78) 

 

2 2 2
2

( )D D θ φ
θ

∂
= −

∂
                                                                                                 (5.79) 
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3 3 3
3

( )D D θ φ
θ

∂
= −

∂
                                                                                                 (5.80) 

 

4 4 6 4 5 4 6 4 6 5
4

( ) ( )D D D D D Dθ θ θ θ θ
θ

∂
= + − = + −

∂
                                                    (5.81) 

 

5 5 6 4 5 6 4 5 6 5
5

( ) ( )D D D D D Dθ θ θ θ θ
θ

∂
= − − = − + +

∂
                                                  (5.82) 

 
2

1 1 1 1 1 1
1

( ) rD D D rθ φ φ
φ

∂
= − − +

∂
                                                                                 (5.83) 

 
2

2 2 2 2 2 2
2

( ) rD D D rθ φ φ
φ

∂
= − − +

∂
                                                                              (5.84) 

 
2

3 3 3 3 3 3
3

( ) rD D D rθ φ φ
φ

∂
= − − +

∂
                                                                               (5.85) 

 
 
5.1.4 Closed Loop Constraints and Generalized Force Equations 

As mentioned previously, there should be two constraint equations when joint at 

Point-F is disconnected. 

 

At the position level these constraint equations can be written as in Equation 2.33 as 

 

1 1 3 13 5 135 2 2 4 24 0 0L c L c L c L c L c dθ θ θ θ θ+ + − − − =                                                    (5.86) 

 

1 1 3 13 5 135 2 2 4 24 0L s L s L s L s L sθ θ θ θ θ+ + − − =                                                           (5.87) 

 

which lead to the following velocity level constraint equations. 

 

1 1 1 3 13 1 3 5 135 1 3 5 2 2 2 4 24 2 4( ) ( ) ( ) 0L s L s L s L s L sθ θ θ θ θ θ θ θ θ θ θ θ θ θ− − + − + + + + + =     (5.88) 

 

1 1 1 3 13 1 3 5 135 1 3 5 2 2 2 4 24 2 4( ) ( ) ( ) 0L c L c L c L c L cθ θ θ θ θ θ θ θ θ θ θ θ θ θ+ + + + + − − + =     (5.89) 

 
 



 
 

47

Velocity level constraint equations can be written symbolically as 
 

11 1 12 2 13 3 14 4 15 5 0B B B B Bθ θ θ θ θ+ + + + =                                                                 (5.90) 
 

21 1 22 2 23 3 24 4 25 5 0B B B B Bθ θ θ θ θ+ + + + =                                                                (5.91) 

 

where 

11 1 1 3 13 5 135B L s L s L sθ θ θ= − − −                                                                                (5.92) 
 

12 2 2 4 24B L s L sθ θ= +                                                                                               (5.93) 
 

13 3 13 5 135B L s L sθ θ= − −                                                                                           (5.94) 
 

14 4 24B L sθ=                                                                                                           (5.95) 
 

15 5 135B L sθ= −                                                                                                        (5.96) 
 

21 1 1 3 13 5 135B L c L c L cθ θ θ= + +                                                                                  (5.97) 
 

22 2 2 4 24B L c L cθ θ= − −                                                                                            (5.98) 
 

23 3 13 5 135B L c L cθ θ= +                                                                                             (5.99) 
 

24 4 24B L cθ= −                                                                                                       (5.100) 
 

25 5 135B L cθ=                                                                                                        (5.101) 
 

Factoring out the unactuated joint variables gives 

1 1
14 15 11 12 134

2
24 25 21 22 235

3

B B B B B
B B B B B

θ
θ

θ
θ

θ

− ⎡ ⎤
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎢ ⎥= −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎢ ⎥⎣ ⎦

                                                     (5.102) 

This leads to 

 

2 3
ˆu

xC qθ =                                                               (5.103) 

 

Therefore generalized constraint forces are found by arranging the velocity level 

constraint equations according to Equation 2.40 
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1 1 3 13 5 135 1 1 3 13 5 135

2 2 4 24 2 2 4 24

3 13 5 135 3 13 5 135

4 24 4 24

5 135 5 135

ˆ
ˆ

ˆ

T

T

a
T

u

L s L s L s L c L c L c
L s L s L c L c

B
B L s L s L c L c

BL s L c
L s L c

θ θ θ θ θ θ
θ θ θ θ
θ θ θ θ

θ θ
θ θ

− − − + +⎡ ⎤
⎢ ⎥+ − −⎢ ⎥ ⎡ ⎤
⎢ ⎥= − − + = ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦−⎢ ⎥
⎢ ⎥−⎣ ⎦

where 
 

                     
 

 
 

 
 
 
                                                                                (5.104) 
 

Non-potentialized forces are found by Equations 2.31 and 2.32 for the link variables 

and joint variables respectively as 

 

1 0Q =                                                                                  (5.105) 
 

2Q T=                                                                                 (5.106) 
 
5.1.5 System Equations of Motion 

The system equations of motion corresponding to the first set of generalized 

coordinates in matrix form are obtained as  

 

11 13 15 1 1 11

22 24 2 2 22
1

13 33 35 3 3 33

24 44 4 4 44

15 35 55 5 5 55

0 0
0 0 0

ˆ0 0
0 0 0

0 0

T

M M M Q Da St
M M Q Da St

M M M Q Da St B
M M Q Da St

M M M Q Da St

θ
θ

λ
θ
θ
θ

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ + + −
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

2

0
0
0
0
0

λ

⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ ⎤
⎢ ⎥=⎢ ⎥
⎢ ⎥⎣ ⎦
⎢ ⎥
⎢ ⎥⎣ ⎦

   

                  (5.107) 

where 
22

2 2 231
11 1 1 3 1 3 1 3 3 3 3 5 1 5 3

2
5 5 5 5 1 3 3 5 1 5 3 5 5 3 5 5

2
3 1 3

[ ] [ ]
4 4

[ ] 2 2 ( ) 2 ( )

[ ]                                                           

L L L L L L
zz zz

L L L L
zz

A r
zz

LLM m I m L m L L c m I m L m L

m g I m L L c m L g c m L g c

m L I

θ

θ θ θ β θ β

= + + + + + + +

+ + + + + + + +

+ +                                          (5.108)
 

2
2 23

13 3 1 3 3 3 3 5 3 5 5 5 5 1 3 3

5 1 5 3 5 5 3 5 5

1 [ ] [ ]
2 4

( ) 2 ( )                                                         (5.109)

L L L L L
zz zz

L L

LM m L L c m I m L m g I m L L c

m L g c m L g c

θ θ

θ θ β θ β

= + + + + + +

+ + + + +
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2
15 5 5 5 5 1 5 3 5 5 3 5 5[ ] ( ) ( )L L L

zzM m g I m L g c m L g cθ θ β θ β= + + + + + +                       (5.110) 
 

2 2
22 4

22 2 2 4 2 4 2 4 4 4 4[ ] [ ]
4 4

L L L L
zz zz

L LM m I m L m L L c m Iθ= + + + + +                          (5.111)                         

 
2

4
24 4 2 4 4 4 4

1 [ ]
2 4

L L
zz

LM m L L c m Iθ= + +                                                                 (5.112) 

 
2

2 23
33 3 3 5 3 5 5 5 5 3 5 5[ ] [ ] 2 ( )

4
L L L L

zz zz
LM m I m L m g I m L g c θ β= + + + + + +                 (5.113) 

 
2

35 5 5 5 5 3 5 5[ ] ( )L L
zzM m g I m L g c θ β= + + +                                                             (5.114) 

 
2

4
44 4 4[ ]

4
L

zz
LM m I= +                                                                                         (5.115) 

 
2

55 5 5 5[ ]L
zzM m g I= +                                                                                           (5.116) 

 

[ ]31
1 1 1 3 1 1 13 5 1 1 3 13 5 135

3 1 1

( ) ( )
2 2
                                                                                                        (5.117)

L L L

A

LLQ m g c m g L c c m g L c L c g c

m gL c

θ θ θ θ θ θ β

θ

= + + + + + +

+
 

2 4
2 2 2 4 2 2 24( ) ( )

2 2
L LL LQ m g c m g L c cθ θ θ= + +                                                        (5.118) 

 

[ ]

2
3 1 3 1 3 3 5 1 3 3 5 1 5 35

1 3 3 1 3 3 5 1 3 3 5 1 5 35

3
1 5 5 1 5 35 3 13 5 3 13 5 135

1 2 2 ( )
2

1 ( )
2

( ) ( ) ( )          (5.119)
2

L L L

L L L

L L L

Q m L L s m L L s m L g s

m L L s m L L s m L g s

Lm L g s m g c m g L c g c

θ θ θ θ β

θ θ θ θ θ β

θ θ θ β θ θ θ β

⎡ ⎤= + + +⎣ ⎦

⎡ ⎤+ + + +⎢ ⎥⎣ ⎦

⎡ ⎤+ + + + + +⎣ ⎦
 

2 2 4
4 2 4 2 4 4 2 4 4 2 4 4 2 2 4 2 2 24

1 1 ( ) ( )
2 2 2 2

L L L LL LQ m L L s m L L s m g c m g L c cθ θ θ θ θ θ θ θ= + + + +  

                                (5.120) 
 

