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ABSTRACT

INVERSE DYNAMICS CONTROL OF FLEXIBLE JOINT
PARALLEL MANIPULATORS

KORKMAZ, Ozan
M.S., Department of Mechanical Engineering
Supervisor: Prof. Dr. Kemal IDER
December 2006, 112 pages

The purpose of this thesis is to develop a position control method for parallel
manipulators so that the end effector can follow a desired trajectory specified in the
task space where joint flexibility that occurs at the actuated joints is also taken into

consideration.

At the beginning of the study, a flexible joint is modeled, and the equations of
motion of the parallel manipulators are derived for both actuator variables and joint
variables by using the Lagrange formulation under three assumptions regarding
dynamic coupling between the links and the actuators. These equations of motion
are transformed to an input/output relation between the actuator torques and the
actuated joint variables to achieve the trajectory tracking control. Moreover, the

singular configurations of the parallel manipulators are explained.

As a case study, a three degree of freedom, two legged planar parallel manipulator is
simulated considering joint flexibility. The structural damping of the active joints,
viscous friction at the passive joints and the rotor damping are also considered
throughout the study. Matlab® and Simulink® softwares are used for the simulations.
The results of the simulations reveal that steady state errors are negligibly small and

good tracking performances can be achieved.

Keywords: Flexible joint, parallel manipulator, inverse dynamics control,
singularity analysis
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ESNEK EKLEMLI PARALEL MANIPULATORLERIN
TERS DINAMIK KONTROLU

KORKMAZ, Ozan
Yiiksek Lisans, Makine Miihendisligi Boliimii
Tez Yéneticisi: Prof. Dr. Kemal IDER
Aralik 2006, 112 sayfa

Bu tezin amaci eklem esnekligi de géz oniine alinarak paralel maniptilatorlere ait ug
islemcinin gorev uzayinda belirlenen bir yoriingeyi izleyebilmesi i¢in bir konum

kontrol yontemi gelistirmektir.

Calismanin basinda esnek bir eklem modellenmis ve paralel manipiilatoriin hareket
denklemleri Lagrange formiilasyonu kullanilarak hem eyletici hem de eklem
degiskenleri cinsinden olmak iizere eyletici ve uzuvlar arasindaki dinamik baglanti
ile ilgili olarak {i¢ varsayim ile tiiretilmistir. Bu hareket denklemleri analitik ters
dinamik kontrolii yaklagimiyla eyletici torklar1 ve aktif eklem degiskenleri arasinda
bir giris/¢ikis denklemine doniistiiriilerek yoriinge takip kontrolii saglanmistir.

Bunun yani sira paralel manipiilatorlerin tekil durum analizleri anlatilmistir.

Ornek olarak ii¢ serbestlik dereceli, iki bacakli bir diizlemsel paralel manipiilator
eklem esnekligi ile beraber ele alinmistir. Ayn1 zamanda aktif eklemlerdeki yapisal
soniim, pasif eklemlerdeki viskoz siirtiinme ve eyletici rotorunun sontimii de dikkate
almmistir. Benzetim i¢in Matlab® ve Simulink® yazilimlar1 kullanilmistir. Elde
edilen sonuglarda kararli hal hatalarin ihmal edilebilir diizeyde oldugu saptanmis ve

1yi bir yoriinge takibi saglanmustir.

Anahtar Kelimeler: Esnek eklem, paralel manipiilator, ters dinamik kontrol, tekil

durum analizi
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CHAPTER1

INTRODUCTION

1.1 Literature Survey

Parallel manipulators have been an intensive area of research for over a decade since
they have some advantages over the serial ones. Parallel manipulators can carry
heavier loads with their closed loop structure more precisely. These mechanisms are
most commonly used in industrial applications such as flight simulators and
earthquake simulators, micro-motion manipulations where high load capability and
high motion accuracy are needed. However these manipulators face with the
problem of having relatively small functional workspace and difficulties in design
and control. For this reason, the parallel manipulators have become a focus of

interest in various fields of research.

On the other hand, joint flexibility is important in manipulator dynamics and control
system design since their drives exhibit this behavior. In order to handle high
precision manipulations, the joint flexibility should be taken into consideration in

the control system.

There are many researchers who studied the control of flexible joint serial

manipulators taking their starting point from the flexible joint model derivation of

Spong [1].

Among the motion control methods for flexible joints two nonlinear control schemes
are put forward which are called the feedback linearization and singular perturbation
approaches [1]. The feedback linearization control of flexible-joint robots is also
called the analytical inverse dynamics control and is studied by various authors. In
this approach the intermediate variables are analytically eliminated and the input

torques are found as functions of the end-effector motion up to the fourth derivative.



The elimination requires the differentiation of the equations of motion and the

acceleration level task equations twice.

The singular perturbation approach uses the advantage of order reduction by
decomposing the system into two subsystems namely a fast subsystem (flexible
joints) and a slow subsystem (rigid manipulator). The model order is lowered by
first neglecting the fast phenomena. Then corrections due to the fast phenomena are
reintroduced by calculating them in a separate time scale in which the slow variables
are assumed to be constant. However this approach is limited in applicability since it

is valid only when the joint springs are sufficiently stiff.

Forrest-Barlach and Babcock [2] used the inverse dynamics control method for the
cylindrical coordinate arm with drive train compliance and actuator dynamics in the

radial and each of the revolute degree of freedom.

Jankowski and Van Brussel [3] applied inverse dynamics control in discrete time
where solution of the singular sets of differential equations is used to avoid the

further differentiations of the system equations of motion.

Ider and Ozgoren [4] utilized inverse dynamics control at the acceleration level by
using implicit numerical integration methods that account for the higher order
derivative information for solving the singular set of differential equations. The
asymptotic stability is achieved by the feedback of joint positions, velocities and

rotor velocities.

All of the above studies focused on the control of flexible joint serial manipulators.
There are limited numbers of studies in the literature concerning control of parallel
manipulators. Most of these studies did not take the joint flexibility into their control

strategies.

Dado and Al-Huniti [5] studied dynamic simulation model for mixed-loop planar

robots with flexible joint drive. The mathematical model of a five-link, three degree



of freedom manipulator was derived using the virtual work method. The drive signal
at the motor was based on the error between the desired and actual motions using

proper position and velocity gains.

Parallel manipulators possess drive singular positions in addition to the kinematic
singular positions that serial manipulators also have. Singularity analysis of parallel

manipulators has been the subject of many studies in the last years.

Ider [6] examined the singularities that occur in the parallel manipulators and
showed that the manipulator can pass through the singular positions while the
actuator forces and the system motion remain stable by modifying the system

equations of motion.

Ji [7] studied on the singular configurations that planar parallel manipulators have in

general.

Liu [8] designed a new spatial parallel manipulator and looked for the singular

positions that this parallel manipulator has.

1.2 Objective

This thesis aims at trajectory tracking control of the end effector of a parallel
manipulator by using the analytical inverse dynamics approach taking joint

flexibility into consideration.

To facilitate the solution, the system equations of motion are transformed to an
input/output relation between the actuator torques and the actuated joint variables.
System constraints are utilized to eliminate the unactuated joint variables of the
system. Since the structural damping of the active joints, viscous friction at the
passive joints and the rotor damping characteristics are also included, an additional

complexity occurs due to the presence of torque rate in this relation.



Another aim of the study is to find out the singular positions of the parallel
manipulators to avoid them in trajectory planning stage. Since the parallel
manipulators have additional singularities due to their closed loop structures, it is
important to emphasize the existence of these configurations that arise both inside

the workspace and at the workspace boundaries.

1.3 Outline of the Study

In this thesis, the following chapters are organized to explain the control theory and

the case study.

In Chapter 2, the dynamics of a parallel manipulator is explained when the joint
flexibility is added into the analysis. The system equations of motion and system

constraint equations are derived.

Chapter 3 is related to the inverse dynamics control approach. The control law and
task space equations are introduced. The procedures for the elimination of the
unactuated joint variables from the system constraint equations and the elimination
of actuator variables from the equations of motion are considered to get the

input/output relation

Chapter 4 presents the concept of singularity in parallel manipulators. Types of

singularities and the physical results of the singular positions are discussed.

In Chapter 5, a parallel manipulator is analyzed as a case study. All of the theoretical
knowledge presented in Chapters 2—4 is applied to this example. The equations of
motion are derived, the singular configurations are identified and simulations are

performed via the proposed inverse dynamics control method.

Chapter 6 reviews and concludes the comparisons of the simulations and presents

recommendations for future work.



CHAPTERII
MANIPULATOR DYNAMICS WITH FLEXIBLE JOINTS

2.1 Overview

Consider an n degree of freedom parallel manipulator. Let this system be converted
into an open-tree structure by disconnecting a sufficient number of unactuated joints
and the degree of freedom of the open-tree system be m, i.e., the number of
independent loop closure constraints in the parallel manipulator be m-n. Let the set
of the generalized coordinates corresponding to the manipulator joint variables

which express the relative joint positions be defined as
G ={6,.....6,} 2.1)

Hence the vector of manipulator joint variables of the rigid links that contains both

the actuated and unactuated joint variables is
0=[6,....6,] (2.2)

In the parallel manipulator as many joints as the degree of freedom of the
manipulator are actuated. Due to the elasticity of the transmission elements, joint
elasticity occurs at the actuated joints. The sources of elasticity at the joints are
generally couplings, harmonic drives, thin shafts used in drive trains. Since joint
flexibility is the main source contributing to overall robot flexibility as
experimentally verified by ref.[9], it is important to take joint flexibility into account

in order to get higher performance from the controller.

Joint elasticity and structural damping of the power transmission elements at an

actuated joint are modeled as a torsional spring and a torsional damper respectively.



For the i" transmission, K, stand for the spring constant and D, is used for the

damping constant as seen in Figure 2.1.

Figure 2.1 A Flexible Joint Dynamic Model

In the figure, 6, is the manipulator joint variable which corresponds to angular

position of the driven link of the manipulator with respect to the link that the i"

actuator is mounted. k; is link number of the link which is driven by the i"™ actuator

and |, is link number of the link on which the actuator is mounted.

For this flexible joint model, the second set of generalized coordinates

corresponding to the actuator variables are written as

G, ={fserrthy) (2.3)

6 =[0ut] 2.4)



The angles in the second set of generalized coordinates are obtained as

¢ =—+ i=1,.,n (2.5)

where I, is the speed reduction ratio.

Actuator variable 7, in Equation 2.5 is the angular position of the i"™ actuator’s rotor

with respect to the link that the actuator is mounted. On the other hand, the torques

supplied by the actuators are denoted by T* and the torques T, after the speed

reduction are

T=rT? i=1,..,n (2.6)

2.2 Manipulator Dynamics

The dynamic model of parallel manipulators with flexible joints can be derived with
the following assumptions which simplify the equations of motion considerably and

were first stated by ref. [1].

The assumptions are as follows:

e The links of the parallel manipulator are rigid.

e The kinetic energy of the rotor is due mainly to its own rotation. In other
words, the motion of the rotor is a pure rotation with respect to the inertial
reference frame provided that the gear ratio is sufficiently large.

e The rotor inertia is symmetric about the rotor axis of rotation so that the

velocity of the rotor center of mass is independent of the rotor position.

Elasticity at each of the joints creates an additional degree of freedom to the whole
system. Therefore rotors of the actuators are modeled as fictitious rigid links with
their own inertial parameters. When an n degree of freedom parallel manipulator
with n number of actuators is considered, the whole system turns out to be a 2n

degree of freedom system.



The equations of motion corresponding to both sets of generalized coordinates that

were stated in Equations 2.1 and 2.3 can be derived by using the Lagrange’s

equations.

The Lagrange’s equation for the set of manipulator joint variables

d| oK oK 8D 6U ~ .
—| — +Q! =1,..,m
dt (86?1. J 00, 89 80 =Q+Q; :

The Lagrange’s equation for the set of actuator variables

d(aKJ oK oD oU 6 i1

dt\og ) og o4 od

where K,D,U,Q,Q’

(2.7)

(2.8)

stand for kinetic energy, dissipation function, potential

energy, generalized non-potentialized force and the generalized constraint force

terms respectively.

2.2.1 Kinetic Energy

Kinetic energy of a link can be written as

KE, =5 MW Ve o @ 3 =L
where
Vot =D Wi, i=1,..,m
j=1
@ =Y Q0, i=1..,m
j=1
I=1,..m

(2.9)

(2.10)

2.11)

(2.12)



In Equations 2.9 —2.12,

m. is the mass of the i link.