[ ]

2 2
5 1 5 1 5 35 5 3 5 5 3 5 3 5 5

1 3 5 1 5 35 5 3 5 5 1 5 5 1 5 35

5 3 5 5 3 5 5 3 5 5 5 5 135

( ) ( ) ( )

( ) 2 ( ) ( )

( ) ( ) ( )                     

L L L

L L L

L L L

Q m L g s m L g s m L g s

m L g s m L g s m L g s

m L g s m L g s m g g c

θ θ β θ β θ θ β

θ θ θ β θ β θ θ θ β

θ β θ θ θ β θ β

⎡ ⎤= + + + + +⎣ ⎦
⎡ ⎤ ⎡+ + + + + +⎣ ⎦ ⎣

⎤+ + + + + +⎦ (5.121)
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1 1 1 1( )Da D θ φ= −                                                                                                 (5.122) 

 

2 2 2 2( )Da D θ φ= −                                                                                               (5.123) 

 

3 3 3 3( )Da D θ φ= −                                                                                                (5.124) 

 

4 4 6 4 6 5( )Da D D Dθ θ= + −                                                                                    (5.125) 

 

5 6 4 5 6 5( )Da D D Dθ θ= − + +                                                                                 (5.126) 

 

1 1 1 1( )St K θ φ= −                                                                                                   (5.127) 

 

2 2 2 2( )St K θ φ= −                                                                                                 (5.128) 

 

3 3 3 3( )St K θ φ= −                                                                                                  (5.129) 

 

4 0St =                                                                                                                 (5.130) 

 

5 0St =                                                                                                                 (5.131) 

 

The system equations of motion corresponding to the second set of generalized 

coordinates in matrix form are obtained as  

 

11 1 1 1 1 1 1 1 1 1 1

22 2 2 2 2 2 2 2 2 2 2

33 3 3 3 3 3 3 3 3 3 3

0 0 ( ) ( )
0 0 ( ) ( )
0 0 ( ) ( )

r

r

r

I D D K T
I D D K T

I D D K T

φ φ θ φ θ φ
φ φ θ φ θ φ
φ φ θ φ θ φ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ − − − − =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

              (5.132) 

 

where  2ˆ [ ]r r
i iI diag I r=  and 2ˆ [ ]r r

i iD diag D r=  for 1, 2,3.i =  
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In order to get a generic form of equations of motion corresponding to the first set of 

generalized coordinates, one needs to eliminate the unactuated joint variables and 

constraint forces. When constraint equation substitutions and manipulations are done 

as explained in Chapter-III, equations of motion in matrix form are obtained as in 

Equations 5.133 and 5.135. 

 

*ˆ ˆ ˆ ˆ ˆ( ) ( ) 0
Ta a a a aM q R q Q D q K q Bφ φ λ+ + + − + − − =                                        (5.133) 

 

where  
*ˆ aM  and ˆ aR  are 3 3× matrices whose elements are given in Appendix B. 

 

1

2

3

a

Q
Q Q

Q

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

                            (5.134) 

 

and ˆ [ ]a
iD diag D= , ˆ [ ]iK diag K=  for 1, 2,3.i =   

 
 

*ˆ ˆ ˆ 0
Tu u u uM q R q Q B λ+ + − =                                                                               (5.135) 

 
where  

*ˆ uM  and ˆ uR  are 2 3× matrices whose elements are also given in Appendix B.  

 
4

5

u Q
Q

Q
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

                               (5.136) 

 

The vector of Lagrange multipliers in Equation 5.135 is solved and substituted into 

Equation 5.133 in order to be eliminated. Therefore the final form of the equations 

of motion for the first set of generalized coordinates are written as 

 

** * *ˆ ˆ ˆ ˆ( ) ( ) 0aM q R q Q D q K qφ φ+ + + − + − =                        (5.137) 
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where 
 

( ) 1
** * *ˆ ˆ ˆ ˆ ˆT Ta a u uM M B B M

−
= −                          (5.138) 

 

( ) 1
*ˆ ˆ ˆ ˆ ˆT Ta a u uR R B B R

−
= −                           (5.139) 

 

( ) 1
* ˆ ˆT Ta a u uQ Q B B Q

−
= −                           (5.140) 

 
Finally input/output relation is obtained as the same as in Equation 3.32 when all 

manipulations are done as described in Chapter-III. 

 

The task equations of the parallel manipulator in concern consist of the position of 

the tip point as expressed in the fixed reference frame and the orientation of the fifth 

link with respect to the fixed reference frame.  

 

Tip point position: 
(0)

1 1 1 2 1 3 1 13 2 13 5 1 135 2 135( ) ( ) ( ( ) ( ))Pr L u c u s L u c u s d u c u sθ θ θ θ θ α θ α= + + + + + + +    (5.141) 

 

1 1 3 13 5 135( )Px L c L c d cθ θ θ α= + + +                          (5.142) 

 

1 1 3 13 5 135( )Py L s L s d sθ θ θ α= + + +                          (5.143) 

 

Orientation of link-5: 

135σ θ=                             (5.144) 

 

The 3 5× manipulator Jacobian matrix is formed by one step differentiation of the 

position level task equations.  

 

Tip point velocity: 

1 1 1 3 13 13 5 135 135( )Px L s L s d sθ θ θ θ θ α θ= − − − +                         (5.145) 

 

1 1 1 3 13 13 5 123 135( )Py L c L c d cθ θ θ θ θ α θ= + + +                         (5.146) 



 
 

53

which lead to 

 

1 1 3 13 5 135 3 13 5 135 5 135

1 1 3 13 5 135 3 13 5 135 5 135

( ) 0 ( ) 0 ( )
( ) 0 ( ) 0 ( )

P

P

L s L s d s L s d s d s x
L c L c d c L c d c d c y

θ θ θ α θ θ α θ α
θ

θ θ θ α θ θ α θ α
− − − + − − + − +⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥+ + + + + + ⎣ ⎦⎣ ⎦
                

      (5.147) 

Angular velocity of link-5: 

135σ θ=                             (5.148) 
 
 
This leads to 
 

[ ] [ ]

1

2

3

4

5

1 0 1 0 1

θ
θ

σθ
θ
θ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥ =
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

                          (5.149) 

 

The task equations written for the tip point positions in horizontal and vertical 

directions constitute the first two rows and the task equation written for the 

orientation of the fifth link represents the third row of Jacobian matrix. Therefore 

considering the Equation 3.4 the Jacobian matrix and the vector of task space 

velocities turn out to be as below. 

 

1 1 3 13 5 135 3 13 5 135 5 135

1 1 3 13 5 135 3 13 5 135 5 135

( ) 0 ( ) 0 ( )
ˆ ( ) 0 ( ) 0 ( )

1 0 1 0 1

P

L s L s d s L s d s d s
L c L c d c L c d c d c

θ θ θ α θ θ α θ α
θ θ θ α θ θ α θ α

− − − + − − + − +⎡ ⎤
⎢ ⎥Γ = + + + + + +⎢ ⎥
⎢ ⎥⎣ ⎦

 

                             (5.150) 

 

1

2

3

P

P

x x
x x y

x σ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

              (5.151) 
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5.2 Singularity Analysis 

In this section, singular configurations of the parallel manipulator in Figure 5.1 will 

be derived as described in Chapter IV. 

  

5.2.1 Drive Singular Configurations 

Referring to Equation 4.1, 

  

[ ]4 24 5 135
4 5 24 135 24 135 4 5 24 135

4 24 5 135

ˆdet( ) ( )u L s L s
B L L s c c s L L s

L c L c
θ θ

θ θ θ θ θ θ
θ θ

−
= = − = −

−
   (5.152) 

 

Thus, singular configurations occur when 24 135( ) 0s θ θ− = . That means, there exists 

two cases as 

 

Case-I: 24 135 nθ θ π− = ±         1,3,5....n =  
 
As a result of the case-I condition, link 4 and link 5 become extended inside the 

functional workspace as shown in Figure 5.4. 

 

Figure 5.4 Drive Singular Configuration (Case-I) 
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Case-II: 24 135 nθ θ π− = ±         0,2,4....n =  
 
As a result of the case-II condition, link 4 and link 5 become folded inside the 

functional workspace as shown in Figure 5.5. 

 

Figure 5.5 Drive Singular Configuration (Case-II) 
 

As it can easily be inspected, drive singular configurations for the parallel 

manipulator in concern cause that the angular position of the link 4 with respect to 

the fixed reference frame and the angular position of the link 5 with respect to the 

fixed reference frame become undistinguishable. 

 

5.2.2 Inverse Kinematic Singular Configurations 

Referring to Equations 4.2 and 4.3, matrix Γ̂  is constructed as 

 

1 1 3 13 5 135 2 2 4 24 3 13 5 135 4 24 5 135

1 1 3 13 5 135 2 2 4 24 3 13 5 135 4 24 5 135

1 1 3 13 5 135 3 13 5 135 5 135

1 1 3 13 5

ˆ ( ) 0 ( ) 0 ( )

L s L s L s L s L s L s L s L s L s
L c L c L c L c L c L c L c L c L c

L s L s d s L s d s d s
L c L c d c

θ θ θ θ θ θ θ θ θ
θ θ θ θ θ θ θ θ θ

θ θ θ α θ θ α θ α
θ θ

− − − + − − −
+ + − − + −

Γ = − − − + − − + − +
+ + 135 3 13 5 135 5 135( ) 0 ( ) 0 ( )

1 0 1 0 1
L c d c d cθ α θ θ α θ α

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥+ + + +⎢ ⎥
⎢ ⎥⎣ ⎦

                (5.153) 
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[ ]1 2 3 4 1 24 13 2 1 24 13 2
1ˆdet( ) ( ) ( )
2

L L L L c cθ θ θ θ θ θ θ θΓ = − + − − − − + + −                   (5.154) 

 

[ ]1 2 3 4 4 3 4 3
1ˆdet( ) ( ) ( )
2

L L L L c cθ θ θ θΓ = − − − +                                                     (5.155) 

 
 
Using the trigonometric identity [ ]sin .sin cos( ) cos( ) / 2A B A B A B= − − + ,  

[ ] [ ]1 2 3 4 4 3 1 2 3 4 4 3
1ˆdet( ) 2
2

L L L L s s L L L L s sθ θ θ θΓ = − = −                                          (5.156) 

 

Thus, singular configurations occur when 3 0sθ =  or 4 0sθ = . That means, there 

exists four cases as 

 
Case-I: 3 nθ π= ±         1,3,5....n =  
 

As a result of the case-I condition, link 1 and link 3 become folded as shown in 

Figure 5.6.  

 

Figure 5.6 Inverse Kinematic Singular Configuration (Case-I)  
 

C

E 

F

D

1 

3 

4 

2

5

P

G

A,E' B 
x

y

1θ
2θ

4θ

3 θ 

5 θ σ

C' 

F'

D' 



 
 

57

Case-II: 3 nθ π= ±         0,2,4....n =  
 
As a result of the case-I condition, link 1 and link 3 become extended as shown in 

Figure 5.7. 

 

 
Figure 5.7 Inverse Kinematic Singular Configuration (Case-II)  

 
The conclusion to be drawn from the cases I and II of the inverse kinematic singular 

configurations for the parallel manipulator in concern is that the angular position of 

the link 1 with respect to the fixed reference frame and the angular position of the 

link 3 with respect to the fixed reference frame become undistinguishable. 

 

Case-III: 4 nθ π= ±         1,3,5....n =  
 

As a result of the case-III condition, link 2 and link 4 become folded as shown in 

Figure 5.8.  
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Figure 5.8 Inverse Kinematic Singular Configuration (Case-III)  
 
Case-IV: 4 nθ π= ±         0,2,4....n =  
 
As a result of the case-IV condition, link 2 and link 4 become extended as shown in 

Figure 5.9 

  
Figure 5.9 Inverse Kinematic Singular Configuration (Case-IV)  
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The conclusion to be drawn from the cases III and IV of the inverse kinematic 

singular configurations for the parallel manipulator in concern is that the angular 

position of the link 2 with respect to the fixed reference frame and the angular 

position of the link 4 with respect to the fixed reference frame become 

undistinguishable. 

 

In this study, planar parallel manipulator under analysis tracks a trajectory in task 

space such that it is not around or at any of the singular configurations that were 

derived in Section 5.2. Instead of this, they are avoided with a proper trajectory 

planning. 

 

5.3 Simulation Environment 

In this section, the performance of the control law explained in Chapter-III is 

checked by using Matlab® and its one of the integrated tools Simulink®. Simulink® 

is a software package for modeling, simulating and analyzing dynamic systems [18]. 

It is user friendly modeling software and a tool that is adaptable to any problem with 

its rich feature set and powerful numerical algorithms.  

 

Using Matlab® and Simulink® made almost everything easier in this study since 

most of the complicated equations in this study have been expressed in matrix form. 

Moreover, the initial conditions that are defined before the simulation runs can be 

altered to see the manipulator behavior in different positions. 

 

The Simulink® models consist of some levels in hierarchy. These are arranged from 

the lower levels to upper ones. Some of the Simulink® blocks make up a subsystem 

and these subsystems form another subsystem at one step upper level. This situation 

goes on till finally these subsystems constitute the main system at the top level 

which governs the lower levels. This feature make the programmer feel free and 

easy since some of the blocks are directly related to this feature. 

 

When it comes to the simulation, some parameters are necessarily introduced to the 

system before it runs. These parameters are of two kinds. First type of parameters is 
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the constant parameters like damping and spring constants of the joints, inertias of 

the rotors and feedback gains coming from the control norm. For this kind of 

parameters an m-file called parameter.m was written and loaded to the workspace at 

the beginning. This file is changeable depending upon the integral control is 

included in the analysis or not. Any other constant parameters were written in the 

relevant m-files. The second type of parameters is called the configuration 

parameters consisting of the parameters required for Simulink® itself. Solver 

options and simulation time are of this kind.  

 

In the simulations of this study, among the two types of solvers, fixed-step solver 

was chosen due to the fact that the model has continuous states. Simulink® computes 

the simulation's next time by adding a fixed-size time step to the current time. In 

addition, the continuous solvers employ numerical integration to compute the values 

of a model's continuous states at the current step from the values at the previous step 

and the values of the state derivatives. Among the various types of fixed-step 

solvers, one of the most complex numerical integration methods called Fourth Order 

Runge-Kutta (ode4) method was preferred since more accurate results are aimed. 

The chosen fixed step size will be discussed later in this section. Once the algorithm 

is successfully iterated, it may run without any time limit. In other words, the limit 

of simulation stop time depends on the programmer.  

 

After the outline of the simulation is drawn, the comprehensive usage of Matlab® 

and Simulink® and the algorithms used in the simulation will be introduced. 

Furthermore, the main system and the subsystems of the model associated with the 

main system will be presented.  

 

5.3.1 Main System 

The main system of the model is as shown in Figure 5.10 and is composed of four 

major subsystems: task reference, controller, computed torque block and 

manipulator dynamics and kinematics.  
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Simulation begins with the initial conditions and desired motion trajectory specified 

at 0t = . Then this information generates matrix signals of the desired task space 

values and its derivatives. This matrix signals then go directly into the controller 

subsystem in order to produce control input signal u  in accordance with the 

Equation 3.38. The third major subsystem is responsible from computing torques at 

each sampling time by control algorithm explained in Chapter-III. This algorithm is 

the called the inverse dynamics algorithm. Finally, the computed torques are applied 

to the real system using the forward dynamics solution this time inside manipulator 

dynamics and kinematics subsystem. Inside this major subsystem, joint angular 

position variables are computed and from forward kinematic solution task space 

unknowns are calculated. Generated joint space and task space position signals and 

all of the derivative signals are then fed back to the relevant subsystems to find the 

errors in all states.  

 

In the main system, there is a data memory block which stores the time values 

generated by a counter clock placed inside manipulator dynamics and kinematics 

subsystem. There are also four more blocks at the top which are called tag visibility 

blocks and are used to route the signal from where it is located. Since they are 

located at the main system, i.e., the level at the top, the signal tags carrying the same 

name as in the main system are routed to all of the levels.  

 

5.3.2 Subsystems 

This section covers the four major subsystems and how they were built in more 

detail.  Task reference subsystem is a simple subsystem that is composed of Matlab® 

function blocks that define the prescribed end effector task space trajectory in all 

states and data read blocks for time values. Then the generated signals directly go 

into the controller subsystem as shown in Figure 5.11. Her in this block, real values 

are subtracted from the prescribed reference values and multiplied by the feedback 

gains of the ITAE norm with the choice of integral control. Moreover, the errors in 

all states are transferred to the workspace for the future comments. 
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Figure 5.11 Controller Subsystem 
 

The computed torque block which is illustrated in Figure 5.12 uses the inverse 

dynamics solution by putting the control signal vector u  into the snap values of 

Equation 3.32 and calculates the torques to be applied by the actuators for making 

use of them in the forward dynamics solution. The choice of these gains is going to 

be explained later in this section. Since numerical integration of the computed 

torques is necessary, one needs to define the initial torque values that are applied by 

drive shaft. These initial values are obtained by defining the reference trajectory 

values as the actual values. By this way, initial torques are determined from the 

computed torque curves. The initial torques are nonzero because of the gravitational 

forces applied on the actuators. 
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After the torques are computed and formed a vector signal, then this signal enters the 

last major subsystem called Manipulator Dynamics and Kinematics. This subsystem 

is a bit more complicated than the others since almost all of the unknowns like 

manipulator joint position values up to snap values in both joint space and task space 

and actuator positions are computed at each sampling time. 

 

This subsystem has three levels from top to bottom. These levels are named in 

accordance with their distance to the major subsystem. The level at the bottom is 

Level-3 for instance meaning that it is three steps far away.  

 

Level-1 as shown in Figure 5.13 contains manipulator dynamics subsystem and a 

Matlab® function called forward kinematics.  This function obtains the task space 

values of the end effector after the torques are applied to the parallel manipulator in 

the subsystem and the outgoing signals are then fed back to the controller subsystem 

in order to find errors. 