\7G_L is the mass center velocity vector of the i™ link as expressed in fixed

reference frame.

WL s the velocity influence coefficient vector.

@, is the angular velocity of the i link as expressed in fixed reference frame.

_i'JT is the angular velocity influence coefficient vector.

I is the moment of inertia matrix of the i link as expressed in fixed reference
frame.

C®Y s the transformation matrix from the reference frame attached to the i link
to the fixed reference frame.

LL is the moment of inertia matrix of the i link as expressed in its body

reference frame.

Kinetic energy of a link can be rewritten by combining the Equations 2.9, 2.10 and

2.11 in more compact form as below.

E, =3 Smiod,  i-tm @)
=1 k=l

where
1 — = | P —

mijkL :EmiL(VViIJT)TWiII(—’_E(QiE)TIiLQiII( (2.14)

In similar manner, kinetic energy of an actuator can be written as:

KE, = Lm U L@t ifat =1 @.15)



Vet =D Wi, i=1..n (2.16)
@t => 0 6, +CVur, i=1,..,n (2.17)

.A[CWT i=1,..n (2.18)

In Equations 2.15 —2.18,

A

m, is the mass of the i" actuator rotor.

V. " is the mass center velocity vector of the i"™ actuator rotor as expressed in

fixed reference frame.

W/ is the velocity influence coefficient vector.

is the angular velocity of the i actuator rotor as expressed in fixed reference

is the angular velocity influence coefficient vector of the previous link.

C™" s the transformation matrix from the reference frame attached to the I ™

actuator rotor to the fixed reference frame.

U, is the unit vector along rotation axis of the i™ actuator rotor in the link frame

on which the actuator is mounted.

fA

i is the moment of inertia matrix of the i actuator rotor as expressed in fixed

reference frame.

CY is the transformation matrix from the reference frame attached to the i

actuator rotor to the fixed reference frame.

IA A

. . . . -th . .
I is the moment of inertia matrix of the i~ actuator rotor as expressed in its

body reference frame.

10



At this point, Assumption-2 which was put forward in Section 2.1 is invoked to the
formulation and angular velocity expression of the actuator turns out to be as in

Equation 2.19.
" =C™V 7 i=1..,n (2.19)

Therefore kinetic energy of an actuator can be rewritten in more compact form as
1 — — 1 .
KE, =5miA(\/GiA)TVGiA+5IiAr'f i=1,..,n (2.20)

Assumption-3 is related to the mass distribution of the rotor. With that assumption
symmetric mass distribution is assumed and principality of the axes of rotation is
guaranteed. Therefore matrix representation of the inertia dyadic forms a diagonal
matrix. In addition, mass center velocity of the actuator rotor becomes independent
of the rotor position since mass center velocity is the translational velocity of the

fixed point at the I, ™ link.
Total kinetic energy of the manipulator is formulated as

K =i}<ELi +i}<EAi 2.21)
i=1 i=1

2.2.2 Potential Energy

Potential energy is caused by the gravity for rigid links and can be derived as

PE,=-0' m'T" i=1,..,m (2.22)
where

g is the gravitational acceleration vector

T is the mass center position of the link as expressed in the fixed reference
frame.
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Potential energy is caused by the gravity and the elastic potential for the actuators

and can be derived as

1ooaa 1 :
PE, =_ngiAriA+E K6, —¢)’ i=1,..,n (2.23)
where
" is the mass center position of actuator as expressed in the fixed reference
frame.
K; is the joint spring constant of i transmission.

Total potential energy of the manipulator is formulated as

U= Z PE, + Y PE, (2.24)

2.2.3 Dissipation Function

There exists a positive definite dissipation function when a dissipative force occurs
in the system. Causes of dissipative forces in the manipulator system are the
structural damping of the actuated joints, the viscous friction that take place at the
unactuated joints and the damping at the rotors. The dissipative functions can be

formulated for each of the cases in a different way.

Dissipation function due to structural damping at the actuated joints,
D* =YD/ 0, ~ )’ (2.25)
i=1

where

D? s the joint damping constant of i"™ transmission.

Dissipation function due to damping that occurs at the rotors of the actuators,

oS0 22
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where

D  is the damping constant of i"™ actuator.

Dissipation function due to viscous friction at the unactuated joints,

DY = 52 D'4,? (2.27)
i=1

where

D' s the joint damping constant of i"™ unactuated joint.

Similarly, the dissipation function due to viscous friction at the disconnected joints

can be written and denoted by D°. As a result, the dissipation function that gives
the total dissipative force of the manipulator is apparently equal to the sum of the

individual dissipative forces at the rotors and joints.

D=D*+D"+D"+D" (2.28)

2.2.4 Generalized Forces

In the system model, generalized forces consist of two types of forces. First type of
forces are the non-potentialized ones which are supplied by the drive trains and
second type of the forces are the constraint forces that are imposed on the system by

disconnecting a sufficient number of the unactuated joints.

Non-potentialized forces are obtained by writing the work done by the manipulator
in virtual form. The virtual work done by the manipulator that corresponds to the
first set of generalized coordinates, i.e. the manipulator variables is zero if there is
no external generalized force applied. On the other hand, the virtual work done by
the manipulator that corresponds to the second set of generalized coordinates, i.e. the
actuator variables is simply the torques after speed reduction. This fact can be

formulated as in Equations 2.29 and 2.30.
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W, =0 i=1,...m (2.29)

M., =T i=1,..,n (2.30)

Therefore the non-potentialized force terms obtained from the virtual work

equations are found as

O
[l
(e
m
3

2.31)

Q.. =T i=1,..,n (2.32)

In most of the situations the m-n loop closure constraint equations at position level

which are obtained by reconnecting the disconnected joints can be expressed as

v.(0,...0.)=0 i=1,.,(m-n) (2.33)

and at velocity level they can be written as,

B.O = i=1,..,(m-n) (2.34)

In matrix form,

89, =0 i =1, (2.35)
where
oy, . i
70 I=1..,(m-n),j=1..,m 2.36
1) ag] ( ) J ( )

Generalized constraint forces are obtained by writing the velocity level constraint

equations in virtual form.
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> B;66, =0 i=1,..,(m-n) (2.37)

S [i B, 00, } =0 (2.38)

ir—"ﬂﬁ B, }591. 0 (2.39)

Expression in the brackets of Equation 2.39 leads to the definition of the constraint

forces corresponding to the manipulator variables.

Q=Y B4 j=1...m (2.40)
i=1
where A, i=1,..,m—n are the Lagrange multipliers.

2.3 System Equations of Motion

Two sets of equations of motion are derived corresponding to the two sets of
generalized coordinates for this system model. First one belongs to manipulator
variables while the second one belongs to the actuator variables. After the
expressions are substituted into Equations 2.7 and 2.8 and manipulated for each of

the sets, the final forms of the equations of motion are obtained as follows.

The equations of motion for the first set of generalized coordinates are

> M6 +Q+Da+St—> 4B =0  i=1l.,m (2.41)
k=1

k=1
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The equations of motion for the second set of generalized coordinates are
%6+ Dr’g —Di(6, - 4) - K (6, —4) =T, i=1..n (2.42)

The Equations (2.41) and (2.42) are rewritten in matrix form as
M (8)8 +Q(8,0)+Da@,4)+5t@,4)-B  (8)1 =0 (2.43)

where

M (8)

is the mxm symmetric positive definite generalized mass matrix,
Q(@,0) is the mx1 vector which contains Coriolis, centrifugal and gravitational

terms,
Da(é@,¢) is the mx1vector which contains damping terms,

0,¢) is the mx1vector which contains stiffness terms,

wn

t(

is the (m—n)xm matrix generalized force matrix.

A

B(®)
is the (m—-n)x1 vector whose elements consist of the Lagrange
multipliers which mean the constraint forces imposed on the disconnected joint and

(2.44)

g +D'6-D[G-¢)-K@-9)=T

where
1S an Nxn matrix whose elements are the inertial parameters of the links and

A

II’

can be expressed as
(2.45)

I" =diag[l,"r*] i=1..n

D" is an nxn matrix whose elements are the inertial parameters of the rotors and
can be expressed as
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D" =diag[D,'r’] i=L..,n (2.46)

A

K is an nxn matrix whose elements are spring constants of the actuated joints

and can be expressed as

K = diag[K, ] i=1..,n (2.47)

T  isan nx1 vector whose elements are control torques after speed reduction.

2.4 Closed Loop Constraints

As explained in Section 2.2.4, the system constraint equations are necessary for the
derivation of generalized constraint forces which physically mean the net torque
applied by the joint forces at the disconnected joint(s) about the rotation axis of the

joints.

On the other hand constraint equations are also necessary for writing the unactuated

joint coordinates in terms of the actuated ones.

Let the joint coordinates vector of the rigid links 6 =[4,,.....,6, ]T be separated into
two subvectors, which correspond to variables of the actuated joints @ (nx1) and

the variables of the unactuated joints 8" [(m—n)x1], respectively.

After the constraint equations of the manipulator when it is disconnected are written

A

as in Equation 2.34, (m—n)xm matrix B is constructed. However, when the

A

unactuated joint variables are written in terms of the actuated ones, matrix B is
subdivided into an (Mm—n)x(M—n) matrix B’ and (m—n)xn matrix B® as the
coefficient matrices of the joint variables to which they correspond. Hence, Equation

2.35 can be written as

BU9" = B (2.48)
17



One can solve for 5 Y as below

0" =Cg

where C is an (m—n)xn matrix and expressed as

é — _(éU)*l éa

Further differentiation of Equation 2.49 up to jerk level yields

18
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CHAPTER III

INVERSE DYNAMICS CONTROL

3.1 Task Space Equations

The control method to be used for the parallel manipulator which has m links and n
actuators at the joints is based on obtaining an equation between the inputs and the
outputs. The inputs for the robot manipulators can be joint torques/forces or voltages
supplied to the actuators. Since end effector position tracking is aimed in the control
problem, the outputs become the joint positions either in task space or in the joint

space.

When the commanded motion is specified in task space, then a relation ought to be

derived between the joint space coordinates and task space coordinates.

Let X ,i=1,..,n represent the Cartesian end effector position variables. Then the

functions that are used to relate each coordinate of the end effector to the joint

coordinates, ., j =1,...,m, i.e. so called task equations are written as

b J 9

X = f.(0,...0,) i=1,..,n 3.1)

where m is the number of coordinates as expressed in the joint space.

Taking one step differentiation of Equation 3.1 yields the following velocity

relation.
% =>T"6, i=1,...,n (3.2)
j=1
where
of.
r°" =— 3.3
1] 89 ( )
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Equation 3.2 can be written in matrix form as

X=1"0

where I'" is the nxm manipulator Jacobian matrix.

(3.4)

The manipulator Jacobian matrix derived in Equation 3.4 can be written in terms of

only the actuated variables by making use of Equation 2.49. Therefore the same

procedure is followed to find nxn matrix ™" and nx(m-n) matrix I as the

coefficient matrices of the joint variables to which they correspond. This can be

formulated as follows.

Factoring out the joint coordinates vector of the actuated variables gives
% =3

where J is Nxn manipulator Jacobian matrix expressed as

The Equation 3.7 is differentiated up to snap level as below.

%= Jg+ 36
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% = 3§ +23G+ 35 (3.10)

Hence,
'ﬁ':j’l('k_"—%—fq_'—fa) (3.12)

At this point, system equations of motion should be written in terms of the actuated
joint variables and the Lagrange multipliers should be eliminated by using the

constraint equations.

To realize this, first ' and &', i=1,..,(m—n) are eliminated by using the

Equations 2.49 and 2.51 from the Equation 2.43. Among the m number of scalar
equations obtained, the N number of equations that correspond to the actuated joint

variables can be written in matrix form as below.

M¥G+RG+Q%+ D*(G—9)+K(G-9)-B* 1=0 (3.13)
where

M?® is an nxn submatrix generated from symmetric generalized mass matrix

whose elements consist of all of the joint positions.

R*  isan nxn bias matrix whose elements consist of all of the joint position and

velocities.
Q*  isan nxl subvector of the mx1 Q vector that contains centrifugal, Coriolis
and gravitational terms.