  

qddd

qdd

qd

q

xddd

xdd

xd

x

T

q

qd

qdd

qddd

Manipulator Dynamics

[Theta_Jerk]

[Theta_Acc]

[Theta_Vel]

[Theta_Pos]

MATLAB
Function

Forward Kinematics

T

qddd

qddd

qdd

qdd

qd

qd

q

q

T

theta

x

xd

xdd

xddd

thetad

thetadd

thetaddd

Figure 5.13 Manipulator Dynamics and Kinematics Subsystem 

 

The manipulator dynamics subsystem at level-2 is illustrated in Figure 5.14. 
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There exist many subsystems at this level. As it can easily be seen from the figure, 

control torques are used in the manipulator subsystem that is shown in Figure 5.17 

with the feedback signals carrying the information of actuated joint position values 

up to the jerk values. With this knowledge, manipulator subsystem calculates the 

snaps of the actuated joins. Furthermore, the clock begins to work here to count the 

time. Time values are then sent to data write block to be stored in the data memory 

block of the main system. After that, these values are transferred from the data 

memory block to the data read block of the task reference major subsystem for the 

reference trajectory. Time values are also loaded to the workspace for plotting the 

graphs. 

 

From that point on, generated signal of actuated joint snaps go directly into the 

integration subsystem as given in Figure 5.16 in order to find the joint states from 

the jerks to the positions. The integration subsystem consists of four integrators each 

of which has initial condition source externally. The initial conditions needed for all 

of the states come from the initial conditions source block.  

 

Figure 5.15 Integration Subsystem 
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Another subsystem is q_To_Theta subsystem. This subsystem has a very critical 

significance and plays a vital role for finding the unactuated joint values from the 

actuated joint variables via the constraint equations as expressed in Equations 5.86 

and 5.87. For this purpose, some of the algorithms are used for the parallel 

manipulators. Among the various types of algorithms, trust-region dogleg algorithm 

is preferred to be used for this case study. This is provided by one of the built-in 

functions of Matlab® called fsolve. This function is used to solve systems of 

nonlinear equations and has an algorithm for systems where the number of equations 

is equal to the number of unknown variables. The algorithm is based on finding the 

roots of the constraint equations.  

 

As it can be inspected from Figure 5.18, the vector of actuated joint variables q  is 

returned to the vector of unactuated joint variables uθ  by many Matlab® functions 

that handle the fsolve function and then these two vector signals are concatenated by 

the multiplexers to construct the vector of joint variables θ  vector signal to be 

routed to any level of the model to be used where necessary. 

 
However, since solving unactuated joints is based on finding a root of the constraint 

equations, one needs to use smaller sampling times for the model in order that this 

function converges to a root in region of predefined epsilon value that defines the 

error. This value was considered to be 1.0e-06. For this reason sampling time of the 

Simulink® model for this case study was preferred as 1.5e-04 after a lot of trials. 

That causes a bit longer computation time but more accurate results are obtained. 

 

Last subsystem in this level is the actuator variables subsystem as demonstrated in 

Figure 5.19. With the known values of joint variables in all states, the actuator 

variables are calculated by substituting the known values of joint variables into the 

one of the equations of motion set. Here in this subsystem another numerical 

integration for the actuator variables is required as far as the Equation 3.25 is 

concerned. For the numerical integration, one needs to define the initial iφ , 

1, 2,3.i =  values. 
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Figure 5.18 Actuator Subsystem 

 

Similarly these initial values are automatically obtained like the initial torques. 

Running the simulation with the actual initial values with time independency gives 

the initial values. The initial values are nonzero because of the gravitational forces 

applied on the actuators. 

 

Consequently, the initial deflections at the actuated joints could be found by simply 

subtracting actuator positions from active joint position values. It should be noted 

that initial deflections are also nonzero. The subtraction process is realized in the 

manipulator dynamics subsystem and the deflection values are loaded to the 

workspace with the other values like θ and φ angles.   

 

5.4 Control Simulations 

Performance of the parallel manipulator in the case study is analyzed basically in 

three groups of simulations. In some of the simulations modeling error is considered 

by setting the manipulator inertia and mass properties, the torsional spring constants 

and the damping constants 10% larger in the model.  

 

Beside that some of the simulations do not contain the integral control. Therefore the 

feedback gains alter depending on the integral control is included or not. These 

feedback gains of ITAE norm were tabulated in Chapter III. 
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In the simulations, the data used are as below. 

 

Table 5.2 The Geometric Data 

Symbol Definition Value Symbol Definition Value 

1L  AC  1.0 m 0d  AB  1.8 m 

2L  BD  1.0 m 5g  EG  0.75 m 

3L  CE  1.0 m 5d  EP  0.8 m 

4L  DF  1.0 m α  PEF∠  20 deg 

5L  EF  1.5 m β  GEF∠  7 deg 

 

The motors and speed reducers at the active joints have small dimensions compared 

to the links. The masses of both rotors and speed reducers are assumed to be lumped 

at the joints. 

 

Table 5.3 The Mass/ Inertial Properties and Gear Ratios 

Symbol Value Symbol Value 

1
Lm  10 kg 3

Am  1.2 kg 

2
Lm  10 kg 1

r
zzI  7.0e-05 kg.m2  

3
Lm  10 kg 2

r
zzI  8.0e-05 kg.m2

4
Lm  10 kg 3

r
zzI  9.0e-05 kg.m2

5
Lm  15 kg 1r  100 

1
Am  1.2 kg 2r  100 

2
Am  1.2 kg 3r  100 

 

Structural damping constants of the actuated joints correspond to a 3% damping 

ratio for the structural vibration of each rotor. 
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Table 5.4 The Damping and Spring Constants 

Symbol Value Symbol Value 

1D  0.0355 N.m.s/rad 1
rD  0.0003 N.m.s/rad 

2D  0.0379 N.m.s/rad 2
rD  0.0003 N.m.s/rad 

3D  0.0402 N.m.s/rad 3
rD  0.0003 N.m.s/rad 

4D  0.0200 N.m.s/rad 1K  5000 N.m/rad 

5D  0.0200 N.m.s/rad 2K  5000 N.m/rad 

6D  0.0200 N.m.s/rad 3K  5000 N.m/rad 

 

The parallel manipulator in Figure 5.1 is assumed to be at rest initially and have the 

following initial active joint positions as below. 

 

1 135θ =                                             (5.157) 

2 75θ =                (5.158) 

3 90θ = −                (5.159) 

 

The initial active joint positions lead to the initial passive joint angles by the 

algorithm explained in 5.3.2 as 

 

4 51.91θ =                           (5.160) 

5 31.46θ = −                           (5.161) 

   

These initial joint angles correspond to the following task space initial positions. 

 

1 0.6668 mx =               (5.162) 

2 1.8563 mx =               (5.163) 

3 0.2364 rad 13.55x = =              (5.164) 
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The desired trajectory motion is a deployment motion in task space and can be 

written as 

 

1

0.5 20.70 sin
2

1.20

d d
P

T tt m 0 t T
x x T T

m t>T

π
π

⎧ ⎡ ⎤+ − ≤ ≤⎪ ⎢ ⎥= = ⎣ ⎦⎨
⎪⎩

                    (5.165) 

  

2

0.5 21.90 sin
2

1.40

d d
P

T tt m 0 t T
x y T T

m t>T

π
π

⎧ ⎡ ⎤− − ≤ ≤⎪ ⎢ ⎥= = ⎣ ⎦⎨
⎪⎩

                                       (5.166) 

 

3

15 220 sin
2

35

d d
T tt  deg 0 t T

x T T
 deg t>T

π
σ π

⎧ ⎡ ⎤+ − ≤ ≤⎪ ⎢ ⎥= = ⎣ ⎦⎨
⎪⎩

                                        (5.167) 

 

where T  is the period of the deployment motion and selected as 

 

0.6 T s=                (5.168) 

 

As far as the initial task space positions and initial desired task space positions are 

considered, it can be easily examined that system begins its motion with the initial 

position errors. That means in all of the simulations initial position errors are 

assumed to be present. In addition to this, when the reference or desired trajectory is 

given as the actual initial joint values, the initial torques and initial actuator position 

angles are computed as follows. 

 

Initial torques to be applied after speed reduction: 

1 128.51  N.mT = −               (5.169) 
 

2 50.81  N.mT =               (5.170) 
 

3 69.34  N.mT =               (5.171) 
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Initial phi angles: 

1 2.3305  rad 133.52φ = =                    (5.172) 
 

2 1.3192  rad 75.58φ = =                         (5.173) 
 

3 1.5569  rad 89.20φ = − = −                  (5.174) 
 

 In the first group of simulations, there is no modeling error and as a result of that no 

integral control. Therefore the control feedback gains are picked up as in the first 

column of Table 3.1. The simulations are repeated for various oω  values. These 

conditions are named as the first type of conditions and called CT-1 in short hand. 

 

In the second group of simulations, modeling error is considered but integral control 

is not used. Conditions in this group are named as the second type of conditions and 

called CT-2, similarly. 

 

Third group of simulations are performed under consideration of modeling error and 

integral control. This time, the control feedback gains are picked up as in the second 

column of Table 3.1. The condition type is called CT-3 this time. 

 

5.5 Results 

There are four graphs plotted to represent  

• the desired and responded displacements of the trajectory in three 

dimensions,  

• the control torques to be supplied by the actuators,  

• the position errors, 

• the deflections between q  and φ .  

 

Besides, the position errors are also plotted for the three groups of simulations in the 

same graph to compare the effects of oω  values.     
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Simulation Group-1  

a) 30 rad/soω =  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.19 Position Response: 1. 1x , 2. 2x , 3. 3x  (CT-1, 30 rad/soω = ) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.20 Control Torques: 1. 1
aT , 2. 2

aT , 3. 3
aT  (CT-1, 30 rad/soω = ) 



 
 

77

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.21 Deflections: 1. 1 1θ φ− , 2. 2 2θ φ− , 3. 3 3θ φ−  (CT-1, 30 rad/soω = ) 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.22 Position Errors (CT-1, 30 rad/soω = ) 
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b) 50 rad/soω =  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.23 Position Response: 1. 1x , 2. 2x , 3. 3x  (CT-1, 50 rad/soω = ) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.24 Control Torques: 1. 1
aT , 2. 2

aT , 3. 3
aT  (CT-1, 50 rad/soω = ) 
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Figure 5.25 Deflections: 1. 1 1θ φ− , 2. 2 2θ φ− , 3. 3 3θ φ−  (CT-1, 50 rad/soω = ) 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

Figure 5.26 Position Errors (CT-1, 50 rad/soω = ) 
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Simulation Group-2 

a) 30 rad/soω =  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.27 Position Response: 1. 1x , 2. 2x , 3. 3x  (CT-2, 30 rad/soω = ) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.28 Control Torques: 1. 1
aT , 2. 2

aT , 3. 3
aT  (CT-2, 30 rad/soω = ) 
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Figure 5.29 Deflections: 1. 1 1θ φ− , 2. 2 2θ φ− , 3. 3 3θ φ−  (CT-2, 30 rad/soω = ) 
 
 

 
 

Figure 5.30 Position Errors (CT-2, 30 rad/soω = ) 
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b) 50 rad/soω =  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.31 Position Response: 1. 1x , 2. 2x , 3. 3x  (CT-2, 50 rad/soω = ) 
 

 
Figure 5.32 Control Torques: 1. 1

aT , 2. 2
aT , 3. 3

aT   (CT-2, 50 rad/soω = ) 
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Figure 5.33 Deflections: 1. 1 1θ φ− , 2. 2 2θ φ− , 3. 3 3θ φ−  (CT-2, 50 rad/soω = ) 
 
 
 

 
Figure 5.34 Position Errors (CT-2, 50 rad/soω = ) 
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Simulation Group-3 

a) 30 rad/soω =  

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
Figure 5.35 Position Response: 1. 1x , 2. 2x , 3. 3x  (CT-3, 30 rad/soω = ) 

 

 
Figure 5.36 Control Torques: 1. 1

aT , 2. 2
aT , 3. 3

aT   (CT-3, 30 rad/soω = ) 
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Figure 5.37 Deflections: 1. 1 1θ φ− , 2. 2 2θ φ− , 3. 3 3θ φ−  (CT-3, 30 rad/soω = ) 
 
 

 
Figure 5.38 Position Errors (CT-3, 30 rad/soω = ) 
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b) 50 rad/soω =  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Figure 5.39 Position Response: 1. 1x , 2. 2x , 3. 3x  (CT-3, 50 rad/soω = ) 
 

 
Figure 5.40 Control Torques: 1. 1

aT , 2. 2
aT , 3. 3

aT  (CT-3, 50 rad/soω = ) 
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Figure 5.41 Deflections: 1. 1 1θ φ− , 2. 2 2θ φ− , 3. 3 3θ φ−  (CT-3, 50 rad/soω = ) 

 
 

 
Figure 5.42 Position Errors (CT-3, 50 rad/soω = ) 
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Figure 5.43 Effect of Feedback Gains on x1 (CT-1) 

 

 
Figure 5.44 Effect of Feedback Gains on x2 (CT-1) 
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Figure 5.45 Effect of Feedback Gains on x3 (CT-1) 

 
 
 

 
Figure 5.46 Effect of Feedback Gains on x1 (CT-2) 
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Figure 5.47 Effect of Feedback Gains on x2 (CT-2) 

 
  

 
Figure 5.48 Effect of Feedback Gains on x3 (CT-2) 
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Figure 5.49 Effect of Feedback Gains on x1 (CT-3) 

 

 
Figure 5.50 Effect of Feedback Gains on x2 (CT-3) 
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Figure 5.51 Effect of Feedback Gains on x3 (CT-3) 
 

 

The results can be tabulated as in Table 5.5 for comparison. This table shows the 

steady state position errors, maximum torques applied by the actuators and 

maximum deflections that occur during the motion. 
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CHAPTER VI 
 

SUMMARY AND CONCLUSIONS 
 

6.1. Summary 

This thesis has presented the inverse dynamics algorithm for the position control of 

parallel manipulators with flexible joints. Joint flexibility is modeled as a torsional 

spring and the damping characteristics of the actuated joints are considered as the 

torsional dampers. Rotor damping and viscous frictions at the unactuated joints are 

also included in the dynamics of the parallel manipulators. Lagrange’s equations are 

used to find the system equations of motion and the unactuated joint variables are 

eliminated in the set of equations of motion that correspond to the manipulator joint 

variables.  

 

Since the main idea of the inverse dynamics control algorithm is to seek a control 

input vector which will linearize and decouple the input/output relation between the 

control torques and the joint variables, intermediate variables that belong to the 

actuators are analytically eliminated from the sets of equation of motion.  Position 

control is achieved by the desired end effector snaps and errors in the motion states. 

 

As a case study 2-RRR planar parallel manipulator is considered. Simulations are 

performed for different conditions depending upon modeling error and/or integral 

control inclusion. Matlab® and Simulink® are utilized as simulation and technical 

languages. In the simulations more accurate results are aimed and one of the most 

complex numerical integration methods called Fourth Order Runge Kutta Method is 

used to increase the accuracy. 

 

Furthermore, the types of singularities of the parallel manipulators are explained. 

Analytical expressions that lead to singular configurations are derived and some 

possible singular positions for the case study are analyzed.  
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6.2. Discussions and Conclusions 

There are three groups of simulations carried out in this thesis. In all of the 

simulations, the initial error is taken into account.  

 

In the first group of simulations modeling error is not considered and integral terms 

in the control are not included in the control law. As seen from Figure 5.19, good 

tracking performances have been obtained. However it is obvious that these initial 

errors cause larger initial torques and larger tracking errors during the motion. As 

the oω  values are increased without altering the simulation conditions, the tracking 

errors decrease at the cost of increases in torques to be applied by the actuators and 

elastic deflections as seen in Figures 5.20, 5.21 and 5.43–5.45.  

 

Second group of simulations are performed in the presence of both initial and 

modeling errors. For this purpose, mass/inertia parameters, spring and damping 

constants are assumed to be %10 larger in the model. Integral terms are not included 

in the control law to see the effects of integral control on the system with additional 

existence of modeling error. As seen from Figures 5.30 and 5.34, the tracking errors 

and the steady state errors increase considerably. However the elastic deflections 

and the torques to be supplied by the actuators do not increase significantly as it can 

easily be seen from Table 5.5. As a general property, the increase in oω values 

provides the decreases in the tracking errors and the steady state errors.  

 

In the final group of simulations, the integral terms are included to the system with 

initial and modeling error. As a matter of fact, the purpose of utilizing the integral 

control is to eliminate or at least decrease the tracking and the steady state errors that 

arise due to modeling error. It is shown in Figures 5.38 and 5.42 that the both 

tracking and steady state errors are decreased. However tracking errors fluctuate and 

the initial torques and the initial elastic deflections increase abruptly. This problem 

is overcome by increasing oω  values. As oω  increases the fluctuations in tracking 

errors decrease and good trajectory tracking performance is achieved in spite of the 

presence of both initial and modeling errors. 
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As a result, it is shown that parallel manipulators with significant joint flexibility can 

follow the specified trajectory with high performance by the proposed control 

algorithm. 

 

6.3. Future Work  

The following studies are strongly recommended. 

 

• The control algorithm can be further extended for the hybrid force and 

position control of parallel manipulators. 

 

• Control methods for the case when the singular configurations are passed 

through in the parallel manipulators can be developed. 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

97

 
 

REFERENCES 
 
 

[1] Spong M. W., (1987), “Modeling and Control of Elastic Joint Robots”, 

Journal of Dynamic Systems, Measurement and Control, Vol. 109, pp. 310-

319. 

 

[2] Forrest-Barlach M. G., Babcock S. M., (1987), “Inverse Dynamics 

Position Control of a Compliant Manipulator”, IEEE Journal of Robotics 

and Automation, No.1, Vol. Ra-3, pp. 75-83. 

 

[3] Jankowski K. P., Van Brussel H., (1992), “An Approach to Discrete 

Inverse Dynamics Control of Flexible Joint Robots”, IEEE Transactions on 

Robotics and Automation, No.5, Vol. 8, pp. 651-658. 

 

[4]  İder K. and Özgören K., (2000), “Trajectory Tracking Control of Flexible 

Joint Robots”, Computers and Structures, Vol. 76, pp. 757-763. 