D®  is an nxn matrix whose elements consist of the joint damping constants of

the actuated joints which can be expressed as
D? = diag[D,] i=1..n (3.14)
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K
actuated joints which can be expressed as

is an nxn matrix whose elements consist of the joint spring constants of the

K =diag[K;] (3.15)

B? is an (M—n)xn submatrix of the matrix B.
A is the (m—n)x1 vector of Lagrange multipliers.
The remaining m—n equations that correspond to the unactuated joint variables can

be written as below.

MUG+R'G+Q"—B“ 21 =0 (3.16)

where

matrix M whose elements consist of all of the joint positions.

is an (M—n)xn submatrix generated from symmetric generalized mass

RY is an (M—n)xn bias matrix whose elements consist of all of the joint

position and velocities.
is an (M—n)x1 subvector of the mx1 Q vector that contains centrifugal,

Qv
Coriolis and gravitational terms .

BY  isan (M—n)x(m—n) submatrix of the matrix B.
A is the (M—n)x1 vector of Lagrange multipliers.

As a second part of the elimination procedure, the Lagrange multipliers in the

equations are solved from Equation 3.16 as below.

(3.17)
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Then, the Equation 3.17 is substituted into Equation 3.13.

M G+RG+Q +D*(G—¢)+K(@-4)=0 (3.18)

In this way, the manipulator system in concern with constraints is transformed to a
system without constraints. In this final form of the equations of motion for the first
set of generalized coordinates, the unactuated joint variables at the acceleration and

velocity levels and the constraint forces disappear.

The matrix form of the equations of motion for the second set of generalized

coordinates, i.e. actuator variables are rewritten below for the sake of convenience.

A . = —

['$+D'¢-D*(G-4)-R@-¢)=T (3.19)

As far as the inverse dynamics control law is considered, one needs to obtain an
input-output relation using the equations of motion stated in Equations 3.18 and
3.19. Here, the inputs are the joint torques applied by the actuators and the outputs
are the task space positions of the tip point of the end effector and the orientation of
the end effector with respect to the fixed reference frame. In order to get a relation

between the task space location of the end effector and the joint torques, the
intermediate variables ¢ and @ should be eliminated. To facilitate the solution, the

following steps are followed.

Step-1 : Factoring out dissipative and inductive part of Equation 3.18.
D*(G-¢)+K@-9)=-[M"G+RG+Q"| (3.20)
Step-2 : Substituting Equation 3.20 into Equation 3.19.

f“5+[3r$+(M**ﬁ+R j+Q*):T_ (3.21)

G+Q =T (3.22)



Step-4 : Multiplying Equation 3.21 by K and Equation 3.22 by D%and adding them
up

Ki'g +KD'¢ + KM G+ KRG+ KQ + D" + D°D'¢ + D*M G + D*M
+D*R'G+D*R'G+D*Q" = D*T + KT (3.23)
In simplified form

I"(D% + Kg)+ D (D% +Kg)+ D* (M G+ MG +RG+RG+Q")

KM TG+ KRG+ KQ" = DT + KT (3.24)

Step-5: Factoring out dissipative and inductive part of Equation 3.18 associated with

actuator variables and taking time derivatives

5 Ké=M"G+RG+Q +D*q+Kq (3.25)
D% +Kp =M G+ M G+RG+RG+Q + DG+ Kg (3.26)
D% + KJ: M G+2M7G+M 7§ + R G+ 2R G+ IQG+(§ + D+ K§ (3.27)

Step-6 : Multiplying Equation 3.24 by K™

A ~r

K0 (D% + (;7) K D(635+K¢7)+K*‘[§a(|\/‘|
+M G+RG+Q" +

K
=[K“6a]f+f (3.29)
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In rearranged form

K
=[K"D? T+T (3.30)

equations 3.1, 3.7,3.9 - 3.11.

3.2 Control Law

Equation 3.31 gives a relation between inputs and outputs after the elimination of

the intermediate variables ¢ and . This equation can be written in more compact

form as

NX)X +P(X,X,X,X)=T +$T (3.32)
where

N=K''M"J" (3.33)

25



(3.35)

The basic principle of inverse dynamics control is to find a control input vector

which will linearize and decouple the Equation 3.32. Therefore T + $T is chosen as
T+$T=Nu+P (3.36)
Then Equation 3.32 yields

X =U (3.37)
where U is nx1 control input vector that represents the command snaps.

In the inverse dynamics solution, matrix S has to be inverted. If the matrix D?
which contains damping constants at the active joints is not invertible, then some
entries of the diagonal matrix S become zero and this leads matrix S to be singular.
To overcome this problem, the Equation 3.36 can be written as n number of scalar
equations. The equations in which the S matrix entries are zero give directly the
corresponding torques. On the other hand, nonzero entries cause the appearance of
the torque rates in the equations. In this case, the torque rates are numerically

integrated and the remaining torque values are calculated.
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3.3 Position Error Dynamics

New control variable U can be chosen by using the error states as
T=%¢+C, X =%)+C,(X =%)+C,(X* =%)+C,(x* —7)+ésj(7d —x)dt  (3.38)

where the superscript d is used for the desired values and éi , 1=1,...,5 are diagonal

feedback gain matrices.

When Equation 3.38 is substituted into Equation 3.37, the following linear error
dynamics is obtained after the computed torques are applied on the system without

considering any modeling error or disturbance.
& +Cj§,+C8,+C8,+Cig, +C,[e,dt=0 (3.39)

where € is the vector of errors describing how much the system is deviated from its

actual task position and can be expressed as

g =x"-X (3.40)

p

Asymptotic stability is achieved by an appropriate selection of the feedback gains.
For this purpose, pole placement technique or some norms like ISE, ITAE, IAE, etc.
can be utilized. In this study Integral of Time Multiplied by the Absolute Value of

Error (ITAE) performance index is used.

This performance index has such an effect that the weight of the absolute error
decreases as the time goes by. Therefore at the small values of time, the errors

become large and as time increases, the absolute error gets smaller.

In general, the characteristic equation of a feedback control system has the form
s"+C,s""' +C,s"? +...+C,. The coefficients for the fourth and the fifth order

systems are given according to ITAE norm as in Table 3.1.
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Table 3.1 Feedback Gains

Feedback Gains | Without Integral Control | With Integral Control
C, 21w, 28w,
C, 340, 5.0w,
C, 270, 550,
C, w,’ 34w,
C, - w,’

where @, 1s a positive constant value.

System poles for the fourth order system are obtained by using ITAE norm as

P, = —0.42400, + j1.2630, (3.41)

P, 4 =-0.62600, £ j0.414 1w, (3.42)

Similarly, system poles for the fifth order system are

P, =—0.3764, + j1.29200, (3.43)
p, =—0.89550, (3.44)
p,s = —0.5758a, * j0.5339a, (3.45)
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CHAPTER 1V

THE CONCEPT OF SINGULARITY

4.1 Singularity in Manipulators

Singularity in both serial and parallel manipulators is a very significant issue since it
creates some singular configurations for the manipulators. These are defined to be
configurations when manipulator Jacobian matrix in Equation 3.7 has less than full
rank. Physically, these configurations correspond to situations where the joints have
been aligned in such a way that there is at least one direction of motion for the end
effector that physically cannot be achieved by the mechanism just because of the
extended or folded positions of the links. Singular configurations occur at workspace
boundaries for the serial and parallel manipulators and inside the workspace volume
only for the parallel manipulators due to their closed loop structure. When the axes
of two or more joints line up and consequently the links are in extended or folded

positions, another end effector degree of freedom gets lost.

All robotic manipulators have singular configurations. In other words, the existence
of singularities cannot be eliminated even by careful design. For this reason,
singularities are a serious cause of drawbacks in robotic analysis and control to be

handled only by a proper trajectory generation.

Motions have to be carefully planned in the region of singularities to avoid them.
This is not only because at the singularities there will be an unobtainable motion at
the end effector, but also because many real time motion planning and control
algorithms make use of the manipulator Jacobian. For the reasons above, the
analysis of singularities is an important issue in robotics and continues to be the
interest of research. In the following sections the types of these singularities will be

explained in detail.
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4.2 Types of Singularities

Since this study covers the analysis of parallel manipulators, the following two
sections will explain the singular cases that the researchers come across most

commonly.

4.2.1 Drive Singularity

As previously stated, the closed loop structure produce a special type of degeneracy
to the parallel manipulators which can be called drive singularity, where the motion
control ability becomes lost and the actuator forces grow unboundedly. Since some
of the joints are unactuated, at certain positions the actuators of the system may
become unable to control the moving platform. As the system approaches to a drive

singularity the actuator forces grow without bounds. [6]

Therefore the studies related to the drive singularities mostly aim at finding only the
locations of the singular positions for the purpose of avoiding them in the motion
planning stage.

Drive singularity occurs while solving for the actuator forces. At a drive singularity
the actuators cannot realize the assigned snap values and influence the end effector

snaps. Consequently they lose control in one or more degrees of freedom.

In this study, the condition where drive singularity prevails is obtained by using the

equation below as stated in [6].

det(B") =0 (4.1)

where BY is (m—n)x(m—n) matrix composed of the columns of the coefficient

matrix B as explained in Chapter II.
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4.2.2 Inverse Kinematic Singularity

Inverse kinematic singular configurations exist for both parallel and serial

manipulators when the desired motion is expressed in Cartesian reference frame. For

the prescribed X, G can be calculated using Equation 3.12, q from Equation 3.10,

q from Equation 3.9,  from Equation 3.7 and finally @ from equation 3.1.

However during this inverse kinematic solution, this type of singularities takes

place.

To implement this fact, let an mxm matrix [ is defined as

r {AB } (4.2)
FP

which is composed of (m—n)xm matrix B and nxm matrix [ as described in

Chapter II and III.

Then the condition where inverse kinematic singularity prevails is obtained by using

the equation below as derived in [6].
det(I) =0 (4.3)

The condition above leads to a few singular configurations that affect the links being
extended or folded positions. As a result of that some of the joint positions become

undistinguishable.
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CHAPTER V

CASE STUDY AND SIMULATIONS

5.1 Case Study

In this chapter, a planar parallel manipulator is considered as a case study in order to
check out the performance of the control law. Parallel manipulators are generally
classified with respect to their number of legs and type of joints that these legs have
beginning from the fixed base to the moving platform. The parallel manipulator to
be analyzed has two legs and each of them has three revolute joints from the fixed
base to the moving platform. Therefore it is said to be 2-RRR planar manipulator

which is shown in Figure 5.1.

X

Figure 5.1 2-RRR Planar Manipulator with Three Flexible Joint Actuation

This planar parallel manipulator has six links including the fixed link and six

revolute joints. It is actuated by three actuators located at A, B and C whose joint
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variables are 6,6, and 6&,. The rotation axes of the joints are perpendicular to the

plane of motion. The manipulator is a three degree of freedom one excluding the
additional degrees of freedom that arise due to the flexible joints. Considering three

flexible joint actuation, the degree of freedom of the system increases to six.

The viscous damping of the actuators and the torsional damping characteristics of

joints are considered in the system.
In the following sections, the Lagrangian formulation of the manipulator is going to
be derived to find the system equations of motion as explained in Chapter II. Before

that the sets of generalized coordinates need to be defined.

Let the sets of the generalized coordinates corresponding to the manipulator

variables and actuator variables be defined respectively as
61:{01,92,6’3,84,6’5} (5.1)

G, :{¢1,¢2,¢3} (5.2)

Then vector of manipulator variables of the rigid links become
o=[6 6, 6, 6, 6] (5.3)

which is subdivided into vector of actuated and unactuated joint variables as

q=[6 6 6] (5.4)

6" =[6, 6] (5.5)

and vector of actuator variables of the flexible joints turn out to be

o=[¢ ¢ o] (5.6)
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Since five joint variables are assigned, i.e. m=5 and degree of freedom of the
manipulator excluding the additional degree of freedom caused by flexibility is
three, i.e. N=3, one need to disconnect the joint at Point-F and get two open
kinematic chains and therefore two constraint equations associated with this
disconnection. These open chains with the unit vectors assigned to the links and

actuators are illustrated in Figures 5.2 and 5.3.

Figure 5.2 Open Kinematic Chain-1

In both of the figures A, i =1,2 show the forces applied at the disconnected joint in

horizontal and vertical directions physically.
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Figure 5.3 Open Kinematic Chain-2

5.1.1 Kinetic Energy Expressions

Angular and translational velocity components that lead to the kinetic energy

expressions are going to be written firstly.