 

[5]  Dado M. H., Al-Huniti N. S., and Eljabali A. K., (2001), “Dynamic 

Simulation Model for Mixed-loop Planar Robots with Flexible Joint Drives”, 

Mechanism  and Machine Theory, Vol. 36, pp. 547-559. 

 

[6]  İder K., (2005), “Inverse Dynamics of Parallel Manipulators in the 

Presence of Drive Singularities”, Mechanism and Machine Theory, Vol. 40, 

pp. 33-44. 

 

[7]  Ji Z., (2003), “Study of Planar Three-degree-of-freedom 2-RRR Parallel 

Manipulators”, Mechanism and Machine Theory, Vol. 38, pp. 409-416. 

 

[8] Liu X., Tang X., and Wang J., (2004), “Singularity Analysis of a New 

Parallel Manipulator with Revolute Actuators”, Proceedings of the 11th 

World Congress in Mechanism and Machine Science, Tianjin, China. 



 
 

98

[9] Rivin E. I., (1984), “Compliance Breakdown for Robot Structures”, 

Proceedings of the Symposium Engineering Applied Mechanics, Toronto. 

 

[10] İder K., (2004), “ME528 Flexible Multibody Dynamics Lecture Notes”, 

Mechanical Engineering Department, Middle East Technical University, 

Ankara, Turkey. 

 

[11] Özgören K., (2005), “ME502 Advanced Dynamics Lecture Notes”, 

Mechanical Engineering Department, Middle East Technical University, 

Ankara, Turkey. 

 

[12] Özgören K., (2005), “ME522 Principles of Robotics Lecture Notes”, 

Mechanical Engineering Department, Middle East Technical University, 

Ankara, Turkey. 

 

[13] Erdağı, İ., (1995), “Trajectory Tracking Control of Robotic Manipulators”, 

M.S. Thesis, Mechanical Engineering Department, Middle East Technical 

University, Ankara, Turkey. 

 

[14] İyigün, H. H., (2001), “Inverse Dynamics Control of Constrained Flexible 

Joint Robots”, M.S. Thesis, Mechanical Engineering Department, Middle 

East Technical University, Ankara, Turkey. 

 

[15] Gardner J. F., (2001), “Simulations of Machines”, Brooks/Cole, California, 

USA 

 

[16] Cavallo A. Setola R. and Vasca F., (1996), “Using Matlab, Simulink and 

Control Toolbox : a Practical Approach”, Prentice Hall, New York, USA.  

 

[17]  Zlajpah L., (1998), “Simulation of n-R Planar Manipulators”, Simulation 
Practice and Theory, Vol. 6, pp. 305-321. 

 

[18] The Mathworks Inc., (1999), “Matlab Simulink User’s Guide”. 



 
 

99

APPENDICES 
 

APPENDIX A 
 

TIME DERIVATIVES OF MATRICES 

 

A.1 The First and Second Time Derivatives of Matrix M̂  

 

11 3 5 1 3 3 3 5 1 5 35 35 5 3 5 5 5( 2 ) 2 ( ) 2 ( )L L L LM m m L L s m L g s m L g sθ θ θ β θ θ β θ= − + − + − +  

 

13 3 5 1 3 3 3 5 1 5 35 35 5 3 5 5 5
1 ( ) 2 ( )
2

L L L LM m m L L s m L g s m L g sθ θ θ β θ θ β θ⎛ ⎞= − + − + − +⎜ ⎟
⎝ ⎠

 

 

15 5 1 5 35 35 5 3 5 5 5( ) ( )L LM m L g s m L g sθ β θ θ β θ= − + − +  

 

22 4 2 4 4 4
LM m L L sθ θ= −  

 

24 4 2 4 4 4
1
2

LM m L L sθ θ= −  

 

33 5 3 5 5 52 ( )LM m L g s θ β θ= − +  

 

35 5 3 5 5 5( )LM m L g s θ β θ= − +  

 

44 0M =  

 

55 0M =  

 
2 2

11 3 5 1 3 3 3 3 3 5 1 5 35 35 35 35

2
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( 2 ) ( ) 2 ( ) ( )

2 ( ) ( )

L L L

L

M m m L L c s m L g c s

m L g c s

θ θ θ θ θ β θ θ β θ

θ β θ θ β θ

⎡ ⎤= − + + − + + +⎣ ⎦

⎡ ⎤− + + +⎣ ⎦
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2 2
13 3 5 1 3 3 3 3 3 5 1 5 35 35 35 35

2
5 3 5 5 5 5 5

1 ( ) ( ) ( )
2

2 ( ) ( )

L L L

L

M m m L L c s m L g c s

m L g c s

θ θ θ θ θ β θ θ β θ

θ β θ θ β θ

⎛ ⎞ ⎡ ⎤= − + + − + + +⎜ ⎟ ⎣ ⎦⎝ ⎠
⎡ ⎤− + + +⎣ ⎦

 

 
2 2
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2
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24 4 2 4 4 4 4 4
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A.2 The First and Second Time Derivatives of Vector Q  

 

31
1 1 1 1 3 1 1 1 13 13 5 1 1 1 3 13 13

5 135 135 3 1 1 1

( )
2 2

( ) ( )

L L L

A

LLQ m g s m g L s s m g L s L s

g s m g L s

θ θ θ θ θ θ θ θ θ θ

θ β θ θ θ

⎛ ⎞ ⎡= − − + − +⎜ ⎟ ⎣⎝ ⎠
⎤+ + −⎦

 

 

2 4
2 2 2 2 4 2 2 2 24 24( ) ( ) ( )

2 2
L LL LQ m g s m g L s sθ θ θ θ θ θ⎡ ⎤= − − +⎢ ⎥⎣ ⎦

 



 
 

101

2
3 1 1 3 5 1 3 3 5 1 5 35 1 3 5 1 3 3 3

5 1 5 35 35 1 3 1 3 3 5 1 3 3 5 1 5 35

1 3 3 5 1 3 3 3 5 1 5 35

1( 2 ) 2 ( ) ( 2 )
2

12 ( ) ( ) ( ) ( )
2

1( ) (
2

L L L L L

L L L L

L L L

Q m m L L s m L g s m m L L c

m L g c m m L L s m L g s

m m L L c m L g c

θ θ θ θ β θ θ θ

θ β θ θ θ θ θ θ θ β

θ θ θ θ θ

⎡⎡ ⎤= + + + + +⎣ ⎦ ⎣

⎡ ⎤⎤+ + + + + + +⎢ ⎥⎦ ⎣ ⎦

+ + + 35 1 5 1 5 5 1 5 35

3
1 5 5 1 5 35 35 3 13 13 5 3 13 13 5 135 135

) ( ) ( )

( ) ( )
2

L

L L L

m L g s

Lm L g c m g s m g L s g s

β θ θ θ θ θ θ β

θ θ θ β θ θ θ θ θ θ β θ

⎡ ⎤+ + + +⎢ ⎥⎣ ⎦

⎡ ⎤ ⎡ ⎤+ + − − + +⎣ ⎦ ⎣ ⎦
 

 

2 2
4 4 2 4 2 2 4 2 4 4 4 2 4 2 4 4 2 4 4 4 4

2 4
2 2 2 4 2 2 2 24 24

1 1( ) ( ) ( )
2 2

( )
2 2

L L

L L

Q m L L s c m L L s s c

L Lm g s m g L s s

θ θ θ θ θ θ θ θ θ θ θ θ θ θ

θ θ θ θ θ θ

⎡ ⎤= + + + +⎣ ⎦

− − +
 

 

 
2

5 1 1 5 1 5 35 5 3 5 5 1 5 1 5 35 35

2
5 3 5 5 5 3 3 5 3 5 5 3 5 3 5 5 5 1 3 1 3

5 1 5 35 5 3 5 5 1 3 5

2 ( ) ( ) ( )

( ) 2 ( ) ( ) ( )

( ) 2 ( )

L L L

L L L

L L L

Q m L g s m L g s m L g c

m L g c m L g s m L g c

m L g s m L g s m

θ θ θ β θ β θ θ β θ

θ β θ θ θ θ β θ θ β θ θ θ θ θ

θ β θ β θ θ

⎡⎡ ⎤= + + + + +⎣ ⎦ ⎣

⎤+ + + + + + + +⎦

⎡ ⎤+ + + +⎣ ⎦ 1 5 35 35

5 3 5 5 5 1 5 1 5 5 1 5 35 5 3 5 5

1 5 5 1 5 35 35 5 3 5 5 5 3 5 3 5 5 3 5 5

2
3 5 5 3 5 5 5 5

( )

2 ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

L L L

L L L

L L

L g c

m L g c m L g s m L g s

m L g c m L g c m L g s

m L g c m g g

θ β θ

θ β θ θ θ θ θ θ β θ β

θ θ θ β θ θ β θ θ θ θ θ θ β

θ θ θ β

⎡ +⎣

⎤ ⎡ ⎤+ + + + + + +⎣ ⎦⎦

⎡ ⎤+ + + + + + +⎣ ⎦

+ + − 135 135( )s θ β θ⎡ ⎤+⎣ ⎦

 

 