Link-1:
R =2 @0 +Ts0) (5.7)
-0
V. O =—fF© :h(—aseé +0,c06,) = Licod (5.8)
G, G, 2 1°Y1Y 2vU1Y) B 1”1 ’
0
0
o =00, =0 (5.9)
6
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Link-2:

Ef”Z%E+%f@E@+Uﬁ%) (5.10)
—%5029'2
/ (0) _ & (0) L2 T ] T ] L2 ]
Vo, =T, = 7(—U1892(92 +U,¢0,0,) = 7&9292 (5.11)
0

0

,” =0,u, =| 0 (5.12)
0,

Link-3:

B = L (66, +T80) + 2 (@00, +0,50,) (513

i . .
_Llselgl - % S9136’13

— . e . L, S ; ; :
VG3(0) = rG3(0) =L (-U;s6,6 +U2C6)1‘91)+?3(_u13913€13 +0,€0,,0,,) =| Lcoo, +%(:6)13913

0
i |
(5.14)
0
0, =0u,+6,u,=| 0 (5.15)
O
Link-4:
- (0) _ — — — L4 — —
I, =db +L,(Uch, +u236?2)+7(ulc¢924 +U,86,,) (5.16)
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_ L i
-L,s6,6, —?45924624

\764(0) = r;GA;(O) =L, (_Ulsgzéz + Uzc‘gzgz) + %(_Uls‘gmém + U2C924924) = ch‘gzgz + ﬁcgﬂém

0
) (5.17)
0
o.” =0,u,+6,u,=| 0 (5.18)
924
Link-5:
5" = L(U,CH, +U,56) + Ly(U,CO,; +T,560,,) + Q5[U,C(055 + B) + T,5(6,55 + )] (5.19)

Vo, =10 =L, (-U;s6,6, +U,c00,) + L, (-056,,0,, + U,c0,,6),)

_Llsglél - L33‘9136’13 - 953(0135 +ﬂ)6}135
+0; (_Uls(ems + ﬂ)ems + U2(:(9135 +ﬂ)9135) = L1C‘91‘91 + |-3C013‘913 + gsc(elz.s + ﬂ)‘9135

0
(5.20)
0
o," =00, +0,u,+0,u,=| 0 (5.21)
9135
Actuator-1:
VA=0 (5.22)
— A
o= 0 (5.23)
né

37



Actuator-2:

V,A=0 (5.24)
0
o, = 0 (5.25)
r2¢2
Actuator-3:
_Llselél
V' =| Ledg (5.26)
0
0
o= 0 (5.27)
r3¢3

The kinetic energy expressions are obtained by substituting the translational and

angular components into Equations 2.9 and 2.20 as follows

1 L |—12 A2

KE, =5[m1 T+ l,,.16 (5.28)
1 L L22 3 2

KEL, =5 [m," =+ 1,16, (529)

1 o1 S 1 2 ..
KEL3 = Em3l_|-12012 +Em3LL|L3C(‘91 _913)91 (01 + 93)+5[m3|_ %+ I3zz](01 + ‘93)2
(5.30)
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In expanded form

1 . 1 . 1 .1 2 )
KEL3 :EmaLleelz +§m3LL|L3C(_93)012 +Em3L|—|Lac(_‘93)61‘93 +§[m3L LST"‘ I3zz ]‘912
2 2
+[m3L L37+ |322]9.10.3 +%[m3L L37+ I3»zz]9.32 (531)

1 1 L,

. . . 1 . .
KE,, = Em4L|_224922 +5m4LLz L,c(6, - 6,,)0, (0, +94)+5[m4L %+ .16, +6,)

(5.32)

42z

In expanded form

2
KEL4 = % m4L L220'22 + % m4L Lz L4C(_94 )922 + % m4L Lz L4C(_94)9294 + %[m4|— % + I4zz ]922

L |—42 o Wa 1 L |—42 A 2
+m, T+I4ZZ]9294+E[m4 T+I4zz]c94 (5.33)
1 Ly 2/)2 1 Ly 2/ 3 \2 1 Ly 2 ; . 3 \2
KEL5=Em5 |_| 01 +Em5 L3 (91+93) +E[m5 95 +|Szz](91+03+05)
+m5LL1L30(6?1—913)91(6?1+93)+m5Lngsc(61—0135—ﬂ)91(91+93+95)
+m5LL3gsc(913 -0, =56, +6,)6, +06,+0,) (5.34)

In expanded form

1

KELS = EmsLIﬂzélz +%m5LL32912 + m5L|-329193 +%m5LL329.32 "’%[mngsz + ISzz ]912
1 . 1 . .. ..
"'E[rnsl_gs2 + |522]632 "'E[n']sl_gs2 + I5zz ]052 +[m5L952 + |522]6193 ""[msl_gs2 + I5zz ]9105

+Hmtgs” + 1, 10,0 + m L L,c(=6,)67 + mi"L L,c(—6,)0,0, + m" L g,c[-(6, + 65 + )] 6]
+m;"L,g,c[—(8, + 0; + £)] 6,6, + m"Lig.c[~(8, + 6, + B)] 6,6, + m Lg.c[—(6; + B)]6]
+m,"L,g,¢[-(0; + £)]6,0, + m"L,a,c[-(6; + )] 6,6 + m,"L,g,c[(6; + )] 06,
+my"L,gsc[—(6; + B)]6,* + m-L,g.c[—(6; + )] 0,6, (5.35)
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1 -

KE,, :E[nzl 1zz]¢12 (5.36)
1 -

KE,, :E[rzzl 212]¢22 (5.37)

KE,, = %[m;‘l_f +17,.167 +%[r3zl ", 147 (5.38)

It is clear that total kinetic energy is the sum of all the kinetic energy contributions

of links and actuators and can be formulated in simplified form as below.

2 2
K :%912 {[mlL LTI+ Ilzz]+ m3LI—12 + m3LL1LSC(_93)+[m3L L37+ I3zz]+ rnSLLI2

+my L7 +[mg g7 + L, 1+ 2mt L Le(=6,) +2m "L g,c [~(6, + 6, + B)]
) l - L}
+2m,"Lyg,c[—(6; + B)]+[m L7 + 17, ]} +§622 {[mzL Tz+ l,,]+m,"L’
2

2
+m4LL2L4C(_04)+[m4L %—F I4zz ]}4—%0‘32 {[m3L L37+ I3zz]+ mSLL32

1 .
+[mngs2 + ISzz]+ stLL3gsc[_('95 +ﬂ)]} +56’42 {[m4 T+ I4zz]}

1 32 Ly 2 3 ) L 1 L L32
+5‘95 {[ms 95 + ISzz}+0103{m3 ELll-}C(_03)+[m3 T"‘ |3zz]
+m."L2 +[mg + 1, 1+ mL Le(=6,) + m. "L g.c[—(6, + O, + B)]
+2m, L, g,c[~(0; + )1} + 0,0, {Im 9 + 15,1+ M L g ,c[(6; + 6, + )]
ML gse[~(0, + B)1} + 0,6, (I g5” + 1, 1+ M Lgec[-(6; + B

.1 L’ 1, ‘
+92€4 {5 m4LL2 L4C(_‘94)+[m4L%+ I4zz]}+5¢12 {[rlzl lzz ]}

+%¢22 {[rzzl r222 ]} +%¢32 {[r32| I'3zz ]} (539)
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Therefore Lagrange components related to kinetic energy are obtained as

2 2
%(2; j = 01 {[mlL LTl—i_ Ilzz]+ m3L|‘12 + mSLLlLSC(_93)+[m3L Lj- + |322]+ m5L|‘12
1

+m,"L2 +[mg” + 1, 1+ 2mt L Le(=6,) + 2m, L g.c[—(6, + 6, + B)]
+2m,"Lyg.c[~(0, + )+ [ L7 + 17, 1} + 6, {m, % Lc(-6,)+[m," LST2+ 1,1

o]+ ML LC(=6,) + ML g.c[—(6, + 6, + B)]

+2m"L,g.c[~(0, + A1} + 6, M- + 1,1+ m L gsc[~(0, + 60, + )]
+m,L,g,c[-(6; + A)]} (5.40)

L 2 L 2
+m, L7 +[mgs" + |

d( oK ” L2 L2
—| == |=6,{[m"" = +m,"L,° +m,"L,L,c(—6,)+[m," =+
dt(@&’zj 2{[ 2 4 Zzz] ( ) [ 4 422]}

2
+é4 {%m4LL2L4C(—94)+[m4L%+ |4ZZ]} (5.41)

dfoK_; |_3 |_ )
dt(ag}}—ﬁg{[ s + 1y, J+m L2 +[m g’ + 1, 1+ 2mtLygse| (95+ﬁ)]}

2
+é] {mSL % LSC(_93)+[m3L %+ I3zz]+ mSLL32 +[m5L952 + |522]+ mSLL1L3C(_93)

+M, L, ,[—(6, + 6, + B)]+2m"L,g.c[~(6; + B} + 6, {[m 94" +1,,]
+m,L,,c[—(6; + B)]} (5.42)

d (oK) 5[ L2 L
a(@—@j—@4{[m4 4 + 422]} 9{ m LLC( 9)+[m 4 I4ZZ]} (543)

gt [ oK ] M0 + 1]+ {10, + 1,y T+ ML GE[(6, +0,+ )]
+m5L|_395C[—((95 +ﬂ)]} + 9; {[msl-gs2 + |SZZ]+ m5LL395C[—(95 +ﬂ)]} (544)
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d(oK) o ( a0
a(a—éjwﬁl{n "} (5.45)

d(K) (s
E(a_@]:@{rz 1,0} (5.46)

d(oK) (.,
a(é_@]:%{r} I 322} (547)

Ko (5.48)

X o (5.49)

0 =% M LLS(=6,) + 2m L LS(=6,) +2m, L g S[~(6, + 6, + )]}

+‘9193 {% m3LL1 L38(—¢93) + msLLl L3$(—93) + msLngss[_(03 + 05 +ﬁ)]}

+0,0,{m L g S0, + 6, + B} (5.50)
oK 1., |
8—94:5022m4LL2L4s(—<94)+6?2945m4LL2L4s(—04) (5.51)

g_g = ‘912 {mSLngss[—(t% +05+ p)]+ m5L|_3gSs[—((95 +ﬂ)]} +9'32 {m5L|-3955[—(t95 +ﬁ')]}

5

+6,60, {M,"L,9S[~(0, + 0, + )]+ 2" Lyg,s[—(6; + A)]} + 6,6, {m L g,s[—(6, + 6, + B)]
+mg"L,g.S[~(6; + B1} + 6,0, {m "L g,s[-(6; + B)]} (5.52)
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K _,
o4,
x* _,
0,
o _

=0
¢,

5.1.2 Potential Energy Expressions

(5.53)

(5.54)

(5.55)

Potential energy contributions for each of the links and actuators are formulated as

PELI = m1Lg(%391)
Iy
PELZ =m, 9(7592)
L L
PE ; =m, g(L;s6 + 5 s6,,)
L L,
PEL4 =m, g(LZSl92 +73‘924)

PELS = mng [Llsel + I-35913 + 955(9135 +ﬁ)]

1
PEAI = E K1(¢1 - 91)2
1 >
PEAZ = E K2(¢2 - 92)

1
PE,, =3 K,(g,—6,)" +m g(L;sh)

43

(5.56)

(5.57)

(5.58)

(5.59)

(5.60)

(5.61)

(5.62)

(5.63)



Total potential energy of the system is
U= mng(%sel) +m,"g(L,sé, +%s€13)+ ms"g[L,S6, + Lis6,; + 955(6,55 + B)]
Ly L L T w—0y+ ik -0y
+m2 9(2 802)+m4 g(LZSQZJF 2 3924)+2K1(¢1 91) +2K2(¢2 02)
1
+5K3(¢3 _‘93)2 +m3Ag(L1301) (5.64)

The Lagrange components associated with the total potential energy of the system

are written as

oU
=M g cf,+m gLt + 200, + MG [Led, + Lol + 5:6(0s + )]
1
~K,(¢,-6)+m,"gL,cq (5.65)
oU L L
~n mZLg(—2c62)+ m4Lg(L2C'92 +_4C‘924)_ K2(¢2 _‘92) (5.66)
00, 2 2
oU
% = m3Lg(%C013)+ mng [L3Cl913 + 950(9135 +ﬂ)]_ K3(¢3 _‘93) (5.67)
3
oU L L
6—6’4=m2Lg(7206?2)+m4Lg(L2c(92 +74c¢924) (5.68)
oU
—-=m"g [gsc(ews +ﬂ)] (5.69)
00.
oU
" K, (¢ —0) (5.70)
oU
a_¢2:K2(¢2_‘92) (5.71)
oU
T Ks(4—6;) (5.72)
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5.1.3 Dissipation Function Expressions

As mentioned in Section 2.2.3 dissipation functions for the actuated joints,

unactuated joints and rotors are described as

a 1 . . 1 . . 1 . .