 

2 2 231
1 1 1 1 1 1 3 1 1 1 1 1 13 13 13 13

2 2 2
5 1 1 1 1 1 3 13 13 13 13 5 135 135 135 135

2
3 1 1 1 1 1

( ) ( ) ( )
2 2

( ) ( ) ( ( ) ( ) )

( )

L L

L

A

LLQ m g c s m g L c s c s

m g L c s L c s g c s

m gL c s

θ θ θ θ θ θ θ θ θ θ θ θ

θ θ θ θ θ θ θ θ θ β θ θ β θ

θ θ θ θ

⎡ ⎤= − + − + + +⎢ ⎥⎣ ⎦

⎡ ⎤− + + + + + + +⎣ ⎦

− +
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2 2 22 4
2 2 2 2 2 2 4 2 2 2 2 2 24 24 24 24( ) ( ) ( )

2 2
L LL LQ m g c s m g L c s c sθ θ θ θ θ θ θ θ θ θ θ θ⎡ ⎤= − + − + + +⎢ ⎥⎣ ⎦

 

 

 
2

3 1 1 1 3 5 1 3 3 5 1 5 35

1 1 3 5 1 3 3 3 5 1 5 35 35

2 2 2
1 3 5 1 3 3 3 3 3 5 1 5 35 35 35 35

( ) ( 2 ) 2 ( )

2 ( 2 ) 2 ( )

1 ( 2 ) ( ) 2 ( ( ) ( ) )
2

(

L L L

L L L

L L L

Q m m L L s m L g s

m m L L c m L g c

m m L L s c m L g s c

θ θ θ θ θ β

θ θ θ θ θ β θ

θ θ θ θ θ θ β θ θ β θ

⎡ ⎤= + + + +⎣ ⎦

⎡ ⎤+ + + +⎣ ⎦

⎡ ⎤+ + − + + − + + +⎣ ⎦

+ 1 3 1 3 1 3 3 5 1 3 3 5 1 5 35

1 3 1 3 3 5 1 3 3 3 5 1 5 35 35

1 5 1 5 1 5 5 1 5 35 1 5 1 5

12 ) ( ) ( )
2

12( ) ( ) ( )
2

( 2 ) ( ) 2( )

L L L

L L L

L

m m L L s m L g s

m m L L c m L g c

m L g s m

θ θ θ θ θ θ θ θ β

θ θ θ θ θ θ θ β θ

θ θ θ θ θ θ θ β θ θ θ θ

⎡ ⎤+ + + + +⎢ ⎥⎣ ⎦

⎡ ⎤+ + + + +⎢ ⎥⎣ ⎦

⎡ ⎤+ + + + + +⎣ ⎦ 5 1 5 35 35

2 23
1 5 5 1 5 35 35 35 35 3 13 13 13 13

2 2
5 3 13 13 13 13 5 135 135 135 135

( )

( ( ) ( ) ) ( )
2

( ) ( ( ) ( ) )

L

L L

L

L g c

Lm L g s c m g c s

m g L c s g c s

θ β θ

θ θ θ β θ θ β θ θ θ θ θ

θ θ θ θ θ β θ θ β θ

⎡ ⎤+⎣ ⎦

⎡ ⎤+ − + + + − +⎣ ⎦

⎡ ⎤− + + + + +⎣ ⎦
 

 

( )

2 2 2
4 4 2 4 2 4 2 2 4 2 4 4 2 2 4 4 2 4 4 4 4

2 3
4 2 4 2 4 4 2 4 4 4 4 2 4 4 4 4 4 4 4

22
2 2 2 2 2 4

1( ) ( )
2

1 2 ( ) ( 3 )
2

2

L

L

L L

Q m L L s s c c s c

m L L s s c s c s

Lm g c s m g

θ θ θ θ θ θ θ θ θ θ θ θ θ θ θ θ θ

θ θ θ θ θ θ θ θ θ θ θ θ θ θ θ θ

θ θ θ θ

⎡ ⎤= + + + + − +⎢ ⎥⎣ ⎦

⎡ ⎤+ + + + + −⎣ ⎦

− + − 2 24
2 2 2 2 2 24 24 24 24( ) ( )

2
LL c s c sθ θ θ θ θ θ θ θ⎡ ⎤+ + +⎢ ⎥⎣ ⎦
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{
}

2
5 1 1 1 5 1 5 35 5 3 5 5 1 1 5 1 5 35 35

2 2
5 3 5 5 5 1 5 1 5 35 35 35 35

2 2
5 3 5 5 5 5 5 3 3

2( ) ( ) ( ) 4 ( )

( ) ( ) ( )

( ) ( ) 2(

L L L

L L

L

Q m L g s m L g s m L g c

m L g c m L g s c

m L g s c

θ θ θ θ β θ β θ θ θ β θ

θ β θ θ θ β θ θ β θ

θ β θ θ β θ θ θ

⎡⎡ ⎤= + + + + + +⎣ ⎦ ⎣

⎤ ⎡ ⎤+ + + − + + +⎦ ⎣ ⎦

⎡ ⎤+ − + + + + +⎣ ⎦ 3 5 3 5 5

2 2
3 3 5 3 5 5 5 3 5 3 5 5 5 5 5

1 3 1 3 1 3 5 1 5 35 5 3 5 5

1 3 1 3 5 1 5 35 35 5 3 5 5

) ( )

4 ( ) ( ) ( )

( 2 ) ( ) 2 ( )

2( ) ( ) 2 (

L

L L

L L

L L

m L g s

m L g c m L g s c

m L g s m L g s

m L g c m L g c

θ θ β

θ θ θ β θ θ θ β θ θ β θ

θ θ θ θ θ θ θ β θ β

θ θ θ θ θ β θ θ

+

⎡ ⎤+ + + − + + +⎣ ⎦

⎡ ⎤+ + + + + +⎣ ⎦

+ + + +

{ }
5

2 2
1 3 5 1 5 35 35 35 35 5 3 5 5 5 5 5

1 5 1 5 1 5 5 1 5 35 5 3 5 5

1 5 1 5 5 1 5 35 35 5

)

( ) ( ) 2 ( ) ( )

( 2 ) ( ) ( )

2( ) ( )

L L

L L

L L

m L g s c m L g s c

m L g s m L g s

m L g c m L

β θ

θ θ θ β θ θ β θ θ β θ θ β θ

θ θ θ θ θ θ θ β θ β

θ θ θ θ θ β θ

⎡ ⎤+⎣ ⎦

⎡ ⎤ ⎡ ⎤+ − + + + + − + + +⎣ ⎦ ⎣ ⎦

⎡ ⎤+ + + + + +⎣ ⎦

+ + + +

{ }
3 5 5 5

2 2
1 5 5 1 5 35 35 35 35 5 3 5 5 5 5 5

3 5 3 5 3 5 5 3 5 5 3 5 3 5 5 3 5 5 5

2
3 5 3 5 5

( )

( ) ( ) ( ) ( )

( 2 ) ( ) ( ) ( )

( 2

L L

L L

g c

m L g s c m L g s c

m L g s m L g c

θ β θ

θ θ θ β θ θ β θ θ β θ θ β θ

θ θ θ θ θ θ θ β θ θ θ θ θ β θ

θ θ θ θ θ

⎡ ⎤+⎣ ⎦

⎡ ⎤ ⎡ ⎤+ − + + + + − + + +⎣ ⎦ ⎣ ⎦

+ + + + + + +

+ +

{ }

2
5 3 5 5 3 5 5 3 5 5 5

2
5 5 135 135 135 135

) ( ) ( )

( ) ( )

L L

L

m L g c m L g s

m g g c s

θ β θ θ θ β θ

θ β θ θ β θ

+ − +

⎡ ⎤− + + +⎣ ⎦
 

A.3 The First, Second and Third Time Derivatives of Matrix B̂  

 

11 1 1 1 3 13 13 5 135 135B L c L c L cθ θ θ θ θ θ= − − −  

 

12 2 2 2 4 24 24B L c L cθ θ θ θ= +  

 

13 3 13 13 5 135 135B L c L cθ θ θ θ= − −  

 

14 4 24 24B L cθ θ=  

 

15 5 135 135B L cθ θ= −  
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21 1 1 1 3 13 13 5 135 135B L s L s L sθ θ θ θ θ θ= − − −  

 

22 2 2 2 4 24 24B L s L sθ θ θ θ= +  

 

23 3 13 13 5 135 135B L s L sθ θ θ θ= − −  

 

24 4 24 24B L sθ θ=  

 

25 5 135 135B L sθ θ= −  

 

( ) ( ) ( )2 2 2
11 1 1 1 1 1 3 13 13 13 13 5 135 135 135 135B L s c L s c L s cθ θ θ θ θ θ θ θ θ θ θ θ= − − + − − + − − +  

 

( ) ( )2 2
12 2 2 2 2 2 4 24 24 24 24B L s c L s cθ θ θ θ θ θ θ θ= − + + − +  

 

( ) ( )2 2
13 3 13 13 13 13 5 135 135 135 135B L s c L s cθ θ θ θ θ θ θ θ= − − + − − +  

 

( )2
14 4 24 24 24 24B L s cθ θ θ θ= − +  

 