D :EDl(Hl_¢1)2+ED2(92_¢2)2+5D3(‘93_¢3)2 (5~73)
u 1 3 2 1 A 2

D= D6, +— Dbk (5.74)
r_1 r 2 ;2 1 r 272 1 r 22

D —EDln ¢1 +§D2r2 ¢2 +ED3r3 ¢3 (5-75)

However there is also viscous friction at the disconnected joint when it is

reconnected and the dissipation function for the disconnected joint can be written as
o _ 1 s 45y
D :ED6(94—6’5) (5.76)

Therefore the dissipation function of the whole system is the sum of all of the

individual contributions.

1 . 1 . 1 . 1_ . 1 . 1 .
D :5 D1(91 _¢1)2 +E D2(92 _¢2)2 +E D3(‘93 _¢3)2 +5 D4‘942 +E Ds‘952 +ED6(94 _‘95)2
#2 DG DT+ DI (5.77)

Lagrange components are written as

oD . .
=00 (578)
oD .
8_9'2 - Dz (92 _¢z) (5-79)
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oD .
8_9'3: D3(‘93 _¢3)

oD . . . .
% =D,0, + D4 (0, - 65) = (D, + D;)6, — D0

4

oD

5

oD L .
a_éz_Dl(Hl _¢1)+ D 1r12¢1

oD . o
a_éz_Dz(ez_(éz)‘*‘ D 2I’22¢2
oD . .
8_¢3:_D3(93 _¢3)+ D 3I’32¢3

5.1.4 Closed Loop Constraints and Generalized Force Equations

38" D.6, — D, (6, —6,) =-D,0, + (D, + D,)b,

(5.80)

(5.81)

(5.82)

(5.83)

(5.84)

(5.85)

As mentioned previously, there should be two constraint equations when joint at

Point-F is disconnected.

At the position level these constraint equations can be written as in Equation 2.33 as

Lcd +L,.cd, +L,co,, —L,co,-L,co, —d, =0

L,s6, + L;s6,;, + LsO,s — L,s6, —L,86,, =0

which lead to the following velocity level constraint equations.

_Llselél - L38013(61 +93)_ L539135(91 + 93 +95)+ L239292 + L45924(92 +‘94) =0

L,cO,6, + Lo, (6, +6,)+ L.cO (6, + 6, +6,)— L,co,0, — L,ch,,(6, +6,)=0
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(5.87)
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Velocity level constraint equations can be written symbolically as

B,6 +B,0,+B.0,+B,0,+B.6 =0 (5.90)
B, 6, +B,,0, +B,.6,+B,,6, +B,0, =0 (5.91)
where

B, =—L,s6 —L,s6,, — Lsé;; (5.92)
B, =L,s6, +L,s6,, (5.93)
B, =-L,56, — LSO, (5.94)
B, = L,s6,, (5.95)
B, = L6, (5.96)
B,, = Lich, + L,ch, + L.co,;; (5.97)
B,, =-L,c6, - L,co, (5.98)
B,, = L,c6,, + L,c;, (5.99)
B,, =-L,co,, (5.100)
B,s = LsCOys; (5.101)

Factoring out the unactuated joint variables gives

: . 6
|:0'4:|:_|:Bl4 BIS:| |:Bll BIZ Bl3:| 9; (5.102)
0, B, By B,, B, B, 0
3
This leads to
0" =C,.§ (5.103)

Therefore generalized constraint forces are found by arranging the velocity level

constraint equations according to Equation 2.40
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where

[ —L,s6, — L,sO,, — LSO,
L,s6, +L,s6,,

L.co, +L,co, +L.co,
-L,co,-L,co,,

(5.104)

Non-potentialized forces are found by Equations 2.31 and 2.32 for the link variables

and joint variables respectively as

Q~1=6

62:-F

5.1.5 System Equations of Motion

(5.105)

(5.106)

The system equations of motion corresponding to the first set of generalized

coordinates in matrix form are obtained as

M, 0 M, 0 M
0 M,, 0 M., 0
M13 0 M33 0 M35
0 M., 0 M, 0
_MIS 0 M35 0 |\/|55

where
LZ
|\/|11 :[m1LTl+ I1zz

61 [Q] [Da
6,| |Q| |Da
6, |+| Q, [+| Da; |+
6, |Q| |Da,
6] Q] [Da]

2

st

St,

st, |-

St
St

oS O O o O

L
J+mL7 +m, L Lco, +[m3LT3+ I, ]+mL> +m L’

+[m5L952 + ISZZ]+ ZmSLL1L5C93 +2m5LngSC(93 + 95 +ﬂ)+2m5LL’595C(95 +ﬂ)

Ay 2
+Hm, L+ 17,1

2

M13 :%m3LL1L3063 +[m3LLTS+ I3zz]+ msLL32 +[m5Lg52 + Iszz]+ msLL1L3C63

+m."L,g.c(6, + 6, + B)+2m."L,g.c(b; + B)
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MIS = [mSLgSZ + ISZZ]+ mSLngSC(93 +65 +ﬂ)+ mSLL395C(95 +ﬂ) (5110)

2 2
M22:[mZLT+Izzz]+m4L|_22+m4'-|_2L4c¢94+[m4L%+I4ZZ] .111)
1 . L’
M24=Em4 L,L,co,+[m, T+I4ZZ] (5.112)
L L32 Ly 2 L 2 L
M, =[m, T+I3ZZ]+m5 L," +[ms g5 + 15, ]+2m,-L,g.c(6; + B) (5.113)
My =[ms"gs* + 1, 1+ m Lyg,c(6; + B) (5.114)
LZ
M44 :[m4LT4+I4zz] (5.115)
Mss :[mngsz"' ISzz] (5.116)

L
Q=900+ (L s, +206,) + Mg [Led, + Lol + 6.0(0s + )

+m,*gL,c (5.117)
Q, :mng(%c02)+m4Lg(L2c92+%c924) (5.118)
1

Q, =5912 [ ML LsO, +2m, L LysO, +2m, L g,s(6; + 3) |
.1
+6,0, [5 m,"L, L,sé, + m,"L, L,sé, +m, L, g,s(0; +ﬂ)}

+6,6; [ ML g;5(6,, +ﬂ)]+m;g(%cemwm;g[gceu +9:C(05+B)]  (5.119)

Q, :%922m4LL2 L,sé, +6'?20'4%m4LL2 L,s6, + m;g(%cezﬁ m,“g(L,cé, +%c€24)
(5.120)

Q =607 [ ML gss(0y + B)+ M L, g.8(0s + ) |+ 6, m" Lyg,s(6, + B)

+6,0,| ML g,5(0y + B) +2m"L,g;S(6; + B) |+ 6,6, m"Lgs(6y + B)

+M, L, 0s5(0; + B) |+ 6,0,m"L,g.5(6; + B)+ M, g [9:C(Oyss + B)] (5.121)
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Da, = D1(Q _¢1)

Da, = Dz(éz _¢2)

Da, = D3(93 _¢3)

Da, = (D, + D6)94 - D695

Da, = -D,0, + (D, + D, )6,

St =K,(6 -4)

St, =K, (6, -¢,)

St; = K, (6, - ¢,)

St, =0

St, =0

(5.122)

(5.123)

(5.124)

(5.125)

(5.126)

(5.127)

(5.128)

(5.129)

(5.130)

(5.131)

The system equations of motion corresponding to the second set of generalized

coordinates in matrix form are obtained as

|11 0 0 ¢1 Dr1¢1 D1(91 _¢1) KI(HI _¢1) Tl
0 Izz 0 (Zz + Drz¢2 - Dz (‘92 _éz) - Kz (92 _¢2) = Tz
0 0 |33 é3 Dr3¢;3 D3 (03 _¢3) K3 (93 _¢3) T3

where [ =diag[l,"r*] and D" =diag[D,"r*] for i =1,2,3.
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In order to get a generic form of equations of motion corresponding to the first set of
generalized coordinates, one needs to eliminate the unactuated joint variables and
constraint forces. When constraint equation substitutions and manipulations are done
as explained in Chapter-I1I, equations of motion in matrix form are obtained as in

Equations 5.133 and 5.135.

A

MG +RG+Q* +D*(G-4)+K(@-4)-B* 2 =0 (5.133)

where

M® and R? are 3x3 matrices whose elements are given in Appendix B.

Q
Q" =|Q, (5.134)
Q,

and D® =diag[D,], K =diag[K,] for i=1,2,3.

A

MG +R'G+Q" —B 21 =0 (5.135)

where

M"" and R" are 2x3matrices whose elements are also given in Appendix B.

_ Q,
v = 5.136
-2 513

The vector of Lagrange multipliers in Equation 5.135 is solved and substituted into
Equation 5.133 in order to be eliminated. Therefore the final form of the equations

of motion for the first set of generalized coordinates are written as

M G+RG+Q +D*(G-4)+R@-4)=0 (5.137)
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M =N - B (B )“ M (5.138)
R' =R -7 (8 )_1 RY (5.139)
_ _ PUE Y2

Q' =Q-87(8") Q (5.140)

Finally input/output relation is obtained as the same as in Equation 3.32 when all

manipulations are done as described in Chapter-II1.

The task equations of the parallel manipulator in concern consist of the position of

the tip point as expressed in the fixed reference frame and the orientation of the fifth

link with respect to the fixed reference frame.

Tip point position:
R =L, (Uch, +1,50) + L, (UcH, +U,56,,) +d, (U,c(0,,s + @)+ U,5(8,5s + ) (5.141)

X = L,c6, +L,cd, +dsc(6,,5 + ) (5.142)
Yo = LSO, + L6, +d;s(6,5 + ) (5.143)

Orientation of link-5:

o=0, (5.144)

The 3x5manipulator Jacobian matrix is formed by one step differentiation of the

position level task equations.

Tip point velocity:
Xp = —L,86,6, — L;36,,6,, —d55(6,5s + @)b55 (5.145)

Yo = LiCO6, + L,6,0,; +sC(6)y; + )0 (5.146)
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which lead to

[—Llse1 -Ls6,-ds(0,+a) 0 -LsO,-d.5(0+a) 0 —d,S(f +a)}§ ~ [xp}

Lco +Lch,+dc(s+a) 0 Lcb,+dec(G+a) 0 die(fy;+a) Yo
(5.147)

Angular velocity of link-5:

G =0, (5.148)

This leads to

[1 01 0 1]|6 |=[5] (5.149)

u-%' 4;%' w%' I\J%. -

The task equations written for the tip point positions in horizontal and vertical
directions constitute the first two rows and the task equation written for the
orientation of the fifth link represents the third row of Jacobian matrix. Therefore
considering the Equation 3.4 the Jacobian matrix and the vector of task space

velocities turn out to be as below.

-LisO - 15O, —dss(@s+a) 0 -Lish,—dss(Gys+a) 0 —dis(f55+a)
[P =| Leg +L,e6, +dic(fs+a) 0 Ly +dC(Gy+a) 0 dic(G5 +a)

1 0 1 0 1
(5.150)
%] [%
X=|% |=| Y, (5.151)
% | |6
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5.2 Singularity Analysis

In this section, singular configurations of the parallel manipulator in Figure 5.1 will

be derived as described in Chapter IV.

5.2.1 Drive Singular Configurations

Referring to Equation 4.1,

L4S‘924 —L539135

det(B") =
( ) _L4C‘924 Lscews

= L4 Ls [5924(:9135 - C92450135] = I-4 Lss(‘924 - ‘9135) (5-152)

Thus, singular configurations occur when s(6,, —6,,5) = 0. That means, there exists

two cases as

Case-I: 0,,-6,,, =+nx n=13,5..