( )2
15 5 135 135 135 135B L s cθ θ θ θ= − − +  

 

( ) ( ) ( )2 2 2
21 1 1 1 1 1 3 13 13 13 13 5 135 135 135 135B L c s L c s L c sθ θ θ θ θ θ θ θ θ θ θ θ= − + − + − +  

 

( ) ( )2 2
22 2 2 2 2 2 4 24 24 24 24B L c s L c sθ θ θ θ θ θ θ θ= + + +  

 

( ) ( )2 2
23 3 13 13 13 13 5 135 135 135 135B L c s L s sθ θ θ θ θ θ θ θ= − + − +  

 

( )2
24 4 24 24 24 24B L c sθ θ θ θ= +  
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( )2
25 5 135 135 135 135B L s sθ θ θ θ= − +  

 

( ) ( )
( )

3 3
11 1 1 1 1 1 1 1 1 3 13 13 13 13 13 13 13

3
5 135 135 135 135 135 135 135

3 3

3

B L c s c L c s c

L c s c

θ θ θ θ θ θ θ θ θ θ θ θ θ θ

θ θ θ θ θ θ θ

= − − − + − − − +

− − − +
 

 

( ) ( )3 3
12 2 2 2 2 2 2 2 2 4 24 24 24 24 24 24 243 3B L c s c L c s cθ θ θ θ θ θ θ θ θ θ θ θ θ θ= − − + + − − +  

 

( ) ( )3 3
13 3 13 13 13 13 13 13 13 5 135 135 135 135 135 135 1353 3B L c s c L c s cθ θ θ θ θ θ θ θ θ θ θ θ θ θ= − − − + − − − +  

 

( )3
14 4 24 24 24 24 24 24 243B L c s cθ θ θ θ θ θ θ= − − +  

 

( )3
15 5 135 135 135 135 135 135 1353B L c s cθ θ θ θ θ θ θ= − − − +  

 

( ) ( )
( )

3 3
21 1 1 1 1 1 1 1 1 3 13 13 13 13 13 13 13

3
5 135 135 135 135 135 135 135

3 3

3

B L s c s L s c s

L s c s

θ θ θ θ θ θ θ θ θ θ θ θ θ θ

θ θ θ θ θ θ θ

= − − + + − − + +

− − + +
 

 

( ) ( )3 3
22 2 2 2 2 2 2 2 2 4 24 24 24 24 24 24 243 3B L s c s L s c sθ θ θ θ θ θ θ θ θ θ θ θ θ θ= − + + + − + +  

 

( ) ( )3 3
23 3 13 13 13 13 13 13 13 5 135 135 135 135 135 135 1353 3B L s c s L s c sθ θ θ θ θ θ θ θ θ θ θ θ θ θ= − − + + − − + +  

 

( )3
24 4 24 24 24 24 24 24 243B L s c sθ θ θ θ θ θ θ= − + +  

 

( )3
25 5 135 135 135 135 135 135 1353B L s c sθ θ θ θ θ θ θ= − − + +  
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A.4 The First, Second and Third Time Derivatives of Matrix ˆ PΓ  

 

11 1 1 1 3 13 13 5 135 135( )G L c L c d cθ θ θ θ θ α θ= − − − +  

 

12 0G =  

 

13 3 13 13 5 135 135( )G L c d cθ θ θ α θ= − − +  

 

14 0G =  

 

15 5 135 135( )G d c θ α θ= − +  

 

21 1 1 1 3 13 13 5 135 135( )G L s L s d sθ θ θ θ θ α θ= − − − +  

 

22 0G =  

 

23 3 13 13 5 135 135( )G L s d sθ θ θ α θ= − − +  

 

24 0G =  

 

25 5 135 135( )G d s θ α θ= − +  

 

31 0G =  

 

32 0G =  

 

33 0G =  

 

34 0G =  
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35 0G =  

 

( ) ( )2 2 2
11 1 1 1 1 1 3 13 13 13 13 5 135 135 135 135( ) ( )G L s c L s c d s cθ θ θ θ θ θ θ θ θ α θ θ α θ⎡ ⎤= − − + − − + − − + + +⎣ ⎦

 

12 0G =  

 

( )2 2
13 3 13 13 13 13 5 135 135 135 135( ) ( )G L s c d s cθ θ θ θ θ α θ θ α θ⎡ ⎤= − − + − − + + +⎣ ⎦  

 

14 0G =  

 
2

15 5 135 135 135 135( ) ( )G d s cθ α θ θ α θ⎡ ⎤= − − + + +⎣ ⎦  

 

( ) ( )2 2 2
21 1 1 1 1 1 3 13 13 13 13 5 135 135 135 135( ) ( )G L c s L c s d c sθ θ θ θ θ θ θ θ θ α θ θ α θ⎡ ⎤= − + − + − + + +⎣ ⎦  

 

22 0G =  

 

( )2 2
23 3 13 13 13 13 5 135 135 135 135( ) ( )G L c s d c sθ θ θ θ θ α θ θ α θ⎡ ⎤= − + − + + +⎣ ⎦  

 

24 0G =  

 
2

25 5 135 135 135 135( ) ( )G d c sθ α θ θ α θ⎡ ⎤= − + + +⎣ ⎦  

 

31 0G =  

 

32 0G =  

 

33 0G =  
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34 0G =  

 

35 0G =  

 

( ) ( )3 3
11 1 1 1 1 1 1 1 1 3 13 13 13 13 13 13 13

3
5 135 135 135 135 135 135 135

3 3

( ) 3 ( ) ( )

G L c s c L c s c

d c s c

θ θ θ θ θ θ θ θ θ θ θ θ θ θ

θ α θ θ α θ θ θ α θ

= − − − + − − − +

⎡ ⎤− − + − + + +⎣ ⎦
 

 

12 0G =  

 

( )3 3
13 3 13 13 13 13 13 13 13 5 135 135 135 135 135

135 135

3 ( ) 3 ( )

( )

G L c s c d c s

c

θ θ θ θ θ θ θ θ α θ θ α θ θ

θ α θ

⎡= − − − + − − + − +⎣
⎤+ + ⎦

 

 

14 0G =  

 
3

15 5 135 135 135 135 135 135 135( ) 3 ( ) ( )G d c s cθ α θ θ α θ θ θ α θ⎡ ⎤= − − + − + + +⎣ ⎦  

 

( ) ( )3 3
21 1 1 1 1 1 1 1 1 3 13 13 13 13 13 13 13

3
5 135 135 135 135 135 135 135

3 3

( ) 3 ( ) ( )

G L s c s L s c s

d s c s

θ θ θ θ θ θ θ θ θ θ θ θ θ θ

θ α θ θ α θ θ θ α θ

= − − + + − − + +

⎡ ⎤− − + + + + +⎣ ⎦
 

 

22 0G =  

 

( )3 3
23 3 13 13 13 13 13 13 13 5 135 135 135 135 135

135 135

3 ( ) 3 ( )

( )

G L s c s d s c

s

θ θ θ θ θ θ θ θ α θ θ α θ θ

θ α θ

⎡= − − + + − − + + +⎣
⎤+ + ⎦

 

 

24 0G =  

 
3

25 5 135 135 135 135 135 135 135( ) 3 ( ) ( )G d s c sθ α θ θ α θ θ θ α θ⎡ ⎤= − − + + + + +⎣ ⎦  
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31 0G =  

 

32 0G =  

 

33 0G =  

 

34 0G =  

 

35 0G =  
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APPENDIX B 
 

ELEMENTS OF MATRICES 

 

B.1 The Elements of Matrices *ˆ aM  and *ˆ uM  

 
*
11 11 15 21

aM M M C= +  

 
*
12 15 22

aM M C=  

 
*
13 13 13 23

aM M M C= +  

 
*

21 24 11
aM M C=  

 
*

22 22 24 12
aM M M C= +  

 
*

23 24 13
aM M C=  

 
*
31 13 35 21

aM M M C= +  

 
*
32 35 22

aM M C=  

 
*
33 33 35 23

aM M M C= +  

 
*
11 44 11

uM M C=  

 
*
12 24 44 12

uM M M C= +  
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*
13 44 13

uM M C=  

 
*

21 15 55 21
uM M M C= +  

 
*

22 55 22
uM M C=  

 
*

23 35 55 23
uM M M C= +  

 

B.2 The Elements of Matrices ˆ aR  and ˆ uR  

11 15 21
aR M C=  

 

12 15 22
aR M C=  

 

13 15 23
aR M C=  

 

21 24 11
aR M C=  

 

22 24 12
aR M C=  

 

23 24 13
aR M C=  

 

31 35 21
aR M C=  

 

32 35 22
aR M C=  

 

33 35 23
aR M C=  

 

11 44 11 4 6 11 6 21( )uR M C D D C D C= + + −  
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12 44 12 4 6 12 6 22( )uR M C D D C D C= + + −  

 

13 44 13 4 6 13 6 23( )uR M C D D C D C= + + −  

 

21 55 21 5 6 21 6 11( )uR M C D D C D C= + + −  

 

22 55 22 5 6 22 6 12( )uR M C D D C D C= + + −  

 

23 55 23 5 6 23 6 13( )uR M C D D C D C= + + −  