As a result of the case-I condition, link 4 and link 5 become extended inside the

functional workspace as shown in Figure 5.4.

Figure 5.4 Drive Singular Configuration (Case-I)
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Case-1I: 0,,—0,; =*nx n=0,2,4..

As a result of the case-II condition, link 4 and link 5 become folded inside the

functional workspace as shown in Figure 5.5.

Figure 5.5 Drive Singular Configuration (Case-II)

As it can easily be inspected, drive singular configurations for the parallel
manipulator in concern cause that the angular position of the link 4 with respect to
the fixed reference frame and the angular position of the link 5 with respect to the

fixed reference frame become undistinguishable.

5.2.2 Inverse Kinematic Singular Configurations

Referring to Equations 4.2 and 4.3, matrix I is constructed as

_Llsel - L351913 - L559135 L2892 + L4S6’24 —L35913 - L559135 L45624 —L550135
LICHI + L3C013 + L509135 _chgz - I-40‘924 Lscels + L509135 _L4C624 L5C9135
R A I s
L,co, + L,c6,, +d.c(6,55 + @) 0 L,c6,, +d,c(6,;5 + ) 0 dsc(6,5+ @)
1 0 1 0 1

(5.153)
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~ 1
det(I') = - LLLL,[c(E +6,—6,-6,)—c(-6,+6,,+6,—-6,)] (5.154)
det(I") = —%Ll L,L,L,[c(6, -6,)—c(8, +6,)] (5.155)

Using the trigonometric identity sin A.sin B =[cos(A—B)—cos(A+B)]/2,

det(l") = —% LL,LL,[256,56,]=-LL,LL,[s6,56,] (5.156)

Thus, singular configurations occur when s@, =0 or s@, =0. That means, there

exists four cases as
Case-1: 6, =+nzr n=13,5....

As a result of the case-I condition, link 1 and link 3 become folded as shown in

Figure 5.6.

Figure 5.6 Inverse Kinematic Singular Configuration (Case-I)
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Case-1I: 0, =tnz n=0,2,4..

As a result of the case-I condition, link 1 and link 3 become extended as shown in

Figure 5.7.

Figure 5.7 Inverse Kinematic Singular Configuration (Case-II)

The conclusion to be drawn from the cases I and II of the inverse kinematic singular
configurations for the parallel manipulator in concern is that the angular position of
the link 1 with respect to the fixed reference frame and the angular position of the

link 3 with respect to the fixed reference frame become undistinguishable.

Case-III: 0, =+nx n=13,5....

As a result of the case-III condition, link 2 and link 4 become folded as shown in

Figure 5.8.
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Figure 5.8 Inverse Kinematic Singular Configuration (Case-III)

Case-1V: 6, =tnz n=0,2,4...

As a result of the case-IV condition, link 2 and link 4 become extended as shown in

Figure 5.9

7 X 7

Figure 5.9 Inverse Kinematic Singular Configuration (Case-IV)
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The conclusion to be drawn from the cases III and IV of the inverse kinematic
singular configurations for the parallel manipulator in concern is that the angular
position of the link 2 with respect to the fixed reference frame and the angular
position of the link 4 with respect to the fixed reference frame become

undistinguishable.

In this study, planar parallel manipulator under analysis tracks a trajectory in task
space such that it is not around or at any of the singular configurations that were
derived in Section 5.2. Instead of this, they are avoided with a proper trajectory

planning.

5.3 Simulation Environment

In this section, the performance of the control law explained in Chapter-III is
checked by using Matlab® and its one of the integrated tools Simulink®™. Simulink®
is a software package for modeling, simulating and analyzing dynamic systems [18].
It is user friendly modeling software and a tool that is adaptable to any problem with

its rich feature set and powerful numerical algorithms.

Using Matlab® and Simulink® made almost everything easier in this study since
most of the complicated equations in this study have been expressed in matrix form.
Moreover, the initial conditions that are defined before the simulation runs can be

altered to see the manipulator behavior in different positions.

The Simulink® models consist of some levels in hierarchy. These are arranged from
the lower levels to upper ones. Some of the Simulink® blocks make up a subsystem
and these subsystems form another subsystem at one step upper level. This situation
goes on till finally these subsystems constitute the main system at the top level
which governs the lower levels. This feature make the programmer feel free and

easy since some of the blocks are directly related to this feature.

When it comes to the simulation, some parameters are necessarily introduced to the

system before it runs. These parameters are of two kinds. First type of parameters is

59



the constant parameters like damping and spring constants of the joints, inertias of
the rotors and feedback gains coming from the control norm. For this kind of
parameters an m-file called parameter.m was written and loaded to the workspace at
the beginning. This file is changeable depending upon the integral control is
included in the analysis or not. Any other constant parameters were written in the
relevant m-files. The second type of parameters is called the configuration
parameters consisting of the parameters required for Simulink® itself. Solver

options and simulation time are of this kind.

In the simulations of this study, among the two types of solvers, fixed-step solver
was chosen due to the fact that the model has continuous states. Simulink® computes
the simulation's next time by adding a fixed-size time step to the current time. In
addition, the continuous solvers employ numerical integration to compute the values
of a model's continuous states at the current step from the values at the previous step
and the values of the state derivatives. Among the various types of fixed-step
solvers, one of the most complex numerical integration methods called Fourth Order
Runge-Kutta (ode4) method was preferred since more accurate results are aimed.
The chosen fixed step size will be discussed later in this section. Once the algorithm
is successfully iterated, it may run without any time limit. In other words, the limit

of simulation stop time depends on the programmer.

After the outline of the simulation is drawn, the comprehensive usage of Matlab®
and Simulink® and the algorithms used in the simulation will be introduced.
Furthermore, the main system and the subsystems of the model associated with the

main system will be presented.

5.3.1 Main System

The main system of the model is as shown in Figure 5.10 and is composed of four
major subsystems: task reference, controller, computed torque block and

manipulator dynamics and kinematics.
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Simulation begins with the initial conditions and desired motion trajectory specified
at t=0. Then this information generates matrix signals of the desired task space
values and its derivatives. This matrix signals then go directly into the controller
subsystem in order to produce control input signal U in accordance with the
Equation 3.38. The third major subsystem is responsible from computing torques at
each sampling time by control algorithm explained in Chapter-III. This algorithm is
the called the inverse dynamics algorithm. Finally, the computed torques are applied
to the real system using the forward dynamics solution this time inside manipulator
dynamics and kinematics subsystem. Inside this major subsystem, joint angular
position variables are computed and from forward kinematic solution task space
unknowns are calculated. Generated joint space and task space position signals and
all of the derivative signals are then fed back to the relevant subsystems to find the

errors in all states.

In the main system, there is a data memory block which stores the time values
generated by a counter clock placed inside manipulator dynamics and kinematics
subsystem. There are also four more blocks at the top which are called tag visibility
blocks and are used to route the signal from where it is located. Since they are
located at the main system, i.e., the level at the top, the signal tags carrying the same

name as in the main system are routed to all of the levels.

5.3.2 Subsystems

This section covers the four major subsystems and how they were built in more
detail. Task reference subsystem is a simple subsystem that is composed of Matlab®™
function blocks that define the prescribed end effector task space trajectory in all
states and data read blocks for time values. Then the generated signals directly go
into the controller subsystem as shown in Figure 5.11. Her in this block, real values
are subtracted from the prescribed reference values and multiplied by the feedback
gains of the ITAE norm with the choice of integral control. Moreover, the errors in

all states are transferred to the workspace for the future comments.

62



{rxddd -
B0 = N

Gainl
To Workspace3
[
<xdd>
©dd>) Sor
> >
| — | Eacc
Gain2
To Workspace2
« > L]
7
6rxdddd>) > : m eacc

GO b N s

To Workspacel

<> _> I:l

evel

<rx> & k|G4
GO g

Gain4
R -—»\65
Integrator Gain5 — Ep
To Workspace
N

ep

Figure 5.11 Controller Subsystem

The computed torque block which is illustrated in Figure 5.12 uses the inverse
dynamics solution by putting the control signal vector U into the snap values of
Equation 3.32 and calculates the torques to be applied by the actuators for making
use of them in the forward dynamics solution. The choice of these gains is going to
be explained later in this section. Since numerical integration of the computed
torques is necessary, one needs to define the initial torque values that are applied by
drive shaft. These initial values are obtained by defining the reference trajectory
values as the actual values. By this way, initial torques are determined from the
computed torque curves. The initial torques are nonzero because of the gravitational

forces applied on the actuators.
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After the torques are computed and formed a vector signal, then this signal enters the
last major subsystem called Manipulator Dynamics and Kinematics. This subsystem
is a bit more complicated than the others since almost all of the unknowns like
manipulator joint position values up to snap values in both joint space and task space

and actuator positions are computed at each sampling time.

This subsystem has three levels from top to bottom. These levels are named in
accordance with their distance to the major subsystem. The level at the bottom is

Level-3 for instance meaning that it is three steps far away.

Level-1 as shown in Figure 5.13 contains manipulator dynamics subsystem and a
Matlab® function called forward kinematics. This function obtains the task space
values of the end effector after the torques are applied to the parallel manipulator in
the subsystem and the outgoing signals are then fed back to the controller subsystem

in order to find errors.

[Theta_Pos] >-|
theta
>
Theta_Vel thetad
[Theta_Vel] >~ >
thetadd
[Theta_Acc] > > X
thetaddd
> MATLAB <
[Theta_Jerk]>—| q > Function | P G
qd Forward Kinematics xdd
—>
qdd xddd
—>
qddd
_>
ol >
ol 2D
"
dd
ST (D)
ddd
R »(@Gddd)

Manipulator Dynamics

Figure 5.13 Manipulator Dynamics and Kinematics Subsystem

The manipulator dynamics subsystem at level-2 is illustrated in Figure 5.14.
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There exist many subsystems at this level. As it can easily be seen from the figure,
control torques are used in the manipulator subsystem that is shown in Figure 5.17
with the feedback signals carrying the information of actuated joint position values
up to the jerk values. With this knowledge, manipulator subsystem calculates the
snaps of the actuated joins. Furthermore, the clock begins to work here to count the
time. Time values are then sent to data write block to be stored in the data memory
block of the main system. After that, these values are transferred from the data
memory block to the data read block of the task reference major subsystem for the
reference trajectory. Time values are also loaded to the workspace for plotting the

graphs.

From that point on, generated signal of actuated joint snaps go directly into the
integration subsystem as given in Figure 5.16 in order to find the joint states from
the jerks to the positions. The integration subsystem consists of four integrators each
of which has initial condition source externally. The initial conditions needed for all

of the states come from the initial conditions source block.

LG .
o S [addd »(@Gddd)
Integratorl
1
>X0 S qdd >
Integrator2
1
o [w >
Integrator3
' In_Joint_Jerk - l @
en; _Joint %o ° q ’
m In_Joint_Acc Integrator4
oint
@ In_Joint_Vel

,Qoint_): -
In_Joint_Pos

Figure 5.15 Integration Subsystem
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Another subsystem is q To Theta subsystem. This subsystem has a very critical
significance and plays a vital role for finding the unactuated joint values from the
actuated joint variables via the constraint equations as expressed in Equations 5.86
and 5.87. For this purpose, some of the algorithms are used for the parallel
manipulators. Among the various types of algorithms, trust-region dogleg algorithm
is preferred to be used for this case study. This is provided by one of the built-in
functions of Matlab® called fsolve. This function is used to solve systems of
nonlinear equations and has an algorithm for systems where the number of equations
is equal to the number of unknown variables. The algorithm is based on finding the

roots of the constraint equations.

As it can be inspected from Figure 5.18, the vector of actuated joint variables T is

returned to the vector of unactuated joint variables #" by many Matlab® functions
that handle the fsolve function and then these two vector signals are concatenated by
the multiplexers to construct the vector of joint variables & vector signal to be

routed to any level of the model to be used where necessary.

However, since solving unactuated joints is based on finding a root of the constraint
equations, one needs to use smaller sampling times for the model in order that this
function converges to a root in region of predefined epsilon value that defines the
error. This value was considered to be 1.0e-06. For this reason sampling time of the
Simulink® model for this case study was preferred as 1.5e-04 after a lot of trials.

That causes a bit longer computation time but more accurate results are obtained.

Last subsystem in this level is the actuator variables subsystem as demonstrated in
Figure 5.19. With the known values of joint variables in all states, the actuator
variables are calculated by substituting the known values of joint variables into the
one of the equations of motion set. Here in this subsystem another numerical
integration for the actuator variables is required as far as the Equation 3.25 is

concerned. For the numerical integration, one needs to define the initial ¢,

i=1,2,3. values.
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Figure 5.18 Actuator Subsystem

Similarly these initial values are automatically obtained like the initial torques.
Running the simulation with the actual initial values with time independency gives
the initial values. The initial values are nonzero because of the gravitational forces

applied on the actuators.

Consequently, the initial deflections at the actuated joints could be found by simply
subtracting actuator positions from active joint position values. It should be noted
that initial deflections are also nonzero. The subtraction process is realized in the

manipulator dynamics subsystem and the deflection values are loaded to the

workspace with the other values like 8 and ¢ angles.

5.4 Control Simulations

Performance of the parallel manipulator in the case study is analyzed basically in
three groups of simulations. In some of the simulations modeling error is considered
by setting the manipulator inertia and mass properties, the torsional spring constants

and the damping constants 10% larger in the model.
Beside that some of the simulations do not contain the integral control. Therefore the

feedback gains alter depending on the integral control is included or not. These

feedback gains of ITAE norm were tabulated in Chapter I11.
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In the simulations, the data used are as below.

Table 5.2 The Geometric Data

Symbol | Definition | Value | Symbol | Definition | Value
L, AC 1.0m| d, AB 1.8 m
L, BD| | 10m| g EG| |075m
L, CE| |1.0m| d; EP| | 08m
L, DF| |10m| «a /PEF | 20 deg
L EF 15m| B /GEF | 7deg

The motors and speed reducers at the active joints have small dimensions compared

to the links. The masses of both rotors and speed reducers are assumed to be lumped

at the joints.

Table 5.3 The Mass/ Inertial Properties and Gear Ratios

Symbol | Value | Symbol Value
m- | 10kg | m" 1.2 kg
m" | 10kg| 17, |7.0e-05kg.m?
m‘ | 10kg | 1%, |8.0e-05kg.m’
m" | 10kg | 15, |9.0e-05kg.m?
m" | 15kg r, 100
m?* | 1.2kg r, 100
m” | 1.2kg r, 100

Structural damping constants of the actuated joints correspond to a 3% damping

ratio for the structural vibration of each rotor.
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Table 5.4 The Damping and Spring Constants

Symbol Value Symbol Value

D, 0.0355N.m.s/rad | D/ | 0.0003 N.m.s/rad

0.0379 N.m.s/rad | D; | 0.0003 N.m.s/rad

[S)

0.0402 N.m.s/rad |  D; | 0.0003 N.m.s/rad

)

0.0200 N.m.s/rad K, 5000 N.m/rad

0.0200 N.m.s/rad K, 5000 N.m/rad

w

Ul O O Ul O

(=)

0.0200 N.m.s/rad K, 5000 N.m/rad

The parallel manipulator in Figure 5.1 is assumed to be at rest initially and have the

following initial active joint positions as below.

6, =135° (5.157)
0, =75 (5.158)
0, =-90° (5.159)

The initial active joint positions lead to the initial passive joint angles by the

algorithm explained in 5.3.2 as
6, =519 (5.160)
6, =-31.46 (5.161)

These initial joint angles correspond to the following task space initial positions.

X =0.6668 m (5.162)
X, =1.8563 m (5.163)
X, =0.2364 rad =13.55° (5.164)
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The desired trajectory motion is a deployment motion in task space and can be

written as
q d O.7O+£{t—LsmE}m 0<t<T
X, =Xp = 2z (5.165)
1.20 m t>T
d g 1.90—£{t—LsinE}m 0<t<T
1.40 m t>T
§ § 20+E[t—LsinE} deg 0<t<T
X, =0 = T 2r T (5.167)
35 deg t>T
where T is the period of the deployment motion and selected as
T=0.6s (5.168)

As far as the initial task space positions and initial desired task space positions are
considered, it can be easily examined that system begins its motion with the initial
position errors. That means in all of the simulations initial position errors are
assumed to be present. In addition to this, when the reference or desired trajectory is
given as the actual initial joint values, the initial torques and initial actuator position

angles are computed as follows.

Initial torques to be applied after speed reduction:

T =-128.51 N.m (5.169)
T, =50.81 N.m (5.170)
T, =69.34 N.m (5.171)

74



Initial phi angles:

¢. =2.3305 rad =133.52° (5.172)
¢, =1.3192 rad =75.58° (5.173)
¢, =—1.5569 rad =-89.20° (5.174)

In the first group of simulations, there is no modeling error and as a result of that no
integral control. Therefore the control feedback gains are picked up as in the first

column of Table 3.1. The simulations are repeated for various @, values. These

conditions are named as the first type of conditions and called CT-1 in short hand.

In the second group of simulations, modeling error is considered but integral control
is not used. Conditions in this group are named as the second type of conditions and

called CT-2, similarly.

Third group of simulations are performed under consideration of modeling error and
integral control. This time, the control feedback gains are picked up as in the second

column of Table 3.1. The condition type is called CT-3 this time.

5.5 Results

There are four graphs plotted to represent
e the desired and responded displacements of the trajectory in three
dimensions,
e the control torques to be supplied by the actuators,

e the position errors,

e the deflections between T and ¢ .

Besides, the position errors are also plotted for the three groups of simulations in the

same graph to compare the effects of @, values.
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Simulation Group-1

a) o, =30 rad/s

-
i

Displacement {m)

-

Displacement (deg)

Time (s}

Figure 5.19 Position Response: 1. X, 2.X,, 3.X; (CT-1, @, =30 rad/s)

1 5 T T T T T T T

Time (s)

Figure 5.20 Control Torques: 1.T%, 2.T;", 3.T,* (CT-1, @, =30 rad/s)
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Figure 5.23 Position Response: 1. X, 2.X,, 3. X, (CT-1, @, =50 rad/s)
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Figure 5.24 Control Torques: 1.T%,2.T,*, 3.T,* (CT-1, e, =50 rad/s)
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Simulation Group-2
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Figure 5.27 Position Response: 1. X, 2.X,, 3. X, (CT-2, @, =30 rad/s)
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Figure 5.28 Control Torques: 1.T%, 2.T,*, 3.T,* (CT-2, e, =30 rad/s)

80



2 — T T T T

Deflection (deg)

Timé (s)
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Figure 5.30 Position Errors (CT-2, @, =30 rad/s)
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Figure 5.32 Control Torques: 1.
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Figure 5.34 Position Errors (CT-2, @, =50 rad/s)
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Simulation Group-3
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b) @, =50 rad/s
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Figure 5.45 Effect of Feedback Gains on x3 (CT-1)
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Figure 5.46 Effect of Feedback Gains on x; (CT-2)
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Figure 5.51 Effect of Feedback Gains on x3 (CT-3)

The results can be tabulated as in Table 5.5 for comparison. This table shows the
steady state position errors, maximum torques applied by the actuators and

maximum deflections that occur during the motion.
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CHAPTER VI

SUMMARY AND CONCLUSIONS

6.1. Summary

This thesis has presented the inverse dynamics algorithm for the position control of
parallel manipulators with flexible joints. Joint flexibility is modeled as a torsional
spring and the damping characteristics of the actuated joints are considered as the
torsional dampers. Rotor damping and viscous frictions at the unactuated joints are
also included in the dynamics of the parallel manipulators. Lagrange’s equations are
used to find the system equations of motion and the unactuated joint variables are
eliminated in the set of equations of motion that correspond to the manipulator joint

variables.

Since the main idea of the inverse dynamics control algorithm is to seek a control
input vector which will linearize and decouple the input/output relation between the
control torques and the joint variables, intermediate variables that belong to the
actuators are analytically eliminated from the sets of equation of motion. Position

control is achieved by the desired end effector snaps and errors in the motion states.

As a case study 2-RRR planar parallel manipulator is considered. Simulations are
performed for different conditions depending upon modeling error and/or integral
control inclusion. Matlab® and Simulink® are utilized as simulation and technical
languages. In the simulations more accurate results are aimed and one of the most
complex numerical integration methods called Fourth Order Runge Kutta Method is

used to increase the accuracy.

Furthermore, the types of singularities of the parallel manipulators are explained.
Analytical expressions that lead to singular configurations are derived and some

possible singular positions for the case study are analyzed.
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6.2. Discussions and Conclusions

There are three groups of simulations carried out in this thesis. In all of the

simulations, the initial error is taken into account.

In the first group of simulations modeling error is not considered and integral terms
in the control are not included in the control law. As seen from Figure 5.19, good
tracking performances have been obtained. However it is obvious that these initial
errors cause larger initial torques and larger tracking errors during the motion. As

the @, values are increased without altering the simulation conditions, the tracking

errors decrease at the cost of increases in torques to be applied by the actuators and

elastic deflections as seen in Figures 5.20, 5.21 and 5.43-5.45.

Second group of simulations are performed in the presence of both initial and
modeling errors. For this purpose, mass/inertia parameters, spring and damping
constants are assumed to be %10 larger in the model. Integral terms are not included
in the control law to see the effects of integral control on the system with additional
existence of modeling error. As seen from Figures 5.30 and 5.34, the tracking errors
and the steady state errors increase considerably. However the elastic deflections
and the torques to be supplied by the actuators do not increase significantly as it can

easily be seen from Table 5.5. As a general property, the increase in @, values

provides the decreases in the tracking errors and the steady state errors.

In the final group of simulations, the integral terms are included to the system with
initial and modeling error. As a matter of fact, the purpose of utilizing the integral
control is to eliminate or at least decrease the tracking and the steady state errors that
arise due to modeling error. It is shown in Figures 5.38 and 5.42 that the both
tracking and steady state errors are decreased. However tracking errors fluctuate and
the initial torques and the initial elastic deflections increase abruptly. This problem

1s overcome by increasing @, values. As @, increases the fluctuations in tracking

errors decrease and good trajectory tracking performance is achieved in spite of the

presence of both initial and modeling errors.
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As aresult, it is shown that parallel manipulators with significant joint flexibility can
follow the specified trajectory with high performance by the proposed control

algorithm.

6.3. Future Work

The following studies are strongly recommended.

e The control algorithm can be further extended for the hybrid force and

position control of parallel manipulators.

e Control methods for the case when the singular configurations are passed

through in the parallel manipulators can be developed.
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APPENDIX A

TIME DERIVATIVES OF MATRICES

A.1 The First and Second Time Derivatives of Matrix I\7I

M,, =—(m," +2m." )L, L,s6,6, —2m,"L, 9,5(0;; + B)6;, —2m."L,g.S(6; + f3)0
M, = —(% m" + msLj L,L,s6,6, —m."L,g.S(6,s + )6, —2m."L,g.S(6; + )6,
M, = -m,"L,g,5(6; + )0, —m."L,g.5(6; + B)6,

M,, =-m,"L,L,s6,0,

M,, = —%m;l_z L,s6,6,

Ms, = _zmsL L,05S(65 + ﬂ)gs

M35 = _msLIﬂgss(es +ﬂ)6’5

My, = =(m" +2m )L L (0,0, +50,6,) — 2m Ly, [ (B + B)0s5" + (01 + ) |
—2m," L g, | (6, + B)O;” + (0, + ) |
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M = _(E m3L + msLj L, L3(093932 +50,0,) - msL L,9; [0(035 + ﬁ)9352 +5(055 + ﬂ)@s]

-am Lo, [c(6, + B)62 +5(6, + B)6. |

M5 = _msLngs [C(@s + 18)9352 +5(0ss +ﬁ)é35}_ msLL395 [C(95 +,8)952 +5(6; +ﬂ)6)5]

M,, =-m,"L,L,(c6,0,” +36,6,)
M 1~ _% m4L Lz L4 ((:(94942 + S946;4)

My, =-2m, L0, | c(6, + B0 +5(6; + B)6 |

My = -m,"L,gs [ c(8, + B)0S” +5(6, + B0 |

A.2 The First and Second Time Derivatives of Vector (5

. L . . . . .
Q =-m'g(5 s64)-m‘g (Llseﬂl +%saﬁl3}mxg (LA, +L,36,6,

+055(6,35 + B)6,35 |-M*9(L,506)

: L : L :
Q,=-m'g 72(5026?2) -m,"g {Lz(seﬁz) +7“(36’24924)}
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. .. 1. )
Q =66, (m" +2m")L Lo, +2m, L9560, + 3) | +5¢912 [(m*+2m)L Lo,

+2m5LL195C(935 + /6)‘935]"' G 9163)[(5 m3L + msL)L1|-35‘93 + msLngss(‘gss +ﬂ):|
+6,0, {(5 m3L + msL)L1|—3C‘9393 + mSLL1g5C(035 +ﬂ)935}+(9195 + eles)mSLngss(eﬁ + /)

.. . L . . .
+0,0[ M Lg.c(05+ )0y |- m" g 56,0, M 9| Lis0.6,; + 955015 + )05 |

Q, =m,"L,L,(6,0,56, +%9’22c9494) +%m4LL2 L,[6,6,50,)+ 6,850, +6,c6,)]

—mng %30292 - m4Lg(L280292 +%SHZ4H.24)

Q =266 ML g6y + B)+ M L,gss(0, + B) |+ 67 M Lg,c(6; + B)b,s
+M"Lyg,C(0; + B0, |+20,0,mLyg,s(0, + B)+0,m"Lig,c(6; + Ao, + (6,6, +6,0,)
[ M Lg;8(0;5 + B)+2m, L g;s(0; + B) |+ 6,6, [m;l_lgsc(@s + B0,

+2m, L, 0,C(6; + By |+ (66, +6,6)[ ML g.s(0;; + B) + M Lyg,s(6,+ B) |

+0,6, [msLngsc(égs + )0, +m.,"Lg.c(6, + ﬂ)9'5]+ (6,0, + 6,6,)m,;"L,g.s(6, + )

+0,0,"m,"L,g,c(60; + )~ M, 9] 95565 + A0 |

Q= _mng ?l(calglz +56,6)) - m3Lg |:L1 ((:‘91‘912 +56,0)) + %(09136132 + S'913'913)}

-y g Li(€O6} +566)+Ly(c0:6, +56,6,) + 95 (C(B135 + B)yss” +5(8is + B)s) |

_m3AgL1 (Celélz + S6’19'1)
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. L : ) : L . ,
Q,=-m,"g 72(0926?22 +s6,60,)-m," g {Lz(cé?zej +56,0,) +74(c¢92449242 + 5924624)}

Q, = (67 +60)[ (" +2m" )L Ls6, +2m, L g,5(0, + ) |
£26/6[ (M, +2m )L, LicO,6, +2m "L g,c(6;; + B)0s |
+E‘912 [(m3L + 2m5L)L1L3(_503932 + C9393) + 2m5Lngs(—s(6’35 +ﬂ)9352 +(:(935 + ﬂ)035):|
+(6,6; +26,0, + 6’193)|:(5 m3L + msL)L1L3393 + msLngss(‘935 +ﬂ)}
+2(6,0, + 0193){(5 m," +m." )L, L,co,0, + m,"L,g.c(0,, + ﬂ)eﬁ}
H6,0,+260, + 6,6)| ML 980, + B) |+ 266, +6,6) | M Lgsc(6,5 + S |
.. L B . .. L |_3 - .
+91'95 [ms ngs( 3(935+ﬂ)935 +C(935+ﬂ)935)] m; 97(C6’13913 +5013913)

—M,"g| Ly(€0,0" +56,:6,) + 9 (€055 + B)yss” +5(0r5s + B)Gs5) |

Q,=m,LL, [922594 +6,(0,50, +6,¢6,0,) +0,6,c0,0, +%9’22 (—s6,6,> + cH@)}
% M, LL, [6.0,50, +20.(8,50, +c0,0,) + 0,50, +30,0,60, - 0,50,)

L . . . . L . .
_mng 72((392‘922 + 56292 ) - m4Lg |:L2 (04926?22 + 56292) + 74(0‘9246’242 + 56’24024)}
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Qs =2(67 +6,6)[ M L,gss(0 + B) + M L 9,5(6; + B) |+ 46,6, ML g6, + B0,
+mL,g.C(6; + B)6,; | +6; {m; L,0s [~5(0ys + By +C(Os + BB |

+m Ly, [ (8, + B)6,” +c(6, + /3)[9'5]} +2(62 +6,6,)m, L, g.5(6; + )
+40,6,m"L,g,c(0, + B)0; + 6, m"Lg, [ -s(6; + PO, +c(6; + B)D; |

+(0,0,+26,0,+ 6,6,)| ML g;s(0y5 + B)+2m"Lyg,s(6s + B) |

+2(6,6, +6,0,)[ M L g,C(0 + B)bss + 2" Lyg,c(0; + B)6), |

+0,0,{m" L[ -5(0,5 + BYO)5” +0(0,5 + )i |+ 2m Lo g, [ ~5(0,+ B0 + (0, + B0 ]}
+(00, +26,6,+ 0,0)| M Lg;5(0;5 + B)+m,"L,gs(6; + B) |

+2(6,6; +6,6,)] ML g,C(0y5 + By + M Lig,c(0s + B |

+0,0,{m L gs [ 5O+ B)0s5" +C(0y5 + BB |+ M Lgs [0, + B)6;” +c(60; + B |}
+(0,0, + 26,0, + 6,6,)m."L,9,5(6; + ) + (6,0, + 6,6,)m,"L,g.c(6, + B)b,

+(6,6. +26,0,6,)m,"L,g.c(b, + B)— 6,6, m;"L,gS(0, + )b,

M {0 [ €05 + B)Oss” + 585+ B)Ess |}

A.3 The First, Second and Third Time Derivatives of Matrix B
B, =-L 66, — L,c6,0,, — LicO,;s0;5s

B, = L,c6,0, +L,c6,,0,,

B, =—-L,C6,0,, — LiCO,350;55

B, =L,c0,,6,

BlS = _L5C91359135
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B, =-Ls46, - L;36,,6,; — L;S6,;50)5

B,, =L,s6,6, + L,s6,,6,,

B,; = ~L;86,,6); — L8650

B,, = L,56,,0,,

B, = —L,50,,.0,,

By =L (5667 +¢06,) - L, (=50,6,5" +¢0,0,; )~ Ls (=50,550,55" + COrs5015 )
B, =L, (56,60, + 0,0, )+ L, (~560,,0,,” + 6,6, )

By =Ly (-560,0,> +¢0,,0,; )~ Ls (-50,556,55" + 0556055 )

Bl =L, (-30,,6. +¢6,,6,,)

Bis =Ly (~5005565" +COpys0iss )

B, =—L (c06 +506,) - L, (cOs0," +50,,6;,)— L (¢O,350155" +356,550,55 )
B, =L, (c6,6," +36,0, )+ L, (0,6, +30,,6,,)

B,y =—L,(¢0,0° + 36,0, ) — Ls (50550055 +36,356055)

B24 =L, ((:6?246)242 + 8924é24)
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g25 =-Ls (59135‘9-1352 + S‘91359135)

B, =-L (—CHIQ.I3 —38(91(9.19'1 + celé{)— L, (_(:‘913‘9.133 _35913‘9.139.13 + C4913é1.3)
—L5 (_(:9135‘9‘1353 - 3561350.1359.135 + C0135é1.35 )

B, =L, (-c6,6," ~350,0,0, +¢0,6, ) + L, (—¢6,,6,,” —350,,6,,0,, +0,,6,,)

By =L, (—c0,0," =356,,0,0; +¢0,,0,; ) — Ly (~C0,550,5" — 350,546,550,5 + 0,550, )
Bl =L, (-¢0,,6,. ~30,,6,,6,, +¢0,,0.,)

B =L, (—c«9135<9'1353 —356,,.6,,50,5 + 0013591'35)

B, =-L (—3916'13 + 30(9149.19‘1 + Sglél.) - L, (_5‘9139.133 + 30913‘9.13‘.9.13 + 5‘91391.3)
_Ls (_3‘9135‘9.1353 + 3C‘91359.135é135 + 59135.9.1.35 )

B,, = L, (50,0, +3c0,0,0, + 50,0, )+ L, (~50,,0,," +3¢0,,6,,0,, +50,,0,, )
st = _L3 (_3913‘9.133 + 3C‘913‘9139;3 + 3013'9'1'3 ) - L5 (_5‘9135‘9.1353 + 3(:‘91359.1359.135 + Selsséas)
B‘24 =L, (_59249243 + 3(:‘924‘9.24@4 + 5924@4)

st =—L; (_361359-1353 + 3C01359.135é135 + S9135é1.35)
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A.4 The First, Second and Third Time Derivatives of Matrix [

Gn = _Llcele'l - %Ceméla _dSC(HBS +0£)6’135

GIZ =0

G13 = _L3C013913 —d,c(b55 +a)‘9135

G14 =0

GIS =—d,c(055 + a)9135

G21 = _Llselél - |-33'9136}13 —dss(0)5 + a)6}135

G, =0

G23 = _L35613913 —d,S(0,55 +0£)9135

G24 =0

st =—d,S(55 + a)'9135

G, =0
G, =0
G, =0
G, =0
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Gy, =0

Gll =-L, (_501‘9.12 + Celél ) -L (_3‘9136.132 + 09139.13 ) - ds [_3(6135 + a)91352 +C(035 + a)élss]

G,=0

Gy =L, (—36,60," +¢0,,6,; )~ ds [ =S(B,55 + @)6,5” +C(0r35 + )55 |

G,=0

G, =—d, [—5(0135 + )0, +0(O)5 + a)ém]

G, =-L (06" +566) - L, (cO,0;> + 50,05 ) ds [ €(B15s + @)B55" +5(0y35 + )55 |
G, =0

G, =-L, (c¢9136'?132 +56,,0, ) —d, [c(e135 + )0, +5(0,, + a)élss}

G, =0

G,s =—d, [C(HBS +0)0,55" +5(0,5s + 05)65135}

G, =0
G, =0
G, =0
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G.u =-L (_091913 - 3S6’1‘91@ + CHIHI)_ L (_00139133 - 336’136}13&3 T C013é1.3)
—d; [_0(0135 +0)0;55" =380, + @)0,350,55 + (0,55 + 0019.1‘35]

G,=0

G.B = _|-3 (_(:‘9139'133 - 33‘9139'13&3 + C‘91391'3 ) - ds |:_C(9135 + a)91353 o 38(9135 + 0{)(9'1354.9.135
+C(O)35 + a)él'ss]

G, =0
Gls =—d; [_C(ens + 0091353 —3s(0;55 + 0{)9.1359.135 +C(0)35 + a)él‘35:|

Glzl =-L (_36716"13 + 3C910‘1é1 + S‘916?1)_ L (_549130.133 + 3C0130.13é13 + S‘913‘.9.1‘3)
—d; [_3(0135 + a)él353 +3¢(0,55 + a)él35é135 +5(0;35 + a)éas]

G, =0

G.za = _Ls (_3‘9139133 + 304913913és + 8913é3 ) - ds [_5(0135 + 0‘)‘9‘1353 + 30(9135 + a)éwsélas
+5(655 + 0{)6}1.35 ]

G, =0

G,s =—d, [_3(9135 +0)0y55" +30(6)35 + )03, + (655 + a)éiss}
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APPENDIX B

ELEMENTS OF MATRICES

B.1 The Elements of Matrices M* and M""

Ma*ll = Mll +M15C21

M a*lz = M15C22

M a*13 = M13 + M13C23

M a*21 = M24C11

M a*zz = Mzz + M24C12

M a*23 = M24C13

M a*31 = M13 + M35C21

M a*32 = M35C22

M a*33 = M33 + M35C23

Mu*ll = M44C11

M u*12 =M, +M,,C,
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M* 3= M44C13
M u*21 = MIS + M55C21
M u*zz = Mssczz

M u*zs = M35 + M55C23

B.2 The Elements of Matrices R* and R"
Rall = MISCZI

Ralz = MISCZZ

Ra13 = M15C23

Ra21 =M 24C11

Razz =M 24C12

Raz3 =M 24C13

Ra31 = M35C21

Ra32 =M 35C22

Ra33 =M 35C23

Rull = M44C11 +(D4 + D6)C11 - D6C21
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Rulz = M44C12 + (D4 + D6)C12 - D6C22

Rula = M44C13 +(D4 + D())CIB - Décza

Ruzl = M55C21 +(Ds + Dﬁ)CZI - D6C11

Ruzz = Mssczz +(D5 + Ds)sz - D6C12

Ru23 = M55C23 + (Ds + DG)CB - D6C13
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